1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sysctl.h> 19 #include <linux/cpu.h> 20 #include <linux/memory.h> 21 #include <linux/memremap.h> 22 #include <linux/memory_hotplug.h> 23 #include <linux/vmalloc.h> 24 #include <linux/ioport.h> 25 #include <linux/delay.h> 26 #include <linux/migrate.h> 27 #include <linux/page-isolation.h> 28 #include <linux/pfn.h> 29 #include <linux/suspend.h> 30 #include <linux/mm_inline.h> 31 #include <linux/firmware-map.h> 32 #include <linux/stop_machine.h> 33 #include <linux/hugetlb.h> 34 #include <linux/memblock.h> 35 #include <linux/compaction.h> 36 #include <linux/rmap.h> 37 #include <linux/module.h> 38 39 #include <asm/tlbflush.h> 40 41 #include "internal.h" 42 #include "shuffle.h" 43 44 enum { 45 MEMMAP_ON_MEMORY_DISABLE = 0, 46 MEMMAP_ON_MEMORY_ENABLE, 47 MEMMAP_ON_MEMORY_FORCE, 48 }; 49 50 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE; 51 52 static inline unsigned long memory_block_memmap_size(void) 53 { 54 return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page); 55 } 56 57 static inline unsigned long memory_block_memmap_on_memory_pages(void) 58 { 59 unsigned long nr_pages = PFN_UP(memory_block_memmap_size()); 60 61 /* 62 * In "forced" memmap_on_memory mode, we add extra pages to align the 63 * vmemmap size to cover full pageblocks. That way, we can add memory 64 * even if the vmemmap size is not properly aligned, however, we might waste 65 * memory. 66 */ 67 if (memmap_mode == MEMMAP_ON_MEMORY_FORCE) 68 return pageblock_align(nr_pages); 69 return nr_pages; 70 } 71 72 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY 73 /* 74 * memory_hotplug.memmap_on_memory parameter 75 */ 76 static int set_memmap_mode(const char *val, const struct kernel_param *kp) 77 { 78 int ret, mode; 79 bool enabled; 80 81 if (sysfs_streq(val, "force") || sysfs_streq(val, "FORCE")) { 82 mode = MEMMAP_ON_MEMORY_FORCE; 83 } else { 84 ret = kstrtobool(val, &enabled); 85 if (ret < 0) 86 return ret; 87 if (enabled) 88 mode = MEMMAP_ON_MEMORY_ENABLE; 89 else 90 mode = MEMMAP_ON_MEMORY_DISABLE; 91 } 92 *((int *)kp->arg) = mode; 93 if (mode == MEMMAP_ON_MEMORY_FORCE) { 94 unsigned long memmap_pages = memory_block_memmap_on_memory_pages(); 95 96 pr_info_once("Memory hotplug will waste %ld pages in each memory block\n", 97 memmap_pages - PFN_UP(memory_block_memmap_size())); 98 } 99 return 0; 100 } 101 102 static int get_memmap_mode(char *buffer, const struct kernel_param *kp) 103 { 104 int mode = *((int *)kp->arg); 105 106 if (mode == MEMMAP_ON_MEMORY_FORCE) 107 return sprintf(buffer, "force\n"); 108 return sprintf(buffer, "%c\n", mode ? 'Y' : 'N'); 109 } 110 111 static const struct kernel_param_ops memmap_mode_ops = { 112 .set = set_memmap_mode, 113 .get = get_memmap_mode, 114 }; 115 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444); 116 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n" 117 "With value \"force\" it could result in memory wastage due " 118 "to memmap size limitations (Y/N/force)"); 119 120 static inline bool mhp_memmap_on_memory(void) 121 { 122 return memmap_mode != MEMMAP_ON_MEMORY_DISABLE; 123 } 124 #else 125 static inline bool mhp_memmap_on_memory(void) 126 { 127 return false; 128 } 129 #endif 130 131 enum { 132 ONLINE_POLICY_CONTIG_ZONES = 0, 133 ONLINE_POLICY_AUTO_MOVABLE, 134 }; 135 136 static const char * const online_policy_to_str[] = { 137 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones", 138 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable", 139 }; 140 141 static int set_online_policy(const char *val, const struct kernel_param *kp) 142 { 143 int ret = sysfs_match_string(online_policy_to_str, val); 144 145 if (ret < 0) 146 return ret; 147 *((int *)kp->arg) = ret; 148 return 0; 149 } 150 151 static int get_online_policy(char *buffer, const struct kernel_param *kp) 152 { 153 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]); 154 } 155 156 /* 157 * memory_hotplug.online_policy: configure online behavior when onlining without 158 * specifying a zone (MMOP_ONLINE) 159 * 160 * "contig-zones": keep zone contiguous 161 * "auto-movable": online memory to ZONE_MOVABLE if the configuration 162 * (auto_movable_ratio, auto_movable_numa_aware) allows for it 163 */ 164 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES; 165 static const struct kernel_param_ops online_policy_ops = { 166 .set = set_online_policy, 167 .get = get_online_policy, 168 }; 169 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644); 170 MODULE_PARM_DESC(online_policy, 171 "Set the online policy (\"contig-zones\", \"auto-movable\") " 172 "Default: \"contig-zones\""); 173 174 /* 175 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio 176 * 177 * The ratio represent an upper limit and the kernel might decide to not 178 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory 179 * doesn't allow for more MOVABLE memory. 180 */ 181 static unsigned int auto_movable_ratio __read_mostly = 301; 182 module_param(auto_movable_ratio, uint, 0644); 183 MODULE_PARM_DESC(auto_movable_ratio, 184 "Set the maximum ratio of MOVABLE:KERNEL memory in the system " 185 "in percent for \"auto-movable\" online policy. Default: 301"); 186 187 /* 188 * memory_hotplug.auto_movable_numa_aware: consider numa node stats 189 */ 190 #ifdef CONFIG_NUMA 191 static bool auto_movable_numa_aware __read_mostly = true; 192 module_param(auto_movable_numa_aware, bool, 0644); 193 MODULE_PARM_DESC(auto_movable_numa_aware, 194 "Consider numa node stats in addition to global stats in " 195 "\"auto-movable\" online policy. Default: true"); 196 #endif /* CONFIG_NUMA */ 197 198 /* 199 * online_page_callback contains pointer to current page onlining function. 200 * Initially it is generic_online_page(). If it is required it could be 201 * changed by calling set_online_page_callback() for callback registration 202 * and restore_online_page_callback() for generic callback restore. 203 */ 204 205 static online_page_callback_t online_page_callback = generic_online_page; 206 static DEFINE_MUTEX(online_page_callback_lock); 207 208 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 209 210 void get_online_mems(void) 211 { 212 percpu_down_read(&mem_hotplug_lock); 213 } 214 215 void put_online_mems(void) 216 { 217 percpu_up_read(&mem_hotplug_lock); 218 } 219 220 bool movable_node_enabled = false; 221 222 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 223 int mhp_default_online_type = MMOP_OFFLINE; 224 #else 225 int mhp_default_online_type = MMOP_ONLINE; 226 #endif 227 228 static int __init setup_memhp_default_state(char *str) 229 { 230 const int online_type = mhp_online_type_from_str(str); 231 232 if (online_type >= 0) 233 mhp_default_online_type = online_type; 234 235 return 1; 236 } 237 __setup("memhp_default_state=", setup_memhp_default_state); 238 239 void mem_hotplug_begin(void) 240 { 241 cpus_read_lock(); 242 percpu_down_write(&mem_hotplug_lock); 243 } 244 245 void mem_hotplug_done(void) 246 { 247 percpu_up_write(&mem_hotplug_lock); 248 cpus_read_unlock(); 249 } 250 251 u64 max_mem_size = U64_MAX; 252 253 /* add this memory to iomem resource */ 254 static struct resource *register_memory_resource(u64 start, u64 size, 255 const char *resource_name) 256 { 257 struct resource *res; 258 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 259 260 if (strcmp(resource_name, "System RAM")) 261 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; 262 263 if (!mhp_range_allowed(start, size, true)) 264 return ERR_PTR(-E2BIG); 265 266 /* 267 * Make sure value parsed from 'mem=' only restricts memory adding 268 * while booting, so that memory hotplug won't be impacted. Please 269 * refer to document of 'mem=' in kernel-parameters.txt for more 270 * details. 271 */ 272 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) 273 return ERR_PTR(-E2BIG); 274 275 /* 276 * Request ownership of the new memory range. This might be 277 * a child of an existing resource that was present but 278 * not marked as busy. 279 */ 280 res = __request_region(&iomem_resource, start, size, 281 resource_name, flags); 282 283 if (!res) { 284 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 285 start, start + size); 286 return ERR_PTR(-EEXIST); 287 } 288 return res; 289 } 290 291 static void release_memory_resource(struct resource *res) 292 { 293 if (!res) 294 return; 295 release_resource(res); 296 kfree(res); 297 } 298 299 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages) 300 { 301 /* 302 * Disallow all operations smaller than a sub-section and only 303 * allow operations smaller than a section for 304 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 305 * enforces a larger memory_block_size_bytes() granularity for 306 * memory that will be marked online, so this check should only 307 * fire for direct arch_{add,remove}_memory() users outside of 308 * add_memory_resource(). 309 */ 310 unsigned long min_align; 311 312 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 313 min_align = PAGES_PER_SUBSECTION; 314 else 315 min_align = PAGES_PER_SECTION; 316 if (!IS_ALIGNED(pfn | nr_pages, min_align)) 317 return -EINVAL; 318 return 0; 319 } 320 321 /* 322 * Return page for the valid pfn only if the page is online. All pfn 323 * walkers which rely on the fully initialized page->flags and others 324 * should use this rather than pfn_valid && pfn_to_page 325 */ 326 struct page *pfn_to_online_page(unsigned long pfn) 327 { 328 unsigned long nr = pfn_to_section_nr(pfn); 329 struct dev_pagemap *pgmap; 330 struct mem_section *ms; 331 332 if (nr >= NR_MEM_SECTIONS) 333 return NULL; 334 335 ms = __nr_to_section(nr); 336 if (!online_section(ms)) 337 return NULL; 338 339 /* 340 * Save some code text when online_section() + 341 * pfn_section_valid() are sufficient. 