xref: /linux-6.15/net/core/dev.c (revision 110eff17)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <[email protected]>
8  *				Mark Evans, <[email protected]>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <[email protected]>
12  *		Alan Cox <[email protected]>
13  *		David Hinds <[email protected]>
14  *		Alexey Kuznetsov <[email protected]>
15  *		Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	else
237 		local_irq_save(*flags);
238 }
239 
240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 		spin_lock_irq(&sd->input_pkt_queue.lock);
244 	else
245 		local_irq_disable();
246 }
247 
248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 					      unsigned long *flags)
250 {
251 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 	else
254 		local_irq_restore(*flags);
255 }
256 
257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 		spin_unlock_irq(&sd->input_pkt_queue.lock);
261 	else
262 		local_irq_enable();
263 }
264 
265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 						       const char *name)
267 {
268 	struct netdev_name_node *name_node;
269 
270 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 	if (!name_node)
272 		return NULL;
273 	INIT_HLIST_NODE(&name_node->hlist);
274 	name_node->dev = dev;
275 	name_node->name = name;
276 	return name_node;
277 }
278 
279 static struct netdev_name_node *
280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 	struct netdev_name_node *name_node;
283 
284 	name_node = netdev_name_node_alloc(dev, dev->name);
285 	if (!name_node)
286 		return NULL;
287 	INIT_LIST_HEAD(&name_node->list);
288 	return name_node;
289 }
290 
291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 	kfree(name_node);
294 }
295 
296 static void netdev_name_node_add(struct net *net,
297 				 struct netdev_name_node *name_node)
298 {
299 	hlist_add_head_rcu(&name_node->hlist,
300 			   dev_name_hash(net, name_node->name));
301 }
302 
303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 	hlist_del_rcu(&name_node->hlist);
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 							const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 							    const char *name)
322 {
323 	struct hlist_head *head = dev_name_hash(net, name);
324 	struct netdev_name_node *name_node;
325 
326 	hlist_for_each_entry_rcu(name_node, head, hlist)
327 		if (!strcmp(name_node->name, name))
328 			return name_node;
329 	return NULL;
330 }
331 
332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 	return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337 
338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 	struct netdev_name_node *name_node;
341 	struct net *net = dev_net(dev);
342 
343 	name_node = netdev_name_node_lookup(net, name);
344 	if (name_node)
345 		return -EEXIST;
346 	name_node = netdev_name_node_alloc(dev, name);
347 	if (!name_node)
348 		return -ENOMEM;
349 	netdev_name_node_add(net, name_node);
350 	/* The node that holds dev->name acts as a head of per-device list. */
351 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352 
353 	return 0;
354 }
355 
356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 	struct netdev_name_node *name_node =
359 		container_of(head, struct netdev_name_node, rcu);
360 
361 	kfree(name_node->name);
362 	netdev_name_node_free(name_node);
363 }
364 
365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 	netdev_name_node_del(name_node);
368 	list_del(&name_node->list);
369 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371 
372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 	struct netdev_name_node *name_node;
375 	struct net *net = dev_net(dev);
376 
377 	name_node = netdev_name_node_lookup(net, name);
378 	if (!name_node)
379 		return -ENOENT;
380 	/* lookup might have found our primary name or a name belonging
381 	 * to another device.
382 	 */
383 	if (name_node == dev->name_node || name_node->dev != dev)
384 		return -EINVAL;
385 
386 	__netdev_name_node_alt_destroy(name_node);
387 	return 0;
388 }
389 
390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 	struct netdev_name_node *name_node, *tmp;
393 
394 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 		list_del(&name_node->list);
396 		netdev_name_node_alt_free(&name_node->rcu);
397 	}
398 }
399 
400 /* Device list insertion */
401 static void list_netdevice(struct net_device *dev)
402 {
403 	struct netdev_name_node *name_node;
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 	netdev_name_node_add(net, dev->name_node);
410 	hlist_add_head_rcu(&dev->index_hlist,
411 			   dev_index_hash(net, dev->ifindex));
412 
413 	netdev_for_each_altname(dev, name_node)
414 		netdev_name_node_add(net, name_node);
415 
416 	/* We reserved the ifindex, this can't fail */
417 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418 
419 	dev_base_seq_inc(net);
420 }
421 
422 /* Device list removal
423  * caller must respect a RCU grace period before freeing/reusing dev
424  */
425 static void unlist_netdevice(struct net_device *dev)
426 {
427 	struct netdev_name_node *name_node;
428 	struct net *net = dev_net(dev);
429 
430 	ASSERT_RTNL();
431 
432 	xa_erase(&net->dev_by_index, dev->ifindex);
433 
434 	netdev_for_each_altname(dev, name_node)
435 		netdev_name_node_del(name_node);
436 
437 	/* Unlink dev from the device chain */
438 	list_del_rcu(&dev->dev_list);
439 	netdev_name_node_del(dev->name_node);
440 	hlist_del_rcu(&dev->index_hlist);
441 
442 	dev_base_seq_inc(dev_net(dev));
443 }
444 
445 /*
446  *	Our notifier list
447  */
448 
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450 
451 /*
452  *	Device drivers call our routines to queue packets here. We empty the
453  *	queue in the local softnet handler.
454  */
455 
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460 
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462  * PP consumers must pay attention to run APIs in the appropriate context
463  * (e.g. NAPI context).
464  */
465 DEFINE_PER_CPU(struct page_pool *, system_page_pool);
466 
467 #ifdef CONFIG_LOCKDEP
468 /*
469  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
470  * according to dev->type
471  */
472 static const unsigned short netdev_lock_type[] = {
473 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
474 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
475 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
476 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
477 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
478 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
479 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
480 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
481 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
482 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
483 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
484 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
485 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
486 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
487 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
488 
489 static const char *const netdev_lock_name[] = {
490 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
491 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
492 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
493 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
494 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
495 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
496 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
497 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
498 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
499 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
500 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
501 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
502 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
503 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
504 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
505 
506 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
507 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
508 
509 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
510 {
511 	int i;
512 
513 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
514 		if (netdev_lock_type[i] == dev_type)
515 			return i;
516 	/* the last key is used by default */
517 	return ARRAY_SIZE(netdev_lock_type) - 1;
518 }
519 
520 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
521 						 unsigned short dev_type)
522 {
523 	int i;
524 
525 	i = netdev_lock_pos(dev_type);
526 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
527 				   netdev_lock_name[i]);
528 }
529 
530 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
531 {
532 	int i;
533 
534 	i = netdev_lock_pos(dev->type);
535 	lockdep_set_class_and_name(&dev->addr_list_lock,
536 				   &netdev_addr_lock_key[i],
537 				   netdev_lock_name[i]);
538 }
539 #else
540 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
541 						 unsigned short dev_type)
542 {
543 }
544 
545 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
546 {
547 }
548 #endif
549 
550 /*******************************************************************************
551  *
552  *		Protocol management and registration routines
553  *
554  *******************************************************************************/
555 
556 
557 /*
558  *	Add a protocol ID to the list. Now that the input handler is
559  *	smarter we can dispense with all the messy stuff that used to be
560  *	here.
561  *
562  *	BEWARE!!! Protocol handlers, mangling input packets,
563  *	MUST BE last in hash buckets and checking protocol handlers
564  *	MUST start from promiscuous ptype_all chain in net_bh.
565  *	It is true now, do not change it.
566  *	Explanation follows: if protocol handler, mangling packet, will
567  *	be the first on list, it is not able to sense, that packet
568  *	is cloned and should be copied-on-write, so that it will
569  *	change it and subsequent readers will get broken packet.
570  *							--ANK (980803)
571  */
572 
573 static inline struct list_head *ptype_head(const struct packet_type *pt)
574 {
575 	if (pt->type == htons(ETH_P_ALL))
576 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
577 	else
578 		return pt->dev ? &pt->dev->ptype_specific :
579 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
580 }
581 
582 /**
583  *	dev_add_pack - add packet handler
584  *	@pt: packet type declaration
585  *
586  *	Add a protocol handler to the networking stack. The passed &packet_type
587  *	is linked into kernel lists and may not be freed until it has been
588  *	removed from the kernel lists.
589  *
590  *	This call does not sleep therefore it can not
591  *	guarantee all CPU's that are in middle of receiving packets
592  *	will see the new packet type (until the next received packet).
593  */
594 
595 void dev_add_pack(struct packet_type *pt)
596 {
597 	struct list_head *head = ptype_head(pt);
598 
599 	spin_lock(&ptype_lock);
600 	list_add_rcu(&pt->list, head);
601 	spin_unlock(&ptype_lock);
602 }
603 EXPORT_SYMBOL(dev_add_pack);
604 
605 /**
606  *	__dev_remove_pack	 - remove packet handler
607  *	@pt: packet type declaration
608  *
609  *	Remove a protocol handler that was previously added to the kernel
610  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
611  *	from the kernel lists and can be freed or reused once this function
612  *	returns.
613  *
614  *      The packet type might still be in use by receivers
615  *	and must not be freed until after all the CPU's have gone
616  *	through a quiescent state.
617  */
618 void __dev_remove_pack(struct packet_type *pt)
619 {
620 	struct list_head *head = ptype_head(pt);
621 	struct packet_type *pt1;
622 
623 	spin_lock(&ptype_lock);
624 
625 	list_for_each_entry(pt1, head, list) {
626 		if (pt == pt1) {
627 			list_del_rcu(&pt->list);
628 			goto out;
629 		}
630 	}
631 
632 	pr_warn("dev_remove_pack: %p not found\n", pt);
633 out:
634 	spin_unlock(&ptype_lock);
635 }
636 EXPORT_SYMBOL(__dev_remove_pack);
637 
638 /**
639  *	dev_remove_pack	 - remove packet handler
640  *	@pt: packet type declaration
641  *
642  *	Remove a protocol handler that was previously added to the kernel
643  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
644  *	from the kernel lists and can be freed or reused once this function
645  *	returns.
646  *
647  *	This call sleeps to guarantee that no CPU is looking at the packet
648  *	type after return.
649  */
650 void dev_remove_pack(struct packet_type *pt)
651 {
652 	__dev_remove_pack(pt);
653 
654 	synchronize_net();
655 }
656 EXPORT_SYMBOL(dev_remove_pack);
657 
658 
659 /*******************************************************************************
660  *
661  *			    Device Interface Subroutines
662  *
663  *******************************************************************************/
664 
665 /**
666  *	dev_get_iflink	- get 'iflink' value of a interface
667  *	@dev: targeted interface
668  *
669  *	Indicates the ifindex the interface is linked to.
670  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
671  */
672 
673 int dev_get_iflink(const struct net_device *dev)
674 {
675 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
676 		return dev->netdev_ops->ndo_get_iflink(dev);
677 
678 	return READ_ONCE(dev->ifindex);
679 }
680 EXPORT_SYMBOL(dev_get_iflink);
681 
682 /**
683  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
684  *	@dev: targeted interface
685  *	@skb: The packet.
686  *
687  *	For better visibility of tunnel traffic OVS needs to retrieve
688  *	egress tunnel information for a packet. Following API allows
689  *	user to get this info.
690  */
691 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
692 {
693 	struct ip_tunnel_info *info;
694 
695 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
696 		return -EINVAL;
697 
698 	info = skb_tunnel_info_unclone(skb);
699 	if (!info)
700 		return -ENOMEM;
701 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
702 		return -EINVAL;
703 
704 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
705 }
706 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
707 
708 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
709 {
710 	int k = stack->num_paths++;
711 
712 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
713 		return NULL;
714 
715 	return &stack->path[k];
716 }
717 
718 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
719 			  struct net_device_path_stack *stack)
720 {
721 	const struct net_device *last_dev;
722 	struct net_device_path_ctx ctx = {
723 		.dev	= dev,
724 	};
725 	struct net_device_path *path;
726 	int ret = 0;
727 
728 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
729 	stack->num_paths = 0;
730 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
731 		last_dev = ctx.dev;
732 		path = dev_fwd_path(stack);
733 		if (!path)
734 			return -1;
735 
736 		memset(path, 0, sizeof(struct net_device_path));
737 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
738 		if (ret < 0)
739 			return -1;
740 
741 		if (WARN_ON_ONCE(last_dev == ctx.dev))
742 			return -1;
743 	}
744 
745 	if (!ctx.dev)
746 		return ret;
747 
748 	path = dev_fwd_path(stack);
749 	if (!path)
750 		return -1;
751 	path->type = DEV_PATH_ETHERNET;
752 	path->dev = ctx.dev;
753 
754 	return ret;
755 }
756 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
757 
758 /* must be called under rcu_read_lock(), as we dont take a reference */
759 static struct napi_struct *napi_by_id(unsigned int napi_id)
760 {
761 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
762 	struct napi_struct *napi;
763 
764 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
765 		if (napi->napi_id == napi_id)
766 			return napi;
767 
768 	return NULL;
769 }
770 
771 /* must be called under rcu_read_lock(), as we dont take a reference */
772 static struct napi_struct *
773 netdev_napi_by_id(struct net *net, unsigned int napi_id)
774 {
775 	struct napi_struct *napi;
776 
777 	napi = napi_by_id(napi_id);
778 	if (!napi)
779 		return NULL;
780 
781 	if (WARN_ON_ONCE(!napi->dev))
782 		return NULL;
783 	if (!net_eq(net, dev_net(napi->dev)))
784 		return NULL;
785 
786 	return napi;
787 }
788 
789 /**
790  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
791  *	@net: the applicable net namespace
792  *	@napi_id: ID of a NAPI of a target device
793  *
794  *	Find a NAPI instance with @napi_id. Lock its device.
795  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
796  *	netdev_unlock() must be called to release it.
797  *
798  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
799  */
800 struct napi_struct *
801 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
802 {
803 	struct napi_struct *napi;
804 	struct net_device *dev;
805 
806 	rcu_read_lock();
807 	napi = netdev_napi_by_id(net, napi_id);
808 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
809 		rcu_read_unlock();
810 		return NULL;
811 	}
812 
813 	dev = napi->dev;
814 	dev_hold(dev);
815 	rcu_read_unlock();
816 
817 	dev = __netdev_put_lock(dev);
818 	if (!dev)
819 		return NULL;
820 
821 	rcu_read_lock();
822 	napi = netdev_napi_by_id(net, napi_id);
823 	if (napi && napi->dev != dev)
824 		napi = NULL;
825 	rcu_read_unlock();
826 
827 	if (!napi)
828 		netdev_unlock(dev);
829 	return napi;
830 }
831 
832 /**
833  *	__dev_get_by_name	- find a device by its name
834  *	@net: the applicable net namespace
835  *	@name: name to find
836  *
837  *	Find an interface by name. Must be called under RTNL semaphore.
838  *	If the name is found a pointer to the device is returned.
839  *	If the name is not found then %NULL is returned. The
840  *	reference counters are not incremented so the caller must be
841  *	careful with locks.
842  */
843 
844 struct net_device *__dev_get_by_name(struct net *net, const char *name)
845 {
846 	struct netdev_name_node *node_name;
847 
848 	node_name = netdev_name_node_lookup(net, name);
849 	return node_name ? node_name->dev : NULL;
850 }
851 EXPORT_SYMBOL(__dev_get_by_name);
852 
853 /**
854  * dev_get_by_name_rcu	- find a device by its name
855  * @net: the applicable net namespace
856  * @name: name to find
857  *
858  * Find an interface by name.
859  * If the name is found a pointer to the device is returned.
860  * If the name is not found then %NULL is returned.
861  * The reference counters are not incremented so the caller must be
862  * careful with locks. The caller must hold RCU lock.
863  */
864 
865 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
866 {
867 	struct netdev_name_node *node_name;
868 
869 	node_name = netdev_name_node_lookup_rcu(net, name);
870 	return node_name ? node_name->dev : NULL;
871 }
872 EXPORT_SYMBOL(dev_get_by_name_rcu);
873 
874 /* Deprecated for new users, call netdev_get_by_name() instead */
875 struct net_device *dev_get_by_name(struct net *net, const char *name)
876 {
877 	struct net_device *dev;
878 
879 	rcu_read_lock();
880 	dev = dev_get_by_name_rcu(net, name);
881 	dev_hold(dev);
882 	rcu_read_unlock();
883 	return dev;
884 }
885 EXPORT_SYMBOL(dev_get_by_name);
886 
887 /**
888  *	netdev_get_by_name() - find a device by its name
889  *	@net: the applicable net namespace
890  *	@name: name to find
891  *	@tracker: tracking object for the acquired reference
892  *	@gfp: allocation flags for the tracker
893  *
894  *	Find an interface by name. This can be called from any
895  *	context and does its own locking. The returned handle has
896  *	the usage count incremented and the caller must use netdev_put() to
897  *	release it when it is no longer needed. %NULL is returned if no
898  *	matching device is found.
899  */
900 struct net_device *netdev_get_by_name(struct net *net, const char *name,
901 				      netdevice_tracker *tracker, gfp_t gfp)
902 {
903 	struct net_device *dev;
904 
905 	dev = dev_get_by_name(net, name);
906 	if (dev)
907 		netdev_tracker_alloc(dev, tracker, gfp);
908 	return dev;
909 }
910 EXPORT_SYMBOL(netdev_get_by_name);
911 
912 /**
913  *	__dev_get_by_index - find a device by its ifindex
914  *	@net: the applicable net namespace
915  *	@ifindex: index of device
916  *
917  *	Search for an interface by index. Returns %NULL if the device
918  *	is not found or a pointer to the device. The device has not
919  *	had its reference counter increased so the caller must be careful
920  *	about locking. The caller must hold the RTNL semaphore.
921  */
922 
923 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
924 {
925 	struct net_device *dev;
926 	struct hlist_head *head = dev_index_hash(net, ifindex);
927 
928 	hlist_for_each_entry(dev, head, index_hlist)
929 		if (dev->ifindex == ifindex)
930 			return dev;
931 
932 	return NULL;
933 }
934 EXPORT_SYMBOL(__dev_get_by_index);
935 
936 /**
937  *	dev_get_by_index_rcu - find a device by its ifindex
938  *	@net: the applicable net namespace
939  *	@ifindex: index of device
940  *
941  *	Search for an interface by index. Returns %NULL if the device
942  *	is not found or a pointer to the device. The device has not
943  *	had its reference counter increased so the caller must be careful
944  *	about locking. The caller must hold RCU lock.
945  */
946 
947 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
948 {
949 	struct net_device *dev;
950 	struct hlist_head *head = dev_index_hash(net, ifindex);
951 
952 	hlist_for_each_entry_rcu(dev, head, index_hlist)
953 		if (dev->ifindex == ifindex)
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_get_by_index_rcu);
959 
960 /* Deprecated for new users, call netdev_get_by_index() instead */
961 struct net_device *dev_get_by_index(struct net *net, int ifindex)
962 {
963 	struct net_device *dev;
964 
965 	rcu_read_lock();
966 	dev = dev_get_by_index_rcu(net, ifindex);
967 	dev_hold(dev);
968 	rcu_read_unlock();
969 	return dev;
970 }
971 EXPORT_SYMBOL(dev_get_by_index);
972 
973 /**
974  *	netdev_get_by_index() - find a device by its ifindex
975  *	@net: the applicable net namespace
976  *	@ifindex: index of device
977  *	@tracker: tracking object for the acquired reference
978  *	@gfp: allocation flags for the tracker
979  *
980  *	Search for an interface by index. Returns NULL if the device
981  *	is not found or a pointer to the device. The device returned has
982  *	had a reference added and the pointer is safe until the user calls
983  *	netdev_put() to indicate they have finished with it.
984  */
985 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
986 				       netdevice_tracker *tracker, gfp_t gfp)
987 {
988 	struct net_device *dev;
989 
990 	dev = dev_get_by_index(net, ifindex);
991 	if (dev)
992 		netdev_tracker_alloc(dev, tracker, gfp);
993 	return dev;
994 }
995 EXPORT_SYMBOL(netdev_get_by_index);
996 
997 /**
998  *	dev_get_by_napi_id - find a device by napi_id
999  *	@napi_id: ID of the NAPI struct
1000  *
1001  *	Search for an interface by NAPI ID. Returns %NULL if the device
1002  *	is not found or a pointer to the device. The device has not had
1003  *	its reference counter increased so the caller must be careful
1004  *	about locking. The caller must hold RCU lock.
1005  */
1006 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1007 {
1008 	struct napi_struct *napi;
1009 
1010 	WARN_ON_ONCE(!rcu_read_lock_held());
1011 
1012 	if (!napi_id_valid(napi_id))
1013 		return NULL;
1014 
1015 	napi = napi_by_id(napi_id);
1016 
1017 	return napi ? napi->dev : NULL;
1018 }
1019 
1020 /* Release the held reference on the net_device, and if the net_device
1021  * is still registered try to lock the instance lock. If device is being
1022  * unregistered NULL will be returned (but the reference has been released,
1023  * either way!)
1024  *
1025  * This helper is intended for locking net_device after it has been looked up
1026  * using a lockless lookup helper. Lock prevents the instance from going away.
1027  */
1028 struct net_device *__netdev_put_lock(struct net_device *dev)
1029 {
1030 	netdev_lock(dev);
1031 	if (dev->reg_state > NETREG_REGISTERED) {
1032 		netdev_unlock(dev);
1033 		dev_put(dev);
1034 		return NULL;
1035 	}
1036 	dev_put(dev);
1037 	return dev;
1038 }
1039 
1040 /**
1041  *	netdev_get_by_index_lock() - find a device by its ifindex
1042  *	@net: the applicable net namespace
1043  *	@ifindex: index of device
1044  *
1045  *	Search for an interface by index. If a valid device
1046  *	with @ifindex is found it will be returned with netdev->lock held.
1047  *	netdev_unlock() must be called to release it.
1048  *
1049  *	Return: pointer to a device with lock held, NULL if not found.
1050  */
1051 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1052 {
1053 	struct net_device *dev;
1054 
1055 	dev = dev_get_by_index(net, ifindex);
1056 	if (!dev)
1057 		return NULL;
1058 
1059 	return __netdev_put_lock(dev);
1060 }
1061 
1062 /**
1063  * netdev_get_by_name_lock() - find a device by its name
1064  * @net: the applicable net namespace
1065  * @name: name of device
1066  *
1067  * Search for an interface by name. If a valid device
1068  * with @name is found it will be returned with netdev->lock held.
1069  * netdev_unlock() must be called to release it.
1070  *
1071  * Return: pointer to a device with lock held, NULL if not found.
1072  */
1073 struct net_device *netdev_get_by_name_lock(struct net *net, const char *name)
1074 {
1075 	struct net_device *dev;
1076 
1077 	dev = dev_get_by_name(net, name);
1078 	if (!dev)
1079 		return NULL;
1080 
1081 	return __netdev_put_lock(dev);
1082 }
1083 
1084 struct net_device *
1085 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1086 		    unsigned long *index)
1087 {
1088 	if (dev)
1089 		netdev_unlock(dev);
1090 
1091 	do {
1092 		rcu_read_lock();
1093 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1094 		if (!dev) {
1095 			rcu_read_unlock();
1096 			return NULL;
1097 		}
1098 		dev_hold(dev);
1099 		rcu_read_unlock();
1100 
1101 		dev = __netdev_put_lock(dev);
1102 		if (dev)
1103 			return dev;
1104 
1105 		(*index)++;
1106 	} while (true);
1107 }
1108 
1109 static DEFINE_SEQLOCK(netdev_rename_lock);
1110 
1111 void netdev_copy_name(struct net_device *dev, char *name)
1112 {
1113 	unsigned int seq;
1114 
1115 	do {
1116 		seq = read_seqbegin(&netdev_rename_lock);
1117 		strscpy(name, dev->name, IFNAMSIZ);
1118 	} while (read_seqretry(&netdev_rename_lock, seq));
1119 }
1120 
1121 /**
1122  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1123  *	@net: network namespace
1124  *	@name: a pointer to the buffer where the name will be stored.
1125  *	@ifindex: the ifindex of the interface to get the name from.
1126  */
1127 int netdev_get_name(struct net *net, char *name, int ifindex)
1128 {
1129 	struct net_device *dev;
1130 	int ret;
1131 
1132 	rcu_read_lock();
1133 
1134 	dev = dev_get_by_index_rcu(net, ifindex);
1135 	if (!dev) {
1136 		ret = -ENODEV;
1137 		goto out;
1138 	}
1139 
1140 	netdev_copy_name(dev, name);
1141 
1142 	ret = 0;
1143 out:
1144 	rcu_read_unlock();
1145 	return ret;
1146 }
1147 
1148 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1149 			 const char *ha)
1150 {
1151 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1152 }
1153 
1154 /**
1155  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1156  *	@net: the applicable net namespace
1157  *	@type: media type of device
1158  *	@ha: hardware address
1159  *
1160  *	Search for an interface by MAC address. Returns NULL if the device
1161  *	is not found or a pointer to the device.
1162  *	The caller must hold RCU.
1163  *	The returned device has not had its ref count increased
1164  *	and the caller must therefore be careful about locking
1165  *
1166  */
1167 
1168 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1169 				       const char *ha)
1170 {
1171 	struct net_device *dev;
1172 
1173 	for_each_netdev_rcu(net, dev)
1174 		if (dev_addr_cmp(dev, type, ha))
1175 			return dev;
1176 
1177 	return NULL;
1178 }
1179 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1180 
1181 /**
1182  * dev_getbyhwaddr() - find a device by its hardware address
1183  * @net: the applicable net namespace
1184  * @type: media type of device
1185  * @ha: hardware address
1186  *
1187  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1188  * rtnl_lock.
1189  *
1190  * Context: rtnl_lock() must be held.
1191  * Return: pointer to the net_device, or NULL if not found
1192  */
1193 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1194 				   const char *ha)
1195 {
1196 	struct net_device *dev;
1197 
1198 	ASSERT_RTNL();
1199 	for_each_netdev(net, dev)
1200 		if (dev_addr_cmp(dev, type, ha))
1201 			return dev;
1202 
1203 	return NULL;
1204 }
1205 EXPORT_SYMBOL(dev_getbyhwaddr);
1206 
1207 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1208 {
1209 	struct net_device *dev, *ret = NULL;
1210 
1211 	rcu_read_lock();
1212 	for_each_netdev_rcu(net, dev)
1213 		if (dev->type == type) {
1214 			dev_hold(dev);
1215 			ret = dev;
1216 			break;
1217 		}
1218 	rcu_read_unlock();
1219 	return ret;
1220 }
1221 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1222 
1223 /**
1224  *	__dev_get_by_flags - find any device with given flags
1225  *	@net: the applicable net namespace
1226  *	@if_flags: IFF_* values
1227  *	@mask: bitmask of bits in if_flags to check
1228  *
1229  *	Search for any interface with the given flags. Returns NULL if a device
1230  *	is not found or a pointer to the device. Must be called inside
1231  *	rtnl_lock(), and result refcount is unchanged.
1232  */
1233 
1234 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1235 				      unsigned short mask)
1236 {
1237 	struct net_device *dev, *ret;
1238 
1239 	ASSERT_RTNL();
1240 
1241 	ret = NULL;
1242 	for_each_netdev(net, dev) {
1243 		if (((dev->flags ^ if_flags) & mask) == 0) {
1244 			ret = dev;
1245 			break;
1246 		}
1247 	}
1248 	return ret;
1249 }
1250 EXPORT_SYMBOL(__dev_get_by_flags);
1251 
1252 /**
1253  *	dev_valid_name - check if name is okay for network device
1254  *	@name: name string
1255  *
1256  *	Network device names need to be valid file names to
1257  *	allow sysfs to work.  We also disallow any kind of
1258  *	whitespace.
1259  */
1260 bool dev_valid_name(const char *name)
1261 {
1262 	if (*name == '\0')
1263 		return false;
1264 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1265 		return false;
1266 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1267 		return false;
1268 
1269 	while (*name) {
1270 		if (*name == '/' || *name == ':' || isspace(*name))
1271 			return false;
1272 		name++;
1273 	}
1274 	return true;
1275 }
1276 EXPORT_SYMBOL(dev_valid_name);
1277 
1278 /**
1279  *	__dev_alloc_name - allocate a name for a device
1280  *	@net: network namespace to allocate the device name in
1281  *	@name: name format string
1282  *	@res: result name string
1283  *
1284  *	Passed a format string - eg "lt%d" it will try and find a suitable
1285  *	id. It scans list of devices to build up a free map, then chooses
1286  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1287  *	while allocating the name and adding the device in order to avoid
1288  *	duplicates.
1289  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1290  *	Returns the number of the unit assigned or a negative errno code.
1291  */
1292 
1293 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1294 {
1295 	int i = 0;
1296 	const char *p;
1297 	const int max_netdevices = 8*PAGE_SIZE;
1298 	unsigned long *inuse;
1299 	struct net_device *d;
1300 	char buf[IFNAMSIZ];
1301 
1302 	/* Verify the string as this thing may have come from the user.
1303 	 * There must be one "%d" and no other "%" characters.
1304 	 */
1305 	p = strchr(name, '%');
1306 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1307 		return -EINVAL;
1308 
1309 	/* Use one page as a bit array of possible slots */
1310 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1311 	if (!inuse)
1312 		return -ENOMEM;
1313 
1314 	for_each_netdev(net, d) {
1315 		struct netdev_name_node *name_node;
1316 
1317 		netdev_for_each_altname(d, name_node) {
1318 			if (!sscanf(name_node->name, name, &i))
1319 				continue;
1320 			if (i < 0 || i >= max_netdevices)
1321 				continue;
1322 
1323 			/* avoid cases where sscanf is not exact inverse of printf */
1324 			snprintf(buf, IFNAMSIZ, name, i);
1325 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1326 				__set_bit(i, inuse);
1327 		}
1328 		if (!sscanf(d->name, name, &i))
1329 			continue;
1330 		if (i < 0 || i >= max_netdevices)
1331 			continue;
1332 
1333 		/* avoid cases where sscanf is not exact inverse of printf */
1334 		snprintf(buf, IFNAMSIZ, name, i);
1335 		if (!strncmp(buf, d->name, IFNAMSIZ))
1336 			__set_bit(i, inuse);
1337 	}
1338 
1339 	i = find_first_zero_bit(inuse, max_netdevices);
1340 	bitmap_free(inuse);
1341 	if (i == max_netdevices)
1342 		return -ENFILE;
1343 
1344 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1345 	strscpy(buf, name, IFNAMSIZ);
1346 	snprintf(res, IFNAMSIZ, buf, i);
1347 	return i;
1348 }
1349 
1350 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1351 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1352 			       const char *want_name, char *out_name,
1353 			       int dup_errno)
1354 {
1355 	if (!dev_valid_name(want_name))
1356 		return -EINVAL;
1357 
1358 	if (strchr(want_name, '%'))
1359 		return __dev_alloc_name(net, want_name, out_name);
1360 
1361 	if (netdev_name_in_use(net, want_name))
1362 		return -dup_errno;
1363 	if (out_name != want_name)
1364 		strscpy(out_name, want_name, IFNAMSIZ);
1365 	return 0;
1366 }
1367 
1368 /**
1369  *	dev_alloc_name - allocate a name for a device
1370  *	@dev: device
1371  *	@name: name format string
1372  *
1373  *	Passed a format string - eg "lt%d" it will try and find a suitable
1374  *	id. It scans list of devices to build up a free map, then chooses
1375  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1376  *	while allocating the name and adding the device in order to avoid
1377  *	duplicates.
1378  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1379  *	Returns the number of the unit assigned or a negative errno code.
1380  */
1381 
1382 int dev_alloc_name(struct net_device *dev, const char *name)
1383 {
1384 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1385 }
1386 EXPORT_SYMBOL(dev_alloc_name);
1387 
1388 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1389 			      const char *name)
1390 {
1391 	int ret;
1392 
1393 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1394 	return ret < 0 ? ret : 0;
1395 }
1396 
1397 int netif_change_name(struct net_device *dev, const char *newname)
1398 {
1399 	struct net *net = dev_net(dev);
1400 	unsigned char old_assign_type;
1401 	char oldname[IFNAMSIZ];
1402 	int err = 0;
1403 	int ret;
1404 
1405 	ASSERT_RTNL_NET(net);
1406 
1407 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1408 		return 0;
1409 
1410 	memcpy(oldname, dev->name, IFNAMSIZ);
1411 
1412 	write_seqlock_bh(&netdev_rename_lock);
1413 	err = dev_get_valid_name(net, dev, newname);
1414 	write_sequnlock_bh(&netdev_rename_lock);
1415 
1416 	if (err < 0)
1417 		return err;
1418 
1419 	if (oldname[0] && !strchr(oldname, '%'))
1420 		netdev_info(dev, "renamed from %s%s\n", oldname,
1421 			    dev->flags & IFF_UP ? " (while UP)" : "");
1422 
1423 	old_assign_type = dev->name_assign_type;
1424 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1425 
1426 rollback:
1427 	ret = device_rename(&dev->dev, dev->name);
1428 	if (ret) {
1429 		write_seqlock_bh(&netdev_rename_lock);
1430 		memcpy(dev->name, oldname, IFNAMSIZ);
1431 		write_sequnlock_bh(&netdev_rename_lock);
1432 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1433 		return ret;
1434 	}
1435 
1436 	netdev_adjacent_rename_links(dev, oldname);
1437 
1438 	netdev_name_node_del(dev->name_node);
1439 
1440 	synchronize_net();
1441 
1442 	netdev_name_node_add(net, dev->name_node);
1443 
1444 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1445 	ret = notifier_to_errno(ret);
1446 
1447 	if (ret) {
1448 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1449 		if (err >= 0) {
1450 			err = ret;
1451 			write_seqlock_bh(&netdev_rename_lock);
1452 			memcpy(dev->name, oldname, IFNAMSIZ);
1453 			write_sequnlock_bh(&netdev_rename_lock);
1454 			memcpy(oldname, newname, IFNAMSIZ);
1455 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1456 			old_assign_type = NET_NAME_RENAMED;
1457 			goto rollback;
1458 		} else {
1459 			netdev_err(dev, "name change rollback failed: %d\n",
1460 				   ret);
1461 		}
1462 	}
1463 
1464 	return err;
1465 }
1466 
1467 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1468 {
1469 	struct dev_ifalias *new_alias = NULL;
1470 
1471 	if (len >= IFALIASZ)
1472 		return -EINVAL;
1473 
1474 	if (len) {
1475 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1476 		if (!new_alias)
1477 			return -ENOMEM;
1478 
1479 		memcpy(new_alias->ifalias, alias, len);
1480 		new_alias->ifalias[len] = 0;
1481 	}
1482 
1483 	mutex_lock(&ifalias_mutex);
1484 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1485 					mutex_is_locked(&ifalias_mutex));
1486 	mutex_unlock(&ifalias_mutex);
1487 
1488 	if (new_alias)
1489 		kfree_rcu(new_alias, rcuhead);
1490 
1491 	return len;
1492 }
1493 
1494 /**
1495  *	dev_get_alias - get ifalias of a device
1496  *	@dev: device
1497  *	@name: buffer to store name of ifalias
1498  *	@len: size of buffer
1499  *
1500  *	get ifalias for a device.  Caller must make sure dev cannot go
1501  *	away,  e.g. rcu read lock or own a reference count to device.
1502  */
1503 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1504 {
1505 	const struct dev_ifalias *alias;
1506 	int ret = 0;
1507 
1508 	rcu_read_lock();
1509 	alias = rcu_dereference(dev->ifalias);
1510 	if (alias)
1511 		ret = snprintf(name, len, "%s", alias->ifalias);
1512 	rcu_read_unlock();
1513 
1514 	return ret;
1515 }
1516 
1517 /**
1518  *	netdev_features_change - device changes features
1519  *	@dev: device to cause notification
1520  *
1521  *	Called to indicate a device has changed features.
1522  */
1523 void netdev_features_change(struct net_device *dev)
1524 {
1525 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1526 }
1527 EXPORT_SYMBOL(netdev_features_change);
1528 
1529 /**
1530  *	netdev_state_change - device changes state
1531  *	@dev: device to cause notification
1532  *
1533  *	Called to indicate a device has changed state. This function calls
1534  *	the notifier chains for netdev_chain and sends a NEWLINK message
1535  *	to the routing socket.
1536  */
1537 void netdev_state_change(struct net_device *dev)
1538 {
1539 	if (dev->flags & IFF_UP) {
1540 		struct netdev_notifier_change_info change_info = {
1541 			.info.dev = dev,
1542 		};
1543 
1544 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1545 					      &change_info.info);
1546 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1547 	}
1548 }
1549 EXPORT_SYMBOL(netdev_state_change);
1550 
1551 /**
1552  * __netdev_notify_peers - notify network peers about existence of @dev,
1553  * to be called when rtnl lock is already held.
1554  * @dev: network device
1555  *
1556  * Generate traffic such that interested network peers are aware of
1557  * @dev, such as by generating a gratuitous ARP. This may be used when
1558  * a device wants to inform the rest of the network about some sort of
1559  * reconfiguration such as a failover event or virtual machine
1560  * migration.
1561  */
1562 void __netdev_notify_peers(struct net_device *dev)
1563 {
1564 	ASSERT_RTNL();
1565 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1566 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1567 }
1568 EXPORT_SYMBOL(__netdev_notify_peers);
1569 
1570 /**
1571  * netdev_notify_peers - notify network peers about existence of @dev
1572  * @dev: network device
1573  *
1574  * Generate traffic such that interested network peers are aware of
1575  * @dev, such as by generating a gratuitous ARP. This may be used when
1576  * a device wants to inform the rest of the network about some sort of
1577  * reconfiguration such as a failover event or virtual machine
1578  * migration.
1579  */
1580 void netdev_notify_peers(struct net_device *dev)
1581 {
1582 	rtnl_lock();
1583 	__netdev_notify_peers(dev);
1584 	rtnl_unlock();
1585 }
1586 EXPORT_SYMBOL(netdev_notify_peers);
1587 
1588 static int napi_threaded_poll(void *data);
1589 
1590 static int napi_kthread_create(struct napi_struct *n)
1591 {
1592 	int err = 0;
1593 
1594 	/* Create and wake up the kthread once to put it in
1595 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1596 	 * warning and work with loadavg.
1597 	 */
1598 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1599 				n->dev->name, n->napi_id);
1600 	if (IS_ERR(n->thread)) {
1601 		err = PTR_ERR(n->thread);
1602 		pr_err("kthread_run failed with err %d\n", err);
1603 		n->thread = NULL;
1604 	}
1605 
1606 	return err;
1607 }
1608 
1609 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1610 {
1611 	const struct net_device_ops *ops = dev->netdev_ops;
1612 	int ret;
1613 
1614 	ASSERT_RTNL();
1615 	dev_addr_check(dev);
1616 
1617 	if (!netif_device_present(dev)) {
1618 		/* may be detached because parent is runtime-suspended */
1619 		if (dev->dev.parent)
1620 			pm_runtime_resume(dev->dev.parent);
1621 		if (!netif_device_present(dev))
1622 			return -ENODEV;
1623 	}
1624 
1625 	/* Block netpoll from trying to do any rx path servicing.
1626 	 * If we don't do this there is a chance ndo_poll_controller
1627 	 * or ndo_poll may be running while we open the device
1628 	 */
1629 	netpoll_poll_disable(dev);
1630 
1631 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1632 	ret = notifier_to_errno(ret);
1633 	if (ret)
1634 		return ret;
1635 
1636 	set_bit(__LINK_STATE_START, &dev->state);
1637 
1638 	netdev_ops_assert_locked(dev);
1639 
1640 	if (ops->ndo_validate_addr)
1641 		ret = ops->ndo_validate_addr(dev);
1642 
1643 	if (!ret && ops->ndo_open)
1644 		ret = ops->ndo_open(dev);
1645 
1646 	netpoll_poll_enable(dev);
1647 
1648 	if (ret)
1649 		clear_bit(__LINK_STATE_START, &dev->state);
1650 	else {
1651 		netif_set_up(dev, true);
1652 		dev_set_rx_mode(dev);
1653 		dev_activate(dev);
1654 		add_device_randomness(dev->dev_addr, dev->addr_len);
1655 	}
1656 
1657 	return ret;
1658 }
1659 
1660 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1661 {
1662 	int ret;
1663 
1664 	if (dev->flags & IFF_UP)
1665 		return 0;
1666 
1667 	ret = __dev_open(dev, extack);
1668 	if (ret < 0)
1669 		return ret;
1670 
1671 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1672 	call_netdevice_notifiers(NETDEV_UP, dev);
1673 
1674 	return ret;
1675 }
1676 
1677 static void __dev_close_many(struct list_head *head)
1678 {
1679 	struct net_device *dev;
1680 
1681 	ASSERT_RTNL();
1682 	might_sleep();
1683 
1684 	list_for_each_entry(dev, head, close_list) {
1685 		/* Temporarily disable netpoll until the interface is down */
1686 		netpoll_poll_disable(dev);
1687 
1688 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1689 
1690 		clear_bit(__LINK_STATE_START, &dev->state);
1691 
1692 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1693 		 * can be even on different cpu. So just clear netif_running().
1694 		 *
1695 		 * dev->stop() will invoke napi_disable() on all of it's
1696 		 * napi_struct instances on this device.
1697 		 */
1698 		smp_mb__after_atomic(); /* Commit netif_running(). */
1699 	}
1700 
1701 	dev_deactivate_many(head);
1702 
1703 	list_for_each_entry(dev, head, close_list) {
1704 		const struct net_device_ops *ops = dev->netdev_ops;
1705 
1706 		/*
1707 		 *	Call the device specific close. This cannot fail.
1708 		 *	Only if device is UP
1709 		 *
1710 		 *	We allow it to be called even after a DETACH hot-plug
1711 		 *	event.
1712 		 */
1713 
1714 		netdev_ops_assert_locked(dev);
1715 
1716 		if (ops->ndo_stop)
1717 			ops->ndo_stop(dev);
1718 
1719 		netif_set_up(dev, false);
1720 		netpoll_poll_enable(dev);
1721 	}
1722 }
1723 
1724 static void __dev_close(struct net_device *dev)
1725 {
1726 	LIST_HEAD(single);
1727 
1728 	list_add(&dev->close_list, &single);
1729 	__dev_close_many(&single);
1730 	list_del(&single);
1731 }
1732 
1733 void dev_close_many(struct list_head *head, bool unlink)
1734 {
1735 	struct net_device *dev, *tmp;
1736 
1737 	/* Remove the devices that don't need to be closed */
1738 	list_for_each_entry_safe(dev, tmp, head, close_list)
1739 		if (!(dev->flags & IFF_UP))
1740 			list_del_init(&dev->close_list);
1741 
1742 	__dev_close_many(head);
1743 
1744 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1745 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1746 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1747 		if (unlink)
1748 			list_del_init(&dev->close_list);
1749 	}
1750 }
1751 EXPORT_SYMBOL(dev_close_many);
1752 
1753 void netif_close(struct net_device *dev)
1754 {
1755 	if (dev->flags & IFF_UP) {
1756 		LIST_HEAD(single);
1757 
1758 		list_add(&dev->close_list, &single);
1759 		dev_close_many(&single, true);
1760 		list_del(&single);
1761 	}
1762 }
1763 EXPORT_SYMBOL(netif_close);
1764 
1765 void netif_disable_lro(struct net_device *dev)
1766 {
1767 	struct net_device *lower_dev;
1768 	struct list_head *iter;
1769 
1770 	dev->wanted_features &= ~NETIF_F_LRO;
1771 	netdev_update_features(dev);
1772 
1773 	if (unlikely(dev->features & NETIF_F_LRO))
1774 		netdev_WARN(dev, "failed to disable LRO!\n");
1775 
1776 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1777 		netdev_lock_ops(lower_dev);
1778 		netif_disable_lro(lower_dev);
1779 		netdev_unlock_ops(lower_dev);
1780 	}
1781 }
1782 
1783 /**
1784  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1785  *	@dev: device
1786  *
1787  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1788  *	called under RTNL.  This is needed if Generic XDP is installed on
1789  *	the device.
1790  */
1791 static void dev_disable_gro_hw(struct net_device *dev)
1792 {
1793 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1794 	netdev_update_features(dev);
1795 
1796 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1797 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1798 }
1799 
1800 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1801 {
1802 #define N(val) 						\
1803 	case NETDEV_##val:				\
1804 		return "NETDEV_" __stringify(val);
1805 	switch (cmd) {
1806 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1807 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1808 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1809 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1810 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1811 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1812 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1813 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1814 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1815 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1816 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1817 	N(XDP_FEAT_CHANGE)
1818 	}
1819 #undef N
1820 	return "UNKNOWN_NETDEV_EVENT";
1821 }
1822 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1823 
1824 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1825 				   struct net_device *dev)
1826 {
1827 	struct netdev_notifier_info info = {
1828 		.dev = dev,
1829 	};
1830 
1831 	return nb->notifier_call(nb, val, &info);
1832 }
1833 
1834 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1835 					     struct net_device *dev)
1836 {
1837 	int err;
1838 
1839 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1840 	err = notifier_to_errno(err);
1841 	if (err)
1842 		return err;
1843 
1844 	if (!(dev->flags & IFF_UP))
1845 		return 0;
1846 
1847 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1848 	return 0;
1849 }
1850 
1851 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1852 						struct net_device *dev)
1853 {
1854 	if (dev->flags & IFF_UP) {
1855 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1856 					dev);
1857 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1858 	}
1859 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1860 }
1861 
1862 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1863 						 struct net *net)
1864 {
1865 	struct net_device *dev;
1866 	int err;
1867 
1868 	for_each_netdev(net, dev) {
1869 		err = call_netdevice_register_notifiers(nb, dev);
1870 		if (err)
1871 			goto rollback;
1872 	}
1873 	return 0;
1874 
1875 rollback:
1876 	for_each_netdev_continue_reverse(net, dev)
1877 		call_netdevice_unregister_notifiers(nb, dev);
1878 	return err;
1879 }
1880 
1881 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1882 						    struct net *net)
1883 {
1884 	struct net_device *dev;
1885 
1886 	for_each_netdev(net, dev)
1887 		call_netdevice_unregister_notifiers(nb, dev);
1888 }
1889 
1890 static int dev_boot_phase = 1;
1891 
1892 /**
1893  * register_netdevice_notifier - register a network notifier block
1894  * @nb: notifier
1895  *
1896  * Register a notifier to be called when network device events occur.
