xref: /linux-6.15/mm/memory_hotplug.c (revision 50f9481e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 
46 /*
47  * memory_hotplug.memmap_on_memory parameter
48  */
49 static bool memmap_on_memory __ro_after_init;
50 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
51 module_param(memmap_on_memory, bool, 0444);
52 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
53 #endif
54 
55 enum {
56 	ONLINE_POLICY_CONTIG_ZONES = 0,
57 	ONLINE_POLICY_AUTO_MOVABLE,
58 };
59 
60 static const char * const online_policy_to_str[] = {
61 	[ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
62 	[ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
63 };
64 
65 static int set_online_policy(const char *val, const struct kernel_param *kp)
66 {
67 	int ret = sysfs_match_string(online_policy_to_str, val);
68 
69 	if (ret < 0)
70 		return ret;
71 	*((int *)kp->arg) = ret;
72 	return 0;
73 }
74 
75 static int get_online_policy(char *buffer, const struct kernel_param *kp)
76 {
77 	return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
78 }
79 
80 /*
81  * memory_hotplug.online_policy: configure online behavior when onlining without
82  * specifying a zone (MMOP_ONLINE)
83  *
84  * "contig-zones": keep zone contiguous
85  * "auto-movable": online memory to ZONE_MOVABLE if the configuration
86  *                 (auto_movable_ratio, auto_movable_numa_aware) allows for it
87  */
88 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
89 static const struct kernel_param_ops online_policy_ops = {
90 	.set = set_online_policy,
91 	.get = get_online_policy,
92 };
93 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
94 MODULE_PARM_DESC(online_policy,
95 		"Set the online policy (\"contig-zones\", \"auto-movable\") "
96 		"Default: \"contig-zones\"");
97 
98 /*
99  * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
100  *
101  * The ratio represent an upper limit and the kernel might decide to not
102  * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
103  * doesn't allow for more MOVABLE memory.
104  */
105 static unsigned int auto_movable_ratio __read_mostly = 301;
106 module_param(auto_movable_ratio, uint, 0644);
107 MODULE_PARM_DESC(auto_movable_ratio,
108 		"Set the maximum ratio of MOVABLE:KERNEL memory in the system "
109 		"in percent for \"auto-movable\" online policy. Default: 301");
110 
111 /*
112  * memory_hotplug.auto_movable_numa_aware: consider numa node stats
113  */
114 #ifdef CONFIG_NUMA
115 static bool auto_movable_numa_aware __read_mostly = true;
116 module_param(auto_movable_numa_aware, bool, 0644);
117 MODULE_PARM_DESC(auto_movable_numa_aware,
118 		"Consider numa node stats in addition to global stats in "
119 		"\"auto-movable\" online policy. Default: true");
120 #endif /* CONFIG_NUMA */
121 
122 /*
123  * online_page_callback contains pointer to current page onlining function.
124  * Initially it is generic_online_page(). If it is required it could be
125  * changed by calling set_online_page_callback() for callback registration
126  * and restore_online_page_callback() for generic callback restore.
127  */
128 
129 static online_page_callback_t online_page_callback = generic_online_page;
130 static DEFINE_MUTEX(online_page_callback_lock);
131 
132 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
133 
134 void get_online_mems(void)
135 {
136 	percpu_down_read(&mem_hotplug_lock);
137 }
138 
139 void put_online_mems(void)
140 {
141 	percpu_up_read(&mem_hotplug_lock);
142 }
143 
144 bool movable_node_enabled = false;
145 
146 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
147 int mhp_default_online_type = MMOP_OFFLINE;
148 #else
149 int mhp_default_online_type = MMOP_ONLINE;
150 #endif
151 
152 static int __init setup_memhp_default_state(char *str)
153 {
154 	const int online_type = mhp_online_type_from_str(str);
155 
156 	if (online_type >= 0)
157 		mhp_default_online_type = online_type;
158 
159 	return 1;
160 }
161 __setup("memhp_default_state=", setup_memhp_default_state);
162 
163 void mem_hotplug_begin(void)
164 {
165 	cpus_read_lock();
166 	percpu_down_write(&mem_hotplug_lock);
167 }
168 
169 void mem_hotplug_done(void)
170 {
171 	percpu_up_write(&mem_hotplug_lock);
172 	cpus_read_unlock();
173 }
174 
175 u64 max_mem_size = U64_MAX;
176 
177 /* add this memory to iomem resource */
178 static struct resource *register_memory_resource(u64 start, u64 size,
179 						 const char *resource_name)
180 {
181 	struct resource *res;
182 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
183 
184 	if (strcmp(resource_name, "System RAM"))
185 		flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
186 
187 	if (!mhp_range_allowed(start, size, true))
188 		return ERR_PTR(-E2BIG);
189 
190 	/*
191 	 * Make sure value parsed from 'mem=' only restricts memory adding
192 	 * while booting, so that memory hotplug won't be impacted. Please
193 	 * refer to document of 'mem=' in kernel-parameters.txt for more
194 	 * details.
195 	 */
196 	if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
197 		return ERR_PTR(-E2BIG);
198 
199 	/*
200 	 * Request ownership of the new memory range.  This might be
201 	 * a child of an existing resource that was present but
202 	 * not marked as busy.
203 	 */
204 	res = __request_region(&iomem_resource, start, size,
205 			       resource_name, flags);
206 
207 	if (!res) {
208 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
209 				start, start + size);
210 		return ERR_PTR(-EEXIST);
211 	}
212 	return res;
213 }
214 
215 static void release_memory_resource(struct resource *res)
216 {
217 	if (!res)
218 		return;
219 	release_resource(res);
220 	kfree(res);
221 }
222 
223 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
224 		const char *reason)
225 {
226 	/*
227 	 * Disallow all operations smaller than a sub-section and only
228 	 * allow operations smaller than a section for
229 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
230 	 * enforces a larger memory_block_size_bytes() granularity for
231 	 * memory that will be marked online, so this check should only
232 	 * fire for direct arch_{add,remove}_memory() users outside of
233 	 * add_memory_resource().
234 	 */
235 	unsigned long min_align;
236 
237 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
238 		min_align = PAGES_PER_SUBSECTION;
239 	else
240 		min_align = PAGES_PER_SECTION;
241 	if (!IS_ALIGNED(pfn, min_align)
242 			|| !IS_ALIGNED(nr_pages, min_align)) {
243 		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
244 				reason, pfn, pfn + nr_pages - 1);
245 		return -EINVAL;
246 	}
247 	return 0;
248 }
249 
250 /*
251  * Return page for the valid pfn only if the page is online. All pfn
252  * walkers which rely on the fully initialized page->flags and others
253  * should use this rather than pfn_valid && pfn_to_page
254  */
255 struct page *pfn_to_online_page(unsigned long pfn)
256 {
257 	unsigned long nr = pfn_to_section_nr(pfn);
258 	struct dev_pagemap *pgmap;
259 	struct mem_section *ms;
260 
261 	if (nr >= NR_MEM_SECTIONS)
262 		return NULL;
263 
264 	ms = __nr_to_section(nr);
265 	if (!online_section(ms))
266 		return NULL;
267 
268 	/*
269 	 * Save some code text when online_section() +
270 	 * pfn_section_valid() are sufficient.
271 	 */
272 	if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
273 		return NULL;
274 
275 	if (!pfn_section_valid(ms, pfn))
276 		return NULL;
277 
278 	if (!online_device_section(ms))
279 		return pfn_to_page(pfn);
280 
281 	/*
282 	 * Slowpath: when ZONE_DEVICE collides with
283 	 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
284 	 * the section may be 'offline' but 'valid'. Only
285 	 * get_dev_pagemap() can determine sub-section online status.
286 	 */
287 	pgmap = get_dev_pagemap(pfn, NULL);
288 	put_dev_pagemap(pgmap);
289 
290 	/* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
291 	if (pgmap)
292 		return NULL;
293 
294 	return pfn_to_page(pfn);
295 }
296 EXPORT_SYMBOL_GPL(pfn_to_online_page);
297 
298 /*
299  * Reasonably generic function for adding memory.  It is
300  * expected that archs that support memory hotplug will
301  * call this function after deciding the zone to which to
302  * add the new pages.
303  */
304 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
305 		struct mhp_params *params)
306 {
307 	const unsigned long end_pfn = pfn + nr_pages;
308 	unsigned long cur_nr_pages;
309 	int err;
310 	struct vmem_altmap *altmap = params->altmap;
311 
312 	if (WARN_ON_ONCE(!params->pgprot.pgprot))
313 		return -EINVAL;
314 
315 	VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
316 
317 	if (altmap) {
318 		/*
319 		 * Validate altmap is within bounds of the total request
320 		 */
321 		if (altmap->base_pfn != pfn
322 				|| vmem_altmap_offset(altmap) > nr_pages) {
323 			pr_warn_once("memory add fail, invalid altmap\n");
324 			return -EINVAL;
325 		}
326 		altmap->alloc = 0;
327 	}
328 
329 	err = check_pfn_span(pfn, nr_pages, "add");
330 	if (err)
331 		return err;
332 
333 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
334 		/* Select all remaining pages up to the next section boundary */
335 		cur_nr_pages = min(end_pfn - pfn,
336 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
337 		err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
338 		if (err)
339 			break;
340 		cond_resched();
341 	}
342 	vmemmap_populate_print_last();
343 	return err;
344 }
345 
346 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
347 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
348 				     unsigned long start_pfn,
349 				     unsigned long end_pfn)
350 {
351 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
352 		if (unlikely(!pfn_to_online_page(start_pfn)))
353 			continue;
354 
355 		if (unlikely(pfn_to_nid(start_pfn) != nid))
356 			continue;
357 
358 		if (zone != page_zone(pfn_to_page(start_pfn)))
359 			continue;
360 
361 		return start_pfn;
362 	}
363 
364 	return 0;
365 }
366 
367 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
368 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
369 				    unsigned long start_pfn,
370 				    unsigned long end_pfn)
371 {
372 	unsigned long pfn;
373 
374 	/* pfn is the end pfn of a memory section. */
375 	pfn = end_pfn - 1;
376 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
377 		if (unlikely(!pfn_to_online_page(pfn)))
378 			continue;
379 
380 		if (unlikely(pfn_to_nid(pfn) != nid))
381 			continue;
382 
383 		if (zone != page_zone(pfn_to_page(pfn)))
384 			continue;
385 
386 		return pfn;
387 	}
388 
389 	return 0;
390 }
391 
392 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
393 			     unsigned long end_pfn)
394 {
395 	unsigned long pfn;
396 	int nid = zone_to_nid(zone);
397 
398 	if (zone->zone_start_pfn == start_pfn) {
399 		/*
400 		 * If the section is smallest section in the zone, it need
401 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
402 		 * In this case, we find second smallest valid mem_section
403 		 * for shrinking zone.
