1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory_hotplug.c 4 * 5 * Copyright (C) 6 */ 7 8 #include <linux/stddef.h> 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/swap.h> 12 #include <linux/interrupt.h> 13 #include <linux/pagemap.h> 14 #include <linux/compiler.h> 15 #include <linux/export.h> 16 #include <linux/pagevec.h> 17 #include <linux/writeback.h> 18 #include <linux/slab.h> 19 #include <linux/sysctl.h> 20 #include <linux/cpu.h> 21 #include <linux/memory.h> 22 #include <linux/memremap.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/highmem.h> 25 #include <linux/vmalloc.h> 26 #include <linux/ioport.h> 27 #include <linux/delay.h> 28 #include <linux/migrate.h> 29 #include <linux/page-isolation.h> 30 #include <linux/pfn.h> 31 #include <linux/suspend.h> 32 #include <linux/mm_inline.h> 33 #include <linux/firmware-map.h> 34 #include <linux/stop_machine.h> 35 #include <linux/hugetlb.h> 36 #include <linux/memblock.h> 37 #include <linux/compaction.h> 38 #include <linux/rmap.h> 39 40 #include <asm/tlbflush.h> 41 42 #include "internal.h" 43 #include "shuffle.h" 44 45 46 /* 47 * memory_hotplug.memmap_on_memory parameter 48 */ 49 static bool memmap_on_memory __ro_after_init; 50 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY 51 module_param(memmap_on_memory, bool, 0444); 52 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug"); 53 #endif 54 55 enum { 56 ONLINE_POLICY_CONTIG_ZONES = 0, 57 ONLINE_POLICY_AUTO_MOVABLE, 58 }; 59 60 static const char * const online_policy_to_str[] = { 61 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones", 62 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable", 63 }; 64 65 static int set_online_policy(const char *val, const struct kernel_param *kp) 66 { 67 int ret = sysfs_match_string(online_policy_to_str, val); 68 69 if (ret < 0) 70 return ret; 71 *((int *)kp->arg) = ret; 72 return 0; 73 } 74 75 static int get_online_policy(char *buffer, const struct kernel_param *kp) 76 { 77 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]); 78 } 79 80 /* 81 * memory_hotplug.online_policy: configure online behavior when onlining without 82 * specifying a zone (MMOP_ONLINE) 83 * 84 * "contig-zones": keep zone contiguous 85 * "auto-movable": online memory to ZONE_MOVABLE if the configuration 86 * (auto_movable_ratio, auto_movable_numa_aware) allows for it 87 */ 88 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES; 89 static const struct kernel_param_ops online_policy_ops = { 90 .set = set_online_policy, 91 .get = get_online_policy, 92 }; 93 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644); 94 MODULE_PARM_DESC(online_policy, 95 "Set the online policy (\"contig-zones\", \"auto-movable\") " 96 "Default: \"contig-zones\""); 97 98 /* 99 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio 100 * 101 * The ratio represent an upper limit and the kernel might decide to not 102 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory 103 * doesn't allow for more MOVABLE memory. 104 */ 105 static unsigned int auto_movable_ratio __read_mostly = 301; 106 module_param(auto_movable_ratio, uint, 0644); 107 MODULE_PARM_DESC(auto_movable_ratio, 108 "Set the maximum ratio of MOVABLE:KERNEL memory in the system " 109 "in percent for \"auto-movable\" online policy. Default: 301"); 110 111 /* 112 * memory_hotplug.auto_movable_numa_aware: consider numa node stats 113 */ 114 #ifdef CONFIG_NUMA 115 static bool auto_movable_numa_aware __read_mostly = true; 116 module_param(auto_movable_numa_aware, bool, 0644); 117 MODULE_PARM_DESC(auto_movable_numa_aware, 118 "Consider numa node stats in addition to global stats in " 119 "\"auto-movable\" online policy. Default: true"); 120 #endif /* CONFIG_NUMA */ 121 122 /* 123 * online_page_callback contains pointer to current page onlining function. 124 * Initially it is generic_online_page(). If it is required it could be 125 * changed by calling set_online_page_callback() for callback registration 126 * and restore_online_page_callback() for generic callback restore. 127 */ 128 129 static online_page_callback_t online_page_callback = generic_online_page; 130 static DEFINE_MUTEX(online_page_callback_lock); 131 132 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 133 134 void get_online_mems(void) 135 { 136 percpu_down_read(&mem_hotplug_lock); 137 } 138 139 void put_online_mems(void) 140 { 141 percpu_up_read(&mem_hotplug_lock); 142 } 143 144 bool movable_node_enabled = false; 145 146 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 147 int mhp_default_online_type = MMOP_OFFLINE; 148 #else 149 int mhp_default_online_type = MMOP_ONLINE; 150 #endif 151 152 static int __init setup_memhp_default_state(char *str) 153 { 154 const int online_type = mhp_online_type_from_str(str); 155 156 if (online_type >= 0) 157 mhp_default_online_type = online_type; 158 159 return 1; 160 } 161 __setup("memhp_default_state=", setup_memhp_default_state); 162 163 void mem_hotplug_begin(void) 164 { 165 cpus_read_lock(); 166 percpu_down_write(&mem_hotplug_lock); 167 } 168 169 void mem_hotplug_done(void) 170 { 171 percpu_up_write(&mem_hotplug_lock); 172 cpus_read_unlock(); 173 } 174 175 u64 max_mem_size = U64_MAX; 176 177 /* add this memory to iomem resource */ 178 static struct resource *register_memory_resource(u64 start, u64 size, 179 const char *resource_name) 180 { 181 struct resource *res; 182 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 183 184 if (strcmp(resource_name, "System RAM")) 185 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED; 186 187 if (!mhp_range_allowed(start, size, true)) 188 return ERR_PTR(-E2BIG); 189 190 /* 191 * Make sure value parsed from 'mem=' only restricts memory adding 192 * while booting, so that memory hotplug won't be impacted. Please 193 * refer to document of 'mem=' in kernel-parameters.txt for more 194 * details. 195 */ 196 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING) 197 return ERR_PTR(-E2BIG); 198 199 /* 200 * Request ownership of the new memory range. This might be 201 * a child of an existing resource that was present but 202 * not marked as busy. 203 */ 204 res = __request_region(&iomem_resource, start, size, 205 resource_name, flags); 206 207 if (!res) { 208 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n", 209 start, start + size); 210 return ERR_PTR(-EEXIST); 211 } 212 return res; 213 } 214 215 static void release_memory_resource(struct resource *res) 216 { 217 if (!res) 218 return; 219 release_resource(res); 220 kfree(res); 221 } 222 223 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages, 224 const char *reason) 225 { 226 /* 227 * Disallow all operations smaller than a sub-section and only 228 * allow operations smaller than a section for 229 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range() 230 * enforces a larger memory_block_size_bytes() granularity for 231 * memory that will be marked online, so this check should only 232 * fire for direct arch_{add,remove}_memory() users outside of 233 * add_memory_resource(). 234 */ 235 unsigned long min_align; 236 237 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP)) 238 min_align = PAGES_PER_SUBSECTION; 239 else 240 min_align = PAGES_PER_SECTION; 241 if (!IS_ALIGNED(pfn, min_align) 242 || !IS_ALIGNED(nr_pages, min_align)) { 243 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n", 244 reason, pfn, pfn + nr_pages - 1); 245 return -EINVAL; 246 } 247 return 0; 248 } 249 250 /* 251 * Return page for the valid pfn only if the page is online. All pfn 252 * walkers which rely on the fully initialized page->flags and others 253 * should use this rather than pfn_valid && pfn_to_page 254 */ 255 struct page *pfn_to_online_page(unsigned long pfn) 256 { 257 unsigned long nr = pfn_to_section_nr(pfn); 258 struct dev_pagemap *pgmap; 259 struct mem_section *ms; 260 261 if (nr >= NR_MEM_SECTIONS) 262 return NULL; 263 264 ms = __nr_to_section(nr); 265 if (!online_section(ms)) 266 return NULL; 267 268 /* 269 * Save some code text when online_section() + 270 * pfn_section_valid() are sufficient. 271 */ 272 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn)) 273 return NULL; 274 275 if (!pfn_section_valid(ms, pfn)) 276 return NULL; 277 278 if (!online_device_section(ms)) 279 return pfn_to_page(pfn); 280 281 /* 282 * Slowpath: when ZONE_DEVICE collides with 283 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in 284 * the section may be 'offline' but 'valid'. Only 285 * get_dev_pagemap() can determine sub-section online status. 286 */ 287 pgmap = get_dev_pagemap(pfn, NULL); 288 put_dev_pagemap(pgmap); 289 290 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */ 291 if (pgmap) 292 return NULL; 293 294 return pfn_to_page(pfn); 295 } 296 EXPORT_SYMBOL_GPL(pfn_to_online_page); 297 298 /* 299 * Reasonably generic function for adding memory. It is 300 * expected that archs that support memory hotplug will 301 * call this function after deciding the zone to which to 302 * add the new pages. 