1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * lib/bitmap.c 4 * Helper functions for bitmap.h. 5 */ 6 7 #include <linux/bitmap.h> 8 #include <linux/bitops.h> 9 #include <linux/ctype.h> 10 #include <linux/device.h> 11 #include <linux/errno.h> 12 #include <linux/export.h> 13 #include <linux/slab.h> 14 15 /** 16 * DOC: bitmap introduction 17 * 18 * bitmaps provide an array of bits, implemented using an 19 * array of unsigned longs. The number of valid bits in a 20 * given bitmap does _not_ need to be an exact multiple of 21 * BITS_PER_LONG. 22 * 23 * The possible unused bits in the last, partially used word 24 * of a bitmap are 'don't care'. The implementation makes 25 * no particular effort to keep them zero. It ensures that 26 * their value will not affect the results of any operation. 27 * The bitmap operations that return Boolean (bitmap_empty, 28 * for example) or scalar (bitmap_weight, for example) results 29 * carefully filter out these unused bits from impacting their 30 * results. 31 * 32 * The byte ordering of bitmaps is more natural on little 33 * endian architectures. See the big-endian headers 34 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 35 * for the best explanations of this ordering. 36 */ 37 38 bool __bitmap_equal(const unsigned long *bitmap1, 39 const unsigned long *bitmap2, unsigned int bits) 40 { 41 unsigned int k, lim = bits/BITS_PER_LONG; 42 for (k = 0; k < lim; ++k) 43 if (bitmap1[k] != bitmap2[k]) 44 return false; 45 46 if (bits % BITS_PER_LONG) 47 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 48 return false; 49 50 return true; 51 } 52 EXPORT_SYMBOL(__bitmap_equal); 53 54 bool __bitmap_or_equal(const unsigned long *bitmap1, 55 const unsigned long *bitmap2, 56 const unsigned long *bitmap3, 57 unsigned int bits) 58 { 59 unsigned int k, lim = bits / BITS_PER_LONG; 60 unsigned long tmp; 61 62 for (k = 0; k < lim; ++k) { 63 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k]) 64 return false; 65 } 66 67 if (!(bits % BITS_PER_LONG)) 68 return true; 69 70 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k]; 71 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0; 72 } 73 74 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 75 { 76 unsigned int k, lim = BITS_TO_LONGS(bits); 77 for (k = 0; k < lim; ++k) 78 dst[k] = ~src[k]; 79 } 80 EXPORT_SYMBOL(__bitmap_complement); 81 82 /** 83 * __bitmap_shift_right - logical right shift of the bits in a bitmap 84 * @dst : destination bitmap 85 * @src : source bitmap 86 * @shift : shift by this many bits 87 * @nbits : bitmap size, in bits 88 * 89 * Shifting right (dividing) means moving bits in the MS -> LS bit 90 * direction. Zeros are fed into the vacated MS positions and the 91 * LS bits shifted off the bottom are lost. 92 */ 93 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 94 unsigned shift, unsigned nbits) 95 { 96 unsigned k, lim = BITS_TO_LONGS(nbits); 97 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 98 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 99 for (k = 0; off + k < lim; ++k) { 100 unsigned long upper, lower; 101 102 /* 103 * If shift is not word aligned, take lower rem bits of 104 * word above and make them the top rem bits of result. 105 */ 106 if (!rem || off + k + 1 >= lim) 107 upper = 0; 108 else { 109 upper = src[off + k + 1]; 110 if (off + k + 1 == lim - 1) 111 upper &= mask; 112 upper <<= (BITS_PER_LONG - rem); 113 } 114 lower = src[off + k]; 115 if (off + k == lim - 1) 116 lower &= mask; 117 lower >>= rem; 118 dst[k] = lower | upper; 119 } 120 if (off) 121 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 122 } 123 EXPORT_SYMBOL(__bitmap_shift_right); 124 125 126 /** 127 * __bitmap_shift_left - logical left shift of the bits in a bitmap 128 * @dst : destination bitmap 129 * @src : source bitmap 130 * @shift : shift by this many bits 131 * @nbits : bitmap size, in bits 132 * 133 * Shifting left (multiplying) means moving bits in the LS -> MS 134 * direction. Zeros are fed into the vacated LS bit positions 135 * and those MS bits shifted off the top are lost. 136 */ 137 138 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 139 unsigned int shift, unsigned int nbits) 140 { 141 int k; 142 unsigned int lim = BITS_TO_LONGS(nbits); 143 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 144 for (k = lim - off - 1; k >= 0; --k) { 145 unsigned long upper, lower; 146 147 /* 148 * If shift is not word aligned, take upper rem bits of 149 * word below and make them the bottom rem bits of result. 