1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Maple Tree implementation 4 * Copyright (c) 2018-2022 Oracle Corporation 5 * Authors: Liam R. Howlett <[email protected]> 6 * Matthew Wilcox <[email protected]> 7 * Copyright (c) 2023 ByteDance 8 * Author: Peng Zhang <[email protected]> 9 */ 10 11 /* 12 * DOC: Interesting implementation details of the Maple Tree 13 * 14 * Each node type has a number of slots for entries and a number of slots for 15 * pivots. In the case of dense nodes, the pivots are implied by the position 16 * and are simply the slot index + the minimum of the node. 17 * 18 * In regular B-Tree terms, pivots are called keys. The term pivot is used to 19 * indicate that the tree is specifying ranges. Pivots may appear in the 20 * subtree with an entry attached to the value whereas keys are unique to a 21 * specific position of a B-tree. Pivot values are inclusive of the slot with 22 * the same index. 23 * 24 * 25 * The following illustrates the layout of a range64 nodes slots and pivots. 26 * 27 * 28 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 | 29 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ 30 * │ │ │ │ │ │ │ │ └─ Implied maximum 31 * │ │ │ │ │ │ │ └─ Pivot 14 32 * │ │ │ │ │ │ └─ Pivot 13 33 * │ │ │ │ │ └─ Pivot 12 34 * │ │ │ │ └─ Pivot 11 35 * │ │ │ └─ Pivot 2 36 * │ │ └─ Pivot 1 37 * │ └─ Pivot 0 38 * └─ Implied minimum 39 * 40 * Slot contents: 41 * Internal (non-leaf) nodes contain pointers to other nodes. 42 * Leaf nodes contain entries. 43 * 44 * The location of interest is often referred to as an offset. All offsets have 45 * a slot, but the last offset has an implied pivot from the node above (or 46 * UINT_MAX for the root node. 47 * 48 * Ranges complicate certain write activities. When modifying any of 49 * the B-tree variants, it is known that one entry will either be added or 50 * deleted. When modifying the Maple Tree, one store operation may overwrite 51 * the entire data set, or one half of the tree, or the middle half of the tree. 52 * 53 */ 54 55 56 #include <linux/maple_tree.h> 57 #include <linux/xarray.h> 58 #include <linux/types.h> 59 #include <linux/export.h> 60 #include <linux/slab.h> 61 #include <linux/limits.h> 62 #include <asm/barrier.h> 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/maple_tree.h> 66 67 #define MA_ROOT_PARENT 1 68 69 /* 70 * Maple state flags 71 * * MA_STATE_BULK - Bulk insert mode 72 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert 73 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation 74 */ 75 #define MA_STATE_BULK 1 76 #define MA_STATE_REBALANCE 2 77 #define MA_STATE_PREALLOC 4 78 79 #define ma_parent_ptr(x) ((struct maple_pnode *)(x)) 80 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT) 81 #define ma_mnode_ptr(x) ((struct maple_node *)(x)) 82 #define ma_enode_ptr(x) ((struct maple_enode *)(x)) 83 static struct kmem_cache *maple_node_cache; 84 85 #ifdef CONFIG_DEBUG_MAPLE_TREE 86 static const unsigned long mt_max[] = { 87 [maple_dense] = MAPLE_NODE_SLOTS, 88 [maple_leaf_64] = ULONG_MAX, 89 [maple_range_64] = ULONG_MAX, 90 [maple_arange_64] = ULONG_MAX, 91 }; 92 #define mt_node_max(x) mt_max[mte_node_type(x)] 93 #endif 94 95 static const unsigned char mt_slots[] = { 96 [maple_dense] = MAPLE_NODE_SLOTS, 97 [maple_leaf_64] = MAPLE_RANGE64_SLOTS, 98 [maple_range_64] = MAPLE_RANGE64_SLOTS, 99 [maple_arange_64] = MAPLE_ARANGE64_SLOTS, 100 }; 101 #define mt_slot_count(x) mt_slots[mte_node_type(x)] 102 103 static const unsigned char mt_pivots[] = { 104 [maple_dense] = 0, 105 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1, 106 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1, 107 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1, 108 }; 109 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)] 110 111 static const unsigned char mt_min_slots[] = { 112 [maple_dense] = MAPLE_NODE_SLOTS / 2, 113 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 114 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2, 115 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1, 116 }; 117 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)] 118 119 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2) 120 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1) 121 122 struct maple_big_node { 123 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1]; 124 union { 125 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS]; 126 struct { 127 unsigned long padding[MAPLE_BIG_NODE_GAPS]; 128 unsigned long gap[MAPLE_BIG_NODE_GAPS]; 129 }; 130 }; 131 unsigned char b_end; 132 enum maple_type type; 133 }; 134 135 /* 136 * The maple_subtree_state is used to build a tree to replace a segment of an 137 * existing tree in a more atomic way. Any walkers of the older tree will hit a 138 * dead node and restart on updates. 139 */ 140 struct maple_subtree_state { 141 struct ma_state *orig_l; /* Original left side of subtree */ 142 struct ma_state *orig_r; /* Original right side of subtree */ 143 struct ma_state *l; /* New left side of subtree */ 144 struct ma_state *m; /* New middle of subtree (rare) */ 145 struct ma_state *r; /* New right side of subtree */ 146 struct ma_topiary *free; /* nodes to be freed */ 147 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */ 148 struct maple_big_node *bn; 149 }; 150 151 #ifdef CONFIG_KASAN_STACK 152 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */ 153 #define noinline_for_kasan noinline_for_stack 154 #else 155 #define noinline_for_kasan inline 156 #endif 157 158 /* Functions */ 159 static inline struct maple_node *mt_alloc_one(gfp_t gfp) 160 { 161 return kmem_cache_alloc(maple_node_cache, gfp); 162 } 163 164 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes) 165 { 166 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes); 167 } 168 169 static inline void mt_free_one(struct maple_node *node) 170 { 171 kmem_cache_free(maple_node_cache, node); 172 } 173 174 static inline void mt_free_bulk(size_t size, void __rcu **nodes) 175 { 176 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes); 177 } 178 179 static void mt_free_rcu(struct rcu_head *head) 180 { 181 struct maple_node *node = container_of(head, struct maple_node, rcu); 182 183 kmem_cache_free(maple_node_cache, node); 184 } 185 186 /* 187 * ma_free_rcu() - Use rcu callback to free a maple node 188 * @node: The node to free 189 * 190 * The maple tree uses the parent pointer to indicate this node is no longer in 191 * use and will be freed. 192 */ 193 static void ma_free_rcu(struct maple_node *node) 194 { 195 WARN_ON(node->parent != ma_parent_ptr(node)); 196 call_rcu(&node->rcu, mt_free_rcu); 197 } 198 199 static void mas_set_height(struct ma_state *mas) 200 { 201 unsigned int new_flags = mas->tree->ma_flags; 202 203 new_flags &= ~MT_FLAGS_HEIGHT_MASK; 204 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX); 205 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET; 206 mas->tree->ma_flags = new_flags; 207 } 208 209 static unsigned int mas_mt_height(struct ma_state *mas) 210 { 211 return mt_height(mas->tree); 212 } 213 214 static inline unsigned int mt_attr(struct maple_tree *mt) 215 { 216 return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK; 217 } 218 219 static __always_inline enum maple_type mte_node_type( 220 const struct maple_enode *entry) 221 { 222 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) & 223 MAPLE_NODE_TYPE_MASK; 224 } 225 226 static __always_inline bool ma_is_dense(const enum maple_type type) 227 { 228 return type < maple_leaf_64; 229 } 230 231 static __always_inline bool ma_is_leaf(const enum maple_type type) 232 { 233 return type < maple_range_64; 234 } 235 236 static __always_inline bool mte_is_leaf(const struct maple_enode *entry) 237 { 238 return ma_is_leaf(mte_node_type(entry)); 239 } 240 241 /* 242 * We also reserve values with the bottom two bits set to '10' which are 243 * below 4096 244 */ 245 static __always_inline bool mt_is_reserved(const void *entry) 246 { 247 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) && 248 xa_is_internal(entry); 249 } 250 251 static __always_inline void mas_set_err(struct ma_state *mas, long err) 252 { 253 mas->node = MA_ERROR(err); 254 mas->status = ma_error; 255 } 256 257 static __always_inline bool mas_is_ptr(const struct ma_state *mas) 258 { 259 return mas->status == ma_root; 260 } 261 262 static __always_inline bool mas_is_start(const struct ma_state *mas) 263 { 264 return mas->status == ma_start; 265 } 266 267 static __always_inline bool mas_is_none(const struct ma_state *mas) 268 { 269 return mas->status == ma_none; 270 } 271 272 static __always_inline bool mas_is_paused(const struct ma_state *mas) 273 { 274 return mas->status == ma_pause; 275 } 276 277 static __always_inline bool mas_is_overflow(struct ma_state *mas) 278 { 279 return mas->status == ma_overflow; 280 } 281 282 static inline bool mas_is_underflow(struct ma_state *mas) 283 { 284 return mas->status == ma_underflow; 285 } 286 287 static __always_inline struct maple_node *mte_to_node( 288 const struct maple_enode *entry) 289 { 290 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK); 291 } 292 293 /* 294 * mte_to_mat() - Convert a maple encoded node to a maple topiary node. 295 * @entry: The maple encoded node 296 * 297 * Return: a maple topiary pointer 298 */ 299 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry) 300 { 301 return (struct maple_topiary *) 302 ((unsigned long)entry & ~MAPLE_NODE_MASK); 303 } 304 305 /* 306 * mas_mn() - Get the maple state node. 307 * @mas: The maple state 308 * 309 * Return: the maple node (not encoded - bare pointer). 310 */ 311 static inline struct maple_node *mas_mn(const struct ma_state *mas) 312 { 313 return mte_to_node(mas->node); 314 } 315 316 /* 317 * mte_set_node_dead() - Set a maple encoded node as dead. 318 * @mn: The maple encoded node. 319 */ 320 static inline void mte_set_node_dead(struct maple_enode *mn) 321 { 322 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn)); 323 smp_wmb(); /* Needed for RCU */ 324 } 325 326 /* Bit 1 indicates the root is a node */ 327 #define MAPLE_ROOT_NODE 0x02 328 /* maple_type stored bit 3-6 */ 329 #define MAPLE_ENODE_TYPE_SHIFT 0x03 330 /* Bit 2 means a NULL somewhere below */ 331 #define MAPLE_ENODE_NULL 0x04 332 333 static inline struct maple_enode *mt_mk_node(const struct maple_node *node, 334 enum maple_type type) 335 { 336 return (void *)((unsigned long)node | 337 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL); 338 } 339 340 static inline void *mte_mk_root(const struct maple_enode *node) 341 { 342 return (void *)((unsigned long)node | MAPLE_ROOT_NODE); 343 } 344 345 static inline void *mte_safe_root(const struct maple_enode *node) 346 { 347 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE); 348 } 349 350 static inline void __maybe_unused *mte_set_full(const struct maple_enode *node) 351 { 352 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL); 353 } 354 355 static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node) 356 { 357 return (void *)((unsigned long)node | MAPLE_ENODE_NULL); 358 } 359 360 static inline bool __maybe_unused mte_has_null(const struct maple_enode *node) 361 { 362 return (unsigned long)node & MAPLE_ENODE_NULL; 363 } 364 365 static __always_inline bool ma_is_root(struct maple_node *node) 366 { 367 return ((unsigned long)node->parent & MA_ROOT_PARENT); 368 } 369 370 static __always_inline bool mte_is_root(const struct maple_enode *node) 371 { 372 return ma_is_root(mte_to_node(node)); 373 } 374 375 static inline bool mas_is_root_limits(const struct ma_state *mas) 376 { 377 return !mas->min && mas->max == ULONG_MAX; 378 } 379 380 static __always_inline bool mt_is_alloc(struct maple_tree *mt) 381 { 382 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE); 383 } 384 385 /* 386 * The Parent Pointer 387 * Excluding root, the parent pointer is 256B aligned like all other tree nodes. 388 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16 389 * bit values need an extra bit to store the offset. This extra bit comes from 390 * a reuse of the last bit in the node type. This is possible by using bit 1 to 391 * indicate if bit 2 is part of the type or the slot. 392 * 393 * Note types: 394 * 0x??1 = Root 395 * 0x?00 = 16 bit nodes 396 * 0x010 = 32 bit nodes 397 * 0x110 = 64 bit nodes 398 * 399 * Slot size and alignment 400 * 0b??1 : Root 401 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7 402 * 0b010 : 32 bit values, type in 0-2, slot in 3-7 403 * 0b110 : 64 bit values, type in 0-2, slot in 3-7 404 */ 405 406 #define MAPLE_PARENT_ROOT 0x01 407 408 #define MAPLE_PARENT_SLOT_SHIFT 0x03 409 #define MAPLE_PARENT_SLOT_MASK 0xF8 410 411 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02 412 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC 413 414 #define MAPLE_PARENT_RANGE64 0x06 415 #define MAPLE_PARENT_RANGE32 0x04 416 #define MAPLE_PARENT_NOT_RANGE16 0x02 417 418 /* 419 * mte_parent_shift() - Get the parent shift for the slot storage. 420 * @parent: The parent pointer cast as an unsigned long 421 * Return: The shift into that pointer to the star to of the slot 422 */ 423 static inline unsigned long mte_parent_shift(unsigned long parent) 424 { 425 /* Note bit 1 == 0 means 16B */ 426 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 427 return MAPLE_PARENT_SLOT_SHIFT; 428 429 return MAPLE_PARENT_16B_SLOT_SHIFT; 430 } 431 432 /* 433 * mte_parent_slot_mask() - Get the slot mask for the parent. 434 * @parent: The parent pointer cast as an unsigned long. 435 * Return: The slot mask for that parent. 436 */ 437 static inline unsigned long mte_parent_slot_mask(unsigned long parent) 438 { 439 /* Note bit 1 == 0 means 16B */ 440 if (likely(parent & MAPLE_PARENT_NOT_RANGE16)) 441 return MAPLE_PARENT_SLOT_MASK; 442 443 return MAPLE_PARENT_16B_SLOT_MASK; 444 } 445 446 /* 447 * mas_parent_type() - Return the maple_type of the parent from the stored 448 * parent type. 449 * @mas: The maple state 450 * @enode: The maple_enode to extract the parent's enum 451 * Return: The node->parent maple_type 452 */ 453 static inline 454 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode) 455 { 456 unsigned long p_type; 457 458 p_type = (unsigned long)mte_to_node(enode)->parent; 459 if (WARN_ON(p_type & MAPLE_PARENT_ROOT)) 460 return 0; 461 462 p_type &= MAPLE_NODE_MASK; 463 p_type &= ~mte_parent_slot_mask(p_type); 464 switch (p_type) { 465 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */ 466 if (mt_is_alloc(mas->tree)) 467 return maple_arange_64; 468 return maple_range_64; 469 } 470 471 return 0; 472 } 473 474 /* 475 * mas_set_parent() - Set the parent node and encode the slot 476 * @mas: The maple state 477 * @enode: The encoded maple node. 478 * @parent: The encoded maple node that is the parent of @enode. 479 * @slot: The slot that @enode resides in @parent. 480 * 481 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the 482 * parent type. 483 */ 484 static inline 485 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode, 486 const struct maple_enode *parent, unsigned char slot) 487 { 488 unsigned long val = (unsigned long)parent; 489 unsigned long shift; 490 unsigned long type; 491 enum maple_type p_type = mte_node_type(parent); 492 493 MAS_BUG_ON(mas, p_type == maple_dense); 494 MAS_BUG_ON(mas, p_type == maple_leaf_64); 495 496 switch (p_type) { 497 case maple_range_64: 498 case maple_arange_64: 499 shift = MAPLE_PARENT_SLOT_SHIFT; 500 type = MAPLE_PARENT_RANGE64; 501 break; 502 default: 503 case maple_dense: 504 case maple_leaf_64: 505 shift = type = 0; 506 break; 507 } 508 509 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */ 510 val |= (slot << shift) | type; 511 mte_to_node(enode)->parent = ma_parent_ptr(val); 512 } 513 514 /* 515 * mte_parent_slot() - get the parent slot of @enode. 516 * @enode: The encoded maple node. 517 * 518 * Return: The slot in the parent node where @enode resides. 519 */ 520 static __always_inline 521 unsigned int mte_parent_slot(const struct maple_enode *enode) 522 { 523 unsigned long val = (unsigned long)mte_to_node(enode)->parent; 524 525 if (unlikely(val & MA_ROOT_PARENT)) 526 return 0; 527 528 /* 529 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost 530 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT 531 */ 532 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val); 533 } 534 535 /* 536 * mte_parent() - Get the parent of @node. 537 * @enode: The encoded maple node. 538 * 539 * Return: The parent maple node. 540 */ 541 static __always_inline 542 struct maple_node *mte_parent(const struct maple_enode *enode) 543 { 544 return (void *)((unsigned long) 545 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK); 546 } 547 548 /* 549 * ma_dead_node() - check if the @enode is dead. 550 * @enode: The encoded maple node 551 * 552 * Return: true if dead, false otherwise. 553 */ 554 static __always_inline bool ma_dead_node(const struct maple_node *node) 555 { 556 struct maple_node *parent; 557 558 /* Do not reorder reads from the node prior to the parent check */ 559 smp_rmb(); 560 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK); 561 return (parent == node); 562 } 563 564 /* 565 * mte_dead_node() - check if the @enode is dead. 566 * @enode: The encoded maple node 567 * 568 * Return: true if dead, false otherwise. 569 */ 570 static __always_inline bool mte_dead_node(const struct maple_enode *enode) 571 { 572 struct maple_node *parent, *node; 573 574 node = mte_to_node(enode); 575 /* Do not reorder reads from the node prior to the parent check */ 576 smp_rmb(); 577 parent = mte_parent(enode); 578 return (parent == node); 579 } 580 581 /* 582 * mas_allocated() - Get the number of nodes allocated in a maple state. 583 * @mas: The maple state 584 * 585 * The ma_state alloc member is overloaded to hold a pointer to the first 586 * allocated node or to the number of requested nodes to allocate. If bit 0 is 587 * set, then the alloc contains the number of requested nodes. If there is an 588 * allocated node, then the total allocated nodes is in that node. 589 * 590 * Return: The total number of nodes allocated 591 */ 592 static inline unsigned long mas_allocated(const struct ma_state *mas) 593 { 594 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) 595 return 0; 596 597 return mas->alloc->total; 598 } 599 600 /* 601 * mas_set_alloc_req() - Set the requested number of allocations. 602 * @mas: the maple state 603 * @count: the number of allocations. 604 * 605 * The requested number of allocations is either in the first allocated node, 606 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is 607 * no allocated node. Set the request either in the node or do the necessary 608 * encoding to store in @mas->alloc directly. 609 */ 610 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count) 611 { 612 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) { 613 if (!count) 614 mas->alloc = NULL; 615 else 616 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U); 617 return; 618 } 619 620 mas->alloc->request_count = count; 621 } 622 623 /* 624 * mas_alloc_req() - get the requested number of allocations. 625 * @mas: The maple state 626 * 627 * The alloc count is either stored directly in @mas, or in 628 * @mas->alloc->request_count if there is at least one node allocated. Decode 629 * the request count if it's stored directly in @mas->alloc. 630 * 631 * Return: The allocation request count. 632 */ 633 static inline unsigned int mas_alloc_req(const struct ma_state *mas) 634 { 635 if ((unsigned long)mas->alloc & 0x1) 636 return (unsigned long)(mas->alloc) >> 1; 637 else if (mas->alloc) 638 return mas->alloc->request_count; 639 return 0; 640 } 641 642 /* 643 * ma_pivots() - Get a pointer to the maple node pivots. 644 * @node: the maple node 645 * @type: the node type 646 * 647 * In the event of a dead node, this array may be %NULL 648 * 649 * Return: A pointer to the maple node pivots 650 */ 651 static inline unsigned long *ma_pivots(struct maple_node *node, 652 enum maple_type type) 653 { 654 switch (type) { 655 case maple_arange_64: 656 return node->ma64.pivot; 657 case maple_range_64: 658 case maple_leaf_64: 659 return node->mr64.pivot; 660 case maple_dense: 661 return NULL; 662 } 663 return NULL; 664 } 665 666 /* 667 * ma_gaps() - Get a pointer to the maple node gaps. 668 * @node: the maple node 669 * @type: the node type 670 * 671 * Return: A pointer to the maple node gaps 672 */ 673 static inline unsigned long *ma_gaps(struct maple_node *node, 674 enum maple_type type) 675 { 676 switch (type) { 677 case maple_arange_64: 678 return node->ma64.gap; 679 case maple_range_64: 680 case maple_leaf_64: 681 case maple_dense: 682 return NULL; 683 } 684 return NULL; 685 } 686 687 /* 688 * mas_safe_pivot() - get the pivot at @piv or mas->max. 689 * @mas: The maple state 690 * @pivots: The pointer to the maple node pivots 691 * @piv: The pivot to fetch 692 * @type: The maple node type 693 * 694 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max 695 * otherwise. 696 */ 697 static __always_inline unsigned long 698 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots, 699 unsigned char piv, enum maple_type type) 700 { 701 if (piv >= mt_pivots[type]) 702 return mas->max; 703 704 return pivots[piv]; 705 } 706 707 /* 708 * mas_safe_min() - Return the minimum for a given offset. 709 * @mas: The maple state 710 * @pivots: The pointer to the maple node pivots 711 * @offset: The offset into the pivot array 712 * 713 * Return: The minimum range value that is contained in @offset. 714 */ 715 static inline unsigned long 716 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset) 717 { 718 if (likely(offset)) 719 return pivots[offset - 1] + 1; 720 721 return mas->min; 722 } 723 724 /* 725 * mte_set_pivot() - Set a pivot to a value in an encoded maple node. 726 * @mn: The encoded maple node 727 * @piv: The pivot offset 728 * @val: The value of the pivot 729 */ 730 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv, 731 unsigned long val) 732 { 733 struct maple_node *node = mte_to_node(mn); 734 enum maple_type type = mte_node_type(mn); 735 736 BUG_ON(piv >= mt_pivots[type]); 737 switch (type) { 738 case maple_range_64: 739 case maple_leaf_64: 740 node->mr64.pivot[piv] = val; 741 break; 742 case maple_arange_64: 743 node->ma64.pivot[piv] = val; 744 break; 745 case maple_dense: 746 break; 747 } 748 749 } 750 751 /* 752 * ma_slots() - Get a pointer to the maple node slots. 753 * @mn: The maple node 754 * @mt: The maple node type 755 * 756 * Return: A pointer to the maple node slots 757 */ 758 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt) 759 { 760 switch (mt) { 761 case maple_arange_64: 762 return mn->ma64.slot; 763 case maple_range_64: 764 case maple_leaf_64: 765 return mn->mr64.slot; 766 case maple_dense: 767 return mn->slot; 768 } 769 770 return NULL; 771 } 772 773 static inline bool mt_write_locked(const struct maple_tree *mt) 774 { 775 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) : 776 lockdep_is_held(&mt->ma_lock); 777 } 778 779 static __always_inline bool mt_locked(const struct maple_tree *mt) 780 { 781 return mt_external_lock(mt) ? mt_lock_is_held(mt) : 782 lockdep_is_held(&mt->ma_lock); 783 } 784 785 static __always_inline void *mt_slot(const struct maple_tree *mt, 786 void __rcu **slots, unsigned char offset) 787 { 788 return rcu_dereference_check(slots[offset], mt_locked(mt)); 789 } 790 791 static __always_inline void *mt_slot_locked(struct maple_tree *mt, 792 void __rcu **slots, unsigned char offset) 793 { 794 return rcu_dereference_protected(slots[offset], mt_write_locked(mt)); 795 } 796 /* 797 * mas_slot_locked() - Get the slot value when holding the maple tree lock. 798 * @mas: The maple state 799 * @slots: The pointer to the slots 800 * @offset: The offset into the slots array to fetch 801 * 802 * Return: The entry stored in @slots at the @offset. 803 */ 804 static __always_inline void *mas_slot_locked(struct ma_state *mas, 805 void __rcu **slots, unsigned char offset) 806 { 807 return mt_slot_locked(mas->tree, slots, offset); 808 } 809 810 /* 811 * mas_slot() - Get the slot value when not holding the maple tree lock. 812 * @mas: The maple state 813 * @slots: The pointer to the slots 814 * @offset: The offset into the slots array to fetch 815 * 816 * Return: The entry stored in @slots at the @offset 817 */ 818 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots, 819 unsigned char offset) 820 { 821 return mt_slot(mas->tree, slots, offset); 822 } 823 824 /* 825 * mas_root() - Get the maple tree root. 826 * @mas: The maple state. 827 * 828 * Return: The pointer to the root of the tree 829 */ 830 static __always_inline void *mas_root(struct ma_state *mas) 831 { 832 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree)); 833 } 834 835 static inline void *mt_root_locked(struct maple_tree *mt) 836 { 837 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt)); 838 } 839 840 /* 841 * mas_root_locked() - Get the maple tree root when holding the maple tree lock. 842 * @mas: The maple state. 843 * 844 * Return: The pointer to the root of the tree 845 */ 846 static inline void *mas_root_locked(struct ma_state *mas) 847 { 848 return mt_root_locked(mas->tree); 849 } 850 851 static inline struct maple_metadata *ma_meta(struct maple_node *mn, 852 enum maple_type mt) 853 { 854 switch (mt) { 855 case maple_arange_64: 856 return &mn->ma64.meta; 857 default: 858 return &mn->mr64.meta; 859 } 860 } 861 862 /* 863 * ma_set_meta() - Set the metadata information of a node. 864 * @mn: The maple node 865 * @mt: The maple node type 866 * @offset: The offset of the highest sub-gap in this node. 867 * @end: The end of the data in this node. 868 */ 869 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt, 870 unsigned char offset, unsigned char end) 871 { 872 struct maple_metadata *meta = ma_meta(mn, mt); 873 874 meta->gap = offset; 875 meta->end = end; 876 } 877 878 /* 879 * mt_clear_meta() - clear the metadata information of a node, if it exists 880 * @mt: The maple tree 881 * @mn: The maple node 882 * @type: The maple node type 883 */ 884 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn, 885 enum maple_type type) 886 { 887 struct maple_metadata *meta; 888 unsigned long *pivots; 889 void __rcu **slots; 890 void *next; 891 892 switch (type) { 893 case maple_range_64: 894 pivots = mn->mr64.pivot; 895 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) { 896 slots = mn->mr64.slot; 897 next = mt_slot_locked(mt, slots, 898 MAPLE_RANGE64_SLOTS - 1); 899 if (unlikely((mte_to_node(next) && 900 mte_node_type(next)))) 901 return; /* no metadata, could be node */ 902 } 903 fallthrough; 904 case maple_arange_64: 905 meta = ma_meta(mn, type); 906 break; 907 default: 908 return; 909 } 910 911 meta->gap = 0; 912 meta->end = 0; 913 } 914 915 /* 916 * ma_meta_end() - Get the data end of a node from the metadata 917 * @mn: The maple node 918 * @mt: The maple node type 919 */ 920 static inline unsigned char ma_meta_end(struct maple_node *mn, 921 enum maple_type mt) 922 { 923 struct maple_metadata *meta = ma_meta(mn, mt); 924 925 return meta->end; 926 } 927 928 /* 929 * ma_meta_gap() - Get the largest gap location of a node from the metadata 930 * @mn: The maple node 931 */ 932 static inline unsigned char ma_meta_gap(struct maple_node *mn) 933 { 934 return mn->ma64.meta.gap; 935 } 936 937 /* 938 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata 939 * @mn: The maple node 940 * @mt: The maple node type 941 * @offset: The location of the largest gap. 942 */ 943 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt, 944 unsigned char offset) 945 { 946 947 struct maple_metadata *meta = ma_meta(mn, mt); 948 949 meta->gap = offset; 950 } 951 952 /* 953 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes. 954 * @mat: the ma_topiary, a linked list of dead nodes. 