1 /* 2 * Basic general purpose allocator for managing special purpose 3 * memory, for example, memory that is not managed by the regular 4 * kmalloc/kfree interface. Uses for this includes on-device special 5 * memory, uncached memory etc. 6 * 7 * It is safe to use the allocator in NMI handlers and other special 8 * unblockable contexts that could otherwise deadlock on locks. This 9 * is implemented by using atomic operations and retries on any 10 * conflicts. The disadvantage is that there may be livelocks in 11 * extreme cases. For better scalability, one allocator can be used 12 * for each CPU. 13 * 14 * The lockless operation only works if there is enough memory 15 * available. If new memory is added to the pool a lock has to be 16 * still taken. So any user relying on locklessness has to ensure 17 * that sufficient memory is preallocated. 18 * 19 * The basic atomic operation of this allocator is cmpxchg on long. 20 * On architectures that don't have NMI-safe cmpxchg implementation, 21 * the allocator can NOT be used in NMI handler. So code uses the 22 * allocator in NMI handler should depend on 23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG. 24 * 25 * Copyright 2005 (C) Jes Sorensen <[email protected]> 26 * 27 * This source code is licensed under the GNU General Public License, 28 * Version 2. See the file COPYING for more details. 29 */ 30 31 #include <linux/slab.h> 32 #include <linux/export.h> 33 #include <linux/bitmap.h> 34 #include <linux/rculist.h> 35 #include <linux/interrupt.h> 36 #include <linux/genalloc.h> 37 #include <linux/of_device.h> 38 #include <linux/vmalloc.h> 39 40 static inline size_t chunk_size(const struct gen_pool_chunk *chunk) 41 { 42 return chunk->end_addr - chunk->start_addr + 1; 43 } 44 45 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set) 46 { 47 unsigned long val, nval; 48 49 nval = *addr; 50 do { 51 val = nval; 52 if (val & mask_to_set) 53 return -EBUSY; 54 cpu_relax(); 55 } while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val); 56 57 return 0; 58 } 59 60 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear) 61 { 62 unsigned long val, nval; 63 64 nval = *addr; 65 do { 66 val = nval; 67 if ((val & mask_to_clear) != mask_to_clear) 68 return -EBUSY; 69 cpu_relax(); 70 } while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val); 71 72 return 0; 73 } 74 75 /* 76 * bitmap_set_ll - set the specified number of bits at the specified position 77 * @map: pointer to a bitmap 78 * @start: a bit position in @map 79 * @nr: number of bits to set 80 * 81 * Set @nr bits start from @start in @map lock-lessly. Several users 82 * can set/clear the same bitmap simultaneously without lock. If two 83 * users set the same bit, one user will return remain bits, otherwise 84 * return 0. 85 */ 86 static int bitmap_set_ll(unsigned long *map, int start, int nr) 87 { 88 unsigned long *p = map + BIT_WORD(start); 89 const int size = start + nr; 90 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 91 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 92 93 while (nr - bits_to_set >= 0) { 94 if (set_bits_ll(p, mask_to_set)) 95 return nr; 96 nr -= bits_to_set; 97 bits_to_set = BITS_PER_LONG; 98 mask_to_set = ~0UL; 99 p++; 100 } 101 if (nr) { 102 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 103 if (set_bits_ll(p, mask_to_set)) 104 return nr; 105 } 106 107 return 0; 108 } 109 110 /* 111 * bitmap_clear_ll - clear the specified number of bits at the specified position 112 * @map: pointer to a bitmap 113 * @start: a bit position in @map 114 * @nr: number of bits to set 115 * 116 * Clear @nr bits start from @start in @map lock-lessly. Several users 117 * can set/clear the same bitmap simultaneously without lock. If two 118 * users clear the same bit, one user will return remain bits, 119 * otherwise return 0. 