1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * XArray implementation 4 * Copyright (c) 2017-2018 Microsoft Corporation 5 * Copyright (c) 2018-2020 Oracle 6 * Author: Matthew Wilcox <[email protected]> 7 */ 8 9 #include <linux/bitmap.h> 10 #include <linux/export.h> 11 #include <linux/list.h> 12 #include <linux/slab.h> 13 #include <linux/xarray.h> 14 15 /* 16 * Coding conventions in this file: 17 * 18 * @xa is used to refer to the entire xarray. 19 * @xas is the 'xarray operation state'. It may be either a pointer to 20 * an xa_state, or an xa_state stored on the stack. This is an unfortunate 21 * ambiguity. 22 * @index is the index of the entry being operated on 23 * @mark is an xa_mark_t; a small number indicating one of the mark bits. 24 * @node refers to an xa_node; usually the primary one being operated on by 25 * this function. 26 * @offset is the index into the slots array inside an xa_node. 27 * @parent refers to the @xa_node closer to the head than @node. 28 * @entry refers to something stored in a slot in the xarray 29 */ 30 31 static inline unsigned int xa_lock_type(const struct xarray *xa) 32 { 33 return (__force unsigned int)xa->xa_flags & 3; 34 } 35 36 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type) 37 { 38 if (lock_type == XA_LOCK_IRQ) 39 xas_lock_irq(xas); 40 else if (lock_type == XA_LOCK_BH) 41 xas_lock_bh(xas); 42 else 43 xas_lock(xas); 44 } 45 46 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type) 47 { 48 if (lock_type == XA_LOCK_IRQ) 49 xas_unlock_irq(xas); 50 else if (lock_type == XA_LOCK_BH) 51 xas_unlock_bh(xas); 52 else 53 xas_unlock(xas); 54 } 55 56 static inline bool xa_track_free(const struct xarray *xa) 57 { 58 return xa->xa_flags & XA_FLAGS_TRACK_FREE; 59 } 60 61 static inline bool xa_zero_busy(const struct xarray *xa) 62 { 63 return xa->xa_flags & XA_FLAGS_ZERO_BUSY; 64 } 65 66 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark) 67 { 68 if (!(xa->xa_flags & XA_FLAGS_MARK(mark))) 69 xa->xa_flags |= XA_FLAGS_MARK(mark); 70 } 71 72 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark) 73 { 74 if (xa->xa_flags & XA_FLAGS_MARK(mark)) 75 xa->xa_flags &= ~(XA_FLAGS_MARK(mark)); 76 } 77 78 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark) 79 { 80 return node->marks[(__force unsigned)mark]; 81 } 82 83 static inline bool node_get_mark(struct xa_node *node, 84 unsigned int offset, xa_mark_t mark) 85 { 86 return test_bit(offset, node_marks(node, mark)); 87 } 88 89 /* returns true if the bit was set */ 90 static inline bool node_set_mark(struct xa_node *node, unsigned int offset, 91 xa_mark_t mark) 92 { 93 return __test_and_set_bit(offset, node_marks(node, mark)); 94 } 95 96 /* returns true if the bit was set */ 97 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset, 98 xa_mark_t mark) 99 { 100 return __test_and_clear_bit(offset, node_marks(node, mark)); 101 } 102 103 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark) 104 { 105 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE); 106 } 107 108 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark) 109 { 110 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE); 111 } 112 113 #define mark_inc(mark) do { \ 114 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \ 115 } while (0) 116 117 /* 118 * xas_squash_marks() - Merge all marks to the first entry 119 * @xas: Array operation state. 120 * 121 * Set a mark on the first entry if any entry has it set. Clear marks on 122 * all sibling entries. 123 */ 124 static void xas_squash_marks(const struct xa_state *xas) 125 { 126 unsigned int mark = 0; 127 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1; 128 129 if (!xas->xa_sibs) 130 return; 131 132 do { 133 unsigned long *marks = xas->xa_node->marks[mark]; 134 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit) 135 continue; 136 __set_bit(xas->xa_offset, marks); 137 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs); 138 } while (mark++ != (__force unsigned)XA_MARK_MAX); 139 } 140 141 /* extracts the offset within this node from the index */ 142 static unsigned int get_offset(unsigned long index, struct xa_node *node) 143 { 144 return (index >> node->shift) & XA_CHUNK_MASK; 145 } 146 147 static void xas_set_offset(struct xa_state *xas) 148 { 149 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node); 150 } 151 152 /* move the index either forwards (find) or backwards (sibling slot) */ 153 static void xas_move_index(struct xa_state *xas, unsigned long offset) 154 { 155 unsigned int shift = xas->xa_node->shift; 156 xas->xa_index &= ~XA_CHUNK_MASK << shift; 157 xas->xa_index += offset << shift; 158 } 159 160 static void xas_next_offset(struct xa_state *xas) 161 { 162 xas->xa_offset++; 163 xas_move_index(xas, xas->xa_offset); 164 } 165 166 static void *set_bounds(struct xa_state *xas) 167 { 168 xas->xa_node = XAS_BOUNDS; 169 return NULL; 170 } 171 172 /* 173 * Starts a walk. If the @xas is already valid, we assume that it's on 174 * the right path and just return where we've got to. If we're in an 175 * error state, return NULL. If the index is outside the current scope 176 * of the xarray, return NULL without changing @xas->xa_node. Otherwise 177 * set @xas->xa_node to NULL and return the current head of the array. 178 */ 179 static void *xas_start(struct xa_state *xas) 180 { 181 void *entry; 182 183 if (xas_valid(xas)) 184 return xas_reload(xas); 185 if (xas_error(xas)) 186 return NULL; 187 188 entry = xa_head(xas->xa); 189 if (!xa_is_node(entry)) { 190 if (xas->xa_index) 191 return set_bounds(xas); 192 } else { 193 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK) 194 return set_bounds(xas); 195 } 196 197 xas->xa_node = NULL; 198 return entry; 199 } 200 201 static void *xas_descend(struct xa_state *xas, struct xa_node *node) 202 { 203 unsigned int offset = get_offset(xas->xa_index, node); 204 void *entry = xa_entry(xas->xa, node, offset); 205 206 xas->xa_node = node; 207 if (xa_is_sibling(entry)) { 208 offset = xa_to_sibling(entry); 209 entry = xa_entry(xas->xa, node, offset); 210 } 211 212 xas->xa_offset = offset; 213 return entry; 214 } 215 216 /** 217 * xas_load() - Load an entry from the XArray (advanced). 218 * @xas: XArray operation state. 219 * 220 * Usually walks the @xas to the appropriate state to load the entry 221 * stored at xa_index. However, it will do nothing and return %NULL if 222 * @xas is in an error state. xas_load() will never expand the tree. 223 * 224 * If the xa_state is set up to operate on a multi-index entry, xas_load() 225 * may return %NULL or an internal entry, even if there are entries 226 * present within the range specified by @xas. 227 * 228 * Context: Any context. The caller should hold the xa_lock or the RCU lock. 229 * Return: Usually an entry in the XArray, but see description for exceptions. 230 */ 231 void *xas_load(struct xa_state *xas) 232 { 233 void *entry = xas_start(xas); 234 235 while (xa_is_node(entry)) { 236 struct xa_node *node = xa_to_node(entry); 237 238 if (xas->xa_shift > node->shift) 239 break; 240 entry = xas_descend(xas, node); 241 if (node->shift == 0) 242 break; 243 } 244 return entry; 245 } 246 EXPORT_SYMBOL_GPL(xas_load); 247 248 /* Move the radix tree node cache here */ 249 extern struct kmem_cache *radix_tree_node_cachep; 250 extern void radix_tree_node_rcu_free(struct rcu_head *head); 251 252 #define XA_RCU_FREE ((struct xarray *)1) 253 254 static void xa_node_free(struct xa_node *node) 255 { 256 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 257 node->array = XA_RCU_FREE; 258 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 259 } 260 261 /* 262 * xas_destroy() - Free any resources allocated during the XArray operation. 263 * @xas: XArray operation state. 264 * 265 * This function is now internal-only. 266 */ 267 static void xas_destroy(struct xa_state *xas) 268 { 269 struct xa_node *next, *node = xas->xa_alloc; 270 271 while (node) { 272 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 273 next = rcu_dereference_raw(node->parent); 274 radix_tree_node_rcu_free(&node->rcu_head); 275 xas->xa_alloc = node = next; 276 } 277 } 278 279 /** 280 * xas_nomem() - Allocate memory if needed. 281 * @xas: XArray operation state. 282 * @gfp: Memory allocation flags. 283 * 284 * If we need to add new nodes to the XArray, we try to allocate memory 285 * with GFP_NOWAIT while holding the lock, which will usually succeed. 