955 * @dead_enode: the node to be marked as dead and added to the tail of the list 956 * 957 * Add the @dead_enode to the linked list in @mat. 958 */ 959 static inline void mat_add(struct ma_topiary *mat, 960 struct maple_enode *dead_enode) 961 { 962 mte_set_node_dead(dead_enode); 963 mte_to_mat(dead_enode)->next = NULL; 964 if (!mat->tail) { 965 mat->tail = mat->head = dead_enode; 966 return; 967 } 968 969 mte_to_mat(mat->tail)->next = dead_enode; 970 mat->tail = dead_enode; 971 } 972 973 static void mt_free_walk(struct rcu_head *head); 974 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 975 bool free); 976 /* 977 * mas_mat_destroy() - Free all nodes and subtrees in a dead list. 978 * @mas: the maple state 979 * @mat: the ma_topiary linked list of dead nodes to free. 980 * 981 * Destroy walk a dead list. 982 */ 983 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat) 984 { 985 struct maple_enode *next; 986 struct maple_node *node; 987 bool in_rcu = mt_in_rcu(mas->tree); 988 989 while (mat->head) { 990 next = mte_to_mat(mat->head)->next; 991 node = mte_to_node(mat->head); 992 mt_destroy_walk(mat->head, mas->tree, !in_rcu); 993 if (in_rcu) 994 call_rcu(&node->rcu, mt_free_walk); 995 mat->head = next; 996 } 997 } 998 /* 999 * mas_descend() - Descend into the slot stored in the ma_state. 1000 * @mas: the maple state. 1001 * 1002 * Note: Not RCU safe, only use in write side or debug code. 1003 */ 1004 static inline void mas_descend(struct ma_state *mas) 1005 { 1006 enum maple_type type; 1007 unsigned long *pivots; 1008 struct maple_node *node; 1009 void __rcu **slots; 1010 1011 node = mas_mn(mas); 1012 type = mte_node_type(mas->node); 1013 pivots = ma_pivots(node, type); 1014 slots = ma_slots(node, type); 1015 1016 if (mas->offset) 1017 mas->min = pivots[mas->offset - 1] + 1; 1018 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type); 1019 mas->node = mas_slot(mas, slots, mas->offset); 1020 } 1021 1022 /* 1023 * mte_set_gap() - Set a maple node gap. 1024 * @mn: The encoded maple node 1025 * @gap: The offset of the gap to set 1026 * @val: The gap value 1027 */ 1028 static inline void mte_set_gap(const struct maple_enode *mn, 1029 unsigned char gap, unsigned long val) 1030 { 1031 switch (mte_node_type(mn)) { 1032 default: 1033 break; 1034 case maple_arange_64: 1035 mte_to_node(mn)->ma64.gap[gap] = val; 1036 break; 1037 } 1038 } 1039 1040 /* 1041 * mas_ascend() - Walk up a level of the tree. 1042 * @mas: The maple state 1043 * 1044 * Sets the @mas->max and @mas->min to the correct values when walking up. This 1045 * may cause several levels of walking up to find the correct min and max. 1046 * May find a dead node which will cause a premature return. 1047 * Return: 1 on dead node, 0 otherwise 1048 */ 1049 static int mas_ascend(struct ma_state *mas) 1050 { 1051 struct maple_enode *p_enode; /* parent enode. */ 1052 struct maple_enode *a_enode; /* ancestor enode. */ 1053 struct maple_node *a_node; /* ancestor node. */ 1054 struct maple_node *p_node; /* parent node. */ 1055 unsigned char a_slot; 1056 enum maple_type a_type; 1057 unsigned long min, max; 1058 unsigned long *pivots; 1059 bool set_max = false, set_min = false; 1060 1061 a_node = mas_mn(mas); 1062 if (ma_is_root(a_node)) { 1063 mas->offset = 0; 1064 return 0; 1065 } 1066 1067 p_node = mte_parent(mas->node); 1068 if (unlikely(a_node == p_node)) 1069 return 1; 1070 1071 a_type = mas_parent_type(mas, mas->node); 1072 mas->offset = mte_parent_slot(mas->node); 1073 a_enode = mt_mk_node(p_node, a_type); 1074 1075 /* Check to make sure all parent information is still accurate */ 1076 if (p_node != mte_parent(mas->node)) 1077 return 1; 1078 1079 mas->node = a_enode; 1080 1081 if (mte_is_root(a_enode)) { 1082 mas->max = ULONG_MAX; 1083 mas->min = 0; 1084 return 0; 1085 } 1086 1087 min = 0; 1088 max = ULONG_MAX; 1089 if (!mas->offset) { 1090 min = mas->min; 1091 set_min = true; 1092 } 1093 1094 if (mas->max == ULONG_MAX) 1095 set_max = true; 1096 1097 do { 1098 p_enode = a_enode; 1099 a_type = mas_parent_type(mas, p_enode); 1100 a_node = mte_parent(p_enode); 1101 a_slot = mte_parent_slot(p_enode); 1102 a_enode = mt_mk_node(a_node, a_type); 1103 pivots = ma_pivots(a_node, a_type); 1104 1105 if (unlikely(ma_dead_node(a_node))) 1106 return 1; 1107 1108 if (!set_min && a_slot) { 1109 set_min = true; 1110 min = pivots[a_slot - 1] + 1; 1111 } 1112 1113 if (!set_max && a_slot < mt_pivots[a_type]) { 1114 set_max = true; 1115 max = pivots[a_slot]; 1116 } 1117 1118 if (unlikely(ma_dead_node(a_node))) 1119 return 1; 1120 1121 if (unlikely(ma_is_root(a_node))) 1122 break; 1123 1124 } while (!set_min || !set_max); 1125 1126 mas->max = max; 1127 mas->min = min; 1128 return 0; 1129 } 1130 1131 /* 1132 * mas_pop_node() - Get a previously allocated maple node from the maple state. 1133 * @mas: The maple state 1134 * 1135 * Return: A pointer to a maple node. 1136 */ 1137 static inline struct maple_node *mas_pop_node(struct ma_state *mas) 1138 { 1139 struct maple_alloc *ret, *node = mas->alloc; 1140 unsigned long total = mas_allocated(mas); 1141 unsigned int req = mas_alloc_req(mas); 1142 1143 /* nothing or a request pending. */ 1144 if (WARN_ON(!total)) 1145 return NULL; 1146 1147 if (total == 1) { 1148 /* single allocation in this ma_state */ 1149 mas->alloc = NULL; 1150 ret = node; 1151 goto single_node; 1152 } 1153 1154 if (node->node_count == 1) { 1155 /* Single allocation in this node. */ 1156 mas->alloc = node->slot[0]; 1157 mas->alloc->total = node->total - 1; 1158 ret = node; 1159 goto new_head; 1160 } 1161 node->total--; 1162 ret = node->slot[--node->node_count]; 1163 node->slot[node->node_count] = NULL; 1164 1165 single_node: 1166 new_head: 1167 if (req) { 1168 req++; 1169 mas_set_alloc_req(mas, req); 1170 } 1171 1172 memset(ret, 0, sizeof(*ret)); 1173 return (struct maple_node *)ret; 1174 } 1175 1176 /* 1177 * mas_push_node() - Push a node back on the maple state allocation. 1178 * @mas: The maple state 1179 * @used: The used maple node 1180 * 1181 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and 1182 * requested node count as necessary. 1183 */ 1184 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used) 1185 { 1186 struct maple_alloc *reuse = (struct maple_alloc *)used; 1187 struct maple_alloc *head = mas->alloc; 1188 unsigned long count; 1189 unsigned int requested = mas_alloc_req(mas); 1190 1191 count = mas_allocated(mas); 1192 1193 reuse->request_count = 0; 1194 reuse->node_count = 0; 1195 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) { 1196 head->slot[head->node_count++] = reuse; 1197 head->total++; 1198 goto done; 1199 } 1200 1201 reuse->total = 1; 1202 if ((head) && !((unsigned long)head & 0x1)) { 1203 reuse->slot[0] = head; 1204 reuse->node_count = 1; 1205 reuse->total += head->total; 1206 } 1207 1208 mas->alloc = reuse; 1209 done: 1210 if (requested > 1) 1211 mas_set_alloc_req(mas, requested - 1); 1212 } 1213 1214 /* 1215 * mas_alloc_nodes() - Allocate nodes into a maple state 1216 * @mas: The maple state 1217 * @gfp: The GFP Flags 1218 */ 1219 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp) 1220 { 1221 struct maple_alloc *node; 1222 unsigned long allocated = mas_allocated(mas); 1223 unsigned int requested = mas_alloc_req(mas); 1224 unsigned int count; 1225 void **slots = NULL; 1226 unsigned int max_req = 0; 1227 1228 if (!requested) 1229 return; 1230 1231 mas_set_alloc_req(mas, 0); 1232 if (mas->mas_flags & MA_STATE_PREALLOC) { 1233 if (allocated) 1234 return; 1235 BUG_ON(!allocated); 1236 WARN_ON(!allocated); 1237 } 1238 1239 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) { 1240 node = (struct maple_alloc *)mt_alloc_one(gfp); 1241 if (!node) 1242 goto nomem_one; 1243 1244 if (allocated) { 1245 node->slot[0] = mas->alloc; 1246 node->node_count = 1; 1247 } else { 1248 node->node_count = 0; 1249 } 1250 1251 mas->alloc = node; 1252 node->total = ++allocated; 1253 requested--; 1254 } 1255 1256 node = mas->alloc; 1257 node->request_count = 0; 1258 while (requested) { 1259 max_req = MAPLE_ALLOC_SLOTS - node->node_count; 1260 slots = (void **)&node->slot[node->node_count]; 1261 max_req = min(requested, max_req); 1262 count = mt_alloc_bulk(gfp, max_req, slots); 1263 if (!count) 1264 goto nomem_bulk; 1265 1266 if (node->node_count == 0) { 1267 node->slot[0]->node_count = 0; 1268 node->slot[0]->request_count = 0; 1269 } 1270 1271 node->node_count += count; 1272 allocated += count; 1273 node = node->slot[0]; 1274 requested -= count; 1275 } 1276 mas->alloc->total = allocated; 1277 return; 1278 1279 nomem_bulk: 1280 /* Clean up potential freed allocations on bulk failure */ 1281 memset(slots, 0, max_req * sizeof(unsigned long)); 1282 nomem_one: 1283 mas_set_alloc_req(mas, requested); 1284 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1))) 1285 mas->alloc->total = allocated; 1286 mas_set_err(mas, -ENOMEM); 1287 } 1288 1289 /* 1290 * mas_free() - Free an encoded maple node 1291 * @mas: The maple state 1292 * @used: The encoded maple node to free. 1293 * 1294 * Uses rcu free if necessary, pushes @used back on the maple state allocations 1295 * otherwise. 1296 */ 1297 static inline void mas_free(struct ma_state *mas, struct maple_enode *used) 1298 { 1299 struct maple_node *tmp = mte_to_node(used); 1300 1301 if (mt_in_rcu(mas->tree)) 1302 ma_free_rcu(tmp); 1303 else 1304 mas_push_node(mas, tmp); 1305 } 1306 1307 /* 1308 * mas_node_count_gfp() - Check if enough nodes are allocated and request more 1309 * if there is not enough nodes. 1310 * @mas: The maple state 1311 * @count: The number of nodes needed 1312 * @gfp: the gfp flags 1313 */ 1314 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp) 1315 { 1316 unsigned long allocated = mas_allocated(mas); 1317 1318 if (allocated < count) { 1319 mas_set_alloc_req(mas, count - allocated); 1320 mas_alloc_nodes(mas, gfp); 1321 } 1322 } 1323 1324 /* 1325 * mas_node_count() - Check if enough nodes are allocated and request more if 1326 * there is not enough nodes. 1327 * @mas: The maple state 1328 * @count: The number of nodes needed 1329 * 1330 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags. 1331 */ 1332 static void mas_node_count(struct ma_state *mas, int count) 1333 { 1334 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN); 1335 } 1336 1337 /* 1338 * mas_start() - Sets up maple state for operations. 1339 * @mas: The maple state. 1340 * 1341 * If mas->status == mas_start, then set the min, max and depth to 1342 * defaults. 1343 * 1344 * Return: 1345 * - If mas->node is an error or not mas_start, return NULL. 1346 * - If it's an empty tree: NULL & mas->status == ma_none 1347 * - If it's a single entry: The entry & mas->status == ma_root 1348 * - If it's a tree: NULL & mas->status == ma_active 1349 */ 1350 static inline struct maple_enode *mas_start(struct ma_state *mas) 1351 { 1352 if (likely(mas_is_start(mas))) { 1353 struct maple_enode *root; 1354 1355 mas->min = 0; 1356 mas->max = ULONG_MAX; 1357 1358 retry: 1359 mas->depth = 0; 1360 root = mas_root(mas); 1361 /* Tree with nodes */ 1362 if (likely(xa_is_node(root))) { 1363 mas->depth = 1; 1364 mas->status = ma_active; 1365 mas->node = mte_safe_root(root); 1366 mas->offset = 0; 1367 if (mte_dead_node(mas->node)) 1368 goto retry; 1369 1370 return NULL; 1371 } 1372 1373 mas->node = NULL; 1374 /* empty tree */ 1375 if (unlikely(!root)) { 1376 mas->status = ma_none; 1377 mas->offset = MAPLE_NODE_SLOTS; 1378 return NULL; 1379 } 1380 1381 /* Single entry tree */ 1382 mas->status = ma_root; 1383 mas->offset = MAPLE_NODE_SLOTS; 1384 1385 /* Single entry tree. */ 1386 if (mas->index > 0) 1387 return NULL; 1388 1389 return root; 1390 } 1391 1392 return NULL; 1393 } 1394 1395 /* 1396 * ma_data_end() - Find the end of the data in a node. 1397 * @node: The maple node 1398 * @type: The maple node type 1399 * @pivots: The array of pivots in the node 1400 * @max: The maximum value in the node 1401 * 1402 * Uses metadata to find the end of the data when possible. 1403 * Return: The zero indexed last slot with data (may be null). 1404 */ 1405 static __always_inline unsigned char ma_data_end(struct maple_node *node, 1406 enum maple_type type, unsigned long *pivots, unsigned long max) 1407 { 1408 unsigned char offset; 1409 1410 if (!pivots) 1411 return 0; 1412 1413 if (type == maple_arange_64) 1414 return ma_meta_end(node, type); 1415 1416 offset = mt_pivots[type] - 1; 1417 if (likely(!pivots[offset])) 1418 return ma_meta_end(node, type); 1419 1420 if (likely(pivots[offset] == max)) 1421 return offset; 1422 1423 return mt_pivots[type]; 1424 } 1425 1426 /* 1427 * mas_data_end() - Find the end of the data (slot). 1428 * @mas: the maple state 1429 * 1430 * This method is optimized to check the metadata of a node if the node type 1431 * supports data end metadata. 1432 * 1433 * Return: The zero indexed last slot with data (may be null). 1434 */ 1435 static inline unsigned char mas_data_end(struct ma_state *mas) 1436 { 1437 enum maple_type type; 1438 struct maple_node *node; 1439 unsigned char offset; 1440 unsigned long *pivots; 1441 1442 type = mte_node_type(mas->node); 1443 node = mas_mn(mas); 1444 if (type == maple_arange_64) 1445 return ma_meta_end(node, type); 1446 1447 pivots = ma_pivots(node, type); 1448 if (unlikely(ma_dead_node(node))) 1449 return 0; 1450 1451 offset = mt_pivots[type] - 1; 1452 if (likely(!pivots[offset])) 1453 return ma_meta_end(node, type); 1454 1455 if (likely(pivots[offset] == mas->max)) 1456 return offset; 1457 1458 return mt_pivots[type]; 1459 } 1460 1461 /* 1462 * mas_leaf_max_gap() - Returns the largest gap in a leaf node 1463 * @mas: the maple state 1464 * 1465 * Return: The maximum gap in the leaf. 1466 */ 1467 static unsigned long mas_leaf_max_gap(struct ma_state *mas) 1468 { 1469 enum maple_type mt; 1470 unsigned long pstart, gap, max_gap; 1471 struct maple_node *mn; 1472 unsigned long *pivots; 1473 void __rcu **slots; 1474 unsigned char i; 1475 unsigned char max_piv; 1476 1477 mt = mte_node_type(mas->node); 1478 mn = mas_mn(mas); 1479 slots = ma_slots(mn, mt); 1480 max_gap = 0; 1481 if (unlikely(ma_is_dense(mt))) { 1482 gap = 0; 1483 for (i = 0; i < mt_slots[mt]; i++) { 1484 if (slots[i]) { 1485 if (gap > max_gap) 1486 max_gap = gap; 1487 gap = 0; 1488 } else { 1489 gap++; 1490 } 1491 } 1492 if (gap > max_gap) 1493 max_gap = gap; 1494 return max_gap; 1495 } 1496 1497 /* 1498 * Check the first implied pivot optimizes the loop below and slot 1 may 1499 * be skipped if there is a gap in slot 0. 1500 */ 1501 pivots = ma_pivots(mn, mt); 1502 if (likely(!slots[0])) { 1503 max_gap = pivots[0] - mas->min + 1; 1504 i = 2; 1505 } else { 1506 i = 1; 1507 } 1508 1509 /* reduce max_piv as the special case is checked before the loop */ 1510 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1; 1511 /* 1512 * Check end implied pivot which can only be a gap on the right most 1513 * node. 1514 */ 1515 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) { 1516 gap = ULONG_MAX - pivots[max_piv]; 1517 if (gap > max_gap) 1518 max_gap = gap; 1519 1520 if (max_gap > pivots[max_piv] - mas->min) 1521 return max_gap; 1522 } 1523 1524 for (; i <= max_piv; i++) { 1525 /* data == no gap. */ 1526 if (likely(slots[i])) 1527 continue; 1528 1529 pstart = pivots[i - 1]; 1530 gap = pivots[i] - pstart; 1531 if (gap > max_gap) 1532 max_gap = gap; 1533 1534 /* There cannot be two gaps in a row. */ 1535 i++; 1536 } 1537 return max_gap; 1538 } 1539 1540 /* 1541 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf) 1542 * @node: The maple node 1543 * @gaps: The pointer to the gaps 1544 * @mt: The maple node type 1545 * @off: Pointer to store the offset location of the gap. 1546 * 1547 * Uses the metadata data end to scan backwards across set gaps. 1548 * 1549 * Return: The maximum gap value 1550 */ 1551 static inline unsigned long 1552 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt, 1553 unsigned char *off) 1554 { 1555 unsigned char offset, i; 1556 unsigned long max_gap = 0; 1557 1558 i = offset = ma_meta_end(node, mt); 1559 do { 1560 if (gaps[i] > max_gap) { 1561 max_gap = gaps[i]; 1562 offset = i; 1563 } 1564 } while (i--); 1565 1566 *off = offset; 1567 return max_gap; 1568 } 1569 1570 /* 1571 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot. 1572 * @mas: The maple state. 1573 * 1574 * Return: The gap value. 1575 */ 1576 static inline unsigned long mas_max_gap(struct ma_state *mas) 1577 { 1578 unsigned long *gaps; 1579 unsigned char offset; 1580 enum maple_type mt; 1581 struct maple_node *node; 1582 1583 mt = mte_node_type(mas->node); 1584 if (ma_is_leaf(mt)) 1585 return mas_leaf_max_gap(mas); 1586 1587 node = mas_mn(mas); 1588 MAS_BUG_ON(mas, mt != maple_arange_64); 1589 offset = ma_meta_gap(node); 1590 gaps = ma_gaps(node, mt); 1591 return gaps[offset]; 1592 } 1593 1594 /* 1595 * mas_parent_gap() - Set the parent gap and any gaps above, as needed 1596 * @mas: The maple state 1597 * @offset: The gap offset in the parent to set 1598 * @new: The new gap value. 1599 * 1600 * Set the parent gap then continue to set the gap upwards, using the metadata 1601 * of the parent to see if it is necessary to check the node above. 1602 */ 1603 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset, 1604 unsigned long new) 1605 { 1606 unsigned long meta_gap = 0; 1607 struct maple_node *pnode; 1608 struct maple_enode *penode; 1609 unsigned long *pgaps; 1610 unsigned char meta_offset; 1611 enum maple_type pmt; 1612 1613 pnode = mte_parent(mas->node); 1614 pmt = mas_parent_type(mas, mas->node); 1615 penode = mt_mk_node(pnode, pmt); 1616 pgaps = ma_gaps(pnode, pmt); 1617 1618 ascend: 1619 MAS_BUG_ON(mas, pmt != maple_arange_64); 1620 meta_offset = ma_meta_gap(pnode); 1621 meta_gap = pgaps[meta_offset]; 1622 1623 pgaps[offset] = new; 1624 1625 if (meta_gap == new) 1626 return; 1627 1628 if (offset != meta_offset) { 1629 if (meta_gap > new) 1630 return; 1631 1632 ma_set_meta_gap(pnode, pmt, offset); 1633 } else if (new < meta_gap) { 1634 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset); 1635 ma_set_meta_gap(pnode, pmt, meta_offset); 1636 } 1637 1638 if (ma_is_root(pnode)) 1639 return; 1640 1641 /* Go to the parent node. */ 1642 pnode = mte_parent(penode); 1643 pmt = mas_parent_type(mas, penode); 1644 pgaps = ma_gaps(pnode, pmt); 1645 offset = mte_parent_slot(penode); 1646 penode = mt_mk_node(pnode, pmt); 1647 goto ascend; 1648 } 1649 1650 /* 1651 * mas_update_gap() - Update a nodes gaps and propagate up if necessary. 1652 * @mas: the maple state. 1653 */ 1654 static inline void mas_update_gap(struct ma_state *mas) 1655 { 1656 unsigned char pslot; 1657 unsigned long p_gap; 1658 unsigned long max_gap; 1659 1660 if (!mt_is_alloc(mas->tree)) 1661 return; 1662 1663 if (mte_is_root(mas->node)) 1664 return; 1665 1666 max_gap = mas_max_gap(mas); 1667 1668 pslot = mte_parent_slot(mas->node); 1669 p_gap = ma_gaps(mte_parent(mas->node), 1670 mas_parent_type(mas, mas->node))[pslot]; 1671 1672 if (p_gap != max_gap) 1673 mas_parent_gap(mas, pslot, max_gap); 1674 } 1675 1676 /* 1677 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to 1678 * @parent with the slot encoded. 1679 * @mas: the maple state (for the tree) 1680 * @parent: the maple encoded node containing the children. 1681 */ 1682 static inline void mas_adopt_children(struct ma_state *mas, 1683 struct maple_enode *parent) 1684 { 1685 enum maple_type type = mte_node_type(parent); 1686 struct maple_node *node = mte_to_node(parent); 1687 void __rcu **slots = ma_slots(node, type); 1688 unsigned long *pivots = ma_pivots(node, type); 1689 struct maple_enode *child; 1690 unsigned char offset; 1691 1692 offset = ma_data_end(node, type, pivots, mas->max); 1693 do { 1694 child = mas_slot_locked(mas, slots, offset); 1695 mas_set_parent(mas, child, parent, offset); 1696 } while (offset--); 1697 } 1698 1699 /* 1700 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old 1701 * node as dead. 1702 * @mas: the maple state with the new node 1703 * @old_enode: The old maple encoded node to replace. 1704 */ 1705 static inline void mas_put_in_tree(struct ma_state *mas, 1706 struct maple_enode *old_enode) 1707 __must_hold(mas->tree->ma_lock) 1708 { 1709 unsigned char offset; 1710 void __rcu **slots; 1711 1712 if (mte_is_root(mas->node)) { 1713 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas)); 1714 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 1715 mas_set_height(mas); 1716 } else { 1717 1718 offset = mte_parent_slot(mas->node); 1719 slots = ma_slots(mte_parent(mas->node), 1720 mas_parent_type(mas, mas->node)); 1721 rcu_assign_pointer(slots[offset], mas->node); 1722 } 1723 1724 mte_set_node_dead(old_enode); 1725 } 1726 1727 /* 1728 * mas_replace_node() - Replace a node by putting it in the tree, marking it 1729 * dead, and freeing it. 1730 * the parent encoding to locate the maple node in the tree. 1731 * @mas: the ma_state with @mas->node pointing to the new node. 1732 * @old_enode: The old maple encoded node. 1733 */ 1734 static inline void mas_replace_node(struct ma_state *mas, 1735 struct maple_enode *old_enode) 1736 __must_hold(mas->tree->ma_lock) 1737 { 1738 mas_put_in_tree(mas, old_enode); 1739 mas_free(mas, old_enode); 1740 } 1741 1742 /* 1743 * mas_find_child() - Find a child who has the parent @mas->node. 1744 * @mas: the maple state with the parent. 1745 * @child: the maple state to store the child. 1746 */ 1747 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child) 1748 __must_hold(mas->tree->ma_lock) 1749 { 1750 enum maple_type mt; 1751 unsigned char offset; 1752 unsigned char end; 1753 unsigned long *pivots; 1754 struct maple_enode *entry; 1755 struct maple_node *node; 1756 void __rcu **slots; 1757 1758 mt = mte_node_type(mas->node); 1759 node = mas_mn(mas); 1760 slots = ma_slots(node, mt); 1761 pivots = ma_pivots(node, mt); 1762 end = ma_data_end(node, mt, pivots, mas->max); 1763 for (offset = mas->offset; offset <= end; offset++) { 1764 entry = mas_slot_locked(mas, slots, offset); 1765 if (mte_parent(entry) == node) { 1766 *child = *mas; 1767 mas->offset = offset + 1; 1768 child->offset = offset; 1769 mas_descend(child); 1770 child->offset = 0; 1771 return true; 1772 } 1773 } 1774 return false; 1775 } 1776 1777 /* 1778 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the 1779 * old data or set b_node->b_end. 1780 * @b_node: the maple_big_node 1781 * @shift: the shift count 1782 */ 1783 static inline void mab_shift_right(struct maple_big_node *b_node, 1784 unsigned char shift) 1785 { 1786 unsigned long size = b_node->b_end * sizeof(unsigned long); 1787 1788 memmove(b_node->pivot + shift, b_node->pivot, size); 1789 memmove(b_node->slot + shift, b_node->slot, size); 1790 if (b_node->type == maple_arange_64) 1791 memmove(b_node->gap + shift, b_node->gap, size); 1792 } 1793 1794 /* 1795 * mab_middle_node() - Check if a middle node is needed (unlikely) 1796 * @b_node: the maple_big_node that contains the data. 1797 * @split: the potential split location 1798 * @slot_count: the size that can be stored in a single node being considered. 1799 * 1800 * Return: true if a middle node is required. 1801 */ 1802 static inline bool mab_middle_node(struct maple_big_node *b_node, int split, 1803 unsigned char slot_count) 1804 { 1805 unsigned char size = b_node->b_end; 1806 1807 if (size >= 2 * slot_count) 1808 return true; 1809 1810 if (!b_node->slot[split] && (size >= 2 * slot_count - 1)) 1811 return true; 1812 1813 return false; 1814 } 1815 1816 /* 1817 * mab_no_null_split() - ensure the split doesn't fall on a NULL 1818 * @b_node: the maple_big_node with the data 1819 * @split: the suggested split location 1820 * @slot_count: the number of slots in the node being considered. 1821 * 1822 * Return: the split location. 1823 */ 1824 static inline int mab_no_null_split(struct maple_big_node *b_node, 1825 unsigned char split, unsigned char slot_count) 1826 { 1827 if (!b_node->slot[split]) { 1828 /* 1829 * If the split is less than the max slot && the right side will 1830 * still be sufficient, then increment the split on NULL. 1831 */ 1832 if ((split < slot_count - 1) && 1833 (b_node->b_end - split) > (mt_min_slots[b_node->type])) 1834 split++; 1835 else 1836 split--; 1837 } 1838 return split; 1839 } 1840 1841 /* 1842 * mab_calc_split() - Calculate the split location and if there needs to be two 1843 * splits. 1844 * @mas: The maple state 1845 * @bn: The maple_big_node with the data 1846 * @mid_split: The second split, if required. 0 otherwise. 1847 * 1848 * Return: The first split location. The middle split is set in @mid_split. 1849 */ 1850 static inline int mab_calc_split(struct ma_state *mas, 1851 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min) 1852 { 1853 unsigned char b_end = bn->b_end; 1854 int split = b_end / 2; /* Assume equal split. */ 1855 unsigned char slot_min, slot_count = mt_slots[bn->type]; 1856 1857 /* 1858 * To support gap tracking, all NULL entries are kept together and a node cannot 1859 * end on a NULL entry, with the exception of the left-most leaf. The 1860 * limitation means that the split of a node must be checked for this condition 1861 * and be able to put more data in one direction or the other. 1862 */ 1863 if (unlikely((mas->mas_flags & MA_STATE_BULK))) { 1864 *mid_split = 0; 1865 split = b_end - mt_min_slots[bn->type]; 1866 1867 if (!ma_is_leaf(bn->type)) 1868 return split; 1869 1870 mas->mas_flags |= MA_STATE_REBALANCE; 1871 if (!bn->slot[split]) 1872 split--; 1873 return split; 1874 } 1875 1876 /* 1877 * Although extremely rare, it is possible to enter what is known as the 3-way 1878 * split scenario. The 3-way split comes about by means of a store of a range 1879 * that overwrites the end and beginning of two full nodes. The result is a set 1880 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can 1881 * also be located in different parent nodes which are also full. This can 1882 * carry upwards all the way to the root in the worst case. 1883 */ 1884 if (unlikely(mab_middle_node(bn, split, slot_count))) { 1885 split = b_end / 3; 1886 *mid_split = split * 2; 1887 } else { 1888 slot_min = mt_min_slots[bn->type]; 1889 1890 *mid_split = 0; 1891 /* 1892 * Avoid having a range less than the slot count unless it 1893 * causes one node to be deficient. 1894 * NOTE: mt_min_slots is 1 based, b_end and split are zero. 1895 */ 1896 while ((split < slot_count - 1) && 1897 ((bn->pivot[split] - min) < slot_count - 1) && 1898 (b_end - split > slot_min)) 1899 split++; 1900 } 1901 1902 /* Avoid ending a node on a NULL entry */ 1903 split = mab_no_null_split(bn, split, slot_count); 1904 1905 if (unlikely(*mid_split)) 1906 *mid_split = mab_no_null_split(bn, *mid_split, slot_count); 1907 1908 return split; 1909 } 1910 1911 /* 1912 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node 1913 * and set @b_node->b_end to the next free slot. 1914 * @mas: The maple state 1915 * @mas_start: The starting slot to copy 1916 * @mas_end: The end slot to copy (inclusively) 1917 * @b_node: The maple_big_node to place the data 1918 * @mab_start: The starting location in maple_big_node to store the data. 1919 */ 1920 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start, 1921 unsigned char mas_end, struct maple_big_node *b_node, 1922 unsigned char mab_start) 1923 { 1924 enum maple_type mt; 1925 struct maple_node *node; 1926 void __rcu **slots; 1927 unsigned long *pivots, *gaps; 1928 int i = mas_start, j = mab_start; 1929 unsigned char piv_end; 1930 1931 node = mas_mn(mas); 1932 mt = mte_node_type(mas->node); 1933 pivots = ma_pivots(node, mt); 1934 if (!i) { 1935 b_node->pivot[j] = pivots[i++]; 1936 if (unlikely(i > mas_end)) 1937 goto complete; 1938 j++; 1939 } 1940 1941 piv_end = min(mas_end, mt_pivots[mt]); 1942 for (; i < piv_end; i++, j++) { 1943 b_node->pivot[j] = pivots[i]; 1944 if (unlikely(!b_node->pivot[j])) 1945 goto complete; 1946 1947 if (unlikely(mas->max == b_node->pivot[j])) 1948 goto complete; 1949 } 1950 1951 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt); 1952 1953 complete: 1954 b_node->b_end = ++j; 1955 j -= mab_start; 1956 slots = ma_slots(node, mt); 1957 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j); 1958 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) { 1959 gaps = ma_gaps(node, mt); 1960 memcpy(b_node->gap + mab_start, gaps + mas_start, 1961 sizeof(unsigned long) * j); 1962 } 1963 } 1964 1965 /* 1966 * mas_leaf_set_meta() - Set the metadata of a leaf if possible. 