1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <[email protected]> 8 * Andrew Morton 9 * Kai Petzke <[email protected]> 10 * Theodore Ts'o <[email protected]> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <[email protected]> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There is one worker pool for each CPU and 20 * one extra for works which are better served by workers which are 21 * not bound to any specific CPU. 22 * 23 * Please read Documentation/workqueue.txt for details. 24 */ 25 26 #include <linux/export.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/completion.h> 32 #include <linux/workqueue.h> 33 #include <linux/slab.h> 34 #include <linux/cpu.h> 35 #include <linux/notifier.h> 36 #include <linux/kthread.h> 37 #include <linux/hardirq.h> 38 #include <linux/mempolicy.h> 39 #include <linux/freezer.h> 40 #include <linux/kallsyms.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 #include <linux/jhash.h> 45 #include <linux/hashtable.h> 46 #include <linux/rculist.h> 47 #include <linux/nodemask.h> 48 #include <linux/moduleparam.h> 49 #include <linux/uaccess.h> 50 51 #include "workqueue_internal.h" 52 53 enum { 54 /* 55 * worker_pool flags 56 * 57 * A bound pool is either associated or disassociated with its CPU. 58 * While associated (!DISASSOCIATED), all workers are bound to the 59 * CPU and none has %WORKER_UNBOUND set and concurrency management 60 * is in effect. 61 * 62 * While DISASSOCIATED, the cpu may be offline and all workers have 63 * %WORKER_UNBOUND set and concurrency management disabled, and may 64 * be executing on any CPU. The pool behaves as an unbound one. 65 * 66 * Note that DISASSOCIATED should be flipped only while holding 67 * manager_mutex to avoid changing binding state while 68 * create_worker() is in progress. 69 */ 70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 POOL_FREEZING = 1 << 3, /* freeze in progress */ 73 74 /* worker flags */ 75 WORKER_STARTED = 1 << 0, /* started */ 76 WORKER_DIE = 1 << 1, /* die die die */ 77 WORKER_IDLE = 1 << 2, /* is idle */ 78 WORKER_PREP = 1 << 3, /* preparing to run works */ 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 82 83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 84 WORKER_UNBOUND | WORKER_REBOUND, 85 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 87 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 90 91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 93 94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 95 /* call for help after 10ms 96 (min two ticks) */ 97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 98 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 99 100 /* 101 * Rescue workers are used only on emergencies and shared by 102 * all cpus. Give -20. 103 */ 104 RESCUER_NICE_LEVEL = -20, 105 HIGHPRI_NICE_LEVEL = -20, 106 107 WQ_NAME_LEN = 24, 108 }; 109 110 /* 111 * Structure fields follow one of the following exclusion rules. 112 * 113 * I: Modifiable by initialization/destruction paths and read-only for 114 * everyone else. 115 * 116 * P: Preemption protected. Disabling preemption is enough and should 117 * only be modified and accessed from the local cpu. 118 * 119 * L: pool->lock protected. Access with pool->lock held. 120 * 121 * X: During normal operation, modification requires pool->lock and should 122 * be done only from local cpu. Either disabling preemption on local 123 * cpu or grabbing pool->lock is enough for read access. If 124 * POOL_DISASSOCIATED is set, it's identical to L. 125 * 126 * MG: pool->manager_mutex and pool->lock protected. Writes require both 127 * locks. Reads can happen under either lock. 128 * 129 * PL: wq_pool_mutex protected. 130 * 131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 132 * 133 * WQ: wq->mutex protected. 134 * 135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 136 * 137 * MD: wq_mayday_lock protected. 138 */ 139 140 /* struct worker is defined in workqueue_internal.h */ 141 142 struct worker_pool { 143 spinlock_t lock; /* the pool lock */ 144 int cpu; /* I: the associated cpu */ 145 int node; /* I: the associated node ID */ 146 int id; /* I: pool ID */ 147 unsigned int flags; /* X: flags */ 148 149 struct list_head worklist; /* L: list of pending works */ 150 int nr_workers; /* L: total number of workers */ 151 152 /* nr_idle includes the ones off idle_list for rebinding */ 153 int nr_idle; /* L: currently idle ones */ 154 155 struct list_head idle_list; /* X: list of idle workers */ 156 struct timer_list idle_timer; /* L: worker idle timeout */ 157 struct timer_list mayday_timer; /* L: SOS timer for workers */ 158 159 /* a workers is either on busy_hash or idle_list, or the manager */ 160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 161 /* L: hash of busy workers */ 162 163 /* see manage_workers() for details on the two manager mutexes */ 164 struct mutex manager_arb; /* manager arbitration */ 165 struct mutex manager_mutex; /* manager exclusion */ 166 struct idr worker_idr; /* MG: worker IDs and iteration */ 167 168 struct workqueue_attrs *attrs; /* I: worker attributes */ 169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 170 int refcnt; /* PL: refcnt for unbound pools */ 171 172 /* 173 * The current concurrency level. As it's likely to be accessed 174 * from other CPUs during try_to_wake_up(), put it in a separate 175 * cacheline. 176 */ 177 atomic_t nr_running ____cacheline_aligned_in_smp; 178 179 /* 180 * Destruction of pool is sched-RCU protected to allow dereferences 181 * from get_work_pool(). 182 */ 183 struct rcu_head rcu; 184 } ____cacheline_aligned_in_smp; 185 186 /* 187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 188 * of work_struct->data are used for flags and the remaining high bits 189 * point to the pwq; thus, pwqs need to be aligned at two's power of the 190 * number of flag bits. 191 */ 192 struct pool_workqueue { 193 struct worker_pool *pool; /* I: the associated pool */ 194 struct workqueue_struct *wq; /* I: the owning workqueue */ 195 int work_color; /* L: current color */ 196 int flush_color; /* L: flushing color */ 197 int refcnt; /* L: reference count */ 198 int nr_in_flight[WORK_NR_COLORS]; 199 /* L: nr of in_flight works */ 200 int nr_active; /* L: nr of active works */ 201 int max_active; /* L: max active works */ 202 struct list_head delayed_works; /* L: delayed works */ 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 204 struct list_head mayday_node; /* MD: node on wq->maydays */ 205 206 /* 207 * Release of unbound pwq is punted to system_wq. See put_pwq() 208 * and pwq_unbound_release_workfn() for details. pool_workqueue 209 * itself is also sched-RCU protected so that the first pwq can be 210 * determined without grabbing wq->mutex. 211 */ 212 struct work_struct unbound_release_work; 213 struct rcu_head rcu; 214 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 215 216 /* 217 * Structure used to wait for workqueue flush. 218 */ 219 struct wq_flusher { 220 struct list_head list; /* WQ: list of flushers */ 221 int flush_color; /* WQ: flush color waiting for */ 222 struct completion done; /* flush completion */ 223 }; 224 225 struct wq_device; 226 227 /* 228 * The externally visible workqueue. It relays the issued work items to 229 * the appropriate worker_pool through its pool_workqueues. 230 */ 231 struct workqueue_struct { 232 struct list_head pwqs; /* WR: all pwqs of this wq */ 233 struct list_head list; /* PL: list of all workqueues */ 234 235 struct mutex mutex; /* protects this wq */ 236 int work_color; /* WQ: current work color */ 237 int flush_color; /* WQ: current flush color */ 238 atomic_t nr_pwqs_to_flush; /* flush in progress */ 239 struct wq_flusher *first_flusher; /* WQ: first flusher */ 240 struct list_head flusher_queue; /* WQ: flush waiters */ 241 struct list_head flusher_overflow; /* WQ: flush overflow list */ 242 243 struct list_head maydays; /* MD: pwqs requesting rescue */ 244 struct worker *rescuer; /* I: rescue worker */ 245 246 int nr_drainers; /* WQ: drain in progress */ 247 int saved_max_active; /* WQ: saved pwq max_active */ 248 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */ 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */ 251 252 #ifdef CONFIG_SYSFS 253 struct wq_device *wq_dev; /* I: for sysfs interface */ 254 #endif 255 #ifdef CONFIG_LOCKDEP 256 struct lockdep_map lockdep_map; 257 #endif 258 char name[WQ_NAME_LEN]; /* I: workqueue name */ 259 260 /* hot fields used during command issue, aligned to cacheline */ 261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */ 264 }; 265 266 static struct kmem_cache *pwq_cache; 267 268 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */ 269 static cpumask_var_t *wq_numa_possible_cpumask; 270 /* possible CPUs of each node */ 271 272 static bool wq_disable_numa; 273 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 274 275 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 276 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT 277 static bool wq_power_efficient = true; 278 #else 279 static bool wq_power_efficient; 280 #endif 281 282 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 283 284 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 285 286 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 287 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 288 289 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 290 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 291 292 static LIST_HEAD(workqueues); /* PL: list of all workqueues */ 293 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 294 295 /* the per-cpu worker pools */ 296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 297 cpu_worker_pools); 298 299 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 300 301 /* PL: hash of all unbound pools keyed by pool->attrs */ 302 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 303 304 /* I: attributes used when instantiating standard unbound pools on demand */ 305 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 306 307 struct workqueue_struct *system_wq __read_mostly; 308 EXPORT_SYMBOL(system_wq); 309 struct workqueue_struct *system_highpri_wq __read_mostly; 310 EXPORT_SYMBOL_GPL(system_highpri_wq); 311 struct workqueue_struct *system_long_wq __read_mostly; 312 EXPORT_SYMBOL_GPL(system_long_wq); 313 struct workqueue_struct *system_unbound_wq __read_mostly; 314 EXPORT_SYMBOL_GPL(system_unbound_wq); 315 struct workqueue_struct *system_freezable_wq __read_mostly; 316 EXPORT_SYMBOL_GPL(system_freezable_wq); 317 struct workqueue_struct *system_power_efficient_wq __read_mostly; 318 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 319 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 320 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 321 322 static int worker_thread(void *__worker); 323 static void copy_workqueue_attrs(struct workqueue_attrs *to, 324 const struct workqueue_attrs *from); 325 326 #define CREATE_TRACE_POINTS 327 #include <trace/events/workqueue.h> 328 329 #define assert_rcu_or_pool_mutex() \ 330 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 331 lockdep_is_held(&wq_pool_mutex), \ 332 "sched RCU or wq_pool_mutex should be held") 333 334 #define assert_rcu_or_wq_mutex(wq) \ 335 rcu_lockdep_assert(rcu_read_lock_sched_held() || \ 336 lockdep_is_held(&wq->mutex), \ 337 "sched RCU or wq->mutex should be held") 338 339 #ifdef CONFIG_LOCKDEP 340 #define assert_manager_or_pool_lock(pool) \ 341 WARN_ONCE(debug_locks && \ 342 !lockdep_is_held(&(pool)->manager_mutex) && \ 343 !lockdep_is_held(&(pool)->lock), \ 344 "pool->manager_mutex or ->lock should be held") 345 #else 346 #define assert_manager_or_pool_lock(pool) do { } while (0) 347 #endif 348 349 #define for_each_cpu_worker_pool(pool, cpu) \ 350 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 351 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 352 (pool)++) 353 354 /** 355 * for_each_pool - iterate through all worker_pools in the system 356 * @pool: iteration cursor 357 * @pi: integer used for iteration 358 * 359 * This must be called either with wq_pool_mutex held or sched RCU read 360 * locked. If the pool needs to be used beyond the locking in effect, the 361 * caller is responsible for guaranteeing that the pool stays online. 362 * 363 * The if/else clause exists only for the lockdep assertion and can be 364 * ignored. 365 */ 366 #define for_each_pool(pool, pi) \ 367 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 368 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 369 else 370 371 /** 372 * for_each_pool_worker - iterate through all workers of a worker_pool 373 * @worker: iteration cursor 374 * @wi: integer used for iteration 375 * @pool: worker_pool to iterate workers of 376 * 377 * This must be called with either @pool->manager_mutex or ->lock held. 378 * 379 * The if/else clause exists only for the lockdep assertion and can be 380 * ignored. 381 */ 382 #define for_each_pool_worker(worker, wi, pool) \ 383 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \ 384 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \ 385 else 386 387 /** 388 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 389 * @pwq: iteration cursor 390 * @wq: the target workqueue 391 * 392 * This must be called either with wq->mutex held or sched RCU read locked. 393 * If the pwq needs to be used beyond the locking in effect, the caller is 394 * responsible for guaranteeing that the pwq stays online. 395 * 396 * The if/else clause exists only for the lockdep assertion and can be 397 * ignored. 398 */ 399 #define for_each_pwq(pwq, wq) \ 400 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 401 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 402 else 403 404 #ifdef CONFIG_DEBUG_OBJECTS_WORK 405 406 static struct debug_obj_descr work_debug_descr; 407 408 static void *work_debug_hint(void *addr) 409 { 410 return ((struct work_struct *) addr)->func; 411 } 412 413 /* 414 * fixup_init is called when: 415 * - an active object is initialized 416 */ 417 static int work_fixup_init(void *addr, enum debug_obj_state state) 418 { 419 struct work_struct *work = addr; 420 421 switch (state) { 422 case ODEBUG_STATE_ACTIVE: 423 cancel_work_sync(work); 424 debug_object_init(work, &work_debug_descr); 425 return 1; 426 default: 427 return 0; 428 } 429 } 430 431 /* 432 * fixup_activate is called when: 433 * - an active object is activated 434 * - an unknown object is activated (might be a statically initialized object) 435 */ 436 static int work_fixup_activate(void *addr, enum debug_obj_state state) 437 { 438 struct work_struct *work = addr; 439 440 switch (state) { 441 442 case ODEBUG_STATE_NOTAVAILABLE: 443 /* 444 * This is not really a fixup. The work struct was 445 * statically initialized. We just make sure that it 446 * is tracked in the object tracker. 447 */ 448 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 449 debug_object_init(work, &work_debug_descr); 450 debug_object_activate(work, &work_debug_descr); 451 return 0; 452 } 453 WARN_ON_ONCE(1); 454 return 0; 455 456 case ODEBUG_STATE_ACTIVE: 457 WARN_ON(1); 458 459 default: 460 return 0; 461 } 462 } 463 464 /* 465 * fixup_free is called when: 466 * - an active object is freed 467 */ 468 static int work_fixup_free(void *addr, enum debug_obj_state state) 469 { 470 struct work_struct *work = addr; 471 472 switch (state) { 473 case ODEBUG_STATE_ACTIVE: 474 cancel_work_sync(work); 475 debug_object_free(work, &work_debug_descr); 476 return 1; 477 default: 478 return 0; 479 } 480 } 481 482 static struct debug_obj_descr work_debug_descr = { 483 .name = "work_struct", 484 .debug_hint = work_debug_hint, 485 .fixup_init = work_fixup_init, 486 .fixup_activate = work_fixup_activate, 487 .fixup_free = work_fixup_free, 488 }; 489 490 static inline void debug_work_activate(struct work_struct *work) 491 { 492 debug_object_activate(work, &work_debug_descr); 493 } 494 495 static inline void debug_work_deactivate(struct work_struct *work) 496 { 497 debug_object_deactivate(work, &work_debug_descr); 498 } 499 500 void __init_work(struct work_struct *work, int onstack) 501 { 502 if (onstack) 503 debug_object_init_on_stack(work, &work_debug_descr); 504 else 505 debug_object_init(work, &work_debug_descr); 506 } 507 EXPORT_SYMBOL_GPL(__init_work); 508 509 void destroy_work_on_stack(struct work_struct *work) 510 { 511 debug_object_free(work, &work_debug_descr); 512 } 513 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 514 515 #else 516 static inline void debug_work_activate(struct work_struct *work) { } 517 static inline void debug_work_deactivate(struct work_struct *work) { } 518 #endif 519 520 /* allocate ID and assign it to @pool */ 521 static int worker_pool_assign_id(struct worker_pool *pool) 522 { 523 int ret; 524 525 lockdep_assert_held(&wq_pool_mutex); 526 527 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL); 528 if (ret >= 0) { 529 pool->id = ret; 530 return 0; 531 } 532 return ret; 533 } 534 535 /** 536 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 537 * @wq: the target workqueue 538 * @node: the node ID 539 * 540 * This must be called either with pwq_lock held or sched RCU read locked. 541 * If the pwq needs to be used beyond the locking in effect, the caller is 542 * responsible for guaranteeing that the pwq stays online. 543 */ 544 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 545 int node) 546 { 547 assert_rcu_or_wq_mutex(wq); 548 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 549 } 550 551 static unsigned int work_color_to_flags(int color) 552 { 553 return color << WORK_STRUCT_COLOR_SHIFT; 554 } 555 556 static int get_work_color(struct work_struct *work) 557 { 558 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 559 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 560 } 561 562 static int work_next_color(int color) 563 { 564 return (color + 1) % WORK_NR_COLORS; 565 } 566 567 /* 568 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 569 * contain the pointer to the queued pwq. Once execution starts, the flag 570 * is cleared and the high bits contain OFFQ flags and pool ID. 571 * 572 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 573 * and clear_work_data() can be used to set the pwq, pool or clear 574 * work->data. These functions should only be called while the work is 575 * owned - ie. while the PENDING bit is set. 576 * 577 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 578 * corresponding to a work. Pool is available once the work has been 579 * queued anywhere after initialization until it is sync canceled. pwq is 580 * available only while the work item is queued. 581 * 582 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 583 * canceled. While being canceled, a work item may have its PENDING set 584 * but stay off timer and worklist for arbitrarily long and nobody should 585 * try to steal the PENDING bit. 586 */ 587 static inline void set_work_data(struct work_struct *work, unsigned long data, 588 unsigned long flags) 589 { 590 WARN_ON_ONCE(!work_pending(work)); 591 atomic_long_set(&work->data, data | flags | work_static(work)); 592 } 593 594 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 595 unsigned long extra_flags) 596 { 597 set_work_data(work, (unsigned long)pwq, 598 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 599 } 600 601 static void set_work_pool_and_keep_pending(struct work_struct *work, 602 int pool_id) 603 { 604 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 605 WORK_STRUCT_PENDING); 606 } 607 608 static void set_work_pool_and_clear_pending(struct work_struct *work, 609 int pool_id) 610 { 611 /* 612 * The following wmb is paired with the implied mb in 613 * test_and_set_bit(PENDING) and ensures all updates to @work made 614 * here are visible to and precede any updates by the next PENDING 615 * owner. 