xref: /linux-6.15/kernel/workqueue.c (revision e756bc56)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <[email protected]>
8  *     Andrew Morton
9  *     Kai Petzke <[email protected]>
10  *     Theodore Ts'o <[email protected]>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <[email protected]>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * manager_mutex to avoid changing binding state while
69 	 * create_worker() is in progress.
70 	 */
71 	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
72 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73 	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
74 
75 	/* worker flags */
76 	WORKER_STARTED		= 1 << 0,	/* started */
77 	WORKER_DIE		= 1 << 1,	/* die die die */
78 	WORKER_IDLE		= 1 << 2,	/* is idle */
79 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83 
84 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
85 				  WORKER_UNBOUND | WORKER_REBOUND,
86 
87 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88 
89 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
90 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91 
92 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
93 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
94 
95 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
96 						/* call for help after 10ms
97 						   (min two ticks) */
98 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
99 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
100 
101 	/*
102 	 * Rescue workers are used only on emergencies and shared by
103 	 * all cpus.  Give -20.
104 	 */
105 	RESCUER_NICE_LEVEL	= -20,
106 	HIGHPRI_NICE_LEVEL	= -20,
107 
108 	WQ_NAME_LEN		= 24,
109 };
110 
111 /*
112  * Structure fields follow one of the following exclusion rules.
113  *
114  * I: Modifiable by initialization/destruction paths and read-only for
115  *    everyone else.
116  *
117  * P: Preemption protected.  Disabling preemption is enough and should
118  *    only be modified and accessed from the local cpu.
119  *
120  * L: pool->lock protected.  Access with pool->lock held.
121  *
122  * X: During normal operation, modification requires pool->lock and should
123  *    be done only from local cpu.  Either disabling preemption on local
124  *    cpu or grabbing pool->lock is enough for read access.  If
125  *    POOL_DISASSOCIATED is set, it's identical to L.
126  *
127  * MG: pool->manager_mutex and pool->lock protected.  Writes require both
128  *     locks.  Reads can happen under either lock.
129  *
130  * PL: wq_pool_mutex protected.
131  *
132  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
133  *
134  * WQ: wq->mutex protected.
135  *
136  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
137  *
138  * MD: wq_mayday_lock protected.
139  */
140 
141 /* struct worker is defined in workqueue_internal.h */
142 
143 struct worker_pool {
144 	spinlock_t		lock;		/* the pool lock */
145 	int			cpu;		/* I: the associated cpu */
146 	int			node;		/* I: the associated node ID */
147 	int			id;		/* I: pool ID */
148 	unsigned int		flags;		/* X: flags */
149 
150 	struct list_head	worklist;	/* L: list of pending works */
151 	int			nr_workers;	/* L: total number of workers */
152 
153 	/* nr_idle includes the ones off idle_list for rebinding */
154 	int			nr_idle;	/* L: currently idle ones */
155 
156 	struct list_head	idle_list;	/* X: list of idle workers */
157 	struct timer_list	idle_timer;	/* L: worker idle timeout */
158 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
159 
160 	/* a workers is either on busy_hash or idle_list, or the manager */
161 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
162 						/* L: hash of busy workers */
163 
164 	/* see manage_workers() for details on the two manager mutexes */
165 	struct mutex		manager_arb;	/* manager arbitration */
166 	struct mutex		manager_mutex;	/* manager exclusion */
167 	struct idr		worker_idr;	/* MG: worker IDs and iteration */
168 
169 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
171 	int			refcnt;		/* PL: refcnt for unbound pools */
172 
173 	/*
174 	 * The current concurrency level.  As it's likely to be accessed
175 	 * from other CPUs during try_to_wake_up(), put it in a separate
176 	 * cacheline.
177 	 */
178 	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 
180 	/*
181 	 * Destruction of pool is sched-RCU protected to allow dereferences
182 	 * from get_work_pool().
183 	 */
184 	struct rcu_head		rcu;
185 } ____cacheline_aligned_in_smp;
186 
187 /*
188  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
189  * of work_struct->data are used for flags and the remaining high bits
190  * point to the pwq; thus, pwqs need to be aligned at two's power of the
191  * number of flag bits.
192  */
193 struct pool_workqueue {
194 	struct worker_pool	*pool;		/* I: the associated pool */
195 	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 	int			work_color;	/* L: current color */
197 	int			flush_color;	/* L: flushing color */
198 	int			refcnt;		/* L: reference count */
199 	int			nr_in_flight[WORK_NR_COLORS];
200 						/* L: nr of in_flight works */
201 	int			nr_active;	/* L: nr of active works */
202 	int			max_active;	/* L: max active works */
203 	struct list_head	delayed_works;	/* L: delayed works */
204 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
206 
207 	/*
208 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
209 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
210 	 * itself is also sched-RCU protected so that the first pwq can be
211 	 * determined without grabbing wq->mutex.
212 	 */
213 	struct work_struct	unbound_release_work;
214 	struct rcu_head		rcu;
215 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
216 
217 /*
218  * Structure used to wait for workqueue flush.
219  */
220 struct wq_flusher {
221 	struct list_head	list;		/* WQ: list of flushers */
222 	int			flush_color;	/* WQ: flush color waiting for */
223 	struct completion	done;		/* flush completion */
224 };
225 
226 struct wq_device;
227 
228 /*
229  * The externally visible workqueue.  It relays the issued work items to
230  * the appropriate worker_pool through its pool_workqueues.
231  */
232 struct workqueue_struct {
233 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234 	struct list_head	list;		/* PL: list of all workqueues */
235 
236 	struct mutex		mutex;		/* protects this wq */
237 	int			work_color;	/* WQ: current work color */
238 	int			flush_color;	/* WQ: current flush color */
239 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
241 	struct list_head	flusher_queue;	/* WQ: flush waiters */
242 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243 
244 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 	struct worker		*rescuer;	/* I: rescue worker */
246 
247 	int			nr_drainers;	/* WQ: drain in progress */
248 	int			saved_max_active; /* WQ: saved pwq max_active */
249 
250 	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251 	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252 
253 #ifdef CONFIG_SYSFS
254 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
255 #endif
256 #ifdef CONFIG_LOCKDEP
257 	struct lockdep_map	lockdep_map;
258 #endif
259 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260 
261 	/* hot fields used during command issue, aligned to cacheline */
262 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
263 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
264 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
265 };
266 
267 static struct kmem_cache *pwq_cache;
268 
269 static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
270 static cpumask_var_t *wq_numa_possible_cpumask;
271 					/* possible CPUs of each node */
272 
273 static bool wq_disable_numa;
274 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
275 
276 /* see the comment above the definition of WQ_POWER_EFFICIENT */
277 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
278 static bool wq_power_efficient = true;
279 #else
280 static bool wq_power_efficient;
281 #endif
282 
283 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
284 
285 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
286 
287 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
288 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
289 
290 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
291 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
292 
293 static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
294 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
295 
296 /* the per-cpu worker pools */
297 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
298 				     cpu_worker_pools);
299 
300 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
301 
302 /* PL: hash of all unbound pools keyed by pool->attrs */
303 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
304 
305 /* I: attributes used when instantiating standard unbound pools on demand */
306 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
307 
308 /* I: attributes used when instantiating ordered pools on demand */
309 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
310 
311 struct workqueue_struct *system_wq __read_mostly;
312 EXPORT_SYMBOL(system_wq);
313 struct workqueue_struct *system_highpri_wq __read_mostly;
314 EXPORT_SYMBOL_GPL(system_highpri_wq);
315 struct workqueue_struct *system_long_wq __read_mostly;
316 EXPORT_SYMBOL_GPL(system_long_wq);
317 struct workqueue_struct *system_unbound_wq __read_mostly;
318 EXPORT_SYMBOL_GPL(system_unbound_wq);
319 struct workqueue_struct *system_freezable_wq __read_mostly;
320 EXPORT_SYMBOL_GPL(system_freezable_wq);
321 struct workqueue_struct *system_power_efficient_wq __read_mostly;
322 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
323 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
324 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
325 
326 static int worker_thread(void *__worker);
327 static void copy_workqueue_attrs(struct workqueue_attrs *to,
328 				 const struct workqueue_attrs *from);
329 
330 #define CREATE_TRACE_POINTS
331 #include <trace/events/workqueue.h>
332 
333 #define assert_rcu_or_pool_mutex()					\
334 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
335 			   lockdep_is_held(&wq_pool_mutex),		\
336 			   "sched RCU or wq_pool_mutex should be held")
337 
338 #define assert_rcu_or_wq_mutex(wq)					\
339 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
340 			   lockdep_is_held(&wq->mutex),			\
341 			   "sched RCU or wq->mutex should be held")
342 
343 #ifdef CONFIG_LOCKDEP
344 #define assert_manager_or_pool_lock(pool)				\
345 	WARN_ONCE(debug_locks &&					\
346 		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
347 		  !lockdep_is_held(&(pool)->lock),			\
348 		  "pool->manager_mutex or ->lock should be held")
349 #else
350 #define assert_manager_or_pool_lock(pool)	do { } while (0)
351 #endif
352 
353 #define for_each_cpu_worker_pool(pool, cpu)				\
354 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
355 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
356 	     (pool)++)
357 
358 /**
359  * for_each_pool - iterate through all worker_pools in the system
360  * @pool: iteration cursor
361  * @pi: integer used for iteration
362  *
363  * This must be called either with wq_pool_mutex held or sched RCU read
364  * locked.  If the pool needs to be used beyond the locking in effect, the
365  * caller is responsible for guaranteeing that the pool stays online.
366  *
367  * The if/else clause exists only for the lockdep assertion and can be
368  * ignored.
369  */
370 #define for_each_pool(pool, pi)						\
371 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
372 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
373 		else
374 
375 /**
376  * for_each_pool_worker - iterate through all workers of a worker_pool
377  * @worker: iteration cursor
378  * @wi: integer used for iteration
379  * @pool: worker_pool to iterate workers of
380  *
381  * This must be called with either @pool->manager_mutex or ->lock held.
382  *
383  * The if/else clause exists only for the lockdep assertion and can be
384  * ignored.
385  */
386 #define for_each_pool_worker(worker, wi, pool)				\
387 	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
388 		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
389 		else
390 
391 /**
392  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
393  * @pwq: iteration cursor
394  * @wq: the target workqueue
395  *
396  * This must be called either with wq->mutex held or sched RCU read locked.
397  * If the pwq needs to be used beyond the locking in effect, the caller is
398  * responsible for guaranteeing that the pwq stays online.
399  *
400  * The if/else clause exists only for the lockdep assertion and can be
401  * ignored.
402  */
403 #define for_each_pwq(pwq, wq)						\
404 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
405 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
406 		else
407 
408 #ifdef CONFIG_DEBUG_OBJECTS_WORK
409 
410 static struct debug_obj_descr work_debug_descr;
411 
412 static void *work_debug_hint(void *addr)
413 {
414 	return ((struct work_struct *) addr)->func;
415 }
416 
417 /*
418  * fixup_init is called when:
419  * - an active object is initialized
420  */
421 static int work_fixup_init(void *addr, enum debug_obj_state state)
422 {
423 	struct work_struct *work = addr;
424 
425 	switch (state) {
426 	case ODEBUG_STATE_ACTIVE:
427 		cancel_work_sync(work);
428 		debug_object_init(work, &work_debug_descr);
429 		return 1;
430 	default:
431 		return 0;
432 	}
433 }
434 
435 /*
436  * fixup_activate is called when:
437  * - an active object is activated
438  * - an unknown object is activated (might be a statically initialized object)
439  */
440 static int work_fixup_activate(void *addr, enum debug_obj_state state)
441 {
442 	struct work_struct *work = addr;
443 
444 	switch (state) {
445 
446 	case ODEBUG_STATE_NOTAVAILABLE:
447 		/*
448 		 * This is not really a fixup. The work struct was
449 		 * statically initialized. We just make sure that it
450 		 * is tracked in the object tracker.
451 		 */
452 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
453 			debug_object_init(work, &work_debug_descr);
454 			debug_object_activate(work, &work_debug_descr);
455 			return 0;
456 		}
457 		WARN_ON_ONCE(1);
458 		return 0;
459 
460 	case ODEBUG_STATE_ACTIVE:
461 		WARN_ON(1);
462 
463 	default:
464 		return 0;
465 	}
466 }
467 
468 /*
469  * fixup_free is called when:
470  * - an active object is freed
471  */
472 static int work_fixup_free(void *addr, enum debug_obj_state state)
473 {
474 	struct work_struct *work = addr;
475 
476 	switch (state) {
477 	case ODEBUG_STATE_ACTIVE:
478 		cancel_work_sync(work);
479 		debug_object_free(work, &work_debug_descr);
480 		return 1;
481 	default:
482 		return 0;
483 	}
484 }
485 
486 static struct debug_obj_descr work_debug_descr = {
487 	.name		= "work_struct",
488 	.debug_hint	= work_debug_hint,
489 	.fixup_init	= work_fixup_init,
490 	.fixup_activate	= work_fixup_activate,
491 	.fixup_free	= work_fixup_free,
492 };
493 
494 static inline void debug_work_activate(struct work_struct *work)
495 {
496 	debug_object_activate(work, &work_debug_descr);
497 }
498 
499 static inline void debug_work_deactivate(struct work_struct *work)
500 {
501 	debug_object_deactivate(work, &work_debug_descr);
502 }
503 
504 void __init_work(struct work_struct *work, int onstack)
505 {
506 	if (onstack)
507 		debug_object_init_on_stack(work, &work_debug_descr);
508 	else
509 		debug_object_init(work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(__init_work);
512 
513 void destroy_work_on_stack(struct work_struct *work)
514 {
515 	debug_object_free(work, &work_debug_descr);
516 }
517 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
518 
519 #else
520 static inline void debug_work_activate(struct work_struct *work) { }
521 static inline void debug_work_deactivate(struct work_struct *work) { }
522 #endif
523 
524 /**
525  * worker_pool_assign_id - allocate ID and assing it to @pool
526  * @pool: the pool pointer of interest
527  *
528  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
529  * successfully, -errno on failure.
530  */
531 static int worker_pool_assign_id(struct worker_pool *pool)
532 {
533 	int ret;
534 
535 	lockdep_assert_held(&wq_pool_mutex);
536 
537 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
538 			GFP_KERNEL);
539 	if (ret >= 0) {
540 		pool->id = ret;
541 		return 0;
542 	}
543 	return ret;
544 }
545 
546 /**
547  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
548  * @wq: the target workqueue
549  * @node: the node ID
550  *
551  * This must be called either with pwq_lock held or sched RCU read locked.
552  * If the pwq needs to be used beyond the locking in effect, the caller is
553  * responsible for guaranteeing that the pwq stays online.
554  *
555  * Return: The unbound pool_workqueue for @node.
556  */
557 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
558 						  int node)
559 {
560 	assert_rcu_or_wq_mutex(wq);
561 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
562 }
563 
564 static unsigned int work_color_to_flags(int color)
565 {
566 	return color << WORK_STRUCT_COLOR_SHIFT;
567 }
568 
569 static int get_work_color(struct work_struct *work)
570 {
571 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
572 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
573 }
574 
575 static int work_next_color(int color)
576 {
577 	return (color + 1) % WORK_NR_COLORS;
578 }
579 
580 /*
581  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
582  * contain the pointer to the queued pwq.  Once execution starts, the flag
583  * is cleared and the high bits contain OFFQ flags and pool ID.
584  *
585  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
586  * and clear_work_data() can be used to set the pwq, pool or clear
587  * work->data.  These functions should only be called while the work is
588  * owned - ie. while the PENDING bit is set.
589  *
590  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
591  * corresponding to a work.  Pool is available once the work has been
592  * queued anywhere after initialization until it is sync canceled.  pwq is
593  * available only while the work item is queued.
594  *
595  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
596  * canceled.  While being canceled, a work item may have its PENDING set
597  * but stay off timer and worklist for arbitrarily long and nobody should
598  * try to steal the PENDING bit.
599  */
600 static inline void set_work_data(struct work_struct *work, unsigned long data,
601 				 unsigned long flags)
602 {
603 	WARN_ON_ONCE(!work_pending(work));
604 	atomic_long_set(&work->data, data | flags | work_static(work));
605 }
606 
607 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
608 			 unsigned long extra_flags)
609 {
610 	set_work_data(work, (unsigned long)pwq,
611 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
612 }
613 
614 static void set_work_pool_and_keep_pending(struct work_struct *work,
615 					   int pool_id)
616 {
617 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
618 		      WORK_STRUCT_PENDING);
619 }
620 
621 static void set_work_pool_and_clear_pending(struct work_struct *work,
622 					    int pool_id)
623 {
624 	/*
625 	 * The following wmb is paired with the implied mb in
626 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
627 	 * here are visible to and precede any updates by the next PENDING
628 	 * owner.
629 	 */
630 	smp_wmb();
631 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
632 }
633 
634 static void clear_work_data(struct work_struct *work)
635 {
636 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
637 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
638 }
639 
640 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
641 {
642 	unsigned long data = atomic_long_read(&work->data);
643 
644 	if (data & WORK_STRUCT_PWQ)
645 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
646 	else
647 		return NULL;
648 }
649 
650 /**
651  * get_work_pool - return the worker_pool a given work was associated with
652  * @work: the work item of interest
653  *
654  * Pools are created and destroyed under wq_pool_mutex, and allows read
655  * access under sched-RCU read lock.  As such, this function should be
656  * called under wq_pool_mutex or with preemption disabled.
657  *
658  * All fields of the returned pool are accessible as long as the above
659  * mentioned locking is in effect.  If the returned pool needs to be used
660  * beyond the critical section, the caller is responsible for ensuring the
661  * returned pool is and stays online.
662  *
663  * Return: The worker_pool @work was last associated with.  %NULL if none.
664  */
665 static struct worker_pool *get_work_pool(struct work_struct *work)
666 {
667 	unsigned long data = atomic_long_read(&work->data);
668 	int pool_id;
669 
670 	assert_rcu_or_pool_mutex();
671 
672 	if (data & WORK_STRUCT_PWQ)
673 		return ((struct pool_workqueue *)
674 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
675 
676 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
677 	if (pool_id == WORK_OFFQ_POOL_NONE)
678 		return NULL;
679 
680 	return idr_find(&worker_pool_idr, pool_id);
681 }
682 
683 /**
684  * get_work_pool_id - return the worker pool ID a given work is associated with
685  * @work: the work item of interest
686  *
687  * Return: The worker_pool ID @work was last associated with.
688  * %WORK_OFFQ_POOL_NONE if none.
689  */
690 static int get_work_pool_id(struct work_struct *work)
691 {
692 	unsigned long data = atomic_long_read(&work->data);
693 
694 	if (data & WORK_STRUCT_PWQ)
695 		return ((struct pool_workqueue *)
696 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
697 
698 	return data >> WORK_OFFQ_POOL_SHIFT;
699 }
700 
701 static void mark_work_canceling(struct work_struct *work)
702 {
703 	unsigned long pool_id = get_work_pool_id(work);
704 
705 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
706 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
707 }
708 
709 static bool work_is_canceling(struct work_struct *work)
710 {
711 	unsigned long data = atomic_long_read(&work->data);
712 
713 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
714 }
715 
716 /*
717  * Policy functions.  These define the policies on how the global worker
718  * pools are managed.  Unless noted otherwise, these functions assume that
719  * they're being called with pool->lock held.
720  */
721 
722 static bool __need_more_worker(struct worker_pool *pool)
723 {
724 	return !atomic_read(&pool->nr_running);
725 }
726 
727 /*
728  * Need to wake up a worker?  Called from anything but currently
729  * running workers.
730  *
731  * Note that, because unbound workers never contribute to nr_running, this
732  * function will always return %true for unbound pools as long as the
733  * worklist isn't empty.
