xref: /linux-6.15/mm/dmapool.c (revision 347e4e44)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DMA Pool allocator
4  *
5  * Copyright 2001 David Brownell
6  * Copyright 2007 Intel Corporation
7  *   Author: Matthew Wilcox <[email protected]>
8  *
9  * This allocator returns small blocks of a given size which are DMA-able by
10  * the given device.  It uses the dma_alloc_coherent page allocator to get
11  * new pages, then splits them up into blocks of the required size.
12  * Many older drivers still have their own code to do this.
13  *
14  * The current design of this allocator is fairly simple.  The pool is
15  * represented by the 'struct dma_pool' which keeps a doubly-linked list of
16  * allocated pages.  Each page in the page_list is split into blocks of at
17  * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
18  * list of free blocks within the page.  Used blocks aren't tracked, but we
19  * keep a count of how many are currently allocated from each page.
20  */
21 
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/export.h>
28 #include <linux/mutex.h>
29 #include <linux/poison.h>
30 #include <linux/sched.h>
31 #include <linux/sched/mm.h>
32 #include <linux/slab.h>
33 #include <linux/stat.h>
34 #include <linux/spinlock.h>
35 #include <linux/string.h>
36 #include <linux/types.h>
37 #include <linux/wait.h>
38 
39 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
40 #define DMAPOOL_DEBUG 1
41 #endif
42 
43 struct dma_pool {		/* the pool */
44 	struct list_head page_list;
45 	spinlock_t lock;
46 	struct device *dev;
47 	unsigned int size;
48 	unsigned int allocation;
49 	unsigned int boundary;
50 	char name[32];
51 	struct list_head pools;
52 };
53 
54 struct dma_page {		/* cacheable header for 'allocation' bytes */
55 	struct list_head page_list;
56 	void *vaddr;
57 	dma_addr_t dma;
58 	unsigned int in_use;
59 	unsigned int offset;
60 };
61 
62 static DEFINE_MUTEX(pools_lock);
63 static DEFINE_MUTEX(pools_reg_lock);
64 
65 static ssize_t pools_show(struct device *dev, struct device_attribute *attr, char *buf)
66 {
67 	int size;
68 	struct dma_page *page;
69 	struct dma_pool *pool;
70 
71 	size = sysfs_emit(buf, "poolinfo - 0.1\n");
72 
73 	mutex_lock(&pools_lock);
74 	list_for_each_entry(pool, &dev->dma_pools, pools) {
75 		unsigned pages = 0;
76 		size_t blocks = 0;
77 
78 		spin_lock_irq(&pool->lock);
79 		list_for_each_entry(page, &pool->page_list, page_list) {
80 			pages++;
81 			blocks += page->in_use;
82 		}
83 		spin_unlock_irq(&pool->lock);
84 
85 		/* per-pool info, no real statistics yet */
86 		size += sysfs_emit_at(buf, size, "%-16s %4zu %4zu %4u %2u\n",
87 				      pool->name, blocks,
88 				      (size_t) pages *
89 				      (pool->allocation / pool->size),
90 				      pool->size, pages);
91 	}
92 	mutex_unlock(&pools_lock);
93 
94 	return size;
95 }
96 
97 static DEVICE_ATTR_RO(pools);
98 
99 /**
100  * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
101  * @name: name of pool, for diagnostics
102  * @dev: device that will be doing the DMA
103  * @size: size of the blocks in this pool.
104  * @align: alignment requirement for blocks; must be a power of two
105  * @boundary: returned blocks won't cross this power of two boundary
106  * Context: not in_interrupt()
107  *
108  * Given one of these pools, dma_pool_alloc()
109  * may be used to allocate memory.  Such memory will all have "consistent"
110  * DMA mappings, accessible by the device and its driver without using
111  * cache flushing primitives.  The actual size of blocks allocated may be
112  * larger than requested because of alignment.
113  *
114  * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
115  * cross that size boundary.  This is useful for devices which have
116  * addressing restrictions on individual DMA transfers, such as not crossing
117  * boundaries of 4KBytes.
118  *
119  * Return: a dma allocation pool with the requested characteristics, or
120  * %NULL if one can't be created.