1897  * The notifier passed is linked into the kernel structures and must
1898  * not be reused until it has been unregistered. A negative errno code
1899  * is returned on a failure.
1900  *
1901  * When registered all registration and up events are replayed
1902  * to the new notifier to allow device to have a race free
1903  * view of the network device list.
1904  */
1905 
1906 int register_netdevice_notifier(struct notifier_block *nb)
1907 {
1908 	struct net *net;
1909 	int err;
1910 
1911 	/* Close race with setup_net() and cleanup_net() */
1912 	down_write(&pernet_ops_rwsem);
1913 
1914 	/* When RTNL is removed, we need protection for netdev_chain. */
1915 	rtnl_lock();
1916 
1917 	err = raw_notifier_chain_register(&netdev_chain, nb);
1918 	if (err)
1919 		goto unlock;
1920 	if (dev_boot_phase)
1921 		goto unlock;
1922 	for_each_net(net) {
1923 		__rtnl_net_lock(net);
1924 		err = call_netdevice_register_net_notifiers(nb, net);
1925 		__rtnl_net_unlock(net);
1926 		if (err)
1927 			goto rollback;
1928 	}
1929 
1930 unlock:
1931 	rtnl_unlock();
1932 	up_write(&pernet_ops_rwsem);
1933 	return err;
1934 
1935 rollback:
1936 	for_each_net_continue_reverse(net) {
1937 		__rtnl_net_lock(net);
1938 		call_netdevice_unregister_net_notifiers(nb, net);
1939 		__rtnl_net_unlock(net);
1940 	}
1941 
1942 	raw_notifier_chain_unregister(&netdev_chain, nb);
1943 	goto unlock;
1944 }
1945 EXPORT_SYMBOL(register_netdevice_notifier);
1946 
1947 /**
1948  * unregister_netdevice_notifier - unregister a network notifier block
1949  * @nb: notifier
1950  *
1951  * Unregister a notifier previously registered by
1952  * register_netdevice_notifier(). The notifier is unlinked into the
1953  * kernel structures and may then be reused. A negative errno code
1954  * is returned on a failure.
1955  *
1956  * After unregistering unregister and down device events are synthesized
1957  * for all devices on the device list to the removed notifier to remove
1958  * the need for special case cleanup code.
1959  */
1960 
1961 int unregister_netdevice_notifier(struct notifier_block *nb)
1962 {
1963 	struct net *net;
1964 	int err;
1965 
1966 	/* Close race with setup_net() and cleanup_net() */
1967 	down_write(&pernet_ops_rwsem);
1968 	rtnl_lock();
1969 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1970 	if (err)
1971 		goto unlock;
1972 
1973 	for_each_net(net) {
1974 		__rtnl_net_lock(net);
1975 		call_netdevice_unregister_net_notifiers(nb, net);
1976 		__rtnl_net_unlock(net);
1977 	}
1978 
1979 unlock:
1980 	rtnl_unlock();
1981 	up_write(&pernet_ops_rwsem);
1982 	return err;
1983 }
1984 EXPORT_SYMBOL(unregister_netdevice_notifier);
1985 
1986 static int __register_netdevice_notifier_net(struct net *net,
1987 					     struct notifier_block *nb,
1988 					     bool ignore_call_fail)
1989 {
1990 	int err;
1991 
1992 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1993 	if (err)
1994 		return err;
1995 	if (dev_boot_phase)
1996 		return 0;
1997 
1998 	err = call_netdevice_register_net_notifiers(nb, net);
1999 	if (err && !ignore_call_fail)
2000 		goto chain_unregister;
2001 
2002 	return 0;
2003 
2004 chain_unregister:
2005 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2006 	return err;
2007 }
2008 
2009 static int __unregister_netdevice_notifier_net(struct net *net,
2010 					       struct notifier_block *nb)
2011 {
2012 	int err;
2013 
2014 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2015 	if (err)
2016 		return err;
2017 
2018 	call_netdevice_unregister_net_notifiers(nb, net);
2019 	return 0;
2020 }
2021 
2022 /**
2023  * register_netdevice_notifier_net - register a per-netns network notifier block
2024  * @net: network namespace
2025  * @nb: notifier
2026  *
2027  * Register a notifier to be called when network device events occur.
2028  * The notifier passed is linked into the kernel structures and must
2029  * not be reused until it has been unregistered. A negative errno code
2030  * is returned on a failure.
2031  *
2032  * When registered all registration and up events are replayed
2033  * to the new notifier to allow device to have a race free
2034  * view of the network device list.
2035  */
2036 
2037 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2038 {
2039 	int err;
2040 
2041 	rtnl_net_lock(net);
2042 	err = __register_netdevice_notifier_net(net, nb, false);
2043 	rtnl_net_unlock(net);
2044 
2045 	return err;
2046 }
2047 EXPORT_SYMBOL(register_netdevice_notifier_net);
2048 
2049 /**
2050  * unregister_netdevice_notifier_net - unregister a per-netns
2051  *                                     network notifier block
2052  * @net: network namespace
2053  * @nb: notifier
2054  *
2055  * Unregister a notifier previously registered by
2056  * register_netdevice_notifier_net(). The notifier is unlinked from the
2057  * kernel structures and may then be reused. A negative errno code
2058  * is returned on a failure.
2059  *
2060  * After unregistering unregister and down device events are synthesized
2061  * for all devices on the device list to the removed notifier to remove
2062  * the need for special case cleanup code.
2063  */
2064 
2065 int unregister_netdevice_notifier_net(struct net *net,
2066 				      struct notifier_block *nb)
2067 {
2068 	int err;
2069 
2070 	rtnl_net_lock(net);
2071 	err = __unregister_netdevice_notifier_net(net, nb);
2072 	rtnl_net_unlock(net);
2073 
2074 	return err;
2075 }
2076 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2077 
2078 static void __move_netdevice_notifier_net(struct net *src_net,
2079 					  struct net *dst_net,
2080 					  struct notifier_block *nb)
2081 {
2082 	__unregister_netdevice_notifier_net(src_net, nb);
2083 	__register_netdevice_notifier_net(dst_net, nb, true);
2084 }
2085 
2086 static void rtnl_net_dev_lock(struct net_device *dev)
2087 {
2088 	bool again;
2089 
2090 	do {
2091 		struct net *net;
2092 
2093 		again = false;
2094 
2095 		/* netns might be being dismantled. */
2096 		rcu_read_lock();
2097 		net = dev_net_rcu(dev);
2098 		net_passive_inc(net);
2099 		rcu_read_unlock();
2100 
2101 		rtnl_net_lock(net);
2102 
2103 #ifdef CONFIG_NET_NS
2104 		/* dev might have been moved to another netns. */
2105 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2106 			rtnl_net_unlock(net);
2107 			net_passive_dec(net);
2108 			again = true;
2109 		}
2110 #endif
2111 	} while (again);
2112 }
2113 
2114 static void rtnl_net_dev_unlock(struct net_device *dev)
2115 {
2116 	struct net *net = dev_net(dev);
2117 
2118 	rtnl_net_unlock(net);
2119 	net_passive_dec(net);
2120 }
2121 
2122 int register_netdevice_notifier_dev_net(struct net_device *dev,
2123 					struct notifier_block *nb,
2124 					struct netdev_net_notifier *nn)
2125 {
2126 	int err;
2127 
2128 	rtnl_net_dev_lock(dev);
2129 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2130 	if (!err) {
2131 		nn->nb = nb;
2132 		list_add(&nn->list, &dev->net_notifier_list);
2133 	}
2134 	rtnl_net_dev_unlock(dev);
2135 
2136 	return err;
2137 }
2138 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2139 
2140 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2141 					  struct notifier_block *nb,
2142 					  struct netdev_net_notifier *nn)
2143 {
2144 	int err;
2145 
2146 	rtnl_net_dev_lock(dev);
2147 	list_del(&nn->list);
2148 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2149 	rtnl_net_dev_unlock(dev);
2150 
2151 	return err;
2152 }
2153 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2154 
2155 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2156 					     struct net *net)
2157 {
2158 	struct netdev_net_notifier *nn;
2159 
2160 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2161 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2162 }
2163 
2164 /**
2165  *	call_netdevice_notifiers_info - call all network notifier blocks
2166  *	@val: value passed unmodified to notifier function
2167  *	@info: notifier information data
2168  *
2169  *	Call all network notifier blocks.  Parameters and return value
2170  *	are as for raw_notifier_call_chain().
2171  */
2172 
2173 int call_netdevice_notifiers_info(unsigned long val,
2174 				  struct netdev_notifier_info *info)
2175 {
2176 	struct net *net = dev_net(info->dev);
2177 	int ret;
2178 
2179 	ASSERT_RTNL();
2180 
2181 	/* Run per-netns notifier block chain first, then run the global one.
2182 	 * Hopefully, one day, the global one is going to be removed after
2183 	 * all notifier block registrators get converted to be per-netns.
2184 	 */
2185 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2186 	if (ret & NOTIFY_STOP_MASK)
2187 		return ret;
2188 	return raw_notifier_call_chain(&netdev_chain, val, info);
2189 }
2190 
2191 /**
2192  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2193  *	                                       for and rollback on error
2194  *	@val_up: value passed unmodified to notifier function
2195  *	@val_down: value passed unmodified to the notifier function when
2196  *	           recovering from an error on @val_up
2197  *	@info: notifier information data
2198  *
2199  *	Call all per-netns network notifier blocks, but not notifier blocks on
2200  *	the global notifier chain. Parameters and return value are as for
2201  *	raw_notifier_call_chain_robust().
2202  */
2203 
2204 static int
2205 call_netdevice_notifiers_info_robust(unsigned long val_up,
2206 				     unsigned long val_down,
2207 				     struct netdev_notifier_info *info)
2208 {
2209 	struct net *net = dev_net(info->dev);
2210 
2211 	ASSERT_RTNL();
2212 
2213 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2214 					      val_up, val_down, info);
2215 }
2216 
2217 static int call_netdevice_notifiers_extack(unsigned long val,
2218 					   struct net_device *dev,
2219 					   struct netlink_ext_ack *extack)
2220 {
2221 	struct netdev_notifier_info info = {
2222 		.dev = dev,
2223 		.extack = extack,
2224 	};
2225 
2226 	return call_netdevice_notifiers_info(val, &info);
2227 }
2228 
2229 /**
2230  *	call_netdevice_notifiers - call all network notifier blocks
2231  *      @val: value passed unmodified to notifier function
2232  *      @dev: net_device pointer passed unmodified to notifier function
2233  *
2234  *	Call all network notifier blocks.  Parameters and return value
2235  *	are as for raw_notifier_call_chain().
2236  */
2237 
2238 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2239 {
2240 	return call_netdevice_notifiers_extack(val, dev, NULL);
2241 }
2242 EXPORT_SYMBOL(call_netdevice_notifiers);
2243 
2244 /**
2245  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2246  *	@val: value passed unmodified to notifier function
2247  *	@dev: net_device pointer passed unmodified to notifier function
2248  *	@arg: additional u32 argument passed to the notifier function
2249  *
2250  *	Call all network notifier blocks.  Parameters and return value
2251  *	are as for raw_notifier_call_chain().
2252  */
2253 static int call_netdevice_notifiers_mtu(unsigned long val,
2254 					struct net_device *dev, u32 arg)
2255 {
2256 	struct netdev_notifier_info_ext info = {
2257 		.info.dev = dev,
2258 		.ext.mtu = arg,
2259 	};
2260 
2261 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2262 
2263 	return call_netdevice_notifiers_info(val, &info.info);
2264 }
2265 
2266 #ifdef CONFIG_NET_INGRESS
2267 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2268 
2269 void net_inc_ingress_queue(void)
2270 {
2271 	static_branch_inc(&ingress_needed_key);
2272 }
2273 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2274 
2275 void net_dec_ingress_queue(void)
2276 {
2277 	static_branch_dec(&ingress_needed_key);
2278 }
2279 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2280 #endif
2281 
2282 #ifdef CONFIG_NET_EGRESS
2283 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2284 
2285 void net_inc_egress_queue(void)
2286 {
2287 	static_branch_inc(&egress_needed_key);
2288 }
2289 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2290 
2291 void net_dec_egress_queue(void)
2292 {
2293 	static_branch_dec(&egress_needed_key);
2294 }
2295 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2296 #endif
2297 
2298 #ifdef CONFIG_NET_CLS_ACT
2299 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2300 EXPORT_SYMBOL(tcf_sw_enabled_key);
2301 #endif
2302 
2303 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2304 EXPORT_SYMBOL(netstamp_needed_key);
2305 #ifdef CONFIG_JUMP_LABEL
2306 static atomic_t netstamp_needed_deferred;
2307 static atomic_t netstamp_wanted;
2308 static void netstamp_clear(struct work_struct *work)
2309 {
2310 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2311 	int wanted;
2312 
2313 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2314 	if (wanted > 0)
2315 		static_branch_enable(&netstamp_needed_key);
2316 	else
2317 		static_branch_disable(&netstamp_needed_key);
2318 }
2319 static DECLARE_WORK(netstamp_work, netstamp_clear);
2320 #endif
2321 
2322 void net_enable_timestamp(void)
2323 {
2324 #ifdef CONFIG_JUMP_LABEL
2325 	int wanted = atomic_read(&netstamp_wanted);
2326 
2327 	while (wanted > 0) {
2328 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2329 			return;
2330 	}
2331 	atomic_inc(&netstamp_needed_deferred);
2332 	schedule_work(&netstamp_work);
2333 #else
2334 	static_branch_inc(&netstamp_needed_key);
2335 #endif
2336 }
2337 EXPORT_SYMBOL(net_enable_timestamp);
2338 
2339 void net_disable_timestamp(void)
2340 {
2341 #ifdef CONFIG_JUMP_LABEL
2342 	int wanted = atomic_read(&netstamp_wanted);
2343 
2344 	while (wanted > 1) {
2345 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2346 			return;
2347 	}
2348 	atomic_dec(&netstamp_needed_deferred);
2349 	schedule_work(&netstamp_work);
2350 #else
2351 	static_branch_dec(&netstamp_needed_key);
2352 #endif
2353 }
2354 EXPORT_SYMBOL(net_disable_timestamp);
2355 
2356 static inline void net_timestamp_set(struct sk_buff *skb)
2357 {
2358 	skb->tstamp = 0;
2359 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2360 	if (static_branch_unlikely(&netstamp_needed_key))
2361 		skb->tstamp = ktime_get_real();
2362 }
2363 
2364 #define net_timestamp_check(COND, SKB)				\
2365 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2366 		if ((COND) && !(SKB)->tstamp)			\
2367 			(SKB)->tstamp = ktime_get_real();	\
2368 	}							\
2369 
2370 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2371 {
2372 	return __is_skb_forwardable(dev, skb, true);
2373 }
2374 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2375 
2376 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2377 			      bool check_mtu)
2378 {
2379 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2380 
2381 	if (likely(!ret)) {
2382 		skb->protocol = eth_type_trans(skb, dev);
2383 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2384 	}
2385 
2386 	return ret;
2387 }
2388 
2389 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2390 {
2391 	return __dev_forward_skb2(dev, skb, true);
2392 }
2393 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2394 
2395 /**
2396  * dev_forward_skb - loopback an skb to another netif
2397  *
2398  * @dev: destination network device
2399  * @skb: buffer to forward
2400  *
2401  * return values:
2402  *	NET_RX_SUCCESS	(no congestion)
2403  *	NET_RX_DROP     (packet was dropped, but freed)
2404  *
2405  * dev_forward_skb can be used for injecting an skb from the
2406  * start_xmit function of one device into the receive queue
2407  * of another device.
2408  *
2409  * The receiving device may be in another namespace, so
2410  * we have to clear all information in the skb that could
2411  * impact namespace isolation.
2412  */
2413 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2414 {
2415 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2416 }
2417 EXPORT_SYMBOL_GPL(dev_forward_skb);
2418 
2419 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2420 {
2421 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2422 }
2423 
2424 static inline int deliver_skb(struct sk_buff *skb,
2425 			      struct packet_type *pt_prev,
2426 			      struct net_device *orig_dev)
2427 {
2428 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2429 		return -ENOMEM;
2430 	refcount_inc(&skb->users);
2431 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2432 }
2433 
2434 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2435 					  struct packet_type **pt,
2436 					  struct net_device *orig_dev,
2437 					  __be16 type,
2438 					  struct list_head *ptype_list)
2439 {
2440 	struct packet_type *ptype, *pt_prev = *pt;
2441 
2442 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2443 		if (ptype->type != type)
2444 			continue;
2445 		if (pt_prev)
2446 			deliver_skb(skb, pt_prev, orig_dev);
2447 		pt_prev = ptype;
2448 	}
2449 	*pt = pt_prev;
2450 }
2451 
2452 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2453 {
2454 	if (!ptype->af_packet_priv || !skb->sk)
2455 		return false;
2456 
2457 	if (ptype->id_match)
2458 		return ptype->id_match(ptype, skb->sk);
2459 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2460 		return true;
2461 
2462 	return false;
2463 }
2464 
2465 /**
2466  * dev_nit_active - return true if any network interface taps are in use
2467  *
2468  * @dev: network device to check for the presence of taps
2469  */
2470 bool dev_nit_active(struct net_device *dev)
2471 {
2472 	return !list_empty(&net_hotdata.ptype_all) ||
2473 	       !list_empty(&dev->ptype_all);
2474 }
2475 EXPORT_SYMBOL_GPL(dev_nit_active);
2476 
2477 /*
2478  *	Support routine. Sends outgoing frames to any network
2479  *	taps currently in use.
2480  */
2481 
2482 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2483 {
2484 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2485 	struct packet_type *ptype, *pt_prev = NULL;
2486 	struct sk_buff *skb2 = NULL;
2487 
2488 	rcu_read_lock();
2489 again:
2490 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2491 		if (READ_ONCE(ptype->ignore_outgoing))
2492 			continue;
2493 
2494 		/* Never send packets back to the socket
2495 		 * they originated from - MvS ([email protected])
2496 		 */
2497 		if (skb_loop_sk(ptype, skb))
2498 			continue;
2499 
2500 		if (pt_prev) {
2501 			deliver_skb(skb2, pt_prev, skb->dev);
2502 			pt_prev = ptype;
2503 			continue;
2504 		}
2505 
2506 		/* need to clone skb, done only once */
2507 		skb2 = skb_clone(skb, GFP_ATOMIC);
2508 		if (!skb2)
2509 			goto out_unlock;
2510 
2511 		net_timestamp_set(skb2);
2512 
2513 		/* skb->nh should be correctly
2514 		 * set by sender, so that the second statement is
2515 		 * just protection against buggy protocols.
2516 		 */
2517 		skb_reset_mac_header(skb2);
2518 
2519 		if (skb_network_header(skb2) < skb2->data ||
2520 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2521 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2522 					     ntohs(skb2->protocol),
2523 					     dev->name);
2524 			skb_reset_network_header(skb2);
2525 		}
2526 
2527 		skb2->transport_header = skb2->network_header;
2528 		skb2->pkt_type = PACKET_OUTGOING;
2529 		pt_prev = ptype;
2530 	}
2531 
2532 	if (ptype_list == &net_hotdata.ptype_all) {
2533 		ptype_list = &dev->ptype_all;
2534 		goto again;
2535 	}
2536 out_unlock:
2537 	if (pt_prev) {
2538 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2539 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2540 		else
2541 			kfree_skb(skb2);
2542 	}
2543 	rcu_read_unlock();
2544 }
2545 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2546 
2547 /**
2548  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2549  * @dev: Network device
2550  * @txq: number of queues available
2551  *
2552  * If real_num_tx_queues is changed the tc mappings may no longer be
2553  * valid. To resolve this verify the tc mapping remains valid and if
2554  * not NULL the mapping. With no priorities mapping to this
2555  * offset/count pair it will no longer be used. In the worst case TC0
2556  * is invalid nothing can be done so disable priority mappings. If is
2557  * expected that drivers will fix this mapping if they can before
2558  * calling netif_set_real_num_tx_queues.
2559  */
2560 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2561 {
2562 	int i;
2563 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2564 
2565 	/* If TC0 is invalidated disable TC mapping */
2566 	if (tc->offset + tc->count > txq) {
2567 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2568 		dev->num_tc = 0;
2569 		return;
2570 	}
2571 
2572 	/* Invalidated prio to tc mappings set to TC0 */
2573 	for (i = 1; i < TC_BITMASK + 1; i++) {
2574 		int q = netdev_get_prio_tc_map(dev, i);
2575 
2576 		tc = &dev->tc_to_txq[q];
2577 		if (tc->offset + tc->count > txq) {
2578 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2579 				    i, q);
2580 			netdev_set_prio_tc_map(dev, i, 0);
2581 		}
2582 	}
2583 }
2584 
2585 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2586 {
2587 	if (dev->num_tc) {
2588 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2589 		int i;
2590 
2591 		/* walk through the TCs and see if it falls into any of them */
2592 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2593 			if ((txq - tc->offset) < tc->count)
2594 				return i;
2595 		}
2596 
2597 		/* didn't find it, just return -1 to indicate no match */
2598 		return -1;
2599 	}
2600 
2601 	return 0;
2602 }
2603 EXPORT_SYMBOL(netdev_txq_to_tc);
2604 
2605 #ifdef CONFIG_XPS
2606 static struct static_key xps_needed __read_mostly;
2607 static struct static_key xps_rxqs_needed __read_mostly;
2608 static DEFINE_MUTEX(xps_map_mutex);
2609 #define xmap_dereference(P)		\
2610 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2611 
2612 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2613 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2614 {
2615 	struct xps_map *map = NULL;
2616 	int pos;
2617 
2618 	map = xmap_dereference(dev_maps->attr_map[tci]);
2619 	if (!map)
2620 		return false;
2621 
2622 	for (pos = map->len; pos--;) {
2623 		if (map->queues[pos] != index)
2624 			continue;
2625 
2626 		if (map->len > 1) {
2627 			map->queues[pos] = map->queues[--map->len];
2628 			break;
2629 		}
2630 
2631 		if (old_maps)
2632 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2633 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2634 		kfree_rcu(map, rcu);
2635 		return false;
2636 	}
2637 
2638 	return true;
2639 }
2640 
2641 static bool remove_xps_queue_cpu(struct net_device *dev,
2642 				 struct xps_dev_maps *dev_maps,
2643 				 int cpu, u16 offset, u16 count)
2644 {
2645 	int num_tc = dev_maps->num_tc;
2646 	bool active = false;
2647 	int tci;
2648 
2649 	for (tci = cpu * num_tc; num_tc--; tci++) {
2650 		int i, j;
2651 
2652 		for (i = count, j = offset; i--; j++) {
2653 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2654 				break;
2655 		}
2656 
2657 		active |= i < 0;
2658 	}
2659 
2660 	return active;
2661 }
2662 
2663 static void reset_xps_maps(struct net_device *dev,
2664 			   struct xps_dev_maps *dev_maps,
2665 			   enum xps_map_type type)
2666 {
2667 	static_key_slow_dec_cpuslocked(&xps_needed);
2668 	if (type == XPS_RXQS)
2669 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2670 
2671 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2672 
2673 	kfree_rcu(dev_maps, rcu);
2674 }
2675 
2676 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2677 			   u16 offset, u16 count)
2678 {
2679 	struct xps_dev_maps *dev_maps;
2680 	bool active = false;
2681 	int i, j;
2682 
2683 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2684 	if (!dev_maps)
2685 		return;
2686 
2687 	for (j = 0; j < dev_maps->nr_ids; j++)
2688 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2689 	if (!active)
2690 		reset_xps_maps(dev, dev_maps, type);
2691 
2692 	if (type == XPS_CPUS) {
2693 		for (i = offset + (count - 1); count--; i--)
2694 			netdev_queue_numa_node_write(
2695 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2696 	}
2697 }
2698 
2699 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2700 				   u16 count)
2701 {
2702 	if (!static_key_false(&xps_needed))
2703 		return;
2704 
2705 	cpus_read_lock();
2706 	mutex_lock(&xps_map_mutex);
2707 
2708 	if (static_key_false(&xps_rxqs_needed))
2709 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2710 
2711 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2712 
2713 	mutex_unlock(&xps_map_mutex);
2714 	cpus_read_unlock();
2715 }
2716 
2717 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2718 {
2719 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2720 }
2721 
2722 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2723 				      u16 index, bool is_rxqs_map)
2724 {
2725 	struct xps_map *new_map;
2726 	int alloc_len = XPS_MIN_MAP_ALLOC;
2727 	int i, pos;
2728 
2729 	for (pos = 0; map && pos < map->len; pos++) {
2730 		if (map->queues[pos] != index)
2731 			continue;
2732 		return map;
2733 	}
2734 
2735 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2736 	if (map) {
2737 		if (pos < map->alloc_len)
2738 			return map;
2739 
2740 		alloc_len = map->alloc_len * 2;
2741 	}
2742 
2743 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2744 	 *  map
2745 	 */
2746 	if (is_rxqs_map)
2747 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2748 	else
2749 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2750 				       cpu_to_node(attr_index));
2751 	if (!new_map)
2752 		return NULL;
2753 
2754 	for (i = 0; i < pos; i++)
2755 		new_map->queues[i] = map->queues[i];
2756 	new_map->alloc_len = alloc_len;
2757 	new_map->len = pos;
2758 
2759 	return new_map;
2760 }
2761 
2762 /* Copy xps maps at a given index */
2763 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2764 			      struct xps_dev_maps *new_dev_maps, int index,
2765 			      int tc, bool skip_tc)
2766 {
2767 	int i, tci = index * dev_maps->num_tc;
2768 	struct xps_map *map;
2769 
2770 	/* copy maps belonging to foreign traffic classes */
2771 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2772 		if (i == tc && skip_tc)
2773 			continue;
2774 
2775 		/* fill in the new device map from the old device map */
2776 		map = xmap_dereference(dev_maps->attr_map[tci]);
2777 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2778 	}
2779 }
2780 
2781 /* Must be called under cpus_read_lock */
2782 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2783 			  u16 index, enum xps_map_type type)
2784 {
2785 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2786 	const unsigned long *online_mask = NULL;
2787 	bool active = false, copy = false;
2788 	int i, j, tci, numa_node_id = -2;
2789 	int maps_sz, num_tc = 1, tc = 0;
2790 	struct xps_map *map, *new_map;
2791 	unsigned int nr_ids;
2792 
2793 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2794 
2795 	if (dev->num_tc) {
2796 		/* Do not allow XPS on subordinate device directly */
2797 		num_tc = dev->num_tc;
2798 		if (num_tc < 0)
2799 			return -EINVAL;
2800 
2801 		/* If queue belongs to subordinate dev use its map */
2802 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2803 
2804 		tc = netdev_txq_to_tc(dev, index);
2805 		if (tc < 0)
2806 			return -EINVAL;
2807 	}
2808 
2809 	mutex_lock(&xps_map_mutex);
2810 
2811 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2812 	if (type == XPS_RXQS) {
2813 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2814 		nr_ids = dev->num_rx_queues;
2815 	} else {
2816 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2817 		if (num_possible_cpus() > 1)
2818 			online_mask = cpumask_bits(cpu_online_mask);
2819 		nr_ids = nr_cpu_ids;
2820 	}
2821 
2822 	if (maps_sz < L1_CACHE_BYTES)
2823 		maps_sz = L1_CACHE_BYTES;
2824 
2825 	/* The old dev_maps could be larger or smaller than the one we're
2826 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2827 	 * between. We could try to be smart, but let's be safe instead and only
2828 	 * copy foreign traffic classes if the two map sizes match.
2829 	 */
2830 	if (dev_maps &&
2831 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2832 		copy = true;
2833 
2834 	/* allocate memory for queue storage */
2835 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2836 	     j < nr_ids;) {
2837 		if (!new_dev_maps) {
2838 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2839 			if (!new_dev_maps) {
2840 				mutex_unlock(&xps_map_mutex);
2841 				return -ENOMEM;
2842 			}
2843 
2844 			new_dev_maps->nr_ids = nr_ids;
2845 			new_dev_maps->num_tc = num_tc;
2846 		}
2847 
2848 		tci = j * num_tc + tc;
2849 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2850 
2851 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2852 		if (!map)
2853 			goto error;
2854 
2855 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2856 	}
2857 
2858 	if (!new_dev_maps)
2859 		goto out_no_new_maps;
2860 
2861 	if (!dev_maps) {
2862 		/* Increment static keys at most once per type */
2863 		static_key_slow_inc_cpuslocked(&xps_needed);
2864 		if (type == XPS_RXQS)
2865 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2866 	}
2867 
2868 	for (j = 0; j < nr_ids; j++) {
2869 		bool skip_tc = false;
2870 
2871 		tci = j * num_tc + tc;
2872 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2873 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2874 			/* add tx-queue to CPU/rx-queue maps */
2875 			int pos = 0;
2876 
2877 			skip_tc = true;
2878 
2879 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2880 			while ((pos < map->len) && (map->queues[pos] != index))
2881 				pos++;
2882 
2883 			if (pos == map->len)
2884 				map->queues[map->len++] = index;
2885 #ifdef CONFIG_NUMA
2886 			if (type == XPS_CPUS) {
2887 				if (numa_node_id == -2)
2888 					numa_node_id = cpu_to_node(j);
2889 				else if (numa_node_id != cpu_to_node(j))
2890 					numa_node_id = -1;
2891 			}
2892 #endif
2893 		}
2894 
2895 		if (copy)
2896 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2897 					  skip_tc);
2898 	}
2899 
2900 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2901 
2902 	/* Cleanup old maps */
2903 	if (!dev_maps)
2904 		goto out_no_old_maps;
2905 
2906 	for (j = 0; j < dev_maps->nr_ids; j++) {
2907 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2908 			map = xmap_dereference(dev_maps->attr_map[tci]);
2909 			if (!map)
2910 				continue;
2911 
2912 			if (copy) {
2913 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2914 				if (map == new_map)
2915 					continue;
2916 			}
2917 
2918 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2919 			kfree_rcu(map, rcu);
2920 		}
2921 	}
2922 
2923 	old_dev_maps = dev_maps;
2924 
2925 out_no_old_maps:
2926 	dev_maps = new_dev_maps;
2927 	active = true;
2928 
2929 out_no_new_maps:
2930 	if (type == XPS_CPUS)
2931 		/* update Tx queue numa node */
2932 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2933 					     (numa_node_id >= 0) ?
2934 					     numa_node_id : NUMA_NO_NODE);
2935 
2936 	if (!dev_maps)
2937 		goto out_no_maps;
2938 
2939 	/* removes tx-queue from unused CPUs/rx-queues */
2940 	for (j = 0; j < dev_maps->nr_ids; j++) {
2941 		tci = j * dev_maps->num_tc;
2942 
2943 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2944 			if (i == tc &&
2945 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2946 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2947 				continue;
2948 
2949 			active |= remove_xps_queue(dev_maps,
2950 						   copy ? old_dev_maps : NULL,
2951 						   tci, index);
2952 		}
2953 	}
2954 
2955 	if (old_dev_maps)
2956 		kfree_rcu(old_dev_maps, rcu);
2957 
2958 	/* free map if not active */
2959 	if (!active)
2960 		reset_xps_maps(dev, dev_maps, type);
2961 
2962 out_no_maps:
2963 	mutex_unlock(&xps_map_mutex);
2964 
2965 	return 0;
2966 error:
2967 	/* remove any maps that we added */
2968 	for (j = 0; j < nr_ids; j++) {
2969 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2970 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2971 			map = copy ?
2972 			      xmap_dereference(dev_maps->attr_map[tci]) :
2973 			      NULL;
2974 			if (new_map && new_map != map)
2975 				kfree(new_map);
2976 		}
2977 	}
2978 
2979 	mutex_unlock(&xps_map_mutex);
2980 
2981 	kfree(new_dev_maps);
2982 	return -ENOMEM;
2983 }
2984 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2985 
2986 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2987 			u16 index)
2988 {
2989 	int ret;
2990 
2991 	cpus_read_lock();
2992 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2993 	cpus_read_unlock();
2994 
2995 	return ret;
2996 }
2997 EXPORT_SYMBOL(netif_set_xps_queue);
2998 
2999 #endif
3000 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3001 {
3002 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3003 
3004 	/* Unbind any subordinate channels */
3005 	while (txq-- != &dev->_tx[0]) {
3006 		if (txq->sb_dev)
3007 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3008 	}
3009 }
3010 
3011 void netdev_reset_tc(struct net_device *dev)
3012 {
3013 #ifdef CONFIG_XPS
3014 	netif_reset_xps_queues_gt(dev, 0);
3015 #endif
3016 	netdev_unbind_all_sb_channels(dev);
3017 
3018 	/* Reset TC configuration of device */
3019 	dev->num_tc = 0;
3020 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3021 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3022 }
3023 EXPORT_SYMBOL(netdev_reset_tc);
3024 
3025 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3026 {
3027 	if (tc >= dev->num_tc)
3028 		return -EINVAL;
3029 
3030 #ifdef CONFIG_XPS
3031 	netif_reset_xps_queues(dev, offset, count);
3032 #endif
3033 	dev->tc_to_txq[tc].count = count;
3034 	dev->tc_to_txq[tc].offset = offset;
3035 	return 0;
3036 }
3037 EXPORT_SYMBOL(netdev_set_tc_queue);
3038 
3039 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3040 {
3041 	if (num_tc > TC_MAX_QUEUE)
3042 		return -EINVAL;
3043 
3044 #ifdef CONFIG_XPS
3045 	netif_reset_xps_queues_gt(dev, 0);
3046 #endif
3047 	netdev_unbind_all_sb_channels(dev);
3048 
3049 	dev->num_tc = num_tc;
3050 	return 0;
3051 }
3052 EXPORT_SYMBOL(netdev_set_num_tc);
3053 
3054 void netdev_unbind_sb_channel(struct net_device *dev,
3055 			      struct net_device *sb_dev)
3056 {
3057 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3058 
3059 #ifdef CONFIG_XPS
3060 	netif_reset_xps_queues_gt(sb_dev, 0);
3061 #endif
3062 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3063 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3064 
3065 	while (txq-- != &dev->_tx[0]) {
3066 		if (txq->sb_dev == sb_dev)
3067 			txq->sb_dev = NULL;
3068 	}
3069 }
3070 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3071 
3072 int netdev_bind_sb_channel_queue(struct net_device *dev,
3073 				 struct net_device *sb_dev,
3074 				 u8 tc, u16 count, u16 offset)
3075 {
3076 	/* Make certain the sb_dev and dev are already configured */
3077 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3078 		return -EINVAL;
3079 
3080 	/* We cannot hand out queues we don't have */
3081 	if ((offset + count) > dev->real_num_tx_queues)
3082 		return -EINVAL;
3083 
3084 	/* Record the mapping */
3085 	sb_dev->tc_to_txq[tc].count = count;
3086 	sb_dev->tc_to_txq[tc].offset = offset;
3087 
3088 	/* Provide a way for Tx queue to find the tc_to_txq map or
3089 	 * XPS map for itself.
3090 	 */
3091 	while (count--)
3092 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3093 
3094 	return 0;
3095 }
3096 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3097 
3098 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3099 {
3100 	/* Do not use a multiqueue device to represent a subordinate channel */
3101 	if (netif_is_multiqueue(dev))
3102 		return -ENODEV;
3103 
3104 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3105 	 * Channel 0 is meant to be "native" mode and used only to represent
3106 	 * the main root device. We allow writing 0 to reset the device back
3107 	 * to normal mode after being used as a subordinate channel.
3108 	 */
3109 	if (channel > S16_MAX)
3110 		return -EINVAL;
3111 
3112 	dev->num_tc = -channel;
3113 
3114 	return 0;
3115 }
3116 EXPORT_SYMBOL(netdev_set_sb_channel);
3117 
3118 /*
3119  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3120  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3121  */
3122 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3123 {
3124 	bool disabling;
3125 	int rc;
3126 
3127 	disabling = txq < dev->real_num_tx_queues;
3128 
3129 	if (txq < 1 || txq > dev->num_tx_queues)
3130 		return -EINVAL;
3131 
3132 	if (dev->reg_state == NETREG_REGISTERED ||
3133 	    dev->reg_state == NETREG_UNREGISTERING) {
3134 		ASSERT_RTNL();
3135 
3136 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3137 						  txq);
3138 		if (rc)
3139 			return rc;
3140 
3141 		if (dev->num_tc)
3142 			netif_setup_tc(dev, txq);
3143 
3144 		net_shaper_set_real_num_tx_queues(dev, txq);
3145 
3146 		dev_qdisc_change_real_num_tx(dev, txq);
3147 
3148 		dev->real_num_tx_queues = txq;
3149 
3150 		if (disabling) {
3151 			synchronize_net();
3152 			qdisc_reset_all_tx_gt(dev, txq);
3153 #ifdef CONFIG_XPS
3154 			netif_reset_xps_queues_gt(dev, txq);
3155 #endif
3156 		}
3157 	} else {
3158 		dev->real_num_tx_queues = txq;
3159 	}
3160 
3161 	return 0;
3162 }
3163 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3164 
3165 #ifdef CONFIG_SYSFS
3166 /**
3167  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3168  *	@dev: Network device
3169  *	@rxq: Actual number of RX queues
3170  *
3171  *	This must be called either with the rtnl_lock held or before
3172  *	registration of the net device.  Returns 0 on success, or a
3173  *	negative error code.  If called before registration, it always
3174  *	succeeds.
3175  */
3176 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3177 {
3178 	int rc;
3179 
3180 	if (rxq < 1 || rxq > dev->num_rx_queues)
3181 		return -EINVAL;
3182 
3183 	if (dev->reg_state == NETREG_REGISTERED) {
3184 		ASSERT_RTNL();
3185 
3186 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3187 						  rxq);
3188 		if (rc)
3189 			return rc;
3190 	}
3191 
3192 	dev->real_num_rx_queues = rxq;
3193 	return 0;
3194 }
3195 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3196 #endif
3197 
3198 /**
3199  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3200  *	@dev: Network device
3201  *	@txq: Actual number of TX queues
3202  *	@rxq: Actual number of RX queues
3203  *
3204  *	Set the real number of both TX and RX queues.
3205  *	Does nothing if the number of queues is already correct.
3206  */
3207 int netif_set_real_num_queues(struct net_device *dev,
3208 			      unsigned int txq, unsigned int rxq)
3209 {
3210 	unsigned int old_rxq = dev->real_num_rx_queues;
3211 	int err;
3212 
3213 	if (txq < 1 || txq > dev->num_tx_queues ||
3214 	    rxq < 1 || rxq > dev->num_rx_queues)
3215 		return -EINVAL;
3216 
3217 	/* Start from increases, so the error path only does decreases -
3218 	 * decreases can't fail.
3219 	 */
3220 	if (rxq > dev->real_num_rx_queues) {
3221 		err = netif_set_real_num_rx_queues(dev, rxq);
3222 		if (err)
3223 			return err;
3224 	}
3225 	if (txq > dev->real_num_tx_queues) {
3226 		err = netif_set_real_num_tx_queues(dev, txq);
3227 		if (err)
3228 			goto undo_rx;
3229 	}
3230 	if (rxq < dev->real_num_rx_queues)
3231 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3232 	if (txq < dev->real_num_tx_queues)
3233 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3234 
3235 	return 0;
3236 undo_rx:
3237 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3238 	return err;
3239 }
3240 EXPORT_SYMBOL(netif_set_real_num_queues);
3241 
3242 /**
3243  * netif_set_tso_max_size() - set the max size of TSO frames supported
3244  * @dev:	netdev to update
3245  * @size:	max skb->len of a TSO frame
3246  *
3247  * Set the limit on the size of TSO super-frames the device can handle.
3248  * Unless explicitly set the stack will assume the value of
3249  * %GSO_LEGACY_MAX_SIZE.
3250  */
3251 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3252 {
3253 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3254 	if (size < READ_ONCE(dev->gso_max_size))
3255 		netif_set_gso_max_size(dev, size);
3256 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3257 		netif_set_gso_ipv4_max_size(dev, size);
3258 }
3259 EXPORT_SYMBOL(netif_set_tso_max_size);
3260 
3261 /**
3262  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3263  * @dev:	netdev to update
3264  * @segs:	max number of TCP segments
3265  *
3266  * Set the limit on the number of TCP segments the device can generate from
3267  * a single TSO super-frame.
3268  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3269  */
3270 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3271 {
3272 	dev->tso_max_segs = segs;
3273 	if (segs < READ_ONCE(dev->gso_max_segs))
3274 		netif_set_gso_max_segs(dev, segs);
3275 }
3276 EXPORT_SYMBOL(netif_set_tso_max_segs);
3277 
3278 /**
3279  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3280  * @to:		netdev to update
3281  * @from:	netdev from which to copy the limits
3282  */
3283 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3284 {
3285 	netif_set_tso_max_size(to, from->tso_max_size);
3286 	netif_set_tso_max_segs(to, from->tso_max_segs);
3287 }
3288 EXPORT_SYMBOL(netif_inherit_tso_max);
3289 
3290 /**
3291  * netif_get_num_default_rss_queues - default number of RSS queues
3292  *
3293  * Default value is the number of physical cores if there are only 1 or 2, or
3294  * divided by 2 if there are more.
3295  */
3296 int netif_get_num_default_rss_queues(void)
3297 {
3298 	cpumask_var_t cpus;
3299 	int cpu, count = 0;
3300 
3301 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3302 		return 1;
3303 
3304 	cpumask_copy(cpus, cpu_online_mask);
3305 	for_each_cpu(cpu, cpus) {
3306 		++count;
3307 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3308 	}
3309 	free_cpumask_var(cpus);
3310 
3311 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3312 }
3313 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3314 
3315 static void __netif_reschedule(struct Qdisc *q)
3316 {
3317 	struct softnet_data *sd;
3318 	unsigned long flags;
3319 
3320 	local_irq_save(flags);
3321 	sd = this_cpu_ptr(&softnet_data);
3322 	q->next_sched = NULL;
3323 	*sd->output_queue_tailp = q;
3324 	sd->output_queue_tailp = &q->next_sched;
3325 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3326 	local_irq_restore(flags);
3327 }
3328 
3329 void __netif_schedule(struct Qdisc *q)
3330 {
3331 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3332 		__netif_reschedule(q);
3333 }
3334 EXPORT_SYMBOL(__netif_schedule);
3335 
3336 struct dev_kfree_skb_cb {
3337 	enum skb_drop_reason reason;
3338 };
3339 
3340 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3341 {
3342 	return (struct dev_kfree_skb_cb *)skb->cb;
3343 }
3344 
3345 void netif_schedule_queue(struct netdev_queue *txq)
3346 {
3347 	rcu_read_lock();
3348 	if (!netif_xmit_stopped(txq)) {
3349 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3350 
3351 		__netif_schedule(q);
3352 	}
3353 	rcu_read_unlock();
3354 }
3355 EXPORT_SYMBOL(netif_schedule_queue);
3356 
3357 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3358 {
3359 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3360 		struct Qdisc *q;
3361 
3362 		rcu_read_lock();
3363 		q = rcu_dereference(dev_queue->qdisc);
3364 		__netif_schedule(q);
3365 		rcu_read_unlock();
3366 	}
3367 }
3368 EXPORT_SYMBOL(netif_tx_wake_queue);
3369 
3370 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3371 {
3372 	unsigned long flags;
3373 
3374 	if (unlikely(!skb))
3375 		return;
3376 
3377 	if (likely(refcount_read(&skb->users) == 1)) {
3378 		smp_rmb();
3379 		refcount_set(&skb->users, 0);
3380 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3381 		return;
3382 	}
3383 	get_kfree_skb_cb(skb)->reason = reason;
3384 	local_irq_save(flags);
3385 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3386 	__this_cpu_write(softnet_data.completion_queue, skb);
3387 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3388 	local_irq_restore(flags);
3389 }
3390 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3391 
3392 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3393 {
3394 	if (in_hardirq() || irqs_disabled())
3395 		dev_kfree_skb_irq_reason(skb, reason);
3396 	else
3397 		kfree_skb_reason(skb, reason);
3398 }
3399 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3400 
3401 
3402 /**
3403  * netif_device_detach - mark device as removed
3404  * @dev: network device
3405  *
3406  * Mark device as removed from system and therefore no longer available.
3407  */
3408 void netif_device_detach(struct net_device *dev)
3409 {
3410 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3411 	    netif_running(dev)) {
3412 		netif_tx_stop_all_queues(dev);
3413 	}
3414 }
3415 EXPORT_SYMBOL(netif_device_detach);
3416 
3417 /**
3418  * netif_device_attach - mark device as attached
3419  * @dev: network device
3420  *
3421  * Mark device as attached from system and restart if needed.
3422  */
3423 void netif_device_attach(struct net_device *dev)
3424 {
3425 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3426 	    netif_running(dev)) {
3427 		netif_tx_wake_all_queues(dev);
3428 		netdev_watchdog_up(dev);
3429 	}
3430 }
3431 EXPORT_SYMBOL(netif_device_attach);
3432 
3433 /*
3434  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3435  * to be used as a distribution range.
3436  */
3437 static u16 skb_tx_hash(const struct net_device *dev,
3438 		       const struct net_device *sb_dev,
3439 		       struct sk_buff *skb)
3440 {
3441 	u32 hash;
3442 	u16 qoffset = 0;
3443 	u16 qcount = dev->real_num_tx_queues;
3444 
3445 	if (dev->num_tc) {
3446 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3447 
3448 		qoffset = sb_dev->tc_to_txq[tc].offset;
3449 		qcount = sb_dev->tc_to_txq[tc].count;
3450 		if (unlikely(!qcount)) {
3451 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3452 					     sb_dev->name, qoffset, tc);
3453 			qoffset = 0;
3454 			qcount = dev->real_num_tx_queues;
3455 		}
3456 	}
3457 
3458 	if (skb_rx_queue_recorded(skb)) {
3459 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3460 		hash = skb_get_rx_queue(skb);
3461 		if (hash >= qoffset)
3462 			hash -= qoffset;
3463 		while (unlikely(hash >= qcount))
3464 			hash -= qcount;
3465 		return hash + qoffset;
3466 	}
3467 
3468 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3469 }
3470 
3471 void skb_warn_bad_offload(const struct sk_buff *skb)
3472 {
3473 	static const netdev_features_t null_features;
3474 	struct net_device *dev = skb->dev;
3475 	const char *name = "";
3476 
3477 	if (!net_ratelimit())
3478 		return;
3479 
3480 	if (dev) {
3481 		if (dev->dev.parent)
3482 			name = dev_driver_string(dev->dev.parent);
3483 		else
3484 			name = netdev_name(dev);
3485 	}
3486 	skb_dump(KERN_WARNING, skb, false);
3487 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3488 	     name, dev ? &dev->features : &null_features,
3489 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3490 }
3491 
3492 /*
3493  * Invalidate hardware checksum when packet is to be mangled, and
3494  * complete checksum manually on outgoing path.
