xref: /linux-6.15/mm/memory_hotplug.c (revision 228cd2db)
1 /*
2  *  linux/mm/memory_hotplug.c
3  *
4  *  Copyright (C)
5  */
6 
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/compaction.h>
37 #include <linux/rmap.h>
38 
39 #include <asm/tlbflush.h>
40 
41 #include "internal.h"
42 
43 /*
44  * online_page_callback contains pointer to current page onlining function.
45  * Initially it is generic_online_page(). If it is required it could be
46  * changed by calling set_online_page_callback() for callback registration
47  * and restore_online_page_callback() for generic callback restore.
48  */
49 
50 static void generic_online_page(struct page *page, unsigned int order);
51 
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54 
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56 
57 void get_online_mems(void)
58 {
59 	percpu_down_read(&mem_hotplug_lock);
60 }
61 
62 void put_online_mems(void)
63 {
64 	percpu_up_read(&mem_hotplug_lock);
65 }
66 
67 bool movable_node_enabled = false;
68 
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 bool memhp_auto_online;
71 #else
72 bool memhp_auto_online = true;
73 #endif
74 EXPORT_SYMBOL_GPL(memhp_auto_online);
75 
76 static int __init setup_memhp_default_state(char *str)
77 {
78 	if (!strcmp(str, "online"))
79 		memhp_auto_online = true;
80 	else if (!strcmp(str, "offline"))
81 		memhp_auto_online = false;
82 
83 	return 1;
84 }
85 __setup("memhp_default_state=", setup_memhp_default_state);
86 
87 void mem_hotplug_begin(void)
88 {
89 	cpus_read_lock();
90 	percpu_down_write(&mem_hotplug_lock);
91 }
92 
93 void mem_hotplug_done(void)
94 {
95 	percpu_up_write(&mem_hotplug_lock);
96 	cpus_read_unlock();
97 }
98 
99 u64 max_mem_size = U64_MAX;
100 
101 /* add this memory to iomem resource */
102 static struct resource *register_memory_resource(u64 start, u64 size)
103 {
104 	struct resource *res, *conflict;
105 
106 	if (start + size > max_mem_size)
107 		return ERR_PTR(-E2BIG);
108 
109 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
110 	if (!res)
111 		return ERR_PTR(-ENOMEM);
112 
113 	res->name = "System RAM";
114 	res->start = start;
115 	res->end = start + size - 1;
116 	res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
117 	conflict =  request_resource_conflict(&iomem_resource, res);
118 	if (conflict) {
119 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
120 			pr_debug("Device unaddressable memory block "
121 				 "memory hotplug at %#010llx !\n",
122 				 (unsigned long long)start);
123 		}
124 		pr_debug("System RAM resource %pR cannot be added\n", res);
125 		kfree(res);
126 		return ERR_PTR(-EEXIST);
127 	}
128 	return res;
129 }
130 
131 static void release_memory_resource(struct resource *res)
132 {
133 	if (!res)
134 		return;
135 	release_resource(res);
136 	kfree(res);
137 	return;
138 }
139 
140 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
141 void get_page_bootmem(unsigned long info,  struct page *page,
142 		      unsigned long type)
143 {
144 	page->freelist = (void *)type;
145 	SetPagePrivate(page);
146 	set_page_private(page, info);
147 	page_ref_inc(page);
148 }
149 
150 void put_page_bootmem(struct page *page)
151 {
152 	unsigned long type;
153 
154 	type = (unsigned long) page->freelist;
155 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
156 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
157 
158 	if (page_ref_dec_return(page) == 1) {
159 		page->freelist = NULL;
160 		ClearPagePrivate(page);
161 		set_page_private(page, 0);
162 		INIT_LIST_HEAD(&page->lru);
163 		free_reserved_page(page);
164 	}
165 }
166 
167 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
168 #ifndef CONFIG_SPARSEMEM_VMEMMAP
169 static void register_page_bootmem_info_section(unsigned long start_pfn)
170 {
171 	unsigned long *usemap, mapsize, section_nr, i;
172 	struct mem_section *ms;
173 	struct page *page, *memmap;
174 
175 	section_nr = pfn_to_section_nr(start_pfn);
176 	ms = __nr_to_section(section_nr);
177 
178 	/* Get section's memmap address */
179 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
180 
181 	/*
182 	 * Get page for the memmap's phys address
183 	 * XXX: need more consideration for sparse_vmemmap...
184 	 */
185 	page = virt_to_page(memmap);
186 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
187 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
188 
189 	/* remember memmap's page */
190 	for (i = 0; i < mapsize; i++, page++)
191 		get_page_bootmem(section_nr, page, SECTION_INFO);
192 
193 	usemap = ms->pageblock_flags;
194 	page = virt_to_page(usemap);
195 
196 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
197 
198 	for (i = 0; i < mapsize; i++, page++)
199 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
200 
201 }
202 #else /* CONFIG_SPARSEMEM_VMEMMAP */
203 static void register_page_bootmem_info_section(unsigned long start_pfn)
204 {
205 	unsigned long *usemap, mapsize, section_nr, i;
206 	struct mem_section *ms;
207 	struct page *page, *memmap;
208 
209 	section_nr = pfn_to_section_nr(start_pfn);
210 	ms = __nr_to_section(section_nr);
211 
212 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
213 
214 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
215 
216 	usemap = ms->pageblock_flags;
217 	page = virt_to_page(usemap);
218 
219 	mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
220 
221 	for (i = 0; i < mapsize; i++, page++)
222 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
223 }
224 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
225 
226 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
227 {
228 	unsigned long i, pfn, end_pfn, nr_pages;
229 	int node = pgdat->node_id;
230 	struct page *page;
231 
232 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
233 	page = virt_to_page(pgdat);
234 
235 	for (i = 0; i < nr_pages; i++, page++)
236 		get_page_bootmem(node, page, NODE_INFO);
237 
238 	pfn = pgdat->node_start_pfn;
239 	end_pfn = pgdat_end_pfn(pgdat);
240 
241 	/* register section info */
242 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
243 		/*
244 		 * Some platforms can assign the same pfn to multiple nodes - on
245 		 * node0 as well as nodeN.  To avoid registering a pfn against
246 		 * multiple nodes we check that this pfn does not already
247 		 * reside in some other nodes.
248 		 */
249 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
250 			register_page_bootmem_info_section(pfn);
251 	}
252 }
253 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
254 
255 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
256 		struct vmem_altmap *altmap, bool want_memblock)
257 {
258 	int ret;
259 
260 	if (pfn_valid(phys_start_pfn))
261 		return -EEXIST;
262 
263 	ret = sparse_add_one_section(nid, phys_start_pfn, altmap);
264 	if (ret < 0)
265 		return ret;
266 
267 	if (!want_memblock)
268 		return 0;
269 
270 	return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
271 }
272 
273 /*
274  * Reasonably generic function for adding memory.  It is
275  * expected that archs that support memory hotplug will
276  * call this function after deciding the zone to which to
277  * add the new pages.
