xref: /linux-6.15/net/core/dev.c (revision 170aafe3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <[email protected]>
8  *				Mark Evans, <[email protected]>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <[email protected]>
12  *		Alan Cox <[email protected]>
13  *		David Hinds <[email protected]>
14  *		Alexey Kuznetsov <[email protected]>
15  *		Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/skbuff.h>
96 #include <linux/kthread.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dsa.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/gro.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
112 #include <net/tcx.h>
113 #include <linux/highmem.h>
114 #include <linux/init.h>
115 #include <linux/module.h>
116 #include <linux/netpoll.h>
117 #include <linux/rcupdate.h>
118 #include <linux/delay.h>
119 #include <net/iw_handler.h>
120 #include <asm/current.h>
121 #include <linux/audit.h>
122 #include <linux/dmaengine.h>
123 #include <linux/err.h>
124 #include <linux/ctype.h>
125 #include <linux/if_arp.h>
126 #include <linux/if_vlan.h>
127 #include <linux/ip.h>
128 #include <net/ip.h>
129 #include <net/mpls.h>
130 #include <linux/ipv6.h>
131 #include <linux/in.h>
132 #include <linux/jhash.h>
133 #include <linux/random.h>
134 #include <trace/events/napi.h>
135 #include <trace/events/net.h>
136 #include <trace/events/skb.h>
137 #include <trace/events/qdisc.h>
138 #include <trace/events/xdp.h>
139 #include <linux/inetdevice.h>
140 #include <linux/cpu_rmap.h>
141 #include <linux/static_key.h>
142 #include <linux/hashtable.h>
143 #include <linux/vmalloc.h>
144 #include <linux/if_macvlan.h>
145 #include <linux/errqueue.h>
146 #include <linux/hrtimer.h>
147 #include <linux/netfilter_netdev.h>
148 #include <linux/crash_dump.h>
149 #include <linux/sctp.h>
150 #include <net/udp_tunnel.h>
151 #include <linux/net_namespace.h>
152 #include <linux/indirect_call_wrapper.h>
153 #include <net/devlink.h>
154 #include <linux/pm_runtime.h>
155 #include <linux/prandom.h>
156 #include <linux/once_lite.h>
157 #include <net/netdev_rx_queue.h>
158 #include <net/page_pool/types.h>
159 #include <net/page_pool/helpers.h>
160 #include <net/rps.h>
161 #include <linux/phy_link_topology.h>
162 
163 #include "dev.h"
164 #include "devmem.h"
165 #include "net-sysfs.h"
166 
167 static DEFINE_SPINLOCK(ptype_lock);
168 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
169 
170 static int netif_rx_internal(struct sk_buff *skb);
171 static int call_netdevice_notifiers_extack(unsigned long val,
172 					   struct net_device *dev,
173 					   struct netlink_ext_ack *extack);
174 
175 static DEFINE_MUTEX(ifalias_mutex);
176 
177 /* protects napi_hash addition/deletion and napi_gen_id */
178 static DEFINE_SPINLOCK(napi_hash_lock);
179 
180 static unsigned int napi_gen_id = NR_CPUS;
181 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
182 
183 static DECLARE_RWSEM(devnet_rename_sem);
184 
185 static inline void dev_base_seq_inc(struct net *net)
186 {
187 	unsigned int val = net->dev_base_seq + 1;
188 
189 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
190 }
191 
192 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
193 {
194 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
195 
196 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
197 }
198 
199 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
200 {
201 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
202 }
203 
204 #ifndef CONFIG_PREEMPT_RT
205 
206 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
207 
208 static int __init setup_backlog_napi_threads(char *arg)
209 {
210 	static_branch_enable(&use_backlog_threads_key);
211 	return 0;
212 }
213 early_param("thread_backlog_napi", setup_backlog_napi_threads);
214 
215 static bool use_backlog_threads(void)
216 {
217 	return static_branch_unlikely(&use_backlog_threads_key);
218 }
219 
220 #else
221 
222 static bool use_backlog_threads(void)
223 {
224 	return true;
225 }
226 
227 #endif
228 
229 static inline void backlog_lock_irq_save(struct softnet_data *sd,
230 					 unsigned long *flags)
231 {
232 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
233 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
234 	else
235 		local_irq_save(*flags);
236 }
237 
238 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
239 {
240 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
241 		spin_lock_irq(&sd->input_pkt_queue.lock);
242 	else
243 		local_irq_disable();
244 }
245 
246 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
247 					      unsigned long *flags)
248 {
249 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
250 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
251 	else
252 		local_irq_restore(*flags);
253 }
254 
255 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
256 {
257 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 		spin_unlock_irq(&sd->input_pkt_queue.lock);
259 	else
260 		local_irq_enable();
261 }
262 
263 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
264 						       const char *name)
265 {
266 	struct netdev_name_node *name_node;
267 
268 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
269 	if (!name_node)
270 		return NULL;
271 	INIT_HLIST_NODE(&name_node->hlist);
272 	name_node->dev = dev;
273 	name_node->name = name;
274 	return name_node;
275 }
276 
277 static struct netdev_name_node *
278 netdev_name_node_head_alloc(struct net_device *dev)
279 {
280 	struct netdev_name_node *name_node;
281 
282 	name_node = netdev_name_node_alloc(dev, dev->name);
283 	if (!name_node)
284 		return NULL;
285 	INIT_LIST_HEAD(&name_node->list);
286 	return name_node;
287 }
288 
289 static void netdev_name_node_free(struct netdev_name_node *name_node)
290 {
291 	kfree(name_node);
292 }
293 
294 static void netdev_name_node_add(struct net *net,
295 				 struct netdev_name_node *name_node)
296 {
297 	hlist_add_head_rcu(&name_node->hlist,
298 			   dev_name_hash(net, name_node->name));
299 }
300 
301 static void netdev_name_node_del(struct netdev_name_node *name_node)
302 {
303 	hlist_del_rcu(&name_node->hlist);
304 }
305 
306 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
307 							const char *name)
308 {
309 	struct hlist_head *head = dev_name_hash(net, name);
310 	struct netdev_name_node *name_node;
311 
312 	hlist_for_each_entry(name_node, head, hlist)
313 		if (!strcmp(name_node->name, name))
314 			return name_node;
315 	return NULL;
316 }
317 
318 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
319 							    const char *name)
320 {
321 	struct hlist_head *head = dev_name_hash(net, name);
322 	struct netdev_name_node *name_node;
323 
324 	hlist_for_each_entry_rcu(name_node, head, hlist)
325 		if (!strcmp(name_node->name, name))
326 			return name_node;
327 	return NULL;
328 }
329 
330 bool netdev_name_in_use(struct net *net, const char *name)
331 {
332 	return netdev_name_node_lookup(net, name);
333 }
334 EXPORT_SYMBOL(netdev_name_in_use);
335 
336 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
337 {
338 	struct netdev_name_node *name_node;
339 	struct net *net = dev_net(dev);
340 
341 	name_node = netdev_name_node_lookup(net, name);
342 	if (name_node)
343 		return -EEXIST;
344 	name_node = netdev_name_node_alloc(dev, name);
345 	if (!name_node)
346 		return -ENOMEM;
347 	netdev_name_node_add(net, name_node);
348 	/* The node that holds dev->name acts as a head of per-device list. */
349 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
350 
351 	return 0;
352 }
353 
354 static void netdev_name_node_alt_free(struct rcu_head *head)
355 {
356 	struct netdev_name_node *name_node =
357 		container_of(head, struct netdev_name_node, rcu);
358 
359 	kfree(name_node->name);
360 	netdev_name_node_free(name_node);
361 }
362 
363 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
364 {
365 	netdev_name_node_del(name_node);
366 	list_del(&name_node->list);
367 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
368 }
369 
370 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
371 {
372 	struct netdev_name_node *name_node;
373 	struct net *net = dev_net(dev);
374 
375 	name_node = netdev_name_node_lookup(net, name);
376 	if (!name_node)
377 		return -ENOENT;
378 	/* lookup might have found our primary name or a name belonging
379 	 * to another device.
380 	 */
381 	if (name_node == dev->name_node || name_node->dev != dev)
382 		return -EINVAL;
383 
384 	__netdev_name_node_alt_destroy(name_node);
385 	return 0;
386 }
387 
388 static void netdev_name_node_alt_flush(struct net_device *dev)
389 {
390 	struct netdev_name_node *name_node, *tmp;
391 
392 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
393 		list_del(&name_node->list);
394 		netdev_name_node_alt_free(&name_node->rcu);
395 	}
396 }
397 
398 /* Device list insertion */
399 static void list_netdevice(struct net_device *dev)
400 {
401 	struct netdev_name_node *name_node;
402 	struct net *net = dev_net(dev);
403 
404 	ASSERT_RTNL();
405 
406 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
407 	netdev_name_node_add(net, dev->name_node);
408 	hlist_add_head_rcu(&dev->index_hlist,
409 			   dev_index_hash(net, dev->ifindex));
410 
411 	netdev_for_each_altname(dev, name_node)
412 		netdev_name_node_add(net, name_node);
413 
414 	/* We reserved the ifindex, this can't fail */
415 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
416 
417 	dev_base_seq_inc(net);
418 }
419 
420 /* Device list removal
421  * caller must respect a RCU grace period before freeing/reusing dev
422  */
423 static void unlist_netdevice(struct net_device *dev)
424 {
425 	struct netdev_name_node *name_node;
426 	struct net *net = dev_net(dev);
427 
428 	ASSERT_RTNL();
429 
430 	xa_erase(&net->dev_by_index, dev->ifindex);
431 
432 	netdev_for_each_altname(dev, name_node)
433 		netdev_name_node_del(name_node);
434 
435 	/* Unlink dev from the device chain */
436 	list_del_rcu(&dev->dev_list);
437 	netdev_name_node_del(dev->name_node);
438 	hlist_del_rcu(&dev->index_hlist);
439 
440 	dev_base_seq_inc(dev_net(dev));
441 }
442 
443 /*
444  *	Our notifier list
445  */
446 
447 static RAW_NOTIFIER_HEAD(netdev_chain);
448 
449 /*
450  *	Device drivers call our routines to queue packets here. We empty the
451  *	queue in the local softnet handler.
452  */
453 
454 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
455 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
456 };
457 EXPORT_PER_CPU_SYMBOL(softnet_data);
458 
459 /* Page_pool has a lockless array/stack to alloc/recycle pages.
460  * PP consumers must pay attention to run APIs in the appropriate context
461  * (e.g. NAPI context).
462  */
463 static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
464 
465 #ifdef CONFIG_LOCKDEP
466 /*
467  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468  * according to dev->type
469  */
470 static const unsigned short netdev_lock_type[] = {
471 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
472 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
473 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
474 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
475 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
476 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
477 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
478 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
479 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
480 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
481 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
482 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
483 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
484 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
485 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
486 
487 static const char *const netdev_lock_name[] = {
488 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
503 
504 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
505 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
506 
507 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
508 {
509 	int i;
510 
511 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
512 		if (netdev_lock_type[i] == dev_type)
513 			return i;
514 	/* the last key is used by default */
515 	return ARRAY_SIZE(netdev_lock_type) - 1;
516 }
517 
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 						 unsigned short dev_type)
520 {
521 	int i;
522 
523 	i = netdev_lock_pos(dev_type);
524 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
525 				   netdev_lock_name[i]);
526 }
527 
528 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529 {
530 	int i;
531 
532 	i = netdev_lock_pos(dev->type);
533 	lockdep_set_class_and_name(&dev->addr_list_lock,
534 				   &netdev_addr_lock_key[i],
535 				   netdev_lock_name[i]);
536 }
537 #else
538 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
539 						 unsigned short dev_type)
540 {
541 }
542 
543 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
544 {
545 }
546 #endif
547 
548 /*******************************************************************************
549  *
550  *		Protocol management and registration routines
551  *
552  *******************************************************************************/
553 
554 
555 /*
556  *	Add a protocol ID to the list. Now that the input handler is
557  *	smarter we can dispense with all the messy stuff that used to be
558  *	here.
559  *
560  *	BEWARE!!! Protocol handlers, mangling input packets,
561  *	MUST BE last in hash buckets and checking protocol handlers
562  *	MUST start from promiscuous ptype_all chain in net_bh.
563  *	It is true now, do not change it.
564  *	Explanation follows: if protocol handler, mangling packet, will
565  *	be the first on list, it is not able to sense, that packet
566  *	is cloned and should be copied-on-write, so that it will
567  *	change it and subsequent readers will get broken packet.
568  *							--ANK (980803)
569  */
570 
571 static inline struct list_head *ptype_head(const struct packet_type *pt)
572 {
573 	if (pt->type == htons(ETH_P_ALL))
574 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
575 	else
576 		return pt->dev ? &pt->dev->ptype_specific :
577 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
578 }
579 
580 /**
581  *	dev_add_pack - add packet handler
582  *	@pt: packet type declaration
583  *
584  *	Add a protocol handler to the networking stack. The passed &packet_type
585  *	is linked into kernel lists and may not be freed until it has been
586  *	removed from the kernel lists.
587  *
588  *	This call does not sleep therefore it can not
589  *	guarantee all CPU's that are in middle of receiving packets
590  *	will see the new packet type (until the next received packet).
591  */
592 
593 void dev_add_pack(struct packet_type *pt)
594 {
595 	struct list_head *head = ptype_head(pt);
596 
597 	spin_lock(&ptype_lock);
598 	list_add_rcu(&pt->list, head);
599 	spin_unlock(&ptype_lock);
600 }
601 EXPORT_SYMBOL(dev_add_pack);
602 
603 /**
604  *	__dev_remove_pack	 - remove packet handler
605  *	@pt: packet type declaration
606  *
607  *	Remove a protocol handler that was previously added to the kernel
608  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
609  *	from the kernel lists and can be freed or reused once this function
610  *	returns.
611  *
612  *      The packet type might still be in use by receivers
613  *	and must not be freed until after all the CPU's have gone
614  *	through a quiescent state.
615  */
616 void __dev_remove_pack(struct packet_type *pt)
617 {
618 	struct list_head *head = ptype_head(pt);
619 	struct packet_type *pt1;
620 
621 	spin_lock(&ptype_lock);
622 
623 	list_for_each_entry(pt1, head, list) {
624 		if (pt == pt1) {
625 			list_del_rcu(&pt->list);
626 			goto out;
627 		}
628 	}
629 
630 	pr_warn("dev_remove_pack: %p not found\n", pt);
631 out:
632 	spin_unlock(&ptype_lock);
633 }
634 EXPORT_SYMBOL(__dev_remove_pack);
635 
636 /**
637  *	dev_remove_pack	 - remove packet handler
638  *	@pt: packet type declaration
639  *
640  *	Remove a protocol handler that was previously added to the kernel
641  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
642  *	from the kernel lists and can be freed or reused once this function
643  *	returns.
644  *
645  *	This call sleeps to guarantee that no CPU is looking at the packet
646  *	type after return.
647  */
648 void dev_remove_pack(struct packet_type *pt)
649 {
650 	__dev_remove_pack(pt);
651 
652 	synchronize_net();
653 }
654 EXPORT_SYMBOL(dev_remove_pack);
655 
656 
657 /*******************************************************************************
658  *
659  *			    Device Interface Subroutines
660  *
661  *******************************************************************************/
662 
663 /**
664  *	dev_get_iflink	- get 'iflink' value of a interface
665  *	@dev: targeted interface
666  *
667  *	Indicates the ifindex the interface is linked to.
668  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
669  */
670 
671 int dev_get_iflink(const struct net_device *dev)
672 {
673 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674 		return dev->netdev_ops->ndo_get_iflink(dev);
675 
676 	return READ_ONCE(dev->ifindex);
677 }
678 EXPORT_SYMBOL(dev_get_iflink);
679 
680 /**
681  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
682  *	@dev: targeted interface
683  *	@skb: The packet.
684  *
685  *	For better visibility of tunnel traffic OVS needs to retrieve
686  *	egress tunnel information for a packet. Following API allows
687  *	user to get this info.
688  */
689 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
690 {
691 	struct ip_tunnel_info *info;
692 
693 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
694 		return -EINVAL;
695 
696 	info = skb_tunnel_info_unclone(skb);
697 	if (!info)
698 		return -ENOMEM;
699 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
700 		return -EINVAL;
701 
702 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
703 }
704 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
705 
706 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
707 {
708 	int k = stack->num_paths++;
709 
710 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
711 		return NULL;
712 
713 	return &stack->path[k];
714 }
715 
716 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
717 			  struct net_device_path_stack *stack)
718 {
719 	const struct net_device *last_dev;
720 	struct net_device_path_ctx ctx = {
721 		.dev	= dev,
722 	};
723 	struct net_device_path *path;
724 	int ret = 0;
725 
726 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
727 	stack->num_paths = 0;
728 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
729 		last_dev = ctx.dev;
730 		path = dev_fwd_path(stack);
731 		if (!path)
732 			return -1;
733 
734 		memset(path, 0, sizeof(struct net_device_path));
735 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
736 		if (ret < 0)
737 			return -1;
738 
739 		if (WARN_ON_ONCE(last_dev == ctx.dev))
740 			return -1;
741 	}
742 
743 	if (!ctx.dev)
744 		return ret;
745 
746 	path = dev_fwd_path(stack);
747 	if (!path)
748 		return -1;
749 	path->type = DEV_PATH_ETHERNET;
750 	path->dev = ctx.dev;
751 
752 	return ret;
753 }
754 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
755 
756 /**
757  *	__dev_get_by_name	- find a device by its name
758  *	@net: the applicable net namespace
759  *	@name: name to find
760  *
761  *	Find an interface by name. Must be called under RTNL semaphore.
762  *	If the name is found a pointer to the device is returned.
763  *	If the name is not found then %NULL is returned. The
764  *	reference counters are not incremented so the caller must be
765  *	careful with locks.
766  */
767 
768 struct net_device *__dev_get_by_name(struct net *net, const char *name)
769 {
770 	struct netdev_name_node *node_name;
771 
772 	node_name = netdev_name_node_lookup(net, name);
773 	return node_name ? node_name->dev : NULL;
774 }
775 EXPORT_SYMBOL(__dev_get_by_name);
776 
777 /**
778  * dev_get_by_name_rcu	- find a device by its name
779  * @net: the applicable net namespace
780  * @name: name to find
781  *
782  * Find an interface by name.
783  * If the name is found a pointer to the device is returned.
784  * If the name is not found then %NULL is returned.
785  * The reference counters are not incremented so the caller must be
786  * careful with locks. The caller must hold RCU lock.
787  */
788 
789 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
790 {
791 	struct netdev_name_node *node_name;
792 
793 	node_name = netdev_name_node_lookup_rcu(net, name);
794 	return node_name ? node_name->dev : NULL;
795 }
796 EXPORT_SYMBOL(dev_get_by_name_rcu);
797 
798 /* Deprecated for new users, call netdev_get_by_name() instead */
799 struct net_device *dev_get_by_name(struct net *net, const char *name)
800 {
801 	struct net_device *dev;
802 
803 	rcu_read_lock();
804 	dev = dev_get_by_name_rcu(net, name);
805 	dev_hold(dev);
806 	rcu_read_unlock();
807 	return dev;
808 }
809 EXPORT_SYMBOL(dev_get_by_name);
810 
811 /**
812  *	netdev_get_by_name() - find a device by its name
813  *	@net: the applicable net namespace
814  *	@name: name to find
815  *	@tracker: tracking object for the acquired reference
816  *	@gfp: allocation flags for the tracker
817  *
818  *	Find an interface by name. This can be called from any
819  *	context and does its own locking. The returned handle has
820  *	the usage count incremented and the caller must use netdev_put() to
821  *	release it when it is no longer needed. %NULL is returned if no
822  *	matching device is found.
823  */
824 struct net_device *netdev_get_by_name(struct net *net, const char *name,
825 				      netdevice_tracker *tracker, gfp_t gfp)
826 {
827 	struct net_device *dev;
828 
829 	dev = dev_get_by_name(net, name);
830 	if (dev)
831 		netdev_tracker_alloc(dev, tracker, gfp);
832 	return dev;
833 }
834 EXPORT_SYMBOL(netdev_get_by_name);
835 
836 /**
837  *	__dev_get_by_index - find a device by its ifindex
838  *	@net: the applicable net namespace
839  *	@ifindex: index of device
840  *
841  *	Search for an interface by index. Returns %NULL if the device
842  *	is not found or a pointer to the device. The device has not
843  *	had its reference counter increased so the caller must be careful
844  *	about locking. The caller must hold the RTNL semaphore.
845  */
846 
847 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
848 {
849 	struct net_device *dev;
850 	struct hlist_head *head = dev_index_hash(net, ifindex);
851 
852 	hlist_for_each_entry(dev, head, index_hlist)
853 		if (dev->ifindex == ifindex)
854 			return dev;
855 
856 	return NULL;
857 }
858 EXPORT_SYMBOL(__dev_get_by_index);
859 
860 /**
861  *	dev_get_by_index_rcu - find a device by its ifindex
862  *	@net: the applicable net namespace
863  *	@ifindex: index of device
864  *
865  *	Search for an interface by index. Returns %NULL if the device
866  *	is not found or a pointer to the device. The device has not
867  *	had its reference counter increased so the caller must be careful
868  *	about locking. The caller must hold RCU lock.
869  */
870 
871 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
872 {
873 	struct net_device *dev;
874 	struct hlist_head *head = dev_index_hash(net, ifindex);
875 
876 	hlist_for_each_entry_rcu(dev, head, index_hlist)
877 		if (dev->ifindex == ifindex)
878 			return dev;
879 
880 	return NULL;
881 }
882 EXPORT_SYMBOL(dev_get_by_index_rcu);
883 
884 /* Deprecated for new users, call netdev_get_by_index() instead */
885 struct net_device *dev_get_by_index(struct net *net, int ifindex)
886 {
887 	struct net_device *dev;
888 
889 	rcu_read_lock();
890 	dev = dev_get_by_index_rcu(net, ifindex);
891 	dev_hold(dev);
892 	rcu_read_unlock();
893 	return dev;
894 }
895 EXPORT_SYMBOL(dev_get_by_index);
896 
897 /**
898  *	netdev_get_by_index() - find a device by its ifindex
899  *	@net: the applicable net namespace
900  *	@ifindex: index of device
901  *	@tracker: tracking object for the acquired reference
902  *	@gfp: allocation flags for the tracker
903  *
904  *	Search for an interface by index. Returns NULL if the device
905  *	is not found or a pointer to the device. The device returned has
906  *	had a reference added and the pointer is safe until the user calls
907  *	netdev_put() to indicate they have finished with it.
908  */
909 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
910 				       netdevice_tracker *tracker, gfp_t gfp)
911 {
912 	struct net_device *dev;
913 
914 	dev = dev_get_by_index(net, ifindex);
915 	if (dev)
916 		netdev_tracker_alloc(dev, tracker, gfp);
917 	return dev;
918 }
919 EXPORT_SYMBOL(netdev_get_by_index);
920 
921 /**
922  *	dev_get_by_napi_id - find a device by napi_id
923  *	@napi_id: ID of the NAPI struct
924  *
925  *	Search for an interface by NAPI ID. Returns %NULL if the device
926  *	is not found or a pointer to the device. The device has not had
927  *	its reference counter increased so the caller must be careful
928  *	about locking. The caller must hold RCU lock.
929  */
930 
931 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
932 {
933 	struct napi_struct *napi;
934 
935 	WARN_ON_ONCE(!rcu_read_lock_held());
936 
937 	if (napi_id < MIN_NAPI_ID)
938 		return NULL;
939 
940 	napi = napi_by_id(napi_id);
941 
942 	return napi ? napi->dev : NULL;
943 }
944 EXPORT_SYMBOL(dev_get_by_napi_id);
945 
946 static DEFINE_SEQLOCK(netdev_rename_lock);
947 
948 void netdev_copy_name(struct net_device *dev, char *name)
949 {
950 	unsigned int seq;
951 
952 	do {
953 		seq = read_seqbegin(&netdev_rename_lock);
954 		strscpy(name, dev->name, IFNAMSIZ);
955 	} while (read_seqretry(&netdev_rename_lock, seq));
956 }
957 
958 /**
959  *	netdev_get_name - get a netdevice name, knowing its ifindex.
960  *	@net: network namespace
961  *	@name: a pointer to the buffer where the name will be stored.
962  *	@ifindex: the ifindex of the interface to get the name from.
963  */
964 int netdev_get_name(struct net *net, char *name, int ifindex)
965 {
966 	struct net_device *dev;
967 	int ret;
968 
969 	rcu_read_lock();
970 
971 	dev = dev_get_by_index_rcu(net, ifindex);
972 	if (!dev) {
973 		ret = -ENODEV;
974 		goto out;
975 	}
976 
977 	netdev_copy_name(dev, name);
978 
979 	ret = 0;
980 out:
981 	rcu_read_unlock();
982 	return ret;
983 }
984 
985 /**
986  *	dev_getbyhwaddr_rcu - find a device by its hardware address
987  *	@net: the applicable net namespace
988  *	@type: media type of device
989  *	@ha: hardware address
990  *
991  *	Search for an interface by MAC address. Returns NULL if the device
992  *	is not found or a pointer to the device.
993  *	The caller must hold RCU or RTNL.
994  *	The returned device has not had its ref count increased
995  *	and the caller must therefore be careful about locking
996  *
997  */
998 
999 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1000 				       const char *ha)
1001 {
1002 	struct net_device *dev;
1003 
1004 	for_each_netdev_rcu(net, dev)
1005 		if (dev->type == type &&
1006 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1007 			return dev;
1008 
1009 	return NULL;
1010 }
1011 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1012 
1013 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1014 {
1015 	struct net_device *dev, *ret = NULL;
1016 
1017 	rcu_read_lock();
1018 	for_each_netdev_rcu(net, dev)
1019 		if (dev->type == type) {
1020 			dev_hold(dev);
1021 			ret = dev;
1022 			break;
1023 		}
1024 	rcu_read_unlock();
1025 	return ret;
1026 }
1027 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1028 
1029 /**
1030  *	__dev_get_by_flags - find any device with given flags
1031  *	@net: the applicable net namespace
1032  *	@if_flags: IFF_* values
1033  *	@mask: bitmask of bits in if_flags to check
1034  *
1035  *	Search for any interface with the given flags. Returns NULL if a device
1036  *	is not found or a pointer to the device. Must be called inside
1037  *	rtnl_lock(), and result refcount is unchanged.
1038  */
1039 
1040 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1041 				      unsigned short mask)
1042 {
1043 	struct net_device *dev, *ret;
1044 
1045 	ASSERT_RTNL();
1046 
1047 	ret = NULL;
1048 	for_each_netdev(net, dev) {
1049 		if (((dev->flags ^ if_flags) & mask) == 0) {
1050 			ret = dev;
1051 			break;
1052 		}
1053 	}
1054 	return ret;
1055 }
1056 EXPORT_SYMBOL(__dev_get_by_flags);
1057 
1058 /**
1059  *	dev_valid_name - check if name is okay for network device
1060  *	@name: name string
1061  *
1062  *	Network device names need to be valid file names to
1063  *	allow sysfs to work.  We also disallow any kind of
1064  *	whitespace.
1065  */
1066 bool dev_valid_name(const char *name)
1067 {
1068 	if (*name == '\0')
1069 		return false;
1070 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1071 		return false;
1072 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1073 		return false;
1074 
1075 	while (*name) {
1076 		if (*name == '/' || *name == ':' || isspace(*name))
1077 			return false;
1078 		name++;
1079 	}
1080 	return true;
1081 }
1082 EXPORT_SYMBOL(dev_valid_name);
1083 
1084 /**
1085  *	__dev_alloc_name - allocate a name for a device
1086  *	@net: network namespace to allocate the device name in
1087  *	@name: name format string
1088  *	@res: result name string
1089  *
1090  *	Passed a format string - eg "lt%d" it will try and find a suitable
1091  *	id. It scans list of devices to build up a free map, then chooses
1092  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1093  *	while allocating the name and adding the device in order to avoid
1094  *	duplicates.
1095  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1096  *	Returns the number of the unit assigned or a negative errno code.
1097  */
1098 
1099 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1100 {
1101 	int i = 0;
1102 	const char *p;
1103 	const int max_netdevices = 8*PAGE_SIZE;
1104 	unsigned long *inuse;
1105 	struct net_device *d;
1106 	char buf[IFNAMSIZ];
1107 
1108 	/* Verify the string as this thing may have come from the user.
1109 	 * There must be one "%d" and no other "%" characters.
1110 	 */
1111 	p = strchr(name, '%');
1112 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1113 		return -EINVAL;
1114 
1115 	/* Use one page as a bit array of possible slots */
1116 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1117 	if (!inuse)
1118 		return -ENOMEM;
1119 
1120 	for_each_netdev(net, d) {
1121 		struct netdev_name_node *name_node;
1122 
1123 		netdev_for_each_altname(d, name_node) {
1124 			if (!sscanf(name_node->name, name, &i))
1125 				continue;
1126 			if (i < 0 || i >= max_netdevices)
1127 				continue;
1128 
1129 			/* avoid cases where sscanf is not exact inverse of printf */
1130 			snprintf(buf, IFNAMSIZ, name, i);
1131 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1132 				__set_bit(i, inuse);
1133 		}
1134 		if (!sscanf(d->name, name, &i))
1135 			continue;
1136 		if (i < 0 || i >= max_netdevices)
1137 			continue;
1138 
1139 		/* avoid cases where sscanf is not exact inverse of printf */
1140 		snprintf(buf, IFNAMSIZ, name, i);
1141 		if (!strncmp(buf, d->name, IFNAMSIZ))
1142 			__set_bit(i, inuse);
1143 	}
1144 
1145 	i = find_first_zero_bit(inuse, max_netdevices);
1146 	bitmap_free(inuse);
1147 	if (i == max_netdevices)
1148 		return -ENFILE;
1149 
1150 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1151 	strscpy(buf, name, IFNAMSIZ);
1152 	snprintf(res, IFNAMSIZ, buf, i);
1153 	return i;
1154 }
1155 
1156 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1157 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1158 			       const char *want_name, char *out_name,
1159 			       int dup_errno)
1160 {
1161 	if (!dev_valid_name(want_name))
1162 		return -EINVAL;
1163 
1164 	if (strchr(want_name, '%'))
1165 		return __dev_alloc_name(net, want_name, out_name);
1166 
1167 	if (netdev_name_in_use(net, want_name))
1168 		return -dup_errno;
1169 	if (out_name != want_name)
1170 		strscpy(out_name, want_name, IFNAMSIZ);
1171 	return 0;
1172 }
1173 
1174 /**
1175  *	dev_alloc_name - allocate a name for a device
1176  *	@dev: device
1177  *	@name: name format string
1178  *
1179  *	Passed a format string - eg "lt%d" it will try and find a suitable
1180  *	id. It scans list of devices to build up a free map, then chooses
1181  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1182  *	while allocating the name and adding the device in order to avoid
1183  *	duplicates.
1184  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1185  *	Returns the number of the unit assigned or a negative errno code.
1186  */
1187 
1188 int dev_alloc_name(struct net_device *dev, const char *name)
1189 {
1190 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1191 }
1192 EXPORT_SYMBOL(dev_alloc_name);
1193 
1194 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1195 			      const char *name)
1196 {
1197 	int ret;
1198 
1199 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1200 	return ret < 0 ? ret : 0;
1201 }
1202 
1203 /**
1204  *	dev_change_name - change name of a device
1205  *	@dev: device
1206  *	@newname: name (or format string) must be at least IFNAMSIZ
1207  *
1208  *	Change name of a device, can pass format strings "eth%d".
1209  *	for wildcarding.
1210  */
1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213 	unsigned char old_assign_type;
1214 	char oldname[IFNAMSIZ];
1215 	int err = 0;
1216 	int ret;
1217 	struct net *net;
1218 
1219 	ASSERT_RTNL();
1220 	BUG_ON(!dev_net(dev));
1221 
1222 	net = dev_net(dev);
1223 
1224 	down_write(&devnet_rename_sem);
1225 
1226 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227 		up_write(&devnet_rename_sem);
1228 		return 0;
1229 	}
1230 
1231 	memcpy(oldname, dev->name, IFNAMSIZ);
1232 
1233 	write_seqlock_bh(&netdev_rename_lock);
1234 	err = dev_get_valid_name(net, dev, newname);
1235 	write_sequnlock_bh(&netdev_rename_lock);
1236 
1237 	if (err < 0) {
1238 		up_write(&devnet_rename_sem);
1239 		return err;
1240 	}
1241 
1242 	if (oldname[0] && !strchr(oldname, '%'))
1243 		netdev_info(dev, "renamed from %s%s\n", oldname,
1244 			    dev->flags & IFF_UP ? " (while UP)" : "");
1245 
1246 	old_assign_type = dev->name_assign_type;
1247 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1248 
1249 rollback:
1250 	ret = device_rename(&dev->dev, dev->name);
1251 	if (ret) {
1252 		memcpy(dev->name, oldname, IFNAMSIZ);
1253 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1254 		up_write(&devnet_rename_sem);
1255 		return ret;
1256 	}
1257 
1258 	up_write(&devnet_rename_sem);
1259 
1260 	netdev_adjacent_rename_links(dev, oldname);
1261 
1262 	netdev_name_node_del(dev->name_node);
1263 
1264 	synchronize_net();
1265 
1266 	netdev_name_node_add(net, dev->name_node);
1267 
1268 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1269 	ret = notifier_to_errno(ret);
1270 
1271 	if (ret) {
1272 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1273 		if (err >= 0) {
1274 			err = ret;
1275 			down_write(&devnet_rename_sem);
1276 			write_seqlock_bh(&netdev_rename_lock);
1277 			memcpy(dev->name, oldname, IFNAMSIZ);
1278 			write_sequnlock_bh(&netdev_rename_lock);
1279 			memcpy(oldname, newname, IFNAMSIZ);
1280 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1281 			old_assign_type = NET_NAME_RENAMED;
1282 			goto rollback;
1283 		} else {
1284 			netdev_err(dev, "name change rollback failed: %d\n",
1285 				   ret);
1286 		}
1287 	}
1288 
1289 	return err;
1290 }
1291 
1292 /**
1293  *	dev_set_alias - change ifalias of a device
1294  *	@dev: device
1295  *	@alias: name up to IFALIASZ
1296  *	@len: limit of bytes to copy from info
1297  *
1298  *	Set ifalias for a device,
1299  */
1300 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1301 {
1302 	struct dev_ifalias *new_alias = NULL;
1303 
1304 	if (len >= IFALIASZ)
1305 		return -EINVAL;
1306 
1307 	if (len) {
1308 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1309 		if (!new_alias)
1310 			return -ENOMEM;
1311 
1312 		memcpy(new_alias->ifalias, alias, len);
1313 		new_alias->ifalias[len] = 0;
1314 	}
1315 
1316 	mutex_lock(&ifalias_mutex);
1317 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1318 					mutex_is_locked(&ifalias_mutex));
1319 	mutex_unlock(&ifalias_mutex);
1320 
1321 	if (new_alias)
1322 		kfree_rcu(new_alias, rcuhead);
1323 
1324 	return len;
1325 }
1326 EXPORT_SYMBOL(dev_set_alias);
1327 
1328 /**
1329  *	dev_get_alias - get ifalias of a device
1330  *	@dev: device
1331  *	@name: buffer to store name of ifalias
1332  *	@len: size of buffer
1333  *
1334  *	get ifalias for a device.  Caller must make sure dev cannot go
1335  *	away,  e.g. rcu read lock or own a reference count to device.
1336  */
1337 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1338 {
1339 	const struct dev_ifalias *alias;
1340 	int ret = 0;
1341 
1342 	rcu_read_lock();
1343 	alias = rcu_dereference(dev->ifalias);
1344 	if (alias)
1345 		ret = snprintf(name, len, "%s", alias->ifalias);
1346 	rcu_read_unlock();
1347 
1348 	return ret;
1349 }
1350 
1351 /**
1352  *	netdev_features_change - device changes features
1353  *	@dev: device to cause notification
1354  *
1355  *	Called to indicate a device has changed features.
1356  */
1357 void netdev_features_change(struct net_device *dev)
1358 {
1359 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1360 }
1361 EXPORT_SYMBOL(netdev_features_change);
1362 
1363 /**
1364  *	netdev_state_change - device changes state
1365  *	@dev: device to cause notification
1366  *
1367  *	Called to indicate a device has changed state. This function calls
1368  *	the notifier chains for netdev_chain and sends a NEWLINK message
1369  *	to the routing socket.
1370  */
1371 void netdev_state_change(struct net_device *dev)
1372 {
1373 	if (dev->flags & IFF_UP) {
1374 		struct netdev_notifier_change_info change_info = {
1375 			.info.dev = dev,
1376 		};
1377 
1378 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1379 					      &change_info.info);
1380 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1381 	}
1382 }
1383 EXPORT_SYMBOL(netdev_state_change);
1384 
1385 /**
1386  * __netdev_notify_peers - notify network peers about existence of @dev,
1387  * to be called when rtnl lock is already held.
1388  * @dev: network device
1389  *
1390  * Generate traffic such that interested network peers are aware of
1391  * @dev, such as by generating a gratuitous ARP. This may be used when
1392  * a device wants to inform the rest of the network about some sort of
1393  * reconfiguration such as a failover event or virtual machine
1394  * migration.
1395  */
1396 void __netdev_notify_peers(struct net_device *dev)
1397 {
1398 	ASSERT_RTNL();
1399 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1400 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1401 }
1402 EXPORT_SYMBOL(__netdev_notify_peers);
1403 
1404 /**
1405  * netdev_notify_peers - notify network peers about existence of @dev
1406  * @dev: network device
1407  *
1408  * Generate traffic such that interested network peers are aware of
1409  * @dev, such as by generating a gratuitous ARP. This may be used when
1410  * a device wants to inform the rest of the network about some sort of
1411  * reconfiguration such as a failover event or virtual machine
1412  * migration.
1413  */
1414 void netdev_notify_peers(struct net_device *dev)
1415 {
1416 	rtnl_lock();
1417 	__netdev_notify_peers(dev);
1418 	rtnl_unlock();
1419 }
1420 EXPORT_SYMBOL(netdev_notify_peers);
1421 
1422 static int napi_threaded_poll(void *data);
1423 
1424 static int napi_kthread_create(struct napi_struct *n)
1425 {
1426 	int err = 0;
1427 
1428 	/* Create and wake up the kthread once to put it in
1429 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1430 	 * warning and work with loadavg.
1431 	 */
1432 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1433 				n->dev->name, n->napi_id);
1434 	if (IS_ERR(n->thread)) {
1435 		err = PTR_ERR(n->thread);
1436 		pr_err("kthread_run failed with err %d\n", err);
1437 		n->thread = NULL;
1438 	}
1439 
1440 	return err;
1441 }
1442 
1443 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1444 {
1445 	const struct net_device_ops *ops = dev->netdev_ops;
1446 	int ret;
1447 
1448 	ASSERT_RTNL();
1449 	dev_addr_check(dev);
1450 
1451 	if (!netif_device_present(dev)) {
1452 		/* may be detached because parent is runtime-suspended */
1453 		if (dev->dev.parent)
1454 			pm_runtime_resume(dev->dev.parent);
1455 		if (!netif_device_present(dev))
1456 			return -ENODEV;
1457 	}
1458 
1459 	/* Block netpoll from trying to do any rx path servicing.
1460 	 * If we don't do this there is a chance ndo_poll_controller
1461 	 * or ndo_poll may be running while we open the device
1462 	 */
1463 	netpoll_poll_disable(dev);
1464 
1465 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1466 	ret = notifier_to_errno(ret);
1467 	if (ret)
1468 		return ret;
1469 
1470 	set_bit(__LINK_STATE_START, &dev->state);
1471 
1472 	if (ops->ndo_validate_addr)
1473 		ret = ops->ndo_validate_addr(dev);
1474 
1475 	if (!ret && ops->ndo_open)
1476 		ret = ops->ndo_open(dev);
1477 
1478 	netpoll_poll_enable(dev);
1479 
1480 	if (ret)
1481 		clear_bit(__LINK_STATE_START, &dev->state);
1482 	else {
1483 		dev->flags |= IFF_UP;
1484 		dev_set_rx_mode(dev);
1485 		dev_activate(dev);
1486 		add_device_randomness(dev->dev_addr, dev->addr_len);
1487 	}
1488 
1489 	return ret;
1490 }
1491 
1492 /**
1493  *	dev_open	- prepare an interface for use.
1494  *	@dev: device to open
1495  *	@extack: netlink extended ack
1496  *
1497  *	Takes a device from down to up state. The device's private open
1498  *	function is invoked and then the multicast lists are loaded. Finally
1499  *	the device is moved into the up state and a %NETDEV_UP message is
1500  *	sent to the netdev notifier chain.
1501  *
1502  *	Calling this function on an active interface is a nop. On a failure
1503  *	a negative errno code is returned.
1504  */
1505 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1506 {
1507 	int ret;
1508 
1509 	if (dev->flags & IFF_UP)
1510 		return 0;
1511 
1512 	ret = __dev_open(dev, extack);
1513 	if (ret < 0)
1514 		return ret;
1515 
1516 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1517 	call_netdevice_notifiers(NETDEV_UP, dev);
1518 
1519 	return ret;
1520 }
1521 EXPORT_SYMBOL(dev_open);
1522 
1523 static void __dev_close_many(struct list_head *head)
1524 {
1525 	struct net_device *dev;
1526 
1527 	ASSERT_RTNL();
1528 	might_sleep();
1529 
1530 	list_for_each_entry(dev, head, close_list) {
1531 		/* Temporarily disable netpoll until the interface is down */
1532 		netpoll_poll_disable(dev);
1533 
1534 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1535 
1536 		clear_bit(__LINK_STATE_START, &dev->state);
1537 
1538 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1539 		 * can be even on different cpu. So just clear netif_running().
1540 		 *
1541 		 * dev->stop() will invoke napi_disable() on all of it's
1542 		 * napi_struct instances on this device.
1543 		 */
1544 		smp_mb__after_atomic(); /* Commit netif_running(). */
1545 	}
1546 
1547 	dev_deactivate_many(head);
1548 
1549 	list_for_each_entry(dev, head, close_list) {
1550 		const struct net_device_ops *ops = dev->netdev_ops;
1551 
1552 		/*
1553 		 *	Call the device specific close. This cannot fail.
1554 		 *	Only if device is UP
1555 		 *
1556 		 *	We allow it to be called even after a DETACH hot-plug
1557 		 *	event.
1558 		 */
1559 		if (ops->ndo_stop)
1560 			ops->ndo_stop(dev);
1561 
1562 		dev->flags &= ~IFF_UP;
1563 		netpoll_poll_enable(dev);
1564 	}
1565 }
1566 
1567 static void __dev_close(struct net_device *dev)
1568 {
1569 	LIST_HEAD(single);
1570 
1571 	list_add(&dev->close_list, &single);
1572 	__dev_close_many(&single);
1573 	list_del(&single);
1574 }
1575 
1576 void dev_close_many(struct list_head *head, bool unlink)
1577 {
1578 	struct net_device *dev, *tmp;
1579 
1580 	/* Remove the devices that don't need to be closed */
1581 	list_for_each_entry_safe(dev, tmp, head, close_list)
1582 		if (!(dev->flags & IFF_UP))
1583 			list_del_init(&dev->close_list);
1584 
1585 	__dev_close_many(head);
1586 
1587 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1588 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1589 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1590 		if (unlink)
1591 			list_del_init(&dev->close_list);
1592 	}
1593 }
1594 EXPORT_SYMBOL(dev_close_many);
1595 
1596 /**
1597  *	dev_close - shutdown an interface.
1598  *	@dev: device to shutdown
1599  *
1600  *	This function moves an active device into down state. A
1601  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1602  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1603  *	chain.
1604  */
1605 void dev_close(struct net_device *dev)
1606 {
1607 	if (dev->flags & IFF_UP) {
1608 		LIST_HEAD(single);
1609 
1610 		list_add(&dev->close_list, &single);
1611 		dev_close_many(&single, true);
1612 		list_del(&single);
1613 	}
1614 }
1615 EXPORT_SYMBOL(dev_close);
1616 
1617 
1618 /**
1619  *	dev_disable_lro - disable Large Receive Offload on a device
1620  *	@dev: device
1621  *
1622  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1623  *	called under RTNL.  This is needed if received packets may be
1624  *	forwarded to another interface.
1625  */
1626 void dev_disable_lro(struct net_device *dev)
1627 {
1628 	struct net_device *lower_dev;
1629 	struct list_head *iter;
1630 
1631 	dev->wanted_features &= ~NETIF_F_LRO;
1632 	netdev_update_features(dev);
1633 
1634 	if (unlikely(dev->features & NETIF_F_LRO))
1635 		netdev_WARN(dev, "failed to disable LRO!\n");
1636 
1637 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1638 		dev_disable_lro(lower_dev);
1639 }
1640 EXPORT_SYMBOL(dev_disable_lro);
1641 
1642 /**
1643  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1644  *	@dev: device
1645  *
1646  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1647  *	called under RTNL.  This is needed if Generic XDP is installed on
1648  *	the device.