3495  */
3496 int skb_checksum_help(struct sk_buff *skb)
3497 {
3498 	__wsum csum;
3499 	int ret = 0, offset;
3500 
3501 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3502 		goto out_set_summed;
3503 
3504 	if (unlikely(skb_is_gso(skb))) {
3505 		skb_warn_bad_offload(skb);
3506 		return -EINVAL;
3507 	}
3508 
3509 	if (!skb_frags_readable(skb)) {
3510 		return -EFAULT;
3511 	}
3512 
3513 	/* Before computing a checksum, we should make sure no frag could
3514 	 * be modified by an external entity : checksum could be wrong.
3515 	 */
3516 	if (skb_has_shared_frag(skb)) {
3517 		ret = __skb_linearize(skb);
3518 		if (ret)
3519 			goto out;
3520 	}
3521 
3522 	offset = skb_checksum_start_offset(skb);
3523 	ret = -EINVAL;
3524 	if (unlikely(offset >= skb_headlen(skb))) {
3525 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3526 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3527 			  offset, skb_headlen(skb));
3528 		goto out;
3529 	}
3530 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3531 
3532 	offset += skb->csum_offset;
3533 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3534 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3535 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3536 			  offset + sizeof(__sum16), skb_headlen(skb));
3537 		goto out;
3538 	}
3539 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3540 	if (ret)
3541 		goto out;
3542 
3543 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3544 out_set_summed:
3545 	skb->ip_summed = CHECKSUM_NONE;
3546 out:
3547 	return ret;
3548 }
3549 EXPORT_SYMBOL(skb_checksum_help);
3550 
3551 int skb_crc32c_csum_help(struct sk_buff *skb)
3552 {
3553 	__le32 crc32c_csum;
3554 	int ret = 0, offset, start;
3555 
3556 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3557 		goto out;
3558 
3559 	if (unlikely(skb_is_gso(skb)))
3560 		goto out;
3561 
3562 	/* Before computing a checksum, we should make sure no frag could
3563 	 * be modified by an external entity : checksum could be wrong.
3564 	 */
3565 	if (unlikely(skb_has_shared_frag(skb))) {
3566 		ret = __skb_linearize(skb);
3567 		if (ret)
3568 			goto out;
3569 	}
3570 	start = skb_checksum_start_offset(skb);
3571 	offset = start + offsetof(struct sctphdr, checksum);
3572 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3573 		ret = -EINVAL;
3574 		goto out;
3575 	}
3576 
3577 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3578 	if (ret)
3579 		goto out;
3580 
3581 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3582 						  skb->len - start, ~(__u32)0,
3583 						  crc32c_csum_stub));
3584 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3585 	skb_reset_csum_not_inet(skb);
3586 out:
3587 	return ret;
3588 }
3589 EXPORT_SYMBOL(skb_crc32c_csum_help);
3590 
3591 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3592 {
3593 	__be16 type = skb->protocol;
3594 
3595 	/* Tunnel gso handlers can set protocol to ethernet. */
3596 	if (type == htons(ETH_P_TEB)) {
3597 		struct ethhdr *eth;
3598 
3599 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3600 			return 0;
3601 
3602 		eth = (struct ethhdr *)skb->data;
3603 		type = eth->h_proto;
3604 	}
3605 
3606 	return vlan_get_protocol_and_depth(skb, type, depth);
3607 }
3608 
3609 
3610 /* Take action when hardware reception checksum errors are detected. */
3611 #ifdef CONFIG_BUG
3612 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3613 {
3614 	netdev_err(dev, "hw csum failure\n");
3615 	skb_dump(KERN_ERR, skb, true);
3616 	dump_stack();
3617 }
3618 
3619 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3620 {
3621 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3622 }
3623 EXPORT_SYMBOL(netdev_rx_csum_fault);
3624 #endif
3625 
3626 /* XXX: check that highmem exists at all on the given machine. */
3627 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3628 {
3629 #ifdef CONFIG_HIGHMEM
3630 	int i;
3631 
3632 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3633 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3634 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3635 			struct page *page = skb_frag_page(frag);
3636 
3637 			if (page && PageHighMem(page))
3638 				return 1;
3639 		}
3640 	}
3641 #endif
3642 	return 0;
3643 }
3644 
3645 /* If MPLS offload request, verify we are testing hardware MPLS features
3646  * instead of standard features for the netdev.
3647  */
3648 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3649 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3650 					   netdev_features_t features,
3651 					   __be16 type)
3652 {
3653 	if (eth_p_mpls(type))
3654 		features &= skb->dev->mpls_features;
3655 
3656 	return features;
3657 }
3658 #else
3659 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3660 					   netdev_features_t features,
3661 					   __be16 type)
3662 {
3663 	return features;
3664 }
3665 #endif
3666 
3667 static netdev_features_t harmonize_features(struct sk_buff *skb,
3668 	netdev_features_t features)
3669 {
3670 	__be16 type;
3671 
3672 	type = skb_network_protocol(skb, NULL);
3673 	features = net_mpls_features(skb, features, type);
3674 
3675 	if (skb->ip_summed != CHECKSUM_NONE &&
3676 	    !can_checksum_protocol(features, type)) {
3677 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3678 	}
3679 	if (illegal_highdma(skb->dev, skb))
3680 		features &= ~NETIF_F_SG;
3681 
3682 	return features;
3683 }
3684 
3685 netdev_features_t passthru_features_check(struct sk_buff *skb,
3686 					  struct net_device *dev,
3687 					  netdev_features_t features)
3688 {
3689 	return features;
3690 }
3691 EXPORT_SYMBOL(passthru_features_check);
3692 
3693 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3694 					     struct net_device *dev,
3695 					     netdev_features_t features)
3696 {
3697 	return vlan_features_check(skb, features);
3698 }
3699 
3700 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3701 					    struct net_device *dev,
3702 					    netdev_features_t features)
3703 {
3704 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3705 
3706 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3707 		return features & ~NETIF_F_GSO_MASK;
3708 
3709 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3710 		return features & ~NETIF_F_GSO_MASK;
3711 
3712 	if (!skb_shinfo(skb)->gso_type) {
3713 		skb_warn_bad_offload(skb);
3714 		return features & ~NETIF_F_GSO_MASK;
3715 	}
3716 
3717 	/* Support for GSO partial features requires software
3718 	 * intervention before we can actually process the packets
3719 	 * so we need to strip support for any partial features now
3720 	 * and we can pull them back in after we have partially
3721 	 * segmented the frame.
3722 	 */
3723 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3724 		features &= ~dev->gso_partial_features;
3725 
3726 	/* Make sure to clear the IPv4 ID mangling feature if the
3727 	 * IPv4 header has the potential to be fragmented.
3728 	 */
3729 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3730 		struct iphdr *iph = skb->encapsulation ?
3731 				    inner_ip_hdr(skb) : ip_hdr(skb);
3732 
3733 		if (!(iph->frag_off & htons(IP_DF)))
3734 			features &= ~NETIF_F_TSO_MANGLEID;
3735 	}
3736 
3737 	return features;
3738 }
3739 
3740 netdev_features_t netif_skb_features(struct sk_buff *skb)
3741 {
3742 	struct net_device *dev = skb->dev;
3743 	netdev_features_t features = dev->features;
3744 
3745 	if (skb_is_gso(skb))
3746 		features = gso_features_check(skb, dev, features);
3747 
3748 	/* If encapsulation offload request, verify we are testing
3749 	 * hardware encapsulation features instead of standard
3750 	 * features for the netdev
3751 	 */
3752 	if (skb->encapsulation)
3753 		features &= dev->hw_enc_features;
3754 
3755 	if (skb_vlan_tagged(skb))
3756 		features = netdev_intersect_features(features,
3757 						     dev->vlan_features |
3758 						     NETIF_F_HW_VLAN_CTAG_TX |
3759 						     NETIF_F_HW_VLAN_STAG_TX);
3760 
3761 	if (dev->netdev_ops->ndo_features_check)
3762 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3763 								features);
3764 	else
3765 		features &= dflt_features_check(skb, dev, features);
3766 
3767 	return harmonize_features(skb, features);
3768 }
3769 EXPORT_SYMBOL(netif_skb_features);
3770 
3771 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3772 		    struct netdev_queue *txq, bool more)
3773 {
3774 	unsigned int len;
3775 	int rc;
3776 
3777 	if (dev_nit_active(dev))
3778 		dev_queue_xmit_nit(skb, dev);
3779 
3780 	len = skb->len;
3781 	trace_net_dev_start_xmit(skb, dev);
3782 	rc = netdev_start_xmit(skb, dev, txq, more);
3783 	trace_net_dev_xmit(skb, rc, dev, len);
3784 
3785 	return rc;
3786 }
3787 
3788 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3789 				    struct netdev_queue *txq, int *ret)
3790 {
3791 	struct sk_buff *skb = first;
3792 	int rc = NETDEV_TX_OK;
3793 
3794 	while (skb) {
3795 		struct sk_buff *next = skb->next;
3796 
3797 		skb_mark_not_on_list(skb);
3798 		rc = xmit_one(skb, dev, txq, next != NULL);
3799 		if (unlikely(!dev_xmit_complete(rc))) {
3800 			skb->next = next;
3801 			goto out;
3802 		}
3803 
3804 		skb = next;
3805 		if (netif_tx_queue_stopped(txq) && skb) {
3806 			rc = NETDEV_TX_BUSY;
3807 			break;
3808 		}
3809 	}
3810 
3811 out:
3812 	*ret = rc;
3813 	return skb;
3814 }
3815 
3816 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3817 					  netdev_features_t features)
3818 {
3819 	if (skb_vlan_tag_present(skb) &&
3820 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3821 		skb = __vlan_hwaccel_push_inside(skb);
3822 	return skb;
3823 }
3824 
3825 int skb_csum_hwoffload_help(struct sk_buff *skb,
3826 			    const netdev_features_t features)
3827 {
3828 	if (unlikely(skb_csum_is_sctp(skb)))
3829 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3830 			skb_crc32c_csum_help(skb);
3831 
3832 	if (features & NETIF_F_HW_CSUM)
3833 		return 0;
3834 
3835 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3836 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3837 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3838 		    !ipv6_has_hopopt_jumbo(skb))
3839 			goto sw_checksum;
3840 
3841 		switch (skb->csum_offset) {
3842 		case offsetof(struct tcphdr, check):
3843 		case offsetof(struct udphdr, check):
3844 			return 0;
3845 		}
3846 	}
3847 
3848 sw_checksum:
3849 	return skb_checksum_help(skb);
3850 }
3851 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3852 
3853 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3854 {
3855 	netdev_features_t features;
3856 
3857 	features = netif_skb_features(skb);
3858 	skb = validate_xmit_vlan(skb, features);
3859 	if (unlikely(!skb))
3860 		goto out_null;
3861 
3862 	skb = sk_validate_xmit_skb(skb, dev);
3863 	if (unlikely(!skb))
3864 		goto out_null;
3865 
3866 	if (netif_needs_gso(skb, features)) {
3867 		struct sk_buff *segs;
3868 
3869 		segs = skb_gso_segment(skb, features);
3870 		if (IS_ERR(segs)) {
3871 			goto out_kfree_skb;
3872 		} else if (segs) {
3873 			consume_skb(skb);
3874 			skb = segs;
3875 		}
3876 	} else {
3877 		if (skb_needs_linearize(skb, features) &&
3878 		    __skb_linearize(skb))
3879 			goto out_kfree_skb;
3880 
3881 		/* If packet is not checksummed and device does not
3882 		 * support checksumming for this protocol, complete
3883 		 * checksumming here.
3884 		 */
3885 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3886 			if (skb->encapsulation)
3887 				skb_set_inner_transport_header(skb,
3888 							       skb_checksum_start_offset(skb));
3889 			else
3890 				skb_set_transport_header(skb,
3891 							 skb_checksum_start_offset(skb));
3892 			if (skb_csum_hwoffload_help(skb, features))
3893 				goto out_kfree_skb;
3894 		}
3895 	}
3896 
3897 	skb = validate_xmit_xfrm(skb, features, again);
3898 
3899 	return skb;
3900 
3901 out_kfree_skb:
3902 	kfree_skb(skb);
3903 out_null:
3904 	dev_core_stats_tx_dropped_inc(dev);
3905 	return NULL;
3906 }
3907 
3908 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3909 {
3910 	struct sk_buff *next, *head = NULL, *tail;
3911 
3912 	for (; skb != NULL; skb = next) {
3913 		next = skb->next;
3914 		skb_mark_not_on_list(skb);
3915 
3916 		/* in case skb won't be segmented, point to itself */
3917 		skb->prev = skb;
3918 
3919 		skb = validate_xmit_skb(skb, dev, again);
3920 		if (!skb)
3921 			continue;
3922 
3923 		if (!head)
3924 			head = skb;
3925 		else
3926 			tail->next = skb;
3927 		/* If skb was segmented, skb->prev points to
3928 		 * the last segment. If not, it still contains skb.
3929 		 */
3930 		tail = skb->prev;
3931 	}
3932 	return head;
3933 }
3934 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3935 
3936 static void qdisc_pkt_len_init(struct sk_buff *skb)
3937 {
3938 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3939 
3940 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3941 
3942 	/* To get more precise estimation of bytes sent on wire,
3943 	 * we add to pkt_len the headers size of all segments
3944 	 */
3945 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3946 		u16 gso_segs = shinfo->gso_segs;
3947 		unsigned int hdr_len;
3948 
3949 		/* mac layer + network layer */
3950 		hdr_len = skb_transport_offset(skb);
3951 
3952 		/* + transport layer */
3953 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3954 			const struct tcphdr *th;
3955 			struct tcphdr _tcphdr;
3956 
3957 			th = skb_header_pointer(skb, hdr_len,
3958 						sizeof(_tcphdr), &_tcphdr);
3959 			if (likely(th))
3960 				hdr_len += __tcp_hdrlen(th);
3961 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3962 			struct udphdr _udphdr;
3963 
3964 			if (skb_header_pointer(skb, hdr_len,
3965 					       sizeof(_udphdr), &_udphdr))
3966 				hdr_len += sizeof(struct udphdr);
3967 		}
3968 
3969 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3970 			int payload = skb->len - hdr_len;
3971 
3972 			/* Malicious packet. */
3973 			if (payload <= 0)
3974 				return;
3975 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3976 		}
3977 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3978 	}
3979 }
3980 
3981 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3982 			     struct sk_buff **to_free,
3983 			     struct netdev_queue *txq)
3984 {
3985 	int rc;
3986 
3987 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3988 	if (rc == NET_XMIT_SUCCESS)
3989 		trace_qdisc_enqueue(q, txq, skb);
3990 	return rc;
3991 }
3992 
3993 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3994 				 struct net_device *dev,
3995 				 struct netdev_queue *txq)
3996 {
3997 	spinlock_t *root_lock = qdisc_lock(q);
3998 	struct sk_buff *to_free = NULL;
3999 	bool contended;
4000 	int rc;
4001 
4002 	qdisc_calculate_pkt_len(skb, q);
4003 
4004 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4005 
4006 	if (q->flags & TCQ_F_NOLOCK) {
4007 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4008 		    qdisc_run_begin(q)) {
4009 			/* Retest nolock_qdisc_is_empty() within the protection
4010 			 * of q->seqlock to protect from racing with requeuing.
4011 			 */
4012 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4013 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4014 				__qdisc_run(q);
4015 				qdisc_run_end(q);
4016 
4017 				goto no_lock_out;
4018 			}
4019 
4020 			qdisc_bstats_cpu_update(q, skb);
4021 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4022 			    !nolock_qdisc_is_empty(q))
4023 				__qdisc_run(q);
4024 
4025 			qdisc_run_end(q);
4026 			return NET_XMIT_SUCCESS;
4027 		}
4028 
4029 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4030 		qdisc_run(q);
4031 
4032 no_lock_out:
4033 		if (unlikely(to_free))
4034 			kfree_skb_list_reason(to_free,
4035 					      tcf_get_drop_reason(to_free));
4036 		return rc;
4037 	}
4038 
4039 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4040 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4041 		return NET_XMIT_DROP;
4042 	}
4043 	/*
4044 	 * Heuristic to force contended enqueues to serialize on a
4045 	 * separate lock before trying to get qdisc main lock.
4046 	 * This permits qdisc->running owner to get the lock more
4047 	 * often and dequeue packets faster.
4048 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4049 	 * and then other tasks will only enqueue packets. The packets will be
4050 	 * sent after the qdisc owner is scheduled again. To prevent this
4051 	 * scenario the task always serialize on the lock.
4052 	 */
4053 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4054 	if (unlikely(contended))
4055 		spin_lock(&q->busylock);
4056 
4057 	spin_lock(root_lock);
4058 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4059 		__qdisc_drop(skb, &to_free);
4060 		rc = NET_XMIT_DROP;
4061 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4062 		   qdisc_run_begin(q)) {
4063 		/*
4064 		 * This is a work-conserving queue; there are no old skbs
4065 		 * waiting to be sent out; and the qdisc is not running -
4066 		 * xmit the skb directly.
4067 		 */
4068 
4069 		qdisc_bstats_update(q, skb);
4070 
4071 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4072 			if (unlikely(contended)) {
4073 				spin_unlock(&q->busylock);
4074 				contended = false;
4075 			}
4076 			__qdisc_run(q);
4077 		}
4078 
4079 		qdisc_run_end(q);
4080 		rc = NET_XMIT_SUCCESS;
4081 	} else {
4082 		WRITE_ONCE(q->owner, smp_processor_id());
4083 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4084 		WRITE_ONCE(q->owner, -1);
4085 		if (qdisc_run_begin(q)) {
4086 			if (unlikely(contended)) {
4087 				spin_unlock(&q->busylock);
4088 				contended = false;
4089 			}
4090 			__qdisc_run(q);
4091 			qdisc_run_end(q);
4092 		}
4093 	}
4094 	spin_unlock(root_lock);
4095 	if (unlikely(to_free))
4096 		kfree_skb_list_reason(to_free,
4097 				      tcf_get_drop_reason(to_free));
4098 	if (unlikely(contended))
4099 		spin_unlock(&q->busylock);
4100 	return rc;
4101 }
4102 
4103 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4104 static void skb_update_prio(struct sk_buff *skb)
4105 {
4106 	const struct netprio_map *map;
4107 	const struct sock *sk;
4108 	unsigned int prioidx;
4109 
4110 	if (skb->priority)
4111 		return;
4112 	map = rcu_dereference_bh(skb->dev->priomap);
4113 	if (!map)
4114 		return;
4115 	sk = skb_to_full_sk(skb);
4116 	if (!sk)
4117 		return;
4118 
4119 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4120 
4121 	if (prioidx < map->priomap_len)
4122 		skb->priority = map->priomap[prioidx];
4123 }
4124 #else
4125 #define skb_update_prio(skb)
4126 #endif
4127 
4128 /**
4129  *	dev_loopback_xmit - loop back @skb
4130  *	@net: network namespace this loopback is happening in
4131  *	@sk:  sk needed to be a netfilter okfn
4132  *	@skb: buffer to transmit
4133  */
4134 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4135 {
4136 	skb_reset_mac_header(skb);
4137 	__skb_pull(skb, skb_network_offset(skb));
4138 	skb->pkt_type = PACKET_LOOPBACK;
4139 	if (skb->ip_summed == CHECKSUM_NONE)
4140 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4141 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4142 	skb_dst_force(skb);
4143 	netif_rx(skb);
4144 	return 0;
4145 }
4146 EXPORT_SYMBOL(dev_loopback_xmit);
4147 
4148 #ifdef CONFIG_NET_EGRESS
4149 static struct netdev_queue *
4150 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4151 {
4152 	int qm = skb_get_queue_mapping(skb);
4153 
4154 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4155 }
4156 
4157 #ifndef CONFIG_PREEMPT_RT
4158 static bool netdev_xmit_txqueue_skipped(void)
4159 {
4160 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4161 }
4162 
4163 void netdev_xmit_skip_txqueue(bool skip)
4164 {
4165 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4166 }
4167 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4168 
4169 #else
4170 static bool netdev_xmit_txqueue_skipped(void)
4171 {
4172 	return current->net_xmit.skip_txqueue;
4173 }
4174 
4175 void netdev_xmit_skip_txqueue(bool skip)
4176 {
4177 	current->net_xmit.skip_txqueue = skip;
4178 }
4179 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4180 #endif
4181 #endif /* CONFIG_NET_EGRESS */
4182 
4183 #ifdef CONFIG_NET_XGRESS
4184 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4185 		  enum skb_drop_reason *drop_reason)
4186 {
4187 	int ret = TC_ACT_UNSPEC;
4188 #ifdef CONFIG_NET_CLS_ACT
4189 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4190 	struct tcf_result res;
4191 
4192 	if (!miniq)
4193 		return ret;
4194 
4195 	/* Global bypass */
4196 	if (!static_branch_likely(&tcf_sw_enabled_key))
4197 		return ret;
4198 
4199 	/* Block-wise bypass */
4200 	if (tcf_block_bypass_sw(miniq->block))
4201 		return ret;
4202 
4203 	tc_skb_cb(skb)->mru = 0;
4204 	tc_skb_cb(skb)->post_ct = false;
4205 	tcf_set_drop_reason(skb, *drop_reason);
4206 
4207 	mini_qdisc_bstats_cpu_update(miniq, skb);
4208 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4209 	/* Only tcf related quirks below. */
4210 	switch (ret) {
4211 	case TC_ACT_SHOT:
4212 		*drop_reason = tcf_get_drop_reason(skb);
4213 		mini_qdisc_qstats_cpu_drop(miniq);
4214 		break;
4215 	case TC_ACT_OK:
4216 	case TC_ACT_RECLASSIFY:
4217 		skb->tc_index = TC_H_MIN(res.classid);
4218 		break;
4219 	}
4220 #endif /* CONFIG_NET_CLS_ACT */
4221 	return ret;
4222 }
4223 
4224 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4225 
4226 void tcx_inc(void)
4227 {
4228 	static_branch_inc(&tcx_needed_key);
4229 }
4230 
4231 void tcx_dec(void)
4232 {
4233 	static_branch_dec(&tcx_needed_key);
4234 }
4235 
4236 static __always_inline enum tcx_action_base
4237 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4238 	const bool needs_mac)
4239 {
4240 	const struct bpf_mprog_fp *fp;
4241 	const struct bpf_prog *prog;
4242 	int ret = TCX_NEXT;
4243 
4244 	if (needs_mac)
4245 		__skb_push(skb, skb->mac_len);
4246 	bpf_mprog_foreach_prog(entry, fp, prog) {
4247 		bpf_compute_data_pointers(skb);
4248 		ret = bpf_prog_run(prog, skb);
4249 		if (ret != TCX_NEXT)
4250 			break;
4251 	}
4252 	if (needs_mac)
4253 		__skb_pull(skb, skb->mac_len);
4254 	return tcx_action_code(skb, ret);
4255 }
4256 
4257 static __always_inline struct sk_buff *
4258 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4259 		   struct net_device *orig_dev, bool *another)
4260 {
4261 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4262 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4263 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4264 	int sch_ret;
4265 
4266 	if (!entry)
4267 		return skb;
4268 
4269 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4270 	if (*pt_prev) {
4271 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4272 		*pt_prev = NULL;
4273 	}
4274 
4275 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4276 	tcx_set_ingress(skb, true);
4277 
4278 	if (static_branch_unlikely(&tcx_needed_key)) {
4279 		sch_ret = tcx_run(entry, skb, true);
4280 		if (sch_ret != TC_ACT_UNSPEC)
4281 			goto ingress_verdict;
4282 	}
4283 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4284 ingress_verdict:
4285 	switch (sch_ret) {
4286 	case TC_ACT_REDIRECT:
4287 		/* skb_mac_header check was done by BPF, so we can safely
4288 		 * push the L2 header back before redirecting to another
4289 		 * netdev.
4290 		 */
4291 		__skb_push(skb, skb->mac_len);
4292 		if (skb_do_redirect(skb) == -EAGAIN) {
4293 			__skb_pull(skb, skb->mac_len);
4294 			*another = true;
4295 			break;
4296 		}
4297 		*ret = NET_RX_SUCCESS;
4298 		bpf_net_ctx_clear(bpf_net_ctx);
4299 		return NULL;
4300 	case TC_ACT_SHOT:
4301 		kfree_skb_reason(skb, drop_reason);
4302 		*ret = NET_RX_DROP;
4303 		bpf_net_ctx_clear(bpf_net_ctx);
4304 		return NULL;
4305 	/* used by tc_run */
4306 	case TC_ACT_STOLEN:
4307 	case TC_ACT_QUEUED:
4308 	case TC_ACT_TRAP:
4309 		consume_skb(skb);
4310 		fallthrough;
4311 	case TC_ACT_CONSUMED:
4312 		*ret = NET_RX_SUCCESS;
4313 		bpf_net_ctx_clear(bpf_net_ctx);
4314 		return NULL;
4315 	}
4316 	bpf_net_ctx_clear(bpf_net_ctx);
4317 
4318 	return skb;
4319 }
4320 
4321 static __always_inline struct sk_buff *
4322 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4323 {
4324 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4325 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4326 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4327 	int sch_ret;
4328 
4329 	if (!entry)
4330 		return skb;
4331 
4332 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4333 
4334 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4335 	 * already set by the caller.
4336 	 */
4337 	if (static_branch_unlikely(&tcx_needed_key)) {
4338 		sch_ret = tcx_run(entry, skb, false);
4339 		if (sch_ret != TC_ACT_UNSPEC)
4340 			goto egress_verdict;
4341 	}
4342 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4343 egress_verdict:
4344 	switch (sch_ret) {
4345 	case TC_ACT_REDIRECT:
4346 		/* No need to push/pop skb's mac_header here on egress! */
4347 		skb_do_redirect(skb);
4348 		*ret = NET_XMIT_SUCCESS;
4349 		bpf_net_ctx_clear(bpf_net_ctx);
4350 		return NULL;
4351 	case TC_ACT_SHOT:
4352 		kfree_skb_reason(skb, drop_reason);
4353 		*ret = NET_XMIT_DROP;
4354 		bpf_net_ctx_clear(bpf_net_ctx);
4355 		return NULL;
4356 	/* used by tc_run */
4357 	case TC_ACT_STOLEN:
4358 	case TC_ACT_QUEUED:
4359 	case TC_ACT_TRAP:
4360 		consume_skb(skb);
4361 		fallthrough;
4362 	case TC_ACT_CONSUMED:
4363 		*ret = NET_XMIT_SUCCESS;
4364 		bpf_net_ctx_clear(bpf_net_ctx);
4365 		return NULL;
4366 	}
4367 	bpf_net_ctx_clear(bpf_net_ctx);
4368 
4369 	return skb;
4370 }
4371 #else
4372 static __always_inline struct sk_buff *
4373 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4374 		   struct net_device *orig_dev, bool *another)
4375 {
4376 	return skb;
4377 }
4378 
4379 static __always_inline struct sk_buff *
4380 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4381 {
4382 	return skb;
4383 }
4384 #endif /* CONFIG_NET_XGRESS */
4385 
4386 #ifdef CONFIG_XPS
4387 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4388 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4389 {
4390 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4391 	struct xps_map *map;
4392 	int queue_index = -1;
4393 
4394 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4395 		return queue_index;
4396 
4397 	tci *= dev_maps->num_tc;
4398 	tci += tc;
4399 
4400 	map = rcu_dereference(dev_maps->attr_map[tci]);
4401 	if (map) {
4402 		if (map->len == 1)
4403 			queue_index = map->queues[0];
4404 		else
4405 			queue_index = map->queues[reciprocal_scale(
4406 						skb_get_hash(skb), map->len)];
4407 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4408 			queue_index = -1;
4409 	}
4410 	return queue_index;
4411 }
4412 #endif
4413 
4414 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4415 			 struct sk_buff *skb)
4416 {
4417 #ifdef CONFIG_XPS
4418 	struct xps_dev_maps *dev_maps;
4419 	struct sock *sk = skb->sk;
4420 	int queue_index = -1;
4421 
4422 	if (!static_key_false(&xps_needed))
4423 		return -1;
4424 
4425 	rcu_read_lock();
4426 	if (!static_key_false(&xps_rxqs_needed))
4427 		goto get_cpus_map;
4428 
4429 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4430 	if (dev_maps) {
4431 		int tci = sk_rx_queue_get(sk);
4432 
4433 		if (tci >= 0)
4434 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4435 							  tci);
4436 	}
4437 
4438 get_cpus_map:
4439 	if (queue_index < 0) {
4440 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4441 		if (dev_maps) {
4442 			unsigned int tci = skb->sender_cpu - 1;
4443 
4444 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4445 							  tci);
4446 		}
4447 	}
4448 	rcu_read_unlock();
4449 
4450 	return queue_index;
4451 #else
4452 	return -1;
4453 #endif
4454 }
4455 
4456 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4457 		     struct net_device *sb_dev)
4458 {
4459 	return 0;
4460 }
4461 EXPORT_SYMBOL(dev_pick_tx_zero);
4462 
4463 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4464 		     struct net_device *sb_dev)
4465 {
4466 	struct sock *sk = skb->sk;
4467 	int queue_index = sk_tx_queue_get(sk);
4468 
4469 	sb_dev = sb_dev ? : dev;
4470 
4471 	if (queue_index < 0 || skb->ooo_okay ||
4472 	    queue_index >= dev->real_num_tx_queues) {
4473 		int new_index = get_xps_queue(dev, sb_dev, skb);
4474 
4475 		if (new_index < 0)
4476 			new_index = skb_tx_hash(dev, sb_dev, skb);
4477 
4478 		if (queue_index != new_index && sk &&
4479 		    sk_fullsock(sk) &&
4480 		    rcu_access_pointer(sk->sk_dst_cache))
4481 			sk_tx_queue_set(sk, new_index);
4482 
4483 		queue_index = new_index;
4484 	}
4485 
4486 	return queue_index;
4487 }
4488 EXPORT_SYMBOL(netdev_pick_tx);
4489 
4490 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4491 					 struct sk_buff *skb,
4492 					 struct net_device *sb_dev)
4493 {
4494 	int queue_index = 0;
4495 
4496 #ifdef CONFIG_XPS
4497 	u32 sender_cpu = skb->sender_cpu - 1;
4498 
4499 	if (sender_cpu >= (u32)NR_CPUS)
4500 		skb->sender_cpu = raw_smp_processor_id() + 1;
4501 #endif
4502 
4503 	if (dev->real_num_tx_queues != 1) {
4504 		const struct net_device_ops *ops = dev->netdev_ops;
4505 
4506 		if (ops->ndo_select_queue)
4507 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4508 		else
4509 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4510 
4511 		queue_index = netdev_cap_txqueue(dev, queue_index);
4512 	}
4513 
4514 	skb_set_queue_mapping(skb, queue_index);
4515 	return netdev_get_tx_queue(dev, queue_index);
4516 }
4517 
4518 /**
4519  * __dev_queue_xmit() - transmit a buffer
4520  * @skb:	buffer to transmit
4521  * @sb_dev:	suboordinate device used for L2 forwarding offload
4522  *
4523  * Queue a buffer for transmission to a network device. The caller must
4524  * have set the device and priority and built the buffer before calling
4525  * this function. The function can be called from an interrupt.
4526  *
4527  * When calling this method, interrupts MUST be enabled. This is because
4528  * the BH enable code must have IRQs enabled so that it will not deadlock.
4529  *
4530  * Regardless of the return value, the skb is consumed, so it is currently
4531  * difficult to retry a send to this method. (You can bump the ref count
4532  * before sending to hold a reference for retry if you are careful.)
4533  *
4534  * Return:
4535  * * 0				- buffer successfully transmitted
4536  * * positive qdisc return code	- NET_XMIT_DROP etc.
4537  * * negative errno		- other errors
4538  */
4539 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4540 {
4541 	struct net_device *dev = skb->dev;
4542 	struct netdev_queue *txq = NULL;
4543 	struct Qdisc *q;
4544 	int rc = -ENOMEM;
4545 	bool again = false;
4546 
4547 	skb_reset_mac_header(skb);
4548 	skb_assert_len(skb);
4549 
4550 	if (unlikely(skb_shinfo(skb)->tx_flags &
4551 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4552 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4553 
4554 	/* Disable soft irqs for various locks below. Also
4555 	 * stops preemption for RCU.
4556 	 */
4557 	rcu_read_lock_bh();
4558 
4559 	skb_update_prio(skb);
4560 
4561 	qdisc_pkt_len_init(skb);
4562 	tcx_set_ingress(skb, false);
4563 #ifdef CONFIG_NET_EGRESS
4564 	if (static_branch_unlikely(&egress_needed_key)) {
4565 		if (nf_hook_egress_active()) {
4566 			skb = nf_hook_egress(skb, &rc, dev);
4567 			if (!skb)
4568 				goto out;
4569 		}
4570 
4571 		netdev_xmit_skip_txqueue(false);
4572 
4573 		nf_skip_egress(skb, true);
4574 		skb = sch_handle_egress(skb, &rc, dev);
4575 		if (!skb)
4576 			goto out;
4577 		nf_skip_egress(skb, false);
4578 
4579 		if (netdev_xmit_txqueue_skipped())
4580 			txq = netdev_tx_queue_mapping(dev, skb);
4581 	}
4582 #endif
4583 	/* If device/qdisc don't need skb->dst, release it right now while
4584 	 * its hot in this cpu cache.
4585 	 */
4586 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4587 		skb_dst_drop(skb);
4588 	else
4589 		skb_dst_force(skb);
4590 
4591 	if (!txq)
4592 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4593 
4594 	q = rcu_dereference_bh(txq->qdisc);
4595 
4596 	trace_net_dev_queue(skb);
4597 	if (q->enqueue) {
4598 		rc = __dev_xmit_skb(skb, q, dev, txq);
4599 		goto out;
4600 	}
4601 
4602 	/* The device has no queue. Common case for software devices:
4603 	 * loopback, all the sorts of tunnels...
4604 
4605 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4606 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4607 	 * counters.)
4608 	 * However, it is possible, that they rely on protection
4609 	 * made by us here.
4610 
4611 	 * Check this and shot the lock. It is not prone from deadlocks.
4612 	 *Either shot noqueue qdisc, it is even simpler 8)
4613 	 */
4614 	if (dev->flags & IFF_UP) {
4615 		int cpu = smp_processor_id(); /* ok because BHs are off */
4616 
4617 		/* Other cpus might concurrently change txq->xmit_lock_owner
4618 		 * to -1 or to their cpu id, but not to our id.
4619 		 */
4620 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4621 			if (dev_xmit_recursion())
4622 				goto recursion_alert;
4623 
4624 			skb = validate_xmit_skb(skb, dev, &again);
4625 			if (!skb)
4626 				goto out;
4627 
4628 			HARD_TX_LOCK(dev, txq, cpu);
4629 
4630 			if (!netif_xmit_stopped(txq)) {
4631 				dev_xmit_recursion_inc();
4632 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4633 				dev_xmit_recursion_dec();
4634 				if (dev_xmit_complete(rc)) {
4635 					HARD_TX_UNLOCK(dev, txq);
4636 					goto out;
4637 				}
4638 			}
4639 			HARD_TX_UNLOCK(dev, txq);
4640 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4641 					     dev->name);
4642 		} else {
4643 			/* Recursion is detected! It is possible,
4644 			 * unfortunately
4645 			 */
4646 recursion_alert:
4647 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4648 					     dev->name);
4649 		}
4650 	}
4651 
4652 	rc = -ENETDOWN;
4653 	rcu_read_unlock_bh();
4654 
4655 	dev_core_stats_tx_dropped_inc(dev);
4656 	kfree_skb_list(skb);
4657 	return rc;
4658 out:
4659 	rcu_read_unlock_bh();
4660 	return rc;
4661 }
4662 EXPORT_SYMBOL(__dev_queue_xmit);
4663 
4664 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4665 {
4666 	struct net_device *dev = skb->dev;
4667 	struct sk_buff *orig_skb = skb;
4668 	struct netdev_queue *txq;
4669 	int ret = NETDEV_TX_BUSY;
4670 	bool again = false;
4671 
4672 	if (unlikely(!netif_running(dev) ||
4673 		     !netif_carrier_ok(dev)))
4674 		goto drop;
4675 
4676 	skb = validate_xmit_skb_list(skb, dev, &again);
4677 	if (skb != orig_skb)
4678 		goto drop;
4679 
4680 	skb_set_queue_mapping(skb, queue_id);
4681 	txq = skb_get_tx_queue(dev, skb);
4682 
4683 	local_bh_disable();
4684 
4685 	dev_xmit_recursion_inc();
4686 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4687 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4688 		ret = netdev_start_xmit(skb, dev, txq, false);
4689 	HARD_TX_UNLOCK(dev, txq);
4690 	dev_xmit_recursion_dec();
4691 
4692 	local_bh_enable();
4693 	return ret;
4694 drop:
4695 	dev_core_stats_tx_dropped_inc(dev);
4696 	kfree_skb_list(skb);
4697 	return NET_XMIT_DROP;
4698 }
4699 EXPORT_SYMBOL(__dev_direct_xmit);
4700 
4701 /*************************************************************************
4702  *			Receiver routines
4703  *************************************************************************/
4704 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4705 
4706 int weight_p __read_mostly = 64;           /* old backlog weight */
4707 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4708 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4709 
4710 /* Called with irq disabled */
4711 static inline void ____napi_schedule(struct softnet_data *sd,
4712 				     struct napi_struct *napi)
4713 {
4714 	struct task_struct *thread;
4715 
4716 	lockdep_assert_irqs_disabled();
4717 
4718 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4719 		/* Paired with smp_mb__before_atomic() in
4720 		 * napi_enable()/dev_set_threaded().
4721 		 * Use READ_ONCE() to guarantee a complete
4722 		 * read on napi->thread. Only call
4723 		 * wake_up_process() when it's not NULL.
4724 		 */
4725 		thread = READ_ONCE(napi->thread);
4726 		if (thread) {
4727 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4728 				goto use_local_napi;
4729 
4730 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4731 			wake_up_process(thread);
4732 			return;
4733 		}
4734 	}
4735 
4736 use_local_napi:
4737 	list_add_tail(&napi->poll_list, &sd->poll_list);
4738 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4739 	/* If not called from net_rx_action()
4740 	 * we have to raise NET_RX_SOFTIRQ.
4741 	 */
4742 	if (!sd->in_net_rx_action)
4743 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4744 }
4745 
4746 #ifdef CONFIG_RPS
4747 
4748 struct static_key_false rps_needed __read_mostly;
4749 EXPORT_SYMBOL(rps_needed);
4750 struct static_key_false rfs_needed __read_mostly;
4751 EXPORT_SYMBOL(rfs_needed);
4752 
4753 static struct rps_dev_flow *
4754 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4755 	    struct rps_dev_flow *rflow, u16 next_cpu)
4756 {
4757 	if (next_cpu < nr_cpu_ids) {
4758 		u32 head;
4759 #ifdef CONFIG_RFS_ACCEL
4760 		struct netdev_rx_queue *rxqueue;
4761 		struct rps_dev_flow_table *flow_table;
4762 		struct rps_dev_flow *old_rflow;
4763 		u16 rxq_index;
4764 		u32 flow_id;
4765 		int rc;
4766 
4767 		/* Should we steer this flow to a different hardware queue? */
4768 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4769 		    !(dev->features & NETIF_F_NTUPLE))
4770 			goto out;
4771 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4772 		if (rxq_index == skb_get_rx_queue(skb))
4773 			goto out;
4774 
4775 		rxqueue = dev->_rx + rxq_index;
4776 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4777 		if (!flow_table)
4778 			goto out;
4779 		flow_id = skb_get_hash(skb) & flow_table->mask;
4780 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4781 							rxq_index, flow_id);
4782 		if (rc < 0)
4783 			goto out;
4784 		old_rflow = rflow;
4785 		rflow = &flow_table->flows[flow_id];
4786 		WRITE_ONCE(rflow->filter, rc);
4787 		if (old_rflow->filter == rc)
4788 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4789 	out:
4790 #endif
4791 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4792 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4793 	}
4794 
4795 	WRITE_ONCE(rflow->cpu, next_cpu);
4796 	return rflow;
4797 }
4798 
4799 /*
4800  * get_rps_cpu is called from netif_receive_skb and returns the target
4801  * CPU from the RPS map of the receiving queue for a given skb.
4802  * rcu_read_lock must be held on entry.
4803  */
4804 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4805 		       struct rps_dev_flow **rflowp)
4806 {
4807 	const struct rps_sock_flow_table *sock_flow_table;
4808 	struct netdev_rx_queue *rxqueue = dev->_rx;
4809 	struct rps_dev_flow_table *flow_table;
4810 	struct rps_map *map;
4811 	int cpu = -1;
4812 	u32 tcpu;
4813 	u32 hash;
4814 
4815 	if (skb_rx_queue_recorded(skb)) {
4816 		u16 index = skb_get_rx_queue(skb);
4817 
4818 		if (unlikely(index >= dev->real_num_rx_queues)) {
4819 			WARN_ONCE(dev->real_num_rx_queues > 1,
4820 				  "%s received packet on queue %u, but number "
4821 				  "of RX queues is %u\n",
4822 				  dev->name, index, dev->real_num_rx_queues);
4823 			goto done;
4824 		}
4825 		rxqueue += index;
4826 	}
4827 
4828 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4829 
4830 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4831 	map = rcu_dereference(rxqueue->rps_map);
4832 	if (!flow_table && !map)
4833 		goto done;
4834 
4835 	skb_reset_network_header(skb);
4836 	hash = skb_get_hash(skb);
4837 	if (!hash)
4838 		goto done;
4839 
4840 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4841 	if (flow_table && sock_flow_table) {
4842 		struct rps_dev_flow *rflow;
4843 		u32 next_cpu;
4844 		u32 ident;
4845 
4846 		/* First check into global flow table if there is a match.
4847 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4848 		 */
4849 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4850 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4851 			goto try_rps;
4852 
4853 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4854 
4855 		/* OK, now we know there is a match,
4856 		 * we can look at the local (per receive queue) flow table
4857 		 */
4858 		rflow = &flow_table->flows[hash & flow_table->mask];
4859 		tcpu = rflow->cpu;
4860 
4861 		/*
4862 		 * If the desired CPU (where last recvmsg was done) is
4863 		 * different from current CPU (one in the rx-queue flow
4864 		 * table entry), switch if one of the following holds:
4865 		 *   - Current CPU is unset (>= nr_cpu_ids).
4866 		 *   - Current CPU is offline.
4867 		 *   - The current CPU's queue tail has advanced beyond the
4868 		 *     last packet that was enqueued using this table entry.
4869 		 *     This guarantees that all previous packets for the flow
4870 		 *     have been dequeued, thus preserving in order delivery.
4871 		 */
4872 		if (unlikely(tcpu != next_cpu) &&
4873 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4874 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4875 		      rflow->last_qtail)) >= 0)) {
4876 			tcpu = next_cpu;
4877 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4878 		}
4879 
4880 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4881 			*rflowp = rflow;
4882 			cpu = tcpu;
4883 			goto done;
4884 		}
4885 	}
4886 
4887 try_rps:
4888 
4889 	if (map) {
4890 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4891 		if (cpu_online(tcpu)) {
4892 			cpu = tcpu;
4893 			goto done;
4894 		}
4895 	}
4896 
4897 done:
4898 	return cpu;
4899 }
4900 
4901 #ifdef CONFIG_RFS_ACCEL
4902 
4903 /**
4904  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4905  * @dev: Device on which the filter was set
4906  * @rxq_index: RX queue index
4907  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4908  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4909  *
4910  * Drivers that implement ndo_rx_flow_steer() should periodically call
4911  * this function for each installed filter and remove the filters for
4912  * which it returns %true.
4913  */
4914 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4915 			 u32 flow_id, u16 filter_id)
4916 {
4917 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4918 	struct rps_dev_flow_table *flow_table;
4919 	struct rps_dev_flow *rflow;
4920 	bool expire = true;
4921 	unsigned int cpu;
4922 
4923 	rcu_read_lock();
4924 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4925 	if (flow_table && flow_id <= flow_table->mask) {
4926 		rflow = &flow_table->flows[flow_id];
4927 		cpu = READ_ONCE(rflow->cpu);
4928 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4929 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4930 			   READ_ONCE(rflow->last_qtail)) <
4931 		     (int)(10 * flow_table->mask)))
4932 			expire = false;
4933 	}
4934 	rcu_read_unlock();
4935 	return expire;
4936 }
4937 EXPORT_SYMBOL(rps_may_expire_flow);
4938 
4939 #endif /* CONFIG_RFS_ACCEL */
4940 
4941 /* Called from hardirq (IPI) context */
4942 static void rps_trigger_softirq(void *data)
4943 {
4944 	struct softnet_data *sd = data;
4945 
4946 	____napi_schedule(sd, &sd->backlog);
4947 	sd->received_rps++;
4948 }
4949 
4950 #endif /* CONFIG_RPS */
4951 
4952 /* Called from hardirq (IPI) context */
4953 static void trigger_rx_softirq(void *data)
4954 {
4955 	struct softnet_data *sd = data;
4956 
4957 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4958 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4959 }
4960 
4961 /*
4962  * After we queued a packet into sd->input_pkt_queue,
4963  * we need to make sure this queue is serviced soon.
4964  *
4965  * - If this is another cpu queue, link it to our rps_ipi_list,
4966  *   and make sure we will process rps_ipi_list from net_rx_action().
4967  *
4968  * - If this is our own queue, NAPI schedule our backlog.
4969  *   Note that this also raises NET_RX_SOFTIRQ.
