1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <[email protected]> 8 * Andrew Morton 9 * Kai Petzke <[email protected]> 10 * Theodore Ts'o <[email protected]> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <[email protected]> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/core-api/workqueue.rst for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 #include <linux/jhash.h> 45 #include <linux/hashtable.h> 46 #include <linux/rculist.h> 47 #include <linux/nodemask.h> 48 #include <linux/moduleparam.h> 49 #include <linux/uaccess.h> 50 #include <linux/sched/isolation.h> 51 #include <linux/nmi.h> 52 53 #include "workqueue_internal.h" 54 55 enum { 56 /* 57 * worker_pool flags 58 * 59 * A bound pool is either associated or disassociated with its CPU. 60 * While associated (!DISASSOCIATED), all workers are bound to the 61 * CPU and none has %WORKER_UNBOUND set and concurrency management 62 * is in effect. 63 * 64 * While DISASSOCIATED, the cpu may be offline and all workers have 65 * %WORKER_UNBOUND set and concurrency management disabled, and may 66 * be executing on any CPU. The pool behaves as an unbound one. 67 * 68 * Note that DISASSOCIATED should be flipped only while holding 69 * wq_pool_attach_mutex to avoid changing binding state while 70 * worker_attach_to_pool() is in progress. 71 */ 72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 74 75 /* worker flags */ 76 WORKER_DIE = 1 << 1, /* die die die */ 77 WORKER_IDLE = 1 << 2, /* is idle */ 78 WORKER_PREP = 1 << 3, /* preparing to run works */ 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 82 83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 84 WORKER_UNBOUND | WORKER_REBOUND, 85 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 87 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 90 91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 93 94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 95 /* call for help after 10ms 96 (min two ticks) */ 97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 98 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 99 100 /* 101 * Rescue workers are used only on emergencies and shared by 102 * all cpus. Give MIN_NICE. 103 */ 104 RESCUER_NICE_LEVEL = MIN_NICE, 105 HIGHPRI_NICE_LEVEL = MIN_NICE, 106 107 WQ_NAME_LEN = 24, 108 }; 109 110 /* 111 * Structure fields follow one of the following exclusion rules. 112 * 113 * I: Modifiable by initialization/destruction paths and read-only for 114 * everyone else. 115 * 116 * P: Preemption protected. Disabling preemption is enough and should 117 * only be modified and accessed from the local cpu. 118 * 119 * L: pool->lock protected. Access with pool->lock held. 120 * 121 * X: During normal operation, modification requires pool->lock and should 122 * be done only from local cpu. Either disabling preemption on local 123 * cpu or grabbing pool->lock is enough for read access. If 124 * POOL_DISASSOCIATED is set, it's identical to L. 125 * 126 * A: wq_pool_attach_mutex protected. 127 * 128 * PL: wq_pool_mutex protected. 129 * 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 131 * 132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 133 * 134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 135 * sched-RCU for reads. 136 * 137 * WQ: wq->mutex protected. 138 * 139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 140 * 141 * MD: wq_mayday_lock protected. 142 */ 143 144 /* struct worker is defined in workqueue_internal.h */ 145 146 struct worker_pool { 147 spinlock_t lock; /* the pool lock */ 148 int cpu; /* I: the associated cpu */ 149 int node; /* I: the associated node ID */ 150 int id; /* I: pool ID */ 151 unsigned int flags; /* X: flags */ 152 153 unsigned long watchdog_ts; /* L: watchdog timestamp */ 154 155 struct list_head worklist; /* L: list of pending works */ 156 157 int nr_workers; /* L: total number of workers */ 158 int nr_idle; /* L: currently idle workers */ 159 160 struct list_head idle_list; /* X: list of idle workers */ 161 struct timer_list idle_timer; /* L: worker idle timeout */ 162 struct timer_list mayday_timer; /* L: SOS timer for workers */ 163 164 /* a workers is either on busy_hash or idle_list, or the manager */ 165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 166 /* L: hash of busy workers */ 167 168 struct worker *manager; /* L: purely informational */ 169 struct list_head workers; /* A: attached workers */ 170 struct completion *detach_completion; /* all workers detached */ 171 172 struct ida worker_ida; /* worker IDs for task name */ 173 174 struct workqueue_attrs *attrs; /* I: worker attributes */ 175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 176 int refcnt; /* PL: refcnt for unbound pools */ 177 178 /* 179 * The current concurrency level. As it's likely to be accessed 180 * from other CPUs during try_to_wake_up(), put it in a separate 181 * cacheline. 182 */ 183 atomic_t nr_running ____cacheline_aligned_in_smp; 184 185 /* 186 * Destruction of pool is sched-RCU protected to allow dereferences 187 * from get_work_pool(). 188 */ 189 struct rcu_head rcu; 190 } ____cacheline_aligned_in_smp; 191 192 /* 193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 194 * of work_struct->data are used for flags and the remaining high bits 195 * point to the pwq; thus, pwqs need to be aligned at two's power of the 196 * number of flag bits. 197 */ 198 struct pool_workqueue { 199 struct worker_pool *pool; /* I: the associated pool */ 200 struct workqueue_struct *wq; /* I: the owning workqueue */ 201 int work_color; /* L: current color */ 202 int flush_color; /* L: flushing color */ 203 int refcnt; /* L: reference count */ 204 int nr_in_flight[WORK_NR_COLORS]; 205 /* L: nr of in_flight works */ 206 int nr_active; /* L: nr of active works */ 207 int max_active; /* L: max active works */ 208 struct list_head delayed_works; /* L: delayed works */ 209 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 210 struct list_head mayday_node; /* MD: node on wq->maydays */ 211 212 /* 213 * Release of unbound pwq is punted to system_wq. See put_pwq() 214 * and pwq_unbound_release_workfn() for details. pool_workqueue 215 * itself is also sched-RCU protected so that the first pwq can be 216 * determined without grabbing wq->mutex. 217 */ 218 struct work_struct unbound_release_work; 219 struct rcu_head rcu; 220 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 221 222 /* 223 * Structure used to wait for workqueue flush. 224 */ 225 struct wq_flusher { 226 struct list_head list; /* WQ: list of flushers */ 227 int flush_color; /* WQ: flush color waiting for */ 228 struct completion done; /* flush completion */ 229 }; 230 231 struct wq_device; 232 233 /* 234 * The externally visible workqueue. It relays the issued work items to 235 * the appropriate worker_pool through its pool_workqueues. 236 */ 237 struct workqueue_struct { 238 struct list_head pwqs; /* WR: all pwqs of this wq */ 239 struct list_head list; /* PR: list of all workqueues */ 240 241 struct mutex mutex; /* protects this wq */ 242 int work_color; /* WQ: current work color */ 243 int flush_color; /* WQ: current flush color */ 244 atomic_t nr_pwqs_to_flush; /* flush in progress */ 245 struct wq_flusher *first_flusher; /* WQ: first flusher */ 246 struct list_head flusher_queue; /* WQ: flush waiters */ 247 struct list_head flusher_overflow; /* WQ: flush overflow list */ 248 249 struct list_head maydays; /* MD: pwqs requesting rescue */ 250 struct worker *rescuer; /* I: rescue worker */ 251 252 int nr_drainers; /* WQ: drain in progress */ 253 int saved_max_active; /* WQ: saved pwq max_active */ 254 255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 257 258 #ifdef CONFIG_SYSFS 259 struct wq_device *wq_dev; /* I: for sysfs interface */ 260 #endif 261 #ifdef CONFIG_LOCKDEP 262 char *lock_name; 263 struct lock_class_key key; 264 struct lockdep_map lockdep_map; 265 #endif 266 char name[WQ_NAME_LEN]; /* I: workqueue name */ 267 268 /* 269 * Destruction of workqueue_struct is sched-RCU protected to allow 270 * walking the workqueues list without grabbing wq_pool_mutex. 271 * This is used to dump all workqueues from sysrq. 272 */ 273 struct rcu_head rcu; 274 275 /* hot fields used during command issue, aligned to cacheline */ 276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 279 }; 280 281 static struct kmem_cache *pwq_cache; 282 283 static cpumask_var_t *wq_numa_possible_cpumask; 284 /* possible CPUs of each node */ 285 286 static bool wq_disable_numa; 287 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 288 289 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 291 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 292 293 static bool wq_online; /* can kworkers be created yet? */ 294 295 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 296 297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 299 300 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 301 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 302 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 303 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */ 304 305 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 306 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 307 308 /* PL: allowable cpus for unbound wqs and work items */ 309 static cpumask_var_t wq_unbound_cpumask; 310 311 /* CPU where unbound work was last round robin scheduled from this CPU */ 312 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 313 314 /* 315 * Local execution of unbound work items is no longer guaranteed. The 316 * following always forces round-robin CPU selection on unbound work items 317 * to uncover usages which depend on it. 318 */ 319 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 320 static bool wq_debug_force_rr_cpu = true; 321 #else 322 static bool wq_debug_force_rr_cpu = false; 323 #endif 324 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 325 326 /* the per-cpu worker pools */ 327 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 328 329 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 330 331 /* PL: hash of all unbound pools keyed by pool->attrs */ 332 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 333 334 /* I: attributes used when instantiating standard unbound pools on demand */ 335 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 336 337 /* I: attributes used when instantiating ordered pools on demand */ 338 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 339 340 struct workqueue_struct *system_wq __read_mostly; 341 EXPORT_SYMBOL(system_wq); 342 struct workqueue_struct *system_highpri_wq __read_mostly; 343 EXPORT_SYMBOL_GPL(system_highpri_wq); 344 struct workqueue_struct *system_long_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_long_wq); 346 struct workqueue_struct *system_unbound_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_unbound_wq); 348 struct workqueue_struct *system_freezable_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_freezable_wq); 350 struct workqueue_struct *system_power_efficient_wq __read_mostly; 351 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 352 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 353 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 354 355 static int worker_thread(void *__worker); 356 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 357 358 #define CREATE_TRACE_POINTS 359 #include <trace/events/workqueue.h> 360 361 #define assert_rcu_or_pool_mutex() \ 362 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 363 !lockdep_is_held(&wq_pool_mutex), \ 364 "sched RCU or wq_pool_mutex should be held") 365 366 #define assert_rcu_or_wq_mutex(wq) \ 367 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 368 !lockdep_is_held(&wq->mutex), \ 369 "sched RCU or wq->mutex should be held") 370 371 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 372 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 373 !lockdep_is_held(&wq->mutex) && \ 374 !lockdep_is_held(&wq_pool_mutex), \ 375 "sched RCU, wq->mutex or wq_pool_mutex should be held") 376 377 #define for_each_cpu_worker_pool(pool, cpu) \ 378 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 379 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 380 (pool)++) 381 382 /** 383 * for_each_pool - iterate through all worker_pools in the system 384 * @pool: iteration cursor 385 * @pi: integer used for iteration 386 * 387 * This must be called either with wq_pool_mutex held or sched RCU read 388 * locked. If the pool needs to be used beyond the locking in effect, the 389 * caller is responsible for guaranteeing that the pool stays online. 390 * 391 * The if/else clause exists only for the lockdep assertion and can be 392 * ignored. 393 */ 394 #define for_each_pool(pool, pi) \ 395 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 396 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 397 else 398 399 /** 400 * for_each_pool_worker - iterate through all workers of a worker_pool 401 * @worker: iteration cursor 402 * @pool: worker_pool to iterate workers of 403 * 404 * This must be called with wq_pool_attach_mutex. 405 * 406 * The if/else clause exists only for the lockdep assertion and can be 407 * ignored. 408 */ 409 #define for_each_pool_worker(worker, pool) \ 410 list_for_each_entry((worker), &(pool)->workers, node) \ 411 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 412 else 413 414 /** 415 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 416 * @pwq: iteration cursor 417 * @wq: the target workqueue 418 * 419 * This must be called either with wq->mutex held or sched RCU read locked. 420 * If the pwq needs to be used beyond the locking in effect, the caller is 421 * responsible for guaranteeing that the pwq stays online. 422 * 423 * The if/else clause exists only for the lockdep assertion and can be 424 * ignored. 425 */ 426 #define for_each_pwq(pwq, wq) \ 427 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 428 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 429 else 430 431 #ifdef CONFIG_DEBUG_OBJECTS_WORK 432 433 static struct debug_obj_descr work_debug_descr; 434 435 static void *work_debug_hint(void *addr) 436 { 437 return ((struct work_struct *) addr)->func; 438 } 439 440 static bool work_is_static_object(void *addr) 441 { 442 struct work_struct *work = addr; 443 444 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 445 } 446 447 /* 448 * fixup_init is called when: 449 * - an active object is initialized 450 */ 451 static bool work_fixup_init(void *addr, enum debug_obj_state state) 452 { 453 struct work_struct *work = addr; 454 455 switch (state) { 456 case ODEBUG_STATE_ACTIVE: 457 cancel_work_sync(work); 458 debug_object_init(work, &work_debug_descr); 459 return true; 460 default: 461 return false; 462 } 463 } 464 465 /* 466 * fixup_free is called when: 467 * - an active object is freed 468 */ 469 static bool work_fixup_free(void *addr, enum debug_obj_state state) 470 { 471 struct work_struct *work = addr; 472 473 switch (state) { 474 case ODEBUG_STATE_ACTIVE: 475 cancel_work_sync(work); 476 debug_object_free(work, &work_debug_descr); 477 return true; 478 default: 479 return false; 480 } 481 } 482 483 static struct debug_obj_descr work_debug_descr = { 484 .name = "work_struct", 485 .debug_hint = work_debug_hint, 486 .is_static_object = work_is_static_object, 487 .fixup_init = work_fixup_init, 488 .fixup_free = work_fixup_free, 489 }; 490 491 static inline void debug_work_activate(struct work_struct *work) 492 { 493 debug_object_activate(work, &work_debug_descr); 494 } 495 496 static inline void debug_work_deactivate(struct work_struct *work) 497 { 498 debug_object_deactivate(work, &work_debug_descr); 499 } 500 501 void __init_work(struct work_struct *work, int onstack) 502 { 503 if (onstack) 504 debug_object_init_on_stack(work, &work_debug_descr); 505 else 506 debug_object_init(work, &work_debug_descr); 507 } 508 EXPORT_SYMBOL_GPL(__init_work); 509 510 void destroy_work_on_stack(struct work_struct *work) 511 { 512 debug_object_free(work, &work_debug_descr); 513 } 514 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 515 516 void destroy_delayed_work_on_stack(struct delayed_work *work) 517 { 518 destroy_timer_on_stack(&work->timer); 519 debug_object_free(&work->work, &work_debug_descr); 520 } 521 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 522 523 #else 524 static inline void debug_work_activate(struct work_struct *work) { } 525 static inline void debug_work_deactivate(struct work_struct *work) { } 526 #endif 527 528 /** 529 * worker_pool_assign_id - allocate ID and assing it to @pool 530 * @pool: the pool pointer of interest 531 * 532 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 533 * successfully, -errno on failure. 534 */ 535 static int worker_pool_assign_id(struct worker_pool *pool) 536 { 537 int ret; 538 539 lockdep_assert_held(&wq_pool_mutex); 540 541 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 542 GFP_KERNEL); 543 if (ret >= 0) { 544 pool->id = ret; 545 return 0; 546 } 547 return ret; 548 } 549 550 /** 551 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 552 * @wq: the target workqueue 553 * @node: the node ID 554 * 555 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 556 * read locked. 557 * If the pwq needs to be used beyond the locking in effect, the caller is 558 * responsible for guaranteeing that the pwq stays online. 559 * 560 * Return: The unbound pool_workqueue for @node. 561 */ 562 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 563 int node) 564 { 565 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 566 567 /* 568 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 569 * delayed item is pending. The plan is to keep CPU -> NODE 570 * mapping valid and stable across CPU on/offlines. Once that 571 * happens, this workaround can be removed. 572 */ 573 if (unlikely(node == NUMA_NO_NODE)) 574 return wq->dfl_pwq; 575 576 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 577 } 578 579 static unsigned int work_color_to_flags(int color) 580 { 581 return color << WORK_STRUCT_COLOR_SHIFT; 582 } 583 584 static int get_work_color(struct work_struct *work) 585 { 586 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 587 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 588 } 589 590 static int work_next_color(int color) 591 { 592 return (color + 1) % WORK_NR_COLORS; 593 } 594 595 /* 596 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 597 * contain the pointer to the queued pwq. Once execution starts, the flag 598 * is cleared and the high bits contain OFFQ flags and pool ID. 599 * 600 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 601 * and clear_work_data() can be used to set the pwq, pool or clear 602 * work->data. These functions should only be called while the work is 603 * owned - ie. while the PENDING bit is set. 604 * 605 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 606 * corresponding to a work. Pool is available once the work has been 607 * queued anywhere after initialization until it is sync canceled. pwq is 608 * available only while the work item is queued. 609 * 610 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 611 * canceled. While being canceled, a work item may have its PENDING set 612 * but stay off timer and worklist for arbitrarily long and nobody should 613 * try to steal the PENDING bit. 614 */ 615 static inline void set_work_data(struct work_struct *work, unsigned long data, 616 unsigned long flags) 617 { 618 WARN_ON_ONCE(!work_pending(work)); 619 atomic_long_set(&work->data, data | flags | work_static(work)); 620 } 621 622 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 623 unsigned long extra_flags) 624 { 625 set_work_data(work, (unsigned long)pwq, 626 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 627 } 628 629 static void set_work_pool_and_keep_pending(struct work_struct *work, 630 int pool_id) 631 { 632 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 633 WORK_STRUCT_PENDING); 634 } 635 636 static void set_work_pool_and_clear_pending(struct work_struct *work, 637 int pool_id) 638 { 639 /* 640 * The following wmb is paired with the implied mb in 641 * test_and_set_bit(PENDING) and ensures all updates to @work made 642 * here are visible to and precede any updates by the next PENDING 643 * owner. 644 */ 645 smp_wmb(); 646 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 647 /* 648 * The following mb guarantees that previous clear of a PENDING bit 649 * will not be reordered with any speculative LOADS or STORES from 650 * work->current_func, which is executed afterwards. This possible 651 * reordering can lead to a missed execution on attempt to qeueue 652 * the same @work. E.g. consider this case: 653 * 654 * CPU#0 CPU#1 655 * ---------------------------- -------------------------------- 656 * 657 * 1 STORE event_indicated 658 * 2 queue_work_on() { 659 * 3 test_and_set_bit(PENDING) 660 * 4 } set_..._and_clear_pending() { 661 * 5 set_work_data() # clear bit 662 * 6 smp_mb() 663 * 7 work->current_func() { 664 * 8 LOAD event_indicated 665 * } 666 * 667 * Without an explicit full barrier speculative LOAD on line 8 can 668 * be executed before CPU#0 does STORE on line 1. If that happens, 669 * CPU#0 observes the PENDING bit is still set and new execution of 670 * a @work is not queued in a hope, that CPU#1 will eventually 671 * finish the queued @work. Meanwhile CPU#1 does not see 672 * event_indicated is set, because speculative LOAD was executed 673 * before actual STORE. 674 */ 675 smp_mb(); 676 } 677 678 static void clear_work_data(struct work_struct *work) 679 { 680 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 681 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 682 } 683 684 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 685 { 686 unsigned long data = atomic_long_read(&work->data); 687 688 if (data & WORK_STRUCT_PWQ) 689 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 690 else 691 return NULL; 692 } 693 694 /** 695 * get_work_pool - return the worker_pool a given work was associated with 696 * @work: the work item of interest 697 * 698 * Pools are created and destroyed under wq_pool_mutex, and allows read 699 * access under sched-RCU read lock. As such, this function should be 700 * called under wq_pool_mutex or with preemption disabled. 