1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <[email protected]> 9 * Andrew Morton 10 * Kai Petzke <[email protected]> 11 * Theodore Ts'o <[email protected]> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <[email protected]> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/interrupt.h> 33 #include <linux/signal.h> 34 #include <linux/completion.h> 35 #include <linux/workqueue.h> 36 #include <linux/slab.h> 37 #include <linux/cpu.h> 38 #include <linux/notifier.h> 39 #include <linux/kthread.h> 40 #include <linux/hardirq.h> 41 #include <linux/mempolicy.h> 42 #include <linux/freezer.h> 43 #include <linux/debug_locks.h> 44 #include <linux/lockdep.h> 45 #include <linux/idr.h> 46 #include <linux/jhash.h> 47 #include <linux/hashtable.h> 48 #include <linux/rculist.h> 49 #include <linux/nodemask.h> 50 #include <linux/moduleparam.h> 51 #include <linux/uaccess.h> 52 #include <linux/sched/isolation.h> 53 #include <linux/sched/debug.h> 54 #include <linux/nmi.h> 55 #include <linux/kvm_para.h> 56 #include <linux/delay.h> 57 #include <linux/irq_work.h> 58 59 #include "workqueue_internal.h" 60 61 enum worker_pool_flags { 62 /* 63 * worker_pool flags 64 * 65 * A bound pool is either associated or disassociated with its CPU. 66 * While associated (!DISASSOCIATED), all workers are bound to the 67 * CPU and none has %WORKER_UNBOUND set and concurrency management 68 * is in effect. 69 * 70 * While DISASSOCIATED, the cpu may be offline and all workers have 71 * %WORKER_UNBOUND set and concurrency management disabled, and may 72 * be executing on any CPU. The pool behaves as an unbound one. 73 * 74 * Note that DISASSOCIATED should be flipped only while holding 75 * wq_pool_attach_mutex to avoid changing binding state while 76 * worker_attach_to_pool() is in progress. 77 * 78 * As there can only be one concurrent BH execution context per CPU, a 79 * BH pool is per-CPU and always DISASSOCIATED. 80 */ 81 POOL_BH = 1 << 0, /* is a BH pool */ 82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */ 83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */ 85 }; 86 87 enum worker_flags { 88 /* worker flags */ 89 WORKER_DIE = 1 << 1, /* die die die */ 90 WORKER_IDLE = 1 << 2, /* is idle */ 91 WORKER_PREP = 1 << 3, /* preparing to run works */ 92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 94 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 95 96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 97 WORKER_UNBOUND | WORKER_REBOUND, 98 }; 99 100 enum work_cancel_flags { 101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */ 102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */ 103 }; 104 105 enum wq_internal_consts { 106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 107 108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 110 111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 113 114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 115 /* call for help after 10ms 116 (min two ticks) */ 117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 118 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 119 120 /* 121 * Rescue workers are used only on emergencies and shared by 122 * all cpus. Give MIN_NICE. 123 */ 124 RESCUER_NICE_LEVEL = MIN_NICE, 125 HIGHPRI_NICE_LEVEL = MIN_NICE, 126 127 WQ_NAME_LEN = 32, 128 WORKER_ID_LEN = 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */ 129 }; 130 131 /* 132 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and 133 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because 134 * msecs_to_jiffies() can't be an initializer. 135 */ 136 #define BH_WORKER_JIFFIES msecs_to_jiffies(2) 137 #define BH_WORKER_RESTARTS 10 138 139 /* 140 * Structure fields follow one of the following exclusion rules. 141 * 142 * I: Modifiable by initialization/destruction paths and read-only for 143 * everyone else. 144 * 145 * P: Preemption protected. Disabling preemption is enough and should 146 * only be modified and accessed from the local cpu. 147 * 148 * L: pool->lock protected. Access with pool->lock held. 149 * 150 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for 151 * reads. 152 * 153 * K: Only modified by worker while holding pool->lock. Can be safely read by 154 * self, while holding pool->lock or from IRQ context if %current is the 155 * kworker. 156 * 157 * S: Only modified by worker self. 158 * 159 * A: wq_pool_attach_mutex protected. 160 * 161 * PL: wq_pool_mutex protected. 162 * 163 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 164 * 165 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 166 * 167 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 168 * RCU for reads. 169 * 170 * WQ: wq->mutex protected. 171 * 172 * WR: wq->mutex protected for writes. RCU protected for reads. 173 * 174 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read 175 * with READ_ONCE() without locking. 176 * 177 * MD: wq_mayday_lock protected. 178 * 179 * WD: Used internally by the watchdog. 180 */ 181 182 /* struct worker is defined in workqueue_internal.h */ 183 184 struct worker_pool { 185 raw_spinlock_t lock; /* the pool lock */ 186 int cpu; /* I: the associated cpu */ 187 int node; /* I: the associated node ID */ 188 int id; /* I: pool ID */ 189 unsigned int flags; /* L: flags */ 190 191 unsigned long watchdog_ts; /* L: watchdog timestamp */ 192 bool cpu_stall; /* WD: stalled cpu bound pool */ 193 194 /* 195 * The counter is incremented in a process context on the associated CPU 196 * w/ preemption disabled, and decremented or reset in the same context 197 * but w/ pool->lock held. The readers grab pool->lock and are 198 * guaranteed to see if the counter reached zero. 199 */ 200 int nr_running; 201 202 struct list_head worklist; /* L: list of pending works */ 203 204 int nr_workers; /* L: total number of workers */ 205 int nr_idle; /* L: currently idle workers */ 206 207 struct list_head idle_list; /* L: list of idle workers */ 208 struct timer_list idle_timer; /* L: worker idle timeout */ 209 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 210 211 struct timer_list mayday_timer; /* L: SOS timer for workers */ 212 213 /* a workers is either on busy_hash or idle_list, or the manager */ 214 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 215 /* L: hash of busy workers */ 216 217 struct worker *manager; /* L: purely informational */ 218 struct list_head workers; /* A: attached workers */ 219 220 struct ida worker_ida; /* worker IDs for task name */ 221 222 struct workqueue_attrs *attrs; /* I: worker attributes */ 223 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 224 int refcnt; /* PL: refcnt for unbound pools */ 225 226 /* 227 * Destruction of pool is RCU protected to allow dereferences 228 * from get_work_pool(). 229 */ 230 struct rcu_head rcu; 231 }; 232 233 /* 234 * Per-pool_workqueue statistics. These can be monitored using 235 * tools/workqueue/wq_monitor.py. 236 */ 237 enum pool_workqueue_stats { 238 PWQ_STAT_STARTED, /* work items started execution */ 239 PWQ_STAT_COMPLETED, /* work items completed execution */ 240 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 241 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 242 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 243 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 244 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 245 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 246 247 PWQ_NR_STATS, 248 }; 249 250 /* 251 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT 252 * of work_struct->data are used for flags and the remaining high bits 253 * point to the pwq; thus, pwqs need to be aligned at two's power of the 254 * number of flag bits. 255 */ 256 struct pool_workqueue { 257 struct worker_pool *pool; /* I: the associated pool */ 258 struct workqueue_struct *wq; /* I: the owning workqueue */ 259 int work_color; /* L: current color */ 260 int flush_color; /* L: flushing color */ 261 int refcnt; /* L: reference count */ 262 int nr_in_flight[WORK_NR_COLORS]; 263 /* L: nr of in_flight works */ 264 bool plugged; /* L: execution suspended */ 265 266 /* 267 * nr_active management and WORK_STRUCT_INACTIVE: 268 * 269 * When pwq->nr_active >= max_active, new work item is queued to 270 * pwq->inactive_works instead of pool->worklist and marked with 271 * WORK_STRUCT_INACTIVE. 272 * 273 * All work items marked with WORK_STRUCT_INACTIVE do not participate in 274 * nr_active and all work items in pwq->inactive_works are marked with 275 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are 276 * in pwq->inactive_works. Some of them are ready to run in 277 * pool->worklist or worker->scheduled. Those work itmes are only struct 278 * wq_barrier which is used for flush_work() and should not participate 279 * in nr_active. For non-barrier work item, it is marked with 280 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 281 */ 282 int nr_active; /* L: nr of active works */ 283 struct list_head inactive_works; /* L: inactive works */ 284 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ 285 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 286 struct list_head mayday_node; /* MD: node on wq->maydays */ 287 288 u64 stats[PWQ_NR_STATS]; 289 290 /* 291 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 292 * and pwq_release_workfn() for details. pool_workqueue itself is also 293 * RCU protected so that the first pwq can be determined without 294 * grabbing wq->mutex. 295 */ 296 struct kthread_work release_work; 297 struct rcu_head rcu; 298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT); 299 300 /* 301 * Structure used to wait for workqueue flush. 302 */ 303 struct wq_flusher { 304 struct list_head list; /* WQ: list of flushers */ 305 int flush_color; /* WQ: flush color waiting for */ 306 struct completion done; /* flush completion */ 307 }; 308 309 struct wq_device; 310 311 /* 312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level 313 * on each CPU, in an unbound workqueue, max_active applies to the whole system. 314 * As sharing a single nr_active across multiple sockets can be very expensive, 315 * the counting and enforcement is per NUMA node. 316 * 317 * The following struct is used to enforce per-node max_active. When a pwq wants 318 * to start executing a work item, it should increment ->nr using 319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over 320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish 321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in 322 * round-robin order. 323 */ 324 struct wq_node_nr_active { 325 int max; /* per-node max_active */ 326 atomic_t nr; /* per-node nr_active */ 327 raw_spinlock_t lock; /* nests inside pool locks */ 328 struct list_head pending_pwqs; /* LN: pwqs with inactive works */ 329 }; 330 331 /* 332 * The externally visible workqueue. It relays the issued work items to 333 * the appropriate worker_pool through its pool_workqueues. 334 */ 335 struct workqueue_struct { 336 struct list_head pwqs; /* WR: all pwqs of this wq */ 337 struct list_head list; /* PR: list of all workqueues */ 338 339 struct mutex mutex; /* protects this wq */ 340 int work_color; /* WQ: current work color */ 341 int flush_color; /* WQ: current flush color */ 342 atomic_t nr_pwqs_to_flush; /* flush in progress */ 343 struct wq_flusher *first_flusher; /* WQ: first flusher */ 344 struct list_head flusher_queue; /* WQ: flush waiters */ 345 struct list_head flusher_overflow; /* WQ: flush overflow list */ 346 347 struct list_head maydays; /* MD: pwqs requesting rescue */ 348 struct worker *rescuer; /* MD: rescue worker */ 349 350 int nr_drainers; /* WQ: drain in progress */ 351 352 /* See alloc_workqueue() function comment for info on min/max_active */ 353 int max_active; /* WO: max active works */ 354 int min_active; /* WO: min active works */ 355 int saved_max_active; /* WQ: saved max_active */ 356 int saved_min_active; /* WQ: saved min_active */ 357 358 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 359 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ 360 361 #ifdef CONFIG_SYSFS 362 struct wq_device *wq_dev; /* I: for sysfs interface */ 363 #endif 364 #ifdef CONFIG_LOCKDEP 365 char *lock_name; 366 struct lock_class_key key; 367 struct lockdep_map __lockdep_map; 368 struct lockdep_map *lockdep_map; 369 #endif 370 char name[WQ_NAME_LEN]; /* I: workqueue name */ 371 372 /* 373 * Destruction of workqueue_struct is RCU protected to allow walking 374 * the workqueues list without grabbing wq_pool_mutex. 375 * This is used to dump all workqueues from sysrq. 376 */ 377 struct rcu_head rcu; 378 379 /* hot fields used during command issue, aligned to cacheline */ 380 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 381 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */ 382 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ 383 }; 384 385 /* 386 * Each pod type describes how CPUs should be grouped for unbound workqueues. 387 * See the comment above workqueue_attrs->affn_scope. 388 */ 389 struct wq_pod_type { 390 int nr_pods; /* number of pods */ 391 cpumask_var_t *pod_cpus; /* pod -> cpus */ 392 int *pod_node; /* pod -> node */ 393 int *cpu_pod; /* cpu -> pod */ 394 }; 395 396 struct work_offq_data { 397 u32 pool_id; 398 u32 disable; 399 u32 flags; 400 }; 401 402 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 403 [WQ_AFFN_DFL] = "default", 404 [WQ_AFFN_CPU] = "cpu", 405 [WQ_AFFN_SMT] = "smt", 406 [WQ_AFFN_CACHE] = "cache", 407 [WQ_AFFN_NUMA] = "numa", 408 [WQ_AFFN_SYSTEM] = "system", 409 }; 410 411 /* 412 * Per-cpu work items which run for longer than the following threshold are 413 * automatically considered CPU intensive and excluded from concurrency 414 * management to prevent them from noticeably delaying other per-cpu work items. 415 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 416 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 417 */ 418 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 419 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 421 static unsigned int wq_cpu_intensive_warning_thresh = 4; 422 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644); 423 #endif 424 425 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 426 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 427 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 428 429 static bool wq_online; /* can kworkers be created yet? */ 430 static bool wq_topo_initialized __read_mostly = false; 431 432 static struct kmem_cache *pwq_cache; 433 434 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 435 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 436 437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 438 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf; 439 440 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 441 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 443 /* wait for manager to go away */ 444 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 445 446 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 447 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 448 449 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */ 450 static cpumask_var_t wq_online_cpumask; 451 452 /* PL&A: allowable cpus for unbound wqs and work items */ 453 static cpumask_var_t wq_unbound_cpumask; 454 455 /* PL: user requested unbound cpumask via sysfs */ 456 static cpumask_var_t wq_requested_unbound_cpumask; 457 458 /* PL: isolated cpumask to be excluded from unbound cpumask */ 459 static cpumask_var_t wq_isolated_cpumask; 460 461 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 462 static struct cpumask wq_cmdline_cpumask __initdata; 463 464 /* CPU where unbound work was last round robin scheduled from this CPU */ 465 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 466 467 /* 468 * Local execution of unbound work items is no longer guaranteed. The 469 * following always forces round-robin CPU selection on unbound work items 470 * to uncover usages which depend on it. 471 */ 472 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 473 static bool wq_debug_force_rr_cpu = true; 474 #else 475 static bool wq_debug_force_rr_cpu = false; 476 #endif 477 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 478 479 /* to raise softirq for the BH worker pools on other CPUs */ 480 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works); 481 482 /* the BH worker pools */ 483 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools); 484 485 /* the per-cpu worker pools */ 486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 487 488 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 489 490 /* PL: hash of all unbound pools keyed by pool->attrs */ 491 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 492 493 /* I: attributes used when instantiating standard unbound pools on demand */ 494 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 495 496 /* I: attributes used when instantiating ordered pools on demand */ 497 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 498 499 /* 500 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 501 * process context while holding a pool lock. Bounce to a dedicated kthread 502 * worker to avoid A-A deadlocks. 503 */ 504 static struct kthread_worker *pwq_release_worker __ro_after_init; 505 506 struct workqueue_struct *system_wq __ro_after_init; 507 EXPORT_SYMBOL(system_wq); 508 struct workqueue_struct *system_highpri_wq __ro_after_init; 509 EXPORT_SYMBOL_GPL(system_highpri_wq); 510 struct workqueue_struct *system_long_wq __ro_after_init; 511 EXPORT_SYMBOL_GPL(system_long_wq); 512 struct workqueue_struct *system_unbound_wq __ro_after_init; 513 EXPORT_SYMBOL_GPL(system_unbound_wq); 514 struct workqueue_struct *system_freezable_wq __ro_after_init; 515 EXPORT_SYMBOL_GPL(system_freezable_wq); 516 struct workqueue_struct *system_power_efficient_wq __ro_after_init; 517 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 518 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; 519 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 520 struct workqueue_struct *system_bh_wq; 521 EXPORT_SYMBOL_GPL(system_bh_wq); 522 struct workqueue_struct *system_bh_highpri_wq; 523 EXPORT_SYMBOL_GPL(system_bh_highpri_wq); 524 525 static int worker_thread(void *__worker); 526 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 527 static void show_pwq(struct pool_workqueue *pwq); 528 static void show_one_worker_pool(struct worker_pool *pool); 529 530 #define CREATE_TRACE_POINTS 531 #include <trace/events/workqueue.h> 532 533 #define assert_rcu_or_pool_mutex() \ 534 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 535 !lockdep_is_held(&wq_pool_mutex), \ 536 "RCU or wq_pool_mutex should be held") 537 538 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 539 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 540 !lockdep_is_held(&wq->mutex) && \ 541 !lockdep_is_held(&wq_pool_mutex), \ 542 "RCU, wq->mutex or wq_pool_mutex should be held") 543 544 #define for_each_bh_worker_pool(pool, cpu) \ 545 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \ 546 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 547 (pool)++) 548 549 #define for_each_cpu_worker_pool(pool, cpu) \ 550 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 551 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 552 (pool)++) 553 554 /** 555 * for_each_pool - iterate through all worker_pools in the system 556 * @pool: iteration cursor 557 * @pi: integer used for iteration 558 * 559 * This must be called either with wq_pool_mutex held or RCU read 560 * locked. If the pool needs to be used beyond the locking in effect, the 561 * caller is responsible for guaranteeing that the pool stays online. 562 * 563 * The if/else clause exists only for the lockdep assertion and can be 564 * ignored. 565 */ 566 #define for_each_pool(pool, pi) \ 567 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 568 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 569 else 570 571 /** 572 * for_each_pool_worker - iterate through all workers of a worker_pool 573 * @worker: iteration cursor 574 * @pool: worker_pool to iterate workers of 575 * 576 * This must be called with wq_pool_attach_mutex. 577 * 578 * The if/else clause exists only for the lockdep assertion and can be 579 * ignored. 580 */ 581 #define for_each_pool_worker(worker, pool) \ 582 list_for_each_entry((worker), &(pool)->workers, node) \ 583 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 584 else 585 586 /** 587 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 588 * @pwq: iteration cursor 589 * @wq: the target workqueue 590 * 591 * This must be called either with wq->mutex held or RCU read locked. 592 * If the pwq needs to be used beyond the locking in effect, the caller is 593 * responsible for guaranteeing that the pwq stays online. 594 * 595 * The if/else clause exists only for the lockdep assertion and can be 596 * ignored. 597 */ 598 #define for_each_pwq(pwq, wq) \ 599 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 600 lockdep_is_held(&(wq->mutex))) 601 602 #ifdef CONFIG_DEBUG_OBJECTS_WORK 603 604 static const struct debug_obj_descr work_debug_descr; 605 606 static void *work_debug_hint(void *addr) 607 { 608 return ((struct work_struct *) addr)->func; 609 } 610 611 static bool work_is_static_object(void *addr) 612 { 613 struct work_struct *work = addr; 614 615 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 616 } 617 618 /* 619 * fixup_init is called when: 620 * - an active object is initialized 621 */ 622 static bool work_fixup_init(void *addr, enum debug_obj_state state) 623 { 624 struct work_struct *work = addr; 625 626 switch (state) { 627 case ODEBUG_STATE_ACTIVE: 628 cancel_work_sync(work); 629 debug_object_init(work, &work_debug_descr); 630 return true; 631 default: 632 return false; 633 } 634 } 635 636 /* 637 * fixup_free is called when: 638 * - an active object is freed 639 */ 640 static bool work_fixup_free(void *addr, enum debug_obj_state state) 641 { 642 struct work_struct *work = addr; 643 644 switch (state) { 645 case ODEBUG_STATE_ACTIVE: 646 cancel_work_sync(work); 647 debug_object_free(work, &work_debug_descr); 648 return true; 649 default: 650 return false; 651 } 652 } 653 654 static const struct debug_obj_descr work_debug_descr = { 655 .name = "work_struct", 656 .debug_hint = work_debug_hint, 657 .is_static_object = work_is_static_object, 658 .fixup_init = work_fixup_init, 659 .fixup_free = work_fixup_free, 660 }; 661 662 static inline void debug_work_activate(struct work_struct *work) 663 { 664 debug_object_activate(work, &work_debug_descr); 665 } 666 667 static inline void debug_work_deactivate(struct work_struct *work) 668 { 669 debug_object_deactivate(work, &work_debug_descr); 670 } 671 672 void __init_work(struct work_struct *work, int onstack) 673 { 674 if (onstack) 675 debug_object_init_on_stack(work, &work_debug_descr); 676 else 677 debug_object_init(work, &work_debug_descr); 678 } 679 EXPORT_SYMBOL_GPL(__init_work); 680 681 void destroy_work_on_stack(struct work_struct *work) 682 { 683 debug_object_free(work, &work_debug_descr); 684 } 685 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 686 687 void destroy_delayed_work_on_stack(struct delayed_work *work) 688 { 689 destroy_timer_on_stack(&work->timer); 690 debug_object_free(&work->work, &work_debug_descr); 691 } 692 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 693 694 #else 695 static inline void debug_work_activate(struct work_struct *work) { } 696 static inline void debug_work_deactivate(struct work_struct *work) { } 697 #endif 698 699 /** 700 * worker_pool_assign_id - allocate ID and assign it to @pool 701 * @pool: the pool pointer of interest 702 * 703 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 704 * successfully, -errno on failure. 705 */ 706 static int worker_pool_assign_id(struct worker_pool *pool) 707 { 708 int ret; 709 710 lockdep_assert_held(&wq_pool_mutex); 711 712 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 713 GFP_KERNEL); 714 if (ret >= 0) { 715 pool->id = ret; 716 return 0; 717 } 718 return ret; 719 } 720 721 static struct pool_workqueue __rcu ** 722 unbound_pwq_slot(struct workqueue_struct *wq, int cpu) 723 { 724 if (cpu >= 0) 725 return per_cpu_ptr(wq->cpu_pwq, cpu); 726 else 727 return &wq->dfl_pwq; 728 } 729 730 /* @cpu < 0 for dfl_pwq */ 731 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) 732 { 733 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), 734 lockdep_is_held(&wq_pool_mutex) || 735 lockdep_is_held(&wq->mutex)); 736 } 737 738 /** 739 * unbound_effective_cpumask - effective cpumask of an unbound workqueue 740 * @wq: workqueue of interest 741 * 742 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which 743 * is masked with wq_unbound_cpumask to determine the effective cpumask. The 744 * default pwq is always mapped to the pool with the current effective cpumask. 