xref: /linux-6.15/mm/memory_hotplug.c (revision 8d42e2a9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/compaction.h>
36 #include <linux/rmap.h>
37 #include <linux/module.h>
38 
39 #include <asm/tlbflush.h>
40 
41 #include "internal.h"
42 #include "shuffle.h"
43 
44 enum {
45 	MEMMAP_ON_MEMORY_DISABLE = 0,
46 	MEMMAP_ON_MEMORY_ENABLE,
47 	MEMMAP_ON_MEMORY_FORCE,
48 };
49 
50 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
51 
52 static inline unsigned long memory_block_memmap_size(void)
53 {
54 	return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
55 }
56 
57 static inline unsigned long memory_block_memmap_on_memory_pages(void)
58 {
59 	unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
60 
61 	/*
62 	 * In "forced" memmap_on_memory mode, we add extra pages to align the
63 	 * vmemmap size to cover full pageblocks. That way, we can add memory
64 	 * even if the vmemmap size is not properly aligned, however, we might waste
65 	 * memory.
66 	 */
67 	if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
68 		return pageblock_align(nr_pages);
69 	return nr_pages;
70 }
71 
72 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
73 /*
74  * memory_hotplug.memmap_on_memory parameter
75  */
76 static int set_memmap_mode(const char *val, const struct kernel_param *kp)
77 {
78 	int ret, mode;
79 	bool enabled;
80 
81 	if (sysfs_streq(val, "force") ||  sysfs_streq(val, "FORCE")) {
82 		mode = MEMMAP_ON_MEMORY_FORCE;
83 	} else {
84 		ret = kstrtobool(val, &enabled);
85 		if (ret < 0)
86 			return ret;
87 		if (enabled)
88 			mode = MEMMAP_ON_MEMORY_ENABLE;
89 		else
90 			mode = MEMMAP_ON_MEMORY_DISABLE;
91 	}
92 	*((int *)kp->arg) = mode;
93 	if (mode == MEMMAP_ON_MEMORY_FORCE) {
94 		unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
95 
96 		pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
97 			     memmap_pages - PFN_UP(memory_block_memmap_size()));
98 	}
99 	return 0;
100 }
101 
102 static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
103 {
104 	int mode = *((int *)kp->arg);
105 
106 	if (mode == MEMMAP_ON_MEMORY_FORCE)
107 		return sprintf(buffer, "force\n");
108 	return sprintf(buffer, "%c\n", mode ? 'Y' : 'N');
109 }
110 
111 static const struct kernel_param_ops memmap_mode_ops = {
112 	.set = set_memmap_mode,
113 	.get = get_memmap_mode,
114 };
115 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
116 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
117 		 "With value \"force\" it could result in memory wastage due "
118 		 "to memmap size limitations (Y/N/force)");
119 
120 static inline bool mhp_memmap_on_memory(void)
121 {
122 	return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
123 }
124 #else
125 static inline bool mhp_memmap_on_memory(void)
126 {
127 	return false;
128 }
129 #endif
130 
131 enum {
132 	ONLINE_POLICY_CONTIG_ZONES = 0,
133 	ONLINE_POLICY_AUTO_MOVABLE,
134 };
135 
136 static const char * const online_policy_to_str[] = {
137 	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
138 	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
139 };
140 
141 static int set_online_policy(const char *val, const struct kernel_param *kp)
142 {
143 	int ret = sysfs_match_string(online_policy_to_str, val);
144 
145 	if (ret < 0)
146 		return ret;
147 	*((int *)kp->arg) = ret;
148 	return 0;
149 }
150 
151 static int get_online_policy(char *buffer, const struct kernel_param *kp)
152 {
153 	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
154 }
155 
156 /*
157  * memory_hotplug.online_policy: configure online behavior when onlining without
158  * specifying a zone (MMOP_ONLINE)
159  *
160  * "contig-zones": keep zone contiguous
161  * "auto-movable": online memory to ZONE_MOVABLE if the configuration
162  *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
163  */
164 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
165 static const struct kernel_param_ops online_policy_ops = {
166 	.set = set_online_policy,
167 	.get = get_online_policy,
168 };
169 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
170 MODULE_PARM_DESC(online_policy,
171 		"Set the online policy (\"contig-zones\", \"auto-movable\") "
172 		"Default: \"contig-zones\"");
173 
174 /*
175  * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
176  *
177  * The ratio represent an upper limit and the kernel might decide to not
178  * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
179  * doesn't allow for more MOVABLE memory.
180  */
181 static unsigned int auto_movable_ratio __read_mostly = 301;
182 module_param(auto_movable_ratio, uint, 0644);
183 MODULE_PARM_DESC(auto_movable_ratio,
184 		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
185 		"in percent for \"auto-movable\" online policy. Default: 301");
186 
187 /*
188  * memory_hotplug.auto_movable_numa_aware: consider numa node stats
189  */
190 #ifdef CONFIG_NUMA
191 static bool auto_movable_numa_aware __read_mostly = true;
192 module_param(auto_movable_numa_aware, bool, 0644);
193 MODULE_PARM_DESC(auto_movable_numa_aware,
194 		"Consider numa node stats in addition to global stats in "
195 		"\"auto-movable\" online policy. Default: true");
196 #endif /* CONFIG_NUMA */
197 
198 /*
199  * online_page_callback contains pointer to current page onlining function.
200  * Initially it is generic_online_page(). If it is required it could be
201  * changed by calling set_online_page_callback() for callback registration
202  * and restore_online_page_callback() for generic callback restore.
203  */
204 
205 static online_page_callback_t online_page_callback = generic_online_page;
206 static DEFINE_MUTEX(online_page_callback_lock);
207 
208 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
209 
210 void get_online_mems(void)
211 {
212 	percpu_down_read(&mem_hotplug_lock);
213 }
214 
215 void put_online_mems(void)
216 {
217 	percpu_up_read(&mem_hotplug_lock);
218 }
219 
220 bool movable_node_enabled = false;
221 
222 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
223 int mhp_default_online_type = MMOP_OFFLINE;
224 #else
225 int mhp_default_online_type = MMOP_ONLINE;
226 #endif
227 
228 static int __init setup_memhp_default_state(char *str)
229 {
230 	const int online_type = mhp_online_type_from_str(str);
231 
232 	if (online_type >= 0)
233 		mhp_default_online_type = online_type;
234 
235 	return 1;
236 }
237 __setup("memhp_default_state=", setup_memhp_default_state);
238 
239 void mem_hotplug_begin(void)
240 {
241 	cpus_read_lock();
242 	percpu_down_write(&mem_hotplug_lock);
243 }
244 
245 void mem_hotplug_done(void)
246 {
247 	percpu_up_write(&mem_hotplug_lock);
248 	cpus_read_unlock();
249 }
250 
251 u64 max_mem_size = U64_MAX;
252 
253 /* add this memory to iomem resource */
254 static struct resource *register_memory_resource(u64 start, u64 size,
255 						 const char *resource_name)
256 {
257 	struct resource *res;
258 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
259 
260 	if (strcmp(resource_name, "System RAM"))
261 		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
262 
263 	if (!mhp_range_allowed(start, size, true))
264 		return ERR_PTR(-E2BIG);
265 
266 	/*
267 	 * Make sure value parsed from 'mem=' only restricts memory adding
268 	 * while booting, so that memory hotplug won't be impacted. Please
269 	 * refer to document of 'mem=' in kernel-parameters.txt for more
270 	 * details.
271 	 */
272 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
273 		return ERR_PTR(-E2BIG);
274 
275 	/*
276 	 * Request ownership of the new memory range.  This might be
277 	 * a child of an existing resource that was present but
278 	 * not marked as busy.
279 	 */
280 	res = __request_region(&iomem_resource, start, size,
281 			       resource_name, flags);
282 
283 	if (!res) {
284 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
285 				start, start + size);
286 		return ERR_PTR(-EEXIST);
287 	}
288 	return res;
289 }
290 
291 static void release_memory_resource(struct resource *res)
292 {
293 	if (!res)
294 		return;
295 	release_resource(res);
296 	kfree(res);
297 }
298 
299 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
300 {
301 	/*
302 	 * Disallow all operations smaller than a sub-section and only
303 	 * allow operations smaller than a section for
304 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
305 	 * enforces a larger memory_block_size_bytes() granularity for
306 	 * memory that will be marked online, so this check should only
307 	 * fire for direct arch_{add,remove}_memory() users outside of
308 	 * add_memory_resource().
309 	 */
310 	unsigned long min_align;
311 
312 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
313 		min_align = PAGES_PER_SUBSECTION;
314 	else
315 		min_align = PAGES_PER_SECTION;
316 	if (!IS_ALIGNED(pfn | nr_pages, min_align))
317 		return -EINVAL;
318 	return 0;
319 }
320 
321 /*
322  * Return page for the valid pfn only if the page is online. All pfn
323  * walkers which rely on the fully initialized page->flags and others
324  * should use this rather than pfn_valid && pfn_to_page
325  */
326 struct page *pfn_to_online_page(unsigned long pfn)
327 {
328 	unsigned long nr = pfn_to_section_nr(pfn);
329 	struct dev_pagemap *pgmap;
330 	struct mem_section *ms;
331 
332 	if (nr >= NR_MEM_SECTIONS)
333 		return NULL;
334 
335 	ms = __nr_to_section(nr);
336 	if (!online_section(ms))
337 		return NULL;
338 
339 	/*
340 	 * Save some code text when online_section() +
341 	 * pfn_section_valid() are sufficient.
342 	 */
343 	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
344 		return NULL;
345 
346 	if (!pfn_section_valid(ms, pfn))
347 		return NULL;
348 
349 	if (!online_device_section(ms))
350 		return pfn_to_page(pfn);
351 
352 	/*
353 	 * Slowpath: when ZONE_DEVICE collides with
354 	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
355 	 * the section may be 'offline' but 'valid'. Only
356 	 * get_dev_pagemap() can determine sub-section online status.