303 */ 304 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages, 305 struct mhp_params *params) 306 { 307 const unsigned long end_pfn = pfn + nr_pages; 308 unsigned long cur_nr_pages; 309 int err; 310 struct vmem_altmap *altmap = params->altmap; 311 312 if (WARN_ON_ONCE(!params->pgprot.pgprot)) 313 return -EINVAL; 314 315 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false)); 316 317 if (altmap) { 318 /* 319 * Validate altmap is within bounds of the total request 320 */ 321 if (altmap->base_pfn != pfn 322 || vmem_altmap_offset(altmap) > nr_pages) { 323 pr_warn_once("memory add fail, invalid altmap\n"); 324 return -EINVAL; 325 } 326 altmap->alloc = 0; 327 } 328 329 err = check_pfn_span(pfn, nr_pages, "add"); 330 if (err) 331 return err; 332 333 for (; pfn < end_pfn; pfn += cur_nr_pages) { 334 /* Select all remaining pages up to the next section boundary */ 335 cur_nr_pages = min(end_pfn - pfn, 336 SECTION_ALIGN_UP(pfn + 1) - pfn); 337 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap); 338 if (err) 339 break; 340 cond_resched(); 341 } 342 vmemmap_populate_print_last(); 343 return err; 344 } 345 346 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 347 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 348 unsigned long start_pfn, 349 unsigned long end_pfn) 350 { 351 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) { 352 if (unlikely(!pfn_to_online_page(start_pfn))) 353 continue; 354 355 if (unlikely(pfn_to_nid(start_pfn) != nid)) 356 continue; 357 358 if (zone != page_zone(pfn_to_page(start_pfn))) 359 continue; 360 361 return start_pfn; 362 } 363 364 return 0; 365 } 366 367 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 368 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 369 unsigned long start_pfn, 370 unsigned long end_pfn) 371 { 372 unsigned long pfn; 373 374 /* pfn is the end pfn of a memory section. */ 375 pfn = end_pfn - 1; 376 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) { 377 if (unlikely(!pfn_to_online_page(pfn))) 378 continue; 379 380 if (unlikely(pfn_to_nid(pfn) != nid)) 381 continue; 382 383 if (zone != page_zone(pfn_to_page(pfn))) 384 continue; 385 386 return pfn; 387 } 388 389 return 0; 390 } 391 392 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 393 unsigned long end_pfn) 394 { 395 unsigned long pfn; 396 int nid = zone_to_nid(zone); 397 398 if (zone->zone_start_pfn == start_pfn) { 399 /* 400 * If the section is smallest section in the zone, it need 401 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 402 * In this case, we find second smallest valid mem_section 403 * for shrinking zone. 404 */ 405 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 406 zone_end_pfn(zone)); 407 if (pfn) { 408 zone->spanned_pages = zone_end_pfn(zone) - pfn; 409 zone->zone_start_pfn = pfn; 410 } else { 411 zone->zone_start_pfn = 0; 412 zone->spanned_pages = 0; 413 } 414 } else if (zone_end_pfn(zone) == end_pfn) { 415 /* 416 * If the section is biggest section in the zone, it need 417 * shrink zone->spanned_pages. 418 * In this case, we find second biggest valid mem_section for 419 * shrinking zone. 420 */ 421 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn, 422 start_pfn); 423 if (pfn) 424 zone->spanned_pages = pfn - zone->zone_start_pfn + 1; 425 else { 426 zone->zone_start_pfn = 0; 427 zone->spanned_pages = 0; 428 } 429 } 430 } 431 432 static void update_pgdat_span(struct pglist_data *pgdat) 433 { 434 unsigned long node_start_pfn = 0, node_end_pfn = 0; 435 struct zone *zone; 436 437 for (zone = pgdat->node_zones; 438 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) { 439 unsigned long end_pfn = zone_end_pfn(zone); 440 441 /* No need to lock the zones, they can't change. */ 442 if (!zone->spanned_pages) 443 continue; 444 if (!node_end_pfn) { 445 node_start_pfn = zone->zone_start_pfn; 446 node_end_pfn = end_pfn; 447 continue; 448 } 449 450 if (end_pfn > node_end_pfn) 451 node_end_pfn = end_pfn; 452 if (zone->zone_start_pfn < node_start_pfn) 453 node_start_pfn = zone->zone_start_pfn; 454 } 455 456 pgdat->node_start_pfn = node_start_pfn; 457 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn; 458 } 459 460 void __ref remove_pfn_range_from_zone(struct zone *zone, 461 unsigned long start_pfn, 462 unsigned long nr_pages) 463 { 464 const unsigned long end_pfn = start_pfn + nr_pages; 465 struct pglist_data *pgdat = zone->zone_pgdat; 466 unsigned long pfn, cur_nr_pages; 467 468 /* Poison struct pages because they are now uninitialized again. */ 469 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) { 470 cond_resched(); 471 472 /* Select all remaining pages up to the next section boundary */ 473 cur_nr_pages = 474 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn); 475 page_init_poison(pfn_to_page(pfn), 476 sizeof(struct page) * cur_nr_pages); 477 } 478 479 /* 480 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So 481 * we will not try to shrink the zones - which is okay as 482 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way. 483 */ 484 if (zone_is_zone_device(zone)) 485 return; 486 487 clear_zone_contiguous(zone); 488 489 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 490 update_pgdat_span(pgdat); 491 492 set_zone_contiguous(zone); 493 } 494 495 static void __remove_section(unsigned long pfn, unsigned long nr_pages, 496 unsigned long map_offset, 497 struct vmem_altmap *altmap) 498 { 499 struct mem_section *ms = __pfn_to_section(pfn); 500 501 if (WARN_ON_ONCE(!valid_section(ms))) 502 return; 503 504 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap); 505 } 506 507 /** 508 * __remove_pages() - remove sections of pages 509 * @pfn: starting pageframe (must be aligned to start of a section) 510 * @nr_pages: number of pages to remove (must be multiple of section size) 511 * @altmap: alternative device page map or %NULL if default memmap is used 512 * 513 * Generic helper function to remove section mappings and sysfs entries 514 * for the section of the memory we are removing. Caller needs to make 515 * sure that pages are marked reserved and zones are adjust properly by 516 * calling offline_pages(). 517 */ 518 void __remove_pages(unsigned long pfn, unsigned long nr_pages, 519 struct vmem_altmap *altmap) 520 { 521 const unsigned long end_pfn = pfn + nr_pages; 522 unsigned long cur_nr_pages; 523 unsigned long map_offset = 0; 524 525 map_offset = vmem_altmap_offset(altmap); 526 527 if (check_pfn_span(pfn, nr_pages, "remove")) 528 return; 529 530 for (; pfn < end_pfn; pfn += cur_nr_pages) { 531 cond_resched(); 532 /* Select all remaining pages up to the next section boundary */ 533 cur_nr_pages = min(end_pfn - pfn, 534 SECTION_ALIGN_UP(pfn + 1) - pfn); 535 __remove_section(pfn, cur_nr_pages, map_offset, altmap); 536 map_offset = 0; 537 } 538 } 539 540 int set_online_page_callback(online_page_callback_t callback) 541 { 542 int rc = -EINVAL; 543 544 get_online_mems(); 545 mutex_lock(&online_page_callback_lock); 546 547 if (online_page_callback == generic_online_page) { 548 online_page_callback = callback; 549 rc = 0; 550 } 551 552 mutex_unlock(&online_page_callback_lock); 553 put_online_mems(); 554 555 return rc; 556 } 557 EXPORT_SYMBOL_GPL(set_online_page_callback); 558 559 int restore_online_page_callback(online_page_callback_t callback) 560 { 561 int rc = -EINVAL; 562 563 get_online_mems(); 564 mutex_lock(&online_page_callback_lock); 565 566 if (online_page_callback == callback) { 567 online_page_callback = generic_online_page; 568 rc = 0; 569 } 570 571 mutex_unlock(&online_page_callback_lock); 572 put_online_mems(); 573 574 return rc; 575 } 576 EXPORT_SYMBOL_GPL(restore_online_page_callback); 577 578 void generic_online_page(struct page *page, unsigned int order) 579 { 580 /* 581 * Freeing the page with debug_pagealloc enabled will try to unmap it, 582 * so we should map it first. This is better than introducing a special 583 * case in page freeing fast path. 584 */ 585 debug_pagealloc_map_pages(page, 1 << order); 586 __free_pages_core(page, order); 587 totalram_pages_add(1UL << order); 588 #ifdef CONFIG_HIGHMEM 589 if (PageHighMem(page)) 590 totalhigh_pages_add(1UL << order); 591 #endif 592 } 593 EXPORT_SYMBOL_GPL(generic_online_page); 594 595 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages) 596 { 597 const unsigned long end_pfn = start_pfn + nr_pages; 598 unsigned long pfn; 599 600 /* 601 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might 602 * decide to not expose all pages to the buddy (e.g., expose them 603 * later). We account all pages as being online and belonging to this 604 * zone ("present"). 605 * When using memmap_on_memory, the range might not be aligned to 606 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect 607 * this and the first chunk to online will be pageblock_nr_pages. 