xref: /linux-6.15/lib/genalloc.c (revision cf394fc5)
1 /*
2  * Basic general purpose allocator for managing special purpose
3  * memory, for example, memory that is not managed by the regular
4  * kmalloc/kfree interface.  Uses for this includes on-device special
5  * memory, uncached memory etc.
6  *
7  * It is safe to use the allocator in NMI handlers and other special
8  * unblockable contexts that could otherwise deadlock on locks.  This
9  * is implemented by using atomic operations and retries on any
10  * conflicts.  The disadvantage is that there may be livelocks in
11  * extreme cases.  For better scalability, one allocator can be used
12  * for each CPU.
13  *
14  * The lockless operation only works if there is enough memory
15  * available.  If new memory is added to the pool a lock has to be
16  * still taken.  So any user relying on locklessness has to ensure
17  * that sufficient memory is preallocated.
18  *
19  * The basic atomic operation of this allocator is cmpxchg on long.
20  * On architectures that don't have NMI-safe cmpxchg implementation,
21  * the allocator can NOT be used in NMI handler.  So code uses the
22  * allocator in NMI handler should depend on
23  * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
24  *
25  * Copyright 2005 (C) Jes Sorensen <[email protected]>
26  *
27  * This source code is licensed under the GNU General Public License,
28  * Version 2.  See the file COPYING for more details.
29  */
30 
31 #include <linux/slab.h>
32 #include <linux/export.h>
33 #include <linux/bitmap.h>
34 #include <linux/rculist.h>
35 #include <linux/interrupt.h>
36 #include <linux/genalloc.h>
37 #include <linux/of_device.h>
38 #include <linux/vmalloc.h>
39 
40 static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
41 {
42 	return chunk->end_addr - chunk->start_addr + 1;
43 }
44 
45 static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
46 {
47 	unsigned long val, nval;
48 
49 	nval = *addr;
50 	do {
51 		val = nval;
52 		if (val & mask_to_set)
53 			return -EBUSY;
54 		cpu_relax();
55 	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
56 
57 	return 0;
58 }
59 
60 static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
61 {
62 	unsigned long val, nval;
63 
64 	nval = *addr;
65 	do {
66 		val = nval;
67 		if ((val & mask_to_clear) != mask_to_clear)
68 			return -EBUSY;
69 		cpu_relax();
70 	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
71 
72 	return 0;
73 }
74 
75 /*
76  * bitmap_set_ll - set the specified number of bits at the specified position
77  * @map: pointer to a bitmap
78  * @start: a bit position in @map
79  * @nr: number of bits to set
80  *
81  * Set @nr bits start from @start in @map lock-lessly. Several users
82  * can set/clear the same bitmap simultaneously without lock. If two
83  * users set the same bit, one user will return remain bits, otherwise
84  * return 0.
85  */
86 static int bitmap_set_ll(unsigned long *map, int start, int nr)
87 {
88 	unsigned long *p = map + BIT_WORD(start);
89 	const int size = start + nr;
90 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
91 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
92 
93 	while (nr - bits_to_set >= 0) {
94 		if (set_bits_ll(p, mask_to_set))
95 			return nr;
96 		nr -= bits_to_set;
97 		bits_to_set = BITS_PER_LONG;
98 		mask_to_set = ~0UL;
99 		p++;
100 	}
101 	if (nr) {
102 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
103 		if (set_bits_ll(p, mask_to_set))
104 			return nr;
105 	}
106 
107 	return 0;
108 }
109 
110 /*
111  * bitmap_clear_ll - clear the specified number of bits at the specified position
112  * @map: pointer to a bitmap
113  * @start: a bit position in @map
114  * @nr: number of bits to set
115  *
116  * Clear @nr bits start from @start in @map lock-lessly. Several users
117  * can set/clear the same bitmap simultaneously without lock. If two
118  * users clear the same bit, one user will return remain bits,
119  * otherwise return 0.
