1 /* 2 * linux/mm/memory_hotplug.c 3 * 4 * Copyright (C) 5 */ 6 7 #include <linux/stddef.h> 8 #include <linux/mm.h> 9 #include <linux/sched/signal.h> 10 #include <linux/swap.h> 11 #include <linux/interrupt.h> 12 #include <linux/pagemap.h> 13 #include <linux/compiler.h> 14 #include <linux/export.h> 15 #include <linux/pagevec.h> 16 #include <linux/writeback.h> 17 #include <linux/slab.h> 18 #include <linux/sysctl.h> 19 #include <linux/cpu.h> 20 #include <linux/memory.h> 21 #include <linux/memremap.h> 22 #include <linux/memory_hotplug.h> 23 #include <linux/highmem.h> 24 #include <linux/vmalloc.h> 25 #include <linux/ioport.h> 26 #include <linux/delay.h> 27 #include <linux/migrate.h> 28 #include <linux/page-isolation.h> 29 #include <linux/pfn.h> 30 #include <linux/suspend.h> 31 #include <linux/mm_inline.h> 32 #include <linux/firmware-map.h> 33 #include <linux/stop_machine.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memblock.h> 36 #include <linux/compaction.h> 37 #include <linux/rmap.h> 38 39 #include <asm/tlbflush.h> 40 41 #include "internal.h" 42 43 /* 44 * online_page_callback contains pointer to current page onlining function. 45 * Initially it is generic_online_page(). If it is required it could be 46 * changed by calling set_online_page_callback() for callback registration 47 * and restore_online_page_callback() for generic callback restore. 48 */ 49 50 static void generic_online_page(struct page *page, unsigned int order); 51 52 static online_page_callback_t online_page_callback = generic_online_page; 53 static DEFINE_MUTEX(online_page_callback_lock); 54 55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock); 56 57 void get_online_mems(void) 58 { 59 percpu_down_read(&mem_hotplug_lock); 60 } 61 62 void put_online_mems(void) 63 { 64 percpu_up_read(&mem_hotplug_lock); 65 } 66 67 bool movable_node_enabled = false; 68 69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE 70 bool memhp_auto_online; 71 #else 72 bool memhp_auto_online = true; 73 #endif 74 EXPORT_SYMBOL_GPL(memhp_auto_online); 75 76 static int __init setup_memhp_default_state(char *str) 77 { 78 if (!strcmp(str, "online")) 79 memhp_auto_online = true; 80 else if (!strcmp(str, "offline")) 81 memhp_auto_online = false; 82 83 return 1; 84 } 85 __setup("memhp_default_state=", setup_memhp_default_state); 86 87 void mem_hotplug_begin(void) 88 { 89 cpus_read_lock(); 90 percpu_down_write(&mem_hotplug_lock); 91 } 92 93 void mem_hotplug_done(void) 94 { 95 percpu_up_write(&mem_hotplug_lock); 96 cpus_read_unlock(); 97 } 98 99 u64 max_mem_size = U64_MAX; 100 101 /* add this memory to iomem resource */ 102 static struct resource *register_memory_resource(u64 start, u64 size) 103 { 104 struct resource *res, *conflict; 105 106 if (start + size > max_mem_size) 107 return ERR_PTR(-E2BIG); 108 109 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 110 if (!res) 111 return ERR_PTR(-ENOMEM); 112 113 res->name = "System RAM"; 114 res->start = start; 115 res->end = start + size - 1; 116 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 117 conflict = request_resource_conflict(&iomem_resource, res); 118 if (conflict) { 119 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) { 120 pr_debug("Device unaddressable memory block " 121 "memory hotplug at %#010llx !\n", 122 (unsigned long long)start); 123 } 124 pr_debug("System RAM resource %pR cannot be added\n", res); 125 kfree(res); 126 return ERR_PTR(-EEXIST); 127 } 128 return res; 129 } 130 131 static void release_memory_resource(struct resource *res) 132 { 133 if (!res) 134 return; 135 release_resource(res); 136 kfree(res); 137 return; 138 } 139 140 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE 141 void get_page_bootmem(unsigned long info, struct page *page, 142 unsigned long type) 143 { 144 page->freelist = (void *)type; 145 SetPagePrivate(page); 146 set_page_private(page, info); 147 page_ref_inc(page); 148 } 149 150 void put_page_bootmem(struct page *page) 151 { 152 unsigned long type; 153 154 type = (unsigned long) page->freelist; 155 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE || 156 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE); 157 158 if (page_ref_dec_return(page) == 1) { 159 page->freelist = NULL; 160 ClearPagePrivate(page); 161 set_page_private(page, 0); 162 INIT_LIST_HEAD(&page->lru); 163 free_reserved_page(page); 164 } 165 } 166 167 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE 168 #ifndef CONFIG_SPARSEMEM_VMEMMAP 169 static void register_page_bootmem_info_section(unsigned long start_pfn) 170 { 171 unsigned long *usemap, mapsize, section_nr, i; 172 struct mem_section *ms; 173 struct page *page, *memmap; 174 175 section_nr = pfn_to_section_nr(start_pfn); 176 ms = __nr_to_section(section_nr); 177 178 /* Get section's memmap address */ 179 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 180 181 /* 182 * Get page for the memmap's phys address 183 * XXX: need more consideration for sparse_vmemmap... 184 */ 185 page = virt_to_page(memmap); 186 mapsize = sizeof(struct page) * PAGES_PER_SECTION; 187 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT; 188 189 /* remember memmap's page */ 190 for (i = 0; i < mapsize; i++, page++) 191 get_page_bootmem(section_nr, page, SECTION_INFO); 192 193 usemap = ms->pageblock_flags; 194 page = virt_to_page(usemap); 195 196 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 197 198 for (i = 0; i < mapsize; i++, page++) 199 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 200 201 } 202 #else /* CONFIG_SPARSEMEM_VMEMMAP */ 203 static void register_page_bootmem_info_section(unsigned long start_pfn) 204 { 205 unsigned long *usemap, mapsize, section_nr, i; 206 struct mem_section *ms; 207 struct page *page, *memmap; 208 209 section_nr = pfn_to_section_nr(start_pfn); 210 ms = __nr_to_section(section_nr); 211 212 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr); 213 214 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION); 215 216 usemap = ms->pageblock_flags; 217 page = virt_to_page(usemap); 218 219 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT; 220 221 for (i = 0; i < mapsize; i++, page++) 222 get_page_bootmem(section_nr, page, MIX_SECTION_INFO); 223 } 224 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 225 226 void __init register_page_bootmem_info_node(struct pglist_data *pgdat) 227 { 228 unsigned long i, pfn, end_pfn, nr_pages; 229 int node = pgdat->node_id; 230 struct page *page; 231 232 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT; 233 page = virt_to_page(pgdat); 234 235 for (i = 0; i < nr_pages; i++, page++) 236 get_page_bootmem(node, page, NODE_INFO); 237 238 pfn = pgdat->node_start_pfn; 239 end_pfn = pgdat_end_pfn(pgdat); 240 241 /* register section info */ 242 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 243 /* 244 * Some platforms can assign the same pfn to multiple nodes - on 245 * node0 as well as nodeN. To avoid registering a pfn against 246 * multiple nodes we check that this pfn does not already 247 * reside in some other nodes. 