342 */ 343 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn)) 344 return NULL; 345 346 if (!pfn_section_valid(ms, pfn)) 347 return NULL; 348 349 if (!online_device_section(ms)) 350 return pfn_to_page(pfn); 351 352 /* 353 * Slowpath: when ZONE_DEVICE collides with 354 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in 355 * the section may be 'offline' but 'valid'. Only 356 * get_dev_pagemap() can determine sub-section online status. 357 */ 358 pgmap = get_dev_pagemap(pfn, NULL); 359 put_dev_pagemap(pgmap); 360 361 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */ 362 if (pgmap) 363 return NULL; 364 365 return pfn_to_page(pfn); 366 } 367 EXPORT_SYMBOL_GPL(pfn_to_online_page); 368 369 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 370 struct mhp_params *params) 371 { 372 const unsigned long end_pfn = pfn + nr_pages; 373 unsigned long cur_nr_pages; 374 int err; 375 struct vmem_altmap *altmap = params->altmap; 376 377 if (WARN_ON_ONCE(!pgprot_val(params->pgprot))) 378 return -EINVAL; 379 380 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false)); 381 382 if (altmap) { 383 /* 384 * Validate altmap is within bounds of the total request 385 */ 386 if (altmap->base_pfn != pfn 387 || vmem_altmap_offset(altmap) > nr_pages) { 388 pr_warn_once("memory add fail, invalid altmap\n"); 389 return -EINVAL; 390 } 391 altmap->alloc = 0; 392 } 393 394 if (check_pfn_span(pfn, nr_pages)) { 395 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1); 396 return -EINVAL; 397 } 398 399 for (; pfn < end_pfn; pfn += cur_nr_pages) { 400 /* Select all remaining pages up to the next section boundary */ 401 cur_nr_pages = min(end_pfn - pfn, 402 SECTION_ALIGN_UP(pfn + 1) - pfn); 403 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap, 404 params->pgmap); 405 if (err) 406 break; 407 cond_resched(); 408 } 409 vmemmap_populate_print_last(); 410 return err; 411 } 412 413 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 414 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 415 unsigned long start_pfn, 416 unsigned long end_pfn) 417 { 418 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 419 if (unlikely(!pfn_to_online_page(start_pfn))) 420 continue; 421 422 if (unlikely(pfn_to_nid(start_pfn) != nid)) 423 continue; 424 425 if (zone != page_zone(pfn_to_page(start_pfn))) 426 continue; 427 428 return start_pfn; 429 } 430 431 return 0; 432 } 433 434 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 435 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 436 unsigned long start_pfn, 437 unsigned long end_pfn) 438 { 439 unsigned long pfn; 440 441 /* pfn is the end pfn of a memory section. */ 442 pfn = end_pfn - 1; 443 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 444 if (unlikely(!pfn_to_online_page(pfn))) 445 continue; 446 447 if (unlikely(pfn_to_nid(pfn) != nid)) 448 continue; 449 450 if (zone != page_zone(pfn_to_page(pfn))) 451 continue; 452 453 return pfn; 454 } 455 456 return 0; 457 } 458 459 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 460 unsigned long end_pfn) 461 { 462 unsigned long pfn; 463 int nid = zone_to_nid(zone); 464 465 if (zone->zone_start_pfn == start_pfn) { 466 /* 467 * If the section is smallest section in the zone, it need 468 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 469 * In this case, we find second smallest valid mem_section 470 * for shrinking zone. 471 */ 472 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 473 zone_end_pfn(zone)); 474 if (pfn) { 475 zone->spanned_pages = zone_end_pfn(zone) - pfn; 476 zone->zone_start_pfn = pfn; 477 } else { 478 zone->zone_start_pfn = 0; 479 zone->spanned_pages = 0; 480 } 481 } else if (zone_end_pfn(zone) == end_pfn) { 482 /* 483 * If the section is biggest section in the zone, it need 484 * shrink zone->spanned_pages. 485 * In this case, we find second biggest valid mem_section for 486 * shrinking zone. 487 */ 488 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, 489 start_pfn); 490 if (pfn) 491 zone->spanned_pages = pfn - zone->zone_start_pfn + 1; 492 else { 493 zone->zone_start_pfn = 0; 494 zone->spanned_pages = 0; 495 } 496 } 497 } 498 499 static void update_pgdat_span(struct pglist_data *pgdat) 500 { 501 unsigned long node_start_pfn = 0, node_end_pfn = 0; 502 struct zone *zone; 503 504 for (zone = pgdat->node_zones; 505 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 506 unsigned long end_pfn = zone_end_pfn(zone); 507 508 /* No need to lock the zones, they can't change. */ 509 if (!zone->spanned_pages) 510 continue; 511 if (!node_end_pfn) { 512 node_start_pfn = zone->zone_start_pfn; 513 node_end_pfn = end_pfn; 514 continue; 515 } 516 517 if (end_pfn > node_end_pfn) 518 node_end_pfn = end_pfn; 519 if (zone->zone_start_pfn < node_start_pfn) 520 node_start_pfn = zone->zone_start_pfn; 521 } 522 523 pgdat->node_start_pfn = node_start_pfn; 524 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 525 } 526 527 void __ref remove_pfn_range_from_zone(struct zone *zone, 528 unsigned long start_pfn, 529 unsigned long nr_pages) 530 { 531 const unsigned long end_pfn = start_pfn + nr_pages; 532 struct pglist_data *pgdat = zone->zone_pgdat; 533 unsigned long pfn, cur_nr_pages; 534 535 /* Poison struct pages because they are now uninitialized again. */ 536 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { 537 cond_resched(); 538 539 /* Select all remaining pages up to the next section boundary */ 540 cur_nr_pages = 541 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); 542 page_init_poison(pfn_to_page(pfn), 543 sizeof(struct page) * cur_nr_pages); 544 } 545 546 /* 547 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So 548 * we will not try to shrink the zones - which is okay as 549 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. 550 */ 551 if (zone_is_zone_device(zone)) 552 return; 553 554 clear_zone_contiguous(zone); 555 556 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 557 update_pgdat_span(pgdat); 558 559 set_zone_contiguous(zone); 560 } 561 562 /** 563 * __remove_pages() - remove sections of pages 564 * @pfn: starting pageframe (must be aligned to start of a section) 565 * @nr_pages: number of pages to remove (must be multiple of section size) 566 * @altmap: alternative device page map or %NULL if default memmap is used 567 * 568 * Generic helper function to remove section mappings and sysfs entries 569 * for the section of the memory we are removing. Caller needs to make 570 * sure that pages are marked reserved and zones are adjust properly by 571 * calling offline_pages(). 572 */ 573 void __remove_pages(unsigned long pfn, unsigned long nr_pages, 574 struct vmem_altmap *altmap) 575 { 576 const unsigned long end_pfn = pfn + nr_pages; 577 unsigned long cur_nr_pages; 578 579 if (check_pfn_span(pfn, nr_pages)) { 580 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1); 581 return; 582 } 583 584 for (; pfn < end_pfn; pfn += cur_nr_pages) { 585 cond_resched(); 586 /* Select all remaining pages up to the next section boundary */ 587 cur_nr_pages = min(end_pfn - pfn, 588 SECTION_ALIGN_UP(pfn + 1) - pfn); 589 sparse_remove_section(pfn, cur_nr_pages, altmap); 590 } 591 } 592 593 int set_online_page_callback(online_page_callback_t callback) 594 { 595 int rc = -EINVAL; 596 597 get_online_mems(); 598 mutex_lock(&online_page_callback_lock); 599 600 if (online_page_callback == generic_online_page) { 601 online_page_callback = callback; 602 rc = 0; 603 } 604 605 mutex_unlock(&online_page_callback_lock); 606 put_online_mems(); 607 608 return rc; 609 } 610 EXPORT_SYMBOL_GPL(set_online_page_callback); 611 612 int restore_online_page_callback(online_page_callback_t callback) 613 { 614 int rc = -EINVAL; 615 616 get_online_mems(); 617 mutex_lock(&online_page_callback_lock); 618 619 if (online_page_callback == callback) { 620 online_page_callback = generic_online_page; 621 rc = 0; 622 } 623 624 mutex_unlock(&online_page_callback_lock); 625 put_online_mems(); 626 627 return rc; 628 } 629 EXPORT_SYMBOL_GPL(restore_online_page_callback); 630 631 void generic_online_page(struct page *page, unsigned int order) 632 { 633 __free_pages_core(page, order, MEMINIT_HOTPLUG); 634 } 635 EXPORT_SYMBOL_GPL(generic_online_page); 636 637 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages) 638 { 639 const unsigned long end_pfn = start_pfn + nr_pages; 640 unsigned long pfn; 641 642 /* 643 * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might 644 * decide to not expose all pages to the buddy (e.g., expose them 645 * later). We account all pages as being online and belonging to this 646 * zone ("present"). 647 * When using memmap_on_memory, the range might not be aligned to 648 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect 649 * this and the first chunk to online will be pageblock_nr_pages. 650 */ 651 for (pfn = start_pfn; pfn < end_pfn;) { 652 int order; 653 654 /* 655 * Free to online pages in the largest chunks alignment allows. 