150 */ 151 if (rem && k > 0) 152 lower = src[k - 1] >> (BITS_PER_LONG - rem); 153 else 154 lower = 0; 155 upper = src[k] << rem; 156 dst[k + off] = lower | upper; 157 } 158 if (off) 159 memset(dst, 0, off*sizeof(unsigned long)); 160 } 161 EXPORT_SYMBOL(__bitmap_shift_left); 162 163 /** 164 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits 165 * @dst: destination bitmap, might overlap with src 166 * @src: source bitmap 167 * @first: start bit of region to be removed 168 * @cut: number of bits to remove 169 * @nbits: bitmap size, in bits 170 * 171 * Set the n-th bit of @dst iff the n-th bit of @src is set and 172 * n is less than @first, or the m-th bit of @src is set for any 173 * m such that @first <= n < nbits, and m = n + @cut. 174 * 175 * In pictures, example for a big-endian 32-bit architecture: 176 * 177 * The @src bitmap is:: 178 * 179 * 31 63 180 * | | 181 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101 182 * | | | | 183 * 16 14 0 32 184 * 185 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:: 186 * 187 * 31 63 188 * | | 189 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010 190 * | | | 191 * 14 (bit 17 0 32 192 * from @src) 193 * 194 * Note that @dst and @src might overlap partially or entirely. 195 * 196 * This is implemented in the obvious way, with a shift and carry 197 * step for each moved bit. Optimisation is left as an exercise 198 * for the compiler. 199 */ 200 void bitmap_cut(unsigned long *dst, const unsigned long *src, 201 unsigned int first, unsigned int cut, unsigned int nbits) 202 { 203 unsigned int len = BITS_TO_LONGS(nbits); 204 unsigned long keep = 0, carry; 205 int i; 206 207 if (first % BITS_PER_LONG) { 208 keep = src[first / BITS_PER_LONG] & 209 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG)); 210 } 211 212 memmove(dst, src, len * sizeof(*dst)); 213 214 while (cut--) { 215 for (i = first / BITS_PER_LONG; i < len; i++) { 216 if (i < len - 1) 217 carry = dst[i + 1] & 1UL; 218 else 219 carry = 0; 220 221 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1)); 222 } 223 } 224 225 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG); 226 dst[first / BITS_PER_LONG] |= keep; 227 } 228 EXPORT_SYMBOL(bitmap_cut); 229 230 bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 231 const unsigned long *bitmap2, unsigned int bits) 232 { 233 unsigned int k; 234 unsigned int lim = bits/BITS_PER_LONG; 235 unsigned long result = 0; 236 237 for (k = 0; k < lim; k++) 238 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 239 if (bits % BITS_PER_LONG) 240 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 241 BITMAP_LAST_WORD_MASK(bits)); 242 return result != 0; 243 } 244 EXPORT_SYMBOL(__bitmap_and); 245 246 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 247 const unsigned long *bitmap2, unsigned int bits) 248 { 249 unsigned int k; 250 unsigned int nr = BITS_TO_LONGS(bits); 251 252 for (k = 0; k < nr; k++) 253 dst[k] = bitmap1[k] | bitmap2[k]; 254 } 255 EXPORT_SYMBOL(__bitmap_or); 256 257 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 258 const unsigned long *bitmap2, unsigned int bits) 259 { 260 unsigned int k; 261 unsigned int nr = BITS_TO_LONGS(bits); 262 263 for (k = 0; k < nr; k++) 264 dst[k] = bitmap1[k] ^ bitmap2[k]; 265 } 266 EXPORT_SYMBOL(__bitmap_xor); 267 268 bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 269 const unsigned long *bitmap2, unsigned int bits) 270 { 271 unsigned int k; 272 unsigned int lim = bits/BITS_PER_LONG; 273 unsigned long result = 0; 274 275 for (k = 0; k < lim; k++) 276 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 277 if (bits % BITS_PER_LONG) 278 