248 */ 249 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node)) 250 register_page_bootmem_info_section(pfn); 251 } 252 } 253 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */ 254 255 static int __meminit __add_section(int nid, unsigned long phys_start_pfn, 256 struct vmem_altmap *altmap, bool want_memblock) 257 { 258 int ret; 259 260 if (pfn_valid(phys_start_pfn)) 261 return -EEXIST; 262 263 ret = sparse_add_one_section(nid, phys_start_pfn, altmap); 264 if (ret < 0) 265 return ret; 266 267 if (!want_memblock) 268 return 0; 269 270 return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn)); 271 } 272 273 /* 274 * Reasonably generic function for adding memory. It is 275 * expected that archs that support memory hotplug will 276 * call this function after deciding the zone to which to 277 * add the new pages. 278 */ 279 int __ref __add_pages(int nid, unsigned long phys_start_pfn, 280 unsigned long nr_pages, struct vmem_altmap *altmap, 281 bool want_memblock) 282 { 283 unsigned long i; 284 int err = 0; 285 int start_sec, end_sec; 286 287 /* during initialize mem_map, align hot-added range to section */ 288 start_sec = pfn_to_section_nr(phys_start_pfn); 289 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1); 290 291 if (altmap) { 292 /* 293 * Validate altmap is within bounds of the total request 294 */ 295 if (altmap->base_pfn != phys_start_pfn 296 || vmem_altmap_offset(altmap) > nr_pages) { 297 pr_warn_once("memory add fail, invalid altmap\n"); 298 err = -EINVAL; 299 goto out; 300 } 301 altmap->alloc = 0; 302 } 303 304 for (i = start_sec; i <= end_sec; i++) { 305 err = __add_section(nid, section_nr_to_pfn(i), altmap, 306 want_memblock); 307 308 /* 309 * EEXIST is finally dealt with by ioresource collision 310 * check. see add_memory() => register_memory_resource() 311 * Warning will be printed if there is collision. 312 */ 313 if (err && (err != -EEXIST)) 314 break; 315 err = 0; 316 cond_resched(); 317 } 318 vmemmap_populate_print_last(); 319 out: 320 return err; 321 } 322 323 #ifdef CONFIG_MEMORY_HOTREMOVE 324 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */ 325 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone, 326 unsigned long start_pfn, 327 unsigned long end_pfn) 328 { 329 struct mem_section *ms; 330 331 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) { 332 ms = __pfn_to_section(start_pfn); 333 334 if (unlikely(!valid_section(ms))) 335 continue; 336 337 if (unlikely(pfn_to_nid(start_pfn) != nid)) 338 continue; 339 340 if (zone && zone != page_zone(pfn_to_page(start_pfn))) 341 continue; 342 343 return start_pfn; 344 } 345 346 return 0; 347 } 348 349 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */ 350 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone, 351 unsigned long start_pfn, 352 unsigned long end_pfn) 353 { 354 struct mem_section *ms; 355 unsigned long pfn; 356 357 /* pfn is the end pfn of a memory section. */ 358 pfn = end_pfn - 1; 359 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) { 360 ms = __pfn_to_section(pfn); 361 362 if (unlikely(!valid_section(ms))) 363 continue; 364 365 if (unlikely(pfn_to_nid(pfn) != nid)) 366 continue; 367 368 if (zone && zone != page_zone(pfn_to_page(pfn))) 369 continue; 370 371 return pfn; 372 } 373 374 return 0; 375 } 376 377 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, 378 unsigned long end_pfn) 379 { 380 unsigned long zone_start_pfn = zone->zone_start_pfn; 381 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ 382 unsigned long zone_end_pfn = z; 383 unsigned long pfn; 384 struct mem_section *ms; 385 int nid = zone_to_nid(zone); 386 387 zone_span_writelock(zone); 388 if (zone_start_pfn == start_pfn) { 389 /* 390 * If the section is smallest section in the zone, it need 391 * shrink zone->zone_start_pfn and zone->zone_spanned_pages. 392 * In this case, we find second smallest valid mem_section 393 * for shrinking zone. 394 */ 395 pfn = find_smallest_section_pfn(nid, zone, end_pfn, 396 zone_end_pfn); 397 if (pfn) { 398 zone->zone_start_pfn = pfn; 399 zone->spanned_pages = zone_end_pfn - pfn; 400 } 401 } else if (zone_end_pfn == end_pfn) { 402 /* 403 * If the section is biggest section in the zone, it need 404 * shrink zone->spanned_pages. 405 * In this case, we find second biggest valid mem_section for 406 * shrinking zone. 407 */ 408 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn, 409 start_pfn); 410 if (pfn) 411 zone->spanned_pages = pfn - zone_start_pfn + 1; 412 } 413 414 /* 415 * The section is not biggest or smallest mem_section in the zone, it 416 * only creates a hole in the zone. So in this case, we need not 417 * change the zone. But perhaps, the zone has only hole data. Thus 418 * it check the zone has only hole or not. 419 */ 420 pfn = zone_start_pfn; 421 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) { 422 ms = __pfn_to_section(pfn); 423 424 if (unlikely(!valid_section(ms))) 425 continue; 426 427 if (page_zone(pfn_to_page(pfn)) != zone) 428 continue; 429 430 /* If the section is current section, it continues the loop */ 431 if (start_pfn == pfn) 432 continue; 433 434 /* If we find valid section, we have nothing to do */ 435 zone_span_writeunlock(zone); 436 return; 437 } 438 439 /* The zone has no valid section */ 440 zone->zone_start_pfn = 0; 441 zone->spanned_pages = 0; 442 zone_span_writeunlock(zone); 443 } 444 445 static void shrink_pgdat_span(struct pglist_data *pgdat, 446 unsigned long start_pfn, unsigned long end_pfn) 447 { 448 unsigned long pgdat_start_pfn = pgdat->node_start_pfn; 449 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */ 450 unsigned long pgdat_end_pfn = p; 451 unsigned long pfn; 452 struct mem_section *ms; 453 int nid = pgdat->node_id; 454 455 if (pgdat_start_pfn == start_pfn) { 456 /* 457 * If the section is smallest section in the pgdat, it need 458 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages. 459 * In this case, we find second smallest valid mem_section 460 * for shrinking zone. 461 */ 462 pfn = find_smallest_section_pfn(nid, NULL, end_pfn, 463 pgdat_end_pfn); 464 if (pfn) { 465 pgdat->node_start_pfn = pfn; 466 pgdat->node_spanned_pages = pgdat_end_pfn - pfn; 467 } 468 } else if (pgdat_end_pfn == end_pfn) { 469 /* 470 * If the section is biggest section in the pgdat, it need 471 * shrink pgdat->node_spanned_pages. 472 * In this case, we find second biggest valid mem_section for 473 * shrinking zone. 474 */ 475 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn, 476 start_pfn); 477 if (pfn) 478 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1; 479 } 480 481 /* 482 * If the section is not biggest or smallest mem_section in the pgdat, 483 * it only creates a hole in the pgdat. So in this case, we need not 484 * change the pgdat. 