1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <[email protected]> 9 * Andrew Morton 10 * Kai Petzke <[email protected]> 11 * Theodore Ts'o <[email protected]> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <[email protected]> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/interrupt.h> 33 #include <linux/signal.h> 34 #include <linux/completion.h> 35 #include <linux/workqueue.h> 36 #include <linux/slab.h> 37 #include <linux/cpu.h> 38 #include <linux/notifier.h> 39 #include <linux/kthread.h> 40 #include <linux/hardirq.h> 41 #include <linux/mempolicy.h> 42 #include <linux/freezer.h> 43 #include <linux/debug_locks.h> 44 #include <linux/lockdep.h> 45 #include <linux/idr.h> 46 #include <linux/jhash.h> 47 #include <linux/hashtable.h> 48 #include <linux/rculist.h> 49 #include <linux/nodemask.h> 50 #include <linux/moduleparam.h> 51 #include <linux/uaccess.h> 52 #include <linux/sched/isolation.h> 53 #include <linux/sched/debug.h> 54 #include <linux/nmi.h> 55 #include <linux/kvm_para.h> 56 #include <linux/delay.h> 57 #include <linux/irq_work.h> 58 59 #include "workqueue_internal.h" 60 61 enum worker_pool_flags { 62 /* 63 * worker_pool flags 64 * 65 * A bound pool is either associated or disassociated with its CPU. 66 * While associated (!DISASSOCIATED), all workers are bound to the 67 * CPU and none has %WORKER_UNBOUND set and concurrency management 68 * is in effect. 69 * 70 * While DISASSOCIATED, the cpu may be offline and all workers have 71 * %WORKER_UNBOUND set and concurrency management disabled, and may 72 * be executing on any CPU. The pool behaves as an unbound one. 73 * 74 * Note that DISASSOCIATED should be flipped only while holding 75 * wq_pool_attach_mutex to avoid changing binding state while 76 * worker_attach_to_pool() is in progress. 77 * 78 * As there can only be one concurrent BH execution context per CPU, a 79 * BH pool is per-CPU and always DISASSOCIATED. 80 */ 81 POOL_BH = 1 << 0, /* is a BH pool */ 82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */ 83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */ 85 }; 86 87 enum worker_flags { 88 /* worker flags */ 89 WORKER_DIE = 1 << 1, /* die die die */ 90 WORKER_IDLE = 1 << 2, /* is idle */ 91 WORKER_PREP = 1 << 3, /* preparing to run works */ 92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 94 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 95 96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 97 WORKER_UNBOUND | WORKER_REBOUND, 98 }; 99 100 enum work_cancel_flags { 101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */ 102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */ 103 }; 104 105 enum wq_internal_consts { 106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 107 108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 110 111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 113 114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 115 /* call for help after 10ms 116 (min two ticks) */ 117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 118 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 119 120 /* 121 * Rescue workers are used only on emergencies and shared by 122 * all cpus. Give MIN_NICE. 123 */ 124 RESCUER_NICE_LEVEL = MIN_NICE, 125 HIGHPRI_NICE_LEVEL = MIN_NICE, 126 127 WQ_NAME_LEN = 32, 128 WORKER_ID_LEN = 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */ 129 }; 130 131 /* 132 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and 133 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because 134 * msecs_to_jiffies() can't be an initializer. 135 */ 136 #define BH_WORKER_JIFFIES msecs_to_jiffies(2) 137 #define BH_WORKER_RESTARTS 10 138 139 /* 140 * Structure fields follow one of the following exclusion rules. 141 * 142 * I: Modifiable by initialization/destruction paths and read-only for 143 * everyone else. 144 * 145 * P: Preemption protected. Disabling preemption is enough and should 146 * only be modified and accessed from the local cpu. 147 * 148 * L: pool->lock protected. Access with pool->lock held. 149 * 150 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for 151 * reads. 152 * 153 * K: Only modified by worker while holding pool->lock. Can be safely read by 154 * self, while holding pool->lock or from IRQ context if %current is the 155 * kworker. 156 * 157 * S: Only modified by worker self. 158 * 159 * A: wq_pool_attach_mutex protected. 160 * 161 * PL: wq_pool_mutex protected. 162 * 163 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 164 * 165 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 166 * 167 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 168 * RCU for reads. 169 * 170 * WQ: wq->mutex protected. 171 * 172 * WR: wq->mutex protected for writes. RCU protected for reads. 173 * 174 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read 175 * with READ_ONCE() without locking. 176 * 177 * MD: wq_mayday_lock protected. 178 * 179 * WD: Used internally by the watchdog. 180 */ 181 182 /* struct worker is defined in workqueue_internal.h */ 183 184 struct worker_pool { 185 raw_spinlock_t lock; /* the pool lock */ 186 int cpu; /* I: the associated cpu */ 187 int node; /* I: the associated node ID */ 188 int id; /* I: pool ID */ 189 unsigned int flags; /* L: flags */ 190 191 unsigned long watchdog_ts; /* L: watchdog timestamp */ 192 bool cpu_stall; /* WD: stalled cpu bound pool */ 193 194 /* 195 * The counter is incremented in a process context on the associated CPU 196 * w/ preemption disabled, and decremented or reset in the same context 197 * but w/ pool->lock held. The readers grab pool->lock and are 198 * guaranteed to see if the counter reached zero. 199 */ 200 int nr_running; 201 202 struct list_head worklist; /* L: list of pending works */ 203 204 int nr_workers; /* L: total number of workers */ 205 int nr_idle; /* L: currently idle workers */ 206 207 struct list_head idle_list; /* L: list of idle workers */ 208 struct timer_list idle_timer; /* L: worker idle timeout */ 209 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 210 211 struct timer_list mayday_timer; /* L: SOS timer for workers */ 212 213 /* a workers is either on busy_hash or idle_list, or the manager */ 214 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 215 /* L: hash of busy workers */ 216 217 struct worker *manager; /* L: purely informational */ 218 struct list_head workers; /* A: attached workers */ 219 220 struct ida worker_ida; /* worker IDs for task name */ 221 222 struct workqueue_attrs *attrs; /* I: worker attributes */ 223 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 224 int refcnt; /* PL: refcnt for unbound pools */ 225 226 /* 227 * Destruction of pool is RCU protected to allow dereferences 228 * from get_work_pool(). 229 */ 230 struct rcu_head rcu; 231 }; 232 233 /* 234 * Per-pool_workqueue statistics. These can be monitored using 235 * tools/workqueue/wq_monitor.py. 236 */ 237 enum pool_workqueue_stats { 238 PWQ_STAT_STARTED, /* work items started execution */ 239 PWQ_STAT_COMPLETED, /* work items completed execution */ 240 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 241 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 242 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 243 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 244 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 245 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 246 247 PWQ_NR_STATS, 248 }; 249 250 /* 251 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT 252 * of work_struct->data are used for flags and the remaining high bits 253 * point to the pwq; thus, pwqs need to be aligned at two's power of the 254 * number of flag bits. 255 */ 256 struct pool_workqueue { 257 struct worker_pool *pool; /* I: the associated pool */ 258 struct workqueue_struct *wq; /* I: the owning workqueue */ 259 int work_color; /* L: current color */ 260 int flush_color; /* L: flushing color */ 261 int refcnt; /* L: reference count */ 262 int nr_in_flight[WORK_NR_COLORS]; 263 /* L: nr of in_flight works */ 264 bool plugged; /* L: execution suspended */ 265 266 /* 267 * nr_active management and WORK_STRUCT_INACTIVE: 268 * 269 * When pwq->nr_active >= max_active, new work item is queued to 270 * pwq->inactive_works instead of pool->worklist and marked with 271 * WORK_STRUCT_INACTIVE. 272 * 273 * All work items marked with WORK_STRUCT_INACTIVE do not participate in 274 * nr_active and all work items in pwq->inactive_works are marked with 275 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are 276 * in pwq->inactive_works. Some of them are ready to run in 277 * pool->worklist or worker->scheduled. Those work itmes are only struct 278 * wq_barrier which is used for flush_work() and should not participate 279 * in nr_active. For non-barrier work item, it is marked with 280 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 281 */ 282 int nr_active; /* L: nr of active works */ 283 struct list_head inactive_works; /* L: inactive works */ 284 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ 285 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 286 struct list_head mayday_node; /* MD: node on wq->maydays */ 287 288 u64 stats[PWQ_NR_STATS]; 289 290 /* 291 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 292 * and pwq_release_workfn() for details. pool_workqueue itself is also 293 * RCU protected so that the first pwq can be determined without 294 * grabbing wq->mutex. 295 */ 296 struct kthread_work release_work; 297 struct rcu_head rcu; 298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT); 299 300 /* 301 * Structure used to wait for workqueue flush. 302 */ 303 struct wq_flusher { 304 struct list_head list; /* WQ: list of flushers */ 305 int flush_color; /* WQ: flush color waiting for */ 306 struct completion done; /* flush completion */ 307 }; 308 309 struct wq_device; 310 311 /* 312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level 313 * on each CPU, in an unbound workqueue, max_active applies to the whole system. 314 * As sharing a single nr_active across multiple sockets can be very expensive, 315 * the counting and enforcement is per NUMA node. 316 * 317 * The following struct is used to enforce per-node max_active. When a pwq wants 318 * to start executing a work item, it should increment ->nr using 319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over 320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish 321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in 322 * round-robin order. 323 */ 324 struct wq_node_nr_active { 325 int max; /* per-node max_active */ 326 atomic_t nr; /* per-node nr_active */ 327 raw_spinlock_t lock; /* nests inside pool locks */ 328 struct list_head pending_pwqs; /* LN: pwqs with inactive works */ 329 }; 330 331 /* 332 * The externally visible workqueue. It relays the issued work items to 333 * the appropriate worker_pool through its pool_workqueues. 334 */ 335 struct workqueue_struct { 336 struct list_head pwqs; /* WR: all pwqs of this wq */ 337 struct list_head list; /* PR: list of all workqueues */ 338 339 struct mutex mutex; /* protects this wq */ 340 int work_color; /* WQ: current work color */ 341 int flush_color; /* WQ: current flush color */ 342 atomic_t nr_pwqs_to_flush; /* flush in progress */ 343 struct wq_flusher *first_flusher; /* WQ: first flusher */ 344 struct list_head flusher_queue; /* WQ: flush waiters */ 345 struct list_head flusher_overflow; /* WQ: flush overflow list */ 346 347 struct list_head maydays; /* MD: pwqs requesting rescue */ 348 struct worker *rescuer; /* MD: rescue worker */ 349 350 int nr_drainers; /* WQ: drain in progress */ 351 352 /* See alloc_workqueue() function comment for info on min/max_active */ 353 int max_active; /* WO: max active works */ 354 int min_active; /* WO: min active works */ 355 int saved_max_active; /* WQ: saved max_active */ 356 int saved_min_active; /* WQ: saved min_active */ 357 358 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 359 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ 360 361 #ifdef CONFIG_SYSFS 362 struct wq_device *wq_dev; /* I: for sysfs interface */ 363 #endif 364 #ifdef CONFIG_LOCKDEP 365 char *lock_name; 366 struct lock_class_key key; 367 struct lockdep_map __lockdep_map; 368 struct lockdep_map *lockdep_map; 369 #endif 370 char name[WQ_NAME_LEN]; /* I: workqueue name */ 371 372 /* 373 * Destruction of workqueue_struct is RCU protected to allow walking 374 * the workqueues list without grabbing wq_pool_mutex. 375 * This is used to dump all workqueues from sysrq. 376 */ 377 struct rcu_head rcu; 378 379 /* hot fields used during command issue, aligned to cacheline */ 380 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 381 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */ 382 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ 383 }; 384 385 /* 386 * Each pod type describes how CPUs should be grouped for unbound workqueues. 387 * See the comment above workqueue_attrs->affn_scope. 388 */ 389 struct wq_pod_type { 390 int nr_pods; /* number of pods */ 391 cpumask_var_t *pod_cpus; /* pod -> cpus */ 392 int *pod_node; /* pod -> node */ 393 int *cpu_pod; /* cpu -> pod */ 394 }; 395 396 struct work_offq_data { 397 u32 pool_id; 398 u32 disable; 399 u32 flags; 400 }; 401 402 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 403 [WQ_AFFN_DFL] = "default", 404 [WQ_AFFN_CPU] = "cpu", 405 [WQ_AFFN_SMT] = "smt", 406 [WQ_AFFN_CACHE] = "cache", 407 [WQ_AFFN_NUMA] = "numa", 408 [WQ_AFFN_SYSTEM] = "system", 409 }; 410 411 /* 412 * Per-cpu work items which run for longer than the following threshold are 413 * automatically considered CPU intensive and excluded from concurrency 414 * management to prevent them from noticeably delaying other per-cpu work items. 415 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 416 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 417 */ 418 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 419 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 421 static unsigned int wq_cpu_intensive_warning_thresh = 4; 422 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644); 423 #endif 424 425 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 426 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 427 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 428 429 static bool wq_online; /* can kworkers be created yet? */ 430 static bool wq_topo_initialized __read_mostly = false; 431 432 static struct kmem_cache *pwq_cache; 433 434 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 435 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 436 437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 438 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf; 439 440 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 441 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 443 /* wait for manager to go away */ 444 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 445 446 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 447 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 448 449 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */ 450 static cpumask_var_t wq_online_cpumask; 451 452 /* PL&A: allowable cpus for unbound wqs and work items */ 453 static cpumask_var_t wq_unbound_cpumask; 454 455 /* PL: user requested unbound cpumask via sysfs */ 456 static cpumask_var_t wq_requested_unbound_cpumask; 457 458 /* PL: isolated cpumask to be excluded from unbound cpumask */ 459 static cpumask_var_t wq_isolated_cpumask; 460 461 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 462 static struct cpumask wq_cmdline_cpumask __initdata; 463 464 /* CPU where unbound work was last round robin scheduled from this CPU */ 465 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 466 467 /* 468 * Local execution of unbound work items is no longer guaranteed. The 469 * following always forces round-robin CPU selection on unbound work items 470 * to uncover usages which depend on it. 471 */ 472 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 473 static bool wq_debug_force_rr_cpu = true; 474 #else 475 static bool wq_debug_force_rr_cpu = false; 476 #endif 477 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 478 479 /* to raise softirq for the BH worker pools on other CPUs */ 480 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], 481 bh_pool_irq_works); 482 483 /* the BH worker pools */ 484 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 485 bh_worker_pools); 486 487 /* the per-cpu worker pools */ 488 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 489 cpu_worker_pools); 490 491 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 492 493 /* PL: hash of all unbound pools keyed by pool->attrs */ 494 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 495 496 /* I: attributes used when instantiating standard unbound pools on demand */ 497 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 498 499 /* I: attributes used when instantiating ordered pools on demand */ 500 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 501 502 /* 503 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 504 * process context while holding a pool lock. Bounce to a dedicated kthread 505 * worker to avoid A-A deadlocks. 506 */ 507 static struct kthread_worker *pwq_release_worker __ro_after_init; 508 509 struct workqueue_struct *system_wq __ro_after_init; 510 EXPORT_SYMBOL(system_wq); 511 struct workqueue_struct *system_highpri_wq __ro_after_init; 512 EXPORT_SYMBOL_GPL(system_highpri_wq); 513 struct workqueue_struct *system_long_wq __ro_after_init; 514 EXPORT_SYMBOL_GPL(system_long_wq); 515 struct workqueue_struct *system_unbound_wq __ro_after_init; 516 EXPORT_SYMBOL_GPL(system_unbound_wq); 517 struct workqueue_struct *system_freezable_wq __ro_after_init; 518 EXPORT_SYMBOL_GPL(system_freezable_wq); 519 struct workqueue_struct *system_power_efficient_wq __ro_after_init; 520 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 521 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; 522 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 523 struct workqueue_struct *system_bh_wq; 524 EXPORT_SYMBOL_GPL(system_bh_wq); 525 struct workqueue_struct *system_bh_highpri_wq; 526 EXPORT_SYMBOL_GPL(system_bh_highpri_wq); 527 528 static int worker_thread(void *__worker); 529 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 530 static void show_pwq(struct pool_workqueue *pwq); 531 static void show_one_worker_pool(struct worker_pool *pool); 532 533 #define CREATE_TRACE_POINTS 534 #include <trace/events/workqueue.h> 535 536 #define assert_rcu_or_pool_mutex() \ 537 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 538 !lockdep_is_held(&wq_pool_mutex), \ 539 "RCU or wq_pool_mutex should be held") 540 541 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 542 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 543 !lockdep_is_held(&wq->mutex) && \ 544 !lockdep_is_held(&wq_pool_mutex), \ 545 "RCU, wq->mutex or wq_pool_mutex should be held") 546 547 #define for_each_bh_worker_pool(pool, cpu) \ 548 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \ 549 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 550 (pool)++) 551 552 #define for_each_cpu_worker_pool(pool, cpu) \ 553 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 554 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 555 (pool)++) 556 557 /** 558 * for_each_pool - iterate through all worker_pools in the system 559 * @pool: iteration cursor 560 * @pi: integer used for iteration 561 * 562 * This must be called either with wq_pool_mutex held or RCU read 563 * locked. If the pool needs to be used beyond the locking in effect, the 564 * caller is responsible for guaranteeing that the pool stays online. 565 * 566 * The if/else clause exists only for the lockdep assertion and can be 567 * ignored. 568 */ 569 #define for_each_pool(pool, pi) \ 570 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 571 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 572 else 573 574 /** 575 * for_each_pool_worker - iterate through all workers of a worker_pool 576 * @worker: iteration cursor 577 * @pool: worker_pool to iterate workers of 578 * 579 * This must be called with wq_pool_attach_mutex. 580 * 581 * The if/else clause exists only for the lockdep assertion and can be 582 * ignored. 583 */ 584 #define for_each_pool_worker(worker, pool) \ 585 list_for_each_entry((worker), &(pool)->workers, node) \ 586 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 587 else 588 589 /** 590 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 591 * @pwq: iteration cursor 592 * @wq: the target workqueue 593 * 594 * This must be called either with wq->mutex held or RCU read locked. 595 * If the pwq needs to be used beyond the locking in effect, the caller is 596 * responsible for guaranteeing that the pwq stays online. 597 * 598 * The if/else clause exists only for the lockdep assertion and can be 599 * ignored. 600 */ 601 #define for_each_pwq(pwq, wq) \ 602 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 603 lockdep_is_held(&(wq->mutex))) 604 605 #ifdef CONFIG_DEBUG_OBJECTS_WORK 606 607 static const struct debug_obj_descr work_debug_descr; 608 609 static void *work_debug_hint(void *addr) 610 { 611 return ((struct work_struct *) addr)->func; 612 } 613 614 static bool work_is_static_object(void *addr) 615 { 616 struct work_struct *work = addr; 617 618 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 619 } 620 621 /* 622 * fixup_init is called when: 623 * - an active object is initialized 624 */ 625 static bool work_fixup_init(void *addr, enum debug_obj_state state) 626 { 627 struct work_struct *work = addr; 628 629 switch (state) { 630 case ODEBUG_STATE_ACTIVE: 631 cancel_work_sync(work); 632 debug_object_init(work, &work_debug_descr); 633 return true; 634 default: 635 return false; 636 } 637 } 638 639 /* 640 * fixup_free is called when: 641 * - an active object is freed 642 */ 643 static bool work_fixup_free(void *addr, enum debug_obj_state state) 644 { 645 struct work_struct *work = addr; 646 647 switch (state) { 648 case ODEBUG_STATE_ACTIVE: 649 cancel_work_sync(work); 650 debug_object_free(work, &work_debug_descr); 651 return true; 652 default: 653 return false; 654 } 655 } 656 657 static const struct debug_obj_descr work_debug_descr = { 658 .name = "work_struct", 659 .debug_hint = work_debug_hint, 660 .is_static_object = work_is_static_object, 661 .fixup_init = work_fixup_init, 662 .fixup_free = work_fixup_free, 663 }; 664 665 static inline void debug_work_activate(struct work_struct *work) 666 { 667 debug_object_activate(work, &work_debug_descr); 668 } 669 670 static inline void debug_work_deactivate(struct work_struct *work) 671 { 672 debug_object_deactivate(work, &work_debug_descr); 673 } 674 675 void __init_work(struct work_struct *work, int onstack) 676 { 677 if (onstack) 678 debug_object_init_on_stack(work, &work_debug_descr); 679 else 680 debug_object_init(work, &work_debug_descr); 681 } 682 EXPORT_SYMBOL_GPL(__init_work); 683 684 void destroy_work_on_stack(struct work_struct *work) 685 { 686 debug_object_free(work, &work_debug_descr); 687 } 688 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 689 690 void destroy_delayed_work_on_stack(struct delayed_work *work) 691 { 692 destroy_timer_on_stack(&work->timer); 693 debug_object_free(&work->work, &work_debug_descr); 694 } 695 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 696 697 #else 698 static inline void debug_work_activate(struct work_struct *work) { } 699 static inline void debug_work_deactivate(struct work_struct *work) { } 700 #endif 701 702 /** 703 * worker_pool_assign_id - allocate ID and assign it to @pool 704 * @pool: the pool pointer of interest 705 * 706 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 707 * successfully, -errno on failure. 708 */ 709 static int worker_pool_assign_id(struct worker_pool *pool) 710 { 711 int ret; 712 713 lockdep_assert_held(&wq_pool_mutex); 714 715 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 716 GFP_KERNEL); 717 if (ret >= 0) { 718 pool->id = ret; 719 return 0; 720 } 721 return ret; 722 } 723 724 static struct pool_workqueue __rcu ** 725 unbound_pwq_slot(struct workqueue_struct *wq, int cpu) 726 { 727 if (cpu >= 0) 728 return per_cpu_ptr(wq->cpu_pwq, cpu); 729 else 730 return &wq->dfl_pwq; 731 } 732 733 /* @cpu < 0 for dfl_pwq */ 734 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) 735 { 736 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), 737 lockdep_is_held(&wq_pool_mutex) || 738 lockdep_is_held(&wq->mutex)); 739 } 740 741 /** 742 * unbound_effective_cpumask - effective cpumask of an unbound workqueue 743 * @wq: workqueue of interest 744 * 745 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which 746 * is masked with wq_unbound_cpumask to determine the effective cpumask. The 747 * default pwq is always mapped to the pool with the current effective cpumask. 748 */ 749 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) 750 { 751 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask; 752 } 753 754 static unsigned int work_color_to_flags(int color) 755 { 756 return color << WORK_STRUCT_COLOR_SHIFT; 757 } 758 759 static int get_work_color(unsigned long work_data) 760 { 761 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 762 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 763 } 764 765 static int work_next_color(int color) 766 { 767 return (color + 1) % WORK_NR_COLORS; 768 } 769 770 static unsigned long pool_offq_flags(struct worker_pool *pool) 771 { 772 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0; 773 } 774 775 /* 776 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 777 * contain the pointer to the queued pwq. Once execution starts, the flag 778 * is cleared and the high bits contain OFFQ flags and pool ID. 779 * 780 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling() 781 * can be used to set the pwq, pool or clear work->data. These functions should 782 * only be called while the work is owned - ie. while the PENDING bit is set. 783 * 784 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 785 * corresponding to a work. Pool is available once the work has been 786 * queued anywhere after initialization until it is sync canceled. pwq is 787 * available only while the work item is queued. 788 */ 789 static inline void set_work_data(struct work_struct *work, unsigned long data) 790 { 791 WARN_ON_ONCE(!work_pending(work)); 792 atomic_long_set(&work->data, data | work_static(work)); 793 } 794 795 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 796 unsigned long flags) 797 { 798 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING | 799 WORK_STRUCT_PWQ | flags); 800 } 801 802 static void set_work_pool_and_keep_pending(struct work_struct *work, 803 int pool_id, unsigned long flags) 804 { 805 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 806 WORK_STRUCT_PENDING | flags); 807 } 808 809 static void set_work_pool_and_clear_pending(struct work_struct *work, 810 int pool_id, unsigned long flags) 811 { 812 /* 813 * The following wmb is paired with the implied mb in 814 * test_and_set_bit(PENDING) and ensures all updates to @work made 815 * here are visible to and precede any updates by the next PENDING 816 * owner. 817 */ 818 smp_wmb(); 819 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 820 flags); 821 /* 822 * The following mb guarantees that previous clear of a PENDING bit 823 * will not be reordered with any speculative LOADS or STORES from 824 * work->current_func, which is executed afterwards. This possible 825 * reordering can lead to a missed execution on attempt to queue 826 * the same @work. E.g. consider this case: 827 * 828 * CPU#0 CPU#1 829 * ---------------------------- -------------------------------- 830 * 831 * 1 STORE event_indicated 832 * 2 queue_work_on() { 833 * 3 test_and_set_bit(PENDING) 834 * 4 } set_..._and_clear_pending() { 835 * 5 set_work_data() # clear bit 836 * 6 smp_mb() 837 * 7 work->current_func() { 838 * 8 LOAD event_indicated 839 * } 840 * 841 * Without an explicit full barrier speculative LOAD on line 8 can 842 * be executed before CPU#0 does STORE on line 1. If that happens, 843 * CPU#0 observes the PENDING bit is still set and new execution of 844 * a @work is not queued in a hope, that CPU#1 will eventually 845 * finish the queued @work. Meanwhile CPU#1 does not see 846 * event_indicated is set, because speculative LOAD was executed 847 * before actual STORE. 848 */ 849 smp_mb(); 850 } 851 852 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 853 { 854 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK); 855 } 856 857 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 858 { 859 unsigned long data = atomic_long_read(&work->data); 860 861 if (data & WORK_STRUCT_PWQ) 862 return work_struct_pwq(data); 863 else 864 return NULL; 865 } 866 867 /** 868 * get_work_pool - return the worker_pool a given work was associated with 869 * @work: the work item of interest 870 * 871 * Pools are created and destroyed under wq_pool_mutex, and allows read 872 * access under RCU read lock. As such, this function should be 873 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 874 * 875 * All fields of the returned pool are accessible as long as the above 876 * mentioned locking is in effect. If the returned pool needs to be used 877 * beyond the critical section, the caller is responsible for ensuring the 878 * returned pool is and stays online. 879 * 880 * Return: The worker_pool @work was last associated with. %NULL if none. 881 */ 882 static struct worker_pool *get_work_pool(struct work_struct *work) 883 { 884 unsigned long data = atomic_long_read(&work->data); 885 int pool_id; 886 887 assert_rcu_or_pool_mutex(); 888 889 if (data & WORK_STRUCT_PWQ) 890 return work_struct_pwq(data)->pool; 891 892 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 893 if (pool_id == WORK_OFFQ_POOL_NONE) 894 return NULL; 895 896 return idr_find(&worker_pool_idr, pool_id); 897 } 898 899 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits) 900 { 901 return (v >> shift) & ((1 << bits) - 1); 902 } 903 904 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data) 905 { 906 WARN_ON_ONCE(data & WORK_STRUCT_PWQ); 907 908 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT, 909 WORK_OFFQ_POOL_BITS); 910 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT, 911 WORK_OFFQ_DISABLE_BITS); 912 offqd->flags = data & WORK_OFFQ_FLAG_MASK; 913 } 914 915 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd) 916 { 917 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) | 918 ((unsigned long)offqd->flags); 919 } 920 921 /* 922 * Policy functions. These define the policies on how the global worker 923 * pools are managed. Unless noted otherwise, these functions assume that 924 * they're being called with pool->lock held. 925 */ 926 927 /* 928 * Need to wake up a worker? Called from anything but currently 929 * running workers. 930 * 931 * Note that, because unbound workers never contribute to nr_running, this 932 * function will always return %true for unbound pools as long as the 933 * worklist isn't empty. 