xref: /linux-6.15/kernel/workqueue.c (revision beda0e72)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <[email protected]>
8  *     Andrew Morton
9  *     Kai Petzke <[email protected]>
10  *     Theodore Ts'o <[email protected]>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <[email protected]>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/core-api/workqueue.rst for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50 #include <linux/sched/isolation.h>
51 #include <linux/nmi.h>
52 
53 #include "workqueue_internal.h"
54 
55 enum {
56 	/*
57 	 * worker_pool flags
58 	 *
59 	 * A bound pool is either associated or disassociated with its CPU.
60 	 * While associated (!DISASSOCIATED), all workers are bound to the
61 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 	 * is in effect.
63 	 *
64 	 * While DISASSOCIATED, the cpu may be offline and all workers have
65 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 	 * be executing on any CPU.  The pool behaves as an unbound one.
67 	 *
68 	 * Note that DISASSOCIATED should be flipped only while holding
69 	 * wq_pool_attach_mutex to avoid changing binding state while
70 	 * worker_attach_to_pool() is in progress.
71 	 */
72 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
73 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
74 
75 	/* worker flags */
76 	WORKER_DIE		= 1 << 1,	/* die die die */
77 	WORKER_IDLE		= 1 << 2,	/* is idle */
78 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
79 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
80 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
81 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
82 
83 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
84 				  WORKER_UNBOUND | WORKER_REBOUND,
85 
86 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
87 
88 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
89 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
90 
91 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
92 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
93 
94 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
95 						/* call for help after 10ms
96 						   (min two ticks) */
97 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
98 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
99 
100 	/*
101 	 * Rescue workers are used only on emergencies and shared by
102 	 * all cpus.  Give MIN_NICE.
103 	 */
104 	RESCUER_NICE_LEVEL	= MIN_NICE,
105 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
106 
107 	WQ_NAME_LEN		= 24,
108 };
109 
110 /*
111  * Structure fields follow one of the following exclusion rules.
112  *
113  * I: Modifiable by initialization/destruction paths and read-only for
114  *    everyone else.
115  *
116  * P: Preemption protected.  Disabling preemption is enough and should
117  *    only be modified and accessed from the local cpu.
118  *
119  * L: pool->lock protected.  Access with pool->lock held.
120  *
121  * X: During normal operation, modification requires pool->lock and should
122  *    be done only from local cpu.  Either disabling preemption on local
123  *    cpu or grabbing pool->lock is enough for read access.  If
124  *    POOL_DISASSOCIATED is set, it's identical to L.
125  *
126  * A: wq_pool_attach_mutex protected.
127  *
128  * PL: wq_pool_mutex protected.
129  *
130  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
131  *
132  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
133  *
134  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
135  *      sched-RCU for reads.
136  *
137  * WQ: wq->mutex protected.
138  *
139  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
140  *
141  * MD: wq_mayday_lock protected.
142  */
143 
144 /* struct worker is defined in workqueue_internal.h */
145 
146 struct worker_pool {
147 	spinlock_t		lock;		/* the pool lock */
148 	int			cpu;		/* I: the associated cpu */
149 	int			node;		/* I: the associated node ID */
150 	int			id;		/* I: pool ID */
151 	unsigned int		flags;		/* X: flags */
152 
153 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
154 
155 	struct list_head	worklist;	/* L: list of pending works */
156 
157 	int			nr_workers;	/* L: total number of workers */
158 	int			nr_idle;	/* L: currently idle workers */
159 
160 	struct list_head	idle_list;	/* X: list of idle workers */
161 	struct timer_list	idle_timer;	/* L: worker idle timeout */
162 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
163 
164 	/* a workers is either on busy_hash or idle_list, or the manager */
165 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 						/* L: hash of busy workers */
167 
168 	struct worker		*manager;	/* L: purely informational */
169 	struct list_head	workers;	/* A: attached workers */
170 	struct completion	*detach_completion; /* all workers detached */
171 
172 	struct ida		worker_ida;	/* worker IDs for task name */
173 
174 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
175 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
176 	int			refcnt;		/* PL: refcnt for unbound pools */
177 
178 	/*
179 	 * The current concurrency level.  As it's likely to be accessed
180 	 * from other CPUs during try_to_wake_up(), put it in a separate
181 	 * cacheline.
182 	 */
183 	atomic_t		nr_running ____cacheline_aligned_in_smp;
184 
185 	/*
186 	 * Destruction of pool is sched-RCU protected to allow dereferences
187 	 * from get_work_pool().
188 	 */
189 	struct rcu_head		rcu;
190 } ____cacheline_aligned_in_smp;
191 
192 /*
193  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
194  * of work_struct->data are used for flags and the remaining high bits
195  * point to the pwq; thus, pwqs need to be aligned at two's power of the
196  * number of flag bits.
197  */
198 struct pool_workqueue {
199 	struct worker_pool	*pool;		/* I: the associated pool */
200 	struct workqueue_struct *wq;		/* I: the owning workqueue */
201 	int			work_color;	/* L: current color */
202 	int			flush_color;	/* L: flushing color */
203 	int			refcnt;		/* L: reference count */
204 	int			nr_in_flight[WORK_NR_COLORS];
205 						/* L: nr of in_flight works */
206 	int			nr_active;	/* L: nr of active works */
207 	int			max_active;	/* L: max active works */
208 	struct list_head	delayed_works;	/* L: delayed works */
209 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
210 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
211 
212 	/*
213 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
214 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
215 	 * itself is also sched-RCU protected so that the first pwq can be
216 	 * determined without grabbing wq->mutex.
217 	 */
218 	struct work_struct	unbound_release_work;
219 	struct rcu_head		rcu;
220 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
221 
222 /*
223  * Structure used to wait for workqueue flush.
224  */
225 struct wq_flusher {
226 	struct list_head	list;		/* WQ: list of flushers */
227 	int			flush_color;	/* WQ: flush color waiting for */
228 	struct completion	done;		/* flush completion */
229 };
230 
231 struct wq_device;
232 
233 /*
234  * The externally visible workqueue.  It relays the issued work items to
235  * the appropriate worker_pool through its pool_workqueues.
236  */
237 struct workqueue_struct {
238 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
239 	struct list_head	list;		/* PR: list of all workqueues */
240 
241 	struct mutex		mutex;		/* protects this wq */
242 	int			work_color;	/* WQ: current work color */
243 	int			flush_color;	/* WQ: current flush color */
244 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
245 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
246 	struct list_head	flusher_queue;	/* WQ: flush waiters */
247 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
248 
249 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
250 	struct worker		*rescuer;	/* I: rescue worker */
251 
252 	int			nr_drainers;	/* WQ: drain in progress */
253 	int			saved_max_active; /* WQ: saved pwq max_active */
254 
255 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
256 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
257 
258 #ifdef CONFIG_SYSFS
259 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
260 #endif
261 #ifdef CONFIG_LOCKDEP
262 	char			*lock_name;
263 	struct lock_class_key	key;
264 	struct lockdep_map	lockdep_map;
265 #endif
266 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267 
268 	/*
269 	 * Destruction of workqueue_struct is sched-RCU protected to allow
270 	 * walking the workqueues list without grabbing wq_pool_mutex.
271 	 * This is used to dump all workqueues from sysrq.
272 	 */
273 	struct rcu_head		rcu;
274 
275 	/* hot fields used during command issue, aligned to cacheline */
276 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280 
281 static struct kmem_cache *pwq_cache;
282 
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 					/* possible CPUs of each node */
285 
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288 
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292 
293 static bool wq_online;			/* can kworkers be created yet? */
294 
295 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
296 
297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299 
300 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
301 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
302 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
303 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
304 
305 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
306 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
307 
308 /* PL: allowable cpus for unbound wqs and work items */
309 static cpumask_var_t wq_unbound_cpumask;
310 
311 /* CPU where unbound work was last round robin scheduled from this CPU */
312 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
313 
314 /*
315  * Local execution of unbound work items is no longer guaranteed.  The
316  * following always forces round-robin CPU selection on unbound work items
317  * to uncover usages which depend on it.
318  */
319 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
320 static bool wq_debug_force_rr_cpu = true;
321 #else
322 static bool wq_debug_force_rr_cpu = false;
323 #endif
324 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
325 
326 /* the per-cpu worker pools */
327 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
328 
329 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
330 
331 /* PL: hash of all unbound pools keyed by pool->attrs */
332 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
333 
334 /* I: attributes used when instantiating standard unbound pools on demand */
335 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
336 
337 /* I: attributes used when instantiating ordered pools on demand */
338 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
339 
340 struct workqueue_struct *system_wq __read_mostly;
341 EXPORT_SYMBOL(system_wq);
342 struct workqueue_struct *system_highpri_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_highpri_wq);
344 struct workqueue_struct *system_long_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_long_wq);
346 struct workqueue_struct *system_unbound_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_unbound_wq);
348 struct workqueue_struct *system_freezable_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_wq);
350 struct workqueue_struct *system_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
352 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
354 
355 static int worker_thread(void *__worker);
356 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
357 
358 #define CREATE_TRACE_POINTS
359 #include <trace/events/workqueue.h>
360 
361 #define assert_rcu_or_pool_mutex()					\
362 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
363 			 !lockdep_is_held(&wq_pool_mutex),		\
364 			 "sched RCU or wq_pool_mutex should be held")
365 
366 #define assert_rcu_or_wq_mutex(wq)					\
367 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
368 			 !lockdep_is_held(&wq->mutex),			\
369 			 "sched RCU or wq->mutex should be held")
370 
371 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
372 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
373 			 !lockdep_is_held(&wq->mutex) &&		\
374 			 !lockdep_is_held(&wq_pool_mutex),		\
375 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
376 
377 #define for_each_cpu_worker_pool(pool, cpu)				\
378 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
379 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
380 	     (pool)++)
381 
382 /**
383  * for_each_pool - iterate through all worker_pools in the system
384  * @pool: iteration cursor
385  * @pi: integer used for iteration
386  *
387  * This must be called either with wq_pool_mutex held or sched RCU read
388  * locked.  If the pool needs to be used beyond the locking in effect, the
389  * caller is responsible for guaranteeing that the pool stays online.
390  *
391  * The if/else clause exists only for the lockdep assertion and can be
392  * ignored.
393  */
394 #define for_each_pool(pool, pi)						\
395 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
396 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
397 		else
398 
399 /**
400  * for_each_pool_worker - iterate through all workers of a worker_pool
401  * @worker: iteration cursor
402  * @pool: worker_pool to iterate workers of
403  *
404  * This must be called with wq_pool_attach_mutex.
405  *
406  * The if/else clause exists only for the lockdep assertion and can be
407  * ignored.
408  */
409 #define for_each_pool_worker(worker, pool)				\
410 	list_for_each_entry((worker), &(pool)->workers, node)		\
411 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
412 		else
413 
414 /**
415  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
416  * @pwq: iteration cursor
417  * @wq: the target workqueue
418  *
419  * This must be called either with wq->mutex held or sched RCU read locked.
420  * If the pwq needs to be used beyond the locking in effect, the caller is
421  * responsible for guaranteeing that the pwq stays online.
422  *
423  * The if/else clause exists only for the lockdep assertion and can be
424  * ignored.
425  */
426 #define for_each_pwq(pwq, wq)						\
427 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
428 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
429 		else
430 
431 #ifdef CONFIG_DEBUG_OBJECTS_WORK
432 
433 static struct debug_obj_descr work_debug_descr;
434 
435 static void *work_debug_hint(void *addr)
436 {
437 	return ((struct work_struct *) addr)->func;
438 }
439 
440 static bool work_is_static_object(void *addr)
441 {
442 	struct work_struct *work = addr;
443 
444 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
445 }
446 
447 /*
448  * fixup_init is called when:
449  * - an active object is initialized
450  */
451 static bool work_fixup_init(void *addr, enum debug_obj_state state)
452 {
453 	struct work_struct *work = addr;
454 
455 	switch (state) {
456 	case ODEBUG_STATE_ACTIVE:
457 		cancel_work_sync(work);
458 		debug_object_init(work, &work_debug_descr);
459 		return true;
460 	default:
461 		return false;
462 	}
463 }
464 
465 /*
466  * fixup_free is called when:
467  * - an active object is freed
468  */
469 static bool work_fixup_free(void *addr, enum debug_obj_state state)
470 {
471 	struct work_struct *work = addr;
472 
473 	switch (state) {
474 	case ODEBUG_STATE_ACTIVE:
475 		cancel_work_sync(work);
476 		debug_object_free(work, &work_debug_descr);
477 		return true;
478 	default:
479 		return false;
480 	}
481 }
482 
483 static struct debug_obj_descr work_debug_descr = {
484 	.name		= "work_struct",
485 	.debug_hint	= work_debug_hint,
486 	.is_static_object = work_is_static_object,
487 	.fixup_init	= work_fixup_init,
488 	.fixup_free	= work_fixup_free,
489 };
490 
491 static inline void debug_work_activate(struct work_struct *work)
492 {
493 	debug_object_activate(work, &work_debug_descr);
494 }
495 
496 static inline void debug_work_deactivate(struct work_struct *work)
497 {
498 	debug_object_deactivate(work, &work_debug_descr);
499 }
500 
501 void __init_work(struct work_struct *work, int onstack)
502 {
503 	if (onstack)
504 		debug_object_init_on_stack(work, &work_debug_descr);
505 	else
506 		debug_object_init(work, &work_debug_descr);
507 }
508 EXPORT_SYMBOL_GPL(__init_work);
509 
510 void destroy_work_on_stack(struct work_struct *work)
511 {
512 	debug_object_free(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515 
516 void destroy_delayed_work_on_stack(struct delayed_work *work)
517 {
518 	destroy_timer_on_stack(&work->timer);
519 	debug_object_free(&work->work, &work_debug_descr);
520 }
521 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
522 
523 #else
524 static inline void debug_work_activate(struct work_struct *work) { }
525 static inline void debug_work_deactivate(struct work_struct *work) { }
526 #endif
527 
528 /**
529  * worker_pool_assign_id - allocate ID and assing it to @pool
530  * @pool: the pool pointer of interest
531  *
532  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
533  * successfully, -errno on failure.
534  */
535 static int worker_pool_assign_id(struct worker_pool *pool)
536 {
537 	int ret;
538 
539 	lockdep_assert_held(&wq_pool_mutex);
540 
541 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
542 			GFP_KERNEL);
543 	if (ret >= 0) {
544 		pool->id = ret;
545 		return 0;
546 	}
547 	return ret;
548 }
549 
550 /**
551  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
552  * @wq: the target workqueue
553  * @node: the node ID
554  *
555  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
556  * read locked.
557  * If the pwq needs to be used beyond the locking in effect, the caller is
558  * responsible for guaranteeing that the pwq stays online.
559  *
560  * Return: The unbound pool_workqueue for @node.
561  */
562 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
563 						  int node)
564 {
565 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
566 
567 	/*
568 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
569 	 * delayed item is pending.  The plan is to keep CPU -> NODE
570 	 * mapping valid and stable across CPU on/offlines.  Once that
571 	 * happens, this workaround can be removed.
572 	 */
573 	if (unlikely(node == NUMA_NO_NODE))
574 		return wq->dfl_pwq;
575 
576 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577 }
578 
579 static unsigned int work_color_to_flags(int color)
580 {
581 	return color << WORK_STRUCT_COLOR_SHIFT;
582 }
583 
584 static int get_work_color(struct work_struct *work)
585 {
586 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
588 }
589 
590 static int work_next_color(int color)
591 {
592 	return (color + 1) % WORK_NR_COLORS;
593 }
594 
595 /*
596  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597  * contain the pointer to the queued pwq.  Once execution starts, the flag
598  * is cleared and the high bits contain OFFQ flags and pool ID.
599  *
600  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601  * and clear_work_data() can be used to set the pwq, pool or clear
602  * work->data.  These functions should only be called while the work is
603  * owned - ie. while the PENDING bit is set.
604  *
605  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
606  * corresponding to a work.  Pool is available once the work has been
607  * queued anywhere after initialization until it is sync canceled.  pwq is
608  * available only while the work item is queued.
609  *
610  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611  * canceled.  While being canceled, a work item may have its PENDING set
612  * but stay off timer and worklist for arbitrarily long and nobody should
613  * try to steal the PENDING bit.
614  */
615 static inline void set_work_data(struct work_struct *work, unsigned long data,
616 				 unsigned long flags)
617 {
618 	WARN_ON_ONCE(!work_pending(work));
619 	atomic_long_set(&work->data, data | flags | work_static(work));
620 }
621 
622 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
623 			 unsigned long extra_flags)
624 {
625 	set_work_data(work, (unsigned long)pwq,
626 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
627 }
628 
629 static void set_work_pool_and_keep_pending(struct work_struct *work,
630 					   int pool_id)
631 {
632 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 		      WORK_STRUCT_PENDING);
634 }
635 
636 static void set_work_pool_and_clear_pending(struct work_struct *work,
637 					    int pool_id)
638 {
639 	/*
640 	 * The following wmb is paired with the implied mb in
641 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 	 * here are visible to and precede any updates by the next PENDING
643 	 * owner.
644 	 */
645 	smp_wmb();
646 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
647 	/*
648 	 * The following mb guarantees that previous clear of a PENDING bit
649 	 * will not be reordered with any speculative LOADS or STORES from
650 	 * work->current_func, which is executed afterwards.  This possible
651 	 * reordering can lead to a missed execution on attempt to qeueue
652 	 * the same @work.  E.g. consider this case:
653 	 *
654 	 *   CPU#0                         CPU#1
655 	 *   ----------------------------  --------------------------------
656 	 *
657 	 * 1  STORE event_indicated
658 	 * 2  queue_work_on() {
659 	 * 3    test_and_set_bit(PENDING)
660 	 * 4 }                             set_..._and_clear_pending() {
661 	 * 5                                 set_work_data() # clear bit
662 	 * 6                                 smp_mb()
663 	 * 7                               work->current_func() {
664 	 * 8				      LOAD event_indicated
665 	 *				   }
666 	 *
667 	 * Without an explicit full barrier speculative LOAD on line 8 can
668 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
669 	 * CPU#0 observes the PENDING bit is still set and new execution of
670 	 * a @work is not queued in a hope, that CPU#1 will eventually
671 	 * finish the queued @work.  Meanwhile CPU#1 does not see
672 	 * event_indicated is set, because speculative LOAD was executed
673 	 * before actual STORE.
674 	 */
675 	smp_mb();
676 }
677 
678 static void clear_work_data(struct work_struct *work)
679 {
680 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
681 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
682 }
683 
684 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
685 {
686 	unsigned long data = atomic_long_read(&work->data);
687 
688 	if (data & WORK_STRUCT_PWQ)
689 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
690 	else
691 		return NULL;
692 }
693 
694 /**
695  * get_work_pool - return the worker_pool a given work was associated with
696  * @work: the work item of interest
697  *
698  * Pools are created and destroyed under wq_pool_mutex, and allows read
699  * access under sched-RCU read lock.  As such, this function should be
700  * called under wq_pool_mutex or with preemption disabled.
701  *
702  * All fields of the returned pool are accessible as long as the above
703  * mentioned locking is in effect.  If the returned pool needs to be used
704  * beyond the critical section, the caller is responsible for ensuring the
705  * returned pool is and stays online.
706  *
707  * Return: The worker_pool @work was last associated with.  %NULL if none.
708  */
709 static struct worker_pool *get_work_pool(struct work_struct *work)
710 {
711 	unsigned long data = atomic_long_read(&work->data);
712 	int pool_id;
713 
714 	assert_rcu_or_pool_mutex();
715 
716 	if (data & WORK_STRUCT_PWQ)
717 		return ((struct pool_workqueue *)
718 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
719 
720 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
721 	if (pool_id == WORK_OFFQ_POOL_NONE)
722 		return NULL;
723 
724 	return idr_find(&worker_pool_idr, pool_id);
725 }
726 
727 /**
728  * get_work_pool_id - return the worker pool ID a given work is associated with
729  * @work: the work item of interest
730  *
731  * Return: The worker_pool ID @work was last associated with.
732  * %WORK_OFFQ_POOL_NONE if none.
733  */
734 static int get_work_pool_id(struct work_struct *work)
735 {
736 	unsigned long data = atomic_long_read(&work->data);
737 
738 	if (data & WORK_STRUCT_PWQ)
739 		return ((struct pool_workqueue *)
740 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
741 
742 	return data >> WORK_OFFQ_POOL_SHIFT;
743 }
744 
745 static void mark_work_canceling(struct work_struct *work)
746 {
747 	unsigned long pool_id = get_work_pool_id(work);
748 
749 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
750 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
751 }
752 
753 static bool work_is_canceling(struct work_struct *work)
754 {
755 	unsigned long data = atomic_long_read(&work->data);
756 
757 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
758 }
759 
760 /*
761  * Policy functions.  These define the policies on how the global worker
762  * pools are managed.  Unless noted otherwise, these functions assume that
763  * they're being called with pool->lock held.
764  */
765 
766 static bool __need_more_worker(struct worker_pool *pool)
767 {
768 	return !atomic_read(&pool->nr_running);
769 }
770 
771 /*
772  * Need to wake up a worker?  Called from anything but currently
773  * running workers.
774  *
775  * Note that, because unbound workers never contribute to nr_running, this
776  * function will always return %true for unbound pools as long as the
777  * worklist isn't empty.
778  */
779 static bool need_more_worker(struct worker_pool *pool)
780 {
781 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
782 }
783 
784 /* Can I start working?  Called from busy but !running workers. */
785 static bool may_start_working(struct worker_pool *pool)
786 {
787 	return pool->nr_idle;
788 }
789 
790 /* Do I need to keep working?  Called from currently running workers. */
791 static bool keep_working(struct worker_pool *pool)
792 {
793 	return !list_empty(&pool->worklist) &&
794 		atomic_read(&pool->nr_running) <= 1;
795 }
796 
797 /* Do we need a new worker?  Called from manager. */
798 static bool need_to_create_worker(struct worker_pool *pool)
799 {
800 	return need_more_worker(pool) && !may_start_working(pool);
801 }
802 
803 /* Do we have too many workers and should some go away? */
804 static bool too_many_workers(struct worker_pool *pool)
805 {
806 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
807 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
808 	int nr_busy = pool->nr_workers - nr_idle;
809 
810 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
811 }
812 
813 /*
814  * Wake up functions.
815  */
816 
817 /* Return the first idle worker.  Safe with preemption disabled */
818 static struct worker *first_idle_worker(struct worker_pool *pool)
819 {
820 	if (unlikely(list_empty(&pool->idle_list)))
821 		return NULL;
822 
823 	return list_first_entry(&pool->idle_list, struct worker, entry);
824 }
825 
826 /**
827  * wake_up_worker - wake up an idle worker
828  * @pool: worker pool to wake worker from
829  *
830  * Wake up the first idle worker of @pool.