485 * But perhaps, the pgdat has only hole data. Thus it check the pgdat 486 * has only hole or not. 487 */ 488 pfn = pgdat_start_pfn; 489 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) { 490 ms = __pfn_to_section(pfn); 491 492 if (unlikely(!valid_section(ms))) 493 continue; 494 495 if (pfn_to_nid(pfn) != nid) 496 continue; 497 498 /* If the section is current section, it continues the loop */ 499 if (start_pfn == pfn) 500 continue; 501 502 /* If we find valid section, we have nothing to do */ 503 return; 504 } 505 506 /* The pgdat has no valid section */ 507 pgdat->node_start_pfn = 0; 508 pgdat->node_spanned_pages = 0; 509 } 510 511 static void __remove_zone(struct zone *zone, unsigned long start_pfn) 512 { 513 struct pglist_data *pgdat = zone->zone_pgdat; 514 int nr_pages = PAGES_PER_SECTION; 515 unsigned long flags; 516 517 pgdat_resize_lock(zone->zone_pgdat, &flags); 518 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages); 519 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages); 520 pgdat_resize_unlock(zone->zone_pgdat, &flags); 521 } 522 523 static int __remove_section(struct zone *zone, struct mem_section *ms, 524 unsigned long map_offset, struct vmem_altmap *altmap) 525 { 526 unsigned long start_pfn; 527 int scn_nr; 528 int ret = -EINVAL; 529 530 if (!valid_section(ms)) 531 return ret; 532 533 ret = unregister_memory_section(ms); 534 if (ret) 535 return ret; 536 537 scn_nr = __section_nr(ms); 538 start_pfn = section_nr_to_pfn((unsigned long)scn_nr); 539 __remove_zone(zone, start_pfn); 540 541 sparse_remove_one_section(zone, ms, map_offset, altmap); 542 return 0; 543 } 544 545 /** 546 * __remove_pages() - remove sections of pages from a zone 547 * @zone: zone from which pages need to be removed 548 * @phys_start_pfn: starting pageframe (must be aligned to start of a section) 549 * @nr_pages: number of pages to remove (must be multiple of section size) 550 * @altmap: alternative device page map or %NULL if default memmap is used 551 * 552 * Generic helper function to remove section mappings and sysfs entries 553 * for the section of the memory we are removing. Caller needs to make 554 * sure that pages are marked reserved and zones are adjust properly by 555 * calling offline_pages(). 556 */ 557 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn, 558 unsigned long nr_pages, struct vmem_altmap *altmap) 559 { 560 unsigned long i; 561 unsigned long map_offset = 0; 562 int sections_to_remove, ret = 0; 563 564 /* In the ZONE_DEVICE case device driver owns the memory region */ 565 if (is_dev_zone(zone)) { 566 if (altmap) 567 map_offset = vmem_altmap_offset(altmap); 568 } else { 569 resource_size_t start, size; 570 571 start = phys_start_pfn << PAGE_SHIFT; 572 size = nr_pages * PAGE_SIZE; 573 574 ret = release_mem_region_adjustable(&iomem_resource, start, 575 size); 576 if (ret) { 577 resource_size_t endres = start + size - 1; 578 579 pr_warn("Unable to release resource <%pa-%pa> (%d)\n", 580 &start, &endres, ret); 581 } 582 } 583 584 clear_zone_contiguous(zone); 585 586 /* 587 * We can only remove entire sections 588 */ 589 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK); 590 BUG_ON(nr_pages % PAGES_PER_SECTION); 591 592 sections_to_remove = nr_pages / PAGES_PER_SECTION; 593 for (i = 0; i < sections_to_remove; i++) { 594 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION; 595 596 cond_resched(); 597 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset, 598 altmap); 599 map_offset = 0; 600 if (ret) 601 break; 602 } 603 604 set_zone_contiguous(zone); 605 606 return ret; 607 } 608 #endif /* CONFIG_MEMORY_HOTREMOVE */ 609 610 int set_online_page_callback(online_page_callback_t callback) 611 { 612 int rc = -EINVAL; 613 614 get_online_mems(); 615 mutex_lock(&online_page_callback_lock); 616 617 if (online_page_callback == generic_online_page) { 618 online_page_callback = callback; 619 rc = 0; 620 } 621 622 mutex_unlock(&online_page_callback_lock); 623 put_online_mems(); 624 625 return rc; 626 } 627 EXPORT_SYMBOL_GPL(set_online_page_callback); 628 629 int restore_online_page_callback(online_page_callback_t callback) 630 { 631 int rc = -EINVAL; 632 633 get_online_mems(); 634 mutex_lock(&online_page_callback_lock); 635 636 if (online_page_callback == callback) { 637 online_page_callback = generic_online_page; 638 rc = 0; 639 } 640 641 mutex_unlock(&online_page_callback_lock); 642 put_online_mems(); 643 644 return rc; 645 } 646 EXPORT_SYMBOL_GPL(restore_online_page_callback); 647 648 void __online_page_set_limits(struct page *page) 649 { 650 } 651 EXPORT_SYMBOL_GPL(__online_page_set_limits); 652 653 void __online_page_increment_counters(struct page *page) 654 { 655 adjust_managed_page_count(page, 1); 656 } 657 EXPORT_SYMBOL_GPL(__online_page_increment_counters); 658 659 void __online_page_free(struct page *page) 660 { 661 __free_reserved_page(page); 662 } 663 EXPORT_SYMBOL_GPL(__online_page_free); 664 665 static void generic_online_page(struct page *page, unsigned int order) 666 { 667 kernel_map_pages(page, 1 << order, 1); 668 __free_pages_core(page, order); 669 totalram_pages_add(1UL << order); 670 #ifdef CONFIG_HIGHMEM 671 if (PageHighMem(page)) 672 totalhigh_pages_add(1UL << order); 673 #endif 674 } 675 676 static int online_pages_blocks(unsigned long start, unsigned long nr_pages) 677 { 678 unsigned long end = start + nr_pages; 679 int order, onlined_pages = 0; 680 681 while (start < end) { 682 order = min(MAX_ORDER - 1, 683 get_order(PFN_PHYS(end) - PFN_PHYS(start))); 684 (*online_page_callback)(pfn_to_page(start), order); 685 686 onlined_pages += (1UL << order); 687 start += (1UL << order); 688 } 689 return onlined_pages; 690 } 691 692 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages, 693 void *arg) 694 { 695 unsigned long onlined_pages = *(unsigned long *)arg; 696 697 if (PageReserved(pfn_to_page(start_pfn))) 698 onlined_pages += online_pages_blocks(start_pfn, nr_pages); 699 700 online_mem_sections(start_pfn, start_pfn + nr_pages); 701 702 *(unsigned long *)arg = onlined_pages; 703 return 0; 704 } 705 706 /* check which state of node_states will be changed when online memory */ 707 static void node_states_check_changes_online(unsigned long nr_pages, 708 struct zone *zone, struct memory_notify *arg) 709 { 710 int nid = zone_to_nid(zone); 711 712 arg->status_change_nid = NUMA_NO_NODE; 713 arg->status_change_nid_normal = NUMA_NO_NODE; 714 arg->status_change_nid_high = NUMA_NO_NODE; 715 716 if (!node_state(nid, N_MEMORY)) 717 arg->status_change_nid = nid; 718 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY)) 719 arg->status_change_nid_normal = nid; 720 #ifdef CONFIG_HIGHMEM 721 if (zone_idx(zone) <= N_HIGH_MEMORY && !node_state(nid, N_HIGH_MEMORY)) 722 arg->status_change_nid_high = nid; 723 #endif 724 } 725 726 static void node_states_set_node(int node, struct memory_notify *arg) 727 { 728 if (arg->status_change_nid_normal >= 0) 729 node_set_state(node, N_NORMAL_MEMORY); 730 731 if (arg->status_change_nid_high >= 0) 732 node_set_state(node, N_HIGH_MEMORY); 733 734 if (arg->status_change_nid >= 0) 735 node_set_state(node, N_MEMORY); 736 } 737 738 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn, 739 unsigned long nr_pages) 740 { 741 unsigned long old_end_pfn = zone_end_pfn(zone); 742 743 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) 744 zone->zone_start_pfn = start_pfn; 745 746 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn; 747 } 748 749 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn, 750 unsigned long nr_pages) 751 { 752 unsigned long old_end_pfn = pgdat_end_pfn(pgdat); 753 754 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn) 755 pgdat->node_start_pfn = start_pfn; 756 757 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn; 758 } 759 760 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn, 761 unsigned long nr_pages, struct vmem_altmap *altmap) 762 { 763 struct pglist_data *pgdat = zone->zone_pgdat; 764 int nid = pgdat->node_id; 765 unsigned long flags; 766 767 clear_zone_contiguous(zone); 768 769 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */ 770 pgdat_resize_lock(pgdat, &flags); 771 zone_span_writelock(zone); 772 if (zone_is_empty(zone)) 773 init_currently_empty_zone(zone, start_pfn, nr_pages); 774 resize_zone_range(zone, start_pfn, nr_pages); 775 zone_span_writeunlock(zone); 776 resize_pgdat_range(pgdat, start_pfn, nr_pages); 777 pgdat_resize_unlock(pgdat, &flags); 778 779 /* 780 * TODO now we have a visible range of pages which are not associated 781 * with their zone properly. Not nice but set_pfnblock_flags_mask 782 * expects the zone spans the pfn range. All the pages in the range 783 * are reserved so nobody should be touching them so we should be safe 784 */ 785 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn, 786 MEMMAP_HOTPLUG, altmap); 787 788 set_zone_contiguous(zone); 789 } 790 791 /* 792 * Returns a default kernel memory zone for the given pfn range. 793 * If no kernel zone covers this pfn range it will automatically go 794 * to the ZONE_NORMAL. 795 */ 796 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn, 797 unsigned long nr_pages) 798 { 799 struct pglist_data *pgdat = NODE_DATA(nid); 800 int zid; 801 802 for (zid = 0; zid <= ZONE_NORMAL; zid++) { 803 struct zone *zone = &pgdat->node_zones[zid]; 804 805 if (zone_intersects(zone, start_pfn, nr_pages)) 806 return zone; 807 } 808 809 return &pgdat->node_zones[ZONE_NORMAL]; 810 } 811 812 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn, 813 unsigned long nr_pages) 814 { 815 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn, 816 nr_pages); 817 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 818 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages); 819 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages); 820 821 /* 822 * We inherit the existing zone in a simple case where zones do not 823 * overlap in the given range 824 */ 825 if (in_kernel ^ in_movable) 826 return (in_kernel) ? kernel_zone : movable_zone; 827 828 /* 829 * If the range doesn't belong to any zone or two zones overlap in the 830 * given range then we use movable zone only if movable_node is 831 * enabled because we always online to a kernel zone by default. 832 */ 833 return movable_node_enabled ? movable_zone : kernel_zone; 834 } 835 836 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn, 837 unsigned long nr_pages) 838 { 839 if (online_type == MMOP_ONLINE_KERNEL) 840 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages); 841 842 if (online_type == MMOP_ONLINE_MOVABLE) 843 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE]; 844 845 return default_zone_for_pfn(nid, start_pfn, nr_pages); 846 } 847 848 /* 849 * Associates the given pfn range with the given node and the zone appropriate 850 * for the given online type. 851 */ 852 static struct zone * __meminit move_pfn_range(int online_type, int nid, 853 unsigned long start_pfn, unsigned long nr_pages) 854 { 855 struct zone *zone; 856 857 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages); 858 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL); 859 return zone; 860 } 861 862 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type) 863 { 864 unsigned long flags; 865 unsigned long onlined_pages = 0; 866 struct zone *zone; 867 int need_zonelists_rebuild = 0; 868 int nid; 869 int ret; 870 struct memory_notify arg; 871 struct memory_block *mem; 872 873 mem_hotplug_begin(); 874 875 /* 876 * We can't use pfn_to_nid() because nid might be stored in struct page 877 * which is not yet initialized. Instead, we find nid from memory block. 878 */ 879 mem = find_memory_block(__pfn_to_section(pfn)); 880 nid = mem->nid; 881 882 /* associate pfn range with the zone */ 883 zone = move_pfn_range(online_type, nid, pfn, nr_pages); 884 885 arg.start_pfn = pfn; 886 arg.nr_pages = nr_pages; 887 node_states_check_changes_online(nr_pages, zone, &arg); 888 889 ret = memory_notify(MEM_GOING_ONLINE, &arg); 890 ret = notifier_to_errno(ret); 891 if (ret) 892 goto failed_addition; 893 894 /* 895 * If this zone is not populated, then it is not in zonelist. 896 * This means the page allocator ignores this zone. 897 * So, zonelist must be updated after online. 898 */ 899 if (!populated_zone(zone)) { 900 need_zonelists_rebuild = 1; 901 setup_zone_pageset(zone); 902 } 903 904 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages, 905 online_pages_range); 906 if (ret) { 907 if (need_zonelists_rebuild) 908 zone_pcp_reset(zone); 909 goto failed_addition; 910 } 911 912 zone->present_pages += onlined_pages; 913 914 pgdat_resize_lock(zone->zone_pgdat, &flags); 915 zone->zone_pgdat->node_present_pages += onlined_pages; 916 pgdat_resize_unlock(zone->zone_pgdat, &flags); 917 918 if (onlined_pages) { 919 node_states_set_node(nid, &arg); 920 if (need_zonelists_rebuild) 921 build_all_zonelists(NULL); 922 else 923 zone_pcp_update(zone); 924 } 925 926 init_per_zone_wmark_min(); 927 928 if (onlined_pages) { 929 kswapd_run(nid); 930 kcompactd_run(nid); 931 } 932 933 vm_total_pages = nr_free_pagecache_pages(); 934 935 writeback_set_ratelimit(); 936 937 if (onlined_pages) 938 memory_notify(MEM_ONLINE, &arg); 939 mem_hotplug_done(); 940 return 0; 941 942 failed_addition: 943 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n", 944 (unsigned long long) pfn << PAGE_SHIFT, 945 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1); 946 memory_notify(MEM_CANCEL_ONLINE, &arg); 947 mem_hotplug_done(); 948 return ret; 949 } 950 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */ 951 952 static void reset_node_present_pages(pg_data_t *pgdat) 953 { 954 struct zone *z; 955 956 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 957 z->present_pages = 0; 958 959 pgdat->node_present_pages = 0; 960 } 961 962 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ 963 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start) 964 { 965 struct pglist_data *pgdat; 966 unsigned long start_pfn = PFN_DOWN(start); 967 968 pgdat = NODE_DATA(nid); 969 if (!pgdat) { 970 pgdat = arch_alloc_nodedata(nid); 971 if (!pgdat) 972 return NULL; 973 974 arch_refresh_nodedata(nid, pgdat); 975 } else { 976 /* 977 * Reset the nr_zones, order and classzone_idx before reuse. 