934 */ 935 static bool need_more_worker(struct worker_pool *pool) 936 { 937 return !list_empty(&pool->worklist) && !pool->nr_running; 938 } 939 940 /* Can I start working? Called from busy but !running workers. */ 941 static bool may_start_working(struct worker_pool *pool) 942 { 943 return pool->nr_idle; 944 } 945 946 /* Do I need to keep working? Called from currently running workers. */ 947 static bool keep_working(struct worker_pool *pool) 948 { 949 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 950 } 951 952 /* Do we need a new worker? Called from manager. */ 953 static bool need_to_create_worker(struct worker_pool *pool) 954 { 955 return need_more_worker(pool) && !may_start_working(pool); 956 } 957 958 /* Do we have too many workers and should some go away? */ 959 static bool too_many_workers(struct worker_pool *pool) 960 { 961 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 962 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 963 int nr_busy = pool->nr_workers - nr_idle; 964 965 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 966 } 967 968 /** 969 * worker_set_flags - set worker flags and adjust nr_running accordingly 970 * @worker: self 971 * @flags: flags to set 972 * 973 * Set @flags in @worker->flags and adjust nr_running accordingly. 974 */ 975 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 976 { 977 struct worker_pool *pool = worker->pool; 978 979 lockdep_assert_held(&pool->lock); 980 981 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 982 if ((flags & WORKER_NOT_RUNNING) && 983 !(worker->flags & WORKER_NOT_RUNNING)) { 984 pool->nr_running--; 985 } 986 987 worker->flags |= flags; 988 } 989 990 /** 991 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 992 * @worker: self 993 * @flags: flags to clear 994 * 995 * Clear @flags in @worker->flags and adjust nr_running accordingly. 996 */ 997 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 998 { 999 struct worker_pool *pool = worker->pool; 1000 unsigned int oflags = worker->flags; 1001 1002 lockdep_assert_held(&pool->lock); 1003 1004 worker->flags &= ~flags; 1005 1006 /* 1007 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1008 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1009 * of multiple flags, not a single flag. 1010 */ 1011 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1012 if (!(worker->flags & WORKER_NOT_RUNNING)) 1013 pool->nr_running++; 1014 } 1015 1016 /* Return the first idle worker. Called with pool->lock held. */ 1017 static struct worker *first_idle_worker(struct worker_pool *pool) 1018 { 1019 if (unlikely(list_empty(&pool->idle_list))) 1020 return NULL; 1021 1022 return list_first_entry(&pool->idle_list, struct worker, entry); 1023 } 1024 1025 /** 1026 * worker_enter_idle - enter idle state 1027 * @worker: worker which is entering idle state 1028 * 1029 * @worker is entering idle state. Update stats and idle timer if 1030 * necessary. 1031 * 1032 * LOCKING: 1033 * raw_spin_lock_irq(pool->lock). 1034 */ 1035 static void worker_enter_idle(struct worker *worker) 1036 { 1037 struct worker_pool *pool = worker->pool; 1038 1039 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1040 WARN_ON_ONCE(!list_empty(&worker->entry) && 1041 (worker->hentry.next || worker->hentry.pprev))) 1042 return; 1043 1044 /* can't use worker_set_flags(), also called from create_worker() */ 1045 worker->flags |= WORKER_IDLE; 1046 pool->nr_idle++; 1047 worker->last_active = jiffies; 1048 1049 /* idle_list is LIFO */ 1050 list_add(&worker->entry, &pool->idle_list); 1051 1052 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1053 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1054 1055 /* Sanity check nr_running. */ 1056 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1057 } 1058 1059 /** 1060 * worker_leave_idle - leave idle state 1061 * @worker: worker which is leaving idle state 1062 * 1063 * @worker is leaving idle state. Update stats. 1064 * 1065 * LOCKING: 1066 * raw_spin_lock_irq(pool->lock). 1067 */ 1068 static void worker_leave_idle(struct worker *worker) 1069 { 1070 struct worker_pool *pool = worker->pool; 1071 1072 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1073 return; 1074 worker_clr_flags(worker, WORKER_IDLE); 1075 pool->nr_idle--; 1076 list_del_init(&worker->entry); 1077 } 1078 1079 /** 1080 * find_worker_executing_work - find worker which is executing a work 1081 * @pool: pool of interest 1082 * @work: work to find worker for 1083 * 1084 * Find a worker which is executing @work on @pool by searching 1085 * @pool->busy_hash which is keyed by the address of @work. For a worker 1086 * to match, its current execution should match the address of @work and 1087 * its work function. This is to avoid unwanted dependency between 1088 * unrelated work executions through a work item being recycled while still 1089 * being executed. 1090 * 1091 * This is a bit tricky. A work item may be freed once its execution 1092 * starts and nothing prevents the freed area from being recycled for 1093 * another work item. If the same work item address ends up being reused 1094 * before the original execution finishes, workqueue will identify the 1095 * recycled work item as currently executing and make it wait until the 1096 * current execution finishes, introducing an unwanted dependency. 1097 * 1098 * This function checks the work item address and work function to avoid 1099 * false positives. Note that this isn't complete as one may construct a 1100 * work function which can introduce dependency onto itself through a 1101 * recycled work item. Well, if somebody wants to shoot oneself in the 1102 * foot that badly, there's only so much we can do, and if such deadlock 1103 * actually occurs, it should be easy to locate the culprit work function. 1104 * 1105 * CONTEXT: 1106 * raw_spin_lock_irq(pool->lock). 1107 * 1108 * Return: 1109 * Pointer to worker which is executing @work if found, %NULL 1110 * otherwise. 1111 */ 1112 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1113 struct work_struct *work) 1114 { 1115 struct worker *worker; 1116 1117 hash_for_each_possible(pool->busy_hash, worker, hentry, 1118 (unsigned long)work) 1119 if (worker->current_work == work && 1120 worker->current_func == work->func) 1121 return worker; 1122 1123 return NULL; 1124 } 1125 1126 /** 1127 * move_linked_works - move linked works to a list 1128 * @work: start of series of works to be scheduled 1129 * @head: target list to append @work to 1130 * @nextp: out parameter for nested worklist walking 1131 * 1132 * Schedule linked works starting from @work to @head. Work series to be 1133 * scheduled starts at @work and includes any consecutive work with 1134 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1135 * @nextp. 1136 * 1137 * CONTEXT: 1138 * raw_spin_lock_irq(pool->lock). 1139 */ 1140 static void move_linked_works(struct work_struct *work, struct list_head *head, 1141 struct work_struct **nextp) 1142 { 1143 struct work_struct *n; 1144 1145 /* 1146 * Linked worklist will always end before the end of the list, 1147 * use NULL for list head. 1148 */ 1149 list_for_each_entry_safe_from(work, n, NULL, entry) { 1150 list_move_tail(&work->entry, head); 1151 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1152 break; 1153 } 1154 1155 /* 1156 * If we're already inside safe list traversal and have moved 1157 * multiple works to the scheduled queue, the next position 1158 * needs to be updated. 1159 */ 1160 if (nextp) 1161 *nextp = n; 1162 } 1163 1164 /** 1165 * assign_work - assign a work item and its linked work items to a worker 1166 * @work: work to assign 1167 * @worker: worker to assign to 1168 * @nextp: out parameter for nested worklist walking 1169 * 1170 * Assign @work and its linked work items to @worker. If @work is already being 1171 * executed by another worker in the same pool, it'll be punted there. 1172 * 1173 * If @nextp is not NULL, it's updated to point to the next work of the last 1174 * scheduled work. This allows assign_work() to be nested inside 1175 * list_for_each_entry_safe(). 1176 * 1177 * Returns %true if @work was successfully assigned to @worker. %false if @work 1178 * was punted to another worker already executing it. 1179 */ 1180 static bool assign_work(struct work_struct *work, struct worker *worker, 1181 struct work_struct **nextp) 1182 { 1183 struct worker_pool *pool = worker->pool; 1184 struct worker *collision; 1185 1186 lockdep_assert_held(&pool->lock); 1187 1188 /* 1189 * A single work shouldn't be executed concurrently by multiple workers. 1190 * __queue_work() ensures that @work doesn't jump to a different pool 1191 * while still running in the previous pool. Here, we should ensure that 1192 * @work is not executed concurrently by multiple workers from the same 1193 * pool. Check whether anyone is already processing the work. If so, 1194 * defer the work to the currently executing one. 1195 */ 1196 collision = find_worker_executing_work(pool, work); 1197 if (unlikely(collision)) { 1198 move_linked_works(work, &collision->scheduled, nextp); 1199 return false; 1200 } 1201 1202 move_linked_works(work, &worker->scheduled, nextp); 1203 return true; 1204 } 1205 1206 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool) 1207 { 1208 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0; 1209 1210 return &per_cpu(bh_pool_irq_works, pool->cpu)[high]; 1211 } 1212 1213 static void kick_bh_pool(struct worker_pool *pool) 1214 { 1215 #ifdef CONFIG_SMP 1216 /* see drain_dead_softirq_workfn() for BH_DRAINING */ 1217 if (unlikely(pool->cpu != smp_processor_id() && 1218 !(pool->flags & POOL_BH_DRAINING))) { 1219 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu); 1220 return; 1221 } 1222 #endif 1223 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 1224 raise_softirq_irqoff(HI_SOFTIRQ); 1225 else 1226 raise_softirq_irqoff(TASKLET_SOFTIRQ); 1227 } 1228 1229 /** 1230 * kick_pool - wake up an idle worker if necessary 1231 * @pool: pool to kick 1232 * 1233 * @pool may have pending work items. Wake up worker if necessary. Returns 1234 * whether a worker was woken up. 1235 */ 1236 static bool kick_pool(struct worker_pool *pool) 1237 { 1238 struct worker *worker = first_idle_worker(pool); 1239 struct task_struct *p; 1240 1241 lockdep_assert_held(&pool->lock); 1242 1243 if (!need_more_worker(pool) || !worker) 1244 return false; 1245 1246 if (pool->flags & POOL_BH) { 1247 kick_bh_pool(pool); 1248 return true; 1249 } 1250 1251 p = worker->task; 1252 1253 #ifdef CONFIG_SMP 1254 /* 1255 * Idle @worker is about to execute @work and waking up provides an 1256 * opportunity to migrate @worker at a lower cost by setting the task's 1257 * wake_cpu field. Let's see if we want to move @worker to improve 1258 * execution locality. 1259 * 1260 * We're waking the worker that went idle the latest and there's some 1261 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1262 * so, setting the wake_cpu won't do anything. As this is a best-effort 1263 * optimization and the race window is narrow, let's leave as-is for 1264 * now. If this becomes pronounced, we can skip over workers which are 1265 * still on cpu when picking an idle worker. 1266 * 1267 * If @pool has non-strict affinity, @worker might have ended up outside 1268 * its affinity scope. Repatriate. 1269 */ 1270 if (!pool->attrs->affn_strict && 1271 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1272 struct work_struct *work = list_first_entry(&pool->worklist, 1273 struct work_struct, entry); 1274 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask, 1275 cpu_online_mask); 1276 if (wake_cpu < nr_cpu_ids) { 1277 p->wake_cpu = wake_cpu; 1278 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1279 } 1280 } 1281 #endif 1282 wake_up_process(p); 1283 return true; 1284 } 1285 1286 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1287 1288 /* 1289 * Concurrency-managed per-cpu work items that hog CPU for longer than 1290 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1291 * which prevents them from stalling other concurrency-managed work items. If a 1292 * work function keeps triggering this mechanism, it's likely that the work item 1293 * should be using an unbound workqueue instead. 1294 * 1295 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1296 * and report them so that they can be examined and converted to use unbound 1297 * workqueues as appropriate. To avoid flooding the console, each violating work 1298 * function is tracked and reported with exponential backoff. 1299 */ 1300 #define WCI_MAX_ENTS 128 1301 1302 struct wci_ent { 1303 work_func_t func; 1304 atomic64_t cnt; 1305 struct hlist_node hash_node; 1306 }; 1307 1308 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1309 static int wci_nr_ents; 1310 static DEFINE_RAW_SPINLOCK(wci_lock); 1311 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1312 1313 static struct wci_ent *wci_find_ent(work_func_t func) 1314 { 1315 struct wci_ent *ent; 1316 1317 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1318 (unsigned long)func) { 1319 if (ent->func == func) 1320 return ent; 1321 } 1322 return NULL; 1323 } 1324 1325 static void wq_cpu_intensive_report(work_func_t func) 1326 { 1327 struct wci_ent *ent; 1328 1329 restart: 1330 ent = wci_find_ent(func); 1331 if (ent) { 1332 u64 cnt; 1333 1334 /* 1335 * Start reporting from the warning_thresh and back off 1336 * exponentially. 1337 */ 1338 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1339 if (wq_cpu_intensive_warning_thresh && 1340 cnt >= wq_cpu_intensive_warning_thresh && 1341 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh)) 1342 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1343 ent->func, wq_cpu_intensive_thresh_us, 1344 atomic64_read(&ent->cnt)); 1345 return; 1346 } 1347 1348 /* 1349 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1350 * is exhausted, something went really wrong and we probably made enough 1351 * noise already. 1352 */ 1353 if (wci_nr_ents >= WCI_MAX_ENTS) 1354 return; 1355 1356 raw_spin_lock(&wci_lock); 1357 1358 if (wci_nr_ents >= WCI_MAX_ENTS) { 1359 raw_spin_unlock(&wci_lock); 1360 return; 1361 } 1362 1363 if (wci_find_ent(func)) { 1364 raw_spin_unlock(&wci_lock); 1365 goto restart; 1366 } 1367 1368 ent = &wci_ents[wci_nr_ents++]; 1369 ent->func = func; 1370 atomic64_set(&ent->cnt, 0); 1371 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1372 1373 raw_spin_unlock(&wci_lock); 1374 1375 goto restart; 1376 } 1377 1378 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1379 static void wq_cpu_intensive_report(work_func_t func) {} 1380 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1381 1382 /** 1383 * wq_worker_running - a worker is running again 1384 * @task: task waking up 1385 * 1386 * This function is called when a worker returns from schedule() 1387 */ 1388 void wq_worker_running(struct task_struct *task) 1389 { 1390 struct worker *worker = kthread_data(task); 1391 1392 if (!READ_ONCE(worker->sleeping)) 1393 return; 1394 1395 /* 1396 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1397 * and the nr_running increment below, we may ruin the nr_running reset 1398 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1399 * pool. Protect against such race. 1400 */ 1401 preempt_disable(); 1402 if (!(worker->flags & WORKER_NOT_RUNNING)) 1403 worker->pool->nr_running++; 1404 preempt_enable(); 1405 1406 /* 1407 * CPU intensive auto-detection cares about how long a work item hogged 1408 * CPU without sleeping. Reset the starting timestamp on wakeup. 1409 */ 1410 worker->current_at = worker->task->se.sum_exec_runtime; 1411 1412 WRITE_ONCE(worker->sleeping, 0); 1413 } 1414 1415 /** 1416 * wq_worker_sleeping - a worker is going to sleep 1417 * @task: task going to sleep 1418 * 1419 * This function is called from schedule() when a busy worker is 1420 * going to sleep. 1421 */ 1422 void wq_worker_sleeping(struct task_struct *task) 1423 { 1424 struct worker *worker = kthread_data(task); 1425 struct worker_pool *pool; 1426 1427 /* 1428 * Rescuers, which may not have all the fields set up like normal 1429 * workers, also reach here, let's not access anything before 1430 * checking NOT_RUNNING. 1431 */ 1432 if (worker->flags & WORKER_NOT_RUNNING) 1433 return; 1434 1435 pool = worker->pool; 1436 1437 /* Return if preempted before wq_worker_running() was reached */ 1438 if (READ_ONCE(worker->sleeping)) 1439 return; 1440 1441 WRITE_ONCE(worker->sleeping, 1); 1442 raw_spin_lock_irq(&pool->lock); 1443 1444 /* 1445 * Recheck in case unbind_workers() preempted us. We don't 1446 * want to decrement nr_running after the worker is unbound 1447 * and nr_running has been reset. 1448 */ 1449 if (worker->flags & WORKER_NOT_RUNNING) { 1450 raw_spin_unlock_irq(&pool->lock); 1451 return; 1452 } 1453 1454 pool->nr_running--; 1455 if (kick_pool(pool)) 1456 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1457 1458 raw_spin_unlock_irq(&pool->lock); 1459 } 1460 1461 /** 1462 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1463 * @task: task currently running 1464 * 1465 * Called from sched_tick(). We're in the IRQ context and the current 1466 * worker's fields which follow the 'K' locking rule can be accessed safely. 1467 */ 1468 void wq_worker_tick(struct task_struct *task) 1469 { 1470 struct worker *worker = kthread_data(task); 1471 struct pool_workqueue *pwq = worker->current_pwq; 1472 struct worker_pool *pool = worker->pool; 1473 1474 if (!pwq) 1475 return; 1476 1477 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1478 1479 if (!wq_cpu_intensive_thresh_us) 1480 return; 1481 1482 /* 1483 * If the current worker is concurrency managed and hogged the CPU for 1484 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1485 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1486 * 1487 * Set @worker->sleeping means that @worker is in the process of 1488 * switching out voluntarily and won't be contributing to 1489 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1490 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1491 * double decrements. The task is releasing the CPU anyway. Let's skip. 1492 * We probably want to make this prettier in the future. 1493 */ 1494 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1495 worker->task->se.sum_exec_runtime - worker->current_at < 1496 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1497 return; 1498 1499 raw_spin_lock(&pool->lock); 1500 1501 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1502 wq_cpu_intensive_report(worker->current_func); 1503 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1504 1505 if (kick_pool(pool)) 1506 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1507 1508 raw_spin_unlock(&pool->lock); 1509 } 1510 1511 /** 1512 * wq_worker_last_func - retrieve worker's last work function 1513 * @task: Task to retrieve last work function of. 1514 * 1515 * Determine the last function a worker executed. This is called from 1516 * the scheduler to get a worker's last known identity. 1517 * 1518 * CONTEXT: 1519 * raw_spin_lock_irq(rq->lock) 1520 * 1521 * This function is called during schedule() when a kworker is going 1522 * to sleep. It's used by psi to identify aggregation workers during 1523 * dequeuing, to allow periodic aggregation to shut-off when that 1524 * worker is the last task in the system or cgroup to go to sleep. 1525 * 1526 * As this function doesn't involve any workqueue-related locking, it 1527 * only returns stable values when called from inside the scheduler's 1528 * queuing and dequeuing paths, when @task, which must be a kworker, 1529 * is guaranteed to not be processing any works. 1530 * 1531 * Return: 1532 * The last work function %current executed as a worker, NULL if it 1533 * hasn't executed any work yet. 1534 */ 1535 work_func_t wq_worker_last_func(struct task_struct *task) 1536 { 1537 struct worker *worker = kthread_data(task); 1538 1539 return worker->last_func; 1540 } 1541 1542 /** 1543 * wq_node_nr_active - Determine wq_node_nr_active to use 1544 * @wq: workqueue of interest 1545 * @node: NUMA node, can be %NUMA_NO_NODE 1546 * 1547 * Determine wq_node_nr_active to use for @wq on @node. Returns: 1548 * 1549 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. 1550 * 1551 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. 1552 * 1553 * - Otherwise, node_nr_active[@node]. 1554 */ 1555 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, 1556 int node) 1557 { 1558 if (!(wq->flags & WQ_UNBOUND)) 1559 return NULL; 1560 1561 if (node == NUMA_NO_NODE) 1562 node = nr_node_ids; 1563 1564 return wq->node_nr_active[node]; 1565 } 1566 1567 /** 1568 * wq_update_node_max_active - Update per-node max_actives to use 1569 * @wq: workqueue to update 1570 * @off_cpu: CPU that's going down, -1 if a CPU is not going down 1571 * 1572 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is 1573 * distributed among nodes according to the proportions of numbers of online 1574 * cpus. The result is always between @wq->min_active and max_active. 1575 */ 1576 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) 1577 { 1578 struct cpumask *effective = unbound_effective_cpumask(wq); 1579 int min_active = READ_ONCE(wq->min_active); 1580 int max_active = READ_ONCE(wq->max_active); 1581 int total_cpus, node; 1582 1583 lockdep_assert_held(&wq->mutex); 1584 1585 if (!wq_topo_initialized) 1586 return; 1587 1588 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective)) 1589 off_cpu = -1; 1590 1591 total_cpus = cpumask_weight_and(effective, cpu_online_mask); 1592 if (off_cpu >= 0) 1593 total_cpus--; 1594 1595 /* If all CPUs of the wq get offline, use the default values */ 1596 if (unlikely(!total_cpus)) { 1597 for_each_node(node) 1598 wq_node_nr_active(wq, node)->max = min_active; 1599 1600 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1601 return; 1602 } 1603 1604 for_each_node(node) { 1605 int node_cpus; 1606 1607 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node)); 1608 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node) 1609 node_cpus--; 1610 1611 wq_node_nr_active(wq, node)->max = 1612 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), 1613 min_active, max_active); 1614 } 1615 1616 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1617 } 1618 1619 /** 1620 * get_pwq - get an extra reference on the specified pool_workqueue 1621 * @pwq: pool_workqueue to get 1622 * 1623 * Obtain an extra reference on @pwq. The caller should guarantee that 1624 * @pwq has positive refcnt and be holding the matching pool->lock. 1625 */ 1626 static void get_pwq(struct pool_workqueue *pwq) 1627 { 1628 lockdep_assert_held(&pwq->pool->lock); 1629 WARN_ON_ONCE(pwq->refcnt <= 0); 1630 pwq->refcnt++; 1631 } 1632 1633 /** 1634 * put_pwq - put a pool_workqueue reference 1635 * @pwq: pool_workqueue to put 1636 * 1637 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1638 * destruction. The caller should be holding the matching pool->lock. 1639 */ 1640 static void put_pwq(struct pool_workqueue *pwq) 1641 { 1642 lockdep_assert_held(&pwq->pool->lock); 1643 if (likely(--pwq->refcnt)) 1644 return; 1645 /* 1646 * @pwq can't be released under pool->lock, bounce to a dedicated 1647 * kthread_worker to avoid A-A deadlocks. 1648 */ 1649 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1650 } 1651 1652 /** 1653 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1654 * @pwq: pool_workqueue to put (can be %NULL) 1655 * 1656 * put_pwq() with locking. This function also allows %NULL @pwq. 1657 */ 1658 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1659 { 1660 if (pwq) { 1661 /* 1662 * As both pwqs and pools are RCU protected, the 1663 * following lock operations are safe. 1664 */ 1665 raw_spin_lock_irq(&pwq->pool->lock); 1666 put_pwq(pwq); 1667 raw_spin_unlock_irq(&pwq->pool->lock); 1668 } 1669 } 1670 1671 static bool pwq_is_empty(struct pool_workqueue *pwq) 1672 { 1673 return !pwq->nr_active && list_empty(&pwq->inactive_works); 1674 } 1675 1676 static void __pwq_activate_work(struct pool_workqueue *pwq, 1677 struct work_struct *work) 1678 { 1679 unsigned long *wdb = work_data_bits(work); 1680 1681 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); 1682 trace_workqueue_activate_work(work); 1683 if (list_empty(&pwq->pool->worklist)) 1684 pwq->pool->watchdog_ts = jiffies; 1685 move_linked_works(work, &pwq->pool->worklist, NULL); 1686 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); 1687 } 1688 1689 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) 1690 { 1691 int max = READ_ONCE(nna->max); 1692 1693 while (true) { 1694 int old, tmp; 1695 1696 old = atomic_read(&nna->nr); 1697 if (old >= max) 1698 return false; 1699 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1); 1700 if (tmp == old) 1701 return true; 1702 } 1703 } 1704 1705 /** 1706 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq 1707 * @pwq: pool_workqueue of interest 1708 * @fill: max_active may have increased, try to increase concurrency level 1709 * 1710 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is 1711 * successfully obtained. %false otherwise. 1712 */ 1713 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) 1714 { 1715 struct workqueue_struct *wq = pwq->wq; 1716 struct worker_pool *pool = pwq->pool; 1717 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node); 1718 bool obtained = false; 1719 1720 lockdep_assert_held(&pool->lock); 1721 1722 if (!nna) { 1723 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */ 1724 obtained = pwq->nr_active < READ_ONCE(wq->max_active); 1725 goto out; 1726 } 1727 1728 if (unlikely(pwq->plugged)) 1729 return false; 1730 1731 /* 1732 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is 1733 * already waiting on $nna, pwq_dec_nr_active() will maintain the 1734 * concurrency level. Don't jump the line. 1735 * 1736 * We need to ignore the pending test after max_active has increased as 1737 * pwq_dec_nr_active() can only maintain the concurrency level but not 1738 * increase it. This is indicated by @fill. 1739 */ 1740 if (!list_empty(&pwq->pending_node) && likely(!fill)) 1741 goto out; 1742 1743 obtained = tryinc_node_nr_active(nna); 1744 if (obtained) 1745 goto out; 1746 1747 /* 1748 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs 1749 * and try again. The smp_mb() is paired with the implied memory barrier 1750 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either 1751 * we see the decremented $nna->nr or they see non-empty 1752 * $nna->pending_pwqs. 1753 */ 1754 raw_spin_lock(&nna->lock); 1755 1756 if (list_empty(&pwq->pending_node)) 1757 list_add_tail(&pwq->pending_node, &nna->pending_pwqs); 1758 else if (likely(!fill)) 1759 goto out_unlock; 1760 1761 smp_mb(); 1762 1763 obtained = tryinc_node_nr_active(nna); 1764 1765 /* 1766 * If @fill, @pwq might have already been pending. Being spuriously 1767 * pending in cold paths doesn't affect anything. Let's leave it be. 1768 */ 1769 if (obtained && likely(!fill)) 1770 list_del_init(&pwq->pending_node); 1771 1772 out_unlock: 1773 raw_spin_unlock(&nna->lock); 1774 out: 1775 if (obtained) 1776 pwq->nr_active++; 1777 return obtained; 1778 } 1779 1780 /** 1781 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq 1782 * @pwq: pool_workqueue of interest 1783 * @fill: max_active may have increased, try to increase concurrency level 1784 * 1785 * Activate the first inactive work item of @pwq if available and allowed by 1786 * max_active limit. 1787 * 1788 * Returns %true if an inactive work item has been activated. %false if no 1789 * inactive work item is found or max_active limit is reached. 1790 */ 1791 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) 1792 { 1793 struct work_struct *work = 1794 list_first_entry_or_null(&pwq->inactive_works, 1795 struct work_struct, entry); 1796 1797 if (work && pwq_tryinc_nr_active(pwq, fill)) { 1798 __pwq_activate_work(pwq, work); 1799 return true; 1800 } else { 1801 return false; 1802 } 1803 } 1804 1805 /** 1806 * unplug_oldest_pwq - unplug the oldest pool_workqueue 1807 * @wq: workqueue_struct where its oldest pwq is to be unplugged 1808 * 1809 * This function should only be called for ordered workqueues where only the 1810 * oldest pwq is unplugged, the others are plugged to suspend execution to 1811 * ensure proper work item ordering:: 1812 * 1813 * dfl_pwq --------------+ [P] - plugged 1814 * | 1815 * v 1816 * pwqs -> A -> B [P] -> C [P] (newest) 1817 * | | | 1818 * 1 3 5 1819 * | | | 1820 * 2 4 6 1821 * 1822 * When the oldest pwq is drained and removed, this function should be called 1823 * to unplug the next oldest one to start its work item execution. Note that 1824 * pwq's are linked into wq->pwqs with the oldest first, so the first one in 1825 * the list is the oldest. 1826 */ 1827 static void unplug_oldest_pwq(struct workqueue_struct *wq) 1828 { 1829 struct pool_workqueue *pwq; 1830 1831 lockdep_assert_held(&wq->mutex); 1832 1833 /* Caller should make sure that pwqs isn't empty before calling */ 1834 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue, 1835 pwqs_node); 1836 raw_spin_lock_irq(&pwq->pool->lock); 1837 if (pwq->plugged) { 1838 pwq->plugged = false; 1839 if (pwq_activate_first_inactive(pwq, true)) 1840 kick_pool(pwq->pool); 1841 } 1842 raw_spin_unlock_irq(&pwq->pool->lock); 1843 } 1844 1845 /** 1846 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active 1847 * @nna: wq_node_nr_active to activate a pending pwq for 1848 * @caller_pool: worker_pool the caller is locking 1849 * 1850 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. 1851 * @caller_pool may be unlocked and relocked to lock other worker_pools. 1852 */ 1853 static void node_activate_pending_pwq(struct wq_node_nr_active *nna, 1854 struct worker_pool *caller_pool) 1855 { 1856 struct worker_pool *locked_pool = caller_pool; 1857 struct pool_workqueue *pwq; 1858 struct work_struct *work; 1859 1860 lockdep_assert_held(&caller_pool->lock); 1861 1862 raw_spin_lock(&nna->lock); 1863 retry: 1864 pwq = list_first_entry_or_null(&nna->pending_pwqs, 1865 struct pool_workqueue, pending_node); 1866 if (!pwq) 1867 goto out_unlock; 1868 1869 /* 1870 * If @pwq is for a different pool than @locked_pool, we need to lock 1871 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock 1872 * / lock dance. For that, we also need to release @nna->lock as it's 1873 * nested inside pool locks. 1874 */ 1875 if (pwq->pool != locked_pool) { 1876 raw_spin_unlock(&locked_pool->lock); 1877 locked_pool = pwq->pool; 1878 if (!raw_spin_trylock(&locked_pool->lock)) { 1879 raw_spin_unlock(&nna->lock); 1880 raw_spin_lock(&locked_pool->lock); 1881 raw_spin_lock(&nna->lock); 1882 goto retry; 1883 } 1884 } 1885 1886 /* 1887 * $pwq may not have any inactive work items due to e.g. cancellations. 