1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Maple Tree implementation 4 * Copyright (c) 2018-2022 Oracle Corporation 5 * Authors: Liam R. Howlett <[email protected]> 6 * Matthew Wilcox <[email protected]> 7 * Copyright (c) 2023 ByteDance 8 * Author: Peng Zhang <[email protected]> 9 */ 10 11 /* 12 * DOC: Interesting implementation details of the Maple Tree 13 * 14 * Each node type has a number of slots for entries and a number of slots for 15 * pivots. In the case of dense nodes, the pivots are implied by the position 16 * and are simply the slot index + the minimum of the node. 17 * 18 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 19 * indicate that the tree is specifying ranges. Pivots may appear in the 20 * subtree with an entry attached to the value whereas keys are unique to a 21 * specific position of a B-tree. Pivot values are inclusive of the slot with 22 * the same index. 23 * 24 * 25 * The following illustrates the layout of a range64 nodes slots and pivots. 26 * 27 * 28 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | 29 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ 30 * │ │ │ │ │ │ │ │ └─ Implied maximum 31 * │ │ │ │ │ │ │ └─ Pivot 14 32 * │ │ │ │ │ │ └─ Pivot 13 33 * │ │ │ │ │ └─ Pivot 12 34 * │ │ │ │ └─ Pivot 11 35 * │ │ │ └─ Pivot 2 36 * │ │ └─ Pivot 1 37 * │ └─ Pivot 0 38 * └─ Implied minimum 39 * 40 * Slot contents: 41 * Internal (non-leaf) nodes contain pointers to other nodes. 42 * Leaf nodes contain entries. 43 * 44 * The location of interest is often referred to as an offset. All offsets have 45 * a slot, but the last offset has an implied pivot from the node above (or 46 * UINT_MAX for the root node. 47 * 48 * Ranges complicate certain write activities. When modifying any of 49 * the B-tree variants, it is known that one entry will either be added or 50 * deleted. When modifying the Maple Tree, one store operation may overwrite 51 * the entire data set, or one half of the tree, or the middle half of the tree. 52 * 53 */ 54 55 56 #include <linux/maple_tree.h> 57 #include <linux/xarray.h> 58 #include <linux/types.h> 59 #include <linux/export.h> 60 #include <linux/slab.h> 61 #include <linux/limits.h> 62 #include <asm/barrier.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/maple_tree.h> 66 67 #define MA_ROOT_PARENT 1 68 69 /* 70 * Maple state flags 71 * * MA_STATE_BULK - Bulk insert mode 72 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert 73 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation 74 */ 75 #define MA_STATE_BULK 1 76 #define MA_STATE_REBALANCE 2 77 #define MA_STATE_PREALLOC 4 78 79 #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) 80 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT) 81 #define ma_mnode_ptr(x) ((struct maple_node *)(x)) 82 #define ma_enode_ptr(x) ((struct maple_enode *)(x)) 83 static struct kmem_cache *maple_node_cache; 84 85 #ifdef CONFIG_DEBUG_MAPLE_TREE 86 static const unsigned long mt_max[] = { 87 [maple_dense] = MAPLE_NODE_SLOTS, 88 [maple_leaf_64] = ULONG_MAX, 89 [maple_range_64] = ULONG_MAX, 90 [maple_arange_64] = ULONG_MAX, 91 }; 92 #define mt_node_max(x) mt_max[mte_node_type(x)] 93 #endif 94 95 static const unsigned char mt_slots[] = { 96 [maple_dense] = MAPLE_NODE_SLOTS, 97 [maple_leaf_64] = MAPLE_RANGE64_SLOTS, 98 [maple_range_64] = MAPLE_RANGE64_SLOTS, 99 [maple_arange_64] = MAPLE_ARANGE64_SLOTS, 100 }; 101 #define mt_slot_count(x) mt_slots[mte_node_type(x)] 102 103 static const unsigned char mt_pivots[] = { 104 [maple_dense] = 0, 105 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1, 106 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1, 107 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1, 108 }; 109 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] 110 111 static const unsigned char mt_min_slots[] = { 112 [maple_dense] = MAPLE_NODE_SLOTS / 2, 113 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 114 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 115 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1, 116 }; 117 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] 118 119 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2) 120 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1) 121 122 struct maple_big_node { 123 struct maple_pnode *parent; 124 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; 125 union { 126 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; 127 struct { 128 unsigned long padding[MAPLE_BIG_NODE_GAPS]; 129 unsigned long gap[MAPLE_BIG_NODE_GAPS]; 130 }; 131 }; 132 unsigned char b_end; 133 enum maple_type type; 134 }; 135 136 /* 137 * The maple_subtree_state is used to build a tree to replace a segment of an 138 * existing tree in a more atomic way. Any walkers of the older tree will hit a 139 * dead node and restart on updates. 140 */ 141 struct maple_subtree_state { 142 struct ma_state *orig_l; /* Original left side of subtree */ 143 struct ma_state *orig_r; /* Original right side of subtree */ 144 struct ma_state *l; /* New left side of subtree */ 145 struct ma_state *m; /* New middle of subtree (rare) */ 146 struct ma_state *r; /* New right side of subtree */ 147 struct ma_topiary *free; /* nodes to be freed */ 148 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */ 149 struct maple_big_node *bn; 150 }; 151 152 #ifdef CONFIG_KASAN_STACK 153 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */ 154 #define noinline_for_kasan noinline_for_stack 155 #else 156 #define noinline_for_kasan inline 157 #endif 158 159 /* Functions */ 160 static inline struct maple_node *mt_alloc_one(gfp_t gfp) 161 { 162 return kmem_cache_alloc(maple_node_cache, gfp); 163 } 164 165 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes) 166 { 167 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes); 168 } 169 170 static inline void mt_free_one(struct maple_node *node) 171 { 172 kmem_cache_free(maple_node_cache, node); 173 } 174 175 static inline void mt_free_bulk(size_t size, void __rcu **nodes) 176 { 177 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); 178 } 179 180 static void mt_free_rcu(struct rcu_head *head) 181 { 182 struct maple_node *node = container_of(head, struct maple_node, rcu); 183 184 kmem_cache_free(maple_node_cache, node); 185 } 186 187 /* 188 * ma_free_rcu() - Use rcu callback to free a maple node 189 * @node: The node to free 190 * 191 * The maple tree uses the parent pointer to indicate this node is no longer in 192 * use and will be freed. 193 */ 194 static void ma_free_rcu(struct maple_node *node) 195 { 196 WARN_ON(node->parent != ma_parent_ptr(node)); 197 call_rcu(&node->rcu, mt_free_rcu); 198 } 199 200 static void mas_set_height(struct ma_state *mas) 201 { 202 unsigned int new_flags = mas->tree->ma_flags; 203 204 new_flags &= ~MT_FLAGS_HEIGHT_MASK; 205 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX); 206 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET; 207 mas->tree->ma_flags = new_flags; 208 } 209 210 static unsigned int mas_mt_height(struct ma_state *mas) 211 { 212 return mt_height(mas->tree); 213 } 214 215 static inline unsigned int mt_attr(struct maple_tree *mt) 216 { 217 return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK; 218 } 219 220 static __always_inline enum maple_type mte_node_type( 221 const struct maple_enode *entry) 222 { 223 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & 224 MAPLE_NODE_TYPE_MASK; 225 } 226 227 static __always_inline bool ma_is_dense(const enum maple_type type) 228 { 229 return type < maple_leaf_64; 230 } 231 232 static __always_inline bool ma_is_leaf(const enum maple_type type) 233 { 234 return type < maple_range_64; 235 } 236 237 static __always_inline bool mte_is_leaf(const struct maple_enode *entry) 238 { 239 return ma_is_leaf(mte_node_type(entry)); 240 } 241 242 /* 243 * We also reserve values with the bottom two bits set to '10' which are 244 * below 4096 245 */ 246 static __always_inline bool mt_is_reserved(const void *entry) 247 { 248 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && 249 xa_is_internal(entry); 250 } 251 252 static __always_inline void mas_set_err(struct ma_state *mas, long err) 253 { 254 mas->node = MA_ERROR(err); 255 mas->status = ma_error; 256 } 257 258 static __always_inline bool mas_is_ptr(const struct ma_state *mas) 259 { 260 return mas->status == ma_root; 261 } 262 263 static __always_inline bool mas_is_start(const struct ma_state *mas) 264 { 265 return mas->status == ma_start; 266 } 267 268 static __always_inline bool mas_is_none(const struct ma_state *mas) 269 { 270 return mas->status == ma_none; 271 } 272 273 static __always_inline bool mas_is_paused(const struct ma_state *mas) 274 { 275 return mas->status == ma_pause; 276 } 277 278 static __always_inline bool mas_is_overflow(struct ma_state *mas) 279 { 280 return mas->status == ma_overflow; 281 } 282 283 static inline bool mas_is_underflow(struct ma_state *mas) 284 { 285 return mas->status == ma_underflow; 286 } 287 288 static __always_inline struct maple_node *mte_to_node( 289 const struct maple_enode *entry) 290 { 291 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); 292 } 293 294 /* 295 * mte_to_mat() - Convert a maple encoded node to a maple topiary node. 296 * @entry: The maple encoded node 297 * 298 * Return: a maple topiary pointer 299 */ 300 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) 301 { 302 return (struct maple_topiary *) 303 ((unsigned long)entry & ~MAPLE_NODE_MASK); 304 } 305 306 /* 307 * mas_mn() - Get the maple state node. 308 * @mas: The maple state 309 * 310 * Return: the maple node (not encoded - bare pointer). 311 */ 312 static inline struct maple_node *mas_mn(const struct ma_state *mas) 313 { 314 return mte_to_node(mas->node); 315 } 316 317 /* 318 * mte_set_node_dead() - Set a maple encoded node as dead. 319 * @mn: The maple encoded node. 320 */ 321 static inline void mte_set_node_dead(struct maple_enode *mn) 322 { 323 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); 324 smp_wmb(); /* Needed for RCU */ 325 } 326 327 /* Bit 1 indicates the root is a node */ 328 #define MAPLE_ROOT_NODE 0x02 329 /* maple_type stored bit 3-6 */ 330 #define MAPLE_ENODE_TYPE_SHIFT 0x03 331 /* Bit 2 means a NULL somewhere below */ 332 #define MAPLE_ENODE_NULL 0x04 333 334 static inline struct maple_enode *mt_mk_node(const struct maple_node *node, 335 enum maple_type type) 336 { 337 return (void *)((unsigned long)node | 338 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); 339 } 340 341 static inline void *mte_mk_root(const struct maple_enode *node) 342 { 343 return (void *)((unsigned long)node | MAPLE_ROOT_NODE); 344 } 345 346 static inline void *mte_safe_root(const struct maple_enode *node) 347 { 348 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); 349 } 350 351 static inline void *mte_set_full(const struct maple_enode *node) 352 { 353 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); 354 } 355 356 static inline void *mte_clear_full(const struct maple_enode *node) 357 { 358 return (void *)((unsigned long)node | MAPLE_ENODE_NULL); 359 } 360 361 static inline bool mte_has_null(const struct maple_enode *node) 362 { 363 return (unsigned long)node & MAPLE_ENODE_NULL; 364 } 365 366 static __always_inline bool ma_is_root(struct maple_node *node) 367 { 368 return ((unsigned long)node->parent & MA_ROOT_PARENT); 369 } 370 371 static __always_inline bool mte_is_root(const struct maple_enode *node) 372 { 373 return ma_is_root(mte_to_node(node)); 374 } 375 376 static inline bool mas_is_root_limits(const struct ma_state *mas) 377 { 378 return !mas->min && mas->max == ULONG_MAX; 379 } 380 381 static __always_inline bool mt_is_alloc(struct maple_tree *mt) 382 { 383 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); 384 } 385 386 /* 387 * The Parent Pointer 388 * Excluding root, the parent pointer is 256B aligned like all other tree nodes. 389 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16 390 * bit values need an extra bit to store the offset. This extra bit comes from 391 * a reuse of the last bit in the node type. This is possible by using bit 1 to 392 * indicate if bit 2 is part of the type or the slot. 393 * 394 * Note types: 395 * 0x??1 = Root 396 * 0x?00 = 16 bit nodes 397 * 0x010 = 32 bit nodes 398 * 0x110 = 64 bit nodes 399 * 400 * Slot size and alignment 401 * 0b??1 : Root 402 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7 403 * 0b010 : 32 bit values, type in 0-2, slot in 3-7 404 * 0b110 : 64 bit values, type in 0-2, slot in 3-7 405 */ 406 407 #define MAPLE_PARENT_ROOT 0x01 408 409 #define MAPLE_PARENT_SLOT_SHIFT 0x03 410 #define MAPLE_PARENT_SLOT_MASK 0xF8 411 412 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02 413 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC 414 415 #define MAPLE_PARENT_RANGE64 0x06 416 #define MAPLE_PARENT_RANGE32 0x04 417 #define MAPLE_PARENT_NOT_RANGE16 0x02 418 419 /* 420 * mte_parent_shift() - Get the parent shift for the slot storage. 421 * @parent: The parent pointer cast as an unsigned long 422 * Return: The shift into that pointer to the star to of the slot 423 */ 424 static inline unsigned long mte_parent_shift(unsigned long parent) 425 { 426 /* Note bit 1 == 0 means 16B */ 427 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 428 return MAPLE_PARENT_SLOT_SHIFT; 429 430 return MAPLE_PARENT_16B_SLOT_SHIFT; 431 } 432 433 /* 434 * mte_parent_slot_mask() - Get the slot mask for the parent. 435 * @parent: The parent pointer cast as an unsigned long. 436 * Return: The slot mask for that parent. 437 */ 438 static inline unsigned long mte_parent_slot_mask(unsigned long parent) 439 { 440 /* Note bit 1 == 0 means 16B */ 441 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 442 return MAPLE_PARENT_SLOT_MASK; 443 444 return MAPLE_PARENT_16B_SLOT_MASK; 445 } 446 447 /* 448 * mas_parent_type() - Return the maple_type of the parent from the stored 449 * parent type. 450 * @mas: The maple state 451 * @enode: The maple_enode to extract the parent's enum 452 * Return: The node->parent maple_type 453 */ 454 static inline 455 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode) 456 { 457 unsigned long p_type; 458 459 p_type = (unsigned long)mte_to_node(enode)->parent; 460 if (WARN_ON(p_type & MAPLE_PARENT_ROOT)) 461 return 0; 462 463 p_type &= MAPLE_NODE_MASK; 464 p_type &= ~mte_parent_slot_mask(p_type); 465 switch (p_type) { 466 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ 467 if (mt_is_alloc(mas->tree)) 468 return maple_arange_64; 469 return maple_range_64; 470 } 471 472 return 0; 473 } 474 475 /* 476 * mas_set_parent() - Set the parent node and encode the slot 477 * @enode: The encoded maple node. 478 * @parent: The encoded maple node that is the parent of @enode. 479 * @slot: The slot that @enode resides in @parent. 480 * 481 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the 482 * parent type. 483 */ 484 static inline 485 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode, 486 const struct maple_enode *parent, unsigned char slot) 487 { 488 unsigned long val = (unsigned long)parent; 489 unsigned long shift; 490 unsigned long type; 491 enum maple_type p_type = mte_node_type(parent); 492 493 MAS_BUG_ON(mas, p_type == maple_dense); 494 MAS_BUG_ON(mas, p_type == maple_leaf_64); 495 496 switch (p_type) { 497 case maple_range_64: 498 case maple_arange_64: 499 shift = MAPLE_PARENT_SLOT_SHIFT; 500 type = MAPLE_PARENT_RANGE64; 501 break; 502 default: 503 case maple_dense: 504 case maple_leaf_64: 505 shift = type = 0; 506 break; 507 } 508 509 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ 510 val |= (slot << shift) | type; 511 mte_to_node(enode)->parent = ma_parent_ptr(val); 512 } 513 514 /* 515 * mte_parent_slot() - get the parent slot of @enode. 516 * @enode: The encoded maple node. 517 * 518 * Return: The slot in the parent node where @enode resides. 519 */ 520 static __always_inline 521 unsigned int mte_parent_slot(const struct maple_enode *enode) 522 { 523 unsigned long val = (unsigned long)mte_to_node(enode)->parent; 524 525 if (unlikely(val & MA_ROOT_PARENT)) 526 return 0; 527 528 /* 529 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost 530 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT 531 */ 532 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); 533 } 534 535 /* 536 * mte_parent() - Get the parent of @node. 537 * @node: The encoded maple node. 538 * 539 * Return: The parent maple node. 540 */ 541 static __always_inline 542 struct maple_node *mte_parent(const struct maple_enode *enode) 543 { 544 return (void *)((unsigned long) 545 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 546 } 547 548 /* 549 * ma_dead_node() - check if the @enode is dead. 550 * @enode: The encoded maple node 551 * 552 * Return: true if dead, false otherwise. 553 */ 554 static __always_inline bool ma_dead_node(const struct maple_node *node) 555 { 556 struct maple_node *parent; 557 558 /* Do not reorder reads from the node prior to the parent check */ 559 smp_rmb(); 560 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK); 561 return (parent == node); 562 } 563 564 /* 565 * mte_dead_node() - check if the @enode is dead. 566 * @enode: The encoded maple node 567 * 568 * Return: true if dead, false otherwise. 569 */ 570 static __always_inline bool mte_dead_node(const struct maple_enode *enode) 571 { 572 struct maple_node *parent, *node; 573 574 node = mte_to_node(enode); 575 /* Do not reorder reads from the node prior to the parent check */ 576 smp_rmb(); 577 parent = mte_parent(enode); 578 return (parent == node); 579 } 580 581 /* 582 * mas_allocated() - Get the number of nodes allocated in a maple state. 583 * @mas: The maple state 584 * 585 * The ma_state alloc member is overloaded to hold a pointer to the first 586 * allocated node or to the number of requested nodes to allocate. If bit 0 is 587 * set, then the alloc contains the number of requested nodes. If there is an 588 * allocated node, then the total allocated nodes is in that node. 589 * 590 * Return: The total number of nodes allocated 591 */ 592 static inline unsigned long mas_allocated(const struct ma_state *mas) 593 { 594 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) 595 return 0; 596 597 return mas->alloc->total; 598 } 599 600 /* 601 * mas_set_alloc_req() - Set the requested number of allocations. 602 * @mas: the maple state 603 * @count: the number of allocations. 604 * 605 * The requested number of allocations is either in the first allocated node, 606 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is 607 * no allocated node. Set the request either in the node or do the necessary 608 * encoding to store in @mas->alloc directly. 609 */ 610 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count) 611 { 612 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) { 613 if (!count) 614 mas->alloc = NULL; 615 else 616 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U); 617 return; 618 } 619 620 mas->alloc->request_count = count; 621 } 622 623 /* 624 * mas_alloc_req() - get the requested number of allocations. 625 * @mas: The maple state 626 * 627 * The alloc count is either stored directly in @mas, or in 628 * @mas->alloc->request_count if there is at least one node allocated. Decode 629 * the request count if it's stored directly in @mas->alloc. 630 * 631 * Return: The allocation request count. 632 */ 633 static inline unsigned int mas_alloc_req(const struct ma_state *mas) 634 { 635 if ((unsigned long)mas->alloc & 0x1) 636 return (unsigned long)(mas->alloc) >> 1; 637 else if (mas->alloc) 638 return mas->alloc->request_count; 639 return 0; 640 } 641 642 /* 643 * ma_pivots() - Get a pointer to the maple node pivots. 644 * @node - the maple node 645 * @type - the node type 646 * 647 * In the event of a dead node, this array may be %NULL 648 * 649 * Return: A pointer to the maple node pivots 650 */ 651 static inline unsigned long *ma_pivots(struct maple_node *node, 652 enum maple_type type) 653 { 654 switch (type) { 655 case maple_arange_64: 656 return node->ma64.pivot; 657 case maple_range_64: 658 case maple_leaf_64: 659 return node->mr64.pivot; 660 case maple_dense: 661 return NULL; 662 } 663 return NULL; 664 } 665 666 /* 667 * ma_gaps() - Get a pointer to the maple node gaps. 668 * @node - the maple node 669 * @type - the node type 670 * 671 * Return: A pointer to the maple node gaps 672 */ 673 static inline unsigned long *ma_gaps(struct maple_node *node, 674 enum maple_type type) 675 { 676 switch (type) { 677 case maple_arange_64: 678 return node->ma64.gap; 679 case maple_range_64: 680 case maple_leaf_64: 681 case maple_dense: 682 return NULL; 683 } 684 return NULL; 685 } 686 687 /* 688 * mas_safe_pivot() - get the pivot at @piv or mas->max. 689 * @mas: The maple state 690 * @pivots: The pointer to the maple node pivots 691 * @piv: The pivot to fetch 692 * @type: The maple node type 693 * 694 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max 695 * otherwise. 696 */ 697 static __always_inline unsigned long 698 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, 699 unsigned char piv, enum maple_type type) 700 { 701 if (piv >= mt_pivots[type]) 702 return mas->max; 703 704 return pivots[piv]; 705 } 706 707 /* 708 * mas_safe_min() - Return the minimum for a given offset. 709 * @mas: The maple state 710 * @pivots: The pointer to the maple node pivots 711 * @offset: The offset into the pivot array 712 * 713 * Return: The minimum range value that is contained in @offset. 714 */ 715 static inline unsigned long 716 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) 717 { 718 if (likely(offset)) 719 return pivots[offset - 1] + 1; 720 721 return mas->min; 722 } 723 724 /* 725 * mte_set_pivot() - Set a pivot to a value in an encoded maple node. 726 * @mn: The encoded maple node 727 * @piv: The pivot offset 728 * @val: The value of the pivot 729 */ 730 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, 731 unsigned long val) 732 { 733 struct maple_node *node = mte_to_node(mn); 734 enum maple_type type = mte_node_type(mn); 735 736 BUG_ON(piv >= mt_pivots[type]); 737 switch (type) { 738 case maple_range_64: 739 case maple_leaf_64: 740 node->mr64.pivot[piv] = val; 741 break; 742 case maple_arange_64: 743 node->ma64.pivot[piv] = val; 744 break; 745 case maple_dense: 746 break; 747 } 748 749 } 750 751 /* 752 * ma_slots() - Get a pointer to the maple node slots. 753 * @mn: The maple node 754 * @mt: The maple node type 755 * 756 * Return: A pointer to the maple node slots 757 */ 758 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) 759 { 760 switch (mt) { 761 case maple_arange_64: 762 return mn->ma64.slot; 763 case maple_range_64: 764 case maple_leaf_64: 765 return mn->mr64.slot; 766 case maple_dense: 767 return mn->slot; 768 } 769 770 return NULL; 771 } 772 773 static inline bool mt_write_locked(const struct maple_tree *mt) 774 { 775 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) : 776 lockdep_is_held(&mt->ma_lock); 777 } 778 779 static __always_inline bool mt_locked(const struct maple_tree *mt) 780 { 781 return mt_external_lock(mt) ? mt_lock_is_held(mt) : 782 lockdep_is_held(&mt->ma_lock); 783 } 784 785 static __always_inline void *mt_slot(const struct maple_tree *mt, 786 void __rcu **slots, unsigned char offset) 787 { 788 return rcu_dereference_check(slots[offset], mt_locked(mt)); 789 } 790 791 static __always_inline void *mt_slot_locked(struct maple_tree *mt, 792 void __rcu **slots, unsigned char offset) 793 { 794 return rcu_dereference_protected(slots[offset], mt_write_locked(mt)); 795 } 796 /* 797 * mas_slot_locked() - Get the slot value when holding the maple tree lock. 798 * @mas: The maple state 799 * @slots: The pointer to the slots 800 * @offset: The offset into the slots array to fetch 801 * 802 * Return: The entry stored in @slots at the @offset. 803 */ 804 static __always_inline void *mas_slot_locked(struct ma_state *mas, 805 void __rcu **slots, unsigned char offset) 806 { 807 return mt_slot_locked(mas->tree, slots, offset); 808 } 809 810 /* 811 * mas_slot() - Get the slot value when not holding the maple tree lock. 812 * @mas: The maple state 813 * @slots: The pointer to the slots 814 * @offset: The offset into the slots array to fetch 815 * 816 * Return: The entry stored in @slots at the @offset 817 */ 818 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots, 819 unsigned char offset) 820 { 821 return mt_slot(mas->tree, slots, offset); 822 } 823 824 /* 825 * mas_root() - Get the maple tree root. 826 * @mas: The maple state. 827 * 828 * Return: The pointer to the root of the tree 829 */ 830 static __always_inline void *mas_root(struct ma_state *mas) 831 { 832 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); 833 } 834 835 static inline void *mt_root_locked(struct maple_tree *mt) 836 { 837 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt)); 838 } 839 840 /* 841 * mas_root_locked() - Get the maple tree root when holding the maple tree lock. 842 * @mas: The maple state. 843 * 844 * Return: The pointer to the root of the tree 845 */ 846 static inline void *mas_root_locked(struct ma_state *mas) 847 { 848 return mt_root_locked(mas->tree); 849 } 850 851 static inline struct maple_metadata *ma_meta(struct maple_node *mn, 852 enum maple_type mt) 853 { 854 switch (mt) { 855 case maple_arange_64: 856 return &mn->ma64.meta; 857 default: 858 return &mn->mr64.meta; 859 } 860 } 861 862 /* 863 * ma_set_meta() - Set the metadata information of a node. 864 * @mn: The maple node 865 * @mt: The maple node type 866 * @offset: The offset of the highest sub-gap in this node. 867 * @end: The end of the data in this node. 868 */ 869 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, 870 unsigned char offset, unsigned char end) 871 { 872 struct maple_metadata *meta = ma_meta(mn, mt); 873 874 meta->gap = offset; 875 meta->end = end; 876 } 877 878 /* 879 * mt_clear_meta() - clear the metadata information of a node, if it exists 880 * @mt: The maple tree 881 * @mn: The maple node 882 * @type: The maple node type 883 * @offset: The offset of the highest sub-gap in this node. 884 * @end: The end of the data in this node. 885 */ 886 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn, 887 enum maple_type type) 888 { 889 struct maple_metadata *meta; 890 unsigned long *pivots; 891 void __rcu **slots; 892 void *next; 893 894 switch (type) { 895 case maple_range_64: 896 pivots = mn->mr64.pivot; 897 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) { 898 slots = mn->mr64.slot; 899 next = mt_slot_locked(mt, slots, 900 MAPLE_RANGE64_SLOTS - 1); 901 if (unlikely((mte_to_node(next) && 902 mte_node_type(next)))) 903 return; /* no metadata, could be node */ 904 } 905 fallthrough; 906 case maple_arange_64: 907 meta = ma_meta(mn, type); 908 break; 909 default: 910 return; 911 } 912 913 meta->gap = 0; 914 meta->end = 0; 915 } 916 917 /* 918 * ma_meta_end() - Get the data end of a node from the metadata 919 * @mn: The maple node 920 * @mt: The maple node type 921 */ 922 static inline unsigned char ma_meta_end(struct maple_node *mn, 923 enum maple_type mt) 924 { 925 struct maple_metadata *meta = ma_meta(mn, mt); 926 927 return meta->end; 928 } 929 930 /* 931 * ma_meta_gap() - Get the largest gap location of a node from the metadata 932 * @mn: The maple node 933 */ 934 static inline unsigned char ma_meta_gap(struct maple_node *mn) 935 { 936 return mn->ma64.meta.gap; 937 } 938 939 /* 940 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata 941 * @mn: The maple node 942 * @mn: The maple node type 943 * @offset: The location of the largest gap. 944 */ 945 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, 946 unsigned char offset) 947 { 948 949 struct maple_metadata *meta = ma_meta(mn, mt); 950 951 meta->gap = offset; 952 } 953 954 /* 955 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. 