616 */ 617 smp_wmb(); 618 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 619 } 620 621 static void clear_work_data(struct work_struct *work) 622 { 623 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 624 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 625 } 626 627 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 628 { 629 unsigned long data = atomic_long_read(&work->data); 630 631 if (data & WORK_STRUCT_PWQ) 632 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 633 else 634 return NULL; 635 } 636 637 /** 638 * get_work_pool - return the worker_pool a given work was associated with 639 * @work: the work item of interest 640 * 641 * Return the worker_pool @work was last associated with. %NULL if none. 642 * 643 * Pools are created and destroyed under wq_pool_mutex, and allows read 644 * access under sched-RCU read lock. As such, this function should be 645 * called under wq_pool_mutex or with preemption disabled. 646 * 647 * All fields of the returned pool are accessible as long as the above 648 * mentioned locking is in effect. If the returned pool needs to be used 649 * beyond the critical section, the caller is responsible for ensuring the 650 * returned pool is and stays online. 651 */ 652 static struct worker_pool *get_work_pool(struct work_struct *work) 653 { 654 unsigned long data = atomic_long_read(&work->data); 655 int pool_id; 656 657 assert_rcu_or_pool_mutex(); 658 659 if (data & WORK_STRUCT_PWQ) 660 return ((struct pool_workqueue *) 661 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 662 663 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 664 if (pool_id == WORK_OFFQ_POOL_NONE) 665 return NULL; 666 667 return idr_find(&worker_pool_idr, pool_id); 668 } 669 670 /** 671 * get_work_pool_id - return the worker pool ID a given work is associated with 672 * @work: the work item of interest 673 * 674 * Return the worker_pool ID @work was last associated with. 675 * %WORK_OFFQ_POOL_NONE if none. 676 */ 677 static int get_work_pool_id(struct work_struct *work) 678 { 679 unsigned long data = atomic_long_read(&work->data); 680 681 if (data & WORK_STRUCT_PWQ) 682 return ((struct pool_workqueue *) 683 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 684 685 return data >> WORK_OFFQ_POOL_SHIFT; 686 } 687 688 static void mark_work_canceling(struct work_struct *work) 689 { 690 unsigned long pool_id = get_work_pool_id(work); 691 692 pool_id <<= WORK_OFFQ_POOL_SHIFT; 693 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 694 } 695 696 static bool work_is_canceling(struct work_struct *work) 697 { 698 unsigned long data = atomic_long_read(&work->data); 699 700 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 701 } 702 703 /* 704 * Policy functions. These define the policies on how the global worker 705 * pools are managed. Unless noted otherwise, these functions assume that 706 * they're being called with pool->lock held. 707 */ 708 709 static bool __need_more_worker(struct worker_pool *pool) 710 { 711 return !atomic_read(&pool->nr_running); 712 } 713 714 /* 715 * Need to wake up a worker? Called from anything but currently 716 * running workers. 717 * 718 * Note that, because unbound workers never contribute to nr_running, this 719 * function will always return %true for unbound pools as long as the 720 * worklist isn't empty. 721 */ 722 static bool need_more_worker(struct worker_pool *pool) 723 { 724 return !list_empty(&pool->worklist) && __need_more_worker(pool); 725 } 726 727 /* Can I start working? Called from busy but !running workers. */ 728 static bool may_start_working(struct worker_pool *pool) 729 { 730 return pool->nr_idle; 731 } 732 733 /* Do I need to keep working? Called from currently running workers. */ 734 static bool keep_working(struct worker_pool *pool) 735 { 736 return !list_empty(&pool->worklist) && 737 atomic_read(&pool->nr_running) <= 1; 738 } 739 740 /* Do we need a new worker? Called from manager. */ 741 static bool need_to_create_worker(struct worker_pool *pool) 742 { 743 return need_more_worker(pool) && !may_start_working(pool); 744 } 745 746 /* Do I need to be the manager? */ 747 static bool need_to_manage_workers(struct worker_pool *pool) 748 { 749 return need_to_create_worker(pool) || 750 (pool->flags & POOL_MANAGE_WORKERS); 751 } 752 753 /* Do we have too many workers and should some go away? */ 754 static bool too_many_workers(struct worker_pool *pool) 755 { 756 bool managing = mutex_is_locked(&pool->manager_arb); 757 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 758 int nr_busy = pool->nr_workers - nr_idle; 759 760 /* 761 * nr_idle and idle_list may disagree if idle rebinding is in 762 * progress. Never return %true if idle_list is empty. 763 */ 764 if (list_empty(&pool->idle_list)) 765 return false; 766 767 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 768 } 769 770 /* 771 * Wake up functions. 772 */ 773 774 /* Return the first worker. Safe with preemption disabled */ 775 static struct worker *first_worker(struct worker_pool *pool) 776 { 777 if (unlikely(list_empty(&pool->idle_list))) 778 return NULL; 779 780 return list_first_entry(&pool->idle_list, struct worker, entry); 781 } 782 783 /** 784 * wake_up_worker - wake up an idle worker 785 * @pool: worker pool to wake worker from 786 * 787 * Wake up the first idle worker of @pool. 788 * 789 * CONTEXT: 790 * spin_lock_irq(pool->lock). 791 */ 792 static void wake_up_worker(struct worker_pool *pool) 793 { 794 struct worker *worker = first_worker(pool); 795 796 if (likely(worker)) 797 wake_up_process(worker->task); 798 } 799 800 /** 801 * wq_worker_waking_up - a worker is waking up 802 * @task: task waking up 803 * @cpu: CPU @task is waking up to 804 * 805 * This function is called during try_to_wake_up() when a worker is 806 * being awoken. 807 * 808 * CONTEXT: 809 * spin_lock_irq(rq->lock) 810 */ 811 void wq_worker_waking_up(struct task_struct *task, int cpu) 812 { 813 struct worker *worker = kthread_data(task); 814 815 if (!(worker->flags & WORKER_NOT_RUNNING)) { 816 WARN_ON_ONCE(worker->pool->cpu != cpu); 817 atomic_inc(&worker->pool->nr_running); 818 } 819 } 820 821 /** 822 * wq_worker_sleeping - a worker is going to sleep 823 * @task: task going to sleep 824 * @cpu: CPU in question, must be the current CPU number 825 * 826 * This function is called during schedule() when a busy worker is 827 * going to sleep. Worker on the same cpu can be woken up by 828 * returning pointer to its task. 829 * 830 * CONTEXT: 831 * spin_lock_irq(rq->lock) 832 * 833 * RETURNS: 834 * Worker task on @cpu to wake up, %NULL if none. 835 */ 836 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 837 { 838 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 839 struct worker_pool *pool; 840 841 /* 842 * Rescuers, which may not have all the fields set up like normal 843 * workers, also reach here, let's not access anything before 844 * checking NOT_RUNNING. 845 */ 846 if (worker->flags & WORKER_NOT_RUNNING) 847 return NULL; 848 849 pool = worker->pool; 850 851 /* this can only happen on the local cpu */ 852 if (WARN_ON_ONCE(cpu != raw_smp_processor_id())) 853 return NULL; 854 855 /* 856 * The counterpart of the following dec_and_test, implied mb, 857 * worklist not empty test sequence is in insert_work(). 858 * Please read comment there. 859 * 860 * NOT_RUNNING is clear. This means that we're bound to and 861 * running on the local cpu w/ rq lock held and preemption 862 * disabled, which in turn means that none else could be 863 * manipulating idle_list, so dereferencing idle_list without pool 864 * lock is safe. 865 */ 866 if (atomic_dec_and_test(&pool->nr_running) && 867 !list_empty(&pool->worklist)) 868 to_wakeup = first_worker(pool); 869 return to_wakeup ? to_wakeup->task : NULL; 870 } 871 872 /** 873 * worker_set_flags - set worker flags and adjust nr_running accordingly 874 * @worker: self 875 * @flags: flags to set 876 * @wakeup: wakeup an idle worker if necessary 877 * 878 * Set @flags in @worker->flags and adjust nr_running accordingly. If 879 * nr_running becomes zero and @wakeup is %true, an idle worker is 880 * woken up. 881 * 882 * CONTEXT: 883 * spin_lock_irq(pool->lock) 884 */ 885 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 886 bool wakeup) 887 { 888 struct worker_pool *pool = worker->pool; 889 890 WARN_ON_ONCE(worker->task != current); 891 892 /* 893 * If transitioning into NOT_RUNNING, adjust nr_running and 894 * wake up an idle worker as necessary if requested by 895 * @wakeup. 896 */ 897 if ((flags & WORKER_NOT_RUNNING) && 898 !(worker->flags & WORKER_NOT_RUNNING)) { 899 if (wakeup) { 900 if (atomic_dec_and_test(&pool->nr_running) && 901 !list_empty(&pool->worklist)) 902 wake_up_worker(pool); 903 } else 904 atomic_dec(&pool->nr_running); 905 } 906 907 worker->flags |= flags; 908 } 909 910 /** 911 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 912 * @worker: self 913 * @flags: flags to clear 914 * 915 * Clear @flags in @worker->flags and adjust nr_running accordingly. 916 * 917 * CONTEXT: 918 * spin_lock_irq(pool->lock) 919 */ 920 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 921 { 922 struct worker_pool *pool = worker->pool; 923 unsigned int oflags = worker->flags; 924 925 WARN_ON_ONCE(worker->task != current); 926 927 worker->flags &= ~flags; 928 929 /* 930 * If transitioning out of NOT_RUNNING, increment nr_running. Note 931 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 932 * of multiple flags, not a single flag. 933 */ 934 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 935 if (!(worker->flags & WORKER_NOT_RUNNING)) 936 atomic_inc(&pool->nr_running); 937 } 938 939 /** 940 * find_worker_executing_work - find worker which is executing a work 941 * @pool: pool of interest 942 * @work: work to find worker for 943 * 944 * Find a worker which is executing @work on @pool by searching 945 * @pool->busy_hash which is keyed by the address of @work. For a worker 946 * to match, its current execution should match the address of @work and 947 * its work function. This is to avoid unwanted dependency between 948 * unrelated work executions through a work item being recycled while still 949 * being executed. 950 * 951 * This is a bit tricky. A work item may be freed once its execution 952 * starts and nothing prevents the freed area from being recycled for 953 * another work item. If the same work item address ends up being reused 954 * before the original execution finishes, workqueue will identify the 955 * recycled work item as currently executing and make it wait until the 956 * current execution finishes, introducing an unwanted dependency. 957 * 958 * This function checks the work item address and work function to avoid 959 * false positives. Note that this isn't complete as one may construct a 960 * work function which can introduce dependency onto itself through a 961 * recycled work item. Well, if somebody wants to shoot oneself in the 962 * foot that badly, there's only so much we can do, and if such deadlock 963 * actually occurs, it should be easy to locate the culprit work function. 964 * 965 * CONTEXT: 966 * spin_lock_irq(pool->lock). 967 * 968 * RETURNS: 969 * Pointer to worker which is executing @work if found, NULL 970 * otherwise. 971 */ 972 static struct worker *find_worker_executing_work(struct worker_pool *pool, 973 struct work_struct *work) 974 { 975 struct worker *worker; 976 977 hash_for_each_possible(pool->busy_hash, worker, hentry, 978 (unsigned long)work) 979 if (worker->current_work == work && 980 worker->current_func == work->func) 981 return worker; 982 983 return NULL; 984 } 985 986 /** 987 * move_linked_works - move linked works to a list 988 * @work: start of series of works to be scheduled 989 * @head: target list to append @work to 990 * @nextp: out paramter for nested worklist walking 991 * 992 * Schedule linked works starting from @work to @head. Work series to 993 * be scheduled starts at @work and includes any consecutive work with 994 * WORK_STRUCT_LINKED set in its predecessor. 995 * 996 * If @nextp is not NULL, it's updated to point to the next work of 997 * the last scheduled work. This allows move_linked_works() to be 998 * nested inside outer list_for_each_entry_safe(). 999 * 1000 * CONTEXT: 1001 * spin_lock_irq(pool->lock). 1002 */ 1003 static void move_linked_works(struct work_struct *work, struct list_head *head, 1004 struct work_struct **nextp) 1005 { 1006 struct work_struct *n; 1007 1008 /* 1009 * Linked worklist will always end before the end of the list, 1010 * use NULL for list head. 1011 */ 1012 list_for_each_entry_safe_from(work, n, NULL, entry) { 1013 list_move_tail(&work->entry, head); 1014 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1015 break; 1016 } 1017 1018 /* 1019 * If we're already inside safe list traversal and have moved 1020 * multiple works to the scheduled queue, the next position 1021 * needs to be updated. 1022 */ 1023 if (nextp) 1024 *nextp = n; 1025 } 1026 1027 /** 1028 * get_pwq - get an extra reference on the specified pool_workqueue 1029 * @pwq: pool_workqueue to get 1030 * 1031 * Obtain an extra reference on @pwq. The caller should guarantee that 1032 * @pwq has positive refcnt and be holding the matching pool->lock. 1033 */ 1034 static void get_pwq(struct pool_workqueue *pwq) 1035 { 1036 lockdep_assert_held(&pwq->pool->lock); 1037 WARN_ON_ONCE(pwq->refcnt <= 0); 1038 pwq->refcnt++; 1039 } 1040 1041 /** 1042 * put_pwq - put a pool_workqueue reference 1043 * @pwq: pool_workqueue to put 1044 * 1045 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1046 * destruction. The caller should be holding the matching pool->lock. 1047 */ 1048 static void put_pwq(struct pool_workqueue *pwq) 1049 { 1050 lockdep_assert_held(&pwq->pool->lock); 1051 if (likely(--pwq->refcnt)) 1052 return; 1053 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1054 return; 1055 /* 1056 * @pwq can't be released under pool->lock, bounce to 1057 * pwq_unbound_release_workfn(). This never recurses on the same 1058 * pool->lock as this path is taken only for unbound workqueues and 1059 * the release work item is scheduled on a per-cpu workqueue. To 1060 * avoid lockdep warning, unbound pool->locks are given lockdep 1061 * subclass of 1 in get_unbound_pool(). 1062 */ 1063 schedule_work(&pwq->unbound_release_work); 1064 } 1065 1066 /** 1067 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1068 * @pwq: pool_workqueue to put (can be %NULL) 1069 * 1070 * put_pwq() with locking. This function also allows %NULL @pwq. 1071 */ 1072 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1073 { 1074 if (pwq) { 1075 /* 1076 * As both pwqs and pools are sched-RCU protected, the 1077 * following lock operations are safe. 1078 */ 1079 spin_lock_irq(&pwq->pool->lock); 1080 put_pwq(pwq); 1081 spin_unlock_irq(&pwq->pool->lock); 1082 } 1083 } 1084 1085 static void pwq_activate_delayed_work(struct work_struct *work) 1086 { 1087 struct pool_workqueue *pwq = get_work_pwq(work); 1088 1089 trace_workqueue_activate_work(work); 1090 move_linked_works(work, &pwq->pool->worklist, NULL); 1091 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1092 pwq->nr_active++; 1093 } 1094 1095 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1096 { 1097 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1098 struct work_struct, entry); 1099 1100 pwq_activate_delayed_work(work); 1101 } 1102 1103 /** 1104 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1105 * @pwq: pwq of interest 1106 * @color: color of work which left the queue 1107 * 1108 * A work either has completed or is removed from pending queue, 1109 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1110 * 1111 * CONTEXT: 1112 * spin_lock_irq(pool->lock). 1113 */ 1114 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1115 { 1116 /* uncolored work items don't participate in flushing or nr_active */ 1117 if (color == WORK_NO_COLOR) 1118 goto out_put; 1119 1120 pwq->nr_in_flight[color]--; 1121 1122 pwq->nr_active--; 1123 if (!list_empty(&pwq->delayed_works)) { 1124 /* one down, submit a delayed one */ 1125 if (pwq->nr_active < pwq->max_active) 1126 pwq_activate_first_delayed(pwq); 1127 } 1128 1129 /* is flush in progress and are we at the flushing tip? */ 1130 if (likely(pwq->flush_color != color)) 1131 goto out_put; 1132 1133 /* are there still in-flight works? */ 1134 if (pwq->nr_in_flight[color]) 1135 goto out_put; 1136 1137 /* this pwq is done, clear flush_color */ 1138 pwq->flush_color = -1; 1139 1140 /* 1141 * If this was the last pwq, wake up the first flusher. It 1142 * will handle the rest. 1143 */ 1144 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1145 complete(&pwq->wq->first_flusher->done); 1146 out_put: 1147 put_pwq(pwq); 1148 } 1149 1150 /** 1151 * try_to_grab_pending - steal work item from worklist and disable irq 1152 * @work: work item to steal 1153 * @is_dwork: @work is a delayed_work 1154 * @flags: place to store irq state 1155 * 1156 * Try to grab PENDING bit of @work. This function can handle @work in any 1157 * stable state - idle, on timer or on worklist. Return values are 1158 * 1159 * 1 if @work was pending and we successfully stole PENDING 1160 * 0 if @work was idle and we claimed PENDING 1161 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1162 * -ENOENT if someone else is canceling @work, this state may persist 1163 * for arbitrarily long 1164 * 1165 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1166 * interrupted while holding PENDING and @work off queue, irq must be 1167 * disabled on entry. This, combined with delayed_work->timer being 1168 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1169 * 1170 * On successful return, >= 0, irq is disabled and the caller is 1171 * responsible for releasing it using local_irq_restore(*@flags). 1172 * 1173 * This function is safe to call from any context including IRQ handler. 1174 */ 1175 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1176 unsigned long *flags) 1177 { 1178 struct worker_pool *pool; 1179 struct pool_workqueue *pwq; 1180 1181 local_irq_save(*flags); 1182 1183 /* try to steal the timer if it exists */ 1184 if (is_dwork) { 1185 struct delayed_work *dwork = to_delayed_work(work); 1186 1187 /* 1188 * dwork->timer is irqsafe. If del_timer() fails, it's 1189 * guaranteed that the timer is not queued anywhere and not 1190 * running on the local CPU. 1191 */ 1192 if (likely(del_timer(&dwork->timer))) 1193 return 1; 1194 } 1195 1196 /* try to claim PENDING the normal way */ 1197 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1198 return 0; 1199 1200 /* 1201 * The queueing is in progress, or it is already queued. Try to 1202 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1203 */ 1204 pool = get_work_pool(work); 1205 if (!pool) 1206 goto fail; 1207 1208 spin_lock(&pool->lock); 1209 /* 1210 * work->data is guaranteed to point to pwq only while the work 1211 * item is queued on pwq->wq, and both updating work->data to point 1212 * to pwq on queueing and to pool on dequeueing are done under 1213 * pwq->pool->lock. This in turn guarantees that, if work->data 1214 * points to pwq which is associated with a locked pool, the work 1215 * item is currently queued on that pool. 1216 */ 1217 pwq = get_work_pwq(work); 1218 if (pwq && pwq->pool == pool) { 1219 debug_work_deactivate(work); 1220 1221 /* 1222 * A delayed work item cannot be grabbed directly because 1223 * it might have linked NO_COLOR work items which, if left 1224 * on the delayed_list, will confuse pwq->nr_active 1225 * management later on and cause stall. Make sure the work 1226 * item is activated before grabbing. 