608 */ 609 for (pfn = start_pfn; pfn < end_pfn;) { 610 int order = min(MAX_ORDER - 1UL, __ffs(pfn)); 611 612 (*online_page_callback)(pfn_to_page(pfn), order); 613 pfn += (1UL << order); 614 } 615 616 /* mark all involved sections as online */ 617 online_mem_sections(start_pfn, end_pfn); 618 } 619 620 /* check which state of node_states will be changed when online memory */ 621 static void node_states_check_changes_online(unsigned long nr_pages, 622 struct zone *zone, struct memory_notify *arg) 623 { 624 int nid = zone_to_nid(zone); 625 626 arg->status_change_nid = NUMA_NO_NODE; 627 arg->status_change_nid_normal = NUMA_NO_NODE; 628 arg->status_change_nid_high = NUMA_NO_NODE; 629 630 if (!node_state(nid, N_MEMORY)) 631 arg->status_change_nid = nid; 632 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 633 arg->status_change_nid_normal = nid; 634 #ifdef CONFIG_HIGHMEM 635 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY)) 636 arg->status_change_nid_high = nid; 637 #endif 638 } 639 640 static void node_states_set_node(int node, struct memory_notify *arg) 641 { 642 if (arg->status_change_nid_normal >= 0) 643 node_set_state(node, N_NORMAL_MEMORY); 644 645 if (arg->status_change_nid_high >= 0) 646 node_set_state(node, N_HIGH_MEMORY); 647 648 if (arg->status_change_nid >= 0) 649 node_set_state(node, N_MEMORY); 650 } 651 652 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 653 unsigned long nr_pages) 654 { 655 unsigned long old_end_pfn = zone_end_pfn(zone); 656 657 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 658 zone->zone_start_pfn = start_pfn; 659 660 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 661 } 662 663 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 664 unsigned long nr_pages) 665 { 666 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 667 668 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 669 pgdat->node_start_pfn = start_pfn; 670 671 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 672 673 } 674 675 static void section_taint_zone_device(unsigned long pfn) 676 { 677 struct mem_section *ms = __pfn_to_section(pfn); 678 679 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE; 680 } 681 682 /* 683 * Associate the pfn range with the given zone, initializing the memmaps 684 * and resizing the pgdat/zone data to span the added pages. After this 685 * call, all affected pages are PG_reserved. 686 * 687 * All aligned pageblocks are initialized to the specified migratetype 688 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 689 * zone stats (e.g., nr_isolate_pageblock) are touched. 690 */ 691 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 692 unsigned long nr_pages, 693 struct vmem_altmap *altmap, int migratetype) 694 { 695 struct pglist_data *pgdat = zone->zone_pgdat; 696 int nid = pgdat->node_id; 697 698 clear_zone_contiguous(zone); 699 700 if (zone_is_empty(zone)) 701 init_currently_empty_zone(zone, start_pfn, nr_pages); 702 resize_zone_range(zone, start_pfn, nr_pages); 703 resize_pgdat_range(pgdat, start_pfn, nr_pages); 704 705 /* 706 * Subsection population requires care in pfn_to_online_page(). 707 * Set the taint to enable the slow path detection of 708 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE} 709 * section. 710 */ 711 if (zone_is_zone_device(zone)) { 712 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION)) 713 section_taint_zone_device(start_pfn); 714 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)) 715 section_taint_zone_device(start_pfn + nr_pages); 716 } 717 718 /* 719 * TODO now we have a visible range of pages which are not associated 720 * with their zone properly. Not nice but set_pfnblock_flags_mask 721 * expects the zone spans the pfn range. All the pages in the range 722 * are reserved so nobody should be touching them so we should be safe 723 */ 724 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0, 725 MEMINIT_HOTPLUG, altmap, migratetype); 726 727 set_zone_contiguous(zone); 728 } 729 730 struct auto_movable_stats { 731 unsigned long kernel_early_pages; 732 unsigned long movable_pages; 733 }; 734 735 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats, 736 struct zone *zone) 737 { 738 if (zone_idx(zone) == ZONE_MOVABLE) { 739 stats->movable_pages += zone->present_pages; 740 } else { 741 stats->kernel_early_pages += zone->present_early_pages; 742 #ifdef CONFIG_CMA 743 /* 744 * CMA pages (never on hotplugged memory) behave like 745 * ZONE_MOVABLE. 746 */ 747 stats->movable_pages += zone->cma_pages; 748 stats->kernel_early_pages -= zone->cma_pages; 749 #endif /* CONFIG_CMA */ 750 } 751 } 752 struct auto_movable_group_stats { 753 unsigned long movable_pages; 754 unsigned long req_kernel_early_pages; 755 }; 756 757 static int auto_movable_stats_account_group(struct memory_group *group, 758 void *arg) 759 { 760 const int ratio = READ_ONCE(auto_movable_ratio); 761 struct auto_movable_group_stats *stats = arg; 762 long pages; 763 764 /* 765 * We don't support modifying the config while the auto-movable online 766 * policy is already enabled. Just avoid the division by zero below. 767 */ 768 if (!ratio) 769 return 0; 770 771 /* 772 * Calculate how many early kernel pages this group requires to 773 * satisfy the configured zone ratio. 774 */ 775 pages = group->present_movable_pages * 100 / ratio; 776 pages -= group->present_kernel_pages; 777 778 if (pages > 0) 779 stats->req_kernel_early_pages += pages; 780 stats->movable_pages += group->present_movable_pages; 781 return 0; 782 } 783 784 static bool auto_movable_can_online_movable(int nid, struct memory_group *group, 785 unsigned long nr_pages) 786 { 787 unsigned long kernel_early_pages, movable_pages; 788 struct auto_movable_group_stats group_stats = {}; 789 struct auto_movable_stats stats = {}; 790 pg_data_t *pgdat = NODE_DATA(nid); 791 struct zone *zone; 792 int i; 793 794 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */ 795 if (nid == NUMA_NO_NODE) { 796 /* TODO: cache values */ 797 for_each_populated_zone(zone) 798 auto_movable_stats_account_zone(&stats, zone); 799 } else { 800 for (i = 0; i < MAX_NR_ZONES; i++) { 801 zone = pgdat->node_zones + i; 802 if (populated_zone(zone)) 803 auto_movable_stats_account_zone(&stats, zone); 804 } 805 } 806 807 kernel_early_pages = stats.kernel_early_pages; 808 movable_pages = stats.movable_pages; 809 810 /* 811 * Kernel memory inside dynamic memory group allows for more MOVABLE 812 * memory within the same group. Remove the effect of all but the 813 * current group from the stats. 814 */ 815 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group, 816 group, &group_stats); 817 if (kernel_early_pages <= group_stats.req_kernel_early_pages) 818 return false; 819 kernel_early_pages -= group_stats.req_kernel_early_pages; 820 movable_pages -= group_stats.movable_pages; 821 822 if (group && group->is_dynamic) 823 kernel_early_pages += group->present_kernel_pages; 824 825 /* 826 * Test if we could online the given number of pages to ZONE_MOVABLE 827 * and still stay in the configured ratio. 828 */ 829 movable_pages += nr_pages; 830 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100; 831 } 832 833 /* 834 * Returns a default kernel memory zone for the given pfn range. 835 * If no kernel zone covers this pfn range it will automatically go 836 * to the ZONE_NORMAL. 837 */ 838 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 839 unsigned long nr_pages) 840 { 841 struct pglist_data *pgdat = NODE_DATA(nid); 842 int zid; 843 844 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 845 struct zone *zone = &pgdat->node_zones[zid]; 846 847 if (zone_intersects(zone, start_pfn, nr_pages)) 848 return zone; 849 } 850 851 return &pgdat->node_zones[ZONE_NORMAL]; 852 } 853 854 /* 855 * Determine to which zone to online memory dynamically based on user 856 * configuration and system stats. We care about the following ratio: 857 * 858 * MOVABLE : KERNEL 859 * 860 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in 861 * one of the kernel zones. CMA pages inside one of the kernel zones really 862 * behaves like ZONE_MOVABLE, so we treat them accordingly. 863 * 864 * We don't allow for hotplugged memory in a KERNEL zone to increase the 865 * amount of MOVABLE memory we can have, so we end up with: 866 * 867 * MOVABLE : KERNEL_EARLY 868 * 869 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze 870 * boot. We base our calculation on KERNEL_EARLY internally, because: 871 * 872 * a) Hotplugged memory in one of the kernel zones can sometimes still get 873 * hotunplugged, especially when hot(un)plugging individual memory blocks. 874 * There is no coordination across memory devices, therefore "automatic" 875 * hotunplugging, as implemented in hypervisors, could result in zone 876 * imbalances. 877 * b) Early/boot memory in one of the kernel zones can usually not get 878 * hotunplugged again (e.g., no firmware interface to unplug, fragmented 879 * with unmovable allocations). While there are corner cases where it might 880 * still work, it is barely relevant in practice. 881 * 882 * Exceptions are dynamic memory groups, which allow for more MOVABLE 883 * memory within the same memory group -- because in that case, there is 884 * coordination within the single memory device managed by a single driver. 885 * 886 * We rely on "present pages" instead of "managed pages", as the latter is 887 * highly unreliable and dynamic in virtualized environments, and does not 888 * consider boot time allocations. For example, memory ballooning adjusts the 889 * managed pages when inflating/deflating the balloon, and balloon compaction 890 * can even migrate inflated pages between zones. 891 * 892 * Using "present pages" is better but some things to keep in mind are: 893 * 894 * a) Some memblock allocations, such as for the crashkernel area, are 895 * effectively unused by the kernel, yet they account to "present pages". 