286 * If it fails, @xas is flagged as needing memory to continue. The caller 287 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds, 288 * the caller should retry the operation. 289 * 290 * Forward progress is guaranteed as one node is allocated here and 291 * stored in the xa_state where it will be found by xas_alloc(). More 292 * nodes will likely be found in the slab allocator, but we do not tie 293 * them up here. 294 * 295 * Return: true if memory was needed, and was successfully allocated. 296 */ 297 bool xas_nomem(struct xa_state *xas, gfp_t gfp) 298 { 299 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 300 xas_destroy(xas); 301 return false; 302 } 303 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 304 gfp |= __GFP_ACCOUNT; 305 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 306 if (!xas->xa_alloc) 307 return false; 308 xas->xa_alloc->parent = NULL; 309 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 310 xas->xa_node = XAS_RESTART; 311 return true; 312 } 313 EXPORT_SYMBOL_GPL(xas_nomem); 314 315 /* 316 * __xas_nomem() - Drop locks and allocate memory if needed. 317 * @xas: XArray operation state. 318 * @gfp: Memory allocation flags. 319 * 320 * Internal variant of xas_nomem(). 321 * 322 * Return: true if memory was needed, and was successfully allocated. 323 */ 324 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp) 325 __must_hold(xas->xa->xa_lock) 326 { 327 unsigned int lock_type = xa_lock_type(xas->xa); 328 329 if (xas->xa_node != XA_ERROR(-ENOMEM)) { 330 xas_destroy(xas); 331 return false; 332 } 333 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 334 gfp |= __GFP_ACCOUNT; 335 if (gfpflags_allow_blocking(gfp)) { 336 xas_unlock_type(xas, lock_type); 337 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 338 xas_lock_type(xas, lock_type); 339 } else { 340 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp); 341 } 342 if (!xas->xa_alloc) 343 return false; 344 xas->xa_alloc->parent = NULL; 345 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list)); 346 xas->xa_node = XAS_RESTART; 347 return true; 348 } 349 350 static void xas_update(struct xa_state *xas, struct xa_node *node) 351 { 352 if (xas->xa_update) 353 xas->xa_update(node); 354 else 355 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 356 } 357 358 static void *xas_alloc(struct xa_state *xas, unsigned int shift) 359 { 360 struct xa_node *parent = xas->xa_node; 361 struct xa_node *node = xas->xa_alloc; 362 363 if (xas_invalid(xas)) 364 return NULL; 365 366 if (node) { 367 xas->xa_alloc = NULL; 368 } else { 369 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN; 370 371 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT) 372 gfp |= __GFP_ACCOUNT; 373 374 node = kmem_cache_alloc(radix_tree_node_cachep, gfp); 375 if (!node) { 376 xas_set_err(xas, -ENOMEM); 377 return NULL; 378 } 379 } 380 381 if (parent) { 382 node->offset = xas->xa_offset; 383 parent->count++; 384 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE); 385 xas_update(xas, parent); 386 } 387 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 388 XA_NODE_BUG_ON(node, !list_empty(&node->private_list)); 389 node->shift = shift; 390 node->count = 0; 391 node->nr_values = 0; 392 RCU_INIT_POINTER(node->parent, xas->xa_node); 393 node->array = xas->xa; 394 395 return node; 396 } 397 398 #ifdef CONFIG_XARRAY_MULTI 399 /* Returns the number of indices covered by a given xa_state */ 400 static unsigned long xas_size(const struct xa_state *xas) 401 { 402 return (xas->xa_sibs + 1UL) << xas->xa_shift; 403 } 404 #endif 405 406 /* 407 * Use this to calculate the maximum index that will need to be created 408 * in order to add the entry described by @xas. Because we cannot store a 409 * multi-index entry at index 0, the calculation is a little more complex 410 * than you might expect. 411 */ 412 static unsigned long xas_max(struct xa_state *xas) 413 { 414 unsigned long max = xas->xa_index; 415 416 #ifdef CONFIG_XARRAY_MULTI 417 if (xas->xa_shift || xas->xa_sibs) { 418 unsigned long mask = xas_size(xas) - 1; 419 max |= mask; 420 if (mask == max) 421 max++; 422 } 423 #endif 424 425 return max; 426 } 427 428 /* The maximum index that can be contained in the array without expanding it */ 429 static unsigned long max_index(void *entry) 430 { 431 if (!xa_is_node(entry)) 432 return 0; 433 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1; 434 } 435 436 static void xas_shrink(struct xa_state *xas) 437 { 438 struct xarray *xa = xas->xa; 439 struct xa_node *node = xas->xa_node; 440 441 for (;;) { 442 void *entry; 443 444 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 445 if (node->count != 1) 446 break; 447 entry = xa_entry_locked(xa, node, 0); 448 if (!entry) 449 break; 450 if (!xa_is_node(entry) && node->shift) 451 break; 452 if (xa_is_zero(entry) && xa_zero_busy(xa)) 453 entry = NULL; 454 xas->xa_node = XAS_BOUNDS; 455 456 RCU_INIT_POINTER(xa->xa_head, entry); 457 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK)) 458 xa_mark_clear(xa, XA_FREE_MARK); 459 460 node->count = 0; 461 node->nr_values = 0; 462 if (!xa_is_node(entry)) 463 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY); 464 xas_update(xas, node); 465 xa_node_free(node); 466 if (!xa_is_node(entry)) 467 break; 468 node = xa_to_node(entry); 469 node->parent = NULL; 470 } 471 } 472 473 /* 474 * xas_delete_node() - Attempt to delete an xa_node 475 * @xas: Array operation state. 476 * 477 * Attempts to delete the @xas->xa_node. This will fail if xa->node has 478 * a non-zero reference count. 479 */ 480 static void xas_delete_node(struct xa_state *xas) 481 { 482 struct xa_node *node = xas->xa_node; 483 484 for (;;) { 485 struct xa_node *parent; 486 487 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 488 if (node->count) 489 break; 490 491 parent = xa_parent_locked(xas->xa, node); 492 xas->xa_node = parent; 493 xas->xa_offset = node->offset; 494 xa_node_free(node); 495 496 if (!parent) { 497 xas->xa->xa_head = NULL; 498 xas->xa_node = XAS_BOUNDS; 499 return; 500 } 501 502 parent->slots[xas->xa_offset] = NULL; 503 parent->count--; 504 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE); 505 node = parent; 506 xas_update(xas, node); 507 } 508 509 if (!node->parent) 510 xas_shrink(xas); 511 } 512 513 /** 514 * xas_free_nodes() - Free this node and all nodes that it references 515 * @xas: Array operation state. 516 * @top: Node to free 517 * 518 * This node has been removed from the tree. We must now free it and all 519 * of its subnodes. There may be RCU walkers with references into the tree, 520 * so we must replace all entries with retry markers. 521 */ 522 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top) 523 { 524 unsigned int offset = 0; 525 struct xa_node *node = top; 526 527 for (;;) { 528 void *entry = xa_entry_locked(xas->xa, node, offset); 529 530 if (node->shift && xa_is_node(entry)) { 531 node = xa_to_node(entry); 532 offset = 0; 533 continue; 534 } 535 if (entry) 536 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY); 537 offset++; 538 while (offset == XA_CHUNK_SIZE) { 539 struct xa_node *parent; 540 541 parent = xa_parent_locked(xas->xa, node); 542 offset = node->offset + 1; 543 node->count = 0; 544 node->nr_values = 0; 545 xas_update(xas, node); 546 xa_node_free(node); 547 if (node == top) 548 return; 549 node = parent; 550 } 551 } 552 } 553 554 /* 555 * xas_expand adds nodes to the head of the tree until it has reached 556 * sufficient height to be able to contain @xas->xa_index 557 */ 558 static int xas_expand(struct xa_state *xas, void *head) 559 { 560 struct xarray *xa = xas->xa; 561 struct xa_node *node = NULL; 562 unsigned int shift = 0; 563 unsigned long max = xas_max(xas); 564 565 if (!head) { 566 if (max == 0) 567 return 0; 568 while ((max >> shift) >= XA_CHUNK_SIZE) 569 shift += XA_CHUNK_SHIFT; 570 return shift + XA_CHUNK_SHIFT; 571 } else if (xa_is_node(head)) { 572 node = xa_to_node(head); 573 shift = node->shift + XA_CHUNK_SHIFT; 574 } 575 xas->xa_node = NULL; 576 577 while (max > max_index(head)) { 578 xa_mark_t mark = 0; 579 580 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG); 581 node = xas_alloc(xas, shift); 582 if (!node) 583 return -ENOMEM; 584 585 node->count = 1; 586 if (xa_is_value(head)) 587 node->nr_values = 1; 588 RCU_INIT_POINTER(node->slots[0], head); 589 590 /* Propagate the aggregated mark info to the new child */ 591 for (;;) { 592 if (xa_track_free(xa) && mark == XA_FREE_MARK) { 593 node_mark_all(node, XA_FREE_MARK); 594 if (!xa_marked(xa, XA_FREE_MARK)) { 595 node_clear_mark(node, 0, XA_FREE_MARK); 596 xa_mark_set(xa, XA_FREE_MARK); 597 } 598 } else if (xa_marked(xa, mark)) { 599 node_set_mark(node, 0, mark); 600 } 601 if (mark == XA_MARK_MAX) 602 break; 603 mark_inc(mark); 604 } 605 606 /* 607 * Now that the new node is fully initialised, we can add 608 * it to the tree 609 */ 610 if (xa_is_node(head)) { 611 xa_to_node(head)->offset = 0; 612 rcu_assign_pointer(xa_to_node(head)->parent, node); 613 } 614 head = xa_mk_node(node); 615 rcu_assign_pointer(xa->xa_head, head); 616 xas_update(xas, node); 617 618 shift += XA_CHUNK_SHIFT; 619 } 620 621 xas->xa_node = node; 622 return shift; 623 } 624 625 /* 626 * xas_create() - Create a slot to store an entry in. 627 * @xas: XArray operation state. 