978 * Note that kswapd will init kswapd_classzone_idx properly 979 * when it starts in the near future. 980 */ 981 pgdat->nr_zones = 0; 982 pgdat->kswapd_order = 0; 983 pgdat->kswapd_classzone_idx = 0; 984 } 985 986 /* we can use NODE_DATA(nid) from here */ 987 988 pgdat->node_id = nid; 989 pgdat->node_start_pfn = start_pfn; 990 991 /* init node's zones as empty zones, we don't have any present pages.*/ 992 free_area_init_core_hotplug(nid); 993 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat); 994 995 /* 996 * The node we allocated has no zone fallback lists. For avoiding 997 * to access not-initialized zonelist, build here. 998 */ 999 build_all_zonelists(pgdat); 1000 1001 /* 1002 * When memory is hot-added, all the memory is in offline state. So 1003 * clear all zones' present_pages because they will be updated in 1004 * online_pages() and offline_pages(). 1005 */ 1006 reset_node_managed_pages(pgdat); 1007 reset_node_present_pages(pgdat); 1008 1009 return pgdat; 1010 } 1011 1012 static void rollback_node_hotadd(int nid) 1013 { 1014 pg_data_t *pgdat = NODE_DATA(nid); 1015 1016 arch_refresh_nodedata(nid, NULL); 1017 free_percpu(pgdat->per_cpu_nodestats); 1018 arch_free_nodedata(pgdat); 1019 return; 1020 } 1021 1022 1023 /** 1024 * try_online_node - online a node if offlined 1025 * @nid: the node ID 1026 * @start: start addr of the node 1027 * @set_node_online: Whether we want to online the node 1028 * called by cpu_up() to online a node without onlined memory. 1029 * 1030 * Returns: 1031 * 1 -> a new node has been allocated 1032 * 0 -> the node is already online 1033 * -ENOMEM -> the node could not be allocated 1034 */ 1035 static int __try_online_node(int nid, u64 start, bool set_node_online) 1036 { 1037 pg_data_t *pgdat; 1038 int ret = 1; 1039 1040 if (node_online(nid)) 1041 return 0; 1042 1043 pgdat = hotadd_new_pgdat(nid, start); 1044 if (!pgdat) { 1045 pr_err("Cannot online node %d due to NULL pgdat\n", nid); 1046 ret = -ENOMEM; 1047 goto out; 1048 } 1049 1050 if (set_node_online) { 1051 node_set_online(nid); 1052 ret = register_one_node(nid); 1053 BUG_ON(ret); 1054 } 1055 out: 1056 return ret; 1057 } 1058 1059 /* 1060 * Users of this function always want to online/register the node 1061 */ 1062 int try_online_node(int nid) 1063 { 1064 int ret; 1065 1066 mem_hotplug_begin(); 1067 ret = __try_online_node(nid, 0, true); 1068 mem_hotplug_done(); 1069 return ret; 1070 } 1071 1072 static int check_hotplug_memory_range(u64 start, u64 size) 1073 { 1074 unsigned long block_sz = memory_block_size_bytes(); 1075 u64 block_nr_pages = block_sz >> PAGE_SHIFT; 1076 u64 nr_pages = size >> PAGE_SHIFT; 1077 u64 start_pfn = PFN_DOWN(start); 1078 1079 /* memory range must be block size aligned */ 1080 if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) || 1081 !IS_ALIGNED(nr_pages, block_nr_pages)) { 1082 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx", 1083 block_sz, start, size); 1084 return -EINVAL; 1085 } 1086 1087 return 0; 1088 } 1089 1090 static int online_memory_block(struct memory_block *mem, void *arg) 1091 { 1092 return device_online(&mem->dev); 1093 } 1094 1095 /* 1096 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1097 * and online/offline operations (triggered e.g. by sysfs). 1098 * 1099 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG 1100 */ 1101 int __ref add_memory_resource(int nid, struct resource *res) 1102 { 1103 u64 start, size; 1104 bool new_node = false; 1105 int ret; 1106 1107 start = res->start; 1108 size = resource_size(res); 1109 1110 ret = check_hotplug_memory_range(start, size); 1111 if (ret) 1112 return ret; 1113 1114 mem_hotplug_begin(); 1115 1116 /* 1117 * Add new range to memblock so that when hotadd_new_pgdat() is called 1118 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find 1119 * this new range and calculate total pages correctly. The range will 1120 * be removed at hot-remove time. 1121 */ 1122 memblock_add_node(start, size, nid); 1123 1124 ret = __try_online_node(nid, start, false); 1125 if (ret < 0) 1126 goto error; 1127 new_node = ret; 1128 1129 /* call arch's memory hotadd */ 1130 ret = arch_add_memory(nid, start, size, NULL, true); 1131 if (ret < 0) 1132 goto error; 1133 1134 if (new_node) { 1135 /* If sysfs file of new node can't be created, cpu on the node 1136 * can't be hot-added. There is no rollback way now. 1137 * So, check by BUG_ON() to catch it reluctantly.. 1138 * We online node here. We can't roll back from here. 1139 */ 1140 node_set_online(nid); 1141 ret = __register_one_node(nid); 1142 BUG_ON(ret); 1143 } 1144 1145 /* link memory sections under this node.*/ 1146 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1)); 1147 BUG_ON(ret); 1148 1149 /* create new memmap entry */ 1150 firmware_map_add_hotplug(start, start + size, "System RAM"); 1151 1152 /* device_online() will take the lock when calling online_pages() */ 1153 mem_hotplug_done(); 1154 1155 /* online pages if requested */ 1156 if (memhp_auto_online) 1157 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), 1158 NULL, online_memory_block); 1159 1160 return ret; 1161 error: 1162 /* rollback pgdat allocation and others */ 1163 if (new_node) 1164 rollback_node_hotadd(nid); 1165 memblock_remove(start, size); 1166 mem_hotplug_done(); 1167 return ret; 1168 } 1169 1170 /* requires device_hotplug_lock, see add_memory_resource() */ 1171 int __ref __add_memory(int nid, u64 start, u64 size) 1172 { 1173 struct resource *res; 1174 int ret; 1175 1176 res = register_memory_resource(start, size); 1177 if (IS_ERR(res)) 1178 return PTR_ERR(res); 1179 1180 ret = add_memory_resource(nid, res); 1181 if (ret < 0) 1182 release_memory_resource(res); 1183 return ret; 1184 } 1185 1186 int add_memory(int nid, u64 start, u64 size) 1187 { 1188 int rc; 1189 1190 lock_device_hotplug(); 1191 rc = __add_memory(nid, start, size); 1192 unlock_device_hotplug(); 1193 1194 return rc; 1195 } 1196 EXPORT_SYMBOL_GPL(add_memory); 1197 1198 #ifdef CONFIG_MEMORY_HOTREMOVE 1199 /* 1200 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy 1201 * set and the size of the free page is given by page_order(). Using this, 1202 * the function determines if the pageblock contains only free pages. 