xref: /linux-6.15/lib/bitmap.c (revision eae5acbd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * lib/bitmap.c
4  * Helper functions for bitmap.h.
5  */
6 
7 #include <linux/bitmap.h>
8 #include <linux/bitops.h>
9 #include <linux/ctype.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/export.h>
13 #include <linux/slab.h>
14 
15 /**
16  * DOC: bitmap introduction
17  *
18  * bitmaps provide an array of bits, implemented using an
19  * array of unsigned longs.  The number of valid bits in a
20  * given bitmap does _not_ need to be an exact multiple of
21  * BITS_PER_LONG.
22  *
23  * The possible unused bits in the last, partially used word
24  * of a bitmap are 'don't care'.  The implementation makes
25  * no particular effort to keep them zero.  It ensures that
26  * their value will not affect the results of any operation.
27  * The bitmap operations that return Boolean (bitmap_empty,
28  * for example) or scalar (bitmap_weight, for example) results
29  * carefully filter out these unused bits from impacting their
30  * results.
31  *
32  * The byte ordering of bitmaps is more natural on little
33  * endian architectures.  See the big-endian headers
34  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
35  * for the best explanations of this ordering.
36  */
37 
38 bool __bitmap_equal(const unsigned long *bitmap1,
39 		    const unsigned long *bitmap2, unsigned int bits)
40 {
41 	unsigned int k, lim = bits/BITS_PER_LONG;
42 	for (k = 0; k < lim; ++k)
43 		if (bitmap1[k] != bitmap2[k])
44 			return false;
45 
46 	if (bits % BITS_PER_LONG)
47 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
48 			return false;
49 
50 	return true;
51 }
52 EXPORT_SYMBOL(__bitmap_equal);
53 
54 bool __bitmap_or_equal(const unsigned long *bitmap1,
55 		       const unsigned long *bitmap2,
56 		       const unsigned long *bitmap3,
57 		       unsigned int bits)
58 {
59 	unsigned int k, lim = bits / BITS_PER_LONG;
60 	unsigned long tmp;
61 
62 	for (k = 0; k < lim; ++k) {
63 		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
64 			return false;
65 	}
66 
67 	if (!(bits % BITS_PER_LONG))
68 		return true;
69 
70 	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
71 	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
72 }
73 
74 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
75 {
76 	unsigned int k, lim = BITS_TO_LONGS(bits);
77 	for (k = 0; k < lim; ++k)
78 		dst[k] = ~src[k];
79 }
80 EXPORT_SYMBOL(__bitmap_complement);
81 
82 /**
83  * __bitmap_shift_right - logical right shift of the bits in a bitmap
84  *   @dst : destination bitmap
85  *   @src : source bitmap
86  *   @shift : shift by this many bits
87  *   @nbits : bitmap size, in bits
88  *
89  * Shifting right (dividing) means moving bits in the MS -> LS bit
90  * direction.  Zeros are fed into the vacated MS positions and the
91  * LS bits shifted off the bottom are lost.
92  */
93 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
94 			unsigned shift, unsigned nbits)
95 {
96 	unsigned k, lim = BITS_TO_LONGS(nbits);
97 	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
98 	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
99 	for (k = 0; off + k < lim; ++k) {
100 		unsigned long upper, lower;
101 
102 		/*
103 		 * If shift is not word aligned, take lower rem bits of
104 		 * word above and make them the top rem bits of result.
105 		 */
106 		if (!rem || off + k + 1 >= lim)
107 			upper = 0;
108 		else {
109 			upper = src[off + k + 1];
110 			if (off + k + 1 == lim - 1)
111 				upper &= mask;
112 			upper <<= (BITS_PER_LONG - rem);
113 		}
114 		lower = src[off + k];
115 		if (off + k == lim - 1)
116 			lower &= mask;
117 		lower >>= rem;
118 		dst[k] = lower | upper;
119 	}
120 	if (off)
121 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
122 }
123 EXPORT_SYMBOL(__bitmap_shift_right);
124 
125 
126 /**
127  * __bitmap_shift_left - logical left shift of the bits in a bitmap
128  *   @dst : destination bitmap
129  *   @src : source bitmap
130  *   @shift : shift by this many bits
131  *   @nbits : bitmap size, in bits
132  *
133  * Shifting left (multiplying) means moving bits in the LS -> MS
134  * direction.  Zeros are fed into the vacated LS bit positions
135  * and those MS bits shifted off the top are lost.