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 279 BITMAP_LAST_WORD_MASK(bits)); 280 return result != 0; 281 } 282 EXPORT_SYMBOL(__bitmap_andnot); 283 284 void __bitmap_replace(unsigned long *dst, 285 const unsigned long *old, const unsigned long *new, 286 const unsigned long *mask, unsigned int nbits) 287 { 288 unsigned int k; 289 unsigned int nr = BITS_TO_LONGS(nbits); 290 291 for (k = 0; k < nr; k++) 292 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]); 293 } 294 EXPORT_SYMBOL(__bitmap_replace); 295 296 bool __bitmap_intersects(const unsigned long *bitmap1, 297 const unsigned long *bitmap2, unsigned int bits) 298 { 299 unsigned int k, lim = bits/BITS_PER_LONG; 300 for (k = 0; k < lim; ++k) 301 if (bitmap1[k] & bitmap2[k]) 302 return true; 303 304 if (bits % BITS_PER_LONG) 305 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 306 return true; 307 return false; 308 } 309 EXPORT_SYMBOL(__bitmap_intersects); 310 311 bool __bitmap_subset(const unsigned long *bitmap1, 312 const unsigned long *bitmap2, unsigned int bits) 313 { 314 unsigned int k, lim = bits/BITS_PER_LONG; 315 for (k = 0; k < lim; ++k) 316 if (bitmap1[k] & ~bitmap2[k]) 317 return false; 318 319 if (bits % BITS_PER_LONG) 320 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 321 return false; 322 return true; 323 } 324 EXPORT_SYMBOL(__bitmap_subset); 325 326 #define BITMAP_WEIGHT(FETCH, bits) \ 327 ({ \ 328 unsigned int __bits = (bits), idx, w = 0; \ 329 \ 330 for (idx = 0; idx < __bits / BITS_PER_LONG; idx++) \ 331 w += hweight_long(FETCH); \ 332 \ 333 if (__bits % BITS_PER_LONG) \ 334 w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits)); \ 335 \ 336 w; \ 337 }) 338 339 unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 340 { 341 return BITMAP_WEIGHT(bitmap[idx], bits); 342 } 343 EXPORT_SYMBOL(__bitmap_weight); 344 345 unsigned int __bitmap_weight_and(const unsigned long *bitmap1, 346 const unsigned long *bitmap2, unsigned int bits) 347 { 348 return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits); 349 } 350 EXPORT_SYMBOL(__bitmap_weight_and); 351 352 void __bitmap_set(unsigned long *map, unsigned int start, int len) 353 { 354 unsigned long *p = map + BIT_WORD(start); 355 const unsigned int size = start + len; 356 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 357 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 358 359 while (len - bits_to_set >= 0) { 360 *p |= mask_to_set; 361 len -= bits_to_set; 362 bits_to_set = BITS_PER_LONG; 363 mask_to_set = ~0UL; 364 p++; 365 } 366 if (len) { 367 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 368 *p |= mask_to_set; 369 } 370 } 371 EXPORT_SYMBOL(__bitmap_set); 372 373 void __bitmap_clear(unsigned long *map, unsigned int start, int len) 374 { 375 unsigned long *p = map + BIT_WORD(start); 376 const unsigned int size = start + len; 377 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 378 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 379 380 while (len - bits_to_clear >= 0) { 381 *p &= ~mask_to_clear; 382 len -= bits_to_clear; 383 bits_to_clear = BITS_PER_LONG; 384 mask_to_clear = ~0UL; 385 p++; 386 } 387 if (len) { 388 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 389 *p &= ~mask_to_clear; 390 } 391 } 392 EXPORT_SYMBOL(__bitmap_clear); 393 394 /** 395 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 396 * @map: The address to base the search on 397 * @size: The bitmap size in bits 398 * @start: The bitnumber to start searching at 399 * @nr: The number of zeroed bits we're looking for 400 * @align_mask: Alignment mask for zero area 401 * @align_offset: Alignment offset for zero area. 402 * 403 * The @align_mask should be one less than a power of 2; the effect is that 404 * the bit offset of all zero areas this function finds plus @align_offset 405 * is multiple of that power of 2. 