1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <[email protected]> 8 * Mark Evans, <[email protected]> 9 * 10 * Additional Authors: 11 * Florian la Roche <[email protected]> 12 * Alan Cox <[email protected]> 13 * David Hinds <[email protected]> 14 * Alexey Kuznetsov <[email protected]> 15 * Adam Sulmicki <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/bpf.h> 95 #include <linux/bpf_trace.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <net/busy_poll.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/dst_metadata.h> 103 #include <net/pkt_sched.h> 104 #include <net/pkt_cls.h> 105 #include <net/checksum.h> 106 #include <net/xfrm.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/module.h> 110 #include <linux/netpoll.h> 111 #include <linux/rcupdate.h> 112 #include <linux/delay.h> 113 #include <net/iw_handler.h> 114 #include <asm/current.h> 115 #include <linux/audit.h> 116 #include <linux/dmaengine.h> 117 #include <linux/err.h> 118 #include <linux/ctype.h> 119 #include <linux/if_arp.h> 120 #include <linux/if_vlan.h> 121 #include <linux/ip.h> 122 #include <net/ip.h> 123 #include <net/mpls.h> 124 #include <linux/ipv6.h> 125 #include <linux/in.h> 126 #include <linux/jhash.h> 127 #include <linux/random.h> 128 #include <trace/events/napi.h> 129 #include <trace/events/net.h> 130 #include <trace/events/skb.h> 131 #include <linux/inetdevice.h> 132 #include <linux/cpu_rmap.h> 133 #include <linux/static_key.h> 134 #include <linux/hashtable.h> 135 #include <linux/vmalloc.h> 136 #include <linux/if_macvlan.h> 137 #include <linux/errqueue.h> 138 #include <linux/hrtimer.h> 139 #include <linux/netfilter_ingress.h> 140 #include <linux/crash_dump.h> 141 #include <linux/sctp.h> 142 #include <net/udp_tunnel.h> 143 #include <linux/net_namespace.h> 144 #include <linux/indirect_call_wrapper.h> 145 #include <net/devlink.h> 146 #include <linux/pm_runtime.h> 147 148 #include "net-sysfs.h" 149 150 #define MAX_GRO_SKBS 8 151 152 /* This should be increased if a protocol with a bigger head is added. */ 153 #define GRO_MAX_HEAD (MAX_HEADER + 128) 154 155 static DEFINE_SPINLOCK(ptype_lock); 156 static DEFINE_SPINLOCK(offload_lock); 157 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 158 struct list_head ptype_all __read_mostly; /* Taps */ 159 static struct list_head offload_base __read_mostly; 160 161 static int netif_rx_internal(struct sk_buff *skb); 162 static int call_netdevice_notifiers_info(unsigned long val, 163 struct netdev_notifier_info *info); 164 static int call_netdevice_notifiers_extack(unsigned long val, 165 struct net_device *dev, 166 struct netlink_ext_ack *extack); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 static DEFINE_MUTEX(ifalias_mutex); 192 193 /* protects napi_hash addition/deletion and napi_gen_id */ 194 static DEFINE_SPINLOCK(napi_hash_lock); 195 196 static unsigned int napi_gen_id = NR_CPUS; 197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 198 199 static DECLARE_RWSEM(devnet_rename_sem); 200 201 static inline void dev_base_seq_inc(struct net *net) 202 { 203 while (++net->dev_base_seq == 0) 204 ; 205 } 206 207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208 { 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 210 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 212 } 213 214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 215 { 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 217 } 218 219 static inline void rps_lock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_lock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 static inline void rps_unlock(struct softnet_data *sd) 227 { 228 #ifdef CONFIG_RPS 229 spin_unlock(&sd->input_pkt_queue.lock); 230 #endif 231 } 232 233 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 234 const char *name) 235 { 236 struct netdev_name_node *name_node; 237 238 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 239 if (!name_node) 240 return NULL; 241 INIT_HLIST_NODE(&name_node->hlist); 242 name_node->dev = dev; 243 name_node->name = name; 244 return name_node; 245 } 246 247 static struct netdev_name_node * 248 netdev_name_node_head_alloc(struct net_device *dev) 249 { 250 struct netdev_name_node *name_node; 251 252 name_node = netdev_name_node_alloc(dev, dev->name); 253 if (!name_node) 254 return NULL; 255 INIT_LIST_HEAD(&name_node->list); 256 return name_node; 257 } 258 259 static void netdev_name_node_free(struct netdev_name_node *name_node) 260 { 261 kfree(name_node); 262 } 263 264 static void netdev_name_node_add(struct net *net, 265 struct netdev_name_node *name_node) 266 { 267 hlist_add_head_rcu(&name_node->hlist, 268 dev_name_hash(net, name_node->name)); 269 } 270 271 static void netdev_name_node_del(struct netdev_name_node *name_node) 272 { 273 hlist_del_rcu(&name_node->hlist); 274 } 275 276 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 277 const char *name) 278 { 279 struct hlist_head *head = dev_name_hash(net, name); 280 struct netdev_name_node *name_node; 281 282 hlist_for_each_entry(name_node, head, hlist) 283 if (!strcmp(name_node->name, name)) 284 return name_node; 285 return NULL; 286 } 287 288 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 289 const char *name) 290 { 291 struct hlist_head *head = dev_name_hash(net, name); 292 struct netdev_name_node *name_node; 293 294 hlist_for_each_entry_rcu(name_node, head, hlist) 295 if (!strcmp(name_node->name, name)) 296 return name_node; 297 return NULL; 298 } 299 300 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 301 { 302 struct netdev_name_node *name_node; 303 struct net *net = dev_net(dev); 304 305 name_node = netdev_name_node_lookup(net, name); 306 if (name_node) 307 return -EEXIST; 308 name_node = netdev_name_node_alloc(dev, name); 309 if (!name_node) 310 return -ENOMEM; 311 netdev_name_node_add(net, name_node); 312 /* The node that holds dev->name acts as a head of per-device list. */ 313 list_add_tail(&name_node->list, &dev->name_node->list); 314 315 return 0; 316 } 317 EXPORT_SYMBOL(netdev_name_node_alt_create); 318 319 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 320 { 321 list_del(&name_node->list); 322 netdev_name_node_del(name_node); 323 kfree(name_node->name); 324 netdev_name_node_free(name_node); 325 } 326 327 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 328 { 329 struct netdev_name_node *name_node; 330 struct net *net = dev_net(dev); 331 332 name_node = netdev_name_node_lookup(net, name); 333 if (!name_node) 334 return -ENOENT; 335 /* lookup might have found our primary name or a name belonging 336 * to another device. 337 */ 338 if (name_node == dev->name_node || name_node->dev != dev) 339 return -EINVAL; 340 341 __netdev_name_node_alt_destroy(name_node); 342 343 return 0; 344 } 345 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 346 347 static void netdev_name_node_alt_flush(struct net_device *dev) 348 { 349 struct netdev_name_node *name_node, *tmp; 350 351 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 352 __netdev_name_node_alt_destroy(name_node); 353 } 354 355 /* Device list insertion */ 356 static void list_netdevice(struct net_device *dev) 357 { 358 struct net *net = dev_net(dev); 359 360 ASSERT_RTNL(); 361 362 write_lock_bh(&dev_base_lock); 363 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 364 netdev_name_node_add(net, dev->name_node); 365 hlist_add_head_rcu(&dev->index_hlist, 366 dev_index_hash(net, dev->ifindex)); 367 write_unlock_bh(&dev_base_lock); 368 369 dev_base_seq_inc(net); 370 } 371 372 /* Device list removal 373 * caller must respect a RCU grace period before freeing/reusing dev 374 */ 375 static void unlist_netdevice(struct net_device *dev) 376 { 377 ASSERT_RTNL(); 378 379 /* Unlink dev from the device chain */ 380 write_lock_bh(&dev_base_lock); 381 list_del_rcu(&dev->dev_list); 382 netdev_name_node_del(dev->name_node); 383 hlist_del_rcu(&dev->index_hlist); 384 write_unlock_bh(&dev_base_lock); 385 386 dev_base_seq_inc(dev_net(dev)); 387 } 388 389 /* 390 * Our notifier list 391 */ 392 393 static RAW_NOTIFIER_HEAD(netdev_chain); 394 395 /* 396 * Device drivers call our routines to queue packets here. We empty the 397 * queue in the local softnet handler. 398 */ 399 400 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 401 EXPORT_PER_CPU_SYMBOL(softnet_data); 402 403 #ifdef CONFIG_LOCKDEP 404 /* 405 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 406 * according to dev->type 407 */ 408 static const unsigned short netdev_lock_type[] = { 409 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 410 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 411 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 412 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 413 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 414 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 415 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 416 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 417 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 418 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 419 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 420 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 421 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 422 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 423 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 424 425 static const char *const netdev_lock_name[] = { 426 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 427 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 428 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 429 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 430 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 431 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 432 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 433 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 434 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 435 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 436 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 437 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 438 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 439 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 440 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 441 442 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 443 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 444 445 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 446 { 447 int i; 448 449 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 450 if (netdev_lock_type[i] == dev_type) 451 return i; 452 /* the last key is used by default */ 453 return ARRAY_SIZE(netdev_lock_type) - 1; 454 } 455 456 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 457 unsigned short dev_type) 458 { 459 int i; 460 461 i = netdev_lock_pos(dev_type); 462 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 463 netdev_lock_name[i]); 464 } 465 466 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 467 { 468 int i; 469 470 i = netdev_lock_pos(dev->type); 471 lockdep_set_class_and_name(&dev->addr_list_lock, 472 &netdev_addr_lock_key[i], 473 netdev_lock_name[i]); 474 } 475 #else 476 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 477 unsigned short dev_type) 478 { 479 } 480 481 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 482 { 483 } 484 #endif 485 486 /******************************************************************************* 487 * 488 * Protocol management and registration routines 489 * 490 *******************************************************************************/ 491 492 493 /* 494 * Add a protocol ID to the list. Now that the input handler is 495 * smarter we can dispense with all the messy stuff that used to be 496 * here. 497 * 498 * BEWARE!!! Protocol handlers, mangling input packets, 499 * MUST BE last in hash buckets and checking protocol handlers 500 * MUST start from promiscuous ptype_all chain in net_bh. 501 * It is true now, do not change it. 502 * Explanation follows: if protocol handler, mangling packet, will 503 * be the first on list, it is not able to sense, that packet 504 * is cloned and should be copied-on-write, so that it will 505 * change it and subsequent readers will get broken packet. 506 * --ANK (980803) 507 */ 508 509 static inline struct list_head *ptype_head(const struct packet_type *pt) 510 { 511 if (pt->type == htons(ETH_P_ALL)) 512 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 513 else 514 return pt->dev ? &pt->dev->ptype_specific : 515 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 516 } 517 518 /** 519 * dev_add_pack - add packet handler 520 * @pt: packet type declaration 521 * 522 * Add a protocol handler to the networking stack. The passed &packet_type 523 * is linked into kernel lists and may not be freed until it has been 524 * removed from the kernel lists. 525 * 526 * This call does not sleep therefore it can not 527 * guarantee all CPU's that are in middle of receiving packets 528 * will see the new packet type (until the next received packet). 529 */ 530 531 void dev_add_pack(struct packet_type *pt) 532 { 533 struct list_head *head = ptype_head(pt); 534 535 spin_lock(&ptype_lock); 536 list_add_rcu(&pt->list, head); 537 spin_unlock(&ptype_lock); 538 } 539 EXPORT_SYMBOL(dev_add_pack); 540 541 /** 542 * __dev_remove_pack - remove packet handler 543 * @pt: packet type declaration 544 * 545 * Remove a protocol handler that was previously added to the kernel 546 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 547 * from the kernel lists and can be freed or reused once this function 548 * returns. 549 * 550 * The packet type might still be in use by receivers 551 * and must not be freed until after all the CPU's have gone 552 * through a quiescent state. 553 */ 554 void __dev_remove_pack(struct packet_type *pt) 555 { 556 struct list_head *head = ptype_head(pt); 557 struct packet_type *pt1; 558 559 spin_lock(&ptype_lock); 560 561 list_for_each_entry(pt1, head, list) { 562 if (pt == pt1) { 563 list_del_rcu(&pt->list); 564 goto out; 565 } 566 } 567 568 pr_warn("dev_remove_pack: %p not found\n", pt); 569 out: 570 spin_unlock(&ptype_lock); 571 } 572 EXPORT_SYMBOL(__dev_remove_pack); 573 574 /** 575 * dev_remove_pack - remove packet handler 576 * @pt: packet type declaration 577 * 578 * Remove a protocol handler that was previously added to the kernel 579 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 580 * from the kernel lists and can be freed or reused once this function 581 * returns. 582 * 583 * This call sleeps to guarantee that no CPU is looking at the packet 584 * type after return. 585 */ 586 void dev_remove_pack(struct packet_type *pt) 587 { 588 __dev_remove_pack(pt); 589 590 synchronize_net(); 591 } 592 EXPORT_SYMBOL(dev_remove_pack); 593 594 595 /** 596 * dev_add_offload - register offload handlers 597 * @po: protocol offload declaration 598 * 599 * Add protocol offload handlers to the networking stack. The passed 600 * &proto_offload is linked into kernel lists and may not be freed until 601 * it has been removed from the kernel lists. 602 * 603 * This call does not sleep therefore it can not 604 * guarantee all CPU's that are in middle of receiving packets 605 * will see the new offload handlers (until the next received packet). 606 */ 607 void dev_add_offload(struct packet_offload *po) 608 { 609 struct packet_offload *elem; 610 611 spin_lock(&offload_lock); 612 list_for_each_entry(elem, &offload_base, list) { 613 if (po->priority < elem->priority) 614 break; 615 } 616 list_add_rcu(&po->list, elem->list.prev); 617 spin_unlock(&offload_lock); 618 } 619 EXPORT_SYMBOL(dev_add_offload); 620 621 /** 622 * __dev_remove_offload - remove offload handler 623 * @po: packet offload declaration 624 * 625 * Remove a protocol offload handler that was previously added to the 626 * kernel offload handlers by dev_add_offload(). The passed &offload_type 627 * is removed from the kernel lists and can be freed or reused once this 628 * function returns. 629 * 630 * The packet type might still be in use by receivers 631 * and must not be freed until after all the CPU's have gone 632 * through a quiescent state. 633 */ 634 static void __dev_remove_offload(struct packet_offload *po) 635 { 636 struct list_head *head = &offload_base; 637 struct packet_offload *po1; 638 639 spin_lock(&offload_lock); 640 641 list_for_each_entry(po1, head, list) { 642 if (po == po1) { 643 list_del_rcu(&po->list); 644 goto out; 645 } 646 } 647 648 pr_warn("dev_remove_offload: %p not found\n", po); 649 out: 650 spin_unlock(&offload_lock); 651 } 652 653 /** 654 * dev_remove_offload - remove packet offload handler 655 * @po: packet offload declaration 656 * 657 * Remove a packet offload handler that was previously added to the kernel 658 * offload handlers by dev_add_offload(). The passed &offload_type is 659 * removed from the kernel lists and can be freed or reused once this 660 * function returns. 661 * 662 * This call sleeps to guarantee that no CPU is looking at the packet 663 * type after return. 664 */ 665 void dev_remove_offload(struct packet_offload *po) 666 { 667 __dev_remove_offload(po); 668 669 synchronize_net(); 670 } 671 EXPORT_SYMBOL(dev_remove_offload); 672 673 /****************************************************************************** 674 * 675 * Device Boot-time Settings Routines 676 * 677 ******************************************************************************/ 678 679 /* Boot time configuration table */ 680 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 681 682 /** 683 * netdev_boot_setup_add - add new setup entry 684 * @name: name of the device 685 * @map: configured settings for the device 686 * 687 * Adds new setup entry to the dev_boot_setup list. The function 688 * returns 0 on error and 1 on success. This is a generic routine to 689 * all netdevices. 690 */ 691 static int netdev_boot_setup_add(char *name, struct ifmap *map) 692 { 693 struct netdev_boot_setup *s; 694 int i; 695 696 s = dev_boot_setup; 697 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 698 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 699 memset(s[i].name, 0, sizeof(s[i].name)); 700 strlcpy(s[i].name, name, IFNAMSIZ); 701 memcpy(&s[i].map, map, sizeof(s[i].map)); 702 break; 703 } 704 } 705 706 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 707 } 708 709 /** 710 * netdev_boot_setup_check - check boot time settings 711 * @dev: the netdevice 712 * 713 * Check boot time settings for the device. 714 * The found settings are set for the device to be used 715 * later in the device probing. 716 * Returns 0 if no settings found, 1 if they are. 717 */ 718 int netdev_boot_setup_check(struct net_device *dev) 719 { 720 struct netdev_boot_setup *s = dev_boot_setup; 721 int i; 722 723 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 724 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 725 !strcmp(dev->name, s[i].name)) { 726 dev->irq = s[i].map.irq; 727 dev->base_addr = s[i].map.base_addr; 728 dev->mem_start = s[i].map.mem_start; 729 dev->mem_end = s[i].map.mem_end; 730 return 1; 731 } 732 } 733 return 0; 734 } 735 EXPORT_SYMBOL(netdev_boot_setup_check); 736 737 738 /** 739 * netdev_boot_base - get address from boot time settings 740 * @prefix: prefix for network device 741 * @unit: id for network device 742 * 743 * Check boot time settings for the base address of device. 744 * The found settings are set for the device to be used 745 * later in the device probing. 746 * Returns 0 if no settings found. 747 */ 748 unsigned long netdev_boot_base(const char *prefix, int unit) 749 { 750 const struct netdev_boot_setup *s = dev_boot_setup; 751 char name[IFNAMSIZ]; 752 int i; 753 754 sprintf(name, "%s%d", prefix, unit); 755 756 /* 757 * If device already registered then return base of 1 758 * to indicate not to probe for this interface 759 */ 760 if (__dev_get_by_name(&init_net, name)) 761 return 1; 762 763 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 764 if (!strcmp(name, s[i].name)) 765 return s[i].map.base_addr; 766 return 0; 767 } 768 769 /* 770 * Saves at boot time configured settings for any netdevice. 771 */ 772 int __init netdev_boot_setup(char *str) 773 { 774 int ints[5]; 775 struct ifmap map; 776 777 str = get_options(str, ARRAY_SIZE(ints), ints); 778 if (!str || !*str) 779 return 0; 780 781 /* Save settings */ 782 memset(&map, 0, sizeof(map)); 783 if (ints[0] > 0) 784 map.irq = ints[1]; 785 if (ints[0] > 1) 786 map.base_addr = ints[2]; 787 if (ints[0] > 2) 788 map.mem_start = ints[3]; 789 if (ints[0] > 3) 790 map.mem_end = ints[4]; 791 792 /* Add new entry to the list */ 793 return netdev_boot_setup_add(str, &map); 794 } 795 796 __setup("netdev=", netdev_boot_setup); 797 798 /******************************************************************************* 799 * 800 * Device Interface Subroutines 801 * 802 *******************************************************************************/ 803 804 /** 805 * dev_get_iflink - get 'iflink' value of a interface 806 * @dev: targeted interface 807 * 808 * Indicates the ifindex the interface is linked to. 809 * Physical interfaces have the same 'ifindex' and 'iflink' values. 810 */ 811 812 int dev_get_iflink(const struct net_device *dev) 813 { 814 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 815 return dev->netdev_ops->ndo_get_iflink(dev); 816 817 return dev->ifindex; 818 } 819 EXPORT_SYMBOL(dev_get_iflink); 820 821 /** 822 * dev_fill_metadata_dst - Retrieve tunnel egress information. 823 * @dev: targeted interface 824 * @skb: The packet. 825 * 826 * For better visibility of tunnel traffic OVS needs to retrieve 827 * egress tunnel information for a packet. Following API allows 828 * user to get this info. 829 */ 830 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 831 { 832 struct ip_tunnel_info *info; 833 834 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 835 return -EINVAL; 836 837 info = skb_tunnel_info_unclone(skb); 838 if (!info) 839 return -ENOMEM; 840 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 841 return -EINVAL; 842 843 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 844 } 845 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 846 847 /** 848 * __dev_get_by_name - find a device by its name 849 * @net: the applicable net namespace 850 * @name: name to find 851 * 852 * Find an interface by name. Must be called under RTNL semaphore 853 * or @dev_base_lock. If the name is found a pointer to the device 854 * is returned. If the name is not found then %NULL is returned. The 855 * reference counters are not incremented so the caller must be 856 * careful with locks. 857 */ 858 859 struct net_device *__dev_get_by_name(struct net *net, const char *name) 860 { 861 struct netdev_name_node *node_name; 862 863 node_name = netdev_name_node_lookup(net, name); 864 return node_name ? node_name->dev : NULL; 865 } 866 EXPORT_SYMBOL(__dev_get_by_name); 867 868 /** 869 * dev_get_by_name_rcu - find a device by its name 870 * @net: the applicable net namespace 871 * @name: name to find 872 * 873 * Find an interface by name. 874 * If the name is found a pointer to the device is returned. 875 * If the name is not found then %NULL is returned. 876 * The reference counters are not incremented so the caller must be 877 * careful with locks. The caller must hold RCU lock. 878 */ 879 880 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 881 { 882 struct netdev_name_node *node_name; 883 884 node_name = netdev_name_node_lookup_rcu(net, name); 885 return node_name ? node_name->dev : NULL; 886 } 887 EXPORT_SYMBOL(dev_get_by_name_rcu); 888 889 /** 890 * dev_get_by_name - find a device by its name 891 * @net: the applicable net namespace 892 * @name: name to find 893 * 894 * Find an interface by name. This can be called from any 895 * context and does its own locking. The returned handle has 896 * the usage count incremented and the caller must use dev_put() to 897 * release it when it is no longer needed. %NULL is returned if no 898 * matching device is found. 899 */ 900 901 struct net_device *dev_get_by_name(struct net *net, const char *name) 902 { 903 struct net_device *dev; 904 905 rcu_read_lock(); 906 dev = dev_get_by_name_rcu(net, name); 907 if (dev) 908 dev_hold(dev); 909 rcu_read_unlock(); 910 return dev; 911 } 912 EXPORT_SYMBOL(dev_get_by_name); 913 914 /** 915 * __dev_get_by_index - find a device by its ifindex 916 * @net: the applicable net namespace 917 * @ifindex: index of device 918 * 919 * Search for an interface by index. Returns %NULL if the device 920 * is not found or a pointer to the device. The device has not 921 * had its reference counter increased so the caller must be careful 922 * about locking. The caller must hold either the RTNL semaphore 923 * or @dev_base_lock. 924 */ 925 926 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 927 { 928 struct net_device *dev; 929 struct hlist_head *head = dev_index_hash(net, ifindex); 930 931 hlist_for_each_entry(dev, head, index_hlist) 932 if (dev->ifindex == ifindex) 933 return dev; 934 935 return NULL; 936 } 937 EXPORT_SYMBOL(__dev_get_by_index); 938 939 /** 940 * dev_get_by_index_rcu - find a device by its ifindex 941 * @net: the applicable net namespace 942 * @ifindex: index of device 943 * 944 * Search for an interface by index. Returns %NULL if the device 945 * is not found or a pointer to the device. The device has not 946 * had its reference counter increased so the caller must be careful 947 * about locking. The caller must hold RCU lock. 948 */ 949 950 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 951 { 952 struct net_device *dev; 953 struct hlist_head *head = dev_index_hash(net, ifindex); 954 955 hlist_for_each_entry_rcu(dev, head, index_hlist) 956 if (dev->ifindex == ifindex) 957 return dev; 958 959 return NULL; 960 } 961 EXPORT_SYMBOL(dev_get_by_index_rcu); 962 963 964 /** 965 * dev_get_by_index - find a device by its ifindex 966 * @net: the applicable net namespace 967 * @ifindex: index of device 968 * 969 * Search for an interface by index. Returns NULL if the device 970 * is not found or a pointer to the device. The device returned has 971 * had a reference added and the pointer is safe until the user calls 972 * dev_put to indicate they have finished with it. 973 */ 974 975 struct net_device *dev_get_by_index(struct net *net, int ifindex) 976 { 977 struct net_device *dev; 978 979 rcu_read_lock(); 980 dev = dev_get_by_index_rcu(net, ifindex); 981 if (dev) 982 dev_hold(dev); 983 rcu_read_unlock(); 984 return dev; 985 } 986 EXPORT_SYMBOL(dev_get_by_index); 987 988 /** 989 * dev_get_by_napi_id - find a device by napi_id 990 * @napi_id: ID of the NAPI struct 991 * 992 * Search for an interface by NAPI ID. Returns %NULL if the device 993 * is not found or a pointer to the device. The device has not had 994 * its reference counter increased so the caller must be careful 995 * about locking. The caller must hold RCU lock. 996 */ 997 998 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 999 { 1000 struct napi_struct *napi; 1001 1002 WARN_ON_ONCE(!rcu_read_lock_held()); 1003 1004 if (napi_id < MIN_NAPI_ID) 1005 return NULL; 1006 1007 napi = napi_by_id(napi_id); 1008 1009 return napi ? napi->dev : NULL; 1010 } 1011 EXPORT_SYMBOL(dev_get_by_napi_id); 1012 1013 /** 1014 * netdev_get_name - get a netdevice name, knowing its ifindex. 1015 * @net: network namespace 1016 * @name: a pointer to the buffer where the name will be stored. 1017 * @ifindex: the ifindex of the interface to get the name from. 1018 */ 1019 int netdev_get_name(struct net *net, char *name, int ifindex) 1020 { 1021 struct net_device *dev; 1022 int ret; 1023 1024 down_read(&devnet_rename_sem); 1025 rcu_read_lock(); 1026 1027 dev = dev_get_by_index_rcu(net, ifindex); 1028 if (!dev) { 1029 ret = -ENODEV; 1030 goto out; 1031 } 1032 1033 strcpy(name, dev->name); 1034 1035 ret = 0; 1036 out: 1037 rcu_read_unlock(); 1038 up_read(&devnet_rename_sem); 1039 return ret; 1040 } 1041 1042 /** 1043 * dev_getbyhwaddr_rcu - find a device by its hardware address 1044 * @net: the applicable net namespace 1045 * @type: media type of device 1046 * @ha: hardware address 1047 * 1048 * Search for an interface by MAC address. Returns NULL if the device 1049 * is not found or a pointer to the device. 1050 * The caller must hold RCU or RTNL. 1051 * The returned device has not had its ref count increased 1052 * and the caller must therefore be careful about locking 1053 * 1054 */ 1055 1056 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1057 const char *ha) 1058 { 1059 struct net_device *dev; 1060 1061 for_each_netdev_rcu(net, dev) 1062 if (dev->type == type && 1063 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1064 return dev; 1065 1066 return NULL; 1067 } 1068 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1069 1070 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 1071 { 1072 struct net_device *dev; 1073 1074 ASSERT_RTNL(); 1075 for_each_netdev(net, dev) 1076 if (dev->type == type) 1077 return dev; 1078 1079 return NULL; 1080 } 1081 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 1082 1083 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1084 { 1085 struct net_device *dev, *ret = NULL; 1086 1087 rcu_read_lock(); 1088 for_each_netdev_rcu(net, dev) 1089 if (dev->type == type) { 1090 dev_hold(dev); 1091 ret = dev; 1092 break; 1093 } 1094 rcu_read_unlock(); 1095 return ret; 1096 } 1097 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1098 1099 /** 1100 * __dev_get_by_flags - find any device with given flags 1101 * @net: the applicable net namespace 1102 * @if_flags: IFF_* values 1103 * @mask: bitmask of bits in if_flags to check 1104 * 1105 * Search for any interface with the given flags. Returns NULL if a device 1106 * is not found or a pointer to the device. Must be called inside 1107 * rtnl_lock(), and result refcount is unchanged. 1108 */ 1109 1110 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1111 unsigned short mask) 1112 { 1113 struct net_device *dev, *ret; 1114 1115 ASSERT_RTNL(); 1116 1117 ret = NULL; 1118 for_each_netdev(net, dev) { 1119 if (((dev->flags ^ if_flags) & mask) == 0) { 1120 ret = dev; 1121 break; 1122 } 1123 } 1124 return ret; 1125 } 1126 EXPORT_SYMBOL(__dev_get_by_flags); 1127 1128 /** 1129 * dev_valid_name - check if name is okay for network device 1130 * @name: name string 1131 * 1132 * Network device names need to be valid file names to 1133 * to allow sysfs to work. We also disallow any kind of 1134 * whitespace. 1135 */ 1136 bool dev_valid_name(const char *name) 1137 { 1138 if (*name == '\0') 1139 return false; 1140 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1141 return false; 1142 if (!strcmp(name, ".") || !strcmp(name, "..")) 1143 return false; 1144 1145 while (*name) { 1146 if (*name == '/' || *name == ':' || isspace(*name)) 1147 return false; 1148 name++; 1149 } 1150 return true; 1151 } 1152 EXPORT_SYMBOL(dev_valid_name); 1153 1154 /** 1155 * __dev_alloc_name - allocate a name for a device 1156 * @net: network namespace to allocate the device name in 1157 * @name: name format string 1158 * @buf: scratch buffer and result name string 1159 * 1160 * Passed a format string - eg "lt%d" it will try and find a suitable 1161 * id. It scans list of devices to build up a free map, then chooses 1162 * the first empty slot. The caller must hold the dev_base or rtnl lock 1163 * while allocating the name and adding the device in order to avoid 1164 * duplicates. 1165 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1166 * Returns the number of the unit assigned or a negative errno code. 1167 */ 1168 1169 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1170 { 1171 int i = 0; 1172 const char *p; 1173 const int max_netdevices = 8*PAGE_SIZE; 1174 unsigned long *inuse; 1175 struct net_device *d; 1176 1177 if (!dev_valid_name(name)) 1178 return -EINVAL; 1179 1180 p = strchr(name, '%'); 1181 if (p) { 1182 /* 1183 * Verify the string as this thing may have come from 1184 * the user. There must be either one "%d" and no other "%" 1185 * characters. 1186 */ 1187 if (p[1] != 'd' || strchr(p + 2, '%')) 1188 return -EINVAL; 1189 1190 /* Use one page as a bit array of possible slots */ 1191 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1192 if (!inuse) 1193 return -ENOMEM; 1194 1195 for_each_netdev(net, d) { 1196 if (!sscanf(d->name, name, &i)) 1197 continue; 1198 if (i < 0 || i >= max_netdevices) 1199 continue; 1200 1201 /* avoid cases where sscanf is not exact inverse of printf */ 1202 snprintf(buf, IFNAMSIZ, name, i); 1203 if (!strncmp(buf, d->name, IFNAMSIZ)) 1204 set_bit(i, inuse); 1205 } 1206 1207 i = find_first_zero_bit(inuse, max_netdevices); 1208 free_page((unsigned long) inuse); 1209 } 1210 1211 snprintf(buf, IFNAMSIZ, name, i); 1212 if (!__dev_get_by_name(net, buf)) 1213 return i; 1214 1215 /* It is possible to run out of possible slots 1216 * when the name is long and there isn't enough space left 1217 * for the digits, or if all bits are used. 1218 */ 1219 return -ENFILE; 1220 } 1221 1222 static int dev_alloc_name_ns(struct net *net, 1223 struct net_device *dev, 1224 const char *name) 1225 { 1226 char buf[IFNAMSIZ]; 1227 int ret; 1228 1229 BUG_ON(!net); 1230 ret = __dev_alloc_name(net, name, buf); 1231 if (ret >= 0) 1232 strlcpy(dev->name, buf, IFNAMSIZ); 1233 return ret; 1234 } 1235 1236 /** 1237 * dev_alloc_name - allocate a name for a device 1238 * @dev: device 1239 * @name: name format string 1240 * 1241 * Passed a format string - eg "lt%d" it will try and find a suitable 1242 * id. It scans list of devices to build up a free map, then chooses 1243 * the first empty slot. The caller must hold the dev_base or rtnl lock 1244 * while allocating the name and adding the device in order to avoid 1245 * duplicates. 1246 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1247 * Returns the number of the unit assigned or a negative errno code. 1248 */ 1249 1250 int dev_alloc_name(struct net_device *dev, const char *name) 1251 { 1252 return dev_alloc_name_ns(dev_net(dev), dev, name); 1253 } 1254 EXPORT_SYMBOL(dev_alloc_name); 1255 1256 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1257 const char *name) 1258 { 1259 BUG_ON(!net); 1260 1261 if (!dev_valid_name(name)) 1262 return -EINVAL; 1263 1264 if (strchr(name, '%')) 1265 return dev_alloc_name_ns(net, dev, name); 1266 else if (__dev_get_by_name(net, name)) 1267 return -EEXIST; 1268 else if (dev->name != name) 1269 strlcpy(dev->name, name, IFNAMSIZ); 1270 1271 return 0; 1272 } 1273 1274 /** 1275 * dev_change_name - change name of a device 1276 * @dev: device 1277 * @newname: name (or format string) must be at least IFNAMSIZ 1278 * 1279 * Change name of a device, can pass format strings "eth%d". 1280 * for wildcarding. 1281 */ 1282 int dev_change_name(struct net_device *dev, const char *newname) 1283 { 1284 unsigned char old_assign_type; 1285 char oldname[IFNAMSIZ]; 1286 int err = 0; 1287 int ret; 1288 struct net *net; 1289 1290 ASSERT_RTNL(); 1291 BUG_ON(!dev_net(dev)); 1292 1293 net = dev_net(dev); 1294 1295 /* Some auto-enslaved devices e.g. failover slaves are 1296 * special, as userspace might rename the device after 1297 * the interface had been brought up and running since 1298 * the point kernel initiated auto-enslavement. Allow 1299 * live name change even when these slave devices are 1300 * up and running. 1301 * 1302 * Typically, users of these auto-enslaving devices 1303 * don't actually care about slave name change, as 1304 * they are supposed to operate on master interface 1305 * directly. 1306 */ 1307 if (dev->flags & IFF_UP && 1308 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1309 return -EBUSY; 1310 1311 down_write(&devnet_rename_sem); 1312 1313 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1314 up_write(&devnet_rename_sem); 1315 return 0; 1316 } 1317 1318 memcpy(oldname, dev->name, IFNAMSIZ); 1319 1320 err = dev_get_valid_name(net, dev, newname); 1321 if (err < 0) { 1322 up_write(&devnet_rename_sem); 1323 return err; 1324 } 1325 1326 if (oldname[0] && !strchr(oldname, '%')) 1327 netdev_info(dev, "renamed from %s\n", oldname); 1328 1329 old_assign_type = dev->name_assign_type; 1330 dev->name_assign_type = NET_NAME_RENAMED; 1331 1332 rollback: 1333 ret = device_rename(&dev->dev, dev->name); 1334 if (ret) { 1335 memcpy(dev->name, oldname, IFNAMSIZ); 1336 dev->name_assign_type = old_assign_type; 1337 up_write(&devnet_rename_sem); 1338 return ret; 1339 } 1340 1341 up_write(&devnet_rename_sem); 1342 1343 netdev_adjacent_rename_links(dev, oldname); 1344 1345 write_lock_bh(&dev_base_lock); 1346 netdev_name_node_del(dev->name_node); 1347 write_unlock_bh(&dev_base_lock); 1348 1349 synchronize_rcu(); 1350 1351 write_lock_bh(&dev_base_lock); 1352 netdev_name_node_add(net, dev->name_node); 1353 write_unlock_bh(&dev_base_lock); 1354 1355 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1356 ret = notifier_to_errno(ret); 1357 1358 if (ret) { 1359 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1360 if (err >= 0) { 1361 err = ret; 1362 down_write(&devnet_rename_sem); 1363 memcpy(dev->name, oldname, IFNAMSIZ); 1364 memcpy(oldname, newname, IFNAMSIZ); 1365 dev->name_assign_type = old_assign_type; 1366 old_assign_type = NET_NAME_RENAMED; 1367 goto rollback; 1368 } else { 1369 pr_err("%s: name change rollback failed: %d\n", 1370 dev->name, ret); 1371 } 1372 } 1373 1374 return err; 1375 } 1376 1377 /** 1378 * dev_set_alias - change ifalias of a device 1379 * @dev: device 1380 * @alias: name up to IFALIASZ 1381 * @len: limit of bytes to copy from info 1382 * 1383 * Set ifalias for a device, 1384 */ 1385 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1386 { 1387 struct dev_ifalias *new_alias = NULL; 1388 1389 if (len >= IFALIASZ) 1390 return -EINVAL; 1391 1392 if (len) { 1393 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1394 if (!new_alias) 1395 return -ENOMEM; 1396 1397 memcpy(new_alias->ifalias, alias, len); 1398 new_alias->ifalias[len] = 0; 1399 } 1400 1401 mutex_lock(&ifalias_mutex); 1402 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1403 mutex_is_locked(&ifalias_mutex)); 1404 mutex_unlock(&ifalias_mutex); 1405 1406 if (new_alias) 1407 kfree_rcu(new_alias, rcuhead); 1408 1409 return len; 1410 } 1411 EXPORT_SYMBOL(dev_set_alias); 1412 1413 /** 1414 * dev_get_alias - get ifalias of a device 1415 * @dev: device 1416 * @name: buffer to store name of ifalias 1417 * @len: size of buffer 1418 * 1419 * get ifalias for a device. Caller must make sure dev cannot go 1420 * away, e.g. rcu read lock or own a reference count to device. 