xref: /linux-6.15/kernel/workqueue.c (revision dcd454af)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <[email protected]>
8  *     Andrew Morton
9  *     Kai Petzke <[email protected]>
10  *     Theodore Ts'o <[email protected]>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <[email protected]>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50 
51 #include "workqueue_internal.h"
52 
53 enum {
54 	/*
55 	 * worker_pool flags
56 	 *
57 	 * A bound pool is either associated or disassociated with its CPU.
58 	 * While associated (!DISASSOCIATED), all workers are bound to the
59 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 	 * is in effect.
61 	 *
62 	 * While DISASSOCIATED, the cpu may be offline and all workers have
63 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
64 	 * be executing on any CPU.  The pool behaves as an unbound one.
65 	 *
66 	 * Note that DISASSOCIATED should be flipped only while holding
67 	 * manager_mutex to avoid changing binding state while
68 	 * create_worker() is in progress.
69 	 */
70 	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
71 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72 	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
73 
74 	/* worker flags */
75 	WORKER_STARTED		= 1 << 0,	/* started */
76 	WORKER_DIE		= 1 << 1,	/* die die die */
77 	WORKER_IDLE		= 1 << 2,	/* is idle */
78 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
79 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
80 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
81 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
82 
83 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
84 				  WORKER_UNBOUND | WORKER_REBOUND,
85 
86 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
87 
88 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
89 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
90 
91 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
92 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
93 
94 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
95 						/* call for help after 10ms
96 						   (min two ticks) */
97 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
98 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
99 
100 	/*
101 	 * Rescue workers are used only on emergencies and shared by
102 	 * all cpus.  Give -20.
103 	 */
104 	RESCUER_NICE_LEVEL	= -20,
105 	HIGHPRI_NICE_LEVEL	= -20,
106 
107 	WQ_NAME_LEN		= 24,
108 };
109 
110 /*
111  * Structure fields follow one of the following exclusion rules.
112  *
113  * I: Modifiable by initialization/destruction paths and read-only for
114  *    everyone else.
115  *
116  * P: Preemption protected.  Disabling preemption is enough and should
117  *    only be modified and accessed from the local cpu.
118  *
119  * L: pool->lock protected.  Access with pool->lock held.
120  *
121  * X: During normal operation, modification requires pool->lock and should
122  *    be done only from local cpu.  Either disabling preemption on local
123  *    cpu or grabbing pool->lock is enough for read access.  If
124  *    POOL_DISASSOCIATED is set, it's identical to L.
125  *
126  * MG: pool->manager_mutex and pool->lock protected.  Writes require both
127  *     locks.  Reads can happen under either lock.
128  *
129  * PL: wq_pool_mutex protected.
130  *
131  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
132  *
133  * WQ: wq->mutex protected.
134  *
135  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
136  *
137  * MD: wq_mayday_lock protected.
138  */
139 
140 /* struct worker is defined in workqueue_internal.h */
141 
142 struct worker_pool {
143 	spinlock_t		lock;		/* the pool lock */
144 	int			cpu;		/* I: the associated cpu */
145 	int			node;		/* I: the associated node ID */
146 	int			id;		/* I: pool ID */
147 	unsigned int		flags;		/* X: flags */
148 
149 	struct list_head	worklist;	/* L: list of pending works */
150 	int			nr_workers;	/* L: total number of workers */
151 
152 	/* nr_idle includes the ones off idle_list for rebinding */
153 	int			nr_idle;	/* L: currently idle ones */
154 
155 	struct list_head	idle_list;	/* X: list of idle workers */
156 	struct timer_list	idle_timer;	/* L: worker idle timeout */
157 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
158 
159 	/* a workers is either on busy_hash or idle_list, or the manager */
160 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 						/* L: hash of busy workers */
162 
163 	/* see manage_workers() for details on the two manager mutexes */
164 	struct mutex		manager_arb;	/* manager arbitration */
165 	struct mutex		manager_mutex;	/* manager exclusion */
166 	struct idr		worker_idr;	/* MG: worker IDs and iteration */
167 
168 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
169 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
170 	int			refcnt;		/* PL: refcnt for unbound pools */
171 
172 	/*
173 	 * The current concurrency level.  As it's likely to be accessed
174 	 * from other CPUs during try_to_wake_up(), put it in a separate
175 	 * cacheline.
176 	 */
177 	atomic_t		nr_running ____cacheline_aligned_in_smp;
178 
179 	/*
180 	 * Destruction of pool is sched-RCU protected to allow dereferences
181 	 * from get_work_pool().
182 	 */
183 	struct rcu_head		rcu;
184 } ____cacheline_aligned_in_smp;
185 
186 /*
187  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
188  * of work_struct->data are used for flags and the remaining high bits
189  * point to the pwq; thus, pwqs need to be aligned at two's power of the
190  * number of flag bits.
191  */
192 struct pool_workqueue {
193 	struct worker_pool	*pool;		/* I: the associated pool */
194 	struct workqueue_struct *wq;		/* I: the owning workqueue */
195 	int			work_color;	/* L: current color */
196 	int			flush_color;	/* L: flushing color */
197 	int			refcnt;		/* L: reference count */
198 	int			nr_in_flight[WORK_NR_COLORS];
199 						/* L: nr of in_flight works */
200 	int			nr_active;	/* L: nr of active works */
201 	int			max_active;	/* L: max active works */
202 	struct list_head	delayed_works;	/* L: delayed works */
203 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
204 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
205 
206 	/*
207 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
208 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
209 	 * itself is also sched-RCU protected so that the first pwq can be
210 	 * determined without grabbing wq->mutex.
211 	 */
212 	struct work_struct	unbound_release_work;
213 	struct rcu_head		rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215 
216 /*
217  * Structure used to wait for workqueue flush.
218  */
219 struct wq_flusher {
220 	struct list_head	list;		/* WQ: list of flushers */
221 	int			flush_color;	/* WQ: flush color waiting for */
222 	struct completion	done;		/* flush completion */
223 };
224 
225 struct wq_device;
226 
227 /*
228  * The externally visible workqueue.  It relays the issued work items to
229  * the appropriate worker_pool through its pool_workqueues.
230  */
231 struct workqueue_struct {
232 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
233 	struct list_head	list;		/* PL: list of all workqueues */
234 
235 	struct mutex		mutex;		/* protects this wq */
236 	int			work_color;	/* WQ: current work color */
237 	int			flush_color;	/* WQ: current flush color */
238 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
239 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
240 	struct list_head	flusher_queue;	/* WQ: flush waiters */
241 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
242 
243 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
244 	struct worker		*rescuer;	/* I: rescue worker */
245 
246 	int			nr_drainers;	/* WQ: drain in progress */
247 	int			saved_max_active; /* WQ: saved pwq max_active */
248 
249 	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
250 	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
251 
252 #ifdef CONFIG_SYSFS
253 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 	struct lockdep_map	lockdep_map;
257 #endif
258 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
259 
260 	/* hot fields used during command issue, aligned to cacheline */
261 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265 
266 static struct kmem_cache *pwq_cache;
267 
268 static int wq_numa_tbl_len;		/* highest possible NUMA node id + 1 */
269 static cpumask_var_t *wq_numa_possible_cpumask;
270 					/* possible CPUs of each node */
271 
272 static bool wq_disable_numa;
273 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274 
275 /* see the comment above the definition of WQ_POWER_EFFICIENT */
276 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
277 static bool wq_power_efficient = true;
278 #else
279 static bool wq_power_efficient;
280 #endif
281 
282 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
283 
284 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
285 
286 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
287 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
288 
289 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
290 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
291 
292 static LIST_HEAD(workqueues);		/* PL: list of all workqueues */
293 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
294 
295 /* the per-cpu worker pools */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
297 				     cpu_worker_pools);
298 
299 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
300 
301 /* PL: hash of all unbound pools keyed by pool->attrs */
302 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
303 
304 /* I: attributes used when instantiating standard unbound pools on demand */
305 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
306 
307 struct workqueue_struct *system_wq __read_mostly;
308 EXPORT_SYMBOL(system_wq);
309 struct workqueue_struct *system_highpri_wq __read_mostly;
310 EXPORT_SYMBOL_GPL(system_highpri_wq);
311 struct workqueue_struct *system_long_wq __read_mostly;
312 EXPORT_SYMBOL_GPL(system_long_wq);
313 struct workqueue_struct *system_unbound_wq __read_mostly;
314 EXPORT_SYMBOL_GPL(system_unbound_wq);
315 struct workqueue_struct *system_freezable_wq __read_mostly;
316 EXPORT_SYMBOL_GPL(system_freezable_wq);
317 struct workqueue_struct *system_power_efficient_wq __read_mostly;
318 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
319 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
320 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
321 
322 static int worker_thread(void *__worker);
323 static void copy_workqueue_attrs(struct workqueue_attrs *to,
324 				 const struct workqueue_attrs *from);
325 
326 #define CREATE_TRACE_POINTS
327 #include <trace/events/workqueue.h>
328 
329 #define assert_rcu_or_pool_mutex()					\
330 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
331 			   lockdep_is_held(&wq_pool_mutex),		\
332 			   "sched RCU or wq_pool_mutex should be held")
333 
334 #define assert_rcu_or_wq_mutex(wq)					\
335 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
336 			   lockdep_is_held(&wq->mutex),			\
337 			   "sched RCU or wq->mutex should be held")
338 
339 #ifdef CONFIG_LOCKDEP
340 #define assert_manager_or_pool_lock(pool)				\
341 	WARN_ONCE(debug_locks &&					\
342 		  !lockdep_is_held(&(pool)->manager_mutex) &&		\
343 		  !lockdep_is_held(&(pool)->lock),			\
344 		  "pool->manager_mutex or ->lock should be held")
345 #else
346 #define assert_manager_or_pool_lock(pool)	do { } while (0)
347 #endif
348 
349 #define for_each_cpu_worker_pool(pool, cpu)				\
350 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
351 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
352 	     (pool)++)
353 
354 /**
355  * for_each_pool - iterate through all worker_pools in the system
356  * @pool: iteration cursor
357  * @pi: integer used for iteration
358  *
359  * This must be called either with wq_pool_mutex held or sched RCU read
360  * locked.  If the pool needs to be used beyond the locking in effect, the
361  * caller is responsible for guaranteeing that the pool stays online.
362  *
363  * The if/else clause exists only for the lockdep assertion and can be
364  * ignored.
365  */
366 #define for_each_pool(pool, pi)						\
367 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
368 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
369 		else
370 
371 /**
372  * for_each_pool_worker - iterate through all workers of a worker_pool
373  * @worker: iteration cursor
374  * @wi: integer used for iteration
375  * @pool: worker_pool to iterate workers of
376  *
377  * This must be called with either @pool->manager_mutex or ->lock held.
378  *
379  * The if/else clause exists only for the lockdep assertion and can be
380  * ignored.
381  */
382 #define for_each_pool_worker(worker, wi, pool)				\
383 	idr_for_each_entry(&(pool)->worker_idr, (worker), (wi))		\
384 		if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
385 		else
386 
387 /**
388  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
389  * @pwq: iteration cursor
390  * @wq: the target workqueue
391  *
392  * This must be called either with wq->mutex held or sched RCU read locked.
393  * If the pwq needs to be used beyond the locking in effect, the caller is
394  * responsible for guaranteeing that the pwq stays online.
395  *
396  * The if/else clause exists only for the lockdep assertion and can be
397  * ignored.
398  */
399 #define for_each_pwq(pwq, wq)						\
400 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
401 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
402 		else
403 
404 #ifdef CONFIG_DEBUG_OBJECTS_WORK
405 
406 static struct debug_obj_descr work_debug_descr;
407 
408 static void *work_debug_hint(void *addr)
409 {
410 	return ((struct work_struct *) addr)->func;
411 }
412 
413 /*
414  * fixup_init is called when:
415  * - an active object is initialized
416  */
417 static int work_fixup_init(void *addr, enum debug_obj_state state)
418 {
419 	struct work_struct *work = addr;
420 
421 	switch (state) {
422 	case ODEBUG_STATE_ACTIVE:
423 		cancel_work_sync(work);
424 		debug_object_init(work, &work_debug_descr);
425 		return 1;
426 	default:
427 		return 0;
428 	}
429 }
430 
431 /*
432  * fixup_activate is called when:
433  * - an active object is activated
434  * - an unknown object is activated (might be a statically initialized object)
435  */
436 static int work_fixup_activate(void *addr, enum debug_obj_state state)
437 {
438 	struct work_struct *work = addr;
439 
440 	switch (state) {
441 
442 	case ODEBUG_STATE_NOTAVAILABLE:
443 		/*
444 		 * This is not really a fixup. The work struct was
445 		 * statically initialized. We just make sure that it
446 		 * is tracked in the object tracker.
447 		 */
448 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
449 			debug_object_init(work, &work_debug_descr);
450 			debug_object_activate(work, &work_debug_descr);
451 			return 0;
452 		}
453 		WARN_ON_ONCE(1);
454 		return 0;
455 
456 	case ODEBUG_STATE_ACTIVE:
457 		WARN_ON(1);
458 
459 	default:
460 		return 0;
461 	}
462 }
463 
464 /*
465  * fixup_free is called when:
466  * - an active object is freed
467  */
468 static int work_fixup_free(void *addr, enum debug_obj_state state)
469 {
470 	struct work_struct *work = addr;
471 
472 	switch (state) {
473 	case ODEBUG_STATE_ACTIVE:
474 		cancel_work_sync(work);
475 		debug_object_free(work, &work_debug_descr);
476 		return 1;
477 	default:
478 		return 0;
479 	}
480 }
481 
482 static struct debug_obj_descr work_debug_descr = {
483 	.name		= "work_struct",
484 	.debug_hint	= work_debug_hint,
485 	.fixup_init	= work_fixup_init,
486 	.fixup_activate	= work_fixup_activate,
487 	.fixup_free	= work_fixup_free,
488 };
489 
490 static inline void debug_work_activate(struct work_struct *work)
491 {
492 	debug_object_activate(work, &work_debug_descr);
493 }
494 
495 static inline void debug_work_deactivate(struct work_struct *work)
496 {
497 	debug_object_deactivate(work, &work_debug_descr);
498 }
499 
500 void __init_work(struct work_struct *work, int onstack)
501 {
502 	if (onstack)
503 		debug_object_init_on_stack(work, &work_debug_descr);
504 	else
505 		debug_object_init(work, &work_debug_descr);
506 }
507 EXPORT_SYMBOL_GPL(__init_work);
508 
509 void destroy_work_on_stack(struct work_struct *work)
510 {
511 	debug_object_free(work, &work_debug_descr);
512 }
513 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
514 
515 #else
516 static inline void debug_work_activate(struct work_struct *work) { }
517 static inline void debug_work_deactivate(struct work_struct *work) { }
518 #endif
519 
520 /* allocate ID and assign it to @pool */
521 static int worker_pool_assign_id(struct worker_pool *pool)
522 {
523 	int ret;
524 
525 	lockdep_assert_held(&wq_pool_mutex);
526 
527 	ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
528 	if (ret >= 0) {
529 		pool->id = ret;
530 		return 0;
531 	}
532 	return ret;
533 }
534 
535 /**
536  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
537  * @wq: the target workqueue
538  * @node: the node ID
539  *
540  * This must be called either with pwq_lock held or sched RCU read locked.
541  * If the pwq needs to be used beyond the locking in effect, the caller is
542  * responsible for guaranteeing that the pwq stays online.
543  */
544 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
545 						  int node)
546 {
547 	assert_rcu_or_wq_mutex(wq);
548 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
549 }
550 
551 static unsigned int work_color_to_flags(int color)
552 {
553 	return color << WORK_STRUCT_COLOR_SHIFT;
554 }
555 
556 static int get_work_color(struct work_struct *work)
557 {
558 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
559 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
560 }
561 
562 static int work_next_color(int color)
563 {
564 	return (color + 1) % WORK_NR_COLORS;
565 }
566 
567 /*
568  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
569  * contain the pointer to the queued pwq.  Once execution starts, the flag
570  * is cleared and the high bits contain OFFQ flags and pool ID.
571  *
572  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
573  * and clear_work_data() can be used to set the pwq, pool or clear
574  * work->data.  These functions should only be called while the work is
575  * owned - ie. while the PENDING bit is set.
576  *
577  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
578  * corresponding to a work.  Pool is available once the work has been
579  * queued anywhere after initialization until it is sync canceled.  pwq is
580  * available only while the work item is queued.
581  *
582  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
583  * canceled.  While being canceled, a work item may have its PENDING set
584  * but stay off timer and worklist for arbitrarily long and nobody should
585  * try to steal the PENDING bit.
586  */
587 static inline void set_work_data(struct work_struct *work, unsigned long data,
588 				 unsigned long flags)
589 {
590 	WARN_ON_ONCE(!work_pending(work));
591 	atomic_long_set(&work->data, data | flags | work_static(work));
592 }
593 
594 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
595 			 unsigned long extra_flags)
596 {
597 	set_work_data(work, (unsigned long)pwq,
598 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
599 }
600 
601 static void set_work_pool_and_keep_pending(struct work_struct *work,
602 					   int pool_id)
603 {
604 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
605 		      WORK_STRUCT_PENDING);
606 }
607 
608 static void set_work_pool_and_clear_pending(struct work_struct *work,
609 					    int pool_id)
610 {
611 	/*
612 	 * The following wmb is paired with the implied mb in
613 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
614 	 * here are visible to and precede any updates by the next PENDING
615 	 * owner.
616 	 */
617 	smp_wmb();
618 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
619 }
620 
621 static void clear_work_data(struct work_struct *work)
622 {
623 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
624 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
625 }
626 
627 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
628 {
629 	unsigned long data = atomic_long_read(&work->data);
630 
631 	if (data & WORK_STRUCT_PWQ)
632 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
633 	else
634 		return NULL;
635 }
636 
637 /**
638  * get_work_pool - return the worker_pool a given work was associated with
639  * @work: the work item of interest
640  *
641  * Return the worker_pool @work was last associated with.  %NULL if none.
642  *
643  * Pools are created and destroyed under wq_pool_mutex, and allows read
644  * access under sched-RCU read lock.  As such, this function should be
645  * called under wq_pool_mutex or with preemption disabled.
646  *
647  * All fields of the returned pool are accessible as long as the above
648  * mentioned locking is in effect.  If the returned pool needs to be used
649  * beyond the critical section, the caller is responsible for ensuring the
650  * returned pool is and stays online.
651  */
652 static struct worker_pool *get_work_pool(struct work_struct *work)
653 {
654 	unsigned long data = atomic_long_read(&work->data);
655 	int pool_id;
656 
657 	assert_rcu_or_pool_mutex();
658 
659 	if (data & WORK_STRUCT_PWQ)
660 		return ((struct pool_workqueue *)
661 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
662 
663 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
664 	if (pool_id == WORK_OFFQ_POOL_NONE)
665 		return NULL;
666 
667 	return idr_find(&worker_pool_idr, pool_id);
668 }
669 
670 /**
671  * get_work_pool_id - return the worker pool ID a given work is associated with
672  * @work: the work item of interest
673  *
674  * Return the worker_pool ID @work was last associated with.
675  * %WORK_OFFQ_POOL_NONE if none.
676  */
677 static int get_work_pool_id(struct work_struct *work)
678 {
679 	unsigned long data = atomic_long_read(&work->data);
680 
681 	if (data & WORK_STRUCT_PWQ)
682 		return ((struct pool_workqueue *)
683 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
684 
685 	return data >> WORK_OFFQ_POOL_SHIFT;
686 }
687 
688 static void mark_work_canceling(struct work_struct *work)
689 {
690 	unsigned long pool_id = get_work_pool_id(work);
691 
692 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
693 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
694 }
695 
696 static bool work_is_canceling(struct work_struct *work)
697 {
698 	unsigned long data = atomic_long_read(&work->data);
699 
700 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
701 }
702 
703 /*
704  * Policy functions.  These define the policies on how the global worker
705  * pools are managed.  Unless noted otherwise, these functions assume that
706  * they're being called with pool->lock held.