278  */
279 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
280 		unsigned long nr_pages, struct vmem_altmap *altmap,
281 		bool want_memblock)
282 {
283 	unsigned long i;
284 	int err = 0;
285 	int start_sec, end_sec;
286 
287 	/* during initialize mem_map, align hot-added range to section */
288 	start_sec = pfn_to_section_nr(phys_start_pfn);
289 	end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
290 
291 	if (altmap) {
292 		/*
293 		 * Validate altmap is within bounds of the total request
294 		 */
295 		if (altmap->base_pfn != phys_start_pfn
296 				|| vmem_altmap_offset(altmap) > nr_pages) {
297 			pr_warn_once("memory add fail, invalid altmap\n");
298 			err = -EINVAL;
299 			goto out;
300 		}
301 		altmap->alloc = 0;
302 	}
303 
304 	for (i = start_sec; i <= end_sec; i++) {
305 		err = __add_section(nid, section_nr_to_pfn(i), altmap,
306 				want_memblock);
307 
308 		/*
309 		 * EEXIST is finally dealt with by ioresource collision
310 		 * check. see add_memory() => register_memory_resource()
311 		 * Warning will be printed if there is collision.
312 		 */
313 		if (err && (err != -EEXIST))
314 			break;
315 		err = 0;
316 		cond_resched();
317 	}
318 	vmemmap_populate_print_last();
319 out:
320 	return err;
321 }
322 
323 #ifdef CONFIG_MEMORY_HOTREMOVE
324 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
325 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
326 				     unsigned long start_pfn,
327 				     unsigned long end_pfn)
328 {
329 	struct mem_section *ms;
330 
331 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
332 		ms = __pfn_to_section(start_pfn);
333 
334 		if (unlikely(!valid_section(ms)))
335 			continue;
336 
337 		if (unlikely(pfn_to_nid(start_pfn) != nid))
338 			continue;
339 
340 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
341 			continue;
342 
343 		return start_pfn;
344 	}
345 
346 	return 0;
347 }
348 
349 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
350 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
351 				    unsigned long start_pfn,
352 				    unsigned long end_pfn)
353 {
354 	struct mem_section *ms;
355 	unsigned long pfn;
356 
357 	/* pfn is the end pfn of a memory section. */
358 	pfn = end_pfn - 1;
359 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
360 		ms = __pfn_to_section(pfn);
361 
362 		if (unlikely(!valid_section(ms)))
363 			continue;
364 
365 		if (unlikely(pfn_to_nid(pfn) != nid))
366 			continue;
367 
368 		if (zone && zone != page_zone(pfn_to_page(pfn)))
369 			continue;
370 
371 		return pfn;
372 	}
373 
374 	return 0;
375 }
376 
377 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
378 			     unsigned long end_pfn)
379 {
380 	unsigned long zone_start_pfn = zone->zone_start_pfn;
381 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
382 	unsigned long zone_end_pfn = z;
383 	unsigned long pfn;
384 	struct mem_section *ms;
385 	int nid = zone_to_nid(zone);
386 
387 	zone_span_writelock(zone);
388 	if (zone_start_pfn == start_pfn) {
389 		/*
390 		 * If the section is smallest section in the zone, it need
391 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
392 		 * In this case, we find second smallest valid mem_section
393 		 * for shrinking zone.
394 		 */
395 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
396 						zone_end_pfn);
397 		if (pfn) {
398 			zone->zone_start_pfn = pfn;
399 			zone->spanned_pages = zone_end_pfn - pfn;
400 		}
401 	} else if (zone_end_pfn == end_pfn) {
402 		/*
403 		 * If the section is biggest section in the zone, it need
404 		 * shrink zone->spanned_pages.
405 		 * In this case, we find second biggest valid mem_section for
406 		 * shrinking zone.
407 		 */
408 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
409 					       start_pfn);
410 		if (pfn)
411 			zone->spanned_pages = pfn - zone_start_pfn + 1;
412 	}
413 
414 	/*
415 	 * The section is not biggest or smallest mem_section in the zone, it
416 	 * only creates a hole in the zone. So in this case, we need not
417 	 * change the zone. But perhaps, the zone has only hole data. Thus
418 	 * it check the zone has only hole or not.
419 	 */
420 	pfn = zone_start_pfn;
421 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
422 		ms = __pfn_to_section(pfn);
423 
424 		if (unlikely(!valid_section(ms)))
425 			continue;
426 
427 		if (page_zone(pfn_to_page(pfn)) != zone)
428 			continue;
429 
430 		 /* If the section is current section, it continues the loop */
431 		if (start_pfn == pfn)
432 			continue;
433 
434 		/* If we find valid section, we have nothing to do */
435 		zone_span_writeunlock(zone);
436 		return;
437 	}
438 
439 	/* The zone has no valid section */
440 	zone->zone_start_pfn = 0;
441 	zone->spanned_pages = 0;
442 	zone_span_writeunlock(zone);
443 }
444 
445 static void shrink_pgdat_span(struct pglist_data *pgdat,
446 			      unsigned long start_pfn, unsigned long end_pfn)
447 {
448 	unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
449 	unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
450 	unsigned long pgdat_end_pfn = p;
451 	unsigned long pfn;
452 	struct mem_section *ms;
453 	int nid = pgdat->node_id;
454 
455 	if (pgdat_start_pfn == start_pfn) {
456 		/*
457 		 * If the section is smallest section in the pgdat, it need
458 		 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
459 		 * In this case, we find second smallest valid mem_section
460 		 * for shrinking zone.
461 		 */
462 		pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
463 						pgdat_end_pfn);
464 		if (pfn) {
465 			pgdat->node_start_pfn = pfn;
466 			pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
467 		}
468 	} else if (pgdat_end_pfn == end_pfn) {
469 		/*
470 		 * If the section is biggest section in the pgdat, it need
471 		 * shrink pgdat->node_spanned_pages.
472 		 * In this case, we find second biggest valid mem_section for
473 		 * shrinking zone.
474 		 */
475 		pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
476 					       start_pfn);
477 		if (pfn)
478 			pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
479 	}
480 
481 	/*
482 	 * If the section is not biggest or smallest mem_section in the pgdat,
483 	 * it only creates a hole in the pgdat. So in this case, we need not
484 	 * change the pgdat.
485 	 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
486 	 * has only hole or not.