357 	 */
358 	pgmap = get_dev_pagemap(pfn, NULL);
359 	put_dev_pagemap(pgmap);
360 
361 	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
362 	if (pgmap)
363 		return NULL;
364 
365 	return pfn_to_page(pfn);
366 }
367 EXPORT_SYMBOL_GPL(pfn_to_online_page);
368 
369 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
370 		struct mhp_params *params)
371 {
372 	const unsigned long end_pfn = pfn + nr_pages;
373 	unsigned long cur_nr_pages;
374 	int err;
375 	struct vmem_altmap *altmap = params->altmap;
376 
377 	if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
378 		return -EINVAL;
379 
380 	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
381 
382 	if (altmap) {
383 		/*
384 		 * Validate altmap is within bounds of the total request
385 		 */
386 		if (altmap->base_pfn != pfn
387 				|| vmem_altmap_offset(altmap) > nr_pages) {
388 			pr_warn_once("memory add fail, invalid altmap\n");
389 			return -EINVAL;
390 		}
391 		altmap->alloc = 0;
392 	}
393 
394 	if (check_pfn_span(pfn, nr_pages)) {
395 		WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
396 		return -EINVAL;
397 	}
398 
399 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
400 		/* Select all remaining pages up to the next section boundary */
401 		cur_nr_pages = min(end_pfn - pfn,
402 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
403 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
404 					 params->pgmap);
405 		if (err)
406 			break;
407 		cond_resched();
408 	}
409 	vmemmap_populate_print_last();
410 	return err;
411 }
412 
413 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
414 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
415 				     unsigned long start_pfn,
416 				     unsigned long end_pfn)
417 {
418 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
419 		if (unlikely(!pfn_to_online_page(start_pfn)))
420 			continue;
421 
422 		if (unlikely(pfn_to_nid(start_pfn) != nid))
423 			continue;
424 
425 		if (zone != page_zone(pfn_to_page(start_pfn)))
426 			continue;
427 
428 		return start_pfn;
429 	}
430 
431 	return 0;
432 }
433 
434 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
435 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
436 				    unsigned long start_pfn,
437 				    unsigned long end_pfn)
438 {
439 	unsigned long pfn;
440 
441 	/* pfn is the end pfn of a memory section. */
442 	pfn = end_pfn - 1;
443 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
444 		if (unlikely(!pfn_to_online_page(pfn)))
445 			continue;
446 
447 		if (unlikely(pfn_to_nid(pfn) != nid))
448 			continue;
449 
450 		if (zone != page_zone(pfn_to_page(pfn)))
451 			continue;
452 
453 		return pfn;
454 	}
455 
456 	return 0;
457 }
458 
459 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
460 			     unsigned long end_pfn)
461 {
462 	unsigned long pfn;
463 	int nid = zone_to_nid(zone);
464 
465 	if (zone->zone_start_pfn == start_pfn) {
466 		/*
467 		 * If the section is smallest section in the zone, it need
468 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
469 		 * In this case, we find second smallest valid mem_section
470 		 * for shrinking zone.
471 		 */
472 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
473 						zone_end_pfn(zone));
474 		if (pfn) {
475 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
476 			zone->zone_start_pfn = pfn;
477 		} else {
478 			zone->zone_start_pfn = 0;
479 			zone->spanned_pages = 0;
480 		}
481 	} else if (zone_end_pfn(zone) == end_pfn) {
482 		/*
483 		 * If the section is biggest section in the zone, it need
484 		 * shrink zone->spanned_pages.
485 		 * In this case, we find second biggest valid mem_section for
486 		 * shrinking zone.
487 		 */
488 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
489 					       start_pfn);
490 		if (pfn)
491 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
492 		else {
493 			zone->zone_start_pfn = 0;
494 			zone->spanned_pages = 0;
495 		}
496 	}
497 }
498 
499 static void update_pgdat_span(struct pglist_data *pgdat)
500 {
501 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
502 	struct zone *zone;
503 
504 	for (zone = pgdat->node_zones;
505 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
506 		unsigned long end_pfn = zone_end_pfn(zone);
507 
508 		/* No need to lock the zones, they can't change. */
509 		if (!zone->spanned_pages)
510 			continue;
511 		if (!node_end_pfn) {
512 			node_start_pfn = zone->zone_start_pfn;
513 			node_end_pfn = end_pfn;
514 			continue;
515 		}
516 
517 		if (end_pfn > node_end_pfn)
518 			node_end_pfn = end_pfn;
519 		if (zone->zone_start_pfn < node_start_pfn)
520 			node_start_pfn = zone->zone_start_pfn;
521 	}
522 
523 	pgdat->node_start_pfn = node_start_pfn;
524 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
525 }
526 
527 void __ref remove_pfn_range_from_zone(struct zone *zone,
528 				      unsigned long start_pfn,
529 				      unsigned long nr_pages)
530 {
531 	const unsigned long end_pfn = start_pfn + nr_pages;
532 	struct pglist_data *pgdat = zone->zone_pgdat;
533 	unsigned long pfn, cur_nr_pages;
534 
535 	/* Poison struct pages because they are now uninitialized again. */
536 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
537 		cond_resched();
538 
539 		/* Select all remaining pages up to the next section boundary */
540 		cur_nr_pages =
541 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
542 		page_init_poison(pfn_to_page(pfn),
543 				 sizeof(struct page) * cur_nr_pages);
544 	}
545 
546 	/*
547 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
548 	 * we will not try to shrink the zones - which is okay as
549 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
550 	 */
551 	if (zone_is_zone_device(zone))
552 		return;
553 
554 	clear_zone_contiguous(zone);
555 
556 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
557 	update_pgdat_span(pgdat);
558 
559 	set_zone_contiguous(zone);
560 }
561 
562 /**
563  * __remove_pages() - remove sections of pages
564  * @pfn: starting pageframe (must be aligned to start of a section)
565  * @nr_pages: number of pages to remove (must be multiple of section size)
566  * @altmap: alternative device page map or %NULL if default memmap is used
567  *
568  * Generic helper function to remove section mappings and sysfs entries
569  * for the section of the memory we are removing. Caller needs to make
570  * sure that pages are marked reserved and zones are adjust properly by
571  * calling offline_pages().
572  */
573 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
574 		    struct vmem_altmap *altmap)
575 {
576 	const unsigned long end_pfn = pfn + nr_pages;
577 	unsigned long cur_nr_pages;
578 
579 	if (check_pfn_span(pfn, nr_pages)) {
580 		WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
581 		return;
582 	}
583 
584 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
585 		cond_resched();
586 		/* Select all remaining pages up to the next section boundary */
587 		cur_nr_pages = min(end_pfn - pfn,
588 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
589 		sparse_remove_section(pfn, cur_nr_pages, altmap);
590 	}
591 }
592 
593 int set_online_page_callback(online_page_callback_t callback)
594 {
595 	int rc = -EINVAL;
596 
597 	get_online_mems();
598 	mutex_lock(&online_page_callback_lock);
599 
600 	if (online_page_callback == generic_online_page) {
601 		online_page_callback = callback;
602 		rc = 0;
603 	}
604 
605 	mutex_unlock(&online_page_callback_lock);
606 	put_online_mems();
607 
608 	return rc;
609 }
610 EXPORT_SYMBOL_GPL(set_online_page_callback);
611 
612 int restore_online_page_callback(online_page_callback_t callback)
613 {
614 	int rc = -EINVAL;
615 
616 	get_online_mems();
617 	mutex_lock(&online_page_callback_lock);
618 
619 	if (online_page_callback == callback) {
620 		online_page_callback = generic_online_page;
621 		rc = 0;
622 	}
623 
624 	mutex_unlock(&online_page_callback_lock);
625 	put_online_mems();
626 
627 	return rc;
628 }
629 EXPORT_SYMBOL_GPL(restore_online_page_callback);
630 
631 void generic_online_page(struct page *page, unsigned int order)
632 {
633 	__free_pages_core(page, order, MEMINIT_HOTPLUG);
634 }
635 EXPORT_SYMBOL_GPL(generic_online_page);
636 
637 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
638 {
639 	const unsigned long end_pfn = start_pfn + nr_pages;
640 	unsigned long pfn;
641 
642 	/*
643 	 * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might
644 	 * decide to not expose all pages to the buddy (e.g., expose them
645 	 * later). We account all pages as being online and belonging to this
646 	 * zone ("present").
647 	 * When using memmap_on_memory, the range might not be aligned to
648 	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
649 	 * this and the first chunk to online will be pageblock_nr_pages.
650 	 */
651 	for (pfn = start_pfn; pfn < end_pfn;) {
652 		int order;
653 
654 		/*
655 		 * Free to online pages in the largest chunks alignment allows.
656 		 *
657 		 * __ffs() behaviour is undefined for 0. start == 0 is
658 		 * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for
659 		 * the case.