406 */ 407 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 408 unsigned long size, 409 unsigned long start, 410 unsigned int nr, 411 unsigned long align_mask, 412 unsigned long align_offset) 413 { 414 unsigned long index, end, i; 415 again: 416 index = find_next_zero_bit(map, size, start); 417 418 /* Align allocation */ 419 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 420 421 end = index + nr; 422 if (end > size) 423 return end; 424 i = find_next_bit(map, end, index); 425 if (i < end) { 426 start = i + 1; 427 goto again; 428 } 429 return index; 430 } 431 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 432 433 /** 434 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 435 * @buf: pointer to a bitmap 436 * @pos: a bit position in @buf (0 <= @pos < @nbits) 437 * @nbits: number of valid bit positions in @buf 438 * 439 * Map the bit at position @pos in @buf (of length @nbits) to the 440 * ordinal of which set bit it is. If it is not set or if @pos 441 * is not a valid bit position, map to -1. 442 * 443 * If for example, just bits 4 through 7 are set in @buf, then @pos 444 * values 4 through 7 will get mapped to 0 through 3, respectively, 445 * and other @pos values will get mapped to -1. When @pos value 7 446 * gets mapped to (returns) @ord value 3 in this example, that means 447 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 448 * 449 * The bit positions 0 through @bits are valid positions in @buf. 450 */ 451 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) 452 { 453 if (pos >= nbits || !test_bit(pos, buf)) 454 return -1; 455 456 return bitmap_weight(buf, pos); 457 } 458 459 /** 460 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 461 * @dst: remapped result 462 * @src: subset to be remapped 463 * @old: defines domain of map 464 * @new: defines range of map 465 * @nbits: number of bits in each of these bitmaps 466 * 467 * Let @old and @new define a mapping of bit positions, such that 468 * whatever position is held by the n-th set bit in @old is mapped 469 * to the n-th set bit in @new. In the more general case, allowing 470 * for the possibility that the weight 'w' of @new is less than the 471 * weight of @old, map the position of the n-th set bit in @old to 472 * the position of the m-th set bit in @new, where m == n % w. 473 * 474 * If either of the @old and @new bitmaps are empty, or if @src and 475 * @dst point to the same location, then this routine copies @src 476 * to @dst. 477 * 478 * The positions of unset bits in @old are mapped to themselves 479 * (the identity map). 480 * 481 * Apply the above specified mapping to @src, placing the result in 482 * @dst, clearing any bits previously set in @dst. 483 * 484 * For example, lets say that @old has bits 4 through 7 set, and 485 * @new has bits 12 through 15 set. This defines the mapping of bit 486 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 487 * bit positions unchanged. So if say @src comes into this routine 488 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 489 * 13 and 15 set. 490 */ 491 void bitmap_remap(unsigned long *dst, const unsigned long *src, 492 const unsigned long *old, const unsigned long *new, 493 unsigned int nbits) 494 { 495 unsigned int oldbit, w; 496 497 if (dst == src) /* following doesn't handle inplace remaps */ 498 return; 499 bitmap_zero(dst, nbits); 500 501 w = bitmap_weight(new, nbits); 502 for_each_set_bit(oldbit, src, nbits) { 503 int n = bitmap_pos_to_ord(old, oldbit, nbits); 504 505 if (n < 0 || w == 0) 506 set_bit(oldbit, dst); /* identity map */ 507 else 508 set_bit(find_nth_bit(new, nbits, n % w), dst); 509 } 510 } 511 EXPORT_SYMBOL(bitmap_remap); 512 513 /** 514 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 515 * @oldbit: bit position to be mapped 516 * @old: defines domain of map 517 * @new: defines range of map 518 * @bits: number of bits in each of these bitmaps 519 * 520 * Let @old and @new define a mapping of bit positions, such that 521 * whatever position is held by the n-th set bit in @old is mapped 522 * to the n-th set bit in @new. In the more general case, allowing 523 * for the possibility that the weight 'w' of @new is less than the 524 * weight of @old, map the position of the n-th set bit in @old to 525 * the position of the m-th set bit in @new, where m == n % w. 526 * 527 * The positions of unset bits in @old are mapped to themselves 528 * (the identity map). 