707  */
708 
709 static bool __need_more_worker(struct worker_pool *pool)
710 {
711 	return !atomic_read(&pool->nr_running);
712 }
713 
714 /*
715  * Need to wake up a worker?  Called from anything but currently
716  * running workers.
717  *
718  * Note that, because unbound workers never contribute to nr_running, this
719  * function will always return %true for unbound pools as long as the
720  * worklist isn't empty.
721  */
722 static bool need_more_worker(struct worker_pool *pool)
723 {
724 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
725 }
726 
727 /* Can I start working?  Called from busy but !running workers. */
728 static bool may_start_working(struct worker_pool *pool)
729 {
730 	return pool->nr_idle;
731 }
732 
733 /* Do I need to keep working?  Called from currently running workers. */
734 static bool keep_working(struct worker_pool *pool)
735 {
736 	return !list_empty(&pool->worklist) &&
737 		atomic_read(&pool->nr_running) <= 1;
738 }
739 
740 /* Do we need a new worker?  Called from manager. */
741 static bool need_to_create_worker(struct worker_pool *pool)
742 {
743 	return need_more_worker(pool) && !may_start_working(pool);
744 }
745 
746 /* Do I need to be the manager? */
747 static bool need_to_manage_workers(struct worker_pool *pool)
748 {
749 	return need_to_create_worker(pool) ||
750 		(pool->flags & POOL_MANAGE_WORKERS);
751 }
752 
753 /* Do we have too many workers and should some go away? */
754 static bool too_many_workers(struct worker_pool *pool)
755 {
756 	bool managing = mutex_is_locked(&pool->manager_arb);
757 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
758 	int nr_busy = pool->nr_workers - nr_idle;
759 
760 	/*
761 	 * nr_idle and idle_list may disagree if idle rebinding is in
762 	 * progress.  Never return %true if idle_list is empty.
763 	 */
764 	if (list_empty(&pool->idle_list))
765 		return false;
766 
767 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
768 }
769 
770 /*
771  * Wake up functions.
772  */
773 
774 /* Return the first worker.  Safe with preemption disabled */
775 static struct worker *first_worker(struct worker_pool *pool)
776 {
777 	if (unlikely(list_empty(&pool->idle_list)))
778 		return NULL;
779 
780 	return list_first_entry(&pool->idle_list, struct worker, entry);
781 }
782 
783 /**
784  * wake_up_worker - wake up an idle worker
785  * @pool: worker pool to wake worker from
786  *
787  * Wake up the first idle worker of @pool.
788  *
789  * CONTEXT:
790  * spin_lock_irq(pool->lock).
791  */
792 static void wake_up_worker(struct worker_pool *pool)
793 {
794 	struct worker *worker = first_worker(pool);
795 
796 	if (likely(worker))
797 		wake_up_process(worker->task);
798 }
799 
800 /**
801  * wq_worker_waking_up - a worker is waking up
802  * @task: task waking up
803  * @cpu: CPU @task is waking up to
804  *
805  * This function is called during try_to_wake_up() when a worker is
806  * being awoken.
807  *
808  * CONTEXT:
809  * spin_lock_irq(rq->lock)
810  */
811 void wq_worker_waking_up(struct task_struct *task, int cpu)
812 {
813 	struct worker *worker = kthread_data(task);
814 
815 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
816 		WARN_ON_ONCE(worker->pool->cpu != cpu);
817 		atomic_inc(&worker->pool->nr_running);
818 	}
819 }
820 
821 /**
822  * wq_worker_sleeping - a worker is going to sleep
823  * @task: task going to sleep
824  * @cpu: CPU in question, must be the current CPU number
825  *
826  * This function is called during schedule() when a busy worker is
827  * going to sleep.  Worker on the same cpu can be woken up by
828  * returning pointer to its task.
829  *
830  * CONTEXT:
831  * spin_lock_irq(rq->lock)
832  *
833  * RETURNS:
834  * Worker task on @cpu to wake up, %NULL if none.
835  */
836 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
837 {
838 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
839 	struct worker_pool *pool;
840 
841 	/*
842 	 * Rescuers, which may not have all the fields set up like normal
843 	 * workers, also reach here, let's not access anything before
844 	 * checking NOT_RUNNING.
845 	 */
846 	if (worker->flags & WORKER_NOT_RUNNING)
847 		return NULL;
848 
849 	pool = worker->pool;
850 
851 	/* this can only happen on the local cpu */
852 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
853 		return NULL;
854 
855 	/*
856 	 * The counterpart of the following dec_and_test, implied mb,
857 	 * worklist not empty test sequence is in insert_work().
858 	 * Please read comment there.
859 	 *
860 	 * NOT_RUNNING is clear.  This means that we're bound to and
861 	 * running on the local cpu w/ rq lock held and preemption
862 	 * disabled, which in turn means that none else could be
863 	 * manipulating idle_list, so dereferencing idle_list without pool
864 	 * lock is safe.
865 	 */
866 	if (atomic_dec_and_test(&pool->nr_running) &&
867 	    !list_empty(&pool->worklist))
868 		to_wakeup = first_worker(pool);
869 	return to_wakeup ? to_wakeup->task : NULL;
870 }
871 
872 /**
873  * worker_set_flags - set worker flags and adjust nr_running accordingly
874  * @worker: self
875  * @flags: flags to set
876  * @wakeup: wakeup an idle worker if necessary
877  *
878  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
879  * nr_running becomes zero and @wakeup is %true, an idle worker is
880  * woken up.
881  *
882  * CONTEXT:
883  * spin_lock_irq(pool->lock)
884  */
885 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
886 				    bool wakeup)
887 {
888 	struct worker_pool *pool = worker->pool;
889 
890 	WARN_ON_ONCE(worker->task != current);
891 
892 	/*
893 	 * If transitioning into NOT_RUNNING, adjust nr_running and
894 	 * wake up an idle worker as necessary if requested by
895 	 * @wakeup.
896 	 */
897 	if ((flags & WORKER_NOT_RUNNING) &&
898 	    !(worker->flags & WORKER_NOT_RUNNING)) {
899 		if (wakeup) {
900 			if (atomic_dec_and_test(&pool->nr_running) &&
901 			    !list_empty(&pool->worklist))
902 				wake_up_worker(pool);
903 		} else
904 			atomic_dec(&pool->nr_running);
905 	}
906 
907 	worker->flags |= flags;
908 }
909 
910 /**
911  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
912  * @worker: self
913  * @flags: flags to clear
914  *
915  * Clear @flags in @worker->flags and adjust nr_running accordingly.
916  *
917  * CONTEXT:
918  * spin_lock_irq(pool->lock)
919  */
920 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
921 {
922 	struct worker_pool *pool = worker->pool;
923 	unsigned int oflags = worker->flags;
924 
925 	WARN_ON_ONCE(worker->task != current);
926 
927 	worker->flags &= ~flags;
928 
929 	/*
930 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
931 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
932 	 * of multiple flags, not a single flag.
933 	 */
934 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
935 		if (!(worker->flags & WORKER_NOT_RUNNING))
936 			atomic_inc(&pool->nr_running);
937 }
938 
939 /**
940  * find_worker_executing_work - find worker which is executing a work
941  * @pool: pool of interest
942  * @work: work to find worker for
943  *
944  * Find a worker which is executing @work on @pool by searching
945  * @pool->busy_hash which is keyed by the address of @work.  For a worker
946  * to match, its current execution should match the address of @work and
947  * its work function.  This is to avoid unwanted dependency between
948  * unrelated work executions through a work item being recycled while still
949  * being executed.
950  *
951  * This is a bit tricky.  A work item may be freed once its execution
952  * starts and nothing prevents the freed area from being recycled for
953  * another work item.  If the same work item address ends up being reused
954  * before the original execution finishes, workqueue will identify the
955  * recycled work item as currently executing and make it wait until the
956  * current execution finishes, introducing an unwanted dependency.
957  *
958  * This function checks the work item address and work function to avoid
959  * false positives.  Note that this isn't complete as one may construct a
960  * work function which can introduce dependency onto itself through a
961  * recycled work item.  Well, if somebody wants to shoot oneself in the
962  * foot that badly, there's only so much we can do, and if such deadlock
963  * actually occurs, it should be easy to locate the culprit work function.
964  *
965  * CONTEXT:
966  * spin_lock_irq(pool->lock).
967  *
968  * RETURNS:
969  * Pointer to worker which is executing @work if found, NULL
970  * otherwise.
971  */
972 static struct worker *find_worker_executing_work(struct worker_pool *pool,
973 						 struct work_struct *work)
974 {
975 	struct worker *worker;
976 
977 	hash_for_each_possible(pool->busy_hash, worker, hentry,
978 			       (unsigned long)work)
979 		if (worker->current_work == work &&
980 		    worker->current_func == work->func)
981 			return worker;
982 
983 	return NULL;
984 }
985 
986 /**
987  * move_linked_works - move linked works to a list
988  * @work: start of series of works to be scheduled
989  * @head: target list to append @work to
990  * @nextp: out paramter for nested worklist walking
991  *
992  * Schedule linked works starting from @work to @head.  Work series to
993  * be scheduled starts at @work and includes any consecutive work with
994  * WORK_STRUCT_LINKED set in its predecessor.
995  *
996  * If @nextp is not NULL, it's updated to point to the next work of
997  * the last scheduled work.  This allows move_linked_works() to be
998  * nested inside outer list_for_each_entry_safe().
999  *
1000  * CONTEXT:
1001  * spin_lock_irq(pool->lock).
1002  */
1003 static void move_linked_works(struct work_struct *work, struct list_head *head,
1004 			      struct work_struct **nextp)
1005 {
1006 	struct work_struct *n;
1007 
1008 	/*
1009 	 * Linked worklist will always end before the end of the list,
1010 	 * use NULL for list head.
1011 	 */
1012 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1013 		list_move_tail(&work->entry, head);
1014 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1015 			break;
1016 	}
1017 
1018 	/*
1019 	 * If we're already inside safe list traversal and have moved
1020 	 * multiple works to the scheduled queue, the next position
1021 	 * needs to be updated.
1022 	 */
1023 	if (nextp)
1024 		*nextp = n;
1025 }
1026 
1027 /**
1028  * get_pwq - get an extra reference on the specified pool_workqueue
1029  * @pwq: pool_workqueue to get
1030  *
1031  * Obtain an extra reference on @pwq.  The caller should guarantee that
1032  * @pwq has positive refcnt and be holding the matching pool->lock.
1033  */
1034 static void get_pwq(struct pool_workqueue *pwq)
1035 {
1036 	lockdep_assert_held(&pwq->pool->lock);
1037 	WARN_ON_ONCE(pwq->refcnt <= 0);
1038 	pwq->refcnt++;
1039 }
1040 
1041 /**
1042  * put_pwq - put a pool_workqueue reference
1043  * @pwq: pool_workqueue to put
1044  *
1045  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1046  * destruction.  The caller should be holding the matching pool->lock.
1047  */
1048 static void put_pwq(struct pool_workqueue *pwq)
1049 {
1050 	lockdep_assert_held(&pwq->pool->lock);
1051 	if (likely(--pwq->refcnt))
1052 		return;
1053 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1054 		return;
1055 	/*
1056 	 * @pwq can't be released under pool->lock, bounce to
1057 	 * pwq_unbound_release_workfn().  This never recurses on the same
1058 	 * pool->lock as this path is taken only for unbound workqueues and
1059 	 * the release work item is scheduled on a per-cpu workqueue.  To
1060 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1061 	 * subclass of 1 in get_unbound_pool().
1062 	 */
1063 	schedule_work(&pwq->unbound_release_work);
1064 }
1065 
1066 /**
1067  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1068  * @pwq: pool_workqueue to put (can be %NULL)
1069  *
1070  * put_pwq() with locking.  This function also allows %NULL @pwq.
1071  */
1072 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1073 {
1074 	if (pwq) {
1075 		/*
1076 		 * As both pwqs and pools are sched-RCU protected, the
1077 		 * following lock operations are safe.
1078 		 */
1079 		spin_lock_irq(&pwq->pool->lock);
1080 		put_pwq(pwq);
1081 		spin_unlock_irq(&pwq->pool->lock);
1082 	}
1083 }
1084 
1085 static void pwq_activate_delayed_work(struct work_struct *work)
1086 {
1087 	struct pool_workqueue *pwq = get_work_pwq(work);
1088 
1089 	trace_workqueue_activate_work(work);
1090 	move_linked_works(work, &pwq->pool->worklist, NULL);
1091 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1092 	pwq->nr_active++;
1093 }
1094 
1095 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1096 {
1097 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1098 						    struct work_struct, entry);
1099 
1100 	pwq_activate_delayed_work(work);
1101 }
1102 
1103 /**
1104  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1105  * @pwq: pwq of interest
1106  * @color: color of work which left the queue
1107  *
1108  * A work either has completed or is removed from pending queue,
1109  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1110  *
1111  * CONTEXT:
1112  * spin_lock_irq(pool->lock).
1113  */
1114 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1115 {
1116 	/* uncolored work items don't participate in flushing or nr_active */
1117 	if (color == WORK_NO_COLOR)
1118 		goto out_put;
1119 
1120 	pwq->nr_in_flight[color]--;
1121 
1122 	pwq->nr_active--;
1123 	if (!list_empty(&pwq->delayed_works)) {
1124 		/* one down, submit a delayed one */
1125 		if (pwq->nr_active < pwq->max_active)
1126 			pwq_activate_first_delayed(pwq);
1127 	}
1128 
1129 	/* is flush in progress and are we at the flushing tip? */
1130 	if (likely(pwq->flush_color != color))
1131 		goto out_put;
1132 
1133 	/* are there still in-flight works? */
1134 	if (pwq->nr_in_flight[color])
1135 		goto out_put;
1136 
1137 	/* this pwq is done, clear flush_color */
1138 	pwq->flush_color = -1;
1139 
1140 	/*
1141 	 * If this was the last pwq, wake up the first flusher.  It
1142 	 * will handle the rest.
1143 	 */
1144 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1145 		complete(&pwq->wq->first_flusher->done);
1146 out_put:
1147 	put_pwq(pwq);
1148 }
1149 
1150 /**
1151  * try_to_grab_pending - steal work item from worklist and disable irq
1152  * @work: work item to steal
1153  * @is_dwork: @work is a delayed_work
1154  * @flags: place to store irq state
1155  *
1156  * Try to grab PENDING bit of @work.  This function can handle @work in any
1157  * stable state - idle, on timer or on worklist.  Return values are
1158  *
1159  *  1		if @work was pending and we successfully stole PENDING
1160  *  0		if @work was idle and we claimed PENDING
1161  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1162  *  -ENOENT	if someone else is canceling @work, this state may persist
1163  *		for arbitrarily long
1164  *
1165  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1166  * interrupted while holding PENDING and @work off queue, irq must be
1167  * disabled on entry.  This, combined with delayed_work->timer being
1168  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1169  *
1170  * On successful return, >= 0, irq is disabled and the caller is
1171  * responsible for releasing it using local_irq_restore(*@flags).
1172  *
1173  * This function is safe to call from any context including IRQ handler.
1174  */
1175 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1176 			       unsigned long *flags)
1177 {
1178 	struct worker_pool *pool;
1179 	struct pool_workqueue *pwq;
1180 
1181 	local_irq_save(*flags);
1182 
1183 	/* try to steal the timer if it exists */
1184 	if (is_dwork) {
1185 		struct delayed_work *dwork = to_delayed_work(work);
1186 
1187 		/*
1188 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1189 		 * guaranteed that the timer is not queued anywhere and not
1190 		 * running on the local CPU.
1191 		 */
1192 		if (likely(del_timer(&dwork->timer)))
1193 			return 1;
1194 	}
1195 
1196 	/* try to claim PENDING the normal way */
1197 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1198 		return 0;
1199 
1200 	/*
1201 	 * The queueing is in progress, or it is already queued. Try to
1202 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1203 	 */
1204 	pool = get_work_pool(work);
1205 	if (!pool)
1206 		goto fail;
1207 
1208 	spin_lock(&pool->lock);
1209 	/*
1210 	 * work->data is guaranteed to point to pwq only while the work
1211 	 * item is queued on pwq->wq, and both updating work->data to point
1212 	 * to pwq on queueing and to pool on dequeueing are done under
1213 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1214 	 * points to pwq which is associated with a locked pool, the work
1215 	 * item is currently queued on that pool.
1216 	 */
1217 	pwq = get_work_pwq(work);
1218 	if (pwq && pwq->pool == pool) {
1219 		debug_work_deactivate(work);
1220 
1221 		/*
1222 		 * A delayed work item cannot be grabbed directly because
1223 		 * it might have linked NO_COLOR work items which, if left
1224 		 * on the delayed_list, will confuse pwq->nr_active
1225 		 * management later on and cause stall.  Make sure the work
1226 		 * item is activated before grabbing.
1227 		 */
1228 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1229 			pwq_activate_delayed_work(work);
1230 
1231 		list_del_init(&work->entry);
1232 		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1233 
1234 		/* work->data points to pwq iff queued, point to pool */
1235 		set_work_pool_and_keep_pending(work, pool->id);
1236 
1237 		spin_unlock(&pool->lock);
1238 		return 1;
1239 	}
1240 	spin_unlock(&pool->lock);
1241 fail:
1242 	local_irq_restore(*flags);
1243 	if (work_is_canceling(work))
1244 		return -ENOENT;
1245 	cpu_relax();
1246 	return -EAGAIN;
1247 }
1248 
1249 /**
1250  * insert_work - insert a work into a pool
1251  * @pwq: pwq @work belongs to
1252  * @work: work to insert
1253  * @head: insertion point
1254  * @extra_flags: extra WORK_STRUCT_* flags to set
1255  *
1256  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1257  * work_struct flags.
1258  *
1259  * CONTEXT:
1260  * spin_lock_irq(pool->lock).
1261  */
1262 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1263 			struct list_head *head, unsigned int extra_flags)
1264 {
1265 	struct worker_pool *pool = pwq->pool;
1266 
1267 	/* we own @work, set data and link */
1268 	set_work_pwq(work, pwq, extra_flags);
1269 	list_add_tail(&work->entry, head);
1270 	get_pwq(pwq);
1271 
1272 	/*
1273 	 * Ensure either wq_worker_sleeping() sees the above
1274 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1275 	 * around lazily while there are works to be processed.
1276 	 */
1277 	smp_mb();
1278 
1279 	if (__need_more_worker(pool))
1280 		wake_up_worker(pool);
1281 }
1282 
1283 /*
1284  * Test whether @work is being queued from another work executing on the
1285  * same workqueue.
1286  */
1287 static bool is_chained_work(struct workqueue_struct *wq)
1288 {
1289 	struct worker *worker;
1290 
1291 	worker = current_wq_worker();
1292 	/*
1293 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1294 	 * I'm @worker, it's safe to dereference it without locking.
1295 	 */
1296 	return worker && worker->current_pwq->wq == wq;
1297 }
1298 
1299 static void __queue_work(int cpu, struct workqueue_struct *wq,
1300 			 struct work_struct *work)
1301 {
1302 	struct pool_workqueue *pwq;
1303 	struct worker_pool *last_pool;
1304 	struct list_head *worklist;
1305 	unsigned int work_flags;
1306 	unsigned int req_cpu = cpu;
1307 
1308 	/*
1309 	 * While a work item is PENDING && off queue, a task trying to
1310 	 * steal the PENDING will busy-loop waiting for it to either get
1311 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1312 	 * happen with IRQ disabled.
1313 	 */
1314 	WARN_ON_ONCE(!irqs_disabled());
1315 
1316 	debug_work_activate(work);
1317 
1318 	/* if dying, only works from the same workqueue are allowed */
1319 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1320 	    WARN_ON_ONCE(!is_chained_work(wq)))
1321 		return;
1322 retry:
1323 	if (req_cpu == WORK_CPU_UNBOUND)
1324 		cpu = raw_smp_processor_id();
1325 
1326 	/* pwq which will be used unless @work is executing elsewhere */
1327 	if (!(wq->flags & WQ_UNBOUND))
1328 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1329 	else
1330 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1331 
1332 	/*
1333 	 * If @work was previously on a different pool, it might still be
1334 	 * running there, in which case the work needs to be queued on that
1335 	 * pool to guarantee non-reentrancy.