404 		 */
405 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
406 						zone_end_pfn(zone));
407 		if (pfn) {
408 			zone->spanned_pages = zone_end_pfn(zone) - pfn;
409 			zone->zone_start_pfn = pfn;
410 		} else {
411 			zone->zone_start_pfn = 0;
412 			zone->spanned_pages = 0;
413 		}
414 	} else if (zone_end_pfn(zone) == end_pfn) {
415 		/*
416 		 * If the section is biggest section in the zone, it need
417 		 * shrink zone->spanned_pages.
418 		 * In this case, we find second biggest valid mem_section for
419 		 * shrinking zone.
420 		 */
421 		pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
422 					       start_pfn);
423 		if (pfn)
424 			zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
425 		else {
426 			zone->zone_start_pfn = 0;
427 			zone->spanned_pages = 0;
428 		}
429 	}
430 }
431 
432 static void update_pgdat_span(struct pglist_data *pgdat)
433 {
434 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
435 	struct zone *zone;
436 
437 	for (zone = pgdat->node_zones;
438 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
439 		unsigned long end_pfn = zone_end_pfn(zone);
440 
441 		/* No need to lock the zones, they can't change. */
442 		if (!zone->spanned_pages)
443 			continue;
444 		if (!node_end_pfn) {
445 			node_start_pfn = zone->zone_start_pfn;
446 			node_end_pfn = end_pfn;
447 			continue;
448 		}
449 
450 		if (end_pfn > node_end_pfn)
451 			node_end_pfn = end_pfn;
452 		if (zone->zone_start_pfn < node_start_pfn)
453 			node_start_pfn = zone->zone_start_pfn;
454 	}
455 
456 	pgdat->node_start_pfn = node_start_pfn;
457 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
458 }
459 
460 void __ref remove_pfn_range_from_zone(struct zone *zone,
461 				      unsigned long start_pfn,
462 				      unsigned long nr_pages)
463 {
464 	const unsigned long end_pfn = start_pfn + nr_pages;
465 	struct pglist_data *pgdat = zone->zone_pgdat;
466 	unsigned long pfn, cur_nr_pages;
467 
468 	/* Poison struct pages because they are now uninitialized again. */
469 	for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
470 		cond_resched();
471 
472 		/* Select all remaining pages up to the next section boundary */
473 		cur_nr_pages =
474 			min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
475 		page_init_poison(pfn_to_page(pfn),
476 				 sizeof(struct page) * cur_nr_pages);
477 	}
478 
479 	/*
480 	 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
481 	 * we will not try to shrink the zones - which is okay as
482 	 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
483 	 */
484 	if (zone_is_zone_device(zone))
485 		return;
486 
487 	clear_zone_contiguous(zone);
488 
489 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
490 	update_pgdat_span(pgdat);
491 
492 	set_zone_contiguous(zone);
493 }
494 
495 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
496 			     unsigned long map_offset,
497 			     struct vmem_altmap *altmap)
498 {
499 	struct mem_section *ms = __pfn_to_section(pfn);
500 
501 	if (WARN_ON_ONCE(!valid_section(ms)))
502 		return;
503 
504 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
505 }
506 
507 /**
508  * __remove_pages() - remove sections of pages
509  * @pfn: starting pageframe (must be aligned to start of a section)
510  * @nr_pages: number of pages to remove (must be multiple of section size)
511  * @altmap: alternative device page map or %NULL if default memmap is used
512  *
513  * Generic helper function to remove section mappings and sysfs entries
514  * for the section of the memory we are removing. Caller needs to make
515  * sure that pages are marked reserved and zones are adjust properly by
516  * calling offline_pages().
517  */
518 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
519 		    struct vmem_altmap *altmap)
520 {
521 	const unsigned long end_pfn = pfn + nr_pages;
522 	unsigned long cur_nr_pages;
523 	unsigned long map_offset = 0;
524 
525 	map_offset = vmem_altmap_offset(altmap);
526 
527 	if (check_pfn_span(pfn, nr_pages, "remove"))
528 		return;
529 
530 	for (; pfn < end_pfn; pfn += cur_nr_pages) {
531 		cond_resched();
532 		/* Select all remaining pages up to the next section boundary */
533 		cur_nr_pages = min(end_pfn - pfn,
534 				   SECTION_ALIGN_UP(pfn + 1) - pfn);
535 		__remove_section(pfn, cur_nr_pages, map_offset, altmap);
536 		map_offset = 0;
537 	}
538 }
539 
540 int set_online_page_callback(online_page_callback_t callback)
541 {
542 	int rc = -EINVAL;
543 
544 	get_online_mems();
545 	mutex_lock(&online_page_callback_lock);
546 
547 	if (online_page_callback == generic_online_page) {
548 		online_page_callback = callback;
549 		rc = 0;
550 	}
551 
552 	mutex_unlock(&online_page_callback_lock);
553 	put_online_mems();
554 
555 	return rc;
556 }
557 EXPORT_SYMBOL_GPL(set_online_page_callback);
558 
559 int restore_online_page_callback(online_page_callback_t callback)
560 {
561 	int rc = -EINVAL;
562 
563 	get_online_mems();
564 	mutex_lock(&online_page_callback_lock);
565 
566 	if (online_page_callback == callback) {
567 		online_page_callback = generic_online_page;
568 		rc = 0;
569 	}
570 
571 	mutex_unlock(&online_page_callback_lock);
572 	put_online_mems();
573 
574 	return rc;
575 }
576 EXPORT_SYMBOL_GPL(restore_online_page_callback);
577 
578 void generic_online_page(struct page *page, unsigned int order)
579 {
580 	/*
581 	 * Freeing the page with debug_pagealloc enabled will try to unmap it,
582 	 * so we should map it first. This is better than introducing a special
583 	 * case in page freeing fast path.
584 	 */
585 	debug_pagealloc_map_pages(page, 1 << order);
586 	__free_pages_core(page, order);
587 	totalram_pages_add(1UL << order);
588 #ifdef CONFIG_HIGHMEM
589 	if (PageHighMem(page))
590 		totalhigh_pages_add(1UL << order);
591 #endif
592 }
593 EXPORT_SYMBOL_GPL(generic_online_page);
594 
595 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
596 {
597 	const unsigned long end_pfn = start_pfn + nr_pages;
598 	unsigned long pfn;
599 
600 	/*
601 	 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
602 	 * decide to not expose all pages to the buddy (e.g., expose them
603 	 * later). We account all pages as being online and belonging to this
604 	 * zone ("present").
605 	 * When using memmap_on_memory, the range might not be aligned to
606 	 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
607 	 * this and the first chunk to online will be pageblock_nr_pages.
608 	 */
609 	for (pfn = start_pfn; pfn < end_pfn;) {
610 		int order = min(MAX_ORDER - 1UL, __ffs(pfn));
611 
612 		(*online_page_callback)(pfn_to_page(pfn), order);
613 		pfn += (1UL << order);
614 	}
615 
616 	/* mark all involved sections as online */
617 	online_mem_sections(start_pfn, end_pfn);
618 }
619 
620 /* check which state of node_states will be changed when online memory */
621 static void node_states_check_changes_online(unsigned long nr_pages,
622 	struct zone *zone, struct memory_notify *arg)
623 {
624 	int nid = zone_to_nid(zone);
625 
626 	arg->status_change_nid = NUMA_NO_NODE;
627 	arg->status_change_nid_normal = NUMA_NO_NODE;
628 	arg->status_change_nid_high = NUMA_NO_NODE;
629 
630 	if (!node_state(nid, N_MEMORY))
631 		arg->status_change_nid = nid;
632 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
633 		arg->status_change_nid_normal = nid;
634 #ifdef CONFIG_HIGHMEM
635 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
636 		arg->status_change_nid_high = nid;
637 #endif
638 }
639 
640 static void node_states_set_node(int node, struct memory_notify *arg)
641 {
642 	if (arg->status_change_nid_normal >= 0)
643 		node_set_state(node, N_NORMAL_MEMORY);
644 
645 	if (arg->status_change_nid_high >= 0)
646 		node_set_state(node, N_HIGH_MEMORY);
647 
648 	if (arg->status_change_nid >= 0)
649 		node_set_state(node, N_MEMORY);
650 }
651 
652 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
653 		unsigned long nr_pages)
654 {
655 	unsigned long old_end_pfn = zone_end_pfn(zone);
656 
657 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
658 		zone->zone_start_pfn = start_pfn;
659 
660 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
661 }
662 
663 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
664                                      unsigned long nr_pages)
665 {
666 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
667 
668 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
669 		pgdat->node_start_pfn = start_pfn;
670 
671 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
672 
673 }
674 
675 static void section_taint_zone_device(unsigned long pfn)
676 {
677 	struct mem_section *ms = __pfn_to_section(pfn);
678 
679 	ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
680 }
681 
682 /*
683  * Associate the pfn range with the given zone, initializing the memmaps
684  * and resizing the pgdat/zone data to span the added pages. After this
685  * call, all affected pages are PG_reserved.