1649  */
1650 static void dev_disable_gro_hw(struct net_device *dev)
1651 {
1652 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1653 	netdev_update_features(dev);
1654 
1655 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1656 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1657 }
1658 
1659 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1660 {
1661 #define N(val) 						\
1662 	case NETDEV_##val:				\
1663 		return "NETDEV_" __stringify(val);
1664 	switch (cmd) {
1665 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1666 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1667 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1668 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1669 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1670 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1671 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1672 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1673 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1674 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1675 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1676 	N(XDP_FEAT_CHANGE)
1677 	}
1678 #undef N
1679 	return "UNKNOWN_NETDEV_EVENT";
1680 }
1681 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1682 
1683 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1684 				   struct net_device *dev)
1685 {
1686 	struct netdev_notifier_info info = {
1687 		.dev = dev,
1688 	};
1689 
1690 	return nb->notifier_call(nb, val, &info);
1691 }
1692 
1693 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1694 					     struct net_device *dev)
1695 {
1696 	int err;
1697 
1698 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1699 	err = notifier_to_errno(err);
1700 	if (err)
1701 		return err;
1702 
1703 	if (!(dev->flags & IFF_UP))
1704 		return 0;
1705 
1706 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1707 	return 0;
1708 }
1709 
1710 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1711 						struct net_device *dev)
1712 {
1713 	if (dev->flags & IFF_UP) {
1714 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1715 					dev);
1716 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1717 	}
1718 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1719 }
1720 
1721 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1722 						 struct net *net)
1723 {
1724 	struct net_device *dev;
1725 	int err;
1726 
1727 	for_each_netdev(net, dev) {
1728 		err = call_netdevice_register_notifiers(nb, dev);
1729 		if (err)
1730 			goto rollback;
1731 	}
1732 	return 0;
1733 
1734 rollback:
1735 	for_each_netdev_continue_reverse(net, dev)
1736 		call_netdevice_unregister_notifiers(nb, dev);
1737 	return err;
1738 }
1739 
1740 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1741 						    struct net *net)
1742 {
1743 	struct net_device *dev;
1744 
1745 	for_each_netdev(net, dev)
1746 		call_netdevice_unregister_notifiers(nb, dev);
1747 }
1748 
1749 static int dev_boot_phase = 1;
1750 
1751 /**
1752  * register_netdevice_notifier - register a network notifier block
1753  * @nb: notifier
1754  *
1755  * Register a notifier to be called when network device events occur.
1756  * The notifier passed is linked into the kernel structures and must
1757  * not be reused until it has been unregistered. A negative errno code
1758  * is returned on a failure.
1759  *
1760  * When registered all registration and up events are replayed
1761  * to the new notifier to allow device to have a race free
1762  * view of the network device list.
1763  */
1764 
1765 int register_netdevice_notifier(struct notifier_block *nb)
1766 {
1767 	struct net *net;
1768 	int err;
1769 
1770 	/* Close race with setup_net() and cleanup_net() */
1771 	down_write(&pernet_ops_rwsem);
1772 	rtnl_lock();
1773 	err = raw_notifier_chain_register(&netdev_chain, nb);
1774 	if (err)
1775 		goto unlock;
1776 	if (dev_boot_phase)
1777 		goto unlock;
1778 	for_each_net(net) {
1779 		err = call_netdevice_register_net_notifiers(nb, net);
1780 		if (err)
1781 			goto rollback;
1782 	}
1783 
1784 unlock:
1785 	rtnl_unlock();
1786 	up_write(&pernet_ops_rwsem);
1787 	return err;
1788 
1789 rollback:
1790 	for_each_net_continue_reverse(net)
1791 		call_netdevice_unregister_net_notifiers(nb, net);
1792 
1793 	raw_notifier_chain_unregister(&netdev_chain, nb);
1794 	goto unlock;
1795 }
1796 EXPORT_SYMBOL(register_netdevice_notifier);
1797 
1798 /**
1799  * unregister_netdevice_notifier - unregister a network notifier block
1800  * @nb: notifier
1801  *
1802  * Unregister a notifier previously registered by
1803  * register_netdevice_notifier(). The notifier is unlinked into the
1804  * kernel structures and may then be reused. A negative errno code
1805  * is returned on a failure.
1806  *
1807  * After unregistering unregister and down device events are synthesized
1808  * for all devices on the device list to the removed notifier to remove
1809  * the need for special case cleanup code.
1810  */
1811 
1812 int unregister_netdevice_notifier(struct notifier_block *nb)
1813 {
1814 	struct net *net;
1815 	int err;
1816 
1817 	/* Close race with setup_net() and cleanup_net() */
1818 	down_write(&pernet_ops_rwsem);
1819 	rtnl_lock();
1820 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1821 	if (err)
1822 		goto unlock;
1823 
1824 	for_each_net(net)
1825 		call_netdevice_unregister_net_notifiers(nb, net);
1826 
1827 unlock:
1828 	rtnl_unlock();
1829 	up_write(&pernet_ops_rwsem);
1830 	return err;
1831 }
1832 EXPORT_SYMBOL(unregister_netdevice_notifier);
1833 
1834 static int __register_netdevice_notifier_net(struct net *net,
1835 					     struct notifier_block *nb,
1836 					     bool ignore_call_fail)
1837 {
1838 	int err;
1839 
1840 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1841 	if (err)
1842 		return err;
1843 	if (dev_boot_phase)
1844 		return 0;
1845 
1846 	err = call_netdevice_register_net_notifiers(nb, net);
1847 	if (err && !ignore_call_fail)
1848 		goto chain_unregister;
1849 
1850 	return 0;
1851 
1852 chain_unregister:
1853 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1854 	return err;
1855 }
1856 
1857 static int __unregister_netdevice_notifier_net(struct net *net,
1858 					       struct notifier_block *nb)
1859 {
1860 	int err;
1861 
1862 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1863 	if (err)
1864 		return err;
1865 
1866 	call_netdevice_unregister_net_notifiers(nb, net);
1867 	return 0;
1868 }
1869 
1870 /**
1871  * register_netdevice_notifier_net - register a per-netns network notifier block
1872  * @net: network namespace
1873  * @nb: notifier
1874  *
1875  * Register a notifier to be called when network device events occur.
1876  * The notifier passed is linked into the kernel structures and must
1877  * not be reused until it has been unregistered. A negative errno code
1878  * is returned on a failure.
1879  *
1880  * When registered all registration and up events are replayed
1881  * to the new notifier to allow device to have a race free
1882  * view of the network device list.
1883  */
1884 
1885 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1886 {
1887 	int err;
1888 
1889 	rtnl_lock();
1890 	err = __register_netdevice_notifier_net(net, nb, false);
1891 	rtnl_unlock();
1892 	return err;
1893 }
1894 EXPORT_SYMBOL(register_netdevice_notifier_net);
1895 
1896 /**
1897  * unregister_netdevice_notifier_net - unregister a per-netns
1898  *                                     network notifier block
1899  * @net: network namespace
1900  * @nb: notifier
1901  *
1902  * Unregister a notifier previously registered by
1903  * register_netdevice_notifier_net(). The notifier is unlinked from the
1904  * kernel structures and may then be reused. A negative errno code
1905  * is returned on a failure.
1906  *
1907  * After unregistering unregister and down device events are synthesized
1908  * for all devices on the device list to the removed notifier to remove
1909  * the need for special case cleanup code.
1910  */
1911 
1912 int unregister_netdevice_notifier_net(struct net *net,
1913 				      struct notifier_block *nb)
1914 {
1915 	int err;
1916 
1917 	rtnl_lock();
1918 	err = __unregister_netdevice_notifier_net(net, nb);
1919 	rtnl_unlock();
1920 	return err;
1921 }
1922 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1923 
1924 static void __move_netdevice_notifier_net(struct net *src_net,
1925 					  struct net *dst_net,
1926 					  struct notifier_block *nb)
1927 {
1928 	__unregister_netdevice_notifier_net(src_net, nb);
1929 	__register_netdevice_notifier_net(dst_net, nb, true);
1930 }
1931 
1932 int register_netdevice_notifier_dev_net(struct net_device *dev,
1933 					struct notifier_block *nb,
1934 					struct netdev_net_notifier *nn)
1935 {
1936 	int err;
1937 
1938 	rtnl_lock();
1939 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1940 	if (!err) {
1941 		nn->nb = nb;
1942 		list_add(&nn->list, &dev->net_notifier_list);
1943 	}
1944 	rtnl_unlock();
1945 	return err;
1946 }
1947 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1948 
1949 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1950 					  struct notifier_block *nb,
1951 					  struct netdev_net_notifier *nn)
1952 {
1953 	int err;
1954 
1955 	rtnl_lock();
1956 	list_del(&nn->list);
1957 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1958 	rtnl_unlock();
1959 	return err;
1960 }
1961 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1962 
1963 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1964 					     struct net *net)
1965 {
1966 	struct netdev_net_notifier *nn;
1967 
1968 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1969 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1970 }
1971 
1972 /**
1973  *	call_netdevice_notifiers_info - call all network notifier blocks
1974  *	@val: value passed unmodified to notifier function
1975  *	@info: notifier information data
1976  *
1977  *	Call all network notifier blocks.  Parameters and return value
1978  *	are as for raw_notifier_call_chain().
1979  */
1980 
1981 int call_netdevice_notifiers_info(unsigned long val,
1982 				  struct netdev_notifier_info *info)
1983 {
1984 	struct net *net = dev_net(info->dev);
1985 	int ret;
1986 
1987 	ASSERT_RTNL();
1988 
1989 	/* Run per-netns notifier block chain first, then run the global one.
1990 	 * Hopefully, one day, the global one is going to be removed after
1991 	 * all notifier block registrators get converted to be per-netns.
1992 	 */
1993 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994 	if (ret & NOTIFY_STOP_MASK)
1995 		return ret;
1996 	return raw_notifier_call_chain(&netdev_chain, val, info);
1997 }
1998 
1999 /**
2000  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2001  *	                                       for and rollback on error
2002  *	@val_up: value passed unmodified to notifier function
2003  *	@val_down: value passed unmodified to the notifier function when
2004  *	           recovering from an error on @val_up
2005  *	@info: notifier information data
2006  *
2007  *	Call all per-netns network notifier blocks, but not notifier blocks on
2008  *	the global notifier chain. Parameters and return value are as for
2009  *	raw_notifier_call_chain_robust().
2010  */
2011 
2012 static int
2013 call_netdevice_notifiers_info_robust(unsigned long val_up,
2014 				     unsigned long val_down,
2015 				     struct netdev_notifier_info *info)
2016 {
2017 	struct net *net = dev_net(info->dev);
2018 
2019 	ASSERT_RTNL();
2020 
2021 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2022 					      val_up, val_down, info);
2023 }
2024 
2025 static int call_netdevice_notifiers_extack(unsigned long val,
2026 					   struct net_device *dev,
2027 					   struct netlink_ext_ack *extack)
2028 {
2029 	struct netdev_notifier_info info = {
2030 		.dev = dev,
2031 		.extack = extack,
2032 	};
2033 
2034 	return call_netdevice_notifiers_info(val, &info);
2035 }
2036 
2037 /**
2038  *	call_netdevice_notifiers - call all network notifier blocks
2039  *      @val: value passed unmodified to notifier function
2040  *      @dev: net_device pointer passed unmodified to notifier function
2041  *
2042  *	Call all network notifier blocks.  Parameters and return value
2043  *	are as for raw_notifier_call_chain().
2044  */
2045 
2046 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2047 {
2048 	return call_netdevice_notifiers_extack(val, dev, NULL);
2049 }
2050 EXPORT_SYMBOL(call_netdevice_notifiers);
2051 
2052 /**
2053  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2054  *	@val: value passed unmodified to notifier function
2055  *	@dev: net_device pointer passed unmodified to notifier function
2056  *	@arg: additional u32 argument passed to the notifier function
2057  *
2058  *	Call all network notifier blocks.  Parameters and return value
2059  *	are as for raw_notifier_call_chain().
2060  */
2061 static int call_netdevice_notifiers_mtu(unsigned long val,
2062 					struct net_device *dev, u32 arg)
2063 {
2064 	struct netdev_notifier_info_ext info = {
2065 		.info.dev = dev,
2066 		.ext.mtu = arg,
2067 	};
2068 
2069 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2070 
2071 	return call_netdevice_notifiers_info(val, &info.info);
2072 }
2073 
2074 #ifdef CONFIG_NET_INGRESS
2075 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2076 
2077 void net_inc_ingress_queue(void)
2078 {
2079 	static_branch_inc(&ingress_needed_key);
2080 }
2081 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2082 
2083 void net_dec_ingress_queue(void)
2084 {
2085 	static_branch_dec(&ingress_needed_key);
2086 }
2087 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2088 #endif
2089 
2090 #ifdef CONFIG_NET_EGRESS
2091 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2092 
2093 void net_inc_egress_queue(void)
2094 {
2095 	static_branch_inc(&egress_needed_key);
2096 }
2097 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2098 
2099 void net_dec_egress_queue(void)
2100 {
2101 	static_branch_dec(&egress_needed_key);
2102 }
2103 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2104 #endif
2105 
2106 #ifdef CONFIG_NET_CLS_ACT
2107 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key);
2108 EXPORT_SYMBOL(tcf_bypass_check_needed_key);
2109 #endif
2110 
2111 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2112 EXPORT_SYMBOL(netstamp_needed_key);
2113 #ifdef CONFIG_JUMP_LABEL
2114 static atomic_t netstamp_needed_deferred;
2115 static atomic_t netstamp_wanted;
2116 static void netstamp_clear(struct work_struct *work)
2117 {
2118 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2119 	int wanted;
2120 
2121 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2122 	if (wanted > 0)
2123 		static_branch_enable(&netstamp_needed_key);
2124 	else
2125 		static_branch_disable(&netstamp_needed_key);
2126 }
2127 static DECLARE_WORK(netstamp_work, netstamp_clear);
2128 #endif
2129 
2130 void net_enable_timestamp(void)
2131 {
2132 #ifdef CONFIG_JUMP_LABEL
2133 	int wanted = atomic_read(&netstamp_wanted);
2134 
2135 	while (wanted > 0) {
2136 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2137 			return;
2138 	}
2139 	atomic_inc(&netstamp_needed_deferred);
2140 	schedule_work(&netstamp_work);
2141 #else
2142 	static_branch_inc(&netstamp_needed_key);
2143 #endif
2144 }
2145 EXPORT_SYMBOL(net_enable_timestamp);
2146 
2147 void net_disable_timestamp(void)
2148 {
2149 #ifdef CONFIG_JUMP_LABEL
2150 	int wanted = atomic_read(&netstamp_wanted);
2151 
2152 	while (wanted > 1) {
2153 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2154 			return;
2155 	}
2156 	atomic_dec(&netstamp_needed_deferred);
2157 	schedule_work(&netstamp_work);
2158 #else
2159 	static_branch_dec(&netstamp_needed_key);
2160 #endif
2161 }
2162 EXPORT_SYMBOL(net_disable_timestamp);
2163 
2164 static inline void net_timestamp_set(struct sk_buff *skb)
2165 {
2166 	skb->tstamp = 0;
2167 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2168 	if (static_branch_unlikely(&netstamp_needed_key))
2169 		skb->tstamp = ktime_get_real();
2170 }
2171 
2172 #define net_timestamp_check(COND, SKB)				\
2173 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2174 		if ((COND) && !(SKB)->tstamp)			\
2175 			(SKB)->tstamp = ktime_get_real();	\
2176 	}							\
2177 
2178 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2179 {
2180 	return __is_skb_forwardable(dev, skb, true);
2181 }
2182 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2183 
2184 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2185 			      bool check_mtu)
2186 {
2187 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2188 
2189 	if (likely(!ret)) {
2190 		skb->protocol = eth_type_trans(skb, dev);
2191 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2192 	}
2193 
2194 	return ret;
2195 }
2196 
2197 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2198 {
2199 	return __dev_forward_skb2(dev, skb, true);
2200 }
2201 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2202 
2203 /**
2204  * dev_forward_skb - loopback an skb to another netif
2205  *
2206  * @dev: destination network device
2207  * @skb: buffer to forward
2208  *
2209  * return values:
2210  *	NET_RX_SUCCESS	(no congestion)
2211  *	NET_RX_DROP     (packet was dropped, but freed)
2212  *
2213  * dev_forward_skb can be used for injecting an skb from the
2214  * start_xmit function of one device into the receive queue
2215  * of another device.
2216  *
2217  * The receiving device may be in another namespace, so
2218  * we have to clear all information in the skb that could
2219  * impact namespace isolation.
2220  */
2221 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2222 {
2223 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2224 }
2225 EXPORT_SYMBOL_GPL(dev_forward_skb);
2226 
2227 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2228 {
2229 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2230 }
2231 
2232 static inline int deliver_skb(struct sk_buff *skb,
2233 			      struct packet_type *pt_prev,
2234 			      struct net_device *orig_dev)
2235 {
2236 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2237 		return -ENOMEM;
2238 	refcount_inc(&skb->users);
2239 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2240 }
2241 
2242 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2243 					  struct packet_type **pt,
2244 					  struct net_device *orig_dev,
2245 					  __be16 type,
2246 					  struct list_head *ptype_list)
2247 {
2248 	struct packet_type *ptype, *pt_prev = *pt;
2249 
2250 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2251 		if (ptype->type != type)
2252 			continue;
2253 		if (pt_prev)
2254 			deliver_skb(skb, pt_prev, orig_dev);
2255 		pt_prev = ptype;
2256 	}
2257 	*pt = pt_prev;
2258 }
2259 
2260 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2261 {
2262 	if (!ptype->af_packet_priv || !skb->sk)
2263 		return false;
2264 
2265 	if (ptype->id_match)
2266 		return ptype->id_match(ptype, skb->sk);
2267 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2268 		return true;
2269 
2270 	return false;
2271 }
2272 
2273 /**
2274  * dev_nit_active - return true if any network interface taps are in use
2275  *
2276  * @dev: network device to check for the presence of taps
2277  */
2278 bool dev_nit_active(struct net_device *dev)
2279 {
2280 	return !list_empty(&net_hotdata.ptype_all) ||
2281 	       !list_empty(&dev->ptype_all);
2282 }
2283 EXPORT_SYMBOL_GPL(dev_nit_active);
2284 
2285 /*
2286  *	Support routine. Sends outgoing frames to any network
2287  *	taps currently in use.
2288  */
2289 
2290 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2291 {
2292 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2293 	struct packet_type *ptype, *pt_prev = NULL;
2294 	struct sk_buff *skb2 = NULL;
2295 
2296 	rcu_read_lock();
2297 again:
2298 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2299 		if (READ_ONCE(ptype->ignore_outgoing))
2300 			continue;
2301 
2302 		/* Never send packets back to the socket
2303 		 * they originated from - MvS ([email protected])
2304 		 */
2305 		if (skb_loop_sk(ptype, skb))
2306 			continue;
2307 
2308 		if (pt_prev) {
2309 			deliver_skb(skb2, pt_prev, skb->dev);
2310 			pt_prev = ptype;
2311 			continue;
2312 		}
2313 
2314 		/* need to clone skb, done only once */
2315 		skb2 = skb_clone(skb, GFP_ATOMIC);
2316 		if (!skb2)
2317 			goto out_unlock;
2318 
2319 		net_timestamp_set(skb2);
2320 
2321 		/* skb->nh should be correctly
2322 		 * set by sender, so that the second statement is
2323 		 * just protection against buggy protocols.
2324 		 */
2325 		skb_reset_mac_header(skb2);
2326 
2327 		if (skb_network_header(skb2) < skb2->data ||
2328 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2329 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2330 					     ntohs(skb2->protocol),
2331 					     dev->name);
2332 			skb_reset_network_header(skb2);
2333 		}
2334 
2335 		skb2->transport_header = skb2->network_header;
2336 		skb2->pkt_type = PACKET_OUTGOING;
2337 		pt_prev = ptype;
2338 	}
2339 
2340 	if (ptype_list == &net_hotdata.ptype_all) {
2341 		ptype_list = &dev->ptype_all;
2342 		goto again;
2343 	}
2344 out_unlock:
2345 	if (pt_prev) {
2346 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2347 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2348 		else
2349 			kfree_skb(skb2);
2350 	}
2351 	rcu_read_unlock();
2352 }
2353 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2354 
2355 /**
2356  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2357  * @dev: Network device
2358  * @txq: number of queues available
2359  *
2360  * If real_num_tx_queues is changed the tc mappings may no longer be
2361  * valid. To resolve this verify the tc mapping remains valid and if
2362  * not NULL the mapping. With no priorities mapping to this
2363  * offset/count pair it will no longer be used. In the worst case TC0
2364  * is invalid nothing can be done so disable priority mappings. If is
2365  * expected that drivers will fix this mapping if they can before
2366  * calling netif_set_real_num_tx_queues.
2367  */
2368 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2369 {
2370 	int i;
2371 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2372 
2373 	/* If TC0 is invalidated disable TC mapping */
2374 	if (tc->offset + tc->count > txq) {
2375 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2376 		dev->num_tc = 0;
2377 		return;
2378 	}
2379 
2380 	/* Invalidated prio to tc mappings set to TC0 */
2381 	for (i = 1; i < TC_BITMASK + 1; i++) {
2382 		int q = netdev_get_prio_tc_map(dev, i);
2383 
2384 		tc = &dev->tc_to_txq[q];
2385 		if (tc->offset + tc->count > txq) {
2386 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2387 				    i, q);
2388 			netdev_set_prio_tc_map(dev, i, 0);
2389 		}
2390 	}
2391 }
2392 
2393 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2394 {
2395 	if (dev->num_tc) {
2396 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2397 		int i;
2398 
2399 		/* walk through the TCs and see if it falls into any of them */
2400 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2401 			if ((txq - tc->offset) < tc->count)
2402 				return i;
2403 		}
2404 
2405 		/* didn't find it, just return -1 to indicate no match */
2406 		return -1;
2407 	}
2408 
2409 	return 0;
2410 }
2411 EXPORT_SYMBOL(netdev_txq_to_tc);
2412 
2413 #ifdef CONFIG_XPS
2414 static struct static_key xps_needed __read_mostly;
2415 static struct static_key xps_rxqs_needed __read_mostly;
2416 static DEFINE_MUTEX(xps_map_mutex);
2417 #define xmap_dereference(P)		\
2418 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2419 
2420 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2421 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2422 {
2423 	struct xps_map *map = NULL;
2424 	int pos;
2425 
2426 	map = xmap_dereference(dev_maps->attr_map[tci]);
2427 	if (!map)
2428 		return false;
2429 
2430 	for (pos = map->len; pos--;) {
2431 		if (map->queues[pos] != index)
2432 			continue;
2433 
2434 		if (map->len > 1) {
2435 			map->queues[pos] = map->queues[--map->len];
2436 			break;
2437 		}
2438 
2439 		if (old_maps)
2440 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2441 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2442 		kfree_rcu(map, rcu);
2443 		return false;
2444 	}
2445 
2446 	return true;
2447 }
2448 
2449 static bool remove_xps_queue_cpu(struct net_device *dev,
2450 				 struct xps_dev_maps *dev_maps,
2451 				 int cpu, u16 offset, u16 count)
2452 {
2453 	int num_tc = dev_maps->num_tc;
2454 	bool active = false;
2455 	int tci;
2456 
2457 	for (tci = cpu * num_tc; num_tc--; tci++) {
2458 		int i, j;
2459 
2460 		for (i = count, j = offset; i--; j++) {
2461 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2462 				break;
2463 		}
2464 
2465 		active |= i < 0;
2466 	}
2467 
2468 	return active;
2469 }
2470 
2471 static void reset_xps_maps(struct net_device *dev,
2472 			   struct xps_dev_maps *dev_maps,
2473 			   enum xps_map_type type)
2474 {
2475 	static_key_slow_dec_cpuslocked(&xps_needed);
2476 	if (type == XPS_RXQS)
2477 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2478 
2479 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2480 
2481 	kfree_rcu(dev_maps, rcu);
2482 }
2483 
2484 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2485 			   u16 offset, u16 count)
2486 {
2487 	struct xps_dev_maps *dev_maps;
2488 	bool active = false;
2489 	int i, j;
2490 
2491 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2492 	if (!dev_maps)
2493 		return;
2494 
2495 	for (j = 0; j < dev_maps->nr_ids; j++)
2496 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2497 	if (!active)
2498 		reset_xps_maps(dev, dev_maps, type);
2499 
2500 	if (type == XPS_CPUS) {
2501 		for (i = offset + (count - 1); count--; i--)
2502 			netdev_queue_numa_node_write(
2503 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2504 	}
2505 }
2506 
2507 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2508 				   u16 count)
2509 {
2510 	if (!static_key_false(&xps_needed))
2511 		return;
2512 
2513 	cpus_read_lock();
2514 	mutex_lock(&xps_map_mutex);
2515 
2516 	if (static_key_false(&xps_rxqs_needed))
2517 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2518 
2519 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2520 
2521 	mutex_unlock(&xps_map_mutex);
2522 	cpus_read_unlock();
2523 }
2524 
2525 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2526 {
2527 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2528 }
2529 
2530 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2531 				      u16 index, bool is_rxqs_map)
2532 {
2533 	struct xps_map *new_map;
2534 	int alloc_len = XPS_MIN_MAP_ALLOC;
2535 	int i, pos;
2536 
2537 	for (pos = 0; map && pos < map->len; pos++) {
2538 		if (map->queues[pos] != index)
2539 			continue;
2540 		return map;
2541 	}
2542 
2543 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2544 	if (map) {
2545 		if (pos < map->alloc_len)
2546 			return map;
2547 
2548 		alloc_len = map->alloc_len * 2;
2549 	}
2550 
2551 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2552 	 *  map
2553 	 */
2554 	if (is_rxqs_map)
2555 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2556 	else
2557 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2558 				       cpu_to_node(attr_index));
2559 	if (!new_map)
2560 		return NULL;
2561 
2562 	for (i = 0; i < pos; i++)
2563 		new_map->queues[i] = map->queues[i];
2564 	new_map->alloc_len = alloc_len;
2565 	new_map->len = pos;
2566 
2567 	return new_map;
2568 }
2569 
2570 /* Copy xps maps at a given index */
2571 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2572 			      struct xps_dev_maps *new_dev_maps, int index,
2573 			      int tc, bool skip_tc)
2574 {
2575 	int i, tci = index * dev_maps->num_tc;
2576 	struct xps_map *map;
2577 
2578 	/* copy maps belonging to foreign traffic classes */
2579 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2580 		if (i == tc && skip_tc)
2581 			continue;
2582 
2583 		/* fill in the new device map from the old device map */
2584 		map = xmap_dereference(dev_maps->attr_map[tci]);
2585 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2586 	}
2587 }
2588 
2589 /* Must be called under cpus_read_lock */
2590 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2591 			  u16 index, enum xps_map_type type)
2592 {
2593 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2594 	const unsigned long *online_mask = NULL;
2595 	bool active = false, copy = false;
2596 	int i, j, tci, numa_node_id = -2;
2597 	int maps_sz, num_tc = 1, tc = 0;
2598 	struct xps_map *map, *new_map;
2599 	unsigned int nr_ids;
2600 
2601 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2602 
2603 	if (dev->num_tc) {
2604 		/* Do not allow XPS on subordinate device directly */
2605 		num_tc = dev->num_tc;
2606 		if (num_tc < 0)
2607 			return -EINVAL;
2608 
2609 		/* If queue belongs to subordinate dev use its map */
2610 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2611 
2612 		tc = netdev_txq_to_tc(dev, index);
2613 		if (tc < 0)
2614 			return -EINVAL;
2615 	}
2616 
2617 	mutex_lock(&xps_map_mutex);
2618 
2619 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2620 	if (type == XPS_RXQS) {
2621 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2622 		nr_ids = dev->num_rx_queues;
2623 	} else {
2624 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2625 		if (num_possible_cpus() > 1)
2626 			online_mask = cpumask_bits(cpu_online_mask);
2627 		nr_ids = nr_cpu_ids;
2628 	}
2629 
2630 	if (maps_sz < L1_CACHE_BYTES)
2631 		maps_sz = L1_CACHE_BYTES;
2632 
2633 	/* The old dev_maps could be larger or smaller than the one we're
2634 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2635 	 * between. We could try to be smart, but let's be safe instead and only
2636 	 * copy foreign traffic classes if the two map sizes match.
2637 	 */
2638 	if (dev_maps &&
2639 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2640 		copy = true;
2641 
2642 	/* allocate memory for queue storage */
2643 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2644 	     j < nr_ids;) {
2645 		if (!new_dev_maps) {
2646 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2647 			if (!new_dev_maps) {
2648 				mutex_unlock(&xps_map_mutex);
2649 				return -ENOMEM;
2650 			}
2651 
2652 			new_dev_maps->nr_ids = nr_ids;
2653 			new_dev_maps->num_tc = num_tc;
2654 		}
2655 
2656 		tci = j * num_tc + tc;
2657 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2658 
2659 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2660 		if (!map)
2661 			goto error;
2662 
2663 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2664 	}
2665 
2666 	if (!new_dev_maps)
2667 		goto out_no_new_maps;
2668 
2669 	if (!dev_maps) {
2670 		/* Increment static keys at most once per type */
2671 		static_key_slow_inc_cpuslocked(&xps_needed);
2672 		if (type == XPS_RXQS)
2673 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2674 	}
2675 
2676 	for (j = 0; j < nr_ids; j++) {
2677 		bool skip_tc = false;
2678 
2679 		tci = j * num_tc + tc;
2680 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2681 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2682 			/* add tx-queue to CPU/rx-queue maps */
2683 			int pos = 0;
2684 
2685 			skip_tc = true;
2686 
2687 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2688 			while ((pos < map->len) && (map->queues[pos] != index))
2689 				pos++;
2690 
2691 			if (pos == map->len)
2692 				map->queues[map->len++] = index;
2693 #ifdef CONFIG_NUMA
2694 			if (type == XPS_CPUS) {
2695 				if (numa_node_id == -2)
2696 					numa_node_id = cpu_to_node(j);
2697 				else if (numa_node_id != cpu_to_node(j))
2698 					numa_node_id = -1;
2699 			}
2700 #endif
2701 		}
2702 
2703 		if (copy)
2704 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2705 					  skip_tc);
2706 	}
2707 
2708 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2709 
2710 	/* Cleanup old maps */
2711 	if (!dev_maps)
2712 		goto out_no_old_maps;
2713 
2714 	for (j = 0; j < dev_maps->nr_ids; j++) {
2715 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2716 			map = xmap_dereference(dev_maps->attr_map[tci]);
2717 			if (!map)
2718 				continue;
2719 
2720 			if (copy) {
2721 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2722 				if (map == new_map)
2723 					continue;
2724 			}
2725 
2726 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2727 			kfree_rcu(map, rcu);
2728 		}
2729 	}
2730 
2731 	old_dev_maps = dev_maps;
2732 
2733 out_no_old_maps:
2734 	dev_maps = new_dev_maps;
2735 	active = true;
2736 
2737 out_no_new_maps:
2738 	if (type == XPS_CPUS)
2739 		/* update Tx queue numa node */
2740 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2741 					     (numa_node_id >= 0) ?
2742 					     numa_node_id : NUMA_NO_NODE);
2743 
2744 	if (!dev_maps)
2745 		goto out_no_maps;
2746 
2747 	/* removes tx-queue from unused CPUs/rx-queues */
2748 	for (j = 0; j < dev_maps->nr_ids; j++) {
2749 		tci = j * dev_maps->num_tc;
2750 
2751 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2752 			if (i == tc &&
2753 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2754 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2755 				continue;
2756 
2757 			active |= remove_xps_queue(dev_maps,
2758 						   copy ? old_dev_maps : NULL,
2759 						   tci, index);
2760 		}
2761 	}
2762 
2763 	if (old_dev_maps)
2764 		kfree_rcu(old_dev_maps, rcu);
2765 
2766 	/* free map if not active */
2767 	if (!active)
2768 		reset_xps_maps(dev, dev_maps, type);
2769 
2770 out_no_maps:
2771 	mutex_unlock(&xps_map_mutex);
2772 
2773 	return 0;
2774 error:
2775 	/* remove any maps that we added */
2776 	for (j = 0; j < nr_ids; j++) {
2777 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2778 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2779 			map = copy ?
2780 			      xmap_dereference(dev_maps->attr_map[tci]) :
2781 			      NULL;
2782 			if (new_map && new_map != map)
2783 				kfree(new_map);
2784 		}
2785 	}
2786 
2787 	mutex_unlock(&xps_map_mutex);
2788 
2789 	kfree(new_dev_maps);
2790 	return -ENOMEM;
2791 }
2792 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2793 
2794 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2795 			u16 index)
2796 {
2797 	int ret;
2798 
2799 	cpus_read_lock();
2800 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2801 	cpus_read_unlock();
2802 
2803 	return ret;
2804 }
2805 EXPORT_SYMBOL(netif_set_xps_queue);
2806 
2807 #endif
2808 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2809 {
2810 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2811 
2812 	/* Unbind any subordinate channels */
2813 	while (txq-- != &dev->_tx[0]) {
2814 		if (txq->sb_dev)
2815 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2816 	}
2817 }
2818 
2819 void netdev_reset_tc(struct net_device *dev)
2820 {
2821 #ifdef CONFIG_XPS
2822 	netif_reset_xps_queues_gt(dev, 0);
2823 #endif
2824 	netdev_unbind_all_sb_channels(dev);
2825 
2826 	/* Reset TC configuration of device */
2827 	dev->num_tc = 0;
2828 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2829 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2830 }
2831 EXPORT_SYMBOL(netdev_reset_tc);
2832 
2833 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2834 {
2835 	if (tc >= dev->num_tc)
2836 		return -EINVAL;
2837 
2838 #ifdef CONFIG_XPS
2839 	netif_reset_xps_queues(dev, offset, count);
2840 #endif
2841 	dev->tc_to_txq[tc].count = count;
2842 	dev->tc_to_txq[tc].offset = offset;
2843 	return 0;
2844 }
2845 EXPORT_SYMBOL(netdev_set_tc_queue);
2846 
2847 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2848 {
2849 	if (num_tc > TC_MAX_QUEUE)
2850 		return -EINVAL;
2851 
2852 #ifdef CONFIG_XPS
2853 	netif_reset_xps_queues_gt(dev, 0);
2854 #endif
2855 	netdev_unbind_all_sb_channels(dev);
2856 
2857 	dev->num_tc = num_tc;
2858 	return 0;
2859 }
2860 EXPORT_SYMBOL(netdev_set_num_tc);
2861 
2862 void netdev_unbind_sb_channel(struct net_device *dev,
2863 			      struct net_device *sb_dev)
2864 {
2865 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2866 
2867 #ifdef CONFIG_XPS
2868 	netif_reset_xps_queues_gt(sb_dev, 0);
2869 #endif
2870 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2871 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2872 
2873 	while (txq-- != &dev->_tx[0]) {
2874 		if (txq->sb_dev == sb_dev)
2875 			txq->sb_dev = NULL;
2876 	}
2877 }
2878 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2879 
2880 int netdev_bind_sb_channel_queue(struct net_device *dev,
2881 				 struct net_device *sb_dev,
2882 				 u8 tc, u16 count, u16 offset)
2883 {
2884 	/* Make certain the sb_dev and dev are already configured */
2885 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2886 		return -EINVAL;
2887 
2888 	/* We cannot hand out queues we don't have */
2889 	if ((offset + count) > dev->real_num_tx_queues)
2890 		return -EINVAL;
2891 
2892 	/* Record the mapping */
2893 	sb_dev->tc_to_txq[tc].count = count;
2894 	sb_dev->tc_to_txq[tc].offset = offset;
2895 
2896 	/* Provide a way for Tx queue to find the tc_to_txq map or
2897 	 * XPS map for itself.
2898 	 */
2899 	while (count--)
2900 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2901 
2902 	return 0;
2903 }
2904 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2905 
2906 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2907 {
2908 	/* Do not use a multiqueue device to represent a subordinate channel */
2909 	if (netif_is_multiqueue(dev))
2910 		return -ENODEV;
2911 
2912 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2913 	 * Channel 0 is meant to be "native" mode and used only to represent
2914 	 * the main root device. We allow writing 0 to reset the device back
2915 	 * to normal mode after being used as a subordinate channel.
2916 	 */
2917 	if (channel > S16_MAX)
2918 		return -EINVAL;
2919 
2920 	dev->num_tc = -channel;
2921 
2922 	return 0;
2923 }
2924 EXPORT_SYMBOL(netdev_set_sb_channel);
2925 
2926 /*
2927  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2928  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2929  */
2930 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2931 {
2932 	bool disabling;
2933 	int rc;
2934 
2935 	disabling = txq < dev->real_num_tx_queues;
2936 
2937 	if (txq < 1 || txq > dev->num_tx_queues)
2938 		return -EINVAL;
2939 
2940 	if (dev->reg_state == NETREG_REGISTERED ||
2941 	    dev->reg_state == NETREG_UNREGISTERING) {
2942 		ASSERT_RTNL();
2943 
2944 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2945 						  txq);
2946 		if (rc)
2947 			return rc;
2948 
2949 		if (dev->num_tc)
2950 			netif_setup_tc(dev, txq);
2951 
2952 		dev_qdisc_change_real_num_tx(dev, txq);
2953 
2954 		dev->real_num_tx_queues = txq;
2955 
2956 		if (disabling) {
2957 			synchronize_net();
2958 			qdisc_reset_all_tx_gt(dev, txq);
2959 #ifdef CONFIG_XPS
2960 			netif_reset_xps_queues_gt(dev, txq);
2961 #endif
2962 		}
2963 	} else {
2964 		dev->real_num_tx_queues = txq;
2965 	}
2966 
2967 	return 0;
2968 }
2969 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2970 
2971 #ifdef CONFIG_SYSFS
2972 /**
2973  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2974  *	@dev: Network device
2975  *	@rxq: Actual number of RX queues
2976  *
2977  *	This must be called either with the rtnl_lock held or before
2978  *	registration of the net device.  Returns 0 on success, or a
2979  *	negative error code.  If called before registration, it always
2980  *	succeeds.
2981  */
2982 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2983 {
2984 	int rc;
2985 
2986 	if (rxq < 1 || rxq > dev->num_rx_queues)
2987 		return -EINVAL;
2988 
2989 	if (dev->reg_state == NETREG_REGISTERED) {
2990 		ASSERT_RTNL();
2991 
2992 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2993 						  rxq);
2994 		if (rc)
2995 			return rc;
2996 	}
2997 
2998 	dev->real_num_rx_queues = rxq;
2999 	return 0;
3000 }
3001 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3002 #endif
3003 
3004 /**
3005  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3006  *	@dev: Network device
3007  *	@txq: Actual number of TX queues
3008  *	@rxq: Actual number of RX queues
3009  *
3010  *	Set the real number of both TX and RX queues.
3011  *	Does nothing if the number of queues is already correct.
3012  */
3013 int netif_set_real_num_queues(struct net_device *dev,
3014 			      unsigned int txq, unsigned int rxq)
3015 {
3016 	unsigned int old_rxq = dev->real_num_rx_queues;
3017 	int err;
3018 
3019 	if (txq < 1 || txq > dev->num_tx_queues ||
3020 	    rxq < 1 || rxq > dev->num_rx_queues)
3021 		return -EINVAL;
3022 
3023 	/* Start from increases, so the error path only does decreases -
3024 	 * decreases can't fail.
3025 	 */
3026 	if (rxq > dev->real_num_rx_queues) {
3027 		err = netif_set_real_num_rx_queues(dev, rxq);
3028 		if (err)
3029 			return err;
3030 	}
3031 	if (txq > dev->real_num_tx_queues) {
3032 		err = netif_set_real_num_tx_queues(dev, txq);
3033 		if (err)
3034 			goto undo_rx;
3035 	}
3036 	if (rxq < dev->real_num_rx_queues)
3037 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3038 	if (txq < dev->real_num_tx_queues)
3039 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3040 
3041 	return 0;
3042 undo_rx:
3043 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3044 	return err;
3045 }
3046 EXPORT_SYMBOL(netif_set_real_num_queues);
3047 
3048 /**
3049  * netif_set_tso_max_size() - set the max size of TSO frames supported
3050  * @dev:	netdev to update
3051  * @size:	max skb->len of a TSO frame
3052  *
3053  * Set the limit on the size of TSO super-frames the device can handle.
3054  * Unless explicitly set the stack will assume the value of
3055  * %GSO_LEGACY_MAX_SIZE.
3056  */
3057 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3058 {
3059 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3060 	if (size < READ_ONCE(dev->gso_max_size))
3061 		netif_set_gso_max_size(dev, size);
3062 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3063 		netif_set_gso_ipv4_max_size(dev, size);
3064 }
3065 EXPORT_SYMBOL(netif_set_tso_max_size);
3066 
3067 /**
3068  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3069  * @dev:	netdev to update
3070  * @segs:	max number of TCP segments
3071  *
3072  * Set the limit on the number of TCP segments the device can generate from
3073  * a single TSO super-frame.
3074  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3075  */
3076 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3077 {
3078 	dev->tso_max_segs = segs;
3079 	if (segs < READ_ONCE(dev->gso_max_segs))
3080 		netif_set_gso_max_segs(dev, segs);
3081 }
3082 EXPORT_SYMBOL(netif_set_tso_max_segs);
3083 
3084 /**
3085  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3086  * @to:		netdev to update
3087  * @from:	netdev from which to copy the limits
3088  */
3089 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3090 {
3091 	netif_set_tso_max_size(to, from->tso_max_size);
3092 	netif_set_tso_max_segs(to, from->tso_max_segs);
3093 }
3094 EXPORT_SYMBOL(netif_inherit_tso_max);
3095 
3096 /**
3097  * netif_get_num_default_rss_queues - default number of RSS queues
3098  *
3099  * Default value is the number of physical cores if there are only 1 or 2, or
3100  * divided by 2 if there are more.
3101  */
3102 int netif_get_num_default_rss_queues(void)
3103 {
3104 	cpumask_var_t cpus;
3105 	int cpu, count = 0;
3106 
3107 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3108 		return 1;
3109 
3110 	cpumask_copy(cpus, cpu_online_mask);
3111 	for_each_cpu(cpu, cpus) {
3112 		++count;
3113 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3114 	}
3115 	free_cpumask_var(cpus);
3116 
3117 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3118 }
3119 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3120 
3121 static void __netif_reschedule(struct Qdisc *q)
3122 {
3123 	struct softnet_data *sd;
3124 	unsigned long flags;
3125 
3126 	local_irq_save(flags);
3127 	sd = this_cpu_ptr(&softnet_data);
3128 	q->next_sched = NULL;
3129 	*sd->output_queue_tailp = q;
3130 	sd->output_queue_tailp = &q->next_sched;
3131 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3132 	local_irq_restore(flags);
3133 }
3134 
3135 void __netif_schedule(struct Qdisc *q)
3136 {
3137 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3138 		__netif_reschedule(q);
3139 }
3140 EXPORT_SYMBOL(__netif_schedule);
3141 
3142 struct dev_kfree_skb_cb {
3143 	enum skb_drop_reason reason;
3144 };
3145 
3146 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3147 {
3148 	return (struct dev_kfree_skb_cb *)skb->cb;
3149 }
3150 
3151 void netif_schedule_queue(struct netdev_queue *txq)
3152 {
3153 	rcu_read_lock();
3154 	if (!netif_xmit_stopped(txq)) {
3155 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3156 
3157 		__netif_schedule(q);
3158 	}
3159 	rcu_read_unlock();
3160 }
3161 EXPORT_SYMBOL(netif_schedule_queue);
3162 
3163 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3164 {
3165 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3166 		struct Qdisc *q;
3167 
3168 		rcu_read_lock();
3169 		q = rcu_dereference(dev_queue->qdisc);
3170 		__netif_schedule(q);
3171 		rcu_read_unlock();
3172 	}
3173 }
3174 EXPORT_SYMBOL(netif_tx_wake_queue);
3175 
3176 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3177 {
3178 	unsigned long flags;
3179 
3180 	if (unlikely(!skb))
3181 		return;
3182 
3183 	if (likely(refcount_read(&skb->users) == 1)) {
3184 		smp_rmb();
3185 		refcount_set(&skb->users, 0);
3186 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3187 		return;
3188 	}
3189 	get_kfree_skb_cb(skb)->reason = reason;
3190 	local_irq_save(flags);
3191 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3192 	__this_cpu_write(softnet_data.completion_queue, skb);
3193 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3194 	local_irq_restore(flags);
3195 }
3196 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3197 
3198 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3199 {
3200 	if (in_hardirq() || irqs_disabled())
3201 		dev_kfree_skb_irq_reason(skb, reason);
3202 	else
3203 		kfree_skb_reason(skb, reason);
3204 }
3205 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3206 
3207 
3208 /**
3209  * netif_device_detach - mark device as removed
3210  * @dev: network device
3211  *
3212  * Mark device as removed from system and therefore no longer available.