956 * @mat - the ma_topiary, a linked list of dead nodes. 957 * @dead_enode - the node to be marked as dead and added to the tail of the list 958 * 959 * Add the @dead_enode to the linked list in @mat. 960 */ 961 static inline void mat_add(struct ma_topiary *mat, 962 struct maple_enode *dead_enode) 963 { 964 mte_set_node_dead(dead_enode); 965 mte_to_mat(dead_enode)->next = NULL; 966 if (!mat->tail) { 967 mat->tail = mat->head = dead_enode; 968 return; 969 } 970 971 mte_to_mat(mat->tail)->next = dead_enode; 972 mat->tail = dead_enode; 973 } 974 975 static void mt_free_walk(struct rcu_head *head); 976 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 977 bool free); 978 /* 979 * mas_mat_destroy() - Free all nodes and subtrees in a dead list. 980 * @mas - the maple state 981 * @mat - the ma_topiary linked list of dead nodes to free. 982 * 983 * Destroy walk a dead list. 984 */ 985 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) 986 { 987 struct maple_enode *next; 988 struct maple_node *node; 989 bool in_rcu = mt_in_rcu(mas->tree); 990 991 while (mat->head) { 992 next = mte_to_mat(mat->head)->next; 993 node = mte_to_node(mat->head); 994 mt_destroy_walk(mat->head, mas->tree, !in_rcu); 995 if (in_rcu) 996 call_rcu(&node->rcu, mt_free_walk); 997 mat->head = next; 998 } 999 } 1000 /* 1001 * mas_descend() - Descend into the slot stored in the ma_state. 1002 * @mas - the maple state. 1003 * 1004 * Note: Not RCU safe, only use in write side or debug code. 1005 */ 1006 static inline void mas_descend(struct ma_state *mas) 1007 { 1008 enum maple_type type; 1009 unsigned long *pivots; 1010 struct maple_node *node; 1011 void __rcu **slots; 1012 1013 node = mas_mn(mas); 1014 type = mte_node_type(mas->node); 1015 pivots = ma_pivots(node, type); 1016 slots = ma_slots(node, type); 1017 1018 if (mas->offset) 1019 mas->min = pivots[mas->offset - 1] + 1; 1020 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); 1021 mas->node = mas_slot(mas, slots, mas->offset); 1022 } 1023 1024 /* 1025 * mte_set_gap() - Set a maple node gap. 1026 * @mn: The encoded maple node 1027 * @gap: The offset of the gap to set 1028 * @val: The gap value 1029 */ 1030 static inline void mte_set_gap(const struct maple_enode *mn, 1031 unsigned char gap, unsigned long val) 1032 { 1033 switch (mte_node_type(mn)) { 1034 default: 1035 break; 1036 case maple_arange_64: 1037 mte_to_node(mn)->ma64.gap[gap] = val; 1038 break; 1039 } 1040 } 1041 1042 /* 1043 * mas_ascend() - Walk up a level of the tree. 1044 * @mas: The maple state 1045 * 1046 * Sets the @mas->max and @mas->min to the correct values when walking up. This 1047 * may cause several levels of walking up to find the correct min and max. 1048 * May find a dead node which will cause a premature return. 1049 * Return: 1 on dead node, 0 otherwise 1050 */ 1051 static int mas_ascend(struct ma_state *mas) 1052 { 1053 struct maple_enode *p_enode; /* parent enode. */ 1054 struct maple_enode *a_enode; /* ancestor enode. */ 1055 struct maple_node *a_node; /* ancestor node. */ 1056 struct maple_node *p_node; /* parent node. */ 1057 unsigned char a_slot; 1058 enum maple_type a_type; 1059 unsigned long min, max; 1060 unsigned long *pivots; 1061 bool set_max = false, set_min = false; 1062 1063 a_node = mas_mn(mas); 1064 if (ma_is_root(a_node)) { 1065 mas->offset = 0; 1066 return 0; 1067 } 1068 1069 p_node = mte_parent(mas->node); 1070 if (unlikely(a_node == p_node)) 1071 return 1; 1072 1073 a_type = mas_parent_type(mas, mas->node); 1074 mas->offset = mte_parent_slot(mas->node); 1075 a_enode = mt_mk_node(p_node, a_type); 1076 1077 /* Check to make sure all parent information is still accurate */ 1078 if (p_node != mte_parent(mas->node)) 1079 return 1; 1080 1081 mas->node = a_enode; 1082 1083 if (mte_is_root(a_enode)) { 1084 mas->max = ULONG_MAX; 1085 mas->min = 0; 1086 return 0; 1087 } 1088 1089 min = 0; 1090 max = ULONG_MAX; 1091 if (!mas->offset) { 1092 min = mas->min; 1093 set_min = true; 1094 } 1095 1096 if (mas->max == ULONG_MAX) 1097 set_max = true; 1098 1099 do { 1100 p_enode = a_enode; 1101 a_type = mas_parent_type(mas, p_enode); 1102 a_node = mte_parent(p_enode); 1103 a_slot = mte_parent_slot(p_enode); 1104 a_enode = mt_mk_node(a_node, a_type); 1105 pivots = ma_pivots(a_node, a_type); 1106 1107 if (unlikely(ma_dead_node(a_node))) 1108 return 1; 1109 1110 if (!set_min && a_slot) { 1111 set_min = true; 1112 min = pivots[a_slot - 1] + 1; 1113 } 1114 1115 if (!set_max && a_slot < mt_pivots[a_type]) { 1116 set_max = true; 1117 max = pivots[a_slot]; 1118 } 1119 1120 if (unlikely(ma_dead_node(a_node))) 1121 return 1; 1122 1123 if (unlikely(ma_is_root(a_node))) 1124 break; 1125 1126 } while (!set_min || !set_max); 1127 1128 mas->max = max; 1129 mas->min = min; 1130 return 0; 1131 } 1132 1133 /* 1134 * mas_pop_node() - Get a previously allocated maple node from the maple state. 1135 * @mas: The maple state 1136 * 1137 * Return: A pointer to a maple node. 1138 */ 1139 static inline struct maple_node *mas_pop_node(struct ma_state *mas) 1140 { 1141 struct maple_alloc *ret, *node = mas->alloc; 1142 unsigned long total = mas_allocated(mas); 1143 unsigned int req = mas_alloc_req(mas); 1144 1145 /* nothing or a request pending. */ 1146 if (WARN_ON(!total)) 1147 return NULL; 1148 1149 if (total == 1) { 1150 /* single allocation in this ma_state */ 1151 mas->alloc = NULL; 1152 ret = node; 1153 goto single_node; 1154 } 1155 1156 if (node->node_count == 1) { 1157 /* Single allocation in this node. */ 1158 mas->alloc = node->slot[0]; 1159 mas->alloc->total = node->total - 1; 1160 ret = node; 1161 goto new_head; 1162 } 1163 node->total--; 1164 ret = node->slot[--node->node_count]; 1165 node->slot[node->node_count] = NULL; 1166 1167 single_node: 1168 new_head: 1169 if (req) { 1170 req++; 1171 mas_set_alloc_req(mas, req); 1172 } 1173 1174 memset(ret, 0, sizeof(*ret)); 1175 return (struct maple_node *)ret; 1176 } 1177 1178 /* 1179 * mas_push_node() - Push a node back on the maple state allocation. 1180 * @mas: The maple state 1181 * @used: The used maple node 1182 * 1183 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and 1184 * requested node count as necessary. 1185 */ 1186 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used) 1187 { 1188 struct maple_alloc *reuse = (struct maple_alloc *)used; 1189 struct maple_alloc *head = mas->alloc; 1190 unsigned long count; 1191 unsigned int requested = mas_alloc_req(mas); 1192 1193 count = mas_allocated(mas); 1194 1195 reuse->request_count = 0; 1196 reuse->node_count = 0; 1197 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) { 1198 head->slot[head->node_count++] = reuse; 1199 head->total++; 1200 goto done; 1201 } 1202 1203 reuse->total = 1; 1204 if ((head) && !((unsigned long)head & 0x1)) { 1205 reuse->slot[0] = head; 1206 reuse->node_count = 1; 1207 reuse->total += head->total; 1208 } 1209 1210 mas->alloc = reuse; 1211 done: 1212 if (requested > 1) 1213 mas_set_alloc_req(mas, requested - 1); 1214 } 1215 1216 /* 1217 * mas_alloc_nodes() - Allocate nodes into a maple state 1218 * @mas: The maple state 1219 * @gfp: The GFP Flags 1220 */ 1221 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) 1222 { 1223 struct maple_alloc *node; 1224 unsigned long allocated = mas_allocated(mas); 1225 unsigned int requested = mas_alloc_req(mas); 1226 unsigned int count; 1227 void **slots = NULL; 1228 unsigned int max_req = 0; 1229 1230 if (!requested) 1231 return; 1232 1233 mas_set_alloc_req(mas, 0); 1234 if (mas->mas_flags & MA_STATE_PREALLOC) { 1235 if (allocated) 1236 return; 1237 BUG_ON(!allocated); 1238 WARN_ON(!allocated); 1239 } 1240 1241 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) { 1242 node = (struct maple_alloc *)mt_alloc_one(gfp); 1243 if (!node) 1244 goto nomem_one; 1245 1246 if (allocated) { 1247 node->slot[0] = mas->alloc; 1248 node->node_count = 1; 1249 } else { 1250 node->node_count = 0; 1251 } 1252 1253 mas->alloc = node; 1254 node->total = ++allocated; 1255 requested--; 1256 } 1257 1258 node = mas->alloc; 1259 node->request_count = 0; 1260 while (requested) { 1261 max_req = MAPLE_ALLOC_SLOTS - node->node_count; 1262 slots = (void **)&node->slot[node->node_count]; 1263 max_req = min(requested, max_req); 1264 count = mt_alloc_bulk(gfp, max_req, slots); 1265 if (!count) 1266 goto nomem_bulk; 1267 1268 if (node->node_count == 0) { 1269 node->slot[0]->node_count = 0; 1270 node->slot[0]->request_count = 0; 1271 } 1272 1273 node->node_count += count; 1274 allocated += count; 1275 node = node->slot[0]; 1276 requested -= count; 1277 } 1278 mas->alloc->total = allocated; 1279 return; 1280 1281 nomem_bulk: 1282 /* Clean up potential freed allocations on bulk failure */ 1283 memset(slots, 0, max_req * sizeof(unsigned long)); 1284 nomem_one: 1285 mas_set_alloc_req(mas, requested); 1286 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1))) 1287 mas->alloc->total = allocated; 1288 mas_set_err(mas, -ENOMEM); 1289 } 1290 1291 /* 1292 * mas_free() - Free an encoded maple node 1293 * @mas: The maple state 1294 * @used: The encoded maple node to free. 1295 * 1296 * Uses rcu free if necessary, pushes @used back on the maple state allocations 1297 * otherwise. 1298 */ 1299 static inline void mas_free(struct ma_state *mas, struct maple_enode *used) 1300 { 1301 struct maple_node *tmp = mte_to_node(used); 1302 1303 if (mt_in_rcu(mas->tree)) 1304 ma_free_rcu(tmp); 1305 else 1306 mas_push_node(mas, tmp); 1307 } 1308 1309 /* 1310 * mas_node_count_gfp() - Check if enough nodes are allocated and request more 1311 * if there is not enough nodes. 1312 * @mas: The maple state 1313 * @count: The number of nodes needed 1314 * @gfp: the gfp flags 1315 */ 1316 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp) 1317 { 1318 unsigned long allocated = mas_allocated(mas); 1319 1320 if (allocated < count) { 1321 mas_set_alloc_req(mas, count - allocated); 1322 mas_alloc_nodes(mas, gfp); 1323 } 1324 } 1325 1326 /* 1327 * mas_node_count() - Check if enough nodes are allocated and request more if 1328 * there is not enough nodes. 1329 * @mas: The maple state 1330 * @count: The number of nodes needed 1331 * 1332 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags. 1333 */ 1334 static void mas_node_count(struct ma_state *mas, int count) 1335 { 1336 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN); 1337 } 1338 1339 /* 1340 * mas_start() - Sets up maple state for operations. 1341 * @mas: The maple state. 1342 * 1343 * If mas->status == mas_start, then set the min, max and depth to 1344 * defaults. 1345 * 1346 * Return: 1347 * - If mas->node is an error or not mas_start, return NULL. 1348 * - If it's an empty tree: NULL & mas->status == ma_none 1349 * - If it's a single entry: The entry & mas->status == ma_root 1350 * - If it's a tree: NULL & mas->status == ma_active 1351 */ 1352 static inline struct maple_enode *mas_start(struct ma_state *mas) 1353 { 1354 if (likely(mas_is_start(mas))) { 1355 struct maple_enode *root; 1356 1357 mas->min = 0; 1358 mas->max = ULONG_MAX; 1359 1360 retry: 1361 mas->depth = 0; 1362 root = mas_root(mas); 1363 /* Tree with nodes */ 1364 if (likely(xa_is_node(root))) { 1365 mas->depth = 1; 1366 mas->status = ma_active; 1367 mas->node = mte_safe_root(root); 1368 mas->offset = 0; 1369 if (mte_dead_node(mas->node)) 1370 goto retry; 1371 1372 return NULL; 1373 } 1374 1375 mas->node = NULL; 1376 /* empty tree */ 1377 if (unlikely(!root)) { 1378 mas->status = ma_none; 1379 mas->offset = MAPLE_NODE_SLOTS; 1380 return NULL; 1381 } 1382 1383 /* Single entry tree */ 1384 mas->status = ma_root; 1385 mas->offset = MAPLE_NODE_SLOTS; 1386 1387 /* Single entry tree. */ 1388 if (mas->index > 0) 1389 return NULL; 1390 1391 return root; 1392 } 1393 1394 return NULL; 1395 } 1396 1397 /* 1398 * ma_data_end() - Find the end of the data in a node. 1399 * @node: The maple node 1400 * @type: The maple node type 1401 * @pivots: The array of pivots in the node 1402 * @max: The maximum value in the node 1403 * 1404 * Uses metadata to find the end of the data when possible. 1405 * Return: The zero indexed last slot with data (may be null). 1406 */ 1407 static __always_inline unsigned char ma_data_end(struct maple_node *node, 1408 enum maple_type type, unsigned long *pivots, unsigned long max) 1409 { 1410 unsigned char offset; 1411 1412 if (!pivots) 1413 return 0; 1414 1415 if (type == maple_arange_64) 1416 return ma_meta_end(node, type); 1417 1418 offset = mt_pivots[type] - 1; 1419 if (likely(!pivots[offset])) 1420 return ma_meta_end(node, type); 1421 1422 if (likely(pivots[offset] == max)) 1423 return offset; 1424 1425 return mt_pivots[type]; 1426 } 1427 1428 /* 1429 * mas_data_end() - Find the end of the data (slot). 1430 * @mas: the maple state 1431 * 1432 * This method is optimized to check the metadata of a node if the node type 1433 * supports data end metadata. 1434 * 1435 * Return: The zero indexed last slot with data (may be null). 1436 */ 1437 static inline unsigned char mas_data_end(struct ma_state *mas) 1438 { 1439 enum maple_type type; 1440 struct maple_node *node; 1441 unsigned char offset; 1442 unsigned long *pivots; 1443 1444 type = mte_node_type(mas->node); 1445 node = mas_mn(mas); 1446 if (type == maple_arange_64) 1447 return ma_meta_end(node, type); 1448 1449 pivots = ma_pivots(node, type); 1450 if (unlikely(ma_dead_node(node))) 1451 return 0; 1452 1453 offset = mt_pivots[type] - 1; 1454 if (likely(!pivots[offset])) 1455 return ma_meta_end(node, type); 1456 1457 if (likely(pivots[offset] == mas->max)) 1458 return offset; 1459 1460 return mt_pivots[type]; 1461 } 1462 1463 /* 1464 * mas_leaf_max_gap() - Returns the largest gap in a leaf node 1465 * @mas - the maple state 1466 * 1467 * Return: The maximum gap in the leaf. 1468 */ 1469 static unsigned long mas_leaf_max_gap(struct ma_state *mas) 1470 { 1471 enum maple_type mt; 1472 unsigned long pstart, gap, max_gap; 1473 struct maple_node *mn; 1474 unsigned long *pivots; 1475 void __rcu **slots; 1476 unsigned char i; 1477 unsigned char max_piv; 1478 1479 mt = mte_node_type(mas->node); 1480 mn = mas_mn(mas); 1481 slots = ma_slots(mn, mt); 1482 max_gap = 0; 1483 if (unlikely(ma_is_dense(mt))) { 1484 gap = 0; 1485 for (i = 0; i < mt_slots[mt]; i++) { 1486 if (slots[i]) { 1487 if (gap > max_gap) 1488 max_gap = gap; 1489 gap = 0; 1490 } else { 1491 gap++; 1492 } 1493 } 1494 if (gap > max_gap) 1495 max_gap = gap; 1496 return max_gap; 1497 } 1498 1499 /* 1500 * Check the first implied pivot optimizes the loop below and slot 1 may 1501 * be skipped if there is a gap in slot 0. 1502 */ 1503 pivots = ma_pivots(mn, mt); 1504 if (likely(!slots[0])) { 1505 max_gap = pivots[0] - mas->min + 1; 1506 i = 2; 1507 } else { 1508 i = 1; 1509 } 1510 1511 /* reduce max_piv as the special case is checked before the loop */ 1512 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; 1513 /* 1514 * Check end implied pivot which can only be a gap on the right most 1515 * node. 1516 */ 1517 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { 1518 gap = ULONG_MAX - pivots[max_piv]; 1519 if (gap > max_gap) 1520 max_gap = gap; 1521 1522 if (max_gap > pivots[max_piv] - mas->min) 1523 return max_gap; 1524 } 1525 1526 for (; i <= max_piv; i++) { 1527 /* data == no gap. */ 1528 if (likely(slots[i])) 1529 continue; 1530 1531 pstart = pivots[i - 1]; 1532 gap = pivots[i] - pstart; 1533 if (gap > max_gap) 1534 max_gap = gap; 1535 1536 /* There cannot be two gaps in a row. */ 1537 i++; 1538 } 1539 return max_gap; 1540 } 1541 1542 /* 1543 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) 1544 * @node: The maple node 1545 * @gaps: The pointer to the gaps 1546 * @mt: The maple node type 1547 * @*off: Pointer to store the offset location of the gap. 1548 * 1549 * Uses the metadata data end to scan backwards across set gaps. 1550 * 1551 * Return: The maximum gap value 1552 */ 1553 static inline unsigned long 1554 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, 1555 unsigned char *off) 1556 { 1557 unsigned char offset, i; 1558 unsigned long max_gap = 0; 1559 1560 i = offset = ma_meta_end(node, mt); 1561 do { 1562 if (gaps[i] > max_gap) { 1563 max_gap = gaps[i]; 1564 offset = i; 1565 } 1566 } while (i--); 1567 1568 *off = offset; 1569 return max_gap; 1570 } 1571 1572 /* 1573 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. 1574 * @mas: The maple state. 1575 * 1576 * Return: The gap value. 1577 */ 1578 static inline unsigned long mas_max_gap(struct ma_state *mas) 1579 { 1580 unsigned long *gaps; 1581 unsigned char offset; 1582 enum maple_type mt; 1583 struct maple_node *node; 1584 1585 mt = mte_node_type(mas->node); 1586 if (ma_is_leaf(mt)) 1587 return mas_leaf_max_gap(mas); 1588 1589 node = mas_mn(mas); 1590 MAS_BUG_ON(mas, mt != maple_arange_64); 1591 offset = ma_meta_gap(node); 1592 gaps = ma_gaps(node, mt); 1593 return gaps[offset]; 1594 } 1595 1596 /* 1597 * mas_parent_gap() - Set the parent gap and any gaps above, as needed 1598 * @mas: The maple state 1599 * @offset: The gap offset in the parent to set 1600 * @new: The new gap value. 1601 * 1602 * Set the parent gap then continue to set the gap upwards, using the metadata 1603 * of the parent to see if it is necessary to check the node above. 1604 */ 1605 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, 1606 unsigned long new) 1607 { 1608 unsigned long meta_gap = 0; 1609 struct maple_node *pnode; 1610 struct maple_enode *penode; 1611 unsigned long *pgaps; 1612 unsigned char meta_offset; 1613 enum maple_type pmt; 1614 1615 pnode = mte_parent(mas->node); 1616 pmt = mas_parent_type(mas, mas->node); 1617 penode = mt_mk_node(pnode, pmt); 1618 pgaps = ma_gaps(pnode, pmt); 1619 1620 ascend: 1621 MAS_BUG_ON(mas, pmt != maple_arange_64); 1622 meta_offset = ma_meta_gap(pnode); 1623 meta_gap = pgaps[meta_offset]; 1624 1625 pgaps[offset] = new; 1626 1627 if (meta_gap == new) 1628 return; 1629 1630 if (offset != meta_offset) { 1631 if (meta_gap > new) 1632 return; 1633 1634 ma_set_meta_gap(pnode, pmt, offset); 1635 } else if (new < meta_gap) { 1636 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); 1637 ma_set_meta_gap(pnode, pmt, meta_offset); 1638 } 1639 1640 if (ma_is_root(pnode)) 1641 return; 1642 1643 /* Go to the parent node. */ 1644 pnode = mte_parent(penode); 1645 pmt = mas_parent_type(mas, penode); 1646 pgaps = ma_gaps(pnode, pmt); 1647 offset = mte_parent_slot(penode); 1648 penode = mt_mk_node(pnode, pmt); 1649 goto ascend; 1650 } 1651 1652 /* 1653 * mas_update_gap() - Update a nodes gaps and propagate up if necessary. 1654 * @mas - the maple state. 1655 */ 1656 static inline void mas_update_gap(struct ma_state *mas) 1657 { 1658 unsigned char pslot; 1659 unsigned long p_gap; 1660 unsigned long max_gap; 1661 1662 if (!mt_is_alloc(mas->tree)) 1663 return; 1664 1665 if (mte_is_root(mas->node)) 1666 return; 1667 1668 max_gap = mas_max_gap(mas); 1669 1670 pslot = mte_parent_slot(mas->node); 1671 p_gap = ma_gaps(mte_parent(mas->node), 1672 mas_parent_type(mas, mas->node))[pslot]; 1673 1674 if (p_gap != max_gap) 1675 mas_parent_gap(mas, pslot, max_gap); 1676 } 1677 1678 /* 1679 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to 1680 * @parent with the slot encoded. 1681 * @mas - the maple state (for the tree) 1682 * @parent - the maple encoded node containing the children. 1683 */ 1684 static inline void mas_adopt_children(struct ma_state *mas, 1685 struct maple_enode *parent) 1686 { 1687 enum maple_type type = mte_node_type(parent); 1688 struct maple_node *node = mte_to_node(parent); 1689 void __rcu **slots = ma_slots(node, type); 1690 unsigned long *pivots = ma_pivots(node, type); 1691 struct maple_enode *child; 1692 unsigned char offset; 1693 1694 offset = ma_data_end(node, type, pivots, mas->max); 1695 do { 1696 child = mas_slot_locked(mas, slots, offset); 1697 mas_set_parent(mas, child, parent, offset); 1698 } while (offset--); 1699 } 1700 1701 /* 1702 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old 1703 * node as dead. 1704 * @mas - the maple state with the new node 1705 * @old_enode - The old maple encoded node to replace. 1706 */ 1707 static inline void mas_put_in_tree(struct ma_state *mas, 1708 struct maple_enode *old_enode) 1709 __must_hold(mas->tree->ma_lock) 1710 { 1711 unsigned char offset; 1712 void __rcu **slots; 1713 1714 if (mte_is_root(mas->node)) { 1715 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas)); 1716 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 1717 mas_set_height(mas); 1718 } else { 1719 1720 offset = mte_parent_slot(mas->node); 1721 slots = ma_slots(mte_parent(mas->node), 1722 mas_parent_type(mas, mas->node)); 1723 rcu_assign_pointer(slots[offset], mas->node); 1724 } 1725 1726 mte_set_node_dead(old_enode); 1727 } 1728 1729 /* 1730 * mas_replace_node() - Replace a node by putting it in the tree, marking it 1731 * dead, and freeing it. 1732 * the parent encoding to locate the maple node in the tree. 1733 * @mas - the ma_state with @mas->node pointing to the new node. 1734 * @old_enode - The old maple encoded node. 1735 */ 1736 static inline void mas_replace_node(struct ma_state *mas, 1737 struct maple_enode *old_enode) 1738 __must_hold(mas->tree->ma_lock) 1739 { 1740 mas_put_in_tree(mas, old_enode); 1741 mas_free(mas, old_enode); 1742 } 1743 1744 /* 1745 * mas_find_child() - Find a child who has the parent @mas->node. 1746 * @mas: the maple state with the parent. 1747 * @child: the maple state to store the child. 1748 */ 1749 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child) 1750 __must_hold(mas->tree->ma_lock) 1751 { 1752 enum maple_type mt; 1753 unsigned char offset; 1754 unsigned char end; 1755 unsigned long *pivots; 1756 struct maple_enode *entry; 1757 struct maple_node *node; 1758 void __rcu **slots; 1759 1760 mt = mte_node_type(mas->node); 1761 node = mas_mn(mas); 1762 slots = ma_slots(node, mt); 1763 pivots = ma_pivots(node, mt); 1764 end = ma_data_end(node, mt, pivots, mas->max); 1765 for (offset = mas->offset; offset <= end; offset++) { 1766 entry = mas_slot_locked(mas, slots, offset); 1767 if (mte_parent(entry) == node) { 1768 *child = *mas; 1769 mas->offset = offset + 1; 1770 child->offset = offset; 1771 mas_descend(child); 1772 child->offset = 0; 1773 return true; 1774 } 1775 } 1776 return false; 1777 } 1778 1779 /* 1780 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the 1781 * old data or set b_node->b_end. 1782 * @b_node: the maple_big_node 1783 * @shift: the shift count 1784 */ 1785 static inline void mab_shift_right(struct maple_big_node *b_node, 1786 unsigned char shift) 1787 { 1788 unsigned long size = b_node->b_end * sizeof(unsigned long); 1789 1790 memmove(b_node->pivot + shift, b_node->pivot, size); 1791 memmove(b_node->slot + shift, b_node->slot, size); 1792 if (b_node->type == maple_arange_64) 1793 memmove(b_node->gap + shift, b_node->gap, size); 1794 } 1795 1796 /* 1797 * mab_middle_node() - Check if a middle node is needed (unlikely) 1798 * @b_node: the maple_big_node that contains the data. 1799 * @size: the amount of data in the b_node 1800 * @split: the potential split location 1801 * @slot_count: the size that can be stored in a single node being considered. 1802 * 1803 * Return: true if a middle node is required. 1804 */ 1805 static inline bool mab_middle_node(struct maple_big_node *b_node, int split, 1806 unsigned char slot_count) 1807 { 1808 unsigned char size = b_node->b_end; 1809 1810 if (size >= 2 * slot_count) 1811 return true; 1812 1813 if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) 1814 return true; 1815 1816 return false; 1817 } 1818 1819 /* 1820 * mab_no_null_split() - ensure the split doesn't fall on a NULL 1821 * @b_node: the maple_big_node with the data 1822 * @split: the suggested split location 1823 * @slot_count: the number of slots in the node being considered. 1824 * 1825 * Return: the split location. 1826 */ 1827 static inline int mab_no_null_split(struct maple_big_node *b_node, 1828 unsigned char split, unsigned char slot_count) 1829 { 1830 if (!b_node->slot[split]) { 1831 /* 1832 * If the split is less than the max slot && the right side will 1833 * still be sufficient, then increment the split on NULL. 1834 */ 1835 if ((split < slot_count - 1) && 1836 (b_node->b_end - split) > (mt_min_slots[b_node->type])) 1837 split++; 1838 else 1839 split--; 1840 } 1841 return split; 1842 } 1843 1844 /* 1845 * mab_calc_split() - Calculate the split location and if there needs to be two 1846 * splits. 1847 * @bn: The maple_big_node with the data 1848 * @mid_split: The second split, if required. 0 otherwise. 1849 * 1850 * Return: The first split location. The middle split is set in @mid_split. 1851 */ 1852 static inline int mab_calc_split(struct ma_state *mas, 1853 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min) 1854 { 1855 unsigned char b_end = bn->b_end; 1856 int split = b_end / 2; /* Assume equal split. */ 1857 unsigned char slot_min, slot_count = mt_slots[bn->type]; 1858 1859 /* 1860 * To support gap tracking, all NULL entries are kept together and a node cannot 1861 * end on a NULL entry, with the exception of the left-most leaf. The 1862 * limitation means that the split of a node must be checked for this condition 1863 * and be able to put more data in one direction or the other. 1864 */ 1865 if (unlikely((mas->mas_flags & MA_STATE_BULK))) { 1866 *mid_split = 0; 1867 split = b_end - mt_min_slots[bn->type]; 1868 1869 if (!ma_is_leaf(bn->type)) 1870 return split; 1871 1872 mas->mas_flags |= MA_STATE_REBALANCE; 1873 if (!bn->slot[split]) 1874 split--; 1875 return split; 1876 } 1877 1878 /* 1879 * Although extremely rare, it is possible to enter what is known as the 3-way 1880 * split scenario. The 3-way split comes about by means of a store of a range 1881 * that overwrites the end and beginning of two full nodes. The result is a set 1882 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can 1883 * also be located in different parent nodes which are also full. This can 1884 * carry upwards all the way to the root in the worst case. 1885 */ 1886 if (unlikely(mab_middle_node(bn, split, slot_count))) { 1887 split = b_end / 3; 1888 *mid_split = split * 2; 1889 } else { 1890 slot_min = mt_min_slots[bn->type]; 1891 1892 *mid_split = 0; 1893 /* 1894 * Avoid having a range less than the slot count unless it 1895 * causes one node to be deficient. 1896 * NOTE: mt_min_slots is 1 based, b_end and split are zero. 1897 */ 1898 while ((split < slot_count - 1) && 1899 ((bn->pivot[split] - min) < slot_count - 1) && 1900 (b_end - split > slot_min)) 1901 split++; 1902 } 1903 1904 /* Avoid ending a node on a NULL entry */ 1905 split = mab_no_null_split(bn, split, slot_count); 1906 1907 if (unlikely(*mid_split)) 1908 *mid_split = mab_no_null_split(bn, *mid_split, slot_count); 1909 1910 return split; 1911 } 1912 1913 /* 1914 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node 1915 * and set @b_node->b_end to the next free slot. 1916 * @mas: The maple state 1917 * @mas_start: The starting slot to copy 1918 * @mas_end: The end slot to copy (inclusively) 1919 * @b_node: The maple_big_node to place the data 1920 * @mab_start: The starting location in maple_big_node to store the data. 1921 */ 1922 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, 1923 unsigned char mas_end, struct maple_big_node *b_node, 1924 unsigned char mab_start) 1925 { 1926 enum maple_type mt; 1927 struct maple_node *node; 1928 void __rcu **slots; 1929 unsigned long *pivots, *gaps; 1930 int i = mas_start, j = mab_start; 1931 unsigned char piv_end; 1932 1933 node = mas_mn(mas); 1934 mt = mte_node_type(mas->node); 1935 pivots = ma_pivots(node, mt); 1936 if (!i) { 1937 b_node->pivot[j] = pivots[i++]; 1938 if (unlikely(i > mas_end)) 1939 goto complete; 1940 j++; 1941 } 1942 1943 piv_end = min(mas_end, mt_pivots[mt]); 1944 for (; i < piv_end; i++, j++) { 1945 b_node->pivot[j] = pivots[i]; 1946 if (unlikely(!b_node->pivot[j])) 1947 break; 1948 1949 if (unlikely(mas->max == b_node->pivot[j])) 1950 goto complete; 1951 } 1952 1953 if (likely(i <= mas_end)) 1954 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); 1955 1956 complete: 1957 b_node->b_end = ++j; 1958 j -= mab_start; 1959 slots = ma_slots(node, mt); 1960 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); 1961 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { 1962 gaps = ma_gaps(node, mt); 1963 memcpy(b_node->gap + mab_start, gaps + mas_start, 1964 sizeof(unsigned long) * j); 1965 } 1966 } 1967 1968 /* 1969 * mas_leaf_set_meta() - Set the metadata of a leaf if possible. 