734  */
735 static bool need_more_worker(struct worker_pool *pool)
736 {
737 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
738 }
739 
740 /* Can I start working?  Called from busy but !running workers. */
741 static bool may_start_working(struct worker_pool *pool)
742 {
743 	return pool->nr_idle;
744 }
745 
746 /* Do I need to keep working?  Called from currently running workers. */
747 static bool keep_working(struct worker_pool *pool)
748 {
749 	return !list_empty(&pool->worklist) &&
750 		atomic_read(&pool->nr_running) <= 1;
751 }
752 
753 /* Do we need a new worker?  Called from manager. */
754 static bool need_to_create_worker(struct worker_pool *pool)
755 {
756 	return need_more_worker(pool) && !may_start_working(pool);
757 }
758 
759 /* Do I need to be the manager? */
760 static bool need_to_manage_workers(struct worker_pool *pool)
761 {
762 	return need_to_create_worker(pool) ||
763 		(pool->flags & POOL_MANAGE_WORKERS);
764 }
765 
766 /* Do we have too many workers and should some go away? */
767 static bool too_many_workers(struct worker_pool *pool)
768 {
769 	bool managing = mutex_is_locked(&pool->manager_arb);
770 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
771 	int nr_busy = pool->nr_workers - nr_idle;
772 
773 	/*
774 	 * nr_idle and idle_list may disagree if idle rebinding is in
775 	 * progress.  Never return %true if idle_list is empty.
776 	 */
777 	if (list_empty(&pool->idle_list))
778 		return false;
779 
780 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
781 }
782 
783 /*
784  * Wake up functions.
785  */
786 
787 /* Return the first worker.  Safe with preemption disabled */
788 static struct worker *first_worker(struct worker_pool *pool)
789 {
790 	if (unlikely(list_empty(&pool->idle_list)))
791 		return NULL;
792 
793 	return list_first_entry(&pool->idle_list, struct worker, entry);
794 }
795 
796 /**
797  * wake_up_worker - wake up an idle worker
798  * @pool: worker pool to wake worker from
799  *
800  * Wake up the first idle worker of @pool.
801  *
802  * CONTEXT:
803  * spin_lock_irq(pool->lock).
804  */
805 static void wake_up_worker(struct worker_pool *pool)
806 {
807 	struct worker *worker = first_worker(pool);
808 
809 	if (likely(worker))
810 		wake_up_process(worker->task);
811 }
812 
813 /**
814  * wq_worker_waking_up - a worker is waking up
815  * @task: task waking up
816  * @cpu: CPU @task is waking up to
817  *
818  * This function is called during try_to_wake_up() when a worker is
819  * being awoken.
820  *
821  * CONTEXT:
822  * spin_lock_irq(rq->lock)
823  */
824 void wq_worker_waking_up(struct task_struct *task, int cpu)
825 {
826 	struct worker *worker = kthread_data(task);
827 
828 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
829 		WARN_ON_ONCE(worker->pool->cpu != cpu);
830 		atomic_inc(&worker->pool->nr_running);
831 	}
832 }
833 
834 /**
835  * wq_worker_sleeping - a worker is going to sleep
836  * @task: task going to sleep
837  * @cpu: CPU in question, must be the current CPU number
838  *
839  * This function is called during schedule() when a busy worker is
840  * going to sleep.  Worker on the same cpu can be woken up by
841  * returning pointer to its task.
842  *
843  * CONTEXT:
844  * spin_lock_irq(rq->lock)
845  *
846  * Return:
847  * Worker task on @cpu to wake up, %NULL if none.
848  */
849 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
850 {
851 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
852 	struct worker_pool *pool;
853 
854 	/*
855 	 * Rescuers, which may not have all the fields set up like normal
856 	 * workers, also reach here, let's not access anything before
857 	 * checking NOT_RUNNING.
858 	 */
859 	if (worker->flags & WORKER_NOT_RUNNING)
860 		return NULL;
861 
862 	pool = worker->pool;
863 
864 	/* this can only happen on the local cpu */
865 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
866 		return NULL;
867 
868 	/*
869 	 * The counterpart of the following dec_and_test, implied mb,
870 	 * worklist not empty test sequence is in insert_work().
871 	 * Please read comment there.
872 	 *
873 	 * NOT_RUNNING is clear.  This means that we're bound to and
874 	 * running on the local cpu w/ rq lock held and preemption
875 	 * disabled, which in turn means that none else could be
876 	 * manipulating idle_list, so dereferencing idle_list without pool
877 	 * lock is safe.
878 	 */
879 	if (atomic_dec_and_test(&pool->nr_running) &&
880 	    !list_empty(&pool->worklist))
881 		to_wakeup = first_worker(pool);
882 	return to_wakeup ? to_wakeup->task : NULL;
883 }
884 
885 /**
886  * worker_set_flags - set worker flags and adjust nr_running accordingly
887  * @worker: self
888  * @flags: flags to set
889  * @wakeup: wakeup an idle worker if necessary
890  *
891  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
892  * nr_running becomes zero and @wakeup is %true, an idle worker is
893  * woken up.
894  *
895  * CONTEXT:
896  * spin_lock_irq(pool->lock)
897  */
898 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
899 				    bool wakeup)
900 {
901 	struct worker_pool *pool = worker->pool;
902 
903 	WARN_ON_ONCE(worker->task != current);
904 
905 	/*
906 	 * If transitioning into NOT_RUNNING, adjust nr_running and
907 	 * wake up an idle worker as necessary if requested by
908 	 * @wakeup.
909 	 */
910 	if ((flags & WORKER_NOT_RUNNING) &&
911 	    !(worker->flags & WORKER_NOT_RUNNING)) {
912 		if (wakeup) {
913 			if (atomic_dec_and_test(&pool->nr_running) &&
914 			    !list_empty(&pool->worklist))
915 				wake_up_worker(pool);
916 		} else
917 			atomic_dec(&pool->nr_running);
918 	}
919 
920 	worker->flags |= flags;
921 }
922 
923 /**
924  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
925  * @worker: self
926  * @flags: flags to clear
927  *
928  * Clear @flags in @worker->flags and adjust nr_running accordingly.
929  *
930  * CONTEXT:
931  * spin_lock_irq(pool->lock)
932  */
933 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
934 {
935 	struct worker_pool *pool = worker->pool;
936 	unsigned int oflags = worker->flags;
937 
938 	WARN_ON_ONCE(worker->task != current);
939 
940 	worker->flags &= ~flags;
941 
942 	/*
943 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
944 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
945 	 * of multiple flags, not a single flag.
946 	 */
947 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
948 		if (!(worker->flags & WORKER_NOT_RUNNING))
949 			atomic_inc(&pool->nr_running);
950 }
951 
952 /**
953  * find_worker_executing_work - find worker which is executing a work
954  * @pool: pool of interest
955  * @work: work to find worker for
956  *
957  * Find a worker which is executing @work on @pool by searching
958  * @pool->busy_hash which is keyed by the address of @work.  For a worker
959  * to match, its current execution should match the address of @work and
960  * its work function.  This is to avoid unwanted dependency between
961  * unrelated work executions through a work item being recycled while still
962  * being executed.
963  *
964  * This is a bit tricky.  A work item may be freed once its execution
965  * starts and nothing prevents the freed area from being recycled for
966  * another work item.  If the same work item address ends up being reused
967  * before the original execution finishes, workqueue will identify the
968  * recycled work item as currently executing and make it wait until the
969  * current execution finishes, introducing an unwanted dependency.
970  *
971  * This function checks the work item address and work function to avoid
972  * false positives.  Note that this isn't complete as one may construct a
973  * work function which can introduce dependency onto itself through a
974  * recycled work item.  Well, if somebody wants to shoot oneself in the
975  * foot that badly, there's only so much we can do, and if such deadlock
976  * actually occurs, it should be easy to locate the culprit work function.
977  *
978  * CONTEXT:
979  * spin_lock_irq(pool->lock).
980  *
981  * Return:
982  * Pointer to worker which is executing @work if found, %NULL
983  * otherwise.
984  */
985 static struct worker *find_worker_executing_work(struct worker_pool *pool,
986 						 struct work_struct *work)
987 {
988 	struct worker *worker;
989 
990 	hash_for_each_possible(pool->busy_hash, worker, hentry,
991 			       (unsigned long)work)
992 		if (worker->current_work == work &&
993 		    worker->current_func == work->func)
994 			return worker;
995 
996 	return NULL;
997 }
998 
999 /**
1000  * move_linked_works - move linked works to a list
1001  * @work: start of series of works to be scheduled
1002  * @head: target list to append @work to
1003  * @nextp: out paramter for nested worklist walking
1004  *
1005  * Schedule linked works starting from @work to @head.  Work series to
1006  * be scheduled starts at @work and includes any consecutive work with
1007  * WORK_STRUCT_LINKED set in its predecessor.
1008  *
1009  * If @nextp is not NULL, it's updated to point to the next work of
1010  * the last scheduled work.  This allows move_linked_works() to be
1011  * nested inside outer list_for_each_entry_safe().
1012  *
1013  * CONTEXT:
1014  * spin_lock_irq(pool->lock).
1015  */
1016 static void move_linked_works(struct work_struct *work, struct list_head *head,
1017 			      struct work_struct **nextp)
1018 {
1019 	struct work_struct *n;
1020 
1021 	/*
1022 	 * Linked worklist will always end before the end of the list,
1023 	 * use NULL for list head.
1024 	 */
1025 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1026 		list_move_tail(&work->entry, head);
1027 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1028 			break;
1029 	}
1030 
1031 	/*
1032 	 * If we're already inside safe list traversal and have moved
1033 	 * multiple works to the scheduled queue, the next position
1034 	 * needs to be updated.
1035 	 */
1036 	if (nextp)
1037 		*nextp = n;
1038 }
1039 
1040 /**
1041  * get_pwq - get an extra reference on the specified pool_workqueue
1042  * @pwq: pool_workqueue to get
1043  *
1044  * Obtain an extra reference on @pwq.  The caller should guarantee that
1045  * @pwq has positive refcnt and be holding the matching pool->lock.
1046  */
1047 static void get_pwq(struct pool_workqueue *pwq)
1048 {
1049 	lockdep_assert_held(&pwq->pool->lock);
1050 	WARN_ON_ONCE(pwq->refcnt <= 0);
1051 	pwq->refcnt++;
1052 }
1053 
1054 /**
1055  * put_pwq - put a pool_workqueue reference
1056  * @pwq: pool_workqueue to put
1057  *
1058  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1059  * destruction.  The caller should be holding the matching pool->lock.
1060  */
1061 static void put_pwq(struct pool_workqueue *pwq)
1062 {
1063 	lockdep_assert_held(&pwq->pool->lock);
1064 	if (likely(--pwq->refcnt))
1065 		return;
1066 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1067 		return;
1068 	/*
1069 	 * @pwq can't be released under pool->lock, bounce to
1070 	 * pwq_unbound_release_workfn().  This never recurses on the same
1071 	 * pool->lock as this path is taken only for unbound workqueues and
1072 	 * the release work item is scheduled on a per-cpu workqueue.  To
1073 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1074 	 * subclass of 1 in get_unbound_pool().
1075 	 */
1076 	schedule_work(&pwq->unbound_release_work);
1077 }
1078 
1079 /**
1080  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1081  * @pwq: pool_workqueue to put (can be %NULL)
1082  *
1083  * put_pwq() with locking.  This function also allows %NULL @pwq.
1084  */
1085 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1086 {
1087 	if (pwq) {
1088 		/*
1089 		 * As both pwqs and pools are sched-RCU protected, the
1090 		 * following lock operations are safe.
1091 		 */
1092 		spin_lock_irq(&pwq->pool->lock);
1093 		put_pwq(pwq);
1094 		spin_unlock_irq(&pwq->pool->lock);
1095 	}
1096 }
1097 
1098 static void pwq_activate_delayed_work(struct work_struct *work)
1099 {
1100 	struct pool_workqueue *pwq = get_work_pwq(work);
1101 
1102 	trace_workqueue_activate_work(work);
1103 	move_linked_works(work, &pwq->pool->worklist, NULL);
1104 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1105 	pwq->nr_active++;
1106 }
1107 
1108 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1109 {
1110 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1111 						    struct work_struct, entry);
1112 
1113 	pwq_activate_delayed_work(work);
1114 }
1115 
1116 /**
1117  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1118  * @pwq: pwq of interest
1119  * @color: color of work which left the queue
1120  *
1121  * A work either has completed or is removed from pending queue,
1122  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1123  *
1124  * CONTEXT:
1125  * spin_lock_irq(pool->lock).
1126  */
1127 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1128 {
1129 	/* uncolored work items don't participate in flushing or nr_active */
1130 	if (color == WORK_NO_COLOR)
1131 		goto out_put;
1132 
1133 	pwq->nr_in_flight[color]--;
1134 
1135 	pwq->nr_active--;
1136 	if (!list_empty(&pwq->delayed_works)) {
1137 		/* one down, submit a delayed one */
1138 		if (pwq->nr_active < pwq->max_active)
1139 			pwq_activate_first_delayed(pwq);
1140 	}
1141 
1142 	/* is flush in progress and are we at the flushing tip? */
1143 	if (likely(pwq->flush_color != color))
1144 		goto out_put;
1145 
1146 	/* are there still in-flight works? */
1147 	if (pwq->nr_in_flight[color])
1148 		goto out_put;
1149 
1150 	/* this pwq is done, clear flush_color */
1151 	pwq->flush_color = -1;
1152 
1153 	/*
1154 	 * If this was the last pwq, wake up the first flusher.  It
1155 	 * will handle the rest.
1156 	 */
1157 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1158 		complete(&pwq->wq->first_flusher->done);
1159 out_put:
1160 	put_pwq(pwq);
1161 }
1162 
1163 /**
1164  * try_to_grab_pending - steal work item from worklist and disable irq
1165  * @work: work item to steal
1166  * @is_dwork: @work is a delayed_work
1167  * @flags: place to store irq state
1168  *
1169  * Try to grab PENDING bit of @work.  This function can handle @work in any
1170  * stable state - idle, on timer or on worklist.
1171  *
1172  * Return:
1173  *  1		if @work was pending and we successfully stole PENDING
1174  *  0		if @work was idle and we claimed PENDING
1175  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1176  *  -ENOENT	if someone else is canceling @work, this state may persist
1177  *		for arbitrarily long
1178  *
1179  * Note:
1180  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1181  * interrupted while holding PENDING and @work off queue, irq must be
1182  * disabled on entry.  This, combined with delayed_work->timer being
1183  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1184  *
1185  * On successful return, >= 0, irq is disabled and the caller is
1186  * responsible for releasing it using local_irq_restore(*@flags).
1187  *
1188  * This function is safe to call from any context including IRQ handler.
1189  */
1190 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1191 			       unsigned long *flags)
1192 {
1193 	struct worker_pool *pool;
1194 	struct pool_workqueue *pwq;
1195 
1196 	local_irq_save(*flags);
1197 
1198 	/* try to steal the timer if it exists */
1199 	if (is_dwork) {
1200 		struct delayed_work *dwork = to_delayed_work(work);
1201 
1202 		/*
1203 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1204 		 * guaranteed that the timer is not queued anywhere and not
1205 		 * running on the local CPU.
1206 		 */
1207 		if (likely(del_timer(&dwork->timer)))
1208 			return 1;
1209 	}
1210 
1211 	/* try to claim PENDING the normal way */
1212 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1213 		return 0;
1214 
1215 	/*
1216 	 * The queueing is in progress, or it is already queued. Try to
1217 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1218 	 */
1219 	pool = get_work_pool(work);
1220 	if (!pool)
1221 		goto fail;
1222 
1223 	spin_lock(&pool->lock);
1224 	/*
1225 	 * work->data is guaranteed to point to pwq only while the work
1226 	 * item is queued on pwq->wq, and both updating work->data to point
1227 	 * to pwq on queueing and to pool on dequeueing are done under
1228 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1229 	 * points to pwq which is associated with a locked pool, the work
1230 	 * item is currently queued on that pool.
1231 	 */
1232 	pwq = get_work_pwq(work);
1233 	if (pwq && pwq->pool == pool) {
1234 		debug_work_deactivate(work);
1235 
1236 		/*
1237 		 * A delayed work item cannot be grabbed directly because
1238 		 * it might have linked NO_COLOR work items which, if left
1239 		 * on the delayed_list, will confuse pwq->nr_active
1240 		 * management later on and cause stall.  Make sure the work
1241 		 * item is activated before grabbing.
1242 		 */
1243 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1244 			pwq_activate_delayed_work(work);
1245 
1246 		list_del_init(&work->entry);
1247 		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1248 
1249 		/* work->data points to pwq iff queued, point to pool */
1250 		set_work_pool_and_keep_pending(work, pool->id);
1251 
1252 		spin_unlock(&pool->lock);
1253 		return 1;
1254 	}
1255 	spin_unlock(&pool->lock);
1256 fail:
1257 	local_irq_restore(*flags);
1258 	if (work_is_canceling(work))
1259 		return -ENOENT;
1260 	cpu_relax();
1261 	return -EAGAIN;
1262 }
1263 
1264 /**
1265  * insert_work - insert a work into a pool
1266  * @pwq: pwq @work belongs to
1267  * @work: work to insert
1268  * @head: insertion point
1269  * @extra_flags: extra WORK_STRUCT_* flags to set
1270  *
1271  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1272  * work_struct flags.
1273  *
1274  * CONTEXT:
1275  * spin_lock_irq(pool->lock).
1276  */
1277 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1278 			struct list_head *head, unsigned int extra_flags)
1279 {
1280 	struct worker_pool *pool = pwq->pool;
1281 
1282 	/* we own @work, set data and link */
1283 	set_work_pwq(work, pwq, extra_flags);
1284 	list_add_tail(&work->entry, head);
1285 	get_pwq(pwq);
1286 
1287 	/*
1288 	 * Ensure either wq_worker_sleeping() sees the above
1289 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1290 	 * around lazily while there are works to be processed.
1291 	 */
1292 	smp_mb();
1293 
1294 	if (__need_more_worker(pool))
1295 		wake_up_worker(pool);
1296 }
1297 
1298 /*
1299  * Test whether @work is being queued from another work executing on the
1300  * same workqueue.
1301  */
1302 static bool is_chained_work(struct workqueue_struct *wq)
1303 {
1304 	struct worker *worker;
1305 
1306 	worker = current_wq_worker();
1307 	/*
1308 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1309 	 * I'm @worker, it's safe to dereference it without locking.
1310 	 */
1311 	return worker && worker->current_pwq->wq == wq;
1312 }
1313 
1314 static void __queue_work(int cpu, struct workqueue_struct *wq,
1315 			 struct work_struct *work)
1316 {
1317 	struct pool_workqueue *pwq;
1318 	struct worker_pool *last_pool;
1319 	struct list_head *worklist;
1320 	unsigned int work_flags;
1321 	unsigned int req_cpu = cpu;
1322 
1323 	/*
1324 	 * While a work item is PENDING && off queue, a task trying to
1325 	 * steal the PENDING will busy-loop waiting for it to either get
1326 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1327 	 * happen with IRQ disabled.
1328 	 */
1329 	WARN_ON_ONCE(!irqs_disabled());
1330 
1331 	debug_work_activate(work);
1332 
1333 	/* if draining, only works from the same workqueue are allowed */
1334 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1335 	    WARN_ON_ONCE(!is_chained_work(wq)))
1336 		return;
1337 retry:
1338 	if (req_cpu == WORK_CPU_UNBOUND)
1339 		cpu = raw_smp_processor_id();
1340 
1341 	/* pwq which will be used unless @work is executing elsewhere */
1342 	if (!(wq->flags & WQ_UNBOUND))
1343 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1344 	else
1345 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1346 
1347 	/*
1348 	 * If @work was previously on a different pool, it might still be
1349 	 * running there, in which case the work needs to be queued on that
1350 	 * pool to guarantee non-reentrancy.