120 */ 121 static int bitmap_clear_ll(unsigned long *map, int start, int nr) 122 { 123 unsigned long *p = map + BIT_WORD(start); 124 const int size = start + nr; 125 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 126 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 127 128 while (nr - bits_to_clear >= 0) { 129 if (clear_bits_ll(p, mask_to_clear)) 130 return nr; 131 nr -= bits_to_clear; 132 bits_to_clear = BITS_PER_LONG; 133 mask_to_clear = ~0UL; 134 p++; 135 } 136 if (nr) { 137 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 138 if (clear_bits_ll(p, mask_to_clear)) 139 return nr; 140 } 141 142 return 0; 143 } 144 145 /** 146 * gen_pool_create - create a new special memory pool 147 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents 148 * @nid: node id of the node the pool structure should be allocated on, or -1 149 * 150 * Create a new special memory pool that can be used to manage special purpose 151 * memory not managed by the regular kmalloc/kfree interface. 152 */ 153 struct gen_pool *gen_pool_create(int min_alloc_order, int nid) 154 { 155 struct gen_pool *pool; 156 157 pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid); 158 if (pool != NULL) { 159 spin_lock_init(&pool->lock); 160 INIT_LIST_HEAD(&pool->chunks); 161 pool->min_alloc_order = min_alloc_order; 162 pool->algo = gen_pool_first_fit; 163 pool->data = NULL; 164 pool->name = NULL; 165 } 166 return pool; 167 } 168 EXPORT_SYMBOL(gen_pool_create); 169 170 /** 171 * gen_pool_add_virt - add a new chunk of special memory to the pool 172 * @pool: pool to add new memory chunk to 173 * @virt: virtual starting address of memory chunk to add to pool 174 * @phys: physical starting address of memory chunk to add to pool 175 * @size: size in bytes of the memory chunk to add to pool 176 * @nid: node id of the node the chunk structure and bitmap should be 177 * allocated on, or -1 178 * 179 * Add a new chunk of special memory to the specified pool. 180 * 181 * Returns 0 on success or a -ve errno on failure. 182 */ 183 int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys, 184 size_t size, int nid) 185 { 186 struct gen_pool_chunk *chunk; 187 int nbits = size >> pool->min_alloc_order; 188 int nbytes = sizeof(struct gen_pool_chunk) + 189 BITS_TO_LONGS(nbits) * sizeof(long); 190 191 chunk = vzalloc_node(nbytes, nid); 192 if (unlikely(chunk == NULL)) 193 return -ENOMEM; 194 195 chunk->phys_addr = phys; 196 chunk->start_addr = virt; 197 chunk->end_addr = virt + size - 1; 198 atomic_long_set(&chunk->avail, size); 199 200 spin_lock(&pool->lock); 201 list_add_rcu(&chunk->next_chunk, &pool->chunks); 202 spin_unlock(&pool->lock); 203 204 return 0; 205 } 206 EXPORT_SYMBOL(gen_pool_add_virt); 207 208 /** 209 * gen_pool_virt_to_phys - return the physical address of memory 210 * @pool: pool to allocate from 211 * @addr: starting address of memory 212 * 213 * Returns the physical address on success, or -1 on error. 214 */ 215 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr) 216 { 217 struct gen_pool_chunk *chunk; 218 phys_addr_t paddr = -1; 219 220 rcu_read_lock(); 221 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 222 if (addr >= chunk->start_addr && addr <= chunk->end_addr) { 223 paddr = chunk->phys_addr + (addr - chunk->start_addr); 224 break; 225 } 226 } 227 rcu_read_unlock(); 228 229 return paddr; 230 } 231 EXPORT_SYMBOL(gen_pool_virt_to_phys); 232 233 /** 234 * gen_pool_destroy - destroy a special memory pool 235 * @pool: pool to destroy 236 * 237 * Destroy the specified special memory pool. Verifies that there are no 238 * outstanding allocations. 239 */ 240 void gen_pool_destroy(struct gen_pool *pool) 241 { 242 struct list_head *_chunk, *_next_chunk; 243 struct gen_pool_chunk *chunk; 244 int order = pool->min_alloc_order; 245 int bit, end_bit; 246 247 list_for_each_safe(_chunk, _next_chunk, &pool->chunks) { 248 chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk); 249 list_del(&chunk->next_chunk); 250 251 end_bit = chunk_size(chunk) >> order; 252 bit = find_next_bit(chunk->bits, end_bit, 0); 253 BUG_ON(bit < end_bit); 254 255 vfree(chunk); 256 } 257 kfree_const(pool->name); 258 kfree(pool); 259 } 260 EXPORT_SYMBOL(gen_pool_destroy); 261 262 /** 263 * gen_pool_alloc - allocate special memory from the pool 264 * @pool: pool to allocate from 265 * @size: number of bytes to allocate from the pool 266 * 267 * Allocate the requested number of bytes from the specified pool. 268 * Uses the pool allocation function (with first-fit algorithm by default). 