1336 	 */
1337 	last_pool = get_work_pool(work);
1338 	if (last_pool && last_pool != pwq->pool) {
1339 		struct worker *worker;
1340 
1341 		spin_lock(&last_pool->lock);
1342 
1343 		worker = find_worker_executing_work(last_pool, work);
1344 
1345 		if (worker && worker->current_pwq->wq == wq) {
1346 			pwq = worker->current_pwq;
1347 		} else {
1348 			/* meh... not running there, queue here */
1349 			spin_unlock(&last_pool->lock);
1350 			spin_lock(&pwq->pool->lock);
1351 		}
1352 	} else {
1353 		spin_lock(&pwq->pool->lock);
1354 	}
1355 
1356 	/*
1357 	 * pwq is determined and locked.  For unbound pools, we could have
1358 	 * raced with pwq release and it could already be dead.  If its
1359 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1360 	 * without another pwq replacing it in the numa_pwq_tbl or while
1361 	 * work items are executing on it, so the retrying is guaranteed to
1362 	 * make forward-progress.
1363 	 */
1364 	if (unlikely(!pwq->refcnt)) {
1365 		if (wq->flags & WQ_UNBOUND) {
1366 			spin_unlock(&pwq->pool->lock);
1367 			cpu_relax();
1368 			goto retry;
1369 		}
1370 		/* oops */
1371 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1372 			  wq->name, cpu);
1373 	}
1374 
1375 	/* pwq determined, queue */
1376 	trace_workqueue_queue_work(req_cpu, pwq, work);
1377 
1378 	if (WARN_ON(!list_empty(&work->entry))) {
1379 		spin_unlock(&pwq->pool->lock);
1380 		return;
1381 	}
1382 
1383 	pwq->nr_in_flight[pwq->work_color]++;
1384 	work_flags = work_color_to_flags(pwq->work_color);
1385 
1386 	if (likely(pwq->nr_active < pwq->max_active)) {
1387 		trace_workqueue_activate_work(work);
1388 		pwq->nr_active++;
1389 		worklist = &pwq->pool->worklist;
1390 	} else {
1391 		work_flags |= WORK_STRUCT_DELAYED;
1392 		worklist = &pwq->delayed_works;
1393 	}
1394 
1395 	insert_work(pwq, work, worklist, work_flags);
1396 
1397 	spin_unlock(&pwq->pool->lock);
1398 }
1399 
1400 /**
1401  * queue_work_on - queue work on specific cpu
1402  * @cpu: CPU number to execute work on
1403  * @wq: workqueue to use
1404  * @work: work to queue
1405  *
1406  * Returns %false if @work was already on a queue, %true otherwise.
1407  *
1408  * We queue the work to a specific CPU, the caller must ensure it
1409  * can't go away.
1410  */
1411 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1412 		   struct work_struct *work)
1413 {
1414 	bool ret = false;
1415 	unsigned long flags;
1416 
1417 	local_irq_save(flags);
1418 
1419 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1420 		__queue_work(cpu, wq, work);
1421 		ret = true;
1422 	}
1423 
1424 	local_irq_restore(flags);
1425 	return ret;
1426 }
1427 EXPORT_SYMBOL(queue_work_on);
1428 
1429 void delayed_work_timer_fn(unsigned long __data)
1430 {
1431 	struct delayed_work *dwork = (struct delayed_work *)__data;
1432 
1433 	/* should have been called from irqsafe timer with irq already off */
1434 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1435 }
1436 EXPORT_SYMBOL(delayed_work_timer_fn);
1437 
1438 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1439 				struct delayed_work *dwork, unsigned long delay)
1440 {
1441 	struct timer_list *timer = &dwork->timer;
1442 	struct work_struct *work = &dwork->work;
1443 
1444 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1445 		     timer->data != (unsigned long)dwork);
1446 	WARN_ON_ONCE(timer_pending(timer));
1447 	WARN_ON_ONCE(!list_empty(&work->entry));
1448 
1449 	/*
1450 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1451 	 * both optimization and correctness.  The earliest @timer can
1452 	 * expire is on the closest next tick and delayed_work users depend
1453 	 * on that there's no such delay when @delay is 0.
1454 	 */
1455 	if (!delay) {
1456 		__queue_work(cpu, wq, &dwork->work);
1457 		return;
1458 	}
1459 
1460 	timer_stats_timer_set_start_info(&dwork->timer);
1461 
1462 	dwork->wq = wq;
1463 	dwork->cpu = cpu;
1464 	timer->expires = jiffies + delay;
1465 
1466 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1467 		add_timer_on(timer, cpu);
1468 	else
1469 		add_timer(timer);
1470 }
1471 
1472 /**
1473  * queue_delayed_work_on - queue work on specific CPU after delay
1474  * @cpu: CPU number to execute work on
1475  * @wq: workqueue to use
1476  * @dwork: work to queue
1477  * @delay: number of jiffies to wait before queueing
1478  *
1479  * Returns %false if @work was already on a queue, %true otherwise.  If
1480  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1481  * execution.
1482  */
1483 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1484 			   struct delayed_work *dwork, unsigned long delay)
1485 {
1486 	struct work_struct *work = &dwork->work;
1487 	bool ret = false;
1488 	unsigned long flags;
1489 
1490 	/* read the comment in __queue_work() */
1491 	local_irq_save(flags);
1492 
1493 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1494 		__queue_delayed_work(cpu, wq, dwork, delay);
1495 		ret = true;
1496 	}
1497 
1498 	local_irq_restore(flags);
1499 	return ret;
1500 }
1501 EXPORT_SYMBOL(queue_delayed_work_on);
1502 
1503 /**
1504  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1505  * @cpu: CPU number to execute work on
1506  * @wq: workqueue to use
1507  * @dwork: work to queue
1508  * @delay: number of jiffies to wait before queueing
1509  *
1510  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1511  * modify @dwork's timer so that it expires after @delay.  If @delay is
1512  * zero, @work is guaranteed to be scheduled immediately regardless of its
1513  * current state.
1514  *
1515  * Returns %false if @dwork was idle and queued, %true if @dwork was
1516  * pending and its timer was modified.
1517  *
1518  * This function is safe to call from any context including IRQ handler.
1519  * See try_to_grab_pending() for details.
1520  */
1521 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1522 			 struct delayed_work *dwork, unsigned long delay)
1523 {
1524 	unsigned long flags;
1525 	int ret;
1526 
1527 	do {
1528 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1529 	} while (unlikely(ret == -EAGAIN));
1530 
1531 	if (likely(ret >= 0)) {
1532 		__queue_delayed_work(cpu, wq, dwork, delay);
1533 		local_irq_restore(flags);
1534 	}
1535 
1536 	/* -ENOENT from try_to_grab_pending() becomes %true */
1537 	return ret;
1538 }
1539 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1540 
1541 /**
1542  * worker_enter_idle - enter idle state
1543  * @worker: worker which is entering idle state
1544  *
1545  * @worker is entering idle state.  Update stats and idle timer if
1546  * necessary.
1547  *
1548  * LOCKING:
1549  * spin_lock_irq(pool->lock).
1550  */
1551 static void worker_enter_idle(struct worker *worker)
1552 {
1553 	struct worker_pool *pool = worker->pool;
1554 
1555 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1556 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1557 			 (worker->hentry.next || worker->hentry.pprev)))
1558 		return;
1559 
1560 	/* can't use worker_set_flags(), also called from start_worker() */
1561 	worker->flags |= WORKER_IDLE;
1562 	pool->nr_idle++;
1563 	worker->last_active = jiffies;
1564 
1565 	/* idle_list is LIFO */
1566 	list_add(&worker->entry, &pool->idle_list);
1567 
1568 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1569 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1570 
1571 	/*
1572 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1573 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1574 	 * nr_running, the warning may trigger spuriously.  Check iff
1575 	 * unbind is not in progress.
1576 	 */
1577 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1578 		     pool->nr_workers == pool->nr_idle &&
1579 		     atomic_read(&pool->nr_running));
1580 }
1581 
1582 /**
1583  * worker_leave_idle - leave idle state
1584  * @worker: worker which is leaving idle state
1585  *
1586  * @worker is leaving idle state.  Update stats.
1587  *
1588  * LOCKING:
1589  * spin_lock_irq(pool->lock).
1590  */
1591 static void worker_leave_idle(struct worker *worker)
1592 {
1593 	struct worker_pool *pool = worker->pool;
1594 
1595 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1596 		return;
1597 	worker_clr_flags(worker, WORKER_IDLE);
1598 	pool->nr_idle--;
1599 	list_del_init(&worker->entry);
1600 }
1601 
1602 /**
1603  * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1604  * @pool: target worker_pool
1605  *
1606  * Bind %current to the cpu of @pool if it is associated and lock @pool.
1607  *
1608  * Works which are scheduled while the cpu is online must at least be
1609  * scheduled to a worker which is bound to the cpu so that if they are
1610  * flushed from cpu callbacks while cpu is going down, they are
1611  * guaranteed to execute on the cpu.
1612  *
1613  * This function is to be used by unbound workers and rescuers to bind
1614  * themselves to the target cpu and may race with cpu going down or
1615  * coming online.  kthread_bind() can't be used because it may put the
1616  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1617  * verbatim as it's best effort and blocking and pool may be
1618  * [dis]associated in the meantime.
1619  *
1620  * This function tries set_cpus_allowed() and locks pool and verifies the
1621  * binding against %POOL_DISASSOCIATED which is set during
1622  * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1623  * enters idle state or fetches works without dropping lock, it can
1624  * guarantee the scheduling requirement described in the first paragraph.
1625  *
1626  * CONTEXT:
1627  * Might sleep.  Called without any lock but returns with pool->lock
1628  * held.
1629  *
1630  * RETURNS:
1631  * %true if the associated pool is online (@worker is successfully
1632  * bound), %false if offline.
1633  */
1634 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1635 __acquires(&pool->lock)
1636 {
1637 	while (true) {
1638 		/*
1639 		 * The following call may fail, succeed or succeed
1640 		 * without actually migrating the task to the cpu if
1641 		 * it races with cpu hotunplug operation.  Verify
1642 		 * against POOL_DISASSOCIATED.
1643 		 */
1644 		if (!(pool->flags & POOL_DISASSOCIATED))
1645 			set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1646 
1647 		spin_lock_irq(&pool->lock);
1648 		if (pool->flags & POOL_DISASSOCIATED)
1649 			return false;
1650 		if (task_cpu(current) == pool->cpu &&
1651 		    cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1652 			return true;
1653 		spin_unlock_irq(&pool->lock);
1654 
1655 		/*
1656 		 * We've raced with CPU hot[un]plug.  Give it a breather
1657 		 * and retry migration.  cond_resched() is required here;
1658 		 * otherwise, we might deadlock against cpu_stop trying to
1659 		 * bring down the CPU on non-preemptive kernel.
1660 		 */
1661 		cpu_relax();
1662 		cond_resched();
1663 	}
1664 }
1665 
1666 static struct worker *alloc_worker(void)
1667 {
1668 	struct worker *worker;
1669 
1670 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1671 	if (worker) {
1672 		INIT_LIST_HEAD(&worker->entry);
1673 		INIT_LIST_HEAD(&worker->scheduled);
1674 		/* on creation a worker is in !idle && prep state */
1675 		worker->flags = WORKER_PREP;
1676 	}
1677 	return worker;
1678 }
1679 
1680 /**
1681  * create_worker - create a new workqueue worker
1682  * @pool: pool the new worker will belong to
1683  *
1684  * Create a new worker which is bound to @pool.  The returned worker
1685  * can be started by calling start_worker() or destroyed using
1686  * destroy_worker().
1687  *
1688  * CONTEXT:
1689  * Might sleep.  Does GFP_KERNEL allocations.
1690  *
1691  * RETURNS:
1692  * Pointer to the newly created worker.
1693  */
1694 static struct worker *create_worker(struct worker_pool *pool)
1695 {
1696 	struct worker *worker = NULL;
1697 	int id = -1;
1698 	char id_buf[16];
1699 
1700 	lockdep_assert_held(&pool->manager_mutex);
1701 
1702 	/*
1703 	 * ID is needed to determine kthread name.  Allocate ID first
1704 	 * without installing the pointer.
1705 	 */
1706 	idr_preload(GFP_KERNEL);
1707 	spin_lock_irq(&pool->lock);
1708 
1709 	id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1710 
1711 	spin_unlock_irq(&pool->lock);
1712 	idr_preload_end();
1713 	if (id < 0)
1714 		goto fail;
1715 
1716 	worker = alloc_worker();
1717 	if (!worker)
1718 		goto fail;
1719 
1720 	worker->pool = pool;
1721 	worker->id = id;
1722 
1723 	if (pool->cpu >= 0)
1724 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1725 			 pool->attrs->nice < 0  ? "H" : "");
1726 	else
1727 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1728 
1729 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1730 					      "kworker/%s", id_buf);
1731 	if (IS_ERR(worker->task))
1732 		goto fail;
1733 
1734 	/*
1735 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1736 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1737 	 */
1738 	set_user_nice(worker->task, pool->attrs->nice);
1739 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1740 
1741 	/* prevent userland from meddling with cpumask of workqueue workers */
1742 	worker->task->flags |= PF_NO_SETAFFINITY;
1743 
1744 	/*
1745 	 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1746 	 * remains stable across this function.  See the comments above the
1747 	 * flag definition for details.
1748 	 */
1749 	if (pool->flags & POOL_DISASSOCIATED)
1750 		worker->flags |= WORKER_UNBOUND;
1751 
1752 	/* successful, commit the pointer to idr */
1753 	spin_lock_irq(&pool->lock);
1754 	idr_replace(&pool->worker_idr, worker, worker->id);
1755 	spin_unlock_irq(&pool->lock);
1756 
1757 	return worker;
1758 
1759 fail:
1760 	if (id >= 0) {
1761 		spin_lock_irq(&pool->lock);
1762 		idr_remove(&pool->worker_idr, id);
1763 		spin_unlock_irq(&pool->lock);
1764 	}
1765 	kfree(worker);
1766 	return NULL;
1767 }
1768 
1769 /**
1770  * start_worker - start a newly created worker
1771  * @worker: worker to start
1772  *
1773  * Make the pool aware of @worker and start it.
1774  *
1775  * CONTEXT:
1776  * spin_lock_irq(pool->lock).
1777  */
1778 static void start_worker(struct worker *worker)
1779 {
1780 	worker->flags |= WORKER_STARTED;
1781 	worker->pool->nr_workers++;
1782 	worker_enter_idle(worker);
1783 	wake_up_process(worker->task);
1784 }
1785 
1786 /**
1787  * create_and_start_worker - create and start a worker for a pool
1788  * @pool: the target pool
1789  *
1790  * Grab the managership of @pool and create and start a new worker for it.
1791  */
1792 static int create_and_start_worker(struct worker_pool *pool)
1793 {
1794 	struct worker *worker;
1795 
1796 	mutex_lock(&pool->manager_mutex);
1797 
1798 	worker = create_worker(pool);
1799 	if (worker) {
1800 		spin_lock_irq(&pool->lock);
1801 		start_worker(worker);
1802 		spin_unlock_irq(&pool->lock);
1803 	}
1804 
1805 	mutex_unlock(&pool->manager_mutex);
1806 
1807 	return worker ? 0 : -ENOMEM;
1808 }
1809 
1810 /**
1811  * destroy_worker - destroy a workqueue worker
1812  * @worker: worker to be destroyed
1813  *
1814  * Destroy @worker and adjust @pool stats accordingly.
1815  *
1816  * CONTEXT:
1817  * spin_lock_irq(pool->lock) which is released and regrabbed.
1818  */
1819 static void destroy_worker(struct worker *worker)
1820 {
1821 	struct worker_pool *pool = worker->pool;
1822 
1823 	lockdep_assert_held(&pool->manager_mutex);
1824 	lockdep_assert_held(&pool->lock);
1825 
1826 	/* sanity check frenzy */
1827 	if (WARN_ON(worker->current_work) ||
1828 	    WARN_ON(!list_empty(&worker->scheduled)))
1829 		return;
1830 
1831 	if (worker->flags & WORKER_STARTED)
1832 		pool->nr_workers--;
1833 	if (worker->flags & WORKER_IDLE)
1834 		pool->nr_idle--;
1835 
1836 	list_del_init(&worker->entry);
1837 	worker->flags |= WORKER_DIE;
1838 
1839 	idr_remove(&pool->worker_idr, worker->id);
1840 
1841 	spin_unlock_irq(&pool->lock);
1842 
1843 	kthread_stop(worker->task);
1844 	kfree(worker);
1845 
1846 	spin_lock_irq(&pool->lock);
1847 }
1848 
1849 static void idle_worker_timeout(unsigned long __pool)
1850 {
1851 	struct worker_pool *pool = (void *)__pool;
1852 
1853 	spin_lock_irq(&pool->lock);
1854 
1855 	if (too_many_workers(pool)) {
1856 		struct worker *worker;
1857 		unsigned long expires;
1858 
1859 		/* idle_list is kept in LIFO order, check the last one */
1860 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1861 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1862 
1863 		if (time_before(jiffies, expires))
1864 			mod_timer(&pool->idle_timer, expires);
1865 		else {
1866 			/* it's been idle for too long, wake up manager */
1867 			pool->flags |= POOL_MANAGE_WORKERS;
1868 			wake_up_worker(pool);
1869 		}
1870 	}
1871 
1872 	spin_unlock_irq(&pool->lock);
1873 }
1874 
1875 static void send_mayday(struct work_struct *work)
1876 {
1877 	struct pool_workqueue *pwq = get_work_pwq(work);
1878 	struct workqueue_struct *wq = pwq->wq;
1879 
1880 	lockdep_assert_held(&wq_mayday_lock);
1881 
1882 	if (!wq->rescuer)
1883 		return;
1884 
1885 	/* mayday mayday mayday */
1886 	if (list_empty(&pwq->mayday_node)) {
1887 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1888 		wake_up_process(wq->rescuer->task);
1889 	}
1890 }
1891 
1892 static void pool_mayday_timeout(unsigned long __pool)
1893 {
1894 	struct worker_pool *pool = (void *)__pool;
1895 	struct work_struct *work;
1896 
1897 	spin_lock_irq(&wq_mayday_lock);		/* for wq->maydays */
1898 	spin_lock(&pool->lock);
1899 
1900 	if (need_to_create_worker(pool)) {
1901 		/*
1902 		 * We've been trying to create a new worker but
1903 		 * haven't been successful.  We might be hitting an
1904 		 * allocation deadlock.  Send distress signals to
1905 		 * rescuers.
1906 		 */
1907 		list_for_each_entry(work, &pool->worklist, entry)
1908 			send_mayday(work);
1909 	}
1910 
1911 	spin_unlock(&pool->lock);
1912 	spin_unlock_irq(&wq_mayday_lock);
1913 
1914 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1915 }
1916 
1917 /**
1918  * maybe_create_worker - create a new worker if necessary
1919  * @pool: pool to create a new worker for
1920  *
1921  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1922  * have at least one idle worker on return from this function.  If
1923  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1924  * sent to all rescuers with works scheduled on @pool to resolve
1925  * possible allocation deadlock.
1926  *
1927  * On return, need_to_create_worker() is guaranteed to be %false and
1928  * may_start_working() %true.
1929  *
1930  * LOCKING:
1931  * spin_lock_irq(pool->lock) which may be released and regrabbed
1932  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1933  * manager.
1934  *
1935  * RETURNS:
1936  * %false if no action was taken and pool->lock stayed locked, %true
1937  * otherwise.