660 		 */
661 		if (pfn)
662 			order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn));
663 		else
664 			order = MAX_PAGE_ORDER;
665 
666 		(*online_page_callback)(pfn_to_page(pfn), order);
667 		pfn += (1UL << order);
668 	}
669 
670 	/* mark all involved sections as online */
671 	online_mem_sections(start_pfn, end_pfn);
672 }
673 
674 /* check which state of node_states will be changed when online memory */
675 static void node_states_check_changes_online(unsigned long nr_pages,
676 	struct zone *zone, struct memory_notify *arg)
677 {
678 	int nid = zone_to_nid(zone);
679 
680 	arg->status_change_nid = NUMA_NO_NODE;
681 	arg->status_change_nid_normal = NUMA_NO_NODE;
682 
683 	if (!node_state(nid, N_MEMORY))
684 		arg->status_change_nid = nid;
685 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
686 		arg->status_change_nid_normal = nid;
687 }
688 
689 static void node_states_set_node(int node, struct memory_notify *arg)
690 {
691 	if (arg->status_change_nid_normal >= 0)
692 		node_set_state(node, N_NORMAL_MEMORY);
693 
694 	if (arg->status_change_nid >= 0)
695 		node_set_state(node, N_MEMORY);
696 }
697 
698 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
699 		unsigned long nr_pages)
700 {
701 	unsigned long old_end_pfn = zone_end_pfn(zone);
702 
703 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
704 		zone->zone_start_pfn = start_pfn;
705 
706 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
707 }
708 
709 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
710                                      unsigned long nr_pages)
711 {
712 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
713 
714 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
715 		pgdat->node_start_pfn = start_pfn;
716 
717 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
718 
719 }
720 
721 #ifdef CONFIG_ZONE_DEVICE
722 static void section_taint_zone_device(unsigned long pfn)
723 {
724 	struct mem_section *ms = __pfn_to_section(pfn);
725 
726 	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
727 }
728 #else
729 static inline void section_taint_zone_device(unsigned long pfn)
730 {
731 }
732 #endif
733 
734 /*
735  * Associate the pfn range with the given zone, initializing the memmaps
736  * and resizing the pgdat/zone data to span the added pages. After this
737  * call, all affected pages are PageOffline().
738  *
739  * All aligned pageblocks are initialized to the specified migratetype
740  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
741  * zone stats (e.g., nr_isolate_pageblock) are touched.
742  */
743 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
744 				  unsigned long nr_pages,
745 				  struct vmem_altmap *altmap, int migratetype)
746 {
747 	struct pglist_data *pgdat = zone->zone_pgdat;
748 	int nid = pgdat->node_id;
749 
750 	clear_zone_contiguous(zone);
751 
752 	if (zone_is_empty(zone))
753 		init_currently_empty_zone(zone, start_pfn, nr_pages);
754 	resize_zone_range(zone, start_pfn, nr_pages);
755 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
756 
757 	/*
758 	 * Subsection population requires care in pfn_to_online_page().
759 	 * Set the taint to enable the slow path detection of
760 	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
761 	 * section.
762 	 */
763 	if (zone_is_zone_device(zone)) {
764 		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
765 			section_taint_zone_device(start_pfn);
766 		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
767 			section_taint_zone_device(start_pfn + nr_pages);
768 	}
769 
770 	/*
771 	 * TODO now we have a visible range of pages which are not associated
772 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
773 	 * expects the zone spans the pfn range. All the pages in the range
774 	 * are reserved so nobody should be touching them so we should be safe
775 	 */
776 	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
777 			 MEMINIT_HOTPLUG, altmap, migratetype);
778 
779 	set_zone_contiguous(zone);
780 }
781 
782 struct auto_movable_stats {
783 	unsigned long kernel_early_pages;
784 	unsigned long movable_pages;
785 };
786 
787 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
788 					    struct zone *zone)
789 {
790 	if (zone_idx(zone) == ZONE_MOVABLE) {
791 		stats->movable_pages += zone->present_pages;
792 	} else {
793 		stats->kernel_early_pages += zone->present_early_pages;
794 #ifdef CONFIG_CMA
795 		/*
796 		 * CMA pages (never on hotplugged memory) behave like
797 		 * ZONE_MOVABLE.
798 		 */
799 		stats->movable_pages += zone->cma_pages;
800 		stats->kernel_early_pages -= zone->cma_pages;
801 #endif /* CONFIG_CMA */
802 	}
803 }
804 struct auto_movable_group_stats {
805 	unsigned long movable_pages;
806 	unsigned long req_kernel_early_pages;
807 };
808 
809 static int auto_movable_stats_account_group(struct memory_group *group,
810 					   void *arg)
811 {
812 	const int ratio = READ_ONCE(auto_movable_ratio);
813 	struct auto_movable_group_stats *stats = arg;
814 	long pages;
815 
816 	/*
817 	 * We don't support modifying the config while the auto-movable online
818 	 * policy is already enabled. Just avoid the division by zero below.
819 	 */
820 	if (!ratio)
821 		return 0;
822 
823 	/*
824 	 * Calculate how many early kernel pages this group requires to
825 	 * satisfy the configured zone ratio.
826 	 */
827 	pages = group->present_movable_pages * 100 / ratio;
828 	pages -= group->present_kernel_pages;
829 
830 	if (pages > 0)
831 		stats->req_kernel_early_pages += pages;
832 	stats->movable_pages += group->present_movable_pages;
833 	return 0;
834 }
835 
836 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
837 					    unsigned long nr_pages)
838 {
839 	unsigned long kernel_early_pages, movable_pages;
840 	struct auto_movable_group_stats group_stats = {};
841 	struct auto_movable_stats stats = {};
842 	struct zone *zone;
843 	int i;
844 
845 	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
846 	if (nid == NUMA_NO_NODE) {
847 		/* TODO: cache values */
848 		for_each_populated_zone(zone)
849 			auto_movable_stats_account_zone(&stats, zone);
850 	} else {
851 		for (i = 0; i < MAX_NR_ZONES; i++) {
852 			pg_data_t *pgdat = NODE_DATA(nid);
853 
854 			zone = pgdat->node_zones + i;
855 			if (populated_zone(zone))
856 				auto_movable_stats_account_zone(&stats, zone);
857 		}
858 	}
859 
860 	kernel_early_pages = stats.kernel_early_pages;
861 	movable_pages = stats.movable_pages;
862 
863 	/*
864 	 * Kernel memory inside dynamic memory group allows for more MOVABLE
865 	 * memory within the same group. Remove the effect of all but the
866 	 * current group from the stats.
867 	 */
868 	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
869 				   group, &group_stats);
870 	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
871 		return false;
872 	kernel_early_pages -= group_stats.req_kernel_early_pages;
873 	movable_pages -= group_stats.movable_pages;
874 
875 	if (group && group->is_dynamic)
876 		kernel_early_pages += group->present_kernel_pages;
877 
878 	/*
879 	 * Test if we could online the given number of pages to ZONE_MOVABLE
880 	 * and still stay in the configured ratio.
881 	 */
882 	movable_pages += nr_pages;
883 	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
884 }
885 
886 /*
887  * Returns a default kernel memory zone for the given pfn range.
888  * If no kernel zone covers this pfn range it will automatically go
889  * to the ZONE_NORMAL.
890  */
891 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
892 		unsigned long nr_pages)
893 {
894 	struct pglist_data *pgdat = NODE_DATA(nid);
895 	int zid;
896 
897 	for (zid = 0; zid < ZONE_NORMAL; zid++) {
898 		struct zone *zone = &pgdat->node_zones[zid];
899 
900 		if (zone_intersects(zone, start_pfn, nr_pages))
901 			return zone;
902 	}
903 
904 	return &pgdat->node_zones[ZONE_NORMAL];
905 }
906 
907 /*
908  * Determine to which zone to online memory dynamically based on user
909  * configuration and system stats. We care about the following ratio:
910  *
911  *   MOVABLE : KERNEL
912  *
913  * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
914  * one of the kernel zones. CMA pages inside one of the kernel zones really
915  * behaves like ZONE_MOVABLE, so we treat them accordingly.
916  *
917  * We don't allow for hotplugged memory in a KERNEL zone to increase the
918  * amount of MOVABLE memory we can have, so we end up with:
919  *
920  *   MOVABLE : KERNEL_EARLY
921  *
922  * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
923  * boot. We base our calculation on KERNEL_EARLY internally, because:
924  *
925  * a) Hotplugged memory in one of the kernel zones can sometimes still get
926  *    hotunplugged, especially when hot(un)plugging individual memory blocks.
927  *    There is no coordination across memory devices, therefore "automatic"
928  *    hotunplugging, as implemented in hypervisors, could result in zone
929  *    imbalances.
930  * b) Early/boot memory in one of the kernel zones can usually not get
931  *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
932  *    with unmovable allocations). While there are corner cases where it might
933  *    still work, it is barely relevant in practice.
934  *
935  * Exceptions are dynamic memory groups, which allow for more MOVABLE
936  * memory within the same memory group -- because in that case, there is
937  * coordination within the single memory device managed by a single driver.
938  *
939  * We rely on "present pages" instead of "managed pages", as the latter is
940  * highly unreliable and dynamic in virtualized environments, and does not
941  * consider boot time allocations. For example, memory ballooning adjusts the
942  * managed pages when inflating/deflating the balloon, and balloon compaction
943  * can even migrate inflated pages between zones.
944  *
945  * Using "present pages" is better but some things to keep in mind are:
946  *
947  * a) Some memblock allocations, such as for the crashkernel area, are
948  *    effectively unused by the kernel, yet they account to "present pages".
949  *    Fortunately, these allocations are comparatively small in relevant setups
950  *    (e.g., fraction of system memory).
951  * b) Some hotplugged memory blocks in virtualized environments, esecially
952  *    hotplugged by virtio-mem, look like they are completely present, however,
953  *    only parts of the memory block are actually currently usable.
954  *    "present pages" is an upper limit that can get reached at runtime. As
955  *    we base our calculations on KERNEL_EARLY, this is not an issue.