1970 * @node: The maple node 1971 * @mt: The maple type 1972 * @end: The node end 1973 */ 1974 static inline void mas_leaf_set_meta(struct maple_node *node, 1975 enum maple_type mt, unsigned char end) 1976 { 1977 if (end < mt_slots[mt] - 1) 1978 ma_set_meta(node, mt, 0, end); 1979 } 1980 1981 /* 1982 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. 1983 * @b_node: the maple_big_node that has the data 1984 * @mab_start: the start location in @b_node. 1985 * @mab_end: The end location in @b_node (inclusively) 1986 * @mas: The maple state with the maple encoded node. 1987 */ 1988 static inline void mab_mas_cp(struct maple_big_node *b_node, 1989 unsigned char mab_start, unsigned char mab_end, 1990 struct ma_state *mas, bool new_max) 1991 { 1992 int i, j = 0; 1993 enum maple_type mt = mte_node_type(mas->node); 1994 struct maple_node *node = mte_to_node(mas->node); 1995 void __rcu **slots = ma_slots(node, mt); 1996 unsigned long *pivots = ma_pivots(node, mt); 1997 unsigned long *gaps = NULL; 1998 unsigned char end; 1999 2000 if (mab_end - mab_start > mt_pivots[mt]) 2001 mab_end--; 2002 2003 if (!pivots[mt_pivots[mt] - 1]) 2004 slots[mt_pivots[mt]] = NULL; 2005 2006 i = mab_start; 2007 do { 2008 pivots[j++] = b_node->pivot[i++]; 2009 } while (i <= mab_end && likely(b_node->pivot[i])); 2010 2011 memcpy(slots, b_node->slot + mab_start, 2012 sizeof(void *) * (i - mab_start)); 2013 2014 if (new_max) 2015 mas->max = b_node->pivot[i - 1]; 2016 2017 end = j - 1; 2018 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { 2019 unsigned long max_gap = 0; 2020 unsigned char offset = 0; 2021 2022 gaps = ma_gaps(node, mt); 2023 do { 2024 gaps[--j] = b_node->gap[--i]; 2025 if (gaps[j] > max_gap) { 2026 offset = j; 2027 max_gap = gaps[j]; 2028 } 2029 } while (j); 2030 2031 ma_set_meta(node, mt, offset, end); 2032 } else { 2033 mas_leaf_set_meta(node, mt, end); 2034 } 2035 } 2036 2037 /* 2038 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert. 2039 * @mas: The maple state 2040 * @end: The maple node end 2041 * @mt: The maple node type 2042 */ 2043 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end, 2044 enum maple_type mt) 2045 { 2046 if (!(mas->mas_flags & MA_STATE_BULK)) 2047 return; 2048 2049 if (mte_is_root(mas->node)) 2050 return; 2051 2052 if (end > mt_min_slots[mt]) { 2053 mas->mas_flags &= ~MA_STATE_REBALANCE; 2054 return; 2055 } 2056 } 2057 2058 /* 2059 * mas_store_b_node() - Store an @entry into the b_node while also copying the 2060 * data from a maple encoded node. 2061 * @wr_mas: the maple write state 2062 * @b_node: the maple_big_node to fill with data 2063 * @offset_end: the offset to end copying 2064 * 2065 * Return: The actual end of the data stored in @b_node 2066 */ 2067 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas, 2068 struct maple_big_node *b_node, unsigned char offset_end) 2069 { 2070 unsigned char slot; 2071 unsigned char b_end; 2072 /* Possible underflow of piv will wrap back to 0 before use. */ 2073 unsigned long piv; 2074 struct ma_state *mas = wr_mas->mas; 2075 2076 b_node->type = wr_mas->type; 2077 b_end = 0; 2078 slot = mas->offset; 2079 if (slot) { 2080 /* Copy start data up to insert. */ 2081 mas_mab_cp(mas, 0, slot - 1, b_node, 0); 2082 b_end = b_node->b_end; 2083 piv = b_node->pivot[b_end - 1]; 2084 } else 2085 piv = mas->min - 1; 2086 2087 if (piv + 1 < mas->index) { 2088 /* Handle range starting after old range */ 2089 b_node->slot[b_end] = wr_mas->content; 2090 if (!wr_mas->content) 2091 b_node->gap[b_end] = mas->index - 1 - piv; 2092 b_node->pivot[b_end++] = mas->index - 1; 2093 } 2094 2095 /* Store the new entry. */ 2096 mas->offset = b_end; 2097 b_node->slot[b_end] = wr_mas->entry; 2098 b_node->pivot[b_end] = mas->last; 2099 2100 /* Appended. */ 2101 if (mas->last >= mas->max) 2102 goto b_end; 2103 2104 /* Handle new range ending before old range ends */ 2105 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); 2106 if (piv > mas->last) { 2107 if (piv == ULONG_MAX) 2108 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type); 2109 2110 if (offset_end != slot) 2111 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 2112 offset_end); 2113 2114 b_node->slot[++b_end] = wr_mas->content; 2115 if (!wr_mas->content) 2116 b_node->gap[b_end] = piv - mas->last + 1; 2117 b_node->pivot[b_end] = piv; 2118 } 2119 2120 slot = offset_end + 1; 2121 if (slot > mas->end) 2122 goto b_end; 2123 2124 /* Copy end data to the end of the node. */ 2125 mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end); 2126 b_node->b_end--; 2127 return; 2128 2129 b_end: 2130 b_node->b_end = b_end; 2131 } 2132 2133 /* 2134 * mas_prev_sibling() - Find the previous node with the same parent. 2135 * @mas: the maple state 2136 * 2137 * Return: True if there is a previous sibling, false otherwise. 2138 */ 2139 static inline bool mas_prev_sibling(struct ma_state *mas) 2140 { 2141 unsigned int p_slot = mte_parent_slot(mas->node); 2142 2143 if (mte_is_root(mas->node)) 2144 return false; 2145 2146 if (!p_slot) 2147 return false; 2148 2149 mas_ascend(mas); 2150 mas->offset = p_slot - 1; 2151 mas_descend(mas); 2152 return true; 2153 } 2154 2155 /* 2156 * mas_next_sibling() - Find the next node with the same parent. 2157 * @mas: the maple state 2158 * 2159 * Return: true if there is a next sibling, false otherwise. 2160 */ 2161 static inline bool mas_next_sibling(struct ma_state *mas) 2162 { 2163 MA_STATE(parent, mas->tree, mas->index, mas->last); 2164 2165 if (mte_is_root(mas->node)) 2166 return false; 2167 2168 parent = *mas; 2169 mas_ascend(&parent); 2170 parent.offset = mte_parent_slot(mas->node) + 1; 2171 if (parent.offset > mas_data_end(&parent)) 2172 return false; 2173 2174 *mas = parent; 2175 mas_descend(mas); 2176 return true; 2177 } 2178 2179 /* 2180 * mte_node_or_none() - Set the enode and state. 2181 * @enode: The encoded maple node. 2182 * 2183 * Set the node to the enode and the status. 2184 */ 2185 static inline void mas_node_or_none(struct ma_state *mas, 2186 struct maple_enode *enode) 2187 { 2188 if (enode) { 2189 mas->node = enode; 2190 mas->status = ma_active; 2191 } else { 2192 mas->node = NULL; 2193 mas->status = ma_none; 2194 } 2195 } 2196 2197 /* 2198 * mas_wr_node_walk() - Find the correct offset for the index in the @mas. 2199 * @wr_mas: The maple write state 2200 * 2201 * Uses mas_slot_locked() and does not need to worry about dead nodes. 2202 */ 2203 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) 2204 { 2205 struct ma_state *mas = wr_mas->mas; 2206 unsigned char count, offset; 2207 2208 if (unlikely(ma_is_dense(wr_mas->type))) { 2209 wr_mas->r_max = wr_mas->r_min = mas->index; 2210 mas->offset = mas->index = mas->min; 2211 return; 2212 } 2213 2214 wr_mas->node = mas_mn(wr_mas->mas); 2215 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); 2216 count = mas->end = ma_data_end(wr_mas->node, wr_mas->type, 2217 wr_mas->pivots, mas->max); 2218 offset = mas->offset; 2219 2220 while (offset < count && mas->index > wr_mas->pivots[offset]) 2221 offset++; 2222 2223 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max; 2224 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset); 2225 wr_mas->offset_end = mas->offset = offset; 2226 } 2227 2228 /* 2229 * mast_rebalance_next() - Rebalance against the next node 2230 * @mast: The maple subtree state 2231 * @old_r: The encoded maple node to the right (next node). 2232 */ 2233 static inline void mast_rebalance_next(struct maple_subtree_state *mast) 2234 { 2235 unsigned char b_end = mast->bn->b_end; 2236 2237 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), 2238 mast->bn, b_end); 2239 mast->orig_r->last = mast->orig_r->max; 2240 } 2241 2242 /* 2243 * mast_rebalance_prev() - Rebalance against the previous node 2244 * @mast: The maple subtree state 2245 * @old_l: The encoded maple node to the left (previous node) 2246 */ 2247 static inline void mast_rebalance_prev(struct maple_subtree_state *mast) 2248 { 2249 unsigned char end = mas_data_end(mast->orig_l) + 1; 2250 unsigned char b_end = mast->bn->b_end; 2251 2252 mab_shift_right(mast->bn, end); 2253 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); 2254 mast->l->min = mast->orig_l->min; 2255 mast->orig_l->index = mast->orig_l->min; 2256 mast->bn->b_end = end + b_end; 2257 mast->l->offset += end; 2258 } 2259 2260 /* 2261 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring 2262 * the node to the right. Checking the nodes to the right then the left at each 2263 * level upwards until root is reached. 2264 * Data is copied into the @mast->bn. 2265 * @mast: The maple_subtree_state. 2266 */ 2267 static inline 2268 bool mast_spanning_rebalance(struct maple_subtree_state *mast) 2269 { 2270 struct ma_state r_tmp = *mast->orig_r; 2271 struct ma_state l_tmp = *mast->orig_l; 2272 unsigned char depth = 0; 2273 2274 do { 2275 mas_ascend(mast->orig_r); 2276 mas_ascend(mast->orig_l); 2277 depth++; 2278 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { 2279 mast->orig_r->offset++; 2280 do { 2281 mas_descend(mast->orig_r); 2282 mast->orig_r->offset = 0; 2283 } while (--depth); 2284 2285 mast_rebalance_next(mast); 2286 *mast->orig_l = l_tmp; 2287 return true; 2288 } else if (mast->orig_l->offset != 0) { 2289 mast->orig_l->offset--; 2290 do { 2291 mas_descend(mast->orig_l); 2292 mast->orig_l->offset = 2293 mas_data_end(mast->orig_l); 2294 } while (--depth); 2295 2296 mast_rebalance_prev(mast); 2297 *mast->orig_r = r_tmp; 2298 return true; 2299 } 2300 } while (!mte_is_root(mast->orig_r->node)); 2301 2302 *mast->orig_r = r_tmp; 2303 *mast->orig_l = l_tmp; 2304 return false; 2305 } 2306 2307 /* 2308 * mast_ascend() - Ascend the original left and right maple states. 2309 * @mast: the maple subtree state. 2310 * 2311 * Ascend the original left and right sides. Set the offsets to point to the 2312 * data already in the new tree (@mast->l and @mast->r). 2313 */ 2314 static inline void mast_ascend(struct maple_subtree_state *mast) 2315 { 2316 MA_WR_STATE(wr_mas, mast->orig_r, NULL); 2317 mas_ascend(mast->orig_l); 2318 mas_ascend(mast->orig_r); 2319 2320 mast->orig_r->offset = 0; 2321 mast->orig_r->index = mast->r->max; 2322 /* last should be larger than or equal to index */ 2323 if (mast->orig_r->last < mast->orig_r->index) 2324 mast->orig_r->last = mast->orig_r->index; 2325 2326 wr_mas.type = mte_node_type(mast->orig_r->node); 2327 mas_wr_node_walk(&wr_mas); 2328 /* Set up the left side of things */ 2329 mast->orig_l->offset = 0; 2330 mast->orig_l->index = mast->l->min; 2331 wr_mas.mas = mast->orig_l; 2332 wr_mas.type = mte_node_type(mast->orig_l->node); 2333 mas_wr_node_walk(&wr_mas); 2334 2335 mast->bn->type = wr_mas.type; 2336 } 2337 2338 /* 2339 * mas_new_ma_node() - Create and return a new maple node. Helper function. 2340 * @mas: the maple state with the allocations. 2341 * @b_node: the maple_big_node with the type encoding. 2342 * 2343 * Use the node type from the maple_big_node to allocate a new node from the 2344 * ma_state. This function exists mainly for code readability. 2345 * 2346 * Return: A new maple encoded node 2347 */ 2348 static inline struct maple_enode 2349 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) 2350 { 2351 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); 2352 } 2353 2354 /* 2355 * mas_mab_to_node() - Set up right and middle nodes 2356 * 2357 * @mas: the maple state that contains the allocations. 2358 * @b_node: the node which contains the data. 2359 * @left: The pointer which will have the left node 2360 * @right: The pointer which may have the right node 2361 * @middle: the pointer which may have the middle node (rare) 2362 * @mid_split: the split location for the middle node 2363 * 2364 * Return: the split of left. 2365 */ 2366 static inline unsigned char mas_mab_to_node(struct ma_state *mas, 2367 struct maple_big_node *b_node, struct maple_enode **left, 2368 struct maple_enode **right, struct maple_enode **middle, 2369 unsigned char *mid_split, unsigned long min) 2370 { 2371 unsigned char split = 0; 2372 unsigned char slot_count = mt_slots[b_node->type]; 2373 2374 *left = mas_new_ma_node(mas, b_node); 2375 *right = NULL; 2376 *middle = NULL; 2377 *mid_split = 0; 2378 2379 if (b_node->b_end < slot_count) { 2380 split = b_node->b_end; 2381 } else { 2382 split = mab_calc_split(mas, b_node, mid_split, min); 2383 *right = mas_new_ma_node(mas, b_node); 2384 } 2385 2386 if (*mid_split) 2387 *middle = mas_new_ma_node(mas, b_node); 2388 2389 return split; 2390 2391 } 2392 2393 /* 2394 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end 2395 * pointer. 2396 * @b_node - the big node to add the entry 2397 * @mas - the maple state to get the pivot (mas->max) 2398 * @entry - the entry to add, if NULL nothing happens. 2399 */ 2400 static inline void mab_set_b_end(struct maple_big_node *b_node, 2401 struct ma_state *mas, 2402 void *entry) 2403 { 2404 if (!entry) 2405 return; 2406 2407 b_node->slot[b_node->b_end] = entry; 2408 if (mt_is_alloc(mas->tree)) 2409 b_node->gap[b_node->b_end] = mas_max_gap(mas); 2410 b_node->pivot[b_node->b_end++] = mas->max; 2411 } 2412 2413 /* 2414 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent 2415 * of @mas->node to either @left or @right, depending on @slot and @split 2416 * 2417 * @mas - the maple state with the node that needs a parent 2418 * @left - possible parent 1 2419 * @right - possible parent 2 2420 * @slot - the slot the mas->node was placed 2421 * @split - the split location between @left and @right 2422 */ 2423 static inline void mas_set_split_parent(struct ma_state *mas, 2424 struct maple_enode *left, 2425 struct maple_enode *right, 2426 unsigned char *slot, unsigned char split) 2427 { 2428 if (mas_is_none(mas)) 2429 return; 2430 2431 if ((*slot) <= split) 2432 mas_set_parent(mas, mas->node, left, *slot); 2433 else if (right) 2434 mas_set_parent(mas, mas->node, right, (*slot) - split - 1); 2435 2436 (*slot)++; 2437 } 2438 2439 /* 2440 * mte_mid_split_check() - Check if the next node passes the mid-split 2441 * @**l: Pointer to left encoded maple node. 2442 * @**m: Pointer to middle encoded maple node. 2443 * @**r: Pointer to right encoded maple node. 2444 * @slot: The offset 2445 * @*split: The split location. 2446 * @mid_split: The middle split. 2447 */ 2448 static inline void mte_mid_split_check(struct maple_enode **l, 2449 struct maple_enode **r, 2450 struct maple_enode *right, 2451 unsigned char slot, 2452 unsigned char *split, 2453 unsigned char mid_split) 2454 { 2455 if (*r == right) 2456 return; 2457 2458 if (slot < mid_split) 2459 return; 2460 2461 *l = *r; 2462 *r = right; 2463 *split = mid_split; 2464 } 2465 2466 /* 2467 * mast_set_split_parents() - Helper function to set three nodes parents. Slot 2468 * is taken from @mast->l. 2469 * @mast - the maple subtree state 2470 * @left - the left node 2471 * @right - the right node 2472 * @split - the split location. 2473 */ 2474 static inline void mast_set_split_parents(struct maple_subtree_state *mast, 2475 struct maple_enode *left, 2476 struct maple_enode *middle, 2477 struct maple_enode *right, 2478 unsigned char split, 2479 unsigned char mid_split) 2480 { 2481 unsigned char slot; 2482 struct maple_enode *l = left; 2483 struct maple_enode *r = right; 2484 2485 if (mas_is_none(mast->l)) 2486 return; 2487 2488 if (middle) 2489 r = middle; 2490 2491 slot = mast->l->offset; 2492 2493 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2494 mas_set_split_parent(mast->l, l, r, &slot, split); 2495 2496 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2497 mas_set_split_parent(mast->m, l, r, &slot, split); 2498 2499 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2500 mas_set_split_parent(mast->r, l, r, &slot, split); 2501 } 2502 2503 /* 2504 * mas_topiary_node() - Dispose of a single node 2505 * @mas: The maple state for pushing nodes 2506 * @enode: The encoded maple node 2507 * @in_rcu: If the tree is in rcu mode 2508 * 2509 * The node will either be RCU freed or pushed back on the maple state. 2510 */ 2511 static inline void mas_topiary_node(struct ma_state *mas, 2512 struct ma_state *tmp_mas, bool in_rcu) 2513 { 2514 struct maple_node *tmp; 2515 struct maple_enode *enode; 2516 2517 if (mas_is_none(tmp_mas)) 2518 return; 2519 2520 enode = tmp_mas->node; 2521 tmp = mte_to_node(enode); 2522 mte_set_node_dead(enode); 2523 if (in_rcu) 2524 ma_free_rcu(tmp); 2525 else 2526 mas_push_node(mas, tmp); 2527 } 2528 2529 /* 2530 * mas_topiary_replace() - Replace the data with new data, then repair the 2531 * parent links within the new tree. Iterate over the dead sub-tree and collect 2532 * the dead subtrees and topiary the nodes that are no longer of use. 2533 * 2534 * The new tree will have up to three children with the correct parent. Keep 2535 * track of the new entries as they need to be followed to find the next level 2536 * of new entries. 2537 * 2538 * The old tree will have up to three children with the old parent. Keep track 2539 * of the old entries as they may have more nodes below replaced. Nodes within 2540 * [index, last] are dead subtrees, others need to be freed and followed. 2541 * 2542 * @mas: The maple state pointing at the new data 2543 * @old_enode: The maple encoded node being replaced 2544 * 2545 */ 2546 static inline void mas_topiary_replace(struct ma_state *mas, 2547 struct maple_enode *old_enode) 2548 { 2549 struct ma_state tmp[3], tmp_next[3]; 2550 MA_TOPIARY(subtrees, mas->tree); 2551 bool in_rcu; 2552 int i, n; 2553 2554 /* Place data in tree & then mark node as old */ 2555 mas_put_in_tree(mas, old_enode); 2556 2557 /* Update the parent pointers in the tree */ 2558 tmp[0] = *mas; 2559 tmp[0].offset = 0; 2560 tmp[1].status = ma_none; 2561 tmp[2].status = ma_none; 2562 while (!mte_is_leaf(tmp[0].node)) { 2563 n = 0; 2564 for (i = 0; i < 3; i++) { 2565 if (mas_is_none(&tmp[i])) 2566 continue; 2567 2568 while (n < 3) { 2569 if (!mas_find_child(&tmp[i], &tmp_next[n])) 2570 break; 2571 n++; 2572 } 2573 2574 mas_adopt_children(&tmp[i], tmp[i].node); 2575 } 2576 2577 if (MAS_WARN_ON(mas, n == 0)) 2578 break; 2579 2580 while (n < 3) 2581 tmp_next[n++].status = ma_none; 2582 2583 for (i = 0; i < 3; i++) 2584 tmp[i] = tmp_next[i]; 2585 } 2586 2587 /* Collect the old nodes that need to be discarded */ 2588 if (mte_is_leaf(old_enode)) 2589 return mas_free(mas, old_enode); 2590 2591 tmp[0] = *mas; 2592 tmp[0].offset = 0; 2593 tmp[0].node = old_enode; 2594 tmp[1].status = ma_none; 2595 tmp[2].status = ma_none; 2596 in_rcu = mt_in_rcu(mas->tree); 2597 do { 2598 n = 0; 2599 for (i = 0; i < 3; i++) { 2600 if (mas_is_none(&tmp[i])) 2601 continue; 2602 2603 while (n < 3) { 2604 if (!mas_find_child(&tmp[i], &tmp_next[n])) 2605 break; 2606 2607 if ((tmp_next[n].min >= tmp_next->index) && 2608 (tmp_next[n].max <= tmp_next->last)) { 2609 mat_add(&subtrees, tmp_next[n].node); 2610 tmp_next[n].status = ma_none; 2611 } else { 2612 n++; 2613 } 2614 } 2615 } 2616 2617 if (MAS_WARN_ON(mas, n == 0)) 2618 break; 2619 2620 while (n < 3) 2621 tmp_next[n++].status = ma_none; 2622 2623 for (i = 0; i < 3; i++) { 2624 mas_topiary_node(mas, &tmp[i], in_rcu); 2625 tmp[i] = tmp_next[i]; 2626 } 2627 } while (!mte_is_leaf(tmp[0].node)); 2628 2629 for (i = 0; i < 3; i++) 2630 mas_topiary_node(mas, &tmp[i], in_rcu); 2631 2632 mas_mat_destroy(mas, &subtrees); 2633 } 2634 2635 /* 2636 * mas_wmb_replace() - Write memory barrier and replace 2637 * @mas: The maple state 2638 * @old: The old maple encoded node that is being replaced. 2639 * 2640 * Updates gap as necessary. 2641 */ 2642 static inline void mas_wmb_replace(struct ma_state *mas, 2643 struct maple_enode *old_enode) 2644 { 2645 /* Insert the new data in the tree */ 2646 mas_topiary_replace(mas, old_enode); 2647 2648 if (mte_is_leaf(mas->node)) 2649 return; 2650 2651 mas_update_gap(mas); 2652 } 2653 2654 /* 2655 * mast_cp_to_nodes() - Copy data out to nodes. 2656 * @mast: The maple subtree state 2657 * @left: The left encoded maple node 2658 * @middle: The middle encoded maple node 2659 * @right: The right encoded maple node 2660 * @split: The location to split between left and (middle ? middle : right) 2661 * @mid_split: The location to split between middle and right. 2662 */ 2663 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, 2664 struct maple_enode *left, struct maple_enode *middle, 2665 struct maple_enode *right, unsigned char split, unsigned char mid_split) 2666 { 2667 bool new_lmax = true; 2668 2669 mas_node_or_none(mast->l, left); 2670 mas_node_or_none(mast->m, middle); 2671 mas_node_or_none(mast->r, right); 2672 2673 mast->l->min = mast->orig_l->min; 2674 if (split == mast->bn->b_end) { 2675 mast->l->max = mast->orig_r->max; 2676 new_lmax = false; 2677 } 2678 2679 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); 2680 2681 if (middle) { 2682 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); 2683 mast->m->min = mast->bn->pivot[split] + 1; 2684 split = mid_split; 2685 } 2686 2687 mast->r->max = mast->orig_r->max; 2688 if (right) { 2689 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); 2690 mast->r->min = mast->bn->pivot[split] + 1; 2691 } 2692 } 2693 2694 /* 2695 * mast_combine_cp_left - Copy in the original left side of the tree into the 2696 * combined data set in the maple subtree state big node. 2697 * @mast: The maple subtree state 2698 */ 2699 static inline void mast_combine_cp_left(struct maple_subtree_state *mast) 2700 { 2701 unsigned char l_slot = mast->orig_l->offset; 2702 2703 if (!l_slot) 2704 return; 2705 2706 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); 2707 } 2708 2709 /* 2710 * mast_combine_cp_right: Copy in the original right side of the tree into the 2711 * combined data set in the maple subtree state big node. 2712 * @mast: The maple subtree state 2713 */ 2714 static inline void mast_combine_cp_right(struct maple_subtree_state *mast) 2715 { 2716 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) 2717 return; 2718 2719 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, 2720 mt_slot_count(mast->orig_r->node), mast->bn, 2721 mast->bn->b_end); 2722 mast->orig_r->last = mast->orig_r->max; 2723 } 2724 2725 /* 2726 * mast_sufficient: Check if the maple subtree state has enough data in the big 2727 * node to create at least one sufficient node 2728 * @mast: the maple subtree state 2729 */ 2730 static inline bool mast_sufficient(struct maple_subtree_state *mast) 2731 { 2732 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) 2733 return true; 2734 2735 return false; 2736 } 2737 2738 /* 2739 * mast_overflow: Check if there is too much data in the subtree state for a 2740 * single node. 2741 * @mast: The maple subtree state 2742 */ 2743 static inline bool mast_overflow(struct maple_subtree_state *mast) 2744 { 2745 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node)) 2746 return true; 2747 2748 return false; 2749 } 2750 2751 static inline void *mtree_range_walk(struct ma_state *mas) 2752 { 2753 unsigned long *pivots; 2754 unsigned char offset; 2755 struct maple_node *node; 2756 struct maple_enode *next, *last; 2757 enum maple_type type; 2758 void __rcu **slots; 2759 unsigned char end; 2760 unsigned long max, min; 2761 unsigned long prev_max, prev_min; 2762 2763 next = mas->node; 2764 min = mas->min; 2765 max = mas->max; 2766 do { 2767 last = next; 2768 node = mte_to_node(next); 2769 type = mte_node_type(next); 2770 pivots = ma_pivots(node, type); 2771 end = ma_data_end(node, type, pivots, max); 2772 prev_min = min; 2773 prev_max = max; 2774 if (pivots[0] >= mas->index) { 2775 offset = 0; 2776 max = pivots[0]; 2777 goto next; 2778 } 2779 2780 offset = 1; 2781 while (offset < end) { 2782 if (pivots[offset] >= mas->index) { 2783 max = pivots[offset]; 2784 break; 2785 } 2786 offset++; 2787 } 2788 2789 min = pivots[offset - 1] + 1; 2790 next: 2791 slots = ma_slots(node, type); 2792 next = mt_slot(mas->tree, slots, offset); 2793 if (unlikely(ma_dead_node(node))) 2794 goto dead_node; 2795 } while (!ma_is_leaf(type)); 2796 2797 mas->end = end; 2798 mas->offset = offset; 2799 mas->index = min; 2800 mas->last = max; 2801 mas->min = prev_min; 2802 mas->max = prev_max; 2803 mas->node = last; 2804 return (void *)next; 2805 2806 dead_node: 2807 mas_reset(mas); 2808 return NULL; 2809 } 2810 2811 /* 2812 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. 2813 * @mas: The starting maple state 2814 * @mast: The maple_subtree_state, keeps track of 4 maple states. 2815 * @count: The estimated count of iterations needed. 2816 * 2817 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root 2818 * is hit. First @b_node is split into two entries which are inserted into the 2819 * next iteration of the loop. @b_node is returned populated with the final 2820 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the 2821 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last 2822 * to account of what has been copied into the new sub-tree. The update of 2823 * orig_l_mas->last is used in mas_consume to find the slots that will need to 2824 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of 2825 * the new sub-tree in case the sub-tree becomes the full tree. 2826 */ 2827 static void mas_spanning_rebalance(struct ma_state *mas, 2828 struct maple_subtree_state *mast, unsigned char count) 2829 { 2830 unsigned char split, mid_split; 2831 unsigned char slot = 0; 2832 struct maple_enode *left = NULL, *middle = NULL, *right = NULL; 2833 struct maple_enode *old_enode; 2834 2835 MA_STATE(l_mas, mas->tree, mas->index, mas->index); 2836 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 2837 MA_STATE(m_mas, mas->tree, mas->index, mas->index); 2838 2839 /* 2840 * The tree needs to be rebalanced and leaves need to be kept at the same level. 2841 * Rebalancing is done by use of the ``struct maple_topiary``. 2842 */ 2843 mast->l = &l_mas; 2844 mast->m = &m_mas; 2845 mast->r = &r_mas; 2846 l_mas.status = r_mas.status = m_mas.status = ma_none; 2847 2848 /* Check if this is not root and has sufficient data. */ 2849 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && 2850 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) 2851 mast_spanning_rebalance(mast); 2852 2853 l_mas.depth = 0; 2854 2855 /* 2856 * Each level of the tree is examined and balanced, pushing data to the left or 2857 * right, or rebalancing against left or right nodes is employed to avoid 2858 * rippling up the tree to limit the amount of churn. Once a new sub-section of 2859 * the tree is created, there may be a mix of new and old nodes. The old nodes 2860 * will have the incorrect parent pointers and currently be in two trees: the 2861 * original tree and the partially new tree. To remedy the parent pointers in 2862 * the old tree, the new data is swapped into the active tree and a walk down 2863 * the tree is performed and the parent pointers are updated. 