487 	 */
488 	pfn = pgdat_start_pfn;
489 	for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
490 		ms = __pfn_to_section(pfn);
491 
492 		if (unlikely(!valid_section(ms)))
493 			continue;
494 
495 		if (pfn_to_nid(pfn) != nid)
496 			continue;
497 
498 		 /* If the section is current section, it continues the loop */
499 		if (start_pfn == pfn)
500 			continue;
501 
502 		/* If we find valid section, we have nothing to do */
503 		return;
504 	}
505 
506 	/* The pgdat has no valid section */
507 	pgdat->node_start_pfn = 0;
508 	pgdat->node_spanned_pages = 0;
509 }
510 
511 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
512 {
513 	struct pglist_data *pgdat = zone->zone_pgdat;
514 	int nr_pages = PAGES_PER_SECTION;
515 	unsigned long flags;
516 
517 	pgdat_resize_lock(zone->zone_pgdat, &flags);
518 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
519 	shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
520 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
521 }
522 
523 static int __remove_section(struct zone *zone, struct mem_section *ms,
524 		unsigned long map_offset, struct vmem_altmap *altmap)
525 {
526 	unsigned long start_pfn;
527 	int scn_nr;
528 	int ret = -EINVAL;
529 
530 	if (!valid_section(ms))
531 		return ret;
532 
533 	ret = unregister_memory_section(ms);
534 	if (ret)
535 		return ret;
536 
537 	scn_nr = __section_nr(ms);
538 	start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
539 	__remove_zone(zone, start_pfn);
540 
541 	sparse_remove_one_section(zone, ms, map_offset, altmap);
542 	return 0;
543 }
544 
545 /**
546  * __remove_pages() - remove sections of pages from a zone
547  * @zone: zone from which pages need to be removed
548  * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
549  * @nr_pages: number of pages to remove (must be multiple of section size)
550  * @altmap: alternative device page map or %NULL if default memmap is used
551  *
552  * Generic helper function to remove section mappings and sysfs entries
553  * for the section of the memory we are removing. Caller needs to make
554  * sure that pages are marked reserved and zones are adjust properly by
555  * calling offline_pages().
556  */
557 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
558 		 unsigned long nr_pages, struct vmem_altmap *altmap)
559 {
560 	unsigned long i;
561 	unsigned long map_offset = 0;
562 	int sections_to_remove, ret = 0;
563 
564 	/* In the ZONE_DEVICE case device driver owns the memory region */
565 	if (is_dev_zone(zone)) {
566 		if (altmap)
567 			map_offset = vmem_altmap_offset(altmap);
568 	} else {
569 		resource_size_t start, size;
570 
571 		start = phys_start_pfn << PAGE_SHIFT;
572 		size = nr_pages * PAGE_SIZE;
573 
574 		ret = release_mem_region_adjustable(&iomem_resource, start,
575 					size);
576 		if (ret) {
577 			resource_size_t endres = start + size - 1;
578 
579 			pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
580 					&start, &endres, ret);
581 		}
582 	}
583 
584 	clear_zone_contiguous(zone);
585 
586 	/*
587 	 * We can only remove entire sections
588 	 */
589 	BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
590 	BUG_ON(nr_pages % PAGES_PER_SECTION);
591 
592 	sections_to_remove = nr_pages / PAGES_PER_SECTION;
593 	for (i = 0; i < sections_to_remove; i++) {
594 		unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
595 
596 		cond_resched();
597 		ret = __remove_section(zone, __pfn_to_section(pfn), map_offset,
598 				altmap);
599 		map_offset = 0;
600 		if (ret)
601 			break;
602 	}
603 
604 	set_zone_contiguous(zone);
605 
606 	return ret;
607 }
608 #endif /* CONFIG_MEMORY_HOTREMOVE */
609 
610 int set_online_page_callback(online_page_callback_t callback)
611 {
612 	int rc = -EINVAL;
613 
614 	get_online_mems();
615 	mutex_lock(&online_page_callback_lock);
616 
617 	if (online_page_callback == generic_online_page) {
618 		online_page_callback = callback;
619 		rc = 0;
620 	}
621 
622 	mutex_unlock(&online_page_callback_lock);
623 	put_online_mems();
624 
625 	return rc;
626 }
627 EXPORT_SYMBOL_GPL(set_online_page_callback);
628 
629 int restore_online_page_callback(online_page_callback_t callback)
630 {
631 	int rc = -EINVAL;
632 
633 	get_online_mems();
634 	mutex_lock(&online_page_callback_lock);
635 
636 	if (online_page_callback == callback) {
637 		online_page_callback = generic_online_page;
638 		rc = 0;
639 	}
640 
641 	mutex_unlock(&online_page_callback_lock);
642 	put_online_mems();
643 
644 	return rc;
645 }
646 EXPORT_SYMBOL_GPL(restore_online_page_callback);
647 
648 void __online_page_set_limits(struct page *page)
649 {
650 }
651 EXPORT_SYMBOL_GPL(__online_page_set_limits);
652 
653 void __online_page_increment_counters(struct page *page)
654 {
655 	adjust_managed_page_count(page, 1);
656 }
657 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
658 
659 void __online_page_free(struct page *page)
660 {
661 	__free_reserved_page(page);
662 }
663 EXPORT_SYMBOL_GPL(__online_page_free);
664 
665 static void generic_online_page(struct page *page, unsigned int order)
666 {
667 	kernel_map_pages(page, 1 << order, 1);
668 	__free_pages_core(page, order);
669 	totalram_pages_add(1UL << order);
670 #ifdef CONFIG_HIGHMEM
671 	if (PageHighMem(page))
672 		totalhigh_pages_add(1UL << order);
673 #endif
674 }
675 
676 static int online_pages_blocks(unsigned long start, unsigned long nr_pages)
677 {
678 	unsigned long end = start + nr_pages;
679 	int order, onlined_pages = 0;
680 
681 	while (start < end) {
682 		order = min(MAX_ORDER - 1,
683 			get_order(PFN_PHYS(end) - PFN_PHYS(start)));
684 		(*online_page_callback)(pfn_to_page(start), order);
685 
686 		onlined_pages += (1UL << order);
687 		start += (1UL << order);
688 	}
689 	return onlined_pages;
690 }
691 
692 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
693 			void *arg)
694 {
695 	unsigned long onlined_pages = *(unsigned long *)arg;
696 
697 	if (PageReserved(pfn_to_page(start_pfn)))
698 		onlined_pages += online_pages_blocks(start_pfn, nr_pages);
699 
700 	online_mem_sections(start_pfn, start_pfn + nr_pages);
701 
702 	*(unsigned long *)arg = onlined_pages;
703 	return 0;
704 }
705 
706 /* check which state of node_states will be changed when online memory */
707 static void node_states_check_changes_online(unsigned long nr_pages,
708 	struct zone *zone, struct memory_notify *arg)
709 {
710 	int nid = zone_to_nid(zone);
711 
712 	arg->status_change_nid = NUMA_NO_NODE;
713 	arg->status_change_nid_normal = NUMA_NO_NODE;
714 	arg->status_change_nid_high = NUMA_NO_NODE;
715 
716 	if (!node_state(nid, N_MEMORY))
717 		arg->status_change_nid = nid;
718 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
719 		arg->status_change_nid_normal = nid;
720 #ifdef CONFIG_HIGHMEM
721 	if (zone_idx(zone) <= N_HIGH_MEMORY && !node_state(nid, N_HIGH_MEMORY))
722 		arg->status_change_nid_high = nid;
723 #endif
724 }
725 
726 static void node_states_set_node(int node, struct memory_notify *arg)
727 {
728 	if (arg->status_change_nid_normal >= 0)
729 		node_set_state(node, N_NORMAL_MEMORY);
730 
731 	if (arg->status_change_nid_high >= 0)
732 		node_set_state(node, N_HIGH_MEMORY);
733 
734 	if (arg->status_change_nid >= 0)
735 		node_set_state(node, N_MEMORY);
736 }
737 
738 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
739 		unsigned long nr_pages)
740 {
741 	unsigned long old_end_pfn = zone_end_pfn(zone);
742 
743 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
744 		zone->zone_start_pfn = start_pfn;
745 
746 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
747 }
748 
749 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
750                                      unsigned long nr_pages)
751 {
752 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
753 
754 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
755 		pgdat->node_start_pfn = start_pfn;
756 
757 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
758 }
759 
760 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
761 		unsigned long nr_pages, struct vmem_altmap *altmap)
762 {
763 	struct pglist_data *pgdat = zone->zone_pgdat;
764 	int nid = pgdat->node_id;
765 	unsigned long flags;
766 
767 	clear_zone_contiguous(zone);
768 
769 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
770 	pgdat_resize_lock(pgdat, &flags);
771 	zone_span_writelock(zone);
772 	if (zone_is_empty(zone))
773 		init_currently_empty_zone(zone, start_pfn, nr_pages);
774 	resize_zone_range(zone, start_pfn, nr_pages);
775 	zone_span_writeunlock(zone);
776 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
777 	pgdat_resize_unlock(pgdat, &flags);
778 
779 	/*
780 	 * TODO now we have a visible range of pages which are not associated
781 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
782 	 * expects the zone spans the pfn range. All the pages in the range
783 	 * are reserved so nobody should be touching them so we should be safe
784 	 */
785 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
786 			MEMMAP_HOTPLUG, altmap);
787 
788 	set_zone_contiguous(zone);
789 }
790 
791 /*
792  * Returns a default kernel memory zone for the given pfn range.