136  */
137 
138 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
139 			unsigned int shift, unsigned int nbits)
140 {
141 	int k;
142 	unsigned int lim = BITS_TO_LONGS(nbits);
143 	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
144 	for (k = lim - off - 1; k >= 0; --k) {
145 		unsigned long upper, lower;
146 
147 		/*
148 		 * If shift is not word aligned, take upper rem bits of
149 		 * word below and make them the bottom rem bits of result.
150 		 */
151 		if (rem && k > 0)
152 			lower = src[k - 1] >> (BITS_PER_LONG - rem);
153 		else
154 			lower = 0;
155 		upper = src[k] << rem;
156 		dst[k + off] = lower | upper;
157 	}
158 	if (off)
159 		memset(dst, 0, off*sizeof(unsigned long));
160 }
161 EXPORT_SYMBOL(__bitmap_shift_left);
162 
163 /**
164  * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
165  * @dst: destination bitmap, might overlap with src
166  * @src: source bitmap
167  * @first: start bit of region to be removed
168  * @cut: number of bits to remove
169  * @nbits: bitmap size, in bits
170  *
171  * Set the n-th bit of @dst iff the n-th bit of @src is set and
172  * n is less than @first, or the m-th bit of @src is set for any
173  * m such that @first <= n < nbits, and m = n + @cut.
174  *
175  * In pictures, example for a big-endian 32-bit architecture:
176  *
177  * The @src bitmap is::
178  *
179  *   31                                   63
180  *   |                                    |
181  *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
182  *                   |  |              |                                    |
183  *                  16  14             0                                   32
184  *
185  * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
186  *
187  *   31                                   63
188  *   |                                    |
189  *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
190  *                      |              |                                    |
191  *                      14 (bit 17     0                                   32
192  *                          from @src)
193  *
194  * Note that @dst and @src might overlap partially or entirely.
195  *
196  * This is implemented in the obvious way, with a shift and carry
197  * step for each moved bit. Optimisation is left as an exercise
198  * for the compiler.
199  */
200 void bitmap_cut(unsigned long *dst, const unsigned long *src,
201 		unsigned int first, unsigned int cut, unsigned int nbits)
202 {
203 	unsigned int len = BITS_TO_LONGS(nbits);
204 	unsigned long keep = 0, carry;
205 	int i;
206 
207 	if (first % BITS_PER_LONG) {
208 		keep = src[first / BITS_PER_LONG] &
209 		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
210 	}
211 
212 	memmove(dst, src, len * sizeof(*dst));
213 
214 	while (cut--) {
215 		for (i = first / BITS_PER_LONG; i < len; i++) {
216 			if (i < len - 1)
217 				carry = dst[i + 1] & 1UL;
218 			else
219 				carry = 0;
220 
221 			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
222 		}
223 	}
224 
225 	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
226 	dst[first / BITS_PER_LONG] |= keep;
227 }
228 EXPORT_SYMBOL(bitmap_cut);
229 
230 bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
231 				const unsigned long *bitmap2, unsigned int bits)
232 {
233 	unsigned int k;
234 	unsigned int lim = bits/BITS_PER_LONG;
235 	unsigned long result = 0;
236 
237 	for (k = 0; k < lim; k++)
238 		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
239 	if (bits % BITS_PER_LONG)
240 		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
241 			   BITMAP_LAST_WORD_MASK(bits));
242 	return result != 0;
243 }
244 EXPORT_SYMBOL(__bitmap_and);
245 
246 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
247 				const unsigned long *bitmap2, unsigned int bits)
248 {
249 	unsigned int k;
250 	unsigned int nr = BITS_TO_LONGS(bits);
251 
252 	for (k = 0; k < nr; k++)
253 		dst[k] = bitmap1[k] | bitmap2[k];
254 }
255 EXPORT_SYMBOL(__bitmap_or);
256 
257 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
258 				const unsigned long *bitmap2, unsigned int bits)
259 {
260 	unsigned int k;
261 	unsigned int nr = BITS_TO_LONGS(bits);
262 
263 	for (k = 0; k < nr; k++)