529 * 530 * Apply the above specified mapping to bit position @oldbit, returning 531 * the new bit position. 532 * 533 * For example, lets say that @old has bits 4 through 7 set, and 534 * @new has bits 12 through 15 set. This defines the mapping of bit 535 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 536 * bit positions unchanged. So if say @oldbit is 5, then this routine 537 * returns 13. 538 */ 539 int bitmap_bitremap(int oldbit, const unsigned long *old, 540 const unsigned long *new, int bits) 541 { 542 int w = bitmap_weight(new, bits); 543 int n = bitmap_pos_to_ord(old, oldbit, bits); 544 if (n < 0 || w == 0) 545 return oldbit; 546 else 547 return find_nth_bit(new, bits, n % w); 548 } 549 EXPORT_SYMBOL(bitmap_bitremap); 550 551 #ifdef CONFIG_NUMA 552 /** 553 * bitmap_onto - translate one bitmap relative to another 554 * @dst: resulting translated bitmap 555 * @orig: original untranslated bitmap 556 * @relmap: bitmap relative to which translated 557 * @bits: number of bits in each of these bitmaps 558 * 559 * Set the n-th bit of @dst iff there exists some m such that the 560 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 561 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 562 * (If you understood the previous sentence the first time your 563 * read it, you're overqualified for your current job.) 564 * 565 * In other words, @orig is mapped onto (surjectively) @dst, 566 * using the map { <n, m> | the n-th bit of @relmap is the 567 * m-th set bit of @relmap }. 568 * 569 * Any set bits in @orig above bit number W, where W is the 570 * weight of (number of set bits in) @relmap are mapped nowhere. 571 * In particular, if for all bits m set in @orig, m >= W, then 572 * @dst will end up empty. In situations where the possibility 573 * of such an empty result is not desired, one way to avoid it is 574 * to use the bitmap_fold() operator, below, to first fold the 575 * @orig bitmap over itself so that all its set bits x are in the 576 * range 0 <= x < W. The bitmap_fold() operator does this by 577 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 578 * 579 * Example [1] for bitmap_onto(): 580 * Let's say @relmap has bits 30-39 set, and @orig has bits 581 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 582 * @dst will have bits 31, 33, 35, 37 and 39 set. 583 * 584 * When bit 0 is set in @orig, it means turn on the bit in 585 * @dst corresponding to whatever is the first bit (if any) 586 * that is turned on in @relmap. Since bit 0 was off in the 587 * above example, we leave off that bit (bit 30) in @dst. 588 * 589 * When bit 1 is set in @orig (as in the above example), it 590 * means turn on the bit in @dst corresponding to whatever 591 * is the second bit that is turned on in @relmap. The second 592 * bit in @relmap that was turned on in the above example was 593 * bit 31, so we turned on bit 31 in @dst. 594 * 595 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 596 * because they were the 4th, 6th, 8th and 10th set bits 597 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 598 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 599 * 600 * When bit 11 is set in @orig, it means turn on the bit in 601 * @dst corresponding to whatever is the twelfth bit that is 602 * turned on in @relmap. In the above example, there were 603 * only ten bits turned on in @relmap (30..39), so that bit 604 * 11 was set in @orig had no affect on @dst. 605 * 606 * Example [2] for bitmap_fold() + bitmap_onto(): 607 * Let's say @relmap has these ten bits set:: 608 * 609 * 40 41 42 43 45 48 53 61 74 95 610 * 611 * (for the curious, that's 40 plus the first ten terms of the 612 * Fibonacci sequence.) 