1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * XArray implementation 4 * Copyright (c) 2017-2018 Microsoft Corporation 5 * Copyright (c) 2018-2020 Oracle 6 * Author: Matthew Wilcox <[email protected]> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/export.h> 11 #include <linux/list.h> 12 #include <linux/slab.h> 13 #include <linux/xarray.h> 14 15 #include "radix-tree.h" 16 17 /* 18 * Coding conventions in this file: 19 * 20 * @xa is used to refer to the entire xarray. 21 * @xas is the 'xarray operation state'. It may be either a pointer to 22 * an xa_state, or an xa_state stored on the stack. This is an unfortunate 23 * ambiguity. 24 * @index is the index of the entry being operated on 25 * @mark is an xa_mark_t; a small number indicating one of the mark bits. 26 * @node refers to an xa_node; usually the primary one being operated on by 27 * this function. 28 * @offset is the index into the slots array inside an xa_node. 29 * @parent refers to the @xa_node closer to the head than @node. 30 * @entry refers to something stored in a slot in the xarray 31 */ 32 33 static inline unsigned int xa_lock_type(const struct xarray *xa) 34 { 35 return (__force unsigned int)xa->xa_flags & 3; 36 } 37 38 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) 39 { 40 if (lock_type == XA_LOCK_IRQ) 41 xas_lock_irq(xas); 42 else if (lock_type == XA_LOCK_BH) 43 xas_lock_bh(xas); 44 else 45 xas_lock(xas); 46 } 47 48 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) 49 { 50 if (lock_type == XA_LOCK_IRQ) 51 xas_unlock_irq(xas); 52 else if (lock_type == XA_LOCK_BH) 53 xas_unlock_bh(xas); 54 else 55 xas_unlock(xas); 56 } 57 58 static inline bool xa_track_free(const struct xarray *xa) 59 { 60 return xa->xa_flags & XA_FLAGS_TRACK_FREE; 61 } 62 63 static inline bool xa_zero_busy(const struct xarray *xa) 64 { 65 return xa->xa_flags & XA_FLAGS_ZERO_BUSY; 66 } 67 68 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) 69 { 70 if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) 71 xa->xa_flags |= XA_FLAGS_MARK(mark); 72 } 73 74 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) 75 { 76 if (xa->xa_flags & XA_FLAGS_MARK(mark)) 77 xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); 78 } 79 80 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) 81 { 82 return node->marks[(__force unsigned)mark]; 83 } 84 85 static inline bool node_get_mark(struct xa_node *node, 86 unsigned int offset, xa_mark_t mark) 87 { 88 return test_bit(offset, node_marks(node, mark)); 89 } 90 91 /* returns true if the bit was set */ 92 static inline bool node_set_mark(struct xa_node *node, unsigned int offset, 93 xa_mark_t mark) 94 { 95 return __test_and_set_bit(offset, node_marks(node, mark)); 96 } 97 98 /* returns true if the bit was set */ 99 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, 100 xa_mark_t mark) 101 { 102 return __test_and_clear_bit(offset, node_marks(node, mark)); 103 } 104 105 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) 106 { 107 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); 108 } 109 110 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) 111 { 112 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); 113 } 114 115 #define mark_inc(mark) do { \ 116 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ 117 } while (0) 118 119 /* 120 * xas_squash_marks() - Merge all marks to the first entry 121 * @xas: Array operation state. 122 * 123 * Set a mark on the first entry if any entry has it set. Clear marks on 124 * all sibling entries. 125 */ 126 static void xas_squash_marks(const struct xa_state *xas) 127 { 128 xa_mark_t mark = 0; 129 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; 130 131 for (;;) { 132 unsigned long *marks = node_marks(xas->xa_node, mark); 133 134 if (find_next_bit(marks, limit, xas->xa_offset + 1) != limit) { 135 __set_bit(xas->xa_offset, marks); 136 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); 137 } 138 if (mark == XA_MARK_MAX) 139 break; 140 mark_inc(mark); 141 } 142 } 143 144 /* extracts the offset within this node from the index */ 145 static unsigned int get_offset(unsigned long index, struct xa_node *node) 146 { 147 return (index >> node->shift) & XA_CHUNK_MASK; 148 } 149 150 static void xas_set_offset(struct xa_state *xas) 151 { 152 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); 153 } 154 155 /* move the index either forwards (find) or backwards (sibling slot) */ 156 static void xas_move_index(struct xa_state *xas, unsigned long offset) 157 { 158 unsigned int shift = xas->xa_node->shift; 159 xas->xa_index &= ~XA_CHUNK_MASK << shift; 160 xas->xa_index += offset << shift; 161 } 162 163 static void xas_next_offset(struct xa_state *xas) 164 { 165 xas->xa_offset++; 166 xas_move_index(xas, xas->xa_offset); 167 } 168 169 static void *set_bounds(struct xa_state *xas) 170 { 171 xas->xa_node = XAS_BOUNDS; 172 return NULL; 173 } 174 175 /* 176 * Starts a walk. If the @xas is already valid, we assume that it's on 177 * the right path and just return where we've got to. If we're in an 178 * error state, return NULL. If the index is outside the current scope 179 * of the xarray, return NULL without changing @xas->xa_node. Otherwise 180 * set @xas->xa_node to NULL and return the current head of the array. 181 */ 182 static void *xas_start(struct xa_state *xas) 183 { 184 void *entry; 185 186 if (xas_valid(xas)) 187 return xas_reload(xas); 188 if (xas_error(xas)) 189 return NULL; 190 191 entry = xa_head(xas->xa); 192 if (!xa_is_node(entry)) { 193 if (xas->xa_index) 194 return set_bounds(xas); 195 } else { 196 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) 197 return set_bounds(xas); 198 } 199 200 xas->xa_node = NULL; 201 return entry; 202 } 203 204 static __always_inline void *xas_descend(struct xa_state *xas, 205 struct xa_node *node) 206 { 207 unsigned int offset = get_offset(xas->xa_index, node); 208 void *entry = xa_entry(xas->xa, node, offset); 209 210 xas->xa_node = node; 211 while (xa_is_sibling(entry)) { 212 offset = xa_to_sibling(entry); 213 entry = xa_entry(xas->xa, node, offset); 214 if (node->shift && xa_is_node(entry)) 215 entry = XA_RETRY_ENTRY; 216 } 217 218 xas->xa_offset = offset; 219 return entry; 220 } 221 222 /** 223 * xas_load() - Load an entry from the XArray (advanced). 224 * @xas: XArray operation state. 225 * 226 * Usually walks the @xas to the appropriate state to load the entry 227 * stored at xa_index. However, it will do nothing and return %NULL if 228 * @xas is in an error state. xas_load() will never expand the tree. 229 * 230 * If the xa_state is set up to operate on a multi-index entry, xas_load() 231 * may return %NULL or an internal entry, even if there are entries 232 * present within the range specified by @xas. 233 * 234 * Context: Any context. The caller should hold the xa_lock or the RCU lock. 235 * Return: Usually an entry in the XArray, but see description for exceptions. 236 */ 237 void *xas_load(struct xa_state *xas) 238 { 239 void *entry = xas_start(xas); 240 241 while (xa_is_node(entry)) { 242 struct xa_node *node = xa_to_node(entry); 243 244 if (xas->xa_shift > node->shift) 245 break; 246 entry = xas_descend(xas, node); 247 if (node->shift == 0) 248 break; 249 } 250 return entry; 251 } 252 EXPORT_SYMBOL_GPL(xas_load); 253 254 #define XA_RCU_FREE ((struct xarray *)1) 255 256 static void xa_node_free(struct xa_node *node) 257 { 258 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 259 node->array = XA_RCU_FREE; 260 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 261 } 262 263 /* 264 * xas_destroy() - Free any resources allocated during the XArray operation. 265 * @xas: XArray operation state. 266 * 267 * Most users will not need to call this function; it is called for you 268 * by xas_nomem(). 269 */ 270 void xas_destroy(struct xa_state *xas) 271 { 272 struct xa_node *next, *node = xas->xa_alloc; 273 274 while (node) { 275 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 276 next = rcu_dereference_raw(node->parent); 277 radix_tree_node_rcu_free(&node->rcu_head); 278 xas->xa_alloc = node = next; 279 } 280 } 281 EXPORT_SYMBOL_GPL(xas_destroy); 282 283 /** 284 * xas_nomem() - Allocate memory if needed. 285 * @xas: XArray operation state. 286 * @gfp: Memory allocation flags. 287 * 288 * If we need to add new nodes to the XArray, we try to allocate memory 289 * with GFP_NOWAIT while holding the lock, which will usually succeed. 290 * If it fails, @xas is flagged as needing memory to continue. The caller 291 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, 292 * the caller should retry the operation. 293 * 294 * Forward progress is guaranteed as one node is allocated here and 295 * stored in the xa_state where it will be found by xas_alloc(). More 296 * nodes will likely be found in the slab allocator, but we do not tie 297 * them up here. 298 * 299 * Return: true if memory was needed, and was successfully allocated. 