269 * Can not be used in NMI handler on architectures without 270 * NMI-safe cmpxchg implementation. 271 */ 272 unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size) 273 { 274 return gen_pool_alloc_algo(pool, size, pool->algo, pool->data); 275 } 276 EXPORT_SYMBOL(gen_pool_alloc); 277 278 /** 279 * gen_pool_alloc_algo - allocate special memory from the pool 280 * @pool: pool to allocate from 281 * @size: number of bytes to allocate from the pool 282 * @algo: algorithm passed from caller 283 * @data: data passed to algorithm 284 * 285 * Allocate the requested number of bytes from the specified pool. 286 * Uses the pool allocation function (with first-fit algorithm by default). 287 * Can not be used in NMI handler on architectures without 288 * NMI-safe cmpxchg implementation. 289 */ 290 unsigned long gen_pool_alloc_algo(struct gen_pool *pool, size_t size, 291 genpool_algo_t algo, void *data) 292 { 293 struct gen_pool_chunk *chunk; 294 unsigned long addr = 0; 295 int order = pool->min_alloc_order; 296 int nbits, start_bit, end_bit, remain; 297 298 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 299 BUG_ON(in_nmi()); 300 #endif 301 302 if (size == 0) 303 return 0; 304 305 nbits = (size + (1UL << order) - 1) >> order; 306 rcu_read_lock(); 307 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 308 if (size > atomic_long_read(&chunk->avail)) 309 continue; 310 311 start_bit = 0; 312 end_bit = chunk_size(chunk) >> order; 313 retry: 314 start_bit = algo(chunk->bits, end_bit, start_bit, 315 nbits, data, pool, chunk->start_addr); 316 if (start_bit >= end_bit) 317 continue; 318 remain = bitmap_set_ll(chunk->bits, start_bit, nbits); 319 if (remain) { 320 remain = bitmap_clear_ll(chunk->bits, start_bit, 321 nbits - remain); 322 BUG_ON(remain); 323 goto retry; 324 } 325 326 addr = chunk->start_addr + ((unsigned long)start_bit << order); 327 size = nbits << order; 328 atomic_long_sub(size, &chunk->avail); 329 break; 330 } 331 rcu_read_unlock(); 332 return addr; 333 } 334 EXPORT_SYMBOL(gen_pool_alloc_algo); 335 336 /** 337 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage 338 * @pool: pool to allocate from 339 * @size: number of bytes to allocate from the pool 340 * @dma: dma-view physical address return value. Use %NULL if unneeded. 341 * 342 * Allocate the requested number of bytes from the specified pool. 343 * Uses the pool allocation function (with first-fit algorithm by default). 344 * Can not be used in NMI handler on architectures without 345 * NMI-safe cmpxchg implementation. 346 * 347 * Return: virtual address of the allocated memory, or %NULL on failure 348 */ 349 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma) 350 { 351 unsigned long vaddr; 352 353 if (!pool) 354 return NULL; 355 356 vaddr = gen_pool_alloc(pool, size); 357 if (!vaddr) 358 return NULL; 359 360 if (dma) 361 *dma = gen_pool_virt_to_phys(pool, vaddr); 362 363 return (void *)vaddr; 364 } 365 EXPORT_SYMBOL(gen_pool_dma_alloc); 366 367 /** 368 * gen_pool_dma_zalloc - allocate special zeroed memory from the pool for 369 * DMA usage 370 * @pool: pool to allocate from 371 * @size: number of bytes to allocate from the pool 372 * @dma: dma-view physical address return value. Use %NULL if unneeded. 373 * 374 * Allocate the requested number of zeroed bytes from the specified pool. 375 * Uses the pool allocation function (with first-fit algorithm by default). 376 * Can not be used in NMI handler on architectures without 377 * NMI-safe cmpxchg implementation. 378 * 379 * Return: virtual address of the allocated zeroed memory, or %NULL on failure 380 */ 381 void *gen_pool_dma_zalloc(struct gen_pool *pool, size_t size, dma_addr_t *dma) 382 { 383 void *vaddr = gen_pool_dma_alloc(pool, size, dma); 384 385 if (vaddr) 386 memset(vaddr, 0, size); 387 388 return vaddr; 389 } 390 EXPORT_SYMBOL(gen_pool_dma_zalloc); 391 392 /** 393 * gen_pool_free - free allocated special memory back to the pool 394 * @pool: pool to free to 395 * @addr: starting address of memory to free back to pool 396 * @size: size in bytes of memory to free 397 * 398 * Free previously allocated special memory back to the specified 399 * pool. Can not be used in NMI handler on architectures without 400 * NMI-safe cmpxchg implementation. 