686  *
687  * All aligned pageblocks are initialized to the specified migratetype
688  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
689  * zone stats (e.g., nr_isolate_pageblock) are touched.
690  */
691 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
692 				  unsigned long nr_pages,
693 				  struct vmem_altmap *altmap, int migratetype)
694 {
695 	struct pglist_data *pgdat = zone->zone_pgdat;
696 	int nid = pgdat->node_id;
697 
698 	clear_zone_contiguous(zone);
699 
700 	if (zone_is_empty(zone))
701 		init_currently_empty_zone(zone, start_pfn, nr_pages);
702 	resize_zone_range(zone, start_pfn, nr_pages);
703 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
704 
705 	/*
706 	 * Subsection population requires care in pfn_to_online_page().
707 	 * Set the taint to enable the slow path detection of
708 	 * ZONE_DEVICE pages in an otherwise  ZONE_{NORMAL,MOVABLE}
709 	 * section.
710 	 */
711 	if (zone_is_zone_device(zone)) {
712 		if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
713 			section_taint_zone_device(start_pfn);
714 		if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
715 			section_taint_zone_device(start_pfn + nr_pages);
716 	}
717 
718 	/*
719 	 * TODO now we have a visible range of pages which are not associated
720 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
721 	 * expects the zone spans the pfn range. All the pages in the range
722 	 * are reserved so nobody should be touching them so we should be safe
723 	 */
724 	memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
725 			 MEMINIT_HOTPLUG, altmap, migratetype);
726 
727 	set_zone_contiguous(zone);
728 }
729 
730 struct auto_movable_stats {
731 	unsigned long kernel_early_pages;
732 	unsigned long movable_pages;
733 };
734 
735 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
736 					    struct zone *zone)
737 {
738 	if (zone_idx(zone) == ZONE_MOVABLE) {
739 		stats->movable_pages += zone->present_pages;
740 	} else {
741 		stats->kernel_early_pages += zone->present_early_pages;
742 #ifdef CONFIG_CMA
743 		/*
744 		 * CMA pages (never on hotplugged memory) behave like
745 		 * ZONE_MOVABLE.
746 		 */
747 		stats->movable_pages += zone->cma_pages;
748 		stats->kernel_early_pages -= zone->cma_pages;
749 #endif /* CONFIG_CMA */
750 	}
751 }
752 struct auto_movable_group_stats {
753 	unsigned long movable_pages;
754 	unsigned long req_kernel_early_pages;
755 };
756 
757 static int auto_movable_stats_account_group(struct memory_group *group,
758 					   void *arg)
759 {
760 	const int ratio = READ_ONCE(auto_movable_ratio);
761 	struct auto_movable_group_stats *stats = arg;
762 	long pages;
763 
764 	/*
765 	 * We don't support modifying the config while the auto-movable online
766 	 * policy is already enabled. Just avoid the division by zero below.
767 	 */
768 	if (!ratio)
769 		return 0;
770 
771 	/*
772 	 * Calculate how many early kernel pages this group requires to
773 	 * satisfy the configured zone ratio.
774 	 */
775 	pages = group->present_movable_pages * 100 / ratio;
776 	pages -= group->present_kernel_pages;
777 
778 	if (pages > 0)
779 		stats->req_kernel_early_pages += pages;
780 	stats->movable_pages += group->present_movable_pages;
781 	return 0;
782 }
783 
784 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
785 					    unsigned long nr_pages)
786 {
787 	unsigned long kernel_early_pages, movable_pages;
788 	struct auto_movable_group_stats group_stats = {};
789 	struct auto_movable_stats stats = {};
790 	pg_data_t *pgdat = NODE_DATA(nid);
791 	struct zone *zone;
792 	int i;
793 
794 	/* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
795 	if (nid == NUMA_NO_NODE) {
796 		/* TODO: cache values */
797 		for_each_populated_zone(zone)
798 			auto_movable_stats_account_zone(&stats, zone);
799 	} else {
800 		for (i = 0; i < MAX_NR_ZONES; i++) {
801 			zone = pgdat->node_zones + i;
802 			if (populated_zone(zone))
803 				auto_movable_stats_account_zone(&stats, zone);
804 		}
805 	}
806 
807 	kernel_early_pages = stats.kernel_early_pages;
808 	movable_pages = stats.movable_pages;
809 
810 	/*
811 	 * Kernel memory inside dynamic memory group allows for more MOVABLE
812 	 * memory within the same group. Remove the effect of all but the
813 	 * current group from the stats.
814 	 */
815 	walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
816 				   group, &group_stats);
817 	if (kernel_early_pages <= group_stats.req_kernel_early_pages)
818 		return false;
819 	kernel_early_pages -= group_stats.req_kernel_early_pages;
820 	movable_pages -= group_stats.movable_pages;
821 
822 	if (group && group->is_dynamic)
823 		kernel_early_pages += group->present_kernel_pages;
824 
825 	/*
826 	 * Test if we could online the given number of pages to ZONE_MOVABLE
827 	 * and still stay in the configured ratio.
828 	 */
829 	movable_pages += nr_pages;
830 	return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
831 }
832 
833 /*
834  * Returns a default kernel memory zone for the given pfn range.
835  * If no kernel zone covers this pfn range it will automatically go
836  * to the ZONE_NORMAL.
837  */
838 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
839 		unsigned long nr_pages)
840 {
841 	struct pglist_data *pgdat = NODE_DATA(nid);
842 	int zid;
843 
844 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
845 		struct zone *zone = &pgdat->node_zones[zid];
846 
847 		if (zone_intersects(zone, start_pfn, nr_pages))
848 			return zone;
849 	}
850 
851 	return &pgdat->node_zones[ZONE_NORMAL];
852 }
853 
854 /*
855  * Determine to which zone to online memory dynamically based on user
856  * configuration and system stats. We care about the following ratio:
857  *
858  *   MOVABLE : KERNEL
859  *
860  * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
861  * one of the kernel zones. CMA pages inside one of the kernel zones really
862  * behaves like ZONE_MOVABLE, so we treat them accordingly.
863  *
864  * We don't allow for hotplugged memory in a KERNEL zone to increase the
865  * amount of MOVABLE memory we can have, so we end up with:
866  *
867  *   MOVABLE : KERNEL_EARLY
868  *
869  * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
870  * boot. We base our calculation on KERNEL_EARLY internally, because:
871  *
872  * a) Hotplugged memory in one of the kernel zones can sometimes still get
873  *    hotunplugged, especially when hot(un)plugging individual memory blocks.
874  *    There is no coordination across memory devices, therefore "automatic"
875  *    hotunplugging, as implemented in hypervisors, could result in zone
876  *    imbalances.
877  * b) Early/boot memory in one of the kernel zones can usually not get
878  *    hotunplugged again (e.g., no firmware interface to unplug, fragmented
879  *    with unmovable allocations). While there are corner cases where it might
880  *    still work, it is barely relevant in practice.
881  *
882  * Exceptions are dynamic memory groups, which allow for more MOVABLE
883  * memory within the same memory group -- because in that case, there is
884  * coordination within the single memory device managed by a single driver.
885  *
886  * We rely on "present pages" instead of "managed pages", as the latter is
887  * highly unreliable and dynamic in virtualized environments, and does not
888  * consider boot time allocations. For example, memory ballooning adjusts the
889  * managed pages when inflating/deflating the balloon, and balloon compaction
890  * can even migrate inflated pages between zones.
891  *
892  * Using "present pages" is better but some things to keep in mind are:
893  *
894  * a) Some memblock allocations, such as for the crashkernel area, are
895  *    effectively unused by the kernel, yet they account to "present pages".
896  *    Fortunately, these allocations are comparatively small in relevant setups
897  *    (e.g., fraction of system memory).
898  * b) Some hotplugged memory blocks in virtualized environments, esecially
899  *    hotplugged by virtio-mem, look like they are completely present, however,
900  *    only parts of the memory block are actually currently usable.
901  *    "present pages" is an upper limit that can get reached at runtime. As
902  *    we base our calculations on KERNEL_EARLY, this is not an issue.
903  */
904 static struct zone *auto_movable_zone_for_pfn(int nid,
905 					      struct memory_group *group,
906 					      unsigned long pfn,
907 					      unsigned long nr_pages)
908 {
909 	unsigned long online_pages = 0, max_pages, end_pfn;
910 	struct page *page;
911 
912 	if (!auto_movable_ratio)
913 		goto kernel_zone;
914 
915 	if (group && !group->is_dynamic) {
916 		max_pages = group->s.max_pages;
917 		online_pages = group->present_movable_pages;
918 
919 		/* If anything is !MOVABLE online the rest !MOVABLE. */
920 		if (group->present_kernel_pages)
921 			goto kernel_zone;
922 	} else if (!group || group->d.unit_pages == nr_pages) {
923 		max_pages = nr_pages;
924 	} else {
925 		max_pages = group->d.unit_pages;
926 		/*
927 		 * Take a look at all online sections in the current unit.