1351 	 */
1352 	last_pool = get_work_pool(work);
1353 	if (last_pool && last_pool != pwq->pool) {
1354 		struct worker *worker;
1355 
1356 		spin_lock(&last_pool->lock);
1357 
1358 		worker = find_worker_executing_work(last_pool, work);
1359 
1360 		if (worker && worker->current_pwq->wq == wq) {
1361 			pwq = worker->current_pwq;
1362 		} else {
1363 			/* meh... not running there, queue here */
1364 			spin_unlock(&last_pool->lock);
1365 			spin_lock(&pwq->pool->lock);
1366 		}
1367 	} else {
1368 		spin_lock(&pwq->pool->lock);
1369 	}
1370 
1371 	/*
1372 	 * pwq is determined and locked.  For unbound pools, we could have
1373 	 * raced with pwq release and it could already be dead.  If its
1374 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1375 	 * without another pwq replacing it in the numa_pwq_tbl or while
1376 	 * work items are executing on it, so the retrying is guaranteed to
1377 	 * make forward-progress.
1378 	 */
1379 	if (unlikely(!pwq->refcnt)) {
1380 		if (wq->flags & WQ_UNBOUND) {
1381 			spin_unlock(&pwq->pool->lock);
1382 			cpu_relax();
1383 			goto retry;
1384 		}
1385 		/* oops */
1386 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1387 			  wq->name, cpu);
1388 	}
1389 
1390 	/* pwq determined, queue */
1391 	trace_workqueue_queue_work(req_cpu, pwq, work);
1392 
1393 	if (WARN_ON(!list_empty(&work->entry))) {
1394 		spin_unlock(&pwq->pool->lock);
1395 		return;
1396 	}
1397 
1398 	pwq->nr_in_flight[pwq->work_color]++;
1399 	work_flags = work_color_to_flags(pwq->work_color);
1400 
1401 	if (likely(pwq->nr_active < pwq->max_active)) {
1402 		trace_workqueue_activate_work(work);
1403 		pwq->nr_active++;
1404 		worklist = &pwq->pool->worklist;
1405 	} else {
1406 		work_flags |= WORK_STRUCT_DELAYED;
1407 		worklist = &pwq->delayed_works;
1408 	}
1409 
1410 	insert_work(pwq, work, worklist, work_flags);
1411 
1412 	spin_unlock(&pwq->pool->lock);
1413 }
1414 
1415 /**
1416  * queue_work_on - queue work on specific cpu
1417  * @cpu: CPU number to execute work on
1418  * @wq: workqueue to use
1419  * @work: work to queue
1420  *
1421  * We queue the work to a specific CPU, the caller must ensure it
1422  * can't go away.
1423  *
1424  * Return: %false if @work was already on a queue, %true otherwise.
1425  */
1426 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1427 		   struct work_struct *work)
1428 {
1429 	bool ret = false;
1430 	unsigned long flags;
1431 
1432 	local_irq_save(flags);
1433 
1434 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1435 		__queue_work(cpu, wq, work);
1436 		ret = true;
1437 	}
1438 
1439 	local_irq_restore(flags);
1440 	return ret;
1441 }
1442 EXPORT_SYMBOL(queue_work_on);
1443 
1444 void delayed_work_timer_fn(unsigned long __data)
1445 {
1446 	struct delayed_work *dwork = (struct delayed_work *)__data;
1447 
1448 	/* should have been called from irqsafe timer with irq already off */
1449 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1450 }
1451 EXPORT_SYMBOL(delayed_work_timer_fn);
1452 
1453 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1454 				struct delayed_work *dwork, unsigned long delay)
1455 {
1456 	struct timer_list *timer = &dwork->timer;
1457 	struct work_struct *work = &dwork->work;
1458 
1459 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1460 		     timer->data != (unsigned long)dwork);
1461 	WARN_ON_ONCE(timer_pending(timer));
1462 	WARN_ON_ONCE(!list_empty(&work->entry));
1463 
1464 	/*
1465 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1466 	 * both optimization and correctness.  The earliest @timer can
1467 	 * expire is on the closest next tick and delayed_work users depend
1468 	 * on that there's no such delay when @delay is 0.
1469 	 */
1470 	if (!delay) {
1471 		__queue_work(cpu, wq, &dwork->work);
1472 		return;
1473 	}
1474 
1475 	timer_stats_timer_set_start_info(&dwork->timer);
1476 
1477 	dwork->wq = wq;
1478 	dwork->cpu = cpu;
1479 	timer->expires = jiffies + delay;
1480 
1481 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1482 		add_timer_on(timer, cpu);
1483 	else
1484 		add_timer(timer);
1485 }
1486 
1487 /**
1488  * queue_delayed_work_on - queue work on specific CPU after delay
1489  * @cpu: CPU number to execute work on
1490  * @wq: workqueue to use
1491  * @dwork: work to queue
1492  * @delay: number of jiffies to wait before queueing
1493  *
1494  * Return: %false if @work was already on a queue, %true otherwise.  If
1495  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1496  * execution.
1497  */
1498 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1499 			   struct delayed_work *dwork, unsigned long delay)
1500 {
1501 	struct work_struct *work = &dwork->work;
1502 	bool ret = false;
1503 	unsigned long flags;
1504 
1505 	/* read the comment in __queue_work() */
1506 	local_irq_save(flags);
1507 
1508 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1509 		__queue_delayed_work(cpu, wq, dwork, delay);
1510 		ret = true;
1511 	}
1512 
1513 	local_irq_restore(flags);
1514 	return ret;
1515 }
1516 EXPORT_SYMBOL(queue_delayed_work_on);
1517 
1518 /**
1519  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1520  * @cpu: CPU number to execute work on
1521  * @wq: workqueue to use
1522  * @dwork: work to queue
1523  * @delay: number of jiffies to wait before queueing
1524  *
1525  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1526  * modify @dwork's timer so that it expires after @delay.  If @delay is
1527  * zero, @work is guaranteed to be scheduled immediately regardless of its
1528  * current state.
1529  *
1530  * Return: %false if @dwork was idle and queued, %true if @dwork was
1531  * pending and its timer was modified.
1532  *
1533  * This function is safe to call from any context including IRQ handler.
1534  * See try_to_grab_pending() for details.
1535  */
1536 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1537 			 struct delayed_work *dwork, unsigned long delay)
1538 {
1539 	unsigned long flags;
1540 	int ret;
1541 
1542 	do {
1543 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1544 	} while (unlikely(ret == -EAGAIN));
1545 
1546 	if (likely(ret >= 0)) {
1547 		__queue_delayed_work(cpu, wq, dwork, delay);
1548 		local_irq_restore(flags);
1549 	}
1550 
1551 	/* -ENOENT from try_to_grab_pending() becomes %true */
1552 	return ret;
1553 }
1554 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1555 
1556 /**
1557  * worker_enter_idle - enter idle state
1558  * @worker: worker which is entering idle state
1559  *
1560  * @worker is entering idle state.  Update stats and idle timer if
1561  * necessary.
1562  *
1563  * LOCKING:
1564  * spin_lock_irq(pool->lock).
1565  */
1566 static void worker_enter_idle(struct worker *worker)
1567 {
1568 	struct worker_pool *pool = worker->pool;
1569 
1570 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1571 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1572 			 (worker->hentry.next || worker->hentry.pprev)))
1573 		return;
1574 
1575 	/* can't use worker_set_flags(), also called from start_worker() */
1576 	worker->flags |= WORKER_IDLE;
1577 	pool->nr_idle++;
1578 	worker->last_active = jiffies;
1579 
1580 	/* idle_list is LIFO */
1581 	list_add(&worker->entry, &pool->idle_list);
1582 
1583 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1584 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1585 
1586 	/*
1587 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1588 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1589 	 * nr_running, the warning may trigger spuriously.  Check iff
1590 	 * unbind is not in progress.
1591 	 */
1592 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1593 		     pool->nr_workers == pool->nr_idle &&
1594 		     atomic_read(&pool->nr_running));
1595 }
1596 
1597 /**
1598  * worker_leave_idle - leave idle state
1599  * @worker: worker which is leaving idle state
1600  *
1601  * @worker is leaving idle state.  Update stats.
1602  *
1603  * LOCKING:
1604  * spin_lock_irq(pool->lock).
1605  */
1606 static void worker_leave_idle(struct worker *worker)
1607 {
1608 	struct worker_pool *pool = worker->pool;
1609 
1610 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1611 		return;
1612 	worker_clr_flags(worker, WORKER_IDLE);
1613 	pool->nr_idle--;
1614 	list_del_init(&worker->entry);
1615 }
1616 
1617 /**
1618  * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1619  * @pool: target worker_pool
1620  *
1621  * Bind %current to the cpu of @pool if it is associated and lock @pool.
1622  *
1623  * Works which are scheduled while the cpu is online must at least be
1624  * scheduled to a worker which is bound to the cpu so that if they are
1625  * flushed from cpu callbacks while cpu is going down, they are
1626  * guaranteed to execute on the cpu.
1627  *
1628  * This function is to be used by unbound workers and rescuers to bind
1629  * themselves to the target cpu and may race with cpu going down or
1630  * coming online.  kthread_bind() can't be used because it may put the
1631  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1632  * verbatim as it's best effort and blocking and pool may be
1633  * [dis]associated in the meantime.
1634  *
1635  * This function tries set_cpus_allowed() and locks pool and verifies the
1636  * binding against %POOL_DISASSOCIATED which is set during
1637  * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1638  * enters idle state or fetches works without dropping lock, it can
1639  * guarantee the scheduling requirement described in the first paragraph.
1640  *
1641  * CONTEXT:
1642  * Might sleep.  Called without any lock but returns with pool->lock
1643  * held.
1644  *
1645  * Return:
1646  * %true if the associated pool is online (@worker is successfully
1647  * bound), %false if offline.
1648  */
1649 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1650 __acquires(&pool->lock)
1651 {
1652 	while (true) {
1653 		/*
1654 		 * The following call may fail, succeed or succeed
1655 		 * without actually migrating the task to the cpu if
1656 		 * it races with cpu hotunplug operation.  Verify
1657 		 * against POOL_DISASSOCIATED.
1658 		 */
1659 		if (!(pool->flags & POOL_DISASSOCIATED))
1660 			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1661 
1662 		spin_lock_irq(&pool->lock);
1663 		if (pool->flags & POOL_DISASSOCIATED)
1664 			return false;
1665 		if (task_cpu(current) == pool->cpu &&
1666 		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1667 			return true;
1668 		spin_unlock_irq(&pool->lock);
1669 
1670 		/*
1671 		 * We've raced with CPU hot[un]plug.  Give it a breather
1672 		 * and retry migration.  cond_resched() is required here;
1673 		 * otherwise, we might deadlock against cpu_stop trying to
1674 		 * bring down the CPU on non-preemptive kernel.
1675 		 */
1676 		cpu_relax();
1677 		cond_resched();
1678 	}
1679 }
1680 
1681 static struct worker *alloc_worker(void)
1682 {
1683 	struct worker *worker;
1684 
1685 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1686 	if (worker) {
1687 		INIT_LIST_HEAD(&worker->entry);
1688 		INIT_LIST_HEAD(&worker->scheduled);
1689 		/* on creation a worker is in !idle && prep state */
1690 		worker->flags = WORKER_PREP;
1691 	}
1692 	return worker;
1693 }
1694 
1695 /**
1696  * create_worker - create a new workqueue worker
1697  * @pool: pool the new worker will belong to
1698  *
1699  * Create a new worker which is bound to @pool.  The returned worker
1700  * can be started by calling start_worker() or destroyed using
1701  * destroy_worker().
1702  *
1703  * CONTEXT:
1704  * Might sleep.  Does GFP_KERNEL allocations.
1705  *
1706  * Return:
1707  * Pointer to the newly created worker.
1708  */
1709 static struct worker *create_worker(struct worker_pool *pool)
1710 {
1711 	struct worker *worker = NULL;
1712 	int id = -1;
1713 	char id_buf[16];
1714 
1715 	lockdep_assert_held(&pool->manager_mutex);
1716 
1717 	/*
1718 	 * ID is needed to determine kthread name.  Allocate ID first
1719 	 * without installing the pointer.
1720 	 */
1721 	idr_preload(GFP_KERNEL);
1722 	spin_lock_irq(&pool->lock);
1723 
1724 	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1725 
1726 	spin_unlock_irq(&pool->lock);
1727 	idr_preload_end();
1728 	if (id < 0)
1729 		goto fail;
1730 
1731 	worker = alloc_worker();
1732 	if (!worker)
1733 		goto fail;
1734 
1735 	worker->pool = pool;
1736 	worker->id = id;
1737 
1738 	if (pool->cpu >= 0)
1739 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1740 			 pool->attrs->nice < 0  ? "H" : "");
1741 	else
1742 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1743 
1744 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1745 					      "kworker/%s", id_buf);
1746 	if (IS_ERR(worker->task))
1747 		goto fail;
1748 
1749 	set_user_nice(worker->task, pool->attrs->nice);
1750 
1751 	/* prevent userland from meddling with cpumask of workqueue workers */
1752 	worker->task->flags |= PF_NO_SETAFFINITY;
1753 
1754 	/*
1755 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1756 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1757 	 */
1758 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1759 
1760 	/*
1761 	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1762 	 * remains stable across this function.  See the comments above the
1763 	 * flag definition for details.
1764 	 */
1765 	if (pool->flags & POOL_DISASSOCIATED)
1766 		worker->flags |= WORKER_UNBOUND;
1767 
1768 	/* successful, commit the pointer to idr */
1769 	spin_lock_irq(&pool->lock);
1770 	idr_replace(&pool->worker_idr, worker, worker->id);
1771 	spin_unlock_irq(&pool->lock);
1772 
1773 	return worker;
1774 
1775 fail:
1776 	if (id >= 0) {
1777 		spin_lock_irq(&pool->lock);
1778 		idr_remove(&pool->worker_idr, id);
1779 		spin_unlock_irq(&pool->lock);
1780 	}
1781 	kfree(worker);
1782 	return NULL;
1783 }
1784 
1785 /**
1786  * start_worker - start a newly created worker
1787  * @worker: worker to start
1788  *
1789  * Make the pool aware of @worker and start it.
1790  *
1791  * CONTEXT:
1792  * spin_lock_irq(pool->lock).
1793  */
1794 static void start_worker(struct worker *worker)
1795 {
1796 	worker->flags |= WORKER_STARTED;
1797 	worker->pool->nr_workers++;
1798 	worker_enter_idle(worker);
1799 	wake_up_process(worker->task);
1800 }
1801 
1802 /**
1803  * create_and_start_worker - create and start a worker for a pool
1804  * @pool: the target pool
1805  *
1806  * Grab the managership of @pool and create and start a new worker for it.
1807  *
1808  * Return: 0 on success. A negative error code otherwise.
1809  */
1810 static int create_and_start_worker(struct worker_pool *pool)
1811 {
1812 	struct worker *worker;
1813 
1814 	mutex_lock(&pool->manager_mutex);
1815 
1816 	worker = create_worker(pool);
1817 	if (worker) {
1818 		spin_lock_irq(&pool->lock);
1819 		start_worker(worker);
1820 		spin_unlock_irq(&pool->lock);
1821 	}
1822 
1823 	mutex_unlock(&pool->manager_mutex);
1824 
1825 	return worker ? 0 : -ENOMEM;
1826 }
1827 
1828 /**
1829  * destroy_worker - destroy a workqueue worker
1830  * @worker: worker to be destroyed
1831  *
1832  * Destroy @worker and adjust @pool stats accordingly.
1833  *
1834  * CONTEXT:
1835  * spin_lock_irq(pool->lock) which is released and regrabbed.
1836  */
1837 static void destroy_worker(struct worker *worker)
1838 {
1839 	struct worker_pool *pool = worker->pool;
1840 
1841 	lockdep_assert_held(&pool->manager_mutex);
1842 	lockdep_assert_held(&pool->lock);
1843 
1844 	/* sanity check frenzy */
1845 	if (WARN_ON(worker->current_work) ||
1846 	    WARN_ON(!list_empty(&worker->scheduled)))
1847 		return;
1848 
1849 	if (worker->flags & WORKER_STARTED)
1850 		pool->nr_workers--;
1851 	if (worker->flags & WORKER_IDLE)
1852 		pool->nr_idle--;
1853 
1854 	list_del_init(&worker->entry);
1855 	worker->flags |= WORKER_DIE;
1856 
1857 	idr_remove(&pool->worker_idr, worker->id);
1858 
1859 	spin_unlock_irq(&pool->lock);
1860 
1861 	kthread_stop(worker->task);
1862 	kfree(worker);
1863 
1864 	spin_lock_irq(&pool->lock);
1865 }
1866 
1867 static void idle_worker_timeout(unsigned long __pool)
1868 {
1869 	struct worker_pool *pool = (void *)__pool;
1870 
1871 	spin_lock_irq(&pool->lock);
1872 
1873 	if (too_many_workers(pool)) {
1874 		struct worker *worker;
1875 		unsigned long expires;
1876 
1877 		/* idle_list is kept in LIFO order, check the last one */
1878 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1879 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1880 
1881 		if (time_before(jiffies, expires))
1882 			mod_timer(&pool->idle_timer, expires);
1883 		else {
1884 			/* it's been idle for too long, wake up manager */
1885 			pool->flags |= POOL_MANAGE_WORKERS;
1886 			wake_up_worker(pool);
1887 		}
1888 	}
1889 
1890 	spin_unlock_irq(&pool->lock);
1891 }
1892 
1893 static void send_mayday(struct work_struct *work)
1894 {
1895 	struct pool_workqueue *pwq = get_work_pwq(work);
1896 	struct workqueue_struct *wq = pwq->wq;
1897 
1898 	lockdep_assert_held(&wq_mayday_lock);
1899 
1900 	if (!wq->rescuer)
1901 		return;
1902 
1903 	/* mayday mayday mayday */
1904 	if (list_empty(&pwq->mayday_node)) {
1905 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1906 		wake_up_process(wq->rescuer->task);
1907 	}
1908 }
1909 
1910 static void pool_mayday_timeout(unsigned long __pool)
1911 {
1912 	struct worker_pool *pool = (void *)__pool;
1913 	struct work_struct *work;
1914 
1915 	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1916 	spin_lock(&pool->lock);
1917 
1918 	if (need_to_create_worker(pool)) {
1919 		/*
1920 		 * We've been trying to create a new worker but
1921 		 * haven't been successful.  We might be hitting an
1922 		 * allocation deadlock.  Send distress signals to
1923 		 * rescuers.
1924 		 */
1925 		list_for_each_entry(work, &pool->worklist, entry)
1926 			send_mayday(work);
1927 	}
1928 
1929 	spin_unlock(&pool->lock);
1930 	spin_unlock_irq(&wq_mayday_lock);
1931 
1932 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1933 }
1934 
1935 /**
1936  * maybe_create_worker - create a new worker if necessary
1937  * @pool: pool to create a new worker for
1938  *
1939  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1940  * have at least one idle worker on return from this function.  If
1941  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1942  * sent to all rescuers with works scheduled on @pool to resolve
1943  * possible allocation deadlock.
1944  *
1945  * On return, need_to_create_worker() is guaranteed to be %false and
1946  * may_start_working() %true.
1947  *
1948  * LOCKING:
1949  * spin_lock_irq(pool->lock) which may be released and regrabbed
1950  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1951  * manager.
1952  *
1953  * Return:
1954  * %false if no action was taken and pool->lock stayed locked, %true
1955  * otherwise.
1956  */
1957 static bool maybe_create_worker(struct worker_pool *pool)
1958 __releases(&pool->lock)
1959 __acquires(&pool->lock)
1960 {
1961 	if (!need_to_create_worker(pool))
1962 		return false;
1963 restart:
1964 	spin_unlock_irq(&pool->lock);
1965 
1966 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1967 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1968 
1969 	while (true) {
1970 		struct worker *worker;
1971 
1972 		worker = create_worker(pool);
1973 		if (worker) {
1974 			del_timer_sync(&pool->mayday_timer);
1975 			spin_lock_irq(&pool->lock);
1976 			start_worker(worker);
1977 			if (WARN_ON_ONCE(need_to_create_worker(pool)))
1978 				goto restart;
1979 			return true;
1980 		}
1981 
1982 		if (!need_to_create_worker(pool))
1983 			break;
1984 
1985 		__set_current_state(TASK_INTERRUPTIBLE);
1986 		schedule_timeout(CREATE_COOLDOWN);
1987 
1988 		if (!need_to_create_worker(pool))
1989 			break;
1990 	}
1991 
1992 	del_timer_sync(&pool->mayday_timer);
1993 	spin_lock_irq(&pool->lock);
1994 	if (need_to_create_worker(pool))
1995 		goto restart;
1996 	return true;
1997 }
1998 
1999 /**
2000  * maybe_destroy_worker - destroy workers which have been idle for a while
2001  * @pool: pool to destroy workers for
2002  *
2003  * Destroy @pool workers which have been idle for longer than
2004  * IDLE_WORKER_TIMEOUT.