2864 * See mas_topiary_replace() for more information. 2865 */ 2866 while (count--) { 2867 mast->bn->b_end--; 2868 mast->bn->type = mte_node_type(mast->orig_l->node); 2869 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, 2870 &mid_split, mast->orig_l->min); 2871 mast_set_split_parents(mast, left, middle, right, split, 2872 mid_split); 2873 mast_cp_to_nodes(mast, left, middle, right, split, mid_split); 2874 2875 /* 2876 * Copy data from next level in the tree to mast->bn from next 2877 * iteration 2878 */ 2879 memset(mast->bn, 0, sizeof(struct maple_big_node)); 2880 mast->bn->type = mte_node_type(left); 2881 l_mas.depth++; 2882 2883 /* Root already stored in l->node. */ 2884 if (mas_is_root_limits(mast->l)) 2885 goto new_root; 2886 2887 mast_ascend(mast); 2888 mast_combine_cp_left(mast); 2889 l_mas.offset = mast->bn->b_end; 2890 mab_set_b_end(mast->bn, &l_mas, left); 2891 mab_set_b_end(mast->bn, &m_mas, middle); 2892 mab_set_b_end(mast->bn, &r_mas, right); 2893 2894 /* Copy anything necessary out of the right node. */ 2895 mast_combine_cp_right(mast); 2896 mast->orig_l->last = mast->orig_l->max; 2897 2898 if (mast_sufficient(mast)) 2899 continue; 2900 2901 if (mast_overflow(mast)) 2902 continue; 2903 2904 /* May be a new root stored in mast->bn */ 2905 if (mas_is_root_limits(mast->orig_l)) 2906 break; 2907 2908 mast_spanning_rebalance(mast); 2909 2910 /* rebalancing from other nodes may require another loop. */ 2911 if (!count) 2912 count++; 2913 } 2914 2915 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), 2916 mte_node_type(mast->orig_l->node)); 2917 l_mas.depth++; 2918 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); 2919 mas_set_parent(mas, left, l_mas.node, slot); 2920 if (middle) 2921 mas_set_parent(mas, middle, l_mas.node, ++slot); 2922 2923 if (right) 2924 mas_set_parent(mas, right, l_mas.node, ++slot); 2925 2926 if (mas_is_root_limits(mast->l)) { 2927 new_root: 2928 mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas)); 2929 while (!mte_is_root(mast->orig_l->node)) 2930 mast_ascend(mast); 2931 } else { 2932 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; 2933 } 2934 2935 old_enode = mast->orig_l->node; 2936 mas->depth = l_mas.depth; 2937 mas->node = l_mas.node; 2938 mas->min = l_mas.min; 2939 mas->max = l_mas.max; 2940 mas->offset = l_mas.offset; 2941 mas_wmb_replace(mas, old_enode); 2942 mtree_range_walk(mas); 2943 return; 2944 } 2945 2946 /* 2947 * mas_rebalance() - Rebalance a given node. 2948 * @mas: The maple state 2949 * @b_node: The big maple node. 2950 * 2951 * Rebalance two nodes into a single node or two new nodes that are sufficient. 2952 * Continue upwards until tree is sufficient. 2953 */ 2954 static inline void mas_rebalance(struct ma_state *mas, 2955 struct maple_big_node *b_node) 2956 { 2957 char empty_count = mas_mt_height(mas); 2958 struct maple_subtree_state mast; 2959 unsigned char shift, b_end = ++b_node->b_end; 2960 2961 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 2962 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 2963 2964 trace_ma_op(__func__, mas); 2965 2966 /* 2967 * Rebalancing occurs if a node is insufficient. Data is rebalanced 2968 * against the node to the right if it exists, otherwise the node to the 2969 * left of this node is rebalanced against this node. If rebalancing 2970 * causes just one node to be produced instead of two, then the parent 2971 * is also examined and rebalanced if it is insufficient. Every level 2972 * tries to combine the data in the same way. If one node contains the 2973 * entire range of the tree, then that node is used as a new root node. 2974 */ 2975 2976 mast.orig_l = &l_mas; 2977 mast.orig_r = &r_mas; 2978 mast.bn = b_node; 2979 mast.bn->type = mte_node_type(mas->node); 2980 2981 l_mas = r_mas = *mas; 2982 2983 if (mas_next_sibling(&r_mas)) { 2984 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); 2985 r_mas.last = r_mas.index = r_mas.max; 2986 } else { 2987 mas_prev_sibling(&l_mas); 2988 shift = mas_data_end(&l_mas) + 1; 2989 mab_shift_right(b_node, shift); 2990 mas->offset += shift; 2991 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); 2992 b_node->b_end = shift + b_end; 2993 l_mas.index = l_mas.last = l_mas.min; 2994 } 2995 2996 return mas_spanning_rebalance(mas, &mast, empty_count); 2997 } 2998 2999 /* 3000 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple 3001 * state. 3002 * @mas: The maple state 3003 * @end: The end of the left-most node. 3004 * 3005 * During a mass-insert event (such as forking), it may be necessary to 3006 * rebalance the left-most node when it is not sufficient. 3007 */ 3008 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end) 3009 { 3010 enum maple_type mt = mte_node_type(mas->node); 3011 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node; 3012 struct maple_enode *eparent, *old_eparent; 3013 unsigned char offset, tmp, split = mt_slots[mt] / 2; 3014 void __rcu **l_slots, **slots; 3015 unsigned long *l_pivs, *pivs, gap; 3016 bool in_rcu = mt_in_rcu(mas->tree); 3017 3018 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3019 3020 l_mas = *mas; 3021 mas_prev_sibling(&l_mas); 3022 3023 /* set up node. */ 3024 if (in_rcu) { 3025 newnode = mas_pop_node(mas); 3026 } else { 3027 newnode = &reuse; 3028 } 3029 3030 node = mas_mn(mas); 3031 newnode->parent = node->parent; 3032 slots = ma_slots(newnode, mt); 3033 pivs = ma_pivots(newnode, mt); 3034 left = mas_mn(&l_mas); 3035 l_slots = ma_slots(left, mt); 3036 l_pivs = ma_pivots(left, mt); 3037 if (!l_slots[split]) 3038 split++; 3039 tmp = mas_data_end(&l_mas) - split; 3040 3041 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp); 3042 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp); 3043 pivs[tmp] = l_mas.max; 3044 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end); 3045 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end); 3046 3047 l_mas.max = l_pivs[split]; 3048 mas->min = l_mas.max + 1; 3049 old_eparent = mt_mk_node(mte_parent(l_mas.node), 3050 mas_parent_type(&l_mas, l_mas.node)); 3051 tmp += end; 3052 if (!in_rcu) { 3053 unsigned char max_p = mt_pivots[mt]; 3054 unsigned char max_s = mt_slots[mt]; 3055 3056 if (tmp < max_p) 3057 memset(pivs + tmp, 0, 3058 sizeof(unsigned long) * (max_p - tmp)); 3059 3060 if (tmp < mt_slots[mt]) 3061 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3062 3063 memcpy(node, newnode, sizeof(struct maple_node)); 3064 ma_set_meta(node, mt, 0, tmp - 1); 3065 mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node), 3066 l_pivs[split]); 3067 3068 /* Remove data from l_pivs. */ 3069 tmp = split + 1; 3070 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp)); 3071 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3072 ma_set_meta(left, mt, 0, split); 3073 eparent = old_eparent; 3074 3075 goto done; 3076 } 3077 3078 /* RCU requires replacing both l_mas, mas, and parent. */ 3079 mas->node = mt_mk_node(newnode, mt); 3080 ma_set_meta(newnode, mt, 0, tmp); 3081 3082 new_left = mas_pop_node(mas); 3083 new_left->parent = left->parent; 3084 mt = mte_node_type(l_mas.node); 3085 slots = ma_slots(new_left, mt); 3086 pivs = ma_pivots(new_left, mt); 3087 memcpy(slots, l_slots, sizeof(void *) * split); 3088 memcpy(pivs, l_pivs, sizeof(unsigned long) * split); 3089 ma_set_meta(new_left, mt, 0, split); 3090 l_mas.node = mt_mk_node(new_left, mt); 3091 3092 /* replace parent. */ 3093 offset = mte_parent_slot(mas->node); 3094 mt = mas_parent_type(&l_mas, l_mas.node); 3095 parent = mas_pop_node(mas); 3096 slots = ma_slots(parent, mt); 3097 pivs = ma_pivots(parent, mt); 3098 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node)); 3099 rcu_assign_pointer(slots[offset], mas->node); 3100 rcu_assign_pointer(slots[offset - 1], l_mas.node); 3101 pivs[offset - 1] = l_mas.max; 3102 eparent = mt_mk_node(parent, mt); 3103 done: 3104 gap = mas_leaf_max_gap(mas); 3105 mte_set_gap(eparent, mte_parent_slot(mas->node), gap); 3106 gap = mas_leaf_max_gap(&l_mas); 3107 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap); 3108 mas_ascend(mas); 3109 3110 if (in_rcu) { 3111 mas_replace_node(mas, old_eparent); 3112 mas_adopt_children(mas, mas->node); 3113 } 3114 3115 mas_update_gap(mas); 3116 } 3117 3118 /* 3119 * mas_split_final_node() - Split the final node in a subtree operation. 3120 * @mast: the maple subtree state 3121 * @mas: The maple state 3122 * @height: The height of the tree in case it's a new root. 3123 */ 3124 static inline void mas_split_final_node(struct maple_subtree_state *mast, 3125 struct ma_state *mas, int height) 3126 { 3127 struct maple_enode *ancestor; 3128 3129 if (mte_is_root(mas->node)) { 3130 if (mt_is_alloc(mas->tree)) 3131 mast->bn->type = maple_arange_64; 3132 else 3133 mast->bn->type = maple_range_64; 3134 mas->depth = height; 3135 } 3136 /* 3137 * Only a single node is used here, could be root. 3138 * The Big_node data should just fit in a single node. 3139 */ 3140 ancestor = mas_new_ma_node(mas, mast->bn); 3141 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset); 3142 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset); 3143 mte_to_node(ancestor)->parent = mas_mn(mas)->parent; 3144 3145 mast->l->node = ancestor; 3146 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); 3147 mas->offset = mast->bn->b_end - 1; 3148 } 3149 3150 /* 3151 * mast_fill_bnode() - Copy data into the big node in the subtree state 3152 * @mast: The maple subtree state 3153 * @mas: the maple state 3154 * @skip: The number of entries to skip for new nodes insertion. 3155 */ 3156 static inline void mast_fill_bnode(struct maple_subtree_state *mast, 3157 struct ma_state *mas, 3158 unsigned char skip) 3159 { 3160 bool cp = true; 3161 unsigned char split; 3162 3163 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap)); 3164 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot)); 3165 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot)); 3166 mast->bn->b_end = 0; 3167 3168 if (mte_is_root(mas->node)) { 3169 cp = false; 3170 } else { 3171 mas_ascend(mas); 3172 mas->offset = mte_parent_slot(mas->node); 3173 } 3174 3175 if (cp && mast->l->offset) 3176 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); 3177 3178 split = mast->bn->b_end; 3179 mab_set_b_end(mast->bn, mast->l, mast->l->node); 3180 mast->r->offset = mast->bn->b_end; 3181 mab_set_b_end(mast->bn, mast->r, mast->r->node); 3182 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) 3183 cp = false; 3184 3185 if (cp) 3186 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, 3187 mast->bn, mast->bn->b_end); 3188 3189 mast->bn->b_end--; 3190 mast->bn->type = mte_node_type(mas->node); 3191 } 3192 3193 /* 3194 * mast_split_data() - Split the data in the subtree state big node into regular 3195 * nodes. 3196 * @mast: The maple subtree state 3197 * @mas: The maple state 3198 * @split: The location to split the big node 3199 */ 3200 static inline void mast_split_data(struct maple_subtree_state *mast, 3201 struct ma_state *mas, unsigned char split) 3202 { 3203 unsigned char p_slot; 3204 3205 mab_mas_cp(mast->bn, 0, split, mast->l, true); 3206 mte_set_pivot(mast->r->node, 0, mast->r->max); 3207 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); 3208 mast->l->offset = mte_parent_slot(mas->node); 3209 mast->l->max = mast->bn->pivot[split]; 3210 mast->r->min = mast->l->max + 1; 3211 if (mte_is_leaf(mas->node)) 3212 return; 3213 3214 p_slot = mast->orig_l->offset; 3215 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, 3216 &p_slot, split); 3217 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, 3218 &p_slot, split); 3219 } 3220 3221 /* 3222 * mas_push_data() - Instead of splitting a node, it is beneficial to push the 3223 * data to the right or left node if there is room. 3224 * @mas: The maple state 3225 * @height: The current height of the maple state 3226 * @mast: The maple subtree state 3227 * @left: Push left or not. 3228 * 3229 * Keeping the height of the tree low means faster lookups. 3230 * 3231 * Return: True if pushed, false otherwise. 3232 */ 3233 static inline bool mas_push_data(struct ma_state *mas, int height, 3234 struct maple_subtree_state *mast, bool left) 3235 { 3236 unsigned char slot_total = mast->bn->b_end; 3237 unsigned char end, space, split; 3238 3239 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); 3240 tmp_mas = *mas; 3241 tmp_mas.depth = mast->l->depth; 3242 3243 if (left && !mas_prev_sibling(&tmp_mas)) 3244 return false; 3245 else if (!left && !mas_next_sibling(&tmp_mas)) 3246 return false; 3247 3248 end = mas_data_end(&tmp_mas); 3249 slot_total += end; 3250 space = 2 * mt_slot_count(mas->node) - 2; 3251 /* -2 instead of -1 to ensure there isn't a triple split */ 3252 if (ma_is_leaf(mast->bn->type)) 3253 space--; 3254 3255 if (mas->max == ULONG_MAX) 3256 space--; 3257 3258 if (slot_total >= space) 3259 return false; 3260 3261 /* Get the data; Fill mast->bn */ 3262 mast->bn->b_end++; 3263 if (left) { 3264 mab_shift_right(mast->bn, end + 1); 3265 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); 3266 mast->bn->b_end = slot_total + 1; 3267 } else { 3268 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); 3269 } 3270 3271 /* Configure mast for splitting of mast->bn */ 3272 split = mt_slots[mast->bn->type] - 2; 3273 if (left) { 3274 /* Switch mas to prev node */ 3275 *mas = tmp_mas; 3276 /* Start using mast->l for the left side. */ 3277 tmp_mas.node = mast->l->node; 3278 *mast->l = tmp_mas; 3279 } else { 3280 tmp_mas.node = mast->r->node; 3281 *mast->r = tmp_mas; 3282 split = slot_total - split; 3283 } 3284 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); 3285 /* Update parent slot for split calculation. */ 3286 if (left) 3287 mast->orig_l->offset += end + 1; 3288 3289 mast_split_data(mast, mas, split); 3290 mast_fill_bnode(mast, mas, 2); 3291 mas_split_final_node(mast, mas, height + 1); 3292 return true; 3293 } 3294 3295 /* 3296 * mas_split() - Split data that is too big for one node into two. 3297 * @mas: The maple state 3298 * @b_node: The maple big node 3299 */ 3300 static void mas_split(struct ma_state *mas, struct maple_big_node *b_node) 3301 { 3302 struct maple_subtree_state mast; 3303 int height = 0; 3304 unsigned char mid_split, split = 0; 3305 struct maple_enode *old; 3306 3307 /* 3308 * Splitting is handled differently from any other B-tree; the Maple 3309 * Tree splits upwards. Splitting up means that the split operation 3310 * occurs when the walk of the tree hits the leaves and not on the way 3311 * down. The reason for splitting up is that it is impossible to know 3312 * how much space will be needed until the leaf is (or leaves are) 3313 * reached. Since overwriting data is allowed and a range could 3314 * overwrite more than one range or result in changing one entry into 3 3315 * entries, it is impossible to know if a split is required until the 3316 * data is examined. 3317 * 3318 * Splitting is a balancing act between keeping allocations to a minimum 3319 * and avoiding a 'jitter' event where a tree is expanded to make room 3320 * for an entry followed by a contraction when the entry is removed. To 3321 * accomplish the balance, there are empty slots remaining in both left 3322 * and right nodes after a split. 3323 */ 3324 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3325 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3326 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); 3327 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); 3328 3329 trace_ma_op(__func__, mas); 3330 mas->depth = mas_mt_height(mas); 3331 3332 mast.l = &l_mas; 3333 mast.r = &r_mas; 3334 mast.orig_l = &prev_l_mas; 3335 mast.orig_r = &prev_r_mas; 3336 mast.bn = b_node; 3337 3338 while (height++ <= mas->depth) { 3339 if (mt_slots[b_node->type] > b_node->b_end) { 3340 mas_split_final_node(&mast, mas, height); 3341 break; 3342 } 3343 3344 l_mas = r_mas = *mas; 3345 l_mas.node = mas_new_ma_node(mas, b_node); 3346 r_mas.node = mas_new_ma_node(mas, b_node); 3347 /* 3348 * Another way that 'jitter' is avoided is to terminate a split up early if the 3349 * left or right node has space to spare. This is referred to as "pushing left" 3350 * or "pushing right" and is similar to the B* tree, except the nodes left or 3351 * right can rarely be reused due to RCU, but the ripple upwards is halted which 3352 * is a significant savings. 3353 */ 3354 /* Try to push left. */ 3355 if (mas_push_data(mas, height, &mast, true)) 3356 break; 3357 /* Try to push right. */ 3358 if (mas_push_data(mas, height, &mast, false)) 3359 break; 3360 3361 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min); 3362 mast_split_data(&mast, mas, split); 3363 /* 3364 * Usually correct, mab_mas_cp in the above call overwrites 3365 * r->max. 3366 */ 3367 mast.r->max = mas->max; 3368 mast_fill_bnode(&mast, mas, 1); 3369 prev_l_mas = *mast.l; 3370 prev_r_mas = *mast.r; 3371 } 3372 3373 /* Set the original node as dead */ 3374 old = mas->node; 3375 mas->node = l_mas.node; 3376 mas_wmb_replace(mas, old); 3377 mtree_range_walk(mas); 3378 return; 3379 } 3380 3381 /* 3382 * mas_commit_b_node() - Commit the big node into the tree. 3383 * @wr_mas: The maple write state 3384 * @b_node: The maple big node 3385 */ 3386 static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas, 3387 struct maple_big_node *b_node) 3388 { 3389 enum store_type type = wr_mas->mas->store_type; 3390 3391 WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store); 3392 3393 if (type == wr_rebalance) 3394 return mas_rebalance(wr_mas->mas, b_node); 3395 3396 return mas_split(wr_mas->mas, b_node); 3397 } 3398 3399 /* 3400 * mas_root_expand() - Expand a root to a node 3401 * @mas: The maple state 3402 * @entry: The entry to store into the tree 3403 */ 3404 static inline int mas_root_expand(struct ma_state *mas, void *entry) 3405 { 3406 void *contents = mas_root_locked(mas); 3407 enum maple_type type = maple_leaf_64; 3408 struct maple_node *node; 3409 void __rcu **slots; 3410 unsigned long *pivots; 3411 int slot = 0; 3412 3413 node = mas_pop_node(mas); 3414 pivots = ma_pivots(node, type); 3415 slots = ma_slots(node, type); 3416 node->parent = ma_parent_ptr(mas_tree_parent(mas)); 3417 mas->node = mt_mk_node(node, type); 3418 mas->status = ma_active; 3419 3420 if (mas->index) { 3421 if (contents) { 3422 rcu_assign_pointer(slots[slot], contents); 3423 if (likely(mas->index > 1)) 3424 slot++; 3425 } 3426 pivots[slot++] = mas->index - 1; 3427 } 3428 3429 rcu_assign_pointer(slots[slot], entry); 3430 mas->offset = slot; 3431 pivots[slot] = mas->last; 3432 if (mas->last != ULONG_MAX) 3433 pivots[++slot] = ULONG_MAX; 3434 3435 mas->depth = 1; 3436 mas_set_height(mas); 3437 ma_set_meta(node, maple_leaf_64, 0, slot); 3438 /* swap the new root into the tree */ 3439 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3440 return slot; 3441 } 3442 3443 static inline void mas_store_root(struct ma_state *mas, void *entry) 3444 { 3445 if (likely((mas->last != 0) || (mas->index != 0))) 3446 mas_root_expand(mas, entry); 3447 else if (((unsigned long) (entry) & 3) == 2) 3448 mas_root_expand(mas, entry); 3449 else { 3450 rcu_assign_pointer(mas->tree->ma_root, entry); 3451 mas->status = ma_start; 3452 } 3453 } 3454 3455 /* 3456 * mas_is_span_wr() - Check if the write needs to be treated as a write that 3457 * spans the node. 3458 * @mas: The maple state 3459 * @piv: The pivot value being written 3460 * @type: The maple node type 3461 * @entry: The data to write 3462 * 3463 * Spanning writes are writes that start in one node and end in another OR if 3464 * the write of a %NULL will cause the node to end with a %NULL. 3465 * 3466 * Return: True if this is a spanning write, false otherwise. 3467 */ 3468 static bool mas_is_span_wr(struct ma_wr_state *wr_mas) 3469 { 3470 unsigned long max = wr_mas->r_max; 3471 unsigned long last = wr_mas->mas->last; 3472 enum maple_type type = wr_mas->type; 3473 void *entry = wr_mas->entry; 3474 3475 /* Contained in this pivot, fast path */ 3476 if (last < max) 3477 return false; 3478 3479 if (ma_is_leaf(type)) { 3480 max = wr_mas->mas->max; 3481 if (last < max) 3482 return false; 3483 } 3484 3485 if (last == max) { 3486 /* 3487 * The last entry of leaf node cannot be NULL unless it is the 3488 * rightmost node (writing ULONG_MAX), otherwise it spans slots. 3489 */ 3490 if (entry || last == ULONG_MAX) 3491 return false; 3492 } 3493 3494 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry); 3495 return true; 3496 } 3497 3498 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) 3499 { 3500 wr_mas->type = mte_node_type(wr_mas->mas->node); 3501 mas_wr_node_walk(wr_mas); 3502 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); 3503 } 3504 3505 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) 3506 { 3507 wr_mas->mas->max = wr_mas->r_max; 3508 wr_mas->mas->min = wr_mas->r_min; 3509 wr_mas->mas->node = wr_mas->content; 3510 wr_mas->mas->offset = 0; 3511 wr_mas->mas->depth++; 3512 } 3513 /* 3514 * mas_wr_walk() - Walk the tree for a write. 3515 * @wr_mas: The maple write state 3516 * 3517 * Uses mas_slot_locked() and does not need to worry about dead nodes. 3518 * 3519 * Return: True if it's contained in a node, false on spanning write. 3520 */ 3521 static bool mas_wr_walk(struct ma_wr_state *wr_mas) 3522 { 3523 struct ma_state *mas = wr_mas->mas; 3524 3525 while (true) { 3526 mas_wr_walk_descend(wr_mas); 3527 if (unlikely(mas_is_span_wr(wr_mas))) 3528 return false; 3529 3530 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3531 mas->offset); 3532 if (ma_is_leaf(wr_mas->type)) 3533 return true; 3534 3535 mas_wr_walk_traverse(wr_mas); 3536 } 3537 3538 return true; 3539 } 3540 3541 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas) 3542 { 3543 struct ma_state *mas = wr_mas->mas; 3544 3545 while (true) { 3546 mas_wr_walk_descend(wr_mas); 3547 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3548 mas->offset); 3549 if (ma_is_leaf(wr_mas->type)) 3550 return true; 3551 mas_wr_walk_traverse(wr_mas); 3552 3553 } 3554 return true; 3555 } 3556 /* 3557 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. 3558 * @l_wr_mas: The left maple write state 3559 * @r_wr_mas: The right maple write state 3560 */ 3561 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, 3562 struct ma_wr_state *r_wr_mas) 3563 { 3564 struct ma_state *r_mas = r_wr_mas->mas; 3565 struct ma_state *l_mas = l_wr_mas->mas; 3566 unsigned char l_slot; 3567 3568 l_slot = l_mas->offset; 3569 if (!l_wr_mas->content) 3570 l_mas->index = l_wr_mas->r_min; 3571 3572 if ((l_mas->index == l_wr_mas->r_min) && 3573 (l_slot && 3574 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { 3575 if (l_slot > 1) 3576 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; 3577 else 3578 l_mas->index = l_mas->min; 3579 3580 l_mas->offset = l_slot - 1; 3581 } 3582 3583 if (!r_wr_mas->content) { 3584 if (r_mas->last < r_wr_mas->r_max) 3585 r_mas->last = r_wr_mas->r_max; 3586 r_mas->offset++; 3587 } else if ((r_mas->last == r_wr_mas->r_max) && 3588 (r_mas->last < r_mas->max) && 3589 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { 3590 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, 3591 r_wr_mas->type, r_mas->offset + 1); 3592 r_mas->offset++; 3593 } 3594 } 3595 3596 static inline void *mas_state_walk(struct ma_state *mas) 3597 { 3598 void *entry; 3599 3600 entry = mas_start(mas); 3601 if (mas_is_none(mas)) 3602 return NULL; 3603 3604 if (mas_is_ptr(mas)) 3605 return entry; 3606 3607 return mtree_range_walk(mas); 3608 } 3609 3610 /* 3611 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up 3612 * to date. 3613 * 3614 * @mas: The maple state. 3615 * 3616 * Note: Leaves mas in undesirable state. 3617 * Return: The entry for @mas->index or %NULL on dead node. 3618 */ 3619 static inline void *mtree_lookup_walk(struct ma_state *mas) 3620 { 3621 unsigned long *pivots; 3622 unsigned char offset; 3623 struct maple_node *node; 3624 struct maple_enode *next; 3625 enum maple_type type; 3626 void __rcu **slots; 3627 unsigned char end; 3628 3629 next = mas->node; 3630 do { 3631 node = mte_to_node(next); 3632 type = mte_node_type(next); 3633 pivots = ma_pivots(node, type); 3634 end = mt_pivots[type]; 3635 offset = 0; 3636 do { 3637 if (pivots[offset] >= mas->index) 3638 break; 3639 } while (++offset < end); 3640 3641 slots = ma_slots(node, type); 3642 next = mt_slot(mas->tree, slots, offset); 3643 if (unlikely(ma_dead_node(node))) 3644 goto dead_node; 3645 } while (!ma_is_leaf(type)); 3646 3647 return (void *)next; 3648 3649 dead_node: 3650 mas_reset(mas); 3651 return NULL; 3652 } 3653 3654 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); 3655 /* 3656 * mas_new_root() - Create a new root node that only contains the entry passed 3657 * in. 3658 * @mas: The maple state 3659 * @entry: The entry to store. 3660 * 3661 * Only valid when the index == 0 and the last == ULONG_MAX 3662 */ 3663 static inline void mas_new_root(struct ma_state *mas, void *entry) 3664 { 3665 struct maple_enode *root = mas_root_locked(mas); 3666 enum maple_type type = maple_leaf_64; 3667 struct maple_node *node; 3668 void __rcu **slots; 3669 unsigned long *pivots; 3670 3671 if (!entry && !mas->index && mas->last == ULONG_MAX) { 3672 mas->depth = 0; 3673 mas_set_height(mas); 3674 rcu_assign_pointer(mas->tree->ma_root, entry); 3675 mas->status = ma_start; 3676 goto done; 3677 } 3678 3679 node = mas_pop_node(mas); 3680 pivots = ma_pivots(node, type); 3681 slots = ma_slots(node, type); 3682 node->parent = ma_parent_ptr(mas_tree_parent(mas)); 3683 mas->node = mt_mk_node(node, type); 3684 mas->status = ma_active; 3685 rcu_assign_pointer(slots[0], entry); 3686 pivots[0] = mas->last; 3687 mas->depth = 1; 3688 mas_set_height(mas); 3689 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3690 3691 done: 3692 if (xa_is_node(root)) 3693 mte_destroy_walk(root, mas->tree); 3694 3695 return; 3696 } 3697 /* 3698 * mas_wr_spanning_store() - Create a subtree with the store operation completed 3699 * and new nodes where necessary, then place the sub-tree in the actual tree. 3700 * Note that mas is expected to point to the node which caused the store to 3701 * span. 3702 * @wr_mas: The maple write state 3703 */ 3704 static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas) 3705 { 3706 struct maple_subtree_state mast; 3707 struct maple_big_node b_node; 3708 struct ma_state *mas; 3709 unsigned char height; 3710 3711 /* Left and Right side of spanning store */ 3712 MA_STATE(l_mas, NULL, 0, 0); 3713 MA_STATE(r_mas, NULL, 0, 0); 3714 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); 3715 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); 3716 3717 /* 3718 * A store operation that spans multiple nodes is called a spanning 3719 * store and is handled early in the store call stack by the function 3720 * mas_is_span_wr(). When a spanning store is identified, the maple 3721 * state is duplicated. The first maple state walks the left tree path 3722 * to ``index``, the duplicate walks the right tree path to ``last``. 3723 * The data in the two nodes are combined into a single node, two nodes, 3724 * or possibly three nodes (see the 3-way split above). A ``NULL`` 3725 * written to the last entry of a node is considered a spanning store as 3726 * a rebalance is required for the operation to complete and an overflow 3727 * of data may happen. 