1421 */ 1422 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1423 { 1424 const struct dev_ifalias *alias; 1425 int ret = 0; 1426 1427 rcu_read_lock(); 1428 alias = rcu_dereference(dev->ifalias); 1429 if (alias) 1430 ret = snprintf(name, len, "%s", alias->ifalias); 1431 rcu_read_unlock(); 1432 1433 return ret; 1434 } 1435 1436 /** 1437 * netdev_features_change - device changes features 1438 * @dev: device to cause notification 1439 * 1440 * Called to indicate a device has changed features. 1441 */ 1442 void netdev_features_change(struct net_device *dev) 1443 { 1444 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1445 } 1446 EXPORT_SYMBOL(netdev_features_change); 1447 1448 /** 1449 * netdev_state_change - device changes state 1450 * @dev: device to cause notification 1451 * 1452 * Called to indicate a device has changed state. This function calls 1453 * the notifier chains for netdev_chain and sends a NEWLINK message 1454 * to the routing socket. 1455 */ 1456 void netdev_state_change(struct net_device *dev) 1457 { 1458 if (dev->flags & IFF_UP) { 1459 struct netdev_notifier_change_info change_info = { 1460 .info.dev = dev, 1461 }; 1462 1463 call_netdevice_notifiers_info(NETDEV_CHANGE, 1464 &change_info.info); 1465 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1466 } 1467 } 1468 EXPORT_SYMBOL(netdev_state_change); 1469 1470 /** 1471 * netdev_notify_peers - notify network peers about existence of @dev 1472 * @dev: network device 1473 * 1474 * Generate traffic such that interested network peers are aware of 1475 * @dev, such as by generating a gratuitous ARP. This may be used when 1476 * a device wants to inform the rest of the network about some sort of 1477 * reconfiguration such as a failover event or virtual machine 1478 * migration. 1479 */ 1480 void netdev_notify_peers(struct net_device *dev) 1481 { 1482 rtnl_lock(); 1483 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1484 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1485 rtnl_unlock(); 1486 } 1487 EXPORT_SYMBOL(netdev_notify_peers); 1488 1489 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1490 { 1491 const struct net_device_ops *ops = dev->netdev_ops; 1492 int ret; 1493 1494 ASSERT_RTNL(); 1495 1496 if (!netif_device_present(dev)) { 1497 /* may be detached because parent is runtime-suspended */ 1498 if (dev->dev.parent) 1499 pm_runtime_resume(dev->dev.parent); 1500 if (!netif_device_present(dev)) 1501 return -ENODEV; 1502 } 1503 1504 /* Block netpoll from trying to do any rx path servicing. 1505 * If we don't do this there is a chance ndo_poll_controller 1506 * or ndo_poll may be running while we open the device 1507 */ 1508 netpoll_poll_disable(dev); 1509 1510 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1511 ret = notifier_to_errno(ret); 1512 if (ret) 1513 return ret; 1514 1515 set_bit(__LINK_STATE_START, &dev->state); 1516 1517 if (ops->ndo_validate_addr) 1518 ret = ops->ndo_validate_addr(dev); 1519 1520 if (!ret && ops->ndo_open) 1521 ret = ops->ndo_open(dev); 1522 1523 netpoll_poll_enable(dev); 1524 1525 if (ret) 1526 clear_bit(__LINK_STATE_START, &dev->state); 1527 else { 1528 dev->flags |= IFF_UP; 1529 dev_set_rx_mode(dev); 1530 dev_activate(dev); 1531 add_device_randomness(dev->dev_addr, dev->addr_len); 1532 } 1533 1534 return ret; 1535 } 1536 1537 /** 1538 * dev_open - prepare an interface for use. 1539 * @dev: device to open 1540 * @extack: netlink extended ack 1541 * 1542 * Takes a device from down to up state. The device's private open 1543 * function is invoked and then the multicast lists are loaded. Finally 1544 * the device is moved into the up state and a %NETDEV_UP message is 1545 * sent to the netdev notifier chain. 1546 * 1547 * Calling this function on an active interface is a nop. On a failure 1548 * a negative errno code is returned. 1549 */ 1550 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1551 { 1552 int ret; 1553 1554 if (dev->flags & IFF_UP) 1555 return 0; 1556 1557 ret = __dev_open(dev, extack); 1558 if (ret < 0) 1559 return ret; 1560 1561 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1562 call_netdevice_notifiers(NETDEV_UP, dev); 1563 1564 return ret; 1565 } 1566 EXPORT_SYMBOL(dev_open); 1567 1568 static void __dev_close_many(struct list_head *head) 1569 { 1570 struct net_device *dev; 1571 1572 ASSERT_RTNL(); 1573 might_sleep(); 1574 1575 list_for_each_entry(dev, head, close_list) { 1576 /* Temporarily disable netpoll until the interface is down */ 1577 netpoll_poll_disable(dev); 1578 1579 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1580 1581 clear_bit(__LINK_STATE_START, &dev->state); 1582 1583 /* Synchronize to scheduled poll. We cannot touch poll list, it 1584 * can be even on different cpu. So just clear netif_running(). 1585 * 1586 * dev->stop() will invoke napi_disable() on all of it's 1587 * napi_struct instances on this device. 1588 */ 1589 smp_mb__after_atomic(); /* Commit netif_running(). */ 1590 } 1591 1592 dev_deactivate_many(head); 1593 1594 list_for_each_entry(dev, head, close_list) { 1595 const struct net_device_ops *ops = dev->netdev_ops; 1596 1597 /* 1598 * Call the device specific close. This cannot fail. 1599 * Only if device is UP 1600 * 1601 * We allow it to be called even after a DETACH hot-plug 1602 * event. 1603 */ 1604 if (ops->ndo_stop) 1605 ops->ndo_stop(dev); 1606 1607 dev->flags &= ~IFF_UP; 1608 netpoll_poll_enable(dev); 1609 } 1610 } 1611 1612 static void __dev_close(struct net_device *dev) 1613 { 1614 LIST_HEAD(single); 1615 1616 list_add(&dev->close_list, &single); 1617 __dev_close_many(&single); 1618 list_del(&single); 1619 } 1620 1621 void dev_close_many(struct list_head *head, bool unlink) 1622 { 1623 struct net_device *dev, *tmp; 1624 1625 /* Remove the devices that don't need to be closed */ 1626 list_for_each_entry_safe(dev, tmp, head, close_list) 1627 if (!(dev->flags & IFF_UP)) 1628 list_del_init(&dev->close_list); 1629 1630 __dev_close_many(head); 1631 1632 list_for_each_entry_safe(dev, tmp, head, close_list) { 1633 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1634 call_netdevice_notifiers(NETDEV_DOWN, dev); 1635 if (unlink) 1636 list_del_init(&dev->close_list); 1637 } 1638 } 1639 EXPORT_SYMBOL(dev_close_many); 1640 1641 /** 1642 * dev_close - shutdown an interface. 1643 * @dev: device to shutdown 1644 * 1645 * This function moves an active device into down state. A 1646 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1647 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1648 * chain. 1649 */ 1650 void dev_close(struct net_device *dev) 1651 { 1652 if (dev->flags & IFF_UP) { 1653 LIST_HEAD(single); 1654 1655 list_add(&dev->close_list, &single); 1656 dev_close_many(&single, true); 1657 list_del(&single); 1658 } 1659 } 1660 EXPORT_SYMBOL(dev_close); 1661 1662 1663 /** 1664 * dev_disable_lro - disable Large Receive Offload on a device 1665 * @dev: device 1666 * 1667 * Disable Large Receive Offload (LRO) on a net device. Must be 1668 * called under RTNL. This is needed if received packets may be 1669 * forwarded to another interface. 1670 */ 1671 void dev_disable_lro(struct net_device *dev) 1672 { 1673 struct net_device *lower_dev; 1674 struct list_head *iter; 1675 1676 dev->wanted_features &= ~NETIF_F_LRO; 1677 netdev_update_features(dev); 1678 1679 if (unlikely(dev->features & NETIF_F_LRO)) 1680 netdev_WARN(dev, "failed to disable LRO!\n"); 1681 1682 netdev_for_each_lower_dev(dev, lower_dev, iter) 1683 dev_disable_lro(lower_dev); 1684 } 1685 EXPORT_SYMBOL(dev_disable_lro); 1686 1687 /** 1688 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1689 * @dev: device 1690 * 1691 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1692 * called under RTNL. This is needed if Generic XDP is installed on 1693 * the device. 1694 */ 1695 static void dev_disable_gro_hw(struct net_device *dev) 1696 { 1697 dev->wanted_features &= ~NETIF_F_GRO_HW; 1698 netdev_update_features(dev); 1699 1700 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1701 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1702 } 1703 1704 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1705 { 1706 #define N(val) \ 1707 case NETDEV_##val: \ 1708 return "NETDEV_" __stringify(val); 1709 switch (cmd) { 1710 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1711 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1712 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1713 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1714 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1715 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1716 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1717 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1718 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1719 N(PRE_CHANGEADDR) 1720 } 1721 #undef N 1722 return "UNKNOWN_NETDEV_EVENT"; 1723 } 1724 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1725 1726 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1727 struct net_device *dev) 1728 { 1729 struct netdev_notifier_info info = { 1730 .dev = dev, 1731 }; 1732 1733 return nb->notifier_call(nb, val, &info); 1734 } 1735 1736 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1737 struct net_device *dev) 1738 { 1739 int err; 1740 1741 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1742 err = notifier_to_errno(err); 1743 if (err) 1744 return err; 1745 1746 if (!(dev->flags & IFF_UP)) 1747 return 0; 1748 1749 call_netdevice_notifier(nb, NETDEV_UP, dev); 1750 return 0; 1751 } 1752 1753 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1754 struct net_device *dev) 1755 { 1756 if (dev->flags & IFF_UP) { 1757 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1758 dev); 1759 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1760 } 1761 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1762 } 1763 1764 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1765 struct net *net) 1766 { 1767 struct net_device *dev; 1768 int err; 1769 1770 for_each_netdev(net, dev) { 1771 err = call_netdevice_register_notifiers(nb, dev); 1772 if (err) 1773 goto rollback; 1774 } 1775 return 0; 1776 1777 rollback: 1778 for_each_netdev_continue_reverse(net, dev) 1779 call_netdevice_unregister_notifiers(nb, dev); 1780 return err; 1781 } 1782 1783 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1784 struct net *net) 1785 { 1786 struct net_device *dev; 1787 1788 for_each_netdev(net, dev) 1789 call_netdevice_unregister_notifiers(nb, dev); 1790 } 1791 1792 static int dev_boot_phase = 1; 1793 1794 /** 1795 * register_netdevice_notifier - register a network notifier block 1796 * @nb: notifier 1797 * 1798 * Register a notifier to be called when network device events occur. 1799 * The notifier passed is linked into the kernel structures and must 1800 * not be reused until it has been unregistered. A negative errno code 1801 * is returned on a failure. 1802 * 1803 * When registered all registration and up events are replayed 1804 * to the new notifier to allow device to have a race free 1805 * view of the network device list. 1806 */ 1807 1808 int register_netdevice_notifier(struct notifier_block *nb) 1809 { 1810 struct net *net; 1811 int err; 1812 1813 /* Close race with setup_net() and cleanup_net() */ 1814 down_write(&pernet_ops_rwsem); 1815 rtnl_lock(); 1816 err = raw_notifier_chain_register(&netdev_chain, nb); 1817 if (err) 1818 goto unlock; 1819 if (dev_boot_phase) 1820 goto unlock; 1821 for_each_net(net) { 1822 err = call_netdevice_register_net_notifiers(nb, net); 1823 if (err) 1824 goto rollback; 1825 } 1826 1827 unlock: 1828 rtnl_unlock(); 1829 up_write(&pernet_ops_rwsem); 1830 return err; 1831 1832 rollback: 1833 for_each_net_continue_reverse(net) 1834 call_netdevice_unregister_net_notifiers(nb, net); 1835 1836 raw_notifier_chain_unregister(&netdev_chain, nb); 1837 goto unlock; 1838 } 1839 EXPORT_SYMBOL(register_netdevice_notifier); 1840 1841 /** 1842 * unregister_netdevice_notifier - unregister a network notifier block 1843 * @nb: notifier 1844 * 1845 * Unregister a notifier previously registered by 1846 * register_netdevice_notifier(). The notifier is unlinked into the 1847 * kernel structures and may then be reused. A negative errno code 1848 * is returned on a failure. 1849 * 1850 * After unregistering unregister and down device events are synthesized 1851 * for all devices on the device list to the removed notifier to remove 1852 * the need for special case cleanup code. 1853 */ 1854 1855 int unregister_netdevice_notifier(struct notifier_block *nb) 1856 { 1857 struct net *net; 1858 int err; 1859 1860 /* Close race with setup_net() and cleanup_net() */ 1861 down_write(&pernet_ops_rwsem); 1862 rtnl_lock(); 1863 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1864 if (err) 1865 goto unlock; 1866 1867 for_each_net(net) 1868 call_netdevice_unregister_net_notifiers(nb, net); 1869 1870 unlock: 1871 rtnl_unlock(); 1872 up_write(&pernet_ops_rwsem); 1873 return err; 1874 } 1875 EXPORT_SYMBOL(unregister_netdevice_notifier); 1876 1877 static int __register_netdevice_notifier_net(struct net *net, 1878 struct notifier_block *nb, 1879 bool ignore_call_fail) 1880 { 1881 int err; 1882 1883 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1884 if (err) 1885 return err; 1886 if (dev_boot_phase) 1887 return 0; 1888 1889 err = call_netdevice_register_net_notifiers(nb, net); 1890 if (err && !ignore_call_fail) 1891 goto chain_unregister; 1892 1893 return 0; 1894 1895 chain_unregister: 1896 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1897 return err; 1898 } 1899 1900 static int __unregister_netdevice_notifier_net(struct net *net, 1901 struct notifier_block *nb) 1902 { 1903 int err; 1904 1905 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1906 if (err) 1907 return err; 1908 1909 call_netdevice_unregister_net_notifiers(nb, net); 1910 return 0; 1911 } 1912 1913 /** 1914 * register_netdevice_notifier_net - register a per-netns network notifier block 1915 * @net: network namespace 1916 * @nb: notifier 1917 * 1918 * Register a notifier to be called when network device events occur. 1919 * The notifier passed is linked into the kernel structures and must 1920 * not be reused until it has been unregistered. A negative errno code 1921 * is returned on a failure. 1922 * 1923 * When registered all registration and up events are replayed 1924 * to the new notifier to allow device to have a race free 1925 * view of the network device list. 1926 */ 1927 1928 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1929 { 1930 int err; 1931 1932 rtnl_lock(); 1933 err = __register_netdevice_notifier_net(net, nb, false); 1934 rtnl_unlock(); 1935 return err; 1936 } 1937 EXPORT_SYMBOL(register_netdevice_notifier_net); 1938 1939 /** 1940 * unregister_netdevice_notifier_net - unregister a per-netns 1941 * network notifier block 1942 * @net: network namespace 1943 * @nb: notifier 1944 * 1945 * Unregister a notifier previously registered by 1946 * register_netdevice_notifier(). The notifier is unlinked into the 1947 * kernel structures and may then be reused. A negative errno code 1948 * is returned on a failure. 1949 * 1950 * After unregistering unregister and down device events are synthesized 1951 * for all devices on the device list to the removed notifier to remove 1952 * the need for special case cleanup code. 1953 */ 1954 1955 int unregister_netdevice_notifier_net(struct net *net, 1956 struct notifier_block *nb) 1957 { 1958 int err; 1959 1960 rtnl_lock(); 1961 err = __unregister_netdevice_notifier_net(net, nb); 1962 rtnl_unlock(); 1963 return err; 1964 } 1965 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1966 1967 int register_netdevice_notifier_dev_net(struct net_device *dev, 1968 struct notifier_block *nb, 1969 struct netdev_net_notifier *nn) 1970 { 1971 int err; 1972 1973 rtnl_lock(); 1974 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1975 if (!err) { 1976 nn->nb = nb; 1977 list_add(&nn->list, &dev->net_notifier_list); 1978 } 1979 rtnl_unlock(); 1980 return err; 1981 } 1982 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1983 1984 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1985 struct notifier_block *nb, 1986 struct netdev_net_notifier *nn) 1987 { 1988 int err; 1989 1990 rtnl_lock(); 1991 list_del(&nn->list); 1992 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1993 rtnl_unlock(); 1994 return err; 1995 } 1996 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1997 1998 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1999 struct net *net) 2000 { 2001 struct netdev_net_notifier *nn; 2002 2003 list_for_each_entry(nn, &dev->net_notifier_list, list) { 2004 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 2005 __register_netdevice_notifier_net(net, nn->nb, true); 2006 } 2007 } 2008 2009 /** 2010 * call_netdevice_notifiers_info - call all network notifier blocks 2011 * @val: value passed unmodified to notifier function 2012 * @info: notifier information data 2013 * 2014 * Call all network notifier blocks. Parameters and return value 2015 * are as for raw_notifier_call_chain(). 2016 */ 2017 2018 static int call_netdevice_notifiers_info(unsigned long val, 2019 struct netdev_notifier_info *info) 2020 { 2021 struct net *net = dev_net(info->dev); 2022 int ret; 2023 2024 ASSERT_RTNL(); 2025 2026 /* Run per-netns notifier block chain first, then run the global one. 2027 * Hopefully, one day, the global one is going to be removed after 2028 * all notifier block registrators get converted to be per-netns. 2029 */ 2030 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2031 if (ret & NOTIFY_STOP_MASK) 2032 return ret; 2033 return raw_notifier_call_chain(&netdev_chain, val, info); 2034 } 2035 2036 static int call_netdevice_notifiers_extack(unsigned long val, 2037 struct net_device *dev, 2038 struct netlink_ext_ack *extack) 2039 { 2040 struct netdev_notifier_info info = { 2041 .dev = dev, 2042 .extack = extack, 2043 }; 2044 2045 return call_netdevice_notifiers_info(val, &info); 2046 } 2047 2048 /** 2049 * call_netdevice_notifiers - call all network notifier blocks 2050 * @val: value passed unmodified to notifier function 2051 * @dev: net_device pointer passed unmodified to notifier function 2052 * 2053 * Call all network notifier blocks. Parameters and return value 2054 * are as for raw_notifier_call_chain(). 2055 */ 2056 2057 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2058 { 2059 return call_netdevice_notifiers_extack(val, dev, NULL); 2060 } 2061 EXPORT_SYMBOL(call_netdevice_notifiers); 2062 2063 /** 2064 * call_netdevice_notifiers_mtu - call all network notifier blocks 2065 * @val: value passed unmodified to notifier function 2066 * @dev: net_device pointer passed unmodified to notifier function 2067 * @arg: additional u32 argument passed to the notifier function 2068 * 2069 * Call all network notifier blocks. Parameters and return value 2070 * are as for raw_notifier_call_chain(). 2071 */ 2072 static int call_netdevice_notifiers_mtu(unsigned long val, 2073 struct net_device *dev, u32 arg) 2074 { 2075 struct netdev_notifier_info_ext info = { 2076 .info.dev = dev, 2077 .ext.mtu = arg, 2078 }; 2079 2080 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2081 2082 return call_netdevice_notifiers_info(val, &info.info); 2083 } 2084 2085 #ifdef CONFIG_NET_INGRESS 2086 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2087 2088 void net_inc_ingress_queue(void) 2089 { 2090 static_branch_inc(&ingress_needed_key); 2091 } 2092 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2093 2094 void net_dec_ingress_queue(void) 2095 { 2096 static_branch_dec(&ingress_needed_key); 2097 } 2098 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2099 #endif 2100 2101 #ifdef CONFIG_NET_EGRESS 2102 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2103 2104 void net_inc_egress_queue(void) 2105 { 2106 static_branch_inc(&egress_needed_key); 2107 } 2108 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2109 2110 void net_dec_egress_queue(void) 2111 { 2112 static_branch_dec(&egress_needed_key); 2113 } 2114 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2115 #endif 2116 2117 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2118 #ifdef CONFIG_JUMP_LABEL 2119 static atomic_t netstamp_needed_deferred; 2120 static atomic_t netstamp_wanted; 2121 static void netstamp_clear(struct work_struct *work) 2122 { 2123 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2124 int wanted; 2125 2126 wanted = atomic_add_return(deferred, &netstamp_wanted); 2127 if (wanted > 0) 2128 static_branch_enable(&netstamp_needed_key); 2129 else 2130 static_branch_disable(&netstamp_needed_key); 2131 } 2132 static DECLARE_WORK(netstamp_work, netstamp_clear); 2133 #endif 2134 2135 void net_enable_timestamp(void) 2136 { 2137 #ifdef CONFIG_JUMP_LABEL 2138 int wanted; 2139 2140 while (1) { 2141 wanted = atomic_read(&netstamp_wanted); 2142 if (wanted <= 0) 2143 break; 2144 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2145 return; 2146 } 2147 atomic_inc(&netstamp_needed_deferred); 2148 schedule_work(&netstamp_work); 2149 #else 2150 static_branch_inc(&netstamp_needed_key); 2151 #endif 2152 } 2153 EXPORT_SYMBOL(net_enable_timestamp); 2154 2155 void net_disable_timestamp(void) 2156 { 2157 #ifdef CONFIG_JUMP_LABEL 2158 int wanted; 2159 2160 while (1) { 2161 wanted = atomic_read(&netstamp_wanted); 2162 if (wanted <= 1) 2163 break; 2164 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2165 return; 2166 } 2167 atomic_dec(&netstamp_needed_deferred); 2168 schedule_work(&netstamp_work); 2169 #else 2170 static_branch_dec(&netstamp_needed_key); 2171 #endif 2172 } 2173 EXPORT_SYMBOL(net_disable_timestamp); 2174 2175 static inline void net_timestamp_set(struct sk_buff *skb) 2176 { 2177 skb->tstamp = 0; 2178 if (static_branch_unlikely(&netstamp_needed_key)) 2179 __net_timestamp(skb); 2180 } 2181 2182 #define net_timestamp_check(COND, SKB) \ 2183 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2184 if ((COND) && !(SKB)->tstamp) \ 2185 __net_timestamp(SKB); \ 2186 } \ 2187 2188 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2189 { 2190 unsigned int len; 2191 2192 if (!(dev->flags & IFF_UP)) 2193 return false; 2194 2195 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 2196 if (skb->len <= len) 2197 return true; 2198 2199 /* if TSO is enabled, we don't care about the length as the packet 2200 * could be forwarded without being segmented before 2201 */ 2202 if (skb_is_gso(skb)) 2203 return true; 2204 2205 return false; 2206 } 2207 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2208 2209 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2210 { 2211 int ret = ____dev_forward_skb(dev, skb); 2212 2213 if (likely(!ret)) { 2214 skb->protocol = eth_type_trans(skb, dev); 2215 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2216 } 2217 2218 return ret; 2219 } 2220 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2221 2222 /** 2223 * dev_forward_skb - loopback an skb to another netif 2224 * 2225 * @dev: destination network device 2226 * @skb: buffer to forward 2227 * 2228 * return values: 2229 * NET_RX_SUCCESS (no congestion) 2230 * NET_RX_DROP (packet was dropped, but freed) 2231 * 2232 * dev_forward_skb can be used for injecting an skb from the 2233 * start_xmit function of one device into the receive queue 2234 * of another device. 2235 * 2236 * The receiving device may be in another namespace, so 2237 * we have to clear all information in the skb that could 2238 * impact namespace isolation. 2239 */ 2240 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2241 { 2242 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2243 } 2244 EXPORT_SYMBOL_GPL(dev_forward_skb); 2245 2246 static inline int deliver_skb(struct sk_buff *skb, 2247 struct packet_type *pt_prev, 2248 struct net_device *orig_dev) 2249 { 2250 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2251 return -ENOMEM; 2252 refcount_inc(&skb->users); 2253 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2254 } 2255 2256 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2257 struct packet_type **pt, 2258 struct net_device *orig_dev, 2259 __be16 type, 2260 struct list_head *ptype_list) 2261 { 2262 struct packet_type *ptype, *pt_prev = *pt; 2263 2264 list_for_each_entry_rcu(ptype, ptype_list, list) { 2265 if (ptype->type != type) 2266 continue; 2267 if (pt_prev) 2268 deliver_skb(skb, pt_prev, orig_dev); 2269 pt_prev = ptype; 2270 } 2271 *pt = pt_prev; 2272 } 2273 2274 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2275 { 2276 if (!ptype->af_packet_priv || !skb->sk) 2277 return false; 2278 2279 if (ptype->id_match) 2280 return ptype->id_match(ptype, skb->sk); 2281 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2282 return true; 2283 2284 return false; 2285 } 2286 2287 /** 2288 * dev_nit_active - return true if any network interface taps are in use 2289 * 2290 * @dev: network device to check for the presence of taps 2291 */ 2292 bool dev_nit_active(struct net_device *dev) 2293 { 2294 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2295 } 2296 EXPORT_SYMBOL_GPL(dev_nit_active); 2297 2298 /* 2299 * Support routine. Sends outgoing frames to any network 2300 * taps currently in use. 2301 */ 2302 2303 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2304 { 2305 struct packet_type *ptype; 2306 struct sk_buff *skb2 = NULL; 2307 struct packet_type *pt_prev = NULL; 2308 struct list_head *ptype_list = &ptype_all; 2309 2310 rcu_read_lock(); 2311 again: 2312 list_for_each_entry_rcu(ptype, ptype_list, list) { 2313 if (ptype->ignore_outgoing) 2314 continue; 2315 2316 /* Never send packets back to the socket 2317 * they originated from - MvS ([email protected]) 2318 */ 2319 if (skb_loop_sk(ptype, skb)) 2320 continue; 2321 2322 if (pt_prev) { 2323 deliver_skb(skb2, pt_prev, skb->dev); 2324 pt_prev = ptype; 2325 continue; 2326 } 2327 2328 /* need to clone skb, done only once */ 2329 skb2 = skb_clone(skb, GFP_ATOMIC); 2330 if (!skb2) 2331 goto out_unlock; 2332 2333 net_timestamp_set(skb2); 2334 2335 /* skb->nh should be correctly 2336 * set by sender, so that the second statement is 2337 * just protection against buggy protocols. 2338 */ 2339 skb_reset_mac_header(skb2); 2340 2341 if (skb_network_header(skb2) < skb2->data || 2342 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2343 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2344 ntohs(skb2->protocol), 2345 dev->name); 2346 skb_reset_network_header(skb2); 2347 } 2348 2349 skb2->transport_header = skb2->network_header; 2350 skb2->pkt_type = PACKET_OUTGOING; 2351 pt_prev = ptype; 2352 } 2353 2354 if (ptype_list == &ptype_all) { 2355 ptype_list = &dev->ptype_all; 2356 goto again; 2357 } 2358 out_unlock: 2359 if (pt_prev) { 2360 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2361 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2362 else 2363 kfree_skb(skb2); 2364 } 2365 rcu_read_unlock(); 2366 } 2367 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2368 2369 /** 2370 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2371 * @dev: Network device 2372 * @txq: number of queues available 2373 * 2374 * If real_num_tx_queues is changed the tc mappings may no longer be 2375 * valid. To resolve this verify the tc mapping remains valid and if 2376 * not NULL the mapping. With no priorities mapping to this 2377 * offset/count pair it will no longer be used. In the worst case TC0 2378 * is invalid nothing can be done so disable priority mappings. If is 2379 * expected that drivers will fix this mapping if they can before 2380 * calling netif_set_real_num_tx_queues. 2381 */ 2382 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2383 { 2384 int i; 2385 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2386 2387 /* If TC0 is invalidated disable TC mapping */ 2388 if (tc->offset + tc->count > txq) { 2389 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2390 dev->num_tc = 0; 2391 return; 2392 } 2393 2394 /* Invalidated prio to tc mappings set to TC0 */ 2395 for (i = 1; i < TC_BITMASK + 1; i++) { 2396 int q = netdev_get_prio_tc_map(dev, i); 2397 2398 tc = &dev->tc_to_txq[q]; 2399 if (tc->offset + tc->count > txq) { 2400 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2401 i, q); 2402 netdev_set_prio_tc_map(dev, i, 0); 2403 } 2404 } 2405 } 2406 2407 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2408 { 2409 if (dev->num_tc) { 2410 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2411 int i; 2412 2413 /* walk through the TCs and see if it falls into any of them */ 2414 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2415 if ((txq - tc->offset) < tc->count) 2416 return i; 2417 } 2418 2419 /* didn't find it, just return -1 to indicate no match */ 2420 return -1; 2421 } 2422 2423 return 0; 2424 } 2425 EXPORT_SYMBOL(netdev_txq_to_tc); 2426 2427 #ifdef CONFIG_XPS 2428 struct static_key xps_needed __read_mostly; 2429 EXPORT_SYMBOL(xps_needed); 2430 struct static_key xps_rxqs_needed __read_mostly; 2431 EXPORT_SYMBOL(xps_rxqs_needed); 2432 static DEFINE_MUTEX(xps_map_mutex); 2433 #define xmap_dereference(P) \ 2434 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2435 2436 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2437 int tci, u16 index) 2438 { 2439 struct xps_map *map = NULL; 2440 int pos; 2441 2442 if (dev_maps) 2443 map = xmap_dereference(dev_maps->attr_map[tci]); 2444 if (!map) 2445 return false; 2446 2447 for (pos = map->len; pos--;) { 2448 if (map->queues[pos] != index) 2449 continue; 2450 2451 if (map->len > 1) { 2452 map->queues[pos] = map->queues[--map->len]; 2453 break; 2454 } 2455 2456 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2457 kfree_rcu(map, rcu); 2458 return false; 2459 } 2460 2461 return true; 2462 } 2463 2464 static bool remove_xps_queue_cpu(struct net_device *dev, 2465 struct xps_dev_maps *dev_maps, 2466 int cpu, u16 offset, u16 count) 2467 { 2468 int num_tc = dev->num_tc ? : 1; 2469 bool active = false; 2470 int tci; 2471 2472 for (tci = cpu * num_tc; num_tc--; tci++) { 2473 int i, j; 2474 2475 for (i = count, j = offset; i--; j++) { 2476 if (!remove_xps_queue(dev_maps, tci, j)) 2477 break; 2478 } 2479 2480 active |= i < 0; 2481 } 2482 2483 return active; 2484 } 2485 2486 static void reset_xps_maps(struct net_device *dev, 2487 struct xps_dev_maps *dev_maps, 2488 bool is_rxqs_map) 2489 { 2490 if (is_rxqs_map) { 2491 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2492 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2493 } else { 2494 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2495 } 2496 static_key_slow_dec_cpuslocked(&xps_needed); 2497 kfree_rcu(dev_maps, rcu); 2498 } 2499 2500 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2501 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2502 u16 offset, u16 count, bool is_rxqs_map) 2503 { 2504 bool active = false; 2505 int i, j; 2506 2507 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2508 j < nr_ids;) 2509 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2510 count); 2511 if (!active) 2512 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2513 2514 if (!is_rxqs_map) { 2515 for (i = offset + (count - 1); count--; i--) { 2516 netdev_queue_numa_node_write( 2517 netdev_get_tx_queue(dev, i), 2518 NUMA_NO_NODE); 2519 } 2520 } 2521 } 2522 2523 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2524 u16 count) 2525 { 2526 const unsigned long *possible_mask = NULL; 2527 struct xps_dev_maps *dev_maps; 2528 unsigned int nr_ids; 2529 2530 if (!static_key_false(&xps_needed)) 2531 return; 2532 2533 cpus_read_lock(); 2534 mutex_lock(&xps_map_mutex); 2535 2536 if (static_key_false(&xps_rxqs_needed)) { 2537 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2538 if (dev_maps) { 2539 nr_ids = dev->num_rx_queues; 2540 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2541 offset, count, true); 2542 } 2543 } 2544 2545 dev_maps = xmap_dereference(dev->xps_cpus_map); 2546 if (!dev_maps) 2547 goto out_no_maps; 2548 2549 if (num_possible_cpus() > 1) 2550 possible_mask = cpumask_bits(cpu_possible_mask); 2551 nr_ids = nr_cpu_ids; 2552 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2553 false); 2554 2555 out_no_maps: 2556 mutex_unlock(&xps_map_mutex); 2557 cpus_read_unlock(); 2558 } 2559 2560 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2561 { 2562 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2563 } 2564 2565 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2566 u16 index, bool is_rxqs_map) 2567 { 2568 struct xps_map *new_map; 2569 int alloc_len = XPS_MIN_MAP_ALLOC; 2570 int i, pos; 2571 2572 for (pos = 0; map && pos < map->len; pos++) { 2573 if (map->queues[pos] != index) 2574 continue; 2575 return map; 2576 } 2577 2578 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2579 if (map) { 2580 if (pos < map->alloc_len) 2581 return map; 2582 2583 alloc_len = map->alloc_len * 2; 2584 } 2585 2586 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2587 * map 2588 */ 2589 if (is_rxqs_map) 2590 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2591 else 2592 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2593 cpu_to_node(attr_index)); 2594 if (!new_map) 2595 return NULL; 2596 2597 for (i = 0; i < pos; i++) 2598 new_map->queues[i] = map->queues[i]; 2599 new_map->alloc_len = alloc_len; 2600 new_map->len = pos; 2601 2602 return new_map; 2603 } 2604 2605 /* Must be called under cpus_read_lock */ 2606 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2607 u16 index, bool is_rxqs_map) 2608 { 2609 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2610 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2611 int i, j, tci, numa_node_id = -2; 2612 int maps_sz, num_tc = 1, tc = 0; 2613 struct xps_map *map, *new_map; 2614 bool active = false; 2615 unsigned int nr_ids; 2616 2617 if (dev->num_tc) { 2618 /* Do not allow XPS on subordinate device directly */ 2619 num_tc = dev->num_tc; 2620 if (num_tc < 0) 2621 return -EINVAL; 2622 2623 /* If queue belongs to subordinate dev use its map */ 2624 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2625 2626 tc = netdev_txq_to_tc(dev, index); 2627 if (tc < 0) 2628 return -EINVAL; 2629 } 2630 2631 mutex_lock(&xps_map_mutex); 2632 if (is_rxqs_map) { 2633 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2634 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2635 nr_ids = dev->num_rx_queues; 2636 } else { 2637 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2638 if (num_possible_cpus() > 1) { 2639 online_mask = cpumask_bits(cpu_online_mask); 2640 possible_mask = cpumask_bits(cpu_possible_mask); 2641 } 2642 dev_maps = xmap_dereference(dev->xps_cpus_map); 2643 nr_ids = nr_cpu_ids; 2644 } 2645 2646 if (maps_sz < L1_CACHE_BYTES) 2647 maps_sz = L1_CACHE_BYTES; 2648 2649 /* allocate memory for queue storage */ 2650 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2651 j < nr_ids;) { 2652 if (!new_dev_maps) 2653 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2654 if (!new_dev_maps) { 2655 mutex_unlock(&xps_map_mutex); 2656 return -ENOMEM; 2657 } 2658 2659 tci = j * num_tc + tc; 2660 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2661 NULL; 2662 2663 map = expand_xps_map(map, j, index, is_rxqs_map); 2664 if (!map) 2665 goto error; 2666 2667 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2668 } 2669 2670 if (!new_dev_maps) 2671 goto out_no_new_maps; 2672 2673 if (!dev_maps) { 2674 /* Increment static keys at most once per type */ 2675 static_key_slow_inc_cpuslocked(&xps_needed); 2676 if (is_rxqs_map) 2677 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2678 } 2679 2680 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2681 j < nr_ids;) { 2682 /* copy maps belonging to foreign traffic classes */ 2683 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2684 /* fill in the new device map from the old device map */ 2685 map = xmap_dereference(dev_maps->attr_map[tci]); 2686 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2687 } 2688 2689 /* We need to explicitly update tci as prevous loop 2690 * could break out early if dev_maps is NULL. 2691 */ 2692 tci = j * num_tc + tc; 2693 2694 if (netif_attr_test_mask(j, mask, nr_ids) && 2695 netif_attr_test_online(j, online_mask, nr_ids)) { 2696 /* add tx-queue to CPU/rx-queue maps */ 2697 int pos = 0; 2698 2699 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2700 while ((pos < map->len) && (map->queues[pos] != index)) 2701 pos++; 2702 2703 if (pos == map->len) 2704 map->queues[map->len++] = index; 2705 #ifdef CONFIG_NUMA 2706 if (!is_rxqs_map) { 2707 if (numa_node_id == -2) 2708 numa_node_id = cpu_to_node(j); 2709 else if (numa_node_id != cpu_to_node(j)) 2710 numa_node_id = -1; 2711 } 2712 #endif 2713 } else if (dev_maps) { 2714 /* fill in the new device map from the old device map */ 2715 map = xmap_dereference(dev_maps->attr_map[tci]); 2716 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2717 } 2718 2719 /* copy maps belonging to foreign traffic classes */ 2720 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2721 /* fill in the new device map from the old device map */ 2722 map = xmap_dereference(dev_maps->attr_map[tci]); 2723 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2724 } 2725 } 2726 2727 if (is_rxqs_map) 2728 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2729 else 2730 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2731 2732 /* Cleanup old maps */ 2733 if (!dev_maps) 2734 goto out_no_old_maps; 2735 2736 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2737 j < nr_ids;) { 2738 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2739 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2740 map = xmap_dereference(dev_maps->attr_map[tci]); 2741 if (map && map != new_map) 2742 kfree_rcu(map, rcu); 2743 } 2744 } 2745 2746 kfree_rcu(dev_maps, rcu); 2747 2748 out_no_old_maps: 2749 dev_maps = new_dev_maps; 2750 active = true; 2751 2752 out_no_new_maps: 2753 if (!is_rxqs_map) { 2754 /* update Tx queue numa node */ 2755 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2756 (numa_node_id >= 0) ? 