1227 */ 1228 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1229 pwq_activate_delayed_work(work); 1230 1231 list_del_init(&work->entry); 1232 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work)); 1233 1234 /* work->data points to pwq iff queued, point to pool */ 1235 set_work_pool_and_keep_pending(work, pool->id); 1236 1237 spin_unlock(&pool->lock); 1238 return 1; 1239 } 1240 spin_unlock(&pool->lock); 1241 fail: 1242 local_irq_restore(*flags); 1243 if (work_is_canceling(work)) 1244 return -ENOENT; 1245 cpu_relax(); 1246 return -EAGAIN; 1247 } 1248 1249 /** 1250 * insert_work - insert a work into a pool 1251 * @pwq: pwq @work belongs to 1252 * @work: work to insert 1253 * @head: insertion point 1254 * @extra_flags: extra WORK_STRUCT_* flags to set 1255 * 1256 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1257 * work_struct flags. 1258 * 1259 * CONTEXT: 1260 * spin_lock_irq(pool->lock). 1261 */ 1262 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1263 struct list_head *head, unsigned int extra_flags) 1264 { 1265 struct worker_pool *pool = pwq->pool; 1266 1267 /* we own @work, set data and link */ 1268 set_work_pwq(work, pwq, extra_flags); 1269 list_add_tail(&work->entry, head); 1270 get_pwq(pwq); 1271 1272 /* 1273 * Ensure either wq_worker_sleeping() sees the above 1274 * list_add_tail() or we see zero nr_running to avoid workers lying 1275 * around lazily while there are works to be processed. 1276 */ 1277 smp_mb(); 1278 1279 if (__need_more_worker(pool)) 1280 wake_up_worker(pool); 1281 } 1282 1283 /* 1284 * Test whether @work is being queued from another work executing on the 1285 * same workqueue. 1286 */ 1287 static bool is_chained_work(struct workqueue_struct *wq) 1288 { 1289 struct worker *worker; 1290 1291 worker = current_wq_worker(); 1292 /* 1293 * Return %true iff I'm a worker execuing a work item on @wq. If 1294 * I'm @worker, it's safe to dereference it without locking. 1295 */ 1296 return worker && worker->current_pwq->wq == wq; 1297 } 1298 1299 static void __queue_work(int cpu, struct workqueue_struct *wq, 1300 struct work_struct *work) 1301 { 1302 struct pool_workqueue *pwq; 1303 struct worker_pool *last_pool; 1304 struct list_head *worklist; 1305 unsigned int work_flags; 1306 unsigned int req_cpu = cpu; 1307 1308 /* 1309 * While a work item is PENDING && off queue, a task trying to 1310 * steal the PENDING will busy-loop waiting for it to either get 1311 * queued or lose PENDING. Grabbing PENDING and queueing should 1312 * happen with IRQ disabled. 1313 */ 1314 WARN_ON_ONCE(!irqs_disabled()); 1315 1316 debug_work_activate(work); 1317 1318 /* if dying, only works from the same workqueue are allowed */ 1319 if (unlikely(wq->flags & __WQ_DRAINING) && 1320 WARN_ON_ONCE(!is_chained_work(wq))) 1321 return; 1322 retry: 1323 if (req_cpu == WORK_CPU_UNBOUND) 1324 cpu = raw_smp_processor_id(); 1325 1326 /* pwq which will be used unless @work is executing elsewhere */ 1327 if (!(wq->flags & WQ_UNBOUND)) 1328 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1329 else 1330 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1331 1332 /* 1333 * If @work was previously on a different pool, it might still be 1334 * running there, in which case the work needs to be queued on that 1335 * pool to guarantee non-reentrancy. 1336 */ 1337 last_pool = get_work_pool(work); 1338 if (last_pool && last_pool != pwq->pool) { 1339 struct worker *worker; 1340 1341 spin_lock(&last_pool->lock); 1342 1343 worker = find_worker_executing_work(last_pool, work); 1344 1345 if (worker && worker->current_pwq->wq == wq) { 1346 pwq = worker->current_pwq; 1347 } else { 1348 /* meh... not running there, queue here */ 1349 spin_unlock(&last_pool->lock); 1350 spin_lock(&pwq->pool->lock); 1351 } 1352 } else { 1353 spin_lock(&pwq->pool->lock); 1354 } 1355 1356 /* 1357 * pwq is determined and locked. For unbound pools, we could have 1358 * raced with pwq release and it could already be dead. If its 1359 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1360 * without another pwq replacing it in the numa_pwq_tbl or while 1361 * work items are executing on it, so the retrying is guaranteed to 1362 * make forward-progress. 1363 */ 1364 if (unlikely(!pwq->refcnt)) { 1365 if (wq->flags & WQ_UNBOUND) { 1366 spin_unlock(&pwq->pool->lock); 1367 cpu_relax(); 1368 goto retry; 1369 } 1370 /* oops */ 1371 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1372 wq->name, cpu); 1373 } 1374 1375 /* pwq determined, queue */ 1376 trace_workqueue_queue_work(req_cpu, pwq, work); 1377 1378 if (WARN_ON(!list_empty(&work->entry))) { 1379 spin_unlock(&pwq->pool->lock); 1380 return; 1381 } 1382 1383 pwq->nr_in_flight[pwq->work_color]++; 1384 work_flags = work_color_to_flags(pwq->work_color); 1385 1386 if (likely(pwq->nr_active < pwq->max_active)) { 1387 trace_workqueue_activate_work(work); 1388 pwq->nr_active++; 1389 worklist = &pwq->pool->worklist; 1390 } else { 1391 work_flags |= WORK_STRUCT_DELAYED; 1392 worklist = &pwq->delayed_works; 1393 } 1394 1395 insert_work(pwq, work, worklist, work_flags); 1396 1397 spin_unlock(&pwq->pool->lock); 1398 } 1399 1400 /** 1401 * queue_work_on - queue work on specific cpu 1402 * @cpu: CPU number to execute work on 1403 * @wq: workqueue to use 1404 * @work: work to queue 1405 * 1406 * Returns %false if @work was already on a queue, %true otherwise. 1407 * 1408 * We queue the work to a specific CPU, the caller must ensure it 1409 * can't go away. 1410 */ 1411 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1412 struct work_struct *work) 1413 { 1414 bool ret = false; 1415 unsigned long flags; 1416 1417 local_irq_save(flags); 1418 1419 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1420 __queue_work(cpu, wq, work); 1421 ret = true; 1422 } 1423 1424 local_irq_restore(flags); 1425 return ret; 1426 } 1427 EXPORT_SYMBOL(queue_work_on); 1428 1429 void delayed_work_timer_fn(unsigned long __data) 1430 { 1431 struct delayed_work *dwork = (struct delayed_work *)__data; 1432 1433 /* should have been called from irqsafe timer with irq already off */ 1434 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1435 } 1436 EXPORT_SYMBOL(delayed_work_timer_fn); 1437 1438 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1439 struct delayed_work *dwork, unsigned long delay) 1440 { 1441 struct timer_list *timer = &dwork->timer; 1442 struct work_struct *work = &dwork->work; 1443 1444 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1445 timer->data != (unsigned long)dwork); 1446 WARN_ON_ONCE(timer_pending(timer)); 1447 WARN_ON_ONCE(!list_empty(&work->entry)); 1448 1449 /* 1450 * If @delay is 0, queue @dwork->work immediately. This is for 1451 * both optimization and correctness. The earliest @timer can 1452 * expire is on the closest next tick and delayed_work users depend 1453 * on that there's no such delay when @delay is 0. 1454 */ 1455 if (!delay) { 1456 __queue_work(cpu, wq, &dwork->work); 1457 return; 1458 } 1459 1460 timer_stats_timer_set_start_info(&dwork->timer); 1461 1462 dwork->wq = wq; 1463 dwork->cpu = cpu; 1464 timer->expires = jiffies + delay; 1465 1466 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1467 add_timer_on(timer, cpu); 1468 else 1469 add_timer(timer); 1470 } 1471 1472 /** 1473 * queue_delayed_work_on - queue work on specific CPU after delay 1474 * @cpu: CPU number to execute work on 1475 * @wq: workqueue to use 1476 * @dwork: work to queue 1477 * @delay: number of jiffies to wait before queueing 1478 * 1479 * Returns %false if @work was already on a queue, %true otherwise. If 1480 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1481 * execution. 1482 */ 1483 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1484 struct delayed_work *dwork, unsigned long delay) 1485 { 1486 struct work_struct *work = &dwork->work; 1487 bool ret = false; 1488 unsigned long flags; 1489 1490 /* read the comment in __queue_work() */ 1491 local_irq_save(flags); 1492 1493 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1494 __queue_delayed_work(cpu, wq, dwork, delay); 1495 ret = true; 1496 } 1497 1498 local_irq_restore(flags); 1499 return ret; 1500 } 1501 EXPORT_SYMBOL(queue_delayed_work_on); 1502 1503 /** 1504 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1505 * @cpu: CPU number to execute work on 1506 * @wq: workqueue to use 1507 * @dwork: work to queue 1508 * @delay: number of jiffies to wait before queueing 1509 * 1510 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1511 * modify @dwork's timer so that it expires after @delay. If @delay is 1512 * zero, @work is guaranteed to be scheduled immediately regardless of its 1513 * current state. 1514 * 1515 * Returns %false if @dwork was idle and queued, %true if @dwork was 1516 * pending and its timer was modified. 1517 * 1518 * This function is safe to call from any context including IRQ handler. 1519 * See try_to_grab_pending() for details. 1520 */ 1521 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1522 struct delayed_work *dwork, unsigned long delay) 1523 { 1524 unsigned long flags; 1525 int ret; 1526 1527 do { 1528 ret = try_to_grab_pending(&dwork->work, true, &flags); 1529 } while (unlikely(ret == -EAGAIN)); 1530 1531 if (likely(ret >= 0)) { 1532 __queue_delayed_work(cpu, wq, dwork, delay); 1533 local_irq_restore(flags); 1534 } 1535 1536 /* -ENOENT from try_to_grab_pending() becomes %true */ 1537 return ret; 1538 } 1539 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1540 1541 /** 1542 * worker_enter_idle - enter idle state 1543 * @worker: worker which is entering idle state 1544 * 1545 * @worker is entering idle state. Update stats and idle timer if 1546 * necessary. 1547 * 1548 * LOCKING: 1549 * spin_lock_irq(pool->lock). 1550 */ 1551 static void worker_enter_idle(struct worker *worker) 1552 { 1553 struct worker_pool *pool = worker->pool; 1554 1555 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1556 WARN_ON_ONCE(!list_empty(&worker->entry) && 1557 (worker->hentry.next || worker->hentry.pprev))) 1558 return; 1559 1560 /* can't use worker_set_flags(), also called from start_worker() */ 1561 worker->flags |= WORKER_IDLE; 1562 pool->nr_idle++; 1563 worker->last_active = jiffies; 1564 1565 /* idle_list is LIFO */ 1566 list_add(&worker->entry, &pool->idle_list); 1567 1568 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1569 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1570 1571 /* 1572 * Sanity check nr_running. Because wq_unbind_fn() releases 1573 * pool->lock between setting %WORKER_UNBOUND and zapping 1574 * nr_running, the warning may trigger spuriously. Check iff 1575 * unbind is not in progress. 1576 */ 1577 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1578 pool->nr_workers == pool->nr_idle && 1579 atomic_read(&pool->nr_running)); 1580 } 1581 1582 /** 1583 * worker_leave_idle - leave idle state 1584 * @worker: worker which is leaving idle state 1585 * 1586 * @worker is leaving idle state. Update stats. 1587 * 1588 * LOCKING: 1589 * spin_lock_irq(pool->lock). 1590 */ 1591 static void worker_leave_idle(struct worker *worker) 1592 { 1593 struct worker_pool *pool = worker->pool; 1594 1595 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1596 return; 1597 worker_clr_flags(worker, WORKER_IDLE); 1598 pool->nr_idle--; 1599 list_del_init(&worker->entry); 1600 } 1601 1602 /** 1603 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it 1604 * @pool: target worker_pool 1605 * 1606 * Bind %current to the cpu of @pool if it is associated and lock @pool. 1607 * 1608 * Works which are scheduled while the cpu is online must at least be 1609 * scheduled to a worker which is bound to the cpu so that if they are 1610 * flushed from cpu callbacks while cpu is going down, they are 1611 * guaranteed to execute on the cpu. 1612 * 1613 * This function is to be used by unbound workers and rescuers to bind 1614 * themselves to the target cpu and may race with cpu going down or 1615 * coming online. kthread_bind() can't be used because it may put the 1616 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1617 * verbatim as it's best effort and blocking and pool may be 1618 * [dis]associated in the meantime. 1619 * 1620 * This function tries set_cpus_allowed() and locks pool and verifies the 1621 * binding against %POOL_DISASSOCIATED which is set during 1622 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker 1623 * enters idle state or fetches works without dropping lock, it can 1624 * guarantee the scheduling requirement described in the first paragraph. 1625 * 1626 * CONTEXT: 1627 * Might sleep. Called without any lock but returns with pool->lock 1628 * held. 1629 * 1630 * RETURNS: 1631 * %true if the associated pool is online (@worker is successfully 1632 * bound), %false if offline. 1633 */ 1634 static bool worker_maybe_bind_and_lock(struct worker_pool *pool) 1635 __acquires(&pool->lock) 1636 { 1637 while (true) { 1638 /* 1639 * The following call may fail, succeed or succeed 1640 * without actually migrating the task to the cpu if 1641 * it races with cpu hotunplug operation. Verify 1642 * against POOL_DISASSOCIATED. 1643 */ 1644 if (!(pool->flags & POOL_DISASSOCIATED)) 1645 set_cpus_allowed_ptr(current, pool->attrs->cpumask); 1646 1647 spin_lock_irq(&pool->lock); 1648 if (pool->flags & POOL_DISASSOCIATED) 1649 return false; 1650 if (task_cpu(current) == pool->cpu && 1651 cpumask_equal(¤t->cpus_allowed, pool->attrs->cpumask)) 1652 return true; 1653 spin_unlock_irq(&pool->lock); 1654 1655 /* 1656 * We've raced with CPU hot[un]plug. Give it a breather 1657 * and retry migration. cond_resched() is required here; 1658 * otherwise, we might deadlock against cpu_stop trying to 1659 * bring down the CPU on non-preemptive kernel. 1660 */ 1661 cpu_relax(); 1662 cond_resched(); 1663 } 1664 } 1665 1666 static struct worker *alloc_worker(void) 1667 { 1668 struct worker *worker; 1669 1670 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1671 if (worker) { 1672 INIT_LIST_HEAD(&worker->entry); 1673 INIT_LIST_HEAD(&worker->scheduled); 1674 /* on creation a worker is in !idle && prep state */ 1675 worker->flags = WORKER_PREP; 1676 } 1677 return worker; 1678 } 1679 1680 /** 1681 * create_worker - create a new workqueue worker 1682 * @pool: pool the new worker will belong to 1683 * 1684 * Create a new worker which is bound to @pool. The returned worker 1685 * can be started by calling start_worker() or destroyed using 1686 * destroy_worker(). 1687 * 1688 * CONTEXT: 1689 * Might sleep. Does GFP_KERNEL allocations. 1690 * 1691 * RETURNS: 1692 * Pointer to the newly created worker. 1693 */ 1694 static struct worker *create_worker(struct worker_pool *pool) 1695 { 1696 struct worker *worker = NULL; 1697 int id = -1; 1698 char id_buf[16]; 1699 1700 lockdep_assert_held(&pool->manager_mutex); 1701 1702 /* 1703 * ID is needed to determine kthread name. Allocate ID first 1704 * without installing the pointer. 1705 */ 1706 idr_preload(GFP_KERNEL); 1707 spin_lock_irq(&pool->lock); 1708 1709 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT); 1710 1711 spin_unlock_irq(&pool->lock); 1712 idr_preload_end(); 1713 if (id < 0) 1714 goto fail; 1715 1716 worker = alloc_worker(); 1717 if (!worker) 1718 goto fail; 1719 1720 worker->pool = pool; 1721 worker->id = id; 1722 1723 if (pool->cpu >= 0) 1724 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1725 pool->attrs->nice < 0 ? "H" : ""); 1726 else 1727 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1728 1729 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1730 "kworker/%s", id_buf); 1731 if (IS_ERR(worker->task)) 1732 goto fail; 1733 1734 /* 1735 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1736 * online CPUs. It'll be re-applied when any of the CPUs come up. 1737 */ 1738 set_user_nice(worker->task, pool->attrs->nice); 1739 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1740 1741 /* prevent userland from meddling with cpumask of workqueue workers */ 1742 worker->task->flags |= PF_NO_SETAFFINITY; 1743 1744 /* 1745 * The caller is responsible for ensuring %POOL_DISASSOCIATED 1746 * remains stable across this function. See the comments above the 1747 * flag definition for details. 1748 */ 1749 if (pool->flags & POOL_DISASSOCIATED) 1750 worker->flags |= WORKER_UNBOUND; 1751 1752 /* successful, commit the pointer to idr */ 1753 spin_lock_irq(&pool->lock); 1754 idr_replace(&pool->worker_idr, worker, worker->id); 1755 spin_unlock_irq(&pool->lock); 1756 1757 return worker; 1758 1759 fail: 1760 if (id >= 0) { 1761 spin_lock_irq(&pool->lock); 1762 idr_remove(&pool->worker_idr, id); 1763 spin_unlock_irq(&pool->lock); 1764 } 1765 kfree(worker); 1766 return NULL; 1767 } 1768 1769 /** 1770 * start_worker - start a newly created worker 1771 * @worker: worker to start 1772 * 1773 * Make the pool aware of @worker and start it. 1774 * 1775 * CONTEXT: 1776 * spin_lock_irq(pool->lock). 1777 */ 1778 static void start_worker(struct worker *worker) 1779 { 1780 worker->flags |= WORKER_STARTED; 1781 worker->pool->nr_workers++; 1782 worker_enter_idle(worker); 1783 wake_up_process(worker->task); 1784 } 1785 1786 /** 1787 * create_and_start_worker - create and start a worker for a pool 1788 * @pool: the target pool 1789 * 1790 * Grab the managership of @pool and create and start a new worker for it. 1791 */ 1792 static int create_and_start_worker(struct worker_pool *pool) 1793 { 1794 struct worker *worker; 1795 1796 mutex_lock(&pool->manager_mutex); 1797 1798 worker = create_worker(pool); 1799 if (worker) { 1800 spin_lock_irq(&pool->lock); 1801 start_worker(worker); 1802 spin_unlock_irq(&pool->lock); 1803 } 1804 1805 mutex_unlock(&pool->manager_mutex); 1806 1807 return worker ? 0 : -ENOMEM; 1808 } 1809 1810 /** 1811 * destroy_worker - destroy a workqueue worker 1812 * @worker: worker to be destroyed 1813 * 1814 * Destroy @worker and adjust @pool stats accordingly. 1815 * 1816 * CONTEXT: 1817 * spin_lock_irq(pool->lock) which is released and regrabbed. 