793  * If no kernel zone covers this pfn range it will automatically go
794  * to the ZONE_NORMAL.
795  */
796 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
797 		unsigned long nr_pages)
798 {
799 	struct pglist_data *pgdat = NODE_DATA(nid);
800 	int zid;
801 
802 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
803 		struct zone *zone = &pgdat->node_zones[zid];
804 
805 		if (zone_intersects(zone, start_pfn, nr_pages))
806 			return zone;
807 	}
808 
809 	return &pgdat->node_zones[ZONE_NORMAL];
810 }
811 
812 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
813 		unsigned long nr_pages)
814 {
815 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
816 			nr_pages);
817 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
818 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
819 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
820 
821 	/*
822 	 * We inherit the existing zone in a simple case where zones do not
823 	 * overlap in the given range
824 	 */
825 	if (in_kernel ^ in_movable)
826 		return (in_kernel) ? kernel_zone : movable_zone;
827 
828 	/*
829 	 * If the range doesn't belong to any zone or two zones overlap in the
830 	 * given range then we use movable zone only if movable_node is
831 	 * enabled because we always online to a kernel zone by default.
832 	 */
833 	return movable_node_enabled ? movable_zone : kernel_zone;
834 }
835 
836 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
837 		unsigned long nr_pages)
838 {
839 	if (online_type == MMOP_ONLINE_KERNEL)
840 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
841 
842 	if (online_type == MMOP_ONLINE_MOVABLE)
843 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
844 
845 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
846 }
847 
848 /*
849  * Associates the given pfn range with the given node and the zone appropriate
850  * for the given online type.
851  */
852 static struct zone * __meminit move_pfn_range(int online_type, int nid,
853 		unsigned long start_pfn, unsigned long nr_pages)
854 {
855 	struct zone *zone;
856 
857 	zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
858 	move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
859 	return zone;
860 }
861 
862 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
863 {
864 	unsigned long flags;
865 	unsigned long onlined_pages = 0;
866 	struct zone *zone;
867 	int need_zonelists_rebuild = 0;
868 	int nid;
869 	int ret;
870 	struct memory_notify arg;
871 	struct memory_block *mem;
872 
873 	mem_hotplug_begin();
874 
875 	/*
876 	 * We can't use pfn_to_nid() because nid might be stored in struct page
877 	 * which is not yet initialized. Instead, we find nid from memory block.
878 	 */
879 	mem = find_memory_block(__pfn_to_section(pfn));
880 	nid = mem->nid;
881 
882 	/* associate pfn range with the zone */
883 	zone = move_pfn_range(online_type, nid, pfn, nr_pages);
884 
885 	arg.start_pfn = pfn;
886 	arg.nr_pages = nr_pages;
887 	node_states_check_changes_online(nr_pages, zone, &arg);
888 
889 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
890 	ret = notifier_to_errno(ret);
891 	if (ret)
892 		goto failed_addition;
893 
894 	/*
895 	 * If this zone is not populated, then it is not in zonelist.
896 	 * This means the page allocator ignores this zone.
897 	 * So, zonelist must be updated after online.
898 	 */
899 	if (!populated_zone(zone)) {
900 		need_zonelists_rebuild = 1;
901 		setup_zone_pageset(zone);
902 	}
903 
904 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
905 		online_pages_range);
906 	if (ret) {
907 		if (need_zonelists_rebuild)
908 			zone_pcp_reset(zone);
909 		goto failed_addition;
910 	}
911 
912 	zone->present_pages += onlined_pages;
913 
914 	pgdat_resize_lock(zone->zone_pgdat, &flags);
915 	zone->zone_pgdat->node_present_pages += onlined_pages;
916 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
917 
918 	if (onlined_pages) {
919 		node_states_set_node(nid, &arg);
920 		if (need_zonelists_rebuild)
921 			build_all_zonelists(NULL);
922 		else
923 			zone_pcp_update(zone);
924 	}
925 
926 	init_per_zone_wmark_min();
927 
928 	if (onlined_pages) {
929 		kswapd_run(nid);
930 		kcompactd_run(nid);
931 	}
932 
933 	vm_total_pages = nr_free_pagecache_pages();
934 
935 	writeback_set_ratelimit();
936 
937 	if (onlined_pages)
938 		memory_notify(MEM_ONLINE, &arg);
939 	mem_hotplug_done();
940 	return 0;
941 
942 failed_addition:
943 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
944 		 (unsigned long long) pfn << PAGE_SHIFT,
945 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
946 	memory_notify(MEM_CANCEL_ONLINE, &arg);
947 	mem_hotplug_done();
948 	return ret;
949 }
950 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
951 
952 static void reset_node_present_pages(pg_data_t *pgdat)
953 {
954 	struct zone *z;
955 
956 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
957 		z->present_pages = 0;
958 
959 	pgdat->node_present_pages = 0;
960 }
961 
962 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
963 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
964 {
965 	struct pglist_data *pgdat;
966 	unsigned long start_pfn = PFN_DOWN(start);
967 
968 	pgdat = NODE_DATA(nid);
969 	if (!pgdat) {
970 		pgdat = arch_alloc_nodedata(nid);
971 		if (!pgdat)
972 			return NULL;
973 
974 		arch_refresh_nodedata(nid, pgdat);
975 	} else {
976 		/*
977 		 * Reset the nr_zones, order and classzone_idx before reuse.
978 		 * Note that kswapd will init kswapd_classzone_idx properly
979 		 * when it starts in the near future.