656 * 657 * __ffs() behaviour is undefined for 0. start == 0 is 658 * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for 659 * the case. 660 */ 661 if (pfn) 662 order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn)); 663 else 664 order = MAX_PAGE_ORDER; 665 666 (*online_page_callback)(pfn_to_page(pfn), order); 667 pfn += (1UL << order); 668 } 669 670 /* mark all involved sections as online */ 671 online_mem_sections(start_pfn, end_pfn); 672 } 673 674 /* check which state of node_states will be changed when online memory */ 675 static void node_states_check_changes_online(unsigned long nr_pages, 676 struct zone *zone, struct memory_notify *arg) 677 { 678 int nid = zone_to_nid(zone); 679 680 arg->status_change_nid = NUMA_NO_NODE; 681 arg->status_change_nid_normal = NUMA_NO_NODE; 682 683 if (!node_state(nid, N_MEMORY)) 684 arg->status_change_nid = nid; 685 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 686 arg->status_change_nid_normal = nid; 687 } 688 689 static void node_states_set_node(int node, struct memory_notify *arg) 690 { 691 if (arg->status_change_nid_normal >= 0) 692 node_set_state(node, N_NORMAL_MEMORY); 693 694 if (arg->status_change_nid >= 0) 695 node_set_state(node, N_MEMORY); 696 } 697 698 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 699 unsigned long nr_pages) 700 { 701 unsigned long old_end_pfn = zone_end_pfn(zone); 702 703 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 704 zone->zone_start_pfn = start_pfn; 705 706 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 707 } 708 709 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 710 unsigned long nr_pages) 711 { 712 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 713 714 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 715 pgdat->node_start_pfn = start_pfn; 716 717 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 718 719 } 720 721 #ifdef CONFIG_ZONE_DEVICE 722 static void section_taint_zone_device(unsigned long pfn) 723 { 724 struct mem_section *ms = __pfn_to_section(pfn); 725 726 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE; 727 } 728 #else 729 static inline void section_taint_zone_device(unsigned long pfn) 730 { 731 } 732 #endif 733 734 /* 735 * Associate the pfn range with the given zone, initializing the memmaps 736 * and resizing the pgdat/zone data to span the added pages. After this 737 * call, all affected pages are PageOffline(). 738 * 739 * All aligned pageblocks are initialized to the specified migratetype 740 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 741 * zone stats (e.g., nr_isolate_pageblock) are touched. 742 */ 743 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 744 unsigned long nr_pages, 745 struct vmem_altmap *altmap, int migratetype) 746 { 747 struct pglist_data *pgdat = zone->zone_pgdat; 748 int nid = pgdat->node_id; 749 750 clear_zone_contiguous(zone); 751 752 if (zone_is_empty(zone)) 753 init_currently_empty_zone(zone, start_pfn, nr_pages); 754 resize_zone_range(zone, start_pfn, nr_pages); 755 resize_pgdat_range(pgdat, start_pfn, nr_pages); 756 757 /* 758 * Subsection population requires care in pfn_to_online_page(). 759 * Set the taint to enable the slow path detection of 760 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE} 761 * section. 762 */ 763 if (zone_is_zone_device(zone)) { 764 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION)) 765 section_taint_zone_device(start_pfn); 766 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)) 767 section_taint_zone_device(start_pfn + nr_pages); 768 } 769 770 /* 771 * TODO now we have a visible range of pages which are not associated 772 * with their zone properly. Not nice but set_pfnblock_flags_mask 773 * expects the zone spans the pfn range. All the pages in the range 774 * are reserved so nobody should be touching them so we should be safe 775 */ 776 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0, 777 MEMINIT_HOTPLUG, altmap, migratetype); 778 779 set_zone_contiguous(zone); 780 } 781 782 struct auto_movable_stats { 783 unsigned long kernel_early_pages; 784 unsigned long movable_pages; 785 }; 786 787 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats, 788 struct zone *zone) 789 { 790 if (zone_idx(zone) == ZONE_MOVABLE) { 791 stats->movable_pages += zone->present_pages; 792 } else { 793 stats->kernel_early_pages += zone->present_early_pages; 794 #ifdef CONFIG_CMA 795 /* 796 * CMA pages (never on hotplugged memory) behave like 797 * ZONE_MOVABLE. 798 */ 799 stats->movable_pages += zone->cma_pages; 800 stats->kernel_early_pages -= zone->cma_pages; 801 #endif /* CONFIG_CMA */ 802 } 803 } 804 struct auto_movable_group_stats { 805 unsigned long movable_pages; 806 unsigned long req_kernel_early_pages; 807 }; 808 809 static int auto_movable_stats_account_group(struct memory_group *group, 810 void *arg) 811 { 812 const int ratio = READ_ONCE(auto_movable_ratio); 813 struct auto_movable_group_stats *stats = arg; 814 long pages; 815 816 /* 817 * We don't support modifying the config while the auto-movable online 818 * policy is already enabled. Just avoid the division by zero below. 819 */ 820 if (!ratio) 821 return 0; 822 823 /* 824 * Calculate how many early kernel pages this group requires to 825 * satisfy the configured zone ratio. 826 */ 827 pages = group->present_movable_pages * 100 / ratio; 828 pages -= group->present_kernel_pages; 829 830 if (pages > 0) 831 stats->req_kernel_early_pages += pages; 832 stats->movable_pages += group->present_movable_pages; 833 return 0; 834 } 835 836 static bool auto_movable_can_online_movable(int nid, struct memory_group *group, 837 unsigned long nr_pages) 838 { 839 unsigned long kernel_early_pages, movable_pages; 840 struct auto_movable_group_stats group_stats = {}; 841 struct auto_movable_stats stats = {}; 842 struct zone *zone; 843 int i; 844 845 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */ 846 if (nid == NUMA_NO_NODE) { 847 /* TODO: cache values */ 848 for_each_populated_zone(zone) 849 auto_movable_stats_account_zone(&stats, zone); 850 } else { 851 for (i = 0; i < MAX_NR_ZONES; i++) { 852 pg_data_t *pgdat = NODE_DATA(nid); 853 854 zone = pgdat->node_zones + i; 855 if (populated_zone(zone)) 856 auto_movable_stats_account_zone(&stats, zone); 857 } 858 } 859 860 kernel_early_pages = stats.kernel_early_pages; 861 movable_pages = stats.movable_pages; 862 863 /* 864 * Kernel memory inside dynamic memory group allows for more MOVABLE 865 * memory within the same group. Remove the effect of all but the 866 * current group from the stats. 867 */ 868 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group, 869 group, &group_stats); 870 if (kernel_early_pages <= group_stats.req_kernel_early_pages) 871 return false; 872 kernel_early_pages -= group_stats.req_kernel_early_pages; 873 movable_pages -= group_stats.movable_pages; 874 875 if (group && group->is_dynamic) 876 kernel_early_pages += group->present_kernel_pages; 877 878 /* 879 * Test if we could online the given number of pages to ZONE_MOVABLE 880 * and still stay in the configured ratio. 881 */ 882 movable_pages += nr_pages; 883 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100; 884 } 885 886 /* 887 * Returns a default kernel memory zone for the given pfn range. 888 * If no kernel zone covers this pfn range it will automatically go 889 * to the ZONE_NORMAL. 890 */ 891 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 892 unsigned long nr_pages) 893 { 894 struct pglist_data *pgdat = NODE_DATA(nid); 895 int zid; 896 897 for (zid = 0; zid < ZONE_NORMAL; zid++) { 898 struct zone *zone = &pgdat->node_zones[zid]; 899 900 if (zone_intersects(zone, start_pfn, nr_pages)) 901 return zone; 902 } 903 904 return &pgdat->node_zones[ZONE_NORMAL]; 905 } 906 907 /* 908 * Determine to which zone to online memory dynamically based on user 909 * configuration and system stats. We care about the following ratio: 910 * 911 * MOVABLE : KERNEL 912 * 913 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in 914 * one of the kernel zones. CMA pages inside one of the kernel zones really 915 * behaves like ZONE_MOVABLE, so we treat them accordingly. 916 * 917 * We don't allow for hotplugged memory in a KERNEL zone to increase the 918 * amount of MOVABLE memory we can have, so we end up with: 919 * 920 * MOVABLE : KERNEL_EARLY 921 * 922 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze 923 * boot. We base our calculation on KERNEL_EARLY internally, because: 924 * 925 * a) Hotplugged memory in one of the kernel zones can sometimes still get 926 * hotunplugged, especially when hot(un)plugging individual memory blocks. 927 * There is no coordination across memory devices, therefore "automatic" 928 * hotunplugging, as implemented in hypervisors, could result in zone 929 * imbalances. 930 * b) Early/boot memory in one of the kernel zones can usually not get 931 * hotunplugged again (e.g., no firmware interface to unplug, fragmented 932 * with unmovable allocations). While there are corner cases where it might 933 * still work, it is barely relevant in practice. 934 * 935 * Exceptions are dynamic memory groups, which allow for more MOVABLE 936 * memory within the same memory group -- because in that case, there is 937 * coordination within the single memory device managed by a single driver. 938 * 939 * We rely on "present pages" instead of "managed pages", as the latter is 940 * highly unreliable and dynamic in virtualized environments, and does not 941 * consider boot time allocations. For example, memory ballooning adjusts the 942 * managed pages when inflating/deflating the balloon, and balloon compaction 943 * can even migrate inflated pages between zones. 