1888 * Drop it from pending_pwqs and see if there's another one. 1889 */ 1890 work = list_first_entry_or_null(&pwq->inactive_works, 1891 struct work_struct, entry); 1892 if (!work) { 1893 list_del_init(&pwq->pending_node); 1894 goto retry; 1895 } 1896 1897 /* 1898 * Acquire an nr_active count and activate the inactive work item. If 1899 * $pwq still has inactive work items, rotate it to the end of the 1900 * pending_pwqs so that we round-robin through them. This means that 1901 * inactive work items are not activated in queueing order which is fine 1902 * given that there has never been any ordering across different pwqs. 1903 */ 1904 if (likely(tryinc_node_nr_active(nna))) { 1905 pwq->nr_active++; 1906 __pwq_activate_work(pwq, work); 1907 1908 if (list_empty(&pwq->inactive_works)) 1909 list_del_init(&pwq->pending_node); 1910 else 1911 list_move_tail(&pwq->pending_node, &nna->pending_pwqs); 1912 1913 /* if activating a foreign pool, make sure it's running */ 1914 if (pwq->pool != caller_pool) 1915 kick_pool(pwq->pool); 1916 } 1917 1918 out_unlock: 1919 raw_spin_unlock(&nna->lock); 1920 if (locked_pool != caller_pool) { 1921 raw_spin_unlock(&locked_pool->lock); 1922 raw_spin_lock(&caller_pool->lock); 1923 } 1924 } 1925 1926 /** 1927 * pwq_dec_nr_active - Retire an active count 1928 * @pwq: pool_workqueue of interest 1929 * 1930 * Decrement @pwq's nr_active and try to activate the first inactive work item. 1931 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. 1932 */ 1933 static void pwq_dec_nr_active(struct pool_workqueue *pwq) 1934 { 1935 struct worker_pool *pool = pwq->pool; 1936 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node); 1937 1938 lockdep_assert_held(&pool->lock); 1939 1940 /* 1941 * @pwq->nr_active should be decremented for both percpu and unbound 1942 * workqueues. 1943 */ 1944 pwq->nr_active--; 1945 1946 /* 1947 * For a percpu workqueue, it's simple. Just need to kick the first 1948 * inactive work item on @pwq itself. 1949 */ 1950 if (!nna) { 1951 pwq_activate_first_inactive(pwq, false); 1952 return; 1953 } 1954 1955 /* 1956 * If @pwq is for an unbound workqueue, it's more complicated because 1957 * multiple pwqs and pools may be sharing the nr_active count. When a 1958 * pwq needs to wait for an nr_active count, it puts itself on 1959 * $nna->pending_pwqs. The following atomic_dec_return()'s implied 1960 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to 1961 * guarantee that either we see non-empty pending_pwqs or they see 1962 * decremented $nna->nr. 1963 * 1964 * $nna->max may change as CPUs come online/offline and @pwq->wq's 1965 * max_active gets updated. However, it is guaranteed to be equal to or 1966 * larger than @pwq->wq->min_active which is above zero unless freezing. 1967 * This maintains the forward progress guarantee. 1968 */ 1969 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max)) 1970 return; 1971 1972 if (!list_empty(&nna->pending_pwqs)) 1973 node_activate_pending_pwq(nna, pool); 1974 } 1975 1976 /** 1977 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1978 * @pwq: pwq of interest 1979 * @work_data: work_data of work which left the queue 1980 * 1981 * A work either has completed or is removed from pending queue, 1982 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1983 * 1984 * NOTE: 1985 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock 1986 * and thus should be called after all other state updates for the in-flight 1987 * work item is complete. 1988 * 1989 * CONTEXT: 1990 * raw_spin_lock_irq(pool->lock). 1991 */ 1992 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1993 { 1994 int color = get_work_color(work_data); 1995 1996 if (!(work_data & WORK_STRUCT_INACTIVE)) 1997 pwq_dec_nr_active(pwq); 1998 1999 pwq->nr_in_flight[color]--; 2000 2001 /* is flush in progress and are we at the flushing tip? */ 2002 if (likely(pwq->flush_color != color)) 2003 goto out_put; 2004 2005 /* are there still in-flight works? */ 2006 if (pwq->nr_in_flight[color]) 2007 goto out_put; 2008 2009 /* this pwq is done, clear flush_color */ 2010 pwq->flush_color = -1; 2011 2012 /* 2013 * If this was the last pwq, wake up the first flusher. It 2014 * will handle the rest. 2015 */ 2016 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 2017 complete(&pwq->wq->first_flusher->done); 2018 out_put: 2019 put_pwq(pwq); 2020 } 2021 2022 /** 2023 * try_to_grab_pending - steal work item from worklist and disable irq 2024 * @work: work item to steal 2025 * @cflags: %WORK_CANCEL_ flags 2026 * @irq_flags: place to store irq state 2027 * 2028 * Try to grab PENDING bit of @work. This function can handle @work in any 2029 * stable state - idle, on timer or on worklist. 2030 * 2031 * Return: 2032 * 2033 * ======== ================================================================ 2034 * 1 if @work was pending and we successfully stole PENDING 2035 * 0 if @work was idle and we claimed PENDING 2036 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 2037 * ======== ================================================================ 2038 * 2039 * Note: 2040 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 2041 * interrupted while holding PENDING and @work off queue, irq must be 2042 * disabled on entry. This, combined with delayed_work->timer being 2043 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 2044 * 2045 * On successful return, >= 0, irq is disabled and the caller is 2046 * responsible for releasing it using local_irq_restore(*@irq_flags). 2047 * 2048 * This function is safe to call from any context including IRQ handler. 2049 */ 2050 static int try_to_grab_pending(struct work_struct *work, u32 cflags, 2051 unsigned long *irq_flags) 2052 { 2053 struct worker_pool *pool; 2054 struct pool_workqueue *pwq; 2055 2056 local_irq_save(*irq_flags); 2057 2058 /* try to steal the timer if it exists */ 2059 if (cflags & WORK_CANCEL_DELAYED) { 2060 struct delayed_work *dwork = to_delayed_work(work); 2061 2062 /* 2063 * dwork->timer is irqsafe. If del_timer() fails, it's 2064 * guaranteed that the timer is not queued anywhere and not 2065 * running on the local CPU. 2066 */ 2067 if (likely(del_timer(&dwork->timer))) 2068 return 1; 2069 } 2070 2071 /* try to claim PENDING the normal way */ 2072 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2073 return 0; 2074 2075 rcu_read_lock(); 2076 /* 2077 * The queueing is in progress, or it is already queued. Try to 2078 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2079 */ 2080 pool = get_work_pool(work); 2081 if (!pool) 2082 goto fail; 2083 2084 raw_spin_lock(&pool->lock); 2085 /* 2086 * work->data is guaranteed to point to pwq only while the work 2087 * item is queued on pwq->wq, and both updating work->data to point 2088 * to pwq on queueing and to pool on dequeueing are done under 2089 * pwq->pool->lock. This in turn guarantees that, if work->data 2090 * points to pwq which is associated with a locked pool, the work 2091 * item is currently queued on that pool. 2092 */ 2093 pwq = get_work_pwq(work); 2094 if (pwq && pwq->pool == pool) { 2095 unsigned long work_data = *work_data_bits(work); 2096 2097 debug_work_deactivate(work); 2098 2099 /* 2100 * A cancelable inactive work item must be in the 2101 * pwq->inactive_works since a queued barrier can't be 2102 * canceled (see the comments in insert_wq_barrier()). 2103 * 2104 * An inactive work item cannot be deleted directly because 2105 * it might have linked barrier work items which, if left 2106 * on the inactive_works list, will confuse pwq->nr_active 2107 * management later on and cause stall. Move the linked 2108 * barrier work items to the worklist when deleting the grabbed 2109 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that 2110 * it doesn't participate in nr_active management in later 2111 * pwq_dec_nr_in_flight(). 2112 */ 2113 if (work_data & WORK_STRUCT_INACTIVE) 2114 move_linked_works(work, &pwq->pool->worklist, NULL); 2115 2116 list_del_init(&work->entry); 2117 2118 /* 2119 * work->data points to pwq iff queued. Let's point to pool. As 2120 * this destroys work->data needed by the next step, stash it. 2121 */ 2122 set_work_pool_and_keep_pending(work, pool->id, 2123 pool_offq_flags(pool)); 2124 2125 /* must be the last step, see the function comment */ 2126 pwq_dec_nr_in_flight(pwq, work_data); 2127 2128 raw_spin_unlock(&pool->lock); 2129 rcu_read_unlock(); 2130 return 1; 2131 } 2132 raw_spin_unlock(&pool->lock); 2133 fail: 2134 rcu_read_unlock(); 2135 local_irq_restore(*irq_flags); 2136 return -EAGAIN; 2137 } 2138 2139 /** 2140 * work_grab_pending - steal work item from worklist and disable irq 2141 * @work: work item to steal 2142 * @cflags: %WORK_CANCEL_ flags 2143 * @irq_flags: place to store IRQ state 2144 * 2145 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer 2146 * or on worklist. 2147 * 2148 * Can be called from any context. IRQ is disabled on return with IRQ state 2149 * stored in *@irq_flags. The caller is responsible for re-enabling it using 2150 * local_irq_restore(). 2151 * 2152 * Returns %true if @work was pending. %false if idle. 2153 */ 2154 static bool work_grab_pending(struct work_struct *work, u32 cflags, 2155 unsigned long *irq_flags) 2156 { 2157 int ret; 2158 2159 while (true) { 2160 ret = try_to_grab_pending(work, cflags, irq_flags); 2161 if (ret >= 0) 2162 return ret; 2163 cpu_relax(); 2164 } 2165 } 2166 2167 /** 2168 * insert_work - insert a work into a pool 2169 * @pwq: pwq @work belongs to 2170 * @work: work to insert 2171 * @head: insertion point 2172 * @extra_flags: extra WORK_STRUCT_* flags to set 2173 * 2174 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 2175 * work_struct flags. 2176 * 2177 * CONTEXT: 2178 * raw_spin_lock_irq(pool->lock). 2179 */ 2180 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 2181 struct list_head *head, unsigned int extra_flags) 2182 { 2183 debug_work_activate(work); 2184 2185 /* record the work call stack in order to print it in KASAN reports */ 2186 kasan_record_aux_stack_noalloc(work); 2187 2188 /* we own @work, set data and link */ 2189 set_work_pwq(work, pwq, extra_flags); 2190 list_add_tail(&work->entry, head); 2191 get_pwq(pwq); 2192 } 2193 2194 /* 2195 * Test whether @work is being queued from another work executing on the 2196 * same workqueue. 2197 */ 2198 static bool is_chained_work(struct workqueue_struct *wq) 2199 { 2200 struct worker *worker; 2201 2202 worker = current_wq_worker(); 2203 /* 2204 * Return %true iff I'm a worker executing a work item on @wq. If 2205 * I'm @worker, it's safe to dereference it without locking. 2206 */ 2207 return worker && worker->current_pwq->wq == wq; 2208 } 2209 2210 /* 2211 * When queueing an unbound work item to a wq, prefer local CPU if allowed 2212 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 2213 * avoid perturbing sensitive tasks. 2214 */ 2215 static int wq_select_unbound_cpu(int cpu) 2216 { 2217 int new_cpu; 2218 2219 if (likely(!wq_debug_force_rr_cpu)) { 2220 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 2221 return cpu; 2222 } else { 2223 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 2224 } 2225 2226 new_cpu = __this_cpu_read(wq_rr_cpu_last); 2227 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 2228 if (unlikely(new_cpu >= nr_cpu_ids)) { 2229 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 2230 if (unlikely(new_cpu >= nr_cpu_ids)) 2231 return cpu; 2232 } 2233 __this_cpu_write(wq_rr_cpu_last, new_cpu); 2234 2235 return new_cpu; 2236 } 2237 2238 static void __queue_work(int cpu, struct workqueue_struct *wq, 2239 struct work_struct *work) 2240 { 2241 struct pool_workqueue *pwq; 2242 struct worker_pool *last_pool, *pool; 2243 unsigned int work_flags; 2244 unsigned int req_cpu = cpu; 2245 2246 /* 2247 * While a work item is PENDING && off queue, a task trying to 2248 * steal the PENDING will busy-loop waiting for it to either get 2249 * queued or lose PENDING. Grabbing PENDING and queueing should 2250 * happen with IRQ disabled. 2251 */ 2252 lockdep_assert_irqs_disabled(); 2253 2254 /* 2255 * For a draining wq, only works from the same workqueue are 2256 * allowed. The __WQ_DESTROYING helps to spot the issue that 2257 * queues a new work item to a wq after destroy_workqueue(wq). 2258 */ 2259 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 2260 WARN_ON_ONCE(!is_chained_work(wq)))) 2261 return; 2262 rcu_read_lock(); 2263 retry: 2264 /* pwq which will be used unless @work is executing elsewhere */ 2265 if (req_cpu == WORK_CPU_UNBOUND) { 2266 if (wq->flags & WQ_UNBOUND) 2267 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 2268 else 2269 cpu = raw_smp_processor_id(); 2270 } 2271 2272 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 2273 pool = pwq->pool; 2274 2275 /* 2276 * If @work was previously on a different pool, it might still be 2277 * running there, in which case the work needs to be queued on that 2278 * pool to guarantee non-reentrancy. 2279 * 2280 * For ordered workqueue, work items must be queued on the newest pwq 2281 * for accurate order management. Guaranteed order also guarantees 2282 * non-reentrancy. See the comments above unplug_oldest_pwq(). 2283 */ 2284 last_pool = get_work_pool(work); 2285 if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) { 2286 struct worker *worker; 2287 2288 raw_spin_lock(&last_pool->lock); 2289 2290 worker = find_worker_executing_work(last_pool, work); 2291 2292 if (worker && worker->current_pwq->wq == wq) { 2293 pwq = worker->current_pwq; 2294 pool = pwq->pool; 2295 WARN_ON_ONCE(pool != last_pool); 2296 } else { 2297 /* meh... not running there, queue here */ 2298 raw_spin_unlock(&last_pool->lock); 2299 raw_spin_lock(&pool->lock); 2300 } 2301 } else { 2302 raw_spin_lock(&pool->lock); 2303 } 2304 2305 /* 2306 * pwq is determined and locked. For unbound pools, we could have raced 2307 * with pwq release and it could already be dead. If its refcnt is zero, 2308 * repeat pwq selection. Note that unbound pwqs never die without 2309 * another pwq replacing it in cpu_pwq or while work items are executing 2310 * on it, so the retrying is guaranteed to make forward-progress. 2311 */ 2312 if (unlikely(!pwq->refcnt)) { 2313 if (wq->flags & WQ_UNBOUND) { 2314 raw_spin_unlock(&pool->lock); 2315 cpu_relax(); 2316 goto retry; 2317 } 2318 /* oops */ 2319 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 2320 wq->name, cpu); 2321 } 2322 2323 /* pwq determined, queue */ 2324 trace_workqueue_queue_work(req_cpu, pwq, work); 2325 2326 if (WARN_ON(!list_empty(&work->entry))) 2327 goto out; 2328 2329 pwq->nr_in_flight[pwq->work_color]++; 2330 work_flags = work_color_to_flags(pwq->work_color); 2331 2332 /* 2333 * Limit the number of concurrently active work items to max_active. 2334 * @work must also queue behind existing inactive work items to maintain 2335 * ordering when max_active changes. See wq_adjust_max_active(). 2336 */ 2337 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) { 2338 if (list_empty(&pool->worklist)) 2339 pool->watchdog_ts = jiffies; 2340 2341 trace_workqueue_activate_work(work); 2342 insert_work(pwq, work, &pool->worklist, work_flags); 2343 kick_pool(pool); 2344 } else { 2345 work_flags |= WORK_STRUCT_INACTIVE; 2346 insert_work(pwq, work, &pwq->inactive_works, work_flags); 2347 } 2348 2349 out: 2350 raw_spin_unlock(&pool->lock); 2351 rcu_read_unlock(); 2352 } 2353 2354 static bool clear_pending_if_disabled(struct work_struct *work) 2355 { 2356 unsigned long data = *work_data_bits(work); 2357 struct work_offq_data offqd; 2358 2359 if (likely((data & WORK_STRUCT_PWQ) || 2360 !(data & WORK_OFFQ_DISABLE_MASK))) 2361 return false; 2362 2363 work_offqd_unpack(&offqd, data); 2364 set_work_pool_and_clear_pending(work, offqd.pool_id, 2365 work_offqd_pack_flags(&offqd)); 2366 return true; 2367 } 2368 2369 /** 2370 * queue_work_on - queue work on specific cpu 2371 * @cpu: CPU number to execute work on 2372 * @wq: workqueue to use 2373 * @work: work to queue 2374 * 2375 * We queue the work to a specific CPU, the caller must ensure it 2376 * can't go away. Callers that fail to ensure that the specified 2377 * CPU cannot go away will execute on a randomly chosen CPU. 2378 * But note well that callers specifying a CPU that never has been 2379 * online will get a splat. 2380 * 2381 * Return: %false if @work was already on a queue, %true otherwise. 2382 */ 2383 bool queue_work_on(int cpu, struct workqueue_struct *wq, 2384 struct work_struct *work) 2385 { 2386 bool ret = false; 2387 unsigned long irq_flags; 2388 2389 local_irq_save(irq_flags); 2390 2391 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2392 !clear_pending_if_disabled(work)) { 2393 __queue_work(cpu, wq, work); 2394 ret = true; 2395 } 2396 2397 local_irq_restore(irq_flags); 2398 return ret; 2399 } 2400 EXPORT_SYMBOL(queue_work_on); 2401 2402 /** 2403 * select_numa_node_cpu - Select a CPU based on NUMA node 2404 * @node: NUMA node ID that we want to select a CPU from 2405 * 2406 * This function will attempt to find a "random" cpu available on a given 2407 * node. If there are no CPUs available on the given node it will return 2408 * WORK_CPU_UNBOUND indicating that we should just schedule to any 2409 * available CPU if we need to schedule this work. 2410 */ 2411 static int select_numa_node_cpu(int node) 2412 { 2413 int cpu; 2414 2415 /* Delay binding to CPU if node is not valid or online */ 2416 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 2417 return WORK_CPU_UNBOUND; 2418 2419 /* Use local node/cpu if we are already there */ 2420 cpu = raw_smp_processor_id(); 2421 if (node == cpu_to_node(cpu)) 2422 return cpu; 2423 2424 /* Use "random" otherwise know as "first" online CPU of node */ 2425 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 2426 2427 /* If CPU is valid return that, otherwise just defer */ 2428 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 2429 } 2430 2431 /** 2432 * queue_work_node - queue work on a "random" cpu for a given NUMA node 2433 * @node: NUMA node that we are targeting the work for 2434 * @wq: workqueue to use 2435 * @work: work to queue 2436 * 2437 * We queue the work to a "random" CPU within a given NUMA node. The basic 2438 * idea here is to provide a way to somehow associate work with a given 2439 * NUMA node. 2440 * 2441 * This function will only make a best effort attempt at getting this onto 2442 * the right NUMA node. If no node is requested or the requested node is 2443 * offline then we just fall back to standard queue_work behavior. 2444 * 2445 * Currently the "random" CPU ends up being the first available CPU in the 2446 * intersection of cpu_online_mask and the cpumask of the node, unless we 2447 * are running on the node. In that case we just use the current CPU. 2448 * 2449 * Return: %false if @work was already on a queue, %true otherwise. 2450 */ 2451 bool queue_work_node(int node, struct workqueue_struct *wq, 2452 struct work_struct *work) 2453 { 2454 unsigned long irq_flags; 2455 bool ret = false; 2456 2457 /* 2458 * This current implementation is specific to unbound workqueues. 2459 * Specifically we only return the first available CPU for a given 2460 * node instead of cycling through individual CPUs within the node. 2461 * 2462 * If this is used with a per-cpu workqueue then the logic in 2463 * workqueue_select_cpu_near would need to be updated to allow for 2464 * some round robin type logic. 2465 */ 2466 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 2467 2468 local_irq_save(irq_flags); 2469 2470 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2471 !clear_pending_if_disabled(work)) { 2472 int cpu = select_numa_node_cpu(node); 2473 2474 __queue_work(cpu, wq, work); 2475 ret = true; 2476 } 2477 2478 local_irq_restore(irq_flags); 2479 return ret; 2480 } 2481 EXPORT_SYMBOL_GPL(queue_work_node); 2482 2483 void delayed_work_timer_fn(struct timer_list *t) 2484 { 2485 struct delayed_work *dwork = from_timer(dwork, t, timer); 2486 2487 /* should have been called from irqsafe timer with irq already off */ 2488 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2489 } 2490 EXPORT_SYMBOL(delayed_work_timer_fn); 2491 2492 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 2493 struct delayed_work *dwork, unsigned long delay) 2494 { 2495 struct timer_list *timer = &dwork->timer; 2496 struct work_struct *work = &dwork->work; 2497 2498 WARN_ON_ONCE(!wq); 2499 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 2500 WARN_ON_ONCE(timer_pending(timer)); 2501 WARN_ON_ONCE(!list_empty(&work->entry)); 2502 2503 /* 2504 * If @delay is 0, queue @dwork->work immediately. This is for 2505 * both optimization and correctness. The earliest @timer can 2506 * expire is on the closest next tick and delayed_work users depend 2507 * on that there's no such delay when @delay is 0. 2508 */ 2509 if (!delay) { 2510 __queue_work(cpu, wq, &dwork->work); 2511 return; 2512 } 2513 2514 dwork->wq = wq; 2515 dwork->cpu = cpu; 2516 timer->expires = jiffies + delay; 2517 2518 if (housekeeping_enabled(HK_TYPE_TIMER)) { 2519 /* If the current cpu is a housekeeping cpu, use it. */ 2520 cpu = smp_processor_id(); 2521 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER)) 2522 cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 2523 add_timer_on(timer, cpu); 2524 } else { 2525 if (likely(cpu == WORK_CPU_UNBOUND)) 2526 add_timer_global(timer); 2527 else 2528 add_timer_on(timer, cpu); 2529 } 2530 } 2531 2532 /** 2533 * queue_delayed_work_on - queue work on specific CPU after delay 2534 * @cpu: CPU number to execute work on 2535 * @wq: workqueue to use 2536 * @dwork: work to queue 2537 * @delay: number of jiffies to wait before queueing 2538 * 2539 * Return: %false if @work was already on a queue, %true otherwise. If 2540 * @delay is zero and @dwork is idle, it will be scheduled for immediate 2541 * execution. 2542 */ 2543 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 2544 struct delayed_work *dwork, unsigned long delay) 2545 { 2546 struct work_struct *work = &dwork->work; 2547 bool ret = false; 2548 unsigned long irq_flags; 2549 2550 /* read the comment in __queue_work() */ 2551 local_irq_save(irq_flags); 2552 2553 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2554 !clear_pending_if_disabled(work)) { 2555 __queue_delayed_work(cpu, wq, dwork, delay); 2556 ret = true; 2557 } 2558 2559 local_irq_restore(irq_flags); 2560 return ret; 2561 } 2562 EXPORT_SYMBOL(queue_delayed_work_on); 2563 2564 /** 2565 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2566 * @cpu: CPU number to execute work on 2567 * @wq: workqueue to use 2568 * @dwork: work to queue 2569 * @delay: number of jiffies to wait before queueing 2570 * 2571 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2572 * modify @dwork's timer so that it expires after @delay. If @delay is 2573 * zero, @work is guaranteed to be scheduled immediately regardless of its 2574 * current state. 2575 * 2576 * Return: %false if @dwork was idle and queued, %true if @dwork was 2577 * pending and its timer was modified. 2578 * 2579 * This function is safe to call from any context including IRQ handler. 2580 * See try_to_grab_pending() for details. 2581 */ 2582 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2583 struct delayed_work *dwork, unsigned long delay) 2584 { 2585 unsigned long irq_flags; 2586 bool ret; 2587 2588 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags); 2589 2590 if (!clear_pending_if_disabled(&dwork->work)) 2591 __queue_delayed_work(cpu, wq, dwork, delay); 2592 2593 local_irq_restore(irq_flags); 2594 return ret; 2595 } 2596 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2597 2598 static void rcu_work_rcufn(struct rcu_head *rcu) 2599 { 2600 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2601 2602 /* read the comment in __queue_work() */ 2603 local_irq_disable(); 2604 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2605 local_irq_enable(); 2606 } 2607 2608 /** 2609 * queue_rcu_work - queue work after a RCU grace period 2610 * @wq: workqueue to use 2611 * @rwork: work to queue 2612 * 2613 * Return: %false if @rwork was already pending, %true otherwise. Note 2614 * that a full RCU grace period is guaranteed only after a %true return. 2615 * While @rwork is guaranteed to be executed after a %false return, the 2616 * execution may happen before a full RCU grace period has passed. 2617 */ 2618 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2619 { 2620 struct work_struct *work = &rwork->work; 2621 2622 /* 2623 * rcu_work can't be canceled or disabled. Warn if the user reached 2624 * inside @rwork and disabled the inner work. 2625 */ 2626 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2627 !WARN_ON_ONCE(clear_pending_if_disabled(work))) { 2628 rwork->wq = wq; 2629 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2630 return true; 2631 } 2632 2633 return false; 2634 } 2635 EXPORT_SYMBOL(queue_rcu_work); 2636 2637 static struct worker *alloc_worker(int node) 2638 { 2639 struct worker *worker; 2640 2641 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2642 if (worker) { 2643 INIT_LIST_HEAD(&worker->entry); 2644 INIT_LIST_HEAD(&worker->scheduled); 2645 INIT_LIST_HEAD(&worker->node); 2646 /* on creation a worker is in !idle && prep state */ 2647 worker->flags = WORKER_PREP; 2648 } 2649 return worker; 2650 } 2651 2652 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2653 { 2654 if (pool->cpu < 0 && pool->attrs->affn_strict) 2655 return pool->attrs->__pod_cpumask; 2656 else 2657 return pool->attrs->cpumask; 2658 } 2659 2660 /** 2661 * worker_attach_to_pool() - attach a worker to a pool 2662 * @worker: worker to be attached 2663 * @pool: the target pool 2664 * 2665 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2666 * cpu-binding of @worker are kept coordinated with the pool across 2667 * cpu-[un]hotplugs. 2668 */ 2669 static void worker_attach_to_pool(struct worker *worker, 2670 struct worker_pool *pool) 2671 { 2672 mutex_lock(&wq_pool_attach_mutex); 2673 2674 /* 2675 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable 2676 * across this function. See the comments above the flag definition for 2677 * details. BH workers are, while per-CPU, always DISASSOCIATED. 2678 */ 2679 if (pool->flags & POOL_DISASSOCIATED) { 2680 worker->flags |= WORKER_UNBOUND; 2681 } else { 2682 WARN_ON_ONCE(pool->flags & POOL_BH); 2683 kthread_set_per_cpu(worker->task, pool->cpu); 2684 } 2685 2686 if (worker->rescue_wq) 2687 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2688 2689 list_add_tail(&worker->node, &pool->workers); 2690 worker->pool = pool; 2691 2692 mutex_unlock(&wq_pool_attach_mutex); 2693 } 2694 2695 static void unbind_worker(struct worker *worker) 2696 { 2697 lockdep_assert_held(&wq_pool_attach_mutex); 2698 2699 kthread_set_per_cpu(worker->task, -1); 2700 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2701 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2702 else 2703 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2704 } 2705 2706 2707 static void detach_worker(struct worker *worker) 2708 { 2709 lockdep_assert_held(&wq_pool_attach_mutex); 2710 2711 unbind_worker(worker); 2712 list_del(&worker->node); 2713 worker->pool = NULL; 2714 } 2715 2716 /** 2717 * worker_detach_from_pool() - detach a worker from its pool 2718 * @worker: worker which is attached to its pool 2719 * 2720 * Undo the attaching which had been done in worker_attach_to_pool(). The 2721 * caller worker shouldn't access to the pool after detached except it has 2722 * other reference to the pool. 2723 */ 2724 static void worker_detach_from_pool(struct worker *worker) 2725 { 2726 struct worker_pool *pool = worker->pool; 2727 2728 /* there is one permanent BH worker per CPU which should never detach */ 2729 WARN_ON_ONCE(pool->flags & POOL_BH); 2730 2731 mutex_lock(&wq_pool_attach_mutex); 2732 detach_worker(worker); 2733 mutex_unlock(&wq_pool_attach_mutex); 2734 2735 /* clear leftover flags without pool->lock after it is detached */ 2736 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2737 } 2738 2739 static int format_worker_id(char *buf, size_t size, struct worker *worker, 2740 struct worker_pool *pool) 2741 { 2742 if (worker->rescue_wq) 2743 return scnprintf(buf, size, "kworker/R-%s", 2744 worker->rescue_wq->name); 2745 2746 if (pool) { 2747 if (pool->cpu >= 0) 2748 return scnprintf(buf, size, "kworker/%d:%d%s", 2749 pool->cpu, worker->id, 2750 pool->attrs->nice < 0 ? "H" : ""); 2751 else 2752 return scnprintf(buf, size, "kworker/u%d:%d", 2753 pool->id, worker->id); 2754 } else { 2755 return scnprintf(buf, size, "kworker/dying"); 2756 } 2757 } 2758 2759 /** 2760 * create_worker - create a new workqueue worker 2761 * @pool: pool the new worker will belong to 2762 * 2763 * Create and start a new worker which is attached to @pool. 2764 * 2765 * CONTEXT: 2766 * Might sleep. Does GFP_KERNEL allocations. 2767 * 2768 * Return: 2769 * Pointer to the newly created worker. 2770 */ 2771 static struct worker *create_worker(struct worker_pool *pool) 2772 { 2773 struct worker *worker; 2774 int id; 2775 2776 /* ID is needed to determine kthread name */ 2777 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2778 if (id < 0) { 2779 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2780 ERR_PTR(id)); 2781 return NULL; 2782 } 2783 2784 worker = alloc_worker(pool->node); 2785 if (!worker) { 2786 pr_err_once("workqueue: Failed to allocate a worker\n"); 2787 goto fail; 2788 } 2789 2790 worker->id = id; 2791 2792 if (!(pool->flags & POOL_BH)) { 2793 char id_buf[WORKER_ID_LEN]; 2794 2795 format_worker_id(id_buf, sizeof(id_buf), worker, pool); 2796 worker->task = kthread_create_on_node(worker_thread, worker, 2797 pool->node, "%s", id_buf); 2798 if (IS_ERR(worker->task)) { 2799 if (PTR_ERR(worker->task) == -EINTR) { 2800 pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n", 2801 id_buf); 2802 } else { 2803 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2804 worker->task); 2805 } 2806 goto fail; 2807 } 2808 2809 set_user_nice(worker->task, pool->attrs->nice); 2810 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2811 } 2812 2813 /* successful, attach the worker to the pool */ 2814 worker_attach_to_pool(worker, pool); 2815 2816 /* start the newly created worker */ 2817 raw_spin_lock_irq(&pool->lock); 2818 2819 worker->pool->nr_workers++; 2820 worker_enter_idle(worker); 2821 2822 /* 2823 * @worker is waiting on a completion in kthread() and will trigger hung 2824 * check if not woken up soon. As kick_pool() is noop if @pool is empty, 2825 * wake it up explicitly. 2826 */ 2827 if (worker->task) 2828 wake_up_process(worker->task); 2829 2830 raw_spin_unlock_irq(&pool->lock); 2831 2832 return worker; 2833 2834 fail: 2835 ida_free(&pool->worker_ida, id); 2836 kfree(worker); 2837 return NULL; 2838 } 2839 2840 static void detach_dying_workers(struct list_head *cull_list) 2841 { 2842 struct worker *worker; 2843 2844 list_for_each_entry(worker, cull_list, entry) 2845 detach_worker(worker); 2846 } 2847 2848 static void reap_dying_workers(struct list_head *cull_list) 2849 { 2850 struct worker *worker, *tmp; 2851 2852 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2853 list_del_init(&worker->entry); 2854 kthread_stop_put(worker->task); 2855 kfree(worker); 2856 } 2857 } 2858 2859 /** 2860 * set_worker_dying - Tag a worker for destruction 2861 * @worker: worker to be destroyed 2862 * @list: transfer worker away from its pool->idle_list and into list 2863 * 2864 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2865 * should be idle. 2866 * 2867 * CONTEXT: 2868 * raw_spin_lock_irq(pool->lock). 