2005  *
2006  * LOCKING:
2007  * spin_lock_irq(pool->lock) which may be released and regrabbed
2008  * multiple times.  Called only from manager.
2009  *
2010  * Return:
2011  * %false if no action was taken and pool->lock stayed locked, %true
2012  * otherwise.
2013  */
2014 static bool maybe_destroy_workers(struct worker_pool *pool)
2015 {
2016 	bool ret = false;
2017 
2018 	while (too_many_workers(pool)) {
2019 		struct worker *worker;
2020 		unsigned long expires;
2021 
2022 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2023 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2024 
2025 		if (time_before(jiffies, expires)) {
2026 			mod_timer(&pool->idle_timer, expires);
2027 			break;
2028 		}
2029 
2030 		destroy_worker(worker);
2031 		ret = true;
2032 	}
2033 
2034 	return ret;
2035 }
2036 
2037 /**
2038  * manage_workers - manage worker pool
2039  * @worker: self
2040  *
2041  * Assume the manager role and manage the worker pool @worker belongs
2042  * to.  At any given time, there can be only zero or one manager per
2043  * pool.  The exclusion is handled automatically by this function.
2044  *
2045  * The caller can safely start processing works on false return.  On
2046  * true return, it's guaranteed that need_to_create_worker() is false
2047  * and may_start_working() is true.
2048  *
2049  * CONTEXT:
2050  * spin_lock_irq(pool->lock) which may be released and regrabbed
2051  * multiple times.  Does GFP_KERNEL allocations.
2052  *
2053  * Return:
2054  * %false if the pool don't need management and the caller can safely start
2055  * processing works, %true indicates that the function released pool->lock
2056  * and reacquired it to perform some management function and that the
2057  * conditions that the caller verified while holding the lock before
2058  * calling the function might no longer be true.
2059  */
2060 static bool manage_workers(struct worker *worker)
2061 {
2062 	struct worker_pool *pool = worker->pool;
2063 	bool ret = false;
2064 
2065 	/*
2066 	 * Managership is governed by two mutexes - manager_arb and
2067 	 * manager_mutex.  manager_arb handles arbitration of manager role.
2068 	 * Anyone who successfully grabs manager_arb wins the arbitration
2069 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
2070 	 * failure while holding pool->lock reliably indicates that someone
2071 	 * else is managing the pool and the worker which failed trylock
2072 	 * can proceed to executing work items.  This means that anyone
2073 	 * grabbing manager_arb is responsible for actually performing
2074 	 * manager duties.  If manager_arb is grabbed and released without
2075 	 * actual management, the pool may stall indefinitely.
2076 	 *
2077 	 * manager_mutex is used for exclusion of actual management
2078 	 * operations.  The holder of manager_mutex can be sure that none
2079 	 * of management operations, including creation and destruction of
2080 	 * workers, won't take place until the mutex is released.  Because
2081 	 * manager_mutex doesn't interfere with manager role arbitration,
2082 	 * it is guaranteed that the pool's management, while may be
2083 	 * delayed, won't be disturbed by someone else grabbing
2084 	 * manager_mutex.
2085 	 */
2086 	if (!mutex_trylock(&pool->manager_arb))
2087 		return ret;
2088 
2089 	/*
2090 	 * With manager arbitration won, manager_mutex would be free in
2091 	 * most cases.  trylock first without dropping @pool->lock.
2092 	 */
2093 	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2094 		spin_unlock_irq(&pool->lock);
2095 		mutex_lock(&pool->manager_mutex);
2096 		spin_lock_irq(&pool->lock);
2097 		ret = true;
2098 	}
2099 
2100 	pool->flags &= ~POOL_MANAGE_WORKERS;
2101 
2102 	/*
2103 	 * Destroy and then create so that may_start_working() is true
2104 	 * on return.
2105 	 */
2106 	ret |= maybe_destroy_workers(pool);
2107 	ret |= maybe_create_worker(pool);
2108 
2109 	mutex_unlock(&pool->manager_mutex);
2110 	mutex_unlock(&pool->manager_arb);
2111 	return ret;
2112 }
2113 
2114 /**
2115  * process_one_work - process single work
2116  * @worker: self
2117  * @work: work to process
2118  *
2119  * Process @work.  This function contains all the logics necessary to
2120  * process a single work including synchronization against and
2121  * interaction with other workers on the same cpu, queueing and
2122  * flushing.  As long as context requirement is met, any worker can
2123  * call this function to process a work.
2124  *
2125  * CONTEXT:
2126  * spin_lock_irq(pool->lock) which is released and regrabbed.
2127  */
2128 static void process_one_work(struct worker *worker, struct work_struct *work)
2129 __releases(&pool->lock)
2130 __acquires(&pool->lock)
2131 {
2132 	struct pool_workqueue *pwq = get_work_pwq(work);
2133 	struct worker_pool *pool = worker->pool;
2134 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2135 	int work_color;
2136 	struct worker *collision;
2137 #ifdef CONFIG_LOCKDEP
2138 	/*
2139 	 * It is permissible to free the struct work_struct from
2140 	 * inside the function that is called from it, this we need to
2141 	 * take into account for lockdep too.  To avoid bogus "held
2142 	 * lock freed" warnings as well as problems when looking into
2143 	 * work->lockdep_map, make a copy and use that here.
2144 	 */
2145 	struct lockdep_map lockdep_map;
2146 
2147 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2148 #endif
2149 	/*
2150 	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2151 	 * necessary to avoid spurious warnings from rescuers servicing the
2152 	 * unbound or a disassociated pool.
2153 	 */
2154 	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2155 		     !(pool->flags & POOL_DISASSOCIATED) &&
2156 		     raw_smp_processor_id() != pool->cpu);
2157 
2158 	/*
2159 	 * A single work shouldn't be executed concurrently by
2160 	 * multiple workers on a single cpu.  Check whether anyone is
2161 	 * already processing the work.  If so, defer the work to the
2162 	 * currently executing one.
2163 	 */
2164 	collision = find_worker_executing_work(pool, work);
2165 	if (unlikely(collision)) {
2166 		move_linked_works(work, &collision->scheduled, NULL);
2167 		return;
2168 	}
2169 
2170 	/* claim and dequeue */
2171 	debug_work_deactivate(work);
2172 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2173 	worker->current_work = work;
2174 	worker->current_func = work->func;
2175 	worker->current_pwq = pwq;
2176 	work_color = get_work_color(work);
2177 
2178 	list_del_init(&work->entry);
2179 
2180 	/*
2181 	 * CPU intensive works don't participate in concurrency
2182 	 * management.  They're the scheduler's responsibility.
2183 	 */
2184 	if (unlikely(cpu_intensive))
2185 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2186 
2187 	/*
2188 	 * Unbound pool isn't concurrency managed and work items should be
2189 	 * executed ASAP.  Wake up another worker if necessary.
2190 	 */
2191 	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2192 		wake_up_worker(pool);
2193 
2194 	/*
2195 	 * Record the last pool and clear PENDING which should be the last
2196 	 * update to @work.  Also, do this inside @pool->lock so that
2197 	 * PENDING and queued state changes happen together while IRQ is
2198 	 * disabled.
2199 	 */
2200 	set_work_pool_and_clear_pending(work, pool->id);
2201 
2202 	spin_unlock_irq(&pool->lock);
2203 
2204 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2205 	lock_map_acquire(&lockdep_map);
2206 	trace_workqueue_execute_start(work);
2207 	worker->current_func(work);
2208 	/*
2209 	 * While we must be careful to not use "work" after this, the trace
2210 	 * point will only record its address.
2211 	 */
2212 	trace_workqueue_execute_end(work);
2213 	lock_map_release(&lockdep_map);
2214 	lock_map_release(&pwq->wq->lockdep_map);
2215 
2216 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2217 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2218 		       "     last function: %pf\n",
2219 		       current->comm, preempt_count(), task_pid_nr(current),
2220 		       worker->current_func);
2221 		debug_show_held_locks(current);
2222 		dump_stack();
2223 	}
2224 
2225 	/*
2226 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2227 	 * kernels, where a requeueing work item waiting for something to
2228 	 * happen could deadlock with stop_machine as such work item could
2229 	 * indefinitely requeue itself while all other CPUs are trapped in
2230 	 * stop_machine.
2231 	 */
2232 	cond_resched();
2233 
2234 	spin_lock_irq(&pool->lock);
2235 
2236 	/* clear cpu intensive status */
2237 	if (unlikely(cpu_intensive))
2238 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2239 
2240 	/* we're done with it, release */
2241 	hash_del(&worker->hentry);
2242 	worker->current_work = NULL;
2243 	worker->current_func = NULL;
2244 	worker->current_pwq = NULL;
2245 	worker->desc_valid = false;
2246 	pwq_dec_nr_in_flight(pwq, work_color);
2247 }
2248 
2249 /**
2250  * process_scheduled_works - process scheduled works
2251  * @worker: self
2252  *
2253  * Process all scheduled works.  Please note that the scheduled list
2254  * may change while processing a work, so this function repeatedly
2255  * fetches a work from the top and executes it.
2256  *
2257  * CONTEXT:
2258  * spin_lock_irq(pool->lock) which may be released and regrabbed
2259  * multiple times.
2260  */
2261 static void process_scheduled_works(struct worker *worker)
2262 {
2263 	while (!list_empty(&worker->scheduled)) {
2264 		struct work_struct *work = list_first_entry(&worker->scheduled,
2265 						struct work_struct, entry);
2266 		process_one_work(worker, work);
2267 	}
2268 }
2269 
2270 /**
2271  * worker_thread - the worker thread function
2272  * @__worker: self
2273  *
2274  * The worker thread function.  All workers belong to a worker_pool -
2275  * either a per-cpu one or dynamic unbound one.  These workers process all
2276  * work items regardless of their specific target workqueue.  The only
2277  * exception is work items which belong to workqueues with a rescuer which
2278  * will be explained in rescuer_thread().
2279  *
2280  * Return: 0
2281  */
2282 static int worker_thread(void *__worker)
2283 {
2284 	struct worker *worker = __worker;
2285 	struct worker_pool *pool = worker->pool;
2286 
2287 	/* tell the scheduler that this is a workqueue worker */
2288 	worker->task->flags |= PF_WQ_WORKER;
2289 woke_up:
2290 	spin_lock_irq(&pool->lock);
2291 
2292 	/* am I supposed to die? */
2293 	if (unlikely(worker->flags & WORKER_DIE)) {
2294 		spin_unlock_irq(&pool->lock);
2295 		WARN_ON_ONCE(!list_empty(&worker->entry));
2296 		worker->task->flags &= ~PF_WQ_WORKER;
2297 		return 0;
2298 	}
2299 
2300 	worker_leave_idle(worker);
2301 recheck:
2302 	/* no more worker necessary? */
2303 	if (!need_more_worker(pool))
2304 		goto sleep;
2305 
2306 	/* do we need to manage? */
2307 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2308 		goto recheck;
2309 
2310 	/*
2311 	 * ->scheduled list can only be filled while a worker is
2312 	 * preparing to process a work or actually processing it.
2313 	 * Make sure nobody diddled with it while I was sleeping.
2314 	 */
2315 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2316 
2317 	/*
2318 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2319 	 * worker or that someone else has already assumed the manager
2320 	 * role.  This is where @worker starts participating in concurrency
2321 	 * management if applicable and concurrency management is restored
2322 	 * after being rebound.  See rebind_workers() for details.
2323 	 */
2324 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2325 
2326 	do {
2327 		struct work_struct *work =
2328 			list_first_entry(&pool->worklist,
2329 					 struct work_struct, entry);
2330 
2331 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2332 			/* optimization path, not strictly necessary */
2333 			process_one_work(worker, work);
2334 			if (unlikely(!list_empty(&worker->scheduled)))
2335 				process_scheduled_works(worker);
2336 		} else {
2337 			move_linked_works(work, &worker->scheduled, NULL);
2338 			process_scheduled_works(worker);
2339 		}
2340 	} while (keep_working(pool));
2341 
2342 	worker_set_flags(worker, WORKER_PREP, false);
2343 sleep:
2344 	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2345 		goto recheck;
2346 
2347 	/*
2348 	 * pool->lock is held and there's no work to process and no need to
2349 	 * manage, sleep.  Workers are woken up only while holding
2350 	 * pool->lock or from local cpu, so setting the current state
2351 	 * before releasing pool->lock is enough to prevent losing any
2352 	 * event.
2353 	 */
2354 	worker_enter_idle(worker);
2355 	__set_current_state(TASK_INTERRUPTIBLE);
2356 	spin_unlock_irq(&pool->lock);
2357 	schedule();
2358 	goto woke_up;
2359 }
2360 
2361 /**
2362  * rescuer_thread - the rescuer thread function
2363  * @__rescuer: self
2364  *
2365  * Workqueue rescuer thread function.  There's one rescuer for each
2366  * workqueue which has WQ_MEM_RECLAIM set.
2367  *
2368  * Regular work processing on a pool may block trying to create a new
2369  * worker which uses GFP_KERNEL allocation which has slight chance of
2370  * developing into deadlock if some works currently on the same queue
2371  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2372  * the problem rescuer solves.
2373  *
2374  * When such condition is possible, the pool summons rescuers of all
2375  * workqueues which have works queued on the pool and let them process
2376  * those works so that forward progress can be guaranteed.
2377  *
2378  * This should happen rarely.
2379  *
2380  * Return: 0
2381  */
2382 static int rescuer_thread(void *__rescuer)
2383 {
2384 	struct worker *rescuer = __rescuer;
2385 	struct workqueue_struct *wq = rescuer->rescue_wq;
2386 	struct list_head *scheduled = &rescuer->scheduled;
2387 
2388 	set_user_nice(current, RESCUER_NICE_LEVEL);
2389 
2390 	/*
2391 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2392 	 * doesn't participate in concurrency management.
2393 	 */
2394 	rescuer->task->flags |= PF_WQ_WORKER;
2395 repeat:
2396 	set_current_state(TASK_INTERRUPTIBLE);
2397 
2398 	if (kthread_should_stop()) {
2399 		__set_current_state(TASK_RUNNING);
2400 		rescuer->task->flags &= ~PF_WQ_WORKER;
2401 		return 0;
2402 	}
2403 
2404 	/* see whether any pwq is asking for help */
2405 	spin_lock_irq(&wq_mayday_lock);
2406 
2407 	while (!list_empty(&wq->maydays)) {
2408 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2409 					struct pool_workqueue, mayday_node);
2410 		struct worker_pool *pool = pwq->pool;
2411 		struct work_struct *work, *n;
2412 
2413 		__set_current_state(TASK_RUNNING);
2414 		list_del_init(&pwq->mayday_node);
2415 
2416 		spin_unlock_irq(&wq_mayday_lock);
2417 
2418 		/* migrate to the target cpu if possible */
2419 		worker_maybe_bind_and_lock(pool);
2420 		rescuer->pool = pool;
2421 
2422 		/*
2423 		 * Slurp in all works issued via this workqueue and
2424 		 * process'em.
2425 		 */
2426 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2427 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2428 			if (get_work_pwq(work) == pwq)
2429 				move_linked_works(work, scheduled, &n);
2430 
2431 		process_scheduled_works(rescuer);
2432 
2433 		/*
2434 		 * Leave this pool.  If keep_working() is %true, notify a
2435 		 * regular worker; otherwise, we end up with 0 concurrency
2436 		 * and stalling the execution.
2437 		 */
2438 		if (keep_working(pool))
2439 			wake_up_worker(pool);
2440 
2441 		rescuer->pool = NULL;
2442 		spin_unlock(&pool->lock);
2443 		spin_lock(&wq_mayday_lock);
2444 	}
2445 
2446 	spin_unlock_irq(&wq_mayday_lock);
2447 
2448 	/* rescuers should never participate in concurrency management */
2449 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2450 	schedule();
2451 	goto repeat;
2452 }
2453 
2454 struct wq_barrier {
2455 	struct work_struct	work;
2456 	struct completion	done;
2457 };
2458 
2459 static void wq_barrier_func(struct work_struct *work)
2460 {
2461 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2462 	complete(&barr->done);
2463 }
2464 
2465 /**
2466  * insert_wq_barrier - insert a barrier work
2467  * @pwq: pwq to insert barrier into
2468  * @barr: wq_barrier to insert
2469  * @target: target work to attach @barr to
2470  * @worker: worker currently executing @target, NULL if @target is not executing
2471  *
2472  * @barr is linked to @target such that @barr is completed only after
2473  * @target finishes execution.  Please note that the ordering
2474  * guarantee is observed only with respect to @target and on the local
2475  * cpu.
2476  *
2477  * Currently, a queued barrier can't be canceled.  This is because
2478  * try_to_grab_pending() can't determine whether the work to be
2479  * grabbed is at the head of the queue and thus can't clear LINKED
2480  * flag of the previous work while there must be a valid next work
2481  * after a work with LINKED flag set.
2482  *
2483  * Note that when @worker is non-NULL, @target may be modified
2484  * underneath us, so we can't reliably determine pwq from @target.
2485  *
2486  * CONTEXT:
2487  * spin_lock_irq(pool->lock).
2488  */
2489 static void insert_wq_barrier(struct pool_workqueue *pwq,
2490 			      struct wq_barrier *barr,
2491 			      struct work_struct *target, struct worker *worker)
2492 {
2493 	struct list_head *head;
2494 	unsigned int linked = 0;
2495 
2496 	/*
2497 	 * debugobject calls are safe here even with pool->lock locked
2498 	 * as we know for sure that this will not trigger any of the
2499 	 * checks and call back into the fixup functions where we
2500 	 * might deadlock.
2501 	 */
2502 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2503 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2504 	init_completion(&barr->done);
2505 
2506 	/*
2507 	 * If @target is currently being executed, schedule the
2508 	 * barrier to the worker; otherwise, put it after @target.
2509 	 */
2510 	if (worker)
2511 		head = worker->scheduled.next;
2512 	else {
2513 		unsigned long *bits = work_data_bits(target);
2514 
2515 		head = target->entry.next;
2516 		/* there can already be other linked works, inherit and set */
2517 		linked = *bits & WORK_STRUCT_LINKED;
2518 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2519 	}
2520 
2521 	debug_work_activate(&barr->work);
2522 	insert_work(pwq, &barr->work, head,
2523 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2524 }
2525 
2526 /**
2527  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2528  * @wq: workqueue being flushed
2529  * @flush_color: new flush color, < 0 for no-op
2530  * @work_color: new work color, < 0 for no-op
2531  *
2532  * Prepare pwqs for workqueue flushing.
2533  *
2534  * If @flush_color is non-negative, flush_color on all pwqs should be
2535  * -1.  If no pwq has in-flight commands at the specified color, all
2536  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2537  * has in flight commands, its pwq->flush_color is set to
2538  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2539  * wakeup logic is armed and %true is returned.
2540  *
2541  * The caller should have initialized @wq->first_flusher prior to
2542  * calling this function with non-negative @flush_color.  If
2543  * @flush_color is negative, no flush color update is done and %false
2544  * is returned.
2545  *
2546  * If @work_color is non-negative, all pwqs should have the same
2547  * work_color which is previous to @work_color and all will be
2548  * advanced to @work_color.
2549  *
2550  * CONTEXT:
2551  * mutex_lock(wq->mutex).
2552  *
2553  * Return:
2554  * %true if @flush_color >= 0 and there's something to flush.  %false
2555  * otherwise.
