1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <[email protected]> 8 * Andrew Morton 9 * Kai Petzke <[email protected]> 10 * Theodore Ts'o <[email protected]> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <[email protected]> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/core-api/workqueue.rst for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 #include <linux/jhash.h> 45 #include <linux/hashtable.h> 46 #include <linux/rculist.h> 47 #include <linux/nodemask.h> 48 #include <linux/moduleparam.h> 49 #include <linux/uaccess.h> 50 #include <linux/sched/isolation.h> 51 #include <linux/nmi.h> 52 53 #include "workqueue_internal.h" 54 55 enum { 56 /* 57 * worker_pool flags 58 * 59 * A bound pool is either associated or disassociated with its CPU. 60 * While associated (!DISASSOCIATED), all workers are bound to the 61 * CPU and none has %WORKER_UNBOUND set and concurrency management 62 * is in effect. 63 * 64 * While DISASSOCIATED, the cpu may be offline and all workers have 65 * %WORKER_UNBOUND set and concurrency management disabled, and may 66 * be executing on any CPU. The pool behaves as an unbound one. 67 * 68 * Note that DISASSOCIATED should be flipped only while holding 69 * wq_pool_attach_mutex to avoid changing binding state while 70 * worker_attach_to_pool() is in progress. 71 */ 72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 74 75 /* worker flags */ 76 WORKER_DIE = 1 << 1, /* die die die */ 77 WORKER_IDLE = 1 << 2, /* is idle */ 78 WORKER_PREP = 1 << 3, /* preparing to run works */ 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 82 83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 84 WORKER_UNBOUND | WORKER_REBOUND, 85 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 87 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 90 91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 93 94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 95 /* call for help after 10ms 96 (min two ticks) */ 97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 98 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 99 100 /* 101 * Rescue workers are used only on emergencies and shared by 102 * all cpus. Give MIN_NICE. 103 */ 104 RESCUER_NICE_LEVEL = MIN_NICE, 105 HIGHPRI_NICE_LEVEL = MIN_NICE, 106 107 WQ_NAME_LEN = 24, 108 }; 109 110 /* 111 * Structure fields follow one of the following exclusion rules. 112 * 113 * I: Modifiable by initialization/destruction paths and read-only for 114 * everyone else. 115 * 116 * P: Preemption protected. Disabling preemption is enough and should 117 * only be modified and accessed from the local cpu. 118 * 119 * L: pool->lock protected. Access with pool->lock held. 120 * 121 * X: During normal operation, modification requires pool->lock and should 122 * be done only from local cpu. Either disabling preemption on local 123 * cpu or grabbing pool->lock is enough for read access. If 124 * POOL_DISASSOCIATED is set, it's identical to L. 125 * 126 * A: wq_pool_attach_mutex protected. 127 * 128 * PL: wq_pool_mutex protected. 129 * 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 131 * 132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 133 * 134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 135 * sched-RCU for reads. 136 * 137 * WQ: wq->mutex protected. 138 * 139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 140 * 141 * MD: wq_mayday_lock protected. 142 */ 143 144 /* struct worker is defined in workqueue_internal.h */ 145 146 struct worker_pool { 147 spinlock_t lock; /* the pool lock */ 148 int cpu; /* I: the associated cpu */ 149 int node; /* I: the associated node ID */ 150 int id; /* I: pool ID */ 151 unsigned int flags; /* X: flags */ 152 153 unsigned long watchdog_ts; /* L: watchdog timestamp */ 154 155 struct list_head worklist; /* L: list of pending works */ 156 157 int nr_workers; /* L: total number of workers */ 158 int nr_idle; /* L: currently idle workers */ 159 160 struct list_head idle_list; /* X: list of idle workers */ 161 struct timer_list idle_timer; /* L: worker idle timeout */ 162 struct timer_list mayday_timer; /* L: SOS timer for workers */ 163 164 /* a workers is either on busy_hash or idle_list, or the manager */ 165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 166 /* L: hash of busy workers */ 167 168 struct worker *manager; /* L: purely informational */ 169 struct list_head workers; /* A: attached workers */ 170 struct completion *detach_completion; /* all workers detached */ 171 172 struct ida worker_ida; /* worker IDs for task name */ 173 174 struct workqueue_attrs *attrs; /* I: worker attributes */ 175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 176 int refcnt; /* PL: refcnt for unbound pools */ 177 178 /* 179 * The current concurrency level. As it's likely to be accessed 180 * from other CPUs during try_to_wake_up(), put it in a separate 181 * cacheline. 182 */ 183 atomic_t nr_running ____cacheline_aligned_in_smp; 184 185 /* 186 * Destruction of pool is sched-RCU protected to allow dereferences 187 * from get_work_pool(). 188 */ 189 struct rcu_head rcu; 190 } ____cacheline_aligned_in_smp; 191 192 /* 193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 194 * of work_struct->data are used for flags and the remaining high bits 195 * point to the pwq; thus, pwqs need to be aligned at two's power of the 196 * number of flag bits. 197 */ 198 struct pool_workqueue { 199 struct worker_pool *pool; /* I: the associated pool */ 200 struct workqueue_struct *wq; /* I: the owning workqueue */ 201 int work_color; /* L: current color */ 202 int flush_color; /* L: flushing color */ 203 int refcnt; /* L: reference count */ 204 int nr_in_flight[WORK_NR_COLORS]; 205 /* L: nr of in_flight works */ 206 int nr_active; /* L: nr of active works */ 207 int max_active; /* L: max active works */ 208 struct list_head delayed_works; /* L: delayed works */ 209 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 210 struct list_head mayday_node; /* MD: node on wq->maydays */ 211 212 /* 213 * Release of unbound pwq is punted to system_wq. See put_pwq() 214 * and pwq_unbound_release_workfn() for details. pool_workqueue 215 * itself is also sched-RCU protected so that the first pwq can be 216 * determined without grabbing wq->mutex. 217 */ 218 struct work_struct unbound_release_work; 219 struct rcu_head rcu; 220 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 221 222 /* 223 * Structure used to wait for workqueue flush. 224 */ 225 struct wq_flusher { 226 struct list_head list; /* WQ: list of flushers */ 227 int flush_color; /* WQ: flush color waiting for */ 228 struct completion done; /* flush completion */ 229 }; 230 231 struct wq_device; 232 233 /* 234 * The externally visible workqueue. It relays the issued work items to 235 * the appropriate worker_pool through its pool_workqueues. 236 */ 237 struct workqueue_struct { 238 struct list_head pwqs; /* WR: all pwqs of this wq */ 239 struct list_head list; /* PR: list of all workqueues */ 240 241 struct mutex mutex; /* protects this wq */ 242 int work_color; /* WQ: current work color */ 243 int flush_color; /* WQ: current flush color */ 244 atomic_t nr_pwqs_to_flush; /* flush in progress */ 245 struct wq_flusher *first_flusher; /* WQ: first flusher */ 246 struct list_head flusher_queue; /* WQ: flush waiters */ 247 struct list_head flusher_overflow; /* WQ: flush overflow list */ 248 249 struct list_head maydays; /* MD: pwqs requesting rescue */ 250 struct worker *rescuer; /* I: rescue worker */ 251 252 int nr_drainers; /* WQ: drain in progress */ 253 int saved_max_active; /* WQ: saved pwq max_active */ 254 255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 257 258 #ifdef CONFIG_SYSFS 259 struct wq_device *wq_dev; /* I: for sysfs interface */ 260 #endif 261 #ifdef CONFIG_LOCKDEP 262 struct lockdep_map lockdep_map; 263 #endif 264 char name[WQ_NAME_LEN]; /* I: workqueue name */ 265 266 /* 267 * Destruction of workqueue_struct is sched-RCU protected to allow 268 * walking the workqueues list without grabbing wq_pool_mutex. 269 * This is used to dump all workqueues from sysrq. 270 */ 271 struct rcu_head rcu; 272 273 /* hot fields used during command issue, aligned to cacheline */ 274 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 275 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 276 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 277 }; 278 279 static struct kmem_cache *pwq_cache; 280 281 static cpumask_var_t *wq_numa_possible_cpumask; 282 /* possible CPUs of each node */ 283 284 static bool wq_disable_numa; 285 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 286 287 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 288 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 289 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 290 291 static bool wq_online; /* can kworkers be created yet? */ 292 293 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 294 295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 297 298 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 299 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 300 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 301 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */ 302 303 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 304 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 305 306 /* PL: allowable cpus for unbound wqs and work items */ 307 static cpumask_var_t wq_unbound_cpumask; 308 309 /* CPU where unbound work was last round robin scheduled from this CPU */ 310 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 311 312 /* 313 * Local execution of unbound work items is no longer guaranteed. The 314 * following always forces round-robin CPU selection on unbound work items 315 * to uncover usages which depend on it. 316 */ 317 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 318 static bool wq_debug_force_rr_cpu = true; 319 #else 320 static bool wq_debug_force_rr_cpu = false; 321 #endif 322 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 323 324 /* the per-cpu worker pools */ 325 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 326 327 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 328 329 /* PL: hash of all unbound pools keyed by pool->attrs */ 330 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 331 332 /* I: attributes used when instantiating standard unbound pools on demand */ 333 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 334 335 /* I: attributes used when instantiating ordered pools on demand */ 336 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 337 338 struct workqueue_struct *system_wq __read_mostly; 339 EXPORT_SYMBOL(system_wq); 340 struct workqueue_struct *system_highpri_wq __read_mostly; 341 EXPORT_SYMBOL_GPL(system_highpri_wq); 342 struct workqueue_struct *system_long_wq __read_mostly; 343 EXPORT_SYMBOL_GPL(system_long_wq); 344 struct workqueue_struct *system_unbound_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_unbound_wq); 346 struct workqueue_struct *system_freezable_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_freezable_wq); 348 struct workqueue_struct *system_power_efficient_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 350 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 351 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 352 353 static int worker_thread(void *__worker); 354 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 355 356 #define CREATE_TRACE_POINTS 357 #include <trace/events/workqueue.h> 358 359 #define assert_rcu_or_pool_mutex() \ 360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 361 !lockdep_is_held(&wq_pool_mutex), \ 362 "sched RCU or wq_pool_mutex should be held") 363 364 #define assert_rcu_or_wq_mutex(wq) \ 365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 366 !lockdep_is_held(&wq->mutex), \ 367 "sched RCU or wq->mutex should be held") 368 369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 371 !lockdep_is_held(&wq->mutex) && \ 372 !lockdep_is_held(&wq_pool_mutex), \ 373 "sched RCU, wq->mutex or wq_pool_mutex should be held") 374 375 #define for_each_cpu_worker_pool(pool, cpu) \ 376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 378 (pool)++) 379 380 /** 381 * for_each_pool - iterate through all worker_pools in the system 382 * @pool: iteration cursor 383 * @pi: integer used for iteration 384 * 385 * This must be called either with wq_pool_mutex held or sched RCU read 386 * locked. If the pool needs to be used beyond the locking in effect, the 387 * caller is responsible for guaranteeing that the pool stays online. 388 * 389 * The if/else clause exists only for the lockdep assertion and can be 390 * ignored. 391 */ 392 #define for_each_pool(pool, pi) \ 393 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 395 else 396 397 /** 398 * for_each_pool_worker - iterate through all workers of a worker_pool 399 * @worker: iteration cursor 400 * @pool: worker_pool to iterate workers of 401 * 402 * This must be called with wq_pool_attach_mutex. 403 * 404 * The if/else clause exists only for the lockdep assertion and can be 405 * ignored. 406 */ 407 #define for_each_pool_worker(worker, pool) \ 408 list_for_each_entry((worker), &(pool)->workers, node) \ 409 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 410 else 411 412 /** 413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 414 * @pwq: iteration cursor 415 * @wq: the target workqueue 416 * 417 * This must be called either with wq->mutex held or sched RCU read locked. 418 * If the pwq needs to be used beyond the locking in effect, the caller is 419 * responsible for guaranteeing that the pwq stays online. 420 * 421 * The if/else clause exists only for the lockdep assertion and can be 422 * ignored. 423 */ 424 #define for_each_pwq(pwq, wq) \ 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 427 else 428 429 #ifdef CONFIG_DEBUG_OBJECTS_WORK 430 431 static struct debug_obj_descr work_debug_descr; 432 433 static void *work_debug_hint(void *addr) 434 { 435 return ((struct work_struct *) addr)->func; 436 } 437 438 static bool work_is_static_object(void *addr) 439 { 440 struct work_struct *work = addr; 441 442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 443 } 444 445 /* 446 * fixup_init is called when: 447 * - an active object is initialized 448 */ 449 static bool work_fixup_init(void *addr, enum debug_obj_state state) 450 { 451 struct work_struct *work = addr; 452 453 switch (state) { 454 case ODEBUG_STATE_ACTIVE: 455 cancel_work_sync(work); 456 debug_object_init(work, &work_debug_descr); 457 return true; 458 default: 459 return false; 460 } 461 } 462 463 /* 464 * fixup_free is called when: 465 * - an active object is freed 466 */ 467 static bool work_fixup_free(void *addr, enum debug_obj_state state) 468 { 469 struct work_struct *work = addr; 470 471 switch (state) { 472 case ODEBUG_STATE_ACTIVE: 473 cancel_work_sync(work); 474 debug_object_free(work, &work_debug_descr); 475 return true; 476 default: 477 return false; 478 } 479 } 480 481 static struct debug_obj_descr work_debug_descr = { 482 .name = "work_struct", 483 .debug_hint = work_debug_hint, 484 .is_static_object = work_is_static_object, 485 .fixup_init = work_fixup_init, 486 .fixup_free = work_fixup_free, 487 }; 488 489 static inline void debug_work_activate(struct work_struct *work) 490 { 491 debug_object_activate(work, &work_debug_descr); 492 } 493 494 static inline void debug_work_deactivate(struct work_struct *work) 495 { 496 debug_object_deactivate(work, &work_debug_descr); 497 } 498 499 void __init_work(struct work_struct *work, int onstack) 500 { 501 if (onstack) 502 debug_object_init_on_stack(work, &work_debug_descr); 503 else 504 debug_object_init(work, &work_debug_descr); 505 } 506 EXPORT_SYMBOL_GPL(__init_work); 507 508 void destroy_work_on_stack(struct work_struct *work) 509 { 510 debug_object_free(work, &work_debug_descr); 511 } 512 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 513 514 void destroy_delayed_work_on_stack(struct delayed_work *work) 515 { 516 destroy_timer_on_stack(&work->timer); 517 debug_object_free(&work->work, &work_debug_descr); 518 } 519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 520 521 #else 522 static inline void debug_work_activate(struct work_struct *work) { } 523 static inline void debug_work_deactivate(struct work_struct *work) { } 524 #endif 525 526 /** 527 * worker_pool_assign_id - allocate ID and assing it to @pool 528 * @pool: the pool pointer of interest 529 * 530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 531 * successfully, -errno on failure. 532 */ 533 static int worker_pool_assign_id(struct worker_pool *pool) 534 { 535 int ret; 536 537 lockdep_assert_held(&wq_pool_mutex); 538 539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 540 GFP_KERNEL); 541 if (ret >= 0) { 542 pool->id = ret; 543 return 0; 544 } 545 return ret; 546 } 547 548 /** 549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 550 * @wq: the target workqueue 551 * @node: the node ID 552 * 553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 554 * read locked. 555 * If the pwq needs to be used beyond the locking in effect, the caller is 556 * responsible for guaranteeing that the pwq stays online. 557 * 558 * Return: The unbound pool_workqueue for @node. 559 */ 560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 561 int node) 562 { 563 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 564 565 /* 566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 567 * delayed item is pending. The plan is to keep CPU -> NODE 568 * mapping valid and stable across CPU on/offlines. Once that 569 * happens, this workaround can be removed. 570 */ 571 if (unlikely(node == NUMA_NO_NODE)) 572 return wq->dfl_pwq; 573 574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 575 } 576 577 static unsigned int work_color_to_flags(int color) 578 { 579 return color << WORK_STRUCT_COLOR_SHIFT; 580 } 581 582 static int get_work_color(struct work_struct *work) 583 { 584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 585 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 586 } 587 588 static int work_next_color(int color) 589 { 590 return (color + 1) % WORK_NR_COLORS; 591 } 592 593 /* 594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 595 * contain the pointer to the queued pwq. Once execution starts, the flag 596 * is cleared and the high bits contain OFFQ flags and pool ID. 597 * 598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 599 * and clear_work_data() can be used to set the pwq, pool or clear 600 * work->data. These functions should only be called while the work is 601 * owned - ie. while the PENDING bit is set. 602 * 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 604 * corresponding to a work. Pool is available once the work has been 605 * queued anywhere after initialization until it is sync canceled. pwq is 606 * available only while the work item is queued. 607 * 608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 609 * canceled. While being canceled, a work item may have its PENDING set 610 * but stay off timer and worklist for arbitrarily long and nobody should 611 * try to steal the PENDING bit. 612 */ 613 static inline void set_work_data(struct work_struct *work, unsigned long data, 614 unsigned long flags) 615 { 616 WARN_ON_ONCE(!work_pending(work)); 617 atomic_long_set(&work->data, data | flags | work_static(work)); 618 } 619 620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 621 unsigned long extra_flags) 622 { 623 set_work_data(work, (unsigned long)pwq, 624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 625 } 626 627 static void set_work_pool_and_keep_pending(struct work_struct *work, 628 int pool_id) 629 { 630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 631 WORK_STRUCT_PENDING); 632 } 633 634 static void set_work_pool_and_clear_pending(struct work_struct *work, 635 int pool_id) 636 { 637 /* 638 * The following wmb is paired with the implied mb in 639 * test_and_set_bit(PENDING) and ensures all updates to @work made 640 * here are visible to and precede any updates by the next PENDING 641 * owner. 642 */ 643 smp_wmb(); 644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 645 /* 646 * The following mb guarantees that previous clear of a PENDING bit 647 * will not be reordered with any speculative LOADS or STORES from 648 * work->current_func, which is executed afterwards. This possible 649 * reordering can lead to a missed execution on attempt to qeueue 650 * the same @work. E.g. consider this case: 651 * 652 * CPU#0 CPU#1 653 * ---------------------------- -------------------------------- 654 * 655 * 1 STORE event_indicated 656 * 2 queue_work_on() { 657 * 3 test_and_set_bit(PENDING) 658 * 4 } set_..._and_clear_pending() { 659 * 5 set_work_data() # clear bit 660 * 6 smp_mb() 661 * 7 work->current_func() { 662 * 8 LOAD event_indicated 663 * } 664 * 665 * Without an explicit full barrier speculative LOAD on line 8 can 666 * be executed before CPU#0 does STORE on line 1. If that happens, 667 * CPU#0 observes the PENDING bit is still set and new execution of 668 * a @work is not queued in a hope, that CPU#1 will eventually 669 * finish the queued @work. Meanwhile CPU#1 does not see 670 * event_indicated is set, because speculative LOAD was executed 671 * before actual STORE. 672 */ 673 smp_mb(); 674 } 675 676 static void clear_work_data(struct work_struct *work) 677 { 678 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 679 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 680 } 681 682 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 683 { 684 unsigned long data = atomic_long_read(&work->data); 685 686 if (data & WORK_STRUCT_PWQ) 687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 688 else 689 return NULL; 690 } 691 692 /** 693 * get_work_pool - return the worker_pool a given work was associated with 694 * @work: the work item of interest 695 * 696 * Pools are created and destroyed under wq_pool_mutex, and allows read 697 * access under sched-RCU read lock. As such, this function should be 698 * called under wq_pool_mutex or with preemption disabled. 699 * 700 * All fields of the returned pool are accessible as long as the above 701 * mentioned locking is in effect. If the returned pool needs to be used 702 * beyond the critical section, the caller is responsible for ensuring the 703 * returned pool is and stays online. 