1203 * Due to buddy contraints, a free page at least the size of a pageblock will 1204 * be located at the start of the pageblock 1205 */ 1206 static inline int pageblock_free(struct page *page) 1207 { 1208 return PageBuddy(page) && page_order(page) >= pageblock_order; 1209 } 1210 1211 /* Return the pfn of the start of the next active pageblock after a given pfn */ 1212 static unsigned long next_active_pageblock(unsigned long pfn) 1213 { 1214 struct page *page = pfn_to_page(pfn); 1215 1216 /* Ensure the starting page is pageblock-aligned */ 1217 BUG_ON(pfn & (pageblock_nr_pages - 1)); 1218 1219 /* If the entire pageblock is free, move to the end of free page */ 1220 if (pageblock_free(page)) { 1221 int order; 1222 /* be careful. we don't have locks, page_order can be changed.*/ 1223 order = page_order(page); 1224 if ((order < MAX_ORDER) && (order >= pageblock_order)) 1225 return pfn + (1 << order); 1226 } 1227 1228 return pfn + pageblock_nr_pages; 1229 } 1230 1231 static bool is_pageblock_removable_nolock(unsigned long pfn) 1232 { 1233 struct page *page = pfn_to_page(pfn); 1234 struct zone *zone; 1235 1236 /* 1237 * We have to be careful here because we are iterating over memory 1238 * sections which are not zone aware so we might end up outside of 1239 * the zone but still within the section. 1240 * We have to take care about the node as well. If the node is offline 1241 * its NODE_DATA will be NULL - see page_zone. 1242 */ 1243 if (!node_online(page_to_nid(page))) 1244 return false; 1245 1246 zone = page_zone(page); 1247 pfn = page_to_pfn(page); 1248 if (!zone_spans_pfn(zone, pfn)) 1249 return false; 1250 1251 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON); 1252 } 1253 1254 /* Checks if this range of memory is likely to be hot-removable. */ 1255 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages) 1256 { 1257 unsigned long end_pfn, pfn; 1258 1259 end_pfn = min(start_pfn + nr_pages, 1260 zone_end_pfn(page_zone(pfn_to_page(start_pfn)))); 1261 1262 /* Check the starting page of each pageblock within the range */ 1263 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) { 1264 if (!is_pageblock_removable_nolock(pfn)) 1265 return false; 1266 cond_resched(); 1267 } 1268 1269 /* All pageblocks in the memory block are likely to be hot-removable */ 1270 return true; 1271 } 1272 1273 /* 1274 * Confirm all pages in a range [start, end) belong to the same zone. 1275 * When true, return its valid [start, end). 1276 */ 1277 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn, 1278 unsigned long *valid_start, unsigned long *valid_end) 1279 { 1280 unsigned long pfn, sec_end_pfn; 1281 unsigned long start, end; 1282 struct zone *zone = NULL; 1283 struct page *page; 1284 int i; 1285 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1); 1286 pfn < end_pfn; 1287 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) { 1288 /* Make sure the memory section is present first */ 1289 if (!present_section_nr(pfn_to_section_nr(pfn))) 1290 continue; 1291 for (; pfn < sec_end_pfn && pfn < end_pfn; 1292 pfn += MAX_ORDER_NR_PAGES) { 1293 i = 0; 1294 /* This is just a CONFIG_HOLES_IN_ZONE check.*/ 1295 while ((i < MAX_ORDER_NR_PAGES) && 1296 !pfn_valid_within(pfn + i)) 1297 i++; 1298 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn) 1299 continue; 1300 /* Check if we got outside of the zone */ 1301 if (zone && !zone_spans_pfn(zone, pfn + i)) 1302 return 0; 1303 page = pfn_to_page(pfn + i); 1304 if (zone && page_zone(page) != zone) 1305 return 0; 1306 if (!zone) 1307 start = pfn + i; 1308 zone = page_zone(page); 1309 end = pfn + MAX_ORDER_NR_PAGES; 1310 } 1311 } 1312 1313 if (zone) { 1314 *valid_start = start; 1315 *valid_end = min(end, end_pfn); 1316 return 1; 1317 } else { 1318 return 0; 1319 } 1320 } 1321 1322 /* 1323 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages, 1324 * non-lru movable pages and hugepages). We scan pfn because it's much 1325 * easier than scanning over linked list. This function returns the pfn 1326 * of the first found movable page if it's found, otherwise 0. 1327 */ 1328 static unsigned long scan_movable_pages(unsigned long start, unsigned long end) 1329 { 1330 unsigned long pfn; 1331 1332 for (pfn = start; pfn < end; pfn++) { 1333 struct page *page, *head; 1334 unsigned long skip; 1335 1336 if (!pfn_valid(pfn)) 1337 continue; 1338 page = pfn_to_page(pfn); 1339 if (PageLRU(page)) 1340 return pfn; 1341 if (__PageMovable(page)) 1342 return pfn; 1343 1344 if (!PageHuge(page)) 1345 continue; 1346 head = compound_head(page); 1347 if (hugepage_migration_supported(page_hstate(head)) && 1348 page_huge_active(head)) 1349 return pfn; 1350 skip = (1 << compound_order(head)) - (page - head); 1351 pfn += skip - 1; 1352 } 1353 return 0; 1354 } 1355 1356 static struct page *new_node_page(struct page *page, unsigned long private) 1357 { 1358 int nid = page_to_nid(page); 1359 nodemask_t nmask = node_states[N_MEMORY]; 1360 1361 /* 1362 * try to allocate from a different node but reuse this node if there 1363 * are no other online nodes to be used (e.g. we are offlining a part 1364 * of the only existing node) 1365 */ 1366 node_clear(nid, nmask); 1367 if (nodes_empty(nmask)) 1368 node_set(nid, nmask); 1369 1370 return new_page_nodemask(page, nid, &nmask); 1371 } 1372 1373 static int 1374 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) 1375 { 1376 unsigned long pfn; 1377 struct page *page; 1378 int ret = 0; 1379 LIST_HEAD(source); 1380 1381 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1382 if (!pfn_valid(pfn)) 1383 continue; 1384 page = pfn_to_page(pfn); 1385 1386 if (PageHuge(page)) { 1387 struct page *head = compound_head(page); 1388 if (compound_order(head) > PFN_SECTION_SHIFT) { 1389 ret = -EBUSY; 1390 break; 1391 } 1392 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; 1393 isolate_huge_page(head, &source); 1394 continue; 1395 } else if (PageTransHuge(page)) 1396 pfn = page_to_pfn(compound_head(page)) 1397 + hpage_nr_pages(page) - 1; 1398 1399 /* 1400 * HWPoison pages have elevated reference counts so the migration would 1401 * fail on them. It also doesn't make any sense to migrate them in the 1402 * first place. Still try to unmap such a page in case it is still mapped 1403 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep 1404 * the unmap as the catch all safety net). 1405 */ 1406 if (PageHWPoison(page)) { 1407 if (WARN_ON(PageLRU(page))) 1408 isolate_lru_page(page); 1409 if (page_mapped(page)) 1410 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS); 1411 continue; 1412 } 1413 1414 if (!get_page_unless_zero(page)) 1415 continue; 1416 /* 1417 * We can skip free pages. And we can deal with pages on 1418 * LRU and non-lru movable pages. 