701 * 702 * All fields of the returned pool are accessible as long as the above 703 * mentioned locking is in effect. If the returned pool needs to be used 704 * beyond the critical section, the caller is responsible for ensuring the 705 * returned pool is and stays online. 706 * 707 * Return: The worker_pool @work was last associated with. %NULL if none. 708 */ 709 static struct worker_pool *get_work_pool(struct work_struct *work) 710 { 711 unsigned long data = atomic_long_read(&work->data); 712 int pool_id; 713 714 assert_rcu_or_pool_mutex(); 715 716 if (data & WORK_STRUCT_PWQ) 717 return ((struct pool_workqueue *) 718 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 719 720 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 721 if (pool_id == WORK_OFFQ_POOL_NONE) 722 return NULL; 723 724 return idr_find(&worker_pool_idr, pool_id); 725 } 726 727 /** 728 * get_work_pool_id - return the worker pool ID a given work is associated with 729 * @work: the work item of interest 730 * 731 * Return: The worker_pool ID @work was last associated with. 732 * %WORK_OFFQ_POOL_NONE if none. 733 */ 734 static int get_work_pool_id(struct work_struct *work) 735 { 736 unsigned long data = atomic_long_read(&work->data); 737 738 if (data & WORK_STRUCT_PWQ) 739 return ((struct pool_workqueue *) 740 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 741 742 return data >> WORK_OFFQ_POOL_SHIFT; 743 } 744 745 static void mark_work_canceling(struct work_struct *work) 746 { 747 unsigned long pool_id = get_work_pool_id(work); 748 749 pool_id <<= WORK_OFFQ_POOL_SHIFT; 750 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 751 } 752 753 static bool work_is_canceling(struct work_struct *work) 754 { 755 unsigned long data = atomic_long_read(&work->data); 756 757 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 758 } 759 760 /* 761 * Policy functions. These define the policies on how the global worker 762 * pools are managed. Unless noted otherwise, these functions assume that 763 * they're being called with pool->lock held. 764 */ 765 766 static bool __need_more_worker(struct worker_pool *pool) 767 { 768 return !atomic_read(&pool->nr_running); 769 } 770 771 /* 772 * Need to wake up a worker? Called from anything but currently 773 * running workers. 774 * 775 * Note that, because unbound workers never contribute to nr_running, this 776 * function will always return %true for unbound pools as long as the 777 * worklist isn't empty. 778 */ 779 static bool need_more_worker(struct worker_pool *pool) 780 { 781 return !list_empty(&pool->worklist) && __need_more_worker(pool); 782 } 783 784 /* Can I start working? Called from busy but !running workers. */ 785 static bool may_start_working(struct worker_pool *pool) 786 { 787 return pool->nr_idle; 788 } 789 790 /* Do I need to keep working? Called from currently running workers. */ 791 static bool keep_working(struct worker_pool *pool) 792 { 793 return !list_empty(&pool->worklist) && 794 atomic_read(&pool->nr_running) <= 1; 795 } 796 797 /* Do we need a new worker? Called from manager. */ 798 static bool need_to_create_worker(struct worker_pool *pool) 799 { 800 return need_more_worker(pool) && !may_start_working(pool); 801 } 802 803 /* Do we have too many workers and should some go away? */ 804 static bool too_many_workers(struct worker_pool *pool) 805 { 806 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 807 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 808 int nr_busy = pool->nr_workers - nr_idle; 809 810 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 811 } 812 813 /* 814 * Wake up functions. 815 */ 816 817 /* Return the first idle worker. Safe with preemption disabled */ 818 static struct worker *first_idle_worker(struct worker_pool *pool) 819 { 820 if (unlikely(list_empty(&pool->idle_list))) 821 return NULL; 822 823 return list_first_entry(&pool->idle_list, struct worker, entry); 824 } 825 826 /** 827 * wake_up_worker - wake up an idle worker 828 * @pool: worker pool to wake worker from 829 * 830 * Wake up the first idle worker of @pool. 831 * 832 * CONTEXT: 833 * spin_lock_irq(pool->lock). 834 */ 835 static void wake_up_worker(struct worker_pool *pool) 836 { 837 struct worker *worker = first_idle_worker(pool); 838 839 if (likely(worker)) 840 wake_up_process(worker->task); 841 } 842 843 /** 844 * wq_worker_waking_up - a worker is waking up 845 * @task: task waking up 846 * @cpu: CPU @task is waking up to 847 * 848 * This function is called during try_to_wake_up() when a worker is 849 * being awoken. 850 * 851 * CONTEXT: 852 * spin_lock_irq(rq->lock) 853 */ 854 void wq_worker_waking_up(struct task_struct *task, int cpu) 855 { 856 struct worker *worker = kthread_data(task); 857 858 if (!(worker->flags & WORKER_NOT_RUNNING)) { 859 WARN_ON_ONCE(worker->pool->cpu != cpu); 860 atomic_inc(&worker->pool->nr_running); 861 } 862 } 863 864 /** 865 * wq_worker_sleeping - a worker is going to sleep 866 * @task: task going to sleep 867 * 868 * This function is called during schedule() when a busy worker is 869 * going to sleep. Worker on the same cpu can be woken up by 870 * returning pointer to its task. 871 * 872 * CONTEXT: 873 * spin_lock_irq(rq->lock) 874 * 875 * Return: 876 * Worker task on @cpu to wake up, %NULL if none. 877 */ 878 struct task_struct *wq_worker_sleeping(struct task_struct *task) 879 { 880 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 881 struct worker_pool *pool; 882 883 /* 884 * Rescuers, which may not have all the fields set up like normal 885 * workers, also reach here, let's not access anything before 886 * checking NOT_RUNNING. 887 */ 888 if (worker->flags & WORKER_NOT_RUNNING) 889 return NULL; 890 891 pool = worker->pool; 892 893 /* this can only happen on the local cpu */ 894 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id())) 895 return NULL; 896 897 /* 898 * The counterpart of the following dec_and_test, implied mb, 899 * worklist not empty test sequence is in insert_work(). 900 * Please read comment there. 901 * 902 * NOT_RUNNING is clear. This means that we're bound to and 903 * running on the local cpu w/ rq lock held and preemption 904 * disabled, which in turn means that none else could be 905 * manipulating idle_list, so dereferencing idle_list without pool 906 * lock is safe. 907 */ 908 if (atomic_dec_and_test(&pool->nr_running) && 909 !list_empty(&pool->worklist)) 910 to_wakeup = first_idle_worker(pool); 911 return to_wakeup ? to_wakeup->task : NULL; 912 } 913 914 /** 915 * wq_worker_last_func - retrieve worker's last work function 916 * 917 * Determine the last function a worker executed. This is called from 918 * the scheduler to get a worker's last known identity. 919 * 920 * CONTEXT: 921 * spin_lock_irq(rq->lock) 922 * 923 * Return: 924 * The last work function %current executed as a worker, NULL if it 925 * hasn't executed any work yet. 926 */ 927 work_func_t wq_worker_last_func(struct task_struct *task) 928 { 929 struct worker *worker = kthread_data(task); 930 931 return worker->last_func; 932 } 933 934 /** 935 * worker_set_flags - set worker flags and adjust nr_running accordingly 936 * @worker: self 937 * @flags: flags to set 938 * 939 * Set @flags in @worker->flags and adjust nr_running accordingly. 940 * 941 * CONTEXT: 942 * spin_lock_irq(pool->lock) 943 */ 944 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 945 { 946 struct worker_pool *pool = worker->pool; 947 948 WARN_ON_ONCE(worker->task != current); 949 950 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 951 if ((flags & WORKER_NOT_RUNNING) && 952 !(worker->flags & WORKER_NOT_RUNNING)) { 953 atomic_dec(&pool->nr_running); 954 } 955 956 worker->flags |= flags; 957 } 958 959 /** 960 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 961 * @worker: self 962 * @flags: flags to clear 963 * 964 * Clear @flags in @worker->flags and adjust nr_running accordingly. 965 * 966 * CONTEXT: 967 * spin_lock_irq(pool->lock) 968 */ 969 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 970 { 971 struct worker_pool *pool = worker->pool; 972 unsigned int oflags = worker->flags; 973 974 WARN_ON_ONCE(worker->task != current); 975 976 worker->flags &= ~flags; 977 978 /* 979 * If transitioning out of NOT_RUNNING, increment nr_running. Note 980 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 981 * of multiple flags, not a single flag. 982 */ 983 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 984 if (!(worker->flags & WORKER_NOT_RUNNING)) 985 atomic_inc(&pool->nr_running); 986 } 987 988 /** 989 * find_worker_executing_work - find worker which is executing a work 990 * @pool: pool of interest 991 * @work: work to find worker for 992 * 993 * Find a worker which is executing @work on @pool by searching 994 * @pool->busy_hash which is keyed by the address of @work. For a worker 995 * to match, its current execution should match the address of @work and 996 * its work function. This is to avoid unwanted dependency between 997 * unrelated work executions through a work item being recycled while still 998 * being executed. 999 * 1000 * This is a bit tricky. A work item may be freed once its execution 1001 * starts and nothing prevents the freed area from being recycled for 1002 * another work item. If the same work item address ends up being reused 1003 * before the original execution finishes, workqueue will identify the 1004 * recycled work item as currently executing and make it wait until the 1005 * current execution finishes, introducing an unwanted dependency. 1006 * 1007 * This function checks the work item address and work function to avoid 1008 * false positives. Note that this isn't complete as one may construct a 1009 * work function which can introduce dependency onto itself through a 1010 * recycled work item. Well, if somebody wants to shoot oneself in the 1011 * foot that badly, there's only so much we can do, and if such deadlock 1012 * actually occurs, it should be easy to locate the culprit work function. 1013 * 1014 * CONTEXT: 1015 * spin_lock_irq(pool->lock). 1016 * 1017 * Return: 1018 * Pointer to worker which is executing @work if found, %NULL 1019 * otherwise. 1020 */ 1021 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1022 struct work_struct *work) 1023 { 1024 struct worker *worker; 1025 1026 hash_for_each_possible(pool->busy_hash, worker, hentry, 1027 (unsigned long)work) 1028 if (worker->current_work == work && 1029 worker->current_func == work->func) 1030 return worker; 1031 1032 return NULL; 1033 } 1034 1035 /** 1036 * move_linked_works - move linked works to a list 1037 * @work: start of series of works to be scheduled 1038 * @head: target list to append @work to 1039 * @nextp: out parameter for nested worklist walking 1040 * 1041 * Schedule linked works starting from @work to @head. Work series to 1042 * be scheduled starts at @work and includes any consecutive work with 1043 * WORK_STRUCT_LINKED set in its predecessor. 1044 * 1045 * If @nextp is not NULL, it's updated to point to the next work of 1046 * the last scheduled work. This allows move_linked_works() to be 1047 * nested inside outer list_for_each_entry_safe(). 1048 * 1049 * CONTEXT: 1050 * spin_lock_irq(pool->lock). 1051 */ 1052 static void move_linked_works(struct work_struct *work, struct list_head *head, 1053 struct work_struct **nextp) 1054 { 1055 struct work_struct *n; 1056 1057 /* 1058 * Linked worklist will always end before the end of the list, 1059 * use NULL for list head. 1060 */ 1061 list_for_each_entry_safe_from(work, n, NULL, entry) { 1062 list_move_tail(&work->entry, head); 1063 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1064 break; 1065 } 1066 1067 /* 1068 * If we're already inside safe list traversal and have moved 1069 * multiple works to the scheduled queue, the next position 1070 * needs to be updated. 1071 */ 1072 if (nextp) 1073 *nextp = n; 1074 } 1075 1076 /** 1077 * get_pwq - get an extra reference on the specified pool_workqueue 1078 * @pwq: pool_workqueue to get 1079 * 1080 * Obtain an extra reference on @pwq. The caller should guarantee that 1081 * @pwq has positive refcnt and be holding the matching pool->lock. 1082 */ 1083 static void get_pwq(struct pool_workqueue *pwq) 1084 { 1085 lockdep_assert_held(&pwq->pool->lock); 1086 WARN_ON_ONCE(pwq->refcnt <= 0); 1087 pwq->refcnt++; 1088 } 1089 1090 /** 1091 * put_pwq - put a pool_workqueue reference 1092 * @pwq: pool_workqueue to put 1093 * 1094 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1095 * destruction. The caller should be holding the matching pool->lock. 1096 */ 1097 static void put_pwq(struct pool_workqueue *pwq) 1098 { 1099 lockdep_assert_held(&pwq->pool->lock); 1100 if (likely(--pwq->refcnt)) 1101 return; 1102 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1103 return; 1104 /* 1105 * @pwq can't be released under pool->lock, bounce to 1106 * pwq_unbound_release_workfn(). This never recurses on the same 1107 * pool->lock as this path is taken only for unbound workqueues and 1108 * the release work item is scheduled on a per-cpu workqueue. To 1109 * avoid lockdep warning, unbound pool->locks are given lockdep 1110 * subclass of 1 in get_unbound_pool(). 1111 */ 1112 schedule_work(&pwq->unbound_release_work); 1113 } 1114 1115 /** 1116 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1117 * @pwq: pool_workqueue to put (can be %NULL) 1118 * 1119 * put_pwq() with locking. This function also allows %NULL @pwq. 1120 */ 1121 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1122 { 1123 if (pwq) { 1124 /* 1125 * As both pwqs and pools are sched-RCU protected, the 1126 * following lock operations are safe. 1127 */ 1128 spin_lock_irq(&pwq->pool->lock); 1129 put_pwq(pwq); 1130 spin_unlock_irq(&pwq->pool->lock); 1131 } 1132 } 1133 1134 static void pwq_activate_delayed_work(struct work_struct *work) 1135 { 1136 struct pool_workqueue *pwq = get_work_pwq(work); 1137 1138 trace_workqueue_activate_work(work); 1139 if (list_empty(&pwq->pool->worklist)) 1140 pwq->pool->watchdog_ts = jiffies; 1141 move_linked_works(work, &pwq->pool->worklist, NULL); 1142 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1143 pwq->nr_active++; 1144 } 1145 1146 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1147 { 1148 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1149 struct work_struct, entry); 1150 1151 pwq_activate_delayed_work(work); 1152 } 1153 1154 /** 1155 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1156 * @pwq: pwq of interest 1157 * @color: color of work which left the queue 1158 * 1159 * A work either has completed or is removed from pending queue, 1160 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1161 * 1162 * CONTEXT: 1163 * spin_lock_irq(pool->lock). 1164 */ 1165 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1166 { 1167 /* uncolored work items don't participate in flushing or nr_active */ 1168 if (color == WORK_NO_COLOR) 1169 goto out_put; 1170 1171 pwq->nr_in_flight[color]--; 1172 1173 pwq->nr_active--; 1174 if (!list_empty(&pwq->delayed_works)) { 1175 /* one down, submit a delayed one */ 1176 if (pwq->nr_active < pwq->max_active) 1177 pwq_activate_first_delayed(pwq); 1178 } 1179 1180 /* is flush in progress and are we at the flushing tip? */ 1181 if (likely(pwq->flush_color != color)) 1182 goto out_put; 1183 1184 /* are there still in-flight works? */ 1185 if (pwq->nr_in_flight[color]) 1186 goto out_put; 1187 1188 /* this pwq is done, clear flush_color */ 1189 pwq->flush_color = -1; 1190 1191 /* 1192 * If this was the last pwq, wake up the first flusher. It 1193 * will handle the rest. 1194 */ 1195 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1196 complete(&pwq->wq->first_flusher->done); 1197 out_put: 1198 put_pwq(pwq); 1199 } 1200 1201 /** 1202 * try_to_grab_pending - steal work item from worklist and disable irq 1203 * @work: work item to steal 1204 * @is_dwork: @work is a delayed_work 1205 * @flags: place to store irq state 1206 * 1207 * Try to grab PENDING bit of @work. This function can handle @work in any 1208 * stable state - idle, on timer or on worklist. 1209 * 1210 * Return: 1211 * 1 if @work was pending and we successfully stole PENDING 1212 * 0 if @work was idle and we claimed PENDING 1213 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1214 * -ENOENT if someone else is canceling @work, this state may persist 1215 * for arbitrarily long 1216 * 1217 * Note: 1218 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1219 * interrupted while holding PENDING and @work off queue, irq must be 1220 * disabled on entry. This, combined with delayed_work->timer being 1221 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1222 * 1223 * On successful return, >= 0, irq is disabled and the caller is 1224 * responsible for releasing it using local_irq_restore(*@flags). 1225 * 1226 * This function is safe to call from any context including IRQ handler. 1227 */ 1228 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1229 unsigned long *flags) 1230 { 1231 struct worker_pool *pool; 1232 struct pool_workqueue *pwq; 1233 1234 local_irq_save(*flags); 1235 1236 /* try to steal the timer if it exists */ 1237 if (is_dwork) { 1238 struct delayed_work *dwork = to_delayed_work(work); 1239 1240 /* 1241 * dwork->timer is irqsafe. If del_timer() fails, it's 1242 * guaranteed that the timer is not queued anywhere and not 1243 * running on the local CPU. 1244 */ 1245 if (likely(del_timer(&dwork->timer))) 1246 return 1; 1247 } 1248 1249 /* try to claim PENDING the normal way */ 1250 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1251 return 0; 1252 1253 /* 1254 * The queueing is in progress, or it is already queued. Try to 1255 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1256 */ 1257 pool = get_work_pool(work); 1258 if (!pool) 1259 goto fail; 1260 1261 spin_lock(&pool->lock); 1262 /* 1263 * work->data is guaranteed to point to pwq only while the work 1264 * item is queued on pwq->wq, and both updating work->data to point 1265 * to pwq on queueing and to pool on dequeueing are done under 1266 * pwq->pool->lock. This in turn guarantees that, if work->data 1267 * points to pwq which is associated with a locked pool, the work 1268 * item is currently queued on that pool. 1269 */ 1270 pwq = get_work_pwq(work); 1271 if (pwq && pwq->pool == pool) { 1272 debug_work_deactivate(work); 1273 1274 /* 1275 * A delayed work item cannot be grabbed directly because 1276 * it might have linked NO_COLOR work items which, if left 1277 * on the delayed_list, will confuse pwq->nr_active 1278 * management later on and cause stall. Make sure the work 1279 * item is activated before grabbing. 1280 */ 1281 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1282 pwq_activate_delayed_work(work); 1283 1284 list_del_init(&work->entry); 1285 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1286 1287 /* work->data points to pwq iff queued, point to pool */ 1288 set_work_pool_and_keep_pending(work, pool->id); 1289 1290 spin_unlock(&pool->lock); 1291 return 1; 1292 } 1293 spin_unlock(&pool->lock); 1294 fail: 1295 local_irq_restore(*flags); 1296 if (work_is_canceling(work)) 1297 return -ENOENT; 1298 cpu_relax(); 1299 return -EAGAIN; 1300 } 1301 1302 /** 1303 * insert_work - insert a work into a pool 1304 * @pwq: pwq @work belongs to 1305 * @work: work to insert 1306 * @head: insertion point 1307 * @extra_flags: extra WORK_STRUCT_* flags to set 1308 * 1309 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1310 * work_struct flags. 1311 * 1312 * CONTEXT: 1313 * spin_lock_irq(pool->lock). 1314 */ 1315 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1316 struct list_head *head, unsigned int extra_flags) 1317 { 1318 struct worker_pool *pool = pwq->pool; 1319 1320 /* we own @work, set data and link */ 1321 set_work_pwq(work, pwq, extra_flags); 1322 list_add_tail(&work->entry, head); 1323 get_pwq(pwq); 1324 1325 /* 1326 * Ensure either wq_worker_sleeping() sees the above 1327 * list_add_tail() or we see zero nr_running to avoid workers lying 1328 * around lazily while there are works to be processed. 1329 */ 1330 smp_mb(); 1331 1332 if (__need_more_worker(pool)) 1333 wake_up_worker(pool); 1334 } 1335 1336 /* 1337 * Test whether @work is being queued from another work executing on the 1338 * same workqueue. 1339 */ 1340 static bool is_chained_work(struct workqueue_struct *wq) 1341 { 1342 struct worker *worker; 1343 1344 worker = current_wq_worker(); 1345 /* 1346 * Return %true iff I'm a worker execuing a work item on @wq. If 1347 * I'm @worker, it's safe to dereference it without locking. 1348 */ 1349 return worker && worker->current_pwq->wq == wq; 1350 } 1351 1352 /* 1353 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1354 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1355 * avoid perturbing sensitive tasks. 1356 */ 1357 static int wq_select_unbound_cpu(int cpu) 1358 { 1359 static bool printed_dbg_warning; 1360 int new_cpu; 1361 1362 if (likely(!wq_debug_force_rr_cpu)) { 1363 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1364 return cpu; 1365 } else if (!printed_dbg_warning) { 1366 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1367 printed_dbg_warning = true; 1368 } 1369 1370 if (cpumask_empty(wq_unbound_cpumask)) 1371 return cpu; 1372 1373 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1374 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1375 if (unlikely(new_cpu >= nr_cpu_ids)) { 1376 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1377 if (unlikely(new_cpu >= nr_cpu_ids)) 1378 return cpu; 1379 } 1380 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1381 1382 return new_cpu; 1383 } 1384 1385 static void __queue_work(int cpu, struct workqueue_struct *wq, 1386 struct work_struct *work) 1387 { 1388 struct pool_workqueue *pwq; 1389 struct worker_pool *last_pool; 1390 struct list_head *worklist; 1391 unsigned int work_flags; 1392 unsigned int req_cpu = cpu; 1393 1394 /* 1395 * While a work item is PENDING && off queue, a task trying to 1396 * steal the PENDING will busy-loop waiting for it to either get 1397 * queued or lose PENDING. Grabbing PENDING and queueing should 1398 * happen with IRQ disabled. 