120  */
121 static int bitmap_clear_ll(unsigned long *map, int start, int nr)
122 {
123 	unsigned long *p = map + BIT_WORD(start);
124 	const int size = start + nr;
125 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
126 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
127 
128 	while (nr - bits_to_clear >= 0) {
129 		if (clear_bits_ll(p, mask_to_clear))
130 			return nr;
131 		nr -= bits_to_clear;
132 		bits_to_clear = BITS_PER_LONG;
133 		mask_to_clear = ~0UL;
134 		p++;
135 	}
136 	if (nr) {
137 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
138 		if (clear_bits_ll(p, mask_to_clear))
139 			return nr;
140 	}
141 
142 	return 0;
143 }
144 
145 /**
146  * gen_pool_create - create a new special memory pool
147  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
148  * @nid: node id of the node the pool structure should be allocated on, or -1
149  *
150  * Create a new special memory pool that can be used to manage special purpose
151  * memory not managed by the regular kmalloc/kfree interface.
152  */
153 struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
154 {
155 	struct gen_pool *pool;
156 
157 	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
158 	if (pool != NULL) {
159 		spin_lock_init(&pool->lock);
160 		INIT_LIST_HEAD(&pool->chunks);
161 		pool->min_alloc_order = min_alloc_order;
162 		pool->algo = gen_pool_first_fit;
163 		pool->data = NULL;
164 		pool->name = NULL;
165 	}
166 	return pool;
167 }
168 EXPORT_SYMBOL(gen_pool_create);
169 
170 /**
171  * gen_pool_add_virt - add a new chunk of special memory to the pool
172  * @pool: pool to add new memory chunk to
173  * @virt: virtual starting address of memory chunk to add to pool
174  * @phys: physical starting address of memory chunk to add to pool
175  * @size: size in bytes of the memory chunk to add to pool
176  * @nid: node id of the node the chunk structure and bitmap should be
177  *       allocated on, or -1
178  *
179  * Add a new chunk of special memory to the specified pool.
180  *
181  * Returns 0 on success or a -ve errno on failure.
182  */
183 int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
184 		 size_t size, int nid)
185 {
186 	struct gen_pool_chunk *chunk;
187 	int nbits = size >> pool->min_alloc_order;
188 	int nbytes = sizeof(struct gen_pool_chunk) +
189 				BITS_TO_LONGS(nbits) * sizeof(long);
190 
191 	chunk = vzalloc_node(nbytes, nid);
192 	if (unlikely(chunk == NULL))
193 		return -ENOMEM;
194 
195 	chunk->phys_addr = phys;
196 	chunk->start_addr = virt;
197 	chunk->end_addr = virt + size - 1;
198 	atomic_long_set(&chunk->avail, size);
199 
200 	spin_lock(&pool->lock);
201 	list_add_rcu(&chunk->next_chunk, &pool->chunks);
202 	spin_unlock(&pool->lock);
203 
204 	return 0;
205 }
206 EXPORT_SYMBOL(gen_pool_add_virt);
207 
208 /**
209  * gen_pool_virt_to_phys - return the physical address of memory
210  * @pool: pool to allocate from
211  * @addr: starting address of memory
212  *
213  * Returns the physical address on success, or -1 on error.
214  */
215 phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
216 {
217 	struct gen_pool_chunk *chunk;
218 	phys_addr_t paddr = -1;
219 
220 	rcu_read_lock();
221 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
222 		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
223 			paddr = chunk->phys_addr + (addr - chunk->start_addr);
224 			break;
225 		}
226 	}
227 	rcu_read_unlock();
228 
229 	return paddr;
230 }
231 EXPORT_SYMBOL(gen_pool_virt_to_phys);
232 
233 /**
234  * gen_pool_destroy - destroy a special memory pool
235  * @pool: pool to destroy
236  *
237  * Destroy the specified special memory pool. Verifies that there are no
238  * outstanding allocations.