613 * 614 * Further lets say we use the following code, invoking 615 * bitmap_fold() then bitmap_onto, as suggested above to 616 * avoid the possibility of an empty @dst result:: 617 * 618 * unsigned long *tmp; // a temporary bitmap's bits 619 * 620 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 621 * bitmap_onto(dst, tmp, relmap, bits); 622 * 623 * Then this table shows what various values of @dst would be, for 624 * various @orig's. I list the zero-based positions of each set bit. 625 * The tmp column shows the intermediate result, as computed by 626 * using bitmap_fold() to fold the @orig bitmap modulo ten 627 * (the weight of @relmap): 628 * 629 * =============== ============== ================= 630 * @orig tmp @dst 631 * 0 0 40 632 * 1 1 41 633 * 9 9 95 634 * 10 0 40 [#f1]_ 635 * 1 3 5 7 1 3 5 7 41 43 48 61 636 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 637 * 0 9 18 27 0 9 8 7 40 61 74 95 638 * 0 10 20 30 0 40 639 * 0 11 22 33 0 1 2 3 40 41 42 43 640 * 0 12 24 36 0 2 4 6 40 42 45 53 641 * 78 102 211 1 2 8 41 42 74 [#f1]_ 642 * =============== ============== ================= 643 * 644 * .. [#f1] 645 * 646 * For these marked lines, if we hadn't first done bitmap_fold() 647 * into tmp, then the @dst result would have been empty. 648 * 649 * If either of @orig or @relmap is empty (no set bits), then @dst 650 * will be returned empty. 651 * 652 * If (as explained above) the only set bits in @orig are in positions 653 * m where m >= W, (where W is the weight of @relmap) then @dst will 654 * once again be returned empty. 655 * 656 * All bits in @dst not set by the above rule are cleared. 657 */ 658 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 659 const unsigned long *relmap, unsigned int bits) 660 { 661 unsigned int n, m; /* same meaning as in above comment */ 662 663 if (dst == orig) /* following doesn't handle inplace mappings */ 664 return; 665 bitmap_zero(dst, bits); 666 667 /* 668 * The following code is a more efficient, but less 669 * obvious, equivalent to the loop: 670 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 671 * n = find_nth_bit(orig, bits, m); 672 * if (test_bit(m, orig)) 673 * set_bit(n, dst); 674 * } 675 */ 676 677 m = 0; 678 for_each_set_bit(n, relmap, bits) { 679 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 680 if (test_bit(m, orig)) 681 set_bit(n, dst); 682 m++; 683 } 684 } 685 686 /** 687 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 688 * @dst: resulting smaller bitmap 689 * @orig: original larger bitmap 690 * @sz: specified size 691 * @nbits: number of bits in each of these bitmaps 692 * 693 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 694 * Clear all other bits in @dst. See further the comment and 695 * Example [2] for bitmap_onto() for why and how to use this. 696 */ 697 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 698 unsigned int sz, unsigned int nbits) 699 { 700 unsigned int oldbit; 701 702 if (dst == orig) /* following doesn't handle inplace mappings */ 703 return; 704 bitmap_zero(dst, nbits); 705 706 for_each_set_bit(oldbit, orig, nbits) 707 set_bit(oldbit % sz, dst); 708 } 709 #endif /* CONFIG_NUMA */ 710 711 /* 712 * Common code for bitmap_*_region() routines. 713 * bitmap: array of unsigned longs corresponding to the bitmap 714 * pos: the beginning of the region 715 * order: region size (log base 2 of number of bits) 716 * reg_op: operation(s) to perform on that region of bitmap 717 * 718 * Can set, verify and/or release a region of bits in a bitmap, 719 * depending on which combination of REG_OP_* flag bits is set. 720 * 721 * A region of a bitmap is a sequence of bits in the bitmap, of 722 * some size '1 << order' (a power of two), aligned to that same 723 * '1 << order' power of two. 724 * 725 * Return: 1 if REG_OP_ISFREE succeeds (region is all zero bits). 