121  */
122 struct dma_pool *dma_pool_create(const char *name, struct device *dev,
123 				 size_t size, size_t align, size_t boundary)
124 {
125 	struct dma_pool *retval;
126 	size_t allocation;
127 	bool empty = false;
128 
129 	if (!dev)
130 		return NULL;
131 
132 	if (align == 0)
133 		align = 1;
134 	else if (align & (align - 1))
135 		return NULL;
136 
137 	if (size == 0 || size > INT_MAX)
138 		return NULL;
139 	else if (size < 4)
140 		size = 4;
141 
142 	size = ALIGN(size, align);
143 	allocation = max_t(size_t, size, PAGE_SIZE);
144 
145 	if (!boundary)
146 		boundary = allocation;
147 	else if ((boundary < size) || (boundary & (boundary - 1)))
148 		return NULL;
149 
150 	boundary = min(boundary, allocation);
151 
152 	retval = kmalloc(sizeof(*retval), GFP_KERNEL);
153 	if (!retval)
154 		return retval;
155 
156 	strscpy(retval->name, name, sizeof(retval->name));
157 
158 	retval->dev = dev;
159 
160 	INIT_LIST_HEAD(&retval->page_list);
161 	spin_lock_init(&retval->lock);
162 	retval->size = size;
163 	retval->boundary = boundary;
164 	retval->allocation = allocation;
165 
166 	INIT_LIST_HEAD(&retval->pools);
167 
168 	/*
169 	 * pools_lock ensures that the ->dma_pools list does not get corrupted.
170 	 * pools_reg_lock ensures that there is not a race between
171 	 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
172 	 * when the first invocation of dma_pool_create() failed on
173 	 * device_create_file() and the second assumes that it has been done (I
174 	 * know it is a short window).
175 	 */
176 	mutex_lock(&pools_reg_lock);
177 	mutex_lock(&pools_lock);
178 	if (list_empty(&dev->dma_pools))
179 		empty = true;
180 	list_add(&retval->pools, &dev->dma_pools);
181 	mutex_unlock(&pools_lock);
182 	if (empty) {
183 		int err;
184 
185 		err = device_create_file(dev, &dev_attr_pools);
186 		if (err) {
187 			mutex_lock(&pools_lock);
188 			list_del(&retval->pools);
189 			mutex_unlock(&pools_lock);
190 			mutex_unlock(&pools_reg_lock);
191 			kfree(retval);
192 			return NULL;
193 		}
194 	}
195 	mutex_unlock(&pools_reg_lock);
196 	return retval;
197 }
198 EXPORT_SYMBOL(dma_pool_create);
199 
200 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
201 {
202 	unsigned int offset = 0;
203 	unsigned int next_boundary = pool->boundary;
204 
205 	do {
206 		unsigned int next = offset + pool->size;
207 		if (unlikely((next + pool->size) >= next_boundary)) {
208 			next = next_boundary;
209 			next_boundary += pool->boundary;
210 		}
211 		*(int *)(page->vaddr + offset) = next;
212 		offset = next;
213 	} while (offset < pool->allocation);
214 }
215 
216 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
217 {
218 	struct dma_page *page;
219 
220 	page = kmalloc(sizeof(*page), mem_flags);
221 	if (!page)
222 		return NULL;
223 	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
224 					 &page->dma, mem_flags);
225 	if (page->vaddr) {
226 #ifdef	DMAPOOL_DEBUG
227 		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
228 #endif
229 		pool_initialise_page(pool, page);
230 		page->in_use = 0;
231 		page->offset = 0;
232 	} else {
233 		kfree(page);
234 		page = NULL;
235 	}
236 	return page;
237 }
238 
239 static inline bool is_page_busy(struct dma_page *page)
240 {
241 	return page->in_use != 0;
242 }
243 
244 static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
245 {
246 	dma_addr_t dma = page->dma;
247 
248 #ifdef	DMAPOOL_DEBUG
249 	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
250 #endif
251 	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
252 	list_del(&page->page_list);
253 	kfree(page);
254 }
255 
256 /**
257  * dma_pool_destroy - destroys a pool of dma memory blocks.