4970  */
4971 static void napi_schedule_rps(struct softnet_data *sd)
4972 {
4973 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4974 
4975 #ifdef CONFIG_RPS
4976 	if (sd != mysd) {
4977 		if (use_backlog_threads()) {
4978 			__napi_schedule_irqoff(&sd->backlog);
4979 			return;
4980 		}
4981 
4982 		sd->rps_ipi_next = mysd->rps_ipi_list;
4983 		mysd->rps_ipi_list = sd;
4984 
4985 		/* If not called from net_rx_action() or napi_threaded_poll()
4986 		 * we have to raise NET_RX_SOFTIRQ.
4987 		 */
4988 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4989 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4990 		return;
4991 	}
4992 #endif /* CONFIG_RPS */
4993 	__napi_schedule_irqoff(&mysd->backlog);
4994 }
4995 
4996 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4997 {
4998 	unsigned long flags;
4999 
5000 	if (use_backlog_threads()) {
5001 		backlog_lock_irq_save(sd, &flags);
5002 
5003 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5004 			__napi_schedule_irqoff(&sd->backlog);
5005 
5006 		backlog_unlock_irq_restore(sd, &flags);
5007 
5008 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5009 		smp_call_function_single_async(cpu, &sd->defer_csd);
5010 	}
5011 }
5012 
5013 #ifdef CONFIG_NET_FLOW_LIMIT
5014 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5015 #endif
5016 
5017 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5018 {
5019 #ifdef CONFIG_NET_FLOW_LIMIT
5020 	struct sd_flow_limit *fl;
5021 	struct softnet_data *sd;
5022 	unsigned int old_flow, new_flow;
5023 
5024 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5025 		return false;
5026 
5027 	sd = this_cpu_ptr(&softnet_data);
5028 
5029 	rcu_read_lock();
5030 	fl = rcu_dereference(sd->flow_limit);
5031 	if (fl) {
5032 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
5033 		old_flow = fl->history[fl->history_head];
5034 		fl->history[fl->history_head] = new_flow;
5035 
5036 		fl->history_head++;
5037 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5038 
5039 		if (likely(fl->buckets[old_flow]))
5040 			fl->buckets[old_flow]--;
5041 
5042 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5043 			fl->count++;
5044 			rcu_read_unlock();
5045 			return true;
5046 		}
5047 	}
5048 	rcu_read_unlock();
5049 #endif
5050 	return false;
5051 }
5052 
5053 /*
5054  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5055  * queue (may be a remote CPU queue).
5056  */
5057 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5058 			      unsigned int *qtail)
5059 {
5060 	enum skb_drop_reason reason;
5061 	struct softnet_data *sd;
5062 	unsigned long flags;
5063 	unsigned int qlen;
5064 	int max_backlog;
5065 	u32 tail;
5066 
5067 	reason = SKB_DROP_REASON_DEV_READY;
5068 	if (!netif_running(skb->dev))
5069 		goto bad_dev;
5070 
5071 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5072 	sd = &per_cpu(softnet_data, cpu);
5073 
5074 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5075 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5076 	if (unlikely(qlen > max_backlog))
5077 		goto cpu_backlog_drop;
5078 	backlog_lock_irq_save(sd, &flags);
5079 	qlen = skb_queue_len(&sd->input_pkt_queue);
5080 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5081 		if (!qlen) {
5082 			/* Schedule NAPI for backlog device. We can use
5083 			 * non atomic operation as we own the queue lock.
5084 			 */
5085 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5086 						&sd->backlog.state))
5087 				napi_schedule_rps(sd);
5088 		}
5089 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5090 		tail = rps_input_queue_tail_incr(sd);
5091 		backlog_unlock_irq_restore(sd, &flags);
5092 
5093 		/* save the tail outside of the critical section */
5094 		rps_input_queue_tail_save(qtail, tail);
5095 		return NET_RX_SUCCESS;
5096 	}
5097 
5098 	backlog_unlock_irq_restore(sd, &flags);
5099 
5100 cpu_backlog_drop:
5101 	atomic_inc(&sd->dropped);
5102 bad_dev:
5103 	dev_core_stats_rx_dropped_inc(skb->dev);
5104 	kfree_skb_reason(skb, reason);
5105 	return NET_RX_DROP;
5106 }
5107 
5108 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5109 {
5110 	struct net_device *dev = skb->dev;
5111 	struct netdev_rx_queue *rxqueue;
5112 
5113 	rxqueue = dev->_rx;
5114 
5115 	if (skb_rx_queue_recorded(skb)) {
5116 		u16 index = skb_get_rx_queue(skb);
5117 
5118 		if (unlikely(index >= dev->real_num_rx_queues)) {
5119 			WARN_ONCE(dev->real_num_rx_queues > 1,
5120 				  "%s received packet on queue %u, but number "
5121 				  "of RX queues is %u\n",
5122 				  dev->name, index, dev->real_num_rx_queues);
5123 
5124 			return rxqueue; /* Return first rxqueue */
5125 		}
5126 		rxqueue += index;
5127 	}
5128 	return rxqueue;
5129 }
5130 
5131 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5132 			     const struct bpf_prog *xdp_prog)
5133 {
5134 	void *orig_data, *orig_data_end, *hard_start;
5135 	struct netdev_rx_queue *rxqueue;
5136 	bool orig_bcast, orig_host;
5137 	u32 mac_len, frame_sz;
5138 	__be16 orig_eth_type;
5139 	struct ethhdr *eth;
5140 	u32 metalen, act;
5141 	int off;
5142 
5143 	/* The XDP program wants to see the packet starting at the MAC
5144 	 * header.
5145 	 */
5146 	mac_len = skb->data - skb_mac_header(skb);
5147 	hard_start = skb->data - skb_headroom(skb);
5148 
5149 	/* SKB "head" area always have tailroom for skb_shared_info */
5150 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5151 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5152 
5153 	rxqueue = netif_get_rxqueue(skb);
5154 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5155 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5156 			 skb_headlen(skb) + mac_len, true);
5157 	if (skb_is_nonlinear(skb)) {
5158 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5159 		xdp_buff_set_frags_flag(xdp);
5160 	} else {
5161 		xdp_buff_clear_frags_flag(xdp);
5162 	}
5163 
5164 	orig_data_end = xdp->data_end;
5165 	orig_data = xdp->data;
5166 	eth = (struct ethhdr *)xdp->data;
5167 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5168 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5169 	orig_eth_type = eth->h_proto;
5170 
5171 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5172 
5173 	/* check if bpf_xdp_adjust_head was used */
5174 	off = xdp->data - orig_data;
5175 	if (off) {
5176 		if (off > 0)
5177 			__skb_pull(skb, off);
5178 		else if (off < 0)
5179 			__skb_push(skb, -off);
5180 
5181 		skb->mac_header += off;
5182 		skb_reset_network_header(skb);
5183 	}
5184 
5185 	/* check if bpf_xdp_adjust_tail was used */
5186 	off = xdp->data_end - orig_data_end;
5187 	if (off != 0) {
5188 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5189 		skb->len += off; /* positive on grow, negative on shrink */
5190 	}
5191 
5192 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5193 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5194 	 */
5195 	if (xdp_buff_has_frags(xdp))
5196 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5197 	else
5198 		skb->data_len = 0;
5199 
5200 	/* check if XDP changed eth hdr such SKB needs update */
5201 	eth = (struct ethhdr *)xdp->data;
5202 	if ((orig_eth_type != eth->h_proto) ||
5203 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5204 						  skb->dev->dev_addr)) ||
5205 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5206 		__skb_push(skb, ETH_HLEN);
5207 		skb->pkt_type = PACKET_HOST;
5208 		skb->protocol = eth_type_trans(skb, skb->dev);
5209 	}
5210 
5211 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5212 	 * before calling us again on redirect path. We do not call do_redirect
5213 	 * as we leave that up to the caller.
5214 	 *
5215 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5216 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5217 	 */
5218 	switch (act) {
5219 	case XDP_REDIRECT:
5220 	case XDP_TX:
5221 		__skb_push(skb, mac_len);
5222 		break;
5223 	case XDP_PASS:
5224 		metalen = xdp->data - xdp->data_meta;
5225 		if (metalen)
5226 			skb_metadata_set(skb, metalen);
5227 		break;
5228 	}
5229 
5230 	return act;
5231 }
5232 
5233 static int
5234 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5235 {
5236 	struct sk_buff *skb = *pskb;
5237 	int err, hroom, troom;
5238 
5239 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5240 		return 0;
5241 
5242 	/* In case we have to go down the path and also linearize,
5243 	 * then lets do the pskb_expand_head() work just once here.
5244 	 */
5245 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5246 	troom = skb->tail + skb->data_len - skb->end;
5247 	err = pskb_expand_head(skb,
5248 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5249 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5250 	if (err)
5251 		return err;
5252 
5253 	return skb_linearize(skb);
5254 }
5255 
5256 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5257 				     struct xdp_buff *xdp,
5258 				     const struct bpf_prog *xdp_prog)
5259 {
5260 	struct sk_buff *skb = *pskb;
5261 	u32 mac_len, act = XDP_DROP;
5262 
5263 	/* Reinjected packets coming from act_mirred or similar should
5264 	 * not get XDP generic processing.
5265 	 */
5266 	if (skb_is_redirected(skb))
5267 		return XDP_PASS;
5268 
5269 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5270 	 * bytes. This is the guarantee that also native XDP provides,
5271 	 * thus we need to do it here as well.
5272 	 */
5273 	mac_len = skb->data - skb_mac_header(skb);
5274 	__skb_push(skb, mac_len);
5275 
5276 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5277 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5278 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5279 			goto do_drop;
5280 	}
5281 
5282 	__skb_pull(*pskb, mac_len);
5283 
5284 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5285 	switch (act) {
5286 	case XDP_REDIRECT:
5287 	case XDP_TX:
5288 	case XDP_PASS:
5289 		break;
5290 	default:
5291 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5292 		fallthrough;
5293 	case XDP_ABORTED:
5294 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5295 		fallthrough;
5296 	case XDP_DROP:
5297 	do_drop:
5298 		kfree_skb(*pskb);
5299 		break;
5300 	}
5301 
5302 	return act;
5303 }
5304 
5305 /* When doing generic XDP we have to bypass the qdisc layer and the
5306  * network taps in order to match in-driver-XDP behavior. This also means
5307  * that XDP packets are able to starve other packets going through a qdisc,
5308  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5309  * queues, so they do not have this starvation issue.
5310  */
5311 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5312 {
5313 	struct net_device *dev = skb->dev;
5314 	struct netdev_queue *txq;
5315 	bool free_skb = true;
5316 	int cpu, rc;
5317 
5318 	txq = netdev_core_pick_tx(dev, skb, NULL);
5319 	cpu = smp_processor_id();
5320 	HARD_TX_LOCK(dev, txq, cpu);
5321 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5322 		rc = netdev_start_xmit(skb, dev, txq, 0);
5323 		if (dev_xmit_complete(rc))
5324 			free_skb = false;
5325 	}
5326 	HARD_TX_UNLOCK(dev, txq);
5327 	if (free_skb) {
5328 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5329 		dev_core_stats_tx_dropped_inc(dev);
5330 		kfree_skb(skb);
5331 	}
5332 }
5333 
5334 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5335 
5336 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5337 {
5338 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5339 
5340 	if (xdp_prog) {
5341 		struct xdp_buff xdp;
5342 		u32 act;
5343 		int err;
5344 
5345 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5346 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5347 		if (act != XDP_PASS) {
5348 			switch (act) {
5349 			case XDP_REDIRECT:
5350 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5351 							      &xdp, xdp_prog);
5352 				if (err)
5353 					goto out_redir;
5354 				break;
5355 			case XDP_TX:
5356 				generic_xdp_tx(*pskb, xdp_prog);
5357 				break;
5358 			}
5359 			bpf_net_ctx_clear(bpf_net_ctx);
5360 			return XDP_DROP;
5361 		}
5362 		bpf_net_ctx_clear(bpf_net_ctx);
5363 	}
5364 	return XDP_PASS;
5365 out_redir:
5366 	bpf_net_ctx_clear(bpf_net_ctx);
5367 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5368 	return XDP_DROP;
5369 }
5370 EXPORT_SYMBOL_GPL(do_xdp_generic);
5371 
5372 static int netif_rx_internal(struct sk_buff *skb)
5373 {
5374 	int ret;
5375 
5376 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5377 
5378 	trace_netif_rx(skb);
5379 
5380 #ifdef CONFIG_RPS
5381 	if (static_branch_unlikely(&rps_needed)) {
5382 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5383 		int cpu;
5384 
5385 		rcu_read_lock();
5386 
5387 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5388 		if (cpu < 0)
5389 			cpu = smp_processor_id();
5390 
5391 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5392 
5393 		rcu_read_unlock();
5394 	} else
5395 #endif
5396 	{
5397 		unsigned int qtail;
5398 
5399 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5400 	}
5401 	return ret;
5402 }
5403 
5404 /**
5405  *	__netif_rx	-	Slightly optimized version of netif_rx
5406  *	@skb: buffer to post
5407  *
5408  *	This behaves as netif_rx except that it does not disable bottom halves.
5409  *	As a result this function may only be invoked from the interrupt context
5410  *	(either hard or soft interrupt).
5411  */
5412 int __netif_rx(struct sk_buff *skb)
5413 {
5414 	int ret;
5415 
5416 	lockdep_assert_once(hardirq_count() | softirq_count());
5417 
5418 	trace_netif_rx_entry(skb);
5419 	ret = netif_rx_internal(skb);
5420 	trace_netif_rx_exit(ret);
5421 	return ret;
5422 }
5423 EXPORT_SYMBOL(__netif_rx);
5424 
5425 /**
5426  *	netif_rx	-	post buffer to the network code
5427  *	@skb: buffer to post
5428  *
5429  *	This function receives a packet from a device driver and queues it for
5430  *	the upper (protocol) levels to process via the backlog NAPI device. It
5431  *	always succeeds. The buffer may be dropped during processing for
5432  *	congestion control or by the protocol layers.
5433  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5434  *	driver should use NAPI and GRO.
5435  *	This function can used from interrupt and from process context. The
5436  *	caller from process context must not disable interrupts before invoking
5437  *	this function.
5438  *
5439  *	return values:
5440  *	NET_RX_SUCCESS	(no congestion)
5441  *	NET_RX_DROP     (packet was dropped)
5442  *
5443  */
5444 int netif_rx(struct sk_buff *skb)
5445 {
5446 	bool need_bh_off = !(hardirq_count() | softirq_count());
5447 	int ret;
5448 
5449 	if (need_bh_off)
5450 		local_bh_disable();
5451 	trace_netif_rx_entry(skb);
5452 	ret = netif_rx_internal(skb);
5453 	trace_netif_rx_exit(ret);
5454 	if (need_bh_off)
5455 		local_bh_enable();
5456 	return ret;
5457 }
5458 EXPORT_SYMBOL(netif_rx);
5459 
5460 static __latent_entropy void net_tx_action(void)
5461 {
5462 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5463 
5464 	if (sd->completion_queue) {
5465 		struct sk_buff *clist;
5466 
5467 		local_irq_disable();
5468 		clist = sd->completion_queue;
5469 		sd->completion_queue = NULL;
5470 		local_irq_enable();
5471 
5472 		while (clist) {
5473 			struct sk_buff *skb = clist;
5474 
5475 			clist = clist->next;
5476 
5477 			WARN_ON(refcount_read(&skb->users));
5478 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5479 				trace_consume_skb(skb, net_tx_action);
5480 			else
5481 				trace_kfree_skb(skb, net_tx_action,
5482 						get_kfree_skb_cb(skb)->reason, NULL);
5483 
5484 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5485 				__kfree_skb(skb);
5486 			else
5487 				__napi_kfree_skb(skb,
5488 						 get_kfree_skb_cb(skb)->reason);
5489 		}
5490 	}
5491 
5492 	if (sd->output_queue) {
5493 		struct Qdisc *head;
5494 
5495 		local_irq_disable();
5496 		head = sd->output_queue;
5497 		sd->output_queue = NULL;
5498 		sd->output_queue_tailp = &sd->output_queue;
5499 		local_irq_enable();
5500 
5501 		rcu_read_lock();
5502 
5503 		while (head) {
5504 			struct Qdisc *q = head;
5505 			spinlock_t *root_lock = NULL;
5506 
5507 			head = head->next_sched;
5508 
5509 			/* We need to make sure head->next_sched is read
5510 			 * before clearing __QDISC_STATE_SCHED
5511 			 */
5512 			smp_mb__before_atomic();
5513 
5514 			if (!(q->flags & TCQ_F_NOLOCK)) {
5515 				root_lock = qdisc_lock(q);
5516 				spin_lock(root_lock);
5517 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5518 						     &q->state))) {
5519 				/* There is a synchronize_net() between
5520 				 * STATE_DEACTIVATED flag being set and
5521 				 * qdisc_reset()/some_qdisc_is_busy() in
5522 				 * dev_deactivate(), so we can safely bail out
5523 				 * early here to avoid data race between
5524 				 * qdisc_deactivate() and some_qdisc_is_busy()
5525 				 * for lockless qdisc.
5526 				 */
5527 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5528 				continue;
5529 			}
5530 
5531 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5532 			qdisc_run(q);
5533 			if (root_lock)
5534 				spin_unlock(root_lock);
5535 		}
5536 
5537 		rcu_read_unlock();
5538 	}
5539 
5540 	xfrm_dev_backlog(sd);
5541 }
5542 
5543 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5544 /* This hook is defined here for ATM LANE */
5545 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5546 			     unsigned char *addr) __read_mostly;
5547 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5548 #endif
5549 
5550 /**
5551  *	netdev_is_rx_handler_busy - check if receive handler is registered
5552  *	@dev: device to check
5553  *
5554  *	Check if a receive handler is already registered for a given device.
5555  *	Return true if there one.
5556  *
5557  *	The caller must hold the rtnl_mutex.
5558  */
5559 bool netdev_is_rx_handler_busy(struct net_device *dev)
5560 {
5561 	ASSERT_RTNL();
5562 	return dev && rtnl_dereference(dev->rx_handler);
5563 }
5564 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5565 
5566 /**
5567  *	netdev_rx_handler_register - register receive handler
5568  *	@dev: device to register a handler for
5569  *	@rx_handler: receive handler to register
5570  *	@rx_handler_data: data pointer that is used by rx handler
5571  *
5572  *	Register a receive handler for a device. This handler will then be
5573  *	called from __netif_receive_skb. A negative errno code is returned
5574  *	on a failure.
5575  *
5576  *	The caller must hold the rtnl_mutex.
5577  *
5578  *	For a general description of rx_handler, see enum rx_handler_result.
5579  */
5580 int netdev_rx_handler_register(struct net_device *dev,
5581 			       rx_handler_func_t *rx_handler,
5582 			       void *rx_handler_data)
5583 {
5584 	if (netdev_is_rx_handler_busy(dev))
5585 		return -EBUSY;
5586 
5587 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5588 		return -EINVAL;
5589 
5590 	/* Note: rx_handler_data must be set before rx_handler */
5591 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5592 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5593 
5594 	return 0;
5595 }
5596 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5597 
5598 /**
5599  *	netdev_rx_handler_unregister - unregister receive handler
5600  *	@dev: device to unregister a handler from
5601  *
5602  *	Unregister a receive handler from a device.
5603  *
5604  *	The caller must hold the rtnl_mutex.
5605  */
5606 void netdev_rx_handler_unregister(struct net_device *dev)
5607 {
5608 
5609 	ASSERT_RTNL();
5610 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5611 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5612 	 * section has a guarantee to see a non NULL rx_handler_data
5613 	 * as well.
5614 	 */
5615 	synchronize_net();
5616 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5617 }
5618 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5619 
5620 /*
5621  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5622  * the special handling of PFMEMALLOC skbs.
5623  */
5624 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5625 {
5626 	switch (skb->protocol) {
5627 	case htons(ETH_P_ARP):
5628 	case htons(ETH_P_IP):
5629 	case htons(ETH_P_IPV6):
5630 	case htons(ETH_P_8021Q):
5631 	case htons(ETH_P_8021AD):
5632 		return true;
5633 	default:
5634 		return false;
5635 	}
5636 }
5637 
5638 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5639 			     int *ret, struct net_device *orig_dev)
5640 {
5641 	if (nf_hook_ingress_active(skb)) {
5642 		int ingress_retval;
5643 
5644 		if (*pt_prev) {
5645 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5646 			*pt_prev = NULL;
5647 		}
5648 
5649 		rcu_read_lock();
5650 		ingress_retval = nf_hook_ingress(skb);
5651 		rcu_read_unlock();
5652 		return ingress_retval;
5653 	}
5654 	return 0;
5655 }
5656 
5657 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5658 				    struct packet_type **ppt_prev)
5659 {
5660 	struct packet_type *ptype, *pt_prev;
5661 	rx_handler_func_t *rx_handler;
5662 	struct sk_buff *skb = *pskb;
5663 	struct net_device *orig_dev;
5664 	bool deliver_exact = false;
5665 	int ret = NET_RX_DROP;
5666 	__be16 type;
5667 
5668 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5669 
5670 	trace_netif_receive_skb(skb);
5671 
5672 	orig_dev = skb->dev;
5673 
5674 	skb_reset_network_header(skb);
5675 #if !defined(CONFIG_DEBUG_NET)
5676 	/* We plan to no longer reset the transport header here.
5677 	 * Give some time to fuzzers and dev build to catch bugs
5678 	 * in network stacks.
5679 	 */
5680 	if (!skb_transport_header_was_set(skb))
5681 		skb_reset_transport_header(skb);
5682 #endif
5683 	skb_reset_mac_len(skb);
5684 
5685 	pt_prev = NULL;
5686 
5687 another_round:
5688 	skb->skb_iif = skb->dev->ifindex;
5689 
5690 	__this_cpu_inc(softnet_data.processed);
5691 
5692 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5693 		int ret2;
5694 
5695 		migrate_disable();
5696 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5697 				      &skb);
5698 		migrate_enable();
5699 
5700 		if (ret2 != XDP_PASS) {
5701 			ret = NET_RX_DROP;
5702 			goto out;
5703 		}
5704 	}
5705 
5706 	if (eth_type_vlan(skb->protocol)) {
5707 		skb = skb_vlan_untag(skb);
5708 		if (unlikely(!skb))
5709 			goto out;
5710 	}
5711 
5712 	if (skb_skip_tc_classify(skb))
5713 		goto skip_classify;
5714 
5715 	if (pfmemalloc)
5716 		goto skip_taps;
5717 
5718 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5719 		if (pt_prev)
5720 			ret = deliver_skb(skb, pt_prev, orig_dev);
5721 		pt_prev = ptype;
5722 	}
5723 
5724 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5725 		if (pt_prev)
5726 			ret = deliver_skb(skb, pt_prev, orig_dev);
5727 		pt_prev = ptype;
5728 	}
5729 
5730 skip_taps:
5731 #ifdef CONFIG_NET_INGRESS
5732 	if (static_branch_unlikely(&ingress_needed_key)) {
5733 		bool another = false;
5734 
5735 		nf_skip_egress(skb, true);
5736 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5737 					 &another);
5738 		if (another)
5739 			goto another_round;
5740 		if (!skb)
5741 			goto out;
5742 
5743 		nf_skip_egress(skb, false);
5744 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5745 			goto out;
5746 	}
5747 #endif
5748 	skb_reset_redirect(skb);
5749 skip_classify:
5750 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5751 		goto drop;
5752 
5753 	if (skb_vlan_tag_present(skb)) {
5754 		if (pt_prev) {
5755 			ret = deliver_skb(skb, pt_prev, orig_dev);
5756 			pt_prev = NULL;
5757 		}
5758 		if (vlan_do_receive(&skb))
5759 			goto another_round;
5760 		else if (unlikely(!skb))
5761 			goto out;
5762 	}
5763 
5764 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5765 	if (rx_handler) {
5766 		if (pt_prev) {
5767 			ret = deliver_skb(skb, pt_prev, orig_dev);
5768 			pt_prev = NULL;
5769 		}
5770 		switch (rx_handler(&skb)) {
5771 		case RX_HANDLER_CONSUMED:
5772 			ret = NET_RX_SUCCESS;
5773 			goto out;
5774 		case RX_HANDLER_ANOTHER:
5775 			goto another_round;
5776 		case RX_HANDLER_EXACT:
5777 			deliver_exact = true;
5778 			break;
5779 		case RX_HANDLER_PASS:
5780 			break;
5781 		default:
5782 			BUG();
5783 		}
5784 	}
5785 
5786 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5787 check_vlan_id:
5788 		if (skb_vlan_tag_get_id(skb)) {
5789 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5790 			 * find vlan device.
5791 			 */
5792 			skb->pkt_type = PACKET_OTHERHOST;
5793 		} else if (eth_type_vlan(skb->protocol)) {
5794 			/* Outer header is 802.1P with vlan 0, inner header is
5795 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5796 			 * not find vlan dev for vlan id 0.
5797 			 */
5798 			__vlan_hwaccel_clear_tag(skb);
5799 			skb = skb_vlan_untag(skb);
5800 			if (unlikely(!skb))
5801 				goto out;
5802 			if (vlan_do_receive(&skb))
5803 				/* After stripping off 802.1P header with vlan 0
5804 				 * vlan dev is found for inner header.
5805 				 */
5806 				goto another_round;
5807 			else if (unlikely(!skb))
5808 				goto out;
5809 			else
5810 				/* We have stripped outer 802.1P vlan 0 header.
5811 				 * But could not find vlan dev.
5812 				 * check again for vlan id to set OTHERHOST.
5813 				 */
5814 				goto check_vlan_id;
5815 		}
5816 		/* Note: we might in the future use prio bits
5817 		 * and set skb->priority like in vlan_do_receive()
5818 		 * For the time being, just ignore Priority Code Point
5819 		 */
5820 		__vlan_hwaccel_clear_tag(skb);
5821 	}
5822 
5823 	type = skb->protocol;
5824 
5825 	/* deliver only exact match when indicated */
5826 	if (likely(!deliver_exact)) {
5827 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5828 				       &ptype_base[ntohs(type) &
5829 						   PTYPE_HASH_MASK]);
5830 	}
5831 
5832 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5833 			       &orig_dev->ptype_specific);
5834 
5835 	if (unlikely(skb->dev != orig_dev)) {
5836 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5837 				       &skb->dev->ptype_specific);
5838 	}
5839 
5840 	if (pt_prev) {
5841 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5842 			goto drop;
5843 		*ppt_prev = pt_prev;
5844 	} else {
5845 drop:
5846 		if (!deliver_exact)
5847 			dev_core_stats_rx_dropped_inc(skb->dev);
5848 		else
5849 			dev_core_stats_rx_nohandler_inc(skb->dev);
5850 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5851 		/* Jamal, now you will not able to escape explaining
5852 		 * me how you were going to use this. :-)
5853 		 */
5854 		ret = NET_RX_DROP;
5855 	}
5856 
5857 out:
5858 	/* The invariant here is that if *ppt_prev is not NULL
5859 	 * then skb should also be non-NULL.
5860 	 *
5861 	 * Apparently *ppt_prev assignment above holds this invariant due to
5862 	 * skb dereferencing near it.
5863 	 */
5864 	*pskb = skb;
5865 	return ret;
5866 }
5867 
5868 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5869 {
5870 	struct net_device *orig_dev = skb->dev;
5871 	struct packet_type *pt_prev = NULL;
5872 	int ret;
5873 
5874 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5875 	if (pt_prev)
5876 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5877 					 skb->dev, pt_prev, orig_dev);
5878 	return ret;
5879 }
5880 
5881 /**
5882  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5883  *	@skb: buffer to process
5884  *
5885  *	More direct receive version of netif_receive_skb().  It should
5886  *	only be used by callers that have a need to skip RPS and Generic XDP.
5887  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5888  *
5889  *	This function may only be called from softirq context and interrupts
5890  *	should be enabled.
5891  *
5892  *	Return values (usually ignored):
5893  *	NET_RX_SUCCESS: no congestion
5894  *	NET_RX_DROP: packet was dropped
5895  */
5896 int netif_receive_skb_core(struct sk_buff *skb)
5897 {
5898 	int ret;
5899 
5900 	rcu_read_lock();
5901 	ret = __netif_receive_skb_one_core(skb, false);
5902 	rcu_read_unlock();
5903 
5904 	return ret;
5905 }
5906 EXPORT_SYMBOL(netif_receive_skb_core);
5907 
5908 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5909 						  struct packet_type *pt_prev,
5910 						  struct net_device *orig_dev)
5911 {
5912 	struct sk_buff *skb, *next;
5913 
5914 	if (!pt_prev)
5915 		return;
5916 	if (list_empty(head))
5917 		return;
5918 	if (pt_prev->list_func != NULL)
5919 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5920 				   ip_list_rcv, head, pt_prev, orig_dev);
5921 	else
5922 		list_for_each_entry_safe(skb, next, head, list) {
5923 			skb_list_del_init(skb);
5924 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5925 		}
5926 }
5927 
5928 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5929 {
5930 	/* Fast-path assumptions:
5931 	 * - There is no RX handler.
5932 	 * - Only one packet_type matches.
5933 	 * If either of these fails, we will end up doing some per-packet
5934 	 * processing in-line, then handling the 'last ptype' for the whole
5935 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5936 	 * because the 'last ptype' must be constant across the sublist, and all
5937 	 * other ptypes are handled per-packet.
5938 	 */
5939 	/* Current (common) ptype of sublist */
5940 	struct packet_type *pt_curr = NULL;
5941 	/* Current (common) orig_dev of sublist */
5942 	struct net_device *od_curr = NULL;
5943 	struct sk_buff *skb, *next;
5944 	LIST_HEAD(sublist);
5945 
5946 	list_for_each_entry_safe(skb, next, head, list) {
5947 		struct net_device *orig_dev = skb->dev;
5948 		struct packet_type *pt_prev = NULL;
5949 
5950 		skb_list_del_init(skb);
5951 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5952 		if (!pt_prev)
5953 			continue;
5954 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5955 			/* dispatch old sublist */
5956 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5957 			/* start new sublist */
5958 			INIT_LIST_HEAD(&sublist);
5959 			pt_curr = pt_prev;
5960 			od_curr = orig_dev;
5961 		}
5962 		list_add_tail(&skb->list, &sublist);
5963 	}
5964 
5965 	/* dispatch final sublist */
5966 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5967 }
5968 
5969 static int __netif_receive_skb(struct sk_buff *skb)
5970 {
5971 	int ret;
5972 
5973 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5974 		unsigned int noreclaim_flag;
5975 
5976 		/*
5977 		 * PFMEMALLOC skbs are special, they should
5978 		 * - be delivered to SOCK_MEMALLOC sockets only
5979 		 * - stay away from userspace
5980 		 * - have bounded memory usage
5981 		 *
5982 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5983 		 * context down to all allocation sites.
5984 		 */
5985 		noreclaim_flag = memalloc_noreclaim_save();
5986 		ret = __netif_receive_skb_one_core(skb, true);
5987 		memalloc_noreclaim_restore(noreclaim_flag);
5988 	} else
5989 		ret = __netif_receive_skb_one_core(skb, false);
5990 
5991 	return ret;
5992 }
5993 
5994 static void __netif_receive_skb_list(struct list_head *head)
5995 {
5996 	unsigned long noreclaim_flag = 0;
5997 	struct sk_buff *skb, *next;
5998 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5999 
6000 	list_for_each_entry_safe(skb, next, head, list) {
6001 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6002 			struct list_head sublist;
6003 
6004 			/* Handle the previous sublist */
6005 			list_cut_before(&sublist, head, &skb->list);
6006 			if (!list_empty(&sublist))
6007 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6008 			pfmemalloc = !pfmemalloc;
6009 			/* See comments in __netif_receive_skb */
6010 			if (pfmemalloc)
6011 				noreclaim_flag = memalloc_noreclaim_save();
6012 			else
6013 				memalloc_noreclaim_restore(noreclaim_flag);
6014 		}
6015 	}
6016 	/* Handle the remaining sublist */
6017 	if (!list_empty(head))
6018 		__netif_receive_skb_list_core(head, pfmemalloc);
6019 	/* Restore pflags */
6020 	if (pfmemalloc)
6021 		memalloc_noreclaim_restore(noreclaim_flag);
6022 }
6023 
6024 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6025 {
6026 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6027 	struct bpf_prog *new = xdp->prog;
6028 	int ret = 0;
6029 
6030 	switch (xdp->command) {
6031 	case XDP_SETUP_PROG:
6032 		rcu_assign_pointer(dev->xdp_prog, new);
6033 		if (old)
6034 			bpf_prog_put(old);
6035 
6036 		if (old && !new) {
6037 			static_branch_dec(&generic_xdp_needed_key);
6038 		} else if (new && !old) {
6039 			static_branch_inc(&generic_xdp_needed_key);
6040 			netif_disable_lro(dev);
6041 			dev_disable_gro_hw(dev);
6042 		}
6043 		break;
6044 
6045 	default:
6046 		ret = -EINVAL;
6047 		break;
6048 	}
6049 
6050 	return ret;
6051 }
6052 
6053 static int netif_receive_skb_internal(struct sk_buff *skb)
6054 {
6055 	int ret;
6056 
6057 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6058 
6059 	if (skb_defer_rx_timestamp(skb))
6060 		return NET_RX_SUCCESS;
6061 
6062 	rcu_read_lock();
6063 #ifdef CONFIG_RPS
6064 	if (static_branch_unlikely(&rps_needed)) {
6065 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6066 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6067 
6068 		if (cpu >= 0) {
6069 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6070 			rcu_read_unlock();
6071 			return ret;
6072 		}
6073 	}
6074 #endif
6075 	ret = __netif_receive_skb(skb);
6076 	rcu_read_unlock();
6077 	return ret;
6078 }
6079 
6080 void netif_receive_skb_list_internal(struct list_head *head)
6081 {
6082 	struct sk_buff *skb, *next;
6083 	LIST_HEAD(sublist);
6084 
6085 	list_for_each_entry_safe(skb, next, head, list) {
6086 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6087 				    skb);
6088 		skb_list_del_init(skb);
6089 		if (!skb_defer_rx_timestamp(skb))
6090 			list_add_tail(&skb->list, &sublist);
6091 	}
6092 	list_splice_init(&sublist, head);
6093 
6094 	rcu_read_lock();
6095 #ifdef CONFIG_RPS
6096 	if (static_branch_unlikely(&rps_needed)) {
6097 		list_for_each_entry_safe(skb, next, head, list) {
6098 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6099 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6100 
6101 			if (cpu >= 0) {
6102 				/* Will be handled, remove from list */
6103 				skb_list_del_init(skb);
6104 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6105 			}
6106 		}
6107 	}
6108 #endif
6109 	__netif_receive_skb_list(head);
6110 	rcu_read_unlock();
6111 }
6112 
6113 /**
6114  *	netif_receive_skb - process receive buffer from network
6115  *	@skb: buffer to process
6116  *
6117  *	netif_receive_skb() is the main receive data processing function.
6118  *	It always succeeds. The buffer may be dropped during processing
6119  *	for congestion control or by the protocol layers.
6120  *
6121  *	This function may only be called from softirq context and interrupts
6122  *	should be enabled.
6123  *
6124  *	Return values (usually ignored):
6125  *	NET_RX_SUCCESS: no congestion
6126  *	NET_RX_DROP: packet was dropped
6127  */
6128 int netif_receive_skb(struct sk_buff *skb)
6129 {
6130 	int ret;
6131 
6132 	trace_netif_receive_skb_entry(skb);
6133 
6134 	ret = netif_receive_skb_internal(skb);
6135 	trace_netif_receive_skb_exit(ret);
6136 
6137 	return ret;
6138 }
6139 EXPORT_SYMBOL(netif_receive_skb);
6140 
6141 /**
6142  *	netif_receive_skb_list - process many receive buffers from network
6143  *	@head: list of skbs to process.
6144  *
6145  *	Since return value of netif_receive_skb() is normally ignored, and
6146  *	wouldn't be meaningful for a list, this function returns void.
6147  *
6148  *	This function may only be called from softirq context and interrupts
6149  *	should be enabled.
6150  */
6151 void netif_receive_skb_list(struct list_head *head)
6152 {
6153 	struct sk_buff *skb;
6154 
6155 	if (list_empty(head))
6156 		return;
6157 	if (trace_netif_receive_skb_list_entry_enabled()) {
6158 		list_for_each_entry(skb, head, list)
6159 			trace_netif_receive_skb_list_entry(skb);
6160 	}
6161 	netif_receive_skb_list_internal(head);
6162 	trace_netif_receive_skb_list_exit(0);
6163 }
6164 EXPORT_SYMBOL(netif_receive_skb_list);
6165 
6166 /* Network device is going away, flush any packets still pending */
6167 static void flush_backlog(struct work_struct *work)
6168 {
6169 	struct sk_buff *skb, *tmp;
6170 	struct sk_buff_head list;
6171 	struct softnet_data *sd;
6172 
6173 	__skb_queue_head_init(&list);
6174 	local_bh_disable();
6175 	sd = this_cpu_ptr(&softnet_data);
6176 
6177 	backlog_lock_irq_disable(sd);
6178 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6179 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6180 			__skb_unlink(skb, &sd->input_pkt_queue);
6181 			__skb_queue_tail(&list, skb);
6182 			rps_input_queue_head_incr(sd);
6183 		}
6184 	}
6185 	backlog_unlock_irq_enable(sd);
6186 
6187 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6188 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6189 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6190 			__skb_unlink(skb, &sd->process_queue);
6191 			__skb_queue_tail(&list, skb);
6192 			rps_input_queue_head_incr(sd);
6193 		}
6194 	}
6195 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6196 	local_bh_enable();
6197 
6198 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6199 }
6200 
6201 static bool flush_required(int cpu)
6202 {
6203 #if IS_ENABLED(CONFIG_RPS)
6204 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6205 	bool do_flush;
6206 
6207 	backlog_lock_irq_disable(sd);
6208 
6209 	/* as insertion into process_queue happens with the rps lock held,
6210 	 * process_queue access may race only with dequeue
6211 	 */
6212 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6213 		   !skb_queue_empty_lockless(&sd->process_queue);
6214 	backlog_unlock_irq_enable(sd);
6215 
6216 	return do_flush;
6217 #endif
6218 	/* without RPS we can't safely check input_pkt_queue: during a
6219 	 * concurrent remote skb_queue_splice() we can detect as empty both
6220 	 * input_pkt_queue and process_queue even if the latter could end-up
6221 	 * containing a lot of packets.
6222 	 */
6223 	return true;
6224 }
6225 
6226 struct flush_backlogs {
6227 	cpumask_t		flush_cpus;
6228 	struct work_struct	w[];
6229 };
6230 
6231 static struct flush_backlogs *flush_backlogs_alloc(void)
6232 {
6233 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6234 		       GFP_KERNEL);
6235 }
6236 
6237 static struct flush_backlogs *flush_backlogs_fallback;
6238 static DEFINE_MUTEX(flush_backlogs_mutex);
6239 
6240 static void flush_all_backlogs(void)
6241 {
6242 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6243 	unsigned int cpu;
6244 
6245 	if (!ptr) {
6246 		mutex_lock(&flush_backlogs_mutex);
6247 		ptr = flush_backlogs_fallback;
6248 	}
6249 	cpumask_clear(&ptr->flush_cpus);
6250 
6251 	cpus_read_lock();
6252 
6253 	for_each_online_cpu(cpu) {
6254 		if (flush_required(cpu)) {
6255 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6256 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6257 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6258 		}
6259 	}
6260 
6261 	/* we can have in flight packet[s] on the cpus we are not flushing,
6262 	 * synchronize_net() in unregister_netdevice_many() will take care of
6263 	 * them.
6264 	 */
6265 	for_each_cpu(cpu, &ptr->flush_cpus)
6266 		flush_work(&ptr->w[cpu]);
6267 
6268 	cpus_read_unlock();
6269 
6270 	if (ptr != flush_backlogs_fallback)
6271 		kfree(ptr);
6272 	else
6273 		mutex_unlock(&flush_backlogs_mutex);
6274 }
6275 
6276 static void net_rps_send_ipi(struct softnet_data *remsd)
6277 {
6278 #ifdef CONFIG_RPS
6279 	while (remsd) {
6280 		struct softnet_data *next = remsd->rps_ipi_next;
6281 
6282 		if (cpu_online(remsd->cpu))
6283 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6284 		remsd = next;
6285 	}
6286 #endif
6287 }
6288 
6289 /*
6290  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6291  * Note: called with local irq disabled, but exits with local irq enabled.
6292  */
6293 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6294 {
6295 #ifdef CONFIG_RPS
6296 	struct softnet_data *remsd = sd->rps_ipi_list;
6297 
6298 	if (!use_backlog_threads() && remsd) {
6299 		sd->rps_ipi_list = NULL;
6300 
6301 		local_irq_enable();
6302 
6303 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6304 		net_rps_send_ipi(remsd);
6305 	} else
6306 #endif
6307 		local_irq_enable();
6308 }
6309 
6310 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6311 {
6312 #ifdef CONFIG_RPS
6313 	return !use_backlog_threads() && sd->rps_ipi_list;
6314 #else
6315 	return false;
6316 #endif
6317 }
6318 
6319 static int process_backlog(struct napi_struct *napi, int quota)
6320 {
6321 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6322 	bool again = true;
6323 	int work = 0;
6324 
6325 	/* Check if we have pending ipi, its better to send them now,
6326 	 * not waiting net_rx_action() end.
6327 	 */
6328 	if (sd_has_rps_ipi_waiting(sd)) {
6329 		local_irq_disable();
6330 		net_rps_action_and_irq_enable(sd);
6331 	}
6332 
6333 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6334 	while (again) {
6335 		struct sk_buff *skb;
6336 
6337 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6338 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6339 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6340 			rcu_read_lock();
6341 			__netif_receive_skb(skb);
6342 			rcu_read_unlock();
6343 			if (++work >= quota) {
6344 				rps_input_queue_head_add(sd, work);
6345 				return work;
6346 			}
6347 
6348 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6349 		}
6350 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6351 
6352 		backlog_lock_irq_disable(sd);
6353 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6354 			/*
6355 			 * Inline a custom version of __napi_complete().
6356 			 * only current cpu owns and manipulates this napi,
6357 			 * and NAPI_STATE_SCHED is the only possible flag set
6358 			 * on backlog.
6359 			 * We can use a plain write instead of clear_bit(),
6360 			 * and we dont need an smp_mb() memory barrier.
6361 			 */
6362 			napi->state &= NAPIF_STATE_THREADED;
6363 			again = false;
6364 		} else {
6365 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6366 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6367 						   &sd->process_queue);
6368 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6369 		}
6370 		backlog_unlock_irq_enable(sd);
6371 	}
6372 
6373 	if (work)
6374 		rps_input_queue_head_add(sd, work);
6375 	return work;
6376 }
6377 
6378 /**
6379  * __napi_schedule - schedule for receive
6380  * @n: entry to schedule
6381  *
6382  * The entry's receive function will be scheduled to run.
6383  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6384  */
6385 void __napi_schedule(struct napi_struct *n)
6386 {
6387 	unsigned long flags;
6388 
6389 	local_irq_save(flags);
6390 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6391 	local_irq_restore(flags);
6392 }
6393 EXPORT_SYMBOL(__napi_schedule);
6394 
6395 /**
6396  *	napi_schedule_prep - check if napi can be scheduled
6397  *	@n: napi context
6398  *
6399  * Test if NAPI routine is already running, and if not mark
6400  * it as running.  This is used as a condition variable to
6401  * insure only one NAPI poll instance runs.  We also make
6402  * sure there is no pending NAPI disable.
6403  */
6404 bool napi_schedule_prep(struct napi_struct *n)
6405 {
6406 	unsigned long new, val = READ_ONCE(n->state);
6407 
6408 	do {
6409 		if (unlikely(val & NAPIF_STATE_DISABLE))
6410 			return false;
6411 		new = val | NAPIF_STATE_SCHED;
6412 
6413 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6414 		 * This was suggested by Alexander Duyck, as compiler
6415 		 * emits better code than :
6416 		 * if (val & NAPIF_STATE_SCHED)
6417 		 *     new |= NAPIF_STATE_MISSED;
6418 		 */
6419 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6420 						   NAPIF_STATE_MISSED;
6421 	} while (!try_cmpxchg(&n->state, &val, new));
6422 
6423 	return !(val & NAPIF_STATE_SCHED);
6424 }
6425 EXPORT_SYMBOL(napi_schedule_prep);
6426 
6427 /**
6428  * __napi_schedule_irqoff - schedule for receive
6429  * @n: entry to schedule
6430  *
6431  * Variant of __napi_schedule() assuming hard irqs are masked.
6432  *
6433  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6434  * because the interrupt disabled assumption might not be true
6435  * due to force-threaded interrupts and spinlock substitution.
6436  */
6437 void __napi_schedule_irqoff(struct napi_struct *n)
6438 {
6439 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6440 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6441 	else
6442 		__napi_schedule(n);
6443 }
6444 EXPORT_SYMBOL(__napi_schedule_irqoff);
6445 
6446 bool napi_complete_done(struct napi_struct *n, int work_done)
6447 {
6448 	unsigned long flags, val, new, timeout = 0;
6449 	bool ret = true;
6450 
6451 	/*
6452 	 * 1) Don't let napi dequeue from the cpu poll list
6453 	 *    just in case its running on a different cpu.
6454 	 * 2) If we are busy polling, do nothing here, we have
6455 	 *    the guarantee we will be called later.
6456 	 */
6457 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6458 				 NAPIF_STATE_IN_BUSY_POLL)))
6459 		return false;
6460 
6461 	if (work_done) {
6462 		if (n->gro.bitmask)
6463 			timeout = napi_get_gro_flush_timeout(n);
6464 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6465 	}
6466 	if (n->defer_hard_irqs_count > 0) {
6467 		n->defer_hard_irqs_count--;
6468 		timeout = napi_get_gro_flush_timeout(n);
6469 		if (timeout)
6470 			ret = false;
6471 	}
6472 
6473 	/*
6474 	 * When the NAPI instance uses a timeout and keeps postponing
6475 	 * it, we need to bound somehow the time packets are kept in
6476 	 * the GRO layer.