704 * 705 * Return: The worker_pool @work was last associated with. %NULL if none. 706 */ 707 static struct worker_pool *get_work_pool(struct work_struct *work) 708 { 709 unsigned long data = atomic_long_read(&work->data); 710 int pool_id; 711 712 assert_rcu_or_pool_mutex(); 713 714 if (data & WORK_STRUCT_PWQ) 715 return ((struct pool_workqueue *) 716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 717 718 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 719 if (pool_id == WORK_OFFQ_POOL_NONE) 720 return NULL; 721 722 return idr_find(&worker_pool_idr, pool_id); 723 } 724 725 /** 726 * get_work_pool_id - return the worker pool ID a given work is associated with 727 * @work: the work item of interest 728 * 729 * Return: The worker_pool ID @work was last associated with. 730 * %WORK_OFFQ_POOL_NONE if none. 731 */ 732 static int get_work_pool_id(struct work_struct *work) 733 { 734 unsigned long data = atomic_long_read(&work->data); 735 736 if (data & WORK_STRUCT_PWQ) 737 return ((struct pool_workqueue *) 738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 739 740 return data >> WORK_OFFQ_POOL_SHIFT; 741 } 742 743 static void mark_work_canceling(struct work_struct *work) 744 { 745 unsigned long pool_id = get_work_pool_id(work); 746 747 pool_id <<= WORK_OFFQ_POOL_SHIFT; 748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 749 } 750 751 static bool work_is_canceling(struct work_struct *work) 752 { 753 unsigned long data = atomic_long_read(&work->data); 754 755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 756 } 757 758 /* 759 * Policy functions. These define the policies on how the global worker 760 * pools are managed. Unless noted otherwise, these functions assume that 761 * they're being called with pool->lock held. 762 */ 763 764 static bool __need_more_worker(struct worker_pool *pool) 765 { 766 return !atomic_read(&pool->nr_running); 767 } 768 769 /* 770 * Need to wake up a worker? Called from anything but currently 771 * running workers. 772 * 773 * Note that, because unbound workers never contribute to nr_running, this 774 * function will always return %true for unbound pools as long as the 775 * worklist isn't empty. 776 */ 777 static bool need_more_worker(struct worker_pool *pool) 778 { 779 return !list_empty(&pool->worklist) && __need_more_worker(pool); 780 } 781 782 /* Can I start working? Called from busy but !running workers. */ 783 static bool may_start_working(struct worker_pool *pool) 784 { 785 return pool->nr_idle; 786 } 787 788 /* Do I need to keep working? Called from currently running workers. */ 789 static bool keep_working(struct worker_pool *pool) 790 { 791 return !list_empty(&pool->worklist) && 792 atomic_read(&pool->nr_running) <= 1; 793 } 794 795 /* Do we need a new worker? Called from manager. */ 796 static bool need_to_create_worker(struct worker_pool *pool) 797 { 798 return need_more_worker(pool) && !may_start_working(pool); 799 } 800 801 /* Do we have too many workers and should some go away? */ 802 static bool too_many_workers(struct worker_pool *pool) 803 { 804 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 806 int nr_busy = pool->nr_workers - nr_idle; 807 808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 809 } 810 811 /* 812 * Wake up functions. 813 */ 814 815 /* Return the first idle worker. Safe with preemption disabled */ 816 static struct worker *first_idle_worker(struct worker_pool *pool) 817 { 818 if (unlikely(list_empty(&pool->idle_list))) 819 return NULL; 820 821 return list_first_entry(&pool->idle_list, struct worker, entry); 822 } 823 824 /** 825 * wake_up_worker - wake up an idle worker 826 * @pool: worker pool to wake worker from 827 * 828 * Wake up the first idle worker of @pool. 829 * 830 * CONTEXT: 831 * spin_lock_irq(pool->lock). 832 */ 833 static void wake_up_worker(struct worker_pool *pool) 834 { 835 struct worker *worker = first_idle_worker(pool); 836 837 if (likely(worker)) 838 wake_up_process(worker->task); 839 } 840 841 /** 842 * wq_worker_waking_up - a worker is waking up 843 * @task: task waking up 844 * @cpu: CPU @task is waking up to 845 * 846 * This function is called during try_to_wake_up() when a worker is 847 * being awoken. 848 * 849 * CONTEXT: 850 * spin_lock_irq(rq->lock) 851 */ 852 void wq_worker_waking_up(struct task_struct *task, int cpu) 853 { 854 struct worker *worker = kthread_data(task); 855 856 if (!(worker->flags & WORKER_NOT_RUNNING)) { 857 WARN_ON_ONCE(worker->pool->cpu != cpu); 858 atomic_inc(&worker->pool->nr_running); 859 } 860 } 861 862 /** 863 * wq_worker_sleeping - a worker is going to sleep 864 * @task: task going to sleep 865 * 866 * This function is called during schedule() when a busy worker is 867 * going to sleep. Worker on the same cpu can be woken up by 868 * returning pointer to its task. 869 * 870 * CONTEXT: 871 * spin_lock_irq(rq->lock) 872 * 873 * Return: 874 * Worker task on @cpu to wake up, %NULL if none. 875 */ 876 struct task_struct *wq_worker_sleeping(struct task_struct *task) 877 { 878 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 879 struct worker_pool *pool; 880 881 /* 882 * Rescuers, which may not have all the fields set up like normal 883 * workers, also reach here, let's not access anything before 884 * checking NOT_RUNNING. 885 */ 886 if (worker->flags & WORKER_NOT_RUNNING) 887 return NULL; 888 889 pool = worker->pool; 890 891 /* this can only happen on the local cpu */ 892 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id())) 893 return NULL; 894 895 /* 896 * The counterpart of the following dec_and_test, implied mb, 897 * worklist not empty test sequence is in insert_work(). 898 * Please read comment there. 899 * 900 * NOT_RUNNING is clear. This means that we're bound to and 901 * running on the local cpu w/ rq lock held and preemption 902 * disabled, which in turn means that none else could be 903 * manipulating idle_list, so dereferencing idle_list without pool 904 * lock is safe. 905 */ 906 if (atomic_dec_and_test(&pool->nr_running) && 907 !list_empty(&pool->worklist)) 908 to_wakeup = first_idle_worker(pool); 909 return to_wakeup ? to_wakeup->task : NULL; 910 } 911 912 /** 913 * worker_set_flags - set worker flags and adjust nr_running accordingly 914 * @worker: self 915 * @flags: flags to set 916 * 917 * Set @flags in @worker->flags and adjust nr_running accordingly. 918 * 919 * CONTEXT: 920 * spin_lock_irq(pool->lock) 921 */ 922 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 923 { 924 struct worker_pool *pool = worker->pool; 925 926 WARN_ON_ONCE(worker->task != current); 927 928 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 929 if ((flags & WORKER_NOT_RUNNING) && 930 !(worker->flags & WORKER_NOT_RUNNING)) { 931 atomic_dec(&pool->nr_running); 932 } 933 934 worker->flags |= flags; 935 } 936 937 /** 938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 939 * @worker: self 940 * @flags: flags to clear 941 * 942 * Clear @flags in @worker->flags and adjust nr_running accordingly. 943 * 944 * CONTEXT: 945 * spin_lock_irq(pool->lock) 946 */ 947 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 948 { 949 struct worker_pool *pool = worker->pool; 950 unsigned int oflags = worker->flags; 951 952 WARN_ON_ONCE(worker->task != current); 953 954 worker->flags &= ~flags; 955 956 /* 957 * If transitioning out of NOT_RUNNING, increment nr_running. Note 958 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 959 * of multiple flags, not a single flag. 960 */ 961 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 962 if (!(worker->flags & WORKER_NOT_RUNNING)) 963 atomic_inc(&pool->nr_running); 964 } 965 966 /** 967 * find_worker_executing_work - find worker which is executing a work 968 * @pool: pool of interest 969 * @work: work to find worker for 970 * 971 * Find a worker which is executing @work on @pool by searching 972 * @pool->busy_hash which is keyed by the address of @work. For a worker 973 * to match, its current execution should match the address of @work and 974 * its work function. This is to avoid unwanted dependency between 975 * unrelated work executions through a work item being recycled while still 976 * being executed. 977 * 978 * This is a bit tricky. A work item may be freed once its execution 979 * starts and nothing prevents the freed area from being recycled for 980 * another work item. If the same work item address ends up being reused 981 * before the original execution finishes, workqueue will identify the 982 * recycled work item as currently executing and make it wait until the 983 * current execution finishes, introducing an unwanted dependency. 984 * 985 * This function checks the work item address and work function to avoid 986 * false positives. Note that this isn't complete as one may construct a 987 * work function which can introduce dependency onto itself through a 988 * recycled work item. Well, if somebody wants to shoot oneself in the 989 * foot that badly, there's only so much we can do, and if such deadlock 990 * actually occurs, it should be easy to locate the culprit work function. 991 * 992 * CONTEXT: 993 * spin_lock_irq(pool->lock). 994 * 995 * Return: 996 * Pointer to worker which is executing @work if found, %NULL 997 * otherwise. 998 */ 999 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1000 struct work_struct *work) 1001 { 1002 struct worker *worker; 1003 1004 hash_for_each_possible(pool->busy_hash, worker, hentry, 1005 (unsigned long)work) 1006 if (worker->current_work == work && 1007 worker->current_func == work->func) 1008 return worker; 1009 1010 return NULL; 1011 } 1012 1013 /** 1014 * move_linked_works - move linked works to a list 1015 * @work: start of series of works to be scheduled 1016 * @head: target list to append @work to 1017 * @nextp: out parameter for nested worklist walking 1018 * 1019 * Schedule linked works starting from @work to @head. Work series to 1020 * be scheduled starts at @work and includes any consecutive work with 1021 * WORK_STRUCT_LINKED set in its predecessor. 1022 * 1023 * If @nextp is not NULL, it's updated to point to the next work of 1024 * the last scheduled work. This allows move_linked_works() to be 1025 * nested inside outer list_for_each_entry_safe(). 1026 * 1027 * CONTEXT: 1028 * spin_lock_irq(pool->lock). 1029 */ 1030 static void move_linked_works(struct work_struct *work, struct list_head *head, 1031 struct work_struct **nextp) 1032 { 1033 struct work_struct *n; 1034 1035 /* 1036 * Linked worklist will always end before the end of the list, 1037 * use NULL for list head. 1038 */ 1039 list_for_each_entry_safe_from(work, n, NULL, entry) { 1040 list_move_tail(&work->entry, head); 1041 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1042 break; 1043 } 1044 1045 /* 1046 * If we're already inside safe list traversal and have moved 1047 * multiple works to the scheduled queue, the next position 1048 * needs to be updated. 1049 */ 1050 if (nextp) 1051 *nextp = n; 1052 } 1053 1054 /** 1055 * get_pwq - get an extra reference on the specified pool_workqueue 1056 * @pwq: pool_workqueue to get 1057 * 1058 * Obtain an extra reference on @pwq. The caller should guarantee that 1059 * @pwq has positive refcnt and be holding the matching pool->lock. 1060 */ 1061 static void get_pwq(struct pool_workqueue *pwq) 1062 { 1063 lockdep_assert_held(&pwq->pool->lock); 1064 WARN_ON_ONCE(pwq->refcnt <= 0); 1065 pwq->refcnt++; 1066 } 1067 1068 /** 1069 * put_pwq - put a pool_workqueue reference 1070 * @pwq: pool_workqueue to put 1071 * 1072 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1073 * destruction. The caller should be holding the matching pool->lock. 1074 */ 1075 static void put_pwq(struct pool_workqueue *pwq) 1076 { 1077 lockdep_assert_held(&pwq->pool->lock); 1078 if (likely(--pwq->refcnt)) 1079 return; 1080 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1081 return; 1082 /* 1083 * @pwq can't be released under pool->lock, bounce to 1084 * pwq_unbound_release_workfn(). This never recurses on the same 1085 * pool->lock as this path is taken only for unbound workqueues and 1086 * the release work item is scheduled on a per-cpu workqueue. To 1087 * avoid lockdep warning, unbound pool->locks are given lockdep 1088 * subclass of 1 in get_unbound_pool(). 1089 */ 1090 schedule_work(&pwq->unbound_release_work); 1091 } 1092 1093 /** 1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1095 * @pwq: pool_workqueue to put (can be %NULL) 1096 * 1097 * put_pwq() with locking. This function also allows %NULL @pwq. 1098 */ 1099 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1100 { 1101 if (pwq) { 1102 /* 1103 * As both pwqs and pools are sched-RCU protected, the 1104 * following lock operations are safe. 1105 */ 1106 spin_lock_irq(&pwq->pool->lock); 1107 put_pwq(pwq); 1108 spin_unlock_irq(&pwq->pool->lock); 1109 } 1110 } 1111 1112 static void pwq_activate_delayed_work(struct work_struct *work) 1113 { 1114 struct pool_workqueue *pwq = get_work_pwq(work); 1115 1116 trace_workqueue_activate_work(work); 1117 if (list_empty(&pwq->pool->worklist)) 1118 pwq->pool->watchdog_ts = jiffies; 1119 move_linked_works(work, &pwq->pool->worklist, NULL); 1120 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1121 pwq->nr_active++; 1122 } 1123 1124 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1125 { 1126 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1127 struct work_struct, entry); 1128 1129 pwq_activate_delayed_work(work); 1130 } 1131 1132 /** 1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1134 * @pwq: pwq of interest 1135 * @color: color of work which left the queue 1136 * 1137 * A work either has completed or is removed from pending queue, 1138 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1139 * 1140 * CONTEXT: 1141 * spin_lock_irq(pool->lock). 1142 */ 1143 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1144 { 1145 /* uncolored work items don't participate in flushing or nr_active */ 1146 if (color == WORK_NO_COLOR) 1147 goto out_put; 1148 1149 pwq->nr_in_flight[color]--; 1150 1151 pwq->nr_active--; 1152 if (!list_empty(&pwq->delayed_works)) { 1153 /* one down, submit a delayed one */ 1154 if (pwq->nr_active < pwq->max_active) 1155 pwq_activate_first_delayed(pwq); 1156 } 1157 1158 /* is flush in progress and are we at the flushing tip? */ 1159 if (likely(pwq->flush_color != color)) 1160 goto out_put; 1161 1162 /* are there still in-flight works? */ 1163 if (pwq->nr_in_flight[color]) 1164 goto out_put; 1165 1166 /* this pwq is done, clear flush_color */ 1167 pwq->flush_color = -1; 1168 1169 /* 1170 * If this was the last pwq, wake up the first flusher. It 1171 * will handle the rest. 1172 */ 1173 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1174 complete(&pwq->wq->first_flusher->done); 1175 out_put: 1176 put_pwq(pwq); 1177 } 1178 1179 /** 1180 * try_to_grab_pending - steal work item from worklist and disable irq 1181 * @work: work item to steal 1182 * @is_dwork: @work is a delayed_work 1183 * @flags: place to store irq state 1184 * 1185 * Try to grab PENDING bit of @work. This function can handle @work in any 1186 * stable state - idle, on timer or on worklist. 1187 * 1188 * Return: 1189 * 1 if @work was pending and we successfully stole PENDING 1190 * 0 if @work was idle and we claimed PENDING 1191 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1192 * -ENOENT if someone else is canceling @work, this state may persist 1193 * for arbitrarily long 1194 * 1195 * Note: 1196 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1197 * interrupted while holding PENDING and @work off queue, irq must be 1198 * disabled on entry. This, combined with delayed_work->timer being 1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1200 * 1201 * On successful return, >= 0, irq is disabled and the caller is 1202 * responsible for releasing it using local_irq_restore(*@flags). 1203 * 1204 * This function is safe to call from any context including IRQ handler. 1205 */ 1206 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1207 unsigned long *flags) 1208 { 1209 struct worker_pool *pool; 1210 struct pool_workqueue *pwq; 1211 1212 local_irq_save(*flags); 1213 1214 /* try to steal the timer if it exists */ 1215 if (is_dwork) { 1216 struct delayed_work *dwork = to_delayed_work(work); 1217 1218 /* 1219 * dwork->timer is irqsafe. If del_timer() fails, it's 1220 * guaranteed that the timer is not queued anywhere and not 1221 * running on the local CPU. 1222 */ 1223 if (likely(del_timer(&dwork->timer))) 1224 return 1; 1225 } 1226 1227 /* try to claim PENDING the normal way */ 1228 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1229 return 0; 1230 1231 /* 1232 * The queueing is in progress, or it is already queued. Try to 1233 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1234 */ 1235 pool = get_work_pool(work); 1236 if (!pool) 1237 goto fail; 1238 1239 spin_lock(&pool->lock); 1240 /* 1241 * work->data is guaranteed to point to pwq only while the work 1242 * item is queued on pwq->wq, and both updating work->data to point 1243 * to pwq on queueing and to pool on dequeueing are done under 1244 * pwq->pool->lock. This in turn guarantees that, if work->data 1245 * points to pwq which is associated with a locked pool, the work 1246 * item is currently queued on that pool. 1247 */ 1248 pwq = get_work_pwq(work); 1249 if (pwq && pwq->pool == pool) { 1250 debug_work_deactivate(work); 1251 1252 /* 1253 * A delayed work item cannot be grabbed directly because 1254 * it might have linked NO_COLOR work items which, if left 1255 * on the delayed_list, will confuse pwq->nr_active 1256 * management later on and cause stall. Make sure the work 1257 * item is activated before grabbing. 1258 */ 1259 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1260 pwq_activate_delayed_work(work); 1261 1262 list_del_init(&work->entry); 1263 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1264 1265 /* work->data points to pwq iff queued, point to pool */ 1266 set_work_pool_and_keep_pending(work, pool->id); 1267 1268 spin_unlock(&pool->lock); 1269 return 1; 1270 } 1271 spin_unlock(&pool->lock); 1272 fail: 1273 local_irq_restore(*flags); 1274 if (work_is_canceling(work)) 1275 return -ENOENT; 1276 cpu_relax(); 1277 return -EAGAIN; 1278 } 1279 1280 /** 1281 * insert_work - insert a work into a pool 1282 * @pwq: pwq @work belongs to 1283 * @work: work to insert 1284 * @head: insertion point 1285 * @extra_flags: extra WORK_STRUCT_* flags to set 1286 * 1287 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1288 * work_struct flags. 1289 * 1290 * CONTEXT: 1291 * spin_lock_irq(pool->lock). 1292 */ 1293 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1294 struct list_head *head, unsigned int extra_flags) 1295 { 1296 struct worker_pool *pool = pwq->pool; 1297 1298 /* we own @work, set data and link */ 1299 set_work_pwq(work, pwq, extra_flags); 1300 list_add_tail(&work->entry, head); 1301 get_pwq(pwq); 1302 1303 /* 1304 * Ensure either wq_worker_sleeping() sees the above 1305 * list_add_tail() or we see zero nr_running to avoid workers lying 1306 * around lazily while there are works to be processed. 1307 */ 1308 smp_mb(); 1309 1310 if (__need_more_worker(pool)) 1311 wake_up_worker(pool); 1312 } 1313 1314 /* 1315 * Test whether @work is being queued from another work executing on the 1316 * same workqueue. 1317 */ 1318 static bool is_chained_work(struct workqueue_struct *wq) 1319 { 1320 struct worker *worker; 1321 1322 worker = current_wq_worker(); 1323 /* 1324 * Return %true iff I'm a worker execuing a work item on @wq. If 1325 * I'm @worker, it's safe to dereference it without locking. 1326 */ 1327 return worker && worker->current_pwq->wq == wq; 1328 } 1329 1330 /* 1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1332 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1333 * avoid perturbing sensitive tasks. 1334 */ 1335 static int wq_select_unbound_cpu(int cpu) 1336 { 1337 static bool printed_dbg_warning; 1338 int new_cpu; 1339 1340 if (likely(!wq_debug_force_rr_cpu)) { 1341 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1342 return cpu; 1343 } else if (!printed_dbg_warning) { 1344 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1345 printed_dbg_warning = true; 1346 } 1347 1348 if (cpumask_empty(wq_unbound_cpumask)) 1349 return cpu; 1350 1351 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1352 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1353 if (unlikely(new_cpu >= nr_cpu_ids)) { 1354 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1355 if (unlikely(new_cpu >= nr_cpu_ids)) 1356 return cpu; 1357 } 1358 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1359 1360 return new_cpu; 1361 } 1362 1363 static void __queue_work(int cpu, struct workqueue_struct *wq, 1364 struct work_struct *work) 1365 { 1366 struct pool_workqueue *pwq; 1367 struct worker_pool *last_pool; 1368 struct list_head *worklist; 1369 unsigned int work_flags; 1370 unsigned int req_cpu = cpu; 1371 1372 /* 1373 * While a work item is PENDING && off queue, a task trying to 1374 * steal the PENDING will busy-loop waiting for it to either get 1375 * queued or lose PENDING. Grabbing PENDING and queueing should 1376 * happen with IRQ disabled. 1377 */ 1378 lockdep_assert_irqs_disabled(); 1379 1380 debug_work_activate(work); 1381 1382 /* if draining, only works from the same workqueue are allowed */ 1383 if (unlikely(wq->flags & __WQ_DRAINING) && 1384 WARN_ON_ONCE(!is_chained_work(wq))) 1385 return; 1386 retry: 1387 if (req_cpu == WORK_CPU_UNBOUND) 1388 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1389 1390 /* pwq which will be used unless @work is executing elsewhere */ 1391 if (!(wq->flags & WQ_UNBOUND)) 1392 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1393 else 1394 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1395 1396 /* 1397 * If @work was previously on a different pool, it might still be 1398 * running there, in which case the work needs to be queued on that 1399 * pool to guarantee non-reentrancy. 1400 */ 1401 last_pool = get_work_pool(work); 1402 if (last_pool && last_pool != pwq->pool) { 1403 struct worker *worker; 1404 1405 spin_lock(&last_pool->lock); 1406 1407 worker = find_worker_executing_work(last_pool, work); 1408 1409 if (worker && worker->current_pwq->wq == wq) { 1410 pwq = worker->current_pwq; 1411 } else { 1412 /* meh... not running there, queue here */ 1413 spin_unlock(&last_pool->lock); 1414 spin_lock(&pwq->pool->lock); 1415 } 1416 } else { 1417 spin_lock(&pwq->pool->lock); 1418 } 1419 1420 /* 1421 * pwq is determined and locked. For unbound pools, we could have 1422 * raced with pwq release and it could already be dead. If its 1423 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1424 * without another pwq replacing it in the numa_pwq_tbl or while 1425 * work items are executing on it, so the retrying is guaranteed to 1426 * make forward-progress. 