1938  */
1939 static bool maybe_create_worker(struct worker_pool *pool)
1940 __releases(&pool->lock)
1941 __acquires(&pool->lock)
1942 {
1943 	if (!need_to_create_worker(pool))
1944 		return false;
1945 restart:
1946 	spin_unlock_irq(&pool->lock);
1947 
1948 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1949 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1950 
1951 	while (true) {
1952 		struct worker *worker;
1953 
1954 		worker = create_worker(pool);
1955 		if (worker) {
1956 			del_timer_sync(&pool->mayday_timer);
1957 			spin_lock_irq(&pool->lock);
1958 			start_worker(worker);
1959 			if (WARN_ON_ONCE(need_to_create_worker(pool)))
1960 				goto restart;
1961 			return true;
1962 		}
1963 
1964 		if (!need_to_create_worker(pool))
1965 			break;
1966 
1967 		__set_current_state(TASK_INTERRUPTIBLE);
1968 		schedule_timeout(CREATE_COOLDOWN);
1969 
1970 		if (!need_to_create_worker(pool))
1971 			break;
1972 	}
1973 
1974 	del_timer_sync(&pool->mayday_timer);
1975 	spin_lock_irq(&pool->lock);
1976 	if (need_to_create_worker(pool))
1977 		goto restart;
1978 	return true;
1979 }
1980 
1981 /**
1982  * maybe_destroy_worker - destroy workers which have been idle for a while
1983  * @pool: pool to destroy workers for
1984  *
1985  * Destroy @pool workers which have been idle for longer than
1986  * IDLE_WORKER_TIMEOUT.
1987  *
1988  * LOCKING:
1989  * spin_lock_irq(pool->lock) which may be released and regrabbed
1990  * multiple times.  Called only from manager.
1991  *
1992  * RETURNS:
1993  * %false if no action was taken and pool->lock stayed locked, %true
1994  * otherwise.
1995  */
1996 static bool maybe_destroy_workers(struct worker_pool *pool)
1997 {
1998 	bool ret = false;
1999 
2000 	while (too_many_workers(pool)) {
2001 		struct worker *worker;
2002 		unsigned long expires;
2003 
2004 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2005 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2006 
2007 		if (time_before(jiffies, expires)) {
2008 			mod_timer(&pool->idle_timer, expires);
2009 			break;
2010 		}
2011 
2012 		destroy_worker(worker);
2013 		ret = true;
2014 	}
2015 
2016 	return ret;
2017 }
2018 
2019 /**
2020  * manage_workers - manage worker pool
2021  * @worker: self
2022  *
2023  * Assume the manager role and manage the worker pool @worker belongs
2024  * to.  At any given time, there can be only zero or one manager per
2025  * pool.  The exclusion is handled automatically by this function.
2026  *
2027  * The caller can safely start processing works on false return.  On
2028  * true return, it's guaranteed that need_to_create_worker() is false
2029  * and may_start_working() is true.
2030  *
2031  * CONTEXT:
2032  * spin_lock_irq(pool->lock) which may be released and regrabbed
2033  * multiple times.  Does GFP_KERNEL allocations.
2034  *
2035  * RETURNS:
2036  * spin_lock_irq(pool->lock) which may be released and regrabbed
2037  * multiple times.  Does GFP_KERNEL allocations.
2038  */
2039 static bool manage_workers(struct worker *worker)
2040 {
2041 	struct worker_pool *pool = worker->pool;
2042 	bool ret = false;
2043 
2044 	/*
2045 	 * Managership is governed by two mutexes - manager_arb and
2046 	 * manager_mutex.  manager_arb handles arbitration of manager role.
2047 	 * Anyone who successfully grabs manager_arb wins the arbitration
2048 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
2049 	 * failure while holding pool->lock reliably indicates that someone
2050 	 * else is managing the pool and the worker which failed trylock
2051 	 * can proceed to executing work items.  This means that anyone
2052 	 * grabbing manager_arb is responsible for actually performing
2053 	 * manager duties.  If manager_arb is grabbed and released without
2054 	 * actual management, the pool may stall indefinitely.
2055 	 *
2056 	 * manager_mutex is used for exclusion of actual management
2057 	 * operations.  The holder of manager_mutex can be sure that none
2058 	 * of management operations, including creation and destruction of
2059 	 * workers, won't take place until the mutex is released.  Because
2060 	 * manager_mutex doesn't interfere with manager role arbitration,
2061 	 * it is guaranteed that the pool's management, while may be
2062 	 * delayed, won't be disturbed by someone else grabbing
2063 	 * manager_mutex.
2064 	 */
2065 	if (!mutex_trylock(&pool->manager_arb))
2066 		return ret;
2067 
2068 	/*
2069 	 * With manager arbitration won, manager_mutex would be free in
2070 	 * most cases.  trylock first without dropping @pool->lock.
2071 	 */
2072 	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2073 		spin_unlock_irq(&pool->lock);
2074 		mutex_lock(&pool->manager_mutex);
2075 		spin_lock_irq(&pool->lock);
2076 		ret = true;
2077 	}
2078 
2079 	pool->flags &= ~POOL_MANAGE_WORKERS;
2080 
2081 	/*
2082 	 * Destroy and then create so that may_start_working() is true
2083 	 * on return.
2084 	 */
2085 	ret |= maybe_destroy_workers(pool);
2086 	ret |= maybe_create_worker(pool);
2087 
2088 	mutex_unlock(&pool->manager_mutex);
2089 	mutex_unlock(&pool->manager_arb);
2090 	return ret;
2091 }
2092 
2093 /**
2094  * process_one_work - process single work
2095  * @worker: self
2096  * @work: work to process
2097  *
2098  * Process @work.  This function contains all the logics necessary to
2099  * process a single work including synchronization against and
2100  * interaction with other workers on the same cpu, queueing and
2101  * flushing.  As long as context requirement is met, any worker can
2102  * call this function to process a work.
2103  *
2104  * CONTEXT:
2105  * spin_lock_irq(pool->lock) which is released and regrabbed.
2106  */
2107 static void process_one_work(struct worker *worker, struct work_struct *work)
2108 __releases(&pool->lock)
2109 __acquires(&pool->lock)
2110 {
2111 	struct pool_workqueue *pwq = get_work_pwq(work);
2112 	struct worker_pool *pool = worker->pool;
2113 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2114 	int work_color;
2115 	struct worker *collision;
2116 #ifdef CONFIG_LOCKDEP
2117 	/*
2118 	 * It is permissible to free the struct work_struct from
2119 	 * inside the function that is called from it, this we need to
2120 	 * take into account for lockdep too.  To avoid bogus "held
2121 	 * lock freed" warnings as well as problems when looking into
2122 	 * work->lockdep_map, make a copy and use that here.
2123 	 */
2124 	struct lockdep_map lockdep_map;
2125 
2126 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2127 #endif
2128 	/*
2129 	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2130 	 * necessary to avoid spurious warnings from rescuers servicing the
2131 	 * unbound or a disassociated pool.
2132 	 */
2133 	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2134 		     !(pool->flags & POOL_DISASSOCIATED) &&
2135 		     raw_smp_processor_id() != pool->cpu);
2136 
2137 	/*
2138 	 * A single work shouldn't be executed concurrently by
2139 	 * multiple workers on a single cpu.  Check whether anyone is
2140 	 * already processing the work.  If so, defer the work to the
2141 	 * currently executing one.
2142 	 */
2143 	collision = find_worker_executing_work(pool, work);
2144 	if (unlikely(collision)) {
2145 		move_linked_works(work, &collision->scheduled, NULL);
2146 		return;
2147 	}
2148 
2149 	/* claim and dequeue */
2150 	debug_work_deactivate(work);
2151 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2152 	worker->current_work = work;
2153 	worker->current_func = work->func;
2154 	worker->current_pwq = pwq;
2155 	work_color = get_work_color(work);
2156 
2157 	list_del_init(&work->entry);
2158 
2159 	/*
2160 	 * CPU intensive works don't participate in concurrency
2161 	 * management.  They're the scheduler's responsibility.
2162 	 */
2163 	if (unlikely(cpu_intensive))
2164 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2165 
2166 	/*
2167 	 * Unbound pool isn't concurrency managed and work items should be
2168 	 * executed ASAP.  Wake up another worker if necessary.
2169 	 */
2170 	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2171 		wake_up_worker(pool);
2172 
2173 	/*
2174 	 * Record the last pool and clear PENDING which should be the last
2175 	 * update to @work.  Also, do this inside @pool->lock so that
2176 	 * PENDING and queued state changes happen together while IRQ is
2177 	 * disabled.
2178 	 */
2179 	set_work_pool_and_clear_pending(work, pool->id);
2180 
2181 	spin_unlock_irq(&pool->lock);
2182 
2183 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2184 	lock_map_acquire(&lockdep_map);
2185 	trace_workqueue_execute_start(work);
2186 	worker->current_func(work);
2187 	/*
2188 	 * While we must be careful to not use "work" after this, the trace
2189 	 * point will only record its address.
2190 	 */
2191 	trace_workqueue_execute_end(work);
2192 	lock_map_release(&lockdep_map);
2193 	lock_map_release(&pwq->wq->lockdep_map);
2194 
2195 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2196 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2197 		       "     last function: %pf\n",
2198 		       current->comm, preempt_count(), task_pid_nr(current),
2199 		       worker->current_func);
2200 		debug_show_held_locks(current);
2201 		dump_stack();
2202 	}
2203 
2204 	/*
2205 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2206 	 * kernels, where a requeueing work item waiting for something to
2207 	 * happen could deadlock with stop_machine as such work item could
2208 	 * indefinitely requeue itself while all other CPUs are trapped in
2209 	 * stop_machine.
2210 	 */
2211 	cond_resched();
2212 
2213 	spin_lock_irq(&pool->lock);
2214 
2215 	/* clear cpu intensive status */
2216 	if (unlikely(cpu_intensive))
2217 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2218 
2219 	/* we're done with it, release */
2220 	hash_del(&worker->hentry);
2221 	worker->current_work = NULL;
2222 	worker->current_func = NULL;
2223 	worker->current_pwq = NULL;
2224 	worker->desc_valid = false;
2225 	pwq_dec_nr_in_flight(pwq, work_color);
2226 }
2227 
2228 /**
2229  * process_scheduled_works - process scheduled works
2230  * @worker: self
2231  *
2232  * Process all scheduled works.  Please note that the scheduled list
2233  * may change while processing a work, so this function repeatedly
2234  * fetches a work from the top and executes it.
2235  *
2236  * CONTEXT:
2237  * spin_lock_irq(pool->lock) which may be released and regrabbed
2238  * multiple times.
2239  */
2240 static void process_scheduled_works(struct worker *worker)
2241 {
2242 	while (!list_empty(&worker->scheduled)) {
2243 		struct work_struct *work = list_first_entry(&worker->scheduled,
2244 						struct work_struct, entry);
2245 		process_one_work(worker, work);
2246 	}
2247 }
2248 
2249 /**
2250  * worker_thread - the worker thread function
2251  * @__worker: self
2252  *
2253  * The worker thread function.  All workers belong to a worker_pool -
2254  * either a per-cpu one or dynamic unbound one.  These workers process all
2255  * work items regardless of their specific target workqueue.  The only
2256  * exception is work items which belong to workqueues with a rescuer which
2257  * will be explained in rescuer_thread().
2258  */
2259 static int worker_thread(void *__worker)
2260 {
2261 	struct worker *worker = __worker;
2262 	struct worker_pool *pool = worker->pool;
2263 
2264 	/* tell the scheduler that this is a workqueue worker */
2265 	worker->task->flags |= PF_WQ_WORKER;
2266 woke_up:
2267 	spin_lock_irq(&pool->lock);
2268 
2269 	/* am I supposed to die? */
2270 	if (unlikely(worker->flags & WORKER_DIE)) {
2271 		spin_unlock_irq(&pool->lock);
2272 		WARN_ON_ONCE(!list_empty(&worker->entry));
2273 		worker->task->flags &= ~PF_WQ_WORKER;
2274 		return 0;
2275 	}
2276 
2277 	worker_leave_idle(worker);
2278 recheck:
2279 	/* no more worker necessary? */
2280 	if (!need_more_worker(pool))
2281 		goto sleep;
2282 
2283 	/* do we need to manage? */
2284 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2285 		goto recheck;
2286 
2287 	/*
2288 	 * ->scheduled list can only be filled while a worker is
2289 	 * preparing to process a work or actually processing it.
2290 	 * Make sure nobody diddled with it while I was sleeping.
2291 	 */
2292 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2293 
2294 	/*
2295 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2296 	 * worker or that someone else has already assumed the manager
2297 	 * role.  This is where @worker starts participating in concurrency
2298 	 * management if applicable and concurrency management is restored
2299 	 * after being rebound.  See rebind_workers() for details.
2300 	 */
2301 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2302 
2303 	do {
2304 		struct work_struct *work =
2305 			list_first_entry(&pool->worklist,
2306 					 struct work_struct, entry);
2307 
2308 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2309 			/* optimization path, not strictly necessary */
2310 			process_one_work(worker, work);
2311 			if (unlikely(!list_empty(&worker->scheduled)))
2312 				process_scheduled_works(worker);
2313 		} else {
2314 			move_linked_works(work, &worker->scheduled, NULL);
2315 			process_scheduled_works(worker);
2316 		}
2317 	} while (keep_working(pool));
2318 
2319 	worker_set_flags(worker, WORKER_PREP, false);
2320 sleep:
2321 	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2322 		goto recheck;
2323 
2324 	/*
2325 	 * pool->lock is held and there's no work to process and no need to
2326 	 * manage, sleep.  Workers are woken up only while holding
2327 	 * pool->lock or from local cpu, so setting the current state
2328 	 * before releasing pool->lock is enough to prevent losing any
2329 	 * event.
2330 	 */
2331 	worker_enter_idle(worker);
2332 	__set_current_state(TASK_INTERRUPTIBLE);
2333 	spin_unlock_irq(&pool->lock);
2334 	schedule();
2335 	goto woke_up;
2336 }
2337 
2338 /**
2339  * rescuer_thread - the rescuer thread function
2340  * @__rescuer: self
2341  *
2342  * Workqueue rescuer thread function.  There's one rescuer for each
2343  * workqueue which has WQ_MEM_RECLAIM set.
2344  *
2345  * Regular work processing on a pool may block trying to create a new
2346  * worker which uses GFP_KERNEL allocation which has slight chance of
2347  * developing into deadlock if some works currently on the same queue
2348  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2349  * the problem rescuer solves.
2350  *
2351  * When such condition is possible, the pool summons rescuers of all
2352  * workqueues which have works queued on the pool and let them process
2353  * those works so that forward progress can be guaranteed.
2354  *
2355  * This should happen rarely.
2356  */
2357 static int rescuer_thread(void *__rescuer)
2358 {
2359 	struct worker *rescuer = __rescuer;
2360 	struct workqueue_struct *wq = rescuer->rescue_wq;
2361 	struct list_head *scheduled = &rescuer->scheduled;
2362 
2363 	set_user_nice(current, RESCUER_NICE_LEVEL);
2364 
2365 	/*
2366 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2367 	 * doesn't participate in concurrency management.
2368 	 */
2369 	rescuer->task->flags |= PF_WQ_WORKER;
2370 repeat:
2371 	set_current_state(TASK_INTERRUPTIBLE);
2372 
2373 	if (kthread_should_stop()) {
2374 		__set_current_state(TASK_RUNNING);
2375 		rescuer->task->flags &= ~PF_WQ_WORKER;
2376 		return 0;
2377 	}
2378 
2379 	/* see whether any pwq is asking for help */
2380 	spin_lock_irq(&wq_mayday_lock);
2381 
2382 	while (!list_empty(&wq->maydays)) {
2383 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2384 					struct pool_workqueue, mayday_node);
2385 		struct worker_pool *pool = pwq->pool;
2386 		struct work_struct *work, *n;
2387 
2388 		__set_current_state(TASK_RUNNING);
2389 		list_del_init(&pwq->mayday_node);
2390 
2391 		spin_unlock_irq(&wq_mayday_lock);
2392 
2393 		/* migrate to the target cpu if possible */
2394 		worker_maybe_bind_and_lock(pool);
2395 		rescuer->pool = pool;
2396 
2397 		/*
2398 		 * Slurp in all works issued via this workqueue and
2399 		 * process'em.
2400 		 */
2401 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2402 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2403 			if (get_work_pwq(work) == pwq)
2404 				move_linked_works(work, scheduled, &n);
2405 
2406 		process_scheduled_works(rescuer);
2407 
2408 		/*
2409 		 * Leave this pool.  If keep_working() is %true, notify a
2410 		 * regular worker; otherwise, we end up with 0 concurrency
2411 		 * and stalling the execution.
2412 		 */
2413 		if (keep_working(pool))
2414 			wake_up_worker(pool);
2415 
2416 		rescuer->pool = NULL;
2417 		spin_unlock(&pool->lock);
2418 		spin_lock(&wq_mayday_lock);
2419 	}
2420 
2421 	spin_unlock_irq(&wq_mayday_lock);
2422 
2423 	/* rescuers should never participate in concurrency management */
2424 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2425 	schedule();
2426 	goto repeat;
2427 }
2428 
2429 struct wq_barrier {
2430 	struct work_struct	work;
2431 	struct completion	done;
2432 };
2433 
2434 static void wq_barrier_func(struct work_struct *work)
2435 {
2436 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2437 	complete(&barr->done);
2438 }
2439 
2440 /**
2441  * insert_wq_barrier - insert a barrier work
2442  * @pwq: pwq to insert barrier into
2443  * @barr: wq_barrier to insert
2444  * @target: target work to attach @barr to
2445  * @worker: worker currently executing @target, NULL if @target is not executing
2446  *
2447  * @barr is linked to @target such that @barr is completed only after
2448  * @target finishes execution.  Please note that the ordering
2449  * guarantee is observed only with respect to @target and on the local
2450  * cpu.
2451  *
2452  * Currently, a queued barrier can't be canceled.  This is because
2453  * try_to_grab_pending() can't determine whether the work to be
2454  * grabbed is at the head of the queue and thus can't clear LINKED
2455  * flag of the previous work while there must be a valid next work
2456  * after a work with LINKED flag set.
2457  *
2458  * Note that when @worker is non-NULL, @target may be modified
2459  * underneath us, so we can't reliably determine pwq from @target.
2460  *
2461  * CONTEXT:
2462  * spin_lock_irq(pool->lock).
2463  */
2464 static void insert_wq_barrier(struct pool_workqueue *pwq,
2465 			      struct wq_barrier *barr,
2466 			      struct work_struct *target, struct worker *worker)
2467 {
2468 	struct list_head *head;
2469 	unsigned int linked = 0;
2470 
2471 	/*
2472 	 * debugobject calls are safe here even with pool->lock locked
2473 	 * as we know for sure that this will not trigger any of the
2474 	 * checks and call back into the fixup functions where we
2475 	 * might deadlock.
2476 	 */
2477 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2478 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2479 	init_completion(&barr->done);
2480 
2481 	/*
2482 	 * If @target is currently being executed, schedule the
2483 	 * barrier to the worker; otherwise, put it after @target.
2484 	 */
2485 	if (worker)
2486 		head = worker->scheduled.next;
2487 	else {
2488 		unsigned long *bits = work_data_bits(target);
2489 
2490 		head = target->entry.next;
2491 		/* there can already be other linked works, inherit and set */
2492 		linked = *bits & WORK_STRUCT_LINKED;
2493 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2494 	}
2495 
2496 	debug_work_activate(&barr->work);
2497 	insert_work(pwq, &barr->work, head,
2498 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2499 }
2500 
2501 /**
2502  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2503  * @wq: workqueue being flushed
2504  * @flush_color: new flush color, < 0 for no-op
2505  * @work_color: new work color, < 0 for no-op
2506  *
2507  * Prepare pwqs for workqueue flushing.
2508  *
2509  * If @flush_color is non-negative, flush_color on all pwqs should be
2510  * -1.  If no pwq has in-flight commands at the specified color, all
2511  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2512  * has in flight commands, its pwq->flush_color is set to
2513  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2514  * wakeup logic is armed and %true is returned.
2515  *
2516  * The caller should have initialized @wq->first_flusher prior to
2517  * calling this function with non-negative @flush_color.  If
2518  * @flush_color is negative, no flush color update is done and %false
2519  * is returned.