1818 */ 1819 static void destroy_worker(struct worker *worker) 1820 { 1821 struct worker_pool *pool = worker->pool; 1822 1823 lockdep_assert_held(&pool->manager_mutex); 1824 lockdep_assert_held(&pool->lock); 1825 1826 /* sanity check frenzy */ 1827 if (WARN_ON(worker->current_work) || 1828 WARN_ON(!list_empty(&worker->scheduled))) 1829 return; 1830 1831 if (worker->flags & WORKER_STARTED) 1832 pool->nr_workers--; 1833 if (worker->flags & WORKER_IDLE) 1834 pool->nr_idle--; 1835 1836 list_del_init(&worker->entry); 1837 worker->flags |= WORKER_DIE; 1838 1839 idr_remove(&pool->worker_idr, worker->id); 1840 1841 spin_unlock_irq(&pool->lock); 1842 1843 kthread_stop(worker->task); 1844 kfree(worker); 1845 1846 spin_lock_irq(&pool->lock); 1847 } 1848 1849 static void idle_worker_timeout(unsigned long __pool) 1850 { 1851 struct worker_pool *pool = (void *)__pool; 1852 1853 spin_lock_irq(&pool->lock); 1854 1855 if (too_many_workers(pool)) { 1856 struct worker *worker; 1857 unsigned long expires; 1858 1859 /* idle_list is kept in LIFO order, check the last one */ 1860 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1861 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1862 1863 if (time_before(jiffies, expires)) 1864 mod_timer(&pool->idle_timer, expires); 1865 else { 1866 /* it's been idle for too long, wake up manager */ 1867 pool->flags |= POOL_MANAGE_WORKERS; 1868 wake_up_worker(pool); 1869 } 1870 } 1871 1872 spin_unlock_irq(&pool->lock); 1873 } 1874 1875 static void send_mayday(struct work_struct *work) 1876 { 1877 struct pool_workqueue *pwq = get_work_pwq(work); 1878 struct workqueue_struct *wq = pwq->wq; 1879 1880 lockdep_assert_held(&wq_mayday_lock); 1881 1882 if (!wq->rescuer) 1883 return; 1884 1885 /* mayday mayday mayday */ 1886 if (list_empty(&pwq->mayday_node)) { 1887 list_add_tail(&pwq->mayday_node, &wq->maydays); 1888 wake_up_process(wq->rescuer->task); 1889 } 1890 } 1891 1892 static void pool_mayday_timeout(unsigned long __pool) 1893 { 1894 struct worker_pool *pool = (void *)__pool; 1895 struct work_struct *work; 1896 1897 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */ 1898 spin_lock(&pool->lock); 1899 1900 if (need_to_create_worker(pool)) { 1901 /* 1902 * We've been trying to create a new worker but 1903 * haven't been successful. We might be hitting an 1904 * allocation deadlock. Send distress signals to 1905 * rescuers. 1906 */ 1907 list_for_each_entry(work, &pool->worklist, entry) 1908 send_mayday(work); 1909 } 1910 1911 spin_unlock(&pool->lock); 1912 spin_unlock_irq(&wq_mayday_lock); 1913 1914 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1915 } 1916 1917 /** 1918 * maybe_create_worker - create a new worker if necessary 1919 * @pool: pool to create a new worker for 1920 * 1921 * Create a new worker for @pool if necessary. @pool is guaranteed to 1922 * have at least one idle worker on return from this function. If 1923 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1924 * sent to all rescuers with works scheduled on @pool to resolve 1925 * possible allocation deadlock. 1926 * 1927 * On return, need_to_create_worker() is guaranteed to be %false and 1928 * may_start_working() %true. 1929 * 1930 * LOCKING: 1931 * spin_lock_irq(pool->lock) which may be released and regrabbed 1932 * multiple times. Does GFP_KERNEL allocations. Called only from 1933 * manager. 1934 * 1935 * RETURNS: 1936 * %false if no action was taken and pool->lock stayed locked, %true 1937 * otherwise. 1938 */ 1939 static bool maybe_create_worker(struct worker_pool *pool) 1940 __releases(&pool->lock) 1941 __acquires(&pool->lock) 1942 { 1943 if (!need_to_create_worker(pool)) 1944 return false; 1945 restart: 1946 spin_unlock_irq(&pool->lock); 1947 1948 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1949 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1950 1951 while (true) { 1952 struct worker *worker; 1953 1954 worker = create_worker(pool); 1955 if (worker) { 1956 del_timer_sync(&pool->mayday_timer); 1957 spin_lock_irq(&pool->lock); 1958 start_worker(worker); 1959 if (WARN_ON_ONCE(need_to_create_worker(pool))) 1960 goto restart; 1961 return true; 1962 } 1963 1964 if (!need_to_create_worker(pool)) 1965 break; 1966 1967 __set_current_state(TASK_INTERRUPTIBLE); 1968 schedule_timeout(CREATE_COOLDOWN); 1969 1970 if (!need_to_create_worker(pool)) 1971 break; 1972 } 1973 1974 del_timer_sync(&pool->mayday_timer); 1975 spin_lock_irq(&pool->lock); 1976 if (need_to_create_worker(pool)) 1977 goto restart; 1978 return true; 1979 } 1980 1981 /** 1982 * maybe_destroy_worker - destroy workers which have been idle for a while 1983 * @pool: pool to destroy workers for 1984 * 1985 * Destroy @pool workers which have been idle for longer than 1986 * IDLE_WORKER_TIMEOUT. 1987 * 1988 * LOCKING: 1989 * spin_lock_irq(pool->lock) which may be released and regrabbed 1990 * multiple times. Called only from manager. 1991 * 1992 * RETURNS: 1993 * %false if no action was taken and pool->lock stayed locked, %true 1994 * otherwise. 1995 */ 1996 static bool maybe_destroy_workers(struct worker_pool *pool) 1997 { 1998 bool ret = false; 1999 2000 while (too_many_workers(pool)) { 2001 struct worker *worker; 2002 unsigned long expires; 2003 2004 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2005 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2006 2007 if (time_before(jiffies, expires)) { 2008 mod_timer(&pool->idle_timer, expires); 2009 break; 2010 } 2011 2012 destroy_worker(worker); 2013 ret = true; 2014 } 2015 2016 return ret; 2017 } 2018 2019 /** 2020 * manage_workers - manage worker pool 2021 * @worker: self 2022 * 2023 * Assume the manager role and manage the worker pool @worker belongs 2024 * to. At any given time, there can be only zero or one manager per 2025 * pool. The exclusion is handled automatically by this function. 2026 * 2027 * The caller can safely start processing works on false return. On 2028 * true return, it's guaranteed that need_to_create_worker() is false 2029 * and may_start_working() is true. 2030 * 2031 * CONTEXT: 2032 * spin_lock_irq(pool->lock) which may be released and regrabbed 2033 * multiple times. Does GFP_KERNEL allocations. 2034 * 2035 * RETURNS: 2036 * spin_lock_irq(pool->lock) which may be released and regrabbed 2037 * multiple times. Does GFP_KERNEL allocations. 2038 */ 2039 static bool manage_workers(struct worker *worker) 2040 { 2041 struct worker_pool *pool = worker->pool; 2042 bool ret = false; 2043 2044 /* 2045 * Managership is governed by two mutexes - manager_arb and 2046 * manager_mutex. manager_arb handles arbitration of manager role. 2047 * Anyone who successfully grabs manager_arb wins the arbitration 2048 * and becomes the manager. mutex_trylock() on pool->manager_arb 2049 * failure while holding pool->lock reliably indicates that someone 2050 * else is managing the pool and the worker which failed trylock 2051 * can proceed to executing work items. This means that anyone 2052 * grabbing manager_arb is responsible for actually performing 2053 * manager duties. If manager_arb is grabbed and released without 2054 * actual management, the pool may stall indefinitely. 2055 * 2056 * manager_mutex is used for exclusion of actual management 2057 * operations. The holder of manager_mutex can be sure that none 2058 * of management operations, including creation and destruction of 2059 * workers, won't take place until the mutex is released. Because 2060 * manager_mutex doesn't interfere with manager role arbitration, 2061 * it is guaranteed that the pool's management, while may be 2062 * delayed, won't be disturbed by someone else grabbing 2063 * manager_mutex. 2064 */ 2065 if (!mutex_trylock(&pool->manager_arb)) 2066 return ret; 2067 2068 /* 2069 * With manager arbitration won, manager_mutex would be free in 2070 * most cases. trylock first without dropping @pool->lock. 2071 */ 2072 if (unlikely(!mutex_trylock(&pool->manager_mutex))) { 2073 spin_unlock_irq(&pool->lock); 2074 mutex_lock(&pool->manager_mutex); 2075 spin_lock_irq(&pool->lock); 2076 ret = true; 2077 } 2078 2079 pool->flags &= ~POOL_MANAGE_WORKERS; 2080 2081 /* 2082 * Destroy and then create so that may_start_working() is true 2083 * on return. 2084 */ 2085 ret |= maybe_destroy_workers(pool); 2086 ret |= maybe_create_worker(pool); 2087 2088 mutex_unlock(&pool->manager_mutex); 2089 mutex_unlock(&pool->manager_arb); 2090 return ret; 2091 } 2092 2093 /** 2094 * process_one_work - process single work 2095 * @worker: self 2096 * @work: work to process 2097 * 2098 * Process @work. This function contains all the logics necessary to 2099 * process a single work including synchronization against and 2100 * interaction with other workers on the same cpu, queueing and 2101 * flushing. As long as context requirement is met, any worker can 2102 * call this function to process a work. 2103 * 2104 * CONTEXT: 2105 * spin_lock_irq(pool->lock) which is released and regrabbed. 2106 */ 2107 static void process_one_work(struct worker *worker, struct work_struct *work) 2108 __releases(&pool->lock) 2109 __acquires(&pool->lock) 2110 { 2111 struct pool_workqueue *pwq = get_work_pwq(work); 2112 struct worker_pool *pool = worker->pool; 2113 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2114 int work_color; 2115 struct worker *collision; 2116 #ifdef CONFIG_LOCKDEP 2117 /* 2118 * It is permissible to free the struct work_struct from 2119 * inside the function that is called from it, this we need to 2120 * take into account for lockdep too. To avoid bogus "held 2121 * lock freed" warnings as well as problems when looking into 2122 * work->lockdep_map, make a copy and use that here. 2123 */ 2124 struct lockdep_map lockdep_map; 2125 2126 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2127 #endif 2128 /* 2129 * Ensure we're on the correct CPU. DISASSOCIATED test is 2130 * necessary to avoid spurious warnings from rescuers servicing the 2131 * unbound or a disassociated pool. 2132 */ 2133 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) && 2134 !(pool->flags & POOL_DISASSOCIATED) && 2135 raw_smp_processor_id() != pool->cpu); 2136 2137 /* 2138 * A single work shouldn't be executed concurrently by 2139 * multiple workers on a single cpu. Check whether anyone is 2140 * already processing the work. If so, defer the work to the 2141 * currently executing one. 2142 */ 2143 collision = find_worker_executing_work(pool, work); 2144 if (unlikely(collision)) { 2145 move_linked_works(work, &collision->scheduled, NULL); 2146 return; 2147 } 2148 2149 /* claim and dequeue */ 2150 debug_work_deactivate(work); 2151 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2152 worker->current_work = work; 2153 worker->current_func = work->func; 2154 worker->current_pwq = pwq; 2155 work_color = get_work_color(work); 2156 2157 list_del_init(&work->entry); 2158 2159 /* 2160 * CPU intensive works don't participate in concurrency 2161 * management. They're the scheduler's responsibility. 2162 */ 2163 if (unlikely(cpu_intensive)) 2164 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 2165 2166 /* 2167 * Unbound pool isn't concurrency managed and work items should be 2168 * executed ASAP. Wake up another worker if necessary. 2169 */ 2170 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool)) 2171 wake_up_worker(pool); 2172 2173 /* 2174 * Record the last pool and clear PENDING which should be the last 2175 * update to @work. Also, do this inside @pool->lock so that 2176 * PENDING and queued state changes happen together while IRQ is 2177 * disabled. 2178 */ 2179 set_work_pool_and_clear_pending(work, pool->id); 2180 2181 spin_unlock_irq(&pool->lock); 2182 2183 lock_map_acquire_read(&pwq->wq->lockdep_map); 2184 lock_map_acquire(&lockdep_map); 2185 trace_workqueue_execute_start(work); 2186 worker->current_func(work); 2187 /* 2188 * While we must be careful to not use "work" after this, the trace 2189 * point will only record its address. 2190 */ 2191 trace_workqueue_execute_end(work); 2192 lock_map_release(&lockdep_map); 2193 lock_map_release(&pwq->wq->lockdep_map); 2194 2195 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2196 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2197 " last function: %pf\n", 2198 current->comm, preempt_count(), task_pid_nr(current), 2199 worker->current_func); 2200 debug_show_held_locks(current); 2201 dump_stack(); 2202 } 2203 2204 /* 2205 * The following prevents a kworker from hogging CPU on !PREEMPT 2206 * kernels, where a requeueing work item waiting for something to 2207 * happen could deadlock with stop_machine as such work item could 2208 * indefinitely requeue itself while all other CPUs are trapped in 2209 * stop_machine. 2210 */ 2211 cond_resched(); 2212 2213 spin_lock_irq(&pool->lock); 2214 2215 /* clear cpu intensive status */ 2216 if (unlikely(cpu_intensive)) 2217 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2218 2219 /* we're done with it, release */ 2220 hash_del(&worker->hentry); 2221 worker->current_work = NULL; 2222 worker->current_func = NULL; 2223 worker->current_pwq = NULL; 2224 worker->desc_valid = false; 2225 pwq_dec_nr_in_flight(pwq, work_color); 2226 } 2227 2228 /** 2229 * process_scheduled_works - process scheduled works 2230 * @worker: self 2231 * 2232 * Process all scheduled works. Please note that the scheduled list 2233 * may change while processing a work, so this function repeatedly 2234 * fetches a work from the top and executes it. 2235 * 2236 * CONTEXT: 2237 * spin_lock_irq(pool->lock) which may be released and regrabbed 2238 * multiple times. 2239 */ 2240 static void process_scheduled_works(struct worker *worker) 2241 { 2242 while (!list_empty(&worker->scheduled)) { 2243 struct work_struct *work = list_first_entry(&worker->scheduled, 2244 struct work_struct, entry); 2245 process_one_work(worker, work); 2246 } 2247 } 2248 2249 /** 2250 * worker_thread - the worker thread function 2251 * @__worker: self 2252 * 2253 * The worker thread function. All workers belong to a worker_pool - 2254 * either a per-cpu one or dynamic unbound one. These workers process all 2255 * work items regardless of their specific target workqueue. The only 2256 * exception is work items which belong to workqueues with a rescuer which 2257 * will be explained in rescuer_thread(). 2258 */ 2259 static int worker_thread(void *__worker) 2260 { 2261 struct worker *worker = __worker; 2262 struct worker_pool *pool = worker->pool; 2263 2264 /* tell the scheduler that this is a workqueue worker */ 2265 worker->task->flags |= PF_WQ_WORKER; 2266 woke_up: 2267 spin_lock_irq(&pool->lock); 2268 2269 /* am I supposed to die? */ 2270 if (unlikely(worker->flags & WORKER_DIE)) { 2271 spin_unlock_irq(&pool->lock); 2272 WARN_ON_ONCE(!list_empty(&worker->entry)); 2273 worker->task->flags &= ~PF_WQ_WORKER; 2274 return 0; 2275 } 2276 2277 worker_leave_idle(worker); 2278 recheck: 2279 /* no more worker necessary? */ 2280 if (!need_more_worker(pool)) 2281 goto sleep; 2282 2283 /* do we need to manage? */ 2284 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2285 goto recheck; 2286 2287 /* 2288 * ->scheduled list can only be filled while a worker is 2289 * preparing to process a work or actually processing it. 2290 * Make sure nobody diddled with it while I was sleeping. 2291 */ 2292 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2293 2294 /* 2295 * Finish PREP stage. We're guaranteed to have at least one idle 2296 * worker or that someone else has already assumed the manager 2297 * role. This is where @worker starts participating in concurrency 2298 * management if applicable and concurrency management is restored 2299 * after being rebound. See rebind_workers() for details. 2300 */ 2301 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2302 2303 do { 2304 struct work_struct *work = 2305 list_first_entry(&pool->worklist, 2306 struct work_struct, entry); 2307 2308 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2309 /* optimization path, not strictly necessary */ 2310 process_one_work(worker, work); 2311 if (unlikely(!list_empty(&worker->scheduled))) 2312 process_scheduled_works(worker); 2313 } else { 2314 move_linked_works(work, &worker->scheduled, NULL); 2315 process_scheduled_works(worker); 2316 } 2317 } while (keep_working(pool)); 2318 2319 worker_set_flags(worker, WORKER_PREP, false); 2320 sleep: 2321 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker)) 2322 goto recheck; 2323 2324 /* 2325 * pool->lock is held and there's no work to process and no need to 2326 * manage, sleep. Workers are woken up only while holding 2327 * pool->lock or from local cpu, so setting the current state 2328 * before releasing pool->lock is enough to prevent losing any 2329 * event. 2330 */ 2331 worker_enter_idle(worker); 2332 __set_current_state(TASK_INTERRUPTIBLE); 2333 spin_unlock_irq(&pool->lock); 2334 schedule(); 2335 goto woke_up; 2336 } 2337 2338 /** 2339 * rescuer_thread - the rescuer thread function 2340 * @__rescuer: self 2341 * 2342 * Workqueue rescuer thread function. There's one rescuer for each 2343 * workqueue which has WQ_MEM_RECLAIM set. 2344 * 2345 * Regular work processing on a pool may block trying to create a new 2346 * worker which uses GFP_KERNEL allocation which has slight chance of 2347 * developing into deadlock if some works currently on the same queue 2348 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2349 * the problem rescuer solves. 2350 * 2351 * When such condition is possible, the pool summons rescuers of all 2352 * workqueues which have works queued on the pool and let them process 2353 * those works so that forward progress can be guaranteed. 2354 * 2355 * This should happen rarely. 2356 */ 2357 static int rescuer_thread(void *__rescuer) 2358 { 2359 struct worker *rescuer = __rescuer; 2360 struct workqueue_struct *wq = rescuer->rescue_wq; 2361 struct list_head *scheduled = &rescuer->scheduled; 2362 2363 set_user_nice(current, RESCUER_NICE_LEVEL); 2364 2365 /* 2366 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2367 * doesn't participate in concurrency management. 2368 */ 2369 rescuer->task->flags |= PF_WQ_WORKER; 2370 repeat: 2371 set_current_state(TASK_INTERRUPTIBLE); 2372 2373 if (kthread_should_stop()) { 2374 __set_current_state(TASK_RUNNING); 2375 rescuer->task->flags &= ~PF_WQ_WORKER; 2376 return 0; 2377 } 2378 2379 /* see whether any pwq is asking for help */ 2380 spin_lock_irq(&wq_mayday_lock); 2381 2382 while (!list_empty(&wq->maydays)) { 2383 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2384 struct pool_workqueue, mayday_node); 2385 struct worker_pool *pool = pwq->pool; 2386 struct work_struct *work, *n; 2387 2388 __set_current_state(TASK_RUNNING); 2389 list_del_init(&pwq->mayday_node); 2390 2391 spin_unlock_irq(&wq_mayday_lock); 2392 2393 /* migrate to the target cpu if possible */ 2394 worker_maybe_bind_and_lock(pool); 2395 rescuer->pool = pool; 2396 2397 /* 2398 * Slurp in all works issued via this workqueue and 2399 * process'em. 2400 */ 2401 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 2402 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2403 if (get_work_pwq(work) == pwq) 2404 move_linked_works(work, scheduled, &n); 2405 2406 process_scheduled_works(rescuer); 2407 2408 /* 2409 * Leave this pool. If keep_working() is %true, notify a 2410 * regular worker; otherwise, we end up with 0 concurrency 2411 * and stalling the execution. 2412 */ 2413 if (keep_working(pool)) 2414 wake_up_worker(pool); 2415 2416 rescuer->pool = NULL; 2417 spin_unlock(&pool->lock); 2418 spin_lock(&wq_mayday_lock); 2419 } 2420 2421 spin_unlock_irq(&wq_mayday_lock); 2422 2423 /* rescuers should never participate in concurrency management */ 2424 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2425 schedule(); 2426 goto repeat; 2427 } 2428 2429 struct wq_barrier { 2430 struct work_struct work; 2431 struct completion done; 2432 }; 2433 2434 static void wq_barrier_func(struct work_struct *work) 2435 { 2436 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2437 complete(&barr->done); 2438 } 2439 2440 /** 2441 * insert_wq_barrier - insert a barrier work 2442 * @pwq: pwq to insert barrier into 2443 * @barr: wq_barrier to insert 2444 * @target: target work to attach @barr to 2445 * @worker: worker currently executing @target, NULL if @target is not executing 2446 * 2447 * @barr is linked to @target such that @barr is completed only after 2448 * @target finishes execution. Please note that the ordering 2449 * guarantee is observed only with respect to @target and on the local 2450 * cpu. 2451 * 2452 * Currently, a queued barrier can't be canceled. This is because 2453 * try_to_grab_pending() can't determine whether the work to be 2454 * grabbed is at the head of the queue and thus can't clear LINKED 2455 * flag of the previous work while there must be a valid next work 2456 * after a work with LINKED flag set. 2457 * 2458 * Note that when @worker is non-NULL, @target may be modified 2459 * underneath us, so we can't reliably determine pwq from @target. 