401 */ 402 void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size) 403 { 404 struct gen_pool_chunk *chunk; 405 int order = pool->min_alloc_order; 406 int start_bit, nbits, remain; 407 408 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG 409 BUG_ON(in_nmi()); 410 #endif 411 412 nbits = (size + (1UL << order) - 1) >> order; 413 rcu_read_lock(); 414 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) { 415 if (addr >= chunk->start_addr && addr <= chunk->end_addr) { 416 BUG_ON(addr + size - 1 > chunk->end_addr); 417 start_bit = (addr - chunk->start_addr) >> order; 418 remain = bitmap_clear_ll(chunk->bits, start_bit, nbits); 419 BUG_ON(remain); 420 size = nbits << order; 421 atomic_long_add(size, &chunk->avail); 422 rcu_read_unlock(); 423 return; 424 } 425 } 426 rcu_read_unlock(); 427 BUG(); 428 } 429 EXPORT_SYMBOL(gen_pool_free); 430 431 /** 432 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool 433 * @pool: the generic memory pool 434 * @func: func to call 435 * @data: additional data used by @func 436 * 437 * Call @func for every chunk of generic memory pool. The @func is 438 * called with rcu_read_lock held. 439 */ 440 void gen_pool_for_each_chunk(struct gen_pool *pool, 441 void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data), 442 void *data) 443 { 444 struct gen_pool_chunk *chunk; 445 446 rcu_read_lock(); 447 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) 448 func(pool, chunk, data); 449 rcu_read_unlock(); 450 } 451 EXPORT_SYMBOL(gen_pool_for_each_chunk); 452 453 /** 454 * addr_in_gen_pool - checks if an address falls within the range of a pool 455 * @pool: the generic memory pool 456 * @start: start address 457 * @size: size of the region 458 * 459 * Check if the range of addresses falls within the specified pool. Returns 460 * true if the entire range is contained in the pool and false otherwise. 461 */ 462 bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start, 463 size_t size) 464 { 465 bool found = false; 466 unsigned long end = start + size - 1; 467 struct gen_pool_chunk *chunk; 468 469 rcu_read_lock(); 470 list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) { 471 if (start >= chunk->start_addr && start <= chunk->end_addr) { 472 if (end <= chunk->end_addr) { 473 found = true; 474 break; 475 } 476 } 477 } 478 rcu_read_unlock(); 479 return found; 480 } 481 482 /** 483 * gen_pool_avail - get available free space of the pool 484 * @pool: pool to get available free space 485 * 486 * Return available free space of the specified pool. 487 */ 488 size_t gen_pool_avail(struct gen_pool *pool) 489 { 490 struct gen_pool_chunk *chunk; 491 size_t avail = 0; 492 493 rcu_read_lock(); 494 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 495 avail += atomic_long_read(&chunk->avail); 496 rcu_read_unlock(); 497 return avail; 498 } 499 EXPORT_SYMBOL_GPL(gen_pool_avail); 500 501 /** 502 * gen_pool_size - get size in bytes of memory managed by the pool 503 * @pool: pool to get size 504 * 505 * Return size in bytes of memory managed by the pool. 506 */ 507 size_t gen_pool_size(struct gen_pool *pool) 508 { 509 struct gen_pool_chunk *chunk; 510 size_t size = 0; 511 512 rcu_read_lock(); 513 list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) 514 size += chunk_size(chunk); 515 rcu_read_unlock(); 516 return size; 517 } 518 EXPORT_SYMBOL_GPL(gen_pool_size); 519 520 /** 521 * gen_pool_set_algo - set the allocation algorithm 522 * @pool: pool to change allocation algorithm 523 * @algo: custom algorithm function 524 * @data: additional data used by @algo 525 * 526 * Call @algo for each memory allocation in the pool. 527 * If @algo is NULL use gen_pool_first_fit as default 528 * memory allocation function. 