1399 */ 1400 lockdep_assert_irqs_disabled(); 1401 1402 debug_work_activate(work); 1403 1404 /* if draining, only works from the same workqueue are allowed */ 1405 if (unlikely(wq->flags & __WQ_DRAINING) && 1406 WARN_ON_ONCE(!is_chained_work(wq))) 1407 return; 1408 retry: 1409 if (req_cpu == WORK_CPU_UNBOUND) 1410 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1411 1412 /* pwq which will be used unless @work is executing elsewhere */ 1413 if (!(wq->flags & WQ_UNBOUND)) 1414 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1415 else 1416 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1417 1418 /* 1419 * If @work was previously on a different pool, it might still be 1420 * running there, in which case the work needs to be queued on that 1421 * pool to guarantee non-reentrancy. 1422 */ 1423 last_pool = get_work_pool(work); 1424 if (last_pool && last_pool != pwq->pool) { 1425 struct worker *worker; 1426 1427 spin_lock(&last_pool->lock); 1428 1429 worker = find_worker_executing_work(last_pool, work); 1430 1431 if (worker && worker->current_pwq->wq == wq) { 1432 pwq = worker->current_pwq; 1433 } else { 1434 /* meh... not running there, queue here */ 1435 spin_unlock(&last_pool->lock); 1436 spin_lock(&pwq->pool->lock); 1437 } 1438 } else { 1439 spin_lock(&pwq->pool->lock); 1440 } 1441 1442 /* 1443 * pwq is determined and locked. For unbound pools, we could have 1444 * raced with pwq release and it could already be dead. If its 1445 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1446 * without another pwq replacing it in the numa_pwq_tbl or while 1447 * work items are executing on it, so the retrying is guaranteed to 1448 * make forward-progress. 1449 */ 1450 if (unlikely(!pwq->refcnt)) { 1451 if (wq->flags & WQ_UNBOUND) { 1452 spin_unlock(&pwq->pool->lock); 1453 cpu_relax(); 1454 goto retry; 1455 } 1456 /* oops */ 1457 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1458 wq->name, cpu); 1459 } 1460 1461 /* pwq determined, queue */ 1462 trace_workqueue_queue_work(req_cpu, pwq, work); 1463 1464 if (WARN_ON(!list_empty(&work->entry))) { 1465 spin_unlock(&pwq->pool->lock); 1466 return; 1467 } 1468 1469 pwq->nr_in_flight[pwq->work_color]++; 1470 work_flags = work_color_to_flags(pwq->work_color); 1471 1472 if (likely(pwq->nr_active < pwq->max_active)) { 1473 trace_workqueue_activate_work(work); 1474 pwq->nr_active++; 1475 worklist = &pwq->pool->worklist; 1476 if (list_empty(worklist)) 1477 pwq->pool->watchdog_ts = jiffies; 1478 } else { 1479 work_flags |= WORK_STRUCT_DELAYED; 1480 worklist = &pwq->delayed_works; 1481 } 1482 1483 insert_work(pwq, work, worklist, work_flags); 1484 1485 spin_unlock(&pwq->pool->lock); 1486 } 1487 1488 /** 1489 * queue_work_on - queue work on specific cpu 1490 * @cpu: CPU number to execute work on 1491 * @wq: workqueue to use 1492 * @work: work to queue 1493 * 1494 * We queue the work to a specific CPU, the caller must ensure it 1495 * can't go away. 1496 * 1497 * Return: %false if @work was already on a queue, %true otherwise. 1498 */ 1499 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1500 struct work_struct *work) 1501 { 1502 bool ret = false; 1503 unsigned long flags; 1504 1505 local_irq_save(flags); 1506 1507 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1508 __queue_work(cpu, wq, work); 1509 ret = true; 1510 } 1511 1512 local_irq_restore(flags); 1513 return ret; 1514 } 1515 EXPORT_SYMBOL(queue_work_on); 1516 1517 void delayed_work_timer_fn(struct timer_list *t) 1518 { 1519 struct delayed_work *dwork = from_timer(dwork, t, timer); 1520 1521 /* should have been called from irqsafe timer with irq already off */ 1522 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1523 } 1524 EXPORT_SYMBOL(delayed_work_timer_fn); 1525 1526 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1527 struct delayed_work *dwork, unsigned long delay) 1528 { 1529 struct timer_list *timer = &dwork->timer; 1530 struct work_struct *work = &dwork->work; 1531 1532 WARN_ON_ONCE(!wq); 1533 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1534 WARN_ON_ONCE(timer_pending(timer)); 1535 WARN_ON_ONCE(!list_empty(&work->entry)); 1536 1537 /* 1538 * If @delay is 0, queue @dwork->work immediately. This is for 1539 * both optimization and correctness. The earliest @timer can 1540 * expire is on the closest next tick and delayed_work users depend 1541 * on that there's no such delay when @delay is 0. 1542 */ 1543 if (!delay) { 1544 __queue_work(cpu, wq, &dwork->work); 1545 return; 1546 } 1547 1548 dwork->wq = wq; 1549 dwork->cpu = cpu; 1550 timer->expires = jiffies + delay; 1551 1552 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1553 add_timer_on(timer, cpu); 1554 else 1555 add_timer(timer); 1556 } 1557 1558 /** 1559 * queue_delayed_work_on - queue work on specific CPU after delay 1560 * @cpu: CPU number to execute work on 1561 * @wq: workqueue to use 1562 * @dwork: work to queue 1563 * @delay: number of jiffies to wait before queueing 1564 * 1565 * Return: %false if @work was already on a queue, %true otherwise. If 1566 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1567 * execution. 1568 */ 1569 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1570 struct delayed_work *dwork, unsigned long delay) 1571 { 1572 struct work_struct *work = &dwork->work; 1573 bool ret = false; 1574 unsigned long flags; 1575 1576 /* read the comment in __queue_work() */ 1577 local_irq_save(flags); 1578 1579 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1580 __queue_delayed_work(cpu, wq, dwork, delay); 1581 ret = true; 1582 } 1583 1584 local_irq_restore(flags); 1585 return ret; 1586 } 1587 EXPORT_SYMBOL(queue_delayed_work_on); 1588 1589 /** 1590 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1591 * @cpu: CPU number to execute work on 1592 * @wq: workqueue to use 1593 * @dwork: work to queue 1594 * @delay: number of jiffies to wait before queueing 1595 * 1596 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1597 * modify @dwork's timer so that it expires after @delay. If @delay is 1598 * zero, @work is guaranteed to be scheduled immediately regardless of its 1599 * current state. 1600 * 1601 * Return: %false if @dwork was idle and queued, %true if @dwork was 1602 * pending and its timer was modified. 1603 * 1604 * This function is safe to call from any context including IRQ handler. 1605 * See try_to_grab_pending() for details. 1606 */ 1607 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1608 struct delayed_work *dwork, unsigned long delay) 1609 { 1610 unsigned long flags; 1611 int ret; 1612 1613 do { 1614 ret = try_to_grab_pending(&dwork->work, true, &flags); 1615 } while (unlikely(ret == -EAGAIN)); 1616 1617 if (likely(ret >= 0)) { 1618 __queue_delayed_work(cpu, wq, dwork, delay); 1619 local_irq_restore(flags); 1620 } 1621 1622 /* -ENOENT from try_to_grab_pending() becomes %true */ 1623 return ret; 1624 } 1625 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1626 1627 static void rcu_work_rcufn(struct rcu_head *rcu) 1628 { 1629 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1630 1631 /* read the comment in __queue_work() */ 1632 local_irq_disable(); 1633 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1634 local_irq_enable(); 1635 } 1636 1637 /** 1638 * queue_rcu_work - queue work after a RCU grace period 1639 * @wq: workqueue to use 1640 * @rwork: work to queue 1641 * 1642 * Return: %false if @rwork was already pending, %true otherwise. Note 1643 * that a full RCU grace period is guaranteed only after a %true return. 1644 * While @rwork is guarnateed to be executed after a %false return, the 1645 * execution may happen before a full RCU grace period has passed. 1646 */ 1647 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1648 { 1649 struct work_struct *work = &rwork->work; 1650 1651 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1652 rwork->wq = wq; 1653 call_rcu(&rwork->rcu, rcu_work_rcufn); 1654 return true; 1655 } 1656 1657 return false; 1658 } 1659 EXPORT_SYMBOL(queue_rcu_work); 1660 1661 /** 1662 * worker_enter_idle - enter idle state 1663 * @worker: worker which is entering idle state 1664 * 1665 * @worker is entering idle state. Update stats and idle timer if 1666 * necessary. 1667 * 1668 * LOCKING: 1669 * spin_lock_irq(pool->lock). 1670 */ 1671 static void worker_enter_idle(struct worker *worker) 1672 { 1673 struct worker_pool *pool = worker->pool; 1674 1675 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1676 WARN_ON_ONCE(!list_empty(&worker->entry) && 1677 (worker->hentry.next || worker->hentry.pprev))) 1678 return; 1679 1680 /* can't use worker_set_flags(), also called from create_worker() */ 1681 worker->flags |= WORKER_IDLE; 1682 pool->nr_idle++; 1683 worker->last_active = jiffies; 1684 1685 /* idle_list is LIFO */ 1686 list_add(&worker->entry, &pool->idle_list); 1687 1688 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1689 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1690 1691 /* 1692 * Sanity check nr_running. Because unbind_workers() releases 1693 * pool->lock between setting %WORKER_UNBOUND and zapping 1694 * nr_running, the warning may trigger spuriously. Check iff 1695 * unbind is not in progress. 1696 */ 1697 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1698 pool->nr_workers == pool->nr_idle && 1699 atomic_read(&pool->nr_running)); 1700 } 1701 1702 /** 1703 * worker_leave_idle - leave idle state 1704 * @worker: worker which is leaving idle state 1705 * 1706 * @worker is leaving idle state. Update stats. 1707 * 1708 * LOCKING: 1709 * spin_lock_irq(pool->lock). 1710 */ 1711 static void worker_leave_idle(struct worker *worker) 1712 { 1713 struct worker_pool *pool = worker->pool; 1714 1715 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1716 return; 1717 worker_clr_flags(worker, WORKER_IDLE); 1718 pool->nr_idle--; 1719 list_del_init(&worker->entry); 1720 } 1721 1722 static struct worker *alloc_worker(int node) 1723 { 1724 struct worker *worker; 1725 1726 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1727 if (worker) { 1728 INIT_LIST_HEAD(&worker->entry); 1729 INIT_LIST_HEAD(&worker->scheduled); 1730 INIT_LIST_HEAD(&worker->node); 1731 /* on creation a worker is in !idle && prep state */ 1732 worker->flags = WORKER_PREP; 1733 } 1734 return worker; 1735 } 1736 1737 /** 1738 * worker_attach_to_pool() - attach a worker to a pool 1739 * @worker: worker to be attached 1740 * @pool: the target pool 1741 * 1742 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1743 * cpu-binding of @worker are kept coordinated with the pool across 1744 * cpu-[un]hotplugs. 1745 */ 1746 static void worker_attach_to_pool(struct worker *worker, 1747 struct worker_pool *pool) 1748 { 1749 mutex_lock(&wq_pool_attach_mutex); 1750 1751 /* 1752 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1753 * online CPUs. It'll be re-applied when any of the CPUs come up. 1754 */ 1755 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1756 1757 /* 1758 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1759 * stable across this function. See the comments above the flag 1760 * definition for details. 1761 */ 1762 if (pool->flags & POOL_DISASSOCIATED) 1763 worker->flags |= WORKER_UNBOUND; 1764 1765 list_add_tail(&worker->node, &pool->workers); 1766 worker->pool = pool; 1767 1768 mutex_unlock(&wq_pool_attach_mutex); 1769 } 1770 1771 /** 1772 * worker_detach_from_pool() - detach a worker from its pool 1773 * @worker: worker which is attached to its pool 1774 * 1775 * Undo the attaching which had been done in worker_attach_to_pool(). The 1776 * caller worker shouldn't access to the pool after detached except it has 1777 * other reference to the pool. 1778 */ 1779 static void worker_detach_from_pool(struct worker *worker) 1780 { 1781 struct worker_pool *pool = worker->pool; 1782 struct completion *detach_completion = NULL; 1783 1784 mutex_lock(&wq_pool_attach_mutex); 1785 1786 list_del(&worker->node); 1787 worker->pool = NULL; 1788 1789 if (list_empty(&pool->workers)) 1790 detach_completion = pool->detach_completion; 1791 mutex_unlock(&wq_pool_attach_mutex); 1792 1793 /* clear leftover flags without pool->lock after it is detached */ 1794 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1795 1796 if (detach_completion) 1797 complete(detach_completion); 1798 } 1799 1800 /** 1801 * create_worker - create a new workqueue worker 1802 * @pool: pool the new worker will belong to 1803 * 1804 * Create and start a new worker which is attached to @pool. 1805 * 1806 * CONTEXT: 1807 * Might sleep. Does GFP_KERNEL allocations. 1808 * 1809 * Return: 1810 * Pointer to the newly created worker. 1811 */ 1812 static struct worker *create_worker(struct worker_pool *pool) 1813 { 1814 struct worker *worker = NULL; 1815 int id = -1; 1816 char id_buf[16]; 1817 1818 /* ID is needed to determine kthread name */ 1819 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1820 if (id < 0) 1821 goto fail; 1822 1823 worker = alloc_worker(pool->node); 1824 if (!worker) 1825 goto fail; 1826 1827 worker->id = id; 1828 1829 if (pool->cpu >= 0) 1830 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1831 pool->attrs->nice < 0 ? "H" : ""); 1832 else 1833 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1834 1835 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1836 "kworker/%s", id_buf); 1837 if (IS_ERR(worker->task)) 1838 goto fail; 1839 1840 set_user_nice(worker->task, pool->attrs->nice); 1841 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1842 1843 /* successful, attach the worker to the pool */ 1844 worker_attach_to_pool(worker, pool); 1845 1846 /* start the newly created worker */ 1847 spin_lock_irq(&pool->lock); 1848 worker->pool->nr_workers++; 1849 worker_enter_idle(worker); 1850 wake_up_process(worker->task); 1851 spin_unlock_irq(&pool->lock); 1852 1853 return worker; 1854 1855 fail: 1856 if (id >= 0) 1857 ida_simple_remove(&pool->worker_ida, id); 1858 kfree(worker); 1859 return NULL; 1860 } 1861 1862 /** 1863 * destroy_worker - destroy a workqueue worker 1864 * @worker: worker to be destroyed 1865 * 1866 * Destroy @worker and adjust @pool stats accordingly. The worker should 1867 * be idle. 1868 * 1869 * CONTEXT: 1870 * spin_lock_irq(pool->lock). 1871 */ 1872 static void destroy_worker(struct worker *worker) 1873 { 1874 struct worker_pool *pool = worker->pool; 1875 1876 lockdep_assert_held(&pool->lock); 1877 1878 /* sanity check frenzy */ 1879 if (WARN_ON(worker->current_work) || 1880 WARN_ON(!list_empty(&worker->scheduled)) || 1881 WARN_ON(!(worker->flags & WORKER_IDLE))) 1882 return; 1883 1884 pool->nr_workers--; 1885 pool->nr_idle--; 1886 1887 list_del_init(&worker->entry); 1888 worker->flags |= WORKER_DIE; 1889 wake_up_process(worker->task); 1890 } 1891 1892 static void idle_worker_timeout(struct timer_list *t) 1893 { 1894 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1895 1896 spin_lock_irq(&pool->lock); 1897 1898 while (too_many_workers(pool)) { 1899 struct worker *worker; 1900 unsigned long expires; 1901 1902 /* idle_list is kept in LIFO order, check the last one */ 1903 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1904 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1905 1906 if (time_before(jiffies, expires)) { 1907 mod_timer(&pool->idle_timer, expires); 1908 break; 1909 } 1910 1911 destroy_worker(worker); 1912 } 1913 1914 spin_unlock_irq(&pool->lock); 1915 } 1916 1917 static void send_mayday(struct work_struct *work) 1918 { 1919 struct pool_workqueue *pwq = get_work_pwq(work); 1920 struct workqueue_struct *wq = pwq->wq; 1921 1922 lockdep_assert_held(&wq_mayday_lock); 1923 1924 if (!wq->rescuer) 1925 return; 1926 1927 /* mayday mayday mayday */ 1928 if (list_empty(&pwq->mayday_node)) { 1929 /* 1930 * If @pwq is for an unbound wq, its base ref may be put at 1931 * any time due to an attribute change. Pin @pwq until the 1932 * rescuer is done with it. 1933 */ 1934 get_pwq(pwq); 1935 list_add_tail(&pwq->mayday_node, &wq->maydays); 1936 wake_up_process(wq->rescuer->task); 1937 } 1938 } 1939 1940 static void pool_mayday_timeout(struct timer_list *t) 1941 { 1942 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 1943 struct work_struct *work; 1944 1945 spin_lock_irq(&pool->lock); 1946 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1947 1948 if (need_to_create_worker(pool)) { 1949 /* 1950 * We've been trying to create a new worker but 1951 * haven't been successful. We might be hitting an 1952 * allocation deadlock. Send distress signals to 1953 * rescuers. 1954 */ 1955 list_for_each_entry(work, &pool->worklist, entry) 1956 send_mayday(work); 1957 } 1958 1959 spin_unlock(&wq_mayday_lock); 1960 spin_unlock_irq(&pool->lock); 1961 1962 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1963 } 1964 1965 /** 1966 * maybe_create_worker - create a new worker if necessary 1967 * @pool: pool to create a new worker for 1968 * 1969 * Create a new worker for @pool if necessary. @pool is guaranteed to 1970 * have at least one idle worker on return from this function. If 1971 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1972 * sent to all rescuers with works scheduled on @pool to resolve 1973 * possible allocation deadlock. 1974 * 1975 * On return, need_to_create_worker() is guaranteed to be %false and 1976 * may_start_working() %true. 1977 * 1978 * LOCKING: 1979 * spin_lock_irq(pool->lock) which may be released and regrabbed 1980 * multiple times. Does GFP_KERNEL allocations. Called only from 1981 * manager. 1982 */ 1983 static void maybe_create_worker(struct worker_pool *pool) 1984 __releases(&pool->lock) 1985 __acquires(&pool->lock) 1986 { 1987 restart: 1988 spin_unlock_irq(&pool->lock); 1989 1990 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1991 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1992 1993 while (true) { 1994 if (create_worker(pool) || !need_to_create_worker(pool)) 1995 break; 1996 1997 schedule_timeout_interruptible(CREATE_COOLDOWN); 1998 1999 if (!need_to_create_worker(pool)) 2000 break; 2001 } 2002 2003 del_timer_sync(&pool->mayday_timer); 2004 spin_lock_irq(&pool->lock); 2005 /* 2006 * This is necessary even after a new worker was just successfully 2007 * created as @pool->lock was dropped and the new worker might have 2008 * already become busy. 2009 */ 2010 if (need_to_create_worker(pool)) 2011 goto restart; 2012 } 2013 2014 /** 2015 * manage_workers - manage worker pool 2016 * @worker: self 2017 * 2018 * Assume the manager role and manage the worker pool @worker belongs 2019 * to. At any given time, there can be only zero or one manager per 2020 * pool. The exclusion is handled automatically by this function. 2021 * 2022 * The caller can safely start processing works on false return. On 2023 * true return, it's guaranteed that need_to_create_worker() is false 2024 * and may_start_working() is true. 2025 * 2026 * CONTEXT: 2027 * spin_lock_irq(pool->lock) which may be released and regrabbed 2028 * multiple times. Does GFP_KERNEL allocations. 2029 * 2030 * Return: 2031 * %false if the pool doesn't need management and the caller can safely 2032 * start processing works, %true if management function was performed and 2033 * the conditions that the caller verified before calling the function may 2034 * no longer be true. 2035 */ 2036 static bool manage_workers(struct worker *worker) 2037 { 2038 struct worker_pool *pool = worker->pool; 2039 2040 if (pool->flags & POOL_MANAGER_ACTIVE) 2041 return false; 2042 2043 pool->flags |= POOL_MANAGER_ACTIVE; 2044 pool->manager = worker; 2045 2046 maybe_create_worker(pool); 2047 2048 pool->manager = NULL; 2049 pool->flags &= ~POOL_MANAGER_ACTIVE; 2050 wake_up(&wq_manager_wait); 2051 return true; 2052 } 2053 2054 /** 2055 * process_one_work - process single work 2056 * @worker: self 2057 * @work: work to process 2058 * 2059 * Process @work. This function contains all the logics necessary to 2060 * process a single work including synchronization against and 2061 * interaction with other workers on the same cpu, queueing and 2062 * flushing. As long as context requirement is met, any worker can 2063 * call this function to process a work. 2064 * 2065 * CONTEXT: 2066 * spin_lock_irq(pool->lock) which is released and regrabbed. 2067 */ 2068 static void process_one_work(struct worker *worker, struct work_struct *work) 2069 __releases(&pool->lock) 2070 __acquires(&pool->lock) 2071 { 2072 struct pool_workqueue *pwq = get_work_pwq(work); 2073 struct worker_pool *pool = worker->pool; 2074 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2075 int work_color; 2076 struct worker *collision; 2077 #ifdef CONFIG_LOCKDEP 2078 /* 2079 * It is permissible to free the struct work_struct from 2080 * inside the function that is called from it, this we need to 2081 * take into account for lockdep too. To avoid bogus "held 2082 * lock freed" warnings as well as problems when looking into 2083 * work->lockdep_map, make a copy and use that here. 2084 */ 2085 struct lockdep_map lockdep_map; 2086 2087 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2088 #endif 2089 /* ensure we're on the correct CPU */ 2090 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2091 raw_smp_processor_id() != pool->cpu); 2092 2093 /* 2094 * A single work shouldn't be executed concurrently by 2095 * multiple workers on a single cpu. Check whether anyone is 2096 * already processing the work. If so, defer the work to the 2097 * currently executing one. 2098 */ 2099 collision = find_worker_executing_work(pool, work); 2100 if (unlikely(collision)) { 2101 move_linked_works(work, &collision->scheduled, NULL); 2102 return; 2103 } 2104 2105 /* claim and dequeue */ 2106 debug_work_deactivate(work); 2107 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2108 worker->current_work = work; 2109 worker->current_func = work->func; 2110 worker->current_pwq = pwq; 2111 work_color = get_work_color(work); 2112 2113 /* 2114 * Record wq name for cmdline and debug reporting, may get 2115 * overridden through set_worker_desc(). 2116 */ 2117 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2118 2119 list_del_init(&work->entry); 2120 2121 /* 2122 * CPU intensive works don't participate in concurrency management. 2123 * They're the scheduler's responsibility. This takes @worker out 2124 * of concurrency management and the next code block will chain 2125 * execution of the pending work items. 