239  */
240 void gen_pool_destroy(struct gen_pool *pool)
241 {
242 	struct list_head *_chunk, *_next_chunk;
243 	struct gen_pool_chunk *chunk;
244 	int order = pool->min_alloc_order;
245 	int bit, end_bit;
246 
247 	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
248 		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
249 		list_del(&chunk->next_chunk);
250 
251 		end_bit = chunk_size(chunk) >> order;
252 		bit = find_next_bit(chunk->bits, end_bit, 0);
253 		BUG_ON(bit < end_bit);
254 
255 		vfree(chunk);
256 	}
257 	kfree_const(pool->name);
258 	kfree(pool);
259 }
260 EXPORT_SYMBOL(gen_pool_destroy);
261 
262 /**
263  * gen_pool_alloc - allocate special memory from the pool
264  * @pool: pool to allocate from
265  * @size: number of bytes to allocate from the pool
266  *
267  * Allocate the requested number of bytes from the specified pool.
268  * Uses the pool allocation function (with first-fit algorithm by default).
269  * Can not be used in NMI handler on architectures without
270  * NMI-safe cmpxchg implementation.
271  */
272 unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
273 {
274 	return gen_pool_alloc_algo(pool, size, pool->algo, pool->data);
275 }
276 EXPORT_SYMBOL(gen_pool_alloc);
277 
278 /**
279  * gen_pool_alloc_algo - allocate special memory from the pool
280  * @pool: pool to allocate from
281  * @size: number of bytes to allocate from the pool
282  * @algo: algorithm passed from caller
283  * @data: data passed to algorithm
284  *
285  * Allocate the requested number of bytes from the specified pool.
286  * Uses the pool allocation function (with first-fit algorithm by default).
287  * Can not be used in NMI handler on architectures without
288  * NMI-safe cmpxchg implementation.
289  */
290 unsigned long gen_pool_alloc_algo(struct gen_pool *pool, size_t size,
291 		genpool_algo_t algo, void *data)
292 {
293 	struct gen_pool_chunk *chunk;
294 	unsigned long addr = 0;
295 	int order = pool->min_alloc_order;
296 	int nbits, start_bit, end_bit, remain;
297 
298 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
299 	BUG_ON(in_nmi());
300 #endif
301 
302 	if (size == 0)
303 		return 0;
304 
305 	nbits = (size + (1UL << order) - 1) >> order;
306 	rcu_read_lock();
307 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
308 		if (size > atomic_long_read(&chunk->avail))
309 			continue;
310 
311 		start_bit = 0;
312 		end_bit = chunk_size(chunk) >> order;
313 retry:
314 		start_bit = algo(chunk->bits, end_bit, start_bit,
315 				 nbits, data, pool, chunk->start_addr);
316 		if (start_bit >= end_bit)
317 			continue;
318 		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
319 		if (remain) {
320 			remain = bitmap_clear_ll(chunk->bits, start_bit,
321 						 nbits - remain);
322 			BUG_ON(remain);
323 			goto retry;
324 		}
325 
326 		addr = chunk->start_addr + ((unsigned long)start_bit << order);
327 		size = nbits << order;
328 		atomic_long_sub(size, &chunk->avail);
329 		break;
330 	}
331 	rcu_read_unlock();
332 	return addr;
333 }
334 EXPORT_SYMBOL(gen_pool_alloc_algo);
335 
336 /**
337  * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
338  * @pool: pool to allocate from
339  * @size: number of bytes to allocate from the pool
340  * @dma: dma-view physical address return value.  Use %NULL if unneeded.
341  *
342  * Allocate the requested number of bytes from the specified pool.
343  * Uses the pool allocation function (with first-fit algorithm by default).
344  * Can not be used in NMI handler on architectures without
345  * NMI-safe cmpxchg implementation.