258  * @pool: dma pool that will be destroyed
259  * Context: !in_interrupt()
260  *
261  * Caller guarantees that no more memory from the pool is in use,
262  * and that nothing will try to use the pool after this call.
263  */
264 void dma_pool_destroy(struct dma_pool *pool)
265 {
266 	struct dma_page *page, *tmp;
267 	bool empty = false;
268 
269 	if (unlikely(!pool))
270 		return;
271 
272 	mutex_lock(&pools_reg_lock);
273 	mutex_lock(&pools_lock);
274 	list_del(&pool->pools);
275 	if (list_empty(&pool->dev->dma_pools))
276 		empty = true;
277 	mutex_unlock(&pools_lock);
278 	if (empty)
279 		device_remove_file(pool->dev, &dev_attr_pools);
280 	mutex_unlock(&pools_reg_lock);
281 
282 	list_for_each_entry_safe(page, tmp, &pool->page_list, page_list) {
283 		if (is_page_busy(page)) {
284 			dev_err(pool->dev, "%s %s, %p busy\n", __func__,
285 				pool->name, page->vaddr);
286 			/* leak the still-in-use consistent memory */
287 			list_del(&page->page_list);
288 			kfree(page);
289 		} else
290 			pool_free_page(pool, page);
291 	}
292 
293 	kfree(pool);
294 }
295 EXPORT_SYMBOL(dma_pool_destroy);
296 
297 /**
298  * dma_pool_alloc - get a block of consistent memory
299  * @pool: dma pool that will produce the block
300  * @mem_flags: GFP_* bitmask
301  * @handle: pointer to dma address of block
302  *
303  * Return: the kernel virtual address of a currently unused block,
304  * and reports its dma address through the handle.
305  * If such a memory block can't be allocated, %NULL is returned.
306  */
307 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
308 		     dma_addr_t *handle)
309 {
310 	unsigned long flags;
311 	struct dma_page *page;
312 	unsigned int offset;
313 	void *retval;
314 
315 	might_alloc(mem_flags);
316 
317 	spin_lock_irqsave(&pool->lock, flags);
318 	list_for_each_entry(page, &pool->page_list, page_list) {
319 		if (page->offset < pool->allocation)
320 			goto ready;
321 	}
322 
323 	/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
324 	spin_unlock_irqrestore(&pool->lock, flags);
325 
326 	page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
327 	if (!page)
328 		return NULL;
329 
330 	spin_lock_irqsave(&pool->lock, flags);
331 
332 	list_add(&page->page_list, &pool->page_list);
333  ready:
334 	page->in_use++;
335 	offset = page->offset;
336 	page->offset = *(int *)(page->vaddr + offset);
337 	retval = offset + page->vaddr;
338 	*handle = offset + page->dma;
339 #ifdef	DMAPOOL_DEBUG
340 	{
341 		int i;
342 		u8 *data = retval;
343 		/* page->offset is stored in first 4 bytes */
344 		for (i = sizeof(page->offset); i < pool->size; i++) {
345 			if (data[i] == POOL_POISON_FREED)
346 				continue;
347 			dev_err(pool->dev, "%s %s, %p (corrupted)\n",
348 				__func__, pool->name, retval);
349 
350 			/*
351 			 * Dump the first 4 bytes even if they are not
352 			 * POOL_POISON_FREED
353 			 */
354 			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
355 					data, pool->size, 1);
356 			break;
357 		}
358 	}
359 	if (!(mem_flags & __GFP_ZERO))
360 		memset(retval, POOL_POISON_ALLOCATED, pool->size);
361 #endif
362 	spin_unlock_irqrestore(&pool->lock, flags);
363 
364 	if (want_init_on_alloc(mem_flags))
365 		memset(retval, 0, pool->size);
366 
367 	return retval;
368 }
369 EXPORT_SYMBOL(dma_pool_alloc);
370 
371 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
372 {
373 	struct dma_page *page;
374 
375 	list_for_each_entry(page, &pool->page_list, page_list) {
376 		if (dma < page->dma)
377 			continue;
378 		if ((dma - page->dma) < pool->allocation)
379 			return page;
380 	}
381 	return NULL;
382 }
383 
384 /**
385  * dma_pool_free - put block back into dma pool
386  * @pool: the dma pool holding the block
387  * @vaddr: virtual address of block
388  * @dma: dma address of block
389  *
390  * Caller promises neither device nor driver will again touch this block
391  * unless it is first re-allocated.