831  *
832  * CONTEXT:
833  * spin_lock_irq(pool->lock).
834  */
835 static void wake_up_worker(struct worker_pool *pool)
836 {
837 	struct worker *worker = first_idle_worker(pool);
838 
839 	if (likely(worker))
840 		wake_up_process(worker->task);
841 }
842 
843 /**
844  * wq_worker_waking_up - a worker is waking up
845  * @task: task waking up
846  * @cpu: CPU @task is waking up to
847  *
848  * This function is called during try_to_wake_up() when a worker is
849  * being awoken.
850  *
851  * CONTEXT:
852  * spin_lock_irq(rq->lock)
853  */
854 void wq_worker_waking_up(struct task_struct *task, int cpu)
855 {
856 	struct worker *worker = kthread_data(task);
857 
858 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
859 		WARN_ON_ONCE(worker->pool->cpu != cpu);
860 		atomic_inc(&worker->pool->nr_running);
861 	}
862 }
863 
864 /**
865  * wq_worker_sleeping - a worker is going to sleep
866  * @task: task going to sleep
867  *
868  * This function is called during schedule() when a busy worker is
869  * going to sleep.  Worker on the same cpu can be woken up by
870  * returning pointer to its task.
871  *
872  * CONTEXT:
873  * spin_lock_irq(rq->lock)
874  *
875  * Return:
876  * Worker task on @cpu to wake up, %NULL if none.
877  */
878 struct task_struct *wq_worker_sleeping(struct task_struct *task)
879 {
880 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
881 	struct worker_pool *pool;
882 
883 	/*
884 	 * Rescuers, which may not have all the fields set up like normal
885 	 * workers, also reach here, let's not access anything before
886 	 * checking NOT_RUNNING.
887 	 */
888 	if (worker->flags & WORKER_NOT_RUNNING)
889 		return NULL;
890 
891 	pool = worker->pool;
892 
893 	/* this can only happen on the local cpu */
894 	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
895 		return NULL;
896 
897 	/*
898 	 * The counterpart of the following dec_and_test, implied mb,
899 	 * worklist not empty test sequence is in insert_work().
900 	 * Please read comment there.
901 	 *
902 	 * NOT_RUNNING is clear.  This means that we're bound to and
903 	 * running on the local cpu w/ rq lock held and preemption
904 	 * disabled, which in turn means that none else could be
905 	 * manipulating idle_list, so dereferencing idle_list without pool
906 	 * lock is safe.
907 	 */
908 	if (atomic_dec_and_test(&pool->nr_running) &&
909 	    !list_empty(&pool->worklist))
910 		to_wakeup = first_idle_worker(pool);
911 	return to_wakeup ? to_wakeup->task : NULL;
912 }
913 
914 /**
915  * wq_worker_last_func - retrieve worker's last work function
916  *
917  * Determine the last function a worker executed. This is called from
918  * the scheduler to get a worker's last known identity.
919  *
920  * CONTEXT:
921  * spin_lock_irq(rq->lock)
922  *
923  * Return:
924  * The last work function %current executed as a worker, NULL if it
925  * hasn't executed any work yet.
926  */
927 work_func_t wq_worker_last_func(struct task_struct *task)
928 {
929 	struct worker *worker = kthread_data(task);
930 
931 	return worker->last_func;
932 }
933 
934 /**
935  * worker_set_flags - set worker flags and adjust nr_running accordingly
936  * @worker: self
937  * @flags: flags to set
938  *
939  * Set @flags in @worker->flags and adjust nr_running accordingly.
940  *
941  * CONTEXT:
942  * spin_lock_irq(pool->lock)
943  */
944 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
945 {
946 	struct worker_pool *pool = worker->pool;
947 
948 	WARN_ON_ONCE(worker->task != current);
949 
950 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
951 	if ((flags & WORKER_NOT_RUNNING) &&
952 	    !(worker->flags & WORKER_NOT_RUNNING)) {
953 		atomic_dec(&pool->nr_running);
954 	}
955 
956 	worker->flags |= flags;
957 }
958 
959 /**
960  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
961  * @worker: self
962  * @flags: flags to clear
963  *
964  * Clear @flags in @worker->flags and adjust nr_running accordingly.
965  *
966  * CONTEXT:
967  * spin_lock_irq(pool->lock)
968  */
969 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
970 {
971 	struct worker_pool *pool = worker->pool;
972 	unsigned int oflags = worker->flags;
973 
974 	WARN_ON_ONCE(worker->task != current);
975 
976 	worker->flags &= ~flags;
977 
978 	/*
979 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
980 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
981 	 * of multiple flags, not a single flag.
982 	 */
983 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
984 		if (!(worker->flags & WORKER_NOT_RUNNING))
985 			atomic_inc(&pool->nr_running);
986 }
987 
988 /**
989  * find_worker_executing_work - find worker which is executing a work
990  * @pool: pool of interest
991  * @work: work to find worker for
992  *
993  * Find a worker which is executing @work on @pool by searching
994  * @pool->busy_hash which is keyed by the address of @work.  For a worker
995  * to match, its current execution should match the address of @work and
996  * its work function.  This is to avoid unwanted dependency between
997  * unrelated work executions through a work item being recycled while still
998  * being executed.
999  *
1000  * This is a bit tricky.  A work item may be freed once its execution
1001  * starts and nothing prevents the freed area from being recycled for
1002  * another work item.  If the same work item address ends up being reused
1003  * before the original execution finishes, workqueue will identify the
1004  * recycled work item as currently executing and make it wait until the
1005  * current execution finishes, introducing an unwanted dependency.
1006  *
1007  * This function checks the work item address and work function to avoid
1008  * false positives.  Note that this isn't complete as one may construct a
1009  * work function which can introduce dependency onto itself through a
1010  * recycled work item.  Well, if somebody wants to shoot oneself in the
1011  * foot that badly, there's only so much we can do, and if such deadlock
1012  * actually occurs, it should be easy to locate the culprit work function.
1013  *
1014  * CONTEXT:
1015  * spin_lock_irq(pool->lock).
1016  *
1017  * Return:
1018  * Pointer to worker which is executing @work if found, %NULL
1019  * otherwise.
1020  */
1021 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1022 						 struct work_struct *work)
1023 {
1024 	struct worker *worker;
1025 
1026 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1027 			       (unsigned long)work)
1028 		if (worker->current_work == work &&
1029 		    worker->current_func == work->func)
1030 			return worker;
1031 
1032 	return NULL;
1033 }
1034 
1035 /**
1036  * move_linked_works - move linked works to a list
1037  * @work: start of series of works to be scheduled
1038  * @head: target list to append @work to
1039  * @nextp: out parameter for nested worklist walking
1040  *
1041  * Schedule linked works starting from @work to @head.  Work series to
1042  * be scheduled starts at @work and includes any consecutive work with
1043  * WORK_STRUCT_LINKED set in its predecessor.
1044  *
1045  * If @nextp is not NULL, it's updated to point to the next work of
1046  * the last scheduled work.  This allows move_linked_works() to be
1047  * nested inside outer list_for_each_entry_safe().
1048  *
1049  * CONTEXT:
1050  * spin_lock_irq(pool->lock).
1051  */
1052 static void move_linked_works(struct work_struct *work, struct list_head *head,
1053 			      struct work_struct **nextp)
1054 {
1055 	struct work_struct *n;
1056 
1057 	/*
1058 	 * Linked worklist will always end before the end of the list,
1059 	 * use NULL for list head.
1060 	 */
1061 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1062 		list_move_tail(&work->entry, head);
1063 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1064 			break;
1065 	}
1066 
1067 	/*
1068 	 * If we're already inside safe list traversal and have moved
1069 	 * multiple works to the scheduled queue, the next position
1070 	 * needs to be updated.
1071 	 */
1072 	if (nextp)
1073 		*nextp = n;
1074 }
1075 
1076 /**
1077  * get_pwq - get an extra reference on the specified pool_workqueue
1078  * @pwq: pool_workqueue to get
1079  *
1080  * Obtain an extra reference on @pwq.  The caller should guarantee that
1081  * @pwq has positive refcnt and be holding the matching pool->lock.
1082  */
1083 static void get_pwq(struct pool_workqueue *pwq)
1084 {
1085 	lockdep_assert_held(&pwq->pool->lock);
1086 	WARN_ON_ONCE(pwq->refcnt <= 0);
1087 	pwq->refcnt++;
1088 }
1089 
1090 /**
1091  * put_pwq - put a pool_workqueue reference
1092  * @pwq: pool_workqueue to put
1093  *
1094  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1095  * destruction.  The caller should be holding the matching pool->lock.
1096  */
1097 static void put_pwq(struct pool_workqueue *pwq)
1098 {
1099 	lockdep_assert_held(&pwq->pool->lock);
1100 	if (likely(--pwq->refcnt))
1101 		return;
1102 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1103 		return;
1104 	/*
1105 	 * @pwq can't be released under pool->lock, bounce to
1106 	 * pwq_unbound_release_workfn().  This never recurses on the same
1107 	 * pool->lock as this path is taken only for unbound workqueues and
1108 	 * the release work item is scheduled on a per-cpu workqueue.  To
1109 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1110 	 * subclass of 1 in get_unbound_pool().
1111 	 */
1112 	schedule_work(&pwq->unbound_release_work);
1113 }
1114 
1115 /**
1116  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1117  * @pwq: pool_workqueue to put (can be %NULL)
1118  *
1119  * put_pwq() with locking.  This function also allows %NULL @pwq.
1120  */
1121 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1122 {
1123 	if (pwq) {
1124 		/*
1125 		 * As both pwqs and pools are sched-RCU protected, the
1126 		 * following lock operations are safe.
1127 		 */
1128 		spin_lock_irq(&pwq->pool->lock);
1129 		put_pwq(pwq);
1130 		spin_unlock_irq(&pwq->pool->lock);
1131 	}
1132 }
1133 
1134 static void pwq_activate_delayed_work(struct work_struct *work)
1135 {
1136 	struct pool_workqueue *pwq = get_work_pwq(work);
1137 
1138 	trace_workqueue_activate_work(work);
1139 	if (list_empty(&pwq->pool->worklist))
1140 		pwq->pool->watchdog_ts = jiffies;
1141 	move_linked_works(work, &pwq->pool->worklist, NULL);
1142 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1143 	pwq->nr_active++;
1144 }
1145 
1146 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1147 {
1148 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1149 						    struct work_struct, entry);
1150 
1151 	pwq_activate_delayed_work(work);
1152 }
1153 
1154 /**
1155  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1156  * @pwq: pwq of interest
1157  * @color: color of work which left the queue
1158  *
1159  * A work either has completed or is removed from pending queue,
1160  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1161  *
1162  * CONTEXT:
1163  * spin_lock_irq(pool->lock).
1164  */
1165 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1166 {
1167 	/* uncolored work items don't participate in flushing or nr_active */
1168 	if (color == WORK_NO_COLOR)
1169 		goto out_put;
1170 
1171 	pwq->nr_in_flight[color]--;
1172 
1173 	pwq->nr_active--;
1174 	if (!list_empty(&pwq->delayed_works)) {
1175 		/* one down, submit a delayed one */
1176 		if (pwq->nr_active < pwq->max_active)
1177 			pwq_activate_first_delayed(pwq);
1178 	}
1179 
1180 	/* is flush in progress and are we at the flushing tip? */
1181 	if (likely(pwq->flush_color != color))
1182 		goto out_put;
1183 
1184 	/* are there still in-flight works? */
1185 	if (pwq->nr_in_flight[color])
1186 		goto out_put;
1187 
1188 	/* this pwq is done, clear flush_color */
1189 	pwq->flush_color = -1;
1190 
1191 	/*
1192 	 * If this was the last pwq, wake up the first flusher.  It
1193 	 * will handle the rest.
1194 	 */
1195 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1196 		complete(&pwq->wq->first_flusher->done);
1197 out_put:
1198 	put_pwq(pwq);
1199 }
1200 
1201 /**
1202  * try_to_grab_pending - steal work item from worklist and disable irq
1203  * @work: work item to steal
1204  * @is_dwork: @work is a delayed_work
1205  * @flags: place to store irq state
1206  *
1207  * Try to grab PENDING bit of @work.  This function can handle @work in any
1208  * stable state - idle, on timer or on worklist.
1209  *
1210  * Return:
1211  *  1		if @work was pending and we successfully stole PENDING
1212  *  0		if @work was idle and we claimed PENDING
1213  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1214  *  -ENOENT	if someone else is canceling @work, this state may persist
1215  *		for arbitrarily long
1216  *
1217  * Note:
1218  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1219  * interrupted while holding PENDING and @work off queue, irq must be
1220  * disabled on entry.  This, combined with delayed_work->timer being
1221  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1222  *
1223  * On successful return, >= 0, irq is disabled and the caller is
1224  * responsible for releasing it using local_irq_restore(*@flags).
1225  *
1226  * This function is safe to call from any context including IRQ handler.
1227  */
1228 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1229 			       unsigned long *flags)
1230 {
1231 	struct worker_pool *pool;
1232 	struct pool_workqueue *pwq;
1233 
1234 	local_irq_save(*flags);
1235 
1236 	/* try to steal the timer if it exists */
1237 	if (is_dwork) {
1238 		struct delayed_work *dwork = to_delayed_work(work);
1239 
1240 		/*
1241 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1242 		 * guaranteed that the timer is not queued anywhere and not
1243 		 * running on the local CPU.
1244 		 */
1245 		if (likely(del_timer(&dwork->timer)))
1246 			return 1;
1247 	}
1248 
1249 	/* try to claim PENDING the normal way */
1250 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1251 		return 0;
1252 
1253 	/*
1254 	 * The queueing is in progress, or it is already queued. Try to
1255 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1256 	 */
1257 	pool = get_work_pool(work);
1258 	if (!pool)
1259 		goto fail;
1260 
1261 	spin_lock(&pool->lock);
1262 	/*
1263 	 * work->data is guaranteed to point to pwq only while the work
1264 	 * item is queued on pwq->wq, and both updating work->data to point
1265 	 * to pwq on queueing and to pool on dequeueing are done under
1266 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1267 	 * points to pwq which is associated with a locked pool, the work
1268 	 * item is currently queued on that pool.
1269 	 */
1270 	pwq = get_work_pwq(work);
1271 	if (pwq && pwq->pool == pool) {
1272 		debug_work_deactivate(work);
1273 
1274 		/*
1275 		 * A delayed work item cannot be grabbed directly because
1276 		 * it might have linked NO_COLOR work items which, if left
1277 		 * on the delayed_list, will confuse pwq->nr_active
1278 		 * management later on and cause stall.  Make sure the work
1279 		 * item is activated before grabbing.
1280 		 */
1281 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1282 			pwq_activate_delayed_work(work);
1283 
1284 		list_del_init(&work->entry);
1285 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1286 
1287 		/* work->data points to pwq iff queued, point to pool */
1288 		set_work_pool_and_keep_pending(work, pool->id);
1289 
1290 		spin_unlock(&pool->lock);
1291 		return 1;
1292 	}
1293 	spin_unlock(&pool->lock);
1294 fail:
1295 	local_irq_restore(*flags);
1296 	if (work_is_canceling(work))
1297 		return -ENOENT;
1298 	cpu_relax();
1299 	return -EAGAIN;
1300 }
1301 
1302 /**
1303  * insert_work - insert a work into a pool
1304  * @pwq: pwq @work belongs to
1305  * @work: work to insert
1306  * @head: insertion point
1307  * @extra_flags: extra WORK_STRUCT_* flags to set
1308  *
1309  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1310  * work_struct flags.
1311  *
1312  * CONTEXT:
1313  * spin_lock_irq(pool->lock).
1314  */
1315 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1316 			struct list_head *head, unsigned int extra_flags)
1317 {
1318 	struct worker_pool *pool = pwq->pool;
1319 
1320 	/* we own @work, set data and link */
1321 	set_work_pwq(work, pwq, extra_flags);
1322 	list_add_tail(&work->entry, head);
1323 	get_pwq(pwq);
1324 
1325 	/*
1326 	 * Ensure either wq_worker_sleeping() sees the above
1327 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1328 	 * around lazily while there are works to be processed.
1329 	 */
1330 	smp_mb();
1331 
1332 	if (__need_more_worker(pool))
1333 		wake_up_worker(pool);
1334 }
1335 
1336 /*
1337  * Test whether @work is being queued from another work executing on the
1338  * same workqueue.
1339  */
1340 static bool is_chained_work(struct workqueue_struct *wq)
1341 {
1342 	struct worker *worker;
1343 
1344 	worker = current_wq_worker();
1345 	/*
1346 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1347 	 * I'm @worker, it's safe to dereference it without locking.
1348 	 */
1349 	return worker && worker->current_pwq->wq == wq;
1350 }
1351 
1352 /*
1353  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1354  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1355  * avoid perturbing sensitive tasks.
1356  */
1357 static int wq_select_unbound_cpu(int cpu)
1358 {
1359 	static bool printed_dbg_warning;
1360 	int new_cpu;
1361 
1362 	if (likely(!wq_debug_force_rr_cpu)) {
1363 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1364 			return cpu;
1365 	} else if (!printed_dbg_warning) {
1366 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1367 		printed_dbg_warning = true;
1368 	}
1369 
1370 	if (cpumask_empty(wq_unbound_cpumask))
1371 		return cpu;
1372 
1373 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1374 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1375 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1376 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1377 		if (unlikely(new_cpu >= nr_cpu_ids))
1378 			return cpu;
1379 	}
1380 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1381 
1382 	return new_cpu;
1383 }
1384 
1385 static void __queue_work(int cpu, struct workqueue_struct *wq,
1386 			 struct work_struct *work)
1387 {
1388 	struct pool_workqueue *pwq;
1389 	struct worker_pool *last_pool;
1390 	struct list_head *worklist;
1391 	unsigned int work_flags;
1392 	unsigned int req_cpu = cpu;
1393 
1394 	/*
1395 	 * While a work item is PENDING && off queue, a task trying to
1396 	 * steal the PENDING will busy-loop waiting for it to either get
1397 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1398 	 * happen with IRQ disabled.
1399 	 */
1400 	lockdep_assert_irqs_disabled();
1401 
1402 	debug_work_activate(work);
1403 
1404 	/* if draining, only works from the same workqueue are allowed */
1405 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1406 	    WARN_ON_ONCE(!is_chained_work(wq)))
1407 		return;
1408 retry:
1409 	if (req_cpu == WORK_CPU_UNBOUND)
1410 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1411 
1412 	/* pwq which will be used unless @work is executing elsewhere */
1413 	if (!(wq->flags & WQ_UNBOUND))
1414 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1415 	else
1416 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1417 
1418 	/*
1419 	 * If @work was previously on a different pool, it might still be
1420 	 * running there, in which case the work needs to be queued on that
1421 	 * pool to guarantee non-reentrancy.
1422 	 */
1423 	last_pool = get_work_pool(work);
1424 	if (last_pool && last_pool != pwq->pool) {
1425 		struct worker *worker;
1426 
1427 		spin_lock(&last_pool->lock);
1428 
1429 		worker = find_worker_executing_work(last_pool, work);
1430 
1431 		if (worker && worker->current_pwq->wq == wq) {
1432 			pwq = worker->current_pwq;
1433 		} else {
1434 			/* meh... not running there, queue here */
1435 			spin_unlock(&last_pool->lock);
1436 			spin_lock(&pwq->pool->lock);
1437 		}
1438 	} else {
1439 		spin_lock(&pwq->pool->lock);
1440 	}
1441 
1442 	/*
1443 	 * pwq is determined and locked.  For unbound pools, we could have
1444 	 * raced with pwq release and it could already be dead.  If its
1445 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1446 	 * without another pwq replacing it in the numa_pwq_tbl or while
1447 	 * work items are executing on it, so the retrying is guaranteed to
1448 	 * make forward-progress.
1449 	 */
1450 	if (unlikely(!pwq->refcnt)) {
1451 		if (wq->flags & WQ_UNBOUND) {
1452 			spin_unlock(&pwq->pool->lock);
1453 			cpu_relax();
1454 			goto retry;
1455 		}
1456 		/* oops */
1457 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1458 			  wq->name, cpu);
1459 	}
1460 
1461 	/* pwq determined, queue */
1462 	trace_workqueue_queue_work(req_cpu, pwq, work);
1463 
1464 	if (WARN_ON(!list_empty(&work->entry))) {
1465 		spin_unlock(&pwq->pool->lock);
1466 		return;
1467 	}
1468 
1469 	pwq->nr_in_flight[pwq->work_color]++;
1470 	work_flags = work_color_to_flags(pwq->work_color);
1471 
1472 	if (likely(pwq->nr_active < pwq->max_active)) {
1473 		trace_workqueue_activate_work(work);
1474 		pwq->nr_active++;
1475 		worklist = &pwq->pool->worklist;
1476 		if (list_empty(worklist))
1477 			pwq->pool->watchdog_ts = jiffies;
1478 	} else {
1479 		work_flags |= WORK_STRUCT_DELAYED;
1480 		worklist = &pwq->delayed_works;
1481 	}
1482 
1483 	insert_work(pwq, work, worklist, work_flags);
1484 
1485 	spin_unlock(&pwq->pool->lock);
1486 }
1487 
1488 /**
1489  * queue_work_on - queue work on specific cpu
1490  * @cpu: CPU number to execute work on
1491  * @wq: workqueue to use
1492  * @work: work to queue
1493  *
1494  * We queue the work to a specific CPU, the caller must ensure it
1495  * can't go away.
1496  *
1497  * Return: %false if @work was already on a queue, %true otherwise.
1498  */
1499 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1500 		   struct work_struct *work)
1501 {
1502 	bool ret = false;
1503 	unsigned long flags;
1504 
1505 	local_irq_save(flags);
1506 
1507 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1508 		__queue_work(cpu, wq, work);
1509 		ret = true;
1510 	}
1511 
1512 	local_irq_restore(flags);
1513 	return ret;
1514 }
1515 EXPORT_SYMBOL(queue_work_on);
1516 
1517 void delayed_work_timer_fn(struct timer_list *t)
1518 {
1519 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1520 
1521 	/* should have been called from irqsafe timer with irq already off */
1522 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1523 }
1524 EXPORT_SYMBOL(delayed_work_timer_fn);
1525 
1526 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1527 				struct delayed_work *dwork, unsigned long delay)
1528 {
1529 	struct timer_list *timer = &dwork->timer;
1530 	struct work_struct *work = &dwork->work;
1531 
1532 	WARN_ON_ONCE(!wq);
1533 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1534 	WARN_ON_ONCE(timer_pending(timer));
1535 	WARN_ON_ONCE(!list_empty(&work->entry));
1536 
1537 	/*
1538 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1539 	 * both optimization and correctness.  The earliest @timer can
1540 	 * expire is on the closest next tick and delayed_work users depend
1541 	 * on that there's no such delay when @delay is 0.