300 */ 301 bool xas_nomem(struct xa_state *xas, gfp_t gfp) 302 { 303 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 304 xas_destroy(xas); 305 return false; 306 } 307 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 308 gfp |= __GFP_ACCOUNT; 309 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 310 if (!xas->xa_alloc) 311 return false; 312 xas->xa_alloc->parent = NULL; 313 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 314 xas->xa_node = XAS_RESTART; 315 return true; 316 } 317 EXPORT_SYMBOL_GPL(xas_nomem); 318 319 /* 320 * __xas_nomem() - Drop locks and allocate memory if needed. 321 * @xas: XArray operation state. 322 * @gfp: Memory allocation flags. 323 * 324 * Internal variant of xas_nomem(). 325 * 326 * Return: true if memory was needed, and was successfully allocated. 327 */ 328 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) 329 __must_hold(xas->xa->xa_lock) 330 { 331 unsigned int lock_type = xa_lock_type(xas->xa); 332 333 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 334 xas_destroy(xas); 335 return false; 336 } 337 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 338 gfp |= __GFP_ACCOUNT; 339 if (gfpflags_allow_blocking(gfp)) { 340 xas_unlock_type(xas, lock_type); 341 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 342 xas_lock_type(xas, lock_type); 343 } else { 344 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 345 } 346 if (!xas->xa_alloc) 347 return false; 348 xas->xa_alloc->parent = NULL; 349 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 350 xas->xa_node = XAS_RESTART; 351 return true; 352 } 353 354 static void xas_update(struct xa_state *xas, struct xa_node *node) 355 { 356 if (xas->xa_update) 357 xas->xa_update(node); 358 else 359 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 360 } 361 362 static void *xas_alloc(struct xa_state *xas, unsigned int shift) 363 { 364 struct xa_node *parent = xas->xa_node; 365 struct xa_node *node = xas->xa_alloc; 366 367 if (xas_invalid(xas)) 368 return NULL; 369 370 if (node) { 371 xas->xa_alloc = NULL; 372 } else { 373 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; 374 375 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 376 gfp |= __GFP_ACCOUNT; 377 378 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 379 if (!node) { 380 xas_set_err(xas, -ENOMEM); 381 return NULL; 382 } 383 } 384 385 if (parent) { 386 node->offset = xas->xa_offset; 387 parent->count++; 388 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); 389 xas_update(xas, parent); 390 } 391 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 392 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 393 node->shift = shift; 394 node->count = 0; 395 node->nr_values = 0; 396 RCU_INIT_POINTER(node->parent, xas->xa_node); 397 node->array = xas->xa; 398 399 return node; 400 } 401 402 #ifdef CONFIG_XARRAY_MULTI 403 /* Returns the number of indices covered by a given xa_state */ 404 static unsigned long xas_size(const struct xa_state *xas) 405 { 406 return (xas->xa_sibs + 1UL) << xas->xa_shift; 407 } 408 #endif 409 410 /* 411 * Use this to calculate the maximum index that will need to be created 412 * in order to add the entry described by @xas. Because we cannot store a 413 * multi-index entry at index 0, the calculation is a little more complex 414 * than you might expect. 415 */ 416 static unsigned long xas_max(struct xa_state *xas) 417 { 418 unsigned long max = xas->xa_index; 419 420 #ifdef CONFIG_XARRAY_MULTI 421 if (xas->xa_shift || xas->xa_sibs) { 422 unsigned long mask = xas_size(xas) - 1; 423 max |= mask; 424 if (mask == max) 425 max++; 426 } 427 #endif 428 429 return max; 430 } 431 432 /* The maximum index that can be contained in the array without expanding it */ 433 static unsigned long max_index(void *entry) 434 { 435 if (!xa_is_node(entry)) 436 return 0; 437 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; 438 } 439 440 static inline void *xa_zero_to_null(void *entry) 441 { 442 return xa_is_zero(entry) ? NULL : entry; 443 } 444 445 static void xas_shrink(struct xa_state *xas) 446 { 447 struct xarray *xa = xas->xa; 448 struct xa_node *node = xas->xa_node; 449 450 for (;;) { 451 void *entry; 452 453 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 454 if (node->count != 1) 455 break; 456 entry = xa_entry_locked(xa, node, 0); 457 if (!entry) 458 break; 459 if (!xa_is_node(entry) && node->shift) 460 break; 461 if (xa_zero_busy(xa)) 462 entry = xa_zero_to_null(entry); 463 xas->xa_node = XAS_BOUNDS; 464 465 RCU_INIT_POINTER(xa->xa_head, entry); 466 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) 467 xa_mark_clear(xa, XA_FREE_MARK); 468 469 node->count = 0; 470 node->nr_values = 0; 471 if (!xa_is_node(entry)) 472 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); 473 xas_update(xas, node); 474 xa_node_free(node); 475 if (!xa_is_node(entry)) 476 break; 477 node = xa_to_node(entry); 478 node->parent = NULL; 479 } 480 } 481 482 /* 483 * xas_delete_node() - Attempt to delete an xa_node 484 * @xas: Array operation state. 485 * 486 * Attempts to delete the @xas->xa_node. This will fail if xa->node has 487 * a non-zero reference count. 488 */ 489 static void xas_delete_node(struct xa_state *xas) 490 { 491 struct xa_node *node = xas->xa_node; 492 493 for (;;) { 494 struct xa_node *parent; 495 496 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 497 if (node->count) 498 break; 499 500 parent = xa_parent_locked(xas->xa, node); 501 xas->xa_node = parent; 502 xas->xa_offset = node->offset; 503 xa_node_free(node); 504 505 if (!parent) { 506 xas->xa->xa_head = NULL; 507 xas->xa_node = XAS_BOUNDS; 508 return; 509 } 510 511 parent->slots[xas->xa_offset] = NULL; 512 parent->count--; 513 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); 514 node = parent; 515 xas_update(xas, node); 516 } 517 518 if (!node->parent) 519 xas_shrink(xas); 520 } 521 522 /** 523 * xas_free_nodes() - Free this node and all nodes that it references 524 * @xas: Array operation state. 525 * @top: Node to free 526 * 527 * This node has been removed from the tree. We must now free it and all 528 * of its subnodes. There may be RCU walkers with references into the tree, 529 * so we must replace all entries with retry markers. 530 */ 531 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) 532 { 533 unsigned int offset = 0; 534 struct xa_node *node = top; 535 536 for (;;) { 537 void *entry = xa_entry_locked(xas->xa, node, offset); 538 539 if (node->shift && xa_is_node(entry)) { 540 node = xa_to_node(entry); 541 offset = 0; 542 continue; 543 } 544 if (entry) 545 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); 546 offset++; 547 while (offset == XA_CHUNK_SIZE) { 548 struct xa_node *parent; 549 550 parent = xa_parent_locked(xas->xa, node); 551 offset = node->offset + 1; 552 node->count = 0; 553 node->nr_values = 0; 554 xas_update(xas, node); 555 xa_node_free(node); 556 if (node == top) 557 return; 558 node = parent; 559 } 560 } 561 } 562 563 /* 564 * xas_expand adds nodes to the head of the tree until it has reached 565 * sufficient height to be able to contain @xas->xa_index 566 */ 567 static int xas_expand(struct xa_state *xas, void *head) 568 { 569 struct xarray *xa = xas->xa; 570 struct xa_node *node = NULL; 571 unsigned int shift = 0; 572 unsigned long max = xas_max(xas); 573 574 if (!head) { 575 if (max == 0) 576 return 0; 577 while ((max >> shift) >= XA_CHUNK_SIZE) 578 shift += XA_CHUNK_SHIFT; 579 return shift + XA_CHUNK_SHIFT; 580 } else if (xa_is_node(head)) { 581 node = xa_to_node(head); 582 shift = node->shift + XA_CHUNK_SHIFT; 583 } 584 xas->xa_node = NULL; 585 586 while (max > max_index(head)) { 587 xa_mark_t mark = 0; 588 589 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 590 node = xas_alloc(xas, shift); 591 if (!node) 592 return -ENOMEM; 593 594 node->count = 1; 595 if (xa_is_value(head)) 596 node->nr_values = 1; 597 RCU_INIT_POINTER(node->slots[0], head); 598 599 /* Propagate the aggregated mark info to the new child */ 600 for (;;) { 601 if (xa_track_free(xa) && mark == XA_FREE_MARK) { 602 node_mark_all(node, XA_FREE_MARK); 603 if (!xa_marked(xa, XA_FREE_MARK)) { 604 node_clear_mark(node, 0, XA_FREE_MARK); 605 xa_mark_set(xa, XA_FREE_MARK); 606 } 607 } else if (xa_marked(xa, mark)) { 608 node_set_mark(node, 0, mark); 609 } 610 if (mark == XA_MARK_MAX) 611 break; 612 mark_inc(mark); 613 } 614 615 /* 616 * Now that the new node is fully initialised, we can add 617 * it to the tree 618 */ 619 if (xa_is_node(head)) { 620 xa_to_node(head)->offset = 0; 621 rcu_assign_pointer(xa_to_node(head)->parent, node); 622 } 623 head = xa_mk_node(node); 624 rcu_assign_pointer(xa->xa_head, head); 625 xas_update(xas, node); 626 627 shift += XA_CHUNK_SHIFT; 628 } 629 630 xas->xa_node = node; 631 return shift; 632 } 633 634 /* 635 * xas_create() - Create a slot to store an entry in. 636 * @xas: XArray operation state. 