2460 * 2461 * CONTEXT: 2462 * spin_lock_irq(pool->lock). 2463 */ 2464 static void insert_wq_barrier(struct pool_workqueue *pwq, 2465 struct wq_barrier *barr, 2466 struct work_struct *target, struct worker *worker) 2467 { 2468 struct list_head *head; 2469 unsigned int linked = 0; 2470 2471 /* 2472 * debugobject calls are safe here even with pool->lock locked 2473 * as we know for sure that this will not trigger any of the 2474 * checks and call back into the fixup functions where we 2475 * might deadlock. 2476 */ 2477 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2478 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2479 init_completion(&barr->done); 2480 2481 /* 2482 * If @target is currently being executed, schedule the 2483 * barrier to the worker; otherwise, put it after @target. 2484 */ 2485 if (worker) 2486 head = worker->scheduled.next; 2487 else { 2488 unsigned long *bits = work_data_bits(target); 2489 2490 head = target->entry.next; 2491 /* there can already be other linked works, inherit and set */ 2492 linked = *bits & WORK_STRUCT_LINKED; 2493 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2494 } 2495 2496 debug_work_activate(&barr->work); 2497 insert_work(pwq, &barr->work, head, 2498 work_color_to_flags(WORK_NO_COLOR) | linked); 2499 } 2500 2501 /** 2502 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2503 * @wq: workqueue being flushed 2504 * @flush_color: new flush color, < 0 for no-op 2505 * @work_color: new work color, < 0 for no-op 2506 * 2507 * Prepare pwqs for workqueue flushing. 2508 * 2509 * If @flush_color is non-negative, flush_color on all pwqs should be 2510 * -1. If no pwq has in-flight commands at the specified color, all 2511 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2512 * has in flight commands, its pwq->flush_color is set to 2513 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2514 * wakeup logic is armed and %true is returned. 2515 * 2516 * The caller should have initialized @wq->first_flusher prior to 2517 * calling this function with non-negative @flush_color. If 2518 * @flush_color is negative, no flush color update is done and %false 2519 * is returned. 2520 * 2521 * If @work_color is non-negative, all pwqs should have the same 2522 * work_color which is previous to @work_color and all will be 2523 * advanced to @work_color. 2524 * 2525 * CONTEXT: 2526 * mutex_lock(wq->mutex). 2527 * 2528 * RETURNS: 2529 * %true if @flush_color >= 0 and there's something to flush. %false 2530 * otherwise. 2531 */ 2532 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2533 int flush_color, int work_color) 2534 { 2535 bool wait = false; 2536 struct pool_workqueue *pwq; 2537 2538 if (flush_color >= 0) { 2539 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2540 atomic_set(&wq->nr_pwqs_to_flush, 1); 2541 } 2542 2543 for_each_pwq(pwq, wq) { 2544 struct worker_pool *pool = pwq->pool; 2545 2546 spin_lock_irq(&pool->lock); 2547 2548 if (flush_color >= 0) { 2549 WARN_ON_ONCE(pwq->flush_color != -1); 2550 2551 if (pwq->nr_in_flight[flush_color]) { 2552 pwq->flush_color = flush_color; 2553 atomic_inc(&wq->nr_pwqs_to_flush); 2554 wait = true; 2555 } 2556 } 2557 2558 if (work_color >= 0) { 2559 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2560 pwq->work_color = work_color; 2561 } 2562 2563 spin_unlock_irq(&pool->lock); 2564 } 2565 2566 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2567 complete(&wq->first_flusher->done); 2568 2569 return wait; 2570 } 2571 2572 /** 2573 * flush_workqueue - ensure that any scheduled work has run to completion. 2574 * @wq: workqueue to flush 2575 * 2576 * This function sleeps until all work items which were queued on entry 2577 * have finished execution, but it is not livelocked by new incoming ones. 2578 */ 2579 void flush_workqueue(struct workqueue_struct *wq) 2580 { 2581 struct wq_flusher this_flusher = { 2582 .list = LIST_HEAD_INIT(this_flusher.list), 2583 .flush_color = -1, 2584 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2585 }; 2586 int next_color; 2587 2588 lock_map_acquire(&wq->lockdep_map); 2589 lock_map_release(&wq->lockdep_map); 2590 2591 mutex_lock(&wq->mutex); 2592 2593 /* 2594 * Start-to-wait phase 2595 */ 2596 next_color = work_next_color(wq->work_color); 2597 2598 if (next_color != wq->flush_color) { 2599 /* 2600 * Color space is not full. The current work_color 2601 * becomes our flush_color and work_color is advanced 2602 * by one. 2603 */ 2604 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2605 this_flusher.flush_color = wq->work_color; 2606 wq->work_color = next_color; 2607 2608 if (!wq->first_flusher) { 2609 /* no flush in progress, become the first flusher */ 2610 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2611 2612 wq->first_flusher = &this_flusher; 2613 2614 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2615 wq->work_color)) { 2616 /* nothing to flush, done */ 2617 wq->flush_color = next_color; 2618 wq->first_flusher = NULL; 2619 goto out_unlock; 2620 } 2621 } else { 2622 /* wait in queue */ 2623 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2624 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2625 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2626 } 2627 } else { 2628 /* 2629 * Oops, color space is full, wait on overflow queue. 2630 * The next flush completion will assign us 2631 * flush_color and transfer to flusher_queue. 2632 */ 2633 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2634 } 2635 2636 mutex_unlock(&wq->mutex); 2637 2638 wait_for_completion(&this_flusher.done); 2639 2640 /* 2641 * Wake-up-and-cascade phase 2642 * 2643 * First flushers are responsible for cascading flushes and 2644 * handling overflow. Non-first flushers can simply return. 2645 */ 2646 if (wq->first_flusher != &this_flusher) 2647 return; 2648 2649 mutex_lock(&wq->mutex); 2650 2651 /* we might have raced, check again with mutex held */ 2652 if (wq->first_flusher != &this_flusher) 2653 goto out_unlock; 2654 2655 wq->first_flusher = NULL; 2656 2657 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2658 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2659 2660 while (true) { 2661 struct wq_flusher *next, *tmp; 2662 2663 /* complete all the flushers sharing the current flush color */ 2664 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2665 if (next->flush_color != wq->flush_color) 2666 break; 2667 list_del_init(&next->list); 2668 complete(&next->done); 2669 } 2670 2671 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2672 wq->flush_color != work_next_color(wq->work_color)); 2673 2674 /* this flush_color is finished, advance by one */ 2675 wq->flush_color = work_next_color(wq->flush_color); 2676 2677 /* one color has been freed, handle overflow queue */ 2678 if (!list_empty(&wq->flusher_overflow)) { 2679 /* 2680 * Assign the same color to all overflowed 2681 * flushers, advance work_color and append to 2682 * flusher_queue. This is the start-to-wait 2683 * phase for these overflowed flushers. 2684 */ 2685 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2686 tmp->flush_color = wq->work_color; 2687 2688 wq->work_color = work_next_color(wq->work_color); 2689 2690 list_splice_tail_init(&wq->flusher_overflow, 2691 &wq->flusher_queue); 2692 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2693 } 2694 2695 if (list_empty(&wq->flusher_queue)) { 2696 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2697 break; 2698 } 2699 2700 /* 2701 * Need to flush more colors. Make the next flusher 2702 * the new first flusher and arm pwqs. 2703 */ 2704 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2705 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2706 2707 list_del_init(&next->list); 2708 wq->first_flusher = next; 2709 2710 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2711 break; 2712 2713 /* 2714 * Meh... this color is already done, clear first 2715 * flusher and repeat cascading. 2716 */ 2717 wq->first_flusher = NULL; 2718 } 2719 2720 out_unlock: 2721 mutex_unlock(&wq->mutex); 2722 } 2723 EXPORT_SYMBOL_GPL(flush_workqueue); 2724 2725 /** 2726 * drain_workqueue - drain a workqueue 2727 * @wq: workqueue to drain 2728 * 2729 * Wait until the workqueue becomes empty. While draining is in progress, 2730 * only chain queueing is allowed. IOW, only currently pending or running 2731 * work items on @wq can queue further work items on it. @wq is flushed 2732 * repeatedly until it becomes empty. The number of flushing is detemined 2733 * by the depth of chaining and should be relatively short. Whine if it 2734 * takes too long. 2735 */ 2736 void drain_workqueue(struct workqueue_struct *wq) 2737 { 2738 unsigned int flush_cnt = 0; 2739 struct pool_workqueue *pwq; 2740 2741 /* 2742 * __queue_work() needs to test whether there are drainers, is much 2743 * hotter than drain_workqueue() and already looks at @wq->flags. 2744 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2745 */ 2746 mutex_lock(&wq->mutex); 2747 if (!wq->nr_drainers++) 2748 wq->flags |= __WQ_DRAINING; 2749 mutex_unlock(&wq->mutex); 2750 reflush: 2751 flush_workqueue(wq); 2752 2753 mutex_lock(&wq->mutex); 2754 2755 for_each_pwq(pwq, wq) { 2756 bool drained; 2757 2758 spin_lock_irq(&pwq->pool->lock); 2759 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2760 spin_unlock_irq(&pwq->pool->lock); 2761 2762 if (drained) 2763 continue; 2764 2765 if (++flush_cnt == 10 || 2766 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2767 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2768 wq->name, flush_cnt); 2769 2770 mutex_unlock(&wq->mutex); 2771 goto reflush; 2772 } 2773 2774 if (!--wq->nr_drainers) 2775 wq->flags &= ~__WQ_DRAINING; 2776 mutex_unlock(&wq->mutex); 2777 } 2778 EXPORT_SYMBOL_GPL(drain_workqueue); 2779 2780 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2781 { 2782 struct worker *worker = NULL; 2783 struct worker_pool *pool; 2784 struct pool_workqueue *pwq; 2785 2786 might_sleep(); 2787 2788 local_irq_disable(); 2789 pool = get_work_pool(work); 2790 if (!pool) { 2791 local_irq_enable(); 2792 return false; 2793 } 2794 2795 spin_lock(&pool->lock); 2796 /* see the comment in try_to_grab_pending() with the same code */ 2797 pwq = get_work_pwq(work); 2798 if (pwq) { 2799 if (unlikely(pwq->pool != pool)) 2800 goto already_gone; 2801 } else { 2802 worker = find_worker_executing_work(pool, work); 2803 if (!worker) 2804 goto already_gone; 2805 pwq = worker->current_pwq; 2806 } 2807 2808 insert_wq_barrier(pwq, barr, work, worker); 2809 spin_unlock_irq(&pool->lock); 2810 2811 /* 2812 * If @max_active is 1 or rescuer is in use, flushing another work 2813 * item on the same workqueue may lead to deadlock. Make sure the 2814 * flusher is not running on the same workqueue by verifying write 2815 * access. 2816 */ 2817 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2818 lock_map_acquire(&pwq->wq->lockdep_map); 2819 else 2820 lock_map_acquire_read(&pwq->wq->lockdep_map); 2821 lock_map_release(&pwq->wq->lockdep_map); 2822 2823 return true; 2824 already_gone: 2825 spin_unlock_irq(&pool->lock); 2826 return false; 2827 } 2828 2829 static bool __flush_work(struct work_struct *work) 2830 { 2831 struct wq_barrier barr; 2832 2833 if (start_flush_work(work, &barr)) { 2834 wait_for_completion(&barr.done); 2835 destroy_work_on_stack(&barr.work); 2836 return true; 2837 } else { 2838 return false; 2839 } 2840 } 2841 2842 /** 2843 * flush_work - wait for a work to finish executing the last queueing instance 2844 * @work: the work to flush 2845 * 2846 * Wait until @work has finished execution. @work is guaranteed to be idle 2847 * on return if it hasn't been requeued since flush started. 2848 * 2849 * RETURNS: 2850 * %true if flush_work() waited for the work to finish execution, 2851 * %false if it was already idle. 2852 */ 2853 bool flush_work(struct work_struct *work) 2854 { 2855 lock_map_acquire(&work->lockdep_map); 2856 lock_map_release(&work->lockdep_map); 2857 2858 return __flush_work(work); 2859 } 2860 EXPORT_SYMBOL_GPL(flush_work); 2861 2862 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2863 { 2864 unsigned long flags; 2865 int ret; 2866 2867 do { 2868 ret = try_to_grab_pending(work, is_dwork, &flags); 2869 /* 2870 * If someone else is canceling, wait for the same event it 2871 * would be waiting for before retrying. 2872 */ 2873 if (unlikely(ret == -ENOENT)) 2874 flush_work(work); 2875 } while (unlikely(ret < 0)); 2876 2877 /* tell other tasks trying to grab @work to back off */ 2878 mark_work_canceling(work); 2879 local_irq_restore(flags); 2880 2881 flush_work(work); 2882 clear_work_data(work); 2883 return ret; 2884 } 2885 2886 /** 2887 * cancel_work_sync - cancel a work and wait for it to finish 2888 * @work: the work to cancel 2889 * 2890 * Cancel @work and wait for its execution to finish. This function 2891 * can be used even if the work re-queues itself or migrates to 2892 * another workqueue. On return from this function, @work is 2893 * guaranteed to be not pending or executing on any CPU. 2894 * 2895 * cancel_work_sync(&delayed_work->work) must not be used for 2896 * delayed_work's. Use cancel_delayed_work_sync() instead. 2897 * 2898 * The caller must ensure that the workqueue on which @work was last 2899 * queued can't be destroyed before this function returns. 2900 * 2901 * RETURNS: 2902 * %true if @work was pending, %false otherwise. 2903 */ 2904 bool cancel_work_sync(struct work_struct *work) 2905 { 2906 return __cancel_work_timer(work, false); 2907 } 2908 EXPORT_SYMBOL_GPL(cancel_work_sync); 2909 2910 /** 2911 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2912 * @dwork: the delayed work to flush 2913 * 2914 * Delayed timer is cancelled and the pending work is queued for 2915 * immediate execution. Like flush_work(), this function only 2916 * considers the last queueing instance of @dwork. 2917 * 2918 * RETURNS: 2919 * %true if flush_work() waited for the work to finish execution, 2920 * %false if it was already idle. 2921 */ 2922 bool flush_delayed_work(struct delayed_work *dwork) 2923 { 2924 local_irq_disable(); 2925 if (del_timer_sync(&dwork->timer)) 2926 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2927 local_irq_enable(); 2928 return flush_work(&dwork->work); 2929 } 2930 EXPORT_SYMBOL(flush_delayed_work); 2931 2932 /** 2933 * cancel_delayed_work - cancel a delayed work 2934 * @dwork: delayed_work to cancel 2935 * 2936 * Kill off a pending delayed_work. Returns %true if @dwork was pending 2937 * and canceled; %false if wasn't pending. Note that the work callback 2938 * function may still be running on return, unless it returns %true and the 2939 * work doesn't re-arm itself. Explicitly flush or use 2940 * cancel_delayed_work_sync() to wait on it. 2941 * 2942 * This function is safe to call from any context including IRQ handler. 2943 */ 2944 bool cancel_delayed_work(struct delayed_work *dwork) 2945 { 2946 unsigned long flags; 2947 int ret; 2948 2949 do { 2950 ret = try_to_grab_pending(&dwork->work, true, &flags); 2951 } while (unlikely(ret == -EAGAIN)); 2952 2953 if (unlikely(ret < 0)) 2954 return false; 2955 2956 set_work_pool_and_clear_pending(&dwork->work, 2957 get_work_pool_id(&dwork->work)); 2958 local_irq_restore(flags); 2959 return ret; 2960 } 2961 EXPORT_SYMBOL(cancel_delayed_work); 2962 2963 /** 2964 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2965 * @dwork: the delayed work cancel 2966 * 2967 * This is cancel_work_sync() for delayed works. 2968 * 2969 * RETURNS: 2970 * %true if @dwork was pending, %false otherwise. 2971 */ 2972 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2973 { 2974 return __cancel_work_timer(&dwork->work, true); 2975 } 2976 EXPORT_SYMBOL(cancel_delayed_work_sync); 2977 2978 /** 2979 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2980 * @func: the function to call 2981 * 2982 * schedule_on_each_cpu() executes @func on each online CPU using the 2983 * system workqueue and blocks until all CPUs have completed. 2984 * schedule_on_each_cpu() is very slow. 2985 * 2986 * RETURNS: 2987 * 0 on success, -errno on failure. 2988 */ 2989 int schedule_on_each_cpu(work_func_t func) 2990 { 2991 int cpu; 2992 struct work_struct __percpu *works; 2993 2994 works = alloc_percpu(struct work_struct); 2995 if (!works) 2996 return -ENOMEM; 2997 2998 get_online_cpus(); 2999 3000 for_each_online_cpu(cpu) { 3001 struct work_struct *work = per_cpu_ptr(works, cpu); 3002 3003 INIT_WORK(work, func); 3004 schedule_work_on(cpu, work); 3005 } 3006 3007 for_each_online_cpu(cpu) 3008 flush_work(per_cpu_ptr(works, cpu)); 3009 3010 put_online_cpus(); 3011 free_percpu(works); 3012 return 0; 3013 } 3014 3015 /** 3016 * flush_scheduled_work - ensure that any scheduled work has run to completion. 3017 * 3018 * Forces execution of the kernel-global workqueue and blocks until its 3019 * completion. 3020 * 3021 * Think twice before calling this function! It's very easy to get into 3022 * trouble if you don't take great care. Either of the following situations 3023 * will lead to deadlock: 3024 * 3025 * One of the work items currently on the workqueue needs to acquire 3026 * a lock held by your code or its caller. 3027 * 3028 * Your code is running in the context of a work routine. 3029 * 3030 * They will be detected by lockdep when they occur, but the first might not 3031 * occur very often. It depends on what work items are on the workqueue and 3032 * what locks they need, which you have no control over. 3033 * 3034 * In most situations flushing the entire workqueue is overkill; you merely 3035 * need to know that a particular work item isn't queued and isn't running. 3036 * In such cases you should use cancel_delayed_work_sync() or 3037 * cancel_work_sync() instead. 3038 */ 3039 void flush_scheduled_work(void) 3040 { 3041 flush_workqueue(system_wq); 3042 } 3043 EXPORT_SYMBOL(flush_scheduled_work); 3044 3045 /** 3046 * execute_in_process_context - reliably execute the routine with user context 3047 * @fn: the function to execute 3048 * @ew: guaranteed storage for the execute work structure (must 3049 * be available when the work executes) 3050 * 3051 * Executes the function immediately if process context is available, 3052 * otherwise schedules the function for delayed execution. 3053 * 3054 * Returns: 0 - function was executed 3055 * 1 - function was scheduled for execution 3056 */ 3057 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3058 { 3059 if (!in_interrupt()) { 3060 fn(&ew->work); 3061 return 0; 3062 } 3063 3064 INIT_WORK(&ew->work, fn); 3065 schedule_work(&ew->work); 3066 3067 return 1; 3068 } 3069 EXPORT_SYMBOL_GPL(execute_in_process_context); 3070 3071 #ifdef CONFIG_SYSFS 3072 /* 3073 * Workqueues with WQ_SYSFS flag set is visible to userland via 3074 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 3075 * following attributes. 3076 * 3077 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 3078 * max_active RW int : maximum number of in-flight work items 3079 * 3080 * Unbound workqueues have the following extra attributes. 