745 */ 746 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) 747 { 748 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask; 749 } 750 751 static unsigned int work_color_to_flags(int color) 752 { 753 return color << WORK_STRUCT_COLOR_SHIFT; 754 } 755 756 static int get_work_color(unsigned long work_data) 757 { 758 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 759 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 760 } 761 762 static int work_next_color(int color) 763 { 764 return (color + 1) % WORK_NR_COLORS; 765 } 766 767 static unsigned long pool_offq_flags(struct worker_pool *pool) 768 { 769 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0; 770 } 771 772 /* 773 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 774 * contain the pointer to the queued pwq. Once execution starts, the flag 775 * is cleared and the high bits contain OFFQ flags and pool ID. 776 * 777 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling() 778 * can be used to set the pwq, pool or clear work->data. These functions should 779 * only be called while the work is owned - ie. while the PENDING bit is set. 780 * 781 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 782 * corresponding to a work. Pool is available once the work has been 783 * queued anywhere after initialization until it is sync canceled. pwq is 784 * available only while the work item is queued. 785 */ 786 static inline void set_work_data(struct work_struct *work, unsigned long data) 787 { 788 WARN_ON_ONCE(!work_pending(work)); 789 atomic_long_set(&work->data, data | work_static(work)); 790 } 791 792 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 793 unsigned long flags) 794 { 795 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING | 796 WORK_STRUCT_PWQ | flags); 797 } 798 799 static void set_work_pool_and_keep_pending(struct work_struct *work, 800 int pool_id, unsigned long flags) 801 { 802 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 803 WORK_STRUCT_PENDING | flags); 804 } 805 806 static void set_work_pool_and_clear_pending(struct work_struct *work, 807 int pool_id, unsigned long flags) 808 { 809 /* 810 * The following wmb is paired with the implied mb in 811 * test_and_set_bit(PENDING) and ensures all updates to @work made 812 * here are visible to and precede any updates by the next PENDING 813 * owner. 814 */ 815 smp_wmb(); 816 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 817 flags); 818 /* 819 * The following mb guarantees that previous clear of a PENDING bit 820 * will not be reordered with any speculative LOADS or STORES from 821 * work->current_func, which is executed afterwards. This possible 822 * reordering can lead to a missed execution on attempt to queue 823 * the same @work. E.g. consider this case: 824 * 825 * CPU#0 CPU#1 826 * ---------------------------- -------------------------------- 827 * 828 * 1 STORE event_indicated 829 * 2 queue_work_on() { 830 * 3 test_and_set_bit(PENDING) 831 * 4 } set_..._and_clear_pending() { 832 * 5 set_work_data() # clear bit 833 * 6 smp_mb() 834 * 7 work->current_func() { 835 * 8 LOAD event_indicated 836 * } 837 * 838 * Without an explicit full barrier speculative LOAD on line 8 can 839 * be executed before CPU#0 does STORE on line 1. If that happens, 840 * CPU#0 observes the PENDING bit is still set and new execution of 841 * a @work is not queued in a hope, that CPU#1 will eventually 842 * finish the queued @work. Meanwhile CPU#1 does not see 843 * event_indicated is set, because speculative LOAD was executed 844 * before actual STORE. 845 */ 846 smp_mb(); 847 } 848 849 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 850 { 851 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK); 852 } 853 854 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 855 { 856 unsigned long data = atomic_long_read(&work->data); 857 858 if (data & WORK_STRUCT_PWQ) 859 return work_struct_pwq(data); 860 else 861 return NULL; 862 } 863 864 /** 865 * get_work_pool - return the worker_pool a given work was associated with 866 * @work: the work item of interest 867 * 868 * Pools are created and destroyed under wq_pool_mutex, and allows read 869 * access under RCU read lock. As such, this function should be 870 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 871 * 872 * All fields of the returned pool are accessible as long as the above 873 * mentioned locking is in effect. If the returned pool needs to be used 874 * beyond the critical section, the caller is responsible for ensuring the 875 * returned pool is and stays online. 876 * 877 * Return: The worker_pool @work was last associated with. %NULL if none. 878 */ 879 static struct worker_pool *get_work_pool(struct work_struct *work) 880 { 881 unsigned long data = atomic_long_read(&work->data); 882 int pool_id; 883 884 assert_rcu_or_pool_mutex(); 885 886 if (data & WORK_STRUCT_PWQ) 887 return work_struct_pwq(data)->pool; 888 889 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 890 if (pool_id == WORK_OFFQ_POOL_NONE) 891 return NULL; 892 893 return idr_find(&worker_pool_idr, pool_id); 894 } 895 896 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits) 897 { 898 return (v >> shift) & ((1 << bits) - 1); 899 } 900 901 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data) 902 { 903 WARN_ON_ONCE(data & WORK_STRUCT_PWQ); 904 905 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT, 906 WORK_OFFQ_POOL_BITS); 907 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT, 908 WORK_OFFQ_DISABLE_BITS); 909 offqd->flags = data & WORK_OFFQ_FLAG_MASK; 910 } 911 912 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd) 913 { 914 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) | 915 ((unsigned long)offqd->flags); 916 } 917 918 /* 919 * Policy functions. These define the policies on how the global worker 920 * pools are managed. Unless noted otherwise, these functions assume that 921 * they're being called with pool->lock held. 922 */ 923 924 /* 925 * Need to wake up a worker? Called from anything but currently 926 * running workers. 927 * 928 * Note that, because unbound workers never contribute to nr_running, this 929 * function will always return %true for unbound pools as long as the 930 * worklist isn't empty. 931 */ 932 static bool need_more_worker(struct worker_pool *pool) 933 { 934 return !list_empty(&pool->worklist) && !pool->nr_running; 935 } 936 937 /* Can I start working? Called from busy but !running workers. */ 938 static bool may_start_working(struct worker_pool *pool) 939 { 940 return pool->nr_idle; 941 } 942 943 /* Do I need to keep working? Called from currently running workers. */ 944 static bool keep_working(struct worker_pool *pool) 945 { 946 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 947 } 948 949 /* Do we need a new worker? Called from manager. */ 950 static bool need_to_create_worker(struct worker_pool *pool) 951 { 952 return need_more_worker(pool) && !may_start_working(pool); 953 } 954 955 /* Do we have too many workers and should some go away? */ 956 static bool too_many_workers(struct worker_pool *pool) 957 { 958 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 959 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 960 int nr_busy = pool->nr_workers - nr_idle; 961 962 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 963 } 964 965 /** 966 * worker_set_flags - set worker flags and adjust nr_running accordingly 967 * @worker: self 968 * @flags: flags to set 969 * 970 * Set @flags in @worker->flags and adjust nr_running accordingly. 971 */ 972 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 973 { 974 struct worker_pool *pool = worker->pool; 975 976 lockdep_assert_held(&pool->lock); 977 978 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 979 if ((flags & WORKER_NOT_RUNNING) && 980 !(worker->flags & WORKER_NOT_RUNNING)) { 981 pool->nr_running--; 982 } 983 984 worker->flags |= flags; 985 } 986 987 /** 988 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 989 * @worker: self 990 * @flags: flags to clear 991 * 992 * Clear @flags in @worker->flags and adjust nr_running accordingly. 993 */ 994 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 995 { 996 struct worker_pool *pool = worker->pool; 997 unsigned int oflags = worker->flags; 998 999 lockdep_assert_held(&pool->lock); 1000 1001 worker->flags &= ~flags; 1002 1003 /* 1004 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1005 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1006 * of multiple flags, not a single flag. 1007 */ 1008 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1009 if (!(worker->flags & WORKER_NOT_RUNNING)) 1010 pool->nr_running++; 1011 } 1012 1013 /* Return the first idle worker. Called with pool->lock held. */ 1014 static struct worker *first_idle_worker(struct worker_pool *pool) 1015 { 1016 if (unlikely(list_empty(&pool->idle_list))) 1017 return NULL; 1018 1019 return list_first_entry(&pool->idle_list, struct worker, entry); 1020 } 1021 1022 /** 1023 * worker_enter_idle - enter idle state 1024 * @worker: worker which is entering idle state 1025 * 1026 * @worker is entering idle state. Update stats and idle timer if 1027 * necessary. 1028 * 1029 * LOCKING: 1030 * raw_spin_lock_irq(pool->lock). 1031 */ 1032 static void worker_enter_idle(struct worker *worker) 1033 { 1034 struct worker_pool *pool = worker->pool; 1035 1036 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1037 WARN_ON_ONCE(!list_empty(&worker->entry) && 1038 (worker->hentry.next || worker->hentry.pprev))) 1039 return; 1040 1041 /* can't use worker_set_flags(), also called from create_worker() */ 1042 worker->flags |= WORKER_IDLE; 1043 pool->nr_idle++; 1044 worker->last_active = jiffies; 1045 1046 /* idle_list is LIFO */ 1047 list_add(&worker->entry, &pool->idle_list); 1048 1049 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1050 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1051 1052 /* Sanity check nr_running. */ 1053 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1054 } 1055 1056 /** 1057 * worker_leave_idle - leave idle state 1058 * @worker: worker which is leaving idle state 1059 * 1060 * @worker is leaving idle state. Update stats. 1061 * 1062 * LOCKING: 1063 * raw_spin_lock_irq(pool->lock). 1064 */ 1065 static void worker_leave_idle(struct worker *worker) 1066 { 1067 struct worker_pool *pool = worker->pool; 1068 1069 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1070 return; 1071 worker_clr_flags(worker, WORKER_IDLE); 1072 pool->nr_idle--; 1073 list_del_init(&worker->entry); 1074 } 1075 1076 /** 1077 * find_worker_executing_work - find worker which is executing a work 1078 * @pool: pool of interest 1079 * @work: work to find worker for 1080 * 1081 * Find a worker which is executing @work on @pool by searching 1082 * @pool->busy_hash which is keyed by the address of @work. For a worker 1083 * to match, its current execution should match the address of @work and 1084 * its work function. This is to avoid unwanted dependency between 1085 * unrelated work executions through a work item being recycled while still 1086 * being executed. 1087 * 1088 * This is a bit tricky. A work item may be freed once its execution 1089 * starts and nothing prevents the freed area from being recycled for 1090 * another work item. If the same work item address ends up being reused 1091 * before the original execution finishes, workqueue will identify the 1092 * recycled work item as currently executing and make it wait until the 1093 * current execution finishes, introducing an unwanted dependency. 1094 * 1095 * This function checks the work item address and work function to avoid 1096 * false positives. Note that this isn't complete as one may construct a 1097 * work function which can introduce dependency onto itself through a 1098 * recycled work item. Well, if somebody wants to shoot oneself in the 1099 * foot that badly, there's only so much we can do, and if such deadlock 1100 * actually occurs, it should be easy to locate the culprit work function. 1101 * 1102 * CONTEXT: 1103 * raw_spin_lock_irq(pool->lock). 1104 * 1105 * Return: 1106 * Pointer to worker which is executing @work if found, %NULL 1107 * otherwise. 1108 */ 1109 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1110 struct work_struct *work) 1111 { 1112 struct worker *worker; 1113 1114 hash_for_each_possible(pool->busy_hash, worker, hentry, 1115 (unsigned long)work) 1116 if (worker->current_work == work && 1117 worker->current_func == work->func) 1118 return worker; 1119 1120 return NULL; 1121 } 1122 1123 /** 1124 * move_linked_works - move linked works to a list 1125 * @work: start of series of works to be scheduled 1126 * @head: target list to append @work to 1127 * @nextp: out parameter for nested worklist walking 1128 * 1129 * Schedule linked works starting from @work to @head. Work series to be 1130 * scheduled starts at @work and includes any consecutive work with 1131 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1132 * @nextp. 1133 * 1134 * CONTEXT: 1135 * raw_spin_lock_irq(pool->lock). 1136 */ 1137 static void move_linked_works(struct work_struct *work, struct list_head *head, 1138 struct work_struct **nextp) 1139 { 1140 struct work_struct *n; 1141 1142 /* 1143 * Linked worklist will always end before the end of the list, 1144 * use NULL for list head. 1145 */ 1146 list_for_each_entry_safe_from(work, n, NULL, entry) { 1147 list_move_tail(&work->entry, head); 1148 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1149 break; 1150 } 1151 1152 /* 1153 * If we're already inside safe list traversal and have moved 1154 * multiple works to the scheduled queue, the next position 1155 * needs to be updated. 1156 */ 1157 if (nextp) 1158 *nextp = n; 1159 } 1160 1161 /** 1162 * assign_work - assign a work item and its linked work items to a worker 1163 * @work: work to assign 1164 * @worker: worker to assign to 1165 * @nextp: out parameter for nested worklist walking 1166 * 1167 * Assign @work and its linked work items to @worker. If @work is already being 1168 * executed by another worker in the same pool, it'll be punted there. 1169 * 1170 * If @nextp is not NULL, it's updated to point to the next work of the last 1171 * scheduled work. This allows assign_work() to be nested inside 1172 * list_for_each_entry_safe(). 1173 * 1174 * Returns %true if @work was successfully assigned to @worker. %false if @work 1175 * was punted to another worker already executing it. 1176 */ 1177 static bool assign_work(struct work_struct *work, struct worker *worker, 1178 struct work_struct **nextp) 1179 { 1180 struct worker_pool *pool = worker->pool; 1181 struct worker *collision; 1182 1183 lockdep_assert_held(&pool->lock); 1184 1185 /* 1186 * A single work shouldn't be executed concurrently by multiple workers. 1187 * __queue_work() ensures that @work doesn't jump to a different pool 1188 * while still running in the previous pool. Here, we should ensure that 1189 * @work is not executed concurrently by multiple workers from the same 1190 * pool. Check whether anyone is already processing the work. If so, 1191 * defer the work to the currently executing one. 1192 */ 1193 collision = find_worker_executing_work(pool, work); 1194 if (unlikely(collision)) { 1195 move_linked_works(work, &collision->scheduled, nextp); 1196 return false; 1197 } 1198 1199 move_linked_works(work, &worker->scheduled, nextp); 1200 return true; 1201 } 1202 1203 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool) 1204 { 1205 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0; 1206 1207 return &per_cpu(bh_pool_irq_works, pool->cpu)[high]; 1208 } 1209 1210 static void kick_bh_pool(struct worker_pool *pool) 1211 { 1212 #ifdef CONFIG_SMP 1213 /* see drain_dead_softirq_workfn() for BH_DRAINING */ 1214 if (unlikely(pool->cpu != smp_processor_id() && 1215 !(pool->flags & POOL_BH_DRAINING))) { 1216 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu); 1217 return; 1218 } 1219 #endif 1220 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 1221 raise_softirq_irqoff(HI_SOFTIRQ); 1222 else 1223 raise_softirq_irqoff(TASKLET_SOFTIRQ); 1224 } 1225 1226 /** 1227 * kick_pool - wake up an idle worker if necessary 1228 * @pool: pool to kick 1229 * 1230 * @pool may have pending work items. Wake up worker if necessary. Returns 1231 * whether a worker was woken up. 1232 */ 1233 static bool kick_pool(struct worker_pool *pool) 1234 { 1235 struct worker *worker = first_idle_worker(pool); 1236 struct task_struct *p; 1237 1238 lockdep_assert_held(&pool->lock); 1239 1240 if (!need_more_worker(pool) || !worker) 1241 return false; 1242 1243 if (pool->flags & POOL_BH) { 1244 kick_bh_pool(pool); 1245 return true; 1246 } 1247 1248 p = worker->task; 1249 1250 #ifdef CONFIG_SMP 1251 /* 1252 * Idle @worker is about to execute @work and waking up provides an 1253 * opportunity to migrate @worker at a lower cost by setting the task's 1254 * wake_cpu field. Let's see if we want to move @worker to improve 1255 * execution locality. 1256 * 1257 * We're waking the worker that went idle the latest and there's some 1258 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1259 * so, setting the wake_cpu won't do anything. As this is a best-effort 1260 * optimization and the race window is narrow, let's leave as-is for 1261 * now. If this becomes pronounced, we can skip over workers which are 1262 * still on cpu when picking an idle worker. 1263 * 1264 * If @pool has non-strict affinity, @worker might have ended up outside 1265 * its affinity scope. Repatriate. 1266 */ 1267 if (!pool->attrs->affn_strict && 1268 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1269 struct work_struct *work = list_first_entry(&pool->worklist, 1270 struct work_struct, entry); 1271 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask, 1272 cpu_online_mask); 1273 if (wake_cpu < nr_cpu_ids) { 1274 p->wake_cpu = wake_cpu; 1275 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1276 } 1277 } 1278 #endif 1279 wake_up_process(p); 1280 return true; 1281 } 1282 1283 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1284 1285 /* 1286 * Concurrency-managed per-cpu work items that hog CPU for longer than 1287 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1288 * which prevents them from stalling other concurrency-managed work items. If a 1289 * work function keeps triggering this mechanism, it's likely that the work item 1290 * should be using an unbound workqueue instead. 1291 * 1292 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1293 * and report them so that they can be examined and converted to use unbound 1294 * workqueues as appropriate. To avoid flooding the console, each violating work 1295 * function is tracked and reported with exponential backoff. 1296 */ 1297 #define WCI_MAX_ENTS 128 1298 1299 struct wci_ent { 1300 work_func_t func; 1301 atomic64_t cnt; 1302 struct hlist_node hash_node; 1303 }; 1304 1305 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1306 static int wci_nr_ents; 1307 static DEFINE_RAW_SPINLOCK(wci_lock); 1308 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1309 1310 static struct wci_ent *wci_find_ent(work_func_t func) 1311 { 1312 struct wci_ent *ent; 1313 1314 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1315 (unsigned long)func) { 1316 if (ent->func == func) 1317 return ent; 1318 } 1319 return NULL; 1320 } 1321 1322 static void wq_cpu_intensive_report(work_func_t func) 1323 { 1324 struct wci_ent *ent; 1325 1326 restart: 1327 ent = wci_find_ent(func); 1328 if (ent) { 1329 u64 cnt; 1330 1331 /* 1332 * Start reporting from the warning_thresh and back off 1333 * exponentially. 1334 */ 1335 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1336 if (wq_cpu_intensive_warning_thresh && 1337 cnt >= wq_cpu_intensive_warning_thresh && 1338 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh)) 1339 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1340 ent->func, wq_cpu_intensive_thresh_us, 1341 atomic64_read(&ent->cnt)); 1342 return; 1343 } 1344 1345 /* 1346 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1347 * is exhausted, something went really wrong and we probably made enough 1348 * noise already. 1349 */ 1350 if (wci_nr_ents >= WCI_MAX_ENTS) 1351 return; 1352 1353 raw_spin_lock(&wci_lock); 1354 1355 if (wci_nr_ents >= WCI_MAX_ENTS) { 1356 raw_spin_unlock(&wci_lock); 1357 return; 1358 } 1359 1360 if (wci_find_ent(func)) { 1361 raw_spin_unlock(&wci_lock); 1362 goto restart; 1363 } 1364 1365 ent = &wci_ents[wci_nr_ents++]; 1366 ent->func = func; 1367 atomic64_set(&ent->cnt, 0); 1368 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1369 1370 raw_spin_unlock(&wci_lock); 1371 1372 goto restart; 1373 } 1374 1375 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1376 static void wq_cpu_intensive_report(work_func_t func) {} 1377 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1378 1379 /** 1380 * wq_worker_running - a worker is running again 1381 * @task: task waking up 1382 * 1383 * This function is called when a worker returns from schedule() 1384 */ 1385 void wq_worker_running(struct task_struct *task) 1386 { 1387 struct worker *worker = kthread_data(task); 1388 1389 if (!READ_ONCE(worker->sleeping)) 1390 return; 1391 1392 /* 1393 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1394 * and the nr_running increment below, we may ruin the nr_running reset 1395 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1396 * pool. Protect against such race. 1397 */ 1398 preempt_disable(); 1399 if (!(worker->flags & WORKER_NOT_RUNNING)) 1400 worker->pool->nr_running++; 1401 preempt_enable(); 1402 1403 /* 1404 * CPU intensive auto-detection cares about how long a work item hogged 1405 * CPU without sleeping. Reset the starting timestamp on wakeup. 1406 */ 1407 worker->current_at = worker->task->se.sum_exec_runtime; 1408 1409 WRITE_ONCE(worker->sleeping, 0); 1410 } 1411 1412 /** 1413 * wq_worker_sleeping - a worker is going to sleep 1414 * @task: task going to sleep 1415 * 1416 * This function is called from schedule() when a busy worker is 1417 * going to sleep. 1418 */ 1419 void wq_worker_sleeping(struct task_struct *task) 1420 { 1421 struct worker *worker = kthread_data(task); 1422 struct worker_pool *pool; 1423 1424 /* 1425 * Rescuers, which may not have all the fields set up like normal 1426 * workers, also reach here, let's not access anything before 1427 * checking NOT_RUNNING. 1428 */ 1429 if (worker->flags & WORKER_NOT_RUNNING) 1430 return; 1431 1432 pool = worker->pool; 1433 1434 /* Return if preempted before wq_worker_running() was reached */ 1435 if (READ_ONCE(worker->sleeping)) 1436 return; 1437 1438 WRITE_ONCE(worker->sleeping, 1); 1439 raw_spin_lock_irq(&pool->lock); 1440 1441 /* 1442 * Recheck in case unbind_workers() preempted us. We don't 1443 * want to decrement nr_running after the worker is unbound 1444 * and nr_running has been reset. 1445 */ 1446 if (worker->flags & WORKER_NOT_RUNNING) { 1447 raw_spin_unlock_irq(&pool->lock); 1448 return; 1449 } 1450 1451 pool->nr_running--; 1452 if (kick_pool(pool)) 1453 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1454 1455 raw_spin_unlock_irq(&pool->lock); 1456 } 1457 1458 /** 1459 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1460 * @task: task currently running 1461 * 1462 * Called from sched_tick(). We're in the IRQ context and the current 1463 * worker's fields which follow the 'K' locking rule can be accessed safely. 1464 */ 1465 void wq_worker_tick(struct task_struct *task) 1466 { 1467 struct worker *worker = kthread_data(task); 1468 struct pool_workqueue *pwq = worker->current_pwq; 1469 struct worker_pool *pool = worker->pool; 1470 1471 if (!pwq) 1472 return; 1473 1474 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1475 1476 if (!wq_cpu_intensive_thresh_us) 1477 return; 1478 1479 /* 1480 * If the current worker is concurrency managed and hogged the CPU for 1481 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1482 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1483 * 1484 * Set @worker->sleeping means that @worker is in the process of 1485 * switching out voluntarily and won't be contributing to 1486 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1487 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1488 * double decrements. The task is releasing the CPU anyway. Let's skip. 1489 * We probably want to make this prettier in the future. 1490 */ 1491 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1492 worker->task->se.sum_exec_runtime - worker->current_at < 1493 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1494 return; 1495 1496 raw_spin_lock(&pool->lock); 1497 1498 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1499 wq_cpu_intensive_report(worker->current_func); 1500 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1501 1502 if (kick_pool(pool)) 1503 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1504 1505 raw_spin_unlock(&pool->lock); 1506 } 1507 1508 /** 1509 * wq_worker_last_func - retrieve worker's last work function 1510 * @task: Task to retrieve last work function of. 1511 * 1512 * Determine the last function a worker executed. This is called from 1513 * the scheduler to get a worker's last known identity. 1514 * 1515 * CONTEXT: 1516 * raw_spin_lock_irq(rq->lock) 1517 * 1518 * This function is called during schedule() when a kworker is going 1519 * to sleep. It's used by psi to identify aggregation workers during 1520 * dequeuing, to allow periodic aggregation to shut-off when that 1521 * worker is the last task in the system or cgroup to go to sleep. 