2869 */ 2870 static void set_worker_dying(struct worker *worker, struct list_head *list) 2871 { 2872 struct worker_pool *pool = worker->pool; 2873 2874 lockdep_assert_held(&pool->lock); 2875 lockdep_assert_held(&wq_pool_attach_mutex); 2876 2877 /* sanity check frenzy */ 2878 if (WARN_ON(worker->current_work) || 2879 WARN_ON(!list_empty(&worker->scheduled)) || 2880 WARN_ON(!(worker->flags & WORKER_IDLE))) 2881 return; 2882 2883 pool->nr_workers--; 2884 pool->nr_idle--; 2885 2886 worker->flags |= WORKER_DIE; 2887 2888 list_move(&worker->entry, list); 2889 2890 /* get an extra task struct reference for later kthread_stop_put() */ 2891 get_task_struct(worker->task); 2892 } 2893 2894 /** 2895 * idle_worker_timeout - check if some idle workers can now be deleted. 2896 * @t: The pool's idle_timer that just expired 2897 * 2898 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2899 * worker_leave_idle(), as a worker flicking between idle and active while its 2900 * pool is at the too_many_workers() tipping point would cause too much timer 2901 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2902 * it expire and re-evaluate things from there. 2903 */ 2904 static void idle_worker_timeout(struct timer_list *t) 2905 { 2906 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2907 bool do_cull = false; 2908 2909 if (work_pending(&pool->idle_cull_work)) 2910 return; 2911 2912 raw_spin_lock_irq(&pool->lock); 2913 2914 if (too_many_workers(pool)) { 2915 struct worker *worker; 2916 unsigned long expires; 2917 2918 /* idle_list is kept in LIFO order, check the last one */ 2919 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2920 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2921 do_cull = !time_before(jiffies, expires); 2922 2923 if (!do_cull) 2924 mod_timer(&pool->idle_timer, expires); 2925 } 2926 raw_spin_unlock_irq(&pool->lock); 2927 2928 if (do_cull) 2929 queue_work(system_unbound_wq, &pool->idle_cull_work); 2930 } 2931 2932 /** 2933 * idle_cull_fn - cull workers that have been idle for too long. 2934 * @work: the pool's work for handling these idle workers 2935 * 2936 * This goes through a pool's idle workers and gets rid of those that have been 2937 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2938 * 2939 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2940 * culled, so this also resets worker affinity. This requires a sleepable 2941 * context, hence the split between timer callback and work item. 2942 */ 2943 static void idle_cull_fn(struct work_struct *work) 2944 { 2945 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2946 LIST_HEAD(cull_list); 2947 2948 /* 2949 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2950 * cannot proceed beyong set_pf_worker() in its self-destruct path. 2951 * This is required as a previously-preempted worker could run after 2952 * set_worker_dying() has happened but before detach_dying_workers() did. 2953 */ 2954 mutex_lock(&wq_pool_attach_mutex); 2955 raw_spin_lock_irq(&pool->lock); 2956 2957 while (too_many_workers(pool)) { 2958 struct worker *worker; 2959 unsigned long expires; 2960 2961 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2962 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2963 2964 if (time_before(jiffies, expires)) { 2965 mod_timer(&pool->idle_timer, expires); 2966 break; 2967 } 2968 2969 set_worker_dying(worker, &cull_list); 2970 } 2971 2972 raw_spin_unlock_irq(&pool->lock); 2973 detach_dying_workers(&cull_list); 2974 mutex_unlock(&wq_pool_attach_mutex); 2975 2976 reap_dying_workers(&cull_list); 2977 } 2978 2979 static void send_mayday(struct work_struct *work) 2980 { 2981 struct pool_workqueue *pwq = get_work_pwq(work); 2982 struct workqueue_struct *wq = pwq->wq; 2983 2984 lockdep_assert_held(&wq_mayday_lock); 2985 2986 if (!wq->rescuer) 2987 return; 2988 2989 /* mayday mayday mayday */ 2990 if (list_empty(&pwq->mayday_node)) { 2991 /* 2992 * If @pwq is for an unbound wq, its base ref may be put at 2993 * any time due to an attribute change. Pin @pwq until the 2994 * rescuer is done with it. 2995 */ 2996 get_pwq(pwq); 2997 list_add_tail(&pwq->mayday_node, &wq->maydays); 2998 wake_up_process(wq->rescuer->task); 2999 pwq->stats[PWQ_STAT_MAYDAY]++; 3000 } 3001 } 3002 3003 static void pool_mayday_timeout(struct timer_list *t) 3004 { 3005 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 3006 struct work_struct *work; 3007 3008 raw_spin_lock_irq(&pool->lock); 3009 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 3010 3011 if (need_to_create_worker(pool)) { 3012 /* 3013 * We've been trying to create a new worker but 3014 * haven't been successful. We might be hitting an 3015 * allocation deadlock. Send distress signals to 3016 * rescuers. 3017 */ 3018 list_for_each_entry(work, &pool->worklist, entry) 3019 send_mayday(work); 3020 } 3021 3022 raw_spin_unlock(&wq_mayday_lock); 3023 raw_spin_unlock_irq(&pool->lock); 3024 3025 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 3026 } 3027 3028 /** 3029 * maybe_create_worker - create a new worker if necessary 3030 * @pool: pool to create a new worker for 3031 * 3032 * Create a new worker for @pool if necessary. @pool is guaranteed to 3033 * have at least one idle worker on return from this function. If 3034 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 3035 * sent to all rescuers with works scheduled on @pool to resolve 3036 * possible allocation deadlock. 3037 * 3038 * On return, need_to_create_worker() is guaranteed to be %false and 3039 * may_start_working() %true. 3040 * 3041 * LOCKING: 3042 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3043 * multiple times. Does GFP_KERNEL allocations. Called only from 3044 * manager. 3045 */ 3046 static void maybe_create_worker(struct worker_pool *pool) 3047 __releases(&pool->lock) 3048 __acquires(&pool->lock) 3049 { 3050 restart: 3051 raw_spin_unlock_irq(&pool->lock); 3052 3053 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 3054 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 3055 3056 while (true) { 3057 if (create_worker(pool) || !need_to_create_worker(pool)) 3058 break; 3059 3060 schedule_timeout_interruptible(CREATE_COOLDOWN); 3061 3062 if (!need_to_create_worker(pool)) 3063 break; 3064 } 3065 3066 del_timer_sync(&pool->mayday_timer); 3067 raw_spin_lock_irq(&pool->lock); 3068 /* 3069 * This is necessary even after a new worker was just successfully 3070 * created as @pool->lock was dropped and the new worker might have 3071 * already become busy. 3072 */ 3073 if (need_to_create_worker(pool)) 3074 goto restart; 3075 } 3076 3077 /** 3078 * manage_workers - manage worker pool 3079 * @worker: self 3080 * 3081 * Assume the manager role and manage the worker pool @worker belongs 3082 * to. At any given time, there can be only zero or one manager per 3083 * pool. The exclusion is handled automatically by this function. 3084 * 3085 * The caller can safely start processing works on false return. On 3086 * true return, it's guaranteed that need_to_create_worker() is false 3087 * and may_start_working() is true. 3088 * 3089 * CONTEXT: 3090 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3091 * multiple times. Does GFP_KERNEL allocations. 3092 * 3093 * Return: 3094 * %false if the pool doesn't need management and the caller can safely 3095 * start processing works, %true if management function was performed and 3096 * the conditions that the caller verified before calling the function may 3097 * no longer be true. 3098 */ 3099 static bool manage_workers(struct worker *worker) 3100 { 3101 struct worker_pool *pool = worker->pool; 3102 3103 if (pool->flags & POOL_MANAGER_ACTIVE) 3104 return false; 3105 3106 pool->flags |= POOL_MANAGER_ACTIVE; 3107 pool->manager = worker; 3108 3109 maybe_create_worker(pool); 3110 3111 pool->manager = NULL; 3112 pool->flags &= ~POOL_MANAGER_ACTIVE; 3113 rcuwait_wake_up(&manager_wait); 3114 return true; 3115 } 3116 3117 /** 3118 * process_one_work - process single work 3119 * @worker: self 3120 * @work: work to process 3121 * 3122 * Process @work. This function contains all the logics necessary to 3123 * process a single work including synchronization against and 3124 * interaction with other workers on the same cpu, queueing and 3125 * flushing. As long as context requirement is met, any worker can 3126 * call this function to process a work. 3127 * 3128 * CONTEXT: 3129 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 3130 */ 3131 static void process_one_work(struct worker *worker, struct work_struct *work) 3132 __releases(&pool->lock) 3133 __acquires(&pool->lock) 3134 { 3135 struct pool_workqueue *pwq = get_work_pwq(work); 3136 struct worker_pool *pool = worker->pool; 3137 unsigned long work_data; 3138 int lockdep_start_depth, rcu_start_depth; 3139 bool bh_draining = pool->flags & POOL_BH_DRAINING; 3140 #ifdef CONFIG_LOCKDEP 3141 /* 3142 * It is permissible to free the struct work_struct from 3143 * inside the function that is called from it, this we need to 3144 * take into account for lockdep too. To avoid bogus "held 3145 * lock freed" warnings as well as problems when looking into 3146 * work->lockdep_map, make a copy and use that here. 3147 */ 3148 struct lockdep_map lockdep_map; 3149 3150 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 3151 #endif 3152 /* ensure we're on the correct CPU */ 3153 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 3154 raw_smp_processor_id() != pool->cpu); 3155 3156 /* claim and dequeue */ 3157 debug_work_deactivate(work); 3158 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 3159 worker->current_work = work; 3160 worker->current_func = work->func; 3161 worker->current_pwq = pwq; 3162 if (worker->task) 3163 worker->current_at = worker->task->se.sum_exec_runtime; 3164 work_data = *work_data_bits(work); 3165 worker->current_color = get_work_color(work_data); 3166 3167 /* 3168 * Record wq name for cmdline and debug reporting, may get 3169 * overridden through set_worker_desc(). 3170 */ 3171 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 3172 3173 list_del_init(&work->entry); 3174 3175 /* 3176 * CPU intensive works don't participate in concurrency management. 3177 * They're the scheduler's responsibility. This takes @worker out 3178 * of concurrency management and the next code block will chain 3179 * execution of the pending work items. 3180 */ 3181 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 3182 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 3183 3184 /* 3185 * Kick @pool if necessary. It's always noop for per-cpu worker pools 3186 * since nr_running would always be >= 1 at this point. This is used to 3187 * chain execution of the pending work items for WORKER_NOT_RUNNING 3188 * workers such as the UNBOUND and CPU_INTENSIVE ones. 3189 */ 3190 kick_pool(pool); 3191 3192 /* 3193 * Record the last pool and clear PENDING which should be the last 3194 * update to @work. Also, do this inside @pool->lock so that 3195 * PENDING and queued state changes happen together while IRQ is 3196 * disabled. 3197 */ 3198 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool)); 3199 3200 pwq->stats[PWQ_STAT_STARTED]++; 3201 raw_spin_unlock_irq(&pool->lock); 3202 3203 rcu_start_depth = rcu_preempt_depth(); 3204 lockdep_start_depth = lockdep_depth(current); 3205 /* see drain_dead_softirq_workfn() */ 3206 if (!bh_draining) 3207 lock_map_acquire(pwq->wq->lockdep_map); 3208 lock_map_acquire(&lockdep_map); 3209 /* 3210 * Strictly speaking we should mark the invariant state without holding 3211 * any locks, that is, before these two lock_map_acquire()'s. 3212 * 3213 * However, that would result in: 3214 * 3215 * A(W1) 3216 * WFC(C) 3217 * A(W1) 3218 * C(C) 3219 * 3220 * Which would create W1->C->W1 dependencies, even though there is no 3221 * actual deadlock possible. There are two solutions, using a 3222 * read-recursive acquire on the work(queue) 'locks', but this will then 3223 * hit the lockdep limitation on recursive locks, or simply discard 3224 * these locks. 3225 * 3226 * AFAICT there is no possible deadlock scenario between the 3227 * flush_work() and complete() primitives (except for single-threaded 3228 * workqueues), so hiding them isn't a problem. 3229 */ 3230 lockdep_invariant_state(true); 3231 trace_workqueue_execute_start(work); 3232 worker->current_func(work); 3233 /* 3234 * While we must be careful to not use "work" after this, the trace 3235 * point will only record its address. 3236 */ 3237 trace_workqueue_execute_end(work, worker->current_func); 3238 pwq->stats[PWQ_STAT_COMPLETED]++; 3239 lock_map_release(&lockdep_map); 3240 if (!bh_draining) 3241 lock_map_release(pwq->wq->lockdep_map); 3242 3243 if (unlikely((worker->task && in_atomic()) || 3244 lockdep_depth(current) != lockdep_start_depth || 3245 rcu_preempt_depth() != rcu_start_depth)) { 3246 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n" 3247 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n", 3248 current->comm, task_pid_nr(current), preempt_count(), 3249 lockdep_start_depth, lockdep_depth(current), 3250 rcu_start_depth, rcu_preempt_depth(), 3251 worker->current_func); 3252 debug_show_held_locks(current); 3253 dump_stack(); 3254 } 3255 3256 /* 3257 * The following prevents a kworker from hogging CPU on !PREEMPTION 3258 * kernels, where a requeueing work item waiting for something to 3259 * happen could deadlock with stop_machine as such work item could 3260 * indefinitely requeue itself while all other CPUs are trapped in 3261 * stop_machine. At the same time, report a quiescent RCU state so 3262 * the same condition doesn't freeze RCU. 3263 */ 3264 if (worker->task) 3265 cond_resched(); 3266 3267 raw_spin_lock_irq(&pool->lock); 3268 3269 /* 3270 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 3271 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 3272 * wq_cpu_intensive_thresh_us. Clear it. 3273 */ 3274 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 3275 3276 /* tag the worker for identification in schedule() */ 3277 worker->last_func = worker->current_func; 3278 3279 /* we're done with it, release */ 3280 hash_del(&worker->hentry); 3281 worker->current_work = NULL; 3282 worker->current_func = NULL; 3283 worker->current_pwq = NULL; 3284 worker->current_color = INT_MAX; 3285 3286 /* must be the last step, see the function comment */ 3287 pwq_dec_nr_in_flight(pwq, work_data); 3288 } 3289 3290 /** 3291 * process_scheduled_works - process scheduled works 3292 * @worker: self 3293 * 3294 * Process all scheduled works. Please note that the scheduled list 3295 * may change while processing a work, so this function repeatedly 3296 * fetches a work from the top and executes it. 3297 * 3298 * CONTEXT: 3299 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3300 * multiple times. 3301 */ 3302 static void process_scheduled_works(struct worker *worker) 3303 { 3304 struct work_struct *work; 3305 bool first = true; 3306 3307 while ((work = list_first_entry_or_null(&worker->scheduled, 3308 struct work_struct, entry))) { 3309 if (first) { 3310 worker->pool->watchdog_ts = jiffies; 3311 first = false; 3312 } 3313 process_one_work(worker, work); 3314 } 3315 } 3316 3317 static void set_pf_worker(bool val) 3318 { 3319 mutex_lock(&wq_pool_attach_mutex); 3320 if (val) 3321 current->flags |= PF_WQ_WORKER; 3322 else 3323 current->flags &= ~PF_WQ_WORKER; 3324 mutex_unlock(&wq_pool_attach_mutex); 3325 } 3326 3327 /** 3328 * worker_thread - the worker thread function 3329 * @__worker: self 3330 * 3331 * The worker thread function. All workers belong to a worker_pool - 3332 * either a per-cpu one or dynamic unbound one. These workers process all 3333 * work items regardless of their specific target workqueue. The only 3334 * exception is work items which belong to workqueues with a rescuer which 3335 * will be explained in rescuer_thread(). 3336 * 3337 * Return: 0 3338 */ 3339 static int worker_thread(void *__worker) 3340 { 3341 struct worker *worker = __worker; 3342 struct worker_pool *pool = worker->pool; 3343 3344 /* tell the scheduler that this is a workqueue worker */ 3345 set_pf_worker(true); 3346 woke_up: 3347 raw_spin_lock_irq(&pool->lock); 3348 3349 /* am I supposed to die? */ 3350 if (unlikely(worker->flags & WORKER_DIE)) { 3351 raw_spin_unlock_irq(&pool->lock); 3352 set_pf_worker(false); 3353 3354 ida_free(&pool->worker_ida, worker->id); 3355 WARN_ON_ONCE(!list_empty(&worker->entry)); 3356 return 0; 3357 } 3358 3359 worker_leave_idle(worker); 3360 recheck: 3361 /* no more worker necessary? */ 3362 if (!need_more_worker(pool)) 3363 goto sleep; 3364 3365 /* do we need to manage? */ 3366 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 3367 goto recheck; 3368 3369 /* 3370 * ->scheduled list can only be filled while a worker is 3371 * preparing to process a work or actually processing it. 3372 * Make sure nobody diddled with it while I was sleeping. 3373 */ 3374 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3375 3376 /* 3377 * Finish PREP stage. We're guaranteed to have at least one idle 3378 * worker or that someone else has already assumed the manager 3379 * role. This is where @worker starts participating in concurrency 3380 * management if applicable and concurrency management is restored 3381 * after being rebound. See rebind_workers() for details. 3382 */ 3383 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3384 3385 do { 3386 struct work_struct *work = 3387 list_first_entry(&pool->worklist, 3388 struct work_struct, entry); 3389 3390 if (assign_work(work, worker, NULL)) 3391 process_scheduled_works(worker); 3392 } while (keep_working(pool)); 3393 3394 worker_set_flags(worker, WORKER_PREP); 3395 sleep: 3396 /* 3397 * pool->lock is held and there's no work to process and no need to 3398 * manage, sleep. Workers are woken up only while holding 3399 * pool->lock or from local cpu, so setting the current state 3400 * before releasing pool->lock is enough to prevent losing any 3401 * event. 3402 */ 3403 worker_enter_idle(worker); 3404 __set_current_state(TASK_IDLE); 3405 raw_spin_unlock_irq(&pool->lock); 3406 schedule(); 3407 goto woke_up; 3408 } 3409 3410 /** 3411 * rescuer_thread - the rescuer thread function 3412 * @__rescuer: self 3413 * 3414 * Workqueue rescuer thread function. There's one rescuer for each 3415 * workqueue which has WQ_MEM_RECLAIM set. 3416 * 3417 * Regular work processing on a pool may block trying to create a new 3418 * worker which uses GFP_KERNEL allocation which has slight chance of 3419 * developing into deadlock if some works currently on the same queue 3420 * need to be processed to satisfy the GFP_KERNEL allocation. This is 3421 * the problem rescuer solves. 3422 * 3423 * When such condition is possible, the pool summons rescuers of all 3424 * workqueues which have works queued on the pool and let them process 3425 * those works so that forward progress can be guaranteed. 3426 * 3427 * This should happen rarely. 3428 * 3429 * Return: 0 3430 */ 3431 static int rescuer_thread(void *__rescuer) 3432 { 3433 struct worker *rescuer = __rescuer; 3434 struct workqueue_struct *wq = rescuer->rescue_wq; 3435 bool should_stop; 3436 3437 set_user_nice(current, RESCUER_NICE_LEVEL); 3438 3439 /* 3440 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 3441 * doesn't participate in concurrency management. 3442 */ 3443 set_pf_worker(true); 3444 repeat: 3445 set_current_state(TASK_IDLE); 3446 3447 /* 3448 * By the time the rescuer is requested to stop, the workqueue 3449 * shouldn't have any work pending, but @wq->maydays may still have 3450 * pwq(s) queued. This can happen by non-rescuer workers consuming 3451 * all the work items before the rescuer got to them. Go through 3452 * @wq->maydays processing before acting on should_stop so that the 3453 * list is always empty on exit. 3454 */ 3455 should_stop = kthread_should_stop(); 3456 3457 /* see whether any pwq is asking for help */ 3458 raw_spin_lock_irq(&wq_mayday_lock); 3459 3460 while (!list_empty(&wq->maydays)) { 3461 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 3462 struct pool_workqueue, mayday_node); 3463 struct worker_pool *pool = pwq->pool; 3464 struct work_struct *work, *n; 3465 3466 __set_current_state(TASK_RUNNING); 3467 list_del_init(&pwq->mayday_node); 3468 3469 raw_spin_unlock_irq(&wq_mayday_lock); 3470 3471 worker_attach_to_pool(rescuer, pool); 3472 3473 raw_spin_lock_irq(&pool->lock); 3474 3475 /* 3476 * Slurp in all works issued via this workqueue and 3477 * process'em. 3478 */ 3479 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 3480 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 3481 if (get_work_pwq(work) == pwq && 3482 assign_work(work, rescuer, &n)) 3483 pwq->stats[PWQ_STAT_RESCUED]++; 3484 } 3485 3486 if (!list_empty(&rescuer->scheduled)) { 3487 process_scheduled_works(rescuer); 3488 3489 /* 3490 * The above execution of rescued work items could 3491 * have created more to rescue through 3492 * pwq_activate_first_inactive() or chained 3493 * queueing. Let's put @pwq back on mayday list so 3494 * that such back-to-back work items, which may be 3495 * being used to relieve memory pressure, don't 3496 * incur MAYDAY_INTERVAL delay inbetween. 3497 */ 3498 if (pwq->nr_active && need_to_create_worker(pool)) { 3499 raw_spin_lock(&wq_mayday_lock); 3500 /* 3501 * Queue iff we aren't racing destruction 3502 * and somebody else hasn't queued it already. 3503 */ 3504 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 3505 get_pwq(pwq); 3506 list_add_tail(&pwq->mayday_node, &wq->maydays); 3507 } 3508 raw_spin_unlock(&wq_mayday_lock); 3509 } 3510 } 3511 3512 /* 3513 * Put the reference grabbed by send_mayday(). @pool won't 3514 * go away while we're still attached to it. 3515 */ 3516 put_pwq(pwq); 3517 3518 /* 3519 * Leave this pool. Notify regular workers; otherwise, we end up 3520 * with 0 concurrency and stalling the execution. 3521 */ 3522 kick_pool(pool); 3523 3524 raw_spin_unlock_irq(&pool->lock); 3525 3526 worker_detach_from_pool(rescuer); 3527 3528 raw_spin_lock_irq(&wq_mayday_lock); 3529 } 3530 3531 raw_spin_unlock_irq(&wq_mayday_lock); 3532 3533 if (should_stop) { 3534 __set_current_state(TASK_RUNNING); 3535 set_pf_worker(false); 3536 return 0; 3537 } 3538 3539 /* rescuers should never participate in concurrency management */ 3540 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 3541 schedule(); 3542 goto repeat; 3543 } 3544 3545 static void bh_worker(struct worker *worker) 3546 { 3547 struct worker_pool *pool = worker->pool; 3548 int nr_restarts = BH_WORKER_RESTARTS; 3549 unsigned long end = jiffies + BH_WORKER_JIFFIES; 3550 3551 raw_spin_lock_irq(&pool->lock); 3552 worker_leave_idle(worker); 3553 3554 /* 3555 * This function follows the structure of worker_thread(). See there for 3556 * explanations on each step. 3557 */ 3558 if (!need_more_worker(pool)) 3559 goto done; 3560 3561 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3562 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3563 3564 do { 3565 struct work_struct *work = 3566 list_first_entry(&pool->worklist, 3567 struct work_struct, entry); 3568 3569 if (assign_work(work, worker, NULL)) 3570 process_scheduled_works(worker); 3571 } while (keep_working(pool) && 3572 --nr_restarts && time_before(jiffies, end)); 3573 3574 worker_set_flags(worker, WORKER_PREP); 3575 done: 3576 worker_enter_idle(worker); 3577 kick_pool(pool); 3578 raw_spin_unlock_irq(&pool->lock); 3579 } 3580 3581 /* 3582 * TODO: Convert all tasklet users to workqueue and use softirq directly. 3583 * 3584 * This is currently called from tasklet[_hi]action() and thus is also called 3585 * whenever there are tasklets to run. Let's do an early exit if there's nothing 3586 * queued. Once conversion from tasklet is complete, the need_more_worker() test 3587 * can be dropped. 3588 * 3589 * After full conversion, we'll add worker->softirq_action, directly use the 3590 * softirq action and obtain the worker pointer from the softirq_action pointer. 3591 */ 3592 void workqueue_softirq_action(bool highpri) 3593 { 3594 struct worker_pool *pool = 3595 &per_cpu(bh_worker_pools, smp_processor_id())[highpri]; 3596 if (need_more_worker(pool)) 3597 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3598 } 3599 3600 struct wq_drain_dead_softirq_work { 3601 struct work_struct work; 3602 struct worker_pool *pool; 3603 struct completion done; 3604 }; 3605 3606 static void drain_dead_softirq_workfn(struct work_struct *work) 3607 { 3608 struct wq_drain_dead_softirq_work *dead_work = 3609 container_of(work, struct wq_drain_dead_softirq_work, work); 3610 struct worker_pool *pool = dead_work->pool; 3611 bool repeat; 3612 3613 /* 3614 * @pool's CPU is dead and we want to execute its still pending work 3615 * items from this BH work item which is running on a different CPU. As 3616 * its CPU is dead, @pool can't be kicked and, as work execution path 3617 * will be nested, a lockdep annotation needs to be suppressed. Mark 3618 * @pool with %POOL_BH_DRAINING for the special treatments. 3619 */ 3620 raw_spin_lock_irq(&pool->lock); 3621 pool->flags |= POOL_BH_DRAINING; 3622 raw_spin_unlock_irq(&pool->lock); 3623 3624 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3625 3626 raw_spin_lock_irq(&pool->lock); 3627 pool->flags &= ~POOL_BH_DRAINING; 3628 repeat = need_more_worker(pool); 3629 raw_spin_unlock_irq(&pool->lock); 3630 3631 /* 3632 * bh_worker() might hit consecutive execution limit and bail. If there 3633 * still are pending work items, reschedule self and return so that we 3634 * don't hog this CPU's BH. 3635 */ 3636 if (repeat) { 3637 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3638 queue_work(system_bh_highpri_wq, work); 3639 else 3640 queue_work(system_bh_wq, work); 3641 } else { 3642 complete(&dead_work->done); 3643 } 3644 } 3645 3646 /* 3647 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's 3648 * possible to allocate dead_work per CPU and avoid flushing. However, then we 3649 * have to worry about draining overlapping with CPU coming back online or 3650 * nesting (one CPU's dead_work queued on another CPU which is also dead and so 3651 * on). Let's keep it simple and drain them synchronously. These are BH work 3652 * items which shouldn't be requeued on the same pool. Shouldn't take long. 3653 */ 3654 void workqueue_softirq_dead(unsigned int cpu) 3655 { 3656 int i; 3657 3658 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 3659 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i]; 3660 struct wq_drain_dead_softirq_work dead_work; 3661 3662 if (!need_more_worker(pool)) 3663 continue; 3664 3665 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn); 3666 dead_work.pool = pool; 3667 init_completion(&dead_work.done); 3668 3669 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3670 queue_work(system_bh_highpri_wq, &dead_work.work); 3671 else 3672 queue_work(system_bh_wq, &dead_work.work); 3673 3674 wait_for_completion(&dead_work.done); 3675 destroy_work_on_stack(&dead_work.work); 3676 } 3677 } 3678 3679 /** 3680 * check_flush_dependency - check for flush dependency sanity 3681 * @target_wq: workqueue being flushed 3682 * @target_work: work item being flushed (NULL for workqueue flushes) 3683 * 3684 * %current is trying to flush the whole @target_wq or @target_work on it. 3685 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 3686 * reclaiming memory or running on a workqueue which doesn't have 3687 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 3688 * a deadlock. 3689 */ 3690 static void check_flush_dependency(struct workqueue_struct *target_wq, 3691 struct work_struct *target_work) 3692 { 3693 work_func_t target_func = target_work ? target_work->func : NULL; 3694 struct worker *worker; 3695 3696 if (target_wq->flags & WQ_MEM_RECLAIM) 3697 return; 3698 3699 worker = current_wq_worker(); 3700 3701 WARN_ONCE(current->flags & PF_MEMALLOC, 3702 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 3703 current->pid, current->comm, target_wq->name, target_func); 3704 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 3705 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 3706 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 3707 worker->current_pwq->wq->name, worker->current_func, 3708 target_wq->name, target_func); 3709 } 3710 3711 struct wq_barrier { 3712 struct work_struct work; 3713 struct completion done; 3714 struct task_struct *task; /* purely informational */ 3715 }; 3716 3717 static void wq_barrier_func(struct work_struct *work) 3718 { 3719 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 3720 complete(&barr->done); 3721 } 3722 3723 /** 3724 * insert_wq_barrier - insert a barrier work 3725 * @pwq: pwq to insert barrier into 3726 * @barr: wq_barrier to insert 3727 * @target: target work to attach @barr to 3728 * @worker: worker currently executing @target, NULL if @target is not executing 3729 * 3730 * @barr is linked to @target such that @barr is completed only after 3731 * @target finishes execution. Please note that the ordering 3732 * guarantee is observed only with respect to @target and on the local 3733 * cpu. 3734 * 3735 * Currently, a queued barrier can't be canceled. This is because 3736 * try_to_grab_pending() can't determine whether the work to be 3737 * grabbed is at the head of the queue and thus can't clear LINKED 3738 * flag of the previous work while there must be a valid next work 3739 * after a work with LINKED flag set. 3740 * 3741 * Note that when @worker is non-NULL, @target may be modified 3742 * underneath us, so we can't reliably determine pwq from @target. 3743 * 3744 * CONTEXT: 3745 * raw_spin_lock_irq(pool->lock). 3746 */ 3747 static void insert_wq_barrier(struct pool_workqueue *pwq, 3748 struct wq_barrier *barr, 3749 struct work_struct *target, struct worker *worker) 3750 { 3751 static __maybe_unused struct lock_class_key bh_key, thr_key; 3752 unsigned int work_flags = 0; 3753 unsigned int work_color; 3754 struct list_head *head; 3755 3756 /* 3757 * debugobject calls are safe here even with pool->lock locked 3758 * as we know for sure that this will not trigger any of the 3759 * checks and call back into the fixup functions where we 3760 * might deadlock. 3761 * 3762 * BH and threaded workqueues need separate lockdep keys to avoid 3763 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} 3764 * usage". 3765 */ 3766 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func, 3767 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key); 3768 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3769 3770 init_completion_map(&barr->done, &target->lockdep_map); 3771 3772 barr->task = current; 3773 3774 /* The barrier work item does not participate in nr_active. */ 3775 work_flags |= WORK_STRUCT_INACTIVE; 3776 3777 /* 3778 * If @target is currently being executed, schedule the 3779 * barrier to the worker; otherwise, put it after @target. 3780 */ 3781 if (worker) { 3782 head = worker->scheduled.next; 3783 work_color = worker->current_color; 3784 } else { 3785 unsigned long *bits = work_data_bits(target); 3786 3787 head = target->entry.next; 3788 /* there can already be other linked works, inherit and set */ 3789 work_flags |= *bits & WORK_STRUCT_LINKED; 3790 work_color = get_work_color(*bits); 3791 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3792 } 3793 3794 pwq->nr_in_flight[work_color]++; 3795 work_flags |= work_color_to_flags(work_color); 3796 3797 insert_work(pwq, &barr->work, head, work_flags); 3798 } 3799 3800 /** 3801 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3802 * @wq: workqueue being flushed 3803 * @flush_color: new flush color, < 0 for no-op 3804 * @work_color: new work color, < 0 for no-op 3805 * 3806 * Prepare pwqs for workqueue flushing. 