1967 * @node: The maple node 1968 * @mt: The maple type 1969 * @end: The node end 1970 */ 1971 static inline void mas_leaf_set_meta(struct maple_node *node, 1972 enum maple_type mt, unsigned char end) 1973 { 1974 if (end < mt_slots[mt] - 1) 1975 ma_set_meta(node, mt, 0, end); 1976 } 1977 1978 /* 1979 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node. 1980 * @b_node: the maple_big_node that has the data 1981 * @mab_start: the start location in @b_node. 1982 * @mab_end: The end location in @b_node (inclusively) 1983 * @mas: The maple state with the maple encoded node. 1984 */ 1985 static inline void mab_mas_cp(struct maple_big_node *b_node, 1986 unsigned char mab_start, unsigned char mab_end, 1987 struct ma_state *mas, bool new_max) 1988 { 1989 int i, j = 0; 1990 enum maple_type mt = mte_node_type(mas->node); 1991 struct maple_node *node = mte_to_node(mas->node); 1992 void __rcu **slots = ma_slots(node, mt); 1993 unsigned long *pivots = ma_pivots(node, mt); 1994 unsigned long *gaps = NULL; 1995 unsigned char end; 1996 1997 if (mab_end - mab_start > mt_pivots[mt]) 1998 mab_end--; 1999 2000 if (!pivots[mt_pivots[mt] - 1]) 2001 slots[mt_pivots[mt]] = NULL; 2002 2003 i = mab_start; 2004 do { 2005 pivots[j++] = b_node->pivot[i++]; 2006 } while (i <= mab_end && likely(b_node->pivot[i])); 2007 2008 memcpy(slots, b_node->slot + mab_start, 2009 sizeof(void *) * (i - mab_start)); 2010 2011 if (new_max) 2012 mas->max = b_node->pivot[i - 1]; 2013 2014 end = j - 1; 2015 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) { 2016 unsigned long max_gap = 0; 2017 unsigned char offset = 0; 2018 2019 gaps = ma_gaps(node, mt); 2020 do { 2021 gaps[--j] = b_node->gap[--i]; 2022 if (gaps[j] > max_gap) { 2023 offset = j; 2024 max_gap = gaps[j]; 2025 } 2026 } while (j); 2027 2028 ma_set_meta(node, mt, offset, end); 2029 } else { 2030 mas_leaf_set_meta(node, mt, end); 2031 } 2032 } 2033 2034 /* 2035 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert. 2036 * @mas: The maple state 2037 * @end: The maple node end 2038 * @mt: The maple node type 2039 */ 2040 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end, 2041 enum maple_type mt) 2042 { 2043 if (!(mas->mas_flags & MA_STATE_BULK)) 2044 return; 2045 2046 if (mte_is_root(mas->node)) 2047 return; 2048 2049 if (end > mt_min_slots[mt]) { 2050 mas->mas_flags &= ~MA_STATE_REBALANCE; 2051 return; 2052 } 2053 } 2054 2055 /* 2056 * mas_store_b_node() - Store an @entry into the b_node while also copying the 2057 * data from a maple encoded node. 2058 * @wr_mas: the maple write state 2059 * @b_node: the maple_big_node to fill with data 2060 * @offset_end: the offset to end copying 2061 * 2062 * Return: The actual end of the data stored in @b_node 2063 */ 2064 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas, 2065 struct maple_big_node *b_node, unsigned char offset_end) 2066 { 2067 unsigned char slot; 2068 unsigned char b_end; 2069 /* Possible underflow of piv will wrap back to 0 before use. */ 2070 unsigned long piv; 2071 struct ma_state *mas = wr_mas->mas; 2072 2073 b_node->type = wr_mas->type; 2074 b_end = 0; 2075 slot = mas->offset; 2076 if (slot) { 2077 /* Copy start data up to insert. */ 2078 mas_mab_cp(mas, 0, slot - 1, b_node, 0); 2079 b_end = b_node->b_end; 2080 piv = b_node->pivot[b_end - 1]; 2081 } else 2082 piv = mas->min - 1; 2083 2084 if (piv + 1 < mas->index) { 2085 /* Handle range starting after old range */ 2086 b_node->slot[b_end] = wr_mas->content; 2087 if (!wr_mas->content) 2088 b_node->gap[b_end] = mas->index - 1 - piv; 2089 b_node->pivot[b_end++] = mas->index - 1; 2090 } 2091 2092 /* Store the new entry. */ 2093 mas->offset = b_end; 2094 b_node->slot[b_end] = wr_mas->entry; 2095 b_node->pivot[b_end] = mas->last; 2096 2097 /* Appended. */ 2098 if (mas->last >= mas->max) 2099 goto b_end; 2100 2101 /* Handle new range ending before old range ends */ 2102 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type); 2103 if (piv > mas->last) { 2104 if (piv == ULONG_MAX) 2105 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type); 2106 2107 if (offset_end != slot) 2108 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 2109 offset_end); 2110 2111 b_node->slot[++b_end] = wr_mas->content; 2112 if (!wr_mas->content) 2113 b_node->gap[b_end] = piv - mas->last + 1; 2114 b_node->pivot[b_end] = piv; 2115 } 2116 2117 slot = offset_end + 1; 2118 if (slot > mas->end) 2119 goto b_end; 2120 2121 /* Copy end data to the end of the node. */ 2122 mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end); 2123 b_node->b_end--; 2124 return; 2125 2126 b_end: 2127 b_node->b_end = b_end; 2128 } 2129 2130 /* 2131 * mas_prev_sibling() - Find the previous node with the same parent. 2132 * @mas: the maple state 2133 * 2134 * Return: True if there is a previous sibling, false otherwise. 2135 */ 2136 static inline bool mas_prev_sibling(struct ma_state *mas) 2137 { 2138 unsigned int p_slot = mte_parent_slot(mas->node); 2139 2140 if (mte_is_root(mas->node)) 2141 return false; 2142 2143 if (!p_slot) 2144 return false; 2145 2146 mas_ascend(mas); 2147 mas->offset = p_slot - 1; 2148 mas_descend(mas); 2149 return true; 2150 } 2151 2152 /* 2153 * mas_next_sibling() - Find the next node with the same parent. 2154 * @mas: the maple state 2155 * 2156 * Return: true if there is a next sibling, false otherwise. 2157 */ 2158 static inline bool mas_next_sibling(struct ma_state *mas) 2159 { 2160 MA_STATE(parent, mas->tree, mas->index, mas->last); 2161 2162 if (mte_is_root(mas->node)) 2163 return false; 2164 2165 parent = *mas; 2166 mas_ascend(&parent); 2167 parent.offset = mte_parent_slot(mas->node) + 1; 2168 if (parent.offset > mas_data_end(&parent)) 2169 return false; 2170 2171 *mas = parent; 2172 mas_descend(mas); 2173 return true; 2174 } 2175 2176 /* 2177 * mas_node_or_none() - Set the enode and state. 2178 * @mas: the maple state 2179 * @enode: The encoded maple node. 2180 * 2181 * Set the node to the enode and the status. 2182 */ 2183 static inline void mas_node_or_none(struct ma_state *mas, 2184 struct maple_enode *enode) 2185 { 2186 if (enode) { 2187 mas->node = enode; 2188 mas->status = ma_active; 2189 } else { 2190 mas->node = NULL; 2191 mas->status = ma_none; 2192 } 2193 } 2194 2195 /* 2196 * mas_wr_node_walk() - Find the correct offset for the index in the @mas. 2197 * If @mas->index cannot be found within the containing 2198 * node, we traverse to the last entry in the node. 2199 * @wr_mas: The maple write state 2200 * 2201 * Uses mas_slot_locked() and does not need to worry about dead nodes. 2202 */ 2203 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas) 2204 { 2205 struct ma_state *mas = wr_mas->mas; 2206 unsigned char count, offset; 2207 2208 if (unlikely(ma_is_dense(wr_mas->type))) { 2209 wr_mas->r_max = wr_mas->r_min = mas->index; 2210 mas->offset = mas->index = mas->min; 2211 return; 2212 } 2213 2214 wr_mas->node = mas_mn(wr_mas->mas); 2215 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type); 2216 count = mas->end = ma_data_end(wr_mas->node, wr_mas->type, 2217 wr_mas->pivots, mas->max); 2218 offset = mas->offset; 2219 2220 while (offset < count && mas->index > wr_mas->pivots[offset]) 2221 offset++; 2222 2223 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max; 2224 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset); 2225 wr_mas->offset_end = mas->offset = offset; 2226 } 2227 2228 /* 2229 * mast_rebalance_next() - Rebalance against the next node 2230 * @mast: The maple subtree state 2231 */ 2232 static inline void mast_rebalance_next(struct maple_subtree_state *mast) 2233 { 2234 unsigned char b_end = mast->bn->b_end; 2235 2236 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node), 2237 mast->bn, b_end); 2238 mast->orig_r->last = mast->orig_r->max; 2239 } 2240 2241 /* 2242 * mast_rebalance_prev() - Rebalance against the previous node 2243 * @mast: The maple subtree state 2244 */ 2245 static inline void mast_rebalance_prev(struct maple_subtree_state *mast) 2246 { 2247 unsigned char end = mas_data_end(mast->orig_l) + 1; 2248 unsigned char b_end = mast->bn->b_end; 2249 2250 mab_shift_right(mast->bn, end); 2251 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0); 2252 mast->l->min = mast->orig_l->min; 2253 mast->orig_l->index = mast->orig_l->min; 2254 mast->bn->b_end = end + b_end; 2255 mast->l->offset += end; 2256 } 2257 2258 /* 2259 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring 2260 * the node to the right. Checking the nodes to the right then the left at each 2261 * level upwards until root is reached. 2262 * Data is copied into the @mast->bn. 2263 * @mast: The maple_subtree_state. 2264 */ 2265 static inline 2266 bool mast_spanning_rebalance(struct maple_subtree_state *mast) 2267 { 2268 struct ma_state r_tmp = *mast->orig_r; 2269 struct ma_state l_tmp = *mast->orig_l; 2270 unsigned char depth = 0; 2271 2272 do { 2273 mas_ascend(mast->orig_r); 2274 mas_ascend(mast->orig_l); 2275 depth++; 2276 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) { 2277 mast->orig_r->offset++; 2278 do { 2279 mas_descend(mast->orig_r); 2280 mast->orig_r->offset = 0; 2281 } while (--depth); 2282 2283 mast_rebalance_next(mast); 2284 *mast->orig_l = l_tmp; 2285 return true; 2286 } else if (mast->orig_l->offset != 0) { 2287 mast->orig_l->offset--; 2288 do { 2289 mas_descend(mast->orig_l); 2290 mast->orig_l->offset = 2291 mas_data_end(mast->orig_l); 2292 } while (--depth); 2293 2294 mast_rebalance_prev(mast); 2295 *mast->orig_r = r_tmp; 2296 return true; 2297 } 2298 } while (!mte_is_root(mast->orig_r->node)); 2299 2300 *mast->orig_r = r_tmp; 2301 *mast->orig_l = l_tmp; 2302 return false; 2303 } 2304 2305 /* 2306 * mast_ascend() - Ascend the original left and right maple states. 2307 * @mast: the maple subtree state. 2308 * 2309 * Ascend the original left and right sides. Set the offsets to point to the 2310 * data already in the new tree (@mast->l and @mast->r). 2311 */ 2312 static inline void mast_ascend(struct maple_subtree_state *mast) 2313 { 2314 MA_WR_STATE(wr_mas, mast->orig_r, NULL); 2315 mas_ascend(mast->orig_l); 2316 mas_ascend(mast->orig_r); 2317 2318 mast->orig_r->offset = 0; 2319 mast->orig_r->index = mast->r->max; 2320 /* last should be larger than or equal to index */ 2321 if (mast->orig_r->last < mast->orig_r->index) 2322 mast->orig_r->last = mast->orig_r->index; 2323 2324 wr_mas.type = mte_node_type(mast->orig_r->node); 2325 mas_wr_node_walk(&wr_mas); 2326 /* Set up the left side of things */ 2327 mast->orig_l->offset = 0; 2328 mast->orig_l->index = mast->l->min; 2329 wr_mas.mas = mast->orig_l; 2330 wr_mas.type = mte_node_type(mast->orig_l->node); 2331 mas_wr_node_walk(&wr_mas); 2332 2333 mast->bn->type = wr_mas.type; 2334 } 2335 2336 /* 2337 * mas_new_ma_node() - Create and return a new maple node. Helper function. 2338 * @mas: the maple state with the allocations. 2339 * @b_node: the maple_big_node with the type encoding. 2340 * 2341 * Use the node type from the maple_big_node to allocate a new node from the 2342 * ma_state. This function exists mainly for code readability. 2343 * 2344 * Return: A new maple encoded node 2345 */ 2346 static inline struct maple_enode 2347 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node) 2348 { 2349 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type); 2350 } 2351 2352 /* 2353 * mas_mab_to_node() - Set up right and middle nodes 2354 * 2355 * @mas: the maple state that contains the allocations. 2356 * @b_node: the node which contains the data. 2357 * @left: The pointer which will have the left node 2358 * @right: The pointer which may have the right node 2359 * @middle: the pointer which may have the middle node (rare) 2360 * @mid_split: the split location for the middle node 2361 * 2362 * Return: the split of left. 2363 */ 2364 static inline unsigned char mas_mab_to_node(struct ma_state *mas, 2365 struct maple_big_node *b_node, struct maple_enode **left, 2366 struct maple_enode **right, struct maple_enode **middle, 2367 unsigned char *mid_split, unsigned long min) 2368 { 2369 unsigned char split = 0; 2370 unsigned char slot_count = mt_slots[b_node->type]; 2371 2372 *left = mas_new_ma_node(mas, b_node); 2373 *right = NULL; 2374 *middle = NULL; 2375 *mid_split = 0; 2376 2377 if (b_node->b_end < slot_count) { 2378 split = b_node->b_end; 2379 } else { 2380 split = mab_calc_split(mas, b_node, mid_split, min); 2381 *right = mas_new_ma_node(mas, b_node); 2382 } 2383 2384 if (*mid_split) 2385 *middle = mas_new_ma_node(mas, b_node); 2386 2387 return split; 2388 2389 } 2390 2391 /* 2392 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end 2393 * pointer. 2394 * @b_node: the big node to add the entry 2395 * @mas: the maple state to get the pivot (mas->max) 2396 * @entry: the entry to add, if NULL nothing happens. 2397 */ 2398 static inline void mab_set_b_end(struct maple_big_node *b_node, 2399 struct ma_state *mas, 2400 void *entry) 2401 { 2402 if (!entry) 2403 return; 2404 2405 b_node->slot[b_node->b_end] = entry; 2406 if (mt_is_alloc(mas->tree)) 2407 b_node->gap[b_node->b_end] = mas_max_gap(mas); 2408 b_node->pivot[b_node->b_end++] = mas->max; 2409 } 2410 2411 /* 2412 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent 2413 * of @mas->node to either @left or @right, depending on @slot and @split 2414 * 2415 * @mas: the maple state with the node that needs a parent 2416 * @left: possible parent 1 2417 * @right: possible parent 2 2418 * @slot: the slot the mas->node was placed 2419 * @split: the split location between @left and @right 2420 */ 2421 static inline void mas_set_split_parent(struct ma_state *mas, 2422 struct maple_enode *left, 2423 struct maple_enode *right, 2424 unsigned char *slot, unsigned char split) 2425 { 2426 if (mas_is_none(mas)) 2427 return; 2428 2429 if ((*slot) <= split) 2430 mas_set_parent(mas, mas->node, left, *slot); 2431 else if (right) 2432 mas_set_parent(mas, mas->node, right, (*slot) - split - 1); 2433 2434 (*slot)++; 2435 } 2436 2437 /* 2438 * mte_mid_split_check() - Check if the next node passes the mid-split 2439 * @l: Pointer to left encoded maple node. 2440 * @m: Pointer to middle encoded maple node. 2441 * @r: Pointer to right encoded maple node. 2442 * @slot: The offset 2443 * @split: The split location. 2444 * @mid_split: The middle split. 2445 */ 2446 static inline void mte_mid_split_check(struct maple_enode **l, 2447 struct maple_enode **r, 2448 struct maple_enode *right, 2449 unsigned char slot, 2450 unsigned char *split, 2451 unsigned char mid_split) 2452 { 2453 if (*r == right) 2454 return; 2455 2456 if (slot < mid_split) 2457 return; 2458 2459 *l = *r; 2460 *r = right; 2461 *split = mid_split; 2462 } 2463 2464 /* 2465 * mast_set_split_parents() - Helper function to set three nodes parents. Slot 2466 * is taken from @mast->l. 2467 * @mast: the maple subtree state 2468 * @left: the left node 2469 * @right: the right node 2470 * @split: the split location. 2471 */ 2472 static inline void mast_set_split_parents(struct maple_subtree_state *mast, 2473 struct maple_enode *left, 2474 struct maple_enode *middle, 2475 struct maple_enode *right, 2476 unsigned char split, 2477 unsigned char mid_split) 2478 { 2479 unsigned char slot; 2480 struct maple_enode *l = left; 2481 struct maple_enode *r = right; 2482 2483 if (mas_is_none(mast->l)) 2484 return; 2485 2486 if (middle) 2487 r = middle; 2488 2489 slot = mast->l->offset; 2490 2491 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2492 mas_set_split_parent(mast->l, l, r, &slot, split); 2493 2494 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2495 mas_set_split_parent(mast->m, l, r, &slot, split); 2496 2497 mte_mid_split_check(&l, &r, right, slot, &split, mid_split); 2498 mas_set_split_parent(mast->r, l, r, &slot, split); 2499 } 2500 2501 /* 2502 * mas_topiary_node() - Dispose of a single node 2503 * @mas: The maple state for pushing nodes 2504 * @in_rcu: If the tree is in rcu mode 2505 * 2506 * The node will either be RCU freed or pushed back on the maple state. 2507 */ 2508 static inline void mas_topiary_node(struct ma_state *mas, 2509 struct ma_state *tmp_mas, bool in_rcu) 2510 { 2511 struct maple_node *tmp; 2512 struct maple_enode *enode; 2513 2514 if (mas_is_none(tmp_mas)) 2515 return; 2516 2517 enode = tmp_mas->node; 2518 tmp = mte_to_node(enode); 2519 mte_set_node_dead(enode); 2520 if (in_rcu) 2521 ma_free_rcu(tmp); 2522 else 2523 mas_push_node(mas, tmp); 2524 } 2525 2526 /* 2527 * mas_topiary_replace() - Replace the data with new data, then repair the 2528 * parent links within the new tree. Iterate over the dead sub-tree and collect 2529 * the dead subtrees and topiary the nodes that are no longer of use. 2530 * 2531 * The new tree will have up to three children with the correct parent. Keep 2532 * track of the new entries as they need to be followed to find the next level 2533 * of new entries. 2534 * 2535 * The old tree will have up to three children with the old parent. Keep track 2536 * of the old entries as they may have more nodes below replaced. Nodes within 2537 * [index, last] are dead subtrees, others need to be freed and followed. 2538 * 2539 * @mas: The maple state pointing at the new data 2540 * @old_enode: The maple encoded node being replaced 2541 * 2542 */ 2543 static inline void mas_topiary_replace(struct ma_state *mas, 2544 struct maple_enode *old_enode) 2545 { 2546 struct ma_state tmp[3], tmp_next[3]; 2547 MA_TOPIARY(subtrees, mas->tree); 2548 bool in_rcu; 2549 int i, n; 2550 2551 /* Place data in tree & then mark node as old */ 2552 mas_put_in_tree(mas, old_enode); 2553 2554 /* Update the parent pointers in the tree */ 2555 tmp[0] = *mas; 2556 tmp[0].offset = 0; 2557 tmp[1].status = ma_none; 2558 tmp[2].status = ma_none; 2559 while (!mte_is_leaf(tmp[0].node)) { 2560 n = 0; 2561 for (i = 0; i < 3; i++) { 2562 if (mas_is_none(&tmp[i])) 2563 continue; 2564 2565 while (n < 3) { 2566 if (!mas_find_child(&tmp[i], &tmp_next[n])) 2567 break; 2568 n++; 2569 } 2570 2571 mas_adopt_children(&tmp[i], tmp[i].node); 2572 } 2573 2574 if (MAS_WARN_ON(mas, n == 0)) 2575 break; 2576 2577 while (n < 3) 2578 tmp_next[n++].status = ma_none; 2579 2580 for (i = 0; i < 3; i++) 2581 tmp[i] = tmp_next[i]; 2582 } 2583 2584 /* Collect the old nodes that need to be discarded */ 2585 if (mte_is_leaf(old_enode)) 2586 return mas_free(mas, old_enode); 2587 2588 tmp[0] = *mas; 2589 tmp[0].offset = 0; 2590 tmp[0].node = old_enode; 2591 tmp[1].status = ma_none; 2592 tmp[2].status = ma_none; 2593 in_rcu = mt_in_rcu(mas->tree); 2594 do { 2595 n = 0; 2596 for (i = 0; i < 3; i++) { 2597 if (mas_is_none(&tmp[i])) 2598 continue; 2599 2600 while (n < 3) { 2601 if (!mas_find_child(&tmp[i], &tmp_next[n])) 2602 break; 2603 2604 if ((tmp_next[n].min >= tmp_next->index) && 2605 (tmp_next[n].max <= tmp_next->last)) { 2606 mat_add(&subtrees, tmp_next[n].node); 2607 tmp_next[n].status = ma_none; 2608 } else { 2609 n++; 2610 } 2611 } 2612 } 2613 2614 if (MAS_WARN_ON(mas, n == 0)) 2615 break; 2616 2617 while (n < 3) 2618 tmp_next[n++].status = ma_none; 2619 2620 for (i = 0; i < 3; i++) { 2621 mas_topiary_node(mas, &tmp[i], in_rcu); 2622 tmp[i] = tmp_next[i]; 2623 } 2624 } while (!mte_is_leaf(tmp[0].node)); 2625 2626 for (i = 0; i < 3; i++) 2627 mas_topiary_node(mas, &tmp[i], in_rcu); 2628 2629 mas_mat_destroy(mas, &subtrees); 2630 } 2631 2632 /* 2633 * mas_wmb_replace() - Write memory barrier and replace 2634 * @mas: The maple state 2635 * @old_enode: The old maple encoded node that is being replaced. 2636 * 2637 * Updates gap as necessary. 2638 */ 2639 static inline void mas_wmb_replace(struct ma_state *mas, 2640 struct maple_enode *old_enode) 2641 { 2642 /* Insert the new data in the tree */ 2643 mas_topiary_replace(mas, old_enode); 2644 2645 if (mte_is_leaf(mas->node)) 2646 return; 2647 2648 mas_update_gap(mas); 2649 } 2650 2651 /* 2652 * mast_cp_to_nodes() - Copy data out to nodes. 2653 * @mast: The maple subtree state 2654 * @left: The left encoded maple node 2655 * @middle: The middle encoded maple node 2656 * @right: The right encoded maple node 2657 * @split: The location to split between left and (middle ? middle : right) 2658 * @mid_split: The location to split between middle and right. 2659 */ 2660 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast, 2661 struct maple_enode *left, struct maple_enode *middle, 2662 struct maple_enode *right, unsigned char split, unsigned char mid_split) 2663 { 2664 bool new_lmax = true; 2665 2666 mas_node_or_none(mast->l, left); 2667 mas_node_or_none(mast->m, middle); 2668 mas_node_or_none(mast->r, right); 2669 2670 mast->l->min = mast->orig_l->min; 2671 if (split == mast->bn->b_end) { 2672 mast->l->max = mast->orig_r->max; 2673 new_lmax = false; 2674 } 2675 2676 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax); 2677 2678 if (middle) { 2679 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true); 2680 mast->m->min = mast->bn->pivot[split] + 1; 2681 split = mid_split; 2682 } 2683 2684 mast->r->max = mast->orig_r->max; 2685 if (right) { 2686 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false); 2687 mast->r->min = mast->bn->pivot[split] + 1; 2688 } 2689 } 2690 2691 /* 2692 * mast_combine_cp_left - Copy in the original left side of the tree into the 2693 * combined data set in the maple subtree state big node. 2694 * @mast: The maple subtree state 2695 */ 2696 static inline void mast_combine_cp_left(struct maple_subtree_state *mast) 2697 { 2698 unsigned char l_slot = mast->orig_l->offset; 2699 2700 if (!l_slot) 2701 return; 2702 2703 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0); 2704 } 2705 2706 /* 2707 * mast_combine_cp_right: Copy in the original right side of the tree into the 2708 * combined data set in the maple subtree state big node. 2709 * @mast: The maple subtree state 2710 */ 2711 static inline void mast_combine_cp_right(struct maple_subtree_state *mast) 2712 { 2713 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max) 2714 return; 2715 2716 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1, 2717 mt_slot_count(mast->orig_r->node), mast->bn, 2718 mast->bn->b_end); 2719 mast->orig_r->last = mast->orig_r->max; 2720 } 2721 2722 /* 2723 * mast_sufficient: Check if the maple subtree state has enough data in the big 2724 * node to create at least one sufficient node 2725 * @mast: the maple subtree state 2726 */ 2727 static inline bool mast_sufficient(struct maple_subtree_state *mast) 2728 { 2729 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node)) 2730 return true; 2731 2732 return false; 2733 } 2734 2735 /* 2736 * mast_overflow: Check if there is too much data in the subtree state for a 2737 * single node. 2738 * @mast: The maple subtree state 2739 */ 2740 static inline bool mast_overflow(struct maple_subtree_state *mast) 2741 { 2742 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node)) 2743 return true; 2744 2745 return false; 2746 } 2747 2748 static inline void *mtree_range_walk(struct ma_state *mas) 2749 { 2750 unsigned long *pivots; 2751 unsigned char offset; 2752 struct maple_node *node; 2753 struct maple_enode *next, *last; 2754 enum maple_type type; 2755 void __rcu **slots; 2756 unsigned char end; 2757 unsigned long max, min; 2758 unsigned long prev_max, prev_min; 2759 2760 next = mas->node; 2761 min = mas->min; 2762 max = mas->max; 2763 do { 2764 last = next; 2765 node = mte_to_node(next); 2766 type = mte_node_type(next); 2767 pivots = ma_pivots(node, type); 2768 end = ma_data_end(node, type, pivots, max); 2769 prev_min = min; 2770 prev_max = max; 2771 if (pivots[0] >= mas->index) { 2772 offset = 0; 2773 max = pivots[0]; 2774 goto next; 2775 } 2776 2777 offset = 1; 2778 while (offset < end) { 2779 if (pivots[offset] >= mas->index) { 2780 max = pivots[offset]; 2781 break; 2782 } 2783 offset++; 2784 } 2785 2786 min = pivots[offset - 1] + 1; 2787 next: 2788 slots = ma_slots(node, type); 2789 next = mt_slot(mas->tree, slots, offset); 2790 if (unlikely(ma_dead_node(node))) 2791 goto dead_node; 2792 } while (!ma_is_leaf(type)); 2793 2794 mas->end = end; 2795 mas->offset = offset; 2796 mas->index = min; 2797 mas->last = max; 2798 mas->min = prev_min; 2799 mas->max = prev_max; 2800 mas->node = last; 2801 return (void *)next; 2802 2803 dead_node: 2804 mas_reset(mas); 2805 return NULL; 2806 } 2807 2808 /* 2809 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers. 2810 * @mas: The starting maple state 2811 * @mast: The maple_subtree_state, keeps track of 4 maple states. 2812 * @count: The estimated count of iterations needed. 2813 * 2814 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root 2815 * is hit. First @b_node is split into two entries which are inserted into the 2816 * next iteration of the loop. @b_node is returned populated with the final 2817 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the 2818 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last 2819 * to account of what has been copied into the new sub-tree. The update of 2820 * orig_l_mas->last is used in mas_consume to find the slots that will need to 2821 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of 2822 * the new sub-tree in case the sub-tree becomes the full tree. 2823 */ 2824 static void mas_spanning_rebalance(struct ma_state *mas, 2825 struct maple_subtree_state *mast, unsigned char count) 2826 { 2827 unsigned char split, mid_split; 2828 unsigned char slot = 0; 2829 struct maple_enode *left = NULL, *middle = NULL, *right = NULL; 2830 struct maple_enode *old_enode; 2831 2832 MA_STATE(l_mas, mas->tree, mas->index, mas->index); 2833 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 2834 MA_STATE(m_mas, mas->tree, mas->index, mas->index); 2835 2836 /* 2837 * The tree needs to be rebalanced and leaves need to be kept at the same level. 2838 * Rebalancing is done by use of the ``struct maple_topiary``. 2839 */ 2840 mast->l = &l_mas; 2841 mast->m = &m_mas; 2842 mast->r = &r_mas; 2843 l_mas.status = r_mas.status = m_mas.status = ma_none; 2844 2845 /* Check if this is not root and has sufficient data. */ 2846 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) && 2847 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type])) 2848 mast_spanning_rebalance(mast); 2849 2850 l_mas.depth = 0; 2851 2852 /* 2853 * Each level of the tree is examined and balanced, pushing data to the left or 2854 * right, or rebalancing against left or right nodes is employed to avoid 2855 * rippling up the tree to limit the amount of churn. Once a new sub-section of 2856 * the tree is created, there may be a mix of new and old nodes. The old nodes 2857 * will have the incorrect parent pointers and currently be in two trees: the 2858 * original tree and the partially new tree. To remedy the parent pointers in 2859 * the old tree, the new data is swapped into the active tree and a walk down 2860 * the tree is performed and the parent pointers are updated. 