628 * @allow_root: %true if we can store the entry in the root directly 629 * 630 * Most users will not need to call this function directly, as it is called 631 * by xas_store(). It is useful for doing conditional store operations 632 * (see the xa_cmpxchg() implementation for an example). 633 * 634 * Return: If the slot already existed, returns the contents of this slot. 635 * If the slot was newly created, returns %NULL. If it failed to create the 636 * slot, returns %NULL and indicates the error in @xas. 637 */ 638 static void *xas_create(struct xa_state *xas, bool allow_root) 639 { 640 struct xarray *xa = xas->xa; 641 void *entry; 642 void __rcu **slot; 643 struct xa_node *node = xas->xa_node; 644 int shift; 645 unsigned int order = xas->xa_shift; 646 647 if (xas_top(node)) { 648 entry = xa_head_locked(xa); 649 xas->xa_node = NULL; 650 if (!entry && xa_zero_busy(xa)) 651 entry = XA_ZERO_ENTRY; 652 shift = xas_expand(xas, entry); 653 if (shift < 0) 654 return NULL; 655 if (!shift && !allow_root) 656 shift = XA_CHUNK_SHIFT; 657 entry = xa_head_locked(xa); 658 slot = &xa->xa_head; 659 } else if (xas_error(xas)) { 660 return NULL; 661 } else if (node) { 662 unsigned int offset = xas->xa_offset; 663 664 shift = node->shift; 665 entry = xa_entry_locked(xa, node, offset); 666 slot = &node->slots[offset]; 667 } else { 668 shift = 0; 669 entry = xa_head_locked(xa); 670 slot = &xa->xa_head; 671 } 672 673 while (shift > order) { 674 shift -= XA_CHUNK_SHIFT; 675 if (!entry) { 676 node = xas_alloc(xas, shift); 677 if (!node) 678 break; 679 if (xa_track_free(xa)) 680 node_mark_all(node, XA_FREE_MARK); 681 rcu_assign_pointer(*slot, xa_mk_node(node)); 682 } else if (xa_is_node(entry)) { 683 node = xa_to_node(entry); 684 } else { 685 break; 686 } 687 entry = xas_descend(xas, node); 688 slot = &node->slots[xas->xa_offset]; 689 } 690 691 return entry; 692 } 693 694 /** 695 * xas_create_range() - Ensure that stores to this range will succeed 696 * @xas: XArray operation state. 697 * 698 * Creates all of the slots in the range covered by @xas. Sets @xas to 699 * create single-index entries and positions it at the beginning of the 700 * range. This is for the benefit of users which have not yet been 701 * converted to use multi-index entries. 702 */ 703 void xas_create_range(struct xa_state *xas) 704 { 705 unsigned long index = xas->xa_index; 706 unsigned char shift = xas->xa_shift; 707 unsigned char sibs = xas->xa_sibs; 708 709 xas->xa_index |= ((sibs + 1UL) << shift) - 1; 710 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift) 711 xas->xa_offset |= sibs; 712 xas->xa_shift = 0; 713 xas->xa_sibs = 0; 714 715 for (;;) { 716 xas_create(xas, true); 717 if (xas_error(xas)) 718 goto restore; 719 if (xas->xa_index <= (index | XA_CHUNK_MASK)) 720 goto success; 721 xas->xa_index -= XA_CHUNK_SIZE; 722 723 for (;;) { 724 struct xa_node *node = xas->xa_node; 725 if (node->shift >= shift) 726 break; 727 xas->xa_node = xa_parent_locked(xas->xa, node); 728 xas->xa_offset = node->offset - 1; 729 if (node->offset != 0) 730 break; 731 } 732 } 733 734 restore: 735 xas->xa_shift = shift; 736 xas->xa_sibs = sibs; 737 xas->xa_index = index; 738 return; 739 success: 740 xas->xa_index = index; 741 if (xas->xa_node) 742 xas_set_offset(xas); 743 } 744 EXPORT_SYMBOL_GPL(xas_create_range); 745 746 static void update_node(struct xa_state *xas, struct xa_node *node, 747 int count, int values) 748 { 749 if (!node || (!count && !values)) 750 return; 751 752 node->count += count; 753 node->nr_values += values; 754 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE); 755 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE); 756 xas_update(xas, node); 757 if (count < 0) 758 xas_delete_node(xas); 759 } 760 761 /** 762 * xas_store() - Store this entry in the XArray. 763 * @xas: XArray operation state. 764 * @entry: New entry. 765 * 766 * If @xas is operating on a multi-index entry, the entry returned by this 767 * function is essentially meaningless (it may be an internal entry or it 768 * may be %NULL, even if there are non-NULL entries at some of the indices 769 * covered by the range). This is not a problem for any current users, 770 * and can be changed if needed. 771 * 772 * Return: The old entry at this index. 773 */ 774 void *xas_store(struct xa_state *xas, void *entry) 775 { 776 struct xa_node *node; 777 void __rcu **slot = &xas->xa->xa_head; 778 unsigned int offset, max; 779 int count = 0; 780 int values = 0; 781 void *first, *next; 782 bool value = xa_is_value(entry); 783 784 if (entry) { 785 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry); 786 first = xas_create(xas, allow_root); 787 } else { 788 first = xas_load(xas); 789 } 790 791 if (xas_invalid(xas)) 792 return first; 793 node = xas->xa_node; 794 if (node && (xas->xa_shift < node->shift)) 795 xas->xa_sibs = 0; 796 if ((first == entry) && !xas->xa_sibs) 797 return first; 798 799 next = first; 800 offset = xas->xa_offset; 801 max = xas->xa_offset + xas->xa_sibs; 802 if (node) { 803 slot = &node->slots[offset]; 804 if (xas->xa_sibs) 805 xas_squash_marks(xas); 806 } 807 if (!entry) 808 xas_init_marks(xas); 809 810 for (;;) { 811 /* 812 * Must clear the marks before setting the entry to NULL, 813 * otherwise xas_for_each_marked may find a NULL entry and 814 * stop early. rcu_assign_pointer contains a release barrier 815 * so the mark clearing will appear to happen before the 816 * entry is set to NULL. 817 */ 818 rcu_assign_pointer(*slot, entry); 819 if (xa_is_node(next) && (!node || node->shift)) 820 xas_free_nodes(xas, xa_to_node(next)); 821 if (!node) 822 break; 823 count += !next - !entry; 824 values += !xa_is_value(first) - !value; 825 if (entry) { 826 if (offset == max) 827 break; 828 if (!xa_is_sibling(entry)) 829 entry = xa_mk_sibling(xas->xa_offset); 830 } else { 831 if (offset == XA_CHUNK_MASK) 832 break; 833 } 834 next = xa_entry_locked(xas->xa, node, ++offset); 835 if (!xa_is_sibling(next)) { 836 if (!entry && (offset > max)) 837 break; 838 first = next; 839 } 840 slot++; 841 } 842 843 update_node(xas, node, count, values); 844 return first; 845 } 846 EXPORT_SYMBOL_GPL(xas_store); 847 848 /** 849 * xas_get_mark() - Returns the state of this mark. 850 * @xas: XArray operation state. 851 * @mark: Mark number. 852 * 853 * Return: true if the mark is set, false if the mark is clear or @xas 854 * is in an error state. 855 */ 856 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark) 857 { 858 if (xas_invalid(xas)) 859 return false; 860 if (!xas->xa_node) 861 return xa_marked(xas->xa, mark); 862 return node_get_mark(xas->xa_node, xas->xa_offset, mark); 863 } 864 EXPORT_SYMBOL_GPL(xas_get_mark); 865 866 /** 867 * xas_set_mark() - Sets the mark on this entry and its parents. 868 * @xas: XArray operation state. 869 * @mark: Mark number. 870 * 871 * Sets the specified mark on this entry, and walks up the tree setting it 872 * on all the ancestor entries. Does nothing if @xas has not been walked to 873 * an entry, or is in an error state. 874 */ 875 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark) 876 { 877 struct xa_node *node = xas->xa_node; 878 unsigned int offset = xas->xa_offset; 879 880 if (xas_invalid(xas)) 881 return; 882 883 while (node) { 884 if (node_set_mark(node, offset, mark)) 885 return; 886 offset = node->offset; 887 node = xa_parent_locked(xas->xa, node); 888 } 889 890 if (!xa_marked(xas->xa, mark)) 891 xa_mark_set(xas->xa, mark); 892 } 893 EXPORT_SYMBOL_GPL(xas_set_mark); 894 895 /** 896 * xas_clear_mark() - Clears the mark on this entry and its parents. 