928 		 * We can safely assume that all pages within a section belong
929 		 * to the same zone, because dynamic memory groups only deal
930 		 * with hotplugged memory.
931 		 */
932 		pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
933 		end_pfn = pfn + group->d.unit_pages;
934 		for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
935 			page = pfn_to_online_page(pfn);
936 			if (!page)
937 				continue;
938 			/* If anything is !MOVABLE online the rest !MOVABLE. */
939 			if (page_zonenum(page) != ZONE_MOVABLE)
940 				goto kernel_zone;
941 			online_pages += PAGES_PER_SECTION;
942 		}
943 	}
944 
945 	/*
946 	 * Online MOVABLE if we could *currently* online all remaining parts
947 	 * MOVABLE. We expect to (add+) online them immediately next, so if
948 	 * nobody interferes, all will be MOVABLE if possible.
949 	 */
950 	nr_pages = max_pages - online_pages;
951 	if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
952 		goto kernel_zone;
953 
954 #ifdef CONFIG_NUMA
955 	if (auto_movable_numa_aware &&
956 	    !auto_movable_can_online_movable(nid, group, nr_pages))
957 		goto kernel_zone;
958 #endif /* CONFIG_NUMA */
959 
960 	return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
961 kernel_zone:
962 	return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
963 }
964 
965 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
966 		unsigned long nr_pages)
967 {
968 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
969 			nr_pages);
970 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
971 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
972 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
973 
974 	/*
975 	 * We inherit the existing zone in a simple case where zones do not
976 	 * overlap in the given range
977 	 */
978 	if (in_kernel ^ in_movable)
979 		return (in_kernel) ? kernel_zone : movable_zone;
980 
981 	/*
982 	 * If the range doesn't belong to any zone or two zones overlap in the
983 	 * given range then we use movable zone only if movable_node is
984 	 * enabled because we always online to a kernel zone by default.
985 	 */
986 	return movable_node_enabled ? movable_zone : kernel_zone;
987 }
988 
989 struct zone *zone_for_pfn_range(int online_type, int nid,
990 		struct memory_group *group, unsigned long start_pfn,
991 		unsigned long nr_pages)
992 {
993 	if (online_type == MMOP_ONLINE_KERNEL)
994 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
995 
996 	if (online_type == MMOP_ONLINE_MOVABLE)
997 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
998 
999 	if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1000 		return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1001 
1002 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
1003 }
1004 
1005 /*
1006  * This function should only be called by memory_block_{online,offline},
1007  * and {online,offline}_pages.
1008  */
1009 void adjust_present_page_count(struct page *page, struct memory_group *group,
1010 			       long nr_pages)
1011 {
1012 	struct zone *zone = page_zone(page);
1013 	const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1014 
1015 	/*
1016 	 * We only support onlining/offlining/adding/removing of complete
1017 	 * memory blocks; therefore, either all is either early or hotplugged.
1018 	 */
1019 	if (early_section(__pfn_to_section(page_to_pfn(page))))
1020 		zone->present_early_pages += nr_pages;
1021 	zone->present_pages += nr_pages;
1022 	zone->zone_pgdat->node_present_pages += nr_pages;
1023 
1024 	if (group && movable)
1025 		group->present_movable_pages += nr_pages;
1026 	else if (group && !movable)
1027 		group->present_kernel_pages += nr_pages;
1028 }
1029 
1030 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1031 			      struct zone *zone)
1032 {
1033 	unsigned long end_pfn = pfn + nr_pages;
1034 	int ret;
1035 
1036 	ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1037 	if (ret)
1038 		return ret;
1039 
1040 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1041 
1042 	/*
1043 	 * It might be that the vmemmap_pages fully span sections. If that is
1044 	 * the case, mark those sections online here as otherwise they will be
1045 	 * left offline.
1046 	 */
1047 	if (nr_pages >= PAGES_PER_SECTION)
1048 	        online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1049 
1050 	return ret;
1051 }
1052 
1053 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1054 {
1055 	unsigned long end_pfn = pfn + nr_pages;
1056 
1057 	/*
1058 	 * It might be that the vmemmap_pages fully span sections. If that is
1059 	 * the case, mark those sections offline here as otherwise they will be
1060 	 * left online.
1061 	 */
1062 	if (nr_pages >= PAGES_PER_SECTION)
1063 		offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1064 
1065         /*
1066 	 * The pages associated with this vmemmap have been offlined, so
1067 	 * we can reset its state here.
1068 	 */
1069 	remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1070 	kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1071 }
1072 
1073 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1074 		       struct zone *zone, struct memory_group *group)
1075 {
1076 	unsigned long flags;
1077 	int need_zonelists_rebuild = 0;
1078 	const int nid = zone_to_nid(zone);
1079 	int ret;
1080 	struct memory_notify arg;
1081 
1082 	/*
1083 	 * {on,off}lining is constrained to full memory sections (or more
1084 	 * precisely to memory blocks from the user space POV).
1085 	 * memmap_on_memory is an exception because it reserves initial part
1086 	 * of the physical memory space for vmemmaps. That space is pageblock
1087 	 * aligned.
1088 	 */
1089 	if (WARN_ON_ONCE(!nr_pages ||
1090 			 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
1091 			 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1092 		return -EINVAL;
1093 
1094 	mem_hotplug_begin();
1095 
1096 	/* associate pfn range with the zone */
1097 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1098 
1099 	arg.start_pfn = pfn;
1100 	arg.nr_pages = nr_pages;
1101 	node_states_check_changes_online(nr_pages, zone, &arg);
1102 
1103 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
1104 	ret = notifier_to_errno(ret);
1105 	if (ret)
1106 		goto failed_addition;
1107 
1108 	/*
1109 	 * Fixup the number of isolated pageblocks before marking the sections
1110 	 * onlining, such that undo_isolate_page_range() works correctly.
1111 	 */
1112 	spin_lock_irqsave(&zone->lock, flags);
1113 	zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1114 	spin_unlock_irqrestore(&zone->lock, flags);
1115 
1116 	/*
1117 	 * If this zone is not populated, then it is not in zonelist.
1118 	 * This means the page allocator ignores this zone.
1119 	 * So, zonelist must be updated after online.
1120 	 */
1121 	if (!populated_zone(zone)) {
1122 		need_zonelists_rebuild = 1;
1123 		setup_zone_pageset(zone);
1124 	}
1125 
1126 	online_pages_range(pfn, nr_pages);
1127 	adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1128 
1129 	node_states_set_node(nid, &arg);
1130 	if (need_zonelists_rebuild)
1131 		build_all_zonelists(NULL);
1132 
1133 	/* Basic onlining is complete, allow allocation of onlined pages. */
1134 	undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1135 
1136 	/*
1137 	 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1138 	 * the tail of the freelist when undoing isolation). Shuffle the whole
1139 	 * zone to make sure the just onlined pages are properly distributed
1140 	 * across the whole freelist - to create an initial shuffle.
1141 	 */
1142 	shuffle_zone(zone);
1143 
1144 	/* reinitialise watermarks and update pcp limits */
1145 	init_per_zone_wmark_min();
1146 
1147 	kswapd_run(nid);
1148 	kcompactd_run(nid);
1149 
1150 	writeback_set_ratelimit();
1151 
1152 	memory_notify(MEM_ONLINE, &arg);
1153 	mem_hotplug_done();
1154 	return 0;
1155 
1156 failed_addition:
1157 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1158 		 (unsigned long long) pfn << PAGE_SHIFT,
1159 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1160 	memory_notify(MEM_CANCEL_ONLINE, &arg);
1161 	remove_pfn_range_from_zone(zone, pfn, nr_pages);
1162 	mem_hotplug_done();
1163 	return ret;
1164 }
1165 
1166 static void reset_node_present_pages(pg_data_t *pgdat)
1167 {
1168 	struct zone *z;
1169 
1170 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1171 		z->present_pages = 0;
1172 
1173 	pgdat->node_present_pages = 0;
1174 }
1175 
1176 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1177 static pg_data_t __ref *hotadd_new_pgdat(int nid)
1178 {
1179 	struct pglist_data *pgdat;
1180 
1181 	pgdat = NODE_DATA(nid);
1182 	if (!pgdat) {
1183 		pgdat = arch_alloc_nodedata(nid);
1184 		if (!pgdat)
1185 			return NULL;
1186 
1187 		pgdat->per_cpu_nodestats =
1188 			alloc_percpu(struct per_cpu_nodestat);
1189 		arch_refresh_nodedata(nid, pgdat);
1190 	} else {
1191 		int cpu;
1192 		/*
1193 		 * Reset the nr_zones, order and highest_zoneidx before reuse.
1194 		 * Note that kswapd will init kswapd_highest_zoneidx properly
1195 		 * when it starts in the near future.
1196 		 */
1197 		pgdat->nr_zones = 0;
1198 		pgdat->kswapd_order = 0;
1199 		pgdat->kswapd_highest_zoneidx = 0;
1200 		for_each_online_cpu(cpu) {
1201 			struct per_cpu_nodestat *p;
1202 
1203 			p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1204 			memset(p, 0, sizeof(*p));
1205 		}
1206 	}
1207 
1208 	/* we can use NODE_DATA(nid) from here */
1209 	pgdat->node_id = nid;
1210 	pgdat->node_start_pfn = 0;
1211 
1212 	/* init node's zones as empty zones, we don't have any present pages.*/
1213 	free_area_init_core_hotplug(nid);
1214 
1215 	/*
1216 	 * The node we allocated has no zone fallback lists. For avoiding
1217 	 * to access not-initialized zonelist, build here.