6477 	 */
6478 	gro_flush(&n->gro, !!timeout);
6479 	gro_normal_list(&n->gro);
6480 
6481 	if (unlikely(!list_empty(&n->poll_list))) {
6482 		/* If n->poll_list is not empty, we need to mask irqs */
6483 		local_irq_save(flags);
6484 		list_del_init(&n->poll_list);
6485 		local_irq_restore(flags);
6486 	}
6487 	WRITE_ONCE(n->list_owner, -1);
6488 
6489 	val = READ_ONCE(n->state);
6490 	do {
6491 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6492 
6493 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6494 			      NAPIF_STATE_SCHED_THREADED |
6495 			      NAPIF_STATE_PREFER_BUSY_POLL);
6496 
6497 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6498 		 * because we will call napi->poll() one more time.
6499 		 * This C code was suggested by Alexander Duyck to help gcc.
6500 		 */
6501 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6502 						    NAPIF_STATE_SCHED;
6503 	} while (!try_cmpxchg(&n->state, &val, new));
6504 
6505 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6506 		__napi_schedule(n);
6507 		return false;
6508 	}
6509 
6510 	if (timeout)
6511 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6512 			      HRTIMER_MODE_REL_PINNED);
6513 	return ret;
6514 }
6515 EXPORT_SYMBOL(napi_complete_done);
6516 
6517 static void skb_defer_free_flush(struct softnet_data *sd)
6518 {
6519 	struct sk_buff *skb, *next;
6520 
6521 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6522 	if (!READ_ONCE(sd->defer_list))
6523 		return;
6524 
6525 	spin_lock(&sd->defer_lock);
6526 	skb = sd->defer_list;
6527 	sd->defer_list = NULL;
6528 	sd->defer_count = 0;
6529 	spin_unlock(&sd->defer_lock);
6530 
6531 	while (skb != NULL) {
6532 		next = skb->next;
6533 		napi_consume_skb(skb, 1);
6534 		skb = next;
6535 	}
6536 }
6537 
6538 #if defined(CONFIG_NET_RX_BUSY_POLL)
6539 
6540 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6541 {
6542 	if (!skip_schedule) {
6543 		gro_normal_list(&napi->gro);
6544 		__napi_schedule(napi);
6545 		return;
6546 	}
6547 
6548 	/* Flush too old packets. If HZ < 1000, flush all packets */
6549 	gro_flush(&napi->gro, HZ >= 1000);
6550 	gro_normal_list(&napi->gro);
6551 
6552 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6553 }
6554 
6555 enum {
6556 	NAPI_F_PREFER_BUSY_POLL	= 1,
6557 	NAPI_F_END_ON_RESCHED	= 2,
6558 };
6559 
6560 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6561 			   unsigned flags, u16 budget)
6562 {
6563 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6564 	bool skip_schedule = false;
6565 	unsigned long timeout;
6566 	int rc;
6567 
6568 	/* Busy polling means there is a high chance device driver hard irq
6569 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6570 	 * set in napi_schedule_prep().
6571 	 * Since we are about to call napi->poll() once more, we can safely
6572 	 * clear NAPI_STATE_MISSED.
6573 	 *
6574 	 * Note: x86 could use a single "lock and ..." instruction
6575 	 * to perform these two clear_bit()
6576 	 */
6577 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6578 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6579 
6580 	local_bh_disable();
6581 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6582 
6583 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6584 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6585 		timeout = napi_get_gro_flush_timeout(napi);
6586 		if (napi->defer_hard_irqs_count && timeout) {
6587 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6588 			skip_schedule = true;
6589 		}
6590 	}
6591 
6592 	/* All we really want here is to re-enable device interrupts.
6593 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6594 	 */
6595 	rc = napi->poll(napi, budget);
6596 	/* We can't gro_normal_list() here, because napi->poll() might have
6597 	 * rearmed the napi (napi_complete_done()) in which case it could
6598 	 * already be running on another CPU.
6599 	 */
6600 	trace_napi_poll(napi, rc, budget);
6601 	netpoll_poll_unlock(have_poll_lock);
6602 	if (rc == budget)
6603 		__busy_poll_stop(napi, skip_schedule);
6604 	bpf_net_ctx_clear(bpf_net_ctx);
6605 	local_bh_enable();
6606 }
6607 
6608 static void __napi_busy_loop(unsigned int napi_id,
6609 		      bool (*loop_end)(void *, unsigned long),
6610 		      void *loop_end_arg, unsigned flags, u16 budget)
6611 {
6612 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6613 	int (*napi_poll)(struct napi_struct *napi, int budget);
6614 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6615 	void *have_poll_lock = NULL;
6616 	struct napi_struct *napi;
6617 
6618 	WARN_ON_ONCE(!rcu_read_lock_held());
6619 
6620 restart:
6621 	napi_poll = NULL;
6622 
6623 	napi = napi_by_id(napi_id);
6624 	if (!napi)
6625 		return;
6626 
6627 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6628 		preempt_disable();
6629 	for (;;) {
6630 		int work = 0;
6631 
6632 		local_bh_disable();
6633 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6634 		if (!napi_poll) {
6635 			unsigned long val = READ_ONCE(napi->state);
6636 
6637 			/* If multiple threads are competing for this napi,
6638 			 * we avoid dirtying napi->state as much as we can.
6639 			 */
6640 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6641 				   NAPIF_STATE_IN_BUSY_POLL)) {
6642 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6643 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6644 				goto count;
6645 			}
6646 			if (cmpxchg(&napi->state, val,
6647 				    val | NAPIF_STATE_IN_BUSY_POLL |
6648 					  NAPIF_STATE_SCHED) != val) {
6649 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6650 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6651 				goto count;
6652 			}
6653 			have_poll_lock = netpoll_poll_lock(napi);
6654 			napi_poll = napi->poll;
6655 		}
6656 		work = napi_poll(napi, budget);
6657 		trace_napi_poll(napi, work, budget);
6658 		gro_normal_list(&napi->gro);
6659 count:
6660 		if (work > 0)
6661 			__NET_ADD_STATS(dev_net(napi->dev),
6662 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6663 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6664 		bpf_net_ctx_clear(bpf_net_ctx);
6665 		local_bh_enable();
6666 
6667 		if (!loop_end || loop_end(loop_end_arg, start_time))
6668 			break;
6669 
6670 		if (unlikely(need_resched())) {
6671 			if (flags & NAPI_F_END_ON_RESCHED)
6672 				break;
6673 			if (napi_poll)
6674 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6675 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6676 				preempt_enable();
6677 			rcu_read_unlock();
6678 			cond_resched();
6679 			rcu_read_lock();
6680 			if (loop_end(loop_end_arg, start_time))
6681 				return;
6682 			goto restart;
6683 		}
6684 		cpu_relax();
6685 	}
6686 	if (napi_poll)
6687 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6688 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6689 		preempt_enable();
6690 }
6691 
6692 void napi_busy_loop_rcu(unsigned int napi_id,
6693 			bool (*loop_end)(void *, unsigned long),
6694 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6695 {
6696 	unsigned flags = NAPI_F_END_ON_RESCHED;
6697 
6698 	if (prefer_busy_poll)
6699 		flags |= NAPI_F_PREFER_BUSY_POLL;
6700 
6701 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6702 }
6703 
6704 void napi_busy_loop(unsigned int napi_id,
6705 		    bool (*loop_end)(void *, unsigned long),
6706 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6707 {
6708 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6709 
6710 	rcu_read_lock();
6711 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6712 	rcu_read_unlock();
6713 }
6714 EXPORT_SYMBOL(napi_busy_loop);
6715 
6716 void napi_suspend_irqs(unsigned int napi_id)
6717 {
6718 	struct napi_struct *napi;
6719 
6720 	rcu_read_lock();
6721 	napi = napi_by_id(napi_id);
6722 	if (napi) {
6723 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6724 
6725 		if (timeout)
6726 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6727 				      HRTIMER_MODE_REL_PINNED);
6728 	}
6729 	rcu_read_unlock();
6730 }
6731 
6732 void napi_resume_irqs(unsigned int napi_id)
6733 {
6734 	struct napi_struct *napi;
6735 
6736 	rcu_read_lock();
6737 	napi = napi_by_id(napi_id);
6738 	if (napi) {
6739 		/* If irq_suspend_timeout is set to 0 between the call to
6740 		 * napi_suspend_irqs and now, the original value still
6741 		 * determines the safety timeout as intended and napi_watchdog
6742 		 * will resume irq processing.
6743 		 */
6744 		if (napi_get_irq_suspend_timeout(napi)) {
6745 			local_bh_disable();
6746 			napi_schedule(napi);
6747 			local_bh_enable();
6748 		}
6749 	}
6750 	rcu_read_unlock();
6751 }
6752 
6753 #endif /* CONFIG_NET_RX_BUSY_POLL */
6754 
6755 static void __napi_hash_add_with_id(struct napi_struct *napi,
6756 				    unsigned int napi_id)
6757 {
6758 	napi->gro.cached_napi_id = napi_id;
6759 
6760 	WRITE_ONCE(napi->napi_id, napi_id);
6761 	hlist_add_head_rcu(&napi->napi_hash_node,
6762 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6763 }
6764 
6765 static void napi_hash_add_with_id(struct napi_struct *napi,
6766 				  unsigned int napi_id)
6767 {
6768 	unsigned long flags;
6769 
6770 	spin_lock_irqsave(&napi_hash_lock, flags);
6771 	WARN_ON_ONCE(napi_by_id(napi_id));
6772 	__napi_hash_add_with_id(napi, napi_id);
6773 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6774 }
6775 
6776 static void napi_hash_add(struct napi_struct *napi)
6777 {
6778 	unsigned long flags;
6779 
6780 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6781 		return;
6782 
6783 	spin_lock_irqsave(&napi_hash_lock, flags);
6784 
6785 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6786 	do {
6787 		if (unlikely(!napi_id_valid(++napi_gen_id)))
6788 			napi_gen_id = MIN_NAPI_ID;
6789 	} while (napi_by_id(napi_gen_id));
6790 
6791 	__napi_hash_add_with_id(napi, napi_gen_id);
6792 
6793 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6794 }
6795 
6796 /* Warning : caller is responsible to make sure rcu grace period
6797  * is respected before freeing memory containing @napi
6798  */
6799 static void napi_hash_del(struct napi_struct *napi)
6800 {
6801 	unsigned long flags;
6802 
6803 	spin_lock_irqsave(&napi_hash_lock, flags);
6804 
6805 	hlist_del_init_rcu(&napi->napi_hash_node);
6806 
6807 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6808 }
6809 
6810 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6811 {
6812 	struct napi_struct *napi;
6813 
6814 	napi = container_of(timer, struct napi_struct, timer);
6815 
6816 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6817 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6818 	 */
6819 	if (!napi_disable_pending(napi) &&
6820 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6821 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6822 		__napi_schedule_irqoff(napi);
6823 	}
6824 
6825 	return HRTIMER_NORESTART;
6826 }
6827 
6828 int dev_set_threaded(struct net_device *dev, bool threaded)
6829 {
6830 	struct napi_struct *napi;
6831 	int err = 0;
6832 
6833 	netdev_assert_locked_or_invisible(dev);
6834 
6835 	if (dev->threaded == threaded)
6836 		return 0;
6837 
6838 	if (threaded) {
6839 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6840 			if (!napi->thread) {
6841 				err = napi_kthread_create(napi);
6842 				if (err) {
6843 					threaded = false;
6844 					break;
6845 				}
6846 			}
6847 		}
6848 	}
6849 
6850 	WRITE_ONCE(dev->threaded, threaded);
6851 
6852 	/* Make sure kthread is created before THREADED bit
6853 	 * is set.
6854 	 */
6855 	smp_mb__before_atomic();
6856 
6857 	/* Setting/unsetting threaded mode on a napi might not immediately
6858 	 * take effect, if the current napi instance is actively being
6859 	 * polled. In this case, the switch between threaded mode and
6860 	 * softirq mode will happen in the next round of napi_schedule().
6861 	 * This should not cause hiccups/stalls to the live traffic.
6862 	 */
6863 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6864 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6865 
6866 	return err;
6867 }
6868 EXPORT_SYMBOL(dev_set_threaded);
6869 
6870 /**
6871  * netif_queue_set_napi - Associate queue with the napi
6872  * @dev: device to which NAPI and queue belong
6873  * @queue_index: Index of queue
6874  * @type: queue type as RX or TX
6875  * @napi: NAPI context, pass NULL to clear previously set NAPI
6876  *
6877  * Set queue with its corresponding napi context. This should be done after
6878  * registering the NAPI handler for the queue-vector and the queues have been
6879  * mapped to the corresponding interrupt vector.
6880  */
6881 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6882 			  enum netdev_queue_type type, struct napi_struct *napi)
6883 {
6884 	struct netdev_rx_queue *rxq;
6885 	struct netdev_queue *txq;
6886 
6887 	if (WARN_ON_ONCE(napi && !napi->dev))
6888 		return;
6889 	if (dev->reg_state >= NETREG_REGISTERED)
6890 		ASSERT_RTNL();
6891 
6892 	switch (type) {
6893 	case NETDEV_QUEUE_TYPE_RX:
6894 		rxq = __netif_get_rx_queue(dev, queue_index);
6895 		rxq->napi = napi;
6896 		return;
6897 	case NETDEV_QUEUE_TYPE_TX:
6898 		txq = netdev_get_tx_queue(dev, queue_index);
6899 		txq->napi = napi;
6900 		return;
6901 	default:
6902 		return;
6903 	}
6904 }
6905 EXPORT_SYMBOL(netif_queue_set_napi);
6906 
6907 static void
6908 netif_napi_irq_notify(struct irq_affinity_notify *notify,
6909 		      const cpumask_t *mask)
6910 {
6911 	struct napi_struct *napi =
6912 		container_of(notify, struct napi_struct, notify);
6913 #ifdef CONFIG_RFS_ACCEL
6914 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6915 	int err;
6916 #endif
6917 
6918 	if (napi->config && napi->dev->irq_affinity_auto)
6919 		cpumask_copy(&napi->config->affinity_mask, mask);
6920 
6921 #ifdef CONFIG_RFS_ACCEL
6922 	if (napi->dev->rx_cpu_rmap_auto) {
6923 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
6924 		if (err)
6925 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
6926 				    err);
6927 	}
6928 #endif
6929 }
6930 
6931 #ifdef CONFIG_RFS_ACCEL
6932 static void netif_napi_affinity_release(struct kref *ref)
6933 {
6934 	struct napi_struct *napi =
6935 		container_of(ref, struct napi_struct, notify.kref);
6936 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6937 
6938 	netdev_assert_locked(napi->dev);
6939 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
6940 				   &napi->state));
6941 
6942 	if (!napi->dev->rx_cpu_rmap_auto)
6943 		return;
6944 	rmap->obj[napi->napi_rmap_idx] = NULL;
6945 	napi->napi_rmap_idx = -1;
6946 	cpu_rmap_put(rmap);
6947 }
6948 
6949 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6950 {
6951 	if (dev->rx_cpu_rmap_auto)
6952 		return 0;
6953 
6954 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
6955 	if (!dev->rx_cpu_rmap)
6956 		return -ENOMEM;
6957 
6958 	dev->rx_cpu_rmap_auto = true;
6959 	return 0;
6960 }
6961 EXPORT_SYMBOL(netif_enable_cpu_rmap);
6962 
6963 static void netif_del_cpu_rmap(struct net_device *dev)
6964 {
6965 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
6966 
6967 	if (!dev->rx_cpu_rmap_auto)
6968 		return;
6969 
6970 	/* Free the rmap */
6971 	cpu_rmap_put(rmap);
6972 	dev->rx_cpu_rmap = NULL;
6973 	dev->rx_cpu_rmap_auto = false;
6974 }
6975 
6976 #else
6977 static void netif_napi_affinity_release(struct kref *ref)
6978 {
6979 }
6980 
6981 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6982 {
6983 	return 0;
6984 }
6985 EXPORT_SYMBOL(netif_enable_cpu_rmap);
6986 
6987 static void netif_del_cpu_rmap(struct net_device *dev)
6988 {
6989 }
6990 #endif
6991 
6992 void netif_set_affinity_auto(struct net_device *dev)
6993 {
6994 	unsigned int i, maxqs, numa;
6995 
6996 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
6997 	numa = dev_to_node(&dev->dev);
6998 
6999 	for (i = 0; i < maxqs; i++)
7000 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7001 				&dev->napi_config[i].affinity_mask);
7002 
7003 	dev->irq_affinity_auto = true;
7004 }
7005 EXPORT_SYMBOL(netif_set_affinity_auto);
7006 
7007 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7008 {
7009 	int rc;
7010 
7011 	netdev_assert_locked_or_invisible(napi->dev);
7012 
7013 	if (napi->irq == irq)
7014 		return;
7015 
7016 	/* Remove existing resources */
7017 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7018 		irq_set_affinity_notifier(napi->irq, NULL);
7019 
7020 	napi->irq = irq;
7021 	if (irq < 0 ||
7022 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7023 		return;
7024 
7025 	/* Abort for buggy drivers */
7026 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7027 		return;
7028 
7029 #ifdef CONFIG_RFS_ACCEL
7030 	if (napi->dev->rx_cpu_rmap_auto) {
7031 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7032 		if (rc < 0)
7033 			return;
7034 
7035 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7036 		napi->napi_rmap_idx = rc;
7037 	}
7038 #endif
7039 
7040 	/* Use core IRQ notifier */
7041 	napi->notify.notify = netif_napi_irq_notify;
7042 	napi->notify.release = netif_napi_affinity_release;
7043 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7044 	if (rc) {
7045 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7046 			    rc);
7047 		goto put_rmap;
7048 	}
7049 
7050 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7051 	return;
7052 
7053 put_rmap:
7054 #ifdef CONFIG_RFS_ACCEL
7055 	if (napi->dev->rx_cpu_rmap_auto) {
7056 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7057 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7058 		napi->napi_rmap_idx = -1;
7059 	}
7060 #endif
7061 	napi->notify.notify = NULL;
7062 	napi->notify.release = NULL;
7063 }
7064 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7065 
7066 static void napi_restore_config(struct napi_struct *n)
7067 {
7068 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7069 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7070 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7071 
7072 	if (n->dev->irq_affinity_auto &&
7073 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7074 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7075 
7076 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7077 	 * napi_hash_add to generate one for us.
7078 	 */
7079 	if (n->config->napi_id) {
7080 		napi_hash_add_with_id(n, n->config->napi_id);
7081 	} else {
7082 		napi_hash_add(n);
7083 		n->config->napi_id = n->napi_id;
7084 	}
7085 }
7086 
7087 static void napi_save_config(struct napi_struct *n)
7088 {
7089 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7090 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7091 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7092 	napi_hash_del(n);
7093 }
7094 
7095 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7096  * inherit an existing ID try to insert it at the right position.
7097  */
7098 static void
7099 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7100 {
7101 	unsigned int new_id, pos_id;
7102 	struct list_head *higher;
7103 	struct napi_struct *pos;
7104 
7105 	new_id = UINT_MAX;
7106 	if (napi->config && napi->config->napi_id)
7107 		new_id = napi->config->napi_id;
7108 
7109 	higher = &dev->napi_list;
7110 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7111 		if (napi_id_valid(pos->napi_id))
7112 			pos_id = pos->napi_id;
7113 		else if (pos->config)
7114 			pos_id = pos->config->napi_id;
7115 		else
7116 			pos_id = UINT_MAX;
7117 
7118 		if (pos_id <= new_id)
7119 			break;
7120 		higher = &pos->dev_list;
7121 	}
7122 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7123 }
7124 
7125 /* Double check that napi_get_frags() allocates skbs with
7126  * skb->head being backed by slab, not a page fragment.
7127  * This is to make sure bug fixed in 3226b158e67c
7128  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7129  * does not accidentally come back.
7130  */
7131 static void napi_get_frags_check(struct napi_struct *napi)
7132 {
7133 	struct sk_buff *skb;
7134 
7135 	local_bh_disable();
7136 	skb = napi_get_frags(napi);
7137 	WARN_ON_ONCE(skb && skb->head_frag);
7138 	napi_free_frags(napi);
7139 	local_bh_enable();
7140 }
7141 
7142 void netif_napi_add_weight_locked(struct net_device *dev,
7143 				  struct napi_struct *napi,
7144 				  int (*poll)(struct napi_struct *, int),
7145 				  int weight)
7146 {
7147 	netdev_assert_locked(dev);
7148 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7149 		return;
7150 
7151 	INIT_LIST_HEAD(&napi->poll_list);
7152 	INIT_HLIST_NODE(&napi->napi_hash_node);
7153 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7154 	napi->timer.function = napi_watchdog;
7155 	gro_init(&napi->gro);
7156 	napi->skb = NULL;
7157 	napi->poll = poll;
7158 	if (weight > NAPI_POLL_WEIGHT)
7159 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7160 				weight);
7161 	napi->weight = weight;
7162 	napi->dev = dev;
7163 #ifdef CONFIG_NETPOLL
7164 	napi->poll_owner = -1;
7165 #endif
7166 	napi->list_owner = -1;
7167 	set_bit(NAPI_STATE_SCHED, &napi->state);
7168 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7169 	netif_napi_dev_list_add(dev, napi);
7170 
7171 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7172 	 * configuration will be loaded in napi_enable
7173 	 */
7174 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7175 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7176 
7177 	napi_get_frags_check(napi);
7178 	/* Create kthread for this napi if dev->threaded is set.
7179 	 * Clear dev->threaded if kthread creation failed so that
7180 	 * threaded mode will not be enabled in napi_enable().
7181 	 */
7182 	if (dev->threaded && napi_kthread_create(napi))
7183 		dev->threaded = false;
7184 	netif_napi_set_irq_locked(napi, -1);
7185 }
7186 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7187 
7188 void napi_disable_locked(struct napi_struct *n)
7189 {
7190 	unsigned long val, new;
7191 
7192 	might_sleep();
7193 	netdev_assert_locked(n->dev);
7194 
7195 	set_bit(NAPI_STATE_DISABLE, &n->state);
7196 
7197 	val = READ_ONCE(n->state);
7198 	do {
7199 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7200 			usleep_range(20, 200);
7201 			val = READ_ONCE(n->state);
7202 		}
7203 
7204 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7205 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7206 	} while (!try_cmpxchg(&n->state, &val, new));
7207 
7208 	hrtimer_cancel(&n->timer);
7209 
7210 	if (n->config)
7211 		napi_save_config(n);
7212 	else
7213 		napi_hash_del(n);
7214 
7215 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7216 }
7217 EXPORT_SYMBOL(napi_disable_locked);
7218 
7219 /**
7220  * napi_disable() - prevent NAPI from scheduling
7221  * @n: NAPI context
7222  *
7223  * Stop NAPI from being scheduled on this context.
7224  * Waits till any outstanding processing completes.
7225  * Takes netdev_lock() for associated net_device.
7226  */
7227 void napi_disable(struct napi_struct *n)
7228 {
7229 	netdev_lock(n->dev);
7230 	napi_disable_locked(n);
7231 	netdev_unlock(n->dev);
7232 }
7233 EXPORT_SYMBOL(napi_disable);
7234 
7235 void napi_enable_locked(struct napi_struct *n)
7236 {
7237 	unsigned long new, val = READ_ONCE(n->state);
7238 
7239 	if (n->config)
7240 		napi_restore_config(n);
7241 	else
7242 		napi_hash_add(n);
7243 
7244 	do {
7245 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7246 
7247 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7248 		if (n->dev->threaded && n->thread)
7249 			new |= NAPIF_STATE_THREADED;
7250 	} while (!try_cmpxchg(&n->state, &val, new));
7251 }
7252 EXPORT_SYMBOL(napi_enable_locked);
7253 
7254 /**
7255  * napi_enable() - enable NAPI scheduling
7256  * @n: NAPI context
7257  *
7258  * Enable scheduling of a NAPI instance.
7259  * Must be paired with napi_disable().
7260  * Takes netdev_lock() for associated net_device.
7261  */
7262 void napi_enable(struct napi_struct *n)
7263 {
7264 	netdev_lock(n->dev);
7265 	napi_enable_locked(n);
7266 	netdev_unlock(n->dev);
7267 }
7268 EXPORT_SYMBOL(napi_enable);
7269 
7270 /* Must be called in process context */
7271 void __netif_napi_del_locked(struct napi_struct *napi)
7272 {
7273 	netdev_assert_locked(napi->dev);
7274 
7275 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7276 		return;
7277 
7278 	/* Make sure NAPI is disabled (or was never enabled). */
7279 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7280 
7281 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7282 		irq_set_affinity_notifier(napi->irq, NULL);
7283 
7284 	if (napi->config) {
7285 		napi->index = -1;
7286 		napi->config = NULL;
7287 	}
7288 
7289 	list_del_rcu(&napi->dev_list);
7290 	napi_free_frags(napi);
7291 
7292 	gro_cleanup(&napi->gro);
7293 
7294 	if (napi->thread) {
7295 		kthread_stop(napi->thread);
7296 		napi->thread = NULL;
7297 	}
7298 }
7299 EXPORT_SYMBOL(__netif_napi_del_locked);
7300 
7301 static int __napi_poll(struct napi_struct *n, bool *repoll)
7302 {
7303 	int work, weight;
7304 
7305 	weight = n->weight;
7306 
7307 	/* This NAPI_STATE_SCHED test is for avoiding a race
7308 	 * with netpoll's poll_napi().  Only the entity which
7309 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7310 	 * actually make the ->poll() call.  Therefore we avoid
7311 	 * accidentally calling ->poll() when NAPI is not scheduled.
7312 	 */
7313 	work = 0;
7314 	if (napi_is_scheduled(n)) {
7315 		work = n->poll(n, weight);
7316 		trace_napi_poll(n, work, weight);
7317 
7318 		xdp_do_check_flushed(n);
7319 	}
7320 
7321 	if (unlikely(work > weight))
7322 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7323 				n->poll, work, weight);
7324 
7325 	if (likely(work < weight))
7326 		return work;
7327 
7328 	/* Drivers must not modify the NAPI state if they
7329 	 * consume the entire weight.  In such cases this code
7330 	 * still "owns" the NAPI instance and therefore can
7331 	 * move the instance around on the list at-will.
7332 	 */
7333 	if (unlikely(napi_disable_pending(n))) {
7334 		napi_complete(n);
7335 		return work;
7336 	}
7337 
7338 	/* The NAPI context has more processing work, but busy-polling
7339 	 * is preferred. Exit early.
7340 	 */
7341 	if (napi_prefer_busy_poll(n)) {
7342 		if (napi_complete_done(n, work)) {
7343 			/* If timeout is not set, we need to make sure
7344 			 * that the NAPI is re-scheduled.
7345 			 */
7346 			napi_schedule(n);
7347 		}
7348 		return work;
7349 	}
7350 
7351 	/* Flush too old packets. If HZ < 1000, flush all packets */
7352 	gro_flush(&n->gro, HZ >= 1000);
7353 	gro_normal_list(&n->gro);
7354 
7355 	/* Some drivers may have called napi_schedule
7356 	 * prior to exhausting their budget.
7357 	 */
7358 	if (unlikely(!list_empty(&n->poll_list))) {
7359 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7360 			     n->dev ? n->dev->name : "backlog");
7361 		return work;
7362 	}
7363 
7364 	*repoll = true;
7365 
7366 	return work;
7367 }
7368 
7369 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7370 {
7371 	bool do_repoll = false;
7372 	void *have;
7373 	int work;
7374 
7375 	list_del_init(&n->poll_list);
7376 
7377 	have = netpoll_poll_lock(n);
7378 
7379 	work = __napi_poll(n, &do_repoll);
7380 
7381 	if (do_repoll)
7382 		list_add_tail(&n->poll_list, repoll);
7383 
7384 	netpoll_poll_unlock(have);
7385 
7386 	return work;
7387 }
7388 
7389 static int napi_thread_wait(struct napi_struct *napi)
7390 {
7391 	set_current_state(TASK_INTERRUPTIBLE);
7392 
7393 	while (!kthread_should_stop()) {
7394 		/* Testing SCHED_THREADED bit here to make sure the current
7395 		 * kthread owns this napi and could poll on this napi.
7396 		 * Testing SCHED bit is not enough because SCHED bit might be
7397 		 * set by some other busy poll thread or by napi_disable().
7398 		 */
7399 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7400 			WARN_ON(!list_empty(&napi->poll_list));
7401 			__set_current_state(TASK_RUNNING);
7402 			return 0;
7403 		}
7404 
7405 		schedule();
7406 		set_current_state(TASK_INTERRUPTIBLE);
7407 	}
7408 	__set_current_state(TASK_RUNNING);
7409 
7410 	return -1;
7411 }
7412 
7413 static void napi_threaded_poll_loop(struct napi_struct *napi)
7414 {
7415 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7416 	struct softnet_data *sd;
7417 	unsigned long last_qs = jiffies;
7418 
7419 	for (;;) {
7420 		bool repoll = false;
7421 		void *have;
7422 
7423 		local_bh_disable();
7424 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7425 
7426 		sd = this_cpu_ptr(&softnet_data);
7427 		sd->in_napi_threaded_poll = true;
7428 
7429 		have = netpoll_poll_lock(napi);
7430 		__napi_poll(napi, &repoll);
7431 		netpoll_poll_unlock(have);
7432 
7433 		sd->in_napi_threaded_poll = false;
7434 		barrier();
7435 
7436 		if (sd_has_rps_ipi_waiting(sd)) {
7437 			local_irq_disable();
7438 			net_rps_action_and_irq_enable(sd);
7439 		}
7440 		skb_defer_free_flush(sd);
7441 		bpf_net_ctx_clear(bpf_net_ctx);
7442 		local_bh_enable();
7443 
7444 		if (!repoll)
7445 			break;
7446 
7447 		rcu_softirq_qs_periodic(last_qs);
7448 		cond_resched();
7449 	}
7450 }
7451 
7452 static int napi_threaded_poll(void *data)
7453 {
7454 	struct napi_struct *napi = data;
7455 
7456 	while (!napi_thread_wait(napi))
7457 		napi_threaded_poll_loop(napi);
7458 
7459 	return 0;
7460 }
7461 
7462 static __latent_entropy void net_rx_action(void)
7463 {
7464 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7465 	unsigned long time_limit = jiffies +
7466 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7467 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7468 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7469 	LIST_HEAD(list);
7470 	LIST_HEAD(repoll);
7471 
7472 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7473 start:
7474 	sd->in_net_rx_action = true;
7475 	local_irq_disable();
7476 	list_splice_init(&sd->poll_list, &list);
7477 	local_irq_enable();
7478 
7479 	for (;;) {
7480 		struct napi_struct *n;
7481 
7482 		skb_defer_free_flush(sd);
7483 
7484 		if (list_empty(&list)) {
7485 			if (list_empty(&repoll)) {
7486 				sd->in_net_rx_action = false;
7487 				barrier();
7488 				/* We need to check if ____napi_schedule()
7489 				 * had refilled poll_list while
7490 				 * sd->in_net_rx_action was true.
7491 				 */
7492 				if (!list_empty(&sd->poll_list))
7493 					goto start;
7494 				if (!sd_has_rps_ipi_waiting(sd))
7495 					goto end;
7496 			}
7497 			break;
7498 		}
7499 
7500 		n = list_first_entry(&list, struct napi_struct, poll_list);
7501 		budget -= napi_poll(n, &repoll);
7502 
7503 		/* If softirq window is exhausted then punt.
7504 		 * Allow this to run for 2 jiffies since which will allow
7505 		 * an average latency of 1.5/HZ.
7506 		 */
7507 		if (unlikely(budget <= 0 ||
7508 			     time_after_eq(jiffies, time_limit))) {
7509 			sd->time_squeeze++;
7510 			break;
7511 		}
7512 	}
7513 
7514 	local_irq_disable();
7515 
7516 	list_splice_tail_init(&sd->poll_list, &list);
7517 	list_splice_tail(&repoll, &list);
7518 	list_splice(&list, &sd->poll_list);
7519 	if (!list_empty(&sd->poll_list))
7520 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7521 	else
7522 		sd->in_net_rx_action = false;
7523 
7524 	net_rps_action_and_irq_enable(sd);
7525 end:
7526 	bpf_net_ctx_clear(bpf_net_ctx);
7527 }
7528 
7529 struct netdev_adjacent {
7530 	struct net_device *dev;
7531 	netdevice_tracker dev_tracker;
7532 
7533 	/* upper master flag, there can only be one master device per list */
7534 	bool master;
7535 
7536 	/* lookup ignore flag */
7537 	bool ignore;
7538 
7539 	/* counter for the number of times this device was added to us */
7540 	u16 ref_nr;
7541 
7542 	/* private field for the users */
7543 	void *private;
7544 
7545 	struct list_head list;
7546 	struct rcu_head rcu;
7547 };
7548 
7549 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7550 						 struct list_head *adj_list)
7551 {
7552 	struct netdev_adjacent *adj;
7553 
7554 	list_for_each_entry(adj, adj_list, list) {
7555 		if (adj->dev == adj_dev)
7556 			return adj;
7557 	}
7558 	return NULL;
7559 }
7560 
7561 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7562 				    struct netdev_nested_priv *priv)
7563 {
7564 	struct net_device *dev = (struct net_device *)priv->data;
7565 
7566 	return upper_dev == dev;
7567 }
7568 
7569 /**
7570  * netdev_has_upper_dev - Check if device is linked to an upper device
7571  * @dev: device
7572  * @upper_dev: upper device to check
7573  *
7574  * Find out if a device is linked to specified upper device and return true
7575  * in case it is. Note that this checks only immediate upper device,
7576  * not through a complete stack of devices. The caller must hold the RTNL lock.
7577  */
7578 bool netdev_has_upper_dev(struct net_device *dev,
7579 			  struct net_device *upper_dev)
7580 {
7581 	struct netdev_nested_priv priv = {
7582 		.data = (void *)upper_dev,
7583 	};
7584 
7585 	ASSERT_RTNL();
7586 
7587 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7588 					     &priv);
7589 }
7590 EXPORT_SYMBOL(netdev_has_upper_dev);
7591 
7592 /**
7593  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7594  * @dev: device
7595  * @upper_dev: upper device to check
7596  *
7597  * Find out if a device is linked to specified upper device and return true
7598  * in case it is. Note that this checks the entire upper device chain.
7599  * The caller must hold rcu lock.
7600  */
7601 
7602 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7603 				  struct net_device *upper_dev)
7604 {
7605 	struct netdev_nested_priv priv = {
7606 		.data = (void *)upper_dev,
7607 	};
7608 
7609 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7610 					       &priv);
7611 }
7612 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7613 
7614 /**
7615  * netdev_has_any_upper_dev - Check if device is linked to some device
7616  * @dev: device
7617  *
7618  * Find out if a device is linked to an upper device and return true in case
7619  * it is. The caller must hold the RTNL lock.
7620  */
7621 bool netdev_has_any_upper_dev(struct net_device *dev)
7622 {
7623 	ASSERT_RTNL();
7624 
7625 	return !list_empty(&dev->adj_list.upper);
7626 }
7627 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7628 
7629 /**
7630  * netdev_master_upper_dev_get - Get master upper device
7631  * @dev: device
7632  *
7633  * Find a master upper device and return pointer to it or NULL in case
7634  * it's not there. The caller must hold the RTNL lock.
7635  */
7636 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7637 {
7638 	struct netdev_adjacent *upper;
7639 
7640 	ASSERT_RTNL();
7641 
7642 	if (list_empty(&dev->adj_list.upper))
7643 		return NULL;
7644 
7645 	upper = list_first_entry(&dev->adj_list.upper,
7646 				 struct netdev_adjacent, list);
7647 	if (likely(upper->master))
7648 		return upper->dev;
7649 	return NULL;
7650 }
7651 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7652 
7653 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7654 {
7655 	struct netdev_adjacent *upper;
7656 
7657 	ASSERT_RTNL();
7658 
7659 	if (list_empty(&dev->adj_list.upper))
7660 		return NULL;
7661 
7662 	upper = list_first_entry(&dev->adj_list.upper,
7663 				 struct netdev_adjacent, list);
7664 	if (likely(upper->master) && !upper->ignore)
7665 		return upper->dev;
7666 	return NULL;
7667 }
7668 
7669 /**
7670  * netdev_has_any_lower_dev - Check if device is linked to some device
7671  * @dev: device
7672  *
7673  * Find out if a device is linked to a lower device and return true in case
7674  * it is. The caller must hold the RTNL lock.
7675  */
7676 static bool netdev_has_any_lower_dev(struct net_device *dev)
7677 {
7678 	ASSERT_RTNL();
7679 
7680 	return !list_empty(&dev->adj_list.lower);
7681 }
7682 
7683 void *netdev_adjacent_get_private(struct list_head *adj_list)
7684 {
7685 	struct netdev_adjacent *adj;
7686 
7687 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7688 
7689 	return adj->private;
7690 }
7691 EXPORT_SYMBOL(netdev_adjacent_get_private);
7692 
7693 /**
7694  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7695  * @dev: device
7696  * @iter: list_head ** of the current position
7697  *
7698  * Gets the next device from the dev's upper list, starting from iter
7699  * position. The caller must hold RCU read lock.
7700  */
7701 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7702 						 struct list_head **iter)
7703 {
7704 	struct netdev_adjacent *upper;
7705 
7706 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7707 
7708 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7709 
7710 	if (&upper->list == &dev->adj_list.upper)
7711 		return NULL;
7712 
7713 	*iter = &upper->list;
7714 
7715 	return upper->dev;
7716 }
7717 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7718 
7719 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7720 						  struct list_head **iter,
7721 						  bool *ignore)
7722 {
7723 	struct netdev_adjacent *upper;
7724 
7725 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7726 
7727 	if (&upper->list == &dev->adj_list.upper)
7728 		return NULL;
7729 
7730 	*iter = &upper->list;
7731 	*ignore = upper->ignore;
7732 
7733 	return upper->dev;
7734 }
7735 
7736 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7737 						    struct list_head **iter)
7738 {
7739 	struct netdev_adjacent *upper;
7740 
7741 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7742 
7743 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7744 
7745 	if (&upper->list == &dev->adj_list.upper)
7746 		return NULL;
7747 
7748 	*iter = &upper->list;
7749 
7750 	return upper->dev;
7751 }
7752 
7753 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7754 				       int (*fn)(struct net_device *dev,
7755 					 struct netdev_nested_priv *priv),
7756 				       struct netdev_nested_priv *priv)
7757 {
7758 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7759 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7760 	int ret, cur = 0;
7761 	bool ignore;
7762 
7763 	now = dev;
7764 	iter = &dev->adj_list.upper;
7765 
7766 	while (1) {
7767 		if (now != dev) {
7768 			ret = fn(now, priv);
7769 			if (ret)
7770 				return ret;
7771 		}
7772 
7773 		next = NULL;
7774 		while (1) {
7775 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7776 			if (!udev)
7777 				break;
7778 			if (ignore)
7779 				continue;
7780 
7781 			next = udev;
7782 			niter = &udev->adj_list.upper;
7783 			dev_stack[cur] = now;
7784 			iter_stack[cur++] = iter;
7785 			break;
7786 		}
7787 
7788 		if (!next) {
7789 			if (!cur)
7790 				return 0;
7791 			next = dev_stack[--cur];
7792 			niter = iter_stack[cur];
7793 		}
7794 
7795 		now = next;
7796 		iter = niter;
7797 	}
7798 
7799 	return 0;
7800 }
7801 
7802 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7803 				  int (*fn)(struct net_device *dev,
7804 					    struct netdev_nested_priv *priv),
7805 				  struct netdev_nested_priv *priv)
7806 {
7807 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7808 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7809 	int ret, cur = 0;
7810 
7811 	now = dev;
7812 	iter = &dev->adj_list.upper;
7813 
7814 	while (1) {
7815 		if (now != dev) {
7816 			ret = fn(now, priv);
7817 			if (ret)
7818 				return ret;
7819 		}
7820 
7821 		next = NULL;
7822 		while (1) {
7823 			udev = netdev_next_upper_dev_rcu(now, &iter);
7824 			if (!udev)
7825 				break;
7826 
7827 			next = udev;
7828 			niter = &udev->adj_list.upper;
7829 			dev_stack[cur] = now;
7830 			iter_stack[cur++] = iter;
7831 			break;
7832 		}
7833 
7834 		if (!next) {
7835 			if (!cur)
7836 				return 0;
7837 			next = dev_stack[--cur];
7838 			niter = iter_stack[cur];
7839 		}
7840 
7841 		now = next;
7842 		iter = niter;
7843 	}
7844 
7845 	return 0;
7846 }
7847 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7848 
7849 static bool __netdev_has_upper_dev(struct net_device *dev,
7850 				   struct net_device *upper_dev)
7851 {
7852 	struct netdev_nested_priv priv = {
7853 		.flags = 0,
7854 		.data = (void *)upper_dev,
7855 	};
7856 
7857 	ASSERT_RTNL();
7858 
7859 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7860 					   &priv);
7861 }
7862 
7863 /**
7864  * netdev_lower_get_next_private - Get the next ->private from the
7865  *				   lower neighbour list
7866  * @dev: device
7867  * @iter: list_head ** of the current position
7868  *
7869  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7870  * list, starting from iter position. The caller must hold either hold the
7871  * RTNL lock or its own locking that guarantees that the neighbour lower
7872  * list will remain unchanged.
7873  */
7874 void *netdev_lower_get_next_private(struct net_device *dev,
7875 				    struct list_head **iter)
7876 {
7877 	struct netdev_adjacent *lower;
7878 
7879 	lower = list_entry(*iter, struct netdev_adjacent, list);
7880 
7881 	if (&lower->list == &dev->adj_list.lower)
7882 		return NULL;
7883 
7884 	*iter = lower->list.next;
7885 
7886 	return lower->private;
7887 }
7888 EXPORT_SYMBOL(netdev_lower_get_next_private);
7889 
7890 /**
7891  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7892  *				       lower neighbour list, RCU
7893  *				       variant
7894  * @dev: device
7895  * @iter: list_head ** of the current position
7896  *
7897  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7898  * list, starting from iter position. The caller must hold RCU read lock.
7899  */
7900 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7901 					struct list_head **iter)
7902 {
7903 	struct netdev_adjacent *lower;
7904 
7905 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7906 
7907 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7908 
7909 	if (&lower->list == &dev->adj_list.lower)
7910 		return NULL;
7911 
7912 	*iter = &lower->list;
7913 
7914 	return lower->private;
7915 }
7916 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7917 
7918 /**
7919  * netdev_lower_get_next - Get the next device from the lower neighbour
7920  *                         list
7921  * @dev: device
7922  * @iter: list_head ** of the current position
7923  *
7924  * Gets the next netdev_adjacent from the dev's lower neighbour
7925  * list, starting from iter position. The caller must hold RTNL lock or
7926  * its own locking that guarantees that the neighbour lower
7927  * list will remain unchanged.