944 * 945 * Using "present pages" is better but some things to keep in mind are: 946 * 947 * a) Some memblock allocations, such as for the crashkernel area, are 948 * effectively unused by the kernel, yet they account to "present pages". 949 * Fortunately, these allocations are comparatively small in relevant setups 950 * (e.g., fraction of system memory). 951 * b) Some hotplugged memory blocks in virtualized environments, esecially 952 * hotplugged by virtio-mem, look like they are completely present, however, 953 * only parts of the memory block are actually currently usable. 954 * "present pages" is an upper limit that can get reached at runtime. As 955 * we base our calculations on KERNEL_EARLY, this is not an issue. 956 */ 957 static struct zone *auto_movable_zone_for_pfn(int nid, 958 struct memory_group *group, 959 unsigned long pfn, 960 unsigned long nr_pages) 961 { 962 unsigned long online_pages = 0, max_pages, end_pfn; 963 struct page *page; 964 965 if (!auto_movable_ratio) 966 goto kernel_zone; 967 968 if (group && !group->is_dynamic) { 969 max_pages = group->s.max_pages; 970 online_pages = group->present_movable_pages; 971 972 /* If anything is !MOVABLE online the rest !MOVABLE. */ 973 if (group->present_kernel_pages) 974 goto kernel_zone; 975 } else if (!group || group->d.unit_pages == nr_pages) { 976 max_pages = nr_pages; 977 } else { 978 max_pages = group->d.unit_pages; 979 /* 980 * Take a look at all online sections in the current unit. 981 * We can safely assume that all pages within a section belong 982 * to the same zone, because dynamic memory groups only deal 983 * with hotplugged memory. 984 */ 985 pfn = ALIGN_DOWN(pfn, group->d.unit_pages); 986 end_pfn = pfn + group->d.unit_pages; 987 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 988 page = pfn_to_online_page(pfn); 989 if (!page) 990 continue; 991 /* If anything is !MOVABLE online the rest !MOVABLE. */ 992 if (!is_zone_movable_page(page)) 993 goto kernel_zone; 994 online_pages += PAGES_PER_SECTION; 995 } 996 } 997 998 /* 999 * Online MOVABLE if we could *currently* online all remaining parts 1000 * MOVABLE. We expect to (add+) online them immediately next, so if 1001 * nobody interferes, all will be MOVABLE if possible. 1002 */ 1003 nr_pages = max_pages - online_pages; 1004 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages)) 1005 goto kernel_zone; 1006 1007 #ifdef CONFIG_NUMA 1008 if (auto_movable_numa_aware && 1009 !auto_movable_can_online_movable(nid, group, nr_pages)) 1010 goto kernel_zone; 1011 #endif /* CONFIG_NUMA */ 1012 1013 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1014 kernel_zone: 1015 return default_kernel_zone_for_pfn(nid, pfn, nr_pages); 1016 } 1017 1018 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 1019 unsigned long nr_pages) 1020 { 1021 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 1022 nr_pages); 1023 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1024 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 1025 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 1026 1027 /* 1028 * We inherit the existing zone in a simple case where zones do not 1029 * overlap in the given range 1030 */ 1031 if (in_kernel ^ in_movable) 1032 return (in_kernel) ? kernel_zone : movable_zone; 1033 1034 /* 1035 * If the range doesn't belong to any zone or two zones overlap in the 1036 * given range then we use movable zone only if movable_node is 1037 * enabled because we always online to a kernel zone by default. 1038 */ 1039 return movable_node_enabled ? movable_zone : kernel_zone; 1040 } 1041 1042 struct zone *zone_for_pfn_range(int online_type, int nid, 1043 struct memory_group *group, unsigned long start_pfn, 1044 unsigned long nr_pages) 1045 { 1046 if (online_type == MMOP_ONLINE_KERNEL) 1047 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 1048 1049 if (online_type == MMOP_ONLINE_MOVABLE) 1050 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 1051 1052 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE) 1053 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages); 1054 1055 return default_zone_for_pfn(nid, start_pfn, nr_pages); 1056 } 1057 1058 /* 1059 * This function should only be called by memory_block_{online,offline}, 1060 * and {online,offline}_pages. 1061 */ 1062 void adjust_present_page_count(struct page *page, struct memory_group *group, 1063 long nr_pages) 1064 { 1065 struct zone *zone = page_zone(page); 1066 const bool movable = zone_idx(zone) == ZONE_MOVABLE; 1067 1068 /* 1069 * We only support onlining/offlining/adding/removing of complete 1070 * memory blocks; therefore, either all is either early or hotplugged. 1071 */ 1072 if (early_section(__pfn_to_section(page_to_pfn(page)))) 1073 zone->present_early_pages += nr_pages; 1074 zone->present_pages += nr_pages; 1075 zone->zone_pgdat->node_present_pages += nr_pages; 1076 1077 if (group && movable) 1078 group->present_movable_pages += nr_pages; 1079 else if (group && !movable) 1080 group->present_kernel_pages += nr_pages; 1081 } 1082 1083 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages, 1084 struct zone *zone, bool mhp_off_inaccessible) 1085 { 1086 unsigned long end_pfn = pfn + nr_pages; 1087 int ret, i; 1088 1089 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1090 if (ret) 1091 return ret; 1092 1093 /* 1094 * Memory block is accessible at this stage and hence poison the struct 1095 * pages now. If the memory block is accessible during memory hotplug 1096 * addition phase, then page poisining is already performed in 1097 * sparse_add_section(). 1098 */ 1099 if (mhp_off_inaccessible) 1100 page_init_poison(pfn_to_page(pfn), sizeof(struct page) * nr_pages); 1101 1102 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE); 1103 1104 for (i = 0; i < nr_pages; i++) { 1105 struct page *page = pfn_to_page(pfn + i); 1106 1107 __ClearPageOffline(page); 1108 SetPageVmemmapSelfHosted(page); 1109 } 1110 1111 /* 1112 * It might be that the vmemmap_pages fully span sections. If that is 1113 * the case, mark those sections online here as otherwise they will be 1114 * left offline. 1115 */ 1116 if (nr_pages >= PAGES_PER_SECTION) 1117 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1118 1119 return ret; 1120 } 1121 1122 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages) 1123 { 1124 unsigned long end_pfn = pfn + nr_pages; 1125 1126 /* 1127 * It might be that the vmemmap_pages fully span sections. If that is 1128 * the case, mark those sections offline here as otherwise they will be 1129 * left online. 1130 */ 1131 if (nr_pages >= PAGES_PER_SECTION) 1132 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1133 1134 /* 1135 * The pages associated with this vmemmap have been offlined, so 1136 * we can reset its state here. 1137 */ 1138 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages); 1139 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1140 } 1141 1142 /* 1143 * Must be called with mem_hotplug_lock in write mode. 1144 */ 1145 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, 1146 struct zone *zone, struct memory_group *group) 1147 { 1148 unsigned long flags; 1149 int need_zonelists_rebuild = 0; 1150 const int nid = zone_to_nid(zone); 1151 int ret; 1152 struct memory_notify arg; 1153 1154 /* 1155 * {on,off}lining is constrained to full memory sections (or more 1156 * precisely to memory blocks from the user space POV). 1157 * memmap_on_memory is an exception because it reserves initial part 1158 * of the physical memory space for vmemmaps. That space is pageblock 1159 * aligned. 1160 */ 1161 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) || 1162 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION))) 1163 return -EINVAL; 1164 1165 1166 /* associate pfn range with the zone */ 1167 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE); 1168 1169 arg.start_pfn = pfn; 1170 arg.nr_pages = nr_pages; 1171 node_states_check_changes_online(nr_pages, zone, &arg); 1172 1173 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1174 ret = notifier_to_errno(ret); 1175 if (ret) 1176 goto failed_addition; 1177 1178 /* 1179 * Fixup the number of isolated pageblocks before marking the sections 1180 * onlining, such that undo_isolate_page_range() works correctly. 1181 */ 1182 spin_lock_irqsave(&zone->lock, flags); 1183 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages; 1184 spin_unlock_irqrestore(&zone->lock, flags); 1185 1186 /* 1187 * If this zone is not populated, then it is not in zonelist. 1188 * This means the page allocator ignores this zone. 1189 * So, zonelist must be updated after online. 1190 */ 1191 if (!populated_zone(zone)) { 1192 need_zonelists_rebuild = 1; 1193 setup_zone_pageset(zone); 1194 } 1195 1196 online_pages_range(pfn, nr_pages); 1197 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages); 1198 1199 node_states_set_node(nid, &arg); 1200 if (need_zonelists_rebuild) 1201 build_all_zonelists(NULL); 1202 1203 /* Basic onlining is complete, allow allocation of onlined pages. */ 1204 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE); 1205 1206 /* 1207 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to 1208 * the tail of the freelist when undoing isolation). Shuffle the whole 1209 * zone to make sure the just onlined pages are properly distributed 1210 * across the whole freelist - to create an initial shuffle. 