529 */ 530 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data) 531 { 532 rcu_read_lock(); 533 534 pool->algo = algo; 535 if (!pool->algo) 536 pool->algo = gen_pool_first_fit; 537 538 pool->data = data; 539 540 rcu_read_unlock(); 541 } 542 EXPORT_SYMBOL(gen_pool_set_algo); 543 544 /** 545 * gen_pool_first_fit - find the first available region 546 * of memory matching the size requirement (no alignment constraint) 547 * @map: The address to base the search on 548 * @size: The bitmap size in bits 549 * @start: The bitnumber to start searching at 550 * @nr: The number of zeroed bits we're looking for 551 * @data: additional data - unused 552 * @pool: pool to find the fit region memory from 553 */ 554 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size, 555 unsigned long start, unsigned int nr, void *data, 556 struct gen_pool *pool, unsigned long start_addr) 557 { 558 return bitmap_find_next_zero_area(map, size, start, nr, 0); 559 } 560 EXPORT_SYMBOL(gen_pool_first_fit); 561 562 /** 563 * gen_pool_first_fit_align - find the first available region 564 * of memory matching the size requirement (alignment constraint) 565 * @map: The address to base the search on 566 * @size: The bitmap size in bits 567 * @start: The bitnumber to start searching at 568 * @nr: The number of zeroed bits we're looking for 569 * @data: data for alignment 570 * @pool: pool to get order from 571 */ 572 unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size, 573 unsigned long start, unsigned int nr, void *data, 574 struct gen_pool *pool, unsigned long start_addr) 575 { 576 struct genpool_data_align *alignment; 577 unsigned long align_mask, align_off; 578 int order; 579 580 alignment = data; 581 order = pool->min_alloc_order; 582 align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1; 583 align_off = (start_addr & (alignment->align - 1)) >> order; 584 585 return bitmap_find_next_zero_area_off(map, size, start, nr, 586 align_mask, align_off); 587 } 588 EXPORT_SYMBOL(gen_pool_first_fit_align); 589 590 /** 591 * gen_pool_fixed_alloc - reserve a specific region 592 * @map: The address to base the search on 593 * @size: The bitmap size in bits 594 * @start: The bitnumber to start searching at 595 * @nr: The number of zeroed bits we're looking for 596 * @data: data for alignment 597 * @pool: pool to get order from 598 */ 599 unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size, 600 unsigned long start, unsigned int nr, void *data, 601 struct gen_pool *pool, unsigned long start_addr) 602 { 603 struct genpool_data_fixed *fixed_data; 604 int order; 605 unsigned long offset_bit; 606 unsigned long start_bit; 607 608 fixed_data = data; 609 order = pool->min_alloc_order; 610 offset_bit = fixed_data->offset >> order; 611 if (WARN_ON(fixed_data->offset & ((1UL << order) - 1))) 612 return size; 613 614 start_bit = bitmap_find_next_zero_area(map, size, 615 start + offset_bit, nr, 0); 616 if (start_bit != offset_bit) 617 start_bit = size; 618 return start_bit; 619 } 620 EXPORT_SYMBOL(gen_pool_fixed_alloc); 621 622 /** 623 * gen_pool_first_fit_order_align - find the first available region 624 * of memory matching the size requirement. The region will be aligned 625 * to the order of the size specified. 626 * @map: The address to base the search on 627 * @size: The bitmap size in bits 628 * @start: The bitnumber to start searching at 629 * @nr: The number of zeroed bits we're looking for 630 * @data: additional data - unused 631 * @pool: pool to find the fit region memory from 632 */ 633 unsigned long gen_pool_first_fit_order_align(unsigned long *map, 634 unsigned long size, unsigned long start, 635 unsigned int nr, void *data, struct gen_pool *pool, 636 unsigned long start_addr) 637 { 638 unsigned long align_mask = roundup_pow_of_two(nr) - 1; 639 640 return bitmap_find_next_zero_area(map, size, start, nr, align_mask); 641 } 642 EXPORT_SYMBOL(gen_pool_first_fit_order_align); 643 644 /** 645 * gen_pool_best_fit - find the best fitting region of memory 646 * macthing the size requirement (no alignment constraint) 647 * @map: The address to base the search on 648 * @size: The bitmap size in bits 649 * @start: The bitnumber to start searching at 650 * @nr: The number of zeroed bits we're looking for 651 * @data: additional data - unused 652 * @pool: pool to find the fit region memory from 653 * 654 * Iterate over the bitmap to find the smallest free region 655 * which we can allocate the memory. 