1542 	 */
1543 	if (!delay) {
1544 		__queue_work(cpu, wq, &dwork->work);
1545 		return;
1546 	}
1547 
1548 	dwork->wq = wq;
1549 	dwork->cpu = cpu;
1550 	timer->expires = jiffies + delay;
1551 
1552 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1553 		add_timer_on(timer, cpu);
1554 	else
1555 		add_timer(timer);
1556 }
1557 
1558 /**
1559  * queue_delayed_work_on - queue work on specific CPU after delay
1560  * @cpu: CPU number to execute work on
1561  * @wq: workqueue to use
1562  * @dwork: work to queue
1563  * @delay: number of jiffies to wait before queueing
1564  *
1565  * Return: %false if @work was already on a queue, %true otherwise.  If
1566  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1567  * execution.
1568  */
1569 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1570 			   struct delayed_work *dwork, unsigned long delay)
1571 {
1572 	struct work_struct *work = &dwork->work;
1573 	bool ret = false;
1574 	unsigned long flags;
1575 
1576 	/* read the comment in __queue_work() */
1577 	local_irq_save(flags);
1578 
1579 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1580 		__queue_delayed_work(cpu, wq, dwork, delay);
1581 		ret = true;
1582 	}
1583 
1584 	local_irq_restore(flags);
1585 	return ret;
1586 }
1587 EXPORT_SYMBOL(queue_delayed_work_on);
1588 
1589 /**
1590  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1591  * @cpu: CPU number to execute work on
1592  * @wq: workqueue to use
1593  * @dwork: work to queue
1594  * @delay: number of jiffies to wait before queueing
1595  *
1596  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1597  * modify @dwork's timer so that it expires after @delay.  If @delay is
1598  * zero, @work is guaranteed to be scheduled immediately regardless of its
1599  * current state.
1600  *
1601  * Return: %false if @dwork was idle and queued, %true if @dwork was
1602  * pending and its timer was modified.
1603  *
1604  * This function is safe to call from any context including IRQ handler.
1605  * See try_to_grab_pending() for details.
1606  */
1607 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1608 			 struct delayed_work *dwork, unsigned long delay)
1609 {
1610 	unsigned long flags;
1611 	int ret;
1612 
1613 	do {
1614 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1615 	} while (unlikely(ret == -EAGAIN));
1616 
1617 	if (likely(ret >= 0)) {
1618 		__queue_delayed_work(cpu, wq, dwork, delay);
1619 		local_irq_restore(flags);
1620 	}
1621 
1622 	/* -ENOENT from try_to_grab_pending() becomes %true */
1623 	return ret;
1624 }
1625 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1626 
1627 static void rcu_work_rcufn(struct rcu_head *rcu)
1628 {
1629 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1630 
1631 	/* read the comment in __queue_work() */
1632 	local_irq_disable();
1633 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1634 	local_irq_enable();
1635 }
1636 
1637 /**
1638  * queue_rcu_work - queue work after a RCU grace period
1639  * @wq: workqueue to use
1640  * @rwork: work to queue
1641  *
1642  * Return: %false if @rwork was already pending, %true otherwise.  Note
1643  * that a full RCU grace period is guaranteed only after a %true return.
1644  * While @rwork is guarnateed to be executed after a %false return, the
1645  * execution may happen before a full RCU grace period has passed.
1646  */
1647 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1648 {
1649 	struct work_struct *work = &rwork->work;
1650 
1651 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1652 		rwork->wq = wq;
1653 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1654 		return true;
1655 	}
1656 
1657 	return false;
1658 }
1659 EXPORT_SYMBOL(queue_rcu_work);
1660 
1661 /**
1662  * worker_enter_idle - enter idle state
1663  * @worker: worker which is entering idle state
1664  *
1665  * @worker is entering idle state.  Update stats and idle timer if
1666  * necessary.
1667  *
1668  * LOCKING:
1669  * spin_lock_irq(pool->lock).
1670  */
1671 static void worker_enter_idle(struct worker *worker)
1672 {
1673 	struct worker_pool *pool = worker->pool;
1674 
1675 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1676 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1677 			 (worker->hentry.next || worker->hentry.pprev)))
1678 		return;
1679 
1680 	/* can't use worker_set_flags(), also called from create_worker() */
1681 	worker->flags |= WORKER_IDLE;
1682 	pool->nr_idle++;
1683 	worker->last_active = jiffies;
1684 
1685 	/* idle_list is LIFO */
1686 	list_add(&worker->entry, &pool->idle_list);
1687 
1688 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1689 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1690 
1691 	/*
1692 	 * Sanity check nr_running.  Because unbind_workers() releases
1693 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1694 	 * nr_running, the warning may trigger spuriously.  Check iff
1695 	 * unbind is not in progress.
1696 	 */
1697 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1698 		     pool->nr_workers == pool->nr_idle &&
1699 		     atomic_read(&pool->nr_running));
1700 }
1701 
1702 /**
1703  * worker_leave_idle - leave idle state
1704  * @worker: worker which is leaving idle state
1705  *
1706  * @worker is leaving idle state.  Update stats.
1707  *
1708  * LOCKING:
1709  * spin_lock_irq(pool->lock).
1710  */
1711 static void worker_leave_idle(struct worker *worker)
1712 {
1713 	struct worker_pool *pool = worker->pool;
1714 
1715 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1716 		return;
1717 	worker_clr_flags(worker, WORKER_IDLE);
1718 	pool->nr_idle--;
1719 	list_del_init(&worker->entry);
1720 }
1721 
1722 static struct worker *alloc_worker(int node)
1723 {
1724 	struct worker *worker;
1725 
1726 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1727 	if (worker) {
1728 		INIT_LIST_HEAD(&worker->entry);
1729 		INIT_LIST_HEAD(&worker->scheduled);
1730 		INIT_LIST_HEAD(&worker->node);
1731 		/* on creation a worker is in !idle && prep state */
1732 		worker->flags = WORKER_PREP;
1733 	}
1734 	return worker;
1735 }
1736 
1737 /**
1738  * worker_attach_to_pool() - attach a worker to a pool
1739  * @worker: worker to be attached
1740  * @pool: the target pool
1741  *
1742  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1743  * cpu-binding of @worker are kept coordinated with the pool across
1744  * cpu-[un]hotplugs.
1745  */
1746 static void worker_attach_to_pool(struct worker *worker,
1747 				   struct worker_pool *pool)
1748 {
1749 	mutex_lock(&wq_pool_attach_mutex);
1750 
1751 	/*
1752 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1753 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1754 	 */
1755 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1756 
1757 	/*
1758 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1759 	 * stable across this function.  See the comments above the flag
1760 	 * definition for details.
1761 	 */
1762 	if (pool->flags & POOL_DISASSOCIATED)
1763 		worker->flags |= WORKER_UNBOUND;
1764 
1765 	list_add_tail(&worker->node, &pool->workers);
1766 	worker->pool = pool;
1767 
1768 	mutex_unlock(&wq_pool_attach_mutex);
1769 }
1770 
1771 /**
1772  * worker_detach_from_pool() - detach a worker from its pool
1773  * @worker: worker which is attached to its pool
1774  *
1775  * Undo the attaching which had been done in worker_attach_to_pool().  The
1776  * caller worker shouldn't access to the pool after detached except it has
1777  * other reference to the pool.
1778  */
1779 static void worker_detach_from_pool(struct worker *worker)
1780 {
1781 	struct worker_pool *pool = worker->pool;
1782 	struct completion *detach_completion = NULL;
1783 
1784 	mutex_lock(&wq_pool_attach_mutex);
1785 
1786 	list_del(&worker->node);
1787 	worker->pool = NULL;
1788 
1789 	if (list_empty(&pool->workers))
1790 		detach_completion = pool->detach_completion;
1791 	mutex_unlock(&wq_pool_attach_mutex);
1792 
1793 	/* clear leftover flags without pool->lock after it is detached */
1794 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1795 
1796 	if (detach_completion)
1797 		complete(detach_completion);
1798 }
1799 
1800 /**
1801  * create_worker - create a new workqueue worker
1802  * @pool: pool the new worker will belong to
1803  *
1804  * Create and start a new worker which is attached to @pool.
1805  *
1806  * CONTEXT:
1807  * Might sleep.  Does GFP_KERNEL allocations.
1808  *
1809  * Return:
1810  * Pointer to the newly created worker.
1811  */
1812 static struct worker *create_worker(struct worker_pool *pool)
1813 {
1814 	struct worker *worker = NULL;
1815 	int id = -1;
1816 	char id_buf[16];
1817 
1818 	/* ID is needed to determine kthread name */
1819 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1820 	if (id < 0)
1821 		goto fail;
1822 
1823 	worker = alloc_worker(pool->node);
1824 	if (!worker)
1825 		goto fail;
1826 
1827 	worker->id = id;
1828 
1829 	if (pool->cpu >= 0)
1830 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1831 			 pool->attrs->nice < 0  ? "H" : "");
1832 	else
1833 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1834 
1835 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1836 					      "kworker/%s", id_buf);
1837 	if (IS_ERR(worker->task))
1838 		goto fail;
1839 
1840 	set_user_nice(worker->task, pool->attrs->nice);
1841 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1842 
1843 	/* successful, attach the worker to the pool */
1844 	worker_attach_to_pool(worker, pool);
1845 
1846 	/* start the newly created worker */
1847 	spin_lock_irq(&pool->lock);
1848 	worker->pool->nr_workers++;
1849 	worker_enter_idle(worker);
1850 	wake_up_process(worker->task);
1851 	spin_unlock_irq(&pool->lock);
1852 
1853 	return worker;
1854 
1855 fail:
1856 	if (id >= 0)
1857 		ida_simple_remove(&pool->worker_ida, id);
1858 	kfree(worker);
1859 	return NULL;
1860 }
1861 
1862 /**
1863  * destroy_worker - destroy a workqueue worker
1864  * @worker: worker to be destroyed
1865  *
1866  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1867  * be idle.
1868  *
1869  * CONTEXT:
1870  * spin_lock_irq(pool->lock).
1871  */
1872 static void destroy_worker(struct worker *worker)
1873 {
1874 	struct worker_pool *pool = worker->pool;
1875 
1876 	lockdep_assert_held(&pool->lock);
1877 
1878 	/* sanity check frenzy */
1879 	if (WARN_ON(worker->current_work) ||
1880 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1881 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1882 		return;
1883 
1884 	pool->nr_workers--;
1885 	pool->nr_idle--;
1886 
1887 	list_del_init(&worker->entry);
1888 	worker->flags |= WORKER_DIE;
1889 	wake_up_process(worker->task);
1890 }
1891 
1892 static void idle_worker_timeout(struct timer_list *t)
1893 {
1894 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1895 
1896 	spin_lock_irq(&pool->lock);
1897 
1898 	while (too_many_workers(pool)) {
1899 		struct worker *worker;
1900 		unsigned long expires;
1901 
1902 		/* idle_list is kept in LIFO order, check the last one */
1903 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1904 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1905 
1906 		if (time_before(jiffies, expires)) {
1907 			mod_timer(&pool->idle_timer, expires);
1908 			break;
1909 		}
1910 
1911 		destroy_worker(worker);
1912 	}
1913 
1914 	spin_unlock_irq(&pool->lock);
1915 }
1916 
1917 static void send_mayday(struct work_struct *work)
1918 {
1919 	struct pool_workqueue *pwq = get_work_pwq(work);
1920 	struct workqueue_struct *wq = pwq->wq;
1921 
1922 	lockdep_assert_held(&wq_mayday_lock);
1923 
1924 	if (!wq->rescuer)
1925 		return;
1926 
1927 	/* mayday mayday mayday */
1928 	if (list_empty(&pwq->mayday_node)) {
1929 		/*
1930 		 * If @pwq is for an unbound wq, its base ref may be put at
1931 		 * any time due to an attribute change.  Pin @pwq until the
1932 		 * rescuer is done with it.
1933 		 */
1934 		get_pwq(pwq);
1935 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1936 		wake_up_process(wq->rescuer->task);
1937 	}
1938 }
1939 
1940 static void pool_mayday_timeout(struct timer_list *t)
1941 {
1942 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
1943 	struct work_struct *work;
1944 
1945 	spin_lock_irq(&pool->lock);
1946 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1947 
1948 	if (need_to_create_worker(pool)) {
1949 		/*
1950 		 * We've been trying to create a new worker but
1951 		 * haven't been successful.  We might be hitting an
1952 		 * allocation deadlock.  Send distress signals to
1953 		 * rescuers.
1954 		 */
1955 		list_for_each_entry(work, &pool->worklist, entry)
1956 			send_mayday(work);
1957 	}
1958 
1959 	spin_unlock(&wq_mayday_lock);
1960 	spin_unlock_irq(&pool->lock);
1961 
1962 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1963 }
1964 
1965 /**
1966  * maybe_create_worker - create a new worker if necessary
1967  * @pool: pool to create a new worker for
1968  *
1969  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1970  * have at least one idle worker on return from this function.  If
1971  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1972  * sent to all rescuers with works scheduled on @pool to resolve
1973  * possible allocation deadlock.
1974  *
1975  * On return, need_to_create_worker() is guaranteed to be %false and
1976  * may_start_working() %true.
1977  *
1978  * LOCKING:
1979  * spin_lock_irq(pool->lock) which may be released and regrabbed
1980  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1981  * manager.
1982  */
1983 static void maybe_create_worker(struct worker_pool *pool)
1984 __releases(&pool->lock)
1985 __acquires(&pool->lock)
1986 {
1987 restart:
1988 	spin_unlock_irq(&pool->lock);
1989 
1990 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1991 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1992 
1993 	while (true) {
1994 		if (create_worker(pool) || !need_to_create_worker(pool))
1995 			break;
1996 
1997 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1998 
1999 		if (!need_to_create_worker(pool))
2000 			break;
2001 	}
2002 
2003 	del_timer_sync(&pool->mayday_timer);
2004 	spin_lock_irq(&pool->lock);
2005 	/*
2006 	 * This is necessary even after a new worker was just successfully
2007 	 * created as @pool->lock was dropped and the new worker might have
2008 	 * already become busy.
2009 	 */
2010 	if (need_to_create_worker(pool))
2011 		goto restart;
2012 }
2013 
2014 /**
2015  * manage_workers - manage worker pool
2016  * @worker: self
2017  *
2018  * Assume the manager role and manage the worker pool @worker belongs
2019  * to.  At any given time, there can be only zero or one manager per
2020  * pool.  The exclusion is handled automatically by this function.
2021  *
2022  * The caller can safely start processing works on false return.  On
2023  * true return, it's guaranteed that need_to_create_worker() is false
2024  * and may_start_working() is true.
2025  *
2026  * CONTEXT:
2027  * spin_lock_irq(pool->lock) which may be released and regrabbed
2028  * multiple times.  Does GFP_KERNEL allocations.
2029  *
2030  * Return:
2031  * %false if the pool doesn't need management and the caller can safely
2032  * start processing works, %true if management function was performed and
2033  * the conditions that the caller verified before calling the function may
2034  * no longer be true.
2035  */
2036 static bool manage_workers(struct worker *worker)
2037 {
2038 	struct worker_pool *pool = worker->pool;
2039 
2040 	if (pool->flags & POOL_MANAGER_ACTIVE)
2041 		return false;
2042 
2043 	pool->flags |= POOL_MANAGER_ACTIVE;
2044 	pool->manager = worker;
2045 
2046 	maybe_create_worker(pool);
2047 
2048 	pool->manager = NULL;
2049 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2050 	wake_up(&wq_manager_wait);
2051 	return true;
2052 }
2053 
2054 /**
2055  * process_one_work - process single work
2056  * @worker: self
2057  * @work: work to process
2058  *
2059  * Process @work.  This function contains all the logics necessary to
2060  * process a single work including synchronization against and
2061  * interaction with other workers on the same cpu, queueing and
2062  * flushing.  As long as context requirement is met, any worker can
2063  * call this function to process a work.
2064  *
2065  * CONTEXT:
2066  * spin_lock_irq(pool->lock) which is released and regrabbed.
2067  */
2068 static void process_one_work(struct worker *worker, struct work_struct *work)
2069 __releases(&pool->lock)
2070 __acquires(&pool->lock)
2071 {
2072 	struct pool_workqueue *pwq = get_work_pwq(work);
2073 	struct worker_pool *pool = worker->pool;
2074 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2075 	int work_color;
2076 	struct worker *collision;
2077 #ifdef CONFIG_LOCKDEP
2078 	/*
2079 	 * It is permissible to free the struct work_struct from
2080 	 * inside the function that is called from it, this we need to
2081 	 * take into account for lockdep too.  To avoid bogus "held
2082 	 * lock freed" warnings as well as problems when looking into
2083 	 * work->lockdep_map, make a copy and use that here.
2084 	 */
2085 	struct lockdep_map lockdep_map;
2086 
2087 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2088 #endif
2089 	/* ensure we're on the correct CPU */
2090 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2091 		     raw_smp_processor_id() != pool->cpu);
2092 
2093 	/*
2094 	 * A single work shouldn't be executed concurrently by
2095 	 * multiple workers on a single cpu.  Check whether anyone is
2096 	 * already processing the work.  If so, defer the work to the
2097 	 * currently executing one.
2098 	 */
2099 	collision = find_worker_executing_work(pool, work);
2100 	if (unlikely(collision)) {
2101 		move_linked_works(work, &collision->scheduled, NULL);
2102 		return;
2103 	}
2104 
2105 	/* claim and dequeue */
2106 	debug_work_deactivate(work);
2107 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2108 	worker->current_work = work;
2109 	worker->current_func = work->func;
2110 	worker->current_pwq = pwq;
2111 	work_color = get_work_color(work);
2112 
2113 	/*
2114 	 * Record wq name for cmdline and debug reporting, may get
2115 	 * overridden through set_worker_desc().
2116 	 */
2117 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2118 
2119 	list_del_init(&work->entry);
2120 
2121 	/*
2122 	 * CPU intensive works don't participate in concurrency management.
2123 	 * They're the scheduler's responsibility.  This takes @worker out
2124 	 * of concurrency management and the next code block will chain
2125 	 * execution of the pending work items.
2126 	 */
2127 	if (unlikely(cpu_intensive))
2128 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2129 
2130 	/*
2131 	 * Wake up another worker if necessary.  The condition is always
2132 	 * false for normal per-cpu workers since nr_running would always
2133 	 * be >= 1 at this point.  This is used to chain execution of the
2134 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2135 	 * UNBOUND and CPU_INTENSIVE ones.
2136 	 */
2137 	if (need_more_worker(pool))
2138 		wake_up_worker(pool);
2139 
2140 	/*
2141 	 * Record the last pool and clear PENDING which should be the last
2142 	 * update to @work.  Also, do this inside @pool->lock so that
2143 	 * PENDING and queued state changes happen together while IRQ is
2144 	 * disabled.
2145 	 */
2146 	set_work_pool_and_clear_pending(work, pool->id);
2147 
2148 	spin_unlock_irq(&pool->lock);
2149 
2150 	lock_map_acquire(&pwq->wq->lockdep_map);
2151 	lock_map_acquire(&lockdep_map);
2152 	/*
2153 	 * Strictly speaking we should mark the invariant state without holding
2154 	 * any locks, that is, before these two lock_map_acquire()'s.
2155 	 *
2156 	 * However, that would result in:
2157 	 *
2158 	 *   A(W1)
2159 	 *   WFC(C)
2160 	 *		A(W1)
2161 	 *		C(C)
2162 	 *
2163 	 * Which would create W1->C->W1 dependencies, even though there is no
2164 	 * actual deadlock possible. There are two solutions, using a
2165 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2166 	 * hit the lockdep limitation on recursive locks, or simply discard
2167 	 * these locks.
2168 	 *
2169 	 * AFAICT there is no possible deadlock scenario between the
2170 	 * flush_work() and complete() primitives (except for single-threaded
2171 	 * workqueues), so hiding them isn't a problem.
2172 	 */
2173 	lockdep_invariant_state(true);
2174 	trace_workqueue_execute_start(work);
2175 	worker->current_func(work);
2176 	/*
2177 	 * While we must be careful to not use "work" after this, the trace
2178 	 * point will only record its address.
2179 	 */
2180 	trace_workqueue_execute_end(work);
2181 	lock_map_release(&lockdep_map);
2182 	lock_map_release(&pwq->wq->lockdep_map);
2183 
2184 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2185 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2186 		       "     last function: %pf\n",
2187 		       current->comm, preempt_count(), task_pid_nr(current),
2188 		       worker->current_func);
2189 		debug_show_held_locks(current);
2190 		dump_stack();
2191 	}
2192 
2193 	/*
2194 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2195 	 * kernels, where a requeueing work item waiting for something to
2196 	 * happen could deadlock with stop_machine as such work item could
2197 	 * indefinitely requeue itself while all other CPUs are trapped in
2198 	 * stop_machine. At the same time, report a quiescent RCU state so
2199 	 * the same condition doesn't freeze RCU.
2200 	 */
2201 	cond_resched();
2202 
2203 	spin_lock_irq(&pool->lock);
2204 
2205 	/* clear cpu intensive status */
2206 	if (unlikely(cpu_intensive))
2207 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2208 
2209 	/* tag the worker for identification in schedule() */
2210 	worker->last_func = worker->current_func;
2211 
2212 	/* we're done with it, release */
2213 	hash_del(&worker->hentry);
2214 	worker->current_work = NULL;
2215 	worker->current_func = NULL;
2216 	worker->current_pwq = NULL;
2217 	pwq_dec_nr_in_flight(pwq, work_color);
2218 }
2219 
2220 /**
2221  * process_scheduled_works - process scheduled works
2222  * @worker: self
2223  *
2224  * Process all scheduled works.  Please note that the scheduled list
2225  * may change while processing a work, so this function repeatedly
2226  * fetches a work from the top and executes it.
2227  *
2228  * CONTEXT:
2229  * spin_lock_irq(pool->lock) which may be released and regrabbed
2230  * multiple times.
2231  */
2232 static void process_scheduled_works(struct worker *worker)
2233 {
2234 	while (!list_empty(&worker->scheduled)) {
2235 		struct work_struct *work = list_first_entry(&worker->scheduled,
2236 						struct work_struct, entry);
2237 		process_one_work(worker, work);
2238 	}
2239 }
2240 
2241 static void set_pf_worker(bool val)
2242 {
2243 	mutex_lock(&wq_pool_attach_mutex);
2244 	if (val)
2245 		current->flags |= PF_WQ_WORKER;
2246 	else
2247 		current->flags &= ~PF_WQ_WORKER;
2248 	mutex_unlock(&wq_pool_attach_mutex);
2249 }
2250 
2251 /**
2252  * worker_thread - the worker thread function
2253  * @__worker: self
2254  *
2255  * The worker thread function.  All workers belong to a worker_pool -
2256  * either a per-cpu one or dynamic unbound one.  These workers process all
2257  * work items regardless of their specific target workqueue.  The only
2258  * exception is work items which belong to workqueues with a rescuer which
2259  * will be explained in rescuer_thread().