346  *
347  * Return: virtual address of the allocated memory, or %NULL on failure
348  */
349 void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
350 {
351 	return gen_pool_dma_alloc_algo(pool, size, dma, pool->algo, pool->data);
352 }
353 EXPORT_SYMBOL(gen_pool_dma_alloc);
354 
355 /**
356  * gen_pool_dma_alloc_algo - allocate special memory from the pool for DMA
357  * usage with the given pool algorithm
358  * @pool: pool to allocate from
359  * @size: number of bytes to allocate from the pool
360  * @dma: DMA-view physical address return value. Use %NULL if unneeded.
361  * @algo: algorithm passed from caller
362  * @data: data passed to algorithm
363  *
364  * Allocate the requested number of bytes from the specified pool. Uses the
365  * given pool allocation function. Can not be used in NMI handler on
366  * architectures without NMI-safe cmpxchg implementation.
367  *
368  * Return: virtual address of the allocated memory, or %NULL on failure
369  */
370 void *gen_pool_dma_alloc_algo(struct gen_pool *pool, size_t size,
371 		dma_addr_t *dma, genpool_algo_t algo, void *data)
372 {
373 	unsigned long vaddr;
374 
375 	if (!pool)
376 		return NULL;
377 
378 	vaddr = gen_pool_alloc_algo(pool, size, algo, data);
379 	if (!vaddr)
380 		return NULL;
381 
382 	if (dma)
383 		*dma = gen_pool_virt_to_phys(pool, vaddr);
384 
385 	return (void *)vaddr;
386 }
387 EXPORT_SYMBOL(gen_pool_dma_alloc_algo);
388 
389 /**
390  * gen_pool_dma_alloc_align - allocate special memory from the pool for DMA
391  * usage with the given alignment
392  * @pool: pool to allocate from
393  * @size: number of bytes to allocate from the pool
394  * @dma: DMA-view physical address return value. Use %NULL if unneeded.
395  * @align: alignment in bytes for starting address
396  *
397  * Allocate the requested number bytes from the specified pool, with the given
398  * alignment restriction. Can not be used in NMI handler on architectures
399  * without NMI-safe cmpxchg implementation.
400  *
401  * Return: virtual address of the allocated memory, or %NULL on failure
402  */
403 void *gen_pool_dma_alloc_align(struct gen_pool *pool, size_t size,
404 		dma_addr_t *dma, int align)
405 {
406 	struct genpool_data_align data = { .align = align };
407 
408 	return gen_pool_dma_alloc_algo(pool, size, dma,
409 			gen_pool_first_fit_align, &data);
410 }
411 EXPORT_SYMBOL(gen_pool_dma_alloc_align);
412 
413 /**
414  * gen_pool_dma_zalloc - allocate special zeroed memory from the pool for
415  * DMA usage
416  * @pool: pool to allocate from
417  * @size: number of bytes to allocate from the pool
418  * @dma: dma-view physical address return value.  Use %NULL if unneeded.
419  *
420  * Allocate the requested number of zeroed bytes from the specified pool.
421  * Uses the pool allocation function (with first-fit algorithm by default).
422  * Can not be used in NMI handler on architectures without
423  * NMI-safe cmpxchg implementation.
424  *
425  * Return: virtual address of the allocated zeroed memory, or %NULL on failure
426  */
427 void *gen_pool_dma_zalloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
428 {
429 	return gen_pool_dma_zalloc_algo(pool, size, dma, pool->algo, pool->data);
430 }
431 EXPORT_SYMBOL(gen_pool_dma_zalloc);
432 
433 /**
434  * gen_pool_dma_zalloc_algo - allocate special zeroed memory from the pool for
435  * DMA usage with the given pool algorithm
436  * @pool: pool to allocate from
437  * @size: number of bytes to allocate from the pool
438  * @dma: DMA-view physical address return value. Use %NULL if unneeded.