2556  */
2557 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2558 				      int flush_color, int work_color)
2559 {
2560 	bool wait = false;
2561 	struct pool_workqueue *pwq;
2562 
2563 	if (flush_color >= 0) {
2564 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2565 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2566 	}
2567 
2568 	for_each_pwq(pwq, wq) {
2569 		struct worker_pool *pool = pwq->pool;
2570 
2571 		spin_lock_irq(&pool->lock);
2572 
2573 		if (flush_color >= 0) {
2574 			WARN_ON_ONCE(pwq->flush_color != -1);
2575 
2576 			if (pwq->nr_in_flight[flush_color]) {
2577 				pwq->flush_color = flush_color;
2578 				atomic_inc(&wq->nr_pwqs_to_flush);
2579 				wait = true;
2580 			}
2581 		}
2582 
2583 		if (work_color >= 0) {
2584 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2585 			pwq->work_color = work_color;
2586 		}
2587 
2588 		spin_unlock_irq(&pool->lock);
2589 	}
2590 
2591 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2592 		complete(&wq->first_flusher->done);
2593 
2594 	return wait;
2595 }
2596 
2597 /**
2598  * flush_workqueue - ensure that any scheduled work has run to completion.
2599  * @wq: workqueue to flush
2600  *
2601  * This function sleeps until all work items which were queued on entry
2602  * have finished execution, but it is not livelocked by new incoming ones.
2603  */
2604 void flush_workqueue(struct workqueue_struct *wq)
2605 {
2606 	struct wq_flusher this_flusher = {
2607 		.list = LIST_HEAD_INIT(this_flusher.list),
2608 		.flush_color = -1,
2609 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2610 	};
2611 	int next_color;
2612 
2613 	lock_map_acquire(&wq->lockdep_map);
2614 	lock_map_release(&wq->lockdep_map);
2615 
2616 	mutex_lock(&wq->mutex);
2617 
2618 	/*
2619 	 * Start-to-wait phase
2620 	 */
2621 	next_color = work_next_color(wq->work_color);
2622 
2623 	if (next_color != wq->flush_color) {
2624 		/*
2625 		 * Color space is not full.  The current work_color
2626 		 * becomes our flush_color and work_color is advanced
2627 		 * by one.
2628 		 */
2629 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2630 		this_flusher.flush_color = wq->work_color;
2631 		wq->work_color = next_color;
2632 
2633 		if (!wq->first_flusher) {
2634 			/* no flush in progress, become the first flusher */
2635 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2636 
2637 			wq->first_flusher = &this_flusher;
2638 
2639 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2640 						       wq->work_color)) {
2641 				/* nothing to flush, done */
2642 				wq->flush_color = next_color;
2643 				wq->first_flusher = NULL;
2644 				goto out_unlock;
2645 			}
2646 		} else {
2647 			/* wait in queue */
2648 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2649 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2650 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2651 		}
2652 	} else {
2653 		/*
2654 		 * Oops, color space is full, wait on overflow queue.
2655 		 * The next flush completion will assign us
2656 		 * flush_color and transfer to flusher_queue.
2657 		 */
2658 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2659 	}
2660 
2661 	mutex_unlock(&wq->mutex);
2662 
2663 	wait_for_completion(&this_flusher.done);
2664 
2665 	/*
2666 	 * Wake-up-and-cascade phase
2667 	 *
2668 	 * First flushers are responsible for cascading flushes and
2669 	 * handling overflow.  Non-first flushers can simply return.
2670 	 */
2671 	if (wq->first_flusher != &this_flusher)
2672 		return;
2673 
2674 	mutex_lock(&wq->mutex);
2675 
2676 	/* we might have raced, check again with mutex held */
2677 	if (wq->first_flusher != &this_flusher)
2678 		goto out_unlock;
2679 
2680 	wq->first_flusher = NULL;
2681 
2682 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2683 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2684 
2685 	while (true) {
2686 		struct wq_flusher *next, *tmp;
2687 
2688 		/* complete all the flushers sharing the current flush color */
2689 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2690 			if (next->flush_color != wq->flush_color)
2691 				break;
2692 			list_del_init(&next->list);
2693 			complete(&next->done);
2694 		}
2695 
2696 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2697 			     wq->flush_color != work_next_color(wq->work_color));
2698 
2699 		/* this flush_color is finished, advance by one */
2700 		wq->flush_color = work_next_color(wq->flush_color);
2701 
2702 		/* one color has been freed, handle overflow queue */
2703 		if (!list_empty(&wq->flusher_overflow)) {
2704 			/*
2705 			 * Assign the same color to all overflowed
2706 			 * flushers, advance work_color and append to
2707 			 * flusher_queue.  This is the start-to-wait
2708 			 * phase for these overflowed flushers.
2709 			 */
2710 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2711 				tmp->flush_color = wq->work_color;
2712 
2713 			wq->work_color = work_next_color(wq->work_color);
2714 
2715 			list_splice_tail_init(&wq->flusher_overflow,
2716 					      &wq->flusher_queue);
2717 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2718 		}
2719 
2720 		if (list_empty(&wq->flusher_queue)) {
2721 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2722 			break;
2723 		}
2724 
2725 		/*
2726 		 * Need to flush more colors.  Make the next flusher
2727 		 * the new first flusher and arm pwqs.
2728 		 */
2729 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2730 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2731 
2732 		list_del_init(&next->list);
2733 		wq->first_flusher = next;
2734 
2735 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2736 			break;
2737 
2738 		/*
2739 		 * Meh... this color is already done, clear first
2740 		 * flusher and repeat cascading.
2741 		 */
2742 		wq->first_flusher = NULL;
2743 	}
2744 
2745 out_unlock:
2746 	mutex_unlock(&wq->mutex);
2747 }
2748 EXPORT_SYMBOL_GPL(flush_workqueue);
2749 
2750 /**
2751  * drain_workqueue - drain a workqueue
2752  * @wq: workqueue to drain
2753  *
2754  * Wait until the workqueue becomes empty.  While draining is in progress,
2755  * only chain queueing is allowed.  IOW, only currently pending or running
2756  * work items on @wq can queue further work items on it.  @wq is flushed
2757  * repeatedly until it becomes empty.  The number of flushing is detemined
2758  * by the depth of chaining and should be relatively short.  Whine if it
2759  * takes too long.
2760  */
2761 void drain_workqueue(struct workqueue_struct *wq)
2762 {
2763 	unsigned int flush_cnt = 0;
2764 	struct pool_workqueue *pwq;
2765 
2766 	/*
2767 	 * __queue_work() needs to test whether there are drainers, is much
2768 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2769 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2770 	 */
2771 	mutex_lock(&wq->mutex);
2772 	if (!wq->nr_drainers++)
2773 		wq->flags |= __WQ_DRAINING;
2774 	mutex_unlock(&wq->mutex);
2775 reflush:
2776 	flush_workqueue(wq);
2777 
2778 	mutex_lock(&wq->mutex);
2779 
2780 	for_each_pwq(pwq, wq) {
2781 		bool drained;
2782 
2783 		spin_lock_irq(&pwq->pool->lock);
2784 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2785 		spin_unlock_irq(&pwq->pool->lock);
2786 
2787 		if (drained)
2788 			continue;
2789 
2790 		if (++flush_cnt == 10 ||
2791 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2792 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2793 				wq->name, flush_cnt);
2794 
2795 		mutex_unlock(&wq->mutex);
2796 		goto reflush;
2797 	}
2798 
2799 	if (!--wq->nr_drainers)
2800 		wq->flags &= ~__WQ_DRAINING;
2801 	mutex_unlock(&wq->mutex);
2802 }
2803 EXPORT_SYMBOL_GPL(drain_workqueue);
2804 
2805 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2806 {
2807 	struct worker *worker = NULL;
2808 	struct worker_pool *pool;
2809 	struct pool_workqueue *pwq;
2810 
2811 	might_sleep();
2812 
2813 	local_irq_disable();
2814 	pool = get_work_pool(work);
2815 	if (!pool) {
2816 		local_irq_enable();
2817 		return false;
2818 	}
2819 
2820 	spin_lock(&pool->lock);
2821 	/* see the comment in try_to_grab_pending() with the same code */
2822 	pwq = get_work_pwq(work);
2823 	if (pwq) {
2824 		if (unlikely(pwq->pool != pool))
2825 			goto already_gone;
2826 	} else {
2827 		worker = find_worker_executing_work(pool, work);
2828 		if (!worker)
2829 			goto already_gone;
2830 		pwq = worker->current_pwq;
2831 	}
2832 
2833 	insert_wq_barrier(pwq, barr, work, worker);
2834 	spin_unlock_irq(&pool->lock);
2835 
2836 	/*
2837 	 * If @max_active is 1 or rescuer is in use, flushing another work
2838 	 * item on the same workqueue may lead to deadlock.  Make sure the
2839 	 * flusher is not running on the same workqueue by verifying write
2840 	 * access.
2841 	 */
2842 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2843 		lock_map_acquire(&pwq->wq->lockdep_map);
2844 	else
2845 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2846 	lock_map_release(&pwq->wq->lockdep_map);
2847 
2848 	return true;
2849 already_gone:
2850 	spin_unlock_irq(&pool->lock);
2851 	return false;
2852 }
2853 
2854 static bool __flush_work(struct work_struct *work)
2855 {
2856 	struct wq_barrier barr;
2857 
2858 	if (start_flush_work(work, &barr)) {
2859 		wait_for_completion(&barr.done);
2860 		destroy_work_on_stack(&barr.work);
2861 		return true;
2862 	} else {
2863 		return false;
2864 	}
2865 }
2866 
2867 /**
2868  * flush_work - wait for a work to finish executing the last queueing instance
2869  * @work: the work to flush
2870  *
2871  * Wait until @work has finished execution.  @work is guaranteed to be idle
2872  * on return if it hasn't been requeued since flush started.
2873  *
2874  * Return:
2875  * %true if flush_work() waited for the work to finish execution,
2876  * %false if it was already idle.
2877  */
2878 bool flush_work(struct work_struct *work)
2879 {
2880 	lock_map_acquire(&work->lockdep_map);
2881 	lock_map_release(&work->lockdep_map);
2882 
2883 	return __flush_work(work);
2884 }
2885 EXPORT_SYMBOL_GPL(flush_work);
2886 
2887 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2888 {
2889 	unsigned long flags;
2890 	int ret;
2891 
2892 	do {
2893 		ret = try_to_grab_pending(work, is_dwork, &flags);
2894 		/*
2895 		 * If someone else is canceling, wait for the same event it
2896 		 * would be waiting for before retrying.
2897 		 */
2898 		if (unlikely(ret == -ENOENT))
2899 			flush_work(work);
2900 	} while (unlikely(ret < 0));
2901 
2902 	/* tell other tasks trying to grab @work to back off */
2903 	mark_work_canceling(work);
2904 	local_irq_restore(flags);
2905 
2906 	flush_work(work);
2907 	clear_work_data(work);
2908 	return ret;
2909 }
2910 
2911 /**
2912  * cancel_work_sync - cancel a work and wait for it to finish
2913  * @work: the work to cancel
2914  *
2915  * Cancel @work and wait for its execution to finish.  This function
2916  * can be used even if the work re-queues itself or migrates to
2917  * another workqueue.  On return from this function, @work is
2918  * guaranteed to be not pending or executing on any CPU.
2919  *
2920  * cancel_work_sync(&delayed_work->work) must not be used for
2921  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2922  *
2923  * The caller must ensure that the workqueue on which @work was last
2924  * queued can't be destroyed before this function returns.
2925  *
2926  * Return:
2927  * %true if @work was pending, %false otherwise.
2928  */
2929 bool cancel_work_sync(struct work_struct *work)
2930 {
2931 	return __cancel_work_timer(work, false);
2932 }
2933 EXPORT_SYMBOL_GPL(cancel_work_sync);
2934 
2935 /**
2936  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2937  * @dwork: the delayed work to flush
2938  *
2939  * Delayed timer is cancelled and the pending work is queued for
2940  * immediate execution.  Like flush_work(), this function only
2941  * considers the last queueing instance of @dwork.
2942  *
2943  * Return:
2944  * %true if flush_work() waited for the work to finish execution,
2945  * %false if it was already idle.
2946  */
2947 bool flush_delayed_work(struct delayed_work *dwork)
2948 {
2949 	local_irq_disable();
2950 	if (del_timer_sync(&dwork->timer))
2951 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2952 	local_irq_enable();
2953 	return flush_work(&dwork->work);
2954 }
2955 EXPORT_SYMBOL(flush_delayed_work);
2956 
2957 /**
2958  * cancel_delayed_work - cancel a delayed work
2959  * @dwork: delayed_work to cancel
2960  *
2961  * Kill off a pending delayed_work.
2962  *
2963  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2964  * pending.
2965  *
2966  * Note:
2967  * The work callback function may still be running on return, unless
2968  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2969  * use cancel_delayed_work_sync() to wait on it.
2970  *
2971  * This function is safe to call from any context including IRQ handler.
2972  */
2973 bool cancel_delayed_work(struct delayed_work *dwork)
2974 {
2975 	unsigned long flags;
2976 	int ret;
2977 
2978 	do {
2979 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2980 	} while (unlikely(ret == -EAGAIN));
2981 
2982 	if (unlikely(ret < 0))
2983 		return false;
2984 
2985 	set_work_pool_and_clear_pending(&dwork->work,
2986 					get_work_pool_id(&dwork->work));
2987 	local_irq_restore(flags);
2988 	return ret;
2989 }
2990 EXPORT_SYMBOL(cancel_delayed_work);
2991 
2992 /**
2993  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2994  * @dwork: the delayed work cancel
2995  *
2996  * This is cancel_work_sync() for delayed works.
2997  *
2998  * Return:
2999  * %true if @dwork was pending, %false otherwise.
3000  */
3001 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3002 {
3003 	return __cancel_work_timer(&dwork->work, true);
3004 }
3005 EXPORT_SYMBOL(cancel_delayed_work_sync);
3006 
3007 /**
3008  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3009  * @func: the function to call
3010  *
3011  * schedule_on_each_cpu() executes @func on each online CPU using the
3012  * system workqueue and blocks until all CPUs have completed.
3013  * schedule_on_each_cpu() is very slow.
3014  *
3015  * Return:
3016  * 0 on success, -errno on failure.
3017  */
3018 int schedule_on_each_cpu(work_func_t func)
3019 {
3020 	int cpu;
3021 	struct work_struct __percpu *works;
3022 
3023 	works = alloc_percpu(struct work_struct);
3024 	if (!works)
3025 		return -ENOMEM;
3026 
3027 	get_online_cpus();
3028 
3029 	for_each_online_cpu(cpu) {
3030 		struct work_struct *work = per_cpu_ptr(works, cpu);
3031 
3032 		INIT_WORK(work, func);
3033 		schedule_work_on(cpu, work);
3034 	}
3035 
3036 	for_each_online_cpu(cpu)
3037 		flush_work(per_cpu_ptr(works, cpu));
3038 
3039 	put_online_cpus();
3040 	free_percpu(works);
3041 	return 0;
3042 }
3043 
3044 /**
3045  * flush_scheduled_work - ensure that any scheduled work has run to completion.
3046  *
3047  * Forces execution of the kernel-global workqueue and blocks until its
3048  * completion.
3049  *
3050  * Think twice before calling this function!  It's very easy to get into
3051  * trouble if you don't take great care.  Either of the following situations
3052  * will lead to deadlock:
3053  *
3054  *	One of the work items currently on the workqueue needs to acquire
3055  *	a lock held by your code or its caller.
3056  *
3057  *	Your code is running in the context of a work routine.
3058  *
3059  * They will be detected by lockdep when they occur, but the first might not
3060  * occur very often.  It depends on what work items are on the workqueue and
3061  * what locks they need, which you have no control over.
3062  *
3063  * In most situations flushing the entire workqueue is overkill; you merely
3064  * need to know that a particular work item isn't queued and isn't running.
3065  * In such cases you should use cancel_delayed_work_sync() or
3066  * cancel_work_sync() instead.
3067  */
3068 void flush_scheduled_work(void)
3069 {
3070 	flush_workqueue(system_wq);
3071 }
3072 EXPORT_SYMBOL(flush_scheduled_work);
3073 
3074 /**
3075  * execute_in_process_context - reliably execute the routine with user context
3076  * @fn:		the function to execute
3077  * @ew:		guaranteed storage for the execute work structure (must
3078  *		be available when the work executes)
3079  *
3080  * Executes the function immediately if process context is available,
3081  * otherwise schedules the function for delayed execution.
3082  *
3083  * Return:	0 - function was executed
3084  *		1 - function was scheduled for execution
3085  */
3086 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3087 {
3088 	if (!in_interrupt()) {
3089 		fn(&ew->work);
3090 		return 0;
3091 	}
3092 
3093 	INIT_WORK(&ew->work, fn);
3094 	schedule_work(&ew->work);
3095 
3096 	return 1;
3097 }
3098 EXPORT_SYMBOL_GPL(execute_in_process_context);
3099 
3100 #ifdef CONFIG_SYSFS
3101 /*
3102  * Workqueues with WQ_SYSFS flag set is visible to userland via
3103  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
3104  * following attributes.
3105  *
3106  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
3107  *  max_active	RW int	: maximum number of in-flight work items
3108  *
3109  * Unbound workqueues have the following extra attributes.