3081 * 3082 * id RO int : the associated pool ID 3083 * nice RW int : nice value of the workers 3084 * cpumask RW mask : bitmask of allowed CPUs for the workers 3085 */ 3086 struct wq_device { 3087 struct workqueue_struct *wq; 3088 struct device dev; 3089 }; 3090 3091 static struct workqueue_struct *dev_to_wq(struct device *dev) 3092 { 3093 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3094 3095 return wq_dev->wq; 3096 } 3097 3098 static ssize_t wq_per_cpu_show(struct device *dev, 3099 struct device_attribute *attr, char *buf) 3100 { 3101 struct workqueue_struct *wq = dev_to_wq(dev); 3102 3103 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 3104 } 3105 3106 static ssize_t wq_max_active_show(struct device *dev, 3107 struct device_attribute *attr, char *buf) 3108 { 3109 struct workqueue_struct *wq = dev_to_wq(dev); 3110 3111 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 3112 } 3113 3114 static ssize_t wq_max_active_store(struct device *dev, 3115 struct device_attribute *attr, 3116 const char *buf, size_t count) 3117 { 3118 struct workqueue_struct *wq = dev_to_wq(dev); 3119 int val; 3120 3121 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 3122 return -EINVAL; 3123 3124 workqueue_set_max_active(wq, val); 3125 return count; 3126 } 3127 3128 static struct device_attribute wq_sysfs_attrs[] = { 3129 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL), 3130 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store), 3131 __ATTR_NULL, 3132 }; 3133 3134 static ssize_t wq_pool_ids_show(struct device *dev, 3135 struct device_attribute *attr, char *buf) 3136 { 3137 struct workqueue_struct *wq = dev_to_wq(dev); 3138 const char *delim = ""; 3139 int node, written = 0; 3140 3141 rcu_read_lock_sched(); 3142 for_each_node(node) { 3143 written += scnprintf(buf + written, PAGE_SIZE - written, 3144 "%s%d:%d", delim, node, 3145 unbound_pwq_by_node(wq, node)->pool->id); 3146 delim = " "; 3147 } 3148 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3149 rcu_read_unlock_sched(); 3150 3151 return written; 3152 } 3153 3154 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 3155 char *buf) 3156 { 3157 struct workqueue_struct *wq = dev_to_wq(dev); 3158 int written; 3159 3160 mutex_lock(&wq->mutex); 3161 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 3162 mutex_unlock(&wq->mutex); 3163 3164 return written; 3165 } 3166 3167 /* prepare workqueue_attrs for sysfs store operations */ 3168 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 3169 { 3170 struct workqueue_attrs *attrs; 3171 3172 attrs = alloc_workqueue_attrs(GFP_KERNEL); 3173 if (!attrs) 3174 return NULL; 3175 3176 mutex_lock(&wq->mutex); 3177 copy_workqueue_attrs(attrs, wq->unbound_attrs); 3178 mutex_unlock(&wq->mutex); 3179 return attrs; 3180 } 3181 3182 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 3183 const char *buf, size_t count) 3184 { 3185 struct workqueue_struct *wq = dev_to_wq(dev); 3186 struct workqueue_attrs *attrs; 3187 int ret; 3188 3189 attrs = wq_sysfs_prep_attrs(wq); 3190 if (!attrs) 3191 return -ENOMEM; 3192 3193 if (sscanf(buf, "%d", &attrs->nice) == 1 && 3194 attrs->nice >= -20 && attrs->nice <= 19) 3195 ret = apply_workqueue_attrs(wq, attrs); 3196 else 3197 ret = -EINVAL; 3198 3199 free_workqueue_attrs(attrs); 3200 return ret ?: count; 3201 } 3202 3203 static ssize_t wq_cpumask_show(struct device *dev, 3204 struct device_attribute *attr, char *buf) 3205 { 3206 struct workqueue_struct *wq = dev_to_wq(dev); 3207 int written; 3208 3209 mutex_lock(&wq->mutex); 3210 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask); 3211 mutex_unlock(&wq->mutex); 3212 3213 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 3214 return written; 3215 } 3216 3217 static ssize_t wq_cpumask_store(struct device *dev, 3218 struct device_attribute *attr, 3219 const char *buf, size_t count) 3220 { 3221 struct workqueue_struct *wq = dev_to_wq(dev); 3222 struct workqueue_attrs *attrs; 3223 int ret; 3224 3225 attrs = wq_sysfs_prep_attrs(wq); 3226 if (!attrs) 3227 return -ENOMEM; 3228 3229 ret = cpumask_parse(buf, attrs->cpumask); 3230 if (!ret) 3231 ret = apply_workqueue_attrs(wq, attrs); 3232 3233 free_workqueue_attrs(attrs); 3234 return ret ?: count; 3235 } 3236 3237 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 3238 char *buf) 3239 { 3240 struct workqueue_struct *wq = dev_to_wq(dev); 3241 int written; 3242 3243 mutex_lock(&wq->mutex); 3244 written = scnprintf(buf, PAGE_SIZE, "%d\n", 3245 !wq->unbound_attrs->no_numa); 3246 mutex_unlock(&wq->mutex); 3247 3248 return written; 3249 } 3250 3251 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 3252 const char *buf, size_t count) 3253 { 3254 struct workqueue_struct *wq = dev_to_wq(dev); 3255 struct workqueue_attrs *attrs; 3256 int v, ret; 3257 3258 attrs = wq_sysfs_prep_attrs(wq); 3259 if (!attrs) 3260 return -ENOMEM; 3261 3262 ret = -EINVAL; 3263 if (sscanf(buf, "%d", &v) == 1) { 3264 attrs->no_numa = !v; 3265 ret = apply_workqueue_attrs(wq, attrs); 3266 } 3267 3268 free_workqueue_attrs(attrs); 3269 return ret ?: count; 3270 } 3271 3272 static struct device_attribute wq_sysfs_unbound_attrs[] = { 3273 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 3274 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 3275 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 3276 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 3277 __ATTR_NULL, 3278 }; 3279 3280 static struct bus_type wq_subsys = { 3281 .name = "workqueue", 3282 .dev_attrs = wq_sysfs_attrs, 3283 }; 3284 3285 static int __init wq_sysfs_init(void) 3286 { 3287 return subsys_virtual_register(&wq_subsys, NULL); 3288 } 3289 core_initcall(wq_sysfs_init); 3290 3291 static void wq_device_release(struct device *dev) 3292 { 3293 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 3294 3295 kfree(wq_dev); 3296 } 3297 3298 /** 3299 * workqueue_sysfs_register - make a workqueue visible in sysfs 3300 * @wq: the workqueue to register 3301 * 3302 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 3303 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 3304 * which is the preferred method. 3305 * 3306 * Workqueue user should use this function directly iff it wants to apply 3307 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 3308 * apply_workqueue_attrs() may race against userland updating the 3309 * attributes. 3310 * 3311 * Returns 0 on success, -errno on failure. 3312 */ 3313 int workqueue_sysfs_register(struct workqueue_struct *wq) 3314 { 3315 struct wq_device *wq_dev; 3316 int ret; 3317 3318 /* 3319 * Adjusting max_active or creating new pwqs by applyting 3320 * attributes breaks ordering guarantee. Disallow exposing ordered 3321 * workqueues. 3322 */ 3323 if (WARN_ON(wq->flags & __WQ_ORDERED)) 3324 return -EINVAL; 3325 3326 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 3327 if (!wq_dev) 3328 return -ENOMEM; 3329 3330 wq_dev->wq = wq; 3331 wq_dev->dev.bus = &wq_subsys; 3332 wq_dev->dev.init_name = wq->name; 3333 wq_dev->dev.release = wq_device_release; 3334 3335 /* 3336 * unbound_attrs are created separately. Suppress uevent until 3337 * everything is ready. 3338 */ 3339 dev_set_uevent_suppress(&wq_dev->dev, true); 3340 3341 ret = device_register(&wq_dev->dev); 3342 if (ret) { 3343 kfree(wq_dev); 3344 wq->wq_dev = NULL; 3345 return ret; 3346 } 3347 3348 if (wq->flags & WQ_UNBOUND) { 3349 struct device_attribute *attr; 3350 3351 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 3352 ret = device_create_file(&wq_dev->dev, attr); 3353 if (ret) { 3354 device_unregister(&wq_dev->dev); 3355 wq->wq_dev = NULL; 3356 return ret; 3357 } 3358 } 3359 } 3360 3361 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 3362 return 0; 3363 } 3364 3365 /** 3366 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 3367 * @wq: the workqueue to unregister 3368 * 3369 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 3370 */ 3371 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 3372 { 3373 struct wq_device *wq_dev = wq->wq_dev; 3374 3375 if (!wq->wq_dev) 3376 return; 3377 3378 wq->wq_dev = NULL; 3379 device_unregister(&wq_dev->dev); 3380 } 3381 #else /* CONFIG_SYSFS */ 3382 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 3383 #endif /* CONFIG_SYSFS */ 3384 3385 /** 3386 * free_workqueue_attrs - free a workqueue_attrs 3387 * @attrs: workqueue_attrs to free 3388 * 3389 * Undo alloc_workqueue_attrs(). 3390 */ 3391 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3392 { 3393 if (attrs) { 3394 free_cpumask_var(attrs->cpumask); 3395 kfree(attrs); 3396 } 3397 } 3398 3399 /** 3400 * alloc_workqueue_attrs - allocate a workqueue_attrs 3401 * @gfp_mask: allocation mask to use 3402 * 3403 * Allocate a new workqueue_attrs, initialize with default settings and 3404 * return it. Returns NULL on failure. 3405 */ 3406 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3407 { 3408 struct workqueue_attrs *attrs; 3409 3410 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3411 if (!attrs) 3412 goto fail; 3413 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3414 goto fail; 3415 3416 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3417 return attrs; 3418 fail: 3419 free_workqueue_attrs(attrs); 3420 return NULL; 3421 } 3422 3423 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3424 const struct workqueue_attrs *from) 3425 { 3426 to->nice = from->nice; 3427 cpumask_copy(to->cpumask, from->cpumask); 3428 /* 3429 * Unlike hash and equality test, this function doesn't ignore 3430 * ->no_numa as it is used for both pool and wq attrs. Instead, 3431 * get_unbound_pool() explicitly clears ->no_numa after copying. 3432 */ 3433 to->no_numa = from->no_numa; 3434 } 3435 3436 /* hash value of the content of @attr */ 3437 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3438 { 3439 u32 hash = 0; 3440 3441 hash = jhash_1word(attrs->nice, hash); 3442 hash = jhash(cpumask_bits(attrs->cpumask), 3443 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3444 return hash; 3445 } 3446 3447 /* content equality test */ 3448 static bool wqattrs_equal(const struct workqueue_attrs *a, 3449 const struct workqueue_attrs *b) 3450 { 3451 if (a->nice != b->nice) 3452 return false; 3453 if (!cpumask_equal(a->cpumask, b->cpumask)) 3454 return false; 3455 return true; 3456 } 3457 3458 /** 3459 * init_worker_pool - initialize a newly zalloc'd worker_pool 3460 * @pool: worker_pool to initialize 3461 * 3462 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs. 3463 * Returns 0 on success, -errno on failure. Even on failure, all fields 3464 * inside @pool proper are initialized and put_unbound_pool() can be called 3465 * on @pool safely to release it. 3466 */ 3467 static int init_worker_pool(struct worker_pool *pool) 3468 { 3469 spin_lock_init(&pool->lock); 3470 pool->id = -1; 3471 pool->cpu = -1; 3472 pool->node = NUMA_NO_NODE; 3473 pool->flags |= POOL_DISASSOCIATED; 3474 INIT_LIST_HEAD(&pool->worklist); 3475 INIT_LIST_HEAD(&pool->idle_list); 3476 hash_init(pool->busy_hash); 3477 3478 init_timer_deferrable(&pool->idle_timer); 3479 pool->idle_timer.function = idle_worker_timeout; 3480 pool->idle_timer.data = (unsigned long)pool; 3481 3482 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3483 (unsigned long)pool); 3484 3485 mutex_init(&pool->manager_arb); 3486 mutex_init(&pool->manager_mutex); 3487 idr_init(&pool->worker_idr); 3488 3489 INIT_HLIST_NODE(&pool->hash_node); 3490 pool->refcnt = 1; 3491 3492 /* shouldn't fail above this point */ 3493 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3494 if (!pool->attrs) 3495 return -ENOMEM; 3496 return 0; 3497 } 3498 3499 static void rcu_free_pool(struct rcu_head *rcu) 3500 { 3501 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3502 3503 idr_destroy(&pool->worker_idr); 3504 free_workqueue_attrs(pool->attrs); 3505 kfree(pool); 3506 } 3507 3508 /** 3509 * put_unbound_pool - put a worker_pool 3510 * @pool: worker_pool to put 3511 * 3512 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3513 * safe manner. get_unbound_pool() calls this function on its failure path 3514 * and this function should be able to release pools which went through, 3515 * successfully or not, init_worker_pool(). 3516 * 3517 * Should be called with wq_pool_mutex held. 3518 */ 3519 static void put_unbound_pool(struct worker_pool *pool) 3520 { 3521 struct worker *worker; 3522 3523 lockdep_assert_held(&wq_pool_mutex); 3524 3525 if (--pool->refcnt) 3526 return; 3527 3528 /* sanity checks */ 3529 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) || 3530 WARN_ON(!list_empty(&pool->worklist))) 3531 return; 3532 3533 /* release id and unhash */ 3534 if (pool->id >= 0) 3535 idr_remove(&worker_pool_idr, pool->id); 3536 hash_del(&pool->hash_node); 3537 3538 /* 3539 * Become the manager and destroy all workers. Grabbing 3540 * manager_arb prevents @pool's workers from blocking on 3541 * manager_mutex. 3542 */ 3543 mutex_lock(&pool->manager_arb); 3544 mutex_lock(&pool->manager_mutex); 3545 spin_lock_irq(&pool->lock); 3546 3547 while ((worker = first_worker(pool))) 3548 destroy_worker(worker); 3549 WARN_ON(pool->nr_workers || pool->nr_idle); 3550 3551 spin_unlock_irq(&pool->lock); 3552 mutex_unlock(&pool->manager_mutex); 3553 mutex_unlock(&pool->manager_arb); 3554 3555 /* shut down the timers */ 3556 del_timer_sync(&pool->idle_timer); 3557 del_timer_sync(&pool->mayday_timer); 3558 3559 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3560 call_rcu_sched(&pool->rcu, rcu_free_pool); 3561 } 3562 3563 /** 3564 * get_unbound_pool - get a worker_pool with the specified attributes 3565 * @attrs: the attributes of the worker_pool to get 3566 * 3567 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3568 * reference count and return it. If there already is a matching 3569 * worker_pool, it will be used; otherwise, this function attempts to 3570 * create a new one. On failure, returns NULL. 3571 * 3572 * Should be called with wq_pool_mutex held. 3573 */ 3574 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3575 { 3576 u32 hash = wqattrs_hash(attrs); 3577 struct worker_pool *pool; 3578 int node; 3579 3580 lockdep_assert_held(&wq_pool_mutex); 3581 3582 /* do we already have a matching pool? */ 3583 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3584 if (wqattrs_equal(pool->attrs, attrs)) { 3585 pool->refcnt++; 3586 goto out_unlock; 3587 } 3588 } 3589 3590 /* nope, create a new one */ 3591 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 3592 if (!pool || init_worker_pool(pool) < 0) 3593 goto fail; 3594 3595 if (workqueue_freezing) 3596 pool->flags |= POOL_FREEZING; 3597 3598 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3599 copy_workqueue_attrs(pool->attrs, attrs); 3600 3601 /* 3602 * no_numa isn't a worker_pool attribute, always clear it. See 3603 * 'struct workqueue_attrs' comments for detail. 3604 */ 3605 pool->attrs->no_numa = false; 3606 3607 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3608 if (wq_numa_enabled) { 3609 for_each_node(node) { 3610 if (cpumask_subset(pool->attrs->cpumask, 3611 wq_numa_possible_cpumask[node])) { 3612 pool->node = node; 3613 break; 3614 } 3615 } 3616 } 3617 3618 if (worker_pool_assign_id(pool) < 0) 3619 goto fail; 3620 3621 /* create and start the initial worker */ 3622 if (create_and_start_worker(pool) < 0) 3623 goto fail; 3624 3625 /* install */ 3626 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3627 out_unlock: 3628 return pool; 3629 fail: 3630 if (pool) 3631 put_unbound_pool(pool); 3632 return NULL; 3633 } 3634 3635 static void rcu_free_pwq(struct rcu_head *rcu) 3636 { 3637 kmem_cache_free(pwq_cache, 3638 container_of(rcu, struct pool_workqueue, rcu)); 3639 } 3640 3641 /* 3642 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3643 * and needs to be destroyed. 3644 */ 3645 static void pwq_unbound_release_workfn(struct work_struct *work) 3646 { 3647 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3648 unbound_release_work); 3649 struct workqueue_struct *wq = pwq->wq; 3650 struct worker_pool *pool = pwq->pool; 3651 bool is_last; 3652 3653 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3654 return; 3655 3656 /* 3657 * Unlink @pwq. Synchronization against wq->mutex isn't strictly 3658 * necessary on release but do it anyway. It's easier to verify 3659 * and consistent with the linking path. 3660 */ 3661 mutex_lock(&wq->mutex); 3662 list_del_rcu(&pwq->pwqs_node); 3663 is_last = list_empty(&wq->pwqs); 3664 mutex_unlock(&wq->mutex); 3665 3666 mutex_lock(&wq_pool_mutex); 3667 put_unbound_pool(pool); 3668 mutex_unlock(&wq_pool_mutex); 3669 3670 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3671 3672 /* 3673 * If we're the last pwq going away, @wq is already dead and no one 3674 * is gonna access it anymore. Free it. 3675 */ 3676 if (is_last) { 3677 free_workqueue_attrs(wq->unbound_attrs); 3678 kfree(wq); 3679 } 3680 } 3681 3682 /** 3683 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3684 * @pwq: target pool_workqueue 3685 * 3686 * If @pwq isn't freezing, set @pwq->max_active to the associated 3687 * workqueue's saved_max_active and activate delayed work items 3688 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3689 */ 3690 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3691 { 3692 struct workqueue_struct *wq = pwq->wq; 3693 bool freezable = wq->flags & WQ_FREEZABLE; 3694 3695 /* for @wq->saved_max_active */ 3696 lockdep_assert_held(&wq->mutex); 3697 3698 /* fast exit for non-freezable wqs */ 3699 if (!freezable && pwq->max_active == wq->saved_max_active) 3700 return; 3701 3702 spin_lock_irq(&pwq->pool->lock); 3703 3704 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) { 3705 pwq->max_active = wq->saved_max_active; 3706 3707 while (!list_empty(&pwq->delayed_works) && 3708 pwq->nr_active < pwq->max_active) 3709 pwq_activate_first_delayed(pwq); 3710 3711 /* 3712 * Need to kick a worker after thawed or an unbound wq's 3713 * max_active is bumped. It's a slow path. Do it always. 3714 */ 3715 wake_up_worker(pwq->pool); 3716 } else { 3717 pwq->max_active = 0; 3718 } 3719 3720 spin_unlock_irq(&pwq->pool->lock); 3721 } 3722 3723 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3724 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3725 struct worker_pool *pool) 3726 { 3727 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3728 3729 memset(pwq, 0, sizeof(*pwq)); 3730 3731 pwq->pool = pool; 3732 pwq->wq = wq; 3733 pwq->flush_color = -1; 3734 pwq->refcnt = 1; 3735 INIT_LIST_HEAD(&pwq->delayed_works); 3736 INIT_LIST_HEAD(&pwq->pwqs_node); 3737 INIT_LIST_HEAD(&pwq->mayday_node); 3738 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3739 } 3740 3741 /* sync @pwq with the current state of its associated wq and link it */ 3742 static void link_pwq(struct pool_workqueue *pwq) 3743 { 3744 struct workqueue_struct *wq = pwq->wq; 3745 3746 lockdep_assert_held(&wq->mutex); 3747 3748 /* may be called multiple times, ignore if already linked */ 3749 if (!list_empty(&pwq->pwqs_node)) 3750 return; 3751 3752 /* 3753 * Set the matching work_color. This is synchronized with 3754 * wq->mutex to avoid confusing flush_workqueue(). 