2861 * See mas_topiary_replace() for more information. 2862 */ 2863 while (count--) { 2864 mast->bn->b_end--; 2865 mast->bn->type = mte_node_type(mast->orig_l->node); 2866 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle, 2867 &mid_split, mast->orig_l->min); 2868 mast_set_split_parents(mast, left, middle, right, split, 2869 mid_split); 2870 mast_cp_to_nodes(mast, left, middle, right, split, mid_split); 2871 2872 /* 2873 * Copy data from next level in the tree to mast->bn from next 2874 * iteration 2875 */ 2876 memset(mast->bn, 0, sizeof(struct maple_big_node)); 2877 mast->bn->type = mte_node_type(left); 2878 l_mas.depth++; 2879 2880 /* Root already stored in l->node. */ 2881 if (mas_is_root_limits(mast->l)) 2882 goto new_root; 2883 2884 mast_ascend(mast); 2885 mast_combine_cp_left(mast); 2886 l_mas.offset = mast->bn->b_end; 2887 mab_set_b_end(mast->bn, &l_mas, left); 2888 mab_set_b_end(mast->bn, &m_mas, middle); 2889 mab_set_b_end(mast->bn, &r_mas, right); 2890 2891 /* Copy anything necessary out of the right node. */ 2892 mast_combine_cp_right(mast); 2893 mast->orig_l->last = mast->orig_l->max; 2894 2895 if (mast_sufficient(mast)) 2896 continue; 2897 2898 if (mast_overflow(mast)) 2899 continue; 2900 2901 /* May be a new root stored in mast->bn */ 2902 if (mas_is_root_limits(mast->orig_l)) 2903 break; 2904 2905 mast_spanning_rebalance(mast); 2906 2907 /* rebalancing from other nodes may require another loop. */ 2908 if (!count) 2909 count++; 2910 } 2911 2912 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), 2913 mte_node_type(mast->orig_l->node)); 2914 l_mas.depth++; 2915 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true); 2916 mas_set_parent(mas, left, l_mas.node, slot); 2917 if (middle) 2918 mas_set_parent(mas, middle, l_mas.node, ++slot); 2919 2920 if (right) 2921 mas_set_parent(mas, right, l_mas.node, ++slot); 2922 2923 if (mas_is_root_limits(mast->l)) { 2924 new_root: 2925 mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas)); 2926 while (!mte_is_root(mast->orig_l->node)) 2927 mast_ascend(mast); 2928 } else { 2929 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent; 2930 } 2931 2932 old_enode = mast->orig_l->node; 2933 mas->depth = l_mas.depth; 2934 mas->node = l_mas.node; 2935 mas->min = l_mas.min; 2936 mas->max = l_mas.max; 2937 mas->offset = l_mas.offset; 2938 mas_wmb_replace(mas, old_enode); 2939 mtree_range_walk(mas); 2940 return; 2941 } 2942 2943 /* 2944 * mas_rebalance() - Rebalance a given node. 2945 * @mas: The maple state 2946 * @b_node: The big maple node. 2947 * 2948 * Rebalance two nodes into a single node or two new nodes that are sufficient. 2949 * Continue upwards until tree is sufficient. 2950 */ 2951 static inline void mas_rebalance(struct ma_state *mas, 2952 struct maple_big_node *b_node) 2953 { 2954 char empty_count = mas_mt_height(mas); 2955 struct maple_subtree_state mast; 2956 unsigned char shift, b_end = ++b_node->b_end; 2957 2958 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 2959 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 2960 2961 trace_ma_op(__func__, mas); 2962 2963 /* 2964 * Rebalancing occurs if a node is insufficient. Data is rebalanced 2965 * against the node to the right if it exists, otherwise the node to the 2966 * left of this node is rebalanced against this node. If rebalancing 2967 * causes just one node to be produced instead of two, then the parent 2968 * is also examined and rebalanced if it is insufficient. Every level 2969 * tries to combine the data in the same way. If one node contains the 2970 * entire range of the tree, then that node is used as a new root node. 2971 */ 2972 2973 mast.orig_l = &l_mas; 2974 mast.orig_r = &r_mas; 2975 mast.bn = b_node; 2976 mast.bn->type = mte_node_type(mas->node); 2977 2978 l_mas = r_mas = *mas; 2979 2980 if (mas_next_sibling(&r_mas)) { 2981 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end); 2982 r_mas.last = r_mas.index = r_mas.max; 2983 } else { 2984 mas_prev_sibling(&l_mas); 2985 shift = mas_data_end(&l_mas) + 1; 2986 mab_shift_right(b_node, shift); 2987 mas->offset += shift; 2988 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0); 2989 b_node->b_end = shift + b_end; 2990 l_mas.index = l_mas.last = l_mas.min; 2991 } 2992 2993 return mas_spanning_rebalance(mas, &mast, empty_count); 2994 } 2995 2996 /* 2997 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple 2998 * state. 2999 * @mas: The maple state 3000 * @end: The end of the left-most node. 3001 * 3002 * During a mass-insert event (such as forking), it may be necessary to 3003 * rebalance the left-most node when it is not sufficient. 3004 */ 3005 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end) 3006 { 3007 enum maple_type mt = mte_node_type(mas->node); 3008 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node; 3009 struct maple_enode *eparent, *old_eparent; 3010 unsigned char offset, tmp, split = mt_slots[mt] / 2; 3011 void __rcu **l_slots, **slots; 3012 unsigned long *l_pivs, *pivs, gap; 3013 bool in_rcu = mt_in_rcu(mas->tree); 3014 3015 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3016 3017 l_mas = *mas; 3018 mas_prev_sibling(&l_mas); 3019 3020 /* set up node. */ 3021 if (in_rcu) { 3022 newnode = mas_pop_node(mas); 3023 } else { 3024 newnode = &reuse; 3025 } 3026 3027 node = mas_mn(mas); 3028 newnode->parent = node->parent; 3029 slots = ma_slots(newnode, mt); 3030 pivs = ma_pivots(newnode, mt); 3031 left = mas_mn(&l_mas); 3032 l_slots = ma_slots(left, mt); 3033 l_pivs = ma_pivots(left, mt); 3034 if (!l_slots[split]) 3035 split++; 3036 tmp = mas_data_end(&l_mas) - split; 3037 3038 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp); 3039 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp); 3040 pivs[tmp] = l_mas.max; 3041 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end); 3042 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end); 3043 3044 l_mas.max = l_pivs[split]; 3045 mas->min = l_mas.max + 1; 3046 old_eparent = mt_mk_node(mte_parent(l_mas.node), 3047 mas_parent_type(&l_mas, l_mas.node)); 3048 tmp += end; 3049 if (!in_rcu) { 3050 unsigned char max_p = mt_pivots[mt]; 3051 unsigned char max_s = mt_slots[mt]; 3052 3053 if (tmp < max_p) 3054 memset(pivs + tmp, 0, 3055 sizeof(unsigned long) * (max_p - tmp)); 3056 3057 if (tmp < mt_slots[mt]) 3058 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3059 3060 memcpy(node, newnode, sizeof(struct maple_node)); 3061 ma_set_meta(node, mt, 0, tmp - 1); 3062 mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node), 3063 l_pivs[split]); 3064 3065 /* Remove data from l_pivs. */ 3066 tmp = split + 1; 3067 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp)); 3068 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp)); 3069 ma_set_meta(left, mt, 0, split); 3070 eparent = old_eparent; 3071 3072 goto done; 3073 } 3074 3075 /* RCU requires replacing both l_mas, mas, and parent. */ 3076 mas->node = mt_mk_node(newnode, mt); 3077 ma_set_meta(newnode, mt, 0, tmp); 3078 3079 new_left = mas_pop_node(mas); 3080 new_left->parent = left->parent; 3081 mt = mte_node_type(l_mas.node); 3082 slots = ma_slots(new_left, mt); 3083 pivs = ma_pivots(new_left, mt); 3084 memcpy(slots, l_slots, sizeof(void *) * split); 3085 memcpy(pivs, l_pivs, sizeof(unsigned long) * split); 3086 ma_set_meta(new_left, mt, 0, split); 3087 l_mas.node = mt_mk_node(new_left, mt); 3088 3089 /* replace parent. */ 3090 offset = mte_parent_slot(mas->node); 3091 mt = mas_parent_type(&l_mas, l_mas.node); 3092 parent = mas_pop_node(mas); 3093 slots = ma_slots(parent, mt); 3094 pivs = ma_pivots(parent, mt); 3095 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node)); 3096 rcu_assign_pointer(slots[offset], mas->node); 3097 rcu_assign_pointer(slots[offset - 1], l_mas.node); 3098 pivs[offset - 1] = l_mas.max; 3099 eparent = mt_mk_node(parent, mt); 3100 done: 3101 gap = mas_leaf_max_gap(mas); 3102 mte_set_gap(eparent, mte_parent_slot(mas->node), gap); 3103 gap = mas_leaf_max_gap(&l_mas); 3104 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap); 3105 mas_ascend(mas); 3106 3107 if (in_rcu) { 3108 mas_replace_node(mas, old_eparent); 3109 mas_adopt_children(mas, mas->node); 3110 } 3111 3112 mas_update_gap(mas); 3113 } 3114 3115 /* 3116 * mas_split_final_node() - Split the final node in a subtree operation. 3117 * @mast: the maple subtree state 3118 * @mas: The maple state 3119 * @height: The height of the tree in case it's a new root. 3120 */ 3121 static inline void mas_split_final_node(struct maple_subtree_state *mast, 3122 struct ma_state *mas, int height) 3123 { 3124 struct maple_enode *ancestor; 3125 3126 if (mte_is_root(mas->node)) { 3127 if (mt_is_alloc(mas->tree)) 3128 mast->bn->type = maple_arange_64; 3129 else 3130 mast->bn->type = maple_range_64; 3131 mas->depth = height; 3132 } 3133 /* 3134 * Only a single node is used here, could be root. 3135 * The Big_node data should just fit in a single node. 3136 */ 3137 ancestor = mas_new_ma_node(mas, mast->bn); 3138 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset); 3139 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset); 3140 mte_to_node(ancestor)->parent = mas_mn(mas)->parent; 3141 3142 mast->l->node = ancestor; 3143 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true); 3144 mas->offset = mast->bn->b_end - 1; 3145 } 3146 3147 /* 3148 * mast_fill_bnode() - Copy data into the big node in the subtree state 3149 * @mast: The maple subtree state 3150 * @mas: the maple state 3151 * @skip: The number of entries to skip for new nodes insertion. 3152 */ 3153 static inline void mast_fill_bnode(struct maple_subtree_state *mast, 3154 struct ma_state *mas, 3155 unsigned char skip) 3156 { 3157 bool cp = true; 3158 unsigned char split; 3159 3160 memset(mast->bn, 0, sizeof(struct maple_big_node)); 3161 3162 if (mte_is_root(mas->node)) { 3163 cp = false; 3164 } else { 3165 mas_ascend(mas); 3166 mas->offset = mte_parent_slot(mas->node); 3167 } 3168 3169 if (cp && mast->l->offset) 3170 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0); 3171 3172 split = mast->bn->b_end; 3173 mab_set_b_end(mast->bn, mast->l, mast->l->node); 3174 mast->r->offset = mast->bn->b_end; 3175 mab_set_b_end(mast->bn, mast->r, mast->r->node); 3176 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max) 3177 cp = false; 3178 3179 if (cp) 3180 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1, 3181 mast->bn, mast->bn->b_end); 3182 3183 mast->bn->b_end--; 3184 mast->bn->type = mte_node_type(mas->node); 3185 } 3186 3187 /* 3188 * mast_split_data() - Split the data in the subtree state big node into regular 3189 * nodes. 3190 * @mast: The maple subtree state 3191 * @mas: The maple state 3192 * @split: The location to split the big node 3193 */ 3194 static inline void mast_split_data(struct maple_subtree_state *mast, 3195 struct ma_state *mas, unsigned char split) 3196 { 3197 unsigned char p_slot; 3198 3199 mab_mas_cp(mast->bn, 0, split, mast->l, true); 3200 mte_set_pivot(mast->r->node, 0, mast->r->max); 3201 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false); 3202 mast->l->offset = mte_parent_slot(mas->node); 3203 mast->l->max = mast->bn->pivot[split]; 3204 mast->r->min = mast->l->max + 1; 3205 if (mte_is_leaf(mas->node)) 3206 return; 3207 3208 p_slot = mast->orig_l->offset; 3209 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node, 3210 &p_slot, split); 3211 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node, 3212 &p_slot, split); 3213 } 3214 3215 /* 3216 * mas_push_data() - Instead of splitting a node, it is beneficial to push the 3217 * data to the right or left node if there is room. 3218 * @mas: The maple state 3219 * @height: The current height of the maple state 3220 * @mast: The maple subtree state 3221 * @left: Push left or not. 3222 * 3223 * Keeping the height of the tree low means faster lookups. 3224 * 3225 * Return: True if pushed, false otherwise. 3226 */ 3227 static inline bool mas_push_data(struct ma_state *mas, int height, 3228 struct maple_subtree_state *mast, bool left) 3229 { 3230 unsigned char slot_total = mast->bn->b_end; 3231 unsigned char end, space, split; 3232 3233 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last); 3234 tmp_mas = *mas; 3235 tmp_mas.depth = mast->l->depth; 3236 3237 if (left && !mas_prev_sibling(&tmp_mas)) 3238 return false; 3239 else if (!left && !mas_next_sibling(&tmp_mas)) 3240 return false; 3241 3242 end = mas_data_end(&tmp_mas); 3243 slot_total += end; 3244 space = 2 * mt_slot_count(mas->node) - 2; 3245 /* -2 instead of -1 to ensure there isn't a triple split */ 3246 if (ma_is_leaf(mast->bn->type)) 3247 space--; 3248 3249 if (mas->max == ULONG_MAX) 3250 space--; 3251 3252 if (slot_total >= space) 3253 return false; 3254 3255 /* Get the data; Fill mast->bn */ 3256 mast->bn->b_end++; 3257 if (left) { 3258 mab_shift_right(mast->bn, end + 1); 3259 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0); 3260 mast->bn->b_end = slot_total + 1; 3261 } else { 3262 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end); 3263 } 3264 3265 /* Configure mast for splitting of mast->bn */ 3266 split = mt_slots[mast->bn->type] - 2; 3267 if (left) { 3268 /* Switch mas to prev node */ 3269 *mas = tmp_mas; 3270 /* Start using mast->l for the left side. */ 3271 tmp_mas.node = mast->l->node; 3272 *mast->l = tmp_mas; 3273 } else { 3274 tmp_mas.node = mast->r->node; 3275 *mast->r = tmp_mas; 3276 split = slot_total - split; 3277 } 3278 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]); 3279 /* Update parent slot for split calculation. */ 3280 if (left) 3281 mast->orig_l->offset += end + 1; 3282 3283 mast_split_data(mast, mas, split); 3284 mast_fill_bnode(mast, mas, 2); 3285 mas_split_final_node(mast, mas, height + 1); 3286 return true; 3287 } 3288 3289 /* 3290 * mas_split() - Split data that is too big for one node into two. 3291 * @mas: The maple state 3292 * @b_node: The maple big node 3293 */ 3294 static void mas_split(struct ma_state *mas, struct maple_big_node *b_node) 3295 { 3296 struct maple_subtree_state mast; 3297 int height = 0; 3298 unsigned char mid_split, split = 0; 3299 struct maple_enode *old; 3300 3301 /* 3302 * Splitting is handled differently from any other B-tree; the Maple 3303 * Tree splits upwards. Splitting up means that the split operation 3304 * occurs when the walk of the tree hits the leaves and not on the way 3305 * down. The reason for splitting up is that it is impossible to know 3306 * how much space will be needed until the leaf is (or leaves are) 3307 * reached. Since overwriting data is allowed and a range could 3308 * overwrite more than one range or result in changing one entry into 3 3309 * entries, it is impossible to know if a split is required until the 3310 * data is examined. 3311 * 3312 * Splitting is a balancing act between keeping allocations to a minimum 3313 * and avoiding a 'jitter' event where a tree is expanded to make room 3314 * for an entry followed by a contraction when the entry is removed. To 3315 * accomplish the balance, there are empty slots remaining in both left 3316 * and right nodes after a split. 3317 */ 3318 MA_STATE(l_mas, mas->tree, mas->index, mas->last); 3319 MA_STATE(r_mas, mas->tree, mas->index, mas->last); 3320 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last); 3321 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last); 3322 3323 trace_ma_op(__func__, mas); 3324 mas->depth = mas_mt_height(mas); 3325 3326 mast.l = &l_mas; 3327 mast.r = &r_mas; 3328 mast.orig_l = &prev_l_mas; 3329 mast.orig_r = &prev_r_mas; 3330 mast.bn = b_node; 3331 3332 while (height++ <= mas->depth) { 3333 if (mt_slots[b_node->type] > b_node->b_end) { 3334 mas_split_final_node(&mast, mas, height); 3335 break; 3336 } 3337 3338 l_mas = r_mas = *mas; 3339 l_mas.node = mas_new_ma_node(mas, b_node); 3340 r_mas.node = mas_new_ma_node(mas, b_node); 3341 /* 3342 * Another way that 'jitter' is avoided is to terminate a split up early if the 3343 * left or right node has space to spare. This is referred to as "pushing left" 3344 * or "pushing right" and is similar to the B* tree, except the nodes left or 3345 * right can rarely be reused due to RCU, but the ripple upwards is halted which 3346 * is a significant savings. 3347 */ 3348 /* Try to push left. */ 3349 if (mas_push_data(mas, height, &mast, true)) 3350 break; 3351 /* Try to push right. */ 3352 if (mas_push_data(mas, height, &mast, false)) 3353 break; 3354 3355 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min); 3356 mast_split_data(&mast, mas, split); 3357 /* 3358 * Usually correct, mab_mas_cp in the above call overwrites 3359 * r->max. 3360 */ 3361 mast.r->max = mas->max; 3362 mast_fill_bnode(&mast, mas, 1); 3363 prev_l_mas = *mast.l; 3364 prev_r_mas = *mast.r; 3365 } 3366 3367 /* Set the original node as dead */ 3368 old = mas->node; 3369 mas->node = l_mas.node; 3370 mas_wmb_replace(mas, old); 3371 mtree_range_walk(mas); 3372 return; 3373 } 3374 3375 /* 3376 * mas_commit_b_node() - Commit the big node into the tree. 3377 * @wr_mas: The maple write state 3378 * @b_node: The maple big node 3379 */ 3380 static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas, 3381 struct maple_big_node *b_node) 3382 { 3383 enum store_type type = wr_mas->mas->store_type; 3384 3385 WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store); 3386 3387 if (type == wr_rebalance) 3388 return mas_rebalance(wr_mas->mas, b_node); 3389 3390 return mas_split(wr_mas->mas, b_node); 3391 } 3392 3393 /* 3394 * mas_root_expand() - Expand a root to a node 3395 * @mas: The maple state 3396 * @entry: The entry to store into the tree 3397 */ 3398 static inline int mas_root_expand(struct ma_state *mas, void *entry) 3399 { 3400 void *contents = mas_root_locked(mas); 3401 enum maple_type type = maple_leaf_64; 3402 struct maple_node *node; 3403 void __rcu **slots; 3404 unsigned long *pivots; 3405 int slot = 0; 3406 3407 node = mas_pop_node(mas); 3408 pivots = ma_pivots(node, type); 3409 slots = ma_slots(node, type); 3410 node->parent = ma_parent_ptr(mas_tree_parent(mas)); 3411 mas->node = mt_mk_node(node, type); 3412 mas->status = ma_active; 3413 3414 if (mas->index) { 3415 if (contents) { 3416 rcu_assign_pointer(slots[slot], contents); 3417 if (likely(mas->index > 1)) 3418 slot++; 3419 } 3420 pivots[slot++] = mas->index - 1; 3421 } 3422 3423 rcu_assign_pointer(slots[slot], entry); 3424 mas->offset = slot; 3425 pivots[slot] = mas->last; 3426 if (mas->last != ULONG_MAX) 3427 pivots[++slot] = ULONG_MAX; 3428 3429 mas->depth = 1; 3430 mas_set_height(mas); 3431 ma_set_meta(node, maple_leaf_64, 0, slot); 3432 /* swap the new root into the tree */ 3433 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3434 return slot; 3435 } 3436 3437 static inline void mas_store_root(struct ma_state *mas, void *entry) 3438 { 3439 if (likely((mas->last != 0) || (mas->index != 0))) 3440 mas_root_expand(mas, entry); 3441 else if (((unsigned long) (entry) & 3) == 2) 3442 mas_root_expand(mas, entry); 3443 else { 3444 rcu_assign_pointer(mas->tree->ma_root, entry); 3445 mas->status = ma_start; 3446 } 3447 } 3448 3449 /* 3450 * mas_is_span_wr() - Check if the write needs to be treated as a write that 3451 * spans the node. 3452 * @wr_mas: The maple write state 3453 * 3454 * Spanning writes are writes that start in one node and end in another OR if 3455 * the write of a %NULL will cause the node to end with a %NULL. 3456 * 3457 * Return: True if this is a spanning write, false otherwise. 3458 */ 3459 static bool mas_is_span_wr(struct ma_wr_state *wr_mas) 3460 { 3461 unsigned long max = wr_mas->r_max; 3462 unsigned long last = wr_mas->mas->last; 3463 enum maple_type type = wr_mas->type; 3464 void *entry = wr_mas->entry; 3465 3466 /* Contained in this pivot, fast path */ 3467 if (last < max) 3468 return false; 3469 3470 if (ma_is_leaf(type)) { 3471 max = wr_mas->mas->max; 3472 if (last < max) 3473 return false; 3474 } 3475 3476 if (last == max) { 3477 /* 3478 * The last entry of leaf node cannot be NULL unless it is the 3479 * rightmost node (writing ULONG_MAX), otherwise it spans slots. 3480 */ 3481 if (entry || last == ULONG_MAX) 3482 return false; 3483 } 3484 3485 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry); 3486 return true; 3487 } 3488 3489 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas) 3490 { 3491 wr_mas->type = mte_node_type(wr_mas->mas->node); 3492 mas_wr_node_walk(wr_mas); 3493 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type); 3494 } 3495 3496 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas) 3497 { 3498 wr_mas->mas->max = wr_mas->r_max; 3499 wr_mas->mas->min = wr_mas->r_min; 3500 wr_mas->mas->node = wr_mas->content; 3501 wr_mas->mas->offset = 0; 3502 wr_mas->mas->depth++; 3503 } 3504 /* 3505 * mas_wr_walk() - Walk the tree for a write. 3506 * @wr_mas: The maple write state 3507 * 3508 * Uses mas_slot_locked() and does not need to worry about dead nodes. 3509 * 3510 * Return: True if it's contained in a node, false on spanning write. 3511 */ 3512 static bool mas_wr_walk(struct ma_wr_state *wr_mas) 3513 { 3514 struct ma_state *mas = wr_mas->mas; 3515 3516 while (true) { 3517 mas_wr_walk_descend(wr_mas); 3518 if (unlikely(mas_is_span_wr(wr_mas))) 3519 return false; 3520 3521 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3522 mas->offset); 3523 if (ma_is_leaf(wr_mas->type)) 3524 return true; 3525 3526 mas_wr_walk_traverse(wr_mas); 3527 } 3528 3529 return true; 3530 } 3531 3532 static void mas_wr_walk_index(struct ma_wr_state *wr_mas) 3533 { 3534 struct ma_state *mas = wr_mas->mas; 3535 3536 while (true) { 3537 mas_wr_walk_descend(wr_mas); 3538 wr_mas->content = mas_slot_locked(mas, wr_mas->slots, 3539 mas->offset); 3540 if (ma_is_leaf(wr_mas->type)) 3541 return; 3542 mas_wr_walk_traverse(wr_mas); 3543 } 3544 } 3545 /* 3546 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs. 3547 * @l_wr_mas: The left maple write state 3548 * @r_wr_mas: The right maple write state 3549 */ 3550 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas, 3551 struct ma_wr_state *r_wr_mas) 3552 { 3553 struct ma_state *r_mas = r_wr_mas->mas; 3554 struct ma_state *l_mas = l_wr_mas->mas; 3555 unsigned char l_slot; 3556 3557 l_slot = l_mas->offset; 3558 if (!l_wr_mas->content) 3559 l_mas->index = l_wr_mas->r_min; 3560 3561 if ((l_mas->index == l_wr_mas->r_min) && 3562 (l_slot && 3563 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) { 3564 if (l_slot > 1) 3565 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1; 3566 else 3567 l_mas->index = l_mas->min; 3568 3569 l_mas->offset = l_slot - 1; 3570 } 3571 3572 if (!r_wr_mas->content) { 3573 if (r_mas->last < r_wr_mas->r_max) 3574 r_mas->last = r_wr_mas->r_max; 3575 r_mas->offset++; 3576 } else if ((r_mas->last == r_wr_mas->r_max) && 3577 (r_mas->last < r_mas->max) && 3578 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) { 3579 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots, 3580 r_wr_mas->type, r_mas->offset + 1); 3581 r_mas->offset++; 3582 } 3583 } 3584 3585 static inline void *mas_state_walk(struct ma_state *mas) 3586 { 3587 void *entry; 3588 3589 entry = mas_start(mas); 3590 if (mas_is_none(mas)) 3591 return NULL; 3592 3593 if (mas_is_ptr(mas)) 3594 return entry; 3595 3596 return mtree_range_walk(mas); 3597 } 3598 3599 /* 3600 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up 3601 * to date. 3602 * 3603 * @mas: The maple state. 3604 * 3605 * Note: Leaves mas in undesirable state. 3606 * Return: The entry for @mas->index or %NULL on dead node. 3607 */ 3608 static inline void *mtree_lookup_walk(struct ma_state *mas) 3609 { 3610 unsigned long *pivots; 3611 unsigned char offset; 3612 struct maple_node *node; 3613 struct maple_enode *next; 3614 enum maple_type type; 3615 void __rcu **slots; 3616 unsigned char end; 3617 3618 next = mas->node; 3619 do { 3620 node = mte_to_node(next); 3621 type = mte_node_type(next); 3622 pivots = ma_pivots(node, type); 3623 end = mt_pivots[type]; 3624 offset = 0; 3625 do { 3626 if (pivots[offset] >= mas->index) 3627 break; 3628 } while (++offset < end); 3629 3630 slots = ma_slots(node, type); 3631 next = mt_slot(mas->tree, slots, offset); 3632 if (unlikely(ma_dead_node(node))) 3633 goto dead_node; 3634 } while (!ma_is_leaf(type)); 3635 3636 return (void *)next; 3637 3638 dead_node: 3639 mas_reset(mas); 3640 return NULL; 3641 } 3642 3643 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *); 3644 /* 3645 * mas_new_root() - Create a new root node that only contains the entry passed 3646 * in. 3647 * @mas: The maple state 3648 * @entry: The entry to store. 3649 * 3650 * Only valid when the index == 0 and the last == ULONG_MAX 3651 */ 3652 static inline void mas_new_root(struct ma_state *mas, void *entry) 3653 { 3654 struct maple_enode *root = mas_root_locked(mas); 3655 enum maple_type type = maple_leaf_64; 3656 struct maple_node *node; 3657 void __rcu **slots; 3658 unsigned long *pivots; 3659 3660 if (!entry && !mas->index && mas->last == ULONG_MAX) { 3661 mas->depth = 0; 3662 mas_set_height(mas); 3663 rcu_assign_pointer(mas->tree->ma_root, entry); 3664 mas->status = ma_start; 3665 goto done; 3666 } 3667 3668 node = mas_pop_node(mas); 3669 pivots = ma_pivots(node, type); 3670 slots = ma_slots(node, type); 3671 node->parent = ma_parent_ptr(mas_tree_parent(mas)); 3672 mas->node = mt_mk_node(node, type); 3673 mas->status = ma_active; 3674 rcu_assign_pointer(slots[0], entry); 3675 pivots[0] = mas->last; 3676 mas->depth = 1; 3677 mas_set_height(mas); 3678 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node)); 3679 3680 done: 3681 if (xa_is_node(root)) 3682 mte_destroy_walk(root, mas->tree); 3683 3684 return; 3685 } 3686 /* 3687 * mas_wr_spanning_store() - Create a subtree with the store operation completed 3688 * and new nodes where necessary, then place the sub-tree in the actual tree. 3689 * Note that mas is expected to point to the node which caused the store to 3690 * span. 3691 * @wr_mas: The maple write state 3692 */ 3693 static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas) 3694 { 3695 struct maple_subtree_state mast; 3696 struct maple_big_node b_node; 3697 struct ma_state *mas; 3698 unsigned char height; 3699 3700 /* Left and Right side of spanning store */ 3701 MA_STATE(l_mas, NULL, 0, 0); 3702 MA_STATE(r_mas, NULL, 0, 0); 3703 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry); 3704 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry); 3705 3706 /* 3707 * A store operation that spans multiple nodes is called a spanning 3708 * store and is handled early in the store call stack by the function 3709 * mas_is_span_wr(). When a spanning store is identified, the maple 3710 * state is duplicated. The first maple state walks the left tree path 3711 * to ``index``, the duplicate walks the right tree path to ``last``. 3712 * The data in the two nodes are combined into a single node, two nodes, 3713 * or possibly three nodes (see the 3-way split above). A ``NULL`` 3714 * written to the last entry of a node is considered a spanning store as 3715 * a rebalance is required for the operation to complete and an overflow 3716 * of data may happen. 3717 */ 3718 mas = wr_mas->mas; 3719 trace_ma_op(__func__, mas); 3720 3721 if (unlikely(!mas->index && mas->last == ULONG_MAX)) 3722 return mas_new_root(mas, wr_mas->entry); 3723 /* 3724 * Node rebalancing may occur due to this store, so there may be three new 3725 * entries per level plus a new root. 3726 */ 3727 height = mas_mt_height(mas); 3728 3729 /* 3730 * Set up right side. Need to get to the next offset after the spanning 3731 * store to ensure it's not NULL and to combine both the next node and 3732 * the node with the start together. 