2757 numa_node_id : NUMA_NO_NODE); 2758 } 2759 2760 if (!dev_maps) 2761 goto out_no_maps; 2762 2763 /* removes tx-queue from unused CPUs/rx-queues */ 2764 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2765 j < nr_ids;) { 2766 for (i = tc, tci = j * num_tc; i--; tci++) 2767 active |= remove_xps_queue(dev_maps, tci, index); 2768 if (!netif_attr_test_mask(j, mask, nr_ids) || 2769 !netif_attr_test_online(j, online_mask, nr_ids)) 2770 active |= remove_xps_queue(dev_maps, tci, index); 2771 for (i = num_tc - tc, tci++; --i; tci++) 2772 active |= remove_xps_queue(dev_maps, tci, index); 2773 } 2774 2775 /* free map if not active */ 2776 if (!active) 2777 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2778 2779 out_no_maps: 2780 mutex_unlock(&xps_map_mutex); 2781 2782 return 0; 2783 error: 2784 /* remove any maps that we added */ 2785 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2786 j < nr_ids;) { 2787 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2788 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2789 map = dev_maps ? 2790 xmap_dereference(dev_maps->attr_map[tci]) : 2791 NULL; 2792 if (new_map && new_map != map) 2793 kfree(new_map); 2794 } 2795 } 2796 2797 mutex_unlock(&xps_map_mutex); 2798 2799 kfree(new_dev_maps); 2800 return -ENOMEM; 2801 } 2802 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2803 2804 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2805 u16 index) 2806 { 2807 int ret; 2808 2809 cpus_read_lock(); 2810 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2811 cpus_read_unlock(); 2812 2813 return ret; 2814 } 2815 EXPORT_SYMBOL(netif_set_xps_queue); 2816 2817 #endif 2818 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2819 { 2820 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2821 2822 /* Unbind any subordinate channels */ 2823 while (txq-- != &dev->_tx[0]) { 2824 if (txq->sb_dev) 2825 netdev_unbind_sb_channel(dev, txq->sb_dev); 2826 } 2827 } 2828 2829 void netdev_reset_tc(struct net_device *dev) 2830 { 2831 #ifdef CONFIG_XPS 2832 netif_reset_xps_queues_gt(dev, 0); 2833 #endif 2834 netdev_unbind_all_sb_channels(dev); 2835 2836 /* Reset TC configuration of device */ 2837 dev->num_tc = 0; 2838 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2839 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2840 } 2841 EXPORT_SYMBOL(netdev_reset_tc); 2842 2843 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2844 { 2845 if (tc >= dev->num_tc) 2846 return -EINVAL; 2847 2848 #ifdef CONFIG_XPS 2849 netif_reset_xps_queues(dev, offset, count); 2850 #endif 2851 dev->tc_to_txq[tc].count = count; 2852 dev->tc_to_txq[tc].offset = offset; 2853 return 0; 2854 } 2855 EXPORT_SYMBOL(netdev_set_tc_queue); 2856 2857 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2858 { 2859 if (num_tc > TC_MAX_QUEUE) 2860 return -EINVAL; 2861 2862 #ifdef CONFIG_XPS 2863 netif_reset_xps_queues_gt(dev, 0); 2864 #endif 2865 netdev_unbind_all_sb_channels(dev); 2866 2867 dev->num_tc = num_tc; 2868 return 0; 2869 } 2870 EXPORT_SYMBOL(netdev_set_num_tc); 2871 2872 void netdev_unbind_sb_channel(struct net_device *dev, 2873 struct net_device *sb_dev) 2874 { 2875 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2876 2877 #ifdef CONFIG_XPS 2878 netif_reset_xps_queues_gt(sb_dev, 0); 2879 #endif 2880 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2881 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2882 2883 while (txq-- != &dev->_tx[0]) { 2884 if (txq->sb_dev == sb_dev) 2885 txq->sb_dev = NULL; 2886 } 2887 } 2888 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2889 2890 int netdev_bind_sb_channel_queue(struct net_device *dev, 2891 struct net_device *sb_dev, 2892 u8 tc, u16 count, u16 offset) 2893 { 2894 /* Make certain the sb_dev and dev are already configured */ 2895 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2896 return -EINVAL; 2897 2898 /* We cannot hand out queues we don't have */ 2899 if ((offset + count) > dev->real_num_tx_queues) 2900 return -EINVAL; 2901 2902 /* Record the mapping */ 2903 sb_dev->tc_to_txq[tc].count = count; 2904 sb_dev->tc_to_txq[tc].offset = offset; 2905 2906 /* Provide a way for Tx queue to find the tc_to_txq map or 2907 * XPS map for itself. 2908 */ 2909 while (count--) 2910 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2911 2912 return 0; 2913 } 2914 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2915 2916 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2917 { 2918 /* Do not use a multiqueue device to represent a subordinate channel */ 2919 if (netif_is_multiqueue(dev)) 2920 return -ENODEV; 2921 2922 /* We allow channels 1 - 32767 to be used for subordinate channels. 2923 * Channel 0 is meant to be "native" mode and used only to represent 2924 * the main root device. We allow writing 0 to reset the device back 2925 * to normal mode after being used as a subordinate channel. 2926 */ 2927 if (channel > S16_MAX) 2928 return -EINVAL; 2929 2930 dev->num_tc = -channel; 2931 2932 return 0; 2933 } 2934 EXPORT_SYMBOL(netdev_set_sb_channel); 2935 2936 /* 2937 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2938 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2939 */ 2940 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2941 { 2942 bool disabling; 2943 int rc; 2944 2945 disabling = txq < dev->real_num_tx_queues; 2946 2947 if (txq < 1 || txq > dev->num_tx_queues) 2948 return -EINVAL; 2949 2950 if (dev->reg_state == NETREG_REGISTERED || 2951 dev->reg_state == NETREG_UNREGISTERING) { 2952 ASSERT_RTNL(); 2953 2954 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2955 txq); 2956 if (rc) 2957 return rc; 2958 2959 if (dev->num_tc) 2960 netif_setup_tc(dev, txq); 2961 2962 dev->real_num_tx_queues = txq; 2963 2964 if (disabling) { 2965 synchronize_net(); 2966 qdisc_reset_all_tx_gt(dev, txq); 2967 #ifdef CONFIG_XPS 2968 netif_reset_xps_queues_gt(dev, txq); 2969 #endif 2970 } 2971 } else { 2972 dev->real_num_tx_queues = txq; 2973 } 2974 2975 return 0; 2976 } 2977 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2978 2979 #ifdef CONFIG_SYSFS 2980 /** 2981 * netif_set_real_num_rx_queues - set actual number of RX queues used 2982 * @dev: Network device 2983 * @rxq: Actual number of RX queues 2984 * 2985 * This must be called either with the rtnl_lock held or before 2986 * registration of the net device. Returns 0 on success, or a 2987 * negative error code. If called before registration, it always 2988 * succeeds. 2989 */ 2990 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2991 { 2992 int rc; 2993 2994 if (rxq < 1 || rxq > dev->num_rx_queues) 2995 return -EINVAL; 2996 2997 if (dev->reg_state == NETREG_REGISTERED) { 2998 ASSERT_RTNL(); 2999 3000 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3001 rxq); 3002 if (rc) 3003 return rc; 3004 } 3005 3006 dev->real_num_rx_queues = rxq; 3007 return 0; 3008 } 3009 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3010 #endif 3011 3012 /** 3013 * netif_get_num_default_rss_queues - default number of RSS queues 3014 * 3015 * This routine should set an upper limit on the number of RSS queues 3016 * used by default by multiqueue devices. 3017 */ 3018 int netif_get_num_default_rss_queues(void) 3019 { 3020 return is_kdump_kernel() ? 3021 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 3022 } 3023 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3024 3025 static void __netif_reschedule(struct Qdisc *q) 3026 { 3027 struct softnet_data *sd; 3028 unsigned long flags; 3029 3030 local_irq_save(flags); 3031 sd = this_cpu_ptr(&softnet_data); 3032 q->next_sched = NULL; 3033 *sd->output_queue_tailp = q; 3034 sd->output_queue_tailp = &q->next_sched; 3035 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3036 local_irq_restore(flags); 3037 } 3038 3039 void __netif_schedule(struct Qdisc *q) 3040 { 3041 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3042 __netif_reschedule(q); 3043 } 3044 EXPORT_SYMBOL(__netif_schedule); 3045 3046 struct dev_kfree_skb_cb { 3047 enum skb_free_reason reason; 3048 }; 3049 3050 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3051 { 3052 return (struct dev_kfree_skb_cb *)skb->cb; 3053 } 3054 3055 void netif_schedule_queue(struct netdev_queue *txq) 3056 { 3057 rcu_read_lock(); 3058 if (!netif_xmit_stopped(txq)) { 3059 struct Qdisc *q = rcu_dereference(txq->qdisc); 3060 3061 __netif_schedule(q); 3062 } 3063 rcu_read_unlock(); 3064 } 3065 EXPORT_SYMBOL(netif_schedule_queue); 3066 3067 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3068 { 3069 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3070 struct Qdisc *q; 3071 3072 rcu_read_lock(); 3073 q = rcu_dereference(dev_queue->qdisc); 3074 __netif_schedule(q); 3075 rcu_read_unlock(); 3076 } 3077 } 3078 EXPORT_SYMBOL(netif_tx_wake_queue); 3079 3080 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3081 { 3082 unsigned long flags; 3083 3084 if (unlikely(!skb)) 3085 return; 3086 3087 if (likely(refcount_read(&skb->users) == 1)) { 3088 smp_rmb(); 3089 refcount_set(&skb->users, 0); 3090 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3091 return; 3092 } 3093 get_kfree_skb_cb(skb)->reason = reason; 3094 local_irq_save(flags); 3095 skb->next = __this_cpu_read(softnet_data.completion_queue); 3096 __this_cpu_write(softnet_data.completion_queue, skb); 3097 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3098 local_irq_restore(flags); 3099 } 3100 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3101 3102 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3103 { 3104 if (in_irq() || irqs_disabled()) 3105 __dev_kfree_skb_irq(skb, reason); 3106 else 3107 dev_kfree_skb(skb); 3108 } 3109 EXPORT_SYMBOL(__dev_kfree_skb_any); 3110 3111 3112 /** 3113 * netif_device_detach - mark device as removed 3114 * @dev: network device 3115 * 3116 * Mark device as removed from system and therefore no longer available. 3117 */ 3118 void netif_device_detach(struct net_device *dev) 3119 { 3120 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3121 netif_running(dev)) { 3122 netif_tx_stop_all_queues(dev); 3123 } 3124 } 3125 EXPORT_SYMBOL(netif_device_detach); 3126 3127 /** 3128 * netif_device_attach - mark device as attached 3129 * @dev: network device 3130 * 3131 * Mark device as attached from system and restart if needed. 3132 */ 3133 void netif_device_attach(struct net_device *dev) 3134 { 3135 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3136 netif_running(dev)) { 3137 netif_tx_wake_all_queues(dev); 3138 __netdev_watchdog_up(dev); 3139 } 3140 } 3141 EXPORT_SYMBOL(netif_device_attach); 3142 3143 /* 3144 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3145 * to be used as a distribution range. 3146 */ 3147 static u16 skb_tx_hash(const struct net_device *dev, 3148 const struct net_device *sb_dev, 3149 struct sk_buff *skb) 3150 { 3151 u32 hash; 3152 u16 qoffset = 0; 3153 u16 qcount = dev->real_num_tx_queues; 3154 3155 if (dev->num_tc) { 3156 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3157 3158 qoffset = sb_dev->tc_to_txq[tc].offset; 3159 qcount = sb_dev->tc_to_txq[tc].count; 3160 } 3161 3162 if (skb_rx_queue_recorded(skb)) { 3163 hash = skb_get_rx_queue(skb); 3164 if (hash >= qoffset) 3165 hash -= qoffset; 3166 while (unlikely(hash >= qcount)) 3167 hash -= qcount; 3168 return hash + qoffset; 3169 } 3170 3171 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3172 } 3173 3174 static void skb_warn_bad_offload(const struct sk_buff *skb) 3175 { 3176 static const netdev_features_t null_features; 3177 struct net_device *dev = skb->dev; 3178 const char *name = ""; 3179 3180 if (!net_ratelimit()) 3181 return; 3182 3183 if (dev) { 3184 if (dev->dev.parent) 3185 name = dev_driver_string(dev->dev.parent); 3186 else 3187 name = netdev_name(dev); 3188 } 3189 skb_dump(KERN_WARNING, skb, false); 3190 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3191 name, dev ? &dev->features : &null_features, 3192 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3193 } 3194 3195 /* 3196 * Invalidate hardware checksum when packet is to be mangled, and 3197 * complete checksum manually on outgoing path. 3198 */ 3199 int skb_checksum_help(struct sk_buff *skb) 3200 { 3201 __wsum csum; 3202 int ret = 0, offset; 3203 3204 if (skb->ip_summed == CHECKSUM_COMPLETE) 3205 goto out_set_summed; 3206 3207 if (unlikely(skb_shinfo(skb)->gso_size)) { 3208 skb_warn_bad_offload(skb); 3209 return -EINVAL; 3210 } 3211 3212 /* Before computing a checksum, we should make sure no frag could 3213 * be modified by an external entity : checksum could be wrong. 3214 */ 3215 if (skb_has_shared_frag(skb)) { 3216 ret = __skb_linearize(skb); 3217 if (ret) 3218 goto out; 3219 } 3220 3221 offset = skb_checksum_start_offset(skb); 3222 BUG_ON(offset >= skb_headlen(skb)); 3223 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3224 3225 offset += skb->csum_offset; 3226 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3227 3228 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3229 if (ret) 3230 goto out; 3231 3232 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3233 out_set_summed: 3234 skb->ip_summed = CHECKSUM_NONE; 3235 out: 3236 return ret; 3237 } 3238 EXPORT_SYMBOL(skb_checksum_help); 3239 3240 int skb_crc32c_csum_help(struct sk_buff *skb) 3241 { 3242 __le32 crc32c_csum; 3243 int ret = 0, offset, start; 3244 3245 if (skb->ip_summed != CHECKSUM_PARTIAL) 3246 goto out; 3247 3248 if (unlikely(skb_is_gso(skb))) 3249 goto out; 3250 3251 /* Before computing a checksum, we should make sure no frag could 3252 * be modified by an external entity : checksum could be wrong. 3253 */ 3254 if (unlikely(skb_has_shared_frag(skb))) { 3255 ret = __skb_linearize(skb); 3256 if (ret) 3257 goto out; 3258 } 3259 start = skb_checksum_start_offset(skb); 3260 offset = start + offsetof(struct sctphdr, checksum); 3261 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3262 ret = -EINVAL; 3263 goto out; 3264 } 3265 3266 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3267 if (ret) 3268 goto out; 3269 3270 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3271 skb->len - start, ~(__u32)0, 3272 crc32c_csum_stub)); 3273 *(__le32 *)(skb->data + offset) = crc32c_csum; 3274 skb->ip_summed = CHECKSUM_NONE; 3275 skb->csum_not_inet = 0; 3276 out: 3277 return ret; 3278 } 3279 3280 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3281 { 3282 __be16 type = skb->protocol; 3283 3284 /* Tunnel gso handlers can set protocol to ethernet. */ 3285 if (type == htons(ETH_P_TEB)) { 3286 struct ethhdr *eth; 3287 3288 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3289 return 0; 3290 3291 eth = (struct ethhdr *)skb->data; 3292 type = eth->h_proto; 3293 } 3294 3295 return __vlan_get_protocol(skb, type, depth); 3296 } 3297 3298 /** 3299 * skb_mac_gso_segment - mac layer segmentation handler. 3300 * @skb: buffer to segment 3301 * @features: features for the output path (see dev->features) 3302 */ 3303 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3304 netdev_features_t features) 3305 { 3306 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3307 struct packet_offload *ptype; 3308 int vlan_depth = skb->mac_len; 3309 __be16 type = skb_network_protocol(skb, &vlan_depth); 3310 3311 if (unlikely(!type)) 3312 return ERR_PTR(-EINVAL); 3313 3314 __skb_pull(skb, vlan_depth); 3315 3316 rcu_read_lock(); 3317 list_for_each_entry_rcu(ptype, &offload_base, list) { 3318 if (ptype->type == type && ptype->callbacks.gso_segment) { 3319 segs = ptype->callbacks.gso_segment(skb, features); 3320 break; 3321 } 3322 } 3323 rcu_read_unlock(); 3324 3325 __skb_push(skb, skb->data - skb_mac_header(skb)); 3326 3327 return segs; 3328 } 3329 EXPORT_SYMBOL(skb_mac_gso_segment); 3330 3331 3332 /* openvswitch calls this on rx path, so we need a different check. 3333 */ 3334 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3335 { 3336 if (tx_path) 3337 return skb->ip_summed != CHECKSUM_PARTIAL && 3338 skb->ip_summed != CHECKSUM_UNNECESSARY; 3339 3340 return skb->ip_summed == CHECKSUM_NONE; 3341 } 3342 3343 /** 3344 * __skb_gso_segment - Perform segmentation on skb. 3345 * @skb: buffer to segment 3346 * @features: features for the output path (see dev->features) 3347 * @tx_path: whether it is called in TX path 3348 * 3349 * This function segments the given skb and returns a list of segments. 3350 * 3351 * It may return NULL if the skb requires no segmentation. This is 3352 * only possible when GSO is used for verifying header integrity. 3353 * 3354 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3355 */ 3356 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3357 netdev_features_t features, bool tx_path) 3358 { 3359 struct sk_buff *segs; 3360 3361 if (unlikely(skb_needs_check(skb, tx_path))) { 3362 int err; 3363 3364 /* We're going to init ->check field in TCP or UDP header */ 3365 err = skb_cow_head(skb, 0); 3366 if (err < 0) 3367 return ERR_PTR(err); 3368 } 3369 3370 /* Only report GSO partial support if it will enable us to 3371 * support segmentation on this frame without needing additional 3372 * work. 3373 */ 3374 if (features & NETIF_F_GSO_PARTIAL) { 3375 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3376 struct net_device *dev = skb->dev; 3377 3378 partial_features |= dev->features & dev->gso_partial_features; 3379 if (!skb_gso_ok(skb, features | partial_features)) 3380 features &= ~NETIF_F_GSO_PARTIAL; 3381 } 3382 3383 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3384 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3385 3386 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3387 SKB_GSO_CB(skb)->encap_level = 0; 3388 3389 skb_reset_mac_header(skb); 3390 skb_reset_mac_len(skb); 3391 3392 segs = skb_mac_gso_segment(skb, features); 3393 3394 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3395 skb_warn_bad_offload(skb); 3396 3397 return segs; 3398 } 3399 EXPORT_SYMBOL(__skb_gso_segment); 3400 3401 /* Take action when hardware reception checksum errors are detected. */ 3402 #ifdef CONFIG_BUG 3403 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3404 { 3405 if (net_ratelimit()) { 3406 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3407 skb_dump(KERN_ERR, skb, true); 3408 dump_stack(); 3409 } 3410 } 3411 EXPORT_SYMBOL(netdev_rx_csum_fault); 3412 #endif 3413 3414 /* XXX: check that highmem exists at all on the given machine. */ 3415 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3416 { 3417 #ifdef CONFIG_HIGHMEM 3418 int i; 3419 3420 if (!(dev->features & NETIF_F_HIGHDMA)) { 3421 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3422 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3423 3424 if (PageHighMem(skb_frag_page(frag))) 3425 return 1; 3426 } 3427 } 3428 #endif 3429 return 0; 3430 } 3431 3432 /* If MPLS offload request, verify we are testing hardware MPLS features 3433 * instead of standard features for the netdev. 3434 */ 3435 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3436 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3437 netdev_features_t features, 3438 __be16 type) 3439 { 3440 if (eth_p_mpls(type)) 3441 features &= skb->dev->mpls_features; 3442 3443 return features; 3444 } 3445 #else 3446 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3447 netdev_features_t features, 3448 __be16 type) 3449 { 3450 return features; 3451 } 3452 #endif 3453 3454 static netdev_features_t harmonize_features(struct sk_buff *skb, 3455 netdev_features_t features) 3456 { 3457 int tmp; 3458 __be16 type; 3459 3460 type = skb_network_protocol(skb, &tmp); 3461 features = net_mpls_features(skb, features, type); 3462 3463 if (skb->ip_summed != CHECKSUM_NONE && 3464 !can_checksum_protocol(features, type)) { 3465 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3466 } 3467 if (illegal_highdma(skb->dev, skb)) 3468 features &= ~NETIF_F_SG; 3469 3470 return features; 3471 } 3472 3473 netdev_features_t passthru_features_check(struct sk_buff *skb, 3474 struct net_device *dev, 3475 netdev_features_t features) 3476 { 3477 return features; 3478 } 3479 EXPORT_SYMBOL(passthru_features_check); 3480 3481 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3482 struct net_device *dev, 3483 netdev_features_t features) 3484 { 3485 return vlan_features_check(skb, features); 3486 } 3487 3488 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3489 struct net_device *dev, 3490 netdev_features_t features) 3491 { 3492 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3493 3494 if (gso_segs > dev->gso_max_segs) 3495 return features & ~NETIF_F_GSO_MASK; 3496 3497 /* Support for GSO partial features requires software 3498 * intervention before we can actually process the packets 3499 * so we need to strip support for any partial features now 3500 * and we can pull them back in after we have partially 3501 * segmented the frame. 3502 */ 3503 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3504 features &= ~dev->gso_partial_features; 3505 3506 /* Make sure to clear the IPv4 ID mangling feature if the 3507 * IPv4 header has the potential to be fragmented. 3508 */ 3509 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3510 struct iphdr *iph = skb->encapsulation ? 3511 inner_ip_hdr(skb) : ip_hdr(skb); 3512 3513 if (!(iph->frag_off & htons(IP_DF))) 3514 features &= ~NETIF_F_TSO_MANGLEID; 3515 } 3516 3517 return features; 3518 } 3519 3520 netdev_features_t netif_skb_features(struct sk_buff *skb) 3521 { 3522 struct net_device *dev = skb->dev; 3523 netdev_features_t features = dev->features; 3524 3525 if (skb_is_gso(skb)) 3526 features = gso_features_check(skb, dev, features); 3527 3528 /* If encapsulation offload request, verify we are testing 3529 * hardware encapsulation features instead of standard 3530 * features for the netdev 3531 */ 3532 if (skb->encapsulation) 3533 features &= dev->hw_enc_features; 3534 3535 if (skb_vlan_tagged(skb)) 3536 features = netdev_intersect_features(features, 3537 dev->vlan_features | 3538 NETIF_F_HW_VLAN_CTAG_TX | 3539 NETIF_F_HW_VLAN_STAG_TX); 3540 3541 if (dev->netdev_ops->ndo_features_check) 3542 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3543 features); 3544 else 3545 features &= dflt_features_check(skb, dev, features); 3546 3547 return harmonize_features(skb, features); 3548 } 3549 EXPORT_SYMBOL(netif_skb_features); 3550 3551 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3552 struct netdev_queue *txq, bool more) 3553 { 3554 unsigned int len; 3555 int rc; 3556 3557 if (dev_nit_active(dev)) 3558 dev_queue_xmit_nit(skb, dev); 3559 3560 len = skb->len; 3561 trace_net_dev_start_xmit(skb, dev); 3562 rc = netdev_start_xmit(skb, dev, txq, more); 3563 trace_net_dev_xmit(skb, rc, dev, len); 3564 3565 return rc; 3566 } 3567 3568 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3569 struct netdev_queue *txq, int *ret) 3570 { 3571 struct sk_buff *skb = first; 3572 int rc = NETDEV_TX_OK; 3573 3574 while (skb) { 3575 struct sk_buff *next = skb->next; 3576 3577 skb_mark_not_on_list(skb); 3578 rc = xmit_one(skb, dev, txq, next != NULL); 3579 if (unlikely(!dev_xmit_complete(rc))) { 3580 skb->next = next; 3581 goto out; 3582 } 3583 3584 skb = next; 3585 if (netif_tx_queue_stopped(txq) && skb) { 3586 rc = NETDEV_TX_BUSY; 3587 break; 3588 } 3589 } 3590 3591 out: 3592 *ret = rc; 3593 return skb; 3594 } 3595 3596 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3597 netdev_features_t features) 3598 { 3599 if (skb_vlan_tag_present(skb) && 3600 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3601 skb = __vlan_hwaccel_push_inside(skb); 3602 return skb; 3603 } 3604 3605 int skb_csum_hwoffload_help(struct sk_buff *skb, 3606 const netdev_features_t features) 3607 { 3608 if (unlikely(skb->csum_not_inet)) 3609 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3610 skb_crc32c_csum_help(skb); 3611 3612 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3613 } 3614 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3615 3616 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3617 { 3618 netdev_features_t features; 3619 3620 features = netif_skb_features(skb); 3621 skb = validate_xmit_vlan(skb, features); 3622 if (unlikely(!skb)) 3623 goto out_null; 3624 3625 skb = sk_validate_xmit_skb(skb, dev); 3626 if (unlikely(!skb)) 3627 goto out_null; 3628 3629 if (netif_needs_gso(skb, features)) { 3630 struct sk_buff *segs; 3631 3632 segs = skb_gso_segment(skb, features); 3633 if (IS_ERR(segs)) { 3634 goto out_kfree_skb; 3635 } else if (segs) { 3636 consume_skb(skb); 3637 skb = segs; 3638 } 3639 } else { 3640 if (skb_needs_linearize(skb, features) && 3641 __skb_linearize(skb)) 3642 goto out_kfree_skb; 3643 3644 /* If packet is not checksummed and device does not 3645 * support checksumming for this protocol, complete 3646 * checksumming here. 3647 */ 3648 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3649 if (skb->encapsulation) 3650 skb_set_inner_transport_header(skb, 3651 skb_checksum_start_offset(skb)); 3652 else 3653 skb_set_transport_header(skb, 3654 skb_checksum_start_offset(skb)); 3655 if (skb_csum_hwoffload_help(skb, features)) 3656 goto out_kfree_skb; 3657 } 3658 } 3659 3660 skb = validate_xmit_xfrm(skb, features, again); 3661 3662 return skb; 3663 3664 out_kfree_skb: 3665 kfree_skb(skb); 3666 out_null: 3667 atomic_long_inc(&dev->tx_dropped); 3668 return NULL; 3669 } 3670 3671 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3672 { 3673 struct sk_buff *next, *head = NULL, *tail; 3674 3675 for (; skb != NULL; skb = next) { 3676 next = skb->next; 3677 skb_mark_not_on_list(skb); 3678 3679 /* in case skb wont be segmented, point to itself */ 3680 skb->prev = skb; 3681 3682 skb = validate_xmit_skb(skb, dev, again); 3683 if (!skb) 3684 continue; 3685 3686 if (!head) 3687 head = skb; 3688 else 3689 tail->next = skb; 3690 /* If skb was segmented, skb->prev points to 3691 * the last segment. If not, it still contains skb. 3692 */ 3693 tail = skb->prev; 3694 } 3695 return head; 3696 } 3697 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3698 3699 static void qdisc_pkt_len_init(struct sk_buff *skb) 3700 { 3701 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3702 3703 qdisc_skb_cb(skb)->pkt_len = skb->len; 3704 3705 /* To get more precise estimation of bytes sent on wire, 3706 * we add to pkt_len the headers size of all segments 3707 */ 3708 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3709 unsigned int hdr_len; 3710 u16 gso_segs = shinfo->gso_segs; 3711 3712 /* mac layer + network layer */ 3713 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3714 3715 /* + transport layer */ 3716 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3717 const struct tcphdr *th; 3718 struct tcphdr _tcphdr; 3719 3720 th = skb_header_pointer(skb, skb_transport_offset(skb), 3721 sizeof(_tcphdr), &_tcphdr); 3722 if (likely(th)) 3723 hdr_len += __tcp_hdrlen(th); 3724 } else { 3725 struct udphdr _udphdr; 3726 3727 if (skb_header_pointer(skb, skb_transport_offset(skb), 3728 sizeof(_udphdr), &_udphdr)) 3729 hdr_len += sizeof(struct udphdr); 3730 } 3731 3732 if (shinfo->gso_type & SKB_GSO_DODGY) 3733 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3734 shinfo->gso_size); 3735 3736 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3737 } 3738 } 3739 3740 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3741 struct net_device *dev, 3742 struct netdev_queue *txq) 3743 { 3744 spinlock_t *root_lock = qdisc_lock(q); 3745 struct sk_buff *to_free = NULL; 3746 bool contended; 3747 int rc; 3748 3749 qdisc_calculate_pkt_len(skb, q); 3750 3751 if (q->flags & TCQ_F_NOLOCK) { 3752 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3753 qdisc_run(q); 3754 3755 if (unlikely(to_free)) 3756 kfree_skb_list(to_free); 3757 return rc; 3758 } 3759 3760 /* 3761 * Heuristic to force contended enqueues to serialize on a 3762 * separate lock before trying to get qdisc main lock. 3763 * This permits qdisc->running owner to get the lock more 3764 * often and dequeue packets faster. 3765 */ 3766 contended = qdisc_is_running(q); 3767 if (unlikely(contended)) 3768 spin_lock(&q->busylock); 3769 3770 spin_lock(root_lock); 3771 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3772 __qdisc_drop(skb, &to_free); 3773 rc = NET_XMIT_DROP; 3774 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3775 qdisc_run_begin(q)) { 3776 /* 3777 * This is a work-conserving queue; there are no old skbs 3778 * waiting to be sent out; and the qdisc is not running - 3779 * xmit the skb directly. 3780 */ 3781 3782 qdisc_bstats_update(q, skb); 3783 3784 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3785 if (unlikely(contended)) { 3786 spin_unlock(&q->busylock); 3787 contended = false; 3788 } 3789 __qdisc_run(q); 3790 } 3791 3792 qdisc_run_end(q); 3793 rc = NET_XMIT_SUCCESS; 3794 } else { 3795 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3796 if (qdisc_run_begin(q)) { 3797 if (unlikely(contended)) { 3798 spin_unlock(&q->busylock); 3799 contended = false; 3800 } 3801 __qdisc_run(q); 3802 qdisc_run_end(q); 3803 } 3804 } 3805 spin_unlock(root_lock); 3806 if (unlikely(to_free)) 3807 kfree_skb_list(to_free); 3808 if (unlikely(contended)) 3809 spin_unlock(&q->busylock); 3810 return rc; 3811 } 3812 3813 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3814 static void skb_update_prio(struct sk_buff *skb) 3815 { 3816 const struct netprio_map *map; 3817 const struct sock *sk; 3818 unsigned int prioidx; 3819 3820 if (skb->priority) 3821 return; 3822 map = rcu_dereference_bh(skb->dev->priomap); 3823 if (!map) 3824 return; 3825 sk = skb_to_full_sk(skb); 3826 if (!sk) 3827 return; 3828 3829 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3830 3831 if (prioidx < map->priomap_len) 3832 skb->priority = map->priomap[prioidx]; 3833 } 3834 #else 3835 #define skb_update_prio(skb) 3836 #endif 3837 3838 /** 3839 * dev_loopback_xmit - loop back @skb 3840 * @net: network namespace this loopback is happening in 3841 * @sk: sk needed to be a netfilter okfn 3842 * @skb: buffer to transmit 3843 */ 3844 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3845 { 3846 skb_reset_mac_header(skb); 3847 __skb_pull(skb, skb_network_offset(skb)); 3848 skb->pkt_type = PACKET_LOOPBACK; 3849 skb->ip_summed = CHECKSUM_UNNECESSARY; 3850 WARN_ON(!skb_dst(skb)); 3851 skb_dst_force(skb); 3852 netif_rx_ni(skb); 3853 return 0; 3854 } 3855 EXPORT_SYMBOL(dev_loopback_xmit); 3856 3857 #ifdef CONFIG_NET_EGRESS 3858 static struct sk_buff * 3859 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3860 { 3861 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3862 struct tcf_result cl_res; 3863 3864 if (!miniq) 3865 return skb; 3866 3867 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3868 mini_qdisc_bstats_cpu_update(miniq, skb); 3869 3870 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3871 case TC_ACT_OK: 3872 case TC_ACT_RECLASSIFY: 3873 skb->tc_index = TC_H_MIN(cl_res.classid); 3874 break; 3875 case TC_ACT_SHOT: 3876 mini_qdisc_qstats_cpu_drop(miniq); 3877 *ret = NET_XMIT_DROP; 3878 kfree_skb(skb); 3879 return NULL; 3880 case TC_ACT_STOLEN: 3881 case TC_ACT_QUEUED: 3882 case TC_ACT_TRAP: 3883 *ret = NET_XMIT_SUCCESS; 3884 consume_skb(skb); 3885 return NULL; 3886 case TC_ACT_REDIRECT: 3887 /* No need to push/pop skb's mac_header here on egress! */ 3888 skb_do_redirect(skb); 3889 *ret = NET_XMIT_SUCCESS; 3890 return NULL; 3891 default: 3892 break; 3893 } 3894 3895 return skb; 3896 } 3897 #endif /* CONFIG_NET_EGRESS */ 3898 3899 #ifdef CONFIG_XPS 3900 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3901 struct xps_dev_maps *dev_maps, unsigned int tci) 3902 { 3903 struct xps_map *map; 3904 int queue_index = -1; 3905 3906 if (dev->num_tc) { 3907 tci *= dev->num_tc; 3908 tci += netdev_get_prio_tc_map(dev, skb->priority); 3909 } 3910 3911 map = rcu_dereference(dev_maps->attr_map[tci]); 3912 if (map) { 3913 if (map->len == 1) 3914 queue_index = map->queues[0]; 3915 else 3916 queue_index = map->queues[reciprocal_scale( 3917 skb_get_hash(skb), map->len)]; 3918 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3919 queue_index = -1; 3920 } 3921 return queue_index; 3922 } 3923 #endif 3924 3925 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3926 struct sk_buff *skb) 3927 { 3928 #ifdef CONFIG_XPS 3929 struct xps_dev_maps *dev_maps; 3930 struct sock *sk = skb->sk; 3931 int queue_index = -1; 3932 3933 if (!static_key_false(&xps_needed)) 3934 return -1; 3935 3936 rcu_read_lock(); 3937 if (!static_key_false(&xps_rxqs_needed)) 3938 goto get_cpus_map; 3939 3940 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3941 if (dev_maps) { 3942 int tci = sk_rx_queue_get(sk); 3943 3944 if (tci >= 0 && tci < dev->num_rx_queues) 3945 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3946 tci); 3947 } 3948 3949 get_cpus_map: 3950 if (queue_index < 0) { 3951 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3952 if (dev_maps) { 3953 unsigned int tci = skb->sender_cpu - 1; 3954 3955 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3956 tci); 3957 } 3958 } 3959 rcu_read_unlock(); 3960 3961 return queue_index; 3962 #else 3963 return -1; 3964 #endif 3965 } 3966 3967 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3968 struct net_device *sb_dev) 3969 { 3970 return 0; 3971 } 3972 EXPORT_SYMBOL(dev_pick_tx_zero); 3973 3974 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3975 struct net_device *sb_dev) 3976 { 3977 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3978 } 3979 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3980 3981 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3982 struct net_device *sb_dev) 3983 { 3984 struct sock *sk = skb->sk; 3985 int queue_index = sk_tx_queue_get(sk); 3986 3987 sb_dev = sb_dev ? : dev; 3988 3989 if (queue_index < 0 || skb->ooo_okay || 3990 queue_index >= dev->real_num_tx_queues) { 3991 int new_index = get_xps_queue(dev, sb_dev, skb); 3992 3993 if (new_index < 0) 3994 new_index = skb_tx_hash(dev, sb_dev, skb); 3995 3996 if (queue_index != new_index && sk && 3997 sk_fullsock(sk) && 3998 rcu_access_pointer(sk->sk_dst_cache)) 3999 sk_tx_queue_set(sk, new_index); 4000 4001 queue_index = new_index; 4002 } 4003 4004 return queue_index; 4005 } 4006 EXPORT_SYMBOL(netdev_pick_tx); 4007 4008 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4009 struct sk_buff *skb, 4010 struct net_device *sb_dev) 4011 { 4012 int queue_index = 0; 4013 4014 #ifdef CONFIG_XPS 4015 u32 sender_cpu = skb->sender_cpu - 1; 4016 4017 if (sender_cpu >= (u32)NR_CPUS) 4018 skb->sender_cpu = raw_smp_processor_id() + 1; 4019 #endif 4020 4021 if (dev->real_num_tx_queues != 1) { 4022 const struct net_device_ops *ops = dev->netdev_ops; 4023 4024 if (ops->ndo_select_queue) 4025 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4026 else 4027 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4028 4029 queue_index = netdev_cap_txqueue(dev, queue_index); 4030 } 4031 4032 skb_set_queue_mapping(skb, queue_index); 4033 return netdev_get_tx_queue(dev, queue_index); 4034 } 4035 4036 /** 4037 * __dev_queue_xmit - transmit a buffer 4038 * @skb: buffer to transmit 4039 * @sb_dev: suboordinate device used for L2 forwarding offload 4040 * 4041 * Queue a buffer for transmission to a network device. The caller must 4042 * have set the device and priority and built the buffer before calling 4043 * this function. The function can be called from an interrupt. 4044 * 4045 * A negative errno code is returned on a failure. A success does not 4046 * guarantee the frame will be transmitted as it may be dropped due 4047 * to congestion or traffic shaping. 4048 * 4049 * ----------------------------------------------------------------------------------- 4050 * I notice this method can also return errors from the queue disciplines, 4051 * including NET_XMIT_DROP, which is a positive value. So, errors can also 4052 * be positive. 4053 * 4054 * Regardless of the return value, the skb is consumed, so it is currently 4055 * difficult to retry a send to this method. (You can bump the ref count 4056 * before sending to hold a reference for retry if you are careful.) 