2126 */ 2127 if (unlikely(cpu_intensive)) 2128 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2129 2130 /* 2131 * Wake up another worker if necessary. The condition is always 2132 * false for normal per-cpu workers since nr_running would always 2133 * be >= 1 at this point. This is used to chain execution of the 2134 * pending work items for WORKER_NOT_RUNNING workers such as the 2135 * UNBOUND and CPU_INTENSIVE ones. 2136 */ 2137 if (need_more_worker(pool)) 2138 wake_up_worker(pool); 2139 2140 /* 2141 * Record the last pool and clear PENDING which should be the last 2142 * update to @work. Also, do this inside @pool->lock so that 2143 * PENDING and queued state changes happen together while IRQ is 2144 * disabled. 2145 */ 2146 set_work_pool_and_clear_pending(work, pool->id); 2147 2148 spin_unlock_irq(&pool->lock); 2149 2150 lock_map_acquire(&pwq->wq->lockdep_map); 2151 lock_map_acquire(&lockdep_map); 2152 /* 2153 * Strictly speaking we should mark the invariant state without holding 2154 * any locks, that is, before these two lock_map_acquire()'s. 2155 * 2156 * However, that would result in: 2157 * 2158 * A(W1) 2159 * WFC(C) 2160 * A(W1) 2161 * C(C) 2162 * 2163 * Which would create W1->C->W1 dependencies, even though there is no 2164 * actual deadlock possible. There are two solutions, using a 2165 * read-recursive acquire on the work(queue) 'locks', but this will then 2166 * hit the lockdep limitation on recursive locks, or simply discard 2167 * these locks. 2168 * 2169 * AFAICT there is no possible deadlock scenario between the 2170 * flush_work() and complete() primitives (except for single-threaded 2171 * workqueues), so hiding them isn't a problem. 2172 */ 2173 lockdep_invariant_state(true); 2174 trace_workqueue_execute_start(work); 2175 worker->current_func(work); 2176 /* 2177 * While we must be careful to not use "work" after this, the trace 2178 * point will only record its address. 2179 */ 2180 trace_workqueue_execute_end(work); 2181 lock_map_release(&lockdep_map); 2182 lock_map_release(&pwq->wq->lockdep_map); 2183 2184 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2185 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2186 " last function: %pf\n", 2187 current->comm, preempt_count(), task_pid_nr(current), 2188 worker->current_func); 2189 debug_show_held_locks(current); 2190 dump_stack(); 2191 } 2192 2193 /* 2194 * The following prevents a kworker from hogging CPU on !PREEMPT 2195 * kernels, where a requeueing work item waiting for something to 2196 * happen could deadlock with stop_machine as such work item could 2197 * indefinitely requeue itself while all other CPUs are trapped in 2198 * stop_machine. At the same time, report a quiescent RCU state so 2199 * the same condition doesn't freeze RCU. 2200 */ 2201 cond_resched(); 2202 2203 spin_lock_irq(&pool->lock); 2204 2205 /* clear cpu intensive status */ 2206 if (unlikely(cpu_intensive)) 2207 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2208 2209 /* tag the worker for identification in schedule() */ 2210 worker->last_func = worker->current_func; 2211 2212 /* we're done with it, release */ 2213 hash_del(&worker->hentry); 2214 worker->current_work = NULL; 2215 worker->current_func = NULL; 2216 worker->current_pwq = NULL; 2217 pwq_dec_nr_in_flight(pwq, work_color); 2218 } 2219 2220 /** 2221 * process_scheduled_works - process scheduled works 2222 * @worker: self 2223 * 2224 * Process all scheduled works. Please note that the scheduled list 2225 * may change while processing a work, so this function repeatedly 2226 * fetches a work from the top and executes it. 2227 * 2228 * CONTEXT: 2229 * spin_lock_irq(pool->lock) which may be released and regrabbed 2230 * multiple times. 2231 */ 2232 static void process_scheduled_works(struct worker *worker) 2233 { 2234 while (!list_empty(&worker->scheduled)) { 2235 struct work_struct *work = list_first_entry(&worker->scheduled, 2236 struct work_struct, entry); 2237 process_one_work(worker, work); 2238 } 2239 } 2240 2241 static void set_pf_worker(bool val) 2242 { 2243 mutex_lock(&wq_pool_attach_mutex); 2244 if (val) 2245 current->flags |= PF_WQ_WORKER; 2246 else 2247 current->flags &= ~PF_WQ_WORKER; 2248 mutex_unlock(&wq_pool_attach_mutex); 2249 } 2250 2251 /** 2252 * worker_thread - the worker thread function 2253 * @__worker: self 2254 * 2255 * The worker thread function. All workers belong to a worker_pool - 2256 * either a per-cpu one or dynamic unbound one. These workers process all 2257 * work items regardless of their specific target workqueue. The only 2258 * exception is work items which belong to workqueues with a rescuer which 2259 * will be explained in rescuer_thread(). 2260 * 2261 * Return: 0 2262 */ 2263 static int worker_thread(void *__worker) 2264 { 2265 struct worker *worker = __worker; 2266 struct worker_pool *pool = worker->pool; 2267 2268 /* tell the scheduler that this is a workqueue worker */ 2269 set_pf_worker(true); 2270 woke_up: 2271 spin_lock_irq(&pool->lock); 2272 2273 /* am I supposed to die? */ 2274 if (unlikely(worker->flags & WORKER_DIE)) { 2275 spin_unlock_irq(&pool->lock); 2276 WARN_ON_ONCE(!list_empty(&worker->entry)); 2277 set_pf_worker(false); 2278 2279 set_task_comm(worker->task, "kworker/dying"); 2280 ida_simple_remove(&pool->worker_ida, worker->id); 2281 worker_detach_from_pool(worker); 2282 kfree(worker); 2283 return 0; 2284 } 2285 2286 worker_leave_idle(worker); 2287 recheck: 2288 /* no more worker necessary? */ 2289 if (!need_more_worker(pool)) 2290 goto sleep; 2291 2292 /* do we need to manage? */ 2293 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2294 goto recheck; 2295 2296 /* 2297 * ->scheduled list can only be filled while a worker is 2298 * preparing to process a work or actually processing it. 2299 * Make sure nobody diddled with it while I was sleeping. 2300 */ 2301 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2302 2303 /* 2304 * Finish PREP stage. We're guaranteed to have at least one idle 2305 * worker or that someone else has already assumed the manager 2306 * role. This is where @worker starts participating in concurrency 2307 * management if applicable and concurrency management is restored 2308 * after being rebound. See rebind_workers() for details. 2309 */ 2310 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2311 2312 do { 2313 struct work_struct *work = 2314 list_first_entry(&pool->worklist, 2315 struct work_struct, entry); 2316 2317 pool->watchdog_ts = jiffies; 2318 2319 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2320 /* optimization path, not strictly necessary */ 2321 process_one_work(worker, work); 2322 if (unlikely(!list_empty(&worker->scheduled))) 2323 process_scheduled_works(worker); 2324 } else { 2325 move_linked_works(work, &worker->scheduled, NULL); 2326 process_scheduled_works(worker); 2327 } 2328 } while (keep_working(pool)); 2329 2330 worker_set_flags(worker, WORKER_PREP); 2331 sleep: 2332 /* 2333 * pool->lock is held and there's no work to process and no need to 2334 * manage, sleep. Workers are woken up only while holding 2335 * pool->lock or from local cpu, so setting the current state 2336 * before releasing pool->lock is enough to prevent losing any 2337 * event. 2338 */ 2339 worker_enter_idle(worker); 2340 __set_current_state(TASK_IDLE); 2341 spin_unlock_irq(&pool->lock); 2342 schedule(); 2343 goto woke_up; 2344 } 2345 2346 /** 2347 * rescuer_thread - the rescuer thread function 2348 * @__rescuer: self 2349 * 2350 * Workqueue rescuer thread function. There's one rescuer for each 2351 * workqueue which has WQ_MEM_RECLAIM set. 2352 * 2353 * Regular work processing on a pool may block trying to create a new 2354 * worker which uses GFP_KERNEL allocation which has slight chance of 2355 * developing into deadlock if some works currently on the same queue 2356 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2357 * the problem rescuer solves. 2358 * 2359 * When such condition is possible, the pool summons rescuers of all 2360 * workqueues which have works queued on the pool and let them process 2361 * those works so that forward progress can be guaranteed. 2362 * 2363 * This should happen rarely. 2364 * 2365 * Return: 0 2366 */ 2367 static int rescuer_thread(void *__rescuer) 2368 { 2369 struct worker *rescuer = __rescuer; 2370 struct workqueue_struct *wq = rescuer->rescue_wq; 2371 struct list_head *scheduled = &rescuer->scheduled; 2372 bool should_stop; 2373 2374 set_user_nice(current, RESCUER_NICE_LEVEL); 2375 2376 /* 2377 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2378 * doesn't participate in concurrency management. 2379 */ 2380 set_pf_worker(true); 2381 repeat: 2382 set_current_state(TASK_IDLE); 2383 2384 /* 2385 * By the time the rescuer is requested to stop, the workqueue 2386 * shouldn't have any work pending, but @wq->maydays may still have 2387 * pwq(s) queued. This can happen by non-rescuer workers consuming 2388 * all the work items before the rescuer got to them. Go through 2389 * @wq->maydays processing before acting on should_stop so that the 2390 * list is always empty on exit. 2391 */ 2392 should_stop = kthread_should_stop(); 2393 2394 /* see whether any pwq is asking for help */ 2395 spin_lock_irq(&wq_mayday_lock); 2396 2397 while (!list_empty(&wq->maydays)) { 2398 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2399 struct pool_workqueue, mayday_node); 2400 struct worker_pool *pool = pwq->pool; 2401 struct work_struct *work, *n; 2402 bool first = true; 2403 2404 __set_current_state(TASK_RUNNING); 2405 list_del_init(&pwq->mayday_node); 2406 2407 spin_unlock_irq(&wq_mayday_lock); 2408 2409 worker_attach_to_pool(rescuer, pool); 2410 2411 spin_lock_irq(&pool->lock); 2412 2413 /* 2414 * Slurp in all works issued via this workqueue and 2415 * process'em. 2416 */ 2417 WARN_ON_ONCE(!list_empty(scheduled)); 2418 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2419 if (get_work_pwq(work) == pwq) { 2420 if (first) 2421 pool->watchdog_ts = jiffies; 2422 move_linked_works(work, scheduled, &n); 2423 } 2424 first = false; 2425 } 2426 2427 if (!list_empty(scheduled)) { 2428 process_scheduled_works(rescuer); 2429 2430 /* 2431 * The above execution of rescued work items could 2432 * have created more to rescue through 2433 * pwq_activate_first_delayed() or chained 2434 * queueing. Let's put @pwq back on mayday list so 2435 * that such back-to-back work items, which may be 2436 * being used to relieve memory pressure, don't 2437 * incur MAYDAY_INTERVAL delay inbetween. 2438 */ 2439 if (need_to_create_worker(pool)) { 2440 spin_lock(&wq_mayday_lock); 2441 get_pwq(pwq); 2442 list_move_tail(&pwq->mayday_node, &wq->maydays); 2443 spin_unlock(&wq_mayday_lock); 2444 } 2445 } 2446 2447 /* 2448 * Put the reference grabbed by send_mayday(). @pool won't 2449 * go away while we're still attached to it. 2450 */ 2451 put_pwq(pwq); 2452 2453 /* 2454 * Leave this pool. If need_more_worker() is %true, notify a 2455 * regular worker; otherwise, we end up with 0 concurrency 2456 * and stalling the execution. 2457 */ 2458 if (need_more_worker(pool)) 2459 wake_up_worker(pool); 2460 2461 spin_unlock_irq(&pool->lock); 2462 2463 worker_detach_from_pool(rescuer); 2464 2465 spin_lock_irq(&wq_mayday_lock); 2466 } 2467 2468 spin_unlock_irq(&wq_mayday_lock); 2469 2470 if (should_stop) { 2471 __set_current_state(TASK_RUNNING); 2472 set_pf_worker(false); 2473 return 0; 2474 } 2475 2476 /* rescuers should never participate in concurrency management */ 2477 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2478 schedule(); 2479 goto repeat; 2480 } 2481 2482 /** 2483 * check_flush_dependency - check for flush dependency sanity 2484 * @target_wq: workqueue being flushed 2485 * @target_work: work item being flushed (NULL for workqueue flushes) 2486 * 2487 * %current is trying to flush the whole @target_wq or @target_work on it. 2488 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2489 * reclaiming memory or running on a workqueue which doesn't have 2490 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2491 * a deadlock. 2492 */ 2493 static void check_flush_dependency(struct workqueue_struct *target_wq, 2494 struct work_struct *target_work) 2495 { 2496 work_func_t target_func = target_work ? target_work->func : NULL; 2497 struct worker *worker; 2498 2499 if (target_wq->flags & WQ_MEM_RECLAIM) 2500 return; 2501 2502 worker = current_wq_worker(); 2503 2504 WARN_ONCE(current->flags & PF_MEMALLOC, 2505 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2506 current->pid, current->comm, target_wq->name, target_func); 2507 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2508 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2509 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2510 worker->current_pwq->wq->name, worker->current_func, 2511 target_wq->name, target_func); 2512 } 2513 2514 struct wq_barrier { 2515 struct work_struct work; 2516 struct completion done; 2517 struct task_struct *task; /* purely informational */ 2518 }; 2519 2520 static void wq_barrier_func(struct work_struct *work) 2521 { 2522 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2523 complete(&barr->done); 2524 } 2525 2526 /** 2527 * insert_wq_barrier - insert a barrier work 2528 * @pwq: pwq to insert barrier into 2529 * @barr: wq_barrier to insert 2530 * @target: target work to attach @barr to 2531 * @worker: worker currently executing @target, NULL if @target is not executing 2532 * 2533 * @barr is linked to @target such that @barr is completed only after 2534 * @target finishes execution. Please note that the ordering 2535 * guarantee is observed only with respect to @target and on the local 2536 * cpu. 2537 * 2538 * Currently, a queued barrier can't be canceled. This is because 2539 * try_to_grab_pending() can't determine whether the work to be 2540 * grabbed is at the head of the queue and thus can't clear LINKED 2541 * flag of the previous work while there must be a valid next work 2542 * after a work with LINKED flag set. 2543 * 2544 * Note that when @worker is non-NULL, @target may be modified 2545 * underneath us, so we can't reliably determine pwq from @target. 2546 * 2547 * CONTEXT: 2548 * spin_lock_irq(pool->lock). 2549 */ 2550 static void insert_wq_barrier(struct pool_workqueue *pwq, 2551 struct wq_barrier *barr, 2552 struct work_struct *target, struct worker *worker) 2553 { 2554 struct list_head *head; 2555 unsigned int linked = 0; 2556 2557 /* 2558 * debugobject calls are safe here even with pool->lock locked 2559 * as we know for sure that this will not trigger any of the 2560 * checks and call back into the fixup functions where we 2561 * might deadlock. 2562 */ 2563 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2564 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2565 2566 init_completion_map(&barr->done, &target->lockdep_map); 2567 2568 barr->task = current; 2569 2570 /* 2571 * If @target is currently being executed, schedule the 2572 * barrier to the worker; otherwise, put it after @target. 2573 */ 2574 if (worker) 2575 head = worker->scheduled.next; 2576 else { 2577 unsigned long *bits = work_data_bits(target); 2578 2579 head = target->entry.next; 2580 /* there can already be other linked works, inherit and set */ 2581 linked = *bits & WORK_STRUCT_LINKED; 2582 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2583 } 2584 2585 debug_work_activate(&barr->work); 2586 insert_work(pwq, &barr->work, head, 2587 work_color_to_flags(WORK_NO_COLOR) | linked); 2588 } 2589 2590 /** 2591 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2592 * @wq: workqueue being flushed 2593 * @flush_color: new flush color, < 0 for no-op 2594 * @work_color: new work color, < 0 for no-op 2595 * 2596 * Prepare pwqs for workqueue flushing. 2597 * 2598 * If @flush_color is non-negative, flush_color on all pwqs should be 2599 * -1. If no pwq has in-flight commands at the specified color, all 2600 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2601 * has in flight commands, its pwq->flush_color is set to 2602 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2603 * wakeup logic is armed and %true is returned. 2604 * 2605 * The caller should have initialized @wq->first_flusher prior to 2606 * calling this function with non-negative @flush_color. If 2607 * @flush_color is negative, no flush color update is done and %false 2608 * is returned. 2609 * 2610 * If @work_color is non-negative, all pwqs should have the same 2611 * work_color which is previous to @work_color and all will be 2612 * advanced to @work_color. 2613 * 2614 * CONTEXT: 2615 * mutex_lock(wq->mutex). 2616 * 2617 * Return: 2618 * %true if @flush_color >= 0 and there's something to flush. %false 2619 * otherwise. 2620 */ 2621 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2622 int flush_color, int work_color) 2623 { 2624 bool wait = false; 2625 struct pool_workqueue *pwq; 2626 2627 if (flush_color >= 0) { 2628 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2629 atomic_set(&wq->nr_pwqs_to_flush, 1); 2630 } 2631 2632 for_each_pwq(pwq, wq) { 2633 struct worker_pool *pool = pwq->pool; 2634 2635 spin_lock_irq(&pool->lock); 2636 2637 if (flush_color >= 0) { 2638 WARN_ON_ONCE(pwq->flush_color != -1); 2639 2640 if (pwq->nr_in_flight[flush_color]) { 2641 pwq->flush_color = flush_color; 2642 atomic_inc(&wq->nr_pwqs_to_flush); 2643 wait = true; 2644 } 2645 } 2646 2647 if (work_color >= 0) { 2648 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2649 pwq->work_color = work_color; 2650 } 2651 2652 spin_unlock_irq(&pool->lock); 2653 } 2654 2655 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2656 complete(&wq->first_flusher->done); 2657 2658 return wait; 2659 } 2660 2661 /** 2662 * flush_workqueue - ensure that any scheduled work has run to completion. 2663 * @wq: workqueue to flush 2664 * 2665 * This function sleeps until all work items which were queued on entry 2666 * have finished execution, but it is not livelocked by new incoming ones. 2667 */ 2668 void flush_workqueue(struct workqueue_struct *wq) 2669 { 2670 struct wq_flusher this_flusher = { 2671 .list = LIST_HEAD_INIT(this_flusher.list), 2672 .flush_color = -1, 2673 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2674 }; 2675 int next_color; 2676 2677 if (WARN_ON(!wq_online)) 2678 return; 2679 2680 lock_map_acquire(&wq->lockdep_map); 2681 lock_map_release(&wq->lockdep_map); 2682 2683 mutex_lock(&wq->mutex); 2684 2685 /* 2686 * Start-to-wait phase 2687 */ 2688 next_color = work_next_color(wq->work_color); 2689 2690 if (next_color != wq->flush_color) { 2691 /* 2692 * Color space is not full. The current work_color 2693 * becomes our flush_color and work_color is advanced 2694 * by one. 2695 */ 2696 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2697 this_flusher.flush_color = wq->work_color; 2698 wq->work_color = next_color; 2699 2700 if (!wq->first_flusher) { 2701 /* no flush in progress, become the first flusher */ 2702 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2703 2704 wq->first_flusher = &this_flusher; 2705 2706 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2707 wq->work_color)) { 2708 /* nothing to flush, done */ 2709 wq->flush_color = next_color; 2710 wq->first_flusher = NULL; 2711 goto out_unlock; 2712 } 2713 } else { 2714 /* wait in queue */ 2715 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2716 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2717 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2718 } 2719 } else { 2720 /* 2721 * Oops, color space is full, wait on overflow queue. 2722 * The next flush completion will assign us 2723 * flush_color and transfer to flusher_queue. 2724 */ 2725 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2726 } 2727 2728 check_flush_dependency(wq, NULL); 2729 2730 mutex_unlock(&wq->mutex); 2731 2732 wait_for_completion(&this_flusher.done); 2733 2734 /* 2735 * Wake-up-and-cascade phase 2736 * 2737 * First flushers are responsible for cascading flushes and 2738 * handling overflow. Non-first flushers can simply return. 2739 */ 2740 if (wq->first_flusher != &this_flusher) 2741 return; 2742 2743 mutex_lock(&wq->mutex); 2744 2745 /* we might have raced, check again with mutex held */ 2746 if (wq->first_flusher != &this_flusher) 2747 goto out_unlock; 2748 2749 wq->first_flusher = NULL; 2750 2751 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2752 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2753 2754 while (true) { 2755 struct wq_flusher *next, *tmp; 2756 2757 /* complete all the flushers sharing the current flush color */ 2758 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2759 if (next->flush_color != wq->flush_color) 2760 break; 2761 list_del_init(&next->list); 2762 complete(&next->done); 2763 } 2764 2765 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2766 wq->flush_color != work_next_color(wq->work_color)); 2767 2768 /* this flush_color is finished, advance by one */ 2769 wq->flush_color = work_next_color(wq->flush_color); 2770 2771 /* one color has been freed, handle overflow queue */ 2772 if (!list_empty(&wq->flusher_overflow)) { 2773 /* 2774 * Assign the same color to all overflowed 2775 * flushers, advance work_color and append to 2776 * flusher_queue. This is the start-to-wait 2777 * phase for these overflowed flushers. 2778 */ 2779 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2780 tmp->flush_color = wq->work_color; 2781 2782 wq->work_color = work_next_color(wq->work_color); 2783 2784 list_splice_tail_init(&wq->flusher_overflow, 2785 &wq->flusher_queue); 2786 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2787 } 2788 2789 if (list_empty(&wq->flusher_queue)) { 2790 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2791 break; 2792 } 2793 2794 /* 2795 * Need to flush more colors. Make the next flusher 2796 * the new first flusher and arm pwqs. 2797 */ 2798 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2799 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2800 2801 list_del_init(&next->list); 2802 wq->first_flusher = next; 2803 2804 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2805 break; 2806 2807 /* 2808 * Meh... this color is already done, clear first 2809 * flusher and repeat cascading. 