1218 	 */
1219 	build_all_zonelists(pgdat);
1220 
1221 	/*
1222 	 * When memory is hot-added, all the memory is in offline state. So
1223 	 * clear all zones' present_pages because they will be updated in
1224 	 * online_pages() and offline_pages().
1225 	 */
1226 	reset_node_managed_pages(pgdat);
1227 	reset_node_present_pages(pgdat);
1228 
1229 	return pgdat;
1230 }
1231 
1232 static void rollback_node_hotadd(int nid)
1233 {
1234 	pg_data_t *pgdat = NODE_DATA(nid);
1235 
1236 	arch_refresh_nodedata(nid, NULL);
1237 	free_percpu(pgdat->per_cpu_nodestats);
1238 	arch_free_nodedata(pgdat);
1239 }
1240 
1241 
1242 /*
1243  * __try_online_node - online a node if offlined
1244  * @nid: the node ID
1245  * @set_node_online: Whether we want to online the node
1246  * called by cpu_up() to online a node without onlined memory.
1247  *
1248  * Returns:
1249  * 1 -> a new node has been allocated
1250  * 0 -> the node is already online
1251  * -ENOMEM -> the node could not be allocated
1252  */
1253 static int __try_online_node(int nid, bool set_node_online)
1254 {
1255 	pg_data_t *pgdat;
1256 	int ret = 1;
1257 
1258 	if (node_online(nid))
1259 		return 0;
1260 
1261 	pgdat = hotadd_new_pgdat(nid);
1262 	if (!pgdat) {
1263 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1264 		ret = -ENOMEM;
1265 		goto out;
1266 	}
1267 
1268 	if (set_node_online) {
1269 		node_set_online(nid);
1270 		ret = register_one_node(nid);
1271 		BUG_ON(ret);
1272 	}
1273 out:
1274 	return ret;
1275 }
1276 
1277 /*
1278  * Users of this function always want to online/register the node
1279  */
1280 int try_online_node(int nid)
1281 {
1282 	int ret;
1283 
1284 	mem_hotplug_begin();
1285 	ret =  __try_online_node(nid, true);
1286 	mem_hotplug_done();
1287 	return ret;
1288 }
1289 
1290 static int check_hotplug_memory_range(u64 start, u64 size)
1291 {
1292 	/* memory range must be block size aligned */
1293 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1294 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
1295 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1296 		       memory_block_size_bytes(), start, size);
1297 		return -EINVAL;
1298 	}
1299 
1300 	return 0;
1301 }
1302 
1303 static int online_memory_block(struct memory_block *mem, void *arg)
1304 {
1305 	mem->online_type = mhp_default_online_type;
1306 	return device_online(&mem->dev);
1307 }
1308 
1309 bool mhp_supports_memmap_on_memory(unsigned long size)
1310 {
1311 	unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1312 	unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1313 	unsigned long remaining_size = size - vmemmap_size;
1314 
1315 	/*
1316 	 * Besides having arch support and the feature enabled at runtime, we
1317 	 * need a few more assumptions to hold true:
1318 	 *
1319 	 * a) We span a single memory block: memory onlining/offlinin;g happens
1320 	 *    in memory block granularity. We don't want the vmemmap of online
1321 	 *    memory blocks to reside on offline memory blocks. In the future,
1322 	 *    we might want to support variable-sized memory blocks to make the
1323 	 *    feature more versatile.
1324 	 *
1325 	 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1326 	 *    to populate memory from the altmap for unrelated parts (i.e.,
1327 	 *    other memory blocks)
1328 	 *
1329 	 * c) The vmemmap pages (and thereby the pages that will be exposed to
1330 	 *    the buddy) have to cover full pageblocks: memory onlining/offlining
1331 	 *    code requires applicable ranges to be page-aligned, for example, to
1332 	 *    set the migratetypes properly.
1333 	 *
1334 	 * TODO: Although we have a check here to make sure that vmemmap pages
1335 	 *       fully populate a PMD, it is not the right place to check for
1336 	 *       this. A much better solution involves improving vmemmap code
1337 	 *       to fallback to base pages when trying to populate vmemmap using
1338 	 *       altmap as an alternative source of memory, and we do not exactly
1339 	 *       populate a single PMD.
1340 	 */
1341 	return memmap_on_memory &&
1342 	       !hugetlb_free_vmemmap_enabled &&
1343 	       IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1344 	       size == memory_block_size_bytes() &&
1345 	       IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1346 	       IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1347 }
1348 
1349 /*
1350  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1351  * and online/offline operations (triggered e.g. by sysfs).
1352  *
1353  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1354  */
1355 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1356 {
1357 	struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1358 	struct vmem_altmap mhp_altmap = {};
1359 	struct memory_group *group = NULL;
1360 	u64 start, size;
1361 	bool new_node = false;
1362 	int ret;
1363 
1364 	start = res->start;
1365 	size = resource_size(res);
1366 
1367 	ret = check_hotplug_memory_range(start, size);
1368 	if (ret)
1369 		return ret;
1370 
1371 	if (mhp_flags & MHP_NID_IS_MGID) {
1372 		group = memory_group_find_by_id(nid);
1373 		if (!group)
1374 			return -EINVAL;
1375 		nid = group->nid;
1376 	}
1377 
1378 	if (!node_possible(nid)) {
1379 		WARN(1, "node %d was absent from the node_possible_map\n", nid);
1380 		return -EINVAL;
1381 	}
1382 
1383 	mem_hotplug_begin();
1384 
1385 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1386 		memblock_add_node(start, size, nid);
1387 
1388 	ret = __try_online_node(nid, false);
1389 	if (ret < 0)
1390 		goto error;
1391 	new_node = ret;
1392 
1393 	/*
1394 	 * Self hosted memmap array
1395 	 */
1396 	if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1397 		if (!mhp_supports_memmap_on_memory(size)) {
1398 			ret = -EINVAL;
1399 			goto error;
1400 		}
1401 		mhp_altmap.free = PHYS_PFN(size);
1402 		mhp_altmap.base_pfn = PHYS_PFN(start);
1403 		params.altmap = &mhp_altmap;
1404 	}
1405 
1406 	/* call arch's memory hotadd */
1407 	ret = arch_add_memory(nid, start, size, &params);
1408 	if (ret < 0)
1409 		goto error;
1410 
1411 	/* create memory block devices after memory was added */
1412 	ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
1413 					  group);
1414 	if (ret) {
1415 		arch_remove_memory(start, size, NULL);
1416 		goto error;
1417 	}
1418 
1419 	if (new_node) {
1420 		/* If sysfs file of new node can't be created, cpu on the node
1421 		 * can't be hot-added. There is no rollback way now.
1422 		 * So, check by BUG_ON() to catch it reluctantly..
1423 		 * We online node here. We can't roll back from here.
1424 		 */
1425 		node_set_online(nid);
1426 		ret = __register_one_node(nid);
1427 		BUG_ON(ret);
1428 	}
1429 
1430 	/* link memory sections under this node.*/
1431 	link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1432 			  MEMINIT_HOTPLUG);
1433 
1434 	/* create new memmap entry */
1435 	if (!strcmp(res->name, "System RAM"))
1436 		firmware_map_add_hotplug(start, start + size, "System RAM");
1437 
1438 	/* device_online() will take the lock when calling online_pages() */
1439 	mem_hotplug_done();
1440 
1441 	/*
1442 	 * In case we're allowed to merge the resource, flag it and trigger
1443 	 * merging now that adding succeeded.
1444 	 */
1445 	if (mhp_flags & MHP_MERGE_RESOURCE)
1446 		merge_system_ram_resource(res);
1447 
1448 	/* online pages if requested */
1449 	if (mhp_default_online_type != MMOP_OFFLINE)
1450 		walk_memory_blocks(start, size, NULL, online_memory_block);
1451 
1452 	return ret;
1453 error:
1454 	/* rollback pgdat allocation and others */
1455 	if (new_node)
1456 		rollback_node_hotadd(nid);
1457 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1458 		memblock_remove(start, size);
1459 	mem_hotplug_done();
1460 	return ret;
1461 }
1462 
1463 /* requires device_hotplug_lock, see add_memory_resource() */
1464 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1465 {
1466 	struct resource *res;
1467 	int ret;
1468 
1469 	res = register_memory_resource(start, size, "System RAM");
1470 	if (IS_ERR(res))
1471 		return PTR_ERR(res);
1472 
1473 	ret = add_memory_resource(nid, res, mhp_flags);
1474 	if (ret < 0)
1475 		release_memory_resource(res);
1476 	return ret;
1477 }
1478 
1479 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1480 {
1481 	int rc;
1482 
1483 	lock_device_hotplug();
1484 	rc = __add_memory(nid, start, size, mhp_flags);
1485 	unlock_device_hotplug();
1486 
1487 	return rc;
1488 }
1489 EXPORT_SYMBOL_GPL(add_memory);
1490 
1491 /*
1492  * Add special, driver-managed memory to the system as system RAM. Such
1493  * memory is not exposed via the raw firmware-provided memmap as system
1494  * RAM, instead, it is detected and added by a driver - during cold boot,
1495  * after a reboot, and after kexec.