956  */
957 static struct zone *auto_movable_zone_for_pfn(int nid,
958 					      struct memory_group *group,
959 					      unsigned long pfn,
960 					      unsigned long nr_pages)
961 {
962 	unsigned long online_pages = 0, max_pages, end_pfn;
963 	struct page *page;
964 
965 	if (!auto_movable_ratio)
966 		goto kernel_zone;
967 
968 	if (group && !group->is_dynamic) {
969 		max_pages = group->s.max_pages;
970 		online_pages = group->present_movable_pages;
971 
972 		/* If anything is !MOVABLE online the rest !MOVABLE. */
973 		if (group->present_kernel_pages)
974 			goto kernel_zone;
975 	} else if (!group || group->d.unit_pages == nr_pages) {
976 		max_pages = nr_pages;
977 	} else {
978 		max_pages = group->d.unit_pages;
979 		/*
980 		 * Take a look at all online sections in the current unit.
981 		 * We can safely assume that all pages within a section belong
982 		 * to the same zone, because dynamic memory groups only deal
983 		 * with hotplugged memory.
984 		 */
985 		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
986 		end_pfn = pfn + group->d.unit_pages;
987 		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
988 			page = pfn_to_online_page(pfn);
989 			if (!page)
990 				continue;
991 			/* If anything is !MOVABLE online the rest !MOVABLE. */
992 			if (!is_zone_movable_page(page))
993 				goto kernel_zone;
994 			online_pages += PAGES_PER_SECTION;
995 		}
996 	}
997 
998 	/*
999 	 * Online MOVABLE if we could *currently* online all remaining parts
1000 	 * MOVABLE. We expect to (add+) online them immediately next, so if
1001 	 * nobody interferes, all will be MOVABLE if possible.
1002 	 */
1003 	nr_pages = max_pages - online_pages;
1004 	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1005 		goto kernel_zone;
1006 
1007 #ifdef CONFIG_NUMA
1008 	if (auto_movable_numa_aware &&
1009 	    !auto_movable_can_online_movable(nid, group, nr_pages))
1010 		goto kernel_zone;
1011 #endif /* CONFIG_NUMA */
1012 
1013 	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1014 kernel_zone:
1015 	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
1016 }
1017 
1018 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1019 		unsigned long nr_pages)
1020 {
1021 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1022 			nr_pages);
1023 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1024 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
1025 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
1026 
1027 	/*
1028 	 * We inherit the existing zone in a simple case where zones do not
1029 	 * overlap in the given range
1030 	 */
1031 	if (in_kernel ^ in_movable)
1032 		return (in_kernel) ? kernel_zone : movable_zone;
1033 
1034 	/*
1035 	 * If the range doesn't belong to any zone or two zones overlap in the
1036 	 * given range then we use movable zone only if movable_node is
1037 	 * enabled because we always online to a kernel zone by default.
1038 	 */
1039 	return movable_node_enabled ? movable_zone : kernel_zone;
1040 }
1041 
1042 struct zone *zone_for_pfn_range(int online_type, int nid,
1043 		struct memory_group *group, unsigned long start_pfn,
1044 		unsigned long nr_pages)
1045 {
1046 	if (online_type == MMOP_ONLINE_KERNEL)
1047 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1048 
1049 	if (online_type == MMOP_ONLINE_MOVABLE)
1050 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1051 
1052 	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1053 		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1054 
1055 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
1056 }
1057 
1058 /*
1059  * This function should only be called by memory_block_{online,offline},
1060  * and {online,offline}_pages.
1061  */
1062 void adjust_present_page_count(struct page *page, struct memory_group *group,
1063 			       long nr_pages)
1064 {
1065 	struct zone *zone = page_zone(page);
1066 	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1067 
1068 	/*
1069 	 * We only support onlining/offlining/adding/removing of complete
1070 	 * memory blocks; therefore, either all is either early or hotplugged.
1071 	 */
1072 	if (early_section(__pfn_to_section(page_to_pfn(page))))
1073 		zone->present_early_pages += nr_pages;
1074 	zone->present_pages += nr_pages;
1075 	zone->zone_pgdat->node_present_pages += nr_pages;
1076 
1077 	if (group && movable)
1078 		group->present_movable_pages += nr_pages;
1079 	else if (group && !movable)
1080 		group->present_kernel_pages += nr_pages;
1081 }
1082 
1083 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1084 			      struct zone *zone, bool mhp_off_inaccessible)
1085 {
1086 	unsigned long end_pfn = pfn + nr_pages;
1087 	int ret, i;
1088 
1089 	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1090 	if (ret)
1091 		return ret;
1092 
1093 	/*
1094 	 * Memory block is accessible at this stage and hence poison the struct
1095 	 * pages now.  If the memory block is accessible during memory hotplug
1096 	 * addition phase, then page poisining is already performed in
1097 	 * sparse_add_section().
1098 	 */
1099 	if (mhp_off_inaccessible)
1100 		page_init_poison(pfn_to_page(pfn), sizeof(struct page) * nr_pages);
1101 
1102 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1103 
1104 	for (i = 0; i < nr_pages; i++) {
1105 		struct page *page = pfn_to_page(pfn + i);
1106 
1107 		__ClearPageOffline(page);
1108 		SetPageVmemmapSelfHosted(page);
1109 	}
1110 
1111 	/*
1112 	 * It might be that the vmemmap_pages fully span sections. If that is
1113 	 * the case, mark those sections online here as otherwise they will be
1114 	 * left offline.
1115 	 */
1116 	if (nr_pages >= PAGES_PER_SECTION)
1117 	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1118 
1119 	return ret;
1120 }
1121 
1122 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1123 {
1124 	unsigned long end_pfn = pfn + nr_pages;
1125 
1126 	/*
1127 	 * It might be that the vmemmap_pages fully span sections. If that is
1128 	 * the case, mark those sections offline here as otherwise they will be
1129 	 * left online.
1130 	 */
1131 	if (nr_pages >= PAGES_PER_SECTION)
1132 		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1133 
1134         /*
1135 	 * The pages associated with this vmemmap have been offlined, so
1136 	 * we can reset its state here.
1137 	 */
1138 	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1139 	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1140 }
1141 
1142 /*
1143  * Must be called with mem_hotplug_lock in write mode.
1144  */
1145 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1146 		       struct zone *zone, struct memory_group *group)
1147 {
1148 	unsigned long flags;
1149 	int need_zonelists_rebuild = 0;
1150 	const int nid = zone_to_nid(zone);
1151 	int ret;
1152 	struct memory_notify arg;
1153 
1154 	/*
1155 	 * {on,off}lining is constrained to full memory sections (or more
1156 	 * precisely to memory blocks from the user space POV).
1157 	 * memmap_on_memory is an exception because it reserves initial part
1158 	 * of the physical memory space for vmemmaps. That space is pageblock
1159 	 * aligned.
1160 	 */
1161 	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1162 			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1163 		return -EINVAL;
1164 
1165 
1166 	/* associate pfn range with the zone */
1167 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1168 
1169 	arg.start_pfn = pfn;
1170 	arg.nr_pages = nr_pages;
1171 	node_states_check_changes_online(nr_pages, zone, &arg);
1172 
1173 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1174 	ret = notifier_to_errno(ret);
1175 	if (ret)
1176 		goto failed_addition;
1177 
1178 	/*
1179 	 * Fixup the number of isolated pageblocks before marking the sections
1180 	 * onlining, such that undo_isolate_page_range() works correctly.
1181 	 */
1182 	spin_lock_irqsave(&zone->lock, flags);
1183 	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1184 	spin_unlock_irqrestore(&zone->lock, flags);
1185 
1186 	/*
1187 	 * If this zone is not populated, then it is not in zonelist.
1188 	 * This means the page allocator ignores this zone.
1189 	 * So, zonelist must be updated after online.
1190 	 */
1191 	if (!populated_zone(zone)) {
1192 		need_zonelists_rebuild = 1;
1193 		setup_zone_pageset(zone);
1194 	}
1195 
1196 	online_pages_range(pfn, nr_pages);
1197 	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1198 
1199 	node_states_set_node(nid, &arg);
1200 	if (need_zonelists_rebuild)
1201 		build_all_zonelists(NULL);
1202 
1203 	/* Basic onlining is complete, allow allocation of onlined pages. */
1204 	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1205 
1206 	/*
1207 	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1208 	 * the tail of the freelist when undoing isolation). Shuffle the whole
1209 	 * zone to make sure the just onlined pages are properly distributed
1210 	 * across the whole freelist - to create an initial shuffle.
1211 	 */
1212 	shuffle_zone(zone);
1213 
1214 	/* reinitialise watermarks and update pcp limits */
1215 	init_per_zone_wmark_min();
1216 
1217 	kswapd_run(nid);
1218 	kcompactd_run(nid);
1219 
1220 	writeback_set_ratelimit();
1221 
1222 	memory_notify(MEM_ONLINE, &arg);
1223 	return 0;
1224 
1225 failed_addition:
1226 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1227 		 (unsigned long long) pfn << PAGE_SHIFT,
1228 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1229 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1230 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
1231 	return ret;
1232 }
1233 
1234 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1235 static pg_data_t __ref *hotadd_init_pgdat(int nid)
1236 {
1237 	struct pglist_data *pgdat;
1238 
1239 	/*
1240 	 * NODE_DATA is preallocated (free_area_init) but its internal
1241 	 * state is not allocated completely. Add missing pieces.
1242 	 * Completely offline nodes stay around and they just need
1243 	 * reintialization.
1244 	 */
1245 	pgdat = NODE_DATA(nid);
1246 
1247 	/* init node's zones as empty zones, we don't have any present pages.*/
1248 	free_area_init_core_hotplug(pgdat);
1249 
1250 	/*
1251 	 * The node we allocated has no zone fallback lists. For avoiding
1252 	 * to access not-initialized zonelist, build here.
1253 	 */
1254 	build_all_zonelists(pgdat);
1255 
1256 	return pgdat;
1257 }
1258 
1259 /*
1260  * __try_online_node - online a node if offlined
1261  * @nid: the node ID
1262  * @set_node_online: Whether we want to online the node
1263  * called by cpu_up() to online a node without onlined memory.