439  * @algo: algorithm passed from caller
440  * @data: data passed to algorithm
441  *
442  * Allocate the requested number of zeroed bytes from the specified pool. Uses
443  * the given pool allocation function. Can not be used in NMI handler on
444  * architectures without NMI-safe cmpxchg implementation.
445  *
446  * Return: virtual address of the allocated zeroed memory, or %NULL on failure
447  */
448 void *gen_pool_dma_zalloc_algo(struct gen_pool *pool, size_t size,
449 		dma_addr_t *dma, genpool_algo_t algo, void *data)
450 {
451 	void *vaddr = gen_pool_dma_alloc_algo(pool, size, dma, algo, data);
452 
453 	if (vaddr)
454 		memset(vaddr, 0, size);
455 
456 	return vaddr;
457 }
458 EXPORT_SYMBOL(gen_pool_dma_zalloc_algo);
459 
460 /**
461  * gen_pool_dma_zalloc_align - allocate special zeroed memory from the pool for
462  * DMA usage with the given alignment
463  * @pool: pool to allocate from
464  * @size: number of bytes to allocate from the pool
465  * @dma: DMA-view physical address return value. Use %NULL if unneeded.
466  * @align: alignment in bytes for starting address
467  *
468  * Allocate the requested number of zeroed bytes from the specified pool,
469  * with the given alignment restriction. Can not be used in NMI handler on
470  * architectures without NMI-safe cmpxchg implementation.
471  *
472  * Return: virtual address of the allocated zeroed memory, or %NULL on failure
473  */
474 void *gen_pool_dma_zalloc_align(struct gen_pool *pool, size_t size,
475 		dma_addr_t *dma, int align)
476 {
477 	struct genpool_data_align data = { .align = align };
478 
479 	return gen_pool_dma_zalloc_algo(pool, size, dma,
480 			gen_pool_first_fit_align, &data);
481 }
482 EXPORT_SYMBOL(gen_pool_dma_zalloc_align);
483 
484 /**
485  * gen_pool_free - free allocated special memory back to the pool
486  * @pool: pool to free to
487  * @addr: starting address of memory to free back to pool
488  * @size: size in bytes of memory to free
489  *
490  * Free previously allocated special memory back to the specified
491  * pool.  Can not be used in NMI handler on architectures without
492  * NMI-safe cmpxchg implementation.
493  */
494 void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
495 {
496 	struct gen_pool_chunk *chunk;
497 	int order = pool->min_alloc_order;
498 	int start_bit, nbits, remain;
499 
500 #ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
501 	BUG_ON(in_nmi());
502 #endif
503 
504 	nbits = (size + (1UL << order) - 1) >> order;
505 	rcu_read_lock();
506 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
507 		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
508 			BUG_ON(addr + size - 1 > chunk->end_addr);
509 			start_bit = (addr - chunk->start_addr) >> order;
510 			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
511 			BUG_ON(remain);
512 			size = nbits << order;
513 			atomic_long_add(size, &chunk->avail);
514 			rcu_read_unlock();
515 			return;
516 		}
517 	}
518 	rcu_read_unlock();
519 	BUG();
520 }
521 EXPORT_SYMBOL(gen_pool_free);
522 
523 /**
524  * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
525  * @pool:	the generic memory pool
526  * @func:	func to call
527  * @data:	additional data used by @func
528  *
529  * Call @func for every chunk of generic memory pool.  The @func is
530  * called with rcu_read_lock held.
531  */
532 void gen_pool_for_each_chunk(struct gen_pool *pool,
533 	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
534 	void *data)
535 {
536 	struct gen_pool_chunk *chunk;
537 
538 	rcu_read_lock();
539 	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
540 		func(pool, chunk, data);
541 	rcu_read_unlock();
542 }
543 EXPORT_SYMBOL(gen_pool_for_each_chunk);
544 
545 /**
546  * addr_in_gen_pool - checks if an address falls within the range of a pool
547  * @pool:	the generic memory pool
548  * @start:	start address
549  * @size:	size of the region
550  *
551  * Check if the range of addresses falls within the specified pool. Returns
552  * true if the entire range is contained in the pool and false otherwise.