1211 */ 1212 shuffle_zone(zone); 1213 1214 /* reinitialise watermarks and update pcp limits */ 1215 init_per_zone_wmark_min(); 1216 1217 kswapd_run(nid); 1218 kcompactd_run(nid); 1219 1220 writeback_set_ratelimit(); 1221 1222 memory_notify(MEM_ONLINE, &arg); 1223 return 0; 1224 1225 failed_addition: 1226 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 1227 (unsigned long long) pfn << PAGE_SHIFT, 1228 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 1229 memory_notify(MEM_CANCEL_ONLINE, &arg); 1230 remove_pfn_range_from_zone(zone, pfn, nr_pages); 1231 return ret; 1232 } 1233 1234 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1235 static pg_data_t __ref *hotadd_init_pgdat(int nid) 1236 { 1237 struct pglist_data *pgdat; 1238 1239 /* 1240 * NODE_DATA is preallocated (free_area_init) but its internal 1241 * state is not allocated completely. Add missing pieces. 1242 * Completely offline nodes stay around and they just need 1243 * reintialization. 1244 */ 1245 pgdat = NODE_DATA(nid); 1246 1247 /* init node's zones as empty zones, we don't have any present pages.*/ 1248 free_area_init_core_hotplug(pgdat); 1249 1250 /* 1251 * The node we allocated has no zone fallback lists. For avoiding 1252 * to access not-initialized zonelist, build here. 1253 */ 1254 build_all_zonelists(pgdat); 1255 1256 return pgdat; 1257 } 1258 1259 /* 1260 * __try_online_node - online a node if offlined 1261 * @nid: the node ID 1262 * @set_node_online: Whether we want to online the node 1263 * called by cpu_up() to online a node without onlined memory. 1264 * 1265 * Returns: 1266 * 1 -> a new node has been allocated 1267 * 0 -> the node is already online 1268 * -ENOMEM -> the node could not be allocated 1269 */ 1270 static int __try_online_node(int nid, bool set_node_online) 1271 { 1272 pg_data_t *pgdat; 1273 int ret = 1; 1274 1275 if (node_online(nid)) 1276 return 0; 1277 1278 pgdat = hotadd_init_pgdat(nid); 1279 if (!pgdat) { 1280 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1281 ret = -ENOMEM; 1282 goto out; 1283 } 1284 1285 if (set_node_online) { 1286 node_set_online(nid); 1287 ret = register_one_node(nid); 1288 BUG_ON(ret); 1289 } 1290 out: 1291 return ret; 1292 } 1293 1294 /* 1295 * Users of this function always want to online/register the node 1296 */ 1297 int try_online_node(int nid) 1298 { 1299 int ret; 1300 1301 mem_hotplug_begin(); 1302 ret = __try_online_node(nid, true); 1303 mem_hotplug_done(); 1304 return ret; 1305 } 1306 1307 static int check_hotplug_memory_range(u64 start, u64 size) 1308 { 1309 /* memory range must be block size aligned */ 1310 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1311 !IS_ALIGNED(size, memory_block_size_bytes())) { 1312 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1313 memory_block_size_bytes(), start, size); 1314 return -EINVAL; 1315 } 1316 1317 return 0; 1318 } 1319 1320 static int online_memory_block(struct memory_block *mem, void *arg) 1321 { 1322 mem->online_type = mhp_default_online_type; 1323 return device_online(&mem->dev); 1324 } 1325 1326 #ifndef arch_supports_memmap_on_memory 1327 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size) 1328 { 1329 /* 1330 * As default, we want the vmemmap to span a complete PMD such that we 1331 * can map the vmemmap using a single PMD if supported by the 1332 * architecture. 1333 */ 1334 return IS_ALIGNED(vmemmap_size, PMD_SIZE); 1335 } 1336 #endif 1337 1338 bool mhp_supports_memmap_on_memory(void) 1339 { 1340 unsigned long vmemmap_size = memory_block_memmap_size(); 1341 unsigned long memmap_pages = memory_block_memmap_on_memory_pages(); 1342 1343 /* 1344 * Besides having arch support and the feature enabled at runtime, we 1345 * need a few more assumptions to hold true: 1346 * 1347 * a) The vmemmap pages span complete PMDs: We don't want vmemmap code 1348 * to populate memory from the altmap for unrelated parts (i.e., 1349 * other memory blocks) 1350 * 1351 * b) The vmemmap pages (and thereby the pages that will be exposed to 1352 * the buddy) have to cover full pageblocks: memory onlining/offlining 1353 * code requires applicable ranges to be page-aligned, for example, to 1354 * set the migratetypes properly. 1355 * 1356 * TODO: Although we have a check here to make sure that vmemmap pages 1357 * fully populate a PMD, it is not the right place to check for 1358 * this. A much better solution involves improving vmemmap code 1359 * to fallback to base pages when trying to populate vmemmap using 1360 * altmap as an alternative source of memory, and we do not exactly 1361 * populate a single PMD. 1362 */ 1363 if (!mhp_memmap_on_memory()) 1364 return false; 1365 1366 /* 1367 * Make sure the vmemmap allocation is fully contained 1368 * so that we always allocate vmemmap memory from altmap area. 1369 */ 1370 if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE)) 1371 return false; 1372 1373 /* 1374 * start pfn should be pageblock_nr_pages aligned for correctly 1375 * setting migrate types 1376 */ 1377 if (!pageblock_aligned(memmap_pages)) 1378 return false; 1379 1380 if (memmap_pages == PHYS_PFN(memory_block_size_bytes())) 1381 /* No effective hotplugged memory doesn't make sense. */ 1382 return false; 1383 1384 return arch_supports_memmap_on_memory(vmemmap_size); 1385 } 1386 EXPORT_SYMBOL_GPL(mhp_supports_memmap_on_memory); 1387 1388 static void __ref remove_memory_blocks_and_altmaps(u64 start, u64 size) 1389 { 1390 unsigned long memblock_size = memory_block_size_bytes(); 1391 u64 cur_start; 1392 1393 /* 1394 * For memmap_on_memory, the altmaps were added on a per-memblock 1395 * basis; we have to process each individual memory block. 1396 */ 1397 for (cur_start = start; cur_start < start + size; 1398 cur_start += memblock_size) { 1399 struct vmem_altmap *altmap = NULL; 1400 struct memory_block *mem; 1401 1402 mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start))); 1403 if (WARN_ON_ONCE(!mem)) 1404 continue; 1405 1406 altmap = mem->altmap; 1407 mem->altmap = NULL; 1408 1409 remove_memory_block_devices(cur_start, memblock_size); 1410 1411 arch_remove_memory(cur_start, memblock_size, altmap); 1412 1413 /* Verify that all vmemmap pages have actually been freed. */ 1414 WARN(altmap->alloc, "Altmap not fully unmapped"); 1415 kfree(altmap); 1416 } 1417 } 1418 1419 static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group, 1420 u64 start, u64 size, mhp_t mhp_flags) 1421 { 1422 unsigned long memblock_size = memory_block_size_bytes(); 1423 u64 cur_start; 1424 int ret; 1425 1426 for (cur_start = start; cur_start < start + size; 1427 cur_start += memblock_size) { 1428 struct mhp_params params = { .pgprot = 1429 pgprot_mhp(PAGE_KERNEL) }; 1430 struct vmem_altmap mhp_altmap = { 1431 .base_pfn = PHYS_PFN(cur_start), 1432 .end_pfn = PHYS_PFN(cur_start + memblock_size - 1), 1433 }; 1434 1435 mhp_altmap.free = memory_block_memmap_on_memory_pages(); 1436 if (mhp_flags & MHP_OFFLINE_INACCESSIBLE) 1437 mhp_altmap.inaccessible = true; 1438 params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap), 1439 GFP_KERNEL); 1440 if (!params.altmap) { 1441 ret = -ENOMEM; 1442 goto out; 1443 } 1444 1445 /* call arch's memory hotadd */ 1446 ret = arch_add_memory(nid, cur_start, memblock_size, ¶ms); 1447 if (ret < 0) { 1448 kfree(params.altmap); 1449 goto out; 1450 } 1451 1452 /* create memory block devices after memory was added */ 1453 ret = create_memory_block_devices(cur_start, memblock_size, 1454 params.altmap, group); 1455 if (ret) { 1456 arch_remove_memory(cur_start, memblock_size, NULL); 1457 kfree(params.altmap); 1458 goto out; 1459 } 1460 } 1461 1462 return 0; 1463 out: 1464 if (ret && cur_start != start) 1465 remove_memory_blocks_and_altmaps(start, cur_start - start); 1466 return ret; 1467 } 1468 1469 /* 1470 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1471 * and online/offline operations (triggered e.g. by sysfs). 1472 * 1473 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1474 */ 1475 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) 1476 { 1477 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) }; 1478 enum memblock_flags memblock_flags = MEMBLOCK_NONE; 1479 struct memory_group *group = NULL; 1480 u64 start, size; 1481 bool new_node = false; 1482 int ret; 1483 1484 start = res->start; 1485 size = resource_size(res); 1486 1487 ret = check_hotplug_memory_range(start, size); 1488 if (ret) 1489 return ret; 1490 1491 if (mhp_flags & MHP_NID_IS_MGID) { 1492 group = memory_group_find_by_id(nid); 1493 if (!group) 1494 return -EINVAL; 1495 nid = group->nid; 1496 } 1497 1498 if (!node_possible(nid)) { 1499 WARN(1, "node %d was absent from the node_possible_map\n", nid); 1500 return -EINVAL; 1501 } 1502 1503 mem_hotplug_begin(); 1504 1505 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 1506 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 1507 memblock_flags = MEMBLOCK_DRIVER_MANAGED; 1508 ret = memblock_add_node(start, size, nid, memblock_flags); 1509 if (ret) 1510 goto error_mem_hotplug_end; 1511 } 1512 1513 ret = __try_online_node(nid, false); 1514 if (ret < 0) 1515 goto error; 1516 new_node = ret; 1517 1518 /* 1519 * Self hosted memmap array 1520 */ 1521 if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) && 1522 mhp_supports_memmap_on_memory()) { 1523 ret = create_altmaps_and_memory_blocks(nid, group, start, size, mhp_flags); 1524 if (ret) 1525 goto error; 1526 } else { 1527 ret = arch_add_memory(nid, start, size, ¶ms); 1528 if (ret < 0) 1529 goto error; 1530 1531 /* create memory block devices after memory was added */ 1532 ret = create_memory_block_devices(start, size, NULL, group); 1533 if (ret) { 1534 arch_remove_memory(start, size, params.altmap); 1535 goto error; 1536 } 1537 } 1538 1539 if (new_node) { 1540 /* If sysfs file of new node can't be created, cpu on the node 1541 * can't be hot-added. There is no rollback way now. 1542 * So, check by BUG_ON() to catch it reluctantly.. 