1419 */ 1420 if (PageLRU(page)) 1421 ret = isolate_lru_page(page); 1422 else 1423 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1424 if (!ret) { /* Success */ 1425 list_add_tail(&page->lru, &source); 1426 if (!__PageMovable(page)) 1427 inc_node_page_state(page, NR_ISOLATED_ANON + 1428 page_is_file_cache(page)); 1429 1430 } else { 1431 pr_warn("failed to isolate pfn %lx\n", pfn); 1432 dump_page(page, "isolation failed"); 1433 } 1434 put_page(page); 1435 } 1436 if (!list_empty(&source)) { 1437 /* Allocate a new page from the nearest neighbor node */ 1438 ret = migrate_pages(&source, new_node_page, NULL, 0, 1439 MIGRATE_SYNC, MR_MEMORY_HOTPLUG); 1440 if (ret) { 1441 list_for_each_entry(page, &source, lru) { 1442 pr_warn("migrating pfn %lx failed ret:%d ", 1443 page_to_pfn(page), ret); 1444 dump_page(page, "migration failure"); 1445 } 1446 putback_movable_pages(&source); 1447 } 1448 } 1449 1450 return ret; 1451 } 1452 1453 /* 1454 * remove from free_area[] and mark all as Reserved. 1455 */ 1456 static int 1457 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages, 1458 void *data) 1459 { 1460 __offline_isolated_pages(start, start + nr_pages); 1461 return 0; 1462 } 1463 1464 static void 1465 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 1466 { 1467 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL, 1468 offline_isolated_pages_cb); 1469 } 1470 1471 /* 1472 * Check all pages in range, recoreded as memory resource, are isolated. 1473 */ 1474 static int 1475 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages, 1476 void *data) 1477 { 1478 int ret; 1479 long offlined = *(long *)data; 1480 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true); 1481 offlined = nr_pages; 1482 if (!ret) 1483 *(long *)data += offlined; 1484 return ret; 1485 } 1486 1487 static long 1488 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn) 1489 { 1490 long offlined = 0; 1491 int ret; 1492 1493 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined, 1494 check_pages_isolated_cb); 1495 if (ret < 0) 1496 offlined = (long)ret; 1497 return offlined; 1498 } 1499 1500 static int __init cmdline_parse_movable_node(char *p) 1501 { 1502 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1503 movable_node_enabled = true; 1504 #else 1505 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n"); 1506 #endif 1507 return 0; 1508 } 1509 early_param("movable_node", cmdline_parse_movable_node); 1510 1511 /* check which state of node_states will be changed when offline memory */ 1512 static void node_states_check_changes_offline(unsigned long nr_pages, 1513 struct zone *zone, struct memory_notify *arg) 1514 { 1515 struct pglist_data *pgdat = zone->zone_pgdat; 1516 unsigned long present_pages = 0; 1517 enum zone_type zt; 1518 1519 arg->status_change_nid = NUMA_NO_NODE; 1520 arg->status_change_nid_normal = NUMA_NO_NODE; 1521 arg->status_change_nid_high = NUMA_NO_NODE; 1522 1523 /* 1524 * Check whether node_states[N_NORMAL_MEMORY] will be changed. 1525 * If the memory to be offline is within the range 1526 * [0..ZONE_NORMAL], and it is the last present memory there, 1527 * the zones in that range will become empty after the offlining, 1528 * thus we can determine that we need to clear the node from 1529 * node_states[N_NORMAL_MEMORY]. 1530 */ 1531 for (zt = 0; zt <= ZONE_NORMAL; zt++) 1532 present_pages += pgdat->node_zones[zt].present_pages; 1533 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages) 1534 arg->status_change_nid_normal = zone_to_nid(zone); 1535 1536 #ifdef CONFIG_HIGHMEM 1537 /* 1538 * node_states[N_HIGH_MEMORY] contains nodes which 1539 * have normal memory or high memory. 1540 * Here we add the present_pages belonging to ZONE_HIGHMEM. 1541 * If the zone is within the range of [0..ZONE_HIGHMEM), and 1542 * we determine that the zones in that range become empty, 1543 * we need to clear the node for N_HIGH_MEMORY. 1544 */ 1545 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1546 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages) 1547 arg->status_change_nid_high = zone_to_nid(zone); 1548 #endif 1549 1550 /* 1551 * We have accounted the pages from [0..ZONE_NORMAL), and 1552 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM 1553 * as well. 1554 * Here we count the possible pages from ZONE_MOVABLE. 1555 * If after having accounted all the pages, we see that the nr_pages 1556 * to be offlined is over or equal to the accounted pages, 1557 * we know that the node will become empty, and so, we can clear 1558 * it for N_MEMORY as well. 1559 */ 1560 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages; 1561 1562 if (nr_pages >= present_pages) 1563 arg->status_change_nid = zone_to_nid(zone); 1564 } 1565 1566 static void node_states_clear_node(int node, struct memory_notify *arg) 1567 { 1568 if (arg->status_change_nid_normal >= 0) 1569 node_clear_state(node, N_NORMAL_MEMORY); 1570 1571 if (arg->status_change_nid_high >= 0) 1572 node_clear_state(node, N_HIGH_MEMORY); 1573 1574 if (arg->status_change_nid >= 0) 1575 node_clear_state(node, N_MEMORY); 1576 } 1577 1578 static int __ref __offline_pages(unsigned long start_pfn, 1579 unsigned long end_pfn) 1580 { 1581 unsigned long pfn, nr_pages; 1582 long offlined_pages; 1583 int ret, node; 1584 unsigned long flags; 1585 unsigned long valid_start, valid_end; 1586 struct zone *zone; 1587 struct memory_notify arg; 1588 char *reason; 1589 1590 mem_hotplug_begin(); 1591 1592 /* This makes hotplug much easier...and readable. 1593 we assume this for now. .*/ 1594 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start, 1595 &valid_end)) { 1596 ret = -EINVAL; 1597 reason = "multizone range"; 1598 goto failed_removal; 1599 } 1600 1601 zone = page_zone(pfn_to_page(valid_start)); 1602 node = zone_to_nid(zone); 1603 nr_pages = end_pfn - start_pfn; 1604 1605 /* set above range as isolated */ 1606 ret = start_isolate_page_range(start_pfn, end_pfn, 1607 MIGRATE_MOVABLE, 1608 SKIP_HWPOISON | REPORT_FAILURE); 1609 if (ret) { 1610 reason = "failure to isolate range"; 1611 goto failed_removal; 1612 } 1613 1614 arg.start_pfn = start_pfn; 1615 arg.nr_pages = nr_pages; 1616 node_states_check_changes_offline(nr_pages, zone, &arg); 1617 1618 ret = memory_notify(MEM_GOING_OFFLINE, &arg); 1619 ret = notifier_to_errno(ret); 1620 if (ret) { 1621 reason = "notifier failure"; 1622 goto failed_removal_isolated; 1623 } 1624 1625 do { 1626 for (pfn = start_pfn; pfn;) { 1627 if (signal_pending(current)) { 1628 ret = -EINTR; 1629 reason = "signal backoff"; 1630 goto failed_removal_isolated; 1631 } 1632 1633 cond_resched(); 1634 lru_add_drain_all(); 1635 1636 pfn = scan_movable_pages(pfn, end_pfn); 1637 if (pfn) { 1638 /* 1639 * TODO: fatal migration failures should bail 1640 * out 1641 */ 1642 do_migrate_range(pfn, end_pfn); 1643 } 1644 } 1645 1646 /* 1647 * Dissolve free hugepages in the memory block before doing 1648 * offlining actually in order to make hugetlbfs's object 1649 * counting consistent. 