1427 */ 1428 if (unlikely(!pwq->refcnt)) { 1429 if (wq->flags & WQ_UNBOUND) { 1430 spin_unlock(&pwq->pool->lock); 1431 cpu_relax(); 1432 goto retry; 1433 } 1434 /* oops */ 1435 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1436 wq->name, cpu); 1437 } 1438 1439 /* pwq determined, queue */ 1440 trace_workqueue_queue_work(req_cpu, pwq, work); 1441 1442 if (WARN_ON(!list_empty(&work->entry))) { 1443 spin_unlock(&pwq->pool->lock); 1444 return; 1445 } 1446 1447 pwq->nr_in_flight[pwq->work_color]++; 1448 work_flags = work_color_to_flags(pwq->work_color); 1449 1450 if (likely(pwq->nr_active < pwq->max_active)) { 1451 trace_workqueue_activate_work(work); 1452 pwq->nr_active++; 1453 worklist = &pwq->pool->worklist; 1454 if (list_empty(worklist)) 1455 pwq->pool->watchdog_ts = jiffies; 1456 } else { 1457 work_flags |= WORK_STRUCT_DELAYED; 1458 worklist = &pwq->delayed_works; 1459 } 1460 1461 insert_work(pwq, work, worklist, work_flags); 1462 1463 spin_unlock(&pwq->pool->lock); 1464 } 1465 1466 /** 1467 * queue_work_on - queue work on specific cpu 1468 * @cpu: CPU number to execute work on 1469 * @wq: workqueue to use 1470 * @work: work to queue 1471 * 1472 * We queue the work to a specific CPU, the caller must ensure it 1473 * can't go away. 1474 * 1475 * Return: %false if @work was already on a queue, %true otherwise. 1476 */ 1477 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1478 struct work_struct *work) 1479 { 1480 bool ret = false; 1481 unsigned long flags; 1482 1483 local_irq_save(flags); 1484 1485 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1486 __queue_work(cpu, wq, work); 1487 ret = true; 1488 } 1489 1490 local_irq_restore(flags); 1491 return ret; 1492 } 1493 EXPORT_SYMBOL(queue_work_on); 1494 1495 /** 1496 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1497 * @node: NUMA node ID that we want to select a CPU from 1498 * 1499 * This function will attempt to find a "random" cpu available on a given 1500 * node. If there are no CPUs available on the given node it will return 1501 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1502 * available CPU if we need to schedule this work. 1503 */ 1504 static int workqueue_select_cpu_near(int node) 1505 { 1506 int cpu; 1507 1508 /* No point in doing this if NUMA isn't enabled for workqueues */ 1509 if (!wq_numa_enabled) 1510 return WORK_CPU_UNBOUND; 1511 1512 /* Delay binding to CPU if node is not valid or online */ 1513 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1514 return WORK_CPU_UNBOUND; 1515 1516 /* Use local node/cpu if we are already there */ 1517 cpu = raw_smp_processor_id(); 1518 if (node == cpu_to_node(cpu)) 1519 return cpu; 1520 1521 /* Use "random" otherwise know as "first" online CPU of node */ 1522 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1523 1524 /* If CPU is valid return that, otherwise just defer */ 1525 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1526 } 1527 1528 /** 1529 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1530 * @node: NUMA node that we are targeting the work for 1531 * @wq: workqueue to use 1532 * @work: work to queue 1533 * 1534 * We queue the work to a "random" CPU within a given NUMA node. The basic 1535 * idea here is to provide a way to somehow associate work with a given 1536 * NUMA node. 1537 * 1538 * This function will only make a best effort attempt at getting this onto 1539 * the right NUMA node. If no node is requested or the requested node is 1540 * offline then we just fall back to standard queue_work behavior. 1541 * 1542 * Currently the "random" CPU ends up being the first available CPU in the 1543 * intersection of cpu_online_mask and the cpumask of the node, unless we 1544 * are running on the node. In that case we just use the current CPU. 1545 * 1546 * Return: %false if @work was already on a queue, %true otherwise. 1547 */ 1548 bool queue_work_node(int node, struct workqueue_struct *wq, 1549 struct work_struct *work) 1550 { 1551 unsigned long flags; 1552 bool ret = false; 1553 1554 /* 1555 * This current implementation is specific to unbound workqueues. 1556 * Specifically we only return the first available CPU for a given 1557 * node instead of cycling through individual CPUs within the node. 1558 * 1559 * If this is used with a per-cpu workqueue then the logic in 1560 * workqueue_select_cpu_near would need to be updated to allow for 1561 * some round robin type logic. 1562 */ 1563 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1564 1565 local_irq_save(flags); 1566 1567 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1568 int cpu = workqueue_select_cpu_near(node); 1569 1570 __queue_work(cpu, wq, work); 1571 ret = true; 1572 } 1573 1574 local_irq_restore(flags); 1575 return ret; 1576 } 1577 EXPORT_SYMBOL_GPL(queue_work_node); 1578 1579 void delayed_work_timer_fn(struct timer_list *t) 1580 { 1581 struct delayed_work *dwork = from_timer(dwork, t, timer); 1582 1583 /* should have been called from irqsafe timer with irq already off */ 1584 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1585 } 1586 EXPORT_SYMBOL(delayed_work_timer_fn); 1587 1588 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1589 struct delayed_work *dwork, unsigned long delay) 1590 { 1591 struct timer_list *timer = &dwork->timer; 1592 struct work_struct *work = &dwork->work; 1593 1594 WARN_ON_ONCE(!wq); 1595 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1596 WARN_ON_ONCE(timer_pending(timer)); 1597 WARN_ON_ONCE(!list_empty(&work->entry)); 1598 1599 /* 1600 * If @delay is 0, queue @dwork->work immediately. This is for 1601 * both optimization and correctness. The earliest @timer can 1602 * expire is on the closest next tick and delayed_work users depend 1603 * on that there's no such delay when @delay is 0. 1604 */ 1605 if (!delay) { 1606 __queue_work(cpu, wq, &dwork->work); 1607 return; 1608 } 1609 1610 dwork->wq = wq; 1611 dwork->cpu = cpu; 1612 timer->expires = jiffies + delay; 1613 1614 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1615 add_timer_on(timer, cpu); 1616 else 1617 add_timer(timer); 1618 } 1619 1620 /** 1621 * queue_delayed_work_on - queue work on specific CPU after delay 1622 * @cpu: CPU number to execute work on 1623 * @wq: workqueue to use 1624 * @dwork: work to queue 1625 * @delay: number of jiffies to wait before queueing 1626 * 1627 * Return: %false if @work was already on a queue, %true otherwise. If 1628 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1629 * execution. 1630 */ 1631 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1632 struct delayed_work *dwork, unsigned long delay) 1633 { 1634 struct work_struct *work = &dwork->work; 1635 bool ret = false; 1636 unsigned long flags; 1637 1638 /* read the comment in __queue_work() */ 1639 local_irq_save(flags); 1640 1641 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1642 __queue_delayed_work(cpu, wq, dwork, delay); 1643 ret = true; 1644 } 1645 1646 local_irq_restore(flags); 1647 return ret; 1648 } 1649 EXPORT_SYMBOL(queue_delayed_work_on); 1650 1651 /** 1652 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1653 * @cpu: CPU number to execute work on 1654 * @wq: workqueue to use 1655 * @dwork: work to queue 1656 * @delay: number of jiffies to wait before queueing 1657 * 1658 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1659 * modify @dwork's timer so that it expires after @delay. If @delay is 1660 * zero, @work is guaranteed to be scheduled immediately regardless of its 1661 * current state. 1662 * 1663 * Return: %false if @dwork was idle and queued, %true if @dwork was 1664 * pending and its timer was modified. 1665 * 1666 * This function is safe to call from any context including IRQ handler. 1667 * See try_to_grab_pending() for details. 1668 */ 1669 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1670 struct delayed_work *dwork, unsigned long delay) 1671 { 1672 unsigned long flags; 1673 int ret; 1674 1675 do { 1676 ret = try_to_grab_pending(&dwork->work, true, &flags); 1677 } while (unlikely(ret == -EAGAIN)); 1678 1679 if (likely(ret >= 0)) { 1680 __queue_delayed_work(cpu, wq, dwork, delay); 1681 local_irq_restore(flags); 1682 } 1683 1684 /* -ENOENT from try_to_grab_pending() becomes %true */ 1685 return ret; 1686 } 1687 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1688 1689 static void rcu_work_rcufn(struct rcu_head *rcu) 1690 { 1691 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1692 1693 /* read the comment in __queue_work() */ 1694 local_irq_disable(); 1695 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1696 local_irq_enable(); 1697 } 1698 1699 /** 1700 * queue_rcu_work - queue work after a RCU grace period 1701 * @wq: workqueue to use 1702 * @rwork: work to queue 1703 * 1704 * Return: %false if @rwork was already pending, %true otherwise. Note 1705 * that a full RCU grace period is guaranteed only after a %true return. 1706 * While @rwork is guarnateed to be executed after a %false return, the 1707 * execution may happen before a full RCU grace period has passed. 1708 */ 1709 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1710 { 1711 struct work_struct *work = &rwork->work; 1712 1713 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1714 rwork->wq = wq; 1715 call_rcu(&rwork->rcu, rcu_work_rcufn); 1716 return true; 1717 } 1718 1719 return false; 1720 } 1721 EXPORT_SYMBOL(queue_rcu_work); 1722 1723 /** 1724 * worker_enter_idle - enter idle state 1725 * @worker: worker which is entering idle state 1726 * 1727 * @worker is entering idle state. Update stats and idle timer if 1728 * necessary. 1729 * 1730 * LOCKING: 1731 * spin_lock_irq(pool->lock). 1732 */ 1733 static void worker_enter_idle(struct worker *worker) 1734 { 1735 struct worker_pool *pool = worker->pool; 1736 1737 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1738 WARN_ON_ONCE(!list_empty(&worker->entry) && 1739 (worker->hentry.next || worker->hentry.pprev))) 1740 return; 1741 1742 /* can't use worker_set_flags(), also called from create_worker() */ 1743 worker->flags |= WORKER_IDLE; 1744 pool->nr_idle++; 1745 worker->last_active = jiffies; 1746 1747 /* idle_list is LIFO */ 1748 list_add(&worker->entry, &pool->idle_list); 1749 1750 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1751 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1752 1753 /* 1754 * Sanity check nr_running. Because unbind_workers() releases 1755 * pool->lock between setting %WORKER_UNBOUND and zapping 1756 * nr_running, the warning may trigger spuriously. Check iff 1757 * unbind is not in progress. 1758 */ 1759 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1760 pool->nr_workers == pool->nr_idle && 1761 atomic_read(&pool->nr_running)); 1762 } 1763 1764 /** 1765 * worker_leave_idle - leave idle state 1766 * @worker: worker which is leaving idle state 1767 * 1768 * @worker is leaving idle state. Update stats. 1769 * 1770 * LOCKING: 1771 * spin_lock_irq(pool->lock). 1772 */ 1773 static void worker_leave_idle(struct worker *worker) 1774 { 1775 struct worker_pool *pool = worker->pool; 1776 1777 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1778 return; 1779 worker_clr_flags(worker, WORKER_IDLE); 1780 pool->nr_idle--; 1781 list_del_init(&worker->entry); 1782 } 1783 1784 static struct worker *alloc_worker(int node) 1785 { 1786 struct worker *worker; 1787 1788 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1789 if (worker) { 1790 INIT_LIST_HEAD(&worker->entry); 1791 INIT_LIST_HEAD(&worker->scheduled); 1792 INIT_LIST_HEAD(&worker->node); 1793 /* on creation a worker is in !idle && prep state */ 1794 worker->flags = WORKER_PREP; 1795 } 1796 return worker; 1797 } 1798 1799 /** 1800 * worker_attach_to_pool() - attach a worker to a pool 1801 * @worker: worker to be attached 1802 * @pool: the target pool 1803 * 1804 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1805 * cpu-binding of @worker are kept coordinated with the pool across 1806 * cpu-[un]hotplugs. 1807 */ 1808 static void worker_attach_to_pool(struct worker *worker, 1809 struct worker_pool *pool) 1810 { 1811 mutex_lock(&wq_pool_attach_mutex); 1812 1813 /* 1814 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1815 * online CPUs. It'll be re-applied when any of the CPUs come up. 1816 */ 1817 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1818 1819 /* 1820 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1821 * stable across this function. See the comments above the flag 1822 * definition for details. 1823 */ 1824 if (pool->flags & POOL_DISASSOCIATED) 1825 worker->flags |= WORKER_UNBOUND; 1826 1827 list_add_tail(&worker->node, &pool->workers); 1828 worker->pool = pool; 1829 1830 mutex_unlock(&wq_pool_attach_mutex); 1831 } 1832 1833 /** 1834 * worker_detach_from_pool() - detach a worker from its pool 1835 * @worker: worker which is attached to its pool 1836 * 1837 * Undo the attaching which had been done in worker_attach_to_pool(). The 1838 * caller worker shouldn't access to the pool after detached except it has 1839 * other reference to the pool. 1840 */ 1841 static void worker_detach_from_pool(struct worker *worker) 1842 { 1843 struct worker_pool *pool = worker->pool; 1844 struct completion *detach_completion = NULL; 1845 1846 mutex_lock(&wq_pool_attach_mutex); 1847 1848 list_del(&worker->node); 1849 worker->pool = NULL; 1850 1851 if (list_empty(&pool->workers)) 1852 detach_completion = pool->detach_completion; 1853 mutex_unlock(&wq_pool_attach_mutex); 1854 1855 /* clear leftover flags without pool->lock after it is detached */ 1856 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1857 1858 if (detach_completion) 1859 complete(detach_completion); 1860 } 1861 1862 /** 1863 * create_worker - create a new workqueue worker 1864 * @pool: pool the new worker will belong to 1865 * 1866 * Create and start a new worker which is attached to @pool. 1867 * 1868 * CONTEXT: 1869 * Might sleep. Does GFP_KERNEL allocations. 1870 * 1871 * Return: 1872 * Pointer to the newly created worker. 1873 */ 1874 static struct worker *create_worker(struct worker_pool *pool) 1875 { 1876 struct worker *worker = NULL; 1877 int id = -1; 1878 char id_buf[16]; 1879 1880 /* ID is needed to determine kthread name */ 1881 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1882 if (id < 0) 1883 goto fail; 1884 1885 worker = alloc_worker(pool->node); 1886 if (!worker) 1887 goto fail; 1888 1889 worker->id = id; 1890 1891 if (pool->cpu >= 0) 1892 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1893 pool->attrs->nice < 0 ? "H" : ""); 1894 else 1895 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1896 1897 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1898 "kworker/%s", id_buf); 1899 if (IS_ERR(worker->task)) 1900 goto fail; 1901 1902 set_user_nice(worker->task, pool->attrs->nice); 1903 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1904 1905 /* successful, attach the worker to the pool */ 1906 worker_attach_to_pool(worker, pool); 1907 1908 /* start the newly created worker */ 1909 spin_lock_irq(&pool->lock); 1910 worker->pool->nr_workers++; 1911 worker_enter_idle(worker); 1912 wake_up_process(worker->task); 1913 spin_unlock_irq(&pool->lock); 1914 1915 return worker; 1916 1917 fail: 1918 if (id >= 0) 1919 ida_simple_remove(&pool->worker_ida, id); 1920 kfree(worker); 1921 return NULL; 1922 } 1923 1924 /** 1925 * destroy_worker - destroy a workqueue worker 1926 * @worker: worker to be destroyed 1927 * 1928 * Destroy @worker and adjust @pool stats accordingly. The worker should 1929 * be idle. 1930 * 1931 * CONTEXT: 1932 * spin_lock_irq(pool->lock). 1933 */ 1934 static void destroy_worker(struct worker *worker) 1935 { 1936 struct worker_pool *pool = worker->pool; 1937 1938 lockdep_assert_held(&pool->lock); 1939 1940 /* sanity check frenzy */ 1941 if (WARN_ON(worker->current_work) || 1942 WARN_ON(!list_empty(&worker->scheduled)) || 1943 WARN_ON(!(worker->flags & WORKER_IDLE))) 1944 return; 1945 1946 pool->nr_workers--; 1947 pool->nr_idle--; 1948 1949 list_del_init(&worker->entry); 1950 worker->flags |= WORKER_DIE; 1951 wake_up_process(worker->task); 1952 } 1953 1954 static void idle_worker_timeout(struct timer_list *t) 1955 { 1956 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1957 1958 spin_lock_irq(&pool->lock); 1959 1960 while (too_many_workers(pool)) { 1961 struct worker *worker; 1962 unsigned long expires; 1963 1964 /* idle_list is kept in LIFO order, check the last one */ 1965 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1966 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1967 1968 if (time_before(jiffies, expires)) { 1969 mod_timer(&pool->idle_timer, expires); 1970 break; 1971 } 1972 1973 destroy_worker(worker); 1974 } 1975 1976 spin_unlock_irq(&pool->lock); 1977 } 1978 1979 static void send_mayday(struct work_struct *work) 1980 { 1981 struct pool_workqueue *pwq = get_work_pwq(work); 1982 struct workqueue_struct *wq = pwq->wq; 1983 1984 lockdep_assert_held(&wq_mayday_lock); 1985 1986 if (!wq->rescuer) 1987 return; 1988 1989 /* mayday mayday mayday */ 1990 if (list_empty(&pwq->mayday_node)) { 1991 /* 1992 * If @pwq is for an unbound wq, its base ref may be put at 1993 * any time due to an attribute change. Pin @pwq until the 1994 * rescuer is done with it. 1995 */ 1996 get_pwq(pwq); 1997 list_add_tail(&pwq->mayday_node, &wq->maydays); 1998 wake_up_process(wq->rescuer->task); 1999 } 2000 } 2001 2002 static void pool_mayday_timeout(struct timer_list *t) 2003 { 2004 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2005 struct work_struct *work; 2006 2007 spin_lock_irq(&pool->lock); 2008 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2009 2010 if (need_to_create_worker(pool)) { 2011 /* 2012 * We've been trying to create a new worker but 2013 * haven't been successful. We might be hitting an 2014 * allocation deadlock. Send distress signals to 2015 * rescuers. 2016 */ 2017 list_for_each_entry(work, &pool->worklist, entry) 2018 send_mayday(work); 2019 } 2020 2021 spin_unlock(&wq_mayday_lock); 2022 spin_unlock_irq(&pool->lock); 2023 2024 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2025 } 2026 2027 /** 2028 * maybe_create_worker - create a new worker if necessary 2029 * @pool: pool to create a new worker for 2030 * 2031 * Create a new worker for @pool if necessary. @pool is guaranteed to 2032 * have at least one idle worker on return from this function. If 2033 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2034 * sent to all rescuers with works scheduled on @pool to resolve 2035 * possible allocation deadlock. 2036 * 2037 * On return, need_to_create_worker() is guaranteed to be %false and 2038 * may_start_working() %true. 2039 * 2040 * LOCKING: 2041 * spin_lock_irq(pool->lock) which may be released and regrabbed 2042 * multiple times. Does GFP_KERNEL allocations. Called only from 2043 * manager. 2044 */ 2045 static void maybe_create_worker(struct worker_pool *pool) 2046 __releases(&pool->lock) 2047 __acquires(&pool->lock) 2048 { 2049 restart: 2050 spin_unlock_irq(&pool->lock); 2051 2052 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2053 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2054 2055 while (true) { 2056 if (create_worker(pool) || !need_to_create_worker(pool)) 2057 break; 2058 2059 schedule_timeout_interruptible(CREATE_COOLDOWN); 2060 2061 if (!need_to_create_worker(pool)) 2062 break; 2063 } 2064 2065 del_timer_sync(&pool->mayday_timer); 2066 spin_lock_irq(&pool->lock); 2067 /* 2068 * This is necessary even after a new worker was just successfully 2069 * created as @pool->lock was dropped and the new worker might have 2070 * already become busy. 2071 */ 2072 if (need_to_create_worker(pool)) 2073 goto restart; 2074 } 2075 2076 /** 2077 * manage_workers - manage worker pool 2078 * @worker: self 2079 * 2080 * Assume the manager role and manage the worker pool @worker belongs 2081 * to. At any given time, there can be only zero or one manager per 2082 * pool. The exclusion is handled automatically by this function. 2083 * 2084 * The caller can safely start processing works on false return. On 2085 * true return, it's guaranteed that need_to_create_worker() is false 2086 * and may_start_working() is true. 2087 * 2088 * CONTEXT: 2089 * spin_lock_irq(pool->lock) which may be released and regrabbed 2090 * multiple times. Does GFP_KERNEL allocations. 2091 * 2092 * Return: 2093 * %false if the pool doesn't need management and the caller can safely 2094 * start processing works, %true if management function was performed and 2095 * the conditions that the caller verified before calling the function may 2096 * no longer be true. 2097 */ 2098 static bool manage_workers(struct worker *worker) 2099 { 2100 struct worker_pool *pool = worker->pool; 2101 2102 if (pool->flags & POOL_MANAGER_ACTIVE) 2103 return false; 2104 2105 pool->flags |= POOL_MANAGER_ACTIVE; 2106 pool->manager = worker; 2107 2108 maybe_create_worker(pool); 2109 2110 pool->manager = NULL; 2111 pool->flags &= ~POOL_MANAGER_ACTIVE; 2112 wake_up(&wq_manager_wait); 2113 return true; 2114 } 2115 2116 /** 2117 * process_one_work - process single work 2118 * @worker: self 2119 * @work: work to process 2120 * 2121 * Process @work. This function contains all the logics necessary to 2122 * process a single work including synchronization against and 2123 * interaction with other workers on the same cpu, queueing and 2124 * flushing. As long as context requirement is met, any worker can 2125 * call this function to process a work. 2126 * 2127 * CONTEXT: 2128 * spin_lock_irq(pool->lock) which is released and regrabbed. 