897 * @xas: XArray operation state. 898 * @mark: Mark number. 899 * 900 * Clears the specified mark on this entry, and walks back to the head 901 * attempting to clear it on all the ancestor entries. Does nothing if 902 * @xas has not been walked to an entry, or is in an error state. 903 */ 904 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark) 905 { 906 struct xa_node *node = xas->xa_node; 907 unsigned int offset = xas->xa_offset; 908 909 if (xas_invalid(xas)) 910 return; 911 912 while (node) { 913 if (!node_clear_mark(node, offset, mark)) 914 return; 915 if (node_any_mark(node, mark)) 916 return; 917 918 offset = node->offset; 919 node = xa_parent_locked(xas->xa, node); 920 } 921 922 if (xa_marked(xas->xa, mark)) 923 xa_mark_clear(xas->xa, mark); 924 } 925 EXPORT_SYMBOL_GPL(xas_clear_mark); 926 927 /** 928 * xas_init_marks() - Initialise all marks for the entry 929 * @xas: Array operations state. 930 * 931 * Initialise all marks for the entry specified by @xas. If we're tracking 932 * free entries with a mark, we need to set it on all entries. All other 933 * marks are cleared. 934 * 935 * This implementation is not as efficient as it could be; we may walk 936 * up the tree multiple times. 937 */ 938 void xas_init_marks(const struct xa_state *xas) 939 { 940 xa_mark_t mark = 0; 941 942 for (;;) { 943 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK) 944 xas_set_mark(xas, mark); 945 else 946 xas_clear_mark(xas, mark); 947 if (mark == XA_MARK_MAX) 948 break; 949 mark_inc(mark); 950 } 951 } 952 EXPORT_SYMBOL_GPL(xas_init_marks); 953 954 #ifdef CONFIG_XARRAY_MULTI 955 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset) 956 { 957 unsigned int marks = 0; 958 xa_mark_t mark = XA_MARK_0; 959 960 for (;;) { 961 if (node_get_mark(node, offset, mark)) 962 marks |= 1 << (__force unsigned int)mark; 963 if (mark == XA_MARK_MAX) 964 break; 965 mark_inc(mark); 966 } 967 968 return marks; 969 } 970 971 static void node_set_marks(struct xa_node *node, unsigned int offset, 972 struct xa_node *child, unsigned int marks) 973 { 974 xa_mark_t mark = XA_MARK_0; 975 976 for (;;) { 977 if (marks & (1 << (__force unsigned int)mark)) { 978 node_set_mark(node, offset, mark); 979 if (child) 980 node_mark_all(child, mark); 981 } 982 if (mark == XA_MARK_MAX) 983 break; 984 mark_inc(mark); 985 } 986 } 987 988 /** 989 * xas_split_alloc() - Allocate memory for splitting an entry. 990 * @xas: XArray operation state. 991 * @entry: New entry which will be stored in the array. 992 * @order: Current entry order. 993 * @gfp: Memory allocation flags. 994 * 995 * This function should be called before calling xas_split(). 996 * If necessary, it will allocate new nodes (and fill them with @entry) 997 * to prepare for the upcoming split of an entry of @order size into 998 * entries of the order stored in the @xas. 999 * 1000 * Context: May sleep if @gfp flags permit. 1001 */ 1002 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order, 1003 gfp_t gfp) 1004 { 1005 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1006 unsigned int mask = xas->xa_sibs; 1007 1008 /* XXX: no support for splitting really large entries yet */ 1009 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT < order)) 1010 goto nomem; 1011 if (xas->xa_shift + XA_CHUNK_SHIFT > order) 1012 return; 1013 1014 do { 1015 unsigned int i; 1016 void *sibling = NULL; 1017 struct xa_node *node; 1018 1019 node = kmem_cache_alloc(radix_tree_node_cachep, gfp); 1020 if (!node) 1021 goto nomem; 1022 node->array = xas->xa; 1023 for (i = 0; i < XA_CHUNK_SIZE; i++) { 1024 if ((i & mask) == 0) { 1025 RCU_INIT_POINTER(node->slots[i], entry); 1026 sibling = xa_mk_sibling(i); 1027 } else { 1028 RCU_INIT_POINTER(node->slots[i], sibling); 1029 } 1030 } 1031 RCU_INIT_POINTER(node->parent, xas->xa_alloc); 1032 xas->xa_alloc = node; 1033 } while (sibs-- > 0); 1034 1035 return; 1036 nomem: 1037 xas_destroy(xas); 1038 xas_set_err(xas, -ENOMEM); 1039 } 1040 EXPORT_SYMBOL_GPL(xas_split_alloc); 1041 1042 /** 1043 * xas_split() - Split a multi-index entry into smaller entries. 1044 * @xas: XArray operation state. 1045 * @entry: New entry to store in the array. 1046 * @order: Current entry order. 1047 * 1048 * The size of the new entries is set in @xas. The value in @entry is 1049 * copied to all the replacement entries. 1050 * 1051 * Context: Any context. The caller should hold the xa_lock. 1052 */ 1053 void xas_split(struct xa_state *xas, void *entry, unsigned int order) 1054 { 1055 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1; 1056 unsigned int offset, marks; 1057 struct xa_node *node; 1058 void *curr = xas_load(xas); 1059 int values = 0; 1060 1061 node = xas->xa_node; 1062 if (xas_top(node)) 1063 return; 1064 1065 marks = node_get_marks(node, xas->xa_offset); 1066 1067 offset = xas->xa_offset + sibs; 1068 do { 1069 if (xas->xa_shift < node->shift) { 1070 struct xa_node *child = xas->xa_alloc; 1071 1072 xas->xa_alloc = rcu_dereference_raw(child->parent); 1073 child->shift = node->shift - XA_CHUNK_SHIFT; 1074 child->offset = offset; 1075 child->count = XA_CHUNK_SIZE; 1076 child->nr_values = xa_is_value(entry) ? 1077 XA_CHUNK_SIZE : 0; 1078 RCU_INIT_POINTER(child->parent, node); 1079 node_set_marks(node, offset, child, marks); 1080 rcu_assign_pointer(node->slots[offset], 1081 xa_mk_node(child)); 1082 if (xa_is_value(curr)) 1083 values--; 1084 } else { 1085 unsigned int canon = offset - xas->xa_sibs; 1086 1087 node_set_marks(node, canon, NULL, marks); 1088 rcu_assign_pointer(node->slots[canon], entry); 1089 while (offset > canon) 1090 rcu_assign_pointer(node->slots[offset--], 1091 xa_mk_sibling(canon)); 1092 values += (xa_is_value(entry) - xa_is_value(curr)) * 1093 (xas->xa_sibs + 1); 1094 } 1095 } while (offset-- > xas->xa_offset); 1096 1097 node->nr_values += values; 1098 } 1099 EXPORT_SYMBOL_GPL(xas_split); 1100 #endif 1101 1102 /** 1103 * xas_pause() - Pause a walk to drop a lock. 1104 * @xas: XArray operation state. 1105 * 1106 * Some users need to pause a walk and drop the lock they're holding in 1107 * order to yield to a higher priority thread or carry out an operation 1108 * on an entry. Those users should call this function before they drop 1109 * the lock. It resets the @xas to be suitable for the next iteration 1110 * of the loop after the user has reacquired the lock. If most entries 1111 * found during a walk require you to call xas_pause(), the xa_for_each() 1112 * iterator may be more appropriate. 1113 * 1114 * Note that xas_pause() only works for forward iteration. If a user needs 1115 * to pause a reverse iteration, we will need a xas_pause_rev(). 1116 */ 1117 void xas_pause(struct xa_state *xas) 1118 { 1119 struct xa_node *node = xas->xa_node; 1120 1121 if (xas_invalid(xas)) 1122 return; 1123 1124 xas->xa_node = XAS_RESTART; 1125 if (node) { 1126 unsigned long offset = xas->xa_offset; 1127 while (++offset < XA_CHUNK_SIZE) { 1128 if (!xa_is_sibling(xa_entry(xas->xa, node, offset))) 1129 break; 1130 } 1131 xas->xa_index += (offset - xas->xa_offset) << node->shift; 1132 if (xas->xa_index == 0) 1133 xas->xa_node = XAS_BOUNDS; 1134 } else { 1135 xas->xa_index++; 1136 } 1137 } 1138 EXPORT_SYMBOL_GPL(xas_pause); 1139 1140 /* 1141 * __xas_prev() - Find the previous entry in the XArray. 1142 * @xas: XArray operation state. 1143 * 1144 * Helper function for xas_prev() which handles all the complex cases 1145 * out of line. 1146 */ 1147 void *__xas_prev(struct xa_state *xas) 1148 { 1149 void *entry; 1150 1151 if (!xas_frozen(xas->xa_node)) 1152 xas->xa_index--; 1153 if (!xas->xa_node) 1154 return set_bounds(xas); 1155 if (xas_not_node(xas->xa_node)) 1156 return xas_load(xas); 1157 1158 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1159 xas->xa_offset--; 1160 1161 while (xas->xa_offset == 255) { 1162 xas->xa_offset = xas->xa_node->offset - 1; 1163 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1164 if (!xas->xa_node) 1165 return set_bounds(xas); 1166 } 1167 1168 for (;;) { 1169 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1170 if (!xa_is_node(entry)) 1171 return entry; 1172 1173 xas->xa_node = xa_to_node(entry); 1174 xas_set_offset(xas); 1175 } 1176 } 1177 EXPORT_SYMBOL_GPL(__xas_prev); 1178 1179 /* 1180 * __xas_next() - Find the next entry in the XArray. 