2810 */ 2811 wq->first_flusher = NULL; 2812 } 2813 2814 out_unlock: 2815 mutex_unlock(&wq->mutex); 2816 } 2817 EXPORT_SYMBOL(flush_workqueue); 2818 2819 /** 2820 * drain_workqueue - drain a workqueue 2821 * @wq: workqueue to drain 2822 * 2823 * Wait until the workqueue becomes empty. While draining is in progress, 2824 * only chain queueing is allowed. IOW, only currently pending or running 2825 * work items on @wq can queue further work items on it. @wq is flushed 2826 * repeatedly until it becomes empty. The number of flushing is determined 2827 * by the depth of chaining and should be relatively short. Whine if it 2828 * takes too long. 2829 */ 2830 void drain_workqueue(struct workqueue_struct *wq) 2831 { 2832 unsigned int flush_cnt = 0; 2833 struct pool_workqueue *pwq; 2834 2835 /* 2836 * __queue_work() needs to test whether there are drainers, is much 2837 * hotter than drain_workqueue() and already looks at @wq->flags. 2838 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2839 */ 2840 mutex_lock(&wq->mutex); 2841 if (!wq->nr_drainers++) 2842 wq->flags |= __WQ_DRAINING; 2843 mutex_unlock(&wq->mutex); 2844 reflush: 2845 flush_workqueue(wq); 2846 2847 mutex_lock(&wq->mutex); 2848 2849 for_each_pwq(pwq, wq) { 2850 bool drained; 2851 2852 spin_lock_irq(&pwq->pool->lock); 2853 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2854 spin_unlock_irq(&pwq->pool->lock); 2855 2856 if (drained) 2857 continue; 2858 2859 if (++flush_cnt == 10 || 2860 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2861 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2862 wq->name, flush_cnt); 2863 2864 mutex_unlock(&wq->mutex); 2865 goto reflush; 2866 } 2867 2868 if (!--wq->nr_drainers) 2869 wq->flags &= ~__WQ_DRAINING; 2870 mutex_unlock(&wq->mutex); 2871 } 2872 EXPORT_SYMBOL_GPL(drain_workqueue); 2873 2874 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2875 bool from_cancel) 2876 { 2877 struct worker *worker = NULL; 2878 struct worker_pool *pool; 2879 struct pool_workqueue *pwq; 2880 2881 might_sleep(); 2882 2883 local_irq_disable(); 2884 pool = get_work_pool(work); 2885 if (!pool) { 2886 local_irq_enable(); 2887 return false; 2888 } 2889 2890 spin_lock(&pool->lock); 2891 /* see the comment in try_to_grab_pending() with the same code */ 2892 pwq = get_work_pwq(work); 2893 if (pwq) { 2894 if (unlikely(pwq->pool != pool)) 2895 goto already_gone; 2896 } else { 2897 worker = find_worker_executing_work(pool, work); 2898 if (!worker) 2899 goto already_gone; 2900 pwq = worker->current_pwq; 2901 } 2902 2903 check_flush_dependency(pwq->wq, work); 2904 2905 insert_wq_barrier(pwq, barr, work, worker); 2906 spin_unlock_irq(&pool->lock); 2907 2908 /* 2909 * Force a lock recursion deadlock when using flush_work() inside a 2910 * single-threaded or rescuer equipped workqueue. 2911 * 2912 * For single threaded workqueues the deadlock happens when the work 2913 * is after the work issuing the flush_work(). For rescuer equipped 2914 * workqueues the deadlock happens when the rescuer stalls, blocking 2915 * forward progress. 2916 */ 2917 if (!from_cancel && 2918 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 2919 lock_map_acquire(&pwq->wq->lockdep_map); 2920 lock_map_release(&pwq->wq->lockdep_map); 2921 } 2922 2923 return true; 2924 already_gone: 2925 spin_unlock_irq(&pool->lock); 2926 return false; 2927 } 2928 2929 static bool __flush_work(struct work_struct *work, bool from_cancel) 2930 { 2931 struct wq_barrier barr; 2932 2933 if (WARN_ON(!wq_online)) 2934 return false; 2935 2936 if (!from_cancel) { 2937 lock_map_acquire(&work->lockdep_map); 2938 lock_map_release(&work->lockdep_map); 2939 } 2940 2941 if (start_flush_work(work, &barr, from_cancel)) { 2942 wait_for_completion(&barr.done); 2943 destroy_work_on_stack(&barr.work); 2944 return true; 2945 } else { 2946 return false; 2947 } 2948 } 2949 2950 /** 2951 * flush_work - wait for a work to finish executing the last queueing instance 2952 * @work: the work to flush 2953 * 2954 * Wait until @work has finished execution. @work is guaranteed to be idle 2955 * on return if it hasn't been requeued since flush started. 2956 * 2957 * Return: 2958 * %true if flush_work() waited for the work to finish execution, 2959 * %false if it was already idle. 2960 */ 2961 bool flush_work(struct work_struct *work) 2962 { 2963 return __flush_work(work, false); 2964 } 2965 EXPORT_SYMBOL_GPL(flush_work); 2966 2967 struct cwt_wait { 2968 wait_queue_entry_t wait; 2969 struct work_struct *work; 2970 }; 2971 2972 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2973 { 2974 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2975 2976 if (cwait->work != key) 2977 return 0; 2978 return autoremove_wake_function(wait, mode, sync, key); 2979 } 2980 2981 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2982 { 2983 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2984 unsigned long flags; 2985 int ret; 2986 2987 do { 2988 ret = try_to_grab_pending(work, is_dwork, &flags); 2989 /* 2990 * If someone else is already canceling, wait for it to 2991 * finish. flush_work() doesn't work for PREEMPT_NONE 2992 * because we may get scheduled between @work's completion 2993 * and the other canceling task resuming and clearing 2994 * CANCELING - flush_work() will return false immediately 2995 * as @work is no longer busy, try_to_grab_pending() will 2996 * return -ENOENT as @work is still being canceled and the 2997 * other canceling task won't be able to clear CANCELING as 2998 * we're hogging the CPU. 2999 * 3000 * Let's wait for completion using a waitqueue. As this 3001 * may lead to the thundering herd problem, use a custom 3002 * wake function which matches @work along with exclusive 3003 * wait and wakeup. 3004 */ 3005 if (unlikely(ret == -ENOENT)) { 3006 struct cwt_wait cwait; 3007 3008 init_wait(&cwait.wait); 3009 cwait.wait.func = cwt_wakefn; 3010 cwait.work = work; 3011 3012 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3013 TASK_UNINTERRUPTIBLE); 3014 if (work_is_canceling(work)) 3015 schedule(); 3016 finish_wait(&cancel_waitq, &cwait.wait); 3017 } 3018 } while (unlikely(ret < 0)); 3019 3020 /* tell other tasks trying to grab @work to back off */ 3021 mark_work_canceling(work); 3022 local_irq_restore(flags); 3023 3024 /* 3025 * This allows canceling during early boot. We know that @work 3026 * isn't executing. 3027 */ 3028 if (wq_online) 3029 __flush_work(work, true); 3030 3031 clear_work_data(work); 3032 3033 /* 3034 * Paired with prepare_to_wait() above so that either 3035 * waitqueue_active() is visible here or !work_is_canceling() is 3036 * visible there. 3037 */ 3038 smp_mb(); 3039 if (waitqueue_active(&cancel_waitq)) 3040 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3041 3042 return ret; 3043 } 3044 3045 /** 3046 * cancel_work_sync - cancel a work and wait for it to finish 3047 * @work: the work to cancel 3048 * 3049 * Cancel @work and wait for its execution to finish. This function 3050 * can be used even if the work re-queues itself or migrates to 3051 * another workqueue. On return from this function, @work is 3052 * guaranteed to be not pending or executing on any CPU. 3053 * 3054 * cancel_work_sync(&delayed_work->work) must not be used for 3055 * delayed_work's. Use cancel_delayed_work_sync() instead. 3056 * 3057 * The caller must ensure that the workqueue on which @work was last 3058 * queued can't be destroyed before this function returns. 3059 * 3060 * Return: 3061 * %true if @work was pending, %false otherwise. 3062 */ 3063 bool cancel_work_sync(struct work_struct *work) 3064 { 3065 return __cancel_work_timer(work, false); 3066 } 3067 EXPORT_SYMBOL_GPL(cancel_work_sync); 3068 3069 /** 3070 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3071 * @dwork: the delayed work to flush 3072 * 3073 * Delayed timer is cancelled and the pending work is queued for 3074 * immediate execution. Like flush_work(), this function only 3075 * considers the last queueing instance of @dwork. 3076 * 3077 * Return: 3078 * %true if flush_work() waited for the work to finish execution, 3079 * %false if it was already idle. 3080 */ 3081 bool flush_delayed_work(struct delayed_work *dwork) 3082 { 3083 local_irq_disable(); 3084 if (del_timer_sync(&dwork->timer)) 3085 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3086 local_irq_enable(); 3087 return flush_work(&dwork->work); 3088 } 3089 EXPORT_SYMBOL(flush_delayed_work); 3090 3091 /** 3092 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3093 * @rwork: the rcu work to flush 3094 * 3095 * Return: 3096 * %true if flush_rcu_work() waited for the work to finish execution, 3097 * %false if it was already idle. 3098 */ 3099 bool flush_rcu_work(struct rcu_work *rwork) 3100 { 3101 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3102 rcu_barrier(); 3103 flush_work(&rwork->work); 3104 return true; 3105 } else { 3106 return flush_work(&rwork->work); 3107 } 3108 } 3109 EXPORT_SYMBOL(flush_rcu_work); 3110 3111 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3112 { 3113 unsigned long flags; 3114 int ret; 3115 3116 do { 3117 ret = try_to_grab_pending(work, is_dwork, &flags); 3118 } while (unlikely(ret == -EAGAIN)); 3119 3120 if (unlikely(ret < 0)) 3121 return false; 3122 3123 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3124 local_irq_restore(flags); 3125 return ret; 3126 } 3127 3128 /** 3129 * cancel_delayed_work - cancel a delayed work 3130 * @dwork: delayed_work to cancel 3131 * 3132 * Kill off a pending delayed_work. 3133 * 3134 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3135 * pending. 3136 * 3137 * Note: 3138 * The work callback function may still be running on return, unless 3139 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3140 * use cancel_delayed_work_sync() to wait on it. 3141 * 3142 * This function is safe to call from any context including IRQ handler. 3143 */ 3144 bool cancel_delayed_work(struct delayed_work *dwork) 3145 { 3146 return __cancel_work(&dwork->work, true); 3147 } 3148 EXPORT_SYMBOL(cancel_delayed_work); 3149 3150 /** 3151 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3152 * @dwork: the delayed work cancel 3153 * 3154 * This is cancel_work_sync() for delayed works. 3155 * 3156 * Return: 3157 * %true if @dwork was pending, %false otherwise. 3158 */ 3159 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3160 { 3161 return __cancel_work_timer(&dwork->work, true); 3162 } 3163 EXPORT_SYMBOL(cancel_delayed_work_sync); 3164 3165 /** 3166 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3167 * @func: the function to call 3168 * 3169 * schedule_on_each_cpu() executes @func on each online CPU using the 3170 * system workqueue and blocks until all CPUs have completed. 3171 * schedule_on_each_cpu() is very slow. 3172 * 3173 * Return: 3174 * 0 on success, -errno on failure. 3175 */ 3176 int schedule_on_each_cpu(work_func_t func) 3177 { 3178 int cpu; 3179 struct work_struct __percpu *works; 3180 3181 works = alloc_percpu(struct work_struct); 3182 if (!works) 3183 return -ENOMEM; 3184 3185 get_online_cpus(); 3186 3187 for_each_online_cpu(cpu) { 3188 struct work_struct *work = per_cpu_ptr(works, cpu); 3189 3190 INIT_WORK(work, func); 3191 schedule_work_on(cpu, work); 3192 } 3193 3194 for_each_online_cpu(cpu) 3195 flush_work(per_cpu_ptr(works, cpu)); 3196 3197 put_online_cpus(); 3198 free_percpu(works); 3199 return 0; 3200 } 3201 3202 /** 3203 * execute_in_process_context - reliably execute the routine with user context 3204 * @fn: the function to execute 3205 * @ew: guaranteed storage for the execute work structure (must 3206 * be available when the work executes) 3207 * 3208 * Executes the function immediately if process context is available, 3209 * otherwise schedules the function for delayed execution. 3210 * 3211 * Return: 0 - function was executed 3212 * 1 - function was scheduled for execution 3213 */ 3214 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3215 { 3216 if (!in_interrupt()) { 3217 fn(&ew->work); 3218 return 0; 3219 } 3220 3221 INIT_WORK(&ew->work, fn); 3222 schedule_work(&ew->work); 3223 3224 return 1; 3225 } 3226 EXPORT_SYMBOL_GPL(execute_in_process_context); 3227 3228 /** 3229 * free_workqueue_attrs - free a workqueue_attrs 3230 * @attrs: workqueue_attrs to free 3231 * 3232 * Undo alloc_workqueue_attrs(). 3233 */ 3234 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3235 { 3236 if (attrs) { 3237 free_cpumask_var(attrs->cpumask); 3238 kfree(attrs); 3239 } 3240 } 3241 3242 /** 3243 * alloc_workqueue_attrs - allocate a workqueue_attrs 3244 * @gfp_mask: allocation mask to use 3245 * 3246 * Allocate a new workqueue_attrs, initialize with default settings and 3247 * return it. 3248 * 3249 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3250 */ 3251 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3252 { 3253 struct workqueue_attrs *attrs; 3254 3255 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3256 if (!attrs) 3257 goto fail; 3258 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3259 goto fail; 3260 3261 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3262 return attrs; 3263 fail: 3264 free_workqueue_attrs(attrs); 3265 return NULL; 3266 } 3267 3268 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3269 const struct workqueue_attrs *from) 3270 { 3271 to->nice = from->nice; 3272 cpumask_copy(to->cpumask, from->cpumask); 3273 /* 3274 * Unlike hash and equality test, this function doesn't ignore 3275 * ->no_numa as it is used for both pool and wq attrs. Instead, 3276 * get_unbound_pool() explicitly clears ->no_numa after copying. 3277 */ 3278 to->no_numa = from->no_numa; 3279 } 3280 3281 /* hash value of the content of @attr */ 3282 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3283 { 3284 u32 hash = 0; 3285 3286 hash = jhash_1word(attrs->nice, hash); 3287 hash = jhash(cpumask_bits(attrs->cpumask), 3288 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3289 return hash; 3290 } 3291 3292 /* content equality test */ 3293 static bool wqattrs_equal(const struct workqueue_attrs *a, 3294 const struct workqueue_attrs *b) 3295 { 3296 if (a->nice != b->nice) 3297 return false; 3298 if (!cpumask_equal(a->cpumask, b->cpumask)) 3299 return false; 3300 return true; 3301 } 3302 3303 /** 3304 * init_worker_pool - initialize a newly zalloc'd worker_pool 3305 * @pool: worker_pool to initialize 3306 * 3307 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3308 * 3309 * Return: 0 on success, -errno on failure. Even on failure, all fields 3310 * inside @pool proper are initialized and put_unbound_pool() can be called 3311 * on @pool safely to release it. 3312 */ 3313 static int init_worker_pool(struct worker_pool *pool) 3314 { 3315 spin_lock_init(&pool->lock); 3316 pool->id = -1; 3317 pool->cpu = -1; 3318 pool->node = NUMA_NO_NODE; 3319 pool->flags |= POOL_DISASSOCIATED; 3320 pool->watchdog_ts = jiffies; 3321 INIT_LIST_HEAD(&pool->worklist); 3322 INIT_LIST_HEAD(&pool->idle_list); 3323 hash_init(pool->busy_hash); 3324 3325 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3326 3327 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3328 3329 INIT_LIST_HEAD(&pool->workers); 3330 3331 ida_init(&pool->worker_ida); 3332 INIT_HLIST_NODE(&pool->hash_node); 3333 pool->refcnt = 1; 3334 3335 /* shouldn't fail above this point */ 3336 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3337 if (!pool->attrs) 3338 return -ENOMEM; 3339 return 0; 3340 } 3341 3342 #ifdef CONFIG_LOCKDEP 3343 static void wq_init_lockdep(struct workqueue_struct *wq) 3344 { 3345 char *lock_name; 3346 3347 lockdep_register_key(&wq->key); 3348 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3349 if (!lock_name) 3350 lock_name = wq->name; 3351 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3352 } 3353 3354 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3355 { 3356 lockdep_unregister_key(&wq->key); 3357 } 3358 3359 static void wq_free_lockdep(struct workqueue_struct *wq) 3360 { 3361 if (wq->lock_name != wq->name) 3362 kfree(wq->lock_name); 3363 } 3364 #else 3365 static void wq_init_lockdep(struct workqueue_struct *wq) 3366 { 3367 } 3368 3369 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3370 { 3371 } 3372 3373 static void wq_free_lockdep(struct workqueue_struct *wq) 3374 { 3375 } 3376 #endif 3377 3378 static void rcu_free_wq(struct rcu_head *rcu) 3379 { 3380 struct workqueue_struct *wq = 3381 container_of(rcu, struct workqueue_struct, rcu); 3382 3383 wq_free_lockdep(wq); 3384 3385 if (!(wq->flags & WQ_UNBOUND)) 3386 free_percpu(wq->cpu_pwqs); 3387 else 3388 free_workqueue_attrs(wq->unbound_attrs); 3389 3390 kfree(wq->rescuer); 3391 kfree(wq); 3392 } 3393 3394 static void rcu_free_pool(struct rcu_head *rcu) 3395 { 3396 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3397 3398 ida_destroy(&pool->worker_ida); 3399 free_workqueue_attrs(pool->attrs); 3400 kfree(pool); 3401 } 3402 3403 /** 3404 * put_unbound_pool - put a worker_pool 3405 * @pool: worker_pool to put 3406 * 3407 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3408 * safe manner. get_unbound_pool() calls this function on its failure path 3409 * and this function should be able to release pools which went through, 3410 * successfully or not, init_worker_pool(). 3411 * 3412 * Should be called with wq_pool_mutex held. 3413 */ 3414 static void put_unbound_pool(struct worker_pool *pool) 3415 { 3416 DECLARE_COMPLETION_ONSTACK(detach_completion); 3417 struct worker *worker; 3418 3419 lockdep_assert_held(&wq_pool_mutex); 3420 3421 if (--pool->refcnt) 3422 return; 3423 3424 /* sanity checks */ 3425 if (WARN_ON(!(pool->cpu < 0)) || 3426 WARN_ON(!list_empty(&pool->worklist))) 3427 return; 3428 3429 /* release id and unhash */ 3430 if (pool->id >= 0) 3431 idr_remove(&worker_pool_idr, pool->id); 3432 hash_del(&pool->hash_node); 3433 3434 /* 3435 * Become the manager and destroy all workers. This prevents 3436 * @pool's workers from blocking on attach_mutex. We're the last 3437 * manager and @pool gets freed with the flag set. 3438 */ 3439 spin_lock_irq(&pool->lock); 3440 wait_event_lock_irq(wq_manager_wait, 3441 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock); 3442 pool->flags |= POOL_MANAGER_ACTIVE; 3443 3444 while ((worker = first_idle_worker(pool))) 3445 destroy_worker(worker); 3446 WARN_ON(pool->nr_workers || pool->nr_idle); 3447 spin_unlock_irq(&pool->lock); 3448 3449 mutex_lock(&wq_pool_attach_mutex); 3450 if (!list_empty(&pool->workers)) 3451 pool->detach_completion = &detach_completion; 3452 mutex_unlock(&wq_pool_attach_mutex); 3453 3454 if (pool->detach_completion) 3455 wait_for_completion(pool->detach_completion); 3456 3457 /* shut down the timers */ 3458 del_timer_sync(&pool->idle_timer); 3459 del_timer_sync(&pool->mayday_timer); 3460 3461 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3462 call_rcu(&pool->rcu, rcu_free_pool); 3463 } 3464 3465 /** 3466 * get_unbound_pool - get a worker_pool with the specified attributes 3467 * @attrs: the attributes of the worker_pool to get 3468 * 3469 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3470 * reference count and return it. If there already is a matching 3471 * worker_pool, it will be used; otherwise, this function attempts to 3472 * create a new one. 3473 * 3474 * Should be called with wq_pool_mutex held. 3475 * 3476 * Return: On success, a worker_pool with the same attributes as @attrs. 3477 * On failure, %NULL. 3478 */ 3479 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3480 { 3481 u32 hash = wqattrs_hash(attrs); 3482 struct worker_pool *pool; 3483 int node; 3484 int target_node = NUMA_NO_NODE; 3485 3486 lockdep_assert_held(&wq_pool_mutex); 3487 3488 /* do we already have a matching pool? */ 3489 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3490 if (wqattrs_equal(pool->attrs, attrs)) { 3491 pool->refcnt++; 3492 return pool; 3493 } 3494 } 3495 3496 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3497 if (wq_numa_enabled) { 3498 for_each_node(node) { 3499 if (cpumask_subset(attrs->cpumask, 3500 wq_numa_possible_cpumask[node])) { 3501 target_node = node; 3502 break; 3503 } 3504 } 3505 } 3506 3507 /* nope, create a new one */ 3508 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3509 if (!pool || init_worker_pool(pool) < 0) 3510 goto fail; 3511 3512 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3513 copy_workqueue_attrs(pool->attrs, attrs); 3514 pool->node = target_node; 3515 3516 /* 3517 * no_numa isn't a worker_pool attribute, always clear it. See 3518 * 'struct workqueue_attrs' comments for detail. 3519 */ 3520 pool->attrs->no_numa = false; 3521 3522 if (worker_pool_assign_id(pool) < 0) 3523 goto fail; 3524 3525 /* create and start the initial worker */ 3526 if (wq_online && !create_worker(pool)) 3527 goto fail; 3528 3529 /* install */ 3530 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3531 3532 return pool; 3533 fail: 3534 if (pool) 3535 put_unbound_pool(pool); 3536 return NULL; 3537 } 3538 3539 static void rcu_free_pwq(struct rcu_head *rcu) 3540 { 3541 kmem_cache_free(pwq_cache, 3542 container_of(rcu, struct pool_workqueue, rcu)); 3543 } 3544 3545 /* 3546 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3547 * and needs to be destroyed. 3548 */ 3549 static void pwq_unbound_release_workfn(struct work_struct *work) 3550 { 3551 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3552 unbound_release_work); 3553 struct workqueue_struct *wq = pwq->wq; 3554 struct worker_pool *pool = pwq->pool; 3555 bool is_last; 3556 3557 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3558 return; 3559 3560 mutex_lock(&wq->mutex); 3561 list_del_rcu(&pwq->pwqs_node); 3562 is_last = list_empty(&wq->pwqs); 3563 mutex_unlock(&wq->mutex); 3564 3565 mutex_lock(&wq_pool_mutex); 3566 put_unbound_pool(pool); 3567 mutex_unlock(&wq_pool_mutex); 3568 3569 call_rcu(&pwq->rcu, rcu_free_pwq); 3570 3571 /* 3572 * If we're the last pwq going away, @wq is already dead and no one 3573 * is gonna access it anymore. Schedule RCU free. 3574 */ 3575 if (is_last) { 3576 wq_unregister_lockdep(wq); 3577 call_rcu(&wq->rcu, rcu_free_wq); 3578 } 3579 } 3580 3581 /** 3582 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3583 * @pwq: target pool_workqueue 3584 * 3585 * If @pwq isn't freezing, set @pwq->max_active to the associated 3586 * workqueue's saved_max_active and activate delayed work items 3587 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3588 */ 3589 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3590 { 3591 struct workqueue_struct *wq = pwq->wq; 3592 bool freezable = wq->flags & WQ_FREEZABLE; 3593 unsigned long flags; 3594 3595 /* for @wq->saved_max_active */ 3596 lockdep_assert_held(&wq->mutex); 3597 3598 /* fast exit for non-freezable wqs */ 3599 if (!freezable && pwq->max_active == wq->saved_max_active) 3600 return; 3601 3602 /* this function can be called during early boot w/ irq disabled */ 3603 spin_lock_irqsave(&pwq->pool->lock, flags); 3604 3605 /* 3606 * During [un]freezing, the caller is responsible for ensuring that 3607 * this function is called at least once after @workqueue_freezing 3608 * is updated and visible. 