4057 * 4058 * When calling this method, interrupts MUST be enabled. This is because 4059 * the BH enable code must have IRQs enabled so that it will not deadlock. 4060 * --BLG 4061 */ 4062 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4063 { 4064 struct net_device *dev = skb->dev; 4065 struct netdev_queue *txq; 4066 struct Qdisc *q; 4067 int rc = -ENOMEM; 4068 bool again = false; 4069 4070 skb_reset_mac_header(skb); 4071 4072 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4073 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 4074 4075 /* Disable soft irqs for various locks below. Also 4076 * stops preemption for RCU. 4077 */ 4078 rcu_read_lock_bh(); 4079 4080 skb_update_prio(skb); 4081 4082 qdisc_pkt_len_init(skb); 4083 #ifdef CONFIG_NET_CLS_ACT 4084 skb->tc_at_ingress = 0; 4085 # ifdef CONFIG_NET_EGRESS 4086 if (static_branch_unlikely(&egress_needed_key)) { 4087 skb = sch_handle_egress(skb, &rc, dev); 4088 if (!skb) 4089 goto out; 4090 } 4091 # endif 4092 #endif 4093 /* If device/qdisc don't need skb->dst, release it right now while 4094 * its hot in this cpu cache. 4095 */ 4096 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4097 skb_dst_drop(skb); 4098 else 4099 skb_dst_force(skb); 4100 4101 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4102 q = rcu_dereference_bh(txq->qdisc); 4103 4104 trace_net_dev_queue(skb); 4105 if (q->enqueue) { 4106 rc = __dev_xmit_skb(skb, q, dev, txq); 4107 goto out; 4108 } 4109 4110 /* The device has no queue. Common case for software devices: 4111 * loopback, all the sorts of tunnels... 4112 4113 * Really, it is unlikely that netif_tx_lock protection is necessary 4114 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4115 * counters.) 4116 * However, it is possible, that they rely on protection 4117 * made by us here. 4118 4119 * Check this and shot the lock. It is not prone from deadlocks. 4120 *Either shot noqueue qdisc, it is even simpler 8) 4121 */ 4122 if (dev->flags & IFF_UP) { 4123 int cpu = smp_processor_id(); /* ok because BHs are off */ 4124 4125 if (txq->xmit_lock_owner != cpu) { 4126 if (dev_xmit_recursion()) 4127 goto recursion_alert; 4128 4129 skb = validate_xmit_skb(skb, dev, &again); 4130 if (!skb) 4131 goto out; 4132 4133 HARD_TX_LOCK(dev, txq, cpu); 4134 4135 if (!netif_xmit_stopped(txq)) { 4136 dev_xmit_recursion_inc(); 4137 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4138 dev_xmit_recursion_dec(); 4139 if (dev_xmit_complete(rc)) { 4140 HARD_TX_UNLOCK(dev, txq); 4141 goto out; 4142 } 4143 } 4144 HARD_TX_UNLOCK(dev, txq); 4145 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4146 dev->name); 4147 } else { 4148 /* Recursion is detected! It is possible, 4149 * unfortunately 4150 */ 4151 recursion_alert: 4152 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4153 dev->name); 4154 } 4155 } 4156 4157 rc = -ENETDOWN; 4158 rcu_read_unlock_bh(); 4159 4160 atomic_long_inc(&dev->tx_dropped); 4161 kfree_skb_list(skb); 4162 return rc; 4163 out: 4164 rcu_read_unlock_bh(); 4165 return rc; 4166 } 4167 4168 int dev_queue_xmit(struct sk_buff *skb) 4169 { 4170 return __dev_queue_xmit(skb, NULL); 4171 } 4172 EXPORT_SYMBOL(dev_queue_xmit); 4173 4174 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4175 { 4176 return __dev_queue_xmit(skb, sb_dev); 4177 } 4178 EXPORT_SYMBOL(dev_queue_xmit_accel); 4179 4180 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4181 { 4182 struct net_device *dev = skb->dev; 4183 struct sk_buff *orig_skb = skb; 4184 struct netdev_queue *txq; 4185 int ret = NETDEV_TX_BUSY; 4186 bool again = false; 4187 4188 if (unlikely(!netif_running(dev) || 4189 !netif_carrier_ok(dev))) 4190 goto drop; 4191 4192 skb = validate_xmit_skb_list(skb, dev, &again); 4193 if (skb != orig_skb) 4194 goto drop; 4195 4196 skb_set_queue_mapping(skb, queue_id); 4197 txq = skb_get_tx_queue(dev, skb); 4198 4199 local_bh_disable(); 4200 4201 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4202 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4203 ret = netdev_start_xmit(skb, dev, txq, false); 4204 HARD_TX_UNLOCK(dev, txq); 4205 4206 local_bh_enable(); 4207 4208 if (!dev_xmit_complete(ret)) 4209 kfree_skb(skb); 4210 4211 return ret; 4212 drop: 4213 atomic_long_inc(&dev->tx_dropped); 4214 kfree_skb_list(skb); 4215 return NET_XMIT_DROP; 4216 } 4217 EXPORT_SYMBOL(dev_direct_xmit); 4218 4219 /************************************************************************* 4220 * Receiver routines 4221 *************************************************************************/ 4222 4223 int netdev_max_backlog __read_mostly = 1000; 4224 EXPORT_SYMBOL(netdev_max_backlog); 4225 4226 int netdev_tstamp_prequeue __read_mostly = 1; 4227 int netdev_budget __read_mostly = 300; 4228 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4229 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4230 int weight_p __read_mostly = 64; /* old backlog weight */ 4231 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4232 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4233 int dev_rx_weight __read_mostly = 64; 4234 int dev_tx_weight __read_mostly = 64; 4235 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4236 int gro_normal_batch __read_mostly = 8; 4237 4238 /* Called with irq disabled */ 4239 static inline void ____napi_schedule(struct softnet_data *sd, 4240 struct napi_struct *napi) 4241 { 4242 list_add_tail(&napi->poll_list, &sd->poll_list); 4243 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4244 } 4245 4246 #ifdef CONFIG_RPS 4247 4248 /* One global table that all flow-based protocols share. */ 4249 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4250 EXPORT_SYMBOL(rps_sock_flow_table); 4251 u32 rps_cpu_mask __read_mostly; 4252 EXPORT_SYMBOL(rps_cpu_mask); 4253 4254 struct static_key_false rps_needed __read_mostly; 4255 EXPORT_SYMBOL(rps_needed); 4256 struct static_key_false rfs_needed __read_mostly; 4257 EXPORT_SYMBOL(rfs_needed); 4258 4259 static struct rps_dev_flow * 4260 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4261 struct rps_dev_flow *rflow, u16 next_cpu) 4262 { 4263 if (next_cpu < nr_cpu_ids) { 4264 #ifdef CONFIG_RFS_ACCEL 4265 struct netdev_rx_queue *rxqueue; 4266 struct rps_dev_flow_table *flow_table; 4267 struct rps_dev_flow *old_rflow; 4268 u32 flow_id; 4269 u16 rxq_index; 4270 int rc; 4271 4272 /* Should we steer this flow to a different hardware queue? */ 4273 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4274 !(dev->features & NETIF_F_NTUPLE)) 4275 goto out; 4276 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4277 if (rxq_index == skb_get_rx_queue(skb)) 4278 goto out; 4279 4280 rxqueue = dev->_rx + rxq_index; 4281 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4282 if (!flow_table) 4283 goto out; 4284 flow_id = skb_get_hash(skb) & flow_table->mask; 4285 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4286 rxq_index, flow_id); 4287 if (rc < 0) 4288 goto out; 4289 old_rflow = rflow; 4290 rflow = &flow_table->flows[flow_id]; 4291 rflow->filter = rc; 4292 if (old_rflow->filter == rflow->filter) 4293 old_rflow->filter = RPS_NO_FILTER; 4294 out: 4295 #endif 4296 rflow->last_qtail = 4297 per_cpu(softnet_data, next_cpu).input_queue_head; 4298 } 4299 4300 rflow->cpu = next_cpu; 4301 return rflow; 4302 } 4303 4304 /* 4305 * get_rps_cpu is called from netif_receive_skb and returns the target 4306 * CPU from the RPS map of the receiving queue for a given skb. 4307 * rcu_read_lock must be held on entry. 4308 */ 4309 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4310 struct rps_dev_flow **rflowp) 4311 { 4312 const struct rps_sock_flow_table *sock_flow_table; 4313 struct netdev_rx_queue *rxqueue = dev->_rx; 4314 struct rps_dev_flow_table *flow_table; 4315 struct rps_map *map; 4316 int cpu = -1; 4317 u32 tcpu; 4318 u32 hash; 4319 4320 if (skb_rx_queue_recorded(skb)) { 4321 u16 index = skb_get_rx_queue(skb); 4322 4323 if (unlikely(index >= dev->real_num_rx_queues)) { 4324 WARN_ONCE(dev->real_num_rx_queues > 1, 4325 "%s received packet on queue %u, but number " 4326 "of RX queues is %u\n", 4327 dev->name, index, dev->real_num_rx_queues); 4328 goto done; 4329 } 4330 rxqueue += index; 4331 } 4332 4333 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4334 4335 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4336 map = rcu_dereference(rxqueue->rps_map); 4337 if (!flow_table && !map) 4338 goto done; 4339 4340 skb_reset_network_header(skb); 4341 hash = skb_get_hash(skb); 4342 if (!hash) 4343 goto done; 4344 4345 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4346 if (flow_table && sock_flow_table) { 4347 struct rps_dev_flow *rflow; 4348 u32 next_cpu; 4349 u32 ident; 4350 4351 /* First check into global flow table if there is a match */ 4352 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4353 if ((ident ^ hash) & ~rps_cpu_mask) 4354 goto try_rps; 4355 4356 next_cpu = ident & rps_cpu_mask; 4357 4358 /* OK, now we know there is a match, 4359 * we can look at the local (per receive queue) flow table 4360 */ 4361 rflow = &flow_table->flows[hash & flow_table->mask]; 4362 tcpu = rflow->cpu; 4363 4364 /* 4365 * If the desired CPU (where last recvmsg was done) is 4366 * different from current CPU (one in the rx-queue flow 4367 * table entry), switch if one of the following holds: 4368 * - Current CPU is unset (>= nr_cpu_ids). 4369 * - Current CPU is offline. 4370 * - The current CPU's queue tail has advanced beyond the 4371 * last packet that was enqueued using this table entry. 4372 * This guarantees that all previous packets for the flow 4373 * have been dequeued, thus preserving in order delivery. 4374 */ 4375 if (unlikely(tcpu != next_cpu) && 4376 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4377 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4378 rflow->last_qtail)) >= 0)) { 4379 tcpu = next_cpu; 4380 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4381 } 4382 4383 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4384 *rflowp = rflow; 4385 cpu = tcpu; 4386 goto done; 4387 } 4388 } 4389 4390 try_rps: 4391 4392 if (map) { 4393 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4394 if (cpu_online(tcpu)) { 4395 cpu = tcpu; 4396 goto done; 4397 } 4398 } 4399 4400 done: 4401 return cpu; 4402 } 4403 4404 #ifdef CONFIG_RFS_ACCEL 4405 4406 /** 4407 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4408 * @dev: Device on which the filter was set 4409 * @rxq_index: RX queue index 4410 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4411 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4412 * 4413 * Drivers that implement ndo_rx_flow_steer() should periodically call 4414 * this function for each installed filter and remove the filters for 4415 * which it returns %true. 4416 */ 4417 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4418 u32 flow_id, u16 filter_id) 4419 { 4420 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4421 struct rps_dev_flow_table *flow_table; 4422 struct rps_dev_flow *rflow; 4423 bool expire = true; 4424 unsigned int cpu; 4425 4426 rcu_read_lock(); 4427 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4428 if (flow_table && flow_id <= flow_table->mask) { 4429 rflow = &flow_table->flows[flow_id]; 4430 cpu = READ_ONCE(rflow->cpu); 4431 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4432 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4433 rflow->last_qtail) < 4434 (int)(10 * flow_table->mask))) 4435 expire = false; 4436 } 4437 rcu_read_unlock(); 4438 return expire; 4439 } 4440 EXPORT_SYMBOL(rps_may_expire_flow); 4441 4442 #endif /* CONFIG_RFS_ACCEL */ 4443 4444 /* Called from hardirq (IPI) context */ 4445 static void rps_trigger_softirq(void *data) 4446 { 4447 struct softnet_data *sd = data; 4448 4449 ____napi_schedule(sd, &sd->backlog); 4450 sd->received_rps++; 4451 } 4452 4453 #endif /* CONFIG_RPS */ 4454 4455 /* 4456 * Check if this softnet_data structure is another cpu one 4457 * If yes, queue it to our IPI list and return 1 4458 * If no, return 0 4459 */ 4460 static int rps_ipi_queued(struct softnet_data *sd) 4461 { 4462 #ifdef CONFIG_RPS 4463 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4464 4465 if (sd != mysd) { 4466 sd->rps_ipi_next = mysd->rps_ipi_list; 4467 mysd->rps_ipi_list = sd; 4468 4469 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4470 return 1; 4471 } 4472 #endif /* CONFIG_RPS */ 4473 return 0; 4474 } 4475 4476 #ifdef CONFIG_NET_FLOW_LIMIT 4477 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4478 #endif 4479 4480 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4481 { 4482 #ifdef CONFIG_NET_FLOW_LIMIT 4483 struct sd_flow_limit *fl; 4484 struct softnet_data *sd; 4485 unsigned int old_flow, new_flow; 4486 4487 if (qlen < (netdev_max_backlog >> 1)) 4488 return false; 4489 4490 sd = this_cpu_ptr(&softnet_data); 4491 4492 rcu_read_lock(); 4493 fl = rcu_dereference(sd->flow_limit); 4494 if (fl) { 4495 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4496 old_flow = fl->history[fl->history_head]; 4497 fl->history[fl->history_head] = new_flow; 4498 4499 fl->history_head++; 4500 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4501 4502 if (likely(fl->buckets[old_flow])) 4503 fl->buckets[old_flow]--; 4504 4505 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4506 fl->count++; 4507 rcu_read_unlock(); 4508 return true; 4509 } 4510 } 4511 rcu_read_unlock(); 4512 #endif 4513 return false; 4514 } 4515 4516 /* 4517 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4518 * queue (may be a remote CPU queue). 4519 */ 4520 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4521 unsigned int *qtail) 4522 { 4523 struct softnet_data *sd; 4524 unsigned long flags; 4525 unsigned int qlen; 4526 4527 sd = &per_cpu(softnet_data, cpu); 4528 4529 local_irq_save(flags); 4530 4531 rps_lock(sd); 4532 if (!netif_running(skb->dev)) 4533 goto drop; 4534 qlen = skb_queue_len(&sd->input_pkt_queue); 4535 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4536 if (qlen) { 4537 enqueue: 4538 __skb_queue_tail(&sd->input_pkt_queue, skb); 4539 input_queue_tail_incr_save(sd, qtail); 4540 rps_unlock(sd); 4541 local_irq_restore(flags); 4542 return NET_RX_SUCCESS; 4543 } 4544 4545 /* Schedule NAPI for backlog device 4546 * We can use non atomic operation since we own the queue lock 4547 */ 4548 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4549 if (!rps_ipi_queued(sd)) 4550 ____napi_schedule(sd, &sd->backlog); 4551 } 4552 goto enqueue; 4553 } 4554 4555 drop: 4556 sd->dropped++; 4557 rps_unlock(sd); 4558 4559 local_irq_restore(flags); 4560 4561 atomic_long_inc(&skb->dev->rx_dropped); 4562 kfree_skb(skb); 4563 return NET_RX_DROP; 4564 } 4565 4566 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4567 { 4568 struct net_device *dev = skb->dev; 4569 struct netdev_rx_queue *rxqueue; 4570 4571 rxqueue = dev->_rx; 4572 4573 if (skb_rx_queue_recorded(skb)) { 4574 u16 index = skb_get_rx_queue(skb); 4575 4576 if (unlikely(index >= dev->real_num_rx_queues)) { 4577 WARN_ONCE(dev->real_num_rx_queues > 1, 4578 "%s received packet on queue %u, but number " 4579 "of RX queues is %u\n", 4580 dev->name, index, dev->real_num_rx_queues); 4581 4582 return rxqueue; /* Return first rxqueue */ 4583 } 4584 rxqueue += index; 4585 } 4586 return rxqueue; 4587 } 4588 4589 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4590 struct xdp_buff *xdp, 4591 struct bpf_prog *xdp_prog) 4592 { 4593 struct netdev_rx_queue *rxqueue; 4594 void *orig_data, *orig_data_end; 4595 u32 metalen, act = XDP_DROP; 4596 __be16 orig_eth_type; 4597 struct ethhdr *eth; 4598 bool orig_bcast; 4599 int hlen, off; 4600 u32 mac_len; 4601 4602 /* Reinjected packets coming from act_mirred or similar should 4603 * not get XDP generic processing. 4604 */ 4605 if (skb_is_redirected(skb)) 4606 return XDP_PASS; 4607 4608 /* XDP packets must be linear and must have sufficient headroom 4609 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4610 * native XDP provides, thus we need to do it here as well. 4611 */ 4612 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4613 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4614 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4615 int troom = skb->tail + skb->data_len - skb->end; 4616 4617 /* In case we have to go down the path and also linearize, 4618 * then lets do the pskb_expand_head() work just once here. 4619 */ 4620 if (pskb_expand_head(skb, 4621 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4622 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4623 goto do_drop; 4624 if (skb_linearize(skb)) 4625 goto do_drop; 4626 } 4627 4628 /* The XDP program wants to see the packet starting at the MAC 4629 * header. 4630 */ 4631 mac_len = skb->data - skb_mac_header(skb); 4632 hlen = skb_headlen(skb) + mac_len; 4633 xdp->data = skb->data - mac_len; 4634 xdp->data_meta = xdp->data; 4635 xdp->data_end = xdp->data + hlen; 4636 xdp->data_hard_start = skb->data - skb_headroom(skb); 4637 4638 /* SKB "head" area always have tailroom for skb_shared_info */ 4639 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start; 4640 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4641 4642 orig_data_end = xdp->data_end; 4643 orig_data = xdp->data; 4644 eth = (struct ethhdr *)xdp->data; 4645 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4646 orig_eth_type = eth->h_proto; 4647 4648 rxqueue = netif_get_rxqueue(skb); 4649 xdp->rxq = &rxqueue->xdp_rxq; 4650 4651 act = bpf_prog_run_xdp(xdp_prog, xdp); 4652 4653 /* check if bpf_xdp_adjust_head was used */ 4654 off = xdp->data - orig_data; 4655 if (off) { 4656 if (off > 0) 4657 __skb_pull(skb, off); 4658 else if (off < 0) 4659 __skb_push(skb, -off); 4660 4661 skb->mac_header += off; 4662 skb_reset_network_header(skb); 4663 } 4664 4665 /* check if bpf_xdp_adjust_tail was used */ 4666 off = xdp->data_end - orig_data_end; 4667 if (off != 0) { 4668 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4669 skb->len += off; /* positive on grow, negative on shrink */ 4670 } 4671 4672 /* check if XDP changed eth hdr such SKB needs update */ 4673 eth = (struct ethhdr *)xdp->data; 4674 if ((orig_eth_type != eth->h_proto) || 4675 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4676 __skb_push(skb, ETH_HLEN); 4677 skb->protocol = eth_type_trans(skb, skb->dev); 4678 } 4679 4680 switch (act) { 4681 case XDP_REDIRECT: 4682 case XDP_TX: 4683 __skb_push(skb, mac_len); 4684 break; 4685 case XDP_PASS: 4686 metalen = xdp->data - xdp->data_meta; 4687 if (metalen) 4688 skb_metadata_set(skb, metalen); 4689 break; 4690 default: 4691 bpf_warn_invalid_xdp_action(act); 4692 /* fall through */ 4693 case XDP_ABORTED: 4694 trace_xdp_exception(skb->dev, xdp_prog, act); 4695 /* fall through */ 4696 case XDP_DROP: 4697 do_drop: 4698 kfree_skb(skb); 4699 break; 4700 } 4701 4702 return act; 4703 } 4704 4705 /* When doing generic XDP we have to bypass the qdisc layer and the 4706 * network taps in order to match in-driver-XDP behavior. 4707 */ 4708 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4709 { 4710 struct net_device *dev = skb->dev; 4711 struct netdev_queue *txq; 4712 bool free_skb = true; 4713 int cpu, rc; 4714 4715 txq = netdev_core_pick_tx(dev, skb, NULL); 4716 cpu = smp_processor_id(); 4717 HARD_TX_LOCK(dev, txq, cpu); 4718 if (!netif_xmit_stopped(txq)) { 4719 rc = netdev_start_xmit(skb, dev, txq, 0); 4720 if (dev_xmit_complete(rc)) 4721 free_skb = false; 4722 } 4723 HARD_TX_UNLOCK(dev, txq); 4724 if (free_skb) { 4725 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4726 kfree_skb(skb); 4727 } 4728 } 4729 4730 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4731 4732 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4733 { 4734 if (xdp_prog) { 4735 struct xdp_buff xdp; 4736 u32 act; 4737 int err; 4738 4739 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4740 if (act != XDP_PASS) { 4741 switch (act) { 4742 case XDP_REDIRECT: 4743 err = xdp_do_generic_redirect(skb->dev, skb, 4744 &xdp, xdp_prog); 4745 if (err) 4746 goto out_redir; 4747 break; 4748 case XDP_TX: 4749 generic_xdp_tx(skb, xdp_prog); 4750 break; 4751 } 4752 return XDP_DROP; 4753 } 4754 } 4755 return XDP_PASS; 4756 out_redir: 4757 kfree_skb(skb); 4758 return XDP_DROP; 4759 } 4760 EXPORT_SYMBOL_GPL(do_xdp_generic); 4761 4762 static int netif_rx_internal(struct sk_buff *skb) 4763 { 4764 int ret; 4765 4766 net_timestamp_check(netdev_tstamp_prequeue, skb); 4767 4768 trace_netif_rx(skb); 4769 4770 #ifdef CONFIG_RPS 4771 if (static_branch_unlikely(&rps_needed)) { 4772 struct rps_dev_flow voidflow, *rflow = &voidflow; 4773 int cpu; 4774 4775 preempt_disable(); 4776 rcu_read_lock(); 4777 4778 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4779 if (cpu < 0) 4780 cpu = smp_processor_id(); 4781 4782 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4783 4784 rcu_read_unlock(); 4785 preempt_enable(); 4786 } else 4787 #endif 4788 { 4789 unsigned int qtail; 4790 4791 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4792 put_cpu(); 4793 } 4794 return ret; 4795 } 4796 4797 /** 4798 * netif_rx - post buffer to the network code 4799 * @skb: buffer to post 4800 * 4801 * This function receives a packet from a device driver and queues it for 4802 * the upper (protocol) levels to process. It always succeeds. The buffer 4803 * may be dropped during processing for congestion control or by the 4804 * protocol layers. 4805 * 4806 * return values: 4807 * NET_RX_SUCCESS (no congestion) 4808 * NET_RX_DROP (packet was dropped) 4809 * 4810 */ 4811 4812 int netif_rx(struct sk_buff *skb) 4813 { 4814 int ret; 4815 4816 trace_netif_rx_entry(skb); 4817 4818 ret = netif_rx_internal(skb); 4819 trace_netif_rx_exit(ret); 4820 4821 return ret; 4822 } 4823 EXPORT_SYMBOL(netif_rx); 4824 4825 int netif_rx_ni(struct sk_buff *skb) 4826 { 4827 int err; 4828 4829 trace_netif_rx_ni_entry(skb); 4830 4831 preempt_disable(); 4832 err = netif_rx_internal(skb); 4833 if (local_softirq_pending()) 4834 do_softirq(); 4835 preempt_enable(); 4836 trace_netif_rx_ni_exit(err); 4837 4838 return err; 4839 } 4840 EXPORT_SYMBOL(netif_rx_ni); 4841 4842 static __latent_entropy void net_tx_action(struct softirq_action *h) 4843 { 4844 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4845 4846 if (sd->completion_queue) { 4847 struct sk_buff *clist; 4848 4849 local_irq_disable(); 4850 clist = sd->completion_queue; 4851 sd->completion_queue = NULL; 4852 local_irq_enable(); 4853 4854 while (clist) { 4855 struct sk_buff *skb = clist; 4856 4857 clist = clist->next; 4858 4859 WARN_ON(refcount_read(&skb->users)); 4860 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4861 trace_consume_skb(skb); 4862 else 4863 trace_kfree_skb(skb, net_tx_action); 4864 4865 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4866 __kfree_skb(skb); 4867 else 4868 __kfree_skb_defer(skb); 4869 } 4870 4871 __kfree_skb_flush(); 4872 } 4873 4874 if (sd->output_queue) { 4875 struct Qdisc *head; 4876 4877 local_irq_disable(); 4878 head = sd->output_queue; 4879 sd->output_queue = NULL; 4880 sd->output_queue_tailp = &sd->output_queue; 4881 local_irq_enable(); 4882 4883 while (head) { 4884 struct Qdisc *q = head; 4885 spinlock_t *root_lock = NULL; 4886 4887 head = head->next_sched; 4888 4889 if (!(q->flags & TCQ_F_NOLOCK)) { 4890 root_lock = qdisc_lock(q); 4891 spin_lock(root_lock); 4892 } 4893 /* We need to make sure head->next_sched is read 4894 * before clearing __QDISC_STATE_SCHED 4895 */ 4896 smp_mb__before_atomic(); 4897 clear_bit(__QDISC_STATE_SCHED, &q->state); 4898 qdisc_run(q); 4899 if (root_lock) 4900 spin_unlock(root_lock); 4901 } 4902 } 4903 4904 xfrm_dev_backlog(sd); 4905 } 4906 4907 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4908 /* This hook is defined here for ATM LANE */ 4909 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4910 unsigned char *addr) __read_mostly; 4911 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4912 #endif 4913 4914 static inline struct sk_buff * 4915 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4916 struct net_device *orig_dev) 4917 { 4918 #ifdef CONFIG_NET_CLS_ACT 4919 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4920 struct tcf_result cl_res; 4921 4922 /* If there's at least one ingress present somewhere (so 4923 * we get here via enabled static key), remaining devices 4924 * that are not configured with an ingress qdisc will bail 4925 * out here. 4926 */ 4927 if (!miniq) 4928 return skb; 4929 4930 if (*pt_prev) { 4931 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4932 *pt_prev = NULL; 4933 } 4934 4935 qdisc_skb_cb(skb)->pkt_len = skb->len; 4936 skb->tc_at_ingress = 1; 4937 mini_qdisc_bstats_cpu_update(miniq, skb); 4938 4939 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list, 4940 &cl_res, false)) { 4941 case TC_ACT_OK: 4942 case TC_ACT_RECLASSIFY: 4943 skb->tc_index = TC_H_MIN(cl_res.classid); 4944 break; 4945 case TC_ACT_SHOT: 4946 mini_qdisc_qstats_cpu_drop(miniq); 4947 kfree_skb(skb); 4948 return NULL; 4949 case TC_ACT_STOLEN: 4950 case TC_ACT_QUEUED: 4951 case TC_ACT_TRAP: 4952 consume_skb(skb); 4953 return NULL; 4954 case TC_ACT_REDIRECT: 4955 /* skb_mac_header check was done by cls/act_bpf, so 4956 * we can safely push the L2 header back before 4957 * redirecting to another netdev 4958 */ 4959 __skb_push(skb, skb->mac_len); 4960 skb_do_redirect(skb); 4961 return NULL; 4962 case TC_ACT_CONSUMED: 4963 return NULL; 4964 default: 4965 break; 4966 } 4967 #endif /* CONFIG_NET_CLS_ACT */ 4968 return skb; 4969 } 4970 4971 /** 4972 * netdev_is_rx_handler_busy - check if receive handler is registered 4973 * @dev: device to check 4974 * 4975 * Check if a receive handler is already registered for a given device. 4976 * Return true if there one. 4977 * 4978 * The caller must hold the rtnl_mutex. 4979 */ 4980 bool netdev_is_rx_handler_busy(struct net_device *dev) 4981 { 4982 ASSERT_RTNL(); 4983 return dev && rtnl_dereference(dev->rx_handler); 4984 } 4985 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4986 4987 /** 4988 * netdev_rx_handler_register - register receive handler 4989 * @dev: device to register a handler for 4990 * @rx_handler: receive handler to register 4991 * @rx_handler_data: data pointer that is used by rx handler 4992 * 4993 * Register a receive handler for a device. This handler will then be 4994 * called from __netif_receive_skb. A negative errno code is returned 4995 * on a failure. 4996 * 4997 * The caller must hold the rtnl_mutex. 4998 * 4999 * For a general description of rx_handler, see enum rx_handler_result. 5000 */ 5001 int netdev_rx_handler_register(struct net_device *dev, 5002 rx_handler_func_t *rx_handler, 5003 void *rx_handler_data) 5004 { 5005 if (netdev_is_rx_handler_busy(dev)) 5006 return -EBUSY; 5007 5008 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5009 return -EINVAL; 5010 5011 /* Note: rx_handler_data must be set before rx_handler */ 5012 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5013 rcu_assign_pointer(dev->rx_handler, rx_handler); 5014 5015 return 0; 5016 } 5017 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5018 5019 /** 5020 * netdev_rx_handler_unregister - unregister receive handler 5021 * @dev: device to unregister a handler from 5022 * 5023 * Unregister a receive handler from a device. 5024 * 5025 * The caller must hold the rtnl_mutex. 5026 */ 5027 void netdev_rx_handler_unregister(struct net_device *dev) 5028 { 5029 5030 ASSERT_RTNL(); 5031 RCU_INIT_POINTER(dev->rx_handler, NULL); 5032 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5033 * section has a guarantee to see a non NULL rx_handler_data 5034 * as well. 5035 */ 5036 synchronize_net(); 5037 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5038 } 5039 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5040 5041 /* 5042 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5043 * the special handling of PFMEMALLOC skbs. 5044 */ 5045 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5046 { 5047 switch (skb->protocol) { 5048 case htons(ETH_P_ARP): 5049 case htons(ETH_P_IP): 5050 case htons(ETH_P_IPV6): 5051 case htons(ETH_P_8021Q): 5052 case htons(ETH_P_8021AD): 5053 return true; 5054 default: 5055 return false; 5056 } 5057 } 5058 5059 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5060 int *ret, struct net_device *orig_dev) 5061 { 5062 if (nf_hook_ingress_active(skb)) { 5063 int ingress_retval; 5064 5065 if (*pt_prev) { 5066 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5067 *pt_prev = NULL; 5068 } 5069 5070 rcu_read_lock(); 5071 ingress_retval = nf_hook_ingress(skb); 5072 rcu_read_unlock(); 5073 return ingress_retval; 5074 } 5075 return 0; 5076 } 5077 5078 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5079 struct packet_type **ppt_prev) 5080 { 5081 struct packet_type *ptype, *pt_prev; 5082 rx_handler_func_t *rx_handler; 5083 struct sk_buff *skb = *pskb; 5084 struct net_device *orig_dev; 5085 bool deliver_exact = false; 5086 int ret = NET_RX_DROP; 5087 __be16 type; 5088 5089 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5090 5091 trace_netif_receive_skb(skb); 5092 5093 orig_dev = skb->dev; 5094 5095 skb_reset_network_header(skb); 5096 if (!skb_transport_header_was_set(skb)) 5097 skb_reset_transport_header(skb); 5098 skb_reset_mac_len(skb); 5099 5100 pt_prev = NULL; 5101 5102 another_round: 5103 skb->skb_iif = skb->dev->ifindex; 5104 5105 __this_cpu_inc(softnet_data.processed); 5106 5107 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5108 int ret2; 5109 5110 preempt_disable(); 5111 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5112 preempt_enable(); 5113 5114 if (ret2 != XDP_PASS) { 5115 ret = NET_RX_DROP; 5116 goto out; 5117 } 5118 skb_reset_mac_len(skb); 5119 } 5120 5121 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5122 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5123 skb = skb_vlan_untag(skb); 5124 if (unlikely(!skb)) 5125 goto out; 5126 } 5127 5128 if (skb_skip_tc_classify(skb)) 5129 goto skip_classify; 5130 5131 if (pfmemalloc) 5132 goto skip_taps; 5133 5134 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5135 if (pt_prev) 5136 ret = deliver_skb(skb, pt_prev, orig_dev); 5137 pt_prev = ptype; 5138 } 5139 5140 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5141 if (pt_prev) 5142 ret = deliver_skb(skb, pt_prev, orig_dev); 5143 pt_prev = ptype; 5144 } 5145 5146 skip_taps: 5147 #ifdef CONFIG_NET_INGRESS 5148 if (static_branch_unlikely(&ingress_needed_key)) { 5149 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 5150 if (!skb) 5151 goto out; 5152 5153 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5154 goto out; 5155 } 5156 #endif 5157 skb_reset_redirect(skb); 5158 skip_classify: 5159 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5160 goto drop; 5161 5162 if (skb_vlan_tag_present(skb)) { 5163 if (pt_prev) { 5164 ret = deliver_skb(skb, pt_prev, orig_dev); 5165 pt_prev = NULL; 5166 } 5167 if (vlan_do_receive(&skb)) 5168 goto another_round; 5169 else if (unlikely(!skb)) 5170 goto out; 5171 } 5172 5173 rx_handler = rcu_dereference(skb->dev->rx_handler); 5174 if (rx_handler) { 5175 if (pt_prev) { 5176 ret = deliver_skb(skb, pt_prev, orig_dev); 5177 pt_prev = NULL; 5178 } 5179 switch (rx_handler(&skb)) { 5180 case RX_HANDLER_CONSUMED: 5181 ret = NET_RX_SUCCESS; 5182 goto out; 5183 case RX_HANDLER_ANOTHER: 5184 goto another_round; 5185 case RX_HANDLER_EXACT: 5186 deliver_exact = true; 5187 case RX_HANDLER_PASS: 5188 break; 5189 default: 5190 BUG(); 5191 } 5192 } 5193 5194 if (unlikely(skb_vlan_tag_present(skb))) { 5195 check_vlan_id: 5196 if (skb_vlan_tag_get_id(skb)) { 5197 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5198 * find vlan device. 5199 */ 5200 skb->pkt_type = PACKET_OTHERHOST; 5201 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5202 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5203 /* Outer header is 802.1P with vlan 0, inner header is 5204 * 802.1Q or 802.1AD and vlan_do_receive() above could 5205 * not find vlan dev for vlan id 0. 5206 */ 5207 __vlan_hwaccel_clear_tag(skb); 5208 skb = skb_vlan_untag(skb); 5209 if (unlikely(!skb)) 5210 goto out; 5211 if (vlan_do_receive(&skb)) 5212 /* After stripping off 802.1P header with vlan 0 5213 * vlan dev is found for inner header. 5214 */ 5215 goto another_round; 5216 else if (unlikely(!skb)) 5217 goto out; 5218 else 5219 /* We have stripped outer 802.1P vlan 0 header. 5220 * But could not find vlan dev. 5221 * check again for vlan id to set OTHERHOST. 5222 */ 5223 goto check_vlan_id; 5224 } 5225 /* Note: we might in the future use prio bits 5226 * and set skb->priority like in vlan_do_receive() 5227 * For the time being, just ignore Priority Code Point 5228 */ 5229 __vlan_hwaccel_clear_tag(skb); 5230 } 5231 5232 type = skb->protocol; 5233 5234 /* deliver only exact match when indicated */ 5235 if (likely(!deliver_exact)) { 5236 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5237 &ptype_base[ntohs(type) & 5238 PTYPE_HASH_MASK]); 5239 } 5240 5241 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5242 &orig_dev->ptype_specific); 5243 5244 if (unlikely(skb->dev != orig_dev)) { 5245 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5246 &skb->dev->ptype_specific); 5247 } 5248 5249 if (pt_prev) { 5250 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5251 goto drop; 5252 *ppt_prev = pt_prev; 5253 } else { 5254 drop: 5255 if (!deliver_exact) 5256 atomic_long_inc(&skb->dev->rx_dropped); 5257 else 5258 atomic_long_inc(&skb->dev->rx_nohandler); 5259 kfree_skb(skb); 5260 /* Jamal, now you will not able to escape explaining 5261 * me how you were going to use this. :-) 5262 */ 5263 ret = NET_RX_DROP; 5264 } 5265 5266 out: 5267 /* The invariant here is that if *ppt_prev is not NULL 5268 * then skb should also be non-NULL. 5269 * 5270 * Apparently *ppt_prev assignment above holds this invariant due to 5271 * skb dereferencing near it. 5272 */ 5273 *pskb = skb; 5274 return ret; 5275 } 5276 5277 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5278 { 5279 struct net_device *orig_dev = skb->dev; 5280 struct packet_type *pt_prev = NULL; 5281 int ret; 5282 5283 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5284 if (pt_prev) 5285 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5286 skb->dev, pt_prev, orig_dev); 5287 return ret; 5288 } 5289 5290 /** 5291 * netif_receive_skb_core - special purpose version of netif_receive_skb 5292 * @skb: buffer to process 5293 * 5294 * More direct receive version of netif_receive_skb(). It should 5295 * only be used by callers that have a need to skip RPS and Generic XDP. 5296 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5297 * 5298 * This function may only be called from softirq context and interrupts 5299 * should be enabled. 5300 * 5301 * Return values (usually ignored): 5302 * NET_RX_SUCCESS: no congestion 5303 * NET_RX_DROP: packet was dropped 5304 */ 5305 int netif_receive_skb_core(struct sk_buff *skb) 5306 { 5307 int ret; 5308 5309 rcu_read_lock(); 5310 ret = __netif_receive_skb_one_core(skb, false); 5311 rcu_read_unlock(); 5312 5313 return ret; 5314 } 5315 EXPORT_SYMBOL(netif_receive_skb_core); 5316 5317 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5318 struct packet_type *pt_prev, 5319 struct net_device *orig_dev) 5320 { 5321 struct sk_buff *skb, *next; 5322 5323 if (!pt_prev) 5324 return; 5325 if (list_empty(head)) 5326 return; 5327 if (pt_prev->list_func != NULL) 5328 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5329 ip_list_rcv, head, pt_prev, orig_dev); 5330 else 5331 list_for_each_entry_safe(skb, next, head, list) { 5332 skb_list_del_init(skb); 5333 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5334 } 5335 } 5336 5337 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5338 { 5339 /* Fast-path assumptions: 5340 * - There is no RX handler. 5341 * - Only one packet_type matches. 5342 * If either of these fails, we will end up doing some per-packet 5343 * processing in-line, then handling the 'last ptype' for the whole 5344 * sublist. This can't cause out-of-order delivery to any single ptype, 5345 * because the 'last ptype' must be constant across the sublist, and all 5346 * other ptypes are handled per-packet. 5347 */ 5348 /* Current (common) ptype of sublist */ 5349 struct packet_type *pt_curr = NULL; 5350 /* Current (common) orig_dev of sublist */ 5351 struct net_device *od_curr = NULL; 5352 struct list_head sublist; 5353 struct sk_buff *skb, *next; 5354 5355 INIT_LIST_HEAD(&sublist); 5356 list_for_each_entry_safe(skb, next, head, list) { 5357 struct net_device *orig_dev = skb->dev; 5358 struct packet_type *pt_prev = NULL; 5359 5360 skb_list_del_init(skb); 5361 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5362 if (!pt_prev) 5363 continue; 5364 if (pt_curr != pt_prev || od_curr != orig_dev) { 5365 /* dispatch old sublist */ 5366 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5367 /* start new sublist */ 5368 INIT_LIST_HEAD(&sublist); 5369 pt_curr = pt_prev; 5370 od_curr = orig_dev; 5371 } 5372 list_add_tail(&skb->list, &sublist); 5373 } 5374 5375 /* dispatch final sublist */ 5376 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5377 } 5378 5379 static int __netif_receive_skb(struct sk_buff *skb) 5380 { 5381 int ret; 5382 5383 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5384 unsigned int noreclaim_flag; 5385 5386 /* 5387 * PFMEMALLOC skbs are special, they should 5388 * - be delivered to SOCK_MEMALLOC sockets only 5389 * - stay away from userspace 5390 * - have bounded memory usage 5391 * 5392 * Use PF_MEMALLOC as this saves us from propagating the allocation 5393 * context down to all allocation sites. 