3728 */ 3729 mas = wr_mas->mas; 3730 trace_ma_op(__func__, mas); 3731 3732 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 3733 return mas_new_root(mas, wr_mas->entry); 3734 /* 3735 * Node rebalancing may occur due to this store, so there may be three new 3736 * entries per level plus a new root. 3737 */ 3738 height = mas_mt_height(mas); 3739 3740 /* 3741 * Set up right side. Need to get to the next offset after the spanning 3742 * store to ensure it's not NULL and to combine both the next node and 3743 * the node with the start together. 3744 */ 3745 r_mas = *mas; 3746 /* Avoid overflow, walk to next slot in the tree. */ 3747 if (r_mas.last + 1) 3748 r_mas.last++; 3749 3750 r_mas.index = r_mas.last; 3751 mas_wr_walk_index(&r_wr_mas); 3752 r_mas.last = r_mas.index = mas->last; 3753 3754 /* Set up left side. */ 3755 l_mas = *mas; 3756 mas_wr_walk_index(&l_wr_mas); 3757 3758 if (!wr_mas->entry) { 3759 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); 3760 mas->offset = l_mas.offset; 3761 mas->index = l_mas.index; 3762 mas->last = l_mas.last = r_mas.last; 3763 } 3764 3765 /* expanding NULLs may make this cover the entire range */ 3766 if (!l_mas.index && r_mas.last == ULONG_MAX) { 3767 mas_set_range(mas, 0, ULONG_MAX); 3768 return mas_new_root(mas, wr_mas->entry); 3769 } 3770 3771 memset(&b_node, 0, sizeof(struct maple_big_node)); 3772 /* Copy l_mas and store the value in b_node. */ 3773 mas_store_b_node(&l_wr_mas, &b_node, l_mas.end); 3774 /* Copy r_mas into b_node. */ 3775 if (r_mas.offset <= r_mas.end) 3776 mas_mab_cp(&r_mas, r_mas.offset, r_mas.end, 3777 &b_node, b_node.b_end + 1); 3778 else 3779 b_node.b_end++; 3780 3781 /* Stop spanning searches by searching for just index. */ 3782 l_mas.index = l_mas.last = mas->index; 3783 3784 mast.bn = &b_node; 3785 mast.orig_l = &l_mas; 3786 mast.orig_r = &r_mas; 3787 /* Combine l_mas and r_mas and split them up evenly again. */ 3788 return mas_spanning_rebalance(mas, &mast, height + 1); 3789 } 3790 3791 /* 3792 * mas_wr_node_store() - Attempt to store the value in a node 3793 * @wr_mas: The maple write state 3794 * 3795 * Attempts to reuse the node, but may allocate. 3796 */ 3797 static inline void mas_wr_node_store(struct ma_wr_state *wr_mas, 3798 unsigned char new_end) 3799 { 3800 struct ma_state *mas = wr_mas->mas; 3801 void __rcu **dst_slots; 3802 unsigned long *dst_pivots; 3803 unsigned char dst_offset, offset_end = wr_mas->offset_end; 3804 struct maple_node reuse, *newnode; 3805 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type]; 3806 bool in_rcu = mt_in_rcu(mas->tree); 3807 3808 if (mas->last == wr_mas->end_piv) 3809 offset_end++; /* don't copy this offset */ 3810 else if (unlikely(wr_mas->r_max == ULONG_MAX)) 3811 mas_bulk_rebalance(mas, mas->end, wr_mas->type); 3812 3813 /* set up node. */ 3814 if (in_rcu) { 3815 newnode = mas_pop_node(mas); 3816 } else { 3817 memset(&reuse, 0, sizeof(struct maple_node)); 3818 newnode = &reuse; 3819 } 3820 3821 newnode->parent = mas_mn(mas)->parent; 3822 dst_pivots = ma_pivots(newnode, wr_mas->type); 3823 dst_slots = ma_slots(newnode, wr_mas->type); 3824 /* Copy from start to insert point */ 3825 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset); 3826 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset); 3827 3828 /* Handle insert of new range starting after old range */ 3829 if (wr_mas->r_min < mas->index) { 3830 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content); 3831 dst_pivots[mas->offset++] = mas->index - 1; 3832 } 3833 3834 /* Store the new entry and range end. */ 3835 if (mas->offset < node_pivots) 3836 dst_pivots[mas->offset] = mas->last; 3837 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry); 3838 3839 /* 3840 * this range wrote to the end of the node or it overwrote the rest of 3841 * the data 3842 */ 3843 if (offset_end > mas->end) 3844 goto done; 3845 3846 dst_offset = mas->offset + 1; 3847 /* Copy to the end of node if necessary. */ 3848 copy_size = mas->end - offset_end + 1; 3849 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end, 3850 sizeof(void *) * copy_size); 3851 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end, 3852 sizeof(unsigned long) * (copy_size - 1)); 3853 3854 if (new_end < node_pivots) 3855 dst_pivots[new_end] = mas->max; 3856 3857 done: 3858 mas_leaf_set_meta(newnode, maple_leaf_64, new_end); 3859 if (in_rcu) { 3860 struct maple_enode *old_enode = mas->node; 3861 3862 mas->node = mt_mk_node(newnode, wr_mas->type); 3863 mas_replace_node(mas, old_enode); 3864 } else { 3865 memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); 3866 } 3867 trace_ma_write(__func__, mas, 0, wr_mas->entry); 3868 mas_update_gap(mas); 3869 mas->end = new_end; 3870 return; 3871 } 3872 3873 /* 3874 * mas_wr_slot_store: Attempt to store a value in a slot. 3875 * @wr_mas: the maple write state 3876 */ 3877 static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas) 3878 { 3879 struct ma_state *mas = wr_mas->mas; 3880 unsigned char offset = mas->offset; 3881 void __rcu **slots = wr_mas->slots; 3882 bool gap = false; 3883 3884 gap |= !mt_slot_locked(mas->tree, slots, offset); 3885 gap |= !mt_slot_locked(mas->tree, slots, offset + 1); 3886 3887 if (wr_mas->offset_end - offset == 1) { 3888 if (mas->index == wr_mas->r_min) { 3889 /* Overwriting the range and a part of the next one */ 3890 rcu_assign_pointer(slots[offset], wr_mas->entry); 3891 wr_mas->pivots[offset] = mas->last; 3892 } else { 3893 /* Overwriting a part of the range and the next one */ 3894 rcu_assign_pointer(slots[offset + 1], wr_mas->entry); 3895 wr_mas->pivots[offset] = mas->index - 1; 3896 mas->offset++; /* Keep mas accurate. */ 3897 } 3898 } else if (!mt_in_rcu(mas->tree)) { 3899 /* 3900 * Expand the range, only partially overwriting the previous and 3901 * next ranges 3902 */ 3903 gap |= !mt_slot_locked(mas->tree, slots, offset + 2); 3904 rcu_assign_pointer(slots[offset + 1], wr_mas->entry); 3905 wr_mas->pivots[offset] = mas->index - 1; 3906 wr_mas->pivots[offset + 1] = mas->last; 3907 mas->offset++; /* Keep mas accurate. */ 3908 } else { 3909 return; 3910 } 3911 3912 trace_ma_write(__func__, mas, 0, wr_mas->entry); 3913 /* 3914 * Only update gap when the new entry is empty or there is an empty 3915 * entry in the original two ranges. 3916 */ 3917 if (!wr_mas->entry || gap) 3918 mas_update_gap(mas); 3919 3920 return; 3921 } 3922 3923 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) 3924 { 3925 struct ma_state *mas = wr_mas->mas; 3926 3927 if (!wr_mas->slots[wr_mas->offset_end]) { 3928 /* If this one is null, the next and prev are not */ 3929 mas->last = wr_mas->end_piv; 3930 } else { 3931 /* Check next slot(s) if we are overwriting the end */ 3932 if ((mas->last == wr_mas->end_piv) && 3933 (mas->end != wr_mas->offset_end) && 3934 !wr_mas->slots[wr_mas->offset_end + 1]) { 3935 wr_mas->offset_end++; 3936 if (wr_mas->offset_end == mas->end) 3937 mas->last = mas->max; 3938 else 3939 mas->last = wr_mas->pivots[wr_mas->offset_end]; 3940 wr_mas->end_piv = mas->last; 3941 } 3942 } 3943 3944 if (!wr_mas->content) { 3945 /* If this one is null, the next and prev are not */ 3946 mas->index = wr_mas->r_min; 3947 } else { 3948 /* Check prev slot if we are overwriting the start */ 3949 if (mas->index == wr_mas->r_min && mas->offset && 3950 !wr_mas->slots[mas->offset - 1]) { 3951 mas->offset--; 3952 wr_mas->r_min = mas->index = 3953 mas_safe_min(mas, wr_mas->pivots, mas->offset); 3954 wr_mas->r_max = wr_mas->pivots[mas->offset]; 3955 } 3956 } 3957 } 3958 3959 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) 3960 { 3961 while ((wr_mas->offset_end < wr_mas->mas->end) && 3962 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end])) 3963 wr_mas->offset_end++; 3964 3965 if (wr_mas->offset_end < wr_mas->mas->end) 3966 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end]; 3967 else 3968 wr_mas->end_piv = wr_mas->mas->max; 3969 } 3970 3971 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas) 3972 { 3973 struct ma_state *mas = wr_mas->mas; 3974 unsigned char new_end = mas->end + 2; 3975 3976 new_end -= wr_mas->offset_end - mas->offset; 3977 if (wr_mas->r_min == mas->index) 3978 new_end--; 3979 3980 if (wr_mas->end_piv == mas->last) 3981 new_end--; 3982 3983 return new_end; 3984 } 3985 3986 /* 3987 * mas_wr_append: Attempt to append 3988 * @wr_mas: the maple write state 3989 * @new_end: The end of the node after the modification 3990 * 3991 * This is currently unsafe in rcu mode since the end of the node may be cached 3992 * by readers while the node contents may be updated which could result in 3993 * inaccurate information. 3994 */ 3995 static inline void mas_wr_append(struct ma_wr_state *wr_mas, 3996 unsigned char new_end) 3997 { 3998 struct ma_state *mas = wr_mas->mas; 3999 void __rcu **slots; 4000 unsigned char end = mas->end; 4001 4002 if (new_end < mt_pivots[wr_mas->type]) { 4003 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 4004 ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end); 4005 } 4006 4007 slots = wr_mas->slots; 4008 if (new_end == end + 1) { 4009 if (mas->last == wr_mas->r_max) { 4010 /* Append to end of range */ 4011 rcu_assign_pointer(slots[new_end], wr_mas->entry); 4012 wr_mas->pivots[end] = mas->index - 1; 4013 mas->offset = new_end; 4014 } else { 4015 /* Append to start of range */ 4016 rcu_assign_pointer(slots[new_end], wr_mas->content); 4017 wr_mas->pivots[end] = mas->last; 4018 rcu_assign_pointer(slots[end], wr_mas->entry); 4019 } 4020 } else { 4021 /* Append to the range without touching any boundaries. */ 4022 rcu_assign_pointer(slots[new_end], wr_mas->content); 4023 wr_mas->pivots[end + 1] = mas->last; 4024 rcu_assign_pointer(slots[end + 1], wr_mas->entry); 4025 wr_mas->pivots[end] = mas->index - 1; 4026 mas->offset = end + 1; 4027 } 4028 4029 if (!wr_mas->content || !wr_mas->entry) 4030 mas_update_gap(mas); 4031 4032 mas->end = new_end; 4033 trace_ma_write(__func__, mas, new_end, wr_mas->entry); 4034 return; 4035 } 4036 4037 /* 4038 * mas_wr_bnode() - Slow path for a modification. 4039 * @wr_mas: The write maple state 4040 * 4041 * This is where split, rebalance end up. 4042 */ 4043 static void mas_wr_bnode(struct ma_wr_state *wr_mas) 4044 { 4045 struct maple_big_node b_node; 4046 4047 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); 4048 memset(&b_node, 0, sizeof(struct maple_big_node)); 4049 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); 4050 mas_commit_b_node(wr_mas, &b_node); 4051 } 4052 4053 /* 4054 * mas_wr_store_entry() - Internal call to store a value 4055 * @mas: The maple state 4056 * @entry: The entry to store. 4057 * 4058 * Return: The contents that was stored at the index. 4059 */ 4060 static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas) 4061 { 4062 struct ma_state *mas = wr_mas->mas; 4063 unsigned char new_end = mas_wr_new_end(wr_mas); 4064 4065 switch (mas->store_type) { 4066 case wr_invalid: 4067 MT_BUG_ON(mas->tree, 1); 4068 return; 4069 case wr_new_root: 4070 mas_new_root(mas, wr_mas->entry); 4071 break; 4072 case wr_store_root: 4073 mas_store_root(mas, wr_mas->entry); 4074 break; 4075 case wr_exact_fit: 4076 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); 4077 if (!!wr_mas->entry ^ !!wr_mas->content) 4078 mas_update_gap(mas); 4079 break; 4080 case wr_append: 4081 mas_wr_append(wr_mas, new_end); 4082 break; 4083 case wr_slot_store: 4084 mas_wr_slot_store(wr_mas); 4085 break; 4086 case wr_node_store: 4087 mas_wr_node_store(wr_mas, new_end); 4088 break; 4089 case wr_spanning_store: 4090 mas_wr_spanning_store(wr_mas); 4091 break; 4092 case wr_split_store: 4093 case wr_rebalance: 4094 mas_wr_bnode(wr_mas); 4095 break; 4096 } 4097 4098 return; 4099 } 4100 4101 static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas) 4102 { 4103 struct ma_state *mas = wr_mas->mas; 4104 4105 if (!mas_is_active(mas)) { 4106 if (mas_is_start(mas)) 4107 goto set_content; 4108 4109 if (unlikely(mas_is_paused(mas))) 4110 goto reset; 4111 4112 if (unlikely(mas_is_none(mas))) 4113 goto reset; 4114 4115 if (unlikely(mas_is_overflow(mas))) 4116 goto reset; 4117 4118 if (unlikely(mas_is_underflow(mas))) 4119 goto reset; 4120 } 4121 4122 /* 4123 * A less strict version of mas_is_span_wr() where we allow spanning 4124 * writes within this node. This is to stop partial walks in 4125 * mas_prealloc() from being reset. 4126 */ 4127 if (mas->last > mas->max) 4128 goto reset; 4129 4130 if (wr_mas->entry) 4131 goto set_content; 4132 4133 if (mte_is_leaf(mas->node) && mas->last == mas->max) 4134 goto reset; 4135 4136 goto set_content; 4137 4138 reset: 4139 mas_reset(mas); 4140 set_content: 4141 wr_mas->content = mas_start(mas); 4142 } 4143 4144 /** 4145 * mas_prealloc_calc() - Calculate number of nodes needed for a 4146 * given store oepration 4147 * @mas: The maple state 4148 * @entry: The entry to store into the tree 4149 * 4150 * Return: Number of nodes required for preallocation. 4151 */ 4152 static inline int mas_prealloc_calc(struct ma_state *mas, void *entry) 4153 { 4154 int ret = mas_mt_height(mas) * 3 + 1; 4155 4156 switch (mas->store_type) { 4157 case wr_invalid: 4158 WARN_ON_ONCE(1); 4159 break; 4160 case wr_new_root: 4161 ret = 1; 4162 break; 4163 case wr_store_root: 4164 if (likely((mas->last != 0) || (mas->index != 0))) 4165 ret = 1; 4166 else if (((unsigned long) (entry) & 3) == 2) 4167 ret = 1; 4168 else 4169 ret = 0; 4170 break; 4171 case wr_spanning_store: 4172 ret = mas_mt_height(mas) * 3 + 1; 4173 break; 4174 case wr_split_store: 4175 ret = mas_mt_height(mas) * 2 + 1; 4176 break; 4177 case wr_rebalance: 4178 ret = mas_mt_height(mas) * 2 - 1; 4179 break; 4180 case wr_node_store: 4181 ret = mt_in_rcu(mas->tree) ? 1 : 0; 4182 break; 4183 case wr_append: 4184 case wr_exact_fit: 4185 case wr_slot_store: 4186 ret = 0; 4187 } 4188 4189 return ret; 4190 } 4191 4192 /* 4193 * mas_wr_store_type() - Set the store type for a given 4194 * store operation. 4195 * @wr_mas: The maple write state 4196 */ 4197 static inline void mas_wr_store_type(struct ma_wr_state *wr_mas) 4198 { 4199 struct ma_state *mas = wr_mas->mas; 4200 unsigned char new_end; 4201 4202 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) { 4203 mas->store_type = wr_store_root; 4204 return; 4205 } 4206 4207 if (unlikely(!mas_wr_walk(wr_mas))) { 4208 mas->store_type = wr_spanning_store; 4209 return; 4210 } 4211 4212 /* At this point, we are at the leaf node that needs to be altered. */ 4213 mas_wr_end_piv(wr_mas); 4214 if (!wr_mas->entry) 4215 mas_wr_extend_null(wr_mas); 4216 4217 new_end = mas_wr_new_end(wr_mas); 4218 if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last)) { 4219 mas->store_type = wr_exact_fit; 4220 return; 4221 } 4222 4223 if (unlikely(!mas->index && mas->last == ULONG_MAX)) { 4224 mas->store_type = wr_new_root; 4225 return; 4226 } 4227 4228 /* Potential spanning rebalance collapsing a node */ 4229 if (new_end < mt_min_slots[wr_mas->type]) { 4230 if (!mte_is_root(mas->node)) { 4231 mas->store_type = wr_rebalance; 4232 return; 4233 } 4234 mas->store_type = wr_node_store; 4235 return; 4236 } 4237 4238 if (new_end >= mt_slots[wr_mas->type]) { 4239 mas->store_type = wr_split_store; 4240 return; 4241 } 4242 4243 if (!mt_in_rcu(mas->tree) && (mas->offset == mas->end)) { 4244 mas->store_type = wr_append; 4245 return; 4246 } 4247 4248 if ((new_end == mas->end) && (!mt_in_rcu(mas->tree) || 4249 (wr_mas->offset_end - mas->offset == 1))) { 4250 mas->store_type = wr_slot_store; 4251 return; 4252 } 4253 4254 if (mte_is_root(mas->node) || (new_end >= mt_min_slots[wr_mas->type]) || 4255 (mas->mas_flags & MA_STATE_BULK)) { 4256 mas->store_type = wr_node_store; 4257 return; 4258 } 4259 4260 mas->store_type = wr_invalid; 4261 MAS_WARN_ON(mas, 1); 4262 } 4263 4264 /** 4265 * mas_wr_preallocate() - Preallocate enough nodes for a store operation 4266 * @wr_mas: The maple write state 4267 * @entry: The entry that will be stored 4268 * 4269 */ 4270 static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry) 4271 { 4272 struct ma_state *mas = wr_mas->mas; 4273 int request; 4274 4275 mas_wr_prealloc_setup(wr_mas); 4276 mas_wr_store_type(wr_mas); 4277 request = mas_prealloc_calc(mas, entry); 4278 if (!request) 4279 return; 4280 4281 mas_node_count(mas, request); 4282 } 4283 4284 /** 4285 * mas_insert() - Internal call to insert a value 4286 * @mas: The maple state 4287 * @entry: The entry to store 4288 * 4289 * Return: %NULL or the contents that already exists at the requested index 4290 * otherwise. The maple state needs to be checked for error conditions. 4291 */ 4292 static inline void *mas_insert(struct ma_state *mas, void *entry) 4293 { 4294 MA_WR_STATE(wr_mas, mas, entry); 4295 4296 /* 4297 * Inserting a new range inserts either 0, 1, or 2 pivots within the 4298 * tree. If the insert fits exactly into an existing gap with a value 4299 * of NULL, then the slot only needs to be written with the new value. 4300 * If the range being inserted is adjacent to another range, then only a 4301 * single pivot needs to be inserted (as well as writing the entry). If 4302 * the new range is within a gap but does not touch any other ranges, 4303 * then two pivots need to be inserted: the start - 1, and the end. As 4304 * usual, the entry must be written. Most operations require a new node 4305 * to be allocated and replace an existing node to ensure RCU safety, 4306 * when in RCU mode. The exception to requiring a newly allocated node 4307 * is when inserting at the end of a node (appending). When done 4308 * carefully, appending can reuse the node in place. 4309 */ 4310 wr_mas.content = mas_start(mas); 4311 if (wr_mas.content) 4312 goto exists; 4313 4314 mas_wr_preallocate(&wr_mas, entry); 4315 if (mas_is_err(mas)) 4316 return NULL; 4317 4318 /* spanning writes always overwrite something */ 4319 if (mas->store_type == wr_spanning_store) 4320 goto exists; 4321 4322 /* At this point, we are at the leaf node that needs to be altered. */ 4323 if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) { 4324 wr_mas.offset_end = mas->offset; 4325 wr_mas.end_piv = wr_mas.r_max; 4326 4327 if (wr_mas.content || (mas->last > wr_mas.r_max)) 4328 goto exists; 4329 } 4330 4331 mas_wr_store_entry(&wr_mas); 4332 return wr_mas.content; 4333 4334 exists: 4335 mas_set_err(mas, -EEXIST); 4336 return wr_mas.content; 4337 4338 } 4339 4340 /** 4341 * mas_alloc_cyclic() - Internal call to find somewhere to store an entry 4342 * @mas: The maple state. 4343 * @startp: Pointer to ID. 4344 * @range_lo: Lower bound of range to search. 4345 * @range_hi: Upper bound of range to search. 4346 * @entry: The entry to store. 4347 * @next: Pointer to next ID to allocate. 4348 * @gfp: The GFP_FLAGS to use for allocations. 4349 * 4350 * Return: 0 if the allocation succeeded without wrapping, 1 if the 4351 * allocation succeeded after wrapping, or -EBUSY if there are no 4352 * free entries. 4353 */ 4354 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp, 4355 void *entry, unsigned long range_lo, unsigned long range_hi, 4356 unsigned long *next, gfp_t gfp) 4357 { 4358 unsigned long min = range_lo; 4359 int ret = 0; 4360 4361 range_lo = max(min, *next); 4362 ret = mas_empty_area(mas, range_lo, range_hi, 1); 4363 if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) { 4364 mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED; 4365 ret = 1; 4366 } 4367 if (ret < 0 && range_lo > min) { 4368 ret = mas_empty_area(mas, min, range_hi, 1); 4369 if (ret == 0) 4370 ret = 1; 4371 } 4372 if (ret < 0) 4373 return ret; 4374 4375 do { 4376 mas_insert(mas, entry); 4377 } while (mas_nomem(mas, gfp)); 4378 if (mas_is_err(mas)) 4379 return xa_err(mas->node); 4380 4381 *startp = mas->index; 4382 *next = *startp + 1; 4383 if (*next == 0) 4384 mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED; 4385 4386 mas_destroy(mas); 4387 return ret; 4388 } 4389 EXPORT_SYMBOL(mas_alloc_cyclic); 4390 4391 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index) 4392 { 4393 retry: 4394 mas_set(mas, index); 4395 mas_state_walk(mas); 4396 if (mas_is_start(mas)) 4397 goto retry; 4398 } 4399 4400 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas, 4401 struct maple_node *node, const unsigned long index) 4402 { 4403 if (unlikely(ma_dead_node(node))) { 4404 mas_rewalk(mas, index); 4405 return true; 4406 } 4407 return false; 4408 } 4409 4410 /* 4411 * mas_prev_node() - Find the prev non-null entry at the same level in the 4412 * tree. The prev value will be mas->node[mas->offset] or the status will be 4413 * ma_none. 4414 * @mas: The maple state 4415 * @min: The lower limit to search 4416 * 4417 * The prev node value will be mas->node[mas->offset] or the status will be 4418 * ma_none. 4419 * Return: 1 if the node is dead, 0 otherwise. 4420 */ 4421 static int mas_prev_node(struct ma_state *mas, unsigned long min) 4422 { 4423 enum maple_type mt; 4424 int offset, level; 4425 void __rcu **slots; 4426 struct maple_node *node; 4427 unsigned long *pivots; 4428 unsigned long max; 4429 4430 node = mas_mn(mas); 4431 if (!mas->min) 4432 goto no_entry; 4433 4434 max = mas->min - 1; 4435 if (max < min) 4436 goto no_entry; 4437 4438 level = 0; 4439 do { 4440 if (ma_is_root(node)) 4441 goto no_entry; 4442 4443 /* Walk up. */ 4444 if (unlikely(mas_ascend(mas))) 4445 return 1; 4446 offset = mas->offset; 4447 level++; 4448 node = mas_mn(mas); 4449 } while (!offset); 4450 4451 offset--; 4452 mt = mte_node_type(mas->node); 4453 while (level > 1) { 4454 level--; 4455 slots = ma_slots(node, mt); 4456 mas->node = mas_slot(mas, slots, offset); 4457 if (unlikely(ma_dead_node(node))) 4458 return 1; 4459 4460 mt = mte_node_type(mas->node); 4461 node = mas_mn(mas); 4462 pivots = ma_pivots(node, mt); 4463 offset = ma_data_end(node, mt, pivots, max); 4464 if (unlikely(ma_dead_node(node))) 4465 return 1; 4466 } 4467 4468 slots = ma_slots(node, mt); 4469 mas->node = mas_slot(mas, slots, offset); 4470 pivots = ma_pivots(node, mt); 4471 if (unlikely(ma_dead_node(node))) 4472 return 1; 4473 4474 if (likely(offset)) 4475 mas->min = pivots[offset - 1] + 1; 4476 mas->max = max; 4477 mas->offset = mas_data_end(mas); 4478 if (unlikely(mte_dead_node(mas->node))) 4479 return 1; 4480 4481 mas->end = mas->offset; 4482 return 0; 4483 4484 no_entry: 4485 if (unlikely(ma_dead_node(node))) 4486 return 1; 4487 4488 mas->status = ma_underflow; 4489 return 0; 4490 } 4491 4492 /* 4493 * mas_prev_slot() - Get the entry in the previous slot 4494 * 4495 * @mas: The maple state 4496 * @max: The minimum starting range 4497 * @empty: Can be empty 4498 * @set_underflow: Set the @mas->node to underflow state on limit. 4499 * 4500 * Return: The entry in the previous slot which is possibly NULL 4501 */ 4502 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty) 4503 { 4504 void *entry; 4505 void __rcu **slots; 4506 unsigned long pivot; 4507 enum maple_type type; 4508 unsigned long *pivots; 4509 struct maple_node *node; 4510 unsigned long save_point = mas->index; 4511 4512 retry: 4513 node = mas_mn(mas); 4514 type = mte_node_type(mas->node); 4515 pivots = ma_pivots(node, type); 4516 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4517 goto retry; 4518 4519 if (mas->min <= min) { 4520 pivot = mas_safe_min(mas, pivots, mas->offset); 4521 4522 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4523 goto retry; 4524 4525 if (pivot <= min) 4526 goto underflow; 4527 } 4528 4529 again: 4530 if (likely(mas->offset)) { 4531 mas->offset--; 4532 mas->last = mas->index - 1; 4533 mas->index = mas_safe_min(mas, pivots, mas->offset); 4534 } else { 4535 if (mas->index <= min) 4536 goto underflow; 4537 4538 if (mas_prev_node(mas, min)) { 4539 mas_rewalk(mas, save_point); 4540 goto retry; 4541 } 4542 4543 if (WARN_ON_ONCE(mas_is_underflow(mas))) 4544 return NULL; 4545 4546 mas->last = mas->max; 4547 node = mas_mn(mas); 4548 type = mte_node_type(mas->node); 4549 pivots = ma_pivots(node, type); 4550 mas->index = pivots[mas->offset - 1] + 1; 4551 } 4552 4553 slots = ma_slots(node, type); 4554 entry = mas_slot(mas, slots, mas->offset); 4555 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4556 goto retry; 4557 4558 4559 if (likely(entry)) 4560 return entry; 4561 4562 if (!empty) { 4563 if (mas->index <= min) { 4564 mas->status = ma_underflow; 4565 return NULL; 4566 } 4567 4568 goto again; 4569 } 4570 4571 return entry; 4572 4573 underflow: 4574 mas->status = ma_underflow; 4575 return NULL; 4576 } 4577 4578 /* 4579 * mas_next_node() - Get the next node at the same level in the tree. 4580 * @mas: The maple state 4581 * @max: The maximum pivot value to check. 4582 * 4583 * The next value will be mas->node[mas->offset] or the status will have 4584 * overflowed. 4585 * Return: 1 on dead node, 0 otherwise. 4586 */ 4587 static int mas_next_node(struct ma_state *mas, struct maple_node *node, 4588 unsigned long max) 4589 { 4590 unsigned long min; 4591 unsigned long *pivots; 4592 struct maple_enode *enode; 4593 struct maple_node *tmp; 4594 int level = 0; 4595 unsigned char node_end; 4596 enum maple_type mt; 4597 void __rcu **slots; 4598 4599 if (mas->max >= max) 4600 goto overflow; 4601 4602 min = mas->max + 1; 4603 level = 0; 4604 do { 4605 if (ma_is_root(node)) 4606 goto overflow; 4607 4608 /* Walk up. */ 4609 if (unlikely(mas_ascend(mas))) 4610 return 1; 4611 4612 level++; 4613 node = mas_mn(mas); 4614 mt = mte_node_type(mas->node); 4615 pivots = ma_pivots(node, mt); 4616 node_end = ma_data_end(node, mt, pivots, mas->max); 4617 if (unlikely(ma_dead_node(node))) 4618 return 1; 4619 4620 } while (unlikely(mas->offset == node_end)); 4621 4622 slots = ma_slots(node, mt); 4623 mas->offset++; 4624 enode = mas_slot(mas, slots, mas->offset); 4625 if (unlikely(ma_dead_node(node))) 4626 return 1; 4627 4628 if (level > 1) 4629 mas->offset = 0; 4630 4631 while (unlikely(level > 1)) { 4632 level--; 4633 mas->node = enode; 4634 node = mas_mn(mas); 4635 mt = mte_node_type(mas->node); 4636 slots = ma_slots(node, mt); 4637 enode = mas_slot(mas, slots, 0); 4638 if (unlikely(ma_dead_node(node))) 4639 return 1; 4640 } 4641 4642 if (!mas->offset) 4643 pivots = ma_pivots(node, mt); 4644 4645 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt); 4646 tmp = mte_to_node(enode); 4647 mt = mte_node_type(enode); 4648 pivots = ma_pivots(tmp, mt); 4649 mas->end = ma_data_end(tmp, mt, pivots, mas->max); 4650 if (unlikely(ma_dead_node(node))) 4651 return 1; 4652 4653 mas->node = enode; 4654 mas->min = min; 4655 return 0; 4656 4657 overflow: 4658 if (unlikely(ma_dead_node(node))) 4659 return 1; 4660 4661 mas->status = ma_overflow; 4662 return 0; 4663 } 4664 4665 /* 4666 * mas_next_slot() - Get the entry in the next slot 4667 * 4668 * @mas: The maple state 4669 * @max: The maximum starting range 4670 * @empty: Can be empty 4671 * @set_overflow: Should @mas->node be set to overflow when the limit is 4672 * reached. 4673 * 4674 * Return: The entry in the next slot which is possibly NULL 4675 */ 4676 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty) 4677 { 4678 void __rcu **slots; 4679 unsigned long *pivots; 4680 unsigned long pivot; 4681 enum maple_type type; 4682 struct maple_node *node; 4683 unsigned long save_point = mas->last; 4684 void *entry; 4685 4686 retry: 4687 node = mas_mn(mas); 4688 type = mte_node_type(mas->node); 4689 pivots = ma_pivots(node, type); 4690 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4691 goto retry; 4692 4693 if (mas->max >= max) { 4694 if (likely(mas->offset < mas->end)) 4695 pivot = pivots[mas->offset]; 4696 else 4697 pivot = mas->max; 4698 4699 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4700 goto retry; 4701 4702 if (pivot >= max) { /* Was at the limit, next will extend beyond */ 4703 mas->status = ma_overflow; 4704 return NULL; 4705 } 4706 } 4707 4708 if (likely(mas->offset < mas->end)) { 4709 mas->index = pivots[mas->offset] + 1; 4710 again: 4711 mas->offset++; 4712 if (likely(mas->offset < mas->end)) 4713 mas->last = pivots[mas->offset]; 4714 else 4715 mas->last = mas->max; 4716 } else { 4717 if (mas->last >= max) { 4718 mas->status = ma_overflow; 4719 return NULL; 4720 } 4721 4722 if (mas_next_node(mas, node, max)) { 4723 mas_rewalk(mas, save_point); 4724 goto retry; 4725 } 4726 4727 if (WARN_ON_ONCE(mas_is_overflow(mas))) 4728 return NULL; 4729 4730 mas->offset = 0; 4731 mas->index = mas->min; 4732 node = mas_mn(mas); 4733 type = mte_node_type(mas->node); 4734 pivots = ma_pivots(node, type); 4735 mas->last = pivots[0]; 4736 } 4737 4738 slots = ma_slots(node, type); 4739 entry = mt_slot(mas->tree, slots, mas->offset); 4740 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4741 goto retry; 4742 4743 if (entry) 4744 return entry; 4745 4746 4747 if (!empty) { 4748 if (mas->last >= max) { 4749 mas->status = ma_overflow; 4750 return NULL; 4751 } 4752 4753 mas->index = mas->last + 1; 4754 goto again; 4755 } 4756 4757 return entry; 4758 } 4759 4760 /* 4761 * mas_next_entry() - Internal function to get the next entry. 