392  */
393 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
394 {
395 	struct dma_page *page;
396 	unsigned long flags;
397 	unsigned int offset;
398 
399 	spin_lock_irqsave(&pool->lock, flags);
400 	page = pool_find_page(pool, dma);
401 	if (!page) {
402 		spin_unlock_irqrestore(&pool->lock, flags);
403 		dev_err(pool->dev, "%s %s, %p/%pad (bad dma)\n",
404 			__func__, pool->name, vaddr, &dma);
405 		return;
406 	}
407 
408 	offset = vaddr - page->vaddr;
409 	if (want_init_on_free())
410 		memset(vaddr, 0, pool->size);
411 #ifdef	DMAPOOL_DEBUG
412 	if ((dma - page->dma) != offset) {
413 		spin_unlock_irqrestore(&pool->lock, flags);
414 		dev_err(pool->dev, "%s %s, %p (bad vaddr)/%pad\n",
415 			__func__, pool->name, vaddr, &dma);
416 		return;
417 	}
418 	{
419 		unsigned int chain = page->offset;
420 		while (chain < pool->allocation) {
421 			if (chain != offset) {
422 				chain = *(int *)(page->vaddr + chain);
423 				continue;
424 			}
425 			spin_unlock_irqrestore(&pool->lock, flags);
426 			dev_err(pool->dev, "%s %s, dma %pad already free\n",
427 				__func__, pool->name, &dma);
428 			return;
429 		}
430 	}
431 	memset(vaddr, POOL_POISON_FREED, pool->size);
432 #endif
433 
434 	page->in_use--;
435 	*(int *)vaddr = page->offset;
436 	page->offset = offset;
437 	/*
438 	 * Resist a temptation to do
439 	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
440 	 * Better have a few empty pages hang around.
441 	 */
442 	spin_unlock_irqrestore(&pool->lock, flags);
443 }
444 EXPORT_SYMBOL(dma_pool_free);
445 
446 /*
447  * Managed DMA pool
448  */
449 static void dmam_pool_release(struct device *dev, void *res)
450 {
451 	struct dma_pool *pool = *(struct dma_pool **)res;
452 
453 	dma_pool_destroy(pool);
454 }
455 
456 static int dmam_pool_match(struct device *dev, void *res, void *match_data)
457 {
458 	return *(struct dma_pool **)res == match_data;
459 }
460 
461 /**
462  * dmam_pool_create - Managed dma_pool_create()
463  * @name: name of pool, for diagnostics
464  * @dev: device that will be doing the DMA
465  * @size: size of the blocks in this pool.
466  * @align: alignment requirement for blocks; must be a power of two
467  * @allocation: returned blocks won't cross this boundary (or zero)
468  *
469  * Managed dma_pool_create().  DMA pool created with this function is
470  * automatically destroyed on driver detach.
471  *
472  * Return: a managed dma allocation pool with the requested
473  * characteristics, or %NULL if one can't be created.
474  */
475 struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
476 				  size_t size, size_t align, size_t allocation)
477 {
478 	struct dma_pool **ptr, *pool;
479 
480 	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
481 	if (!ptr)
482 		return NULL;
483 
484 	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
485 	if (pool)
486 		devres_add(dev, ptr);
487 	else
488 		devres_free(ptr);
489 
490 	return pool;
491 }
492 EXPORT_SYMBOL(dmam_pool_create);
493 
494 /**
495  * dmam_pool_destroy - Managed dma_pool_destroy()
496  * @pool: dma pool that will be destroyed
497  *
498  * Managed dma_pool_destroy().
499  */
500 void dmam_pool_destroy(struct dma_pool *pool)
501 {
502 	struct device *dev = pool->dev;
503 
504 	WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
505 }
506 EXPORT_SYMBOL(dmam_pool_destroy);
507