264 		dst[k] = bitmap1[k] ^ bitmap2[k];
265 }
266 EXPORT_SYMBOL(__bitmap_xor);
267 
268 bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
269 				const unsigned long *bitmap2, unsigned int bits)
270 {
271 	unsigned int k;
272 	unsigned int lim = bits/BITS_PER_LONG;
273 	unsigned long result = 0;
274 
275 	for (k = 0; k < lim; k++)
276 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
277 	if (bits % BITS_PER_LONG)
278 		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
279 			   BITMAP_LAST_WORD_MASK(bits));
280 	return result != 0;
281 }
282 EXPORT_SYMBOL(__bitmap_andnot);
283 
284 void __bitmap_replace(unsigned long *dst,
285 		      const unsigned long *old, const unsigned long *new,
286 		      const unsigned long *mask, unsigned int nbits)
287 {
288 	unsigned int k;
289 	unsigned int nr = BITS_TO_LONGS(nbits);
290 
291 	for (k = 0; k < nr; k++)
292 		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
293 }
294 EXPORT_SYMBOL(__bitmap_replace);
295 
296 bool __bitmap_intersects(const unsigned long *bitmap1,
297 			 const unsigned long *bitmap2, unsigned int bits)
298 {
299 	unsigned int k, lim = bits/BITS_PER_LONG;
300 	for (k = 0; k < lim; ++k)
301 		if (bitmap1[k] & bitmap2[k])
302 			return true;
303 
304 	if (bits % BITS_PER_LONG)
305 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
306 			return true;
307 	return false;
308 }
309 EXPORT_SYMBOL(__bitmap_intersects);
310 
311 bool __bitmap_subset(const unsigned long *bitmap1,
312 		     const unsigned long *bitmap2, unsigned int bits)
313 {
314 	unsigned int k, lim = bits/BITS_PER_LONG;
315 	for (k = 0; k < lim; ++k)
316 		if (bitmap1[k] & ~bitmap2[k])
317 			return false;
318 
319 	if (bits % BITS_PER_LONG)
320 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
321 			return false;
322 	return true;
323 }
324 EXPORT_SYMBOL(__bitmap_subset);
325 
326 #define BITMAP_WEIGHT(FETCH, bits)	\
327 ({										\
328 	unsigned int __bits = (bits), idx, w = 0;				\
329 										\
330 	for (idx = 0; idx < __bits / BITS_PER_LONG; idx++)			\
331 		w += hweight_long(FETCH);					\
332 										\
333 	if (__bits % BITS_PER_LONG)						\
334 		w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits));	\
335 										\
336 	w;									\
337 })
338 
339 unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
340 {
341 	return BITMAP_WEIGHT(bitmap[idx], bits);
342 }
343 EXPORT_SYMBOL(__bitmap_weight);
344 
345 unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
346 				const unsigned long *bitmap2, unsigned int bits)
347 {
348 	return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits);
349 }
350 EXPORT_SYMBOL(__bitmap_weight_and);
351 
352 void __bitmap_set(unsigned long *map, unsigned int start, int len)
353 {
354 	unsigned long *p = map + BIT_WORD(start);
355 	const unsigned int size = start + len;
356 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
357 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
358 
359 	while (len - bits_to_set >= 0) {
360 		*p |= mask_to_set;
361 		len -= bits_to_set;
362 		bits_to_set = BITS_PER_LONG;
363 		mask_to_set = ~0UL;
364 		p++;
365 	}
366 	if (len) {
367 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
368 		*p |= mask_to_set;
369 	}
370 }
371 EXPORT_SYMBOL(__bitmap_set);
372 
373 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
374 {
375 	unsigned long *p = map + BIT_WORD(start);
376 	const unsigned int size = start + len;
377 	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
378 	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
379 
380 	while (len - bits_to_clear >= 0) {
381 		*p &= ~mask_to_clear;
382 		len -= bits_to_clear;
383 		bits_to_clear = BITS_PER_LONG;
384 		mask_to_clear = ~0UL;
385 		p++;
386 	}
387 	if (len) {
388 		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
389 		*p &= ~mask_to_clear;
390 	}
391 }
392 EXPORT_SYMBOL(__bitmap_clear);
393 
394 /**
395  * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
396  * @map: The address to base the search on
397  * @size: The bitmap size in bits
398  * @start: The bitnumber to start searching at
399  * @nr: The number of zeroed bits we're looking for
400  * @align_mask: Alignment mask for zero area
401  * @align_offset: Alignment offset for zero area.