3733 */ 3734 r_mas = *mas; 3735 /* Avoid overflow, walk to next slot in the tree. */ 3736 if (r_mas.last + 1) 3737 r_mas.last++; 3738 3739 r_mas.index = r_mas.last; 3740 mas_wr_walk_index(&r_wr_mas); 3741 r_mas.last = r_mas.index = mas->last; 3742 3743 /* Set up left side. */ 3744 l_mas = *mas; 3745 mas_wr_walk_index(&l_wr_mas); 3746 3747 if (!wr_mas->entry) { 3748 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas); 3749 mas->offset = l_mas.offset; 3750 mas->index = l_mas.index; 3751 mas->last = l_mas.last = r_mas.last; 3752 } 3753 3754 /* expanding NULLs may make this cover the entire range */ 3755 if (!l_mas.index && r_mas.last == ULONG_MAX) { 3756 mas_set_range(mas, 0, ULONG_MAX); 3757 return mas_new_root(mas, wr_mas->entry); 3758 } 3759 3760 memset(&b_node, 0, sizeof(struct maple_big_node)); 3761 /* Copy l_mas and store the value in b_node. */ 3762 mas_store_b_node(&l_wr_mas, &b_node, l_mas.end); 3763 /* Copy r_mas into b_node if there is anything to copy. */ 3764 if (r_mas.max > r_mas.last) 3765 mas_mab_cp(&r_mas, r_mas.offset, r_mas.end, 3766 &b_node, b_node.b_end + 1); 3767 else 3768 b_node.b_end++; 3769 3770 /* Stop spanning searches by searching for just index. */ 3771 l_mas.index = l_mas.last = mas->index; 3772 3773 mast.bn = &b_node; 3774 mast.orig_l = &l_mas; 3775 mast.orig_r = &r_mas; 3776 /* Combine l_mas and r_mas and split them up evenly again. */ 3777 return mas_spanning_rebalance(mas, &mast, height + 1); 3778 } 3779 3780 /* 3781 * mas_wr_node_store() - Attempt to store the value in a node 3782 * @wr_mas: The maple write state 3783 * 3784 * Attempts to reuse the node, but may allocate. 3785 */ 3786 static inline void mas_wr_node_store(struct ma_wr_state *wr_mas, 3787 unsigned char new_end) 3788 { 3789 struct ma_state *mas = wr_mas->mas; 3790 void __rcu **dst_slots; 3791 unsigned long *dst_pivots; 3792 unsigned char dst_offset, offset_end = wr_mas->offset_end; 3793 struct maple_node reuse, *newnode; 3794 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type]; 3795 bool in_rcu = mt_in_rcu(mas->tree); 3796 3797 if (mas->last == wr_mas->end_piv) 3798 offset_end++; /* don't copy this offset */ 3799 else if (unlikely(wr_mas->r_max == ULONG_MAX)) 3800 mas_bulk_rebalance(mas, mas->end, wr_mas->type); 3801 3802 /* set up node. */ 3803 if (in_rcu) { 3804 newnode = mas_pop_node(mas); 3805 } else { 3806 memset(&reuse, 0, sizeof(struct maple_node)); 3807 newnode = &reuse; 3808 } 3809 3810 newnode->parent = mas_mn(mas)->parent; 3811 dst_pivots = ma_pivots(newnode, wr_mas->type); 3812 dst_slots = ma_slots(newnode, wr_mas->type); 3813 /* Copy from start to insert point */ 3814 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset); 3815 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset); 3816 3817 /* Handle insert of new range starting after old range */ 3818 if (wr_mas->r_min < mas->index) { 3819 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content); 3820 dst_pivots[mas->offset++] = mas->index - 1; 3821 } 3822 3823 /* Store the new entry and range end. */ 3824 if (mas->offset < node_pivots) 3825 dst_pivots[mas->offset] = mas->last; 3826 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry); 3827 3828 /* 3829 * this range wrote to the end of the node or it overwrote the rest of 3830 * the data 3831 */ 3832 if (offset_end > mas->end) 3833 goto done; 3834 3835 dst_offset = mas->offset + 1; 3836 /* Copy to the end of node if necessary. */ 3837 copy_size = mas->end - offset_end + 1; 3838 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end, 3839 sizeof(void *) * copy_size); 3840 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end, 3841 sizeof(unsigned long) * (copy_size - 1)); 3842 3843 if (new_end < node_pivots) 3844 dst_pivots[new_end] = mas->max; 3845 3846 done: 3847 mas_leaf_set_meta(newnode, maple_leaf_64, new_end); 3848 if (in_rcu) { 3849 struct maple_enode *old_enode = mas->node; 3850 3851 mas->node = mt_mk_node(newnode, wr_mas->type); 3852 mas_replace_node(mas, old_enode); 3853 } else { 3854 memcpy(wr_mas->node, newnode, sizeof(struct maple_node)); 3855 } 3856 trace_ma_write(__func__, mas, 0, wr_mas->entry); 3857 mas_update_gap(mas); 3858 mas->end = new_end; 3859 return; 3860 } 3861 3862 /* 3863 * mas_wr_slot_store: Attempt to store a value in a slot. 3864 * @wr_mas: the maple write state 3865 */ 3866 static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas) 3867 { 3868 struct ma_state *mas = wr_mas->mas; 3869 unsigned char offset = mas->offset; 3870 void __rcu **slots = wr_mas->slots; 3871 bool gap = false; 3872 3873 gap |= !mt_slot_locked(mas->tree, slots, offset); 3874 gap |= !mt_slot_locked(mas->tree, slots, offset + 1); 3875 3876 if (wr_mas->offset_end - offset == 1) { 3877 if (mas->index == wr_mas->r_min) { 3878 /* Overwriting the range and a part of the next one */ 3879 rcu_assign_pointer(slots[offset], wr_mas->entry); 3880 wr_mas->pivots[offset] = mas->last; 3881 } else { 3882 /* Overwriting a part of the range and the next one */ 3883 rcu_assign_pointer(slots[offset + 1], wr_mas->entry); 3884 wr_mas->pivots[offset] = mas->index - 1; 3885 mas->offset++; /* Keep mas accurate. */ 3886 } 3887 } else if (!mt_in_rcu(mas->tree)) { 3888 /* 3889 * Expand the range, only partially overwriting the previous and 3890 * next ranges 3891 */ 3892 gap |= !mt_slot_locked(mas->tree, slots, offset + 2); 3893 rcu_assign_pointer(slots[offset + 1], wr_mas->entry); 3894 wr_mas->pivots[offset] = mas->index - 1; 3895 wr_mas->pivots[offset + 1] = mas->last; 3896 mas->offset++; /* Keep mas accurate. */ 3897 } else { 3898 return; 3899 } 3900 3901 trace_ma_write(__func__, mas, 0, wr_mas->entry); 3902 /* 3903 * Only update gap when the new entry is empty or there is an empty 3904 * entry in the original two ranges. 3905 */ 3906 if (!wr_mas->entry || gap) 3907 mas_update_gap(mas); 3908 3909 return; 3910 } 3911 3912 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas) 3913 { 3914 struct ma_state *mas = wr_mas->mas; 3915 3916 if (!wr_mas->slots[wr_mas->offset_end]) { 3917 /* If this one is null, the next and prev are not */ 3918 mas->last = wr_mas->end_piv; 3919 } else { 3920 /* Check next slot(s) if we are overwriting the end */ 3921 if ((mas->last == wr_mas->end_piv) && 3922 (mas->end != wr_mas->offset_end) && 3923 !wr_mas->slots[wr_mas->offset_end + 1]) { 3924 wr_mas->offset_end++; 3925 if (wr_mas->offset_end == mas->end) 3926 mas->last = mas->max; 3927 else 3928 mas->last = wr_mas->pivots[wr_mas->offset_end]; 3929 wr_mas->end_piv = mas->last; 3930 } 3931 } 3932 3933 if (!wr_mas->content) { 3934 /* If this one is null, the next and prev are not */ 3935 mas->index = wr_mas->r_min; 3936 } else { 3937 /* Check prev slot if we are overwriting the start */ 3938 if (mas->index == wr_mas->r_min && mas->offset && 3939 !wr_mas->slots[mas->offset - 1]) { 3940 mas->offset--; 3941 wr_mas->r_min = mas->index = 3942 mas_safe_min(mas, wr_mas->pivots, mas->offset); 3943 wr_mas->r_max = wr_mas->pivots[mas->offset]; 3944 } 3945 } 3946 } 3947 3948 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas) 3949 { 3950 while ((wr_mas->offset_end < wr_mas->mas->end) && 3951 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end])) 3952 wr_mas->offset_end++; 3953 3954 if (wr_mas->offset_end < wr_mas->mas->end) 3955 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end]; 3956 else 3957 wr_mas->end_piv = wr_mas->mas->max; 3958 } 3959 3960 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas) 3961 { 3962 struct ma_state *mas = wr_mas->mas; 3963 unsigned char new_end = mas->end + 2; 3964 3965 new_end -= wr_mas->offset_end - mas->offset; 3966 if (wr_mas->r_min == mas->index) 3967 new_end--; 3968 3969 if (wr_mas->end_piv == mas->last) 3970 new_end--; 3971 3972 return new_end; 3973 } 3974 3975 /* 3976 * mas_wr_append: Attempt to append 3977 * @wr_mas: the maple write state 3978 * @new_end: The end of the node after the modification 3979 * 3980 * This is currently unsafe in rcu mode since the end of the node may be cached 3981 * by readers while the node contents may be updated which could result in 3982 * inaccurate information. 3983 */ 3984 static inline void mas_wr_append(struct ma_wr_state *wr_mas, 3985 unsigned char new_end) 3986 { 3987 struct ma_state *mas = wr_mas->mas; 3988 void __rcu **slots; 3989 unsigned char end = mas->end; 3990 3991 if (new_end < mt_pivots[wr_mas->type]) { 3992 wr_mas->pivots[new_end] = wr_mas->pivots[end]; 3993 ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end); 3994 } 3995 3996 slots = wr_mas->slots; 3997 if (new_end == end + 1) { 3998 if (mas->last == wr_mas->r_max) { 3999 /* Append to end of range */ 4000 rcu_assign_pointer(slots[new_end], wr_mas->entry); 4001 wr_mas->pivots[end] = mas->index - 1; 4002 mas->offset = new_end; 4003 } else { 4004 /* Append to start of range */ 4005 rcu_assign_pointer(slots[new_end], wr_mas->content); 4006 wr_mas->pivots[end] = mas->last; 4007 rcu_assign_pointer(slots[end], wr_mas->entry); 4008 } 4009 } else { 4010 /* Append to the range without touching any boundaries. */ 4011 rcu_assign_pointer(slots[new_end], wr_mas->content); 4012 wr_mas->pivots[end + 1] = mas->last; 4013 rcu_assign_pointer(slots[end + 1], wr_mas->entry); 4014 wr_mas->pivots[end] = mas->index - 1; 4015 mas->offset = end + 1; 4016 } 4017 4018 if (!wr_mas->content || !wr_mas->entry) 4019 mas_update_gap(mas); 4020 4021 mas->end = new_end; 4022 trace_ma_write(__func__, mas, new_end, wr_mas->entry); 4023 return; 4024 } 4025 4026 /* 4027 * mas_wr_bnode() - Slow path for a modification. 4028 * @wr_mas: The write maple state 4029 * 4030 * This is where split, rebalance end up. 4031 */ 4032 static void mas_wr_bnode(struct ma_wr_state *wr_mas) 4033 { 4034 struct maple_big_node b_node; 4035 4036 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry); 4037 memset(&b_node, 0, sizeof(struct maple_big_node)); 4038 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end); 4039 mas_commit_b_node(wr_mas, &b_node); 4040 } 4041 4042 /* 4043 * mas_wr_store_entry() - Internal call to store a value 4044 * @wr_mas: The maple write state 4045 */ 4046 static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas) 4047 { 4048 struct ma_state *mas = wr_mas->mas; 4049 unsigned char new_end = mas_wr_new_end(wr_mas); 4050 4051 switch (mas->store_type) { 4052 case wr_invalid: 4053 MT_BUG_ON(mas->tree, 1); 4054 return; 4055 case wr_new_root: 4056 mas_new_root(mas, wr_mas->entry); 4057 break; 4058 case wr_store_root: 4059 mas_store_root(mas, wr_mas->entry); 4060 break; 4061 case wr_exact_fit: 4062 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry); 4063 if (!!wr_mas->entry ^ !!wr_mas->content) 4064 mas_update_gap(mas); 4065 break; 4066 case wr_append: 4067 mas_wr_append(wr_mas, new_end); 4068 break; 4069 case wr_slot_store: 4070 mas_wr_slot_store(wr_mas); 4071 break; 4072 case wr_node_store: 4073 mas_wr_node_store(wr_mas, new_end); 4074 break; 4075 case wr_spanning_store: 4076 mas_wr_spanning_store(wr_mas); 4077 break; 4078 case wr_split_store: 4079 case wr_rebalance: 4080 mas_wr_bnode(wr_mas); 4081 break; 4082 } 4083 4084 return; 4085 } 4086 4087 static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas) 4088 { 4089 struct ma_state *mas = wr_mas->mas; 4090 4091 if (!mas_is_active(mas)) { 4092 if (mas_is_start(mas)) 4093 goto set_content; 4094 4095 if (unlikely(mas_is_paused(mas))) 4096 goto reset; 4097 4098 if (unlikely(mas_is_none(mas))) 4099 goto reset; 4100 4101 if (unlikely(mas_is_overflow(mas))) 4102 goto reset; 4103 4104 if (unlikely(mas_is_underflow(mas))) 4105 goto reset; 4106 } 4107 4108 /* 4109 * A less strict version of mas_is_span_wr() where we allow spanning 4110 * writes within this node. This is to stop partial walks in 4111 * mas_prealloc() from being reset. 4112 */ 4113 if (mas->last > mas->max) 4114 goto reset; 4115 4116 if (wr_mas->entry) 4117 goto set_content; 4118 4119 if (mte_is_leaf(mas->node) && mas->last == mas->max) 4120 goto reset; 4121 4122 goto set_content; 4123 4124 reset: 4125 mas_reset(mas); 4126 set_content: 4127 wr_mas->content = mas_start(mas); 4128 } 4129 4130 /** 4131 * mas_prealloc_calc() - Calculate number of nodes needed for a 4132 * given store oepration 4133 * @mas: The maple state 4134 * @entry: The entry to store into the tree 4135 * 4136 * Return: Number of nodes required for preallocation. 4137 */ 4138 static inline int mas_prealloc_calc(struct ma_state *mas, void *entry) 4139 { 4140 int ret = mas_mt_height(mas) * 3 + 1; 4141 4142 switch (mas->store_type) { 4143 case wr_invalid: 4144 WARN_ON_ONCE(1); 4145 break; 4146 case wr_new_root: 4147 ret = 1; 4148 break; 4149 case wr_store_root: 4150 if (likely((mas->last != 0) || (mas->index != 0))) 4151 ret = 1; 4152 else if (((unsigned long) (entry) & 3) == 2) 4153 ret = 1; 4154 else 4155 ret = 0; 4156 break; 4157 case wr_spanning_store: 4158 ret = mas_mt_height(mas) * 3 + 1; 4159 break; 4160 case wr_split_store: 4161 ret = mas_mt_height(mas) * 2 + 1; 4162 break; 4163 case wr_rebalance: 4164 ret = mas_mt_height(mas) * 2 - 1; 4165 break; 4166 case wr_node_store: 4167 ret = mt_in_rcu(mas->tree) ? 1 : 0; 4168 break; 4169 case wr_append: 4170 case wr_exact_fit: 4171 case wr_slot_store: 4172 ret = 0; 4173 } 4174 4175 return ret; 4176 } 4177 4178 /* 4179 * mas_wr_store_type() - Set the store type for a given 4180 * store operation. 4181 * @wr_mas: The maple write state 4182 */ 4183 static inline void mas_wr_store_type(struct ma_wr_state *wr_mas) 4184 { 4185 struct ma_state *mas = wr_mas->mas; 4186 unsigned char new_end; 4187 4188 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) { 4189 mas->store_type = wr_store_root; 4190 return; 4191 } 4192 4193 if (unlikely(!mas_wr_walk(wr_mas))) { 4194 mas->store_type = wr_spanning_store; 4195 return; 4196 } 4197 4198 /* At this point, we are at the leaf node that needs to be altered. */ 4199 mas_wr_end_piv(wr_mas); 4200 if (!wr_mas->entry) 4201 mas_wr_extend_null(wr_mas); 4202 4203 new_end = mas_wr_new_end(wr_mas); 4204 if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last)) { 4205 mas->store_type = wr_exact_fit; 4206 return; 4207 } 4208 4209 if (unlikely(!mas->index && mas->last == ULONG_MAX)) { 4210 mas->store_type = wr_new_root; 4211 return; 4212 } 4213 4214 /* Potential spanning rebalance collapsing a node */ 4215 if (new_end < mt_min_slots[wr_mas->type]) { 4216 if (!mte_is_root(mas->node) && !(mas->mas_flags & MA_STATE_BULK)) { 4217 mas->store_type = wr_rebalance; 4218 return; 4219 } 4220 mas->store_type = wr_node_store; 4221 return; 4222 } 4223 4224 if (new_end >= mt_slots[wr_mas->type]) { 4225 mas->store_type = wr_split_store; 4226 return; 4227 } 4228 4229 if (!mt_in_rcu(mas->tree) && (mas->offset == mas->end)) { 4230 mas->store_type = wr_append; 4231 return; 4232 } 4233 4234 if ((new_end == mas->end) && (!mt_in_rcu(mas->tree) || 4235 (wr_mas->offset_end - mas->offset == 1))) { 4236 mas->store_type = wr_slot_store; 4237 return; 4238 } 4239 4240 if (mte_is_root(mas->node) || (new_end >= mt_min_slots[wr_mas->type]) || 4241 (mas->mas_flags & MA_STATE_BULK)) { 4242 mas->store_type = wr_node_store; 4243 return; 4244 } 4245 4246 mas->store_type = wr_invalid; 4247 MAS_WARN_ON(mas, 1); 4248 } 4249 4250 /** 4251 * mas_wr_preallocate() - Preallocate enough nodes for a store operation 4252 * @wr_mas: The maple write state 4253 * @entry: The entry that will be stored 4254 * 4255 */ 4256 static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry) 4257 { 4258 struct ma_state *mas = wr_mas->mas; 4259 int request; 4260 4261 mas_wr_prealloc_setup(wr_mas); 4262 mas_wr_store_type(wr_mas); 4263 request = mas_prealloc_calc(mas, entry); 4264 if (!request) 4265 return; 4266 4267 mas_node_count(mas, request); 4268 } 4269 4270 /** 4271 * mas_insert() - Internal call to insert a value 4272 * @mas: The maple state 4273 * @entry: The entry to store 4274 * 4275 * Return: %NULL or the contents that already exists at the requested index 4276 * otherwise. The maple state needs to be checked for error conditions. 4277 */ 4278 static inline void *mas_insert(struct ma_state *mas, void *entry) 4279 { 4280 MA_WR_STATE(wr_mas, mas, entry); 4281 4282 /* 4283 * Inserting a new range inserts either 0, 1, or 2 pivots within the 4284 * tree. If the insert fits exactly into an existing gap with a value 4285 * of NULL, then the slot only needs to be written with the new value. 4286 * If the range being inserted is adjacent to another range, then only a 4287 * single pivot needs to be inserted (as well as writing the entry). If 4288 * the new range is within a gap but does not touch any other ranges, 4289 * then two pivots need to be inserted: the start - 1, and the end. As 4290 * usual, the entry must be written. Most operations require a new node 4291 * to be allocated and replace an existing node to ensure RCU safety, 4292 * when in RCU mode. The exception to requiring a newly allocated node 4293 * is when inserting at the end of a node (appending). When done 4294 * carefully, appending can reuse the node in place. 4295 */ 4296 wr_mas.content = mas_start(mas); 4297 if (wr_mas.content) 4298 goto exists; 4299 4300 mas_wr_preallocate(&wr_mas, entry); 4301 if (mas_is_err(mas)) 4302 return NULL; 4303 4304 /* spanning writes always overwrite something */ 4305 if (mas->store_type == wr_spanning_store) 4306 goto exists; 4307 4308 /* At this point, we are at the leaf node that needs to be altered. */ 4309 if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) { 4310 wr_mas.offset_end = mas->offset; 4311 wr_mas.end_piv = wr_mas.r_max; 4312 4313 if (wr_mas.content || (mas->last > wr_mas.r_max)) 4314 goto exists; 4315 } 4316 4317 mas_wr_store_entry(&wr_mas); 4318 return wr_mas.content; 4319 4320 exists: 4321 mas_set_err(mas, -EEXIST); 4322 return wr_mas.content; 4323 4324 } 4325 4326 /** 4327 * mas_alloc_cyclic() - Internal call to find somewhere to store an entry 4328 * @mas: The maple state. 4329 * @startp: Pointer to ID. 4330 * @range_lo: Lower bound of range to search. 4331 * @range_hi: Upper bound of range to search. 4332 * @entry: The entry to store. 4333 * @next: Pointer to next ID to allocate. 4334 * @gfp: The GFP_FLAGS to use for allocations. 4335 * 4336 * Return: 0 if the allocation succeeded without wrapping, 1 if the 4337 * allocation succeeded after wrapping, or -EBUSY if there are no 4338 * free entries. 4339 */ 4340 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp, 4341 void *entry, unsigned long range_lo, unsigned long range_hi, 4342 unsigned long *next, gfp_t gfp) 4343 { 4344 unsigned long min = range_lo; 4345 int ret = 0; 4346 4347 range_lo = max(min, *next); 4348 ret = mas_empty_area(mas, range_lo, range_hi, 1); 4349 if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) { 4350 mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED; 4351 ret = 1; 4352 } 4353 if (ret < 0 && range_lo > min) { 4354 ret = mas_empty_area(mas, min, range_hi, 1); 4355 if (ret == 0) 4356 ret = 1; 4357 } 4358 if (ret < 0) 4359 return ret; 4360 4361 do { 4362 mas_insert(mas, entry); 4363 } while (mas_nomem(mas, gfp)); 4364 if (mas_is_err(mas)) 4365 return xa_err(mas->node); 4366 4367 *startp = mas->index; 4368 *next = *startp + 1; 4369 if (*next == 0) 4370 mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED; 4371 4372 mas_destroy(mas); 4373 return ret; 4374 } 4375 EXPORT_SYMBOL(mas_alloc_cyclic); 4376 4377 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index) 4378 { 4379 retry: 4380 mas_set(mas, index); 4381 mas_state_walk(mas); 4382 if (mas_is_start(mas)) 4383 goto retry; 4384 } 4385 4386 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas, 4387 struct maple_node *node, const unsigned long index) 4388 { 4389 if (unlikely(ma_dead_node(node))) { 4390 mas_rewalk(mas, index); 4391 return true; 4392 } 4393 return false; 4394 } 4395 4396 /* 4397 * mas_prev_node() - Find the prev non-null entry at the same level in the 4398 * tree. The prev value will be mas->node[mas->offset] or the status will be 4399 * ma_none. 4400 * @mas: The maple state 4401 * @min: The lower limit to search 4402 * 4403 * The prev node value will be mas->node[mas->offset] or the status will be 4404 * ma_none. 4405 * Return: 1 if the node is dead, 0 otherwise. 4406 */ 4407 static int mas_prev_node(struct ma_state *mas, unsigned long min) 4408 { 4409 enum maple_type mt; 4410 int offset, level; 4411 void __rcu **slots; 4412 struct maple_node *node; 4413 unsigned long *pivots; 4414 unsigned long max; 4415 4416 node = mas_mn(mas); 4417 if (!mas->min) 4418 goto no_entry; 4419 4420 max = mas->min - 1; 4421 if (max < min) 4422 goto no_entry; 4423 4424 level = 0; 4425 do { 4426 if (ma_is_root(node)) 4427 goto no_entry; 4428 4429 /* Walk up. */ 4430 if (unlikely(mas_ascend(mas))) 4431 return 1; 4432 offset = mas->offset; 4433 level++; 4434 node = mas_mn(mas); 4435 } while (!offset); 4436 4437 offset--; 4438 mt = mte_node_type(mas->node); 4439 while (level > 1) { 4440 level--; 4441 slots = ma_slots(node, mt); 4442 mas->node = mas_slot(mas, slots, offset); 4443 if (unlikely(ma_dead_node(node))) 4444 return 1; 4445 4446 mt = mte_node_type(mas->node); 4447 node = mas_mn(mas); 4448 pivots = ma_pivots(node, mt); 4449 offset = ma_data_end(node, mt, pivots, max); 4450 if (unlikely(ma_dead_node(node))) 4451 return 1; 4452 } 4453 4454 slots = ma_slots(node, mt); 4455 mas->node = mas_slot(mas, slots, offset); 4456 pivots = ma_pivots(node, mt); 4457 if (unlikely(ma_dead_node(node))) 4458 return 1; 4459 4460 if (likely(offset)) 4461 mas->min = pivots[offset - 1] + 1; 4462 mas->max = max; 4463 mas->offset = mas_data_end(mas); 4464 if (unlikely(mte_dead_node(mas->node))) 4465 return 1; 4466 4467 mas->end = mas->offset; 4468 return 0; 4469 4470 no_entry: 4471 if (unlikely(ma_dead_node(node))) 4472 return 1; 4473 4474 mas->status = ma_underflow; 4475 return 0; 4476 } 4477 4478 /* 4479 * mas_prev_slot() - Get the entry in the previous slot 4480 * 4481 * @mas: The maple state 4482 * @min: The minimum starting range 4483 * @empty: Can be empty 4484 * 4485 * Return: The entry in the previous slot which is possibly NULL 4486 */ 4487 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty) 4488 { 4489 void *entry; 4490 void __rcu **slots; 4491 unsigned long pivot; 4492 enum maple_type type; 4493 unsigned long *pivots; 4494 struct maple_node *node; 4495 unsigned long save_point = mas->index; 4496 4497 retry: 4498 node = mas_mn(mas); 4499 type = mte_node_type(mas->node); 4500 pivots = ma_pivots(node, type); 4501 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4502 goto retry; 4503 4504 if (mas->min <= min) { 4505 pivot = mas_safe_min(mas, pivots, mas->offset); 4506 4507 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4508 goto retry; 4509 4510 if (pivot <= min) 4511 goto underflow; 4512 } 4513 4514 again: 4515 if (likely(mas->offset)) { 4516 mas->offset--; 4517 mas->last = mas->index - 1; 4518 mas->index = mas_safe_min(mas, pivots, mas->offset); 4519 } else { 4520 if (mas->index <= min) 4521 goto underflow; 4522 4523 if (mas_prev_node(mas, min)) { 4524 mas_rewalk(mas, save_point); 4525 goto retry; 4526 } 4527 4528 if (WARN_ON_ONCE(mas_is_underflow(mas))) 4529 return NULL; 4530 4531 mas->last = mas->max; 4532 node = mas_mn(mas); 4533 type = mte_node_type(mas->node); 4534 pivots = ma_pivots(node, type); 4535 mas->index = pivots[mas->offset - 1] + 1; 4536 } 4537 4538 slots = ma_slots(node, type); 4539 entry = mas_slot(mas, slots, mas->offset); 4540 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4541 goto retry; 4542 4543 4544 if (likely(entry)) 4545 return entry; 4546 4547 if (!empty) { 4548 if (mas->index <= min) { 4549 mas->status = ma_underflow; 4550 return NULL; 4551 } 4552 4553 goto again; 4554 } 4555 4556 return entry; 4557 4558 underflow: 4559 mas->status = ma_underflow; 4560 return NULL; 4561 } 4562 4563 /* 4564 * mas_next_node() - Get the next node at the same level in the tree. 4565 * @mas: The maple state 4566 * @node: The maple node 4567 * @max: The maximum pivot value to check. 4568 * 4569 * The next value will be mas->node[mas->offset] or the status will have 4570 * overflowed. 4571 * Return: 1 on dead node, 0 otherwise. 4572 */ 4573 static int mas_next_node(struct ma_state *mas, struct maple_node *node, 4574 unsigned long max) 4575 { 4576 unsigned long min; 4577 unsigned long *pivots; 4578 struct maple_enode *enode; 4579 struct maple_node *tmp; 4580 int level = 0; 4581 unsigned char node_end; 4582 enum maple_type mt; 4583 void __rcu **slots; 4584 4585 if (mas->max >= max) 4586 goto overflow; 4587 4588 min = mas->max + 1; 4589 level = 0; 4590 do { 4591 if (ma_is_root(node)) 4592 goto overflow; 4593 4594 /* Walk up. */ 4595 if (unlikely(mas_ascend(mas))) 4596 return 1; 4597 4598 level++; 4599 node = mas_mn(mas); 4600 mt = mte_node_type(mas->node); 4601 pivots = ma_pivots(node, mt); 4602 node_end = ma_data_end(node, mt, pivots, mas->max); 4603 if (unlikely(ma_dead_node(node))) 4604 return 1; 4605 4606 } while (unlikely(mas->offset == node_end)); 4607 4608 slots = ma_slots(node, mt); 4609 mas->offset++; 4610 enode = mas_slot(mas, slots, mas->offset); 4611 if (unlikely(ma_dead_node(node))) 4612 return 1; 4613 4614 if (level > 1) 4615 mas->offset = 0; 4616 4617 while (unlikely(level > 1)) { 4618 level--; 4619 mas->node = enode; 4620 node = mas_mn(mas); 4621 mt = mte_node_type(mas->node); 4622 slots = ma_slots(node, mt); 4623 enode = mas_slot(mas, slots, 0); 4624 if (unlikely(ma_dead_node(node))) 4625 return 1; 4626 } 4627 4628 if (!mas->offset) 4629 pivots = ma_pivots(node, mt); 4630 4631 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt); 4632 tmp = mte_to_node(enode); 4633 mt = mte_node_type(enode); 4634 pivots = ma_pivots(tmp, mt); 4635 mas->end = ma_data_end(tmp, mt, pivots, mas->max); 4636 if (unlikely(ma_dead_node(node))) 4637 return 1; 4638 4639 mas->node = enode; 4640 mas->min = min; 4641 return 0; 4642 4643 overflow: 4644 if (unlikely(ma_dead_node(node))) 4645 return 1; 4646 4647 mas->status = ma_overflow; 4648 return 0; 4649 } 4650 4651 /* 4652 * mas_next_slot() - Get the entry in the next slot 4653 * 4654 * @mas: The maple state 4655 * @max: The maximum starting range 4656 * @empty: Can be empty 4657 * 4658 * Return: The entry in the next slot which is possibly NULL 4659 */ 4660 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty) 4661 { 4662 void __rcu **slots; 4663 unsigned long *pivots; 4664 unsigned long pivot; 4665 enum maple_type type; 4666 struct maple_node *node; 4667 unsigned long save_point = mas->last; 4668 void *entry; 4669 4670 retry: 4671 node = mas_mn(mas); 4672 type = mte_node_type(mas->node); 4673 pivots = ma_pivots(node, type); 4674 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4675 goto retry; 4676 4677 if (mas->max >= max) { 4678 if (likely(mas->offset < mas->end)) 4679 pivot = pivots[mas->offset]; 4680 else 4681 pivot = mas->max; 4682 4683 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4684 goto retry; 4685 4686 if (pivot >= max) { /* Was at the limit, next will extend beyond */ 4687 mas->status = ma_overflow; 4688 return NULL; 4689 } 4690 } 4691 4692 if (likely(mas->offset < mas->end)) { 4693 mas->index = pivots[mas->offset] + 1; 4694 again: 4695 mas->offset++; 4696 if (likely(mas->offset < mas->end)) 4697 mas->last = pivots[mas->offset]; 4698 else 4699 mas->last = mas->max; 4700 } else { 4701 if (mas->last >= max) { 4702 mas->status = ma_overflow; 4703 return NULL; 4704 } 4705 4706 if (mas_next_node(mas, node, max)) { 4707 mas_rewalk(mas, save_point); 4708 goto retry; 4709 } 4710 4711 if (WARN_ON_ONCE(mas_is_overflow(mas))) 4712 return NULL; 4713 4714 mas->offset = 0; 4715 mas->index = mas->min; 4716 node = mas_mn(mas); 4717 type = mte_node_type(mas->node); 4718 pivots = ma_pivots(node, type); 4719 mas->last = pivots[0]; 4720 } 4721 4722 slots = ma_slots(node, type); 4723 entry = mt_slot(mas->tree, slots, mas->offset); 4724 if (unlikely(mas_rewalk_if_dead(mas, node, save_point))) 4725 goto retry; 4726 4727 if (entry) 4728 return entry; 4729 4730 4731 if (!empty) { 4732 if (mas->last >= max) { 4733 mas->status = ma_overflow; 4734 return NULL; 4735 } 4736 4737 mas->index = mas->last + 1; 4738 goto again; 4739 } 4740 4741 return entry; 4742 } 4743 4744 /* 4745 * mas_next_entry() - Internal function to get the next entry. 