637 * @allow_root: %true if we can store the entry in the root directly 638 * 639 * Most users will not need to call this function directly, as it is called 640 * by xas_store(). It is useful for doing conditional store operations 641 * (see the xa_cmpxchg() implementation for an example). 642 * 643 * Return: If the slot already existed, returns the contents of this slot. 644 * If the slot was newly created, returns %NULL. If it failed to create the 645 * slot, returns %NULL and indicates the error in @xas. 646 */ 647 static void *xas_create(struct xa_state *xas, bool allow_root) 648 { 649 struct xarray *xa = xas->xa; 650 void *entry; 651 void __rcu **slot; 652 struct xa_node *node = xas->xa_node; 653 int shift; 654 unsigned int order = xas->xa_shift; 655 656 if (xas_top(node)) { 657 entry = xa_head_locked(xa); 658 xas->xa_node = NULL; 659 if (!entry && xa_zero_busy(xa)) 660 entry = XA_ZERO_ENTRY; 661 shift = xas_expand(xas, entry); 662 if (shift < 0) 663 return NULL; 664 if (!shift && !allow_root) 665 shift = XA_CHUNK_SHIFT; 666 entry = xa_head_locked(xa); 667 slot = &xa->xa_head; 668 } else if (xas_error(xas)) { 669 return NULL; 670 } else if (node) { 671 unsigned int offset = xas->xa_offset; 672 673 shift = node->shift; 674 entry = xa_entry_locked(xa, node, offset); 675 slot = &node->slots[offset]; 676 } else { 677 shift = 0; 678 entry = xa_head_locked(xa); 679 slot = &xa->xa_head; 680 } 681 682 while (shift > order) { 683 shift -= XA_CHUNK_SHIFT; 684 if (!entry) { 685 node = xas_alloc(xas, shift); 686 if (!node) 687 break; 688 if (xa_track_free(xa)) 689 node_mark_all(node, XA_FREE_MARK); 690 rcu_assign_pointer(*slot, xa_mk_node(node)); 691 } else if (xa_is_node(entry)) { 692 node = xa_to_node(entry); 693 } else { 694 break; 695 } 696 entry = xas_descend(xas, node); 697 slot = &node->slots[xas->xa_offset]; 698 } 699 700 return entry; 701 } 702 703 /** 704 * xas_create_range() - Ensure that stores to this range will succeed 705 * @xas: XArray operation state. 706 * 707 * Creates all of the slots in the range covered by @xas. Sets @xas to 708 * create single-index entries and positions it at the beginning of the 709 * range. This is for the benefit of users which have not yet been 710 * converted to use multi-index entries. 711 */ 712 void xas_create_range(struct xa_state *xas) 713 { 714 unsigned long index = xas->xa_index; 715 unsigned char shift = xas->xa_shift; 716 unsigned char sibs = xas->xa_sibs; 717 718 xas->xa_index |= ((sibs + 1UL) << shift) - 1; 719 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) 720 xas->xa_offset |= sibs; 721 xas->xa_shift = 0; 722 xas->xa_sibs = 0; 723 724 for (;;) { 725 xas_create(xas, true); 726 if (xas_error(xas)) 727 goto restore; 728 if (xas->xa_index <= (index | XA_CHUNK_MASK)) 729 goto success; 730 xas->xa_index -= XA_CHUNK_SIZE; 731 732 for (;;) { 733 struct xa_node *node = xas->xa_node; 734 if (node->shift >= shift) 735 break; 736 xas->xa_node = xa_parent_locked(xas->xa, node); 737 xas->xa_offset = node->offset - 1; 738 if (node->offset != 0) 739 break; 740 } 741 } 742 743 restore: 744 xas->xa_shift = shift; 745 xas->xa_sibs = sibs; 746 xas->xa_index = index; 747 return; 748 success: 749 xas->xa_index = index; 750 if (xas->xa_node) 751 xas_set_offset(xas); 752 } 753 EXPORT_SYMBOL_GPL(xas_create_range); 754 755 static void update_node(struct xa_state *xas, struct xa_node *node, 756 int count, int values) 757 { 758 if (!node || (!count && !values)) 759 return; 760 761 node->count += count; 762 node->nr_values += values; 763 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 764 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); 765 xas_update(xas, node); 766 if (count < 0) 767 xas_delete_node(xas); 768 } 769 770 /** 771 * xas_store() - Store this entry in the XArray. 772 * @xas: XArray operation state. 773 * @entry: New entry. 774 * 775 * If @xas is operating on a multi-index entry, the entry returned by this 776 * function is essentially meaningless (it may be an internal entry or it 777 * may be %NULL, even if there are non-NULL entries at some of the indices 778 * covered by the range). This is not a problem for any current users, 779 * and can be changed if needed. 780 * 781 * Return: The old entry at this index. 782 */ 783 void *xas_store(struct xa_state *xas, void *entry) 784 { 785 struct xa_node *node; 786 void __rcu **slot = &xas->xa->xa_head; 787 unsigned int offset, max; 788 int count = 0; 789 int values = 0; 790 void *first, *next; 791 bool value = xa_is_value(entry); 792 793 if (entry) { 794 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry); 795 first = xas_create(xas, allow_root); 796 } else { 797 first = xas_load(xas); 798 } 799 800 if (xas_invalid(xas)) 801 return first; 802 node = xas->xa_node; 803 if (node && (xas->xa_shift < node->shift)) 804 xas->xa_sibs = 0; 805 if ((first == entry) && !xas->xa_sibs) 806 return first; 807 808 next = first; 809 offset = xas->xa_offset; 810 max = xas->xa_offset + xas->xa_sibs; 811 if (node) { 812 slot = &node->slots[offset]; 813 if (xas->xa_sibs) 814 xas_squash_marks(xas); 815 } 816 if (!entry) 817 xas_init_marks(xas); 818 819 for (;;) { 820 /* 821 * Must clear the marks before setting the entry to NULL, 822 * otherwise xas_for_each_marked may find a NULL entry and 823 * stop early. rcu_assign_pointer contains a release barrier 824 * so the mark clearing will appear to happen before the 825 * entry is set to NULL. 826 */ 827 rcu_assign_pointer(*slot, entry); 828 if (xa_is_node(next) && (!node || node->shift)) 829 xas_free_nodes(xas, xa_to_node(next)); 830 if (!node) 831 break; 832 count += !next - !entry; 833 values += !xa_is_value(first) - !value; 834 if (entry) { 835 if (offset == max) 836 break; 837 if (!xa_is_sibling(entry)) 838 entry = xa_mk_sibling(xas->xa_offset); 839 } else { 840 if (offset == XA_CHUNK_MASK) 841 break; 842 } 843 next = xa_entry_locked(xas->xa, node, ++offset); 844 if (!xa_is_sibling(next)) { 845 if (!entry && (offset > max)) 846 break; 847 first = next; 848 } 849 slot++; 850 } 851 852 update_node(xas, node, count, values); 853 return first; 854 } 855 EXPORT_SYMBOL_GPL(xas_store); 856 857 /** 858 * xas_get_mark() - Returns the state of this mark. 859 * @xas: XArray operation state. 860 * @mark: Mark number. 861 * 862 * Return: true if the mark is set, false if the mark is clear or @xas 863 * is in an error state. 864 */ 865 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) 866 { 867 if (xas_invalid(xas)) 868 return false; 869 if (!xas->xa_node) 870 return xa_marked(xas->xa, mark); 871 return node_get_mark(xas->xa_node, xas->xa_offset, mark); 872 } 873 EXPORT_SYMBOL_GPL(xas_get_mark); 874 875 /** 876 * xas_set_mark() - Sets the mark on this entry and its parents. 877 * @xas: XArray operation state. 878 * @mark: Mark number. 879 * 880 * Sets the specified mark on this entry, and walks up the tree setting it 881 * on all the ancestor entries. Does nothing if @xas has not been walked to 882 * an entry, or is in an error state. 883 */ 884 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) 885 { 886 struct xa_node *node = xas->xa_node; 887 unsigned int offset = xas->xa_offset; 888 889 if (xas_invalid(xas)) 890 return; 891 892 while (node) { 893 if (node_set_mark(node, offset, mark)) 894 return; 895 offset = node->offset; 896 node = xa_parent_locked(xas->xa, node); 897 } 898 899 if (!xa_marked(xas->xa, mark)) 900 xa_mark_set(xas->xa, mark); 901 } 902 EXPORT_SYMBOL_GPL(xas_set_mark); 903 904 /** 905 * xas_clear_mark() - Clears the mark on this entry and its parents. 906 * @xas: XArray operation state. 907 * @mark: Mark number. 908 * 909 * Clears the specified mark on this entry, and walks back to the head 910 * attempting to clear it on all the ancestor entries. Does nothing if 911 * @xas has not been walked to an entry, or is in an error state. 912 */ 913 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) 914 { 915 struct xa_node *node = xas->xa_node; 916 unsigned int offset = xas->xa_offset; 917 918 if (xas_invalid(xas)) 919 return; 920 921 while (node) { 922 if (!node_clear_mark(node, offset, mark)) 923 return; 924 if (node_any_mark(node, mark)) 925 return; 926 927 offset = node->offset; 928 node = xa_parent_locked(xas->xa, node); 929 } 930 931 if (xa_marked(xas->xa, mark)) 932 xa_mark_clear(xas->xa, mark); 933 } 934 EXPORT_SYMBOL_GPL(xas_clear_mark); 935 936 /** 937 * xas_init_marks() - Initialise all marks for the entry 938 * @xas: Array operations state. 939 * 940 * Initialise all marks for the entry specified by @xas. If we're tracking 941 * free entries with a mark, we need to set it on all entries. All other 942 * marks are cleared. 943 * 944 * This implementation is not as efficient as it could be; we may walk 945 * up the tree multiple times. 