1181 * @xas: XArray operation state. 1182 * 1183 * Helper function for xas_next() which handles all the complex cases 1184 * out of line. 1185 */ 1186 void *__xas_next(struct xa_state *xas) 1187 { 1188 void *entry; 1189 1190 if (!xas_frozen(xas->xa_node)) 1191 xas->xa_index++; 1192 if (!xas->xa_node) 1193 return set_bounds(xas); 1194 if (xas_not_node(xas->xa_node)) 1195 return xas_load(xas); 1196 1197 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node)) 1198 xas->xa_offset++; 1199 1200 while (xas->xa_offset == XA_CHUNK_SIZE) { 1201 xas->xa_offset = xas->xa_node->offset + 1; 1202 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1203 if (!xas->xa_node) 1204 return set_bounds(xas); 1205 } 1206 1207 for (;;) { 1208 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1209 if (!xa_is_node(entry)) 1210 return entry; 1211 1212 xas->xa_node = xa_to_node(entry); 1213 xas_set_offset(xas); 1214 } 1215 } 1216 EXPORT_SYMBOL_GPL(__xas_next); 1217 1218 /** 1219 * xas_find() - Find the next present entry in the XArray. 1220 * @xas: XArray operation state. 1221 * @max: Highest index to return. 1222 * 1223 * If the @xas has not yet been walked to an entry, return the entry 1224 * which has an index >= xas.xa_index. If it has been walked, the entry 1225 * currently being pointed at has been processed, and so we move to the 1226 * next entry. 1227 * 1228 * If no entry is found and the array is smaller than @max, the iterator 1229 * is set to the smallest index not yet in the array. This allows @xas 1230 * to be immediately passed to xas_store(). 1231 * 1232 * Return: The entry, if found, otherwise %NULL. 1233 */ 1234 void *xas_find(struct xa_state *xas, unsigned long max) 1235 { 1236 void *entry; 1237 1238 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS) 1239 return NULL; 1240 if (xas->xa_index > max) 1241 return set_bounds(xas); 1242 1243 if (!xas->xa_node) { 1244 xas->xa_index = 1; 1245 return set_bounds(xas); 1246 } else if (xas->xa_node == XAS_RESTART) { 1247 entry = xas_load(xas); 1248 if (entry || xas_not_node(xas->xa_node)) 1249 return entry; 1250 } else if (!xas->xa_node->shift && 1251 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) { 1252 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1; 1253 } 1254 1255 xas_next_offset(xas); 1256 1257 while (xas->xa_node && (xas->xa_index <= max)) { 1258 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1259 xas->xa_offset = xas->xa_node->offset + 1; 1260 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1261 continue; 1262 } 1263 1264 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1265 if (xa_is_node(entry)) { 1266 xas->xa_node = xa_to_node(entry); 1267 xas->xa_offset = 0; 1268 continue; 1269 } 1270 if (entry && !xa_is_sibling(entry)) 1271 return entry; 1272 1273 xas_next_offset(xas); 1274 } 1275 1276 if (!xas->xa_node) 1277 xas->xa_node = XAS_BOUNDS; 1278 return NULL; 1279 } 1280 EXPORT_SYMBOL_GPL(xas_find); 1281 1282 /** 1283 * xas_find_marked() - Find the next marked entry in the XArray. 1284 * @xas: XArray operation state. 1285 * @max: Highest index to return. 1286 * @mark: Mark number to search for. 1287 * 1288 * If the @xas has not yet been walked to an entry, return the marked entry 1289 * which has an index >= xas.xa_index. If it has been walked, the entry 1290 * currently being pointed at has been processed, and so we return the 1291 * first marked entry with an index > xas.xa_index. 1292 * 1293 * If no marked entry is found and the array is smaller than @max, @xas is 1294 * set to the bounds state and xas->xa_index is set to the smallest index 1295 * not yet in the array. This allows @xas to be immediately passed to 1296 * xas_store(). 1297 * 1298 * If no entry is found before @max is reached, @xas is set to the restart 1299 * state. 1300 * 1301 * Return: The entry, if found, otherwise %NULL. 1302 */ 1303 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark) 1304 { 1305 bool advance = true; 1306 unsigned int offset; 1307 void *entry; 1308 1309 if (xas_error(xas)) 1310 return NULL; 1311 if (xas->xa_index > max) 1312 goto max; 1313 1314 if (!xas->xa_node) { 1315 xas->xa_index = 1; 1316 goto out; 1317 } else if (xas_top(xas->xa_node)) { 1318 advance = false; 1319 entry = xa_head(xas->xa); 1320 xas->xa_node = NULL; 1321 if (xas->xa_index > max_index(entry)) 1322 goto out; 1323 if (!xa_is_node(entry)) { 1324 if (xa_marked(xas->xa, mark)) 1325 return entry; 1326 xas->xa_index = 1; 1327 goto out; 1328 } 1329 xas->xa_node = xa_to_node(entry); 1330 xas->xa_offset = xas->xa_index >> xas->xa_node->shift; 1331 } 1332 1333 while (xas->xa_index <= max) { 1334 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) { 1335 xas->xa_offset = xas->xa_node->offset + 1; 1336 xas->xa_node = xa_parent(xas->xa, xas->xa_node); 1337 if (!xas->xa_node) 1338 break; 1339 advance = false; 1340 continue; 1341 } 1342 1343 if (!advance) { 1344 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1345 if (xa_is_sibling(entry)) { 1346 xas->xa_offset = xa_to_sibling(entry); 1347 xas_move_index(xas, xas->xa_offset); 1348 } 1349 } 1350 1351 offset = xas_find_chunk(xas, advance, mark); 1352 if (offset > xas->xa_offset) { 1353 advance = false; 1354 xas_move_index(xas, offset); 1355 /* Mind the wrap */ 1356 if ((xas->xa_index - 1) >= max) 1357 goto max; 1358 xas->xa_offset = offset; 1359 if (offset == XA_CHUNK_SIZE) 1360 continue; 1361 } 1362 1363 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset); 1364 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK)) 1365 continue; 1366 if (!xa_is_node(entry)) 1367 return entry; 1368 xas->xa_node = xa_to_node(entry); 1369 xas_set_offset(xas); 1370 } 1371 1372 out: 1373 if (xas->xa_index > max) 1374 goto max; 1375 return set_bounds(xas); 1376 max: 1377 xas->xa_node = XAS_RESTART; 1378 return NULL; 1379 } 1380 EXPORT_SYMBOL_GPL(xas_find_marked); 1381 1382 /** 1383 * xas_find_conflict() - Find the next present entry in a range. 1384 * @xas: XArray operation state. 1385 * 1386 * The @xas describes both a range and a position within that range. 1387 * 1388 * Context: Any context. Expects xa_lock to be held. 1389 * Return: The next entry in the range covered by @xas or %NULL. 1390 */ 1391 void *xas_find_conflict(struct xa_state *xas) 1392 { 1393 void *curr; 1394 1395 if (xas_error(xas)) 1396 return NULL; 1397 1398 if (!xas->xa_node) 1399 return NULL; 1400 1401 if (xas_top(xas->xa_node)) { 1402 curr = xas_start(xas); 1403 if (!curr) 1404 return NULL; 1405 while (xa_is_node(curr)) { 1406 struct xa_node *node = xa_to_node(curr); 1407 curr = xas_descend(xas, node); 1408 } 1409 if (curr) 1410 return curr; 1411 } 1412 1413 if (xas->xa_node->shift > xas->xa_shift) 1414 return NULL; 1415 1416 for (;;) { 1417 if (xas->xa_node->shift == xas->xa_shift) { 1418 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs) 1419 break; 1420 } else if (xas->xa_offset == XA_CHUNK_MASK) { 1421 xas->xa_offset = xas->xa_node->offset; 1422 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node); 1423 if (!xas->xa_node) 1424 break; 1425 continue; 1426 } 1427 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset); 1428 if (xa_is_sibling(curr)) 1429 continue; 1430 while (xa_is_node(curr)) { 1431 xas->xa_node = xa_to_node(curr); 1432 xas->xa_offset = 0; 1433 curr = xa_entry_locked(xas->xa, xas->xa_node, 0); 1434 } 1435 if (curr) 1436 return curr; 1437 } 1438 xas->xa_offset -= xas->xa_sibs; 1439 return NULL; 1440 } 1441 EXPORT_SYMBOL_GPL(xas_find_conflict); 1442 1443 /** 1444 * xa_load() - Load an entry from an XArray. 1445 * @xa: XArray. 1446 * @index: index into array. 1447 * 1448 * Context: Any context. Takes and releases the RCU lock. 1449 * Return: The entry at @index in @xa. 1450 */ 1451 void *xa_load(struct xarray *xa, unsigned long index) 1452 { 1453 XA_STATE(xas, xa, index); 1454 void *entry; 1455 1456 rcu_read_lock(); 1457 do { 1458 entry = xas_load(&xas); 1459 if (xa_is_zero(entry)) 1460 entry = NULL; 1461 } while (xas_retry(&xas, entry)); 1462 rcu_read_unlock(); 1463 1464 return entry; 1465 } 1466 EXPORT_SYMBOL(xa_load); 1467 1468 static void *xas_result(struct xa_state *xas, void *curr) 1469 { 1470 if (xa_is_zero(curr)) 1471 return NULL; 1472 if (xas_error(xas)) 1473 curr = xas->xa_node; 1474 return curr; 1475 } 1476 1477 /** 1478 * __xa_erase() - Erase this entry from the XArray while locked. 1479 * @xa: XArray. 