4746 * @mas: The maple state 4747 * @limit: The maximum range start. 4748 * 4749 * Set the @mas->node to the next entry and the range_start to 4750 * the beginning value for the entry. Does not check beyond @limit. 4751 * Sets @mas->index and @mas->last to the range, Does not update @mas->index and 4752 * @mas->last on overflow. 4753 * Restarts on dead nodes. 4754 * 4755 * Return: the next entry or %NULL. 4756 */ 4757 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit) 4758 { 4759 if (mas->last >= limit) { 4760 mas->status = ma_overflow; 4761 return NULL; 4762 } 4763 4764 return mas_next_slot(mas, limit, false); 4765 } 4766 4767 /* 4768 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the 4769 * highest gap address of a given size in a given node and descend. 4770 * @mas: The maple state 4771 * @size: The needed size. 4772 * 4773 * Return: True if found in a leaf, false otherwise. 4774 * 4775 */ 4776 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size, 4777 unsigned long *gap_min, unsigned long *gap_max) 4778 { 4779 enum maple_type type = mte_node_type(mas->node); 4780 struct maple_node *node = mas_mn(mas); 4781 unsigned long *pivots, *gaps; 4782 void __rcu **slots; 4783 unsigned long gap = 0; 4784 unsigned long max, min; 4785 unsigned char offset; 4786 4787 if (unlikely(mas_is_err(mas))) 4788 return true; 4789 4790 if (ma_is_dense(type)) { 4791 /* dense nodes. */ 4792 mas->offset = (unsigned char)(mas->index - mas->min); 4793 return true; 4794 } 4795 4796 pivots = ma_pivots(node, type); 4797 slots = ma_slots(node, type); 4798 gaps = ma_gaps(node, type); 4799 offset = mas->offset; 4800 min = mas_safe_min(mas, pivots, offset); 4801 /* Skip out of bounds. */ 4802 while (mas->last < min) 4803 min = mas_safe_min(mas, pivots, --offset); 4804 4805 max = mas_safe_pivot(mas, pivots, offset, type); 4806 while (mas->index <= max) { 4807 gap = 0; 4808 if (gaps) 4809 gap = gaps[offset]; 4810 else if (!mas_slot(mas, slots, offset)) 4811 gap = max - min + 1; 4812 4813 if (gap) { 4814 if ((size <= gap) && (size <= mas->last - min + 1)) 4815 break; 4816 4817 if (!gaps) { 4818 /* Skip the next slot, it cannot be a gap. */ 4819 if (offset < 2) 4820 goto ascend; 4821 4822 offset -= 2; 4823 max = pivots[offset]; 4824 min = mas_safe_min(mas, pivots, offset); 4825 continue; 4826 } 4827 } 4828 4829 if (!offset) 4830 goto ascend; 4831 4832 offset--; 4833 max = min - 1; 4834 min = mas_safe_min(mas, pivots, offset); 4835 } 4836 4837 if (unlikely((mas->index > max) || (size - 1 > max - mas->index))) 4838 goto no_space; 4839 4840 if (unlikely(ma_is_leaf(type))) { 4841 mas->offset = offset; 4842 *gap_min = min; 4843 *gap_max = min + gap - 1; 4844 return true; 4845 } 4846 4847 /* descend, only happens under lock. */ 4848 mas->node = mas_slot(mas, slots, offset); 4849 mas->min = min; 4850 mas->max = max; 4851 mas->offset = mas_data_end(mas); 4852 return false; 4853 4854 ascend: 4855 if (!mte_is_root(mas->node)) 4856 return false; 4857 4858 no_space: 4859 mas_set_err(mas, -EBUSY); 4860 return false; 4861 } 4862 4863 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size) 4864 { 4865 enum maple_type type = mte_node_type(mas->node); 4866 unsigned long pivot, min, gap = 0; 4867 unsigned char offset, data_end; 4868 unsigned long *gaps, *pivots; 4869 void __rcu **slots; 4870 struct maple_node *node; 4871 bool found = false; 4872 4873 if (ma_is_dense(type)) { 4874 mas->offset = (unsigned char)(mas->index - mas->min); 4875 return true; 4876 } 4877 4878 node = mas_mn(mas); 4879 pivots = ma_pivots(node, type); 4880 slots = ma_slots(node, type); 4881 gaps = ma_gaps(node, type); 4882 offset = mas->offset; 4883 min = mas_safe_min(mas, pivots, offset); 4884 data_end = ma_data_end(node, type, pivots, mas->max); 4885 for (; offset <= data_end; offset++) { 4886 pivot = mas_safe_pivot(mas, pivots, offset, type); 4887 4888 /* Not within lower bounds */ 4889 if (mas->index > pivot) 4890 goto next_slot; 4891 4892 if (gaps) 4893 gap = gaps[offset]; 4894 else if (!mas_slot(mas, slots, offset)) 4895 gap = min(pivot, mas->last) - max(mas->index, min) + 1; 4896 else 4897 goto next_slot; 4898 4899 if (gap >= size) { 4900 if (ma_is_leaf(type)) { 4901 found = true; 4902 goto done; 4903 } 4904 if (mas->index <= pivot) { 4905 mas->node = mas_slot(mas, slots, offset); 4906 mas->min = min; 4907 mas->max = pivot; 4908 offset = 0; 4909 break; 4910 } 4911 } 4912 next_slot: 4913 min = pivot + 1; 4914 if (mas->last <= pivot) { 4915 mas_set_err(mas, -EBUSY); 4916 return true; 4917 } 4918 } 4919 4920 if (mte_is_root(mas->node)) 4921 found = true; 4922 done: 4923 mas->offset = offset; 4924 return found; 4925 } 4926 4927 /** 4928 * mas_walk() - Search for @mas->index in the tree. 4929 * @mas: The maple state. 4930 * 4931 * mas->index and mas->last will be set to the range if there is a value. If 4932 * mas->status is ma_none, reset to ma_start 4933 * 4934 * Return: the entry at the location or %NULL. 4935 */ 4936 void *mas_walk(struct ma_state *mas) 4937 { 4938 void *entry; 4939 4940 if (!mas_is_active(mas) || !mas_is_start(mas)) 4941 mas->status = ma_start; 4942 retry: 4943 entry = mas_state_walk(mas); 4944 if (mas_is_start(mas)) { 4945 goto retry; 4946 } else if (mas_is_none(mas)) { 4947 mas->index = 0; 4948 mas->last = ULONG_MAX; 4949 } else if (mas_is_ptr(mas)) { 4950 if (!mas->index) { 4951 mas->last = 0; 4952 return entry; 4953 } 4954 4955 mas->index = 1; 4956 mas->last = ULONG_MAX; 4957 mas->status = ma_none; 4958 return NULL; 4959 } 4960 4961 return entry; 4962 } 4963 EXPORT_SYMBOL_GPL(mas_walk); 4964 4965 static inline bool mas_rewind_node(struct ma_state *mas) 4966 { 4967 unsigned char slot; 4968 4969 do { 4970 if (mte_is_root(mas->node)) { 4971 slot = mas->offset; 4972 if (!slot) 4973 return false; 4974 } else { 4975 mas_ascend(mas); 4976 slot = mas->offset; 4977 } 4978 } while (!slot); 4979 4980 mas->offset = --slot; 4981 return true; 4982 } 4983 4984 /* 4985 * mas_skip_node() - Internal function. Skip over a node. 4986 * @mas: The maple state. 4987 * 4988 * Return: true if there is another node, false otherwise. 4989 */ 4990 static inline bool mas_skip_node(struct ma_state *mas) 4991 { 4992 if (mas_is_err(mas)) 4993 return false; 4994 4995 do { 4996 if (mte_is_root(mas->node)) { 4997 if (mas->offset >= mas_data_end(mas)) { 4998 mas_set_err(mas, -EBUSY); 4999 return false; 5000 } 5001 } else { 5002 mas_ascend(mas); 5003 } 5004 } while (mas->offset >= mas_data_end(mas)); 5005 5006 mas->offset++; 5007 return true; 5008 } 5009 5010 /* 5011 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of 5012 * @size 5013 * @mas: The maple state 5014 * @size: The size of the gap required 5015 * 5016 * Search between @mas->index and @mas->last for a gap of @size. 5017 */ 5018 static inline void mas_awalk(struct ma_state *mas, unsigned long size) 5019 { 5020 struct maple_enode *last = NULL; 5021 5022 /* 5023 * There are 4 options: 5024 * go to child (descend) 5025 * go back to parent (ascend) 5026 * no gap found. (return, slot == MAPLE_NODE_SLOTS) 5027 * found the gap. (return, slot != MAPLE_NODE_SLOTS) 5028 */ 5029 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) { 5030 if (last == mas->node) 5031 mas_skip_node(mas); 5032 else 5033 last = mas->node; 5034 } 5035 } 5036 5037 /* 5038 * mas_sparse_area() - Internal function. Return upper or lower limit when 5039 * searching for a gap in an empty tree. 5040 * @mas: The maple state 5041 * @min: the minimum range 5042 * @max: The maximum range 5043 * @size: The size of the gap 5044 * @fwd: Searching forward or back 5045 */ 5046 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min, 5047 unsigned long max, unsigned long size, bool fwd) 5048 { 5049 if (!unlikely(mas_is_none(mas)) && min == 0) { 5050 min++; 5051 /* 5052 * At this time, min is increased, we need to recheck whether 5053 * the size is satisfied. 5054 */ 5055 if (min > max || max - min + 1 < size) 5056 return -EBUSY; 5057 } 5058 /* mas_is_ptr */ 5059 5060 if (fwd) { 5061 mas->index = min; 5062 mas->last = min + size - 1; 5063 } else { 5064 mas->last = max; 5065 mas->index = max - size + 1; 5066 } 5067 return 0; 5068 } 5069 5070 /* 5071 * mas_empty_area() - Get the lowest address within the range that is 5072 * sufficient for the size requested. 5073 * @mas: The maple state 5074 * @min: The lowest value of the range 5075 * @max: The highest value of the range 5076 * @size: The size needed 5077 */ 5078 int mas_empty_area(struct ma_state *mas, unsigned long min, 5079 unsigned long max, unsigned long size) 5080 { 5081 unsigned char offset; 5082 unsigned long *pivots; 5083 enum maple_type mt; 5084 struct maple_node *node; 5085 5086 if (min > max) 5087 return -EINVAL; 5088 5089 if (size == 0 || max - min < size - 1) 5090 return -EINVAL; 5091 5092 if (mas_is_start(mas)) 5093 mas_start(mas); 5094 else if (mas->offset >= 2) 5095 mas->offset -= 2; 5096 else if (!mas_skip_node(mas)) 5097 return -EBUSY; 5098 5099 /* Empty set */ 5100 if (mas_is_none(mas) || mas_is_ptr(mas)) 5101 return mas_sparse_area(mas, min, max, size, true); 5102 5103 /* The start of the window can only be within these values */ 5104 mas->index = min; 5105 mas->last = max; 5106 mas_awalk(mas, size); 5107 5108 if (unlikely(mas_is_err(mas))) 5109 return xa_err(mas->node); 5110 5111 offset = mas->offset; 5112 if (unlikely(offset == MAPLE_NODE_SLOTS)) 5113 return -EBUSY; 5114 5115 node = mas_mn(mas); 5116 mt = mte_node_type(mas->node); 5117 pivots = ma_pivots(node, mt); 5118 min = mas_safe_min(mas, pivots, offset); 5119 if (mas->index < min) 5120 mas->index = min; 5121 mas->last = mas->index + size - 1; 5122 mas->end = ma_data_end(node, mt, pivots, mas->max); 5123 return 0; 5124 } 5125 EXPORT_SYMBOL_GPL(mas_empty_area); 5126 5127 /* 5128 * mas_empty_area_rev() - Get the highest address within the range that is 5129 * sufficient for the size requested. 5130 * @mas: The maple state 5131 * @min: The lowest value of the range 5132 * @max: The highest value of the range 5133 * @size: The size needed 5134 */ 5135 int mas_empty_area_rev(struct ma_state *mas, unsigned long min, 5136 unsigned long max, unsigned long size) 5137 { 5138 struct maple_enode *last = mas->node; 5139 5140 if (min > max) 5141 return -EINVAL; 5142 5143 if (size == 0 || max - min < size - 1) 5144 return -EINVAL; 5145 5146 if (mas_is_start(mas)) 5147 mas_start(mas); 5148 else if ((mas->offset < 2) && (!mas_rewind_node(mas))) 5149 return -EBUSY; 5150 5151 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas))) 5152 return mas_sparse_area(mas, min, max, size, false); 5153 else if (mas->offset >= 2) 5154 mas->offset -= 2; 5155 else 5156 mas->offset = mas_data_end(mas); 5157 5158 5159 /* The start of the window can only be within these values. */ 5160 mas->index = min; 5161 mas->last = max; 5162 5163 while (!mas_rev_awalk(mas, size, &min, &max)) { 5164 if (last == mas->node) { 5165 if (!mas_rewind_node(mas)) 5166 return -EBUSY; 5167 } else { 5168 last = mas->node; 5169 } 5170 } 5171 5172 if (mas_is_err(mas)) 5173 return xa_err(mas->node); 5174 5175 if (unlikely(mas->offset == MAPLE_NODE_SLOTS)) 5176 return -EBUSY; 5177 5178 /* Trim the upper limit to the max. */ 5179 if (max < mas->last) 5180 mas->last = max; 5181 5182 mas->index = mas->last - size + 1; 5183 mas->end = mas_data_end(mas); 5184 return 0; 5185 } 5186 EXPORT_SYMBOL_GPL(mas_empty_area_rev); 5187 5188 /* 5189 * mte_dead_leaves() - Mark all leaves of a node as dead. 5190 * @enode: the encoded node 5191 * @mt: the maple tree 5192 * @slots: Pointer to the slot array 5193 * 5194 * Must hold the write lock. 5195 * 5196 * Return: The number of leaves marked as dead. 5197 */ 5198 static inline 5199 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt, 5200 void __rcu **slots) 5201 { 5202 struct maple_node *node; 5203 enum maple_type type; 5204 void *entry; 5205 int offset; 5206 5207 for (offset = 0; offset < mt_slot_count(enode); offset++) { 5208 entry = mt_slot(mt, slots, offset); 5209 type = mte_node_type(entry); 5210 node = mte_to_node(entry); 5211 /* Use both node and type to catch LE & BE metadata */ 5212 if (!node || !type) 5213 break; 5214 5215 mte_set_node_dead(entry); 5216 node->type = type; 5217 rcu_assign_pointer(slots[offset], node); 5218 } 5219 5220 return offset; 5221 } 5222 5223 /** 5224 * mte_dead_walk() - Walk down a dead tree to just before the leaves 5225 * @enode: The maple encoded node 5226 * @offset: The starting offset 5227 * 5228 * Note: This can only be used from the RCU callback context. 5229 */ 5230 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset) 5231 { 5232 struct maple_node *node, *next; 5233 void __rcu **slots = NULL; 5234 5235 next = mte_to_node(*enode); 5236 do { 5237 *enode = ma_enode_ptr(next); 5238 node = mte_to_node(*enode); 5239 slots = ma_slots(node, node->type); 5240 next = rcu_dereference_protected(slots[offset], 5241 lock_is_held(&rcu_callback_map)); 5242 offset = 0; 5243 } while (!ma_is_leaf(next->type)); 5244 5245 return slots; 5246 } 5247 5248 /** 5249 * mt_free_walk() - Walk & free a tree in the RCU callback context 5250 * @head: The RCU head that's within the node. 5251 * 5252 * Note: This can only be used from the RCU callback context. 5253 */ 5254 static void mt_free_walk(struct rcu_head *head) 5255 { 5256 void __rcu **slots; 5257 struct maple_node *node, *start; 5258 struct maple_enode *enode; 5259 unsigned char offset; 5260 enum maple_type type; 5261 5262 node = container_of(head, struct maple_node, rcu); 5263 5264 if (ma_is_leaf(node->type)) 5265 goto free_leaf; 5266 5267 start = node; 5268 enode = mt_mk_node(node, node->type); 5269 slots = mte_dead_walk(&enode, 0); 5270 node = mte_to_node(enode); 5271 do { 5272 mt_free_bulk(node->slot_len, slots); 5273 offset = node->parent_slot + 1; 5274 enode = node->piv_parent; 5275 if (mte_to_node(enode) == node) 5276 goto free_leaf; 5277 5278 type = mte_node_type(enode); 5279 slots = ma_slots(mte_to_node(enode), type); 5280 if ((offset < mt_slots[type]) && 5281 rcu_dereference_protected(slots[offset], 5282 lock_is_held(&rcu_callback_map))) 5283 slots = mte_dead_walk(&enode, offset); 5284 node = mte_to_node(enode); 5285 } while ((node != start) || (node->slot_len < offset)); 5286 5287 slots = ma_slots(node, node->type); 5288 mt_free_bulk(node->slot_len, slots); 5289 5290 free_leaf: 5291 mt_free_rcu(&node->rcu); 5292 } 5293 5294 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode, 5295 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset) 5296 { 5297 struct maple_node *node; 5298 struct maple_enode *next = *enode; 5299 void __rcu **slots = NULL; 5300 enum maple_type type; 5301 unsigned char next_offset = 0; 5302 5303 do { 5304 *enode = next; 5305 node = mte_to_node(*enode); 5306 type = mte_node_type(*enode); 5307 slots = ma_slots(node, type); 5308 next = mt_slot_locked(mt, slots, next_offset); 5309 if ((mte_dead_node(next))) 5310 next = mt_slot_locked(mt, slots, ++next_offset); 5311 5312 mte_set_node_dead(*enode); 5313 node->type = type; 5314 node->piv_parent = prev; 5315 node->parent_slot = offset; 5316 offset = next_offset; 5317 next_offset = 0; 5318 prev = *enode; 5319 } while (!mte_is_leaf(next)); 5320 5321 return slots; 5322 } 5323 5324 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt, 5325 bool free) 5326 { 5327 void __rcu **slots; 5328 struct maple_node *node = mte_to_node(enode); 5329 struct maple_enode *start; 5330 5331 if (mte_is_leaf(enode)) { 5332 node->type = mte_node_type(enode); 5333 goto free_leaf; 5334 } 5335 5336 start = enode; 5337 slots = mte_destroy_descend(&enode, mt, start, 0); 5338 node = mte_to_node(enode); // Updated in the above call. 5339 do { 5340 enum maple_type type; 5341 unsigned char offset; 5342 struct maple_enode *parent, *tmp; 5343 5344 node->slot_len = mte_dead_leaves(enode, mt, slots); 5345 if (free) 5346 mt_free_bulk(node->slot_len, slots); 5347 offset = node->parent_slot + 1; 5348 enode = node->piv_parent; 5349 if (mte_to_node(enode) == node) 5350 goto free_leaf; 5351 5352 type = mte_node_type(enode); 5353 slots = ma_slots(mte_to_node(enode), type); 5354 if (offset >= mt_slots[type]) 5355 goto next; 5356 5357 tmp = mt_slot_locked(mt, slots, offset); 5358 if (mte_node_type(tmp) && mte_to_node(tmp)) { 5359 parent = enode; 5360 enode = tmp; 5361 slots = mte_destroy_descend(&enode, mt, parent, offset); 5362 } 5363 next: 5364 node = mte_to_node(enode); 5365 } while (start != enode); 5366 5367 node = mte_to_node(enode); 5368 node->slot_len = mte_dead_leaves(enode, mt, slots); 5369 if (free) 5370 mt_free_bulk(node->slot_len, slots); 5371 5372 free_leaf: 5373 if (free) 5374 mt_free_rcu(&node->rcu); 5375 else 5376 mt_clear_meta(mt, node, node->type); 5377 } 5378 5379 /* 5380 * mte_destroy_walk() - Free a tree or sub-tree. 5381 * @enode: the encoded maple node (maple_enode) to start 5382 * @mt: the tree to free - needed for node types. 5383 * 5384 * Must hold the write lock. 5385 */ 5386 static inline void mte_destroy_walk(struct maple_enode *enode, 5387 struct maple_tree *mt) 5388 { 5389 struct maple_node *node = mte_to_node(enode); 5390 5391 if (mt_in_rcu(mt)) { 5392 mt_destroy_walk(enode, mt, false); 5393 call_rcu(&node->rcu, mt_free_walk); 5394 } else { 5395 mt_destroy_walk(enode, mt, true); 5396 } 5397 } 5398 /* Interface */ 5399 5400 /** 5401 * mas_store() - Store an @entry. 5402 * @mas: The maple state. 5403 * @entry: The entry to store. 5404 * 5405 * The @mas->index and @mas->last is used to set the range for the @entry. 5406 * 5407 * Return: the first entry between mas->index and mas->last or %NULL. 5408 */ 5409 void *mas_store(struct ma_state *mas, void *entry) 5410 { 5411 int request; 5412 MA_WR_STATE(wr_mas, mas, entry); 5413 5414 trace_ma_write(__func__, mas, 0, entry); 5415 #ifdef CONFIG_DEBUG_MAPLE_TREE 5416 if (MAS_WARN_ON(mas, mas->index > mas->last)) 5417 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry); 5418 5419 if (mas->index > mas->last) { 5420 mas_set_err(mas, -EINVAL); 5421 return NULL; 5422 } 5423 5424 #endif 5425 5426 /* 5427 * Storing is the same operation as insert with the added caveat that it 5428 * can overwrite entries. Although this seems simple enough, one may 5429 * want to examine what happens if a single store operation was to 5430 * overwrite multiple entries within a self-balancing B-Tree. 5431 */ 5432 mas_wr_prealloc_setup(&wr_mas); 5433 mas_wr_store_type(&wr_mas); 5434 if (mas->mas_flags & MA_STATE_PREALLOC) { 5435 mas_wr_store_entry(&wr_mas); 5436 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas)); 5437 return wr_mas.content; 5438 } 5439 5440 request = mas_prealloc_calc(mas, entry); 5441 if (!request) 5442 goto store; 5443 5444 mas_node_count(mas, request); 5445 if (mas_is_err(mas)) 5446 return NULL; 5447 5448 store: 5449 mas_wr_store_entry(&wr_mas); 5450 mas_destroy(mas); 5451 return wr_mas.content; 5452 } 5453 EXPORT_SYMBOL_GPL(mas_store); 5454 5455 /** 5456 * mas_store_gfp() - Store a value into the tree. 5457 * @mas: The maple state 5458 * @entry: The entry to store 5459 * @gfp: The GFP_FLAGS to use for allocations if necessary. 5460 * 5461 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 5462 * be allocated. 5463 */ 5464 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp) 5465 { 5466 unsigned long index = mas->index; 5467 unsigned long last = mas->last; 5468 MA_WR_STATE(wr_mas, mas, entry); 5469 int ret = 0; 5470 5471 retry: 5472 mas_wr_preallocate(&wr_mas, entry); 5473 if (unlikely(mas_nomem(mas, gfp))) { 5474 if (!entry) 5475 __mas_set_range(mas, index, last); 5476 goto retry; 5477 } 5478 5479 if (mas_is_err(mas)) { 5480 ret = xa_err(mas->node); 5481 goto out; 5482 } 5483 5484 mas_wr_store_entry(&wr_mas); 5485 out: 5486 mas_destroy(mas); 5487 return ret; 5488 } 5489 EXPORT_SYMBOL_GPL(mas_store_gfp); 5490 5491 /** 5492 * mas_store_prealloc() - Store a value into the tree using memory 5493 * preallocated in the maple state. 5494 * @mas: The maple state 5495 * @entry: The entry to store. 5496 */ 5497 void mas_store_prealloc(struct ma_state *mas, void *entry) 5498 { 5499 MA_WR_STATE(wr_mas, mas, entry); 5500 5501 if (mas->store_type == wr_store_root) { 5502 mas_wr_prealloc_setup(&wr_mas); 5503 goto store; 5504 } 5505 5506 mas_wr_walk_descend(&wr_mas); 5507 if (mas->store_type != wr_spanning_store) { 5508 /* set wr_mas->content to current slot */ 5509 wr_mas.content = mas_slot_locked(mas, wr_mas.slots, mas->offset); 5510 mas_wr_end_piv(&wr_mas); 5511 } 5512 5513 store: 5514 trace_ma_write(__func__, mas, 0, entry); 5515 mas_wr_store_entry(&wr_mas); 5516 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas)); 5517 mas_destroy(mas); 5518 } 5519 EXPORT_SYMBOL_GPL(mas_store_prealloc); 5520 5521 /** 5522 * mas_preallocate() - Preallocate enough nodes for a store operation 5523 * @mas: The maple state 5524 * @entry: The entry that will be stored 5525 * @gfp: The GFP_FLAGS to use for allocations. 5526 * 5527 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5528 */ 5529 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp) 5530 { 5531 MA_WR_STATE(wr_mas, mas, entry); 5532 int ret = 0; 5533 int request; 5534 5535 mas_wr_prealloc_setup(&wr_mas); 5536 mas_wr_store_type(&wr_mas); 5537 request = mas_prealloc_calc(mas, entry); 5538 if (!request) 5539 return ret; 5540 5541 mas_node_count_gfp(mas, request, gfp); 5542 if (mas_is_err(mas)) { 5543 mas_set_alloc_req(mas, 0); 5544 ret = xa_err(mas->node); 5545 mas_destroy(mas); 5546 mas_reset(mas); 5547 return ret; 5548 } 5549 5550 mas->mas_flags |= MA_STATE_PREALLOC; 5551 return ret; 5552 } 5553 EXPORT_SYMBOL_GPL(mas_preallocate); 5554 5555 /* 5556 * mas_destroy() - destroy a maple state. 5557 * @mas: The maple state 5558 * 5559 * Upon completion, check the left-most node and rebalance against the node to 5560 * the right if necessary. Frees any allocated nodes associated with this maple 5561 * state. 5562 */ 5563 void mas_destroy(struct ma_state *mas) 5564 { 5565 struct maple_alloc *node; 5566 unsigned long total; 5567 5568 /* 5569 * When using mas_for_each() to insert an expected number of elements, 5570 * it is possible that the number inserted is less than the expected 5571 * number. To fix an invalid final node, a check is performed here to 5572 * rebalance the previous node with the final node. 5573 */ 5574 if (mas->mas_flags & MA_STATE_REBALANCE) { 5575 unsigned char end; 5576 if (mas_is_err(mas)) 5577 mas_reset(mas); 5578 mas_start(mas); 5579 mtree_range_walk(mas); 5580 end = mas->end + 1; 5581 if (end < mt_min_slot_count(mas->node) - 1) 5582 mas_destroy_rebalance(mas, end); 5583 5584 mas->mas_flags &= ~MA_STATE_REBALANCE; 5585 } 5586 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC); 5587 5588 total = mas_allocated(mas); 5589 while (total) { 5590 node = mas->alloc; 5591 mas->alloc = node->slot[0]; 5592 if (node->node_count > 1) { 5593 size_t count = node->node_count - 1; 5594 5595 mt_free_bulk(count, (void __rcu **)&node->slot[1]); 5596 total -= count; 5597 } 5598 mt_free_one(ma_mnode_ptr(node)); 5599 total--; 5600 } 5601 5602 mas->alloc = NULL; 5603 } 5604 EXPORT_SYMBOL_GPL(mas_destroy); 5605 5606 /* 5607 * mas_expected_entries() - Set the expected number of entries that will be inserted. 5608 * @mas: The maple state 5609 * @nr_entries: The number of expected entries. 5610 * 5611 * This will attempt to pre-allocate enough nodes to store the expected number 5612 * of entries. The allocations will occur using the bulk allocator interface 5613 * for speed. Please call mas_destroy() on the @mas after inserting the entries 5614 * to ensure any unused nodes are freed. 5615 * 5616 * Return: 0 on success, -ENOMEM if memory could not be allocated. 5617 */ 5618 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries) 5619 { 5620 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2; 5621 struct maple_enode *enode = mas->node; 5622 int nr_nodes; 5623 int ret; 5624 5625 /* 5626 * Sometimes it is necessary to duplicate a tree to a new tree, such as 5627 * forking a process and duplicating the VMAs from one tree to a new 5628 * tree. When such a situation arises, it is known that the new tree is 5629 * not going to be used until the entire tree is populated. For 5630 * performance reasons, it is best to use a bulk load with RCU disabled. 5631 * This allows for optimistic splitting that favours the left and reuse 5632 * of nodes during the operation. 5633 */ 5634 5635 /* Optimize splitting for bulk insert in-order */ 5636 mas->mas_flags |= MA_STATE_BULK; 5637 5638 /* 5639 * Avoid overflow, assume a gap between each entry and a trailing null. 5640 * If this is wrong, it just means allocation can happen during 5641 * insertion of entries. 5642 */ 5643 nr_nodes = max(nr_entries, nr_entries * 2 + 1); 5644 if (!mt_is_alloc(mas->tree)) 5645 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2; 5646 5647 /* Leaves; reduce slots to keep space for expansion */ 5648 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2); 5649 /* Internal nodes */ 5650 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap); 5651 /* Add working room for split (2 nodes) + new parents */ 5652 mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL); 5653 5654 /* Detect if allocations run out */ 5655 mas->mas_flags |= MA_STATE_PREALLOC; 5656 5657 if (!mas_is_err(mas)) 5658 return 0; 5659 5660 ret = xa_err(mas->node); 5661 mas->node = enode; 5662 mas_destroy(mas); 5663 return ret; 5664 5665 } 5666 EXPORT_SYMBOL_GPL(mas_expected_entries); 5667 5668 static bool mas_next_setup(struct ma_state *mas, unsigned long max, 5669 void **entry) 5670 { 5671 bool was_none = mas_is_none(mas); 5672 5673 if (unlikely(mas->last >= max)) { 5674 mas->status = ma_overflow; 5675 return true; 5676 } 5677 5678 switch (mas->status) { 5679 case ma_active: 5680 return false; 5681 case ma_none: 5682 fallthrough; 5683 case ma_pause: 5684 mas->status = ma_start; 5685 fallthrough; 5686 case ma_start: 5687 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */ 5688 break; 5689 case ma_overflow: 5690 /* Overflowed before, but the max changed */ 5691 mas->status = ma_active; 5692 break; 5693 case ma_underflow: 5694 /* The user expects the mas to be one before where it is */ 5695 mas->status = ma_active; 5696 *entry = mas_walk(mas); 5697 if (*entry) 5698 return true; 5699 break; 5700 case ma_root: 5701 break; 5702 case ma_error: 5703 return true; 5704 } 5705 5706 if (likely(mas_is_active(mas))) /* Fast path */ 5707 return false; 5708 5709 if (mas_is_ptr(mas)) { 5710 *entry = NULL; 5711 if (was_none && mas->index == 0) { 5712 mas->index = mas->last = 0; 5713 return true; 5714 } 5715 mas->index = 1; 5716 mas->last = ULONG_MAX; 5717 mas->status = ma_none; 5718 return true; 5719 } 5720 5721 if (mas_is_none(mas)) 5722 return true; 5723 5724 return false; 5725 } 5726 5727 /** 5728 * mas_next() - Get the next entry. 5729 * @mas: The maple state 5730 * @max: The maximum index to check. 