980 		 */
981 		pgdat->nr_zones = 0;
982 		pgdat->kswapd_order = 0;
983 		pgdat->kswapd_classzone_idx = 0;
984 	}
985 
986 	/* we can use NODE_DATA(nid) from here */
987 
988 	pgdat->node_id = nid;
989 	pgdat->node_start_pfn = start_pfn;
990 
991 	/* init node's zones as empty zones, we don't have any present pages.*/
992 	free_area_init_core_hotplug(nid);
993 	pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
994 
995 	/*
996 	 * The node we allocated has no zone fallback lists. For avoiding
997 	 * to access not-initialized zonelist, build here.
998 	 */
999 	build_all_zonelists(pgdat);
1000 
1001 	/*
1002 	 * When memory is hot-added, all the memory is in offline state. So
1003 	 * clear all zones' present_pages because they will be updated in
1004 	 * online_pages() and offline_pages().
1005 	 */
1006 	reset_node_managed_pages(pgdat);
1007 	reset_node_present_pages(pgdat);
1008 
1009 	return pgdat;
1010 }
1011 
1012 static void rollback_node_hotadd(int nid)
1013 {
1014 	pg_data_t *pgdat = NODE_DATA(nid);
1015 
1016 	arch_refresh_nodedata(nid, NULL);
1017 	free_percpu(pgdat->per_cpu_nodestats);
1018 	arch_free_nodedata(pgdat);
1019 	return;
1020 }
1021 
1022 
1023 /**
1024  * try_online_node - online a node if offlined
1025  * @nid: the node ID
1026  * @start: start addr of the node
1027  * @set_node_online: Whether we want to online the node
1028  * called by cpu_up() to online a node without onlined memory.
1029  *
1030  * Returns:
1031  * 1 -> a new node has been allocated
1032  * 0 -> the node is already online
1033  * -ENOMEM -> the node could not be allocated
1034  */
1035 static int __try_online_node(int nid, u64 start, bool set_node_online)
1036 {
1037 	pg_data_t *pgdat;
1038 	int ret = 1;
1039 
1040 	if (node_online(nid))
1041 		return 0;
1042 
1043 	pgdat = hotadd_new_pgdat(nid, start);
1044 	if (!pgdat) {
1045 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1046 		ret = -ENOMEM;
1047 		goto out;
1048 	}
1049 
1050 	if (set_node_online) {
1051 		node_set_online(nid);
1052 		ret = register_one_node(nid);
1053 		BUG_ON(ret);
1054 	}
1055 out:
1056 	return ret;
1057 }
1058 
1059 /*
1060  * Users of this function always want to online/register the node
1061  */
1062 int try_online_node(int nid)
1063 {
1064 	int ret;
1065 
1066 	mem_hotplug_begin();
1067 	ret =  __try_online_node(nid, 0, true);
1068 	mem_hotplug_done();
1069 	return ret;
1070 }
1071 
1072 static int check_hotplug_memory_range(u64 start, u64 size)
1073 {
1074 	unsigned long block_sz = memory_block_size_bytes();
1075 	u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1076 	u64 nr_pages = size >> PAGE_SHIFT;
1077 	u64 start_pfn = PFN_DOWN(start);
1078 
1079 	/* memory range must be block size aligned */
1080 	if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1081 	    !IS_ALIGNED(nr_pages, block_nr_pages)) {
1082 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1083 		       block_sz, start, size);
1084 		return -EINVAL;
1085 	}
1086 
1087 	return 0;
1088 }
1089 
1090 static int online_memory_block(struct memory_block *mem, void *arg)
1091 {
1092 	return device_online(&mem->dev);
1093 }
1094 
1095 /*
1096  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1097  * and online/offline operations (triggered e.g. by sysfs).
1098  *
1099  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1100  */
1101 int __ref add_memory_resource(int nid, struct resource *res)
1102 {
1103 	u64 start, size;
1104 	bool new_node = false;
1105 	int ret;
1106 
1107 	start = res->start;
1108 	size = resource_size(res);
1109 
1110 	ret = check_hotplug_memory_range(start, size);
1111 	if (ret)
1112 		return ret;
1113 
1114 	mem_hotplug_begin();
1115 
1116 	/*
1117 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1118 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1119 	 * this new range and calculate total pages correctly.  The range will
1120 	 * be removed at hot-remove time.
1121 	 */
1122 	memblock_add_node(start, size, nid);
1123 
1124 	ret = __try_online_node(nid, start, false);
1125 	if (ret < 0)
1126 		goto error;
1127 	new_node = ret;
1128 
1129 	/* call arch's memory hotadd */
1130 	ret = arch_add_memory(nid, start, size, NULL, true);
1131 	if (ret < 0)
1132 		goto error;
1133 
1134 	if (new_node) {
1135 		/* If sysfs file of new node can't be created, cpu on the node
1136 		 * can't be hot-added. There is no rollback way now.
1137 		 * So, check by BUG_ON() to catch it reluctantly..
1138 		 * We online node here. We can't roll back from here.
1139 		 */
1140 		node_set_online(nid);
1141 		ret = __register_one_node(nid);
1142 		BUG_ON(ret);
1143 	}
1144 
1145 	/* link memory sections under this node.*/
1146 	ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1147 	BUG_ON(ret);
1148 
1149 	/* create new memmap entry */
1150 	firmware_map_add_hotplug(start, start + size, "System RAM");
1151 
1152 	/* device_online() will take the lock when calling online_pages() */
1153 	mem_hotplug_done();
1154 
1155 	/* online pages if requested */
1156 	if (memhp_auto_online)
1157 		walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1158 				  NULL, online_memory_block);
1159 
1160 	return ret;
1161 error:
1162 	/* rollback pgdat allocation and others */
1163 	if (new_node)
1164 		rollback_node_hotadd(nid);
1165 	memblock_remove(start, size);
1166 	mem_hotplug_done();
1167 	return ret;
1168 }
1169 
1170 /* requires device_hotplug_lock, see add_memory_resource() */
1171 int __ref __add_memory(int nid, u64 start, u64 size)
1172 {
1173 	struct resource *res;
1174 	int ret;
1175 
1176 	res = register_memory_resource(start, size);
1177 	if (IS_ERR(res))
1178 		return PTR_ERR(res);
1179 
1180 	ret = add_memory_resource(nid, res);
1181 	if (ret < 0)
1182 		release_memory_resource(res);
1183 	return ret;
1184 }
1185 
1186 int add_memory(int nid, u64 start, u64 size)
1187 {
1188 	int rc;
1189 
1190 	lock_device_hotplug();
1191 	rc = __add_memory(nid, start, size);
1192 	unlock_device_hotplug();
1193 
1194 	return rc;
1195 }
1196 EXPORT_SYMBOL_GPL(add_memory);
1197 
1198 #ifdef CONFIG_MEMORY_HOTREMOVE
1199 /*
1200  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1201  * set and the size of the free page is given by page_order(). Using this,
1202  * the function determines if the pageblock contains only free pages.