3755 */ 3756 pwq->work_color = wq->work_color; 3757 3758 /* sync max_active to the current setting */ 3759 pwq_adjust_max_active(pwq); 3760 3761 /* link in @pwq */ 3762 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3763 } 3764 3765 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3766 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3767 const struct workqueue_attrs *attrs) 3768 { 3769 struct worker_pool *pool; 3770 struct pool_workqueue *pwq; 3771 3772 lockdep_assert_held(&wq_pool_mutex); 3773 3774 pool = get_unbound_pool(attrs); 3775 if (!pool) 3776 return NULL; 3777 3778 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3779 if (!pwq) { 3780 put_unbound_pool(pool); 3781 return NULL; 3782 } 3783 3784 init_pwq(pwq, wq, pool); 3785 return pwq; 3786 } 3787 3788 /* undo alloc_unbound_pwq(), used only in the error path */ 3789 static void free_unbound_pwq(struct pool_workqueue *pwq) 3790 { 3791 lockdep_assert_held(&wq_pool_mutex); 3792 3793 if (pwq) { 3794 put_unbound_pool(pwq->pool); 3795 kmem_cache_free(pwq_cache, pwq); 3796 } 3797 } 3798 3799 /** 3800 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node 3801 * @attrs: the wq_attrs of interest 3802 * @node: the target NUMA node 3803 * @cpu_going_down: if >= 0, the CPU to consider as offline 3804 * @cpumask: outarg, the resulting cpumask 3805 * 3806 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3807 * @cpu_going_down is >= 0, that cpu is considered offline during 3808 * calculation. The result is stored in @cpumask. This function returns 3809 * %true if the resulting @cpumask is different from @attrs->cpumask, 3810 * %false if equal. 3811 * 3812 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3813 * enabled and @node has online CPUs requested by @attrs, the returned 3814 * cpumask is the intersection of the possible CPUs of @node and 3815 * @attrs->cpumask. 3816 * 3817 * The caller is responsible for ensuring that the cpumask of @node stays 3818 * stable. 3819 */ 3820 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3821 int cpu_going_down, cpumask_t *cpumask) 3822 { 3823 if (!wq_numa_enabled || attrs->no_numa) 3824 goto use_dfl; 3825 3826 /* does @node have any online CPUs @attrs wants? */ 3827 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3828 if (cpu_going_down >= 0) 3829 cpumask_clear_cpu(cpu_going_down, cpumask); 3830 3831 if (cpumask_empty(cpumask)) 3832 goto use_dfl; 3833 3834 /* yeap, return possible CPUs in @node that @attrs wants */ 3835 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3836 return !cpumask_equal(cpumask, attrs->cpumask); 3837 3838 use_dfl: 3839 cpumask_copy(cpumask, attrs->cpumask); 3840 return false; 3841 } 3842 3843 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3844 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3845 int node, 3846 struct pool_workqueue *pwq) 3847 { 3848 struct pool_workqueue *old_pwq; 3849 3850 lockdep_assert_held(&wq->mutex); 3851 3852 /* link_pwq() can handle duplicate calls */ 3853 link_pwq(pwq); 3854 3855 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3856 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3857 return old_pwq; 3858 } 3859 3860 /** 3861 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3862 * @wq: the target workqueue 3863 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3864 * 3865 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3866 * machines, this function maps a separate pwq to each NUMA node with 3867 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3868 * NUMA node it was issued on. Older pwqs are released as in-flight work 3869 * items finish. Note that a work item which repeatedly requeues itself 3870 * back-to-back will stay on its current pwq. 3871 * 3872 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on 3873 * failure. 3874 */ 3875 int apply_workqueue_attrs(struct workqueue_struct *wq, 3876 const struct workqueue_attrs *attrs) 3877 { 3878 struct workqueue_attrs *new_attrs, *tmp_attrs; 3879 struct pool_workqueue **pwq_tbl, *dfl_pwq; 3880 int node, ret; 3881 3882 /* only unbound workqueues can change attributes */ 3883 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3884 return -EINVAL; 3885 3886 /* creating multiple pwqs breaks ordering guarantee */ 3887 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3888 return -EINVAL; 3889 3890 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL); 3891 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3892 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3893 if (!pwq_tbl || !new_attrs || !tmp_attrs) 3894 goto enomem; 3895 3896 /* make a copy of @attrs and sanitize it */ 3897 copy_workqueue_attrs(new_attrs, attrs); 3898 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3899 3900 /* 3901 * We may create multiple pwqs with differing cpumasks. Make a 3902 * copy of @new_attrs which will be modified and used to obtain 3903 * pools. 3904 */ 3905 copy_workqueue_attrs(tmp_attrs, new_attrs); 3906 3907 /* 3908 * CPUs should stay stable across pwq creations and installations. 3909 * Pin CPUs, determine the target cpumask for each node and create 3910 * pwqs accordingly. 3911 */ 3912 get_online_cpus(); 3913 3914 mutex_lock(&wq_pool_mutex); 3915 3916 /* 3917 * If something goes wrong during CPU up/down, we'll fall back to 3918 * the default pwq covering whole @attrs->cpumask. Always create 3919 * it even if we don't use it immediately. 3920 */ 3921 dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3922 if (!dfl_pwq) 3923 goto enomem_pwq; 3924 3925 for_each_node(node) { 3926 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) { 3927 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3928 if (!pwq_tbl[node]) 3929 goto enomem_pwq; 3930 } else { 3931 dfl_pwq->refcnt++; 3932 pwq_tbl[node] = dfl_pwq; 3933 } 3934 } 3935 3936 mutex_unlock(&wq_pool_mutex); 3937 3938 /* all pwqs have been created successfully, let's install'em */ 3939 mutex_lock(&wq->mutex); 3940 3941 copy_workqueue_attrs(wq->unbound_attrs, new_attrs); 3942 3943 /* save the previous pwq and install the new one */ 3944 for_each_node(node) 3945 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]); 3946 3947 /* @dfl_pwq might not have been used, ensure it's linked */ 3948 link_pwq(dfl_pwq); 3949 swap(wq->dfl_pwq, dfl_pwq); 3950 3951 mutex_unlock(&wq->mutex); 3952 3953 /* put the old pwqs */ 3954 for_each_node(node) 3955 put_pwq_unlocked(pwq_tbl[node]); 3956 put_pwq_unlocked(dfl_pwq); 3957 3958 put_online_cpus(); 3959 ret = 0; 3960 /* fall through */ 3961 out_free: 3962 free_workqueue_attrs(tmp_attrs); 3963 free_workqueue_attrs(new_attrs); 3964 kfree(pwq_tbl); 3965 return ret; 3966 3967 enomem_pwq: 3968 free_unbound_pwq(dfl_pwq); 3969 for_each_node(node) 3970 if (pwq_tbl && pwq_tbl[node] != dfl_pwq) 3971 free_unbound_pwq(pwq_tbl[node]); 3972 mutex_unlock(&wq_pool_mutex); 3973 put_online_cpus(); 3974 enomem: 3975 ret = -ENOMEM; 3976 goto out_free; 3977 } 3978 3979 /** 3980 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3981 * @wq: the target workqueue 3982 * @cpu: the CPU coming up or going down 3983 * @online: whether @cpu is coming up or going down 3984 * 3985 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3986 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3987 * @wq accordingly. 3988 * 3989 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3990 * falls back to @wq->dfl_pwq which may not be optimal but is always 3991 * correct. 3992 * 3993 * Note that when the last allowed CPU of a NUMA node goes offline for a 3994 * workqueue with a cpumask spanning multiple nodes, the workers which were 3995 * already executing the work items for the workqueue will lose their CPU 3996 * affinity and may execute on any CPU. This is similar to how per-cpu 3997 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3998 * affinity, it's the user's responsibility to flush the work item from 3999 * CPU_DOWN_PREPARE. 4000 */ 4001 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4002 bool online) 4003 { 4004 int node = cpu_to_node(cpu); 4005 int cpu_off = online ? -1 : cpu; 4006 struct pool_workqueue *old_pwq = NULL, *pwq; 4007 struct workqueue_attrs *target_attrs; 4008 cpumask_t *cpumask; 4009 4010 lockdep_assert_held(&wq_pool_mutex); 4011 4012 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND)) 4013 return; 4014 4015 /* 4016 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4017 * Let's use a preallocated one. The following buf is protected by 4018 * CPU hotplug exclusion. 4019 */ 4020 target_attrs = wq_update_unbound_numa_attrs_buf; 4021 cpumask = target_attrs->cpumask; 4022 4023 mutex_lock(&wq->mutex); 4024 if (wq->unbound_attrs->no_numa) 4025 goto out_unlock; 4026 4027 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4028 pwq = unbound_pwq_by_node(wq, node); 4029 4030 /* 4031 * Let's determine what needs to be done. If the target cpumask is 4032 * different from wq's, we need to compare it to @pwq's and create 4033 * a new one if they don't match. If the target cpumask equals 4034 * wq's, the default pwq should be used. If @pwq is already the 4035 * default one, nothing to do; otherwise, install the default one. 4036 */ 4037 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) { 4038 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4039 goto out_unlock; 4040 } else { 4041 if (pwq == wq->dfl_pwq) 4042 goto out_unlock; 4043 else 4044 goto use_dfl_pwq; 4045 } 4046 4047 mutex_unlock(&wq->mutex); 4048 4049 /* create a new pwq */ 4050 pwq = alloc_unbound_pwq(wq, target_attrs); 4051 if (!pwq) { 4052 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4053 wq->name); 4054 goto out_unlock; 4055 } 4056 4057 /* 4058 * Install the new pwq. As this function is called only from CPU 4059 * hotplug callbacks and applying a new attrs is wrapped with 4060 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed 4061 * inbetween. 4062 */ 4063 mutex_lock(&wq->mutex); 4064 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4065 goto out_unlock; 4066 4067 use_dfl_pwq: 4068 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4069 get_pwq(wq->dfl_pwq); 4070 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4071 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4072 out_unlock: 4073 mutex_unlock(&wq->mutex); 4074 put_pwq_unlocked(old_pwq); 4075 } 4076 4077 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4078 { 4079 bool highpri = wq->flags & WQ_HIGHPRI; 4080 int cpu; 4081 4082 if (!(wq->flags & WQ_UNBOUND)) { 4083 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4084 if (!wq->cpu_pwqs) 4085 return -ENOMEM; 4086 4087 for_each_possible_cpu(cpu) { 4088 struct pool_workqueue *pwq = 4089 per_cpu_ptr(wq->cpu_pwqs, cpu); 4090 struct worker_pool *cpu_pools = 4091 per_cpu(cpu_worker_pools, cpu); 4092 4093 init_pwq(pwq, wq, &cpu_pools[highpri]); 4094 4095 mutex_lock(&wq->mutex); 4096 link_pwq(pwq); 4097 mutex_unlock(&wq->mutex); 4098 } 4099 return 0; 4100 } else { 4101 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4102 } 4103 } 4104 4105 static int wq_clamp_max_active(int max_active, unsigned int flags, 4106 const char *name) 4107 { 4108 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4109 4110 if (max_active < 1 || max_active > lim) 4111 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4112 max_active, name, 1, lim); 4113 4114 return clamp_val(max_active, 1, lim); 4115 } 4116 4117 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 4118 unsigned int flags, 4119 int max_active, 4120 struct lock_class_key *key, 4121 const char *lock_name, ...) 4122 { 4123 size_t tbl_size = 0; 4124 va_list args; 4125 struct workqueue_struct *wq; 4126 struct pool_workqueue *pwq; 4127 4128 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4129 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4130 flags |= WQ_UNBOUND; 4131 4132 /* allocate wq and format name */ 4133 if (flags & WQ_UNBOUND) 4134 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]); 4135 4136 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4137 if (!wq) 4138 return NULL; 4139 4140 if (flags & WQ_UNBOUND) { 4141 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4142 if (!wq->unbound_attrs) 4143 goto err_free_wq; 4144 } 4145 4146 va_start(args, lock_name); 4147 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4148 va_end(args); 4149 4150 max_active = max_active ?: WQ_DFL_ACTIVE; 4151 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4152 4153 /* init wq */ 4154 wq->flags = flags; 4155 wq->saved_max_active = max_active; 4156 mutex_init(&wq->mutex); 4157 atomic_set(&wq->nr_pwqs_to_flush, 0); 4158 INIT_LIST_HEAD(&wq->pwqs); 4159 INIT_LIST_HEAD(&wq->flusher_queue); 4160 INIT_LIST_HEAD(&wq->flusher_overflow); 4161 INIT_LIST_HEAD(&wq->maydays); 4162 4163 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4164 INIT_LIST_HEAD(&wq->list); 4165 4166 if (alloc_and_link_pwqs(wq) < 0) 4167 goto err_free_wq; 4168 4169 /* 4170 * Workqueues which may be used during memory reclaim should 4171 * have a rescuer to guarantee forward progress. 4172 */ 4173 if (flags & WQ_MEM_RECLAIM) { 4174 struct worker *rescuer; 4175 4176 rescuer = alloc_worker(); 4177 if (!rescuer) 4178 goto err_destroy; 4179 4180 rescuer->rescue_wq = wq; 4181 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 4182 wq->name); 4183 if (IS_ERR(rescuer->task)) { 4184 kfree(rescuer); 4185 goto err_destroy; 4186 } 4187 4188 wq->rescuer = rescuer; 4189 rescuer->task->flags |= PF_NO_SETAFFINITY; 4190 wake_up_process(rescuer->task); 4191 } 4192 4193 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4194 goto err_destroy; 4195 4196 /* 4197 * wq_pool_mutex protects global freeze state and workqueues list. 4198 * Grab it, adjust max_active and add the new @wq to workqueues 4199 * list. 4200 */ 4201 mutex_lock(&wq_pool_mutex); 4202 4203 mutex_lock(&wq->mutex); 4204 for_each_pwq(pwq, wq) 4205 pwq_adjust_max_active(pwq); 4206 mutex_unlock(&wq->mutex); 4207 4208 list_add(&wq->list, &workqueues); 4209 4210 mutex_unlock(&wq_pool_mutex); 4211 4212 return wq; 4213 4214 err_free_wq: 4215 free_workqueue_attrs(wq->unbound_attrs); 4216 kfree(wq); 4217 return NULL; 4218 err_destroy: 4219 destroy_workqueue(wq); 4220 return NULL; 4221 } 4222 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4223 4224 /** 4225 * destroy_workqueue - safely terminate a workqueue 4226 * @wq: target workqueue 4227 * 4228 * Safely destroy a workqueue. All work currently pending will be done first. 4229 */ 4230 void destroy_workqueue(struct workqueue_struct *wq) 4231 { 4232 struct pool_workqueue *pwq; 4233 int node; 4234 4235 /* drain it before proceeding with destruction */ 4236 drain_workqueue(wq); 4237 4238 /* sanity checks */ 4239 mutex_lock(&wq->mutex); 4240 for_each_pwq(pwq, wq) { 4241 int i; 4242 4243 for (i = 0; i < WORK_NR_COLORS; i++) { 4244 if (WARN_ON(pwq->nr_in_flight[i])) { 4245 mutex_unlock(&wq->mutex); 4246 return; 4247 } 4248 } 4249 4250 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4251 WARN_ON(pwq->nr_active) || 4252 WARN_ON(!list_empty(&pwq->delayed_works))) { 4253 mutex_unlock(&wq->mutex); 4254 return; 4255 } 4256 } 4257 mutex_unlock(&wq->mutex); 4258 4259 /* 4260 * wq list is used to freeze wq, remove from list after 4261 * flushing is complete in case freeze races us. 4262 */ 4263 mutex_lock(&wq_pool_mutex); 4264 list_del_init(&wq->list); 4265 mutex_unlock(&wq_pool_mutex); 4266 4267 workqueue_sysfs_unregister(wq); 4268 4269 if (wq->rescuer) { 4270 kthread_stop(wq->rescuer->task); 4271 kfree(wq->rescuer); 4272 wq->rescuer = NULL; 4273 } 4274 4275 if (!(wq->flags & WQ_UNBOUND)) { 4276 /* 4277 * The base ref is never dropped on per-cpu pwqs. Directly 4278 * free the pwqs and wq. 4279 */ 4280 free_percpu(wq->cpu_pwqs); 4281 kfree(wq); 4282 } else { 4283 /* 4284 * We're the sole accessor of @wq at this point. Directly 4285 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4286 * @wq will be freed when the last pwq is released. 4287 */ 4288 for_each_node(node) { 4289 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4290 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4291 put_pwq_unlocked(pwq); 4292 } 4293 4294 /* 4295 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4296 * put. Don't access it afterwards. 4297 */ 4298 pwq = wq->dfl_pwq; 4299 wq->dfl_pwq = NULL; 4300 put_pwq_unlocked(pwq); 4301 } 4302 } 4303 EXPORT_SYMBOL_GPL(destroy_workqueue); 4304 4305 /** 4306 * workqueue_set_max_active - adjust max_active of a workqueue 4307 * @wq: target workqueue 4308 * @max_active: new max_active value. 4309 * 4310 * Set max_active of @wq to @max_active. 4311 * 4312 * CONTEXT: 4313 * Don't call from IRQ context. 4314 */ 4315 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4316 { 4317 struct pool_workqueue *pwq; 4318 4319 /* disallow meddling with max_active for ordered workqueues */ 4320 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4321 return; 4322 4323 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4324 4325 mutex_lock(&wq->mutex); 4326 4327 wq->saved_max_active = max_active; 4328 4329 for_each_pwq(pwq, wq) 4330 pwq_adjust_max_active(pwq); 4331 4332 mutex_unlock(&wq->mutex); 4333 } 4334 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4335 4336 /** 4337 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4338 * 4339 * Determine whether %current is a workqueue rescuer. Can be used from 4340 * work functions to determine whether it's being run off the rescuer task. 4341 */ 4342 bool current_is_workqueue_rescuer(void) 4343 { 4344 struct worker *worker = current_wq_worker(); 4345 4346 return worker && worker->rescue_wq; 4347 } 4348 4349 /** 4350 * workqueue_congested - test whether a workqueue is congested 4351 * @cpu: CPU in question 4352 * @wq: target workqueue 4353 * 4354 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4355 * no synchronization around this function and the test result is 4356 * unreliable and only useful as advisory hints or for debugging. 4357 * 4358 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4359 * Note that both per-cpu and unbound workqueues may be associated with 4360 * multiple pool_workqueues which have separate congested states. A 4361 * workqueue being congested on one CPU doesn't mean the workqueue is also 4362 * contested on other CPUs / NUMA nodes. 4363 * 4364 * RETURNS: 4365 * %true if congested, %false otherwise. 4366 */ 4367 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4368 { 4369 struct pool_workqueue *pwq; 4370 bool ret; 4371 4372 rcu_read_lock_sched(); 4373 4374 if (cpu == WORK_CPU_UNBOUND) 4375 cpu = smp_processor_id(); 4376 4377 if (!(wq->flags & WQ_UNBOUND)) 4378 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4379 else 4380 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4381 4382 ret = !list_empty(&pwq->delayed_works); 4383 rcu_read_unlock_sched(); 4384 4385 return ret; 4386 } 4387 EXPORT_SYMBOL_GPL(workqueue_congested); 4388 4389 /** 4390 * work_busy - test whether a work is currently pending or running 4391 * @work: the work to be tested 4392 * 4393 * Test whether @work is currently pending or running. There is no 4394 * synchronization around this function and the test result is 4395 * unreliable and only useful as advisory hints or for debugging. 4396 * 4397 * RETURNS: 4398 * OR'd bitmask of WORK_BUSY_* bits. 4399 */ 4400 unsigned int work_busy(struct work_struct *work) 4401 { 4402 struct worker_pool *pool; 4403 unsigned long flags; 4404 unsigned int ret = 0; 4405 4406 if (work_pending(work)) 4407 ret |= WORK_BUSY_PENDING; 4408 4409 local_irq_save(flags); 4410 pool = get_work_pool(work); 4411 if (pool) { 4412 spin_lock(&pool->lock); 4413 if (find_worker_executing_work(pool, work)) 4414 ret |= WORK_BUSY_RUNNING; 4415 spin_unlock(&pool->lock); 4416 } 4417 local_irq_restore(flags); 4418 4419 return ret; 4420 } 4421 EXPORT_SYMBOL_GPL(work_busy); 4422 4423 /** 4424 * set_worker_desc - set description for the current work item 4425 * @fmt: printf-style format string 4426 * @...: arguments for the format string 4427 * 4428 * This function can be called by a running work function to describe what 4429 * the work item is about. If the worker task gets dumped, this 4430 * information will be printed out together to help debugging. The 4431 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4432 */ 4433 void set_worker_desc(const char *fmt, ...) 