3213  */
3214 void netif_device_detach(struct net_device *dev)
3215 {
3216 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3217 	    netif_running(dev)) {
3218 		netif_tx_stop_all_queues(dev);
3219 	}
3220 }
3221 EXPORT_SYMBOL(netif_device_detach);
3222 
3223 /**
3224  * netif_device_attach - mark device as attached
3225  * @dev: network device
3226  *
3227  * Mark device as attached from system and restart if needed.
3228  */
3229 void netif_device_attach(struct net_device *dev)
3230 {
3231 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3232 	    netif_running(dev)) {
3233 		netif_tx_wake_all_queues(dev);
3234 		__netdev_watchdog_up(dev);
3235 	}
3236 }
3237 EXPORT_SYMBOL(netif_device_attach);
3238 
3239 /*
3240  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3241  * to be used as a distribution range.
3242  */
3243 static u16 skb_tx_hash(const struct net_device *dev,
3244 		       const struct net_device *sb_dev,
3245 		       struct sk_buff *skb)
3246 {
3247 	u32 hash;
3248 	u16 qoffset = 0;
3249 	u16 qcount = dev->real_num_tx_queues;
3250 
3251 	if (dev->num_tc) {
3252 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3253 
3254 		qoffset = sb_dev->tc_to_txq[tc].offset;
3255 		qcount = sb_dev->tc_to_txq[tc].count;
3256 		if (unlikely(!qcount)) {
3257 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3258 					     sb_dev->name, qoffset, tc);
3259 			qoffset = 0;
3260 			qcount = dev->real_num_tx_queues;
3261 		}
3262 	}
3263 
3264 	if (skb_rx_queue_recorded(skb)) {
3265 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3266 		hash = skb_get_rx_queue(skb);
3267 		if (hash >= qoffset)
3268 			hash -= qoffset;
3269 		while (unlikely(hash >= qcount))
3270 			hash -= qcount;
3271 		return hash + qoffset;
3272 	}
3273 
3274 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3275 }
3276 
3277 void skb_warn_bad_offload(const struct sk_buff *skb)
3278 {
3279 	static const netdev_features_t null_features;
3280 	struct net_device *dev = skb->dev;
3281 	const char *name = "";
3282 
3283 	if (!net_ratelimit())
3284 		return;
3285 
3286 	if (dev) {
3287 		if (dev->dev.parent)
3288 			name = dev_driver_string(dev->dev.parent);
3289 		else
3290 			name = netdev_name(dev);
3291 	}
3292 	skb_dump(KERN_WARNING, skb, false);
3293 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3294 	     name, dev ? &dev->features : &null_features,
3295 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3296 }
3297 
3298 /*
3299  * Invalidate hardware checksum when packet is to be mangled, and
3300  * complete checksum manually on outgoing path.
3301  */
3302 int skb_checksum_help(struct sk_buff *skb)
3303 {
3304 	__wsum csum;
3305 	int ret = 0, offset;
3306 
3307 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3308 		goto out_set_summed;
3309 
3310 	if (unlikely(skb_is_gso(skb))) {
3311 		skb_warn_bad_offload(skb);
3312 		return -EINVAL;
3313 	}
3314 
3315 	/* Before computing a checksum, we should make sure no frag could
3316 	 * be modified by an external entity : checksum could be wrong.
3317 	 */
3318 	if (skb_has_shared_frag(skb)) {
3319 		ret = __skb_linearize(skb);
3320 		if (ret)
3321 			goto out;
3322 	}
3323 
3324 	offset = skb_checksum_start_offset(skb);
3325 	ret = -EINVAL;
3326 	if (unlikely(offset >= skb_headlen(skb))) {
3327 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3328 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3329 			  offset, skb_headlen(skb));
3330 		goto out;
3331 	}
3332 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3333 
3334 	offset += skb->csum_offset;
3335 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3336 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3337 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3338 			  offset + sizeof(__sum16), skb_headlen(skb));
3339 		goto out;
3340 	}
3341 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3342 	if (ret)
3343 		goto out;
3344 
3345 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3346 out_set_summed:
3347 	skb->ip_summed = CHECKSUM_NONE;
3348 out:
3349 	return ret;
3350 }
3351 EXPORT_SYMBOL(skb_checksum_help);
3352 
3353 int skb_crc32c_csum_help(struct sk_buff *skb)
3354 {
3355 	__le32 crc32c_csum;
3356 	int ret = 0, offset, start;
3357 
3358 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3359 		goto out;
3360 
3361 	if (unlikely(skb_is_gso(skb)))
3362 		goto out;
3363 
3364 	/* Before computing a checksum, we should make sure no frag could
3365 	 * be modified by an external entity : checksum could be wrong.
3366 	 */
3367 	if (unlikely(skb_has_shared_frag(skb))) {
3368 		ret = __skb_linearize(skb);
3369 		if (ret)
3370 			goto out;
3371 	}
3372 	start = skb_checksum_start_offset(skb);
3373 	offset = start + offsetof(struct sctphdr, checksum);
3374 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3375 		ret = -EINVAL;
3376 		goto out;
3377 	}
3378 
3379 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3380 	if (ret)
3381 		goto out;
3382 
3383 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3384 						  skb->len - start, ~(__u32)0,
3385 						  crc32c_csum_stub));
3386 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3387 	skb_reset_csum_not_inet(skb);
3388 out:
3389 	return ret;
3390 }
3391 EXPORT_SYMBOL(skb_crc32c_csum_help);
3392 
3393 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3394 {
3395 	__be16 type = skb->protocol;
3396 
3397 	/* Tunnel gso handlers can set protocol to ethernet. */
3398 	if (type == htons(ETH_P_TEB)) {
3399 		struct ethhdr *eth;
3400 
3401 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3402 			return 0;
3403 
3404 		eth = (struct ethhdr *)skb->data;
3405 		type = eth->h_proto;
3406 	}
3407 
3408 	return vlan_get_protocol_and_depth(skb, type, depth);
3409 }
3410 
3411 
3412 /* Take action when hardware reception checksum errors are detected. */
3413 #ifdef CONFIG_BUG
3414 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3415 {
3416 	netdev_err(dev, "hw csum failure\n");
3417 	skb_dump(KERN_ERR, skb, true);
3418 	dump_stack();
3419 }
3420 
3421 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3422 {
3423 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3424 }
3425 EXPORT_SYMBOL(netdev_rx_csum_fault);
3426 #endif
3427 
3428 /* XXX: check that highmem exists at all on the given machine. */
3429 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3430 {
3431 #ifdef CONFIG_HIGHMEM
3432 	int i;
3433 
3434 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3435 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3436 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3437 
3438 			if (PageHighMem(skb_frag_page(frag)))
3439 				return 1;
3440 		}
3441 	}
3442 #endif
3443 	return 0;
3444 }
3445 
3446 /* If MPLS offload request, verify we are testing hardware MPLS features
3447  * instead of standard features for the netdev.
3448  */
3449 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3450 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3451 					   netdev_features_t features,
3452 					   __be16 type)
3453 {
3454 	if (eth_p_mpls(type))
3455 		features &= skb->dev->mpls_features;
3456 
3457 	return features;
3458 }
3459 #else
3460 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3461 					   netdev_features_t features,
3462 					   __be16 type)
3463 {
3464 	return features;
3465 }
3466 #endif
3467 
3468 static netdev_features_t harmonize_features(struct sk_buff *skb,
3469 	netdev_features_t features)
3470 {
3471 	__be16 type;
3472 
3473 	type = skb_network_protocol(skb, NULL);
3474 	features = net_mpls_features(skb, features, type);
3475 
3476 	if (skb->ip_summed != CHECKSUM_NONE &&
3477 	    !can_checksum_protocol(features, type)) {
3478 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3479 	}
3480 	if (illegal_highdma(skb->dev, skb))
3481 		features &= ~NETIF_F_SG;
3482 
3483 	return features;
3484 }
3485 
3486 netdev_features_t passthru_features_check(struct sk_buff *skb,
3487 					  struct net_device *dev,
3488 					  netdev_features_t features)
3489 {
3490 	return features;
3491 }
3492 EXPORT_SYMBOL(passthru_features_check);
3493 
3494 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3495 					     struct net_device *dev,
3496 					     netdev_features_t features)
3497 {
3498 	return vlan_features_check(skb, features);
3499 }
3500 
3501 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3502 					    struct net_device *dev,
3503 					    netdev_features_t features)
3504 {
3505 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3506 
3507 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3508 		return features & ~NETIF_F_GSO_MASK;
3509 
3510 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3511 		return features & ~NETIF_F_GSO_MASK;
3512 
3513 	if (!skb_shinfo(skb)->gso_type) {
3514 		skb_warn_bad_offload(skb);
3515 		return features & ~NETIF_F_GSO_MASK;
3516 	}
3517 
3518 	/* Support for GSO partial features requires software
3519 	 * intervention before we can actually process the packets
3520 	 * so we need to strip support for any partial features now
3521 	 * and we can pull them back in after we have partially
3522 	 * segmented the frame.
3523 	 */
3524 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3525 		features &= ~dev->gso_partial_features;
3526 
3527 	/* Make sure to clear the IPv4 ID mangling feature if the
3528 	 * IPv4 header has the potential to be fragmented.
3529 	 */
3530 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3531 		struct iphdr *iph = skb->encapsulation ?
3532 				    inner_ip_hdr(skb) : ip_hdr(skb);
3533 
3534 		if (!(iph->frag_off & htons(IP_DF)))
3535 			features &= ~NETIF_F_TSO_MANGLEID;
3536 	}
3537 
3538 	return features;
3539 }
3540 
3541 netdev_features_t netif_skb_features(struct sk_buff *skb)
3542 {
3543 	struct net_device *dev = skb->dev;
3544 	netdev_features_t features = dev->features;
3545 
3546 	if (skb_is_gso(skb))
3547 		features = gso_features_check(skb, dev, features);
3548 
3549 	/* If encapsulation offload request, verify we are testing
3550 	 * hardware encapsulation features instead of standard
3551 	 * features for the netdev
3552 	 */
3553 	if (skb->encapsulation)
3554 		features &= dev->hw_enc_features;
3555 
3556 	if (skb_vlan_tagged(skb))
3557 		features = netdev_intersect_features(features,
3558 						     dev->vlan_features |
3559 						     NETIF_F_HW_VLAN_CTAG_TX |
3560 						     NETIF_F_HW_VLAN_STAG_TX);
3561 
3562 	if (dev->netdev_ops->ndo_features_check)
3563 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3564 								features);
3565 	else
3566 		features &= dflt_features_check(skb, dev, features);
3567 
3568 	return harmonize_features(skb, features);
3569 }
3570 EXPORT_SYMBOL(netif_skb_features);
3571 
3572 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3573 		    struct netdev_queue *txq, bool more)
3574 {
3575 	unsigned int len;
3576 	int rc;
3577 
3578 	if (dev_nit_active(dev))
3579 		dev_queue_xmit_nit(skb, dev);
3580 
3581 	len = skb->len;
3582 	trace_net_dev_start_xmit(skb, dev);
3583 	rc = netdev_start_xmit(skb, dev, txq, more);
3584 	trace_net_dev_xmit(skb, rc, dev, len);
3585 
3586 	return rc;
3587 }
3588 
3589 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3590 				    struct netdev_queue *txq, int *ret)
3591 {
3592 	struct sk_buff *skb = first;
3593 	int rc = NETDEV_TX_OK;
3594 
3595 	while (skb) {
3596 		struct sk_buff *next = skb->next;
3597 
3598 		skb_mark_not_on_list(skb);
3599 		rc = xmit_one(skb, dev, txq, next != NULL);
3600 		if (unlikely(!dev_xmit_complete(rc))) {
3601 			skb->next = next;
3602 			goto out;
3603 		}
3604 
3605 		skb = next;
3606 		if (netif_tx_queue_stopped(txq) && skb) {
3607 			rc = NETDEV_TX_BUSY;
3608 			break;
3609 		}
3610 	}
3611 
3612 out:
3613 	*ret = rc;
3614 	return skb;
3615 }
3616 
3617 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3618 					  netdev_features_t features)
3619 {
3620 	if (skb_vlan_tag_present(skb) &&
3621 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3622 		skb = __vlan_hwaccel_push_inside(skb);
3623 	return skb;
3624 }
3625 
3626 int skb_csum_hwoffload_help(struct sk_buff *skb,
3627 			    const netdev_features_t features)
3628 {
3629 	if (unlikely(skb_csum_is_sctp(skb)))
3630 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3631 			skb_crc32c_csum_help(skb);
3632 
3633 	if (features & NETIF_F_HW_CSUM)
3634 		return 0;
3635 
3636 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3637 		switch (skb->csum_offset) {
3638 		case offsetof(struct tcphdr, check):
3639 		case offsetof(struct udphdr, check):
3640 			return 0;
3641 		}
3642 	}
3643 
3644 	return skb_checksum_help(skb);
3645 }
3646 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3647 
3648 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3649 {
3650 	netdev_features_t features;
3651 
3652 	features = netif_skb_features(skb);
3653 	skb = validate_xmit_vlan(skb, features);
3654 	if (unlikely(!skb))
3655 		goto out_null;
3656 
3657 	skb = sk_validate_xmit_skb(skb, dev);
3658 	if (unlikely(!skb))
3659 		goto out_null;
3660 
3661 	if (netif_needs_gso(skb, features)) {
3662 		struct sk_buff *segs;
3663 
3664 		segs = skb_gso_segment(skb, features);
3665 		if (IS_ERR(segs)) {
3666 			goto out_kfree_skb;
3667 		} else if (segs) {
3668 			consume_skb(skb);
3669 			skb = segs;
3670 		}
3671 	} else {
3672 		if (skb_needs_linearize(skb, features) &&
3673 		    __skb_linearize(skb))
3674 			goto out_kfree_skb;
3675 
3676 		/* If packet is not checksummed and device does not
3677 		 * support checksumming for this protocol, complete
3678 		 * checksumming here.
3679 		 */
3680 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3681 			if (skb->encapsulation)
3682 				skb_set_inner_transport_header(skb,
3683 							       skb_checksum_start_offset(skb));
3684 			else
3685 				skb_set_transport_header(skb,
3686 							 skb_checksum_start_offset(skb));
3687 			if (skb_csum_hwoffload_help(skb, features))
3688 				goto out_kfree_skb;
3689 		}
3690 	}
3691 
3692 	skb = validate_xmit_xfrm(skb, features, again);
3693 
3694 	return skb;
3695 
3696 out_kfree_skb:
3697 	kfree_skb(skb);
3698 out_null:
3699 	dev_core_stats_tx_dropped_inc(dev);
3700 	return NULL;
3701 }
3702 
3703 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3704 {
3705 	struct sk_buff *next, *head = NULL, *tail;
3706 
3707 	for (; skb != NULL; skb = next) {
3708 		next = skb->next;
3709 		skb_mark_not_on_list(skb);
3710 
3711 		/* in case skb won't be segmented, point to itself */
3712 		skb->prev = skb;
3713 
3714 		skb = validate_xmit_skb(skb, dev, again);
3715 		if (!skb)
3716 			continue;
3717 
3718 		if (!head)
3719 			head = skb;
3720 		else
3721 			tail->next = skb;
3722 		/* If skb was segmented, skb->prev points to
3723 		 * the last segment. If not, it still contains skb.
3724 		 */
3725 		tail = skb->prev;
3726 	}
3727 	return head;
3728 }
3729 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3730 
3731 static void qdisc_pkt_len_init(struct sk_buff *skb)
3732 {
3733 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3734 
3735 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3736 
3737 	/* To get more precise estimation of bytes sent on wire,
3738 	 * we add to pkt_len the headers size of all segments
3739 	 */
3740 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3741 		u16 gso_segs = shinfo->gso_segs;
3742 		unsigned int hdr_len;
3743 
3744 		/* mac layer + network layer */
3745 		hdr_len = skb_transport_offset(skb);
3746 
3747 		/* + transport layer */
3748 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3749 			const struct tcphdr *th;
3750 			struct tcphdr _tcphdr;
3751 
3752 			th = skb_header_pointer(skb, hdr_len,
3753 						sizeof(_tcphdr), &_tcphdr);
3754 			if (likely(th))
3755 				hdr_len += __tcp_hdrlen(th);
3756 		} else {
3757 			struct udphdr _udphdr;
3758 
3759 			if (skb_header_pointer(skb, hdr_len,
3760 					       sizeof(_udphdr), &_udphdr))
3761 				hdr_len += sizeof(struct udphdr);
3762 		}
3763 
3764 		if (shinfo->gso_type & SKB_GSO_DODGY)
3765 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3766 						shinfo->gso_size);
3767 
3768 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3769 	}
3770 }
3771 
3772 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3773 			     struct sk_buff **to_free,
3774 			     struct netdev_queue *txq)
3775 {
3776 	int rc;
3777 
3778 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3779 	if (rc == NET_XMIT_SUCCESS)
3780 		trace_qdisc_enqueue(q, txq, skb);
3781 	return rc;
3782 }
3783 
3784 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3785 				 struct net_device *dev,
3786 				 struct netdev_queue *txq)
3787 {
3788 	spinlock_t *root_lock = qdisc_lock(q);
3789 	struct sk_buff *to_free = NULL;
3790 	bool contended;
3791 	int rc;
3792 
3793 	qdisc_calculate_pkt_len(skb, q);
3794 
3795 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3796 
3797 	if (q->flags & TCQ_F_NOLOCK) {
3798 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3799 		    qdisc_run_begin(q)) {
3800 			/* Retest nolock_qdisc_is_empty() within the protection
3801 			 * of q->seqlock to protect from racing with requeuing.
3802 			 */
3803 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3804 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3805 				__qdisc_run(q);
3806 				qdisc_run_end(q);
3807 
3808 				goto no_lock_out;
3809 			}
3810 
3811 			qdisc_bstats_cpu_update(q, skb);
3812 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3813 			    !nolock_qdisc_is_empty(q))
3814 				__qdisc_run(q);
3815 
3816 			qdisc_run_end(q);
3817 			return NET_XMIT_SUCCESS;
3818 		}
3819 
3820 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3821 		qdisc_run(q);
3822 
3823 no_lock_out:
3824 		if (unlikely(to_free))
3825 			kfree_skb_list_reason(to_free,
3826 					      tcf_get_drop_reason(to_free));
3827 		return rc;
3828 	}
3829 
3830 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
3831 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
3832 		return NET_XMIT_DROP;
3833 	}
3834 	/*
3835 	 * Heuristic to force contended enqueues to serialize on a
3836 	 * separate lock before trying to get qdisc main lock.
3837 	 * This permits qdisc->running owner to get the lock more
3838 	 * often and dequeue packets faster.
3839 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3840 	 * and then other tasks will only enqueue packets. The packets will be
3841 	 * sent after the qdisc owner is scheduled again. To prevent this
3842 	 * scenario the task always serialize on the lock.
3843 	 */
3844 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3845 	if (unlikely(contended))
3846 		spin_lock(&q->busylock);
3847 
3848 	spin_lock(root_lock);
3849 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3850 		__qdisc_drop(skb, &to_free);
3851 		rc = NET_XMIT_DROP;
3852 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3853 		   qdisc_run_begin(q)) {
3854 		/*
3855 		 * This is a work-conserving queue; there are no old skbs
3856 		 * waiting to be sent out; and the qdisc is not running -
3857 		 * xmit the skb directly.
3858 		 */
3859 
3860 		qdisc_bstats_update(q, skb);
3861 
3862 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3863 			if (unlikely(contended)) {
3864 				spin_unlock(&q->busylock);
3865 				contended = false;
3866 			}
3867 			__qdisc_run(q);
3868 		}
3869 
3870 		qdisc_run_end(q);
3871 		rc = NET_XMIT_SUCCESS;
3872 	} else {
3873 		WRITE_ONCE(q->owner, smp_processor_id());
3874 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3875 		WRITE_ONCE(q->owner, -1);
3876 		if (qdisc_run_begin(q)) {
3877 			if (unlikely(contended)) {
3878 				spin_unlock(&q->busylock);
3879 				contended = false;
3880 			}
3881 			__qdisc_run(q);
3882 			qdisc_run_end(q);
3883 		}
3884 	}
3885 	spin_unlock(root_lock);
3886 	if (unlikely(to_free))
3887 		kfree_skb_list_reason(to_free,
3888 				      tcf_get_drop_reason(to_free));
3889 	if (unlikely(contended))
3890 		spin_unlock(&q->busylock);
3891 	return rc;
3892 }
3893 
3894 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3895 static void skb_update_prio(struct sk_buff *skb)
3896 {
3897 	const struct netprio_map *map;
3898 	const struct sock *sk;
3899 	unsigned int prioidx;
3900 
3901 	if (skb->priority)
3902 		return;
3903 	map = rcu_dereference_bh(skb->dev->priomap);
3904 	if (!map)
3905 		return;
3906 	sk = skb_to_full_sk(skb);
3907 	if (!sk)
3908 		return;
3909 
3910 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3911 
3912 	if (prioidx < map->priomap_len)
3913 		skb->priority = map->priomap[prioidx];
3914 }
3915 #else
3916 #define skb_update_prio(skb)
3917 #endif
3918 
3919 /**
3920  *	dev_loopback_xmit - loop back @skb
3921  *	@net: network namespace this loopback is happening in
3922  *	@sk:  sk needed to be a netfilter okfn
3923  *	@skb: buffer to transmit
3924  */
3925 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3926 {
3927 	skb_reset_mac_header(skb);
3928 	__skb_pull(skb, skb_network_offset(skb));
3929 	skb->pkt_type = PACKET_LOOPBACK;
3930 	if (skb->ip_summed == CHECKSUM_NONE)
3931 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3932 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3933 	skb_dst_force(skb);
3934 	netif_rx(skb);
3935 	return 0;
3936 }
3937 EXPORT_SYMBOL(dev_loopback_xmit);
3938 
3939 #ifdef CONFIG_NET_EGRESS
3940 static struct netdev_queue *
3941 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3942 {
3943 	int qm = skb_get_queue_mapping(skb);
3944 
3945 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3946 }
3947 
3948 #ifndef CONFIG_PREEMPT_RT
3949 static bool netdev_xmit_txqueue_skipped(void)
3950 {
3951 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3952 }
3953 
3954 void netdev_xmit_skip_txqueue(bool skip)
3955 {
3956 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3957 }
3958 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3959 
3960 #else
3961 static bool netdev_xmit_txqueue_skipped(void)
3962 {
3963 	return current->net_xmit.skip_txqueue;
3964 }
3965 
3966 void netdev_xmit_skip_txqueue(bool skip)
3967 {
3968 	current->net_xmit.skip_txqueue = skip;
3969 }
3970 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3971 #endif
3972 #endif /* CONFIG_NET_EGRESS */
3973 
3974 #ifdef CONFIG_NET_XGRESS
3975 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3976 		  enum skb_drop_reason *drop_reason)
3977 {
3978 	int ret = TC_ACT_UNSPEC;
3979 #ifdef CONFIG_NET_CLS_ACT
3980 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3981 	struct tcf_result res;
3982 
3983 	if (!miniq)
3984 		return ret;
3985 
3986 	if (static_branch_unlikely(&tcf_bypass_check_needed_key)) {
3987 		if (tcf_block_bypass_sw(miniq->block))
3988 			return ret;
3989 	}
3990 
3991 	tc_skb_cb(skb)->mru = 0;
3992 	tc_skb_cb(skb)->post_ct = false;
3993 	tcf_set_drop_reason(skb, *drop_reason);
3994 
3995 	mini_qdisc_bstats_cpu_update(miniq, skb);
3996 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3997 	/* Only tcf related quirks below. */
3998 	switch (ret) {
3999 	case TC_ACT_SHOT:
4000 		*drop_reason = tcf_get_drop_reason(skb);
4001 		mini_qdisc_qstats_cpu_drop(miniq);
4002 		break;
4003 	case TC_ACT_OK:
4004 	case TC_ACT_RECLASSIFY:
4005 		skb->tc_index = TC_H_MIN(res.classid);
4006 		break;
4007 	}
4008 #endif /* CONFIG_NET_CLS_ACT */
4009 	return ret;
4010 }
4011 
4012 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4013 
4014 void tcx_inc(void)
4015 {
4016 	static_branch_inc(&tcx_needed_key);
4017 }
4018 
4019 void tcx_dec(void)
4020 {
4021 	static_branch_dec(&tcx_needed_key);
4022 }
4023 
4024 static __always_inline enum tcx_action_base
4025 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4026 	const bool needs_mac)
4027 {
4028 	const struct bpf_mprog_fp *fp;
4029 	const struct bpf_prog *prog;
4030 	int ret = TCX_NEXT;
4031 
4032 	if (needs_mac)
4033 		__skb_push(skb, skb->mac_len);
4034 	bpf_mprog_foreach_prog(entry, fp, prog) {
4035 		bpf_compute_data_pointers(skb);
4036 		ret = bpf_prog_run(prog, skb);
4037 		if (ret != TCX_NEXT)
4038 			break;
4039 	}
4040 	if (needs_mac)
4041 		__skb_pull(skb, skb->mac_len);
4042 	return tcx_action_code(skb, ret);
4043 }
4044 
4045 static __always_inline struct sk_buff *
4046 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4047 		   struct net_device *orig_dev, bool *another)
4048 {
4049 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4050 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4051 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4052 	int sch_ret;
4053 
4054 	if (!entry)
4055 		return skb;
4056 
4057 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4058 	if (*pt_prev) {
4059 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4060 		*pt_prev = NULL;
4061 	}
4062 
4063 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4064 	tcx_set_ingress(skb, true);
4065 
4066 	if (static_branch_unlikely(&tcx_needed_key)) {
4067 		sch_ret = tcx_run(entry, skb, true);
4068 		if (sch_ret != TC_ACT_UNSPEC)
4069 			goto ingress_verdict;
4070 	}
4071 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4072 ingress_verdict:
4073 	switch (sch_ret) {
4074 	case TC_ACT_REDIRECT:
4075 		/* skb_mac_header check was done by BPF, so we can safely
4076 		 * push the L2 header back before redirecting to another
4077 		 * netdev.
4078 		 */
4079 		__skb_push(skb, skb->mac_len);
4080 		if (skb_do_redirect(skb) == -EAGAIN) {
4081 			__skb_pull(skb, skb->mac_len);
4082 			*another = true;
4083 			break;
4084 		}
4085 		*ret = NET_RX_SUCCESS;
4086 		bpf_net_ctx_clear(bpf_net_ctx);
4087 		return NULL;
4088 	case TC_ACT_SHOT:
4089 		kfree_skb_reason(skb, drop_reason);
4090 		*ret = NET_RX_DROP;
4091 		bpf_net_ctx_clear(bpf_net_ctx);
4092 		return NULL;
4093 	/* used by tc_run */
4094 	case TC_ACT_STOLEN:
4095 	case TC_ACT_QUEUED:
4096 	case TC_ACT_TRAP:
4097 		consume_skb(skb);
4098 		fallthrough;
4099 	case TC_ACT_CONSUMED:
4100 		*ret = NET_RX_SUCCESS;
4101 		bpf_net_ctx_clear(bpf_net_ctx);
4102 		return NULL;
4103 	}
4104 	bpf_net_ctx_clear(bpf_net_ctx);
4105 
4106 	return skb;
4107 }
4108 
4109 static __always_inline struct sk_buff *
4110 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4111 {
4112 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4113 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4114 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4115 	int sch_ret;
4116 
4117 	if (!entry)
4118 		return skb;
4119 
4120 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4121 
4122 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4123 	 * already set by the caller.
4124 	 */
4125 	if (static_branch_unlikely(&tcx_needed_key)) {
4126 		sch_ret = tcx_run(entry, skb, false);
4127 		if (sch_ret != TC_ACT_UNSPEC)
4128 			goto egress_verdict;
4129 	}
4130 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4131 egress_verdict:
4132 	switch (sch_ret) {
4133 	case TC_ACT_REDIRECT:
4134 		/* No need to push/pop skb's mac_header here on egress! */
4135 		skb_do_redirect(skb);
4136 		*ret = NET_XMIT_SUCCESS;
4137 		bpf_net_ctx_clear(bpf_net_ctx);
4138 		return NULL;
4139 	case TC_ACT_SHOT:
4140 		kfree_skb_reason(skb, drop_reason);
4141 		*ret = NET_XMIT_DROP;
4142 		bpf_net_ctx_clear(bpf_net_ctx);
4143 		return NULL;
4144 	/* used by tc_run */
4145 	case TC_ACT_STOLEN:
4146 	case TC_ACT_QUEUED:
4147 	case TC_ACT_TRAP:
4148 		consume_skb(skb);
4149 		fallthrough;
4150 	case TC_ACT_CONSUMED:
4151 		*ret = NET_XMIT_SUCCESS;
4152 		bpf_net_ctx_clear(bpf_net_ctx);
4153 		return NULL;
4154 	}
4155 	bpf_net_ctx_clear(bpf_net_ctx);
4156 
4157 	return skb;
4158 }
4159 #else
4160 static __always_inline struct sk_buff *
4161 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4162 		   struct net_device *orig_dev, bool *another)
4163 {
4164 	return skb;
4165 }
4166 
4167 static __always_inline struct sk_buff *
4168 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4169 {
4170 	return skb;
4171 }
4172 #endif /* CONFIG_NET_XGRESS */
4173 
4174 #ifdef CONFIG_XPS
4175 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4176 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4177 {
4178 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4179 	struct xps_map *map;
4180 	int queue_index = -1;
4181 
4182 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4183 		return queue_index;
4184 
4185 	tci *= dev_maps->num_tc;
4186 	tci += tc;
4187 
4188 	map = rcu_dereference(dev_maps->attr_map[tci]);
4189 	if (map) {
4190 		if (map->len == 1)
4191 			queue_index = map->queues[0];
4192 		else
4193 			queue_index = map->queues[reciprocal_scale(
4194 						skb_get_hash(skb), map->len)];
4195 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4196 			queue_index = -1;
4197 	}
4198 	return queue_index;
4199 }
4200 #endif
4201 
4202 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4203 			 struct sk_buff *skb)
4204 {
4205 #ifdef CONFIG_XPS
4206 	struct xps_dev_maps *dev_maps;
4207 	struct sock *sk = skb->sk;
4208 	int queue_index = -1;
4209 
4210 	if (!static_key_false(&xps_needed))
4211 		return -1;
4212 
4213 	rcu_read_lock();
4214 	if (!static_key_false(&xps_rxqs_needed))
4215 		goto get_cpus_map;
4216 
4217 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4218 	if (dev_maps) {
4219 		int tci = sk_rx_queue_get(sk);
4220 
4221 		if (tci >= 0)
4222 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4223 							  tci);
4224 	}
4225 
4226 get_cpus_map:
4227 	if (queue_index < 0) {
4228 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4229 		if (dev_maps) {
4230 			unsigned int tci = skb->sender_cpu - 1;
4231 
4232 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4233 							  tci);
4234 		}
4235 	}
4236 	rcu_read_unlock();
4237 
4238 	return queue_index;
4239 #else
4240 	return -1;
4241 #endif
4242 }
4243 
4244 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4245 		     struct net_device *sb_dev)
4246 {
4247 	return 0;
4248 }
4249 EXPORT_SYMBOL(dev_pick_tx_zero);
4250 
4251 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4252 		     struct net_device *sb_dev)
4253 {
4254 	struct sock *sk = skb->sk;
4255 	int queue_index = sk_tx_queue_get(sk);
4256 
4257 	sb_dev = sb_dev ? : dev;
4258 
4259 	if (queue_index < 0 || skb->ooo_okay ||
4260 	    queue_index >= dev->real_num_tx_queues) {
4261 		int new_index = get_xps_queue(dev, sb_dev, skb);
4262 
4263 		if (new_index < 0)
4264 			new_index = skb_tx_hash(dev, sb_dev, skb);
4265 
4266 		if (queue_index != new_index && sk &&
4267 		    sk_fullsock(sk) &&
4268 		    rcu_access_pointer(sk->sk_dst_cache))
4269 			sk_tx_queue_set(sk, new_index);
4270 
4271 		queue_index = new_index;
4272 	}
4273 
4274 	return queue_index;
4275 }
4276 EXPORT_SYMBOL(netdev_pick_tx);
4277 
4278 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4279 					 struct sk_buff *skb,
4280 					 struct net_device *sb_dev)
4281 {
4282 	int queue_index = 0;
4283 
4284 #ifdef CONFIG_XPS
4285 	u32 sender_cpu = skb->sender_cpu - 1;
4286 
4287 	if (sender_cpu >= (u32)NR_CPUS)
4288 		skb->sender_cpu = raw_smp_processor_id() + 1;
4289 #endif
4290 
4291 	if (dev->real_num_tx_queues != 1) {
4292 		const struct net_device_ops *ops = dev->netdev_ops;
4293 
4294 		if (ops->ndo_select_queue)
4295 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4296 		else
4297 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4298 
4299 		queue_index = netdev_cap_txqueue(dev, queue_index);
4300 	}
4301 
4302 	skb_set_queue_mapping(skb, queue_index);
4303 	return netdev_get_tx_queue(dev, queue_index);
4304 }
4305 
4306 /**
4307  * __dev_queue_xmit() - transmit a buffer
4308  * @skb:	buffer to transmit
4309  * @sb_dev:	suboordinate device used for L2 forwarding offload
4310  *
4311  * Queue a buffer for transmission to a network device. The caller must
4312  * have set the device and priority and built the buffer before calling
4313  * this function. The function can be called from an interrupt.
4314  *
4315  * When calling this method, interrupts MUST be enabled. This is because
4316  * the BH enable code must have IRQs enabled so that it will not deadlock.
4317  *
4318  * Regardless of the return value, the skb is consumed, so it is currently
4319  * difficult to retry a send to this method. (You can bump the ref count
4320  * before sending to hold a reference for retry if you are careful.)
4321  *
4322  * Return:
4323  * * 0				- buffer successfully transmitted
4324  * * positive qdisc return code	- NET_XMIT_DROP etc.
4325  * * negative errno		- other errors
4326  */
4327 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4328 {
4329 	struct net_device *dev = skb->dev;
4330 	struct netdev_queue *txq = NULL;
4331 	struct Qdisc *q;
4332 	int rc = -ENOMEM;
4333 	bool again = false;
4334 
4335 	skb_reset_mac_header(skb);
4336 	skb_assert_len(skb);
4337 
4338 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4339 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4340 
4341 	/* Disable soft irqs for various locks below. Also
4342 	 * stops preemption for RCU.
4343 	 */
4344 	rcu_read_lock_bh();
4345 
4346 	skb_update_prio(skb);
4347 
4348 	qdisc_pkt_len_init(skb);
4349 	tcx_set_ingress(skb, false);
4350 #ifdef CONFIG_NET_EGRESS
4351 	if (static_branch_unlikely(&egress_needed_key)) {
4352 		if (nf_hook_egress_active()) {
4353 			skb = nf_hook_egress(skb, &rc, dev);
4354 			if (!skb)
4355 				goto out;
4356 		}
4357 
4358 		netdev_xmit_skip_txqueue(false);
4359 
4360 		nf_skip_egress(skb, true);
4361 		skb = sch_handle_egress(skb, &rc, dev);
4362 		if (!skb)
4363 			goto out;
4364 		nf_skip_egress(skb, false);
4365 
4366 		if (netdev_xmit_txqueue_skipped())
4367 			txq = netdev_tx_queue_mapping(dev, skb);
4368 	}
4369 #endif
4370 	/* If device/qdisc don't need skb->dst, release it right now while
4371 	 * its hot in this cpu cache.
4372 	 */
4373 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4374 		skb_dst_drop(skb);
4375 	else
4376 		skb_dst_force(skb);
4377 
4378 	if (!txq)
4379 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4380 
4381 	q = rcu_dereference_bh(txq->qdisc);
4382 
4383 	trace_net_dev_queue(skb);
4384 	if (q->enqueue) {
4385 		rc = __dev_xmit_skb(skb, q, dev, txq);
4386 		goto out;
4387 	}
4388 
4389 	/* The device has no queue. Common case for software devices:
4390 	 * loopback, all the sorts of tunnels...
4391 
4392 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4393 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4394 	 * counters.)
4395 	 * However, it is possible, that they rely on protection
4396 	 * made by us here.
4397 
4398 	 * Check this and shot the lock. It is not prone from deadlocks.
4399 	 *Either shot noqueue qdisc, it is even simpler 8)
4400 	 */
4401 	if (dev->flags & IFF_UP) {
4402 		int cpu = smp_processor_id(); /* ok because BHs are off */
4403 
4404 		/* Other cpus might concurrently change txq->xmit_lock_owner
4405 		 * to -1 or to their cpu id, but not to our id.
4406 		 */
4407 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4408 			if (dev_xmit_recursion())
4409 				goto recursion_alert;
4410 
4411 			skb = validate_xmit_skb(skb, dev, &again);
4412 			if (!skb)
4413 				goto out;
4414 
4415 			HARD_TX_LOCK(dev, txq, cpu);
4416 
4417 			if (!netif_xmit_stopped(txq)) {
4418 				dev_xmit_recursion_inc();
4419 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4420 				dev_xmit_recursion_dec();
4421 				if (dev_xmit_complete(rc)) {
4422 					HARD_TX_UNLOCK(dev, txq);
4423 					goto out;
4424 				}
4425 			}
4426 			HARD_TX_UNLOCK(dev, txq);
4427 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4428 					     dev->name);
4429 		} else {
4430 			/* Recursion is detected! It is possible,
4431 			 * unfortunately
4432 			 */
4433 recursion_alert:
4434 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4435 					     dev->name);
4436 		}
4437 	}
4438 
4439 	rc = -ENETDOWN;
4440 	rcu_read_unlock_bh();
4441 
4442 	dev_core_stats_tx_dropped_inc(dev);
4443 	kfree_skb_list(skb);
4444 	return rc;
4445 out:
4446 	rcu_read_unlock_bh();
4447 	return rc;
4448 }
4449 EXPORT_SYMBOL(__dev_queue_xmit);
4450 
4451 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4452 {
4453 	struct net_device *dev = skb->dev;
4454 	struct sk_buff *orig_skb = skb;
4455 	struct netdev_queue *txq;
4456 	int ret = NETDEV_TX_BUSY;
4457 	bool again = false;
4458 
4459 	if (unlikely(!netif_running(dev) ||
4460 		     !netif_carrier_ok(dev)))
4461 		goto drop;
4462 
4463 	skb = validate_xmit_skb_list(skb, dev, &again);
4464 	if (skb != orig_skb)
4465 		goto drop;
4466 
4467 	skb_set_queue_mapping(skb, queue_id);
4468 	txq = skb_get_tx_queue(dev, skb);
4469 
4470 	local_bh_disable();
4471 
4472 	dev_xmit_recursion_inc();
4473 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4474 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4475 		ret = netdev_start_xmit(skb, dev, txq, false);
4476 	HARD_TX_UNLOCK(dev, txq);
4477 	dev_xmit_recursion_dec();
4478 
4479 	local_bh_enable();
4480 	return ret;
4481 drop:
4482 	dev_core_stats_tx_dropped_inc(dev);
4483 	kfree_skb_list(skb);
4484 	return NET_XMIT_DROP;
4485 }
4486 EXPORT_SYMBOL(__dev_direct_xmit);
4487 
4488 /*************************************************************************
4489  *			Receiver routines
4490  *************************************************************************/
4491 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4492 
4493 int weight_p __read_mostly = 64;           /* old backlog weight */
4494 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4495 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4496 
4497 /* Called with irq disabled */
4498 static inline void ____napi_schedule(struct softnet_data *sd,
4499 				     struct napi_struct *napi)
4500 {
4501 	struct task_struct *thread;
4502 
4503 	lockdep_assert_irqs_disabled();
4504 
4505 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4506 		/* Paired with smp_mb__before_atomic() in
4507 		 * napi_enable()/dev_set_threaded().
4508 		 * Use READ_ONCE() to guarantee a complete
4509 		 * read on napi->thread. Only call
4510 		 * wake_up_process() when it's not NULL.
4511 		 */
4512 		thread = READ_ONCE(napi->thread);
4513 		if (thread) {
4514 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4515 				goto use_local_napi;
4516 
4517 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4518 			wake_up_process(thread);
4519 			return;
4520 		}
4521 	}
4522 
4523 use_local_napi:
4524 	list_add_tail(&napi->poll_list, &sd->poll_list);
4525 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4526 	/* If not called from net_rx_action()
4527 	 * we have to raise NET_RX_SOFTIRQ.
4528 	 */
4529 	if (!sd->in_net_rx_action)
4530 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4531 }
4532 
4533 #ifdef CONFIG_RPS
4534 
4535 struct static_key_false rps_needed __read_mostly;
4536 EXPORT_SYMBOL(rps_needed);
4537 struct static_key_false rfs_needed __read_mostly;
4538 EXPORT_SYMBOL(rfs_needed);
4539 
4540 static struct rps_dev_flow *
4541 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4542 	    struct rps_dev_flow *rflow, u16 next_cpu)
4543 {
4544 	if (next_cpu < nr_cpu_ids) {
4545 		u32 head;
4546 #ifdef CONFIG_RFS_ACCEL
4547 		struct netdev_rx_queue *rxqueue;
4548 		struct rps_dev_flow_table *flow_table;
4549 		struct rps_dev_flow *old_rflow;
4550 		u16 rxq_index;
4551 		u32 flow_id;
4552 		int rc;
4553 
4554 		/* Should we steer this flow to a different hardware queue? */
4555 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4556 		    !(dev->features & NETIF_F_NTUPLE))
4557 			goto out;
4558 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4559 		if (rxq_index == skb_get_rx_queue(skb))
4560 			goto out;
4561 
4562 		rxqueue = dev->_rx + rxq_index;
4563 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4564 		if (!flow_table)
4565 			goto out;
4566 		flow_id = skb_get_hash(skb) & flow_table->mask;
4567 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4568 							rxq_index, flow_id);
4569 		if (rc < 0)
4570 			goto out;
4571 		old_rflow = rflow;
4572 		rflow = &flow_table->flows[flow_id];
4573 		WRITE_ONCE(rflow->filter, rc);
4574 		if (old_rflow->filter == rc)
4575 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4576 	out:
4577 #endif
4578 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4579 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4580 	}
4581 
4582 	WRITE_ONCE(rflow->cpu, next_cpu);
4583 	return rflow;
4584 }
4585 
4586 /*
4587  * get_rps_cpu is called from netif_receive_skb and returns the target
4588  * CPU from the RPS map of the receiving queue for a given skb.
4589  * rcu_read_lock must be held on entry.
4590  */
4591 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4592 		       struct rps_dev_flow **rflowp)
4593 {
4594 	const struct rps_sock_flow_table *sock_flow_table;
4595 	struct netdev_rx_queue *rxqueue = dev->_rx;
4596 	struct rps_dev_flow_table *flow_table;
4597 	struct rps_map *map;
4598 	int cpu = -1;
4599 	u32 tcpu;
4600 	u32 hash;
4601 
4602 	if (skb_rx_queue_recorded(skb)) {
4603 		u16 index = skb_get_rx_queue(skb);
4604 
4605 		if (unlikely(index >= dev->real_num_rx_queues)) {
4606 			WARN_ONCE(dev->real_num_rx_queues > 1,
4607 				  "%s received packet on queue %u, but number "
4608 				  "of RX queues is %u\n",
4609 				  dev->name, index, dev->real_num_rx_queues);
4610 			goto done;
4611 		}
4612 		rxqueue += index;
4613 	}
4614 
4615 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4616 
4617 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4618 	map = rcu_dereference(rxqueue->rps_map);
4619 	if (!flow_table && !map)
4620 		goto done;
4621 
4622 	skb_reset_network_header(skb);
4623 	hash = skb_get_hash(skb);
4624 	if (!hash)
4625 		goto done;
4626 
4627 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4628 	if (flow_table && sock_flow_table) {
4629 		struct rps_dev_flow *rflow;
4630 		u32 next_cpu;
4631 		u32 ident;
4632 
4633 		/* First check into global flow table if there is a match.
4634 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4635 		 */
4636 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4637 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4638 			goto try_rps;
4639 
4640 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4641 
4642 		/* OK, now we know there is a match,
4643 		 * we can look at the local (per receive queue) flow table
4644 		 */
4645 		rflow = &flow_table->flows[hash & flow_table->mask];
4646 		tcpu = rflow->cpu;
4647 
4648 		/*
4649 		 * If the desired CPU (where last recvmsg was done) is
4650 		 * different from current CPU (one in the rx-queue flow
4651 		 * table entry), switch if one of the following holds:
4652 		 *   - Current CPU is unset (>= nr_cpu_ids).