2520  *
2521  * If @work_color is non-negative, all pwqs should have the same
2522  * work_color which is previous to @work_color and all will be
2523  * advanced to @work_color.
2524  *
2525  * CONTEXT:
2526  * mutex_lock(wq->mutex).
2527  *
2528  * RETURNS:
2529  * %true if @flush_color >= 0 and there's something to flush.  %false
2530  * otherwise.
2531  */
2532 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2533 				      int flush_color, int work_color)
2534 {
2535 	bool wait = false;
2536 	struct pool_workqueue *pwq;
2537 
2538 	if (flush_color >= 0) {
2539 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2540 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2541 	}
2542 
2543 	for_each_pwq(pwq, wq) {
2544 		struct worker_pool *pool = pwq->pool;
2545 
2546 		spin_lock_irq(&pool->lock);
2547 
2548 		if (flush_color >= 0) {
2549 			WARN_ON_ONCE(pwq->flush_color != -1);
2550 
2551 			if (pwq->nr_in_flight[flush_color]) {
2552 				pwq->flush_color = flush_color;
2553 				atomic_inc(&wq->nr_pwqs_to_flush);
2554 				wait = true;
2555 			}
2556 		}
2557 
2558 		if (work_color >= 0) {
2559 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2560 			pwq->work_color = work_color;
2561 		}
2562 
2563 		spin_unlock_irq(&pool->lock);
2564 	}
2565 
2566 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2567 		complete(&wq->first_flusher->done);
2568 
2569 	return wait;
2570 }
2571 
2572 /**
2573  * flush_workqueue - ensure that any scheduled work has run to completion.
2574  * @wq: workqueue to flush
2575  *
2576  * This function sleeps until all work items which were queued on entry
2577  * have finished execution, but it is not livelocked by new incoming ones.
2578  */
2579 void flush_workqueue(struct workqueue_struct *wq)
2580 {
2581 	struct wq_flusher this_flusher = {
2582 		.list = LIST_HEAD_INIT(this_flusher.list),
2583 		.flush_color = -1,
2584 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2585 	};
2586 	int next_color;
2587 
2588 	lock_map_acquire(&wq->lockdep_map);
2589 	lock_map_release(&wq->lockdep_map);
2590 
2591 	mutex_lock(&wq->mutex);
2592 
2593 	/*
2594 	 * Start-to-wait phase
2595 	 */
2596 	next_color = work_next_color(wq->work_color);
2597 
2598 	if (next_color != wq->flush_color) {
2599 		/*
2600 		 * Color space is not full.  The current work_color
2601 		 * becomes our flush_color and work_color is advanced
2602 		 * by one.
2603 		 */
2604 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2605 		this_flusher.flush_color = wq->work_color;
2606 		wq->work_color = next_color;
2607 
2608 		if (!wq->first_flusher) {
2609 			/* no flush in progress, become the first flusher */
2610 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2611 
2612 			wq->first_flusher = &this_flusher;
2613 
2614 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2615 						       wq->work_color)) {
2616 				/* nothing to flush, done */
2617 				wq->flush_color = next_color;
2618 				wq->first_flusher = NULL;
2619 				goto out_unlock;
2620 			}
2621 		} else {
2622 			/* wait in queue */
2623 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2624 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2625 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2626 		}
2627 	} else {
2628 		/*
2629 		 * Oops, color space is full, wait on overflow queue.
2630 		 * The next flush completion will assign us
2631 		 * flush_color and transfer to flusher_queue.
2632 		 */
2633 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2634 	}
2635 
2636 	mutex_unlock(&wq->mutex);
2637 
2638 	wait_for_completion(&this_flusher.done);
2639 
2640 	/*
2641 	 * Wake-up-and-cascade phase
2642 	 *
2643 	 * First flushers are responsible for cascading flushes and
2644 	 * handling overflow.  Non-first flushers can simply return.
2645 	 */
2646 	if (wq->first_flusher != &this_flusher)
2647 		return;
2648 
2649 	mutex_lock(&wq->mutex);
2650 
2651 	/* we might have raced, check again with mutex held */
2652 	if (wq->first_flusher != &this_flusher)
2653 		goto out_unlock;
2654 
2655 	wq->first_flusher = NULL;
2656 
2657 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2658 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2659 
2660 	while (true) {
2661 		struct wq_flusher *next, *tmp;
2662 
2663 		/* complete all the flushers sharing the current flush color */
2664 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2665 			if (next->flush_color != wq->flush_color)
2666 				break;
2667 			list_del_init(&next->list);
2668 			complete(&next->done);
2669 		}
2670 
2671 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2672 			     wq->flush_color != work_next_color(wq->work_color));
2673 
2674 		/* this flush_color is finished, advance by one */
2675 		wq->flush_color = work_next_color(wq->flush_color);
2676 
2677 		/* one color has been freed, handle overflow queue */
2678 		if (!list_empty(&wq->flusher_overflow)) {
2679 			/*
2680 			 * Assign the same color to all overflowed
2681 			 * flushers, advance work_color and append to
2682 			 * flusher_queue.  This is the start-to-wait
2683 			 * phase for these overflowed flushers.
2684 			 */
2685 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2686 				tmp->flush_color = wq->work_color;
2687 
2688 			wq->work_color = work_next_color(wq->work_color);
2689 
2690 			list_splice_tail_init(&wq->flusher_overflow,
2691 					      &wq->flusher_queue);
2692 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2693 		}
2694 
2695 		if (list_empty(&wq->flusher_queue)) {
2696 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2697 			break;
2698 		}
2699 
2700 		/*
2701 		 * Need to flush more colors.  Make the next flusher
2702 		 * the new first flusher and arm pwqs.
2703 		 */
2704 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2705 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2706 
2707 		list_del_init(&next->list);
2708 		wq->first_flusher = next;
2709 
2710 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2711 			break;
2712 
2713 		/*
2714 		 * Meh... this color is already done, clear first
2715 		 * flusher and repeat cascading.
2716 		 */
2717 		wq->first_flusher = NULL;
2718 	}
2719 
2720 out_unlock:
2721 	mutex_unlock(&wq->mutex);
2722 }
2723 EXPORT_SYMBOL_GPL(flush_workqueue);
2724 
2725 /**
2726  * drain_workqueue - drain a workqueue
2727  * @wq: workqueue to drain
2728  *
2729  * Wait until the workqueue becomes empty.  While draining is in progress,
2730  * only chain queueing is allowed.  IOW, only currently pending or running
2731  * work items on @wq can queue further work items on it.  @wq is flushed
2732  * repeatedly until it becomes empty.  The number of flushing is detemined
2733  * by the depth of chaining and should be relatively short.  Whine if it
2734  * takes too long.
2735  */
2736 void drain_workqueue(struct workqueue_struct *wq)
2737 {
2738 	unsigned int flush_cnt = 0;
2739 	struct pool_workqueue *pwq;
2740 
2741 	/*
2742 	 * __queue_work() needs to test whether there are drainers, is much
2743 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2744 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2745 	 */
2746 	mutex_lock(&wq->mutex);
2747 	if (!wq->nr_drainers++)
2748 		wq->flags |= __WQ_DRAINING;
2749 	mutex_unlock(&wq->mutex);
2750 reflush:
2751 	flush_workqueue(wq);
2752 
2753 	mutex_lock(&wq->mutex);
2754 
2755 	for_each_pwq(pwq, wq) {
2756 		bool drained;
2757 
2758 		spin_lock_irq(&pwq->pool->lock);
2759 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2760 		spin_unlock_irq(&pwq->pool->lock);
2761 
2762 		if (drained)
2763 			continue;
2764 
2765 		if (++flush_cnt == 10 ||
2766 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2767 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2768 				wq->name, flush_cnt);
2769 
2770 		mutex_unlock(&wq->mutex);
2771 		goto reflush;
2772 	}
2773 
2774 	if (!--wq->nr_drainers)
2775 		wq->flags &= ~__WQ_DRAINING;
2776 	mutex_unlock(&wq->mutex);
2777 }
2778 EXPORT_SYMBOL_GPL(drain_workqueue);
2779 
2780 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2781 {
2782 	struct worker *worker = NULL;
2783 	struct worker_pool *pool;
2784 	struct pool_workqueue *pwq;
2785 
2786 	might_sleep();
2787 
2788 	local_irq_disable();
2789 	pool = get_work_pool(work);
2790 	if (!pool) {
2791 		local_irq_enable();
2792 		return false;
2793 	}
2794 
2795 	spin_lock(&pool->lock);
2796 	/* see the comment in try_to_grab_pending() with the same code */
2797 	pwq = get_work_pwq(work);
2798 	if (pwq) {
2799 		if (unlikely(pwq->pool != pool))
2800 			goto already_gone;
2801 	} else {
2802 		worker = find_worker_executing_work(pool, work);
2803 		if (!worker)
2804 			goto already_gone;
2805 		pwq = worker->current_pwq;
2806 	}
2807 
2808 	insert_wq_barrier(pwq, barr, work, worker);
2809 	spin_unlock_irq(&pool->lock);
2810 
2811 	/*
2812 	 * If @max_active is 1 or rescuer is in use, flushing another work
2813 	 * item on the same workqueue may lead to deadlock.  Make sure the
2814 	 * flusher is not running on the same workqueue by verifying write
2815 	 * access.
2816 	 */
2817 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2818 		lock_map_acquire(&pwq->wq->lockdep_map);
2819 	else
2820 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2821 	lock_map_release(&pwq->wq->lockdep_map);
2822 
2823 	return true;
2824 already_gone:
2825 	spin_unlock_irq(&pool->lock);
2826 	return false;
2827 }
2828 
2829 static bool __flush_work(struct work_struct *work)
2830 {
2831 	struct wq_barrier barr;
2832 
2833 	if (start_flush_work(work, &barr)) {
2834 		wait_for_completion(&barr.done);
2835 		destroy_work_on_stack(&barr.work);
2836 		return true;
2837 	} else {
2838 		return false;
2839 	}
2840 }
2841 
2842 /**
2843  * flush_work - wait for a work to finish executing the last queueing instance
2844  * @work: the work to flush
2845  *
2846  * Wait until @work has finished execution.  @work is guaranteed to be idle
2847  * on return if it hasn't been requeued since flush started.
2848  *
2849  * RETURNS:
2850  * %true if flush_work() waited for the work to finish execution,
2851  * %false if it was already idle.
2852  */
2853 bool flush_work(struct work_struct *work)
2854 {
2855 	lock_map_acquire(&work->lockdep_map);
2856 	lock_map_release(&work->lockdep_map);
2857 
2858 	return __flush_work(work);
2859 }
2860 EXPORT_SYMBOL_GPL(flush_work);
2861 
2862 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2863 {
2864 	unsigned long flags;
2865 	int ret;
2866 
2867 	do {
2868 		ret = try_to_grab_pending(work, is_dwork, &flags);
2869 		/*
2870 		 * If someone else is canceling, wait for the same event it
2871 		 * would be waiting for before retrying.
2872 		 */
2873 		if (unlikely(ret == -ENOENT))
2874 			flush_work(work);
2875 	} while (unlikely(ret < 0));
2876 
2877 	/* tell other tasks trying to grab @work to back off */
2878 	mark_work_canceling(work);
2879 	local_irq_restore(flags);
2880 
2881 	flush_work(work);
2882 	clear_work_data(work);
2883 	return ret;
2884 }
2885 
2886 /**
2887  * cancel_work_sync - cancel a work and wait for it to finish
2888  * @work: the work to cancel
2889  *
2890  * Cancel @work and wait for its execution to finish.  This function
2891  * can be used even if the work re-queues itself or migrates to
2892  * another workqueue.  On return from this function, @work is
2893  * guaranteed to be not pending or executing on any CPU.
2894  *
2895  * cancel_work_sync(&delayed_work->work) must not be used for
2896  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2897  *
2898  * The caller must ensure that the workqueue on which @work was last
2899  * queued can't be destroyed before this function returns.
2900  *
2901  * RETURNS:
2902  * %true if @work was pending, %false otherwise.
2903  */
2904 bool cancel_work_sync(struct work_struct *work)
2905 {
2906 	return __cancel_work_timer(work, false);
2907 }
2908 EXPORT_SYMBOL_GPL(cancel_work_sync);
2909 
2910 /**
2911  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2912  * @dwork: the delayed work to flush
2913  *
2914  * Delayed timer is cancelled and the pending work is queued for
2915  * immediate execution.  Like flush_work(), this function only
2916  * considers the last queueing instance of @dwork.
2917  *
2918  * RETURNS:
2919  * %true if flush_work() waited for the work to finish execution,
2920  * %false if it was already idle.
2921  */
2922 bool flush_delayed_work(struct delayed_work *dwork)
2923 {
2924 	local_irq_disable();
2925 	if (del_timer_sync(&dwork->timer))
2926 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2927 	local_irq_enable();
2928 	return flush_work(&dwork->work);
2929 }
2930 EXPORT_SYMBOL(flush_delayed_work);
2931 
2932 /**
2933  * cancel_delayed_work - cancel a delayed work
2934  * @dwork: delayed_work to cancel
2935  *
2936  * Kill off a pending delayed_work.  Returns %true if @dwork was pending
2937  * and canceled; %false if wasn't pending.  Note that the work callback
2938  * function may still be running on return, unless it returns %true and the
2939  * work doesn't re-arm itself.  Explicitly flush or use
2940  * cancel_delayed_work_sync() to wait on it.
2941  *
2942  * This function is safe to call from any context including IRQ handler.
2943  */
2944 bool cancel_delayed_work(struct delayed_work *dwork)
2945 {
2946 	unsigned long flags;
2947 	int ret;
2948 
2949 	do {
2950 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2951 	} while (unlikely(ret == -EAGAIN));
2952 
2953 	if (unlikely(ret < 0))
2954 		return false;
2955 
2956 	set_work_pool_and_clear_pending(&dwork->work,
2957 					get_work_pool_id(&dwork->work));
2958 	local_irq_restore(flags);
2959 	return ret;
2960 }
2961 EXPORT_SYMBOL(cancel_delayed_work);
2962 
2963 /**
2964  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2965  * @dwork: the delayed work cancel
2966  *
2967  * This is cancel_work_sync() for delayed works.
2968  *
2969  * RETURNS:
2970  * %true if @dwork was pending, %false otherwise.
2971  */
2972 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2973 {
2974 	return __cancel_work_timer(&dwork->work, true);
2975 }
2976 EXPORT_SYMBOL(cancel_delayed_work_sync);
2977 
2978 /**
2979  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2980  * @func: the function to call
2981  *
2982  * schedule_on_each_cpu() executes @func on each online CPU using the
2983  * system workqueue and blocks until all CPUs have completed.
2984  * schedule_on_each_cpu() is very slow.
2985  *
2986  * RETURNS:
2987  * 0 on success, -errno on failure.
2988  */
2989 int schedule_on_each_cpu(work_func_t func)
2990 {
2991 	int cpu;
2992 	struct work_struct __percpu *works;
2993 
2994 	works = alloc_percpu(struct work_struct);
2995 	if (!works)
2996 		return -ENOMEM;
2997 
2998 	get_online_cpus();
2999 
3000 	for_each_online_cpu(cpu) {
3001 		struct work_struct *work = per_cpu_ptr(works, cpu);
3002 
3003 		INIT_WORK(work, func);
3004 		schedule_work_on(cpu, work);
3005 	}
3006 
3007 	for_each_online_cpu(cpu)
3008 		flush_work(per_cpu_ptr(works, cpu));
3009 
3010 	put_online_cpus();
3011 	free_percpu(works);
3012 	return 0;
3013 }
3014 
3015 /**
3016  * flush_scheduled_work - ensure that any scheduled work has run to completion.
3017  *
3018  * Forces execution of the kernel-global workqueue and blocks until its
3019  * completion.
3020  *
3021  * Think twice before calling this function!  It's very easy to get into
3022  * trouble if you don't take great care.  Either of the following situations
3023  * will lead to deadlock:
3024  *
3025  *	One of the work items currently on the workqueue needs to acquire
3026  *	a lock held by your code or its caller.
3027  *
3028  *	Your code is running in the context of a work routine.
3029  *
3030  * They will be detected by lockdep when they occur, but the first might not
3031  * occur very often.  It depends on what work items are on the workqueue and
3032  * what locks they need, which you have no control over.
3033  *
3034  * In most situations flushing the entire workqueue is overkill; you merely
3035  * need to know that a particular work item isn't queued and isn't running.
3036  * In such cases you should use cancel_delayed_work_sync() or
3037  * cancel_work_sync() instead.
3038  */
3039 void flush_scheduled_work(void)
3040 {
3041 	flush_workqueue(system_wq);
3042 }
3043 EXPORT_SYMBOL(flush_scheduled_work);
3044 
3045 /**
3046  * execute_in_process_context - reliably execute the routine with user context
3047  * @fn:		the function to execute
3048  * @ew:		guaranteed storage for the execute work structure (must
3049  *		be available when the work executes)
3050  *
3051  * Executes the function immediately if process context is available,
3052  * otherwise schedules the function for delayed execution.
3053  *
3054  * Returns:	0 - function was executed
3055  *		1 - function was scheduled for execution
3056  */
3057 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3058 {
3059 	if (!in_interrupt()) {
3060 		fn(&ew->work);
3061 		return 0;
3062 	}
3063 
3064 	INIT_WORK(&ew->work, fn);
3065 	schedule_work(&ew->work);
3066 
3067 	return 1;
3068 }
3069 EXPORT_SYMBOL_GPL(execute_in_process_context);
3070 
3071 #ifdef CONFIG_SYSFS
3072 /*
3073  * Workqueues with WQ_SYSFS flag set is visible to userland via
3074  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
3075  * following attributes.
3076  *
3077  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
3078  *  max_active	RW int	: maximum number of in-flight work items
3079  *
3080  * Unbound workqueues have the following extra attributes.