946 */ 947 void xas_init_marks(const struct xa_state *xas) 948 { 949 xa_mark_t mark = 0; 950 951 for (;;) { 952 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) 953 xas_set_mark(xas, mark); 954 else 955 xas_clear_mark(xas, mark); 956 if (mark == XA_MARK_MAX) 957 break; 958 mark_inc(mark); 959 } 960 } 961 EXPORT_SYMBOL_GPL(xas_init_marks); 962 963 #ifdef CONFIG_XARRAY_MULTI 964 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset) 965 { 966 unsigned int marks = 0; 967 xa_mark_t mark = XA_MARK_0; 968 969 for (;;) { 970 if (node_get_mark(node, offset, mark)) 971 marks |= 1 << (__force unsigned int)mark; 972 if (mark == XA_MARK_MAX) 973 break; 974 mark_inc(mark); 975 } 976 977 return marks; 978 } 979 980 static inline void node_mark_slots(struct xa_node *node, unsigned int sibs, 981 xa_mark_t mark) 982 { 983 int i; 984 985 if (sibs == 0) 986 node_mark_all(node, mark); 987 else { 988 for (i = 0; i < XA_CHUNK_SIZE; i += sibs + 1) 989 node_set_mark(node, i, mark); 990 } 991 } 992 993 static void node_set_marks(struct xa_node *node, unsigned int offset, 994 struct xa_node *child, unsigned int sibs, 995 unsigned int marks) 996 { 997 xa_mark_t mark = XA_MARK_0; 998 999 for (;;) { 1000 if (marks & (1 << (__force unsigned int)mark)) { 1001 node_set_mark(node, offset, mark); 1002 if (child) 1003 node_mark_slots(child, sibs, mark); 1004 } 1005 if (mark == XA_MARK_MAX) 1006 break; 1007 mark_inc(mark); 1008 } 1009 } 1010 1011 static void __xas_init_node_for_split(struct xa_state *xas, 1012 struct xa_node *node, void *entry) 1013 { 1014 unsigned int i; 1015 void *sibling = NULL; 1016 unsigned int mask = xas->xa_sibs; 1017 1018 if (!node) 1019 return; 1020 node->array = xas->xa; 1021 for (i = 0; i < XA_CHUNK_SIZE; i++) { 1022 if ((i & mask) == 0) { 1023 RCU_INIT_POINTER(node->slots[i], entry); 1024 sibling = xa_mk_sibling(i); 1025 } else { 1026 RCU_INIT_POINTER(node->slots[i], sibling); 1027 } 1028 } 1029 } 1030 1031 /** 1032 * xas_split_alloc() - Allocate memory for splitting an entry. 1033 * @xas: XArray operation state. 1034 * @entry: New entry which will be stored in the array. 1035 * @order: Current entry order. 1036 * @gfp: Memory allocation flags. 1037 * 1038 * This function should be called before calling xas_split(). 1039 * If necessary, it will allocate new nodes (and fill them with @entry) 1040 * to prepare for the upcoming split of an entry of @order size into 1041 * entries of the order stored in the @xas. 1042 * 1043 * Context: May sleep if @gfp flags permit. 1044 */ 1045 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, 1046 gfp_t gfp) 1047 { 1048 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1049 1050 /* XXX: no support for splitting really large entries yet */ 1051 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT <= order)) 1052 goto nomem; 1053 if (xas->xa_shift + XA_CHUNK_SHIFT > order) 1054 return; 1055 1056 do { 1057 struct xa_node *node; 1058 1059 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp); 1060 if (!node) 1061 goto nomem; 1062 1063 __xas_init_node_for_split(xas, node, entry); 1064 RCU_INIT_POINTER(node->parent, xas->xa_alloc); 1065 xas->xa_alloc = node; 1066 } while (sibs-- > 0); 1067 1068 return; 1069 nomem: 1070 xas_destroy(xas); 1071 xas_set_err(xas, -ENOMEM); 1072 } 1073 EXPORT_SYMBOL_GPL(xas_split_alloc); 1074 1075 /** 1076 * xas_split() - Split a multi-index entry into smaller entries. 1077 * @xas: XArray operation state. 1078 * @entry: New entry to store in the array. 1079 * @order: Current entry order. 1080 * 1081 * The size of the new entries is set in @xas. The value in @entry is 1082 * copied to all the replacement entries. 1083 * 1084 * Context: Any context. The caller should hold the xa_lock. 1085 */ 1086 void xas_split(struct xa_state *xas, void *entry, unsigned int order) 1087 { 1088 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1089 unsigned int offset, marks; 1090 struct xa_node *node; 1091 void *curr = xas_load(xas); 1092 int values = 0; 1093 1094 node = xas->xa_node; 1095 if (xas_top(node)) 1096 return; 1097 1098 marks = node_get_marks(node, xas->xa_offset); 1099 1100 offset = xas->xa_offset + sibs; 1101 do { 1102 if (xas->xa_shift < node->shift) { 1103 struct xa_node *child = xas->xa_alloc; 1104 1105 xas->xa_alloc = rcu_dereference_raw(child->parent); 1106 child->shift = node->shift - XA_CHUNK_SHIFT; 1107 child->offset = offset; 1108 child->count = XA_CHUNK_SIZE; 1109 child->nr_values = xa_is_value(entry) ? 1110 XA_CHUNK_SIZE : 0; 1111 RCU_INIT_POINTER(child->parent, node); 1112 node_set_marks(node, offset, child, xas->xa_sibs, 1113 marks); 1114 rcu_assign_pointer(node->slots[offset], 1115 xa_mk_node(child)); 1116 if (xa_is_value(curr)) 1117 values--; 1118 xas_update(xas, child); 1119 } else { 1120 unsigned int canon = offset - xas->xa_sibs; 1121 1122 node_set_marks(node, canon, NULL, 0, marks); 1123 rcu_assign_pointer(node->slots[canon], entry); 1124 while (offset > canon) 1125 rcu_assign_pointer(node->slots[offset--], 1126 xa_mk_sibling(canon)); 1127 values += (xa_is_value(entry) - xa_is_value(curr)) * 1128 (xas->xa_sibs + 1); 1129 } 1130 } while (offset-- > xas->xa_offset); 1131 1132 node->nr_values += values; 1133 xas_update(xas, node); 1134 } 1135 EXPORT_SYMBOL_GPL(xas_split); 1136 1137 /** 1138 * xas_try_split() - Try to split a multi-index entry. 1139 * @xas: XArray operation state. 1140 * @entry: New entry to store in the array. 1141 * @order: Current entry order. 1142 * 1143 * The size of the new entries is set in @xas. The value in @entry is 1144 * copied to all the replacement entries. If and only if one new xa_node is 1145 * needed, the function will use GFP_NOWAIT to get one if xas->xa_alloc is 1146 * NULL. If more new xa_node are needed, the function gives EINVAL error. 1147 * 1148 * Context: Any context. The caller should hold the xa_lock. 1149 */ 1150 void xas_try_split(struct xa_state *xas, void *entry, unsigned int order) 1151 { 1152 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1153 unsigned int offset, marks; 1154 struct xa_node *node; 1155 void *curr = xas_load(xas); 1156 int values = 0; 1157 gfp_t gfp = GFP_NOWAIT; 1158 1159 node = xas->xa_node; 1160 if (xas_top(node)) 1161 return; 1162 1163 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 1164 gfp |= __GFP_ACCOUNT; 1165 1166 marks = node_get_marks(node, xas->xa_offset); 1167 1168 offset = xas->xa_offset + sibs; 1169 1170 if (xas->xa_shift < node->shift) { 1171 struct xa_node *child = xas->xa_alloc; 1172 unsigned int expected_sibs = 1173 (1 << ((order - 1) % XA_CHUNK_SHIFT)) - 1; 1174 1175 /* 1176 * No support for splitting sibling entries 1177 * (horizontally) or cascade split (vertically), which 1178 * requires two or more new xa_nodes. 1179 * Since if one xa_node allocation fails, 1180 * it is hard to free the prior allocations. 1181 */ 1182 if (sibs || xas->xa_sibs != expected_sibs) { 1183 xas_destroy(xas); 1184 xas_set_err(xas, -EINVAL); 1185 return; 1186 } 1187 1188 if (!child) { 1189 child = kmem_cache_alloc_lru(radix_tree_node_cachep, 1190 xas->xa_lru, gfp); 1191 if (!child) { 1192 xas_destroy(xas); 1193 xas_set_err(xas, -ENOMEM); 1194 return; 1195 } 1196 RCU_INIT_POINTER(child->parent, xas->xa_alloc); 1197 } 1198 __xas_init_node_for_split(xas, child, entry); 1199 1200 xas->xa_alloc = rcu_dereference_raw(child->parent); 1201 child->shift = node->shift - XA_CHUNK_SHIFT; 1202 child->offset = offset; 1203 child->count = XA_CHUNK_SIZE; 1204 child->nr_values = xa_is_value(entry) ? 1205 XA_CHUNK_SIZE : 0; 1206 RCU_INIT_POINTER(child->parent, node); 1207 node_set_marks(node, offset, child, xas->xa_sibs, 1208 marks); 1209 rcu_assign_pointer(node->slots[offset], 1210 xa_mk_node(child)); 1211 if (xa_is_value(curr)) 1212 values--; 1213 xas_update(xas, child); 1214 1215 } else { 1216 do { 1217 unsigned int canon = offset - xas->xa_sibs; 1218 1219 node_set_marks(node, canon, NULL, 0, marks); 1220 rcu_assign_pointer(node->slots[canon], entry); 1221 while (offset > canon) 1222 rcu_assign_pointer(node->slots[offset--], 1223 xa_mk_sibling(canon)); 1224 values += (xa_is_value(entry) - xa_is_value(curr)) * 1225 (xas->xa_sibs + 1); 1226 } while (offset-- > xas->xa_offset); 1227 } 1228 1229 node->nr_values += values; 1230 xas_update(xas, node); 1231 } 1232 EXPORT_SYMBOL_GPL(xas_try_split); 1233 #endif 1234 1235 /** 1236 * xas_pause() - Pause a walk to drop a lock. 1237 * @xas: XArray operation state. 1238 * 1239 * Some users need to pause a walk and drop the lock they're holding in 1240 * order to yield to a higher priority thread or carry out an operation 1241 * on an entry. Those users should call this function before they drop 1242 * the lock. It resets the @xas to be suitable for the next iteration 1243 * of the loop after the user has reacquired the lock. If most entries 1244 * found during a walk require you to call xas_pause(), the xa_for_each() 1245 * iterator may be more appropriate. 1246 * 1247 * Note that xas_pause() only works for forward iteration. If a user needs 1248 * to pause a reverse iteration, we will need a xas_pause_rev(). 