3807 * 3808 * If @flush_color is non-negative, flush_color on all pwqs should be 3809 * -1. If no pwq has in-flight commands at the specified color, all 3810 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3811 * has in flight commands, its pwq->flush_color is set to 3812 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3813 * wakeup logic is armed and %true is returned. 3814 * 3815 * The caller should have initialized @wq->first_flusher prior to 3816 * calling this function with non-negative @flush_color. If 3817 * @flush_color is negative, no flush color update is done and %false 3818 * is returned. 3819 * 3820 * If @work_color is non-negative, all pwqs should have the same 3821 * work_color which is previous to @work_color and all will be 3822 * advanced to @work_color. 3823 * 3824 * CONTEXT: 3825 * mutex_lock(wq->mutex). 3826 * 3827 * Return: 3828 * %true if @flush_color >= 0 and there's something to flush. %false 3829 * otherwise. 3830 */ 3831 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3832 int flush_color, int work_color) 3833 { 3834 bool wait = false; 3835 struct pool_workqueue *pwq; 3836 3837 if (flush_color >= 0) { 3838 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3839 atomic_set(&wq->nr_pwqs_to_flush, 1); 3840 } 3841 3842 for_each_pwq(pwq, wq) { 3843 struct worker_pool *pool = pwq->pool; 3844 3845 raw_spin_lock_irq(&pool->lock); 3846 3847 if (flush_color >= 0) { 3848 WARN_ON_ONCE(pwq->flush_color != -1); 3849 3850 if (pwq->nr_in_flight[flush_color]) { 3851 pwq->flush_color = flush_color; 3852 atomic_inc(&wq->nr_pwqs_to_flush); 3853 wait = true; 3854 } 3855 } 3856 3857 if (work_color >= 0) { 3858 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3859 pwq->work_color = work_color; 3860 } 3861 3862 raw_spin_unlock_irq(&pool->lock); 3863 } 3864 3865 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3866 complete(&wq->first_flusher->done); 3867 3868 return wait; 3869 } 3870 3871 static void touch_wq_lockdep_map(struct workqueue_struct *wq) 3872 { 3873 #ifdef CONFIG_LOCKDEP 3874 if (wq->flags & WQ_BH) 3875 local_bh_disable(); 3876 3877 lock_map_acquire(wq->lockdep_map); 3878 lock_map_release(wq->lockdep_map); 3879 3880 if (wq->flags & WQ_BH) 3881 local_bh_enable(); 3882 #endif 3883 } 3884 3885 static void touch_work_lockdep_map(struct work_struct *work, 3886 struct workqueue_struct *wq) 3887 { 3888 #ifdef CONFIG_LOCKDEP 3889 if (wq->flags & WQ_BH) 3890 local_bh_disable(); 3891 3892 lock_map_acquire(&work->lockdep_map); 3893 lock_map_release(&work->lockdep_map); 3894 3895 if (wq->flags & WQ_BH) 3896 local_bh_enable(); 3897 #endif 3898 } 3899 3900 /** 3901 * __flush_workqueue - ensure that any scheduled work has run to completion. 3902 * @wq: workqueue to flush 3903 * 3904 * This function sleeps until all work items which were queued on entry 3905 * have finished execution, but it is not livelocked by new incoming ones. 3906 */ 3907 void __flush_workqueue(struct workqueue_struct *wq) 3908 { 3909 struct wq_flusher this_flusher = { 3910 .list = LIST_HEAD_INIT(this_flusher.list), 3911 .flush_color = -1, 3912 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)), 3913 }; 3914 int next_color; 3915 3916 if (WARN_ON(!wq_online)) 3917 return; 3918 3919 touch_wq_lockdep_map(wq); 3920 3921 mutex_lock(&wq->mutex); 3922 3923 /* 3924 * Start-to-wait phase 3925 */ 3926 next_color = work_next_color(wq->work_color); 3927 3928 if (next_color != wq->flush_color) { 3929 /* 3930 * Color space is not full. The current work_color 3931 * becomes our flush_color and work_color is advanced 3932 * by one. 3933 */ 3934 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3935 this_flusher.flush_color = wq->work_color; 3936 wq->work_color = next_color; 3937 3938 if (!wq->first_flusher) { 3939 /* no flush in progress, become the first flusher */ 3940 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3941 3942 wq->first_flusher = &this_flusher; 3943 3944 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3945 wq->work_color)) { 3946 /* nothing to flush, done */ 3947 wq->flush_color = next_color; 3948 wq->first_flusher = NULL; 3949 goto out_unlock; 3950 } 3951 } else { 3952 /* wait in queue */ 3953 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3954 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3955 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3956 } 3957 } else { 3958 /* 3959 * Oops, color space is full, wait on overflow queue. 3960 * The next flush completion will assign us 3961 * flush_color and transfer to flusher_queue. 3962 */ 3963 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3964 } 3965 3966 check_flush_dependency(wq, NULL); 3967 3968 mutex_unlock(&wq->mutex); 3969 3970 wait_for_completion(&this_flusher.done); 3971 3972 /* 3973 * Wake-up-and-cascade phase 3974 * 3975 * First flushers are responsible for cascading flushes and 3976 * handling overflow. Non-first flushers can simply return. 3977 */ 3978 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3979 return; 3980 3981 mutex_lock(&wq->mutex); 3982 3983 /* we might have raced, check again with mutex held */ 3984 if (wq->first_flusher != &this_flusher) 3985 goto out_unlock; 3986 3987 WRITE_ONCE(wq->first_flusher, NULL); 3988 3989 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3990 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3991 3992 while (true) { 3993 struct wq_flusher *next, *tmp; 3994 3995 /* complete all the flushers sharing the current flush color */ 3996 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3997 if (next->flush_color != wq->flush_color) 3998 break; 3999 list_del_init(&next->list); 4000 complete(&next->done); 4001 } 4002 4003 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 4004 wq->flush_color != work_next_color(wq->work_color)); 4005 4006 /* this flush_color is finished, advance by one */ 4007 wq->flush_color = work_next_color(wq->flush_color); 4008 4009 /* one color has been freed, handle overflow queue */ 4010 if (!list_empty(&wq->flusher_overflow)) { 4011 /* 4012 * Assign the same color to all overflowed 4013 * flushers, advance work_color and append to 4014 * flusher_queue. This is the start-to-wait 4015 * phase for these overflowed flushers. 4016 */ 4017 list_for_each_entry(tmp, &wq->flusher_overflow, list) 4018 tmp->flush_color = wq->work_color; 4019 4020 wq->work_color = work_next_color(wq->work_color); 4021 4022 list_splice_tail_init(&wq->flusher_overflow, 4023 &wq->flusher_queue); 4024 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 4025 } 4026 4027 if (list_empty(&wq->flusher_queue)) { 4028 WARN_ON_ONCE(wq->flush_color != wq->work_color); 4029 break; 4030 } 4031 4032 /* 4033 * Need to flush more colors. Make the next flusher 4034 * the new first flusher and arm pwqs. 4035 */ 4036 WARN_ON_ONCE(wq->flush_color == wq->work_color); 4037 WARN_ON_ONCE(wq->flush_color != next->flush_color); 4038 4039 list_del_init(&next->list); 4040 wq->first_flusher = next; 4041 4042 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 4043 break; 4044 4045 /* 4046 * Meh... this color is already done, clear first 4047 * flusher and repeat cascading. 4048 */ 4049 wq->first_flusher = NULL; 4050 } 4051 4052 out_unlock: 4053 mutex_unlock(&wq->mutex); 4054 } 4055 EXPORT_SYMBOL(__flush_workqueue); 4056 4057 /** 4058 * drain_workqueue - drain a workqueue 4059 * @wq: workqueue to drain 4060 * 4061 * Wait until the workqueue becomes empty. While draining is in progress, 4062 * only chain queueing is allowed. IOW, only currently pending or running 4063 * work items on @wq can queue further work items on it. @wq is flushed 4064 * repeatedly until it becomes empty. The number of flushing is determined 4065 * by the depth of chaining and should be relatively short. Whine if it 4066 * takes too long. 4067 */ 4068 void drain_workqueue(struct workqueue_struct *wq) 4069 { 4070 unsigned int flush_cnt = 0; 4071 struct pool_workqueue *pwq; 4072 4073 /* 4074 * __queue_work() needs to test whether there are drainers, is much 4075 * hotter than drain_workqueue() and already looks at @wq->flags. 4076 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 4077 */ 4078 mutex_lock(&wq->mutex); 4079 if (!wq->nr_drainers++) 4080 wq->flags |= __WQ_DRAINING; 4081 mutex_unlock(&wq->mutex); 4082 reflush: 4083 __flush_workqueue(wq); 4084 4085 mutex_lock(&wq->mutex); 4086 4087 for_each_pwq(pwq, wq) { 4088 bool drained; 4089 4090 raw_spin_lock_irq(&pwq->pool->lock); 4091 drained = pwq_is_empty(pwq); 4092 raw_spin_unlock_irq(&pwq->pool->lock); 4093 4094 if (drained) 4095 continue; 4096 4097 if (++flush_cnt == 10 || 4098 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 4099 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 4100 wq->name, __func__, flush_cnt); 4101 4102 mutex_unlock(&wq->mutex); 4103 goto reflush; 4104 } 4105 4106 if (!--wq->nr_drainers) 4107 wq->flags &= ~__WQ_DRAINING; 4108 mutex_unlock(&wq->mutex); 4109 } 4110 EXPORT_SYMBOL_GPL(drain_workqueue); 4111 4112 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 4113 bool from_cancel) 4114 { 4115 struct worker *worker = NULL; 4116 struct worker_pool *pool; 4117 struct pool_workqueue *pwq; 4118 struct workqueue_struct *wq; 4119 4120 rcu_read_lock(); 4121 pool = get_work_pool(work); 4122 if (!pool) { 4123 rcu_read_unlock(); 4124 return false; 4125 } 4126 4127 raw_spin_lock_irq(&pool->lock); 4128 /* see the comment in try_to_grab_pending() with the same code */ 4129 pwq = get_work_pwq(work); 4130 if (pwq) { 4131 if (unlikely(pwq->pool != pool)) 4132 goto already_gone; 4133 } else { 4134 worker = find_worker_executing_work(pool, work); 4135 if (!worker) 4136 goto already_gone; 4137 pwq = worker->current_pwq; 4138 } 4139 4140 wq = pwq->wq; 4141 check_flush_dependency(wq, work); 4142 4143 insert_wq_barrier(pwq, barr, work, worker); 4144 raw_spin_unlock_irq(&pool->lock); 4145 4146 touch_work_lockdep_map(work, wq); 4147 4148 /* 4149 * Force a lock recursion deadlock when using flush_work() inside a 4150 * single-threaded or rescuer equipped workqueue. 4151 * 4152 * For single threaded workqueues the deadlock happens when the work 4153 * is after the work issuing the flush_work(). For rescuer equipped 4154 * workqueues the deadlock happens when the rescuer stalls, blocking 4155 * forward progress. 4156 */ 4157 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer)) 4158 touch_wq_lockdep_map(wq); 4159 4160 rcu_read_unlock(); 4161 return true; 4162 already_gone: 4163 raw_spin_unlock_irq(&pool->lock); 4164 rcu_read_unlock(); 4165 return false; 4166 } 4167 4168 static bool __flush_work(struct work_struct *work, bool from_cancel) 4169 { 4170 struct wq_barrier barr; 4171 unsigned long data; 4172 4173 if (WARN_ON(!wq_online)) 4174 return false; 4175 4176 if (WARN_ON(!work->func)) 4177 return false; 4178 4179 if (!start_flush_work(work, &barr, from_cancel)) 4180 return false; 4181 4182 /* 4183 * start_flush_work() returned %true. If @from_cancel is set, we know 4184 * that @work must have been executing during start_flush_work() and 4185 * can't currently be queued. Its data must contain OFFQ bits. If @work 4186 * was queued on a BH workqueue, we also know that it was running in the 4187 * BH context and thus can be busy-waited. 4188 */ 4189 data = *work_data_bits(work); 4190 if (from_cancel && 4191 !WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_BH)) { 4192 /* 4193 * On RT, prevent a live lock when %current preempted soft 4194 * interrupt processing or prevents ksoftirqd from running by 4195 * keeping flipping BH. If the BH work item runs on a different 4196 * CPU then this has no effect other than doing the BH 4197 * disable/enable dance for nothing. This is copied from 4198 * kernel/softirq.c::tasklet_unlock_spin_wait(). 4199 */ 4200 while (!try_wait_for_completion(&barr.done)) { 4201 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4202 local_bh_disable(); 4203 local_bh_enable(); 4204 } else { 4205 cpu_relax(); 4206 } 4207 } 4208 } else { 4209 wait_for_completion(&barr.done); 4210 } 4211 4212 destroy_work_on_stack(&barr.work); 4213 return true; 4214 } 4215 4216 /** 4217 * flush_work - wait for a work to finish executing the last queueing instance 4218 * @work: the work to flush 4219 * 4220 * Wait until @work has finished execution. @work is guaranteed to be idle 4221 * on return if it hasn't been requeued since flush started. 4222 * 4223 * Return: 4224 * %true if flush_work() waited for the work to finish execution, 4225 * %false if it was already idle. 4226 */ 4227 bool flush_work(struct work_struct *work) 4228 { 4229 might_sleep(); 4230 return __flush_work(work, false); 4231 } 4232 EXPORT_SYMBOL_GPL(flush_work); 4233 4234 /** 4235 * flush_delayed_work - wait for a dwork to finish executing the last queueing 4236 * @dwork: the delayed work to flush 4237 * 4238 * Delayed timer is cancelled and the pending work is queued for 4239 * immediate execution. Like flush_work(), this function only 4240 * considers the last queueing instance of @dwork. 4241 * 4242 * Return: 4243 * %true if flush_work() waited for the work to finish execution, 4244 * %false if it was already idle. 4245 */ 4246 bool flush_delayed_work(struct delayed_work *dwork) 4247 { 4248 local_irq_disable(); 4249 if (del_timer_sync(&dwork->timer)) 4250 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 4251 local_irq_enable(); 4252 return flush_work(&dwork->work); 4253 } 4254 EXPORT_SYMBOL(flush_delayed_work); 4255 4256 /** 4257 * flush_rcu_work - wait for a rwork to finish executing the last queueing 4258 * @rwork: the rcu work to flush 4259 * 4260 * Return: 4261 * %true if flush_rcu_work() waited for the work to finish execution, 4262 * %false if it was already idle. 4263 */ 4264 bool flush_rcu_work(struct rcu_work *rwork) 4265 { 4266 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 4267 rcu_barrier(); 4268 flush_work(&rwork->work); 4269 return true; 4270 } else { 4271 return flush_work(&rwork->work); 4272 } 4273 } 4274 EXPORT_SYMBOL(flush_rcu_work); 4275 4276 static void work_offqd_disable(struct work_offq_data *offqd) 4277 { 4278 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1; 4279 4280 if (likely(offqd->disable < max)) 4281 offqd->disable++; 4282 else 4283 WARN_ONCE(true, "workqueue: work disable count overflowed\n"); 4284 } 4285 4286 static void work_offqd_enable(struct work_offq_data *offqd) 4287 { 4288 if (likely(offqd->disable > 0)) 4289 offqd->disable--; 4290 else 4291 WARN_ONCE(true, "workqueue: work disable count underflowed\n"); 4292 } 4293 4294 static bool __cancel_work(struct work_struct *work, u32 cflags) 4295 { 4296 struct work_offq_data offqd; 4297 unsigned long irq_flags; 4298 int ret; 4299 4300 ret = work_grab_pending(work, cflags, &irq_flags); 4301 4302 work_offqd_unpack(&offqd, *work_data_bits(work)); 4303 4304 if (cflags & WORK_CANCEL_DISABLE) 4305 work_offqd_disable(&offqd); 4306 4307 set_work_pool_and_clear_pending(work, offqd.pool_id, 4308 work_offqd_pack_flags(&offqd)); 4309 local_irq_restore(irq_flags); 4310 return ret; 4311 } 4312 4313 static bool __cancel_work_sync(struct work_struct *work, u32 cflags) 4314 { 4315 bool ret; 4316 4317 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE); 4318 4319 if (*work_data_bits(work) & WORK_OFFQ_BH) 4320 WARN_ON_ONCE(in_hardirq()); 4321 else 4322 might_sleep(); 4323 4324 /* 4325 * Skip __flush_work() during early boot when we know that @work isn't 4326 * executing. This allows canceling during early boot. 4327 */ 4328 if (wq_online) 4329 __flush_work(work, true); 4330 4331 if (!(cflags & WORK_CANCEL_DISABLE)) 4332 enable_work(work); 4333 4334 return ret; 4335 } 4336 4337 /* 4338 * See cancel_delayed_work() 4339 */ 4340 bool cancel_work(struct work_struct *work) 4341 { 4342 return __cancel_work(work, 0); 4343 } 4344 EXPORT_SYMBOL(cancel_work); 4345 4346 /** 4347 * cancel_work_sync - cancel a work and wait for it to finish 4348 * @work: the work to cancel 4349 * 4350 * Cancel @work and wait for its execution to finish. This function can be used 4351 * even if the work re-queues itself or migrates to another workqueue. On return 4352 * from this function, @work is guaranteed to be not pending or executing on any 4353 * CPU as long as there aren't racing enqueues. 4354 * 4355 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's. 4356 * Use cancel_delayed_work_sync() instead. 4357 * 4358 * Must be called from a sleepable context if @work was last queued on a non-BH 4359 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4360 * if @work was last queued on a BH workqueue. 4361 * 4362 * Returns %true if @work was pending, %false otherwise. 4363 */ 4364 bool cancel_work_sync(struct work_struct *work) 4365 { 4366 return __cancel_work_sync(work, 0); 4367 } 4368 EXPORT_SYMBOL_GPL(cancel_work_sync); 4369 4370 /** 4371 * cancel_delayed_work - cancel a delayed work 4372 * @dwork: delayed_work to cancel 4373 * 4374 * Kill off a pending delayed_work. 4375 * 4376 * Return: %true if @dwork was pending and canceled; %false if it wasn't 4377 * pending. 4378 * 4379 * Note: 4380 * The work callback function may still be running on return, unless 4381 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 4382 * use cancel_delayed_work_sync() to wait on it. 4383 * 4384 * This function is safe to call from any context including IRQ handler. 4385 */ 4386 bool cancel_delayed_work(struct delayed_work *dwork) 4387 { 4388 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED); 4389 } 4390 EXPORT_SYMBOL(cancel_delayed_work); 4391 4392 /** 4393 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 4394 * @dwork: the delayed work cancel 4395 * 4396 * This is cancel_work_sync() for delayed works. 4397 * 4398 * Return: 4399 * %true if @dwork was pending, %false otherwise. 4400 */ 4401 bool cancel_delayed_work_sync(struct delayed_work *dwork) 4402 { 4403 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED); 4404 } 4405 EXPORT_SYMBOL(cancel_delayed_work_sync); 4406 4407 /** 4408 * disable_work - Disable and cancel a work item 4409 * @work: work item to disable 4410 * 4411 * Disable @work by incrementing its disable count and cancel it if currently 4412 * pending. As long as the disable count is non-zero, any attempt to queue @work 4413 * will fail and return %false. The maximum supported disable depth is 2 to the 4414 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536. 4415 * 4416 * Can be called from any context. Returns %true if @work was pending, %false 4417 * otherwise. 4418 */ 4419 bool disable_work(struct work_struct *work) 4420 { 4421 return __cancel_work(work, WORK_CANCEL_DISABLE); 4422 } 4423 EXPORT_SYMBOL_GPL(disable_work); 4424 4425 /** 4426 * disable_work_sync - Disable, cancel and drain a work item 4427 * @work: work item to disable 4428 * 4429 * Similar to disable_work() but also wait for @work to finish if currently 4430 * executing. 4431 * 4432 * Must be called from a sleepable context if @work was last queued on a non-BH 4433 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4434 * if @work was last queued on a BH workqueue. 4435 * 4436 * Returns %true if @work was pending, %false otherwise. 4437 */ 4438 bool disable_work_sync(struct work_struct *work) 4439 { 4440 return __cancel_work_sync(work, WORK_CANCEL_DISABLE); 4441 } 4442 EXPORT_SYMBOL_GPL(disable_work_sync); 4443 4444 /** 4445 * enable_work - Enable a work item 4446 * @work: work item to enable 4447 * 4448 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can 4449 * only be queued if its disable count is 0. 4450 * 4451 * Can be called from any context. Returns %true if the disable count reached 0. 4452 * Otherwise, %false. 4453 */ 4454 bool enable_work(struct work_struct *work) 4455 { 4456 struct work_offq_data offqd; 4457 unsigned long irq_flags; 4458 4459 work_grab_pending(work, 0, &irq_flags); 4460 4461 work_offqd_unpack(&offqd, *work_data_bits(work)); 4462 work_offqd_enable(&offqd); 4463 set_work_pool_and_clear_pending(work, offqd.pool_id, 4464 work_offqd_pack_flags(&offqd)); 4465 local_irq_restore(irq_flags); 4466 4467 return !offqd.disable; 4468 } 4469 EXPORT_SYMBOL_GPL(enable_work); 4470 4471 /** 4472 * disable_delayed_work - Disable and cancel a delayed work item 4473 * @dwork: delayed work item to disable 4474 * 4475 * disable_work() for delayed work items. 4476 */ 4477 bool disable_delayed_work(struct delayed_work *dwork) 4478 { 4479 return __cancel_work(&dwork->work, 4480 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4481 } 4482 EXPORT_SYMBOL_GPL(disable_delayed_work); 4483 4484 /** 4485 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item 4486 * @dwork: delayed work item to disable 4487 * 4488 * disable_work_sync() for delayed work items. 4489 */ 4490 bool disable_delayed_work_sync(struct delayed_work *dwork) 4491 { 4492 return __cancel_work_sync(&dwork->work, 4493 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4494 } 4495 EXPORT_SYMBOL_GPL(disable_delayed_work_sync); 4496 4497 /** 4498 * enable_delayed_work - Enable a delayed work item 4499 * @dwork: delayed work item to enable 4500 * 4501 * enable_work() for delayed work items. 4502 */ 4503 bool enable_delayed_work(struct delayed_work *dwork) 4504 { 4505 return enable_work(&dwork->work); 4506 } 4507 EXPORT_SYMBOL_GPL(enable_delayed_work); 4508 4509 /** 4510 * schedule_on_each_cpu - execute a function synchronously on each online CPU 4511 * @func: the function to call 4512 * 4513 * schedule_on_each_cpu() executes @func on each online CPU using the 4514 * system workqueue and blocks until all CPUs have completed. 4515 * schedule_on_each_cpu() is very slow. 4516 * 4517 * Return: 4518 * 0 on success, -errno on failure. 4519 */ 4520 int schedule_on_each_cpu(work_func_t func) 4521 { 4522 int cpu; 4523 struct work_struct __percpu *works; 4524 4525 works = alloc_percpu(struct work_struct); 4526 if (!works) 4527 return -ENOMEM; 4528 4529 cpus_read_lock(); 4530 4531 for_each_online_cpu(cpu) { 4532 struct work_struct *work = per_cpu_ptr(works, cpu); 4533 4534 INIT_WORK(work, func); 4535 schedule_work_on(cpu, work); 4536 } 4537 4538 for_each_online_cpu(cpu) 4539 flush_work(per_cpu_ptr(works, cpu)); 4540 4541 cpus_read_unlock(); 4542 free_percpu(works); 4543 return 0; 4544 } 4545 4546 /** 4547 * execute_in_process_context - reliably execute the routine with user context 4548 * @fn: the function to execute 4549 * @ew: guaranteed storage for the execute work structure (must 4550 * be available when the work executes) 4551 * 4552 * Executes the function immediately if process context is available, 4553 * otherwise schedules the function for delayed execution. 4554 * 4555 * Return: 0 - function was executed 4556 * 1 - function was scheduled for execution 4557 */ 4558 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 4559 { 4560 if (!in_interrupt()) { 4561 fn(&ew->work); 4562 return 0; 4563 } 4564 4565 INIT_WORK(&ew->work, fn); 4566 schedule_work(&ew->work); 4567 4568 return 1; 4569 } 4570 EXPORT_SYMBOL_GPL(execute_in_process_context); 4571 4572 /** 4573 * free_workqueue_attrs - free a workqueue_attrs 4574 * @attrs: workqueue_attrs to free 4575 * 4576 * Undo alloc_workqueue_attrs(). 4577 */ 4578 void free_workqueue_attrs(struct workqueue_attrs *attrs) 4579 { 4580 if (attrs) { 4581 free_cpumask_var(attrs->cpumask); 4582 free_cpumask_var(attrs->__pod_cpumask); 4583 kfree(attrs); 4584 } 4585 } 4586 4587 /** 4588 * alloc_workqueue_attrs - allocate a workqueue_attrs 4589 * 4590 * Allocate a new workqueue_attrs, initialize with default settings and 4591 * return it. 4592 * 4593 * Return: The allocated new workqueue_attr on success. %NULL on failure. 4594 */ 4595 struct workqueue_attrs *alloc_workqueue_attrs(void) 4596 { 4597 struct workqueue_attrs *attrs; 4598 4599 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 4600 if (!attrs) 4601 goto fail; 4602 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 4603 goto fail; 4604 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 4605 goto fail; 4606 4607 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4608 attrs->affn_scope = WQ_AFFN_DFL; 4609 return attrs; 4610 fail: 4611 free_workqueue_attrs(attrs); 4612 return NULL; 4613 } 4614 4615 static void copy_workqueue_attrs(struct workqueue_attrs *to, 4616 const struct workqueue_attrs *from) 4617 { 4618 to->nice = from->nice; 4619 cpumask_copy(to->cpumask, from->cpumask); 4620 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 4621 to->affn_strict = from->affn_strict; 4622 4623 /* 4624 * Unlike hash and equality test, copying shouldn't ignore wq-only 4625 * fields as copying is used for both pool and wq attrs. Instead, 4626 * get_unbound_pool() explicitly clears the fields. 4627 */ 4628 to->affn_scope = from->affn_scope; 4629 to->ordered = from->ordered; 4630 } 4631 4632 /* 4633 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 4634 * comments in 'struct workqueue_attrs' definition. 4635 */ 4636 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 4637 { 4638 attrs->affn_scope = WQ_AFFN_NR_TYPES; 4639 attrs->ordered = false; 4640 if (attrs->affn_strict) 4641 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4642 } 4643 4644 /* hash value of the content of @attr */ 4645 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 4646 { 4647 u32 hash = 0; 4648 4649 hash = jhash_1word(attrs->nice, hash); 4650 hash = jhash_1word(attrs->affn_strict, hash); 4651 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 4652 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4653 if (!attrs->affn_strict) 4654 hash = jhash(cpumask_bits(attrs->cpumask), 4655 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4656 return hash; 4657 } 4658 4659 /* content equality test */ 4660 static bool wqattrs_equal(const struct workqueue_attrs *a, 4661 const struct workqueue_attrs *b) 4662 { 4663 if (a->nice != b->nice) 4664 return false; 4665 if (a->affn_strict != b->affn_strict) 4666 return false; 4667 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 4668 return false; 4669 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask)) 4670 return false; 4671 return true; 4672 } 4673 4674 /* Update @attrs with actually available CPUs */ 4675 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 4676 const cpumask_t *unbound_cpumask) 4677 { 4678 /* 4679 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 4680 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 4681 * @unbound_cpumask. 4682 */ 4683 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 4684 if (unlikely(cpumask_empty(attrs->cpumask))) 4685 cpumask_copy(attrs->cpumask, unbound_cpumask); 4686 } 4687 4688 /* find wq_pod_type to use for @attrs */ 4689 static const struct wq_pod_type * 4690 wqattrs_pod_type(const struct workqueue_attrs *attrs) 4691 { 4692 enum wq_affn_scope scope; 4693 struct wq_pod_type *pt; 4694 4695 /* to synchronize access to wq_affn_dfl */ 4696 lockdep_assert_held(&wq_pool_mutex); 4697 4698 if (attrs->affn_scope == WQ_AFFN_DFL) 4699 scope = wq_affn_dfl; 4700 else 4701 scope = attrs->affn_scope; 4702 4703 pt = &wq_pod_types[scope]; 4704 4705 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 4706 likely(pt->nr_pods)) 4707 return pt; 4708 4709 /* 4710 * Before workqueue_init_topology(), only SYSTEM is available which is 4711 * initialized in workqueue_init_early(). 4712 */ 4713 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 4714 BUG_ON(!pt->nr_pods); 4715 return pt; 4716 } 4717 4718 /** 4719 * init_worker_pool - initialize a newly zalloc'd worker_pool 4720 * @pool: worker_pool to initialize 4721 * 4722 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 4723 * 4724 * Return: 0 on success, -errno on failure. Even on failure, all fields 4725 * inside @pool proper are initialized and put_unbound_pool() can be called 4726 * on @pool safely to release it. 4727 */ 4728 static int init_worker_pool(struct worker_pool *pool) 4729 { 4730 raw_spin_lock_init(&pool->lock); 4731 pool->id = -1; 4732 pool->cpu = -1; 4733 pool->node = NUMA_NO_NODE; 4734 pool->flags |= POOL_DISASSOCIATED; 4735 pool->watchdog_ts = jiffies; 4736 INIT_LIST_HEAD(&pool->worklist); 4737 INIT_LIST_HEAD(&pool->idle_list); 4738 hash_init(pool->busy_hash); 4739 4740 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 4741 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 4742 4743 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 4744 4745 INIT_LIST_HEAD(&pool->workers); 4746 4747 ida_init(&pool->worker_ida); 4748 INIT_HLIST_NODE(&pool->hash_node); 4749 pool->refcnt = 1; 4750 4751 /* shouldn't fail above this point */ 4752 pool->attrs = alloc_workqueue_attrs(); 4753 if (!pool->attrs) 4754 return -ENOMEM; 4755 4756 wqattrs_clear_for_pool(pool->attrs); 4757 4758 return 0; 4759 } 4760 4761 #ifdef CONFIG_LOCKDEP 4762 static void wq_init_lockdep(struct workqueue_struct *wq) 4763 { 4764 char *lock_name; 4765 4766 lockdep_register_key(&wq->key); 4767 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 4768 if (!lock_name) 4769 lock_name = wq->name; 4770 4771 wq->lock_name = lock_name; 4772 wq->lockdep_map = &wq->__lockdep_map; 4773 lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0); 4774 } 4775 4776 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4777 { 4778 if (wq->lockdep_map != &wq->__lockdep_map) 4779 return; 4780 4781 lockdep_unregister_key(&wq->key); 4782 } 4783 4784 static void wq_free_lockdep(struct workqueue_struct *wq) 4785 { 4786 if (wq->lockdep_map != &wq->__lockdep_map) 4787 return; 4788 4789 if (wq->lock_name != wq->name) 4790 kfree(wq->lock_name); 4791 } 4792 #else 4793 static void wq_init_lockdep(struct workqueue_struct *wq) 4794 { 4795 } 4796 4797 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4798 { 4799 } 4800 4801 static void wq_free_lockdep(struct workqueue_struct *wq) 4802 { 4803 } 4804 #endif 4805 4806 static void free_node_nr_active(struct wq_node_nr_active **nna_ar) 4807 { 4808 int node; 4809 4810 for_each_node(node) { 4811 kfree(nna_ar[node]); 4812 nna_ar[node] = NULL; 4813 } 4814 4815 kfree(nna_ar[nr_node_ids]); 4816 nna_ar[nr_node_ids] = NULL; 4817 } 4818 4819 static void init_node_nr_active(struct wq_node_nr_active *nna) 4820 { 4821 nna->max = WQ_DFL_MIN_ACTIVE; 4822 atomic_set(&nna->nr, 0); 4823 raw_spin_lock_init(&nna->lock); 4824 INIT_LIST_HEAD(&nna->pending_pwqs); 4825 } 4826 4827 /* 4828 * Each node's nr_active counter will be accessed mostly from its own node and 4829 * should be allocated in the node. 4830 */ 4831 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) 4832 { 4833 struct wq_node_nr_active *nna; 4834 int node; 4835 4836 for_each_node(node) { 4837 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node); 4838 if (!nna) 4839 goto err_free; 4840 init_node_nr_active(nna); 4841 nna_ar[node] = nna; 4842 } 4843 4844 /* [nr_node_ids] is used as the fallback */ 4845 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); 4846 if (!nna) 4847 goto err_free; 4848 init_node_nr_active(nna); 4849 nna_ar[nr_node_ids] = nna; 4850 4851 return 0; 4852 4853 err_free: 4854 free_node_nr_active(nna_ar); 4855 return -ENOMEM; 4856 } 4857 4858 static void rcu_free_wq(struct rcu_head *rcu) 4859 { 4860 struct workqueue_struct *wq = 4861 container_of(rcu, struct workqueue_struct, rcu); 4862 4863 if (wq->flags & WQ_UNBOUND) 4864 free_node_nr_active(wq->node_nr_active); 4865 4866 wq_free_lockdep(wq); 4867 free_percpu(wq->cpu_pwq); 4868 free_workqueue_attrs(wq->unbound_attrs); 4869 kfree(wq); 4870 } 4871 4872 static void rcu_free_pool(struct rcu_head *rcu) 4873 { 4874 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 4875 4876 ida_destroy(&pool->worker_ida); 4877 free_workqueue_attrs(pool->attrs); 4878 kfree(pool); 4879 } 4880 4881 /** 4882 * put_unbound_pool - put a worker_pool 4883 * @pool: worker_pool to put 4884 * 4885 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 4886 * safe manner. get_unbound_pool() calls this function on its failure path 4887 * and this function should be able to release pools which went through, 4888 * successfully or not, init_worker_pool(). 