1480 * @index: Index into array. 1481 * 1482 * After this function returns, loading from @index will return %NULL. 1483 * If the index is part of a multi-index entry, all indices will be erased 1484 * and none of the entries will be part of a multi-index entry. 1485 * 1486 * Context: Any context. Expects xa_lock to be held on entry. 1487 * Return: The entry which used to be at this index. 1488 */ 1489 void *__xa_erase(struct xarray *xa, unsigned long index) 1490 { 1491 XA_STATE(xas, xa, index); 1492 return xas_result(&xas, xas_store(&xas, NULL)); 1493 } 1494 EXPORT_SYMBOL(__xa_erase); 1495 1496 /** 1497 * xa_erase() - Erase this entry from the XArray. 1498 * @xa: XArray. 1499 * @index: Index of entry. 1500 * 1501 * After this function returns, loading from @index will return %NULL. 1502 * If the index is part of a multi-index entry, all indices will be erased 1503 * and none of the entries will be part of a multi-index entry. 1504 * 1505 * Context: Any context. Takes and releases the xa_lock. 1506 * Return: The entry which used to be at this index. 1507 */ 1508 void *xa_erase(struct xarray *xa, unsigned long index) 1509 { 1510 void *entry; 1511 1512 xa_lock(xa); 1513 entry = __xa_erase(xa, index); 1514 xa_unlock(xa); 1515 1516 return entry; 1517 } 1518 EXPORT_SYMBOL(xa_erase); 1519 1520 /** 1521 * __xa_store() - Store this entry in the XArray. 1522 * @xa: XArray. 1523 * @index: Index into array. 1524 * @entry: New entry. 1525 * @gfp: Memory allocation flags. 1526 * 1527 * You must already be holding the xa_lock when calling this function. 1528 * It will drop the lock if needed to allocate memory, and then reacquire 1529 * it afterwards. 1530 * 1531 * Context: Any context. Expects xa_lock to be held on entry. May 1532 * release and reacquire xa_lock if @gfp flags permit. 1533 * Return: The old entry at this index or xa_err() if an error happened. 1534 */ 1535 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1536 { 1537 XA_STATE(xas, xa, index); 1538 void *curr; 1539 1540 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1541 return XA_ERROR(-EINVAL); 1542 if (xa_track_free(xa) && !entry) 1543 entry = XA_ZERO_ENTRY; 1544 1545 do { 1546 curr = xas_store(&xas, entry); 1547 if (xa_track_free(xa)) 1548 xas_clear_mark(&xas, XA_FREE_MARK); 1549 } while (__xas_nomem(&xas, gfp)); 1550 1551 return xas_result(&xas, curr); 1552 } 1553 EXPORT_SYMBOL(__xa_store); 1554 1555 /** 1556 * xa_store() - Store this entry in the XArray. 1557 * @xa: XArray. 1558 * @index: Index into array. 1559 * @entry: New entry. 1560 * @gfp: Memory allocation flags. 1561 * 1562 * After this function returns, loads from this index will return @entry. 1563 * Storing into an existing multi-index entry updates the entry of every index. 1564 * The marks associated with @index are unaffected unless @entry is %NULL. 1565 * 1566 * Context: Any context. Takes and releases the xa_lock. 1567 * May sleep if the @gfp flags permit. 1568 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry 1569 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation 1570 * failed. 1571 */ 1572 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1573 { 1574 void *curr; 1575 1576 xa_lock(xa); 1577 curr = __xa_store(xa, index, entry, gfp); 1578 xa_unlock(xa); 1579 1580 return curr; 1581 } 1582 EXPORT_SYMBOL(xa_store); 1583 1584 /** 1585 * __xa_cmpxchg() - Store this entry in the XArray. 1586 * @xa: XArray. 1587 * @index: Index into array. 1588 * @old: Old value to test against. 1589 * @entry: New entry. 1590 * @gfp: Memory allocation flags. 1591 * 1592 * You must already be holding the xa_lock when calling this function. 1593 * It will drop the lock if needed to allocate memory, and then reacquire 1594 * it afterwards. 1595 * 1596 * Context: Any context. Expects xa_lock to be held on entry. May 1597 * release and reacquire xa_lock if @gfp flags permit. 1598 * Return: The old entry at this index or xa_err() if an error happened. 1599 */ 1600 void *__xa_cmpxchg(struct xarray *xa, unsigned long index, 1601 void *old, void *entry, gfp_t gfp) 1602 { 1603 XA_STATE(xas, xa, index); 1604 void *curr; 1605 1606 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1607 return XA_ERROR(-EINVAL); 1608 1609 do { 1610 curr = xas_load(&xas); 1611 if (curr == old) { 1612 xas_store(&xas, entry); 1613 if (xa_track_free(xa) && entry && !curr) 1614 xas_clear_mark(&xas, XA_FREE_MARK); 1615 } 1616 } while (__xas_nomem(&xas, gfp)); 1617 1618 return xas_result(&xas, curr); 1619 } 1620 EXPORT_SYMBOL(__xa_cmpxchg); 1621 1622 /** 1623 * __xa_insert() - Store this entry in the XArray if no entry is present. 1624 * @xa: XArray. 1625 * @index: Index into array. 1626 * @entry: New entry. 1627 * @gfp: Memory allocation flags. 1628 * 1629 * Inserting a NULL entry will store a reserved entry (like xa_reserve()) 1630 * if no entry is present. Inserting will fail if a reserved entry is 1631 * present, even though loading from this index will return NULL. 1632 * 1633 * Context: Any context. Expects xa_lock to be held on entry. May 1634 * release and reacquire xa_lock if @gfp flags permit. 1635 * Return: 0 if the store succeeded. -EBUSY if another entry was present. 1636 * -ENOMEM if memory could not be allocated. 1637 */ 1638 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1639 { 1640 XA_STATE(xas, xa, index); 1641 void *curr; 1642 1643 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1644 return -EINVAL; 1645 if (!entry) 1646 entry = XA_ZERO_ENTRY; 1647 1648 do { 1649 curr = xas_load(&xas); 1650 if (!curr) { 1651 xas_store(&xas, entry); 1652 if (xa_track_free(xa)) 1653 xas_clear_mark(&xas, XA_FREE_MARK); 1654 } else { 1655 xas_set_err(&xas, -EBUSY); 1656 } 1657 } while (__xas_nomem(&xas, gfp)); 1658 1659 return xas_error(&xas); 1660 } 1661 EXPORT_SYMBOL(__xa_insert); 1662 1663 #ifdef CONFIG_XARRAY_MULTI 1664 static void xas_set_range(struct xa_state *xas, unsigned long first, 1665 unsigned long last) 1666 { 1667 unsigned int shift = 0; 1668 unsigned long sibs = last - first; 1669 unsigned int offset = XA_CHUNK_MASK; 1670 1671 xas_set(xas, first); 1672 1673 while ((first & XA_CHUNK_MASK) == 0) { 1674 if (sibs < XA_CHUNK_MASK) 1675 break; 1676 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK)) 1677 break; 1678 shift += XA_CHUNK_SHIFT; 1679 if (offset == XA_CHUNK_MASK) 1680 offset = sibs & XA_CHUNK_MASK; 1681 sibs >>= XA_CHUNK_SHIFT; 1682 first >>= XA_CHUNK_SHIFT; 1683 } 1684 1685 offset = first & XA_CHUNK_MASK; 1686 if (offset + sibs > XA_CHUNK_MASK) 1687 sibs = XA_CHUNK_MASK - offset; 1688 if ((((first + sibs + 1) << shift) - 1) > last) 1689 sibs -= 1; 1690 1691 xas->xa_shift = shift; 1692 xas->xa_sibs = sibs; 1693 } 1694 1695 /** 1696 * xa_store_range() - Store this entry at a range of indices in the XArray. 1697 * @xa: XArray. 1698 * @first: First index to affect. 1699 * @last: Last index to affect. 1700 * @entry: New entry. 1701 * @gfp: Memory allocation flags. 1702 * 1703 * After this function returns, loads from any index between @first and @last, 1704 * inclusive will return @entry. 1705 * Storing into an existing multi-index entry updates the entry of every index. 1706 * The marks associated with @index are unaffected unless @entry is %NULL. 1707 * 1708 * Context: Process context. Takes and releases the xa_lock. May sleep 1709 * if the @gfp flags permit. 1710 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in 1711 * an XArray, or xa_err(-ENOMEM) if memory allocation failed. 1712 */ 1713 void *xa_store_range(struct xarray *xa, unsigned long first, 1714 unsigned long last, void *entry, gfp_t gfp) 1715 { 1716 XA_STATE(xas, xa, 0); 1717 1718 if (WARN_ON_ONCE(xa_is_internal(entry))) 1719 return XA_ERROR(-EINVAL); 1720 if (last < first) 1721 return XA_ERROR(-EINVAL); 1722 1723 do { 1724 xas_lock(&xas); 1725 if (entry) { 1726 unsigned int order = BITS_PER_LONG; 1727 if (last + 1) 1728 order = __ffs(last + 1); 1729 xas_set_order(&xas, last, order); 1730 xas_create(&xas, true); 1731 if (xas_error(&xas)) 1732 goto unlock; 1733 } 1734 do { 1735 xas_set_range(&xas, first, last); 1736 xas_store(&xas, entry); 1737 if (xas_error(&xas)) 1738 goto unlock; 1739 first += xas_size(&xas); 1740 } while (first <= last); 1741 unlock: 1742 xas_unlock(&xas); 1743 } while (xas_nomem(&xas, gfp)); 1744 1745 return xas_result(&xas, NULL); 1746 } 1747 EXPORT_SYMBOL(xa_store_range); 1748 1749 /** 1750 * xa_get_order() - Get the order of an entry. 