553  */
554 bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
555 			size_t size)
556 {
557 	bool found = false;
558 	unsigned long end = start + size - 1;
559 	struct gen_pool_chunk *chunk;
560 
561 	rcu_read_lock();
562 	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
563 		if (start >= chunk->start_addr && start <= chunk->end_addr) {
564 			if (end <= chunk->end_addr) {
565 				found = true;
566 				break;
567 			}
568 		}
569 	}
570 	rcu_read_unlock();
571 	return found;
572 }
573 
574 /**
575  * gen_pool_avail - get available free space of the pool
576  * @pool: pool to get available free space
577  *
578  * Return available free space of the specified pool.
579  */
580 size_t gen_pool_avail(struct gen_pool *pool)
581 {
582 	struct gen_pool_chunk *chunk;
583 	size_t avail = 0;
584 
585 	rcu_read_lock();
586 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
587 		avail += atomic_long_read(&chunk->avail);
588 	rcu_read_unlock();
589 	return avail;
590 }
591 EXPORT_SYMBOL_GPL(gen_pool_avail);
592 
593 /**
594  * gen_pool_size - get size in bytes of memory managed by the pool
595  * @pool: pool to get size
596  *
597  * Return size in bytes of memory managed by the pool.
598  */
599 size_t gen_pool_size(struct gen_pool *pool)
600 {
601 	struct gen_pool_chunk *chunk;
602 	size_t size = 0;
603 
604 	rcu_read_lock();
605 	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
606 		size += chunk_size(chunk);
607 	rcu_read_unlock();
608 	return size;
609 }
610 EXPORT_SYMBOL_GPL(gen_pool_size);
611 
612 /**
613  * gen_pool_set_algo - set the allocation algorithm
614  * @pool: pool to change allocation algorithm
615  * @algo: custom algorithm function
616  * @data: additional data used by @algo
617  *
618  * Call @algo for each memory allocation in the pool.
619  * If @algo is NULL use gen_pool_first_fit as default
620  * memory allocation function.
621  */
622 void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
623 {
624 	rcu_read_lock();
625 
626 	pool->algo = algo;
627 	if (!pool->algo)
628 		pool->algo = gen_pool_first_fit;
629 
630 	pool->data = data;
631 
632 	rcu_read_unlock();
633 }
634 EXPORT_SYMBOL(gen_pool_set_algo);
635 
636 /**
637  * gen_pool_first_fit - find the first available region
638  * of memory matching the size requirement (no alignment constraint)
639  * @map: The address to base the search on
640  * @size: The bitmap size in bits
641  * @start: The bitnumber to start searching at
642  * @nr: The number of zeroed bits we're looking for
643  * @data: additional data - unused
644  * @pool: pool to find the fit region memory from
645  */
646 unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
647 		unsigned long start, unsigned int nr, void *data,
648 		struct gen_pool *pool, unsigned long start_addr)
649 {
650 	return bitmap_find_next_zero_area(map, size, start, nr, 0);
651 }
652 EXPORT_SYMBOL(gen_pool_first_fit);
653 
654 /**
655  * gen_pool_first_fit_align - find the first available region
656  * of memory matching the size requirement (alignment constraint)
657  * @map: The address to base the search on
658  * @size: The bitmap size in bits
659  * @start: The bitnumber to start searching at
660  * @nr: The number of zeroed bits we're looking for
661  * @data: data for alignment
662  * @pool: pool to get order from
663  */
664 unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
665 		unsigned long start, unsigned int nr, void *data,
666 		struct gen_pool *pool, unsigned long start_addr)
667 {
668 	struct genpool_data_align *alignment;
669 	unsigned long align_mask, align_off;
670 	int order;
671 
672 	alignment = data;
673 	order = pool->min_alloc_order;
674 	align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
675 	align_off = (start_addr & (alignment->align - 1)) >> order;
676 
677 	return bitmap_find_next_zero_area_off(map, size, start, nr,
678 					      align_mask, align_off);
679 }
680 EXPORT_SYMBOL(gen_pool_first_fit_align);
681 
682 /**