4653 		 *   - Current CPU is offline.
4654 		 *   - The current CPU's queue tail has advanced beyond the
4655 		 *     last packet that was enqueued using this table entry.
4656 		 *     This guarantees that all previous packets for the flow
4657 		 *     have been dequeued, thus preserving in order delivery.
4658 		 */
4659 		if (unlikely(tcpu != next_cpu) &&
4660 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4661 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4662 		      rflow->last_qtail)) >= 0)) {
4663 			tcpu = next_cpu;
4664 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4665 		}
4666 
4667 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4668 			*rflowp = rflow;
4669 			cpu = tcpu;
4670 			goto done;
4671 		}
4672 	}
4673 
4674 try_rps:
4675 
4676 	if (map) {
4677 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4678 		if (cpu_online(tcpu)) {
4679 			cpu = tcpu;
4680 			goto done;
4681 		}
4682 	}
4683 
4684 done:
4685 	return cpu;
4686 }
4687 
4688 #ifdef CONFIG_RFS_ACCEL
4689 
4690 /**
4691  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4692  * @dev: Device on which the filter was set
4693  * @rxq_index: RX queue index
4694  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4695  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4696  *
4697  * Drivers that implement ndo_rx_flow_steer() should periodically call
4698  * this function for each installed filter and remove the filters for
4699  * which it returns %true.
4700  */
4701 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4702 			 u32 flow_id, u16 filter_id)
4703 {
4704 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4705 	struct rps_dev_flow_table *flow_table;
4706 	struct rps_dev_flow *rflow;
4707 	bool expire = true;
4708 	unsigned int cpu;
4709 
4710 	rcu_read_lock();
4711 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4712 	if (flow_table && flow_id <= flow_table->mask) {
4713 		rflow = &flow_table->flows[flow_id];
4714 		cpu = READ_ONCE(rflow->cpu);
4715 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4716 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4717 			   READ_ONCE(rflow->last_qtail)) <
4718 		     (int)(10 * flow_table->mask)))
4719 			expire = false;
4720 	}
4721 	rcu_read_unlock();
4722 	return expire;
4723 }
4724 EXPORT_SYMBOL(rps_may_expire_flow);
4725 
4726 #endif /* CONFIG_RFS_ACCEL */
4727 
4728 /* Called from hardirq (IPI) context */
4729 static void rps_trigger_softirq(void *data)
4730 {
4731 	struct softnet_data *sd = data;
4732 
4733 	____napi_schedule(sd, &sd->backlog);
4734 	sd->received_rps++;
4735 }
4736 
4737 #endif /* CONFIG_RPS */
4738 
4739 /* Called from hardirq (IPI) context */
4740 static void trigger_rx_softirq(void *data)
4741 {
4742 	struct softnet_data *sd = data;
4743 
4744 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4745 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4746 }
4747 
4748 /*
4749  * After we queued a packet into sd->input_pkt_queue,
4750  * we need to make sure this queue is serviced soon.
4751  *
4752  * - If this is another cpu queue, link it to our rps_ipi_list,
4753  *   and make sure we will process rps_ipi_list from net_rx_action().
4754  *
4755  * - If this is our own queue, NAPI schedule our backlog.
4756  *   Note that this also raises NET_RX_SOFTIRQ.
4757  */
4758 static void napi_schedule_rps(struct softnet_data *sd)
4759 {
4760 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4761 
4762 #ifdef CONFIG_RPS
4763 	if (sd != mysd) {
4764 		if (use_backlog_threads()) {
4765 			__napi_schedule_irqoff(&sd->backlog);
4766 			return;
4767 		}
4768 
4769 		sd->rps_ipi_next = mysd->rps_ipi_list;
4770 		mysd->rps_ipi_list = sd;
4771 
4772 		/* If not called from net_rx_action() or napi_threaded_poll()
4773 		 * we have to raise NET_RX_SOFTIRQ.
4774 		 */
4775 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4776 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4777 		return;
4778 	}
4779 #endif /* CONFIG_RPS */
4780 	__napi_schedule_irqoff(&mysd->backlog);
4781 }
4782 
4783 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4784 {
4785 	unsigned long flags;
4786 
4787 	if (use_backlog_threads()) {
4788 		backlog_lock_irq_save(sd, &flags);
4789 
4790 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4791 			__napi_schedule_irqoff(&sd->backlog);
4792 
4793 		backlog_unlock_irq_restore(sd, &flags);
4794 
4795 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
4796 		smp_call_function_single_async(cpu, &sd->defer_csd);
4797 	}
4798 }
4799 
4800 #ifdef CONFIG_NET_FLOW_LIMIT
4801 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4802 #endif
4803 
4804 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4805 {
4806 #ifdef CONFIG_NET_FLOW_LIMIT
4807 	struct sd_flow_limit *fl;
4808 	struct softnet_data *sd;
4809 	unsigned int old_flow, new_flow;
4810 
4811 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
4812 		return false;
4813 
4814 	sd = this_cpu_ptr(&softnet_data);
4815 
4816 	rcu_read_lock();
4817 	fl = rcu_dereference(sd->flow_limit);
4818 	if (fl) {
4819 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4820 		old_flow = fl->history[fl->history_head];
4821 		fl->history[fl->history_head] = new_flow;
4822 
4823 		fl->history_head++;
4824 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4825 
4826 		if (likely(fl->buckets[old_flow]))
4827 			fl->buckets[old_flow]--;
4828 
4829 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4830 			fl->count++;
4831 			rcu_read_unlock();
4832 			return true;
4833 		}
4834 	}
4835 	rcu_read_unlock();
4836 #endif
4837 	return false;
4838 }
4839 
4840 /*
4841  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4842  * queue (may be a remote CPU queue).
4843  */
4844 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4845 			      unsigned int *qtail)
4846 {
4847 	enum skb_drop_reason reason;
4848 	struct softnet_data *sd;
4849 	unsigned long flags;
4850 	unsigned int qlen;
4851 	int max_backlog;
4852 	u32 tail;
4853 
4854 	reason = SKB_DROP_REASON_DEV_READY;
4855 	if (!netif_running(skb->dev))
4856 		goto bad_dev;
4857 
4858 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4859 	sd = &per_cpu(softnet_data, cpu);
4860 
4861 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
4862 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
4863 	if (unlikely(qlen > max_backlog))
4864 		goto cpu_backlog_drop;
4865 	backlog_lock_irq_save(sd, &flags);
4866 	qlen = skb_queue_len(&sd->input_pkt_queue);
4867 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
4868 		if (!qlen) {
4869 			/* Schedule NAPI for backlog device. We can use
4870 			 * non atomic operation as we own the queue lock.
4871 			 */
4872 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
4873 						&sd->backlog.state))
4874 				napi_schedule_rps(sd);
4875 		}
4876 		__skb_queue_tail(&sd->input_pkt_queue, skb);
4877 		tail = rps_input_queue_tail_incr(sd);
4878 		backlog_unlock_irq_restore(sd, &flags);
4879 
4880 		/* save the tail outside of the critical section */
4881 		rps_input_queue_tail_save(qtail, tail);
4882 		return NET_RX_SUCCESS;
4883 	}
4884 
4885 	backlog_unlock_irq_restore(sd, &flags);
4886 
4887 cpu_backlog_drop:
4888 	atomic_inc(&sd->dropped);
4889 bad_dev:
4890 	dev_core_stats_rx_dropped_inc(skb->dev);
4891 	kfree_skb_reason(skb, reason);
4892 	return NET_RX_DROP;
4893 }
4894 
4895 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4896 {
4897 	struct net_device *dev = skb->dev;
4898 	struct netdev_rx_queue *rxqueue;
4899 
4900 	rxqueue = dev->_rx;
4901 
4902 	if (skb_rx_queue_recorded(skb)) {
4903 		u16 index = skb_get_rx_queue(skb);
4904 
4905 		if (unlikely(index >= dev->real_num_rx_queues)) {
4906 			WARN_ONCE(dev->real_num_rx_queues > 1,
4907 				  "%s received packet on queue %u, but number "
4908 				  "of RX queues is %u\n",
4909 				  dev->name, index, dev->real_num_rx_queues);
4910 
4911 			return rxqueue; /* Return first rxqueue */
4912 		}
4913 		rxqueue += index;
4914 	}
4915 	return rxqueue;
4916 }
4917 
4918 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4919 			     struct bpf_prog *xdp_prog)
4920 {
4921 	void *orig_data, *orig_data_end, *hard_start;
4922 	struct netdev_rx_queue *rxqueue;
4923 	bool orig_bcast, orig_host;
4924 	u32 mac_len, frame_sz;
4925 	__be16 orig_eth_type;
4926 	struct ethhdr *eth;
4927 	u32 metalen, act;
4928 	int off;
4929 
4930 	/* The XDP program wants to see the packet starting at the MAC
4931 	 * header.
4932 	 */
4933 	mac_len = skb->data - skb_mac_header(skb);
4934 	hard_start = skb->data - skb_headroom(skb);
4935 
4936 	/* SKB "head" area always have tailroom for skb_shared_info */
4937 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4938 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4939 
4940 	rxqueue = netif_get_rxqueue(skb);
4941 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4942 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4943 			 skb_headlen(skb) + mac_len, true);
4944 	if (skb_is_nonlinear(skb)) {
4945 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
4946 		xdp_buff_set_frags_flag(xdp);
4947 	} else {
4948 		xdp_buff_clear_frags_flag(xdp);
4949 	}
4950 
4951 	orig_data_end = xdp->data_end;
4952 	orig_data = xdp->data;
4953 	eth = (struct ethhdr *)xdp->data;
4954 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4955 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4956 	orig_eth_type = eth->h_proto;
4957 
4958 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4959 
4960 	/* check if bpf_xdp_adjust_head was used */
4961 	off = xdp->data - orig_data;
4962 	if (off) {
4963 		if (off > 0)
4964 			__skb_pull(skb, off);
4965 		else if (off < 0)
4966 			__skb_push(skb, -off);
4967 
4968 		skb->mac_header += off;
4969 		skb_reset_network_header(skb);
4970 	}
4971 
4972 	/* check if bpf_xdp_adjust_tail was used */
4973 	off = xdp->data_end - orig_data_end;
4974 	if (off != 0) {
4975 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4976 		skb->len += off; /* positive on grow, negative on shrink */
4977 	}
4978 
4979 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4980 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4981 	 */
4982 	if (xdp_buff_has_frags(xdp))
4983 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
4984 	else
4985 		skb->data_len = 0;
4986 
4987 	/* check if XDP changed eth hdr such SKB needs update */
4988 	eth = (struct ethhdr *)xdp->data;
4989 	if ((orig_eth_type != eth->h_proto) ||
4990 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4991 						  skb->dev->dev_addr)) ||
4992 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4993 		__skb_push(skb, ETH_HLEN);
4994 		skb->pkt_type = PACKET_HOST;
4995 		skb->protocol = eth_type_trans(skb, skb->dev);
4996 	}
4997 
4998 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4999 	 * before calling us again on redirect path. We do not call do_redirect
5000 	 * as we leave that up to the caller.
5001 	 *
5002 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5003 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5004 	 */
5005 	switch (act) {
5006 	case XDP_REDIRECT:
5007 	case XDP_TX:
5008 		__skb_push(skb, mac_len);
5009 		break;
5010 	case XDP_PASS:
5011 		metalen = xdp->data - xdp->data_meta;
5012 		if (metalen)
5013 			skb_metadata_set(skb, metalen);
5014 		break;
5015 	}
5016 
5017 	return act;
5018 }
5019 
5020 static int
5021 netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
5022 {
5023 	struct sk_buff *skb = *pskb;
5024 	int err, hroom, troom;
5025 
5026 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5027 		return 0;
5028 
5029 	/* In case we have to go down the path and also linearize,
5030 	 * then lets do the pskb_expand_head() work just once here.
5031 	 */
5032 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5033 	troom = skb->tail + skb->data_len - skb->end;
5034 	err = pskb_expand_head(skb,
5035 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5036 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5037 	if (err)
5038 		return err;
5039 
5040 	return skb_linearize(skb);
5041 }
5042 
5043 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5044 				     struct xdp_buff *xdp,
5045 				     struct bpf_prog *xdp_prog)
5046 {
5047 	struct sk_buff *skb = *pskb;
5048 	u32 mac_len, act = XDP_DROP;
5049 
5050 	/* Reinjected packets coming from act_mirred or similar should
5051 	 * not get XDP generic processing.
5052 	 */
5053 	if (skb_is_redirected(skb))
5054 		return XDP_PASS;
5055 
5056 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5057 	 * bytes. This is the guarantee that also native XDP provides,
5058 	 * thus we need to do it here as well.
5059 	 */
5060 	mac_len = skb->data - skb_mac_header(skb);
5061 	__skb_push(skb, mac_len);
5062 
5063 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5064 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5065 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5066 			goto do_drop;
5067 	}
5068 
5069 	__skb_pull(*pskb, mac_len);
5070 
5071 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5072 	switch (act) {
5073 	case XDP_REDIRECT:
5074 	case XDP_TX:
5075 	case XDP_PASS:
5076 		break;
5077 	default:
5078 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5079 		fallthrough;
5080 	case XDP_ABORTED:
5081 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5082 		fallthrough;
5083 	case XDP_DROP:
5084 	do_drop:
5085 		kfree_skb(*pskb);
5086 		break;
5087 	}
5088 
5089 	return act;
5090 }
5091 
5092 /* When doing generic XDP we have to bypass the qdisc layer and the
5093  * network taps in order to match in-driver-XDP behavior. This also means
5094  * that XDP packets are able to starve other packets going through a qdisc,
5095  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5096  * queues, so they do not have this starvation issue.
5097  */
5098 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5099 {
5100 	struct net_device *dev = skb->dev;
5101 	struct netdev_queue *txq;
5102 	bool free_skb = true;
5103 	int cpu, rc;
5104 
5105 	txq = netdev_core_pick_tx(dev, skb, NULL);
5106 	cpu = smp_processor_id();
5107 	HARD_TX_LOCK(dev, txq, cpu);
5108 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5109 		rc = netdev_start_xmit(skb, dev, txq, 0);
5110 		if (dev_xmit_complete(rc))
5111 			free_skb = false;
5112 	}
5113 	HARD_TX_UNLOCK(dev, txq);
5114 	if (free_skb) {
5115 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5116 		dev_core_stats_tx_dropped_inc(dev);
5117 		kfree_skb(skb);
5118 	}
5119 }
5120 
5121 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5122 
5123 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5124 {
5125 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5126 
5127 	if (xdp_prog) {
5128 		struct xdp_buff xdp;
5129 		u32 act;
5130 		int err;
5131 
5132 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5133 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5134 		if (act != XDP_PASS) {
5135 			switch (act) {
5136 			case XDP_REDIRECT:
5137 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5138 							      &xdp, xdp_prog);
5139 				if (err)
5140 					goto out_redir;
5141 				break;
5142 			case XDP_TX:
5143 				generic_xdp_tx(*pskb, xdp_prog);
5144 				break;
5145 			}
5146 			bpf_net_ctx_clear(bpf_net_ctx);
5147 			return XDP_DROP;
5148 		}
5149 		bpf_net_ctx_clear(bpf_net_ctx);
5150 	}
5151 	return XDP_PASS;
5152 out_redir:
5153 	bpf_net_ctx_clear(bpf_net_ctx);
5154 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5155 	return XDP_DROP;
5156 }
5157 EXPORT_SYMBOL_GPL(do_xdp_generic);
5158 
5159 static int netif_rx_internal(struct sk_buff *skb)
5160 {
5161 	int ret;
5162 
5163 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5164 
5165 	trace_netif_rx(skb);
5166 
5167 #ifdef CONFIG_RPS
5168 	if (static_branch_unlikely(&rps_needed)) {
5169 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5170 		int cpu;
5171 
5172 		rcu_read_lock();
5173 
5174 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5175 		if (cpu < 0)
5176 			cpu = smp_processor_id();
5177 
5178 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5179 
5180 		rcu_read_unlock();
5181 	} else
5182 #endif
5183 	{
5184 		unsigned int qtail;
5185 
5186 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5187 	}
5188 	return ret;
5189 }
5190 
5191 /**
5192  *	__netif_rx	-	Slightly optimized version of netif_rx
5193  *	@skb: buffer to post
5194  *
5195  *	This behaves as netif_rx except that it does not disable bottom halves.
5196  *	As a result this function may only be invoked from the interrupt context
5197  *	(either hard or soft interrupt).
5198  */
5199 int __netif_rx(struct sk_buff *skb)
5200 {
5201 	int ret;
5202 
5203 	lockdep_assert_once(hardirq_count() | softirq_count());
5204 
5205 	trace_netif_rx_entry(skb);
5206 	ret = netif_rx_internal(skb);
5207 	trace_netif_rx_exit(ret);
5208 	return ret;
5209 }
5210 EXPORT_SYMBOL(__netif_rx);
5211 
5212 /**
5213  *	netif_rx	-	post buffer to the network code
5214  *	@skb: buffer to post
5215  *
5216  *	This function receives a packet from a device driver and queues it for
5217  *	the upper (protocol) levels to process via the backlog NAPI device. It
5218  *	always succeeds. The buffer may be dropped during processing for
5219  *	congestion control or by the protocol layers.
5220  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5221  *	driver should use NAPI and GRO.
5222  *	This function can used from interrupt and from process context. The
5223  *	caller from process context must not disable interrupts before invoking
5224  *	this function.
5225  *
5226  *	return values:
5227  *	NET_RX_SUCCESS	(no congestion)
5228  *	NET_RX_DROP     (packet was dropped)
5229  *
5230  */
5231 int netif_rx(struct sk_buff *skb)
5232 {
5233 	bool need_bh_off = !(hardirq_count() | softirq_count());
5234 	int ret;
5235 
5236 	if (need_bh_off)
5237 		local_bh_disable();
5238 	trace_netif_rx_entry(skb);
5239 	ret = netif_rx_internal(skb);
5240 	trace_netif_rx_exit(ret);
5241 	if (need_bh_off)
5242 		local_bh_enable();
5243 	return ret;
5244 }
5245 EXPORT_SYMBOL(netif_rx);
5246 
5247 static __latent_entropy void net_tx_action(struct softirq_action *h)
5248 {
5249 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5250 
5251 	if (sd->completion_queue) {
5252 		struct sk_buff *clist;
5253 
5254 		local_irq_disable();
5255 		clist = sd->completion_queue;
5256 		sd->completion_queue = NULL;
5257 		local_irq_enable();
5258 
5259 		while (clist) {
5260 			struct sk_buff *skb = clist;
5261 
5262 			clist = clist->next;
5263 
5264 			WARN_ON(refcount_read(&skb->users));
5265 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5266 				trace_consume_skb(skb, net_tx_action);
5267 			else
5268 				trace_kfree_skb(skb, net_tx_action,
5269 						get_kfree_skb_cb(skb)->reason, NULL);
5270 
5271 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5272 				__kfree_skb(skb);
5273 			else
5274 				__napi_kfree_skb(skb,
5275 						 get_kfree_skb_cb(skb)->reason);
5276 		}
5277 	}
5278 
5279 	if (sd->output_queue) {
5280 		struct Qdisc *head;
5281 
5282 		local_irq_disable();
5283 		head = sd->output_queue;
5284 		sd->output_queue = NULL;
5285 		sd->output_queue_tailp = &sd->output_queue;
5286 		local_irq_enable();
5287 
5288 		rcu_read_lock();
5289 
5290 		while (head) {
5291 			struct Qdisc *q = head;
5292 			spinlock_t *root_lock = NULL;
5293 
5294 			head = head->next_sched;
5295 
5296 			/* We need to make sure head->next_sched is read
5297 			 * before clearing __QDISC_STATE_SCHED
5298 			 */
5299 			smp_mb__before_atomic();
5300 
5301 			if (!(q->flags & TCQ_F_NOLOCK)) {
5302 				root_lock = qdisc_lock(q);
5303 				spin_lock(root_lock);
5304 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5305 						     &q->state))) {
5306 				/* There is a synchronize_net() between
5307 				 * STATE_DEACTIVATED flag being set and
5308 				 * qdisc_reset()/some_qdisc_is_busy() in
5309 				 * dev_deactivate(), so we can safely bail out
5310 				 * early here to avoid data race between
5311 				 * qdisc_deactivate() and some_qdisc_is_busy()
5312 				 * for lockless qdisc.
5313 				 */
5314 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5315 				continue;
5316 			}
5317 
5318 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5319 			qdisc_run(q);
5320 			if (root_lock)
5321 				spin_unlock(root_lock);
5322 		}
5323 
5324 		rcu_read_unlock();
5325 	}
5326 
5327 	xfrm_dev_backlog(sd);
5328 }
5329 
5330 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5331 /* This hook is defined here for ATM LANE */
5332 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5333 			     unsigned char *addr) __read_mostly;
5334 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5335 #endif
5336 
5337 /**
5338  *	netdev_is_rx_handler_busy - check if receive handler is registered
5339  *	@dev: device to check
5340  *
5341  *	Check if a receive handler is already registered for a given device.
5342  *	Return true if there one.
5343  *
5344  *	The caller must hold the rtnl_mutex.
5345  */
5346 bool netdev_is_rx_handler_busy(struct net_device *dev)
5347 {
5348 	ASSERT_RTNL();
5349 	return dev && rtnl_dereference(dev->rx_handler);
5350 }
5351 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5352 
5353 /**
5354  *	netdev_rx_handler_register - register receive handler
5355  *	@dev: device to register a handler for
5356  *	@rx_handler: receive handler to register
5357  *	@rx_handler_data: data pointer that is used by rx handler
5358  *
5359  *	Register a receive handler for a device. This handler will then be
5360  *	called from __netif_receive_skb. A negative errno code is returned
5361  *	on a failure.
5362  *
5363  *	The caller must hold the rtnl_mutex.
5364  *
5365  *	For a general description of rx_handler, see enum rx_handler_result.
5366  */
5367 int netdev_rx_handler_register(struct net_device *dev,
5368 			       rx_handler_func_t *rx_handler,
5369 			       void *rx_handler_data)
5370 {
5371 	if (netdev_is_rx_handler_busy(dev))
5372 		return -EBUSY;
5373 
5374 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5375 		return -EINVAL;
5376 
5377 	/* Note: rx_handler_data must be set before rx_handler */
5378 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5379 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5380 
5381 	return 0;
5382 }
5383 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5384 
5385 /**
5386  *	netdev_rx_handler_unregister - unregister receive handler
5387  *	@dev: device to unregister a handler from
5388  *
5389  *	Unregister a receive handler from a device.
5390  *
5391  *	The caller must hold the rtnl_mutex.
5392  */
5393 void netdev_rx_handler_unregister(struct net_device *dev)
5394 {
5395 
5396 	ASSERT_RTNL();
5397 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5398 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5399 	 * section has a guarantee to see a non NULL rx_handler_data
5400 	 * as well.
5401 	 */
5402 	synchronize_net();
5403 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5404 }
5405 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5406 
5407 /*
5408  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5409  * the special handling of PFMEMALLOC skbs.
5410  */
5411 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5412 {
5413 	switch (skb->protocol) {
5414 	case htons(ETH_P_ARP):
5415 	case htons(ETH_P_IP):
5416 	case htons(ETH_P_IPV6):
5417 	case htons(ETH_P_8021Q):
5418 	case htons(ETH_P_8021AD):
5419 		return true;
5420 	default:
5421 		return false;
5422 	}
5423 }
5424 
5425 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5426 			     int *ret, struct net_device *orig_dev)
5427 {
5428 	if (nf_hook_ingress_active(skb)) {
5429 		int ingress_retval;
5430 
5431 		if (*pt_prev) {
5432 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5433 			*pt_prev = NULL;
5434 		}
5435 
5436 		rcu_read_lock();
5437 		ingress_retval = nf_hook_ingress(skb);
5438 		rcu_read_unlock();
5439 		return ingress_retval;
5440 	}
5441 	return 0;
5442 }
5443 
5444 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5445 				    struct packet_type **ppt_prev)
5446 {
5447 	struct packet_type *ptype, *pt_prev;
5448 	rx_handler_func_t *rx_handler;
5449 	struct sk_buff *skb = *pskb;
5450 	struct net_device *orig_dev;
5451 	bool deliver_exact = false;
5452 	int ret = NET_RX_DROP;
5453 	__be16 type;
5454 
5455 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5456 
5457 	trace_netif_receive_skb(skb);
5458 
5459 	orig_dev = skb->dev;
5460 
5461 	skb_reset_network_header(skb);
5462 	if (!skb_transport_header_was_set(skb))
5463 		skb_reset_transport_header(skb);
5464 	skb_reset_mac_len(skb);
5465 
5466 	pt_prev = NULL;
5467 
5468 another_round:
5469 	skb->skb_iif = skb->dev->ifindex;
5470 
5471 	__this_cpu_inc(softnet_data.processed);
5472 
5473 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5474 		int ret2;
5475 
5476 		migrate_disable();
5477 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5478 				      &skb);
5479 		migrate_enable();
5480 
5481 		if (ret2 != XDP_PASS) {
5482 			ret = NET_RX_DROP;
5483 			goto out;
5484 		}
5485 	}
5486 
5487 	if (eth_type_vlan(skb->protocol)) {
5488 		skb = skb_vlan_untag(skb);
5489 		if (unlikely(!skb))
5490 			goto out;
5491 	}
5492 
5493 	if (skb_skip_tc_classify(skb))
5494 		goto skip_classify;
5495 
5496 	if (pfmemalloc)
5497 		goto skip_taps;
5498 
5499 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5500 		if (pt_prev)
5501 			ret = deliver_skb(skb, pt_prev, orig_dev);
5502 		pt_prev = ptype;
5503 	}
5504 
5505 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5506 		if (pt_prev)
5507 			ret = deliver_skb(skb, pt_prev, orig_dev);
5508 		pt_prev = ptype;
5509 	}
5510 
5511 skip_taps:
5512 #ifdef CONFIG_NET_INGRESS
5513 	if (static_branch_unlikely(&ingress_needed_key)) {
5514 		bool another = false;
5515 
5516 		nf_skip_egress(skb, true);
5517 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5518 					 &another);
5519 		if (another)
5520 			goto another_round;
5521 		if (!skb)
5522 			goto out;
5523 
5524 		nf_skip_egress(skb, false);
5525 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5526 			goto out;
5527 	}
5528 #endif
5529 	skb_reset_redirect(skb);
5530 skip_classify:
5531 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5532 		goto drop;
5533 
5534 	if (skb_vlan_tag_present(skb)) {
5535 		if (pt_prev) {
5536 			ret = deliver_skb(skb, pt_prev, orig_dev);
5537 			pt_prev = NULL;
5538 		}
5539 		if (vlan_do_receive(&skb))
5540 			goto another_round;
5541 		else if (unlikely(!skb))
5542 			goto out;
5543 	}
5544 
5545 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5546 	if (rx_handler) {
5547 		if (pt_prev) {
5548 			ret = deliver_skb(skb, pt_prev, orig_dev);
5549 			pt_prev = NULL;
5550 		}
5551 		switch (rx_handler(&skb)) {
5552 		case RX_HANDLER_CONSUMED:
5553 			ret = NET_RX_SUCCESS;
5554 			goto out;
5555 		case RX_HANDLER_ANOTHER:
5556 			goto another_round;
5557 		case RX_HANDLER_EXACT:
5558 			deliver_exact = true;
5559 			break;
5560 		case RX_HANDLER_PASS:
5561 			break;
5562 		default:
5563 			BUG();
5564 		}
5565 	}
5566 
5567 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5568 check_vlan_id:
5569 		if (skb_vlan_tag_get_id(skb)) {
5570 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5571 			 * find vlan device.
5572 			 */
5573 			skb->pkt_type = PACKET_OTHERHOST;
5574 		} else if (eth_type_vlan(skb->protocol)) {
5575 			/* Outer header is 802.1P with vlan 0, inner header is
5576 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5577 			 * not find vlan dev for vlan id 0.
5578 			 */
5579 			__vlan_hwaccel_clear_tag(skb);
5580 			skb = skb_vlan_untag(skb);
5581 			if (unlikely(!skb))
5582 				goto out;
5583 			if (vlan_do_receive(&skb))
5584 				/* After stripping off 802.1P header with vlan 0
5585 				 * vlan dev is found for inner header.
5586 				 */
5587 				goto another_round;
5588 			else if (unlikely(!skb))
5589 				goto out;
5590 			else
5591 				/* We have stripped outer 802.1P vlan 0 header.
5592 				 * But could not find vlan dev.
5593 				 * check again for vlan id to set OTHERHOST.
5594 				 */
5595 				goto check_vlan_id;
5596 		}
5597 		/* Note: we might in the future use prio bits
5598 		 * and set skb->priority like in vlan_do_receive()
5599 		 * For the time being, just ignore Priority Code Point
5600 		 */
5601 		__vlan_hwaccel_clear_tag(skb);
5602 	}
5603 
5604 	type = skb->protocol;
5605 
5606 	/* deliver only exact match when indicated */
5607 	if (likely(!deliver_exact)) {
5608 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5609 				       &ptype_base[ntohs(type) &
5610 						   PTYPE_HASH_MASK]);
5611 	}
5612 
5613 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5614 			       &orig_dev->ptype_specific);
5615 
5616 	if (unlikely(skb->dev != orig_dev)) {
5617 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5618 				       &skb->dev->ptype_specific);
5619 	}
5620 
5621 	if (pt_prev) {
5622 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5623 			goto drop;
5624 		*ppt_prev = pt_prev;
5625 	} else {
5626 drop:
5627 		if (!deliver_exact)
5628 			dev_core_stats_rx_dropped_inc(skb->dev);
5629 		else
5630 			dev_core_stats_rx_nohandler_inc(skb->dev);
5631 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5632 		/* Jamal, now you will not able to escape explaining
5633 		 * me how you were going to use this. :-)
5634 		 */
5635 		ret = NET_RX_DROP;
5636 	}
5637 
5638 out:
5639 	/* The invariant here is that if *ppt_prev is not NULL
5640 	 * then skb should also be non-NULL.
5641 	 *
5642 	 * Apparently *ppt_prev assignment above holds this invariant due to
5643 	 * skb dereferencing near it.
5644 	 */
5645 	*pskb = skb;
5646 	return ret;
5647 }
5648 
5649 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5650 {
5651 	struct net_device *orig_dev = skb->dev;
5652 	struct packet_type *pt_prev = NULL;
5653 	int ret;
5654 
5655 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5656 	if (pt_prev)
5657 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5658 					 skb->dev, pt_prev, orig_dev);
5659 	return ret;
5660 }
5661 
5662 /**
5663  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5664  *	@skb: buffer to process
5665  *
5666  *	More direct receive version of netif_receive_skb().  It should
5667  *	only be used by callers that have a need to skip RPS and Generic XDP.
5668  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5669  *
5670  *	This function may only be called from softirq context and interrupts
5671  *	should be enabled.
5672  *
5673  *	Return values (usually ignored):
5674  *	NET_RX_SUCCESS: no congestion
5675  *	NET_RX_DROP: packet was dropped
5676  */
5677 int netif_receive_skb_core(struct sk_buff *skb)
5678 {
5679 	int ret;
5680 
5681 	rcu_read_lock();
5682 	ret = __netif_receive_skb_one_core(skb, false);
5683 	rcu_read_unlock();
5684 
5685 	return ret;
5686 }
5687 EXPORT_SYMBOL(netif_receive_skb_core);
5688 
5689 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5690 						  struct packet_type *pt_prev,
5691 						  struct net_device *orig_dev)
5692 {
5693 	struct sk_buff *skb, *next;
5694 
5695 	if (!pt_prev)
5696 		return;
5697 	if (list_empty(head))
5698 		return;
5699 	if (pt_prev->list_func != NULL)
5700 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5701 				   ip_list_rcv, head, pt_prev, orig_dev);
5702 	else
5703 		list_for_each_entry_safe(skb, next, head, list) {
5704 			skb_list_del_init(skb);
5705 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5706 		}
5707 }
5708 
5709 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5710 {
5711 	/* Fast-path assumptions:
5712 	 * - There is no RX handler.
5713 	 * - Only one packet_type matches.
5714 	 * If either of these fails, we will end up doing some per-packet
5715 	 * processing in-line, then handling the 'last ptype' for the whole
5716 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5717 	 * because the 'last ptype' must be constant across the sublist, and all
5718 	 * other ptypes are handled per-packet.
5719 	 */
5720 	/* Current (common) ptype of sublist */
5721 	struct packet_type *pt_curr = NULL;
5722 	/* Current (common) orig_dev of sublist */
5723 	struct net_device *od_curr = NULL;
5724 	struct sk_buff *skb, *next;
5725 	LIST_HEAD(sublist);
5726 
5727 	list_for_each_entry_safe(skb, next, head, list) {
5728 		struct net_device *orig_dev = skb->dev;
5729 		struct packet_type *pt_prev = NULL;
5730 
5731 		skb_list_del_init(skb);
5732 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5733 		if (!pt_prev)
5734 			continue;
5735 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5736 			/* dispatch old sublist */
5737 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5738 			/* start new sublist */
5739 			INIT_LIST_HEAD(&sublist);
5740 			pt_curr = pt_prev;
5741 			od_curr = orig_dev;
5742 		}
5743 		list_add_tail(&skb->list, &sublist);
5744 	}
5745 
5746 	/* dispatch final sublist */
5747 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5748 }
5749 
5750 static int __netif_receive_skb(struct sk_buff *skb)
5751 {
5752 	int ret;
5753 
5754 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5755 		unsigned int noreclaim_flag;
5756 
5757 		/*
5758 		 * PFMEMALLOC skbs are special, they should
5759 		 * - be delivered to SOCK_MEMALLOC sockets only
5760 		 * - stay away from userspace
5761 		 * - have bounded memory usage
5762 		 *
5763 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5764 		 * context down to all allocation sites.
5765 		 */
5766 		noreclaim_flag = memalloc_noreclaim_save();
5767 		ret = __netif_receive_skb_one_core(skb, true);
5768 		memalloc_noreclaim_restore(noreclaim_flag);
5769 	} else
5770 		ret = __netif_receive_skb_one_core(skb, false);
5771 
5772 	return ret;
5773 }
5774 
5775 static void __netif_receive_skb_list(struct list_head *head)
5776 {
5777 	unsigned long noreclaim_flag = 0;
5778 	struct sk_buff *skb, *next;
5779 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5780 
5781 	list_for_each_entry_safe(skb, next, head, list) {
5782 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5783 			struct list_head sublist;
5784 
5785 			/* Handle the previous sublist */
5786 			list_cut_before(&sublist, head, &skb->list);
5787 			if (!list_empty(&sublist))
5788 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5789 			pfmemalloc = !pfmemalloc;
5790 			/* See comments in __netif_receive_skb */
5791 			if (pfmemalloc)
5792 				noreclaim_flag = memalloc_noreclaim_save();
5793 			else
5794 				memalloc_noreclaim_restore(noreclaim_flag);
5795 		}
5796 	}
5797 	/* Handle the remaining sublist */
5798 	if (!list_empty(head))
5799 		__netif_receive_skb_list_core(head, pfmemalloc);
5800 	/* Restore pflags */
5801 	if (pfmemalloc)
5802 		memalloc_noreclaim_restore(noreclaim_flag);
5803 }
5804 
5805 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5806 {
5807 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5808 	struct bpf_prog *new = xdp->prog;
5809 	int ret = 0;
5810 
5811 	switch (xdp->command) {
5812 	case XDP_SETUP_PROG:
5813 		rcu_assign_pointer(dev->xdp_prog, new);
5814 		if (old)
5815 			bpf_prog_put(old);
5816 
5817 		if (old && !new) {
5818 			static_branch_dec(&generic_xdp_needed_key);
5819 		} else if (new && !old) {
5820 			static_branch_inc(&generic_xdp_needed_key);
5821 			dev_disable_lro(dev);
5822 			dev_disable_gro_hw(dev);
5823 		}
5824 		break;
5825 
5826 	default:
5827 		ret = -EINVAL;
5828 		break;
5829 	}
5830 
5831 	return ret;
5832 }
5833 
5834 static int netif_receive_skb_internal(struct sk_buff *skb)
5835 {
5836 	int ret;
5837 
5838 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5839 
5840 	if (skb_defer_rx_timestamp(skb))
5841 		return NET_RX_SUCCESS;
5842 
5843 	rcu_read_lock();
5844 #ifdef CONFIG_RPS
5845 	if (static_branch_unlikely(&rps_needed)) {
5846 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5847 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5848 
5849 		if (cpu >= 0) {
5850 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5851 			rcu_read_unlock();
5852 			return ret;
5853 		}
5854 	}
5855 #endif
5856 	ret = __netif_receive_skb(skb);
5857 	rcu_read_unlock();
5858 	return ret;
5859 }
5860 
5861 void netif_receive_skb_list_internal(struct list_head *head)
5862 {
5863 	struct sk_buff *skb, *next;
5864 	LIST_HEAD(sublist);
5865 
5866 	list_for_each_entry_safe(skb, next, head, list) {
5867 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
5868 				    skb);
5869 		skb_list_del_init(skb);
5870 		if (!skb_defer_rx_timestamp(skb))
5871 			list_add_tail(&skb->list, &sublist);
5872 	}
5873 	list_splice_init(&sublist, head);
5874 
5875 	rcu_read_lock();
5876 #ifdef CONFIG_RPS
5877 	if (static_branch_unlikely(&rps_needed)) {
5878 		list_for_each_entry_safe(skb, next, head, list) {
5879 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5880 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5881 
5882 			if (cpu >= 0) {
5883 				/* Will be handled, remove from list */
5884 				skb_list_del_init(skb);
5885 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5886 			}
5887 		}
5888 	}
5889 #endif
5890 	__netif_receive_skb_list(head);
5891 	rcu_read_unlock();
5892 }
5893 
5894 /**
5895  *	netif_receive_skb - process receive buffer from network
5896  *	@skb: buffer to process
5897  *
5898  *	netif_receive_skb() is the main receive data processing function.
5899  *	It always succeeds. The buffer may be dropped during processing
5900  *	for congestion control or by the protocol layers.
5901  *
5902  *	This function may only be called from softirq context and interrupts
5903  *	should be enabled.
5904  *
5905  *	Return values (usually ignored):
5906  *	NET_RX_SUCCESS: no congestion
5907  *	NET_RX_DROP: packet was dropped
5908  */
5909 int netif_receive_skb(struct sk_buff *skb)
5910 {
5911 	int ret;
5912 
5913 	trace_netif_receive_skb_entry(skb);
5914 
5915 	ret = netif_receive_skb_internal(skb);
5916 	trace_netif_receive_skb_exit(ret);
5917 
5918 	return ret;
5919 }
5920 EXPORT_SYMBOL(netif_receive_skb);
5921 
5922 /**
5923  *	netif_receive_skb_list - process many receive buffers from network
5924  *	@head: list of skbs to process.
5925  *
5926  *	Since return value of netif_receive_skb() is normally ignored, and
5927  *	wouldn't be meaningful for a list, this function returns void.
5928  *
5929  *	This function may only be called from softirq context and interrupts
5930  *	should be enabled.
5931  */
5932 void netif_receive_skb_list(struct list_head *head)
5933 {
5934 	struct sk_buff *skb;
5935 
5936 	if (list_empty(head))
5937 		return;
5938 	if (trace_netif_receive_skb_list_entry_enabled()) {
5939 		list_for_each_entry(skb, head, list)
5940 			trace_netif_receive_skb_list_entry(skb);
5941 	}
5942 	netif_receive_skb_list_internal(head);
5943 	trace_netif_receive_skb_list_exit(0);
5944 }
5945 EXPORT_SYMBOL(netif_receive_skb_list);
5946 
5947 static DEFINE_PER_CPU(struct work_struct, flush_works);
5948 
5949 /* Network device is going away, flush any packets still pending */
5950 static void flush_backlog(struct work_struct *work)
5951 {
5952 	struct sk_buff *skb, *tmp;
5953 	struct softnet_data *sd;
5954 
5955 	local_bh_disable();
5956 	sd = this_cpu_ptr(&softnet_data);
5957 
5958 	backlog_lock_irq_disable(sd);
5959 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5960 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5961 			__skb_unlink(skb, &sd->input_pkt_queue);
5962 			dev_kfree_skb_irq(skb);
5963 			rps_input_queue_head_incr(sd);
5964 		}
5965 	}
5966 	backlog_unlock_irq_enable(sd);
5967 
5968 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
5969 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5970 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5971 			__skb_unlink(skb, &sd->process_queue);
5972 			kfree_skb(skb);
5973 			rps_input_queue_head_incr(sd);
5974 		}
5975 	}
5976 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
5977 	local_bh_enable();
5978 }
5979 
5980 static bool flush_required(int cpu)
5981 {
5982 #if IS_ENABLED(CONFIG_RPS)
5983 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5984 	bool do_flush;
5985 
5986 	backlog_lock_irq_disable(sd);
5987 
5988 	/* as insertion into process_queue happens with the rps lock held,
5989 	 * process_queue access may race only with dequeue
5990 	 */
5991 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5992 		   !skb_queue_empty_lockless(&sd->process_queue);
5993 	backlog_unlock_irq_enable(sd);
5994 
5995 	return do_flush;
5996 #endif
5997 	/* without RPS we can't safely check input_pkt_queue: during a
5998 	 * concurrent remote skb_queue_splice() we can detect as empty both
5999 	 * input_pkt_queue and process_queue even if the latter could end-up
6000 	 * containing a lot of packets.
6001 	 */
6002 	return true;
6003 }
6004 
6005 static void flush_all_backlogs(void)
6006 {
6007 	static cpumask_t flush_cpus;
6008 	unsigned int cpu;
6009 
6010 	/* since we are under rtnl lock protection we can use static data
6011 	 * for the cpumask and avoid allocating on stack the possibly
6012 	 * large mask
6013 	 */
6014 	ASSERT_RTNL();
6015 
6016 	cpus_read_lock();
6017 
6018 	cpumask_clear(&flush_cpus);
6019 	for_each_online_cpu(cpu) {
6020 		if (flush_required(cpu)) {
6021 			queue_work_on(cpu, system_highpri_wq,
6022 				      per_cpu_ptr(&flush_works, cpu));
6023 			cpumask_set_cpu(cpu, &flush_cpus);
6024 		}
6025 	}
6026 
6027 	/* we can have in flight packet[s] on the cpus we are not flushing,
6028 	 * synchronize_net() in unregister_netdevice_many() will take care of
6029 	 * them
6030 	 */
6031 	for_each_cpu(cpu, &flush_cpus)
6032 		flush_work(per_cpu_ptr(&flush_works, cpu));
6033 
6034 	cpus_read_unlock();
6035 }
6036 
6037 static void net_rps_send_ipi(struct softnet_data *remsd)
6038 {
6039 #ifdef CONFIG_RPS
6040 	while (remsd) {
6041 		struct softnet_data *next = remsd->rps_ipi_next;
6042 
6043 		if (cpu_online(remsd->cpu))
6044 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6045 		remsd = next;
6046 	}
6047 #endif
6048 }
6049 
6050 /*
6051  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6052  * Note: called with local irq disabled, but exits with local irq enabled.
6053  */
6054 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6055 {
6056 #ifdef CONFIG_RPS
6057 	struct softnet_data *remsd = sd->rps_ipi_list;
6058 
6059 	if (!use_backlog_threads() && remsd) {
6060 		sd->rps_ipi_list = NULL;
6061 
6062 		local_irq_enable();
6063 
6064 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6065 		net_rps_send_ipi(remsd);
6066 	} else
6067 #endif
6068 		local_irq_enable();
6069 }
6070 
6071 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6072 {
6073 #ifdef CONFIG_RPS
6074 	return !use_backlog_threads() && sd->rps_ipi_list;
6075 #else
6076 	return false;
6077 #endif
6078 }
6079 
6080 static int process_backlog(struct napi_struct *napi, int quota)
6081 {
6082 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6083 	bool again = true;
6084 	int work = 0;
6085 
6086 	/* Check if we have pending ipi, its better to send them now,
6087 	 * not waiting net_rx_action() end.
6088 	 */
6089 	if (sd_has_rps_ipi_waiting(sd)) {
6090 		local_irq_disable();
6091 		net_rps_action_and_irq_enable(sd);
6092 	}
6093 
6094 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6095 	while (again) {
6096 		struct sk_buff *skb;
6097 
6098 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6099 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6100 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6101 			rcu_read_lock();
6102 			__netif_receive_skb(skb);
6103 			rcu_read_unlock();
6104 			if (++work >= quota) {
6105 				rps_input_queue_head_add(sd, work);
6106 				return work;
6107 			}
6108 
6109 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6110 		}
6111 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6112 
6113 		backlog_lock_irq_disable(sd);
6114 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6115 			/*
6116 			 * Inline a custom version of __napi_complete().