3609 */ 3610 if (!freezable || !workqueue_freezing) { 3611 pwq->max_active = wq->saved_max_active; 3612 3613 while (!list_empty(&pwq->delayed_works) && 3614 pwq->nr_active < pwq->max_active) 3615 pwq_activate_first_delayed(pwq); 3616 3617 /* 3618 * Need to kick a worker after thawed or an unbound wq's 3619 * max_active is bumped. It's a slow path. Do it always. 3620 */ 3621 wake_up_worker(pwq->pool); 3622 } else { 3623 pwq->max_active = 0; 3624 } 3625 3626 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3627 } 3628 3629 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3630 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3631 struct worker_pool *pool) 3632 { 3633 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3634 3635 memset(pwq, 0, sizeof(*pwq)); 3636 3637 pwq->pool = pool; 3638 pwq->wq = wq; 3639 pwq->flush_color = -1; 3640 pwq->refcnt = 1; 3641 INIT_LIST_HEAD(&pwq->delayed_works); 3642 INIT_LIST_HEAD(&pwq->pwqs_node); 3643 INIT_LIST_HEAD(&pwq->mayday_node); 3644 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3645 } 3646 3647 /* sync @pwq with the current state of its associated wq and link it */ 3648 static void link_pwq(struct pool_workqueue *pwq) 3649 { 3650 struct workqueue_struct *wq = pwq->wq; 3651 3652 lockdep_assert_held(&wq->mutex); 3653 3654 /* may be called multiple times, ignore if already linked */ 3655 if (!list_empty(&pwq->pwqs_node)) 3656 return; 3657 3658 /* set the matching work_color */ 3659 pwq->work_color = wq->work_color; 3660 3661 /* sync max_active to the current setting */ 3662 pwq_adjust_max_active(pwq); 3663 3664 /* link in @pwq */ 3665 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3666 } 3667 3668 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3669 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3670 const struct workqueue_attrs *attrs) 3671 { 3672 struct worker_pool *pool; 3673 struct pool_workqueue *pwq; 3674 3675 lockdep_assert_held(&wq_pool_mutex); 3676 3677 pool = get_unbound_pool(attrs); 3678 if (!pool) 3679 return NULL; 3680 3681 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3682 if (!pwq) { 3683 put_unbound_pool(pool); 3684 return NULL; 3685 } 3686 3687 init_pwq(pwq, wq, pool); 3688 return pwq; 3689 } 3690 3691 /** 3692 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3693 * @attrs: the wq_attrs of the default pwq of the target workqueue 3694 * @node: the target NUMA node 3695 * @cpu_going_down: if >= 0, the CPU to consider as offline 3696 * @cpumask: outarg, the resulting cpumask 3697 * 3698 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3699 * @cpu_going_down is >= 0, that cpu is considered offline during 3700 * calculation. The result is stored in @cpumask. 3701 * 3702 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3703 * enabled and @node has online CPUs requested by @attrs, the returned 3704 * cpumask is the intersection of the possible CPUs of @node and 3705 * @attrs->cpumask. 3706 * 3707 * The caller is responsible for ensuring that the cpumask of @node stays 3708 * stable. 3709 * 3710 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3711 * %false if equal. 3712 */ 3713 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3714 int cpu_going_down, cpumask_t *cpumask) 3715 { 3716 if (!wq_numa_enabled || attrs->no_numa) 3717 goto use_dfl; 3718 3719 /* does @node have any online CPUs @attrs wants? */ 3720 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3721 if (cpu_going_down >= 0) 3722 cpumask_clear_cpu(cpu_going_down, cpumask); 3723 3724 if (cpumask_empty(cpumask)) 3725 goto use_dfl; 3726 3727 /* yeap, return possible CPUs in @node that @attrs wants */ 3728 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3729 3730 if (cpumask_empty(cpumask)) { 3731 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3732 "possible intersect\n"); 3733 return false; 3734 } 3735 3736 return !cpumask_equal(cpumask, attrs->cpumask); 3737 3738 use_dfl: 3739 cpumask_copy(cpumask, attrs->cpumask); 3740 return false; 3741 } 3742 3743 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3744 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3745 int node, 3746 struct pool_workqueue *pwq) 3747 { 3748 struct pool_workqueue *old_pwq; 3749 3750 lockdep_assert_held(&wq_pool_mutex); 3751 lockdep_assert_held(&wq->mutex); 3752 3753 /* link_pwq() can handle duplicate calls */ 3754 link_pwq(pwq); 3755 3756 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3757 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3758 return old_pwq; 3759 } 3760 3761 /* context to store the prepared attrs & pwqs before applying */ 3762 struct apply_wqattrs_ctx { 3763 struct workqueue_struct *wq; /* target workqueue */ 3764 struct workqueue_attrs *attrs; /* attrs to apply */ 3765 struct list_head list; /* queued for batching commit */ 3766 struct pool_workqueue *dfl_pwq; 3767 struct pool_workqueue *pwq_tbl[]; 3768 }; 3769 3770 /* free the resources after success or abort */ 3771 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3772 { 3773 if (ctx) { 3774 int node; 3775 3776 for_each_node(node) 3777 put_pwq_unlocked(ctx->pwq_tbl[node]); 3778 put_pwq_unlocked(ctx->dfl_pwq); 3779 3780 free_workqueue_attrs(ctx->attrs); 3781 3782 kfree(ctx); 3783 } 3784 } 3785 3786 /* allocate the attrs and pwqs for later installation */ 3787 static struct apply_wqattrs_ctx * 3788 apply_wqattrs_prepare(struct workqueue_struct *wq, 3789 const struct workqueue_attrs *attrs) 3790 { 3791 struct apply_wqattrs_ctx *ctx; 3792 struct workqueue_attrs *new_attrs, *tmp_attrs; 3793 int node; 3794 3795 lockdep_assert_held(&wq_pool_mutex); 3796 3797 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3798 3799 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3800 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3801 if (!ctx || !new_attrs || !tmp_attrs) 3802 goto out_free; 3803 3804 /* 3805 * Calculate the attrs of the default pwq. 3806 * If the user configured cpumask doesn't overlap with the 3807 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3808 */ 3809 copy_workqueue_attrs(new_attrs, attrs); 3810 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3811 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3812 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3813 3814 /* 3815 * We may create multiple pwqs with differing cpumasks. Make a 3816 * copy of @new_attrs which will be modified and used to obtain 3817 * pools. 3818 */ 3819 copy_workqueue_attrs(tmp_attrs, new_attrs); 3820 3821 /* 3822 * If something goes wrong during CPU up/down, we'll fall back to 3823 * the default pwq covering whole @attrs->cpumask. Always create 3824 * it even if we don't use it immediately. 3825 */ 3826 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3827 if (!ctx->dfl_pwq) 3828 goto out_free; 3829 3830 for_each_node(node) { 3831 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3832 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3833 if (!ctx->pwq_tbl[node]) 3834 goto out_free; 3835 } else { 3836 ctx->dfl_pwq->refcnt++; 3837 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3838 } 3839 } 3840 3841 /* save the user configured attrs and sanitize it. */ 3842 copy_workqueue_attrs(new_attrs, attrs); 3843 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3844 ctx->attrs = new_attrs; 3845 3846 ctx->wq = wq; 3847 free_workqueue_attrs(tmp_attrs); 3848 return ctx; 3849 3850 out_free: 3851 free_workqueue_attrs(tmp_attrs); 3852 free_workqueue_attrs(new_attrs); 3853 apply_wqattrs_cleanup(ctx); 3854 return NULL; 3855 } 3856 3857 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3858 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3859 { 3860 int node; 3861 3862 /* all pwqs have been created successfully, let's install'em */ 3863 mutex_lock(&ctx->wq->mutex); 3864 3865 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3866 3867 /* save the previous pwq and install the new one */ 3868 for_each_node(node) 3869 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3870 ctx->pwq_tbl[node]); 3871 3872 /* @dfl_pwq might not have been used, ensure it's linked */ 3873 link_pwq(ctx->dfl_pwq); 3874 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3875 3876 mutex_unlock(&ctx->wq->mutex); 3877 } 3878 3879 static void apply_wqattrs_lock(void) 3880 { 3881 /* CPUs should stay stable across pwq creations and installations */ 3882 get_online_cpus(); 3883 mutex_lock(&wq_pool_mutex); 3884 } 3885 3886 static void apply_wqattrs_unlock(void) 3887 { 3888 mutex_unlock(&wq_pool_mutex); 3889 put_online_cpus(); 3890 } 3891 3892 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3893 const struct workqueue_attrs *attrs) 3894 { 3895 struct apply_wqattrs_ctx *ctx; 3896 3897 /* only unbound workqueues can change attributes */ 3898 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3899 return -EINVAL; 3900 3901 /* creating multiple pwqs breaks ordering guarantee */ 3902 if (!list_empty(&wq->pwqs)) { 3903 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 3904 return -EINVAL; 3905 3906 wq->flags &= ~__WQ_ORDERED; 3907 } 3908 3909 ctx = apply_wqattrs_prepare(wq, attrs); 3910 if (!ctx) 3911 return -ENOMEM; 3912 3913 /* the ctx has been prepared successfully, let's commit it */ 3914 apply_wqattrs_commit(ctx); 3915 apply_wqattrs_cleanup(ctx); 3916 3917 return 0; 3918 } 3919 3920 /** 3921 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3922 * @wq: the target workqueue 3923 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3924 * 3925 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3926 * machines, this function maps a separate pwq to each NUMA node with 3927 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3928 * NUMA node it was issued on. Older pwqs are released as in-flight work 3929 * items finish. Note that a work item which repeatedly requeues itself 3930 * back-to-back will stay on its current pwq. 3931 * 3932 * Performs GFP_KERNEL allocations. 3933 * 3934 * Return: 0 on success and -errno on failure. 3935 */ 3936 int apply_workqueue_attrs(struct workqueue_struct *wq, 3937 const struct workqueue_attrs *attrs) 3938 { 3939 int ret; 3940 3941 apply_wqattrs_lock(); 3942 ret = apply_workqueue_attrs_locked(wq, attrs); 3943 apply_wqattrs_unlock(); 3944 3945 return ret; 3946 } 3947 EXPORT_SYMBOL_GPL(apply_workqueue_attrs); 3948 3949 /** 3950 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3951 * @wq: the target workqueue 3952 * @cpu: the CPU coming up or going down 3953 * @online: whether @cpu is coming up or going down 3954 * 3955 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3956 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3957 * @wq accordingly. 3958 * 3959 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3960 * falls back to @wq->dfl_pwq which may not be optimal but is always 3961 * correct. 3962 * 3963 * Note that when the last allowed CPU of a NUMA node goes offline for a 3964 * workqueue with a cpumask spanning multiple nodes, the workers which were 3965 * already executing the work items for the workqueue will lose their CPU 3966 * affinity and may execute on any CPU. This is similar to how per-cpu 3967 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3968 * affinity, it's the user's responsibility to flush the work item from 3969 * CPU_DOWN_PREPARE. 3970 */ 3971 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3972 bool online) 3973 { 3974 int node = cpu_to_node(cpu); 3975 int cpu_off = online ? -1 : cpu; 3976 struct pool_workqueue *old_pwq = NULL, *pwq; 3977 struct workqueue_attrs *target_attrs; 3978 cpumask_t *cpumask; 3979 3980 lockdep_assert_held(&wq_pool_mutex); 3981 3982 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3983 wq->unbound_attrs->no_numa) 3984 return; 3985 3986 /* 3987 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3988 * Let's use a preallocated one. The following buf is protected by 3989 * CPU hotplug exclusion. 3990 */ 3991 target_attrs = wq_update_unbound_numa_attrs_buf; 3992 cpumask = target_attrs->cpumask; 3993 3994 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3995 pwq = unbound_pwq_by_node(wq, node); 3996 3997 /* 3998 * Let's determine what needs to be done. If the target cpumask is 3999 * different from the default pwq's, we need to compare it to @pwq's 4000 * and create a new one if they don't match. If the target cpumask 4001 * equals the default pwq's, the default pwq should be used. 4002 */ 4003 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4004 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4005 return; 4006 } else { 4007 goto use_dfl_pwq; 4008 } 4009 4010 /* create a new pwq */ 4011 pwq = alloc_unbound_pwq(wq, target_attrs); 4012 if (!pwq) { 4013 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4014 wq->name); 4015 goto use_dfl_pwq; 4016 } 4017 4018 /* Install the new pwq. */ 4019 mutex_lock(&wq->mutex); 4020 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4021 goto out_unlock; 4022 4023 use_dfl_pwq: 4024 mutex_lock(&wq->mutex); 4025 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4026 get_pwq(wq->dfl_pwq); 4027 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4028 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4029 out_unlock: 4030 mutex_unlock(&wq->mutex); 4031 put_pwq_unlocked(old_pwq); 4032 } 4033 4034 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4035 { 4036 bool highpri = wq->flags & WQ_HIGHPRI; 4037 int cpu, ret; 4038 4039 if (!(wq->flags & WQ_UNBOUND)) { 4040 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4041 if (!wq->cpu_pwqs) 4042 return -ENOMEM; 4043 4044 for_each_possible_cpu(cpu) { 4045 struct pool_workqueue *pwq = 4046 per_cpu_ptr(wq->cpu_pwqs, cpu); 4047 struct worker_pool *cpu_pools = 4048 per_cpu(cpu_worker_pools, cpu); 4049 4050 init_pwq(pwq, wq, &cpu_pools[highpri]); 4051 4052 mutex_lock(&wq->mutex); 4053 link_pwq(pwq); 4054 mutex_unlock(&wq->mutex); 4055 } 4056 return 0; 4057 } else if (wq->flags & __WQ_ORDERED) { 4058 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4059 /* there should only be single pwq for ordering guarantee */ 4060 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4061 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4062 "ordering guarantee broken for workqueue %s\n", wq->name); 4063 return ret; 4064 } else { 4065 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4066 } 4067 } 4068 4069 static int wq_clamp_max_active(int max_active, unsigned int flags, 4070 const char *name) 4071 { 4072 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4073 4074 if (max_active < 1 || max_active > lim) 4075 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4076 max_active, name, 1, lim); 4077 4078 return clamp_val(max_active, 1, lim); 4079 } 4080 4081 /* 4082 * Workqueues which may be used during memory reclaim should have a rescuer 4083 * to guarantee forward progress. 4084 */ 4085 static int init_rescuer(struct workqueue_struct *wq) 4086 { 4087 struct worker *rescuer; 4088 int ret; 4089 4090 if (!(wq->flags & WQ_MEM_RECLAIM)) 4091 return 0; 4092 4093 rescuer = alloc_worker(NUMA_NO_NODE); 4094 if (!rescuer) 4095 return -ENOMEM; 4096 4097 rescuer->rescue_wq = wq; 4098 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4099 ret = PTR_ERR_OR_ZERO(rescuer->task); 4100 if (ret) { 4101 kfree(rescuer); 4102 return ret; 4103 } 4104 4105 wq->rescuer = rescuer; 4106 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4107 wake_up_process(rescuer->task); 4108 4109 return 0; 4110 } 4111 4112 struct workqueue_struct *alloc_workqueue(const char *fmt, 4113 unsigned int flags, 4114 int max_active, ...) 4115 { 4116 size_t tbl_size = 0; 4117 va_list args; 4118 struct workqueue_struct *wq; 4119 struct pool_workqueue *pwq; 4120 4121 /* 4122 * Unbound && max_active == 1 used to imply ordered, which is no 4123 * longer the case on NUMA machines due to per-node pools. While 4124 * alloc_ordered_workqueue() is the right way to create an ordered 4125 * workqueue, keep the previous behavior to avoid subtle breakages 4126 * on NUMA. 4127 */ 4128 if ((flags & WQ_UNBOUND) && max_active == 1) 4129 flags |= __WQ_ORDERED; 4130 4131 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4132 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4133 flags |= WQ_UNBOUND; 4134 4135 /* allocate wq and format name */ 4136 if (flags & WQ_UNBOUND) 4137 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4138 4139 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4140 if (!wq) 4141 return NULL; 4142 4143 if (flags & WQ_UNBOUND) { 4144 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 4145 if (!wq->unbound_attrs) 4146 goto err_free_wq; 4147 } 4148 4149 va_start(args, max_active); 4150 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4151 va_end(args); 4152 4153 max_active = max_active ?: WQ_DFL_ACTIVE; 4154 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4155 4156 /* init wq */ 4157 wq->flags = flags; 4158 wq->saved_max_active = max_active; 4159 mutex_init(&wq->mutex); 4160 atomic_set(&wq->nr_pwqs_to_flush, 0); 4161 INIT_LIST_HEAD(&wq->pwqs); 4162 INIT_LIST_HEAD(&wq->flusher_queue); 4163 INIT_LIST_HEAD(&wq->flusher_overflow); 4164 INIT_LIST_HEAD(&wq->maydays); 4165 4166 wq_init_lockdep(wq); 4167 INIT_LIST_HEAD(&wq->list); 4168 4169 if (alloc_and_link_pwqs(wq) < 0) 4170 goto err_free_wq; 4171 4172 if (wq_online && init_rescuer(wq) < 0) 4173 goto err_destroy; 4174 4175 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4176 goto err_destroy; 4177 4178 /* 4179 * wq_pool_mutex protects global freeze state and workqueues list. 4180 * Grab it, adjust max_active and add the new @wq to workqueues 4181 * list. 4182 */ 4183 mutex_lock(&wq_pool_mutex); 4184 4185 mutex_lock(&wq->mutex); 4186 for_each_pwq(pwq, wq) 4187 pwq_adjust_max_active(pwq); 4188 mutex_unlock(&wq->mutex); 4189 4190 list_add_tail_rcu(&wq->list, &workqueues); 4191 4192 mutex_unlock(&wq_pool_mutex); 4193 4194 return wq; 4195 4196 err_free_wq: 4197 free_workqueue_attrs(wq->unbound_attrs); 4198 kfree(wq); 4199 return NULL; 4200 err_destroy: 4201 destroy_workqueue(wq); 4202 return NULL; 4203 } 4204 EXPORT_SYMBOL_GPL(alloc_workqueue); 4205 4206 /** 4207 * destroy_workqueue - safely terminate a workqueue 4208 * @wq: target workqueue 4209 * 4210 * Safely destroy a workqueue. All work currently pending will be done first. 4211 */ 4212 void destroy_workqueue(struct workqueue_struct *wq) 4213 { 4214 struct pool_workqueue *pwq; 4215 int node; 4216 4217 /* drain it before proceeding with destruction */ 4218 drain_workqueue(wq); 4219 4220 /* sanity checks */ 4221 mutex_lock(&wq->mutex); 4222 for_each_pwq(pwq, wq) { 4223 int i; 4224 4225 for (i = 0; i < WORK_NR_COLORS; i++) { 4226 if (WARN_ON(pwq->nr_in_flight[i])) { 4227 mutex_unlock(&wq->mutex); 4228 show_workqueue_state(); 4229 return; 4230 } 4231 } 4232 4233 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4234 WARN_ON(pwq->nr_active) || 4235 WARN_ON(!list_empty(&pwq->delayed_works))) { 4236 mutex_unlock(&wq->mutex); 4237 show_workqueue_state(); 4238 return; 4239 } 4240 } 4241 mutex_unlock(&wq->mutex); 4242 4243 /* 4244 * wq list is used to freeze wq, remove from list after 4245 * flushing is complete in case freeze races us. 4246 */ 4247 mutex_lock(&wq_pool_mutex); 4248 list_del_rcu(&wq->list); 4249 mutex_unlock(&wq_pool_mutex); 4250 4251 workqueue_sysfs_unregister(wq); 4252 4253 if (wq->rescuer) 4254 kthread_stop(wq->rescuer->task); 4255 4256 if (!(wq->flags & WQ_UNBOUND)) { 4257 wq_unregister_lockdep(wq); 4258 /* 4259 * The base ref is never dropped on per-cpu pwqs. Directly 4260 * schedule RCU free. 4261 */ 4262 call_rcu(&wq->rcu, rcu_free_wq); 4263 } else { 4264 /* 4265 * We're the sole accessor of @wq at this point. Directly 4266 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4267 * @wq will be freed when the last pwq is released. 4268 */ 4269 for_each_node(node) { 4270 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4271 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4272 put_pwq_unlocked(pwq); 4273 } 4274 4275 /* 4276 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4277 * put. Don't access it afterwards. 4278 */ 4279 pwq = wq->dfl_pwq; 4280 wq->dfl_pwq = NULL; 4281 put_pwq_unlocked(pwq); 4282 } 4283 } 4284 EXPORT_SYMBOL_GPL(destroy_workqueue); 4285 4286 /** 4287 * workqueue_set_max_active - adjust max_active of a workqueue 4288 * @wq: target workqueue 4289 * @max_active: new max_active value. 4290 * 4291 * Set max_active of @wq to @max_active. 4292 * 4293 * CONTEXT: 4294 * Don't call from IRQ context. 4295 */ 4296 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4297 { 4298 struct pool_workqueue *pwq; 4299 4300 /* disallow meddling with max_active for ordered workqueues */ 4301 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4302 return; 4303 4304 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4305 4306 mutex_lock(&wq->mutex); 4307 4308 wq->flags &= ~__WQ_ORDERED; 4309 wq->saved_max_active = max_active; 4310 4311 for_each_pwq(pwq, wq) 4312 pwq_adjust_max_active(pwq); 4313 4314 mutex_unlock(&wq->mutex); 4315 } 4316 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4317 4318 /** 4319 * current_work - retrieve %current task's work struct 4320 * 4321 * Determine if %current task is a workqueue worker and what it's working on. 4322 * Useful to find out the context that the %current task is running in. 4323 * 4324 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4325 */ 4326 struct work_struct *current_work(void) 4327 { 4328 struct worker *worker = current_wq_worker(); 4329 4330 return worker ? worker->current_work : NULL; 4331 } 4332 EXPORT_SYMBOL(current_work); 4333 4334 /** 4335 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4336 * 4337 * Determine whether %current is a workqueue rescuer. Can be used from 4338 * work functions to determine whether it's being run off the rescuer task. 4339 * 4340 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4341 */ 4342 bool current_is_workqueue_rescuer(void) 4343 { 4344 struct worker *worker = current_wq_worker(); 4345 4346 return worker && worker->rescue_wq; 4347 } 4348 4349 /** 4350 * workqueue_congested - test whether a workqueue is congested 4351 * @cpu: CPU in question 4352 * @wq: target workqueue 4353 * 4354 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4355 * no synchronization around this function and the test result is 4356 * unreliable and only useful as advisory hints or for debugging. 