4762 * @mas: The maple state 4763 * @limit: The maximum range start. 4764 * 4765 * Set the @mas->node to the next entry and the range_start to 4766 * the beginning value for the entry. Does not check beyond @limit. 4767 * Sets @mas->index and @mas->last to the range, Does not update @mas->index and 4768 * @mas->last on overflow. 4769 * Restarts on dead nodes. 4770 * 4771 * Return: the next entry or %NULL. 4772 */ 4773 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit) 4774 { 4775 if (mas->last >= limit) { 4776 mas->status = ma_overflow; 4777 return NULL; 4778 } 4779 4780 return mas_next_slot(mas, limit, false); 4781 } 4782 4783 /* 4784 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the 4785 * highest gap address of a given size in a given node and descend. 4786 * @mas: The maple state 4787 * @size: The needed size. 4788 * 4789 * Return: True if found in a leaf, false otherwise. 4790 * 4791 */ 4792 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size, 4793 unsigned long *gap_min, unsigned long *gap_max) 4794 { 4795 enum maple_type type = mte_node_type(mas->node); 4796 struct maple_node *node = mas_mn(mas); 4797 unsigned long *pivots, *gaps; 4798 void __rcu **slots; 4799 unsigned long gap = 0; 4800 unsigned long max, min; 4801 unsigned char offset; 4802 4803 if (unlikely(mas_is_err(mas))) 4804 return true; 4805 4806 if (ma_is_dense(type)) { 4807 /* dense nodes. */ 4808 mas->offset = (unsigned char)(mas->index - mas->min); 4809 return true; 4810 } 4811 4812 pivots = ma_pivots(node, type); 4813 slots = ma_slots(node, type); 4814 gaps = ma_gaps(node, type); 4815 offset = mas->offset; 4816 min = mas_safe_min(mas, pivots, offset); 4817 /* Skip out of bounds. */ 4818 while (mas->last < min) 4819 min = mas_safe_min(mas, pivots, --offset); 4820 4821 max = mas_safe_pivot(mas, pivots, offset, type); 4822 while (mas->index <= max) { 4823 gap = 0; 4824 if (gaps) 4825 gap = gaps[offset]; 4826 else if (!mas_slot(mas, slots, offset)) 4827 gap = max - min + 1; 4828 4829 if (gap) { 4830 if ((size <= gap) && (size <= mas->last - min + 1)) 4831 break; 4832 4833 if (!gaps) { 4834 /* Skip the next slot, it cannot be a gap. */ 4835 if (offset < 2) 4836 goto ascend; 4837 4838 offset -= 2; 4839 max = pivots[offset]; 4840 min = mas_safe_min(mas, pivots, offset); 4841 continue; 4842 } 4843 } 4844 4845 if (!offset) 4846 goto ascend; 4847 4848 offset--; 4849 max = min - 1; 4850 min = mas_safe_min(mas, pivots, offset); 4851 } 4852 4853 if (unlikely((mas->index > max) || (size - 1 > max - mas->index))) 4854 goto no_space; 4855 4856 if (unlikely(ma_is_leaf(type))) { 4857 mas->offset = offset; 4858 *gap_min = min; 4859 *gap_max = min + gap - 1; 4860 return true; 4861 } 4862 4863 /* descend, only happens under lock. */ 4864 mas->node = mas_slot(mas, slots, offset); 4865 mas->min = min; 4866 mas->max = max; 4867 mas->offset = mas_data_end(mas); 4868 return false; 4869 4870 ascend: 4871 if (!mte_is_root(mas->node)) 4872 return false; 4873 4874 no_space: 4875 mas_set_err(mas, -EBUSY); 4876 return false; 4877 } 4878 4879 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) 4880 { 4881 enum maple_type type = mte_node_type(mas->node); 4882 unsigned long pivot, min, gap = 0; 4883 unsigned char offset, data_end; 4884 unsigned long *gaps, *pivots; 4885 void __rcu **slots; 4886 struct maple_node *node; 4887 bool found = false; 4888 4889 if (ma_is_dense(type)) { 4890 mas->offset = (unsigned char)(mas->index - mas->min); 4891 return true; 4892 } 4893 4894 node = mas_mn(mas); 4895 pivots = ma_pivots(node, type); 4896 slots = ma_slots(node, type); 4897 gaps = ma_gaps(node, type); 4898 offset = mas->offset; 4899 min = mas_safe_min(mas, pivots, offset); 4900 data_end = ma_data_end(node, type, pivots, mas->max); 4901 for (; offset <= data_end; offset++) { 4902 pivot = mas_safe_pivot(mas, pivots, offset, type); 4903 4904 /* Not within lower bounds */ 4905 if (mas->index > pivot) 4906 goto next_slot; 4907 4908 if (gaps) 4909 gap = gaps[offset]; 4910 else if (!mas_slot(mas, slots, offset)) 4911 gap = min(pivot, mas->last) - max(mas->index, min) + 1; 4912 else 4913 goto next_slot; 4914 4915 if (gap >= size) { 4916 if (ma_is_leaf(type)) { 4917 found = true; 4918 goto done; 4919 } 4920 if (mas->index <= pivot) { 4921 mas->node = mas_slot(mas, slots, offset); 4922 mas->min = min; 4923 mas->max = pivot; 4924 offset = 0; 4925 break; 4926 } 4927 } 4928 next_slot: 4929 min = pivot + 1; 4930 if (mas->last <= pivot) { 4931 mas_set_err(mas, -EBUSY); 4932 return true; 4933 } 4934 } 4935 4936 if (mte_is_root(mas->node)) 4937 found = true; 4938 done: 4939 mas->offset = offset; 4940 return found; 4941 } 4942 4943 /** 4944 * mas_walk() - Search for @mas->index in the tree. 4945 * @mas: The maple state. 4946 * 4947 * mas->index and mas->last will be set to the range if there is a value. If 4948 * mas->status is ma_none, reset to ma_start 4949 * 4950 * Return: the entry at the location or %NULL. 4951 */ 4952 void *mas_walk(struct ma_state *mas) 4953 { 4954 void *entry; 4955 4956 if (!mas_is_active(mas) || !mas_is_start(mas)) 4957 mas->status = ma_start; 4958 retry: 4959 entry = mas_state_walk(mas); 4960 if (mas_is_start(mas)) { 4961 goto retry; 4962 } else if (mas_is_none(mas)) { 4963 mas->index = 0; 4964 mas->last = ULONG_MAX; 4965 } else if (mas_is_ptr(mas)) { 4966 if (!mas->index) { 4967 mas->last = 0; 4968 return entry; 4969 } 4970 4971 mas->index = 1; 4972 mas->last = ULONG_MAX; 4973 mas->status = ma_none; 4974 return NULL; 4975 } 4976 4977 return entry; 4978 } 4979 EXPORT_SYMBOL_GPL(mas_walk); 4980 4981 static inline bool mas_rewind_node(struct ma_state *mas) 4982 { 4983 unsigned char slot; 4984 4985 do { 4986 if (mte_is_root(mas->node)) { 4987 slot = mas->offset; 4988 if (!slot) 4989 return false; 4990 } else { 4991 mas_ascend(mas); 4992 slot = mas->offset; 4993 } 4994 } while (!slot); 4995 4996 mas->offset = --slot; 4997 return true; 4998 } 4999 5000 /* 5001 * mas_skip_node() - Internal function. Skip over a node. 5002 * @mas: The maple state. 5003 * 5004 * Return: true if there is another node, false otherwise. 5005 */ 5006 static inline bool mas_skip_node(struct ma_state *mas) 5007 { 5008 if (mas_is_err(mas)) 5009 return false; 5010 5011 do { 5012 if (mte_is_root(mas->node)) { 5013 if (mas->offset >= mas_data_end(mas)) { 5014 mas_set_err(mas, -EBUSY); 5015 return false; 5016 } 5017 } else { 5018 mas_ascend(mas); 5019 } 5020 } while (mas->offset >= mas_data_end(mas)); 5021 5022 mas->offset++; 5023 return true; 5024 } 5025 5026 /* 5027 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of 5028 * @size 5029 * @mas: The maple state 5030 * @size: The size of the gap required 5031 * 5032 * Search between @mas->index and @mas->last for a gap of @size. 5033 */ 5034 static inline void mas_awalk(struct ma_state *mas, unsigned long size) 5035 { 5036 struct maple_enode *last = NULL; 5037 5038 /* 5039 * There are 4 options: 5040 * go to child (descend) 5041 * go back to parent (ascend) 5042 * no gap found. (return, slot == MAPLE_NODE_SLOTS) 5043 * found the gap. (return, slot != MAPLE_NODE_SLOTS) 5044 */ 5045 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { 5046 if (last == mas->node) 5047 mas_skip_node(mas); 5048 else 5049 last = mas->node; 5050 } 5051 } 5052 5053 /* 5054 * mas_sparse_area() - Internal function. Return upper or lower limit when 5055 * searching for a gap in an empty tree. 5056 * @mas: The maple state 5057 * @min: the minimum range 5058 * @max: The maximum range 5059 * @size: The size of the gap 5060 * @fwd: Searching forward or back 5061 */ 5062 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min, 5063 unsigned long max, unsigned long size, bool fwd) 5064 { 5065 if (!unlikely(mas_is_none(mas)) && min == 0) { 5066 min++; 5067 /* 5068 * At this time, min is increased, we need to recheck whether 5069 * the size is satisfied. 5070 */ 5071 if (min > max || max - min + 1 < size) 5072 return -EBUSY; 5073 } 5074 /* mas_is_ptr */ 5075 5076 if (fwd) { 5077 mas->index = min; 5078 mas->last = min + size - 1; 5079 } else { 5080 mas->last = max; 5081 mas->index = max - size + 1; 5082 } 5083 return 0; 5084 } 5085 5086 /* 5087 * mas_empty_area() - Get the lowest address within the range that is 5088 * sufficient for the size requested. 5089 * @mas: The maple state 5090 * @min: The lowest value of the range 5091 * @max: The highest value of the range 5092 * @size: The size needed 5093 */ 5094 int mas_empty_area(struct ma_state *mas, unsigned long min, 5095 unsigned long max, unsigned long size) 5096 { 5097 unsigned char offset; 5098 unsigned long *pivots; 5099 enum maple_type mt; 5100 struct maple_node *node; 5101 5102 if (min > max) 5103 return -EINVAL; 5104 5105 if (size == 0 || max - min < size - 1) 5106 return -EINVAL; 5107 5108 if (mas_is_start(mas)) 5109 mas_start(mas); 5110 else if (mas->offset >= 2) 5111 mas->offset -= 2; 5112 else if (!mas_skip_node(mas)) 5113 return -EBUSY; 5114 5115 /* Empty set */ 5116 if (mas_is_none(mas) || mas_is_ptr(mas)) 5117 return mas_sparse_area(mas, min, max, size, true); 5118 5119 /* The start of the window can only be within these values */ 5120 mas->index = min; 5121 mas->last = max; 5122 mas_awalk(mas, size); 5123 5124 if (unlikely(mas_is_err(mas))) 5125 return xa_err(mas->node); 5126 5127 offset = mas->offset; 5128 if (unlikely(offset == MAPLE_NODE_SLOTS)) 5129 return -EBUSY; 5130 5131 node = mas_mn(mas); 5132 mt = mte_node_type(mas->node); 5133 pivots = ma_pivots(node, mt); 5134 min = mas_safe_min(mas, pivots, offset); 5135 if (mas->index < min) 5136 mas->index = min; 5137 mas->last = mas->index + size - 1; 5138 mas->end = ma_data_end(node, mt, pivots, mas->max); 5139 return 0; 5140 } 5141 EXPORT_SYMBOL_GPL(mas_empty_area); 5142 5143 /* 5144 * mas_empty_area_rev() - Get the highest address within the range that is 5145 * sufficient for the size requested. 5146 * @mas: The maple state 5147 * @min: The lowest value of the range 5148 * @max: The highest value of the range 5149 * @size: The size needed 5150 */ 5151 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 5152 unsigned long max, unsigned long size) 5153 { 5154 struct maple_enode *last = mas->node; 5155 5156 if (min > max) 5157 return -EINVAL; 5158 5159 if (size == 0 || max - min < size - 1) 5160 return -EINVAL; 5161 5162 if (mas_is_start(mas)) 5163 mas_start(mas); 5164 else if ((mas->offset < 2) && (!mas_rewind_node(mas))) 5165 return -EBUSY; 5166 5167 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) 5168 return mas_sparse_area(mas, min, max, size, false); 5169 else if (mas->offset >= 2) 5170 mas->offset -= 2; 5171 else 5172 mas->offset = mas_data_end(mas); 5173 5174 5175 /* The start of the window can only be within these values. */ 5176 mas->index = min; 5177 mas->last = max; 5178 5179 while (!mas_rev_awalk(mas, size, &min, &max)) { 5180 if (last == mas->node) { 5181 if (!mas_rewind_node(mas)) 5182 return -EBUSY; 5183 } else { 5184 last = mas->node; 5185 } 5186 } 5187 5188 if (mas_is_err(mas)) 5189 return xa_err(mas->node); 5190 5191 if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) 5192 return -EBUSY; 5193 5194 /* Trim the upper limit to the max. */ 5195 if (max < mas->last) 5196 mas->last = max; 5197 5198 mas->index = mas->last - size + 1; 5199 mas->end = mas_data_end(mas); 5200 return 0; 5201 } 5202 EXPORT_SYMBOL_GPL(mas_empty_area_rev); 5203 5204 /* 5205 * mte_dead_leaves() - Mark all leaves of a node as dead. 5206 * @mas: The maple state 5207 * @slots: Pointer to the slot array 5208 * @type: The maple node type 5209 * 5210 * Must hold the write lock. 5211 * 5212 * Return: The number of leaves marked as dead. 5213 */ 5214 static inline 5215 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt, 5216 void __rcu **slots) 5217 { 5218 struct maple_node *node; 5219 enum maple_type type; 5220 void *entry; 5221 int offset; 5222 5223 for (offset = 0; offset < mt_slot_count(enode); offset++) { 5224 entry = mt_slot(mt, slots, offset); 5225 type = mte_node_type(entry); 5226 node = mte_to_node(entry); 5227 /* Use both node and type to catch LE & BE metadata */ 5228 if (!node || !type) 5229 break; 5230 5231 mte_set_node_dead(entry); 5232 node->type = type; 5233 rcu_assign_pointer(slots[offset], node); 5234 } 5235 5236 return offset; 5237 } 5238 5239 /** 5240 * mte_dead_walk() - Walk down a dead tree to just before the leaves 5241 * @enode: The maple encoded node 5242 * @offset: The starting offset 5243 * 5244 * Note: This can only be used from the RCU callback context. 5245 */ 5246 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset) 5247 { 5248 struct maple_node *node, *next; 5249 void __rcu **slots = NULL; 5250 5251 next = mte_to_node(*enode); 5252 do { 5253 *enode = ma_enode_ptr(next); 5254 node = mte_to_node(*enode); 5255 slots = ma_slots(node, node->type); 5256 next = rcu_dereference_protected(slots[offset], 5257 lock_is_held(&rcu_callback_map)); 5258 offset = 0; 5259 } while (!ma_is_leaf(next->type)); 5260 5261 return slots; 5262 } 5263 5264 /** 5265 * mt_free_walk() - Walk & free a tree in the RCU callback context 5266 * @head: The RCU head that's within the node. 5267 * 5268 * Note: This can only be used from the RCU callback context. 5269 */ 5270 static void mt_free_walk(struct rcu_head *head) 5271 { 5272 void __rcu **slots; 5273 struct maple_node *node, *start; 5274 struct maple_enode *enode; 5275 unsigned char offset; 5276 enum maple_type type; 5277 5278 node = container_of(head, struct maple_node, rcu); 5279 5280 if (ma_is_leaf(node->type)) 5281 goto free_leaf; 5282 5283 start = node; 5284 enode = mt_mk_node(node, node->type); 5285 slots = mte_dead_walk(&enode, 0); 5286 node = mte_to_node(enode); 5287 do { 5288 mt_free_bulk(node->slot_len, slots); 5289 offset = node->parent_slot + 1; 5290 enode = node->piv_parent; 5291 if (mte_to_node(enode) == node) 5292 goto free_leaf; 5293 5294 type = mte_node_type(enode); 5295 slots = ma_slots(mte_to_node(enode), type); 5296 if ((offset < mt_slots[type]) && 5297 rcu_dereference_protected(slots[offset], 5298 lock_is_held(&rcu_callback_map))) 5299 slots = mte_dead_walk(&enode, offset); 5300 node = mte_to_node(enode); 5301 } while ((node != start) || (node->slot_len < offset)); 5302 5303 slots = ma_slots(node, node->type); 5304 mt_free_bulk(node->slot_len, slots); 5305 5306 free_leaf: 5307 mt_free_rcu(&node->rcu); 5308 } 5309 5310 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode, 5311 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset) 5312 { 5313 struct maple_node *node; 5314 struct maple_enode *next = *enode; 5315 void __rcu **slots = NULL; 5316 enum maple_type type; 5317 unsigned char next_offset = 0; 5318 5319 do { 5320 *enode = next; 5321 node = mte_to_node(*enode); 5322 type = mte_node_type(*enode); 5323 slots = ma_slots(node, type); 5324 next = mt_slot_locked(mt, slots, next_offset); 5325 if ((mte_dead_node(next))) 5326 next = mt_slot_locked(mt, slots, ++next_offset); 5327 5328 mte_set_node_dead(*enode); 5329 node->type = type; 5330 node->piv_parent = prev; 5331 node->parent_slot = offset; 5332 offset = next_offset; 5333 next_offset = 0; 5334 prev = *enode; 5335 } while (!mte_is_leaf(next)); 5336 5337 return slots; 5338 } 5339 5340 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 5341 bool free) 5342 { 5343 void __rcu **slots; 5344 struct maple_node *node = mte_to_node(enode); 5345 struct maple_enode *start; 5346 5347 if (mte_is_leaf(enode)) { 5348 node->type = mte_node_type(enode); 5349 goto free_leaf; 5350 } 5351 5352 start = enode; 5353 slots = mte_destroy_descend(&enode, mt, start, 0); 5354 node = mte_to_node(enode); // Updated in the above call. 5355 do { 5356 enum maple_type type; 5357 unsigned char offset; 5358 struct maple_enode *parent, *tmp; 5359 5360 node->slot_len = mte_dead_leaves(enode, mt, slots); 5361 if (free) 5362 mt_free_bulk(node->slot_len, slots); 5363 offset = node->parent_slot + 1; 5364 enode = node->piv_parent; 5365 if (mte_to_node(enode) == node) 5366 goto free_leaf; 5367 5368 type = mte_node_type(enode); 5369 slots = ma_slots(mte_to_node(enode), type); 5370 if (offset >= mt_slots[type]) 5371 goto next; 5372 5373 tmp = mt_slot_locked(mt, slots, offset); 5374 if (mte_node_type(tmp) && mte_to_node(tmp)) { 5375 parent = enode; 5376 enode = tmp; 5377 slots = mte_destroy_descend(&enode, mt, parent, offset); 5378 } 5379 next: 5380 node = mte_to_node(enode); 5381 } while (start != enode); 5382 5383 node = mte_to_node(enode); 5384 node->slot_len = mte_dead_leaves(enode, mt, slots); 5385 if (free) 5386 mt_free_bulk(node->slot_len, slots); 5387 5388 free_leaf: 5389 if (free) 5390 mt_free_rcu(&node->rcu); 5391 else 5392 mt_clear_meta(mt, node, node->type); 5393 } 5394 5395 /* 5396 * mte_destroy_walk() - Free a tree or sub-tree. 5397 * @enode: the encoded maple node (maple_enode) to start 5398 * @mt: the tree to free - needed for node types. 5399 * 5400 * Must hold the write lock. 5401 */ 5402 static inline void mte_destroy_walk(struct maple_enode *enode, 5403 struct maple_tree *mt) 5404 { 5405 struct maple_node *node = mte_to_node(enode); 5406 5407 if (mt_in_rcu(mt)) { 5408 mt_destroy_walk(enode, mt, false); 5409 call_rcu(&node->rcu, mt_free_walk); 5410 } else { 5411 mt_destroy_walk(enode, mt, true); 5412 } 5413 } 5414 /* Interface */ 5415 5416 /** 5417 * mas_store() - Store an @entry. 5418 * @mas: The maple state. 5419 * @entry: The entry to store. 5420 * 5421 * The @mas->index and @mas->last is used to set the range for the @entry. 5422 * 5423 * Return: the first entry between mas->index and mas->last or %NULL. 5424 */ 5425 void *mas_store(struct ma_state *mas, void *entry) 5426 { 5427 int request; 5428 MA_WR_STATE(wr_mas, mas, entry); 5429 5430 trace_ma_write(__func__, mas, 0, entry); 5431 #ifdef CONFIG_DEBUG_MAPLE_TREE 5432 if (MAS_WARN_ON(mas, mas->index > mas->last)) 5433 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry); 5434 5435 if (mas->index > mas->last) { 5436 mas_set_err(mas, -EINVAL); 5437 return NULL; 5438 } 5439 5440 #endif 5441 5442 /* 5443 * Storing is the same operation as insert with the added caveat that it 5444 * can overwrite entries. Although this seems simple enough, one may 5445 * want to examine what happens if a single store operation was to 5446 * overwrite multiple entries within a self-balancing B-Tree. 5447 */ 5448 mas_wr_prealloc_setup(&wr_mas); 5449 mas_wr_store_type(&wr_mas); 5450 if (mas->mas_flags & MA_STATE_PREALLOC) { 5451 mas_wr_store_entry(&wr_mas); 5452 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas)); 5453 return wr_mas.content; 5454 } 5455 5456 request = mas_prealloc_calc(mas, entry); 5457 if (!request) 5458 goto store; 5459 5460 mas_node_count(mas, request); 5461 if (mas_is_err(mas)) 5462 return NULL; 5463 5464 store: 5465 mas_wr_store_entry(&wr_mas); 5466 mas_destroy(mas); 5467 return wr_mas.content; 5468 } 5469 EXPORT_SYMBOL_GPL(mas_store); 5470 5471 /** 5472 * mas_store_gfp() - Store a value into the tree. 5473 * @mas: The maple state 5474 * @entry: The entry to store 5475 * @gfp: The GFP_FLAGS to use for allocations if necessary. 5476 * 5477 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 5478 * be allocated. 5479 */ 5480 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) 5481 { 5482 unsigned long index = mas->index; 5483 unsigned long last = mas->last; 5484 MA_WR_STATE(wr_mas, mas, entry); 5485 int ret = 0; 5486 5487 retry: 5488 mas_wr_preallocate(&wr_mas, entry); 5489 if (unlikely(mas_nomem(mas, gfp))) { 5490 if (!entry) 5491 __mas_set_range(mas, index, last); 5492 goto retry; 5493 } 5494 5495 if (mas_is_err(mas)) { 5496 ret = xa_err(mas->node); 5497 goto out; 5498 } 5499 5500 mas_wr_store_entry(&wr_mas); 5501 out: 5502 mas_destroy(mas); 5503 return ret; 5504 } 5505 EXPORT_SYMBOL_GPL(mas_store_gfp); 5506 5507 /** 5508 * mas_store_prealloc() - Store a value into the tree using memory 5509 * preallocated in the maple state. 5510 * @mas: The maple state 5511 * @entry: The entry to store. 5512 */ 5513 void mas_store_prealloc(struct ma_state *mas, void *entry) 5514 { 5515 MA_WR_STATE(wr_mas, mas, entry); 5516 5517 if (mas->store_type == wr_store_root) { 5518 mas_wr_prealloc_setup(&wr_mas); 5519 goto store; 5520 } 5521 5522 mas_wr_walk_descend(&wr_mas); 5523 if (mas->store_type != wr_spanning_store) { 5524 /* set wr_mas->content to current slot */ 5525 wr_mas.content = mas_slot_locked(mas, wr_mas.slots, mas->offset); 5526 mas_wr_end_piv(&wr_mas); 5527 } 5528 5529 store: 5530 trace_ma_write(__func__, mas, 0, entry); 5531 mas_wr_store_entry(&wr_mas); 5532 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas)); 5533 mas_destroy(mas); 5534 } 5535 EXPORT_SYMBOL_GPL(mas_store_prealloc); 5536 5537 /** 5538 * mas_preallocate() - Preallocate enough nodes for a store operation 5539 * @mas: The maple state 5540 * @entry: The entry that will be stored 5541 * @gfp: The GFP_FLAGS to use for allocations. 5542 * 5543 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5544 */ 5545 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp) 5546 { 5547 MA_WR_STATE(wr_mas, mas, entry); 5548 int ret = 0; 5549 int request; 5550 5551 mas_wr_prealloc_setup(&wr_mas); 5552 mas_wr_store_type(&wr_mas); 5553 request = mas_prealloc_calc(mas, entry); 5554 if (!request) 5555 return ret; 5556 5557 mas_node_count_gfp(mas, request, gfp); 5558 if (mas_is_err(mas)) { 5559 mas_set_alloc_req(mas, 0); 5560 ret = xa_err(mas->node); 5561 mas_destroy(mas); 5562 mas_reset(mas); 5563 return ret; 5564 } 5565 5566 mas->mas_flags |= MA_STATE_PREALLOC; 5567 return ret; 5568 } 5569 EXPORT_SYMBOL_GPL(mas_preallocate); 5570 5571 /* 5572 * mas_destroy() - destroy a maple state. 5573 * @mas: The maple state 5574 * 5575 * Upon completion, check the left-most node and rebalance against the node to 5576 * the right if necessary. Frees any allocated nodes associated with this maple 5577 * state. 5578 */ 5579 void mas_destroy(struct ma_state *mas) 5580 { 5581 struct maple_alloc *node; 5582 unsigned long total; 5583 5584 /* 5585 * When using mas_for_each() to insert an expected number of elements, 5586 * it is possible that the number inserted is less than the expected 5587 * number. To fix an invalid final node, a check is performed here to 5588 * rebalance the previous node with the final node. 5589 */ 5590 if (mas->mas_flags & MA_STATE_REBALANCE) { 5591 unsigned char end; 5592 if (mas_is_err(mas)) 5593 mas_reset(mas); 5594 mas_start(mas); 5595 mtree_range_walk(mas); 5596 end = mas->end + 1; 5597 if (end < mt_min_slot_count(mas->node) - 1) 5598 mas_destroy_rebalance(mas, end); 5599 5600 mas->mas_flags &= ~MA_STATE_REBALANCE; 5601 } 5602 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC); 5603 5604 total = mas_allocated(mas); 5605 while (total) { 5606 node = mas->alloc; 5607 mas->alloc = node->slot[0]; 5608 if (node->node_count > 1) { 5609 size_t count = node->node_count - 1; 5610 5611 mt_free_bulk(count, (void __rcu **)&node->slot[1]); 5612 total -= count; 5613 } 5614 mt_free_one(ma_mnode_ptr(node)); 5615 total--; 5616 } 5617 5618 mas->alloc = NULL; 5619 } 5620 EXPORT_SYMBOL_GPL(mas_destroy); 5621 5622 /* 5623 * mas_expected_entries() - Set the expected number of entries that will be inserted. 5624 * @mas: The maple state 5625 * @nr_entries: The number of expected entries. 5626 * 5627 * This will attempt to pre-allocate enough nodes to store the expected number 5628 * of entries. The allocations will occur using the bulk allocator interface 5629 * for speed. Please call mas_destroy() on the @mas after inserting the entries 5630 * to ensure any unused nodes are freed. 5631 * 5632 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5633 */ 5634 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries) 5635 { 5636 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2; 5637 struct maple_enode *enode = mas->node; 5638 int nr_nodes; 5639 int ret; 5640 5641 /* 5642 * Sometimes it is necessary to duplicate a tree to a new tree, such as 5643 * forking a process and duplicating the VMAs from one tree to a new 5644 * tree. When such a situation arises, it is known that the new tree is 5645 * not going to be used until the entire tree is populated. For 5646 * performance reasons, it is best to use a bulk load with RCU disabled. 5647 * This allows for optimistic splitting that favours the left and reuse 5648 * of nodes during the operation. 5649 */ 5650 5651 /* Optimize splitting for bulk insert in-order */ 5652 mas->mas_flags |= MA_STATE_BULK; 5653 5654 /* 5655 * Avoid overflow, assume a gap between each entry and a trailing null. 5656 * If this is wrong, it just means allocation can happen during 5657 * insertion of entries. 5658 */ 5659 nr_nodes = max(nr_entries, nr_entries * 2 + 1); 5660 if (!mt_is_alloc(mas->tree)) 5661 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2; 5662 5663 /* Leaves; reduce slots to keep space for expansion */ 5664 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2); 5665 /* Internal nodes */ 5666 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap); 5667 /* Add working room for split (2 nodes) + new parents */ 5668 mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL); 5669 5670 /* Detect if allocations run out */ 5671 mas->mas_flags |= MA_STATE_PREALLOC; 5672 5673 if (!mas_is_err(mas)) 5674 return 0; 5675 5676 ret = xa_err(mas->node); 5677 mas->node = enode; 5678 mas_destroy(mas); 5679 return ret; 5680 5681 } 5682 EXPORT_SYMBOL_GPL(mas_expected_entries); 5683 5684 static bool mas_next_setup(struct ma_state *mas, unsigned long max, 5685 void **entry) 5686 { 5687 bool was_none = mas_is_none(mas); 5688 5689 if (unlikely(mas->last >= max)) { 5690 mas->status = ma_overflow; 5691 return true; 5692 } 5693 5694 switch (mas->status) { 5695 case ma_active: 5696 return false; 5697 case ma_none: 5698 fallthrough; 5699 case ma_pause: 5700 mas->status = ma_start; 5701 fallthrough; 5702 case ma_start: 5703 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ 5704 break; 5705 case ma_overflow: 5706 /* Overflowed before, but the max changed */ 5707 mas->status = ma_active; 5708 break; 5709 case ma_underflow: 5710 /* The user expects the mas to be one before where it is */ 5711 mas->status = ma_active; 5712 *entry = mas_walk(mas); 5713 if (*entry) 5714 return true; 5715 break; 5716 case ma_root: 5717 break; 5718 case ma_error: 5719 return true; 5720 } 5721 5722 if (likely(mas_is_active(mas))) /* Fast path */ 5723 return false; 5724 5725 if (mas_is_ptr(mas)) { 5726 *entry = NULL; 5727 if (was_none && mas->index == 0) { 5728 mas->index = mas->last = 0; 5729 return true; 5730 } 5731 mas->index = 1; 5732 mas->last = ULONG_MAX; 5733 mas->status = ma_none; 5734 return true; 5735 } 5736 5737 if (mas_is_none(mas)) 5738 return true; 5739 5740 return false; 5741 } 5742 5743 /** 5744 * mas_next() - Get the next entry. 