6117 			 * only current cpu owns and manipulates this napi,
6118 			 * and NAPI_STATE_SCHED is the only possible flag set
6119 			 * on backlog.
6120 			 * We can use a plain write instead of clear_bit(),
6121 			 * and we dont need an smp_mb() memory barrier.
6122 			 */
6123 			napi->state &= NAPIF_STATE_THREADED;
6124 			again = false;
6125 		} else {
6126 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6127 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6128 						   &sd->process_queue);
6129 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6130 		}
6131 		backlog_unlock_irq_enable(sd);
6132 	}
6133 
6134 	if (work)
6135 		rps_input_queue_head_add(sd, work);
6136 	return work;
6137 }
6138 
6139 /**
6140  * __napi_schedule - schedule for receive
6141  * @n: entry to schedule
6142  *
6143  * The entry's receive function will be scheduled to run.
6144  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6145  */
6146 void __napi_schedule(struct napi_struct *n)
6147 {
6148 	unsigned long flags;
6149 
6150 	local_irq_save(flags);
6151 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6152 	local_irq_restore(flags);
6153 }
6154 EXPORT_SYMBOL(__napi_schedule);
6155 
6156 /**
6157  *	napi_schedule_prep - check if napi can be scheduled
6158  *	@n: napi context
6159  *
6160  * Test if NAPI routine is already running, and if not mark
6161  * it as running.  This is used as a condition variable to
6162  * insure only one NAPI poll instance runs.  We also make
6163  * sure there is no pending NAPI disable.
6164  */
6165 bool napi_schedule_prep(struct napi_struct *n)
6166 {
6167 	unsigned long new, val = READ_ONCE(n->state);
6168 
6169 	do {
6170 		if (unlikely(val & NAPIF_STATE_DISABLE))
6171 			return false;
6172 		new = val | NAPIF_STATE_SCHED;
6173 
6174 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6175 		 * This was suggested by Alexander Duyck, as compiler
6176 		 * emits better code than :
6177 		 * if (val & NAPIF_STATE_SCHED)
6178 		 *     new |= NAPIF_STATE_MISSED;
6179 		 */
6180 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6181 						   NAPIF_STATE_MISSED;
6182 	} while (!try_cmpxchg(&n->state, &val, new));
6183 
6184 	return !(val & NAPIF_STATE_SCHED);
6185 }
6186 EXPORT_SYMBOL(napi_schedule_prep);
6187 
6188 /**
6189  * __napi_schedule_irqoff - schedule for receive
6190  * @n: entry to schedule
6191  *
6192  * Variant of __napi_schedule() assuming hard irqs are masked.
6193  *
6194  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6195  * because the interrupt disabled assumption might not be true
6196  * due to force-threaded interrupts and spinlock substitution.
6197  */
6198 void __napi_schedule_irqoff(struct napi_struct *n)
6199 {
6200 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6201 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6202 	else
6203 		__napi_schedule(n);
6204 }
6205 EXPORT_SYMBOL(__napi_schedule_irqoff);
6206 
6207 bool napi_complete_done(struct napi_struct *n, int work_done)
6208 {
6209 	unsigned long flags, val, new, timeout = 0;
6210 	bool ret = true;
6211 
6212 	/*
6213 	 * 1) Don't let napi dequeue from the cpu poll list
6214 	 *    just in case its running on a different cpu.
6215 	 * 2) If we are busy polling, do nothing here, we have
6216 	 *    the guarantee we will be called later.
6217 	 */
6218 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6219 				 NAPIF_STATE_IN_BUSY_POLL)))
6220 		return false;
6221 
6222 	if (work_done) {
6223 		if (n->gro_bitmask)
6224 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6225 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6226 	}
6227 	if (n->defer_hard_irqs_count > 0) {
6228 		n->defer_hard_irqs_count--;
6229 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6230 		if (timeout)
6231 			ret = false;
6232 	}
6233 	if (n->gro_bitmask) {
6234 		/* When the NAPI instance uses a timeout and keeps postponing
6235 		 * it, we need to bound somehow the time packets are kept in
6236 		 * the GRO layer
6237 		 */
6238 		napi_gro_flush(n, !!timeout);
6239 	}
6240 
6241 	gro_normal_list(n);
6242 
6243 	if (unlikely(!list_empty(&n->poll_list))) {
6244 		/* If n->poll_list is not empty, we need to mask irqs */
6245 		local_irq_save(flags);
6246 		list_del_init(&n->poll_list);
6247 		local_irq_restore(flags);
6248 	}
6249 	WRITE_ONCE(n->list_owner, -1);
6250 
6251 	val = READ_ONCE(n->state);
6252 	do {
6253 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6254 
6255 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6256 			      NAPIF_STATE_SCHED_THREADED |
6257 			      NAPIF_STATE_PREFER_BUSY_POLL);
6258 
6259 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6260 		 * because we will call napi->poll() one more time.
6261 		 * This C code was suggested by Alexander Duyck to help gcc.
6262 		 */
6263 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6264 						    NAPIF_STATE_SCHED;
6265 	} while (!try_cmpxchg(&n->state, &val, new));
6266 
6267 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6268 		__napi_schedule(n);
6269 		return false;
6270 	}
6271 
6272 	if (timeout)
6273 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6274 			      HRTIMER_MODE_REL_PINNED);
6275 	return ret;
6276 }
6277 EXPORT_SYMBOL(napi_complete_done);
6278 
6279 /* must be called under rcu_read_lock(), as we dont take a reference */
6280 struct napi_struct *napi_by_id(unsigned int napi_id)
6281 {
6282 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6283 	struct napi_struct *napi;
6284 
6285 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6286 		if (napi->napi_id == napi_id)
6287 			return napi;
6288 
6289 	return NULL;
6290 }
6291 
6292 static void skb_defer_free_flush(struct softnet_data *sd)
6293 {
6294 	struct sk_buff *skb, *next;
6295 
6296 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6297 	if (!READ_ONCE(sd->defer_list))
6298 		return;
6299 
6300 	spin_lock(&sd->defer_lock);
6301 	skb = sd->defer_list;
6302 	sd->defer_list = NULL;
6303 	sd->defer_count = 0;
6304 	spin_unlock(&sd->defer_lock);
6305 
6306 	while (skb != NULL) {
6307 		next = skb->next;
6308 		napi_consume_skb(skb, 1);
6309 		skb = next;
6310 	}
6311 }
6312 
6313 #if defined(CONFIG_NET_RX_BUSY_POLL)
6314 
6315 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6316 {
6317 	if (!skip_schedule) {
6318 		gro_normal_list(napi);
6319 		__napi_schedule(napi);
6320 		return;
6321 	}
6322 
6323 	if (napi->gro_bitmask) {
6324 		/* flush too old packets
6325 		 * If HZ < 1000, flush all packets.
6326 		 */
6327 		napi_gro_flush(napi, HZ >= 1000);
6328 	}
6329 
6330 	gro_normal_list(napi);
6331 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6332 }
6333 
6334 enum {
6335 	NAPI_F_PREFER_BUSY_POLL	= 1,
6336 	NAPI_F_END_ON_RESCHED	= 2,
6337 };
6338 
6339 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6340 			   unsigned flags, u16 budget)
6341 {
6342 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6343 	bool skip_schedule = false;
6344 	unsigned long timeout;
6345 	int rc;
6346 
6347 	/* Busy polling means there is a high chance device driver hard irq
6348 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6349 	 * set in napi_schedule_prep().
6350 	 * Since we are about to call napi->poll() once more, we can safely
6351 	 * clear NAPI_STATE_MISSED.
6352 	 *
6353 	 * Note: x86 could use a single "lock and ..." instruction
6354 	 * to perform these two clear_bit()
6355 	 */
6356 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6357 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6358 
6359 	local_bh_disable();
6360 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6361 
6362 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6363 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6364 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6365 		if (napi->defer_hard_irqs_count && timeout) {
6366 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6367 			skip_schedule = true;
6368 		}
6369 	}
6370 
6371 	/* All we really want here is to re-enable device interrupts.
6372 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6373 	 */
6374 	rc = napi->poll(napi, budget);
6375 	/* We can't gro_normal_list() here, because napi->poll() might have
6376 	 * rearmed the napi (napi_complete_done()) in which case it could
6377 	 * already be running on another CPU.
6378 	 */
6379 	trace_napi_poll(napi, rc, budget);
6380 	netpoll_poll_unlock(have_poll_lock);
6381 	if (rc == budget)
6382 		__busy_poll_stop(napi, skip_schedule);
6383 	bpf_net_ctx_clear(bpf_net_ctx);
6384 	local_bh_enable();
6385 }
6386 
6387 static void __napi_busy_loop(unsigned int napi_id,
6388 		      bool (*loop_end)(void *, unsigned long),
6389 		      void *loop_end_arg, unsigned flags, u16 budget)
6390 {
6391 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6392 	int (*napi_poll)(struct napi_struct *napi, int budget);
6393 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6394 	void *have_poll_lock = NULL;
6395 	struct napi_struct *napi;
6396 
6397 	WARN_ON_ONCE(!rcu_read_lock_held());
6398 
6399 restart:
6400 	napi_poll = NULL;
6401 
6402 	napi = napi_by_id(napi_id);
6403 	if (!napi)
6404 		return;
6405 
6406 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6407 		preempt_disable();
6408 	for (;;) {
6409 		int work = 0;
6410 
6411 		local_bh_disable();
6412 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6413 		if (!napi_poll) {
6414 			unsigned long val = READ_ONCE(napi->state);
6415 
6416 			/* If multiple threads are competing for this napi,
6417 			 * we avoid dirtying napi->state as much as we can.
6418 			 */
6419 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6420 				   NAPIF_STATE_IN_BUSY_POLL)) {
6421 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6422 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6423 				goto count;
6424 			}
6425 			if (cmpxchg(&napi->state, val,
6426 				    val | NAPIF_STATE_IN_BUSY_POLL |
6427 					  NAPIF_STATE_SCHED) != val) {
6428 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6429 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6430 				goto count;
6431 			}
6432 			have_poll_lock = netpoll_poll_lock(napi);
6433 			napi_poll = napi->poll;
6434 		}
6435 		work = napi_poll(napi, budget);
6436 		trace_napi_poll(napi, work, budget);
6437 		gro_normal_list(napi);
6438 count:
6439 		if (work > 0)
6440 			__NET_ADD_STATS(dev_net(napi->dev),
6441 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6442 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6443 		bpf_net_ctx_clear(bpf_net_ctx);
6444 		local_bh_enable();
6445 
6446 		if (!loop_end || loop_end(loop_end_arg, start_time))
6447 			break;
6448 
6449 		if (unlikely(need_resched())) {
6450 			if (flags & NAPI_F_END_ON_RESCHED)
6451 				break;
6452 			if (napi_poll)
6453 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6454 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6455 				preempt_enable();
6456 			rcu_read_unlock();
6457 			cond_resched();
6458 			rcu_read_lock();
6459 			if (loop_end(loop_end_arg, start_time))
6460 				return;
6461 			goto restart;
6462 		}
6463 		cpu_relax();
6464 	}
6465 	if (napi_poll)
6466 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6467 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6468 		preempt_enable();
6469 }
6470 
6471 void napi_busy_loop_rcu(unsigned int napi_id,
6472 			bool (*loop_end)(void *, unsigned long),
6473 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6474 {
6475 	unsigned flags = NAPI_F_END_ON_RESCHED;
6476 
6477 	if (prefer_busy_poll)
6478 		flags |= NAPI_F_PREFER_BUSY_POLL;
6479 
6480 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6481 }
6482 
6483 void napi_busy_loop(unsigned int napi_id,
6484 		    bool (*loop_end)(void *, unsigned long),
6485 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6486 {
6487 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6488 
6489 	rcu_read_lock();
6490 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6491 	rcu_read_unlock();
6492 }
6493 EXPORT_SYMBOL(napi_busy_loop);
6494 
6495 #endif /* CONFIG_NET_RX_BUSY_POLL */
6496 
6497 static void napi_hash_add(struct napi_struct *napi)
6498 {
6499 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6500 		return;
6501 
6502 	spin_lock(&napi_hash_lock);
6503 
6504 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6505 	do {
6506 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6507 			napi_gen_id = MIN_NAPI_ID;
6508 	} while (napi_by_id(napi_gen_id));
6509 	napi->napi_id = napi_gen_id;
6510 
6511 	hlist_add_head_rcu(&napi->napi_hash_node,
6512 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6513 
6514 	spin_unlock(&napi_hash_lock);
6515 }
6516 
6517 /* Warning : caller is responsible to make sure rcu grace period
6518  * is respected before freeing memory containing @napi
6519  */
6520 static void napi_hash_del(struct napi_struct *napi)
6521 {
6522 	spin_lock(&napi_hash_lock);
6523 
6524 	hlist_del_init_rcu(&napi->napi_hash_node);
6525 
6526 	spin_unlock(&napi_hash_lock);
6527 }
6528 
6529 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6530 {
6531 	struct napi_struct *napi;
6532 
6533 	napi = container_of(timer, struct napi_struct, timer);
6534 
6535 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6536 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6537 	 */
6538 	if (!napi_disable_pending(napi) &&
6539 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6540 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6541 		__napi_schedule_irqoff(napi);
6542 	}
6543 
6544 	return HRTIMER_NORESTART;
6545 }
6546 
6547 static void init_gro_hash(struct napi_struct *napi)
6548 {
6549 	int i;
6550 
6551 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6552 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6553 		napi->gro_hash[i].count = 0;
6554 	}
6555 	napi->gro_bitmask = 0;
6556 }
6557 
6558 int dev_set_threaded(struct net_device *dev, bool threaded)
6559 {
6560 	struct napi_struct *napi;
6561 	int err = 0;
6562 
6563 	if (dev->threaded == threaded)
6564 		return 0;
6565 
6566 	if (threaded) {
6567 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6568 			if (!napi->thread) {
6569 				err = napi_kthread_create(napi);
6570 				if (err) {
6571 					threaded = false;
6572 					break;
6573 				}
6574 			}
6575 		}
6576 	}
6577 
6578 	WRITE_ONCE(dev->threaded, threaded);
6579 
6580 	/* Make sure kthread is created before THREADED bit
6581 	 * is set.
6582 	 */
6583 	smp_mb__before_atomic();
6584 
6585 	/* Setting/unsetting threaded mode on a napi might not immediately
6586 	 * take effect, if the current napi instance is actively being
6587 	 * polled. In this case, the switch between threaded mode and
6588 	 * softirq mode will happen in the next round of napi_schedule().
6589 	 * This should not cause hiccups/stalls to the live traffic.
6590 	 */
6591 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6592 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6593 
6594 	return err;
6595 }
6596 EXPORT_SYMBOL(dev_set_threaded);
6597 
6598 /**
6599  * netif_queue_set_napi - Associate queue with the napi
6600  * @dev: device to which NAPI and queue belong
6601  * @queue_index: Index of queue
6602  * @type: queue type as RX or TX
6603  * @napi: NAPI context, pass NULL to clear previously set NAPI
6604  *
6605  * Set queue with its corresponding napi context. This should be done after
6606  * registering the NAPI handler for the queue-vector and the queues have been
6607  * mapped to the corresponding interrupt vector.
6608  */
6609 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6610 			  enum netdev_queue_type type, struct napi_struct *napi)
6611 {
6612 	struct netdev_rx_queue *rxq;
6613 	struct netdev_queue *txq;
6614 
6615 	if (WARN_ON_ONCE(napi && !napi->dev))
6616 		return;
6617 	if (dev->reg_state >= NETREG_REGISTERED)
6618 		ASSERT_RTNL();
6619 
6620 	switch (type) {
6621 	case NETDEV_QUEUE_TYPE_RX:
6622 		rxq = __netif_get_rx_queue(dev, queue_index);
6623 		rxq->napi = napi;
6624 		return;
6625 	case NETDEV_QUEUE_TYPE_TX:
6626 		txq = netdev_get_tx_queue(dev, queue_index);
6627 		txq->napi = napi;
6628 		return;
6629 	default:
6630 		return;
6631 	}
6632 }
6633 EXPORT_SYMBOL(netif_queue_set_napi);
6634 
6635 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6636 			   int (*poll)(struct napi_struct *, int), int weight)
6637 {
6638 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6639 		return;
6640 
6641 	INIT_LIST_HEAD(&napi->poll_list);
6642 	INIT_HLIST_NODE(&napi->napi_hash_node);
6643 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6644 	napi->timer.function = napi_watchdog;
6645 	init_gro_hash(napi);
6646 	napi->skb = NULL;
6647 	INIT_LIST_HEAD(&napi->rx_list);
6648 	napi->rx_count = 0;
6649 	napi->poll = poll;
6650 	if (weight > NAPI_POLL_WEIGHT)
6651 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6652 				weight);
6653 	napi->weight = weight;
6654 	napi->dev = dev;
6655 #ifdef CONFIG_NETPOLL
6656 	napi->poll_owner = -1;
6657 #endif
6658 	napi->list_owner = -1;
6659 	set_bit(NAPI_STATE_SCHED, &napi->state);
6660 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6661 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6662 	napi_hash_add(napi);
6663 	napi_get_frags_check(napi);
6664 	/* Create kthread for this napi if dev->threaded is set.
6665 	 * Clear dev->threaded if kthread creation failed so that
6666 	 * threaded mode will not be enabled in napi_enable().
6667 	 */
6668 	if (dev->threaded && napi_kthread_create(napi))
6669 		dev->threaded = false;
6670 	netif_napi_set_irq(napi, -1);
6671 }
6672 EXPORT_SYMBOL(netif_napi_add_weight);
6673 
6674 void napi_disable(struct napi_struct *n)
6675 {
6676 	unsigned long val, new;
6677 
6678 	might_sleep();
6679 	set_bit(NAPI_STATE_DISABLE, &n->state);
6680 
6681 	val = READ_ONCE(n->state);
6682 	do {
6683 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6684 			usleep_range(20, 200);
6685 			val = READ_ONCE(n->state);
6686 		}
6687 
6688 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6689 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6690 	} while (!try_cmpxchg(&n->state, &val, new));
6691 
6692 	hrtimer_cancel(&n->timer);
6693 
6694 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6695 }
6696 EXPORT_SYMBOL(napi_disable);
6697 
6698 /**
6699  *	napi_enable - enable NAPI scheduling
6700  *	@n: NAPI context
6701  *
6702  * Resume NAPI from being scheduled on this context.
6703  * Must be paired with napi_disable.
6704  */
6705 void napi_enable(struct napi_struct *n)
6706 {
6707 	unsigned long new, val = READ_ONCE(n->state);
6708 
6709 	do {
6710 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6711 
6712 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6713 		if (n->dev->threaded && n->thread)
6714 			new |= NAPIF_STATE_THREADED;
6715 	} while (!try_cmpxchg(&n->state, &val, new));
6716 }
6717 EXPORT_SYMBOL(napi_enable);
6718 
6719 static void flush_gro_hash(struct napi_struct *napi)
6720 {
6721 	int i;
6722 
6723 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6724 		struct sk_buff *skb, *n;
6725 
6726 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6727 			kfree_skb(skb);
6728 		napi->gro_hash[i].count = 0;
6729 	}
6730 }
6731 
6732 /* Must be called in process context */
6733 void __netif_napi_del(struct napi_struct *napi)
6734 {
6735 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6736 		return;
6737 
6738 	napi_hash_del(napi);
6739 	list_del_rcu(&napi->dev_list);
6740 	napi_free_frags(napi);
6741 
6742 	flush_gro_hash(napi);
6743 	napi->gro_bitmask = 0;
6744 
6745 	if (napi->thread) {
6746 		kthread_stop(napi->thread);
6747 		napi->thread = NULL;
6748 	}
6749 }
6750 EXPORT_SYMBOL(__netif_napi_del);
6751 
6752 static int __napi_poll(struct napi_struct *n, bool *repoll)
6753 {
6754 	int work, weight;
6755 
6756 	weight = n->weight;
6757 
6758 	/* This NAPI_STATE_SCHED test is for avoiding a race
6759 	 * with netpoll's poll_napi().  Only the entity which
6760 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6761 	 * actually make the ->poll() call.  Therefore we avoid
6762 	 * accidentally calling ->poll() when NAPI is not scheduled.
6763 	 */
6764 	work = 0;
6765 	if (napi_is_scheduled(n)) {
6766 		work = n->poll(n, weight);
6767 		trace_napi_poll(n, work, weight);
6768 
6769 		xdp_do_check_flushed(n);
6770 	}
6771 
6772 	if (unlikely(work > weight))
6773 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6774 				n->poll, work, weight);
6775 
6776 	if (likely(work < weight))
6777 		return work;
6778 
6779 	/* Drivers must not modify the NAPI state if they
6780 	 * consume the entire weight.  In such cases this code
6781 	 * still "owns" the NAPI instance and therefore can
6782 	 * move the instance around on the list at-will.
6783 	 */
6784 	if (unlikely(napi_disable_pending(n))) {
6785 		napi_complete(n);
6786 		return work;
6787 	}
6788 
6789 	/* The NAPI context has more processing work, but busy-polling
6790 	 * is preferred. Exit early.
6791 	 */
6792 	if (napi_prefer_busy_poll(n)) {
6793 		if (napi_complete_done(n, work)) {
6794 			/* If timeout is not set, we need to make sure
6795 			 * that the NAPI is re-scheduled.
6796 			 */
6797 			napi_schedule(n);
6798 		}
6799 		return work;
6800 	}
6801 
6802 	if (n->gro_bitmask) {
6803 		/* flush too old packets
6804 		 * If HZ < 1000, flush all packets.
6805 		 */
6806 		napi_gro_flush(n, HZ >= 1000);
6807 	}
6808 
6809 	gro_normal_list(n);
6810 
6811 	/* Some drivers may have called napi_schedule
6812 	 * prior to exhausting their budget.
6813 	 */
6814 	if (unlikely(!list_empty(&n->poll_list))) {
6815 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6816 			     n->dev ? n->dev->name : "backlog");
6817 		return work;
6818 	}
6819 
6820 	*repoll = true;
6821 
6822 	return work;
6823 }
6824 
6825 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6826 {
6827 	bool do_repoll = false;
6828 	void *have;
6829 	int work;
6830 
6831 	list_del_init(&n->poll_list);
6832 
6833 	have = netpoll_poll_lock(n);
6834 
6835 	work = __napi_poll(n, &do_repoll);
6836 
6837 	if (do_repoll)
6838 		list_add_tail(&n->poll_list, repoll);
6839 
6840 	netpoll_poll_unlock(have);
6841 
6842 	return work;
6843 }
6844 
6845 static int napi_thread_wait(struct napi_struct *napi)
6846 {
6847 	set_current_state(TASK_INTERRUPTIBLE);
6848 
6849 	while (!kthread_should_stop()) {
6850 		/* Testing SCHED_THREADED bit here to make sure the current
6851 		 * kthread owns this napi and could poll on this napi.
6852 		 * Testing SCHED bit is not enough because SCHED bit might be
6853 		 * set by some other busy poll thread or by napi_disable().
6854 		 */
6855 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
6856 			WARN_ON(!list_empty(&napi->poll_list));
6857 			__set_current_state(TASK_RUNNING);
6858 			return 0;
6859 		}
6860 
6861 		schedule();
6862 		set_current_state(TASK_INTERRUPTIBLE);
6863 	}
6864 	__set_current_state(TASK_RUNNING);
6865 
6866 	return -1;
6867 }
6868 
6869 static void napi_threaded_poll_loop(struct napi_struct *napi)
6870 {
6871 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6872 	struct softnet_data *sd;
6873 	unsigned long last_qs = jiffies;
6874 
6875 	for (;;) {
6876 		bool repoll = false;
6877 		void *have;
6878 
6879 		local_bh_disable();
6880 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6881 
6882 		sd = this_cpu_ptr(&softnet_data);
6883 		sd->in_napi_threaded_poll = true;
6884 
6885 		have = netpoll_poll_lock(napi);
6886 		__napi_poll(napi, &repoll);
6887 		netpoll_poll_unlock(have);
6888 
6889 		sd->in_napi_threaded_poll = false;
6890 		barrier();
6891 
6892 		if (sd_has_rps_ipi_waiting(sd)) {
6893 			local_irq_disable();
6894 			net_rps_action_and_irq_enable(sd);
6895 		}
6896 		skb_defer_free_flush(sd);
6897 		bpf_net_ctx_clear(bpf_net_ctx);
6898 		local_bh_enable();
6899 
6900 		if (!repoll)
6901 			break;
6902 
6903 		rcu_softirq_qs_periodic(last_qs);
6904 		cond_resched();
6905 	}
6906 }
6907 
6908 static int napi_threaded_poll(void *data)
6909 {
6910 	struct napi_struct *napi = data;
6911 
6912 	while (!napi_thread_wait(napi))
6913 		napi_threaded_poll_loop(napi);
6914 
6915 	return 0;
6916 }
6917 
6918 static __latent_entropy void net_rx_action(struct softirq_action *h)
6919 {
6920 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6921 	unsigned long time_limit = jiffies +
6922 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
6923 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6924 	int budget = READ_ONCE(net_hotdata.netdev_budget);
6925 	LIST_HEAD(list);
6926 	LIST_HEAD(repoll);
6927 
6928 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6929 start:
6930 	sd->in_net_rx_action = true;
6931 	local_irq_disable();
6932 	list_splice_init(&sd->poll_list, &list);
6933 	local_irq_enable();
6934 
6935 	for (;;) {
6936 		struct napi_struct *n;
6937 
6938 		skb_defer_free_flush(sd);
6939 
6940 		if (list_empty(&list)) {
6941 			if (list_empty(&repoll)) {
6942 				sd->in_net_rx_action = false;
6943 				barrier();
6944 				/* We need to check if ____napi_schedule()
6945 				 * had refilled poll_list while
6946 				 * sd->in_net_rx_action was true.
6947 				 */
6948 				if (!list_empty(&sd->poll_list))
6949 					goto start;
6950 				if (!sd_has_rps_ipi_waiting(sd))
6951 					goto end;
6952 			}
6953 			break;
6954 		}
6955 
6956 		n = list_first_entry(&list, struct napi_struct, poll_list);
6957 		budget -= napi_poll(n, &repoll);
6958 
6959 		/* If softirq window is exhausted then punt.
6960 		 * Allow this to run for 2 jiffies since which will allow
6961 		 * an average latency of 1.5/HZ.
6962 		 */
6963 		if (unlikely(budget <= 0 ||
6964 			     time_after_eq(jiffies, time_limit))) {
6965 			sd->time_squeeze++;
6966 			break;
6967 		}
6968 	}
6969 
6970 	local_irq_disable();
6971 
6972 	list_splice_tail_init(&sd->poll_list, &list);
6973 	list_splice_tail(&repoll, &list);
6974 	list_splice(&list, &sd->poll_list);
6975 	if (!list_empty(&sd->poll_list))
6976 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6977 	else
6978 		sd->in_net_rx_action = false;
6979 
6980 	net_rps_action_and_irq_enable(sd);
6981 end:
6982 	bpf_net_ctx_clear(bpf_net_ctx);
6983 }
6984 
6985 struct netdev_adjacent {
6986 	struct net_device *dev;
6987 	netdevice_tracker dev_tracker;
6988 
6989 	/* upper master flag, there can only be one master device per list */
6990 	bool master;
6991 
6992 	/* lookup ignore flag */
6993 	bool ignore;
6994 
6995 	/* counter for the number of times this device was added to us */
6996 	u16 ref_nr;
6997 
6998 	/* private field for the users */
6999 	void *private;
7000 
7001 	struct list_head list;
7002 	struct rcu_head rcu;
7003 };
7004 
7005 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7006 						 struct list_head *adj_list)
7007 {
7008 	struct netdev_adjacent *adj;
7009 
7010 	list_for_each_entry(adj, adj_list, list) {
7011 		if (adj->dev == adj_dev)
7012 			return adj;
7013 	}
7014 	return NULL;
7015 }
7016 
7017 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7018 				    struct netdev_nested_priv *priv)
7019 {
7020 	struct net_device *dev = (struct net_device *)priv->data;
7021 
7022 	return upper_dev == dev;
7023 }
7024 
7025 /**
7026  * netdev_has_upper_dev - Check if device is linked to an upper device
7027  * @dev: device
7028  * @upper_dev: upper device to check
7029  *
7030  * Find out if a device is linked to specified upper device and return true
7031  * in case it is. Note that this checks only immediate upper device,
7032  * not through a complete stack of devices. The caller must hold the RTNL lock.
7033  */
7034 bool netdev_has_upper_dev(struct net_device *dev,
7035 			  struct net_device *upper_dev)
7036 {
7037 	struct netdev_nested_priv priv = {
7038 		.data = (void *)upper_dev,
7039 	};
7040 
7041 	ASSERT_RTNL();
7042 
7043 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7044 					     &priv);
7045 }
7046 EXPORT_SYMBOL(netdev_has_upper_dev);
7047 
7048 /**
7049  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7050  * @dev: device
7051  * @upper_dev: upper device to check
7052  *
7053  * Find out if a device is linked to specified upper device and return true
7054  * in case it is. Note that this checks the entire upper device chain.
7055  * The caller must hold rcu lock.
7056  */
7057 
7058 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7059 				  struct net_device *upper_dev)
7060 {
7061 	struct netdev_nested_priv priv = {
7062 		.data = (void *)upper_dev,
7063 	};
7064 
7065 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7066 					       &priv);
7067 }
7068 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7069 
7070 /**
7071  * netdev_has_any_upper_dev - Check if device is linked to some device
7072  * @dev: device
7073  *
7074  * Find out if a device is linked to an upper device and return true in case
7075  * it is. The caller must hold the RTNL lock.
7076  */
7077 bool netdev_has_any_upper_dev(struct net_device *dev)
7078 {
7079 	ASSERT_RTNL();
7080 
7081 	return !list_empty(&dev->adj_list.upper);
7082 }
7083 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7084 
7085 /**
7086  * netdev_master_upper_dev_get - Get master upper device
7087  * @dev: device
7088  *
7089  * Find a master upper device and return pointer to it or NULL in case
7090  * it's not there. The caller must hold the RTNL lock.
7091  */
7092 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7093 {
7094 	struct netdev_adjacent *upper;
7095 
7096 	ASSERT_RTNL();
7097 
7098 	if (list_empty(&dev->adj_list.upper))
7099 		return NULL;
7100 
7101 	upper = list_first_entry(&dev->adj_list.upper,
7102 				 struct netdev_adjacent, list);
7103 	if (likely(upper->master))
7104 		return upper->dev;
7105 	return NULL;
7106 }
7107 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7108 
7109 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7110 {
7111 	struct netdev_adjacent *upper;
7112 
7113 	ASSERT_RTNL();
7114 
7115 	if (list_empty(&dev->adj_list.upper))
7116 		return NULL;
7117 
7118 	upper = list_first_entry(&dev->adj_list.upper,
7119 				 struct netdev_adjacent, list);
7120 	if (likely(upper->master) && !upper->ignore)
7121 		return upper->dev;
7122 	return NULL;
7123 }
7124 
7125 /**
7126  * netdev_has_any_lower_dev - Check if device is linked to some device
7127  * @dev: device
7128  *
7129  * Find out if a device is linked to a lower device and return true in case
7130  * it is. The caller must hold the RTNL lock.
7131  */
7132 static bool netdev_has_any_lower_dev(struct net_device *dev)
7133 {
7134 	ASSERT_RTNL();
7135 
7136 	return !list_empty(&dev->adj_list.lower);
7137 }
7138 
7139 void *netdev_adjacent_get_private(struct list_head *adj_list)
7140 {
7141 	struct netdev_adjacent *adj;
7142 
7143 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7144 
7145 	return adj->private;
7146 }
7147 EXPORT_SYMBOL(netdev_adjacent_get_private);
7148 
7149 /**
7150  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7151  * @dev: device
7152  * @iter: list_head ** of the current position
7153  *
7154  * Gets the next device from the dev's upper list, starting from iter
7155  * position. The caller must hold RCU read lock.
7156  */
7157 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7158 						 struct list_head **iter)
7159 {
7160 	struct netdev_adjacent *upper;
7161 
7162 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7163 
7164 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7165 
7166 	if (&upper->list == &dev->adj_list.upper)
7167 		return NULL;
7168 
7169 	*iter = &upper->list;
7170 
7171 	return upper->dev;
7172 }
7173 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7174 
7175 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7176 						  struct list_head **iter,
7177 						  bool *ignore)
7178 {
7179 	struct netdev_adjacent *upper;
7180 
7181 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7182 
7183 	if (&upper->list == &dev->adj_list.upper)
7184 		return NULL;
7185 
7186 	*iter = &upper->list;
7187 	*ignore = upper->ignore;
7188 
7189 	return upper->dev;
7190 }
7191 
7192 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7193 						    struct list_head **iter)
7194 {
7195 	struct netdev_adjacent *upper;
7196 
7197 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7198 
7199 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7200 
7201 	if (&upper->list == &dev->adj_list.upper)
7202 		return NULL;
7203 
7204 	*iter = &upper->list;
7205 
7206 	return upper->dev;
7207 }
7208 
7209 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7210 				       int (*fn)(struct net_device *dev,
7211 					 struct netdev_nested_priv *priv),
7212 				       struct netdev_nested_priv *priv)
7213 {
7214 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7215 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7216 	int ret, cur = 0;
7217 	bool ignore;
7218 
7219 	now = dev;
7220 	iter = &dev->adj_list.upper;
7221 
7222 	while (1) {
7223 		if (now != dev) {
7224 			ret = fn(now, priv);
7225 			if (ret)
7226 				return ret;
7227 		}
7228 
7229 		next = NULL;
7230 		while (1) {
7231 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7232 			if (!udev)
7233 				break;
7234 			if (ignore)
7235 				continue;
7236 
7237 			next = udev;
7238 			niter = &udev->adj_list.upper;
7239 			dev_stack[cur] = now;
7240 			iter_stack[cur++] = iter;
7241 			break;
7242 		}
7243 
7244 		if (!next) {
7245 			if (!cur)
7246 				return 0;
7247 			next = dev_stack[--cur];
7248 			niter = iter_stack[cur];
7249 		}
7250 
7251 		now = next;
7252 		iter = niter;
7253 	}
7254 
7255 	return 0;
7256 }
7257 
7258 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7259 				  int (*fn)(struct net_device *dev,
7260 					    struct netdev_nested_priv *priv),
7261 				  struct netdev_nested_priv *priv)
7262 {
7263 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7264 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7265 	int ret, cur = 0;
7266 
7267 	now = dev;
7268 	iter = &dev->adj_list.upper;
7269 
7270 	while (1) {
7271 		if (now != dev) {
7272 			ret = fn(now, priv);
7273 			if (ret)
7274 				return ret;
7275 		}
7276 
7277 		next = NULL;
7278 		while (1) {
7279 			udev = netdev_next_upper_dev_rcu(now, &iter);
7280 			if (!udev)
7281 				break;
7282 
7283 			next = udev;
7284 			niter = &udev->adj_list.upper;
7285 			dev_stack[cur] = now;
7286 			iter_stack[cur++] = iter;
7287 			break;
7288 		}
7289 
7290 		if (!next) {
7291 			if (!cur)
7292 				return 0;
7293 			next = dev_stack[--cur];
7294 			niter = iter_stack[cur];
7295 		}
7296 
7297 		now = next;
7298 		iter = niter;
7299 	}
7300 
7301 	return 0;
7302 }
7303 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7304 
7305 static bool __netdev_has_upper_dev(struct net_device *dev,
7306 				   struct net_device *upper_dev)
7307 {
7308 	struct netdev_nested_priv priv = {
7309 		.flags = 0,
7310 		.data = (void *)upper_dev,
7311 	};
7312 
7313 	ASSERT_RTNL();
7314 
7315 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7316 					   &priv);
7317 }
7318 
7319 /**
7320  * netdev_lower_get_next_private - Get the next ->private from the
7321  *				   lower neighbour list
7322  * @dev: device
7323  * @iter: list_head ** of the current position
7324  *
7325  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7326  * list, starting from iter position. The caller must hold either hold the
7327  * RTNL lock or its own locking that guarantees that the neighbour lower
7328  * list will remain unchanged.
7329  */
7330 void *netdev_lower_get_next_private(struct net_device *dev,
7331 				    struct list_head **iter)
7332 {
7333 	struct netdev_adjacent *lower;
7334 
7335 	lower = list_entry(*iter, struct netdev_adjacent, list);
7336 
7337 	if (&lower->list == &dev->adj_list.lower)
7338 		return NULL;
7339 
7340 	*iter = lower->list.next;
7341 
7342 	return lower->private;
7343 }
7344 EXPORT_SYMBOL(netdev_lower_get_next_private);
7345 
7346 /**
7347  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7348  *				       lower neighbour list, RCU
7349  *				       variant
7350  * @dev: device
7351  * @iter: list_head ** of the current position
7352  *
7353  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7354  * list, starting from iter position. The caller must hold RCU read lock.
7355  */
7356 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7357 					struct list_head **iter)
7358 {
7359 	struct netdev_adjacent *lower;
7360 
7361 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7362 
7363 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7364 
7365 	if (&lower->list == &dev->adj_list.lower)
7366 		return NULL;
7367 
7368 	*iter = &lower->list;
7369 
7370 	return lower->private;
7371 }
7372 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7373 
7374 /**
7375  * netdev_lower_get_next - Get the next device from the lower neighbour
7376  *                         list
7377  * @dev: device
7378  * @iter: list_head ** of the current position
7379  *
7380  * Gets the next netdev_adjacent from the dev's lower neighbour
7381  * list, starting from iter position. The caller must hold RTNL lock or
7382  * its own locking that guarantees that the neighbour lower
7383  * list will remain unchanged.
7384  */
7385 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7386 {
7387 	struct netdev_adjacent *lower;
7388 
7389 	lower = list_entry(*iter, struct netdev_adjacent, list);
7390 
7391 	if (&lower->list == &dev->adj_list.lower)
7392 		return NULL;
7393 
7394 	*iter = lower->list.next;
7395 
7396 	return lower->dev;
7397 }
7398 EXPORT_SYMBOL(netdev_lower_get_next);
7399 
7400 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7401 						struct list_head **iter)
7402 {
7403 	struct netdev_adjacent *lower;
7404 
7405 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7406 
7407 	if (&lower->list == &dev->adj_list.lower)
7408 		return NULL;
7409 
7410 	*iter = &lower->list;
7411 
7412 	return lower->dev;
7413 }
7414 
7415 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7416 						  struct list_head **iter,
7417 						  bool *ignore)
7418 {
7419 	struct netdev_adjacent *lower;
7420 
7421 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7422 
7423 	if (&lower->list == &dev->adj_list.lower)
7424 		return NULL;
7425 
7426 	*iter = &lower->list;
7427 	*ignore = lower->ignore;
7428 
7429 	return lower->dev;
7430 }
7431 
7432 int netdev_walk_all_lower_dev(struct net_device *dev,
7433 			      int (*fn)(struct net_device *dev,
7434 					struct netdev_nested_priv *priv),
7435 			      struct netdev_nested_priv *priv)
7436 {
7437 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7438 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7439 	int ret, cur = 0;
7440 
7441 	now = dev;
7442 	iter = &dev->adj_list.lower;
7443 
7444 	while (1) {
7445 		if (now != dev) {
7446 			ret = fn(now, priv);
7447 			if (ret)
7448 				return ret;
7449 		}
7450 
7451 		next = NULL;
7452 		while (1) {
7453 			ldev = netdev_next_lower_dev(now, &iter);
7454 			if (!ldev)
7455 				break;
7456 
7457 			next = ldev;
7458 			niter = &ldev->adj_list.lower;
7459 			dev_stack[cur] = now;
7460 			iter_stack[cur++] = iter;
7461 			break;
7462 		}
7463 
7464 		if (!next) {
7465 			if (!cur)
7466 				return 0;
7467 			next = dev_stack[--cur];
7468 			niter = iter_stack[cur];
7469 		}
7470 
7471 		now = next;
7472 		iter = niter;
7473 	}
7474 
7475 	return 0;
7476 }
7477 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7478 
7479 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7480 				       int (*fn)(struct net_device *dev,
7481 					 struct netdev_nested_priv *priv),
7482 				       struct netdev_nested_priv *priv)
7483 {
7484 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7485 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7486 	int ret, cur = 0;
7487 	bool ignore;
7488 
7489 	now = dev;
7490 	iter = &dev->adj_list.lower;
7491 
7492 	while (1) {
7493 		if (now != dev) {
7494 			ret = fn(now, priv);
7495 			if (ret)
7496 				return ret;
7497 		}
7498 
7499 		next = NULL;
7500 		while (1) {
7501 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7502 			if (!ldev)
7503 				break;
7504 			if (ignore)
7505 				continue;
7506 
7507 			next = ldev;
7508 			niter = &ldev->adj_list.lower;
7509 			dev_stack[cur] = now;
7510 			iter_stack[cur++] = iter;
7511 			break;
7512 		}
7513 
7514 		if (!next) {
7515 			if (!cur)
7516 				return 0;
7517 			next = dev_stack[--cur];
7518 			niter = iter_stack[cur];
7519 		}
7520 
7521 		now = next;
7522 		iter = niter;
7523 	}
7524 
7525 	return 0;
7526 }
7527 
7528 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7529 					     struct list_head **iter)
7530 {
7531 	struct netdev_adjacent *lower;
7532 
7533 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7534 	if (&lower->list == &dev->adj_list.lower)
7535 		return NULL;
7536 
7537 	*iter = &lower->list;
7538 
7539 	return lower->dev;
7540 }
7541 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7542 
7543 static u8 __netdev_upper_depth(struct net_device *dev)
7544 {
7545 	struct net_device *udev;
7546 	struct list_head *iter;
7547 	u8 max_depth = 0;
7548 	bool ignore;
7549 
7550 	for (iter = &dev->adj_list.upper,
7551 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7552 	     udev;
7553 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7554 		if (ignore)
7555 			continue;
7556 		if (max_depth < udev->upper_level)
7557 			max_depth = udev->upper_level;
7558 	}
7559 
7560 	return max_depth;
7561 }
7562 
7563 static u8 __netdev_lower_depth(struct net_device *dev)
7564 {
7565 	struct net_device *ldev;
7566 	struct list_head *iter;
7567 	u8 max_depth = 0;
7568 	bool ignore;
7569 
7570 	for (iter = &dev->adj_list.lower,
7571 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7572 	     ldev;
7573 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7574 		if (ignore)
7575 			continue;
7576 		if (max_depth < ldev->lower_level)
7577 			max_depth = ldev->lower_level;
7578 	}
7579 
7580 	return max_depth;
7581 }
7582 
7583 static int __netdev_update_upper_level(struct net_device *dev,
7584 				       struct netdev_nested_priv *__unused)
7585 {
7586 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7587 	return 0;
7588 }
7589 
7590 #ifdef CONFIG_LOCKDEP
7591 static LIST_HEAD(net_unlink_list);
7592 
7593 static void net_unlink_todo(struct net_device *dev)
7594 {
7595 	if (list_empty(&dev->unlink_list))
7596 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7597 }
7598 #endif
7599 
7600 static int __netdev_update_lower_level(struct net_device *dev,
7601 				       struct netdev_nested_priv *priv)
7602 {
7603 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7604 
7605 #ifdef CONFIG_LOCKDEP
7606 	if (!priv)
7607 		return 0;
7608 
7609 	if (priv->flags & NESTED_SYNC_IMM)
7610 		dev->nested_level = dev->lower_level - 1;
7611 	if (priv->flags & NESTED_SYNC_TODO)
7612 		net_unlink_todo(dev);
7613 #endif
7614 	return 0;
7615 }
7616 
7617 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7618 				  int (*fn)(struct net_device *dev,
7619 					    struct netdev_nested_priv *priv),
7620 				  struct netdev_nested_priv *priv)
7621 {
7622 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7623 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7624 	int ret, cur = 0;
7625 
7626 	now = dev;
7627 	iter = &dev->adj_list.lower;
7628 
7629 	while (1) {
7630 		if (now != dev) {
7631 			ret = fn(now, priv);
7632 			if (ret)
7633 				return ret;
7634 		}
7635 
7636 		next = NULL;
7637 		while (1) {
7638 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7639 			if (!ldev)
7640 				break;
7641 
7642 			next = ldev;
7643 			niter = &ldev->adj_list.lower;
7644 			dev_stack[cur] = now;
7645 			iter_stack[cur++] = iter;
7646 			break;
7647 		}
7648 
7649 		if (!next) {
7650 			if (!cur)
7651 				return 0;
7652 			next = dev_stack[--cur];
7653 			niter = iter_stack[cur];
7654 		}
7655 
7656 		now = next;
7657 		iter = niter;
7658 	}
7659 
7660 	return 0;
7661 }
7662 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7663 
7664 /**
7665  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7666  *				       lower neighbour list, RCU
7667  *				       variant
7668  * @dev: device
7669  *
7670  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7671  * list. The caller must hold RCU read lock.