3110  *
3111  *  id		RO int	: the associated pool ID
3112  *  nice	RW int	: nice value of the workers
3113  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
3114  */
3115 struct wq_device {
3116 	struct workqueue_struct		*wq;
3117 	struct device			dev;
3118 };
3119 
3120 static struct workqueue_struct *dev_to_wq(struct device *dev)
3121 {
3122 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3123 
3124 	return wq_dev->wq;
3125 }
3126 
3127 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3128 			    char *buf)
3129 {
3130 	struct workqueue_struct *wq = dev_to_wq(dev);
3131 
3132 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3133 }
3134 static DEVICE_ATTR_RO(per_cpu);
3135 
3136 static ssize_t max_active_show(struct device *dev,
3137 			       struct device_attribute *attr, char *buf)
3138 {
3139 	struct workqueue_struct *wq = dev_to_wq(dev);
3140 
3141 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3142 }
3143 
3144 static ssize_t max_active_store(struct device *dev,
3145 				struct device_attribute *attr, const char *buf,
3146 				size_t count)
3147 {
3148 	struct workqueue_struct *wq = dev_to_wq(dev);
3149 	int val;
3150 
3151 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3152 		return -EINVAL;
3153 
3154 	workqueue_set_max_active(wq, val);
3155 	return count;
3156 }
3157 static DEVICE_ATTR_RW(max_active);
3158 
3159 static struct attribute *wq_sysfs_attrs[] = {
3160 	&dev_attr_per_cpu.attr,
3161 	&dev_attr_max_active.attr,
3162 	NULL,
3163 };
3164 ATTRIBUTE_GROUPS(wq_sysfs);
3165 
3166 static ssize_t wq_pool_ids_show(struct device *dev,
3167 				struct device_attribute *attr, char *buf)
3168 {
3169 	struct workqueue_struct *wq = dev_to_wq(dev);
3170 	const char *delim = "";
3171 	int node, written = 0;
3172 
3173 	rcu_read_lock_sched();
3174 	for_each_node(node) {
3175 		written += scnprintf(buf + written, PAGE_SIZE - written,
3176 				     "%s%d:%d", delim, node,
3177 				     unbound_pwq_by_node(wq, node)->pool->id);
3178 		delim = " ";
3179 	}
3180 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3181 	rcu_read_unlock_sched();
3182 
3183 	return written;
3184 }
3185 
3186 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3187 			    char *buf)
3188 {
3189 	struct workqueue_struct *wq = dev_to_wq(dev);
3190 	int written;
3191 
3192 	mutex_lock(&wq->mutex);
3193 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3194 	mutex_unlock(&wq->mutex);
3195 
3196 	return written;
3197 }
3198 
3199 /* prepare workqueue_attrs for sysfs store operations */
3200 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3201 {
3202 	struct workqueue_attrs *attrs;
3203 
3204 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
3205 	if (!attrs)
3206 		return NULL;
3207 
3208 	mutex_lock(&wq->mutex);
3209 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
3210 	mutex_unlock(&wq->mutex);
3211 	return attrs;
3212 }
3213 
3214 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3215 			     const char *buf, size_t count)
3216 {
3217 	struct workqueue_struct *wq = dev_to_wq(dev);
3218 	struct workqueue_attrs *attrs;
3219 	int ret;
3220 
3221 	attrs = wq_sysfs_prep_attrs(wq);
3222 	if (!attrs)
3223 		return -ENOMEM;
3224 
3225 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3226 	    attrs->nice >= -20 && attrs->nice <= 19)
3227 		ret = apply_workqueue_attrs(wq, attrs);
3228 	else
3229 		ret = -EINVAL;
3230 
3231 	free_workqueue_attrs(attrs);
3232 	return ret ?: count;
3233 }
3234 
3235 static ssize_t wq_cpumask_show(struct device *dev,
3236 			       struct device_attribute *attr, char *buf)
3237 {
3238 	struct workqueue_struct *wq = dev_to_wq(dev);
3239 	int written;
3240 
3241 	mutex_lock(&wq->mutex);
3242 	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3243 	mutex_unlock(&wq->mutex);
3244 
3245 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3246 	return written;
3247 }
3248 
3249 static ssize_t wq_cpumask_store(struct device *dev,
3250 				struct device_attribute *attr,
3251 				const char *buf, size_t count)
3252 {
3253 	struct workqueue_struct *wq = dev_to_wq(dev);
3254 	struct workqueue_attrs *attrs;
3255 	int ret;
3256 
3257 	attrs = wq_sysfs_prep_attrs(wq);
3258 	if (!attrs)
3259 		return -ENOMEM;
3260 
3261 	ret = cpumask_parse(buf, attrs->cpumask);
3262 	if (!ret)
3263 		ret = apply_workqueue_attrs(wq, attrs);
3264 
3265 	free_workqueue_attrs(attrs);
3266 	return ret ?: count;
3267 }
3268 
3269 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3270 			    char *buf)
3271 {
3272 	struct workqueue_struct *wq = dev_to_wq(dev);
3273 	int written;
3274 
3275 	mutex_lock(&wq->mutex);
3276 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
3277 			    !wq->unbound_attrs->no_numa);
3278 	mutex_unlock(&wq->mutex);
3279 
3280 	return written;
3281 }
3282 
3283 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3284 			     const char *buf, size_t count)
3285 {
3286 	struct workqueue_struct *wq = dev_to_wq(dev);
3287 	struct workqueue_attrs *attrs;
3288 	int v, ret;
3289 
3290 	attrs = wq_sysfs_prep_attrs(wq);
3291 	if (!attrs)
3292 		return -ENOMEM;
3293 
3294 	ret = -EINVAL;
3295 	if (sscanf(buf, "%d", &v) == 1) {
3296 		attrs->no_numa = !v;
3297 		ret = apply_workqueue_attrs(wq, attrs);
3298 	}
3299 
3300 	free_workqueue_attrs(attrs);
3301 	return ret ?: count;
3302 }
3303 
3304 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3305 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3306 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3307 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3308 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3309 	__ATTR_NULL,
3310 };
3311 
3312 static struct bus_type wq_subsys = {
3313 	.name				= "workqueue",
3314 	.dev_groups			= wq_sysfs_groups,
3315 };
3316 
3317 static int __init wq_sysfs_init(void)
3318 {
3319 	return subsys_virtual_register(&wq_subsys, NULL);
3320 }
3321 core_initcall(wq_sysfs_init);
3322 
3323 static void wq_device_release(struct device *dev)
3324 {
3325 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3326 
3327 	kfree(wq_dev);
3328 }
3329 
3330 /**
3331  * workqueue_sysfs_register - make a workqueue visible in sysfs
3332  * @wq: the workqueue to register
3333  *
3334  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3335  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3336  * which is the preferred method.
3337  *
3338  * Workqueue user should use this function directly iff it wants to apply
3339  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3340  * apply_workqueue_attrs() may race against userland updating the
3341  * attributes.
3342  *
3343  * Return: 0 on success, -errno on failure.
3344  */
3345 int workqueue_sysfs_register(struct workqueue_struct *wq)
3346 {
3347 	struct wq_device *wq_dev;
3348 	int ret;
3349 
3350 	/*
3351 	 * Adjusting max_active or creating new pwqs by applyting
3352 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
3353 	 * workqueues.
3354 	 */
3355 	if (WARN_ON(wq->flags & __WQ_ORDERED))
3356 		return -EINVAL;
3357 
3358 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3359 	if (!wq_dev)
3360 		return -ENOMEM;
3361 
3362 	wq_dev->wq = wq;
3363 	wq_dev->dev.bus = &wq_subsys;
3364 	wq_dev->dev.init_name = wq->name;
3365 	wq_dev->dev.release = wq_device_release;
3366 
3367 	/*
3368 	 * unbound_attrs are created separately.  Suppress uevent until
3369 	 * everything is ready.
3370 	 */
3371 	dev_set_uevent_suppress(&wq_dev->dev, true);
3372 
3373 	ret = device_register(&wq_dev->dev);
3374 	if (ret) {
3375 		kfree(wq_dev);
3376 		wq->wq_dev = NULL;
3377 		return ret;
3378 	}
3379 
3380 	if (wq->flags & WQ_UNBOUND) {
3381 		struct device_attribute *attr;
3382 
3383 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3384 			ret = device_create_file(&wq_dev->dev, attr);
3385 			if (ret) {
3386 				device_unregister(&wq_dev->dev);
3387 				wq->wq_dev = NULL;
3388 				return ret;
3389 			}
3390 		}
3391 	}
3392 
3393 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3394 	return 0;
3395 }
3396 
3397 /**
3398  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3399  * @wq: the workqueue to unregister
3400  *
3401  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3402  */
3403 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3404 {
3405 	struct wq_device *wq_dev = wq->wq_dev;
3406 
3407 	if (!wq->wq_dev)
3408 		return;
3409 
3410 	wq->wq_dev = NULL;
3411 	device_unregister(&wq_dev->dev);
3412 }
3413 #else	/* CONFIG_SYSFS */
3414 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
3415 #endif	/* CONFIG_SYSFS */
3416 
3417 /**
3418  * free_workqueue_attrs - free a workqueue_attrs
3419  * @attrs: workqueue_attrs to free
3420  *
3421  * Undo alloc_workqueue_attrs().
3422  */
3423 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3424 {
3425 	if (attrs) {
3426 		free_cpumask_var(attrs->cpumask);
3427 		kfree(attrs);
3428 	}
3429 }
3430 
3431 /**
3432  * alloc_workqueue_attrs - allocate a workqueue_attrs
3433  * @gfp_mask: allocation mask to use
3434  *
3435  * Allocate a new workqueue_attrs, initialize with default settings and
3436  * return it.
3437  *
3438  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3439  */
3440 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3441 {
3442 	struct workqueue_attrs *attrs;
3443 
3444 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3445 	if (!attrs)
3446 		goto fail;
3447 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3448 		goto fail;
3449 
3450 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3451 	return attrs;
3452 fail:
3453 	free_workqueue_attrs(attrs);
3454 	return NULL;
3455 }
3456 
3457 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3458 				 const struct workqueue_attrs *from)
3459 {
3460 	to->nice = from->nice;
3461 	cpumask_copy(to->cpumask, from->cpumask);
3462 	/*
3463 	 * Unlike hash and equality test, this function doesn't ignore
3464 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3465 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3466 	 */
3467 	to->no_numa = from->no_numa;
3468 }
3469 
3470 /* hash value of the content of @attr */
3471 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3472 {
3473 	u32 hash = 0;
3474 
3475 	hash = jhash_1word(attrs->nice, hash);
3476 	hash = jhash(cpumask_bits(attrs->cpumask),
3477 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3478 	return hash;
3479 }
3480 
3481 /* content equality test */
3482 static bool wqattrs_equal(const struct workqueue_attrs *a,
3483 			  const struct workqueue_attrs *b)
3484 {
3485 	if (a->nice != b->nice)
3486 		return false;
3487 	if (!cpumask_equal(a->cpumask, b->cpumask))
3488 		return false;
3489 	return true;
3490 }
3491 
3492 /**
3493  * init_worker_pool - initialize a newly zalloc'd worker_pool
3494  * @pool: worker_pool to initialize
3495  *
3496  * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3497  *
3498  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3499  * inside @pool proper are initialized and put_unbound_pool() can be called
3500  * on @pool safely to release it.
3501  */
3502 static int init_worker_pool(struct worker_pool *pool)
3503 {
3504 	spin_lock_init(&pool->lock);
3505 	pool->id = -1;
3506 	pool->cpu = -1;
3507 	pool->node = NUMA_NO_NODE;
3508 	pool->flags |= POOL_DISASSOCIATED;
3509 	INIT_LIST_HEAD(&pool->worklist);
3510 	INIT_LIST_HEAD(&pool->idle_list);
3511 	hash_init(pool->busy_hash);
3512 
3513 	init_timer_deferrable(&pool->idle_timer);
3514 	pool->idle_timer.function = idle_worker_timeout;
3515 	pool->idle_timer.data = (unsigned long)pool;
3516 
3517 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3518 		    (unsigned long)pool);
3519 
3520 	mutex_init(&pool->manager_arb);
3521 	mutex_init(&pool->manager_mutex);
3522 	idr_init(&pool->worker_idr);
3523 
3524 	INIT_HLIST_NODE(&pool->hash_node);
3525 	pool->refcnt = 1;
3526 
3527 	/* shouldn't fail above this point */
3528 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3529 	if (!pool->attrs)
3530 		return -ENOMEM;
3531 	return 0;
3532 }
3533 
3534 static void rcu_free_pool(struct rcu_head *rcu)
3535 {
3536 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3537 
3538 	idr_destroy(&pool->worker_idr);
3539 	free_workqueue_attrs(pool->attrs);
3540 	kfree(pool);
3541 }
3542 
3543 /**
3544  * put_unbound_pool - put a worker_pool
3545  * @pool: worker_pool to put
3546  *
3547  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3548  * safe manner.  get_unbound_pool() calls this function on its failure path
3549  * and this function should be able to release pools which went through,
3550  * successfully or not, init_worker_pool().
3551  *
3552  * Should be called with wq_pool_mutex held.
3553  */
3554 static void put_unbound_pool(struct worker_pool *pool)
3555 {
3556 	struct worker *worker;
3557 
3558 	lockdep_assert_held(&wq_pool_mutex);
3559 
3560 	if (--pool->refcnt)
3561 		return;
3562 
3563 	/* sanity checks */
3564 	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3565 	    WARN_ON(!list_empty(&pool->worklist)))
3566 		return;
3567 
3568 	/* release id and unhash */
3569 	if (pool->id >= 0)
3570 		idr_remove(&worker_pool_idr, pool->id);
3571 	hash_del(&pool->hash_node);
3572 
3573 	/*
3574 	 * Become the manager and destroy all workers.  Grabbing
3575 	 * manager_arb prevents @pool's workers from blocking on
3576 	 * manager_mutex.
3577 	 */
3578 	mutex_lock(&pool->manager_arb);
3579 	mutex_lock(&pool->manager_mutex);
3580 	spin_lock_irq(&pool->lock);
3581 
3582 	while ((worker = first_worker(pool)))
3583 		destroy_worker(worker);
3584 	WARN_ON(pool->nr_workers || pool->nr_idle);
3585 
3586 	spin_unlock_irq(&pool->lock);
3587 	mutex_unlock(&pool->manager_mutex);
3588 	mutex_unlock(&pool->manager_arb);
3589 
3590 	/* shut down the timers */
3591 	del_timer_sync(&pool->idle_timer);
3592 	del_timer_sync(&pool->mayday_timer);
3593 
3594 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3595 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3596 }
3597 
3598 /**
3599  * get_unbound_pool - get a worker_pool with the specified attributes
3600  * @attrs: the attributes of the worker_pool to get
3601  *
3602  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3603  * reference count and return it.  If there already is a matching
3604  * worker_pool, it will be used; otherwise, this function attempts to
3605  * create a new one.
3606  *
3607  * Should be called with wq_pool_mutex held.
3608  *
3609  * Return: On success, a worker_pool with the same attributes as @attrs.
3610  * On failure, %NULL.
3611  */
3612 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3613 {
3614 	u32 hash = wqattrs_hash(attrs);
3615 	struct worker_pool *pool;
3616 	int node;
3617 
3618 	lockdep_assert_held(&wq_pool_mutex);
3619 
3620 	/* do we already have a matching pool? */
3621 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3622 		if (wqattrs_equal(pool->attrs, attrs)) {
3623 			pool->refcnt++;
3624 			goto out_unlock;
3625 		}
3626 	}
3627 
3628 	/* nope, create a new one */
3629 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3630 	if (!pool || init_worker_pool(pool) < 0)
3631 		goto fail;
3632 
3633 	if (workqueue_freezing)
3634 		pool->flags |= POOL_FREEZING;
3635 
3636 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3637 	copy_workqueue_attrs(pool->attrs, attrs);
3638 
3639 	/*
3640 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3641 	 * 'struct workqueue_attrs' comments for detail.
3642 	 */
3643 	pool->attrs->no_numa = false;
3644 
3645 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3646 	if (wq_numa_enabled) {
3647 		for_each_node(node) {
3648 			if (cpumask_subset(pool->attrs->cpumask,
3649 					   wq_numa_possible_cpumask[node])) {
3650 				pool->node = node;
3651 				break;
3652 			}
3653 		}
3654 	}
3655 
3656 	if (worker_pool_assign_id(pool) < 0)
3657 		goto fail;
3658 
3659 	/* create and start the initial worker */
3660 	if (create_and_start_worker(pool) < 0)
3661 		goto fail;
3662 
3663 	/* install */
3664 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3665 out_unlock:
3666 	return pool;
3667 fail:
3668 	if (pool)
3669 		put_unbound_pool(pool);
3670 	return NULL;
3671 }
3672 
3673 static void rcu_free_pwq(struct rcu_head *rcu)
3674 {
3675 	kmem_cache_free(pwq_cache,
3676 			container_of(rcu, struct pool_workqueue, rcu));
3677 }
3678 
3679 /*
3680  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3681  * and needs to be destroyed.
3682  */
3683 static void pwq_unbound_release_workfn(struct work_struct *work)
3684 {
3685 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3686 						  unbound_release_work);
3687 	struct workqueue_struct *wq = pwq->wq;
3688 	struct worker_pool *pool = pwq->pool;
3689 	bool is_last;
3690 
3691 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3692 		return;
3693 
3694 	/*
3695 	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3696 	 * necessary on release but do it anyway.  It's easier to verify
3697 	 * and consistent with the linking path.
3698 	 */
3699 	mutex_lock(&wq->mutex);
3700 	list_del_rcu(&pwq->pwqs_node);
3701 	is_last = list_empty(&wq->pwqs);
3702 	mutex_unlock(&wq->mutex);
3703 
3704 	mutex_lock(&wq_pool_mutex);
3705 	put_unbound_pool(pool);
3706 	mutex_unlock(&wq_pool_mutex);
3707 
3708 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3709 
3710 	/*
3711 	 * If we're the last pwq going away, @wq is already dead and no one
3712 	 * is gonna access it anymore.  Free it.
3713 	 */
3714 	if (is_last) {
3715 		free_workqueue_attrs(wq->unbound_attrs);
3716 		kfree(wq);
3717 	}
3718 }
3719 
3720 /**
3721  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3722  * @pwq: target pool_workqueue
3723  *
3724  * If @pwq isn't freezing, set @pwq->max_active to the associated
3725  * workqueue's saved_max_active and activate delayed work items
3726  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3727  */
3728 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3729 {
3730 	struct workqueue_struct *wq = pwq->wq;
3731 	bool freezable = wq->flags & WQ_FREEZABLE;
3732 
3733 	/* for @wq->saved_max_active */
3734 	lockdep_assert_held(&wq->mutex);
3735 
3736 	/* fast exit for non-freezable wqs */
3737 	if (!freezable && pwq->max_active == wq->saved_max_active)
3738 		return;
3739 
3740 	spin_lock_irq(&pwq->pool->lock);
3741 
3742 	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3743 		pwq->max_active = wq->saved_max_active;
3744 
3745 		while (!list_empty(&pwq->delayed_works) &&
3746 		       pwq->nr_active < pwq->max_active)
3747 			pwq_activate_first_delayed(pwq);
3748 
3749 		/*
3750 		 * Need to kick a worker after thawed or an unbound wq's
3751 		 * max_active is bumped.  It's a slow path.  Do it always.
3752 		 */
3753 		wake_up_worker(pwq->pool);
3754 	} else {
3755 		pwq->max_active = 0;
3756 	}
3757 
3758 	spin_unlock_irq(&pwq->pool->lock);
3759 }
3760 
3761 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3762 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3763 		     struct worker_pool *pool)
3764 {
3765 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3766 
3767 	memset(pwq, 0, sizeof(*pwq));
3768 
3769 	pwq->pool = pool;
3770 	pwq->wq = wq;
3771 	pwq->flush_color = -1;
3772 	pwq->refcnt = 1;
3773 	INIT_LIST_HEAD(&pwq->delayed_works);
3774 	INIT_LIST_HEAD(&pwq->pwqs_node);
3775 	INIT_LIST_HEAD(&pwq->mayday_node);
3776 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3777 }
3778 
3779 /* sync @pwq with the current state of its associated wq and link it */
3780 static void link_pwq(struct pool_workqueue *pwq)
3781 {
3782 	struct workqueue_struct *wq = pwq->wq;
3783 
3784 	lockdep_assert_held(&wq->mutex);
3785 
3786 	/* may be called multiple times, ignore if already linked */
3787 	if (!list_empty(&pwq->pwqs_node))
3788 		return;
3789 
3790 	/*
3791 	 * Set the matching work_color.  This is synchronized with
3792 	 * wq->mutex to avoid confusing flush_workqueue().
3793 	 */
3794 	pwq->work_color = wq->work_color;
3795 
3796 	/* sync max_active to the current setting */
3797 	pwq_adjust_max_active(pwq);
3798 
3799 	/* link in @pwq */
3800 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3801 }
3802 
3803 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3804 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3805 					const struct workqueue_attrs *attrs)
3806 {
3807 	struct worker_pool *pool;
3808 	struct pool_workqueue *pwq;
3809 
3810 	lockdep_assert_held(&wq_pool_mutex);
3811 
3812 	pool = get_unbound_pool(attrs);
3813 	if (!pool)
3814 		return NULL;
3815 
3816 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3817 	if (!pwq) {
3818 		put_unbound_pool(pool);
3819 		return NULL;
3820 	}
3821 
3822 	init_pwq(pwq, wq, pool);
3823 	return pwq;
3824 }
3825 
3826 /* undo alloc_unbound_pwq(), used only in the error path */
3827 static void free_unbound_pwq(struct pool_workqueue *pwq)
3828 {
3829 	lockdep_assert_held(&wq_pool_mutex);
3830 
3831 	if (pwq) {
3832 		put_unbound_pool(pwq->pool);
3833 		kmem_cache_free(pwq_cache, pwq);
3834 	}
3835 }
3836 
3837 /**
3838  * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3839  * @attrs: the wq_attrs of interest
3840  * @node: the target NUMA node
3841  * @cpu_going_down: if >= 0, the CPU to consider as offline
3842  * @cpumask: outarg, the resulting cpumask
3843  *
3844  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3845  * @cpu_going_down is >= 0, that cpu is considered offline during
3846  * calculation.  The result is stored in @cpumask.
3847  *
3848  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3849  * enabled and @node has online CPUs requested by @attrs, the returned
3850  * cpumask is the intersection of the possible CPUs of @node and
3851  * @attrs->cpumask.
3852  *
3853  * The caller is responsible for ensuring that the cpumask of @node stays
3854  * stable.
3855  *
3856  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3857  * %false if equal.