4357 * 4358 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4359 * Note that both per-cpu and unbound workqueues may be associated with 4360 * multiple pool_workqueues which have separate congested states. A 4361 * workqueue being congested on one CPU doesn't mean the workqueue is also 4362 * contested on other CPUs / NUMA nodes. 4363 * 4364 * Return: 4365 * %true if congested, %false otherwise. 4366 */ 4367 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4368 { 4369 struct pool_workqueue *pwq; 4370 bool ret; 4371 4372 rcu_read_lock_sched(); 4373 4374 if (cpu == WORK_CPU_UNBOUND) 4375 cpu = smp_processor_id(); 4376 4377 if (!(wq->flags & WQ_UNBOUND)) 4378 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4379 else 4380 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4381 4382 ret = !list_empty(&pwq->delayed_works); 4383 rcu_read_unlock_sched(); 4384 4385 return ret; 4386 } 4387 EXPORT_SYMBOL_GPL(workqueue_congested); 4388 4389 /** 4390 * work_busy - test whether a work is currently pending or running 4391 * @work: the work to be tested 4392 * 4393 * Test whether @work is currently pending or running. There is no 4394 * synchronization around this function and the test result is 4395 * unreliable and only useful as advisory hints or for debugging. 4396 * 4397 * Return: 4398 * OR'd bitmask of WORK_BUSY_* bits. 4399 */ 4400 unsigned int work_busy(struct work_struct *work) 4401 { 4402 struct worker_pool *pool; 4403 unsigned long flags; 4404 unsigned int ret = 0; 4405 4406 if (work_pending(work)) 4407 ret |= WORK_BUSY_PENDING; 4408 4409 local_irq_save(flags); 4410 pool = get_work_pool(work); 4411 if (pool) { 4412 spin_lock(&pool->lock); 4413 if (find_worker_executing_work(pool, work)) 4414 ret |= WORK_BUSY_RUNNING; 4415 spin_unlock(&pool->lock); 4416 } 4417 local_irq_restore(flags); 4418 4419 return ret; 4420 } 4421 EXPORT_SYMBOL_GPL(work_busy); 4422 4423 /** 4424 * set_worker_desc - set description for the current work item 4425 * @fmt: printf-style format string 4426 * @...: arguments for the format string 4427 * 4428 * This function can be called by a running work function to describe what 4429 * the work item is about. If the worker task gets dumped, this 4430 * information will be printed out together to help debugging. The 4431 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4432 */ 4433 void set_worker_desc(const char *fmt, ...) 4434 { 4435 struct worker *worker = current_wq_worker(); 4436 va_list args; 4437 4438 if (worker) { 4439 va_start(args, fmt); 4440 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4441 va_end(args); 4442 } 4443 } 4444 EXPORT_SYMBOL_GPL(set_worker_desc); 4445 4446 /** 4447 * print_worker_info - print out worker information and description 4448 * @log_lvl: the log level to use when printing 4449 * @task: target task 4450 * 4451 * If @task is a worker and currently executing a work item, print out the 4452 * name of the workqueue being serviced and worker description set with 4453 * set_worker_desc() by the currently executing work item. 4454 * 4455 * This function can be safely called on any task as long as the 4456 * task_struct itself is accessible. While safe, this function isn't 4457 * synchronized and may print out mixups or garbages of limited length. 4458 */ 4459 void print_worker_info(const char *log_lvl, struct task_struct *task) 4460 { 4461 work_func_t *fn = NULL; 4462 char name[WQ_NAME_LEN] = { }; 4463 char desc[WORKER_DESC_LEN] = { }; 4464 struct pool_workqueue *pwq = NULL; 4465 struct workqueue_struct *wq = NULL; 4466 struct worker *worker; 4467 4468 if (!(task->flags & PF_WQ_WORKER)) 4469 return; 4470 4471 /* 4472 * This function is called without any synchronization and @task 4473 * could be in any state. Be careful with dereferences. 4474 */ 4475 worker = kthread_probe_data(task); 4476 4477 /* 4478 * Carefully copy the associated workqueue's workfn, name and desc. 4479 * Keep the original last '\0' in case the original is garbage. 4480 */ 4481 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4482 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4483 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4484 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4485 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4486 4487 if (fn || name[0] || desc[0]) { 4488 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4489 if (strcmp(name, desc)) 4490 pr_cont(" (%s)", desc); 4491 pr_cont("\n"); 4492 } 4493 } 4494 4495 static void pr_cont_pool_info(struct worker_pool *pool) 4496 { 4497 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4498 if (pool->node != NUMA_NO_NODE) 4499 pr_cont(" node=%d", pool->node); 4500 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4501 } 4502 4503 static void pr_cont_work(bool comma, struct work_struct *work) 4504 { 4505 if (work->func == wq_barrier_func) { 4506 struct wq_barrier *barr; 4507 4508 barr = container_of(work, struct wq_barrier, work); 4509 4510 pr_cont("%s BAR(%d)", comma ? "," : "", 4511 task_pid_nr(barr->task)); 4512 } else { 4513 pr_cont("%s %pf", comma ? "," : "", work->func); 4514 } 4515 } 4516 4517 static void show_pwq(struct pool_workqueue *pwq) 4518 { 4519 struct worker_pool *pool = pwq->pool; 4520 struct work_struct *work; 4521 struct worker *worker; 4522 bool has_in_flight = false, has_pending = false; 4523 int bkt; 4524 4525 pr_info(" pwq %d:", pool->id); 4526 pr_cont_pool_info(pool); 4527 4528 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4529 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4530 4531 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4532 if (worker->current_pwq == pwq) { 4533 has_in_flight = true; 4534 break; 4535 } 4536 } 4537 if (has_in_flight) { 4538 bool comma = false; 4539 4540 pr_info(" in-flight:"); 4541 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4542 if (worker->current_pwq != pwq) 4543 continue; 4544 4545 pr_cont("%s %d%s:%pf", comma ? "," : "", 4546 task_pid_nr(worker->task), 4547 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4548 worker->current_func); 4549 list_for_each_entry(work, &worker->scheduled, entry) 4550 pr_cont_work(false, work); 4551 comma = true; 4552 } 4553 pr_cont("\n"); 4554 } 4555 4556 list_for_each_entry(work, &pool->worklist, entry) { 4557 if (get_work_pwq(work) == pwq) { 4558 has_pending = true; 4559 break; 4560 } 4561 } 4562 if (has_pending) { 4563 bool comma = false; 4564 4565 pr_info(" pending:"); 4566 list_for_each_entry(work, &pool->worklist, entry) { 4567 if (get_work_pwq(work) != pwq) 4568 continue; 4569 4570 pr_cont_work(comma, work); 4571 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4572 } 4573 pr_cont("\n"); 4574 } 4575 4576 if (!list_empty(&pwq->delayed_works)) { 4577 bool comma = false; 4578 4579 pr_info(" delayed:"); 4580 list_for_each_entry(work, &pwq->delayed_works, entry) { 4581 pr_cont_work(comma, work); 4582 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4583 } 4584 pr_cont("\n"); 4585 } 4586 } 4587 4588 /** 4589 * show_workqueue_state - dump workqueue state 4590 * 4591 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4592 * all busy workqueues and pools. 4593 */ 4594 void show_workqueue_state(void) 4595 { 4596 struct workqueue_struct *wq; 4597 struct worker_pool *pool; 4598 unsigned long flags; 4599 int pi; 4600 4601 rcu_read_lock_sched(); 4602 4603 pr_info("Showing busy workqueues and worker pools:\n"); 4604 4605 list_for_each_entry_rcu(wq, &workqueues, list) { 4606 struct pool_workqueue *pwq; 4607 bool idle = true; 4608 4609 for_each_pwq(pwq, wq) { 4610 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4611 idle = false; 4612 break; 4613 } 4614 } 4615 if (idle) 4616 continue; 4617 4618 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4619 4620 for_each_pwq(pwq, wq) { 4621 spin_lock_irqsave(&pwq->pool->lock, flags); 4622 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4623 show_pwq(pwq); 4624 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4625 /* 4626 * We could be printing a lot from atomic context, e.g. 4627 * sysrq-t -> show_workqueue_state(). Avoid triggering 4628 * hard lockup. 4629 */ 4630 touch_nmi_watchdog(); 4631 } 4632 } 4633 4634 for_each_pool(pool, pi) { 4635 struct worker *worker; 4636 bool first = true; 4637 4638 spin_lock_irqsave(&pool->lock, flags); 4639 if (pool->nr_workers == pool->nr_idle) 4640 goto next_pool; 4641 4642 pr_info("pool %d:", pool->id); 4643 pr_cont_pool_info(pool); 4644 pr_cont(" hung=%us workers=%d", 4645 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4646 pool->nr_workers); 4647 if (pool->manager) 4648 pr_cont(" manager: %d", 4649 task_pid_nr(pool->manager->task)); 4650 list_for_each_entry(worker, &pool->idle_list, entry) { 4651 pr_cont(" %s%d", first ? "idle: " : "", 4652 task_pid_nr(worker->task)); 4653 first = false; 4654 } 4655 pr_cont("\n"); 4656 next_pool: 4657 spin_unlock_irqrestore(&pool->lock, flags); 4658 /* 4659 * We could be printing a lot from atomic context, e.g. 4660 * sysrq-t -> show_workqueue_state(). Avoid triggering 4661 * hard lockup. 4662 */ 4663 touch_nmi_watchdog(); 4664 } 4665 4666 rcu_read_unlock_sched(); 4667 } 4668 4669 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4670 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4671 { 4672 int off; 4673 4674 /* always show the actual comm */ 4675 off = strscpy(buf, task->comm, size); 4676 if (off < 0) 4677 return; 4678 4679 /* stabilize PF_WQ_WORKER and worker pool association */ 4680 mutex_lock(&wq_pool_attach_mutex); 4681 4682 if (task->flags & PF_WQ_WORKER) { 4683 struct worker *worker = kthread_data(task); 4684 struct worker_pool *pool = worker->pool; 4685 4686 if (pool) { 4687 spin_lock_irq(&pool->lock); 4688 /* 4689 * ->desc tracks information (wq name or 4690 * set_worker_desc()) for the latest execution. If 4691 * current, prepend '+', otherwise '-'. 4692 */ 4693 if (worker->desc[0] != '\0') { 4694 if (worker->current_work) 4695 scnprintf(buf + off, size - off, "+%s", 4696 worker->desc); 4697 else 4698 scnprintf(buf + off, size - off, "-%s", 4699 worker->desc); 4700 } 4701 spin_unlock_irq(&pool->lock); 4702 } 4703 } 4704 4705 mutex_unlock(&wq_pool_attach_mutex); 4706 } 4707 4708 #ifdef CONFIG_SMP 4709 4710 /* 4711 * CPU hotplug. 4712 * 4713 * There are two challenges in supporting CPU hotplug. Firstly, there 4714 * are a lot of assumptions on strong associations among work, pwq and 4715 * pool which make migrating pending and scheduled works very 4716 * difficult to implement without impacting hot paths. Secondly, 4717 * worker pools serve mix of short, long and very long running works making 4718 * blocked draining impractical. 4719 * 4720 * This is solved by allowing the pools to be disassociated from the CPU 4721 * running as an unbound one and allowing it to be reattached later if the 4722 * cpu comes back online. 4723 */ 4724 4725 static void unbind_workers(int cpu) 4726 { 4727 struct worker_pool *pool; 4728 struct worker *worker; 4729 4730 for_each_cpu_worker_pool(pool, cpu) { 4731 mutex_lock(&wq_pool_attach_mutex); 4732 spin_lock_irq(&pool->lock); 4733 4734 /* 4735 * We've blocked all attach/detach operations. Make all workers 4736 * unbound and set DISASSOCIATED. Before this, all workers 4737 * except for the ones which are still executing works from 4738 * before the last CPU down must be on the cpu. After 4739 * this, they may become diasporas. 4740 */ 4741 for_each_pool_worker(worker, pool) 4742 worker->flags |= WORKER_UNBOUND; 4743 4744 pool->flags |= POOL_DISASSOCIATED; 4745 4746 spin_unlock_irq(&pool->lock); 4747 mutex_unlock(&wq_pool_attach_mutex); 4748 4749 /* 4750 * Call schedule() so that we cross rq->lock and thus can 4751 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4752 * This is necessary as scheduler callbacks may be invoked 4753 * from other cpus. 4754 */ 4755 schedule(); 4756 4757 /* 4758 * Sched callbacks are disabled now. Zap nr_running. 4759 * After this, nr_running stays zero and need_more_worker() 4760 * and keep_working() are always true as long as the 4761 * worklist is not empty. This pool now behaves as an 4762 * unbound (in terms of concurrency management) pool which 4763 * are served by workers tied to the pool. 4764 */ 4765 atomic_set(&pool->nr_running, 0); 4766 4767 /* 4768 * With concurrency management just turned off, a busy 4769 * worker blocking could lead to lengthy stalls. Kick off 4770 * unbound chain execution of currently pending work items. 4771 */ 4772 spin_lock_irq(&pool->lock); 4773 wake_up_worker(pool); 4774 spin_unlock_irq(&pool->lock); 4775 } 4776 } 4777 4778 /** 4779 * rebind_workers - rebind all workers of a pool to the associated CPU 4780 * @pool: pool of interest 4781 * 4782 * @pool->cpu is coming online. Rebind all workers to the CPU. 4783 */ 4784 static void rebind_workers(struct worker_pool *pool) 4785 { 4786 struct worker *worker; 4787 4788 lockdep_assert_held(&wq_pool_attach_mutex); 4789 4790 /* 4791 * Restore CPU affinity of all workers. As all idle workers should 4792 * be on the run-queue of the associated CPU before any local 4793 * wake-ups for concurrency management happen, restore CPU affinity 4794 * of all workers first and then clear UNBOUND. As we're called 4795 * from CPU_ONLINE, the following shouldn't fail. 4796 */ 4797 for_each_pool_worker(worker, pool) 4798 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4799 pool->attrs->cpumask) < 0); 4800 4801 spin_lock_irq(&pool->lock); 4802 4803 pool->flags &= ~POOL_DISASSOCIATED; 4804 4805 for_each_pool_worker(worker, pool) { 4806 unsigned int worker_flags = worker->flags; 4807 4808 /* 4809 * A bound idle worker should actually be on the runqueue 4810 * of the associated CPU for local wake-ups targeting it to 4811 * work. Kick all idle workers so that they migrate to the 4812 * associated CPU. Doing this in the same loop as 4813 * replacing UNBOUND with REBOUND is safe as no worker will 4814 * be bound before @pool->lock is released. 4815 */ 4816 if (worker_flags & WORKER_IDLE) 4817 wake_up_process(worker->task); 4818 4819 /* 4820 * We want to clear UNBOUND but can't directly call 4821 * worker_clr_flags() or adjust nr_running. Atomically 4822 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4823 * @worker will clear REBOUND using worker_clr_flags() when 4824 * it initiates the next execution cycle thus restoring 4825 * concurrency management. Note that when or whether 4826 * @worker clears REBOUND doesn't affect correctness. 4827 * 4828 * WRITE_ONCE() is necessary because @worker->flags may be 4829 * tested without holding any lock in 4830 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4831 * fail incorrectly leading to premature concurrency 4832 * management operations. 4833 */ 4834 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4835 worker_flags |= WORKER_REBOUND; 4836 worker_flags &= ~WORKER_UNBOUND; 4837 WRITE_ONCE(worker->flags, worker_flags); 4838 } 4839 4840 spin_unlock_irq(&pool->lock); 4841 } 4842 4843 /** 4844 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4845 * @pool: unbound pool of interest 4846 * @cpu: the CPU which is coming up 4847 * 4848 * An unbound pool may end up with a cpumask which doesn't have any online 4849 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4850 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4851 * online CPU before, cpus_allowed of all its workers should be restored. 4852 */ 4853 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4854 { 4855 static cpumask_t cpumask; 4856 struct worker *worker; 4857 4858 lockdep_assert_held(&wq_pool_attach_mutex); 4859 4860 /* is @cpu allowed for @pool? */ 4861 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4862 return; 4863 4864 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4865 4866 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4867 for_each_pool_worker(worker, pool) 4868 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 4869 } 4870 4871 int workqueue_prepare_cpu(unsigned int cpu) 4872 { 4873 struct worker_pool *pool; 4874 4875 for_each_cpu_worker_pool(pool, cpu) { 4876 if (pool->nr_workers) 4877 continue; 4878 if (!create_worker(pool)) 4879 return -ENOMEM; 4880 } 4881 return 0; 4882 } 4883 4884 int workqueue_online_cpu(unsigned int cpu) 4885 { 4886 struct worker_pool *pool; 4887 struct workqueue_struct *wq; 4888 int pi; 4889 4890 mutex_lock(&wq_pool_mutex); 4891 4892 for_each_pool(pool, pi) { 4893 mutex_lock(&wq_pool_attach_mutex); 4894 4895 if (pool->cpu == cpu) 4896 rebind_workers(pool); 4897 else if (pool->cpu < 0) 4898 restore_unbound_workers_cpumask(pool, cpu); 4899 4900 mutex_unlock(&wq_pool_attach_mutex); 4901 } 4902 4903 /* update NUMA affinity of unbound workqueues */ 4904 list_for_each_entry(wq, &workqueues, list) 4905 wq_update_unbound_numa(wq, cpu, true); 4906 4907 mutex_unlock(&wq_pool_mutex); 4908 return 0; 4909 } 4910 4911 int workqueue_offline_cpu(unsigned int cpu) 4912 { 4913 struct workqueue_struct *wq; 4914 4915 /* unbinding per-cpu workers should happen on the local CPU */ 4916 if (WARN_ON(cpu != smp_processor_id())) 4917 return -1; 4918 4919 unbind_workers(cpu); 4920 4921 /* update NUMA affinity of unbound workqueues */ 4922 mutex_lock(&wq_pool_mutex); 4923 list_for_each_entry(wq, &workqueues, list) 4924 wq_update_unbound_numa(wq, cpu, false); 4925 mutex_unlock(&wq_pool_mutex); 4926 4927 return 0; 4928 } 4929 4930 struct work_for_cpu { 4931 struct work_struct work; 4932 long (*fn)(void *); 4933 void *arg; 4934 long ret; 4935 }; 4936 4937 static void work_for_cpu_fn(struct work_struct *work) 4938 { 4939 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4940 4941 wfc->ret = wfc->fn(wfc->arg); 4942 } 4943 4944 /** 4945 * work_on_cpu - run a function in thread context on a particular cpu 4946 * @cpu: the cpu to run on 4947 * @fn: the function to run 4948 * @arg: the function arg 4949 * 4950 * It is up to the caller to ensure that the cpu doesn't go offline. 4951 * The caller must not hold any locks which would prevent @fn from completing. 4952 * 4953 * Return: The value @fn returns. 4954 */ 4955 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4956 { 4957 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4958 4959 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4960 schedule_work_on(cpu, &wfc.work); 4961 flush_work(&wfc.work); 4962 destroy_work_on_stack(&wfc.work); 4963 return wfc.ret; 4964 } 4965 EXPORT_SYMBOL_GPL(work_on_cpu); 4966 4967 /** 4968 * work_on_cpu_safe - run a function in thread context on a particular cpu 4969 * @cpu: the cpu to run on 4970 * @fn: the function to run 4971 * @arg: the function argument 4972 * 4973 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 4974 * any locks which would prevent @fn from completing. 4975 * 4976 * Return: The value @fn returns. 4977 */ 4978 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 4979 { 4980 long ret = -ENODEV; 4981 4982 get_online_cpus(); 4983 if (cpu_online(cpu)) 4984 ret = work_on_cpu(cpu, fn, arg); 4985 put_online_cpus(); 4986 return ret; 4987 } 4988 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 4989 #endif /* CONFIG_SMP */ 4990 4991 #ifdef CONFIG_FREEZER 4992 4993 /** 4994 * freeze_workqueues_begin - begin freezing workqueues 4995 * 4996 * Start freezing workqueues. After this function returns, all freezable 4997 * workqueues will queue new works to their delayed_works list instead of 4998 * pool->worklist. 4999 * 5000 * CONTEXT: 5001 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5002 */ 5003 void freeze_workqueues_begin(void) 5004 { 5005 struct workqueue_struct *wq; 5006 struct pool_workqueue *pwq; 5007 5008 mutex_lock(&wq_pool_mutex); 5009 5010 WARN_ON_ONCE(workqueue_freezing); 5011 workqueue_freezing = true; 5012 5013 list_for_each_entry(wq, &workqueues, list) { 5014 mutex_lock(&wq->mutex); 5015 for_each_pwq(pwq, wq) 5016 pwq_adjust_max_active(pwq); 5017 mutex_unlock(&wq->mutex); 5018 } 5019 5020 mutex_unlock(&wq_pool_mutex); 5021 } 5022 5023 /** 5024 * freeze_workqueues_busy - are freezable workqueues still busy? 5025 * 5026 * Check whether freezing is complete. This function must be called 5027 * between freeze_workqueues_begin() and thaw_workqueues(). 5028 * 5029 * CONTEXT: 5030 * Grabs and releases wq_pool_mutex. 5031 * 5032 * Return: 5033 * %true if some freezable workqueues are still busy. %false if freezing 5034 * is complete. 5035 */ 5036 bool freeze_workqueues_busy(void) 5037 { 5038 bool busy = false; 5039 struct workqueue_struct *wq; 5040 struct pool_workqueue *pwq; 5041 5042 mutex_lock(&wq_pool_mutex); 5043 5044 WARN_ON_ONCE(!workqueue_freezing); 5045 5046 list_for_each_entry(wq, &workqueues, list) { 5047 if (!(wq->flags & WQ_FREEZABLE)) 5048 continue; 5049 /* 5050 * nr_active is monotonically decreasing. It's safe 5051 * to peek without lock. 5052 */ 5053 rcu_read_lock_sched(); 5054 for_each_pwq(pwq, wq) { 5055 WARN_ON_ONCE(pwq->nr_active < 0); 5056 if (pwq->nr_active) { 5057 busy = true; 5058 rcu_read_unlock_sched(); 5059 goto out_unlock; 5060 } 5061 } 5062 rcu_read_unlock_sched(); 5063 } 5064 out_unlock: 5065 mutex_unlock(&wq_pool_mutex); 5066 return busy; 5067 } 5068 5069 /** 5070 * thaw_workqueues - thaw workqueues 5071 * 5072 * Thaw workqueues. Normal queueing is restored and all collected 5073 * frozen works are transferred to their respective pool worklists. 5074 * 5075 * CONTEXT: 5076 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5077 */ 5078 void thaw_workqueues(void) 5079 { 5080 struct workqueue_struct *wq; 5081 struct pool_workqueue *pwq; 5082 5083 mutex_lock(&wq_pool_mutex); 5084 5085 if (!workqueue_freezing) 5086 goto out_unlock; 5087 5088 workqueue_freezing = false; 5089 5090 /* restore max_active and repopulate worklist */ 5091 list_for_each_entry(wq, &workqueues, list) { 5092 mutex_lock(&wq->mutex); 5093 for_each_pwq(pwq, wq) 5094 pwq_adjust_max_active(pwq); 5095 mutex_unlock(&wq->mutex); 5096 } 5097 5098 out_unlock: 5099 mutex_unlock(&wq_pool_mutex); 5100 } 5101 #endif /* CONFIG_FREEZER */ 5102 5103 static int workqueue_apply_unbound_cpumask(void) 5104 { 5105 LIST_HEAD(ctxs); 5106 int ret = 0; 5107 struct workqueue_struct *wq; 5108 struct apply_wqattrs_ctx *ctx, *n; 5109 5110 lockdep_assert_held(&wq_pool_mutex); 5111 5112 list_for_each_entry(wq, &workqueues, list) { 5113 if (!