896 * Fortunately, these allocations are comparatively small in relevant setups 897 * (e.g., fraction of system memory). 898 * b) Some hotplugged memory blocks in virtualized environments, esecially 899 * hotplugged by virtio-mem, look like they are completely present, however, 900 * only parts of the memory block are actually currently usable. 901 * "present pages" is an upper limit that can get reached at runtime. As 902 * we base our calculations on KERNEL_EARLY, this is not an issue. 903 */ 904 static struct zone *auto_movable_zone_for_pfn(int nid, 905 struct memory_group *group, 906 unsigned long pfn, 907 unsigned long nr_pages) 908 { 909 unsigned long online_pages = 0, max_pages, end_pfn; 910 struct page *page; 911 912 if (!auto_movable_ratio) 913 goto kernel_zone; 914 915 if (group && !group->is_dynamic) { 916 max_pages = group->s.max_pages; 917 online_pages = group->present_movable_pages; 918 919 /* If anything is !MOVABLE online the rest !MOVABLE. */ 920 if (group->present_kernel_pages) 921 goto kernel_zone; 922 } else if (!group || group->d.unit_pages == nr_pages) { 923 max_pages = nr_pages; 924 } else { 925 max_pages = group->d.unit_pages; 926 /* 927 * Take a look at all online sections in the current unit. 928 * We can safely assume that all pages within a section belong 929 * to the same zone, because dynamic memory groups only deal 930 * with hotplugged memory. 931 */ 932 pfn = ALIGN_DOWN(pfn, group->d.unit_pages); 933 end_pfn = pfn + group->d.unit_pages; 934 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 935 page = pfn_to_online_page(pfn); 936 if (!page) 937 continue; 938 /* If anything is !MOVABLE online the rest !MOVABLE. */ 939 if (page_zonenum(page) != ZONE_MOVABLE) 940 goto kernel_zone; 941 online_pages += PAGES_PER_SECTION; 942 } 943 } 944 945 /* 946 * Online MOVABLE if we could *currently* online all remaining parts 947 * MOVABLE. We expect to (add+) online them immediately next, so if 948 * nobody interferes, all will be MOVABLE if possible. 949 */ 950 nr_pages = max_pages - online_pages; 951 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages)) 952 goto kernel_zone; 953 954 #ifdef CONFIG_NUMA 955 if (auto_movable_numa_aware && 956 !auto_movable_can_online_movable(nid, group, nr_pages)) 957 goto kernel_zone; 958 #endif /* CONFIG_NUMA */ 959 960 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 961 kernel_zone: 962 return default_kernel_zone_for_pfn(nid, pfn, nr_pages); 963 } 964 965 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 966 unsigned long nr_pages) 967 { 968 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 969 nr_pages); 970 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 971 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 972 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 973 974 /* 975 * We inherit the existing zone in a simple case where zones do not 976 * overlap in the given range 977 */ 978 if (in_kernel ^ in_movable) 979 return (in_kernel) ? kernel_zone : movable_zone; 980 981 /* 982 * If the range doesn't belong to any zone or two zones overlap in the 983 * given range then we use movable zone only if movable_node is 984 * enabled because we always online to a kernel zone by default. 985 */ 986 return movable_node_enabled ? movable_zone : kernel_zone; 987 } 988 989 struct zone *zone_for_pfn_range(int online_type, int nid, 990 struct memory_group *group, unsigned long start_pfn, 991 unsigned long nr_pages) 992 { 993 if (online_type == MMOP_ONLINE_KERNEL) 994 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 995 996 if (online_type == MMOP_ONLINE_MOVABLE) 997 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 998 999 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE) 1000 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages); 1001 1002 return default_zone_for_pfn(nid, start_pfn, nr_pages); 1003 } 1004 1005 /* 1006 * This function should only be called by memory_block_{online,offline}, 1007 * and {online,offline}_pages. 1008 */ 1009 void adjust_present_page_count(struct page *page, struct memory_group *group, 1010 long nr_pages) 1011 { 1012 struct zone *zone = page_zone(page); 1013 const bool movable = zone_idx(zone) == ZONE_MOVABLE; 1014 1015 /* 1016 * We only support onlining/offlining/adding/removing of complete 1017 * memory blocks; therefore, either all is either early or hotplugged. 1018 */ 1019 if (early_section(__pfn_to_section(page_to_pfn(page)))) 1020 zone->present_early_pages += nr_pages; 1021 zone->present_pages += nr_pages; 1022 zone->zone_pgdat->node_present_pages += nr_pages; 1023 1024 if (group && movable) 1025 group->present_movable_pages += nr_pages; 1026 else if (group && !movable) 1027 group->present_kernel_pages += nr_pages; 1028 } 1029 1030 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages, 1031 struct zone *zone) 1032 { 1033 unsigned long end_pfn = pfn + nr_pages; 1034 int ret; 1035 1036 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1037 if (ret) 1038 return ret; 1039 1040 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE); 1041 1042 /* 1043 * It might be that the vmemmap_pages fully span sections. If that is 1044 * the case, mark those sections online here as otherwise they will be 1045 * left offline. 1046 */ 1047 if (nr_pages >= PAGES_PER_SECTION) 1048 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1049 1050 return ret; 1051 } 1052 1053 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages) 1054 { 1055 unsigned long end_pfn = pfn + nr_pages; 1056 1057 /* 1058 * It might be that the vmemmap_pages fully span sections. If that is 1059 * the case, mark those sections offline here as otherwise they will be 1060 * left online. 1061 */ 1062 if (nr_pages >= PAGES_PER_SECTION) 1063 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION)); 1064 1065 /* 1066 * The pages associated with this vmemmap have been offlined, so 1067 * we can reset its state here. 1068 */ 1069 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages); 1070 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages)); 1071 } 1072 1073 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, 1074 struct zone *zone, struct memory_group *group) 1075 { 1076 unsigned long flags; 1077 int need_zonelists_rebuild = 0; 1078 const int nid = zone_to_nid(zone); 1079 int ret; 1080 struct memory_notify arg; 1081 1082 /* 1083 * {on,off}lining is constrained to full memory sections (or more 1084 * precisely to memory blocks from the user space POV). 1085 * memmap_on_memory is an exception because it reserves initial part 1086 * of the physical memory space for vmemmaps. That space is pageblock 1087 * aligned. 1088 */ 1089 if (WARN_ON_ONCE(!nr_pages || 1090 !IS_ALIGNED(pfn, pageblock_nr_pages) || 1091 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION))) 1092 return -EINVAL; 1093 1094 mem_hotplug_begin(); 1095 1096 /* associate pfn range with the zone */ 1097 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE); 1098 1099 arg.start_pfn = pfn; 1100 arg.nr_pages = nr_pages; 1101 node_states_check_changes_online(nr_pages, zone, &arg); 1102 1103 ret = memory_notify(MEM_GOING_ONLINE, &arg); 1104 ret = notifier_to_errno(ret); 1105 if (ret) 1106 goto failed_addition; 1107 1108 /* 1109 * Fixup the number of isolated pageblocks before marking the sections 1110 * onlining, such that undo_isolate_page_range() works correctly. 1111 */ 1112 spin_lock_irqsave(&zone->lock, flags); 1113 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages; 1114 spin_unlock_irqrestore(&zone->lock, flags); 1115 1116 /* 1117 * If this zone is not populated, then it is not in zonelist. 1118 * This means the page allocator ignores this zone. 1119 * So, zonelist must be updated after online. 1120 */ 1121 if (!populated_zone(zone)) { 1122 need_zonelists_rebuild = 1; 1123 setup_zone_pageset(zone); 1124 } 1125 1126 online_pages_range(pfn, nr_pages); 1127 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages); 1128 1129 node_states_set_node(nid, &arg); 1130 if (need_zonelists_rebuild) 1131 build_all_zonelists(NULL); 1132 1133 /* Basic onlining is complete, allow allocation of onlined pages. */ 1134 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE); 1135 1136 /* 1137 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to 1138 * the tail of the freelist when undoing isolation). Shuffle the whole 1139 * zone to make sure the just onlined pages are properly distributed 1140 * across the whole freelist - to create an initial shuffle. 