2129 */ 2130 static void process_one_work(struct worker *worker, struct work_struct *work) 2131 __releases(&pool->lock) 2132 __acquires(&pool->lock) 2133 { 2134 struct pool_workqueue *pwq = get_work_pwq(work); 2135 struct worker_pool *pool = worker->pool; 2136 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2137 int work_color; 2138 struct worker *collision; 2139 #ifdef CONFIG_LOCKDEP 2140 /* 2141 * It is permissible to free the struct work_struct from 2142 * inside the function that is called from it, this we need to 2143 * take into account for lockdep too. To avoid bogus "held 2144 * lock freed" warnings as well as problems when looking into 2145 * work->lockdep_map, make a copy and use that here. 2146 */ 2147 struct lockdep_map lockdep_map; 2148 2149 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2150 #endif 2151 /* ensure we're on the correct CPU */ 2152 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2153 raw_smp_processor_id() != pool->cpu); 2154 2155 /* 2156 * A single work shouldn't be executed concurrently by 2157 * multiple workers on a single cpu. Check whether anyone is 2158 * already processing the work. If so, defer the work to the 2159 * currently executing one. 2160 */ 2161 collision = find_worker_executing_work(pool, work); 2162 if (unlikely(collision)) { 2163 move_linked_works(work, &collision->scheduled, NULL); 2164 return; 2165 } 2166 2167 /* claim and dequeue */ 2168 debug_work_deactivate(work); 2169 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2170 worker->current_work = work; 2171 worker->current_func = work->func; 2172 worker->current_pwq = pwq; 2173 work_color = get_work_color(work); 2174 2175 /* 2176 * Record wq name for cmdline and debug reporting, may get 2177 * overridden through set_worker_desc(). 2178 */ 2179 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2180 2181 list_del_init(&work->entry); 2182 2183 /* 2184 * CPU intensive works don't participate in concurrency management. 2185 * They're the scheduler's responsibility. This takes @worker out 2186 * of concurrency management and the next code block will chain 2187 * execution of the pending work items. 2188 */ 2189 if (unlikely(cpu_intensive)) 2190 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2191 2192 /* 2193 * Wake up another worker if necessary. The condition is always 2194 * false for normal per-cpu workers since nr_running would always 2195 * be >= 1 at this point. This is used to chain execution of the 2196 * pending work items for WORKER_NOT_RUNNING workers such as the 2197 * UNBOUND and CPU_INTENSIVE ones. 2198 */ 2199 if (need_more_worker(pool)) 2200 wake_up_worker(pool); 2201 2202 /* 2203 * Record the last pool and clear PENDING which should be the last 2204 * update to @work. Also, do this inside @pool->lock so that 2205 * PENDING and queued state changes happen together while IRQ is 2206 * disabled. 2207 */ 2208 set_work_pool_and_clear_pending(work, pool->id); 2209 2210 spin_unlock_irq(&pool->lock); 2211 2212 lock_map_acquire(&pwq->wq->lockdep_map); 2213 lock_map_acquire(&lockdep_map); 2214 /* 2215 * Strictly speaking we should mark the invariant state without holding 2216 * any locks, that is, before these two lock_map_acquire()'s. 2217 * 2218 * However, that would result in: 2219 * 2220 * A(W1) 2221 * WFC(C) 2222 * A(W1) 2223 * C(C) 2224 * 2225 * Which would create W1->C->W1 dependencies, even though there is no 2226 * actual deadlock possible. There are two solutions, using a 2227 * read-recursive acquire on the work(queue) 'locks', but this will then 2228 * hit the lockdep limitation on recursive locks, or simply discard 2229 * these locks. 2230 * 2231 * AFAICT there is no possible deadlock scenario between the 2232 * flush_work() and complete() primitives (except for single-threaded 2233 * workqueues), so hiding them isn't a problem. 2234 */ 2235 lockdep_invariant_state(true); 2236 trace_workqueue_execute_start(work); 2237 worker->current_func(work); 2238 /* 2239 * While we must be careful to not use "work" after this, the trace 2240 * point will only record its address. 2241 */ 2242 trace_workqueue_execute_end(work); 2243 lock_map_release(&lockdep_map); 2244 lock_map_release(&pwq->wq->lockdep_map); 2245 2246 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2247 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2248 " last function: %pf\n", 2249 current->comm, preempt_count(), task_pid_nr(current), 2250 worker->current_func); 2251 debug_show_held_locks(current); 2252 dump_stack(); 2253 } 2254 2255 /* 2256 * The following prevents a kworker from hogging CPU on !PREEMPT 2257 * kernels, where a requeueing work item waiting for something to 2258 * happen could deadlock with stop_machine as such work item could 2259 * indefinitely requeue itself while all other CPUs are trapped in 2260 * stop_machine. At the same time, report a quiescent RCU state so 2261 * the same condition doesn't freeze RCU. 2262 */ 2263 cond_resched(); 2264 2265 spin_lock_irq(&pool->lock); 2266 2267 /* clear cpu intensive status */ 2268 if (unlikely(cpu_intensive)) 2269 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2270 2271 /* we're done with it, release */ 2272 hash_del(&worker->hentry); 2273 worker->current_work = NULL; 2274 worker->current_func = NULL; 2275 worker->current_pwq = NULL; 2276 pwq_dec_nr_in_flight(pwq, work_color); 2277 } 2278 2279 /** 2280 * process_scheduled_works - process scheduled works 2281 * @worker: self 2282 * 2283 * Process all scheduled works. Please note that the scheduled list 2284 * may change while processing a work, so this function repeatedly 2285 * fetches a work from the top and executes it. 2286 * 2287 * CONTEXT: 2288 * spin_lock_irq(pool->lock) which may be released and regrabbed 2289 * multiple times. 2290 */ 2291 static void process_scheduled_works(struct worker *worker) 2292 { 2293 while (!list_empty(&worker->scheduled)) { 2294 struct work_struct *work = list_first_entry(&worker->scheduled, 2295 struct work_struct, entry); 2296 process_one_work(worker, work); 2297 } 2298 } 2299 2300 static void set_pf_worker(bool val) 2301 { 2302 mutex_lock(&wq_pool_attach_mutex); 2303 if (val) 2304 current->flags |= PF_WQ_WORKER; 2305 else 2306 current->flags &= ~PF_WQ_WORKER; 2307 mutex_unlock(&wq_pool_attach_mutex); 2308 } 2309 2310 /** 2311 * worker_thread - the worker thread function 2312 * @__worker: self 2313 * 2314 * The worker thread function. All workers belong to a worker_pool - 2315 * either a per-cpu one or dynamic unbound one. These workers process all 2316 * work items regardless of their specific target workqueue. The only 2317 * exception is work items which belong to workqueues with a rescuer which 2318 * will be explained in rescuer_thread(). 2319 * 2320 * Return: 0 2321 */ 2322 static int worker_thread(void *__worker) 2323 { 2324 struct worker *worker = __worker; 2325 struct worker_pool *pool = worker->pool; 2326 2327 /* tell the scheduler that this is a workqueue worker */ 2328 set_pf_worker(true); 2329 woke_up: 2330 spin_lock_irq(&pool->lock); 2331 2332 /* am I supposed to die? */ 2333 if (unlikely(worker->flags & WORKER_DIE)) { 2334 spin_unlock_irq(&pool->lock); 2335 WARN_ON_ONCE(!list_empty(&worker->entry)); 2336 set_pf_worker(false); 2337 2338 set_task_comm(worker->task, "kworker/dying"); 2339 ida_simple_remove(&pool->worker_ida, worker->id); 2340 worker_detach_from_pool(worker); 2341 kfree(worker); 2342 return 0; 2343 } 2344 2345 worker_leave_idle(worker); 2346 recheck: 2347 /* no more worker necessary? */ 2348 if (!need_more_worker(pool)) 2349 goto sleep; 2350 2351 /* do we need to manage? */ 2352 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2353 goto recheck; 2354 2355 /* 2356 * ->scheduled list can only be filled while a worker is 2357 * preparing to process a work or actually processing it. 2358 * Make sure nobody diddled with it while I was sleeping. 2359 */ 2360 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2361 2362 /* 2363 * Finish PREP stage. We're guaranteed to have at least one idle 2364 * worker or that someone else has already assumed the manager 2365 * role. This is where @worker starts participating in concurrency 2366 * management if applicable and concurrency management is restored 2367 * after being rebound. See rebind_workers() for details. 2368 */ 2369 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2370 2371 do { 2372 struct work_struct *work = 2373 list_first_entry(&pool->worklist, 2374 struct work_struct, entry); 2375 2376 pool->watchdog_ts = jiffies; 2377 2378 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2379 /* optimization path, not strictly necessary */ 2380 process_one_work(worker, work); 2381 if (unlikely(!list_empty(&worker->scheduled))) 2382 process_scheduled_works(worker); 2383 } else { 2384 move_linked_works(work, &worker->scheduled, NULL); 2385 process_scheduled_works(worker); 2386 } 2387 } while (keep_working(pool)); 2388 2389 worker_set_flags(worker, WORKER_PREP); 2390 sleep: 2391 /* 2392 * pool->lock is held and there's no work to process and no need to 2393 * manage, sleep. Workers are woken up only while holding 2394 * pool->lock or from local cpu, so setting the current state 2395 * before releasing pool->lock is enough to prevent losing any 2396 * event. 2397 */ 2398 worker_enter_idle(worker); 2399 __set_current_state(TASK_IDLE); 2400 spin_unlock_irq(&pool->lock); 2401 schedule(); 2402 goto woke_up; 2403 } 2404 2405 /** 2406 * rescuer_thread - the rescuer thread function 2407 * @__rescuer: self 2408 * 2409 * Workqueue rescuer thread function. There's one rescuer for each 2410 * workqueue which has WQ_MEM_RECLAIM set. 2411 * 2412 * Regular work processing on a pool may block trying to create a new 2413 * worker which uses GFP_KERNEL allocation which has slight chance of 2414 * developing into deadlock if some works currently on the same queue 2415 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2416 * the problem rescuer solves. 2417 * 2418 * When such condition is possible, the pool summons rescuers of all 2419 * workqueues which have works queued on the pool and let them process 2420 * those works so that forward progress can be guaranteed. 2421 * 2422 * This should happen rarely. 2423 * 2424 * Return: 0 2425 */ 2426 static int rescuer_thread(void *__rescuer) 2427 { 2428 struct worker *rescuer = __rescuer; 2429 struct workqueue_struct *wq = rescuer->rescue_wq; 2430 struct list_head *scheduled = &rescuer->scheduled; 2431 bool should_stop; 2432 2433 set_user_nice(current, RESCUER_NICE_LEVEL); 2434 2435 /* 2436 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2437 * doesn't participate in concurrency management. 2438 */ 2439 set_pf_worker(true); 2440 repeat: 2441 set_current_state(TASK_IDLE); 2442 2443 /* 2444 * By the time the rescuer is requested to stop, the workqueue 2445 * shouldn't have any work pending, but @wq->maydays may still have 2446 * pwq(s) queued. This can happen by non-rescuer workers consuming 2447 * all the work items before the rescuer got to them. Go through 2448 * @wq->maydays processing before acting on should_stop so that the 2449 * list is always empty on exit. 2450 */ 2451 should_stop = kthread_should_stop(); 2452 2453 /* see whether any pwq is asking for help */ 2454 spin_lock_irq(&wq_mayday_lock); 2455 2456 while (!list_empty(&wq->maydays)) { 2457 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2458 struct pool_workqueue, mayday_node); 2459 struct worker_pool *pool = pwq->pool; 2460 struct work_struct *work, *n; 2461 bool first = true; 2462 2463 __set_current_state(TASK_RUNNING); 2464 list_del_init(&pwq->mayday_node); 2465 2466 spin_unlock_irq(&wq_mayday_lock); 2467 2468 worker_attach_to_pool(rescuer, pool); 2469 2470 spin_lock_irq(&pool->lock); 2471 2472 /* 2473 * Slurp in all works issued via this workqueue and 2474 * process'em. 2475 */ 2476 WARN_ON_ONCE(!list_empty(scheduled)); 2477 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2478 if (get_work_pwq(work) == pwq) { 2479 if (first) 2480 pool->watchdog_ts = jiffies; 2481 move_linked_works(work, scheduled, &n); 2482 } 2483 first = false; 2484 } 2485 2486 if (!list_empty(scheduled)) { 2487 process_scheduled_works(rescuer); 2488 2489 /* 2490 * The above execution of rescued work items could 2491 * have created more to rescue through 2492 * pwq_activate_first_delayed() or chained 2493 * queueing. Let's put @pwq back on mayday list so 2494 * that such back-to-back work items, which may be 2495 * being used to relieve memory pressure, don't 2496 * incur MAYDAY_INTERVAL delay inbetween. 2497 */ 2498 if (need_to_create_worker(pool)) { 2499 spin_lock(&wq_mayday_lock); 2500 get_pwq(pwq); 2501 list_move_tail(&pwq->mayday_node, &wq->maydays); 2502 spin_unlock(&wq_mayday_lock); 2503 } 2504 } 2505 2506 /* 2507 * Put the reference grabbed by send_mayday(). @pool won't 2508 * go away while we're still attached to it. 2509 */ 2510 put_pwq(pwq); 2511 2512 /* 2513 * Leave this pool. If need_more_worker() is %true, notify a 2514 * regular worker; otherwise, we end up with 0 concurrency 2515 * and stalling the execution. 2516 */ 2517 if (need_more_worker(pool)) 2518 wake_up_worker(pool); 2519 2520 spin_unlock_irq(&pool->lock); 2521 2522 worker_detach_from_pool(rescuer); 2523 2524 spin_lock_irq(&wq_mayday_lock); 2525 } 2526 2527 spin_unlock_irq(&wq_mayday_lock); 2528 2529 if (should_stop) { 2530 __set_current_state(TASK_RUNNING); 2531 set_pf_worker(false); 2532 return 0; 2533 } 2534 2535 /* rescuers should never participate in concurrency management */ 2536 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2537 schedule(); 2538 goto repeat; 2539 } 2540 2541 /** 2542 * check_flush_dependency - check for flush dependency sanity 2543 * @target_wq: workqueue being flushed 2544 * @target_work: work item being flushed (NULL for workqueue flushes) 2545 * 2546 * %current is trying to flush the whole @target_wq or @target_work on it. 2547 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2548 * reclaiming memory or running on a workqueue which doesn't have 2549 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2550 * a deadlock. 2551 */ 2552 static void check_flush_dependency(struct workqueue_struct *target_wq, 2553 struct work_struct *target_work) 2554 { 2555 work_func_t target_func = target_work ? target_work->func : NULL; 2556 struct worker *worker; 2557 2558 if (target_wq->flags & WQ_MEM_RECLAIM) 2559 return; 2560 2561 worker = current_wq_worker(); 2562 2563 WARN_ONCE(current->flags & PF_MEMALLOC, 2564 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2565 current->pid, current->comm, target_wq->name, target_func); 2566 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2567 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2568 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2569 worker->current_pwq->wq->name, worker->current_func, 2570 target_wq->name, target_func); 2571 } 2572 2573 struct wq_barrier { 2574 struct work_struct work; 2575 struct completion done; 2576 struct task_struct *task; /* purely informational */ 2577 }; 2578 2579 static void wq_barrier_func(struct work_struct *work) 2580 { 2581 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2582 complete(&barr->done); 2583 } 2584 2585 /** 2586 * insert_wq_barrier - insert a barrier work 2587 * @pwq: pwq to insert barrier into 2588 * @barr: wq_barrier to insert 2589 * @target: target work to attach @barr to 2590 * @worker: worker currently executing @target, NULL if @target is not executing 2591 * 2592 * @barr is linked to @target such that @barr is completed only after 2593 * @target finishes execution. Please note that the ordering 2594 * guarantee is observed only with respect to @target and on the local 2595 * cpu. 2596 * 2597 * Currently, a queued barrier can't be canceled. This is because 2598 * try_to_grab_pending() can't determine whether the work to be 2599 * grabbed is at the head of the queue and thus can't clear LINKED 2600 * flag of the previous work while there must be a valid next work 2601 * after a work with LINKED flag set. 2602 * 2603 * Note that when @worker is non-NULL, @target may be modified 2604 * underneath us, so we can't reliably determine pwq from @target. 2605 * 2606 * CONTEXT: 2607 * spin_lock_irq(pool->lock). 2608 */ 2609 static void insert_wq_barrier(struct pool_workqueue *pwq, 2610 struct wq_barrier *barr, 2611 struct work_struct *target, struct worker *worker) 2612 { 2613 struct list_head *head; 2614 unsigned int linked = 0; 2615 2616 /* 2617 * debugobject calls are safe here even with pool->lock locked 2618 * as we know for sure that this will not trigger any of the 2619 * checks and call back into the fixup functions where we 2620 * might deadlock. 2621 */ 2622 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2623 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2624 2625 init_completion_map(&barr->done, &target->lockdep_map); 2626 2627 barr->task = current; 2628 2629 /* 2630 * If @target is currently being executed, schedule the 2631 * barrier to the worker; otherwise, put it after @target. 2632 */ 2633 if (worker) 2634 head = worker->scheduled.next; 2635 else { 2636 unsigned long *bits = work_data_bits(target); 2637 2638 head = target->entry.next; 2639 /* there can already be other linked works, inherit and set */ 2640 linked = *bits & WORK_STRUCT_LINKED; 2641 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2642 } 2643 2644 debug_work_activate(&barr->work); 2645 insert_work(pwq, &barr->work, head, 2646 work_color_to_flags(WORK_NO_COLOR) | linked); 2647 } 2648 2649 /** 2650 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2651 * @wq: workqueue being flushed 2652 * @flush_color: new flush color, < 0 for no-op 2653 * @work_color: new work color, < 0 for no-op 2654 * 2655 * Prepare pwqs for workqueue flushing. 2656 * 2657 * If @flush_color is non-negative, flush_color on all pwqs should be 2658 * -1. If no pwq has in-flight commands at the specified color, all 2659 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2660 * has in flight commands, its pwq->flush_color is set to 2661 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2662 * wakeup logic is armed and %true is returned. 2663 * 2664 * The caller should have initialized @wq->first_flusher prior to 2665 * calling this function with non-negative @flush_color. If 2666 * @flush_color is negative, no flush color update is done and %false 2667 * is returned. 2668 * 2669 * If @work_color is non-negative, all pwqs should have the same 2670 * work_color which is previous to @work_color and all will be 2671 * advanced to @work_color. 2672 * 2673 * CONTEXT: 2674 * mutex_lock(wq->mutex). 2675 * 2676 * Return: 2677 * %true if @flush_color >= 0 and there's something to flush. %false 2678 * otherwise. 2679 */ 2680 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2681 int flush_color, int work_color) 2682 { 2683 bool wait = false; 2684 struct pool_workqueue *pwq; 2685 2686 if (flush_color >= 0) { 2687 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2688 atomic_set(&wq->nr_pwqs_to_flush, 1); 2689 } 2690 2691 for_each_pwq(pwq, wq) { 2692 struct worker_pool *pool = pwq->pool; 2693 2694 spin_lock_irq(&pool->lock); 2695 2696 if (flush_color >= 0) { 2697 WARN_ON_ONCE(pwq->flush_color != -1); 2698 2699 if (pwq->nr_in_flight[flush_color]) { 2700 pwq->flush_color = flush_color; 2701 atomic_inc(&wq->nr_pwqs_to_flush); 2702 wait = true; 2703 } 2704 } 2705 2706 if (work_color >= 0) { 2707 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2708 pwq->work_color = work_color; 2709 } 2710 2711 spin_unlock_irq(&pool->lock); 2712 } 2713 2714 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2715 complete(&wq->first_flusher->done); 2716 2717 return wait; 2718 } 2719 2720 /** 2721 * flush_workqueue - ensure that any scheduled work has run to completion. 2722 * @wq: workqueue to flush 2723 * 2724 * This function sleeps until all work items which were queued on entry 2725 * have finished execution, but it is not livelocked by new incoming ones. 2726 */ 2727 void flush_workqueue(struct workqueue_struct *wq) 2728 { 2729 struct wq_flusher this_flusher = { 2730 .list = LIST_HEAD_INIT(this_flusher.list), 2731 .flush_color = -1, 2732 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2733 }; 2734 int next_color; 2735 2736 if (WARN_ON(!wq_online)) 2737 return; 2738 2739 lock_map_acquire(&wq->lockdep_map); 2740 lock_map_release(&wq->lockdep_map); 2741 2742 mutex_lock(&wq->mutex); 2743 2744 /* 2745 * Start-to-wait phase 2746 */ 2747 next_color = work_next_color(wq->work_color); 2748 2749 if (next_color != wq->flush_color) { 2750 /* 2751 * Color space is not full. The current work_color 2752 * becomes our flush_color and work_color is advanced 2753 * by one. 2754 */ 2755 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2756 this_flusher.flush_color = wq->work_color; 2757 wq->work_color = next_color; 2758 2759 if (!wq->first_flusher) { 2760 /* no flush in progress, become the first flusher */ 2761 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2762 2763 wq->first_flusher = &this_flusher; 2764 2765 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2766 wq->work_color)) { 2767 /* nothing to flush, done */ 2768 wq->flush_color = next_color; 2769 wq->first_flusher = NULL; 2770 goto out_unlock; 2771 } 2772 } else { 2773 /* wait in queue */ 2774 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2775 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2776 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2777 } 2778 } else { 2779 /* 2780 * Oops, color space is full, wait on overflow queue. 2781 * The next flush completion will assign us 2782 * flush_color and transfer to flusher_queue. 2783 */ 2784 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2785 } 2786 2787 check_flush_dependency(wq, NULL); 2788 2789 mutex_unlock(&wq->mutex); 2790 2791 wait_for_completion(&this_flusher.done); 2792 2793 /* 2794 * Wake-up-and-cascade phase 2795 * 2796 * First flushers are responsible for cascading flushes and 2797 * handling overflow. Non-first flushers can simply return. 2798 */ 2799 if (wq->first_flusher != &this_flusher) 2800 return; 2801 2802 mutex_lock(&wq->mutex); 2803 2804 /* we might have raced, check again with mutex held */ 2805 if (wq->first_flusher != &this_flusher) 2806 goto out_unlock; 2807 2808 wq->first_flusher = NULL; 2809 2810 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2811 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2812 2813 while (true) { 2814 struct wq_flusher *next, *tmp; 2815 2816 /* complete all the flushers sharing the current flush color */ 2817 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2818 if (next->flush_color != wq->flush_color) 2819 break; 2820 list_del_init(&next->list); 2821 complete(&next->done); 2822 } 2823 2824 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2825 wq->flush_color != work_next_color(wq->work_color)); 2826 2827 /* this flush_color is finished, advance by one */ 2828 wq->flush_color = work_next_color(wq->flush_color); 2829 2830 /* one color has been freed, handle overflow queue */ 2831 if (!list_empty(&wq->flusher_overflow)) { 2832 /* 2833 * Assign the same color to all overflowed 2834 * flushers, advance work_color and append to 2835 * flusher_queue. This is the start-to-wait 2836 * phase for these overflowed flushers. 