4889 * 4890 * Should be called with wq_pool_mutex held. 4891 */ 4892 static void put_unbound_pool(struct worker_pool *pool) 4893 { 4894 struct worker *worker; 4895 LIST_HEAD(cull_list); 4896 4897 lockdep_assert_held(&wq_pool_mutex); 4898 4899 if (--pool->refcnt) 4900 return; 4901 4902 /* sanity checks */ 4903 if (WARN_ON(!(pool->cpu < 0)) || 4904 WARN_ON(!list_empty(&pool->worklist))) 4905 return; 4906 4907 /* release id and unhash */ 4908 if (pool->id >= 0) 4909 idr_remove(&worker_pool_idr, pool->id); 4910 hash_del(&pool->hash_node); 4911 4912 /* 4913 * Become the manager and destroy all workers. This prevents 4914 * @pool's workers from blocking on attach_mutex. We're the last 4915 * manager and @pool gets freed with the flag set. 4916 * 4917 * Having a concurrent manager is quite unlikely to happen as we can 4918 * only get here with 4919 * pwq->refcnt == pool->refcnt == 0 4920 * which implies no work queued to the pool, which implies no worker can 4921 * become the manager. However a worker could have taken the role of 4922 * manager before the refcnts dropped to 0, since maybe_create_worker() 4923 * drops pool->lock 4924 */ 4925 while (true) { 4926 rcuwait_wait_event(&manager_wait, 4927 !(pool->flags & POOL_MANAGER_ACTIVE), 4928 TASK_UNINTERRUPTIBLE); 4929 4930 mutex_lock(&wq_pool_attach_mutex); 4931 raw_spin_lock_irq(&pool->lock); 4932 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4933 pool->flags |= POOL_MANAGER_ACTIVE; 4934 break; 4935 } 4936 raw_spin_unlock_irq(&pool->lock); 4937 mutex_unlock(&wq_pool_attach_mutex); 4938 } 4939 4940 while ((worker = first_idle_worker(pool))) 4941 set_worker_dying(worker, &cull_list); 4942 WARN_ON(pool->nr_workers || pool->nr_idle); 4943 raw_spin_unlock_irq(&pool->lock); 4944 4945 detach_dying_workers(&cull_list); 4946 4947 mutex_unlock(&wq_pool_attach_mutex); 4948 4949 reap_dying_workers(&cull_list); 4950 4951 /* shut down the timers */ 4952 del_timer_sync(&pool->idle_timer); 4953 cancel_work_sync(&pool->idle_cull_work); 4954 del_timer_sync(&pool->mayday_timer); 4955 4956 /* RCU protected to allow dereferences from get_work_pool() */ 4957 call_rcu(&pool->rcu, rcu_free_pool); 4958 } 4959 4960 /** 4961 * get_unbound_pool - get a worker_pool with the specified attributes 4962 * @attrs: the attributes of the worker_pool to get 4963 * 4964 * Obtain a worker_pool which has the same attributes as @attrs, bump the 4965 * reference count and return it. If there already is a matching 4966 * worker_pool, it will be used; otherwise, this function attempts to 4967 * create a new one. 4968 * 4969 * Should be called with wq_pool_mutex held. 4970 * 4971 * Return: On success, a worker_pool with the same attributes as @attrs. 4972 * On failure, %NULL. 4973 */ 4974 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 4975 { 4976 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 4977 u32 hash = wqattrs_hash(attrs); 4978 struct worker_pool *pool; 4979 int pod, node = NUMA_NO_NODE; 4980 4981 lockdep_assert_held(&wq_pool_mutex); 4982 4983 /* do we already have a matching pool? */ 4984 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 4985 if (wqattrs_equal(pool->attrs, attrs)) { 4986 pool->refcnt++; 4987 return pool; 4988 } 4989 } 4990 4991 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 4992 for (pod = 0; pod < pt->nr_pods; pod++) { 4993 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 4994 node = pt->pod_node[pod]; 4995 break; 4996 } 4997 } 4998 4999 /* nope, create a new one */ 5000 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 5001 if (!pool || init_worker_pool(pool) < 0) 5002 goto fail; 5003 5004 pool->node = node; 5005 copy_workqueue_attrs(pool->attrs, attrs); 5006 wqattrs_clear_for_pool(pool->attrs); 5007 5008 if (worker_pool_assign_id(pool) < 0) 5009 goto fail; 5010 5011 /* create and start the initial worker */ 5012 if (wq_online && !create_worker(pool)) 5013 goto fail; 5014 5015 /* install */ 5016 hash_add(unbound_pool_hash, &pool->hash_node, hash); 5017 5018 return pool; 5019 fail: 5020 if (pool) 5021 put_unbound_pool(pool); 5022 return NULL; 5023 } 5024 5025 /* 5026 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 5027 * refcnt and needs to be destroyed. 5028 */ 5029 static void pwq_release_workfn(struct kthread_work *work) 5030 { 5031 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 5032 release_work); 5033 struct workqueue_struct *wq = pwq->wq; 5034 struct worker_pool *pool = pwq->pool; 5035 bool is_last = false; 5036 5037 /* 5038 * When @pwq is not linked, it doesn't hold any reference to the 5039 * @wq, and @wq is invalid to access. 5040 */ 5041 if (!list_empty(&pwq->pwqs_node)) { 5042 mutex_lock(&wq->mutex); 5043 list_del_rcu(&pwq->pwqs_node); 5044 is_last = list_empty(&wq->pwqs); 5045 5046 /* 5047 * For ordered workqueue with a plugged dfl_pwq, restart it now. 5048 */ 5049 if (!is_last && (wq->flags & __WQ_ORDERED)) 5050 unplug_oldest_pwq(wq); 5051 5052 mutex_unlock(&wq->mutex); 5053 } 5054 5055 if (wq->flags & WQ_UNBOUND) { 5056 mutex_lock(&wq_pool_mutex); 5057 put_unbound_pool(pool); 5058 mutex_unlock(&wq_pool_mutex); 5059 } 5060 5061 if (!list_empty(&pwq->pending_node)) { 5062 struct wq_node_nr_active *nna = 5063 wq_node_nr_active(pwq->wq, pwq->pool->node); 5064 5065 raw_spin_lock_irq(&nna->lock); 5066 list_del_init(&pwq->pending_node); 5067 raw_spin_unlock_irq(&nna->lock); 5068 } 5069 5070 kfree_rcu(pwq, rcu); 5071 5072 /* 5073 * If we're the last pwq going away, @wq is already dead and no one 5074 * is gonna access it anymore. Schedule RCU free. 5075 */ 5076 if (is_last) { 5077 wq_unregister_lockdep(wq); 5078 call_rcu(&wq->rcu, rcu_free_wq); 5079 } 5080 } 5081 5082 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 5083 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 5084 struct worker_pool *pool) 5085 { 5086 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK); 5087 5088 memset(pwq, 0, sizeof(*pwq)); 5089 5090 pwq->pool = pool; 5091 pwq->wq = wq; 5092 pwq->flush_color = -1; 5093 pwq->refcnt = 1; 5094 INIT_LIST_HEAD(&pwq->inactive_works); 5095 INIT_LIST_HEAD(&pwq->pending_node); 5096 INIT_LIST_HEAD(&pwq->pwqs_node); 5097 INIT_LIST_HEAD(&pwq->mayday_node); 5098 kthread_init_work(&pwq->release_work, pwq_release_workfn); 5099 } 5100 5101 /* sync @pwq with the current state of its associated wq and link it */ 5102 static void link_pwq(struct pool_workqueue *pwq) 5103 { 5104 struct workqueue_struct *wq = pwq->wq; 5105 5106 lockdep_assert_held(&wq->mutex); 5107 5108 /* may be called multiple times, ignore if already linked */ 5109 if (!list_empty(&pwq->pwqs_node)) 5110 return; 5111 5112 /* set the matching work_color */ 5113 pwq->work_color = wq->work_color; 5114 5115 /* link in @pwq */ 5116 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs); 5117 } 5118 5119 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 5120 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 5121 const struct workqueue_attrs *attrs) 5122 { 5123 struct worker_pool *pool; 5124 struct pool_workqueue *pwq; 5125 5126 lockdep_assert_held(&wq_pool_mutex); 5127 5128 pool = get_unbound_pool(attrs); 5129 if (!pool) 5130 return NULL; 5131 5132 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 5133 if (!pwq) { 5134 put_unbound_pool(pool); 5135 return NULL; 5136 } 5137 5138 init_pwq(pwq, wq, pool); 5139 return pwq; 5140 } 5141 5142 static void apply_wqattrs_lock(void) 5143 { 5144 mutex_lock(&wq_pool_mutex); 5145 } 5146 5147 static void apply_wqattrs_unlock(void) 5148 { 5149 mutex_unlock(&wq_pool_mutex); 5150 } 5151 5152 /** 5153 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 5154 * @attrs: the wq_attrs of the default pwq of the target workqueue 5155 * @cpu: the target CPU 5156 * 5157 * Calculate the cpumask a workqueue with @attrs should use on @pod. 5158 * The result is stored in @attrs->__pod_cpumask. 5159 * 5160 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 5161 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 5162 * intersection of the possible CPUs of @pod and @attrs->cpumask. 5163 * 5164 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 5165 */ 5166 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu) 5167 { 5168 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5169 int pod = pt->cpu_pod[cpu]; 5170 5171 /* calculate possible CPUs in @pod that @attrs wants */ 5172 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 5173 /* does @pod have any online CPUs @attrs wants? */ 5174 if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) { 5175 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 5176 return; 5177 } 5178 } 5179 5180 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ 5181 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 5182 int cpu, struct pool_workqueue *pwq) 5183 { 5184 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); 5185 struct pool_workqueue *old_pwq; 5186 5187 lockdep_assert_held(&wq_pool_mutex); 5188 lockdep_assert_held(&wq->mutex); 5189 5190 /* link_pwq() can handle duplicate calls */ 5191 link_pwq(pwq); 5192 5193 old_pwq = rcu_access_pointer(*slot); 5194 rcu_assign_pointer(*slot, pwq); 5195 return old_pwq; 5196 } 5197 5198 /* context to store the prepared attrs & pwqs before applying */ 5199 struct apply_wqattrs_ctx { 5200 struct workqueue_struct *wq; /* target workqueue */ 5201 struct workqueue_attrs *attrs; /* attrs to apply */ 5202 struct list_head list; /* queued for batching commit */ 5203 struct pool_workqueue *dfl_pwq; 5204 struct pool_workqueue *pwq_tbl[]; 5205 }; 5206 5207 /* free the resources after success or abort */ 5208 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 5209 { 5210 if (ctx) { 5211 int cpu; 5212 5213 for_each_possible_cpu(cpu) 5214 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 5215 put_pwq_unlocked(ctx->dfl_pwq); 5216 5217 free_workqueue_attrs(ctx->attrs); 5218 5219 kfree(ctx); 5220 } 5221 } 5222 5223 /* allocate the attrs and pwqs for later installation */ 5224 static struct apply_wqattrs_ctx * 5225 apply_wqattrs_prepare(struct workqueue_struct *wq, 5226 const struct workqueue_attrs *attrs, 5227 const cpumask_var_t unbound_cpumask) 5228 { 5229 struct apply_wqattrs_ctx *ctx; 5230 struct workqueue_attrs *new_attrs; 5231 int cpu; 5232 5233 lockdep_assert_held(&wq_pool_mutex); 5234 5235 if (WARN_ON(attrs->affn_scope < 0 || 5236 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 5237 return ERR_PTR(-EINVAL); 5238 5239 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 5240 5241 new_attrs = alloc_workqueue_attrs(); 5242 if (!ctx || !new_attrs) 5243 goto out_free; 5244 5245 /* 5246 * If something goes wrong during CPU up/down, we'll fall back to 5247 * the default pwq covering whole @attrs->cpumask. Always create 5248 * it even if we don't use it immediately. 5249 */ 5250 copy_workqueue_attrs(new_attrs, attrs); 5251 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 5252 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5253 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 5254 if (!ctx->dfl_pwq) 5255 goto out_free; 5256 5257 for_each_possible_cpu(cpu) { 5258 if (new_attrs->ordered) { 5259 ctx->dfl_pwq->refcnt++; 5260 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 5261 } else { 5262 wq_calc_pod_cpumask(new_attrs, cpu); 5263 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 5264 if (!ctx->pwq_tbl[cpu]) 5265 goto out_free; 5266 } 5267 } 5268 5269 /* save the user configured attrs and sanitize it. */ 5270 copy_workqueue_attrs(new_attrs, attrs); 5271 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 5272 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5273 ctx->attrs = new_attrs; 5274 5275 /* 5276 * For initialized ordered workqueues, there should only be one pwq 5277 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution 5278 * of newly queued work items until execution of older work items in 5279 * the old pwq's have completed. 5280 */ 5281 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)) 5282 ctx->dfl_pwq->plugged = true; 5283 5284 ctx->wq = wq; 5285 return ctx; 5286 5287 out_free: 5288 free_workqueue_attrs(new_attrs); 5289 apply_wqattrs_cleanup(ctx); 5290 return ERR_PTR(-ENOMEM); 5291 } 5292 5293 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 5294 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 5295 { 5296 int cpu; 5297 5298 /* all pwqs have been created successfully, let's install'em */ 5299 mutex_lock(&ctx->wq->mutex); 5300 5301 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 5302 5303 /* save the previous pwqs and install the new ones */ 5304 for_each_possible_cpu(cpu) 5305 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 5306 ctx->pwq_tbl[cpu]); 5307 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq); 5308 5309 /* update node_nr_active->max */ 5310 wq_update_node_max_active(ctx->wq, -1); 5311 5312 /* rescuer needs to respect wq cpumask changes */ 5313 if (ctx->wq->rescuer) 5314 set_cpus_allowed_ptr(ctx->wq->rescuer->task, 5315 unbound_effective_cpumask(ctx->wq)); 5316 5317 mutex_unlock(&ctx->wq->mutex); 5318 } 5319 5320 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 5321 const struct workqueue_attrs *attrs) 5322 { 5323 struct apply_wqattrs_ctx *ctx; 5324 5325 /* only unbound workqueues can change attributes */ 5326 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 5327 return -EINVAL; 5328 5329 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 5330 if (IS_ERR(ctx)) 5331 return PTR_ERR(ctx); 5332 5333 /* the ctx has been prepared successfully, let's commit it */ 5334 apply_wqattrs_commit(ctx); 5335 apply_wqattrs_cleanup(ctx); 5336 5337 return 0; 5338 } 5339 5340 /** 5341 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 5342 * @wq: the target workqueue 5343 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 5344 * 5345 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 5346 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 5347 * work items are affine to the pod it was issued on. Older pwqs are released as 5348 * in-flight work items finish. Note that a work item which repeatedly requeues 5349 * itself back-to-back will stay on its current pwq. 5350 * 5351 * Performs GFP_KERNEL allocations. 5352 * 5353 * Return: 0 on success and -errno on failure. 5354 */ 5355 int apply_workqueue_attrs(struct workqueue_struct *wq, 5356 const struct workqueue_attrs *attrs) 5357 { 5358 int ret; 5359 5360 mutex_lock(&wq_pool_mutex); 5361 ret = apply_workqueue_attrs_locked(wq, attrs); 5362 mutex_unlock(&wq_pool_mutex); 5363 5364 return ret; 5365 } 5366 5367 /** 5368 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug 5369 * @wq: the target workqueue 5370 * @cpu: the CPU to update the pwq slot for 5371 * 5372 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 5373 * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged. 5374 * 5375 * 5376 * If pod affinity can't be adjusted due to memory allocation failure, it falls 5377 * back to @wq->dfl_pwq which may not be optimal but is always correct. 5378 * 5379 * Note that when the last allowed CPU of a pod goes offline for a workqueue 5380 * with a cpumask spanning multiple pods, the workers which were already 5381 * executing the work items for the workqueue will lose their CPU affinity and 5382 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 5383 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 5384 * responsibility to flush the work item from CPU_DOWN_PREPARE. 5385 */ 5386 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu) 5387 { 5388 struct pool_workqueue *old_pwq = NULL, *pwq; 5389 struct workqueue_attrs *target_attrs; 5390 5391 lockdep_assert_held(&wq_pool_mutex); 5392 5393 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 5394 return; 5395 5396 /* 5397 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 5398 * Let's use a preallocated one. The following buf is protected by 5399 * CPU hotplug exclusion. 5400 */ 5401 target_attrs = unbound_wq_update_pwq_attrs_buf; 5402 5403 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 5404 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 5405 5406 /* nothing to do if the target cpumask matches the current pwq */ 5407 wq_calc_pod_cpumask(target_attrs, cpu); 5408 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs)) 5409 return; 5410 5411 /* create a new pwq */ 5412 pwq = alloc_unbound_pwq(wq, target_attrs); 5413 if (!pwq) { 5414 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 5415 wq->name); 5416 goto use_dfl_pwq; 5417 } 5418 5419 /* Install the new pwq. */ 5420 mutex_lock(&wq->mutex); 5421 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5422 goto out_unlock; 5423 5424 use_dfl_pwq: 5425 mutex_lock(&wq->mutex); 5426 pwq = unbound_pwq(wq, -1); 5427 raw_spin_lock_irq(&pwq->pool->lock); 5428 get_pwq(pwq); 5429 raw_spin_unlock_irq(&pwq->pool->lock); 5430 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5431 out_unlock: 5432 mutex_unlock(&wq->mutex); 5433 put_pwq_unlocked(old_pwq); 5434 } 5435 5436 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 5437 { 5438 bool highpri = wq->flags & WQ_HIGHPRI; 5439 int cpu, ret; 5440 5441 lockdep_assert_held(&wq_pool_mutex); 5442 5443 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 5444 if (!wq->cpu_pwq) 5445 goto enomem; 5446 5447 if (!(wq->flags & WQ_UNBOUND)) { 5448 struct worker_pool __percpu *pools; 5449 5450 if (wq->flags & WQ_BH) 5451 pools = bh_worker_pools; 5452 else 5453 pools = cpu_worker_pools; 5454 5455 for_each_possible_cpu(cpu) { 5456 struct pool_workqueue **pwq_p; 5457 struct worker_pool *pool; 5458 5459 pool = &(per_cpu_ptr(pools, cpu)[highpri]); 5460 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu); 5461 5462 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 5463 pool->node); 5464 if (!*pwq_p) 5465 goto enomem; 5466 5467 init_pwq(*pwq_p, wq, pool); 5468 5469 mutex_lock(&wq->mutex); 5470 link_pwq(*pwq_p); 5471 mutex_unlock(&wq->mutex); 5472 } 5473 return 0; 5474 } 5475 5476 if (wq->flags & __WQ_ORDERED) { 5477 struct pool_workqueue *dfl_pwq; 5478 5479 ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]); 5480 /* there should only be single pwq for ordering guarantee */ 5481 dfl_pwq = rcu_access_pointer(wq->dfl_pwq); 5482 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || 5483 wq->pwqs.prev != &dfl_pwq->pwqs_node), 5484 "ordering guarantee broken for workqueue %s\n", wq->name); 5485 } else { 5486 ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]); 5487 } 5488 5489 return ret; 5490 5491 enomem: 5492 if (wq->cpu_pwq) { 5493 for_each_possible_cpu(cpu) { 5494 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5495 5496 if (pwq) 5497 kmem_cache_free(pwq_cache, pwq); 5498 } 5499 free_percpu(wq->cpu_pwq); 5500 wq->cpu_pwq = NULL; 5501 } 5502 return -ENOMEM; 5503 } 5504 5505 static int wq_clamp_max_active(int max_active, unsigned int flags, 5506 const char *name) 5507 { 5508 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 5509 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 5510 max_active, name, 1, WQ_MAX_ACTIVE); 5511 5512 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 5513 } 5514 5515 /* 5516 * Workqueues which may be used during memory reclaim should have a rescuer 5517 * to guarantee forward progress. 5518 */ 5519 static int init_rescuer(struct workqueue_struct *wq) 5520 { 5521 struct worker *rescuer; 5522 char id_buf[WORKER_ID_LEN]; 5523 int ret; 5524 5525 lockdep_assert_held(&wq_pool_mutex); 5526 5527 if (!(wq->flags & WQ_MEM_RECLAIM)) 5528 return 0; 5529 5530 rescuer = alloc_worker(NUMA_NO_NODE); 5531 if (!rescuer) { 5532 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 5533 wq->name); 5534 return -ENOMEM; 5535 } 5536 5537 rescuer->rescue_wq = wq; 5538 format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL); 5539 5540 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf); 5541 if (IS_ERR(rescuer->task)) { 5542 ret = PTR_ERR(rescuer->task); 5543 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 5544 wq->name, ERR_PTR(ret)); 5545 kfree(rescuer); 5546 return ret; 5547 } 5548 5549 wq->rescuer = rescuer; 5550 if (wq->flags & WQ_UNBOUND) 5551 kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq)); 5552 else 5553 kthread_bind_mask(rescuer->task, cpu_possible_mask); 5554 wake_up_process(rescuer->task); 5555 5556 return 0; 5557 } 5558 5559 /** 5560 * wq_adjust_max_active - update a wq's max_active to the current setting 5561 * @wq: target workqueue 5562 * 5563 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and 5564 * activate inactive work items accordingly. If @wq is freezing, clear 5565 * @wq->max_active to zero. 5566 */ 5567 static void wq_adjust_max_active(struct workqueue_struct *wq) 5568 { 5569 bool activated; 5570 int new_max, new_min; 5571 5572 lockdep_assert_held(&wq->mutex); 5573 5574 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { 5575 new_max = 0; 5576 new_min = 0; 5577 } else { 5578 new_max = wq->saved_max_active; 5579 new_min = wq->saved_min_active; 5580 } 5581 5582 if (wq->max_active == new_max && wq->min_active == new_min) 5583 return; 5584 5585 /* 5586 * Update @wq->max/min_active and then kick inactive work items if more 5587 * active work items are allowed. This doesn't break work item ordering 5588 * because new work items are always queued behind existing inactive 5589 * work items if there are any. 5590 */ 5591 WRITE_ONCE(wq->max_active, new_max); 5592 WRITE_ONCE(wq->min_active, new_min); 5593 5594 if (wq->flags & WQ_UNBOUND) 5595 wq_update_node_max_active(wq, -1); 5596 5597 if (new_max == 0) 5598 return; 5599 5600 /* 5601 * Round-robin through pwq's activating the first inactive work item 5602 * until max_active is filled. 5603 */ 5604 do { 5605 struct pool_workqueue *pwq; 5606 5607 activated = false; 5608 for_each_pwq(pwq, wq) { 5609 unsigned long irq_flags; 5610 5611 /* can be called during early boot w/ irq disabled */ 5612 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 5613 if (pwq_activate_first_inactive(pwq, true)) { 5614 activated = true; 5615 kick_pool(pwq->pool); 5616 } 5617 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 5618 } 5619 } while (activated); 5620 } 5621 5622 __printf(1, 4) 5623 static struct workqueue_struct *__alloc_workqueue(const char *fmt, 5624 unsigned int flags, 5625 int max_active, ...) 5626 { 5627 va_list args; 5628 struct workqueue_struct *wq; 5629 size_t wq_size; 5630 int name_len; 5631 5632 if (flags & WQ_BH) { 5633 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS)) 5634 return NULL; 5635 if (WARN_ON_ONCE(max_active)) 5636 return NULL; 5637 } 5638 5639 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 5640 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 5641 flags |= WQ_UNBOUND; 5642 5643 /* allocate wq and format name */ 5644 if (flags & WQ_UNBOUND) 5645 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); 5646 else 5647 wq_size = sizeof(*wq); 5648 5649 wq = kzalloc(wq_size, GFP_KERNEL); 5650 if (!wq) 5651 return NULL; 5652 5653 if (flags & WQ_UNBOUND) { 5654 wq->unbound_attrs = alloc_workqueue_attrs(); 5655 if (!wq->unbound_attrs) 5656 goto err_free_wq; 5657 } 5658 5659 va_start(args, max_active); 5660 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args); 5661 va_end(args); 5662 5663 if (name_len >= WQ_NAME_LEN) 5664 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", 5665 wq->name); 5666 5667 if (flags & WQ_BH) { 5668 /* 5669 * BH workqueues always share a single execution context per CPU 5670 * and don't impose any max_active limit. 5671 */ 5672 max_active = INT_MAX; 5673 } else { 5674 max_active = max_active ?: WQ_DFL_ACTIVE; 5675 max_active = wq_clamp_max_active(max_active, flags, wq->name); 5676 } 5677 5678 /* init wq */ 5679 wq->flags = flags; 5680 wq->max_active = max_active; 5681 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); 5682 wq->saved_max_active = wq->max_active; 5683 wq->saved_min_active = wq->min_active; 5684 mutex_init(&wq->mutex); 5685 atomic_set(&wq->nr_pwqs_to_flush, 0); 5686 INIT_LIST_HEAD(&wq->pwqs); 5687 INIT_LIST_HEAD(&wq->flusher_queue); 5688 INIT_LIST_HEAD(&wq->flusher_overflow); 5689 INIT_LIST_HEAD(&wq->maydays); 5690 5691 INIT_LIST_HEAD(&wq->list); 5692 5693 if (flags & WQ_UNBOUND) { 5694 if (alloc_node_nr_active(wq->node_nr_active) < 0) 5695 goto err_free_wq; 5696 } 5697 5698 /* 5699 * wq_pool_mutex protects the workqueues list, allocations of PWQs, 5700 * and the global freeze state. 5701 */ 5702 apply_wqattrs_lock(); 5703 5704 if (alloc_and_link_pwqs(wq) < 0) 5705 goto err_unlock_free_node_nr_active; 5706 5707 mutex_lock(&wq->mutex); 5708 wq_adjust_max_active(wq); 5709 mutex_unlock(&wq->mutex); 5710 5711 list_add_tail_rcu(&wq->list, &workqueues); 5712 5713 if (wq_online && init_rescuer(wq) < 0) 5714 goto err_unlock_destroy; 5715 5716 apply_wqattrs_unlock(); 5717 5718 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 5719 goto err_destroy; 5720 5721 return wq; 5722 5723 err_unlock_free_node_nr_active: 5724 apply_wqattrs_unlock(); 5725 /* 5726 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work, 5727 * flushing the pwq_release_worker ensures that the pwq_release_workfn() 5728 * completes before calling kfree(wq). 5729 */ 5730 if (wq->flags & WQ_UNBOUND) { 5731 kthread_flush_worker(pwq_release_worker); 5732 free_node_nr_active(wq->node_nr_active); 5733 } 5734 err_free_wq: 5735 free_workqueue_attrs(wq->unbound_attrs); 5736 kfree(wq); 5737 return NULL; 5738 err_unlock_destroy: 5739 apply_wqattrs_unlock(); 5740 err_destroy: 5741 destroy_workqueue(wq); 5742 return NULL; 5743 } 5744 5745 __printf(1, 4) 5746 struct workqueue_struct *alloc_workqueue(const char *fmt, 5747 unsigned int flags, 5748 int max_active, ...) 5749 { 5750 struct workqueue_struct *wq; 5751 va_list args; 5752 5753 va_start(args, max_active); 5754 wq = __alloc_workqueue(fmt, flags, max_active, args); 5755 va_end(args); 5756 if (!wq) 5757 return NULL; 5758 5759 wq_init_lockdep(wq); 5760 5761 return wq; 5762 } 5763 EXPORT_SYMBOL_GPL(alloc_workqueue); 5764 5765 #ifdef CONFIG_LOCKDEP 5766 __printf(1, 5) 5767 struct workqueue_struct * 5768 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags, 5769 int max_active, struct lockdep_map *lockdep_map, ...) 5770 { 5771 struct workqueue_struct *wq; 5772 va_list args; 5773 5774 va_start(args, lockdep_map); 5775 wq = __alloc_workqueue(fmt, flags, max_active, args); 5776 va_end(args); 5777 if (!wq) 5778 return NULL; 5779 5780 wq->lockdep_map = lockdep_map; 5781 5782 return wq; 5783 } 5784 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map); 5785 #endif 5786 5787 static bool pwq_busy(struct pool_workqueue *pwq) 5788 { 5789 int i; 5790 5791 for (i = 0; i < WORK_NR_COLORS; i++) 5792 if (pwq->nr_in_flight[i]) 5793 return true; 5794 5795 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) 5796 return true; 5797 if (!pwq_is_empty(pwq)) 5798 return true; 5799 5800 return false; 5801 } 5802 5803 /** 5804 * destroy_workqueue - safely terminate a workqueue 5805 * @wq: target workqueue 5806 * 5807 * Safely destroy a workqueue. All work currently pending will be done first. 5808 */ 5809 void destroy_workqueue(struct workqueue_struct *wq) 5810 { 5811 struct pool_workqueue *pwq; 5812 int cpu; 5813 5814 /* 5815 * Remove it from sysfs first so that sanity check failure doesn't 5816 * lead to sysfs name conflicts. 5817 */ 5818 workqueue_sysfs_unregister(wq); 5819 5820 /* mark the workqueue destruction is in progress */ 5821 mutex_lock(&wq->mutex); 5822 wq->flags |= __WQ_DESTROYING; 5823 mutex_unlock(&wq->mutex); 5824 5825 /* drain it before proceeding with destruction */ 5826 drain_workqueue(wq); 5827 5828 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 5829 if (wq->rescuer) { 5830 struct worker *rescuer = wq->rescuer; 5831 5832 /* this prevents new queueing */ 5833 raw_spin_lock_irq(&wq_mayday_lock); 5834 wq->rescuer = NULL; 5835 raw_spin_unlock_irq(&wq_mayday_lock); 5836 5837 /* rescuer will empty maydays list before exiting */ 5838 kthread_stop(rescuer->task); 5839 kfree(rescuer); 5840 } 5841 5842 /* 5843 * Sanity checks - grab all the locks so that we wait for all 5844 * in-flight operations which may do put_pwq(). 5845 */ 5846 mutex_lock(&wq_pool_mutex); 5847 mutex_lock(&wq->mutex); 5848 for_each_pwq(pwq, wq) { 5849 raw_spin_lock_irq(&pwq->pool->lock); 5850 if (WARN_ON(pwq_busy(pwq))) { 5851 pr_warn("%s: %s has the following busy pwq\n", 5852 __func__, wq->name); 5853 show_pwq(pwq); 5854 raw_spin_unlock_irq(&pwq->pool->lock); 5855 mutex_unlock(&wq->mutex); 5856 mutex_unlock(&wq_pool_mutex); 5857 show_one_workqueue(wq); 5858 return; 5859 } 5860 raw_spin_unlock_irq(&pwq->pool->lock); 5861 } 5862 mutex_unlock(&wq->mutex); 5863 5864 /* 5865 * wq list is used to freeze wq, remove from list after 5866 * flushing is complete in case freeze races us. 5867 */ 5868 list_del_rcu(&wq->list); 5869 mutex_unlock(&wq_pool_mutex); 5870 5871 /* 5872 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 5873 * to put the base refs. @wq will be auto-destroyed from the last 5874 * pwq_put. RCU read lock prevents @wq from going away from under us. 5875 */ 5876 rcu_read_lock(); 5877 5878 for_each_possible_cpu(cpu) { 5879 put_pwq_unlocked(unbound_pwq(wq, cpu)); 5880 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); 5881 } 5882 5883 put_pwq_unlocked(unbound_pwq(wq, -1)); 5884 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); 5885 5886 rcu_read_unlock(); 5887 } 5888 EXPORT_SYMBOL_GPL(destroy_workqueue); 5889 5890 /** 5891 * workqueue_set_max_active - adjust max_active of a workqueue 5892 * @wq: target workqueue 5893 * @max_active: new max_active value. 5894 * 5895 * Set max_active of @wq to @max_active. See the alloc_workqueue() function 5896 * comment. 5897 * 5898 * CONTEXT: 5899 * Don't call from IRQ context. 