3081  *
3082  *  id		RO int	: the associated pool ID
3083  *  nice	RW int	: nice value of the workers
3084  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
3085  */
3086 struct wq_device {
3087 	struct workqueue_struct		*wq;
3088 	struct device			dev;
3089 };
3090 
3091 static struct workqueue_struct *dev_to_wq(struct device *dev)
3092 {
3093 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3094 
3095 	return wq_dev->wq;
3096 }
3097 
3098 static ssize_t wq_per_cpu_show(struct device *dev,
3099 			       struct device_attribute *attr, char *buf)
3100 {
3101 	struct workqueue_struct *wq = dev_to_wq(dev);
3102 
3103 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3104 }
3105 
3106 static ssize_t wq_max_active_show(struct device *dev,
3107 				  struct device_attribute *attr, char *buf)
3108 {
3109 	struct workqueue_struct *wq = dev_to_wq(dev);
3110 
3111 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3112 }
3113 
3114 static ssize_t wq_max_active_store(struct device *dev,
3115 				   struct device_attribute *attr,
3116 				   const char *buf, size_t count)
3117 {
3118 	struct workqueue_struct *wq = dev_to_wq(dev);
3119 	int val;
3120 
3121 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3122 		return -EINVAL;
3123 
3124 	workqueue_set_max_active(wq, val);
3125 	return count;
3126 }
3127 
3128 static struct device_attribute wq_sysfs_attrs[] = {
3129 	__ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3130 	__ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3131 	__ATTR_NULL,
3132 };
3133 
3134 static ssize_t wq_pool_ids_show(struct device *dev,
3135 				struct device_attribute *attr, char *buf)
3136 {
3137 	struct workqueue_struct *wq = dev_to_wq(dev);
3138 	const char *delim = "";
3139 	int node, written = 0;
3140 
3141 	rcu_read_lock_sched();
3142 	for_each_node(node) {
3143 		written += scnprintf(buf + written, PAGE_SIZE - written,
3144 				     "%s%d:%d", delim, node,
3145 				     unbound_pwq_by_node(wq, node)->pool->id);
3146 		delim = " ";
3147 	}
3148 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3149 	rcu_read_unlock_sched();
3150 
3151 	return written;
3152 }
3153 
3154 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3155 			    char *buf)
3156 {
3157 	struct workqueue_struct *wq = dev_to_wq(dev);
3158 	int written;
3159 
3160 	mutex_lock(&wq->mutex);
3161 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3162 	mutex_unlock(&wq->mutex);
3163 
3164 	return written;
3165 }
3166 
3167 /* prepare workqueue_attrs for sysfs store operations */
3168 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3169 {
3170 	struct workqueue_attrs *attrs;
3171 
3172 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
3173 	if (!attrs)
3174 		return NULL;
3175 
3176 	mutex_lock(&wq->mutex);
3177 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
3178 	mutex_unlock(&wq->mutex);
3179 	return attrs;
3180 }
3181 
3182 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3183 			     const char *buf, size_t count)
3184 {
3185 	struct workqueue_struct *wq = dev_to_wq(dev);
3186 	struct workqueue_attrs *attrs;
3187 	int ret;
3188 
3189 	attrs = wq_sysfs_prep_attrs(wq);
3190 	if (!attrs)
3191 		return -ENOMEM;
3192 
3193 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3194 	    attrs->nice >= -20 && attrs->nice <= 19)
3195 		ret = apply_workqueue_attrs(wq, attrs);
3196 	else
3197 		ret = -EINVAL;
3198 
3199 	free_workqueue_attrs(attrs);
3200 	return ret ?: count;
3201 }
3202 
3203 static ssize_t wq_cpumask_show(struct device *dev,
3204 			       struct device_attribute *attr, char *buf)
3205 {
3206 	struct workqueue_struct *wq = dev_to_wq(dev);
3207 	int written;
3208 
3209 	mutex_lock(&wq->mutex);
3210 	written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3211 	mutex_unlock(&wq->mutex);
3212 
3213 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3214 	return written;
3215 }
3216 
3217 static ssize_t wq_cpumask_store(struct device *dev,
3218 				struct device_attribute *attr,
3219 				const char *buf, size_t count)
3220 {
3221 	struct workqueue_struct *wq = dev_to_wq(dev);
3222 	struct workqueue_attrs *attrs;
3223 	int ret;
3224 
3225 	attrs = wq_sysfs_prep_attrs(wq);
3226 	if (!attrs)
3227 		return -ENOMEM;
3228 
3229 	ret = cpumask_parse(buf, attrs->cpumask);
3230 	if (!ret)
3231 		ret = apply_workqueue_attrs(wq, attrs);
3232 
3233 	free_workqueue_attrs(attrs);
3234 	return ret ?: count;
3235 }
3236 
3237 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3238 			    char *buf)
3239 {
3240 	struct workqueue_struct *wq = dev_to_wq(dev);
3241 	int written;
3242 
3243 	mutex_lock(&wq->mutex);
3244 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
3245 			    !wq->unbound_attrs->no_numa);
3246 	mutex_unlock(&wq->mutex);
3247 
3248 	return written;
3249 }
3250 
3251 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3252 			     const char *buf, size_t count)
3253 {
3254 	struct workqueue_struct *wq = dev_to_wq(dev);
3255 	struct workqueue_attrs *attrs;
3256 	int v, ret;
3257 
3258 	attrs = wq_sysfs_prep_attrs(wq);
3259 	if (!attrs)
3260 		return -ENOMEM;
3261 
3262 	ret = -EINVAL;
3263 	if (sscanf(buf, "%d", &v) == 1) {
3264 		attrs->no_numa = !v;
3265 		ret = apply_workqueue_attrs(wq, attrs);
3266 	}
3267 
3268 	free_workqueue_attrs(attrs);
3269 	return ret ?: count;
3270 }
3271 
3272 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3273 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3274 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3275 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3276 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3277 	__ATTR_NULL,
3278 };
3279 
3280 static struct bus_type wq_subsys = {
3281 	.name				= "workqueue",
3282 	.dev_attrs			= wq_sysfs_attrs,
3283 };
3284 
3285 static int __init wq_sysfs_init(void)
3286 {
3287 	return subsys_virtual_register(&wq_subsys, NULL);
3288 }
3289 core_initcall(wq_sysfs_init);
3290 
3291 static void wq_device_release(struct device *dev)
3292 {
3293 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3294 
3295 	kfree(wq_dev);
3296 }
3297 
3298 /**
3299  * workqueue_sysfs_register - make a workqueue visible in sysfs
3300  * @wq: the workqueue to register
3301  *
3302  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3303  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3304  * which is the preferred method.
3305  *
3306  * Workqueue user should use this function directly iff it wants to apply
3307  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3308  * apply_workqueue_attrs() may race against userland updating the
3309  * attributes.
3310  *
3311  * Returns 0 on success, -errno on failure.
3312  */
3313 int workqueue_sysfs_register(struct workqueue_struct *wq)
3314 {
3315 	struct wq_device *wq_dev;
3316 	int ret;
3317 
3318 	/*
3319 	 * Adjusting max_active or creating new pwqs by applyting
3320 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
3321 	 * workqueues.
3322 	 */
3323 	if (WARN_ON(wq->flags & __WQ_ORDERED))
3324 		return -EINVAL;
3325 
3326 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3327 	if (!wq_dev)
3328 		return -ENOMEM;
3329 
3330 	wq_dev->wq = wq;
3331 	wq_dev->dev.bus = &wq_subsys;
3332 	wq_dev->dev.init_name = wq->name;
3333 	wq_dev->dev.release = wq_device_release;
3334 
3335 	/*
3336 	 * unbound_attrs are created separately.  Suppress uevent until
3337 	 * everything is ready.
3338 	 */
3339 	dev_set_uevent_suppress(&wq_dev->dev, true);
3340 
3341 	ret = device_register(&wq_dev->dev);
3342 	if (ret) {
3343 		kfree(wq_dev);
3344 		wq->wq_dev = NULL;
3345 		return ret;
3346 	}
3347 
3348 	if (wq->flags & WQ_UNBOUND) {
3349 		struct device_attribute *attr;
3350 
3351 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3352 			ret = device_create_file(&wq_dev->dev, attr);
3353 			if (ret) {
3354 				device_unregister(&wq_dev->dev);
3355 				wq->wq_dev = NULL;
3356 				return ret;
3357 			}
3358 		}
3359 	}
3360 
3361 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3362 	return 0;
3363 }
3364 
3365 /**
3366  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3367  * @wq: the workqueue to unregister
3368  *
3369  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3370  */
3371 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3372 {
3373 	struct wq_device *wq_dev = wq->wq_dev;
3374 
3375 	if (!wq->wq_dev)
3376 		return;
3377 
3378 	wq->wq_dev = NULL;
3379 	device_unregister(&wq_dev->dev);
3380 }
3381 #else	/* CONFIG_SYSFS */
3382 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
3383 #endif	/* CONFIG_SYSFS */
3384 
3385 /**
3386  * free_workqueue_attrs - free a workqueue_attrs
3387  * @attrs: workqueue_attrs to free
3388  *
3389  * Undo alloc_workqueue_attrs().
3390  */
3391 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3392 {
3393 	if (attrs) {
3394 		free_cpumask_var(attrs->cpumask);
3395 		kfree(attrs);
3396 	}
3397 }
3398 
3399 /**
3400  * alloc_workqueue_attrs - allocate a workqueue_attrs
3401  * @gfp_mask: allocation mask to use
3402  *
3403  * Allocate a new workqueue_attrs, initialize with default settings and
3404  * return it.  Returns NULL on failure.
3405  */
3406 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3407 {
3408 	struct workqueue_attrs *attrs;
3409 
3410 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3411 	if (!attrs)
3412 		goto fail;
3413 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3414 		goto fail;
3415 
3416 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3417 	return attrs;
3418 fail:
3419 	free_workqueue_attrs(attrs);
3420 	return NULL;
3421 }
3422 
3423 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3424 				 const struct workqueue_attrs *from)
3425 {
3426 	to->nice = from->nice;
3427 	cpumask_copy(to->cpumask, from->cpumask);
3428 	/*
3429 	 * Unlike hash and equality test, this function doesn't ignore
3430 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3431 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3432 	 */
3433 	to->no_numa = from->no_numa;
3434 }
3435 
3436 /* hash value of the content of @attr */
3437 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3438 {
3439 	u32 hash = 0;
3440 
3441 	hash = jhash_1word(attrs->nice, hash);
3442 	hash = jhash(cpumask_bits(attrs->cpumask),
3443 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3444 	return hash;
3445 }
3446 
3447 /* content equality test */
3448 static bool wqattrs_equal(const struct workqueue_attrs *a,
3449 			  const struct workqueue_attrs *b)
3450 {
3451 	if (a->nice != b->nice)
3452 		return false;
3453 	if (!cpumask_equal(a->cpumask, b->cpumask))
3454 		return false;
3455 	return true;
3456 }
3457 
3458 /**
3459  * init_worker_pool - initialize a newly zalloc'd worker_pool
3460  * @pool: worker_pool to initialize
3461  *
3462  * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3463  * Returns 0 on success, -errno on failure.  Even on failure, all fields
3464  * inside @pool proper are initialized and put_unbound_pool() can be called
3465  * on @pool safely to release it.
3466  */
3467 static int init_worker_pool(struct worker_pool *pool)
3468 {
3469 	spin_lock_init(&pool->lock);
3470 	pool->id = -1;
3471 	pool->cpu = -1;
3472 	pool->node = NUMA_NO_NODE;
3473 	pool->flags |= POOL_DISASSOCIATED;
3474 	INIT_LIST_HEAD(&pool->worklist);
3475 	INIT_LIST_HEAD(&pool->idle_list);
3476 	hash_init(pool->busy_hash);
3477 
3478 	init_timer_deferrable(&pool->idle_timer);
3479 	pool->idle_timer.function = idle_worker_timeout;
3480 	pool->idle_timer.data = (unsigned long)pool;
3481 
3482 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3483 		    (unsigned long)pool);
3484 
3485 	mutex_init(&pool->manager_arb);
3486 	mutex_init(&pool->manager_mutex);
3487 	idr_init(&pool->worker_idr);
3488 
3489 	INIT_HLIST_NODE(&pool->hash_node);
3490 	pool->refcnt = 1;
3491 
3492 	/* shouldn't fail above this point */
3493 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3494 	if (!pool->attrs)
3495 		return -ENOMEM;
3496 	return 0;
3497 }
3498 
3499 static void rcu_free_pool(struct rcu_head *rcu)
3500 {
3501 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3502 
3503 	idr_destroy(&pool->worker_idr);
3504 	free_workqueue_attrs(pool->attrs);
3505 	kfree(pool);
3506 }
3507 
3508 /**
3509  * put_unbound_pool - put a worker_pool
3510  * @pool: worker_pool to put
3511  *
3512  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3513  * safe manner.  get_unbound_pool() calls this function on its failure path
3514  * and this function should be able to release pools which went through,
3515  * successfully or not, init_worker_pool().
3516  *
3517  * Should be called with wq_pool_mutex held.
3518  */
3519 static void put_unbound_pool(struct worker_pool *pool)
3520 {
3521 	struct worker *worker;
3522 
3523 	lockdep_assert_held(&wq_pool_mutex);
3524 
3525 	if (--pool->refcnt)
3526 		return;
3527 
3528 	/* sanity checks */
3529 	if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3530 	    WARN_ON(!list_empty(&pool->worklist)))
3531 		return;
3532 
3533 	/* release id and unhash */
3534 	if (pool->id >= 0)
3535 		idr_remove(&worker_pool_idr, pool->id);
3536 	hash_del(&pool->hash_node);
3537 
3538 	/*
3539 	 * Become the manager and destroy all workers.  Grabbing
3540 	 * manager_arb prevents @pool's workers from blocking on
3541 	 * manager_mutex.
3542 	 */
3543 	mutex_lock(&pool->manager_arb);
3544 	mutex_lock(&pool->manager_mutex);
3545 	spin_lock_irq(&pool->lock);
3546 
3547 	while ((worker = first_worker(pool)))
3548 		destroy_worker(worker);
3549 	WARN_ON(pool->nr_workers || pool->nr_idle);
3550 
3551 	spin_unlock_irq(&pool->lock);
3552 	mutex_unlock(&pool->manager_mutex);
3553 	mutex_unlock(&pool->manager_arb);
3554 
3555 	/* shut down the timers */
3556 	del_timer_sync(&pool->idle_timer);
3557 	del_timer_sync(&pool->mayday_timer);
3558 
3559 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3560 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3561 }
3562 
3563 /**
3564  * get_unbound_pool - get a worker_pool with the specified attributes
3565  * @attrs: the attributes of the worker_pool to get
3566  *
3567  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3568  * reference count and return it.  If there already is a matching
3569  * worker_pool, it will be used; otherwise, this function attempts to
3570  * create a new one.  On failure, returns NULL.
3571  *
3572  * Should be called with wq_pool_mutex held.
3573  */
3574 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3575 {
3576 	u32 hash = wqattrs_hash(attrs);
3577 	struct worker_pool *pool;
3578 	int node;
3579 
3580 	lockdep_assert_held(&wq_pool_mutex);
3581 
3582 	/* do we already have a matching pool? */
3583 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3584 		if (wqattrs_equal(pool->attrs, attrs)) {
3585 			pool->refcnt++;
3586 			goto out_unlock;
3587 		}
3588 	}
3589 
3590 	/* nope, create a new one */
3591 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3592 	if (!pool || init_worker_pool(pool) < 0)
3593 		goto fail;
3594 
3595 	if (workqueue_freezing)
3596 		pool->flags |= POOL_FREEZING;
3597 
3598 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3599 	copy_workqueue_attrs(pool->attrs, attrs);
3600 
3601 	/*
3602 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3603 	 * 'struct workqueue_attrs' comments for detail.
3604 	 */
3605 	pool->attrs->no_numa = false;
3606 
3607 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3608 	if (wq_numa_enabled) {
3609 		for_each_node(node) {
3610 			if (cpumask_subset(pool->attrs->cpumask,
3611 					   wq_numa_possible_cpumask[node])) {
3612 				pool->node = node;
3613 				break;
3614 			}
3615 		}
3616 	}
3617 
3618 	if (worker_pool_assign_id(pool) < 0)
3619 		goto fail;
3620 
3621 	/* create and start the initial worker */
3622 	if (create_and_start_worker(pool) < 0)
3623 		goto fail;
3624 
3625 	/* install */
3626 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3627 out_unlock:
3628 	return pool;
3629 fail:
3630 	if (pool)
3631 		put_unbound_pool(pool);
3632 	return NULL;
3633 }
3634 
3635 static void rcu_free_pwq(struct rcu_head *rcu)
3636 {
3637 	kmem_cache_free(pwq_cache,
3638 			container_of(rcu, struct pool_workqueue, rcu));
3639 }
3640 
3641 /*
3642  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3643  * and needs to be destroyed.
3644  */
3645 static void pwq_unbound_release_workfn(struct work_struct *work)
3646 {
3647 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3648 						  unbound_release_work);
3649 	struct workqueue_struct *wq = pwq->wq;
3650 	struct worker_pool *pool = pwq->pool;
3651 	bool is_last;
3652 
3653 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3654 		return;
3655 
3656 	/*
3657 	 * Unlink @pwq.  Synchronization against wq->mutex isn't strictly
3658 	 * necessary on release but do it anyway.  It's easier to verify
3659 	 * and consistent with the linking path.
3660 	 */
3661 	mutex_lock(&wq->mutex);
3662 	list_del_rcu(&pwq->pwqs_node);
3663 	is_last = list_empty(&wq->pwqs);
3664 	mutex_unlock(&wq->mutex);
3665 
3666 	mutex_lock(&wq_pool_mutex);
3667 	put_unbound_pool(pool);
3668 	mutex_unlock(&wq_pool_mutex);
3669 
3670 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3671 
3672 	/*
3673 	 * If we're the last pwq going away, @wq is already dead and no one
3674 	 * is gonna access it anymore.  Free it.
3675 	 */
3676 	if (is_last) {
3677 		free_workqueue_attrs(wq->unbound_attrs);
3678 		kfree(wq);
3679 	}
3680 }
3681 
3682 /**
3683  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3684  * @pwq: target pool_workqueue
3685  *
3686  * If @pwq isn't freezing, set @pwq->max_active to the associated
3687  * workqueue's saved_max_active and activate delayed work items
3688  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3689  */
3690 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3691 {
3692 	struct workqueue_struct *wq = pwq->wq;
3693 	bool freezable = wq->flags & WQ_FREEZABLE;
3694 
3695 	/* for @wq->saved_max_active */
3696 	lockdep_assert_held(&wq->mutex);
3697 
3698 	/* fast exit for non-freezable wqs */
3699 	if (!freezable && pwq->max_active == wq->saved_max_active)
3700 		return;
3701 
3702 	spin_lock_irq(&pwq->pool->lock);
3703 
3704 	if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3705 		pwq->max_active = wq->saved_max_active;
3706 
3707 		while (!list_empty(&pwq->delayed_works) &&
3708 		       pwq->nr_active < pwq->max_active)
3709 			pwq_activate_first_delayed(pwq);
3710 
3711 		/*
3712 		 * Need to kick a worker after thawed or an unbound wq's
3713 		 * max_active is bumped.  It's a slow path.  Do it always.
3714 		 */
3715 		wake_up_worker(pwq->pool);
3716 	} else {
3717 		pwq->max_active = 0;
3718 	}
3719 
3720 	spin_unlock_irq(&pwq->pool->lock);
3721 }
3722 
3723 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3724 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3725 		     struct worker_pool *pool)
3726 {
3727 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3728 
3729 	memset(pwq, 0, sizeof(*pwq));
3730 
3731 	pwq->pool = pool;
3732 	pwq->wq = wq;
3733 	pwq->flush_color = -1;
3734 	pwq->refcnt = 1;
3735 	INIT_LIST_HEAD(&pwq->delayed_works);
3736 	INIT_LIST_HEAD(&pwq->pwqs_node);
3737 	INIT_LIST_HEAD(&pwq->mayday_node);
3738 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3739 }
3740 
3741 /* sync @pwq with the current state of its associated wq and link it */
3742 static void link_pwq(struct pool_workqueue *pwq)
3743 {
3744 	struct workqueue_struct *wq = pwq->wq;
3745 
3746 	lockdep_assert_held(&wq->mutex);
3747 
3748 	/* may be called multiple times, ignore if already linked */
3749 	if (!list_empty(&pwq->pwqs_node))
3750 		return;
3751 
3752 	/*
3753 	 * Set the matching work_color.  This is synchronized with
3754 	 * wq->mutex to avoid confusing flush_workqueue().
3755 	 */
3756 	pwq->work_color = wq->work_color;
3757 
3758 	/* sync max_active to the current setting */
3759 	pwq_adjust_max_active(pwq);
3760 
3761 	/* link in @pwq */
3762 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3763 }
3764 
3765 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3766 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3767 					const struct workqueue_attrs *attrs)
3768 {
3769 	struct worker_pool *pool;
3770 	struct pool_workqueue *pwq;
3771 
3772 	lockdep_assert_held(&wq_pool_mutex);
3773 
3774 	pool = get_unbound_pool(attrs);
3775 	if (!pool)
3776 		return NULL;
3777 
3778 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3779 	if (!pwq) {
3780 		put_unbound_pool(pool);
3781 		return NULL;
3782 	}
3783 
3784 	init_pwq(pwq, wq, pool);
3785 	return pwq;
3786 }
3787 
3788 /* undo alloc_unbound_pwq(), used only in the error path */
3789 static void free_unbound_pwq(struct pool_workqueue *pwq)
3790 {
3791 	lockdep_assert_held(&wq_pool_mutex);
3792 
3793 	if (pwq) {
3794 		put_unbound_pool(pwq->pool);
3795 		kmem_cache_free(pwq_cache, pwq);
3796 	}
3797 }
3798 
3799 /**
3800  * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3801  * @attrs: the wq_attrs of interest
3802  * @node: the target NUMA node
3803  * @cpu_going_down: if >= 0, the CPU to consider as offline
3804  * @cpumask: outarg, the resulting cpumask
3805  *
3806  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3807  * @cpu_going_down is >= 0, that cpu is considered offline during
3808  * calculation.  The result is stored in @cpumask.  This function returns
3809  * %true if the resulting @cpumask is different from @attrs->cpumask,
3810  * %false if equal.