1249 */ 1250 void xas_pause(struct xa_state *xas) 1251 { 1252 struct xa_node *node = xas->xa_node; 1253 1254 if (xas_invalid(xas)) 1255 return; 1256 1257 xas->xa_node = XAS_RESTART; 1258 if (node) { 1259 unsigned long offset = xas->xa_offset; 1260 while (++offset < XA_CHUNK_SIZE) { 1261 if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) 1262 break; 1263 } 1264 xas->xa_index &= ~0UL << node->shift; 1265 xas->xa_index += (offset - xas->xa_offset) << node->shift; 1266 if (xas->xa_index == 0) 1267 xas->xa_node = XAS_BOUNDS; 1268 } else { 1269 xas->xa_index++; 1270 } 1271 } 1272 EXPORT_SYMBOL_GPL(xas_pause); 1273 1274 /* 1275 * __xas_prev() - Find the previous entry in the XArray. 1276 * @xas: XArray operation state. 1277 * 1278 * Helper function for xas_prev() which handles all the complex cases 1279 * out of line. 1280 */ 1281 void *__xas_prev(struct xa_state *xas) 1282 { 1283 void *entry; 1284 1285 if (!xas_frozen(xas->xa_node)) 1286 xas->xa_index--; 1287 if (!xas->xa_node) 1288 return set_bounds(xas); 1289 if (xas_not_node(xas->xa_node)) 1290 return xas_load(xas); 1291 1292 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1293 xas->xa_offset--; 1294 1295 while (xas->xa_offset == 255) { 1296 xas->xa_offset = xas->xa_node->offset - 1; 1297 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1298 if (!xas->xa_node) 1299 return set_bounds(xas); 1300 } 1301 1302 for (;;) { 1303 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1304 if (!xa_is_node(entry)) 1305 return entry; 1306 1307 xas->xa_node = xa_to_node(entry); 1308 xas_set_offset(xas); 1309 } 1310 } 1311 EXPORT_SYMBOL_GPL(__xas_prev); 1312 1313 /* 1314 * __xas_next() - Find the next entry in the XArray. 1315 * @xas: XArray operation state. 1316 * 1317 * Helper function for xas_next() which handles all the complex cases 1318 * out of line. 1319 */ 1320 void *__xas_next(struct xa_state *xas) 1321 { 1322 void *entry; 1323 1324 if (!xas_frozen(xas->xa_node)) 1325 xas->xa_index++; 1326 if (!xas->xa_node) 1327 return set_bounds(xas); 1328 if (xas_not_node(xas->xa_node)) 1329 return xas_load(xas); 1330 1331 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1332 xas->xa_offset++; 1333 1334 while (xas->xa_offset == XA_CHUNK_SIZE) { 1335 xas->xa_offset = xas->xa_node->offset + 1; 1336 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1337 if (!xas->xa_node) 1338 return set_bounds(xas); 1339 } 1340 1341 for (;;) { 1342 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1343 if (!xa_is_node(entry)) 1344 return entry; 1345 1346 xas->xa_node = xa_to_node(entry); 1347 xas_set_offset(xas); 1348 } 1349 } 1350 EXPORT_SYMBOL_GPL(__xas_next); 1351 1352 /** 1353 * xas_find() - Find the next present entry in the XArray. 1354 * @xas: XArray operation state. 1355 * @max: Highest index to return. 1356 * 1357 * If the @xas has not yet been walked to an entry, return the entry 1358 * which has an index >= xas.xa_index. If it has been walked, the entry 1359 * currently being pointed at has been processed, and so we move to the 1360 * next entry. 1361 * 1362 * If no entry is found and the array is smaller than @max, the iterator 1363 * is set to the smallest index not yet in the array. This allows @xas 1364 * to be immediately passed to xas_store(). 1365 * 1366 * Return: The entry, if found, otherwise %NULL. 1367 */ 1368 void *xas_find(struct xa_state *xas, unsigned long max) 1369 { 1370 void *entry; 1371 1372 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS) 1373 return NULL; 1374 if (xas->xa_index > max) 1375 return set_bounds(xas); 1376 1377 if (!xas->xa_node) { 1378 xas->xa_index = 1; 1379 return set_bounds(xas); 1380 } else if (xas->xa_node == XAS_RESTART) { 1381 entry = xas_load(xas); 1382 if (entry || xas_not_node(xas->xa_node)) 1383 return entry; 1384 } else if (!xas->xa_node->shift && 1385 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { 1386 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; 1387 } 1388 1389 xas_next_offset(xas); 1390 1391 while (xas->xa_node && (xas->xa_index <= max)) { 1392 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1393 xas->xa_offset = xas->xa_node->offset + 1; 1394 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1395 continue; 1396 } 1397 1398 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1399 if (xa_is_node(entry)) { 1400 xas->xa_node = xa_to_node(entry); 1401 xas->xa_offset = 0; 1402 continue; 1403 } 1404 if (entry && !xa_is_sibling(entry)) 1405 return entry; 1406 1407 xas_next_offset(xas); 1408 } 1409 1410 if (!xas->xa_node) 1411 xas->xa_node = XAS_BOUNDS; 1412 return NULL; 1413 } 1414 EXPORT_SYMBOL_GPL(xas_find); 1415 1416 /** 1417 * xas_find_marked() - Find the next marked entry in the XArray. 1418 * @xas: XArray operation state. 1419 * @max: Highest index to return. 1420 * @mark: Mark number to search for. 1421 * 1422 * If the @xas has not yet been walked to an entry, return the marked entry 1423 * which has an index >= xas.xa_index. If it has been walked, the entry 1424 * currently being pointed at has been processed, and so we return the 1425 * first marked entry with an index > xas.xa_index. 1426 * 1427 * If no marked entry is found and the array is smaller than @max, @xas is 1428 * set to the bounds state and xas->xa_index is set to the smallest index 1429 * not yet in the array. This allows @xas to be immediately passed to 1430 * xas_store(). 1431 * 1432 * If no entry is found before @max is reached, @xas is set to the restart 1433 * state. 1434 * 1435 * Return: The entry, if found, otherwise %NULL. 1436 */ 1437 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) 1438 { 1439 bool advance = true; 1440 unsigned int offset; 1441 void *entry; 1442 1443 if (xas_error(xas)) 1444 return NULL; 1445 if (xas->xa_index > max) 1446 goto max; 1447 1448 if (!xas->xa_node) { 1449 xas->xa_index = 1; 1450 goto out; 1451 } else if (xas_top(xas->xa_node)) { 1452 advance = false; 1453 entry = xa_head(xas->xa); 1454 xas->xa_node = NULL; 1455 if (xas->xa_index > max_index(entry)) 1456 goto out; 1457 if (!xa_is_node(entry)) { 1458 if (xa_marked(xas->xa, mark)) 1459 return entry; 1460 xas->xa_index = 1; 1461 goto out; 1462 } 1463 xas->xa_node = xa_to_node(entry); 1464 xas->xa_offset = xas->xa_index >> xas->xa_node->shift; 1465 } 1466 1467 while (xas->xa_index <= max) { 1468 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1469 xas->xa_offset = xas->xa_node->offset + 1; 1470 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1471 if (!xas->xa_node) 1472 break; 1473 advance = false; 1474 continue; 1475 } 1476 1477 if (!advance) { 1478 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1479 if (xa_is_sibling(entry)) { 1480 xas->xa_offset = xa_to_sibling(entry); 1481 xas_move_index(xas, xas->xa_offset); 1482 } 1483 } 1484 1485 offset = xas_find_chunk(xas, advance, mark); 1486 if (offset > xas->xa_offset) { 1487 advance = false; 1488 xas_move_index(xas, offset); 1489 /* Mind the wrap */ 1490 if ((xas->xa_index - 1) >= max) 1491 goto max; 1492 xas->xa_offset = offset; 1493 if (offset == XA_CHUNK_SIZE) 1494 continue; 1495 } 1496 1497 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1498 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK)) 1499 continue; 1500 if (xa_is_sibling(entry)) 1501 continue; 1502 if (!xa_is_node(entry)) 1503 return entry; 1504 xas->xa_node = xa_to_node(entry); 1505 xas_set_offset(xas); 1506 } 1507 1508 out: 1509 if (xas->xa_index > max) 1510 goto max; 1511 return set_bounds(xas); 1512 max: 1513 xas->xa_node = XAS_RESTART; 1514 return NULL; 1515 } 1516 EXPORT_SYMBOL_GPL(xas_find_marked); 1517 1518 /** 1519 * xas_find_conflict() - Find the next present entry in a range. 1520 * @xas: XArray operation state. 1521 * 1522 * The @xas describes both a range and a position within that range. 1523 * 1524 * Context: Any context. Expects xa_lock to be held. 1525 * Return: The next entry in the range covered by @xas or %NULL. 1526 */ 1527 void *xas_find_conflict(struct xa_state *xas) 1528 { 1529 void *curr; 1530 1531 if (xas_error(xas)) 1532 return NULL; 1533 1534 if (!xas->xa_node) 1535 return NULL; 1536 1537 if (xas_top(xas->xa_node)) { 1538 curr = xas_start(xas); 1539 if (!curr) 1540 return NULL; 1541 while (xa_is_node(curr)) { 1542 struct xa_node *node = xa_to_node(curr); 1543 curr = xas_descend(xas, node); 1544 } 1545 if (curr) 1546 return curr; 1547 } 1548 1549 if (xas->xa_node->shift > xas->xa_shift) 1550 return NULL; 1551 1552 for (;;) { 1553 if (xas->xa_node->shift == xas->xa_shift) { 1554 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) 1555 break; 1556 } else if (xas->xa_offset == XA_CHUNK_MASK) { 1557 xas->xa_offset = xas->xa_node->offset; 1558 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); 1559 if (!xas->xa_node) 1560 break; 1561 continue; 1562 } 1563 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); 1564 if (xa_is_sibling(curr)) 1565 continue; 1566 while (xa_is_node(curr)) { 1567 xas->xa_node = xa_to_node(curr); 1568 xas->xa_offset = 0; 1569 curr = xa_entry_locked(xas->xa, xas->xa_node, 0); 1570 } 1571 if (curr) 1572 return curr; 1573 } 1574 xas->xa_offset -= xas->xa_sibs; 1575 return NULL; 1576 } 1577 EXPORT_SYMBOL_GPL(xas_find_conflict); 1578 1579 /** 1580 * xa_load() - Load an entry from an XArray. 