1141 */ 1142 shuffle_zone(zone); 1143 1144 /* reinitialise watermarks and update pcp limits */ 1145 init_per_zone_wmark_min(); 1146 1147 kswapd_run(nid); 1148 kcompactd_run(nid); 1149 1150 writeback_set_ratelimit(); 1151 1152 memory_notify(MEM_ONLINE, &arg); 1153 mem_hotplug_done(); 1154 return 0; 1155 1156 failed_addition: 1157 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 1158 (unsigned long long) pfn << PAGE_SHIFT, 1159 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 1160 memory_notify(MEM_CANCEL_ONLINE, &arg); 1161 remove_pfn_range_from_zone(zone, pfn, nr_pages); 1162 mem_hotplug_done(); 1163 return ret; 1164 } 1165 1166 static void reset_node_present_pages(pg_data_t *pgdat) 1167 { 1168 struct zone *z; 1169 1170 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1171 z->present_pages = 0; 1172 1173 pgdat->node_present_pages = 0; 1174 } 1175 1176 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 1177 static pg_data_t __ref *hotadd_new_pgdat(int nid) 1178 { 1179 struct pglist_data *pgdat; 1180 1181 pgdat = NODE_DATA(nid); 1182 if (!pgdat) { 1183 pgdat = arch_alloc_nodedata(nid); 1184 if (!pgdat) 1185 return NULL; 1186 1187 pgdat->per_cpu_nodestats = 1188 alloc_percpu(struct per_cpu_nodestat); 1189 arch_refresh_nodedata(nid, pgdat); 1190 } else { 1191 int cpu; 1192 /* 1193 * Reset the nr_zones, order and highest_zoneidx before reuse. 1194 * Note that kswapd will init kswapd_highest_zoneidx properly 1195 * when it starts in the near future. 1196 */ 1197 pgdat->nr_zones = 0; 1198 pgdat->kswapd_order = 0; 1199 pgdat->kswapd_highest_zoneidx = 0; 1200 for_each_online_cpu(cpu) { 1201 struct per_cpu_nodestat *p; 1202 1203 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu); 1204 memset(p, 0, sizeof(*p)); 1205 } 1206 } 1207 1208 /* we can use NODE_DATA(nid) from here */ 1209 pgdat->node_id = nid; 1210 pgdat->node_start_pfn = 0; 1211 1212 /* init node's zones as empty zones, we don't have any present pages.*/ 1213 free_area_init_core_hotplug(nid); 1214 1215 /* 1216 * The node we allocated has no zone fallback lists. For avoiding 1217 * to access not-initialized zonelist, build here. 1218 */ 1219 build_all_zonelists(pgdat); 1220 1221 /* 1222 * When memory is hot-added, all the memory is in offline state. So 1223 * clear all zones' present_pages because they will be updated in 1224 * online_pages() and offline_pages(). 1225 */ 1226 reset_node_managed_pages(pgdat); 1227 reset_node_present_pages(pgdat); 1228 1229 return pgdat; 1230 } 1231 1232 static void rollback_node_hotadd(int nid) 1233 { 1234 pg_data_t *pgdat = NODE_DATA(nid); 1235 1236 arch_refresh_nodedata(nid, NULL); 1237 free_percpu(pgdat->per_cpu_nodestats); 1238 arch_free_nodedata(pgdat); 1239 } 1240 1241 1242 /* 1243 * __try_online_node - online a node if offlined 1244 * @nid: the node ID 1245 * @set_node_online: Whether we want to online the node 1246 * called by cpu_up() to online a node without onlined memory. 1247 * 1248 * Returns: 1249 * 1 -> a new node has been allocated 1250 * 0 -> the node is already online 1251 * -ENOMEM -> the node could not be allocated 1252 */ 1253 static int __try_online_node(int nid, bool set_node_online) 1254 { 1255 pg_data_t *pgdat; 1256 int ret = 1; 1257 1258 if (node_online(nid)) 1259 return 0; 1260 1261 pgdat = hotadd_new_pgdat(nid); 1262 if (!pgdat) { 1263 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1264 ret = -ENOMEM; 1265 goto out; 1266 } 1267 1268 if (set_node_online) { 1269 node_set_online(nid); 1270 ret = register_one_node(nid); 1271 BUG_ON(ret); 1272 } 1273 out: 1274 return ret; 1275 } 1276 1277 /* 1278 * Users of this function always want to online/register the node 1279 */ 1280 int try_online_node(int nid) 1281 { 1282 int ret; 1283 1284 mem_hotplug_begin(); 1285 ret = __try_online_node(nid, true); 1286 mem_hotplug_done(); 1287 return ret; 1288 } 1289 1290 static int check_hotplug_memory_range(u64 start, u64 size) 1291 { 1292 /* memory range must be block size aligned */ 1293 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) || 1294 !IS_ALIGNED(size, memory_block_size_bytes())) { 1295 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1296 memory_block_size_bytes(), start, size); 1297 return -EINVAL; 1298 } 1299 1300 return 0; 1301 } 1302 1303 static int online_memory_block(struct memory_block *mem, void *arg) 1304 { 1305 mem->online_type = mhp_default_online_type; 1306 return device_online(&mem->dev); 1307 } 1308 1309 bool mhp_supports_memmap_on_memory(unsigned long size) 1310 { 1311 unsigned long nr_vmemmap_pages = size / PAGE_SIZE; 1312 unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page); 1313 unsigned long remaining_size = size - vmemmap_size; 1314 1315 /* 1316 * Besides having arch support and the feature enabled at runtime, we 1317 * need a few more assumptions to hold true: 1318 * 1319 * a) We span a single memory block: memory onlining/offlinin;g happens 1320 * in memory block granularity. We don't want the vmemmap of online 1321 * memory blocks to reside on offline memory blocks. In the future, 1322 * we might want to support variable-sized memory blocks to make the 1323 * feature more versatile. 1324 * 1325 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code 1326 * to populate memory from the altmap for unrelated parts (i.e., 1327 * other memory blocks) 1328 * 1329 * c) The vmemmap pages (and thereby the pages that will be exposed to 1330 * the buddy) have to cover full pageblocks: memory onlining/offlining 1331 * code requires applicable ranges to be page-aligned, for example, to 1332 * set the migratetypes properly. 1333 * 1334 * TODO: Although we have a check here to make sure that vmemmap pages 1335 * fully populate a PMD, it is not the right place to check for 1336 * this. A much better solution involves improving vmemmap code 1337 * to fallback to base pages when trying to populate vmemmap using 1338 * altmap as an alternative source of memory, and we do not exactly 1339 * populate a single PMD. 1340 */ 1341 return memmap_on_memory && 1342 !hugetlb_free_vmemmap_enabled && 1343 IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) && 1344 size == memory_block_size_bytes() && 1345 IS_ALIGNED(vmemmap_size, PMD_SIZE) && 1346 IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT)); 1347 } 1348 1349 /* 1350 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1351 * and online/offline operations (triggered e.g. by sysfs). 1352 * 1353 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1354 */ 1355 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags) 1356 { 1357 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) }; 1358 struct vmem_altmap mhp_altmap = {}; 1359 struct memory_group *group = NULL; 1360 u64 start, size; 1361 bool new_node = false; 1362 int ret; 1363 1364 start = res->start; 1365 size = resource_size(res); 1366 1367 ret = check_hotplug_memory_range(start, size); 1368 if (ret) 1369 return ret; 1370 1371 if (mhp_flags & MHP_NID_IS_MGID) { 1372 group = memory_group_find_by_id(nid); 1373 if (!group) 1374 return -EINVAL; 1375 nid = group->nid; 1376 } 1377 1378 if (!node_possible(nid)) { 1379 WARN(1, "node %d was absent from the node_possible_map\n", nid); 1380 return -EINVAL; 1381 } 1382 1383 mem_hotplug_begin(); 1384 1385 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1386 memblock_add_node(start, size, nid); 1387 1388 ret = __try_online_node(nid, false); 1389 if (ret < 0) 1390 goto error; 1391 new_node = ret; 1392 1393 /* 1394 * Self hosted memmap array 1395 */ 1396 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) { 1397 if (!mhp_supports_memmap_on_memory(size)) { 1398 ret = -EINVAL; 1399 goto error; 1400 } 1401 mhp_altmap.free = PHYS_PFN(size); 1402 mhp_altmap.base_pfn = PHYS_PFN(start); 1403 params.altmap = &mhp_altmap; 1404 } 1405 1406 /* call arch's memory hotadd */ 1407 ret = arch_add_memory(nid, start, size, ¶ms); 1408 if (ret < 0) 1409 goto error; 1410 1411 /* create memory block devices after memory was added */ 1412 ret = create_memory_block_devices(start, size, mhp_altmap.alloc, 1413 group); 1414 if (ret) { 1415 arch_remove_memory(start, size, NULL); 1416 goto error; 1417 } 1418 1419 if (new_node) { 1420 /* If sysfs file of new node can't be created, cpu on the node 1421 * can't be hot-added. There is no rollback way now. 1422 * So, check by BUG_ON() to catch it reluctantly.. 1423 * We online node here. We can't roll back from here. 1424 */ 1425 node_set_online(nid); 1426 ret = __register_one_node(nid); 1427 BUG_ON(ret); 1428 } 1429 1430 /* link memory sections under this node.*/ 1431 link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1), 1432 MEMINIT_HOTPLUG); 1433 1434 /* create new memmap entry */ 1435 if (!strcmp(res->name, "System RAM")) 1436 firmware_map_add_hotplug(start, start + size, "System RAM"); 1437 1438 /* device_online() will take the lock when calling online_pages() */ 1439 mem_hotplug_done(); 1440 1441 /* 1442 * In case we're allowed to merge the resource, flag it and trigger 1443 * merging now that adding succeeded. 