656 */ 657 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size, 658 unsigned long start, unsigned int nr, void *data, 659 struct gen_pool *pool, unsigned long start_addr) 660 { 661 unsigned long start_bit = size; 662 unsigned long len = size + 1; 663 unsigned long index; 664 665 index = bitmap_find_next_zero_area(map, size, start, nr, 0); 666 667 while (index < size) { 668 int next_bit = find_next_bit(map, size, index + nr); 669 if ((next_bit - index) < len) { 670 len = next_bit - index; 671 start_bit = index; 672 if (len == nr) 673 return start_bit; 674 } 675 index = bitmap_find_next_zero_area(map, size, 676 next_bit + 1, nr, 0); 677 } 678 679 return start_bit; 680 } 681 EXPORT_SYMBOL(gen_pool_best_fit); 682 683 static void devm_gen_pool_release(struct device *dev, void *res) 684 { 685 gen_pool_destroy(*(struct gen_pool **)res); 686 } 687 688 static int devm_gen_pool_match(struct device *dev, void *res, void *data) 689 { 690 struct gen_pool **p = res; 691 692 /* NULL data matches only a pool without an assigned name */ 693 if (!data && !(*p)->name) 694 return 1; 695 696 if (!data || !(*p)->name) 697 return 0; 698 699 return !strcmp((*p)->name, data); 700 } 701 702 /** 703 * gen_pool_get - Obtain the gen_pool (if any) for a device 704 * @dev: device to retrieve the gen_pool from 705 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device 706 * 707 * Returns the gen_pool for the device if one is present, or NULL. 708 */ 709 struct gen_pool *gen_pool_get(struct device *dev, const char *name) 710 { 711 struct gen_pool **p; 712 713 p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match, 714 (void *)name); 715 if (!p) 716 return NULL; 717 return *p; 718 } 719 EXPORT_SYMBOL_GPL(gen_pool_get); 720 721 /** 722 * devm_gen_pool_create - managed gen_pool_create 723 * @dev: device that provides the gen_pool 724 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents 725 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes 726 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device 727 * 728 * Create a new special memory pool that can be used to manage special purpose 729 * memory not managed by the regular kmalloc/kfree interface. The pool will be 730 * automatically destroyed by the device management code. 731 */ 732 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order, 733 int nid, const char *name) 734 { 735 struct gen_pool **ptr, *pool; 736 const char *pool_name = NULL; 737 738 /* Check that genpool to be created is uniquely addressed on device */ 739 if (gen_pool_get(dev, name)) 740 return ERR_PTR(-EINVAL); 741 742 if (name) { 743 pool_name = kstrdup_const(name, GFP_KERNEL); 744 if (!pool_name) 745 return ERR_PTR(-ENOMEM); 746 } 747 748 ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL); 749 if (!ptr) 750 goto free_pool_name; 751 752 pool = gen_pool_create(min_alloc_order, nid); 753 if (!pool) 754 goto free_devres; 755 756 *ptr = pool; 757 pool->name = pool_name; 758 devres_add(dev, ptr); 759 760 return pool; 761 762 free_devres: 763 devres_free(ptr); 764 free_pool_name: 765 kfree_const(pool_name); 766 767 return ERR_PTR(-ENOMEM); 768 } 769 EXPORT_SYMBOL(devm_gen_pool_create); 770 771 #ifdef CONFIG_OF 772 /** 773 * of_gen_pool_get - find a pool by phandle property 774 * @np: device node 775 * @propname: property name containing phandle(s) 776 * @index: index into the phandle array 777 * 778 * Returns the pool that contains the chunk starting at the physical 779 * address of the device tree node pointed at by the phandle property, 780 * or NULL if not found. 781 */ 782 struct gen_pool *of_gen_pool_get(struct device_node *np, 783 const char *propname, int index) 784 { 785 struct platform_device *pdev; 786 struct device_node *np_pool, *parent; 787 const char *name = NULL; 788 struct gen_pool *pool = NULL; 789 790 np_pool = of_parse_phandle(np, propname, index); 791 if (!np_pool) 792 return NULL; 793 794 pdev = of_find_device_by_node(np_pool); 795 if (!pdev) { 796 /* Check if named gen_pool is created by parent node device */ 797 parent = of_get_parent(np_pool); 798 pdev = of_find_device_by_node(parent); 799 of_node_put(parent); 800 801 of_property_read_string(np_pool, "label", &name); 802 if (!name) 803 name = np_pool->name; 804 } 805 if (pdev) 806 pool = gen_pool_get(&pdev->dev, name); 807 of_node_put(np_pool); 808 809 return pool; 810 } 811 EXPORT_SYMBOL_GPL(of_gen_pool_get); 812 #endif /* CONFIG_OF */ 813