726 * 0 in all other cases and reg_ops. 727 */ 728 729 enum { 730 REG_OP_ISFREE, /* true if region is all zero bits */ 731 REG_OP_ALLOC, /* set all bits in region */ 732 REG_OP_RELEASE, /* clear all bits in region */ 733 }; 734 735 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) 736 { 737 int nbits_reg; /* number of bits in region */ 738 int index; /* index first long of region in bitmap */ 739 int offset; /* bit offset region in bitmap[index] */ 740 int nlongs_reg; /* num longs spanned by region in bitmap */ 741 int nbitsinlong; /* num bits of region in each spanned long */ 742 unsigned long mask; /* bitmask for one long of region */ 743 int i; /* scans bitmap by longs */ 744 int ret = 0; /* return value */ 745 746 /* 747 * Either nlongs_reg == 1 (for small orders that fit in one long) 748 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 749 */ 750 nbits_reg = 1 << order; 751 index = pos / BITS_PER_LONG; 752 offset = pos - (index * BITS_PER_LONG); 753 nlongs_reg = BITS_TO_LONGS(nbits_reg); 754 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 755 756 /* 757 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 758 * overflows if nbitsinlong == BITS_PER_LONG. 759 */ 760 mask = (1UL << (nbitsinlong - 1)); 761 mask += mask - 1; 762 mask <<= offset; 763 764 switch (reg_op) { 765 case REG_OP_ISFREE: 766 for (i = 0; i < nlongs_reg; i++) { 767 if (bitmap[index + i] & mask) 768 goto done; 769 } 770 ret = 1; /* all bits in region free (zero) */ 771 break; 772 773 case REG_OP_ALLOC: 774 for (i = 0; i < nlongs_reg; i++) 775 bitmap[index + i] |= mask; 776 break; 777 778 case REG_OP_RELEASE: 779 for (i = 0; i < nlongs_reg; i++) 780 bitmap[index + i] &= ~mask; 781 break; 782 } 783 done: 784 return ret; 785 } 786 787 /** 788 * bitmap_find_free_region - find a contiguous aligned mem region 789 * @bitmap: array of unsigned longs corresponding to the bitmap 790 * @bits: number of bits in the bitmap 791 * @order: region size (log base 2 of number of bits) to find 792 * 793 * Find a region of free (zero) bits in a @bitmap of @bits bits and 794 * allocate them (set them to one). Only consider regions of length 795 * a power (@order) of two, aligned to that power of two, which 796 * makes the search algorithm much faster. 797 * 798 * Return: the bit offset in bitmap of the allocated region, 799 * or -errno on failure. 800 */ 801 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 802 { 803 unsigned int pos, end; /* scans bitmap by regions of size order */ 804 805 for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) { 806 if (!bitmap_allocate_region(bitmap, pos, order)) 807 return pos; 808 } 809 return -ENOMEM; 810 } 811 EXPORT_SYMBOL(bitmap_find_free_region); 812 813 /** 814 * bitmap_release_region - release allocated bitmap region 815 * @bitmap: array of unsigned longs corresponding to the bitmap 816 * @pos: beginning of bit region to release 817 * @order: region size (log base 2 of number of bits) to release 818 * 819 * This is the complement to __bitmap_find_free_region() and releases 820 * the found region (by clearing it in the bitmap). 821 */ 822 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 823 { 824 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 825 } 826 EXPORT_SYMBOL(bitmap_release_region); 827 828 /** 829 * bitmap_allocate_region - allocate bitmap region 830 * @bitmap: array of unsigned longs corresponding to the bitmap 831 * @pos: beginning of bit region to allocate 832 * @order: region size (log base 2 of number of bits) to allocate 833 * 834 * Allocate (set bits in) a specified region of a bitmap. 835 * 836 * Return: 0 on success, or %-EBUSY if specified region wasn't 837 * free (not all bits were zero). 838 */ 839 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 840 { 841 unsigned int len = BIT(order); 842 843 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 844 return -EBUSY; 845 bitmap_set(bitmap, pos, len); 846 return 0; 847 } 848 EXPORT_SYMBOL(bitmap_allocate_region); 849 850 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) 851 { 852 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), 853 flags); 854 } 855 EXPORT_SYMBOL(bitmap_alloc); 856 857 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) 858 { 859 return bitmap_alloc(nbits, flags | __GFP_ZERO); 860 } 861 EXPORT_SYMBOL(bitmap_zalloc); 862 863 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node) 864 { 865 return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long), 866 flags, node); 867 } 868 EXPORT_SYMBOL(bitmap_alloc_node); 869 870 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node) 871 { 872 