2837 */ 2838 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2839 tmp->flush_color = wq->work_color; 2840 2841 wq->work_color = work_next_color(wq->work_color); 2842 2843 list_splice_tail_init(&wq->flusher_overflow, 2844 &wq->flusher_queue); 2845 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2846 } 2847 2848 if (list_empty(&wq->flusher_queue)) { 2849 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2850 break; 2851 } 2852 2853 /* 2854 * Need to flush more colors. Make the next flusher 2855 * the new first flusher and arm pwqs. 2856 */ 2857 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2858 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2859 2860 list_del_init(&next->list); 2861 wq->first_flusher = next; 2862 2863 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2864 break; 2865 2866 /* 2867 * Meh... this color is already done, clear first 2868 * flusher and repeat cascading. 2869 */ 2870 wq->first_flusher = NULL; 2871 } 2872 2873 out_unlock: 2874 mutex_unlock(&wq->mutex); 2875 } 2876 EXPORT_SYMBOL(flush_workqueue); 2877 2878 /** 2879 * drain_workqueue - drain a workqueue 2880 * @wq: workqueue to drain 2881 * 2882 * Wait until the workqueue becomes empty. While draining is in progress, 2883 * only chain queueing is allowed. IOW, only currently pending or running 2884 * work items on @wq can queue further work items on it. @wq is flushed 2885 * repeatedly until it becomes empty. The number of flushing is determined 2886 * by the depth of chaining and should be relatively short. Whine if it 2887 * takes too long. 2888 */ 2889 void drain_workqueue(struct workqueue_struct *wq) 2890 { 2891 unsigned int flush_cnt = 0; 2892 struct pool_workqueue *pwq; 2893 2894 /* 2895 * __queue_work() needs to test whether there are drainers, is much 2896 * hotter than drain_workqueue() and already looks at @wq->flags. 2897 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2898 */ 2899 mutex_lock(&wq->mutex); 2900 if (!wq->nr_drainers++) 2901 wq->flags |= __WQ_DRAINING; 2902 mutex_unlock(&wq->mutex); 2903 reflush: 2904 flush_workqueue(wq); 2905 2906 mutex_lock(&wq->mutex); 2907 2908 for_each_pwq(pwq, wq) { 2909 bool drained; 2910 2911 spin_lock_irq(&pwq->pool->lock); 2912 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2913 spin_unlock_irq(&pwq->pool->lock); 2914 2915 if (drained) 2916 continue; 2917 2918 if (++flush_cnt == 10 || 2919 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2920 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2921 wq->name, flush_cnt); 2922 2923 mutex_unlock(&wq->mutex); 2924 goto reflush; 2925 } 2926 2927 if (!--wq->nr_drainers) 2928 wq->flags &= ~__WQ_DRAINING; 2929 mutex_unlock(&wq->mutex); 2930 } 2931 EXPORT_SYMBOL_GPL(drain_workqueue); 2932 2933 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2934 bool from_cancel) 2935 { 2936 struct worker *worker = NULL; 2937 struct worker_pool *pool; 2938 struct pool_workqueue *pwq; 2939 2940 might_sleep(); 2941 2942 local_irq_disable(); 2943 pool = get_work_pool(work); 2944 if (!pool) { 2945 local_irq_enable(); 2946 return false; 2947 } 2948 2949 spin_lock(&pool->lock); 2950 /* see the comment in try_to_grab_pending() with the same code */ 2951 pwq = get_work_pwq(work); 2952 if (pwq) { 2953 if (unlikely(pwq->pool != pool)) 2954 goto already_gone; 2955 } else { 2956 worker = find_worker_executing_work(pool, work); 2957 if (!worker) 2958 goto already_gone; 2959 pwq = worker->current_pwq; 2960 } 2961 2962 check_flush_dependency(pwq->wq, work); 2963 2964 insert_wq_barrier(pwq, barr, work, worker); 2965 spin_unlock_irq(&pool->lock); 2966 2967 /* 2968 * Force a lock recursion deadlock when using flush_work() inside a 2969 * single-threaded or rescuer equipped workqueue. 2970 * 2971 * For single threaded workqueues the deadlock happens when the work 2972 * is after the work issuing the flush_work(). For rescuer equipped 2973 * workqueues the deadlock happens when the rescuer stalls, blocking 2974 * forward progress. 2975 */ 2976 if (!from_cancel && 2977 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 2978 lock_map_acquire(&pwq->wq->lockdep_map); 2979 lock_map_release(&pwq->wq->lockdep_map); 2980 } 2981 2982 return true; 2983 already_gone: 2984 spin_unlock_irq(&pool->lock); 2985 return false; 2986 } 2987 2988 static bool __flush_work(struct work_struct *work, bool from_cancel) 2989 { 2990 struct wq_barrier barr; 2991 2992 if (WARN_ON(!wq_online)) 2993 return false; 2994 2995 if (!from_cancel) { 2996 lock_map_acquire(&work->lockdep_map); 2997 lock_map_release(&work->lockdep_map); 2998 } 2999 3000 if (start_flush_work(work, &barr, from_cancel)) { 3001 wait_for_completion(&barr.done); 3002 destroy_work_on_stack(&barr.work); 3003 return true; 3004 } else { 3005 return false; 3006 } 3007 } 3008 3009 /** 3010 * flush_work - wait for a work to finish executing the last queueing instance 3011 * @work: the work to flush 3012 * 3013 * Wait until @work has finished execution. @work is guaranteed to be idle 3014 * on return if it hasn't been requeued since flush started. 3015 * 3016 * Return: 3017 * %true if flush_work() waited for the work to finish execution, 3018 * %false if it was already idle. 3019 */ 3020 bool flush_work(struct work_struct *work) 3021 { 3022 return __flush_work(work, false); 3023 } 3024 EXPORT_SYMBOL_GPL(flush_work); 3025 3026 struct cwt_wait { 3027 wait_queue_entry_t wait; 3028 struct work_struct *work; 3029 }; 3030 3031 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3032 { 3033 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3034 3035 if (cwait->work != key) 3036 return 0; 3037 return autoremove_wake_function(wait, mode, sync, key); 3038 } 3039 3040 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3041 { 3042 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3043 unsigned long flags; 3044 int ret; 3045 3046 do { 3047 ret = try_to_grab_pending(work, is_dwork, &flags); 3048 /* 3049 * If someone else is already canceling, wait for it to 3050 * finish. flush_work() doesn't work for PREEMPT_NONE 3051 * because we may get scheduled between @work's completion 3052 * and the other canceling task resuming and clearing 3053 * CANCELING - flush_work() will return false immediately 3054 * as @work is no longer busy, try_to_grab_pending() will 3055 * return -ENOENT as @work is still being canceled and the 3056 * other canceling task won't be able to clear CANCELING as 3057 * we're hogging the CPU. 3058 * 3059 * Let's wait for completion using a waitqueue. As this 3060 * may lead to the thundering herd problem, use a custom 3061 * wake function which matches @work along with exclusive 3062 * wait and wakeup. 3063 */ 3064 if (unlikely(ret == -ENOENT)) { 3065 struct cwt_wait cwait; 3066 3067 init_wait(&cwait.wait); 3068 cwait.wait.func = cwt_wakefn; 3069 cwait.work = work; 3070 3071 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3072 TASK_UNINTERRUPTIBLE); 3073 if (work_is_canceling(work)) 3074 schedule(); 3075 finish_wait(&cancel_waitq, &cwait.wait); 3076 } 3077 } while (unlikely(ret < 0)); 3078 3079 /* tell other tasks trying to grab @work to back off */ 3080 mark_work_canceling(work); 3081 local_irq_restore(flags); 3082 3083 /* 3084 * This allows canceling during early boot. We know that @work 3085 * isn't executing. 3086 */ 3087 if (wq_online) 3088 __flush_work(work, true); 3089 3090 clear_work_data(work); 3091 3092 /* 3093 * Paired with prepare_to_wait() above so that either 3094 * waitqueue_active() is visible here or !work_is_canceling() is 3095 * visible there. 3096 */ 3097 smp_mb(); 3098 if (waitqueue_active(&cancel_waitq)) 3099 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3100 3101 return ret; 3102 } 3103 3104 /** 3105 * cancel_work_sync - cancel a work and wait for it to finish 3106 * @work: the work to cancel 3107 * 3108 * Cancel @work and wait for its execution to finish. This function 3109 * can be used even if the work re-queues itself or migrates to 3110 * another workqueue. On return from this function, @work is 3111 * guaranteed to be not pending or executing on any CPU. 3112 * 3113 * cancel_work_sync(&delayed_work->work) must not be used for 3114 * delayed_work's. Use cancel_delayed_work_sync() instead. 3115 * 3116 * The caller must ensure that the workqueue on which @work was last 3117 * queued can't be destroyed before this function returns. 3118 * 3119 * Return: 3120 * %true if @work was pending, %false otherwise. 3121 */ 3122 bool cancel_work_sync(struct work_struct *work) 3123 { 3124 return __cancel_work_timer(work, false); 3125 } 3126 EXPORT_SYMBOL_GPL(cancel_work_sync); 3127 3128 /** 3129 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3130 * @dwork: the delayed work to flush 3131 * 3132 * Delayed timer is cancelled and the pending work is queued for 3133 * immediate execution. Like flush_work(), this function only 3134 * considers the last queueing instance of @dwork. 3135 * 3136 * Return: 3137 * %true if flush_work() waited for the work to finish execution, 3138 * %false if it was already idle. 3139 */ 3140 bool flush_delayed_work(struct delayed_work *dwork) 3141 { 3142 local_irq_disable(); 3143 if (del_timer_sync(&dwork->timer)) 3144 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3145 local_irq_enable(); 3146 return flush_work(&dwork->work); 3147 } 3148 EXPORT_SYMBOL(flush_delayed_work); 3149 3150 /** 3151 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3152 * @rwork: the rcu work to flush 3153 * 3154 * Return: 3155 * %true if flush_rcu_work() waited for the work to finish execution, 3156 * %false if it was already idle. 3157 */ 3158 bool flush_rcu_work(struct rcu_work *rwork) 3159 { 3160 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3161 rcu_barrier(); 3162 flush_work(&rwork->work); 3163 return true; 3164 } else { 3165 return flush_work(&rwork->work); 3166 } 3167 } 3168 EXPORT_SYMBOL(flush_rcu_work); 3169 3170 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3171 { 3172 unsigned long flags; 3173 int ret; 3174 3175 do { 3176 ret = try_to_grab_pending(work, is_dwork, &flags); 3177 } while (unlikely(ret == -EAGAIN)); 3178 3179 if (unlikely(ret < 0)) 3180 return false; 3181 3182 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3183 local_irq_restore(flags); 3184 return ret; 3185 } 3186 3187 /** 3188 * cancel_delayed_work - cancel a delayed work 3189 * @dwork: delayed_work to cancel 3190 * 3191 * Kill off a pending delayed_work. 3192 * 3193 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3194 * pending. 3195 * 3196 * Note: 3197 * The work callback function may still be running on return, unless 3198 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3199 * use cancel_delayed_work_sync() to wait on it. 3200 * 3201 * This function is safe to call from any context including IRQ handler. 3202 */ 3203 bool cancel_delayed_work(struct delayed_work *dwork) 3204 { 3205 return __cancel_work(&dwork->work, true); 3206 } 3207 EXPORT_SYMBOL(cancel_delayed_work); 3208 3209 /** 3210 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3211 * @dwork: the delayed work cancel 3212 * 3213 * This is cancel_work_sync() for delayed works. 3214 * 3215 * Return: 3216 * %true if @dwork was pending, %false otherwise. 3217 */ 3218 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3219 { 3220 return __cancel_work_timer(&dwork->work, true); 3221 } 3222 EXPORT_SYMBOL(cancel_delayed_work_sync); 3223 3224 /** 3225 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3226 * @func: the function to call 3227 * 3228 * schedule_on_each_cpu() executes @func on each online CPU using the 3229 * system workqueue and blocks until all CPUs have completed. 3230 * schedule_on_each_cpu() is very slow. 3231 * 3232 * Return: 3233 * 0 on success, -errno on failure. 3234 */ 3235 int schedule_on_each_cpu(work_func_t func) 3236 { 3237 int cpu; 3238 struct work_struct __percpu *works; 3239 3240 works = alloc_percpu(struct work_struct); 3241 if (!works) 3242 return -ENOMEM; 3243 3244 get_online_cpus(); 3245 3246 for_each_online_cpu(cpu) { 3247 struct work_struct *work = per_cpu_ptr(works, cpu); 3248 3249 INIT_WORK(work, func); 3250 schedule_work_on(cpu, work); 3251 } 3252 3253 for_each_online_cpu(cpu) 3254 flush_work(per_cpu_ptr(works, cpu)); 3255 3256 put_online_cpus(); 3257 free_percpu(works); 3258 return 0; 3259 } 3260 3261 /** 3262 * execute_in_process_context - reliably execute the routine with user context 3263 * @fn: the function to execute 3264 * @ew: guaranteed storage for the execute work structure (must 3265 * be available when the work executes) 3266 * 3267 * Executes the function immediately if process context is available, 3268 * otherwise schedules the function for delayed execution. 3269 * 3270 * Return: 0 - function was executed 3271 * 1 - function was scheduled for execution 3272 */ 3273 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3274 { 3275 if (!in_interrupt()) { 3276 fn(&ew->work); 3277 return 0; 3278 } 3279 3280 INIT_WORK(&ew->work, fn); 3281 schedule_work(&ew->work); 3282 3283 return 1; 3284 } 3285 EXPORT_SYMBOL_GPL(execute_in_process_context); 3286 3287 /** 3288 * free_workqueue_attrs - free a workqueue_attrs 3289 * @attrs: workqueue_attrs to free 3290 * 3291 * Undo alloc_workqueue_attrs(). 3292 */ 3293 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3294 { 3295 if (attrs) { 3296 free_cpumask_var(attrs->cpumask); 3297 kfree(attrs); 3298 } 3299 } 3300 3301 /** 3302 * alloc_workqueue_attrs - allocate a workqueue_attrs 3303 * @gfp_mask: allocation mask to use 3304 * 3305 * Allocate a new workqueue_attrs, initialize with default settings and 3306 * return it. 3307 * 3308 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3309 */ 3310 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3311 { 3312 struct workqueue_attrs *attrs; 3313 3314 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3315 if (!attrs) 3316 goto fail; 3317 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3318 goto fail; 3319 3320 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3321 return attrs; 3322 fail: 3323 free_workqueue_attrs(attrs); 3324 return NULL; 3325 } 3326 3327 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3328 const struct workqueue_attrs *from) 3329 { 3330 to->nice = from->nice; 3331 cpumask_copy(to->cpumask, from->cpumask); 3332 /* 3333 * Unlike hash and equality test, this function doesn't ignore 3334 * ->no_numa as it is used for both pool and wq attrs. Instead, 3335 * get_unbound_pool() explicitly clears ->no_numa after copying. 3336 */ 3337 to->no_numa = from->no_numa; 3338 } 3339 3340 /* hash value of the content of @attr */ 3341 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3342 { 3343 u32 hash = 0; 3344 3345 hash = jhash_1word(attrs->nice, hash); 3346 hash = jhash(cpumask_bits(attrs->cpumask), 3347 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3348 return hash; 3349 } 3350 3351 /* content equality test */ 3352 static bool wqattrs_equal(const struct workqueue_attrs *a, 3353 const struct workqueue_attrs *b) 3354 { 3355 if (a->nice != b->nice) 3356 return false; 3357 if (!cpumask_equal(a->cpumask, b->cpumask)) 3358 return false; 3359 return true; 3360 } 3361 3362 /** 3363 * init_worker_pool - initialize a newly zalloc'd worker_pool 3364 * @pool: worker_pool to initialize 3365 * 3366 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3367 * 3368 * Return: 0 on success, -errno on failure. Even on failure, all fields 3369 * inside @pool proper are initialized and put_unbound_pool() can be called 3370 * on @pool safely to release it. 3371 */ 3372 static int init_worker_pool(struct worker_pool *pool) 3373 { 3374 spin_lock_init(&pool->lock); 3375 pool->id = -1; 3376 pool->cpu = -1; 3377 pool->node = NUMA_NO_NODE; 3378 pool->flags |= POOL_DISASSOCIATED; 3379 pool->watchdog_ts = jiffies; 3380 INIT_LIST_HEAD(&pool->worklist); 3381 INIT_LIST_HEAD(&pool->idle_list); 3382 hash_init(pool->busy_hash); 3383 3384 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3385 3386 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3387 3388 INIT_LIST_HEAD(&pool->workers); 3389 3390 ida_init(&pool->worker_ida); 3391 INIT_HLIST_NODE(&pool->hash_node); 3392 pool->refcnt = 1; 3393 3394 /* shouldn't fail above this point */ 3395 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3396 if (!pool->attrs) 3397 return -ENOMEM; 3398 return 0; 3399 } 3400 3401 static void rcu_free_wq(struct rcu_head *rcu) 3402 { 3403 struct workqueue_struct *wq = 3404 container_of(rcu, struct workqueue_struct, rcu); 3405 3406 if (!(wq->flags & WQ_UNBOUND)) 3407 free_percpu(wq->cpu_pwqs); 3408 else 3409 free_workqueue_attrs(wq->unbound_attrs); 3410 3411 kfree(wq->rescuer); 3412 kfree(wq); 3413 } 3414 3415 static void rcu_free_pool(struct rcu_head *rcu) 3416 { 3417 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3418 3419 ida_destroy(&pool->worker_ida); 3420 free_workqueue_attrs(pool->attrs); 3421 kfree(pool); 3422 } 3423 3424 /** 3425 * put_unbound_pool - put a worker_pool 3426 * @pool: worker_pool to put 3427 * 3428 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3429 * safe manner. get_unbound_pool() calls this function on its failure path 3430 * and this function should be able to release pools which went through, 3431 * successfully or not, init_worker_pool(). 3432 * 3433 * Should be called with wq_pool_mutex held. 3434 */ 3435 static void put_unbound_pool(struct worker_pool *pool) 3436 { 3437 DECLARE_COMPLETION_ONSTACK(detach_completion); 3438 struct worker *worker; 3439 3440 lockdep_assert_held(&wq_pool_mutex); 3441 3442 if (--pool->refcnt) 3443 return; 3444 3445 /* sanity checks */ 3446 if (WARN_ON(!(pool->cpu < 0)) || 3447 WARN_ON(!list_empty(&pool->worklist))) 3448 return; 3449 3450 /* release id and unhash */ 3451 if (pool->id >= 0) 3452 idr_remove(&worker_pool_idr, pool->id); 3453 hash_del(&pool->hash_node); 3454 3455 /* 3456 * Become the manager and destroy all workers. This prevents 3457 * @pool's workers from blocking on attach_mutex. We're the last 3458 * manager and @pool gets freed with the flag set. 3459 */ 3460 spin_lock_irq(&pool->lock); 3461 wait_event_lock_irq(wq_manager_wait, 3462 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock); 3463 pool->flags |= POOL_MANAGER_ACTIVE; 3464 3465 while ((worker = first_idle_worker(pool))) 3466 destroy_worker(worker); 3467 WARN_ON(pool->nr_workers || pool->nr_idle); 3468 spin_unlock_irq(&pool->lock); 3469 3470 mutex_lock(&wq_pool_attach_mutex); 3471 if (!list_empty(&pool->workers)) 3472 pool->detach_completion = &detach_completion; 3473 mutex_unlock(&wq_pool_attach_mutex); 3474 3475 if (pool->detach_completion) 3476 wait_for_completion(pool->detach_completion); 3477 3478 /* shut down the timers */ 3479 del_timer_sync(&pool->idle_timer); 3480 del_timer_sync(&pool->mayday_timer); 3481 3482 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3483 call_rcu(&pool->rcu, rcu_free_pool); 3484 } 3485 3486 /** 3487 * get_unbound_pool - get a worker_pool with the specified attributes 3488 * @attrs: the attributes of the worker_pool to get 3489 * 3490 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3491 * reference count and return it. If there already is a matching 3492 * worker_pool, it will be used; otherwise, this function attempts to 3493 * create a new one. 3494 * 3495 * Should be called with wq_pool_mutex held. 3496 * 3497 * Return: On success, a worker_pool with the same attributes as @attrs. 3498 * On failure, %NULL. 3499 */ 3500 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3501 { 3502 u32 hash = wqattrs_hash(attrs); 3503 struct worker_pool *pool; 3504 int node; 3505 int target_node = NUMA_NO_NODE; 3506 3507 lockdep_assert_held(&wq_pool_mutex); 3508 3509 /* do we already have a matching pool? */ 3510 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3511 if (wqattrs_equal(pool->attrs, attrs)) { 3512 pool->refcnt++; 3513 return pool; 3514 } 3515 } 3516 3517 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3518 if (wq_numa_enabled) { 3519 for_each_node(node) { 3520 if (cpumask_subset(attrs->cpumask, 3521 wq_numa_possible_cpumask[node])) { 3522 target_node = node; 3523 break; 3524 } 3525 } 3526 } 3527 3528 /* nope, create a new one */ 3529 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3530 if (!pool || init_worker_pool(pool) < 0) 3531 goto fail; 3532 3533 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3534 copy_workqueue_attrs(pool->attrs, attrs); 3535 pool->node = target_node; 3536 3537 /* 3538 * no_numa isn't a worker_pool attribute, always clear it. See 3539 * 'struct workqueue_attrs' comments for detail. 3540 */ 3541 pool->attrs->no_numa = false; 3542 3543 if (worker_pool_assign_id(pool) < 0) 3544 goto fail; 3545 3546 /* create and start the initial worker */ 3547 if (wq_online && !create_worker(pool)) 3548 goto fail; 3549 3550 /* install */ 3551 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3552 3553 return pool; 3554 fail: 3555 if (pool) 3556 put_unbound_pool(pool); 3557 return NULL; 3558 } 3559 3560 static void rcu_free_pwq(struct rcu_head *rcu) 3561 { 3562 kmem_cache_free(pwq_cache, 3563 container_of(rcu, struct pool_workqueue, rcu)); 3564 } 3565 3566 /* 3567 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3568 * and needs to be destroyed. 3569 */ 3570 static void pwq_unbound_release_workfn(struct work_struct *work) 3571 { 3572 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3573 unbound_release_work); 3574 struct workqueue_struct *wq = pwq->wq; 3575 struct worker_pool *pool = pwq->pool; 3576 bool is_last; 3577 3578 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3579 return; 3580 3581 mutex_lock(&wq->mutex); 3582 list_del_rcu(&pwq->pwqs_node); 3583 is_last = list_empty(&wq->pwqs); 3584 mutex_unlock(&wq->mutex); 3585 3586 mutex_lock(&wq_pool_mutex); 3587 put_unbound_pool(pool); 3588 mutex_unlock(&wq_pool_mutex); 3589 3590 call_rcu(&pwq->rcu, rcu_free_pwq); 3591 3592 /* 3593 * If we're the last pwq going away, @wq is already dead and no one 3594 * is gonna access it anymore. Schedule RCU free. 3595 */ 3596 if (is_last) 3597 call_rcu(&wq->rcu, rcu_free_wq); 3598 } 3599 3600 /** 3601 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3602 * @pwq: target pool_workqueue 3603 * 3604 * If @pwq isn't freezing, set @pwq->max_active to the associated 3605 * workqueue's saved_max_active and activate delayed work items 3606 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3607 */ 3608 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3609 { 3610 struct workqueue_struct *wq = pwq->wq; 3611 bool freezable = wq->flags & WQ_FREEZABLE; 3612 unsigned long flags; 3613 3614 /* for @wq->saved_max_active */ 3615 lockdep_assert_held(&wq->mutex); 3616 3617 /* fast exit for non-freezable wqs */ 3618 if (!freezable && pwq->max_active == wq->saved_max_active) 3619 return; 3620 3621 /* this function can be called during early boot w/ irq disabled */ 3622 spin_lock_irqsave(&pwq->pool->lock, flags); 3623 3624 /* 3625 * During [un]freezing, the caller is responsible for ensuring that 3626 * this function is called at least once after @workqueue_freezing 3627 * is updated and visible. 