1444 */ 1445 if (mhp_flags & MHP_MERGE_RESOURCE) 1446 merge_system_ram_resource(res); 1447 1448 /* online pages if requested */ 1449 if (mhp_default_online_type != MMOP_OFFLINE) 1450 walk_memory_blocks(start, size, NULL, online_memory_block); 1451 1452 return ret; 1453 error: 1454 /* rollback pgdat allocation and others */ 1455 if (new_node) 1456 rollback_node_hotadd(nid); 1457 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 1458 memblock_remove(start, size); 1459 mem_hotplug_done(); 1460 return ret; 1461 } 1462 1463 /* requires device_hotplug_lock, see add_memory_resource() */ 1464 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1465 { 1466 struct resource *res; 1467 int ret; 1468 1469 res = register_memory_resource(start, size, "System RAM"); 1470 if (IS_ERR(res)) 1471 return PTR_ERR(res); 1472 1473 ret = add_memory_resource(nid, res, mhp_flags); 1474 if (ret < 0) 1475 release_memory_resource(res); 1476 return ret; 1477 } 1478 1479 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags) 1480 { 1481 int rc; 1482 1483 lock_device_hotplug(); 1484 rc = __add_memory(nid, start, size, mhp_flags); 1485 unlock_device_hotplug(); 1486 1487 return rc; 1488 } 1489 EXPORT_SYMBOL_GPL(add_memory); 1490 1491 /* 1492 * Add special, driver-managed memory to the system as system RAM. Such 1493 * memory is not exposed via the raw firmware-provided memmap as system 1494 * RAM, instead, it is detected and added by a driver - during cold boot, 1495 * after a reboot, and after kexec. 1496 * 1497 * Reasons why this memory should not be used for the initial memmap of a 1498 * kexec kernel or for placing kexec images: 1499 * - The booting kernel is in charge of determining how this memory will be 1500 * used (e.g., use persistent memory as system RAM) 1501 * - Coordination with a hypervisor is required before this memory 1502 * can be used (e.g., inaccessible parts). 1503 * 1504 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided 1505 * memory map") are created. Also, the created memory resource is flagged 1506 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case 1507 * this memory as well (esp., not place kexec images onto it). 1508 * 1509 * The resource_name (visible via /proc/iomem) has to have the format 1510 * "System RAM ($DRIVER)". 1511 */ 1512 int add_memory_driver_managed(int nid, u64 start, u64 size, 1513 const char *resource_name, mhp_t mhp_flags) 1514 { 1515 struct resource *res; 1516 int rc; 1517 1518 if (!resource_name || 1519 strstr(resource_name, "System RAM (") != resource_name || 1520 resource_name[strlen(resource_name) - 1] != ')') 1521 return -EINVAL; 1522 1523 lock_device_hotplug(); 1524 1525 res = register_memory_resource(start, size, resource_name); 1526 if (IS_ERR(res)) { 1527 rc = PTR_ERR(res); 1528 goto out_unlock; 1529 } 1530 1531 rc = add_memory_resource(nid, res, mhp_flags); 1532 if (rc < 0) 1533 release_memory_resource(res); 1534 1535 out_unlock: 1536 unlock_device_hotplug(); 1537 return rc; 1538 } 1539 EXPORT_SYMBOL_GPL(add_memory_driver_managed); 1540 1541 /* 1542 * Platforms should define arch_get_mappable_range() that provides 1543 * maximum possible addressable physical memory range for which the 1544 * linear mapping could be created. The platform returned address 1545 * range must adhere to these following semantics. 1546 * 1547 * - range.start <= range.end 1548 * - Range includes both end points [range.start..range.end] 1549 * 1550 * There is also a fallback definition provided here, allowing the 1551 * entire possible physical address range in case any platform does 1552 * not define arch_get_mappable_range(). 1553 */ 1554 struct range __weak arch_get_mappable_range(void) 1555 { 1556 struct range mhp_range = { 1557 .start = 0UL, 1558 .end = -1ULL, 1559 }; 1560 return mhp_range; 1561 } 1562 1563 struct range mhp_get_pluggable_range(bool need_mapping) 1564 { 1565 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1; 1566 struct range mhp_range; 1567 1568 if (need_mapping) { 1569 mhp_range = arch_get_mappable_range(); 1570 if (mhp_range.start > max_phys) { 1571 mhp_range.start = 0; 1572 mhp_range.end = 0; 1573 } 1574 mhp_range.end = min_t(u64, mhp_range.end, max_phys); 1575 } else { 1576 mhp_range.start = 0; 1577 mhp_range.end = max_phys; 1578 } 1579 return mhp_range; 1580 } 1581 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range); 1582 1583 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping) 1584 { 1585 struct range mhp_range = mhp_get_pluggable_range(need_mapping); 1586 u64 end = start + size; 1587 1588 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end) 1589 return true; 1590 1591 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n", 1592 start, end, mhp_range.start, mhp_range.end); 1593 return false; 1594 } 1595 1596 #ifdef CONFIG_MEMORY_HOTREMOVE 1597 /* 1598 * Confirm all pages in a range [start, end) belong to the same zone (skipping 1599 * memory holes). When true, return the zone. 1600 */ 1601 struct zone *test_pages_in_a_zone(unsigned long start_pfn, 1602 unsigned long end_pfn) 1603 { 1604 unsigned long pfn, sec_end_pfn; 1605 struct zone *zone = NULL; 1606 struct page *page; 1607 1608 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1609 pfn < end_pfn; 1610 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1611 /* Make sure the memory section is present first */ 1612 if (!present_section_nr(pfn_to_section_nr(pfn))) 1613 continue; 1614 for (; pfn < sec_end_pfn && pfn < end_pfn; 1615 pfn += MAX_ORDER_NR_PAGES) { 1616 /* Check if we got outside of the zone */ 1617 if (zone && !zone_spans_pfn(zone, pfn)) 1618 return NULL; 1619 page = pfn_to_page(pfn); 1620 if (zone && page_zone(page) != zone) 1621 return NULL; 1622 zone = page_zone(page); 1623 } 1624 } 1625 1626 return zone; 1627 } 1628 1629 /* 1630 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1631 * non-lru movable pages and hugepages). Will skip over most unmovable 1632 * pages (esp., pages that can be skipped when offlining), but bail out on 1633 * definitely unmovable pages. 1634 * 1635 * Returns: 1636 * 0 in case a movable page is found and movable_pfn was updated. 1637 * -ENOENT in case no movable page was found. 1638 * -EBUSY in case a definitely unmovable page was found. 1639 */ 1640 static int scan_movable_pages(unsigned long start, unsigned long end, 1641 unsigned long *movable_pfn) 1642 { 1643 unsigned long pfn; 1644 1645 for (pfn = start; pfn < end; pfn++) { 1646 struct page *page, *head; 1647 unsigned long skip; 1648 1649 if (!pfn_valid(pfn)) 1650 continue; 1651 page = pfn_to_page(pfn); 1652 if (PageLRU(page)) 1653 goto found; 1654 if (__PageMovable(page)) 1655 goto found; 1656 1657 /* 1658 * PageOffline() pages that are not marked __PageMovable() and 1659 * have a reference count > 0 (after MEM_GOING_OFFLINE) are 1660 * definitely unmovable. If their reference count would be 0, 1661 * they could at least be skipped when offlining memory. 1662 */ 1663 if (PageOffline(page) && page_count(page)) 1664 return -EBUSY; 1665 1666 if (!PageHuge(page)) 1667 continue; 1668 head = compound_head(page); 1669 /* 1670 * This test is racy as we hold no reference or lock. The 1671 * hugetlb page could have been free'ed and head is no longer 1672 * a hugetlb page before the following check. In such unlikely 1673 * cases false positives and negatives are possible. Calling 1674 * code must deal with these scenarios. 1675 */ 1676 if (HPageMigratable(head)) 1677 goto found; 1678 skip = compound_nr(head) - (page - head); 1679 pfn += skip - 1; 1680 } 1681 return -ENOENT; 1682 found: 1683 *movable_pfn = pfn; 1684 return 0; 1685 } 1686 1687 static int 1688 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1689 { 1690 unsigned long pfn; 1691 struct page *page, *head; 1692 int ret = 0; 1693 LIST_HEAD(source); 1694 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL, 1695 DEFAULT_RATELIMIT_BURST); 1696 1697 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1698 if (!pfn_valid(pfn)) 1699 continue; 1700 page = pfn_to_page(pfn); 1701 head = compound_head(page); 1702 1703 if (PageHuge(page)) { 1704 pfn = page_to_pfn(head) + compound_nr(head) - 1; 1705 isolate_huge_page(head, &source); 1706 continue; 1707 } else if (PageTransHuge(page)) 1708 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1; 1709 1710 /* 1711 * HWPoison pages have elevated reference counts so the migration would 1712 * fail on them. It also doesn't make any sense to migrate them in the 1713 * first place. Still try to unmap such a page in case it is still mapped 1714 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1715 * the unmap as the catch all safety net). 1716 */ 1717 if (PageHWPoison(page)) { 1718 if (WARN_ON(PageLRU(page))) 1719 isolate_lru_page(page); 1720 if (page_mapped(page)) 1721 try_to_unmap(page, TTU_IGNORE_MLOCK); 1722 continue; 1723 } 1724 1725 if (!get_page_unless_zero(page)) 1726 continue; 1727 /* 1728 * We can skip free pages. And we can deal with pages on 1729 * LRU and non-lru movable pages. 1730 */ 1731 if (PageLRU(page)) 1732 ret = isolate_lru_page(page); 1733 else 1734 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1735 if (!ret) { /* Success */ 1736 list_add_tail(&page->lru, &source); 1737 if (!__PageMovable(page)) 1738 inc_node_page_state(page, NR_ISOLATED_ANON + 1739 page_is_file_lru(page)); 1740 1741 } else { 1742 if (__ratelimit(&migrate_rs)) { 1743 pr_warn("failed to isolate pfn %lx\n", pfn); 1744 dump_page(page, "isolation failed"); 1745 } 1746 } 1747 put_page(page); 1748 } 1749 if (!list_empty(&source)) { 1750 nodemask_t nmask = node_states[N_MEMORY]; 1751 struct migration_target_control mtc = { 1752 .nmask = &nmask, 1753 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1754 }; 1755 1756 /* 1757 * We have checked that migration range is on a single zone so 1758 * we can use the nid of the first page to all the others. 