1543 * We online node here. We can't roll back from here. 1544 */ 1545 node_set_online(nid); 1546 ret = __register_one_node(nid); 1547 BUG_ON(ret); 1548 } 1549 1550 register_memory_blocks_under_node(nid, PFN_DOWN(start), 1551 PFN_UP(start + size - 1), 1552 MEMINIT_HOTPLUG); 1553 1554 /* create new memmap entry */ 1555 if (!strcmp(res->name, "System RAM")) 1556 firmware_map_add_hotplug(start, start + size, "System RAM"); 1557 1558 /* device_online() will take the lock when calling online_pages() */ 1559 mem_hotplug_done(); 1560 1561 /* 1562 * In case we're allowed to merge the resource, flag it and trigger 1563 * merging now that adding succeeded. 1564 */ 1565 if (mhp_flags & MHP_MERGE_RESOURCE) 1566 merge_system_ram_resource(res); 1567 1568 /* online pages if requested */ 1569 if (mhp_default_online_type != MMOP_OFFLINE) 1570 walk_memory_blocks(start, size, NULL, online_memory_block); 1571 1572 return ret; 1573 error: 1574 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1575 memblock_remove(start, size); 1576 error_mem_hotplug_end: 1577 mem_hotplug_done(); 1578 return ret; 1579 } 1580 1581 /* requires device_hotplug_lock, see add_memory_resource() */ 1582 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1583 { 1584 struct resource *res; 1585 int ret; 1586 1587 res = register_memory_resource(start, size, "System RAM"); 1588 if (IS_ERR(res)) 1589 return PTR_ERR(res); 1590 1591 ret = add_memory_resource(nid, res, mhp_flags); 1592 if (ret < 0) 1593 release_memory_resource(res); 1594 return ret; 1595 } 1596 1597 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1598 { 1599 int rc; 1600 1601 lock_device_hotplug(); 1602 rc = __add_memory(nid, start, size, mhp_flags); 1603 unlock_device_hotplug(); 1604 1605 return rc; 1606 } 1607 EXPORT_SYMBOL_GPL(add_memory); 1608 1609 /* 1610 * Add special, driver-managed memory to the system as system RAM. Such 1611 * memory is not exposed via the raw firmware-provided memmap as system 1612 * RAM, instead, it is detected and added by a driver - during cold boot, 1613 * after a reboot, and after kexec. 1614 * 1615 * Reasons why this memory should not be used for the initial memmap of a 1616 * kexec kernel or for placing kexec images: 1617 * - The booting kernel is in charge of determining how this memory will be 1618 * used (e.g., use persistent memory as system RAM) 1619 * - Coordination with a hypervisor is required before this memory 1620 * can be used (e.g., inaccessible parts). 1621 * 1622 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided 1623 * memory map") are created. Also, the created memory resource is flagged 1624 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case 1625 * this memory as well (esp., not place kexec images onto it). 1626 * 1627 * The resource_name (visible via /proc/iomem) has to have the format 1628 * "System RAM ($DRIVER)". 1629 */ 1630 int add_memory_driver_managed(int nid, u64 start, u64 size, 1631 const char *resource_name, mhp_t mhp_flags) 1632 { 1633 struct resource *res; 1634 int rc; 1635 1636 if (!resource_name || 1637 strstr(resource_name, "System RAM (") != resource_name || 1638 resource_name[strlen(resource_name) - 1] != ')') 1639 return -EINVAL; 1640 1641 lock_device_hotplug(); 1642 1643 res = register_memory_resource(start, size, resource_name); 1644 if (IS_ERR(res)) { 1645 rc = PTR_ERR(res); 1646 goto out_unlock; 1647 } 1648 1649 rc = add_memory_resource(nid, res, mhp_flags); 1650 if (rc < 0) 1651 release_memory_resource(res); 1652 1653 out_unlock: 1654 unlock_device_hotplug(); 1655 return rc; 1656 } 1657 EXPORT_SYMBOL_GPL(add_memory_driver_managed); 1658 1659 /* 1660 * Platforms should define arch_get_mappable_range() that provides 1661 * maximum possible addressable physical memory range for which the 1662 * linear mapping could be created. The platform returned address 1663 * range must adhere to these following semantics. 1664 * 1665 * - range.start <= range.end 1666 * - Range includes both end points [range.start..range.end] 1667 * 1668 * There is also a fallback definition provided here, allowing the 1669 * entire possible physical address range in case any platform does 1670 * not define arch_get_mappable_range(). 1671 */ 1672 struct range __weak arch_get_mappable_range(void) 1673 { 1674 struct range mhp_range = { 1675 .start = 0UL, 1676 .end = -1ULL, 1677 }; 1678 return mhp_range; 1679 } 1680 1681 struct range mhp_get_pluggable_range(bool need_mapping) 1682 { 1683 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1; 1684 struct range mhp_range; 1685 1686 if (need_mapping) { 1687 mhp_range = arch_get_mappable_range(); 1688 if (mhp_range.start > max_phys) { 1689 mhp_range.start = 0; 1690 mhp_range.end = 0; 1691 } 1692 mhp_range.end = min_t(u64, mhp_range.end, max_phys); 1693 } else { 1694 mhp_range.start = 0; 1695 mhp_range.end = max_phys; 1696 } 1697 return mhp_range; 1698 } 1699 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range); 1700 1701 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping) 1702 { 1703 struct range mhp_range = mhp_get_pluggable_range(need_mapping); 1704 u64 end = start + size; 1705 1706 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end) 1707 return true; 1708 1709 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n", 1710 start, end, mhp_range.start, mhp_range.end); 1711 return false; 1712 } 1713 1714 #ifdef CONFIG_MEMORY_HOTREMOVE 1715 /* 1716 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1717 * non-lru movable pages and hugepages). Will skip over most unmovable 1718 * pages (esp., pages that can be skipped when offlining), but bail out on 1719 * definitely unmovable pages. 1720 * 1721 * Returns: 1722 * 0 in case a movable page is found and movable_pfn was updated. 1723 * -ENOENT in case no movable page was found. 1724 * -EBUSY in case a definitely unmovable page was found. 1725 */ 1726 static int scan_movable_pages(unsigned long start, unsigned long end, 1727 unsigned long *movable_pfn) 1728 { 1729 unsigned long pfn; 1730 1731 for (pfn = start; pfn < end; pfn++) { 1732 struct page *page; 1733 struct folio *folio; 1734 1735 if (!pfn_valid(pfn)) 1736 continue; 1737 page = pfn_to_page(pfn); 1738 if (PageLRU(page)) 1739 goto found; 1740 if (__PageMovable(page)) 1741 goto found; 1742 1743 /* 1744 * PageOffline() pages that are not marked __PageMovable() and 1745 * have a reference count > 0 (after MEM_GOING_OFFLINE) are 1746 * definitely unmovable. If their reference count would be 0, 1747 * they could at least be skipped when offlining memory. 1748 */ 1749 if (PageOffline(page) && page_count(page)) 1750 return -EBUSY; 1751 1752 if (!PageHuge(page)) 1753 continue; 1754 folio = page_folio(page); 1755 /* 1756 * This test is racy as we hold no reference or lock. The 1757 * hugetlb page could have been free'ed and head is no longer 1758 * a hugetlb page before the following check. In such unlikely 1759 * cases false positives and negatives are possible. Calling 1760 * code must deal with these scenarios. 1761 */ 1762 if (folio_test_hugetlb_migratable(folio)) 1763 goto found; 1764 pfn |= folio_nr_pages(folio) - 1; 1765 } 1766 return -ENOENT; 1767 found: 1768 *movable_pfn = pfn; 1769 return 0; 1770 } 1771 1772 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1773 { 1774 unsigned long pfn; 1775 struct page *page, *head; 1776 LIST_HEAD(source); 1777 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL, 1778 DEFAULT_RATELIMIT_BURST); 1779 1780 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1781 struct folio *folio; 1782 bool isolated; 1783 1784 if (!pfn_valid(pfn)) 1785 continue; 1786 page = pfn_to_page(pfn); 1787 folio = page_folio(page); 1788 head = &folio->page; 1789 1790 if (PageHuge(page)) { 1791 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1792 isolate_hugetlb(folio, &source); 1793 continue; 1794 } else if (PageTransHuge(page)) 1795 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1; 1796 1797 /* 1798 * HWPoison pages have elevated reference counts so the migration would 1799 * fail on them. It also doesn't make any sense to migrate them in the 1800 * first place. Still try to unmap such a page in case it is still mapped 1801 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1802 * the unmap as the catch all safety net). 1803 */ 1804 if (PageHWPoison(page)) { 1805 if (WARN_ON(folio_test_lru(folio))) 1806 folio_isolate_lru(folio); 1807 if (folio_mapped(folio)) 1808 try_to_unmap(folio, TTU_IGNORE_MLOCK); 1809 continue; 1810 } 1811 1812 if (!get_page_unless_zero(page)) 1813 continue; 1814 /* 1815 * We can skip free pages. And we can deal with pages on 1816 * LRU and non-lru movable pages. 1817 */ 1818 if (PageLRU(page)) 1819 isolated = isolate_lru_page(page); 1820 else 1821 isolated = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1822 if (isolated) { 1823 list_add_tail(&page->lru, &source); 1824 if (!