(wq->flags & WQ_UNBOUND)) 5114 continue; 5115 /* creating multiple pwqs breaks ordering guarantee */ 5116 if (wq->flags & __WQ_ORDERED) 5117 continue; 5118 5119 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5120 if (!ctx) { 5121 ret = -ENOMEM; 5122 break; 5123 } 5124 5125 list_add_tail(&ctx->list, &ctxs); 5126 } 5127 5128 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5129 if (!ret) 5130 apply_wqattrs_commit(ctx); 5131 apply_wqattrs_cleanup(ctx); 5132 } 5133 5134 return ret; 5135 } 5136 5137 /** 5138 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5139 * @cpumask: the cpumask to set 5140 * 5141 * The low-level workqueues cpumask is a global cpumask that limits 5142 * the affinity of all unbound workqueues. This function check the @cpumask 5143 * and apply it to all unbound workqueues and updates all pwqs of them. 5144 * 5145 * Retun: 0 - Success 5146 * -EINVAL - Invalid @cpumask 5147 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5148 */ 5149 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5150 { 5151 int ret = -EINVAL; 5152 cpumask_var_t saved_cpumask; 5153 5154 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5155 return -ENOMEM; 5156 5157 /* 5158 * Not excluding isolated cpus on purpose. 5159 * If the user wishes to include them, we allow that. 5160 */ 5161 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5162 if (!cpumask_empty(cpumask)) { 5163 apply_wqattrs_lock(); 5164 5165 /* save the old wq_unbound_cpumask. */ 5166 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5167 5168 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5169 cpumask_copy(wq_unbound_cpumask, cpumask); 5170 ret = workqueue_apply_unbound_cpumask(); 5171 5172 /* restore the wq_unbound_cpumask when failed. */ 5173 if (ret < 0) 5174 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5175 5176 apply_wqattrs_unlock(); 5177 } 5178 5179 free_cpumask_var(saved_cpumask); 5180 return ret; 5181 } 5182 5183 #ifdef CONFIG_SYSFS 5184 /* 5185 * Workqueues with WQ_SYSFS flag set is visible to userland via 5186 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5187 * following attributes. 5188 * 5189 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5190 * max_active RW int : maximum number of in-flight work items 5191 * 5192 * Unbound workqueues have the following extra attributes. 5193 * 5194 * pool_ids RO int : the associated pool IDs for each node 5195 * nice RW int : nice value of the workers 5196 * cpumask RW mask : bitmask of allowed CPUs for the workers 5197 * numa RW bool : whether enable NUMA affinity 5198 */ 5199 struct wq_device { 5200 struct workqueue_struct *wq; 5201 struct device dev; 5202 }; 5203 5204 static struct workqueue_struct *dev_to_wq(struct device *dev) 5205 { 5206 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5207 5208 return wq_dev->wq; 5209 } 5210 5211 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5212 char *buf) 5213 { 5214 struct workqueue_struct *wq = dev_to_wq(dev); 5215 5216 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5217 } 5218 static DEVICE_ATTR_RO(per_cpu); 5219 5220 static ssize_t max_active_show(struct device *dev, 5221 struct device_attribute *attr, char *buf) 5222 { 5223 struct workqueue_struct *wq = dev_to_wq(dev); 5224 5225 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5226 } 5227 5228 static ssize_t max_active_store(struct device *dev, 5229 struct device_attribute *attr, const char *buf, 5230 size_t count) 5231 { 5232 struct workqueue_struct *wq = dev_to_wq(dev); 5233 int val; 5234 5235 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5236 return -EINVAL; 5237 5238 workqueue_set_max_active(wq, val); 5239 return count; 5240 } 5241 static DEVICE_ATTR_RW(max_active); 5242 5243 static struct attribute *wq_sysfs_attrs[] = { 5244 &dev_attr_per_cpu.attr, 5245 &dev_attr_max_active.attr, 5246 NULL, 5247 }; 5248 ATTRIBUTE_GROUPS(wq_sysfs); 5249 5250 static ssize_t wq_pool_ids_show(struct device *dev, 5251 struct device_attribute *attr, char *buf) 5252 { 5253 struct workqueue_struct *wq = dev_to_wq(dev); 5254 const char *delim = ""; 5255 int node, written = 0; 5256 5257 rcu_read_lock_sched(); 5258 for_each_node(node) { 5259 written += scnprintf(buf + written, PAGE_SIZE - written, 5260 "%s%d:%d", delim, node, 5261 unbound_pwq_by_node(wq, node)->pool->id); 5262 delim = " "; 5263 } 5264 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5265 rcu_read_unlock_sched(); 5266 5267 return written; 5268 } 5269 5270 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5271 char *buf) 5272 { 5273 struct workqueue_struct *wq = dev_to_wq(dev); 5274 int written; 5275 5276 mutex_lock(&wq->mutex); 5277 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5278 mutex_unlock(&wq->mutex); 5279 5280 return written; 5281 } 5282 5283 /* prepare workqueue_attrs for sysfs store operations */ 5284 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5285 { 5286 struct workqueue_attrs *attrs; 5287 5288 lockdep_assert_held(&wq_pool_mutex); 5289 5290 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5291 if (!attrs) 5292 return NULL; 5293 5294 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5295 return attrs; 5296 } 5297 5298 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5299 const char *buf, size_t count) 5300 { 5301 struct workqueue_struct *wq = dev_to_wq(dev); 5302 struct workqueue_attrs *attrs; 5303 int ret = -ENOMEM; 5304 5305 apply_wqattrs_lock(); 5306 5307 attrs = wq_sysfs_prep_attrs(wq); 5308 if (!attrs) 5309 goto out_unlock; 5310 5311 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5312 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5313 ret = apply_workqueue_attrs_locked(wq, attrs); 5314 else 5315 ret = -EINVAL; 5316 5317 out_unlock: 5318 apply_wqattrs_unlock(); 5319 free_workqueue_attrs(attrs); 5320 return ret ?: count; 5321 } 5322 5323 static ssize_t wq_cpumask_show(struct device *dev, 5324 struct device_attribute *attr, char *buf) 5325 { 5326 struct workqueue_struct *wq = dev_to_wq(dev); 5327 int written; 5328 5329 mutex_lock(&wq->mutex); 5330 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5331 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5332 mutex_unlock(&wq->mutex); 5333 return written; 5334 } 5335 5336 static ssize_t wq_cpumask_store(struct device *dev, 5337 struct device_attribute *attr, 5338 const char *buf, size_t count) 5339 { 5340 struct workqueue_struct *wq = dev_to_wq(dev); 5341 struct workqueue_attrs *attrs; 5342 int ret = -ENOMEM; 5343 5344 apply_wqattrs_lock(); 5345 5346 attrs = wq_sysfs_prep_attrs(wq); 5347 if (!attrs) 5348 goto out_unlock; 5349 5350 ret = cpumask_parse(buf, attrs->cpumask); 5351 if (!ret) 5352 ret = apply_workqueue_attrs_locked(wq, attrs); 5353 5354 out_unlock: 5355 apply_wqattrs_unlock(); 5356 free_workqueue_attrs(attrs); 5357 return ret ?: count; 5358 } 5359 5360 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5361 char *buf) 5362 { 5363 struct workqueue_struct *wq = dev_to_wq(dev); 5364 int written; 5365 5366 mutex_lock(&wq->mutex); 5367 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5368 !wq->unbound_attrs->no_numa); 5369 mutex_unlock(&wq->mutex); 5370 5371 return written; 5372 } 5373 5374 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5375 const char *buf, size_t count) 5376 { 5377 struct workqueue_struct *wq = dev_to_wq(dev); 5378 struct workqueue_attrs *attrs; 5379 int v, ret = -ENOMEM; 5380 5381 apply_wqattrs_lock(); 5382 5383 attrs = wq_sysfs_prep_attrs(wq); 5384 if (!attrs) 5385 goto out_unlock; 5386 5387 ret = -EINVAL; 5388 if (sscanf(buf, "%d", &v) == 1) { 5389 attrs->no_numa = !v; 5390 ret = apply_workqueue_attrs_locked(wq, attrs); 5391 } 5392 5393 out_unlock: 5394 apply_wqattrs_unlock(); 5395 free_workqueue_attrs(attrs); 5396 return ret ?: count; 5397 } 5398 5399 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5400 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5401 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5402 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5403 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5404 __ATTR_NULL, 5405 }; 5406 5407 static struct bus_type wq_subsys = { 5408 .name = "workqueue", 5409 .dev_groups = wq_sysfs_groups, 5410 }; 5411 5412 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5413 struct device_attribute *attr, char *buf) 5414 { 5415 int written; 5416 5417 mutex_lock(&wq_pool_mutex); 5418 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5419 cpumask_pr_args(wq_unbound_cpumask)); 5420 mutex_unlock(&wq_pool_mutex); 5421 5422 return written; 5423 } 5424 5425 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5426 struct device_attribute *attr, const char *buf, size_t count) 5427 { 5428 cpumask_var_t cpumask; 5429 int ret; 5430 5431 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5432 return -ENOMEM; 5433 5434 ret = cpumask_parse(buf, cpumask); 5435 if (!ret) 5436 ret = workqueue_set_unbound_cpumask(cpumask); 5437 5438 free_cpumask_var(cpumask); 5439 return ret ? ret : count; 5440 } 5441 5442 static struct device_attribute wq_sysfs_cpumask_attr = 5443 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5444 wq_unbound_cpumask_store); 5445 5446 static int __init wq_sysfs_init(void) 5447 { 5448 int err; 5449 5450 err = subsys_virtual_register(&wq_subsys, NULL); 5451 if (err) 5452 return err; 5453 5454 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5455 } 5456 core_initcall(wq_sysfs_init); 5457 5458 static void wq_device_release(struct device *dev) 5459 { 5460 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5461 5462 kfree(wq_dev); 5463 } 5464 5465 /** 5466 * workqueue_sysfs_register - make a workqueue visible in sysfs 5467 * @wq: the workqueue to register 5468 * 5469 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5470 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5471 * which is the preferred method. 5472 * 5473 * Workqueue user should use this function directly iff it wants to apply 5474 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5475 * apply_workqueue_attrs() may race against userland updating the 5476 * attributes. 5477 * 5478 * Return: 0 on success, -errno on failure. 5479 */ 5480 int workqueue_sysfs_register(struct workqueue_struct *wq) 5481 { 5482 struct wq_device *wq_dev; 5483 int ret; 5484 5485 /* 5486 * Adjusting max_active or creating new pwqs by applying 5487 * attributes breaks ordering guarantee. Disallow exposing ordered 5488 * workqueues. 5489 */ 5490 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5491 return -EINVAL; 5492 5493 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5494 if (!wq_dev) 5495 return -ENOMEM; 5496 5497 wq_dev->wq = wq; 5498 wq_dev->dev.bus = &wq_subsys; 5499 wq_dev->dev.release = wq_device_release; 5500 dev_set_name(&wq_dev->dev, "%s", wq->name); 5501 5502 /* 5503 * unbound_attrs are created separately. Suppress uevent until 5504 * everything is ready. 5505 */ 5506 dev_set_uevent_suppress(&wq_dev->dev, true); 5507 5508 ret = device_register(&wq_dev->dev); 5509 if (ret) { 5510 put_device(&wq_dev->dev); 5511 wq->wq_dev = NULL; 5512 return ret; 5513 } 5514 5515 if (wq->flags & WQ_UNBOUND) { 5516 struct device_attribute *attr; 5517 5518 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5519 ret = device_create_file(&wq_dev->dev, attr); 5520 if (ret) { 5521 device_unregister(&wq_dev->dev); 5522 wq->wq_dev = NULL; 5523 return ret; 5524 } 5525 } 5526 } 5527 5528 dev_set_uevent_suppress(&wq_dev->dev, false); 5529 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5530 return 0; 5531 } 5532 5533 /** 5534 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5535 * @wq: the workqueue to unregister 5536 * 5537 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5538 */ 5539 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5540 { 5541 struct wq_device *wq_dev = wq->wq_dev; 5542 5543 if (!wq->wq_dev) 5544 return; 5545 5546 wq->wq_dev = NULL; 5547 device_unregister(&wq_dev->dev); 5548 } 5549 #else /* CONFIG_SYSFS */ 5550 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5551 #endif /* CONFIG_SYSFS */ 5552 5553 /* 5554 * Workqueue watchdog. 5555 * 5556 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5557 * flush dependency, a concurrency managed work item which stays RUNNING 5558 * indefinitely. Workqueue stalls can be very difficult to debug as the 5559 * usual warning mechanisms don't trigger and internal workqueue state is 5560 * largely opaque. 5561 * 5562 * Workqueue watchdog monitors all worker pools periodically and dumps 5563 * state if some pools failed to make forward progress for a while where 5564 * forward progress is defined as the first item on ->worklist changing. 5565 * 5566 * This mechanism is controlled through the kernel parameter 5567 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5568 * corresponding sysfs parameter file. 5569 */ 5570 #ifdef CONFIG_WQ_WATCHDOG 5571 5572 static unsigned long wq_watchdog_thresh = 30; 5573 static struct timer_list wq_watchdog_timer; 5574 5575 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5576 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5577 5578 static void wq_watchdog_reset_touched(void) 5579 { 5580 int cpu; 5581 5582 wq_watchdog_touched = jiffies; 5583 for_each_possible_cpu(cpu) 5584 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5585 } 5586 5587 static void wq_watchdog_timer_fn(struct timer_list *unused) 5588 { 5589 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5590 bool lockup_detected = false; 5591 struct worker_pool *pool; 5592 int pi; 5593 5594 if (!thresh) 5595 return; 5596 5597 rcu_read_lock(); 5598 5599 for_each_pool(pool, pi) { 5600 unsigned long pool_ts, touched, ts; 5601 5602 if (list_empty(&pool->worklist)) 5603 continue; 5604 5605 /* get the latest of pool and touched timestamps */ 5606 pool_ts = READ_ONCE(pool->watchdog_ts); 5607 touched = READ_ONCE(wq_watchdog_touched); 5608 5609 if (time_after(pool_ts, touched)) 5610 ts = pool_ts; 5611 else 5612 ts = touched; 5613 5614 if (pool->cpu >= 0) { 5615 unsigned long cpu_touched = 5616 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5617 pool->cpu)); 5618 if (time_after(cpu_touched, ts)) 5619 ts = cpu_touched; 5620 } 5621 5622 /* did we stall? */ 5623 if (time_after(jiffies, ts + thresh)) { 5624 lockup_detected = true; 5625 pr_emerg("BUG: workqueue lockup - pool"); 5626 pr_cont_pool_info(pool); 5627 pr_cont(" stuck for %us!\n", 5628 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5629 } 5630 } 5631 5632 rcu_read_unlock(); 5633 5634 if (lockup_detected) 5635 show_workqueue_state(); 5636 5637 wq_watchdog_reset_touched(); 5638 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5639 } 5640 5641 notrace void wq_watchdog_touch(int cpu) 5642 { 5643 if (cpu >= 0) 5644 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5645 else 5646 wq_watchdog_touched = jiffies; 5647 } 5648 5649 static void wq_watchdog_set_thresh(unsigned long thresh) 5650 { 5651 wq_watchdog_thresh = 0; 5652 del_timer_sync(&wq_watchdog_timer); 5653 5654 if (thresh) { 5655 wq_watchdog_thresh = thresh; 5656 wq_watchdog_reset_touched(); 5657 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5658 } 5659 } 5660 5661 static int wq_watchdog_param_set_thresh(const char *val, 5662 const struct kernel_param *kp) 5663 { 5664 unsigned long thresh; 5665 int ret; 5666 5667 ret = kstrtoul(val, 0, &thresh); 5668 if (ret) 5669 return ret; 5670 5671 if (system_wq) 5672 wq_watchdog_set_thresh(thresh); 5673 else 5674 wq_watchdog_thresh = thresh; 5675 5676 return 0; 5677 } 5678 5679 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5680 .set = wq_watchdog_param_set_thresh, 5681 .get = param_get_ulong, 5682 }; 5683 5684 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5685 0644); 5686 5687 static void wq_watchdog_init(void) 5688 { 5689 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5690 wq_watchdog_set_thresh(wq_watchdog_thresh); 5691 } 5692 5693 #else /* CONFIG_WQ_WATCHDOG */ 5694 5695 static inline void wq_watchdog_init(void) { } 5696 5697 #endif /* CONFIG_WQ_WATCHDOG */ 5698 5699 static void __init wq_numa_init(void) 5700 { 5701 cpumask_var_t *tbl; 5702 int node, cpu; 5703 5704 if (num_possible_nodes() <= 1) 5705 return; 5706 5707 if (wq_disable_numa) { 5708 pr_info("workqueue: NUMA affinity support disabled\n"); 5709 return; 5710 } 5711 5712 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5713 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5714 5715 /* 5716 * We want masks of possible CPUs of each node which isn't readily 5717 * available. Build one from cpu_to_node() which should have been 5718 * fully initialized by now. 5719 */ 5720 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5721 BUG_ON(!tbl); 5722 5723 for_each_node(node) 5724 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5725 node_online(node) ? node : NUMA_NO_NODE)); 5726 5727 for_each_possible_cpu(cpu) { 5728 node = cpu_to_node(cpu); 5729 if (WARN_ON(node == NUMA_NO_NODE)) { 5730 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5731 /* happens iff arch is bonkers, let's just proceed */ 5732 return; 5733 } 5734 cpumask_set_cpu(cpu, tbl[node]); 5735 } 5736 5737 wq_numa_possible_cpumask = tbl; 5738 wq_numa_enabled = true; 5739 } 5740 5741 /** 5742 * workqueue_init_early - early init for workqueue subsystem 5743 * 5744 * This is the first half of two-staged workqueue subsystem initialization 5745 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5746 * idr are up. It sets up all the data structures and system workqueues 5747 * and allows early boot code to create workqueues and queue/cancel work 5748 * items. Actual work item execution starts only after kthreads can be 5749 * created and scheduled right before early initcalls. 5750 */ 5751 int __init workqueue_init_early(void) 5752 { 5753 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5754 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5755 int i, cpu; 5756 5757 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5758 5759 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5760 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5761 5762 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5763 5764 /* initialize CPU pools */ 5765 for_each_possible_cpu(cpu) { 5766 struct worker_pool *pool; 5767 5768 i = 0; 5769 for_each_cpu_worker_pool(pool, cpu) { 5770 BUG_ON(init_worker_pool(pool)); 5771 pool->cpu = cpu; 5772 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5773 pool->attrs->nice = std_nice[i++]; 5774 pool->node = cpu_to_node(cpu); 5775 5776 /* alloc pool ID */ 5777 mutex_lock(&wq_pool_mutex); 5778 BUG_ON(worker_pool_assign_id(pool)); 5779 mutex_unlock(&wq_pool_mutex); 5780 } 5781 } 5782 5783 /* create default unbound and ordered wq attrs */ 5784 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5785 struct workqueue_attrs *attrs; 5786 5787 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5788 attrs->nice = std_nice[i]; 5789 unbound_std_wq_attrs[i] = attrs; 5790 5791 /* 5792 * An ordered wq should have only one pwq as ordering is 5793 * guaranteed by max_active which is enforced by pwqs. 5794 * Turn off NUMA so that dfl_pwq is used for all nodes. 5795 */ 5796 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5797 attrs->nice = std_nice[i]; 5798 attrs->no_numa = true; 5799 ordered_wq_attrs[i] = attrs; 5800 } 5801 5802 system_wq = alloc_workqueue("events", 0, 0); 5803 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5804 system_long_wq = alloc_workqueue("events_long", 0, 0); 5805 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5806 WQ_UNBOUND_MAX_ACTIVE); 5807 system_freezable_wq = alloc_workqueue("events_freezable", 5808 WQ_FREEZABLE, 0); 5809 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5810 WQ_POWER_EFFICIENT, 0); 5811 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5812 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5813 0); 5814 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5815 !system_unbound_wq || !system_freezable_wq || 5816 !system_power_efficient_wq || 5817 !system_freezable_power_efficient_wq); 5818 5819 return 0; 5820 } 5821 5822 /** 5823 * workqueue_init - bring workqueue subsystem fully online 5824 * 5825 * This is the latter half of two-staged workqueue subsystem initialization 5826 * and invoked as soon as kthreads can be created and scheduled. 5827 * Workqueues have been created and work items queued on them, but there 5828 * are no kworkers executing the work items yet. Populate the worker pools 5829 * with the initial workers and enable future kworker creations. 5830 */ 5831 int __init workqueue_init(void) 5832 { 5833 struct workqueue_struct *wq; 5834 struct worker_pool *pool; 5835 int cpu, bkt; 5836 5837 /* 5838 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5839 * CPU to node mapping may not be available that early on some 5840 * archs such as power and arm64. As per-cpu pools created 5841 * previously could be missing node hint and unbound pools NUMA 5842 * affinity, fix them up. 5843 * 5844 * Also, while iterating workqueues, create rescuers if requested. 5845 */ 5846 wq_numa_init(); 5847 5848 mutex_lock(&wq_pool_mutex); 5849 5850 for_each_possible_cpu(cpu) { 5851 for_each_cpu_worker_pool(pool, cpu) { 5852 pool->node = cpu_to_node(cpu); 5853 } 5854 } 5855 5856 list_for_each_entry(wq, &workqueues, list) { 5857 wq_update_unbound_numa(wq, smp_processor_id(), true); 5858 WARN(init_rescuer(wq), 5859 "workqueue: failed to create early rescuer for %s", 5860 wq->name); 5861 } 5862 5863 mutex_unlock(&wq_pool_mutex); 5864 5865 /* create the initial workers */ 5866 for_each_online_cpu(cpu) { 5867 for_each_cpu_worker_pool(pool, cpu) { 5868 pool->flags &= ~POOL_DISASSOCIATED; 5869 BUG_ON(!create_worker(pool)); 5870 } 5871 } 5872 5873 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 5874 BUG_ON(!create_worker(pool)); 5875 5876 wq_online = true; 5877 wq_watchdog_init(); 5878 5879 return 0; 5880 } 5881