1522 * 1523 * As this function doesn't involve any workqueue-related locking, it 1524 * only returns stable values when called from inside the scheduler's 1525 * queuing and dequeuing paths, when @task, which must be a kworker, 1526 * is guaranteed to not be processing any works. 1527 * 1528 * Return: 1529 * The last work function %current executed as a worker, NULL if it 1530 * hasn't executed any work yet. 1531 */ 1532 work_func_t wq_worker_last_func(struct task_struct *task) 1533 { 1534 struct worker *worker = kthread_data(task); 1535 1536 return worker->last_func; 1537 } 1538 1539 /** 1540 * wq_node_nr_active - Determine wq_node_nr_active to use 1541 * @wq: workqueue of interest 1542 * @node: NUMA node, can be %NUMA_NO_NODE 1543 * 1544 * Determine wq_node_nr_active to use for @wq on @node. Returns: 1545 * 1546 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. 1547 * 1548 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. 1549 * 1550 * - Otherwise, node_nr_active[@node]. 1551 */ 1552 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, 1553 int node) 1554 { 1555 if (!(wq->flags & WQ_UNBOUND)) 1556 return NULL; 1557 1558 if (node == NUMA_NO_NODE) 1559 node = nr_node_ids; 1560 1561 return wq->node_nr_active[node]; 1562 } 1563 1564 /** 1565 * wq_update_node_max_active - Update per-node max_actives to use 1566 * @wq: workqueue to update 1567 * @off_cpu: CPU that's going down, -1 if a CPU is not going down 1568 * 1569 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is 1570 * distributed among nodes according to the proportions of numbers of online 1571 * cpus. The result is always between @wq->min_active and max_active. 1572 */ 1573 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) 1574 { 1575 struct cpumask *effective = unbound_effective_cpumask(wq); 1576 int min_active = READ_ONCE(wq->min_active); 1577 int max_active = READ_ONCE(wq->max_active); 1578 int total_cpus, node; 1579 1580 lockdep_assert_held(&wq->mutex); 1581 1582 if (!wq_topo_initialized) 1583 return; 1584 1585 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective)) 1586 off_cpu = -1; 1587 1588 total_cpus = cpumask_weight_and(effective, cpu_online_mask); 1589 if (off_cpu >= 0) 1590 total_cpus--; 1591 1592 /* If all CPUs of the wq get offline, use the default values */ 1593 if (unlikely(!total_cpus)) { 1594 for_each_node(node) 1595 wq_node_nr_active(wq, node)->max = min_active; 1596 1597 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1598 return; 1599 } 1600 1601 for_each_node(node) { 1602 int node_cpus; 1603 1604 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node)); 1605 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node) 1606 node_cpus--; 1607 1608 wq_node_nr_active(wq, node)->max = 1609 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), 1610 min_active, max_active); 1611 } 1612 1613 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1614 } 1615 1616 /** 1617 * get_pwq - get an extra reference on the specified pool_workqueue 1618 * @pwq: pool_workqueue to get 1619 * 1620 * Obtain an extra reference on @pwq. The caller should guarantee that 1621 * @pwq has positive refcnt and be holding the matching pool->lock. 1622 */ 1623 static void get_pwq(struct pool_workqueue *pwq) 1624 { 1625 lockdep_assert_held(&pwq->pool->lock); 1626 WARN_ON_ONCE(pwq->refcnt <= 0); 1627 pwq->refcnt++; 1628 } 1629 1630 /** 1631 * put_pwq - put a pool_workqueue reference 1632 * @pwq: pool_workqueue to put 1633 * 1634 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1635 * destruction. The caller should be holding the matching pool->lock. 1636 */ 1637 static void put_pwq(struct pool_workqueue *pwq) 1638 { 1639 lockdep_assert_held(&pwq->pool->lock); 1640 if (likely(--pwq->refcnt)) 1641 return; 1642 /* 1643 * @pwq can't be released under pool->lock, bounce to a dedicated 1644 * kthread_worker to avoid A-A deadlocks. 1645 */ 1646 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1647 } 1648 1649 /** 1650 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1651 * @pwq: pool_workqueue to put (can be %NULL) 1652 * 1653 * put_pwq() with locking. This function also allows %NULL @pwq. 1654 */ 1655 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1656 { 1657 if (pwq) { 1658 /* 1659 * As both pwqs and pools are RCU protected, the 1660 * following lock operations are safe. 1661 */ 1662 raw_spin_lock_irq(&pwq->pool->lock); 1663 put_pwq(pwq); 1664 raw_spin_unlock_irq(&pwq->pool->lock); 1665 } 1666 } 1667 1668 static bool pwq_is_empty(struct pool_workqueue *pwq) 1669 { 1670 return !pwq->nr_active && list_empty(&pwq->inactive_works); 1671 } 1672 1673 static void __pwq_activate_work(struct pool_workqueue *pwq, 1674 struct work_struct *work) 1675 { 1676 unsigned long *wdb = work_data_bits(work); 1677 1678 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); 1679 trace_workqueue_activate_work(work); 1680 if (list_empty(&pwq->pool->worklist)) 1681 pwq->pool->watchdog_ts = jiffies; 1682 move_linked_works(work, &pwq->pool->worklist, NULL); 1683 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); 1684 } 1685 1686 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) 1687 { 1688 int max = READ_ONCE(nna->max); 1689 1690 while (true) { 1691 int old, tmp; 1692 1693 old = atomic_read(&nna->nr); 1694 if (old >= max) 1695 return false; 1696 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1); 1697 if (tmp == old) 1698 return true; 1699 } 1700 } 1701 1702 /** 1703 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq 1704 * @pwq: pool_workqueue of interest 1705 * @fill: max_active may have increased, try to increase concurrency level 1706 * 1707 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is 1708 * successfully obtained. %false otherwise. 1709 */ 1710 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) 1711 { 1712 struct workqueue_struct *wq = pwq->wq; 1713 struct worker_pool *pool = pwq->pool; 1714 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node); 1715 bool obtained = false; 1716 1717 lockdep_assert_held(&pool->lock); 1718 1719 if (!nna) { 1720 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */ 1721 obtained = pwq->nr_active < READ_ONCE(wq->max_active); 1722 goto out; 1723 } 1724 1725 if (unlikely(pwq->plugged)) 1726 return false; 1727 1728 /* 1729 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is 1730 * already waiting on $nna, pwq_dec_nr_active() will maintain the 1731 * concurrency level. Don't jump the line. 1732 * 1733 * We need to ignore the pending test after max_active has increased as 1734 * pwq_dec_nr_active() can only maintain the concurrency level but not 1735 * increase it. This is indicated by @fill. 1736 */ 1737 if (!list_empty(&pwq->pending_node) && likely(!fill)) 1738 goto out; 1739 1740 obtained = tryinc_node_nr_active(nna); 1741 if (obtained) 1742 goto out; 1743 1744 /* 1745 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs 1746 * and try again. The smp_mb() is paired with the implied memory barrier 1747 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either 1748 * we see the decremented $nna->nr or they see non-empty 1749 * $nna->pending_pwqs. 1750 */ 1751 raw_spin_lock(&nna->lock); 1752 1753 if (list_empty(&pwq->pending_node)) 1754 list_add_tail(&pwq->pending_node, &nna->pending_pwqs); 1755 else if (likely(!fill)) 1756 goto out_unlock; 1757 1758 smp_mb(); 1759 1760 obtained = tryinc_node_nr_active(nna); 1761 1762 /* 1763 * If @fill, @pwq might have already been pending. Being spuriously 1764 * pending in cold paths doesn't affect anything. Let's leave it be. 1765 */ 1766 if (obtained && likely(!fill)) 1767 list_del_init(&pwq->pending_node); 1768 1769 out_unlock: 1770 raw_spin_unlock(&nna->lock); 1771 out: 1772 if (obtained) 1773 pwq->nr_active++; 1774 return obtained; 1775 } 1776 1777 /** 1778 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq 1779 * @pwq: pool_workqueue of interest 1780 * @fill: max_active may have increased, try to increase concurrency level 1781 * 1782 * Activate the first inactive work item of @pwq if available and allowed by 1783 * max_active limit. 1784 * 1785 * Returns %true if an inactive work item has been activated. %false if no 1786 * inactive work item is found or max_active limit is reached. 1787 */ 1788 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) 1789 { 1790 struct work_struct *work = 1791 list_first_entry_or_null(&pwq->inactive_works, 1792 struct work_struct, entry); 1793 1794 if (work && pwq_tryinc_nr_active(pwq, fill)) { 1795 __pwq_activate_work(pwq, work); 1796 return true; 1797 } else { 1798 return false; 1799 } 1800 } 1801 1802 /** 1803 * unplug_oldest_pwq - unplug the oldest pool_workqueue 1804 * @wq: workqueue_struct where its oldest pwq is to be unplugged 1805 * 1806 * This function should only be called for ordered workqueues where only the 1807 * oldest pwq is unplugged, the others are plugged to suspend execution to 1808 * ensure proper work item ordering:: 1809 * 1810 * dfl_pwq --------------+ [P] - plugged 1811 * | 1812 * v 1813 * pwqs -> A -> B [P] -> C [P] (newest) 1814 * | | | 1815 * 1 3 5 1816 * | | | 1817 * 2 4 6 1818 * 1819 * When the oldest pwq is drained and removed, this function should be called 1820 * to unplug the next oldest one to start its work item execution. Note that 1821 * pwq's are linked into wq->pwqs with the oldest first, so the first one in 1822 * the list is the oldest. 1823 */ 1824 static void unplug_oldest_pwq(struct workqueue_struct *wq) 1825 { 1826 struct pool_workqueue *pwq; 1827 1828 lockdep_assert_held(&wq->mutex); 1829 1830 /* Caller should make sure that pwqs isn't empty before calling */ 1831 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue, 1832 pwqs_node); 1833 raw_spin_lock_irq(&pwq->pool->lock); 1834 if (pwq->plugged) { 1835 pwq->plugged = false; 1836 if (pwq_activate_first_inactive(pwq, true)) 1837 kick_pool(pwq->pool); 1838 } 1839 raw_spin_unlock_irq(&pwq->pool->lock); 1840 } 1841 1842 /** 1843 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active 1844 * @nna: wq_node_nr_active to activate a pending pwq for 1845 * @caller_pool: worker_pool the caller is locking 1846 * 1847 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. 1848 * @caller_pool may be unlocked and relocked to lock other worker_pools. 1849 */ 1850 static void node_activate_pending_pwq(struct wq_node_nr_active *nna, 1851 struct worker_pool *caller_pool) 1852 { 1853 struct worker_pool *locked_pool = caller_pool; 1854 struct pool_workqueue *pwq; 1855 struct work_struct *work; 1856 1857 lockdep_assert_held(&caller_pool->lock); 1858 1859 raw_spin_lock(&nna->lock); 1860 retry: 1861 pwq = list_first_entry_or_null(&nna->pending_pwqs, 1862 struct pool_workqueue, pending_node); 1863 if (!pwq) 1864 goto out_unlock; 1865 1866 /* 1867 * If @pwq is for a different pool than @locked_pool, we need to lock 1868 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock 1869 * / lock dance. For that, we also need to release @nna->lock as it's 1870 * nested inside pool locks. 1871 */ 1872 if (pwq->pool != locked_pool) { 1873 raw_spin_unlock(&locked_pool->lock); 1874 locked_pool = pwq->pool; 1875 if (!raw_spin_trylock(&locked_pool->lock)) { 1876 raw_spin_unlock(&nna->lock); 1877 raw_spin_lock(&locked_pool->lock); 1878 raw_spin_lock(&nna->lock); 1879 goto retry; 1880 } 1881 } 1882 1883 /* 1884 * $pwq may not have any inactive work items due to e.g. cancellations. 1885 * Drop it from pending_pwqs and see if there's another one. 1886 */ 1887 work = list_first_entry_or_null(&pwq->inactive_works, 1888 struct work_struct, entry); 1889 if (!work) { 1890 list_del_init(&pwq->pending_node); 1891 goto retry; 1892 } 1893 1894 /* 1895 * Acquire an nr_active count and activate the inactive work item. If 1896 * $pwq still has inactive work items, rotate it to the end of the 1897 * pending_pwqs so that we round-robin through them. This means that 1898 * inactive work items are not activated in queueing order which is fine 1899 * given that there has never been any ordering across different pwqs. 1900 */ 1901 if (likely(tryinc_node_nr_active(nna))) { 1902 pwq->nr_active++; 1903 __pwq_activate_work(pwq, work); 1904 1905 if (list_empty(&pwq->inactive_works)) 1906 list_del_init(&pwq->pending_node); 1907 else 1908 list_move_tail(&pwq->pending_node, &nna->pending_pwqs); 1909 1910 /* if activating a foreign pool, make sure it's running */ 1911 if (pwq->pool != caller_pool) 1912 kick_pool(pwq->pool); 1913 } 1914 1915 out_unlock: 1916 raw_spin_unlock(&nna->lock); 1917 if (locked_pool != caller_pool) { 1918 raw_spin_unlock(&locked_pool->lock); 1919 raw_spin_lock(&caller_pool->lock); 1920 } 1921 } 1922 1923 /** 1924 * pwq_dec_nr_active - Retire an active count 1925 * @pwq: pool_workqueue of interest 1926 * 1927 * Decrement @pwq's nr_active and try to activate the first inactive work item. 1928 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. 1929 */ 1930 static void pwq_dec_nr_active(struct pool_workqueue *pwq) 1931 { 1932 struct worker_pool *pool = pwq->pool; 1933 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node); 1934 1935 lockdep_assert_held(&pool->lock); 1936 1937 /* 1938 * @pwq->nr_active should be decremented for both percpu and unbound 1939 * workqueues. 1940 */ 1941 pwq->nr_active--; 1942 1943 /* 1944 * For a percpu workqueue, it's simple. Just need to kick the first 1945 * inactive work item on @pwq itself. 1946 */ 1947 if (!nna) { 1948 pwq_activate_first_inactive(pwq, false); 1949 return; 1950 } 1951 1952 /* 1953 * If @pwq is for an unbound workqueue, it's more complicated because 1954 * multiple pwqs and pools may be sharing the nr_active count. When a 1955 * pwq needs to wait for an nr_active count, it puts itself on 1956 * $nna->pending_pwqs. The following atomic_dec_return()'s implied 1957 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to 1958 * guarantee that either we see non-empty pending_pwqs or they see 1959 * decremented $nna->nr. 1960 * 1961 * $nna->max may change as CPUs come online/offline and @pwq->wq's 1962 * max_active gets updated. However, it is guaranteed to be equal to or 1963 * larger than @pwq->wq->min_active which is above zero unless freezing. 1964 * This maintains the forward progress guarantee. 1965 */ 1966 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max)) 1967 return; 1968 1969 if (!list_empty(&nna->pending_pwqs)) 1970 node_activate_pending_pwq(nna, pool); 1971 } 1972 1973 /** 1974 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1975 * @pwq: pwq of interest 1976 * @work_data: work_data of work which left the queue 1977 * 1978 * A work either has completed or is removed from pending queue, 1979 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1980 * 1981 * NOTE: 1982 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock 1983 * and thus should be called after all other state updates for the in-flight 1984 * work item is complete. 1985 * 1986 * CONTEXT: 1987 * raw_spin_lock_irq(pool->lock). 1988 */ 1989 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1990 { 1991 int color = get_work_color(work_data); 1992 1993 if (!(work_data & WORK_STRUCT_INACTIVE)) 1994 pwq_dec_nr_active(pwq); 1995 1996 pwq->nr_in_flight[color]--; 1997 1998 /* is flush in progress and are we at the flushing tip? */ 1999 if (likely(pwq->flush_color != color)) 2000 goto out_put; 2001 2002 /* are there still in-flight works? */ 2003 if (pwq->nr_in_flight[color]) 2004 goto out_put; 2005 2006 /* this pwq is done, clear flush_color */ 2007 pwq->flush_color = -1; 2008 2009 /* 2010 * If this was the last pwq, wake up the first flusher. It 2011 * will handle the rest. 2012 */ 2013 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 2014 complete(&pwq->wq->first_flusher->done); 2015 out_put: 2016 put_pwq(pwq); 2017 } 2018 2019 /** 2020 * try_to_grab_pending - steal work item from worklist and disable irq 2021 * @work: work item to steal 2022 * @cflags: %WORK_CANCEL_ flags 2023 * @irq_flags: place to store irq state 2024 * 2025 * Try to grab PENDING bit of @work. This function can handle @work in any 2026 * stable state - idle, on timer or on worklist. 2027 * 2028 * Return: 2029 * 2030 * ======== ================================================================ 2031 * 1 if @work was pending and we successfully stole PENDING 2032 * 0 if @work was idle and we claimed PENDING 2033 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 2034 * ======== ================================================================ 2035 * 2036 * Note: 2037 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 2038 * interrupted while holding PENDING and @work off queue, irq must be 2039 * disabled on entry. This, combined with delayed_work->timer being 2040 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 2041 * 2042 * On successful return, >= 0, irq is disabled and the caller is 2043 * responsible for releasing it using local_irq_restore(*@irq_flags). 2044 * 2045 * This function is safe to call from any context including IRQ handler. 2046 */ 2047 static int try_to_grab_pending(struct work_struct *work, u32 cflags, 2048 unsigned long *irq_flags) 2049 { 2050 struct worker_pool *pool; 2051 struct pool_workqueue *pwq; 2052 2053 local_irq_save(*irq_flags); 2054 2055 /* try to steal the timer if it exists */ 2056 if (cflags & WORK_CANCEL_DELAYED) { 2057 struct delayed_work *dwork = to_delayed_work(work); 2058 2059 /* 2060 * dwork->timer is irqsafe. If del_timer() fails, it's 2061 * guaranteed that the timer is not queued anywhere and not 2062 * running on the local CPU. 2063 */ 2064 if (likely(del_timer(&dwork->timer))) 2065 return 1; 2066 } 2067 2068 /* try to claim PENDING the normal way */ 2069 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2070 return 0; 2071 2072 rcu_read_lock(); 2073 /* 2074 * The queueing is in progress, or it is already queued. Try to 2075 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2076 */ 2077 pool = get_work_pool(work); 2078 if (!pool) 2079 goto fail; 2080 2081 raw_spin_lock(&pool->lock); 2082 /* 2083 * work->data is guaranteed to point to pwq only while the work 2084 * item is queued on pwq->wq, and both updating work->data to point 2085 * to pwq on queueing and to pool on dequeueing are done under 2086 * pwq->pool->lock. This in turn guarantees that, if work->data 2087 * points to pwq which is associated with a locked pool, the work 2088 * item is currently queued on that pool. 2089 */ 2090 pwq = get_work_pwq(work); 2091 if (pwq && pwq->pool == pool) { 2092 unsigned long work_data = *work_data_bits(work); 2093 2094 debug_work_deactivate(work); 2095 2096 /* 2097 * A cancelable inactive work item must be in the 2098 * pwq->inactive_works since a queued barrier can't be 2099 * canceled (see the comments in insert_wq_barrier()). 2100 * 2101 * An inactive work item cannot be deleted directly because 2102 * it might have linked barrier work items which, if left 2103 * on the inactive_works list, will confuse pwq->nr_active 2104 * management later on and cause stall. Move the linked 2105 * barrier work items to the worklist when deleting the grabbed 2106 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that 2107 * it doesn't participate in nr_active management in later 2108 * pwq_dec_nr_in_flight(). 2109 */ 2110 if (work_data & WORK_STRUCT_INACTIVE) 2111 move_linked_works(work, &pwq->pool->worklist, NULL); 2112 2113 list_del_init(&work->entry); 2114 2115 /* 2116 * work->data points to pwq iff queued. Let's point to pool. As 2117 * this destroys work->data needed by the next step, stash it. 2118 */ 2119 set_work_pool_and_keep_pending(work, pool->id, 2120 pool_offq_flags(pool)); 2121 2122 /* must be the last step, see the function comment */ 2123 pwq_dec_nr_in_flight(pwq, work_data); 2124 2125 raw_spin_unlock(&pool->lock); 2126 rcu_read_unlock(); 2127 return 1; 2128 } 2129 raw_spin_unlock(&pool->lock); 2130 fail: 2131 rcu_read_unlock(); 2132 local_irq_restore(*irq_flags); 2133 return -EAGAIN; 2134 } 2135 2136 /** 2137 * work_grab_pending - steal work item from worklist and disable irq 2138 * @work: work item to steal 2139 * @cflags: %WORK_CANCEL_ flags 2140 * @irq_flags: place to store IRQ state 2141 * 2142 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer 2143 * or on worklist. 2144 * 2145 * Can be called from any context. IRQ is disabled on return with IRQ state 2146 * stored in *@irq_flags. The caller is responsible for re-enabling it using 2147 * local_irq_restore(). 2148 * 2149 * Returns %true if @work was pending. %false if idle. 2150 */ 2151 static bool work_grab_pending(struct work_struct *work, u32 cflags, 2152 unsigned long *irq_flags) 2153 { 2154 int ret; 2155 2156 while (true) { 2157 ret = try_to_grab_pending(work, cflags, irq_flags); 2158 if (ret >= 0) 2159 return ret; 2160 cpu_relax(); 2161 } 2162 } 2163 2164 /** 2165 * insert_work - insert a work into a pool 2166 * @pwq: pwq @work belongs to 2167 * @work: work to insert 2168 * @head: insertion point 2169 * @extra_flags: extra WORK_STRUCT_* flags to set 2170 * 2171 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 2172 * work_struct flags. 2173 * 2174 * CONTEXT: 2175 * raw_spin_lock_irq(pool->lock). 2176 */ 2177 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 2178 struct list_head *head, unsigned int extra_flags) 2179 { 2180 debug_work_activate(work); 2181 2182 /* record the work call stack in order to print it in KASAN reports */ 2183 kasan_record_aux_stack_noalloc(work); 2184 2185 /* we own @work, set data and link */ 2186 set_work_pwq(work, pwq, extra_flags); 2187 list_add_tail(&work->entry, head); 2188 get_pwq(pwq); 2189 } 2190 2191 /* 2192 * Test whether @work is being queued from another work executing on the 2193 * same workqueue. 2194 */ 2195 static bool is_chained_work(struct workqueue_struct *wq) 2196 { 2197 struct worker *worker; 2198 2199 worker = current_wq_worker(); 2200 /* 2201 * Return %true iff I'm a worker executing a work item on @wq. If 2202 * I'm @worker, it's safe to dereference it without locking. 2203 */ 2204 return worker && worker->current_pwq->wq == wq; 2205 } 2206 2207 /* 2208 * When queueing an unbound work item to a wq, prefer local CPU if allowed 2209 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 2210 * avoid perturbing sensitive tasks. 2211 */ 2212 static int wq_select_unbound_cpu(int cpu) 2213 { 2214 int new_cpu; 2215 2216 if (likely(!wq_debug_force_rr_cpu)) { 2217 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 2218 return cpu; 2219 } else { 2220 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 2221 } 2222 2223 new_cpu = __this_cpu_read(wq_rr_cpu_last); 2224 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 2225 if (unlikely(new_cpu >= nr_cpu_ids)) { 2226 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 2227 if (unlikely(new_cpu >= nr_cpu_ids)) 2228 return cpu; 2229 } 2230 __this_cpu_write(wq_rr_cpu_last, new_cpu); 2231 2232 return new_cpu; 2233 } 2234 2235 static void __queue_work(int cpu, struct workqueue_struct *wq, 2236 struct work_struct *work) 2237 { 2238 struct pool_workqueue *pwq; 2239 struct worker_pool *last_pool, *pool; 2240 unsigned int work_flags; 2241 unsigned int req_cpu = cpu; 2242 2243 /* 2244 * While a work item is PENDING && off queue, a task trying to 2245 * steal the PENDING will busy-loop waiting for it to either get 2246 * queued or lose PENDING. Grabbing PENDING and queueing should 2247 * happen with IRQ disabled. 2248 */ 2249 lockdep_assert_irqs_disabled(); 2250 2251 /* 2252 * For a draining wq, only works from the same workqueue are 2253 * allowed. The __WQ_DESTROYING helps to spot the issue that 2254 * queues a new work item to a wq after destroy_workqueue(wq). 2255 */ 2256 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 2257 WARN_ON_ONCE(!is_chained_work(wq)))) 2258 return; 2259 rcu_read_lock(); 2260 retry: 2261 /* pwq which will be used unless @work is executing elsewhere */ 2262 if (req_cpu == WORK_CPU_UNBOUND) { 2263 if (wq->flags & WQ_UNBOUND) 2264 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 2265 else 2266 cpu = raw_smp_processor_id(); 2267 } 2268 2269 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 2270 pool = pwq->pool; 2271 2272 /* 2273 * If @work was previously on a different pool, it might still be 2274 * running there, in which case the work needs to be queued on that 2275 * pool to guarantee non-reentrancy. 2276 * 2277 * For ordered workqueue, work items must be queued on the newest pwq 2278 * for accurate order management. Guaranteed order also guarantees 2279 * non-reentrancy. See the comments above unplug_oldest_pwq(). 2280 */ 2281 last_pool = get_work_pool(work); 2282 if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) { 2283 struct worker *worker; 2284 2285 raw_spin_lock(&last_pool->lock); 2286 2287 worker = find_worker_executing_work(last_pool, work); 2288 2289 if (worker && worker->current_pwq->wq == wq) { 2290 pwq = worker->current_pwq; 2291 pool = pwq->pool; 2292 WARN_ON_ONCE(pool != last_pool); 2293 } else { 2294 /* meh... not running there, queue here */ 2295 raw_spin_unlock(&last_pool->lock); 2296 raw_spin_lock(&pool->lock); 2297 } 2298 } else { 2299 raw_spin_lock(&pool->lock); 2300 } 2301 2302 /* 2303 * pwq is determined and locked. For unbound pools, we could have raced 2304 * with pwq release and it could already be dead. If its refcnt is zero, 2305 * repeat pwq selection. Note that unbound pwqs never die without 2306 * another pwq replacing it in cpu_pwq or while work items are executing 2307 * on it, so the retrying is guaranteed to make forward-progress. 