402  *
403  * The @align_mask should be one less than a power of 2; the effect is that
404  * the bit offset of all zero areas this function finds plus @align_offset
405  * is multiple of that power of 2.
406  */
407 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
408 					     unsigned long size,
409 					     unsigned long start,
410 					     unsigned int nr,
411 					     unsigned long align_mask,
412 					     unsigned long align_offset)
413 {
414 	unsigned long index, end, i;
415 again:
416 	index = find_next_zero_bit(map, size, start);
417 
418 	/* Align allocation */
419 	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
420 
421 	end = index + nr;
422 	if (end > size)
423 		return end;
424 	i = find_next_bit(map, end, index);
425 	if (i < end) {
426 		start = i + 1;
427 		goto again;
428 	}
429 	return index;
430 }
431 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
432 
433 /**
434  * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
435  *	@buf: pointer to a bitmap
436  *	@pos: a bit position in @buf (0 <= @pos < @nbits)
437  *	@nbits: number of valid bit positions in @buf
438  *
439  * Map the bit at position @pos in @buf (of length @nbits) to the
440  * ordinal of which set bit it is.  If it is not set or if @pos
441  * is not a valid bit position, map to -1.
442  *
443  * If for example, just bits 4 through 7 are set in @buf, then @pos
444  * values 4 through 7 will get mapped to 0 through 3, respectively,
445  * and other @pos values will get mapped to -1.  When @pos value 7
446  * gets mapped to (returns) @ord value 3 in this example, that means
447  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
448  *
449  * The bit positions 0 through @bits are valid positions in @buf.
450  */
451 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
452 {
453 	if (pos >= nbits || !test_bit(pos, buf))
454 		return -1;
455 
456 	return bitmap_weight(buf, pos);
457 }
458 
459 /**
460  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
461  *	@dst: remapped result
462  *	@src: subset to be remapped
463  *	@old: defines domain of map
464  *	@new: defines range of map
465  *	@nbits: number of bits in each of these bitmaps
466  *
467  * Let @old and @new define a mapping of bit positions, such that
468  * whatever position is held by the n-th set bit in @old is mapped
469  * to the n-th set bit in @new.  In the more general case, allowing
470  * for the possibility that the weight 'w' of @new is less than the
471  * weight of @old, map the position of the n-th set bit in @old to
472  * the position of the m-th set bit in @new, where m == n % w.
473  *
474  * If either of the @old and @new bitmaps are empty, or if @src and
475  * @dst point to the same location, then this routine copies @src
476  * to @dst.
477  *
478  * The positions of unset bits in @old are mapped to themselves
479  * (the identity map).
480  *
481  * Apply the above specified mapping to @src, placing the result in
482  * @dst, clearing any bits previously set in @dst.
483  *
484  * For example, lets say that @old has bits 4 through 7 set, and
485  * @new has bits 12 through 15 set.  This defines the mapping of bit
486  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
487  * bit positions unchanged.  So if say @src comes into this routine
488  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
489  * 13 and 15 set.
490  */
491 void bitmap_remap(unsigned long *dst, const unsigned long *src,
492 		const unsigned long *old, const unsigned long *new,
493 		unsigned int nbits)
494 {
495 	unsigned int oldbit, w;
496 
497 	if (dst == src)		/* following doesn't handle inplace remaps */
498 		return;
499 	bitmap_zero(dst, nbits);
500 
501 	w = bitmap_weight(new, nbits);
502 	for_each_set_bit(oldbit, src, nbits) {
503 		int n = bitmap_pos_to_ord(old, oldbit, nbits);
504 
505 		if (n < 0 || w == 0)
506 			set_bit(oldbit, dst);	/* identity map */
507 		else
508 			set_bit(find_nth_bit(new, nbits, n % w), dst);
509 	}
510 }
511 EXPORT_SYMBOL(bitmap_remap);
512 
513 /**
514  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
515  *	@oldbit: bit position to be mapped
516  *	@old: defines domain of map
517  *	@new: defines range of map
518  *	@bits: number of bits in each of these bitmaps
519  *
520  * Let @old and @new define a mapping of bit positions, such that
521  * whatever position is held by the n-th set bit in @old is mapped
522  * to the n-th set bit in @new.  In the more general case, allowing
523  * for the possibility that the weight 'w' of @new is less than the
524  * weight of @old, map the position of the n-th set bit in @old to
525  * the position of the m-th set bit in @new, where m == n % w.