2260  *
2261  * Return: 0
2262  */
2263 static int worker_thread(void *__worker)
2264 {
2265 	struct worker *worker = __worker;
2266 	struct worker_pool *pool = worker->pool;
2267 
2268 	/* tell the scheduler that this is a workqueue worker */
2269 	set_pf_worker(true);
2270 woke_up:
2271 	spin_lock_irq(&pool->lock);
2272 
2273 	/* am I supposed to die? */
2274 	if (unlikely(worker->flags & WORKER_DIE)) {
2275 		spin_unlock_irq(&pool->lock);
2276 		WARN_ON_ONCE(!list_empty(&worker->entry));
2277 		set_pf_worker(false);
2278 
2279 		set_task_comm(worker->task, "kworker/dying");
2280 		ida_simple_remove(&pool->worker_ida, worker->id);
2281 		worker_detach_from_pool(worker);
2282 		kfree(worker);
2283 		return 0;
2284 	}
2285 
2286 	worker_leave_idle(worker);
2287 recheck:
2288 	/* no more worker necessary? */
2289 	if (!need_more_worker(pool))
2290 		goto sleep;
2291 
2292 	/* do we need to manage? */
2293 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2294 		goto recheck;
2295 
2296 	/*
2297 	 * ->scheduled list can only be filled while a worker is
2298 	 * preparing to process a work or actually processing it.
2299 	 * Make sure nobody diddled with it while I was sleeping.
2300 	 */
2301 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2302 
2303 	/*
2304 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2305 	 * worker or that someone else has already assumed the manager
2306 	 * role.  This is where @worker starts participating in concurrency
2307 	 * management if applicable and concurrency management is restored
2308 	 * after being rebound.  See rebind_workers() for details.
2309 	 */
2310 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2311 
2312 	do {
2313 		struct work_struct *work =
2314 			list_first_entry(&pool->worklist,
2315 					 struct work_struct, entry);
2316 
2317 		pool->watchdog_ts = jiffies;
2318 
2319 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2320 			/* optimization path, not strictly necessary */
2321 			process_one_work(worker, work);
2322 			if (unlikely(!list_empty(&worker->scheduled)))
2323 				process_scheduled_works(worker);
2324 		} else {
2325 			move_linked_works(work, &worker->scheduled, NULL);
2326 			process_scheduled_works(worker);
2327 		}
2328 	} while (keep_working(pool));
2329 
2330 	worker_set_flags(worker, WORKER_PREP);
2331 sleep:
2332 	/*
2333 	 * pool->lock is held and there's no work to process and no need to
2334 	 * manage, sleep.  Workers are woken up only while holding
2335 	 * pool->lock or from local cpu, so setting the current state
2336 	 * before releasing pool->lock is enough to prevent losing any
2337 	 * event.
2338 	 */
2339 	worker_enter_idle(worker);
2340 	__set_current_state(TASK_IDLE);
2341 	spin_unlock_irq(&pool->lock);
2342 	schedule();
2343 	goto woke_up;
2344 }
2345 
2346 /**
2347  * rescuer_thread - the rescuer thread function
2348  * @__rescuer: self
2349  *
2350  * Workqueue rescuer thread function.  There's one rescuer for each
2351  * workqueue which has WQ_MEM_RECLAIM set.
2352  *
2353  * Regular work processing on a pool may block trying to create a new
2354  * worker which uses GFP_KERNEL allocation which has slight chance of
2355  * developing into deadlock if some works currently on the same queue
2356  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2357  * the problem rescuer solves.
2358  *
2359  * When such condition is possible, the pool summons rescuers of all
2360  * workqueues which have works queued on the pool and let them process
2361  * those works so that forward progress can be guaranteed.
2362  *
2363  * This should happen rarely.
2364  *
2365  * Return: 0
2366  */
2367 static int rescuer_thread(void *__rescuer)
2368 {
2369 	struct worker *rescuer = __rescuer;
2370 	struct workqueue_struct *wq = rescuer->rescue_wq;
2371 	struct list_head *scheduled = &rescuer->scheduled;
2372 	bool should_stop;
2373 
2374 	set_user_nice(current, RESCUER_NICE_LEVEL);
2375 
2376 	/*
2377 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2378 	 * doesn't participate in concurrency management.
2379 	 */
2380 	set_pf_worker(true);
2381 repeat:
2382 	set_current_state(TASK_IDLE);
2383 
2384 	/*
2385 	 * By the time the rescuer is requested to stop, the workqueue
2386 	 * shouldn't have any work pending, but @wq->maydays may still have
2387 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2388 	 * all the work items before the rescuer got to them.  Go through
2389 	 * @wq->maydays processing before acting on should_stop so that the
2390 	 * list is always empty on exit.
2391 	 */
2392 	should_stop = kthread_should_stop();
2393 
2394 	/* see whether any pwq is asking for help */
2395 	spin_lock_irq(&wq_mayday_lock);
2396 
2397 	while (!list_empty(&wq->maydays)) {
2398 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2399 					struct pool_workqueue, mayday_node);
2400 		struct worker_pool *pool = pwq->pool;
2401 		struct work_struct *work, *n;
2402 		bool first = true;
2403 
2404 		__set_current_state(TASK_RUNNING);
2405 		list_del_init(&pwq->mayday_node);
2406 
2407 		spin_unlock_irq(&wq_mayday_lock);
2408 
2409 		worker_attach_to_pool(rescuer, pool);
2410 
2411 		spin_lock_irq(&pool->lock);
2412 
2413 		/*
2414 		 * Slurp in all works issued via this workqueue and
2415 		 * process'em.
2416 		 */
2417 		WARN_ON_ONCE(!list_empty(scheduled));
2418 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2419 			if (get_work_pwq(work) == pwq) {
2420 				if (first)
2421 					pool->watchdog_ts = jiffies;
2422 				move_linked_works(work, scheduled, &n);
2423 			}
2424 			first = false;
2425 		}
2426 
2427 		if (!list_empty(scheduled)) {
2428 			process_scheduled_works(rescuer);
2429 
2430 			/*
2431 			 * The above execution of rescued work items could
2432 			 * have created more to rescue through
2433 			 * pwq_activate_first_delayed() or chained
2434 			 * queueing.  Let's put @pwq back on mayday list so
2435 			 * that such back-to-back work items, which may be
2436 			 * being used to relieve memory pressure, don't
2437 			 * incur MAYDAY_INTERVAL delay inbetween.
2438 			 */
2439 			if (need_to_create_worker(pool)) {
2440 				spin_lock(&wq_mayday_lock);
2441 				get_pwq(pwq);
2442 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2443 				spin_unlock(&wq_mayday_lock);
2444 			}
2445 		}
2446 
2447 		/*
2448 		 * Put the reference grabbed by send_mayday().  @pool won't
2449 		 * go away while we're still attached to it.
2450 		 */
2451 		put_pwq(pwq);
2452 
2453 		/*
2454 		 * Leave this pool.  If need_more_worker() is %true, notify a
2455 		 * regular worker; otherwise, we end up with 0 concurrency
2456 		 * and stalling the execution.
2457 		 */
2458 		if (need_more_worker(pool))
2459 			wake_up_worker(pool);
2460 
2461 		spin_unlock_irq(&pool->lock);
2462 
2463 		worker_detach_from_pool(rescuer);
2464 
2465 		spin_lock_irq(&wq_mayday_lock);
2466 	}
2467 
2468 	spin_unlock_irq(&wq_mayday_lock);
2469 
2470 	if (should_stop) {
2471 		__set_current_state(TASK_RUNNING);
2472 		set_pf_worker(false);
2473 		return 0;
2474 	}
2475 
2476 	/* rescuers should never participate in concurrency management */
2477 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2478 	schedule();
2479 	goto repeat;
2480 }
2481 
2482 /**
2483  * check_flush_dependency - check for flush dependency sanity
2484  * @target_wq: workqueue being flushed
2485  * @target_work: work item being flushed (NULL for workqueue flushes)
2486  *
2487  * %current is trying to flush the whole @target_wq or @target_work on it.
2488  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2489  * reclaiming memory or running on a workqueue which doesn't have
2490  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2491  * a deadlock.
2492  */
2493 static void check_flush_dependency(struct workqueue_struct *target_wq,
2494 				   struct work_struct *target_work)
2495 {
2496 	work_func_t target_func = target_work ? target_work->func : NULL;
2497 	struct worker *worker;
2498 
2499 	if (target_wq->flags & WQ_MEM_RECLAIM)
2500 		return;
2501 
2502 	worker = current_wq_worker();
2503 
2504 	WARN_ONCE(current->flags & PF_MEMALLOC,
2505 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2506 		  current->pid, current->comm, target_wq->name, target_func);
2507 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2508 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2509 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2510 		  worker->current_pwq->wq->name, worker->current_func,
2511 		  target_wq->name, target_func);
2512 }
2513 
2514 struct wq_barrier {
2515 	struct work_struct	work;
2516 	struct completion	done;
2517 	struct task_struct	*task;	/* purely informational */
2518 };
2519 
2520 static void wq_barrier_func(struct work_struct *work)
2521 {
2522 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2523 	complete(&barr->done);
2524 }
2525 
2526 /**
2527  * insert_wq_barrier - insert a barrier work
2528  * @pwq: pwq to insert barrier into
2529  * @barr: wq_barrier to insert
2530  * @target: target work to attach @barr to
2531  * @worker: worker currently executing @target, NULL if @target is not executing
2532  *
2533  * @barr is linked to @target such that @barr is completed only after
2534  * @target finishes execution.  Please note that the ordering
2535  * guarantee is observed only with respect to @target and on the local
2536  * cpu.
2537  *
2538  * Currently, a queued barrier can't be canceled.  This is because
2539  * try_to_grab_pending() can't determine whether the work to be
2540  * grabbed is at the head of the queue and thus can't clear LINKED
2541  * flag of the previous work while there must be a valid next work
2542  * after a work with LINKED flag set.
2543  *
2544  * Note that when @worker is non-NULL, @target may be modified
2545  * underneath us, so we can't reliably determine pwq from @target.
2546  *
2547  * CONTEXT:
2548  * spin_lock_irq(pool->lock).
2549  */
2550 static void insert_wq_barrier(struct pool_workqueue *pwq,
2551 			      struct wq_barrier *barr,
2552 			      struct work_struct *target, struct worker *worker)
2553 {
2554 	struct list_head *head;
2555 	unsigned int linked = 0;
2556 
2557 	/*
2558 	 * debugobject calls are safe here even with pool->lock locked
2559 	 * as we know for sure that this will not trigger any of the
2560 	 * checks and call back into the fixup functions where we
2561 	 * might deadlock.
2562 	 */
2563 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2564 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2565 
2566 	init_completion_map(&barr->done, &target->lockdep_map);
2567 
2568 	barr->task = current;
2569 
2570 	/*
2571 	 * If @target is currently being executed, schedule the
2572 	 * barrier to the worker; otherwise, put it after @target.
2573 	 */
2574 	if (worker)
2575 		head = worker->scheduled.next;
2576 	else {
2577 		unsigned long *bits = work_data_bits(target);
2578 
2579 		head = target->entry.next;
2580 		/* there can already be other linked works, inherit and set */
2581 		linked = *bits & WORK_STRUCT_LINKED;
2582 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2583 	}
2584 
2585 	debug_work_activate(&barr->work);
2586 	insert_work(pwq, &barr->work, head,
2587 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2588 }
2589 
2590 /**
2591  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2592  * @wq: workqueue being flushed
2593  * @flush_color: new flush color, < 0 for no-op
2594  * @work_color: new work color, < 0 for no-op
2595  *
2596  * Prepare pwqs for workqueue flushing.
2597  *
2598  * If @flush_color is non-negative, flush_color on all pwqs should be
2599  * -1.  If no pwq has in-flight commands at the specified color, all
2600  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2601  * has in flight commands, its pwq->flush_color is set to
2602  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2603  * wakeup logic is armed and %true is returned.
2604  *
2605  * The caller should have initialized @wq->first_flusher prior to
2606  * calling this function with non-negative @flush_color.  If
2607  * @flush_color is negative, no flush color update is done and %false
2608  * is returned.
2609  *
2610  * If @work_color is non-negative, all pwqs should have the same
2611  * work_color which is previous to @work_color and all will be
2612  * advanced to @work_color.
2613  *
2614  * CONTEXT:
2615  * mutex_lock(wq->mutex).
2616  *
2617  * Return:
2618  * %true if @flush_color >= 0 and there's something to flush.  %false
2619  * otherwise.
2620  */
2621 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2622 				      int flush_color, int work_color)
2623 {
2624 	bool wait = false;
2625 	struct pool_workqueue *pwq;
2626 
2627 	if (flush_color >= 0) {
2628 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2629 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2630 	}
2631 
2632 	for_each_pwq(pwq, wq) {
2633 		struct worker_pool *pool = pwq->pool;
2634 
2635 		spin_lock_irq(&pool->lock);
2636 
2637 		if (flush_color >= 0) {
2638 			WARN_ON_ONCE(pwq->flush_color != -1);
2639 
2640 			if (pwq->nr_in_flight[flush_color]) {
2641 				pwq->flush_color = flush_color;
2642 				atomic_inc(&wq->nr_pwqs_to_flush);
2643 				wait = true;
2644 			}
2645 		}
2646 
2647 		if (work_color >= 0) {
2648 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2649 			pwq->work_color = work_color;
2650 		}
2651 
2652 		spin_unlock_irq(&pool->lock);
2653 	}
2654 
2655 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2656 		complete(&wq->first_flusher->done);
2657 
2658 	return wait;
2659 }
2660 
2661 /**
2662  * flush_workqueue - ensure that any scheduled work has run to completion.
2663  * @wq: workqueue to flush
2664  *
2665  * This function sleeps until all work items which were queued on entry
2666  * have finished execution, but it is not livelocked by new incoming ones.
2667  */
2668 void flush_workqueue(struct workqueue_struct *wq)
2669 {
2670 	struct wq_flusher this_flusher = {
2671 		.list = LIST_HEAD_INIT(this_flusher.list),
2672 		.flush_color = -1,
2673 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2674 	};
2675 	int next_color;
2676 
2677 	if (WARN_ON(!wq_online))
2678 		return;
2679 
2680 	lock_map_acquire(&wq->lockdep_map);
2681 	lock_map_release(&wq->lockdep_map);
2682 
2683 	mutex_lock(&wq->mutex);
2684 
2685 	/*
2686 	 * Start-to-wait phase
2687 	 */
2688 	next_color = work_next_color(wq->work_color);
2689 
2690 	if (next_color != wq->flush_color) {
2691 		/*
2692 		 * Color space is not full.  The current work_color
2693 		 * becomes our flush_color and work_color is advanced
2694 		 * by one.
2695 		 */
2696 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2697 		this_flusher.flush_color = wq->work_color;
2698 		wq->work_color = next_color;
2699 
2700 		if (!wq->first_flusher) {
2701 			/* no flush in progress, become the first flusher */
2702 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2703 
2704 			wq->first_flusher = &this_flusher;
2705 
2706 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2707 						       wq->work_color)) {
2708 				/* nothing to flush, done */
2709 				wq->flush_color = next_color;
2710 				wq->first_flusher = NULL;
2711 				goto out_unlock;
2712 			}
2713 		} else {
2714 			/* wait in queue */
2715 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2716 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2717 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2718 		}
2719 	} else {
2720 		/*
2721 		 * Oops, color space is full, wait on overflow queue.
2722 		 * The next flush completion will assign us
2723 		 * flush_color and transfer to flusher_queue.
2724 		 */
2725 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2726 	}
2727 
2728 	check_flush_dependency(wq, NULL);
2729 
2730 	mutex_unlock(&wq->mutex);
2731 
2732 	wait_for_completion(&this_flusher.done);
2733 
2734 	/*
2735 	 * Wake-up-and-cascade phase
2736 	 *
2737 	 * First flushers are responsible for cascading flushes and
2738 	 * handling overflow.  Non-first flushers can simply return.
2739 	 */
2740 	if (wq->first_flusher != &this_flusher)
2741 		return;
2742 
2743 	mutex_lock(&wq->mutex);
2744 
2745 	/* we might have raced, check again with mutex held */
2746 	if (wq->first_flusher != &this_flusher)
2747 		goto out_unlock;
2748 
2749 	wq->first_flusher = NULL;
2750 
2751 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2752 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2753 
2754 	while (true) {
2755 		struct wq_flusher *next, *tmp;
2756 
2757 		/* complete all the flushers sharing the current flush color */
2758 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2759 			if (next->flush_color != wq->flush_color)
2760 				break;
2761 			list_del_init(&next->list);
2762 			complete(&next->done);
2763 		}
2764 
2765 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2766 			     wq->flush_color != work_next_color(wq->work_color));
2767 
2768 		/* this flush_color is finished, advance by one */
2769 		wq->flush_color = work_next_color(wq->flush_color);
2770 
2771 		/* one color has been freed, handle overflow queue */
2772 		if (!list_empty(&wq->flusher_overflow)) {
2773 			/*
2774 			 * Assign the same color to all overflowed
2775 			 * flushers, advance work_color and append to
2776 			 * flusher_queue.  This is the start-to-wait
2777 			 * phase for these overflowed flushers.
2778 			 */
2779 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2780 				tmp->flush_color = wq->work_color;
2781 
2782 			wq->work_color = work_next_color(wq->work_color);
2783 
2784 			list_splice_tail_init(&wq->flusher_overflow,
2785 					      &wq->flusher_queue);
2786 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2787 		}
2788 
2789 		if (list_empty(&wq->flusher_queue)) {
2790 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2791 			break;
2792 		}
2793 
2794 		/*
2795 		 * Need to flush more colors.  Make the next flusher
2796 		 * the new first flusher and arm pwqs.
2797 		 */
2798 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2799 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2800 
2801 		list_del_init(&next->list);
2802 		wq->first_flusher = next;
2803 
2804 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2805 			break;
2806 
2807 		/*
2808 		 * Meh... this color is already done, clear first
2809 		 * flusher and repeat cascading.
2810 		 */
2811 		wq->first_flusher = NULL;
2812 	}
2813 
2814 out_unlock:
2815 	mutex_unlock(&wq->mutex);
2816 }
2817 EXPORT_SYMBOL(flush_workqueue);
2818 
2819 /**
2820  * drain_workqueue - drain a workqueue
2821  * @wq: workqueue to drain
2822  *
2823  * Wait until the workqueue becomes empty.  While draining is in progress,
2824  * only chain queueing is allowed.  IOW, only currently pending or running
2825  * work items on @wq can queue further work items on it.  @wq is flushed
2826  * repeatedly until it becomes empty.  The number of flushing is determined
2827  * by the depth of chaining and should be relatively short.  Whine if it
2828  * takes too long.
2829  */
2830 void drain_workqueue(struct workqueue_struct *wq)
2831 {
2832 	unsigned int flush_cnt = 0;
2833 	struct pool_workqueue *pwq;
2834 
2835 	/*
2836 	 * __queue_work() needs to test whether there are drainers, is much
2837 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2838 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2839 	 */
2840 	mutex_lock(&wq->mutex);
2841 	if (!wq->nr_drainers++)
2842 		wq->flags |= __WQ_DRAINING;
2843 	mutex_unlock(&wq->mutex);
2844 reflush:
2845 	flush_workqueue(wq);
2846 
2847 	mutex_lock(&wq->mutex);
2848 
2849 	for_each_pwq(pwq, wq) {
2850 		bool drained;
2851 
2852 		spin_lock_irq(&pwq->pool->lock);
2853 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2854 		spin_unlock_irq(&pwq->pool->lock);
2855 
2856 		if (drained)
2857 			continue;
2858 
2859 		if (++flush_cnt == 10 ||
2860 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2861 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2862 				wq->name, flush_cnt);
2863 
2864 		mutex_unlock(&wq->mutex);
2865 		goto reflush;
2866 	}
2867 
2868 	if (!--wq->nr_drainers)
2869 		wq->flags &= ~__WQ_DRAINING;
2870 	mutex_unlock(&wq->mutex);
2871 }
2872 EXPORT_SYMBOL_GPL(drain_workqueue);
2873 
2874 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2875 			     bool from_cancel)
2876 {
2877 	struct worker *worker = NULL;
2878 	struct worker_pool *pool;
2879 	struct pool_workqueue *pwq;
2880 
2881 	might_sleep();
2882 
2883 	local_irq_disable();
2884 	pool = get_work_pool(work);
2885 	if (!pool) {
2886 		local_irq_enable();
2887 		return false;
2888 	}
2889 
2890 	spin_lock(&pool->lock);
2891 	/* see the comment in try_to_grab_pending() with the same code */
2892 	pwq = get_work_pwq(work);
2893 	if (pwq) {
2894 		if (unlikely(pwq->pool != pool))
2895 			goto already_gone;
2896 	} else {
2897 		worker = find_worker_executing_work(pool, work);
2898 		if (!worker)
2899 			goto already_gone;
2900 		pwq = worker->current_pwq;
2901 	}
2902 
2903 	check_flush_dependency(pwq->wq, work);
2904 
2905 	insert_wq_barrier(pwq, barr, work, worker);
2906 	spin_unlock_irq(&pool->lock);
2907 
2908 	/*
2909 	 * Force a lock recursion deadlock when using flush_work() inside a
2910 	 * single-threaded or rescuer equipped workqueue.
2911 	 *
2912 	 * For single threaded workqueues the deadlock happens when the work
2913 	 * is after the work issuing the flush_work(). For rescuer equipped
2914 	 * workqueues the deadlock happens when the rescuer stalls, blocking
2915 	 * forward progress.
2916 	 */
2917 	if (!from_cancel &&
2918 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
2919 		lock_map_acquire(&pwq->wq->lockdep_map);
2920 		lock_map_release(&pwq->wq->lockdep_map);
2921 	}
2922 
2923 	return true;
2924 already_gone:
2925 	spin_unlock_irq(&pool->lock);
2926 	return false;
2927 }
2928 
2929 static bool __flush_work(struct work_struct *work, bool from_cancel)
2930 {
2931 	struct wq_barrier barr;
2932 
2933 	if (WARN_ON(!wq_online))
2934 		return false;
2935 
2936 	if (!from_cancel) {
2937 		lock_map_acquire(&work->lockdep_map);
2938 		lock_map_release(&work->lockdep_map);
2939 	}
2940 
2941 	if (start_flush_work(work, &barr, from_cancel)) {
2942 		wait_for_completion(&barr.done);
2943 		destroy_work_on_stack(&barr.work);
2944 		return true;
2945 	} else {
2946 		return false;
2947 	}
2948 }
2949 
2950 /**
2951  * flush_work - wait for a work to finish executing the last queueing instance
2952  * @work: the work to flush
2953  *
2954  * Wait until @work has finished execution.  @work is guaranteed to be idle
2955  * on return if it hasn't been requeued since flush started.