5394 */ 5395 noreclaim_flag = memalloc_noreclaim_save(); 5396 ret = __netif_receive_skb_one_core(skb, true); 5397 memalloc_noreclaim_restore(noreclaim_flag); 5398 } else 5399 ret = __netif_receive_skb_one_core(skb, false); 5400 5401 return ret; 5402 } 5403 5404 static void __netif_receive_skb_list(struct list_head *head) 5405 { 5406 unsigned long noreclaim_flag = 0; 5407 struct sk_buff *skb, *next; 5408 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5409 5410 list_for_each_entry_safe(skb, next, head, list) { 5411 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5412 struct list_head sublist; 5413 5414 /* Handle the previous sublist */ 5415 list_cut_before(&sublist, head, &skb->list); 5416 if (!list_empty(&sublist)) 5417 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5418 pfmemalloc = !pfmemalloc; 5419 /* See comments in __netif_receive_skb */ 5420 if (pfmemalloc) 5421 noreclaim_flag = memalloc_noreclaim_save(); 5422 else 5423 memalloc_noreclaim_restore(noreclaim_flag); 5424 } 5425 } 5426 /* Handle the remaining sublist */ 5427 if (!list_empty(head)) 5428 __netif_receive_skb_list_core(head, pfmemalloc); 5429 /* Restore pflags */ 5430 if (pfmemalloc) 5431 memalloc_noreclaim_restore(noreclaim_flag); 5432 } 5433 5434 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5435 { 5436 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5437 struct bpf_prog *new = xdp->prog; 5438 int ret = 0; 5439 5440 if (new) { 5441 u32 i; 5442 5443 /* generic XDP does not work with DEVMAPs that can 5444 * have a bpf_prog installed on an entry 5445 */ 5446 for (i = 0; i < new->aux->used_map_cnt; i++) { 5447 if (dev_map_can_have_prog(new->aux->used_maps[i])) 5448 return -EINVAL; 5449 } 5450 } 5451 5452 switch (xdp->command) { 5453 case XDP_SETUP_PROG: 5454 rcu_assign_pointer(dev->xdp_prog, new); 5455 if (old) 5456 bpf_prog_put(old); 5457 5458 if (old && !new) { 5459 static_branch_dec(&generic_xdp_needed_key); 5460 } else if (new && !old) { 5461 static_branch_inc(&generic_xdp_needed_key); 5462 dev_disable_lro(dev); 5463 dev_disable_gro_hw(dev); 5464 } 5465 break; 5466 5467 case XDP_QUERY_PROG: 5468 xdp->prog_id = old ? old->aux->id : 0; 5469 break; 5470 5471 default: 5472 ret = -EINVAL; 5473 break; 5474 } 5475 5476 return ret; 5477 } 5478 5479 static int netif_receive_skb_internal(struct sk_buff *skb) 5480 { 5481 int ret; 5482 5483 net_timestamp_check(netdev_tstamp_prequeue, skb); 5484 5485 if (skb_defer_rx_timestamp(skb)) 5486 return NET_RX_SUCCESS; 5487 5488 rcu_read_lock(); 5489 #ifdef CONFIG_RPS 5490 if (static_branch_unlikely(&rps_needed)) { 5491 struct rps_dev_flow voidflow, *rflow = &voidflow; 5492 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5493 5494 if (cpu >= 0) { 5495 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5496 rcu_read_unlock(); 5497 return ret; 5498 } 5499 } 5500 #endif 5501 ret = __netif_receive_skb(skb); 5502 rcu_read_unlock(); 5503 return ret; 5504 } 5505 5506 static void netif_receive_skb_list_internal(struct list_head *head) 5507 { 5508 struct sk_buff *skb, *next; 5509 struct list_head sublist; 5510 5511 INIT_LIST_HEAD(&sublist); 5512 list_for_each_entry_safe(skb, next, head, list) { 5513 net_timestamp_check(netdev_tstamp_prequeue, skb); 5514 skb_list_del_init(skb); 5515 if (!skb_defer_rx_timestamp(skb)) 5516 list_add_tail(&skb->list, &sublist); 5517 } 5518 list_splice_init(&sublist, head); 5519 5520 rcu_read_lock(); 5521 #ifdef CONFIG_RPS 5522 if (static_branch_unlikely(&rps_needed)) { 5523 list_for_each_entry_safe(skb, next, head, list) { 5524 struct rps_dev_flow voidflow, *rflow = &voidflow; 5525 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5526 5527 if (cpu >= 0) { 5528 /* Will be handled, remove from list */ 5529 skb_list_del_init(skb); 5530 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5531 } 5532 } 5533 } 5534 #endif 5535 __netif_receive_skb_list(head); 5536 rcu_read_unlock(); 5537 } 5538 5539 /** 5540 * netif_receive_skb - process receive buffer from network 5541 * @skb: buffer to process 5542 * 5543 * netif_receive_skb() is the main receive data processing function. 5544 * It always succeeds. The buffer may be dropped during processing 5545 * for congestion control or by the protocol layers. 5546 * 5547 * This function may only be called from softirq context and interrupts 5548 * should be enabled. 5549 * 5550 * Return values (usually ignored): 5551 * NET_RX_SUCCESS: no congestion 5552 * NET_RX_DROP: packet was dropped 5553 */ 5554 int netif_receive_skb(struct sk_buff *skb) 5555 { 5556 int ret; 5557 5558 trace_netif_receive_skb_entry(skb); 5559 5560 ret = netif_receive_skb_internal(skb); 5561 trace_netif_receive_skb_exit(ret); 5562 5563 return ret; 5564 } 5565 EXPORT_SYMBOL(netif_receive_skb); 5566 5567 /** 5568 * netif_receive_skb_list - process many receive buffers from network 5569 * @head: list of skbs to process. 5570 * 5571 * Since return value of netif_receive_skb() is normally ignored, and 5572 * wouldn't be meaningful for a list, this function returns void. 5573 * 5574 * This function may only be called from softirq context and interrupts 5575 * should be enabled. 5576 */ 5577 void netif_receive_skb_list(struct list_head *head) 5578 { 5579 struct sk_buff *skb; 5580 5581 if (list_empty(head)) 5582 return; 5583 if (trace_netif_receive_skb_list_entry_enabled()) { 5584 list_for_each_entry(skb, head, list) 5585 trace_netif_receive_skb_list_entry(skb); 5586 } 5587 netif_receive_skb_list_internal(head); 5588 trace_netif_receive_skb_list_exit(0); 5589 } 5590 EXPORT_SYMBOL(netif_receive_skb_list); 5591 5592 DEFINE_PER_CPU(struct work_struct, flush_works); 5593 5594 /* Network device is going away, flush any packets still pending */ 5595 static void flush_backlog(struct work_struct *work) 5596 { 5597 struct sk_buff *skb, *tmp; 5598 struct softnet_data *sd; 5599 5600 local_bh_disable(); 5601 sd = this_cpu_ptr(&softnet_data); 5602 5603 local_irq_disable(); 5604 rps_lock(sd); 5605 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5606 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5607 __skb_unlink(skb, &sd->input_pkt_queue); 5608 kfree_skb(skb); 5609 input_queue_head_incr(sd); 5610 } 5611 } 5612 rps_unlock(sd); 5613 local_irq_enable(); 5614 5615 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5616 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5617 __skb_unlink(skb, &sd->process_queue); 5618 kfree_skb(skb); 5619 input_queue_head_incr(sd); 5620 } 5621 } 5622 local_bh_enable(); 5623 } 5624 5625 static void flush_all_backlogs(void) 5626 { 5627 unsigned int cpu; 5628 5629 get_online_cpus(); 5630 5631 for_each_online_cpu(cpu) 5632 queue_work_on(cpu, system_highpri_wq, 5633 per_cpu_ptr(&flush_works, cpu)); 5634 5635 for_each_online_cpu(cpu) 5636 flush_work(per_cpu_ptr(&flush_works, cpu)); 5637 5638 put_online_cpus(); 5639 } 5640 5641 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5642 static void gro_normal_list(struct napi_struct *napi) 5643 { 5644 if (!napi->rx_count) 5645 return; 5646 netif_receive_skb_list_internal(&napi->rx_list); 5647 INIT_LIST_HEAD(&napi->rx_list); 5648 napi->rx_count = 0; 5649 } 5650 5651 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5652 * pass the whole batch up to the stack. 5653 */ 5654 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb) 5655 { 5656 list_add_tail(&skb->list, &napi->rx_list); 5657 if (++napi->rx_count >= gro_normal_batch) 5658 gro_normal_list(napi); 5659 } 5660 5661 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5662 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5663 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5664 { 5665 struct packet_offload *ptype; 5666 __be16 type = skb->protocol; 5667 struct list_head *head = &offload_base; 5668 int err = -ENOENT; 5669 5670 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5671 5672 if (NAPI_GRO_CB(skb)->count == 1) { 5673 skb_shinfo(skb)->gso_size = 0; 5674 goto out; 5675 } 5676 5677 rcu_read_lock(); 5678 list_for_each_entry_rcu(ptype, head, list) { 5679 if (ptype->type != type || !ptype->callbacks.gro_complete) 5680 continue; 5681 5682 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5683 ipv6_gro_complete, inet_gro_complete, 5684 skb, 0); 5685 break; 5686 } 5687 rcu_read_unlock(); 5688 5689 if (err) { 5690 WARN_ON(&ptype->list == head); 5691 kfree_skb(skb); 5692 return NET_RX_SUCCESS; 5693 } 5694 5695 out: 5696 gro_normal_one(napi, skb); 5697 return NET_RX_SUCCESS; 5698 } 5699 5700 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5701 bool flush_old) 5702 { 5703 struct list_head *head = &napi->gro_hash[index].list; 5704 struct sk_buff *skb, *p; 5705 5706 list_for_each_entry_safe_reverse(skb, p, head, list) { 5707 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5708 return; 5709 skb_list_del_init(skb); 5710 napi_gro_complete(napi, skb); 5711 napi->gro_hash[index].count--; 5712 } 5713 5714 if (!napi->gro_hash[index].count) 5715 __clear_bit(index, &napi->gro_bitmask); 5716 } 5717 5718 /* napi->gro_hash[].list contains packets ordered by age. 5719 * youngest packets at the head of it. 5720 * Complete skbs in reverse order to reduce latencies. 5721 */ 5722 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5723 { 5724 unsigned long bitmask = napi->gro_bitmask; 5725 unsigned int i, base = ~0U; 5726 5727 while ((i = ffs(bitmask)) != 0) { 5728 bitmask >>= i; 5729 base += i; 5730 __napi_gro_flush_chain(napi, base, flush_old); 5731 } 5732 } 5733 EXPORT_SYMBOL(napi_gro_flush); 5734 5735 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5736 struct sk_buff *skb) 5737 { 5738 unsigned int maclen = skb->dev->hard_header_len; 5739 u32 hash = skb_get_hash_raw(skb); 5740 struct list_head *head; 5741 struct sk_buff *p; 5742 5743 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5744 list_for_each_entry(p, head, list) { 5745 unsigned long diffs; 5746 5747 NAPI_GRO_CB(p)->flush = 0; 5748 5749 if (hash != skb_get_hash_raw(p)) { 5750 NAPI_GRO_CB(p)->same_flow = 0; 5751 continue; 5752 } 5753 5754 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5755 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5756 if (skb_vlan_tag_present(p)) 5757 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5758 diffs |= skb_metadata_dst_cmp(p, skb); 5759 diffs |= skb_metadata_differs(p, skb); 5760 if (maclen == ETH_HLEN) 5761 diffs |= compare_ether_header(skb_mac_header(p), 5762 skb_mac_header(skb)); 5763 else if (!diffs) 5764 diffs = memcmp(skb_mac_header(p), 5765 skb_mac_header(skb), 5766 maclen); 5767 NAPI_GRO_CB(p)->same_flow = !diffs; 5768 } 5769 5770 return head; 5771 } 5772 5773 static void skb_gro_reset_offset(struct sk_buff *skb) 5774 { 5775 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5776 const skb_frag_t *frag0 = &pinfo->frags[0]; 5777 5778 NAPI_GRO_CB(skb)->data_offset = 0; 5779 NAPI_GRO_CB(skb)->frag0 = NULL; 5780 NAPI_GRO_CB(skb)->frag0_len = 0; 5781 5782 if (!skb_headlen(skb) && pinfo->nr_frags && 5783 !PageHighMem(skb_frag_page(frag0))) { 5784 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5785 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5786 skb_frag_size(frag0), 5787 skb->end - skb->tail); 5788 } 5789 } 5790 5791 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5792 { 5793 struct skb_shared_info *pinfo = skb_shinfo(skb); 5794 5795 BUG_ON(skb->end - skb->tail < grow); 5796 5797 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5798 5799 skb->data_len -= grow; 5800 skb->tail += grow; 5801 5802 skb_frag_off_add(&pinfo->frags[0], grow); 5803 skb_frag_size_sub(&pinfo->frags[0], grow); 5804 5805 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5806 skb_frag_unref(skb, 0); 5807 memmove(pinfo->frags, pinfo->frags + 1, 5808 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5809 } 5810 } 5811 5812 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 5813 { 5814 struct sk_buff *oldest; 5815 5816 oldest = list_last_entry(head, struct sk_buff, list); 5817 5818 /* We are called with head length >= MAX_GRO_SKBS, so this is 5819 * impossible. 5820 */ 5821 if (WARN_ON_ONCE(!oldest)) 5822 return; 5823 5824 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5825 * SKB to the chain. 5826 */ 5827 skb_list_del_init(oldest); 5828 napi_gro_complete(napi, oldest); 5829 } 5830 5831 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5832 struct sk_buff *)); 5833 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5834 struct sk_buff *)); 5835 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5836 { 5837 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5838 struct list_head *head = &offload_base; 5839 struct packet_offload *ptype; 5840 __be16 type = skb->protocol; 5841 struct list_head *gro_head; 5842 struct sk_buff *pp = NULL; 5843 enum gro_result ret; 5844 int same_flow; 5845 int grow; 5846 5847 if (netif_elide_gro(skb->dev)) 5848 goto normal; 5849 5850 gro_head = gro_list_prepare(napi, skb); 5851 5852 rcu_read_lock(); 5853 list_for_each_entry_rcu(ptype, head, list) { 5854 if (ptype->type != type || !ptype->callbacks.gro_receive) 5855 continue; 5856 5857 skb_set_network_header(skb, skb_gro_offset(skb)); 5858 skb_reset_mac_len(skb); 5859 NAPI_GRO_CB(skb)->same_flow = 0; 5860 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5861 NAPI_GRO_CB(skb)->free = 0; 5862 NAPI_GRO_CB(skb)->encap_mark = 0; 5863 NAPI_GRO_CB(skb)->recursion_counter = 0; 5864 NAPI_GRO_CB(skb)->is_fou = 0; 5865 NAPI_GRO_CB(skb)->is_atomic = 1; 5866 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5867 5868 /* Setup for GRO checksum validation */ 5869 switch (skb->ip_summed) { 5870 case CHECKSUM_COMPLETE: 5871 NAPI_GRO_CB(skb)->csum = skb->csum; 5872 NAPI_GRO_CB(skb)->csum_valid = 1; 5873 NAPI_GRO_CB(skb)->csum_cnt = 0; 5874 break; 5875 case CHECKSUM_UNNECESSARY: 5876 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5877 NAPI_GRO_CB(skb)->csum_valid = 0; 5878 break; 5879 default: 5880 NAPI_GRO_CB(skb)->csum_cnt = 0; 5881 NAPI_GRO_CB(skb)->csum_valid = 0; 5882 } 5883 5884 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5885 ipv6_gro_receive, inet_gro_receive, 5886 gro_head, skb); 5887 break; 5888 } 5889 rcu_read_unlock(); 5890 5891 if (&ptype->list == head) 5892 goto normal; 5893 5894 if (PTR_ERR(pp) == -EINPROGRESS) { 5895 ret = GRO_CONSUMED; 5896 goto ok; 5897 } 5898 5899 same_flow = NAPI_GRO_CB(skb)->same_flow; 5900 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5901 5902 if (pp) { 5903 skb_list_del_init(pp); 5904 napi_gro_complete(napi, pp); 5905 napi->gro_hash[hash].count--; 5906 } 5907 5908 if (same_flow) 5909 goto ok; 5910 5911 if (NAPI_GRO_CB(skb)->flush) 5912 goto normal; 5913 5914 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5915 gro_flush_oldest(napi, gro_head); 5916 } else { 5917 napi->gro_hash[hash].count++; 5918 } 5919 NAPI_GRO_CB(skb)->count = 1; 5920 NAPI_GRO_CB(skb)->age = jiffies; 5921 NAPI_GRO_CB(skb)->last = skb; 5922 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5923 list_add(&skb->list, gro_head); 5924 ret = GRO_HELD; 5925 5926 pull: 5927 grow = skb_gro_offset(skb) - skb_headlen(skb); 5928 if (grow > 0) 5929 gro_pull_from_frag0(skb, grow); 5930 ok: 5931 if (napi->gro_hash[hash].count) { 5932 if (!test_bit(hash, &napi->gro_bitmask)) 5933 __set_bit(hash, &napi->gro_bitmask); 5934 } else if (test_bit(hash, &napi->gro_bitmask)) { 5935 __clear_bit(hash, &napi->gro_bitmask); 5936 } 5937 5938 return ret; 5939 5940 normal: 5941 ret = GRO_NORMAL; 5942 goto pull; 5943 } 5944 5945 struct packet_offload *gro_find_receive_by_type(__be16 type) 5946 { 5947 struct list_head *offload_head = &offload_base; 5948 struct packet_offload *ptype; 5949 5950 list_for_each_entry_rcu(ptype, offload_head, list) { 5951 if (ptype->type != type || !ptype->callbacks.gro_receive) 5952 continue; 5953 return ptype; 5954 } 5955 return NULL; 5956 } 5957 EXPORT_SYMBOL(gro_find_receive_by_type); 5958 5959 struct packet_offload *gro_find_complete_by_type(__be16 type) 5960 { 5961 struct list_head *offload_head = &offload_base; 5962 struct packet_offload *ptype; 5963 5964 list_for_each_entry_rcu(ptype, offload_head, list) { 5965 if (ptype->type != type || !ptype->callbacks.gro_complete) 5966 continue; 5967 return ptype; 5968 } 5969 return NULL; 5970 } 5971 EXPORT_SYMBOL(gro_find_complete_by_type); 5972 5973 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5974 { 5975 skb_dst_drop(skb); 5976 skb_ext_put(skb); 5977 kmem_cache_free(skbuff_head_cache, skb); 5978 } 5979 5980 static gro_result_t napi_skb_finish(struct napi_struct *napi, 5981 struct sk_buff *skb, 5982 gro_result_t ret) 5983 { 5984 switch (ret) { 5985 case GRO_NORMAL: 5986 gro_normal_one(napi, skb); 5987 break; 5988 5989 case GRO_DROP: 5990 kfree_skb(skb); 5991 break; 5992 5993 case GRO_MERGED_FREE: 5994 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5995 napi_skb_free_stolen_head(skb); 5996 else 5997 __kfree_skb(skb); 5998 break; 5999 6000 case GRO_HELD: 6001 case GRO_MERGED: 6002 case GRO_CONSUMED: 6003 break; 6004 } 6005 6006 return ret; 6007 } 6008 6009 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 6010 { 6011 gro_result_t ret; 6012 6013 skb_mark_napi_id(skb, napi); 6014 trace_napi_gro_receive_entry(skb); 6015 6016 skb_gro_reset_offset(skb); 6017 6018 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 6019 trace_napi_gro_receive_exit(ret); 6020 6021 return ret; 6022 } 6023 EXPORT_SYMBOL(napi_gro_receive); 6024 6025 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 6026 { 6027 if (unlikely(skb->pfmemalloc)) { 6028 consume_skb(skb); 6029 return; 6030 } 6031 __skb_pull(skb, skb_headlen(skb)); 6032 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 6033 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 6034 __vlan_hwaccel_clear_tag(skb); 6035 skb->dev = napi->dev; 6036 skb->skb_iif = 0; 6037 6038 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 6039 skb->pkt_type = PACKET_HOST; 6040 6041 skb->encapsulation = 0; 6042 skb_shinfo(skb)->gso_type = 0; 6043 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6044 skb_ext_reset(skb); 6045 6046 napi->skb = skb; 6047 } 6048 6049 struct sk_buff *napi_get_frags(struct napi_struct *napi) 6050 { 6051 struct sk_buff *skb = napi->skb; 6052 6053 if (!skb) { 6054 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 6055 if (skb) { 6056 napi->skb = skb; 6057 skb_mark_napi_id(skb, napi); 6058 } 6059 } 6060 return skb; 6061 } 6062 EXPORT_SYMBOL(napi_get_frags); 6063 6064 static gro_result_t napi_frags_finish(struct napi_struct *napi, 6065 struct sk_buff *skb, 6066 gro_result_t ret) 6067 { 6068 switch (ret) { 6069 case GRO_NORMAL: 6070 case GRO_HELD: 6071 __skb_push(skb, ETH_HLEN); 6072 skb->protocol = eth_type_trans(skb, skb->dev); 6073 if (ret == GRO_NORMAL) 6074 gro_normal_one(napi, skb); 6075 break; 6076 6077 case GRO_DROP: 6078 napi_reuse_skb(napi, skb); 6079 break; 6080 6081 case GRO_MERGED_FREE: 6082 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6083 napi_skb_free_stolen_head(skb); 6084 else 6085 napi_reuse_skb(napi, skb); 6086 break; 6087 6088 case GRO_MERGED: 6089 case GRO_CONSUMED: 6090 break; 6091 } 6092 6093 return ret; 6094 } 6095 6096 /* Upper GRO stack assumes network header starts at gro_offset=0 6097 * Drivers could call both napi_gro_frags() and napi_gro_receive() 6098 * We copy ethernet header into skb->data to have a common layout. 6099 */ 6100 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 6101 { 6102 struct sk_buff *skb = napi->skb; 6103 const struct ethhdr *eth; 6104 unsigned int hlen = sizeof(*eth); 6105 6106 napi->skb = NULL; 6107 6108 skb_reset_mac_header(skb); 6109 skb_gro_reset_offset(skb); 6110 6111 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6112 eth = skb_gro_header_slow(skb, hlen, 0); 6113 if (unlikely(!eth)) { 6114 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6115 __func__, napi->dev->name); 6116 napi_reuse_skb(napi, skb); 6117 return NULL; 6118 } 6119 } else { 6120 eth = (const struct ethhdr *)skb->data; 6121 gro_pull_from_frag0(skb, hlen); 6122 NAPI_GRO_CB(skb)->frag0 += hlen; 6123 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6124 } 6125 __skb_pull(skb, hlen); 6126 6127 /* 6128 * This works because the only protocols we care about don't require 6129 * special handling. 6130 * We'll fix it up properly in napi_frags_finish() 6131 */ 6132 skb->protocol = eth->h_proto; 6133 6134 return skb; 6135 } 6136 6137 gro_result_t napi_gro_frags(struct napi_struct *napi) 6138 { 6139 gro_result_t ret; 6140 struct sk_buff *skb = napi_frags_skb(napi); 6141 6142 if (!skb) 6143 return GRO_DROP; 6144 6145 trace_napi_gro_frags_entry(skb); 6146 6147 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6148 trace_napi_gro_frags_exit(ret); 6149 6150 return ret; 6151 } 6152 EXPORT_SYMBOL(napi_gro_frags); 6153 6154 /* Compute the checksum from gro_offset and return the folded value 6155 * after adding in any pseudo checksum. 6156 */ 6157 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6158 { 6159 __wsum wsum; 6160 __sum16 sum; 6161 6162 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6163 6164 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6165 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6166 /* See comments in __skb_checksum_complete(). */ 6167 if (likely(!sum)) { 6168 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6169 !skb->csum_complete_sw) 6170 netdev_rx_csum_fault(skb->dev, skb); 6171 } 6172 6173 NAPI_GRO_CB(skb)->csum = wsum; 6174 NAPI_GRO_CB(skb)->csum_valid = 1; 6175 6176 return sum; 6177 } 6178 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6179 6180 static void net_rps_send_ipi(struct softnet_data *remsd) 6181 { 6182 #ifdef CONFIG_RPS 6183 while (remsd) { 6184 struct softnet_data *next = remsd->rps_ipi_next; 6185 6186 if (cpu_online(remsd->cpu)) 6187 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6188 remsd = next; 6189 } 6190 #endif 6191 } 6192 6193 /* 6194 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6195 * Note: called with local irq disabled, but exits with local irq enabled. 6196 */ 6197 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6198 { 6199 #ifdef CONFIG_RPS 6200 struct softnet_data *remsd = sd->rps_ipi_list; 6201 6202 if (remsd) { 6203 sd->rps_ipi_list = NULL; 6204 6205 local_irq_enable(); 6206 6207 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6208 net_rps_send_ipi(remsd); 6209 } else 6210 #endif 6211 local_irq_enable(); 6212 } 6213 6214 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6215 { 6216 #ifdef CONFIG_RPS 6217 return sd->rps_ipi_list != NULL; 6218 #else 6219 return false; 6220 #endif 6221 } 6222 6223 static int process_backlog(struct napi_struct *napi, int quota) 6224 { 6225 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6226 bool again = true; 6227 int work = 0; 6228 6229 /* Check if we have pending ipi, its better to send them now, 6230 * not waiting net_rx_action() end. 6231 */ 6232 if (sd_has_rps_ipi_waiting(sd)) { 6233 local_irq_disable(); 6234 net_rps_action_and_irq_enable(sd); 6235 } 6236 6237 napi->weight = dev_rx_weight; 6238 while (again) { 6239 struct sk_buff *skb; 6240 6241 while ((skb = __skb_dequeue(&sd->process_queue))) { 6242 rcu_read_lock(); 6243 __netif_receive_skb(skb); 6244 rcu_read_unlock(); 6245 input_queue_head_incr(sd); 6246 if (++work >= quota) 6247 return work; 6248 6249 } 6250 6251 local_irq_disable(); 6252 rps_lock(sd); 6253 if (skb_queue_empty(&sd->input_pkt_queue)) { 6254 /* 6255 * Inline a custom version of __napi_complete(). 6256 * only current cpu owns and manipulates this napi, 6257 * and NAPI_STATE_SCHED is the only possible flag set 6258 * on backlog. 6259 * We can use a plain write instead of clear_bit(), 6260 * and we dont need an smp_mb() memory barrier. 6261 */ 6262 napi->state = 0; 6263 again = false; 6264 } else { 6265 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6266 &sd->process_queue); 6267 } 6268 rps_unlock(sd); 6269 local_irq_enable(); 6270 } 6271 6272 return work; 6273 } 6274 6275 /** 6276 * __napi_schedule - schedule for receive 6277 * @n: entry to schedule 6278 * 6279 * The entry's receive function will be scheduled to run. 6280 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6281 */ 6282 void __napi_schedule(struct napi_struct *n) 6283 { 6284 unsigned long flags; 6285 6286 local_irq_save(flags); 6287 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6288 local_irq_restore(flags); 6289 } 6290 EXPORT_SYMBOL(__napi_schedule); 6291 6292 /** 6293 * napi_schedule_prep - check if napi can be scheduled 6294 * @n: napi context 6295 * 6296 * Test if NAPI routine is already running, and if not mark 6297 * it as running. This is used as a condition variable 6298 * insure only one NAPI poll instance runs. We also make 6299 * sure there is no pending NAPI disable. 6300 */ 6301 bool napi_schedule_prep(struct napi_struct *n) 6302 { 6303 unsigned long val, new; 6304 6305 do { 6306 val = READ_ONCE(n->state); 6307 if (unlikely(val & NAPIF_STATE_DISABLE)) 6308 return false; 6309 new = val | NAPIF_STATE_SCHED; 6310 6311 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6312 * This was suggested by Alexander Duyck, as compiler 6313 * emits better code than : 6314 * if (val & NAPIF_STATE_SCHED) 6315 * new |= NAPIF_STATE_MISSED; 6316 */ 6317 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6318 NAPIF_STATE_MISSED; 6319 } while (cmpxchg(&n->state, val, new) != val); 6320 6321 return !(val & NAPIF_STATE_SCHED); 6322 } 6323 EXPORT_SYMBOL(napi_schedule_prep); 6324 6325 /** 6326 * __napi_schedule_irqoff - schedule for receive 6327 * @n: entry to schedule 6328 * 6329 * Variant of __napi_schedule() assuming hard irqs are masked 6330 */ 6331 void __napi_schedule_irqoff(struct napi_struct *n) 6332 { 6333 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6334 } 6335 EXPORT_SYMBOL(__napi_schedule_irqoff); 6336 6337 bool napi_complete_done(struct napi_struct *n, int work_done) 6338 { 6339 unsigned long flags, val, new, timeout = 0; 6340 bool ret = true; 6341 6342 /* 6343 * 1) Don't let napi dequeue from the cpu poll list 6344 * just in case its running on a different cpu. 6345 * 2) If we are busy polling, do nothing here, we have 6346 * the guarantee we will be called later. 6347 */ 6348 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6349 NAPIF_STATE_IN_BUSY_POLL))) 6350 return false; 6351 6352 if (work_done) { 6353 if (n->gro_bitmask) 6354 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6355 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6356 } 6357 if (n->defer_hard_irqs_count > 0) { 6358 n->defer_hard_irqs_count--; 6359 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6360 if (timeout) 6361 ret = false; 6362 } 6363 if (n->gro_bitmask) { 6364 /* When the NAPI instance uses a timeout and keeps postponing 6365 * it, we need to bound somehow the time packets are kept in 6366 * the GRO layer 6367 */ 6368 napi_gro_flush(n, !!timeout); 6369 } 6370 6371 gro_normal_list(n); 6372 6373 if (unlikely(!list_empty(&n->poll_list))) { 6374 /* If n->poll_list is not empty, we need to mask irqs */ 6375 local_irq_save(flags); 6376 list_del_init(&n->poll_list); 6377 local_irq_restore(flags); 6378 } 6379 6380 do { 6381 val = READ_ONCE(n->state); 6382 6383 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6384 6385 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6386 6387 /* If STATE_MISSED was set, leave STATE_SCHED set, 6388 * because we will call napi->poll() one more time. 6389 * This C code was suggested by Alexander Duyck to help gcc. 6390 */ 6391 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6392 NAPIF_STATE_SCHED; 6393 } while (cmpxchg(&n->state, val, new) != val); 6394 6395 if (unlikely(val & NAPIF_STATE_MISSED)) { 6396 __napi_schedule(n); 6397 return false; 6398 } 6399 6400 if (timeout) 6401 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6402 HRTIMER_MODE_REL_PINNED); 6403 return ret; 6404 } 6405 EXPORT_SYMBOL(napi_complete_done); 6406 6407 /* must be called under rcu_read_lock(), as we dont take a reference */ 6408 static struct napi_struct *napi_by_id(unsigned int napi_id) 6409 { 6410 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6411 struct napi_struct *napi; 6412 6413 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6414 if (napi->napi_id == napi_id) 6415 return napi; 6416 6417 return NULL; 6418 } 6419 6420 #if defined(CONFIG_NET_RX_BUSY_POLL) 6421 6422 #define BUSY_POLL_BUDGET 8 6423 6424 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6425 { 6426 int rc; 6427 6428 /* Busy polling means there is a high chance device driver hard irq 6429 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6430 * set in napi_schedule_prep(). 6431 * Since we are about to call napi->poll() once more, we can safely 6432 * clear NAPI_STATE_MISSED. 6433 * 6434 * Note: x86 could use a single "lock and ..." instruction 6435 * to perform these two clear_bit() 6436 */ 6437 clear_bit(NAPI_STATE_MISSED, &napi->state); 6438 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6439 6440 local_bh_disable(); 6441 6442 /* All we really want here is to re-enable device interrupts. 6443 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6444 */ 6445 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6446 /* We can't gro_normal_list() here, because napi->poll() might have 6447 * rearmed the napi (napi_complete_done()) in which case it could 6448 * already be running on another CPU. 6449 */ 6450 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6451 netpoll_poll_unlock(have_poll_lock); 6452 if (rc == BUSY_POLL_BUDGET) { 6453 /* As the whole budget was spent, we still own the napi so can 6454 * safely handle the rx_list. 6455 */ 6456 gro_normal_list(napi); 6457 __napi_schedule(napi); 6458 } 6459 local_bh_enable(); 6460 } 6461 6462 void napi_busy_loop(unsigned int napi_id, 6463 bool (*loop_end)(void *, unsigned long), 6464 void *loop_end_arg) 6465 { 6466 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6467 int (*napi_poll)(struct napi_struct *napi, int budget); 6468 void *have_poll_lock = NULL; 6469 struct napi_struct *napi; 6470 6471 restart: 6472 napi_poll = NULL; 6473 6474 rcu_read_lock(); 6475 6476 napi = napi_by_id(napi_id); 6477 if (!napi) 6478 goto out; 6479 6480 preempt_disable(); 6481 for (;;) { 6482 int work = 0; 6483 6484 local_bh_disable(); 6485 if (!napi_poll) { 6486 unsigned long val = READ_ONCE(napi->state); 6487 6488 /* If multiple threads are competing for this napi, 6489 * we avoid dirtying napi->state as much as we can. 6490 */ 6491 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6492 NAPIF_STATE_IN_BUSY_POLL)) 6493 goto count; 6494 if (cmpxchg(&napi->state, val, 6495 val | NAPIF_STATE_IN_BUSY_POLL | 6496 NAPIF_STATE_SCHED) != val) 6497 goto count; 6498 have_poll_lock = netpoll_poll_lock(napi); 6499 napi_poll = napi->poll; 6500 } 6501 work = napi_poll(napi, BUSY_POLL_BUDGET); 6502 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6503 gro_normal_list(napi); 6504 count: 6505 if (work > 0) 6506 __NET_ADD_STATS(dev_net(napi->dev), 6507 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6508 local_bh_enable(); 6509 6510 if (!loop_end || loop_end(loop_end_arg, start_time)) 6511 break; 6512 6513 if (unlikely(need_resched())) { 6514 if (napi_poll) 6515 busy_poll_stop(napi, have_poll_lock); 6516 preempt_enable(); 6517 rcu_read_unlock(); 6518 cond_resched(); 6519 if (loop_end(loop_end_arg, start_time)) 6520 return; 6521 goto restart; 6522 } 6523 cpu_relax(); 6524 } 6525 if (napi_poll) 6526 busy_poll_stop(napi, have_poll_lock); 6527 preempt_enable(); 6528 out: 6529 rcu_read_unlock(); 6530 } 6531 EXPORT_SYMBOL(napi_busy_loop); 6532 6533 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6534 6535 static void napi_hash_add(struct napi_struct *napi) 6536 { 6537 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6538 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6539 return; 6540 6541 spin_lock(&napi_hash_lock); 6542 6543 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6544 do { 6545 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6546 napi_gen_id = MIN_NAPI_ID; 6547 } while (napi_by_id(napi_gen_id)); 6548 napi->napi_id = napi_gen_id; 6549 6550 hlist_add_head_rcu(&napi->napi_hash_node, 6551 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6552 6553 spin_unlock(&napi_hash_lock); 6554 } 6555 6556 /* Warning : caller is responsible to make sure rcu grace period 6557 * is respected before freeing memory containing @napi 6558 */ 6559 bool napi_hash_del(struct napi_struct *napi) 6560 { 6561 bool rcu_sync_needed = false; 6562 6563 spin_lock(&napi_hash_lock); 6564 6565 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6566 rcu_sync_needed = true; 6567 hlist_del_rcu(&napi->napi_hash_node); 6568 } 6569 spin_unlock(&napi_hash_lock); 6570 return rcu_sync_needed; 6571 } 6572 EXPORT_SYMBOL_GPL(napi_hash_del); 6573 6574 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6575 { 6576 struct napi_struct *napi; 6577 6578 napi = container_of(timer, struct napi_struct, timer); 6579 6580 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6581 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6582 */ 6583 if (!napi_disable_pending(napi) && 6584 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6585 __napi_schedule_irqoff(napi); 6586 6587 return HRTIMER_NORESTART; 6588 } 6589 6590 static void init_gro_hash(struct napi_struct *napi) 6591 { 6592 int i; 6593 6594 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6595 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6596 napi->gro_hash[i].count = 0; 6597 } 6598 napi->gro_bitmask = 0; 6599 } 6600 6601 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6602 int (*poll)(struct napi_struct *, int), int weight) 6603 { 6604 INIT_LIST_HEAD(&napi->poll_list); 6605 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6606 napi->timer.function = napi_watchdog; 6607 init_gro_hash(napi); 6608 napi->skb = NULL; 6609 INIT_LIST_HEAD(&napi->rx_list); 6610 napi->rx_count = 0; 6611 napi->poll = poll; 6612 if (weight > NAPI_POLL_WEIGHT) 6613 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6614 weight); 6615 napi->weight = weight; 6616 list_add(&napi->dev_list, &dev->napi_list); 6617 napi->dev = dev; 6618 #ifdef CONFIG_NETPOLL 6619 napi->poll_owner = -1; 6620 #endif 6621 set_bit(NAPI_STATE_SCHED, &napi->state); 6622 napi_hash_add(napi); 6623 } 6624 EXPORT_SYMBOL(netif_napi_add); 6625 6626 void napi_disable(struct napi_struct *n) 6627 { 6628 might_sleep(); 6629 set_bit(NAPI_STATE_DISABLE, &n->state); 6630 6631 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6632 msleep(1); 6633 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6634 msleep(1); 6635 6636 hrtimer_cancel(&n->timer); 6637 6638 clear_bit(NAPI_STATE_DISABLE, &n->state); 6639 } 6640 EXPORT_SYMBOL(napi_disable); 6641 6642 static void flush_gro_hash(struct napi_struct *napi) 6643 { 6644 int i; 6645 6646 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6647 struct sk_buff *skb, *n; 6648 6649 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6650 kfree_skb(skb); 6651 napi->gro_hash[i].count = 0; 6652 } 6653 } 6654 6655 /* Must be called in process context */ 6656 void netif_napi_del(struct napi_struct *napi) 6657 { 6658 might_sleep(); 6659 if (napi_hash_del(napi)) 6660 synchronize_net(); 6661 list_del_init(&napi->dev_list); 6662 napi_free_frags(napi); 6663 6664 flush_gro_hash(napi); 6665 napi->gro_bitmask = 0; 6666 } 6667 EXPORT_SYMBOL(netif_napi_del); 6668 6669 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6670 { 6671 void *have; 6672 int work, weight; 6673 6674 list_del_init(&n->poll_list); 6675 6676 have = netpoll_poll_lock(n); 6677 6678 weight = n->weight; 6679 6680 /* This NAPI_STATE_SCHED test is for avoiding a race 6681 * with netpoll's poll_napi(). Only the entity which 6682 * obtains the lock and sees NAPI_STATE_SCHED set will 6683 * actually make the ->poll() call. Therefore we avoid 6684 * accidentally calling ->poll() when NAPI is not scheduled. 6685 */ 6686 work = 0; 6687 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6688 work = n->poll(n, weight); 6689 trace_napi_poll(n, work, weight); 6690 } 6691 6692 if (unlikely(work > weight)) 6693 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6694 n->poll, work, weight); 6695 6696 if (likely(work < weight)) 6697 goto out_unlock; 6698 6699 /* Drivers must not modify the NAPI state if they 6700 * consume the entire weight. In such cases this code 6701 * still "owns" the NAPI instance and therefore can 6702 * move the instance around on the list at-will. 6703 */ 6704 if (unlikely(napi_disable_pending(n))) { 6705 napi_complete(n); 6706 goto out_unlock; 6707 } 6708 6709 if (n->gro_bitmask) { 6710 /* flush too old packets 6711 * If HZ < 1000, flush all packets. 6712 */ 6713 napi_gro_flush(n, HZ >= 1000); 6714 } 6715 6716 gro_normal_list(n); 6717 6718 /* Some drivers may have called napi_schedule 6719 * prior to exhausting their budget. 