1759 */ 1760 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru)); 1761 1762 /* 1763 * try to allocate from a different node but reuse this node 1764 * if there are no other online nodes to be used (e.g. we are 1765 * offlining a part of the only existing node) 1766 */ 1767 node_clear(mtc.nid, nmask); 1768 if (nodes_empty(nmask)) 1769 node_set(mtc.nid, nmask); 1770 ret = migrate_pages(&source, alloc_migration_target, NULL, 1771 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL); 1772 if (ret) { 1773 list_for_each_entry(page, &source, lru) { 1774 if (__ratelimit(&migrate_rs)) { 1775 pr_warn("migrating pfn %lx failed ret:%d\n", 1776 page_to_pfn(page), ret); 1777 dump_page(page, "migration failure"); 1778 } 1779 } 1780 putback_movable_pages(&source); 1781 } 1782 } 1783 1784 return ret; 1785 } 1786 1787 static int __init cmdline_parse_movable_node(char *p) 1788 { 1789 movable_node_enabled = true; 1790 return 0; 1791 } 1792 early_param("movable_node", cmdline_parse_movable_node); 1793 1794 /* check which state of node_states will be changed when offline memory */ 1795 static void node_states_check_changes_offline(unsigned long nr_pages, 1796 struct zone *zone, struct memory_notify *arg) 1797 { 1798 struct pglist_data *pgdat = zone->zone_pgdat; 1799 unsigned long present_pages = 0; 1800 enum zone_type zt; 1801 1802 arg->status_change_nid = NUMA_NO_NODE; 1803 arg->status_change_nid_normal = NUMA_NO_NODE; 1804 arg->status_change_nid_high = NUMA_NO_NODE; 1805 1806 /* 1807 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1808 * If the memory to be offline is within the range 1809 * [0..ZONE_NORMAL], and it is the last present memory there, 1810 * the zones in that range will become empty after the offlining, 1811 * thus we can determine that we need to clear the node from 1812 * node_states[N_NORMAL_MEMORY]. 1813 */ 1814 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1815 present_pages += pgdat->node_zones[zt].present_pages; 1816 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1817 arg->status_change_nid_normal = zone_to_nid(zone); 1818 1819 #ifdef CONFIG_HIGHMEM 1820 /* 1821 * node_states[N_HIGH_MEMORY] contains nodes which 1822 * have normal memory or high memory. 1823 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1824 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1825 * we determine that the zones in that range become empty, 1826 * we need to clear the node for N_HIGH_MEMORY. 1827 */ 1828 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1829 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1830 arg->status_change_nid_high = zone_to_nid(zone); 1831 #endif 1832 1833 /* 1834 * We have accounted the pages from [0..ZONE_NORMAL), and 1835 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1836 * as well. 1837 * Here we count the possible pages from ZONE_MOVABLE. 1838 * If after having accounted all the pages, we see that the nr_pages 1839 * to be offlined is over or equal to the accounted pages, 1840 * we know that the node will become empty, and so, we can clear 1841 * it for N_MEMORY as well. 1842 */ 1843 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1844 1845 if (nr_pages >= present_pages) 1846 arg->status_change_nid = zone_to_nid(zone); 1847 } 1848 1849 static void node_states_clear_node(int node, struct memory_notify *arg) 1850 { 1851 if (arg->status_change_nid_normal >= 0) 1852 node_clear_state(node, N_NORMAL_MEMORY); 1853 1854 if (arg->status_change_nid_high >= 0) 1855 node_clear_state(node, N_HIGH_MEMORY); 1856 1857 if (arg->status_change_nid >= 0) 1858 node_clear_state(node, N_MEMORY); 1859 } 1860 1861 static int count_system_ram_pages_cb(unsigned long start_pfn, 1862 unsigned long nr_pages, void *data) 1863 { 1864 unsigned long *nr_system_ram_pages = data; 1865 1866 *nr_system_ram_pages += nr_pages; 1867 return 0; 1868 } 1869 1870 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages, 1871 struct memory_group *group) 1872 { 1873 const unsigned long end_pfn = start_pfn + nr_pages; 1874 unsigned long pfn, system_ram_pages = 0; 1875 unsigned long flags; 1876 struct zone *zone; 1877 struct memory_notify arg; 1878 int ret, node; 1879 char *reason; 1880 1881 /* 1882 * {on,off}lining is constrained to full memory sections (or more 1883 * precisely to memory blocks from the user space POV). 1884 * memmap_on_memory is an exception because it reserves initial part 1885 * of the physical memory space for vmemmaps. That space is pageblock 1886 * aligned. 1887 */ 1888 if (WARN_ON_ONCE(!nr_pages || 1889 !IS_ALIGNED(start_pfn, pageblock_nr_pages) || 1890 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))) 1891 return -EINVAL; 1892 1893 mem_hotplug_begin(); 1894 1895 /* 1896 * Don't allow to offline memory blocks that contain holes. 1897 * Consequently, memory blocks with holes can never get onlined 1898 * via the hotplug path - online_pages() - as hotplugged memory has 1899 * no holes. This way, we e.g., don't have to worry about marking 1900 * memory holes PG_reserved, don't need pfn_valid() checks, and can 1901 * avoid using walk_system_ram_range() later. 1902 */ 1903 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages, 1904 count_system_ram_pages_cb); 1905 if (system_ram_pages != nr_pages) { 1906 ret = -EINVAL; 1907 reason = "memory holes"; 1908 goto failed_removal; 1909 } 1910 1911 /* This makes hotplug much easier...and readable. 1912 we assume this for now. .*/ 1913 zone = test_pages_in_a_zone(start_pfn, end_pfn); 1914 if (!zone) { 1915 ret = -EINVAL; 1916 reason = "multizone range"; 1917 goto failed_removal; 1918 } 1919 node = zone_to_nid(zone); 1920 1921 /* 1922 * Disable pcplists so that page isolation cannot race with freeing 1923 * in a way that pages from isolated pageblock are left on pcplists. 1924 */ 1925 zone_pcp_disable(zone); 1926 lru_cache_disable(); 1927 1928 /* set above range as isolated */ 1929 ret = start_isolate_page_range(start_pfn, end_pfn, 1930 MIGRATE_MOVABLE, 1931 MEMORY_OFFLINE | REPORT_FAILURE); 1932 if (ret) { 1933 reason = "failure to isolate range"; 1934 goto failed_removal_pcplists_disabled; 1935 } 1936 1937 arg.start_pfn = start_pfn; 1938 arg.nr_pages = nr_pages; 1939 node_states_check_changes_offline(nr_pages, zone, &arg); 1940 1941 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1942 ret = notifier_to_errno(ret); 1943 if (ret) { 1944 reason = "notifier failure"; 1945 goto failed_removal_isolated; 1946 } 1947 1948 do { 1949 pfn = start_pfn; 1950 do { 1951 if (signal_pending(current)) { 1952 ret = -EINTR; 1953 reason = "signal backoff"; 1954 goto failed_removal_isolated; 1955 } 1956 1957 cond_resched(); 1958 1959 ret = scan_movable_pages(pfn, end_pfn, &pfn); 1960 if (!ret) { 1961 /* 1962 * TODO: fatal migration failures should bail 1963 * out 1964 */ 1965 do_migrate_range(pfn, end_pfn); 1966 } 1967 } while (!ret); 1968 1969 if (ret != -ENOENT) { 1970 reason = "unmovable page"; 1971 goto failed_removal_isolated; 1972 } 1973 1974 /* 1975 * Dissolve free hugepages in the memory block before doing 1976 * offlining actually in order to make hugetlbfs's object 1977 * counting consistent. 1978 */ 1979 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1980 if (ret) { 1981 reason = "failure to dissolve huge pages"; 1982 goto failed_removal_isolated; 1983 } 1984 1985 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE); 1986 1987 } while (ret); 1988 1989 /* Mark all sections offline and remove free pages from the buddy. */ 1990 __offline_isolated_pages(start_pfn, end_pfn); 1991 pr_debug("Offlined Pages %ld\n", nr_pages); 1992 1993 /* 1994 * The memory sections are marked offline, and the pageblock flags 1995 * effectively stale; nobody should be touching them. Fixup the number 1996 * of isolated pageblocks, memory onlining will properly revert this. 1997 */ 1998 spin_lock_irqsave(&zone->lock, flags); 1999 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages; 2000 spin_unlock_irqrestore(&zone->lock, flags); 2001 2002 lru_cache_enable(); 2003 zone_pcp_enable(zone); 2004 2005 /* removal success */ 2006 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages); 2007 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages); 2008 2009 /* reinitialise watermarks and update pcp limits */ 2010 init_per_zone_wmark_min(); 2011 2012 if (!populated_zone(zone)) { 2013 zone_pcp_reset(zone); 2014 build_all_zonelists(NULL); 2015 } 2016 2017 node_states_clear_node(node, &arg); 2018 if (arg.status_change_nid >= 0) { 2019 kswapd_stop(node); 2020 kcompactd_stop(node); 2021 } 2022 2023 writeback_set_ratelimit(); 2024 2025 memory_notify(MEM_OFFLINE, &arg); 2026 remove_pfn_range_from_zone(zone, start_pfn, nr_pages); 2027 mem_hotplug_done(); 2028 return 0; 2029 2030 failed_removal_isolated: 2031 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 2032 memory_notify(MEM_CANCEL_OFFLINE, &arg); 2033 failed_removal_pcplists_disabled: 2034 lru_cache_enable(); 2035 zone_pcp_enable(zone); 2036 failed_removal: 2037 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 2038 (unsigned long long) start_pfn << PAGE_SHIFT, 2039 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 2040 reason); 2041 /* pushback to free area */ 2042 mem_hotplug_done(); 2043 return ret; 2044 } 2045 2046 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 2047 { 2048 int ret = !is_memblock_offlined(mem); 2049 int *nid = arg; 2050 2051 *nid = mem->nid; 2052 if (unlikely(ret)) { 2053 phys_addr_t beginpa, endpa; 2054 2055 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 2056 endpa = beginpa + memory_block_size_bytes() - 1; 2057 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 2058 &beginpa, &endpa); 2059 2060 return -EBUSY; 2061 } 2062 return 0; 2063 } 2064 2065 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg) 2066 { 2067 /* 2068 * If not set, continue with the next block. 