__PageMovable(page)) 1825 inc_node_page_state(page, NR_ISOLATED_ANON + 1826 page_is_file_lru(page)); 1827 1828 } else { 1829 if (__ratelimit(&migrate_rs)) { 1830 pr_warn("failed to isolate pfn %lx\n", pfn); 1831 dump_page(page, "isolation failed"); 1832 } 1833 } 1834 put_page(page); 1835 } 1836 if (!list_empty(&source)) { 1837 nodemask_t nmask = node_states[N_MEMORY]; 1838 struct migration_target_control mtc = { 1839 .nmask = &nmask, 1840 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1841 .reason = MR_MEMORY_HOTPLUG, 1842 }; 1843 int ret; 1844 1845 /* 1846 * We have checked that migration range is on a single zone so 1847 * we can use the nid of the first page to all the others. 1848 */ 1849 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru)); 1850 1851 /* 1852 * try to allocate from a different node but reuse this node 1853 * if there are no other online nodes to be used (e.g. we are 1854 * offlining a part of the only existing node) 1855 */ 1856 node_clear(mtc.nid, nmask); 1857 if (nodes_empty(nmask)) 1858 node_set(mtc.nid, nmask); 1859 ret = migrate_pages(&source, alloc_migration_target, NULL, 1860 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL); 1861 if (ret) { 1862 list_for_each_entry(page, &source, lru) { 1863 if (__ratelimit(&migrate_rs)) { 1864 pr_warn("migrating pfn %lx failed ret:%d\n", 1865 page_to_pfn(page), ret); 1866 dump_page(page, "migration failure"); 1867 } 1868 } 1869 putback_movable_pages(&source); 1870 } 1871 } 1872 } 1873 1874 static int __init cmdline_parse_movable_node(char *p) 1875 { 1876 movable_node_enabled = true; 1877 return 0; 1878 } 1879 early_param("movable_node", cmdline_parse_movable_node); 1880 1881 /* check which state of node_states will be changed when offline memory */ 1882 static void node_states_check_changes_offline(unsigned long nr_pages, 1883 struct zone *zone, struct memory_notify *arg) 1884 { 1885 struct pglist_data *pgdat = zone->zone_pgdat; 1886 unsigned long present_pages = 0; 1887 enum zone_type zt; 1888 1889 arg->status_change_nid = NUMA_NO_NODE; 1890 arg->status_change_nid_normal = NUMA_NO_NODE; 1891 1892 /* 1893 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1894 * If the memory to be offline is within the range 1895 * [0..ZONE_NORMAL], and it is the last present memory there, 1896 * the zones in that range will become empty after the offlining, 1897 * thus we can determine that we need to clear the node from 1898 * node_states[N_NORMAL_MEMORY]. 1899 */ 1900 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1901 present_pages += pgdat->node_zones[zt].present_pages; 1902 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1903 arg->status_change_nid_normal = zone_to_nid(zone); 1904 1905 /* 1906 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM 1907 * does not apply as we don't support 32bit. 1908 * Here we count the possible pages from ZONE_MOVABLE. 1909 * If after having accounted all the pages, we see that the nr_pages 1910 * to be offlined is over or equal to the accounted pages, 1911 * we know that the node will become empty, and so, we can clear 1912 * it for N_MEMORY as well. 1913 */ 1914 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1915 1916 if (nr_pages >= present_pages) 1917 arg->status_change_nid = zone_to_nid(zone); 1918 } 1919 1920 static void node_states_clear_node(int node, struct memory_notify *arg) 1921 { 1922 if (arg->status_change_nid_normal >= 0) 1923 node_clear_state(node, N_NORMAL_MEMORY); 1924 1925 if (arg->status_change_nid >= 0) 1926 node_clear_state(node, N_MEMORY); 1927 } 1928 1929 static int count_system_ram_pages_cb(unsigned long start_pfn, 1930 unsigned long nr_pages, void *data) 1931 { 1932 unsigned long *nr_system_ram_pages = data; 1933 1934 *nr_system_ram_pages += nr_pages; 1935 return 0; 1936 } 1937 1938 /* 1939 * Must be called with mem_hotplug_lock in write mode. 1940 */ 1941 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages, 1942 struct zone *zone, struct memory_group *group) 1943 { 1944 const unsigned long end_pfn = start_pfn + nr_pages; 1945 unsigned long pfn, managed_pages, system_ram_pages = 0; 1946 const int node = zone_to_nid(zone); 1947 unsigned long flags; 1948 struct memory_notify arg; 1949 char *reason; 1950 int ret; 1951 1952 /* 1953 * {on,off}lining is constrained to full memory sections (or more 1954 * precisely to memory blocks from the user space POV). 1955 * memmap_on_memory is an exception because it reserves initial part 1956 * of the physical memory space for vmemmaps. That space is pageblock 1957 * aligned. 1958 */ 1959 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) || 1960 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))) 1961 return -EINVAL; 1962 1963 /* 1964 * Don't allow to offline memory blocks that contain holes. 1965 * Consequently, memory blocks with holes can never get onlined 1966 * via the hotplug path - online_pages() - as hotplugged memory has 1967 * no holes. This way, we don't have to worry about memory holes, 1968 * don't need pfn_valid() checks, and can avoid using 1969 * walk_system_ram_range() later. 1970 */ 1971 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages, 1972 count_system_ram_pages_cb); 1973 if (system_ram_pages != nr_pages) { 1974 ret = -EINVAL; 1975 reason = "memory holes"; 1976 goto failed_removal; 1977 } 1978 1979 /* 1980 * We only support offlining of memory blocks managed by a single zone, 1981 * checked by calling code. This is just a sanity check that we might 1982 * want to remove in the future. 1983 */ 1984 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone || 1985 page_zone(pfn_to_page(end_pfn - 1)) != zone)) { 1986 ret = -EINVAL; 1987 reason = "multizone range"; 1988 goto failed_removal; 1989 } 1990 1991 /* 1992 * Disable pcplists so that page isolation cannot race with freeing 1993 * in a way that pages from isolated pageblock are left on pcplists. 1994 */ 1995 zone_pcp_disable(zone); 1996 lru_cache_disable(); 1997 1998 /* set above range as isolated */ 1999 ret = start_isolate_page_range(start_pfn, end_pfn, 2000 MIGRATE_MOVABLE, 2001 MEMORY_OFFLINE | REPORT_FAILURE, 2002 GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL); 2003 if (ret) { 2004 reason = "failure to isolate range"; 2005 goto failed_removal_pcplists_disabled; 2006 } 2007 2008 arg.start_pfn = start_pfn; 2009 arg.nr_pages = nr_pages; 2010 node_states_check_changes_offline(nr_pages, zone, &arg); 2011 2012 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 2013 ret = notifier_to_errno(ret); 2014 if (ret) { 2015 reason = "notifier failure"; 2016 goto failed_removal_isolated; 2017 } 2018 2019 do { 2020 pfn = start_pfn; 2021 do { 2022 /* 2023 * Historically we always checked for any signal and 2024 * can't limit it to fatal signals without eventually 2025 * breaking user space. 2026 */ 2027 if (signal_pending(current)) { 2028 ret = -EINTR; 2029 reason = "signal backoff"; 2030 goto failed_removal_isolated; 2031 } 2032 2033 cond_resched(); 2034 2035 ret = scan_movable_pages(pfn, end_pfn, &pfn); 2036 if (!ret) { 2037 /* 2038 * TODO: fatal migration failures should bail 2039 * out 2040 */ 2041 do_migrate_range(pfn, end_pfn); 2042 } 2043 } while (!ret); 2044 2045 if (ret != -ENOENT) { 2046 reason = "unmovable page"; 2047 goto failed_removal_isolated; 2048 } 2049 2050 /* 2051 * Dissolve free hugetlb folios in the memory block before doing 2052 * offlining actually in order to make hugetlbfs's object 2053 * counting consistent. 2054 */ 2055 ret = dissolve_free_hugetlb_folios(start_pfn, end_pfn); 2056 if (ret) { 2057 reason = "failure to dissolve huge pages"; 2058 goto failed_removal_isolated; 2059 } 2060 2061 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE); 2062 2063 } while (ret); 2064 2065 /* Mark all sections offline and remove free pages from the buddy. */ 2066 managed_pages = __offline_isolated_pages(start_pfn, end_pfn); 2067 pr_debug("Offlined Pages %ld\n", nr_pages); 2068 2069 /* 2070 * The memory sections are marked offline, and the pageblock flags 2071 * effectively stale; nobody should be touching them. Fixup the number 2072 * of isolated pageblocks, memory onlining will properly revert this. 2073 */ 2074 spin_lock_irqsave(&zone->lock, flags); 2075 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages; 2076 spin_unlock_irqrestore(&zone->lock, flags); 2077 2078 lru_cache_enable(); 2079 zone_pcp_enable(zone); 2080 2081 /* removal success */ 2082 adjust_managed_page_count(pfn_to_page(start_pfn), -managed_pages); 2083 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages); 2084 2085 /* reinitialise watermarks and update pcp limits */ 2086 init_per_zone_wmark_min(); 2087 2088 /* 2089 * Make sure to mark the node as memory-less before rebuilding the zone 2090 * list. Otherwise this node would still appear in the fallback lists. 