2308 */ 2309 if (unlikely(!pwq->refcnt)) { 2310 if (wq->flags & WQ_UNBOUND) { 2311 raw_spin_unlock(&pool->lock); 2312 cpu_relax(); 2313 goto retry; 2314 } 2315 /* oops */ 2316 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 2317 wq->name, cpu); 2318 } 2319 2320 /* pwq determined, queue */ 2321 trace_workqueue_queue_work(req_cpu, pwq, work); 2322 2323 if (WARN_ON(!list_empty(&work->entry))) 2324 goto out; 2325 2326 pwq->nr_in_flight[pwq->work_color]++; 2327 work_flags = work_color_to_flags(pwq->work_color); 2328 2329 /* 2330 * Limit the number of concurrently active work items to max_active. 2331 * @work must also queue behind existing inactive work items to maintain 2332 * ordering when max_active changes. See wq_adjust_max_active(). 2333 */ 2334 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) { 2335 if (list_empty(&pool->worklist)) 2336 pool->watchdog_ts = jiffies; 2337 2338 trace_workqueue_activate_work(work); 2339 insert_work(pwq, work, &pool->worklist, work_flags); 2340 kick_pool(pool); 2341 } else { 2342 work_flags |= WORK_STRUCT_INACTIVE; 2343 insert_work(pwq, work, &pwq->inactive_works, work_flags); 2344 } 2345 2346 out: 2347 raw_spin_unlock(&pool->lock); 2348 rcu_read_unlock(); 2349 } 2350 2351 static bool clear_pending_if_disabled(struct work_struct *work) 2352 { 2353 unsigned long data = *work_data_bits(work); 2354 struct work_offq_data offqd; 2355 2356 if (likely((data & WORK_STRUCT_PWQ) || 2357 !(data & WORK_OFFQ_DISABLE_MASK))) 2358 return false; 2359 2360 work_offqd_unpack(&offqd, data); 2361 set_work_pool_and_clear_pending(work, offqd.pool_id, 2362 work_offqd_pack_flags(&offqd)); 2363 return true; 2364 } 2365 2366 /** 2367 * queue_work_on - queue work on specific cpu 2368 * @cpu: CPU number to execute work on 2369 * @wq: workqueue to use 2370 * @work: work to queue 2371 * 2372 * We queue the work to a specific CPU, the caller must ensure it 2373 * can't go away. Callers that fail to ensure that the specified 2374 * CPU cannot go away will execute on a randomly chosen CPU. 2375 * But note well that callers specifying a CPU that never has been 2376 * online will get a splat. 2377 * 2378 * Return: %false if @work was already on a queue, %true otherwise. 2379 */ 2380 bool queue_work_on(int cpu, struct workqueue_struct *wq, 2381 struct work_struct *work) 2382 { 2383 bool ret = false; 2384 unsigned long irq_flags; 2385 2386 local_irq_save(irq_flags); 2387 2388 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2389 !clear_pending_if_disabled(work)) { 2390 __queue_work(cpu, wq, work); 2391 ret = true; 2392 } 2393 2394 local_irq_restore(irq_flags); 2395 return ret; 2396 } 2397 EXPORT_SYMBOL(queue_work_on); 2398 2399 /** 2400 * select_numa_node_cpu - Select a CPU based on NUMA node 2401 * @node: NUMA node ID that we want to select a CPU from 2402 * 2403 * This function will attempt to find a "random" cpu available on a given 2404 * node. If there are no CPUs available on the given node it will return 2405 * WORK_CPU_UNBOUND indicating that we should just schedule to any 2406 * available CPU if we need to schedule this work. 2407 */ 2408 static int select_numa_node_cpu(int node) 2409 { 2410 int cpu; 2411 2412 /* Delay binding to CPU if node is not valid or online */ 2413 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 2414 return WORK_CPU_UNBOUND; 2415 2416 /* Use local node/cpu if we are already there */ 2417 cpu = raw_smp_processor_id(); 2418 if (node == cpu_to_node(cpu)) 2419 return cpu; 2420 2421 /* Use "random" otherwise know as "first" online CPU of node */ 2422 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 2423 2424 /* If CPU is valid return that, otherwise just defer */ 2425 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 2426 } 2427 2428 /** 2429 * queue_work_node - queue work on a "random" cpu for a given NUMA node 2430 * @node: NUMA node that we are targeting the work for 2431 * @wq: workqueue to use 2432 * @work: work to queue 2433 * 2434 * We queue the work to a "random" CPU within a given NUMA node. The basic 2435 * idea here is to provide a way to somehow associate work with a given 2436 * NUMA node. 2437 * 2438 * This function will only make a best effort attempt at getting this onto 2439 * the right NUMA node. If no node is requested or the requested node is 2440 * offline then we just fall back to standard queue_work behavior. 2441 * 2442 * Currently the "random" CPU ends up being the first available CPU in the 2443 * intersection of cpu_online_mask and the cpumask of the node, unless we 2444 * are running on the node. In that case we just use the current CPU. 2445 * 2446 * Return: %false if @work was already on a queue, %true otherwise. 2447 */ 2448 bool queue_work_node(int node, struct workqueue_struct *wq, 2449 struct work_struct *work) 2450 { 2451 unsigned long irq_flags; 2452 bool ret = false; 2453 2454 /* 2455 * This current implementation is specific to unbound workqueues. 2456 * Specifically we only return the first available CPU for a given 2457 * node instead of cycling through individual CPUs within the node. 2458 * 2459 * If this is used with a per-cpu workqueue then the logic in 2460 * workqueue_select_cpu_near would need to be updated to allow for 2461 * some round robin type logic. 2462 */ 2463 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 2464 2465 local_irq_save(irq_flags); 2466 2467 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2468 !clear_pending_if_disabled(work)) { 2469 int cpu = select_numa_node_cpu(node); 2470 2471 __queue_work(cpu, wq, work); 2472 ret = true; 2473 } 2474 2475 local_irq_restore(irq_flags); 2476 return ret; 2477 } 2478 EXPORT_SYMBOL_GPL(queue_work_node); 2479 2480 void delayed_work_timer_fn(struct timer_list *t) 2481 { 2482 struct delayed_work *dwork = from_timer(dwork, t, timer); 2483 2484 /* should have been called from irqsafe timer with irq already off */ 2485 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2486 } 2487 EXPORT_SYMBOL(delayed_work_timer_fn); 2488 2489 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 2490 struct delayed_work *dwork, unsigned long delay) 2491 { 2492 struct timer_list *timer = &dwork->timer; 2493 struct work_struct *work = &dwork->work; 2494 2495 WARN_ON_ONCE(!wq); 2496 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 2497 WARN_ON_ONCE(timer_pending(timer)); 2498 WARN_ON_ONCE(!list_empty(&work->entry)); 2499 2500 /* 2501 * If @delay is 0, queue @dwork->work immediately. This is for 2502 * both optimization and correctness. The earliest @timer can 2503 * expire is on the closest next tick and delayed_work users depend 2504 * on that there's no such delay when @delay is 0. 2505 */ 2506 if (!delay) { 2507 __queue_work(cpu, wq, &dwork->work); 2508 return; 2509 } 2510 2511 dwork->wq = wq; 2512 dwork->cpu = cpu; 2513 timer->expires = jiffies + delay; 2514 2515 if (housekeeping_enabled(HK_TYPE_TIMER)) { 2516 /* If the current cpu is a housekeeping cpu, use it. */ 2517 cpu = smp_processor_id(); 2518 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER)) 2519 cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 2520 add_timer_on(timer, cpu); 2521 } else { 2522 if (likely(cpu == WORK_CPU_UNBOUND)) 2523 add_timer_global(timer); 2524 else 2525 add_timer_on(timer, cpu); 2526 } 2527 } 2528 2529 /** 2530 * queue_delayed_work_on - queue work on specific CPU after delay 2531 * @cpu: CPU number to execute work on 2532 * @wq: workqueue to use 2533 * @dwork: work to queue 2534 * @delay: number of jiffies to wait before queueing 2535 * 2536 * Return: %false if @work was already on a queue, %true otherwise. If 2537 * @delay is zero and @dwork is idle, it will be scheduled for immediate 2538 * execution. 2539 */ 2540 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 2541 struct delayed_work *dwork, unsigned long delay) 2542 { 2543 struct work_struct *work = &dwork->work; 2544 bool ret = false; 2545 unsigned long irq_flags; 2546 2547 /* read the comment in __queue_work() */ 2548 local_irq_save(irq_flags); 2549 2550 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2551 !clear_pending_if_disabled(work)) { 2552 __queue_delayed_work(cpu, wq, dwork, delay); 2553 ret = true; 2554 } 2555 2556 local_irq_restore(irq_flags); 2557 return ret; 2558 } 2559 EXPORT_SYMBOL(queue_delayed_work_on); 2560 2561 /** 2562 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2563 * @cpu: CPU number to execute work on 2564 * @wq: workqueue to use 2565 * @dwork: work to queue 2566 * @delay: number of jiffies to wait before queueing 2567 * 2568 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2569 * modify @dwork's timer so that it expires after @delay. If @delay is 2570 * zero, @work is guaranteed to be scheduled immediately regardless of its 2571 * current state. 2572 * 2573 * Return: %false if @dwork was idle and queued, %true if @dwork was 2574 * pending and its timer was modified. 2575 * 2576 * This function is safe to call from any context including IRQ handler. 2577 * See try_to_grab_pending() for details. 2578 */ 2579 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2580 struct delayed_work *dwork, unsigned long delay) 2581 { 2582 unsigned long irq_flags; 2583 bool ret; 2584 2585 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags); 2586 2587 if (!clear_pending_if_disabled(&dwork->work)) 2588 __queue_delayed_work(cpu, wq, dwork, delay); 2589 2590 local_irq_restore(irq_flags); 2591 return ret; 2592 } 2593 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2594 2595 static void rcu_work_rcufn(struct rcu_head *rcu) 2596 { 2597 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2598 2599 /* read the comment in __queue_work() */ 2600 local_irq_disable(); 2601 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2602 local_irq_enable(); 2603 } 2604 2605 /** 2606 * queue_rcu_work - queue work after a RCU grace period 2607 * @wq: workqueue to use 2608 * @rwork: work to queue 2609 * 2610 * Return: %false if @rwork was already pending, %true otherwise. Note 2611 * that a full RCU grace period is guaranteed only after a %true return. 2612 * While @rwork is guaranteed to be executed after a %false return, the 2613 * execution may happen before a full RCU grace period has passed. 2614 */ 2615 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2616 { 2617 struct work_struct *work = &rwork->work; 2618 2619 /* 2620 * rcu_work can't be canceled or disabled. Warn if the user reached 2621 * inside @rwork and disabled the inner work. 2622 */ 2623 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2624 !WARN_ON_ONCE(clear_pending_if_disabled(work))) { 2625 rwork->wq = wq; 2626 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2627 return true; 2628 } 2629 2630 return false; 2631 } 2632 EXPORT_SYMBOL(queue_rcu_work); 2633 2634 static struct worker *alloc_worker(int node) 2635 { 2636 struct worker *worker; 2637 2638 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2639 if (worker) { 2640 INIT_LIST_HEAD(&worker->entry); 2641 INIT_LIST_HEAD(&worker->scheduled); 2642 INIT_LIST_HEAD(&worker->node); 2643 /* on creation a worker is in !idle && prep state */ 2644 worker->flags = WORKER_PREP; 2645 } 2646 return worker; 2647 } 2648 2649 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2650 { 2651 if (pool->cpu < 0 && pool->attrs->affn_strict) 2652 return pool->attrs->__pod_cpumask; 2653 else 2654 return pool->attrs->cpumask; 2655 } 2656 2657 /** 2658 * worker_attach_to_pool() - attach a worker to a pool 2659 * @worker: worker to be attached 2660 * @pool: the target pool 2661 * 2662 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2663 * cpu-binding of @worker are kept coordinated with the pool across 2664 * cpu-[un]hotplugs. 2665 */ 2666 static void worker_attach_to_pool(struct worker *worker, 2667 struct worker_pool *pool) 2668 { 2669 mutex_lock(&wq_pool_attach_mutex); 2670 2671 /* 2672 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable 2673 * across this function. See the comments above the flag definition for 2674 * details. BH workers are, while per-CPU, always DISASSOCIATED. 2675 */ 2676 if (pool->flags & POOL_DISASSOCIATED) { 2677 worker->flags |= WORKER_UNBOUND; 2678 } else { 2679 WARN_ON_ONCE(pool->flags & POOL_BH); 2680 kthread_set_per_cpu(worker->task, pool->cpu); 2681 } 2682 2683 if (worker->rescue_wq) 2684 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2685 2686 list_add_tail(&worker->node, &pool->workers); 2687 worker->pool = pool; 2688 2689 mutex_unlock(&wq_pool_attach_mutex); 2690 } 2691 2692 static void unbind_worker(struct worker *worker) 2693 { 2694 lockdep_assert_held(&wq_pool_attach_mutex); 2695 2696 kthread_set_per_cpu(worker->task, -1); 2697 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2698 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2699 else 2700 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2701 } 2702 2703 2704 static void detach_worker(struct worker *worker) 2705 { 2706 lockdep_assert_held(&wq_pool_attach_mutex); 2707 2708 unbind_worker(worker); 2709 list_del(&worker->node); 2710 worker->pool = NULL; 2711 } 2712 2713 /** 2714 * worker_detach_from_pool() - detach a worker from its pool 2715 * @worker: worker which is attached to its pool 2716 * 2717 * Undo the attaching which had been done in worker_attach_to_pool(). The 2718 * caller worker shouldn't access to the pool after detached except it has 2719 * other reference to the pool. 2720 */ 2721 static void worker_detach_from_pool(struct worker *worker) 2722 { 2723 struct worker_pool *pool = worker->pool; 2724 2725 /* there is one permanent BH worker per CPU which should never detach */ 2726 WARN_ON_ONCE(pool->flags & POOL_BH); 2727 2728 mutex_lock(&wq_pool_attach_mutex); 2729 detach_worker(worker); 2730 mutex_unlock(&wq_pool_attach_mutex); 2731 2732 /* clear leftover flags without pool->lock after it is detached */ 2733 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2734 } 2735 2736 static int format_worker_id(char *buf, size_t size, struct worker *worker, 2737 struct worker_pool *pool) 2738 { 2739 if (worker->rescue_wq) 2740 return scnprintf(buf, size, "kworker/R-%s", 2741 worker->rescue_wq->name); 2742 2743 if (pool) { 2744 if (pool->cpu >= 0) 2745 return scnprintf(buf, size, "kworker/%d:%d%s", 2746 pool->cpu, worker->id, 2747 pool->attrs->nice < 0 ? "H" : ""); 2748 else 2749 return scnprintf(buf, size, "kworker/u%d:%d", 2750 pool->id, worker->id); 2751 } else { 2752 return scnprintf(buf, size, "kworker/dying"); 2753 } 2754 } 2755 2756 /** 2757 * create_worker - create a new workqueue worker 2758 * @pool: pool the new worker will belong to 2759 * 2760 * Create and start a new worker which is attached to @pool. 2761 * 2762 * CONTEXT: 2763 * Might sleep. Does GFP_KERNEL allocations. 2764 * 2765 * Return: 2766 * Pointer to the newly created worker. 2767 */ 2768 static struct worker *create_worker(struct worker_pool *pool) 2769 { 2770 struct worker *worker; 2771 int id; 2772 2773 /* ID is needed to determine kthread name */ 2774 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2775 if (id < 0) { 2776 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2777 ERR_PTR(id)); 2778 return NULL; 2779 } 2780 2781 worker = alloc_worker(pool->node); 2782 if (!worker) { 2783 pr_err_once("workqueue: Failed to allocate a worker\n"); 2784 goto fail; 2785 } 2786 2787 worker->id = id; 2788 2789 if (!(pool->flags & POOL_BH)) { 2790 char id_buf[WORKER_ID_LEN]; 2791 2792 format_worker_id(id_buf, sizeof(id_buf), worker, pool); 2793 worker->task = kthread_create_on_node(worker_thread, worker, 2794 pool->node, "%s", id_buf); 2795 if (IS_ERR(worker->task)) { 2796 if (PTR_ERR(worker->task) == -EINTR) { 2797 pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n", 2798 id_buf); 2799 } else { 2800 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2801 worker->task); 2802 } 2803 goto fail; 2804 } 2805 2806 set_user_nice(worker->task, pool->attrs->nice); 2807 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2808 } 2809 2810 /* successful, attach the worker to the pool */ 2811 worker_attach_to_pool(worker, pool); 2812 2813 /* start the newly created worker */ 2814 raw_spin_lock_irq(&pool->lock); 2815 2816 worker->pool->nr_workers++; 2817 worker_enter_idle(worker); 2818 2819 /* 2820 * @worker is waiting on a completion in kthread() and will trigger hung 2821 * check if not woken up soon. As kick_pool() is noop if @pool is empty, 2822 * wake it up explicitly. 2823 */ 2824 if (worker->task) 2825 wake_up_process(worker->task); 2826 2827 raw_spin_unlock_irq(&pool->lock); 2828 2829 return worker; 2830 2831 fail: 2832 ida_free(&pool->worker_ida, id); 2833 kfree(worker); 2834 return NULL; 2835 } 2836 2837 static void detach_dying_workers(struct list_head *cull_list) 2838 { 2839 struct worker *worker; 2840 2841 list_for_each_entry(worker, cull_list, entry) 2842 detach_worker(worker); 2843 } 2844 2845 static void reap_dying_workers(struct list_head *cull_list) 2846 { 2847 struct worker *worker, *tmp; 2848 2849 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2850 list_del_init(&worker->entry); 2851 kthread_stop_put(worker->task); 2852 kfree(worker); 2853 } 2854 } 2855 2856 /** 2857 * set_worker_dying - Tag a worker for destruction 2858 * @worker: worker to be destroyed 2859 * @list: transfer worker away from its pool->idle_list and into list 2860 * 2861 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2862 * should be idle. 2863 * 2864 * CONTEXT: 2865 * raw_spin_lock_irq(pool->lock). 2866 */ 2867 static void set_worker_dying(struct worker *worker, struct list_head *list) 2868 { 2869 struct worker_pool *pool = worker->pool; 2870 2871 lockdep_assert_held(&pool->lock); 2872 lockdep_assert_held(&wq_pool_attach_mutex); 2873 2874 /* sanity check frenzy */ 2875 if (WARN_ON(worker->current_work) || 2876 WARN_ON(!list_empty(&worker->scheduled)) || 2877 WARN_ON(!(worker->flags & WORKER_IDLE))) 2878 return; 2879 2880 pool->nr_workers--; 2881 pool->nr_idle--; 2882 2883 worker->flags |= WORKER_DIE; 2884 2885 list_move(&worker->entry, list); 2886 2887 /* get an extra task struct reference for later kthread_stop_put() */ 2888 get_task_struct(worker->task); 2889 } 2890 2891 /** 2892 * idle_worker_timeout - check if some idle workers can now be deleted. 2893 * @t: The pool's idle_timer that just expired 2894 * 2895 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2896 * worker_leave_idle(), as a worker flicking between idle and active while its 2897 * pool is at the too_many_workers() tipping point would cause too much timer 2898 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2899 * it expire and re-evaluate things from there. 2900 */ 2901 static void idle_worker_timeout(struct timer_list *t) 2902 { 2903 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2904 bool do_cull = false; 2905 2906 if (work_pending(&pool->idle_cull_work)) 2907 return; 2908 2909 raw_spin_lock_irq(&pool->lock); 2910 2911 if (too_many_workers(pool)) { 2912 struct worker *worker; 2913 unsigned long expires; 2914 2915 /* idle_list is kept in LIFO order, check the last one */ 2916 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2917 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2918 do_cull = !time_before(jiffies, expires); 2919 2920 if (!do_cull) 2921 mod_timer(&pool->idle_timer, expires); 2922 } 2923 raw_spin_unlock_irq(&pool->lock); 2924 2925 if (do_cull) 2926 queue_work(system_unbound_wq, &pool->idle_cull_work); 2927 } 2928 2929 /** 2930 * idle_cull_fn - cull workers that have been idle for too long. 2931 * @work: the pool's work for handling these idle workers 2932 * 2933 * This goes through a pool's idle workers and gets rid of those that have been 2934 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2935 * 2936 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2937 * culled, so this also resets worker affinity. This requires a sleepable 2938 * context, hence the split between timer callback and work item. 2939 */ 2940 static void idle_cull_fn(struct work_struct *work) 2941 { 2942 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2943 LIST_HEAD(cull_list); 2944 2945 /* 2946 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2947 * cannot proceed beyong set_pf_worker() in its self-destruct path. 2948 * This is required as a previously-preempted worker could run after 2949 * set_worker_dying() has happened but before detach_dying_workers() did. 2950 */ 2951 mutex_lock(&wq_pool_attach_mutex); 2952 raw_spin_lock_irq(&pool->lock); 2953 2954 while (too_many_workers(pool)) { 2955 struct worker *worker; 2956 unsigned long expires; 2957 2958 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2959 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2960 2961 if (time_before(jiffies, expires)) { 2962 mod_timer(&pool->idle_timer, expires); 2963 break; 2964 } 2965 2966 set_worker_dying(worker, &cull_list); 2967 } 2968 2969 raw_spin_unlock_irq(&pool->lock); 2970 detach_dying_workers(&cull_list); 2971 mutex_unlock(&wq_pool_attach_mutex); 2972 2973 reap_dying_workers(&cull_list); 2974 } 2975 2976 static void send_mayday(struct work_struct *work) 2977 { 2978 struct pool_workqueue *pwq = get_work_pwq(work); 2979 struct workqueue_struct *wq = pwq->wq; 2980 2981 lockdep_assert_held(&wq_mayday_lock); 2982 2983 if (!wq->rescuer) 2984 return; 2985 2986 /* mayday mayday mayday */ 2987 if (list_empty(&pwq->mayday_node)) { 2988 /* 2989 * If @pwq is for an unbound wq, its base ref may be put at 2990 * any time due to an attribute change. Pin @pwq until the 2991 * rescuer is done with it. 2992 */ 2993 get_pwq(pwq); 2994 list_add_tail(&pwq->mayday_node, &wq->maydays); 2995 wake_up_process(wq->rescuer->task); 2996 pwq->stats[PWQ_STAT_MAYDAY]++; 2997 } 2998 } 2999 3000 static void pool_mayday_timeout(struct timer_list *t) 3001 { 3002 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 3003 struct work_struct *work; 3004 3005 raw_spin_lock_irq(&pool->lock); 3006 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 3007 3008 if (need_to_create_worker(pool)) { 3009 /* 3010 * We've been trying to create a new worker but 3011 * haven't been successful. We might be hitting an 3012 * allocation deadlock. Send distress signals to 3013 * rescuers. 3014 */ 3015 list_for_each_entry(work, &pool->worklist, entry) 3016 send_mayday(work); 3017 } 3018 3019 raw_spin_unlock(&wq_mayday_lock); 3020 raw_spin_unlock_irq(&pool->lock); 3021 3022 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 3023 } 3024 3025 /** 3026 * maybe_create_worker - create a new worker if necessary 3027 * @pool: pool to create a new worker for 3028 * 3029 * Create a new worker for @pool if necessary. @pool is guaranteed to 3030 * have at least one idle worker on return from this function. If 3031 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 3032 * sent to all rescuers with works scheduled on @pool to resolve 3033 * possible allocation deadlock. 3034 * 3035 * On return, need_to_create_worker() is guaranteed to be %false and 3036 * may_start_working() %true. 3037 * 3038 * LOCKING: 3039 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3040 * multiple times. Does GFP_KERNEL allocations. Called only from 3041 * manager. 3042 */ 3043 static void maybe_create_worker(struct worker_pool *pool) 3044 __releases(&pool->lock) 3045 __acquires(&pool->lock) 3046 { 3047 restart: 3048 raw_spin_unlock_irq(&pool->lock); 3049 3050 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 3051 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 3052 3053 while (true) { 3054 if (create_worker(pool) || !need_to_create_worker(pool)) 3055 break; 3056 3057 schedule_timeout_interruptible(CREATE_COOLDOWN); 3058 3059 if (!need_to_create_worker(pool)) 3060 break; 3061 } 3062 3063 del_timer_sync(&pool->mayday_timer); 3064 raw_spin_lock_irq(&pool->lock); 3065 /* 3066 * This is necessary even after a new worker was just successfully 3067 * created as @pool->lock was dropped and the new worker might have 3068 * already become busy. 3069 */ 3070 if (need_to_create_worker(pool)) 3071 goto restart; 3072 } 3073 3074 /** 3075 * manage_workers - manage worker pool 3076 * @worker: self 3077 * 3078 * Assume the manager role and manage the worker pool @worker belongs 3079 * to. At any given time, there can be only zero or one manager per 3080 * pool. The exclusion is handled automatically by this function. 3081 * 3082 * The caller can safely start processing works on false return. On 3083 * true return, it's guaranteed that need_to_create_worker() is false 3084 * and may_start_working() is true. 3085 * 3086 * CONTEXT: 3087 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3088 * multiple times. Does GFP_KERNEL allocations. 