1264  *
1265  * Returns:
1266  * 1 -> a new node has been allocated
1267  * 0 -> the node is already online
1268  * -ENOMEM -> the node could not be allocated
1269  */
1270 static int __try_online_node(int nid, bool set_node_online)
1271 {
1272 	pg_data_t *pgdat;
1273 	int ret = 1;
1274 
1275 	if (node_online(nid))
1276 		return 0;
1277 
1278 	pgdat = hotadd_init_pgdat(nid);
1279 	if (!pgdat) {
1280 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1281 		ret = -ENOMEM;
1282 		goto out;
1283 	}
1284 
1285 	if (set_node_online) {
1286 		node_set_online(nid);
1287 		ret = register_one_node(nid);
1288 		BUG_ON(ret);
1289 	}
1290 out:
1291 	return ret;
1292 }
1293 
1294 /*
1295  * Users of this function always want to online/register the node
1296  */
1297 int try_online_node(int nid)
1298 {
1299 	int ret;
1300 
1301 	mem_hotplug_begin();
1302 	ret =  __try_online_node(nid, true);
1303 	mem_hotplug_done();
1304 	return ret;
1305 }
1306 
1307 static int check_hotplug_memory_range(u64 start, u64 size)
1308 {
1309 	/* memory range must be block size aligned */
1310 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1311 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1312 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1313 		       memory_block_size_bytes(), start, size);
1314 		return -EINVAL;
1315 	}
1316 
1317 	return 0;
1318 }
1319 
1320 static int online_memory_block(struct memory_block *mem, void *arg)
1321 {
1322 	mem->online_type = mhp_default_online_type;
1323 	return device_online(&mem->dev);
1324 }
1325 
1326 #ifndef arch_supports_memmap_on_memory
1327 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1328 {
1329 	/*
1330 	 * As default, we want the vmemmap to span a complete PMD such that we
1331 	 * can map the vmemmap using a single PMD if supported by the
1332 	 * architecture.
1333 	 */
1334 	return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1335 }
1336 #endif
1337 
1338 bool mhp_supports_memmap_on_memory(void)
1339 {
1340 	unsigned long vmemmap_size = memory_block_memmap_size();
1341 	unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1342 
1343 	/*
1344 	 * Besides having arch support and the feature enabled at runtime, we
1345 	 * need a few more assumptions to hold true:
1346 	 *
1347 	 * a) The vmemmap pages span complete PMDs: We don't want vmemmap code
1348 	 *    to populate memory from the altmap for unrelated parts (i.e.,
1349 	 *    other memory blocks)
1350 	 *
1351 	 * b) The vmemmap pages (and thereby the pages that will be exposed to
1352 	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1353 	 *    code requires applicable ranges to be page-aligned, for example, to
1354 	 *    set the migratetypes properly.
1355 	 *
1356 	 * TODO: Although we have a check here to make sure that vmemmap pages
1357 	 *       fully populate a PMD, it is not the right place to check for
1358 	 *       this. A much better solution involves improving vmemmap code
1359 	 *       to fallback to base pages when trying to populate vmemmap using
1360 	 *       altmap as an alternative source of memory, and we do not exactly
1361 	 *       populate a single PMD.
1362 	 */
1363 	if (!mhp_memmap_on_memory())
1364 		return false;
1365 
1366 	/*
1367 	 * Make sure the vmemmap allocation is fully contained
1368 	 * so that we always allocate vmemmap memory from altmap area.
1369 	 */
1370 	if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1371 		return false;
1372 
1373 	/*
1374 	 * start pfn should be pageblock_nr_pages aligned for correctly
1375 	 * setting migrate types
1376 	 */
1377 	if (!pageblock_aligned(memmap_pages))
1378 		return false;
1379 
1380 	if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1381 		/* No effective hotplugged memory doesn't make sense. */
1382 		return false;
1383 
1384 	return arch_supports_memmap_on_memory(vmemmap_size);
1385 }
1386 EXPORT_SYMBOL_GPL(mhp_supports_memmap_on_memory);
1387 
1388 static void __ref remove_memory_blocks_and_altmaps(u64 start, u64 size)
1389 {
1390 	unsigned long memblock_size = memory_block_size_bytes();
1391 	u64 cur_start;
1392 
1393 	/*
1394 	 * For memmap_on_memory, the altmaps were added on a per-memblock
1395 	 * basis; we have to process each individual memory block.
1396 	 */
1397 	for (cur_start = start; cur_start < start + size;
1398 	     cur_start += memblock_size) {
1399 		struct vmem_altmap *altmap = NULL;
1400 		struct memory_block *mem;
1401 
1402 		mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start)));
1403 		if (WARN_ON_ONCE(!mem))
1404 			continue;
1405 
1406 		altmap = mem->altmap;
1407 		mem->altmap = NULL;
1408 
1409 		remove_memory_block_devices(cur_start, memblock_size);
1410 
1411 		arch_remove_memory(cur_start, memblock_size, altmap);
1412 
1413 		/* Verify that all vmemmap pages have actually been freed. */
1414 		WARN(altmap->alloc, "Altmap not fully unmapped");
1415 		kfree(altmap);
1416 	}
1417 }
1418 
1419 static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group,
1420 					    u64 start, u64 size, mhp_t mhp_flags)
1421 {
1422 	unsigned long memblock_size = memory_block_size_bytes();
1423 	u64 cur_start;
1424 	int ret;
1425 
1426 	for (cur_start = start; cur_start < start + size;
1427 	     cur_start += memblock_size) {
1428 		struct mhp_params params = { .pgprot =
1429 						     pgprot_mhp(PAGE_KERNEL) };
1430 		struct vmem_altmap mhp_altmap = {
1431 			.base_pfn = PHYS_PFN(cur_start),
1432 			.end_pfn = PHYS_PFN(cur_start + memblock_size - 1),
1433 		};
1434 
1435 		mhp_altmap.free = memory_block_memmap_on_memory_pages();
1436 		if (mhp_flags & MHP_OFFLINE_INACCESSIBLE)
1437 			mhp_altmap.inaccessible = true;
1438 		params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap),
1439 					GFP_KERNEL);
1440 		if (!params.altmap) {
1441 			ret = -ENOMEM;
1442 			goto out;
1443 		}
1444 
1445 		/* call arch's memory hotadd */
1446 		ret = arch_add_memory(nid, cur_start, memblock_size, &params);
1447 		if (ret < 0) {
1448 			kfree(params.altmap);
1449 			goto out;
1450 		}
1451 
1452 		/* create memory block devices after memory was added */
1453 		ret = create_memory_block_devices(cur_start, memblock_size,
1454 						  params.altmap, group);
1455 		if (ret) {
1456 			arch_remove_memory(cur_start, memblock_size, NULL);
1457 			kfree(params.altmap);
1458 			goto out;
1459 		}
1460 	}
1461 
1462 	return 0;
1463 out:
1464 	if (ret && cur_start != start)
1465 		remove_memory_blocks_and_altmaps(start, cur_start - start);
1466 	return ret;
1467 }
1468 
1469 /*
1470  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1471  * and online/offline operations (triggered e.g. by sysfs).
1472  *
1473  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1474  */
1475 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1476 {
1477 	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1478 	enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1479 	struct memory_group *group = NULL;
1480 	u64 start, size;
1481 	bool new_node = false;
1482 	int ret;
1483 
1484 	start = res->start;
1485 	size = resource_size(res);
1486 
1487 	ret = check_hotplug_memory_range(start, size);
1488 	if (ret)
1489 		return ret;
1490 
1491 	if (mhp_flags & MHP_NID_IS_MGID) {
1492 		group = memory_group_find_by_id(nid);
1493 		if (!group)
1494 			return -EINVAL;
1495 		nid = group->nid;
1496 	}
1497 
1498 	if (!node_possible(nid)) {
1499 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1500 		return -EINVAL;
1501 	}
1502 
1503 	mem_hotplug_begin();
1504 
1505 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1506 		if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1507 			memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1508 		ret = memblock_add_node(start, size, nid, memblock_flags);
1509 		if (ret)
1510 			goto error_mem_hotplug_end;
1511 	}
1512 
1513 	ret = __try_online_node(nid, false);
1514 	if (ret < 0)
1515 		goto error;
1516 	new_node = ret;
1517 
1518 	/*
1519 	 * Self hosted memmap array
1520 	 */
1521 	if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) &&
1522 	    mhp_supports_memmap_on_memory()) {
1523 		ret = create_altmaps_and_memory_blocks(nid, group, start, size, mhp_flags);
1524 		if (ret)
1525 			goto error;
1526 	} else {
1527 		ret = arch_add_memory(nid, start, size, &params);
1528 		if (ret < 0)
1529 			goto error;
1530 
1531 		/* create memory block devices after memory was added */
1532 		ret = create_memory_block_devices(start, size, NULL, group);
1533 		if (ret) {
1534 			arch_remove_memory(start, size, params.altmap);
1535 			goto error;
1536 		}
1537 	}
1538 
1539 	if (new_node) {
1540 		/* If sysfs file of new node can't be created, cpu on the node
1541 		 * can't be hot-added. There is no rollback way now.
1542 		 * So, check by BUG_ON() to catch it reluctantly..
1543 		 * We online node here. We can't roll back from here.
1544 		 */
1545 		node_set_online(nid);
1546 		ret = __register_one_node(nid);
1547 		BUG_ON(ret);
1548 	}
1549 
1550 	register_memory_blocks_under_node(nid, PFN_DOWN(start),
1551 					  PFN_UP(start + size - 1),
1552 					  MEMINIT_HOTPLUG);
1553 
1554 	/* create new memmap entry */
1555 	if (!strcmp(res->name, "System RAM"))
1556 		firmware_map_add_hotplug(start, start + size, "System RAM");
1557 
1558 	/* device_online() will take the lock when calling online_pages() */
1559 	mem_hotplug_done();
1560 
1561 	/*
1562 	 * In case we're allowed to merge the resource, flag it and trigger
1563 	 * merging now that adding succeeded.