526  *
527  * The positions of unset bits in @old are mapped to themselves
528  * (the identity map).
529  *
530  * Apply the above specified mapping to bit position @oldbit, returning
531  * the new bit position.
532  *
533  * For example, lets say that @old has bits 4 through 7 set, and
534  * @new has bits 12 through 15 set.  This defines the mapping of bit
535  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
536  * bit positions unchanged.  So if say @oldbit is 5, then this routine
537  * returns 13.
538  */
539 int bitmap_bitremap(int oldbit, const unsigned long *old,
540 				const unsigned long *new, int bits)
541 {
542 	int w = bitmap_weight(new, bits);
543 	int n = bitmap_pos_to_ord(old, oldbit, bits);
544 	if (n < 0 || w == 0)
545 		return oldbit;
546 	else
547 		return find_nth_bit(new, bits, n % w);
548 }
549 EXPORT_SYMBOL(bitmap_bitremap);
550 
551 #ifdef CONFIG_NUMA
552 /**
553  * bitmap_onto - translate one bitmap relative to another
554  *	@dst: resulting translated bitmap
555  * 	@orig: original untranslated bitmap
556  * 	@relmap: bitmap relative to which translated
557  *	@bits: number of bits in each of these bitmaps
558  *
559  * Set the n-th bit of @dst iff there exists some m such that the
560  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
561  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
562  * (If you understood the previous sentence the first time your
563  * read it, you're overqualified for your current job.)
564  *
565  * In other words, @orig is mapped onto (surjectively) @dst,
566  * using the map { <n, m> | the n-th bit of @relmap is the
567  * m-th set bit of @relmap }.
568  *
569  * Any set bits in @orig above bit number W, where W is the
570  * weight of (number of set bits in) @relmap are mapped nowhere.
571  * In particular, if for all bits m set in @orig, m >= W, then
572  * @dst will end up empty.  In situations where the possibility
573  * of such an empty result is not desired, one way to avoid it is
574  * to use the bitmap_fold() operator, below, to first fold the
575  * @orig bitmap over itself so that all its set bits x are in the
576  * range 0 <= x < W.  The bitmap_fold() operator does this by
577  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
578  *
579  * Example [1] for bitmap_onto():
580  *  Let's say @relmap has bits 30-39 set, and @orig has bits
581  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
582  *  @dst will have bits 31, 33, 35, 37 and 39 set.
583  *
584  *  When bit 0 is set in @orig, it means turn on the bit in
585  *  @dst corresponding to whatever is the first bit (if any)
586  *  that is turned on in @relmap.  Since bit 0 was off in the
587  *  above example, we leave off that bit (bit 30) in @dst.
588  *
589  *  When bit 1 is set in @orig (as in the above example), it
590  *  means turn on the bit in @dst corresponding to whatever
591  *  is the second bit that is turned on in @relmap.  The second
592  *  bit in @relmap that was turned on in the above example was
593  *  bit 31, so we turned on bit 31 in @dst.
594  *
595  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
596  *  because they were the 4th, 6th, 8th and 10th set bits
597  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
598  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
599  *
600  *  When bit 11 is set in @orig, it means turn on the bit in
601  *  @dst corresponding to whatever is the twelfth bit that is
602  *  turned on in @relmap.  In the above example, there were
603  *  only ten bits turned on in @relmap (30..39), so that bit
604  *  11 was set in @orig had no affect on @dst.
605  *
606  * Example [2] for bitmap_fold() + bitmap_onto():
607  *  Let's say @relmap has these ten bits set::
608  *
609  *		40 41 42 43 45 48 53 61 74 95
610  *
611  *  (for the curious, that's 40 plus the first ten terms of the
612  *  Fibonacci sequence.)
613  *
614  *  Further lets say we use the following code, invoking
615  *  bitmap_fold() then bitmap_onto, as suggested above to
616  *  avoid the possibility of an empty @dst result::
617  *
618  *	unsigned long *tmp;	// a temporary bitmap's bits
619  *
620  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
621  *	bitmap_onto(dst, tmp, relmap, bits);
622  *
623  *  Then this table shows what various values of @dst would be, for
624  *  various @orig's.  I list the zero-based positions of each set bit.