1203  * Due to buddy contraints, a free page at least the size of a pageblock will
1204  * be located at the start of the pageblock
1205  */
1206 static inline int pageblock_free(struct page *page)
1207 {
1208 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1209 }
1210 
1211 /* Return the pfn of the start of the next active pageblock after a given pfn */
1212 static unsigned long next_active_pageblock(unsigned long pfn)
1213 {
1214 	struct page *page = pfn_to_page(pfn);
1215 
1216 	/* Ensure the starting page is pageblock-aligned */
1217 	BUG_ON(pfn & (pageblock_nr_pages - 1));
1218 
1219 	/* If the entire pageblock is free, move to the end of free page */
1220 	if (pageblock_free(page)) {
1221 		int order;
1222 		/* be careful. we don't have locks, page_order can be changed.*/
1223 		order = page_order(page);
1224 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1225 			return pfn + (1 << order);
1226 	}
1227 
1228 	return pfn + pageblock_nr_pages;
1229 }
1230 
1231 static bool is_pageblock_removable_nolock(unsigned long pfn)
1232 {
1233 	struct page *page = pfn_to_page(pfn);
1234 	struct zone *zone;
1235 
1236 	/*
1237 	 * We have to be careful here because we are iterating over memory
1238 	 * sections which are not zone aware so we might end up outside of
1239 	 * the zone but still within the section.
1240 	 * We have to take care about the node as well. If the node is offline
1241 	 * its NODE_DATA will be NULL - see page_zone.
1242 	 */
1243 	if (!node_online(page_to_nid(page)))
1244 		return false;
1245 
1246 	zone = page_zone(page);
1247 	pfn = page_to_pfn(page);
1248 	if (!zone_spans_pfn(zone, pfn))
1249 		return false;
1250 
1251 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1252 }
1253 
1254 /* Checks if this range of memory is likely to be hot-removable. */
1255 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1256 {
1257 	unsigned long end_pfn, pfn;
1258 
1259 	end_pfn = min(start_pfn + nr_pages,
1260 			zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1261 
1262 	/* Check the starting page of each pageblock within the range */
1263 	for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1264 		if (!is_pageblock_removable_nolock(pfn))
1265 			return false;
1266 		cond_resched();
1267 	}
1268 
1269 	/* All pageblocks in the memory block are likely to be hot-removable */
1270 	return true;
1271 }
1272 
1273 /*
1274  * Confirm all pages in a range [start, end) belong to the same zone.
1275  * When true, return its valid [start, end).
1276  */
1277 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1278 			 unsigned long *valid_start, unsigned long *valid_end)
1279 {
1280 	unsigned long pfn, sec_end_pfn;
1281 	unsigned long start, end;
1282 	struct zone *zone = NULL;
1283 	struct page *page;
1284 	int i;
1285 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1286 	     pfn < end_pfn;
1287 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1288 		/* Make sure the memory section is present first */
1289 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1290 			continue;
1291 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1292 		     pfn += MAX_ORDER_NR_PAGES) {
1293 			i = 0;
1294 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1295 			while ((i < MAX_ORDER_NR_PAGES) &&
1296 				!pfn_valid_within(pfn + i))
1297 				i++;
1298 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1299 				continue;
1300 			/* Check if we got outside of the zone */
1301 			if (zone && !zone_spans_pfn(zone, pfn + i))
1302 				return 0;
1303 			page = pfn_to_page(pfn + i);
1304 			if (zone && page_zone(page) != zone)
1305 				return 0;
1306 			if (!zone)
1307 				start = pfn + i;
1308 			zone = page_zone(page);
1309 			end = pfn + MAX_ORDER_NR_PAGES;
1310 		}
1311 	}
1312 
1313 	if (zone) {
1314 		*valid_start = start;
1315 		*valid_end = min(end, end_pfn);
1316 		return 1;
1317 	} else {
1318 		return 0;
1319 	}
1320 }
1321 
1322 /*
1323  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1324  * non-lru movable pages and hugepages). We scan pfn because it's much
1325  * easier than scanning over linked list. This function returns the pfn
1326  * of the first found movable page if it's found, otherwise 0.
1327  */
1328 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1329 {
1330 	unsigned long pfn;
1331 
1332 	for (pfn = start; pfn < end; pfn++) {
1333 		struct page *page, *head;
1334 		unsigned long skip;
1335 
1336 		if (!pfn_valid(pfn))
1337 			continue;
1338 		page = pfn_to_page(pfn);
1339 		if (PageLRU(page))
1340 			return pfn;
1341 		if (__PageMovable(page))
1342 			return pfn;
1343 
1344 		if (!PageHuge(page))
1345 			continue;
1346 		head = compound_head(page);
1347 		if (hugepage_migration_supported(page_hstate(head)) &&
1348 		    page_huge_active(head))
1349 			return pfn;
1350 		skip = (1 << compound_order(head)) - (page - head);
1351 		pfn += skip - 1;
1352 	}
1353 	return 0;
1354 }
1355 
1356 static struct page *new_node_page(struct page *page, unsigned long private)
1357 {
1358 	int nid = page_to_nid(page);
1359 	nodemask_t nmask = node_states[N_MEMORY];
1360 
1361 	/*
1362 	 * try to allocate from a different node but reuse this node if there
1363 	 * are no other online nodes to be used (e.g. we are offlining a part
1364 	 * of the only existing node)
1365 	 */
1366 	node_clear(nid, nmask);
1367 	if (nodes_empty(nmask))
1368 		node_set(nid, nmask);
1369 
1370 	return new_page_nodemask(page, nid, &nmask);
1371 }
1372 
1373 static int
1374 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1375 {
1376 	unsigned long pfn;
1377 	struct page *page;
1378 	int ret = 0;
1379 	LIST_HEAD(source);
1380 
1381 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1382 		if (!pfn_valid(pfn))
1383 			continue;
1384 		page = pfn_to_page(pfn);
1385 
1386 		if (PageHuge(page)) {
1387 			struct page *head = compound_head(page);
1388 			if (compound_order(head) > PFN_SECTION_SHIFT) {
1389 				ret = -EBUSY;
1390 				break;
1391 			}
1392 			pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1393 			isolate_huge_page(head, &source);
1394 			continue;
1395 		} else if (PageTransHuge(page))
1396 			pfn = page_to_pfn(compound_head(page))
1397 				+ hpage_nr_pages(page) - 1;
1398 
1399 		/*
1400 		 * HWPoison pages have elevated reference counts so the migration would
1401 		 * fail on them. It also doesn't make any sense to migrate them in the
1402 		 * first place. Still try to unmap such a page in case it is still mapped
1403 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1404 		 * the unmap as the catch all safety net).
1405 		 */
1406 		if (PageHWPoison(page)) {
1407 			if (WARN_ON(PageLRU(page)))
1408 				isolate_lru_page(page);
1409 			if (page_mapped(page))
1410 				try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1411 			continue;
1412 		}
1413 
1414 		if (!get_page_unless_zero(page))
1415 			continue;
1416 		/*
1417 		 * We can skip free pages. And we can deal with pages on
1418 		 * LRU and non-lru movable pages.