6720 */ 6721 if (unlikely(!list_empty(&n->poll_list))) { 6722 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6723 n->dev ? n->dev->name : "backlog"); 6724 goto out_unlock; 6725 } 6726 6727 list_add_tail(&n->poll_list, repoll); 6728 6729 out_unlock: 6730 netpoll_poll_unlock(have); 6731 6732 return work; 6733 } 6734 6735 static __latent_entropy void net_rx_action(struct softirq_action *h) 6736 { 6737 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6738 unsigned long time_limit = jiffies + 6739 usecs_to_jiffies(netdev_budget_usecs); 6740 int budget = netdev_budget; 6741 LIST_HEAD(list); 6742 LIST_HEAD(repoll); 6743 6744 local_irq_disable(); 6745 list_splice_init(&sd->poll_list, &list); 6746 local_irq_enable(); 6747 6748 for (;;) { 6749 struct napi_struct *n; 6750 6751 if (list_empty(&list)) { 6752 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6753 goto out; 6754 break; 6755 } 6756 6757 n = list_first_entry(&list, struct napi_struct, poll_list); 6758 budget -= napi_poll(n, &repoll); 6759 6760 /* If softirq window is exhausted then punt. 6761 * Allow this to run for 2 jiffies since which will allow 6762 * an average latency of 1.5/HZ. 6763 */ 6764 if (unlikely(budget <= 0 || 6765 time_after_eq(jiffies, time_limit))) { 6766 sd->time_squeeze++; 6767 break; 6768 } 6769 } 6770 6771 local_irq_disable(); 6772 6773 list_splice_tail_init(&sd->poll_list, &list); 6774 list_splice_tail(&repoll, &list); 6775 list_splice(&list, &sd->poll_list); 6776 if (!list_empty(&sd->poll_list)) 6777 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6778 6779 net_rps_action_and_irq_enable(sd); 6780 out: 6781 __kfree_skb_flush(); 6782 } 6783 6784 struct netdev_adjacent { 6785 struct net_device *dev; 6786 6787 /* upper master flag, there can only be one master device per list */ 6788 bool master; 6789 6790 /* lookup ignore flag */ 6791 bool ignore; 6792 6793 /* counter for the number of times this device was added to us */ 6794 u16 ref_nr; 6795 6796 /* private field for the users */ 6797 void *private; 6798 6799 struct list_head list; 6800 struct rcu_head rcu; 6801 }; 6802 6803 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6804 struct list_head *adj_list) 6805 { 6806 struct netdev_adjacent *adj; 6807 6808 list_for_each_entry(adj, adj_list, list) { 6809 if (adj->dev == adj_dev) 6810 return adj; 6811 } 6812 return NULL; 6813 } 6814 6815 static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6816 { 6817 struct net_device *dev = data; 6818 6819 return upper_dev == dev; 6820 } 6821 6822 /** 6823 * netdev_has_upper_dev - Check if device is linked to an upper device 6824 * @dev: device 6825 * @upper_dev: upper device to check 6826 * 6827 * Find out if a device is linked to specified upper device and return true 6828 * in case it is. Note that this checks only immediate upper device, 6829 * not through a complete stack of devices. The caller must hold the RTNL lock. 6830 */ 6831 bool netdev_has_upper_dev(struct net_device *dev, 6832 struct net_device *upper_dev) 6833 { 6834 ASSERT_RTNL(); 6835 6836 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6837 upper_dev); 6838 } 6839 EXPORT_SYMBOL(netdev_has_upper_dev); 6840 6841 /** 6842 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6843 * @dev: device 6844 * @upper_dev: upper device to check 6845 * 6846 * Find out if a device is linked to specified upper device and return true 6847 * in case it is. Note that this checks the entire upper device chain. 6848 * The caller must hold rcu lock. 6849 */ 6850 6851 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6852 struct net_device *upper_dev) 6853 { 6854 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6855 upper_dev); 6856 } 6857 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6858 6859 /** 6860 * netdev_has_any_upper_dev - Check if device is linked to some device 6861 * @dev: device 6862 * 6863 * Find out if a device is linked to an upper device and return true in case 6864 * it is. The caller must hold the RTNL lock. 6865 */ 6866 bool netdev_has_any_upper_dev(struct net_device *dev) 6867 { 6868 ASSERT_RTNL(); 6869 6870 return !list_empty(&dev->adj_list.upper); 6871 } 6872 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6873 6874 /** 6875 * netdev_master_upper_dev_get - Get master upper device 6876 * @dev: device 6877 * 6878 * Find a master upper device and return pointer to it or NULL in case 6879 * it's not there. The caller must hold the RTNL lock. 6880 */ 6881 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6882 { 6883 struct netdev_adjacent *upper; 6884 6885 ASSERT_RTNL(); 6886 6887 if (list_empty(&dev->adj_list.upper)) 6888 return NULL; 6889 6890 upper = list_first_entry(&dev->adj_list.upper, 6891 struct netdev_adjacent, list); 6892 if (likely(upper->master)) 6893 return upper->dev; 6894 return NULL; 6895 } 6896 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6897 6898 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6899 { 6900 struct netdev_adjacent *upper; 6901 6902 ASSERT_RTNL(); 6903 6904 if (list_empty(&dev->adj_list.upper)) 6905 return NULL; 6906 6907 upper = list_first_entry(&dev->adj_list.upper, 6908 struct netdev_adjacent, list); 6909 if (likely(upper->master) && !upper->ignore) 6910 return upper->dev; 6911 return NULL; 6912 } 6913 6914 /** 6915 * netdev_has_any_lower_dev - Check if device is linked to some device 6916 * @dev: device 6917 * 6918 * Find out if a device is linked to a lower device and return true in case 6919 * it is. The caller must hold the RTNL lock. 6920 */ 6921 static bool netdev_has_any_lower_dev(struct net_device *dev) 6922 { 6923 ASSERT_RTNL(); 6924 6925 return !list_empty(&dev->adj_list.lower); 6926 } 6927 6928 void *netdev_adjacent_get_private(struct list_head *adj_list) 6929 { 6930 struct netdev_adjacent *adj; 6931 6932 adj = list_entry(adj_list, struct netdev_adjacent, list); 6933 6934 return adj->private; 6935 } 6936 EXPORT_SYMBOL(netdev_adjacent_get_private); 6937 6938 /** 6939 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6940 * @dev: device 6941 * @iter: list_head ** of the current position 6942 * 6943 * Gets the next device from the dev's upper list, starting from iter 6944 * position. The caller must hold RCU read lock. 6945 */ 6946 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6947 struct list_head **iter) 6948 { 6949 struct netdev_adjacent *upper; 6950 6951 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6952 6953 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6954 6955 if (&upper->list == &dev->adj_list.upper) 6956 return NULL; 6957 6958 *iter = &upper->list; 6959 6960 return upper->dev; 6961 } 6962 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6963 6964 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 6965 struct list_head **iter, 6966 bool *ignore) 6967 { 6968 struct netdev_adjacent *upper; 6969 6970 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6971 6972 if (&upper->list == &dev->adj_list.upper) 6973 return NULL; 6974 6975 *iter = &upper->list; 6976 *ignore = upper->ignore; 6977 6978 return upper->dev; 6979 } 6980 6981 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6982 struct list_head **iter) 6983 { 6984 struct netdev_adjacent *upper; 6985 6986 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6987 6988 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6989 6990 if (&upper->list == &dev->adj_list.upper) 6991 return NULL; 6992 6993 *iter = &upper->list; 6994 6995 return upper->dev; 6996 } 6997 6998 static int __netdev_walk_all_upper_dev(struct net_device *dev, 6999 int (*fn)(struct net_device *dev, 7000 void *data), 7001 void *data) 7002 { 7003 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7004 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7005 int ret, cur = 0; 7006 bool ignore; 7007 7008 now = dev; 7009 iter = &dev->adj_list.upper; 7010 7011 while (1) { 7012 if (now != dev) { 7013 ret = fn(now, data); 7014 if (ret) 7015 return ret; 7016 } 7017 7018 next = NULL; 7019 while (1) { 7020 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7021 if (!udev) 7022 break; 7023 if (ignore) 7024 continue; 7025 7026 next = udev; 7027 niter = &udev->adj_list.upper; 7028 dev_stack[cur] = now; 7029 iter_stack[cur++] = iter; 7030 break; 7031 } 7032 7033 if (!next) { 7034 if (!cur) 7035 return 0; 7036 next = dev_stack[--cur]; 7037 niter = iter_stack[cur]; 7038 } 7039 7040 now = next; 7041 iter = niter; 7042 } 7043 7044 return 0; 7045 } 7046 7047 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7048 int (*fn)(struct net_device *dev, 7049 void *data), 7050 void *data) 7051 { 7052 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7053 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7054 int ret, cur = 0; 7055 7056 now = dev; 7057 iter = &dev->adj_list.upper; 7058 7059 while (1) { 7060 if (now != dev) { 7061 ret = fn(now, data); 7062 if (ret) 7063 return ret; 7064 } 7065 7066 next = NULL; 7067 while (1) { 7068 udev = netdev_next_upper_dev_rcu(now, &iter); 7069 if (!udev) 7070 break; 7071 7072 next = udev; 7073 niter = &udev->adj_list.upper; 7074 dev_stack[cur] = now; 7075 iter_stack[cur++] = iter; 7076 break; 7077 } 7078 7079 if (!next) { 7080 if (!cur) 7081 return 0; 7082 next = dev_stack[--cur]; 7083 niter = iter_stack[cur]; 7084 } 7085 7086 now = next; 7087 iter = niter; 7088 } 7089 7090 return 0; 7091 } 7092 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7093 7094 static bool __netdev_has_upper_dev(struct net_device *dev, 7095 struct net_device *upper_dev) 7096 { 7097 ASSERT_RTNL(); 7098 7099 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7100 upper_dev); 7101 } 7102 7103 /** 7104 * netdev_lower_get_next_private - Get the next ->private from the 7105 * lower neighbour list 7106 * @dev: device 7107 * @iter: list_head ** of the current position 7108 * 7109 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7110 * list, starting from iter position. The caller must hold either hold the 7111 * RTNL lock or its own locking that guarantees that the neighbour lower 7112 * list will remain unchanged. 7113 */ 7114 void *netdev_lower_get_next_private(struct net_device *dev, 7115 struct list_head **iter) 7116 { 7117 struct netdev_adjacent *lower; 7118 7119 lower = list_entry(*iter, struct netdev_adjacent, list); 7120 7121 if (&lower->list == &dev->adj_list.lower) 7122 return NULL; 7123 7124 *iter = lower->list.next; 7125 7126 return lower->private; 7127 } 7128 EXPORT_SYMBOL(netdev_lower_get_next_private); 7129 7130 /** 7131 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7132 * lower neighbour list, RCU 7133 * variant 7134 * @dev: device 7135 * @iter: list_head ** of the current position 7136 * 7137 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7138 * list, starting from iter position. The caller must hold RCU read lock. 7139 */ 7140 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7141 struct list_head **iter) 7142 { 7143 struct netdev_adjacent *lower; 7144 7145 WARN_ON_ONCE(!rcu_read_lock_held()); 7146 7147 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7148 7149 if (&lower->list == &dev->adj_list.lower) 7150 return NULL; 7151 7152 *iter = &lower->list; 7153 7154 return lower->private; 7155 } 7156 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7157 7158 /** 7159 * netdev_lower_get_next - Get the next device from the lower neighbour 7160 * list 7161 * @dev: device 7162 * @iter: list_head ** of the current position 7163 * 7164 * Gets the next netdev_adjacent from the dev's lower neighbour 7165 * list, starting from iter position. The caller must hold RTNL lock or 7166 * its own locking that guarantees that the neighbour lower 7167 * list will remain unchanged. 7168 */ 7169 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7170 { 7171 struct netdev_adjacent *lower; 7172 7173 lower = list_entry(*iter, struct netdev_adjacent, list); 7174 7175 if (&lower->list == &dev->adj_list.lower) 7176 return NULL; 7177 7178 *iter = lower->list.next; 7179 7180 return lower->dev; 7181 } 7182 EXPORT_SYMBOL(netdev_lower_get_next); 7183 7184 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7185 struct list_head **iter) 7186 { 7187 struct netdev_adjacent *lower; 7188 7189 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7190 7191 if (&lower->list == &dev->adj_list.lower) 7192 return NULL; 7193 7194 *iter = &lower->list; 7195 7196 return lower->dev; 7197 } 7198 7199 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7200 struct list_head **iter, 7201 bool *ignore) 7202 { 7203 struct netdev_adjacent *lower; 7204 7205 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7206 7207 if (&lower->list == &dev->adj_list.lower) 7208 return NULL; 7209 7210 *iter = &lower->list; 7211 *ignore = lower->ignore; 7212 7213 return lower->dev; 7214 } 7215 7216 int netdev_walk_all_lower_dev(struct net_device *dev, 7217 int (*fn)(struct net_device *dev, 7218 void *data), 7219 void *data) 7220 { 7221 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7222 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7223 int ret, cur = 0; 7224 7225 now = dev; 7226 iter = &dev->adj_list.lower; 7227 7228 while (1) { 7229 if (now != dev) { 7230 ret = fn(now, data); 7231 if (ret) 7232 return ret; 7233 } 7234 7235 next = NULL; 7236 while (1) { 7237 ldev = netdev_next_lower_dev(now, &iter); 7238 if (!ldev) 7239 break; 7240 7241 next = ldev; 7242 niter = &ldev->adj_list.lower; 7243 dev_stack[cur] = now; 7244 iter_stack[cur++] = iter; 7245 break; 7246 } 7247 7248 if (!next) { 7249 if (!cur) 7250 return 0; 7251 next = dev_stack[--cur]; 7252 niter = iter_stack[cur]; 7253 } 7254 7255 now = next; 7256 iter = niter; 7257 } 7258 7259 return 0; 7260 } 7261 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7262 7263 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7264 int (*fn)(struct net_device *dev, 7265 void *data), 7266 void *data) 7267 { 7268 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7269 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7270 int ret, cur = 0; 7271 bool ignore; 7272 7273 now = dev; 7274 iter = &dev->adj_list.lower; 7275 7276 while (1) { 7277 if (now != dev) { 7278 ret = fn(now, data); 7279 if (ret) 7280 return ret; 7281 } 7282 7283 next = NULL; 7284 while (1) { 7285 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7286 if (!ldev) 7287 break; 7288 if (ignore) 7289 continue; 7290 7291 next = ldev; 7292 niter = &ldev->adj_list.lower; 7293 dev_stack[cur] = now; 7294 iter_stack[cur++] = iter; 7295 break; 7296 } 7297 7298 if (!next) { 7299 if (!cur) 7300 return 0; 7301 next = dev_stack[--cur]; 7302 niter = iter_stack[cur]; 7303 } 7304 7305 now = next; 7306 iter = niter; 7307 } 7308 7309 return 0; 7310 } 7311 7312 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7313 struct list_head **iter) 7314 { 7315 struct netdev_adjacent *lower; 7316 7317 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7318 if (&lower->list == &dev->adj_list.lower) 7319 return NULL; 7320 7321 *iter = &lower->list; 7322 7323 return lower->dev; 7324 } 7325 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7326 7327 static u8 __netdev_upper_depth(struct net_device *dev) 7328 { 7329 struct net_device *udev; 7330 struct list_head *iter; 7331 u8 max_depth = 0; 7332 bool ignore; 7333 7334 for (iter = &dev->adj_list.upper, 7335 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7336 udev; 7337 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7338 if (ignore) 7339 continue; 7340 if (max_depth < udev->upper_level) 7341 max_depth = udev->upper_level; 7342 } 7343 7344 return max_depth; 7345 } 7346 7347 static u8 __netdev_lower_depth(struct net_device *dev) 7348 { 7349 struct net_device *ldev; 7350 struct list_head *iter; 7351 u8 max_depth = 0; 7352 bool ignore; 7353 7354 for (iter = &dev->adj_list.lower, 7355 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7356 ldev; 7357 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7358 if (ignore) 7359 continue; 7360 if (max_depth < ldev->lower_level) 7361 max_depth = ldev->lower_level; 7362 } 7363 7364 return max_depth; 7365 } 7366 7367 static int __netdev_update_upper_level(struct net_device *dev, void *data) 7368 { 7369 dev->upper_level = __netdev_upper_depth(dev) + 1; 7370 return 0; 7371 } 7372 7373 static int __netdev_update_lower_level(struct net_device *dev, void *data) 7374 { 7375 dev->lower_level = __netdev_lower_depth(dev) + 1; 7376 return 0; 7377 } 7378 7379 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7380 int (*fn)(struct net_device *dev, 7381 void *data), 7382 void *data) 7383 { 7384 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7385 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7386 int ret, cur = 0; 7387 7388 now = dev; 7389 iter = &dev->adj_list.lower; 7390 7391 while (1) { 7392 if (now != dev) { 7393 ret = fn(now, data); 7394 if (ret) 7395 return ret; 7396 } 7397 7398 next = NULL; 7399 while (1) { 7400 ldev = netdev_next_lower_dev_rcu(now, &iter); 7401 if (!ldev) 7402 break; 7403 7404 next = ldev; 7405 niter = &ldev->adj_list.lower; 7406 dev_stack[cur] = now; 7407 iter_stack[cur++] = iter; 7408 break; 7409 } 7410 7411 if (!next) { 7412 if (!cur) 7413 return 0; 7414 next = dev_stack[--cur]; 7415 niter = iter_stack[cur]; 7416 } 7417 7418 now = next; 7419 iter = niter; 7420 } 7421 7422 return 0; 7423 } 7424 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7425 7426 /** 7427 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7428 * lower neighbour list, RCU 7429 * variant 7430 * @dev: device 7431 * 7432 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7433 * list. The caller must hold RCU read lock. 7434 */ 7435 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7436 { 7437 struct netdev_adjacent *lower; 7438 7439 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7440 struct netdev_adjacent, list); 7441 if (lower) 7442 return lower->private; 7443 return NULL; 7444 } 7445 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7446 7447 /** 7448 * netdev_master_upper_dev_get_rcu - Get master upper device 7449 * @dev: device 7450 * 7451 * Find a master upper device and return pointer to it or NULL in case 7452 * it's not there. The caller must hold the RCU read lock. 7453 */ 7454 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7455 { 7456 struct netdev_adjacent *upper; 7457 7458 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7459 struct netdev_adjacent, list); 7460 if (upper && likely(upper->master)) 7461 return upper->dev; 7462 return NULL; 7463 } 7464 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7465 7466 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7467 struct net_device *adj_dev, 7468 struct list_head *dev_list) 7469 { 7470 char linkname[IFNAMSIZ+7]; 7471 7472 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7473 "upper_%s" : "lower_%s", adj_dev->name); 7474 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7475 linkname); 7476 } 7477 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7478 char *name, 7479 struct list_head *dev_list) 7480 { 7481 char linkname[IFNAMSIZ+7]; 7482 7483 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7484 "upper_%s" : "lower_%s", name); 7485 sysfs_remove_link(&(dev->dev.kobj), linkname); 7486 } 7487 7488 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7489 struct net_device *adj_dev, 7490 struct list_head *dev_list) 7491 { 7492 return (dev_list == &dev->adj_list.upper || 7493 dev_list == &dev->adj_list.lower) && 7494 net_eq(dev_net(dev), dev_net(adj_dev)); 7495 } 7496 7497 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7498 struct net_device *adj_dev, 7499 struct list_head *dev_list, 7500 void *private, bool master) 7501 { 7502 struct netdev_adjacent *adj; 7503 int ret; 7504 7505 adj = __netdev_find_adj(adj_dev, dev_list); 7506 7507 if (adj) { 7508 adj->ref_nr += 1; 7509 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7510 dev->name, adj_dev->name, adj->ref_nr); 7511 7512 return 0; 7513 } 7514 7515 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7516 if (!adj) 7517 return -ENOMEM; 7518 7519 adj->dev = adj_dev; 7520 adj->master = master; 7521 adj->ref_nr = 1; 7522 adj->private = private; 7523 adj->ignore = false; 7524 dev_hold(adj_dev); 7525 7526 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7527 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7528 7529 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7530 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7531 if (ret) 7532 goto free_adj; 7533 } 7534 7535 /* Ensure that master link is always the first item in list. */ 7536 if (master) { 7537 ret = sysfs_create_link(&(dev->dev.kobj), 7538 &(adj_dev->dev.kobj), "master"); 7539 if (ret) 7540 goto remove_symlinks; 7541 7542 list_add_rcu(&adj->list, dev_list); 7543 } else { 7544 list_add_tail_rcu(&adj->list, dev_list); 7545 } 7546 7547 return 0; 7548 7549 remove_symlinks: 7550 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7551 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7552 free_adj: 7553 kfree(adj); 7554 dev_put(adj_dev); 7555 7556 return ret; 7557 } 7558 7559 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7560 struct net_device *adj_dev, 7561 u16 ref_nr, 7562 struct list_head *dev_list) 7563 { 7564 struct netdev_adjacent *adj; 7565 7566 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7567 dev->name, adj_dev->name, ref_nr); 7568 7569 adj = __netdev_find_adj(adj_dev, dev_list); 7570 7571 if (!adj) { 7572 pr_err("Adjacency does not exist for device %s from %s\n", 7573 dev->name, adj_dev->name); 7574 WARN_ON(1); 7575 return; 7576 } 7577 7578 if (adj->ref_nr > ref_nr) { 7579 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7580 dev->name, adj_dev->name, ref_nr, 7581 adj->ref_nr - ref_nr); 7582 adj->ref_nr -= ref_nr; 7583 return; 7584 } 7585 7586 if (adj->master) 7587 sysfs_remove_link(&(dev->dev.kobj), "master"); 7588 7589 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7590 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7591 7592 list_del_rcu(&adj->list); 7593 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7594 adj_dev->name, dev->name, adj_dev->name); 7595 dev_put(adj_dev); 7596 kfree_rcu(adj, rcu); 7597 } 7598 7599 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7600 struct net_device *upper_dev, 7601 struct list_head *up_list, 7602 struct list_head *down_list, 7603 void *private, bool master) 7604 { 7605 int ret; 7606 7607 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7608 private, master); 7609 if (ret) 7610 return ret; 7611 7612 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7613 private, false); 7614 if (ret) { 7615 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7616 return ret; 7617 } 7618 7619 return 0; 7620 } 7621 7622 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7623 struct net_device *upper_dev, 7624 u16 ref_nr, 7625 struct list_head *up_list, 7626 struct list_head *down_list) 7627 { 7628 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7629 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7630 } 7631 7632 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7633 struct net_device *upper_dev, 7634 void *private, bool master) 7635 { 7636 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7637 &dev->adj_list.upper, 7638 &upper_dev->adj_list.lower, 7639 private, master); 7640 } 7641 7642 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7643 struct net_device *upper_dev) 7644 { 7645 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7646 &dev->adj_list.upper, 7647 &upper_dev->adj_list.lower); 7648 } 7649 7650 static int __netdev_upper_dev_link(struct net_device *dev, 7651 struct net_device *upper_dev, bool master, 7652 void *upper_priv, void *upper_info, 7653 struct netlink_ext_ack *extack) 7654 { 7655 struct netdev_notifier_changeupper_info changeupper_info = { 7656 .info = { 7657 .dev = dev, 7658 .extack = extack, 7659 }, 7660 .upper_dev = upper_dev, 7661 .master = master, 7662 .linking = true, 7663 .upper_info = upper_info, 7664 }; 7665 struct net_device *master_dev; 7666 int ret = 0; 7667 7668 ASSERT_RTNL(); 7669 7670 if (dev == upper_dev) 7671 return -EBUSY; 7672 7673 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7674 if (__netdev_has_upper_dev(upper_dev, dev)) 7675 return -EBUSY; 7676 7677 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7678 return -EMLINK; 7679 7680 if (!master) { 7681 if (__netdev_has_upper_dev(dev, upper_dev)) 7682 return -EEXIST; 7683 } else { 7684 master_dev = __netdev_master_upper_dev_get(dev); 7685 if (master_dev) 7686 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7687 } 7688 7689 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7690 &changeupper_info.info); 7691 ret = notifier_to_errno(ret); 7692 if (ret) 7693 return ret; 7694 7695 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7696 master); 7697 if (ret) 7698 return ret; 7699 7700 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7701 &changeupper_info.info); 7702 ret = notifier_to_errno(ret); 7703 if (ret) 7704 goto rollback; 7705 7706 __netdev_update_upper_level(dev, NULL); 7707 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7708 7709 __netdev_update_lower_level(upper_dev, NULL); 7710 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7711 NULL); 7712 7713 return 0; 7714 7715 rollback: 7716 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7717 7718 return ret; 7719 } 7720 7721 /** 7722 * netdev_upper_dev_link - Add a link to the upper device 7723 * @dev: device 7724 * @upper_dev: new upper device 7725 * @extack: netlink extended ack 7726 * 7727 * Adds a link to device which is upper to this one. The caller must hold 7728 * the RTNL lock. On a failure a negative errno code is returned. 7729 * On success the reference counts are adjusted and the function 7730 * returns zero. 7731 */ 7732 int netdev_upper_dev_link(struct net_device *dev, 7733 struct net_device *upper_dev, 7734 struct netlink_ext_ack *extack) 7735 { 7736 return __netdev_upper_dev_link(dev, upper_dev, false, 7737 NULL, NULL, extack); 7738 } 7739 EXPORT_SYMBOL(netdev_upper_dev_link); 7740 7741 /** 7742 * netdev_master_upper_dev_link - Add a master link to the upper device 7743 * @dev: device 7744 * @upper_dev: new upper device 7745 * @upper_priv: upper device private 7746 * @upper_info: upper info to be passed down via notifier 7747 * @extack: netlink extended ack 7748 * 7749 * Adds a link to device which is upper to this one. In this case, only 7750 * one master upper device can be linked, although other non-master devices 7751 * might be linked as well. The caller must hold the RTNL lock. 7752 * On a failure a negative errno code is returned. On success the reference 7753 * counts are adjusted and the function returns zero. 7754 */ 7755 int netdev_master_upper_dev_link(struct net_device *dev, 7756 struct net_device *upper_dev, 7757 void *upper_priv, void *upper_info, 7758 struct netlink_ext_ack *extack) 7759 { 7760 return __netdev_upper_dev_link(dev, upper_dev, true, 7761 upper_priv, upper_info, extack); 7762 } 7763 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7764 7765 /** 7766 * netdev_upper_dev_unlink - Removes a link to upper device 7767 * @dev: device 7768 * @upper_dev: new upper device 7769 * 7770 * Removes a link to device which is upper to this one. The caller must hold 7771 * the RTNL lock. 7772 */ 7773 void netdev_upper_dev_unlink(struct net_device *dev, 7774 struct net_device *upper_dev) 7775 { 7776 struct netdev_notifier_changeupper_info changeupper_info = { 7777 .info = { 7778 .dev = dev, 7779 }, 7780 .upper_dev = upper_dev, 7781 .linking = false, 7782 }; 7783 7784 ASSERT_RTNL(); 7785 7786 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7787 7788 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7789 &changeupper_info.info); 7790 7791 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7792 7793 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7794 &changeupper_info.info); 7795 7796 __netdev_update_upper_level(dev, NULL); 7797 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7798 7799 __netdev_update_lower_level(upper_dev, NULL); 7800 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7801 NULL); 7802 } 7803 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7804 7805 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7806 struct net_device *lower_dev, 7807 bool val) 7808 { 7809 struct netdev_adjacent *adj; 7810 7811 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7812 if (adj) 7813 adj->ignore = val; 7814 7815 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7816 if (adj) 7817 adj->ignore = val; 7818 } 7819 7820 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7821 struct net_device *lower_dev) 7822 { 7823 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7824 } 7825 7826 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7827 struct net_device *lower_dev) 7828 { 7829 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7830 } 7831 7832 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7833 struct net_device *new_dev, 7834 struct net_device *dev, 7835 struct netlink_ext_ack *extack) 7836 { 7837 int err; 7838 7839 if (!new_dev) 7840 return 0; 7841 7842 if (old_dev && new_dev != old_dev) 7843 netdev_adjacent_dev_disable(dev, old_dev); 7844 7845 err = netdev_upper_dev_link(new_dev, dev, extack); 7846 if (err) { 7847 if (old_dev && new_dev != old_dev) 7848 netdev_adjacent_dev_enable(dev, old_dev); 7849 return err; 7850 } 7851 7852 return 0; 7853 } 7854 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7855 7856 void netdev_adjacent_change_commit(struct net_device *old_dev, 7857 struct net_device *new_dev, 7858 struct net_device *dev) 7859 { 7860 if (!new_dev || !old_dev) 7861 return; 7862 7863 if (new_dev == old_dev) 7864 return; 7865 7866 netdev_adjacent_dev_enable(dev, old_dev); 7867 netdev_upper_dev_unlink(old_dev, dev); 7868 } 7869 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7870 7871 void netdev_adjacent_change_abort(struct net_device *old_dev, 7872 struct net_device *new_dev, 7873 struct net_device *dev) 7874 { 7875 if (!new_dev) 7876 return; 7877 7878 if (old_dev && new_dev != old_dev) 7879 netdev_adjacent_dev_enable(dev, old_dev); 7880 7881 netdev_upper_dev_unlink(new_dev, dev); 7882 } 7883 EXPORT_SYMBOL(netdev_adjacent_change_abort); 7884 7885 /** 7886 * netdev_bonding_info_change - Dispatch event about slave change 7887 * @dev: device 7888 * @bonding_info: info to dispatch 7889 * 7890 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7891 * The caller must hold the RTNL lock. 7892 */ 7893 void netdev_bonding_info_change(struct net_device *dev, 7894 struct netdev_bonding_info *bonding_info) 7895 { 7896 struct netdev_notifier_bonding_info info = { 7897 .info.dev = dev, 7898 }; 7899 7900 memcpy(&info.bonding_info, bonding_info, 7901 sizeof(struct netdev_bonding_info)); 7902 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7903 &info.info); 7904 } 7905 EXPORT_SYMBOL(netdev_bonding_info_change); 7906 7907 /** 7908 * netdev_get_xmit_slave - Get the xmit slave of master device 7909 * @skb: The packet 7910 * @all_slaves: assume all the slaves are active 7911 * 7912 * The reference counters are not incremented so the caller must be 7913 * careful with locks. The caller must hold RCU lock. 7914 * %NULL is returned if no slave is found. 7915 */ 7916 7917 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 7918 struct sk_buff *skb, 7919 bool all_slaves) 7920 { 7921 const struct net_device_ops *ops = dev->netdev_ops; 7922 7923 if (!ops->ndo_get_xmit_slave) 7924 return NULL; 7925 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 7926 } 7927 EXPORT_SYMBOL(netdev_get_xmit_slave); 7928 7929 static void netdev_adjacent_add_links(struct net_device *dev) 7930 { 7931 struct netdev_adjacent *iter; 7932 7933 struct net *net = dev_net(dev); 7934 7935 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7936 if (!net_eq(net, dev_net(iter->dev))) 7937 continue; 7938 netdev_adjacent_sysfs_add(iter->dev, dev, 7939 &iter->dev->adj_list.lower); 7940 netdev_adjacent_sysfs_add(dev, iter->dev, 7941 &dev->adj_list.upper); 7942 } 7943 7944 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7945 if (!net_eq(net, dev_net(iter->dev))) 7946 continue; 7947 netdev_adjacent_sysfs_add(iter->dev, dev, 7948 &iter->dev->adj_list.upper); 7949 netdev_adjacent_sysfs_add(dev, iter->dev, 7950 &dev->adj_list.lower); 7951 } 7952 } 7953 7954 static void netdev_adjacent_del_links(struct net_device *dev) 7955 { 7956 struct netdev_adjacent *iter; 7957 7958 struct net *net = dev_net(dev); 7959 7960 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7961 if (!net_eq(net, dev_net(iter->dev))) 7962 continue; 7963 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7964 &iter->dev->adj_list.lower); 7965 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7966 &dev->adj_list.upper); 7967 } 7968 7969 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7970 if (!net_eq(net, dev_net(iter->dev))) 7971 continue; 7972 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7973 &iter->dev->adj_list.upper); 7974 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7975 &dev->adj_list.lower); 7976 } 7977 } 7978 7979 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7980 { 7981 struct netdev_adjacent *iter; 7982 7983 struct net *net = dev_net(dev); 7984 7985 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7986 if (!net_eq(net, dev_net(iter->dev))) 7987 continue; 7988 netdev_adjacent_sysfs_del(iter->dev, oldname, 7989 &iter->dev->adj_list.lower); 7990 netdev_adjacent_sysfs_add(iter->dev, dev, 7991 &iter->dev->adj_list.lower); 7992 } 7993 7994 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7995 if (!net_eq(net, dev_net(iter->dev))) 7996 continue; 7997 netdev_adjacent_sysfs_del(iter->dev, oldname, 7998 &iter->dev->adj_list.upper); 7999 netdev_adjacent_sysfs_add(iter->dev, dev, 8000 &iter->dev->adj_list.upper); 8001 } 8002 } 8003 8004 void *netdev_lower_dev_get_private(struct net_device *dev, 8005 struct net_device *lower_dev) 8006 { 8007 struct netdev_adjacent *lower; 8008 8009 if (!lower_dev) 8010 return NULL; 8011 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8012 if (!lower) 8013 return NULL; 8014 8015 return lower->private; 8016 } 8017 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8018 8019 8020 /** 8021 * netdev_lower_change - Dispatch event about lower device state change 8022 * @lower_dev: device 8023 * @lower_state_info: state to dispatch 8024 * 8025 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8026 * The caller must hold the RTNL lock. 8027 */ 8028 void netdev_lower_state_changed(struct net_device *lower_dev, 8029 void *lower_state_info) 8030 { 8031 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8032 .info.dev = lower_dev, 8033 }; 8034 8035 ASSERT_RTNL(); 8036 changelowerstate_info.lower_state_info = lower_state_info; 8037 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8038 &changelowerstate_info.info); 8039 } 8040 EXPORT_SYMBOL(netdev_lower_state_changed); 8041 8042 static void dev_change_rx_flags(struct net_device *dev, int flags) 8043 { 8044 const struct net_device_ops *ops = dev->netdev_ops; 8045 8046 if (ops->ndo_change_rx_flags) 8047 ops->ndo_change_rx_flags(dev, flags); 8048 } 8049 8050 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8051 { 8052 unsigned int old_flags = dev->flags; 8053 kuid_t uid; 8054 kgid_t gid; 8055 8056 ASSERT_RTNL(); 8057 8058 dev->flags |= IFF_PROMISC; 8059 dev->promiscuity += inc; 8060 if (dev->promiscuity == 0) { 8061 /* 8062 * Avoid overflow. 8063 * If inc causes overflow, untouch promisc and return error. 8064 */ 8065 if (inc < 0) 8066 dev->flags &= ~IFF_PROMISC; 8067 else { 8068 dev->promiscuity -= inc; 8069 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 8070 dev->name); 8071 return -EOVERFLOW; 8072 } 8073 } 8074 if (dev->flags != old_flags) { 8075 pr_info("device %s %s promiscuous mode\n", 8076 dev->name, 8077 dev->flags & IFF_PROMISC ? "entered" : "left"); 8078 if (audit_enabled) { 8079 current_uid_gid(&uid, &gid); 8080 audit_log(audit_context(), GFP_ATOMIC, 8081 AUDIT_ANOM_PROMISCUOUS, 8082 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8083 dev->name, (dev->flags & IFF_PROMISC), 8084 (old_flags & IFF_PROMISC), 8085 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8086 from_kuid(&init_user_ns, uid), 8087 from_kgid(&init_user_ns, gid), 8088 audit_get_sessionid(current)); 8089 } 8090 8091 dev_change_rx_flags(dev, IFF_PROMISC); 8092 } 8093 if (notify) 8094 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8095 return 0; 8096 } 8097 8098 /** 8099 * dev_set_promiscuity - update promiscuity count on a device 8100 * @dev: device 8101 * @inc: modifier 8102 * 8103 * Add or remove promiscuity from a device. While the count in the device 8104 * remains above zero the interface remains promiscuous. Once it hits zero 8105 * the device reverts back to normal filtering operation. A negative inc 8106 * value is used to drop promiscuity on the device. 8107 * Return 0 if successful or a negative errno code on error. 8108 */ 8109 int dev_set_promiscuity(struct net_device *dev, int inc) 8110 { 8111 unsigned int old_flags = dev->flags; 8112 int err; 8113 8114 err = __dev_set_promiscuity(dev, inc, true); 8115 if (err < 0) 8116 return err; 8117 if (dev->flags != old_flags) 8118 dev_set_rx_mode(dev); 8119 return err; 8120 } 8121 EXPORT_SYMBOL(dev_set_promiscuity); 8122 8123 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8124 { 8125 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8126 8127 ASSERT_RTNL(); 8128 8129 dev->flags |= IFF_ALLMULTI; 8130 dev->allmulti += inc; 8131 if (dev->allmulti == 0) { 8132 /* 8133 * Avoid overflow. 8134 * If inc causes overflow, untouch allmulti and return error. 