return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node); 873 } 874 EXPORT_SYMBOL(bitmap_zalloc_node); 875 876 void bitmap_free(const unsigned long *bitmap) 877 { 878 kfree(bitmap); 879 } 880 EXPORT_SYMBOL(bitmap_free); 881 882 static void devm_bitmap_free(void *data) 883 { 884 unsigned long *bitmap = data; 885 886 bitmap_free(bitmap); 887 } 888 889 unsigned long *devm_bitmap_alloc(struct device *dev, 890 unsigned int nbits, gfp_t flags) 891 { 892 unsigned long *bitmap; 893 int ret; 894 895 bitmap = bitmap_alloc(nbits, flags); 896 if (!bitmap) 897 return NULL; 898 899 ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap); 900 if (ret) 901 return NULL; 902 903 return bitmap; 904 } 905 EXPORT_SYMBOL_GPL(devm_bitmap_alloc); 906 907 unsigned long *devm_bitmap_zalloc(struct device *dev, 908 unsigned int nbits, gfp_t flags) 909 { 910 return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO); 911 } 912 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc); 913 914 #if BITS_PER_LONG == 64 915 /** 916 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap 917 * @bitmap: array of unsigned longs, the destination bitmap 918 * @buf: array of u32 (in host byte order), the source bitmap 919 * @nbits: number of bits in @bitmap 920 */ 921 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) 922 { 923 unsigned int i, halfwords; 924 925 halfwords = DIV_ROUND_UP(nbits, 32); 926 for (i = 0; i < halfwords; i++) { 927 bitmap[i/2] = (unsigned long) buf[i]; 928 if (++i < halfwords) 929 bitmap[i/2] |= ((unsigned long) buf[i]) << 32; 930 } 931 932 /* Clear tail bits in last word beyond nbits. */ 933 if (nbits % BITS_PER_LONG) 934 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); 935 } 936 EXPORT_SYMBOL(bitmap_from_arr32); 937 938 /** 939 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits 940 * @buf: array of u32 (in host byte order), the dest bitmap 941 * @bitmap: array of unsigned longs, the source bitmap 942 * @nbits: number of bits in @bitmap 943 */ 944 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) 945 { 946 unsigned int i, halfwords; 947 948 halfwords = DIV_ROUND_UP(nbits, 32); 949 for (i = 0; i < halfwords; i++) { 950 buf[i] = (u32) (bitmap[i/2] & UINT_MAX); 951 if (++i < halfwords) 952 buf[i] = (u32) (bitmap[i/2] >> 32); 953 } 954 955 /* Clear tail bits in last element of array beyond nbits. */ 956 if (nbits % BITS_PER_LONG) 957 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); 958 } 959 EXPORT_SYMBOL(bitmap_to_arr32); 960 #endif 961 962 #if BITS_PER_LONG == 32 963 /** 964 * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap 965 * @bitmap: array of unsigned longs, the destination bitmap 966 * @buf: array of u64 (in host byte order), the source bitmap 967 * @nbits: number of bits in @bitmap 968 */ 969 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits) 970 { 971 int n; 972 973 for (n = nbits; n > 0; n -= 64) { 974 u64 val = *buf++; 975 976 *bitmap++ = val; 977 if (n > 32) 978 *bitmap++ = val >> 32; 979 } 980 981 /* 982 * Clear tail bits in the last word beyond nbits. 983 * 984 * Negative index is OK because here we point to the word next 985 * to the last word of the bitmap, except for nbits == 0, which 986 * is tested implicitly. 987 */ 988 if (nbits % BITS_PER_LONG) 989 bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits); 990 } 991 EXPORT_SYMBOL(bitmap_from_arr64); 992 993 /** 994 * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits 995 * @buf: array of u64 (in host byte order), the dest bitmap 996 * @bitmap: array of unsigned longs, the source bitmap 997 * @nbits: number of bits in @bitmap 998 */ 999 void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits) 1000 { 1001 const unsigned long *end = bitmap + BITS_TO_LONGS(nbits); 1002 1003 while (bitmap < end) { 1004 *buf = *bitmap++; 1005 if (bitmap < end) 1006 *buf |= (u64)(*bitmap++) << 32; 1007 buf++; 1008 } 1009 1010 /* Clear tail bits in the last element of array beyond nbits. */ 1011 if (nbits % 64) 1012 buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0); 1013 } 1014 EXPORT_SYMBOL(bitmap_to_arr64); 1015 #endif 1016