3628 */ 3629 if (!freezable || !workqueue_freezing) { 3630 pwq->max_active = wq->saved_max_active; 3631 3632 while (!list_empty(&pwq->delayed_works) && 3633 pwq->nr_active < pwq->max_active) 3634 pwq_activate_first_delayed(pwq); 3635 3636 /* 3637 * Need to kick a worker after thawed or an unbound wq's 3638 * max_active is bumped. It's a slow path. Do it always. 3639 */ 3640 wake_up_worker(pwq->pool); 3641 } else { 3642 pwq->max_active = 0; 3643 } 3644 3645 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3646 } 3647 3648 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3649 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3650 struct worker_pool *pool) 3651 { 3652 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3653 3654 memset(pwq, 0, sizeof(*pwq)); 3655 3656 pwq->pool = pool; 3657 pwq->wq = wq; 3658 pwq->flush_color = -1; 3659 pwq->refcnt = 1; 3660 INIT_LIST_HEAD(&pwq->delayed_works); 3661 INIT_LIST_HEAD(&pwq->pwqs_node); 3662 INIT_LIST_HEAD(&pwq->mayday_node); 3663 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3664 } 3665 3666 /* sync @pwq with the current state of its associated wq and link it */ 3667 static void link_pwq(struct pool_workqueue *pwq) 3668 { 3669 struct workqueue_struct *wq = pwq->wq; 3670 3671 lockdep_assert_held(&wq->mutex); 3672 3673 /* may be called multiple times, ignore if already linked */ 3674 if (!list_empty(&pwq->pwqs_node)) 3675 return; 3676 3677 /* set the matching work_color */ 3678 pwq->work_color = wq->work_color; 3679 3680 /* sync max_active to the current setting */ 3681 pwq_adjust_max_active(pwq); 3682 3683 /* link in @pwq */ 3684 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3685 } 3686 3687 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3688 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3689 const struct workqueue_attrs *attrs) 3690 { 3691 struct worker_pool *pool; 3692 struct pool_workqueue *pwq; 3693 3694 lockdep_assert_held(&wq_pool_mutex); 3695 3696 pool = get_unbound_pool(attrs); 3697 if (!pool) 3698 return NULL; 3699 3700 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3701 if (!pwq) { 3702 put_unbound_pool(pool); 3703 return NULL; 3704 } 3705 3706 init_pwq(pwq, wq, pool); 3707 return pwq; 3708 } 3709 3710 /** 3711 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3712 * @attrs: the wq_attrs of the default pwq of the target workqueue 3713 * @node: the target NUMA node 3714 * @cpu_going_down: if >= 0, the CPU to consider as offline 3715 * @cpumask: outarg, the resulting cpumask 3716 * 3717 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3718 * @cpu_going_down is >= 0, that cpu is considered offline during 3719 * calculation. The result is stored in @cpumask. 3720 * 3721 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3722 * enabled and @node has online CPUs requested by @attrs, the returned 3723 * cpumask is the intersection of the possible CPUs of @node and 3724 * @attrs->cpumask. 3725 * 3726 * The caller is responsible for ensuring that the cpumask of @node stays 3727 * stable. 3728 * 3729 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3730 * %false if equal. 3731 */ 3732 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3733 int cpu_going_down, cpumask_t *cpumask) 3734 { 3735 if (!wq_numa_enabled || attrs->no_numa) 3736 goto use_dfl; 3737 3738 /* does @node have any online CPUs @attrs wants? */ 3739 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3740 if (cpu_going_down >= 0) 3741 cpumask_clear_cpu(cpu_going_down, cpumask); 3742 3743 if (cpumask_empty(cpumask)) 3744 goto use_dfl; 3745 3746 /* yeap, return possible CPUs in @node that @attrs wants */ 3747 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3748 3749 if (cpumask_empty(cpumask)) { 3750 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3751 "possible intersect\n"); 3752 return false; 3753 } 3754 3755 return !cpumask_equal(cpumask, attrs->cpumask); 3756 3757 use_dfl: 3758 cpumask_copy(cpumask, attrs->cpumask); 3759 return false; 3760 } 3761 3762 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3763 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3764 int node, 3765 struct pool_workqueue *pwq) 3766 { 3767 struct pool_workqueue *old_pwq; 3768 3769 lockdep_assert_held(&wq_pool_mutex); 3770 lockdep_assert_held(&wq->mutex); 3771 3772 /* link_pwq() can handle duplicate calls */ 3773 link_pwq(pwq); 3774 3775 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3776 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3777 return old_pwq; 3778 } 3779 3780 /* context to store the prepared attrs & pwqs before applying */ 3781 struct apply_wqattrs_ctx { 3782 struct workqueue_struct *wq; /* target workqueue */ 3783 struct workqueue_attrs *attrs; /* attrs to apply */ 3784 struct list_head list; /* queued for batching commit */ 3785 struct pool_workqueue *dfl_pwq; 3786 struct pool_workqueue *pwq_tbl[]; 3787 }; 3788 3789 /* free the resources after success or abort */ 3790 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3791 { 3792 if (ctx) { 3793 int node; 3794 3795 for_each_node(node) 3796 put_pwq_unlocked(ctx->pwq_tbl[node]); 3797 put_pwq_unlocked(ctx->dfl_pwq); 3798 3799 free_workqueue_attrs(ctx->attrs); 3800 3801 kfree(ctx); 3802 } 3803 } 3804 3805 /* allocate the attrs and pwqs for later installation */ 3806 static struct apply_wqattrs_ctx * 3807 apply_wqattrs_prepare(struct workqueue_struct *wq, 3808 const struct workqueue_attrs *attrs) 3809 { 3810 struct apply_wqattrs_ctx *ctx; 3811 struct workqueue_attrs *new_attrs, *tmp_attrs; 3812 int node; 3813 3814 lockdep_assert_held(&wq_pool_mutex); 3815 3816 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3817 3818 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3819 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3820 if (!ctx || !new_attrs || !tmp_attrs) 3821 goto out_free; 3822 3823 /* 3824 * Calculate the attrs of the default pwq. 3825 * If the user configured cpumask doesn't overlap with the 3826 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3827 */ 3828 copy_workqueue_attrs(new_attrs, attrs); 3829 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3830 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3831 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3832 3833 /* 3834 * We may create multiple pwqs with differing cpumasks. Make a 3835 * copy of @new_attrs which will be modified and used to obtain 3836 * pools. 3837 */ 3838 copy_workqueue_attrs(tmp_attrs, new_attrs); 3839 3840 /* 3841 * If something goes wrong during CPU up/down, we'll fall back to 3842 * the default pwq covering whole @attrs->cpumask. Always create 3843 * it even if we don't use it immediately. 3844 */ 3845 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3846 if (!ctx->dfl_pwq) 3847 goto out_free; 3848 3849 for_each_node(node) { 3850 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3851 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3852 if (!ctx->pwq_tbl[node]) 3853 goto out_free; 3854 } else { 3855 ctx->dfl_pwq->refcnt++; 3856 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3857 } 3858 } 3859 3860 /* save the user configured attrs and sanitize it. */ 3861 copy_workqueue_attrs(new_attrs, attrs); 3862 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3863 ctx->attrs = new_attrs; 3864 3865 ctx->wq = wq; 3866 free_workqueue_attrs(tmp_attrs); 3867 return ctx; 3868 3869 out_free: 3870 free_workqueue_attrs(tmp_attrs); 3871 free_workqueue_attrs(new_attrs); 3872 apply_wqattrs_cleanup(ctx); 3873 return NULL; 3874 } 3875 3876 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3877 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3878 { 3879 int node; 3880 3881 /* all pwqs have been created successfully, let's install'em */ 3882 mutex_lock(&ctx->wq->mutex); 3883 3884 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3885 3886 /* save the previous pwq and install the new one */ 3887 for_each_node(node) 3888 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3889 ctx->pwq_tbl[node]); 3890 3891 /* @dfl_pwq might not have been used, ensure it's linked */ 3892 link_pwq(ctx->dfl_pwq); 3893 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3894 3895 mutex_unlock(&ctx->wq->mutex); 3896 } 3897 3898 static void apply_wqattrs_lock(void) 3899 { 3900 /* CPUs should stay stable across pwq creations and installations */ 3901 get_online_cpus(); 3902 mutex_lock(&wq_pool_mutex); 3903 } 3904 3905 static void apply_wqattrs_unlock(void) 3906 { 3907 mutex_unlock(&wq_pool_mutex); 3908 put_online_cpus(); 3909 } 3910 3911 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3912 const struct workqueue_attrs *attrs) 3913 { 3914 struct apply_wqattrs_ctx *ctx; 3915 3916 /* only unbound workqueues can change attributes */ 3917 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3918 return -EINVAL; 3919 3920 /* creating multiple pwqs breaks ordering guarantee */ 3921 if (!list_empty(&wq->pwqs)) { 3922 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 3923 return -EINVAL; 3924 3925 wq->flags &= ~__WQ_ORDERED; 3926 } 3927 3928 ctx = apply_wqattrs_prepare(wq, attrs); 3929 if (!ctx) 3930 return -ENOMEM; 3931 3932 /* the ctx has been prepared successfully, let's commit it */ 3933 apply_wqattrs_commit(ctx); 3934 apply_wqattrs_cleanup(ctx); 3935 3936 return 0; 3937 } 3938 3939 /** 3940 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3941 * @wq: the target workqueue 3942 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3943 * 3944 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3945 * machines, this function maps a separate pwq to each NUMA node with 3946 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3947 * NUMA node it was issued on. Older pwqs are released as in-flight work 3948 * items finish. Note that a work item which repeatedly requeues itself 3949 * back-to-back will stay on its current pwq. 3950 * 3951 * Performs GFP_KERNEL allocations. 3952 * 3953 * Return: 0 on success and -errno on failure. 3954 */ 3955 int apply_workqueue_attrs(struct workqueue_struct *wq, 3956 const struct workqueue_attrs *attrs) 3957 { 3958 int ret; 3959 3960 apply_wqattrs_lock(); 3961 ret = apply_workqueue_attrs_locked(wq, attrs); 3962 apply_wqattrs_unlock(); 3963 3964 return ret; 3965 } 3966 EXPORT_SYMBOL_GPL(apply_workqueue_attrs); 3967 3968 /** 3969 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3970 * @wq: the target workqueue 3971 * @cpu: the CPU coming up or going down 3972 * @online: whether @cpu is coming up or going down 3973 * 3974 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3975 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3976 * @wq accordingly. 3977 * 3978 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3979 * falls back to @wq->dfl_pwq which may not be optimal but is always 3980 * correct. 3981 * 3982 * Note that when the last allowed CPU of a NUMA node goes offline for a 3983 * workqueue with a cpumask spanning multiple nodes, the workers which were 3984 * already executing the work items for the workqueue will lose their CPU 3985 * affinity and may execute on any CPU. This is similar to how per-cpu 3986 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3987 * affinity, it's the user's responsibility to flush the work item from 3988 * CPU_DOWN_PREPARE. 3989 */ 3990 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3991 bool online) 3992 { 3993 int node = cpu_to_node(cpu); 3994 int cpu_off = online ? -1 : cpu; 3995 struct pool_workqueue *old_pwq = NULL, *pwq; 3996 struct workqueue_attrs *target_attrs; 3997 cpumask_t *cpumask; 3998 3999 lockdep_assert_held(&wq_pool_mutex); 4000 4001 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4002 wq->unbound_attrs->no_numa) 4003 return; 4004 4005 /* 4006 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4007 * Let's use a preallocated one. The following buf is protected by 4008 * CPU hotplug exclusion. 4009 */ 4010 target_attrs = wq_update_unbound_numa_attrs_buf; 4011 cpumask = target_attrs->cpumask; 4012 4013 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4014 pwq = unbound_pwq_by_node(wq, node); 4015 4016 /* 4017 * Let's determine what needs to be done. If the target cpumask is 4018 * different from the default pwq's, we need to compare it to @pwq's 4019 * and create a new one if they don't match. If the target cpumask 4020 * equals the default pwq's, the default pwq should be used. 4021 */ 4022 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4023 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4024 return; 4025 } else { 4026 goto use_dfl_pwq; 4027 } 4028 4029 /* create a new pwq */ 4030 pwq = alloc_unbound_pwq(wq, target_attrs); 4031 if (!pwq) { 4032 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4033 wq->name); 4034 goto use_dfl_pwq; 4035 } 4036 4037 /* Install the new pwq. */ 4038 mutex_lock(&wq->mutex); 4039 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4040 goto out_unlock; 4041 4042 use_dfl_pwq: 4043 mutex_lock(&wq->mutex); 4044 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4045 get_pwq(wq->dfl_pwq); 4046 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4047 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4048 out_unlock: 4049 mutex_unlock(&wq->mutex); 4050 put_pwq_unlocked(old_pwq); 4051 } 4052 4053 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4054 { 4055 bool highpri = wq->flags & WQ_HIGHPRI; 4056 int cpu, ret; 4057 4058 if (!(wq->flags & WQ_UNBOUND)) { 4059 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4060 if (!wq->cpu_pwqs) 4061 return -ENOMEM; 4062 4063 for_each_possible_cpu(cpu) { 4064 struct pool_workqueue *pwq = 4065 per_cpu_ptr(wq->cpu_pwqs, cpu); 4066 struct worker_pool *cpu_pools = 4067 per_cpu(cpu_worker_pools, cpu); 4068 4069 init_pwq(pwq, wq, &cpu_pools[highpri]); 4070 4071 mutex_lock(&wq->mutex); 4072 link_pwq(pwq); 4073 mutex_unlock(&wq->mutex); 4074 } 4075 return 0; 4076 } else if (wq->flags & __WQ_ORDERED) { 4077 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4078 /* there should only be single pwq for ordering guarantee */ 4079 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4080 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4081 "ordering guarantee broken for workqueue %s\n", wq->name); 4082 return ret; 4083 } else { 4084 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4085 } 4086 } 4087 4088 static int wq_clamp_max_active(int max_active, unsigned int flags, 4089 const char *name) 4090 { 4091 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4092 4093 if (max_active < 1 || max_active > lim) 4094 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4095 max_active, name, 1, lim); 4096 4097 return clamp_val(max_active, 1, lim); 4098 } 4099 4100 /* 4101 * Workqueues which may be used during memory reclaim should have a rescuer 4102 * to guarantee forward progress. 4103 */ 4104 static int init_rescuer(struct workqueue_struct *wq) 4105 { 4106 struct worker *rescuer; 4107 int ret; 4108 4109 if (!(wq->flags & WQ_MEM_RECLAIM)) 4110 return 0; 4111 4112 rescuer = alloc_worker(NUMA_NO_NODE); 4113 if (!rescuer) 4114 return -ENOMEM; 4115 4116 rescuer->rescue_wq = wq; 4117 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4118 ret = PTR_ERR_OR_ZERO(rescuer->task); 4119 if (ret) { 4120 kfree(rescuer); 4121 return ret; 4122 } 4123 4124 wq->rescuer = rescuer; 4125 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4126 wake_up_process(rescuer->task); 4127 4128 return 0; 4129 } 4130 4131 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 4132 unsigned int flags, 4133 int max_active, 4134 struct lock_class_key *key, 4135 const char *lock_name, ...) 4136 { 4137 size_t tbl_size = 0; 4138 va_list args; 4139 struct workqueue_struct *wq; 4140 struct pool_workqueue *pwq; 4141 4142 /* 4143 * Unbound && max_active == 1 used to imply ordered, which is no 4144 * longer the case on NUMA machines due to per-node pools. While 4145 * alloc_ordered_workqueue() is the right way to create an ordered 4146 * workqueue, keep the previous behavior to avoid subtle breakages 4147 * on NUMA. 4148 */ 4149 if ((flags & WQ_UNBOUND) && max_active == 1) 4150 flags |= __WQ_ORDERED; 4151 4152 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4153 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4154 flags |= WQ_UNBOUND; 4155 4156 /* allocate wq and format name */ 4157 if (flags & WQ_UNBOUND) 4158 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4159 4160 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4161 if (!wq) 4162 return NULL; 4163 4164 if (flags & WQ_UNBOUND) { 4165 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4166 if (!wq->unbound_attrs) 4167 goto err_free_wq; 4168 } 4169 4170 va_start(args, lock_name); 4171 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4172 va_end(args); 4173 4174 max_active = max_active ?: WQ_DFL_ACTIVE; 4175 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4176 4177 /* init wq */ 4178 wq->flags = flags; 4179 wq->saved_max_active = max_active; 4180 mutex_init(&wq->mutex); 4181 atomic_set(&wq->nr_pwqs_to_flush, 0); 4182 INIT_LIST_HEAD(&wq->pwqs); 4183 INIT_LIST_HEAD(&wq->flusher_queue); 4184 INIT_LIST_HEAD(&wq->flusher_overflow); 4185 INIT_LIST_HEAD(&wq->maydays); 4186 4187 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4188 INIT_LIST_HEAD(&wq->list); 4189 4190 if (alloc_and_link_pwqs(wq) < 0) 4191 goto err_free_wq; 4192 4193 if (wq_online && init_rescuer(wq) < 0) 4194 goto err_destroy; 4195 4196 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4197 goto err_destroy; 4198 4199 /* 4200 * wq_pool_mutex protects global freeze state and workqueues list. 4201 * Grab it, adjust max_active and add the new @wq to workqueues 4202 * list. 4203 */ 4204 mutex_lock(&wq_pool_mutex); 4205 4206 mutex_lock(&wq->mutex); 4207 for_each_pwq(pwq, wq) 4208 pwq_adjust_max_active(pwq); 4209 mutex_unlock(&wq->mutex); 4210 4211 list_add_tail_rcu(&wq->list, &workqueues); 4212 4213 mutex_unlock(&wq_pool_mutex); 4214 4215 return wq; 4216 4217 err_free_wq: 4218 free_workqueue_attrs(wq->unbound_attrs); 4219 kfree(wq); 4220 return NULL; 4221 err_destroy: 4222 destroy_workqueue(wq); 4223 return NULL; 4224 } 4225 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4226 4227 /** 4228 * destroy_workqueue - safely terminate a workqueue 4229 * @wq: target workqueue 4230 * 4231 * Safely destroy a workqueue. All work currently pending will be done first. 4232 */ 4233 void destroy_workqueue(struct workqueue_struct *wq) 4234 { 4235 struct pool_workqueue *pwq; 4236 int node; 4237 4238 /* drain it before proceeding with destruction */ 4239 drain_workqueue(wq); 4240 4241 /* sanity checks */ 4242 mutex_lock(&wq->mutex); 4243 for_each_pwq(pwq, wq) { 4244 int i; 4245 4246 for (i = 0; i < WORK_NR_COLORS; i++) { 4247 if (WARN_ON(pwq->nr_in_flight[i])) { 4248 mutex_unlock(&wq->mutex); 4249 show_workqueue_state(); 4250 return; 4251 } 4252 } 4253 4254 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4255 WARN_ON(pwq->nr_active) || 4256 WARN_ON(!list_empty(&pwq->delayed_works))) { 4257 mutex_unlock(&wq->mutex); 4258 show_workqueue_state(); 4259 return; 4260 } 4261 } 4262 mutex_unlock(&wq->mutex); 4263 4264 /* 4265 * wq list is used to freeze wq, remove from list after 4266 * flushing is complete in case freeze races us. 4267 */ 4268 mutex_lock(&wq_pool_mutex); 4269 list_del_rcu(&wq->list); 4270 mutex_unlock(&wq_pool_mutex); 4271 4272 workqueue_sysfs_unregister(wq); 4273 4274 if (wq->rescuer) 4275 kthread_stop(wq->rescuer->task); 4276 4277 if (!(wq->flags & WQ_UNBOUND)) { 4278 /* 4279 * The base ref is never dropped on per-cpu pwqs. Directly 4280 * schedule RCU free. 4281 */ 4282 call_rcu(&wq->rcu, rcu_free_wq); 4283 } else { 4284 /* 4285 * We're the sole accessor of @wq at this point. Directly 4286 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4287 * @wq will be freed when the last pwq is released. 4288 */ 4289 for_each_node(node) { 4290 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4291 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4292 put_pwq_unlocked(pwq); 4293 } 4294 4295 /* 4296 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4297 * put. Don't access it afterwards. 4298 */ 4299 pwq = wq->dfl_pwq; 4300 wq->dfl_pwq = NULL; 4301 put_pwq_unlocked(pwq); 4302 } 4303 } 4304 EXPORT_SYMBOL_GPL(destroy_workqueue); 4305 4306 /** 4307 * workqueue_set_max_active - adjust max_active of a workqueue 4308 * @wq: target workqueue 4309 * @max_active: new max_active value. 4310 * 4311 * Set max_active of @wq to @max_active. 4312 * 4313 * CONTEXT: 4314 * Don't call from IRQ context. 4315 */ 4316 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4317 { 4318 struct pool_workqueue *pwq; 4319 4320 /* disallow meddling with max_active for ordered workqueues */ 4321 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4322 return; 4323 4324 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4325 4326 mutex_lock(&wq->mutex); 4327 4328 wq->flags &= ~__WQ_ORDERED; 4329 wq->saved_max_active = max_active; 4330 4331 for_each_pwq(pwq, wq) 4332 pwq_adjust_max_active(pwq); 4333 4334 mutex_unlock(&wq->mutex); 4335 } 4336 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4337 4338 /** 4339 * current_work - retrieve %current task's work struct 4340 * 4341 * Determine if %current task is a workqueue worker and what it's working on. 4342 * Useful to find out the context that the %current task is running in. 4343 * 4344 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4345 */ 4346 struct work_struct *current_work(void) 4347 { 4348 struct worker *worker = current_wq_worker(); 4349 4350 return worker ? worker->current_work : NULL; 4351 } 4352 EXPORT_SYMBOL(current_work); 4353 4354 /** 4355 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4356 * 4357 * Determine whether %current is a workqueue rescuer. Can be used from 4358 * work functions to determine whether it's being run off the rescuer task. 4359 * 4360 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4361 */ 4362 bool current_is_workqueue_rescuer(void) 4363 { 4364 struct worker *worker = current_wq_worker(); 4365 4366 return worker && worker->rescue_wq; 4367 } 4368 4369 /** 4370 * workqueue_congested - test whether a workqueue is congested 4371 * @cpu: CPU in question 4372 * @wq: target workqueue 4373 * 4374 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4375 * no synchronization around this function and the test result is 4376 * unreliable and only useful as advisory hints or for debugging. 