1581 * @xa: XArray. 1582 * @index: index into array. 1583 * 1584 * Context: Any context. Takes and releases the RCU lock. 1585 * Return: The entry at @index in @xa. 1586 */ 1587 void *xa_load(struct xarray *xa, unsigned long index) 1588 { 1589 XA_STATE(xas, xa, index); 1590 void *entry; 1591 1592 rcu_read_lock(); 1593 do { 1594 entry = xa_zero_to_null(xas_load(&xas)); 1595 } while (xas_retry(&xas, entry)); 1596 rcu_read_unlock(); 1597 1598 return entry; 1599 } 1600 EXPORT_SYMBOL(xa_load); 1601 1602 static void *xas_result(struct xa_state *xas, void *curr) 1603 { 1604 if (xas_error(xas)) 1605 curr = xas->xa_node; 1606 return curr; 1607 } 1608 1609 /** 1610 * __xa_erase() - Erase this entry from the XArray while locked. 1611 * @xa: XArray. 1612 * @index: Index into array. 1613 * 1614 * After this function returns, loading from @index will return %NULL. 1615 * If the index is part of a multi-index entry, all indices will be erased 1616 * and none of the entries will be part of a multi-index entry. 1617 * 1618 * Context: Any context. Expects xa_lock to be held on entry. 1619 * Return: The entry which used to be at this index. 1620 */ 1621 void *__xa_erase(struct xarray *xa, unsigned long index) 1622 { 1623 XA_STATE(xas, xa, index); 1624 return xas_result(&xas, xa_zero_to_null(xas_store(&xas, NULL))); 1625 } 1626 EXPORT_SYMBOL(__xa_erase); 1627 1628 /** 1629 * xa_erase() - Erase this entry from the XArray. 1630 * @xa: XArray. 1631 * @index: Index of entry. 1632 * 1633 * After this function returns, loading from @index will return %NULL. 1634 * If the index is part of a multi-index entry, all indices will be erased 1635 * and none of the entries will be part of a multi-index entry. 1636 * 1637 * Context: Any context. Takes and releases the xa_lock. 1638 * Return: The entry which used to be at this index. 1639 */ 1640 void *xa_erase(struct xarray *xa, unsigned long index) 1641 { 1642 void *entry; 1643 1644 xa_lock(xa); 1645 entry = __xa_erase(xa, index); 1646 xa_unlock(xa); 1647 1648 return entry; 1649 } 1650 EXPORT_SYMBOL(xa_erase); 1651 1652 /** 1653 * __xa_store() - Store this entry in the XArray. 1654 * @xa: XArray. 1655 * @index: Index into array. 1656 * @entry: New entry. 1657 * @gfp: Memory allocation flags. 1658 * 1659 * You must already be holding the xa_lock when calling this function. 1660 * It will drop the lock if needed to allocate memory, and then reacquire 1661 * it afterwards. 1662 * 1663 * Context: Any context. Expects xa_lock to be held on entry. May 1664 * release and reacquire xa_lock if @gfp flags permit. 1665 * Return: The old entry at this index or xa_err() if an error happened. 1666 */ 1667 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1668 { 1669 XA_STATE(xas, xa, index); 1670 void *curr; 1671 1672 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1673 return XA_ERROR(-EINVAL); 1674 if (xa_track_free(xa) && !entry) 1675 entry = XA_ZERO_ENTRY; 1676 1677 do { 1678 curr = xas_store(&xas, entry); 1679 if (xa_track_free(xa)) 1680 xas_clear_mark(&xas, XA_FREE_MARK); 1681 } while (__xas_nomem(&xas, gfp)); 1682 1683 return xas_result(&xas, xa_zero_to_null(curr)); 1684 } 1685 EXPORT_SYMBOL(__xa_store); 1686 1687 /** 1688 * xa_store() - Store this entry in the XArray. 1689 * @xa: XArray. 1690 * @index: Index into array. 1691 * @entry: New entry. 1692 * @gfp: Memory allocation flags. 1693 * 1694 * After this function returns, loads from this index will return @entry. 1695 * Storing into an existing multi-index entry updates the entry of every index. 1696 * The marks associated with @index are unaffected unless @entry is %NULL. 1697 * 1698 * Context: Any context. Takes and releases the xa_lock. 1699 * May sleep if the @gfp flags permit. 1700 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry 1701 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation 1702 * failed. 1703 */ 1704 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1705 { 1706 void *curr; 1707 1708 xa_lock(xa); 1709 curr = __xa_store(xa, index, entry, gfp); 1710 xa_unlock(xa); 1711 1712 return curr; 1713 } 1714 EXPORT_SYMBOL(xa_store); 1715 1716 static inline void *__xa_cmpxchg_raw(struct xarray *xa, unsigned long index, 1717 void *old, void *entry, gfp_t gfp); 1718 1719 /** 1720 * __xa_cmpxchg() - Store this entry in the XArray. 1721 * @xa: XArray. 1722 * @index: Index into array. 1723 * @old: Old value to test against. 1724 * @entry: New entry. 1725 * @gfp: Memory allocation flags. 1726 * 1727 * You must already be holding the xa_lock when calling this function. 1728 * It will drop the lock if needed to allocate memory, and then reacquire 1729 * it afterwards. 1730 * 1731 * Context: Any context. Expects xa_lock to be held on entry. May 1732 * release and reacquire xa_lock if @gfp flags permit. 1733 * Return: The old entry at this index or xa_err() if an error happened. 1734 */ 1735 void *__xa_cmpxchg(struct xarray *xa, unsigned long index, 1736 void *old, void *entry, gfp_t gfp) 1737 { 1738 return xa_zero_to_null(__xa_cmpxchg_raw(xa, index, old, entry, gfp)); 1739 } 1740 EXPORT_SYMBOL(__xa_cmpxchg); 1741 1742 static inline void *__xa_cmpxchg_raw(struct xarray *xa, unsigned long index, 1743 void *old, void *entry, gfp_t gfp) 1744 { 1745 XA_STATE(xas, xa, index); 1746 void *curr; 1747 1748 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1749 return XA_ERROR(-EINVAL); 1750 1751 do { 1752 curr = xas_load(&xas); 1753 if (curr == old) { 1754 xas_store(&xas, entry); 1755 if (xa_track_free(xa) && entry && !curr) 1756 xas_clear_mark(&xas, XA_FREE_MARK); 1757 } 1758 } while (__xas_nomem(&xas, gfp)); 1759 1760 return xas_result(&xas, curr); 1761 } 1762 1763 /** 1764 * __xa_insert() - Store this entry in the XArray if no entry is present. 1765 * @xa: XArray. 1766 * @index: Index into array. 1767 * @entry: New entry. 1768 * @gfp: Memory allocation flags. 1769 * 1770 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 1771 * if no entry is present. Inserting will fail if a reserved entry is 1772 * present, even though loading from this index will return NULL. 1773 * 1774 * Context: Any context. Expects xa_lock to be held on entry. May 1775 * release and reacquire xa_lock if @gfp flags permit. 1776 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 1777 * -ENOMEM if memory could not be allocated. 1778 */ 1779 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1780 { 1781 void *curr; 1782 int errno; 1783 1784 if (!entry) 1785 entry = XA_ZERO_ENTRY; 1786 curr = __xa_cmpxchg_raw(xa, index, NULL, entry, gfp); 1787 errno = xa_err(curr); 1788 if (errno) 1789 return errno; 1790 return (curr != NULL) ? -EBUSY : 0; 1791 } 1792 EXPORT_SYMBOL(__xa_insert); 1793 1794 #ifdef CONFIG_XARRAY_MULTI 1795 static void xas_set_range(struct xa_state *xas, unsigned long first, 1796 unsigned long last) 1797 { 1798 unsigned int shift = 0; 1799 unsigned long sibs = last - first; 1800 unsigned int offset = XA_CHUNK_MASK; 1801 1802 xas_set(xas, first); 1803 1804 while ((first & XA_CHUNK_MASK) == 0) { 1805 if (sibs < XA_CHUNK_MASK) 1806 break; 1807 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) 1808 break; 1809 shift += XA_CHUNK_SHIFT; 1810 if (offset == XA_CHUNK_MASK) 1811 offset = sibs & XA_CHUNK_MASK; 1812 sibs >>= XA_CHUNK_SHIFT; 1813 first >>= XA_CHUNK_SHIFT; 1814 } 1815 1816 offset = first & XA_CHUNK_MASK; 1817 if (offset + sibs > XA_CHUNK_MASK) 1818 sibs = XA_CHUNK_MASK - offset; 1819 if ((((first + sibs + 1) << shift) - 1) > last) 1820 sibs -= 1; 1821 1822 xas->xa_shift = shift; 1823 xas->xa_sibs = sibs; 1824 } 1825 1826 /** 1827 * xa_store_range() - Store this entry at a range of indices in the XArray. 1828 * @xa: XArray. 1829 * @first: First index to affect. 1830 * @last: Last index to affect. 1831 * @entry: New entry. 1832 * @gfp: Memory allocation flags. 1833 * 1834 * After this function returns, loads from any index between @first and @last, 1835 * inclusive will return @entry. 1836 * Storing into an existing multi-index entry updates the entry of every index. 1837 * The marks associated with @index are unaffected unless @entry is %NULL. 1838 * 1839 * Context: Process context. Takes and releases the xa_lock. May sleep 1840 * if the @gfp flags permit. 1841 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in 1842 * an XArray, or xa_err(-ENOMEM) if memory allocation failed. 