7672  */
7673 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7674 {
7675 	struct netdev_adjacent *lower;
7676 
7677 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7678 			struct netdev_adjacent, list);
7679 	if (lower)
7680 		return lower->private;
7681 	return NULL;
7682 }
7683 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7684 
7685 /**
7686  * netdev_master_upper_dev_get_rcu - Get master upper device
7687  * @dev: device
7688  *
7689  * Find a master upper device and return pointer to it or NULL in case
7690  * it's not there. The caller must hold the RCU read lock.
7691  */
7692 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7693 {
7694 	struct netdev_adjacent *upper;
7695 
7696 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7697 				       struct netdev_adjacent, list);
7698 	if (upper && likely(upper->master))
7699 		return upper->dev;
7700 	return NULL;
7701 }
7702 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7703 
7704 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7705 			      struct net_device *adj_dev,
7706 			      struct list_head *dev_list)
7707 {
7708 	char linkname[IFNAMSIZ+7];
7709 
7710 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7711 		"upper_%s" : "lower_%s", adj_dev->name);
7712 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7713 				 linkname);
7714 }
7715 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7716 			       char *name,
7717 			       struct list_head *dev_list)
7718 {
7719 	char linkname[IFNAMSIZ+7];
7720 
7721 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7722 		"upper_%s" : "lower_%s", name);
7723 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7724 }
7725 
7726 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7727 						 struct net_device *adj_dev,
7728 						 struct list_head *dev_list)
7729 {
7730 	return (dev_list == &dev->adj_list.upper ||
7731 		dev_list == &dev->adj_list.lower) &&
7732 		net_eq(dev_net(dev), dev_net(adj_dev));
7733 }
7734 
7735 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7736 					struct net_device *adj_dev,
7737 					struct list_head *dev_list,
7738 					void *private, bool master)
7739 {
7740 	struct netdev_adjacent *adj;
7741 	int ret;
7742 
7743 	adj = __netdev_find_adj(adj_dev, dev_list);
7744 
7745 	if (adj) {
7746 		adj->ref_nr += 1;
7747 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7748 			 dev->name, adj_dev->name, adj->ref_nr);
7749 
7750 		return 0;
7751 	}
7752 
7753 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7754 	if (!adj)
7755 		return -ENOMEM;
7756 
7757 	adj->dev = adj_dev;
7758 	adj->master = master;
7759 	adj->ref_nr = 1;
7760 	adj->private = private;
7761 	adj->ignore = false;
7762 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7763 
7764 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7765 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7766 
7767 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7768 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7769 		if (ret)
7770 			goto free_adj;
7771 	}
7772 
7773 	/* Ensure that master link is always the first item in list. */
7774 	if (master) {
7775 		ret = sysfs_create_link(&(dev->dev.kobj),
7776 					&(adj_dev->dev.kobj), "master");
7777 		if (ret)
7778 			goto remove_symlinks;
7779 
7780 		list_add_rcu(&adj->list, dev_list);
7781 	} else {
7782 		list_add_tail_rcu(&adj->list, dev_list);
7783 	}
7784 
7785 	return 0;
7786 
7787 remove_symlinks:
7788 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7789 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7790 free_adj:
7791 	netdev_put(adj_dev, &adj->dev_tracker);
7792 	kfree(adj);
7793 
7794 	return ret;
7795 }
7796 
7797 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7798 					 struct net_device *adj_dev,
7799 					 u16 ref_nr,
7800 					 struct list_head *dev_list)
7801 {
7802 	struct netdev_adjacent *adj;
7803 
7804 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7805 		 dev->name, adj_dev->name, ref_nr);
7806 
7807 	adj = __netdev_find_adj(adj_dev, dev_list);
7808 
7809 	if (!adj) {
7810 		pr_err("Adjacency does not exist for device %s from %s\n",
7811 		       dev->name, adj_dev->name);
7812 		WARN_ON(1);
7813 		return;
7814 	}
7815 
7816 	if (adj->ref_nr > ref_nr) {
7817 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7818 			 dev->name, adj_dev->name, ref_nr,
7819 			 adj->ref_nr - ref_nr);
7820 		adj->ref_nr -= ref_nr;
7821 		return;
7822 	}
7823 
7824 	if (adj->master)
7825 		sysfs_remove_link(&(dev->dev.kobj), "master");
7826 
7827 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7828 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7829 
7830 	list_del_rcu(&adj->list);
7831 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7832 		 adj_dev->name, dev->name, adj_dev->name);
7833 	netdev_put(adj_dev, &adj->dev_tracker);
7834 	kfree_rcu(adj, rcu);
7835 }
7836 
7837 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7838 					    struct net_device *upper_dev,
7839 					    struct list_head *up_list,
7840 					    struct list_head *down_list,
7841 					    void *private, bool master)
7842 {
7843 	int ret;
7844 
7845 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7846 					   private, master);
7847 	if (ret)
7848 		return ret;
7849 
7850 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7851 					   private, false);
7852 	if (ret) {
7853 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7854 		return ret;
7855 	}
7856 
7857 	return 0;
7858 }
7859 
7860 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7861 					       struct net_device *upper_dev,
7862 					       u16 ref_nr,
7863 					       struct list_head *up_list,
7864 					       struct list_head *down_list)
7865 {
7866 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7867 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7868 }
7869 
7870 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7871 						struct net_device *upper_dev,
7872 						void *private, bool master)
7873 {
7874 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7875 						&dev->adj_list.upper,
7876 						&upper_dev->adj_list.lower,
7877 						private, master);
7878 }
7879 
7880 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7881 						   struct net_device *upper_dev)
7882 {
7883 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7884 					   &dev->adj_list.upper,
7885 					   &upper_dev->adj_list.lower);
7886 }
7887 
7888 static int __netdev_upper_dev_link(struct net_device *dev,
7889 				   struct net_device *upper_dev, bool master,
7890 				   void *upper_priv, void *upper_info,
7891 				   struct netdev_nested_priv *priv,
7892 				   struct netlink_ext_ack *extack)
7893 {
7894 	struct netdev_notifier_changeupper_info changeupper_info = {
7895 		.info = {
7896 			.dev = dev,
7897 			.extack = extack,
7898 		},
7899 		.upper_dev = upper_dev,
7900 		.master = master,
7901 		.linking = true,
7902 		.upper_info = upper_info,
7903 	};
7904 	struct net_device *master_dev;
7905 	int ret = 0;
7906 
7907 	ASSERT_RTNL();
7908 
7909 	if (dev == upper_dev)
7910 		return -EBUSY;
7911 
7912 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7913 	if (__netdev_has_upper_dev(upper_dev, dev))
7914 		return -EBUSY;
7915 
7916 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7917 		return -EMLINK;
7918 
7919 	if (!master) {
7920 		if (__netdev_has_upper_dev(dev, upper_dev))
7921 			return -EEXIST;
7922 	} else {
7923 		master_dev = __netdev_master_upper_dev_get(dev);
7924 		if (master_dev)
7925 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7926 	}
7927 
7928 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7929 					    &changeupper_info.info);
7930 	ret = notifier_to_errno(ret);
7931 	if (ret)
7932 		return ret;
7933 
7934 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7935 						   master);
7936 	if (ret)
7937 		return ret;
7938 
7939 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7940 					    &changeupper_info.info);
7941 	ret = notifier_to_errno(ret);
7942 	if (ret)
7943 		goto rollback;
7944 
7945 	__netdev_update_upper_level(dev, NULL);
7946 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7947 
7948 	__netdev_update_lower_level(upper_dev, priv);
7949 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7950 				    priv);
7951 
7952 	return 0;
7953 
7954 rollback:
7955 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7956 
7957 	return ret;
7958 }
7959 
7960 /**
7961  * netdev_upper_dev_link - Add a link to the upper device
7962  * @dev: device
7963  * @upper_dev: new upper device
7964  * @extack: netlink extended ack
7965  *
7966  * Adds a link to device which is upper to this one. The caller must hold
7967  * the RTNL lock. On a failure a negative errno code is returned.
7968  * On success the reference counts are adjusted and the function
7969  * returns zero.
7970  */
7971 int netdev_upper_dev_link(struct net_device *dev,
7972 			  struct net_device *upper_dev,
7973 			  struct netlink_ext_ack *extack)
7974 {
7975 	struct netdev_nested_priv priv = {
7976 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7977 		.data = NULL,
7978 	};
7979 
7980 	return __netdev_upper_dev_link(dev, upper_dev, false,
7981 				       NULL, NULL, &priv, extack);
7982 }
7983 EXPORT_SYMBOL(netdev_upper_dev_link);
7984 
7985 /**
7986  * netdev_master_upper_dev_link - Add a master link to the upper device
7987  * @dev: device
7988  * @upper_dev: new upper device
7989  * @upper_priv: upper device private
7990  * @upper_info: upper info to be passed down via notifier
7991  * @extack: netlink extended ack
7992  *
7993  * Adds a link to device which is upper to this one. In this case, only
7994  * one master upper device can be linked, although other non-master devices
7995  * might be linked as well. The caller must hold the RTNL lock.
7996  * On a failure a negative errno code is returned. On success the reference
7997  * counts are adjusted and the function returns zero.
7998  */
7999 int netdev_master_upper_dev_link(struct net_device *dev,
8000 				 struct net_device *upper_dev,
8001 				 void *upper_priv, void *upper_info,
8002 				 struct netlink_ext_ack *extack)
8003 {
8004 	struct netdev_nested_priv priv = {
8005 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8006 		.data = NULL,
8007 	};
8008 
8009 	return __netdev_upper_dev_link(dev, upper_dev, true,
8010 				       upper_priv, upper_info, &priv, extack);
8011 }
8012 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8013 
8014 static void __netdev_upper_dev_unlink(struct net_device *dev,
8015 				      struct net_device *upper_dev,
8016 				      struct netdev_nested_priv *priv)
8017 {
8018 	struct netdev_notifier_changeupper_info changeupper_info = {
8019 		.info = {
8020 			.dev = dev,
8021 		},
8022 		.upper_dev = upper_dev,
8023 		.linking = false,
8024 	};
8025 
8026 	ASSERT_RTNL();
8027 
8028 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8029 
8030 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8031 				      &changeupper_info.info);
8032 
8033 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8034 
8035 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8036 				      &changeupper_info.info);
8037 
8038 	__netdev_update_upper_level(dev, NULL);
8039 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8040 
8041 	__netdev_update_lower_level(upper_dev, priv);
8042 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8043 				    priv);
8044 }
8045 
8046 /**
8047  * netdev_upper_dev_unlink - Removes a link to upper device
8048  * @dev: device
8049  * @upper_dev: new upper device
8050  *
8051  * Removes a link to device which is upper to this one. The caller must hold
8052  * the RTNL lock.
8053  */
8054 void netdev_upper_dev_unlink(struct net_device *dev,
8055 			     struct net_device *upper_dev)
8056 {
8057 	struct netdev_nested_priv priv = {
8058 		.flags = NESTED_SYNC_TODO,
8059 		.data = NULL,
8060 	};
8061 
8062 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8063 }
8064 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8065 
8066 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8067 				      struct net_device *lower_dev,
8068 				      bool val)
8069 {
8070 	struct netdev_adjacent *adj;
8071 
8072 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8073 	if (adj)
8074 		adj->ignore = val;
8075 
8076 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8077 	if (adj)
8078 		adj->ignore = val;
8079 }
8080 
8081 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8082 					struct net_device *lower_dev)
8083 {
8084 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8085 }
8086 
8087 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8088 				       struct net_device *lower_dev)
8089 {
8090 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8091 }
8092 
8093 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8094 				   struct net_device *new_dev,
8095 				   struct net_device *dev,
8096 				   struct netlink_ext_ack *extack)
8097 {
8098 	struct netdev_nested_priv priv = {
8099 		.flags = 0,
8100 		.data = NULL,
8101 	};
8102 	int err;
8103 
8104 	if (!new_dev)
8105 		return 0;
8106 
8107 	if (old_dev && new_dev != old_dev)
8108 		netdev_adjacent_dev_disable(dev, old_dev);
8109 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8110 				      extack);
8111 	if (err) {
8112 		if (old_dev && new_dev != old_dev)
8113 			netdev_adjacent_dev_enable(dev, old_dev);
8114 		return err;
8115 	}
8116 
8117 	return 0;
8118 }
8119 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8120 
8121 void netdev_adjacent_change_commit(struct net_device *old_dev,
8122 				   struct net_device *new_dev,
8123 				   struct net_device *dev)
8124 {
8125 	struct netdev_nested_priv priv = {
8126 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8127 		.data = NULL,
8128 	};
8129 
8130 	if (!new_dev || !old_dev)
8131 		return;
8132 
8133 	if (new_dev == old_dev)
8134 		return;
8135 
8136 	netdev_adjacent_dev_enable(dev, old_dev);
8137 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8138 }
8139 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8140 
8141 void netdev_adjacent_change_abort(struct net_device *old_dev,
8142 				  struct net_device *new_dev,
8143 				  struct net_device *dev)
8144 {
8145 	struct netdev_nested_priv priv = {
8146 		.flags = 0,
8147 		.data = NULL,
8148 	};
8149 
8150 	if (!new_dev)
8151 		return;
8152 
8153 	if (old_dev && new_dev != old_dev)
8154 		netdev_adjacent_dev_enable(dev, old_dev);
8155 
8156 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8157 }
8158 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8159 
8160 /**
8161  * netdev_bonding_info_change - Dispatch event about slave change
8162  * @dev: device
8163  * @bonding_info: info to dispatch
8164  *
8165  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8166  * The caller must hold the RTNL lock.
8167  */
8168 void netdev_bonding_info_change(struct net_device *dev,
8169 				struct netdev_bonding_info *bonding_info)
8170 {
8171 	struct netdev_notifier_bonding_info info = {
8172 		.info.dev = dev,
8173 	};
8174 
8175 	memcpy(&info.bonding_info, bonding_info,
8176 	       sizeof(struct netdev_bonding_info));
8177 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8178 				      &info.info);
8179 }
8180 EXPORT_SYMBOL(netdev_bonding_info_change);
8181 
8182 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8183 					   struct netlink_ext_ack *extack)
8184 {
8185 	struct netdev_notifier_offload_xstats_info info = {
8186 		.info.dev = dev,
8187 		.info.extack = extack,
8188 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8189 	};
8190 	int err;
8191 	int rc;
8192 
8193 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8194 					 GFP_KERNEL);
8195 	if (!dev->offload_xstats_l3)
8196 		return -ENOMEM;
8197 
8198 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8199 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8200 						  &info.info);
8201 	err = notifier_to_errno(rc);
8202 	if (err)
8203 		goto free_stats;
8204 
8205 	return 0;
8206 
8207 free_stats:
8208 	kfree(dev->offload_xstats_l3);
8209 	dev->offload_xstats_l3 = NULL;
8210 	return err;
8211 }
8212 
8213 int netdev_offload_xstats_enable(struct net_device *dev,
8214 				 enum netdev_offload_xstats_type type,
8215 				 struct netlink_ext_ack *extack)
8216 {
8217 	ASSERT_RTNL();
8218 
8219 	if (netdev_offload_xstats_enabled(dev, type))
8220 		return -EALREADY;
8221 
8222 	switch (type) {
8223 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8224 		return netdev_offload_xstats_enable_l3(dev, extack);
8225 	}
8226 
8227 	WARN_ON(1);
8228 	return -EINVAL;
8229 }
8230 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8231 
8232 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8233 {
8234 	struct netdev_notifier_offload_xstats_info info = {
8235 		.info.dev = dev,
8236 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8237 	};
8238 
8239 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8240 				      &info.info);
8241 	kfree(dev->offload_xstats_l3);
8242 	dev->offload_xstats_l3 = NULL;
8243 }
8244 
8245 int netdev_offload_xstats_disable(struct net_device *dev,
8246 				  enum netdev_offload_xstats_type type)
8247 {
8248 	ASSERT_RTNL();
8249 
8250 	if (!netdev_offload_xstats_enabled(dev, type))
8251 		return -EALREADY;
8252 
8253 	switch (type) {
8254 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8255 		netdev_offload_xstats_disable_l3(dev);
8256 		return 0;
8257 	}
8258 
8259 	WARN_ON(1);
8260 	return -EINVAL;
8261 }
8262 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8263 
8264 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8265 {
8266 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8267 }
8268 
8269 static struct rtnl_hw_stats64 *
8270 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8271 			      enum netdev_offload_xstats_type type)
8272 {
8273 	switch (type) {
8274 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8275 		return dev->offload_xstats_l3;
8276 	}
8277 
8278 	WARN_ON(1);
8279 	return NULL;
8280 }
8281 
8282 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8283 				   enum netdev_offload_xstats_type type)
8284 {
8285 	ASSERT_RTNL();
8286 
8287 	return netdev_offload_xstats_get_ptr(dev, type);
8288 }
8289 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8290 
8291 struct netdev_notifier_offload_xstats_ru {
8292 	bool used;
8293 };
8294 
8295 struct netdev_notifier_offload_xstats_rd {
8296 	struct rtnl_hw_stats64 stats;
8297 	bool used;
8298 };
8299 
8300 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8301 				  const struct rtnl_hw_stats64 *src)
8302 {
8303 	dest->rx_packets	  += src->rx_packets;
8304 	dest->tx_packets	  += src->tx_packets;
8305 	dest->rx_bytes		  += src->rx_bytes;
8306 	dest->tx_bytes		  += src->tx_bytes;
8307 	dest->rx_errors		  += src->rx_errors;
8308 	dest->tx_errors		  += src->tx_errors;
8309 	dest->rx_dropped	  += src->rx_dropped;
8310 	dest->tx_dropped	  += src->tx_dropped;
8311 	dest->multicast		  += src->multicast;
8312 }
8313 
8314 static int netdev_offload_xstats_get_used(struct net_device *dev,
8315 					  enum netdev_offload_xstats_type type,
8316 					  bool *p_used,
8317 					  struct netlink_ext_ack *extack)
8318 {
8319 	struct netdev_notifier_offload_xstats_ru report_used = {};
8320 	struct netdev_notifier_offload_xstats_info info = {
8321 		.info.dev = dev,
8322 		.info.extack = extack,
8323 		.type = type,
8324 		.report_used = &report_used,
8325 	};
8326 	int rc;
8327 
8328 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8329 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8330 					   &info.info);
8331 	*p_used = report_used.used;
8332 	return notifier_to_errno(rc);
8333 }
8334 
8335 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8336 					   enum netdev_offload_xstats_type type,
8337 					   struct rtnl_hw_stats64 *p_stats,
8338 					   bool *p_used,
8339 					   struct netlink_ext_ack *extack)
8340 {
8341 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8342 	struct netdev_notifier_offload_xstats_info info = {
8343 		.info.dev = dev,
8344 		.info.extack = extack,
8345 		.type = type,
8346 		.report_delta = &report_delta,
8347 	};
8348 	struct rtnl_hw_stats64 *stats;
8349 	int rc;
8350 
8351 	stats = netdev_offload_xstats_get_ptr(dev, type);
8352 	if (WARN_ON(!stats))
8353 		return -EINVAL;
8354 
8355 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8356 					   &info.info);
8357 
8358 	/* Cache whatever we got, even if there was an error, otherwise the
8359 	 * successful stats retrievals would get lost.
8360 	 */
8361 	netdev_hw_stats64_add(stats, &report_delta.stats);
8362 
8363 	if (p_stats)
8364 		*p_stats = *stats;
8365 	*p_used = report_delta.used;
8366 
8367 	return notifier_to_errno(rc);
8368 }
8369 
8370 int netdev_offload_xstats_get(struct net_device *dev,
8371 			      enum netdev_offload_xstats_type type,
8372 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8373 			      struct netlink_ext_ack *extack)
8374 {
8375 	ASSERT_RTNL();
8376 
8377 	if (p_stats)
8378 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8379 						       p_used, extack);
8380 	else
8381 		return netdev_offload_xstats_get_used(dev, type, p_used,
8382 						      extack);
8383 }
8384 EXPORT_SYMBOL(netdev_offload_xstats_get);
8385 
8386 void
8387 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8388 				   const struct rtnl_hw_stats64 *stats)
8389 {
8390 	report_delta->used = true;
8391 	netdev_hw_stats64_add(&report_delta->stats, stats);
8392 }
8393 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8394 
8395 void
8396 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8397 {
8398 	report_used->used = true;
8399 }
8400 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8401 
8402 void netdev_offload_xstats_push_delta(struct net_device *dev,
8403 				      enum netdev_offload_xstats_type type,
8404 				      const struct rtnl_hw_stats64 *p_stats)
8405 {
8406 	struct rtnl_hw_stats64 *stats;
8407 
8408 	ASSERT_RTNL();
8409 
8410 	stats = netdev_offload_xstats_get_ptr(dev, type);
8411 	if (WARN_ON(!stats))
8412 		return;
8413 
8414 	netdev_hw_stats64_add(stats, p_stats);
8415 }
8416 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8417 
8418 /**
8419  * netdev_get_xmit_slave - Get the xmit slave of master device
8420  * @dev: device
8421  * @skb: The packet
8422  * @all_slaves: assume all the slaves are active
8423  *
8424  * The reference counters are not incremented so the caller must be
8425  * careful with locks. The caller must hold RCU lock.
8426  * %NULL is returned if no slave is found.
8427  */
8428 
8429 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8430 					 struct sk_buff *skb,
8431 					 bool all_slaves)
8432 {
8433 	const struct net_device_ops *ops = dev->netdev_ops;
8434 
8435 	if (!ops->ndo_get_xmit_slave)
8436 		return NULL;
8437 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8438 }
8439 EXPORT_SYMBOL(netdev_get_xmit_slave);
8440 
8441 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8442 						  struct sock *sk)
8443 {
8444 	const struct net_device_ops *ops = dev->netdev_ops;
8445 
8446 	if (!ops->ndo_sk_get_lower_dev)
8447 		return NULL;
8448 	return ops->ndo_sk_get_lower_dev(dev, sk);
8449 }
8450 
8451 /**
8452  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8453  * @dev: device
8454  * @sk: the socket
8455  *
8456  * %NULL is returned if no lower device is found.
8457  */
8458 
8459 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8460 					    struct sock *sk)
8461 {
8462 	struct net_device *lower;
8463 
8464 	lower = netdev_sk_get_lower_dev(dev, sk);
8465 	while (lower) {
8466 		dev = lower;
8467 		lower = netdev_sk_get_lower_dev(dev, sk);
8468 	}
8469 
8470 	return dev;
8471 }
8472 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8473 
8474 static void netdev_adjacent_add_links(struct net_device *dev)
8475 {
8476 	struct netdev_adjacent *iter;
8477 
8478 	struct net *net = dev_net(dev);
8479 
8480 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8481 		if (!net_eq(net, dev_net(iter->dev)))
8482 			continue;
8483 		netdev_adjacent_sysfs_add(iter->dev, dev,
8484 					  &iter->dev->adj_list.lower);
8485 		netdev_adjacent_sysfs_add(dev, iter->dev,
8486 					  &dev->adj_list.upper);
8487 	}
8488 
8489 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8490 		if (!net_eq(net, dev_net(iter->dev)))
8491 			continue;
8492 		netdev_adjacent_sysfs_add(iter->dev, dev,
8493 					  &iter->dev->adj_list.upper);
8494 		netdev_adjacent_sysfs_add(dev, iter->dev,
8495 					  &dev->adj_list.lower);
8496 	}
8497 }
8498 
8499 static void netdev_adjacent_del_links(struct net_device *dev)
8500 {
8501 	struct netdev_adjacent *iter;
8502 
8503 	struct net *net = dev_net(dev);
8504 
8505 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8506 		if (!net_eq(net, dev_net(iter->dev)))
8507 			continue;
8508 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8509 					  &iter->dev->adj_list.lower);
8510 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8511 					  &dev->adj_list.upper);
8512 	}
8513 
8514 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8515 		if (!net_eq(net, dev_net(iter->dev)))
8516 			continue;
8517 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8518 					  &iter->dev->adj_list.upper);
8519 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8520 					  &dev->adj_list.lower);
8521 	}
8522 }
8523 
8524 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8525 {
8526 	struct netdev_adjacent *iter;
8527 
8528 	struct net *net = dev_net(dev);
8529 
8530 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8531 		if (!net_eq(net, dev_net(iter->dev)))
8532 			continue;
8533 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8534 					  &iter->dev->adj_list.lower);
8535 		netdev_adjacent_sysfs_add(iter->dev, dev,
8536 					  &iter->dev->adj_list.lower);
8537 	}
8538 
8539 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8540 		if (!net_eq(net, dev_net(iter->dev)))
8541 			continue;
8542 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8543 					  &iter->dev->adj_list.upper);
8544 		netdev_adjacent_sysfs_add(iter->dev, dev,
8545 					  &iter->dev->adj_list.upper);
8546 	}
8547 }
8548 
8549 void *netdev_lower_dev_get_private(struct net_device *dev,
8550 				   struct net_device *lower_dev)
8551 {
8552 	struct netdev_adjacent *lower;
8553 
8554 	if (!lower_dev)
8555 		return NULL;
8556 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8557 	if (!lower)
8558 		return NULL;
8559 
8560 	return lower->private;
8561 }
8562 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8563 
8564 
8565 /**
8566  * netdev_lower_state_changed - Dispatch event about lower device state change
8567  * @lower_dev: device
8568  * @lower_state_info: state to dispatch
8569  *
8570  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8571  * The caller must hold the RTNL lock.
8572  */
8573 void netdev_lower_state_changed(struct net_device *lower_dev,
8574 				void *lower_state_info)
8575 {
8576 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8577 		.info.dev = lower_dev,
8578 	};
8579 
8580 	ASSERT_RTNL();
8581 	changelowerstate_info.lower_state_info = lower_state_info;
8582 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8583 				      &changelowerstate_info.info);
8584 }
8585 EXPORT_SYMBOL(netdev_lower_state_changed);
8586 
8587 static void dev_change_rx_flags(struct net_device *dev, int flags)
8588 {
8589 	const struct net_device_ops *ops = dev->netdev_ops;
8590 
8591 	if (ops->ndo_change_rx_flags)
8592 		ops->ndo_change_rx_flags(dev, flags);
8593 }
8594 
8595 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8596 {
8597 	unsigned int old_flags = dev->flags;
8598 	unsigned int promiscuity, flags;
8599 	kuid_t uid;
8600 	kgid_t gid;
8601 
8602 	ASSERT_RTNL();
8603 
8604 	promiscuity = dev->promiscuity + inc;
8605 	if (promiscuity == 0) {
8606 		/*
8607 		 * Avoid overflow.
8608 		 * If inc causes overflow, untouch promisc and return error.
8609 		 */
8610 		if (unlikely(inc > 0)) {
8611 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8612 			return -EOVERFLOW;
8613 		}
8614 		flags = old_flags & ~IFF_PROMISC;
8615 	} else {
8616 		flags = old_flags | IFF_PROMISC;
8617 	}
8618 	WRITE_ONCE(dev->promiscuity, promiscuity);
8619 	if (flags != old_flags) {
8620 		WRITE_ONCE(dev->flags, flags);
8621 		netdev_info(dev, "%s promiscuous mode\n",
8622 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8623 		if (audit_enabled) {
8624 			current_uid_gid(&uid, &gid);
8625 			audit_log(audit_context(), GFP_ATOMIC,
8626 				  AUDIT_ANOM_PROMISCUOUS,
8627 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8628 				  dev->name, (dev->flags & IFF_PROMISC),
8629 				  (old_flags & IFF_PROMISC),
8630 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8631 				  from_kuid(&init_user_ns, uid),
8632 				  from_kgid(&init_user_ns, gid),
8633 				  audit_get_sessionid(current));
8634 		}
8635 
8636 		dev_change_rx_flags(dev, IFF_PROMISC);
8637 	}
8638 	if (notify)
8639 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8640 	return 0;
8641 }
8642 
8643 /**
8644  *	dev_set_promiscuity	- update promiscuity count on a device
8645  *	@dev: device
8646  *	@inc: modifier
8647  *
8648  *	Add or remove promiscuity from a device. While the count in the device
8649  *	remains above zero the interface remains promiscuous. Once it hits zero
8650  *	the device reverts back to normal filtering operation. A negative inc
8651  *	value is used to drop promiscuity on the device.
8652  *	Return 0 if successful or a negative errno code on error.
8653  */
8654 int dev_set_promiscuity(struct net_device *dev, int inc)
8655 {
8656 	unsigned int old_flags = dev->flags;
8657 	int err;
8658 
8659 	err = __dev_set_promiscuity(dev, inc, true);
8660 	if (err < 0)
8661 		return err;
8662 	if (dev->flags != old_flags)
8663 		dev_set_rx_mode(dev);
8664 	return err;
8665 }
8666 EXPORT_SYMBOL(dev_set_promiscuity);
8667 
8668 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8669 {
8670 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8671 	unsigned int allmulti, flags;
8672 
8673 	ASSERT_RTNL();
8674 
8675 	allmulti = dev->allmulti + inc;
8676 	if (allmulti == 0) {
8677 		/*
8678 		 * Avoid overflow.
8679 		 * If inc causes overflow, untouch allmulti and return error.
8680 		 */
8681 		if (unlikely(inc > 0)) {
8682 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8683 			return -EOVERFLOW;
8684 		}
8685 		flags = old_flags & ~IFF_ALLMULTI;
8686 	} else {
8687 		flags = old_flags | IFF_ALLMULTI;
8688 	}
8689 	WRITE_ONCE(dev->allmulti, allmulti);
8690 	if (flags != old_flags) {
8691 		WRITE_ONCE(dev->flags, flags);
8692 		netdev_info(dev, "%s allmulticast mode\n",
8693 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8694 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8695 		dev_set_rx_mode(dev);
8696 		if (notify)
8697 			__dev_notify_flags(dev, old_flags,
8698 					   dev->gflags ^ old_gflags, 0, NULL);
8699 	}
8700 	return 0;
8701 }
8702 
8703 /**
8704  *	dev_set_allmulti	- update allmulti count on a device
8705  *	@dev: device
8706  *	@inc: modifier
8707  *
8708  *	Add or remove reception of all multicast frames to a device. While the
8709  *	count in the device remains above zero the interface remains listening
8710  *	to all interfaces. Once it hits zero the device reverts back to normal
8711  *	filtering operation. A negative @inc value is used to drop the counter
8712  *	when releasing a resource needing all multicasts.
8713  *	Return 0 if successful or a negative errno code on error.
8714  */
8715 
8716 int dev_set_allmulti(struct net_device *dev, int inc)
8717 {
8718 	return __dev_set_allmulti(dev, inc, true);
8719 }
8720 EXPORT_SYMBOL(dev_set_allmulti);
8721 
8722 /*
8723  *	Upload unicast and multicast address lists to device and
8724  *	configure RX filtering. When the device doesn't support unicast
8725  *	filtering it is put in promiscuous mode while unicast addresses
8726  *	are present.
8727  */
8728 void __dev_set_rx_mode(struct net_device *dev)
8729 {
8730 	const struct net_device_ops *ops = dev->netdev_ops;
8731 
8732 	/* dev_open will call this function so the list will stay sane. */
8733 	if (!(dev->flags&IFF_UP))
8734 		return;
8735 
8736 	if (!netif_device_present(dev))
8737 		return;
8738 
8739 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8740 		/* Unicast addresses changes may only happen under the rtnl,
8741 		 * therefore calling __dev_set_promiscuity here is safe.
8742 		 */
8743 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8744 			__dev_set_promiscuity(dev, 1, false);
8745 			dev->uc_promisc = true;
8746 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8747 			__dev_set_promiscuity(dev, -1, false);
8748 			dev->uc_promisc = false;
8749 		}
8750 	}
8751 
8752 	if (ops->ndo_set_rx_mode)
8753 		ops->ndo_set_rx_mode(dev);
8754 }
8755 
8756 void dev_set_rx_mode(struct net_device *dev)
8757 {
8758 	netif_addr_lock_bh(dev);
8759 	__dev_set_rx_mode(dev);
8760 	netif_addr_unlock_bh(dev);
8761 }
8762 
8763 /**
8764  *	dev_get_flags - get flags reported to userspace
8765  *	@dev: device
8766  *
8767  *	Get the combination of flag bits exported through APIs to userspace.
8768  */
8769 unsigned int dev_get_flags(const struct net_device *dev)
8770 {
8771 	unsigned int flags;
8772 
8773 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
8774 				IFF_ALLMULTI |
8775 				IFF_RUNNING |
8776 				IFF_LOWER_UP |
8777 				IFF_DORMANT)) |
8778 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
8779 				IFF_ALLMULTI));
8780 
8781 	if (netif_running(dev)) {
8782 		if (netif_oper_up(dev))
8783 			flags |= IFF_RUNNING;
8784 		if (netif_carrier_ok(dev))
8785 			flags |= IFF_LOWER_UP;
8786 		if (netif_dormant(dev))
8787 			flags |= IFF_DORMANT;
8788 	}
8789 
8790 	return flags;
8791 }
8792 EXPORT_SYMBOL(dev_get_flags);
8793 
8794 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8795 		       struct netlink_ext_ack *extack)
8796 {
8797 	unsigned int old_flags = dev->flags;
8798 	int ret;
8799 
8800 	ASSERT_RTNL();
8801 
8802 	/*
8803 	 *	Set the flags on our device.
8804 	 */
8805 
8806 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8807 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8808 			       IFF_AUTOMEDIA)) |
8809 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8810 				    IFF_ALLMULTI));
8811 
8812 	/*
8813 	 *	Load in the correct multicast list now the flags have changed.
8814 	 */
8815 
8816 	if ((old_flags ^ flags) & IFF_MULTICAST)
8817 		dev_change_rx_flags(dev, IFF_MULTICAST);
8818 
8819 	dev_set_rx_mode(dev);
8820 
8821 	/*
8822 	 *	Have we downed the interface. We handle IFF_UP ourselves
8823 	 *	according to user attempts to set it, rather than blindly
8824 	 *	setting it.
8825 	 */
8826 
8827 	ret = 0;
8828 	if ((old_flags ^ flags) & IFF_UP) {
8829 		if (old_flags & IFF_UP)
8830 			__dev_close(dev);
8831 		else
8832 			ret = __dev_open(dev, extack);
8833 	}
8834 
8835 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8836 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8837 		unsigned int old_flags = dev->flags;
8838 
8839 		dev->gflags ^= IFF_PROMISC;
8840 
8841 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8842 			if (dev->flags != old_flags)
8843 				dev_set_rx_mode(dev);
8844 	}
8845 
8846 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8847 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8848 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8849 	 */
8850 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8851 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8852 
8853 		dev->gflags ^= IFF_ALLMULTI;
8854 		__dev_set_allmulti(dev, inc, false);
8855 	}
8856 
8857 	return ret;
8858 }
8859 
8860 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8861 			unsigned int gchanges, u32 portid,
8862 			const struct nlmsghdr *nlh)
8863 {
8864 	unsigned int changes = dev->flags ^ old_flags;
8865 
8866 	if (gchanges)
8867 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8868 
8869 	if (changes & IFF_UP) {
8870 		if (dev->flags & IFF_UP)
8871 			call_netdevice_notifiers(NETDEV_UP, dev);
8872 		else
8873 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8874 	}
8875 
8876 	if (dev->flags & IFF_UP &&
8877 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8878 		struct netdev_notifier_change_info change_info = {
8879 			.info = {
8880 				.dev = dev,
8881 			},
8882 			.flags_changed = changes,
8883 		};
8884 
8885 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8886 	}
8887 }
8888 
8889 /**
8890  *	dev_change_flags - change device settings
8891  *	@dev: device
8892  *	@flags: device state flags
8893  *	@extack: netlink extended ack
8894  *
8895  *	Change settings on device based state flags. The flags are
8896  *	in the userspace exported format.
8897  */
8898 int dev_change_flags(struct net_device *dev, unsigned int flags,
8899 		     struct netlink_ext_ack *extack)
8900 {
8901 	int ret;
8902 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8903 
8904 	ret = __dev_change_flags(dev, flags, extack);
8905 	if (ret < 0)
8906 		return ret;
8907 
8908 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8909 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8910 	return ret;
8911 }
8912 EXPORT_SYMBOL(dev_change_flags);
8913 
8914 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8915 {
8916 	const struct net_device_ops *ops = dev->netdev_ops;
8917 
8918 	if (ops->ndo_change_mtu)
8919 		return ops->ndo_change_mtu(dev, new_mtu);
8920 
8921 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8922 	WRITE_ONCE(dev->mtu, new_mtu);
8923 	return 0;
8924 }
8925 EXPORT_SYMBOL(__dev_set_mtu);
8926 
8927 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8928 		     struct netlink_ext_ack *extack)
8929 {
8930 	/* MTU must be positive, and in range */
8931 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8932 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8933 		return -EINVAL;
8934 	}
8935 
8936 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8937 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8938 		return -EINVAL;
8939 	}
8940 	return 0;
8941 }
8942 
8943 /**
8944  *	dev_set_mtu_ext - Change maximum transfer unit
8945  *	@dev: device
8946  *	@new_mtu: new transfer unit
8947  *	@extack: netlink extended ack
8948  *
8949  *	Change the maximum transfer size of the network device.
8950  */
8951 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8952 		    struct netlink_ext_ack *extack)
8953 {
8954 	int err, orig_mtu;
8955 
8956 	if (new_mtu == dev->mtu)
8957 		return 0;
8958 
8959 	err = dev_validate_mtu(dev, new_mtu, extack);
8960 	if (err)
8961 		return err;
8962 
8963 	if (!netif_device_present(dev))
8964 		return -ENODEV;
8965 
8966 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8967 	err = notifier_to_errno(err);
8968 	if (err)
8969 		return err;
8970 
8971 	orig_mtu = dev->mtu;
8972 	err = __dev_set_mtu(dev, new_mtu);
8973 
8974 	if (!err) {
8975 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8976 						   orig_mtu);
8977 		err = notifier_to_errno(err);
8978 		if (err) {
8979 			/* setting mtu back and notifying everyone again,
8980 			 * so that they have a chance to revert changes.
8981 			 */
8982 			__dev_set_mtu(dev, orig_mtu);
8983 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8984 						     new_mtu);
8985 		}
8986 	}
8987 	return err;
8988 }
8989 
8990 int dev_set_mtu(struct net_device *dev, int new_mtu)
8991 {
8992 	struct netlink_ext_ack extack;
8993 	int err;
8994 
8995 	memset(&extack, 0, sizeof(extack));
8996 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8997 	if (err && extack._msg)
8998 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8999 	return err;
9000 }
9001 EXPORT_SYMBOL(dev_set_mtu);
9002 
9003 /**
9004  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
9005  *	@dev: device
9006  *	@new_len: new tx queue length
9007  */
9008 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9009 {
9010 	unsigned int orig_len = dev->tx_queue_len;
9011 	int res;
9012 
9013 	if (new_len != (unsigned int)new_len)
9014 		return -ERANGE;
9015 
9016 	if (new_len != orig_len) {
9017 		WRITE_ONCE(dev->tx_queue_len, new_len);
9018 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9019 		res = notifier_to_errno(res);
9020 		if (res)
9021 			goto err_rollback;
9022 		res = dev_qdisc_change_tx_queue_len(dev);
9023 		if (res)
9024 			goto err_rollback;
9025 	}
9026 
9027 	return 0;
9028 
9029 err_rollback:
9030 	netdev_err(dev, "refused to change device tx_queue_len\n");
9031 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9032 	return res;
9033 }
9034 
9035 /**
9036  *	dev_set_group - Change group this device belongs to
9037  *	@dev: device
9038  *	@new_group: group this device should belong to
9039  */
9040 void dev_set_group(struct net_device *dev, int new_group)
9041 {
9042 	dev->group = new_group;
9043 }
9044 
9045 /**
9046  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9047  *	@dev: device
9048  *	@addr: new address
9049  *	@extack: netlink extended ack
9050  */
9051 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9052 			      struct netlink_ext_ack *extack)
9053 {
9054 	struct netdev_notifier_pre_changeaddr_info info = {
9055 		.info.dev = dev,
9056 		.info.extack = extack,
9057 		.dev_addr = addr,
9058 	};
9059 	int rc;
9060 
9061 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9062 	return notifier_to_errno(rc);
9063 }
9064 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9065 
9066 /**
9067  *	dev_set_mac_address - Change Media Access Control Address
9068  *	@dev: device
9069  *	@sa: new address
9070  *	@extack: netlink extended ack
9071  *
9072  *	Change the hardware (MAC) address of the device
9073  */
9074 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9075 			struct netlink_ext_ack *extack)
9076 {
9077 	const struct net_device_ops *ops = dev->netdev_ops;
9078 	int err;
9079 
9080 	if (!ops->ndo_set_mac_address)
9081 		return -EOPNOTSUPP;
9082 	if (sa->sa_family != dev->type)
9083 		return -EINVAL;
9084 	if (!netif_device_present(dev))
9085 		return -ENODEV;
9086 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9087 	if (err)
9088 		return err;
9089 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9090 		err = ops->ndo_set_mac_address(dev, sa);
9091 		if (err)
9092 			return err;
9093 	}
9094 	dev->addr_assign_type = NET_ADDR_SET;
9095 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9096 	add_device_randomness(dev->dev_addr, dev->addr_len);
9097 	return 0;
9098 }
9099 EXPORT_SYMBOL(dev_set_mac_address);
9100 
9101 DECLARE_RWSEM(dev_addr_sem);
9102 
9103 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9104 			     struct netlink_ext_ack *extack)
9105 {
9106 	int ret;
9107 
9108 	down_write(&dev_addr_sem);
9109 	ret = dev_set_mac_address(dev, sa, extack);
9110 	up_write(&dev_addr_sem);
9111 	return ret;
9112 }
9113 EXPORT_SYMBOL(dev_set_mac_address_user);
9114 
9115 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9116 {
9117 	size_t size = sizeof(sa->sa_data_min);
9118 	struct net_device *dev;
9119 	int ret = 0;
9120 
9121 	down_read(&dev_addr_sem);
9122 	rcu_read_lock();
9123 
9124 	dev = dev_get_by_name_rcu(net, dev_name);
9125 	if (!dev) {
9126 		ret = -ENODEV;
9127 		goto unlock;
9128 	}
9129 	if (!dev->addr_len)
9130 		memset(sa->sa_data, 0, size);
9131 	else
9132 		memcpy(sa->sa_data, dev->dev_addr,
9133 		       min_t(size_t, size, dev->addr_len));
9134 	sa->sa_family = dev->type;
9135 
9136 unlock:
9137 	rcu_read_unlock();
9138 	up_read(&dev_addr_sem);
9139 	return ret;
9140 }
9141 EXPORT_SYMBOL(dev_get_mac_address);
9142 
9143 /**
9144  *	dev_change_carrier - Change device carrier
9145  *	@dev: device
9146  *	@new_carrier: new value
9147  *
9148  *	Change device carrier
9149  */
9150 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9151 {
9152 	const struct net_device_ops *ops = dev->netdev_ops;
9153 
9154 	if (!ops->ndo_change_carrier)
9155 		return -EOPNOTSUPP;
9156 	if (!netif_device_present(dev))
9157 		return -ENODEV;
9158 	return ops->ndo_change_carrier(dev, new_carrier);
9159 }
9160 
9161 /**
9162  *	dev_get_phys_port_id - Get device physical port ID
9163  *	@dev: device
9164  *	@ppid: port ID
9165  *
9166  *	Get device physical port ID
9167  */
9168 int dev_get_phys_port_id(struct net_device *dev,
9169 			 struct netdev_phys_item_id *ppid)
9170 {
9171 	const struct net_device_ops *ops = dev->netdev_ops;
9172 
9173 	if (!ops->ndo_get_phys_port_id)
9174 		return -EOPNOTSUPP;
9175 	return ops->ndo_get_phys_port_id(dev, ppid);
9176 }
9177 
9178 /**
9179  *	dev_get_phys_port_name - Get device physical port name
9180  *	@dev: device
9181  *	@name: port name
9182  *	@len: limit of bytes to copy to name
9183  *
9184  *	Get device physical port name
9185  */
9186 int dev_get_phys_port_name(struct net_device *dev,
9187 			   char *name, size_t len)
9188 {
9189 	const struct net_device_ops *ops = dev->netdev_ops;
9190 	int err;
9191 
9192 	if (ops->ndo_get_phys_port_name) {
9193 		err = ops->ndo_get_phys_port_name(dev, name, len);
9194 		if (err != -EOPNOTSUPP)
9195 			return err;
9196 	}
9197 	return devlink_compat_phys_port_name_get(dev, name, len);
9198 }
9199 
9200 /**
9201  *	dev_get_port_parent_id - Get the device's port parent identifier
9202  *	@dev: network device
9203  *	@ppid: pointer to a storage for the port's parent identifier
9204  *	@recurse: allow/disallow recursion to lower devices
9205  *
9206  *	Get the devices's port parent identifier
9207  */
9208 int dev_get_port_parent_id(struct net_device *dev,
9209 			   struct netdev_phys_item_id *ppid,
9210 			   bool recurse)
9211 {
9212 	const struct net_device_ops *ops = dev->netdev_ops;
9213 	struct netdev_phys_item_id first = { };
9214 	struct net_device *lower_dev;
9215 	struct list_head *iter;
9216 	int err;
9217 
9218 	if (ops->ndo_get_port_parent_id) {
9219 		err = ops->ndo_get_port_parent_id(dev, ppid);
9220 		if (err != -EOPNOTSUPP)
9221 			return err;
9222 	}
9223 
9224 	err = devlink_compat_switch_id_get(dev, ppid);
9225 	if (!recurse || err != -EOPNOTSUPP)
9226 		return err;
9227 
9228 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9229 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9230 		if (err)
9231 			break;
9232 		if (!first.id_len)
9233 			first = *ppid;
9234 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9235 			return -EOPNOTSUPP;
9236 	}
9237 
9238 	return err;
9239 }
9240 EXPORT_SYMBOL(dev_get_port_parent_id);
9241 
9242 /**
9243  *	netdev_port_same_parent_id - Indicate if two network devices have
9244  *	the same port parent identifier
9245  *	@a: first network device
9246  *	@b: second network device
9247  */
9248 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9249 {
9250 	struct netdev_phys_item_id a_id = { };
9251 	struct netdev_phys_item_id b_id = { };
9252 
9253 	if (dev_get_port_parent_id(a, &a_id, true) ||
9254 	    dev_get_port_parent_id(b, &b_id, true))
9255 		return false;
9256 
9257 	return netdev_phys_item_id_same(&a_id, &b_id);
9258 }
9259 EXPORT_SYMBOL(netdev_port_same_parent_id);
9260 
9261 /**
9262  *	dev_change_proto_down - set carrier according to proto_down.