2956  *
2957  * Return:
2958  * %true if flush_work() waited for the work to finish execution,
2959  * %false if it was already idle.
2960  */
2961 bool flush_work(struct work_struct *work)
2962 {
2963 	return __flush_work(work, false);
2964 }
2965 EXPORT_SYMBOL_GPL(flush_work);
2966 
2967 struct cwt_wait {
2968 	wait_queue_entry_t		wait;
2969 	struct work_struct	*work;
2970 };
2971 
2972 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2973 {
2974 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2975 
2976 	if (cwait->work != key)
2977 		return 0;
2978 	return autoremove_wake_function(wait, mode, sync, key);
2979 }
2980 
2981 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2982 {
2983 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2984 	unsigned long flags;
2985 	int ret;
2986 
2987 	do {
2988 		ret = try_to_grab_pending(work, is_dwork, &flags);
2989 		/*
2990 		 * If someone else is already canceling, wait for it to
2991 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2992 		 * because we may get scheduled between @work's completion
2993 		 * and the other canceling task resuming and clearing
2994 		 * CANCELING - flush_work() will return false immediately
2995 		 * as @work is no longer busy, try_to_grab_pending() will
2996 		 * return -ENOENT as @work is still being canceled and the
2997 		 * other canceling task won't be able to clear CANCELING as
2998 		 * we're hogging the CPU.
2999 		 *
3000 		 * Let's wait for completion using a waitqueue.  As this
3001 		 * may lead to the thundering herd problem, use a custom
3002 		 * wake function which matches @work along with exclusive
3003 		 * wait and wakeup.
3004 		 */
3005 		if (unlikely(ret == -ENOENT)) {
3006 			struct cwt_wait cwait;
3007 
3008 			init_wait(&cwait.wait);
3009 			cwait.wait.func = cwt_wakefn;
3010 			cwait.work = work;
3011 
3012 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3013 						  TASK_UNINTERRUPTIBLE);
3014 			if (work_is_canceling(work))
3015 				schedule();
3016 			finish_wait(&cancel_waitq, &cwait.wait);
3017 		}
3018 	} while (unlikely(ret < 0));
3019 
3020 	/* tell other tasks trying to grab @work to back off */
3021 	mark_work_canceling(work);
3022 	local_irq_restore(flags);
3023 
3024 	/*
3025 	 * This allows canceling during early boot.  We know that @work
3026 	 * isn't executing.
3027 	 */
3028 	if (wq_online)
3029 		__flush_work(work, true);
3030 
3031 	clear_work_data(work);
3032 
3033 	/*
3034 	 * Paired with prepare_to_wait() above so that either
3035 	 * waitqueue_active() is visible here or !work_is_canceling() is
3036 	 * visible there.
3037 	 */
3038 	smp_mb();
3039 	if (waitqueue_active(&cancel_waitq))
3040 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3041 
3042 	return ret;
3043 }
3044 
3045 /**
3046  * cancel_work_sync - cancel a work and wait for it to finish
3047  * @work: the work to cancel
3048  *
3049  * Cancel @work and wait for its execution to finish.  This function
3050  * can be used even if the work re-queues itself or migrates to
3051  * another workqueue.  On return from this function, @work is
3052  * guaranteed to be not pending or executing on any CPU.
3053  *
3054  * cancel_work_sync(&delayed_work->work) must not be used for
3055  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3056  *
3057  * The caller must ensure that the workqueue on which @work was last
3058  * queued can't be destroyed before this function returns.
3059  *
3060  * Return:
3061  * %true if @work was pending, %false otherwise.
3062  */
3063 bool cancel_work_sync(struct work_struct *work)
3064 {
3065 	return __cancel_work_timer(work, false);
3066 }
3067 EXPORT_SYMBOL_GPL(cancel_work_sync);
3068 
3069 /**
3070  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3071  * @dwork: the delayed work to flush
3072  *
3073  * Delayed timer is cancelled and the pending work is queued for
3074  * immediate execution.  Like flush_work(), this function only
3075  * considers the last queueing instance of @dwork.
3076  *
3077  * Return:
3078  * %true if flush_work() waited for the work to finish execution,
3079  * %false if it was already idle.
3080  */
3081 bool flush_delayed_work(struct delayed_work *dwork)
3082 {
3083 	local_irq_disable();
3084 	if (del_timer_sync(&dwork->timer))
3085 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3086 	local_irq_enable();
3087 	return flush_work(&dwork->work);
3088 }
3089 EXPORT_SYMBOL(flush_delayed_work);
3090 
3091 /**
3092  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3093  * @rwork: the rcu work to flush
3094  *
3095  * Return:
3096  * %true if flush_rcu_work() waited for the work to finish execution,
3097  * %false if it was already idle.
3098  */
3099 bool flush_rcu_work(struct rcu_work *rwork)
3100 {
3101 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3102 		rcu_barrier();
3103 		flush_work(&rwork->work);
3104 		return true;
3105 	} else {
3106 		return flush_work(&rwork->work);
3107 	}
3108 }
3109 EXPORT_SYMBOL(flush_rcu_work);
3110 
3111 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3112 {
3113 	unsigned long flags;
3114 	int ret;
3115 
3116 	do {
3117 		ret = try_to_grab_pending(work, is_dwork, &flags);
3118 	} while (unlikely(ret == -EAGAIN));
3119 
3120 	if (unlikely(ret < 0))
3121 		return false;
3122 
3123 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3124 	local_irq_restore(flags);
3125 	return ret;
3126 }
3127 
3128 /**
3129  * cancel_delayed_work - cancel a delayed work
3130  * @dwork: delayed_work to cancel
3131  *
3132  * Kill off a pending delayed_work.
3133  *
3134  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3135  * pending.
3136  *
3137  * Note:
3138  * The work callback function may still be running on return, unless
3139  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3140  * use cancel_delayed_work_sync() to wait on it.
3141  *
3142  * This function is safe to call from any context including IRQ handler.
3143  */
3144 bool cancel_delayed_work(struct delayed_work *dwork)
3145 {
3146 	return __cancel_work(&dwork->work, true);
3147 }
3148 EXPORT_SYMBOL(cancel_delayed_work);
3149 
3150 /**
3151  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3152  * @dwork: the delayed work cancel
3153  *
3154  * This is cancel_work_sync() for delayed works.
3155  *
3156  * Return:
3157  * %true if @dwork was pending, %false otherwise.
3158  */
3159 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3160 {
3161 	return __cancel_work_timer(&dwork->work, true);
3162 }
3163 EXPORT_SYMBOL(cancel_delayed_work_sync);
3164 
3165 /**
3166  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3167  * @func: the function to call
3168  *
3169  * schedule_on_each_cpu() executes @func on each online CPU using the
3170  * system workqueue and blocks until all CPUs have completed.
3171  * schedule_on_each_cpu() is very slow.
3172  *
3173  * Return:
3174  * 0 on success, -errno on failure.
3175  */
3176 int schedule_on_each_cpu(work_func_t func)
3177 {
3178 	int cpu;
3179 	struct work_struct __percpu *works;
3180 
3181 	works = alloc_percpu(struct work_struct);
3182 	if (!works)
3183 		return -ENOMEM;
3184 
3185 	get_online_cpus();
3186 
3187 	for_each_online_cpu(cpu) {
3188 		struct work_struct *work = per_cpu_ptr(works, cpu);
3189 
3190 		INIT_WORK(work, func);
3191 		schedule_work_on(cpu, work);
3192 	}
3193 
3194 	for_each_online_cpu(cpu)
3195 		flush_work(per_cpu_ptr(works, cpu));
3196 
3197 	put_online_cpus();
3198 	free_percpu(works);
3199 	return 0;
3200 }
3201 
3202 /**
3203  * execute_in_process_context - reliably execute the routine with user context
3204  * @fn:		the function to execute
3205  * @ew:		guaranteed storage for the execute work structure (must
3206  *		be available when the work executes)
3207  *
3208  * Executes the function immediately if process context is available,
3209  * otherwise schedules the function for delayed execution.
3210  *
3211  * Return:	0 - function was executed
3212  *		1 - function was scheduled for execution
3213  */
3214 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3215 {
3216 	if (!in_interrupt()) {
3217 		fn(&ew->work);
3218 		return 0;
3219 	}
3220 
3221 	INIT_WORK(&ew->work, fn);
3222 	schedule_work(&ew->work);
3223 
3224 	return 1;
3225 }
3226 EXPORT_SYMBOL_GPL(execute_in_process_context);
3227 
3228 /**
3229  * free_workqueue_attrs - free a workqueue_attrs
3230  * @attrs: workqueue_attrs to free
3231  *
3232  * Undo alloc_workqueue_attrs().
3233  */
3234 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3235 {
3236 	if (attrs) {
3237 		free_cpumask_var(attrs->cpumask);
3238 		kfree(attrs);
3239 	}
3240 }
3241 
3242 /**
3243  * alloc_workqueue_attrs - allocate a workqueue_attrs
3244  * @gfp_mask: allocation mask to use
3245  *
3246  * Allocate a new workqueue_attrs, initialize with default settings and
3247  * return it.
3248  *
3249  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3250  */
3251 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3252 {
3253 	struct workqueue_attrs *attrs;
3254 
3255 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3256 	if (!attrs)
3257 		goto fail;
3258 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3259 		goto fail;
3260 
3261 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3262 	return attrs;
3263 fail:
3264 	free_workqueue_attrs(attrs);
3265 	return NULL;
3266 }
3267 
3268 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3269 				 const struct workqueue_attrs *from)
3270 {
3271 	to->nice = from->nice;
3272 	cpumask_copy(to->cpumask, from->cpumask);
3273 	/*
3274 	 * Unlike hash and equality test, this function doesn't ignore
3275 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3276 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3277 	 */
3278 	to->no_numa = from->no_numa;
3279 }
3280 
3281 /* hash value of the content of @attr */
3282 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3283 {
3284 	u32 hash = 0;
3285 
3286 	hash = jhash_1word(attrs->nice, hash);
3287 	hash = jhash(cpumask_bits(attrs->cpumask),
3288 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3289 	return hash;
3290 }
3291 
3292 /* content equality test */
3293 static bool wqattrs_equal(const struct workqueue_attrs *a,
3294 			  const struct workqueue_attrs *b)
3295 {
3296 	if (a->nice != b->nice)
3297 		return false;
3298 	if (!cpumask_equal(a->cpumask, b->cpumask))
3299 		return false;
3300 	return true;
3301 }
3302 
3303 /**
3304  * init_worker_pool - initialize a newly zalloc'd worker_pool
3305  * @pool: worker_pool to initialize
3306  *
3307  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3308  *
3309  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3310  * inside @pool proper are initialized and put_unbound_pool() can be called
3311  * on @pool safely to release it.
3312  */
3313 static int init_worker_pool(struct worker_pool *pool)
3314 {
3315 	spin_lock_init(&pool->lock);
3316 	pool->id = -1;
3317 	pool->cpu = -1;
3318 	pool->node = NUMA_NO_NODE;
3319 	pool->flags |= POOL_DISASSOCIATED;
3320 	pool->watchdog_ts = jiffies;
3321 	INIT_LIST_HEAD(&pool->worklist);
3322 	INIT_LIST_HEAD(&pool->idle_list);
3323 	hash_init(pool->busy_hash);
3324 
3325 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3326 
3327 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3328 
3329 	INIT_LIST_HEAD(&pool->workers);
3330 
3331 	ida_init(&pool->worker_ida);
3332 	INIT_HLIST_NODE(&pool->hash_node);
3333 	pool->refcnt = 1;
3334 
3335 	/* shouldn't fail above this point */
3336 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3337 	if (!pool->attrs)
3338 		return -ENOMEM;
3339 	return 0;
3340 }
3341 
3342 #ifdef CONFIG_LOCKDEP
3343 static void wq_init_lockdep(struct workqueue_struct *wq)
3344 {
3345 	char *lock_name;
3346 
3347 	lockdep_register_key(&wq->key);
3348 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3349 	if (!lock_name)
3350 		lock_name = wq->name;
3351 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3352 }
3353 
3354 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3355 {
3356 	lockdep_unregister_key(&wq->key);
3357 }
3358 
3359 static void wq_free_lockdep(struct workqueue_struct *wq)
3360 {
3361 	if (wq->lock_name != wq->name)
3362 		kfree(wq->lock_name);
3363 }
3364 #else
3365 static void wq_init_lockdep(struct workqueue_struct *wq)
3366 {
3367 }
3368 
3369 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3370 {
3371 }
3372 
3373 static void wq_free_lockdep(struct workqueue_struct *wq)
3374 {
3375 }
3376 #endif
3377 
3378 static void rcu_free_wq(struct rcu_head *rcu)
3379 {
3380 	struct workqueue_struct *wq =
3381 		container_of(rcu, struct workqueue_struct, rcu);
3382 
3383 	wq_free_lockdep(wq);
3384 
3385 	if (!(wq->flags & WQ_UNBOUND))
3386 		free_percpu(wq->cpu_pwqs);
3387 	else
3388 		free_workqueue_attrs(wq->unbound_attrs);
3389 
3390 	kfree(wq->rescuer);
3391 	kfree(wq);
3392 }
3393 
3394 static void rcu_free_pool(struct rcu_head *rcu)
3395 {
3396 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3397 
3398 	ida_destroy(&pool->worker_ida);
3399 	free_workqueue_attrs(pool->attrs);
3400 	kfree(pool);
3401 }
3402 
3403 /**
3404  * put_unbound_pool - put a worker_pool
3405  * @pool: worker_pool to put
3406  *
3407  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3408  * safe manner.  get_unbound_pool() calls this function on its failure path
3409  * and this function should be able to release pools which went through,
3410  * successfully or not, init_worker_pool().
3411  *
3412  * Should be called with wq_pool_mutex held.
3413  */
3414 static void put_unbound_pool(struct worker_pool *pool)
3415 {
3416 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3417 	struct worker *worker;
3418 
3419 	lockdep_assert_held(&wq_pool_mutex);
3420 
3421 	if (--pool->refcnt)
3422 		return;
3423 
3424 	/* sanity checks */
3425 	if (WARN_ON(!(pool->cpu < 0)) ||
3426 	    WARN_ON(!list_empty(&pool->worklist)))
3427 		return;
3428 
3429 	/* release id and unhash */
3430 	if (pool->id >= 0)
3431 		idr_remove(&worker_pool_idr, pool->id);
3432 	hash_del(&pool->hash_node);
3433 
3434 	/*
3435 	 * Become the manager and destroy all workers.  This prevents
3436 	 * @pool's workers from blocking on attach_mutex.  We're the last
3437 	 * manager and @pool gets freed with the flag set.
3438 	 */
3439 	spin_lock_irq(&pool->lock);
3440 	wait_event_lock_irq(wq_manager_wait,
3441 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3442 	pool->flags |= POOL_MANAGER_ACTIVE;
3443 
3444 	while ((worker = first_idle_worker(pool)))
3445 		destroy_worker(worker);
3446 	WARN_ON(pool->nr_workers || pool->nr_idle);
3447 	spin_unlock_irq(&pool->lock);
3448 
3449 	mutex_lock(&wq_pool_attach_mutex);
3450 	if (!list_empty(&pool->workers))
3451 		pool->detach_completion = &detach_completion;
3452 	mutex_unlock(&wq_pool_attach_mutex);
3453 
3454 	if (pool->detach_completion)
3455 		wait_for_completion(pool->detach_completion);
3456 
3457 	/* shut down the timers */
3458 	del_timer_sync(&pool->idle_timer);
3459 	del_timer_sync(&pool->mayday_timer);
3460 
3461 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3462 	call_rcu(&pool->rcu, rcu_free_pool);
3463 }
3464 
3465 /**
3466  * get_unbound_pool - get a worker_pool with the specified attributes
3467  * @attrs: the attributes of the worker_pool to get
3468  *
3469  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3470  * reference count and return it.  If there already is a matching
3471  * worker_pool, it will be used; otherwise, this function attempts to
3472  * create a new one.
3473  *
3474  * Should be called with wq_pool_mutex held.
3475  *
3476  * Return: On success, a worker_pool with the same attributes as @attrs.
3477  * On failure, %NULL.
3478  */
3479 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3480 {
3481 	u32 hash = wqattrs_hash(attrs);
3482 	struct worker_pool *pool;
3483 	int node;
3484 	int target_node = NUMA_NO_NODE;
3485 
3486 	lockdep_assert_held(&wq_pool_mutex);
3487 
3488 	/* do we already have a matching pool? */
3489 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3490 		if (wqattrs_equal(pool->attrs, attrs)) {
3491 			pool->refcnt++;
3492 			return pool;
3493 		}
3494 	}
3495 
3496 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3497 	if (wq_numa_enabled) {
3498 		for_each_node(node) {
3499 			if (cpumask_subset(attrs->cpumask,
3500 					   wq_numa_possible_cpumask[node])) {
3501 				target_node = node;
3502 				break;
3503 			}
3504 		}
3505 	}
3506 
3507 	/* nope, create a new one */
3508 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3509 	if (!pool || init_worker_pool(pool) < 0)
3510 		goto fail;
3511 
3512 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3513 	copy_workqueue_attrs(pool->attrs, attrs);
3514 	pool->node = target_node;
3515 
3516 	/*
3517 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3518 	 * 'struct workqueue_attrs' comments for detail.
3519 	 */
3520 	pool->attrs->no_numa = false;
3521 
3522 	if (worker_pool_assign_id(pool) < 0)
3523 		goto fail;
3524 
3525 	/* create and start the initial worker */
3526 	if (wq_online && !create_worker(pool))
3527 		goto fail;
3528 
3529 	/* install */
3530 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3531 
3532 	return pool;
3533 fail:
3534 	if (pool)
3535 		put_unbound_pool(pool);
3536 	return NULL;
3537 }
3538 
3539 static void rcu_free_pwq(struct rcu_head *rcu)
3540 {
3541 	kmem_cache_free(pwq_cache,
3542 			container_of(rcu, struct pool_workqueue, rcu));
3543 }
3544 
3545 /*
3546  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3547  * and needs to be destroyed.
3548  */
3549 static void pwq_unbound_release_workfn(struct work_struct *work)
3550 {
3551 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3552 						  unbound_release_work);
3553 	struct workqueue_struct *wq = pwq->wq;
3554 	struct worker_pool *pool = pwq->pool;
3555 	bool is_last;
3556 
3557 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3558 		return;
3559 
3560 	mutex_lock(&wq->mutex);
3561 	list_del_rcu(&pwq->pwqs_node);
3562 	is_last = list_empty(&wq->pwqs);
3563 	mutex_unlock(&wq->mutex);
3564 
3565 	mutex_lock(&wq_pool_mutex);
3566 	put_unbound_pool(pool);
3567 	mutex_unlock(&wq_pool_mutex);
3568 
3569 	call_rcu(&pwq->rcu, rcu_free_pwq);
3570 
3571 	/*
3572 	 * If we're the last pwq going away, @wq is already dead and no one
3573 	 * is gonna access it anymore.  Schedule RCU free.
3574 	 */
3575 	if (is_last) {
3576 		wq_unregister_lockdep(wq);
3577 		call_rcu(&wq->rcu, rcu_free_wq);
3578 	}
3579 }
3580 
3581 /**
3582  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3583  * @pwq: target pool_workqueue
3584  *
3585  * If @pwq isn't freezing, set @pwq->max_active to the associated
3586  * workqueue's saved_max_active and activate delayed work items
3587  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3588  */
3589 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3590 {
3591 	struct workqueue_struct *wq = pwq->wq;
3592 	bool freezable = wq->flags & WQ_FREEZABLE;
3593 	unsigned long flags;
3594 
3595 	/* for @wq->saved_max_active */
3596 	lockdep_assert_held(&wq->mutex);
3597 
3598 	/* fast exit for non-freezable wqs */
3599 	if (!freezable && pwq->max_active == wq->saved_max_active)
3600 		return;
3601 
3602 	/* this function can be called during early boot w/ irq disabled */
3603 	spin_lock_irqsave(&pwq->pool->lock, flags);
3604 
3605 	/*
3606 	 * During [un]freezing, the caller is responsible for ensuring that
3607 	 * this function is called at least once after @workqueue_freezing
3608 	 * is updated and visible.
3609 	 */
3610 	if (!freezable || !workqueue_freezing) {
3611 		pwq->max_active = wq->saved_max_active;
3612 
3613 		while (!list_empty(&pwq->delayed_works) &&
3614 		       pwq->nr_active < pwq->max_active)
3615 			pwq_activate_first_delayed(pwq);
3616 
3617 		/*
3618 		 * Need to kick a worker after thawed or an unbound wq's
3619 		 * max_active is bumped.  It's a slow path.  Do it always.
3620 		 */
3621 		wake_up_worker(pwq->pool);
3622 	} else {
3623 		pwq->max_active = 0;
3624 	}
3625 
3626 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3627 }
3628 
3629 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3630 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3631 		     struct worker_pool *pool)
3632 {
3633 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3634 
3635 	memset(pwq, 0, sizeof(*pwq));
3636 
3637 	pwq->pool = pool;
3638 	pwq->wq = wq;
3639 	pwq->flush_color = -1;
3640 	pwq->refcnt = 1;
3641 	INIT_LIST_HEAD(&pwq->delayed_works);
3642 	INIT_LIST_HEAD(&pwq->pwqs_node);
3643 	INIT_LIST_HEAD(&pwq->mayday_node);
3644 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3645 }
3646 
3647 /* sync @pwq with the current state of its associated wq and link it */
3648 static void link_pwq(struct pool_workqueue *pwq)
3649 {
3650 	struct workqueue_struct *wq = pwq->wq;
3651 
3652 	lockdep_assert_held(&wq->mutex);
3653 
3654 	/* may be called multiple times, ignore if already linked */
3655 	if (!list_empty(&pwq->pwqs_node))
3656 		return;
3657 
3658 	/* set the matching work_color */
3659 	pwq->work_color = wq->work_color;
3660 
3661 	/* sync max_active to the current setting */
3662 	pwq_adjust_max_active(pwq);
3663 
3664 	/* link in @pwq */
3665 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3666 }
3667 
3668 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3669 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3670 					const struct workqueue_attrs *attrs)
3671 {
3672 	struct worker_pool *pool;
3673 	struct pool_workqueue *pwq;
3674 
3675 	lockdep_assert_held(&wq_pool_mutex);
3676 
3677 	pool = get_unbound_pool(attrs);
3678 	if (!pool)
3679 		return NULL;
3680 
3681 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3682 	if (!pwq) {
3683 		put_unbound_pool(pool);
3684 		return NULL;
3685 	}
3686 
3687 	init_pwq(pwq, wq, pool);
3688 	return pwq;
3689 }
3690 
3691 /**
3692  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3693  * @attrs: the wq_attrs of the default pwq of the target workqueue
3694  * @node: the target NUMA node
3695  * @cpu_going_down: if >= 0, the CPU to consider as offline
3696  * @cpumask: outarg, the resulting cpumask
3697  *
3698  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3699  * @cpu_going_down is >= 0, that cpu is considered offline during
3700  * calculation.  The result is stored in @cpumask.