1419 		 */
1420 		if (PageLRU(page))
1421 			ret = isolate_lru_page(page);
1422 		else
1423 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1424 		if (!ret) { /* Success */
1425 			list_add_tail(&page->lru, &source);
1426 			if (!__PageMovable(page))
1427 				inc_node_page_state(page, NR_ISOLATED_ANON +
1428 						    page_is_file_cache(page));
1429 
1430 		} else {
1431 			pr_warn("failed to isolate pfn %lx\n", pfn);
1432 			dump_page(page, "isolation failed");
1433 		}
1434 		put_page(page);
1435 	}
1436 	if (!list_empty(&source)) {
1437 		/* Allocate a new page from the nearest neighbor node */
1438 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1439 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1440 		if (ret) {
1441 			list_for_each_entry(page, &source, lru) {
1442 				pr_warn("migrating pfn %lx failed ret:%d ",
1443 				       page_to_pfn(page), ret);
1444 				dump_page(page, "migration failure");
1445 			}
1446 			putback_movable_pages(&source);
1447 		}
1448 	}
1449 
1450 	return ret;
1451 }
1452 
1453 /*
1454  * remove from free_area[] and mark all as Reserved.
1455  */
1456 static int
1457 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1458 			void *data)
1459 {
1460 	__offline_isolated_pages(start, start + nr_pages);
1461 	return 0;
1462 }
1463 
1464 static void
1465 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1466 {
1467 	walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1468 				offline_isolated_pages_cb);
1469 }
1470 
1471 /*
1472  * Check all pages in range, recoreded as memory resource, are isolated.
1473  */
1474 static int
1475 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1476 			void *data)
1477 {
1478 	int ret;
1479 	long offlined = *(long *)data;
1480 	ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1481 	offlined = nr_pages;
1482 	if (!ret)
1483 		*(long *)data += offlined;
1484 	return ret;
1485 }
1486 
1487 static long
1488 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1489 {
1490 	long offlined = 0;
1491 	int ret;
1492 
1493 	ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1494 			check_pages_isolated_cb);
1495 	if (ret < 0)
1496 		offlined = (long)ret;
1497 	return offlined;
1498 }
1499 
1500 static int __init cmdline_parse_movable_node(char *p)
1501 {
1502 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1503 	movable_node_enabled = true;
1504 #else
1505 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1506 #endif
1507 	return 0;
1508 }
1509 early_param("movable_node", cmdline_parse_movable_node);
1510 
1511 /* check which state of node_states will be changed when offline memory */
1512 static void node_states_check_changes_offline(unsigned long nr_pages,
1513 		struct zone *zone, struct memory_notify *arg)
1514 {
1515 	struct pglist_data *pgdat = zone->zone_pgdat;
1516 	unsigned long present_pages = 0;
1517 	enum zone_type zt;
1518 
1519 	arg->status_change_nid = NUMA_NO_NODE;
1520 	arg->status_change_nid_normal = NUMA_NO_NODE;
1521 	arg->status_change_nid_high = NUMA_NO_NODE;
1522 
1523 	/*
1524 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1525 	 * If the memory to be offline is within the range
1526 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1527 	 * the zones in that range will become empty after the offlining,
1528 	 * thus we can determine that we need to clear the node from
1529 	 * node_states[N_NORMAL_MEMORY].
1530 	 */
1531 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1532 		present_pages += pgdat->node_zones[zt].present_pages;
1533 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1534 		arg->status_change_nid_normal = zone_to_nid(zone);
1535 
1536 #ifdef CONFIG_HIGHMEM
1537 	/*
1538 	 * node_states[N_HIGH_MEMORY] contains nodes which
1539 	 * have normal memory or high memory.
1540 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1541 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1542 	 * we determine that the zones in that range become empty,
1543 	 * we need to clear the node for N_HIGH_MEMORY.
1544 	 */
1545 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1546 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1547 		arg->status_change_nid_high = zone_to_nid(zone);
1548 #endif
1549 
1550 	/*
1551 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1552 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1553 	 * as well.
1554 	 * Here we count the possible pages from ZONE_MOVABLE.
1555 	 * If after having accounted all the pages, we see that the nr_pages
1556 	 * to be offlined is over or equal to the accounted pages,
1557 	 * we know that the node will become empty, and so, we can clear
1558 	 * it for N_MEMORY as well.
1559 	 */
1560 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1561 
1562 	if (nr_pages >= present_pages)
1563 		arg->status_change_nid = zone_to_nid(zone);
1564 }
1565 
1566 static void node_states_clear_node(int node, struct memory_notify *arg)
1567 {
1568 	if (arg->status_change_nid_normal >= 0)
1569 		node_clear_state(node, N_NORMAL_MEMORY);
1570 
1571 	if (arg->status_change_nid_high >= 0)
1572 		node_clear_state(node, N_HIGH_MEMORY);
1573 
1574 	if (arg->status_change_nid >= 0)
1575 		node_clear_state(node, N_MEMORY);
1576 }
1577 
1578 static int __ref __offline_pages(unsigned long start_pfn,
1579 		  unsigned long end_pfn)
1580 {
1581 	unsigned long pfn, nr_pages;
1582 	long offlined_pages;
1583 	int ret, node;
1584 	unsigned long flags;
1585 	unsigned long valid_start, valid_end;
1586 	struct zone *zone;
1587 	struct memory_notify arg;
1588 	char *reason;
1589 
1590 	mem_hotplug_begin();
1591 
1592 	/* This makes hotplug much easier...and readable.
1593 	   we assume this for now. .*/
1594 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1595 				  &valid_end)) {
1596 		ret = -EINVAL;
1597 		reason = "multizone range";
1598 		goto failed_removal;
1599 	}
1600 
1601 	zone = page_zone(pfn_to_page(valid_start));
1602 	node = zone_to_nid(zone);
1603 	nr_pages = end_pfn - start_pfn;
1604 
1605 	/* set above range as isolated */
1606 	ret = start_isolate_page_range(start_pfn, end_pfn,
1607 				       MIGRATE_MOVABLE,
1608 				       SKIP_HWPOISON | REPORT_FAILURE);
1609 	if (ret) {
1610 		reason = "failure to isolate range";
1611 		goto failed_removal;
1612 	}
1613 
1614 	arg.start_pfn = start_pfn;
1615 	arg.nr_pages = nr_pages;
1616 	node_states_check_changes_offline(nr_pages, zone, &arg);
1617 
1618 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1619 	ret = notifier_to_errno(ret);
1620 	if (ret) {
1621 		reason = "notifier failure";
1622 		goto failed_removal_isolated;
1623 	}
1624 
1625 	do {
1626 		for (pfn = start_pfn; pfn;) {
1627 			if (signal_pending(current)) {
1628 				ret = -EINTR;
1629 				reason = "signal backoff";
1630 				goto failed_removal_isolated;
1631 			}
1632 
1633 			cond_resched();
1634 			lru_add_drain_all();
1635 
1636 			pfn = scan_movable_pages(pfn, end_pfn);
1637 			if (pfn) {
1638 				/*
1639 				 * TODO: fatal migration failures should bail
1640 				 * out
1641 				 */
1642 				do_migrate_range(pfn, end_pfn);
1643 			}
1644 		}
1645 
1646 		/*
1647 		 * Dissolve free hugepages in the memory block before doing
1648 		 * offlining actually in order to make hugetlbfs's object
1649 		 * counting consistent.