1496  *
1497  * Reasons why this memory should not be used for the initial memmap of a
1498  * kexec kernel or for placing kexec images:
1499  * - The booting kernel is in charge of determining how this memory will be
1500  *   used (e.g., use persistent memory as system RAM)
1501  * - Coordination with a hypervisor is required before this memory
1502  *   can be used (e.g., inaccessible parts).
1503  *
1504  * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1505  * memory map") are created. Also, the created memory resource is flagged
1506  * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1507  * this memory as well (esp., not place kexec images onto it).
1508  *
1509  * The resource_name (visible via /proc/iomem) has to have the format
1510  * "System RAM ($DRIVER)".
1511  */
1512 int add_memory_driver_managed(int nid, u64 start, u64 size,
1513 			      const char *resource_name, mhp_t mhp_flags)
1514 {
1515 	struct resource *res;
1516 	int rc;
1517 
1518 	if (!resource_name ||
1519 	    strstr(resource_name, "System RAM (") != resource_name ||
1520 	    resource_name[strlen(resource_name) - 1] != ')')
1521 		return -EINVAL;
1522 
1523 	lock_device_hotplug();
1524 
1525 	res = register_memory_resource(start, size, resource_name);
1526 	if (IS_ERR(res)) {
1527 		rc = PTR_ERR(res);
1528 		goto out_unlock;
1529 	}
1530 
1531 	rc = add_memory_resource(nid, res, mhp_flags);
1532 	if (rc < 0)
1533 		release_memory_resource(res);
1534 
1535 out_unlock:
1536 	unlock_device_hotplug();
1537 	return rc;
1538 }
1539 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1540 
1541 /*
1542  * Platforms should define arch_get_mappable_range() that provides
1543  * maximum possible addressable physical memory range for which the
1544  * linear mapping could be created. The platform returned address
1545  * range must adhere to these following semantics.
1546  *
1547  * - range.start <= range.end
1548  * - Range includes both end points [range.start..range.end]
1549  *
1550  * There is also a fallback definition provided here, allowing the
1551  * entire possible physical address range in case any platform does
1552  * not define arch_get_mappable_range().
1553  */
1554 struct range __weak arch_get_mappable_range(void)
1555 {
1556 	struct range mhp_range = {
1557 		.start = 0UL,
1558 		.end = -1ULL,
1559 	};
1560 	return mhp_range;
1561 }
1562 
1563 struct range mhp_get_pluggable_range(bool need_mapping)
1564 {
1565 	const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1566 	struct range mhp_range;
1567 
1568 	if (need_mapping) {
1569 		mhp_range = arch_get_mappable_range();
1570 		if (mhp_range.start > max_phys) {
1571 			mhp_range.start = 0;
1572 			mhp_range.end = 0;
1573 		}
1574 		mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1575 	} else {
1576 		mhp_range.start = 0;
1577 		mhp_range.end = max_phys;
1578 	}
1579 	return mhp_range;
1580 }
1581 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1582 
1583 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1584 {
1585 	struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1586 	u64 end = start + size;
1587 
1588 	if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1589 		return true;
1590 
1591 	pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1592 		start, end, mhp_range.start, mhp_range.end);
1593 	return false;
1594 }
1595 
1596 #ifdef CONFIG_MEMORY_HOTREMOVE
1597 /*
1598  * Confirm all pages in a range [start, end) belong to the same zone (skipping
1599  * memory holes). When true, return the zone.
1600  */
1601 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1602 				  unsigned long end_pfn)
1603 {
1604 	unsigned long pfn, sec_end_pfn;
1605 	struct zone *zone = NULL;
1606 	struct page *page;
1607 
1608 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1609 	     pfn < end_pfn;
1610 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1611 		/* Make sure the memory section is present first */
1612 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1613 			continue;
1614 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1615 		     pfn += MAX_ORDER_NR_PAGES) {
1616 			/* Check if we got outside of the zone */
1617 			if (zone && !zone_spans_pfn(zone, pfn))
1618 				return NULL;
1619 			page = pfn_to_page(pfn);
1620 			if (zone && page_zone(page) != zone)
1621 				return NULL;
1622 			zone = page_zone(page);
1623 		}
1624 	}
1625 
1626 	return zone;
1627 }
1628 
1629 /*
1630  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1631  * non-lru movable pages and hugepages). Will skip over most unmovable
1632  * pages (esp., pages that can be skipped when offlining), but bail out on
1633  * definitely unmovable pages.
1634  *
1635  * Returns:
1636  *	0 in case a movable page is found and movable_pfn was updated.
1637  *	-ENOENT in case no movable page was found.
1638  *	-EBUSY in case a definitely unmovable page was found.
1639  */
1640 static int scan_movable_pages(unsigned long start, unsigned long end,
1641 			      unsigned long *movable_pfn)
1642 {
1643 	unsigned long pfn;
1644 
1645 	for (pfn = start; pfn < end; pfn++) {
1646 		struct page *page, *head;
1647 		unsigned long skip;
1648 
1649 		if (!pfn_valid(pfn))
1650 			continue;
1651 		page = pfn_to_page(pfn);
1652 		if (PageLRU(page))
1653 			goto found;
1654 		if (__PageMovable(page))
1655 			goto found;
1656 
1657 		/*
1658 		 * PageOffline() pages that are not marked __PageMovable() and
1659 		 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1660 		 * definitely unmovable. If their reference count would be 0,
1661 		 * they could at least be skipped when offlining memory.
1662 		 */
1663 		if (PageOffline(page) && page_count(page))
1664 			return -EBUSY;
1665 
1666 		if (!PageHuge(page))
1667 			continue;
1668 		head = compound_head(page);
1669 		/*
1670 		 * This test is racy as we hold no reference or lock.  The
1671 		 * hugetlb page could have been free'ed and head is no longer
1672 		 * a hugetlb page before the following check.  In such unlikely
1673 		 * cases false positives and negatives are possible.  Calling
1674 		 * code must deal with these scenarios.
1675 		 */
1676 		if (HPageMigratable(head))
1677 			goto found;
1678 		skip = compound_nr(head) - (page - head);
1679 		pfn += skip - 1;
1680 	}
1681 	return -ENOENT;
1682 found:
1683 	*movable_pfn = pfn;
1684 	return 0;
1685 }
1686 
1687 static int
1688 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1689 {
1690 	unsigned long pfn;
1691 	struct page *page, *head;
1692 	int ret = 0;
1693 	LIST_HEAD(source);
1694 	static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1695 				      DEFAULT_RATELIMIT_BURST);
1696 
1697 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1698 		if (!pfn_valid(pfn))
1699 			continue;
1700 		page = pfn_to_page(pfn);
1701 		head = compound_head(page);
1702 
1703 		if (PageHuge(page)) {
1704 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1705 			isolate_huge_page(head, &source);
1706 			continue;
1707 		} else if (PageTransHuge(page))
1708 			pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1709 
1710 		/*
1711 		 * HWPoison pages have elevated reference counts so the migration would
1712 		 * fail on them. It also doesn't make any sense to migrate them in the
1713 		 * first place. Still try to unmap such a page in case it is still mapped
1714 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1715 		 * the unmap as the catch all safety net).
1716 		 */
1717 		if (PageHWPoison(page)) {
1718 			if (WARN_ON(PageLRU(page)))
1719 				isolate_lru_page(page);
1720 			if (page_mapped(page))
1721 				try_to_unmap(page, TTU_IGNORE_MLOCK);
1722 			continue;
1723 		}
1724 
1725 		if (!get_page_unless_zero(page))
1726 			continue;
1727 		/*
1728 		 * We can skip free pages. And we can deal with pages on
1729 		 * LRU and non-lru movable pages.
1730 		 */
1731 		if (PageLRU(page))
1732 			ret = isolate_lru_page(page);
1733 		else
1734 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1735 		if (!ret) { /* Success */
1736 			list_add_tail(&page->lru, &source);
1737 			if (!__PageMovable(page))
1738 				inc_node_page_state(page, NR_ISOLATED_ANON +
1739 						    page_is_file_lru(page));
1740 
1741 		} else {
1742 			if (__ratelimit(&migrate_rs)) {
1743 				pr_warn("failed to isolate pfn %lx\n", pfn);
1744 				dump_page(page, "isolation failed");
1745 			}
1746 		}
1747 		put_page(page);
1748 	}
1749 	if (!list_empty(&source)) {
1750 		nodemask_t nmask = node_states[N_MEMORY];
1751 		struct migration_target_control mtc = {
1752 			.nmask = &nmask,
1753 			.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1754 		};
1755 
1756 		/*
1757 		 * We have checked that migration range is on a single zone so
1758 		 * we can use the nid of the first page to all the others.