1751 * @xa: XArray. 1752 * @index: Index of the entry. 1753 * 1754 * Return: A number between 0 and 63 indicating the order of the entry. 1755 */ 1756 int xa_get_order(struct xarray *xa, unsigned long index) 1757 { 1758 XA_STATE(xas, xa, index); 1759 void *entry; 1760 int order = 0; 1761 1762 rcu_read_lock(); 1763 entry = xas_load(&xas); 1764 1765 if (!entry) 1766 goto unlock; 1767 1768 if (!xas.xa_node) 1769 goto unlock; 1770 1771 for (;;) { 1772 unsigned int slot = xas.xa_offset + (1 << order); 1773 1774 if (slot >= XA_CHUNK_SIZE) 1775 break; 1776 if (!xa_is_sibling(xas.xa_node->slots[slot])) 1777 break; 1778 order++; 1779 } 1780 1781 order += xas.xa_node->shift; 1782 unlock: 1783 rcu_read_unlock(); 1784 1785 return order; 1786 } 1787 EXPORT_SYMBOL(xa_get_order); 1788 #endif /* CONFIG_XARRAY_MULTI */ 1789 1790 /** 1791 * __xa_alloc() - Find somewhere to store this entry in the XArray. 1792 * @xa: XArray. 1793 * @id: Pointer to ID. 1794 * @limit: Range for allocated ID. 1795 * @entry: New entry. 1796 * @gfp: Memory allocation flags. 1797 * 1798 * Finds an empty entry in @xa between @limit.min and @limit.max, 1799 * stores the index into the @id pointer, then stores the entry at 1800 * that index. A concurrent lookup will not see an uninitialised @id. 1801 * 1802 * Context: Any context. Expects xa_lock to be held on entry. May 1803 * release and reacquire xa_lock if @gfp flags permit. 1804 * Return: 0 on success, -ENOMEM if memory could not be allocated or 1805 * -EBUSY if there are no free entries in @limit. 1806 */ 1807 int __xa_alloc(struct xarray *xa, u32 *id, void *entry, 1808 struct xa_limit limit, gfp_t gfp) 1809 { 1810 XA_STATE(xas, xa, 0); 1811 1812 if (WARN_ON_ONCE(xa_is_advanced(entry))) 1813 return -EINVAL; 1814 if (WARN_ON_ONCE(!xa_track_free(xa))) 1815 return -EINVAL; 1816 1817 if (!entry) 1818 entry = XA_ZERO_ENTRY; 1819 1820 do { 1821 xas.xa_index = limit.min; 1822 xas_find_marked(&xas, limit.max, XA_FREE_MARK); 1823 if (xas.xa_node == XAS_RESTART) 1824 xas_set_err(&xas, -EBUSY); 1825 else 1826 *id = xas.xa_index; 1827 xas_store(&xas, entry); 1828 xas_clear_mark(&xas, XA_FREE_MARK); 1829 } while (__xas_nomem(&xas, gfp)); 1830 1831 return xas_error(&xas); 1832 } 1833 EXPORT_SYMBOL(__xa_alloc); 1834 1835 /** 1836 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray. 1837 * @xa: XArray. 1838 * @id: Pointer to ID. 1839 * @entry: New entry. 1840 * @limit: Range of allocated ID. 1841 * @next: Pointer to next ID to allocate. 1842 * @gfp: Memory allocation flags. 1843 * 1844 * Finds an empty entry in @xa between @limit.min and @limit.max, 1845 * stores the index into the @id pointer, then stores the entry at 1846 * that index. A concurrent lookup will not see an uninitialised @id. 1847 * The search for an empty entry will start at @next and will wrap 1848 * around if necessary. 1849 * 1850 * Context: Any context. Expects xa_lock to be held on entry. May 1851 * release and reacquire xa_lock if @gfp flags permit. 1852 * Return: 0 if the allocation succeeded without wrapping. 1 if the 1853 * allocation succeeded after wrapping, -ENOMEM if memory could not be 1854 * allocated or -EBUSY if there are no free entries in @limit. 1855 */ 1856 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 1857 struct xa_limit limit, u32 *next, gfp_t gfp) 1858 { 1859 u32 min = limit.min; 1860 int ret; 1861 1862 limit.min = max(min, *next); 1863 ret = __xa_alloc(xa, id, entry, limit, gfp); 1864 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) { 1865 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED; 1866 ret = 1; 1867 } 1868 1869 if (ret < 0 && limit.min > min) { 1870 limit.min = min; 1871 ret = __xa_alloc(xa, id, entry, limit, gfp); 1872 if (ret == 0) 1873 ret = 1; 1874 } 1875 1876 if (ret >= 0) { 1877 *next = *id + 1; 1878 if (*next == 0) 1879 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED; 1880 } 1881 return ret; 1882 } 1883 EXPORT_SYMBOL(__xa_alloc_cyclic); 1884 1885 /** 1886 * __xa_set_mark() - Set this mark on this entry while locked. 1887 * @xa: XArray. 1888 * @index: Index of entry. 1889 * @mark: Mark number. 1890 * 1891 * Attempting to set a mark on a %NULL entry does not succeed. 1892 * 1893 * Context: Any context. Expects xa_lock to be held on entry. 1894 */ 1895 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1896 { 1897 XA_STATE(xas, xa, index); 1898 void *entry = xas_load(&xas); 1899 1900 if (entry) 1901 xas_set_mark(&xas, mark); 1902 } 1903 EXPORT_SYMBOL(__xa_set_mark); 1904 1905 /** 1906 * __xa_clear_mark() - Clear this mark on this entry while locked. 1907 * @xa: XArray. 1908 * @index: Index of entry. 1909 * @mark: Mark number. 1910 * 1911 * Context: Any context. Expects xa_lock to be held on entry. 1912 */ 1913 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1914 { 1915 XA_STATE(xas, xa, index); 1916 void *entry = xas_load(&xas); 1917 1918 if (entry) 1919 xas_clear_mark(&xas, mark); 1920 } 1921 EXPORT_SYMBOL(__xa_clear_mark); 1922 1923 /** 1924 * xa_get_mark() - Inquire whether this mark is set on this entry. 1925 * @xa: XArray. 1926 * @index: Index of entry. 1927 * @mark: Mark number. 1928 * 1929 * This function uses the RCU read lock, so the result may be out of date 1930 * by the time it returns. If you need the result to be stable, use a lock. 1931 * 1932 * Context: Any context. Takes and releases the RCU lock. 1933 * Return: True if the entry at @index has this mark set, false if it doesn't. 1934 */ 1935 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1936 { 1937 XA_STATE(xas, xa, index); 1938 void *entry; 1939 1940 rcu_read_lock(); 1941 entry = xas_start(&xas); 1942 while (xas_get_mark(&xas, mark)) { 1943 if (!xa_is_node(entry)) 1944 goto found; 1945 entry = xas_descend(&xas, xa_to_node(entry)); 1946 } 1947 rcu_read_unlock(); 1948 return false; 1949 found: 1950 rcu_read_unlock(); 1951 return true; 1952 } 1953 EXPORT_SYMBOL(xa_get_mark); 1954 1955 /** 1956 * xa_set_mark() - Set this mark on this entry. 1957 * @xa: XArray. 1958 * @index: Index of entry. 1959 * @mark: Mark number. 1960 * 1961 * Attempting to set a mark on a %NULL entry does not succeed. 1962 * 1963 * Context: Process context. Takes and releases the xa_lock. 1964 */ 1965 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1966 { 1967 xa_lock(xa); 1968 __xa_set_mark(xa, index, mark); 1969 xa_unlock(xa); 1970 } 1971 EXPORT_SYMBOL(xa_set_mark); 1972 1973 /** 1974 * xa_clear_mark() - Clear this mark on this entry. 1975 * @xa: XArray. 1976 * @index: Index of entry. 1977 * @mark: Mark number. 1978 * 1979 * Clearing a mark always succeeds. 1980 * 1981 * Context: Process context. Takes and releases the xa_lock. 1982 */ 1983 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark) 1984 { 1985 xa_lock(xa); 1986 __xa_clear_mark(xa, index, mark); 1987 xa_unlock(xa); 1988 } 1989 EXPORT_SYMBOL(xa_clear_mark); 1990 1991 /** 1992 * xa_find() - Search the XArray for an entry. 1993 * @xa: XArray. 1994 * @indexp: Pointer to an index. 1995 * @max: Maximum index to search to. 1996 * @filter: Selection criterion. 1997 * 1998 * Finds the entry in @xa which matches the @filter, and has the lowest 1999 * index that is at least @indexp and no more than @max. 2000 * If an entry is found, @indexp is updated to be the index of the entry. 2001 * This function is protected by the RCU read lock, so it may not find 2002 * entries which are being simultaneously added. It will not return an 2003 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2004 * 2005 * Context: Any context. Takes and releases the RCU lock. 2006 * Return: The entry, if found, otherwise %NULL. 2007 */ 2008 void *xa_find(struct xarray *xa, unsigned long *indexp, 2009 unsigned long max, xa_mark_t filter) 2010 { 2011 XA_STATE(xas, xa, *indexp); 2012 void *entry; 2013 2014 rcu_read_lock(); 2015 do { 2016 if ((__force unsigned int)filter < XA_MAX_MARKS) 2017 entry = xas_find_marked(&xas, max, filter); 2018 else 2019 entry = xas_find(&xas, max); 2020 } while (xas_retry(&xas, entry)); 2021 rcu_read_unlock(); 2022 2023 if (entry) 2024 *indexp = xas.xa_index; 2025 return entry; 2026 } 2027 EXPORT_SYMBOL(xa_find); 2028 2029 static bool xas_sibling(struct xa_state *xas) 2030 { 2031 struct xa_node *node = xas->xa_node; 2032 unsigned long mask; 2033 2034 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node) 2035 return false; 2036 mask = (XA_CHUNK_SIZE << node->shift) - 1; 2037 return (xas->xa_index & mask) > 2038 ((unsigned long)xas->xa_offset << node->shift); 2039 } 2040 2041 /** 2042 * xa_find_after() - Search the XArray for a present entry. 