3811  *
3812  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3813  * enabled and @node has online CPUs requested by @attrs, the returned
3814  * cpumask is the intersection of the possible CPUs of @node and
3815  * @attrs->cpumask.
3816  *
3817  * The caller is responsible for ensuring that the cpumask of @node stays
3818  * stable.
3819  */
3820 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3821 				 int cpu_going_down, cpumask_t *cpumask)
3822 {
3823 	if (!wq_numa_enabled || attrs->no_numa)
3824 		goto use_dfl;
3825 
3826 	/* does @node have any online CPUs @attrs wants? */
3827 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3828 	if (cpu_going_down >= 0)
3829 		cpumask_clear_cpu(cpu_going_down, cpumask);
3830 
3831 	if (cpumask_empty(cpumask))
3832 		goto use_dfl;
3833 
3834 	/* yeap, return possible CPUs in @node that @attrs wants */
3835 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3836 	return !cpumask_equal(cpumask, attrs->cpumask);
3837 
3838 use_dfl:
3839 	cpumask_copy(cpumask, attrs->cpumask);
3840 	return false;
3841 }
3842 
3843 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3844 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3845 						   int node,
3846 						   struct pool_workqueue *pwq)
3847 {
3848 	struct pool_workqueue *old_pwq;
3849 
3850 	lockdep_assert_held(&wq->mutex);
3851 
3852 	/* link_pwq() can handle duplicate calls */
3853 	link_pwq(pwq);
3854 
3855 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3856 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3857 	return old_pwq;
3858 }
3859 
3860 /**
3861  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3862  * @wq: the target workqueue
3863  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3864  *
3865  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3866  * machines, this function maps a separate pwq to each NUMA node with
3867  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3868  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3869  * items finish.  Note that a work item which repeatedly requeues itself
3870  * back-to-back will stay on its current pwq.
3871  *
3872  * Performs GFP_KERNEL allocations.  Returns 0 on success and -errno on
3873  * failure.
3874  */
3875 int apply_workqueue_attrs(struct workqueue_struct *wq,
3876 			  const struct workqueue_attrs *attrs)
3877 {
3878 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3879 	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3880 	int node, ret;
3881 
3882 	/* only unbound workqueues can change attributes */
3883 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3884 		return -EINVAL;
3885 
3886 	/* creating multiple pwqs breaks ordering guarantee */
3887 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3888 		return -EINVAL;
3889 
3890 	pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3891 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3892 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3893 	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3894 		goto enomem;
3895 
3896 	/* make a copy of @attrs and sanitize it */
3897 	copy_workqueue_attrs(new_attrs, attrs);
3898 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3899 
3900 	/*
3901 	 * We may create multiple pwqs with differing cpumasks.  Make a
3902 	 * copy of @new_attrs which will be modified and used to obtain
3903 	 * pools.
3904 	 */
3905 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3906 
3907 	/*
3908 	 * CPUs should stay stable across pwq creations and installations.
3909 	 * Pin CPUs, determine the target cpumask for each node and create
3910 	 * pwqs accordingly.
3911 	 */
3912 	get_online_cpus();
3913 
3914 	mutex_lock(&wq_pool_mutex);
3915 
3916 	/*
3917 	 * If something goes wrong during CPU up/down, we'll fall back to
3918 	 * the default pwq covering whole @attrs->cpumask.  Always create
3919 	 * it even if we don't use it immediately.
3920 	 */
3921 	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3922 	if (!dfl_pwq)
3923 		goto enomem_pwq;
3924 
3925 	for_each_node(node) {
3926 		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3927 			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3928 			if (!pwq_tbl[node])
3929 				goto enomem_pwq;
3930 		} else {
3931 			dfl_pwq->refcnt++;
3932 			pwq_tbl[node] = dfl_pwq;
3933 		}
3934 	}
3935 
3936 	mutex_unlock(&wq_pool_mutex);
3937 
3938 	/* all pwqs have been created successfully, let's install'em */
3939 	mutex_lock(&wq->mutex);
3940 
3941 	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3942 
3943 	/* save the previous pwq and install the new one */
3944 	for_each_node(node)
3945 		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3946 
3947 	/* @dfl_pwq might not have been used, ensure it's linked */
3948 	link_pwq(dfl_pwq);
3949 	swap(wq->dfl_pwq, dfl_pwq);
3950 
3951 	mutex_unlock(&wq->mutex);
3952 
3953 	/* put the old pwqs */
3954 	for_each_node(node)
3955 		put_pwq_unlocked(pwq_tbl[node]);
3956 	put_pwq_unlocked(dfl_pwq);
3957 
3958 	put_online_cpus();
3959 	ret = 0;
3960 	/* fall through */
3961 out_free:
3962 	free_workqueue_attrs(tmp_attrs);
3963 	free_workqueue_attrs(new_attrs);
3964 	kfree(pwq_tbl);
3965 	return ret;
3966 
3967 enomem_pwq:
3968 	free_unbound_pwq(dfl_pwq);
3969 	for_each_node(node)
3970 		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3971 			free_unbound_pwq(pwq_tbl[node]);
3972 	mutex_unlock(&wq_pool_mutex);
3973 	put_online_cpus();
3974 enomem:
3975 	ret = -ENOMEM;
3976 	goto out_free;
3977 }
3978 
3979 /**
3980  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3981  * @wq: the target workqueue
3982  * @cpu: the CPU coming up or going down
3983  * @online: whether @cpu is coming up or going down
3984  *
3985  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3986  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3987  * @wq accordingly.
3988  *
3989  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3990  * falls back to @wq->dfl_pwq which may not be optimal but is always
3991  * correct.
3992  *
3993  * Note that when the last allowed CPU of a NUMA node goes offline for a
3994  * workqueue with a cpumask spanning multiple nodes, the workers which were
3995  * already executing the work items for the workqueue will lose their CPU
3996  * affinity and may execute on any CPU.  This is similar to how per-cpu
3997  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3998  * affinity, it's the user's responsibility to flush the work item from
3999  * CPU_DOWN_PREPARE.
4000  */
4001 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4002 				   bool online)
4003 {
4004 	int node = cpu_to_node(cpu);
4005 	int cpu_off = online ? -1 : cpu;
4006 	struct pool_workqueue *old_pwq = NULL, *pwq;
4007 	struct workqueue_attrs *target_attrs;
4008 	cpumask_t *cpumask;
4009 
4010 	lockdep_assert_held(&wq_pool_mutex);
4011 
4012 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4013 		return;
4014 
4015 	/*
4016 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4017 	 * Let's use a preallocated one.  The following buf is protected by
4018 	 * CPU hotplug exclusion.
4019 	 */
4020 	target_attrs = wq_update_unbound_numa_attrs_buf;
4021 	cpumask = target_attrs->cpumask;
4022 
4023 	mutex_lock(&wq->mutex);
4024 	if (wq->unbound_attrs->no_numa)
4025 		goto out_unlock;
4026 
4027 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4028 	pwq = unbound_pwq_by_node(wq, node);
4029 
4030 	/*
4031 	 * Let's determine what needs to be done.  If the target cpumask is
4032 	 * different from wq's, we need to compare it to @pwq's and create
4033 	 * a new one if they don't match.  If the target cpumask equals
4034 	 * wq's, the default pwq should be used.  If @pwq is already the
4035 	 * default one, nothing to do; otherwise, install the default one.
4036 	 */
4037 	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4038 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4039 			goto out_unlock;
4040 	} else {
4041 		if (pwq == wq->dfl_pwq)
4042 			goto out_unlock;
4043 		else
4044 			goto use_dfl_pwq;
4045 	}
4046 
4047 	mutex_unlock(&wq->mutex);
4048 
4049 	/* create a new pwq */
4050 	pwq = alloc_unbound_pwq(wq, target_attrs);
4051 	if (!pwq) {
4052 		pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4053 			   wq->name);
4054 		goto out_unlock;
4055 	}
4056 
4057 	/*
4058 	 * Install the new pwq.  As this function is called only from CPU
4059 	 * hotplug callbacks and applying a new attrs is wrapped with
4060 	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4061 	 * inbetween.
4062 	 */
4063 	mutex_lock(&wq->mutex);
4064 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4065 	goto out_unlock;
4066 
4067 use_dfl_pwq:
4068 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4069 	get_pwq(wq->dfl_pwq);
4070 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4071 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4072 out_unlock:
4073 	mutex_unlock(&wq->mutex);
4074 	put_pwq_unlocked(old_pwq);
4075 }
4076 
4077 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4078 {
4079 	bool highpri = wq->flags & WQ_HIGHPRI;
4080 	int cpu;
4081 
4082 	if (!(wq->flags & WQ_UNBOUND)) {
4083 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4084 		if (!wq->cpu_pwqs)
4085 			return -ENOMEM;
4086 
4087 		for_each_possible_cpu(cpu) {
4088 			struct pool_workqueue *pwq =
4089 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4090 			struct worker_pool *cpu_pools =
4091 				per_cpu(cpu_worker_pools, cpu);
4092 
4093 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4094 
4095 			mutex_lock(&wq->mutex);
4096 			link_pwq(pwq);
4097 			mutex_unlock(&wq->mutex);
4098 		}
4099 		return 0;
4100 	} else {
4101 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4102 	}
4103 }
4104 
4105 static int wq_clamp_max_active(int max_active, unsigned int flags,
4106 			       const char *name)
4107 {
4108 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4109 
4110 	if (max_active < 1 || max_active > lim)
4111 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4112 			max_active, name, 1, lim);
4113 
4114 	return clamp_val(max_active, 1, lim);
4115 }
4116 
4117 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4118 					       unsigned int flags,
4119 					       int max_active,
4120 					       struct lock_class_key *key,
4121 					       const char *lock_name, ...)
4122 {
4123 	size_t tbl_size = 0;
4124 	va_list args;
4125 	struct workqueue_struct *wq;
4126 	struct pool_workqueue *pwq;
4127 
4128 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4129 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4130 		flags |= WQ_UNBOUND;
4131 
4132 	/* allocate wq and format name */
4133 	if (flags & WQ_UNBOUND)
4134 		tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4135 
4136 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4137 	if (!wq)
4138 		return NULL;
4139 
4140 	if (flags & WQ_UNBOUND) {
4141 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4142 		if (!wq->unbound_attrs)
4143 			goto err_free_wq;
4144 	}
4145 
4146 	va_start(args, lock_name);
4147 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4148 	va_end(args);
4149 
4150 	max_active = max_active ?: WQ_DFL_ACTIVE;
4151 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4152 
4153 	/* init wq */
4154 	wq->flags = flags;
4155 	wq->saved_max_active = max_active;
4156 	mutex_init(&wq->mutex);
4157 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4158 	INIT_LIST_HEAD(&wq->pwqs);
4159 	INIT_LIST_HEAD(&wq->flusher_queue);
4160 	INIT_LIST_HEAD(&wq->flusher_overflow);
4161 	INIT_LIST_HEAD(&wq->maydays);
4162 
4163 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4164 	INIT_LIST_HEAD(&wq->list);
4165 
4166 	if (alloc_and_link_pwqs(wq) < 0)
4167 		goto err_free_wq;
4168 
4169 	/*
4170 	 * Workqueues which may be used during memory reclaim should
4171 	 * have a rescuer to guarantee forward progress.
4172 	 */
4173 	if (flags & WQ_MEM_RECLAIM) {
4174 		struct worker *rescuer;
4175 
4176 		rescuer = alloc_worker();
4177 		if (!rescuer)
4178 			goto err_destroy;
4179 
4180 		rescuer->rescue_wq = wq;
4181 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4182 					       wq->name);
4183 		if (IS_ERR(rescuer->task)) {
4184 			kfree(rescuer);
4185 			goto err_destroy;
4186 		}
4187 
4188 		wq->rescuer = rescuer;
4189 		rescuer->task->flags |= PF_NO_SETAFFINITY;
4190 		wake_up_process(rescuer->task);
4191 	}
4192 
4193 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4194 		goto err_destroy;
4195 
4196 	/*
4197 	 * wq_pool_mutex protects global freeze state and workqueues list.
4198 	 * Grab it, adjust max_active and add the new @wq to workqueues
4199 	 * list.
4200 	 */
4201 	mutex_lock(&wq_pool_mutex);
4202 
4203 	mutex_lock(&wq->mutex);
4204 	for_each_pwq(pwq, wq)
4205 		pwq_adjust_max_active(pwq);
4206 	mutex_unlock(&wq->mutex);
4207 
4208 	list_add(&wq->list, &workqueues);
4209 
4210 	mutex_unlock(&wq_pool_mutex);
4211 
4212 	return wq;
4213 
4214 err_free_wq:
4215 	free_workqueue_attrs(wq->unbound_attrs);
4216 	kfree(wq);
4217 	return NULL;
4218 err_destroy:
4219 	destroy_workqueue(wq);
4220 	return NULL;
4221 }
4222 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4223 
4224 /**
4225  * destroy_workqueue - safely terminate a workqueue
4226  * @wq: target workqueue
4227  *
4228  * Safely destroy a workqueue. All work currently pending will be done first.
4229  */
4230 void destroy_workqueue(struct workqueue_struct *wq)
4231 {
4232 	struct pool_workqueue *pwq;
4233 	int node;
4234 
4235 	/* drain it before proceeding with destruction */
4236 	drain_workqueue(wq);
4237 
4238 	/* sanity checks */
4239 	mutex_lock(&wq->mutex);
4240 	for_each_pwq(pwq, wq) {
4241 		int i;
4242 
4243 		for (i = 0; i < WORK_NR_COLORS; i++) {
4244 			if (WARN_ON(pwq->nr_in_flight[i])) {
4245 				mutex_unlock(&wq->mutex);
4246 				return;
4247 			}
4248 		}
4249 
4250 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4251 		    WARN_ON(pwq->nr_active) ||
4252 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4253 			mutex_unlock(&wq->mutex);
4254 			return;
4255 		}
4256 	}
4257 	mutex_unlock(&wq->mutex);
4258 
4259 	/*
4260 	 * wq list is used to freeze wq, remove from list after
4261 	 * flushing is complete in case freeze races us.
4262 	 */
4263 	mutex_lock(&wq_pool_mutex);
4264 	list_del_init(&wq->list);
4265 	mutex_unlock(&wq_pool_mutex);
4266 
4267 	workqueue_sysfs_unregister(wq);
4268 
4269 	if (wq->rescuer) {
4270 		kthread_stop(wq->rescuer->task);
4271 		kfree(wq->rescuer);
4272 		wq->rescuer = NULL;
4273 	}
4274 
4275 	if (!(wq->flags & WQ_UNBOUND)) {
4276 		/*
4277 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4278 		 * free the pwqs and wq.
4279 		 */
4280 		free_percpu(wq->cpu_pwqs);
4281 		kfree(wq);
4282 	} else {
4283 		/*
4284 		 * We're the sole accessor of @wq at this point.  Directly
4285 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4286 		 * @wq will be freed when the last pwq is released.
4287 		 */
4288 		for_each_node(node) {
4289 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4290 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4291 			put_pwq_unlocked(pwq);
4292 		}
4293 
4294 		/*
4295 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4296 		 * put.  Don't access it afterwards.
4297 		 */
4298 		pwq = wq->dfl_pwq;
4299 		wq->dfl_pwq = NULL;
4300 		put_pwq_unlocked(pwq);
4301 	}
4302 }
4303 EXPORT_SYMBOL_GPL(destroy_workqueue);
4304 
4305 /**
4306  * workqueue_set_max_active - adjust max_active of a workqueue
4307  * @wq: target workqueue
4308  * @max_active: new max_active value.
4309  *
4310  * Set max_active of @wq to @max_active.
4311  *
4312  * CONTEXT:
4313  * Don't call from IRQ context.
4314  */
4315 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4316 {
4317 	struct pool_workqueue *pwq;
4318 
4319 	/* disallow meddling with max_active for ordered workqueues */
4320 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4321 		return;
4322 
4323 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4324 
4325 	mutex_lock(&wq->mutex);
4326 
4327 	wq->saved_max_active = max_active;
4328 
4329 	for_each_pwq(pwq, wq)
4330 		pwq_adjust_max_active(pwq);
4331 
4332 	mutex_unlock(&wq->mutex);
4333 }
4334 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4335 
4336 /**
4337  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4338  *
4339  * Determine whether %current is a workqueue rescuer.  Can be used from
4340  * work functions to determine whether it's being run off the rescuer task.
4341  */
4342 bool current_is_workqueue_rescuer(void)
4343 {
4344 	struct worker *worker = current_wq_worker();
4345 
4346 	return worker && worker->rescue_wq;
4347 }
4348 
4349 /**
4350  * workqueue_congested - test whether a workqueue is congested
4351  * @cpu: CPU in question
4352  * @wq: target workqueue
4353  *
4354  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4355  * no synchronization around this function and the test result is
4356  * unreliable and only useful as advisory hints or for debugging.
4357  *
4358  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4359  * Note that both per-cpu and unbound workqueues may be associated with
4360  * multiple pool_workqueues which have separate congested states.  A
4361  * workqueue being congested on one CPU doesn't mean the workqueue is also
4362  * contested on other CPUs / NUMA nodes.
4363  *
4364  * RETURNS:
4365  * %true if congested, %false otherwise.
4366  */
4367 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4368 {
4369 	struct pool_workqueue *pwq;
4370 	bool ret;
4371 
4372 	rcu_read_lock_sched();
4373 
4374 	if (cpu == WORK_CPU_UNBOUND)
4375 		cpu = smp_processor_id();
4376 
4377 	if (!(wq->flags & WQ_UNBOUND))
4378 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4379 	else
4380 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4381 
4382 	ret = !list_empty(&pwq->delayed_works);
4383 	rcu_read_unlock_sched();
4384 
4385 	return ret;
4386 }
4387 EXPORT_SYMBOL_GPL(workqueue_congested);
4388 
4389 /**
4390  * work_busy - test whether a work is currently pending or running
4391  * @work: the work to be tested
4392  *
4393  * Test whether @work is currently pending or running.  There is no
4394  * synchronization around this function and the test result is
4395  * unreliable and only useful as advisory hints or for debugging.
4396  *
4397  * RETURNS:
4398  * OR'd bitmask of WORK_BUSY_* bits.
4399  */
4400 unsigned int work_busy(struct work_struct *work)
4401 {
4402 	struct worker_pool *pool;
4403 	unsigned long flags;
4404 	unsigned int ret = 0;
4405 
4406 	if (work_pending(work))
4407 		ret |= WORK_BUSY_PENDING;
4408 
4409 	local_irq_save(flags);
4410 	pool = get_work_pool(work);
4411 	if (pool) {
4412 		spin_lock(&pool->lock);
4413 		if (find_worker_executing_work(pool, work))
4414 			ret |= WORK_BUSY_RUNNING;
4415 		spin_unlock(&pool->lock);
4416 	}
4417 	local_irq_restore(flags);
4418 
4419 	return ret;
4420 }
4421 EXPORT_SYMBOL_GPL(work_busy);
4422 
4423 /**
4424  * set_worker_desc - set description for the current work item
4425  * @fmt: printf-style format string
4426  * @...: arguments for the format string
4427  *
4428  * This function can be called by a running work function to describe what
4429  * the work item is about.  If the worker task gets dumped, this
4430  * information will be printed out together to help debugging.  The
4431  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4432  */
4433 void set_worker_desc(const char *fmt, ...)
4434 {
4435 	struct worker *worker = current_wq_worker();
4436 	va_list args;
4437 
4438 	if (worker) {
4439 		va_start(args, fmt);
4440 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4441 		va_end(args);
4442 		worker->desc_valid = true;
4443 	}
4444 }
4445 
4446 /**
4447  * print_worker_info - print out worker information and description
4448  * @log_lvl: the log level to use when printing
4449  * @task: target task
4450  *
4451  * If @task is a worker and currently executing a work item, print out the
4452  * name of the workqueue being serviced and worker description set with
4453  * set_worker_desc() by the currently executing work item.