3858  */
3859 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3860 				 int cpu_going_down, cpumask_t *cpumask)
3861 {
3862 	if (!wq_numa_enabled || attrs->no_numa)
3863 		goto use_dfl;
3864 
3865 	/* does @node have any online CPUs @attrs wants? */
3866 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3867 	if (cpu_going_down >= 0)
3868 		cpumask_clear_cpu(cpu_going_down, cpumask);
3869 
3870 	if (cpumask_empty(cpumask))
3871 		goto use_dfl;
3872 
3873 	/* yeap, return possible CPUs in @node that @attrs wants */
3874 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3875 	return !cpumask_equal(cpumask, attrs->cpumask);
3876 
3877 use_dfl:
3878 	cpumask_copy(cpumask, attrs->cpumask);
3879 	return false;
3880 }
3881 
3882 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3883 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3884 						   int node,
3885 						   struct pool_workqueue *pwq)
3886 {
3887 	struct pool_workqueue *old_pwq;
3888 
3889 	lockdep_assert_held(&wq->mutex);
3890 
3891 	/* link_pwq() can handle duplicate calls */
3892 	link_pwq(pwq);
3893 
3894 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3895 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3896 	return old_pwq;
3897 }
3898 
3899 /**
3900  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3901  * @wq: the target workqueue
3902  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3903  *
3904  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3905  * machines, this function maps a separate pwq to each NUMA node with
3906  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3907  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3908  * items finish.  Note that a work item which repeatedly requeues itself
3909  * back-to-back will stay on its current pwq.
3910  *
3911  * Performs GFP_KERNEL allocations.
3912  *
3913  * Return: 0 on success and -errno on failure.
3914  */
3915 int apply_workqueue_attrs(struct workqueue_struct *wq,
3916 			  const struct workqueue_attrs *attrs)
3917 {
3918 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3919 	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3920 	int node, ret;
3921 
3922 	/* only unbound workqueues can change attributes */
3923 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3924 		return -EINVAL;
3925 
3926 	/* creating multiple pwqs breaks ordering guarantee */
3927 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3928 		return -EINVAL;
3929 
3930 	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3931 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3932 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3933 	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3934 		goto enomem;
3935 
3936 	/* make a copy of @attrs and sanitize it */
3937 	copy_workqueue_attrs(new_attrs, attrs);
3938 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3939 
3940 	/*
3941 	 * We may create multiple pwqs with differing cpumasks.  Make a
3942 	 * copy of @new_attrs which will be modified and used to obtain
3943 	 * pools.
3944 	 */
3945 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3946 
3947 	/*
3948 	 * CPUs should stay stable across pwq creations and installations.
3949 	 * Pin CPUs, determine the target cpumask for each node and create
3950 	 * pwqs accordingly.
3951 	 */
3952 	get_online_cpus();
3953 
3954 	mutex_lock(&wq_pool_mutex);
3955 
3956 	/*
3957 	 * If something goes wrong during CPU up/down, we'll fall back to
3958 	 * the default pwq covering whole @attrs->cpumask.  Always create
3959 	 * it even if we don't use it immediately.
3960 	 */
3961 	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3962 	if (!dfl_pwq)
3963 		goto enomem_pwq;
3964 
3965 	for_each_node(node) {
3966 		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3967 			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3968 			if (!pwq_tbl[node])
3969 				goto enomem_pwq;
3970 		} else {
3971 			dfl_pwq->refcnt++;
3972 			pwq_tbl[node] = dfl_pwq;
3973 		}
3974 	}
3975 
3976 	mutex_unlock(&wq_pool_mutex);
3977 
3978 	/* all pwqs have been created successfully, let's install'em */
3979 	mutex_lock(&wq->mutex);
3980 
3981 	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3982 
3983 	/* save the previous pwq and install the new one */
3984 	for_each_node(node)
3985 		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3986 
3987 	/* @dfl_pwq might not have been used, ensure it's linked */
3988 	link_pwq(dfl_pwq);
3989 	swap(wq->dfl_pwq, dfl_pwq);
3990 
3991 	mutex_unlock(&wq->mutex);
3992 
3993 	/* put the old pwqs */
3994 	for_each_node(node)
3995 		put_pwq_unlocked(pwq_tbl[node]);
3996 	put_pwq_unlocked(dfl_pwq);
3997 
3998 	put_online_cpus();
3999 	ret = 0;
4000 	/* fall through */
4001 out_free:
4002 	free_workqueue_attrs(tmp_attrs);
4003 	free_workqueue_attrs(new_attrs);
4004 	kfree(pwq_tbl);
4005 	return ret;
4006 
4007 enomem_pwq:
4008 	free_unbound_pwq(dfl_pwq);
4009 	for_each_node(node)
4010 		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4011 			free_unbound_pwq(pwq_tbl[node]);
4012 	mutex_unlock(&wq_pool_mutex);
4013 	put_online_cpus();
4014 enomem:
4015 	ret = -ENOMEM;
4016 	goto out_free;
4017 }
4018 
4019 /**
4020  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4021  * @wq: the target workqueue
4022  * @cpu: the CPU coming up or going down
4023  * @online: whether @cpu is coming up or going down
4024  *
4025  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4026  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4027  * @wq accordingly.
4028  *
4029  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4030  * falls back to @wq->dfl_pwq which may not be optimal but is always
4031  * correct.
4032  *
4033  * Note that when the last allowed CPU of a NUMA node goes offline for a
4034  * workqueue with a cpumask spanning multiple nodes, the workers which were
4035  * already executing the work items for the workqueue will lose their CPU
4036  * affinity and may execute on any CPU.  This is similar to how per-cpu
4037  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4038  * affinity, it's the user's responsibility to flush the work item from
4039  * CPU_DOWN_PREPARE.
4040  */
4041 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4042 				   bool online)
4043 {
4044 	int node = cpu_to_node(cpu);
4045 	int cpu_off = online ? -1 : cpu;
4046 	struct pool_workqueue *old_pwq = NULL, *pwq;
4047 	struct workqueue_attrs *target_attrs;
4048 	cpumask_t *cpumask;
4049 
4050 	lockdep_assert_held(&wq_pool_mutex);
4051 
4052 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4053 		return;
4054 
4055 	/*
4056 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4057 	 * Let's use a preallocated one.  The following buf is protected by
4058 	 * CPU hotplug exclusion.
4059 	 */
4060 	target_attrs = wq_update_unbound_numa_attrs_buf;
4061 	cpumask = target_attrs->cpumask;
4062 
4063 	mutex_lock(&wq->mutex);
4064 	if (wq->unbound_attrs->no_numa)
4065 		goto out_unlock;
4066 
4067 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4068 	pwq = unbound_pwq_by_node(wq, node);
4069 
4070 	/*
4071 	 * Let's determine what needs to be done.  If the target cpumask is
4072 	 * different from wq's, we need to compare it to @pwq's and create
4073 	 * a new one if they don't match.  If the target cpumask equals
4074 	 * wq's, the default pwq should be used.  If @pwq is already the
4075 	 * default one, nothing to do; otherwise, install the default one.
4076 	 */
4077 	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4078 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4079 			goto out_unlock;
4080 	} else {
4081 		if (pwq == wq->dfl_pwq)
4082 			goto out_unlock;
4083 		else
4084 			goto use_dfl_pwq;
4085 	}
4086 
4087 	mutex_unlock(&wq->mutex);
4088 
4089 	/* create a new pwq */
4090 	pwq = alloc_unbound_pwq(wq, target_attrs);
4091 	if (!pwq) {
4092 		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4093 			   wq->name);
4094 		goto out_unlock;
4095 	}
4096 
4097 	/*
4098 	 * Install the new pwq.  As this function is called only from CPU
4099 	 * hotplug callbacks and applying a new attrs is wrapped with
4100 	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4101 	 * inbetween.
4102 	 */
4103 	mutex_lock(&wq->mutex);
4104 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4105 	goto out_unlock;
4106 
4107 use_dfl_pwq:
4108 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4109 	get_pwq(wq->dfl_pwq);
4110 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4111 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4112 out_unlock:
4113 	mutex_unlock(&wq->mutex);
4114 	put_pwq_unlocked(old_pwq);
4115 }
4116 
4117 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4118 {
4119 	bool highpri = wq->flags & WQ_HIGHPRI;
4120 	int cpu, ret;
4121 
4122 	if (!(wq->flags & WQ_UNBOUND)) {
4123 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4124 		if (!wq->cpu_pwqs)
4125 			return -ENOMEM;
4126 
4127 		for_each_possible_cpu(cpu) {
4128 			struct pool_workqueue *pwq =
4129 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4130 			struct worker_pool *cpu_pools =
4131 				per_cpu(cpu_worker_pools, cpu);
4132 
4133 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4134 
4135 			mutex_lock(&wq->mutex);
4136 			link_pwq(pwq);
4137 			mutex_unlock(&wq->mutex);
4138 		}
4139 		return 0;
4140 	} else if (wq->flags & __WQ_ORDERED) {
4141 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4142 		/* there should only be single pwq for ordering guarantee */
4143 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4144 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4145 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4146 		return ret;
4147 	} else {
4148 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4149 	}
4150 }
4151 
4152 static int wq_clamp_max_active(int max_active, unsigned int flags,
4153 			       const char *name)
4154 {
4155 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4156 
4157 	if (max_active < 1 || max_active > lim)
4158 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4159 			max_active, name, 1, lim);
4160 
4161 	return clamp_val(max_active, 1, lim);
4162 }
4163 
4164 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4165 					       unsigned int flags,
4166 					       int max_active,
4167 					       struct lock_class_key *key,
4168 					       const char *lock_name, ...)
4169 {
4170 	size_t tbl_size = 0;
4171 	va_list args;
4172 	struct workqueue_struct *wq;
4173 	struct pool_workqueue *pwq;
4174 
4175 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4176 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4177 		flags |= WQ_UNBOUND;
4178 
4179 	/* allocate wq and format name */
4180 	if (flags & WQ_UNBOUND)
4181 		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4182 
4183 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4184 	if (!wq)
4185 		return NULL;
4186 
4187 	if (flags & WQ_UNBOUND) {
4188 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4189 		if (!wq->unbound_attrs)
4190 			goto err_free_wq;
4191 	}
4192 
4193 	va_start(args, lock_name);
4194 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4195 	va_end(args);
4196 
4197 	max_active = max_active ?: WQ_DFL_ACTIVE;
4198 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4199 
4200 	/* init wq */
4201 	wq->flags = flags;
4202 	wq->saved_max_active = max_active;
4203 	mutex_init(&wq->mutex);
4204 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4205 	INIT_LIST_HEAD(&wq->pwqs);
4206 	INIT_LIST_HEAD(&wq->flusher_queue);
4207 	INIT_LIST_HEAD(&wq->flusher_overflow);
4208 	INIT_LIST_HEAD(&wq->maydays);
4209 
4210 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4211 	INIT_LIST_HEAD(&wq->list);
4212 
4213 	if (alloc_and_link_pwqs(wq) < 0)
4214 		goto err_free_wq;
4215 
4216 	/*
4217 	 * Workqueues which may be used during memory reclaim should
4218 	 * have a rescuer to guarantee forward progress.
4219 	 */
4220 	if (flags & WQ_MEM_RECLAIM) {
4221 		struct worker *rescuer;
4222 
4223 		rescuer = alloc_worker();
4224 		if (!rescuer)
4225 			goto err_destroy;
4226 
4227 		rescuer->rescue_wq = wq;
4228 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4229 					       wq->name);
4230 		if (IS_ERR(rescuer->task)) {
4231 			kfree(rescuer);
4232 			goto err_destroy;
4233 		}
4234 
4235 		wq->rescuer = rescuer;
4236 		rescuer->task->flags |= PF_NO_SETAFFINITY;
4237 		wake_up_process(rescuer->task);
4238 	}
4239 
4240 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4241 		goto err_destroy;
4242 
4243 	/*
4244 	 * wq_pool_mutex protects global freeze state and workqueues list.
4245 	 * Grab it, adjust max_active and add the new @wq to workqueues
4246 	 * list.
4247 	 */
4248 	mutex_lock(&wq_pool_mutex);
4249 
4250 	mutex_lock(&wq->mutex);
4251 	for_each_pwq(pwq, wq)
4252 		pwq_adjust_max_active(pwq);
4253 	mutex_unlock(&wq->mutex);
4254 
4255 	list_add(&wq->list, &workqueues);
4256 
4257 	mutex_unlock(&wq_pool_mutex);
4258 
4259 	return wq;
4260 
4261 err_free_wq:
4262 	free_workqueue_attrs(wq->unbound_attrs);
4263 	kfree(wq);
4264 	return NULL;
4265 err_destroy:
4266 	destroy_workqueue(wq);
4267 	return NULL;
4268 }
4269 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4270 
4271 /**
4272  * destroy_workqueue - safely terminate a workqueue
4273  * @wq: target workqueue
4274  *
4275  * Safely destroy a workqueue. All work currently pending will be done first.
4276  */
4277 void destroy_workqueue(struct workqueue_struct *wq)
4278 {
4279 	struct pool_workqueue *pwq;
4280 	int node;
4281 
4282 	/* drain it before proceeding with destruction */
4283 	drain_workqueue(wq);
4284 
4285 	/* sanity checks */
4286 	mutex_lock(&wq->mutex);
4287 	for_each_pwq(pwq, wq) {
4288 		int i;
4289 
4290 		for (i = 0; i < WORK_NR_COLORS; i++) {
4291 			if (WARN_ON(pwq->nr_in_flight[i])) {
4292 				mutex_unlock(&wq->mutex);
4293 				return;
4294 			}
4295 		}
4296 
4297 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4298 		    WARN_ON(pwq->nr_active) ||
4299 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4300 			mutex_unlock(&wq->mutex);
4301 			return;
4302 		}
4303 	}
4304 	mutex_unlock(&wq->mutex);
4305 
4306 	/*
4307 	 * wq list is used to freeze wq, remove from list after
4308 	 * flushing is complete in case freeze races us.
4309 	 */
4310 	mutex_lock(&wq_pool_mutex);
4311 	list_del_init(&wq->list);
4312 	mutex_unlock(&wq_pool_mutex);
4313 
4314 	workqueue_sysfs_unregister(wq);
4315 
4316 	if (wq->rescuer) {
4317 		kthread_stop(wq->rescuer->task);
4318 		kfree(wq->rescuer);
4319 		wq->rescuer = NULL;
4320 	}
4321 
4322 	if (!(wq->flags & WQ_UNBOUND)) {
4323 		/*
4324 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4325 		 * free the pwqs and wq.
4326 		 */
4327 		free_percpu(wq->cpu_pwqs);
4328 		kfree(wq);
4329 	} else {
4330 		/*
4331 		 * We're the sole accessor of @wq at this point.  Directly
4332 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4333 		 * @wq will be freed when the last pwq is released.
4334 		 */
4335 		for_each_node(node) {
4336 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4337 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4338 			put_pwq_unlocked(pwq);
4339 		}
4340 
4341 		/*
4342 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4343 		 * put.  Don't access it afterwards.
4344 		 */
4345 		pwq = wq->dfl_pwq;
4346 		wq->dfl_pwq = NULL;
4347 		put_pwq_unlocked(pwq);
4348 	}
4349 }
4350 EXPORT_SYMBOL_GPL(destroy_workqueue);
4351 
4352 /**
4353  * workqueue_set_max_active - adjust max_active of a workqueue
4354  * @wq: target workqueue
4355  * @max_active: new max_active value.
4356  *
4357  * Set max_active of @wq to @max_active.
4358  *
4359  * CONTEXT:
4360  * Don't call from IRQ context.
4361  */
4362 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4363 {
4364 	struct pool_workqueue *pwq;
4365 
4366 	/* disallow meddling with max_active for ordered workqueues */
4367 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4368 		return;
4369 
4370 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4371 
4372 	mutex_lock(&wq->mutex);
4373 
4374 	wq->saved_max_active = max_active;
4375 
4376 	for_each_pwq(pwq, wq)
4377 		pwq_adjust_max_active(pwq);
4378 
4379 	mutex_unlock(&wq->mutex);
4380 }
4381 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4382 
4383 /**
4384  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4385  *
4386  * Determine whether %current is a workqueue rescuer.  Can be used from
4387  * work functions to determine whether it's being run off the rescuer task.
4388  *
4389  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4390  */
4391 bool current_is_workqueue_rescuer(void)
4392 {
4393 	struct worker *worker = current_wq_worker();
4394 
4395 	return worker && worker->rescue_wq;
4396 }
4397 
4398 /**
4399  * workqueue_congested - test whether a workqueue is congested
4400  * @cpu: CPU in question
4401  * @wq: target workqueue
4402  *
4403  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4404  * no synchronization around this function and the test result is
4405  * unreliable and only useful as advisory hints or for debugging.
4406  *
4407  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4408  * Note that both per-cpu and unbound workqueues may be associated with
4409  * multiple pool_workqueues which have separate congested states.  A
4410  * workqueue being congested on one CPU doesn't mean the workqueue is also
4411  * contested on other CPUs / NUMA nodes.
4412  *
4413  * Return:
4414  * %true if congested, %false otherwise.
4415  */
4416 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4417 {
4418 	struct pool_workqueue *pwq;
4419 	bool ret;
4420 
4421 	rcu_read_lock_sched();
4422 
4423 	if (cpu == WORK_CPU_UNBOUND)
4424 		cpu = smp_processor_id();
4425 
4426 	if (!(wq->flags & WQ_UNBOUND))
4427 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4428 	else
4429 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4430 
4431 	ret = !list_empty(&pwq->delayed_works);
4432 	rcu_read_unlock_sched();
4433 
4434 	return ret;
4435 }
4436 EXPORT_SYMBOL_GPL(workqueue_congested);
4437 
4438 /**
4439  * work_busy - test whether a work is currently pending or running
4440  * @work: the work to be tested
4441  *
4442  * Test whether @work is currently pending or running.  There is no
4443  * synchronization around this function and the test result is
4444  * unreliable and only useful as advisory hints or for debugging.
4445  *
4446  * Return:
4447  * OR'd bitmask of WORK_BUSY_* bits.
4448  */
4449 unsigned int work_busy(struct work_struct *work)
4450 {
4451 	struct worker_pool *pool;
4452 	unsigned long flags;
4453 	unsigned int ret = 0;
4454 
4455 	if (work_pending(work))
4456 		ret |= WORK_BUSY_PENDING;
4457 
4458 	local_irq_save(flags);
4459 	pool = get_work_pool(work);
4460 	if (pool) {
4461 		spin_lock(&pool->lock);
4462 		if (find_worker_executing_work(pool, work))
4463 			ret |= WORK_BUSY_RUNNING;
4464 		spin_unlock(&pool->lock);
4465 	}
4466 	local_irq_restore(flags);
4467 
4468 	return ret;
4469 }
4470 EXPORT_SYMBOL_GPL(work_busy);
4471 
4472 /**
4473  * set_worker_desc - set description for the current work item
4474  * @fmt: printf-style format string
4475  * @...: arguments for the format string
4476  *
4477  * This function can be called by a running work function to describe what
4478  * the work item is about.  If the worker task gets dumped, this
4479  * information will be printed out together to help debugging.  The
4480  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4481  */
4482 void set_worker_desc(const char *fmt, ...)
4483 {
4484 	struct worker *worker = current_wq_worker();
4485 	va_list args;
4486 
4487 	if (worker) {
4488 		va_start(args, fmt);
4489 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4490 		va_end(args);
4491 		worker->desc_valid = true;
4492 	}
4493 }
4494 
4495 /**
4496  * print_worker_info - print out worker information and description
4497  * @log_lvl: the log level to use when printing
4498  * @task: target task
4499  *
4500  * If @task is a worker and currently executing a work item, print out the
4501  * name of the workqueue being serviced and worker description set with
4502  * set_worker_desc() by the currently executing work item.
4503  *
4504  * This function can be safely called on any task as long as the
4505  * task_struct itself is accessible.  While safe, this function isn't
4506  * synchronized and may print out mixups or garbages of limited length.