2069 */ 2070 return mem->nr_vmemmap_pages; 2071 } 2072 2073 static int check_cpu_on_node(pg_data_t *pgdat) 2074 { 2075 int cpu; 2076 2077 for_each_present_cpu(cpu) { 2078 if (cpu_to_node(cpu) == pgdat->node_id) 2079 /* 2080 * the cpu on this node isn't removed, and we can't 2081 * offline this node. 2082 */ 2083 return -EBUSY; 2084 } 2085 2086 return 0; 2087 } 2088 2089 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg) 2090 { 2091 int nid = *(int *)arg; 2092 2093 /* 2094 * If a memory block belongs to multiple nodes, the stored nid is not 2095 * reliable. However, such blocks are always online (e.g., cannot get 2096 * offlined) and, therefore, are still spanned by the node. 2097 */ 2098 return mem->nid == nid ? -EEXIST : 0; 2099 } 2100 2101 /** 2102 * try_offline_node 2103 * @nid: the node ID 2104 * 2105 * Offline a node if all memory sections and cpus of the node are removed. 2106 * 2107 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2108 * and online/offline operations before this call. 2109 */ 2110 void try_offline_node(int nid) 2111 { 2112 pg_data_t *pgdat = NODE_DATA(nid); 2113 int rc; 2114 2115 /* 2116 * If the node still spans pages (especially ZONE_DEVICE), don't 2117 * offline it. A node spans memory after move_pfn_range_to_zone(), 2118 * e.g., after the memory block was onlined. 2119 */ 2120 if (pgdat->node_spanned_pages) 2121 return; 2122 2123 /* 2124 * Especially offline memory blocks might not be spanned by the 2125 * node. They will get spanned by the node once they get onlined. 2126 * However, they link to the node in sysfs and can get onlined later. 2127 */ 2128 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb); 2129 if (rc) 2130 return; 2131 2132 if (check_cpu_on_node(pgdat)) 2133 return; 2134 2135 /* 2136 * all memory/cpu of this node are removed, we can offline this 2137 * node now. 2138 */ 2139 node_set_offline(nid); 2140 unregister_one_node(nid); 2141 } 2142 EXPORT_SYMBOL(try_offline_node); 2143 2144 static int __ref try_remove_memory(u64 start, u64 size) 2145 { 2146 struct vmem_altmap mhp_altmap = {}; 2147 struct vmem_altmap *altmap = NULL; 2148 unsigned long nr_vmemmap_pages; 2149 int rc = 0, nid = NUMA_NO_NODE; 2150 2151 BUG_ON(check_hotplug_memory_range(start, size)); 2152 2153 /* 2154 * All memory blocks must be offlined before removing memory. Check 2155 * whether all memory blocks in question are offline and return error 2156 * if this is not the case. 2157 * 2158 * While at it, determine the nid. Note that if we'd have mixed nodes, 2159 * we'd only try to offline the last determined one -- which is good 2160 * enough for the cases we care about. 2161 */ 2162 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb); 2163 if (rc) 2164 return rc; 2165 2166 /* 2167 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in 2168 * the same granularity it was added - a single memory block. 2169 */ 2170 if (memmap_on_memory) { 2171 nr_vmemmap_pages = walk_memory_blocks(start, size, NULL, 2172 get_nr_vmemmap_pages_cb); 2173 if (nr_vmemmap_pages) { 2174 if (size != memory_block_size_bytes()) { 2175 pr_warn("Refuse to remove %#llx - %#llx," 2176 "wrong granularity\n", 2177 start, start + size); 2178 return -EINVAL; 2179 } 2180 2181 /* 2182 * Let remove_pmd_table->free_hugepage_table do the 2183 * right thing if we used vmem_altmap when hot-adding 2184 * the range. 2185 */ 2186 mhp_altmap.alloc = nr_vmemmap_pages; 2187 altmap = &mhp_altmap; 2188 } 2189 } 2190 2191 /* remove memmap entry */ 2192 firmware_map_remove(start, start + size, "System RAM"); 2193 2194 /* 2195 * Memory block device removal under the device_hotplug_lock is 2196 * a barrier against racing online attempts. 2197 */ 2198 remove_memory_block_devices(start, size); 2199 2200 mem_hotplug_begin(); 2201 2202 arch_remove_memory(start, size, altmap); 2203 2204 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) { 2205 memblock_phys_free(start, size); 2206 memblock_remove(start, size); 2207 } 2208 2209 release_mem_region_adjustable(start, size); 2210 2211 if (nid != NUMA_NO_NODE) 2212 try_offline_node(nid); 2213 2214 mem_hotplug_done(); 2215 return 0; 2216 } 2217 2218 /** 2219 * __remove_memory - Remove memory if every memory block is offline 2220 * @start: physical address of the region to remove 2221 * @size: size of the region to remove 2222 * 2223 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 2224 * and online/offline operations before this call, as required by 2225 * try_offline_node(). 2226 */ 2227 void __remove_memory(u64 start, u64 size) 2228 { 2229 2230 /* 2231 * trigger BUG() if some memory is not offlined prior to calling this 2232 * function 2233 */ 2234 if (try_remove_memory(start, size)) 2235 BUG(); 2236 } 2237 2238 /* 2239 * Remove memory if every memory block is offline, otherwise return -EBUSY is 2240 * some memory is not offline 2241 */ 2242 int remove_memory(u64 start, u64 size) 2243 { 2244 int rc; 2245 2246 lock_device_hotplug(); 2247 rc = try_remove_memory(start, size); 2248 unlock_device_hotplug(); 2249 2250 return rc; 2251 } 2252 EXPORT_SYMBOL_GPL(remove_memory); 2253 2254 static int try_offline_memory_block(struct memory_block *mem, void *arg) 2255 { 2256 uint8_t online_type = MMOP_ONLINE_KERNEL; 2257 uint8_t **online_types = arg; 2258 struct page *page; 2259 int rc; 2260 2261 /* 2262 * Sense the online_type via the zone of the memory block. Offlining 2263 * with multiple zones within one memory block will be rejected 2264 * by offlining code ... so we don't care about that. 2265 */ 2266 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr)); 2267 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE) 2268 online_type = MMOP_ONLINE_MOVABLE; 2269 2270 rc = device_offline(&mem->dev); 2271 /* 2272 * Default is MMOP_OFFLINE - change it only if offlining succeeded, 2273 * so try_reonline_memory_block() can do the right thing. 2274 */ 2275 if (!rc) 2276 **online_types = online_type; 2277 2278 (*online_types)++; 2279 /* Ignore if already offline. */ 2280 return rc < 0 ? rc : 0; 2281 } 2282 2283 static int try_reonline_memory_block(struct memory_block *mem, void *arg) 2284 { 2285 uint8_t **online_types = arg; 2286 int rc; 2287 2288 if (**online_types != MMOP_OFFLINE) { 2289 mem->online_type = **online_types; 2290 rc = device_online(&mem->dev); 2291 if (rc < 0) 2292 pr_warn("%s: Failed to re-online memory: %d", 2293 __func__, rc); 2294 } 2295 2296 /* Continue processing all remaining memory blocks. */ 2297 (*online_types)++; 2298 return 0; 2299 } 2300 2301 /* 2302 * Try to offline and remove memory. Might take a long time to finish in case 2303 * memory is still in use. Primarily useful for memory devices that logically 2304 * unplugged all memory (so it's no longer in use) and want to offline + remove 2305 * that memory. 2306 */ 2307 int offline_and_remove_memory(u64 start, u64 size) 2308 { 2309 const unsigned long mb_count = size / memory_block_size_bytes(); 2310 uint8_t *online_types, *tmp; 2311 int rc; 2312 2313 if (!IS_ALIGNED(start, memory_block_size_bytes()) || 2314 !IS_ALIGNED(size, memory_block_size_bytes()) || !size) 2315 return -EINVAL; 2316 2317 /* 2318 * We'll remember the old online type of each memory block, so we can 2319 * try to revert whatever we did when offlining one memory block fails 2320 * after offlining some others succeeded. 2321 */ 2322 online_types = kmalloc_array(mb_count, sizeof(*online_types), 2323 GFP_KERNEL); 2324 if (!online_types) 2325 return -ENOMEM; 2326 /* 2327 * Initialize all states to MMOP_OFFLINE, so when we abort processing in 2328 * try_offline_memory_block(), we'll skip all unprocessed blocks in 2329 * try_reonline_memory_block(). 2330 */ 2331 memset(online_types, MMOP_OFFLINE, mb_count); 2332 2333 lock_device_hotplug(); 2334 2335 tmp = online_types; 2336 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block); 2337 2338 /* 2339 * In case we succeeded to offline all memory, remove it. 2340 * This cannot fail as it cannot get onlined in the meantime. 2341 */ 2342 if (!rc) { 2343 rc = try_remove_memory(start, size); 2344 if (rc) 2345 pr_err("%s: Failed to remove memory: %d", __func__, rc); 2346 } 2347 2348 /* 2349 * Rollback what we did. While memory onlining might theoretically fail 2350 * (nacked by a notifier), it barely ever happens. 2351 */ 2352 if (rc) { 2353 tmp = online_types; 2354 walk_memory_blocks(start, size, &tmp, 2355 try_reonline_memory_block); 2356 } 2357 unlock_device_hotplug(); 2358 2359 kfree(online_types); 2360 return rc; 2361 } 2362 EXPORT_SYMBOL_GPL(offline_and_remove_memory); 2363 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2364