1564 	 */
1565 	if (mhp_flags & MHP_MERGE_RESOURCE)
1566 		merge_system_ram_resource(res);
1567 
1568 	/* online pages if requested */
1569 	if (mhp_default_online_type != MMOP_OFFLINE)
1570 		walk_memory_blocks(start, size, NULL, online_memory_block);
1571 
1572 	return ret;
1573 error:
1574 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1575 		memblock_remove(start, size);
1576 error_mem_hotplug_end:
1577 	mem_hotplug_done();
1578 	return ret;
1579 }
1580 
1581 /* requires device_hotplug_lock, see add_memory_resource() */
1582 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1583 {
1584 	struct resource *res;
1585 	int ret;
1586 
1587 	res = register_memory_resource(start, size, "System RAM");
1588 	if (IS_ERR(res))
1589 		return PTR_ERR(res);
1590 
1591 	ret = add_memory_resource(nid, res, mhp_flags);
1592 	if (ret < 0)
1593 		release_memory_resource(res);
1594 	return ret;
1595 }
1596 
1597 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1598 {
1599 	int rc;
1600 
1601 	lock_device_hotplug();
1602 	rc = __add_memory(nid, start, size, mhp_flags);
1603 	unlock_device_hotplug();
1604 
1605 	return rc;
1606 }
1607 EXPORT_SYMBOL_GPL(add_memory);
1608 
1609 /*
1610  * Add special, driver-managed memory to the system as system RAM. Such
1611  * memory is not exposed via the raw firmware-provided memmap as system
1612  * RAM, instead, it is detected and added by a driver - during cold boot,
1613  * after a reboot, and after kexec.
1614  *
1615  * Reasons why this memory should not be used for the initial memmap of a
1616  * kexec kernel or for placing kexec images:
1617  * - The booting kernel is in charge of determining how this memory will be
1618  *   used (e.g., use persistent memory as system RAM)
1619  * - Coordination with a hypervisor is required before this memory
1620  *   can be used (e.g., inaccessible parts).
1621  *
1622  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1623  * memory map") are created. Also, the created memory resource is flagged
1624  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1625  * this memory as well (esp., not place kexec images onto it).
1626  *
1627  * The resource_name (visible via /proc/iomem) has to have the format
1628  * "System RAM ($DRIVER)".
1629  */
1630 int add_memory_driver_managed(int nid, u64 start, u64 size,
1631 			      const char *resource_name, mhp_t mhp_flags)
1632 {
1633 	struct resource *res;
1634 	int rc;
1635 
1636 	if (!resource_name ||
1637 	    strstr(resource_name, "System RAM (") != resource_name ||
1638 	    resource_name[strlen(resource_name) - 1] != ')')
1639 		return -EINVAL;
1640 
1641 	lock_device_hotplug();
1642 
1643 	res = register_memory_resource(start, size, resource_name);
1644 	if (IS_ERR(res)) {
1645 		rc = PTR_ERR(res);
1646 		goto out_unlock;
1647 	}
1648 
1649 	rc = add_memory_resource(nid, res, mhp_flags);
1650 	if (rc < 0)
1651 		release_memory_resource(res);
1652 
1653 out_unlock:
1654 	unlock_device_hotplug();
1655 	return rc;
1656 }
1657 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1658 
1659 /*
1660  * Platforms should define arch_get_mappable_range() that provides
1661  * maximum possible addressable physical memory range for which the
1662  * linear mapping could be created. The platform returned address
1663  * range must adhere to these following semantics.
1664  *
1665  * - range.start <= range.end
1666  * - Range includes both end points [range.start..range.end]
1667  *
1668  * There is also a fallback definition provided here, allowing the
1669  * entire possible physical address range in case any platform does
1670  * not define arch_get_mappable_range().
1671  */
1672 struct range __weak arch_get_mappable_range(void)
1673 {
1674 	struct range mhp_range = {
1675 		.start = 0UL,
1676 		.end = -1ULL,
1677 	};
1678 	return mhp_range;
1679 }
1680 
1681 struct range mhp_get_pluggable_range(bool need_mapping)
1682 {
1683 	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1684 	struct range mhp_range;
1685 
1686 	if (need_mapping) {
1687 		mhp_range = arch_get_mappable_range();
1688 		if (mhp_range.start > max_phys) {
1689 			mhp_range.start = 0;
1690 			mhp_range.end = 0;
1691 		}
1692 		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1693 	} else {
1694 		mhp_range.start = 0;
1695 		mhp_range.end = max_phys;
1696 	}
1697 	return mhp_range;
1698 }
1699 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1700 
1701 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1702 {
1703 	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1704 	u64 end = start + size;
1705 
1706 	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1707 		return true;
1708 
1709 	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1710 		start, end, mhp_range.start, mhp_range.end);
1711 	return false;
1712 }
1713 
1714 #ifdef CONFIG_MEMORY_HOTREMOVE
1715 /*
1716  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1717  * non-lru movable pages and hugepages). Will skip over most unmovable
1718  * pages (esp., pages that can be skipped when offlining), but bail out on
1719  * definitely unmovable pages.
1720  *
1721  * Returns:
1722  *	0 in case a movable page is found and movable_pfn was updated.
1723  *	-ENOENT in case no movable page was found.
1724  *	-EBUSY in case a definitely unmovable page was found.
1725  */
1726 static int scan_movable_pages(unsigned long start, unsigned long end,
1727 			      unsigned long *movable_pfn)
1728 {
1729 	unsigned long pfn;
1730 
1731 	for (pfn = start; pfn < end; pfn++) {
1732 		struct page *page;
1733 		struct folio *folio;
1734 
1735 		if (!pfn_valid(pfn))
1736 			continue;
1737 		page = pfn_to_page(pfn);
1738 		if (PageLRU(page))
1739 			goto found;
1740 		if (__PageMovable(page))
1741 			goto found;
1742 
1743 		/*
1744 		 * PageOffline() pages that are not marked __PageMovable() and
1745 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1746 		 * definitely unmovable. If their reference count would be 0,
1747 		 * they could at least be skipped when offlining memory.
1748 		 */
1749 		if (PageOffline(page) && page_count(page))
1750 			return -EBUSY;
1751 
1752 		if (!PageHuge(page))
1753 			continue;
1754 		folio = page_folio(page);
1755 		/*
1756 		 * This test is racy as we hold no reference or lock.  The
1757 		 * hugetlb page could have been free'ed and head is no longer
1758 		 * a hugetlb page before the following check.  In such unlikely
1759 		 * cases false positives and negatives are possible.  Calling
1760 		 * code must deal with these scenarios.
1761 		 */
1762 		if (folio_test_hugetlb_migratable(folio))
1763 			goto found;
1764 		pfn |= folio_nr_pages(folio) - 1;
1765 	}
1766 	return -ENOENT;
1767 found:
1768 	*movable_pfn = pfn;
1769 	return 0;
1770 }
1771 
1772 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1773 {
1774 	unsigned long pfn;
1775 	struct page *page, *head;
1776 	LIST_HEAD(source);
1777 	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1778 				      DEFAULT_RATELIMIT_BURST);
1779 
1780 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1781 		struct folio *folio;
1782 		bool isolated;
1783 
1784 		if (!pfn_valid(pfn))
1785 			continue;
1786 		page = pfn_to_page(pfn);
1787 		folio = page_folio(page);
1788 		head = &folio->page;
1789 
1790 		if (PageHuge(page)) {
1791 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1792 			isolate_hugetlb(folio, &source);
1793 			continue;
1794 		} else if (PageTransHuge(page))
1795 			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1796 
1797 		/*
1798 		 * HWPoison pages have elevated reference counts so the migration would
1799 		 * fail on them. It also doesn't make any sense to migrate them in the
1800 		 * first place. Still try to unmap such a page in case it is still mapped
1801 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1802 		 * the unmap as the catch all safety net).
1803 		 */
1804 		if (PageHWPoison(page)) {
1805 			if (WARN_ON(folio_test_lru(folio)))
1806 				folio_isolate_lru(folio);
1807 			if (folio_mapped(folio))
1808 				try_to_unmap(folio, TTU_IGNORE_MLOCK);
1809 			continue;
1810 		}
1811 
1812 		if (!get_page_unless_zero(page))
1813 			continue;
1814 		/*
1815 		 * We can skip free pages. And we can deal with pages on
1816 		 * LRU and non-lru movable pages.
1817 		 */
1818 		if (PageLRU(page))
1819 			isolated = isolate_lru_page(page);
1820 		else
1821 			isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1822 		if (isolated) {
1823 			list_add_tail(&page->lru, &source);
1824 			if (!__PageMovable(page))
1825 				inc_node_page_state(page, NR_ISOLATED_ANON +
1826 						    page_is_file_lru(page));
1827 
1828 		} else {
1829 			if (__ratelimit(&migrate_rs)) {
1830 				pr_warn("failed to isolate pfn %lx\n", pfn);
1831 				dump_page(page, "isolation failed");
1832 			}
1833 		}
1834 		put_page(page);
1835 	}
1836 	if (!list_empty(&source)) {
1837 		nodemask_t nmask = node_states[N_MEMORY];
1838 		struct migration_target_control mtc = {
1839 			.nmask = &nmask,
1840 			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1841 			.reason = MR_MEMORY_HOTPLUG,
1842 		};
1843 		int ret;
1844 
1845 		/*
1846 		 * We have checked that migration range is on a single zone so
1847 		 * we can use the nid of the first page to all the others.