3089 * 3090 * Return: 3091 * %false if the pool doesn't need management and the caller can safely 3092 * start processing works, %true if management function was performed and 3093 * the conditions that the caller verified before calling the function may 3094 * no longer be true. 3095 */ 3096 static bool manage_workers(struct worker *worker) 3097 { 3098 struct worker_pool *pool = worker->pool; 3099 3100 if (pool->flags & POOL_MANAGER_ACTIVE) 3101 return false; 3102 3103 pool->flags |= POOL_MANAGER_ACTIVE; 3104 pool->manager = worker; 3105 3106 maybe_create_worker(pool); 3107 3108 pool->manager = NULL; 3109 pool->flags &= ~POOL_MANAGER_ACTIVE; 3110 rcuwait_wake_up(&manager_wait); 3111 return true; 3112 } 3113 3114 /** 3115 * process_one_work - process single work 3116 * @worker: self 3117 * @work: work to process 3118 * 3119 * Process @work. This function contains all the logics necessary to 3120 * process a single work including synchronization against and 3121 * interaction with other workers on the same cpu, queueing and 3122 * flushing. As long as context requirement is met, any worker can 3123 * call this function to process a work. 3124 * 3125 * CONTEXT: 3126 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 3127 */ 3128 static void process_one_work(struct worker *worker, struct work_struct *work) 3129 __releases(&pool->lock) 3130 __acquires(&pool->lock) 3131 { 3132 struct pool_workqueue *pwq = get_work_pwq(work); 3133 struct worker_pool *pool = worker->pool; 3134 unsigned long work_data; 3135 int lockdep_start_depth, rcu_start_depth; 3136 bool bh_draining = pool->flags & POOL_BH_DRAINING; 3137 #ifdef CONFIG_LOCKDEP 3138 /* 3139 * It is permissible to free the struct work_struct from 3140 * inside the function that is called from it, this we need to 3141 * take into account for lockdep too. To avoid bogus "held 3142 * lock freed" warnings as well as problems when looking into 3143 * work->lockdep_map, make a copy and use that here. 3144 */ 3145 struct lockdep_map lockdep_map; 3146 3147 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 3148 #endif 3149 /* ensure we're on the correct CPU */ 3150 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 3151 raw_smp_processor_id() != pool->cpu); 3152 3153 /* claim and dequeue */ 3154 debug_work_deactivate(work); 3155 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 3156 worker->current_work = work; 3157 worker->current_func = work->func; 3158 worker->current_pwq = pwq; 3159 if (worker->task) 3160 worker->current_at = worker->task->se.sum_exec_runtime; 3161 work_data = *work_data_bits(work); 3162 worker->current_color = get_work_color(work_data); 3163 3164 /* 3165 * Record wq name for cmdline and debug reporting, may get 3166 * overridden through set_worker_desc(). 3167 */ 3168 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 3169 3170 list_del_init(&work->entry); 3171 3172 /* 3173 * CPU intensive works don't participate in concurrency management. 3174 * They're the scheduler's responsibility. This takes @worker out 3175 * of concurrency management and the next code block will chain 3176 * execution of the pending work items. 3177 */ 3178 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 3179 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 3180 3181 /* 3182 * Kick @pool if necessary. It's always noop for per-cpu worker pools 3183 * since nr_running would always be >= 1 at this point. This is used to 3184 * chain execution of the pending work items for WORKER_NOT_RUNNING 3185 * workers such as the UNBOUND and CPU_INTENSIVE ones. 3186 */ 3187 kick_pool(pool); 3188 3189 /* 3190 * Record the last pool and clear PENDING which should be the last 3191 * update to @work. Also, do this inside @pool->lock so that 3192 * PENDING and queued state changes happen together while IRQ is 3193 * disabled. 3194 */ 3195 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool)); 3196 3197 pwq->stats[PWQ_STAT_STARTED]++; 3198 raw_spin_unlock_irq(&pool->lock); 3199 3200 rcu_start_depth = rcu_preempt_depth(); 3201 lockdep_start_depth = lockdep_depth(current); 3202 /* see drain_dead_softirq_workfn() */ 3203 if (!bh_draining) 3204 lock_map_acquire(pwq->wq->lockdep_map); 3205 lock_map_acquire(&lockdep_map); 3206 /* 3207 * Strictly speaking we should mark the invariant state without holding 3208 * any locks, that is, before these two lock_map_acquire()'s. 3209 * 3210 * However, that would result in: 3211 * 3212 * A(W1) 3213 * WFC(C) 3214 * A(W1) 3215 * C(C) 3216 * 3217 * Which would create W1->C->W1 dependencies, even though there is no 3218 * actual deadlock possible. There are two solutions, using a 3219 * read-recursive acquire on the work(queue) 'locks', but this will then 3220 * hit the lockdep limitation on recursive locks, or simply discard 3221 * these locks. 3222 * 3223 * AFAICT there is no possible deadlock scenario between the 3224 * flush_work() and complete() primitives (except for single-threaded 3225 * workqueues), so hiding them isn't a problem. 3226 */ 3227 lockdep_invariant_state(true); 3228 trace_workqueue_execute_start(work); 3229 worker->current_func(work); 3230 /* 3231 * While we must be careful to not use "work" after this, the trace 3232 * point will only record its address. 3233 */ 3234 trace_workqueue_execute_end(work, worker->current_func); 3235 pwq->stats[PWQ_STAT_COMPLETED]++; 3236 lock_map_release(&lockdep_map); 3237 if (!bh_draining) 3238 lock_map_release(pwq->wq->lockdep_map); 3239 3240 if (unlikely((worker->task && in_atomic()) || 3241 lockdep_depth(current) != lockdep_start_depth || 3242 rcu_preempt_depth() != rcu_start_depth)) { 3243 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n" 3244 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n", 3245 current->comm, task_pid_nr(current), preempt_count(), 3246 lockdep_start_depth, lockdep_depth(current), 3247 rcu_start_depth, rcu_preempt_depth(), 3248 worker->current_func); 3249 debug_show_held_locks(current); 3250 dump_stack(); 3251 } 3252 3253 /* 3254 * The following prevents a kworker from hogging CPU on !PREEMPTION 3255 * kernels, where a requeueing work item waiting for something to 3256 * happen could deadlock with stop_machine as such work item could 3257 * indefinitely requeue itself while all other CPUs are trapped in 3258 * stop_machine. At the same time, report a quiescent RCU state so 3259 * the same condition doesn't freeze RCU. 3260 */ 3261 if (worker->task) 3262 cond_resched(); 3263 3264 raw_spin_lock_irq(&pool->lock); 3265 3266 /* 3267 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 3268 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 3269 * wq_cpu_intensive_thresh_us. Clear it. 3270 */ 3271 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 3272 3273 /* tag the worker for identification in schedule() */ 3274 worker->last_func = worker->current_func; 3275 3276 /* we're done with it, release */ 3277 hash_del(&worker->hentry); 3278 worker->current_work = NULL; 3279 worker->current_func = NULL; 3280 worker->current_pwq = NULL; 3281 worker->current_color = INT_MAX; 3282 3283 /* must be the last step, see the function comment */ 3284 pwq_dec_nr_in_flight(pwq, work_data); 3285 } 3286 3287 /** 3288 * process_scheduled_works - process scheduled works 3289 * @worker: self 3290 * 3291 * Process all scheduled works. Please note that the scheduled list 3292 * may change while processing a work, so this function repeatedly 3293 * fetches a work from the top and executes it. 3294 * 3295 * CONTEXT: 3296 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3297 * multiple times. 3298 */ 3299 static void process_scheduled_works(struct worker *worker) 3300 { 3301 struct work_struct *work; 3302 bool first = true; 3303 3304 while ((work = list_first_entry_or_null(&worker->scheduled, 3305 struct work_struct, entry))) { 3306 if (first) { 3307 worker->pool->watchdog_ts = jiffies; 3308 first = false; 3309 } 3310 process_one_work(worker, work); 3311 } 3312 } 3313 3314 static void set_pf_worker(bool val) 3315 { 3316 mutex_lock(&wq_pool_attach_mutex); 3317 if (val) 3318 current->flags |= PF_WQ_WORKER; 3319 else 3320 current->flags &= ~PF_WQ_WORKER; 3321 mutex_unlock(&wq_pool_attach_mutex); 3322 } 3323 3324 /** 3325 * worker_thread - the worker thread function 3326 * @__worker: self 3327 * 3328 * The worker thread function. All workers belong to a worker_pool - 3329 * either a per-cpu one or dynamic unbound one. These workers process all 3330 * work items regardless of their specific target workqueue. The only 3331 * exception is work items which belong to workqueues with a rescuer which 3332 * will be explained in rescuer_thread(). 3333 * 3334 * Return: 0 3335 */ 3336 static int worker_thread(void *__worker) 3337 { 3338 struct worker *worker = __worker; 3339 struct worker_pool *pool = worker->pool; 3340 3341 /* tell the scheduler that this is a workqueue worker */ 3342 set_pf_worker(true); 3343 woke_up: 3344 raw_spin_lock_irq(&pool->lock); 3345 3346 /* am I supposed to die? */ 3347 if (unlikely(worker->flags & WORKER_DIE)) { 3348 raw_spin_unlock_irq(&pool->lock); 3349 set_pf_worker(false); 3350 3351 ida_free(&pool->worker_ida, worker->id); 3352 WARN_ON_ONCE(!list_empty(&worker->entry)); 3353 return 0; 3354 } 3355 3356 worker_leave_idle(worker); 3357 recheck: 3358 /* no more worker necessary? */ 3359 if (!need_more_worker(pool)) 3360 goto sleep; 3361 3362 /* do we need to manage? */ 3363 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 3364 goto recheck; 3365 3366 /* 3367 * ->scheduled list can only be filled while a worker is 3368 * preparing to process a work or actually processing it. 3369 * Make sure nobody diddled with it while I was sleeping. 3370 */ 3371 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3372 3373 /* 3374 * Finish PREP stage. We're guaranteed to have at least one idle 3375 * worker or that someone else has already assumed the manager 3376 * role. This is where @worker starts participating in concurrency 3377 * management if applicable and concurrency management is restored 3378 * after being rebound. See rebind_workers() for details. 3379 */ 3380 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3381 3382 do { 3383 struct work_struct *work = 3384 list_first_entry(&pool->worklist, 3385 struct work_struct, entry); 3386 3387 if (assign_work(work, worker, NULL)) 3388 process_scheduled_works(worker); 3389 } while (keep_working(pool)); 3390 3391 worker_set_flags(worker, WORKER_PREP); 3392 sleep: 3393 /* 3394 * pool->lock is held and there's no work to process and no need to 3395 * manage, sleep. Workers are woken up only while holding 3396 * pool->lock or from local cpu, so setting the current state 3397 * before releasing pool->lock is enough to prevent losing any 3398 * event. 3399 */ 3400 worker_enter_idle(worker); 3401 __set_current_state(TASK_IDLE); 3402 raw_spin_unlock_irq(&pool->lock); 3403 schedule(); 3404 goto woke_up; 3405 } 3406 3407 /** 3408 * rescuer_thread - the rescuer thread function 3409 * @__rescuer: self 3410 * 3411 * Workqueue rescuer thread function. There's one rescuer for each 3412 * workqueue which has WQ_MEM_RECLAIM set. 3413 * 3414 * Regular work processing on a pool may block trying to create a new 3415 * worker which uses GFP_KERNEL allocation which has slight chance of 3416 * developing into deadlock if some works currently on the same queue 3417 * need to be processed to satisfy the GFP_KERNEL allocation. This is 3418 * the problem rescuer solves. 3419 * 3420 * When such condition is possible, the pool summons rescuers of all 3421 * workqueues which have works queued on the pool and let them process 3422 * those works so that forward progress can be guaranteed. 3423 * 3424 * This should happen rarely. 3425 * 3426 * Return: 0 3427 */ 3428 static int rescuer_thread(void *__rescuer) 3429 { 3430 struct worker *rescuer = __rescuer; 3431 struct workqueue_struct *wq = rescuer->rescue_wq; 3432 bool should_stop; 3433 3434 set_user_nice(current, RESCUER_NICE_LEVEL); 3435 3436 /* 3437 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 3438 * doesn't participate in concurrency management. 3439 */ 3440 set_pf_worker(true); 3441 repeat: 3442 set_current_state(TASK_IDLE); 3443 3444 /* 3445 * By the time the rescuer is requested to stop, the workqueue 3446 * shouldn't have any work pending, but @wq->maydays may still have 3447 * pwq(s) queued. This can happen by non-rescuer workers consuming 3448 * all the work items before the rescuer got to them. Go through 3449 * @wq->maydays processing before acting on should_stop so that the 3450 * list is always empty on exit. 3451 */ 3452 should_stop = kthread_should_stop(); 3453 3454 /* see whether any pwq is asking for help */ 3455 raw_spin_lock_irq(&wq_mayday_lock); 3456 3457 while (!list_empty(&wq->maydays)) { 3458 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 3459 struct pool_workqueue, mayday_node); 3460 struct worker_pool *pool = pwq->pool; 3461 struct work_struct *work, *n; 3462 3463 __set_current_state(TASK_RUNNING); 3464 list_del_init(&pwq->mayday_node); 3465 3466 raw_spin_unlock_irq(&wq_mayday_lock); 3467 3468 worker_attach_to_pool(rescuer, pool); 3469 3470 raw_spin_lock_irq(&pool->lock); 3471 3472 /* 3473 * Slurp in all works issued via this workqueue and 3474 * process'em. 3475 */ 3476 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 3477 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 3478 if (get_work_pwq(work) == pwq && 3479 assign_work(work, rescuer, &n)) 3480 pwq->stats[PWQ_STAT_RESCUED]++; 3481 } 3482 3483 if (!list_empty(&rescuer->scheduled)) { 3484 process_scheduled_works(rescuer); 3485 3486 /* 3487 * The above execution of rescued work items could 3488 * have created more to rescue through 3489 * pwq_activate_first_inactive() or chained 3490 * queueing. Let's put @pwq back on mayday list so 3491 * that such back-to-back work items, which may be 3492 * being used to relieve memory pressure, don't 3493 * incur MAYDAY_INTERVAL delay inbetween. 3494 */ 3495 if (pwq->nr_active && need_to_create_worker(pool)) { 3496 raw_spin_lock(&wq_mayday_lock); 3497 /* 3498 * Queue iff we aren't racing destruction 3499 * and somebody else hasn't queued it already. 3500 */ 3501 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 3502 get_pwq(pwq); 3503 list_add_tail(&pwq->mayday_node, &wq->maydays); 3504 } 3505 raw_spin_unlock(&wq_mayday_lock); 3506 } 3507 } 3508 3509 /* 3510 * Put the reference grabbed by send_mayday(). @pool won't 3511 * go away while we're still attached to it. 3512 */ 3513 put_pwq(pwq); 3514 3515 /* 3516 * Leave this pool. Notify regular workers; otherwise, we end up 3517 * with 0 concurrency and stalling the execution. 3518 */ 3519 kick_pool(pool); 3520 3521 raw_spin_unlock_irq(&pool->lock); 3522 3523 worker_detach_from_pool(rescuer); 3524 3525 raw_spin_lock_irq(&wq_mayday_lock); 3526 } 3527 3528 raw_spin_unlock_irq(&wq_mayday_lock); 3529 3530 if (should_stop) { 3531 __set_current_state(TASK_RUNNING); 3532 set_pf_worker(false); 3533 return 0; 3534 } 3535 3536 /* rescuers should never participate in concurrency management */ 3537 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 3538 schedule(); 3539 goto repeat; 3540 } 3541 3542 static void bh_worker(struct worker *worker) 3543 { 3544 struct worker_pool *pool = worker->pool; 3545 int nr_restarts = BH_WORKER_RESTARTS; 3546 unsigned long end = jiffies + BH_WORKER_JIFFIES; 3547 3548 raw_spin_lock_irq(&pool->lock); 3549 worker_leave_idle(worker); 3550 3551 /* 3552 * This function follows the structure of worker_thread(). See there for 3553 * explanations on each step. 3554 */ 3555 if (!need_more_worker(pool)) 3556 goto done; 3557 3558 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3559 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3560 3561 do { 3562 struct work_struct *work = 3563 list_first_entry(&pool->worklist, 3564 struct work_struct, entry); 3565 3566 if (assign_work(work, worker, NULL)) 3567 process_scheduled_works(worker); 3568 } while (keep_working(pool) && 3569 --nr_restarts && time_before(jiffies, end)); 3570 3571 worker_set_flags(worker, WORKER_PREP); 3572 done: 3573 worker_enter_idle(worker); 3574 kick_pool(pool); 3575 raw_spin_unlock_irq(&pool->lock); 3576 } 3577 3578 /* 3579 * TODO: Convert all tasklet users to workqueue and use softirq directly. 3580 * 3581 * This is currently called from tasklet[_hi]action() and thus is also called 3582 * whenever there are tasklets to run. Let's do an early exit if there's nothing 3583 * queued. Once conversion from tasklet is complete, the need_more_worker() test 3584 * can be dropped. 3585 * 3586 * After full conversion, we'll add worker->softirq_action, directly use the 3587 * softirq action and obtain the worker pointer from the softirq_action pointer. 3588 */ 3589 void workqueue_softirq_action(bool highpri) 3590 { 3591 struct worker_pool *pool = 3592 &per_cpu(bh_worker_pools, smp_processor_id())[highpri]; 3593 if (need_more_worker(pool)) 3594 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3595 } 3596 3597 struct wq_drain_dead_softirq_work { 3598 struct work_struct work; 3599 struct worker_pool *pool; 3600 struct completion done; 3601 }; 3602 3603 static void drain_dead_softirq_workfn(struct work_struct *work) 3604 { 3605 struct wq_drain_dead_softirq_work *dead_work = 3606 container_of(work, struct wq_drain_dead_softirq_work, work); 3607 struct worker_pool *pool = dead_work->pool; 3608 bool repeat; 3609 3610 /* 3611 * @pool's CPU is dead and we want to execute its still pending work 3612 * items from this BH work item which is running on a different CPU. As 3613 * its CPU is dead, @pool can't be kicked and, as work execution path 3614 * will be nested, a lockdep annotation needs to be suppressed. Mark 3615 * @pool with %POOL_BH_DRAINING for the special treatments. 3616 */ 3617 raw_spin_lock_irq(&pool->lock); 3618 pool->flags |= POOL_BH_DRAINING; 3619 raw_spin_unlock_irq(&pool->lock); 3620 3621 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3622 3623 raw_spin_lock_irq(&pool->lock); 3624 pool->flags &= ~POOL_BH_DRAINING; 3625 repeat = need_more_worker(pool); 3626 raw_spin_unlock_irq(&pool->lock); 3627 3628 /* 3629 * bh_worker() might hit consecutive execution limit and bail. If there 3630 * still are pending work items, reschedule self and return so that we 3631 * don't hog this CPU's BH. 3632 */ 3633 if (repeat) { 3634 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3635 queue_work(system_bh_highpri_wq, work); 3636 else 3637 queue_work(system_bh_wq, work); 3638 } else { 3639 complete(&dead_work->done); 3640 } 3641 } 3642 3643 /* 3644 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's 3645 * possible to allocate dead_work per CPU and avoid flushing. However, then we 3646 * have to worry about draining overlapping with CPU coming back online or 3647 * nesting (one CPU's dead_work queued on another CPU which is also dead and so 3648 * on). Let's keep it simple and drain them synchronously. These are BH work 3649 * items which shouldn't be requeued on the same pool. Shouldn't take long. 3650 */ 3651 void workqueue_softirq_dead(unsigned int cpu) 3652 { 3653 int i; 3654 3655 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 3656 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i]; 3657 struct wq_drain_dead_softirq_work dead_work; 3658 3659 if (!need_more_worker(pool)) 3660 continue; 3661 3662 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn); 3663 dead_work.pool = pool; 3664 init_completion(&dead_work.done); 3665 3666 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3667 queue_work(system_bh_highpri_wq, &dead_work.work); 3668 else 3669 queue_work(system_bh_wq, &dead_work.work); 3670 3671 wait_for_completion(&dead_work.done); 3672 destroy_work_on_stack(&dead_work.work); 3673 } 3674 } 3675 3676 /** 3677 * check_flush_dependency - check for flush dependency sanity 3678 * @target_wq: workqueue being flushed 3679 * @target_work: work item being flushed (NULL for workqueue flushes) 3680 * 3681 * %current is trying to flush the whole @target_wq or @target_work on it. 3682 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 3683 * reclaiming memory or running on a workqueue which doesn't have 3684 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 3685 * a deadlock. 3686 */ 3687 static void check_flush_dependency(struct workqueue_struct *target_wq, 3688 struct work_struct *target_work) 3689 { 3690 work_func_t target_func = target_work ? target_work->func : NULL; 3691 struct worker *worker; 3692 3693 if (target_wq->flags & WQ_MEM_RECLAIM) 3694 return; 3695 3696 worker = current_wq_worker(); 3697 3698 WARN_ONCE(current->flags & PF_MEMALLOC, 3699 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 3700 current->pid, current->comm, target_wq->name, target_func); 3701 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 3702 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 3703 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 3704 worker->current_pwq->wq->name, worker->current_func, 3705 target_wq->name, target_func); 3706 } 3707 3708 struct wq_barrier { 3709 struct work_struct work; 3710 struct completion done; 3711 struct task_struct *task; /* purely informational */ 3712 }; 3713 3714 static void wq_barrier_func(struct work_struct *work) 3715 { 3716 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 3717 complete(&barr->done); 3718 } 3719 3720 /** 3721 * insert_wq_barrier - insert a barrier work 3722 * @pwq: pwq to insert barrier into 3723 * @barr: wq_barrier to insert 3724 * @target: target work to attach @barr to 3725 * @worker: worker currently executing @target, NULL if @target is not executing 3726 * 3727 * @barr is linked to @target such that @barr is completed only after 3728 * @target finishes execution. Please note that the ordering 3729 * guarantee is observed only with respect to @target and on the local 3730 * cpu. 3731 * 3732 * Currently, a queued barrier can't be canceled. This is because 3733 * try_to_grab_pending() can't determine whether the work to be 3734 * grabbed is at the head of the queue and thus can't clear LINKED 3735 * flag of the previous work while there must be a valid next work 3736 * after a work with LINKED flag set. 3737 * 3738 * Note that when @worker is non-NULL, @target may be modified 3739 * underneath us, so we can't reliably determine pwq from @target. 3740 * 3741 * CONTEXT: 3742 * raw_spin_lock_irq(pool->lock). 3743 */ 3744 static void insert_wq_barrier(struct pool_workqueue *pwq, 3745 struct wq_barrier *barr, 3746 struct work_struct *target, struct worker *worker) 3747 { 3748 static __maybe_unused struct lock_class_key bh_key, thr_key; 3749 unsigned int work_flags = 0; 3750 unsigned int work_color; 3751 struct list_head *head; 3752 3753 /* 3754 * debugobject calls are safe here even with pool->lock locked 3755 * as we know for sure that this will not trigger any of the 3756 * checks and call back into the fixup functions where we 3757 * might deadlock. 3758 * 3759 * BH and threaded workqueues need separate lockdep keys to avoid 3760 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} 3761 * usage". 3762 */ 3763 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func, 3764 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key); 3765 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3766 3767 init_completion_map(&barr->done, &target->lockdep_map); 3768 3769 barr->task = current; 3770 3771 /* The barrier work item does not participate in nr_active. */ 3772 work_flags |= WORK_STRUCT_INACTIVE; 3773 3774 /* 3775 * If @target is currently being executed, schedule the 3776 * barrier to the worker; otherwise, put it after @target. 3777 */ 3778 if (worker) { 3779 head = worker->scheduled.next; 3780 work_color = worker->current_color; 3781 } else { 3782 unsigned long *bits = work_data_bits(target); 3783 3784 head = target->entry.next; 3785 /* there can already be other linked works, inherit and set */ 3786 work_flags |= *bits & WORK_STRUCT_LINKED; 3787 work_color = get_work_color(*bits); 3788 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3789 } 3790 3791 pwq->nr_in_flight[work_color]++; 3792 work_flags |= work_color_to_flags(work_color); 3793 3794 insert_work(pwq, &barr->work, head, work_flags); 3795 } 3796 3797 /** 3798 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3799 * @wq: workqueue being flushed 3800 * @flush_color: new flush color, < 0 for no-op 3801 * @work_color: new work color, < 0 for no-op 3802 * 3803 * Prepare pwqs for workqueue flushing. 3804 * 3805 * If @flush_color is non-negative, flush_color on all pwqs should be 3806 * -1. If no pwq has in-flight commands at the specified color, all 3807 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3808 * has in flight commands, its pwq->flush_color is set to 3809 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3810 * wakeup logic is armed and %true is returned. 3811 * 3812 * The caller should have initialized @wq->first_flusher prior to 3813 * calling this function with non-negative @flush_color. If 3814 * @flush_color is negative, no flush color update is done and %false 3815 * is returned. 3816 * 3817 * If @work_color is non-negative, all pwqs should have the same 3818 * work_color which is previous to @work_color and all will be 3819 * advanced to @work_color. 3820 * 3821 * CONTEXT: 3822 * mutex_lock(wq->mutex). 3823 * 3824 * Return: 3825 * %true if @flush_color >= 0 and there's something to flush. %false 3826 * otherwise. 