3701  *
3702  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3703  * enabled and @node has online CPUs requested by @attrs, the returned
3704  * cpumask is the intersection of the possible CPUs of @node and
3705  * @attrs->cpumask.
3706  *
3707  * The caller is responsible for ensuring that the cpumask of @node stays
3708  * stable.
3709  *
3710  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3711  * %false if equal.
3712  */
3713 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3714 				 int cpu_going_down, cpumask_t *cpumask)
3715 {
3716 	if (!wq_numa_enabled || attrs->no_numa)
3717 		goto use_dfl;
3718 
3719 	/* does @node have any online CPUs @attrs wants? */
3720 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3721 	if (cpu_going_down >= 0)
3722 		cpumask_clear_cpu(cpu_going_down, cpumask);
3723 
3724 	if (cpumask_empty(cpumask))
3725 		goto use_dfl;
3726 
3727 	/* yeap, return possible CPUs in @node that @attrs wants */
3728 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3729 
3730 	if (cpumask_empty(cpumask)) {
3731 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3732 				"possible intersect\n");
3733 		return false;
3734 	}
3735 
3736 	return !cpumask_equal(cpumask, attrs->cpumask);
3737 
3738 use_dfl:
3739 	cpumask_copy(cpumask, attrs->cpumask);
3740 	return false;
3741 }
3742 
3743 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3744 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3745 						   int node,
3746 						   struct pool_workqueue *pwq)
3747 {
3748 	struct pool_workqueue *old_pwq;
3749 
3750 	lockdep_assert_held(&wq_pool_mutex);
3751 	lockdep_assert_held(&wq->mutex);
3752 
3753 	/* link_pwq() can handle duplicate calls */
3754 	link_pwq(pwq);
3755 
3756 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3757 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3758 	return old_pwq;
3759 }
3760 
3761 /* context to store the prepared attrs & pwqs before applying */
3762 struct apply_wqattrs_ctx {
3763 	struct workqueue_struct	*wq;		/* target workqueue */
3764 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3765 	struct list_head	list;		/* queued for batching commit */
3766 	struct pool_workqueue	*dfl_pwq;
3767 	struct pool_workqueue	*pwq_tbl[];
3768 };
3769 
3770 /* free the resources after success or abort */
3771 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3772 {
3773 	if (ctx) {
3774 		int node;
3775 
3776 		for_each_node(node)
3777 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3778 		put_pwq_unlocked(ctx->dfl_pwq);
3779 
3780 		free_workqueue_attrs(ctx->attrs);
3781 
3782 		kfree(ctx);
3783 	}
3784 }
3785 
3786 /* allocate the attrs and pwqs for later installation */
3787 static struct apply_wqattrs_ctx *
3788 apply_wqattrs_prepare(struct workqueue_struct *wq,
3789 		      const struct workqueue_attrs *attrs)
3790 {
3791 	struct apply_wqattrs_ctx *ctx;
3792 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3793 	int node;
3794 
3795 	lockdep_assert_held(&wq_pool_mutex);
3796 
3797 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3798 
3799 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3800 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3801 	if (!ctx || !new_attrs || !tmp_attrs)
3802 		goto out_free;
3803 
3804 	/*
3805 	 * Calculate the attrs of the default pwq.
3806 	 * If the user configured cpumask doesn't overlap with the
3807 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3808 	 */
3809 	copy_workqueue_attrs(new_attrs, attrs);
3810 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3811 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3812 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3813 
3814 	/*
3815 	 * We may create multiple pwqs with differing cpumasks.  Make a
3816 	 * copy of @new_attrs which will be modified and used to obtain
3817 	 * pools.
3818 	 */
3819 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3820 
3821 	/*
3822 	 * If something goes wrong during CPU up/down, we'll fall back to
3823 	 * the default pwq covering whole @attrs->cpumask.  Always create
3824 	 * it even if we don't use it immediately.
3825 	 */
3826 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3827 	if (!ctx->dfl_pwq)
3828 		goto out_free;
3829 
3830 	for_each_node(node) {
3831 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3832 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3833 			if (!ctx->pwq_tbl[node])
3834 				goto out_free;
3835 		} else {
3836 			ctx->dfl_pwq->refcnt++;
3837 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3838 		}
3839 	}
3840 
3841 	/* save the user configured attrs and sanitize it. */
3842 	copy_workqueue_attrs(new_attrs, attrs);
3843 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3844 	ctx->attrs = new_attrs;
3845 
3846 	ctx->wq = wq;
3847 	free_workqueue_attrs(tmp_attrs);
3848 	return ctx;
3849 
3850 out_free:
3851 	free_workqueue_attrs(tmp_attrs);
3852 	free_workqueue_attrs(new_attrs);
3853 	apply_wqattrs_cleanup(ctx);
3854 	return NULL;
3855 }
3856 
3857 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3858 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3859 {
3860 	int node;
3861 
3862 	/* all pwqs have been created successfully, let's install'em */
3863 	mutex_lock(&ctx->wq->mutex);
3864 
3865 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3866 
3867 	/* save the previous pwq and install the new one */
3868 	for_each_node(node)
3869 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3870 							  ctx->pwq_tbl[node]);
3871 
3872 	/* @dfl_pwq might not have been used, ensure it's linked */
3873 	link_pwq(ctx->dfl_pwq);
3874 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3875 
3876 	mutex_unlock(&ctx->wq->mutex);
3877 }
3878 
3879 static void apply_wqattrs_lock(void)
3880 {
3881 	/* CPUs should stay stable across pwq creations and installations */
3882 	get_online_cpus();
3883 	mutex_lock(&wq_pool_mutex);
3884 }
3885 
3886 static void apply_wqattrs_unlock(void)
3887 {
3888 	mutex_unlock(&wq_pool_mutex);
3889 	put_online_cpus();
3890 }
3891 
3892 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3893 					const struct workqueue_attrs *attrs)
3894 {
3895 	struct apply_wqattrs_ctx *ctx;
3896 
3897 	/* only unbound workqueues can change attributes */
3898 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3899 		return -EINVAL;
3900 
3901 	/* creating multiple pwqs breaks ordering guarantee */
3902 	if (!list_empty(&wq->pwqs)) {
3903 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3904 			return -EINVAL;
3905 
3906 		wq->flags &= ~__WQ_ORDERED;
3907 	}
3908 
3909 	ctx = apply_wqattrs_prepare(wq, attrs);
3910 	if (!ctx)
3911 		return -ENOMEM;
3912 
3913 	/* the ctx has been prepared successfully, let's commit it */
3914 	apply_wqattrs_commit(ctx);
3915 	apply_wqattrs_cleanup(ctx);
3916 
3917 	return 0;
3918 }
3919 
3920 /**
3921  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3922  * @wq: the target workqueue
3923  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3924  *
3925  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3926  * machines, this function maps a separate pwq to each NUMA node with
3927  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3928  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3929  * items finish.  Note that a work item which repeatedly requeues itself
3930  * back-to-back will stay on its current pwq.
3931  *
3932  * Performs GFP_KERNEL allocations.
3933  *
3934  * Return: 0 on success and -errno on failure.
3935  */
3936 int apply_workqueue_attrs(struct workqueue_struct *wq,
3937 			  const struct workqueue_attrs *attrs)
3938 {
3939 	int ret;
3940 
3941 	apply_wqattrs_lock();
3942 	ret = apply_workqueue_attrs_locked(wq, attrs);
3943 	apply_wqattrs_unlock();
3944 
3945 	return ret;
3946 }
3947 EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
3948 
3949 /**
3950  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3951  * @wq: the target workqueue
3952  * @cpu: the CPU coming up or going down
3953  * @online: whether @cpu is coming up or going down
3954  *
3955  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3956  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3957  * @wq accordingly.
3958  *
3959  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3960  * falls back to @wq->dfl_pwq which may not be optimal but is always
3961  * correct.
3962  *
3963  * Note that when the last allowed CPU of a NUMA node goes offline for a
3964  * workqueue with a cpumask spanning multiple nodes, the workers which were
3965  * already executing the work items for the workqueue will lose their CPU
3966  * affinity and may execute on any CPU.  This is similar to how per-cpu
3967  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3968  * affinity, it's the user's responsibility to flush the work item from
3969  * CPU_DOWN_PREPARE.
3970  */
3971 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3972 				   bool online)
3973 {
3974 	int node = cpu_to_node(cpu);
3975 	int cpu_off = online ? -1 : cpu;
3976 	struct pool_workqueue *old_pwq = NULL, *pwq;
3977 	struct workqueue_attrs *target_attrs;
3978 	cpumask_t *cpumask;
3979 
3980 	lockdep_assert_held(&wq_pool_mutex);
3981 
3982 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3983 	    wq->unbound_attrs->no_numa)
3984 		return;
3985 
3986 	/*
3987 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3988 	 * Let's use a preallocated one.  The following buf is protected by
3989 	 * CPU hotplug exclusion.
3990 	 */
3991 	target_attrs = wq_update_unbound_numa_attrs_buf;
3992 	cpumask = target_attrs->cpumask;
3993 
3994 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3995 	pwq = unbound_pwq_by_node(wq, node);
3996 
3997 	/*
3998 	 * Let's determine what needs to be done.  If the target cpumask is
3999 	 * different from the default pwq's, we need to compare it to @pwq's
4000 	 * and create a new one if they don't match.  If the target cpumask
4001 	 * equals the default pwq's, the default pwq should be used.
4002 	 */
4003 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4004 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4005 			return;
4006 	} else {
4007 		goto use_dfl_pwq;
4008 	}
4009 
4010 	/* create a new pwq */
4011 	pwq = alloc_unbound_pwq(wq, target_attrs);
4012 	if (!pwq) {
4013 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4014 			wq->name);
4015 		goto use_dfl_pwq;
4016 	}
4017 
4018 	/* Install the new pwq. */
4019 	mutex_lock(&wq->mutex);
4020 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4021 	goto out_unlock;
4022 
4023 use_dfl_pwq:
4024 	mutex_lock(&wq->mutex);
4025 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4026 	get_pwq(wq->dfl_pwq);
4027 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4028 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4029 out_unlock:
4030 	mutex_unlock(&wq->mutex);
4031 	put_pwq_unlocked(old_pwq);
4032 }
4033 
4034 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4035 {
4036 	bool highpri = wq->flags & WQ_HIGHPRI;
4037 	int cpu, ret;
4038 
4039 	if (!(wq->flags & WQ_UNBOUND)) {
4040 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4041 		if (!wq->cpu_pwqs)
4042 			return -ENOMEM;
4043 
4044 		for_each_possible_cpu(cpu) {
4045 			struct pool_workqueue *pwq =
4046 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4047 			struct worker_pool *cpu_pools =
4048 				per_cpu(cpu_worker_pools, cpu);
4049 
4050 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4051 
4052 			mutex_lock(&wq->mutex);
4053 			link_pwq(pwq);
4054 			mutex_unlock(&wq->mutex);
4055 		}
4056 		return 0;
4057 	} else if (wq->flags & __WQ_ORDERED) {
4058 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4059 		/* there should only be single pwq for ordering guarantee */
4060 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4061 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4062 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4063 		return ret;
4064 	} else {
4065 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4066 	}
4067 }
4068 
4069 static int wq_clamp_max_active(int max_active, unsigned int flags,
4070 			       const char *name)
4071 {
4072 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4073 
4074 	if (max_active < 1 || max_active > lim)
4075 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4076 			max_active, name, 1, lim);
4077 
4078 	return clamp_val(max_active, 1, lim);
4079 }
4080 
4081 /*
4082  * Workqueues which may be used during memory reclaim should have a rescuer
4083  * to guarantee forward progress.
4084  */
4085 static int init_rescuer(struct workqueue_struct *wq)
4086 {
4087 	struct worker *rescuer;
4088 	int ret;
4089 
4090 	if (!(wq->flags & WQ_MEM_RECLAIM))
4091 		return 0;
4092 
4093 	rescuer = alloc_worker(NUMA_NO_NODE);
4094 	if (!rescuer)
4095 		return -ENOMEM;
4096 
4097 	rescuer->rescue_wq = wq;
4098 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4099 	ret = PTR_ERR_OR_ZERO(rescuer->task);
4100 	if (ret) {
4101 		kfree(rescuer);
4102 		return ret;
4103 	}
4104 
4105 	wq->rescuer = rescuer;
4106 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4107 	wake_up_process(rescuer->task);
4108 
4109 	return 0;
4110 }
4111 
4112 struct workqueue_struct *alloc_workqueue(const char *fmt,
4113 					 unsigned int flags,
4114 					 int max_active, ...)
4115 {
4116 	size_t tbl_size = 0;
4117 	va_list args;
4118 	struct workqueue_struct *wq;
4119 	struct pool_workqueue *pwq;
4120 
4121 	/*
4122 	 * Unbound && max_active == 1 used to imply ordered, which is no
4123 	 * longer the case on NUMA machines due to per-node pools.  While
4124 	 * alloc_ordered_workqueue() is the right way to create an ordered
4125 	 * workqueue, keep the previous behavior to avoid subtle breakages
4126 	 * on NUMA.
4127 	 */
4128 	if ((flags & WQ_UNBOUND) && max_active == 1)
4129 		flags |= __WQ_ORDERED;
4130 
4131 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4132 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4133 		flags |= WQ_UNBOUND;
4134 
4135 	/* allocate wq and format name */
4136 	if (flags & WQ_UNBOUND)
4137 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4138 
4139 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4140 	if (!wq)
4141 		return NULL;
4142 
4143 	if (flags & WQ_UNBOUND) {
4144 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4145 		if (!wq->unbound_attrs)
4146 			goto err_free_wq;
4147 	}
4148 
4149 	va_start(args, max_active);
4150 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4151 	va_end(args);
4152 
4153 	max_active = max_active ?: WQ_DFL_ACTIVE;
4154 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4155 
4156 	/* init wq */
4157 	wq->flags = flags;
4158 	wq->saved_max_active = max_active;
4159 	mutex_init(&wq->mutex);
4160 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4161 	INIT_LIST_HEAD(&wq->pwqs);
4162 	INIT_LIST_HEAD(&wq->flusher_queue);
4163 	INIT_LIST_HEAD(&wq->flusher_overflow);
4164 	INIT_LIST_HEAD(&wq->maydays);
4165 
4166 	wq_init_lockdep(wq);
4167 	INIT_LIST_HEAD(&wq->list);
4168 
4169 	if (alloc_and_link_pwqs(wq) < 0)
4170 		goto err_free_wq;
4171 
4172 	if (wq_online && init_rescuer(wq) < 0)
4173 		goto err_destroy;
4174 
4175 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4176 		goto err_destroy;
4177 
4178 	/*
4179 	 * wq_pool_mutex protects global freeze state and workqueues list.
4180 	 * Grab it, adjust max_active and add the new @wq to workqueues
4181 	 * list.
4182 	 */
4183 	mutex_lock(&wq_pool_mutex);
4184 
4185 	mutex_lock(&wq->mutex);
4186 	for_each_pwq(pwq, wq)
4187 		pwq_adjust_max_active(pwq);
4188 	mutex_unlock(&wq->mutex);
4189 
4190 	list_add_tail_rcu(&wq->list, &workqueues);
4191 
4192 	mutex_unlock(&wq_pool_mutex);
4193 
4194 	return wq;
4195 
4196 err_free_wq:
4197 	free_workqueue_attrs(wq->unbound_attrs);
4198 	kfree(wq);
4199 	return NULL;
4200 err_destroy:
4201 	destroy_workqueue(wq);
4202 	return NULL;
4203 }
4204 EXPORT_SYMBOL_GPL(alloc_workqueue);
4205 
4206 /**
4207  * destroy_workqueue - safely terminate a workqueue
4208  * @wq: target workqueue
4209  *
4210  * Safely destroy a workqueue. All work currently pending will be done first.
4211  */
4212 void destroy_workqueue(struct workqueue_struct *wq)
4213 {
4214 	struct pool_workqueue *pwq;
4215 	int node;
4216 
4217 	/* drain it before proceeding with destruction */
4218 	drain_workqueue(wq);
4219 
4220 	/* sanity checks */
4221 	mutex_lock(&wq->mutex);
4222 	for_each_pwq(pwq, wq) {
4223 		int i;
4224 
4225 		for (i = 0; i < WORK_NR_COLORS; i++) {
4226 			if (WARN_ON(pwq->nr_in_flight[i])) {
4227 				mutex_unlock(&wq->mutex);
4228 				show_workqueue_state();
4229 				return;
4230 			}
4231 		}
4232 
4233 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4234 		    WARN_ON(pwq->nr_active) ||
4235 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4236 			mutex_unlock(&wq->mutex);
4237 			show_workqueue_state();
4238 			return;
4239 		}
4240 	}
4241 	mutex_unlock(&wq->mutex);
4242 
4243 	/*
4244 	 * wq list is used to freeze wq, remove from list after
4245 	 * flushing is complete in case freeze races us.
4246 	 */
4247 	mutex_lock(&wq_pool_mutex);
4248 	list_del_rcu(&wq->list);
4249 	mutex_unlock(&wq_pool_mutex);
4250 
4251 	workqueue_sysfs_unregister(wq);
4252 
4253 	if (wq->rescuer)
4254 		kthread_stop(wq->rescuer->task);
4255 
4256 	if (!(wq->flags & WQ_UNBOUND)) {
4257 		wq_unregister_lockdep(wq);
4258 		/*
4259 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4260 		 * schedule RCU free.
4261 		 */
4262 		call_rcu(&wq->rcu, rcu_free_wq);
4263 	} else {
4264 		/*
4265 		 * We're the sole accessor of @wq at this point.  Directly
4266 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4267 		 * @wq will be freed when the last pwq is released.
4268 		 */
4269 		for_each_node(node) {
4270 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4271 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4272 			put_pwq_unlocked(pwq);
4273 		}
4274 
4275 		/*
4276 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4277 		 * put.  Don't access it afterwards.
4278 		 */
4279 		pwq = wq->dfl_pwq;
4280 		wq->dfl_pwq = NULL;
4281 		put_pwq_unlocked(pwq);
4282 	}
4283 }
4284 EXPORT_SYMBOL_GPL(destroy_workqueue);
4285 
4286 /**
4287  * workqueue_set_max_active - adjust max_active of a workqueue
4288  * @wq: target workqueue
4289  * @max_active: new max_active value.
4290  *
4291  * Set max_active of @wq to @max_active.
4292  *
4293  * CONTEXT:
4294  * Don't call from IRQ context.
4295  */
4296 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4297 {
4298 	struct pool_workqueue *pwq;
4299 
4300 	/* disallow meddling with max_active for ordered workqueues */
4301 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4302 		return;
4303 
4304 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4305 
4306 	mutex_lock(&wq->mutex);
4307 
4308 	wq->flags &= ~__WQ_ORDERED;
4309 	wq->saved_max_active = max_active;
4310 
4311 	for_each_pwq(pwq, wq)
4312 		pwq_adjust_max_active(pwq);
4313 
4314 	mutex_unlock(&wq->mutex);
4315 }
4316 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4317 
4318 /**
4319  * current_work - retrieve %current task's work struct
4320  *
4321  * Determine if %current task is a workqueue worker and what it's working on.
4322  * Useful to find out the context that the %current task is running in.
4323  *
4324  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4325  */
4326 struct work_struct *current_work(void)
4327 {
4328 	struct worker *worker = current_wq_worker();
4329 
4330 	return worker ? worker->current_work : NULL;
4331 }
4332 EXPORT_SYMBOL(current_work);
4333 
4334 /**
4335  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4336  *
4337  * Determine whether %current is a workqueue rescuer.  Can be used from
4338  * work functions to determine whether it's being run off the rescuer task.
4339  *
4340  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4341  */
4342 bool current_is_workqueue_rescuer(void)
4343 {
4344 	struct worker *worker = current_wq_worker();
4345 
4346 	return worker && worker->rescue_wq;
4347 }
4348 
4349 /**
4350  * workqueue_congested - test whether a workqueue is congested
4351  * @cpu: CPU in question
4352  * @wq: target workqueue
4353  *
4354  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4355  * no synchronization around this function and the test result is
4356  * unreliable and only useful as advisory hints or for debugging.
4357  *
4358  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4359  * Note that both per-cpu and unbound workqueues may be associated with
4360  * multiple pool_workqueues which have separate congested states.  A
4361  * workqueue being congested on one CPU doesn't mean the workqueue is also
4362  * contested on other CPUs / NUMA nodes.
4363  *
4364  * Return:
4365  * %true if congested, %false otherwise.
4366  */
4367 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4368 {
4369 	struct pool_workqueue *pwq;
4370 	bool ret;
4371 
4372 	rcu_read_lock_sched();
4373 
4374 	if (cpu == WORK_CPU_UNBOUND)
4375 		cpu = smp_processor_id();
4376 
4377 	if (!(wq->flags & WQ_UNBOUND))
4378 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4379 	else
4380 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4381 
4382 	ret = !list_empty(&pwq->delayed_works);
4383 	rcu_read_unlock_sched();
4384 
4385 	return ret;
4386 }
4387 EXPORT_SYMBOL_GPL(workqueue_congested);
4388 
4389 /**
4390  * work_busy - test whether a work is currently pending or running
4391  * @work: the work to be tested
4392  *
4393  * Test whether @work is currently pending or running.  There is no
4394  * synchronization around this function and the test result is
4395  * unreliable and only useful as advisory hints or for debugging.
4396  *
4397  * Return:
4398  * OR'd bitmask of WORK_BUSY_* bits.
4399  */
4400 unsigned int work_busy(struct work_struct *work)
4401 {
4402 	struct worker_pool *pool;
4403 	unsigned long flags;
4404 	unsigned int ret = 0;
4405 
4406 	if (work_pending(work))
4407 		ret |= WORK_BUSY_PENDING;
4408 
4409 	local_irq_save(flags);
4410 	pool = get_work_pool(work);
4411 	if (pool) {
4412 		spin_lock(&pool->lock);
4413 		if (find_worker_executing_work(pool, work))
4414 			ret |= WORK_BUSY_RUNNING;
4415 		spin_unlock(&pool->lock);
4416 	}
4417 	local_irq_restore(flags);
4418 
4419 	return ret;
4420 }
4421 EXPORT_SYMBOL_GPL(work_busy);
4422 
4423 /**
4424  * set_worker_desc - set description for the current work item
4425  * @fmt: printf-style format string
4426  * @...: arguments for the format string
4427  *
4428  * This function can be called by a running work function to describe what
4429  * the work item is about.  If the worker task gets dumped, this
4430  * information will be printed out together to help debugging.  The
4431  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4432  */
4433 void set_worker_desc(const char *fmt, ...)