5731 * 5732 * Returns the next entry after @mas->index. 5733 * Must hold rcu_read_lock or the write lock. 5734 * Can return the zero entry. 5735 * 5736 * Return: The next entry or %NULL 5737 */ 5738 void *mas_next(struct ma_state *mas, unsigned long max) 5739 { 5740 void *entry = NULL; 5741 5742 if (mas_next_setup(mas, max, &entry)) 5743 return entry; 5744 5745 /* Retries on dead nodes handled by mas_next_slot */ 5746 return mas_next_slot(mas, max, false); 5747 } 5748 EXPORT_SYMBOL_GPL(mas_next); 5749 5750 /** 5751 * mas_next_range() - Advance the maple state to the next range 5752 * @mas: The maple state 5753 * @max: The maximum index to check. 5754 * 5755 * Sets @mas->index and @mas->last to the range. 5756 * Must hold rcu_read_lock or the write lock. 5757 * Can return the zero entry. 5758 * 5759 * Return: The next entry or %NULL 5760 */ 5761 void *mas_next_range(struct ma_state *mas, unsigned long max) 5762 { 5763 void *entry = NULL; 5764 5765 if (mas_next_setup(mas, max, &entry)) 5766 return entry; 5767 5768 /* Retries on dead nodes handled by mas_next_slot */ 5769 return mas_next_slot(mas, max, true); 5770 } 5771 EXPORT_SYMBOL_GPL(mas_next_range); 5772 5773 /** 5774 * mt_next() - get the next value in the maple tree 5775 * @mt: The maple tree 5776 * @index: The start index 5777 * @max: The maximum index to check 5778 * 5779 * Takes RCU read lock internally to protect the search, which does not 5780 * protect the returned pointer after dropping RCU read lock. 5781 * See also: Documentation/core-api/maple_tree.rst 5782 * 5783 * Return: The entry higher than @index or %NULL if nothing is found. 5784 */ 5785 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max) 5786 { 5787 void *entry = NULL; 5788 MA_STATE(mas, mt, index, index); 5789 5790 rcu_read_lock(); 5791 entry = mas_next(&mas, max); 5792 rcu_read_unlock(); 5793 return entry; 5794 } 5795 EXPORT_SYMBOL_GPL(mt_next); 5796 5797 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry) 5798 { 5799 if (unlikely(mas->index <= min)) { 5800 mas->status = ma_underflow; 5801 return true; 5802 } 5803 5804 switch (mas->status) { 5805 case ma_active: 5806 return false; 5807 case ma_start: 5808 break; 5809 case ma_none: 5810 fallthrough; 5811 case ma_pause: 5812 mas->status = ma_start; 5813 break; 5814 case ma_underflow: 5815 /* underflowed before but the min changed */ 5816 mas->status = ma_active; 5817 break; 5818 case ma_overflow: 5819 /* User expects mas to be one after where it is */ 5820 mas->status = ma_active; 5821 *entry = mas_walk(mas); 5822 if (*entry) 5823 return true; 5824 break; 5825 case ma_root: 5826 break; 5827 case ma_error: 5828 return true; 5829 } 5830 5831 if (mas_is_start(mas)) 5832 mas_walk(mas); 5833 5834 if (unlikely(mas_is_ptr(mas))) { 5835 if (!mas->index) { 5836 mas->status = ma_none; 5837 return true; 5838 } 5839 mas->index = mas->last = 0; 5840 *entry = mas_root(mas); 5841 return true; 5842 } 5843 5844 if (mas_is_none(mas)) { 5845 if (mas->index) { 5846 /* Walked to out-of-range pointer? */ 5847 mas->index = mas->last = 0; 5848 mas->status = ma_root; 5849 *entry = mas_root(mas); 5850 return true; 5851 } 5852 return true; 5853 } 5854 5855 return false; 5856 } 5857 5858 /** 5859 * mas_prev() - Get the previous entry 5860 * @mas: The maple state 5861 * @min: The minimum value to check. 5862 * 5863 * Must hold rcu_read_lock or the write lock. 5864 * Will reset mas to ma_start if the status is ma_none. Will stop on not 5865 * searchable nodes. 5866 * 5867 * Return: the previous value or %NULL. 5868 */ 5869 void *mas_prev(struct ma_state *mas, unsigned long min) 5870 { 5871 void *entry = NULL; 5872 5873 if (mas_prev_setup(mas, min, &entry)) 5874 return entry; 5875 5876 return mas_prev_slot(mas, min, false); 5877 } 5878 EXPORT_SYMBOL_GPL(mas_prev); 5879 5880 /** 5881 * mas_prev_range() - Advance to the previous range 5882 * @mas: The maple state 5883 * @min: The minimum value to check. 5884 * 5885 * Sets @mas->index and @mas->last to the range. 5886 * Must hold rcu_read_lock or the write lock. 5887 * Will reset mas to ma_start if the node is ma_none. Will stop on not 5888 * searchable nodes. 5889 * 5890 * Return: the previous value or %NULL. 5891 */ 5892 void *mas_prev_range(struct ma_state *mas, unsigned long min) 5893 { 5894 void *entry = NULL; 5895 5896 if (mas_prev_setup(mas, min, &entry)) 5897 return entry; 5898 5899 return mas_prev_slot(mas, min, true); 5900 } 5901 EXPORT_SYMBOL_GPL(mas_prev_range); 5902 5903 /** 5904 * mt_prev() - get the previous value in the maple tree 5905 * @mt: The maple tree 5906 * @index: The start index 5907 * @min: The minimum index to check 5908 * 5909 * Takes RCU read lock internally to protect the search, which does not 5910 * protect the returned pointer after dropping RCU read lock. 5911 * See also: Documentation/core-api/maple_tree.rst 5912 * 5913 * Return: The entry before @index or %NULL if nothing is found. 5914 */ 5915 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min) 5916 { 5917 void *entry = NULL; 5918 MA_STATE(mas, mt, index, index); 5919 5920 rcu_read_lock(); 5921 entry = mas_prev(&mas, min); 5922 rcu_read_unlock(); 5923 return entry; 5924 } 5925 EXPORT_SYMBOL_GPL(mt_prev); 5926 5927 /** 5928 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock. 5929 * @mas: The maple state to pause 5930 * 5931 * Some users need to pause a walk and drop the lock they're holding in 5932 * order to yield to a higher priority thread or carry out an operation 5933 * on an entry. Those users should call this function before they drop 5934 * the lock. It resets the @mas to be suitable for the next iteration 5935 * of the loop after the user has reacquired the lock. If most entries 5936 * found during a walk require you to call mas_pause(), the mt_for_each() 5937 * iterator may be more appropriate. 5938 * 5939 */ 5940 void mas_pause(struct ma_state *mas) 5941 { 5942 mas->status = ma_pause; 5943 mas->node = NULL; 5944 } 5945 EXPORT_SYMBOL_GPL(mas_pause); 5946 5947 /** 5948 * mas_find_setup() - Internal function to set up mas_find*(). 5949 * @mas: The maple state 5950 * @max: The maximum index 5951 * @entry: Pointer to the entry 5952 * 5953 * Returns: True if entry is the answer, false otherwise. 5954 */ 5955 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry) 5956 { 5957 switch (mas->status) { 5958 case ma_active: 5959 if (mas->last < max) 5960 return false; 5961 return true; 5962 case ma_start: 5963 break; 5964 case ma_pause: 5965 if (unlikely(mas->last >= max)) 5966 return true; 5967 5968 mas->index = ++mas->last; 5969 mas->status = ma_start; 5970 break; 5971 case ma_none: 5972 if (unlikely(mas->last >= max)) 5973 return true; 5974 5975 mas->index = mas->last; 5976 mas->status = ma_start; 5977 break; 5978 case ma_underflow: 5979 /* mas is pointing at entry before unable to go lower */ 5980 if (unlikely(mas->index >= max)) { 5981 mas->status = ma_overflow; 5982 return true; 5983 } 5984 5985 mas->status = ma_active; 5986 *entry = mas_walk(mas); 5987 if (*entry) 5988 return true; 5989 break; 5990 case ma_overflow: 5991 if (unlikely(mas->last >= max)) 5992 return true; 5993 5994 mas->status = ma_active; 5995 *entry = mas_walk(mas); 5996 if (*entry) 5997 return true; 5998 break; 5999 case ma_root: 6000 break; 6001 case ma_error: 6002 return true; 6003 } 6004 6005 if (mas_is_start(mas)) { 6006 /* First run or continue */ 6007 if (mas->index > max) 6008 return true; 6009 6010 *entry = mas_walk(mas); 6011 if (*entry) 6012 return true; 6013 6014 } 6015 6016 if (unlikely(mas_is_ptr(mas))) 6017 goto ptr_out_of_range; 6018 6019 if (unlikely(mas_is_none(mas))) 6020 return true; 6021 6022 if (mas->index == max) 6023 return true; 6024 6025 return false; 6026 6027 ptr_out_of_range: 6028 mas->status = ma_none; 6029 mas->index = 1; 6030 mas->last = ULONG_MAX; 6031 return true; 6032 } 6033 6034 /** 6035 * mas_find() - On the first call, find the entry at or after mas->index up to 6036 * %max. Otherwise, find the entry after mas->index. 6037 * @mas: The maple state 6038 * @max: The maximum value to check. 6039 * 6040 * Must hold rcu_read_lock or the write lock. 6041 * If an entry exists, last and index are updated accordingly. 6042 * May set @mas->status to ma_overflow. 6043 * 6044 * Return: The entry or %NULL. 6045 */ 6046 void *mas_find(struct ma_state *mas, unsigned long max) 6047 { 6048 void *entry = NULL; 6049 6050 if (mas_find_setup(mas, max, &entry)) 6051 return entry; 6052 6053 /* Retries on dead nodes handled by mas_next_slot */ 6054 entry = mas_next_slot(mas, max, false); 6055 /* Ignore overflow */ 6056 mas->status = ma_active; 6057 return entry; 6058 } 6059 EXPORT_SYMBOL_GPL(mas_find); 6060 6061 /** 6062 * mas_find_range() - On the first call, find the entry at or after 6063 * mas->index up to %max. Otherwise, advance to the next slot mas->index. 6064 * @mas: The maple state 6065 * @max: The maximum value to check. 6066 * 6067 * Must hold rcu_read_lock or the write lock. 6068 * If an entry exists, last and index are updated accordingly. 6069 * May set @mas->status to ma_overflow. 6070 * 6071 * Return: The entry or %NULL. 6072 */ 6073 void *mas_find_range(struct ma_state *mas, unsigned long max) 6074 { 6075 void *entry = NULL; 6076 6077 if (mas_find_setup(mas, max, &entry)) 6078 return entry; 6079 6080 /* Retries on dead nodes handled by mas_next_slot */ 6081 return mas_next_slot(mas, max, true); 6082 } 6083 EXPORT_SYMBOL_GPL(mas_find_range); 6084 6085 /** 6086 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev() 6087 * @mas: The maple state 6088 * @min: The minimum index 6089 * @entry: Pointer to the entry 6090 * 6091 * Returns: True if entry is the answer, false otherwise. 6092 */ 6093 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min, 6094 void **entry) 6095 { 6096 6097 switch (mas->status) { 6098 case ma_active: 6099 goto active; 6100 case ma_start: 6101 break; 6102 case ma_pause: 6103 if (unlikely(mas->index <= min)) { 6104 mas->status = ma_underflow; 6105 return true; 6106 } 6107 mas->last = --mas->index; 6108 mas->status = ma_start; 6109 break; 6110 case ma_none: 6111 if (mas->index <= min) 6112 goto none; 6113 6114 mas->last = mas->index; 6115 mas->status = ma_start; 6116 break; 6117 case ma_overflow: /* user expects the mas to be one after where it is */ 6118 if (unlikely(mas->index <= min)) { 6119 mas->status = ma_underflow; 6120 return true; 6121 } 6122 6123 mas->status = ma_active; 6124 break; 6125 case ma_underflow: /* user expects the mas to be one before where it is */ 6126 if (unlikely(mas->index <= min)) 6127 return true; 6128 6129 mas->status = ma_active; 6130 break; 6131 case ma_root: 6132 break; 6133 case ma_error: 6134 return true; 6135 } 6136 6137 if (mas_is_start(mas)) { 6138 /* First run or continue */ 6139 if (mas->index < min) 6140 return true; 6141 6142 *entry = mas_walk(mas); 6143 if (*entry) 6144 return true; 6145 } 6146 6147 if (unlikely(mas_is_ptr(mas))) 6148 goto none; 6149 6150 if (unlikely(mas_is_none(mas))) { 6151 /* 6152 * Walked to the location, and there was nothing so the previous 6153 * location is 0. 6154 */ 6155 mas->last = mas->index = 0; 6156 mas->status = ma_root; 6157 *entry = mas_root(mas); 6158 return true; 6159 } 6160 6161 active: 6162 if (mas->index < min) 6163 return true; 6164 6165 return false; 6166 6167 none: 6168 mas->status = ma_none; 6169 return true; 6170 } 6171 6172 /** 6173 * mas_find_rev: On the first call, find the first non-null entry at or below 6174 * mas->index down to %min. Otherwise find the first non-null entry below 6175 * mas->index down to %min. 6176 * @mas: The maple state 6177 * @min: The minimum value to check. 6178 * 6179 * Must hold rcu_read_lock or the write lock. 6180 * If an entry exists, last and index are updated accordingly. 6181 * May set @mas->status to ma_underflow. 6182 * 6183 * Return: The entry or %NULL. 6184 */ 6185 void *mas_find_rev(struct ma_state *mas, unsigned long min) 6186 { 6187 void *entry = NULL; 6188 6189 if (mas_find_rev_setup(mas, min, &entry)) 6190 return entry; 6191 6192 /* Retries on dead nodes handled by mas_prev_slot */ 6193 return mas_prev_slot(mas, min, false); 6194 6195 } 6196 EXPORT_SYMBOL_GPL(mas_find_rev); 6197 6198 /** 6199 * mas_find_range_rev: On the first call, find the first non-null entry at or 6200 * below mas->index down to %min. Otherwise advance to the previous slot after 6201 * mas->index down to %min. 6202 * @mas: The maple state 6203 * @min: The minimum value to check. 6204 * 6205 * Must hold rcu_read_lock or the write lock. 6206 * If an entry exists, last and index are updated accordingly. 6207 * May set @mas->status to ma_underflow. 6208 * 6209 * Return: The entry or %NULL. 6210 */ 6211 void *mas_find_range_rev(struct ma_state *mas, unsigned long min) 6212 { 6213 void *entry = NULL; 6214 6215 if (mas_find_rev_setup(mas, min, &entry)) 6216 return entry; 6217 6218 /* Retries on dead nodes handled by mas_prev_slot */ 6219 return mas_prev_slot(mas, min, true); 6220 } 6221 EXPORT_SYMBOL_GPL(mas_find_range_rev); 6222 6223 /** 6224 * mas_erase() - Find the range in which index resides and erase the entire 6225 * range. 6226 * @mas: The maple state 6227 * 6228 * Must hold the write lock. 6229 * Searches for @mas->index, sets @mas->index and @mas->last to the range and 6230 * erases that range. 6231 * 6232 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated. 6233 */ 6234 void *mas_erase(struct ma_state *mas) 6235 { 6236 void *entry; 6237 unsigned long index = mas->index; 6238 MA_WR_STATE(wr_mas, mas, NULL); 6239 6240 if (!mas_is_active(mas) || !mas_is_start(mas)) 6241 mas->status = ma_start; 6242 6243 write_retry: 6244 entry = mas_state_walk(mas); 6245 if (!entry) 6246 return NULL; 6247 6248 /* Must reset to ensure spanning writes of last slot are detected */ 6249 mas_reset(mas); 6250 mas_wr_preallocate(&wr_mas, NULL); 6251 if (mas_nomem(mas, GFP_KERNEL)) { 6252 /* in case the range of entry changed when unlocked */ 6253 mas->index = mas->last = index; 6254 goto write_retry; 6255 } 6256 6257 if (mas_is_err(mas)) 6258 goto out; 6259 6260 mas_wr_store_entry(&wr_mas); 6261 out: 6262 mas_destroy(mas); 6263 return entry; 6264 } 6265 EXPORT_SYMBOL_GPL(mas_erase); 6266 6267 /** 6268 * mas_nomem() - Check if there was an error allocating and do the allocation 6269 * if necessary If there are allocations, then free them. 6270 * @mas: The maple state 6271 * @gfp: The GFP_FLAGS to use for allocations 6272 * Return: true on allocation, false otherwise. 6273 */ 6274 bool mas_nomem(struct ma_state *mas, gfp_t gfp) 6275 __must_hold(mas->tree->ma_lock) 6276 { 6277 if (likely(mas->node != MA_ERROR(-ENOMEM))) 6278 return false; 6279 6280 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) { 6281 mtree_unlock(mas->tree); 6282 mas_alloc_nodes(mas, gfp); 6283 mtree_lock(mas->tree); 6284 } else { 6285 mas_alloc_nodes(mas, gfp); 6286 } 6287 6288 if (!mas_allocated(mas)) 6289 return false; 6290 6291 mas->status = ma_start; 6292 return true; 6293 } 6294 6295 void __init maple_tree_init(void) 6296 { 6297 maple_node_cache = kmem_cache_create("maple_node", 6298 sizeof(struct maple_node), sizeof(struct maple_node), 6299 SLAB_PANIC, NULL); 6300 } 6301 6302 /** 6303 * mtree_load() - Load a value stored in a maple tree 6304 * @mt: The maple tree 6305 * @index: The index to load 6306 * 6307 * Return: the entry or %NULL 6308 */ 6309 void *mtree_load(struct maple_tree *mt, unsigned long index) 6310 { 6311 MA_STATE(mas, mt, index, index); 6312 void *entry; 6313 6314 trace_ma_read(__func__, &mas); 6315 rcu_read_lock(); 6316 retry: 6317 entry = mas_start(&mas); 6318 if (unlikely(mas_is_none(&mas))) 6319 goto unlock; 6320 6321 if (unlikely(mas_is_ptr(&mas))) { 6322 if (index) 6323 entry = NULL; 6324 6325 goto unlock; 6326 } 6327 6328 entry = mtree_lookup_walk(&mas); 6329 if (!entry && unlikely(mas_is_start(&mas))) 6330 goto retry; 6331 unlock: 6332 rcu_read_unlock(); 6333 if (xa_is_zero(entry)) 6334 return NULL; 6335 6336 return entry; 6337 } 6338 EXPORT_SYMBOL(mtree_load); 6339 6340 /** 6341 * mtree_store_range() - Store an entry at a given range. 6342 * @mt: The maple tree 6343 * @index: The start of the range 6344 * @last: The end of the range 6345 * @entry: The entry to store 6346 * @gfp: The GFP_FLAGS to use for allocations 6347 * 6348 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6349 * be allocated. 6350 */ 6351 int mtree_store_range(struct maple_tree *mt, unsigned long index, 6352 unsigned long last, void *entry, gfp_t gfp) 6353 { 6354 MA_STATE(mas, mt, index, last); 6355 int ret = 0; 6356 6357 trace_ma_write(__func__, &mas, 0, entry); 6358 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6359 return -EINVAL; 6360 6361 if (index > last) 6362 return -EINVAL; 6363 6364 mtree_lock(mt); 6365 ret = mas_store_gfp(&mas, entry, gfp); 6366 mtree_unlock(mt); 6367 6368 return ret; 6369 } 6370 EXPORT_SYMBOL(mtree_store_range); 6371 6372 /** 6373 * mtree_store() - Store an entry at a given index. 6374 * @mt: The maple tree 6375 * @index: The index to store the value 6376 * @entry: The entry to store 6377 * @gfp: The GFP_FLAGS to use for allocations 6378 * 6379 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not 6380 * be allocated. 6381 */ 6382 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry, 6383 gfp_t gfp) 6384 { 6385 return mtree_store_range(mt, index, index, entry, gfp); 6386 } 6387 EXPORT_SYMBOL(mtree_store); 6388 6389 /** 6390 * mtree_insert_range() - Insert an entry at a given range if there is no value. 6391 * @mt: The maple tree 6392 * @first: The start of the range 6393 * @last: The end of the range 6394 * @entry: The entry to store 6395 * @gfp: The GFP_FLAGS to use for allocations. 6396 * 6397 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6398 * request, -ENOMEM if memory could not be allocated. 6399 */ 6400 int mtree_insert_range(struct maple_tree *mt, unsigned long first, 6401 unsigned long last, void *entry, gfp_t gfp) 6402 { 6403 MA_STATE(ms, mt, first, last); 6404 int ret = 0; 6405 6406 if (WARN_ON_ONCE(xa_is_advanced(entry))) 6407 return -EINVAL; 6408 6409 if (first > last) 6410 return -EINVAL; 6411 6412 mtree_lock(mt); 6413 retry: 6414 mas_insert(&ms, entry); 6415 if (mas_nomem(&ms, gfp)) 6416 goto retry; 6417 6418 mtree_unlock(mt); 6419 if (mas_is_err(&ms)) 6420 ret = xa_err(ms.node); 6421 6422 mas_destroy(&ms); 6423 return ret; 6424 } 6425 EXPORT_SYMBOL(mtree_insert_range); 6426 6427 /** 6428 * mtree_insert() - Insert an entry at a given index if there is no value. 6429 * @mt: The maple tree 6430 * @index : The index to store the value 6431 * @entry: The entry to store 6432 * @gfp: The GFP_FLAGS to use for allocations. 6433 * 6434 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid 6435 * request, -ENOMEM if memory could not be allocated. 6436 */ 6437 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry, 6438 gfp_t gfp) 6439 { 6440 return mtree_insert_range(mt, index, index, entry, gfp); 6441 } 6442 EXPORT_SYMBOL(mtree_insert); 6443 6444 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp, 6445 void *entry, unsigned long size, unsigned long min, 6446 unsigned long max, gfp_t gfp) 6447 { 6448 int ret = 0; 6449 6450 MA_STATE(mas, mt, 0, 0); 6451 if (!mt_is_alloc(mt)) 6452 return -EINVAL; 6453 6454 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6455 return -EINVAL; 6456 6457 mtree_lock(mt); 6458 retry: 6459 ret = mas_empty_area(&mas, min, max, size); 6460 if (ret) 6461 goto unlock; 6462 6463 mas_insert(&mas, entry); 6464 /* 6465 * mas_nomem() may release the lock, causing the allocated area 6466 * to be unavailable, so try to allocate a free area again. 6467 */ 6468 if (mas_nomem(&mas, gfp)) 6469 goto retry; 6470 6471 if (mas_is_err(&mas)) 6472 ret = xa_err(mas.node); 6473 else 6474 *startp = mas.index; 6475 6476 unlock: 6477 mtree_unlock(mt); 6478 mas_destroy(&mas); 6479 return ret; 6480 } 6481 EXPORT_SYMBOL(mtree_alloc_range); 6482 6483 /** 6484 * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree. 6485 * @mt: The maple tree. 6486 * @startp: Pointer to ID. 6487 * @range_lo: Lower bound of range to search. 6488 * @range_hi: Upper bound of range to search. 6489 * @entry: The entry to store. 6490 * @next: Pointer to next ID to allocate. 6491 * @gfp: The GFP_FLAGS to use for allocations. 6492 * 6493 * Finds an empty entry in @mt after @next, stores the new index into 6494 * the @id pointer, stores the entry at that index, then updates @next. 6495 * 6496 * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag. 6497 * 6498 * Context: Any context. Takes and releases the mt.lock. May sleep if 6499 * the @gfp flags permit. 6500 * 6501 * Return: 0 if the allocation succeeded without wrapping, 1 if the 6502 * allocation succeeded after wrapping, -ENOMEM if memory could not be 6503 * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no 6504 * free entries. 6505 */ 6506 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp, 6507 void *entry, unsigned long range_lo, unsigned long range_hi, 6508 unsigned long *next, gfp_t gfp) 6509 { 6510 int ret; 6511 6512 MA_STATE(mas, mt, 0, 0); 6513 6514 if (!mt_is_alloc(mt)) 6515 return -EINVAL; 6516 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6517 return -EINVAL; 6518 mtree_lock(mt); 6519 ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi, 6520 next, gfp); 6521 mtree_unlock(mt); 6522 return ret; 6523 } 6524 EXPORT_SYMBOL(mtree_alloc_cyclic); 6525 6526 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp, 6527 void *entry, unsigned long size, unsigned long min, 6528 unsigned long max, gfp_t gfp) 6529 { 6530 int ret = 0; 6531 6532 MA_STATE(mas, mt, 0, 0); 6533 if (!mt_is_alloc(mt)) 6534 return -EINVAL; 6535 6536 if (WARN_ON_ONCE(mt_is_reserved(entry))) 6537 return -EINVAL; 6538 6539 mtree_lock(mt); 6540 retry: 6541 ret = mas_empty_area_rev(&mas, min, max, size); 6542 if (ret) 6543 goto unlock; 6544 6545 mas_insert(&mas, entry); 6546 /* 6547 * mas_nomem() may release the lock, causing the allocated area 6548 * to be unavailable, so try to allocate a free area again. 6549 */ 6550 if (mas_nomem(&mas, gfp)) 6551 goto retry; 6552 6553 if (mas_is_err(&mas)) 6554 ret = xa_err(mas.node); 6555 else 6556 *startp = mas.index; 6557 6558 unlock: 6559 mtree_unlock(mt); 6560 mas_destroy(&mas); 6561 return ret; 6562 } 6563 EXPORT_SYMBOL(mtree_alloc_rrange); 6564 6565 /** 6566 * mtree_erase() - Find an index and erase the entire range. 6567 * @mt: The maple tree 6568 * @index: The index to erase 6569 * 6570 * Erasing is the same as a walk to an entry then a store of a NULL to that 6571 * ENTIRE range. In fact, it is implemented as such using the advanced API. 6572 * 6573 * Return: The entry stored at the @index or %NULL 6574 */ 6575 void *mtree_erase(struct maple_tree *mt, unsigned long index) 6576 { 6577 void *entry = NULL; 6578 6579 MA_STATE(mas, mt, index, index); 6580 trace_ma_op(__func__, &mas); 6581 6582 mtree_lock(mt); 6583 entry = mas_erase(&mas); 6584 mtree_unlock(mt); 6585 6586 return entry; 6587 } 6588 EXPORT_SYMBOL(mtree_erase); 6589 6590 /* 6591 * mas_dup_free() - Free an incomplete duplication of a tree. 6592 * @mas: The maple state of a incomplete tree. 6593 * 6594 * The parameter @mas->node passed in indicates that the allocation failed on 6595 * this node. This function frees all nodes starting from @mas->node in the 6596 * reverse order of mas_dup_build(). There is no need to hold the source tree 6597 * lock at this time. 6598 */ 6599 static void mas_dup_free(struct ma_state *mas) 6600 { 6601 struct maple_node *node; 6602 enum maple_type type; 6603 void __rcu **slots; 6604 unsigned char count, i; 6605 6606 /* Maybe the first node allocation failed. */ 6607 if (mas_is_none(mas)) 6608 return; 6609 6610 while (!mte_is_root(mas->node)) { 6611 mas_ascend(mas); 6612 if (mas->offset) { 6613 mas->offset--; 6614 do { 6615 mas_descend(mas); 6616 mas->offset = mas_data_end(mas); 6617 } while (!mte_is_leaf(mas->node)); 6618 6619 mas_ascend(mas); 6620 } 6621 6622 node = mte_to_node(mas->node); 6623 type = mte_node_type(mas->node); 6624 slots = ma_slots(node, type); 6625 count = mas_data_end(mas) + 1; 6626 for (i = 0; i < count; i++) 6627 ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK; 6628 mt_free_bulk(count, slots); 6629 } 6630 6631 node = mte_to_node(mas->node); 6632 mt_free_one(node); 6633 } 6634 6635 /* 6636 * mas_copy_node() - Copy a maple node and replace the parent. 6637 * @mas: The maple state of source tree. 6638 * @new_mas: The maple state of new tree. 6639 * @parent: The parent of the new node. 6640 * 6641 * Copy @mas->node to @new_mas->node, set @parent to be the parent of 6642 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM. 6643 */ 6644 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas, 6645 struct maple_pnode *parent) 6646 { 6647 struct maple_node *node = mte_to_node(mas->node); 6648 struct maple_node *new_node = mte_to_node(new_mas->node); 6649 unsigned long val; 6650 6651 /* Copy the node completely. */ 6652 memcpy(new_node, node, sizeof(struct maple_node)); 6653 /* Update the parent node pointer. */ 6654 val = (unsigned long)node->parent & MAPLE_NODE_MASK; 6655 new_node->parent = ma_parent_ptr(val | (unsigned long)parent); 6656 } 6657 6658 /* 6659 * mas_dup_alloc() - Allocate child nodes for a maple node. 6660 * @mas: The maple state of source tree. 6661 * @new_mas: The maple state of new tree. 6662 * @gfp: The GFP_FLAGS to use for allocations. 6663 * 6664 * This function allocates child nodes for @new_mas->node during the duplication 6665 * process. If memory allocation fails, @mas is set to -ENOMEM. 6666 */ 6667 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas, 6668 gfp_t gfp) 6669 { 6670 struct maple_node *node = mte_to_node(mas->node); 6671 struct maple_node *new_node = mte_to_node(new_mas->node); 6672 enum maple_type type; 6673 unsigned char request, count, i; 6674 void __rcu **slots; 6675 void __rcu **new_slots; 6676 unsigned long val; 6677 6678 /* Allocate memory for child nodes. */ 6679 type = mte_node_type(mas->node); 6680 new_slots = ma_slots(new_node, type); 6681 request = mas_data_end(mas) + 1; 6682 count = mt_alloc_bulk(gfp, request, (void **)new_slots); 6683 if (unlikely(count < request)) { 6684 memset(new_slots, 0, request * sizeof(void *)); 6685 mas_set_err(mas, -ENOMEM); 6686 return; 6687 } 6688 6689 /* Restore node type information in slots. */ 6690 slots = ma_slots(node, type); 6691 for (i = 0; i < count; i++) { 6692 val = (unsigned long)mt_slot_locked(mas->tree, slots, i); 6693 val &= MAPLE_NODE_MASK; 6694 ((unsigned long *)new_slots)[i] |= val; 6695 } 6696 } 6697 6698 /* 6699 * mas_dup_build() - Build a new maple tree from a source tree 6700 * @mas: The maple state of source tree, need to be in MAS_START state. 6701 * @new_mas: The maple state of new tree, need to be in MAS_START state. 6702 * @gfp: The GFP_FLAGS to use for allocations. 6703 * 6704 * This function builds a new tree in DFS preorder. If the memory allocation 6705 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the 6706 * last node. mas_dup_free() will free the incomplete duplication of a tree. 6707 * 6708 * Note that the attributes of the two trees need to be exactly the same, and the 6709 * new tree needs to be empty, otherwise -EINVAL will be set in @mas. 6710 */ 6711 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas, 6712 gfp_t gfp) 6713 { 6714 struct maple_node *node; 6715 struct maple_pnode *parent = NULL; 6716 struct maple_enode *root; 6717 enum maple_type type; 6718 6719 if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) || 6720 unlikely(!mtree_empty(new_mas->tree))) { 6721 mas_set_err(mas, -EINVAL); 6722 return; 6723 } 6724 6725 root = mas_start(mas); 6726 if (mas_is_ptr(mas) || mas_is_none(mas)) 6727 goto set_new_tree; 6728 6729 node = mt_alloc_one(gfp); 6730 if (!node) { 6731 new_mas->status = ma_none; 6732 mas_set_err(mas, -ENOMEM); 6733 return; 6734 } 6735 6736 type = mte_node_type(mas->node); 6737 root = mt_mk_node(node, type); 6738 new_mas->node = root; 6739 new_mas->min = 0; 6740 new_mas->max = ULONG_MAX; 6741 root = mte_mk_root(root); 6742 while (1) { 6743 mas_copy_node(mas, new_mas, parent); 6744 if (!mte_is_leaf(mas->node)) { 6745 /* Only allocate child nodes for non-leaf nodes. */ 6746 mas_dup_alloc(mas, new_mas, gfp); 6747 if (unlikely(mas_is_err(mas))) 6748 return; 6749 } else { 6750 /* 6751 * This is the last leaf node and duplication is 6752 * completed. 