7928  */
7929 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7930 {
7931 	struct netdev_adjacent *lower;
7932 
7933 	lower = list_entry(*iter, struct netdev_adjacent, list);
7934 
7935 	if (&lower->list == &dev->adj_list.lower)
7936 		return NULL;
7937 
7938 	*iter = lower->list.next;
7939 
7940 	return lower->dev;
7941 }
7942 EXPORT_SYMBOL(netdev_lower_get_next);
7943 
7944 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7945 						struct list_head **iter)
7946 {
7947 	struct netdev_adjacent *lower;
7948 
7949 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7950 
7951 	if (&lower->list == &dev->adj_list.lower)
7952 		return NULL;
7953 
7954 	*iter = &lower->list;
7955 
7956 	return lower->dev;
7957 }
7958 
7959 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7960 						  struct list_head **iter,
7961 						  bool *ignore)
7962 {
7963 	struct netdev_adjacent *lower;
7964 
7965 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7966 
7967 	if (&lower->list == &dev->adj_list.lower)
7968 		return NULL;
7969 
7970 	*iter = &lower->list;
7971 	*ignore = lower->ignore;
7972 
7973 	return lower->dev;
7974 }
7975 
7976 int netdev_walk_all_lower_dev(struct net_device *dev,
7977 			      int (*fn)(struct net_device *dev,
7978 					struct netdev_nested_priv *priv),
7979 			      struct netdev_nested_priv *priv)
7980 {
7981 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7982 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7983 	int ret, cur = 0;
7984 
7985 	now = dev;
7986 	iter = &dev->adj_list.lower;
7987 
7988 	while (1) {
7989 		if (now != dev) {
7990 			ret = fn(now, priv);
7991 			if (ret)
7992 				return ret;
7993 		}
7994 
7995 		next = NULL;
7996 		while (1) {
7997 			ldev = netdev_next_lower_dev(now, &iter);
7998 			if (!ldev)
7999 				break;
8000 
8001 			next = ldev;
8002 			niter = &ldev->adj_list.lower;
8003 			dev_stack[cur] = now;
8004 			iter_stack[cur++] = iter;
8005 			break;
8006 		}
8007 
8008 		if (!next) {
8009 			if (!cur)
8010 				return 0;
8011 			next = dev_stack[--cur];
8012 			niter = iter_stack[cur];
8013 		}
8014 
8015 		now = next;
8016 		iter = niter;
8017 	}
8018 
8019 	return 0;
8020 }
8021 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8022 
8023 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8024 				       int (*fn)(struct net_device *dev,
8025 					 struct netdev_nested_priv *priv),
8026 				       struct netdev_nested_priv *priv)
8027 {
8028 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8029 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8030 	int ret, cur = 0;
8031 	bool ignore;
8032 
8033 	now = dev;
8034 	iter = &dev->adj_list.lower;
8035 
8036 	while (1) {
8037 		if (now != dev) {
8038 			ret = fn(now, priv);
8039 			if (ret)
8040 				return ret;
8041 		}
8042 
8043 		next = NULL;
8044 		while (1) {
8045 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8046 			if (!ldev)
8047 				break;
8048 			if (ignore)
8049 				continue;
8050 
8051 			next = ldev;
8052 			niter = &ldev->adj_list.lower;
8053 			dev_stack[cur] = now;
8054 			iter_stack[cur++] = iter;
8055 			break;
8056 		}
8057 
8058 		if (!next) {
8059 			if (!cur)
8060 				return 0;
8061 			next = dev_stack[--cur];
8062 			niter = iter_stack[cur];
8063 		}
8064 
8065 		now = next;
8066 		iter = niter;
8067 	}
8068 
8069 	return 0;
8070 }
8071 
8072 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8073 					     struct list_head **iter)
8074 {
8075 	struct netdev_adjacent *lower;
8076 
8077 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8078 	if (&lower->list == &dev->adj_list.lower)
8079 		return NULL;
8080 
8081 	*iter = &lower->list;
8082 
8083 	return lower->dev;
8084 }
8085 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8086 
8087 static u8 __netdev_upper_depth(struct net_device *dev)
8088 {
8089 	struct net_device *udev;
8090 	struct list_head *iter;
8091 	u8 max_depth = 0;
8092 	bool ignore;
8093 
8094 	for (iter = &dev->adj_list.upper,
8095 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8096 	     udev;
8097 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8098 		if (ignore)
8099 			continue;
8100 		if (max_depth < udev->upper_level)
8101 			max_depth = udev->upper_level;
8102 	}
8103 
8104 	return max_depth;
8105 }
8106 
8107 static u8 __netdev_lower_depth(struct net_device *dev)
8108 {
8109 	struct net_device *ldev;
8110 	struct list_head *iter;
8111 	u8 max_depth = 0;
8112 	bool ignore;
8113 
8114 	for (iter = &dev->adj_list.lower,
8115 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8116 	     ldev;
8117 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8118 		if (ignore)
8119 			continue;
8120 		if (max_depth < ldev->lower_level)
8121 			max_depth = ldev->lower_level;
8122 	}
8123 
8124 	return max_depth;
8125 }
8126 
8127 static int __netdev_update_upper_level(struct net_device *dev,
8128 				       struct netdev_nested_priv *__unused)
8129 {
8130 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8131 	return 0;
8132 }
8133 
8134 #ifdef CONFIG_LOCKDEP
8135 static LIST_HEAD(net_unlink_list);
8136 
8137 static void net_unlink_todo(struct net_device *dev)
8138 {
8139 	if (list_empty(&dev->unlink_list))
8140 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8141 }
8142 #endif
8143 
8144 static int __netdev_update_lower_level(struct net_device *dev,
8145 				       struct netdev_nested_priv *priv)
8146 {
8147 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8148 
8149 #ifdef CONFIG_LOCKDEP
8150 	if (!priv)
8151 		return 0;
8152 
8153 	if (priv->flags & NESTED_SYNC_IMM)
8154 		dev->nested_level = dev->lower_level - 1;
8155 	if (priv->flags & NESTED_SYNC_TODO)
8156 		net_unlink_todo(dev);
8157 #endif
8158 	return 0;
8159 }
8160 
8161 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8162 				  int (*fn)(struct net_device *dev,
8163 					    struct netdev_nested_priv *priv),
8164 				  struct netdev_nested_priv *priv)
8165 {
8166 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8167 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8168 	int ret, cur = 0;
8169 
8170 	now = dev;
8171 	iter = &dev->adj_list.lower;
8172 
8173 	while (1) {
8174 		if (now != dev) {
8175 			ret = fn(now, priv);
8176 			if (ret)
8177 				return ret;
8178 		}
8179 
8180 		next = NULL;
8181 		while (1) {
8182 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8183 			if (!ldev)
8184 				break;
8185 
8186 			next = ldev;
8187 			niter = &ldev->adj_list.lower;
8188 			dev_stack[cur] = now;
8189 			iter_stack[cur++] = iter;
8190 			break;
8191 		}
8192 
8193 		if (!next) {
8194 			if (!cur)
8195 				return 0;
8196 			next = dev_stack[--cur];
8197 			niter = iter_stack[cur];
8198 		}
8199 
8200 		now = next;
8201 		iter = niter;
8202 	}
8203 
8204 	return 0;
8205 }
8206 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8207 
8208 /**
8209  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8210  *				       lower neighbour list, RCU
8211  *				       variant
8212  * @dev: device
8213  *
8214  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8215  * list. The caller must hold RCU read lock.
8216  */
8217 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8218 {
8219 	struct netdev_adjacent *lower;
8220 
8221 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8222 			struct netdev_adjacent, list);
8223 	if (lower)
8224 		return lower->private;
8225 	return NULL;
8226 }
8227 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8228 
8229 /**
8230  * netdev_master_upper_dev_get_rcu - Get master upper device
8231  * @dev: device
8232  *
8233  * Find a master upper device and return pointer to it or NULL in case
8234  * it's not there. The caller must hold the RCU read lock.
8235  */
8236 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8237 {
8238 	struct netdev_adjacent *upper;
8239 
8240 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8241 				       struct netdev_adjacent, list);
8242 	if (upper && likely(upper->master))
8243 		return upper->dev;
8244 	return NULL;
8245 }
8246 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8247 
8248 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8249 			      struct net_device *adj_dev,
8250 			      struct list_head *dev_list)
8251 {
8252 	char linkname[IFNAMSIZ+7];
8253 
8254 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8255 		"upper_%s" : "lower_%s", adj_dev->name);
8256 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8257 				 linkname);
8258 }
8259 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8260 			       char *name,
8261 			       struct list_head *dev_list)
8262 {
8263 	char linkname[IFNAMSIZ+7];
8264 
8265 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8266 		"upper_%s" : "lower_%s", name);
8267 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8268 }
8269 
8270 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8271 						 struct net_device *adj_dev,
8272 						 struct list_head *dev_list)
8273 {
8274 	return (dev_list == &dev->adj_list.upper ||
8275 		dev_list == &dev->adj_list.lower) &&
8276 		net_eq(dev_net(dev), dev_net(adj_dev));
8277 }
8278 
8279 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8280 					struct net_device *adj_dev,
8281 					struct list_head *dev_list,
8282 					void *private, bool master)
8283 {
8284 	struct netdev_adjacent *adj;
8285 	int ret;
8286 
8287 	adj = __netdev_find_adj(adj_dev, dev_list);
8288 
8289 	if (adj) {
8290 		adj->ref_nr += 1;
8291 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8292 			 dev->name, adj_dev->name, adj->ref_nr);
8293 
8294 		return 0;
8295 	}
8296 
8297 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8298 	if (!adj)
8299 		return -ENOMEM;
8300 
8301 	adj->dev = adj_dev;
8302 	adj->master = master;
8303 	adj->ref_nr = 1;
8304 	adj->private = private;
8305 	adj->ignore = false;
8306 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8307 
8308 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8309 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8310 
8311 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8312 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8313 		if (ret)
8314 			goto free_adj;
8315 	}
8316 
8317 	/* Ensure that master link is always the first item in list. */
8318 	if (master) {
8319 		ret = sysfs_create_link(&(dev->dev.kobj),
8320 					&(adj_dev->dev.kobj), "master");
8321 		if (ret)
8322 			goto remove_symlinks;
8323 
8324 		list_add_rcu(&adj->list, dev_list);
8325 	} else {
8326 		list_add_tail_rcu(&adj->list, dev_list);
8327 	}
8328 
8329 	return 0;
8330 
8331 remove_symlinks:
8332 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8333 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8334 free_adj:
8335 	netdev_put(adj_dev, &adj->dev_tracker);
8336 	kfree(adj);
8337 
8338 	return ret;
8339 }
8340 
8341 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8342 					 struct net_device *adj_dev,
8343 					 u16 ref_nr,
8344 					 struct list_head *dev_list)
8345 {
8346 	struct netdev_adjacent *adj;
8347 
8348 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8349 		 dev->name, adj_dev->name, ref_nr);
8350 
8351 	adj = __netdev_find_adj(adj_dev, dev_list);
8352 
8353 	if (!adj) {
8354 		pr_err("Adjacency does not exist for device %s from %s\n",
8355 		       dev->name, adj_dev->name);
8356 		WARN_ON(1);
8357 		return;
8358 	}
8359 
8360 	if (adj->ref_nr > ref_nr) {
8361 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8362 			 dev->name, adj_dev->name, ref_nr,
8363 			 adj->ref_nr - ref_nr);
8364 		adj->ref_nr -= ref_nr;
8365 		return;
8366 	}
8367 
8368 	if (adj->master)
8369 		sysfs_remove_link(&(dev->dev.kobj), "master");
8370 
8371 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8372 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8373 
8374 	list_del_rcu(&adj->list);
8375 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8376 		 adj_dev->name, dev->name, adj_dev->name);
8377 	netdev_put(adj_dev, &adj->dev_tracker);
8378 	kfree_rcu(adj, rcu);
8379 }
8380 
8381 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8382 					    struct net_device *upper_dev,
8383 					    struct list_head *up_list,
8384 					    struct list_head *down_list,
8385 					    void *private, bool master)
8386 {
8387 	int ret;
8388 
8389 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8390 					   private, master);
8391 	if (ret)
8392 		return ret;
8393 
8394 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8395 					   private, false);
8396 	if (ret) {
8397 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8398 		return ret;
8399 	}
8400 
8401 	return 0;
8402 }
8403 
8404 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8405 					       struct net_device *upper_dev,
8406 					       u16 ref_nr,
8407 					       struct list_head *up_list,
8408 					       struct list_head *down_list)
8409 {
8410 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8411 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8412 }
8413 
8414 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8415 						struct net_device *upper_dev,
8416 						void *private, bool master)
8417 {
8418 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8419 						&dev->adj_list.upper,
8420 						&upper_dev->adj_list.lower,
8421 						private, master);
8422 }
8423 
8424 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8425 						   struct net_device *upper_dev)
8426 {
8427 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8428 					   &dev->adj_list.upper,
8429 					   &upper_dev->adj_list.lower);
8430 }
8431 
8432 static int __netdev_upper_dev_link(struct net_device *dev,
8433 				   struct net_device *upper_dev, bool master,
8434 				   void *upper_priv, void *upper_info,
8435 				   struct netdev_nested_priv *priv,
8436 				   struct netlink_ext_ack *extack)
8437 {
8438 	struct netdev_notifier_changeupper_info changeupper_info = {
8439 		.info = {
8440 			.dev = dev,
8441 			.extack = extack,
8442 		},
8443 		.upper_dev = upper_dev,
8444 		.master = master,
8445 		.linking = true,
8446 		.upper_info = upper_info,
8447 	};
8448 	struct net_device *master_dev;
8449 	int ret = 0;
8450 
8451 	ASSERT_RTNL();
8452 
8453 	if (dev == upper_dev)
8454 		return -EBUSY;
8455 
8456 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8457 	if (__netdev_has_upper_dev(upper_dev, dev))
8458 		return -EBUSY;
8459 
8460 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8461 		return -EMLINK;
8462 
8463 	if (!master) {
8464 		if (__netdev_has_upper_dev(dev, upper_dev))
8465 			return -EEXIST;
8466 	} else {
8467 		master_dev = __netdev_master_upper_dev_get(dev);
8468 		if (master_dev)
8469 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8470 	}
8471 
8472 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8473 					    &changeupper_info.info);
8474 	ret = notifier_to_errno(ret);
8475 	if (ret)
8476 		return ret;
8477 
8478 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8479 						   master);
8480 	if (ret)
8481 		return ret;
8482 
8483 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8484 					    &changeupper_info.info);
8485 	ret = notifier_to_errno(ret);
8486 	if (ret)
8487 		goto rollback;
8488 
8489 	__netdev_update_upper_level(dev, NULL);
8490 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8491 
8492 	__netdev_update_lower_level(upper_dev, priv);
8493 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8494 				    priv);
8495 
8496 	return 0;
8497 
8498 rollback:
8499 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8500 
8501 	return ret;
8502 }
8503 
8504 /**
8505  * netdev_upper_dev_link - Add a link to the upper device
8506  * @dev: device
8507  * @upper_dev: new upper device
8508  * @extack: netlink extended ack
8509  *
8510  * Adds a link to device which is upper to this one. The caller must hold
8511  * the RTNL lock. On a failure a negative errno code is returned.
8512  * On success the reference counts are adjusted and the function
8513  * returns zero.
8514  */
8515 int netdev_upper_dev_link(struct net_device *dev,
8516 			  struct net_device *upper_dev,
8517 			  struct netlink_ext_ack *extack)
8518 {
8519 	struct netdev_nested_priv priv = {
8520 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8521 		.data = NULL,
8522 	};
8523 
8524 	return __netdev_upper_dev_link(dev, upper_dev, false,
8525 				       NULL, NULL, &priv, extack);
8526 }
8527 EXPORT_SYMBOL(netdev_upper_dev_link);
8528 
8529 /**
8530  * netdev_master_upper_dev_link - Add a master link to the upper device
8531  * @dev: device
8532  * @upper_dev: new upper device
8533  * @upper_priv: upper device private
8534  * @upper_info: upper info to be passed down via notifier
8535  * @extack: netlink extended ack
8536  *
8537  * Adds a link to device which is upper to this one. In this case, only
8538  * one master upper device can be linked, although other non-master devices
8539  * might be linked as well. The caller must hold the RTNL lock.
8540  * On a failure a negative errno code is returned. On success the reference
8541  * counts are adjusted and the function returns zero.
8542  */
8543 int netdev_master_upper_dev_link(struct net_device *dev,
8544 				 struct net_device *upper_dev,
8545 				 void *upper_priv, void *upper_info,
8546 				 struct netlink_ext_ack *extack)
8547 {
8548 	struct netdev_nested_priv priv = {
8549 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8550 		.data = NULL,
8551 	};
8552 
8553 	return __netdev_upper_dev_link(dev, upper_dev, true,
8554 				       upper_priv, upper_info, &priv, extack);
8555 }
8556 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8557 
8558 static void __netdev_upper_dev_unlink(struct net_device *dev,
8559 				      struct net_device *upper_dev,
8560 				      struct netdev_nested_priv *priv)
8561 {
8562 	struct netdev_notifier_changeupper_info changeupper_info = {
8563 		.info = {
8564 			.dev = dev,
8565 		},
8566 		.upper_dev = upper_dev,
8567 		.linking = false,
8568 	};
8569 
8570 	ASSERT_RTNL();
8571 
8572 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8573 
8574 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8575 				      &changeupper_info.info);
8576 
8577 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8578 
8579 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8580 				      &changeupper_info.info);
8581 
8582 	__netdev_update_upper_level(dev, NULL);
8583 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8584 
8585 	__netdev_update_lower_level(upper_dev, priv);
8586 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8587 				    priv);
8588 }
8589 
8590 /**
8591  * netdev_upper_dev_unlink - Removes a link to upper device
8592  * @dev: device
8593  * @upper_dev: new upper device
8594  *
8595  * Removes a link to device which is upper to this one. The caller must hold
8596  * the RTNL lock.
8597  */
8598 void netdev_upper_dev_unlink(struct net_device *dev,
8599 			     struct net_device *upper_dev)
8600 {
8601 	struct netdev_nested_priv priv = {
8602 		.flags = NESTED_SYNC_TODO,
8603 		.data = NULL,
8604 	};
8605 
8606 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8607 }
8608 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8609 
8610 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8611 				      struct net_device *lower_dev,
8612 				      bool val)
8613 {
8614 	struct netdev_adjacent *adj;
8615 
8616 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8617 	if (adj)
8618 		adj->ignore = val;
8619 
8620 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8621 	if (adj)
8622 		adj->ignore = val;
8623 }
8624 
8625 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8626 					struct net_device *lower_dev)
8627 {
8628 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8629 }
8630 
8631 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8632 				       struct net_device *lower_dev)
8633 {
8634 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8635 }
8636 
8637 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8638 				   struct net_device *new_dev,
8639 				   struct net_device *dev,
8640 				   struct netlink_ext_ack *extack)
8641 {
8642 	struct netdev_nested_priv priv = {
8643 		.flags = 0,
8644 		.data = NULL,
8645 	};
8646 	int err;
8647 
8648 	if (!new_dev)
8649 		return 0;
8650 
8651 	if (old_dev && new_dev != old_dev)
8652 		netdev_adjacent_dev_disable(dev, old_dev);
8653 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8654 				      extack);
8655 	if (err) {
8656 		if (old_dev && new_dev != old_dev)
8657 			netdev_adjacent_dev_enable(dev, old_dev);
8658 		return err;
8659 	}
8660 
8661 	return 0;
8662 }
8663 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8664 
8665 void netdev_adjacent_change_commit(struct net_device *old_dev,
8666 				   struct net_device *new_dev,
8667 				   struct net_device *dev)
8668 {
8669 	struct netdev_nested_priv priv = {
8670 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8671 		.data = NULL,
8672 	};
8673 
8674 	if (!new_dev || !old_dev)
8675 		return;
8676 
8677 	if (new_dev == old_dev)
8678 		return;
8679 
8680 	netdev_adjacent_dev_enable(dev, old_dev);
8681 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8682 }
8683 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8684 
8685 void netdev_adjacent_change_abort(struct net_device *old_dev,
8686 				  struct net_device *new_dev,
8687 				  struct net_device *dev)
8688 {
8689 	struct netdev_nested_priv priv = {
8690 		.flags = 0,
8691 		.data = NULL,
8692 	};
8693 
8694 	if (!new_dev)
8695 		return;
8696 
8697 	if (old_dev && new_dev != old_dev)
8698 		netdev_adjacent_dev_enable(dev, old_dev);
8699 
8700 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8701 }
8702 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8703 
8704 /**
8705  * netdev_bonding_info_change - Dispatch event about slave change
8706  * @dev: device
8707  * @bonding_info: info to dispatch
8708  *
8709  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8710  * The caller must hold the RTNL lock.
8711  */
8712 void netdev_bonding_info_change(struct net_device *dev,
8713 				struct netdev_bonding_info *bonding_info)
8714 {
8715 	struct netdev_notifier_bonding_info info = {
8716 		.info.dev = dev,
8717 	};
8718 
8719 	memcpy(&info.bonding_info, bonding_info,
8720 	       sizeof(struct netdev_bonding_info));
8721 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8722 				      &info.info);
8723 }
8724 EXPORT_SYMBOL(netdev_bonding_info_change);
8725 
8726 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8727 					   struct netlink_ext_ack *extack)
8728 {
8729 	struct netdev_notifier_offload_xstats_info info = {
8730 		.info.dev = dev,
8731 		.info.extack = extack,
8732 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8733 	};
8734 	int err;
8735 	int rc;
8736 
8737 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8738 					 GFP_KERNEL);
8739 	if (!dev->offload_xstats_l3)
8740 		return -ENOMEM;
8741 
8742 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8743 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8744 						  &info.info);
8745 	err = notifier_to_errno(rc);
8746 	if (err)
8747 		goto free_stats;
8748 
8749 	return 0;
8750 
8751 free_stats:
8752 	kfree(dev->offload_xstats_l3);
8753 	dev->offload_xstats_l3 = NULL;
8754 	return err;
8755 }
8756 
8757 int netdev_offload_xstats_enable(struct net_device *dev,
8758 				 enum netdev_offload_xstats_type type,
8759 				 struct netlink_ext_ack *extack)
8760 {
8761 	ASSERT_RTNL();
8762 
8763 	if (netdev_offload_xstats_enabled(dev, type))
8764 		return -EALREADY;
8765 
8766 	switch (type) {
8767 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8768 		return netdev_offload_xstats_enable_l3(dev, extack);
8769 	}
8770 
8771 	WARN_ON(1);
8772 	return -EINVAL;
8773 }
8774 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8775 
8776 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8777 {
8778 	struct netdev_notifier_offload_xstats_info info = {
8779 		.info.dev = dev,
8780 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8781 	};
8782 
8783 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8784 				      &info.info);
8785 	kfree(dev->offload_xstats_l3);
8786 	dev->offload_xstats_l3 = NULL;
8787 }
8788 
8789 int netdev_offload_xstats_disable(struct net_device *dev,
8790 				  enum netdev_offload_xstats_type type)
8791 {
8792 	ASSERT_RTNL();
8793 
8794 	if (!netdev_offload_xstats_enabled(dev, type))
8795 		return -EALREADY;
8796 
8797 	switch (type) {
8798 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8799 		netdev_offload_xstats_disable_l3(dev);
8800 		return 0;
8801 	}
8802 
8803 	WARN_ON(1);
8804 	return -EINVAL;
8805 }
8806 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8807 
8808 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8809 {
8810 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8811 }
8812 
8813 static struct rtnl_hw_stats64 *
8814 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8815 			      enum netdev_offload_xstats_type type)
8816 {
8817 	switch (type) {
8818 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8819 		return dev->offload_xstats_l3;
8820 	}
8821 
8822 	WARN_ON(1);
8823 	return NULL;
8824 }
8825 
8826 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8827 				   enum netdev_offload_xstats_type type)
8828 {
8829 	ASSERT_RTNL();
8830 
8831 	return netdev_offload_xstats_get_ptr(dev, type);
8832 }
8833 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8834 
8835 struct netdev_notifier_offload_xstats_ru {
8836 	bool used;
8837 };
8838 
8839 struct netdev_notifier_offload_xstats_rd {
8840 	struct rtnl_hw_stats64 stats;
8841 	bool used;
8842 };
8843 
8844 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8845 				  const struct rtnl_hw_stats64 *src)
8846 {
8847 	dest->rx_packets	  += src->rx_packets;
8848 	dest->tx_packets	  += src->tx_packets;
8849 	dest->rx_bytes		  += src->rx_bytes;
8850 	dest->tx_bytes		  += src->tx_bytes;
8851 	dest->rx_errors		  += src->rx_errors;
8852 	dest->tx_errors		  += src->tx_errors;
8853 	dest->rx_dropped	  += src->rx_dropped;
8854 	dest->tx_dropped	  += src->tx_dropped;
8855 	dest->multicast		  += src->multicast;
8856 }
8857 
8858 static int netdev_offload_xstats_get_used(struct net_device *dev,
8859 					  enum netdev_offload_xstats_type type,
8860 					  bool *p_used,
8861 					  struct netlink_ext_ack *extack)
8862 {
8863 	struct netdev_notifier_offload_xstats_ru report_used = {};
8864 	struct netdev_notifier_offload_xstats_info info = {
8865 		.info.dev = dev,
8866 		.info.extack = extack,
8867 		.type = type,
8868 		.report_used = &report_used,
8869 	};
8870 	int rc;
8871 
8872 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8873 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8874 					   &info.info);
8875 	*p_used = report_used.used;
8876 	return notifier_to_errno(rc);
8877 }
8878 
8879 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8880 					   enum netdev_offload_xstats_type type,
8881 					   struct rtnl_hw_stats64 *p_stats,
8882 					   bool *p_used,
8883 					   struct netlink_ext_ack *extack)
8884 {
8885 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8886 	struct netdev_notifier_offload_xstats_info info = {
8887 		.info.dev = dev,
8888 		.info.extack = extack,
8889 		.type = type,
8890 		.report_delta = &report_delta,
8891 	};
8892 	struct rtnl_hw_stats64 *stats;
8893 	int rc;
8894 
8895 	stats = netdev_offload_xstats_get_ptr(dev, type);
8896 	if (WARN_ON(!stats))
8897 		return -EINVAL;
8898 
8899 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8900 					   &info.info);
8901 
8902 	/* Cache whatever we got, even if there was an error, otherwise the
8903 	 * successful stats retrievals would get lost.
8904 	 */
8905 	netdev_hw_stats64_add(stats, &report_delta.stats);
8906 
8907 	if (p_stats)
8908 		*p_stats = *stats;
8909 	*p_used = report_delta.used;
8910 
8911 	return notifier_to_errno(rc);
8912 }
8913 
8914 int netdev_offload_xstats_get(struct net_device *dev,
8915 			      enum netdev_offload_xstats_type type,
8916 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8917 			      struct netlink_ext_ack *extack)
8918 {
8919 	ASSERT_RTNL();
8920 
8921 	if (p_stats)
8922 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8923 						       p_used, extack);
8924 	else
8925 		return netdev_offload_xstats_get_used(dev, type, p_used,
8926 						      extack);
8927 }
8928 EXPORT_SYMBOL(netdev_offload_xstats_get);
8929 
8930 void
8931 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8932 				   const struct rtnl_hw_stats64 *stats)
8933 {
8934 	report_delta->used = true;
8935 	netdev_hw_stats64_add(&report_delta->stats, stats);
8936 }
8937 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8938 
8939 void
8940 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8941 {
8942 	report_used->used = true;
8943 }
8944 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8945 
8946 void netdev_offload_xstats_push_delta(struct net_device *dev,
8947 				      enum netdev_offload_xstats_type type,
8948 				      const struct rtnl_hw_stats64 *p_stats)
8949 {
8950 	struct rtnl_hw_stats64 *stats;
8951 
8952 	ASSERT_RTNL();
8953 
8954 	stats = netdev_offload_xstats_get_ptr(dev, type);
8955 	if (WARN_ON(!stats))
8956 		return;
8957 
8958 	netdev_hw_stats64_add(stats, p_stats);
8959 }
8960 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8961 
8962 /**
8963  * netdev_get_xmit_slave - Get the xmit slave of master device
8964  * @dev: device
8965  * @skb: The packet
8966  * @all_slaves: assume all the slaves are active
8967  *
8968  * The reference counters are not incremented so the caller must be
8969  * careful with locks. The caller must hold RCU lock.
8970  * %NULL is returned if no slave is found.
8971  */
8972 
8973 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8974 					 struct sk_buff *skb,
8975 					 bool all_slaves)
8976 {
8977 	const struct net_device_ops *ops = dev->netdev_ops;
8978 
8979 	if (!ops->ndo_get_xmit_slave)
8980 		return NULL;
8981 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8982 }
8983 EXPORT_SYMBOL(netdev_get_xmit_slave);
8984 
8985 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8986 						  struct sock *sk)
8987 {
8988 	const struct net_device_ops *ops = dev->netdev_ops;
8989 
8990 	if (!ops->ndo_sk_get_lower_dev)
8991 		return NULL;
8992 	return ops->ndo_sk_get_lower_dev(dev, sk);
8993 }
8994 
8995 /**
8996  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8997  * @dev: device
8998  * @sk: the socket
8999  *
9000  * %NULL is returned if no lower device is found.
9001  */
9002 
9003 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9004 					    struct sock *sk)
9005 {
9006 	struct net_device *lower;
9007 
9008 	lower = netdev_sk_get_lower_dev(dev, sk);
9009 	while (lower) {
9010 		dev = lower;
9011 		lower = netdev_sk_get_lower_dev(dev, sk);
9012 	}
9013 
9014 	return dev;
9015 }
9016 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9017 
9018 static void netdev_adjacent_add_links(struct net_device *dev)
9019 {
9020 	struct netdev_adjacent *iter;
9021 
9022 	struct net *net = dev_net(dev);
9023 
9024 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9025 		if (!net_eq(net, dev_net(iter->dev)))
9026 			continue;
9027 		netdev_adjacent_sysfs_add(iter->dev, dev,
9028 					  &iter->dev->adj_list.lower);
9029 		netdev_adjacent_sysfs_add(dev, iter->dev,
9030 					  &dev->adj_list.upper);
9031 	}
9032 
9033 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9034 		if (!net_eq(net, dev_net(iter->dev)))
9035 			continue;
9036 		netdev_adjacent_sysfs_add(iter->dev, dev,
9037 					  &iter->dev->adj_list.upper);
9038 		netdev_adjacent_sysfs_add(dev, iter->dev,
9039 					  &dev->adj_list.lower);
9040 	}
9041 }
9042 
9043 static void netdev_adjacent_del_links(struct net_device *dev)
9044 {
9045 	struct netdev_adjacent *iter;
9046 
9047 	struct net *net = dev_net(dev);
9048 
9049 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9050 		if (!net_eq(net, dev_net(iter->dev)))
9051 			continue;
9052 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9053 					  &iter->dev->adj_list.lower);
9054 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9055 					  &dev->adj_list.upper);
9056 	}
9057 
9058 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9059 		if (!net_eq(net, dev_net(iter->dev)))
9060 			continue;
9061 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9062 					  &iter->dev->adj_list.upper);
9063 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9064 					  &dev->adj_list.lower);
9065 	}
9066 }
9067 
9068 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9069 {
9070 	struct netdev_adjacent *iter;
9071 
9072 	struct net *net = dev_net(dev);
9073 
9074 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9075 		if (!net_eq(net, dev_net(iter->dev)))
9076 			continue;
9077 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9078 					  &iter->dev->adj_list.lower);
9079 		netdev_adjacent_sysfs_add(iter->dev, dev,
9080 					  &iter->dev->adj_list.lower);
9081 	}
9082 
9083 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9084 		if (!net_eq(net, dev_net(iter->dev)))
9085 			continue;
9086 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9087 					  &iter->dev->adj_list.upper);
9088 		netdev_adjacent_sysfs_add(iter->dev, dev,
9089 					  &iter->dev->adj_list.upper);
9090 	}
9091 }
9092 
9093 void *netdev_lower_dev_get_private(struct net_device *dev,
9094 				   struct net_device *lower_dev)
9095 {
9096 	struct netdev_adjacent *lower;
9097 
9098 	if (!lower_dev)
9099 		return NULL;
9100 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9101 	if (!lower)
9102 		return NULL;
9103 
9104 	return lower->private;
9105 }
9106 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9107 
9108 
9109 /**
9110  * netdev_lower_state_changed - Dispatch event about lower device state change
9111  * @lower_dev: device
9112  * @lower_state_info: state to dispatch
9113  *
9114  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9115  * The caller must hold the RTNL lock.
9116  */
9117 void netdev_lower_state_changed(struct net_device *lower_dev,
9118 				void *lower_state_info)
9119 {
9120 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9121 		.info.dev = lower_dev,
9122 	};
9123 
9124 	ASSERT_RTNL();
9125 	changelowerstate_info.lower_state_info = lower_state_info;
9126 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9127 				      &changelowerstate_info.info);
9128 }
9129 EXPORT_SYMBOL(netdev_lower_state_changed);
9130 
9131 static void dev_change_rx_flags(struct net_device *dev, int flags)
9132 {
9133 	const struct net_device_ops *ops = dev->netdev_ops;
9134 
9135 	if (ops->ndo_change_rx_flags)
9136 		ops->ndo_change_rx_flags(dev, flags);
9137 }
9138 
9139 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9140 {
9141 	unsigned int old_flags = dev->flags;
9142 	unsigned int promiscuity, flags;
9143 	kuid_t uid;
9144 	kgid_t gid;
9145 
9146 	ASSERT_RTNL();
9147 
9148 	promiscuity = dev->promiscuity + inc;
9149 	if (promiscuity == 0) {
9150 		/*
9151 		 * Avoid overflow.
9152 		 * If inc causes overflow, untouch promisc and return error.
9153 		 */
9154 		if (unlikely(inc > 0)) {
9155 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9156 			return -EOVERFLOW;
9157 		}
9158 		flags = old_flags & ~IFF_PROMISC;
9159 	} else {
9160 		flags = old_flags | IFF_PROMISC;
9161 	}
9162 	WRITE_ONCE(dev->promiscuity, promiscuity);
9163 	if (flags != old_flags) {
9164 		WRITE_ONCE(dev->flags, flags);
9165 		netdev_info(dev, "%s promiscuous mode\n",
9166 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9167 		if (audit_enabled) {
9168 			current_uid_gid(&uid, &gid);
9169 			audit_log(audit_context(), GFP_ATOMIC,
9170 				  AUDIT_ANOM_PROMISCUOUS,
9171 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9172 				  dev->name, (dev->flags & IFF_PROMISC),
9173 				  (old_flags & IFF_PROMISC),
9174 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9175 				  from_kuid(&init_user_ns, uid),
9176 				  from_kgid(&init_user_ns, gid),
9177 				  audit_get_sessionid(current));
9178 		}
9179 
9180 		dev_change_rx_flags(dev, IFF_PROMISC);
9181 	}
9182 	if (notify)
9183 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9184 	return 0;
9185 }
9186 
9187 /**
9188  *	dev_set_promiscuity	- update promiscuity count on a device
9189  *	@dev: device
9190  *	@inc: modifier
9191  *
9192  *	Add or remove promiscuity from a device. While the count in the device
9193  *	remains above zero the interface remains promiscuous. Once it hits zero
9194  *	the device reverts back to normal filtering operation. A negative inc
9195  *	value is used to drop promiscuity on the device.
9196  *	Return 0 if successful or a negative errno code on error.
9197  */
9198 int dev_set_promiscuity(struct net_device *dev, int inc)
9199 {
9200 	unsigned int old_flags = dev->flags;
9201 	int err;
9202 
9203 	err = __dev_set_promiscuity(dev, inc, true);
9204 	if (err < 0)
9205 		return err;
9206 	if (dev->flags != old_flags)
9207 		dev_set_rx_mode(dev);
9208 	return err;
9209 }
9210 EXPORT_SYMBOL(dev_set_promiscuity);
9211 
9212 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9213 {
9214 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9215 	unsigned int allmulti, flags;
9216 
9217 	ASSERT_RTNL();
9218 
9219 	allmulti = dev->allmulti + inc;
9220 	if (allmulti == 0) {
9221 		/*
9222 		 * Avoid overflow.
9223 		 * If inc causes overflow, untouch allmulti and return error.
9224 		 */
9225 		if (unlikely(inc > 0)) {
9226 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9227 			return -EOVERFLOW;
9228 		}
9229 		flags = old_flags & ~IFF_ALLMULTI;
9230 	} else {
9231 		flags = old_flags | IFF_ALLMULTI;
9232 	}
9233 	WRITE_ONCE(dev->allmulti, allmulti);
9234 	if (flags != old_flags) {
9235 		WRITE_ONCE(dev->flags, flags);
9236 		netdev_info(dev, "%s allmulticast mode\n",
9237 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9238 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9239 		dev_set_rx_mode(dev);
9240 		if (notify)
9241 			__dev_notify_flags(dev, old_flags,
9242 					   dev->gflags ^ old_gflags, 0, NULL);
9243 	}
9244 	return 0;
9245 }
9246 
9247 /*
9248  *	Upload unicast and multicast address lists to device and
9249  *	configure RX filtering. When the device doesn't support unicast
9250  *	filtering it is put in promiscuous mode while unicast addresses
9251  *	are present.
9252  */
9253 void __dev_set_rx_mode(struct net_device *dev)
9254 {
9255 	const struct net_device_ops *ops = dev->netdev_ops;
9256 
9257 	/* dev_open will call this function so the list will stay sane. */
9258 	if (!(dev->flags&IFF_UP))
9259 		return;
9260 
9261 	if (!netif_device_present(dev))
9262 		return;
9263 
9264 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9265 		/* Unicast addresses changes may only happen under the rtnl,
9266 		 * therefore calling __dev_set_promiscuity here is safe.
9267 		 */
9268 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9269 			__dev_set_promiscuity(dev, 1, false);
9270 			dev->uc_promisc = true;
9271 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9272 			__dev_set_promiscuity(dev, -1, false);
9273 			dev->uc_promisc = false;
9274 		}
9275 	}
9276 
9277 	if (ops->ndo_set_rx_mode)
9278 		ops->ndo_set_rx_mode(dev);
9279 }
9280 
9281 void dev_set_rx_mode(struct net_device *dev)
9282 {
9283 	netif_addr_lock_bh(dev);
9284 	__dev_set_rx_mode(dev);
9285 	netif_addr_unlock_bh(dev);
9286 }
9287 
9288 /**
9289  *	dev_get_flags - get flags reported to userspace
9290  *	@dev: device
9291  *
9292  *	Get the combination of flag bits exported through APIs to userspace.
9293  */
9294 unsigned int dev_get_flags(const struct net_device *dev)
9295 {
9296 	unsigned int flags;
9297 
9298 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9299 				IFF_ALLMULTI |
9300 				IFF_RUNNING |
9301 				IFF_LOWER_UP |
9302 				IFF_DORMANT)) |
9303 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9304 				IFF_ALLMULTI));
9305 
9306 	if (netif_running(dev)) {
9307 		if (netif_oper_up(dev))
9308 			flags |= IFF_RUNNING;
9309 		if (netif_carrier_ok(dev))
9310 			flags |= IFF_LOWER_UP;
9311 		if (netif_dormant(dev))
9312 			flags |= IFF_DORMANT;
9313 	}
9314 
9315 	return flags;
9316 }
9317 EXPORT_SYMBOL(dev_get_flags);
9318 
9319 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9320 		       struct netlink_ext_ack *extack)
9321 {
9322 	unsigned int old_flags = dev->flags;
9323 	int ret;
9324 
9325 	ASSERT_RTNL();
9326 
9327 	/*
9328 	 *	Set the flags on our device.
9329 	 */
9330 
9331 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9332 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9333 			       IFF_AUTOMEDIA)) |
9334 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9335 				    IFF_ALLMULTI));
9336 
9337 	/*
9338 	 *	Load in the correct multicast list now the flags have changed.
9339 	 */
9340 
9341 	if ((old_flags ^ flags) & IFF_MULTICAST)
9342 		dev_change_rx_flags(dev, IFF_MULTICAST);
9343 
9344 	dev_set_rx_mode(dev);
9345 
9346 	/*
9347 	 *	Have we downed the interface. We handle IFF_UP ourselves
9348 	 *	according to user attempts to set it, rather than blindly
9349 	 *	setting it.
9350 	 */
9351 
9352 	ret = 0;
9353 	if ((old_flags ^ flags) & IFF_UP) {
9354 		if (old_flags & IFF_UP)
9355 			__dev_close(dev);
9356 		else
9357 			ret = __dev_open(dev, extack);
9358 	}
9359 
9360 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9361 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9362 		old_flags = dev->flags;
9363 
9364 		dev->gflags ^= IFF_PROMISC;
9365 
9366 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9367 			if (dev->flags != old_flags)
9368 				dev_set_rx_mode(dev);
9369 	}
9370 
9371 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9372 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9373 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9374 	 */
9375 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9376 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9377 
9378 		dev->gflags ^= IFF_ALLMULTI;
9379 		netif_set_allmulti(dev, inc, false);
9380 	}
9381 
9382 	return ret;
9383 }
9384 
9385 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9386 			unsigned int gchanges, u32 portid,
9387 			const struct nlmsghdr *nlh)
9388 {
9389 	unsigned int changes = dev->flags ^ old_flags;
9390 
9391 	if (gchanges)
9392 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9393 
9394 	if (changes & IFF_UP) {
9395 		if (dev->flags & IFF_UP)
9396 			call_netdevice_notifiers(NETDEV_UP, dev);
9397 		else
9398 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9399 	}
9400 
9401 	if (dev->flags & IFF_UP &&
9402 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9403 		struct netdev_notifier_change_info change_info = {
9404 			.info = {
9405 				.dev = dev,
9406 			},
9407 			.flags_changed = changes,
9408 		};
9409 
9410 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9411 	}
9412 }
9413 
9414 int netif_change_flags(struct net_device *dev, unsigned int flags,
9415 		       struct netlink_ext_ack *extack)
9416 {
9417 	int ret;
9418 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9419 
9420 	ret = __dev_change_flags(dev, flags, extack);
9421 	if (ret < 0)
9422 		return ret;
9423 
9424 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9425 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9426 	return ret;
9427 }
9428 
9429 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9430 {
9431 	const struct net_device_ops *ops = dev->netdev_ops;
9432 
9433 	if (ops->ndo_change_mtu)
9434 		return ops->ndo_change_mtu(dev, new_mtu);
9435 
9436 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9437 	WRITE_ONCE(dev->mtu, new_mtu);
9438 	return 0;
9439 }
9440 EXPORT_SYMBOL(__dev_set_mtu);
9441 
9442 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9443 		     struct netlink_ext_ack *extack)
9444 {
9445 	/* MTU must be positive, and in range */
9446 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9447 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9448 		return -EINVAL;
9449 	}
9450 
9451 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9452 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9453 		return -EINVAL;
9454 	}
9455 	return 0;
9456 }
9457 
9458 /**
9459  *	netif_set_mtu_ext - Change maximum transfer unit
9460  *	@dev: device
9461  *	@new_mtu: new transfer unit
9462  *	@extack: netlink extended ack
9463  *
9464  *	Change the maximum transfer size of the network device.
9465  */
9466 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9467 		      struct netlink_ext_ack *extack)
9468 {
9469 	int err, orig_mtu;
9470 
9471 	if (new_mtu == dev->mtu)
9472 		return 0;
9473 
9474 	err = dev_validate_mtu(dev, new_mtu, extack);
9475 	if (err)
9476 		return err;
9477 
9478 	if (!netif_device_present(dev))
9479 		return -ENODEV;
9480 
9481 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9482 	err = notifier_to_errno(err);
9483 	if (err)
9484 		return err;
9485 
9486 	orig_mtu = dev->mtu;
9487 	err = __dev_set_mtu(dev, new_mtu);
9488 
9489 	if (!err) {
9490 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9491 						   orig_mtu);
9492 		err = notifier_to_errno(err);
9493 		if (err) {
9494 			/* setting mtu back and notifying everyone again,
9495 			 * so that they have a chance to revert changes.