4434 { 4435 struct worker *worker = current_wq_worker(); 4436 va_list args; 4437 4438 if (worker) { 4439 va_start(args, fmt); 4440 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4441 va_end(args); 4442 worker->desc_valid = true; 4443 } 4444 } 4445 4446 /** 4447 * print_worker_info - print out worker information and description 4448 * @log_lvl: the log level to use when printing 4449 * @task: target task 4450 * 4451 * If @task is a worker and currently executing a work item, print out the 4452 * name of the workqueue being serviced and worker description set with 4453 * set_worker_desc() by the currently executing work item. 4454 * 4455 * This function can be safely called on any task as long as the 4456 * task_struct itself is accessible. While safe, this function isn't 4457 * synchronized and may print out mixups or garbages of limited length. 4458 */ 4459 void print_worker_info(const char *log_lvl, struct task_struct *task) 4460 { 4461 work_func_t *fn = NULL; 4462 char name[WQ_NAME_LEN] = { }; 4463 char desc[WORKER_DESC_LEN] = { }; 4464 struct pool_workqueue *pwq = NULL; 4465 struct workqueue_struct *wq = NULL; 4466 bool desc_valid = false; 4467 struct worker *worker; 4468 4469 if (!(task->flags & PF_WQ_WORKER)) 4470 return; 4471 4472 /* 4473 * This function is called without any synchronization and @task 4474 * could be in any state. Be careful with dereferences. 4475 */ 4476 worker = probe_kthread_data(task); 4477 4478 /* 4479 * Carefully copy the associated workqueue's workfn and name. Keep 4480 * the original last '\0' in case the original contains garbage. 4481 */ 4482 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4483 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4484 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4485 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4486 4487 /* copy worker description */ 4488 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4489 if (desc_valid) 4490 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4491 4492 if (fn || name[0] || desc[0]) { 4493 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4494 if (desc[0]) 4495 pr_cont(" (%s)", desc); 4496 pr_cont("\n"); 4497 } 4498 } 4499 4500 /* 4501 * CPU hotplug. 4502 * 4503 * There are two challenges in supporting CPU hotplug. Firstly, there 4504 * are a lot of assumptions on strong associations among work, pwq and 4505 * pool which make migrating pending and scheduled works very 4506 * difficult to implement without impacting hot paths. Secondly, 4507 * worker pools serve mix of short, long and very long running works making 4508 * blocked draining impractical. 4509 * 4510 * This is solved by allowing the pools to be disassociated from the CPU 4511 * running as an unbound one and allowing it to be reattached later if the 4512 * cpu comes back online. 4513 */ 4514 4515 static void wq_unbind_fn(struct work_struct *work) 4516 { 4517 int cpu = smp_processor_id(); 4518 struct worker_pool *pool; 4519 struct worker *worker; 4520 int wi; 4521 4522 for_each_cpu_worker_pool(pool, cpu) { 4523 WARN_ON_ONCE(cpu != smp_processor_id()); 4524 4525 mutex_lock(&pool->manager_mutex); 4526 spin_lock_irq(&pool->lock); 4527 4528 /* 4529 * We've blocked all manager operations. Make all workers 4530 * unbound and set DISASSOCIATED. Before this, all workers 4531 * except for the ones which are still executing works from 4532 * before the last CPU down must be on the cpu. After 4533 * this, they may become diasporas. 4534 */ 4535 for_each_pool_worker(worker, wi, pool) 4536 worker->flags |= WORKER_UNBOUND; 4537 4538 pool->flags |= POOL_DISASSOCIATED; 4539 4540 spin_unlock_irq(&pool->lock); 4541 mutex_unlock(&pool->manager_mutex); 4542 4543 /* 4544 * Call schedule() so that we cross rq->lock and thus can 4545 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4546 * This is necessary as scheduler callbacks may be invoked 4547 * from other cpus. 4548 */ 4549 schedule(); 4550 4551 /* 4552 * Sched callbacks are disabled now. Zap nr_running. 4553 * After this, nr_running stays zero and need_more_worker() 4554 * and keep_working() are always true as long as the 4555 * worklist is not empty. This pool now behaves as an 4556 * unbound (in terms of concurrency management) pool which 4557 * are served by workers tied to the pool. 4558 */ 4559 atomic_set(&pool->nr_running, 0); 4560 4561 /* 4562 * With concurrency management just turned off, a busy 4563 * worker blocking could lead to lengthy stalls. Kick off 4564 * unbound chain execution of currently pending work items. 4565 */ 4566 spin_lock_irq(&pool->lock); 4567 wake_up_worker(pool); 4568 spin_unlock_irq(&pool->lock); 4569 } 4570 } 4571 4572 /** 4573 * rebind_workers - rebind all workers of a pool to the associated CPU 4574 * @pool: pool of interest 4575 * 4576 * @pool->cpu is coming online. Rebind all workers to the CPU. 4577 */ 4578 static void rebind_workers(struct worker_pool *pool) 4579 { 4580 struct worker *worker; 4581 int wi; 4582 4583 lockdep_assert_held(&pool->manager_mutex); 4584 4585 /* 4586 * Restore CPU affinity of all workers. As all idle workers should 4587 * be on the run-queue of the associated CPU before any local 4588 * wake-ups for concurrency management happen, restore CPU affinty 4589 * of all workers first and then clear UNBOUND. As we're called 4590 * from CPU_ONLINE, the following shouldn't fail. 4591 */ 4592 for_each_pool_worker(worker, wi, pool) 4593 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4594 pool->attrs->cpumask) < 0); 4595 4596 spin_lock_irq(&pool->lock); 4597 4598 for_each_pool_worker(worker, wi, pool) { 4599 unsigned int worker_flags = worker->flags; 4600 4601 /* 4602 * A bound idle worker should actually be on the runqueue 4603 * of the associated CPU for local wake-ups targeting it to 4604 * work. Kick all idle workers so that they migrate to the 4605 * associated CPU. Doing this in the same loop as 4606 * replacing UNBOUND with REBOUND is safe as no worker will 4607 * be bound before @pool->lock is released. 4608 */ 4609 if (worker_flags & WORKER_IDLE) 4610 wake_up_process(worker->task); 4611 4612 /* 4613 * We want to clear UNBOUND but can't directly call 4614 * worker_clr_flags() or adjust nr_running. Atomically 4615 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4616 * @worker will clear REBOUND using worker_clr_flags() when 4617 * it initiates the next execution cycle thus restoring 4618 * concurrency management. Note that when or whether 4619 * @worker clears REBOUND doesn't affect correctness. 4620 * 4621 * ACCESS_ONCE() is necessary because @worker->flags may be 4622 * tested without holding any lock in 4623 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4624 * fail incorrectly leading to premature concurrency 4625 * management operations. 4626 */ 4627 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4628 worker_flags |= WORKER_REBOUND; 4629 worker_flags &= ~WORKER_UNBOUND; 4630 ACCESS_ONCE(worker->flags) = worker_flags; 4631 } 4632 4633 spin_unlock_irq(&pool->lock); 4634 } 4635 4636 /** 4637 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4638 * @pool: unbound pool of interest 4639 * @cpu: the CPU which is coming up 4640 * 4641 * An unbound pool may end up with a cpumask which doesn't have any online 4642 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4643 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4644 * online CPU before, cpus_allowed of all its workers should be restored. 4645 */ 4646 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4647 { 4648 static cpumask_t cpumask; 4649 struct worker *worker; 4650 int wi; 4651 4652 lockdep_assert_held(&pool->manager_mutex); 4653 4654 /* is @cpu allowed for @pool? */ 4655 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4656 return; 4657 4658 /* is @cpu the only online CPU? */ 4659 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4660 if (cpumask_weight(&cpumask) != 1) 4661 return; 4662 4663 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4664 for_each_pool_worker(worker, wi, pool) 4665 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4666 pool->attrs->cpumask) < 0); 4667 } 4668 4669 /* 4670 * Workqueues should be brought up before normal priority CPU notifiers. 4671 * This will be registered high priority CPU notifier. 4672 */ 4673 static int workqueue_cpu_up_callback(struct notifier_block *nfb, 4674 unsigned long action, 4675 void *hcpu) 4676 { 4677 int cpu = (unsigned long)hcpu; 4678 struct worker_pool *pool; 4679 struct workqueue_struct *wq; 4680 int pi; 4681 4682 switch (action & ~CPU_TASKS_FROZEN) { 4683 case CPU_UP_PREPARE: 4684 for_each_cpu_worker_pool(pool, cpu) { 4685 if (pool->nr_workers) 4686 continue; 4687 if (create_and_start_worker(pool) < 0) 4688 return NOTIFY_BAD; 4689 } 4690 break; 4691 4692 case CPU_DOWN_FAILED: 4693 case CPU_ONLINE: 4694 mutex_lock(&wq_pool_mutex); 4695 4696 for_each_pool(pool, pi) { 4697 mutex_lock(&pool->manager_mutex); 4698 4699 if (pool->cpu == cpu) { 4700 spin_lock_irq(&pool->lock); 4701 pool->flags &= ~POOL_DISASSOCIATED; 4702 spin_unlock_irq(&pool->lock); 4703 4704 rebind_workers(pool); 4705 } else if (pool->cpu < 0) { 4706 restore_unbound_workers_cpumask(pool, cpu); 4707 } 4708 4709 mutex_unlock(&pool->manager_mutex); 4710 } 4711 4712 /* update NUMA affinity of unbound workqueues */ 4713 list_for_each_entry(wq, &workqueues, list) 4714 wq_update_unbound_numa(wq, cpu, true); 4715 4716 mutex_unlock(&wq_pool_mutex); 4717 break; 4718 } 4719 return NOTIFY_OK; 4720 } 4721 4722 /* 4723 * Workqueues should be brought down after normal priority CPU notifiers. 4724 * This will be registered as low priority CPU notifier. 4725 */ 4726 static int workqueue_cpu_down_callback(struct notifier_block *nfb, 4727 unsigned long action, 4728 void *hcpu) 4729 { 4730 int cpu = (unsigned long)hcpu; 4731 struct work_struct unbind_work; 4732 struct workqueue_struct *wq; 4733 4734 switch (action & ~CPU_TASKS_FROZEN) { 4735 case CPU_DOWN_PREPARE: 4736 /* unbinding per-cpu workers should happen on the local CPU */ 4737 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4738 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4739 4740 /* update NUMA affinity of unbound workqueues */ 4741 mutex_lock(&wq_pool_mutex); 4742 list_for_each_entry(wq, &workqueues, list) 4743 wq_update_unbound_numa(wq, cpu, false); 4744 mutex_unlock(&wq_pool_mutex); 4745 4746 /* wait for per-cpu unbinding to finish */ 4747 flush_work(&unbind_work); 4748 break; 4749 } 4750 return NOTIFY_OK; 4751 } 4752 4753 #ifdef CONFIG_SMP 4754 4755 struct work_for_cpu { 4756 struct work_struct work; 4757 long (*fn)(void *); 4758 void *arg; 4759 long ret; 4760 }; 4761 4762 static void work_for_cpu_fn(struct work_struct *work) 4763 { 4764 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4765 4766 wfc->ret = wfc->fn(wfc->arg); 4767 } 4768 4769 /** 4770 * work_on_cpu - run a function in user context on a particular cpu 4771 * @cpu: the cpu to run on 4772 * @fn: the function to run 4773 * @arg: the function arg 4774 * 4775 * This will return the value @fn returns. 4776 * It is up to the caller to ensure that the cpu doesn't go offline. 4777 * The caller must not hold any locks which would prevent @fn from completing. 4778 */ 4779 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4780 { 4781 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4782 4783 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4784 schedule_work_on(cpu, &wfc.work); 4785 4786 /* 4787 * The work item is on-stack and can't lead to deadlock through 4788 * flushing. Use __flush_work() to avoid spurious lockdep warnings 4789 * when work_on_cpu()s are nested. 4790 */ 4791 __flush_work(&wfc.work); 4792 4793 return wfc.ret; 4794 } 4795 EXPORT_SYMBOL_GPL(work_on_cpu); 4796 #endif /* CONFIG_SMP */ 4797 4798 #ifdef CONFIG_FREEZER 4799 4800 /** 4801 * freeze_workqueues_begin - begin freezing workqueues 4802 * 4803 * Start freezing workqueues. After this function returns, all freezable 4804 * workqueues will queue new works to their delayed_works list instead of 4805 * pool->worklist. 4806 * 4807 * CONTEXT: 4808 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4809 */ 4810 void freeze_workqueues_begin(void) 4811 { 4812 struct worker_pool *pool; 4813 struct workqueue_struct *wq; 4814 struct pool_workqueue *pwq; 4815 int pi; 4816 4817 mutex_lock(&wq_pool_mutex); 4818 4819 WARN_ON_ONCE(workqueue_freezing); 4820 workqueue_freezing = true; 4821 4822 /* set FREEZING */ 4823 for_each_pool(pool, pi) { 4824 spin_lock_irq(&pool->lock); 4825 WARN_ON_ONCE(pool->flags & POOL_FREEZING); 4826 pool->flags |= POOL_FREEZING; 4827 spin_unlock_irq(&pool->lock); 4828 } 4829 4830 list_for_each_entry(wq, &workqueues, list) { 4831 mutex_lock(&wq->mutex); 4832 for_each_pwq(pwq, wq) 4833 pwq_adjust_max_active(pwq); 4834 mutex_unlock(&wq->mutex); 4835 } 4836 4837 mutex_unlock(&wq_pool_mutex); 4838 } 4839 4840 /** 4841 * freeze_workqueues_busy - are freezable workqueues still busy? 4842 * 4843 * Check whether freezing is complete. This function must be called 4844 * between freeze_workqueues_begin() and thaw_workqueues(). 4845 * 4846 * CONTEXT: 4847 * Grabs and releases wq_pool_mutex. 4848 * 4849 * RETURNS: 4850 * %true if some freezable workqueues are still busy. %false if freezing 4851 * is complete. 4852 */ 4853 bool freeze_workqueues_busy(void) 4854 { 4855 bool busy = false; 4856 struct workqueue_struct *wq; 4857 struct pool_workqueue *pwq; 4858 4859 mutex_lock(&wq_pool_mutex); 4860 4861 WARN_ON_ONCE(!workqueue_freezing); 4862 4863 list_for_each_entry(wq, &workqueues, list) { 4864 if (!(wq->flags & WQ_FREEZABLE)) 4865 continue; 4866 /* 4867 * nr_active is monotonically decreasing. It's safe 4868 * to peek without lock. 4869 */ 4870 rcu_read_lock_sched(); 4871 for_each_pwq(pwq, wq) { 4872 WARN_ON_ONCE(pwq->nr_active < 0); 4873 if (pwq->nr_active) { 4874 busy = true; 4875 rcu_read_unlock_sched(); 4876 goto out_unlock; 4877 } 4878 } 4879 rcu_read_unlock_sched(); 4880 } 4881 out_unlock: 4882 mutex_unlock(&wq_pool_mutex); 4883 return busy; 4884 } 4885 4886 /** 4887 * thaw_workqueues - thaw workqueues 4888 * 4889 * Thaw workqueues. Normal queueing is restored and all collected 4890 * frozen works are transferred to their respective pool worklists. 4891 * 4892 * CONTEXT: 4893 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4894 */ 4895 void thaw_workqueues(void) 4896 { 4897 struct workqueue_struct *wq; 4898 struct pool_workqueue *pwq; 4899 struct worker_pool *pool; 4900 int pi; 4901 4902 mutex_lock(&wq_pool_mutex); 4903 4904 if (!workqueue_freezing) 4905 goto out_unlock; 4906 4907 /* clear FREEZING */ 4908 for_each_pool(pool, pi) { 4909 spin_lock_irq(&pool->lock); 4910 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING)); 4911 pool->flags &= ~POOL_FREEZING; 4912 spin_unlock_irq(&pool->lock); 4913 } 4914 4915 /* restore max_active and repopulate worklist */ 4916 list_for_each_entry(wq, &workqueues, list) { 4917 mutex_lock(&wq->mutex); 4918 for_each_pwq(pwq, wq) 4919 pwq_adjust_max_active(pwq); 4920 mutex_unlock(&wq->mutex); 4921 } 4922 4923 workqueue_freezing = false; 4924 out_unlock: 4925 mutex_unlock(&wq_pool_mutex); 4926 } 4927 #endif /* CONFIG_FREEZER */ 4928 4929 static void __init wq_numa_init(void) 4930 { 4931 cpumask_var_t *tbl; 4932 int node, cpu; 4933 4934 /* determine NUMA pwq table len - highest node id + 1 */ 4935 for_each_node(node) 4936 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1); 4937 4938 if (num_possible_nodes() <= 1) 4939 return; 4940 4941 if (wq_disable_numa) { 4942 pr_info("workqueue: NUMA affinity support disabled\n"); 4943 return; 4944 } 4945 4946 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 4947 BUG_ON(!wq_update_unbound_numa_attrs_buf); 4948 4949 /* 4950 * We want masks of possible CPUs of each node which isn't readily 4951 * available. Build one from cpu_to_node() which should have been 4952 * fully initialized by now. 4953 */ 4954 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL); 4955 BUG_ON(!tbl); 4956 4957 for_each_node(node) 4958 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 4959 node_online(node) ? node : NUMA_NO_NODE)); 4960 4961 for_each_possible_cpu(cpu) { 4962 node = cpu_to_node(cpu); 4963 if (WARN_ON(node == NUMA_NO_NODE)) { 4964 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 4965 /* happens iff arch is bonkers, let's just proceed */ 4966 return; 4967 } 4968 cpumask_set_cpu(cpu, tbl[node]); 4969 } 4970 4971 wq_numa_possible_cpumask = tbl; 4972 wq_numa_enabled = true; 4973 } 4974 4975 static int __init init_workqueues(void) 4976 { 4977 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 4978 int i, cpu; 4979 4980 /* make sure we have enough bits for OFFQ pool ID */ 4981 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) < 4982 WORK_CPU_END * NR_STD_WORKER_POOLS); 4983 4984 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 4985 4986 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 4987 4988 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 4989 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 4990 4991 wq_numa_init(); 4992 4993 /* initialize CPU pools */ 4994 for_each_possible_cpu(cpu) { 4995 struct worker_pool *pool; 4996 4997 i = 0; 4998 for_each_cpu_worker_pool(pool, cpu) { 4999 BUG_ON(init_worker_pool(pool)); 5000 pool->cpu = cpu; 5001 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5002 pool->attrs->nice = std_nice[i++]; 5003 pool->node = cpu_to_node(cpu); 5004 5005 /* alloc pool ID */ 5006 mutex_lock(&wq_pool_mutex); 5007 BUG_ON(worker_pool_assign_id(pool)); 5008 mutex_unlock(&wq_pool_mutex); 5009 } 5010 } 5011 5012 /* create the initial worker */ 5013 for_each_online_cpu(cpu) { 5014 struct worker_pool *pool; 5015 5016 for_each_cpu_worker_pool(pool, cpu) { 5017 pool->flags &= ~POOL_DISASSOCIATED; 5018 BUG_ON(create_and_start_worker(pool) < 0); 5019 } 5020 } 5021 5022 /* create default unbound wq attrs */ 5023 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5024 struct workqueue_attrs *attrs; 5025 5026 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5027 attrs->nice = std_nice[i]; 5028 unbound_std_wq_attrs[i] = attrs; 5029 } 5030 5031 system_wq = alloc_workqueue("events", 0, 0); 5032 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5033 system_long_wq = alloc_workqueue("events_long", 0, 0); 5034 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5035 WQ_UNBOUND_MAX_ACTIVE); 5036 system_freezable_wq = alloc_workqueue("events_freezable", 5037 WQ_FREEZABLE, 0); 5038 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5039 WQ_POWER_EFFICIENT, 0); 5040 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5041 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5042 0); 5043 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5044 !system_unbound_wq || !system_freezable_wq || 5045 !system_power_efficient_wq || 5046 !system_freezable_power_efficient_wq); 5047 return 0; 5048 } 5049 early_initcall(init_workqueues); 5050