1759 		 */
1760 		mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1761 
1762 		/*
1763 		 * try to allocate from a different node but reuse this node
1764 		 * if there are no other online nodes to be used (e.g. we are
1765 		 * offlining a part of the only existing node)
1766 		 */
1767 		node_clear(mtc.nid, nmask);
1768 		if (nodes_empty(nmask))
1769 			node_set(mtc.nid, nmask);
1770 		ret = migrate_pages(&source, alloc_migration_target, NULL,
1771 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1772 		if (ret) {
1773 			list_for_each_entry(page, &source, lru) {
1774 				if (__ratelimit(&migrate_rs)) {
1775 					pr_warn("migrating pfn %lx failed ret:%d\n",
1776 						page_to_pfn(page), ret);
1777 					dump_page(page, "migration failure");
1778 				}
1779 			}
1780 			putback_movable_pages(&source);
1781 		}
1782 	}
1783 
1784 	return ret;
1785 }
1786 
1787 static int __init cmdline_parse_movable_node(char *p)
1788 {
1789 	movable_node_enabled = true;
1790 	return 0;
1791 }
1792 early_param("movable_node", cmdline_parse_movable_node);
1793 
1794 /* check which state of node_states will be changed when offline memory */
1795 static void node_states_check_changes_offline(unsigned long nr_pages,
1796 		struct zone *zone, struct memory_notify *arg)
1797 {
1798 	struct pglist_data *pgdat = zone->zone_pgdat;
1799 	unsigned long present_pages = 0;
1800 	enum zone_type zt;
1801 
1802 	arg->status_change_nid = NUMA_NO_NODE;
1803 	arg->status_change_nid_normal = NUMA_NO_NODE;
1804 	arg->status_change_nid_high = NUMA_NO_NODE;
1805 
1806 	/*
1807 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1808 	 * If the memory to be offline is within the range
1809 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1810 	 * the zones in that range will become empty after the offlining,
1811 	 * thus we can determine that we need to clear the node from
1812 	 * node_states[N_NORMAL_MEMORY].
1813 	 */
1814 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1815 		present_pages += pgdat->node_zones[zt].present_pages;
1816 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1817 		arg->status_change_nid_normal = zone_to_nid(zone);
1818 
1819 #ifdef CONFIG_HIGHMEM
1820 	/*
1821 	 * node_states[N_HIGH_MEMORY] contains nodes which
1822 	 * have normal memory or high memory.
1823 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1824 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1825 	 * we determine that the zones in that range become empty,
1826 	 * we need to clear the node for N_HIGH_MEMORY.
1827 	 */
1828 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1829 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1830 		arg->status_change_nid_high = zone_to_nid(zone);
1831 #endif
1832 
1833 	/*
1834 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1835 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1836 	 * as well.
1837 	 * Here we count the possible pages from ZONE_MOVABLE.
1838 	 * If after having accounted all the pages, we see that the nr_pages
1839 	 * to be offlined is over or equal to the accounted pages,
1840 	 * we know that the node will become empty, and so, we can clear
1841 	 * it for N_MEMORY as well.
1842 	 */
1843 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1844 
1845 	if (nr_pages >= present_pages)
1846 		arg->status_change_nid = zone_to_nid(zone);
1847 }
1848 
1849 static void node_states_clear_node(int node, struct memory_notify *arg)
1850 {
1851 	if (arg->status_change_nid_normal >= 0)
1852 		node_clear_state(node, N_NORMAL_MEMORY);
1853 
1854 	if (arg->status_change_nid_high >= 0)
1855 		node_clear_state(node, N_HIGH_MEMORY);
1856 
1857 	if (arg->status_change_nid >= 0)
1858 		node_clear_state(node, N_MEMORY);
1859 }
1860 
1861 static int count_system_ram_pages_cb(unsigned long start_pfn,
1862 				     unsigned long nr_pages, void *data)
1863 {
1864 	unsigned long *nr_system_ram_pages = data;
1865 
1866 	*nr_system_ram_pages += nr_pages;
1867 	return 0;
1868 }
1869 
1870 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1871 			struct memory_group *group)
1872 {
1873 	const unsigned long end_pfn = start_pfn + nr_pages;
1874 	unsigned long pfn, system_ram_pages = 0;
1875 	unsigned long flags;
1876 	struct zone *zone;
1877 	struct memory_notify arg;
1878 	int ret, node;
1879 	char *reason;
1880 
1881 	/*
1882 	 * {on,off}lining is constrained to full memory sections (or more
1883 	 * precisely to memory blocks from the user space POV).
1884 	 * memmap_on_memory is an exception because it reserves initial part
1885 	 * of the physical memory space for vmemmaps. That space is pageblock
1886 	 * aligned.
1887 	 */
1888 	if (WARN_ON_ONCE(!nr_pages ||
1889 			 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1890 			 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1891 		return -EINVAL;
1892 
1893 	mem_hotplug_begin();
1894 
1895 	/*
1896 	 * Don't allow to offline memory blocks that contain holes.
1897 	 * Consequently, memory blocks with holes can never get onlined
1898 	 * via the hotplug path - online_pages() - as hotplugged memory has
1899 	 * no holes. This way, we e.g., don't have to worry about marking
1900 	 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1901 	 * avoid using walk_system_ram_range() later.
1902 	 */
1903 	walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1904 			      count_system_ram_pages_cb);
1905 	if (system_ram_pages != nr_pages) {
1906 		ret = -EINVAL;
1907 		reason = "memory holes";
1908 		goto failed_removal;
1909 	}
1910 
1911 	/* This makes hotplug much easier...and readable.
1912 	   we assume this for now. .*/
1913 	zone = test_pages_in_a_zone(start_pfn, end_pfn);
1914 	if (!zone) {
1915 		ret = -EINVAL;
1916 		reason = "multizone range";
1917 		goto failed_removal;
1918 	}
1919 	node = zone_to_nid(zone);
1920 
1921 	/*
1922 	 * Disable pcplists so that page isolation cannot race with freeing
1923 	 * in a way that pages from isolated pageblock are left on pcplists.
1924 	 */
1925 	zone_pcp_disable(zone);
1926 	lru_cache_disable();
1927 
1928 	/* set above range as isolated */
1929 	ret = start_isolate_page_range(start_pfn, end_pfn,
1930 				       MIGRATE_MOVABLE,
1931 				       MEMORY_OFFLINE | REPORT_FAILURE);
1932 	if (ret) {
1933 		reason = "failure to isolate range";
1934 		goto failed_removal_pcplists_disabled;
1935 	}
1936 
1937 	arg.start_pfn = start_pfn;
1938 	arg.nr_pages = nr_pages;
1939 	node_states_check_changes_offline(nr_pages, zone, &arg);
1940 
1941 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1942 	ret = notifier_to_errno(ret);
1943 	if (ret) {
1944 		reason = "notifier failure";
1945 		goto failed_removal_isolated;
1946 	}
1947 
1948 	do {
1949 		pfn = start_pfn;
1950 		do {
1951 			if (signal_pending(current)) {
1952 				ret = -EINTR;
1953 				reason = "signal backoff";
1954 				goto failed_removal_isolated;
1955 			}
1956 
1957 			cond_resched();
1958 
1959 			ret = scan_movable_pages(pfn, end_pfn, &pfn);
1960 			if (!ret) {
1961 				/*
1962 				 * TODO: fatal migration failures should bail
1963 				 * out
1964 				 */
1965 				do_migrate_range(pfn, end_pfn);
1966 			}
1967 		} while (!ret);
1968 
1969 		if (ret != -ENOENT) {
1970 			reason = "unmovable page";
1971 			goto failed_removal_isolated;
1972 		}
1973 
1974 		/*
1975 		 * Dissolve free hugepages in the memory block before doing
1976 		 * offlining actually in order to make hugetlbfs's object
1977 		 * counting consistent.
1978 		 */
1979 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1980 		if (ret) {
1981 			reason = "failure to dissolve huge pages";
1982 			goto failed_removal_isolated;
1983 		}
1984 
1985 		ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1986 
1987 	} while (ret);
1988 
1989 	/* Mark all sections offline and remove free pages from the buddy. */
1990 	__offline_isolated_pages(start_pfn, end_pfn);
1991 	pr_debug("Offlined Pages %ld\n", nr_pages);
1992 
1993 	/*
1994 	 * The memory sections are marked offline, and the pageblock flags
1995 	 * effectively stale; nobody should be touching them. Fixup the number
1996 	 * of isolated pageblocks, memory onlining will properly revert this.
1997 	 */
1998 	spin_lock_irqsave(&zone->lock, flags);
1999 	zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2000 	spin_unlock_irqrestore(&zone->lock, flags);
2001 
2002 	lru_cache_enable();
2003 	zone_pcp_enable(zone);
2004 
2005 	/* removal success */
2006 	adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
2007 	adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2008 
2009 	/* reinitialise watermarks and update pcp limits */
2010 	init_per_zone_wmark_min();
2011 
2012 	if (!populated_zone(zone)) {
2013 		zone_pcp_reset(zone);
2014 		build_all_zonelists(NULL);
2015 	}
2016 
2017 	node_states_clear_node(node, &arg);
2018 	if (arg.status_change_nid >= 0) {
2019 		kswapd_stop(node);
2020 		kcompactd_stop(node);
2021 	}
2022 
2023 	writeback_set_ratelimit();
2024 
2025 	memory_notify(MEM_OFFLINE, &arg);
2026 	remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2027 	mem_hotplug_done();
2028 	return 0;
2029 
2030 failed_removal_isolated:
2031 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2032 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
2033 failed_removal_pcplists_disabled:
2034 	lru_cache_enable();
2035 	zone_pcp_enable(zone);
2036 failed_removal:
2037 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2038 		 (unsigned long long) start_pfn << PAGE_SHIFT,
2039 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2040 		 reason);
2041 	/* pushback to free area */
2042 	mem_hotplug_done();
2043 	return ret;
2044 }
2045 
2046 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2047 {
2048 	int ret = !is_memblock_offlined(mem);
2049 	int *nid = arg;
2050 
2051 	*nid = mem->nid;
2052 	if (unlikely(ret)) {
2053 		phys_addr_t beginpa, endpa;
2054 
2055 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2056 		endpa = beginpa + memory_block_size_bytes() - 1;
2057 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2058 			&beginpa, &endpa);
2059 
2060 		return -EBUSY;
2061 	}
2062 	return 0;
2063 }
2064 
2065 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
2066 {
2067 	/*
2068 	 * If not set, continue with the next block.