625  *  The tmp column shows the intermediate result, as computed by
626  *  using bitmap_fold() to fold the @orig bitmap modulo ten
627  *  (the weight of @relmap):
628  *
629  *      =============== ============== =================
630  *      @orig           tmp            @dst
631  *      0                0             40
632  *      1                1             41
633  *      9                9             95
634  *      10               0             40 [#f1]_
635  *      1 3 5 7          1 3 5 7       41 43 48 61
636  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
637  *      0 9 18 27        0 9 8 7       40 61 74 95
638  *      0 10 20 30       0             40
639  *      0 11 22 33       0 1 2 3       40 41 42 43
640  *      0 12 24 36       0 2 4 6       40 42 45 53
641  *      78 102 211       1 2 8         41 42 74 [#f1]_
642  *      =============== ============== =================
643  *
644  * .. [#f1]
645  *
646  *     For these marked lines, if we hadn't first done bitmap_fold()
647  *     into tmp, then the @dst result would have been empty.
648  *
649  * If either of @orig or @relmap is empty (no set bits), then @dst
650  * will be returned empty.
651  *
652  * If (as explained above) the only set bits in @orig are in positions
653  * m where m >= W, (where W is the weight of @relmap) then @dst will
654  * once again be returned empty.
655  *
656  * All bits in @dst not set by the above rule are cleared.
657  */
658 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
659 			const unsigned long *relmap, unsigned int bits)
660 {
661 	unsigned int n, m;	/* same meaning as in above comment */
662 
663 	if (dst == orig)	/* following doesn't handle inplace mappings */
664 		return;
665 	bitmap_zero(dst, bits);
666 
667 	/*
668 	 * The following code is a more efficient, but less
669 	 * obvious, equivalent to the loop:
670 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
671 	 *		n = find_nth_bit(orig, bits, m);
672 	 *		if (test_bit(m, orig))
673 	 *			set_bit(n, dst);
674 	 *	}
675 	 */
676 
677 	m = 0;
678 	for_each_set_bit(n, relmap, bits) {
679 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
680 		if (test_bit(m, orig))
681 			set_bit(n, dst);
682 		m++;
683 	}
684 }
685 
686 /**
687  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
688  *	@dst: resulting smaller bitmap
689  *	@orig: original larger bitmap
690  *	@sz: specified size
691  *	@nbits: number of bits in each of these bitmaps
692  *
693  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
694  * Clear all other bits in @dst.  See further the comment and
695  * Example [2] for bitmap_onto() for why and how to use this.
696  */
697 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
698 			unsigned int sz, unsigned int nbits)
699 {
700 	unsigned int oldbit;
701 
702 	if (dst == orig)	/* following doesn't handle inplace mappings */
703 		return;
704 	bitmap_zero(dst, nbits);
705 
706 	for_each_set_bit(oldbit, orig, nbits)
707 		set_bit(oldbit % sz, dst);
708 }
709 #endif /* CONFIG_NUMA */
710 
711 /*
712  * Common code for bitmap_*_region() routines.
713  *	bitmap: array of unsigned longs corresponding to the bitmap
714  *	pos: the beginning of the region
715  *	order: region size (log base 2 of number of bits)
716  *	reg_op: operation(s) to perform on that region of bitmap
717  *
718  * Can set, verify and/or release a region of bits in a bitmap,
719  * depending on which combination of REG_OP_* flag bits is set.
720  *
721  * A region of a bitmap is a sequence of bits in the bitmap, of
722  * some size '1 << order' (a power of two), aligned to that same
723  * '1 << order' power of two.
724  *
725  * Return: 1 if REG_OP_ISFREE succeeds (region is all zero bits).
726  *	   0 in all other cases and reg_ops.