4377 * 4378 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4379 * Note that both per-cpu and unbound workqueues may be associated with 4380 * multiple pool_workqueues which have separate congested states. A 4381 * workqueue being congested on one CPU doesn't mean the workqueue is also 4382 * contested on other CPUs / NUMA nodes. 4383 * 4384 * Return: 4385 * %true if congested, %false otherwise. 4386 */ 4387 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4388 { 4389 struct pool_workqueue *pwq; 4390 bool ret; 4391 4392 rcu_read_lock_sched(); 4393 4394 if (cpu == WORK_CPU_UNBOUND) 4395 cpu = smp_processor_id(); 4396 4397 if (!(wq->flags & WQ_UNBOUND)) 4398 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4399 else 4400 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4401 4402 ret = !list_empty(&pwq->delayed_works); 4403 rcu_read_unlock_sched(); 4404 4405 return ret; 4406 } 4407 EXPORT_SYMBOL_GPL(workqueue_congested); 4408 4409 /** 4410 * work_busy - test whether a work is currently pending or running 4411 * @work: the work to be tested 4412 * 4413 * Test whether @work is currently pending or running. There is no 4414 * synchronization around this function and the test result is 4415 * unreliable and only useful as advisory hints or for debugging. 4416 * 4417 * Return: 4418 * OR'd bitmask of WORK_BUSY_* bits. 4419 */ 4420 unsigned int work_busy(struct work_struct *work) 4421 { 4422 struct worker_pool *pool; 4423 unsigned long flags; 4424 unsigned int ret = 0; 4425 4426 if (work_pending(work)) 4427 ret |= WORK_BUSY_PENDING; 4428 4429 local_irq_save(flags); 4430 pool = get_work_pool(work); 4431 if (pool) { 4432 spin_lock(&pool->lock); 4433 if (find_worker_executing_work(pool, work)) 4434 ret |= WORK_BUSY_RUNNING; 4435 spin_unlock(&pool->lock); 4436 } 4437 local_irq_restore(flags); 4438 4439 return ret; 4440 } 4441 EXPORT_SYMBOL_GPL(work_busy); 4442 4443 /** 4444 * set_worker_desc - set description for the current work item 4445 * @fmt: printf-style format string 4446 * @...: arguments for the format string 4447 * 4448 * This function can be called by a running work function to describe what 4449 * the work item is about. If the worker task gets dumped, this 4450 * information will be printed out together to help debugging. The 4451 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4452 */ 4453 void set_worker_desc(const char *fmt, ...) 4454 { 4455 struct worker *worker = current_wq_worker(); 4456 va_list args; 4457 4458 if (worker) { 4459 va_start(args, fmt); 4460 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4461 va_end(args); 4462 } 4463 } 4464 EXPORT_SYMBOL_GPL(set_worker_desc); 4465 4466 /** 4467 * print_worker_info - print out worker information and description 4468 * @log_lvl: the log level to use when printing 4469 * @task: target task 4470 * 4471 * If @task is a worker and currently executing a work item, print out the 4472 * name of the workqueue being serviced and worker description set with 4473 * set_worker_desc() by the currently executing work item. 4474 * 4475 * This function can be safely called on any task as long as the 4476 * task_struct itself is accessible. While safe, this function isn't 4477 * synchronized and may print out mixups or garbages of limited length. 4478 */ 4479 void print_worker_info(const char *log_lvl, struct task_struct *task) 4480 { 4481 work_func_t *fn = NULL; 4482 char name[WQ_NAME_LEN] = { }; 4483 char desc[WORKER_DESC_LEN] = { }; 4484 struct pool_workqueue *pwq = NULL; 4485 struct workqueue_struct *wq = NULL; 4486 struct worker *worker; 4487 4488 if (!(task->flags & PF_WQ_WORKER)) 4489 return; 4490 4491 /* 4492 * This function is called without any synchronization and @task 4493 * could be in any state. Be careful with dereferences. 4494 */ 4495 worker = kthread_probe_data(task); 4496 4497 /* 4498 * Carefully copy the associated workqueue's workfn, name and desc. 4499 * Keep the original last '\0' in case the original is garbage. 4500 */ 4501 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4502 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4503 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4504 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4505 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4506 4507 if (fn || name[0] || desc[0]) { 4508 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4509 if (strcmp(name, desc)) 4510 pr_cont(" (%s)", desc); 4511 pr_cont("\n"); 4512 } 4513 } 4514 4515 static void pr_cont_pool_info(struct worker_pool *pool) 4516 { 4517 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4518 if (pool->node != NUMA_NO_NODE) 4519 pr_cont(" node=%d", pool->node); 4520 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4521 } 4522 4523 static void pr_cont_work(bool comma, struct work_struct *work) 4524 { 4525 if (work->func == wq_barrier_func) { 4526 struct wq_barrier *barr; 4527 4528 barr = container_of(work, struct wq_barrier, work); 4529 4530 pr_cont("%s BAR(%d)", comma ? "," : "", 4531 task_pid_nr(barr->task)); 4532 } else { 4533 pr_cont("%s %pf", comma ? "," : "", work->func); 4534 } 4535 } 4536 4537 static void show_pwq(struct pool_workqueue *pwq) 4538 { 4539 struct worker_pool *pool = pwq->pool; 4540 struct work_struct *work; 4541 struct worker *worker; 4542 bool has_in_flight = false, has_pending = false; 4543 int bkt; 4544 4545 pr_info(" pwq %d:", pool->id); 4546 pr_cont_pool_info(pool); 4547 4548 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4549 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4550 4551 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4552 if (worker->current_pwq == pwq) { 4553 has_in_flight = true; 4554 break; 4555 } 4556 } 4557 if (has_in_flight) { 4558 bool comma = false; 4559 4560 pr_info(" in-flight:"); 4561 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4562 if (worker->current_pwq != pwq) 4563 continue; 4564 4565 pr_cont("%s %d%s:%pf", comma ? "," : "", 4566 task_pid_nr(worker->task), 4567 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4568 worker->current_func); 4569 list_for_each_entry(work, &worker->scheduled, entry) 4570 pr_cont_work(false, work); 4571 comma = true; 4572 } 4573 pr_cont("\n"); 4574 } 4575 4576 list_for_each_entry(work, &pool->worklist, entry) { 4577 if (get_work_pwq(work) == pwq) { 4578 has_pending = true; 4579 break; 4580 } 4581 } 4582 if (has_pending) { 4583 bool comma = false; 4584 4585 pr_info(" pending:"); 4586 list_for_each_entry(work, &pool->worklist, entry) { 4587 if (get_work_pwq(work) != pwq) 4588 continue; 4589 4590 pr_cont_work(comma, work); 4591 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4592 } 4593 pr_cont("\n"); 4594 } 4595 4596 if (!list_empty(&pwq->delayed_works)) { 4597 bool comma = false; 4598 4599 pr_info(" delayed:"); 4600 list_for_each_entry(work, &pwq->delayed_works, entry) { 4601 pr_cont_work(comma, work); 4602 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4603 } 4604 pr_cont("\n"); 4605 } 4606 } 4607 4608 /** 4609 * show_workqueue_state - dump workqueue state 4610 * 4611 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4612 * all busy workqueues and pools. 4613 */ 4614 void show_workqueue_state(void) 4615 { 4616 struct workqueue_struct *wq; 4617 struct worker_pool *pool; 4618 unsigned long flags; 4619 int pi; 4620 4621 rcu_read_lock_sched(); 4622 4623 pr_info("Showing busy workqueues and worker pools:\n"); 4624 4625 list_for_each_entry_rcu(wq, &workqueues, list) { 4626 struct pool_workqueue *pwq; 4627 bool idle = true; 4628 4629 for_each_pwq(pwq, wq) { 4630 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4631 idle = false; 4632 break; 4633 } 4634 } 4635 if (idle) 4636 continue; 4637 4638 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4639 4640 for_each_pwq(pwq, wq) { 4641 spin_lock_irqsave(&pwq->pool->lock, flags); 4642 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4643 show_pwq(pwq); 4644 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4645 /* 4646 * We could be printing a lot from atomic context, e.g. 4647 * sysrq-t -> show_workqueue_state(). Avoid triggering 4648 * hard lockup. 4649 */ 4650 touch_nmi_watchdog(); 4651 } 4652 } 4653 4654 for_each_pool(pool, pi) { 4655 struct worker *worker; 4656 bool first = true; 4657 4658 spin_lock_irqsave(&pool->lock, flags); 4659 if (pool->nr_workers == pool->nr_idle) 4660 goto next_pool; 4661 4662 pr_info("pool %d:", pool->id); 4663 pr_cont_pool_info(pool); 4664 pr_cont(" hung=%us workers=%d", 4665 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4666 pool->nr_workers); 4667 if (pool->manager) 4668 pr_cont(" manager: %d", 4669 task_pid_nr(pool->manager->task)); 4670 list_for_each_entry(worker, &pool->idle_list, entry) { 4671 pr_cont(" %s%d", first ? "idle: " : "", 4672 task_pid_nr(worker->task)); 4673 first = false; 4674 } 4675 pr_cont("\n"); 4676 next_pool: 4677 spin_unlock_irqrestore(&pool->lock, flags); 4678 /* 4679 * We could be printing a lot from atomic context, e.g. 4680 * sysrq-t -> show_workqueue_state(). Avoid triggering 4681 * hard lockup. 4682 */ 4683 touch_nmi_watchdog(); 4684 } 4685 4686 rcu_read_unlock_sched(); 4687 } 4688 4689 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4690 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4691 { 4692 int off; 4693 4694 /* always show the actual comm */ 4695 off = strscpy(buf, task->comm, size); 4696 if (off < 0) 4697 return; 4698 4699 /* stabilize PF_WQ_WORKER and worker pool association */ 4700 mutex_lock(&wq_pool_attach_mutex); 4701 4702 if (task->flags & PF_WQ_WORKER) { 4703 struct worker *worker = kthread_data(task); 4704 struct worker_pool *pool = worker->pool; 4705 4706 if (pool) { 4707 spin_lock_irq(&pool->lock); 4708 /* 4709 * ->desc tracks information (wq name or 4710 * set_worker_desc()) for the latest execution. If 4711 * current, prepend '+', otherwise '-'. 4712 */ 4713 if (worker->desc[0] != '\0') { 4714 if (worker->current_work) 4715 scnprintf(buf + off, size - off, "+%s", 4716 worker->desc); 4717 else 4718 scnprintf(buf + off, size - off, "-%s", 4719 worker->desc); 4720 } 4721 spin_unlock_irq(&pool->lock); 4722 } 4723 } 4724 4725 mutex_unlock(&wq_pool_attach_mutex); 4726 } 4727 4728 #ifdef CONFIG_SMP 4729 4730 /* 4731 * CPU hotplug. 4732 * 4733 * There are two challenges in supporting CPU hotplug. Firstly, there 4734 * are a lot of assumptions on strong associations among work, pwq and 4735 * pool which make migrating pending and scheduled works very 4736 * difficult to implement without impacting hot paths. Secondly, 4737 * worker pools serve mix of short, long and very long running works making 4738 * blocked draining impractical. 4739 * 4740 * This is solved by allowing the pools to be disassociated from the CPU 4741 * running as an unbound one and allowing it to be reattached later if the 4742 * cpu comes back online. 4743 */ 4744 4745 static void unbind_workers(int cpu) 4746 { 4747 struct worker_pool *pool; 4748 struct worker *worker; 4749 4750 for_each_cpu_worker_pool(pool, cpu) { 4751 mutex_lock(&wq_pool_attach_mutex); 4752 spin_lock_irq(&pool->lock); 4753 4754 /* 4755 * We've blocked all attach/detach operations. Make all workers 4756 * unbound and set DISASSOCIATED. Before this, all workers 4757 * except for the ones which are still executing works from 4758 * before the last CPU down must be on the cpu. After 4759 * this, they may become diasporas. 4760 */ 4761 for_each_pool_worker(worker, pool) 4762 worker->flags |= WORKER_UNBOUND; 4763 4764 pool->flags |= POOL_DISASSOCIATED; 4765 4766 spin_unlock_irq(&pool->lock); 4767 mutex_unlock(&wq_pool_attach_mutex); 4768 4769 /* 4770 * Call schedule() so that we cross rq->lock and thus can 4771 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4772 * This is necessary as scheduler callbacks may be invoked 4773 * from other cpus. 4774 */ 4775 schedule(); 4776 4777 /* 4778 * Sched callbacks are disabled now. Zap nr_running. 4779 * After this, nr_running stays zero and need_more_worker() 4780 * and keep_working() are always true as long as the 4781 * worklist is not empty. This pool now behaves as an 4782 * unbound (in terms of concurrency management) pool which 4783 * are served by workers tied to the pool. 4784 */ 4785 atomic_set(&pool->nr_running, 0); 4786 4787 /* 4788 * With concurrency management just turned off, a busy 4789 * worker blocking could lead to lengthy stalls. Kick off 4790 * unbound chain execution of currently pending work items. 4791 */ 4792 spin_lock_irq(&pool->lock); 4793 wake_up_worker(pool); 4794 spin_unlock_irq(&pool->lock); 4795 } 4796 } 4797 4798 /** 4799 * rebind_workers - rebind all workers of a pool to the associated CPU 4800 * @pool: pool of interest 4801 * 4802 * @pool->cpu is coming online. Rebind all workers to the CPU. 4803 */ 4804 static void rebind_workers(struct worker_pool *pool) 4805 { 4806 struct worker *worker; 4807 4808 lockdep_assert_held(&wq_pool_attach_mutex); 4809 4810 /* 4811 * Restore CPU affinity of all workers. As all idle workers should 4812 * be on the run-queue of the associated CPU before any local 4813 * wake-ups for concurrency management happen, restore CPU affinity 4814 * of all workers first and then clear UNBOUND. As we're called 4815 * from CPU_ONLINE, the following shouldn't fail. 4816 */ 4817 for_each_pool_worker(worker, pool) 4818 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4819 pool->attrs->cpumask) < 0); 4820 4821 spin_lock_irq(&pool->lock); 4822 4823 pool->flags &= ~POOL_DISASSOCIATED; 4824 4825 for_each_pool_worker(worker, pool) { 4826 unsigned int worker_flags = worker->flags; 4827 4828 /* 4829 * A bound idle worker should actually be on the runqueue 4830 * of the associated CPU for local wake-ups targeting it to 4831 * work. Kick all idle workers so that they migrate to the 4832 * associated CPU. Doing this in the same loop as 4833 * replacing UNBOUND with REBOUND is safe as no worker will 4834 * be bound before @pool->lock is released. 4835 */ 4836 if (worker_flags & WORKER_IDLE) 4837 wake_up_process(worker->task); 4838 4839 /* 4840 * We want to clear UNBOUND but can't directly call 4841 * worker_clr_flags() or adjust nr_running. Atomically 4842 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4843 * @worker will clear REBOUND using worker_clr_flags() when 4844 * it initiates the next execution cycle thus restoring 4845 * concurrency management. Note that when or whether 4846 * @worker clears REBOUND doesn't affect correctness. 4847 * 4848 * WRITE_ONCE() is necessary because @worker->flags may be 4849 * tested without holding any lock in 4850 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4851 * fail incorrectly leading to premature concurrency 4852 * management operations. 4853 */ 4854 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4855 worker_flags |= WORKER_REBOUND; 4856 worker_flags &= ~WORKER_UNBOUND; 4857 WRITE_ONCE(worker->flags, worker_flags); 4858 } 4859 4860 spin_unlock_irq(&pool->lock); 4861 } 4862 4863 /** 4864 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4865 * @pool: unbound pool of interest 4866 * @cpu: the CPU which is coming up 4867 * 4868 * An unbound pool may end up with a cpumask which doesn't have any online 4869 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4870 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4871 * online CPU before, cpus_allowed of all its workers should be restored. 4872 */ 4873 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4874 { 4875 static cpumask_t cpumask; 4876 struct worker *worker; 4877 4878 lockdep_assert_held(&wq_pool_attach_mutex); 4879 4880 /* is @cpu allowed for @pool? */ 4881 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4882 return; 4883 4884 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4885 4886 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4887 for_each_pool_worker(worker, pool) 4888 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 4889 } 4890 4891 int workqueue_prepare_cpu(unsigned int cpu) 4892 { 4893 struct worker_pool *pool; 4894 4895 for_each_cpu_worker_pool(pool, cpu) { 4896 if (pool->nr_workers) 4897 continue; 4898 if (!create_worker(pool)) 4899 return -ENOMEM; 4900 } 4901 return 0; 4902 } 4903 4904 int workqueue_online_cpu(unsigned int cpu) 4905 { 4906 struct worker_pool *pool; 4907 struct workqueue_struct *wq; 4908 int pi; 4909 4910 mutex_lock(&wq_pool_mutex); 4911 4912 for_each_pool(pool, pi) { 4913 mutex_lock(&wq_pool_attach_mutex); 4914 4915 if (pool->cpu == cpu) 4916 rebind_workers(pool); 4917 else if (pool->cpu < 0) 4918 restore_unbound_workers_cpumask(pool, cpu); 4919 4920 mutex_unlock(&wq_pool_attach_mutex); 4921 } 4922 4923 /* update NUMA affinity of unbound workqueues */ 4924 list_for_each_entry(wq, &workqueues, list) 4925 wq_update_unbound_numa(wq, cpu, true); 4926 4927 mutex_unlock(&wq_pool_mutex); 4928 return 0; 4929 } 4930 4931 int workqueue_offline_cpu(unsigned int cpu) 4932 { 4933 struct workqueue_struct *wq; 4934 4935 /* unbinding per-cpu workers should happen on the local CPU */ 4936 if (WARN_ON(cpu != smp_processor_id())) 4937 return -1; 4938 4939 unbind_workers(cpu); 4940 4941 /* update NUMA affinity of unbound workqueues */ 4942 mutex_lock(&wq_pool_mutex); 4943 list_for_each_entry(wq, &workqueues, list) 4944 wq_update_unbound_numa(wq, cpu, false); 4945 mutex_unlock(&wq_pool_mutex); 4946 4947 return 0; 4948 } 4949 4950 struct work_for_cpu { 4951 struct work_struct work; 4952 long (*fn)(void *); 4953 void *arg; 4954 long ret; 4955 }; 4956 4957 static void work_for_cpu_fn(struct work_struct *work) 4958 { 4959 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4960 4961 wfc->ret = wfc->fn(wfc->arg); 4962 } 4963 4964 /** 4965 * work_on_cpu - run a function in thread context on a particular cpu 4966 * @cpu: the cpu to run on 4967 * @fn: the function to run 4968 * @arg: the function arg 4969 * 4970 * It is up to the caller to ensure that the cpu doesn't go offline. 4971 * The caller must not hold any locks which would prevent @fn from completing. 4972 * 4973 * Return: The value @fn returns. 4974 */ 4975 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4976 { 4977 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4978 4979 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4980 schedule_work_on(cpu, &wfc.work); 4981 flush_work(&wfc.work); 4982 destroy_work_on_stack(&wfc.work); 4983 return wfc.ret; 4984 } 4985 EXPORT_SYMBOL_GPL(work_on_cpu); 4986 4987 /** 4988 * work_on_cpu_safe - run a function in thread context on a particular cpu 4989 * @cpu: the cpu to run on 4990 * @fn: the function to run 4991 * @arg: the function argument 4992 * 4993 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 4994 * any locks which would prevent @fn from completing. 4995 * 4996 * Return: The value @fn returns. 4997 */ 4998 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 4999 { 5000 long ret = -ENODEV; 5001 5002 get_online_cpus(); 5003 if (cpu_online(cpu)) 5004 ret = work_on_cpu(cpu, fn, arg); 5005 put_online_cpus(); 5006 return ret; 5007 } 5008 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5009 #endif /* CONFIG_SMP */ 5010 5011 #ifdef CONFIG_FREEZER 5012 5013 /** 5014 * freeze_workqueues_begin - begin freezing workqueues 5015 * 5016 * Start freezing workqueues. After this function returns, all freezable 5017 * workqueues will queue new works to their delayed_works list instead of 5018 * pool->worklist. 5019 * 5020 * CONTEXT: 5021 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5022 */ 5023 void freeze_workqueues_begin(void) 5024 { 5025 struct workqueue_struct *wq; 5026 struct pool_workqueue *pwq; 5027 5028 mutex_lock(&wq_pool_mutex); 5029 5030 WARN_ON_ONCE(workqueue_freezing); 5031 workqueue_freezing = true; 5032 5033 list_for_each_entry(wq, &workqueues, list) { 5034 mutex_lock(&wq->mutex); 5035 for_each_pwq(pwq, wq) 5036 pwq_adjust_max_active(pwq); 5037 mutex_unlock(&wq->mutex); 5038 } 5039 5040 mutex_unlock(&wq_pool_mutex); 5041 } 5042 5043 /** 5044 * freeze_workqueues_busy - are freezable workqueues still busy? 5045 * 5046 * Check whether freezing is complete. This function must be called 5047 * between freeze_workqueues_begin() and thaw_workqueues(). 5048 * 5049 * CONTEXT: 5050 * Grabs and releases wq_pool_mutex. 5051 * 5052 * Return: 5053 * %true if some freezable workqueues are still busy. %false if freezing 5054 * is complete. 5055 */ 5056 bool freeze_workqueues_busy(void) 5057 { 5058 bool busy = false; 5059 struct workqueue_struct *wq; 5060 struct pool_workqueue *pwq; 5061 5062 mutex_lock(&wq_pool_mutex); 5063 5064 WARN_ON_ONCE(!workqueue_freezing); 5065 5066 list_for_each_entry(wq, &workqueues, list) { 5067 if (!(wq->flags & WQ_FREEZABLE)) 5068 continue; 5069 /* 5070 * nr_active is monotonically decreasing. It's safe 5071 * to peek without lock. 5072 */ 5073 rcu_read_lock_sched(); 5074 for_each_pwq(pwq, wq) { 5075 WARN_ON_ONCE(pwq->nr_active < 0); 5076 if (pwq->nr_active) { 5077 busy = true; 5078 rcu_read_unlock_sched(); 5079 goto out_unlock; 5080 } 5081 } 5082 rcu_read_unlock_sched(); 5083 } 5084 out_unlock: 5085 mutex_unlock(&wq_pool_mutex); 5086 return busy; 5087 } 5088 5089 /** 5090 * thaw_workqueues - thaw workqueues 5091 * 5092 * Thaw workqueues. Normal queueing is restored and all collected 5093 * frozen works are transferred to their respective pool worklists. 