9263  *
9264  *	@dev: device
9265  *	@proto_down: new value
9266  */
9267 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9268 {
9269 	if (!dev->change_proto_down)
9270 		return -EOPNOTSUPP;
9271 	if (!netif_device_present(dev))
9272 		return -ENODEV;
9273 	if (proto_down)
9274 		netif_carrier_off(dev);
9275 	else
9276 		netif_carrier_on(dev);
9277 	WRITE_ONCE(dev->proto_down, proto_down);
9278 	return 0;
9279 }
9280 
9281 /**
9282  *	dev_change_proto_down_reason - proto down reason
9283  *
9284  *	@dev: device
9285  *	@mask: proto down mask
9286  *	@value: proto down value
9287  */
9288 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9289 				  u32 value)
9290 {
9291 	u32 proto_down_reason;
9292 	int b;
9293 
9294 	if (!mask) {
9295 		proto_down_reason = value;
9296 	} else {
9297 		proto_down_reason = dev->proto_down_reason;
9298 		for_each_set_bit(b, &mask, 32) {
9299 			if (value & (1 << b))
9300 				proto_down_reason |= BIT(b);
9301 			else
9302 				proto_down_reason &= ~BIT(b);
9303 		}
9304 	}
9305 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9306 }
9307 
9308 struct bpf_xdp_link {
9309 	struct bpf_link link;
9310 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9311 	int flags;
9312 };
9313 
9314 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9315 {
9316 	if (flags & XDP_FLAGS_HW_MODE)
9317 		return XDP_MODE_HW;
9318 	if (flags & XDP_FLAGS_DRV_MODE)
9319 		return XDP_MODE_DRV;
9320 	if (flags & XDP_FLAGS_SKB_MODE)
9321 		return XDP_MODE_SKB;
9322 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9323 }
9324 
9325 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9326 {
9327 	switch (mode) {
9328 	case XDP_MODE_SKB:
9329 		return generic_xdp_install;
9330 	case XDP_MODE_DRV:
9331 	case XDP_MODE_HW:
9332 		return dev->netdev_ops->ndo_bpf;
9333 	default:
9334 		return NULL;
9335 	}
9336 }
9337 
9338 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9339 					 enum bpf_xdp_mode mode)
9340 {
9341 	return dev->xdp_state[mode].link;
9342 }
9343 
9344 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9345 				     enum bpf_xdp_mode mode)
9346 {
9347 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9348 
9349 	if (link)
9350 		return link->link.prog;
9351 	return dev->xdp_state[mode].prog;
9352 }
9353 
9354 u8 dev_xdp_prog_count(struct net_device *dev)
9355 {
9356 	u8 count = 0;
9357 	int i;
9358 
9359 	for (i = 0; i < __MAX_XDP_MODE; i++)
9360 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9361 			count++;
9362 	return count;
9363 }
9364 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9365 
9366 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9367 {
9368 	if (!dev->netdev_ops->ndo_bpf)
9369 		return -EOPNOTSUPP;
9370 
9371 	if (dev_get_min_mp_channel_count(dev)) {
9372 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9373 		return -EBUSY;
9374 	}
9375 
9376 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9377 }
9378 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9379 
9380 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9381 {
9382 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9383 
9384 	return prog ? prog->aux->id : 0;
9385 }
9386 
9387 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9388 			     struct bpf_xdp_link *link)
9389 {
9390 	dev->xdp_state[mode].link = link;
9391 	dev->xdp_state[mode].prog = NULL;
9392 }
9393 
9394 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9395 			     struct bpf_prog *prog)
9396 {
9397 	dev->xdp_state[mode].link = NULL;
9398 	dev->xdp_state[mode].prog = prog;
9399 }
9400 
9401 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9402 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9403 			   u32 flags, struct bpf_prog *prog)
9404 {
9405 	struct netdev_bpf xdp;
9406 	int err;
9407 
9408 	if (dev_get_min_mp_channel_count(dev)) {
9409 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9410 		return -EBUSY;
9411 	}
9412 
9413 	memset(&xdp, 0, sizeof(xdp));
9414 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9415 	xdp.extack = extack;
9416 	xdp.flags = flags;
9417 	xdp.prog = prog;
9418 
9419 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9420 	 * "moved" into driver), so they don't increment it on their own, but
9421 	 * they do decrement refcnt when program is detached or replaced.
9422 	 * Given net_device also owns link/prog, we need to bump refcnt here
9423 	 * to prevent drivers from underflowing it.
9424 	 */
9425 	if (prog)
9426 		bpf_prog_inc(prog);
9427 	err = bpf_op(dev, &xdp);
9428 	if (err) {
9429 		if (prog)
9430 			bpf_prog_put(prog);
9431 		return err;
9432 	}
9433 
9434 	if (mode != XDP_MODE_HW)
9435 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9436 
9437 	return 0;
9438 }
9439 
9440 static void dev_xdp_uninstall(struct net_device *dev)
9441 {
9442 	struct bpf_xdp_link *link;
9443 	struct bpf_prog *prog;
9444 	enum bpf_xdp_mode mode;
9445 	bpf_op_t bpf_op;
9446 
9447 	ASSERT_RTNL();
9448 
9449 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9450 		prog = dev_xdp_prog(dev, mode);
9451 		if (!prog)
9452 			continue;
9453 
9454 		bpf_op = dev_xdp_bpf_op(dev, mode);
9455 		if (!bpf_op)
9456 			continue;
9457 
9458 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9459 
9460 		/* auto-detach link from net device */
9461 		link = dev_xdp_link(dev, mode);
9462 		if (link)
9463 			link->dev = NULL;
9464 		else
9465 			bpf_prog_put(prog);
9466 
9467 		dev_xdp_set_link(dev, mode, NULL);
9468 	}
9469 }
9470 
9471 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9472 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9473 			  struct bpf_prog *old_prog, u32 flags)
9474 {
9475 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9476 	struct bpf_prog *cur_prog;
9477 	struct net_device *upper;
9478 	struct list_head *iter;
9479 	enum bpf_xdp_mode mode;
9480 	bpf_op_t bpf_op;
9481 	int err;
9482 
9483 	ASSERT_RTNL();
9484 
9485 	/* either link or prog attachment, never both */
9486 	if (link && (new_prog || old_prog))
9487 		return -EINVAL;
9488 	/* link supports only XDP mode flags */
9489 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9490 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9491 		return -EINVAL;
9492 	}
9493 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9494 	if (num_modes > 1) {
9495 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9496 		return -EINVAL;
9497 	}
9498 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9499 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9500 		NL_SET_ERR_MSG(extack,
9501 			       "More than one program loaded, unset mode is ambiguous");
9502 		return -EINVAL;
9503 	}
9504 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9505 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9506 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9507 		return -EINVAL;
9508 	}
9509 
9510 	mode = dev_xdp_mode(dev, flags);
9511 	/* can't replace attached link */
9512 	if (dev_xdp_link(dev, mode)) {
9513 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9514 		return -EBUSY;
9515 	}
9516 
9517 	/* don't allow if an upper device already has a program */
9518 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9519 		if (dev_xdp_prog_count(upper) > 0) {
9520 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9521 			return -EEXIST;
9522 		}
9523 	}
9524 
9525 	cur_prog = dev_xdp_prog(dev, mode);
9526 	/* can't replace attached prog with link */
9527 	if (link && cur_prog) {
9528 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9529 		return -EBUSY;
9530 	}
9531 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9532 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9533 		return -EEXIST;
9534 	}
9535 
9536 	/* put effective new program into new_prog */
9537 	if (link)
9538 		new_prog = link->link.prog;
9539 
9540 	if (new_prog) {
9541 		bool offload = mode == XDP_MODE_HW;
9542 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9543 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9544 
9545 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9546 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9547 			return -EBUSY;
9548 		}
9549 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9550 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9551 			return -EEXIST;
9552 		}
9553 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9554 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9555 			return -EINVAL;
9556 		}
9557 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9558 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9559 			return -EINVAL;
9560 		}
9561 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9562 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9563 			return -EINVAL;
9564 		}
9565 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9566 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9567 			return -EINVAL;
9568 		}
9569 	}
9570 
9571 	/* don't call drivers if the effective program didn't change */
9572 	if (new_prog != cur_prog) {
9573 		bpf_op = dev_xdp_bpf_op(dev, mode);
9574 		if (!bpf_op) {
9575 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9576 			return -EOPNOTSUPP;
9577 		}
9578 
9579 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9580 		if (err)
9581 			return err;
9582 	}
9583 
9584 	if (link)
9585 		dev_xdp_set_link(dev, mode, link);
9586 	else
9587 		dev_xdp_set_prog(dev, mode, new_prog);
9588 	if (cur_prog)
9589 		bpf_prog_put(cur_prog);
9590 
9591 	return 0;
9592 }
9593 
9594 static int dev_xdp_attach_link(struct net_device *dev,
9595 			       struct netlink_ext_ack *extack,
9596 			       struct bpf_xdp_link *link)
9597 {
9598 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9599 }
9600 
9601 static int dev_xdp_detach_link(struct net_device *dev,
9602 			       struct netlink_ext_ack *extack,
9603 			       struct bpf_xdp_link *link)
9604 {
9605 	enum bpf_xdp_mode mode;
9606 	bpf_op_t bpf_op;
9607 
9608 	ASSERT_RTNL();
9609 
9610 	mode = dev_xdp_mode(dev, link->flags);
9611 	if (dev_xdp_link(dev, mode) != link)
9612 		return -EINVAL;
9613 
9614 	bpf_op = dev_xdp_bpf_op(dev, mode);
9615 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9616 	dev_xdp_set_link(dev, mode, NULL);
9617 	return 0;
9618 }
9619 
9620 static void bpf_xdp_link_release(struct bpf_link *link)
9621 {
9622 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9623 
9624 	rtnl_lock();
9625 
9626 	/* if racing with net_device's tear down, xdp_link->dev might be
9627 	 * already NULL, in which case link was already auto-detached
9628 	 */
9629 	if (xdp_link->dev) {
9630 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9631 		xdp_link->dev = NULL;
9632 	}
9633 
9634 	rtnl_unlock();
9635 }
9636 
9637 static int bpf_xdp_link_detach(struct bpf_link *link)
9638 {
9639 	bpf_xdp_link_release(link);
9640 	return 0;
9641 }
9642 
9643 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9644 {
9645 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9646 
9647 	kfree(xdp_link);
9648 }
9649 
9650 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9651 				     struct seq_file *seq)
9652 {
9653 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9654 	u32 ifindex = 0;
9655 
9656 	rtnl_lock();
9657 	if (xdp_link->dev)
9658 		ifindex = xdp_link->dev->ifindex;
9659 	rtnl_unlock();
9660 
9661 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9662 }
9663 
9664 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9665 				       struct bpf_link_info *info)
9666 {
9667 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9668 	u32 ifindex = 0;
9669 
9670 	rtnl_lock();
9671 	if (xdp_link->dev)
9672 		ifindex = xdp_link->dev->ifindex;
9673 	rtnl_unlock();
9674 
9675 	info->xdp.ifindex = ifindex;
9676 	return 0;
9677 }
9678 
9679 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9680 			       struct bpf_prog *old_prog)
9681 {
9682 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9683 	enum bpf_xdp_mode mode;
9684 	bpf_op_t bpf_op;
9685 	int err = 0;
9686 
9687 	rtnl_lock();
9688 
9689 	/* link might have been auto-released already, so fail */
9690 	if (!xdp_link->dev) {
9691 		err = -ENOLINK;
9692 		goto out_unlock;
9693 	}
9694 
9695 	if (old_prog && link->prog != old_prog) {
9696 		err = -EPERM;
9697 		goto out_unlock;
9698 	}
9699 	old_prog = link->prog;
9700 	if (old_prog->type != new_prog->type ||
9701 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9702 		err = -EINVAL;
9703 		goto out_unlock;
9704 	}
9705 
9706 	if (old_prog == new_prog) {
9707 		/* no-op, don't disturb drivers */
9708 		bpf_prog_put(new_prog);
9709 		goto out_unlock;
9710 	}
9711 
9712 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9713 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9714 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9715 			      xdp_link->flags, new_prog);
9716 	if (err)
9717 		goto out_unlock;
9718 
9719 	old_prog = xchg(&link->prog, new_prog);
9720 	bpf_prog_put(old_prog);
9721 
9722 out_unlock:
9723 	rtnl_unlock();
9724 	return err;
9725 }
9726 
9727 static const struct bpf_link_ops bpf_xdp_link_lops = {
9728 	.release = bpf_xdp_link_release,
9729 	.dealloc = bpf_xdp_link_dealloc,
9730 	.detach = bpf_xdp_link_detach,
9731 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9732 	.fill_link_info = bpf_xdp_link_fill_link_info,
9733 	.update_prog = bpf_xdp_link_update,
9734 };
9735 
9736 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9737 {
9738 	struct net *net = current->nsproxy->net_ns;
9739 	struct bpf_link_primer link_primer;
9740 	struct netlink_ext_ack extack = {};
9741 	struct bpf_xdp_link *link;
9742 	struct net_device *dev;
9743 	int err, fd;
9744 
9745 	rtnl_lock();
9746 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9747 	if (!dev) {
9748 		rtnl_unlock();
9749 		return -EINVAL;
9750 	}
9751 
9752 	link = kzalloc(sizeof(*link), GFP_USER);
9753 	if (!link) {
9754 		err = -ENOMEM;
9755 		goto unlock;
9756 	}
9757 
9758 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9759 	link->dev = dev;
9760 	link->flags = attr->link_create.flags;
9761 
9762 	err = bpf_link_prime(&link->link, &link_primer);
9763 	if (err) {
9764 		kfree(link);
9765 		goto unlock;
9766 	}
9767 
9768 	err = dev_xdp_attach_link(dev, &extack, link);
9769 	rtnl_unlock();
9770 
9771 	if (err) {
9772 		link->dev = NULL;
9773 		bpf_link_cleanup(&link_primer);
9774 		trace_bpf_xdp_link_attach_failed(extack._msg);
9775 		goto out_put_dev;
9776 	}
9777 
9778 	fd = bpf_link_settle(&link_primer);
9779 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9780 	dev_put(dev);
9781 	return fd;
9782 
9783 unlock:
9784 	rtnl_unlock();
9785 
9786 out_put_dev:
9787 	dev_put(dev);
9788 	return err;
9789 }
9790 
9791 /**
9792  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9793  *	@dev: device
9794  *	@extack: netlink extended ack
9795  *	@fd: new program fd or negative value to clear
9796  *	@expected_fd: old program fd that userspace expects to replace or clear
9797  *	@flags: xdp-related flags
9798  *
9799  *	Set or clear a bpf program for a device
9800  */
9801 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9802 		      int fd, int expected_fd, u32 flags)
9803 {
9804 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9805 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9806 	int err;
9807 
9808 	ASSERT_RTNL();
9809 
9810 	if (fd >= 0) {
9811 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9812 						 mode != XDP_MODE_SKB);
9813 		if (IS_ERR(new_prog))
9814 			return PTR_ERR(new_prog);
9815 	}
9816 
9817 	if (expected_fd >= 0) {
9818 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9819 						 mode != XDP_MODE_SKB);
9820 		if (IS_ERR(old_prog)) {
9821 			err = PTR_ERR(old_prog);
9822 			old_prog = NULL;
9823 			goto err_out;
9824 		}
9825 	}
9826 
9827 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9828 
9829 err_out:
9830 	if (err && new_prog)
9831 		bpf_prog_put(new_prog);
9832 	if (old_prog)
9833 		bpf_prog_put(old_prog);
9834 	return err;
9835 }
9836 
9837 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
9838 {
9839 	int i;
9840 
9841 	ASSERT_RTNL();
9842 
9843 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
9844 		if (dev->_rx[i].mp_params.mp_priv)
9845 			/* The channel count is the idx plus 1. */
9846 			return i + 1;
9847 
9848 	return 0;
9849 }
9850 
9851 /**
9852  * dev_index_reserve() - allocate an ifindex in a namespace
9853  * @net: the applicable net namespace
9854  * @ifindex: requested ifindex, pass %0 to get one allocated
9855  *
9856  * Allocate a ifindex for a new device. Caller must either use the ifindex
9857  * to store the device (via list_netdevice()) or call dev_index_release()
9858  * to give the index up.
9859  *
9860  * Return: a suitable unique value for a new device interface number or -errno.
9861  */
9862 static int dev_index_reserve(struct net *net, u32 ifindex)
9863 {
9864 	int err;
9865 
9866 	if (ifindex > INT_MAX) {
9867 		DEBUG_NET_WARN_ON_ONCE(1);
9868 		return -EINVAL;
9869 	}
9870 
9871 	if (!ifindex)
9872 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9873 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9874 	else
9875 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9876 	if (err < 0)
9877 		return err;
9878 
9879 	return ifindex;
9880 }
9881 
9882 static void dev_index_release(struct net *net, int ifindex)
9883 {
9884 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9885 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9886 }
9887 
9888 /* Delayed registration/unregisteration */
9889 LIST_HEAD(net_todo_list);
9890 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9891 atomic_t dev_unreg_count = ATOMIC_INIT(0);
9892 
9893 static void net_set_todo(struct net_device *dev)
9894 {
9895 	list_add_tail(&dev->todo_list, &net_todo_list);
9896 }
9897 
9898 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9899 	struct net_device *upper, netdev_features_t features)
9900 {
9901 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9902 	netdev_features_t feature;
9903 	int feature_bit;
9904 
9905 	for_each_netdev_feature(upper_disables, feature_bit) {
9906 		feature = __NETIF_F_BIT(feature_bit);
9907 		if (!(upper->wanted_features & feature)
9908 		    && (features & feature)) {
9909 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9910 				   &feature, upper->name);
9911 			features &= ~feature;
9912 		}
9913 	}
9914 
9915 	return features;
9916 }
9917 
9918 static void netdev_sync_lower_features(struct net_device *upper,
9919 	struct net_device *lower, netdev_features_t features)
9920 {
9921 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9922 	netdev_features_t feature;
9923 	int feature_bit;
9924 
9925 	for_each_netdev_feature(upper_disables, feature_bit) {
9926 		feature = __NETIF_F_BIT(feature_bit);
9927 		if (!(features & feature) && (lower->features & feature)) {
9928 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9929 				   &feature, lower->name);
9930 			lower->wanted_features &= ~feature;
9931 			__netdev_update_features(lower);
9932 
9933 			if (unlikely(lower->features & feature))
9934 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9935 					    &feature, lower->name);
9936 			else
9937 				netdev_features_change(lower);
9938 		}
9939 	}
9940 }
9941 
9942 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
9943 {
9944 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
9945 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
9946 	bool hw_csum = features & NETIF_F_HW_CSUM;
9947 
9948 	return ip_csum || hw_csum;
9949 }
9950 
9951 static netdev_features_t netdev_fix_features(struct net_device *dev,
9952 	netdev_features_t features)
9953 {
9954 	/* Fix illegal checksum combinations */
9955 	if ((features & NETIF_F_HW_CSUM) &&
9956 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9957 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9958 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9959 	}
9960 
9961 	/* TSO requires that SG is present as well. */
9962 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9963 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9964 		features &= ~NETIF_F_ALL_TSO;
9965 	}
9966 
9967 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9968 					!(features & NETIF_F_IP_CSUM)) {
9969 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9970 		features &= ~NETIF_F_TSO;
9971 		features &= ~NETIF_F_TSO_ECN;
9972 	}
9973 
9974 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9975 					 !(features & NETIF_F_IPV6_CSUM)) {
9976 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9977 		features &= ~NETIF_F_TSO6;
9978 	}
9979 
9980 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9981 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9982 		features &= ~NETIF_F_TSO_MANGLEID;
9983 
9984 	/* TSO ECN requires that TSO is present as well. */
9985 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9986 		features &= ~NETIF_F_TSO_ECN;
9987 
9988 	/* Software GSO depends on SG. */
9989 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9990 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9991 		features &= ~NETIF_F_GSO;
9992 	}
9993 
9994 	/* GSO partial features require GSO partial be set */
9995 	if ((features & dev->gso_partial_features) &&
9996 	    !(features & NETIF_F_GSO_PARTIAL)) {
9997 		netdev_dbg(dev,
9998 			   "Dropping partially supported GSO features since no GSO partial.\n");
9999 		features &= ~dev->gso_partial_features;
10000 	}
10001 
10002 	if (!(features & NETIF_F_RXCSUM)) {
10003 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10004 		 * successfully merged by hardware must also have the
10005 		 * checksum verified by hardware.  If the user does not
10006 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10007 		 */
10008 		if (features & NETIF_F_GRO_HW) {
10009 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10010 			features &= ~NETIF_F_GRO_HW;
10011 		}
10012 	}
10013 
10014 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10015 	if (features & NETIF_F_RXFCS) {
10016 		if (features & NETIF_F_LRO) {
10017 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10018 			features &= ~NETIF_F_LRO;
10019 		}
10020 
10021 		if (features & NETIF_F_GRO_HW) {
10022 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10023 			features &= ~NETIF_F_GRO_HW;
10024 		}
10025 	}
10026 
10027 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10028 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10029 		features &= ~NETIF_F_LRO;
10030 	}
10031 
10032 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10033 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10034 		features &= ~NETIF_F_HW_TLS_TX;
10035 	}
10036 
10037 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10038 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10039 		features &= ~NETIF_F_HW_TLS_RX;
10040 	}
10041 
10042 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10043 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10044 		features &= ~NETIF_F_GSO_UDP_L4;
10045 	}
10046 
10047 	return features;
10048 }
10049 
10050 int __netdev_update_features(struct net_device *dev)
10051 {
10052 	struct net_device *upper, *lower;
10053 	netdev_features_t features;
10054 	struct list_head *iter;
10055 	int err = -1;
10056 
10057 	ASSERT_RTNL();
10058 
10059 	features = netdev_get_wanted_features(dev);
10060 
10061 	if (dev->netdev_ops->ndo_fix_features)
10062 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10063 
10064 	/* driver might be less strict about feature dependencies */
10065 	features = netdev_fix_features(dev, features);
10066 
10067 	/* some features can't be enabled if they're off on an upper device */
10068 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10069 		features = netdev_sync_upper_features(dev, upper, features);
10070 
10071 	if (dev->features == features)
10072 		goto sync_lower;
10073 
10074 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10075 		&dev->features, &features);
10076 
10077 	if (dev->netdev_ops->ndo_set_features)
10078 		err = dev->netdev_ops->ndo_set_features(dev, features);
10079 	else
10080 		err = 0;
10081 
10082 	if (unlikely(err < 0)) {
10083 		netdev_err(dev,
10084 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10085 			err, &features, &dev->features);
10086 		/* return non-0 since some features might have changed and
10087 		 * it's better to fire a spurious notification than miss it
10088 		 */
10089 		return -1;
10090 	}
10091 
10092 sync_lower:
10093 	/* some features must be disabled on lower devices when disabled
10094 	 * on an upper device (think: bonding master or bridge)
10095 	 */
10096 	netdev_for_each_lower_dev(dev, lower, iter)
10097 		netdev_sync_lower_features(dev, lower, features);
10098 
10099 	if (!err) {
10100 		netdev_features_t diff = features ^ dev->features;
10101 
10102 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10103 			/* udp_tunnel_{get,drop}_rx_info both need
10104 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10105 			 * device, or they won't do anything.
10106 			 * Thus we need to update dev->features
10107 			 * *before* calling udp_tunnel_get_rx_info,
10108 			 * but *after* calling udp_tunnel_drop_rx_info.
10109 			 */
10110 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10111 				dev->features = features;
10112 				udp_tunnel_get_rx_info(dev);
10113 			} else {
10114 				udp_tunnel_drop_rx_info(dev);
10115 			}
10116 		}
10117 
10118 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10119 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10120 				dev->features = features;
10121 				err |= vlan_get_rx_ctag_filter_info(dev);
10122 			} else {
10123 				vlan_drop_rx_ctag_filter_info(dev);
10124 			}
10125 		}
10126 
10127 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10128 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10129 				dev->features = features;
10130 				err |= vlan_get_rx_stag_filter_info(dev);
10131 			} else {
10132 				vlan_drop_rx_stag_filter_info(dev);
10133 			}
10134 		}
10135 
10136 		dev->features = features;
10137 	}
10138 
10139 	return err < 0 ? 0 : 1;
10140 }
10141 
10142 /**
10143  *	netdev_update_features - recalculate device features
10144  *	@dev: the device to check
10145  *
10146  *	Recalculate dev->features set and send notifications if it
10147  *	has changed. Should be called after driver or hardware dependent
10148  *	conditions might have changed that influence the features.
10149  */
10150 void netdev_update_features(struct net_device *dev)
10151 {
10152 	if (__netdev_update_features(dev))
10153 		netdev_features_change(dev);
10154 }
10155 EXPORT_SYMBOL(netdev_update_features);
10156 
10157 /**
10158  *	netdev_change_features - recalculate device features
10159  *	@dev: the device to check
10160  *
10161  *	Recalculate dev->features set and send notifications even
10162  *	if they have not changed. Should be called instead of
10163  *	netdev_update_features() if also dev->vlan_features might
10164  *	have changed to allow the changes to be propagated to stacked
10165  *	VLAN devices.
10166  */
10167 void netdev_change_features(struct net_device *dev)
10168 {
10169 	__netdev_update_features(dev);
10170 	netdev_features_change(dev);
10171 }
10172 EXPORT_SYMBOL(netdev_change_features);
10173 
10174 /**
10175  *	netif_stacked_transfer_operstate -	transfer operstate
10176  *	@rootdev: the root or lower level device to transfer state from
10177  *	@dev: the device to transfer operstate to
10178  *
10179  *	Transfer operational state from root to device. This is normally
10180  *	called when a stacking relationship exists between the root
10181  *	device and the device(a leaf device).
10182  */
10183 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10184 					struct net_device *dev)
10185 {
10186 	if (rootdev->operstate == IF_OPER_DORMANT)
10187 		netif_dormant_on(dev);
10188 	else
10189 		netif_dormant_off(dev);
10190 
10191 	if (rootdev->operstate == IF_OPER_TESTING)
10192 		netif_testing_on(dev);
10193 	else
10194 		netif_testing_off(dev);
10195 
10196 	if (netif_carrier_ok(rootdev))
10197 		netif_carrier_on(dev);
10198 	else
10199 		netif_carrier_off(dev);
10200 }
10201 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10202 
10203 static int netif_alloc_rx_queues(struct net_device *dev)
10204 {
10205 	unsigned int i, count = dev->num_rx_queues;
10206 	struct netdev_rx_queue *rx;
10207 	size_t sz = count * sizeof(*rx);
10208 	int err = 0;
10209 
10210 	BUG_ON(count < 1);
10211 
10212 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10213 	if (!rx)
10214 		return -ENOMEM;
10215 
10216 	dev->_rx = rx;
10217 
10218 	for (i = 0; i < count; i++) {
10219 		rx[i].dev = dev;
10220 
10221 		/* XDP RX-queue setup */
10222 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10223 		if (err < 0)
10224 			goto err_rxq_info;
10225 	}
10226 	return 0;
10227 
10228 err_rxq_info:
10229 	/* Rollback successful reg's and free other resources */
10230 	while (i--)
10231 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10232 	kvfree(dev->_rx);
10233 	dev->_rx = NULL;
10234 	return err;
10235 }
10236 
10237 static void netif_free_rx_queues(struct net_device *dev)
10238 {
10239 	unsigned int i, count = dev->num_rx_queues;
10240 
10241 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10242 	if (!dev->_rx)
10243 		return;
10244 
10245 	for (i = 0; i < count; i++)
10246 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10247 
10248 	kvfree(dev->_rx);
10249 }
10250 
10251 static void netdev_init_one_queue(struct net_device *dev,
10252 				  struct netdev_queue *queue, void *_unused)
10253 {
10254 	/* Initialize queue lock */
10255 	spin_lock_init(&queue->_xmit_lock);
10256 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10257 	queue->xmit_lock_owner = -1;
10258 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10259 	queue->dev = dev;
10260 #ifdef CONFIG_BQL
10261 	dql_init(&queue->dql, HZ);
10262 #endif
10263 }
10264 
10265 static void netif_free_tx_queues(struct net_device *dev)
10266 {
10267 	kvfree(dev->_tx);
10268 }
10269 
10270 static int netif_alloc_netdev_queues(struct net_device *dev)
10271 {
10272 	unsigned int count = dev->num_tx_queues;
10273 	struct netdev_queue *tx;
10274 	size_t sz = count * sizeof(*tx);
10275 
10276 	if (count < 1 || count > 0xffff)
10277 		return -EINVAL;
10278 
10279 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10280 	if (!tx)
10281 		return -ENOMEM;
10282 
10283 	dev->_tx = tx;
10284 
10285 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10286 	spin_lock_init(&dev->tx_global_lock);
10287 
10288 	return 0;
10289 }
10290 
10291 void netif_tx_stop_all_queues(struct net_device *dev)
10292 {
10293 	unsigned int i;
10294 
10295 	for (i = 0; i < dev->num_tx_queues; i++) {
10296 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10297 
10298 		netif_tx_stop_queue(txq);
10299 	}
10300 }
10301 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10302 
10303 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10304 {
10305 	void __percpu *v;
10306 
10307 	/* Drivers implementing ndo_get_peer_dev must support tstat
10308 	 * accounting, so that skb_do_redirect() can bump the dev's
10309 	 * RX stats upon network namespace switch.
10310 	 */
10311 	if (dev->netdev_ops->ndo_get_peer_dev &&
10312 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10313 		return -EOPNOTSUPP;
10314 
10315 	switch (dev->pcpu_stat_type) {
10316 	case NETDEV_PCPU_STAT_NONE:
10317 		return 0;
10318 	case NETDEV_PCPU_STAT_LSTATS:
10319 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10320 		break;
10321 	case NETDEV_PCPU_STAT_TSTATS:
10322 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10323 		break;
10324 	case NETDEV_PCPU_STAT_DSTATS:
10325 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10326 		break;
10327 	default:
10328 		return -EINVAL;
10329 	}
10330 
10331 	return v ? 0 : -ENOMEM;
10332 }
10333 
10334 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10335 {
10336 	switch (dev->pcpu_stat_type) {
10337 	case NETDEV_PCPU_STAT_NONE:
10338 		return;
10339 	case NETDEV_PCPU_STAT_LSTATS:
10340 		free_percpu(dev->lstats);
10341 		break;
10342 	case NETDEV_PCPU_STAT_TSTATS:
10343 		free_percpu(dev->tstats);
10344 		break;
10345 	case NETDEV_PCPU_STAT_DSTATS:
10346 		free_percpu(dev->dstats);
10347 		break;
10348 	}
10349 }
10350 
10351 static void netdev_free_phy_link_topology(struct net_device *dev)
10352 {
10353 	struct phy_link_topology *topo = dev->link_topo;
10354 
10355 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10356 		xa_destroy(&topo->phys);
10357 		kfree(topo);
10358 		dev->link_topo = NULL;
10359 	}
10360 }
10361 
10362 /**
10363  * register_netdevice() - register a network device
10364  * @dev: device to register
10365  *
10366  * Take a prepared network device structure and make it externally accessible.
10367  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10368  * Callers must hold the rtnl lock - you may want register_netdev()
10369  * instead of this.
10370  */
10371 int register_netdevice(struct net_device *dev)
10372 {
10373 	int ret;
10374 	struct net *net = dev_net(dev);
10375 
10376 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10377 		     NETDEV_FEATURE_COUNT);
10378 	BUG_ON(dev_boot_phase);
10379 	ASSERT_RTNL();
10380 
10381 	might_sleep();
10382 
10383 	/* When net_device's are persistent, this will be fatal. */
10384 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10385 	BUG_ON(!net);
10386 
10387 	ret = ethtool_check_ops(dev->ethtool_ops);
10388 	if (ret)
10389 		return ret;
10390 
10391 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10392 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10393 	mutex_init(&dev->ethtool->rss_lock);
10394 
10395 	spin_lock_init(&dev->addr_list_lock);
10396 	netdev_set_addr_lockdep_class(dev);
10397 
10398 	ret = dev_get_valid_name(net, dev, dev->name);
10399 	if (ret < 0)
10400 		goto out;
10401 
10402 	ret = -ENOMEM;
10403 	dev->name_node = netdev_name_node_head_alloc(dev);
10404 	if (!dev->name_node)
10405 		goto out;
10406 
10407 	/* Init, if this function is available */
10408 	if (dev->netdev_ops->ndo_init) {
10409 		ret = dev->netdev_ops->ndo_init(dev);
10410 		if (ret) {
10411 			if (ret > 0)
10412 				ret = -EIO;
10413 			goto err_free_name;
10414 		}
10415 	}
10416 
10417 	if (((dev->hw_features | dev->features) &
10418 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10419 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10420 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10421 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10422 		ret = -EINVAL;
10423 		goto err_uninit;
10424 	}
10425 
10426 	ret = netdev_do_alloc_pcpu_stats(dev);
10427 	if (ret)
10428 		goto err_uninit;
10429 
10430 	ret = dev_index_reserve(net, dev->ifindex);
10431 	if (ret < 0)
10432 		goto err_free_pcpu;
10433 	dev->ifindex = ret;
10434 
10435 	/* Transfer changeable features to wanted_features and enable
10436 	 * software offloads (GSO and GRO).
10437 	 */
10438 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10439 	dev->features |= NETIF_F_SOFT_FEATURES;
10440 
10441 	if (dev->udp_tunnel_nic_info) {
10442 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10443 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10444 	}
10445 
10446 	dev->wanted_features = dev->features & dev->hw_features;
10447 
10448 	if (!(dev->flags & IFF_LOOPBACK))
10449 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10450 
10451 	/* If IPv4 TCP segmentation offload is supported we should also
10452 	 * allow the device to enable segmenting the frame with the option
10453 	 * of ignoring a static IP ID value.  This doesn't enable the
10454 	 * feature itself but allows the user to enable it later.
10455 	 */
10456 	if (dev->hw_features & NETIF_F_TSO)
10457 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10458 	if (dev->vlan_features & NETIF_F_TSO)
10459 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10460 	if (dev->mpls_features & NETIF_F_TSO)
10461 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10462 	if (dev->hw_enc_features & NETIF_F_TSO)
10463 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10464 
10465 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10466 	 */
10467 	dev->vlan_features |= NETIF_F_HIGHDMA;
10468 
10469 	/* Make NETIF_F_SG inheritable to tunnel devices.
10470 	 */
10471 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10472 
10473 	/* Make NETIF_F_SG inheritable to MPLS.
10474 	 */
10475 	dev->mpls_features |= NETIF_F_SG;
10476 
10477 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10478 	ret = notifier_to_errno(ret);
10479 	if (ret)
10480 		goto err_ifindex_release;
10481 
10482 	ret = netdev_register_kobject(dev);
10483 
10484 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10485 
10486 	if (ret)
10487 		goto err_uninit_notify;
10488 
10489 	__netdev_update_features(dev);
10490 
10491 	/*
10492 	 *	Default initial state at registry is that the
10493 	 *	device is present.
10494 	 */
10495 
10496 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10497 
10498 	linkwatch_init_dev(dev);
10499 
10500 	dev_init_scheduler(dev);
10501 
10502 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10503 	list_netdevice(dev);
10504 
10505 	add_device_randomness(dev->dev_addr, dev->addr_len);
10506 
10507 	/* If the device has permanent device address, driver should
10508 	 * set dev_addr and also addr_assign_type should be set to
10509 	 * NET_ADDR_PERM (default value).
10510 	 */
10511 	if (dev->addr_assign_type == NET_ADDR_PERM)
10512 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10513 
10514 	/* Notify protocols, that a new device appeared. */
10515 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10516 	ret = notifier_to_errno(ret);
10517 	if (ret) {
10518 		/* Expect explicit free_netdev() on failure */
10519 		dev->needs_free_netdev = false;
10520 		unregister_netdevice_queue(dev, NULL);
10521 		goto out;
10522 	}
10523 	/*
10524 	 *	Prevent userspace races by waiting until the network
10525 	 *	device is fully setup before sending notifications.
10526 	 */
10527 	if (!dev->rtnl_link_ops ||
10528 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10529 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10530 
10531 out:
10532 	return ret;
10533 
10534 err_uninit_notify:
10535 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10536 err_ifindex_release:
10537 	dev_index_release(net, dev->ifindex);
10538 err_free_pcpu:
10539 	netdev_do_free_pcpu_stats(dev);
10540 err_uninit:
10541 	if (dev->netdev_ops->ndo_uninit)
10542 		dev->netdev_ops->ndo_uninit(dev);
10543 	if (dev->priv_destructor)
10544 		dev->priv_destructor(dev);
10545 err_free_name:
10546 	netdev_name_node_free(dev->name_node);
10547 	goto out;
10548 }
10549 EXPORT_SYMBOL(register_netdevice);
10550 
10551 /* Initialize the core of a dummy net device.
10552  * This is useful if you are calling this function after alloc_netdev(),
10553  * since it does not memset the net_device fields.
10554  */
10555 static void init_dummy_netdev_core(struct net_device *dev)
10556 {
10557 	/* make sure we BUG if trying to hit standard
10558 	 * register/unregister code path
10559 	 */
10560 	dev->reg_state = NETREG_DUMMY;
10561 
10562 	/* NAPI wants this */
10563 	INIT_LIST_HEAD(&dev->napi_list);
10564 
10565 	/* a dummy interface is started by default */
10566 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10567 	set_bit(__LINK_STATE_START, &dev->state);
10568 
10569 	/* napi_busy_loop stats accounting wants this */
10570 	dev_net_set(dev, &init_net);
10571 
10572 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10573 	 * because users of this 'device' dont need to change
10574 	 * its refcount.
10575 	 */
10576 }
10577 
10578 /**
10579  *	init_dummy_netdev	- init a dummy network device for NAPI
10580  *	@dev: device to init
10581  *
10582  *	This takes a network device structure and initializes the minimum
10583  *	amount of fields so it can be used to schedule NAPI polls without
10584  *	registering a full blown interface. This is to be used by drivers
10585  *	that need to tie several hardware interfaces to a single NAPI
10586  *	poll scheduler due to HW limitations.
10587  */
10588 void init_dummy_netdev(struct net_device *dev)
10589 {
10590 	/* Clear everything. Note we don't initialize spinlocks
10591 	 * as they aren't supposed to be taken by any of the
10592 	 * NAPI code and this dummy netdev is supposed to be
10593 	 * only ever used for NAPI polls
10594 	 */
10595 	memset(dev, 0, sizeof(struct net_device));
10596 	init_dummy_netdev_core(dev);
10597 }
10598 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10599 
10600 /**
10601  *	register_netdev	- register a network device
10602  *	@dev: device to register
10603  *
10604  *	Take a completed network device structure and add it to the kernel
10605  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10606  *	chain. 0 is returned on success. A negative errno code is returned
10607  *	on a failure to set up the device, or if the name is a duplicate.
10608  *
10609  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10610  *	and expands the device name if you passed a format string to
10611  *	alloc_netdev.
10612  */
10613 int register_netdev(struct net_device *dev)
10614 {
10615 	int err;
10616 
10617 	if (rtnl_lock_killable())
10618 		return -EINTR;
10619 	err = register_netdevice(dev);
10620 	rtnl_unlock();
10621 	return err;
10622 }
10623 EXPORT_SYMBOL(register_netdev);
10624 
10625 int netdev_refcnt_read(const struct net_device *dev)
10626 {
10627 #ifdef CONFIG_PCPU_DEV_REFCNT
10628 	int i, refcnt = 0;
10629 
10630 	for_each_possible_cpu(i)
10631 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10632 	return refcnt;
10633 #else
10634 	return refcount_read(&dev->dev_refcnt);
10635 #endif
10636 }
10637 EXPORT_SYMBOL(netdev_refcnt_read);
10638 
10639 int netdev_unregister_timeout_secs __read_mostly = 10;
10640 
10641 #define WAIT_REFS_MIN_MSECS 1
10642 #define WAIT_REFS_MAX_MSECS 250
10643 /**
10644  * netdev_wait_allrefs_any - wait until all references are gone.
10645  * @list: list of net_devices to wait on
10646  *
10647  * This is called when unregistering network devices.
10648  *
10649  * Any protocol or device that holds a reference should register
10650  * for netdevice notification, and cleanup and put back the
10651  * reference if they receive an UNREGISTER event.
10652  * We can get stuck here if buggy protocols don't correctly
10653  * call dev_put.
10654  */
10655 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10656 {
10657 	unsigned long rebroadcast_time, warning_time;
10658 	struct net_device *dev;
10659 	int wait = 0;
10660 
10661 	rebroadcast_time = warning_time = jiffies;
10662 
10663 	list_for_each_entry(dev, list, todo_list)
10664 		if (netdev_refcnt_read(dev) == 1)
10665 			return dev;
10666 
10667 	while (true) {
10668 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10669 			rtnl_lock();
10670 
10671 			/* Rebroadcast unregister notification */
10672 			list_for_each_entry(dev, list, todo_list)
10673 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10674 
10675 			__rtnl_unlock();
10676 			rcu_barrier();
10677 			rtnl_lock();
10678 
10679 			list_for_each_entry(dev, list, todo_list)
10680 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10681 					     &dev->state)) {
10682 					/* We must not have linkwatch events
10683 					 * pending on unregister. If this
10684 					 * happens, we simply run the queue
10685 					 * unscheduled, resulting in a noop
10686 					 * for this device.
10687 					 */
10688 					linkwatch_run_queue();
10689 					break;
10690 				}
10691 
10692 			__rtnl_unlock();
10693 
10694 			rebroadcast_time = jiffies;
10695 		}
10696 
10697 		rcu_barrier();
10698 
10699 		if (!wait) {
10700 			wait = WAIT_REFS_MIN_MSECS;
10701 		} else {
10702 			msleep(wait);
10703 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10704 		}
10705 
10706 		list_for_each_entry(dev, list, todo_list)
10707 			if (netdev_refcnt_read(dev) == 1)
10708 				return dev;
10709 
10710 		if (time_after(jiffies, warning_time +
10711 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10712 			list_for_each_entry(dev, list, todo_list) {
10713 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10714 					 dev->name, netdev_refcnt_read(dev));
10715 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10716 			}
10717 
10718 			warning_time = jiffies;
10719 		}
10720 	}
10721 }
10722 
10723 /* The sequence is:
10724  *
10725  *	rtnl_lock();
10726  *	...
10727  *	register_netdevice(x1);
10728  *	register_netdevice(x2);
10729  *	...
10730  *	unregister_netdevice(y1);
10731  *	unregister_netdevice(y2);
10732  *      ...
10733  *	rtnl_unlock();
10734  *	free_netdev(y1);
10735  *	free_netdev(y2);
10736  *
10737  * We are invoked by rtnl_unlock().
10738  * This allows us to deal with problems:
10739  * 1) We can delete sysfs objects which invoke hotplug
10740  *    without deadlocking with linkwatch via keventd.