4454  *
4455  * This function can be safely called on any task as long as the
4456  * task_struct itself is accessible.  While safe, this function isn't
4457  * synchronized and may print out mixups or garbages of limited length.
4458  */
4459 void print_worker_info(const char *log_lvl, struct task_struct *task)
4460 {
4461 	work_func_t *fn = NULL;
4462 	char name[WQ_NAME_LEN] = { };
4463 	char desc[WORKER_DESC_LEN] = { };
4464 	struct pool_workqueue *pwq = NULL;
4465 	struct workqueue_struct *wq = NULL;
4466 	bool desc_valid = false;
4467 	struct worker *worker;
4468 
4469 	if (!(task->flags & PF_WQ_WORKER))
4470 		return;
4471 
4472 	/*
4473 	 * This function is called without any synchronization and @task
4474 	 * could be in any state.  Be careful with dereferences.
4475 	 */
4476 	worker = probe_kthread_data(task);
4477 
4478 	/*
4479 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4480 	 * the original last '\0' in case the original contains garbage.
4481 	 */
4482 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4483 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4484 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4485 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4486 
4487 	/* copy worker description */
4488 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4489 	if (desc_valid)
4490 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4491 
4492 	if (fn || name[0] || desc[0]) {
4493 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4494 		if (desc[0])
4495 			pr_cont(" (%s)", desc);
4496 		pr_cont("\n");
4497 	}
4498 }
4499 
4500 /*
4501  * CPU hotplug.
4502  *
4503  * There are two challenges in supporting CPU hotplug.  Firstly, there
4504  * are a lot of assumptions on strong associations among work, pwq and
4505  * pool which make migrating pending and scheduled works very
4506  * difficult to implement without impacting hot paths.  Secondly,
4507  * worker pools serve mix of short, long and very long running works making
4508  * blocked draining impractical.
4509  *
4510  * This is solved by allowing the pools to be disassociated from the CPU
4511  * running as an unbound one and allowing it to be reattached later if the
4512  * cpu comes back online.
4513  */
4514 
4515 static void wq_unbind_fn(struct work_struct *work)
4516 {
4517 	int cpu = smp_processor_id();
4518 	struct worker_pool *pool;
4519 	struct worker *worker;
4520 	int wi;
4521 
4522 	for_each_cpu_worker_pool(pool, cpu) {
4523 		WARN_ON_ONCE(cpu != smp_processor_id());
4524 
4525 		mutex_lock(&pool->manager_mutex);
4526 		spin_lock_irq(&pool->lock);
4527 
4528 		/*
4529 		 * We've blocked all manager operations.  Make all workers
4530 		 * unbound and set DISASSOCIATED.  Before this, all workers
4531 		 * except for the ones which are still executing works from
4532 		 * before the last CPU down must be on the cpu.  After
4533 		 * this, they may become diasporas.
4534 		 */
4535 		for_each_pool_worker(worker, wi, pool)
4536 			worker->flags |= WORKER_UNBOUND;
4537 
4538 		pool->flags |= POOL_DISASSOCIATED;
4539 
4540 		spin_unlock_irq(&pool->lock);
4541 		mutex_unlock(&pool->manager_mutex);
4542 
4543 		/*
4544 		 * Call schedule() so that we cross rq->lock and thus can
4545 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4546 		 * This is necessary as scheduler callbacks may be invoked
4547 		 * from other cpus.
4548 		 */
4549 		schedule();
4550 
4551 		/*
4552 		 * Sched callbacks are disabled now.  Zap nr_running.
4553 		 * After this, nr_running stays zero and need_more_worker()
4554 		 * and keep_working() are always true as long as the
4555 		 * worklist is not empty.  This pool now behaves as an
4556 		 * unbound (in terms of concurrency management) pool which
4557 		 * are served by workers tied to the pool.
4558 		 */
4559 		atomic_set(&pool->nr_running, 0);
4560 
4561 		/*
4562 		 * With concurrency management just turned off, a busy
4563 		 * worker blocking could lead to lengthy stalls.  Kick off
4564 		 * unbound chain execution of currently pending work items.
4565 		 */
4566 		spin_lock_irq(&pool->lock);
4567 		wake_up_worker(pool);
4568 		spin_unlock_irq(&pool->lock);
4569 	}
4570 }
4571 
4572 /**
4573  * rebind_workers - rebind all workers of a pool to the associated CPU
4574  * @pool: pool of interest
4575  *
4576  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4577  */
4578 static void rebind_workers(struct worker_pool *pool)
4579 {
4580 	struct worker *worker;
4581 	int wi;
4582 
4583 	lockdep_assert_held(&pool->manager_mutex);
4584 
4585 	/*
4586 	 * Restore CPU affinity of all workers.  As all idle workers should
4587 	 * be on the run-queue of the associated CPU before any local
4588 	 * wake-ups for concurrency management happen, restore CPU affinty
4589 	 * of all workers first and then clear UNBOUND.  As we're called
4590 	 * from CPU_ONLINE, the following shouldn't fail.
4591 	 */
4592 	for_each_pool_worker(worker, wi, pool)
4593 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4594 						  pool->attrs->cpumask) < 0);
4595 
4596 	spin_lock_irq(&pool->lock);
4597 
4598 	for_each_pool_worker(worker, wi, pool) {
4599 		unsigned int worker_flags = worker->flags;
4600 
4601 		/*
4602 		 * A bound idle worker should actually be on the runqueue
4603 		 * of the associated CPU for local wake-ups targeting it to
4604 		 * work.  Kick all idle workers so that they migrate to the
4605 		 * associated CPU.  Doing this in the same loop as
4606 		 * replacing UNBOUND with REBOUND is safe as no worker will
4607 		 * be bound before @pool->lock is released.
4608 		 */
4609 		if (worker_flags & WORKER_IDLE)
4610 			wake_up_process(worker->task);
4611 
4612 		/*
4613 		 * We want to clear UNBOUND but can't directly call
4614 		 * worker_clr_flags() or adjust nr_running.  Atomically
4615 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4616 		 * @worker will clear REBOUND using worker_clr_flags() when
4617 		 * it initiates the next execution cycle thus restoring
4618 		 * concurrency management.  Note that when or whether
4619 		 * @worker clears REBOUND doesn't affect correctness.
4620 		 *
4621 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4622 		 * tested without holding any lock in
4623 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4624 		 * fail incorrectly leading to premature concurrency
4625 		 * management operations.
4626 		 */
4627 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4628 		worker_flags |= WORKER_REBOUND;
4629 		worker_flags &= ~WORKER_UNBOUND;
4630 		ACCESS_ONCE(worker->flags) = worker_flags;
4631 	}
4632 
4633 	spin_unlock_irq(&pool->lock);
4634 }
4635 
4636 /**
4637  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4638  * @pool: unbound pool of interest
4639  * @cpu: the CPU which is coming up
4640  *
4641  * An unbound pool may end up with a cpumask which doesn't have any online
4642  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4643  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4644  * online CPU before, cpus_allowed of all its workers should be restored.
4645  */
4646 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4647 {
4648 	static cpumask_t cpumask;
4649 	struct worker *worker;
4650 	int wi;
4651 
4652 	lockdep_assert_held(&pool->manager_mutex);
4653 
4654 	/* is @cpu allowed for @pool? */
4655 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4656 		return;
4657 
4658 	/* is @cpu the only online CPU? */
4659 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4660 	if (cpumask_weight(&cpumask) != 1)
4661 		return;
4662 
4663 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4664 	for_each_pool_worker(worker, wi, pool)
4665 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4666 						  pool->attrs->cpumask) < 0);
4667 }
4668 
4669 /*
4670  * Workqueues should be brought up before normal priority CPU notifiers.
4671  * This will be registered high priority CPU notifier.
4672  */
4673 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4674 					       unsigned long action,
4675 					       void *hcpu)
4676 {
4677 	int cpu = (unsigned long)hcpu;
4678 	struct worker_pool *pool;
4679 	struct workqueue_struct *wq;
4680 	int pi;
4681 
4682 	switch (action & ~CPU_TASKS_FROZEN) {
4683 	case CPU_UP_PREPARE:
4684 		for_each_cpu_worker_pool(pool, cpu) {
4685 			if (pool->nr_workers)
4686 				continue;
4687 			if (create_and_start_worker(pool) < 0)
4688 				return NOTIFY_BAD;
4689 		}
4690 		break;
4691 
4692 	case CPU_DOWN_FAILED:
4693 	case CPU_ONLINE:
4694 		mutex_lock(&wq_pool_mutex);
4695 
4696 		for_each_pool(pool, pi) {
4697 			mutex_lock(&pool->manager_mutex);
4698 
4699 			if (pool->cpu == cpu) {
4700 				spin_lock_irq(&pool->lock);
4701 				pool->flags &= ~POOL_DISASSOCIATED;
4702 				spin_unlock_irq(&pool->lock);
4703 
4704 				rebind_workers(pool);
4705 			} else if (pool->cpu < 0) {
4706 				restore_unbound_workers_cpumask(pool, cpu);
4707 			}
4708 
4709 			mutex_unlock(&pool->manager_mutex);
4710 		}
4711 
4712 		/* update NUMA affinity of unbound workqueues */
4713 		list_for_each_entry(wq, &workqueues, list)
4714 			wq_update_unbound_numa(wq, cpu, true);
4715 
4716 		mutex_unlock(&wq_pool_mutex);
4717 		break;
4718 	}
4719 	return NOTIFY_OK;
4720 }
4721 
4722 /*
4723  * Workqueues should be brought down after normal priority CPU notifiers.
4724  * This will be registered as low priority CPU notifier.
4725  */
4726 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4727 						 unsigned long action,
4728 						 void *hcpu)
4729 {
4730 	int cpu = (unsigned long)hcpu;
4731 	struct work_struct unbind_work;
4732 	struct workqueue_struct *wq;
4733 
4734 	switch (action & ~CPU_TASKS_FROZEN) {
4735 	case CPU_DOWN_PREPARE:
4736 		/* unbinding per-cpu workers should happen on the local CPU */
4737 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4738 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4739 
4740 		/* update NUMA affinity of unbound workqueues */
4741 		mutex_lock(&wq_pool_mutex);
4742 		list_for_each_entry(wq, &workqueues, list)
4743 			wq_update_unbound_numa(wq, cpu, false);
4744 		mutex_unlock(&wq_pool_mutex);
4745 
4746 		/* wait for per-cpu unbinding to finish */
4747 		flush_work(&unbind_work);
4748 		break;
4749 	}
4750 	return NOTIFY_OK;
4751 }
4752 
4753 #ifdef CONFIG_SMP
4754 
4755 struct work_for_cpu {
4756 	struct work_struct work;
4757 	long (*fn)(void *);
4758 	void *arg;
4759 	long ret;
4760 };
4761 
4762 static void work_for_cpu_fn(struct work_struct *work)
4763 {
4764 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4765 
4766 	wfc->ret = wfc->fn(wfc->arg);
4767 }
4768 
4769 /**
4770  * work_on_cpu - run a function in user context on a particular cpu
4771  * @cpu: the cpu to run on
4772  * @fn: the function to run
4773  * @arg: the function arg
4774  *
4775  * This will return the value @fn returns.
4776  * It is up to the caller to ensure that the cpu doesn't go offline.
4777  * The caller must not hold any locks which would prevent @fn from completing.
4778  */
4779 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4780 {
4781 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4782 
4783 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4784 	schedule_work_on(cpu, &wfc.work);
4785 
4786 	/*
4787 	 * The work item is on-stack and can't lead to deadlock through
4788 	 * flushing.  Use __flush_work() to avoid spurious lockdep warnings
4789 	 * when work_on_cpu()s are nested.
4790 	 */
4791 	__flush_work(&wfc.work);
4792 
4793 	return wfc.ret;
4794 }
4795 EXPORT_SYMBOL_GPL(work_on_cpu);
4796 #endif /* CONFIG_SMP */
4797 
4798 #ifdef CONFIG_FREEZER
4799 
4800 /**
4801  * freeze_workqueues_begin - begin freezing workqueues
4802  *
4803  * Start freezing workqueues.  After this function returns, all freezable
4804  * workqueues will queue new works to their delayed_works list instead of
4805  * pool->worklist.
4806  *
4807  * CONTEXT:
4808  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4809  */
4810 void freeze_workqueues_begin(void)
4811 {
4812 	struct worker_pool *pool;
4813 	struct workqueue_struct *wq;
4814 	struct pool_workqueue *pwq;
4815 	int pi;
4816 
4817 	mutex_lock(&wq_pool_mutex);
4818 
4819 	WARN_ON_ONCE(workqueue_freezing);
4820 	workqueue_freezing = true;
4821 
4822 	/* set FREEZING */
4823 	for_each_pool(pool, pi) {
4824 		spin_lock_irq(&pool->lock);
4825 		WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4826 		pool->flags |= POOL_FREEZING;
4827 		spin_unlock_irq(&pool->lock);
4828 	}
4829 
4830 	list_for_each_entry(wq, &workqueues, list) {
4831 		mutex_lock(&wq->mutex);
4832 		for_each_pwq(pwq, wq)
4833 			pwq_adjust_max_active(pwq);
4834 		mutex_unlock(&wq->mutex);
4835 	}
4836 
4837 	mutex_unlock(&wq_pool_mutex);
4838 }
4839 
4840 /**
4841  * freeze_workqueues_busy - are freezable workqueues still busy?
4842  *
4843  * Check whether freezing is complete.  This function must be called
4844  * between freeze_workqueues_begin() and thaw_workqueues().
4845  *
4846  * CONTEXT:
4847  * Grabs and releases wq_pool_mutex.
4848  *
4849  * RETURNS:
4850  * %true if some freezable workqueues are still busy.  %false if freezing
4851  * is complete.
4852  */
4853 bool freeze_workqueues_busy(void)
4854 {
4855 	bool busy = false;
4856 	struct workqueue_struct *wq;
4857 	struct pool_workqueue *pwq;
4858 
4859 	mutex_lock(&wq_pool_mutex);
4860 
4861 	WARN_ON_ONCE(!workqueue_freezing);
4862 
4863 	list_for_each_entry(wq, &workqueues, list) {
4864 		if (!(wq->flags & WQ_FREEZABLE))
4865 			continue;
4866 		/*
4867 		 * nr_active is monotonically decreasing.  It's safe
4868 		 * to peek without lock.
4869 		 */
4870 		rcu_read_lock_sched();
4871 		for_each_pwq(pwq, wq) {
4872 			WARN_ON_ONCE(pwq->nr_active < 0);
4873 			if (pwq->nr_active) {
4874 				busy = true;
4875 				rcu_read_unlock_sched();
4876 				goto out_unlock;
4877 			}
4878 		}
4879 		rcu_read_unlock_sched();
4880 	}
4881 out_unlock:
4882 	mutex_unlock(&wq_pool_mutex);
4883 	return busy;
4884 }
4885 
4886 /**
4887  * thaw_workqueues - thaw workqueues
4888  *
4889  * Thaw workqueues.  Normal queueing is restored and all collected
4890  * frozen works are transferred to their respective pool worklists.
4891  *
4892  * CONTEXT:
4893  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4894  */
4895 void thaw_workqueues(void)
4896 {
4897 	struct workqueue_struct *wq;
4898 	struct pool_workqueue *pwq;
4899 	struct worker_pool *pool;
4900 	int pi;
4901 
4902 	mutex_lock(&wq_pool_mutex);
4903 
4904 	if (!workqueue_freezing)
4905 		goto out_unlock;
4906 
4907 	/* clear FREEZING */
4908 	for_each_pool(pool, pi) {
4909 		spin_lock_irq(&pool->lock);
4910 		WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4911 		pool->flags &= ~POOL_FREEZING;
4912 		spin_unlock_irq(&pool->lock);
4913 	}
4914 
4915 	/* restore max_active and repopulate worklist */
4916 	list_for_each_entry(wq, &workqueues, list) {
4917 		mutex_lock(&wq->mutex);
4918 		for_each_pwq(pwq, wq)
4919 			pwq_adjust_max_active(pwq);
4920 		mutex_unlock(&wq->mutex);
4921 	}
4922 
4923 	workqueue_freezing = false;
4924 out_unlock:
4925 	mutex_unlock(&wq_pool_mutex);
4926 }
4927 #endif /* CONFIG_FREEZER */
4928 
4929 static void __init wq_numa_init(void)
4930 {
4931 	cpumask_var_t *tbl;
4932 	int node, cpu;
4933 
4934 	/* determine NUMA pwq table len - highest node id + 1 */
4935 	for_each_node(node)
4936 		wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4937 
4938 	if (num_possible_nodes() <= 1)
4939 		return;
4940 
4941 	if (wq_disable_numa) {
4942 		pr_info("workqueue: NUMA affinity support disabled\n");
4943 		return;
4944 	}
4945 
4946 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4947 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
4948 
4949 	/*
4950 	 * We want masks of possible CPUs of each node which isn't readily
4951 	 * available.  Build one from cpu_to_node() which should have been
4952 	 * fully initialized by now.
4953 	 */
4954 	tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4955 	BUG_ON(!tbl);
4956 
4957 	for_each_node(node)
4958 		BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4959 				node_online(node) ? node : NUMA_NO_NODE));
4960 
4961 	for_each_possible_cpu(cpu) {
4962 		node = cpu_to_node(cpu);
4963 		if (WARN_ON(node == NUMA_NO_NODE)) {
4964 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4965 			/* happens iff arch is bonkers, let's just proceed */
4966 			return;
4967 		}
4968 		cpumask_set_cpu(cpu, tbl[node]);
4969 	}
4970 
4971 	wq_numa_possible_cpumask = tbl;
4972 	wq_numa_enabled = true;
4973 }
4974 
4975 static int __init init_workqueues(void)
4976 {
4977 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4978 	int i, cpu;
4979 
4980 	/* make sure we have enough bits for OFFQ pool ID */
4981 	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4982 		     WORK_CPU_END * NR_STD_WORKER_POOLS);
4983 
4984 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4985 
4986 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4987 
4988 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4989 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4990 
4991 	wq_numa_init();
4992 
4993 	/* initialize CPU pools */
4994 	for_each_possible_cpu(cpu) {
4995 		struct worker_pool *pool;
4996 
4997 		i = 0;
4998 		for_each_cpu_worker_pool(pool, cpu) {
4999 			BUG_ON(init_worker_pool(pool));
5000 			pool->cpu = cpu;
5001 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5002 			pool->attrs->nice = std_nice[i++];
5003 			pool->node = cpu_to_node(cpu);
5004 
5005 			/* alloc pool ID */
5006 			mutex_lock(&wq_pool_mutex);
5007 			BUG_ON(worker_pool_assign_id(pool));
5008 			mutex_unlock(&wq_pool_mutex);
5009 		}
5010 	}
5011 
5012 	/* create the initial worker */
5013 	for_each_online_cpu(cpu) {
5014 		struct worker_pool *pool;
5015 
5016 		for_each_cpu_worker_pool(pool, cpu) {
5017 			pool->flags &= ~POOL_DISASSOCIATED;
5018 			BUG_ON(create_and_start_worker(pool) < 0);
5019 		}
5020 	}
5021 
5022 	/* create default unbound wq attrs */
5023 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5024 		struct workqueue_attrs *attrs;
5025 
5026 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5027 		attrs->nice = std_nice[i];
5028 		unbound_std_wq_attrs[i] = attrs;
5029 	}
5030 
5031 	system_wq = alloc_workqueue("events", 0, 0);
5032 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5033 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5034 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5035 					    WQ_UNBOUND_MAX_ACTIVE);
5036 	system_freezable_wq = alloc_workqueue("events_freezable",
5037 					      WQ_FREEZABLE, 0);
5038 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5039 					      WQ_POWER_EFFICIENT, 0);
5040 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5041 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5042 					      0);
5043 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5044 	       !system_unbound_wq || !system_freezable_wq ||
5045 	       !system_power_efficient_wq ||
5046 	       !system_freezable_power_efficient_wq);
5047 	return 0;
5048 }
5049 early_initcall(init_workqueues);
5050