5745 * @mas: The maple state 5746 * @max: The maximum index to check. 5747 * 5748 * Returns the next entry after @mas->index. 5749 * Must hold rcu_read_lock or the write lock. 5750 * Can return the zero entry. 5751 * 5752 * Return: The next entry or %NULL 5753 */ 5754 void *mas_next(struct ma_state *mas, unsigned long max) 5755 { 5756 void *entry = NULL; 5757 5758 if (mas_next_setup(mas, max, &entry)) 5759 return entry; 5760 5761 /* Retries on dead nodes handled by mas_next_slot */ 5762 return mas_next_slot(mas, max, false); 5763 } 5764 EXPORT_SYMBOL_GPL(mas_next); 5765 5766 /** 5767 * mas_next_range() - Advance the maple state to the next range 5768 * @mas: The maple state 5769 * @max: The maximum index to check. 5770 * 5771 * Sets @mas->index and @mas->last to the range. 5772 * Must hold rcu_read_lock or the write lock. 5773 * Can return the zero entry. 5774 * 5775 * Return: The next entry or %NULL 5776 */ 5777 void *mas_next_range(struct ma_state *mas, unsigned long max) 5778 { 5779 void *entry = NULL; 5780 5781 if (mas_next_setup(mas, max, &entry)) 5782 return entry; 5783 5784 /* Retries on dead nodes handled by mas_next_slot */ 5785 return mas_next_slot(mas, max, true); 5786 } 5787 EXPORT_SYMBOL_GPL(mas_next_range); 5788 5789 /** 5790 * mt_next() - get the next value in the maple tree 5791 * @mt: The maple tree 5792 * @index: The start index 5793 * @max: The maximum index to check 5794 * 5795 * Takes RCU read lock internally to protect the search, which does not 5796 * protect the returned pointer after dropping RCU read lock. 5797 * See also: Documentation/core-api/maple_tree.rst 5798 * 5799 * Return: The entry higher than @index or %NULL if nothing is found. 5800 */ 5801 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) 5802 { 5803 void *entry = NULL; 5804 MA_STATE(mas, mt, index, index); 5805 5806 rcu_read_lock(); 5807 entry = mas_next(&mas, max); 5808 rcu_read_unlock(); 5809 return entry; 5810 } 5811 EXPORT_SYMBOL_GPL(mt_next); 5812 5813 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry) 5814 { 5815 if (unlikely(mas->index <= min)) { 5816 mas->status = ma_underflow; 5817 return true; 5818 } 5819 5820 switch (mas->status) { 5821 case ma_active: 5822 return false; 5823 case ma_start: 5824 break; 5825 case ma_none: 5826 fallthrough; 5827 case ma_pause: 5828 mas->status = ma_start; 5829 break; 5830 case ma_underflow: 5831 /* underflowed before but the min changed */ 5832 mas->status = ma_active; 5833 break; 5834 case ma_overflow: 5835 /* User expects mas to be one after where it is */ 5836 mas->status = ma_active; 5837 *entry = mas_walk(mas); 5838 if (*entry) 5839 return true; 5840 break; 5841 case ma_root: 5842 break; 5843 case ma_error: 5844 return true; 5845 } 5846 5847 if (mas_is_start(mas)) 5848 mas_walk(mas); 5849 5850 if (unlikely(mas_is_ptr(mas))) { 5851 if (!mas->index) { 5852 mas->status = ma_none; 5853 return true; 5854 } 5855 mas->index = mas->last = 0; 5856 *entry = mas_root(mas); 5857 return true; 5858 } 5859 5860 if (mas_is_none(mas)) { 5861 if (mas->index) { 5862 /* Walked to out-of-range pointer? */ 5863 mas->index = mas->last = 0; 5864 mas->status = ma_root; 5865 *entry = mas_root(mas); 5866 return true; 5867 } 5868 return true; 5869 } 5870 5871 return false; 5872 } 5873 5874 /** 5875 * mas_prev() - Get the previous entry 5876 * @mas: The maple state 5877 * @min: The minimum value to check. 5878 * 5879 * Must hold rcu_read_lock or the write lock. 5880 * Will reset mas to ma_start if the status is ma_none. Will stop on not 5881 * searchable nodes. 5882 * 5883 * Return: the previous value or %NULL. 5884 */ 5885 void *mas_prev(struct ma_state *mas, unsigned long min) 5886 { 5887 void *entry = NULL; 5888 5889 if (mas_prev_setup(mas, min, &entry)) 5890 return entry; 5891 5892 return mas_prev_slot(mas, min, false); 5893 } 5894 EXPORT_SYMBOL_GPL(mas_prev); 5895 5896 /** 5897 * mas_prev_range() - Advance to the previous range 5898 * @mas: The maple state 5899 * @min: The minimum value to check. 5900 * 5901 * Sets @mas->index and @mas->last to the range. 5902 * Must hold rcu_read_lock or the write lock. 5903 * Will reset mas to ma_start if the node is ma_none. Will stop on not 5904 * searchable nodes. 5905 * 5906 * Return: the previous value or %NULL. 5907 */ 5908 void *mas_prev_range(struct ma_state *mas, unsigned long min) 5909 { 5910 void *entry = NULL; 5911 5912 if (mas_prev_setup(mas, min, &entry)) 5913 return entry; 5914 5915 return mas_prev_slot(mas, min, true); 5916 } 5917 EXPORT_SYMBOL_GPL(mas_prev_range); 5918 5919 /** 5920 * mt_prev() - get the previous value in the maple tree 5921 * @mt: The maple tree 5922 * @index: The start index 5923 * @min: The minimum index to check 5924 * 5925 * Takes RCU read lock internally to protect the search, which does not 5926 * protect the returned pointer after dropping RCU read lock. 5927 * See also: Documentation/core-api/maple_tree.rst 5928 * 5929 * Return: The entry before @index or %NULL if nothing is found. 5930 */ 5931 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) 5932 { 5933 void *entry = NULL; 5934 MA_STATE(mas, mt, index, index); 5935 5936 rcu_read_lock(); 5937 entry = mas_prev(&mas, min); 5938 rcu_read_unlock(); 5939 return entry; 5940 } 5941 EXPORT_SYMBOL_GPL(mt_prev); 5942 5943 /** 5944 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. 5945 * @mas: The maple state to pause 5946 * 5947 * Some users need to pause a walk and drop the lock they're holding in 5948 * order to yield to a higher priority thread or carry out an operation 5949 * on an entry. Those users should call this function before they drop 5950 * the lock. It resets the @mas to be suitable for the next iteration 5951 * of the loop after the user has reacquired the lock. If most entries 5952 * found during a walk require you to call mas_pause(), the mt_for_each() 5953 * iterator may be more appropriate. 5954 * 5955 */ 5956 void mas_pause(struct ma_state *mas) 5957 { 5958 mas->status = ma_pause; 5959 mas->node = NULL; 5960 } 5961 EXPORT_SYMBOL_GPL(mas_pause); 5962 5963 /** 5964 * mas_find_setup() - Internal function to set up mas_find*(). 5965 * @mas: The maple state 5966 * @max: The maximum index 5967 * @entry: Pointer to the entry 5968 * 5969 * Returns: True if entry is the answer, false otherwise. 5970 */ 5971 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry) 5972 { 5973 switch (mas->status) { 5974 case ma_active: 5975 if (mas->last < max) 5976 return false; 5977 return true; 5978 case ma_start: 5979 break; 5980 case ma_pause: 5981 if (unlikely(mas->last >= max)) 5982 return true; 5983 5984 mas->index = ++mas->last; 5985 mas->status = ma_start; 5986 break; 5987 case ma_none: 5988 if (unlikely(mas->last >= max)) 5989 return true; 5990 5991 mas->index = mas->last; 5992 mas->status = ma_start; 5993 break; 5994 case ma_underflow: 5995 /* mas is pointing at entry before unable to go lower */ 5996 if (unlikely(mas->index >= max)) { 5997 mas->status = ma_overflow; 5998 return true; 5999 } 6000 6001 mas->status = ma_active; 6002 *entry = mas_walk(mas); 6003 if (*entry) 6004 return true; 6005 break; 6006 case ma_overflow: 6007 if (unlikely(mas->last >= max)) 6008 return true; 6009 6010 mas->status = ma_active; 6011 *entry = mas_walk(mas); 6012 if (*entry) 6013 return true; 6014 break; 6015 case ma_root: 6016 break; 6017 case ma_error: 6018 return true; 6019 } 6020 6021 if (mas_is_start(mas)) { 6022 /* First run or continue */ 6023 if (mas->index > max) 6024 return true; 6025 6026 *entry = mas_walk(mas); 6027 if (*entry) 6028 return true; 6029 6030 } 6031 6032 if (unlikely(mas_is_ptr(mas))) 6033 goto ptr_out_of_range; 6034 6035 if (unlikely(mas_is_none(mas))) 6036 return true; 6037 6038 if (mas->index == max) 6039 return true; 6040 6041 return false; 6042 6043 ptr_out_of_range: 6044 mas->status = ma_none; 6045 mas->index = 1; 6046 mas->last = ULONG_MAX; 6047 return true; 6048 } 6049 6050 /** 6051 * mas_find() - On the first call, find the entry at or after mas->index up to 6052 * %max. Otherwise, find the entry after mas->index. 6053 * @mas: The maple state 6054 * @max: The maximum value to check. 6055 * 6056 * Must hold rcu_read_lock or the write lock. 6057 * If an entry exists, last and index are updated accordingly. 6058 * May set @mas->status to ma_overflow. 6059 * 6060 * Return: The entry or %NULL. 6061 */ 6062 void *mas_find(struct ma_state *mas, unsigned long max) 6063 { 6064 void *entry = NULL; 6065 6066 if (mas_find_setup(mas, max, &entry)) 6067 return entry; 6068 6069 /* Retries on dead nodes handled by mas_next_slot */ 6070 entry = mas_next_slot(mas, max, false); 6071 /* Ignore overflow */ 6072 mas->status = ma_active; 6073 return entry; 6074 } 6075 EXPORT_SYMBOL_GPL(mas_find); 6076 6077 /** 6078 * mas_find_range() - On the first call, find the entry at or after 6079 * mas->index up to %max. Otherwise, advance to the next slot mas->index. 6080 * @mas: The maple state 6081 * @max: The maximum value to check. 6082 * 6083 * Must hold rcu_read_lock or the write lock. 6084 * If an entry exists, last and index are updated accordingly. 6085 * May set @mas->status to ma_overflow. 6086 * 6087 * Return: The entry or %NULL. 6088 */ 6089 void *mas_find_range(struct ma_state *mas, unsigned long max) 6090 { 6091 void *entry = NULL; 6092 6093 if (mas_find_setup(mas, max, &entry)) 6094 return entry; 6095 6096 /* Retries on dead nodes handled by mas_next_slot */ 6097 return mas_next_slot(mas, max, true); 6098 } 6099 EXPORT_SYMBOL_GPL(mas_find_range); 6100 6101 /** 6102 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev() 6103 * @mas: The maple state 6104 * @min: The minimum index 6105 * @entry: Pointer to the entry 6106 * 6107 * Returns: True if entry is the answer, false otherwise. 6108 */ 6109 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min, 6110 void **entry) 6111 { 6112 6113 switch (mas->status) { 6114 case ma_active: 6115 goto active; 6116 case ma_start: 6117 break; 6118 case ma_pause: 6119 if (unlikely(mas->index <= min)) { 6120 mas->status = ma_underflow; 6121 return true; 6122 } 6123 mas->last = --mas->index; 6124 mas->status = ma_start; 6125 break; 6126 case ma_none: 6127 if (mas->index <= min) 6128 goto none; 6129 6130 mas->last = mas->index; 6131 mas->status = ma_start; 6132 break; 6133 case ma_overflow: /* user expects the mas to be one after where it is */ 6134 if (unlikely(mas->index <= min)) { 6135 mas->status = ma_underflow; 6136 return true; 6137 } 6138 6139 mas->status = ma_active; 6140 break; 6141 case ma_underflow: /* user expects the mas to be one before where it is */ 6142 if (unlikely(mas->index <= min)) 6143 return true; 6144 6145 mas->status = ma_active; 6146 break; 6147 case ma_root: 6148 break; 6149 case ma_error: 6150 return true; 6151 } 6152 6153 if (mas_is_start(mas)) { 6154 /* First run or continue */ 6155 if (mas->index < min) 6156 return true; 6157 6158 *entry = mas_walk(mas); 6159 if (*entry) 6160 return true; 6161 } 6162 6163 if (unlikely(mas_is_ptr(mas))) 6164 goto none; 6165 6166 if (unlikely(mas_is_none(mas))) { 6167 /* 6168 * Walked to the location, and there was nothing so the previous 6169 * location is 0. 6170 */ 6171 mas->last = mas->index = 0; 6172 mas->status = ma_root; 6173 *entry = mas_root(mas); 6174 return true; 6175 } 6176 6177 active: 6178 if (mas->index < min) 6179 return true; 6180 6181 return false; 6182 6183 none: 6184 mas->status = ma_none; 6185 return true; 6186 } 6187 6188 /** 6189 * mas_find_rev: On the first call, find the first non-null entry at or below 6190 * mas->index down to %min. Otherwise find the first non-null entry below 6191 * mas->index down to %min. 6192 * @mas: The maple state 6193 * @min: The minimum value to check. 6194 * 6195 * Must hold rcu_read_lock or the write lock. 6196 * If an entry exists, last and index are updated accordingly. 6197 * May set @mas->status to ma_underflow. 6198 * 6199 * Return: The entry or %NULL. 6200 */ 6201 void *mas_find_rev(struct ma_state *mas, unsigned long min) 6202 { 6203 void *entry = NULL; 6204 6205 if (mas_find_rev_setup(mas, min, &entry)) 6206 return entry; 6207 6208 /* Retries on dead nodes handled by mas_prev_slot */ 6209 return mas_prev_slot(mas, min, false); 6210 6211 } 6212 EXPORT_SYMBOL_GPL(mas_find_rev); 6213 6214 /** 6215 * mas_find_range_rev: On the first call, find the first non-null entry at or 6216 * below mas->index down to %min. Otherwise advance to the previous slot after 6217 * mas->index down to %min. 6218 * @mas: The maple state 6219 * @min: The minimum value to check. 6220 * 6221 * Must hold rcu_read_lock or the write lock. 6222 * If an entry exists, last and index are updated accordingly. 6223 * May set @mas->status to ma_underflow. 6224 * 6225 * Return: The entry or %NULL. 6226 */ 6227 void *mas_find_range_rev(struct ma_state *mas, unsigned long min) 6228 { 6229 void *entry = NULL; 6230 6231 if (mas_find_rev_setup(mas, min, &entry)) 6232 return entry; 6233 6234 /* Retries on dead nodes handled by mas_prev_slot */ 6235 return mas_prev_slot(mas, min, true); 6236 } 6237 EXPORT_SYMBOL_GPL(mas_find_range_rev); 6238 6239 /** 6240 * mas_erase() - Find the range in which index resides and erase the entire 6241 * range. 6242 * @mas: The maple state 6243 * 6244 * Must hold the write lock. 6245 * Searches for @mas->index, sets @mas->index and @mas->last to the range and 6246 * erases that range. 6247 * 6248 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. 6249 */ 6250 void *mas_erase(struct ma_state *mas) 6251 { 6252 void *entry; 6253 unsigned long index = mas->index; 6254 MA_WR_STATE(wr_mas, mas, NULL); 6255 6256 if (!mas_is_active(mas) || !mas_is_start(mas)) 6257 mas->status = ma_start; 6258 6259 write_retry: 6260 entry = mas_state_walk(mas); 6261 if (!entry) 6262 return NULL; 6263 6264 /* Must reset to ensure spanning writes of last slot are detected */ 6265 mas_reset(mas); 6266 mas_wr_preallocate(&wr_mas, NULL); 6267 if (mas_nomem(mas, GFP_KERNEL)) { 6268 /* in case the range of entry changed when unlocked */ 6269 mas->index = mas->last = index; 6270 goto write_retry; 6271 } 6272 6273 if (mas_is_err(mas)) 6274 goto out; 6275 6276 mas_wr_store_entry(&wr_mas); 6277 out: 6278 mas_destroy(mas); 6279 return entry; 6280 } 6281 EXPORT_SYMBOL_GPL(mas_erase); 6282 6283 /** 6284 * mas_nomem() - Check if there was an error allocating and do the allocation 6285 * if necessary If there are allocations, then free them. 6286 * @mas: The maple state 6287 * @gfp: The GFP_FLAGS to use for allocations 6288 * Return: true on allocation, false otherwise. 6289 */ 6290 bool mas_nomem(struct ma_state *mas, gfp_t gfp) 6291 __must_hold(mas->tree->ma_lock) 6292 { 6293 if (likely(mas->node != MA_ERROR(-ENOMEM))) 6294 return false; 6295 6296 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { 6297 mtree_unlock(mas->tree); 6298 mas_alloc_nodes(mas, gfp); 6299 mtree_lock(mas->tree); 6300 } else { 6301 mas_alloc_nodes(mas, gfp); 6302 } 6303 6304 if (!mas_allocated(mas)) 6305 return false; 6306 6307 mas->status = ma_start; 6308 return true; 6309 } 6310 6311 void __init maple_tree_init(void) 6312 { 6313 maple_node_cache = kmem_cache_create("maple_node", 6314 sizeof(struct maple_node), sizeof(struct maple_node), 6315 SLAB_PANIC, NULL); 6316 } 6317 6318 /** 6319 * mtree_load() - Load a value stored in a maple tree 6320 * @mt: The maple tree 6321 * @index: The index to load 6322 * 6323 * Return: the entry or %NULL 6324 */ 6325 void *mtree_load(struct maple_tree *mt, unsigned long index) 6326 { 6327 MA_STATE(mas, mt, index, index); 6328 void *entry; 6329 6330 trace_ma_read(__func__, &mas); 6331 rcu_read_lock(); 6332 retry: 6333 entry = mas_start(&mas); 6334 if (unlikely(mas_is_none(&mas))) 6335 goto unlock; 6336 6337 if (unlikely(mas_is_ptr(&mas))) { 6338 if (index) 6339 entry = NULL; 6340 6341 goto unlock; 6342 } 6343 6344 entry = mtree_lookup_walk(&mas); 6345 if (!entry && unlikely(mas_is_start(&mas))) 6346 goto retry; 6347 unlock: 6348 rcu_read_unlock(); 6349 if (xa_is_zero(entry)) 6350 return NULL; 6351 6352 return entry; 6353 } 6354 EXPORT_SYMBOL(mtree_load); 6355 6356 /** 6357 * mtree_store_range() - Store an entry at a given range. 6358 * @mt: The maple tree 6359 * @index: The start of the range 6360 * @last: The end of the range 6361 * @entry: The entry to store 6362 * @gfp: The GFP_FLAGS to use for allocations 6363 * 6364 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6365 * be allocated. 6366 */ 6367 int mtree_store_range(struct maple_tree *mt, unsigned long index, 6368 unsigned long last, void *entry, gfp_t gfp) 6369 { 6370 MA_STATE(mas, mt, index, last); 6371 int ret = 0; 6372 6373 trace_ma_write(__func__, &mas, 0, entry); 6374 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6375 return -EINVAL; 6376 6377 if (index > last) 6378 return -EINVAL; 6379 6380 mtree_lock(mt); 6381 ret = mas_store_gfp(&mas, entry, gfp); 6382 mtree_unlock(mt); 6383 6384 return ret; 6385 } 6386 EXPORT_SYMBOL(mtree_store_range); 6387 6388 /** 6389 * mtree_store() - Store an entry at a given index. 6390 * @mt: The maple tree 6391 * @index: The index to store the value 6392 * @entry: The entry to store 6393 * @gfp: The GFP_FLAGS to use for allocations 6394 * 6395 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6396 * be allocated. 6397 */ 6398 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, 6399 gfp_t gfp) 6400 { 6401 return mtree_store_range(mt, index, index, entry, gfp); 6402 } 6403 EXPORT_SYMBOL(mtree_store); 6404 6405 /** 6406 * mtree_insert_range() - Insert an entry at a given range if there is no value. 6407 * @mt: The maple tree 6408 * @first: The start of the range 6409 * @last: The end of the range 6410 * @entry: The entry to store 6411 * @gfp: The GFP_FLAGS to use for allocations. 6412 * 6413 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6414 * request, -ENOMEM if memory could not be allocated. 6415 */ 6416 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 6417 unsigned long last, void *entry, gfp_t gfp) 6418 { 6419 MA_STATE(ms, mt, first, last); 6420 int ret = 0; 6421 6422 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6423 return -EINVAL; 6424 6425 if (first > last) 6426 return -EINVAL; 6427 6428 mtree_lock(mt); 6429 retry: 6430 mas_insert(&ms, entry); 6431 if (mas_nomem(&ms, gfp)) 6432 goto retry; 6433 6434 mtree_unlock(mt); 6435 if (mas_is_err(&ms)) 6436 ret = xa_err(ms.node); 6437 6438 mas_destroy(&ms); 6439 return ret; 6440 } 6441 EXPORT_SYMBOL(mtree_insert_range); 6442 6443 /** 6444 * mtree_insert() - Insert an entry at a given index if there is no value. 6445 * @mt: The maple tree 6446 * @index : The index to store the value 6447 * @entry: The entry to store 6448 * @gfp: The GFP_FLAGS to use for allocations. 6449 * 6450 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6451 * request, -ENOMEM if memory could not be allocated. 6452 */ 6453 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, 6454 gfp_t gfp) 6455 { 6456 return mtree_insert_range(mt, index, index, entry, gfp); 6457 } 6458 EXPORT_SYMBOL(mtree_insert); 6459 6460 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 6461 void *entry, unsigned long size, unsigned long min, 6462 unsigned long max, gfp_t gfp) 6463 { 6464 int ret = 0; 6465 6466 MA_STATE(mas, mt, 0, 0); 6467 if (!mt_is_alloc(mt)) 6468 return -EINVAL; 6469 6470 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6471 return -EINVAL; 6472 6473 mtree_lock(mt); 6474 retry: 6475 ret = mas_empty_area(&mas, min, max, size); 6476 if (ret) 6477 goto unlock; 6478 6479 mas_insert(&mas, entry); 6480 /* 6481 * mas_nomem() may release the lock, causing the allocated area 6482 * to be unavailable, so try to allocate a free area again. 6483 */ 6484 if (mas_nomem(&mas, gfp)) 6485 goto retry; 6486 6487 if (mas_is_err(&mas)) 6488 ret = xa_err(mas.node); 6489 else 6490 *startp = mas.index; 6491 6492 unlock: 6493 mtree_unlock(mt); 6494 mas_destroy(&mas); 6495 return ret; 6496 } 6497 EXPORT_SYMBOL(mtree_alloc_range); 6498 6499 /** 6500 * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree. 6501 * @mt: The maple tree. 6502 * @startp: Pointer to ID. 6503 * @range_lo: Lower bound of range to search. 6504 * @range_hi: Upper bound of range to search. 6505 * @entry: The entry to store. 6506 * @next: Pointer to next ID to allocate. 6507 * @gfp: The GFP_FLAGS to use for allocations. 6508 * 6509 * Finds an empty entry in @mt after @next, stores the new index into 6510 * the @id pointer, stores the entry at that index, then updates @next. 6511 * 6512 * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag. 6513 * 6514 * Context: Any context. Takes and releases the mt.lock. May sleep if 6515 * the @gfp flags permit. 6516 * 6517 * Return: 0 if the allocation succeeded without wrapping, 1 if the 6518 * allocation succeeded after wrapping, -ENOMEM if memory could not be 6519 * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no 6520 * free entries. 6521 */ 6522 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp, 6523 void *entry, unsigned long range_lo, unsigned long range_hi, 6524 unsigned long *next, gfp_t gfp) 6525 { 6526 int ret; 6527 6528 MA_STATE(mas, mt, 0, 0); 6529 6530 if (!mt_is_alloc(mt)) 6531 return -EINVAL; 6532 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6533 return -EINVAL; 6534 mtree_lock(mt); 6535 ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi, 6536 next, gfp); 6537 mtree_unlock(mt); 6538 return ret; 6539 } 6540 EXPORT_SYMBOL(mtree_alloc_cyclic); 6541 6542 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 6543 void *entry, unsigned long size, unsigned long min, 6544 unsigned long max, gfp_t gfp) 6545 { 6546 int ret = 0; 6547 6548 MA_STATE(mas, mt, 0, 0); 6549 if (!mt_is_alloc(mt)) 6550 return -EINVAL; 6551 6552 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6553 return -EINVAL; 6554 6555 mtree_lock(mt); 6556 retry: 6557 ret = mas_empty_area_rev(&mas, min, max, size); 6558 if (ret) 6559 goto unlock; 6560 6561 mas_insert(&mas, entry); 6562 /* 6563 * mas_nomem() may release the lock, causing the allocated area 6564 * to be unavailable, so try to allocate a free area again. 6565 */ 6566 if (mas_nomem(&mas, gfp)) 6567 goto retry; 6568 6569 if (mas_is_err(&mas)) 6570 ret = xa_err(mas.node); 6571 else 6572 *startp = mas.index; 6573 6574 unlock: 6575 mtree_unlock(mt); 6576 mas_destroy(&mas); 6577 return ret; 6578 } 6579 EXPORT_SYMBOL(mtree_alloc_rrange); 6580 6581 /** 6582 * mtree_erase() - Find an index and erase the entire range. 6583 * @mt: The maple tree 6584 * @index: The index to erase 6585 * 6586 * Erasing is the same as a walk to an entry then a store of a NULL to that 6587 * ENTIRE range. In fact, it is implemented as such using the advanced API. 6588 * 6589 * Return: The entry stored at the @index or %NULL 6590 */ 6591 void *mtree_erase(struct maple_tree *mt, unsigned long index) 6592 { 6593 void *entry = NULL; 6594 6595 MA_STATE(mas, mt, index, index); 6596 trace_ma_op(__func__, &mas); 6597 6598 mtree_lock(mt); 6599 entry = mas_erase(&mas); 6600 mtree_unlock(mt); 6601 6602 return entry; 6603 } 6604 EXPORT_SYMBOL(mtree_erase); 6605 6606 /* 6607 * mas_dup_free() - Free an incomplete duplication of a tree. 6608 * @mas: The maple state of a incomplete tree. 6609 * 6610 * The parameter @mas->node passed in indicates that the allocation failed on 6611 * this node. This function frees all nodes starting from @mas->node in the 6612 * reverse order of mas_dup_build(). There is no need to hold the source tree 6613 * lock at this time. 6614 */ 6615 static void mas_dup_free(struct ma_state *mas) 6616 { 6617 struct maple_node *node; 6618 enum maple_type type; 6619 void __rcu **slots; 6620 unsigned char count, i; 6621 6622 /* Maybe the first node allocation failed. */ 6623 if (mas_is_none(mas)) 6624 return; 6625 6626 while (!mte_is_root(mas->node)) { 6627 mas_ascend(mas); 6628 if (mas->offset) { 6629 mas->offset--; 6630 do { 6631 mas_descend(mas); 6632 mas->offset = mas_data_end(mas); 6633 } while (!mte_is_leaf(mas->node)); 6634 6635 mas_ascend(mas); 6636 } 6637 6638 node = mte_to_node(mas->node); 6639 type = mte_node_type(mas->node); 6640 slots = ma_slots(node, type); 6641 count = mas_data_end(mas) + 1; 6642 for (i = 0; i < count; i++) 6643 ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK; 6644 mt_free_bulk(count, slots); 6645 } 6646 6647 node = mte_to_node(mas->node); 6648 mt_free_one(node); 6649 } 6650 6651 /* 6652 * mas_copy_node() - Copy a maple node and replace the parent. 6653 * @mas: The maple state of source tree. 6654 * @new_mas: The maple state of new tree. 6655 * @parent: The parent of the new node. 6656 * 6657 * Copy @mas->node to @new_mas->node, set @parent to be the parent of 6658 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM. 6659 */ 6660 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas, 6661 struct maple_pnode *parent) 6662 { 6663 struct maple_node *node = mte_to_node(mas->node); 6664 struct maple_node *new_node = mte_to_node(new_mas->node); 6665 unsigned long val; 6666 6667 /* Copy the node completely. */ 6668 memcpy(new_node, node, sizeof(struct maple_node)); 6669 /* Update the parent node pointer. */ 6670 val = (unsigned long)node->parent & MAPLE_NODE_MASK; 6671 new_node->parent = ma_parent_ptr(val | (unsigned long)parent); 6672 } 6673 6674 /* 6675 * mas_dup_alloc() - Allocate child nodes for a maple node. 6676 * @mas: The maple state of source tree. 6677 * @new_mas: The maple state of new tree. 6678 * @gfp: The GFP_FLAGS to use for allocations. 6679 * 6680 * This function allocates child nodes for @new_mas->node during the duplication 6681 * process. If memory allocation fails, @mas is set to -ENOMEM. 6682 */ 6683 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas, 6684 gfp_t gfp) 6685 { 6686 struct maple_node *node = mte_to_node(mas->node); 6687 struct maple_node *new_node = mte_to_node(new_mas->node); 6688 enum maple_type type; 6689 unsigned char request, count, i; 6690 void __rcu **slots; 6691 void __rcu **new_slots; 6692 unsigned long val; 6693 6694 /* Allocate memory for child nodes. */ 6695 type = mte_node_type(mas->node); 6696 new_slots = ma_slots(new_node, type); 6697 request = mas_data_end(mas) + 1; 6698 count = mt_alloc_bulk(gfp, request, (void **)new_slots); 6699 if (unlikely(count < request)) { 6700 memset(new_slots, 0, request * sizeof(void *)); 6701 mas_set_err(mas, -ENOMEM); 6702 return; 6703 } 6704 6705 /* Restore node type information in slots. */ 6706 slots = ma_slots(node, type); 6707 for (i = 0; i < count; i++) { 6708 val = (unsigned long)mt_slot_locked(mas->tree, slots, i); 6709 val &= MAPLE_NODE_MASK; 6710 ((unsigned long *)new_slots)[i] |= val; 6711 } 6712 } 6713 6714 /* 6715 * mas_dup_build() - Build a new maple tree from a source tree 6716 * @mas: The maple state of source tree, need to be in MAS_START state. 6717 * @new_mas: The maple state of new tree, need to be in MAS_START state. 6718 * @gfp: The GFP_FLAGS to use for allocations. 