9496 			 */
9497 			__dev_set_mtu(dev, orig_mtu);
9498 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9499 						     new_mtu);
9500 		}
9501 	}
9502 	return err;
9503 }
9504 
9505 int netif_set_mtu(struct net_device *dev, int new_mtu)
9506 {
9507 	struct netlink_ext_ack extack;
9508 	int err;
9509 
9510 	memset(&extack, 0, sizeof(extack));
9511 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9512 	if (err && extack._msg)
9513 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9514 	return err;
9515 }
9516 EXPORT_SYMBOL(netif_set_mtu);
9517 
9518 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9519 {
9520 	unsigned int orig_len = dev->tx_queue_len;
9521 	int res;
9522 
9523 	if (new_len != (unsigned int)new_len)
9524 		return -ERANGE;
9525 
9526 	if (new_len != orig_len) {
9527 		WRITE_ONCE(dev->tx_queue_len, new_len);
9528 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9529 		res = notifier_to_errno(res);
9530 		if (res)
9531 			goto err_rollback;
9532 		res = dev_qdisc_change_tx_queue_len(dev);
9533 		if (res)
9534 			goto err_rollback;
9535 	}
9536 
9537 	return 0;
9538 
9539 err_rollback:
9540 	netdev_err(dev, "refused to change device tx_queue_len\n");
9541 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9542 	return res;
9543 }
9544 
9545 void netif_set_group(struct net_device *dev, int new_group)
9546 {
9547 	dev->group = new_group;
9548 }
9549 
9550 /**
9551  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9552  *	@dev: device
9553  *	@addr: new address
9554  *	@extack: netlink extended ack
9555  */
9556 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9557 			      struct netlink_ext_ack *extack)
9558 {
9559 	struct netdev_notifier_pre_changeaddr_info info = {
9560 		.info.dev = dev,
9561 		.info.extack = extack,
9562 		.dev_addr = addr,
9563 	};
9564 	int rc;
9565 
9566 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9567 	return notifier_to_errno(rc);
9568 }
9569 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9570 
9571 int netif_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9572 			  struct netlink_ext_ack *extack)
9573 {
9574 	const struct net_device_ops *ops = dev->netdev_ops;
9575 	int err;
9576 
9577 	if (!ops->ndo_set_mac_address)
9578 		return -EOPNOTSUPP;
9579 	if (sa->sa_family != dev->type)
9580 		return -EINVAL;
9581 	if (!netif_device_present(dev))
9582 		return -ENODEV;
9583 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9584 	if (err)
9585 		return err;
9586 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9587 		err = ops->ndo_set_mac_address(dev, sa);
9588 		if (err)
9589 			return err;
9590 	}
9591 	dev->addr_assign_type = NET_ADDR_SET;
9592 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9593 	add_device_randomness(dev->dev_addr, dev->addr_len);
9594 	return 0;
9595 }
9596 
9597 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9598 {
9599 	size_t size = sizeof(sa->sa_data_min);
9600 	struct net_device *dev;
9601 
9602 	dev = netdev_get_by_name_lock(net, dev_name);
9603 	if (!dev)
9604 		return -ENODEV;
9605 
9606 	if (!dev->addr_len)
9607 		memset(sa->sa_data, 0, size);
9608 	else
9609 		memcpy(sa->sa_data, dev->dev_addr,
9610 		       min_t(size_t, size, dev->addr_len));
9611 	sa->sa_family = dev->type;
9612 	netdev_unlock(dev);
9613 
9614 	return 0;
9615 }
9616 EXPORT_SYMBOL(dev_get_mac_address);
9617 
9618 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9619 {
9620 	const struct net_device_ops *ops = dev->netdev_ops;
9621 
9622 	if (!ops->ndo_change_carrier)
9623 		return -EOPNOTSUPP;
9624 	if (!netif_device_present(dev))
9625 		return -ENODEV;
9626 	return ops->ndo_change_carrier(dev, new_carrier);
9627 }
9628 
9629 /**
9630  *	dev_get_phys_port_id - Get device physical port ID
9631  *	@dev: device
9632  *	@ppid: port ID
9633  *
9634  *	Get device physical port ID
9635  */
9636 int dev_get_phys_port_id(struct net_device *dev,
9637 			 struct netdev_phys_item_id *ppid)
9638 {
9639 	const struct net_device_ops *ops = dev->netdev_ops;
9640 
9641 	if (!ops->ndo_get_phys_port_id)
9642 		return -EOPNOTSUPP;
9643 	return ops->ndo_get_phys_port_id(dev, ppid);
9644 }
9645 
9646 /**
9647  *	dev_get_phys_port_name - Get device physical port name
9648  *	@dev: device
9649  *	@name: port name
9650  *	@len: limit of bytes to copy to name
9651  *
9652  *	Get device physical port name
9653  */
9654 int dev_get_phys_port_name(struct net_device *dev,
9655 			   char *name, size_t len)
9656 {
9657 	const struct net_device_ops *ops = dev->netdev_ops;
9658 	int err;
9659 
9660 	if (ops->ndo_get_phys_port_name) {
9661 		err = ops->ndo_get_phys_port_name(dev, name, len);
9662 		if (err != -EOPNOTSUPP)
9663 			return err;
9664 	}
9665 	return devlink_compat_phys_port_name_get(dev, name, len);
9666 }
9667 
9668 /**
9669  *	dev_get_port_parent_id - Get the device's port parent identifier
9670  *	@dev: network device
9671  *	@ppid: pointer to a storage for the port's parent identifier
9672  *	@recurse: allow/disallow recursion to lower devices
9673  *
9674  *	Get the devices's port parent identifier
9675  */
9676 int dev_get_port_parent_id(struct net_device *dev,
9677 			   struct netdev_phys_item_id *ppid,
9678 			   bool recurse)
9679 {
9680 	const struct net_device_ops *ops = dev->netdev_ops;
9681 	struct netdev_phys_item_id first = { };
9682 	struct net_device *lower_dev;
9683 	struct list_head *iter;
9684 	int err;
9685 
9686 	if (ops->ndo_get_port_parent_id) {
9687 		err = ops->ndo_get_port_parent_id(dev, ppid);
9688 		if (err != -EOPNOTSUPP)
9689 			return err;
9690 	}
9691 
9692 	err = devlink_compat_switch_id_get(dev, ppid);
9693 	if (!recurse || err != -EOPNOTSUPP)
9694 		return err;
9695 
9696 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9697 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9698 		if (err)
9699 			break;
9700 		if (!first.id_len)
9701 			first = *ppid;
9702 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9703 			return -EOPNOTSUPP;
9704 	}
9705 
9706 	return err;
9707 }
9708 EXPORT_SYMBOL(dev_get_port_parent_id);
9709 
9710 /**
9711  *	netdev_port_same_parent_id - Indicate if two network devices have
9712  *	the same port parent identifier
9713  *	@a: first network device
9714  *	@b: second network device
9715  */
9716 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9717 {
9718 	struct netdev_phys_item_id a_id = { };
9719 	struct netdev_phys_item_id b_id = { };
9720 
9721 	if (dev_get_port_parent_id(a, &a_id, true) ||
9722 	    dev_get_port_parent_id(b, &b_id, true))
9723 		return false;
9724 
9725 	return netdev_phys_item_id_same(&a_id, &b_id);
9726 }
9727 EXPORT_SYMBOL(netdev_port_same_parent_id);
9728 
9729 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9730 {
9731 	if (!dev->change_proto_down)
9732 		return -EOPNOTSUPP;
9733 	if (!netif_device_present(dev))
9734 		return -ENODEV;
9735 	if (proto_down)
9736 		netif_carrier_off(dev);
9737 	else
9738 		netif_carrier_on(dev);
9739 	WRITE_ONCE(dev->proto_down, proto_down);
9740 	return 0;
9741 }
9742 
9743 /**
9744  *	netdev_change_proto_down_reason_locked - proto down reason
9745  *
9746  *	@dev: device
9747  *	@mask: proto down mask
9748  *	@value: proto down value
9749  */
9750 void netdev_change_proto_down_reason_locked(struct net_device *dev,
9751 					    unsigned long mask, u32 value)
9752 {
9753 	u32 proto_down_reason;
9754 	int b;
9755 
9756 	if (!mask) {
9757 		proto_down_reason = value;
9758 	} else {
9759 		proto_down_reason = dev->proto_down_reason;
9760 		for_each_set_bit(b, &mask, 32) {
9761 			if (value & (1 << b))
9762 				proto_down_reason |= BIT(b);
9763 			else
9764 				proto_down_reason &= ~BIT(b);
9765 		}
9766 	}
9767 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9768 }
9769 
9770 struct bpf_xdp_link {
9771 	struct bpf_link link;
9772 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9773 	int flags;
9774 };
9775 
9776 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9777 {
9778 	if (flags & XDP_FLAGS_HW_MODE)
9779 		return XDP_MODE_HW;
9780 	if (flags & XDP_FLAGS_DRV_MODE)
9781 		return XDP_MODE_DRV;
9782 	if (flags & XDP_FLAGS_SKB_MODE)
9783 		return XDP_MODE_SKB;
9784 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9785 }
9786 
9787 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9788 {
9789 	switch (mode) {
9790 	case XDP_MODE_SKB:
9791 		return generic_xdp_install;
9792 	case XDP_MODE_DRV:
9793 	case XDP_MODE_HW:
9794 		return dev->netdev_ops->ndo_bpf;
9795 	default:
9796 		return NULL;
9797 	}
9798 }
9799 
9800 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9801 					 enum bpf_xdp_mode mode)
9802 {
9803 	return dev->xdp_state[mode].link;
9804 }
9805 
9806 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9807 				     enum bpf_xdp_mode mode)
9808 {
9809 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9810 
9811 	if (link)
9812 		return link->link.prog;
9813 	return dev->xdp_state[mode].prog;
9814 }
9815 
9816 u8 dev_xdp_prog_count(struct net_device *dev)
9817 {
9818 	u8 count = 0;
9819 	int i;
9820 
9821 	for (i = 0; i < __MAX_XDP_MODE; i++)
9822 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9823 			count++;
9824 	return count;
9825 }
9826 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9827 
9828 u8 dev_xdp_sb_prog_count(struct net_device *dev)
9829 {
9830 	u8 count = 0;
9831 	int i;
9832 
9833 	for (i = 0; i < __MAX_XDP_MODE; i++)
9834 		if (dev->xdp_state[i].prog &&
9835 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
9836 			count++;
9837 	return count;
9838 }
9839 
9840 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9841 {
9842 	if (!dev->netdev_ops->ndo_bpf)
9843 		return -EOPNOTSUPP;
9844 
9845 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9846 	    bpf->command == XDP_SETUP_PROG &&
9847 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9848 		NL_SET_ERR_MSG(bpf->extack,
9849 			       "unable to propagate XDP to device using tcp-data-split");
9850 		return -EBUSY;
9851 	}
9852 
9853 	if (dev_get_min_mp_channel_count(dev)) {
9854 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9855 		return -EBUSY;
9856 	}
9857 
9858 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9859 }
9860 
9861 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9862 {
9863 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9864 
9865 	return prog ? prog->aux->id : 0;
9866 }
9867 
9868 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9869 			     struct bpf_xdp_link *link)
9870 {
9871 	dev->xdp_state[mode].link = link;
9872 	dev->xdp_state[mode].prog = NULL;
9873 }
9874 
9875 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9876 			     struct bpf_prog *prog)
9877 {
9878 	dev->xdp_state[mode].link = NULL;
9879 	dev->xdp_state[mode].prog = prog;
9880 }
9881 
9882 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9883 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9884 			   u32 flags, struct bpf_prog *prog)
9885 {
9886 	struct netdev_bpf xdp;
9887 	int err;
9888 
9889 	netdev_ops_assert_locked(dev);
9890 
9891 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9892 	    prog && !prog->aux->xdp_has_frags) {
9893 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9894 		return -EBUSY;
9895 	}
9896 
9897 	if (dev_get_min_mp_channel_count(dev)) {
9898 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9899 		return -EBUSY;
9900 	}
9901 
9902 	memset(&xdp, 0, sizeof(xdp));
9903 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9904 	xdp.extack = extack;
9905 	xdp.flags = flags;
9906 	xdp.prog = prog;
9907 
9908 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9909 	 * "moved" into driver), so they don't increment it on their own, but
9910 	 * they do decrement refcnt when program is detached or replaced.
9911 	 * Given net_device also owns link/prog, we need to bump refcnt here
9912 	 * to prevent drivers from underflowing it.
9913 	 */
9914 	if (prog)
9915 		bpf_prog_inc(prog);
9916 	err = bpf_op(dev, &xdp);
9917 	if (err) {
9918 		if (prog)
9919 			bpf_prog_put(prog);
9920 		return err;
9921 	}
9922 
9923 	if (mode != XDP_MODE_HW)
9924 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9925 
9926 	return 0;
9927 }
9928 
9929 static void dev_xdp_uninstall(struct net_device *dev)
9930 {
9931 	struct bpf_xdp_link *link;
9932 	struct bpf_prog *prog;
9933 	enum bpf_xdp_mode mode;
9934 	bpf_op_t bpf_op;
9935 
9936 	ASSERT_RTNL();
9937 
9938 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9939 		prog = dev_xdp_prog(dev, mode);
9940 		if (!prog)
9941 			continue;
9942 
9943 		bpf_op = dev_xdp_bpf_op(dev, mode);
9944 		if (!bpf_op)
9945 			continue;
9946 
9947 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9948 
9949 		/* auto-detach link from net device */
9950 		link = dev_xdp_link(dev, mode);
9951 		if (link)
9952 			link->dev = NULL;
9953 		else
9954 			bpf_prog_put(prog);
9955 
9956 		dev_xdp_set_link(dev, mode, NULL);
9957 	}
9958 }
9959 
9960 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9961 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9962 			  struct bpf_prog *old_prog, u32 flags)
9963 {
9964 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9965 	struct bpf_prog *cur_prog;
9966 	struct net_device *upper;
9967 	struct list_head *iter;
9968 	enum bpf_xdp_mode mode;
9969 	bpf_op_t bpf_op;
9970 	int err;
9971 
9972 	ASSERT_RTNL();
9973 
9974 	/* either link or prog attachment, never both */
9975 	if (link && (new_prog || old_prog))
9976 		return -EINVAL;
9977 	/* link supports only XDP mode flags */
9978 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9979 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9980 		return -EINVAL;
9981 	}
9982 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9983 	if (num_modes > 1) {
9984 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9985 		return -EINVAL;
9986 	}
9987 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9988 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9989 		NL_SET_ERR_MSG(extack,
9990 			       "More than one program loaded, unset mode is ambiguous");
9991 		return -EINVAL;
9992 	}
9993 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9994 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9995 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9996 		return -EINVAL;
9997 	}
9998 
9999 	mode = dev_xdp_mode(dev, flags);
10000 	/* can't replace attached link */
10001 	if (dev_xdp_link(dev, mode)) {
10002 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10003 		return -EBUSY;
10004 	}
10005 
10006 	/* don't allow if an upper device already has a program */
10007 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10008 		if (dev_xdp_prog_count(upper) > 0) {
10009 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10010 			return -EEXIST;
10011 		}
10012 	}
10013 
10014 	cur_prog = dev_xdp_prog(dev, mode);
10015 	/* can't replace attached prog with link */
10016 	if (link && cur_prog) {
10017 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10018 		return -EBUSY;
10019 	}
10020 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10021 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10022 		return -EEXIST;
10023 	}
10024 
10025 	/* put effective new program into new_prog */
10026 	if (link)
10027 		new_prog = link->link.prog;
10028 
10029 	if (new_prog) {
10030 		bool offload = mode == XDP_MODE_HW;
10031 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10032 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10033 
10034 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10035 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10036 			return -EBUSY;
10037 		}
10038 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10039 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10040 			return -EEXIST;
10041 		}
10042 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10043 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10044 			return -EINVAL;
10045 		}
10046 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10047 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10048 			return -EINVAL;
10049 		}
10050 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10051 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10052 			return -EINVAL;
10053 		}
10054 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10055 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10056 			return -EINVAL;
10057 		}
10058 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10059 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10060 			return -EINVAL;
10061 		}
10062 	}
10063 
10064 	/* don't call drivers if the effective program didn't change */
10065 	if (new_prog != cur_prog) {
10066 		bpf_op = dev_xdp_bpf_op(dev, mode);
10067 		if (!bpf_op) {
10068 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10069 			return -EOPNOTSUPP;
10070 		}
10071 
10072 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10073 		if (err)
10074 			return err;
10075 	}
10076 
10077 	if (link)
10078 		dev_xdp_set_link(dev, mode, link);
10079 	else
10080 		dev_xdp_set_prog(dev, mode, new_prog);
10081 	if (cur_prog)
10082 		bpf_prog_put(cur_prog);
10083 
10084 	return 0;
10085 }
10086 
10087 static int dev_xdp_attach_link(struct net_device *dev,
10088 			       struct netlink_ext_ack *extack,
10089 			       struct bpf_xdp_link *link)
10090 {
10091 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10092 }
10093 
10094 static int dev_xdp_detach_link(struct net_device *dev,
10095 			       struct netlink_ext_ack *extack,
10096 			       struct bpf_xdp_link *link)
10097 {
10098 	enum bpf_xdp_mode mode;
10099 	bpf_op_t bpf_op;
10100 
10101 	ASSERT_RTNL();
10102 
10103 	mode = dev_xdp_mode(dev, link->flags);
10104 	if (dev_xdp_link(dev, mode) != link)
10105 		return -EINVAL;
10106 
10107 	bpf_op = dev_xdp_bpf_op(dev, mode);
10108 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10109 	dev_xdp_set_link(dev, mode, NULL);
10110 	return 0;
10111 }
10112 
10113 static void bpf_xdp_link_release(struct bpf_link *link)
10114 {
10115 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10116 
10117 	rtnl_lock();
10118 
10119 	/* if racing with net_device's tear down, xdp_link->dev might be
10120 	 * already NULL, in which case link was already auto-detached
10121 	 */
10122 	if (xdp_link->dev) {
10123 		netdev_lock_ops(xdp_link->dev);
10124 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10125 		netdev_unlock_ops(xdp_link->dev);
10126 		xdp_link->dev = NULL;
10127 	}
10128 
10129 	rtnl_unlock();
10130 }
10131 
10132 static int bpf_xdp_link_detach(struct bpf_link *link)
10133 {
10134 	bpf_xdp_link_release(link);
10135 	return 0;
10136 }
10137 
10138 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10139 {
10140 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10141 
10142 	kfree(xdp_link);
10143 }
10144 
10145 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10146 				     struct seq_file *seq)
10147 {
10148 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10149 	u32 ifindex = 0;
10150 
10151 	rtnl_lock();
10152 	if (xdp_link->dev)
10153 		ifindex = xdp_link->dev->ifindex;
10154 	rtnl_unlock();
10155 
10156 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10157 }
10158 
10159 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10160 				       struct bpf_link_info *info)
10161 {
10162 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10163 	u32 ifindex = 0;
10164 
10165 	rtnl_lock();
10166 	if (xdp_link->dev)
10167 		ifindex = xdp_link->dev->ifindex;
10168 	rtnl_unlock();
10169 
10170 	info->xdp.ifindex = ifindex;
10171 	return 0;
10172 }
10173 
10174 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10175 			       struct bpf_prog *old_prog)
10176 {
10177 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10178 	enum bpf_xdp_mode mode;
10179 	bpf_op_t bpf_op;
10180 	int err = 0;
10181 
10182 	rtnl_lock();
10183 
10184 	/* link might have been auto-released already, so fail */
10185 	if (!xdp_link->dev) {
10186 		err = -ENOLINK;
10187 		goto out_unlock;
10188 	}
10189 
10190 	if (old_prog && link->prog != old_prog) {
10191 		err = -EPERM;
10192 		goto out_unlock;
10193 	}
10194 	old_prog = link->prog;
10195 	if (old_prog->type != new_prog->type ||
10196 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10197 		err = -EINVAL;
10198 		goto out_unlock;
10199 	}
10200 
10201 	if (old_prog == new_prog) {
10202 		/* no-op, don't disturb drivers */
10203 		bpf_prog_put(new_prog);
10204 		goto out_unlock;
10205 	}
10206 
10207 	netdev_lock_ops(xdp_link->dev);
10208 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10209 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10210 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10211 			      xdp_link->flags, new_prog);
10212 	netdev_unlock_ops(xdp_link->dev);
10213 	if (err)
10214 		goto out_unlock;
10215 
10216 	old_prog = xchg(&link->prog, new_prog);
10217 	bpf_prog_put(old_prog);
10218 
10219 out_unlock:
10220 	rtnl_unlock();
10221 	return err;
10222 }
10223 
10224 static const struct bpf_link_ops bpf_xdp_link_lops = {
10225 	.release = bpf_xdp_link_release,
10226 	.dealloc = bpf_xdp_link_dealloc,
10227 	.detach = bpf_xdp_link_detach,
10228 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10229 	.fill_link_info = bpf_xdp_link_fill_link_info,
10230 	.update_prog = bpf_xdp_link_update,
10231 };
10232 
10233 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10234 {
10235 	struct net *net = current->nsproxy->net_ns;
10236 	struct bpf_link_primer link_primer;
10237 	struct netlink_ext_ack extack = {};
10238 	struct bpf_xdp_link *link;
10239 	struct net_device *dev;
10240 	int err, fd;
10241 
10242 	rtnl_lock();
10243 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10244 	if (!dev) {
10245 		rtnl_unlock();
10246 		return -EINVAL;
10247 	}
10248 
10249 	link = kzalloc(sizeof(*link), GFP_USER);
10250 	if (!link) {
10251 		err = -ENOMEM;
10252 		goto unlock;
10253 	}
10254 
10255 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10256 	link->dev = dev;
10257 	link->flags = attr->link_create.flags;
10258 
10259 	err = bpf_link_prime(&link->link, &link_primer);
10260 	if (err) {
10261 		kfree(link);
10262 		goto unlock;
10263 	}
10264 
10265 	err = dev_xdp_attach_link(dev, &extack, link);
10266 	rtnl_unlock();
10267 
10268 	if (err) {
10269 		link->dev = NULL;
10270 		bpf_link_cleanup(&link_primer);
10271 		trace_bpf_xdp_link_attach_failed(extack._msg);
10272 		goto out_put_dev;
10273 	}
10274 
10275 	fd = bpf_link_settle(&link_primer);
10276 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10277 	dev_put(dev);
10278 	return fd;
10279 
10280 unlock:
10281 	rtnl_unlock();
10282 
10283 out_put_dev:
10284 	dev_put(dev);
10285 	return err;
10286 }
10287 
10288 /**
10289  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10290  *	@dev: device
10291  *	@extack: netlink extended ack
10292  *	@fd: new program fd or negative value to clear
10293  *	@expected_fd: old program fd that userspace expects to replace or clear
10294  *	@flags: xdp-related flags
10295  *
10296  *	Set or clear a bpf program for a device
10297  */
10298 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10299 		      int fd, int expected_fd, u32 flags)
10300 {
10301 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10302 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10303 	int err;
10304 
10305 	ASSERT_RTNL();
10306 
10307 	if (fd >= 0) {
10308 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10309 						 mode != XDP_MODE_SKB);
10310 		if (IS_ERR(new_prog))
10311 			return PTR_ERR(new_prog);
10312 	}
10313 
10314 	if (expected_fd >= 0) {
10315 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10316 						 mode != XDP_MODE_SKB);
10317 		if (IS_ERR(old_prog)) {
10318 			err = PTR_ERR(old_prog);
10319 			old_prog = NULL;
10320 			goto err_out;
10321 		}
10322 	}
10323 
10324 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10325 
10326 err_out:
10327 	if (err && new_prog)
10328 		bpf_prog_put(new_prog);
10329 	if (old_prog)
10330 		bpf_prog_put(old_prog);
10331 	return err;
10332 }
10333 
10334 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10335 {
10336 	int i;
10337 
10338 	ASSERT_RTNL();
10339 
10340 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10341 		if (dev->_rx[i].mp_params.mp_priv)
10342 			/* The channel count is the idx plus 1. */
10343 			return i + 1;
10344 
10345 	return 0;
10346 }
10347 
10348 /**
10349  * dev_index_reserve() - allocate an ifindex in a namespace
10350  * @net: the applicable net namespace
10351  * @ifindex: requested ifindex, pass %0 to get one allocated
10352  *
10353  * Allocate a ifindex for a new device. Caller must either use the ifindex
10354  * to store the device (via list_netdevice()) or call dev_index_release()
10355  * to give the index up.
10356  *
10357  * Return: a suitable unique value for a new device interface number or -errno.
10358  */
10359 static int dev_index_reserve(struct net *net, u32 ifindex)
10360 {
10361 	int err;
10362 
10363 	if (ifindex > INT_MAX) {
10364 		DEBUG_NET_WARN_ON_ONCE(1);
10365 		return -EINVAL;
10366 	}
10367 
10368 	if (!ifindex)
10369 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10370 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10371 	else
10372 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10373 	if (err < 0)
10374 		return err;
10375 
10376 	return ifindex;
10377 }
10378 
10379 static void dev_index_release(struct net *net, int ifindex)
10380 {
10381 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10382 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10383 }
10384 
10385 static bool from_cleanup_net(void)
10386 {
10387 #ifdef CONFIG_NET_NS
10388 	return current == cleanup_net_task;
10389 #else
10390 	return false;
10391 #endif
10392 }
10393 
10394 /* Delayed registration/unregisteration */
10395 LIST_HEAD(net_todo_list);
10396 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10397 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10398 
10399 static void net_set_todo(struct net_device *dev)
10400 {
10401 	list_add_tail(&dev->todo_list, &net_todo_list);
10402 }
10403 
10404 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10405 	struct net_device *upper, netdev_features_t features)
10406 {
10407 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10408 	netdev_features_t feature;
10409 	int feature_bit;
10410 
10411 	for_each_netdev_feature(upper_disables, feature_bit) {
10412 		feature = __NETIF_F_BIT(feature_bit);
10413 		if (!(upper->wanted_features & feature)
10414 		    && (features & feature)) {
10415 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10416 				   &feature, upper->name);
10417 			features &= ~feature;
10418 		}
10419 	}
10420 
10421 	return features;
10422 }
10423 
10424 static void netdev_sync_lower_features(struct net_device *upper,
10425 	struct net_device *lower, netdev_features_t features)
10426 {
10427 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10428 	netdev_features_t feature;
10429 	int feature_bit;
10430 
10431 	for_each_netdev_feature(upper_disables, feature_bit) {
10432 		feature = __NETIF_F_BIT(feature_bit);
10433 		if (!(features & feature) && (lower->features & feature)) {
10434 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10435 				   &feature, lower->name);
10436 			lower->wanted_features &= ~feature;
10437 			__netdev_update_features(lower);
10438 
10439 			if (unlikely(lower->features & feature))
10440 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10441 					    &feature, lower->name);
10442 			else
10443 				netdev_features_change(lower);
10444 		}
10445 	}
10446 }
10447 
10448 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10449 {
10450 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10451 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10452 	bool hw_csum = features & NETIF_F_HW_CSUM;
10453 
10454 	return ip_csum || hw_csum;
10455 }
10456 
10457 static netdev_features_t netdev_fix_features(struct net_device *dev,
10458 	netdev_features_t features)
10459 {
10460 	/* Fix illegal checksum combinations */
10461 	if ((features & NETIF_F_HW_CSUM) &&
10462 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10463 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10464 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10465 	}
10466 
10467 	/* TSO requires that SG is present as well. */
10468 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10469 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10470 		features &= ~NETIF_F_ALL_TSO;
10471 	}
10472 
10473 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10474 					!(features & NETIF_F_IP_CSUM)) {
10475 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10476 		features &= ~NETIF_F_TSO;
10477 		features &= ~NETIF_F_TSO_ECN;
10478 	}
10479 
10480 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10481 					 !(features & NETIF_F_IPV6_CSUM)) {
10482 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10483 		features &= ~NETIF_F_TSO6;
10484 	}
10485 
10486 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10487 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10488 		features &= ~NETIF_F_TSO_MANGLEID;
10489 
10490 	/* TSO ECN requires that TSO is present as well. */
10491 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10492 		features &= ~NETIF_F_TSO_ECN;
10493 
10494 	/* Software GSO depends on SG. */
10495 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10496 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10497 		features &= ~NETIF_F_GSO;
10498 	}
10499 
10500 	/* GSO partial features require GSO partial be set */
10501 	if ((features & dev->gso_partial_features) &&
10502 	    !(features & NETIF_F_GSO_PARTIAL)) {
10503 		netdev_dbg(dev,
10504 			   "Dropping partially supported GSO features since no GSO partial.\n");
10505 		features &= ~dev->gso_partial_features;
10506 	}
10507 
10508 	if (!(features & NETIF_F_RXCSUM)) {
10509 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10510 		 * successfully merged by hardware must also have the
10511 		 * checksum verified by hardware.  If the user does not
10512 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10513 		 */
10514 		if (features & NETIF_F_GRO_HW) {
10515 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10516 			features &= ~NETIF_F_GRO_HW;
10517 		}
10518 	}
10519 
10520 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10521 	if (features & NETIF_F_RXFCS) {
10522 		if (features & NETIF_F_LRO) {
10523 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10524 			features &= ~NETIF_F_LRO;
10525 		}
10526 
10527 		if (features & NETIF_F_GRO_HW) {
10528 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10529 			features &= ~NETIF_F_GRO_HW;
10530 		}
10531 	}
10532 
10533 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10534 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10535 		features &= ~NETIF_F_LRO;
10536 	}
10537 
10538 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10539 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10540 		features &= ~NETIF_F_HW_TLS_TX;
10541 	}
10542 
10543 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10544 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10545 		features &= ~NETIF_F_HW_TLS_RX;
10546 	}
10547 
10548 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10549 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10550 		features &= ~NETIF_F_GSO_UDP_L4;
10551 	}
10552 
10553 	return features;
10554 }
10555 
10556 int __netdev_update_features(struct net_device *dev)
10557 {
10558 	struct net_device *upper, *lower;
10559 	netdev_features_t features;
10560 	struct list_head *iter;
10561 	int err = -1;
10562 
10563 	ASSERT_RTNL();
10564 	netdev_ops_assert_locked(dev);
10565 
10566 	features = netdev_get_wanted_features(dev);
10567 
10568 	if (dev->netdev_ops->ndo_fix_features)
10569 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10570 
10571 	/* driver might be less strict about feature dependencies */
10572 	features = netdev_fix_features(dev, features);
10573 
10574 	/* some features can't be enabled if they're off on an upper device */
10575 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10576 		features = netdev_sync_upper_features(dev, upper, features);
10577 
10578 	if (dev->features == features)
10579 		goto sync_lower;
10580 
10581 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10582 		&dev->features, &features);
10583 
10584 	if (dev->netdev_ops->ndo_set_features)
10585 		err = dev->netdev_ops->ndo_set_features(dev, features);
10586 	else
10587 		err = 0;
10588 
10589 	if (unlikely(err < 0)) {
10590 		netdev_err(dev,
10591 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10592 			err, &features, &dev->features);
10593 		/* return non-0 since some features might have changed and
10594 		 * it's better to fire a spurious notification than miss it
10595 		 */
10596 		return -1;
10597 	}
10598 
10599 sync_lower:
10600 	/* some features must be disabled on lower devices when disabled
10601 	 * on an upper device (think: bonding master or bridge)
10602 	 */
10603 	netdev_for_each_lower_dev(dev, lower, iter)
10604 		netdev_sync_lower_features(dev, lower, features);
10605 
10606 	if (!err) {
10607 		netdev_features_t diff = features ^ dev->features;
10608 
10609 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10610 			/* udp_tunnel_{get,drop}_rx_info both need
10611 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10612 			 * device, or they won't do anything.
10613 			 * Thus we need to update dev->features
10614 			 * *before* calling udp_tunnel_get_rx_info,
10615 			 * but *after* calling udp_tunnel_drop_rx_info.
10616 			 */
10617 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10618 				dev->features = features;
10619 				udp_tunnel_get_rx_info(dev);
10620 			} else {
10621 				udp_tunnel_drop_rx_info(dev);
10622 			}
10623 		}
10624 
10625 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10626 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10627 				dev->features = features;
10628 				err |= vlan_get_rx_ctag_filter_info(dev);
10629 			} else {
10630 				vlan_drop_rx_ctag_filter_info(dev);
10631 			}
10632 		}
10633 
10634 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10635 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10636 				dev->features = features;
10637 				err |= vlan_get_rx_stag_filter_info(dev);
10638 			} else {
10639 				vlan_drop_rx_stag_filter_info(dev);
10640 			}
10641 		}
10642 
10643 		dev->features = features;
10644 	}
10645 
10646 	return err < 0 ? 0 : 1;
10647 }
10648 
10649 /**
10650  *	netdev_update_features - recalculate device features
10651  *	@dev: the device to check
10652  *
10653  *	Recalculate dev->features set and send notifications if it
10654  *	has changed. Should be called after driver or hardware dependent
10655  *	conditions might have changed that influence the features.
10656  */
10657 void netdev_update_features(struct net_device *dev)
10658 {
10659 	if (__netdev_update_features(dev))
10660 		netdev_features_change(dev);
10661 }
10662 EXPORT_SYMBOL(netdev_update_features);
10663 
10664 /**
10665  *	netdev_change_features - recalculate device features
10666  *	@dev: the device to check
10667  *
10668  *	Recalculate dev->features set and send notifications even
10669  *	if they have not changed. Should be called instead of
10670  *	netdev_update_features() if also dev->vlan_features might
10671  *	have changed to allow the changes to be propagated to stacked
10672  *	VLAN devices.
10673  */
10674 void netdev_change_features(struct net_device *dev)
10675 {
10676 	__netdev_update_features(dev);
10677 	netdev_features_change(dev);
10678 }
10679 EXPORT_SYMBOL(netdev_change_features);
10680 
10681 /**
10682  *	netif_stacked_transfer_operstate -	transfer operstate
10683  *	@rootdev: the root or lower level device to transfer state from
10684  *	@dev: the device to transfer operstate to
10685  *
10686  *	Transfer operational state from root to device. This is normally
10687  *	called when a stacking relationship exists between the root
10688  *	device and the device(a leaf device).
10689  */
10690 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10691 					struct net_device *dev)
10692 {
10693 	if (rootdev->operstate == IF_OPER_DORMANT)
10694 		netif_dormant_on(dev);
10695 	else
10696 		netif_dormant_off(dev);
10697 
10698 	if (rootdev->operstate == IF_OPER_TESTING)
10699 		netif_testing_on(dev);
10700 	else
10701 		netif_testing_off(dev);
10702 
10703 	if (netif_carrier_ok(rootdev))
10704 		netif_carrier_on(dev);
10705 	else
10706 		netif_carrier_off(dev);
10707 }
10708 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10709 
10710 static int netif_alloc_rx_queues(struct net_device *dev)
10711 {
10712 	unsigned int i, count = dev->num_rx_queues;
10713 	struct netdev_rx_queue *rx;
10714 	size_t sz = count * sizeof(*rx);
10715 	int err = 0;
10716 
10717 	BUG_ON(count < 1);
10718 
10719 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10720 	if (!rx)
10721 		return -ENOMEM;
10722 
10723 	dev->_rx = rx;
10724 
10725 	for (i = 0; i < count; i++) {
10726 		rx[i].dev = dev;
10727 
10728 		/* XDP RX-queue setup */
10729 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10730 		if (err < 0)
10731 			goto err_rxq_info;
10732 	}
10733 	return 0;
10734 
10735 err_rxq_info:
10736 	/* Rollback successful reg's and free other resources */
10737 	while (i--)
10738 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10739 	kvfree(dev->_rx);
10740 	dev->_rx = NULL;
10741 	return err;
10742 }
10743 
10744 static void netif_free_rx_queues(struct net_device *dev)
10745 {
10746 	unsigned int i, count = dev->num_rx_queues;
10747 
10748 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10749 	if (!dev->_rx)
10750 		return;
10751 
10752 	for (i = 0; i < count; i++)
10753 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10754 
10755 	kvfree(dev->_rx);
10756 }
10757 
10758 static void netdev_init_one_queue(struct net_device *dev,
10759 				  struct netdev_queue *queue, void *_unused)
10760 {
10761 	/* Initialize queue lock */
10762 	spin_lock_init(&queue->_xmit_lock);
10763 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10764 	queue->xmit_lock_owner = -1;
10765 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10766 	queue->dev = dev;
10767 #ifdef CONFIG_BQL
10768 	dql_init(&queue->dql, HZ);
10769 #endif
10770 }
10771 
10772 static void netif_free_tx_queues(struct net_device *dev)
10773 {
10774 	kvfree(dev->_tx);
10775 }
10776 
10777 static int netif_alloc_netdev_queues(struct net_device *dev)
10778 {
10779 	unsigned int count = dev->num_tx_queues;
10780 	struct netdev_queue *tx;
10781 	size_t sz = count * sizeof(*tx);
10782 
10783 	if (count < 1 || count > 0xffff)
10784 		return -EINVAL;
10785 
10786 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10787 	if (!tx)
10788 		return -ENOMEM;
10789 
10790 	dev->_tx = tx;
10791 
10792 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10793 	spin_lock_init(&dev->tx_global_lock);
10794 
10795 	return 0;
10796 }
10797 
10798 void netif_tx_stop_all_queues(struct net_device *dev)
10799 {
10800 	unsigned int i;
10801 
10802 	for (i = 0; i < dev->num_tx_queues; i++) {
10803 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10804 
10805 		netif_tx_stop_queue(txq);
10806 	}
10807 }
10808 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10809 
10810 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10811 {
10812 	void __percpu *v;
10813 
10814 	/* Drivers implementing ndo_get_peer_dev must support tstat
10815 	 * accounting, so that skb_do_redirect() can bump the dev's
10816 	 * RX stats upon network namespace switch.
10817 	 */
10818 	if (dev->netdev_ops->ndo_get_peer_dev &&
10819 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10820 		return -EOPNOTSUPP;
10821 
10822 	switch (dev->pcpu_stat_type) {
10823 	case NETDEV_PCPU_STAT_NONE:
10824 		return 0;
10825 	case NETDEV_PCPU_STAT_LSTATS:
10826 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10827 		break;
10828 	case NETDEV_PCPU_STAT_TSTATS:
10829 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10830 		break;
10831 	case NETDEV_PCPU_STAT_DSTATS:
10832 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10833 		break;
10834 	default:
10835 		return -EINVAL;
10836 	}
10837 
10838 	return v ? 0 : -ENOMEM;
10839 }
10840 
10841 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10842 {
10843 	switch (dev->pcpu_stat_type) {
10844 	case NETDEV_PCPU_STAT_NONE:
10845 		return;
10846 	case NETDEV_PCPU_STAT_LSTATS:
10847 		free_percpu(dev->lstats);
10848 		break;
10849 	case NETDEV_PCPU_STAT_TSTATS:
10850 		free_percpu(dev->tstats);
10851 		break;
10852 	case NETDEV_PCPU_STAT_DSTATS:
10853 		free_percpu(dev->dstats);
10854 		break;
10855 	}
10856 }
10857 
10858 static void netdev_free_phy_link_topology(struct net_device *dev)
10859 {
10860 	struct phy_link_topology *topo = dev->link_topo;
10861 
10862 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10863 		xa_destroy(&topo->phys);
10864 		kfree(topo);
10865 		dev->link_topo = NULL;
10866 	}
10867 }
10868 
10869 /**
10870  * register_netdevice() - register a network device
10871  * @dev: device to register
10872  *
10873  * Take a prepared network device structure and make it externally accessible.
10874  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10875  * Callers must hold the rtnl lock - you may want register_netdev()
10876  * instead of this.
10877  */
10878 int register_netdevice(struct net_device *dev)
10879 {
10880 	int ret;
10881 	struct net *net = dev_net(dev);
10882 
10883 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10884 		     NETDEV_FEATURE_COUNT);
10885 	BUG_ON(dev_boot_phase);
10886 	ASSERT_RTNL();
10887 
10888 	might_sleep();
10889 
10890 	/* When net_device's are persistent, this will be fatal. */
10891 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10892 	BUG_ON(!net);
10893 
10894 	ret = ethtool_check_ops(dev->ethtool_ops);
10895 	if (ret)
10896 		return ret;
10897 
10898 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10899 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10900 	mutex_init(&dev->ethtool->rss_lock);
10901 
10902 	spin_lock_init(&dev->addr_list_lock);
10903 	netdev_set_addr_lockdep_class(dev);
10904 
10905 	ret = dev_get_valid_name(net, dev, dev->name);
10906 	if (ret < 0)
10907 		goto out;
10908 
10909 	ret = -ENOMEM;
10910 	dev->name_node = netdev_name_node_head_alloc(dev);
10911 	if (!dev->name_node)
10912 		goto out;
10913 
10914 	/* Init, if this function is available */
10915 	if (dev->netdev_ops->ndo_init) {
10916 		ret = dev->netdev_ops->ndo_init(dev);
10917 		if (ret) {
10918 			if (ret > 0)
10919 				ret = -EIO;
10920 			goto err_free_name;
10921 		}
10922 	}
10923 
10924 	if (((dev->hw_features | dev->features) &
10925 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10926 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10927 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10928 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10929 		ret = -EINVAL;
10930 		goto err_uninit;
10931 	}
10932 
10933 	ret = netdev_do_alloc_pcpu_stats(dev);
10934 	if (ret)
10935 		goto err_uninit;
10936 
10937 	ret = dev_index_reserve(net, dev->ifindex);
10938 	if (ret < 0)
10939 		goto err_free_pcpu;
10940 	dev->ifindex = ret;
10941 
10942 	/* Transfer changeable features to wanted_features and enable
10943 	 * software offloads (GSO and GRO).
10944 	 */
10945 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10946 	dev->features |= NETIF_F_SOFT_FEATURES;
10947 
10948 	if (dev->udp_tunnel_nic_info) {
10949 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10950 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10951 	}
10952 
10953 	dev->wanted_features = dev->features & dev->hw_features;
10954 
10955 	if (!(dev->flags & IFF_LOOPBACK))
10956 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10957 
10958 	/* If IPv4 TCP segmentation offload is supported we should also
10959 	 * allow the device to enable segmenting the frame with the option
10960 	 * of ignoring a static IP ID value.  This doesn't enable the
10961 	 * feature itself but allows the user to enable it later.
10962 	 */
10963 	if (dev->hw_features & NETIF_F_TSO)
10964 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10965 	if (dev->vlan_features & NETIF_F_TSO)
10966 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10967 	if (dev->mpls_features & NETIF_F_TSO)
10968 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10969 	if (dev->hw_enc_features & NETIF_F_TSO)
10970 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10971 
10972 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10973 	 */
10974 	dev->vlan_features |= NETIF_F_HIGHDMA;
10975 
10976 	/* Make NETIF_F_SG inheritable to tunnel devices.
10977 	 */
10978 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10979 
10980 	/* Make NETIF_F_SG inheritable to MPLS.
10981 	 */
10982 	dev->mpls_features |= NETIF_F_SG;
10983 
10984 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10985 	ret = notifier_to_errno(ret);
10986 	if (ret)
10987 		goto err_ifindex_release;
10988 
10989 	ret = netdev_register_kobject(dev);
10990 
10991 	netdev_lock(dev);
10992 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10993 	netdev_unlock(dev);
10994 
10995 	if (ret)
10996 		goto err_uninit_notify;
10997 
10998 	netdev_lock_ops(dev);
10999 	__netdev_update_features(dev);
11000 	netdev_unlock_ops(dev);
11001 
11002 	/*
11003 	 *	Default initial state at registry is that the
11004 	 *	device is present.
11005 	 */
11006 
11007 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11008 
11009 	linkwatch_init_dev(dev);
11010 
11011 	dev_init_scheduler(dev);
11012 
11013 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11014 	list_netdevice(dev);
11015 
11016 	add_device_randomness(dev->dev_addr, dev->addr_len);
11017 
11018 	/* If the device has permanent device address, driver should
11019 	 * set dev_addr and also addr_assign_type should be set to
11020 	 * NET_ADDR_PERM (default value).
11021 	 */
11022 	if (dev->addr_assign_type == NET_ADDR_PERM)
11023 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11024 
11025 	/* Notify protocols, that a new device appeared. */
11026 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11027 	ret = notifier_to_errno(ret);
11028 	if (ret) {
11029 		/* Expect explicit free_netdev() on failure */
11030 		dev->needs_free_netdev = false;
11031 		unregister_netdevice_queue(dev, NULL);
11032 		goto out;
11033 	}
11034 	/*
11035 	 *	Prevent userspace races by waiting until the network
11036 	 *	device is fully setup before sending notifications.
11037 	 */
11038 	if (!dev->rtnl_link_ops ||
11039 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11040 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11041 
11042 out:
11043 	return ret;
11044 
11045 err_uninit_notify:
11046 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11047 err_ifindex_release:
11048 	dev_index_release(net, dev->ifindex);
11049 err_free_pcpu:
11050 	netdev_do_free_pcpu_stats(dev);
11051 err_uninit:
11052 	if (dev->netdev_ops->ndo_uninit)
11053 		dev->netdev_ops->ndo_uninit(dev);
11054 	if (dev->priv_destructor)
11055 		dev->priv_destructor(dev);
11056 err_free_name:
11057 	netdev_name_node_free(dev->name_node);
11058 	goto out;
11059 }
11060 EXPORT_SYMBOL(register_netdevice);
11061 
11062 /* Initialize the core of a dummy net device.
11063  * The setup steps dummy netdevs need which normal netdevs get by going
11064  * through register_netdevice().
11065  */
11066 static void init_dummy_netdev(struct net_device *dev)
11067 {
11068 	/* make sure we BUG if trying to hit standard
11069 	 * register/unregister code path
11070 	 */
11071 	dev->reg_state = NETREG_DUMMY;
11072 
11073 	/* a dummy interface is started by default */
11074 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11075 	set_bit(__LINK_STATE_START, &dev->state);
11076 
11077 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11078 	 * because users of this 'device' dont need to change
11079 	 * its refcount.
11080 	 */
11081 }
11082 
11083 /**
11084  *	register_netdev	- register a network device
11085  *	@dev: device to register
11086  *
11087  *	Take a completed network device structure and add it to the kernel
11088  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11089  *	chain. 0 is returned on success. A negative errno code is returned
11090  *	on a failure to set up the device, or if the name is a duplicate.
11091  *
11092  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11093  *	and expands the device name if you passed a format string to
11094  *	alloc_netdev.
11095  */
11096 int register_netdev(struct net_device *dev)
11097 {
11098 	struct net *net = dev_net(dev);
11099 	int err;
11100 
11101 	if (rtnl_net_lock_killable(net))
11102 		return -EINTR;
11103 
11104 	err = register_netdevice(dev);
11105 
11106 	rtnl_net_unlock(net);
11107 
11108 	return err;
11109 }
11110 EXPORT_SYMBOL(register_netdev);
11111 
11112 int netdev_refcnt_read(const struct net_device *dev)
11113 {
11114 #ifdef CONFIG_PCPU_DEV_REFCNT
11115 	int i, refcnt = 0;
11116 
11117 	for_each_possible_cpu(i)
11118 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11119 	return refcnt;
11120 #else
11121 	return refcount_read(&dev->dev_refcnt);
11122 #endif
11123 }
11124 EXPORT_SYMBOL(netdev_refcnt_read);
11125 
11126 int netdev_unregister_timeout_secs __read_mostly = 10;
11127 
11128 #define WAIT_REFS_MIN_MSECS 1
11129 #define WAIT_REFS_MAX_MSECS 250
11130 /**
11131  * netdev_wait_allrefs_any - wait until all references are gone.
11132  * @list: list of net_devices to wait on
11133  *
11134  * This is called when unregistering network devices.
11135  *
11136  * Any protocol or device that holds a reference should register
11137  * for netdevice notification, and cleanup and put back the
11138  * reference if they receive an UNREGISTER event.
11139  * We can get stuck here if buggy protocols don't correctly
11140  * call dev_put.
11141  */
11142 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11143 {
11144 	unsigned long rebroadcast_time, warning_time;
11145 	struct net_device *dev;
11146 	int wait = 0;
11147 
11148 	rebroadcast_time = warning_time = jiffies;
11149 
11150 	list_for_each_entry(dev, list, todo_list)
11151 		if (netdev_refcnt_read(dev) == 1)
11152 			return dev;
11153 
11154 	while (true) {
11155 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11156 			rtnl_lock();
11157 
11158 			/* Rebroadcast unregister notification */
11159 			list_for_each_entry(dev, list, todo_list)
11160 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11161 
11162 			__rtnl_unlock();
11163 			rcu_barrier();
11164 			rtnl_lock();
11165 
11166 			list_for_each_entry(dev, list, todo_list)
11167 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11168 					     &dev->state)) {
11169 					/* We must not have linkwatch events
11170 					 * pending on unregister. If this
11171 					 * happens, we simply run the queue
11172 					 * unscheduled, resulting in a noop
11173 					 * for this device.
11174 					 */
11175 					linkwatch_run_queue();
11176 					break;
11177 				}
11178 
11179 			__rtnl_unlock();
11180 
11181 			rebroadcast_time = jiffies;
11182 		}
11183 
11184 		rcu_barrier();
11185 
11186 		if (!wait) {
11187 			wait = WAIT_REFS_MIN_MSECS;
11188 		} else {
11189 			msleep(wait);
11190 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11191 		}
11192 
11193 		list_for_each_entry(dev, list, todo_list)
11194 			if (netdev_refcnt_read(dev) == 1)
11195 				return dev;
11196 
11197 		if (time_after(jiffies, warning_time +
11198 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11199 			list_for_each_entry(dev, list, todo_list) {
11200 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11201 					 dev->name, netdev_refcnt_read(dev));
11202 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11203 			}
11204 
11205 			warning_time = jiffies;
11206 		}
11207 	}
11208 }
11209 
11210 /* The sequence is:
11211  *
11212  *	rtnl_lock();
11213  *	...
11214  *	register_netdevice(x1);
11215  *	register_netdevice(x2);
11216  *	...
11217  *	unregister_netdevice(y1);
11218  *	unregister_netdevice(y2);
11219  *      ...
11220  *	rtnl_unlock();
11221  *	free_netdev(y1);
11222  *	free_netdev(y2);
11223  *
11224  * We are invoked by rtnl_unlock().
11225  * This allows us to deal with problems:
11226  * 1) We can delete sysfs objects which invoke hotplug
11227  *    without deadlocking with linkwatch via keventd.
11228  * 2) Since we run with the RTNL semaphore not held, we can sleep
11229  *    safely in order to wait for the netdev refcnt to drop to zero.
11230  *
11231  * We must not return until all unregister events added during
11232  * the interval the lock was held have been completed.
11233  */
11234 void netdev_run_todo(void)
11235 {
11236 	struct net_device *dev, *tmp;
11237 	struct list_head list;
11238 	int cnt;
11239 #ifdef CONFIG_LOCKDEP
11240 	struct list_head unlink_list;
11241 
11242 	list_replace_init(&net_unlink_list, &unlink_list);
11243 
11244 	while (!list_empty(&unlink_list)) {
11245 		dev = list_first_entry(&unlink_list, struct net_device,
11246 				       unlink_list);
11247 		list_del_init(&dev->unlink_list);
11248 		dev->nested_level = dev->lower_level - 1;
11249 	}
11250 #endif
11251 
11252 	/* Snapshot list, allow later requests */
11253 	list_replace_init(&net_todo_list, &list);
11254 
11255 	__rtnl_unlock();
11256 
11257 	/* Wait for rcu callbacks to finish before next phase */
11258 	if (!list_empty(&list))
11259 		rcu_barrier();
11260 
11261 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11262 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11263 			netdev_WARN(dev, "run_todo but not unregistering\n");
11264 			list_del(&dev->todo_list);
11265 			continue;
11266 		}
11267 
11268 		netdev_lock(dev);
11269 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11270 		netdev_unlock(dev);
11271 		linkwatch_sync_dev(dev);
11272 	}
11273 
11274 	cnt = 0;
11275 	while (!list_empty(&list)) {
11276 		dev = netdev_wait_allrefs_any(&list);
11277 		list_del(&dev->todo_list);
11278 
11279 		/* paranoia */
11280 		BUG_ON(netdev_refcnt_read(dev) != 1);
11281 		BUG_ON(!list_empty(&dev->ptype_all));
11282 		BUG_ON(!list_empty(&dev->ptype_specific));
11283 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11284 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11285 
11286 		netdev_do_free_pcpu_stats(dev);
11287 		if (dev->priv_destructor)
11288 			dev->priv_destructor(dev);
11289 		if (dev->needs_free_netdev)
11290 			free_netdev(dev);
11291 
11292 		cnt++;
11293 
11294 		/* Free network device */
11295 		kobject_put(&dev->dev.kobj);
11296 	}
11297 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11298 		wake_up(&netdev_unregistering_wq);
11299 }
11300 
11301 /* Collate per-cpu network dstats statistics
11302  *
11303  * Read per-cpu network statistics from dev->dstats and populate the related
11304  * fields in @s.