2043 * @xa: XArray. 2044 * @indexp: Pointer to an index. 2045 * @max: Maximum index to search to. 2046 * @filter: Selection criterion. 2047 * 2048 * Finds the entry in @xa which matches the @filter and has the lowest 2049 * index that is above @indexp and no more than @max. 2050 * If an entry is found, @indexp is updated to be the index of the entry. 2051 * This function is protected by the RCU read lock, so it may miss entries 2052 * which are being simultaneously added. It will not return an 2053 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find(). 2054 * 2055 * Context: Any context. Takes and releases the RCU lock. 2056 * Return: The pointer, if found, otherwise %NULL. 2057 */ 2058 void *xa_find_after(struct xarray *xa, unsigned long *indexp, 2059 unsigned long max, xa_mark_t filter) 2060 { 2061 XA_STATE(xas, xa, *indexp + 1); 2062 void *entry; 2063 2064 if (xas.xa_index == 0) 2065 return NULL; 2066 2067 rcu_read_lock(); 2068 for (;;) { 2069 if ((__force unsigned int)filter < XA_MAX_MARKS) 2070 entry = xas_find_marked(&xas, max, filter); 2071 else 2072 entry = xas_find(&xas, max); 2073 2074 if (xas_invalid(&xas)) 2075 break; 2076 if (xas_sibling(&xas)) 2077 continue; 2078 if (!xas_retry(&xas, entry)) 2079 break; 2080 } 2081 rcu_read_unlock(); 2082 2083 if (entry) 2084 *indexp = xas.xa_index; 2085 return entry; 2086 } 2087 EXPORT_SYMBOL(xa_find_after); 2088 2089 static unsigned int xas_extract_present(struct xa_state *xas, void **dst, 2090 unsigned long max, unsigned int n) 2091 { 2092 void *entry; 2093 unsigned int i = 0; 2094 2095 rcu_read_lock(); 2096 xas_for_each(xas, entry, max) { 2097 if (xas_retry(xas, entry)) 2098 continue; 2099 dst[i++] = entry; 2100 if (i == n) 2101 break; 2102 } 2103 rcu_read_unlock(); 2104 2105 return i; 2106 } 2107 2108 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst, 2109 unsigned long max, unsigned int n, xa_mark_t mark) 2110 { 2111 void *entry; 2112 unsigned int i = 0; 2113 2114 rcu_read_lock(); 2115 xas_for_each_marked(xas, entry, max, mark) { 2116 if (xas_retry(xas, entry)) 2117 continue; 2118 dst[i++] = entry; 2119 if (i == n) 2120 break; 2121 } 2122 rcu_read_unlock(); 2123 2124 return i; 2125 } 2126 2127 /** 2128 * xa_extract() - Copy selected entries from the XArray into a normal array. 2129 * @xa: The source XArray to copy from. 2130 * @dst: The buffer to copy entries into. 2131 * @start: The first index in the XArray eligible to be selected. 2132 * @max: The last index in the XArray eligible to be selected. 2133 * @n: The maximum number of entries to copy. 2134 * @filter: Selection criterion. 2135 * 2136 * Copies up to @n entries that match @filter from the XArray. The 2137 * copied entries will have indices between @start and @max, inclusive. 2138 * 2139 * The @filter may be an XArray mark value, in which case entries which are 2140 * marked with that mark will be copied. It may also be %XA_PRESENT, in 2141 * which case all entries which are not %NULL will be copied. 2142 * 2143 * The entries returned may not represent a snapshot of the XArray at a 2144 * moment in time. For example, if another thread stores to index 5, then 2145 * index 10, calling xa_extract() may return the old contents of index 5 2146 * and the new contents of index 10. Indices not modified while this 2147 * function is running will not be skipped. 2148 * 2149 * If you need stronger guarantees, holding the xa_lock across calls to this 2150 * function will prevent concurrent modification. 2151 * 2152 * Context: Any context. Takes and releases the RCU lock. 2153 * Return: The number of entries copied. 2154 */ 2155 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start, 2156 unsigned long max, unsigned int n, xa_mark_t filter) 2157 { 2158 XA_STATE(xas, xa, start); 2159 2160 if (!n) 2161 return 0; 2162 2163 if ((__force unsigned int)filter < XA_MAX_MARKS) 2164 return xas_extract_marked(&xas, dst, max, n, filter); 2165 return xas_extract_present(&xas, dst, max, n); 2166 } 2167 EXPORT_SYMBOL(xa_extract); 2168 2169 /** 2170 * xa_delete_node() - Private interface for workingset code. 2171 * @node: Node to be removed from the tree. 2172 * @update: Function to call to update ancestor nodes. 2173 * 2174 * Context: xa_lock must be held on entry and will not be released. 2175 */ 2176 void xa_delete_node(struct xa_node *node, xa_update_node_t update) 2177 { 2178 struct xa_state xas = { 2179 .xa = node->array, 2180 .xa_index = (unsigned long)node->offset << 2181 (node->shift + XA_CHUNK_SHIFT), 2182 .xa_shift = node->shift + XA_CHUNK_SHIFT, 2183 .xa_offset = node->offset, 2184 .xa_node = xa_parent_locked(node->array, node), 2185 .xa_update = update, 2186 }; 2187 2188 xas_store(&xas, NULL); 2189 } 2190 EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */ 2191 2192 /** 2193 * xa_destroy() - Free all internal data structures. 2194 * @xa: XArray. 2195 * 2196 * After calling this function, the XArray is empty and has freed all memory 2197 * allocated for its internal data structures. You are responsible for 2198 * freeing the objects referenced by the XArray. 2199 * 2200 * Context: Any context. Takes and releases the xa_lock, interrupt-safe. 2201 */ 2202 void xa_destroy(struct xarray *xa) 2203 { 2204 XA_STATE(xas, xa, 0); 2205 unsigned long flags; 2206 void *entry; 2207 2208 xas.xa_node = NULL; 2209 xas_lock_irqsave(&xas, flags); 2210 entry = xa_head_locked(xa); 2211 RCU_INIT_POINTER(xa->xa_head, NULL); 2212 xas_init_marks(&xas); 2213 if (xa_zero_busy(xa)) 2214 xa_mark_clear(xa, XA_FREE_MARK); 2215 /* lockdep checks we're still holding the lock in xas_free_nodes() */ 2216 if (xa_is_node(entry)) 2217 xas_free_nodes(&xas, xa_to_node(entry)); 2218 xas_unlock_irqrestore(&xas, flags); 2219 } 2220 EXPORT_SYMBOL(xa_destroy); 2221 2222 #ifdef XA_DEBUG 2223 void xa_dump_node(const struct xa_node *node) 2224 { 2225 unsigned i, j; 2226 2227 if (!node) 2228 return; 2229 if ((unsigned long)node & 3) { 2230 pr_cont("node %px\n", node); 2231 return; 2232 } 2233 2234 pr_cont("node %px %s %d parent %px shift %d count %d values %d " 2235 "array %px list %px %px marks", 2236 node, node->parent ? "offset" : "max", node->offset, 2237 node->parent, node->shift, node->count, node->nr_values, 2238 node->array, node->private_list.prev, node->private_list.next); 2239 for (i = 0; i < XA_MAX_MARKS; i++) 2240 for (j = 0; j < XA_MARK_LONGS; j++) 2241 pr_cont(" %lx", node->marks[i][j]); 2242 pr_cont("\n"); 2243 } 2244 2245 void xa_dump_index(unsigned long index, unsigned int shift) 2246 { 2247 if (!shift) 2248 pr_info("%lu: ", index); 2249 else if (shift >= BITS_PER_LONG) 2250 pr_info("0-%lu: ", ~0UL); 2251 else 2252 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1)); 2253 } 2254 2255 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift) 2256 { 2257 if (!entry) 2258 return; 2259 2260 xa_dump_index(index, shift); 2261 2262 if (xa_is_node(entry)) { 2263 if (shift == 0) { 2264 pr_cont("%px\n", entry); 2265 } else { 2266 unsigned long i; 2267 struct xa_node *node = xa_to_node(entry); 2268 xa_dump_node(node); 2269 for (i = 0; i < XA_CHUNK_SIZE; i++) 2270 xa_dump_entry(node->slots[i], 2271 index + (i << node->shift), node->shift); 2272 } 2273 } else if (xa_is_value(entry)) 2274 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry), 2275 xa_to_value(entry), entry); 2276 else if (!xa_is_internal(entry)) 2277 pr_cont("%px\n", entry); 2278 else if (xa_is_retry(entry)) 2279 pr_cont("retry (%ld)\n", xa_to_internal(entry)); 2280 else if (xa_is_sibling(entry)) 2281 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry)); 2282 else if (xa_is_zero(entry)) 2283 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 2284 else 2285 pr_cont("UNKNOWN ENTRY (%px)\n", entry); 2286 } 2287 2288 void xa_dump(const struct xarray *xa) 2289 { 2290 void *entry = xa->xa_head; 2291 unsigned int shift = 0; 2292 2293 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry, 2294 xa->xa_flags, xa_marked(xa, XA_MARK_0), 2295 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2)); 2296 if (xa_is_node(entry)) 2297 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT; 2298 xa_dump_entry(entry, 0, shift); 2299 } 2300 #endif 2301