1843 */ 1844 void *xa_store_range(struct xarray *xa, unsigned long first, 1845 unsigned long last, void *entry, gfp_t gfp) 1846 { 1847 XA_STATE(xas, xa, 0); 1848 1849 if (WARN_ON_ONCE(xa_is_internal(entry))) 1850 return XA_ERROR(-EINVAL); 1851 if (last < first) 1852 return XA_ERROR(-EINVAL); 1853 1854 do { 1855 xas_lock(&xas); 1856 if (entry) { 1857 unsigned int order = BITS_PER_LONG; 1858 if (last + 1) 1859 order = __ffs(last + 1); 1860 xas_set_order(&xas, last, order); 1861 xas_create(&xas, true); 1862 if (xas_error(&xas)) 1863 goto unlock; 1864 } 1865 do { 1866 xas_set_range(&xas, first, last); 1867 xas_store(&xas, entry); 1868 if (xas_error(&xas)) 1869 goto unlock; 1870 first += xas_size(&xas); 1871 } while (first <= last); 1872 unlock: 1873 xas_unlock(&xas); 1874 } while (xas_nomem(&xas, gfp)); 1875 1876 return xas_result(&xas, NULL); 1877 } 1878 EXPORT_SYMBOL(xa_store_range); 1879 1880 /** 1881 * xas_get_order() - Get the order of an entry. 1882 * @xas: XArray operation state. 1883 * 1884 * Called after xas_load, the xas should not be in an error state. 1885 * 1886 * Return: A number between 0 and 63 indicating the order of the entry. 1887 */ 1888 int xas_get_order(struct xa_state *xas) 1889 { 1890 int order = 0; 1891 1892 if (!xas->xa_node) 1893 return 0; 1894 1895 for (;;) { 1896 unsigned int slot = xas->xa_offset + (1 << order); 1897 1898 if (slot >= XA_CHUNK_SIZE) 1899 break; 1900 if (!xa_is_sibling(xa_entry(xas->xa, xas->xa_node, slot))) 1901 break; 1902 order++; 1903 } 1904 1905 order += xas->xa_node->shift; 1906 return order; 1907 } 1908 EXPORT_SYMBOL_GPL(xas_get_order); 1909 1910 /** 1911 * xa_get_order() - Get the order of an entry. 1912 * @xa: XArray. 1913 * @index: Index of the entry. 1914 * 1915 * Return: A number between 0 and 63 indicating the order of the entry. 1916 */ 1917 int xa_get_order(struct xarray *xa, unsigned long index) 1918 { 1919 XA_STATE(xas, xa, index); 1920 int order = 0; 1921 void *entry; 1922 1923 rcu_read_lock(); 1924 entry = xas_load(&xas); 1925 if (entry) 1926 order = xas_get_order(&xas); 1927 rcu_read_unlock(); 1928 1929 return order; 1930 } 1931 EXPORT_SYMBOL(xa_get_order); 1932 #endif /* CONFIG_XARRAY_MULTI */ 1933 1934 /** 1935 * __xa_alloc() - Find somewhere to store this entry in the XArray. 1936 * @xa: XArray. 1937 * @id: Pointer to ID. 1938 * @limit: Range for allocated ID. 1939 * @entry: New entry. 1940 * @gfp: Memory allocation flags. 1941 * 1942 * Finds an empty entry in @xa between @limit.min and @limit.max, 1943 * stores the index into the @id pointer, then stores the entry at 1944 * that index. A concurrent lookup will not see an uninitialised @id. 1945 * 1946 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set 1947 * in xa_init_flags(). 1948 * 1949 * Context: Any context. Expects xa_lock to be held on entry. May 1950 * release and reacquire xa_lock if @gfp flags permit. 1951 * Return: 0 on success, -ENOMEM if memory could not be allocated or 1952 * -EBUSY if there are no free entries in @limit. 1953 */ 1954 int __xa_alloc(struct xarray *xa, u32 *id, void *entry, 1955 struct xa_limit limit, gfp_t gfp) 1956 { 1957 XA_STATE(xas, xa, 0); 1958 1959 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1960 return -EINVAL; 1961 if (WARN_ON_ONCE(!xa_track_free(xa))) 1962 return -EINVAL; 1963 1964 if (!entry) 1965 entry = XA_ZERO_ENTRY; 1966 1967 do { 1968 xas.xa_index = limit.min; 1969 xas_find_marked(&xas, limit.max, XA_FREE_MARK); 1970 if (xas.xa_node == XAS_RESTART) 1971 xas_set_err(&xas, -EBUSY); 1972 else 1973 *id = xas.xa_index; 1974 xas_store(&xas, entry); 1975 xas_clear_mark(&xas, XA_FREE_MARK); 1976 } while (__xas_nomem(&xas, gfp)); 1977 1978 return xas_error(&xas); 1979 } 1980 EXPORT_SYMBOL(__xa_alloc); 1981 1982 /** 1983 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 1984 * @xa: XArray. 1985 * @id: Pointer to ID. 1986 * @entry: New entry. 1987 * @limit: Range of allocated ID. 1988 * @next: Pointer to next ID to allocate. 1989 * @gfp: Memory allocation flags. 1990 * 1991 * Finds an empty entry in @xa between @limit.min and @limit.max, 1992 * stores the index into the @id pointer, then stores the entry at 1993 * that index. A concurrent lookup will not see an uninitialised @id. 1994 * The search for an empty entry will start at @next and will wrap 1995 * around if necessary. 1996 * 1997 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set 1998 * in xa_init_flags(). 1999 * 2000 * Context: Any context. Expects xa_lock to be held on entry. May 2001 * release and reacquire xa_lock if @gfp flags permit. 2002 * Return: 0 if the allocation succeeded without wrapping. 1 if the 2003 * allocation succeeded after wrapping, -ENOMEM if memory could not be 2004 * allocated or -EBUSY if there are no free entries in @limit. 2005 */ 2006 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 2007 struct xa_limit limit, u32 *next, gfp_t gfp) 2008 { 2009 u32 min = limit.min; 2010 int ret; 2011 2012 limit.min = max(min, *next); 2013 ret = __xa_alloc(xa, id, entry, limit, gfp); 2014 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) { 2015 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED; 2016 ret = 1; 2017 } 2018 2019 if (ret < 0 && limit.min > min) { 2020 limit.min = min; 2021 ret = __xa_alloc(xa, id, entry, limit, gfp); 2022 if (ret == 0) 2023 ret = 1; 2024 } 2025 2026 if (ret >= 0) { 2027 *next = *id + 1; 2028 if (*next == 0) 2029 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED; 2030 } 2031 return ret; 2032 } 2033 EXPORT_SYMBOL(__xa_alloc_cyclic); 2034 2035 /** 2036 * __xa_set_mark() - Set this mark on this entry while locked. 2037 * @xa: XArray. 2038 * @index: Index of entry. 2039 * @mark: Mark number. 2040 * 2041 * Attempting to set a mark on a %NULL entry does not succeed. 2042 * 2043 * Context: Any context. Expects xa_lock to be held on entry. 2044 */ 2045 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 2046 { 2047 XA_STATE(xas, xa, index); 2048 void *entry = xas_load(&xas); 2049 2050 if (entry) 2051 xas_set_mark(&xas, mark); 2052 } 2053 EXPORT_SYMBOL(__xa_set_mark); 2054 2055 /** 2056 * __xa_clear_mark() - Clear this mark on this entry while locked. 2057 * @xa: XArray. 2058 * @index: Index of entry. 2059 * @mark: Mark number. 2060 * 2061 * Context: Any context. Expects xa_lock to be held on entry. 2062 */ 2063 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 2064 { 2065 XA_STATE(xas, xa, index); 2066 void *entry = xas_load(&xas); 2067 2068 if (entry) 2069 xas_clear_mark(&xas, mark); 2070 } 2071 EXPORT_SYMBOL(__xa_clear_mark); 2072 2073 /** 2074 * xa_get_mark() - Inquire whether this mark is set on this entry. 2075 * @xa: XArray. 2076 * @index: Index of entry. 2077 * @mark: Mark number. 2078 * 2079 * This function uses the RCU read lock, so the result may be out of date 2080 * by the time it returns. If you need the result to be stable, use a lock. 2081 * 2082 * Context: Any context. Takes and releases the RCU lock. 2083 * Return: True if the entry at @index has this mark set, false if it doesn't. 2084 */ 2085 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 2086 { 2087 XA_STATE(xas, xa, index); 2088 void *entry; 2089 2090 rcu_read_lock(); 2091 entry = xas_start(&xas); 2092 while (xas_get_mark(&xas, mark)) { 2093 if (!xa_is_node(entry)) 2094 goto found; 2095 entry = xas_descend(&xas, xa_to_node(entry)); 2096 } 2097 rcu_read_unlock(); 2098 return false; 2099 found: 2100 rcu_read_unlock(); 2101 return true; 2102 } 2103 EXPORT_SYMBOL(xa_get_mark); 2104 2105 /** 2106 * xa_set_mark() - Set this mark on this entry. 2107 * @xa: XArray. 2108 * @index: Index of entry. 2109 * @mark: Mark number. 2110 * 2111 * Attempting to set a mark on a %NULL entry does not succeed. 2112 * 2113 * Context: Process context. Takes and releases the xa_lock. 2114 */ 2115 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 2116 { 2117 xa_lock(xa); 2118 __xa_set_mark(xa, index, mark); 2119 xa_unlock(xa); 2120 } 2121 EXPORT_SYMBOL(xa_set_mark); 2122 2123 /** 2124 * xa_clear_mark() - Clear this mark on this entry. 2125 * @xa: XArray. 2126 * @index: Index of entry. 2127 * @mark: Mark number. 2128 * 2129 * Clearing a mark always succeeds. 2130 * 2131 * Context: Process context. Takes and releases the xa_lock. 2132 */ 2133 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 2134 { 2135 xa_lock(xa); 2136 __xa_clear_mark(xa, index, mark); 2137 xa_unlock(xa); 2138 } 2139 EXPORT_SYMBOL(xa_clear_mark); 2140 2141 /** 2142 * xa_find() - Search the XArray for an entry. 2143 * @xa: XArray. 2144 * @indexp: Pointer to an index. 2145 * @max: Maximum index to search to. 2146 * @filter: Selection criterion. 2147 * 2148 * Finds the entry in @xa which matches the @filter, and has the lowest 2149 * index that is at least @indexp and no more than @max. 2150 * If an entry is found, @indexp is updated to be the index of the entry. 