5094 * 5095 * CONTEXT: 5096 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5097 */ 5098 void thaw_workqueues(void) 5099 { 5100 struct workqueue_struct *wq; 5101 struct pool_workqueue *pwq; 5102 5103 mutex_lock(&wq_pool_mutex); 5104 5105 if (!workqueue_freezing) 5106 goto out_unlock; 5107 5108 workqueue_freezing = false; 5109 5110 /* restore max_active and repopulate worklist */ 5111 list_for_each_entry(wq, &workqueues, list) { 5112 mutex_lock(&wq->mutex); 5113 for_each_pwq(pwq, wq) 5114 pwq_adjust_max_active(pwq); 5115 mutex_unlock(&wq->mutex); 5116 } 5117 5118 out_unlock: 5119 mutex_unlock(&wq_pool_mutex); 5120 } 5121 #endif /* CONFIG_FREEZER */ 5122 5123 static int workqueue_apply_unbound_cpumask(void) 5124 { 5125 LIST_HEAD(ctxs); 5126 int ret = 0; 5127 struct workqueue_struct *wq; 5128 struct apply_wqattrs_ctx *ctx, *n; 5129 5130 lockdep_assert_held(&wq_pool_mutex); 5131 5132 list_for_each_entry(wq, &workqueues, list) { 5133 if (!(wq->flags & WQ_UNBOUND)) 5134 continue; 5135 /* creating multiple pwqs breaks ordering guarantee */ 5136 if (wq->flags & __WQ_ORDERED) 5137 continue; 5138 5139 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5140 if (!ctx) { 5141 ret = -ENOMEM; 5142 break; 5143 } 5144 5145 list_add_tail(&ctx->list, &ctxs); 5146 } 5147 5148 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5149 if (!ret) 5150 apply_wqattrs_commit(ctx); 5151 apply_wqattrs_cleanup(ctx); 5152 } 5153 5154 return ret; 5155 } 5156 5157 /** 5158 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5159 * @cpumask: the cpumask to set 5160 * 5161 * The low-level workqueues cpumask is a global cpumask that limits 5162 * the affinity of all unbound workqueues. This function check the @cpumask 5163 * and apply it to all unbound workqueues and updates all pwqs of them. 5164 * 5165 * Retun: 0 - Success 5166 * -EINVAL - Invalid @cpumask 5167 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5168 */ 5169 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5170 { 5171 int ret = -EINVAL; 5172 cpumask_var_t saved_cpumask; 5173 5174 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5175 return -ENOMEM; 5176 5177 /* 5178 * Not excluding isolated cpus on purpose. 5179 * If the user wishes to include them, we allow that. 5180 */ 5181 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5182 if (!cpumask_empty(cpumask)) { 5183 apply_wqattrs_lock(); 5184 5185 /* save the old wq_unbound_cpumask. */ 5186 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5187 5188 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5189 cpumask_copy(wq_unbound_cpumask, cpumask); 5190 ret = workqueue_apply_unbound_cpumask(); 5191 5192 /* restore the wq_unbound_cpumask when failed. */ 5193 if (ret < 0) 5194 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5195 5196 apply_wqattrs_unlock(); 5197 } 5198 5199 free_cpumask_var(saved_cpumask); 5200 return ret; 5201 } 5202 5203 #ifdef CONFIG_SYSFS 5204 /* 5205 * Workqueues with WQ_SYSFS flag set is visible to userland via 5206 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5207 * following attributes. 5208 * 5209 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5210 * max_active RW int : maximum number of in-flight work items 5211 * 5212 * Unbound workqueues have the following extra attributes. 5213 * 5214 * pool_ids RO int : the associated pool IDs for each node 5215 * nice RW int : nice value of the workers 5216 * cpumask RW mask : bitmask of allowed CPUs for the workers 5217 * numa RW bool : whether enable NUMA affinity 5218 */ 5219 struct wq_device { 5220 struct workqueue_struct *wq; 5221 struct device dev; 5222 }; 5223 5224 static struct workqueue_struct *dev_to_wq(struct device *dev) 5225 { 5226 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5227 5228 return wq_dev->wq; 5229 } 5230 5231 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5232 char *buf) 5233 { 5234 struct workqueue_struct *wq = dev_to_wq(dev); 5235 5236 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5237 } 5238 static DEVICE_ATTR_RO(per_cpu); 5239 5240 static ssize_t max_active_show(struct device *dev, 5241 struct device_attribute *attr, char *buf) 5242 { 5243 struct workqueue_struct *wq = dev_to_wq(dev); 5244 5245 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5246 } 5247 5248 static ssize_t max_active_store(struct device *dev, 5249 struct device_attribute *attr, const char *buf, 5250 size_t count) 5251 { 5252 struct workqueue_struct *wq = dev_to_wq(dev); 5253 int val; 5254 5255 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5256 return -EINVAL; 5257 5258 workqueue_set_max_active(wq, val); 5259 return count; 5260 } 5261 static DEVICE_ATTR_RW(max_active); 5262 5263 static struct attribute *wq_sysfs_attrs[] = { 5264 &dev_attr_per_cpu.attr, 5265 &dev_attr_max_active.attr, 5266 NULL, 5267 }; 5268 ATTRIBUTE_GROUPS(wq_sysfs); 5269 5270 static ssize_t wq_pool_ids_show(struct device *dev, 5271 struct device_attribute *attr, char *buf) 5272 { 5273 struct workqueue_struct *wq = dev_to_wq(dev); 5274 const char *delim = ""; 5275 int node, written = 0; 5276 5277 rcu_read_lock_sched(); 5278 for_each_node(node) { 5279 written += scnprintf(buf + written, PAGE_SIZE - written, 5280 "%s%d:%d", delim, node, 5281 unbound_pwq_by_node(wq, node)->pool->id); 5282 delim = " "; 5283 } 5284 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5285 rcu_read_unlock_sched(); 5286 5287 return written; 5288 } 5289 5290 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5291 char *buf) 5292 { 5293 struct workqueue_struct *wq = dev_to_wq(dev); 5294 int written; 5295 5296 mutex_lock(&wq->mutex); 5297 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5298 mutex_unlock(&wq->mutex); 5299 5300 return written; 5301 } 5302 5303 /* prepare workqueue_attrs for sysfs store operations */ 5304 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5305 { 5306 struct workqueue_attrs *attrs; 5307 5308 lockdep_assert_held(&wq_pool_mutex); 5309 5310 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5311 if (!attrs) 5312 return NULL; 5313 5314 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5315 return attrs; 5316 } 5317 5318 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5319 const char *buf, size_t count) 5320 { 5321 struct workqueue_struct *wq = dev_to_wq(dev); 5322 struct workqueue_attrs *attrs; 5323 int ret = -ENOMEM; 5324 5325 apply_wqattrs_lock(); 5326 5327 attrs = wq_sysfs_prep_attrs(wq); 5328 if (!attrs) 5329 goto out_unlock; 5330 5331 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5332 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5333 ret = apply_workqueue_attrs_locked(wq, attrs); 5334 else 5335 ret = -EINVAL; 5336 5337 out_unlock: 5338 apply_wqattrs_unlock(); 5339 free_workqueue_attrs(attrs); 5340 return ret ?: count; 5341 } 5342 5343 static ssize_t wq_cpumask_show(struct device *dev, 5344 struct device_attribute *attr, char *buf) 5345 { 5346 struct workqueue_struct *wq = dev_to_wq(dev); 5347 int written; 5348 5349 mutex_lock(&wq->mutex); 5350 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5351 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5352 mutex_unlock(&wq->mutex); 5353 return written; 5354 } 5355 5356 static ssize_t wq_cpumask_store(struct device *dev, 5357 struct device_attribute *attr, 5358 const char *buf, size_t count) 5359 { 5360 struct workqueue_struct *wq = dev_to_wq(dev); 5361 struct workqueue_attrs *attrs; 5362 int ret = -ENOMEM; 5363 5364 apply_wqattrs_lock(); 5365 5366 attrs = wq_sysfs_prep_attrs(wq); 5367 if (!attrs) 5368 goto out_unlock; 5369 5370 ret = cpumask_parse(buf, attrs->cpumask); 5371 if (!ret) 5372 ret = apply_workqueue_attrs_locked(wq, attrs); 5373 5374 out_unlock: 5375 apply_wqattrs_unlock(); 5376 free_workqueue_attrs(attrs); 5377 return ret ?: count; 5378 } 5379 5380 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5381 char *buf) 5382 { 5383 struct workqueue_struct *wq = dev_to_wq(dev); 5384 int written; 5385 5386 mutex_lock(&wq->mutex); 5387 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5388 !wq->unbound_attrs->no_numa); 5389 mutex_unlock(&wq->mutex); 5390 5391 return written; 5392 } 5393 5394 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5395 const char *buf, size_t count) 5396 { 5397 struct workqueue_struct *wq = dev_to_wq(dev); 5398 struct workqueue_attrs *attrs; 5399 int v, ret = -ENOMEM; 5400 5401 apply_wqattrs_lock(); 5402 5403 attrs = wq_sysfs_prep_attrs(wq); 5404 if (!attrs) 5405 goto out_unlock; 5406 5407 ret = -EINVAL; 5408 if (sscanf(buf, "%d", &v) == 1) { 5409 attrs->no_numa = !v; 5410 ret = apply_workqueue_attrs_locked(wq, attrs); 5411 } 5412 5413 out_unlock: 5414 apply_wqattrs_unlock(); 5415 free_workqueue_attrs(attrs); 5416 return ret ?: count; 5417 } 5418 5419 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5420 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5421 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5422 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5423 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5424 __ATTR_NULL, 5425 }; 5426 5427 static struct bus_type wq_subsys = { 5428 .name = "workqueue", 5429 .dev_groups = wq_sysfs_groups, 5430 }; 5431 5432 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5433 struct device_attribute *attr, char *buf) 5434 { 5435 int written; 5436 5437 mutex_lock(&wq_pool_mutex); 5438 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5439 cpumask_pr_args(wq_unbound_cpumask)); 5440 mutex_unlock(&wq_pool_mutex); 5441 5442 return written; 5443 } 5444 5445 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5446 struct device_attribute *attr, const char *buf, size_t count) 5447 { 5448 cpumask_var_t cpumask; 5449 int ret; 5450 5451 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5452 return -ENOMEM; 5453 5454 ret = cpumask_parse(buf, cpumask); 5455 if (!ret) 5456 ret = workqueue_set_unbound_cpumask(cpumask); 5457 5458 free_cpumask_var(cpumask); 5459 return ret ? ret : count; 5460 } 5461 5462 static struct device_attribute wq_sysfs_cpumask_attr = 5463 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5464 wq_unbound_cpumask_store); 5465 5466 static int __init wq_sysfs_init(void) 5467 { 5468 int err; 5469 5470 err = subsys_virtual_register(&wq_subsys, NULL); 5471 if (err) 5472 return err; 5473 5474 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5475 } 5476 core_initcall(wq_sysfs_init); 5477 5478 static void wq_device_release(struct device *dev) 5479 { 5480 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5481 5482 kfree(wq_dev); 5483 } 5484 5485 /** 5486 * workqueue_sysfs_register - make a workqueue visible in sysfs 5487 * @wq: the workqueue to register 5488 * 5489 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5490 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5491 * which is the preferred method. 5492 * 5493 * Workqueue user should use this function directly iff it wants to apply 5494 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5495 * apply_workqueue_attrs() may race against userland updating the 5496 * attributes. 5497 * 5498 * Return: 0 on success, -errno on failure. 5499 */ 5500 int workqueue_sysfs_register(struct workqueue_struct *wq) 5501 { 5502 struct wq_device *wq_dev; 5503 int ret; 5504 5505 /* 5506 * Adjusting max_active or creating new pwqs by applying 5507 * attributes breaks ordering guarantee. Disallow exposing ordered 5508 * workqueues. 5509 */ 5510 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5511 return -EINVAL; 5512 5513 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5514 if (!wq_dev) 5515 return -ENOMEM; 5516 5517 wq_dev->wq = wq; 5518 wq_dev->dev.bus = &wq_subsys; 5519 wq_dev->dev.release = wq_device_release; 5520 dev_set_name(&wq_dev->dev, "%s", wq->name); 5521 5522 /* 5523 * unbound_attrs are created separately. Suppress uevent until 5524 * everything is ready. 5525 */ 5526 dev_set_uevent_suppress(&wq_dev->dev, true); 5527 5528 ret = device_register(&wq_dev->dev); 5529 if (ret) { 5530 put_device(&wq_dev->dev); 5531 wq->wq_dev = NULL; 5532 return ret; 5533 } 5534 5535 if (wq->flags & WQ_UNBOUND) { 5536 struct device_attribute *attr; 5537 5538 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5539 ret = device_create_file(&wq_dev->dev, attr); 5540 if (ret) { 5541 device_unregister(&wq_dev->dev); 5542 wq->wq_dev = NULL; 5543 return ret; 5544 } 5545 } 5546 } 5547 5548 dev_set_uevent_suppress(&wq_dev->dev, false); 5549 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5550 return 0; 5551 } 5552 5553 /** 5554 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5555 * @wq: the workqueue to unregister 5556 * 5557 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5558 */ 5559 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5560 { 5561 struct wq_device *wq_dev = wq->wq_dev; 5562 5563 if (!wq->wq_dev) 5564 return; 5565 5566 wq->wq_dev = NULL; 5567 device_unregister(&wq_dev->dev); 5568 } 5569 #else /* CONFIG_SYSFS */ 5570 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5571 #endif /* CONFIG_SYSFS */ 5572 5573 /* 5574 * Workqueue watchdog. 5575 * 5576 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5577 * flush dependency, a concurrency managed work item which stays RUNNING 5578 * indefinitely. Workqueue stalls can be very difficult to debug as the 5579 * usual warning mechanisms don't trigger and internal workqueue state is 5580 * largely opaque. 5581 * 5582 * Workqueue watchdog monitors all worker pools periodically and dumps 5583 * state if some pools failed to make forward progress for a while where 5584 * forward progress is defined as the first item on ->worklist changing. 5585 * 5586 * This mechanism is controlled through the kernel parameter 5587 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5588 * corresponding sysfs parameter file. 5589 */ 5590 #ifdef CONFIG_WQ_WATCHDOG 5591 5592 static unsigned long wq_watchdog_thresh = 30; 5593 static struct timer_list wq_watchdog_timer; 5594 5595 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5596 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5597 5598 static void wq_watchdog_reset_touched(void) 5599 { 5600 int cpu; 5601 5602 wq_watchdog_touched = jiffies; 5603 for_each_possible_cpu(cpu) 5604 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5605 } 5606 5607 static void wq_watchdog_timer_fn(struct timer_list *unused) 5608 { 5609 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5610 bool lockup_detected = false; 5611 struct worker_pool *pool; 5612 int pi; 5613 5614 if (!thresh) 5615 return; 5616 5617 rcu_read_lock(); 5618 5619 for_each_pool(pool, pi) { 5620 unsigned long pool_ts, touched, ts; 5621 5622 if (list_empty(&pool->worklist)) 5623 continue; 5624 5625 /* get the latest of pool and touched timestamps */ 5626 pool_ts = READ_ONCE(pool->watchdog_ts); 5627 touched = READ_ONCE(wq_watchdog_touched); 5628 5629 if (time_after(pool_ts, touched)) 5630 ts = pool_ts; 5631 else 5632 ts = touched; 5633 5634 if (pool->cpu >= 0) { 5635 unsigned long cpu_touched = 5636 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5637 pool->cpu)); 5638 if (time_after(cpu_touched, ts)) 5639 ts = cpu_touched; 5640 } 5641 5642 /* did we stall? */ 5643 if (time_after(jiffies, ts + thresh)) { 5644 lockup_detected = true; 5645 pr_emerg("BUG: workqueue lockup - pool"); 5646 pr_cont_pool_info(pool); 5647 pr_cont(" stuck for %us!\n", 5648 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5649 } 5650 } 5651 5652 rcu_read_unlock(); 5653 5654 if (lockup_detected) 5655 show_workqueue_state(); 5656 5657 wq_watchdog_reset_touched(); 5658 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5659 } 5660 5661 notrace void wq_watchdog_touch(int cpu) 5662 { 5663 if (cpu >= 0) 5664 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5665 else 5666 wq_watchdog_touched = jiffies; 5667 } 5668 5669 static void wq_watchdog_set_thresh(unsigned long thresh) 5670 { 5671 wq_watchdog_thresh = 0; 5672 del_timer_sync(&wq_watchdog_timer); 5673 5674 if (thresh) { 5675 wq_watchdog_thresh = thresh; 5676 wq_watchdog_reset_touched(); 5677 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5678 } 5679 } 5680 5681 static int wq_watchdog_param_set_thresh(const char *val, 5682 const struct kernel_param *kp) 5683 { 5684 unsigned long thresh; 5685 int ret; 5686 5687 ret = kstrtoul(val, 0, &thresh); 5688 if (ret) 5689 return ret; 5690 5691 if (system_wq) 5692 wq_watchdog_set_thresh(thresh); 5693 else 5694 wq_watchdog_thresh = thresh; 5695 5696 return 0; 5697 } 5698 5699 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5700 .set = wq_watchdog_param_set_thresh, 5701 .get = param_get_ulong, 5702 }; 5703 5704 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5705 0644); 5706 5707 static void wq_watchdog_init(void) 5708 { 5709 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5710 wq_watchdog_set_thresh(wq_watchdog_thresh); 5711 } 5712 5713 #else /* CONFIG_WQ_WATCHDOG */ 5714 5715 static inline void wq_watchdog_init(void) { } 5716 5717 #endif /* CONFIG_WQ_WATCHDOG */ 5718 5719 static void __init wq_numa_init(void) 5720 { 5721 cpumask_var_t *tbl; 5722 int node, cpu; 5723 5724 if (num_possible_nodes() <= 1) 5725 return; 5726 5727 if (wq_disable_numa) { 5728 pr_info("workqueue: NUMA affinity support disabled\n"); 5729 return; 5730 } 5731 5732 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5733 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5734 5735 /* 5736 * We want masks of possible CPUs of each node which isn't readily 5737 * available. Build one from cpu_to_node() which should have been 5738 * fully initialized by now. 5739 */ 5740 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5741 BUG_ON(!tbl); 5742 5743 for_each_node(node) 5744 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5745 node_online(node) ? node : NUMA_NO_NODE)); 5746 5747 for_each_possible_cpu(cpu) { 5748 node = cpu_to_node(cpu); 5749 if (WARN_ON(node == NUMA_NO_NODE)) { 5750 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5751 /* happens iff arch is bonkers, let's just proceed */ 5752 return; 5753 } 5754 cpumask_set_cpu(cpu, tbl[node]); 5755 } 5756 5757 wq_numa_possible_cpumask = tbl; 5758 wq_numa_enabled = true; 5759 } 5760 5761 /** 5762 * workqueue_init_early - early init for workqueue subsystem 5763 * 5764 * This is the first half of two-staged workqueue subsystem initialization 5765 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5766 * idr are up. It sets up all the data structures and system workqueues 5767 * and allows early boot code to create workqueues and queue/cancel work 5768 * items. Actual work item execution starts only after kthreads can be 5769 * created and scheduled right before early initcalls. 5770 */ 5771 int __init workqueue_init_early(void) 5772 { 5773 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5774 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5775 int i, cpu; 5776 5777 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5778 5779 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5780 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5781 5782 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5783 5784 /* initialize CPU pools */ 5785 for_each_possible_cpu(cpu) { 5786 struct worker_pool *pool; 5787 5788 i = 0; 5789 for_each_cpu_worker_pool(pool, cpu) { 5790 BUG_ON(init_worker_pool(pool)); 5791 pool->cpu = cpu; 5792 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5793 pool->attrs->nice = std_nice[i++]; 5794 pool->node = cpu_to_node(cpu); 5795 5796 /* alloc pool ID */ 5797 mutex_lock(&wq_pool_mutex); 5798 BUG_ON(worker_pool_assign_id(pool)); 5799 mutex_unlock(&wq_pool_mutex); 5800 } 5801 } 5802 5803 /* create default unbound and ordered wq attrs */ 5804 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5805 struct workqueue_attrs *attrs; 5806 5807 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5808 attrs->nice = std_nice[i]; 5809 unbound_std_wq_attrs[i] = attrs; 5810 5811 /* 5812 * An ordered wq should have only one pwq as ordering is 5813 * guaranteed by max_active which is enforced by pwqs. 5814 * Turn off NUMA so that dfl_pwq is used for all nodes. 5815 */ 5816 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5817 attrs->nice = std_nice[i]; 5818 attrs->no_numa = true; 5819 ordered_wq_attrs[i] = attrs; 5820 } 5821 5822 system_wq = alloc_workqueue("events", 0, 0); 5823 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5824 system_long_wq = alloc_workqueue("events_long", 0, 0); 5825 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5826 WQ_UNBOUND_MAX_ACTIVE); 5827 system_freezable_wq = alloc_workqueue("events_freezable", 5828 WQ_FREEZABLE, 0); 5829 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5830 WQ_POWER_EFFICIENT, 0); 5831 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5832 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5833 0); 5834 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5835 !system_unbound_wq || !system_freezable_wq || 5836 !system_power_efficient_wq || 5837 !system_freezable_power_efficient_wq); 5838 5839 return 0; 5840 } 5841 5842 /** 5843 * workqueue_init - bring workqueue subsystem fully online 5844 * 5845 * This is the latter half of two-staged workqueue subsystem initialization 5846 * and invoked as soon as kthreads can be created and scheduled. 5847 * Workqueues have been created and work items queued on them, but there 5848 * are no kworkers executing the work items yet. Populate the worker pools 5849 * with the initial workers and enable future kworker creations. 5850 */ 5851 int __init workqueue_init(void) 5852 { 5853 struct workqueue_struct *wq; 5854 struct worker_pool *pool; 5855 int cpu, bkt; 5856 5857 /* 5858 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5859 * CPU to node mapping may not be available that early on some 5860 * archs such as power and arm64. As per-cpu pools created 5861 * previously could be missing node hint and unbound pools NUMA 5862 * affinity, fix them up. 5863 * 5864 * Also, while iterating workqueues, create rescuers if requested. 5865 */ 5866 wq_numa_init(); 5867 5868 mutex_lock(&wq_pool_mutex); 5869 5870 for_each_possible_cpu(cpu) { 5871 for_each_cpu_worker_pool(pool, cpu) { 5872 pool->node = cpu_to_node(cpu); 5873 } 5874 } 5875 5876 list_for_each_entry(wq, &workqueues, list) { 5877 wq_update_unbound_numa(wq, smp_processor_id(), true); 5878 WARN(init_rescuer(wq), 5879 "workqueue: failed to create early rescuer for %s", 5880 wq->name); 5881 } 5882 5883 mutex_unlock(&wq_pool_mutex); 5884 5885 /* create the initial workers */ 5886 for_each_online_cpu(cpu) { 5887 for_each_cpu_worker_pool(pool, cpu) { 5888 pool->flags &= ~POOL_DISASSOCIATED; 5889 BUG_ON(!create_worker(pool)); 5890 } 5891 } 5892 5893 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 5894 BUG_ON(!create_worker(pool)); 5895 5896 wq_online = true; 5897 wq_watchdog_init(); 5898 5899 return 0; 5900 } 5901