6719 * 6720 * This function builds a new tree in DFS preorder. If the memory allocation 6721 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the 6722 * last node. mas_dup_free() will free the incomplete duplication of a tree. 6723 * 6724 * Note that the attributes of the two trees need to be exactly the same, and the 6725 * new tree needs to be empty, otherwise -EINVAL will be set in @mas. 6726 */ 6727 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas, 6728 gfp_t gfp) 6729 { 6730 struct maple_node *node; 6731 struct maple_pnode *parent = NULL; 6732 struct maple_enode *root; 6733 enum maple_type type; 6734 6735 if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) || 6736 unlikely(!mtree_empty(new_mas->tree))) { 6737 mas_set_err(mas, -EINVAL); 6738 return; 6739 } 6740 6741 root = mas_start(mas); 6742 if (mas_is_ptr(mas) || mas_is_none(mas)) 6743 goto set_new_tree; 6744 6745 node = mt_alloc_one(gfp); 6746 if (!node) { 6747 new_mas->status = ma_none; 6748 mas_set_err(mas, -ENOMEM); 6749 return; 6750 } 6751 6752 type = mte_node_type(mas->node); 6753 root = mt_mk_node(node, type); 6754 new_mas->node = root; 6755 new_mas->min = 0; 6756 new_mas->max = ULONG_MAX; 6757 root = mte_mk_root(root); 6758 while (1) { 6759 mas_copy_node(mas, new_mas, parent); 6760 if (!mte_is_leaf(mas->node)) { 6761 /* Only allocate child nodes for non-leaf nodes. */ 6762 mas_dup_alloc(mas, new_mas, gfp); 6763 if (unlikely(mas_is_err(mas))) 6764 return; 6765 } else { 6766 /* 6767 * This is the last leaf node and duplication is 6768 * completed. 6769 */ 6770 if (mas->max == ULONG_MAX) 6771 goto done; 6772 6773 /* This is not the last leaf node and needs to go up. */ 6774 do { 6775 mas_ascend(mas); 6776 mas_ascend(new_mas); 6777 } while (mas->offset == mas_data_end(mas)); 6778 6779 /* Move to the next subtree. */ 6780 mas->offset++; 6781 new_mas->offset++; 6782 } 6783 6784 mas_descend(mas); 6785 parent = ma_parent_ptr(mte_to_node(new_mas->node)); 6786 mas_descend(new_mas); 6787 mas->offset = 0; 6788 new_mas->offset = 0; 6789 } 6790 done: 6791 /* Specially handle the parent of the root node. */ 6792 mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas)); 6793 set_new_tree: 6794 /* Make them the same height */ 6795 new_mas->tree->ma_flags = mas->tree->ma_flags; 6796 rcu_assign_pointer(new_mas->tree->ma_root, root); 6797 } 6798 6799 /** 6800 * __mt_dup(): Duplicate an entire maple tree 6801 * @mt: The source maple tree 6802 * @new: The new maple tree 6803 * @gfp: The GFP_FLAGS to use for allocations 6804 * 6805 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order 6806 * traversal. It uses memcpy() to copy nodes in the source tree and allocate 6807 * new child nodes in non-leaf nodes. The new node is exactly the same as the 6808 * source node except for all the addresses stored in it. It will be faster than 6809 * traversing all elements in the source tree and inserting them one by one into 6810 * the new tree. 6811 * The user needs to ensure that the attributes of the source tree and the new 6812 * tree are the same, and the new tree needs to be an empty tree, otherwise 6813 * -EINVAL will be returned. 6814 * Note that the user needs to manually lock the source tree and the new tree. 6815 * 6816 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If 6817 * the attributes of the two trees are different or the new tree is not an empty 6818 * tree. 6819 */ 6820 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp) 6821 { 6822 int ret = 0; 6823 MA_STATE(mas, mt, 0, 0); 6824 MA_STATE(new_mas, new, 0, 0); 6825 6826 mas_dup_build(&mas, &new_mas, gfp); 6827 if (unlikely(mas_is_err(&mas))) { 6828 ret = xa_err(mas.node); 6829 if (ret == -ENOMEM) 6830 mas_dup_free(&new_mas); 6831 } 6832 6833 return ret; 6834 } 6835 EXPORT_SYMBOL(__mt_dup); 6836 6837 /** 6838 * mtree_dup(): Duplicate an entire maple tree 6839 * @mt: The source maple tree 6840 * @new: The new maple tree 6841 * @gfp: The GFP_FLAGS to use for allocations 6842 * 6843 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order 6844 * traversal. It uses memcpy() to copy nodes in the source tree and allocate 6845 * new child nodes in non-leaf nodes. The new node is exactly the same as the 6846 * source node except for all the addresses stored in it. It will be faster than 6847 * traversing all elements in the source tree and inserting them one by one into 6848 * the new tree. 6849 * The user needs to ensure that the attributes of the source tree and the new 6850 * tree are the same, and the new tree needs to be an empty tree, otherwise 6851 * -EINVAL will be returned. 6852 * 6853 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If 6854 * the attributes of the two trees are different or the new tree is not an empty 6855 * tree. 6856 */ 6857 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp) 6858 { 6859 int ret = 0; 6860 MA_STATE(mas, mt, 0, 0); 6861 MA_STATE(new_mas, new, 0, 0); 6862 6863 mas_lock(&new_mas); 6864 mas_lock_nested(&mas, SINGLE_DEPTH_NESTING); 6865 mas_dup_build(&mas, &new_mas, gfp); 6866 mas_unlock(&mas); 6867 if (unlikely(mas_is_err(&mas))) { 6868 ret = xa_err(mas.node); 6869 if (ret == -ENOMEM) 6870 mas_dup_free(&new_mas); 6871 } 6872 6873 mas_unlock(&new_mas); 6874 return ret; 6875 } 6876 EXPORT_SYMBOL(mtree_dup); 6877 6878 /** 6879 * __mt_destroy() - Walk and free all nodes of a locked maple tree. 6880 * @mt: The maple tree 6881 * 6882 * Note: Does not handle locking. 6883 */ 6884 void __mt_destroy(struct maple_tree *mt) 6885 { 6886 void *root = mt_root_locked(mt); 6887 6888 rcu_assign_pointer(mt->ma_root, NULL); 6889 if (xa_is_node(root)) 6890 mte_destroy_walk(root, mt); 6891 6892 mt->ma_flags = mt_attr(mt); 6893 } 6894 EXPORT_SYMBOL_GPL(__mt_destroy); 6895 6896 /** 6897 * mtree_destroy() - Destroy a maple tree 6898 * @mt: The maple tree 6899 * 6900 * Frees all resources used by the tree. Handles locking. 6901 */ 6902 void mtree_destroy(struct maple_tree *mt) 6903 { 6904 mtree_lock(mt); 6905 __mt_destroy(mt); 6906 mtree_unlock(mt); 6907 } 6908 EXPORT_SYMBOL(mtree_destroy); 6909 6910 /** 6911 * mt_find() - Search from the start up until an entry is found. 6912 * @mt: The maple tree 6913 * @index: Pointer which contains the start location of the search 6914 * @max: The maximum value of the search range 6915 * 6916 * Takes RCU read lock internally to protect the search, which does not 6917 * protect the returned pointer after dropping RCU read lock. 6918 * See also: Documentation/core-api/maple_tree.rst 6919 * 6920 * In case that an entry is found @index is updated to point to the next 6921 * possible entry independent whether the found entry is occupying a 6922 * single index or a range if indices. 6923 * 6924 * Return: The entry at or after the @index or %NULL 6925 */ 6926 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) 6927 { 6928 MA_STATE(mas, mt, *index, *index); 6929 void *entry; 6930 #ifdef CONFIG_DEBUG_MAPLE_TREE 6931 unsigned long copy = *index; 6932 #endif 6933 6934 trace_ma_read(__func__, &mas); 6935 6936 if ((*index) > max) 6937 return NULL; 6938 6939 rcu_read_lock(); 6940 retry: 6941 entry = mas_state_walk(&mas); 6942 if (mas_is_start(&mas)) 6943 goto retry; 6944 6945 if (unlikely(xa_is_zero(entry))) 6946 entry = NULL; 6947 6948 if (entry) 6949 goto unlock; 6950 6951 while (mas_is_active(&mas) && (mas.last < max)) { 6952 entry = mas_next_entry(&mas, max); 6953 if (likely(entry && !xa_is_zero(entry))) 6954 break; 6955 } 6956 6957 if (unlikely(xa_is_zero(entry))) 6958 entry = NULL; 6959 unlock: 6960 rcu_read_unlock(); 6961 if (likely(entry)) { 6962 *index = mas.last + 1; 6963 #ifdef CONFIG_DEBUG_MAPLE_TREE 6964 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy))) 6965 pr_err("index not increased! %lx <= %lx\n", 6966 *index, copy); 6967 #endif 6968 } 6969 6970 return entry; 6971 } 6972 EXPORT_SYMBOL(mt_find); 6973 6974 /** 6975 * mt_find_after() - Search from the start up until an entry is found. 6976 * @mt: The maple tree 6977 * @index: Pointer which contains the start location of the search 6978 * @max: The maximum value to check 6979 * 6980 * Same as mt_find() except that it checks @index for 0 before 6981 * searching. If @index == 0, the search is aborted. This covers a wrap 6982 * around of @index to 0 in an iterator loop. 6983 * 6984 * Return: The entry at or after the @index or %NULL 6985 */ 6986 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 6987 unsigned long max) 6988 { 6989 if (!(*index)) 6990 return NULL; 6991 6992 return mt_find(mt, index, max); 6993 } 6994 EXPORT_SYMBOL(mt_find_after); 6995 6996 #ifdef CONFIG_DEBUG_MAPLE_TREE 6997 atomic_t maple_tree_tests_run; 6998 EXPORT_SYMBOL_GPL(maple_tree_tests_run); 6999 atomic_t maple_tree_tests_passed; 7000 EXPORT_SYMBOL_GPL(maple_tree_tests_passed); 7001 7002 #ifndef __KERNEL__ 7003 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); 7004 void mt_set_non_kernel(unsigned int val) 7005 { 7006 kmem_cache_set_non_kernel(maple_node_cache, val); 7007 } 7008 7009 extern void kmem_cache_set_callback(struct kmem_cache *cachep, 7010 void (*callback)(void *)); 7011 void mt_set_callback(void (*callback)(void *)) 7012 { 7013 kmem_cache_set_callback(maple_node_cache, callback); 7014 } 7015 7016 extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private); 7017 void mt_set_private(void *private) 7018 { 7019 kmem_cache_set_private(maple_node_cache, private); 7020 } 7021 7022 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); 7023 unsigned long mt_get_alloc_size(void) 7024 { 7025 return kmem_cache_get_alloc(maple_node_cache); 7026 } 7027 7028 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); 7029 void mt_zero_nr_tallocated(void) 7030 { 7031 kmem_cache_zero_nr_tallocated(maple_node_cache); 7032 } 7033 7034 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); 7035 unsigned int mt_nr_tallocated(void) 7036 { 7037 return kmem_cache_nr_tallocated(maple_node_cache); 7038 } 7039 7040 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); 7041 unsigned int mt_nr_allocated(void) 7042 { 7043 return kmem_cache_nr_allocated(maple_node_cache); 7044 } 7045 7046 void mt_cache_shrink(void) 7047 { 7048 } 7049 #else 7050 /* 7051 * mt_cache_shrink() - For testing, don't use this. 7052 * 7053 * Certain testcases can trigger an OOM when combined with other memory 7054 * debugging configuration options. This function is used to reduce the 7055 * possibility of an out of memory even due to kmem_cache objects remaining 7056 * around for longer than usual. 7057 */ 7058 void mt_cache_shrink(void) 7059 { 7060 kmem_cache_shrink(maple_node_cache); 7061 7062 } 7063 EXPORT_SYMBOL_GPL(mt_cache_shrink); 7064 7065 #endif /* not defined __KERNEL__ */ 7066 /* 7067 * mas_get_slot() - Get the entry in the maple state node stored at @offset. 7068 * @mas: The maple state 7069 * @offset: The offset into the slot array to fetch. 7070 * 7071 * Return: The entry stored at @offset. 7072 */ 7073 static inline struct maple_enode *mas_get_slot(struct ma_state *mas, 7074 unsigned char offset) 7075 { 7076 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), 7077 offset); 7078 } 7079 7080 /* Depth first search, post-order */ 7081 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) 7082 { 7083 7084 struct maple_enode *p, *mn = mas->node; 7085 unsigned long p_min, p_max; 7086 7087 mas_next_node(mas, mas_mn(mas), max); 7088 if (!mas_is_overflow(mas)) 7089 return; 7090 7091 if (mte_is_root(mn)) 7092 return; 7093 7094 mas->node = mn; 7095 mas_ascend(mas); 7096 do { 7097 p = mas->node; 7098 p_min = mas->min; 7099 p_max = mas->max; 7100 mas_prev_node(mas, 0); 7101 } while (!mas_is_underflow(mas)); 7102 7103 mas->node = p; 7104 mas->max = p_max; 7105 mas->min = p_min; 7106 } 7107 7108 /* Tree validations */ 7109 static void mt_dump_node(const struct maple_tree *mt, void *entry, 7110 unsigned long min, unsigned long max, unsigned int depth, 7111 enum mt_dump_format format); 7112 static void mt_dump_range(unsigned long min, unsigned long max, 7113 unsigned int depth, enum mt_dump_format format) 7114 { 7115 static const char spaces[] = " "; 7116 7117 switch(format) { 7118 case mt_dump_hex: 7119 if (min == max) 7120 pr_info("%.*s%lx: ", depth * 2, spaces, min); 7121 else 7122 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max); 7123 break; 7124 case mt_dump_dec: 7125 if (min == max) 7126 pr_info("%.*s%lu: ", depth * 2, spaces, min); 7127 else 7128 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); 7129 } 7130 } 7131 7132 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, 7133 unsigned int depth, enum mt_dump_format format) 7134 { 7135 mt_dump_range(min, max, depth, format); 7136 7137 if (xa_is_value(entry)) 7138 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry), 7139 xa_to_value(entry), entry); 7140 else if (xa_is_zero(entry)) 7141 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 7142 else if (mt_is_reserved(entry)) 7143 pr_cont("UNKNOWN ENTRY (%p)\n", entry); 7144 else 7145 pr_cont("%p\n", entry); 7146 } 7147 7148 static void mt_dump_range64(const struct maple_tree *mt, void *entry, 7149 unsigned long min, unsigned long max, unsigned int depth, 7150 enum mt_dump_format format) 7151 { 7152 struct maple_range_64 *node = &mte_to_node(entry)->mr64; 7153 bool leaf = mte_is_leaf(entry); 7154 unsigned long first = min; 7155 int i; 7156 7157 pr_cont(" contents: "); 7158 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) { 7159 switch(format) { 7160 case mt_dump_hex: 7161 pr_cont("%p %lX ", node->slot[i], node->pivot[i]); 7162 break; 7163 case mt_dump_dec: 7164 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 7165 } 7166 } 7167 pr_cont("%p\n", node->slot[i]); 7168 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { 7169 unsigned long last = max; 7170 7171 if (i < (MAPLE_RANGE64_SLOTS - 1)) 7172 last = node->pivot[i]; 7173 else if (!node->slot[i] && max != mt_node_max(entry)) 7174 break; 7175 if (last == 0 && i > 0) 7176 break; 7177 if (leaf) 7178 mt_dump_entry(mt_slot(mt, node->slot, i), 7179 first, last, depth + 1, format); 7180 else if (node->slot[i]) 7181 mt_dump_node(mt, mt_slot(mt, node->slot, i), 7182 first, last, depth + 1, format); 7183 7184 if (last == max) 7185 break; 7186 if (last > max) { 7187 switch(format) { 7188 case mt_dump_hex: 7189 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n", 7190 node, last, max, i); 7191 break; 7192 case mt_dump_dec: 7193 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 7194 node, last, max, i); 7195 } 7196 } 7197 first = last + 1; 7198 } 7199 } 7200 7201 static void mt_dump_arange64(const struct maple_tree *mt, void *entry, 7202 unsigned long min, unsigned long max, unsigned int depth, 7203 enum mt_dump_format format) 7204 { 7205 struct maple_arange_64 *node = &mte_to_node(entry)->ma64; 7206 bool leaf = mte_is_leaf(entry); 7207 unsigned long first = min; 7208 int i; 7209 7210 pr_cont(" contents: "); 7211 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 7212 switch (format) { 7213 case mt_dump_hex: 7214 pr_cont("%lx ", node->gap[i]); 7215 break; 7216 case mt_dump_dec: 7217 pr_cont("%lu ", node->gap[i]); 7218 } 7219 } 7220 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); 7221 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) { 7222 switch (format) { 7223 case mt_dump_hex: 7224 pr_cont("%p %lX ", node->slot[i], node->pivot[i]); 7225 break; 7226 case mt_dump_dec: 7227 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 7228 } 7229 } 7230 pr_cont("%p\n", node->slot[i]); 7231 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 7232 unsigned long last = max; 7233 7234 if (i < (MAPLE_ARANGE64_SLOTS - 1)) 7235 last = node->pivot[i]; 7236 else if (!node->slot[i]) 7237 break; 7238 if (last == 0 && i > 0) 7239 break; 7240 if (leaf) 7241 mt_dump_entry(mt_slot(mt, node->slot, i), 7242 first, last, depth + 1, format); 7243 else if (node->slot[i]) 7244 mt_dump_node(mt, mt_slot(mt, node->slot, i), 7245 first, last, depth + 1, format); 7246 7247 if (last == max) 7248 break; 7249 if (last > max) { 7250 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 7251 node, last, max, i); 7252 break; 7253 } 7254 first = last + 1; 7255 } 7256 } 7257 7258 static void mt_dump_node(const struct maple_tree *mt, void *entry, 7259 unsigned long min, unsigned long max, unsigned int depth, 7260 enum mt_dump_format format) 7261 { 7262 struct maple_node *node = mte_to_node(entry); 7263 unsigned int type = mte_node_type(entry); 7264 unsigned int i; 7265 7266 mt_dump_range(min, max, depth, format); 7267 7268 pr_cont("node %p depth %d type %d parent %p", node, depth, type, 7269 node ? node->parent : NULL); 7270 switch (type) { 7271 case maple_dense: 7272 pr_cont("\n"); 7273 for (i = 0; i < MAPLE_NODE_SLOTS; i++) { 7274 if (min + i > max) 7275 pr_cont("OUT OF RANGE: "); 7276 mt_dump_entry(mt_slot(mt, node->slot, i), 7277 min + i, min + i, depth, format); 7278 } 7279 break; 7280 case maple_leaf_64: 7281 case maple_range_64: 7282 mt_dump_range64(mt, entry, min, max, depth, format); 7283 break; 7284 case maple_arange_64: 7285 mt_dump_arange64(mt, entry, min, max, depth, format); 7286 break; 7287 7288 default: 7289 pr_cont(" UNKNOWN TYPE\n"); 7290 } 7291 } 7292 7293 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format) 7294 { 7295 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); 7296 7297 pr_info("maple_tree(%p) flags %X, height %u root %p\n", 7298 mt, mt->ma_flags, mt_height(mt), entry); 7299 if (!xa_is_node(entry)) 7300 mt_dump_entry(entry, 0, 0, 0, format); 7301 else if (entry) 7302 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format); 7303 } 7304 EXPORT_SYMBOL_GPL(mt_dump); 7305 7306 /* 7307 * Calculate the maximum gap in a node and check if that's what is reported in 7308 * the parent (unless root). 7309 */ 7310 static void mas_validate_gaps(struct ma_state *mas) 7311 { 7312 struct maple_enode *mte = mas->node; 7313 struct maple_node *p_mn, *node = mte_to_node(mte); 7314 enum maple_type mt = mte_node_type(mas->node); 7315 unsigned long gap = 0, max_gap = 0; 7316 unsigned long p_end, p_start = mas->min; 7317 unsigned char p_slot, offset; 7318 unsigned long *gaps = NULL; 7319 unsigned long *pivots = ma_pivots(node, mt); 7320 unsigned int i; 7321 7322 if (ma_is_dense(mt)) { 7323 for (i = 0; i < mt_slot_count(mte); i++) { 7324 if (mas_get_slot(mas, i)) { 7325 if (gap > max_gap) 7326 max_gap = gap; 7327 gap = 0; 7328 continue; 7329 } 7330 gap++; 7331 } 7332 goto counted; 7333 } 7334 7335 gaps = ma_gaps(node, mt); 7336 for (i = 0; i < mt_slot_count(mte); i++) { 7337 p_end = mas_safe_pivot(mas, pivots, i, mt); 7338 7339 if (!gaps) { 7340 if (!mas_get_slot(mas, i)) 7341 gap = p_end - p_start + 1; 7342 } else { 7343 void *entry = mas_get_slot(mas, i); 7344 7345 gap = gaps[i]; 7346 MT_BUG_ON(mas->tree, !entry); 7347 7348 if (gap > p_end - p_start + 1) { 7349 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n", 7350 mas_mn(mas), i, gap, p_end, p_start, 7351 p_end - p_start + 1); 7352 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1); 7353 } 7354 } 7355 7356 if (gap > max_gap) 7357 max_gap = gap; 7358 7359 p_start = p_end + 1; 7360 if (p_end >= mas->max) 7361 break; 7362 } 7363 7364 counted: 7365 if (mt == maple_arange_64) { 7366 MT_BUG_ON(mas->tree, !gaps); 7367 offset = ma_meta_gap(node); 7368 if (offset > i) { 7369 pr_err("gap offset %p[%u] is invalid\n", node, offset); 7370 MT_BUG_ON(mas->tree, 1); 7371 } 7372 7373 if (gaps[offset] != max_gap) { 7374 pr_err("gap %p[%u] is not the largest gap %lu\n", 7375 node, offset, max_gap); 7376 MT_BUG_ON(mas->tree, 1); 7377 } 7378 7379 for (i++ ; i < mt_slot_count(mte); i++) { 7380 if (gaps[i] != 0) { 7381 pr_err("gap %p[%u] beyond node limit != 0\n", 7382 node, i); 7383 MT_BUG_ON(mas->tree, 1); 7384 } 7385 } 7386 } 7387 7388 if (mte_is_root(mte)) 7389 return; 7390 7391 p_slot = mte_parent_slot(mas->node); 7392 p_mn = mte_parent(mte); 7393 MT_BUG_ON(mas->tree, max_gap > mas->max); 7394 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) { 7395 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap); 7396 mt_dump(mas->tree, mt_dump_hex); 7397 MT_BUG_ON(mas->tree, 1); 7398 } 7399 } 7400 7401 static void mas_validate_parent_slot(struct ma_state *mas) 7402 { 7403 struct maple_node *parent; 7404 struct maple_enode *node; 7405 enum maple_type p_type; 7406 unsigned char p_slot; 7407 void __rcu **slots; 7408 int i; 7409 7410 if (mte_is_root(mas->node)) 7411 return; 7412 7413 p_slot = mte_parent_slot(mas->node); 7414 p_type = mas_parent_type(mas, mas->node); 7415 parent = mte_parent(mas->node); 7416 slots = ma_slots(parent, p_type); 7417 MT_BUG_ON(mas->tree, mas_mn(mas) == parent); 7418 7419 /* Check prev/next parent slot for duplicate node entry */ 7420 7421 for (i = 0; i < mt_slots[p_type]; i++) { 7422 node = mas_slot(mas, slots, i); 7423 if (i == p_slot) { 7424 if (node != mas->node) 7425 pr_err("parent %p[%u] does not have %p\n", 7426 parent, i, mas_mn(mas)); 7427 MT_BUG_ON(mas->tree, node != mas->node); 7428 } else if (node == mas->node) { 7429 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n", 7430 mas_mn(mas), parent, i, p_slot); 7431 MT_BUG_ON(mas->tree, node == mas->node); 7432 } 7433 } 7434 } 7435 7436 static void mas_validate_child_slot(struct ma_state *mas) 7437 { 7438 enum maple_type type = mte_node_type(mas->node); 7439 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7440 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); 7441 struct maple_enode *child; 7442 unsigned char i; 7443 7444 if (mte_is_leaf(mas->node)) 7445 return; 7446 7447 for (i = 0; i < mt_slots[type]; i++) { 7448 child = mas_slot(mas, slots, i); 7449 7450 if (!child) { 7451 pr_err("Non-leaf node lacks child at %p[%u]\n", 7452 mas_mn(mas), i); 7453 MT_BUG_ON(mas->tree, 1); 7454 } 7455 7456 if (mte_parent_slot(child) != i) { 7457 pr_err("Slot error at %p[%u]: child %p has pslot %u\n", 7458 mas_mn(mas), i, mte_to_node(child), 7459 mte_parent_slot(child)); 7460 MT_BUG_ON(mas->tree, 1); 7461 } 7462 7463 if (mte_parent(child) != mte_to_node(mas->node)) { 7464 pr_err("child %p has parent %p not %p\n", 7465 mte_to_node(child), mte_parent(child), 7466 mte_to_node(mas->node)); 7467 MT_BUG_ON(mas->tree, 1); 7468 } 7469 7470 if (i < mt_pivots[type] && pivots[i] == mas->max) 7471 break; 7472 } 7473 } 7474 7475 /* 7476 * Validate all pivots are within mas->min and mas->max, check metadata ends 7477 * where the maximum ends and ensure there is no slots or pivots set outside of 7478 * the end of the data. 7479 */ 7480 static void mas_validate_limits(struct ma_state *mas) 7481 { 7482 int i; 7483 unsigned long prev_piv = 0; 7484 enum maple_type type = mte_node_type(mas->node); 7485 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7486 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 7487 7488 for (i = 0; i < mt_slots[type]; i++) { 7489 unsigned long piv; 7490 7491 piv = mas_safe_pivot(mas, pivots, i, type); 7492 7493 if (!piv && (i != 0)) { 7494 pr_err("Missing node limit pivot at %p[%u]", 7495 mas_mn(mas), i); 7496 MAS_WARN_ON(mas, 1); 7497 } 7498 7499 if (prev_piv > piv) { 7500 pr_err("%p[%u] piv %lu < prev_piv %lu\n", 7501 mas_mn(mas), i, piv, prev_piv); 7502 MAS_WARN_ON(mas, piv < prev_piv); 7503 } 7504 7505 if (piv < mas->min) { 7506 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i, 7507 piv, mas->min); 7508 MAS_WARN_ON(mas, piv < mas->min); 7509 } 7510 if (piv > mas->max) { 7511 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i, 7512 piv, mas->max); 7513 MAS_WARN_ON(mas, piv > mas->max); 7514 } 7515 prev_piv = piv; 7516 if (piv == mas->max) 7517 break; 7518 } 7519 7520 if (mas_data_end(mas) != i) { 7521 pr_err("node%p: data_end %u != the last slot offset %u\n", 7522 mas_mn(mas), mas_data_end(mas), i); 7523 MT_BUG_ON(mas->tree, 1); 7524 } 7525 7526 for (i += 1; i < mt_slots[type]; i++) { 7527 void *entry = mas_slot(mas, slots, i); 7528 7529 if (entry && (i != mt_slots[type] - 1)) { 7530 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas), 7531 i, entry); 7532 MT_BUG_ON(mas->tree, entry != NULL); 7533 } 7534 7535 if (i < mt_pivots[type]) { 7536 unsigned long piv = pivots[i]; 7537 7538 if (!piv) 7539 continue; 7540 7541 pr_err("%p[%u] should not have piv %lu\n", 7542 mas_mn(mas), i, piv); 7543 MAS_WARN_ON(mas, i < mt_pivots[type] - 1); 7544 } 7545 } 7546 } 7547 7548 static void mt_validate_nulls(struct maple_tree *mt) 7549 { 7550 void *entry, *last = (void *)1; 7551 unsigned char offset = 0; 7552 void __rcu **slots; 7553 MA_STATE(mas, mt, 0, 0); 7554 7555 mas_start(&mas); 7556 if (mas_is_none(&mas) || (mas_is_ptr(&mas))) 7557 return; 7558 7559 while (!mte_is_leaf(mas.node)) 7560 mas_descend(&mas); 7561 7562 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); 7563 do { 7564 entry = mas_slot(&mas, slots, offset); 7565 if (!last && !entry) { 7566 pr_err("Sequential nulls end at %p[%u]\n", 7567 mas_mn(&mas), offset); 7568 } 7569 MT_BUG_ON(mt, !last && !entry); 7570 last = entry; 7571 if (offset == mas_data_end(&mas)) { 7572 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); 7573 if (mas_is_overflow(&mas)) 7574 return; 7575 offset = 0; 7576 slots = ma_slots(mte_to_node(mas.node), 7577 mte_node_type(mas.node)); 7578 } else { 7579 offset++; 7580 } 7581 7582 } while (!mas_is_overflow(&mas)); 7583 } 7584 7585 /* 7586 * validate a maple tree by checking: 7587 * 1. The limits (pivots are within mas->min to mas->max) 7588 * 2. The gap is correctly set in the parents 7589 */ 7590 void mt_validate(struct maple_tree *mt) 7591 { 7592 unsigned char end; 7593 7594 MA_STATE(mas, mt, 0, 0); 7595 rcu_read_lock(); 7596 mas_start(&mas); 7597 if (!mas_is_active(&mas)) 7598 goto done; 7599 7600 while (!mte_is_leaf(mas.node)) 7601 mas_descend(&mas); 7602 7603 while (!mas_is_overflow(&mas)) { 7604 MAS_WARN_ON(&mas, mte_dead_node(mas.node)); 7605 end = mas_data_end(&mas); 7606 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) && 7607 (mas.max != ULONG_MAX))) { 7608 pr_err("Invalid size %u of %p\n", end, mas_mn(&mas)); 7609 } 7610 7611 mas_validate_parent_slot(&mas); 7612 mas_validate_limits(&mas); 7613 mas_validate_child_slot(&mas); 7614 if (mt_is_alloc(mt)) 7615 mas_validate_gaps(&mas); 7616 mas_dfs_postorder(&mas, ULONG_MAX); 7617 } 7618 mt_validate_nulls(mt); 7619 done: 7620 rcu_read_unlock(); 7621 7622 } 7623 EXPORT_SYMBOL_GPL(mt_validate); 7624 7625 void mas_dump(const struct ma_state *mas) 7626 { 7627 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node); 7628 switch (mas->status) { 7629 case ma_active: 7630 pr_err("(ma_active)"); 7631 break; 7632 case ma_none: 7633 pr_err("(ma_none)"); 7634 break; 7635 case ma_root: 7636 pr_err("(ma_root)"); 7637 break; 7638 case ma_start: 7639 pr_err("(ma_start) "); 7640 break; 7641 case ma_pause: 7642 pr_err("(ma_pause) "); 7643 break; 7644 case ma_overflow: 7645 pr_err("(ma_overflow) "); 7646 break; 7647 case ma_underflow: 7648 pr_err("(ma_underflow) "); 7649 break; 7650 case ma_error: 7651 pr_err("(ma_error) "); 7652 break; 7653 } 7654 7655 pr_err("Store Type: "); 7656 switch (mas->store_type) { 7657 case wr_invalid: 7658 pr_err("invalid store type\n"); 7659 break; 7660 case wr_new_root: 7661 pr_err("new_root\n"); 7662 break; 7663 case wr_store_root: 7664 pr_err("store_root\n"); 7665 break; 7666 case wr_exact_fit: 7667 pr_err("exact_fit\n"); 7668 break; 7669 case wr_split_store: 7670 pr_err("split_store\n"); 7671 break; 7672 case wr_slot_store: 7673 pr_err("slot_store\n"); 7674 break; 7675 case wr_append: 7676 pr_err("append\n"); 7677 break; 7678 case wr_node_store: 7679 pr_err("node_store\n"); 7680 break; 7681 case wr_spanning_store: 7682 pr_err("spanning_store\n"); 7683 break; 7684 case wr_rebalance: 7685 pr_err("rebalance\n"); 7686 break; 7687 } 7688 7689 pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end, 7690 mas->index, mas->last); 7691 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n", 7692 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags); 7693 if (mas->index > mas->last) 7694 pr_err("Check index & last\n"); 7695 } 7696 EXPORT_SYMBOL_GPL(mas_dump); 7697 7698 void mas_wr_dump(const struct ma_wr_state *wr_mas) 7699 { 7700 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n", 7701 wr_mas->node, wr_mas->r_min, wr_mas->r_max); 7702 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n", 7703 wr_mas->type, wr_mas->offset_end, wr_mas->mas->end, 7704 wr_mas->end_piv); 7705 } 7706 EXPORT_SYMBOL_GPL(mas_wr_dump); 7707 7708 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 7709