2091 */ 2092 node_states_clear_node(node, &arg); 2093 if (!populated_zone(zone)) { 2094 zone_pcp_reset(zone); 2095 build_all_zonelists(NULL); 2096 } 2097 2098 if (arg.status_change_nid >= 0) { 2099 kcompactd_stop(node); 2100 kswapd_stop(node); 2101 } 2102 2103 writeback_set_ratelimit(); 2104 2105 memory_notify(MEM_OFFLINE, &arg); 2106 remove_pfn_range_from_zone(zone, start_pfn, nr_pages); 2107 return 0; 2108 2109 failed_removal_isolated: 2110 /* pushback to free area */ 2111 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 2112 memory_notify(MEM_CANCEL_OFFLINE, &arg); 2113 failed_removal_pcplists_disabled: 2114 lru_cache_enable(); 2115 zone_pcp_enable(zone); 2116 failed_removal: 2117 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 2118 (unsigned long long) start_pfn << PAGE_SHIFT, 2119 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 2120 reason); 2121 return ret; 2122 } 2123 2124 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 2125 { 2126 int *nid = arg; 2127 2128 *nid = mem->nid; 2129 if (unlikely(mem->state != MEM_OFFLINE)) { 2130 phys_addr_t beginpa, endpa; 2131 2132 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 2133 endpa = beginpa + memory_block_size_bytes() - 1; 2134 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 2135 &beginpa, &endpa); 2136 2137 return -EBUSY; 2138 } 2139 return 0; 2140 } 2141 2142 static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg) 2143 { 2144 u64 *num_altmaps = (u64 *)arg; 2145 2146 if (mem->altmap) 2147 *num_altmaps += 1; 2148 2149 return 0; 2150 } 2151 2152 static int check_cpu_on_node(int nid) 2153 { 2154 int cpu; 2155 2156 for_each_present_cpu(cpu) { 2157 if (cpu_to_node(cpu) == nid) 2158 /* 2159 * the cpu on this node isn't removed, and we can't 2160 * offline this node. 2161 */ 2162 return -EBUSY; 2163 } 2164 2165 return 0; 2166 } 2167 2168 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) 2169 { 2170 int nid = *(int *)arg; 2171 2172 /* 2173 * If a memory block belongs to multiple nodes, the stored nid is not 2174 * reliable. However, such blocks are always online (e.g., cannot get 2175 * offlined) and, therefore, are still spanned by the node. 2176 */ 2177 return mem->nid == nid ? -EEXIST : 0; 2178 } 2179 2180 /** 2181 * try_offline_node 2182 * @nid: the node ID 2183 * 2184 * Offline a node if all memory sections and cpus of the node are removed. 2185 * 2186 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2187 * and online/offline operations before this call. 2188 */ 2189 void try_offline_node(int nid) 2190 { 2191 int rc; 2192 2193 /* 2194 * If the node still spans pages (especially ZONE_DEVICE), don't 2195 * offline it. A node spans memory after move_pfn_range_to_zone(), 2196 * e.g., after the memory block was onlined. 2197 */ 2198 if (node_spanned_pages(nid)) 2199 return; 2200 2201 /* 2202 * Especially offline memory blocks might not be spanned by the 2203 * node. They will get spanned by the node once they get onlined. 2204 * However, they link to the node in sysfs and can get onlined later. 2205 */ 2206 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); 2207 if (rc) 2208 return; 2209 2210 if (check_cpu_on_node(nid)) 2211 return; 2212 2213 /* 2214 * all memory/cpu of this node are removed, we can offline this 2215 * node now. 2216 */ 2217 node_set_offline(nid); 2218 unregister_one_node(nid); 2219 } 2220 EXPORT_SYMBOL(try_offline_node); 2221 2222 static int memory_blocks_have_altmaps(u64 start, u64 size) 2223 { 2224 u64 num_memblocks = size / memory_block_size_bytes(); 2225 u64 num_altmaps = 0; 2226 2227 if (!mhp_memmap_on_memory()) 2228 return 0; 2229 2230 walk_memory_blocks(start, size, &num_altmaps, 2231 count_memory_range_altmaps_cb); 2232 2233 if (num_altmaps == 0) 2234 return 0; 2235 2236 if (WARN_ON_ONCE(num_memblocks != num_altmaps)) 2237 return -EINVAL; 2238 2239 return 1; 2240 } 2241 2242 static int __ref try_remove_memory(u64 start, u64 size) 2243 { 2244 int rc, nid = NUMA_NO_NODE; 2245 2246 BUG_ON(check_hotplug_memory_range(start, size)); 2247 2248 /* 2249 * All memory blocks must be offlined before removing memory. Check 2250 * whether all memory blocks in question are offline and return error 2251 * if this is not the case. 2252 * 2253 * While at it, determine the nid. Note that if we'd have mixed nodes, 2254 * we'd only try to offline the last determined one -- which is good 2255 * enough for the cases we care about. 2256 */ 2257 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb); 2258 if (rc) 2259 return rc; 2260 2261 /* remove memmap entry */ 2262 firmware_map_remove(start, start + size, "System RAM"); 2263 2264 mem_hotplug_begin(); 2265 2266 rc = memory_blocks_have_altmaps(start, size); 2267 if (rc < 0) { 2268 mem_hotplug_done(); 2269 return rc; 2270 } else if (!rc) { 2271 /* 2272 * Memory block device removal under the device_hotplug_lock is 2273 * a barrier against racing online attempts. 2274 * No altmaps present, do the removal directly 2275 */ 2276 remove_memory_block_devices(start, size); 2277 arch_remove_memory(start, size, NULL); 2278 } else { 2279 /* all memblocks in the range have altmaps */ 2280 remove_memory_blocks_and_altmaps(start, size); 2281 } 2282 2283 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 2284 memblock_remove(start, size); 2285 2286 release_mem_region_adjustable(start, size); 2287 2288 if (nid != NUMA_NO_NODE) 2289 try_offline_node(nid); 2290 2291 mem_hotplug_done(); 2292 return 0; 2293 } 2294 2295 /** 2296 * __remove_memory - Remove memory if every memory block is offline 2297 * @start: physical address of the region to remove 2298 * @size: size of the region to remove 2299 * 2300 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2301 * and online/offline operations before this call, as required by 2302 * try_offline_node(). 2303 */ 2304 void __remove_memory(u64 start, u64 size) 2305 { 2306 2307 /* 2308 * trigger BUG() if some memory is not offlined prior to calling this 2309 * function 2310 */ 2311 if (try_remove_memory(start, size)) 2312 BUG(); 2313 } 2314 2315 /* 2316 * Remove memory if every memory block is offline, otherwise return -EBUSY is 2317 * some memory is not offline 2318 */ 2319 int remove_memory(u64 start, u64 size) 2320 { 2321 int rc; 2322 2323 lock_device_hotplug(); 2324 rc = try_remove_memory(start, size); 2325 unlock_device_hotplug(); 2326 2327 return rc; 2328 } 2329 EXPORT_SYMBOL_GPL(remove_memory); 2330 2331 static int try_offline_memory_block(struct memory_block *mem, void *arg) 2332 { 2333 uint8_t online_type = MMOP_ONLINE_KERNEL; 2334 uint8_t **online_types = arg; 2335 struct page *page; 2336 int rc; 2337 2338 /* 2339 * Sense the online_type via the zone of the memory block. Offlining 2340 * with multiple zones within one memory block will be rejected 2341 * by offlining code ... so we don't care about that. 2342 */ 2343 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr)); 2344 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE) 2345 online_type = MMOP_ONLINE_MOVABLE; 2346 2347 rc = device_offline(&mem->dev); 2348 /* 2349 * Default is MMOP_OFFLINE - change it only if offlining succeeded, 2350 * so try_reonline_memory_block() can do the right thing. 2351 */ 2352 if (!rc) 2353 **online_types = online_type; 2354 2355 (*online_types)++; 2356 /* Ignore if already offline. */ 2357 return rc < 0 ? rc : 0; 2358 } 2359 2360 static int try_reonline_memory_block(struct memory_block *mem, void *arg) 2361 { 2362 uint8_t **online_types = arg; 2363 int rc; 2364 2365 if (**online_types != MMOP_OFFLINE) { 2366 mem->online_type = **online_types; 2367 rc = device_online(&mem->dev); 2368 if (rc < 0) 2369 pr_warn("%s: Failed to re-online memory: %d", 2370 __func__, rc); 2371 } 2372 2373 /* Continue processing all remaining memory blocks. */ 2374 (*online_types)++; 2375 return 0; 2376 } 2377 2378 /* 2379 * Try to offline and remove memory. Might take a long time to finish in case 2380 * memory is still in use. Primarily useful for memory devices that logically 2381 * unplugged all memory (so it's no longer in use) and want to offline + remove 2382 * that memory. 2383 */ 2384 int offline_and_remove_memory(u64 start, u64 size) 2385 { 2386 const unsigned long mb_count = size / memory_block_size_bytes(); 2387 uint8_t *online_types, *tmp; 2388 int rc; 2389 2390 if (!IS_ALIGNED(start, memory_block_size_bytes()) || 2391 !IS_ALIGNED(size, memory_block_size_bytes()) || !size) 2392 return -EINVAL; 2393 2394 /* 2395 * We'll remember the old online type of each memory block, so we can 2396 * try to revert whatever we did when offlining one memory block fails 2397 * after offlining some others succeeded. 2398 */ 2399 online_types = kmalloc_array(mb_count, sizeof(*online_types), 2400 GFP_KERNEL); 2401 if (!online_types) 2402 return -ENOMEM; 2403 /* 2404 * Initialize all states to MMOP_OFFLINE, so when we abort processing in 2405 * try_offline_memory_block(), we'll skip all unprocessed blocks in 2406 * try_reonline_memory_block(). 2407 */ 2408 memset(online_types, MMOP_OFFLINE, mb_count); 2409 2410 lock_device_hotplug(); 2411 2412 tmp = online_types; 2413 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block); 2414 2415 /* 2416 * In case we succeeded to offline all memory, remove it. 2417 * This cannot fail as it cannot get onlined in the meantime. 2418 */ 2419 if (!rc) { 2420 rc = try_remove_memory(start, size); 2421 if (rc) 2422 pr_err("%s: Failed to remove memory: %d", __func__, rc); 2423 } 2424 2425 /* 2426 * Rollback what we did. While memory onlining might theoretically fail 2427 * (nacked by a notifier), it barely ever happens. 2428 */ 2429 if (rc) { 2430 tmp = online_types; 2431 walk_memory_blocks(start, size, &tmp, 2432 try_reonline_memory_block); 2433 } 2434 unlock_device_hotplug(); 2435 2436 kfree(online_types); 2437 return rc; 2438 } 2439 EXPORT_SYMBOL_GPL(offline_and_remove_memory); 2440 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2441