727  */
728 
729 enum {
730 	REG_OP_ISFREE,		/* true if region is all zero bits */
731 	REG_OP_ALLOC,		/* set all bits in region */
732 	REG_OP_RELEASE,		/* clear all bits in region */
733 };
734 
735 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
736 {
737 	int nbits_reg;		/* number of bits in region */
738 	int index;		/* index first long of region in bitmap */
739 	int offset;		/* bit offset region in bitmap[index] */
740 	int nlongs_reg;		/* num longs spanned by region in bitmap */
741 	int nbitsinlong;	/* num bits of region in each spanned long */
742 	unsigned long mask;	/* bitmask for one long of region */
743 	int i;			/* scans bitmap by longs */
744 	int ret = 0;		/* return value */
745 
746 	/*
747 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
748 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
749 	 */
750 	nbits_reg = 1 << order;
751 	index = pos / BITS_PER_LONG;
752 	offset = pos - (index * BITS_PER_LONG);
753 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
754 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
755 
756 	/*
757 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
758 	 * overflows if nbitsinlong == BITS_PER_LONG.
759 	 */
760 	mask = (1UL << (nbitsinlong - 1));
761 	mask += mask - 1;
762 	mask <<= offset;
763 
764 	switch (reg_op) {
765 	case REG_OP_ISFREE:
766 		for (i = 0; i < nlongs_reg; i++) {
767 			if (bitmap[index + i] & mask)
768 				goto done;
769 		}
770 		ret = 1;	/* all bits in region free (zero) */
771 		break;
772 
773 	case REG_OP_ALLOC:
774 		for (i = 0; i < nlongs_reg; i++)
775 			bitmap[index + i] |= mask;
776 		break;
777 
778 	case REG_OP_RELEASE:
779 		for (i = 0; i < nlongs_reg; i++)
780 			bitmap[index + i] &= ~mask;
781 		break;
782 	}
783 done:
784 	return ret;
785 }
786 
787 /**
788  * bitmap_find_free_region - find a contiguous aligned mem region
789  *	@bitmap: array of unsigned longs corresponding to the bitmap
790  *	@bits: number of bits in the bitmap
791  *	@order: region size (log base 2 of number of bits) to find
792  *
793  * Find a region of free (zero) bits in a @bitmap of @bits bits and
794  * allocate them (set them to one).  Only consider regions of length
795  * a power (@order) of two, aligned to that power of two, which
796  * makes the search algorithm much faster.
797  *
798  * Return: the bit offset in bitmap of the allocated region,
799  * or -errno on failure.
800  */
801 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
802 {
803 	unsigned int pos, end;		/* scans bitmap by regions of size order */
804 
805 	for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) {
806 		if (!bitmap_allocate_region(bitmap, pos, order))
807 			return pos;
808 	}
809 	return -ENOMEM;
810 }
811 EXPORT_SYMBOL(bitmap_find_free_region);
812 
813 /**
814  * bitmap_release_region - release allocated bitmap region
815  *	@bitmap: array of unsigned longs corresponding to the bitmap
816  *	@pos: beginning of bit region to release
817  *	@order: region size (log base 2 of number of bits) to release
818  *
819  * This is the complement to __bitmap_find_free_region() and releases
820  * the found region (by clearing it in the bitmap).
821  */
822 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
823 {
824 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
825 }
826 EXPORT_SYMBOL(bitmap_release_region);
827 
828 /**
829  * bitmap_allocate_region - allocate bitmap region
830  *	@bitmap: array of unsigned longs corresponding to the bitmap
831  *	@pos: beginning of bit region to allocate
832  *	@order: region size (log base 2 of number of bits) to allocate
833  *
834  * Allocate (set bits in) a specified region of a bitmap.
835  *
836  * Return: 0 on success, or %-EBUSY if specified region wasn't
837  * free (not all bits were zero).