1848 		 */
1849 		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1850 
1851 		/*
1852 		 * try to allocate from a different node but reuse this node
1853 		 * if there are no other online nodes to be used (e.g. we are
1854 		 * offlining a part of the only existing node)
1855 		 */
1856 		node_clear(mtc.nid, nmask);
1857 		if (nodes_empty(nmask))
1858 			node_set(mtc.nid, nmask);
1859 		ret = migrate_pages(&source, alloc_migration_target, NULL,
1860 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1861 		if (ret) {
1862 			list_for_each_entry(page, &source, lru) {
1863 				if (__ratelimit(&migrate_rs)) {
1864 					pr_warn("migrating pfn %lx failed ret:%d\n",
1865 						page_to_pfn(page), ret);
1866 					dump_page(page, "migration failure");
1867 				}
1868 			}
1869 			putback_movable_pages(&source);
1870 		}
1871 	}
1872 }
1873 
1874 static int __init cmdline_parse_movable_node(char *p)
1875 {
1876 	movable_node_enabled = true;
1877 	return 0;
1878 }
1879 early_param("movable_node", cmdline_parse_movable_node);
1880 
1881 /* check which state of node_states will be changed when offline memory */
1882 static void node_states_check_changes_offline(unsigned long nr_pages,
1883 		struct zone *zone, struct memory_notify *arg)
1884 {
1885 	struct pglist_data *pgdat = zone->zone_pgdat;
1886 	unsigned long present_pages = 0;
1887 	enum zone_type zt;
1888 
1889 	arg->status_change_nid = NUMA_NO_NODE;
1890 	arg->status_change_nid_normal = NUMA_NO_NODE;
1891 
1892 	/*
1893 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1894 	 * If the memory to be offline is within the range
1895 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1896 	 * the zones in that range will become empty after the offlining,
1897 	 * thus we can determine that we need to clear the node from
1898 	 * node_states[N_NORMAL_MEMORY].
1899 	 */
1900 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1901 		present_pages += pgdat->node_zones[zt].present_pages;
1902 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1903 		arg->status_change_nid_normal = zone_to_nid(zone);
1904 
1905 	/*
1906 	 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1907 	 * does not apply as we don't support 32bit.
1908 	 * Here we count the possible pages from ZONE_MOVABLE.
1909 	 * If after having accounted all the pages, we see that the nr_pages
1910 	 * to be offlined is over or equal to the accounted pages,
1911 	 * we know that the node will become empty, and so, we can clear
1912 	 * it for N_MEMORY as well.
1913 	 */
1914 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1915 
1916 	if (nr_pages >= present_pages)
1917 		arg->status_change_nid = zone_to_nid(zone);
1918 }
1919 
1920 static void node_states_clear_node(int node, struct memory_notify *arg)
1921 {
1922 	if (arg->status_change_nid_normal >= 0)
1923 		node_clear_state(node, N_NORMAL_MEMORY);
1924 
1925 	if (arg->status_change_nid >= 0)
1926 		node_clear_state(node, N_MEMORY);
1927 }
1928 
1929 static int count_system_ram_pages_cb(unsigned long start_pfn,
1930 				     unsigned long nr_pages, void *data)
1931 {
1932 	unsigned long *nr_system_ram_pages = data;
1933 
1934 	*nr_system_ram_pages += nr_pages;
1935 	return 0;
1936 }
1937 
1938 /*
1939  * Must be called with mem_hotplug_lock in write mode.
1940  */
1941 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1942 			struct zone *zone, struct memory_group *group)
1943 {
1944 	const unsigned long end_pfn = start_pfn + nr_pages;
1945 	unsigned long pfn, managed_pages, system_ram_pages = 0;
1946 	const int node = zone_to_nid(zone);
1947 	unsigned long flags;
1948 	struct memory_notify arg;
1949 	char *reason;
1950 	int ret;
1951 
1952 	/*
1953 	 * {on,off}lining is constrained to full memory sections (or more
1954 	 * precisely to memory blocks from the user space POV).
1955 	 * memmap_on_memory is an exception because it reserves initial part
1956 	 * of the physical memory space for vmemmaps. That space is pageblock
1957 	 * aligned.
1958 	 */
1959 	if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1960 			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1961 		return -EINVAL;
1962 
1963 	/*
1964 	 * Don't allow to offline memory blocks that contain holes.
1965 	 * Consequently, memory blocks with holes can never get onlined
1966 	 * via the hotplug path - online_pages() - as hotplugged memory has
1967 	 * no holes. This way, we don't have to worry about memory holes,
1968 	 * don't need pfn_valid() checks, and can avoid using
1969 	 * walk_system_ram_range() later.
1970 	 */
1971 	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1972 			      count_system_ram_pages_cb);
1973 	if (system_ram_pages != nr_pages) {
1974 		ret = -EINVAL;
1975 		reason = "memory holes";
1976 		goto failed_removal;
1977 	}
1978 
1979 	/*
1980 	 * We only support offlining of memory blocks managed by a single zone,
1981 	 * checked by calling code. This is just a sanity check that we might
1982 	 * want to remove in the future.
1983 	 */
1984 	if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1985 			 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1986 		ret = -EINVAL;
1987 		reason = "multizone range";
1988 		goto failed_removal;
1989 	}
1990 
1991 	/*
1992 	 * Disable pcplists so that page isolation cannot race with freeing
1993 	 * in a way that pages from isolated pageblock are left on pcplists.
1994 	 */
1995 	zone_pcp_disable(zone);
1996 	lru_cache_disable();
1997 
1998 	/* set above range as isolated */
1999 	ret = start_isolate_page_range(start_pfn, end_pfn,
2000 				       MIGRATE_MOVABLE,
2001 				       MEMORY_OFFLINE | REPORT_FAILURE,
2002 				       GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
2003 	if (ret) {
2004 		reason = "failure to isolate range";
2005 		goto failed_removal_pcplists_disabled;
2006 	}
2007 
2008 	arg.start_pfn = start_pfn;
2009 	arg.nr_pages = nr_pages;
2010 	node_states_check_changes_offline(nr_pages, zone, &arg);
2011 
2012 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
2013 	ret = notifier_to_errno(ret);
2014 	if (ret) {
2015 		reason = "notifier failure";
2016 		goto failed_removal_isolated;
2017 	}
2018 
2019 	do {
2020 		pfn = start_pfn;
2021 		do {
2022 			/*
2023 			 * Historically we always checked for any signal and
2024 			 * can't limit it to fatal signals without eventually
2025 			 * breaking user space.
2026 			 */
2027 			if (signal_pending(current)) {
2028 				ret = -EINTR;
2029 				reason = "signal backoff";
2030 				goto failed_removal_isolated;
2031 			}
2032 
2033 			cond_resched();
2034 
2035 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
2036 			if (!ret) {
2037 				/*
2038 				 * TODO: fatal migration failures should bail
2039 				 * out
2040 				 */
2041 				do_migrate_range(pfn, end_pfn);
2042 			}
2043 		} while (!ret);
2044 
2045 		if (ret != -ENOENT) {
2046 			reason = "unmovable page";
2047 			goto failed_removal_isolated;
2048 		}
2049 
2050 		/*
2051 		 * Dissolve free hugetlb folios in the memory block before doing
2052 		 * offlining actually in order to make hugetlbfs's object
2053 		 * counting consistent.
2054 		 */
2055 		ret = dissolve_free_hugetlb_folios(start_pfn, end_pfn);
2056 		if (ret) {
2057 			reason = "failure to dissolve huge pages";
2058 			goto failed_removal_isolated;
2059 		}
2060 
2061 		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
2062 
2063 	} while (ret);
2064 
2065 	/* Mark all sections offline and remove free pages from the buddy. */
2066 	managed_pages = __offline_isolated_pages(start_pfn, end_pfn);
2067 	pr_debug("Offlined Pages %ld\n", nr_pages);
2068 
2069 	/*
2070 	 * The memory sections are marked offline, and the pageblock flags
2071 	 * effectively stale; nobody should be touching them. Fixup the number
2072 	 * of isolated pageblocks, memory onlining will properly revert this.
2073 	 */
2074 	spin_lock_irqsave(&zone->lock, flags);
2075 	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2076 	spin_unlock_irqrestore(&zone->lock, flags);
2077 
2078 	lru_cache_enable();
2079 	zone_pcp_enable(zone);
2080 
2081 	/* removal success */
2082 	adjust_managed_page_count(pfn_to_page(start_pfn), -managed_pages);
2083 	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2084 
2085 	/* reinitialise watermarks and update pcp limits */
2086 	init_per_zone_wmark_min();
2087 
2088 	/*
2089 	 * Make sure to mark the node as memory-less before rebuilding the zone
2090 	 * list. Otherwise this node would still appear in the fallback lists.