1650 		 */
1651 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1652 		if (ret) {
1653 			reason = "failure to dissolve huge pages";
1654 			goto failed_removal_isolated;
1655 		}
1656 		/* check again */
1657 		offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1658 	} while (offlined_pages < 0);
1659 
1660 	pr_info("Offlined Pages %ld\n", offlined_pages);
1661 	/* Ok, all of our target is isolated.
1662 	   We cannot do rollback at this point. */
1663 	offline_isolated_pages(start_pfn, end_pfn);
1664 	/* reset pagetype flags and makes migrate type to be MOVABLE */
1665 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1666 	/* removal success */
1667 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1668 	zone->present_pages -= offlined_pages;
1669 
1670 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1671 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1672 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1673 
1674 	init_per_zone_wmark_min();
1675 
1676 	if (!populated_zone(zone)) {
1677 		zone_pcp_reset(zone);
1678 		build_all_zonelists(NULL);
1679 	} else
1680 		zone_pcp_update(zone);
1681 
1682 	node_states_clear_node(node, &arg);
1683 	if (arg.status_change_nid >= 0) {
1684 		kswapd_stop(node);
1685 		kcompactd_stop(node);
1686 	}
1687 
1688 	vm_total_pages = nr_free_pagecache_pages();
1689 	writeback_set_ratelimit();
1690 
1691 	memory_notify(MEM_OFFLINE, &arg);
1692 	mem_hotplug_done();
1693 	return 0;
1694 
1695 failed_removal_isolated:
1696 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1697 failed_removal:
1698 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1699 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1700 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1701 		 reason);
1702 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1703 	/* pushback to free area */
1704 	mem_hotplug_done();
1705 	return ret;
1706 }
1707 
1708 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1709 {
1710 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1711 }
1712 #endif /* CONFIG_MEMORY_HOTREMOVE */
1713 
1714 /**
1715  * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1716  * @start_pfn: start pfn of the memory range
1717  * @end_pfn: end pfn of the memory range
1718  * @arg: argument passed to func
1719  * @func: callback for each memory section walked
1720  *
1721  * This function walks through all present mem sections in range
1722  * [start_pfn, end_pfn) and call func on each mem section.
1723  *
1724  * Returns the return value of func.
1725  */
1726 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1727 		void *arg, int (*func)(struct memory_block *, void *))
1728 {
1729 	struct memory_block *mem = NULL;
1730 	struct mem_section *section;
1731 	unsigned long pfn, section_nr;
1732 	int ret;
1733 
1734 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1735 		section_nr = pfn_to_section_nr(pfn);
1736 		if (!present_section_nr(section_nr))
1737 			continue;
1738 
1739 		section = __nr_to_section(section_nr);
1740 		/* same memblock? */
1741 		if (mem)
1742 			if ((section_nr >= mem->start_section_nr) &&
1743 			    (section_nr <= mem->end_section_nr))
1744 				continue;
1745 
1746 		mem = find_memory_block_hinted(section, mem);
1747 		if (!mem)
1748 			continue;
1749 
1750 		ret = func(mem, arg);
1751 		if (ret) {
1752 			kobject_put(&mem->dev.kobj);
1753 			return ret;
1754 		}
1755 	}
1756 
1757 	if (mem)
1758 		kobject_put(&mem->dev.kobj);
1759 
1760 	return 0;
1761 }
1762 
1763 #ifdef CONFIG_MEMORY_HOTREMOVE
1764 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1765 {
1766 	int ret = !is_memblock_offlined(mem);
1767 
1768 	if (unlikely(ret)) {
1769 		phys_addr_t beginpa, endpa;
1770 
1771 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1772 		endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1773 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1774 			&beginpa, &endpa);
1775 	}
1776 
1777 	return ret;
1778 }
1779 
1780 static int check_cpu_on_node(pg_data_t *pgdat)
1781 {
1782 	int cpu;
1783 
1784 	for_each_present_cpu(cpu) {
1785 		if (cpu_to_node(cpu) == pgdat->node_id)
1786 			/*
1787 			 * the cpu on this node isn't removed, and we can't
1788 			 * offline this node.
1789 			 */
1790 			return -EBUSY;
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 /**
1797  * try_offline_node
1798  * @nid: the node ID
1799  *
1800  * Offline a node if all memory sections and cpus of the node are removed.
1801  *
1802  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1803  * and online/offline operations before this call.
1804  */
1805 void try_offline_node(int nid)
1806 {
1807 	pg_data_t *pgdat = NODE_DATA(nid);
1808 	unsigned long start_pfn = pgdat->node_start_pfn;
1809 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1810 	unsigned long pfn;
1811 
1812 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1813 		unsigned long section_nr = pfn_to_section_nr(pfn);
1814 
1815 		if (!present_section_nr(section_nr))
1816 			continue;
1817 
1818 		if (pfn_to_nid(pfn) != nid)
1819 			continue;
1820 
1821 		/*
1822 		 * some memory sections of this node are not removed, and we
1823 		 * can't offline node now.
1824 		 */
1825 		return;
1826 	}
1827 
1828 	if (check_cpu_on_node(pgdat))
1829 		return;
1830 
1831 	/*
1832 	 * all memory/cpu of this node are removed, we can offline this
1833 	 * node now.
1834 	 */
1835 	node_set_offline(nid);
1836 	unregister_one_node(nid);
1837 }
1838 EXPORT_SYMBOL(try_offline_node);
1839 
1840 /**
1841  * remove_memory
1842  * @nid: the node ID
1843  * @start: physical address of the region to remove
1844  * @size: size of the region to remove
1845  *
1846  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1847  * and online/offline operations before this call, as required by
1848  * try_offline_node().
1849  */
1850 void __ref __remove_memory(int nid, u64 start, u64 size)
1851 {
1852 	int ret;
1853 
1854 	BUG_ON(check_hotplug_memory_range(start, size));
1855 
1856 	mem_hotplug_begin();
1857 
1858 	/*
1859 	 * All memory blocks must be offlined before removing memory.  Check
1860 	 * whether all memory blocks in question are offline and trigger a BUG()
1861 	 * if this is not the case.
1862 	 */
1863 	ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1864 				check_memblock_offlined_cb);
1865 	if (ret)
1866 		BUG();
1867 
1868 	/* remove memmap entry */
1869 	firmware_map_remove(start, start + size, "System RAM");
1870 	memblock_free(start, size);
1871 	memblock_remove(start, size);
1872 
1873 	arch_remove_memory(nid, start, size, NULL);
1874 
1875 	try_offline_node(nid);
1876 
1877 	mem_hotplug_done();
1878 }
1879 
1880 void remove_memory(int nid, u64 start, u64 size)
1881 {
1882 	lock_device_hotplug();
1883 	__remove_memory(nid, start, size);
1884 	unlock_device_hotplug();
1885 }
1886 EXPORT_SYMBOL_GPL(remove_memory);
1887 #endif /* CONFIG_MEMORY_HOTREMOVE */
1888