6753 */ 6754 if (mas->max == ULONG_MAX) 6755 goto done; 6756 6757 /* This is not the last leaf node and needs to go up. */ 6758 do { 6759 mas_ascend(mas); 6760 mas_ascend(new_mas); 6761 } while (mas->offset == mas_data_end(mas)); 6762 6763 /* Move to the next subtree. */ 6764 mas->offset++; 6765 new_mas->offset++; 6766 } 6767 6768 mas_descend(mas); 6769 parent = ma_parent_ptr(mte_to_node(new_mas->node)); 6770 mas_descend(new_mas); 6771 mas->offset = 0; 6772 new_mas->offset = 0; 6773 } 6774 done: 6775 /* Specially handle the parent of the root node. */ 6776 mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas)); 6777 set_new_tree: 6778 /* Make them the same height */ 6779 new_mas->tree->ma_flags = mas->tree->ma_flags; 6780 rcu_assign_pointer(new_mas->tree->ma_root, root); 6781 } 6782 6783 /** 6784 * __mt_dup(): Duplicate an entire maple tree 6785 * @mt: The source maple tree 6786 * @new: The new maple tree 6787 * @gfp: The GFP_FLAGS to use for allocations 6788 * 6789 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order 6790 * traversal. It uses memcpy() to copy nodes in the source tree and allocate 6791 * new child nodes in non-leaf nodes. The new node is exactly the same as the 6792 * source node except for all the addresses stored in it. It will be faster than 6793 * traversing all elements in the source tree and inserting them one by one into 6794 * the new tree. 6795 * The user needs to ensure that the attributes of the source tree and the new 6796 * tree are the same, and the new tree needs to be an empty tree, otherwise 6797 * -EINVAL will be returned. 6798 * Note that the user needs to manually lock the source tree and the new tree. 6799 * 6800 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If 6801 * the attributes of the two trees are different or the new tree is not an empty 6802 * tree. 6803 */ 6804 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp) 6805 { 6806 int ret = 0; 6807 MA_STATE(mas, mt, 0, 0); 6808 MA_STATE(new_mas, new, 0, 0); 6809 6810 mas_dup_build(&mas, &new_mas, gfp); 6811 if (unlikely(mas_is_err(&mas))) { 6812 ret = xa_err(mas.node); 6813 if (ret == -ENOMEM) 6814 mas_dup_free(&new_mas); 6815 } 6816 6817 return ret; 6818 } 6819 EXPORT_SYMBOL(__mt_dup); 6820 6821 /** 6822 * mtree_dup(): Duplicate an entire maple tree 6823 * @mt: The source maple tree 6824 * @new: The new maple tree 6825 * @gfp: The GFP_FLAGS to use for allocations 6826 * 6827 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order 6828 * traversal. It uses memcpy() to copy nodes in the source tree and allocate 6829 * new child nodes in non-leaf nodes. The new node is exactly the same as the 6830 * source node except for all the addresses stored in it. It will be faster than 6831 * traversing all elements in the source tree and inserting them one by one into 6832 * the new tree. 6833 * The user needs to ensure that the attributes of the source tree and the new 6834 * tree are the same, and the new tree needs to be an empty tree, otherwise 6835 * -EINVAL will be returned. 6836 * 6837 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If 6838 * the attributes of the two trees are different or the new tree is not an empty 6839 * tree. 6840 */ 6841 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp) 6842 { 6843 int ret = 0; 6844 MA_STATE(mas, mt, 0, 0); 6845 MA_STATE(new_mas, new, 0, 0); 6846 6847 mas_lock(&new_mas); 6848 mas_lock_nested(&mas, SINGLE_DEPTH_NESTING); 6849 mas_dup_build(&mas, &new_mas, gfp); 6850 mas_unlock(&mas); 6851 if (unlikely(mas_is_err(&mas))) { 6852 ret = xa_err(mas.node); 6853 if (ret == -ENOMEM) 6854 mas_dup_free(&new_mas); 6855 } 6856 6857 mas_unlock(&new_mas); 6858 return ret; 6859 } 6860 EXPORT_SYMBOL(mtree_dup); 6861 6862 /** 6863 * __mt_destroy() - Walk and free all nodes of a locked maple tree. 6864 * @mt: The maple tree 6865 * 6866 * Note: Does not handle locking. 6867 */ 6868 void __mt_destroy(struct maple_tree *mt) 6869 { 6870 void *root = mt_root_locked(mt); 6871 6872 rcu_assign_pointer(mt->ma_root, NULL); 6873 if (xa_is_node(root)) 6874 mte_destroy_walk(root, mt); 6875 6876 mt->ma_flags = mt_attr(mt); 6877 } 6878 EXPORT_SYMBOL_GPL(__mt_destroy); 6879 6880 /** 6881 * mtree_destroy() - Destroy a maple tree 6882 * @mt: The maple tree 6883 * 6884 * Frees all resources used by the tree. Handles locking. 6885 */ 6886 void mtree_destroy(struct maple_tree *mt) 6887 { 6888 mtree_lock(mt); 6889 __mt_destroy(mt); 6890 mtree_unlock(mt); 6891 } 6892 EXPORT_SYMBOL(mtree_destroy); 6893 6894 /** 6895 * mt_find() - Search from the start up until an entry is found. 6896 * @mt: The maple tree 6897 * @index: Pointer which contains the start location of the search 6898 * @max: The maximum value of the search range 6899 * 6900 * Takes RCU read lock internally to protect the search, which does not 6901 * protect the returned pointer after dropping RCU read lock. 6902 * See also: Documentation/core-api/maple_tree.rst 6903 * 6904 * In case that an entry is found @index is updated to point to the next 6905 * possible entry independent whether the found entry is occupying a 6906 * single index or a range if indices. 6907 * 6908 * Return: The entry at or after the @index or %NULL 6909 */ 6910 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max) 6911 { 6912 MA_STATE(mas, mt, *index, *index); 6913 void *entry; 6914 #ifdef CONFIG_DEBUG_MAPLE_TREE 6915 unsigned long copy = *index; 6916 #endif 6917 6918 trace_ma_read(__func__, &mas); 6919 6920 if ((*index) > max) 6921 return NULL; 6922 6923 rcu_read_lock(); 6924 retry: 6925 entry = mas_state_walk(&mas); 6926 if (mas_is_start(&mas)) 6927 goto retry; 6928 6929 if (unlikely(xa_is_zero(entry))) 6930 entry = NULL; 6931 6932 if (entry) 6933 goto unlock; 6934 6935 while (mas_is_active(&mas) && (mas.last < max)) { 6936 entry = mas_next_entry(&mas, max); 6937 if (likely(entry && !xa_is_zero(entry))) 6938 break; 6939 } 6940 6941 if (unlikely(xa_is_zero(entry))) 6942 entry = NULL; 6943 unlock: 6944 rcu_read_unlock(); 6945 if (likely(entry)) { 6946 *index = mas.last + 1; 6947 #ifdef CONFIG_DEBUG_MAPLE_TREE 6948 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy))) 6949 pr_err("index not increased! %lx <= %lx\n", 6950 *index, copy); 6951 #endif 6952 } 6953 6954 return entry; 6955 } 6956 EXPORT_SYMBOL(mt_find); 6957 6958 /** 6959 * mt_find_after() - Search from the start up until an entry is found. 6960 * @mt: The maple tree 6961 * @index: Pointer which contains the start location of the search 6962 * @max: The maximum value to check 6963 * 6964 * Same as mt_find() except that it checks @index for 0 before 6965 * searching. If @index == 0, the search is aborted. This covers a wrap 6966 * around of @index to 0 in an iterator loop. 6967 * 6968 * Return: The entry at or after the @index or %NULL 6969 */ 6970 void *mt_find_after(struct maple_tree *mt, unsigned long *index, 6971 unsigned long max) 6972 { 6973 if (!(*index)) 6974 return NULL; 6975 6976 return mt_find(mt, index, max); 6977 } 6978 EXPORT_SYMBOL(mt_find_after); 6979 6980 #ifdef CONFIG_DEBUG_MAPLE_TREE 6981 atomic_t maple_tree_tests_run; 6982 EXPORT_SYMBOL_GPL(maple_tree_tests_run); 6983 atomic_t maple_tree_tests_passed; 6984 EXPORT_SYMBOL_GPL(maple_tree_tests_passed); 6985 6986 #ifndef __KERNEL__ 6987 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int); 6988 void mt_set_non_kernel(unsigned int val) 6989 { 6990 kmem_cache_set_non_kernel(maple_node_cache, val); 6991 } 6992 6993 extern void kmem_cache_set_callback(struct kmem_cache *cachep, 6994 void (*callback)(void *)); 6995 void mt_set_callback(void (*callback)(void *)) 6996 { 6997 kmem_cache_set_callback(maple_node_cache, callback); 6998 } 6999 7000 extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private); 7001 void mt_set_private(void *private) 7002 { 7003 kmem_cache_set_private(maple_node_cache, private); 7004 } 7005 7006 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *); 7007 unsigned long mt_get_alloc_size(void) 7008 { 7009 return kmem_cache_get_alloc(maple_node_cache); 7010 } 7011 7012 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *); 7013 void mt_zero_nr_tallocated(void) 7014 { 7015 kmem_cache_zero_nr_tallocated(maple_node_cache); 7016 } 7017 7018 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *); 7019 unsigned int mt_nr_tallocated(void) 7020 { 7021 return kmem_cache_nr_tallocated(maple_node_cache); 7022 } 7023 7024 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *); 7025 unsigned int mt_nr_allocated(void) 7026 { 7027 return kmem_cache_nr_allocated(maple_node_cache); 7028 } 7029 7030 void mt_cache_shrink(void) 7031 { 7032 } 7033 #else 7034 /* 7035 * mt_cache_shrink() - For testing, don't use this. 7036 * 7037 * Certain testcases can trigger an OOM when combined with other memory 7038 * debugging configuration options. This function is used to reduce the 7039 * possibility of an out of memory even due to kmem_cache objects remaining 7040 * around for longer than usual. 7041 */ 7042 void mt_cache_shrink(void) 7043 { 7044 kmem_cache_shrink(maple_node_cache); 7045 7046 } 7047 EXPORT_SYMBOL_GPL(mt_cache_shrink); 7048 7049 #endif /* not defined __KERNEL__ */ 7050 /* 7051 * mas_get_slot() - Get the entry in the maple state node stored at @offset. 7052 * @mas: The maple state 7053 * @offset: The offset into the slot array to fetch. 7054 * 7055 * Return: The entry stored at @offset. 7056 */ 7057 static inline struct maple_enode *mas_get_slot(struct ma_state *mas, 7058 unsigned char offset) 7059 { 7060 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)), 7061 offset); 7062 } 7063 7064 /* Depth first search, post-order */ 7065 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max) 7066 { 7067 7068 struct maple_enode *p, *mn = mas->node; 7069 unsigned long p_min, p_max; 7070 7071 mas_next_node(mas, mas_mn(mas), max); 7072 if (!mas_is_overflow(mas)) 7073 return; 7074 7075 if (mte_is_root(mn)) 7076 return; 7077 7078 mas->node = mn; 7079 mas_ascend(mas); 7080 do { 7081 p = mas->node; 7082 p_min = mas->min; 7083 p_max = mas->max; 7084 mas_prev_node(mas, 0); 7085 } while (!mas_is_underflow(mas)); 7086 7087 mas->node = p; 7088 mas->max = p_max; 7089 mas->min = p_min; 7090 } 7091 7092 /* Tree validations */ 7093 static void mt_dump_node(const struct maple_tree *mt, void *entry, 7094 unsigned long min, unsigned long max, unsigned int depth, 7095 enum mt_dump_format format); 7096 static void mt_dump_range(unsigned long min, unsigned long max, 7097 unsigned int depth, enum mt_dump_format format) 7098 { 7099 static const char spaces[] = " "; 7100 7101 switch(format) { 7102 case mt_dump_hex: 7103 if (min == max) 7104 pr_info("%.*s%lx: ", depth * 2, spaces, min); 7105 else 7106 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max); 7107 break; 7108 case mt_dump_dec: 7109 if (min == max) 7110 pr_info("%.*s%lu: ", depth * 2, spaces, min); 7111 else 7112 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max); 7113 } 7114 } 7115 7116 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max, 7117 unsigned int depth, enum mt_dump_format format) 7118 { 7119 mt_dump_range(min, max, depth, format); 7120 7121 if (xa_is_value(entry)) 7122 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry), 7123 xa_to_value(entry), entry); 7124 else if (xa_is_zero(entry)) 7125 pr_cont("zero (%ld)\n", xa_to_internal(entry)); 7126 else if (mt_is_reserved(entry)) 7127 pr_cont("UNKNOWN ENTRY (%p)\n", entry); 7128 else 7129 pr_cont("%p\n", entry); 7130 } 7131 7132 static void mt_dump_range64(const struct maple_tree *mt, void *entry, 7133 unsigned long min, unsigned long max, unsigned int depth, 7134 enum mt_dump_format format) 7135 { 7136 struct maple_range_64 *node = &mte_to_node(entry)->mr64; 7137 bool leaf = mte_is_leaf(entry); 7138 unsigned long first = min; 7139 int i; 7140 7141 pr_cont(" contents: "); 7142 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) { 7143 switch(format) { 7144 case mt_dump_hex: 7145 pr_cont("%p %lX ", node->slot[i], node->pivot[i]); 7146 break; 7147 case mt_dump_dec: 7148 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 7149 } 7150 } 7151 pr_cont("%p\n", node->slot[i]); 7152 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) { 7153 unsigned long last = max; 7154 7155 if (i < (MAPLE_RANGE64_SLOTS - 1)) 7156 last = node->pivot[i]; 7157 else if (!node->slot[i] && max != mt_node_max(entry)) 7158 break; 7159 if (last == 0 && i > 0) 7160 break; 7161 if (leaf) 7162 mt_dump_entry(mt_slot(mt, node->slot, i), 7163 first, last, depth + 1, format); 7164 else if (node->slot[i]) 7165 mt_dump_node(mt, mt_slot(mt, node->slot, i), 7166 first, last, depth + 1, format); 7167 7168 if (last == max) 7169 break; 7170 if (last > max) { 7171 switch(format) { 7172 case mt_dump_hex: 7173 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n", 7174 node, last, max, i); 7175 break; 7176 case mt_dump_dec: 7177 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 7178 node, last, max, i); 7179 } 7180 } 7181 first = last + 1; 7182 } 7183 } 7184 7185 static void mt_dump_arange64(const struct maple_tree *mt, void *entry, 7186 unsigned long min, unsigned long max, unsigned int depth, 7187 enum mt_dump_format format) 7188 { 7189 struct maple_arange_64 *node = &mte_to_node(entry)->ma64; 7190 unsigned long first = min; 7191 int i; 7192 7193 pr_cont(" contents: "); 7194 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 7195 switch (format) { 7196 case mt_dump_hex: 7197 pr_cont("%lx ", node->gap[i]); 7198 break; 7199 case mt_dump_dec: 7200 pr_cont("%lu ", node->gap[i]); 7201 } 7202 } 7203 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap); 7204 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) { 7205 switch (format) { 7206 case mt_dump_hex: 7207 pr_cont("%p %lX ", node->slot[i], node->pivot[i]); 7208 break; 7209 case mt_dump_dec: 7210 pr_cont("%p %lu ", node->slot[i], node->pivot[i]); 7211 } 7212 } 7213 pr_cont("%p\n", node->slot[i]); 7214 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) { 7215 unsigned long last = max; 7216 7217 if (i < (MAPLE_ARANGE64_SLOTS - 1)) 7218 last = node->pivot[i]; 7219 else if (!node->slot[i]) 7220 break; 7221 if (last == 0 && i > 0) 7222 break; 7223 if (node->slot[i]) 7224 mt_dump_node(mt, mt_slot(mt, node->slot, i), 7225 first, last, depth + 1, format); 7226 7227 if (last == max) 7228 break; 7229 if (last > max) { 7230 switch(format) { 7231 case mt_dump_hex: 7232 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n", 7233 node, last, max, i); 7234 break; 7235 case mt_dump_dec: 7236 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n", 7237 node, last, max, i); 7238 } 7239 } 7240 first = last + 1; 7241 } 7242 } 7243 7244 static void mt_dump_node(const struct maple_tree *mt, void *entry, 7245 unsigned long min, unsigned long max, unsigned int depth, 7246 enum mt_dump_format format) 7247 { 7248 struct maple_node *node = mte_to_node(entry); 7249 unsigned int type = mte_node_type(entry); 7250 unsigned int i; 7251 7252 mt_dump_range(min, max, depth, format); 7253 7254 pr_cont("node %p depth %d type %d parent %p", node, depth, type, 7255 node ? node->parent : NULL); 7256 switch (type) { 7257 case maple_dense: 7258 pr_cont("\n"); 7259 for (i = 0; i < MAPLE_NODE_SLOTS; i++) { 7260 if (min + i > max) 7261 pr_cont("OUT OF RANGE: "); 7262 mt_dump_entry(mt_slot(mt, node->slot, i), 7263 min + i, min + i, depth, format); 7264 } 7265 break; 7266 case maple_leaf_64: 7267 case maple_range_64: 7268 mt_dump_range64(mt, entry, min, max, depth, format); 7269 break; 7270 case maple_arange_64: 7271 mt_dump_arange64(mt, entry, min, max, depth, format); 7272 break; 7273 7274 default: 7275 pr_cont(" UNKNOWN TYPE\n"); 7276 } 7277 } 7278 7279 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format) 7280 { 7281 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt)); 7282 7283 pr_info("maple_tree(%p) flags %X, height %u root %p\n", 7284 mt, mt->ma_flags, mt_height(mt), entry); 7285 if (!xa_is_node(entry)) 7286 mt_dump_entry(entry, 0, 0, 0, format); 7287 else if (entry) 7288 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format); 7289 } 7290 EXPORT_SYMBOL_GPL(mt_dump); 7291 7292 /* 7293 * Calculate the maximum gap in a node and check if that's what is reported in 7294 * the parent (unless root). 7295 */ 7296 static void mas_validate_gaps(struct ma_state *mas) 7297 { 7298 struct maple_enode *mte = mas->node; 7299 struct maple_node *p_mn, *node = mte_to_node(mte); 7300 enum maple_type mt = mte_node_type(mas->node); 7301 unsigned long gap = 0, max_gap = 0; 7302 unsigned long p_end, p_start = mas->min; 7303 unsigned char p_slot, offset; 7304 unsigned long *gaps = NULL; 7305 unsigned long *pivots = ma_pivots(node, mt); 7306 unsigned int i; 7307 7308 if (ma_is_dense(mt)) { 7309 for (i = 0; i < mt_slot_count(mte); i++) { 7310 if (mas_get_slot(mas, i)) { 7311 if (gap > max_gap) 7312 max_gap = gap; 7313 gap = 0; 7314 continue; 7315 } 7316 gap++; 7317 } 7318 goto counted; 7319 } 7320 7321 gaps = ma_gaps(node, mt); 7322 for (i = 0; i < mt_slot_count(mte); i++) { 7323 p_end = mas_safe_pivot(mas, pivots, i, mt); 7324 7325 if (!gaps) { 7326 if (!mas_get_slot(mas, i)) 7327 gap = p_end - p_start + 1; 7328 } else { 7329 void *entry = mas_get_slot(mas, i); 7330 7331 gap = gaps[i]; 7332 MT_BUG_ON(mas->tree, !entry); 7333 7334 if (gap > p_end - p_start + 1) { 7335 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n", 7336 mas_mn(mas), i, gap, p_end, p_start, 7337 p_end - p_start + 1); 7338 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1); 7339 } 7340 } 7341 7342 if (gap > max_gap) 7343 max_gap = gap; 7344 7345 p_start = p_end + 1; 7346 if (p_end >= mas->max) 7347 break; 7348 } 7349 7350 counted: 7351 if (mt == maple_arange_64) { 7352 MT_BUG_ON(mas->tree, !gaps); 7353 offset = ma_meta_gap(node); 7354 if (offset > i) { 7355 pr_err("gap offset %p[%u] is invalid\n", node, offset); 7356 MT_BUG_ON(mas->tree, 1); 7357 } 7358 7359 if (gaps[offset] != max_gap) { 7360 pr_err("gap %p[%u] is not the largest gap %lu\n", 7361 node, offset, max_gap); 7362 MT_BUG_ON(mas->tree, 1); 7363 } 7364 7365 for (i++ ; i < mt_slot_count(mte); i++) { 7366 if (gaps[i] != 0) { 7367 pr_err("gap %p[%u] beyond node limit != 0\n", 7368 node, i); 7369 MT_BUG_ON(mas->tree, 1); 7370 } 7371 } 7372 } 7373 7374 if (mte_is_root(mte)) 7375 return; 7376 7377 p_slot = mte_parent_slot(mas->node); 7378 p_mn = mte_parent(mte); 7379 MT_BUG_ON(mas->tree, max_gap > mas->max); 7380 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) { 7381 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap); 7382 mt_dump(mas->tree, mt_dump_hex); 7383 MT_BUG_ON(mas->tree, 1); 7384 } 7385 } 7386 7387 static void mas_validate_parent_slot(struct ma_state *mas) 7388 { 7389 struct maple_node *parent; 7390 struct maple_enode *node; 7391 enum maple_type p_type; 7392 unsigned char p_slot; 7393 void __rcu **slots; 7394 int i; 7395 7396 if (mte_is_root(mas->node)) 7397 return; 7398 7399 p_slot = mte_parent_slot(mas->node); 7400 p_type = mas_parent_type(mas, mas->node); 7401 parent = mte_parent(mas->node); 7402 slots = ma_slots(parent, p_type); 7403 MT_BUG_ON(mas->tree, mas_mn(mas) == parent); 7404 7405 /* Check prev/next parent slot for duplicate node entry */ 7406 7407 for (i = 0; i < mt_slots[p_type]; i++) { 7408 node = mas_slot(mas, slots, i); 7409 if (i == p_slot) { 7410 if (node != mas->node) 7411 pr_err("parent %p[%u] does not have %p\n", 7412 parent, i, mas_mn(mas)); 7413 MT_BUG_ON(mas->tree, node != mas->node); 7414 } else if (node == mas->node) { 7415 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n", 7416 mas_mn(mas), parent, i, p_slot); 7417 MT_BUG_ON(mas->tree, node == mas->node); 7418 } 7419 } 7420 } 7421 7422 static void mas_validate_child_slot(struct ma_state *mas) 7423 { 7424 enum maple_type type = mte_node_type(mas->node); 7425 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7426 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type); 7427 struct maple_enode *child; 7428 unsigned char i; 7429 7430 if (mte_is_leaf(mas->node)) 7431 return; 7432 7433 for (i = 0; i < mt_slots[type]; i++) { 7434 child = mas_slot(mas, slots, i); 7435 7436 if (!child) { 7437 pr_err("Non-leaf node lacks child at %p[%u]\n", 7438 mas_mn(mas), i); 7439 MT_BUG_ON(mas->tree, 1); 7440 } 7441 7442 if (mte_parent_slot(child) != i) { 7443 pr_err("Slot error at %p[%u]: child %p has pslot %u\n", 7444 mas_mn(mas), i, mte_to_node(child), 7445 mte_parent_slot(child)); 7446 MT_BUG_ON(mas->tree, 1); 7447 } 7448 7449 if (mte_parent(child) != mte_to_node(mas->node)) { 7450 pr_err("child %p has parent %p not %p\n", 7451 mte_to_node(child), mte_parent(child), 7452 mte_to_node(mas->node)); 7453 MT_BUG_ON(mas->tree, 1); 7454 } 7455 7456 if (i < mt_pivots[type] && pivots[i] == mas->max) 7457 break; 7458 } 7459 } 7460 7461 /* 7462 * Validate all pivots are within mas->min and mas->max, check metadata ends 7463 * where the maximum ends and ensure there is no slots or pivots set outside of 7464 * the end of the data. 7465 */ 7466 static void mas_validate_limits(struct ma_state *mas) 7467 { 7468 int i; 7469 unsigned long prev_piv = 0; 7470 enum maple_type type = mte_node_type(mas->node); 7471 void __rcu **slots = ma_slots(mte_to_node(mas->node), type); 7472 unsigned long *pivots = ma_pivots(mas_mn(mas), type); 7473 7474 for (i = 0; i < mt_slots[type]; i++) { 7475 unsigned long piv; 7476 7477 piv = mas_safe_pivot(mas, pivots, i, type); 7478 7479 if (!piv && (i != 0)) { 7480 pr_err("Missing node limit pivot at %p[%u]", 7481 mas_mn(mas), i); 7482 MAS_WARN_ON(mas, 1); 7483 } 7484 7485 if (prev_piv > piv) { 7486 pr_err("%p[%u] piv %lu < prev_piv %lu\n", 7487 mas_mn(mas), i, piv, prev_piv); 7488 MAS_WARN_ON(mas, piv < prev_piv); 7489 } 7490 7491 if (piv < mas->min) { 7492 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i, 7493 piv, mas->min); 7494 MAS_WARN_ON(mas, piv < mas->min); 7495 } 7496 if (piv > mas->max) { 7497 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i, 7498 piv, mas->max); 7499 MAS_WARN_ON(mas, piv > mas->max); 7500 } 7501 prev_piv = piv; 7502 if (piv == mas->max) 7503 break; 7504 } 7505 7506 if (mas_data_end(mas) != i) { 7507 pr_err("node%p: data_end %u != the last slot offset %u\n", 7508 mas_mn(mas), mas_data_end(mas), i); 7509 MT_BUG_ON(mas->tree, 1); 7510 } 7511 7512 for (i += 1; i < mt_slots[type]; i++) { 7513 void *entry = mas_slot(mas, slots, i); 7514 7515 if (entry && (i != mt_slots[type] - 1)) { 7516 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas), 7517 i, entry); 7518 MT_BUG_ON(mas->tree, entry != NULL); 7519 } 7520 7521 if (i < mt_pivots[type]) { 7522 unsigned long piv = pivots[i]; 7523 7524 if (!piv) 7525 continue; 7526 7527 pr_err("%p[%u] should not have piv %lu\n", 7528 mas_mn(mas), i, piv); 7529 MAS_WARN_ON(mas, i < mt_pivots[type] - 1); 7530 } 7531 } 7532 } 7533 7534 static void mt_validate_nulls(struct maple_tree *mt) 7535 { 7536 void *entry, *last = (void *)1; 7537 unsigned char offset = 0; 7538 void __rcu **slots; 7539 MA_STATE(mas, mt, 0, 0); 7540 7541 mas_start(&mas); 7542 if (mas_is_none(&mas) || (mas_is_ptr(&mas))) 7543 return; 7544 7545 while (!mte_is_leaf(mas.node)) 7546 mas_descend(&mas); 7547 7548 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node)); 7549 do { 7550 entry = mas_slot(&mas, slots, offset); 7551 if (!last && !entry) { 7552 pr_err("Sequential nulls end at %p[%u]\n", 7553 mas_mn(&mas), offset); 7554 } 7555 MT_BUG_ON(mt, !last && !entry); 7556 last = entry; 7557 if (offset == mas_data_end(&mas)) { 7558 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX); 7559 if (mas_is_overflow(&mas)) 7560 return; 7561 offset = 0; 7562 slots = ma_slots(mte_to_node(mas.node), 7563 mte_node_type(mas.node)); 7564 } else { 7565 offset++; 7566 } 7567 7568 } while (!mas_is_overflow(&mas)); 7569 } 7570 7571 /* 7572 * validate a maple tree by checking: 7573 * 1. The limits (pivots are within mas->min to mas->max) 7574 * 2. The gap is correctly set in the parents 7575 */ 7576 void mt_validate(struct maple_tree *mt) 7577 __must_hold(mas->tree->ma_lock) 7578 { 7579 unsigned char end; 7580 7581 MA_STATE(mas, mt, 0, 0); 7582 mas_start(&mas); 7583 if (!mas_is_active(&mas)) 7584 return; 7585 7586 while (!mte_is_leaf(mas.node)) 7587 mas_descend(&mas); 7588 7589 while (!mas_is_overflow(&mas)) { 7590 MAS_WARN_ON(&mas, mte_dead_node(mas.node)); 7591 end = mas_data_end(&mas); 7592 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) && 7593 (mas.max != ULONG_MAX))) { 7594 pr_err("Invalid size %u of %p\n", end, mas_mn(&mas)); 7595 } 7596 7597 mas_validate_parent_slot(&mas); 7598 mas_validate_limits(&mas); 7599 mas_validate_child_slot(&mas); 7600 if (mt_is_alloc(mt)) 7601 mas_validate_gaps(&mas); 7602 mas_dfs_postorder(&mas, ULONG_MAX); 7603 } 7604 mt_validate_nulls(mt); 7605 } 7606 EXPORT_SYMBOL_GPL(mt_validate); 7607 7608 void mas_dump(const struct ma_state *mas) 7609 { 7610 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node); 7611 switch (mas->status) { 7612 case ma_active: 7613 pr_err("(ma_active)"); 7614 break; 7615 case ma_none: 7616 pr_err("(ma_none)"); 7617 break; 7618 case ma_root: 7619 pr_err("(ma_root)"); 7620 break; 7621 case ma_start: 7622 pr_err("(ma_start) "); 7623 break; 7624 case ma_pause: 7625 pr_err("(ma_pause) "); 7626 break; 7627 case ma_overflow: 7628 pr_err("(ma_overflow) "); 7629 break; 7630 case ma_underflow: 7631 pr_err("(ma_underflow) "); 7632 break; 7633 case ma_error: 7634 pr_err("(ma_error) "); 7635 break; 7636 } 7637 7638 pr_err("Store Type: "); 7639 switch (mas->store_type) { 7640 case wr_invalid: 7641 pr_err("invalid store type\n"); 7642 break; 7643 case wr_new_root: 7644 pr_err("new_root\n"); 7645 break; 7646 case wr_store_root: 7647 pr_err("store_root\n"); 7648 break; 7649 case wr_exact_fit: 7650 pr_err("exact_fit\n"); 7651 break; 7652 case wr_split_store: 7653 pr_err("split_store\n"); 7654 break; 7655 case wr_slot_store: 7656 pr_err("slot_store\n"); 7657 break; 7658 case wr_append: 7659 pr_err("append\n"); 7660 break; 7661 case wr_node_store: 7662 pr_err("node_store\n"); 7663 break; 7664 case wr_spanning_store: 7665 pr_err("spanning_store\n"); 7666 break; 7667 case wr_rebalance: 7668 pr_err("rebalance\n"); 7669 break; 7670 } 7671 7672 pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end, 7673 mas->index, mas->last); 7674 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n", 7675 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags); 7676 if (mas->index > mas->last) 7677 pr_err("Check index & last\n"); 7678 } 7679 EXPORT_SYMBOL_GPL(mas_dump); 7680 7681 void mas_wr_dump(const struct ma_wr_state *wr_mas) 7682 { 7683 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n", 7684 wr_mas->node, wr_mas->r_min, wr_mas->r_max); 7685 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n", 7686 wr_mas->type, wr_mas->offset_end, wr_mas->mas->end, 7687 wr_mas->end_piv); 7688 } 7689 EXPORT_SYMBOL_GPL(mas_wr_dump); 7690 7691 #endif /* CONFIG_DEBUG_MAPLE_TREE */ 7692