10741  * 2) Since we run with the RTNL semaphore not held, we can sleep
10742  *    safely in order to wait for the netdev refcnt to drop to zero.
10743  *
10744  * We must not return until all unregister events added during
10745  * the interval the lock was held have been completed.
10746  */
10747 void netdev_run_todo(void)
10748 {
10749 	struct net_device *dev, *tmp;
10750 	struct list_head list;
10751 	int cnt;
10752 #ifdef CONFIG_LOCKDEP
10753 	struct list_head unlink_list;
10754 
10755 	list_replace_init(&net_unlink_list, &unlink_list);
10756 
10757 	while (!list_empty(&unlink_list)) {
10758 		struct net_device *dev = list_first_entry(&unlink_list,
10759 							  struct net_device,
10760 							  unlink_list);
10761 		list_del_init(&dev->unlink_list);
10762 		dev->nested_level = dev->lower_level - 1;
10763 	}
10764 #endif
10765 
10766 	/* Snapshot list, allow later requests */
10767 	list_replace_init(&net_todo_list, &list);
10768 
10769 	__rtnl_unlock();
10770 
10771 	/* Wait for rcu callbacks to finish before next phase */
10772 	if (!list_empty(&list))
10773 		rcu_barrier();
10774 
10775 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10776 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10777 			netdev_WARN(dev, "run_todo but not unregistering\n");
10778 			list_del(&dev->todo_list);
10779 			continue;
10780 		}
10781 
10782 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10783 		linkwatch_sync_dev(dev);
10784 	}
10785 
10786 	cnt = 0;
10787 	while (!list_empty(&list)) {
10788 		dev = netdev_wait_allrefs_any(&list);
10789 		list_del(&dev->todo_list);
10790 
10791 		/* paranoia */
10792 		BUG_ON(netdev_refcnt_read(dev) != 1);
10793 		BUG_ON(!list_empty(&dev->ptype_all));
10794 		BUG_ON(!list_empty(&dev->ptype_specific));
10795 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10796 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10797 
10798 		netdev_do_free_pcpu_stats(dev);
10799 		if (dev->priv_destructor)
10800 			dev->priv_destructor(dev);
10801 		if (dev->needs_free_netdev)
10802 			free_netdev(dev);
10803 
10804 		cnt++;
10805 
10806 		/* Free network device */
10807 		kobject_put(&dev->dev.kobj);
10808 	}
10809 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10810 		wake_up(&netdev_unregistering_wq);
10811 }
10812 
10813 /* Collate per-cpu network dstats statistics
10814  *
10815  * Read per-cpu network statistics from dev->dstats and populate the related
10816  * fields in @s.
10817  */
10818 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
10819 			     const struct pcpu_dstats __percpu *dstats)
10820 {
10821 	int cpu;
10822 
10823 	for_each_possible_cpu(cpu) {
10824 		u64 rx_packets, rx_bytes, rx_drops;
10825 		u64 tx_packets, tx_bytes, tx_drops;
10826 		const struct pcpu_dstats *stats;
10827 		unsigned int start;
10828 
10829 		stats = per_cpu_ptr(dstats, cpu);
10830 		do {
10831 			start = u64_stats_fetch_begin(&stats->syncp);
10832 			rx_packets = u64_stats_read(&stats->rx_packets);
10833 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10834 			rx_drops   = u64_stats_read(&stats->rx_drops);
10835 			tx_packets = u64_stats_read(&stats->tx_packets);
10836 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10837 			tx_drops   = u64_stats_read(&stats->tx_drops);
10838 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10839 
10840 		s->rx_packets += rx_packets;
10841 		s->rx_bytes   += rx_bytes;
10842 		s->rx_dropped += rx_drops;
10843 		s->tx_packets += tx_packets;
10844 		s->tx_bytes   += tx_bytes;
10845 		s->tx_dropped += tx_drops;
10846 	}
10847 }
10848 
10849 /* ndo_get_stats64 implementation for dtstats-based accounting.
10850  *
10851  * Populate @s from dev->stats and dev->dstats. This is used internally by the
10852  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10853  */
10854 static void dev_get_dstats64(const struct net_device *dev,
10855 			     struct rtnl_link_stats64 *s)
10856 {
10857 	netdev_stats_to_stats64(s, &dev->stats);
10858 	dev_fetch_dstats(s, dev->dstats);
10859 }
10860 
10861 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10862  * all the same fields in the same order as net_device_stats, with only
10863  * the type differing, but rtnl_link_stats64 may have additional fields
10864  * at the end for newer counters.
10865  */
10866 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10867 			     const struct net_device_stats *netdev_stats)
10868 {
10869 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10870 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10871 	u64 *dst = (u64 *)stats64;
10872 
10873 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10874 	for (i = 0; i < n; i++)
10875 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10876 	/* zero out counters that only exist in rtnl_link_stats64 */
10877 	memset((char *)stats64 + n * sizeof(u64), 0,
10878 	       sizeof(*stats64) - n * sizeof(u64));
10879 }
10880 EXPORT_SYMBOL(netdev_stats_to_stats64);
10881 
10882 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10883 		struct net_device *dev)
10884 {
10885 	struct net_device_core_stats __percpu *p;
10886 
10887 	p = alloc_percpu_gfp(struct net_device_core_stats,
10888 			     GFP_ATOMIC | __GFP_NOWARN);
10889 
10890 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10891 		free_percpu(p);
10892 
10893 	/* This READ_ONCE() pairs with the cmpxchg() above */
10894 	return READ_ONCE(dev->core_stats);
10895 }
10896 
10897 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10898 {
10899 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10900 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10901 	unsigned long __percpu *field;
10902 
10903 	if (unlikely(!p)) {
10904 		p = netdev_core_stats_alloc(dev);
10905 		if (!p)
10906 			return;
10907 	}
10908 
10909 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
10910 	this_cpu_inc(*field);
10911 }
10912 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10913 
10914 /**
10915  *	dev_get_stats	- get network device statistics
10916  *	@dev: device to get statistics from
10917  *	@storage: place to store stats
10918  *
10919  *	Get network statistics from device. Return @storage.
10920  *	The device driver may provide its own method by setting
10921  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10922  *	otherwise the internal statistics structure is used.
10923  */
10924 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10925 					struct rtnl_link_stats64 *storage)
10926 {
10927 	const struct net_device_ops *ops = dev->netdev_ops;
10928 	const struct net_device_core_stats __percpu *p;
10929 
10930 	if (ops->ndo_get_stats64) {
10931 		memset(storage, 0, sizeof(*storage));
10932 		ops->ndo_get_stats64(dev, storage);
10933 	} else if (ops->ndo_get_stats) {
10934 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10935 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10936 		dev_get_tstats64(dev, storage);
10937 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
10938 		dev_get_dstats64(dev, storage);
10939 	} else {
10940 		netdev_stats_to_stats64(storage, &dev->stats);
10941 	}
10942 
10943 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10944 	p = READ_ONCE(dev->core_stats);
10945 	if (p) {
10946 		const struct net_device_core_stats *core_stats;
10947 		int i;
10948 
10949 		for_each_possible_cpu(i) {
10950 			core_stats = per_cpu_ptr(p, i);
10951 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10952 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10953 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10954 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10955 		}
10956 	}
10957 	return storage;
10958 }
10959 EXPORT_SYMBOL(dev_get_stats);
10960 
10961 /**
10962  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10963  *	@s: place to store stats
10964  *	@netstats: per-cpu network stats to read from
10965  *
10966  *	Read per-cpu network statistics and populate the related fields in @s.
10967  */
10968 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10969 			   const struct pcpu_sw_netstats __percpu *netstats)
10970 {
10971 	int cpu;
10972 
10973 	for_each_possible_cpu(cpu) {
10974 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10975 		const struct pcpu_sw_netstats *stats;
10976 		unsigned int start;
10977 
10978 		stats = per_cpu_ptr(netstats, cpu);
10979 		do {
10980 			start = u64_stats_fetch_begin(&stats->syncp);
10981 			rx_packets = u64_stats_read(&stats->rx_packets);
10982 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10983 			tx_packets = u64_stats_read(&stats->tx_packets);
10984 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10985 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10986 
10987 		s->rx_packets += rx_packets;
10988 		s->rx_bytes   += rx_bytes;
10989 		s->tx_packets += tx_packets;
10990 		s->tx_bytes   += tx_bytes;
10991 	}
10992 }
10993 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10994 
10995 /**
10996  *	dev_get_tstats64 - ndo_get_stats64 implementation
10997  *	@dev: device to get statistics from
10998  *	@s: place to store stats
10999  *
11000  *	Populate @s from dev->stats and dev->tstats. Can be used as
11001  *	ndo_get_stats64() callback.
11002  */
11003 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11004 {
11005 	netdev_stats_to_stats64(s, &dev->stats);
11006 	dev_fetch_sw_netstats(s, dev->tstats);
11007 }
11008 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11009 
11010 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11011 {
11012 	struct netdev_queue *queue = dev_ingress_queue(dev);
11013 
11014 #ifdef CONFIG_NET_CLS_ACT
11015 	if (queue)
11016 		return queue;
11017 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11018 	if (!queue)
11019 		return NULL;
11020 	netdev_init_one_queue(dev, queue, NULL);
11021 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11022 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11023 	rcu_assign_pointer(dev->ingress_queue, queue);
11024 #endif
11025 	return queue;
11026 }
11027 
11028 static const struct ethtool_ops default_ethtool_ops;
11029 
11030 void netdev_set_default_ethtool_ops(struct net_device *dev,
11031 				    const struct ethtool_ops *ops)
11032 {
11033 	if (dev->ethtool_ops == &default_ethtool_ops)
11034 		dev->ethtool_ops = ops;
11035 }
11036 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11037 
11038 /**
11039  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11040  * @dev: netdev to enable the IRQ coalescing on
11041  *
11042  * Sets a conservative default for SW IRQ coalescing. Users can use
11043  * sysfs attributes to override the default values.
11044  */
11045 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11046 {
11047 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11048 
11049 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11050 		dev->gro_flush_timeout = 20000;
11051 		dev->napi_defer_hard_irqs = 1;
11052 	}
11053 }
11054 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11055 
11056 /**
11057  * alloc_netdev_mqs - allocate network device
11058  * @sizeof_priv: size of private data to allocate space for
11059  * @name: device name format string
11060  * @name_assign_type: origin of device name
11061  * @setup: callback to initialize device
11062  * @txqs: the number of TX subqueues to allocate
11063  * @rxqs: the number of RX subqueues to allocate
11064  *
11065  * Allocates a struct net_device with private data area for driver use
11066  * and performs basic initialization.  Also allocates subqueue structs
11067  * for each queue on the device.
11068  */
11069 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11070 		unsigned char name_assign_type,
11071 		void (*setup)(struct net_device *),
11072 		unsigned int txqs, unsigned int rxqs)
11073 {
11074 	struct net_device *dev;
11075 
11076 	BUG_ON(strlen(name) >= sizeof(dev->name));
11077 
11078 	if (txqs < 1) {
11079 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11080 		return NULL;
11081 	}
11082 
11083 	if (rxqs < 1) {
11084 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11085 		return NULL;
11086 	}
11087 
11088 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11089 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11090 	if (!dev)
11091 		return NULL;
11092 
11093 	dev->priv_len = sizeof_priv;
11094 
11095 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11096 #ifdef CONFIG_PCPU_DEV_REFCNT
11097 	dev->pcpu_refcnt = alloc_percpu(int);
11098 	if (!dev->pcpu_refcnt)
11099 		goto free_dev;
11100 	__dev_hold(dev);
11101 #else
11102 	refcount_set(&dev->dev_refcnt, 1);
11103 #endif
11104 
11105 	if (dev_addr_init(dev))
11106 		goto free_pcpu;
11107 
11108 	dev_mc_init(dev);
11109 	dev_uc_init(dev);
11110 
11111 	dev_net_set(dev, &init_net);
11112 
11113 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11114 	dev->xdp_zc_max_segs = 1;
11115 	dev->gso_max_segs = GSO_MAX_SEGS;
11116 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11117 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11118 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11119 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11120 	dev->tso_max_segs = TSO_MAX_SEGS;
11121 	dev->upper_level = 1;
11122 	dev->lower_level = 1;
11123 #ifdef CONFIG_LOCKDEP
11124 	dev->nested_level = 0;
11125 	INIT_LIST_HEAD(&dev->unlink_list);
11126 #endif
11127 
11128 	INIT_LIST_HEAD(&dev->napi_list);
11129 	INIT_LIST_HEAD(&dev->unreg_list);
11130 	INIT_LIST_HEAD(&dev->close_list);
11131 	INIT_LIST_HEAD(&dev->link_watch_list);
11132 	INIT_LIST_HEAD(&dev->adj_list.upper);
11133 	INIT_LIST_HEAD(&dev->adj_list.lower);
11134 	INIT_LIST_HEAD(&dev->ptype_all);
11135 	INIT_LIST_HEAD(&dev->ptype_specific);
11136 	INIT_LIST_HEAD(&dev->net_notifier_list);
11137 #ifdef CONFIG_NET_SCHED
11138 	hash_init(dev->qdisc_hash);
11139 #endif
11140 
11141 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11142 	setup(dev);
11143 
11144 	if (!dev->tx_queue_len) {
11145 		dev->priv_flags |= IFF_NO_QUEUE;
11146 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11147 	}
11148 
11149 	dev->num_tx_queues = txqs;
11150 	dev->real_num_tx_queues = txqs;
11151 	if (netif_alloc_netdev_queues(dev))
11152 		goto free_all;
11153 
11154 	dev->num_rx_queues = rxqs;
11155 	dev->real_num_rx_queues = rxqs;
11156 	if (netif_alloc_rx_queues(dev))
11157 		goto free_all;
11158 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11159 	if (!dev->ethtool)
11160 		goto free_all;
11161 
11162 	strscpy(dev->name, name);
11163 	dev->name_assign_type = name_assign_type;
11164 	dev->group = INIT_NETDEV_GROUP;
11165 	if (!dev->ethtool_ops)
11166 		dev->ethtool_ops = &default_ethtool_ops;
11167 
11168 	nf_hook_netdev_init(dev);
11169 
11170 	return dev;
11171 
11172 free_all:
11173 	free_netdev(dev);
11174 	return NULL;
11175 
11176 free_pcpu:
11177 #ifdef CONFIG_PCPU_DEV_REFCNT
11178 	free_percpu(dev->pcpu_refcnt);
11179 free_dev:
11180 #endif
11181 	kvfree(dev);
11182 	return NULL;
11183 }
11184 EXPORT_SYMBOL(alloc_netdev_mqs);
11185 
11186 /**
11187  * free_netdev - free network device
11188  * @dev: device
11189  *
11190  * This function does the last stage of destroying an allocated device
11191  * interface. The reference to the device object is released. If this
11192  * is the last reference then it will be freed.Must be called in process
11193  * context.
11194  */
11195 void free_netdev(struct net_device *dev)
11196 {
11197 	struct napi_struct *p, *n;
11198 
11199 	might_sleep();
11200 
11201 	/* When called immediately after register_netdevice() failed the unwind
11202 	 * handling may still be dismantling the device. Handle that case by
11203 	 * deferring the free.
11204 	 */
11205 	if (dev->reg_state == NETREG_UNREGISTERING) {
11206 		ASSERT_RTNL();
11207 		dev->needs_free_netdev = true;
11208 		return;
11209 	}
11210 
11211 	kfree(dev->ethtool);
11212 	netif_free_tx_queues(dev);
11213 	netif_free_rx_queues(dev);
11214 
11215 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11216 
11217 	/* Flush device addresses */
11218 	dev_addr_flush(dev);
11219 
11220 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11221 		netif_napi_del(p);
11222 
11223 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11224 #ifdef CONFIG_PCPU_DEV_REFCNT
11225 	free_percpu(dev->pcpu_refcnt);
11226 	dev->pcpu_refcnt = NULL;
11227 #endif
11228 	free_percpu(dev->core_stats);
11229 	dev->core_stats = NULL;
11230 	free_percpu(dev->xdp_bulkq);
11231 	dev->xdp_bulkq = NULL;
11232 
11233 	netdev_free_phy_link_topology(dev);
11234 
11235 	/*  Compatibility with error handling in drivers */
11236 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11237 	    dev->reg_state == NETREG_DUMMY) {
11238 		kvfree(dev);
11239 		return;
11240 	}
11241 
11242 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11243 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11244 
11245 	/* will free via device release */
11246 	put_device(&dev->dev);
11247 }
11248 EXPORT_SYMBOL(free_netdev);
11249 
11250 /**
11251  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11252  * @sizeof_priv: size of private data to allocate space for
11253  *
11254  * Return: the allocated net_device on success, NULL otherwise
11255  */
11256 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11257 {
11258 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11259 			    init_dummy_netdev_core);
11260 }
11261 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11262 
11263 /**
11264  *	synchronize_net -  Synchronize with packet receive processing
11265  *
11266  *	Wait for packets currently being received to be done.
11267  *	Does not block later packets from starting.
11268  */
11269 void synchronize_net(void)
11270 {
11271 	might_sleep();
11272 	if (rtnl_is_locked())
11273 		synchronize_rcu_expedited();
11274 	else
11275 		synchronize_rcu();
11276 }
11277 EXPORT_SYMBOL(synchronize_net);
11278 
11279 static void netdev_rss_contexts_free(struct net_device *dev)
11280 {
11281 	struct ethtool_rxfh_context *ctx;
11282 	unsigned long context;
11283 
11284 	mutex_lock(&dev->ethtool->rss_lock);
11285 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11286 		struct ethtool_rxfh_param rxfh;
11287 
11288 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11289 		rxfh.key = ethtool_rxfh_context_key(ctx);
11290 		rxfh.hfunc = ctx->hfunc;
11291 		rxfh.input_xfrm = ctx->input_xfrm;
11292 		rxfh.rss_context = context;
11293 		rxfh.rss_delete = true;
11294 
11295 		xa_erase(&dev->ethtool->rss_ctx, context);
11296 		if (dev->ethtool_ops->create_rxfh_context)
11297 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11298 							      context, NULL);
11299 		else
11300 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11301 		kfree(ctx);
11302 	}
11303 	xa_destroy(&dev->ethtool->rss_ctx);
11304 	mutex_unlock(&dev->ethtool->rss_lock);
11305 }
11306 
11307 /**
11308  *	unregister_netdevice_queue - remove device from the kernel
11309  *	@dev: device
11310  *	@head: list
11311  *
11312  *	This function shuts down a device interface and removes it
11313  *	from the kernel tables.
11314  *	If head not NULL, device is queued to be unregistered later.
11315  *
11316  *	Callers must hold the rtnl semaphore.  You may want
11317  *	unregister_netdev() instead of this.
11318  */
11319 
11320 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11321 {
11322 	ASSERT_RTNL();
11323 
11324 	if (head) {
11325 		list_move_tail(&dev->unreg_list, head);
11326 	} else {
11327 		LIST_HEAD(single);
11328 
11329 		list_add(&dev->unreg_list, &single);
11330 		unregister_netdevice_many(&single);
11331 	}
11332 }
11333 EXPORT_SYMBOL(unregister_netdevice_queue);
11334 
11335 void unregister_netdevice_many_notify(struct list_head *head,
11336 				      u32 portid, const struct nlmsghdr *nlh)
11337 {
11338 	struct net_device *dev, *tmp;
11339 	LIST_HEAD(close_head);
11340 	int cnt = 0;
11341 
11342 	BUG_ON(dev_boot_phase);
11343 	ASSERT_RTNL();
11344 
11345 	if (list_empty(head))
11346 		return;
11347 
11348 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11349 		/* Some devices call without registering
11350 		 * for initialization unwind. Remove those
11351 		 * devices and proceed with the remaining.
11352 		 */
11353 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11354 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11355 				 dev->name, dev);
11356 
11357 			WARN_ON(1);
11358 			list_del(&dev->unreg_list);
11359 			continue;
11360 		}
11361 		dev->dismantle = true;
11362 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11363 	}
11364 
11365 	/* If device is running, close it first. */
11366 	list_for_each_entry(dev, head, unreg_list)
11367 		list_add_tail(&dev->close_list, &close_head);
11368 	dev_close_many(&close_head, true);
11369 
11370 	list_for_each_entry(dev, head, unreg_list) {
11371 		/* And unlink it from device chain. */
11372 		unlist_netdevice(dev);
11373 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11374 	}
11375 	flush_all_backlogs();
11376 
11377 	synchronize_net();
11378 
11379 	list_for_each_entry(dev, head, unreg_list) {
11380 		struct sk_buff *skb = NULL;
11381 
11382 		/* Shutdown queueing discipline. */
11383 		dev_shutdown(dev);
11384 		dev_tcx_uninstall(dev);
11385 		dev_xdp_uninstall(dev);
11386 		bpf_dev_bound_netdev_unregister(dev);
11387 		dev_dmabuf_uninstall(dev);
11388 
11389 		netdev_offload_xstats_disable_all(dev);
11390 
11391 		/* Notify protocols, that we are about to destroy
11392 		 * this device. They should clean all the things.
11393 		 */
11394 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11395 
11396 		if (!dev->rtnl_link_ops ||
11397 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11398 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11399 						     GFP_KERNEL, NULL, 0,
11400 						     portid, nlh);
11401 
11402 		/*
11403 		 *	Flush the unicast and multicast chains
11404 		 */
11405 		dev_uc_flush(dev);
11406 		dev_mc_flush(dev);
11407 
11408 		netdev_name_node_alt_flush(dev);
11409 		netdev_name_node_free(dev->name_node);
11410 
11411 		netdev_rss_contexts_free(dev);
11412 
11413 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11414 
11415 		if (dev->netdev_ops->ndo_uninit)
11416 			dev->netdev_ops->ndo_uninit(dev);
11417 
11418 		mutex_destroy(&dev->ethtool->rss_lock);
11419 
11420 		if (skb)
11421 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11422 
11423 		/* Notifier chain MUST detach us all upper devices. */
11424 		WARN_ON(netdev_has_any_upper_dev(dev));
11425 		WARN_ON(netdev_has_any_lower_dev(dev));
11426 
11427 		/* Remove entries from kobject tree */
11428 		netdev_unregister_kobject(dev);
11429 #ifdef CONFIG_XPS
11430 		/* Remove XPS queueing entries */
11431 		netif_reset_xps_queues_gt(dev, 0);
11432 #endif
11433 	}
11434 
11435 	synchronize_net();
11436 
11437 	list_for_each_entry(dev, head, unreg_list) {
11438 		netdev_put(dev, &dev->dev_registered_tracker);
11439 		net_set_todo(dev);
11440 		cnt++;
11441 	}
11442 	atomic_add(cnt, &dev_unreg_count);
11443 
11444 	list_del(head);
11445 }
11446 
11447 /**
11448  *	unregister_netdevice_many - unregister many devices
11449  *	@head: list of devices
11450  *
11451  *  Note: As most callers use a stack allocated list_head,
11452  *  we force a list_del() to make sure stack won't be corrupted later.
11453  */
11454 void unregister_netdevice_many(struct list_head *head)
11455 {
11456 	unregister_netdevice_many_notify(head, 0, NULL);
11457 }
11458 EXPORT_SYMBOL(unregister_netdevice_many);
11459 
11460 /**
11461  *	unregister_netdev - remove device from the kernel
11462  *	@dev: device
11463  *
11464  *	This function shuts down a device interface and removes it
11465  *	from the kernel tables.
11466  *
11467  *	This is just a wrapper for unregister_netdevice that takes
11468  *	the rtnl semaphore.  In general you want to use this and not
11469  *	unregister_netdevice.
11470  */
11471 void unregister_netdev(struct net_device *dev)
11472 {
11473 	rtnl_lock();
11474 	unregister_netdevice(dev);
11475 	rtnl_unlock();
11476 }
11477 EXPORT_SYMBOL(unregister_netdev);
11478 
11479 /**
11480  *	__dev_change_net_namespace - move device to different nethost namespace
11481  *	@dev: device
11482  *	@net: network namespace
11483  *	@pat: If not NULL name pattern to try if the current device name
11484  *	      is already taken in the destination network namespace.
11485  *	@new_ifindex: If not zero, specifies device index in the target
11486  *	              namespace.
11487  *
11488  *	This function shuts down a device interface and moves it
11489  *	to a new network namespace. On success 0 is returned, on
11490  *	a failure a netagive errno code is returned.
11491  *
11492  *	Callers must hold the rtnl semaphore.
11493  */
11494 
11495 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11496 			       const char *pat, int new_ifindex)
11497 {
11498 	struct netdev_name_node *name_node;
11499 	struct net *net_old = dev_net(dev);
11500 	char new_name[IFNAMSIZ] = {};
11501 	int err, new_nsid;
11502 
11503 	ASSERT_RTNL();
11504 
11505 	/* Don't allow namespace local devices to be moved. */
11506 	err = -EINVAL;
11507 	if (dev->netns_local)
11508 		goto out;
11509 
11510 	/* Ensure the device has been registered */
11511 	if (dev->reg_state != NETREG_REGISTERED)
11512 		goto out;
11513 
11514 	/* Get out if there is nothing todo */
11515 	err = 0;
11516 	if (net_eq(net_old, net))
11517 		goto out;
11518 
11519 	/* Pick the destination device name, and ensure
11520 	 * we can use it in the destination network namespace.
11521 	 */
11522 	err = -EEXIST;
11523 	if (netdev_name_in_use(net, dev->name)) {
11524 		/* We get here if we can't use the current device name */
11525 		if (!pat)
11526 			goto out;
11527 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11528 		if (err < 0)
11529 			goto out;
11530 	}
11531 	/* Check that none of the altnames conflicts. */
11532 	err = -EEXIST;
11533 	netdev_for_each_altname(dev, name_node)
11534 		if (netdev_name_in_use(net, name_node->name))
11535 			goto out;
11536 
11537 	/* Check that new_ifindex isn't used yet. */
11538 	if (new_ifindex) {
11539 		err = dev_index_reserve(net, new_ifindex);
11540 		if (err < 0)
11541 			goto out;
11542 	} else {
11543 		/* If there is an ifindex conflict assign a new one */
11544 		err = dev_index_reserve(net, dev->ifindex);
11545 		if (err == -EBUSY)
11546 			err = dev_index_reserve(net, 0);
11547 		if (err < 0)
11548 			goto out;
11549 		new_ifindex = err;
11550 	}
11551 
11552 	/*
11553 	 * And now a mini version of register_netdevice unregister_netdevice.
11554 	 */
11555 
11556 	/* If device is running close it first. */
11557 	dev_close(dev);
11558 
11559 	/* And unlink it from device chain */
11560 	unlist_netdevice(dev);
11561 
11562 	synchronize_net();
11563 
11564 	/* Shutdown queueing discipline. */
11565 	dev_shutdown(dev);
11566 
11567 	/* Notify protocols, that we are about to destroy
11568 	 * this device. They should clean all the things.
11569 	 *
11570 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11571 	 * This is wanted because this way 8021q and macvlan know
11572 	 * the device is just moving and can keep their slaves up.
11573 	 */
11574 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11575 	rcu_barrier();
11576 
11577 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11578 
11579 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11580 			    new_ifindex);
11581 
11582 	/*
11583 	 *	Flush the unicast and multicast chains
11584 	 */
11585 	dev_uc_flush(dev);
11586 	dev_mc_flush(dev);
11587 
11588 	/* Send a netdev-removed uevent to the old namespace */
11589 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11590 	netdev_adjacent_del_links(dev);
11591 
11592 	/* Move per-net netdevice notifiers that are following the netdevice */
11593 	move_netdevice_notifiers_dev_net(dev, net);
11594 
11595 	/* Actually switch the network namespace */
11596 	dev_net_set(dev, net);
11597 	dev->ifindex = new_ifindex;
11598 
11599 	if (new_name[0]) {
11600 		/* Rename the netdev to prepared name */
11601 		write_seqlock_bh(&netdev_rename_lock);
11602 		strscpy(dev->name, new_name, IFNAMSIZ);
11603 		write_sequnlock_bh(&netdev_rename_lock);
11604 	}
11605 
11606 	/* Fixup kobjects */
11607 	dev_set_uevent_suppress(&dev->dev, 1);
11608 	err = device_rename(&dev->dev, dev->name);
11609 	dev_set_uevent_suppress(&dev->dev, 0);
11610 	WARN_ON(err);
11611 
11612 	/* Send a netdev-add uevent to the new namespace */
11613 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11614 	netdev_adjacent_add_links(dev);
11615 
11616 	/* Adapt owner in case owning user namespace of target network
11617 	 * namespace is different from the original one.
11618 	 */
11619 	err = netdev_change_owner(dev, net_old, net);
11620 	WARN_ON(err);
11621 
11622 	/* Add the device back in the hashes */
11623 	list_netdevice(dev);
11624 
11625 	/* Notify protocols, that a new device appeared. */
11626 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11627 
11628 	/*
11629 	 *	Prevent userspace races by waiting until the network
11630 	 *	device is fully setup before sending notifications.
11631 	 */
11632 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11633 
11634 	synchronize_net();
11635 	err = 0;
11636 out:
11637 	return err;
11638 }
11639 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11640 
11641 static int dev_cpu_dead(unsigned int oldcpu)
11642 {
11643 	struct sk_buff **list_skb;
11644 	struct sk_buff *skb;
11645 	unsigned int cpu;
11646 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11647 
11648 	local_irq_disable();
11649 	cpu = smp_processor_id();
11650 	sd = &per_cpu(softnet_data, cpu);
11651 	oldsd = &per_cpu(softnet_data, oldcpu);
11652 
11653 	/* Find end of our completion_queue. */
11654 	list_skb = &sd->completion_queue;
11655 	while (*list_skb)
11656 		list_skb = &(*list_skb)->next;
11657 	/* Append completion queue from offline CPU. */
11658 	*list_skb = oldsd->completion_queue;
11659 	oldsd->completion_queue = NULL;
11660 
11661 	/* Append output queue from offline CPU. */
11662 	if (oldsd->output_queue) {
11663 		*sd->output_queue_tailp = oldsd->output_queue;
11664 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11665 		oldsd->output_queue = NULL;
11666 		oldsd->output_queue_tailp = &oldsd->output_queue;
11667 	}
11668 	/* Append NAPI poll list from offline CPU, with one exception :
11669 	 * process_backlog() must be called by cpu owning percpu backlog.
11670 	 * We properly handle process_queue & input_pkt_queue later.
11671 	 */
11672 	while (!list_empty(&oldsd->poll_list)) {
11673 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11674 							    struct napi_struct,
11675 							    poll_list);
11676 
11677 		list_del_init(&napi->poll_list);
11678 		if (napi->poll == process_backlog)
11679 			napi->state &= NAPIF_STATE_THREADED;
11680 		else
11681 			____napi_schedule(sd, napi);
11682 	}
11683 
11684 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11685 	local_irq_enable();
11686 
11687 	if (!use_backlog_threads()) {
11688 #ifdef CONFIG_RPS
11689 		remsd = oldsd->rps_ipi_list;
11690 		oldsd->rps_ipi_list = NULL;
11691 #endif
11692 		/* send out pending IPI's on offline CPU */
11693 		net_rps_send_ipi(remsd);
11694 	}
11695 
11696 	/* Process offline CPU's input_pkt_queue */
11697 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11698 		netif_rx(skb);
11699 		rps_input_queue_head_incr(oldsd);
11700 	}
11701 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11702 		netif_rx(skb);
11703 		rps_input_queue_head_incr(oldsd);
11704 	}
11705 
11706 	return 0;
11707 }
11708 
11709 /**
11710  *	netdev_increment_features - increment feature set by one
11711  *	@all: current feature set
11712  *	@one: new feature set
11713  *	@mask: mask feature set
11714  *
11715  *	Computes a new feature set after adding a device with feature set
11716  *	@one to the master device with current feature set @all.  Will not
11717  *	enable anything that is off in @mask. Returns the new feature set.
11718  */
11719 netdev_features_t netdev_increment_features(netdev_features_t all,
11720 	netdev_features_t one, netdev_features_t mask)
11721 {
11722 	if (mask & NETIF_F_HW_CSUM)
11723 		mask |= NETIF_F_CSUM_MASK;
11724 	mask |= NETIF_F_VLAN_CHALLENGED;
11725 
11726 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11727 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11728 
11729 	/* If one device supports hw checksumming, set for all. */
11730 	if (all & NETIF_F_HW_CSUM)
11731 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11732 
11733 	return all;
11734 }
11735 EXPORT_SYMBOL(netdev_increment_features);
11736 
11737 static struct hlist_head * __net_init netdev_create_hash(void)
11738 {
11739 	int i;
11740 	struct hlist_head *hash;
11741 
11742 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11743 	if (hash != NULL)
11744 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11745 			INIT_HLIST_HEAD(&hash[i]);
11746 
11747 	return hash;
11748 }
11749 
11750 /* Initialize per network namespace state */
11751 static int __net_init netdev_init(struct net *net)
11752 {
11753 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11754 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11755 
11756 	INIT_LIST_HEAD(&net->dev_base_head);
11757 
11758 	net->dev_name_head = netdev_create_hash();
11759 	if (net->dev_name_head == NULL)
11760 		goto err_name;
11761 
11762 	net->dev_index_head = netdev_create_hash();
11763 	if (net->dev_index_head == NULL)
11764 		goto err_idx;
11765 
11766 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11767 
11768 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11769 
11770 	return 0;
11771 
11772 err_idx:
11773 	kfree(net->dev_name_head);
11774 err_name:
11775 	return -ENOMEM;
11776 }
11777 
11778 /**
11779  *	netdev_drivername - network driver for the device
11780  *	@dev: network device
11781  *
11782  *	Determine network driver for device.
11783  */
11784 const char *netdev_drivername(const struct net_device *dev)
11785 {
11786 	const struct device_driver *driver;
11787 	const struct device *parent;
11788 	const char *empty = "";
11789 
11790 	parent = dev->dev.parent;
11791 	if (!parent)
11792 		return empty;
11793 
11794 	driver = parent->driver;
11795 	if (driver && driver->name)
11796 		return driver->name;
11797 	return empty;
11798 }
11799 
11800 static void __netdev_printk(const char *level, const struct net_device *dev,
11801 			    struct va_format *vaf)
11802 {
11803 	if (dev && dev->dev.parent) {
11804 		dev_printk_emit(level[1] - '0',
11805 				dev->dev.parent,
11806 				"%s %s %s%s: %pV",
11807 				dev_driver_string(dev->dev.parent),
11808 				dev_name(dev->dev.parent),
11809 				netdev_name(dev), netdev_reg_state(dev),
11810 				vaf);
11811 	} else if (dev) {
11812 		printk("%s%s%s: %pV",
11813 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11814 	} else {
11815 		printk("%s(NULL net_device): %pV", level, vaf);
11816 	}
11817 }
11818 
11819 void netdev_printk(const char *level, const struct net_device *dev,
11820 		   const char *format, ...)
11821 {
11822 	struct va_format vaf;
11823 	va_list args;
11824 
11825 	va_start(args, format);
11826 
11827 	vaf.fmt = format;
11828 	vaf.va = &args;
11829 
11830 	__netdev_printk(level, dev, &vaf);
11831 
11832 	va_end(args);
11833 }
11834 EXPORT_SYMBOL(netdev_printk);
11835 
11836 #define define_netdev_printk_level(func, level)			\
11837 void func(const struct net_device *dev, const char *fmt, ...)	\
11838 {								\
11839 	struct va_format vaf;					\
11840 	va_list args;						\
11841 								\
11842 	va_start(args, fmt);					\
11843 								\
11844 	vaf.fmt = fmt;						\
11845 	vaf.va = &args;						\
11846 								\
11847 	__netdev_printk(level, dev, &vaf);			\
11848 								\
11849 	va_end(args);						\
11850 }								\
11851 EXPORT_SYMBOL(func);
11852 
11853 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11854 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11855 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11856 define_netdev_printk_level(netdev_err, KERN_ERR);
11857 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11858 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11859 define_netdev_printk_level(netdev_info, KERN_INFO);
11860 
11861 static void __net_exit netdev_exit(struct net *net)
11862 {
11863 	kfree(net->dev_name_head);
11864 	kfree(net->dev_index_head);
11865 	xa_destroy(&net->dev_by_index);
11866 	if (net != &init_net)
11867 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11868 }
11869 
11870 static struct pernet_operations __net_initdata netdev_net_ops = {
11871 	.init = netdev_init,
11872 	.exit = netdev_exit,
11873 };
11874 
11875 static void __net_exit default_device_exit_net(struct net *net)
11876 {
11877 	struct netdev_name_node *name_node, *tmp;
11878 	struct net_device *dev, *aux;
11879 	/*
11880 	 * Push all migratable network devices back to the
11881 	 * initial network namespace
11882 	 */
11883 	ASSERT_RTNL();
11884 	for_each_netdev_safe(net, dev, aux) {
11885 		int err;
11886 		char fb_name[IFNAMSIZ];
11887 
11888 		/* Ignore unmoveable devices (i.e. loopback) */
11889 		if (dev->netns_local)
11890 			continue;
11891 
11892 		/* Leave virtual devices for the generic cleanup */
11893 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11894 			continue;
11895 
11896 		/* Push remaining network devices to init_net */
11897 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11898 		if (netdev_name_in_use(&init_net, fb_name))
11899 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11900 
11901 		netdev_for_each_altname_safe(dev, name_node, tmp)
11902 			if (netdev_name_in_use(&init_net, name_node->name))
11903 				__netdev_name_node_alt_destroy(name_node);
11904 
11905 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11906 		if (err) {
11907 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11908 				 __func__, dev->name, err);
11909 			BUG();
11910 		}
11911 	}
11912 }
11913 
11914 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11915 {
11916 	/* At exit all network devices most be removed from a network
11917 	 * namespace.  Do this in the reverse order of registration.
11918 	 * Do this across as many network namespaces as possible to
11919 	 * improve batching efficiency.
11920 	 */
11921 	struct net_device *dev;
11922 	struct net *net;
11923 	LIST_HEAD(dev_kill_list);
11924 
11925 	rtnl_lock();
11926 	list_for_each_entry(net, net_list, exit_list) {
11927 		default_device_exit_net(net);
11928 		cond_resched();
11929 	}
11930 
11931 	list_for_each_entry(net, net_list, exit_list) {
11932 		for_each_netdev_reverse(net, dev) {
11933 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11934 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11935 			else
11936 				unregister_netdevice_queue(dev, &dev_kill_list);
11937 		}
11938 	}
11939 	unregister_netdevice_many(&dev_kill_list);
11940 	rtnl_unlock();
11941 }
11942 
11943 static struct pernet_operations __net_initdata default_device_ops = {
11944 	.exit_batch = default_device_exit_batch,
11945 };
11946 
11947 static void __init net_dev_struct_check(void)
11948 {
11949 	/* TX read-mostly hotpath */
11950 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
11951 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11952 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11953 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11954 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11955 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11956 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11957 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11958 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11959 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11960 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11961 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11962 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11963 #ifdef CONFIG_XPS
11964 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11965 #endif
11966 #ifdef CONFIG_NETFILTER_EGRESS
11967 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11968 #endif
11969 #ifdef CONFIG_NET_XGRESS
11970 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11971 #endif
11972 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11973 
11974 	/* TXRX read-mostly hotpath */
11975 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11976 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11977 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11978 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11979 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11980 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11981 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11982 
11983 	/* RX read-mostly hotpath */
11984 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11985 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11986 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11987 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11988 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11989 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11990 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11991 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11992 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11993 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11994 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11995 #ifdef CONFIG_NETPOLL
11996 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11997 #endif
11998 #ifdef CONFIG_NET_XGRESS
11999 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12000 #endif
12001 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
12002 }
12003 
12004 /*
12005  *	Initialize the DEV module. At boot time this walks the device list and
12006  *	unhooks any devices that fail to initialise (normally hardware not
12007  *	present) and leaves us with a valid list of present and active devices.
12008  *
12009  */
12010 
12011 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12012 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12013 
12014 static int net_page_pool_create(int cpuid)
12015 {
12016 #if IS_ENABLED(CONFIG_PAGE_POOL)
12017 	struct page_pool_params page_pool_params = {
12018 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12019 		.flags = PP_FLAG_SYSTEM_POOL,
12020 		.nid = cpu_to_mem(cpuid),
12021 	};
12022 	struct page_pool *pp_ptr;
12023 
12024 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12025 	if (IS_ERR(pp_ptr))
12026 		return -ENOMEM;
12027 
12028 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12029 #endif
12030 	return 0;
12031 }
12032 
12033 static int backlog_napi_should_run(unsigned int cpu)
12034 {
12035 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12036 	struct napi_struct *napi = &sd->backlog;
12037 
12038 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12039 }
12040 
12041 static void run_backlog_napi(unsigned int cpu)
12042 {
12043 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12044 
12045 	napi_threaded_poll_loop(&sd->backlog);
12046 }
12047 
12048 static void backlog_napi_setup(unsigned int cpu)
12049 {
12050 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12051 	struct napi_struct *napi = &sd->backlog;
12052 
12053 	napi->thread = this_cpu_read(backlog_napi);
12054 	set_bit(NAPI_STATE_THREADED, &napi->state);
12055 }
12056 
12057 static struct smp_hotplug_thread backlog_threads = {
12058 	.store			= &backlog_napi,
12059 	.thread_should_run	= backlog_napi_should_run,
12060 	.thread_fn		= run_backlog_napi,
12061 	.thread_comm		= "backlog_napi/%u",
12062 	.setup			= backlog_napi_setup,
12063 };
12064 
12065 /*
12066  *       This is called single threaded during boot, so no need
12067  *       to take the rtnl semaphore.
12068  */
12069 static int __init net_dev_init(void)
12070 {
12071 	int i, rc = -ENOMEM;
12072 
12073 	BUG_ON(!dev_boot_phase);
12074 
12075 	net_dev_struct_check();
12076 
12077 	if (dev_proc_init())
12078 		goto out;
12079 
12080 	if (netdev_kobject_init())
12081 		goto out;
12082 
12083 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12084 		INIT_LIST_HEAD(&ptype_base[i]);
12085 
12086 	if (register_pernet_subsys(&netdev_net_ops))
12087 		goto out;
12088 
12089 	/*
12090 	 *	Initialise the packet receive queues.
12091 	 */
12092 
12093 	for_each_possible_cpu(i) {
12094 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
12095 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12096 
12097 		INIT_WORK(flush, flush_backlog);
12098 
12099 		skb_queue_head_init(&sd->input_pkt_queue);
12100 		skb_queue_head_init(&sd->process_queue);
12101 #ifdef CONFIG_XFRM_OFFLOAD
12102 		skb_queue_head_init(&sd->xfrm_backlog);
12103 #endif
12104 		INIT_LIST_HEAD(&sd->poll_list);
12105 		sd->output_queue_tailp = &sd->output_queue;
12106 #ifdef CONFIG_RPS
12107 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12108 		sd->cpu = i;
12109 #endif
12110 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12111 		spin_lock_init(&sd->defer_lock);
12112 
12113 		init_gro_hash(&sd->backlog);
12114 		sd->backlog.poll = process_backlog;
12115 		sd->backlog.weight = weight_p;
12116 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12117 
12118 		if (net_page_pool_create(i))
12119 			goto out;
12120 	}
12121 	if (use_backlog_threads())
12122 		smpboot_register_percpu_thread(&backlog_threads);
12123 
12124 	dev_boot_phase = 0;
12125 
12126 	/* The loopback device is special if any other network devices
12127 	 * is present in a network namespace the loopback device must
12128 	 * be present. Since we now dynamically allocate and free the
12129 	 * loopback device ensure this invariant is maintained by
12130 	 * keeping the loopback device as the first device on the
12131 	 * list of network devices.  Ensuring the loopback devices
12132 	 * is the first device that appears and the last network device
12133 	 * that disappears.
12134 	 */
12135 	if (register_pernet_device(&loopback_net_ops))
12136 		goto out;
12137 
12138 	if (register_pernet_device(&default_device_ops))
12139 		goto out;
12140 
12141 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12142 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12143 
12144 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12145 				       NULL, dev_cpu_dead);
12146 	WARN_ON(rc < 0);
12147 	rc = 0;
12148 
12149 	/* avoid static key IPIs to isolated CPUs */
12150 	if (housekeeping_enabled(HK_TYPE_MISC))
12151 		net_enable_timestamp();
12152 out:
12153 	if (rc < 0) {
12154 		for_each_possible_cpu(i) {
12155 			struct page_pool *pp_ptr;
12156 
12157 			pp_ptr = per_cpu(system_page_pool, i);
12158 			if (!pp_ptr)
12159 				continue;
12160 
12161 			page_pool_destroy(pp_ptr);
12162 			per_cpu(system_page_pool, i) = NULL;
12163 		}
12164 	}
12165 
12166 	return rc;
12167 }
12168 
12169 subsys_initcall(net_dev_init);
12170