3827 */ 3828 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3829 int flush_color, int work_color) 3830 { 3831 bool wait = false; 3832 struct pool_workqueue *pwq; 3833 3834 if (flush_color >= 0) { 3835 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3836 atomic_set(&wq->nr_pwqs_to_flush, 1); 3837 } 3838 3839 for_each_pwq(pwq, wq) { 3840 struct worker_pool *pool = pwq->pool; 3841 3842 raw_spin_lock_irq(&pool->lock); 3843 3844 if (flush_color >= 0) { 3845 WARN_ON_ONCE(pwq->flush_color != -1); 3846 3847 if (pwq->nr_in_flight[flush_color]) { 3848 pwq->flush_color = flush_color; 3849 atomic_inc(&wq->nr_pwqs_to_flush); 3850 wait = true; 3851 } 3852 } 3853 3854 if (work_color >= 0) { 3855 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3856 pwq->work_color = work_color; 3857 } 3858 3859 raw_spin_unlock_irq(&pool->lock); 3860 } 3861 3862 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3863 complete(&wq->first_flusher->done); 3864 3865 return wait; 3866 } 3867 3868 static void touch_wq_lockdep_map(struct workqueue_struct *wq) 3869 { 3870 #ifdef CONFIG_LOCKDEP 3871 if (unlikely(!wq->lockdep_map)) 3872 return; 3873 3874 if (wq->flags & WQ_BH) 3875 local_bh_disable(); 3876 3877 lock_map_acquire(wq->lockdep_map); 3878 lock_map_release(wq->lockdep_map); 3879 3880 if (wq->flags & WQ_BH) 3881 local_bh_enable(); 3882 #endif 3883 } 3884 3885 static void touch_work_lockdep_map(struct work_struct *work, 3886 struct workqueue_struct *wq) 3887 { 3888 #ifdef CONFIG_LOCKDEP 3889 if (wq->flags & WQ_BH) 3890 local_bh_disable(); 3891 3892 lock_map_acquire(&work->lockdep_map); 3893 lock_map_release(&work->lockdep_map); 3894 3895 if (wq->flags & WQ_BH) 3896 local_bh_enable(); 3897 #endif 3898 } 3899 3900 /** 3901 * __flush_workqueue - ensure that any scheduled work has run to completion. 3902 * @wq: workqueue to flush 3903 * 3904 * This function sleeps until all work items which were queued on entry 3905 * have finished execution, but it is not livelocked by new incoming ones. 3906 */ 3907 void __flush_workqueue(struct workqueue_struct *wq) 3908 { 3909 struct wq_flusher this_flusher = { 3910 .list = LIST_HEAD_INIT(this_flusher.list), 3911 .flush_color = -1, 3912 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)), 3913 }; 3914 int next_color; 3915 3916 if (WARN_ON(!wq_online)) 3917 return; 3918 3919 touch_wq_lockdep_map(wq); 3920 3921 mutex_lock(&wq->mutex); 3922 3923 /* 3924 * Start-to-wait phase 3925 */ 3926 next_color = work_next_color(wq->work_color); 3927 3928 if (next_color != wq->flush_color) { 3929 /* 3930 * Color space is not full. The current work_color 3931 * becomes our flush_color and work_color is advanced 3932 * by one. 3933 */ 3934 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3935 this_flusher.flush_color = wq->work_color; 3936 wq->work_color = next_color; 3937 3938 if (!wq->first_flusher) { 3939 /* no flush in progress, become the first flusher */ 3940 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3941 3942 wq->first_flusher = &this_flusher; 3943 3944 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3945 wq->work_color)) { 3946 /* nothing to flush, done */ 3947 wq->flush_color = next_color; 3948 wq->first_flusher = NULL; 3949 goto out_unlock; 3950 } 3951 } else { 3952 /* wait in queue */ 3953 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3954 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3955 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3956 } 3957 } else { 3958 /* 3959 * Oops, color space is full, wait on overflow queue. 3960 * The next flush completion will assign us 3961 * flush_color and transfer to flusher_queue. 3962 */ 3963 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3964 } 3965 3966 check_flush_dependency(wq, NULL); 3967 3968 mutex_unlock(&wq->mutex); 3969 3970 wait_for_completion(&this_flusher.done); 3971 3972 /* 3973 * Wake-up-and-cascade phase 3974 * 3975 * First flushers are responsible for cascading flushes and 3976 * handling overflow. Non-first flushers can simply return. 3977 */ 3978 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3979 return; 3980 3981 mutex_lock(&wq->mutex); 3982 3983 /* we might have raced, check again with mutex held */ 3984 if (wq->first_flusher != &this_flusher) 3985 goto out_unlock; 3986 3987 WRITE_ONCE(wq->first_flusher, NULL); 3988 3989 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3990 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3991 3992 while (true) { 3993 struct wq_flusher *next, *tmp; 3994 3995 /* complete all the flushers sharing the current flush color */ 3996 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3997 if (next->flush_color != wq->flush_color) 3998 break; 3999 list_del_init(&next->list); 4000 complete(&next->done); 4001 } 4002 4003 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 4004 wq->flush_color != work_next_color(wq->work_color)); 4005 4006 /* this flush_color is finished, advance by one */ 4007 wq->flush_color = work_next_color(wq->flush_color); 4008 4009 /* one color has been freed, handle overflow queue */ 4010 if (!list_empty(&wq->flusher_overflow)) { 4011 /* 4012 * Assign the same color to all overflowed 4013 * flushers, advance work_color and append to 4014 * flusher_queue. This is the start-to-wait 4015 * phase for these overflowed flushers. 4016 */ 4017 list_for_each_entry(tmp, &wq->flusher_overflow, list) 4018 tmp->flush_color = wq->work_color; 4019 4020 wq->work_color = work_next_color(wq->work_color); 4021 4022 list_splice_tail_init(&wq->flusher_overflow, 4023 &wq->flusher_queue); 4024 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 4025 } 4026 4027 if (list_empty(&wq->flusher_queue)) { 4028 WARN_ON_ONCE(wq->flush_color != wq->work_color); 4029 break; 4030 } 4031 4032 /* 4033 * Need to flush more colors. Make the next flusher 4034 * the new first flusher and arm pwqs. 4035 */ 4036 WARN_ON_ONCE(wq->flush_color == wq->work_color); 4037 WARN_ON_ONCE(wq->flush_color != next->flush_color); 4038 4039 list_del_init(&next->list); 4040 wq->first_flusher = next; 4041 4042 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 4043 break; 4044 4045 /* 4046 * Meh... this color is already done, clear first 4047 * flusher and repeat cascading. 4048 */ 4049 wq->first_flusher = NULL; 4050 } 4051 4052 out_unlock: 4053 mutex_unlock(&wq->mutex); 4054 } 4055 EXPORT_SYMBOL(__flush_workqueue); 4056 4057 /** 4058 * drain_workqueue - drain a workqueue 4059 * @wq: workqueue to drain 4060 * 4061 * Wait until the workqueue becomes empty. While draining is in progress, 4062 * only chain queueing is allowed. IOW, only currently pending or running 4063 * work items on @wq can queue further work items on it. @wq is flushed 4064 * repeatedly until it becomes empty. The number of flushing is determined 4065 * by the depth of chaining and should be relatively short. Whine if it 4066 * takes too long. 4067 */ 4068 void drain_workqueue(struct workqueue_struct *wq) 4069 { 4070 unsigned int flush_cnt = 0; 4071 struct pool_workqueue *pwq; 4072 4073 /* 4074 * __queue_work() needs to test whether there are drainers, is much 4075 * hotter than drain_workqueue() and already looks at @wq->flags. 4076 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 4077 */ 4078 mutex_lock(&wq->mutex); 4079 if (!wq->nr_drainers++) 4080 wq->flags |= __WQ_DRAINING; 4081 mutex_unlock(&wq->mutex); 4082 reflush: 4083 __flush_workqueue(wq); 4084 4085 mutex_lock(&wq->mutex); 4086 4087 for_each_pwq(pwq, wq) { 4088 bool drained; 4089 4090 raw_spin_lock_irq(&pwq->pool->lock); 4091 drained = pwq_is_empty(pwq); 4092 raw_spin_unlock_irq(&pwq->pool->lock); 4093 4094 if (drained) 4095 continue; 4096 4097 if (++flush_cnt == 10 || 4098 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 4099 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 4100 wq->name, __func__, flush_cnt); 4101 4102 mutex_unlock(&wq->mutex); 4103 goto reflush; 4104 } 4105 4106 if (!--wq->nr_drainers) 4107 wq->flags &= ~__WQ_DRAINING; 4108 mutex_unlock(&wq->mutex); 4109 } 4110 EXPORT_SYMBOL_GPL(drain_workqueue); 4111 4112 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 4113 bool from_cancel) 4114 { 4115 struct worker *worker = NULL; 4116 struct worker_pool *pool; 4117 struct pool_workqueue *pwq; 4118 struct workqueue_struct *wq; 4119 4120 rcu_read_lock(); 4121 pool = get_work_pool(work); 4122 if (!pool) { 4123 rcu_read_unlock(); 4124 return false; 4125 } 4126 4127 raw_spin_lock_irq(&pool->lock); 4128 /* see the comment in try_to_grab_pending() with the same code */ 4129 pwq = get_work_pwq(work); 4130 if (pwq) { 4131 if (unlikely(pwq->pool != pool)) 4132 goto already_gone; 4133 } else { 4134 worker = find_worker_executing_work(pool, work); 4135 if (!worker) 4136 goto already_gone; 4137 pwq = worker->current_pwq; 4138 } 4139 4140 wq = pwq->wq; 4141 check_flush_dependency(wq, work); 4142 4143 insert_wq_barrier(pwq, barr, work, worker); 4144 raw_spin_unlock_irq(&pool->lock); 4145 4146 touch_work_lockdep_map(work, wq); 4147 4148 /* 4149 * Force a lock recursion deadlock when using flush_work() inside a 4150 * single-threaded or rescuer equipped workqueue. 4151 * 4152 * For single threaded workqueues the deadlock happens when the work 4153 * is after the work issuing the flush_work(). For rescuer equipped 4154 * workqueues the deadlock happens when the rescuer stalls, blocking 4155 * forward progress. 4156 */ 4157 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer)) 4158 touch_wq_lockdep_map(wq); 4159 4160 rcu_read_unlock(); 4161 return true; 4162 already_gone: 4163 raw_spin_unlock_irq(&pool->lock); 4164 rcu_read_unlock(); 4165 return false; 4166 } 4167 4168 static bool __flush_work(struct work_struct *work, bool from_cancel) 4169 { 4170 struct wq_barrier barr; 4171 unsigned long data; 4172 4173 if (WARN_ON(!wq_online)) 4174 return false; 4175 4176 if (WARN_ON(!work->func)) 4177 return false; 4178 4179 if (!start_flush_work(work, &barr, from_cancel)) 4180 return false; 4181 4182 /* 4183 * start_flush_work() returned %true. If @from_cancel is set, we know 4184 * that @work must have been executing during start_flush_work() and 4185 * can't currently be queued. Its data must contain OFFQ bits. If @work 4186 * was queued on a BH workqueue, we also know that it was running in the 4187 * BH context and thus can be busy-waited. 4188 */ 4189 data = *work_data_bits(work); 4190 if (from_cancel && 4191 !WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_BH)) { 4192 /* 4193 * On RT, prevent a live lock when %current preempted soft 4194 * interrupt processing or prevents ksoftirqd from running by 4195 * keeping flipping BH. If the BH work item runs on a different 4196 * CPU then this has no effect other than doing the BH 4197 * disable/enable dance for nothing. This is copied from 4198 * kernel/softirq.c::tasklet_unlock_spin_wait(). 4199 */ 4200 while (!try_wait_for_completion(&barr.done)) { 4201 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4202 local_bh_disable(); 4203 local_bh_enable(); 4204 } else { 4205 cpu_relax(); 4206 } 4207 } 4208 } else { 4209 wait_for_completion(&barr.done); 4210 } 4211 4212 destroy_work_on_stack(&barr.work); 4213 return true; 4214 } 4215 4216 /** 4217 * flush_work - wait for a work to finish executing the last queueing instance 4218 * @work: the work to flush 4219 * 4220 * Wait until @work has finished execution. @work is guaranteed to be idle 4221 * on return if it hasn't been requeued since flush started. 4222 * 4223 * Return: 4224 * %true if flush_work() waited for the work to finish execution, 4225 * %false if it was already idle. 4226 */ 4227 bool flush_work(struct work_struct *work) 4228 { 4229 might_sleep(); 4230 return __flush_work(work, false); 4231 } 4232 EXPORT_SYMBOL_GPL(flush_work); 4233 4234 /** 4235 * flush_delayed_work - wait for a dwork to finish executing the last queueing 4236 * @dwork: the delayed work to flush 4237 * 4238 * Delayed timer is cancelled and the pending work is queued for 4239 * immediate execution. Like flush_work(), this function only 4240 * considers the last queueing instance of @dwork. 4241 * 4242 * Return: 4243 * %true if flush_work() waited for the work to finish execution, 4244 * %false if it was already idle. 4245 */ 4246 bool flush_delayed_work(struct delayed_work *dwork) 4247 { 4248 local_irq_disable(); 4249 if (del_timer_sync(&dwork->timer)) 4250 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 4251 local_irq_enable(); 4252 return flush_work(&dwork->work); 4253 } 4254 EXPORT_SYMBOL(flush_delayed_work); 4255 4256 /** 4257 * flush_rcu_work - wait for a rwork to finish executing the last queueing 4258 * @rwork: the rcu work to flush 4259 * 4260 * Return: 4261 * %true if flush_rcu_work() waited for the work to finish execution, 4262 * %false if it was already idle. 4263 */ 4264 bool flush_rcu_work(struct rcu_work *rwork) 4265 { 4266 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 4267 rcu_barrier(); 4268 flush_work(&rwork->work); 4269 return true; 4270 } else { 4271 return flush_work(&rwork->work); 4272 } 4273 } 4274 EXPORT_SYMBOL(flush_rcu_work); 4275 4276 static void work_offqd_disable(struct work_offq_data *offqd) 4277 { 4278 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1; 4279 4280 if (likely(offqd->disable < max)) 4281 offqd->disable++; 4282 else 4283 WARN_ONCE(true, "workqueue: work disable count overflowed\n"); 4284 } 4285 4286 static void work_offqd_enable(struct work_offq_data *offqd) 4287 { 4288 if (likely(offqd->disable > 0)) 4289 offqd->disable--; 4290 else 4291 WARN_ONCE(true, "workqueue: work disable count underflowed\n"); 4292 } 4293 4294 static bool __cancel_work(struct work_struct *work, u32 cflags) 4295 { 4296 struct work_offq_data offqd; 4297 unsigned long irq_flags; 4298 int ret; 4299 4300 ret = work_grab_pending(work, cflags, &irq_flags); 4301 4302 work_offqd_unpack(&offqd, *work_data_bits(work)); 4303 4304 if (cflags & WORK_CANCEL_DISABLE) 4305 work_offqd_disable(&offqd); 4306 4307 set_work_pool_and_clear_pending(work, offqd.pool_id, 4308 work_offqd_pack_flags(&offqd)); 4309 local_irq_restore(irq_flags); 4310 return ret; 4311 } 4312 4313 static bool __cancel_work_sync(struct work_struct *work, u32 cflags) 4314 { 4315 bool ret; 4316 4317 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE); 4318 4319 if (*work_data_bits(work) & WORK_OFFQ_BH) 4320 WARN_ON_ONCE(in_hardirq()); 4321 else 4322 might_sleep(); 4323 4324 /* 4325 * Skip __flush_work() during early boot when we know that @work isn't 4326 * executing. This allows canceling during early boot. 4327 */ 4328 if (wq_online) 4329 __flush_work(work, true); 4330 4331 if (!(cflags & WORK_CANCEL_DISABLE)) 4332 enable_work(work); 4333 4334 return ret; 4335 } 4336 4337 /* 4338 * See cancel_delayed_work() 4339 */ 4340 bool cancel_work(struct work_struct *work) 4341 { 4342 return __cancel_work(work, 0); 4343 } 4344 EXPORT_SYMBOL(cancel_work); 4345 4346 /** 4347 * cancel_work_sync - cancel a work and wait for it to finish 4348 * @work: the work to cancel 4349 * 4350 * Cancel @work and wait for its execution to finish. This function can be used 4351 * even if the work re-queues itself or migrates to another workqueue. On return 4352 * from this function, @work is guaranteed to be not pending or executing on any 4353 * CPU as long as there aren't racing enqueues. 4354 * 4355 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's. 4356 * Use cancel_delayed_work_sync() instead. 4357 * 4358 * Must be called from a sleepable context if @work was last queued on a non-BH 4359 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4360 * if @work was last queued on a BH workqueue. 4361 * 4362 * Returns %true if @work was pending, %false otherwise. 4363 */ 4364 bool cancel_work_sync(struct work_struct *work) 4365 { 4366 return __cancel_work_sync(work, 0); 4367 } 4368 EXPORT_SYMBOL_GPL(cancel_work_sync); 4369 4370 /** 4371 * cancel_delayed_work - cancel a delayed work 4372 * @dwork: delayed_work to cancel 4373 * 4374 * Kill off a pending delayed_work. 4375 * 4376 * Return: %true if @dwork was pending and canceled; %false if it wasn't 4377 * pending. 4378 * 4379 * Note: 4380 * The work callback function may still be running on return, unless 4381 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 4382 * use cancel_delayed_work_sync() to wait on it. 4383 * 4384 * This function is safe to call from any context including IRQ handler. 4385 */ 4386 bool cancel_delayed_work(struct delayed_work *dwork) 4387 { 4388 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED); 4389 } 4390 EXPORT_SYMBOL(cancel_delayed_work); 4391 4392 /** 4393 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 4394 * @dwork: the delayed work cancel 4395 * 4396 * This is cancel_work_sync() for delayed works. 4397 * 4398 * Return: 4399 * %true if @dwork was pending, %false otherwise. 4400 */ 4401 bool cancel_delayed_work_sync(struct delayed_work *dwork) 4402 { 4403 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED); 4404 } 4405 EXPORT_SYMBOL(cancel_delayed_work_sync); 4406 4407 /** 4408 * disable_work - Disable and cancel a work item 4409 * @work: work item to disable 4410 * 4411 * Disable @work by incrementing its disable count and cancel it if currently 4412 * pending. As long as the disable count is non-zero, any attempt to queue @work 4413 * will fail and return %false. The maximum supported disable depth is 2 to the 4414 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536. 4415 * 4416 * Can be called from any context. Returns %true if @work was pending, %false 4417 * otherwise. 4418 */ 4419 bool disable_work(struct work_struct *work) 4420 { 4421 return __cancel_work(work, WORK_CANCEL_DISABLE); 4422 } 4423 EXPORT_SYMBOL_GPL(disable_work); 4424 4425 /** 4426 * disable_work_sync - Disable, cancel and drain a work item 4427 * @work: work item to disable 4428 * 4429 * Similar to disable_work() but also wait for @work to finish if currently 4430 * executing. 4431 * 4432 * Must be called from a sleepable context if @work was last queued on a non-BH 4433 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4434 * if @work was last queued on a BH workqueue. 4435 * 4436 * Returns %true if @work was pending, %false otherwise. 4437 */ 4438 bool disable_work_sync(struct work_struct *work) 4439 { 4440 return __cancel_work_sync(work, WORK_CANCEL_DISABLE); 4441 } 4442 EXPORT_SYMBOL_GPL(disable_work_sync); 4443 4444 /** 4445 * enable_work - Enable a work item 4446 * @work: work item to enable 4447 * 4448 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can 4449 * only be queued if its disable count is 0. 4450 * 4451 * Can be called from any context. Returns %true if the disable count reached 0. 4452 * Otherwise, %false. 4453 */ 4454 bool enable_work(struct work_struct *work) 4455 { 4456 struct work_offq_data offqd; 4457 unsigned long irq_flags; 4458 4459 work_grab_pending(work, 0, &irq_flags); 4460 4461 work_offqd_unpack(&offqd, *work_data_bits(work)); 4462 work_offqd_enable(&offqd); 4463 set_work_pool_and_clear_pending(work, offqd.pool_id, 4464 work_offqd_pack_flags(&offqd)); 4465 local_irq_restore(irq_flags); 4466 4467 return !offqd.disable; 4468 } 4469 EXPORT_SYMBOL_GPL(enable_work); 4470 4471 /** 4472 * disable_delayed_work - Disable and cancel a delayed work item 4473 * @dwork: delayed work item to disable 4474 * 4475 * disable_work() for delayed work items. 4476 */ 4477 bool disable_delayed_work(struct delayed_work *dwork) 4478 { 4479 return __cancel_work(&dwork->work, 4480 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4481 } 4482 EXPORT_SYMBOL_GPL(disable_delayed_work); 4483 4484 /** 4485 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item 4486 * @dwork: delayed work item to disable 4487 * 4488 * disable_work_sync() for delayed work items. 4489 */ 4490 bool disable_delayed_work_sync(struct delayed_work *dwork) 4491 { 4492 return __cancel_work_sync(&dwork->work, 4493 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4494 } 4495 EXPORT_SYMBOL_GPL(disable_delayed_work_sync); 4496 4497 /** 4498 * enable_delayed_work - Enable a delayed work item 4499 * @dwork: delayed work item to enable 4500 * 4501 * enable_work() for delayed work items. 4502 */ 4503 bool enable_delayed_work(struct delayed_work *dwork) 4504 { 4505 return enable_work(&dwork->work); 4506 } 4507 EXPORT_SYMBOL_GPL(enable_delayed_work); 4508 4509 /** 4510 * schedule_on_each_cpu - execute a function synchronously on each online CPU 4511 * @func: the function to call 4512 * 4513 * schedule_on_each_cpu() executes @func on each online CPU using the 4514 * system workqueue and blocks until all CPUs have completed. 4515 * schedule_on_each_cpu() is very slow. 4516 * 4517 * Return: 4518 * 0 on success, -errno on failure. 4519 */ 4520 int schedule_on_each_cpu(work_func_t func) 4521 { 4522 int cpu; 4523 struct work_struct __percpu *works; 4524 4525 works = alloc_percpu(struct work_struct); 4526 if (!works) 4527 return -ENOMEM; 4528 4529 cpus_read_lock(); 4530 4531 for_each_online_cpu(cpu) { 4532 struct work_struct *work = per_cpu_ptr(works, cpu); 4533 4534 INIT_WORK(work, func); 4535 schedule_work_on(cpu, work); 4536 } 4537 4538 for_each_online_cpu(cpu) 4539 flush_work(per_cpu_ptr(works, cpu)); 4540 4541 cpus_read_unlock(); 4542 free_percpu(works); 4543 return 0; 4544 } 4545 4546 /** 4547 * execute_in_process_context - reliably execute the routine with user context 4548 * @fn: the function to execute 4549 * @ew: guaranteed storage for the execute work structure (must 4550 * be available when the work executes) 4551 * 4552 * Executes the function immediately if process context is available, 4553 * otherwise schedules the function for delayed execution. 4554 * 4555 * Return: 0 - function was executed 4556 * 1 - function was scheduled for execution 4557 */ 4558 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 4559 { 4560 if (!in_interrupt()) { 4561 fn(&ew->work); 4562 return 0; 4563 } 4564 4565 INIT_WORK(&ew->work, fn); 4566 schedule_work(&ew->work); 4567 4568 return 1; 4569 } 4570 EXPORT_SYMBOL_GPL(execute_in_process_context); 4571 4572 /** 4573 * free_workqueue_attrs - free a workqueue_attrs 4574 * @attrs: workqueue_attrs to free 4575 * 4576 * Undo alloc_workqueue_attrs(). 4577 */ 4578 void free_workqueue_attrs(struct workqueue_attrs *attrs) 4579 { 4580 if (attrs) { 4581 free_cpumask_var(attrs->cpumask); 4582 free_cpumask_var(attrs->__pod_cpumask); 4583 kfree(attrs); 4584 } 4585 } 4586 4587 /** 4588 * alloc_workqueue_attrs - allocate a workqueue_attrs 4589 * 4590 * Allocate a new workqueue_attrs, initialize with default settings and 4591 * return it. 4592 * 4593 * Return: The allocated new workqueue_attr on success. %NULL on failure. 4594 */ 4595 struct workqueue_attrs *alloc_workqueue_attrs(void) 4596 { 4597 struct workqueue_attrs *attrs; 4598 4599 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 4600 if (!attrs) 4601 goto fail; 4602 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 4603 goto fail; 4604 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 4605 goto fail; 4606 4607 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4608 attrs->affn_scope = WQ_AFFN_DFL; 4609 return attrs; 4610 fail: 4611 free_workqueue_attrs(attrs); 4612 return NULL; 4613 } 4614 4615 static void copy_workqueue_attrs(struct workqueue_attrs *to, 4616 const struct workqueue_attrs *from) 4617 { 4618 to->nice = from->nice; 4619 cpumask_copy(to->cpumask, from->cpumask); 4620 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 4621 to->affn_strict = from->affn_strict; 4622 4623 /* 4624 * Unlike hash and equality test, copying shouldn't ignore wq-only 4625 * fields as copying is used for both pool and wq attrs. Instead, 4626 * get_unbound_pool() explicitly clears the fields. 4627 */ 4628 to->affn_scope = from->affn_scope; 4629 to->ordered = from->ordered; 4630 } 4631 4632 /* 4633 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 4634 * comments in 'struct workqueue_attrs' definition. 4635 */ 4636 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 4637 { 4638 attrs->affn_scope = WQ_AFFN_NR_TYPES; 4639 attrs->ordered = false; 4640 if (attrs->affn_strict) 4641 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4642 } 4643 4644 /* hash value of the content of @attr */ 4645 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 4646 { 4647 u32 hash = 0; 4648 4649 hash = jhash_1word(attrs->nice, hash); 4650 hash = jhash_1word(attrs->affn_strict, hash); 4651 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 4652 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4653 if (!attrs->affn_strict) 4654 hash = jhash(cpumask_bits(attrs->cpumask), 4655 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4656 return hash; 4657 } 4658 4659 /* content equality test */ 4660 static bool wqattrs_equal(const struct workqueue_attrs *a, 4661 const struct workqueue_attrs *b) 4662 { 4663 if (a->nice != b->nice) 4664 return false; 4665 if (a->affn_strict != b->affn_strict) 4666 return false; 4667 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 4668 return false; 4669 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask)) 4670 return false; 4671 return true; 4672 } 4673 4674 /* Update @attrs with actually available CPUs */ 4675 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 4676 const cpumask_t *unbound_cpumask) 4677 { 4678 /* 4679 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 4680 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 4681 * @unbound_cpumask. 