683  * gen_pool_fixed_alloc - reserve a specific region
684  * @map: The address to base the search on
685  * @size: The bitmap size in bits
686  * @start: The bitnumber to start searching at
687  * @nr: The number of zeroed bits we're looking for
688  * @data: data for alignment
689  * @pool: pool to get order from
690  */
691 unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
692 		unsigned long start, unsigned int nr, void *data,
693 		struct gen_pool *pool, unsigned long start_addr)
694 {
695 	struct genpool_data_fixed *fixed_data;
696 	int order;
697 	unsigned long offset_bit;
698 	unsigned long start_bit;
699 
700 	fixed_data = data;
701 	order = pool->min_alloc_order;
702 	offset_bit = fixed_data->offset >> order;
703 	if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
704 		return size;
705 
706 	start_bit = bitmap_find_next_zero_area(map, size,
707 			start + offset_bit, nr, 0);
708 	if (start_bit != offset_bit)
709 		start_bit = size;
710 	return start_bit;
711 }
712 EXPORT_SYMBOL(gen_pool_fixed_alloc);
713 
714 /**
715  * gen_pool_first_fit_order_align - find the first available region
716  * of memory matching the size requirement. The region will be aligned
717  * to the order of the size specified.
718  * @map: The address to base the search on
719  * @size: The bitmap size in bits
720  * @start: The bitnumber to start searching at
721  * @nr: The number of zeroed bits we're looking for
722  * @data: additional data - unused
723  * @pool: pool to find the fit region memory from
724  */
725 unsigned long gen_pool_first_fit_order_align(unsigned long *map,
726 		unsigned long size, unsigned long start,
727 		unsigned int nr, void *data, struct gen_pool *pool,
728 		unsigned long start_addr)
729 {
730 	unsigned long align_mask = roundup_pow_of_two(nr) - 1;
731 
732 	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
733 }
734 EXPORT_SYMBOL(gen_pool_first_fit_order_align);
735 
736 /**
737  * gen_pool_best_fit - find the best fitting region of memory
738  * macthing the size requirement (no alignment constraint)
739  * @map: The address to base the search on
740  * @size: The bitmap size in bits
741  * @start: The bitnumber to start searching at
742  * @nr: The number of zeroed bits we're looking for
743  * @data: additional data - unused
744  * @pool: pool to find the fit region memory from
745  *
746  * Iterate over the bitmap to find the smallest free region
747  * which we can allocate the memory.
748  */
749 unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
750 		unsigned long start, unsigned int nr, void *data,
751 		struct gen_pool *pool, unsigned long start_addr)
752 {
753 	unsigned long start_bit = size;
754 	unsigned long len = size + 1;
755 	unsigned long index;
756 
757 	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
758 
759 	while (index < size) {
760 		int next_bit = find_next_bit(map, size, index + nr);
761 		if ((next_bit - index) < len) {
762 			len = next_bit - index;
763 			start_bit = index;
764 			if (len == nr)
765 				return start_bit;
766 		}
767 		index = bitmap_find_next_zero_area(map, size,
768 						   next_bit + 1, nr, 0);
769 	}
770 
771 	return start_bit;
772 }
773 EXPORT_SYMBOL(gen_pool_best_fit);
774 
775 static void devm_gen_pool_release(struct device *dev, void *res)
776 {
777 	gen_pool_destroy(*(struct gen_pool **)res);
778 }
779 
780 static int devm_gen_pool_match(struct device *dev, void *res, void *data)
781 {
782 	struct gen_pool **p = res;
783 
784 	/* NULL data matches only a pool without an assigned name */
785 	if (!data && !(*p)->name)
786 		return 1;
787 
788 	if (!data || !(*p)->name)
789 		return 0;
790 
791 	return !strcmp((*p)->name, data);
792 }
793 
794 /**
795  * gen_pool_get - Obtain the gen_pool (if any) for a device
796  * @dev: device to retrieve the gen_pool from
797  * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
798  *
799  * Returns the gen_pool for the device if one is present, or NULL.