5900 */ 5901 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 5902 { 5903 /* max_active doesn't mean anything for BH workqueues */ 5904 if (WARN_ON(wq->flags & WQ_BH)) 5905 return; 5906 /* disallow meddling with max_active for ordered workqueues */ 5907 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5908 return; 5909 5910 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 5911 5912 mutex_lock(&wq->mutex); 5913 5914 wq->saved_max_active = max_active; 5915 if (wq->flags & WQ_UNBOUND) 5916 wq->saved_min_active = min(wq->saved_min_active, max_active); 5917 5918 wq_adjust_max_active(wq); 5919 5920 mutex_unlock(&wq->mutex); 5921 } 5922 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 5923 5924 /** 5925 * workqueue_set_min_active - adjust min_active of an unbound workqueue 5926 * @wq: target unbound workqueue 5927 * @min_active: new min_active value 5928 * 5929 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an 5930 * unbound workqueue is not guaranteed to be able to process max_active 5931 * interdependent work items. Instead, an unbound workqueue is guaranteed to be 5932 * able to process min_active number of interdependent work items which is 5933 * %WQ_DFL_MIN_ACTIVE by default. 5934 * 5935 * Use this function to adjust the min_active value between 0 and the current 5936 * max_active. 5937 */ 5938 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active) 5939 { 5940 /* min_active is only meaningful for non-ordered unbound workqueues */ 5941 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) != 5942 WQ_UNBOUND)) 5943 return; 5944 5945 mutex_lock(&wq->mutex); 5946 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active); 5947 wq_adjust_max_active(wq); 5948 mutex_unlock(&wq->mutex); 5949 } 5950 5951 /** 5952 * current_work - retrieve %current task's work struct 5953 * 5954 * Determine if %current task is a workqueue worker and what it's working on. 5955 * Useful to find out the context that the %current task is running in. 5956 * 5957 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 5958 */ 5959 struct work_struct *current_work(void) 5960 { 5961 struct worker *worker = current_wq_worker(); 5962 5963 return worker ? worker->current_work : NULL; 5964 } 5965 EXPORT_SYMBOL(current_work); 5966 5967 /** 5968 * current_is_workqueue_rescuer - is %current workqueue rescuer? 5969 * 5970 * Determine whether %current is a workqueue rescuer. Can be used from 5971 * work functions to determine whether it's being run off the rescuer task. 5972 * 5973 * Return: %true if %current is a workqueue rescuer. %false otherwise. 5974 */ 5975 bool current_is_workqueue_rescuer(void) 5976 { 5977 struct worker *worker = current_wq_worker(); 5978 5979 return worker && worker->rescue_wq; 5980 } 5981 5982 /** 5983 * workqueue_congested - test whether a workqueue is congested 5984 * @cpu: CPU in question 5985 * @wq: target workqueue 5986 * 5987 * Test whether @wq's cpu workqueue for @cpu is congested. There is 5988 * no synchronization around this function and the test result is 5989 * unreliable and only useful as advisory hints or for debugging. 5990 * 5991 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 5992 * 5993 * With the exception of ordered workqueues, all workqueues have per-cpu 5994 * pool_workqueues, each with its own congested state. A workqueue being 5995 * congested on one CPU doesn't mean that the workqueue is contested on any 5996 * other CPUs. 5997 * 5998 * Return: 5999 * %true if congested, %false otherwise. 6000 */ 6001 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 6002 { 6003 struct pool_workqueue *pwq; 6004 bool ret; 6005 6006 rcu_read_lock(); 6007 preempt_disable(); 6008 6009 if (cpu == WORK_CPU_UNBOUND) 6010 cpu = smp_processor_id(); 6011 6012 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 6013 ret = !list_empty(&pwq->inactive_works); 6014 6015 preempt_enable(); 6016 rcu_read_unlock(); 6017 6018 return ret; 6019 } 6020 EXPORT_SYMBOL_GPL(workqueue_congested); 6021 6022 /** 6023 * work_busy - test whether a work is currently pending or running 6024 * @work: the work to be tested 6025 * 6026 * Test whether @work is currently pending or running. There is no 6027 * synchronization around this function and the test result is 6028 * unreliable and only useful as advisory hints or for debugging. 6029 * 6030 * Return: 6031 * OR'd bitmask of WORK_BUSY_* bits. 6032 */ 6033 unsigned int work_busy(struct work_struct *work) 6034 { 6035 struct worker_pool *pool; 6036 unsigned long irq_flags; 6037 unsigned int ret = 0; 6038 6039 if (work_pending(work)) 6040 ret |= WORK_BUSY_PENDING; 6041 6042 rcu_read_lock(); 6043 pool = get_work_pool(work); 6044 if (pool) { 6045 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6046 if (find_worker_executing_work(pool, work)) 6047 ret |= WORK_BUSY_RUNNING; 6048 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6049 } 6050 rcu_read_unlock(); 6051 6052 return ret; 6053 } 6054 EXPORT_SYMBOL_GPL(work_busy); 6055 6056 /** 6057 * set_worker_desc - set description for the current work item 6058 * @fmt: printf-style format string 6059 * @...: arguments for the format string 6060 * 6061 * This function can be called by a running work function to describe what 6062 * the work item is about. If the worker task gets dumped, this 6063 * information will be printed out together to help debugging. The 6064 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 6065 */ 6066 void set_worker_desc(const char *fmt, ...) 6067 { 6068 struct worker *worker = current_wq_worker(); 6069 va_list args; 6070 6071 if (worker) { 6072 va_start(args, fmt); 6073 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 6074 va_end(args); 6075 } 6076 } 6077 EXPORT_SYMBOL_GPL(set_worker_desc); 6078 6079 /** 6080 * print_worker_info - print out worker information and description 6081 * @log_lvl: the log level to use when printing 6082 * @task: target task 6083 * 6084 * If @task is a worker and currently executing a work item, print out the 6085 * name of the workqueue being serviced and worker description set with 6086 * set_worker_desc() by the currently executing work item. 6087 * 6088 * This function can be safely called on any task as long as the 6089 * task_struct itself is accessible. While safe, this function isn't 6090 * synchronized and may print out mixups or garbages of limited length. 6091 */ 6092 void print_worker_info(const char *log_lvl, struct task_struct *task) 6093 { 6094 work_func_t *fn = NULL; 6095 char name[WQ_NAME_LEN] = { }; 6096 char desc[WORKER_DESC_LEN] = { }; 6097 struct pool_workqueue *pwq = NULL; 6098 struct workqueue_struct *wq = NULL; 6099 struct worker *worker; 6100 6101 if (!(task->flags & PF_WQ_WORKER)) 6102 return; 6103 6104 /* 6105 * This function is called without any synchronization and @task 6106 * could be in any state. Be careful with dereferences. 6107 */ 6108 worker = kthread_probe_data(task); 6109 6110 /* 6111 * Carefully copy the associated workqueue's workfn, name and desc. 6112 * Keep the original last '\0' in case the original is garbage. 6113 */ 6114 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 6115 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 6116 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 6117 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 6118 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 6119 6120 if (fn || name[0] || desc[0]) { 6121 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 6122 if (strcmp(name, desc)) 6123 pr_cont(" (%s)", desc); 6124 pr_cont("\n"); 6125 } 6126 } 6127 6128 static void pr_cont_pool_info(struct worker_pool *pool) 6129 { 6130 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 6131 if (pool->node != NUMA_NO_NODE) 6132 pr_cont(" node=%d", pool->node); 6133 pr_cont(" flags=0x%x", pool->flags); 6134 if (pool->flags & POOL_BH) 6135 pr_cont(" bh%s", 6136 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6137 else 6138 pr_cont(" nice=%d", pool->attrs->nice); 6139 } 6140 6141 static void pr_cont_worker_id(struct worker *worker) 6142 { 6143 struct worker_pool *pool = worker->pool; 6144 6145 if (pool->flags & WQ_BH) 6146 pr_cont("bh%s", 6147 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6148 else 6149 pr_cont("%d%s", task_pid_nr(worker->task), 6150 worker->rescue_wq ? "(RESCUER)" : ""); 6151 } 6152 6153 struct pr_cont_work_struct { 6154 bool comma; 6155 work_func_t func; 6156 long ctr; 6157 }; 6158 6159 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 6160 { 6161 if (!pcwsp->ctr) 6162 goto out_record; 6163 if (func == pcwsp->func) { 6164 pcwsp->ctr++; 6165 return; 6166 } 6167 if (pcwsp->ctr == 1) 6168 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 6169 else 6170 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 6171 pcwsp->ctr = 0; 6172 out_record: 6173 if ((long)func == -1L) 6174 return; 6175 pcwsp->comma = comma; 6176 pcwsp->func = func; 6177 pcwsp->ctr = 1; 6178 } 6179 6180 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 6181 { 6182 if (work->func == wq_barrier_func) { 6183 struct wq_barrier *barr; 6184 6185 barr = container_of(work, struct wq_barrier, work); 6186 6187 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6188 pr_cont("%s BAR(%d)", comma ? "," : "", 6189 task_pid_nr(barr->task)); 6190 } else { 6191 if (!comma) 6192 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6193 pr_cont_work_flush(comma, work->func, pcwsp); 6194 } 6195 } 6196 6197 static void show_pwq(struct pool_workqueue *pwq) 6198 { 6199 struct pr_cont_work_struct pcws = { .ctr = 0, }; 6200 struct worker_pool *pool = pwq->pool; 6201 struct work_struct *work; 6202 struct worker *worker; 6203 bool has_in_flight = false, has_pending = false; 6204 int bkt; 6205 6206 pr_info(" pwq %d:", pool->id); 6207 pr_cont_pool_info(pool); 6208 6209 pr_cont(" active=%d refcnt=%d%s\n", 6210 pwq->nr_active, pwq->refcnt, 6211 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 6212 6213 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6214 if (worker->current_pwq == pwq) { 6215 has_in_flight = true; 6216 break; 6217 } 6218 } 6219 if (has_in_flight) { 6220 bool comma = false; 6221 6222 pr_info(" in-flight:"); 6223 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6224 if (worker->current_pwq != pwq) 6225 continue; 6226 6227 pr_cont(" %s", comma ? "," : ""); 6228 pr_cont_worker_id(worker); 6229 pr_cont(":%ps", worker->current_func); 6230 list_for_each_entry(work, &worker->scheduled, entry) 6231 pr_cont_work(false, work, &pcws); 6232 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6233 comma = true; 6234 } 6235 pr_cont("\n"); 6236 } 6237 6238 list_for_each_entry(work, &pool->worklist, entry) { 6239 if (get_work_pwq(work) == pwq) { 6240 has_pending = true; 6241 break; 6242 } 6243 } 6244 if (has_pending) { 6245 bool comma = false; 6246 6247 pr_info(" pending:"); 6248 list_for_each_entry(work, &pool->worklist, entry) { 6249 if (get_work_pwq(work) != pwq) 6250 continue; 6251 6252 pr_cont_work(comma, work, &pcws); 6253 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6254 } 6255 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6256 pr_cont("\n"); 6257 } 6258 6259 if (!list_empty(&pwq->inactive_works)) { 6260 bool comma = false; 6261 6262 pr_info(" inactive:"); 6263 list_for_each_entry(work, &pwq->inactive_works, entry) { 6264 pr_cont_work(comma, work, &pcws); 6265 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6266 } 6267 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6268 pr_cont("\n"); 6269 } 6270 } 6271 6272 /** 6273 * show_one_workqueue - dump state of specified workqueue 6274 * @wq: workqueue whose state will be printed 6275 */ 6276 void show_one_workqueue(struct workqueue_struct *wq) 6277 { 6278 struct pool_workqueue *pwq; 6279 bool idle = true; 6280 unsigned long irq_flags; 6281 6282 for_each_pwq(pwq, wq) { 6283 if (!pwq_is_empty(pwq)) { 6284 idle = false; 6285 break; 6286 } 6287 } 6288 if (idle) /* Nothing to print for idle workqueue */ 6289 return; 6290 6291 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 6292 6293 for_each_pwq(pwq, wq) { 6294 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 6295 if (!pwq_is_empty(pwq)) { 6296 /* 6297 * Defer printing to avoid deadlocks in console 6298 * drivers that queue work while holding locks 6299 * also taken in their write paths. 6300 */ 6301 printk_deferred_enter(); 6302 show_pwq(pwq); 6303 printk_deferred_exit(); 6304 } 6305 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 6306 /* 6307 * We could be printing a lot from atomic context, e.g. 6308 * sysrq-t -> show_all_workqueues(). Avoid triggering 6309 * hard lockup. 6310 */ 6311 touch_nmi_watchdog(); 6312 } 6313 6314 } 6315 6316 /** 6317 * show_one_worker_pool - dump state of specified worker pool 6318 * @pool: worker pool whose state will be printed 6319 */ 6320 static void show_one_worker_pool(struct worker_pool *pool) 6321 { 6322 struct worker *worker; 6323 bool first = true; 6324 unsigned long irq_flags; 6325 unsigned long hung = 0; 6326 6327 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6328 if (pool->nr_workers == pool->nr_idle) 6329 goto next_pool; 6330 6331 /* How long the first pending work is waiting for a worker. */ 6332 if (!list_empty(&pool->worklist)) 6333 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 6334 6335 /* 6336 * Defer printing to avoid deadlocks in console drivers that 6337 * queue work while holding locks also taken in their write 6338 * paths. 6339 */ 6340 printk_deferred_enter(); 6341 pr_info("pool %d:", pool->id); 6342 pr_cont_pool_info(pool); 6343 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 6344 if (pool->manager) 6345 pr_cont(" manager: %d", 6346 task_pid_nr(pool->manager->task)); 6347 list_for_each_entry(worker, &pool->idle_list, entry) { 6348 pr_cont(" %s", first ? "idle: " : ""); 6349 pr_cont_worker_id(worker); 6350 first = false; 6351 } 6352 pr_cont("\n"); 6353 printk_deferred_exit(); 6354 next_pool: 6355 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6356 /* 6357 * We could be printing a lot from atomic context, e.g. 6358 * sysrq-t -> show_all_workqueues(). Avoid triggering 6359 * hard lockup. 6360 */ 6361 touch_nmi_watchdog(); 6362 6363 } 6364 6365 /** 6366 * show_all_workqueues - dump workqueue state 6367 * 6368 * Called from a sysrq handler and prints out all busy workqueues and pools. 6369 */ 6370 void show_all_workqueues(void) 6371 { 6372 struct workqueue_struct *wq; 6373 struct worker_pool *pool; 6374 int pi; 6375 6376 rcu_read_lock(); 6377 6378 pr_info("Showing busy workqueues and worker pools:\n"); 6379 6380 list_for_each_entry_rcu(wq, &workqueues, list) 6381 show_one_workqueue(wq); 6382 6383 for_each_pool(pool, pi) 6384 show_one_worker_pool(pool); 6385 6386 rcu_read_unlock(); 6387 } 6388 6389 /** 6390 * show_freezable_workqueues - dump freezable workqueue state 6391 * 6392 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 6393 * still busy. 6394 */ 6395 void show_freezable_workqueues(void) 6396 { 6397 struct workqueue_struct *wq; 6398 6399 rcu_read_lock(); 6400 6401 pr_info("Showing freezable workqueues that are still busy:\n"); 6402 6403 list_for_each_entry_rcu(wq, &workqueues, list) { 6404 if (!(wq->flags & WQ_FREEZABLE)) 6405 continue; 6406 show_one_workqueue(wq); 6407 } 6408 6409 rcu_read_unlock(); 6410 } 6411 6412 /* used to show worker information through /proc/PID/{comm,stat,status} */ 6413 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 6414 { 6415 /* stabilize PF_WQ_WORKER and worker pool association */ 6416 mutex_lock(&wq_pool_attach_mutex); 6417 6418 if (task->flags & PF_WQ_WORKER) { 6419 struct worker *worker = kthread_data(task); 6420 struct worker_pool *pool = worker->pool; 6421 int off; 6422 6423 off = format_worker_id(buf, size, worker, pool); 6424 6425 if (pool) { 6426 raw_spin_lock_irq(&pool->lock); 6427 /* 6428 * ->desc tracks information (wq name or 6429 * set_worker_desc()) for the latest execution. If 6430 * current, prepend '+', otherwise '-'. 6431 */ 6432 if (worker->desc[0] != '\0') { 6433 if (worker->current_work) 6434 scnprintf(buf + off, size - off, "+%s", 6435 worker->desc); 6436 else 6437 scnprintf(buf + off, size - off, "-%s", 6438 worker->desc); 6439 } 6440 raw_spin_unlock_irq(&pool->lock); 6441 } 6442 } else { 6443 strscpy(buf, task->comm, size); 6444 } 6445 6446 mutex_unlock(&wq_pool_attach_mutex); 6447 } 6448 6449 #ifdef CONFIG_SMP 6450 6451 /* 6452 * CPU hotplug. 6453 * 6454 * There are two challenges in supporting CPU hotplug. Firstly, there 6455 * are a lot of assumptions on strong associations among work, pwq and 6456 * pool which make migrating pending and scheduled works very 6457 * difficult to implement without impacting hot paths. Secondly, 6458 * worker pools serve mix of short, long and very long running works making 6459 * blocked draining impractical. 6460 * 6461 * This is solved by allowing the pools to be disassociated from the CPU 6462 * running as an unbound one and allowing it to be reattached later if the 6463 * cpu comes back online. 6464 */ 6465 6466 static void unbind_workers(int cpu) 6467 { 6468 struct worker_pool *pool; 6469 struct worker *worker; 6470 6471 for_each_cpu_worker_pool(pool, cpu) { 6472 mutex_lock(&wq_pool_attach_mutex); 6473 raw_spin_lock_irq(&pool->lock); 6474 6475 /* 6476 * We've blocked all attach/detach operations. Make all workers 6477 * unbound and set DISASSOCIATED. Before this, all workers 6478 * must be on the cpu. After this, they may become diasporas. 6479 * And the preemption disabled section in their sched callbacks 6480 * are guaranteed to see WORKER_UNBOUND since the code here 6481 * is on the same cpu. 6482 */ 6483 for_each_pool_worker(worker, pool) 6484 worker->flags |= WORKER_UNBOUND; 6485 6486 pool->flags |= POOL_DISASSOCIATED; 6487 6488 /* 6489 * The handling of nr_running in sched callbacks are disabled 6490 * now. Zap nr_running. After this, nr_running stays zero and 6491 * need_more_worker() and keep_working() are always true as 6492 * long as the worklist is not empty. This pool now behaves as 6493 * an unbound (in terms of concurrency management) pool which 6494 * are served by workers tied to the pool. 6495 */ 6496 pool->nr_running = 0; 6497 6498 /* 6499 * With concurrency management just turned off, a busy 6500 * worker blocking could lead to lengthy stalls. Kick off 6501 * unbound chain execution of currently pending work items. 6502 */ 6503 kick_pool(pool); 6504 6505 raw_spin_unlock_irq(&pool->lock); 6506 6507 for_each_pool_worker(worker, pool) 6508 unbind_worker(worker); 6509 6510 mutex_unlock(&wq_pool_attach_mutex); 6511 } 6512 } 6513 6514 /** 6515 * rebind_workers - rebind all workers of a pool to the associated CPU 6516 * @pool: pool of interest 6517 * 6518 * @pool->cpu is coming online. Rebind all workers to the CPU. 6519 */ 6520 static void rebind_workers(struct worker_pool *pool) 6521 { 6522 struct worker *worker; 6523 6524 lockdep_assert_held(&wq_pool_attach_mutex); 6525 6526 /* 6527 * Restore CPU affinity of all workers. As all idle workers should 6528 * be on the run-queue of the associated CPU before any local 6529 * wake-ups for concurrency management happen, restore CPU affinity 6530 * of all workers first and then clear UNBOUND. As we're called 6531 * from CPU_ONLINE, the following shouldn't fail. 6532 */ 6533 for_each_pool_worker(worker, pool) { 6534 kthread_set_per_cpu(worker->task, pool->cpu); 6535 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 6536 pool_allowed_cpus(pool)) < 0); 6537 } 6538 6539 raw_spin_lock_irq(&pool->lock); 6540 6541 pool->flags &= ~POOL_DISASSOCIATED; 6542 6543 for_each_pool_worker(worker, pool) { 6544 unsigned int worker_flags = worker->flags; 6545 6546 /* 6547 * We want to clear UNBOUND but can't directly call 6548 * worker_clr_flags() or adjust nr_running. Atomically 6549 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 6550 * @worker will clear REBOUND using worker_clr_flags() when 6551 * it initiates the next execution cycle thus restoring 6552 * concurrency management. Note that when or whether 6553 * @worker clears REBOUND doesn't affect correctness. 6554 * 6555 * WRITE_ONCE() is necessary because @worker->flags may be 6556 * tested without holding any lock in 6557 * wq_worker_running(). Without it, NOT_RUNNING test may 6558 * fail incorrectly leading to premature concurrency 6559 * management operations. 6560 */ 6561 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 6562 worker_flags |= WORKER_REBOUND; 6563 worker_flags &= ~WORKER_UNBOUND; 6564 WRITE_ONCE(worker->flags, worker_flags); 6565 } 6566 6567 raw_spin_unlock_irq(&pool->lock); 6568 } 6569 6570 /** 6571 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 6572 * @pool: unbound pool of interest 6573 * @cpu: the CPU which is coming up 6574 * 6575 * An unbound pool may end up with a cpumask which doesn't have any online 6576 * CPUs. When a worker of such pool get scheduled, the scheduler resets 6577 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 6578 * online CPU before, cpus_allowed of all its workers should be restored. 6579 */ 6580 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 6581 { 6582 static cpumask_t cpumask; 6583 struct worker *worker; 6584 6585 lockdep_assert_held(&wq_pool_attach_mutex); 6586 6587 /* is @cpu allowed for @pool? */ 6588 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 6589 return; 6590 6591 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 6592 6593 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 6594 for_each_pool_worker(worker, pool) 6595 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 6596 } 6597 6598 int workqueue_prepare_cpu(unsigned int cpu) 6599 { 6600 struct worker_pool *pool; 6601 6602 for_each_cpu_worker_pool(pool, cpu) { 6603 if (pool->nr_workers) 6604 continue; 6605 if (!create_worker(pool)) 6606 return -ENOMEM; 6607 } 6608 return 0; 6609 } 6610 6611 int workqueue_online_cpu(unsigned int cpu) 6612 { 6613 struct worker_pool *pool; 6614 struct workqueue_struct *wq; 6615 int pi; 6616 6617 mutex_lock(&wq_pool_mutex); 6618 6619 cpumask_set_cpu(cpu, wq_online_cpumask); 6620 6621 for_each_pool(pool, pi) { 6622 /* BH pools aren't affected by hotplug */ 6623 if (pool->flags & POOL_BH) 6624 continue; 6625 6626 mutex_lock(&wq_pool_attach_mutex); 6627 if (pool->cpu == cpu) 6628 rebind_workers(pool); 6629 else if (pool->cpu < 0) 6630 restore_unbound_workers_cpumask(pool, cpu); 6631 mutex_unlock(&wq_pool_attach_mutex); 6632 } 6633 6634 /* update pod affinity of unbound workqueues */ 6635 list_for_each_entry(wq, &workqueues, list) { 6636 struct workqueue_attrs *attrs = wq->unbound_attrs; 6637 6638 if (attrs) { 6639 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6640 int tcpu; 6641 6642 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6643 unbound_wq_update_pwq(wq, tcpu); 6644 6645 mutex_lock(&wq->mutex); 6646 wq_update_node_max_active(wq, -1); 6647 mutex_unlock(&wq->mutex); 6648 } 6649 } 6650 6651 mutex_unlock(&wq_pool_mutex); 6652 return 0; 6653 } 6654 6655 int workqueue_offline_cpu(unsigned int cpu) 6656 { 6657 struct workqueue_struct *wq; 6658 6659 /* unbinding per-cpu workers should happen on the local CPU */ 6660 if (WARN_ON(cpu != smp_processor_id())) 6661 return -1; 6662 6663 unbind_workers(cpu); 6664 6665 /* update pod affinity of unbound workqueues */ 6666 mutex_lock(&wq_pool_mutex); 6667 6668 cpumask_clear_cpu(cpu, wq_online_cpumask); 6669 6670 list_for_each_entry(wq, &workqueues, list) { 6671 struct workqueue_attrs *attrs = wq->unbound_attrs; 6672 6673 if (attrs) { 6674 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6675 int tcpu; 6676 6677 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6678 unbound_wq_update_pwq(wq, tcpu); 6679 6680 mutex_lock(&wq->mutex); 6681 wq_update_node_max_active(wq, cpu); 6682 mutex_unlock(&wq->mutex); 6683 } 6684 } 6685 mutex_unlock(&wq_pool_mutex); 6686 6687 return 0; 6688 } 6689 6690 struct work_for_cpu { 6691 struct work_struct work; 6692 long (*fn)(void *); 6693 void *arg; 6694 long ret; 6695 }; 6696 6697 static void work_for_cpu_fn(struct work_struct *work) 6698 { 6699 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 6700 6701 wfc->ret = wfc->fn(wfc->arg); 6702 } 6703 6704 /** 6705 * work_on_cpu_key - run a function in thread context on a particular cpu 6706 * @cpu: the cpu to run on 6707 * @fn: the function to run 6708 * @arg: the function arg 6709 * @key: The lock class key for lock debugging purposes 6710 * 6711 * It is up to the caller to ensure that the cpu doesn't go offline. 6712 * The caller must not hold any locks which would prevent @fn from completing. 6713 * 6714 * Return: The value @fn returns. 6715 */ 6716 long work_on_cpu_key(int cpu, long (*fn)(void *), 6717 void *arg, struct lock_class_key *key) 6718 { 6719 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 6720 6721 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 6722 schedule_work_on(cpu, &wfc.work); 6723 flush_work(&wfc.work); 6724 destroy_work_on_stack(&wfc.work); 6725 return wfc.ret; 6726 } 6727 EXPORT_SYMBOL_GPL(work_on_cpu_key); 6728 6729 /** 6730 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 6731 * @cpu: the cpu to run on 6732 * @fn: the function to run 6733 * @arg: the function argument 6734 * @key: The lock class key for lock debugging purposes 6735 * 6736 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 6737 * any locks which would prevent @fn from completing. 6738 * 6739 * Return: The value @fn returns. 6740 */ 6741 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 6742 void *arg, struct lock_class_key *key) 6743 { 6744 long ret = -ENODEV; 6745 6746 cpus_read_lock(); 6747 if (cpu_online(cpu)) 6748 ret = work_on_cpu_key(cpu, fn, arg, key); 6749 cpus_read_unlock(); 6750 return ret; 6751 } 6752 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 6753 #endif /* CONFIG_SMP */ 6754 6755 #ifdef CONFIG_FREEZER 6756 6757 /** 6758 * freeze_workqueues_begin - begin freezing workqueues 6759 * 6760 * Start freezing workqueues. After this function returns, all freezable 6761 * workqueues will queue new works to their inactive_works list instead of 6762 * pool->worklist. 6763 * 6764 * CONTEXT: 6765 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6766 */ 6767 void freeze_workqueues_begin(void) 6768 { 6769 struct workqueue_struct *wq; 6770 6771 mutex_lock(&wq_pool_mutex); 6772 6773 WARN_ON_ONCE(workqueue_freezing); 6774 workqueue_freezing = true; 6775 6776 list_for_each_entry(wq, &workqueues, list) { 6777 mutex_lock(&wq->mutex); 6778 wq_adjust_max_active(wq); 6779 mutex_unlock(&wq->mutex); 6780 } 6781 6782 mutex_unlock(&wq_pool_mutex); 6783 } 6784 6785 /** 6786 * freeze_workqueues_busy - are freezable workqueues still busy? 6787 * 6788 * Check whether freezing is complete. This function must be called 6789 * between freeze_workqueues_begin() and thaw_workqueues(). 6790 * 6791 * CONTEXT: 6792 * Grabs and releases wq_pool_mutex. 6793 * 6794 * Return: 6795 * %true if some freezable workqueues are still busy. %false if freezing 6796 * is complete. 6797 */ 6798 bool freeze_workqueues_busy(void) 6799 { 6800 bool busy = false; 6801 struct workqueue_struct *wq; 6802 struct pool_workqueue *pwq; 6803 6804 mutex_lock(&wq_pool_mutex); 6805 6806 WARN_ON_ONCE(!workqueue_freezing); 6807 6808 list_for_each_entry(wq, &workqueues, list) { 6809 if (!(wq->flags & WQ_FREEZABLE)) 6810 continue; 6811 /* 6812 * nr_active is monotonically decreasing. It's safe 6813 * to peek without lock. 6814 */ 6815 rcu_read_lock(); 6816 for_each_pwq(pwq, wq) { 6817 WARN_ON_ONCE(pwq->nr_active < 0); 6818 if (pwq->nr_active) { 6819 busy = true; 6820 rcu_read_unlock(); 6821 goto out_unlock; 6822 } 6823 } 6824 rcu_read_unlock(); 6825 } 6826 out_unlock: 6827 mutex_unlock(&wq_pool_mutex); 6828 return busy; 6829 } 6830 6831 /** 6832 * thaw_workqueues - thaw workqueues 6833 * 6834 * Thaw workqueues. Normal queueing is restored and all collected 6835 * frozen works are transferred to their respective pool worklists. 6836 * 6837 * CONTEXT: 6838 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6839 */ 6840 void thaw_workqueues(void) 6841 { 6842 struct workqueue_struct *wq; 6843 6844 mutex_lock(&wq_pool_mutex); 6845 6846 if (!workqueue_freezing) 6847 goto out_unlock; 6848 6849 workqueue_freezing = false; 6850 6851 /* restore max_active and repopulate worklist */ 6852 list_for_each_entry(wq, &workqueues, list) { 6853 mutex_lock(&wq->mutex); 6854 wq_adjust_max_active(wq); 6855 mutex_unlock(&wq->mutex); 6856 } 6857 6858 out_unlock: 6859 mutex_unlock(&wq_pool_mutex); 6860 } 6861 #endif /* CONFIG_FREEZER */ 6862 6863 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 6864 { 6865 LIST_HEAD(ctxs); 6866 int ret = 0; 6867 struct workqueue_struct *wq; 6868 struct apply_wqattrs_ctx *ctx, *n; 6869 6870 lockdep_assert_held(&wq_pool_mutex); 6871 6872 list_for_each_entry(wq, &workqueues, list) { 6873 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING)) 6874 continue; 6875 6876 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 6877 if (IS_ERR(ctx)) { 6878 ret = PTR_ERR(ctx); 6879 break; 6880 } 6881 6882 list_add_tail(&ctx->list, &ctxs); 6883 } 6884 6885 list_for_each_entry_safe(ctx, n, &ctxs, list) { 6886 if (!ret) 6887 apply_wqattrs_commit(ctx); 6888 apply_wqattrs_cleanup(ctx); 6889 } 6890 6891 if (!ret) { 6892 mutex_lock(&wq_pool_attach_mutex); 6893 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 6894 mutex_unlock(&wq_pool_attach_mutex); 6895 } 6896 return ret; 6897 } 6898 6899 /** 6900 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask 6901 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask 6902 * 6903 * This function can be called from cpuset code to provide a set of isolated 6904 * CPUs that should be excluded from wq_unbound_cpumask. 6905 */ 6906 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) 6907 { 6908 cpumask_var_t cpumask; 6909 int ret = 0; 6910 6911 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6912 return -ENOMEM; 6913 6914 mutex_lock(&wq_pool_mutex); 6915 6916 /* 6917 * If the operation fails, it will fall back to 6918 * wq_requested_unbound_cpumask which is initially set to 6919 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten 6920 * by any subsequent write to workqueue/cpumask sysfs file. 6921 */ 6922 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask)) 6923 cpumask_copy(cpumask, wq_requested_unbound_cpumask); 6924 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 6925 ret = workqueue_apply_unbound_cpumask(cpumask); 6926 6927 /* Save the current isolated cpumask & export it via sysfs */ 6928 if (!ret) 6929 cpumask_copy(wq_isolated_cpumask, exclude_cpumask); 6930 6931 mutex_unlock(&wq_pool_mutex); 6932 free_cpumask_var(cpumask); 6933 return ret; 6934 } 6935 6936 static int parse_affn_scope(const char *val) 6937 { 6938 int i; 6939 6940 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 6941 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 6942 return i; 6943 } 6944 return -EINVAL; 6945 } 6946 6947 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 6948 { 6949 struct workqueue_struct *wq; 6950 int affn, cpu; 6951 6952 affn = parse_affn_scope(val); 6953 if (affn < 0) 6954 return affn; 6955 if (affn == WQ_AFFN_DFL) 6956 return -EINVAL; 6957 6958 cpus_read_lock(); 6959 mutex_lock(&wq_pool_mutex); 6960 6961 wq_affn_dfl = affn; 6962 6963 list_for_each_entry(wq, &workqueues, list) { 6964 for_each_online_cpu(cpu) 6965 unbound_wq_update_pwq(wq, cpu); 6966 } 6967 6968 mutex_unlock(&wq_pool_mutex); 6969 cpus_read_unlock(); 6970 6971 return 0; 6972 } 6973 6974 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 6975 { 6976 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 6977 } 6978 6979 static const struct kernel_param_ops wq_affn_dfl_ops = { 6980 .set = wq_affn_dfl_set, 6981 .get = wq_affn_dfl_get, 6982 }; 6983 6984 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 6985 6986 #ifdef CONFIG_SYSFS 6987 /* 6988 * Workqueues with WQ_SYSFS flag set is visible to userland via 6989 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 6990 * following attributes. 