4507  */
4508 void print_worker_info(const char *log_lvl, struct task_struct *task)
4509 {
4510 	work_func_t *fn = NULL;
4511 	char name[WQ_NAME_LEN] = { };
4512 	char desc[WORKER_DESC_LEN] = { };
4513 	struct pool_workqueue *pwq = NULL;
4514 	struct workqueue_struct *wq = NULL;
4515 	bool desc_valid = false;
4516 	struct worker *worker;
4517 
4518 	if (!(task->flags & PF_WQ_WORKER))
4519 		return;
4520 
4521 	/*
4522 	 * This function is called without any synchronization and @task
4523 	 * could be in any state.  Be careful with dereferences.
4524 	 */
4525 	worker = probe_kthread_data(task);
4526 
4527 	/*
4528 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4529 	 * the original last '\0' in case the original contains garbage.
4530 	 */
4531 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4532 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4533 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4534 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4535 
4536 	/* copy worker description */
4537 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4538 	if (desc_valid)
4539 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4540 
4541 	if (fn || name[0] || desc[0]) {
4542 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4543 		if (desc[0])
4544 			pr_cont(" (%s)", desc);
4545 		pr_cont("\n");
4546 	}
4547 }
4548 
4549 /*
4550  * CPU hotplug.
4551  *
4552  * There are two challenges in supporting CPU hotplug.  Firstly, there
4553  * are a lot of assumptions on strong associations among work, pwq and
4554  * pool which make migrating pending and scheduled works very
4555  * difficult to implement without impacting hot paths.  Secondly,
4556  * worker pools serve mix of short, long and very long running works making
4557  * blocked draining impractical.
4558  *
4559  * This is solved by allowing the pools to be disassociated from the CPU
4560  * running as an unbound one and allowing it to be reattached later if the
4561  * cpu comes back online.
4562  */
4563 
4564 static void wq_unbind_fn(struct work_struct *work)
4565 {
4566 	int cpu = smp_processor_id();
4567 	struct worker_pool *pool;
4568 	struct worker *worker;
4569 	int wi;
4570 
4571 	for_each_cpu_worker_pool(pool, cpu) {
4572 		WARN_ON_ONCE(cpu != smp_processor_id());
4573 
4574 		mutex_lock(&pool->manager_mutex);
4575 		spin_lock_irq(&pool->lock);
4576 
4577 		/*
4578 		 * We've blocked all manager operations.  Make all workers
4579 		 * unbound and set DISASSOCIATED.  Before this, all workers
4580 		 * except for the ones which are still executing works from
4581 		 * before the last CPU down must be on the cpu.  After
4582 		 * this, they may become diasporas.
4583 		 */
4584 		for_each_pool_worker(worker, wi, pool)
4585 			worker->flags |= WORKER_UNBOUND;
4586 
4587 		pool->flags |= POOL_DISASSOCIATED;
4588 
4589 		spin_unlock_irq(&pool->lock);
4590 		mutex_unlock(&pool->manager_mutex);
4591 
4592 		/*
4593 		 * Call schedule() so that we cross rq->lock and thus can
4594 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4595 		 * This is necessary as scheduler callbacks may be invoked
4596 		 * from other cpus.
4597 		 */
4598 		schedule();
4599 
4600 		/*
4601 		 * Sched callbacks are disabled now.  Zap nr_running.
4602 		 * After this, nr_running stays zero and need_more_worker()
4603 		 * and keep_working() are always true as long as the
4604 		 * worklist is not empty.  This pool now behaves as an
4605 		 * unbound (in terms of concurrency management) pool which
4606 		 * are served by workers tied to the pool.
4607 		 */
4608 		atomic_set(&pool->nr_running, 0);
4609 
4610 		/*
4611 		 * With concurrency management just turned off, a busy
4612 		 * worker blocking could lead to lengthy stalls.  Kick off
4613 		 * unbound chain execution of currently pending work items.
4614 		 */
4615 		spin_lock_irq(&pool->lock);
4616 		wake_up_worker(pool);
4617 		spin_unlock_irq(&pool->lock);
4618 	}
4619 }
4620 
4621 /**
4622  * rebind_workers - rebind all workers of a pool to the associated CPU
4623  * @pool: pool of interest
4624  *
4625  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4626  */
4627 static void rebind_workers(struct worker_pool *pool)
4628 {
4629 	struct worker *worker;
4630 	int wi;
4631 
4632 	lockdep_assert_held(&pool->manager_mutex);
4633 
4634 	/*
4635 	 * Restore CPU affinity of all workers.  As all idle workers should
4636 	 * be on the run-queue of the associated CPU before any local
4637 	 * wake-ups for concurrency management happen, restore CPU affinty
4638 	 * of all workers first and then clear UNBOUND.  As we're called
4639 	 * from CPU_ONLINE, the following shouldn't fail.
4640 	 */
4641 	for_each_pool_worker(worker, wi, pool)
4642 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4643 						  pool->attrs->cpumask) < 0);
4644 
4645 	spin_lock_irq(&pool->lock);
4646 
4647 	for_each_pool_worker(worker, wi, pool) {
4648 		unsigned int worker_flags = worker->flags;
4649 
4650 		/*
4651 		 * A bound idle worker should actually be on the runqueue
4652 		 * of the associated CPU for local wake-ups targeting it to
4653 		 * work.  Kick all idle workers so that they migrate to the
4654 		 * associated CPU.  Doing this in the same loop as
4655 		 * replacing UNBOUND with REBOUND is safe as no worker will
4656 		 * be bound before @pool->lock is released.
4657 		 */
4658 		if (worker_flags & WORKER_IDLE)
4659 			wake_up_process(worker->task);
4660 
4661 		/*
4662 		 * We want to clear UNBOUND but can't directly call
4663 		 * worker_clr_flags() or adjust nr_running.  Atomically
4664 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4665 		 * @worker will clear REBOUND using worker_clr_flags() when
4666 		 * it initiates the next execution cycle thus restoring
4667 		 * concurrency management.  Note that when or whether
4668 		 * @worker clears REBOUND doesn't affect correctness.
4669 		 *
4670 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4671 		 * tested without holding any lock in
4672 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4673 		 * fail incorrectly leading to premature concurrency
4674 		 * management operations.
4675 		 */
4676 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4677 		worker_flags |= WORKER_REBOUND;
4678 		worker_flags &= ~WORKER_UNBOUND;
4679 		ACCESS_ONCE(worker->flags) = worker_flags;
4680 	}
4681 
4682 	spin_unlock_irq(&pool->lock);
4683 }
4684 
4685 /**
4686  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4687  * @pool: unbound pool of interest
4688  * @cpu: the CPU which is coming up
4689  *
4690  * An unbound pool may end up with a cpumask which doesn't have any online
4691  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4692  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4693  * online CPU before, cpus_allowed of all its workers should be restored.
4694  */
4695 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4696 {
4697 	static cpumask_t cpumask;
4698 	struct worker *worker;
4699 	int wi;
4700 
4701 	lockdep_assert_held(&pool->manager_mutex);
4702 
4703 	/* is @cpu allowed for @pool? */
4704 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4705 		return;
4706 
4707 	/* is @cpu the only online CPU? */
4708 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4709 	if (cpumask_weight(&cpumask) != 1)
4710 		return;
4711 
4712 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4713 	for_each_pool_worker(worker, wi, pool)
4714 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4715 						  pool->attrs->cpumask) < 0);
4716 }
4717 
4718 /*
4719  * Workqueues should be brought up before normal priority CPU notifiers.
4720  * This will be registered high priority CPU notifier.
4721  */
4722 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4723 					       unsigned long action,
4724 					       void *hcpu)
4725 {
4726 	int cpu = (unsigned long)hcpu;
4727 	struct worker_pool *pool;
4728 	struct workqueue_struct *wq;
4729 	int pi;
4730 
4731 	switch (action & ~CPU_TASKS_FROZEN) {
4732 	case CPU_UP_PREPARE:
4733 		for_each_cpu_worker_pool(pool, cpu) {
4734 			if (pool->nr_workers)
4735 				continue;
4736 			if (create_and_start_worker(pool) < 0)
4737 				return NOTIFY_BAD;
4738 		}
4739 		break;
4740 
4741 	case CPU_DOWN_FAILED:
4742 	case CPU_ONLINE:
4743 		mutex_lock(&wq_pool_mutex);
4744 
4745 		for_each_pool(pool, pi) {
4746 			mutex_lock(&pool->manager_mutex);
4747 
4748 			if (pool->cpu == cpu) {
4749 				spin_lock_irq(&pool->lock);
4750 				pool->flags &= ~POOL_DISASSOCIATED;
4751 				spin_unlock_irq(&pool->lock);
4752 
4753 				rebind_workers(pool);
4754 			} else if (pool->cpu < 0) {
4755 				restore_unbound_workers_cpumask(pool, cpu);
4756 			}
4757 
4758 			mutex_unlock(&pool->manager_mutex);
4759 		}
4760 
4761 		/* update NUMA affinity of unbound workqueues */
4762 		list_for_each_entry(wq, &workqueues, list)
4763 			wq_update_unbound_numa(wq, cpu, true);
4764 
4765 		mutex_unlock(&wq_pool_mutex);
4766 		break;
4767 	}
4768 	return NOTIFY_OK;
4769 }
4770 
4771 /*
4772  * Workqueues should be brought down after normal priority CPU notifiers.
4773  * This will be registered as low priority CPU notifier.
4774  */
4775 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4776 						 unsigned long action,
4777 						 void *hcpu)
4778 {
4779 	int cpu = (unsigned long)hcpu;
4780 	struct work_struct unbind_work;
4781 	struct workqueue_struct *wq;
4782 
4783 	switch (action & ~CPU_TASKS_FROZEN) {
4784 	case CPU_DOWN_PREPARE:
4785 		/* unbinding per-cpu workers should happen on the local CPU */
4786 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4787 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4788 
4789 		/* update NUMA affinity of unbound workqueues */
4790 		mutex_lock(&wq_pool_mutex);
4791 		list_for_each_entry(wq, &workqueues, list)
4792 			wq_update_unbound_numa(wq, cpu, false);
4793 		mutex_unlock(&wq_pool_mutex);
4794 
4795 		/* wait for per-cpu unbinding to finish */
4796 		flush_work(&unbind_work);
4797 		break;
4798 	}
4799 	return NOTIFY_OK;
4800 }
4801 
4802 #ifdef CONFIG_SMP
4803 
4804 struct work_for_cpu {
4805 	struct work_struct work;
4806 	long (*fn)(void *);
4807 	void *arg;
4808 	long ret;
4809 };
4810 
4811 static void work_for_cpu_fn(struct work_struct *work)
4812 {
4813 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4814 
4815 	wfc->ret = wfc->fn(wfc->arg);
4816 }
4817 
4818 /**
4819  * work_on_cpu - run a function in user context on a particular cpu
4820  * @cpu: the cpu to run on
4821  * @fn: the function to run
4822  * @arg: the function arg
4823  *
4824  * It is up to the caller to ensure that the cpu doesn't go offline.
4825  * The caller must not hold any locks which would prevent @fn from completing.
4826  *
4827  * Return: The value @fn returns.
4828  */
4829 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4830 {
4831 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4832 
4833 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4834 	schedule_work_on(cpu, &wfc.work);
4835 
4836 	/*
4837 	 * The work item is on-stack and can't lead to deadlock through
4838 	 * flushing.  Use __flush_work() to avoid spurious lockdep warnings
4839 	 * when work_on_cpu()s are nested.
4840 	 */
4841 	__flush_work(&wfc.work);
4842 
4843 	return wfc.ret;
4844 }
4845 EXPORT_SYMBOL_GPL(work_on_cpu);
4846 #endif /* CONFIG_SMP */
4847 
4848 #ifdef CONFIG_FREEZER
4849 
4850 /**
4851  * freeze_workqueues_begin - begin freezing workqueues
4852  *
4853  * Start freezing workqueues.  After this function returns, all freezable
4854  * workqueues will queue new works to their delayed_works list instead of
4855  * pool->worklist.
4856  *
4857  * CONTEXT:
4858  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4859  */
4860 void freeze_workqueues_begin(void)
4861 {
4862 	struct worker_pool *pool;
4863 	struct workqueue_struct *wq;
4864 	struct pool_workqueue *pwq;
4865 	int pi;
4866 
4867 	mutex_lock(&wq_pool_mutex);
4868 
4869 	WARN_ON_ONCE(workqueue_freezing);
4870 	workqueue_freezing = true;
4871 
4872 	/* set FREEZING */
4873 	for_each_pool(pool, pi) {
4874 		spin_lock_irq(&pool->lock);
4875 		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4876 		pool->flags |= POOL_FREEZING;
4877 		spin_unlock_irq(&pool->lock);
4878 	}
4879 
4880 	list_for_each_entry(wq, &workqueues, list) {
4881 		mutex_lock(&wq->mutex);
4882 		for_each_pwq(pwq, wq)
4883 			pwq_adjust_max_active(pwq);
4884 		mutex_unlock(&wq->mutex);
4885 	}
4886 
4887 	mutex_unlock(&wq_pool_mutex);
4888 }
4889 
4890 /**
4891  * freeze_workqueues_busy - are freezable workqueues still busy?
4892  *
4893  * Check whether freezing is complete.  This function must be called
4894  * between freeze_workqueues_begin() and thaw_workqueues().
4895  *
4896  * CONTEXT:
4897  * Grabs and releases wq_pool_mutex.
4898  *
4899  * Return:
4900  * %true if some freezable workqueues are still busy.  %false if freezing
4901  * is complete.
4902  */
4903 bool freeze_workqueues_busy(void)
4904 {
4905 	bool busy = false;
4906 	struct workqueue_struct *wq;
4907 	struct pool_workqueue *pwq;
4908 
4909 	mutex_lock(&wq_pool_mutex);
4910 
4911 	WARN_ON_ONCE(!workqueue_freezing);
4912 
4913 	list_for_each_entry(wq, &workqueues, list) {
4914 		if (!(wq->flags & WQ_FREEZABLE))
4915 			continue;
4916 		/*
4917 		 * nr_active is monotonically decreasing.  It's safe
4918 		 * to peek without lock.
4919 		 */
4920 		rcu_read_lock_sched();
4921 		for_each_pwq(pwq, wq) {
4922 			WARN_ON_ONCE(pwq->nr_active < 0);
4923 			if (pwq->nr_active) {
4924 				busy = true;
4925 				rcu_read_unlock_sched();
4926 				goto out_unlock;
4927 			}
4928 		}
4929 		rcu_read_unlock_sched();
4930 	}
4931 out_unlock:
4932 	mutex_unlock(&wq_pool_mutex);
4933 	return busy;
4934 }
4935 
4936 /**
4937  * thaw_workqueues - thaw workqueues
4938  *
4939  * Thaw workqueues.  Normal queueing is restored and all collected
4940  * frozen works are transferred to their respective pool worklists.
4941  *
4942  * CONTEXT:
4943  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4944  */
4945 void thaw_workqueues(void)
4946 {
4947 	struct workqueue_struct *wq;
4948 	struct pool_workqueue *pwq;
4949 	struct worker_pool *pool;
4950 	int pi;
4951 
4952 	mutex_lock(&wq_pool_mutex);
4953 
4954 	if (!workqueue_freezing)
4955 		goto out_unlock;
4956 
4957 	/* clear FREEZING */
4958 	for_each_pool(pool, pi) {
4959 		spin_lock_irq(&pool->lock);
4960 		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4961 		pool->flags &= ~POOL_FREEZING;
4962 		spin_unlock_irq(&pool->lock);
4963 	}
4964 
4965 	/* restore max_active and repopulate worklist */
4966 	list_for_each_entry(wq, &workqueues, list) {
4967 		mutex_lock(&wq->mutex);
4968 		for_each_pwq(pwq, wq)
4969 			pwq_adjust_max_active(pwq);
4970 		mutex_unlock(&wq->mutex);
4971 	}
4972 
4973 	workqueue_freezing = false;
4974 out_unlock:
4975 	mutex_unlock(&wq_pool_mutex);
4976 }
4977 #endif /* CONFIG_FREEZER */
4978 
4979 static void __init wq_numa_init(void)
4980 {
4981 	cpumask_var_t *tbl;
4982 	int node, cpu;
4983 
4984 	/* determine NUMA pwq table len - highest node id + 1 */
4985 	for_each_node(node)
4986 		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4987 
4988 	if (num_possible_nodes() <= 1)
4989 		return;
4990 
4991 	if (wq_disable_numa) {
4992 		pr_info("workqueue: NUMA affinity support disabled\n");
4993 		return;
4994 	}
4995 
4996 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4997 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
4998 
4999 	/*
5000 	 * We want masks of possible CPUs of each node which isn't readily
5001 	 * available.  Build one from cpu_to_node() which should have been
5002 	 * fully initialized by now.
5003 	 */
5004 	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5005 	BUG_ON(!tbl);
5006 
5007 	for_each_node(node)
5008 		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5009 				node_online(node) ? node : NUMA_NO_NODE));
5010 
5011 	for_each_possible_cpu(cpu) {
5012 		node = cpu_to_node(cpu);
5013 		if (WARN_ON(node == NUMA_NO_NODE)) {
5014 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5015 			/* happens iff arch is bonkers, let's just proceed */
5016 			return;
5017 		}
5018 		cpumask_set_cpu(cpu, tbl[node]);
5019 	}
5020 
5021 	wq_numa_possible_cpumask = tbl;
5022 	wq_numa_enabled = true;
5023 }
5024 
5025 static int __init init_workqueues(void)
5026 {
5027 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5028 	int i, cpu;
5029 
5030 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5031 
5032 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5033 
5034 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5035 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5036 
5037 	wq_numa_init();
5038 
5039 	/* initialize CPU pools */
5040 	for_each_possible_cpu(cpu) {
5041 		struct worker_pool *pool;
5042 
5043 		i = 0;
5044 		for_each_cpu_worker_pool(pool, cpu) {
5045 			BUG_ON(init_worker_pool(pool));
5046 			pool->cpu = cpu;
5047 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5048 			pool->attrs->nice = std_nice[i++];
5049 			pool->node = cpu_to_node(cpu);
5050 
5051 			/* alloc pool ID */
5052 			mutex_lock(&wq_pool_mutex);
5053 			BUG_ON(worker_pool_assign_id(pool));
5054 			mutex_unlock(&wq_pool_mutex);
5055 		}
5056 	}
5057 
5058 	/* create the initial worker */
5059 	for_each_online_cpu(cpu) {
5060 		struct worker_pool *pool;
5061 
5062 		for_each_cpu_worker_pool(pool, cpu) {
5063 			pool->flags &= ~POOL_DISASSOCIATED;
5064 			BUG_ON(create_and_start_worker(pool) < 0);
5065 		}
5066 	}
5067 
5068 	/* create default unbound and ordered wq attrs */
5069 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5070 		struct workqueue_attrs *attrs;
5071 
5072 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5073 		attrs->nice = std_nice[i];
5074 		unbound_std_wq_attrs[i] = attrs;
5075 
5076 		/*
5077 		 * An ordered wq should have only one pwq as ordering is
5078 		 * guaranteed by max_active which is enforced by pwqs.
5079 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5080 		 */
5081 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5082 		attrs->nice = std_nice[i];
5083 		attrs->no_numa = true;
5084 		ordered_wq_attrs[i] = attrs;
5085 	}
5086 
5087 	system_wq = alloc_workqueue("events", 0, 0);
5088 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5089 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5090 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5091 					    WQ_UNBOUND_MAX_ACTIVE);
5092 	system_freezable_wq = alloc_workqueue("events_freezable",
5093 					      WQ_FREEZABLE, 0);
5094 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5095 					      WQ_POWER_EFFICIENT, 0);
5096 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5097 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5098 					      0);
5099 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5100 	       !system_unbound_wq || !system_freezable_wq ||
5101 	       !system_power_efficient_wq ||
5102 	       !system_freezable_power_efficient_wq);
5103 	return 0;
5104 }
5105 early_initcall(init_workqueues);
5106