2069 	 */
2070 	return mem->nr_vmemmap_pages;
2071 }
2072 
2073 static int check_cpu_on_node(pg_data_t *pgdat)
2074 {
2075 	int cpu;
2076 
2077 	for_each_present_cpu(cpu) {
2078 		if (cpu_to_node(cpu) == pgdat->node_id)
2079 			/*
2080 			 * the cpu on this node isn't removed, and we can't
2081 			 * offline this node.
2082 			 */
2083 			return -EBUSY;
2084 	}
2085 
2086 	return 0;
2087 }
2088 
2089 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2090 {
2091 	int nid = *(int *)arg;
2092 
2093 	/*
2094 	 * If a memory block belongs to multiple nodes, the stored nid is not
2095 	 * reliable. However, such blocks are always online (e.g., cannot get
2096 	 * offlined) and, therefore, are still spanned by the node.
2097 	 */
2098 	return mem->nid == nid ? -EEXIST : 0;
2099 }
2100 
2101 /**
2102  * try_offline_node
2103  * @nid: the node ID
2104  *
2105  * Offline a node if all memory sections and cpus of the node are removed.
2106  *
2107  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2108  * and online/offline operations before this call.
2109  */
2110 void try_offline_node(int nid)
2111 {
2112 	pg_data_t *pgdat = NODE_DATA(nid);
2113 	int rc;
2114 
2115 	/*
2116 	 * If the node still spans pages (especially ZONE_DEVICE), don't
2117 	 * offline it. A node spans memory after move_pfn_range_to_zone(),
2118 	 * e.g., after the memory block was onlined.
2119 	 */
2120 	if (pgdat->node_spanned_pages)
2121 		return;
2122 
2123 	/*
2124 	 * Especially offline memory blocks might not be spanned by the
2125 	 * node. They will get spanned by the node once they get onlined.
2126 	 * However, they link to the node in sysfs and can get onlined later.
2127 	 */
2128 	rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2129 	if (rc)
2130 		return;
2131 
2132 	if (check_cpu_on_node(pgdat))
2133 		return;
2134 
2135 	/*
2136 	 * all memory/cpu of this node are removed, we can offline this
2137 	 * node now.
2138 	 */
2139 	node_set_offline(nid);
2140 	unregister_one_node(nid);
2141 }
2142 EXPORT_SYMBOL(try_offline_node);
2143 
2144 static int __ref try_remove_memory(u64 start, u64 size)
2145 {
2146 	struct vmem_altmap mhp_altmap = {};
2147 	struct vmem_altmap *altmap = NULL;
2148 	unsigned long nr_vmemmap_pages;
2149 	int rc = 0, nid = NUMA_NO_NODE;
2150 
2151 	BUG_ON(check_hotplug_memory_range(start, size));
2152 
2153 	/*
2154 	 * All memory blocks must be offlined before removing memory.  Check
2155 	 * whether all memory blocks in question are offline and return error
2156 	 * if this is not the case.
2157 	 *
2158 	 * While at it, determine the nid. Note that if we'd have mixed nodes,
2159 	 * we'd only try to offline the last determined one -- which is good
2160 	 * enough for the cases we care about.
2161 	 */
2162 	rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2163 	if (rc)
2164 		return rc;
2165 
2166 	/*
2167 	 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2168 	 * the same granularity it was added - a single memory block.
2169 	 */
2170 	if (memmap_on_memory) {
2171 		nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
2172 						      get_nr_vmemmap_pages_cb);
2173 		if (nr_vmemmap_pages) {
2174 			if (size != memory_block_size_bytes()) {
2175 				pr_warn("Refuse to remove %#llx - %#llx,"
2176 					"wrong granularity\n",
2177 					start, start + size);
2178 				return -EINVAL;
2179 			}
2180 
2181 			/*
2182 			 * Let remove_pmd_table->free_hugepage_table do the
2183 			 * right thing if we used vmem_altmap when hot-adding
2184 			 * the range.
2185 			 */
2186 			mhp_altmap.alloc = nr_vmemmap_pages;
2187 			altmap = &mhp_altmap;
2188 		}
2189 	}
2190 
2191 	/* remove memmap entry */
2192 	firmware_map_remove(start, start + size, "System RAM");
2193 
2194 	/*
2195 	 * Memory block device removal under the device_hotplug_lock is
2196 	 * a barrier against racing online attempts.
2197 	 */
2198 	remove_memory_block_devices(start, size);
2199 
2200 	mem_hotplug_begin();
2201 
2202 	arch_remove_memory(start, size, altmap);
2203 
2204 	if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2205 		memblock_phys_free(start, size);
2206 		memblock_remove(start, size);
2207 	}
2208 
2209 	release_mem_region_adjustable(start, size);
2210 
2211 	if (nid != NUMA_NO_NODE)
2212 		try_offline_node(nid);
2213 
2214 	mem_hotplug_done();
2215 	return 0;
2216 }
2217 
2218 /**
2219  * __remove_memory - Remove memory if every memory block is offline
2220  * @start: physical address of the region to remove
2221  * @size: size of the region to remove
2222  *
2223  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2224  * and online/offline operations before this call, as required by
2225  * try_offline_node().
2226  */
2227 void __remove_memory(u64 start, u64 size)
2228 {
2229 
2230 	/*
2231 	 * trigger BUG() if some memory is not offlined prior to calling this
2232 	 * function
2233 	 */
2234 	if (try_remove_memory(start, size))
2235 		BUG();
2236 }
2237 
2238 /*
2239  * Remove memory if every memory block is offline, otherwise return -EBUSY is
2240  * some memory is not offline
2241  */
2242 int remove_memory(u64 start, u64 size)
2243 {
2244 	int rc;
2245 
2246 	lock_device_hotplug();
2247 	rc = try_remove_memory(start, size);
2248 	unlock_device_hotplug();
2249 
2250 	return rc;
2251 }
2252 EXPORT_SYMBOL_GPL(remove_memory);
2253 
2254 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2255 {
2256 	uint8_t online_type = MMOP_ONLINE_KERNEL;
2257 	uint8_t **online_types = arg;
2258 	struct page *page;
2259 	int rc;
2260 
2261 	/*
2262 	 * Sense the online_type via the zone of the memory block. Offlining
2263 	 * with multiple zones within one memory block will be rejected
2264 	 * by offlining code ... so we don't care about that.
2265 	 */
2266 	page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2267 	if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2268 		online_type = MMOP_ONLINE_MOVABLE;
2269 
2270 	rc = device_offline(&mem->dev);
2271 	/*
2272 	 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2273 	 * so try_reonline_memory_block() can do the right thing.
2274 	 */
2275 	if (!rc)
2276 		**online_types = online_type;
2277 
2278 	(*online_types)++;
2279 	/* Ignore if already offline. */
2280 	return rc < 0 ? rc : 0;
2281 }
2282 
2283 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2284 {
2285 	uint8_t **online_types = arg;
2286 	int rc;
2287 
2288 	if (**online_types != MMOP_OFFLINE) {
2289 		mem->online_type = **online_types;
2290 		rc = device_online(&mem->dev);
2291 		if (rc < 0)
2292 			pr_warn("%s: Failed to re-online memory: %d",
2293 				__func__, rc);
2294 	}
2295 
2296 	/* Continue processing all remaining memory blocks. */
2297 	(*online_types)++;
2298 	return 0;
2299 }
2300 
2301 /*
2302  * Try to offline and remove memory. Might take a long time to finish in case
2303  * memory is still in use. Primarily useful for memory devices that logically
2304  * unplugged all memory (so it's no longer in use) and want to offline + remove
2305  * that memory.
2306  */
2307 int offline_and_remove_memory(u64 start, u64 size)
2308 {
2309 	const unsigned long mb_count = size / memory_block_size_bytes();
2310 	uint8_t *online_types, *tmp;
2311 	int rc;
2312 
2313 	if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2314 	    !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2315 		return -EINVAL;
2316 
2317 	/*
2318 	 * We'll remember the old online type of each memory block, so we can
2319 	 * try to revert whatever we did when offlining one memory block fails
2320 	 * after offlining some others succeeded.
2321 	 */
2322 	online_types = kmalloc_array(mb_count, sizeof(*online_types),
2323 				     GFP_KERNEL);
2324 	if (!online_types)
2325 		return -ENOMEM;
2326 	/*
2327 	 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2328 	 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2329 	 * try_reonline_memory_block().
2330 	 */
2331 	memset(online_types, MMOP_OFFLINE, mb_count);
2332 
2333 	lock_device_hotplug();
2334 
2335 	tmp = online_types;
2336 	rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2337 
2338 	/*
2339 	 * In case we succeeded to offline all memory, remove it.
2340 	 * This cannot fail as it cannot get onlined in the meantime.
2341 	 */
2342 	if (!rc) {
2343 		rc = try_remove_memory(start, size);
2344 		if (rc)
2345 			pr_err("%s: Failed to remove memory: %d", __func__, rc);
2346 	}
2347 
2348 	/*
2349 	 * Rollback what we did. While memory onlining might theoretically fail
2350 	 * (nacked by a notifier), it barely ever happens.
2351 	 */
2352 	if (rc) {
2353 		tmp = online_types;
2354 		walk_memory_blocks(start, size, &tmp,
2355 				   try_reonline_memory_block);
2356 	}
2357 	unlock_device_hotplug();
2358 
2359 	kfree(online_types);
2360 	return rc;
2361 }
2362 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2363 #endif /* CONFIG_MEMORY_HOTREMOVE */
2364