800  */
801 struct gen_pool *gen_pool_get(struct device *dev, const char *name)
802 {
803 	struct gen_pool **p;
804 
805 	p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
806 			(void *)name);
807 	if (!p)
808 		return NULL;
809 	return *p;
810 }
811 EXPORT_SYMBOL_GPL(gen_pool_get);
812 
813 /**
814  * devm_gen_pool_create - managed gen_pool_create
815  * @dev: device that provides the gen_pool
816  * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
817  * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
818  * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
819  *
820  * Create a new special memory pool that can be used to manage special purpose
821  * memory not managed by the regular kmalloc/kfree interface. The pool will be
822  * automatically destroyed by the device management code.
823  */
824 struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
825 				      int nid, const char *name)
826 {
827 	struct gen_pool **ptr, *pool;
828 	const char *pool_name = NULL;
829 
830 	/* Check that genpool to be created is uniquely addressed on device */
831 	if (gen_pool_get(dev, name))
832 		return ERR_PTR(-EINVAL);
833 
834 	if (name) {
835 		pool_name = kstrdup_const(name, GFP_KERNEL);
836 		if (!pool_name)
837 			return ERR_PTR(-ENOMEM);
838 	}
839 
840 	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
841 	if (!ptr)
842 		goto free_pool_name;
843 
844 	pool = gen_pool_create(min_alloc_order, nid);
845 	if (!pool)
846 		goto free_devres;
847 
848 	*ptr = pool;
849 	pool->name = pool_name;
850 	devres_add(dev, ptr);
851 
852 	return pool;
853 
854 free_devres:
855 	devres_free(ptr);
856 free_pool_name:
857 	kfree_const(pool_name);
858 
859 	return ERR_PTR(-ENOMEM);
860 }
861 EXPORT_SYMBOL(devm_gen_pool_create);
862 
863 #ifdef CONFIG_OF
864 /**
865  * of_gen_pool_get - find a pool by phandle property
866  * @np: device node
867  * @propname: property name containing phandle(s)
868  * @index: index into the phandle array
869  *
870  * Returns the pool that contains the chunk starting at the physical
871  * address of the device tree node pointed at by the phandle property,
872  * or NULL if not found.
873  */
874 struct gen_pool *of_gen_pool_get(struct device_node *np,
875 	const char *propname, int index)
876 {
877 	struct platform_device *pdev;
878 	struct device_node *np_pool, *parent;
879 	const char *name = NULL;
880 	struct gen_pool *pool = NULL;
881 
882 	np_pool = of_parse_phandle(np, propname, index);
883 	if (!np_pool)
884 		return NULL;
885 
886 	pdev = of_find_device_by_node(np_pool);
887 	if (!pdev) {
888 		/* Check if named gen_pool is created by parent node device */
889 		parent = of_get_parent(np_pool);
890 		pdev = of_find_device_by_node(parent);
891 		of_node_put(parent);
892 
893 		of_property_read_string(np_pool, "label", &name);
894 		if (!name)
895 			name = np_pool->name;
896 	}
897 	if (pdev)
898 		pool = gen_pool_get(&pdev->dev, name);
899 	of_node_put(np_pool);
900 
901 	return pool;
902 }
903 EXPORT_SYMBOL_GPL(of_gen_pool_get);
904 #endif /* CONFIG_OF */
905