4682 */ 4683 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 4684 if (unlikely(cpumask_empty(attrs->cpumask))) 4685 cpumask_copy(attrs->cpumask, unbound_cpumask); 4686 } 4687 4688 /* find wq_pod_type to use for @attrs */ 4689 static const struct wq_pod_type * 4690 wqattrs_pod_type(const struct workqueue_attrs *attrs) 4691 { 4692 enum wq_affn_scope scope; 4693 struct wq_pod_type *pt; 4694 4695 /* to synchronize access to wq_affn_dfl */ 4696 lockdep_assert_held(&wq_pool_mutex); 4697 4698 if (attrs->affn_scope == WQ_AFFN_DFL) 4699 scope = wq_affn_dfl; 4700 else 4701 scope = attrs->affn_scope; 4702 4703 pt = &wq_pod_types[scope]; 4704 4705 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 4706 likely(pt->nr_pods)) 4707 return pt; 4708 4709 /* 4710 * Before workqueue_init_topology(), only SYSTEM is available which is 4711 * initialized in workqueue_init_early(). 4712 */ 4713 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 4714 BUG_ON(!pt->nr_pods); 4715 return pt; 4716 } 4717 4718 /** 4719 * init_worker_pool - initialize a newly zalloc'd worker_pool 4720 * @pool: worker_pool to initialize 4721 * 4722 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 4723 * 4724 * Return: 0 on success, -errno on failure. Even on failure, all fields 4725 * inside @pool proper are initialized and put_unbound_pool() can be called 4726 * on @pool safely to release it. 4727 */ 4728 static int init_worker_pool(struct worker_pool *pool) 4729 { 4730 raw_spin_lock_init(&pool->lock); 4731 pool->id = -1; 4732 pool->cpu = -1; 4733 pool->node = NUMA_NO_NODE; 4734 pool->flags |= POOL_DISASSOCIATED; 4735 pool->watchdog_ts = jiffies; 4736 INIT_LIST_HEAD(&pool->worklist); 4737 INIT_LIST_HEAD(&pool->idle_list); 4738 hash_init(pool->busy_hash); 4739 4740 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 4741 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 4742 4743 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 4744 4745 INIT_LIST_HEAD(&pool->workers); 4746 4747 ida_init(&pool->worker_ida); 4748 INIT_HLIST_NODE(&pool->hash_node); 4749 pool->refcnt = 1; 4750 4751 /* shouldn't fail above this point */ 4752 pool->attrs = alloc_workqueue_attrs(); 4753 if (!pool->attrs) 4754 return -ENOMEM; 4755 4756 wqattrs_clear_for_pool(pool->attrs); 4757 4758 return 0; 4759 } 4760 4761 #ifdef CONFIG_LOCKDEP 4762 static void wq_init_lockdep(struct workqueue_struct *wq) 4763 { 4764 char *lock_name; 4765 4766 lockdep_register_key(&wq->key); 4767 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 4768 if (!lock_name) 4769 lock_name = wq->name; 4770 4771 wq->lock_name = lock_name; 4772 wq->lockdep_map = &wq->__lockdep_map; 4773 lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0); 4774 } 4775 4776 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4777 { 4778 if (wq->lockdep_map != &wq->__lockdep_map) 4779 return; 4780 4781 lockdep_unregister_key(&wq->key); 4782 } 4783 4784 static void wq_free_lockdep(struct workqueue_struct *wq) 4785 { 4786 if (wq->lockdep_map != &wq->__lockdep_map) 4787 return; 4788 4789 if (wq->lock_name != wq->name) 4790 kfree(wq->lock_name); 4791 } 4792 #else 4793 static void wq_init_lockdep(struct workqueue_struct *wq) 4794 { 4795 } 4796 4797 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4798 { 4799 } 4800 4801 static void wq_free_lockdep(struct workqueue_struct *wq) 4802 { 4803 } 4804 #endif 4805 4806 static void free_node_nr_active(struct wq_node_nr_active **nna_ar) 4807 { 4808 int node; 4809 4810 for_each_node(node) { 4811 kfree(nna_ar[node]); 4812 nna_ar[node] = NULL; 4813 } 4814 4815 kfree(nna_ar[nr_node_ids]); 4816 nna_ar[nr_node_ids] = NULL; 4817 } 4818 4819 static void init_node_nr_active(struct wq_node_nr_active *nna) 4820 { 4821 nna->max = WQ_DFL_MIN_ACTIVE; 4822 atomic_set(&nna->nr, 0); 4823 raw_spin_lock_init(&nna->lock); 4824 INIT_LIST_HEAD(&nna->pending_pwqs); 4825 } 4826 4827 /* 4828 * Each node's nr_active counter will be accessed mostly from its own node and 4829 * should be allocated in the node. 4830 */ 4831 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) 4832 { 4833 struct wq_node_nr_active *nna; 4834 int node; 4835 4836 for_each_node(node) { 4837 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node); 4838 if (!nna) 4839 goto err_free; 4840 init_node_nr_active(nna); 4841 nna_ar[node] = nna; 4842 } 4843 4844 /* [nr_node_ids] is used as the fallback */ 4845 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); 4846 if (!nna) 4847 goto err_free; 4848 init_node_nr_active(nna); 4849 nna_ar[nr_node_ids] = nna; 4850 4851 return 0; 4852 4853 err_free: 4854 free_node_nr_active(nna_ar); 4855 return -ENOMEM; 4856 } 4857 4858 static void rcu_free_wq(struct rcu_head *rcu) 4859 { 4860 struct workqueue_struct *wq = 4861 container_of(rcu, struct workqueue_struct, rcu); 4862 4863 if (wq->flags & WQ_UNBOUND) 4864 free_node_nr_active(wq->node_nr_active); 4865 4866 wq_free_lockdep(wq); 4867 free_percpu(wq->cpu_pwq); 4868 free_workqueue_attrs(wq->unbound_attrs); 4869 kfree(wq); 4870 } 4871 4872 static void rcu_free_pool(struct rcu_head *rcu) 4873 { 4874 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 4875 4876 ida_destroy(&pool->worker_ida); 4877 free_workqueue_attrs(pool->attrs); 4878 kfree(pool); 4879 } 4880 4881 /** 4882 * put_unbound_pool - put a worker_pool 4883 * @pool: worker_pool to put 4884 * 4885 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 4886 * safe manner. get_unbound_pool() calls this function on its failure path 4887 * and this function should be able to release pools which went through, 4888 * successfully or not, init_worker_pool(). 4889 * 4890 * Should be called with wq_pool_mutex held. 4891 */ 4892 static void put_unbound_pool(struct worker_pool *pool) 4893 { 4894 struct worker *worker; 4895 LIST_HEAD(cull_list); 4896 4897 lockdep_assert_held(&wq_pool_mutex); 4898 4899 if (--pool->refcnt) 4900 return; 4901 4902 /* sanity checks */ 4903 if (WARN_ON(!(pool->cpu < 0)) || 4904 WARN_ON(!list_empty(&pool->worklist))) 4905 return; 4906 4907 /* release id and unhash */ 4908 if (pool->id >= 0) 4909 idr_remove(&worker_pool_idr, pool->id); 4910 hash_del(&pool->hash_node); 4911 4912 /* 4913 * Become the manager and destroy all workers. This prevents 4914 * @pool's workers from blocking on attach_mutex. We're the last 4915 * manager and @pool gets freed with the flag set. 4916 * 4917 * Having a concurrent manager is quite unlikely to happen as we can 4918 * only get here with 4919 * pwq->refcnt == pool->refcnt == 0 4920 * which implies no work queued to the pool, which implies no worker can 4921 * become the manager. However a worker could have taken the role of 4922 * manager before the refcnts dropped to 0, since maybe_create_worker() 4923 * drops pool->lock 4924 */ 4925 while (true) { 4926 rcuwait_wait_event(&manager_wait, 4927 !(pool->flags & POOL_MANAGER_ACTIVE), 4928 TASK_UNINTERRUPTIBLE); 4929 4930 mutex_lock(&wq_pool_attach_mutex); 4931 raw_spin_lock_irq(&pool->lock); 4932 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4933 pool->flags |= POOL_MANAGER_ACTIVE; 4934 break; 4935 } 4936 raw_spin_unlock_irq(&pool->lock); 4937 mutex_unlock(&wq_pool_attach_mutex); 4938 } 4939 4940 while ((worker = first_idle_worker(pool))) 4941 set_worker_dying(worker, &cull_list); 4942 WARN_ON(pool->nr_workers || pool->nr_idle); 4943 raw_spin_unlock_irq(&pool->lock); 4944 4945 detach_dying_workers(&cull_list); 4946 4947 mutex_unlock(&wq_pool_attach_mutex); 4948 4949 reap_dying_workers(&cull_list); 4950 4951 /* shut down the timers */ 4952 del_timer_sync(&pool->idle_timer); 4953 cancel_work_sync(&pool->idle_cull_work); 4954 del_timer_sync(&pool->mayday_timer); 4955 4956 /* RCU protected to allow dereferences from get_work_pool() */ 4957 call_rcu(&pool->rcu, rcu_free_pool); 4958 } 4959 4960 /** 4961 * get_unbound_pool - get a worker_pool with the specified attributes 4962 * @attrs: the attributes of the worker_pool to get 4963 * 4964 * Obtain a worker_pool which has the same attributes as @attrs, bump the 4965 * reference count and return it. If there already is a matching 4966 * worker_pool, it will be used; otherwise, this function attempts to 4967 * create a new one. 4968 * 4969 * Should be called with wq_pool_mutex held. 4970 * 4971 * Return: On success, a worker_pool with the same attributes as @attrs. 4972 * On failure, %NULL. 4973 */ 4974 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 4975 { 4976 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 4977 u32 hash = wqattrs_hash(attrs); 4978 struct worker_pool *pool; 4979 int pod, node = NUMA_NO_NODE; 4980 4981 lockdep_assert_held(&wq_pool_mutex); 4982 4983 /* do we already have a matching pool? */ 4984 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 4985 if (wqattrs_equal(pool->attrs, attrs)) { 4986 pool->refcnt++; 4987 return pool; 4988 } 4989 } 4990 4991 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 4992 for (pod = 0; pod < pt->nr_pods; pod++) { 4993 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 4994 node = pt->pod_node[pod]; 4995 break; 4996 } 4997 } 4998 4999 /* nope, create a new one */ 5000 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 5001 if (!pool || init_worker_pool(pool) < 0) 5002 goto fail; 5003 5004 pool->node = node; 5005 copy_workqueue_attrs(pool->attrs, attrs); 5006 wqattrs_clear_for_pool(pool->attrs); 5007 5008 if (worker_pool_assign_id(pool) < 0) 5009 goto fail; 5010 5011 /* create and start the initial worker */ 5012 if (wq_online && !create_worker(pool)) 5013 goto fail; 5014 5015 /* install */ 5016 hash_add(unbound_pool_hash, &pool->hash_node, hash); 5017 5018 return pool; 5019 fail: 5020 if (pool) 5021 put_unbound_pool(pool); 5022 return NULL; 5023 } 5024 5025 /* 5026 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 5027 * refcnt and needs to be destroyed. 5028 */ 5029 static void pwq_release_workfn(struct kthread_work *work) 5030 { 5031 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 5032 release_work); 5033 struct workqueue_struct *wq = pwq->wq; 5034 struct worker_pool *pool = pwq->pool; 5035 bool is_last = false; 5036 5037 /* 5038 * When @pwq is not linked, it doesn't hold any reference to the 5039 * @wq, and @wq is invalid to access. 5040 */ 5041 if (!list_empty(&pwq->pwqs_node)) { 5042 mutex_lock(&wq->mutex); 5043 list_del_rcu(&pwq->pwqs_node); 5044 is_last = list_empty(&wq->pwqs); 5045 5046 /* 5047 * For ordered workqueue with a plugged dfl_pwq, restart it now. 5048 */ 5049 if (!is_last && (wq->flags & __WQ_ORDERED)) 5050 unplug_oldest_pwq(wq); 5051 5052 mutex_unlock(&wq->mutex); 5053 } 5054 5055 if (wq->flags & WQ_UNBOUND) { 5056 mutex_lock(&wq_pool_mutex); 5057 put_unbound_pool(pool); 5058 mutex_unlock(&wq_pool_mutex); 5059 } 5060 5061 if (!list_empty(&pwq->pending_node)) { 5062 struct wq_node_nr_active *nna = 5063 wq_node_nr_active(pwq->wq, pwq->pool->node); 5064 5065 raw_spin_lock_irq(&nna->lock); 5066 list_del_init(&pwq->pending_node); 5067 raw_spin_unlock_irq(&nna->lock); 5068 } 5069 5070 kfree_rcu(pwq, rcu); 5071 5072 /* 5073 * If we're the last pwq going away, @wq is already dead and no one 5074 * is gonna access it anymore. Schedule RCU free. 5075 */ 5076 if (is_last) { 5077 wq_unregister_lockdep(wq); 5078 call_rcu(&wq->rcu, rcu_free_wq); 5079 } 5080 } 5081 5082 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 5083 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 5084 struct worker_pool *pool) 5085 { 5086 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK); 5087 5088 memset(pwq, 0, sizeof(*pwq)); 5089 5090 pwq->pool = pool; 5091 pwq->wq = wq; 5092 pwq->flush_color = -1; 5093 pwq->refcnt = 1; 5094 INIT_LIST_HEAD(&pwq->inactive_works); 5095 INIT_LIST_HEAD(&pwq->pending_node); 5096 INIT_LIST_HEAD(&pwq->pwqs_node); 5097 INIT_LIST_HEAD(&pwq->mayday_node); 5098 kthread_init_work(&pwq->release_work, pwq_release_workfn); 5099 } 5100 5101 /* sync @pwq with the current state of its associated wq and link it */ 5102 static void link_pwq(struct pool_workqueue *pwq) 5103 { 5104 struct workqueue_struct *wq = pwq->wq; 5105 5106 lockdep_assert_held(&wq->mutex); 5107 5108 /* may be called multiple times, ignore if already linked */ 5109 if (!list_empty(&pwq->pwqs_node)) 5110 return; 5111 5112 /* set the matching work_color */ 5113 pwq->work_color = wq->work_color; 5114 5115 /* link in @pwq */ 5116 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs); 5117 } 5118 5119 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 5120 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 5121 const struct workqueue_attrs *attrs) 5122 { 5123 struct worker_pool *pool; 5124 struct pool_workqueue *pwq; 5125 5126 lockdep_assert_held(&wq_pool_mutex); 5127 5128 pool = get_unbound_pool(attrs); 5129 if (!pool) 5130 return NULL; 5131 5132 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 5133 if (!pwq) { 5134 put_unbound_pool(pool); 5135 return NULL; 5136 } 5137 5138 init_pwq(pwq, wq, pool); 5139 return pwq; 5140 } 5141 5142 static void apply_wqattrs_lock(void) 5143 { 5144 mutex_lock(&wq_pool_mutex); 5145 } 5146 5147 static void apply_wqattrs_unlock(void) 5148 { 5149 mutex_unlock(&wq_pool_mutex); 5150 } 5151 5152 /** 5153 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 5154 * @attrs: the wq_attrs of the default pwq of the target workqueue 5155 * @cpu: the target CPU 5156 * 5157 * Calculate the cpumask a workqueue with @attrs should use on @pod. 5158 * The result is stored in @attrs->__pod_cpumask. 5159 * 5160 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 5161 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 5162 * intersection of the possible CPUs of @pod and @attrs->cpumask. 5163 * 5164 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 5165 */ 5166 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu) 5167 { 5168 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5169 int pod = pt->cpu_pod[cpu]; 5170 5171 /* calculate possible CPUs in @pod that @attrs wants */ 5172 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 5173 /* does @pod have any online CPUs @attrs wants? */ 5174 if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) { 5175 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 5176 return; 5177 } 5178 } 5179 5180 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ 5181 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 5182 int cpu, struct pool_workqueue *pwq) 5183 { 5184 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); 5185 struct pool_workqueue *old_pwq; 5186 5187 lockdep_assert_held(&wq_pool_mutex); 5188 lockdep_assert_held(&wq->mutex); 5189 5190 /* link_pwq() can handle duplicate calls */ 5191 link_pwq(pwq); 5192 5193 old_pwq = rcu_access_pointer(*slot); 5194 rcu_assign_pointer(*slot, pwq); 5195 return old_pwq; 5196 } 5197 5198 /* context to store the prepared attrs & pwqs before applying */ 5199 struct apply_wqattrs_ctx { 5200 struct workqueue_struct *wq; /* target workqueue */ 5201 struct workqueue_attrs *attrs; /* attrs to apply */ 5202 struct list_head list; /* queued for batching commit */ 5203 struct pool_workqueue *dfl_pwq; 5204 struct pool_workqueue *pwq_tbl[]; 5205 }; 5206 5207 /* free the resources after success or abort */ 5208 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 5209 { 5210 if (ctx) { 5211 int cpu; 5212 5213 for_each_possible_cpu(cpu) 5214 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 5215 put_pwq_unlocked(ctx->dfl_pwq); 5216 5217 free_workqueue_attrs(ctx->attrs); 5218 5219 kfree(ctx); 5220 } 5221 } 5222 5223 /* allocate the attrs and pwqs for later installation */ 5224 static struct apply_wqattrs_ctx * 5225 apply_wqattrs_prepare(struct workqueue_struct *wq, 5226 const struct workqueue_attrs *attrs, 5227 const cpumask_var_t unbound_cpumask) 5228 { 5229 struct apply_wqattrs_ctx *ctx; 5230 struct workqueue_attrs *new_attrs; 5231 int cpu; 5232 5233 lockdep_assert_held(&wq_pool_mutex); 5234 5235 if (WARN_ON(attrs->affn_scope < 0 || 5236 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 5237 return ERR_PTR(-EINVAL); 5238 5239 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 5240 5241 new_attrs = alloc_workqueue_attrs(); 5242 if (!ctx || !new_attrs) 5243 goto out_free; 5244 5245 /* 5246 * If something goes wrong during CPU up/down, we'll fall back to 5247 * the default pwq covering whole @attrs->cpumask. Always create 5248 * it even if we don't use it immediately. 5249 */ 5250 copy_workqueue_attrs(new_attrs, attrs); 5251 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 5252 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5253 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 5254 if (!ctx->dfl_pwq) 5255 goto out_free; 5256 5257 for_each_possible_cpu(cpu) { 5258 if (new_attrs->ordered) { 5259 ctx->dfl_pwq->refcnt++; 5260 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 5261 } else { 5262 wq_calc_pod_cpumask(new_attrs, cpu); 5263 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 5264 if (!ctx->pwq_tbl[cpu]) 5265 goto out_free; 5266 } 5267 } 5268 5269 /* save the user configured attrs and sanitize it. */ 5270 copy_workqueue_attrs(new_attrs, attrs); 5271 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 5272 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5273 ctx->attrs = new_attrs; 5274 5275 /* 5276 * For initialized ordered workqueues, there should only be one pwq 5277 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution 5278 * of newly queued work items until execution of older work items in 5279 * the old pwq's have completed. 5280 */ 5281 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)) 5282 ctx->dfl_pwq->plugged = true; 5283 5284 ctx->wq = wq; 5285 return ctx; 5286 5287 out_free: 5288 free_workqueue_attrs(new_attrs); 5289 apply_wqattrs_cleanup(ctx); 5290 return ERR_PTR(-ENOMEM); 5291 } 5292 5293 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 5294 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 5295 { 5296 int cpu; 5297 5298 /* all pwqs have been created successfully, let's install'em */ 5299 mutex_lock(&ctx->wq->mutex); 5300 5301 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 5302 5303 /* save the previous pwqs and install the new ones */ 5304 for_each_possible_cpu(cpu) 5305 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 5306 ctx->pwq_tbl[cpu]); 5307 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq); 5308 5309 /* update node_nr_active->max */ 5310 wq_update_node_max_active(ctx->wq, -1); 5311 5312 /* rescuer needs to respect wq cpumask changes */ 5313 if (ctx->wq->rescuer) 5314 set_cpus_allowed_ptr(ctx->wq->rescuer->task, 5315 unbound_effective_cpumask(ctx->wq)); 5316 5317 mutex_unlock(&ctx->wq->mutex); 5318 } 5319 5320 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 5321 const struct workqueue_attrs *attrs) 5322 { 5323 struct apply_wqattrs_ctx *ctx; 5324 5325 /* only unbound workqueues can change attributes */ 5326 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 5327 return -EINVAL; 5328 5329 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 5330 if (IS_ERR(ctx)) 5331 return PTR_ERR(ctx); 5332 5333 /* the ctx has been prepared successfully, let's commit it */ 5334 apply_wqattrs_commit(ctx); 5335 apply_wqattrs_cleanup(ctx); 5336 5337 return 0; 5338 } 5339 5340 /** 5341 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 5342 * @wq: the target workqueue 5343 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 5344 * 5345 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 5346 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 5347 * work items are affine to the pod it was issued on. Older pwqs are released as 5348 * in-flight work items finish. Note that a work item which repeatedly requeues 5349 * itself back-to-back will stay on its current pwq. 5350 * 5351 * Performs GFP_KERNEL allocations. 5352 * 5353 * Return: 0 on success and -errno on failure. 5354 */ 5355 int apply_workqueue_attrs(struct workqueue_struct *wq, 5356 const struct workqueue_attrs *attrs) 5357 { 5358 int ret; 5359 5360 mutex_lock(&wq_pool_mutex); 5361 ret = apply_workqueue_attrs_locked(wq, attrs); 5362 mutex_unlock(&wq_pool_mutex); 5363 5364 return ret; 5365 } 5366 5367 /** 5368 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug 5369 * @wq: the target workqueue 5370 * @cpu: the CPU to update the pwq slot for 5371 * 5372 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 5373 * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged. 5374 * 5375 * 5376 * If pod affinity can't be adjusted due to memory allocation failure, it falls 5377 * back to @wq->dfl_pwq which may not be optimal but is always correct. 5378 * 5379 * Note that when the last allowed CPU of a pod goes offline for a workqueue 5380 * with a cpumask spanning multiple pods, the workers which were already 5381 * executing the work items for the workqueue will lose their CPU affinity and 5382 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 5383 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 5384 * responsibility to flush the work item from CPU_DOWN_PREPARE. 5385 */ 5386 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu) 5387 { 5388 struct pool_workqueue *old_pwq = NULL, *pwq; 5389 struct workqueue_attrs *target_attrs; 5390 5391 lockdep_assert_held(&wq_pool_mutex); 5392 5393 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 5394 return; 5395 5396 /* 5397 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 5398 * Let's use a preallocated one. The following buf is protected by 5399 * CPU hotplug exclusion. 5400 */ 5401 target_attrs = unbound_wq_update_pwq_attrs_buf; 5402 5403 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 5404 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 5405 5406 /* nothing to do if the target cpumask matches the current pwq */ 5407 wq_calc_pod_cpumask(target_attrs, cpu); 5408 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs)) 5409 return; 5410 5411 /* create a new pwq */ 5412 pwq = alloc_unbound_pwq(wq, target_attrs); 5413 if (!pwq) { 5414 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 5415 wq->name); 5416 goto use_dfl_pwq; 5417 } 5418 5419 /* Install the new pwq. */ 5420 mutex_lock(&wq->mutex); 5421 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5422 goto out_unlock; 5423 5424 use_dfl_pwq: 5425 mutex_lock(&wq->mutex); 5426 pwq = unbound_pwq(wq, -1); 5427 raw_spin_lock_irq(&pwq->pool->lock); 5428 get_pwq(pwq); 5429 raw_spin_unlock_irq(&pwq->pool->lock); 5430 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5431 out_unlock: 5432 mutex_unlock(&wq->mutex); 5433 put_pwq_unlocked(old_pwq); 5434 } 5435 5436 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 5437 { 5438 bool highpri = wq->flags & WQ_HIGHPRI; 5439 int cpu, ret; 5440 5441 lockdep_assert_held(&wq_pool_mutex); 5442 5443 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 5444 if (!wq->cpu_pwq) 5445 goto enomem; 5446 5447 if (!(wq->flags & WQ_UNBOUND)) { 5448 struct worker_pool __percpu *pools; 5449 5450 if (wq->flags & WQ_BH) 5451 pools = bh_worker_pools; 5452 else 5453 pools = cpu_worker_pools; 5454 5455 for_each_possible_cpu(cpu) { 5456 struct pool_workqueue **pwq_p; 5457 struct worker_pool *pool; 5458 5459 pool = &(per_cpu_ptr(pools, cpu)[highpri]); 5460 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu); 5461 5462 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 5463 pool->node); 5464 if (!*pwq_p) 5465 goto enomem; 5466 5467 init_pwq(*pwq_p, wq, pool); 5468 5469 mutex_lock(&wq->mutex); 5470 link_pwq(*pwq_p); 5471 mutex_unlock(&wq->mutex); 5472 } 5473 return 0; 5474 } 5475 5476 if (wq->flags & __WQ_ORDERED) { 5477 struct pool_workqueue *dfl_pwq; 5478 5479 ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]); 5480 /* there should only be single pwq for ordering guarantee */ 5481 dfl_pwq = rcu_access_pointer(wq->dfl_pwq); 5482 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || 5483 wq->pwqs.prev != &dfl_pwq->pwqs_node), 5484 "ordering guarantee broken for workqueue %s\n", wq->name); 5485 } else { 5486 ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]); 5487 } 5488 5489 return ret; 5490 5491 enomem: 5492 if (wq->cpu_pwq) { 5493 for_each_possible_cpu(cpu) { 5494 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5495 5496 if (pwq) 5497 kmem_cache_free(pwq_cache, pwq); 5498 } 5499 free_percpu(wq->cpu_pwq); 5500 wq->cpu_pwq = NULL; 5501 } 5502 return -ENOMEM; 5503 } 5504 5505 static int wq_clamp_max_active(int max_active, unsigned int flags, 5506 const char *name) 5507 { 5508 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 5509 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 5510 max_active, name, 1, WQ_MAX_ACTIVE); 5511 5512 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 5513 } 5514 5515 /* 5516 * Workqueues which may be used during memory reclaim should have a rescuer 5517 * to guarantee forward progress. 5518 */ 5519 static int init_rescuer(struct workqueue_struct *wq) 5520 { 5521 struct worker *rescuer; 5522 char id_buf[WORKER_ID_LEN]; 5523 int ret; 5524 5525 lockdep_assert_held(&wq_pool_mutex); 5526 5527 if (!