8135 */ 8136 if (inc < 0) 8137 dev->flags &= ~IFF_ALLMULTI; 8138 else { 8139 dev->allmulti -= inc; 8140 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8141 dev->name); 8142 return -EOVERFLOW; 8143 } 8144 } 8145 if (dev->flags ^ old_flags) { 8146 dev_change_rx_flags(dev, IFF_ALLMULTI); 8147 dev_set_rx_mode(dev); 8148 if (notify) 8149 __dev_notify_flags(dev, old_flags, 8150 dev->gflags ^ old_gflags); 8151 } 8152 return 0; 8153 } 8154 8155 /** 8156 * dev_set_allmulti - update allmulti count on a device 8157 * @dev: device 8158 * @inc: modifier 8159 * 8160 * Add or remove reception of all multicast frames to a device. While the 8161 * count in the device remains above zero the interface remains listening 8162 * to all interfaces. Once it hits zero the device reverts back to normal 8163 * filtering operation. A negative @inc value is used to drop the counter 8164 * when releasing a resource needing all multicasts. 8165 * Return 0 if successful or a negative errno code on error. 8166 */ 8167 8168 int dev_set_allmulti(struct net_device *dev, int inc) 8169 { 8170 return __dev_set_allmulti(dev, inc, true); 8171 } 8172 EXPORT_SYMBOL(dev_set_allmulti); 8173 8174 /* 8175 * Upload unicast and multicast address lists to device and 8176 * configure RX filtering. When the device doesn't support unicast 8177 * filtering it is put in promiscuous mode while unicast addresses 8178 * are present. 8179 */ 8180 void __dev_set_rx_mode(struct net_device *dev) 8181 { 8182 const struct net_device_ops *ops = dev->netdev_ops; 8183 8184 /* dev_open will call this function so the list will stay sane. */ 8185 if (!(dev->flags&IFF_UP)) 8186 return; 8187 8188 if (!netif_device_present(dev)) 8189 return; 8190 8191 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8192 /* Unicast addresses changes may only happen under the rtnl, 8193 * therefore calling __dev_set_promiscuity here is safe. 8194 */ 8195 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8196 __dev_set_promiscuity(dev, 1, false); 8197 dev->uc_promisc = true; 8198 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8199 __dev_set_promiscuity(dev, -1, false); 8200 dev->uc_promisc = false; 8201 } 8202 } 8203 8204 if (ops->ndo_set_rx_mode) 8205 ops->ndo_set_rx_mode(dev); 8206 } 8207 8208 void dev_set_rx_mode(struct net_device *dev) 8209 { 8210 netif_addr_lock_bh(dev); 8211 __dev_set_rx_mode(dev); 8212 netif_addr_unlock_bh(dev); 8213 } 8214 8215 /** 8216 * dev_get_flags - get flags reported to userspace 8217 * @dev: device 8218 * 8219 * Get the combination of flag bits exported through APIs to userspace. 8220 */ 8221 unsigned int dev_get_flags(const struct net_device *dev) 8222 { 8223 unsigned int flags; 8224 8225 flags = (dev->flags & ~(IFF_PROMISC | 8226 IFF_ALLMULTI | 8227 IFF_RUNNING | 8228 IFF_LOWER_UP | 8229 IFF_DORMANT)) | 8230 (dev->gflags & (IFF_PROMISC | 8231 IFF_ALLMULTI)); 8232 8233 if (netif_running(dev)) { 8234 if (netif_oper_up(dev)) 8235 flags |= IFF_RUNNING; 8236 if (netif_carrier_ok(dev)) 8237 flags |= IFF_LOWER_UP; 8238 if (netif_dormant(dev)) 8239 flags |= IFF_DORMANT; 8240 } 8241 8242 return flags; 8243 } 8244 EXPORT_SYMBOL(dev_get_flags); 8245 8246 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8247 struct netlink_ext_ack *extack) 8248 { 8249 unsigned int old_flags = dev->flags; 8250 int ret; 8251 8252 ASSERT_RTNL(); 8253 8254 /* 8255 * Set the flags on our device. 8256 */ 8257 8258 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8259 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8260 IFF_AUTOMEDIA)) | 8261 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8262 IFF_ALLMULTI)); 8263 8264 /* 8265 * Load in the correct multicast list now the flags have changed. 8266 */ 8267 8268 if ((old_flags ^ flags) & IFF_MULTICAST) 8269 dev_change_rx_flags(dev, IFF_MULTICAST); 8270 8271 dev_set_rx_mode(dev); 8272 8273 /* 8274 * Have we downed the interface. We handle IFF_UP ourselves 8275 * according to user attempts to set it, rather than blindly 8276 * setting it. 8277 */ 8278 8279 ret = 0; 8280 if ((old_flags ^ flags) & IFF_UP) { 8281 if (old_flags & IFF_UP) 8282 __dev_close(dev); 8283 else 8284 ret = __dev_open(dev, extack); 8285 } 8286 8287 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8288 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8289 unsigned int old_flags = dev->flags; 8290 8291 dev->gflags ^= IFF_PROMISC; 8292 8293 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8294 if (dev->flags != old_flags) 8295 dev_set_rx_mode(dev); 8296 } 8297 8298 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8299 * is important. Some (broken) drivers set IFF_PROMISC, when 8300 * IFF_ALLMULTI is requested not asking us and not reporting. 8301 */ 8302 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8303 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8304 8305 dev->gflags ^= IFF_ALLMULTI; 8306 __dev_set_allmulti(dev, inc, false); 8307 } 8308 8309 return ret; 8310 } 8311 8312 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8313 unsigned int gchanges) 8314 { 8315 unsigned int changes = dev->flags ^ old_flags; 8316 8317 if (gchanges) 8318 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8319 8320 if (changes & IFF_UP) { 8321 if (dev->flags & IFF_UP) 8322 call_netdevice_notifiers(NETDEV_UP, dev); 8323 else 8324 call_netdevice_notifiers(NETDEV_DOWN, dev); 8325 } 8326 8327 if (dev->flags & IFF_UP && 8328 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8329 struct netdev_notifier_change_info change_info = { 8330 .info = { 8331 .dev = dev, 8332 }, 8333 .flags_changed = changes, 8334 }; 8335 8336 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8337 } 8338 } 8339 8340 /** 8341 * dev_change_flags - change device settings 8342 * @dev: device 8343 * @flags: device state flags 8344 * @extack: netlink extended ack 8345 * 8346 * Change settings on device based state flags. The flags are 8347 * in the userspace exported format. 8348 */ 8349 int dev_change_flags(struct net_device *dev, unsigned int flags, 8350 struct netlink_ext_ack *extack) 8351 { 8352 int ret; 8353 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8354 8355 ret = __dev_change_flags(dev, flags, extack); 8356 if (ret < 0) 8357 return ret; 8358 8359 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8360 __dev_notify_flags(dev, old_flags, changes); 8361 return ret; 8362 } 8363 EXPORT_SYMBOL(dev_change_flags); 8364 8365 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8366 { 8367 const struct net_device_ops *ops = dev->netdev_ops; 8368 8369 if (ops->ndo_change_mtu) 8370 return ops->ndo_change_mtu(dev, new_mtu); 8371 8372 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8373 WRITE_ONCE(dev->mtu, new_mtu); 8374 return 0; 8375 } 8376 EXPORT_SYMBOL(__dev_set_mtu); 8377 8378 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8379 struct netlink_ext_ack *extack) 8380 { 8381 /* MTU must be positive, and in range */ 8382 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8383 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8384 return -EINVAL; 8385 } 8386 8387 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8388 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8389 return -EINVAL; 8390 } 8391 return 0; 8392 } 8393 8394 /** 8395 * dev_set_mtu_ext - Change maximum transfer unit 8396 * @dev: device 8397 * @new_mtu: new transfer unit 8398 * @extack: netlink extended ack 8399 * 8400 * Change the maximum transfer size of the network device. 8401 */ 8402 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8403 struct netlink_ext_ack *extack) 8404 { 8405 int err, orig_mtu; 8406 8407 if (new_mtu == dev->mtu) 8408 return 0; 8409 8410 err = dev_validate_mtu(dev, new_mtu, extack); 8411 if (err) 8412 return err; 8413 8414 if (!netif_device_present(dev)) 8415 return -ENODEV; 8416 8417 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8418 err = notifier_to_errno(err); 8419 if (err) 8420 return err; 8421 8422 orig_mtu = dev->mtu; 8423 err = __dev_set_mtu(dev, new_mtu); 8424 8425 if (!err) { 8426 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8427 orig_mtu); 8428 err = notifier_to_errno(err); 8429 if (err) { 8430 /* setting mtu back and notifying everyone again, 8431 * so that they have a chance to revert changes. 8432 */ 8433 __dev_set_mtu(dev, orig_mtu); 8434 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8435 new_mtu); 8436 } 8437 } 8438 return err; 8439 } 8440 8441 int dev_set_mtu(struct net_device *dev, int new_mtu) 8442 { 8443 struct netlink_ext_ack extack; 8444 int err; 8445 8446 memset(&extack, 0, sizeof(extack)); 8447 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8448 if (err && extack._msg) 8449 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8450 return err; 8451 } 8452 EXPORT_SYMBOL(dev_set_mtu); 8453 8454 /** 8455 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8456 * @dev: device 8457 * @new_len: new tx queue length 8458 */ 8459 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8460 { 8461 unsigned int orig_len = dev->tx_queue_len; 8462 int res; 8463 8464 if (new_len != (unsigned int)new_len) 8465 return -ERANGE; 8466 8467 if (new_len != orig_len) { 8468 dev->tx_queue_len = new_len; 8469 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8470 res = notifier_to_errno(res); 8471 if (res) 8472 goto err_rollback; 8473 res = dev_qdisc_change_tx_queue_len(dev); 8474 if (res) 8475 goto err_rollback; 8476 } 8477 8478 return 0; 8479 8480 err_rollback: 8481 netdev_err(dev, "refused to change device tx_queue_len\n"); 8482 dev->tx_queue_len = orig_len; 8483 return res; 8484 } 8485 8486 /** 8487 * dev_set_group - Change group this device belongs to 8488 * @dev: device 8489 * @new_group: group this device should belong to 8490 */ 8491 void dev_set_group(struct net_device *dev, int new_group) 8492 { 8493 dev->group = new_group; 8494 } 8495 EXPORT_SYMBOL(dev_set_group); 8496 8497 /** 8498 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8499 * @dev: device 8500 * @addr: new address 8501 * @extack: netlink extended ack 8502 */ 8503 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8504 struct netlink_ext_ack *extack) 8505 { 8506 struct netdev_notifier_pre_changeaddr_info info = { 8507 .info.dev = dev, 8508 .info.extack = extack, 8509 .dev_addr = addr, 8510 }; 8511 int rc; 8512 8513 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8514 return notifier_to_errno(rc); 8515 } 8516 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8517 8518 /** 8519 * dev_set_mac_address - Change Media Access Control Address 8520 * @dev: device 8521 * @sa: new address 8522 * @extack: netlink extended ack 8523 * 8524 * Change the hardware (MAC) address of the device 8525 */ 8526 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8527 struct netlink_ext_ack *extack) 8528 { 8529 const struct net_device_ops *ops = dev->netdev_ops; 8530 int err; 8531 8532 if (!ops->ndo_set_mac_address) 8533 return -EOPNOTSUPP; 8534 if (sa->sa_family != dev->type) 8535 return -EINVAL; 8536 if (!netif_device_present(dev)) 8537 return -ENODEV; 8538 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8539 if (err) 8540 return err; 8541 err = ops->ndo_set_mac_address(dev, sa); 8542 if (err) 8543 return err; 8544 dev->addr_assign_type = NET_ADDR_SET; 8545 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8546 add_device_randomness(dev->dev_addr, dev->addr_len); 8547 return 0; 8548 } 8549 EXPORT_SYMBOL(dev_set_mac_address); 8550 8551 /** 8552 * dev_change_carrier - Change device carrier 8553 * @dev: device 8554 * @new_carrier: new value 8555 * 8556 * Change device carrier 8557 */ 8558 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8559 { 8560 const struct net_device_ops *ops = dev->netdev_ops; 8561 8562 if (!ops->ndo_change_carrier) 8563 return -EOPNOTSUPP; 8564 if (!netif_device_present(dev)) 8565 return -ENODEV; 8566 return ops->ndo_change_carrier(dev, new_carrier); 8567 } 8568 EXPORT_SYMBOL(dev_change_carrier); 8569 8570 /** 8571 * dev_get_phys_port_id - Get device physical port ID 8572 * @dev: device 8573 * @ppid: port ID 8574 * 8575 * Get device physical port ID 8576 */ 8577 int dev_get_phys_port_id(struct net_device *dev, 8578 struct netdev_phys_item_id *ppid) 8579 { 8580 const struct net_device_ops *ops = dev->netdev_ops; 8581 8582 if (!ops->ndo_get_phys_port_id) 8583 return -EOPNOTSUPP; 8584 return ops->ndo_get_phys_port_id(dev, ppid); 8585 } 8586 EXPORT_SYMBOL(dev_get_phys_port_id); 8587 8588 /** 8589 * dev_get_phys_port_name - Get device physical port name 8590 * @dev: device 8591 * @name: port name 8592 * @len: limit of bytes to copy to name 8593 * 8594 * Get device physical port name 8595 */ 8596 int dev_get_phys_port_name(struct net_device *dev, 8597 char *name, size_t len) 8598 { 8599 const struct net_device_ops *ops = dev->netdev_ops; 8600 int err; 8601 8602 if (ops->ndo_get_phys_port_name) { 8603 err = ops->ndo_get_phys_port_name(dev, name, len); 8604 if (err != -EOPNOTSUPP) 8605 return err; 8606 } 8607 return devlink_compat_phys_port_name_get(dev, name, len); 8608 } 8609 EXPORT_SYMBOL(dev_get_phys_port_name); 8610 8611 /** 8612 * dev_get_port_parent_id - Get the device's port parent identifier 8613 * @dev: network device 8614 * @ppid: pointer to a storage for the port's parent identifier 8615 * @recurse: allow/disallow recursion to lower devices 8616 * 8617 * Get the devices's port parent identifier 8618 */ 8619 int dev_get_port_parent_id(struct net_device *dev, 8620 struct netdev_phys_item_id *ppid, 8621 bool recurse) 8622 { 8623 const struct net_device_ops *ops = dev->netdev_ops; 8624 struct netdev_phys_item_id first = { }; 8625 struct net_device *lower_dev; 8626 struct list_head *iter; 8627 int err; 8628 8629 if (ops->ndo_get_port_parent_id) { 8630 err = ops->ndo_get_port_parent_id(dev, ppid); 8631 if (err != -EOPNOTSUPP) 8632 return err; 8633 } 8634 8635 err = devlink_compat_switch_id_get(dev, ppid); 8636 if (!err || err != -EOPNOTSUPP) 8637 return err; 8638 8639 if (!recurse) 8640 return -EOPNOTSUPP; 8641 8642 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8643 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 8644 if (err) 8645 break; 8646 if (!first.id_len) 8647 first = *ppid; 8648 else if (memcmp(&first, ppid, sizeof(*ppid))) 8649 return -ENODATA; 8650 } 8651 8652 return err; 8653 } 8654 EXPORT_SYMBOL(dev_get_port_parent_id); 8655 8656 /** 8657 * netdev_port_same_parent_id - Indicate if two network devices have 8658 * the same port parent identifier 8659 * @a: first network device 8660 * @b: second network device 8661 */ 8662 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8663 { 8664 struct netdev_phys_item_id a_id = { }; 8665 struct netdev_phys_item_id b_id = { }; 8666 8667 if (dev_get_port_parent_id(a, &a_id, true) || 8668 dev_get_port_parent_id(b, &b_id, true)) 8669 return false; 8670 8671 return netdev_phys_item_id_same(&a_id, &b_id); 8672 } 8673 EXPORT_SYMBOL(netdev_port_same_parent_id); 8674 8675 /** 8676 * dev_change_proto_down - update protocol port state information 8677 * @dev: device 8678 * @proto_down: new value 8679 * 8680 * This info can be used by switch drivers to set the phys state of the 8681 * port. 8682 */ 8683 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8684 { 8685 const struct net_device_ops *ops = dev->netdev_ops; 8686 8687 if (!ops->ndo_change_proto_down) 8688 return -EOPNOTSUPP; 8689 if (!netif_device_present(dev)) 8690 return -ENODEV; 8691 return ops->ndo_change_proto_down(dev, proto_down); 8692 } 8693 EXPORT_SYMBOL(dev_change_proto_down); 8694 8695 /** 8696 * dev_change_proto_down_generic - generic implementation for 8697 * ndo_change_proto_down that sets carrier according to 8698 * proto_down. 8699 * 8700 * @dev: device 8701 * @proto_down: new value 8702 */ 8703 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8704 { 8705 if (proto_down) 8706 netif_carrier_off(dev); 8707 else 8708 netif_carrier_on(dev); 8709 dev->proto_down = proto_down; 8710 return 0; 8711 } 8712 EXPORT_SYMBOL(dev_change_proto_down_generic); 8713 8714 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 8715 enum bpf_netdev_command cmd) 8716 { 8717 struct netdev_bpf xdp; 8718 8719 if (!bpf_op) 8720 return 0; 8721 8722 memset(&xdp, 0, sizeof(xdp)); 8723 xdp.command = cmd; 8724 8725 /* Query must always succeed. */ 8726 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 8727 8728 return xdp.prog_id; 8729 } 8730 8731 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 8732 struct netlink_ext_ack *extack, u32 flags, 8733 struct bpf_prog *prog) 8734 { 8735 bool non_hw = !(flags & XDP_FLAGS_HW_MODE); 8736 struct bpf_prog *prev_prog = NULL; 8737 struct netdev_bpf xdp; 8738 int err; 8739 8740 if (non_hw) { 8741 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op, 8742 XDP_QUERY_PROG)); 8743 if (IS_ERR(prev_prog)) 8744 prev_prog = NULL; 8745 } 8746 8747 memset(&xdp, 0, sizeof(xdp)); 8748 if (flags & XDP_FLAGS_HW_MODE) 8749 xdp.command = XDP_SETUP_PROG_HW; 8750 else 8751 xdp.command = XDP_SETUP_PROG; 8752 xdp.extack = extack; 8753 xdp.flags = flags; 8754 xdp.prog = prog; 8755 8756 err = bpf_op(dev, &xdp); 8757 if (!err && non_hw) 8758 bpf_prog_change_xdp(prev_prog, prog); 8759 8760 if (prev_prog) 8761 bpf_prog_put(prev_prog); 8762 8763 return err; 8764 } 8765 8766 static void dev_xdp_uninstall(struct net_device *dev) 8767 { 8768 struct netdev_bpf xdp; 8769 bpf_op_t ndo_bpf; 8770 8771 /* Remove generic XDP */ 8772 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 8773 8774 /* Remove from the driver */ 8775 ndo_bpf = dev->netdev_ops->ndo_bpf; 8776 if (!ndo_bpf) 8777 return; 8778 8779 memset(&xdp, 0, sizeof(xdp)); 8780 xdp.command = XDP_QUERY_PROG; 8781 WARN_ON(ndo_bpf(dev, &xdp)); 8782 if (xdp.prog_id) 8783 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8784 NULL)); 8785 8786 /* Remove HW offload */ 8787 memset(&xdp, 0, sizeof(xdp)); 8788 xdp.command = XDP_QUERY_PROG_HW; 8789 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 8790 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8791 NULL)); 8792 } 8793 8794 /** 8795 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 8796 * @dev: device 8797 * @extack: netlink extended ack 8798 * @fd: new program fd or negative value to clear 8799 * @expected_fd: old program fd that userspace expects to replace or clear 8800 * @flags: xdp-related flags 8801 * 8802 * Set or clear a bpf program for a device 8803 */ 8804 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 8805 int fd, int expected_fd, u32 flags) 8806 { 8807 const struct net_device_ops *ops = dev->netdev_ops; 8808 enum bpf_netdev_command query; 8809 u32 prog_id, expected_id = 0; 8810 bpf_op_t bpf_op, bpf_chk; 8811 struct bpf_prog *prog; 8812 bool offload; 8813 int err; 8814 8815 ASSERT_RTNL(); 8816 8817 offload = flags & XDP_FLAGS_HW_MODE; 8818 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 8819 8820 bpf_op = bpf_chk = ops->ndo_bpf; 8821 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) { 8822 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode"); 8823 return -EOPNOTSUPP; 8824 } 8825 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 8826 bpf_op = generic_xdp_install; 8827 if (bpf_op == bpf_chk) 8828 bpf_chk = generic_xdp_install; 8829 8830 prog_id = __dev_xdp_query(dev, bpf_op, query); 8831 if (flags & XDP_FLAGS_REPLACE) { 8832 if (expected_fd >= 0) { 8833 prog = bpf_prog_get_type_dev(expected_fd, 8834 BPF_PROG_TYPE_XDP, 8835 bpf_op == ops->ndo_bpf); 8836 if (IS_ERR(prog)) 8837 return PTR_ERR(prog); 8838 expected_id = prog->aux->id; 8839 bpf_prog_put(prog); 8840 } 8841 8842 if (prog_id != expected_id) { 8843 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 8844 return -EEXIST; 8845 } 8846 } 8847 if (fd >= 0) { 8848 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) { 8849 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time"); 8850 return -EEXIST; 8851 } 8852 8853 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) { 8854 NL_SET_ERR_MSG(extack, "XDP program already attached"); 8855 return -EBUSY; 8856 } 8857 8858 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 8859 bpf_op == ops->ndo_bpf); 8860 if (IS_ERR(prog)) 8861 return PTR_ERR(prog); 8862 8863 if (!offload && bpf_prog_is_dev_bound(prog->aux)) { 8864 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 8865 bpf_prog_put(prog); 8866 return -EINVAL; 8867 } 8868 8869 if (prog->expected_attach_type == BPF_XDP_DEVMAP) { 8870 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 8871 bpf_prog_put(prog); 8872 return -EINVAL; 8873 } 8874 8875 /* prog->aux->id may be 0 for orphaned device-bound progs */ 8876 if (prog->aux->id && prog->aux->id == prog_id) { 8877 bpf_prog_put(prog); 8878 return 0; 8879 } 8880 } else { 8881 if (!prog_id) 8882 return 0; 8883 prog = NULL; 8884 } 8885 8886 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 8887 if (err < 0 && prog) 8888 bpf_prog_put(prog); 8889 8890 return err; 8891 } 8892 8893 /** 8894 * dev_new_index - allocate an ifindex 8895 * @net: the applicable net namespace 8896 * 8897 * Returns a suitable unique value for a new device interface 8898 * number. The caller must hold the rtnl semaphore or the 8899 * dev_base_lock to be sure it remains unique. 8900 */ 8901 static int dev_new_index(struct net *net) 8902 { 8903 int ifindex = net->ifindex; 8904 8905 for (;;) { 8906 if (++ifindex <= 0) 8907 ifindex = 1; 8908 if (!__dev_get_by_index(net, ifindex)) 8909 return net->ifindex = ifindex; 8910 } 8911 } 8912 8913 /* Delayed registration/unregisteration */ 8914 static LIST_HEAD(net_todo_list); 8915 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8916 8917 static void net_set_todo(struct net_device *dev) 8918 { 8919 list_add_tail(&dev->todo_list, &net_todo_list); 8920 dev_net(dev)->dev_unreg_count++; 8921 } 8922 8923 static void rollback_registered_many(struct list_head *head) 8924 { 8925 struct net_device *dev, *tmp; 8926 LIST_HEAD(close_head); 8927 8928 BUG_ON(dev_boot_phase); 8929 ASSERT_RTNL(); 8930 8931 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8932 /* Some devices call without registering 8933 * for initialization unwind. Remove those 8934 * devices and proceed with the remaining. 8935 */ 8936 if (dev->reg_state == NETREG_UNINITIALIZED) { 8937 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8938 dev->name, dev); 8939 8940 WARN_ON(1); 8941 list_del(&dev->unreg_list); 8942 continue; 8943 } 8944 dev->dismantle = true; 8945 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8946 } 8947 8948 /* If device is running, close it first. */ 8949 list_for_each_entry(dev, head, unreg_list) 8950 list_add_tail(&dev->close_list, &close_head); 8951 dev_close_many(&close_head, true); 8952 8953 list_for_each_entry(dev, head, unreg_list) { 8954 /* And unlink it from device chain. */ 8955 unlist_netdevice(dev); 8956 8957 dev->reg_state = NETREG_UNREGISTERING; 8958 } 8959 flush_all_backlogs(); 8960 8961 synchronize_net(); 8962 8963 list_for_each_entry(dev, head, unreg_list) { 8964 struct sk_buff *skb = NULL; 8965 8966 /* Shutdown queueing discipline. */ 8967 dev_shutdown(dev); 8968 8969 dev_xdp_uninstall(dev); 8970 8971 /* Notify protocols, that we are about to destroy 8972 * this device. They should clean all the things. 8973 */ 8974 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8975 8976 if (!dev->rtnl_link_ops || 8977 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8978 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8979 GFP_KERNEL, NULL, 0); 8980 8981 /* 8982 * Flush the unicast and multicast chains 8983 */ 8984 dev_uc_flush(dev); 8985 dev_mc_flush(dev); 8986 8987 netdev_name_node_alt_flush(dev); 8988 netdev_name_node_free(dev->name_node); 8989 8990 if (dev->netdev_ops->ndo_uninit) 8991 dev->netdev_ops->ndo_uninit(dev); 8992 8993 if (skb) 8994 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8995 8996 /* Notifier chain MUST detach us all upper devices. */ 8997 WARN_ON(netdev_has_any_upper_dev(dev)); 8998 WARN_ON(netdev_has_any_lower_dev(dev)); 8999 9000 /* Remove entries from kobject tree */ 9001 netdev_unregister_kobject(dev); 9002 #ifdef CONFIG_XPS 9003 /* Remove XPS queueing entries */ 9004 netif_reset_xps_queues_gt(dev, 0); 9005 #endif 9006 } 9007 9008 synchronize_net(); 9009 9010 list_for_each_entry(dev, head, unreg_list) 9011 dev_put(dev); 9012 } 9013 9014 static void rollback_registered(struct net_device *dev) 9015 { 9016 LIST_HEAD(single); 9017 9018 list_add(&dev->unreg_list, &single); 9019 rollback_registered_many(&single); 9020 list_del(&single); 9021 } 9022 9023 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9024 struct net_device *upper, netdev_features_t features) 9025 { 9026 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9027 netdev_features_t feature; 9028 int feature_bit; 9029 9030 for_each_netdev_feature(upper_disables, feature_bit) { 9031 feature = __NETIF_F_BIT(feature_bit); 9032 if (!(upper->wanted_features & feature) 9033 && (features & feature)) { 9034 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9035 &feature, upper->name); 9036 features &= ~feature; 9037 } 9038 } 9039 9040 return features; 9041 } 9042 9043 static void netdev_sync_lower_features(struct net_device *upper, 9044 struct net_device *lower, netdev_features_t features) 9045 { 9046 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9047 netdev_features_t feature; 9048 int feature_bit; 9049 9050 for_each_netdev_feature(upper_disables, feature_bit) { 9051 feature = __NETIF_F_BIT(feature_bit); 9052 if (!(features & feature) && (lower->features & feature)) { 9053 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9054 &feature, lower->name); 9055 lower->wanted_features &= ~feature; 9056 __netdev_update_features(lower); 9057 9058 if (unlikely(lower->features & feature)) 9059 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9060 &feature, lower->name); 9061 else 9062 netdev_features_change(lower); 9063 } 9064 } 9065 } 9066 9067 static netdev_features_t netdev_fix_features(struct net_device *dev, 9068 netdev_features_t features) 9069 { 9070 /* Fix illegal checksum combinations */ 9071 if ((features & NETIF_F_HW_CSUM) && 9072 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9073 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9074 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9075 } 9076 9077 /* TSO requires that SG is present as well. */ 9078 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9079 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9080 features &= ~NETIF_F_ALL_TSO; 9081 } 9082 9083 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9084 !(features & NETIF_F_IP_CSUM)) { 9085 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9086 features &= ~NETIF_F_TSO; 9087 features &= ~NETIF_F_TSO_ECN; 9088 } 9089 9090 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9091 !(features & NETIF_F_IPV6_CSUM)) { 9092 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9093 features &= ~NETIF_F_TSO6; 9094 } 9095 9096 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9097 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9098 features &= ~NETIF_F_TSO_MANGLEID; 9099 9100 /* TSO ECN requires that TSO is present as well. */ 9101 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9102 features &= ~NETIF_F_TSO_ECN; 9103 9104 /* Software GSO depends on SG. */ 9105 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9106 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9107 features &= ~NETIF_F_GSO; 9108 } 9109 9110 /* GSO partial features require GSO partial be set */ 9111 if ((features & dev->gso_partial_features) && 9112 !(features & NETIF_F_GSO_PARTIAL)) { 9113 netdev_dbg(dev, 9114 "Dropping partially supported GSO features since no GSO partial.\n"); 9115 features &= ~dev->gso_partial_features; 9116 } 9117 9118 if (!(features & NETIF_F_RXCSUM)) { 9119 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9120 * successfully merged by hardware must also have the 9121 * checksum verified by hardware. If the user does not 9122 * want to enable RXCSUM, logically, we should disable GRO_HW. 9123 */ 9124 if (features & NETIF_F_GRO_HW) { 9125 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9126 features &= ~NETIF_F_GRO_HW; 9127 } 9128 } 9129 9130 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9131 if (features & NETIF_F_RXFCS) { 9132 if (features & NETIF_F_LRO) { 9133 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9134 features &= ~NETIF_F_LRO; 9135 } 9136 9137 if (features & NETIF_F_GRO_HW) { 9138 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9139 features &= ~NETIF_F_GRO_HW; 9140 } 9141 } 9142 9143 return features; 9144 } 9145 9146 int __netdev_update_features(struct net_device *dev) 9147 { 9148 struct net_device *upper, *lower; 9149 netdev_features_t features; 9150 struct list_head *iter; 9151 int err = -1; 9152 9153 ASSERT_RTNL(); 9154 9155 features = netdev_get_wanted_features(dev); 9156 9157 if (dev->netdev_ops->ndo_fix_features) 9158 features = dev->netdev_ops->ndo_fix_features(dev, features); 9159 9160 /* driver might be less strict about feature dependencies */ 9161 features = netdev_fix_features(dev, features); 9162 9163 /* some features can't be enabled if they're off an an upper device */ 9164 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9165 features = netdev_sync_upper_features(dev, upper, features); 9166 9167 if (dev->features == features) 9168 goto sync_lower; 9169 9170 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9171 &dev->features, &features); 9172 9173 if (dev->netdev_ops->ndo_set_features) 9174 err = dev->netdev_ops->ndo_set_features(dev, features); 9175 else 9176 err = 0; 9177 9178 if (unlikely(err < 0)) { 9179 netdev_err(dev, 9180 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9181 err, &features, &dev->features); 9182 /* return non-0 since some features might have changed and 9183 * it's better to fire a spurious notification than miss it 9184 */ 9185 return -1; 9186 } 9187 9188 sync_lower: 9189 /* some features must be disabled on lower devices when disabled 9190 * on an upper device (think: bonding master or bridge) 9191 */ 9192 netdev_for_each_lower_dev(dev, lower, iter) 9193 netdev_sync_lower_features(dev, lower, features); 9194 9195 if (!err) { 9196 netdev_features_t diff = features ^ dev->features; 9197 9198 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9199 /* udp_tunnel_{get,drop}_rx_info both need 9200 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9201 * device, or they won't do anything. 9202 * Thus we need to update dev->features 9203 * *before* calling udp_tunnel_get_rx_info, 9204 * but *after* calling udp_tunnel_drop_rx_info. 9205 */ 9206 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9207 dev->features = features; 9208 udp_tunnel_get_rx_info(dev); 9209 } else { 9210 udp_tunnel_drop_rx_info(dev); 9211 } 9212 } 9213 9214 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9215 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9216 dev->features = features; 9217 err |= vlan_get_rx_ctag_filter_info(dev); 9218 } else { 9219 vlan_drop_rx_ctag_filter_info(dev); 9220 } 9221 } 9222 9223 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9224 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9225 dev->features = features; 9226 err |= vlan_get_rx_stag_filter_info(dev); 9227 } else { 9228 vlan_drop_rx_stag_filter_info(dev); 9229 } 9230 } 9231 9232 dev->features = features; 9233 } 9234 9235 return err < 0 ? 0 : 1; 9236 } 9237 9238 /** 9239 * netdev_update_features - recalculate device features 9240 * @dev: the device to check 9241 * 9242 * Recalculate dev->features set and send notifications if it 9243 * has changed. Should be called after driver or hardware dependent 9244 * conditions might have changed that influence the features. 9245 */ 9246 void netdev_update_features(struct net_device *dev) 9247 { 9248 if (__netdev_update_features(dev)) 9249 netdev_features_change(dev); 9250 } 9251 EXPORT_SYMBOL(netdev_update_features); 9252 9253 /** 9254 * netdev_change_features - recalculate device features 9255 * @dev: the device to check 9256 * 9257 * Recalculate dev->features set and send notifications even 9258 * if they have not changed. Should be called instead of 9259 * netdev_update_features() if also dev->vlan_features might 9260 * have changed to allow the changes to be propagated to stacked 9261 * VLAN devices. 9262 */ 9263 void netdev_change_features(struct net_device *dev) 9264 { 9265 __netdev_update_features(dev); 9266 netdev_features_change(dev); 9267 } 9268 EXPORT_SYMBOL(netdev_change_features); 9269 9270 /** 9271 * netif_stacked_transfer_operstate - transfer operstate 9272 * @rootdev: the root or lower level device to transfer state from 9273 * @dev: the device to transfer operstate to 9274 * 9275 * Transfer operational state from root to device. This is normally 9276 * called when a stacking relationship exists between the root 9277 * device and the device(a leaf device). 9278 */ 9279 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9280 struct net_device *dev) 9281 { 9282 if (rootdev->operstate == IF_OPER_DORMANT) 9283 netif_dormant_on(dev); 9284 else 9285 netif_dormant_off(dev); 9286 9287 if (rootdev->operstate == IF_OPER_TESTING) 9288 netif_testing_on(dev); 9289 else 9290 netif_testing_off(dev); 9291 9292 if (netif_carrier_ok(rootdev)) 9293 netif_carrier_on(dev); 9294 else 9295 netif_carrier_off(dev); 9296 } 9297 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9298 9299 static int netif_alloc_rx_queues(struct net_device *dev) 9300 { 9301 unsigned int i, count = dev->num_rx_queues; 9302 struct netdev_rx_queue *rx; 9303 size_t sz = count * sizeof(*rx); 9304 int err = 0; 9305 9306 BUG_ON(count < 1); 9307 9308 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9309 if (!rx) 9310 return -ENOMEM; 9311 9312 dev->_rx = rx; 9313 9314 for (i = 0; i < count; i++) { 9315 rx[i].dev = dev; 9316 9317 /* XDP RX-queue setup */ 9318 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 9319 if (err < 0) 9320 goto err_rxq_info; 9321 } 9322 return 0; 9323 9324 err_rxq_info: 9325 /* Rollback successful reg's and free other resources */ 9326 while (i--) 9327 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9328 kvfree(dev->_rx); 9329 dev->_rx = NULL; 9330 return err; 9331 } 9332 9333 static void netif_free_rx_queues(struct net_device *dev) 9334 { 9335 unsigned int i, count = dev->num_rx_queues; 9336 9337 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9338 if (!dev->_rx) 9339 return; 9340 9341 for (i = 0; i < count; i++) 9342 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9343 9344 kvfree(dev->_rx); 9345 } 9346 9347 static void netdev_init_one_queue(struct net_device *dev, 9348 struct netdev_queue *queue, void *_unused) 9349 { 9350 /* Initialize queue lock */ 9351 spin_lock_init(&queue->_xmit_lock); 9352 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 9353 queue->xmit_lock_owner = -1; 9354 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9355 queue->dev = dev; 9356 #ifdef CONFIG_BQL 9357 dql_init(&queue->dql, HZ); 9358 #endif 9359 } 9360 9361 static void netif_free_tx_queues(struct net_device *dev) 9362 { 9363 kvfree(dev->_tx); 9364 } 9365 9366 static int netif_alloc_netdev_queues(struct net_device *dev) 9367 { 9368 unsigned int count = dev->num_tx_queues; 9369 struct netdev_queue *tx; 9370 size_t sz = count * sizeof(*tx); 9371 9372 if (count < 1 || count > 0xffff) 9373 return -EINVAL; 9374 9375 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9376 if (!tx) 9377 return -ENOMEM; 9378 9379 dev->_tx = tx; 9380 9381 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9382 spin_lock_init(&dev->tx_global_lock); 9383 9384 return 0; 9385 } 9386 9387 void netif_tx_stop_all_queues(struct net_device *dev) 9388 { 9389 unsigned int i; 9390 9391 for (i = 0; i < dev->num_tx_queues; i++) { 9392 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9393 9394 netif_tx_stop_queue(txq); 9395 } 9396 } 9397 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9398 9399 /** 9400 * register_netdevice - register a network device 9401 * @dev: device to register 9402 * 9403 * Take a completed network device structure and add it to the kernel 9404 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9405 * chain. 0 is returned on success. A negative errno code is returned 9406 * on a failure to set up the device, or if the name is a duplicate. 9407 * 9408 * Callers must hold the rtnl semaphore. You may want 9409 * register_netdev() instead of this. 9410 * 9411 * BUGS: 9412 * The locking appears insufficient to guarantee two parallel registers 9413 * will not get the same name. 9414 */ 9415 9416 int register_netdevice(struct net_device *dev) 9417 { 9418 int ret; 9419 struct net *net = dev_net(dev); 9420 9421 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9422 NETDEV_FEATURE_COUNT); 9423 BUG_ON(dev_boot_phase); 9424 ASSERT_RTNL(); 9425 9426 might_sleep(); 9427 9428 /* When net_device's are persistent, this will be fatal. */ 9429 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9430 BUG_ON(!net); 9431 9432 ret = ethtool_check_ops(dev->ethtool_ops); 9433 if (ret) 9434 return ret; 9435 9436 spin_lock_init(&dev->addr_list_lock); 9437 netdev_set_addr_lockdep_class(dev); 9438 9439 ret = dev_get_valid_name(net, dev, dev->name); 9440 if (ret < 0) 9441 goto out; 9442 9443 ret = -ENOMEM; 9444 dev->name_node = netdev_name_node_head_alloc(dev); 9445 if (!dev->name_node) 9446 goto out; 9447 9448 /* Init, if this function is available */ 9449 if (dev->netdev_ops->ndo_init) { 9450 ret = dev->netdev_ops->ndo_init(dev); 9451 if (ret) { 9452 if (ret > 0) 9453 ret = -EIO; 9454 goto err_free_name; 9455 } 9456 } 9457 9458 if (((dev->hw_features | dev->features) & 9459 NETIF_F_HW_VLAN_CTAG_FILTER) && 9460 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9461 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9462 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9463 ret = -EINVAL; 9464 goto err_uninit; 9465 } 9466 9467 ret = -EBUSY; 9468 if (!dev->ifindex) 9469 dev->ifindex = dev_new_index(net); 9470 else if (__dev_get_by_index(net, dev->ifindex)) 9471 goto err_uninit; 9472 9473 /* Transfer changeable features to wanted_features and enable 9474 * software offloads (GSO and GRO). 