2151 * This function is protected by the RCU read lock, so it may not find 2152 * entries which are being simultaneously added. It will not return an 2153 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2154 * 2155 * Context: Any context. Takes and releases the RCU lock. 2156 * Return: The entry, if found, otherwise %NULL. 2157 */ 2158 void *xa_find(struct xarray *xa, unsigned long *indexp, 2159 unsigned long max, xa_mark_t filter) 2160 { 2161 XA_STATE(xas, xa, *indexp); 2162 void *entry; 2163 2164 rcu_read_lock(); 2165 do { 2166 if ((__force unsigned int)filter < XA_MAX_MARKS) 2167 entry = xas_find_marked(&xas, max, filter); 2168 else 2169 entry = xas_find(&xas, max); 2170 } while (xas_retry(&xas, entry)); 2171 rcu_read_unlock(); 2172 2173 if (entry) 2174 *indexp = xas.xa_index; 2175 return entry; 2176 } 2177 EXPORT_SYMBOL(xa_find); 2178 2179 static bool xas_sibling(struct xa_state *xas) 2180 { 2181 struct xa_node *node = xas->xa_node; 2182 unsigned long mask; 2183 2184 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node) 2185 return false; 2186 mask = (XA_CHUNK_SIZE << node->shift) - 1; 2187 return (xas->xa_index & mask) > 2188 ((unsigned long)xas->xa_offset << node->shift); 2189 } 2190 2191 /** 2192 * xa_find_after() - Search the XArray for a present entry. 2193 * @xa: XArray. 2194 * @indexp: Pointer to an index. 2195 * @max: Maximum index to search to. 2196 * @filter: Selection criterion. 2197 * 2198 * Finds the entry in @xa which matches the @filter and has the lowest 2199 * index that is above @indexp and no more than @max. 2200 * If an entry is found, @indexp is updated to be the index of the entry. 2201 * This function is protected by the RCU read lock, so it may miss entries 2202 * which are being simultaneously added. It will not return an 2203 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2204 * 2205 * Context: Any context. Takes and releases the RCU lock. 2206 * Return: The pointer, if found, otherwise %NULL. 2207 */ 2208 void *xa_find_after(struct xarray *xa, unsigned long *indexp, 2209 unsigned long max, xa_mark_t filter) 2210 { 2211 XA_STATE(xas, xa, *indexp + 1); 2212 void *entry; 2213 2214 if (xas.xa_index == 0) 2215 return NULL; 2216 2217 rcu_read_lock(); 2218 for (;;) { 2219 if ((__force unsigned int)filter < XA_MAX_MARKS) 2220 entry = xas_find_marked(&xas, max, filter); 2221 else 2222 entry = xas_find(&xas, max); 2223 2224 if (xas_invalid(&xas)) 2225 break; 2226 if (xas_sibling(&xas)) 2227 continue; 2228 if (!xas_retry(&xas, entry)) 2229 break; 2230 } 2231 rcu_read_unlock(); 2232 2233 if (entry) 2234 *indexp = xas.xa_index; 2235 return entry; 2236 } 2237 EXPORT_SYMBOL(xa_find_after); 2238 2239 static unsigned int xas_extract_present(struct xa_state *xas, void **dst, 2240 unsigned long max, unsigned int n) 2241 { 2242 void *entry; 2243 unsigned int i = 0; 2244 2245 rcu_read_lock(); 2246 xas_for_each(xas, entry, max) { 2247 if (xas_retry(xas, entry)) 2248 continue; 2249 dst[i++] = entry; 2250 if (i == n) 2251 break; 2252 } 2253 rcu_read_unlock(); 2254 2255 return i; 2256 } 2257 2258 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, 2259 unsigned long max, unsigned int n, xa_mark_t mark) 2260 { 2261 void *entry; 2262 unsigned int i = 0; 2263 2264 rcu_read_lock(); 2265 xas_for_each_marked(xas, entry, max, mark) { 2266 if (xas_retry(xas, entry)) 2267 continue; 2268 dst[i++] = entry; 2269 if (i == n) 2270 break; 2271 } 2272 rcu_read_unlock(); 2273 2274 return i; 2275 } 2276 2277 /** 2278 * xa_extract() - Copy selected entries from the XArray into a normal array. 2279 * @xa: The source XArray to copy from. 2280 * @dst: The buffer to copy entries into. 2281 * @start: The first index in the XArray eligible to be selected. 2282 * @max: The last index in the XArray eligible to be selected. 2283 * @n: The maximum number of entries to copy. 2284 * @filter: Selection criterion. 2285 * 2286 * Copies up to @n entries that match @filter from the XArray. The 2287 * copied entries will have indices between @start and @max, inclusive. 2288 * 2289 * The @filter may be an XArray mark value, in which case entries which are 2290 * marked with that mark will be copied. It may also be %XA_PRESENT, in 2291 * which case all entries which are not %NULL will be copied. 2292 * 2293 * The entries returned may not represent a snapshot of the XArray at a 2294 * moment in time. For example, if another thread stores to index 5, then 2295 * index 10, calling xa_extract() may return the old contents of index 5 2296 * and the new contents of index 10. Indices not modified while this 2297 * function is running will not be skipped. 2298 * 2299 * If you need stronger guarantees, holding the xa_lock across calls to this 2300 * function will prevent concurrent modification. 2301 * 2302 * Context: Any context. Takes and releases the RCU lock. 2303 * Return: The number of entries copied. 2304 */ 2305 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, 2306 unsigned long max, unsigned int n, xa_mark_t filter) 2307 { 2308 XA_STATE(xas, xa, start); 2309 2310 if (!n) 2311 return 0; 2312 2313 if ((__force unsigned int)filter < XA_MAX_MARKS) 2314 return xas_extract_marked(&xas, dst, max, n, filter); 2315 return xas_extract_present(&xas, dst, max, n); 2316 } 2317 EXPORT_SYMBOL(xa_extract); 2318 2319 /** 2320 * xa_delete_node() - Private interface for workingset code. 2321 * @node: Node to be removed from the tree. 2322 * @update: Function to call to update ancestor nodes. 2323 * 2324 * Context: xa_lock must be held on entry and will not be released. 2325 */ 2326 void xa_delete_node(struct xa_node *node, xa_update_node_t update) 2327 { 2328 struct xa_state xas = { 2329 .xa = node->array, 2330 .xa_index = (unsigned long)node->offset << 2331 (node->shift + XA_CHUNK_SHIFT), 2332 .xa_shift = node->shift + XA_CHUNK_SHIFT, 2333 .xa_offset = node->offset, 2334 .xa_node = xa_parent_locked(node->array, node), 2335 .xa_update = update, 2336 }; 2337 2338 xas_store(&xas, NULL); 2339 } 2340 EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */ 2341 2342 /** 2343 * xa_destroy() - Free all internal data structures. 2344 * @xa: XArray. 2345 * 2346 * After calling this function, the XArray is empty and has freed all memory 2347 * allocated for its internal data structures. You are responsible for 2348 * freeing the objects referenced by the XArray. 2349 * 2350 * Context: Any context. Takes and releases the xa_lock, interrupt-safe. 2351 */ 2352 void xa_destroy(struct xarray *xa) 2353 { 2354 XA_STATE(xas, xa, 0); 2355 unsigned long flags; 2356 void *entry; 2357 2358 xas.xa_node = NULL; 2359 xas_lock_irqsave(&xas, flags); 2360 entry = xa_head_locked(xa); 2361 RCU_INIT_POINTER(xa->xa_head, NULL); 2362 xas_init_marks(&xas); 2363 if (xa_zero_busy(xa)) 2364 xa_mark_clear(xa, XA_FREE_MARK); 2365 /* lockdep checks we're still holding the lock in xas_free_nodes() */ 2366 if (xa_is_node(entry)) 2367 xas_free_nodes(&xas, xa_to_node(entry)); 2368 xas_unlock_irqrestore(&xas, flags); 2369 } 2370 EXPORT_SYMBOL(xa_destroy); 2371 2372 #ifdef XA_DEBUG 2373 void xa_dump_node(const struct xa_node *node) 2374 { 2375 unsigned i, j; 2376 2377 if (!node) 2378 return; 2379 if ((unsigned long)node & 3) { 2380 pr_cont("node %px\n", node); 2381 return; 2382 } 2383 2384 pr_cont("node %px %s %d parent %px shift %d count %d values %d " 2385 "array %px list %px %px marks", 2386 node, node->parent ? "offset" : "max", node->offset, 2387 node->parent, node->shift, node->count, node->nr_values, 2388 node->array, node->private_list.prev, node->private_list.next); 2389 for (i = 0; i < XA_MAX_MARKS; i++) 2390 for (j = 0; j < XA_MARK_LONGS; j++) 2391 pr_cont(" %lx", node->marks[i][j]); 2392 pr_cont("\n"); 2393 } 2394 2395 void xa_dump_index(unsigned long index, unsigned int shift) 2396 { 2397 if (!shift) 2398 pr_info("%lu: ", index); 2399 else if (shift >= BITS_PER_LONG) 2400 pr_info("0-%lu: ", ~0UL); 2401 else 2402 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); 2403 } 2404 2405 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) 2406 { 2407 if (!entry) 2408 return; 2409 2410 xa_dump_index(index, shift); 2411 2412 if (xa_is_node(entry)) { 2413 if (shift == 0) { 2414 pr_cont("%px\n", entry); 2415 } else { 2416 unsigned long i; 2417 struct xa_node *node = xa_to_node(entry); 2418 xa_dump_node(node); 2419 for (i = 0; i < XA_CHUNK_SIZE; i++) 2420 xa_dump_entry(node->slots[i], 2421 index + (i << node->shift), node->shift); 2422 } 2423 } else if (xa_is_value(entry)) 2424 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), 2425 xa_to_value(entry), entry); 2426 else if (!xa_is_internal(entry)) 2427 pr_cont("%px\n", entry); 2428 else if (xa_is_retry(entry)) 2429 pr_cont("retry (%ld)\n", xa_to_internal(entry)); 2430 else if (xa_is_sibling(entry)) 2431 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); 2432 else if (xa_is_zero(entry)) 2433 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 2434 else 2435 pr_cont("UNKNOWN ENTRY (%px)\n", entry); 2436 } 2437 2438 void xa_dump(const struct xarray *xa) 2439 { 2440 void *entry = xa->xa_head; 2441 unsigned int shift = 0; 2442 2443 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, 2444 xa->xa_flags, xa_marked(xa, XA_MARK_0), 2445 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); 2446 if (xa_is_node(entry)) 2447 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; 2448 xa_dump_entry(entry, 0, shift); 2449 } 2450 #endif 2451