2091 	 */
2092 	node_states_clear_node(node, &arg);
2093 	if (!populated_zone(zone)) {
2094 		zone_pcp_reset(zone);
2095 		build_all_zonelists(NULL);
2096 	}
2097 
2098 	if (arg.status_change_nid >= 0) {
2099 		kcompactd_stop(node);
2100 		kswapd_stop(node);
2101 	}
2102 
2103 	writeback_set_ratelimit();
2104 
2105 	memory_notify(MEM_OFFLINE, &arg);
2106 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2107 	return 0;
2108 
2109 failed_removal_isolated:
2110 	/* pushback to free area */
2111 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2112 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
2113 failed_removal_pcplists_disabled:
2114 	lru_cache_enable();
2115 	zone_pcp_enable(zone);
2116 failed_removal:
2117 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2118 		 (unsigned long long) start_pfn << PAGE_SHIFT,
2119 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2120 		 reason);
2121 	return ret;
2122 }
2123 
2124 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2125 {
2126 	int *nid = arg;
2127 
2128 	*nid = mem->nid;
2129 	if (unlikely(mem->state != MEM_OFFLINE)) {
2130 		phys_addr_t beginpa, endpa;
2131 
2132 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2133 		endpa = beginpa + memory_block_size_bytes() - 1;
2134 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2135 			&beginpa, &endpa);
2136 
2137 		return -EBUSY;
2138 	}
2139 	return 0;
2140 }
2141 
2142 static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg)
2143 {
2144 	u64 *num_altmaps = (u64 *)arg;
2145 
2146 	if (mem->altmap)
2147 		*num_altmaps += 1;
2148 
2149 	return 0;
2150 }
2151 
2152 static int check_cpu_on_node(int nid)
2153 {
2154 	int cpu;
2155 
2156 	for_each_present_cpu(cpu) {
2157 		if (cpu_to_node(cpu) == nid)
2158 			/*
2159 			 * the cpu on this node isn't removed, and we can't
2160 			 * offline this node.
2161 			 */
2162 			return -EBUSY;
2163 	}
2164 
2165 	return 0;
2166 }
2167 
2168 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2169 {
2170 	int nid = *(int *)arg;
2171 
2172 	/*
2173 	 * If a memory block belongs to multiple nodes, the stored nid is not
2174 	 * reliable. However, such blocks are always online (e.g., cannot get
2175 	 * offlined) and, therefore, are still spanned by the node.
2176 	 */
2177 	return mem->nid == nid ? -EEXIST : 0;
2178 }
2179 
2180 /**
2181  * try_offline_node
2182  * @nid: the node ID
2183  *
2184  * Offline a node if all memory sections and cpus of the node are removed.
2185  *
2186  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2187  * and online/offline operations before this call.
2188  */
2189 void try_offline_node(int nid)
2190 {
2191 	int rc;
2192 
2193 	/*
2194 	 * If the node still spans pages (especially ZONE_DEVICE), don't
2195 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
2196 	 * e.g., after the memory block was onlined.
2197 	 */
2198 	if (node_spanned_pages(nid))
2199 		return;
2200 
2201 	/*
2202 	 * Especially offline memory blocks might not be spanned by the
2203 	 * node. They will get spanned by the node once they get onlined.
2204 	 * However, they link to the node in sysfs and can get onlined later.
2205 	 */
2206 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2207 	if (rc)
2208 		return;
2209 
2210 	if (check_cpu_on_node(nid))
2211 		return;
2212 
2213 	/*
2214 	 * all memory/cpu of this node are removed, we can offline this
2215 	 * node now.
2216 	 */
2217 	node_set_offline(nid);
2218 	unregister_one_node(nid);
2219 }
2220 EXPORT_SYMBOL(try_offline_node);
2221 
2222 static int memory_blocks_have_altmaps(u64 start, u64 size)
2223 {
2224 	u64 num_memblocks = size / memory_block_size_bytes();
2225 	u64 num_altmaps = 0;
2226 
2227 	if (!mhp_memmap_on_memory())
2228 		return 0;
2229 
2230 	walk_memory_blocks(start, size, &num_altmaps,
2231 			   count_memory_range_altmaps_cb);
2232 
2233 	if (num_altmaps == 0)
2234 		return 0;
2235 
2236 	if (WARN_ON_ONCE(num_memblocks != num_altmaps))
2237 		return -EINVAL;
2238 
2239 	return 1;
2240 }
2241 
2242 static int __ref try_remove_memory(u64 start, u64 size)
2243 {
2244 	int rc, nid = NUMA_NO_NODE;
2245 
2246 	BUG_ON(check_hotplug_memory_range(start, size));
2247 
2248 	/*
2249 	 * All memory blocks must be offlined before removing memory.  Check
2250 	 * whether all memory blocks in question are offline and return error
2251 	 * if this is not the case.
2252 	 *
2253 	 * While at it, determine the nid. Note that if we'd have mixed nodes,
2254 	 * we'd only try to offline the last determined one -- which is good
2255 	 * enough for the cases we care about.
2256 	 */
2257 	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2258 	if (rc)
2259 		return rc;
2260 
2261 	/* remove memmap entry */
2262 	firmware_map_remove(start, start + size, "System RAM");
2263 
2264 	mem_hotplug_begin();
2265 
2266 	rc = memory_blocks_have_altmaps(start, size);
2267 	if (rc < 0) {
2268 		mem_hotplug_done();
2269 		return rc;
2270 	} else if (!rc) {
2271 		/*
2272 		 * Memory block device removal under the device_hotplug_lock is
2273 		 * a barrier against racing online attempts.
2274 		 * No altmaps present, do the removal directly
2275 		 */
2276 		remove_memory_block_devices(start, size);
2277 		arch_remove_memory(start, size, NULL);
2278 	} else {
2279 		/* all memblocks in the range have altmaps */
2280 		remove_memory_blocks_and_altmaps(start, size);
2281 	}
2282 
2283 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
2284 		memblock_remove(start, size);
2285 
2286 	release_mem_region_adjustable(start, size);
2287 
2288 	if (nid != NUMA_NO_NODE)
2289 		try_offline_node(nid);
2290 
2291 	mem_hotplug_done();
2292 	return 0;
2293 }
2294 
2295 /**
2296  * __remove_memory - Remove memory if every memory block is offline
2297  * @start: physical address of the region to remove
2298  * @size: size of the region to remove
2299  *
2300  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2301  * and online/offline operations before this call, as required by
2302  * try_offline_node().
2303  */
2304 void __remove_memory(u64 start, u64 size)
2305 {
2306 
2307 	/*
2308 	 * trigger BUG() if some memory is not offlined prior to calling this
2309 	 * function
2310 	 */
2311 	if (try_remove_memory(start, size))
2312 		BUG();
2313 }
2314 
2315 /*
2316  * Remove memory if every memory block is offline, otherwise return -EBUSY is
2317  * some memory is not offline
2318  */
2319 int remove_memory(u64 start, u64 size)
2320 {
2321 	int rc;
2322 
2323 	lock_device_hotplug();
2324 	rc = try_remove_memory(start, size);
2325 	unlock_device_hotplug();
2326 
2327 	return rc;
2328 }
2329 EXPORT_SYMBOL_GPL(remove_memory);
2330 
2331 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2332 {
2333 	uint8_t online_type = MMOP_ONLINE_KERNEL;
2334 	uint8_t **online_types = arg;
2335 	struct page *page;
2336 	int rc;
2337 
2338 	/*
2339 	 * Sense the online_type via the zone of the memory block. Offlining
2340 	 * with multiple zones within one memory block will be rejected
2341 	 * by offlining code ... so we don't care about that.
2342 	 */
2343 	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2344 	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2345 		online_type = MMOP_ONLINE_MOVABLE;
2346 
2347 	rc = device_offline(&mem->dev);
2348 	/*
2349 	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2350 	 * so try_reonline_memory_block() can do the right thing.
2351 	 */
2352 	if (!rc)
2353 		**online_types = online_type;
2354 
2355 	(*online_types)++;
2356 	/* Ignore if already offline. */
2357 	return rc < 0 ? rc : 0;
2358 }
2359 
2360 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2361 {
2362 	uint8_t **online_types = arg;
2363 	int rc;
2364 
2365 	if (**online_types != MMOP_OFFLINE) {
2366 		mem->online_type = **online_types;
2367 		rc = device_online(&mem->dev);
2368 		if (rc < 0)
2369 			pr_warn("%s: Failed to re-online memory: %d",
2370 				__func__, rc);
2371 	}
2372 
2373 	/* Continue processing all remaining memory blocks. */
2374 	(*online_types)++;
2375 	return 0;
2376 }
2377 
2378 /*
2379  * Try to offline and remove memory. Might take a long time to finish in case
2380  * memory is still in use. Primarily useful for memory devices that logically
2381  * unplugged all memory (so it's no longer in use) and want to offline + remove
2382  * that memory.
2383  */
2384 int offline_and_remove_memory(u64 start, u64 size)
2385 {
2386 	const unsigned long mb_count = size / memory_block_size_bytes();
2387 	uint8_t *online_types, *tmp;
2388 	int rc;
2389 
2390 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2391 	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2392 		return -EINVAL;
2393 
2394 	/*
2395 	 * We'll remember the old online type of each memory block, so we can
2396 	 * try to revert whatever we did when offlining one memory block fails
2397 	 * after offlining some others succeeded.
2398 	 */
2399 	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2400 				     GFP_KERNEL);
2401 	if (!online_types)
2402 		return -ENOMEM;
2403 	/*
2404 	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2405 	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2406 	 * try_reonline_memory_block().
2407 	 */
2408 	memset(online_types, MMOP_OFFLINE, mb_count);
2409 
2410 	lock_device_hotplug();
2411 
2412 	tmp = online_types;
2413 	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2414 
2415 	/*
2416 	 * In case we succeeded to offline all memory, remove it.
2417 	 * This cannot fail as it cannot get onlined in the meantime.
2418 	 */
2419 	if (!rc) {
2420 		rc = try_remove_memory(start, size);
2421 		if (rc)
2422 			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2423 	}
2424 
2425 	/*
2426 	 * Rollback what we did. While memory onlining might theoretically fail
2427 	 * (nacked by a notifier), it barely ever happens.
2428 	 */
2429 	if (rc) {
2430 		tmp = online_types;
2431 		walk_memory_blocks(start, size, &tmp,
2432 				   try_reonline_memory_block);
2433 	}
2434 	unlock_device_hotplug();
2435 
2436 	kfree(online_types);
2437 	return rc;
2438 }
2439 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2440 #endif /* CONFIG_MEMORY_HOTREMOVE */
2441