9475 */ 9476 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 9477 dev->features |= NETIF_F_SOFT_FEATURES; 9478 9479 if (dev->netdev_ops->ndo_udp_tunnel_add) { 9480 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9481 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9482 } 9483 9484 dev->wanted_features = dev->features & dev->hw_features; 9485 9486 if (!(dev->flags & IFF_LOOPBACK)) 9487 dev->hw_features |= NETIF_F_NOCACHE_COPY; 9488 9489 /* If IPv4 TCP segmentation offload is supported we should also 9490 * allow the device to enable segmenting the frame with the option 9491 * of ignoring a static IP ID value. This doesn't enable the 9492 * feature itself but allows the user to enable it later. 9493 */ 9494 if (dev->hw_features & NETIF_F_TSO) 9495 dev->hw_features |= NETIF_F_TSO_MANGLEID; 9496 if (dev->vlan_features & NETIF_F_TSO) 9497 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 9498 if (dev->mpls_features & NETIF_F_TSO) 9499 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 9500 if (dev->hw_enc_features & NETIF_F_TSO) 9501 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 9502 9503 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 9504 */ 9505 dev->vlan_features |= NETIF_F_HIGHDMA; 9506 9507 /* Make NETIF_F_SG inheritable to tunnel devices. 9508 */ 9509 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 9510 9511 /* Make NETIF_F_SG inheritable to MPLS. 9512 */ 9513 dev->mpls_features |= NETIF_F_SG; 9514 9515 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 9516 ret = notifier_to_errno(ret); 9517 if (ret) 9518 goto err_uninit; 9519 9520 ret = netdev_register_kobject(dev); 9521 if (ret) { 9522 dev->reg_state = NETREG_UNREGISTERED; 9523 goto err_uninit; 9524 } 9525 dev->reg_state = NETREG_REGISTERED; 9526 9527 __netdev_update_features(dev); 9528 9529 /* 9530 * Default initial state at registry is that the 9531 * device is present. 9532 */ 9533 9534 set_bit(__LINK_STATE_PRESENT, &dev->state); 9535 9536 linkwatch_init_dev(dev); 9537 9538 dev_init_scheduler(dev); 9539 dev_hold(dev); 9540 list_netdevice(dev); 9541 add_device_randomness(dev->dev_addr, dev->addr_len); 9542 9543 /* If the device has permanent device address, driver should 9544 * set dev_addr and also addr_assign_type should be set to 9545 * NET_ADDR_PERM (default value). 9546 */ 9547 if (dev->addr_assign_type == NET_ADDR_PERM) 9548 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 9549 9550 /* Notify protocols, that a new device appeared. */ 9551 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 9552 ret = notifier_to_errno(ret); 9553 if (ret) { 9554 rollback_registered(dev); 9555 rcu_barrier(); 9556 9557 dev->reg_state = NETREG_UNREGISTERED; 9558 } 9559 /* 9560 * Prevent userspace races by waiting until the network 9561 * device is fully setup before sending notifications. 9562 */ 9563 if (!dev->rtnl_link_ops || 9564 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 9565 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9566 9567 out: 9568 return ret; 9569 9570 err_uninit: 9571 if (dev->netdev_ops->ndo_uninit) 9572 dev->netdev_ops->ndo_uninit(dev); 9573 if (dev->priv_destructor) 9574 dev->priv_destructor(dev); 9575 err_free_name: 9576 netdev_name_node_free(dev->name_node); 9577 goto out; 9578 } 9579 EXPORT_SYMBOL(register_netdevice); 9580 9581 /** 9582 * init_dummy_netdev - init a dummy network device for NAPI 9583 * @dev: device to init 9584 * 9585 * This takes a network device structure and initialize the minimum 9586 * amount of fields so it can be used to schedule NAPI polls without 9587 * registering a full blown interface. This is to be used by drivers 9588 * that need to tie several hardware interfaces to a single NAPI 9589 * poll scheduler due to HW limitations. 9590 */ 9591 int init_dummy_netdev(struct net_device *dev) 9592 { 9593 /* Clear everything. Note we don't initialize spinlocks 9594 * are they aren't supposed to be taken by any of the 9595 * NAPI code and this dummy netdev is supposed to be 9596 * only ever used for NAPI polls 9597 */ 9598 memset(dev, 0, sizeof(struct net_device)); 9599 9600 /* make sure we BUG if trying to hit standard 9601 * register/unregister code path 9602 */ 9603 dev->reg_state = NETREG_DUMMY; 9604 9605 /* NAPI wants this */ 9606 INIT_LIST_HEAD(&dev->napi_list); 9607 9608 /* a dummy interface is started by default */ 9609 set_bit(__LINK_STATE_PRESENT, &dev->state); 9610 set_bit(__LINK_STATE_START, &dev->state); 9611 9612 /* napi_busy_loop stats accounting wants this */ 9613 dev_net_set(dev, &init_net); 9614 9615 /* Note : We dont allocate pcpu_refcnt for dummy devices, 9616 * because users of this 'device' dont need to change 9617 * its refcount. 9618 */ 9619 9620 return 0; 9621 } 9622 EXPORT_SYMBOL_GPL(init_dummy_netdev); 9623 9624 9625 /** 9626 * register_netdev - register a network device 9627 * @dev: device to register 9628 * 9629 * Take a completed network device structure and add it to the kernel 9630 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9631 * chain. 0 is returned on success. A negative errno code is returned 9632 * on a failure to set up the device, or if the name is a duplicate. 9633 * 9634 * This is a wrapper around register_netdevice that takes the rtnl semaphore 9635 * and expands the device name if you passed a format string to 9636 * alloc_netdev. 9637 */ 9638 int register_netdev(struct net_device *dev) 9639 { 9640 int err; 9641 9642 if (rtnl_lock_killable()) 9643 return -EINTR; 9644 err = register_netdevice(dev); 9645 rtnl_unlock(); 9646 return err; 9647 } 9648 EXPORT_SYMBOL(register_netdev); 9649 9650 int netdev_refcnt_read(const struct net_device *dev) 9651 { 9652 int i, refcnt = 0; 9653 9654 for_each_possible_cpu(i) 9655 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 9656 return refcnt; 9657 } 9658 EXPORT_SYMBOL(netdev_refcnt_read); 9659 9660 /** 9661 * netdev_wait_allrefs - wait until all references are gone. 9662 * @dev: target net_device 9663 * 9664 * This is called when unregistering network devices. 9665 * 9666 * Any protocol or device that holds a reference should register 9667 * for netdevice notification, and cleanup and put back the 9668 * reference if they receive an UNREGISTER event. 9669 * We can get stuck here if buggy protocols don't correctly 9670 * call dev_put. 9671 */ 9672 static void netdev_wait_allrefs(struct net_device *dev) 9673 { 9674 unsigned long rebroadcast_time, warning_time; 9675 int refcnt; 9676 9677 linkwatch_forget_dev(dev); 9678 9679 rebroadcast_time = warning_time = jiffies; 9680 refcnt = netdev_refcnt_read(dev); 9681 9682 while (refcnt != 0) { 9683 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 9684 rtnl_lock(); 9685 9686 /* Rebroadcast unregister notification */ 9687 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9688 9689 __rtnl_unlock(); 9690 rcu_barrier(); 9691 rtnl_lock(); 9692 9693 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 9694 &dev->state)) { 9695 /* We must not have linkwatch events 9696 * pending on unregister. If this 9697 * happens, we simply run the queue 9698 * unscheduled, resulting in a noop 9699 * for this device. 9700 */ 9701 linkwatch_run_queue(); 9702 } 9703 9704 __rtnl_unlock(); 9705 9706 rebroadcast_time = jiffies; 9707 } 9708 9709 msleep(250); 9710 9711 refcnt = netdev_refcnt_read(dev); 9712 9713 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 9714 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 9715 dev->name, refcnt); 9716 warning_time = jiffies; 9717 } 9718 } 9719 } 9720 9721 /* The sequence is: 9722 * 9723 * rtnl_lock(); 9724 * ... 9725 * register_netdevice(x1); 9726 * register_netdevice(x2); 9727 * ... 9728 * unregister_netdevice(y1); 9729 * unregister_netdevice(y2); 9730 * ... 9731 * rtnl_unlock(); 9732 * free_netdev(y1); 9733 * free_netdev(y2); 9734 * 9735 * We are invoked by rtnl_unlock(). 9736 * This allows us to deal with problems: 9737 * 1) We can delete sysfs objects which invoke hotplug 9738 * without deadlocking with linkwatch via keventd. 9739 * 2) Since we run with the RTNL semaphore not held, we can sleep 9740 * safely in order to wait for the netdev refcnt to drop to zero. 9741 * 9742 * We must not return until all unregister events added during 9743 * the interval the lock was held have been completed. 9744 */ 9745 void netdev_run_todo(void) 9746 { 9747 struct list_head list; 9748 9749 /* Snapshot list, allow later requests */ 9750 list_replace_init(&net_todo_list, &list); 9751 9752 __rtnl_unlock(); 9753 9754 9755 /* Wait for rcu callbacks to finish before next phase */ 9756 if (!list_empty(&list)) 9757 rcu_barrier(); 9758 9759 while (!list_empty(&list)) { 9760 struct net_device *dev 9761 = list_first_entry(&list, struct net_device, todo_list); 9762 list_del(&dev->todo_list); 9763 9764 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 9765 pr_err("network todo '%s' but state %d\n", 9766 dev->name, dev->reg_state); 9767 dump_stack(); 9768 continue; 9769 } 9770 9771 dev->reg_state = NETREG_UNREGISTERED; 9772 9773 netdev_wait_allrefs(dev); 9774 9775 /* paranoia */ 9776 BUG_ON(netdev_refcnt_read(dev)); 9777 BUG_ON(!list_empty(&dev->ptype_all)); 9778 BUG_ON(!list_empty(&dev->ptype_specific)); 9779 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 9780 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 9781 #if IS_ENABLED(CONFIG_DECNET) 9782 WARN_ON(dev->dn_ptr); 9783 #endif 9784 if (dev->priv_destructor) 9785 dev->priv_destructor(dev); 9786 if (dev->needs_free_netdev) 9787 free_netdev(dev); 9788 9789 /* Report a network device has been unregistered */ 9790 rtnl_lock(); 9791 dev_net(dev)->dev_unreg_count--; 9792 __rtnl_unlock(); 9793 wake_up(&netdev_unregistering_wq); 9794 9795 /* Free network device */ 9796 kobject_put(&dev->dev.kobj); 9797 } 9798 } 9799 9800 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 9801 * all the same fields in the same order as net_device_stats, with only 9802 * the type differing, but rtnl_link_stats64 may have additional fields 9803 * at the end for newer counters. 9804 */ 9805 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 9806 const struct net_device_stats *netdev_stats) 9807 { 9808 #if BITS_PER_LONG == 64 9809 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 9810 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 9811 /* zero out counters that only exist in rtnl_link_stats64 */ 9812 memset((char *)stats64 + sizeof(*netdev_stats), 0, 9813 sizeof(*stats64) - sizeof(*netdev_stats)); 9814 #else 9815 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 9816 const unsigned long *src = (const unsigned long *)netdev_stats; 9817 u64 *dst = (u64 *)stats64; 9818 9819 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 9820 for (i = 0; i < n; i++) 9821 dst[i] = src[i]; 9822 /* zero out counters that only exist in rtnl_link_stats64 */ 9823 memset((char *)stats64 + n * sizeof(u64), 0, 9824 sizeof(*stats64) - n * sizeof(u64)); 9825 #endif 9826 } 9827 EXPORT_SYMBOL(netdev_stats_to_stats64); 9828 9829 /** 9830 * dev_get_stats - get network device statistics 9831 * @dev: device to get statistics from 9832 * @storage: place to store stats 9833 * 9834 * Get network statistics from device. Return @storage. 9835 * The device driver may provide its own method by setting 9836 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 9837 * otherwise the internal statistics structure is used. 9838 */ 9839 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 9840 struct rtnl_link_stats64 *storage) 9841 { 9842 const struct net_device_ops *ops = dev->netdev_ops; 9843 9844 if (ops->ndo_get_stats64) { 9845 memset(storage, 0, sizeof(*storage)); 9846 ops->ndo_get_stats64(dev, storage); 9847 } else if (ops->ndo_get_stats) { 9848 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 9849 } else { 9850 netdev_stats_to_stats64(storage, &dev->stats); 9851 } 9852 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 9853 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 9854 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 9855 return storage; 9856 } 9857 EXPORT_SYMBOL(dev_get_stats); 9858 9859 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 9860 { 9861 struct netdev_queue *queue = dev_ingress_queue(dev); 9862 9863 #ifdef CONFIG_NET_CLS_ACT 9864 if (queue) 9865 return queue; 9866 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 9867 if (!queue) 9868 return NULL; 9869 netdev_init_one_queue(dev, queue, NULL); 9870 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 9871 queue->qdisc_sleeping = &noop_qdisc; 9872 rcu_assign_pointer(dev->ingress_queue, queue); 9873 #endif 9874 return queue; 9875 } 9876 9877 static const struct ethtool_ops default_ethtool_ops; 9878 9879 void netdev_set_default_ethtool_ops(struct net_device *dev, 9880 const struct ethtool_ops *ops) 9881 { 9882 if (dev->ethtool_ops == &default_ethtool_ops) 9883 dev->ethtool_ops = ops; 9884 } 9885 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 9886 9887 void netdev_freemem(struct net_device *dev) 9888 { 9889 char *addr = (char *)dev - dev->padded; 9890 9891 kvfree(addr); 9892 } 9893 9894 /** 9895 * alloc_netdev_mqs - allocate network device 9896 * @sizeof_priv: size of private data to allocate space for 9897 * @name: device name format string 9898 * @name_assign_type: origin of device name 9899 * @setup: callback to initialize device 9900 * @txqs: the number of TX subqueues to allocate 9901 * @rxqs: the number of RX subqueues to allocate 9902 * 9903 * Allocates a struct net_device with private data area for driver use 9904 * and performs basic initialization. Also allocates subqueue structs 9905 * for each queue on the device. 9906 */ 9907 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 9908 unsigned char name_assign_type, 9909 void (*setup)(struct net_device *), 9910 unsigned int txqs, unsigned int rxqs) 9911 { 9912 struct net_device *dev; 9913 unsigned int alloc_size; 9914 struct net_device *p; 9915 9916 BUG_ON(strlen(name) >= sizeof(dev->name)); 9917 9918 if (txqs < 1) { 9919 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 9920 return NULL; 9921 } 9922 9923 if (rxqs < 1) { 9924 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 9925 return NULL; 9926 } 9927 9928 alloc_size = sizeof(struct net_device); 9929 if (sizeof_priv) { 9930 /* ensure 32-byte alignment of private area */ 9931 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 9932 alloc_size += sizeof_priv; 9933 } 9934 /* ensure 32-byte alignment of whole construct */ 9935 alloc_size += NETDEV_ALIGN - 1; 9936 9937 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9938 if (!p) 9939 return NULL; 9940 9941 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9942 dev->padded = (char *)dev - (char *)p; 9943 9944 dev->pcpu_refcnt = alloc_percpu(int); 9945 if (!dev->pcpu_refcnt) 9946 goto free_dev; 9947 9948 if (dev_addr_init(dev)) 9949 goto free_pcpu; 9950 9951 dev_mc_init(dev); 9952 dev_uc_init(dev); 9953 9954 dev_net_set(dev, &init_net); 9955 9956 dev->gso_max_size = GSO_MAX_SIZE; 9957 dev->gso_max_segs = GSO_MAX_SEGS; 9958 dev->upper_level = 1; 9959 dev->lower_level = 1; 9960 9961 INIT_LIST_HEAD(&dev->napi_list); 9962 INIT_LIST_HEAD(&dev->unreg_list); 9963 INIT_LIST_HEAD(&dev->close_list); 9964 INIT_LIST_HEAD(&dev->link_watch_list); 9965 INIT_LIST_HEAD(&dev->adj_list.upper); 9966 INIT_LIST_HEAD(&dev->adj_list.lower); 9967 INIT_LIST_HEAD(&dev->ptype_all); 9968 INIT_LIST_HEAD(&dev->ptype_specific); 9969 INIT_LIST_HEAD(&dev->net_notifier_list); 9970 #ifdef CONFIG_NET_SCHED 9971 hash_init(dev->qdisc_hash); 9972 #endif 9973 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9974 setup(dev); 9975 9976 if (!dev->tx_queue_len) { 9977 dev->priv_flags |= IFF_NO_QUEUE; 9978 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9979 } 9980 9981 dev->num_tx_queues = txqs; 9982 dev->real_num_tx_queues = txqs; 9983 if (netif_alloc_netdev_queues(dev)) 9984 goto free_all; 9985 9986 dev->num_rx_queues = rxqs; 9987 dev->real_num_rx_queues = rxqs; 9988 if (netif_alloc_rx_queues(dev)) 9989 goto free_all; 9990 9991 strcpy(dev->name, name); 9992 dev->name_assign_type = name_assign_type; 9993 dev->group = INIT_NETDEV_GROUP; 9994 if (!dev->ethtool_ops) 9995 dev->ethtool_ops = &default_ethtool_ops; 9996 9997 nf_hook_ingress_init(dev); 9998 9999 return dev; 10000 10001 free_all: 10002 free_netdev(dev); 10003 return NULL; 10004 10005 free_pcpu: 10006 free_percpu(dev->pcpu_refcnt); 10007 free_dev: 10008 netdev_freemem(dev); 10009 return NULL; 10010 } 10011 EXPORT_SYMBOL(alloc_netdev_mqs); 10012 10013 /** 10014 * free_netdev - free network device 10015 * @dev: device 10016 * 10017 * This function does the last stage of destroying an allocated device 10018 * interface. The reference to the device object is released. If this 10019 * is the last reference then it will be freed.Must be called in process 10020 * context. 10021 */ 10022 void free_netdev(struct net_device *dev) 10023 { 10024 struct napi_struct *p, *n; 10025 10026 might_sleep(); 10027 netif_free_tx_queues(dev); 10028 netif_free_rx_queues(dev); 10029 10030 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10031 10032 /* Flush device addresses */ 10033 dev_addr_flush(dev); 10034 10035 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10036 netif_napi_del(p); 10037 10038 free_percpu(dev->pcpu_refcnt); 10039 dev->pcpu_refcnt = NULL; 10040 free_percpu(dev->xdp_bulkq); 10041 dev->xdp_bulkq = NULL; 10042 10043 /* Compatibility with error handling in drivers */ 10044 if (dev->reg_state == NETREG_UNINITIALIZED) { 10045 netdev_freemem(dev); 10046 return; 10047 } 10048 10049 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10050 dev->reg_state = NETREG_RELEASED; 10051 10052 /* will free via device release */ 10053 put_device(&dev->dev); 10054 } 10055 EXPORT_SYMBOL(free_netdev); 10056 10057 /** 10058 * synchronize_net - Synchronize with packet receive processing 10059 * 10060 * Wait for packets currently being received to be done. 10061 * Does not block later packets from starting. 10062 */ 10063 void synchronize_net(void) 10064 { 10065 might_sleep(); 10066 if (rtnl_is_locked()) 10067 synchronize_rcu_expedited(); 10068 else 10069 synchronize_rcu(); 10070 } 10071 EXPORT_SYMBOL(synchronize_net); 10072 10073 /** 10074 * unregister_netdevice_queue - remove device from the kernel 10075 * @dev: device 10076 * @head: list 10077 * 10078 * This function shuts down a device interface and removes it 10079 * from the kernel tables. 10080 * If head not NULL, device is queued to be unregistered later. 10081 * 10082 * Callers must hold the rtnl semaphore. You may want 10083 * unregister_netdev() instead of this. 10084 */ 10085 10086 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10087 { 10088 ASSERT_RTNL(); 10089 10090 if (head) { 10091 list_move_tail(&dev->unreg_list, head); 10092 } else { 10093 rollback_registered(dev); 10094 /* Finish processing unregister after unlock */ 10095 net_set_todo(dev); 10096 } 10097 } 10098 EXPORT_SYMBOL(unregister_netdevice_queue); 10099 10100 /** 10101 * unregister_netdevice_many - unregister many devices 10102 * @head: list of devices 10103 * 10104 * Note: As most callers use a stack allocated list_head, 10105 * we force a list_del() to make sure stack wont be corrupted later. 10106 */ 10107 void unregister_netdevice_many(struct list_head *head) 10108 { 10109 struct net_device *dev; 10110 10111 if (!list_empty(head)) { 10112 rollback_registered_many(head); 10113 list_for_each_entry(dev, head, unreg_list) 10114 net_set_todo(dev); 10115 list_del(head); 10116 } 10117 } 10118 EXPORT_SYMBOL(unregister_netdevice_many); 10119 10120 /** 10121 * unregister_netdev - remove device from the kernel 10122 * @dev: device 10123 * 10124 * This function shuts down a device interface and removes it 10125 * from the kernel tables. 10126 * 10127 * This is just a wrapper for unregister_netdevice that takes 10128 * the rtnl semaphore. In general you want to use this and not 10129 * unregister_netdevice. 10130 */ 10131 void unregister_netdev(struct net_device *dev) 10132 { 10133 rtnl_lock(); 10134 unregister_netdevice(dev); 10135 rtnl_unlock(); 10136 } 10137 EXPORT_SYMBOL(unregister_netdev); 10138 10139 /** 10140 * dev_change_net_namespace - move device to different nethost namespace 10141 * @dev: device 10142 * @net: network namespace 10143 * @pat: If not NULL name pattern to try if the current device name 10144 * is already taken in the destination network namespace. 10145 * 10146 * This function shuts down a device interface and moves it 10147 * to a new network namespace. On success 0 is returned, on 10148 * a failure a netagive errno code is returned. 10149 * 10150 * Callers must hold the rtnl semaphore. 10151 */ 10152 10153 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 10154 { 10155 struct net *net_old = dev_net(dev); 10156 int err, new_nsid, new_ifindex; 10157 10158 ASSERT_RTNL(); 10159 10160 /* Don't allow namespace local devices to be moved. */ 10161 err = -EINVAL; 10162 if (dev->features & NETIF_F_NETNS_LOCAL) 10163 goto out; 10164 10165 /* Ensure the device has been registrered */ 10166 if (dev->reg_state != NETREG_REGISTERED) 10167 goto out; 10168 10169 /* Get out if there is nothing todo */ 10170 err = 0; 10171 if (net_eq(net_old, net)) 10172 goto out; 10173 10174 /* Pick the destination device name, and ensure 10175 * we can use it in the destination network namespace. 10176 */ 10177 err = -EEXIST; 10178 if (__dev_get_by_name(net, dev->name)) { 10179 /* We get here if we can't use the current device name */ 10180 if (!pat) 10181 goto out; 10182 err = dev_get_valid_name(net, dev, pat); 10183 if (err < 0) 10184 goto out; 10185 } 10186 10187 /* 10188 * And now a mini version of register_netdevice unregister_netdevice. 10189 */ 10190 10191 /* If device is running close it first. */ 10192 dev_close(dev); 10193 10194 /* And unlink it from device chain */ 10195 unlist_netdevice(dev); 10196 10197 synchronize_net(); 10198 10199 /* Shutdown queueing discipline. */ 10200 dev_shutdown(dev); 10201 10202 /* Notify protocols, that we are about to destroy 10203 * this device. They should clean all the things. 10204 * 10205 * Note that dev->reg_state stays at NETREG_REGISTERED. 10206 * This is wanted because this way 8021q and macvlan know 10207 * the device is just moving and can keep their slaves up. 10208 */ 10209 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10210 rcu_barrier(); 10211 10212 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10213 /* If there is an ifindex conflict assign a new one */ 10214 if (__dev_get_by_index(net, dev->ifindex)) 10215 new_ifindex = dev_new_index(net); 10216 else 10217 new_ifindex = dev->ifindex; 10218 10219 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10220 new_ifindex); 10221 10222 /* 10223 * Flush the unicast and multicast chains 10224 */ 10225 dev_uc_flush(dev); 10226 dev_mc_flush(dev); 10227 10228 /* Send a netdev-removed uevent to the old namespace */ 10229 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 10230 netdev_adjacent_del_links(dev); 10231 10232 /* Move per-net netdevice notifiers that are following the netdevice */ 10233 move_netdevice_notifiers_dev_net(dev, net); 10234 10235 /* Actually switch the network namespace */ 10236 dev_net_set(dev, net); 10237 dev->ifindex = new_ifindex; 10238 10239 /* Send a netdev-add uevent to the new namespace */ 10240 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 10241 netdev_adjacent_add_links(dev); 10242 10243 /* Fixup kobjects */ 10244 err = device_rename(&dev->dev, dev->name); 10245 WARN_ON(err); 10246 10247 /* Adapt owner in case owning user namespace of target network 10248 * namespace is different from the original one. 10249 */ 10250 err = netdev_change_owner(dev, net_old, net); 10251 WARN_ON(err); 10252 10253 /* Add the device back in the hashes */ 10254 list_netdevice(dev); 10255 10256 /* Notify protocols, that a new device appeared. */ 10257 call_netdevice_notifiers(NETDEV_REGISTER, dev); 10258 10259 /* 10260 * Prevent userspace races by waiting until the network 10261 * device is fully setup before sending notifications. 10262 */ 10263 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10264 10265 synchronize_net(); 10266 err = 0; 10267 out: 10268 return err; 10269 } 10270 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 10271 10272 static int dev_cpu_dead(unsigned int oldcpu) 10273 { 10274 struct sk_buff **list_skb; 10275 struct sk_buff *skb; 10276 unsigned int cpu; 10277 struct softnet_data *sd, *oldsd, *remsd = NULL; 10278 10279 local_irq_disable(); 10280 cpu = smp_processor_id(); 10281 sd = &per_cpu(softnet_data, cpu); 10282 oldsd = &per_cpu(softnet_data, oldcpu); 10283 10284 /* Find end of our completion_queue. */ 10285 list_skb = &sd->completion_queue; 10286 while (*list_skb) 10287 list_skb = &(*list_skb)->next; 10288 /* Append completion queue from offline CPU. */ 10289 *list_skb = oldsd->completion_queue; 10290 oldsd->completion_queue = NULL; 10291 10292 /* Append output queue from offline CPU. */ 10293 if (oldsd->output_queue) { 10294 *sd->output_queue_tailp = oldsd->output_queue; 10295 sd->output_queue_tailp = oldsd->output_queue_tailp; 10296 oldsd->output_queue = NULL; 10297 oldsd->output_queue_tailp = &oldsd->output_queue; 10298 } 10299 /* Append NAPI poll list from offline CPU, with one exception : 10300 * process_backlog() must be called by cpu owning percpu backlog. 10301 * We properly handle process_queue & input_pkt_queue later. 10302 */ 10303 while (!list_empty(&oldsd->poll_list)) { 10304 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 10305 struct napi_struct, 10306 poll_list); 10307 10308 list_del_init(&napi->poll_list); 10309 if (napi->poll == process_backlog) 10310 napi->state = 0; 10311 else 10312 ____napi_schedule(sd, napi); 10313 } 10314 10315 raise_softirq_irqoff(NET_TX_SOFTIRQ); 10316 local_irq_enable(); 10317 10318 #ifdef CONFIG_RPS 10319 remsd = oldsd->rps_ipi_list; 10320 oldsd->rps_ipi_list = NULL; 10321 #endif 10322 /* send out pending IPI's on offline CPU */ 10323 net_rps_send_ipi(remsd); 10324 10325 /* Process offline CPU's input_pkt_queue */ 10326 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 10327 netif_rx_ni(skb); 10328 input_queue_head_incr(oldsd); 10329 } 10330 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 10331 netif_rx_ni(skb); 10332 input_queue_head_incr(oldsd); 10333 } 10334 10335 return 0; 10336 } 10337 10338 /** 10339 * netdev_increment_features - increment feature set by one 10340 * @all: current feature set 10341 * @one: new feature set 10342 * @mask: mask feature set 10343 * 10344 * Computes a new feature set after adding a device with feature set 10345 * @one to the master device with current feature set @all. Will not 10346 * enable anything that is off in @mask. Returns the new feature set. 10347 */ 10348 netdev_features_t netdev_increment_features(netdev_features_t all, 10349 netdev_features_t one, netdev_features_t mask) 10350 { 10351 if (mask & NETIF_F_HW_CSUM) 10352 mask |= NETIF_F_CSUM_MASK; 10353 mask |= NETIF_F_VLAN_CHALLENGED; 10354 10355 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 10356 all &= one | ~NETIF_F_ALL_FOR_ALL; 10357 10358 /* If one device supports hw checksumming, set for all. */ 10359 if (all & NETIF_F_HW_CSUM) 10360 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 10361 10362 return all; 10363 } 10364 EXPORT_SYMBOL(netdev_increment_features); 10365 10366 static struct hlist_head * __net_init netdev_create_hash(void) 10367 { 10368 int i; 10369 struct hlist_head *hash; 10370 10371 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 10372 if (hash != NULL) 10373 for (i = 0; i < NETDEV_HASHENTRIES; i++) 10374 INIT_HLIST_HEAD(&hash[i]); 10375 10376 return hash; 10377 } 10378 10379 /* Initialize per network namespace state */ 10380 static int __net_init netdev_init(struct net *net) 10381 { 10382 BUILD_BUG_ON(GRO_HASH_BUCKETS > 10383 8 * sizeof_field(struct napi_struct, gro_bitmask)); 10384 10385 if (net != &init_net) 10386 INIT_LIST_HEAD(&net->dev_base_head); 10387 10388 net->dev_name_head = netdev_create_hash(); 10389 if (net->dev_name_head == NULL) 10390 goto err_name; 10391 10392 net->dev_index_head = netdev_create_hash(); 10393 if (net->dev_index_head == NULL) 10394 goto err_idx; 10395 10396 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 10397 10398 return 0; 10399 10400 err_idx: 10401 kfree(net->dev_name_head); 10402 err_name: 10403 return -ENOMEM; 10404 } 10405 10406 /** 10407 * netdev_drivername - network driver for the device 10408 * @dev: network device 10409 * 10410 * Determine network driver for device. 10411 */ 10412 const char *netdev_drivername(const struct net_device *dev) 10413 { 10414 const struct device_driver *driver; 10415 const struct device *parent; 10416 const char *empty = ""; 10417 10418 parent = dev->dev.parent; 10419 if (!parent) 10420 return empty; 10421 10422 driver = parent->driver; 10423 if (driver && driver->name) 10424 return driver->name; 10425 return empty; 10426 } 10427 10428 static void __netdev_printk(const char *level, const struct net_device *dev, 10429 struct va_format *vaf) 10430 { 10431 if (dev && dev->dev.parent) { 10432 dev_printk_emit(level[1] - '0', 10433 dev->dev.parent, 10434 "%s %s %s%s: %pV", 10435 dev_driver_string(dev->dev.parent), 10436 dev_name(dev->dev.parent), 10437 netdev_name(dev), netdev_reg_state(dev), 10438 vaf); 10439 } else if (dev) { 10440 printk("%s%s%s: %pV", 10441 level, netdev_name(dev), netdev_reg_state(dev), vaf); 10442 } else { 10443 printk("%s(NULL net_device): %pV", level, vaf); 10444 } 10445 } 10446 10447 void netdev_printk(const char *level, const struct net_device *dev, 10448 const char *format, ...) 10449 { 10450 struct va_format vaf; 10451 va_list args; 10452 10453 va_start(args, format); 10454 10455 vaf.fmt = format; 10456 vaf.va = &args; 10457 10458 __netdev_printk(level, dev, &vaf); 10459 10460 va_end(args); 10461 } 10462 EXPORT_SYMBOL(netdev_printk); 10463 10464 #define define_netdev_printk_level(func, level) \ 10465 void func(const struct net_device *dev, const char *fmt, ...) \ 10466 { \ 10467 struct va_format vaf; \ 10468 va_list args; \ 10469 \ 10470 va_start(args, fmt); \ 10471 \ 10472 vaf.fmt = fmt; \ 10473 vaf.va = &args; \ 10474 \ 10475 __netdev_printk(level, dev, &vaf); \ 10476 \ 10477 va_end(args); \ 10478 } \ 10479 EXPORT_SYMBOL(func); 10480 10481 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 10482 define_netdev_printk_level(netdev_alert, KERN_ALERT); 10483 define_netdev_printk_level(netdev_crit, KERN_CRIT); 10484 define_netdev_printk_level(netdev_err, KERN_ERR); 10485 define_netdev_printk_level(netdev_warn, KERN_WARNING); 10486 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 10487 define_netdev_printk_level(netdev_info, KERN_INFO); 10488 10489 static void __net_exit netdev_exit(struct net *net) 10490 { 10491 kfree(net->dev_name_head); 10492 kfree(net->dev_index_head); 10493 if (net != &init_net) 10494 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 10495 } 10496 10497 static struct pernet_operations __net_initdata netdev_net_ops = { 10498 .init = netdev_init, 10499 .exit = netdev_exit, 10500 }; 10501 10502 static void __net_exit default_device_exit(struct net *net) 10503 { 10504 struct net_device *dev, *aux; 10505 /* 10506 * Push all migratable network devices back to the 10507 * initial network namespace 10508 */ 10509 rtnl_lock(); 10510 for_each_netdev_safe(net, dev, aux) { 10511 int err; 10512 char fb_name[IFNAMSIZ]; 10513 10514 /* Ignore unmoveable devices (i.e. loopback) */ 10515 if (dev->features & NETIF_F_NETNS_LOCAL) 10516 continue; 10517 10518 /* Leave virtual devices for the generic cleanup */ 10519 if (dev->rtnl_link_ops) 10520 continue; 10521 10522 /* Push remaining network devices to init_net */ 10523 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 10524 if (__dev_get_by_name(&init_net, fb_name)) 10525 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 10526 err = dev_change_net_namespace(dev, &init_net, fb_name); 10527 if (err) { 10528 pr_emerg("%s: failed to move %s to init_net: %d\n", 10529 __func__, dev->name, err); 10530 BUG(); 10531 } 10532 } 10533 rtnl_unlock(); 10534 } 10535 10536 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 10537 { 10538 /* Return with the rtnl_lock held when there are no network 10539 * devices unregistering in any network namespace in net_list. 10540 */ 10541 struct net *net; 10542 bool unregistering; 10543 DEFINE_WAIT_FUNC(wait, woken_wake_function); 10544 10545 add_wait_queue(&netdev_unregistering_wq, &wait); 10546 for (;;) { 10547 unregistering = false; 10548 rtnl_lock(); 10549 list_for_each_entry(net, net_list, exit_list) { 10550 if (net->dev_unreg_count > 0) { 10551 unregistering = true; 10552 break; 10553 } 10554 } 10555 if (!unregistering) 10556 break; 10557 __rtnl_unlock(); 10558 10559 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 10560 } 10561 remove_wait_queue(&netdev_unregistering_wq, &wait); 10562 } 10563 10564 static void __net_exit default_device_exit_batch(struct list_head *net_list) 10565 { 10566 /* At exit all network devices most be removed from a network 10567 * namespace. Do this in the reverse order of registration. 10568 * Do this across as many network namespaces as possible to 10569 * improve batching efficiency. 10570 */ 10571 struct net_device *dev; 10572 struct net *net; 10573 LIST_HEAD(dev_kill_list); 10574 10575 /* To prevent network device cleanup code from dereferencing 10576 * loopback devices or network devices that have been freed 10577 * wait here for all pending unregistrations to complete, 10578 * before unregistring the loopback device and allowing the 10579 * network namespace be freed. 10580 * 10581 * The netdev todo list containing all network devices 10582 * unregistrations that happen in default_device_exit_batch 10583 * will run in the rtnl_unlock() at the end of 10584 * default_device_exit_batch. 10585 */ 10586 rtnl_lock_unregistering(net_list); 10587 list_for_each_entry(net, net_list, exit_list) { 10588 for_each_netdev_reverse(net, dev) { 10589 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 10590 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 10591 else 10592 unregister_netdevice_queue(dev, &dev_kill_list); 10593 } 10594 } 10595 unregister_netdevice_many(&dev_kill_list); 10596 rtnl_unlock(); 10597 } 10598 10599 static struct pernet_operations __net_initdata default_device_ops = { 10600 .exit = default_device_exit, 10601 .exit_batch = default_device_exit_batch, 10602 }; 10603 10604 /* 10605 * Initialize the DEV module. At boot time this walks the device list and 10606 * unhooks any devices that fail to initialise (normally hardware not 10607 * present) and leaves us with a valid list of present and active devices. 10608 * 10609 */ 10610 10611 /* 10612 * This is called single threaded during boot, so no need 10613 * to take the rtnl semaphore. 10614 */ 10615 static int __init net_dev_init(void) 10616 { 10617 int i, rc = -ENOMEM; 10618 10619 BUG_ON(!dev_boot_phase); 10620 10621 if (dev_proc_init()) 10622 goto out; 10623 10624 if (netdev_kobject_init()) 10625 goto out; 10626 10627 INIT_LIST_HEAD(&ptype_all); 10628 for (i = 0; i < PTYPE_HASH_SIZE; i++) 10629 INIT_LIST_HEAD(&ptype_base[i]); 10630 10631 INIT_LIST_HEAD(&offload_base); 10632 10633 if (register_pernet_subsys(&netdev_net_ops)) 10634 goto out; 10635 10636 /* 10637 * Initialise the packet receive queues. 10638 */ 10639 10640 for_each_possible_cpu(i) { 10641 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 10642 struct softnet_data *sd = &per_cpu(softnet_data, i); 10643 10644 INIT_WORK(flush, flush_backlog); 10645 10646 skb_queue_head_init(&sd->input_pkt_queue); 10647 skb_queue_head_init(&sd->process_queue); 10648 #ifdef CONFIG_XFRM_OFFLOAD 10649 skb_queue_head_init(&sd->xfrm_backlog); 10650 #endif 10651 INIT_LIST_HEAD(&sd->poll_list); 10652 sd->output_queue_tailp = &sd->output_queue; 10653 #ifdef CONFIG_RPS 10654 sd->csd.func = rps_trigger_softirq; 10655 sd->csd.info = sd; 10656 sd->cpu = i; 10657 #endif 10658 10659 init_gro_hash(&sd->backlog); 10660 sd->backlog.poll = process_backlog; 10661 sd->backlog.weight = weight_p; 10662 } 10663 10664 dev_boot_phase = 0; 10665 10666 /* The loopback device is special if any other network devices 10667 * is present in a network namespace the loopback device must 10668 * be present. Since we now dynamically allocate and free the 10669 * loopback device ensure this invariant is maintained by 10670 * keeping the loopback device as the first device on the 10671 * list of network devices. Ensuring the loopback devices 10672 * is the first device that appears and the last network device 10673 * that disappears. 10674 */ 10675 if (register_pernet_device(&loopback_net_ops)) 10676 goto out; 10677 10678 if (register_pernet_device(&default_device_ops)) 10679 goto out; 10680 10681 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 10682 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 10683 10684 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 10685 NULL, dev_cpu_dead); 10686 WARN_ON(rc < 0); 10687 rc = 0; 10688 out: 10689 return rc; 10690 } 10691 10692 subsys_initcall(net_dev_init); 10693