838  */
839 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
840 {
841 	unsigned int len = BIT(order);
842 
843 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
844 		return -EBUSY;
845 	bitmap_set(bitmap, pos, len);
846 	return 0;
847 }
848 EXPORT_SYMBOL(bitmap_allocate_region);
849 
850 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
851 {
852 	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
853 			     flags);
854 }
855 EXPORT_SYMBOL(bitmap_alloc);
856 
857 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
858 {
859 	return bitmap_alloc(nbits, flags | __GFP_ZERO);
860 }
861 EXPORT_SYMBOL(bitmap_zalloc);
862 
863 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
864 {
865 	return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
866 				  flags, node);
867 }
868 EXPORT_SYMBOL(bitmap_alloc_node);
869 
870 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
871 {
872 	return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
873 }
874 EXPORT_SYMBOL(bitmap_zalloc_node);
875 
876 void bitmap_free(const unsigned long *bitmap)
877 {
878 	kfree(bitmap);
879 }
880 EXPORT_SYMBOL(bitmap_free);
881 
882 static void devm_bitmap_free(void *data)
883 {
884 	unsigned long *bitmap = data;
885 
886 	bitmap_free(bitmap);
887 }
888 
889 unsigned long *devm_bitmap_alloc(struct device *dev,
890 				 unsigned int nbits, gfp_t flags)
891 {
892 	unsigned long *bitmap;
893 	int ret;
894 
895 	bitmap = bitmap_alloc(nbits, flags);
896 	if (!bitmap)
897 		return NULL;
898 
899 	ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
900 	if (ret)
901 		return NULL;
902 
903 	return bitmap;
904 }
905 EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
906 
907 unsigned long *devm_bitmap_zalloc(struct device *dev,
908 				  unsigned int nbits, gfp_t flags)
909 {
910 	return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
911 }
912 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
913 
914 #if BITS_PER_LONG == 64
915 /**
916  * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
917  *	@bitmap: array of unsigned longs, the destination bitmap
918  *	@buf: array of u32 (in host byte order), the source bitmap
919  *	@nbits: number of bits in @bitmap
920  */
921 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
922 {
923 	unsigned int i, halfwords;
924 
925 	halfwords = DIV_ROUND_UP(nbits, 32);
926 	for (i = 0; i < halfwords; i++) {
927 		bitmap[i/2] = (unsigned long) buf[i];
928 		if (++i < halfwords)
929 			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
930 	}
931 
932 	/* Clear tail bits in last word beyond nbits. */
933 	if (nbits % BITS_PER_LONG)
934 		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
935 }
936 EXPORT_SYMBOL(bitmap_from_arr32);
937 
938 /**
939  * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
940  *	@buf: array of u32 (in host byte order), the dest bitmap
941  *	@bitmap: array of unsigned longs, the source bitmap
942  *	@nbits: number of bits in @bitmap
943  */
944 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
945 {
946 	unsigned int i, halfwords;
947 
948 	halfwords = DIV_ROUND_UP(nbits, 32);
949 	for (i = 0; i < halfwords; i++) {
950 		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
951 		if (++i < halfwords)
952 			buf[i] = (u32) (bitmap[i/2] >> 32);
953 	}
954 
955 	/* Clear tail bits in last element of array beyond nbits. */
956 	if (nbits % BITS_PER_LONG)
957 		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
958 }
959 EXPORT_SYMBOL(bitmap_to_arr32);
960 #endif
961 
962 #if BITS_PER_LONG == 32
963 /**
964  * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
965  *	@bitmap: array of unsigned longs, the destination bitmap
966  *	@buf: array of u64 (in host byte order), the source bitmap
967  *	@nbits: number of bits in @bitmap
968  */
969 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
970 {
971 	int n;
972 
973 	for (n = nbits; n > 0; n -= 64) {
974 		u64 val = *buf++;
975 
976 		*bitmap++ = val;
977 		if (n > 32)
978 			*bitmap++ = val >> 32;
979 	}
980 
981 	/*
982 	 * Clear tail bits in the last word beyond nbits.
983 	 *
984 	 * Negative index is OK because here we point to the word next
985 	 * to the last word of the bitmap, except for nbits == 0, which
986 	 * is tested implicitly.
987 	 */
988 	if (nbits % BITS_PER_LONG)
989 		bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
990 }
991 EXPORT_SYMBOL(bitmap_from_arr64);
992 
993 /**
994  * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
995  *	@buf: array of u64 (in host byte order), the dest bitmap
996  *	@bitmap: array of unsigned longs, the source bitmap
997  *	@nbits: number of bits in @bitmap
998  */
999 void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
1000 {
1001 	const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
1002 
1003 	while (bitmap < end) {
1004 		*buf = *bitmap++;
1005 		if (bitmap < end)
1006 			*buf |= (u64)(*bitmap++) << 32;
1007 		buf++;
1008 	}
1009 
1010 	/* Clear tail bits in the last element of array beyond nbits. */
1011 	if (nbits % 64)
1012 		buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
1013 }
1014 EXPORT_SYMBOL(bitmap_to_arr64);
1015 #endif
1016