11305  */
11306 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11307 			     const struct pcpu_dstats __percpu *dstats)
11308 {
11309 	int cpu;
11310 
11311 	for_each_possible_cpu(cpu) {
11312 		u64 rx_packets, rx_bytes, rx_drops;
11313 		u64 tx_packets, tx_bytes, tx_drops;
11314 		const struct pcpu_dstats *stats;
11315 		unsigned int start;
11316 
11317 		stats = per_cpu_ptr(dstats, cpu);
11318 		do {
11319 			start = u64_stats_fetch_begin(&stats->syncp);
11320 			rx_packets = u64_stats_read(&stats->rx_packets);
11321 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11322 			rx_drops   = u64_stats_read(&stats->rx_drops);
11323 			tx_packets = u64_stats_read(&stats->tx_packets);
11324 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11325 			tx_drops   = u64_stats_read(&stats->tx_drops);
11326 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11327 
11328 		s->rx_packets += rx_packets;
11329 		s->rx_bytes   += rx_bytes;
11330 		s->rx_dropped += rx_drops;
11331 		s->tx_packets += tx_packets;
11332 		s->tx_bytes   += tx_bytes;
11333 		s->tx_dropped += tx_drops;
11334 	}
11335 }
11336 
11337 /* ndo_get_stats64 implementation for dtstats-based accounting.
11338  *
11339  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11340  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11341  */
11342 static void dev_get_dstats64(const struct net_device *dev,
11343 			     struct rtnl_link_stats64 *s)
11344 {
11345 	netdev_stats_to_stats64(s, &dev->stats);
11346 	dev_fetch_dstats(s, dev->dstats);
11347 }
11348 
11349 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11350  * all the same fields in the same order as net_device_stats, with only
11351  * the type differing, but rtnl_link_stats64 may have additional fields
11352  * at the end for newer counters.
11353  */
11354 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11355 			     const struct net_device_stats *netdev_stats)
11356 {
11357 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11358 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11359 	u64 *dst = (u64 *)stats64;
11360 
11361 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11362 	for (i = 0; i < n; i++)
11363 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11364 	/* zero out counters that only exist in rtnl_link_stats64 */
11365 	memset((char *)stats64 + n * sizeof(u64), 0,
11366 	       sizeof(*stats64) - n * sizeof(u64));
11367 }
11368 EXPORT_SYMBOL(netdev_stats_to_stats64);
11369 
11370 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11371 		struct net_device *dev)
11372 {
11373 	struct net_device_core_stats __percpu *p;
11374 
11375 	p = alloc_percpu_gfp(struct net_device_core_stats,
11376 			     GFP_ATOMIC | __GFP_NOWARN);
11377 
11378 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11379 		free_percpu(p);
11380 
11381 	/* This READ_ONCE() pairs with the cmpxchg() above */
11382 	return READ_ONCE(dev->core_stats);
11383 }
11384 
11385 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11386 {
11387 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11388 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11389 	unsigned long __percpu *field;
11390 
11391 	if (unlikely(!p)) {
11392 		p = netdev_core_stats_alloc(dev);
11393 		if (!p)
11394 			return;
11395 	}
11396 
11397 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11398 	this_cpu_inc(*field);
11399 }
11400 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11401 
11402 /**
11403  *	dev_get_stats	- get network device statistics
11404  *	@dev: device to get statistics from
11405  *	@storage: place to store stats
11406  *
11407  *	Get network statistics from device. Return @storage.
11408  *	The device driver may provide its own method by setting
11409  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11410  *	otherwise the internal statistics structure is used.
11411  */
11412 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11413 					struct rtnl_link_stats64 *storage)
11414 {
11415 	const struct net_device_ops *ops = dev->netdev_ops;
11416 	const struct net_device_core_stats __percpu *p;
11417 
11418 	/*
11419 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11420 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11421 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11422 	 */
11423 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11424 		     offsetof(struct pcpu_dstats, rx_bytes));
11425 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11426 		     offsetof(struct pcpu_dstats, rx_packets));
11427 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11428 		     offsetof(struct pcpu_dstats, tx_bytes));
11429 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11430 		     offsetof(struct pcpu_dstats, tx_packets));
11431 
11432 	if (ops->ndo_get_stats64) {
11433 		memset(storage, 0, sizeof(*storage));
11434 		ops->ndo_get_stats64(dev, storage);
11435 	} else if (ops->ndo_get_stats) {
11436 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11437 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11438 		dev_get_tstats64(dev, storage);
11439 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11440 		dev_get_dstats64(dev, storage);
11441 	} else {
11442 		netdev_stats_to_stats64(storage, &dev->stats);
11443 	}
11444 
11445 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11446 	p = READ_ONCE(dev->core_stats);
11447 	if (p) {
11448 		const struct net_device_core_stats *core_stats;
11449 		int i;
11450 
11451 		for_each_possible_cpu(i) {
11452 			core_stats = per_cpu_ptr(p, i);
11453 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11454 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11455 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11456 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11457 		}
11458 	}
11459 	return storage;
11460 }
11461 EXPORT_SYMBOL(dev_get_stats);
11462 
11463 /**
11464  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11465  *	@s: place to store stats
11466  *	@netstats: per-cpu network stats to read from
11467  *
11468  *	Read per-cpu network statistics and populate the related fields in @s.
11469  */
11470 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11471 			   const struct pcpu_sw_netstats __percpu *netstats)
11472 {
11473 	int cpu;
11474 
11475 	for_each_possible_cpu(cpu) {
11476 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11477 		const struct pcpu_sw_netstats *stats;
11478 		unsigned int start;
11479 
11480 		stats = per_cpu_ptr(netstats, cpu);
11481 		do {
11482 			start = u64_stats_fetch_begin(&stats->syncp);
11483 			rx_packets = u64_stats_read(&stats->rx_packets);
11484 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11485 			tx_packets = u64_stats_read(&stats->tx_packets);
11486 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11487 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11488 
11489 		s->rx_packets += rx_packets;
11490 		s->rx_bytes   += rx_bytes;
11491 		s->tx_packets += tx_packets;
11492 		s->tx_bytes   += tx_bytes;
11493 	}
11494 }
11495 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11496 
11497 /**
11498  *	dev_get_tstats64 - ndo_get_stats64 implementation
11499  *	@dev: device to get statistics from
11500  *	@s: place to store stats
11501  *
11502  *	Populate @s from dev->stats and dev->tstats. Can be used as
11503  *	ndo_get_stats64() callback.
11504  */
11505 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11506 {
11507 	netdev_stats_to_stats64(s, &dev->stats);
11508 	dev_fetch_sw_netstats(s, dev->tstats);
11509 }
11510 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11511 
11512 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11513 {
11514 	struct netdev_queue *queue = dev_ingress_queue(dev);
11515 
11516 #ifdef CONFIG_NET_CLS_ACT
11517 	if (queue)
11518 		return queue;
11519 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11520 	if (!queue)
11521 		return NULL;
11522 	netdev_init_one_queue(dev, queue, NULL);
11523 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11524 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11525 	rcu_assign_pointer(dev->ingress_queue, queue);
11526 #endif
11527 	return queue;
11528 }
11529 
11530 static const struct ethtool_ops default_ethtool_ops;
11531 
11532 void netdev_set_default_ethtool_ops(struct net_device *dev,
11533 				    const struct ethtool_ops *ops)
11534 {
11535 	if (dev->ethtool_ops == &default_ethtool_ops)
11536 		dev->ethtool_ops = ops;
11537 }
11538 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11539 
11540 /**
11541  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11542  * @dev: netdev to enable the IRQ coalescing on
11543  *
11544  * Sets a conservative default for SW IRQ coalescing. Users can use
11545  * sysfs attributes to override the default values.
11546  */
11547 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11548 {
11549 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11550 
11551 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11552 		netdev_set_gro_flush_timeout(dev, 20000);
11553 		netdev_set_defer_hard_irqs(dev, 1);
11554 	}
11555 }
11556 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11557 
11558 /**
11559  * alloc_netdev_mqs - allocate network device
11560  * @sizeof_priv: size of private data to allocate space for
11561  * @name: device name format string
11562  * @name_assign_type: origin of device name
11563  * @setup: callback to initialize device
11564  * @txqs: the number of TX subqueues to allocate
11565  * @rxqs: the number of RX subqueues to allocate
11566  *
11567  * Allocates a struct net_device with private data area for driver use
11568  * and performs basic initialization.  Also allocates subqueue structs
11569  * for each queue on the device.
11570  */
11571 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11572 		unsigned char name_assign_type,
11573 		void (*setup)(struct net_device *),
11574 		unsigned int txqs, unsigned int rxqs)
11575 {
11576 	struct net_device *dev;
11577 	size_t napi_config_sz;
11578 	unsigned int maxqs;
11579 
11580 	BUG_ON(strlen(name) >= sizeof(dev->name));
11581 
11582 	if (txqs < 1) {
11583 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11584 		return NULL;
11585 	}
11586 
11587 	if (rxqs < 1) {
11588 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11589 		return NULL;
11590 	}
11591 
11592 	maxqs = max(txqs, rxqs);
11593 
11594 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11595 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11596 	if (!dev)
11597 		return NULL;
11598 
11599 	dev->priv_len = sizeof_priv;
11600 
11601 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11602 #ifdef CONFIG_PCPU_DEV_REFCNT
11603 	dev->pcpu_refcnt = alloc_percpu(int);
11604 	if (!dev->pcpu_refcnt)
11605 		goto free_dev;
11606 	__dev_hold(dev);
11607 #else
11608 	refcount_set(&dev->dev_refcnt, 1);
11609 #endif
11610 
11611 	if (dev_addr_init(dev))
11612 		goto free_pcpu;
11613 
11614 	dev_mc_init(dev);
11615 	dev_uc_init(dev);
11616 
11617 	dev_net_set(dev, &init_net);
11618 
11619 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11620 	dev->xdp_zc_max_segs = 1;
11621 	dev->gso_max_segs = GSO_MAX_SEGS;
11622 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11623 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11624 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11625 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11626 	dev->tso_max_segs = TSO_MAX_SEGS;
11627 	dev->upper_level = 1;
11628 	dev->lower_level = 1;
11629 #ifdef CONFIG_LOCKDEP
11630 	dev->nested_level = 0;
11631 	INIT_LIST_HEAD(&dev->unlink_list);
11632 #endif
11633 
11634 	INIT_LIST_HEAD(&dev->napi_list);
11635 	INIT_LIST_HEAD(&dev->unreg_list);
11636 	INIT_LIST_HEAD(&dev->close_list);
11637 	INIT_LIST_HEAD(&dev->link_watch_list);
11638 	INIT_LIST_HEAD(&dev->adj_list.upper);
11639 	INIT_LIST_HEAD(&dev->adj_list.lower);
11640 	INIT_LIST_HEAD(&dev->ptype_all);
11641 	INIT_LIST_HEAD(&dev->ptype_specific);
11642 	INIT_LIST_HEAD(&dev->net_notifier_list);
11643 #ifdef CONFIG_NET_SCHED
11644 	hash_init(dev->qdisc_hash);
11645 #endif
11646 
11647 	mutex_init(&dev->lock);
11648 
11649 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11650 	setup(dev);
11651 
11652 	if (!dev->tx_queue_len) {
11653 		dev->priv_flags |= IFF_NO_QUEUE;
11654 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11655 	}
11656 
11657 	dev->num_tx_queues = txqs;
11658 	dev->real_num_tx_queues = txqs;
11659 	if (netif_alloc_netdev_queues(dev))
11660 		goto free_all;
11661 
11662 	dev->num_rx_queues = rxqs;
11663 	dev->real_num_rx_queues = rxqs;
11664 	if (netif_alloc_rx_queues(dev))
11665 		goto free_all;
11666 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11667 	if (!dev->ethtool)
11668 		goto free_all;
11669 
11670 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11671 	if (!dev->cfg)
11672 		goto free_all;
11673 	dev->cfg_pending = dev->cfg;
11674 
11675 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11676 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11677 	if (!dev->napi_config)
11678 		goto free_all;
11679 
11680 	strscpy(dev->name, name);
11681 	dev->name_assign_type = name_assign_type;
11682 	dev->group = INIT_NETDEV_GROUP;
11683 	if (!dev->ethtool_ops)
11684 		dev->ethtool_ops = &default_ethtool_ops;
11685 
11686 	nf_hook_netdev_init(dev);
11687 
11688 	return dev;
11689 
11690 free_all:
11691 	free_netdev(dev);
11692 	return NULL;
11693 
11694 free_pcpu:
11695 #ifdef CONFIG_PCPU_DEV_REFCNT
11696 	free_percpu(dev->pcpu_refcnt);
11697 free_dev:
11698 #endif
11699 	kvfree(dev);
11700 	return NULL;
11701 }
11702 EXPORT_SYMBOL(alloc_netdev_mqs);
11703 
11704 static void netdev_napi_exit(struct net_device *dev)
11705 {
11706 	if (!list_empty(&dev->napi_list)) {
11707 		struct napi_struct *p, *n;
11708 
11709 		netdev_lock(dev);
11710 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11711 			__netif_napi_del_locked(p);
11712 		netdev_unlock(dev);
11713 
11714 		synchronize_net();
11715 	}
11716 
11717 	kvfree(dev->napi_config);
11718 }
11719 
11720 /**
11721  * free_netdev - free network device
11722  * @dev: device
11723  *
11724  * This function does the last stage of destroying an allocated device
11725  * interface. The reference to the device object is released. If this
11726  * is the last reference then it will be freed.Must be called in process
11727  * context.
11728  */
11729 void free_netdev(struct net_device *dev)
11730 {
11731 	might_sleep();
11732 
11733 	/* When called immediately after register_netdevice() failed the unwind
11734 	 * handling may still be dismantling the device. Handle that case by
11735 	 * deferring the free.
11736 	 */
11737 	if (dev->reg_state == NETREG_UNREGISTERING) {
11738 		ASSERT_RTNL();
11739 		dev->needs_free_netdev = true;
11740 		return;
11741 	}
11742 
11743 	WARN_ON(dev->cfg != dev->cfg_pending);
11744 	kfree(dev->cfg);
11745 	kfree(dev->ethtool);
11746 	netif_free_tx_queues(dev);
11747 	netif_free_rx_queues(dev);
11748 
11749 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11750 
11751 	/* Flush device addresses */
11752 	dev_addr_flush(dev);
11753 
11754 	netdev_napi_exit(dev);
11755 
11756 	netif_del_cpu_rmap(dev);
11757 
11758 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11759 #ifdef CONFIG_PCPU_DEV_REFCNT
11760 	free_percpu(dev->pcpu_refcnt);
11761 	dev->pcpu_refcnt = NULL;
11762 #endif
11763 	free_percpu(dev->core_stats);
11764 	dev->core_stats = NULL;
11765 	free_percpu(dev->xdp_bulkq);
11766 	dev->xdp_bulkq = NULL;
11767 
11768 	netdev_free_phy_link_topology(dev);
11769 
11770 	mutex_destroy(&dev->lock);
11771 
11772 	/*  Compatibility with error handling in drivers */
11773 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11774 	    dev->reg_state == NETREG_DUMMY) {
11775 		kvfree(dev);
11776 		return;
11777 	}
11778 
11779 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11780 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11781 
11782 	/* will free via device release */
11783 	put_device(&dev->dev);
11784 }
11785 EXPORT_SYMBOL(free_netdev);
11786 
11787 /**
11788  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11789  * @sizeof_priv: size of private data to allocate space for
11790  *
11791  * Return: the allocated net_device on success, NULL otherwise
11792  */
11793 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11794 {
11795 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11796 			    init_dummy_netdev);
11797 }
11798 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11799 
11800 /**
11801  *	synchronize_net -  Synchronize with packet receive processing
11802  *
11803  *	Wait for packets currently being received to be done.
11804  *	Does not block later packets from starting.
11805  */
11806 void synchronize_net(void)
11807 {
11808 	might_sleep();
11809 	if (from_cleanup_net() || rtnl_is_locked())
11810 		synchronize_rcu_expedited();
11811 	else
11812 		synchronize_rcu();
11813 }
11814 EXPORT_SYMBOL(synchronize_net);
11815 
11816 static void netdev_rss_contexts_free(struct net_device *dev)
11817 {
11818 	struct ethtool_rxfh_context *ctx;
11819 	unsigned long context;
11820 
11821 	mutex_lock(&dev->ethtool->rss_lock);
11822 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11823 		struct ethtool_rxfh_param rxfh;
11824 
11825 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11826 		rxfh.key = ethtool_rxfh_context_key(ctx);
11827 		rxfh.hfunc = ctx->hfunc;
11828 		rxfh.input_xfrm = ctx->input_xfrm;
11829 		rxfh.rss_context = context;
11830 		rxfh.rss_delete = true;
11831 
11832 		xa_erase(&dev->ethtool->rss_ctx, context);
11833 		if (dev->ethtool_ops->create_rxfh_context)
11834 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11835 							      context, NULL);
11836 		else
11837 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11838 		kfree(ctx);
11839 	}
11840 	xa_destroy(&dev->ethtool->rss_ctx);
11841 	mutex_unlock(&dev->ethtool->rss_lock);
11842 }
11843 
11844 /**
11845  *	unregister_netdevice_queue - remove device from the kernel
11846  *	@dev: device
11847  *	@head: list
11848  *
11849  *	This function shuts down a device interface and removes it
11850  *	from the kernel tables.
11851  *	If head not NULL, device is queued to be unregistered later.
11852  *
11853  *	Callers must hold the rtnl semaphore.  You may want
11854  *	unregister_netdev() instead of this.
11855  */
11856 
11857 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11858 {
11859 	ASSERT_RTNL();
11860 
11861 	if (head) {
11862 		list_move_tail(&dev->unreg_list, head);
11863 	} else {
11864 		LIST_HEAD(single);
11865 
11866 		list_add(&dev->unreg_list, &single);
11867 		unregister_netdevice_many(&single);
11868 	}
11869 }
11870 EXPORT_SYMBOL(unregister_netdevice_queue);
11871 
11872 static void dev_memory_provider_uninstall(struct net_device *dev)
11873 {
11874 	unsigned int i;
11875 
11876 	for (i = 0; i < dev->real_num_rx_queues; i++) {
11877 		struct netdev_rx_queue *rxq = &dev->_rx[i];
11878 		struct pp_memory_provider_params *p = &rxq->mp_params;
11879 
11880 		if (p->mp_ops && p->mp_ops->uninstall)
11881 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
11882 	}
11883 }
11884 
11885 void unregister_netdevice_many_notify(struct list_head *head,
11886 				      u32 portid, const struct nlmsghdr *nlh)
11887 {
11888 	struct net_device *dev, *tmp;
11889 	LIST_HEAD(close_head);
11890 	int cnt = 0;
11891 
11892 	BUG_ON(dev_boot_phase);
11893 	ASSERT_RTNL();
11894 
11895 	if (list_empty(head))
11896 		return;
11897 
11898 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11899 		/* Some devices call without registering
11900 		 * for initialization unwind. Remove those
11901 		 * devices and proceed with the remaining.
11902 		 */
11903 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11904 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11905 				 dev->name, dev);
11906 
11907 			WARN_ON(1);
11908 			list_del(&dev->unreg_list);
11909 			continue;
11910 		}
11911 		dev->dismantle = true;
11912 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11913 	}
11914 
11915 	/* If device is running, close it first. */
11916 	list_for_each_entry(dev, head, unreg_list) {
11917 		list_add_tail(&dev->close_list, &close_head);
11918 		netdev_lock_ops(dev);
11919 	}
11920 	dev_close_many(&close_head, true);
11921 
11922 	list_for_each_entry(dev, head, unreg_list) {
11923 		netdev_unlock_ops(dev);
11924 		/* And unlink it from device chain. */
11925 		unlist_netdevice(dev);
11926 		netdev_lock(dev);
11927 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11928 		netdev_unlock(dev);
11929 	}
11930 	flush_all_backlogs();
11931 
11932 	synchronize_net();
11933 
11934 	list_for_each_entry(dev, head, unreg_list) {
11935 		struct sk_buff *skb = NULL;
11936 
11937 		/* Shutdown queueing discipline. */
11938 		dev_shutdown(dev);
11939 		dev_tcx_uninstall(dev);
11940 		netdev_lock_ops(dev);
11941 		dev_xdp_uninstall(dev);
11942 		netdev_unlock_ops(dev);
11943 		bpf_dev_bound_netdev_unregister(dev);
11944 		dev_memory_provider_uninstall(dev);
11945 
11946 		netdev_offload_xstats_disable_all(dev);
11947 
11948 		/* Notify protocols, that we are about to destroy
11949 		 * this device. They should clean all the things.
11950 		 */
11951 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11952 
11953 		if (!dev->rtnl_link_ops ||
11954 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11955 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11956 						     GFP_KERNEL, NULL, 0,
11957 						     portid, nlh);
11958 
11959 		/*
11960 		 *	Flush the unicast and multicast chains
11961 		 */
11962 		dev_uc_flush(dev);
11963 		dev_mc_flush(dev);
11964 
11965 		netdev_name_node_alt_flush(dev);
11966 		netdev_name_node_free(dev->name_node);
11967 
11968 		netdev_rss_contexts_free(dev);
11969 
11970 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11971 
11972 		if (dev->netdev_ops->ndo_uninit)
11973 			dev->netdev_ops->ndo_uninit(dev);
11974 
11975 		mutex_destroy(&dev->ethtool->rss_lock);
11976 
11977 		net_shaper_flush_netdev(dev);
11978 
11979 		if (skb)
11980 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11981 
11982 		/* Notifier chain MUST detach us all upper devices. */
11983 		WARN_ON(netdev_has_any_upper_dev(dev));
11984 		WARN_ON(netdev_has_any_lower_dev(dev));
11985 
11986 		/* Remove entries from kobject tree */
11987 		netdev_unregister_kobject(dev);
11988 #ifdef CONFIG_XPS
11989 		/* Remove XPS queueing entries */
11990 		netif_reset_xps_queues_gt(dev, 0);
11991 #endif
11992 	}
11993 
11994 	synchronize_net();
11995 
11996 	list_for_each_entry(dev, head, unreg_list) {
11997 		netdev_put(dev, &dev->dev_registered_tracker);
11998 		net_set_todo(dev);
11999 		cnt++;
12000 	}
12001 	atomic_add(cnt, &dev_unreg_count);
12002 
12003 	list_del(head);
12004 }
12005 
12006 /**
12007  *	unregister_netdevice_many - unregister many devices
12008  *	@head: list of devices
12009  *
12010  *  Note: As most callers use a stack allocated list_head,
12011  *  we force a list_del() to make sure stack won't be corrupted later.
12012  */
12013 void unregister_netdevice_many(struct list_head *head)
12014 {
12015 	unregister_netdevice_many_notify(head, 0, NULL);
12016 }
12017 EXPORT_SYMBOL(unregister_netdevice_many);
12018 
12019 /**
12020  *	unregister_netdev - remove device from the kernel
12021  *	@dev: device
12022  *
12023  *	This function shuts down a device interface and removes it
12024  *	from the kernel tables.
12025  *
12026  *	This is just a wrapper for unregister_netdevice that takes
12027  *	the rtnl semaphore.  In general you want to use this and not
12028  *	unregister_netdevice.
12029  */
12030 void unregister_netdev(struct net_device *dev)
12031 {
12032 	rtnl_net_dev_lock(dev);
12033 	unregister_netdevice(dev);
12034 	rtnl_net_dev_unlock(dev);
12035 }
12036 EXPORT_SYMBOL(unregister_netdev);
12037 
12038 int netif_change_net_namespace(struct net_device *dev, struct net *net,
12039 			       const char *pat, int new_ifindex,
12040 			       struct netlink_ext_ack *extack)
12041 {
12042 	struct netdev_name_node *name_node;
12043 	struct net *net_old = dev_net(dev);
12044 	char new_name[IFNAMSIZ] = {};
12045 	int err, new_nsid;
12046 
12047 	ASSERT_RTNL();
12048 
12049 	/* Don't allow namespace local devices to be moved. */
12050 	err = -EINVAL;
12051 	if (dev->netns_immutable) {
12052 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12053 		goto out;
12054 	}
12055 
12056 	/* Ensure the device has been registered */
12057 	if (dev->reg_state != NETREG_REGISTERED) {
12058 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12059 		goto out;
12060 	}
12061 
12062 	/* Get out if there is nothing todo */
12063 	err = 0;
12064 	if (net_eq(net_old, net))
12065 		goto out;
12066 
12067 	/* Pick the destination device name, and ensure
12068 	 * we can use it in the destination network namespace.
12069 	 */
12070 	err = -EEXIST;
12071 	if (netdev_name_in_use(net, dev->name)) {
12072 		/* We get here if we can't use the current device name */
12073 		if (!pat) {
12074 			NL_SET_ERR_MSG(extack,
12075 				       "An interface with the same name exists in the target netns");
12076 			goto out;
12077 		}
12078 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12079 		if (err < 0) {
12080 			NL_SET_ERR_MSG_FMT(extack,
12081 					   "Unable to use '%s' for the new interface name in the target netns",
12082 					   pat);
12083 			goto out;
12084 		}
12085 	}
12086 	/* Check that none of the altnames conflicts. */
12087 	err = -EEXIST;
12088 	netdev_for_each_altname(dev, name_node) {
12089 		if (netdev_name_in_use(net, name_node->name)) {
12090 			NL_SET_ERR_MSG_FMT(extack,
12091 					   "An interface with the altname %s exists in the target netns",
12092 					   name_node->name);
12093 			goto out;
12094 		}
12095 	}
12096 
12097 	/* Check that new_ifindex isn't used yet. */
12098 	if (new_ifindex) {
12099 		err = dev_index_reserve(net, new_ifindex);
12100 		if (err < 0) {
12101 			NL_SET_ERR_MSG_FMT(extack,
12102 					   "The ifindex %d is not available in the target netns",
12103 					   new_ifindex);
12104 			goto out;
12105 		}
12106 	} else {
12107 		/* If there is an ifindex conflict assign a new one */
12108 		err = dev_index_reserve(net, dev->ifindex);
12109 		if (err == -EBUSY)
12110 			err = dev_index_reserve(net, 0);
12111 		if (err < 0) {
12112 			NL_SET_ERR_MSG(extack,
12113 				       "Unable to allocate a new ifindex in the target netns");
12114 			goto out;
12115 		}
12116 		new_ifindex = err;
12117 	}
12118 
12119 	/*
12120 	 * And now a mini version of register_netdevice unregister_netdevice.
12121 	 */
12122 
12123 	/* If device is running close it first. */
12124 	netif_close(dev);
12125 
12126 	/* And unlink it from device chain */
12127 	unlist_netdevice(dev);
12128 
12129 	synchronize_net();
12130 
12131 	/* Shutdown queueing discipline. */
12132 	dev_shutdown(dev);
12133 
12134 	/* Notify protocols, that we are about to destroy
12135 	 * this device. They should clean all the things.
12136 	 *
12137 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12138 	 * This is wanted because this way 8021q and macvlan know
12139 	 * the device is just moving and can keep their slaves up.
12140 	 */
12141 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12142 	rcu_barrier();
12143 
12144 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12145 
12146 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12147 			    new_ifindex);
12148 
12149 	/*
12150 	 *	Flush the unicast and multicast chains
12151 	 */
12152 	dev_uc_flush(dev);
12153 	dev_mc_flush(dev);
12154 
12155 	/* Send a netdev-removed uevent to the old namespace */
12156 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12157 	netdev_adjacent_del_links(dev);
12158 
12159 	/* Move per-net netdevice notifiers that are following the netdevice */
12160 	move_netdevice_notifiers_dev_net(dev, net);
12161 
12162 	/* Actually switch the network namespace */
12163 	dev_net_set(dev, net);
12164 	dev->ifindex = new_ifindex;
12165 
12166 	if (new_name[0]) {
12167 		/* Rename the netdev to prepared name */
12168 		write_seqlock_bh(&netdev_rename_lock);
12169 		strscpy(dev->name, new_name, IFNAMSIZ);
12170 		write_sequnlock_bh(&netdev_rename_lock);
12171 	}
12172 
12173 	/* Fixup kobjects */
12174 	dev_set_uevent_suppress(&dev->dev, 1);
12175 	err = device_rename(&dev->dev, dev->name);
12176 	dev_set_uevent_suppress(&dev->dev, 0);
12177 	WARN_ON(err);
12178 
12179 	/* Send a netdev-add uevent to the new namespace */
12180 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12181 	netdev_adjacent_add_links(dev);
12182 
12183 	/* Adapt owner in case owning user namespace of target network
12184 	 * namespace is different from the original one.
12185 	 */
12186 	err = netdev_change_owner(dev, net_old, net);
12187 	WARN_ON(err);
12188 
12189 	/* Add the device back in the hashes */
12190 	list_netdevice(dev);
12191 
12192 	/* Notify protocols, that a new device appeared. */
12193 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12194 
12195 	/*
12196 	 *	Prevent userspace races by waiting until the network
12197 	 *	device is fully setup before sending notifications.
12198 	 */
12199 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12200 
12201 	synchronize_net();
12202 	err = 0;
12203 out:
12204 	return err;
12205 }
12206 
12207 static int dev_cpu_dead(unsigned int oldcpu)
12208 {
12209 	struct sk_buff **list_skb;
12210 	struct sk_buff *skb;
12211 	unsigned int cpu;
12212 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12213 
12214 	local_irq_disable();
12215 	cpu = smp_processor_id();
12216 	sd = &per_cpu(softnet_data, cpu);
12217 	oldsd = &per_cpu(softnet_data, oldcpu);
12218 
12219 	/* Find end of our completion_queue. */
12220 	list_skb = &sd->completion_queue;
12221 	while (*list_skb)
12222 		list_skb = &(*list_skb)->next;
12223 	/* Append completion queue from offline CPU. */
12224 	*list_skb = oldsd->completion_queue;
12225 	oldsd->completion_queue = NULL;
12226 
12227 	/* Append output queue from offline CPU. */
12228 	if (oldsd->output_queue) {
12229 		*sd->output_queue_tailp = oldsd->output_queue;
12230 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12231 		oldsd->output_queue = NULL;
12232 		oldsd->output_queue_tailp = &oldsd->output_queue;
12233 	}
12234 	/* Append NAPI poll list from offline CPU, with one exception :
12235 	 * process_backlog() must be called by cpu owning percpu backlog.
12236 	 * We properly handle process_queue & input_pkt_queue later.
12237 	 */
12238 	while (!list_empty(&oldsd->poll_list)) {
12239 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12240 							    struct napi_struct,
12241 							    poll_list);
12242 
12243 		list_del_init(&napi->poll_list);
12244 		if (napi->poll == process_backlog)
12245 			napi->state &= NAPIF_STATE_THREADED;
12246 		else
12247 			____napi_schedule(sd, napi);
12248 	}
12249 
12250 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12251 	local_irq_enable();
12252 
12253 	if (!use_backlog_threads()) {
12254 #ifdef CONFIG_RPS
12255 		remsd = oldsd->rps_ipi_list;
12256 		oldsd->rps_ipi_list = NULL;
12257 #endif
12258 		/* send out pending IPI's on offline CPU */
12259 		net_rps_send_ipi(remsd);
12260 	}
12261 
12262 	/* Process offline CPU's input_pkt_queue */
12263 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12264 		netif_rx(skb);
12265 		rps_input_queue_head_incr(oldsd);
12266 	}
12267 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12268 		netif_rx(skb);
12269 		rps_input_queue_head_incr(oldsd);
12270 	}
12271 
12272 	return 0;
12273 }
12274 
12275 /**
12276  *	netdev_increment_features - increment feature set by one
12277  *	@all: current feature set
12278  *	@one: new feature set
12279  *	@mask: mask feature set
12280  *
12281  *	Computes a new feature set after adding a device with feature set
12282  *	@one to the master device with current feature set @all.  Will not
12283  *	enable anything that is off in @mask. Returns the new feature set.
12284  */
12285 netdev_features_t netdev_increment_features(netdev_features_t all,
12286 	netdev_features_t one, netdev_features_t mask)
12287 {
12288 	if (mask & NETIF_F_HW_CSUM)
12289 		mask |= NETIF_F_CSUM_MASK;
12290 	mask |= NETIF_F_VLAN_CHALLENGED;
12291 
12292 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12293 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12294 
12295 	/* If one device supports hw checksumming, set for all. */
12296 	if (all & NETIF_F_HW_CSUM)
12297 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12298 
12299 	return all;
12300 }
12301 EXPORT_SYMBOL(netdev_increment_features);
12302 
12303 static struct hlist_head * __net_init netdev_create_hash(void)
12304 {
12305 	int i;
12306 	struct hlist_head *hash;
12307 
12308 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12309 	if (hash != NULL)
12310 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12311 			INIT_HLIST_HEAD(&hash[i]);
12312 
12313 	return hash;
12314 }
12315 
12316 /* Initialize per network namespace state */
12317 static int __net_init netdev_init(struct net *net)
12318 {
12319 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12320 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12321 
12322 	INIT_LIST_HEAD(&net->dev_base_head);
12323 
12324 	net->dev_name_head = netdev_create_hash();
12325 	if (net->dev_name_head == NULL)
12326 		goto err_name;
12327 
12328 	net->dev_index_head = netdev_create_hash();
12329 	if (net->dev_index_head == NULL)
12330 		goto err_idx;
12331 
12332 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12333 
12334 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12335 
12336 	return 0;
12337 
12338 err_idx:
12339 	kfree(net->dev_name_head);
12340 err_name:
12341 	return -ENOMEM;
12342 }
12343 
12344 /**
12345  *	netdev_drivername - network driver for the device
12346  *	@dev: network device
12347  *
12348  *	Determine network driver for device.
12349  */
12350 const char *netdev_drivername(const struct net_device *dev)
12351 {
12352 	const struct device_driver *driver;
12353 	const struct device *parent;
12354 	const char *empty = "";
12355 
12356 	parent = dev->dev.parent;
12357 	if (!parent)
12358 		return empty;
12359 
12360 	driver = parent->driver;
12361 	if (driver && driver->name)
12362 		return driver->name;
12363 	return empty;
12364 }
12365 
12366 static void __netdev_printk(const char *level, const struct net_device *dev,
12367 			    struct va_format *vaf)
12368 {
12369 	if (dev && dev->dev.parent) {
12370 		dev_printk_emit(level[1] - '0',
12371 				dev->dev.parent,
12372 				"%s %s %s%s: %pV",
12373 				dev_driver_string(dev->dev.parent),
12374 				dev_name(dev->dev.parent),
12375 				netdev_name(dev), netdev_reg_state(dev),
12376 				vaf);
12377 	} else if (dev) {
12378 		printk("%s%s%s: %pV",
12379 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12380 	} else {
12381 		printk("%s(NULL net_device): %pV", level, vaf);
12382 	}
12383 }
12384 
12385 void netdev_printk(const char *level, const struct net_device *dev,
12386 		   const char *format, ...)
12387 {
12388 	struct va_format vaf;
12389 	va_list args;
12390 
12391 	va_start(args, format);
12392 
12393 	vaf.fmt = format;
12394 	vaf.va = &args;
12395 
12396 	__netdev_printk(level, dev, &vaf);
12397 
12398 	va_end(args);
12399 }
12400 EXPORT_SYMBOL(netdev_printk);
12401 
12402 #define define_netdev_printk_level(func, level)			\
12403 void func(const struct net_device *dev, const char *fmt, ...)	\
12404 {								\
12405 	struct va_format vaf;					\
12406 	va_list args;						\
12407 								\
12408 	va_start(args, fmt);					\
12409 								\
12410 	vaf.fmt = fmt;						\
12411 	vaf.va = &args;						\
12412 								\
12413 	__netdev_printk(level, dev, &vaf);			\
12414 								\
12415 	va_end(args);						\
12416 }								\
12417 EXPORT_SYMBOL(func);
12418 
12419 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12420 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12421 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12422 define_netdev_printk_level(netdev_err, KERN_ERR);
12423 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12424 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12425 define_netdev_printk_level(netdev_info, KERN_INFO);
12426 
12427 static void __net_exit netdev_exit(struct net *net)
12428 {
12429 	kfree(net->dev_name_head);
12430 	kfree(net->dev_index_head);
12431 	xa_destroy(&net->dev_by_index);
12432 	if (net != &init_net)
12433 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12434 }
12435 
12436 static struct pernet_operations __net_initdata netdev_net_ops = {
12437 	.init = netdev_init,
12438 	.exit = netdev_exit,
12439 };
12440 
12441 static void __net_exit default_device_exit_net(struct net *net)
12442 {
12443 	struct netdev_name_node *name_node, *tmp;
12444 	struct net_device *dev, *aux;
12445 	/*
12446 	 * Push all migratable network devices back to the
12447 	 * initial network namespace
12448 	 */
12449 	ASSERT_RTNL();
12450 	for_each_netdev_safe(net, dev, aux) {
12451 		int err;
12452 		char fb_name[IFNAMSIZ];
12453 
12454 		/* Ignore unmoveable devices (i.e. loopback) */
12455 		if (dev->netns_immutable)
12456 			continue;
12457 
12458 		/* Leave virtual devices for the generic cleanup */
12459 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12460 			continue;
12461 
12462 		/* Push remaining network devices to init_net */
12463 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12464 		if (netdev_name_in_use(&init_net, fb_name))
12465 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12466 
12467 		netdev_for_each_altname_safe(dev, name_node, tmp)
12468 			if (netdev_name_in_use(&init_net, name_node->name))
12469 				__netdev_name_node_alt_destroy(name_node);
12470 
12471 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12472 		if (err) {
12473 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12474 				 __func__, dev->name, err);
12475 			BUG();
12476 		}
12477 	}
12478 }
12479 
12480 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12481 {
12482 	/* At exit all network devices most be removed from a network
12483 	 * namespace.  Do this in the reverse order of registration.
12484 	 * Do this across as many network namespaces as possible to
12485 	 * improve batching efficiency.
12486 	 */
12487 	struct net_device *dev;
12488 	struct net *net;
12489 	LIST_HEAD(dev_kill_list);
12490 
12491 	rtnl_lock();
12492 	list_for_each_entry(net, net_list, exit_list) {
12493 		default_device_exit_net(net);
12494 		cond_resched();
12495 	}
12496 
12497 	list_for_each_entry(net, net_list, exit_list) {
12498 		for_each_netdev_reverse(net, dev) {
12499 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12500 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12501 			else
12502 				unregister_netdevice_queue(dev, &dev_kill_list);
12503 		}
12504 	}
12505 	unregister_netdevice_many(&dev_kill_list);
12506 	rtnl_unlock();
12507 }
12508 
12509 static struct pernet_operations __net_initdata default_device_ops = {
12510 	.exit_batch = default_device_exit_batch,
12511 };
12512 
12513 static void __init net_dev_struct_check(void)
12514 {
12515 	/* TX read-mostly hotpath */
12516 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12517 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12518 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12519 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12520 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12521 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12522 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12523 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12524 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12525 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12526 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12527 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12528 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12529 #ifdef CONFIG_XPS
12530 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12531 #endif
12532 #ifdef CONFIG_NETFILTER_EGRESS
12533 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12534 #endif
12535 #ifdef CONFIG_NET_XGRESS
12536 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12537 #endif
12538 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12539 
12540 	/* TXRX read-mostly hotpath */
12541 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12542 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12543 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12544 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12545 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12546 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12547 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12548 
12549 	/* RX read-mostly hotpath */
12550 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12551 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12552 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12553 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12554 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12555 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12556 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12557 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12558 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12559 #ifdef CONFIG_NETPOLL
12560 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12561 #endif
12562 #ifdef CONFIG_NET_XGRESS
12563 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12564 #endif
12565 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12566 }
12567 
12568 /*
12569  *	Initialize the DEV module. At boot time this walks the device list and
12570  *	unhooks any devices that fail to initialise (normally hardware not
12571  *	present) and leaves us with a valid list of present and active devices.
12572  *
12573  */
12574 
12575 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12576 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12577 
12578 static int net_page_pool_create(int cpuid)
12579 {
12580 #if IS_ENABLED(CONFIG_PAGE_POOL)
12581 	struct page_pool_params page_pool_params = {
12582 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12583 		.flags = PP_FLAG_SYSTEM_POOL,
12584 		.nid = cpu_to_mem(cpuid),
12585 	};
12586 	struct page_pool *pp_ptr;
12587 	int err;
12588 
12589 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12590 	if (IS_ERR(pp_ptr))
12591 		return -ENOMEM;
12592 
12593 	err = xdp_reg_page_pool(pp_ptr);
12594 	if (err) {
12595 		page_pool_destroy(pp_ptr);
12596 		return err;
12597 	}
12598 
12599 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12600 #endif
12601 	return 0;
12602 }
12603 
12604 static int backlog_napi_should_run(unsigned int cpu)
12605 {
12606 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12607 	struct napi_struct *napi = &sd->backlog;
12608 
12609 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12610 }
12611 
12612 static void run_backlog_napi(unsigned int cpu)
12613 {
12614 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12615 
12616 	napi_threaded_poll_loop(&sd->backlog);
12617 }
12618 
12619 static void backlog_napi_setup(unsigned int cpu)
12620 {
12621 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12622 	struct napi_struct *napi = &sd->backlog;
12623 
12624 	napi->thread = this_cpu_read(backlog_napi);
12625 	set_bit(NAPI_STATE_THREADED, &napi->state);
12626 }
12627 
12628 static struct smp_hotplug_thread backlog_threads = {
12629 	.store			= &backlog_napi,
12630 	.thread_should_run	= backlog_napi_should_run,
12631 	.thread_fn		= run_backlog_napi,
12632 	.thread_comm		= "backlog_napi/%u",
12633 	.setup			= backlog_napi_setup,
12634 };
12635 
12636 /*
12637  *       This is called single threaded during boot, so no need
12638  *       to take the rtnl semaphore.
12639  */
12640 static int __init net_dev_init(void)
12641 {
12642 	int i, rc = -ENOMEM;
12643 
12644 	BUG_ON(!dev_boot_phase);
12645 
12646 	net_dev_struct_check();
12647 
12648 	if (dev_proc_init())
12649 		goto out;
12650 
12651 	if (netdev_kobject_init())
12652 		goto out;
12653 
12654 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12655 		INIT_LIST_HEAD(&ptype_base[i]);
12656 
12657 	if (register_pernet_subsys(&netdev_net_ops))
12658 		goto out;
12659 
12660 	/*
12661 	 *	Initialise the packet receive queues.
12662 	 */
12663 
12664 	flush_backlogs_fallback = flush_backlogs_alloc();
12665 	if (!flush_backlogs_fallback)
12666 		goto out;
12667 
12668 	for_each_possible_cpu(i) {
12669 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12670 
12671 		skb_queue_head_init(&sd->input_pkt_queue);
12672 		skb_queue_head_init(&sd->process_queue);
12673 #ifdef CONFIG_XFRM_OFFLOAD
12674 		skb_queue_head_init(&sd->xfrm_backlog);
12675 #endif
12676 		INIT_LIST_HEAD(&sd->poll_list);
12677 		sd->output_queue_tailp = &sd->output_queue;
12678 #ifdef CONFIG_RPS
12679 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12680 		sd->cpu = i;
12681 #endif
12682 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12683 		spin_lock_init(&sd->defer_lock);
12684 
12685 		gro_init(&sd->backlog.gro);
12686 		sd->backlog.poll = process_backlog;
12687 		sd->backlog.weight = weight_p;
12688 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12689 
12690 		if (net_page_pool_create(i))
12691 			goto out;
12692 	}
12693 	if (use_backlog_threads())
12694 		smpboot_register_percpu_thread(&backlog_threads);
12695 
12696 	dev_boot_phase = 0;
12697 
12698 	/* The loopback device is special if any other network devices
12699 	 * is present in a network namespace the loopback device must
12700 	 * be present. Since we now dynamically allocate and free the
12701 	 * loopback device ensure this invariant is maintained by
12702 	 * keeping the loopback device as the first device on the
12703 	 * list of network devices.  Ensuring the loopback devices
12704 	 * is the first device that appears and the last network device
12705 	 * that disappears.
12706 	 */
12707 	if (register_pernet_device(&loopback_net_ops))
12708 		goto out;
12709 
12710 	if (register_pernet_device(&default_device_ops))
12711 		goto out;
12712 
12713 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12714 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12715 
12716 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12717 				       NULL, dev_cpu_dead);
12718 	WARN_ON(rc < 0);
12719 	rc = 0;
12720 
12721 	/* avoid static key IPIs to isolated CPUs */
12722 	if (housekeeping_enabled(HK_TYPE_MISC))
12723 		net_enable_timestamp();
12724 out:
12725 	if (rc < 0) {
12726 		for_each_possible_cpu(i) {
12727 			struct page_pool *pp_ptr;
12728 
12729 			pp_ptr = per_cpu(system_page_pool, i);
12730 			if (!pp_ptr)
12731 				continue;
12732 
12733 			xdp_unreg_page_pool(pp_ptr);
12734 			page_pool_destroy(pp_ptr);
12735 			per_cpu(system_page_pool, i) = NULL;
12736 		}
12737 	}
12738 
12739 	return rc;
12740 }
12741 
12742 subsys_initcall(net_dev_init);
12743