1650 */ 1651 ret = dissolve_free_huge_pages(start_pfn, end_pfn); 1652 if (ret) { 1653 reason = "failure to dissolve huge pages"; 1654 goto failed_removal_isolated; 1655 } 1656 /* check again */ 1657 offlined_pages = check_pages_isolated(start_pfn, end_pfn); 1658 } while (offlined_pages < 0); 1659 1660 pr_info("Offlined Pages %ld\n", offlined_pages); 1661 /* Ok, all of our target is isolated. 1662 We cannot do rollback at this point. */ 1663 offline_isolated_pages(start_pfn, end_pfn); 1664 /* reset pagetype flags and makes migrate type to be MOVABLE */ 1665 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1666 /* removal success */ 1667 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages); 1668 zone->present_pages -= offlined_pages; 1669 1670 pgdat_resize_lock(zone->zone_pgdat, &flags); 1671 zone->zone_pgdat->node_present_pages -= offlined_pages; 1672 pgdat_resize_unlock(zone->zone_pgdat, &flags); 1673 1674 init_per_zone_wmark_min(); 1675 1676 if (!populated_zone(zone)) { 1677 zone_pcp_reset(zone); 1678 build_all_zonelists(NULL); 1679 } else 1680 zone_pcp_update(zone); 1681 1682 node_states_clear_node(node, &arg); 1683 if (arg.status_change_nid >= 0) { 1684 kswapd_stop(node); 1685 kcompactd_stop(node); 1686 } 1687 1688 vm_total_pages = nr_free_pagecache_pages(); 1689 writeback_set_ratelimit(); 1690 1691 memory_notify(MEM_OFFLINE, &arg); 1692 mem_hotplug_done(); 1693 return 0; 1694 1695 failed_removal_isolated: 1696 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE); 1697 failed_removal: 1698 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n", 1699 (unsigned long long) start_pfn << PAGE_SHIFT, 1700 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1, 1701 reason); 1702 memory_notify(MEM_CANCEL_OFFLINE, &arg); 1703 /* pushback to free area */ 1704 mem_hotplug_done(); 1705 return ret; 1706 } 1707 1708 int offline_pages(unsigned long start_pfn, unsigned long nr_pages) 1709 { 1710 return __offline_pages(start_pfn, start_pfn + nr_pages); 1711 } 1712 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1713 1714 /** 1715 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn) 1716 * @start_pfn: start pfn of the memory range 1717 * @end_pfn: end pfn of the memory range 1718 * @arg: argument passed to func 1719 * @func: callback for each memory section walked 1720 * 1721 * This function walks through all present mem sections in range 1722 * [start_pfn, end_pfn) and call func on each mem section. 1723 * 1724 * Returns the return value of func. 1725 */ 1726 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn, 1727 void *arg, int (*func)(struct memory_block *, void *)) 1728 { 1729 struct memory_block *mem = NULL; 1730 struct mem_section *section; 1731 unsigned long pfn, section_nr; 1732 int ret; 1733 1734 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1735 section_nr = pfn_to_section_nr(pfn); 1736 if (!present_section_nr(section_nr)) 1737 continue; 1738 1739 section = __nr_to_section(section_nr); 1740 /* same memblock? */ 1741 if (mem) 1742 if ((section_nr >= mem->start_section_nr) && 1743 (section_nr <= mem->end_section_nr)) 1744 continue; 1745 1746 mem = find_memory_block_hinted(section, mem); 1747 if (!mem) 1748 continue; 1749 1750 ret = func(mem, arg); 1751 if (ret) { 1752 kobject_put(&mem->dev.kobj); 1753 return ret; 1754 } 1755 } 1756 1757 if (mem) 1758 kobject_put(&mem->dev.kobj); 1759 1760 return 0; 1761 } 1762 1763 #ifdef CONFIG_MEMORY_HOTREMOVE 1764 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg) 1765 { 1766 int ret = !is_memblock_offlined(mem); 1767 1768 if (unlikely(ret)) { 1769 phys_addr_t beginpa, endpa; 1770 1771 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr)); 1772 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1; 1773 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n", 1774 &beginpa, &endpa); 1775 } 1776 1777 return ret; 1778 } 1779 1780 static int check_cpu_on_node(pg_data_t *pgdat) 1781 { 1782 int cpu; 1783 1784 for_each_present_cpu(cpu) { 1785 if (cpu_to_node(cpu) == pgdat->node_id) 1786 /* 1787 * the cpu on this node isn't removed, and we can't 1788 * offline this node. 1789 */ 1790 return -EBUSY; 1791 } 1792 1793 return 0; 1794 } 1795 1796 /** 1797 * try_offline_node 1798 * @nid: the node ID 1799 * 1800 * Offline a node if all memory sections and cpus of the node are removed. 1801 * 1802 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1803 * and online/offline operations before this call. 1804 */ 1805 void try_offline_node(int nid) 1806 { 1807 pg_data_t *pgdat = NODE_DATA(nid); 1808 unsigned long start_pfn = pgdat->node_start_pfn; 1809 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages; 1810 unsigned long pfn; 1811 1812 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { 1813 unsigned long section_nr = pfn_to_section_nr(pfn); 1814 1815 if (!present_section_nr(section_nr)) 1816 continue; 1817 1818 if (pfn_to_nid(pfn) != nid) 1819 continue; 1820 1821 /* 1822 * some memory sections of this node are not removed, and we 1823 * can't offline node now. 1824 */ 1825 return; 1826 } 1827 1828 if (check_cpu_on_node(pgdat)) 1829 return; 1830 1831 /* 1832 * all memory/cpu of this node are removed, we can offline this 1833 * node now. 1834 */ 1835 node_set_offline(nid); 1836 unregister_one_node(nid); 1837 } 1838 EXPORT_SYMBOL(try_offline_node); 1839 1840 /** 1841 * remove_memory 1842 * @nid: the node ID 1843 * @start: physical address of the region to remove 1844 * @size: size of the region to remove 1845 * 1846 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug 1847 * and online/offline operations before this call, as required by 1848 * try_offline_node(). 1849 */ 1850 void __ref __remove_memory(int nid, u64 start, u64 size) 1851 { 1852 int ret; 1853 1854 BUG_ON(check_hotplug_memory_range(start, size)); 1855 1856 mem_hotplug_begin(); 1857 1858 /* 1859 * All memory blocks must be offlined before removing memory. Check 1860 * whether all memory blocks in question are offline and trigger a BUG() 1861 * if this is not the case. 1862 */ 1863 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL, 1864 check_memblock_offlined_cb); 1865 if (ret) 1866 BUG(); 1867 1868 /* remove memmap entry */ 1869 firmware_map_remove(start, start + size, "System RAM"); 1870 memblock_free(start, size); 1871 memblock_remove(start, size); 1872 1873 arch_remove_memory(nid, start, size, NULL); 1874 1875 try_offline_node(nid); 1876 1877 mem_hotplug_done(); 1878 } 1879 1880 void remove_memory(int nid, u64 start, u64 size) 1881 { 1882 lock_device_hotplug(); 1883 __remove_memory(nid, start, size); 1884 unlock_device_hotplug(); 1885 } 1886 EXPORT_SYMBOL_GPL(remove_memory); 1887 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1888