4434 {
4435 	struct worker *worker = current_wq_worker();
4436 	va_list args;
4437 
4438 	if (worker) {
4439 		va_start(args, fmt);
4440 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4441 		va_end(args);
4442 	}
4443 }
4444 EXPORT_SYMBOL_GPL(set_worker_desc);
4445 
4446 /**
4447  * print_worker_info - print out worker information and description
4448  * @log_lvl: the log level to use when printing
4449  * @task: target task
4450  *
4451  * If @task is a worker and currently executing a work item, print out the
4452  * name of the workqueue being serviced and worker description set with
4453  * set_worker_desc() by the currently executing work item.
4454  *
4455  * This function can be safely called on any task as long as the
4456  * task_struct itself is accessible.  While safe, this function isn't
4457  * synchronized and may print out mixups or garbages of limited length.
4458  */
4459 void print_worker_info(const char *log_lvl, struct task_struct *task)
4460 {
4461 	work_func_t *fn = NULL;
4462 	char name[WQ_NAME_LEN] = { };
4463 	char desc[WORKER_DESC_LEN] = { };
4464 	struct pool_workqueue *pwq = NULL;
4465 	struct workqueue_struct *wq = NULL;
4466 	struct worker *worker;
4467 
4468 	if (!(task->flags & PF_WQ_WORKER))
4469 		return;
4470 
4471 	/*
4472 	 * This function is called without any synchronization and @task
4473 	 * could be in any state.  Be careful with dereferences.
4474 	 */
4475 	worker = kthread_probe_data(task);
4476 
4477 	/*
4478 	 * Carefully copy the associated workqueue's workfn, name and desc.
4479 	 * Keep the original last '\0' in case the original is garbage.
4480 	 */
4481 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4482 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4483 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4484 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4485 	probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4486 
4487 	if (fn || name[0] || desc[0]) {
4488 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4489 		if (strcmp(name, desc))
4490 			pr_cont(" (%s)", desc);
4491 		pr_cont("\n");
4492 	}
4493 }
4494 
4495 static void pr_cont_pool_info(struct worker_pool *pool)
4496 {
4497 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4498 	if (pool->node != NUMA_NO_NODE)
4499 		pr_cont(" node=%d", pool->node);
4500 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4501 }
4502 
4503 static void pr_cont_work(bool comma, struct work_struct *work)
4504 {
4505 	if (work->func == wq_barrier_func) {
4506 		struct wq_barrier *barr;
4507 
4508 		barr = container_of(work, struct wq_barrier, work);
4509 
4510 		pr_cont("%s BAR(%d)", comma ? "," : "",
4511 			task_pid_nr(barr->task));
4512 	} else {
4513 		pr_cont("%s %pf", comma ? "," : "", work->func);
4514 	}
4515 }
4516 
4517 static void show_pwq(struct pool_workqueue *pwq)
4518 {
4519 	struct worker_pool *pool = pwq->pool;
4520 	struct work_struct *work;
4521 	struct worker *worker;
4522 	bool has_in_flight = false, has_pending = false;
4523 	int bkt;
4524 
4525 	pr_info("  pwq %d:", pool->id);
4526 	pr_cont_pool_info(pool);
4527 
4528 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4529 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4530 
4531 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4532 		if (worker->current_pwq == pwq) {
4533 			has_in_flight = true;
4534 			break;
4535 		}
4536 	}
4537 	if (has_in_flight) {
4538 		bool comma = false;
4539 
4540 		pr_info("    in-flight:");
4541 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4542 			if (worker->current_pwq != pwq)
4543 				continue;
4544 
4545 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4546 				task_pid_nr(worker->task),
4547 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4548 				worker->current_func);
4549 			list_for_each_entry(work, &worker->scheduled, entry)
4550 				pr_cont_work(false, work);
4551 			comma = true;
4552 		}
4553 		pr_cont("\n");
4554 	}
4555 
4556 	list_for_each_entry(work, &pool->worklist, entry) {
4557 		if (get_work_pwq(work) == pwq) {
4558 			has_pending = true;
4559 			break;
4560 		}
4561 	}
4562 	if (has_pending) {
4563 		bool comma = false;
4564 
4565 		pr_info("    pending:");
4566 		list_for_each_entry(work, &pool->worklist, entry) {
4567 			if (get_work_pwq(work) != pwq)
4568 				continue;
4569 
4570 			pr_cont_work(comma, work);
4571 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4572 		}
4573 		pr_cont("\n");
4574 	}
4575 
4576 	if (!list_empty(&pwq->delayed_works)) {
4577 		bool comma = false;
4578 
4579 		pr_info("    delayed:");
4580 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4581 			pr_cont_work(comma, work);
4582 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4583 		}
4584 		pr_cont("\n");
4585 	}
4586 }
4587 
4588 /**
4589  * show_workqueue_state - dump workqueue state
4590  *
4591  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4592  * all busy workqueues and pools.
4593  */
4594 void show_workqueue_state(void)
4595 {
4596 	struct workqueue_struct *wq;
4597 	struct worker_pool *pool;
4598 	unsigned long flags;
4599 	int pi;
4600 
4601 	rcu_read_lock_sched();
4602 
4603 	pr_info("Showing busy workqueues and worker pools:\n");
4604 
4605 	list_for_each_entry_rcu(wq, &workqueues, list) {
4606 		struct pool_workqueue *pwq;
4607 		bool idle = true;
4608 
4609 		for_each_pwq(pwq, wq) {
4610 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4611 				idle = false;
4612 				break;
4613 			}
4614 		}
4615 		if (idle)
4616 			continue;
4617 
4618 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4619 
4620 		for_each_pwq(pwq, wq) {
4621 			spin_lock_irqsave(&pwq->pool->lock, flags);
4622 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4623 				show_pwq(pwq);
4624 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4625 			/*
4626 			 * We could be printing a lot from atomic context, e.g.
4627 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4628 			 * hard lockup.
4629 			 */
4630 			touch_nmi_watchdog();
4631 		}
4632 	}
4633 
4634 	for_each_pool(pool, pi) {
4635 		struct worker *worker;
4636 		bool first = true;
4637 
4638 		spin_lock_irqsave(&pool->lock, flags);
4639 		if (pool->nr_workers == pool->nr_idle)
4640 			goto next_pool;
4641 
4642 		pr_info("pool %d:", pool->id);
4643 		pr_cont_pool_info(pool);
4644 		pr_cont(" hung=%us workers=%d",
4645 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4646 			pool->nr_workers);
4647 		if (pool->manager)
4648 			pr_cont(" manager: %d",
4649 				task_pid_nr(pool->manager->task));
4650 		list_for_each_entry(worker, &pool->idle_list, entry) {
4651 			pr_cont(" %s%d", first ? "idle: " : "",
4652 				task_pid_nr(worker->task));
4653 			first = false;
4654 		}
4655 		pr_cont("\n");
4656 	next_pool:
4657 		spin_unlock_irqrestore(&pool->lock, flags);
4658 		/*
4659 		 * We could be printing a lot from atomic context, e.g.
4660 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4661 		 * hard lockup.
4662 		 */
4663 		touch_nmi_watchdog();
4664 	}
4665 
4666 	rcu_read_unlock_sched();
4667 }
4668 
4669 /* used to show worker information through /proc/PID/{comm,stat,status} */
4670 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4671 {
4672 	int off;
4673 
4674 	/* always show the actual comm */
4675 	off = strscpy(buf, task->comm, size);
4676 	if (off < 0)
4677 		return;
4678 
4679 	/* stabilize PF_WQ_WORKER and worker pool association */
4680 	mutex_lock(&wq_pool_attach_mutex);
4681 
4682 	if (task->flags & PF_WQ_WORKER) {
4683 		struct worker *worker = kthread_data(task);
4684 		struct worker_pool *pool = worker->pool;
4685 
4686 		if (pool) {
4687 			spin_lock_irq(&pool->lock);
4688 			/*
4689 			 * ->desc tracks information (wq name or
4690 			 * set_worker_desc()) for the latest execution.  If
4691 			 * current, prepend '+', otherwise '-'.
4692 			 */
4693 			if (worker->desc[0] != '\0') {
4694 				if (worker->current_work)
4695 					scnprintf(buf + off, size - off, "+%s",
4696 						  worker->desc);
4697 				else
4698 					scnprintf(buf + off, size - off, "-%s",
4699 						  worker->desc);
4700 			}
4701 			spin_unlock_irq(&pool->lock);
4702 		}
4703 	}
4704 
4705 	mutex_unlock(&wq_pool_attach_mutex);
4706 }
4707 
4708 #ifdef CONFIG_SMP
4709 
4710 /*
4711  * CPU hotplug.
4712  *
4713  * There are two challenges in supporting CPU hotplug.  Firstly, there
4714  * are a lot of assumptions on strong associations among work, pwq and
4715  * pool which make migrating pending and scheduled works very
4716  * difficult to implement without impacting hot paths.  Secondly,
4717  * worker pools serve mix of short, long and very long running works making
4718  * blocked draining impractical.
4719  *
4720  * This is solved by allowing the pools to be disassociated from the CPU
4721  * running as an unbound one and allowing it to be reattached later if the
4722  * cpu comes back online.
4723  */
4724 
4725 static void unbind_workers(int cpu)
4726 {
4727 	struct worker_pool *pool;
4728 	struct worker *worker;
4729 
4730 	for_each_cpu_worker_pool(pool, cpu) {
4731 		mutex_lock(&wq_pool_attach_mutex);
4732 		spin_lock_irq(&pool->lock);
4733 
4734 		/*
4735 		 * We've blocked all attach/detach operations. Make all workers
4736 		 * unbound and set DISASSOCIATED.  Before this, all workers
4737 		 * except for the ones which are still executing works from
4738 		 * before the last CPU down must be on the cpu.  After
4739 		 * this, they may become diasporas.
4740 		 */
4741 		for_each_pool_worker(worker, pool)
4742 			worker->flags |= WORKER_UNBOUND;
4743 
4744 		pool->flags |= POOL_DISASSOCIATED;
4745 
4746 		spin_unlock_irq(&pool->lock);
4747 		mutex_unlock(&wq_pool_attach_mutex);
4748 
4749 		/*
4750 		 * Call schedule() so that we cross rq->lock and thus can
4751 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4752 		 * This is necessary as scheduler callbacks may be invoked
4753 		 * from other cpus.
4754 		 */
4755 		schedule();
4756 
4757 		/*
4758 		 * Sched callbacks are disabled now.  Zap nr_running.
4759 		 * After this, nr_running stays zero and need_more_worker()
4760 		 * and keep_working() are always true as long as the
4761 		 * worklist is not empty.  This pool now behaves as an
4762 		 * unbound (in terms of concurrency management) pool which
4763 		 * are served by workers tied to the pool.
4764 		 */
4765 		atomic_set(&pool->nr_running, 0);
4766 
4767 		/*
4768 		 * With concurrency management just turned off, a busy
4769 		 * worker blocking could lead to lengthy stalls.  Kick off
4770 		 * unbound chain execution of currently pending work items.
4771 		 */
4772 		spin_lock_irq(&pool->lock);
4773 		wake_up_worker(pool);
4774 		spin_unlock_irq(&pool->lock);
4775 	}
4776 }
4777 
4778 /**
4779  * rebind_workers - rebind all workers of a pool to the associated CPU
4780  * @pool: pool of interest
4781  *
4782  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4783  */
4784 static void rebind_workers(struct worker_pool *pool)
4785 {
4786 	struct worker *worker;
4787 
4788 	lockdep_assert_held(&wq_pool_attach_mutex);
4789 
4790 	/*
4791 	 * Restore CPU affinity of all workers.  As all idle workers should
4792 	 * be on the run-queue of the associated CPU before any local
4793 	 * wake-ups for concurrency management happen, restore CPU affinity
4794 	 * of all workers first and then clear UNBOUND.  As we're called
4795 	 * from CPU_ONLINE, the following shouldn't fail.
4796 	 */
4797 	for_each_pool_worker(worker, pool)
4798 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4799 						  pool->attrs->cpumask) < 0);
4800 
4801 	spin_lock_irq(&pool->lock);
4802 
4803 	pool->flags &= ~POOL_DISASSOCIATED;
4804 
4805 	for_each_pool_worker(worker, pool) {
4806 		unsigned int worker_flags = worker->flags;
4807 
4808 		/*
4809 		 * A bound idle worker should actually be on the runqueue
4810 		 * of the associated CPU for local wake-ups targeting it to
4811 		 * work.  Kick all idle workers so that they migrate to the
4812 		 * associated CPU.  Doing this in the same loop as
4813 		 * replacing UNBOUND with REBOUND is safe as no worker will
4814 		 * be bound before @pool->lock is released.
4815 		 */
4816 		if (worker_flags & WORKER_IDLE)
4817 			wake_up_process(worker->task);
4818 
4819 		/*
4820 		 * We want to clear UNBOUND but can't directly call
4821 		 * worker_clr_flags() or adjust nr_running.  Atomically
4822 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4823 		 * @worker will clear REBOUND using worker_clr_flags() when
4824 		 * it initiates the next execution cycle thus restoring
4825 		 * concurrency management.  Note that when or whether
4826 		 * @worker clears REBOUND doesn't affect correctness.
4827 		 *
4828 		 * WRITE_ONCE() is necessary because @worker->flags may be
4829 		 * tested without holding any lock in
4830 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4831 		 * fail incorrectly leading to premature concurrency
4832 		 * management operations.
4833 		 */
4834 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4835 		worker_flags |= WORKER_REBOUND;
4836 		worker_flags &= ~WORKER_UNBOUND;
4837 		WRITE_ONCE(worker->flags, worker_flags);
4838 	}
4839 
4840 	spin_unlock_irq(&pool->lock);
4841 }
4842 
4843 /**
4844  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4845  * @pool: unbound pool of interest
4846  * @cpu: the CPU which is coming up
4847  *
4848  * An unbound pool may end up with a cpumask which doesn't have any online
4849  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4850  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4851  * online CPU before, cpus_allowed of all its workers should be restored.
4852  */
4853 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4854 {
4855 	static cpumask_t cpumask;
4856 	struct worker *worker;
4857 
4858 	lockdep_assert_held(&wq_pool_attach_mutex);
4859 
4860 	/* is @cpu allowed for @pool? */
4861 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4862 		return;
4863 
4864 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4865 
4866 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4867 	for_each_pool_worker(worker, pool)
4868 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4869 }
4870 
4871 int workqueue_prepare_cpu(unsigned int cpu)
4872 {
4873 	struct worker_pool *pool;
4874 
4875 	for_each_cpu_worker_pool(pool, cpu) {
4876 		if (pool->nr_workers)
4877 			continue;
4878 		if (!create_worker(pool))
4879 			return -ENOMEM;
4880 	}
4881 	return 0;
4882 }
4883 
4884 int workqueue_online_cpu(unsigned int cpu)
4885 {
4886 	struct worker_pool *pool;
4887 	struct workqueue_struct *wq;
4888 	int pi;
4889 
4890 	mutex_lock(&wq_pool_mutex);
4891 
4892 	for_each_pool(pool, pi) {
4893 		mutex_lock(&wq_pool_attach_mutex);
4894 
4895 		if (pool->cpu == cpu)
4896 			rebind_workers(pool);
4897 		else if (pool->cpu < 0)
4898 			restore_unbound_workers_cpumask(pool, cpu);
4899 
4900 		mutex_unlock(&wq_pool_attach_mutex);
4901 	}
4902 
4903 	/* update NUMA affinity of unbound workqueues */
4904 	list_for_each_entry(wq, &workqueues, list)
4905 		wq_update_unbound_numa(wq, cpu, true);
4906 
4907 	mutex_unlock(&wq_pool_mutex);
4908 	return 0;
4909 }
4910 
4911 int workqueue_offline_cpu(unsigned int cpu)
4912 {
4913 	struct workqueue_struct *wq;
4914 
4915 	/* unbinding per-cpu workers should happen on the local CPU */
4916 	if (WARN_ON(cpu != smp_processor_id()))
4917 		return -1;
4918 
4919 	unbind_workers(cpu);
4920 
4921 	/* update NUMA affinity of unbound workqueues */
4922 	mutex_lock(&wq_pool_mutex);
4923 	list_for_each_entry(wq, &workqueues, list)
4924 		wq_update_unbound_numa(wq, cpu, false);
4925 	mutex_unlock(&wq_pool_mutex);
4926 
4927 	return 0;
4928 }
4929 
4930 struct work_for_cpu {
4931 	struct work_struct work;
4932 	long (*fn)(void *);
4933 	void *arg;
4934 	long ret;
4935 };
4936 
4937 static void work_for_cpu_fn(struct work_struct *work)
4938 {
4939 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4940 
4941 	wfc->ret = wfc->fn(wfc->arg);
4942 }
4943 
4944 /**
4945  * work_on_cpu - run a function in thread context on a particular cpu
4946  * @cpu: the cpu to run on
4947  * @fn: the function to run
4948  * @arg: the function arg
4949  *
4950  * It is up to the caller to ensure that the cpu doesn't go offline.
4951  * The caller must not hold any locks which would prevent @fn from completing.
4952  *
4953  * Return: The value @fn returns.
4954  */
4955 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4956 {
4957 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4958 
4959 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4960 	schedule_work_on(cpu, &wfc.work);
4961 	flush_work(&wfc.work);
4962 	destroy_work_on_stack(&wfc.work);
4963 	return wfc.ret;
4964 }
4965 EXPORT_SYMBOL_GPL(work_on_cpu);
4966 
4967 /**
4968  * work_on_cpu_safe - run a function in thread context on a particular cpu
4969  * @cpu: the cpu to run on
4970  * @fn:  the function to run
4971  * @arg: the function argument
4972  *
4973  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4974  * any locks which would prevent @fn from completing.
4975  *
4976  * Return: The value @fn returns.
4977  */
4978 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4979 {
4980 	long ret = -ENODEV;
4981 
4982 	get_online_cpus();
4983 	if (cpu_online(cpu))
4984 		ret = work_on_cpu(cpu, fn, arg);
4985 	put_online_cpus();
4986 	return ret;
4987 }
4988 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4989 #endif /* CONFIG_SMP */
4990 
4991 #ifdef CONFIG_FREEZER
4992 
4993 /**
4994  * freeze_workqueues_begin - begin freezing workqueues
4995  *
4996  * Start freezing workqueues.  After this function returns, all freezable
4997  * workqueues will queue new works to their delayed_works list instead of
4998  * pool->worklist.
4999  *
5000  * CONTEXT:
5001  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5002  */
5003 void freeze_workqueues_begin(void)
5004 {
5005 	struct workqueue_struct *wq;
5006 	struct pool_workqueue *pwq;
5007 
5008 	mutex_lock(&wq_pool_mutex);
5009 
5010 	WARN_ON_ONCE(workqueue_freezing);
5011 	workqueue_freezing = true;
5012 
5013 	list_for_each_entry(wq, &workqueues, list) {
5014 		mutex_lock(&wq->mutex);
5015 		for_each_pwq(pwq, wq)
5016 			pwq_adjust_max_active(pwq);
5017 		mutex_unlock(&wq->mutex);
5018 	}
5019 
5020 	mutex_unlock(&wq_pool_mutex);
5021 }
5022 
5023 /**
5024  * freeze_workqueues_busy - are freezable workqueues still busy?
5025  *
5026  * Check whether freezing is complete.  This function must be called
5027  * between freeze_workqueues_begin() and thaw_workqueues().
5028  *
5029  * CONTEXT:
5030  * Grabs and releases wq_pool_mutex.
5031  *
5032  * Return:
5033  * %true if some freezable workqueues are still busy.  %false if freezing
5034  * is complete.
5035  */
5036 bool freeze_workqueues_busy(void)
5037 {
5038 	bool busy = false;
5039 	struct workqueue_struct *wq;
5040 	struct pool_workqueue *pwq;
5041 
5042 	mutex_lock(&wq_pool_mutex);
5043 
5044 	WARN_ON_ONCE(!workqueue_freezing);
5045 
5046 	list_for_each_entry(wq, &workqueues, list) {
5047 		if (!(wq->flags & WQ_FREEZABLE))
5048 			continue;
5049 		/*
5050 		 * nr_active is monotonically decreasing.  It's safe
5051 		 * to peek without lock.
5052 		 */
5053 		rcu_read_lock_sched();
5054 		for_each_pwq(pwq, wq) {
5055 			WARN_ON_ONCE(pwq->nr_active < 0);
5056 			if (pwq->nr_active) {
5057 				busy = true;
5058 				rcu_read_unlock_sched();
5059 				goto out_unlock;
5060 			}
5061 		}
5062 		rcu_read_unlock_sched();
5063 	}
5064 out_unlock:
5065 	mutex_unlock(&wq_pool_mutex);
5066 	return busy;
5067 }
5068 
5069 /**
5070  * thaw_workqueues - thaw workqueues
5071  *
5072  * Thaw workqueues.  Normal queueing is restored and all collected
5073  * frozen works are transferred to their respective pool worklists.
5074  *
5075  * CONTEXT:
5076  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5077  */
5078 void thaw_workqueues(void)
5079 {
5080 	struct workqueue_struct *wq;
5081 	struct pool_workqueue *pwq;
5082 
5083 	mutex_lock(&wq_pool_mutex);
5084 
5085 	if (!workqueue_freezing)
5086 		goto out_unlock;
5087 
5088 	workqueue_freezing = false;
5089 
5090 	/* restore max_active and repopulate worklist */
5091 	list_for_each_entry(wq, &workqueues, list) {
5092 		mutex_lock(&wq->mutex);
5093 		for_each_pwq(pwq, wq)
5094 			pwq_adjust_max_active(pwq);
5095 		mutex_unlock(&wq->mutex);
5096 	}
5097 
5098 out_unlock:
5099 	mutex_unlock(&wq_pool_mutex);
5100 }
5101 #endif /* CONFIG_FREEZER */
5102 
5103 static int workqueue_apply_unbound_cpumask(void)
5104 {
5105 	LIST_HEAD(ctxs);
5106 	int ret = 0;
5107 	struct workqueue_struct *wq;
5108 	struct apply_wqattrs_ctx *ctx, *n;
5109 
5110 	lockdep_assert_held(&wq_pool_mutex);
5111 
5112 	list_for_each_entry(wq, &workqueues, list) {
5113 		if (!(wq->flags & WQ_UNBOUND))
5114 			continue;
5115 		/* creating multiple pwqs breaks ordering guarantee */
5116 		if (wq->flags & __WQ_ORDERED)
5117 			continue;
5118 
5119 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5120 		if (!ctx) {
5121 			ret = -ENOMEM;
5122 			break;
5123 		}
5124 
5125 		list_add_tail(&ctx->list, &ctxs);
5126 	}
5127 
5128 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5129 		if (!ret)
5130 			apply_wqattrs_commit(ctx);
5131 		apply_wqattrs_cleanup(ctx);
5132 	}
5133 
5134 	return ret;
5135 }
5136 
5137 /**
5138  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5139  *  @cpumask: the cpumask to set
5140  *
5141  *  The low-level workqueues cpumask is a global cpumask that limits
5142  *  the affinity of all unbound workqueues.  This function check the @cpumask
5143  *  and apply it to all unbound workqueues and updates all pwqs of them.