6991 * 6992 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 6993 * max_active RW int : maximum number of in-flight work items 6994 * 6995 * Unbound workqueues have the following extra attributes. 6996 * 6997 * nice RW int : nice value of the workers 6998 * cpumask RW mask : bitmask of allowed CPUs for the workers 6999 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 7000 * affinity_strict RW bool : worker CPU affinity is strict 7001 */ 7002 struct wq_device { 7003 struct workqueue_struct *wq; 7004 struct device dev; 7005 }; 7006 7007 static struct workqueue_struct *dev_to_wq(struct device *dev) 7008 { 7009 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7010 7011 return wq_dev->wq; 7012 } 7013 7014 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 7015 char *buf) 7016 { 7017 struct workqueue_struct *wq = dev_to_wq(dev); 7018 7019 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 7020 } 7021 static DEVICE_ATTR_RO(per_cpu); 7022 7023 static ssize_t max_active_show(struct device *dev, 7024 struct device_attribute *attr, char *buf) 7025 { 7026 struct workqueue_struct *wq = dev_to_wq(dev); 7027 7028 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 7029 } 7030 7031 static ssize_t max_active_store(struct device *dev, 7032 struct device_attribute *attr, const char *buf, 7033 size_t count) 7034 { 7035 struct workqueue_struct *wq = dev_to_wq(dev); 7036 int val; 7037 7038 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 7039 return -EINVAL; 7040 7041 workqueue_set_max_active(wq, val); 7042 return count; 7043 } 7044 static DEVICE_ATTR_RW(max_active); 7045 7046 static struct attribute *wq_sysfs_attrs[] = { 7047 &dev_attr_per_cpu.attr, 7048 &dev_attr_max_active.attr, 7049 NULL, 7050 }; 7051 ATTRIBUTE_GROUPS(wq_sysfs); 7052 7053 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 7054 char *buf) 7055 { 7056 struct workqueue_struct *wq = dev_to_wq(dev); 7057 int written; 7058 7059 mutex_lock(&wq->mutex); 7060 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 7061 mutex_unlock(&wq->mutex); 7062 7063 return written; 7064 } 7065 7066 /* prepare workqueue_attrs for sysfs store operations */ 7067 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 7068 { 7069 struct workqueue_attrs *attrs; 7070 7071 lockdep_assert_held(&wq_pool_mutex); 7072 7073 attrs = alloc_workqueue_attrs(); 7074 if (!attrs) 7075 return NULL; 7076 7077 copy_workqueue_attrs(attrs, wq->unbound_attrs); 7078 return attrs; 7079 } 7080 7081 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 7082 const char *buf, size_t count) 7083 { 7084 struct workqueue_struct *wq = dev_to_wq(dev); 7085 struct workqueue_attrs *attrs; 7086 int ret = -ENOMEM; 7087 7088 apply_wqattrs_lock(); 7089 7090 attrs = wq_sysfs_prep_attrs(wq); 7091 if (!attrs) 7092 goto out_unlock; 7093 7094 if (sscanf(buf, "%d", &attrs->nice) == 1 && 7095 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 7096 ret = apply_workqueue_attrs_locked(wq, attrs); 7097 else 7098 ret = -EINVAL; 7099 7100 out_unlock: 7101 apply_wqattrs_unlock(); 7102 free_workqueue_attrs(attrs); 7103 return ret ?: count; 7104 } 7105 7106 static ssize_t wq_cpumask_show(struct device *dev, 7107 struct device_attribute *attr, char *buf) 7108 { 7109 struct workqueue_struct *wq = dev_to_wq(dev); 7110 int written; 7111 7112 mutex_lock(&wq->mutex); 7113 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 7114 cpumask_pr_args(wq->unbound_attrs->cpumask)); 7115 mutex_unlock(&wq->mutex); 7116 return written; 7117 } 7118 7119 static ssize_t wq_cpumask_store(struct device *dev, 7120 struct device_attribute *attr, 7121 const char *buf, size_t count) 7122 { 7123 struct workqueue_struct *wq = dev_to_wq(dev); 7124 struct workqueue_attrs *attrs; 7125 int ret = -ENOMEM; 7126 7127 apply_wqattrs_lock(); 7128 7129 attrs = wq_sysfs_prep_attrs(wq); 7130 if (!attrs) 7131 goto out_unlock; 7132 7133 ret = cpumask_parse(buf, attrs->cpumask); 7134 if (!ret) 7135 ret = apply_workqueue_attrs_locked(wq, attrs); 7136 7137 out_unlock: 7138 apply_wqattrs_unlock(); 7139 free_workqueue_attrs(attrs); 7140 return ret ?: count; 7141 } 7142 7143 static ssize_t wq_affn_scope_show(struct device *dev, 7144 struct device_attribute *attr, char *buf) 7145 { 7146 struct workqueue_struct *wq = dev_to_wq(dev); 7147 int written; 7148 7149 mutex_lock(&wq->mutex); 7150 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 7151 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 7152 wq_affn_names[WQ_AFFN_DFL], 7153 wq_affn_names[wq_affn_dfl]); 7154 else 7155 written = scnprintf(buf, PAGE_SIZE, "%s\n", 7156 wq_affn_names[wq->unbound_attrs->affn_scope]); 7157 mutex_unlock(&wq->mutex); 7158 7159 return written; 7160 } 7161 7162 static ssize_t wq_affn_scope_store(struct device *dev, 7163 struct device_attribute *attr, 7164 const char *buf, size_t count) 7165 { 7166 struct workqueue_struct *wq = dev_to_wq(dev); 7167 struct workqueue_attrs *attrs; 7168 int affn, ret = -ENOMEM; 7169 7170 affn = parse_affn_scope(buf); 7171 if (affn < 0) 7172 return affn; 7173 7174 apply_wqattrs_lock(); 7175 attrs = wq_sysfs_prep_attrs(wq); 7176 if (attrs) { 7177 attrs->affn_scope = affn; 7178 ret = apply_workqueue_attrs_locked(wq, attrs); 7179 } 7180 apply_wqattrs_unlock(); 7181 free_workqueue_attrs(attrs); 7182 return ret ?: count; 7183 } 7184 7185 static ssize_t wq_affinity_strict_show(struct device *dev, 7186 struct device_attribute *attr, char *buf) 7187 { 7188 struct workqueue_struct *wq = dev_to_wq(dev); 7189 7190 return scnprintf(buf, PAGE_SIZE, "%d\n", 7191 wq->unbound_attrs->affn_strict); 7192 } 7193 7194 static ssize_t wq_affinity_strict_store(struct device *dev, 7195 struct device_attribute *attr, 7196 const char *buf, size_t count) 7197 { 7198 struct workqueue_struct *wq = dev_to_wq(dev); 7199 struct workqueue_attrs *attrs; 7200 int v, ret = -ENOMEM; 7201 7202 if (sscanf(buf, "%d", &v) != 1) 7203 return -EINVAL; 7204 7205 apply_wqattrs_lock(); 7206 attrs = wq_sysfs_prep_attrs(wq); 7207 if (attrs) { 7208 attrs->affn_strict = (bool)v; 7209 ret = apply_workqueue_attrs_locked(wq, attrs); 7210 } 7211 apply_wqattrs_unlock(); 7212 free_workqueue_attrs(attrs); 7213 return ret ?: count; 7214 } 7215 7216 static struct device_attribute wq_sysfs_unbound_attrs[] = { 7217 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 7218 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 7219 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 7220 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 7221 __ATTR_NULL, 7222 }; 7223 7224 static const struct bus_type wq_subsys = { 7225 .name = "workqueue", 7226 .dev_groups = wq_sysfs_groups, 7227 }; 7228 7229 /** 7230 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 7231 * @cpumask: the cpumask to set 7232 * 7233 * The low-level workqueues cpumask is a global cpumask that limits 7234 * the affinity of all unbound workqueues. This function check the @cpumask 7235 * and apply it to all unbound workqueues and updates all pwqs of them. 7236 * 7237 * Return: 0 - Success 7238 * -EINVAL - Invalid @cpumask 7239 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 7240 */ 7241 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 7242 { 7243 int ret = -EINVAL; 7244 7245 /* 7246 * Not excluding isolated cpus on purpose. 7247 * If the user wishes to include them, we allow that. 7248 */ 7249 cpumask_and(cpumask, cpumask, cpu_possible_mask); 7250 if (!cpumask_empty(cpumask)) { 7251 ret = 0; 7252 apply_wqattrs_lock(); 7253 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 7254 ret = workqueue_apply_unbound_cpumask(cpumask); 7255 if (!ret) 7256 cpumask_copy(wq_requested_unbound_cpumask, cpumask); 7257 apply_wqattrs_unlock(); 7258 } 7259 7260 return ret; 7261 } 7262 7263 static ssize_t __wq_cpumask_show(struct device *dev, 7264 struct device_attribute *attr, char *buf, cpumask_var_t mask) 7265 { 7266 int written; 7267 7268 mutex_lock(&wq_pool_mutex); 7269 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 7270 mutex_unlock(&wq_pool_mutex); 7271 7272 return written; 7273 } 7274 7275 static ssize_t cpumask_requested_show(struct device *dev, 7276 struct device_attribute *attr, char *buf) 7277 { 7278 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask); 7279 } 7280 static DEVICE_ATTR_RO(cpumask_requested); 7281 7282 static ssize_t cpumask_isolated_show(struct device *dev, 7283 struct device_attribute *attr, char *buf) 7284 { 7285 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask); 7286 } 7287 static DEVICE_ATTR_RO(cpumask_isolated); 7288 7289 static ssize_t cpumask_show(struct device *dev, 7290 struct device_attribute *attr, char *buf) 7291 { 7292 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask); 7293 } 7294 7295 static ssize_t cpumask_store(struct device *dev, 7296 struct device_attribute *attr, const char *buf, size_t count) 7297 { 7298 cpumask_var_t cpumask; 7299 int ret; 7300 7301 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 7302 return -ENOMEM; 7303 7304 ret = cpumask_parse(buf, cpumask); 7305 if (!ret) 7306 ret = workqueue_set_unbound_cpumask(cpumask); 7307 7308 free_cpumask_var(cpumask); 7309 return ret ? ret : count; 7310 } 7311 static DEVICE_ATTR_RW(cpumask); 7312 7313 static struct attribute *wq_sysfs_cpumask_attrs[] = { 7314 &dev_attr_cpumask.attr, 7315 &dev_attr_cpumask_requested.attr, 7316 &dev_attr_cpumask_isolated.attr, 7317 NULL, 7318 }; 7319 ATTRIBUTE_GROUPS(wq_sysfs_cpumask); 7320 7321 static int __init wq_sysfs_init(void) 7322 { 7323 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups); 7324 } 7325 core_initcall(wq_sysfs_init); 7326 7327 static void wq_device_release(struct device *dev) 7328 { 7329 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7330 7331 kfree(wq_dev); 7332 } 7333 7334 /** 7335 * workqueue_sysfs_register - make a workqueue visible in sysfs 7336 * @wq: the workqueue to register 7337 * 7338 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 7339 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 7340 * which is the preferred method. 7341 * 7342 * Workqueue user should use this function directly iff it wants to apply 7343 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 7344 * apply_workqueue_attrs() may race against userland updating the 7345 * attributes. 7346 * 7347 * Return: 0 on success, -errno on failure. 7348 */ 7349 int workqueue_sysfs_register(struct workqueue_struct *wq) 7350 { 7351 struct wq_device *wq_dev; 7352 int ret; 7353 7354 /* 7355 * Adjusting max_active breaks ordering guarantee. Disallow exposing 7356 * ordered workqueues. 7357 */ 7358 if (WARN_ON(wq->flags & __WQ_ORDERED)) 7359 return -EINVAL; 7360 7361 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 7362 if (!wq_dev) 7363 return -ENOMEM; 7364 7365 wq_dev->wq = wq; 7366 wq_dev->dev.bus = &wq_subsys; 7367 wq_dev->dev.release = wq_device_release; 7368 dev_set_name(&wq_dev->dev, "%s", wq->name); 7369 7370 /* 7371 * unbound_attrs are created separately. Suppress uevent until 7372 * everything is ready. 7373 */ 7374 dev_set_uevent_suppress(&wq_dev->dev, true); 7375 7376 ret = device_register(&wq_dev->dev); 7377 if (ret) { 7378 put_device(&wq_dev->dev); 7379 wq->wq_dev = NULL; 7380 return ret; 7381 } 7382 7383 if (wq->flags & WQ_UNBOUND) { 7384 struct device_attribute *attr; 7385 7386 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 7387 ret = device_create_file(&wq_dev->dev, attr); 7388 if (ret) { 7389 device_unregister(&wq_dev->dev); 7390 wq->wq_dev = NULL; 7391 return ret; 7392 } 7393 } 7394 } 7395 7396 dev_set_uevent_suppress(&wq_dev->dev, false); 7397 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 7398 return 0; 7399 } 7400 7401 /** 7402 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 7403 * @wq: the workqueue to unregister 7404 * 7405 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 7406 */ 7407 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 7408 { 7409 struct wq_device *wq_dev = wq->wq_dev; 7410 7411 if (!wq->wq_dev) 7412 return; 7413 7414 wq->wq_dev = NULL; 7415 device_unregister(&wq_dev->dev); 7416 } 7417 #else /* CONFIG_SYSFS */ 7418 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 7419 #endif /* CONFIG_SYSFS */ 7420 7421 /* 7422 * Workqueue watchdog. 7423 * 7424 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 7425 * flush dependency, a concurrency managed work item which stays RUNNING 7426 * indefinitely. Workqueue stalls can be very difficult to debug as the 7427 * usual warning mechanisms don't trigger and internal workqueue state is 7428 * largely opaque. 7429 * 7430 * Workqueue watchdog monitors all worker pools periodically and dumps 7431 * state if some pools failed to make forward progress for a while where 7432 * forward progress is defined as the first item on ->worklist changing. 7433 * 7434 * This mechanism is controlled through the kernel parameter 7435 * "workqueue.watchdog_thresh" which can be updated at runtime through the 7436 * corresponding sysfs parameter file. 7437 */ 7438 #ifdef CONFIG_WQ_WATCHDOG 7439 7440 static unsigned long wq_watchdog_thresh = 30; 7441 static struct timer_list wq_watchdog_timer; 7442 7443 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 7444 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 7445 7446 static unsigned int wq_panic_on_stall; 7447 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644); 7448 7449 /* 7450 * Show workers that might prevent the processing of pending work items. 7451 * The only candidates are CPU-bound workers in the running state. 7452 * Pending work items should be handled by another idle worker 7453 * in all other situations. 7454 */ 7455 static void show_cpu_pool_hog(struct worker_pool *pool) 7456 { 7457 struct worker *worker; 7458 unsigned long irq_flags; 7459 int bkt; 7460 7461 raw_spin_lock_irqsave(&pool->lock, irq_flags); 7462 7463 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 7464 if (task_is_running(worker->task)) { 7465 /* 7466 * Defer printing to avoid deadlocks in console 7467 * drivers that queue work while holding locks 7468 * also taken in their write paths. 7469 */ 7470 printk_deferred_enter(); 7471 7472 pr_info("pool %d:\n", pool->id); 7473 sched_show_task(worker->task); 7474 7475 printk_deferred_exit(); 7476 } 7477 } 7478 7479 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 7480 } 7481 7482 static void show_cpu_pools_hogs(void) 7483 { 7484 struct worker_pool *pool; 7485 int pi; 7486 7487 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 7488 7489 rcu_read_lock(); 7490 7491 for_each_pool(pool, pi) { 7492 if (pool->cpu_stall) 7493 show_cpu_pool_hog(pool); 7494 7495 } 7496 7497 rcu_read_unlock(); 7498 } 7499 7500 static void panic_on_wq_watchdog(void) 7501 { 7502 static unsigned int wq_stall; 7503 7504 if (wq_panic_on_stall) { 7505 wq_stall++; 7506 BUG_ON(wq_stall >= wq_panic_on_stall); 7507 } 7508 } 7509 7510 static void wq_watchdog_reset_touched(void) 7511 { 7512 int cpu; 7513 7514 wq_watchdog_touched = jiffies; 7515 for_each_possible_cpu(cpu) 7516 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7517 } 7518 7519 static void wq_watchdog_timer_fn(struct timer_list *unused) 7520 { 7521 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7522 bool lockup_detected = false; 7523 bool cpu_pool_stall = false; 7524 unsigned long now = jiffies; 7525 struct worker_pool *pool; 7526 int pi; 7527 7528 if (!thresh) 7529 return; 7530 7531 rcu_read_lock(); 7532 7533 for_each_pool(pool, pi) { 7534 unsigned long pool_ts, touched, ts; 7535 7536 pool->cpu_stall = false; 7537 if (list_empty(&pool->worklist)) 7538 continue; 7539 7540 /* 7541 * If a virtual machine is stopped by the host it can look to 7542 * the watchdog like a stall. 7543 */ 7544 kvm_check_and_clear_guest_paused(); 7545 7546 /* get the latest of pool and touched timestamps */ 7547 if (pool->cpu >= 0) 7548 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 7549 else 7550 touched = READ_ONCE(wq_watchdog_touched); 7551 pool_ts = READ_ONCE(pool->watchdog_ts); 7552 7553 if (time_after(pool_ts, touched)) 7554 ts = pool_ts; 7555 else 7556 ts = touched; 7557 7558 /* did we stall? */ 7559 if (time_after(now, ts + thresh)) { 7560 lockup_detected = true; 7561 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) { 7562 pool->cpu_stall = true; 7563 cpu_pool_stall = true; 7564 } 7565 pr_emerg("BUG: workqueue lockup - pool"); 7566 pr_cont_pool_info(pool); 7567 pr_cont(" stuck for %us!\n", 7568 jiffies_to_msecs(now - pool_ts) / 1000); 7569 } 7570 7571 7572 } 7573 7574 rcu_read_unlock(); 7575 7576 if (lockup_detected) 7577 show_all_workqueues(); 7578 7579 if (cpu_pool_stall) 7580 show_cpu_pools_hogs(); 7581 7582 if (lockup_detected) 7583 panic_on_wq_watchdog(); 7584 7585 wq_watchdog_reset_touched(); 7586 mod_timer(&wq_watchdog_timer, jiffies + thresh); 7587 } 7588 7589 notrace void wq_watchdog_touch(int cpu) 7590 { 7591 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7592 unsigned long touch_ts = READ_ONCE(wq_watchdog_touched); 7593 unsigned long now = jiffies; 7594 7595 if (cpu >= 0) 7596 per_cpu(wq_watchdog_touched_cpu, cpu) = now; 7597 else 7598 WARN_ONCE(1, "%s should be called with valid CPU", __func__); 7599 7600 /* Don't unnecessarily store to global cacheline */ 7601 if (time_after(now, touch_ts + thresh / 4)) 7602 WRITE_ONCE(wq_watchdog_touched, jiffies); 7603 } 7604 7605 static void wq_watchdog_set_thresh(unsigned long thresh) 7606 { 7607 wq_watchdog_thresh = 0; 7608 del_timer_sync(&wq_watchdog_timer); 7609 7610 if (thresh) { 7611 wq_watchdog_thresh = thresh; 7612 wq_watchdog_reset_touched(); 7613 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 7614 } 7615 } 7616 7617 static int wq_watchdog_param_set_thresh(const char *val, 7618 const struct kernel_param *kp) 7619 { 7620 unsigned long thresh; 7621 int ret; 7622 7623 ret = kstrtoul(val, 0, &thresh); 7624 if (ret) 7625 return ret; 7626 7627 if (system_wq) 7628 wq_watchdog_set_thresh(thresh); 7629 else 7630 wq_watchdog_thresh = thresh; 7631 7632 return 0; 7633 } 7634 7635 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 7636 .set = wq_watchdog_param_set_thresh, 7637 .get = param_get_ulong, 7638 }; 7639 7640 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 7641 0644); 7642 7643 static void wq_watchdog_init(void) 7644 { 7645 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 7646 wq_watchdog_set_thresh(wq_watchdog_thresh); 7647 } 7648 7649 #else /* CONFIG_WQ_WATCHDOG */ 7650 7651 static inline void wq_watchdog_init(void) { } 7652 7653 #endif /* CONFIG_WQ_WATCHDOG */ 7654 7655 static void bh_pool_kick_normal(struct irq_work *irq_work) 7656 { 7657 raise_softirq_irqoff(TASKLET_SOFTIRQ); 7658 } 7659 7660 static void bh_pool_kick_highpri(struct irq_work *irq_work) 7661 { 7662 raise_softirq_irqoff(HI_SOFTIRQ); 7663 } 7664 7665 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 7666 { 7667 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 7668 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 7669 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 7670 return; 7671 } 7672 7673 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 7674 } 7675 7676 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice) 7677 { 7678 BUG_ON(init_worker_pool(pool)); 7679 pool->cpu = cpu; 7680 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 7681 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 7682 pool->attrs->nice = nice; 7683 pool->attrs->affn_strict = true; 7684 pool->node = cpu_to_node(cpu); 7685 7686 /* alloc pool ID */ 7687 mutex_lock(&wq_pool_mutex); 7688 BUG_ON(worker_pool_assign_id(pool)); 7689 mutex_unlock(&wq_pool_mutex); 7690 } 7691 7692 /** 7693 * workqueue_init_early - early init for workqueue subsystem 7694 * 7695 * This is the first step of three-staged workqueue subsystem initialization and 7696 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 7697 * up. It sets up all the data structures and system workqueues and allows early 7698 * boot code to create workqueues and queue/cancel work items. Actual work item 7699 * execution starts only after kthreads can be created and scheduled right 7700 * before early initcalls. 7701 */ 7702 void __init workqueue_init_early(void) 7703 { 7704 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 7705 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 7706 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal, 7707 bh_pool_kick_highpri }; 7708 int i, cpu; 7709 7710 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 7711 7712 BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL)); 7713 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 7714 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); 7715 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); 7716 7717 cpumask_copy(wq_online_cpumask, cpu_online_mask); 7718 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 7719 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 7720 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 7721 if (!cpumask_empty(&wq_cmdline_cpumask)) 7722 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 7723 7724 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask); 7725 7726 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 7727 7728 unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs(); 7729 BUG_ON(!unbound_wq_update_pwq_attrs_buf); 7730 7731 /* 7732 * If nohz_full is enabled, set power efficient workqueue as unbound. 7733 * This allows workqueue items to be moved to HK CPUs. 7734 */ 7735 if (housekeeping_enabled(HK_TYPE_TICK)) 7736 wq_power_efficient = true; 7737 7738 /* initialize WQ_AFFN_SYSTEM pods */ 7739 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7740 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 7741 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7742 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 7743 7744 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 7745 7746 pt->nr_pods = 1; 7747 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 7748 pt->pod_node[0] = NUMA_NO_NODE; 7749 pt->cpu_pod[0] = 0; 7750 7751 /* initialize BH and CPU pools */ 7752 for_each_possible_cpu(cpu) { 7753 struct worker_pool *pool; 7754 7755 i = 0; 7756 for_each_bh_worker_pool(pool, cpu) { 7757 init_cpu_worker_pool(pool, cpu, std_nice[i]); 7758 pool->flags |= POOL_BH; 7759 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]); 7760 i++; 7761 } 7762 7763 i = 0; 7764 for_each_cpu_worker_pool(pool, cpu) 7765 init_cpu_worker_pool(pool, cpu, std_nice[i++]); 7766 } 7767 7768 /* create default unbound and ordered wq attrs */ 7769 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 7770 struct workqueue_attrs *attrs; 7771 7772 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7773 attrs->nice = std_nice[i]; 7774 unbound_std_wq_attrs[i] = attrs; 7775 7776 /* 7777 * An ordered wq should have only one pwq as ordering is 7778 * guaranteed by max_active which is enforced by pwqs. 7779 */ 7780 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7781 attrs->nice = std_nice[i]; 7782 attrs->ordered = true; 7783 ordered_wq_attrs[i] = attrs; 7784 } 7785 7786 system_wq = alloc_workqueue("events", 0, 0); 7787 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 7788 system_long_wq = alloc_workqueue("events_long", 0, 0); 7789 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 7790 WQ_MAX_ACTIVE); 7791 system_freezable_wq = alloc_workqueue("events_freezable", 7792 WQ_FREEZABLE, 0); 7793 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 7794 WQ_POWER_EFFICIENT, 0); 7795 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient", 7796 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 7797 0); 7798 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0); 7799 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri", 7800 WQ_BH | WQ_HIGHPRI, 0); 7801 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 7802 !system_unbound_wq || !system_freezable_wq || 7803 !system_power_efficient_wq || 7804 !system_freezable_power_efficient_wq || 7805 !system_bh_wq || !system_bh_highpri_wq); 7806 } 7807 7808 static void __init wq_cpu_intensive_thresh_init(void) 7809 { 7810 unsigned long thresh; 7811 unsigned long bogo; 7812 7813 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); 7814 BUG_ON(IS_ERR(pwq_release_worker)); 7815 7816 /* if the user set it to a specific value, keep it */ 7817 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 7818 return; 7819 7820 /* 7821 * The default of 10ms is derived from the fact that most modern (as of 7822 * 2023) processors can do a lot in 10ms and that it's just below what 7823 * most consider human-perceivable. However, the kernel also runs on a 7824 * lot slower CPUs including microcontrollers where the threshold is way 7825 * too low. 7826 * 7827 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 7828 * This is by no means accurate but it doesn't have to be. The mechanism 7829 * is still useful even when the threshold is fully scaled up. Also, as 7830 * the reports would usually be applicable to everyone, some machines 7831 * operating on longer thresholds won't significantly diminish their 7832 * usefulness. 7833 */ 7834 thresh = 10 * USEC_PER_MSEC; 7835 7836 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 7837 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 7838 if (bogo < 4000) 7839 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 7840 7841 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 7842 loops_per_jiffy, bogo, thresh); 7843 7844 wq_cpu_intensive_thresh_us = thresh; 7845 } 7846 7847 /** 7848 * workqueue_init - bring workqueue subsystem fully online 7849 * 7850 * This is the second step of three-staged workqueue subsystem initialization 7851 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 7852 * been created and work items queued on them, but there are no kworkers 7853 * executing the work items yet. Populate the worker pools with the initial 7854 * workers and enable future kworker creations. 7855 */ 7856 void __init workqueue_init(void) 7857 { 7858 struct workqueue_struct *wq; 7859 struct worker_pool *pool; 7860 int cpu, bkt; 7861 7862 wq_cpu_intensive_thresh_init(); 7863 7864 mutex_lock(&wq_pool_mutex); 7865 7866 /* 7867 * Per-cpu pools created earlier could be missing node hint. Fix them 7868 * up. Also, create a rescuer for workqueues that requested it. 7869 */ 7870 for_each_possible_cpu(cpu) { 7871 for_each_bh_worker_pool(pool, cpu) 7872 pool->node = cpu_to_node(cpu); 7873 for_each_cpu_worker_pool(pool, cpu) 7874 pool->node = cpu_to_node(cpu); 7875 } 7876 7877 list_for_each_entry(wq, &workqueues, list) { 7878 WARN(init_rescuer(wq), 7879 "workqueue: failed to create early rescuer for %s", 7880 wq->name); 7881 } 7882 7883 mutex_unlock(&wq_pool_mutex); 7884 7885 /* 7886 * Create the initial workers. A BH pool has one pseudo worker that 7887 * represents the shared BH execution context and thus doesn't get 7888 * affected by hotplug events. Create the BH pseudo workers for all 7889 * possible CPUs here. 7890 */ 7891 for_each_possible_cpu(cpu) 7892 for_each_bh_worker_pool(pool, cpu) 7893 BUG_ON(!create_worker(pool)); 7894 7895 for_each_online_cpu(cpu) { 7896 for_each_cpu_worker_pool(pool, cpu) { 7897 pool->flags &= ~POOL_DISASSOCIATED; 7898 BUG_ON(!create_worker(pool)); 7899 } 7900 } 7901 7902 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 7903 BUG_ON(!create_worker(pool)); 7904 7905 wq_online = true; 7906 wq_watchdog_init(); 7907 } 7908 7909 /* 7910 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 7911 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 7912 * and consecutive pod ID. The rest of @pt is initialized accordingly. 7913 */ 7914 static void __init init_pod_type(struct wq_pod_type *pt, 7915 bool (*cpus_share_pod)(int, int)) 7916 { 7917 int cur, pre, cpu, pod; 7918 7919 pt->nr_pods = 0; 7920 7921 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 7922 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7923 BUG_ON(!pt->cpu_pod); 7924 7925 for_each_possible_cpu(cur) { 7926 for_each_possible_cpu(pre) { 7927 if (pre >= cur) { 7928 pt->cpu_pod[cur] = pt->nr_pods++; 7929 break; 7930 } 7931 if (cpus_share_pod(cur, pre)) { 7932 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 7933 break; 7934 } 7935 } 7936 } 7937 7938 /* init the rest to match @pt->cpu_pod[] */ 7939 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7940 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 7941 BUG_ON(!pt->pod_cpus || !pt->pod_node); 7942 7943 for (pod = 0; pod < pt->nr_pods; pod++) 7944 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 7945 7946 for_each_possible_cpu(cpu) { 7947 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 7948 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 7949 } 7950 } 7951 7952 static bool __init cpus_dont_share(int cpu0, int cpu1) 7953 { 7954 return false; 7955 } 7956 7957 static bool __init cpus_share_smt(int cpu0, int cpu1) 7958 { 7959 #ifdef CONFIG_SCHED_SMT 7960 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 7961 #else 7962 return false; 7963 #endif 7964 } 7965 7966 static bool __init cpus_share_numa(int cpu0, int cpu1) 7967 { 7968 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 7969 } 7970 7971 /** 7972 * workqueue_init_topology - initialize CPU pods for unbound workqueues 7973 * 7974 * This is the third step of three-staged workqueue subsystem initialization and 7975 * invoked after SMP and topology information are fully initialized. It 7976 * initializes the unbound CPU pods accordingly. 7977 */ 7978 void __init workqueue_init_topology(void) 7979 { 7980 struct workqueue_struct *wq; 7981 int cpu; 7982 7983 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 7984 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 7985 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 7986 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 7987 7988 wq_topo_initialized = true; 7989 7990 mutex_lock(&wq_pool_mutex); 7991 7992 /* 7993 * Workqueues allocated earlier would have all CPUs sharing the default 7994 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue 7995 * and CPU combinations to apply per-pod sharing. 7996 */ 7997 list_for_each_entry(wq, &workqueues, list) { 7998 for_each_online_cpu(cpu) 7999 unbound_wq_update_pwq(wq, cpu); 8000 if (wq->flags & WQ_UNBOUND) { 8001 mutex_lock(&wq->mutex); 8002 wq_update_node_max_active(wq, -1); 8003 mutex_unlock(&wq->mutex); 8004 } 8005 } 8006 8007 mutex_unlock(&wq_pool_mutex); 8008 } 8009 8010 void __warn_flushing_systemwide_wq(void) 8011 { 8012 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 8013 dump_stack(); 8014 } 8015 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 8016 8017 static int __init workqueue_unbound_cpus_setup(char *str) 8018 { 8019 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 8020 cpumask_clear(&wq_cmdline_cpumask); 8021 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 8022 } 8023 8024 return 1; 8025 } 8026 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 8027