5144  *
5145  *  Retun:	0	- Success
5146  *  		-EINVAL	- Invalid @cpumask
5147  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5148  */
5149 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5150 {
5151 	int ret = -EINVAL;
5152 	cpumask_var_t saved_cpumask;
5153 
5154 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5155 		return -ENOMEM;
5156 
5157 	/*
5158 	 * Not excluding isolated cpus on purpose.
5159 	 * If the user wishes to include them, we allow that.
5160 	 */
5161 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5162 	if (!cpumask_empty(cpumask)) {
5163 		apply_wqattrs_lock();
5164 
5165 		/* save the old wq_unbound_cpumask. */
5166 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5167 
5168 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5169 		cpumask_copy(wq_unbound_cpumask, cpumask);
5170 		ret = workqueue_apply_unbound_cpumask();
5171 
5172 		/* restore the wq_unbound_cpumask when failed. */
5173 		if (ret < 0)
5174 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5175 
5176 		apply_wqattrs_unlock();
5177 	}
5178 
5179 	free_cpumask_var(saved_cpumask);
5180 	return ret;
5181 }
5182 
5183 #ifdef CONFIG_SYSFS
5184 /*
5185  * Workqueues with WQ_SYSFS flag set is visible to userland via
5186  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5187  * following attributes.
5188  *
5189  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5190  *  max_active	RW int	: maximum number of in-flight work items
5191  *
5192  * Unbound workqueues have the following extra attributes.
5193  *
5194  *  pool_ids	RO int	: the associated pool IDs for each node
5195  *  nice	RW int	: nice value of the workers
5196  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5197  *  numa	RW bool	: whether enable NUMA affinity
5198  */
5199 struct wq_device {
5200 	struct workqueue_struct		*wq;
5201 	struct device			dev;
5202 };
5203 
5204 static struct workqueue_struct *dev_to_wq(struct device *dev)
5205 {
5206 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5207 
5208 	return wq_dev->wq;
5209 }
5210 
5211 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5212 			    char *buf)
5213 {
5214 	struct workqueue_struct *wq = dev_to_wq(dev);
5215 
5216 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5217 }
5218 static DEVICE_ATTR_RO(per_cpu);
5219 
5220 static ssize_t max_active_show(struct device *dev,
5221 			       struct device_attribute *attr, char *buf)
5222 {
5223 	struct workqueue_struct *wq = dev_to_wq(dev);
5224 
5225 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5226 }
5227 
5228 static ssize_t max_active_store(struct device *dev,
5229 				struct device_attribute *attr, const char *buf,
5230 				size_t count)
5231 {
5232 	struct workqueue_struct *wq = dev_to_wq(dev);
5233 	int val;
5234 
5235 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5236 		return -EINVAL;
5237 
5238 	workqueue_set_max_active(wq, val);
5239 	return count;
5240 }
5241 static DEVICE_ATTR_RW(max_active);
5242 
5243 static struct attribute *wq_sysfs_attrs[] = {
5244 	&dev_attr_per_cpu.attr,
5245 	&dev_attr_max_active.attr,
5246 	NULL,
5247 };
5248 ATTRIBUTE_GROUPS(wq_sysfs);
5249 
5250 static ssize_t wq_pool_ids_show(struct device *dev,
5251 				struct device_attribute *attr, char *buf)
5252 {
5253 	struct workqueue_struct *wq = dev_to_wq(dev);
5254 	const char *delim = "";
5255 	int node, written = 0;
5256 
5257 	rcu_read_lock_sched();
5258 	for_each_node(node) {
5259 		written += scnprintf(buf + written, PAGE_SIZE - written,
5260 				     "%s%d:%d", delim, node,
5261 				     unbound_pwq_by_node(wq, node)->pool->id);
5262 		delim = " ";
5263 	}
5264 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5265 	rcu_read_unlock_sched();
5266 
5267 	return written;
5268 }
5269 
5270 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5271 			    char *buf)
5272 {
5273 	struct workqueue_struct *wq = dev_to_wq(dev);
5274 	int written;
5275 
5276 	mutex_lock(&wq->mutex);
5277 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5278 	mutex_unlock(&wq->mutex);
5279 
5280 	return written;
5281 }
5282 
5283 /* prepare workqueue_attrs for sysfs store operations */
5284 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5285 {
5286 	struct workqueue_attrs *attrs;
5287 
5288 	lockdep_assert_held(&wq_pool_mutex);
5289 
5290 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5291 	if (!attrs)
5292 		return NULL;
5293 
5294 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5295 	return attrs;
5296 }
5297 
5298 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5299 			     const char *buf, size_t count)
5300 {
5301 	struct workqueue_struct *wq = dev_to_wq(dev);
5302 	struct workqueue_attrs *attrs;
5303 	int ret = -ENOMEM;
5304 
5305 	apply_wqattrs_lock();
5306 
5307 	attrs = wq_sysfs_prep_attrs(wq);
5308 	if (!attrs)
5309 		goto out_unlock;
5310 
5311 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5312 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5313 		ret = apply_workqueue_attrs_locked(wq, attrs);
5314 	else
5315 		ret = -EINVAL;
5316 
5317 out_unlock:
5318 	apply_wqattrs_unlock();
5319 	free_workqueue_attrs(attrs);
5320 	return ret ?: count;
5321 }
5322 
5323 static ssize_t wq_cpumask_show(struct device *dev,
5324 			       struct device_attribute *attr, char *buf)
5325 {
5326 	struct workqueue_struct *wq = dev_to_wq(dev);
5327 	int written;
5328 
5329 	mutex_lock(&wq->mutex);
5330 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5331 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5332 	mutex_unlock(&wq->mutex);
5333 	return written;
5334 }
5335 
5336 static ssize_t wq_cpumask_store(struct device *dev,
5337 				struct device_attribute *attr,
5338 				const char *buf, size_t count)
5339 {
5340 	struct workqueue_struct *wq = dev_to_wq(dev);
5341 	struct workqueue_attrs *attrs;
5342 	int ret = -ENOMEM;
5343 
5344 	apply_wqattrs_lock();
5345 
5346 	attrs = wq_sysfs_prep_attrs(wq);
5347 	if (!attrs)
5348 		goto out_unlock;
5349 
5350 	ret = cpumask_parse(buf, attrs->cpumask);
5351 	if (!ret)
5352 		ret = apply_workqueue_attrs_locked(wq, attrs);
5353 
5354 out_unlock:
5355 	apply_wqattrs_unlock();
5356 	free_workqueue_attrs(attrs);
5357 	return ret ?: count;
5358 }
5359 
5360 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5361 			    char *buf)
5362 {
5363 	struct workqueue_struct *wq = dev_to_wq(dev);
5364 	int written;
5365 
5366 	mutex_lock(&wq->mutex);
5367 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5368 			    !wq->unbound_attrs->no_numa);
5369 	mutex_unlock(&wq->mutex);
5370 
5371 	return written;
5372 }
5373 
5374 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5375 			     const char *buf, size_t count)
5376 {
5377 	struct workqueue_struct *wq = dev_to_wq(dev);
5378 	struct workqueue_attrs *attrs;
5379 	int v, ret = -ENOMEM;
5380 
5381 	apply_wqattrs_lock();
5382 
5383 	attrs = wq_sysfs_prep_attrs(wq);
5384 	if (!attrs)
5385 		goto out_unlock;
5386 
5387 	ret = -EINVAL;
5388 	if (sscanf(buf, "%d", &v) == 1) {
5389 		attrs->no_numa = !v;
5390 		ret = apply_workqueue_attrs_locked(wq, attrs);
5391 	}
5392 
5393 out_unlock:
5394 	apply_wqattrs_unlock();
5395 	free_workqueue_attrs(attrs);
5396 	return ret ?: count;
5397 }
5398 
5399 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5400 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5401 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5402 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5403 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5404 	__ATTR_NULL,
5405 };
5406 
5407 static struct bus_type wq_subsys = {
5408 	.name				= "workqueue",
5409 	.dev_groups			= wq_sysfs_groups,
5410 };
5411 
5412 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5413 		struct device_attribute *attr, char *buf)
5414 {
5415 	int written;
5416 
5417 	mutex_lock(&wq_pool_mutex);
5418 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5419 			    cpumask_pr_args(wq_unbound_cpumask));
5420 	mutex_unlock(&wq_pool_mutex);
5421 
5422 	return written;
5423 }
5424 
5425 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5426 		struct device_attribute *attr, const char *buf, size_t count)
5427 {
5428 	cpumask_var_t cpumask;
5429 	int ret;
5430 
5431 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5432 		return -ENOMEM;
5433 
5434 	ret = cpumask_parse(buf, cpumask);
5435 	if (!ret)
5436 		ret = workqueue_set_unbound_cpumask(cpumask);
5437 
5438 	free_cpumask_var(cpumask);
5439 	return ret ? ret : count;
5440 }
5441 
5442 static struct device_attribute wq_sysfs_cpumask_attr =
5443 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5444 	       wq_unbound_cpumask_store);
5445 
5446 static int __init wq_sysfs_init(void)
5447 {
5448 	int err;
5449 
5450 	err = subsys_virtual_register(&wq_subsys, NULL);
5451 	if (err)
5452 		return err;
5453 
5454 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5455 }
5456 core_initcall(wq_sysfs_init);
5457 
5458 static void wq_device_release(struct device *dev)
5459 {
5460 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5461 
5462 	kfree(wq_dev);
5463 }
5464 
5465 /**
5466  * workqueue_sysfs_register - make a workqueue visible in sysfs
5467  * @wq: the workqueue to register
5468  *
5469  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5470  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5471  * which is the preferred method.
5472  *
5473  * Workqueue user should use this function directly iff it wants to apply
5474  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5475  * apply_workqueue_attrs() may race against userland updating the
5476  * attributes.
5477  *
5478  * Return: 0 on success, -errno on failure.
5479  */
5480 int workqueue_sysfs_register(struct workqueue_struct *wq)
5481 {
5482 	struct wq_device *wq_dev;
5483 	int ret;
5484 
5485 	/*
5486 	 * Adjusting max_active or creating new pwqs by applying
5487 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5488 	 * workqueues.
5489 	 */
5490 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5491 		return -EINVAL;
5492 
5493 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5494 	if (!wq_dev)
5495 		return -ENOMEM;
5496 
5497 	wq_dev->wq = wq;
5498 	wq_dev->dev.bus = &wq_subsys;
5499 	wq_dev->dev.release = wq_device_release;
5500 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5501 
5502 	/*
5503 	 * unbound_attrs are created separately.  Suppress uevent until
5504 	 * everything is ready.
5505 	 */
5506 	dev_set_uevent_suppress(&wq_dev->dev, true);
5507 
5508 	ret = device_register(&wq_dev->dev);
5509 	if (ret) {
5510 		put_device(&wq_dev->dev);
5511 		wq->wq_dev = NULL;
5512 		return ret;
5513 	}
5514 
5515 	if (wq->flags & WQ_UNBOUND) {
5516 		struct device_attribute *attr;
5517 
5518 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5519 			ret = device_create_file(&wq_dev->dev, attr);
5520 			if (ret) {
5521 				device_unregister(&wq_dev->dev);
5522 				wq->wq_dev = NULL;
5523 				return ret;
5524 			}
5525 		}
5526 	}
5527 
5528 	dev_set_uevent_suppress(&wq_dev->dev, false);
5529 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5530 	return 0;
5531 }
5532 
5533 /**
5534  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5535  * @wq: the workqueue to unregister
5536  *
5537  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5538  */
5539 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5540 {
5541 	struct wq_device *wq_dev = wq->wq_dev;
5542 
5543 	if (!wq->wq_dev)
5544 		return;
5545 
5546 	wq->wq_dev = NULL;
5547 	device_unregister(&wq_dev->dev);
5548 }
5549 #else	/* CONFIG_SYSFS */
5550 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5551 #endif	/* CONFIG_SYSFS */
5552 
5553 /*
5554  * Workqueue watchdog.
5555  *
5556  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5557  * flush dependency, a concurrency managed work item which stays RUNNING
5558  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5559  * usual warning mechanisms don't trigger and internal workqueue state is
5560  * largely opaque.
5561  *
5562  * Workqueue watchdog monitors all worker pools periodically and dumps
5563  * state if some pools failed to make forward progress for a while where
5564  * forward progress is defined as the first item on ->worklist changing.
5565  *
5566  * This mechanism is controlled through the kernel parameter
5567  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5568  * corresponding sysfs parameter file.
5569  */
5570 #ifdef CONFIG_WQ_WATCHDOG
5571 
5572 static unsigned long wq_watchdog_thresh = 30;
5573 static struct timer_list wq_watchdog_timer;
5574 
5575 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5576 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5577 
5578 static void wq_watchdog_reset_touched(void)
5579 {
5580 	int cpu;
5581 
5582 	wq_watchdog_touched = jiffies;
5583 	for_each_possible_cpu(cpu)
5584 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5585 }
5586 
5587 static void wq_watchdog_timer_fn(struct timer_list *unused)
5588 {
5589 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5590 	bool lockup_detected = false;
5591 	struct worker_pool *pool;
5592 	int pi;
5593 
5594 	if (!thresh)
5595 		return;
5596 
5597 	rcu_read_lock();
5598 
5599 	for_each_pool(pool, pi) {
5600 		unsigned long pool_ts, touched, ts;
5601 
5602 		if (list_empty(&pool->worklist))
5603 			continue;
5604 
5605 		/* get the latest of pool and touched timestamps */
5606 		pool_ts = READ_ONCE(pool->watchdog_ts);
5607 		touched = READ_ONCE(wq_watchdog_touched);
5608 
5609 		if (time_after(pool_ts, touched))
5610 			ts = pool_ts;
5611 		else
5612 			ts = touched;
5613 
5614 		if (pool->cpu >= 0) {
5615 			unsigned long cpu_touched =
5616 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5617 						  pool->cpu));
5618 			if (time_after(cpu_touched, ts))
5619 				ts = cpu_touched;
5620 		}
5621 
5622 		/* did we stall? */
5623 		if (time_after(jiffies, ts + thresh)) {
5624 			lockup_detected = true;
5625 			pr_emerg("BUG: workqueue lockup - pool");
5626 			pr_cont_pool_info(pool);
5627 			pr_cont(" stuck for %us!\n",
5628 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5629 		}
5630 	}
5631 
5632 	rcu_read_unlock();
5633 
5634 	if (lockup_detected)
5635 		show_workqueue_state();
5636 
5637 	wq_watchdog_reset_touched();
5638 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5639 }
5640 
5641 notrace void wq_watchdog_touch(int cpu)
5642 {
5643 	if (cpu >= 0)
5644 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5645 	else
5646 		wq_watchdog_touched = jiffies;
5647 }
5648 
5649 static void wq_watchdog_set_thresh(unsigned long thresh)
5650 {
5651 	wq_watchdog_thresh = 0;
5652 	del_timer_sync(&wq_watchdog_timer);
5653 
5654 	if (thresh) {
5655 		wq_watchdog_thresh = thresh;
5656 		wq_watchdog_reset_touched();
5657 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5658 	}
5659 }
5660 
5661 static int wq_watchdog_param_set_thresh(const char *val,
5662 					const struct kernel_param *kp)
5663 {
5664 	unsigned long thresh;
5665 	int ret;
5666 
5667 	ret = kstrtoul(val, 0, &thresh);
5668 	if (ret)
5669 		return ret;
5670 
5671 	if (system_wq)
5672 		wq_watchdog_set_thresh(thresh);
5673 	else
5674 		wq_watchdog_thresh = thresh;
5675 
5676 	return 0;
5677 }
5678 
5679 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5680 	.set	= wq_watchdog_param_set_thresh,
5681 	.get	= param_get_ulong,
5682 };
5683 
5684 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5685 		0644);
5686 
5687 static void wq_watchdog_init(void)
5688 {
5689 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5690 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5691 }
5692 
5693 #else	/* CONFIG_WQ_WATCHDOG */
5694 
5695 static inline void wq_watchdog_init(void) { }
5696 
5697 #endif	/* CONFIG_WQ_WATCHDOG */
5698 
5699 static void __init wq_numa_init(void)
5700 {
5701 	cpumask_var_t *tbl;
5702 	int node, cpu;
5703 
5704 	if (num_possible_nodes() <= 1)
5705 		return;
5706 
5707 	if (wq_disable_numa) {
5708 		pr_info("workqueue: NUMA affinity support disabled\n");
5709 		return;
5710 	}
5711 
5712 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5713 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5714 
5715 	/*
5716 	 * We want masks of possible CPUs of each node which isn't readily
5717 	 * available.  Build one from cpu_to_node() which should have been
5718 	 * fully initialized by now.
5719 	 */
5720 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5721 	BUG_ON(!tbl);
5722 
5723 	for_each_node(node)
5724 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5725 				node_online(node) ? node : NUMA_NO_NODE));
5726 
5727 	for_each_possible_cpu(cpu) {
5728 		node = cpu_to_node(cpu);
5729 		if (WARN_ON(node == NUMA_NO_NODE)) {
5730 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5731 			/* happens iff arch is bonkers, let's just proceed */
5732 			return;
5733 		}
5734 		cpumask_set_cpu(cpu, tbl[node]);
5735 	}
5736 
5737 	wq_numa_possible_cpumask = tbl;
5738 	wq_numa_enabled = true;
5739 }
5740 
5741 /**
5742  * workqueue_init_early - early init for workqueue subsystem
5743  *
5744  * This is the first half of two-staged workqueue subsystem initialization
5745  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5746  * idr are up.  It sets up all the data structures and system workqueues
5747  * and allows early boot code to create workqueues and queue/cancel work
5748  * items.  Actual work item execution starts only after kthreads can be
5749  * created and scheduled right before early initcalls.
5750  */
5751 int __init workqueue_init_early(void)
5752 {
5753 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5754 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5755 	int i, cpu;
5756 
5757 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5758 
5759 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5760 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5761 
5762 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5763 
5764 	/* initialize CPU pools */
5765 	for_each_possible_cpu(cpu) {
5766 		struct worker_pool *pool;
5767 
5768 		i = 0;
5769 		for_each_cpu_worker_pool(pool, cpu) {
5770 			BUG_ON(init_worker_pool(pool));
5771 			pool->cpu = cpu;
5772 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5773 			pool->attrs->nice = std_nice[i++];
5774 			pool->node = cpu_to_node(cpu);
5775 
5776 			/* alloc pool ID */
5777 			mutex_lock(&wq_pool_mutex);
5778 			BUG_ON(worker_pool_assign_id(pool));
5779 			mutex_unlock(&wq_pool_mutex);
5780 		}
5781 	}
5782 
5783 	/* create default unbound and ordered wq attrs */
5784 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5785 		struct workqueue_attrs *attrs;
5786 
5787 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5788 		attrs->nice = std_nice[i];
5789 		unbound_std_wq_attrs[i] = attrs;
5790 
5791 		/*
5792 		 * An ordered wq should have only one pwq as ordering is
5793 		 * guaranteed by max_active which is enforced by pwqs.
5794 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5795 		 */
5796 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5797 		attrs->nice = std_nice[i];
5798 		attrs->no_numa = true;
5799 		ordered_wq_attrs[i] = attrs;
5800 	}
5801 
5802 	system_wq = alloc_workqueue("events", 0, 0);
5803 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5804 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5805 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5806 					    WQ_UNBOUND_MAX_ACTIVE);
5807 	system_freezable_wq = alloc_workqueue("events_freezable",
5808 					      WQ_FREEZABLE, 0);
5809 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5810 					      WQ_POWER_EFFICIENT, 0);
5811 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5812 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5813 					      0);
5814 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5815 	       !system_unbound_wq || !system_freezable_wq ||
5816 	       !system_power_efficient_wq ||
5817 	       !system_freezable_power_efficient_wq);
5818 
5819 	return 0;
5820 }
5821 
5822 /**
5823  * workqueue_init - bring workqueue subsystem fully online
5824  *
5825  * This is the latter half of two-staged workqueue subsystem initialization
5826  * and invoked as soon as kthreads can be created and scheduled.
5827  * Workqueues have been created and work items queued on them, but there
5828  * are no kworkers executing the work items yet.  Populate the worker pools
5829  * with the initial workers and enable future kworker creations.
5830  */
5831 int __init workqueue_init(void)
5832 {
5833 	struct workqueue_struct *wq;
5834 	struct worker_pool *pool;
5835 	int cpu, bkt;
5836 
5837 	/*
5838 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5839 	 * CPU to node mapping may not be available that early on some
5840 	 * archs such as power and arm64.  As per-cpu pools created
5841 	 * previously could be missing node hint and unbound pools NUMA
5842 	 * affinity, fix them up.
5843 	 *
5844 	 * Also, while iterating workqueues, create rescuers if requested.
5845 	 */
5846 	wq_numa_init();
5847 
5848 	mutex_lock(&wq_pool_mutex);
5849 
5850 	for_each_possible_cpu(cpu) {
5851 		for_each_cpu_worker_pool(pool, cpu) {
5852 			pool->node = cpu_to_node(cpu);
5853 		}
5854 	}
5855 
5856 	list_for_each_entry(wq, &workqueues, list) {
5857 		wq_update_unbound_numa(wq, smp_processor_id(), true);
5858 		WARN(init_rescuer(wq),
5859 		     "workqueue: failed to create early rescuer for %s",
5860 		     wq->name);
5861 	}
5862 
5863 	mutex_unlock(&wq_pool_mutex);
5864 
5865 	/* create the initial workers */
5866 	for_each_online_cpu(cpu) {
5867 		for_each_cpu_worker_pool(pool, cpu) {
5868 			pool->flags &= ~POOL_DISASSOCIATED;
5869 			BUG_ON(!create_worker(pool));
5870 		}
5871 	}
5872 
5873 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5874 		BUG_ON(!create_worker(pool));
5875 
5876 	wq_online = true;
5877 	wq_watchdog_init();
5878 
5879 	return 0;
5880 }
5881