(wq->flags & WQ_MEM_RECLAIM)) 5528 return 0; 5529 5530 rescuer = alloc_worker(NUMA_NO_NODE); 5531 if (!rescuer) { 5532 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 5533 wq->name); 5534 return -ENOMEM; 5535 } 5536 5537 rescuer->rescue_wq = wq; 5538 format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL); 5539 5540 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf); 5541 if (IS_ERR(rescuer->task)) { 5542 ret = PTR_ERR(rescuer->task); 5543 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 5544 wq->name, ERR_PTR(ret)); 5545 kfree(rescuer); 5546 return ret; 5547 } 5548 5549 wq->rescuer = rescuer; 5550 if (wq->flags & WQ_UNBOUND) 5551 kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq)); 5552 else 5553 kthread_bind_mask(rescuer->task, cpu_possible_mask); 5554 wake_up_process(rescuer->task); 5555 5556 return 0; 5557 } 5558 5559 /** 5560 * wq_adjust_max_active - update a wq's max_active to the current setting 5561 * @wq: target workqueue 5562 * 5563 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and 5564 * activate inactive work items accordingly. If @wq is freezing, clear 5565 * @wq->max_active to zero. 5566 */ 5567 static void wq_adjust_max_active(struct workqueue_struct *wq) 5568 { 5569 bool activated; 5570 int new_max, new_min; 5571 5572 lockdep_assert_held(&wq->mutex); 5573 5574 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { 5575 new_max = 0; 5576 new_min = 0; 5577 } else { 5578 new_max = wq->saved_max_active; 5579 new_min = wq->saved_min_active; 5580 } 5581 5582 if (wq->max_active == new_max && wq->min_active == new_min) 5583 return; 5584 5585 /* 5586 * Update @wq->max/min_active and then kick inactive work items if more 5587 * active work items are allowed. This doesn't break work item ordering 5588 * because new work items are always queued behind existing inactive 5589 * work items if there are any. 5590 */ 5591 WRITE_ONCE(wq->max_active, new_max); 5592 WRITE_ONCE(wq->min_active, new_min); 5593 5594 if (wq->flags & WQ_UNBOUND) 5595 wq_update_node_max_active(wq, -1); 5596 5597 if (new_max == 0) 5598 return; 5599 5600 /* 5601 * Round-robin through pwq's activating the first inactive work item 5602 * until max_active is filled. 5603 */ 5604 do { 5605 struct pool_workqueue *pwq; 5606 5607 activated = false; 5608 for_each_pwq(pwq, wq) { 5609 unsigned long irq_flags; 5610 5611 /* can be called during early boot w/ irq disabled */ 5612 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 5613 if (pwq_activate_first_inactive(pwq, true)) { 5614 activated = true; 5615 kick_pool(pwq->pool); 5616 } 5617 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 5618 } 5619 } while (activated); 5620 } 5621 5622 static struct workqueue_struct *__alloc_workqueue(const char *fmt, 5623 unsigned int flags, 5624 int max_active, va_list args) 5625 { 5626 struct workqueue_struct *wq; 5627 size_t wq_size; 5628 int name_len; 5629 5630 if (flags & WQ_BH) { 5631 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS)) 5632 return NULL; 5633 if (WARN_ON_ONCE(max_active)) 5634 return NULL; 5635 } 5636 5637 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 5638 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 5639 flags |= WQ_UNBOUND; 5640 5641 /* allocate wq and format name */ 5642 if (flags & WQ_UNBOUND) 5643 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); 5644 else 5645 wq_size = sizeof(*wq); 5646 5647 wq = kzalloc(wq_size, GFP_KERNEL); 5648 if (!wq) 5649 return NULL; 5650 5651 if (flags & WQ_UNBOUND) { 5652 wq->unbound_attrs = alloc_workqueue_attrs(); 5653 if (!wq->unbound_attrs) 5654 goto err_free_wq; 5655 } 5656 5657 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args); 5658 5659 if (name_len >= WQ_NAME_LEN) 5660 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", 5661 wq->name); 5662 5663 if (flags & WQ_BH) { 5664 /* 5665 * BH workqueues always share a single execution context per CPU 5666 * and don't impose any max_active limit. 5667 */ 5668 max_active = INT_MAX; 5669 } else { 5670 max_active = max_active ?: WQ_DFL_ACTIVE; 5671 max_active = wq_clamp_max_active(max_active, flags, wq->name); 5672 } 5673 5674 /* init wq */ 5675 wq->flags = flags; 5676 wq->max_active = max_active; 5677 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); 5678 wq->saved_max_active = wq->max_active; 5679 wq->saved_min_active = wq->min_active; 5680 mutex_init(&wq->mutex); 5681 atomic_set(&wq->nr_pwqs_to_flush, 0); 5682 INIT_LIST_HEAD(&wq->pwqs); 5683 INIT_LIST_HEAD(&wq->flusher_queue); 5684 INIT_LIST_HEAD(&wq->flusher_overflow); 5685 INIT_LIST_HEAD(&wq->maydays); 5686 5687 INIT_LIST_HEAD(&wq->list); 5688 5689 if (flags & WQ_UNBOUND) { 5690 if (alloc_node_nr_active(wq->node_nr_active) < 0) 5691 goto err_free_wq; 5692 } 5693 5694 /* 5695 * wq_pool_mutex protects the workqueues list, allocations of PWQs, 5696 * and the global freeze state. 5697 */ 5698 apply_wqattrs_lock(); 5699 5700 if (alloc_and_link_pwqs(wq) < 0) 5701 goto err_unlock_free_node_nr_active; 5702 5703 mutex_lock(&wq->mutex); 5704 wq_adjust_max_active(wq); 5705 mutex_unlock(&wq->mutex); 5706 5707 list_add_tail_rcu(&wq->list, &workqueues); 5708 5709 if (wq_online && init_rescuer(wq) < 0) 5710 goto err_unlock_destroy; 5711 5712 apply_wqattrs_unlock(); 5713 5714 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 5715 goto err_destroy; 5716 5717 return wq; 5718 5719 err_unlock_free_node_nr_active: 5720 apply_wqattrs_unlock(); 5721 /* 5722 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work, 5723 * flushing the pwq_release_worker ensures that the pwq_release_workfn() 5724 * completes before calling kfree(wq). 5725 */ 5726 if (wq->flags & WQ_UNBOUND) { 5727 kthread_flush_worker(pwq_release_worker); 5728 free_node_nr_active(wq->node_nr_active); 5729 } 5730 err_free_wq: 5731 free_workqueue_attrs(wq->unbound_attrs); 5732 kfree(wq); 5733 return NULL; 5734 err_unlock_destroy: 5735 apply_wqattrs_unlock(); 5736 err_destroy: 5737 destroy_workqueue(wq); 5738 return NULL; 5739 } 5740 5741 __printf(1, 4) 5742 struct workqueue_struct *alloc_workqueue(const char *fmt, 5743 unsigned int flags, 5744 int max_active, ...) 5745 { 5746 struct workqueue_struct *wq; 5747 va_list args; 5748 5749 va_start(args, max_active); 5750 wq = __alloc_workqueue(fmt, flags, max_active, args); 5751 va_end(args); 5752 if (!wq) 5753 return NULL; 5754 5755 wq_init_lockdep(wq); 5756 5757 return wq; 5758 } 5759 EXPORT_SYMBOL_GPL(alloc_workqueue); 5760 5761 #ifdef CONFIG_LOCKDEP 5762 __printf(1, 5) 5763 struct workqueue_struct * 5764 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags, 5765 int max_active, struct lockdep_map *lockdep_map, ...) 5766 { 5767 struct workqueue_struct *wq; 5768 va_list args; 5769 5770 va_start(args, lockdep_map); 5771 wq = __alloc_workqueue(fmt, flags, max_active, args); 5772 va_end(args); 5773 if (!wq) 5774 return NULL; 5775 5776 wq->lockdep_map = lockdep_map; 5777 5778 return wq; 5779 } 5780 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map); 5781 #endif 5782 5783 static bool pwq_busy(struct pool_workqueue *pwq) 5784 { 5785 int i; 5786 5787 for (i = 0; i < WORK_NR_COLORS; i++) 5788 if (pwq->nr_in_flight[i]) 5789 return true; 5790 5791 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) 5792 return true; 5793 if (!pwq_is_empty(pwq)) 5794 return true; 5795 5796 return false; 5797 } 5798 5799 /** 5800 * destroy_workqueue - safely terminate a workqueue 5801 * @wq: target workqueue 5802 * 5803 * Safely destroy a workqueue. All work currently pending will be done first. 5804 */ 5805 void destroy_workqueue(struct workqueue_struct *wq) 5806 { 5807 struct pool_workqueue *pwq; 5808 int cpu; 5809 5810 /* 5811 * Remove it from sysfs first so that sanity check failure doesn't 5812 * lead to sysfs name conflicts. 5813 */ 5814 workqueue_sysfs_unregister(wq); 5815 5816 /* mark the workqueue destruction is in progress */ 5817 mutex_lock(&wq->mutex); 5818 wq->flags |= __WQ_DESTROYING; 5819 mutex_unlock(&wq->mutex); 5820 5821 /* drain it before proceeding with destruction */ 5822 drain_workqueue(wq); 5823 5824 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 5825 if (wq->rescuer) { 5826 struct worker *rescuer = wq->rescuer; 5827 5828 /* this prevents new queueing */ 5829 raw_spin_lock_irq(&wq_mayday_lock); 5830 wq->rescuer = NULL; 5831 raw_spin_unlock_irq(&wq_mayday_lock); 5832 5833 /* rescuer will empty maydays list before exiting */ 5834 kthread_stop(rescuer->task); 5835 kfree(rescuer); 5836 } 5837 5838 /* 5839 * Sanity checks - grab all the locks so that we wait for all 5840 * in-flight operations which may do put_pwq(). 5841 */ 5842 mutex_lock(&wq_pool_mutex); 5843 mutex_lock(&wq->mutex); 5844 for_each_pwq(pwq, wq) { 5845 raw_spin_lock_irq(&pwq->pool->lock); 5846 if (WARN_ON(pwq_busy(pwq))) { 5847 pr_warn("%s: %s has the following busy pwq\n", 5848 __func__, wq->name); 5849 show_pwq(pwq); 5850 raw_spin_unlock_irq(&pwq->pool->lock); 5851 mutex_unlock(&wq->mutex); 5852 mutex_unlock(&wq_pool_mutex); 5853 show_one_workqueue(wq); 5854 return; 5855 } 5856 raw_spin_unlock_irq(&pwq->pool->lock); 5857 } 5858 mutex_unlock(&wq->mutex); 5859 5860 /* 5861 * wq list is used to freeze wq, remove from list after 5862 * flushing is complete in case freeze races us. 5863 */ 5864 list_del_rcu(&wq->list); 5865 mutex_unlock(&wq_pool_mutex); 5866 5867 /* 5868 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 5869 * to put the base refs. @wq will be auto-destroyed from the last 5870 * pwq_put. RCU read lock prevents @wq from going away from under us. 5871 */ 5872 rcu_read_lock(); 5873 5874 for_each_possible_cpu(cpu) { 5875 put_pwq_unlocked(unbound_pwq(wq, cpu)); 5876 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); 5877 } 5878 5879 put_pwq_unlocked(unbound_pwq(wq, -1)); 5880 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); 5881 5882 rcu_read_unlock(); 5883 } 5884 EXPORT_SYMBOL_GPL(destroy_workqueue); 5885 5886 /** 5887 * workqueue_set_max_active - adjust max_active of a workqueue 5888 * @wq: target workqueue 5889 * @max_active: new max_active value. 5890 * 5891 * Set max_active of @wq to @max_active. See the alloc_workqueue() function 5892 * comment. 5893 * 5894 * CONTEXT: 5895 * Don't call from IRQ context. 5896 */ 5897 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 5898 { 5899 /* max_active doesn't mean anything for BH workqueues */ 5900 if (WARN_ON(wq->flags & WQ_BH)) 5901 return; 5902 /* disallow meddling with max_active for ordered workqueues */ 5903 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5904 return; 5905 5906 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 5907 5908 mutex_lock(&wq->mutex); 5909 5910 wq->saved_max_active = max_active; 5911 if (wq->flags & WQ_UNBOUND) 5912 wq->saved_min_active = min(wq->saved_min_active, max_active); 5913 5914 wq_adjust_max_active(wq); 5915 5916 mutex_unlock(&wq->mutex); 5917 } 5918 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 5919 5920 /** 5921 * workqueue_set_min_active - adjust min_active of an unbound workqueue 5922 * @wq: target unbound workqueue 5923 * @min_active: new min_active value 5924 * 5925 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an 5926 * unbound workqueue is not guaranteed to be able to process max_active 5927 * interdependent work items. Instead, an unbound workqueue is guaranteed to be 5928 * able to process min_active number of interdependent work items which is 5929 * %WQ_DFL_MIN_ACTIVE by default. 5930 * 5931 * Use this function to adjust the min_active value between 0 and the current 5932 * max_active. 5933 */ 5934 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active) 5935 { 5936 /* min_active is only meaningful for non-ordered unbound workqueues */ 5937 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) != 5938 WQ_UNBOUND)) 5939 return; 5940 5941 mutex_lock(&wq->mutex); 5942 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active); 5943 wq_adjust_max_active(wq); 5944 mutex_unlock(&wq->mutex); 5945 } 5946 5947 /** 5948 * current_work - retrieve %current task's work struct 5949 * 5950 * Determine if %current task is a workqueue worker and what it's working on. 5951 * Useful to find out the context that the %current task is running in. 5952 * 5953 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 5954 */ 5955 struct work_struct *current_work(void) 5956 { 5957 struct worker *worker = current_wq_worker(); 5958 5959 return worker ? worker->current_work : NULL; 5960 } 5961 EXPORT_SYMBOL(current_work); 5962 5963 /** 5964 * current_is_workqueue_rescuer - is %current workqueue rescuer? 5965 * 5966 * Determine whether %current is a workqueue rescuer. Can be used from 5967 * work functions to determine whether it's being run off the rescuer task. 5968 * 5969 * Return: %true if %current is a workqueue rescuer. %false otherwise. 5970 */ 5971 bool current_is_workqueue_rescuer(void) 5972 { 5973 struct worker *worker = current_wq_worker(); 5974 5975 return worker && worker->rescue_wq; 5976 } 5977 5978 /** 5979 * workqueue_congested - test whether a workqueue is congested 5980 * @cpu: CPU in question 5981 * @wq: target workqueue 5982 * 5983 * Test whether @wq's cpu workqueue for @cpu is congested. There is 5984 * no synchronization around this function and the test result is 5985 * unreliable and only useful as advisory hints or for debugging. 5986 * 5987 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 5988 * 5989 * With the exception of ordered workqueues, all workqueues have per-cpu 5990 * pool_workqueues, each with its own congested state. A workqueue being 5991 * congested on one CPU doesn't mean that the workqueue is contested on any 5992 * other CPUs. 5993 * 5994 * Return: 5995 * %true if congested, %false otherwise. 5996 */ 5997 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 5998 { 5999 struct pool_workqueue *pwq; 6000 bool ret; 6001 6002 rcu_read_lock(); 6003 preempt_disable(); 6004 6005 if (cpu == WORK_CPU_UNBOUND) 6006 cpu = smp_processor_id(); 6007 6008 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 6009 ret = !list_empty(&pwq->inactive_works); 6010 6011 preempt_enable(); 6012 rcu_read_unlock(); 6013 6014 return ret; 6015 } 6016 EXPORT_SYMBOL_GPL(workqueue_congested); 6017 6018 /** 6019 * work_busy - test whether a work is currently pending or running 6020 * @work: the work to be tested 6021 * 6022 * Test whether @work is currently pending or running. There is no 6023 * synchronization around this function and the test result is 6024 * unreliable and only useful as advisory hints or for debugging. 6025 * 6026 * Return: 6027 * OR'd bitmask of WORK_BUSY_* bits. 6028 */ 6029 unsigned int work_busy(struct work_struct *work) 6030 { 6031 struct worker_pool *pool; 6032 unsigned long irq_flags; 6033 unsigned int ret = 0; 6034 6035 if (work_pending(work)) 6036 ret |= WORK_BUSY_PENDING; 6037 6038 rcu_read_lock(); 6039 pool = get_work_pool(work); 6040 if (pool) { 6041 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6042 if (find_worker_executing_work(pool, work)) 6043 ret |= WORK_BUSY_RUNNING; 6044 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6045 } 6046 rcu_read_unlock(); 6047 6048 return ret; 6049 } 6050 EXPORT_SYMBOL_GPL(work_busy); 6051 6052 /** 6053 * set_worker_desc - set description for the current work item 6054 * @fmt: printf-style format string 6055 * @...: arguments for the format string 6056 * 6057 * This function can be called by a running work function to describe what 6058 * the work item is about. If the worker task gets dumped, this 6059 * information will be printed out together to help debugging. The 6060 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 6061 */ 6062 void set_worker_desc(const char *fmt, ...) 6063 { 6064 struct worker *worker = current_wq_worker(); 6065 va_list args; 6066 6067 if (worker) { 6068 va_start(args, fmt); 6069 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 6070 va_end(args); 6071 } 6072 } 6073 EXPORT_SYMBOL_GPL(set_worker_desc); 6074 6075 /** 6076 * print_worker_info - print out worker information and description 6077 * @log_lvl: the log level to use when printing 6078 * @task: target task 6079 * 6080 * If @task is a worker and currently executing a work item, print out the 6081 * name of the workqueue being serviced and worker description set with 6082 * set_worker_desc() by the currently executing work item. 6083 * 6084 * This function can be safely called on any task as long as the 6085 * task_struct itself is accessible. While safe, this function isn't 6086 * synchronized and may print out mixups or garbages of limited length. 6087 */ 6088 void print_worker_info(const char *log_lvl, struct task_struct *task) 6089 { 6090 work_func_t *fn = NULL; 6091 char name[WQ_NAME_LEN] = { }; 6092 char desc[WORKER_DESC_LEN] = { }; 6093 struct pool_workqueue *pwq = NULL; 6094 struct workqueue_struct *wq = NULL; 6095 struct worker *worker; 6096 6097 if (!(task->flags & PF_WQ_WORKER)) 6098 return; 6099 6100 /* 6101 * This function is called without any synchronization and @task 6102 * could be in any state. Be careful with dereferences. 6103 */ 6104 worker = kthread_probe_data(task); 6105 6106 /* 6107 * Carefully copy the associated workqueue's workfn, name and desc. 6108 * Keep the original last '\0' in case the original is garbage. 6109 */ 6110 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 6111 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 6112 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 6113 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 6114 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 6115 6116 if (fn || name[0] || desc[0]) { 6117 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 6118 if (strcmp(name, desc)) 6119 pr_cont(" (%s)", desc); 6120 pr_cont("\n"); 6121 } 6122 } 6123 6124 static void pr_cont_pool_info(struct worker_pool *pool) 6125 { 6126 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 6127 if (pool->node != NUMA_NO_NODE) 6128 pr_cont(" node=%d", pool->node); 6129 pr_cont(" flags=0x%x", pool->flags); 6130 if (pool->flags & POOL_BH) 6131 pr_cont(" bh%s", 6132 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6133 else 6134 pr_cont(" nice=%d", pool->attrs->nice); 6135 } 6136 6137 static void pr_cont_worker_id(struct worker *worker) 6138 { 6139 struct worker_pool *pool = worker->pool; 6140 6141 if (pool->flags & WQ_BH) 6142 pr_cont("bh%s", 6143 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6144 else 6145 pr_cont("%d%s", task_pid_nr(worker->task), 6146 worker->rescue_wq ? "(RESCUER)" : ""); 6147 } 6148 6149 struct pr_cont_work_struct { 6150 bool comma; 6151 work_func_t func; 6152 long ctr; 6153 }; 6154 6155 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 6156 { 6157 if (!pcwsp->ctr) 6158 goto out_record; 6159 if (func == pcwsp->func) { 6160 pcwsp->ctr++; 6161 return; 6162 } 6163 if (pcwsp->ctr == 1) 6164 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 6165 else 6166 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 6167 pcwsp->ctr = 0; 6168 out_record: 6169 if ((long)func == -1L) 6170 return; 6171 pcwsp->comma = comma; 6172 pcwsp->func = func; 6173 pcwsp->ctr = 1; 6174 } 6175 6176 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 6177 { 6178 if (work->func == wq_barrier_func) { 6179 struct wq_barrier *barr; 6180 6181 barr = container_of(work, struct wq_barrier, work); 6182 6183 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6184 pr_cont("%s BAR(%d)", comma ? "," : "", 6185 task_pid_nr(barr->task)); 6186 } else { 6187 if (!comma) 6188 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6189 pr_cont_work_flush(comma, work->func, pcwsp); 6190 } 6191 } 6192 6193 static void show_pwq(struct pool_workqueue *pwq) 6194 { 6195 struct pr_cont_work_struct pcws = { .ctr = 0, }; 6196 struct worker_pool *pool = pwq->pool; 6197 struct work_struct *work; 6198 struct worker *worker; 6199 bool has_in_flight = false, has_pending = false; 6200 int bkt; 6201 6202 pr_info(" pwq %d:", pool->id); 6203 pr_cont_pool_info(pool); 6204 6205 pr_cont(" active=%d refcnt=%d%s\n", 6206 pwq->nr_active, pwq->refcnt, 6207 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 6208 6209 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6210 if (worker->current_pwq == pwq) { 6211 has_in_flight = true; 6212 break; 6213 } 6214 } 6215 if (has_in_flight) { 6216 bool comma = false; 6217 6218 pr_info(" in-flight:"); 6219 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6220 if (worker->current_pwq != pwq) 6221 continue; 6222 6223 pr_cont(" %s", comma ? "," : ""); 6224 pr_cont_worker_id(worker); 6225 pr_cont(":%ps", worker->current_func); 6226 list_for_each_entry(work, &worker->scheduled, entry) 6227 pr_cont_work(false, work, &pcws); 6228 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6229 comma = true; 6230 } 6231 pr_cont("\n"); 6232 } 6233 6234 list_for_each_entry(work, &pool->worklist, entry) { 6235 if (get_work_pwq(work) == pwq) { 6236 has_pending = true; 6237 break; 6238 } 6239 } 6240 if (has_pending) { 6241 bool comma = false; 6242 6243 pr_info(" pending:"); 6244 list_for_each_entry(work, &pool->worklist, entry) { 6245 if (get_work_pwq(work) != pwq) 6246 continue; 6247 6248 pr_cont_work(comma, work, &pcws); 6249 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6250 } 6251 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6252 pr_cont("\n"); 6253 } 6254 6255 if (!list_empty(&pwq->inactive_works)) { 6256 bool comma = false; 6257 6258 pr_info(" inactive:"); 6259 list_for_each_entry(work, &pwq->inactive_works, entry) { 6260 pr_cont_work(comma, work, &pcws); 6261 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6262 } 6263 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6264 pr_cont("\n"); 6265 } 6266 } 6267 6268 /** 6269 * show_one_workqueue - dump state of specified workqueue 6270 * @wq: workqueue whose state will be printed 6271 */ 6272 void show_one_workqueue(struct workqueue_struct *wq) 6273 { 6274 struct pool_workqueue *pwq; 6275 bool idle = true; 6276 unsigned long irq_flags; 6277 6278 for_each_pwq(pwq, wq) { 6279 if (!pwq_is_empty(pwq)) { 6280 idle = false; 6281 break; 6282 } 6283 } 6284 if (idle) /* Nothing to print for idle workqueue */ 6285 return; 6286 6287 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 6288 6289 for_each_pwq(pwq, wq) { 6290 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 6291 if (!pwq_is_empty(pwq)) { 6292 /* 6293 * Defer printing to avoid deadlocks in console 6294 * drivers that queue work while holding locks 6295 * also taken in their write paths. 6296 */ 6297 printk_deferred_enter(); 6298 show_pwq(pwq); 6299 printk_deferred_exit(); 6300 } 6301 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 6302 /* 6303 * We could be printing a lot from atomic context, e.g. 6304 * sysrq-t -> show_all_workqueues(). Avoid triggering 6305 * hard lockup. 6306 */ 6307 touch_nmi_watchdog(); 6308 } 6309 6310 } 6311 6312 /** 6313 * show_one_worker_pool - dump state of specified worker pool 6314 * @pool: worker pool whose state will be printed 6315 */ 6316 static void show_one_worker_pool(struct worker_pool *pool) 6317 { 6318 struct worker *worker; 6319 bool first = true; 6320 unsigned long irq_flags; 6321 unsigned long hung = 0; 6322 6323 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6324 if (pool->nr_workers == pool->nr_idle) 6325 goto next_pool; 6326 6327 /* How long the first pending work is waiting for a worker. */ 6328 if (!list_empty(&pool->worklist)) 6329 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 6330 6331 /* 6332 * Defer printing to avoid deadlocks in console drivers that 6333 * queue work while holding locks also taken in their write 6334 * paths. 6335 */ 6336 printk_deferred_enter(); 6337 pr_info("pool %d:", pool->id); 6338 pr_cont_pool_info(pool); 6339 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 6340 if (pool->manager) 6341 pr_cont(" manager: %d", 6342 task_pid_nr(pool->manager->task)); 6343 list_for_each_entry(worker, &pool->idle_list, entry) { 6344 pr_cont(" %s", first ? "idle: " : ""); 6345 pr_cont_worker_id(worker); 6346 first = false; 6347 } 6348 pr_cont("\n"); 6349 printk_deferred_exit(); 6350 next_pool: 6351 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6352 /* 6353 * We could be printing a lot from atomic context, e.g. 6354 * sysrq-t -> show_all_workqueues(). Avoid triggering 6355 * hard lockup. 6356 */ 6357 touch_nmi_watchdog(); 6358 6359 } 6360 6361 /** 6362 * show_all_workqueues - dump workqueue state 6363 * 6364 * Called from a sysrq handler and prints out all busy workqueues and pools. 6365 */ 6366 void show_all_workqueues(void) 6367 { 6368 struct workqueue_struct *wq; 6369 struct worker_pool *pool; 6370 int pi; 6371 6372 rcu_read_lock(); 6373 6374 pr_info("Showing busy workqueues and worker pools:\n"); 6375 6376 list_for_each_entry_rcu(wq, &workqueues, list) 6377 show_one_workqueue(wq); 6378 6379 for_each_pool(pool, pi) 6380 show_one_worker_pool(pool); 6381 6382 rcu_read_unlock(); 6383 } 6384 6385 /** 6386 * show_freezable_workqueues - dump freezable workqueue state 6387 * 6388 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 6389 * still busy. 6390 */ 6391 void show_freezable_workqueues(void) 6392 { 6393 struct workqueue_struct *wq; 6394 6395 rcu_read_lock(); 6396 6397 pr_info("Showing freezable workqueues that are still busy:\n"); 6398 6399 list_for_each_entry_rcu(wq, &workqueues, list) { 6400 if (!(wq->flags & WQ_FREEZABLE)) 6401 continue; 6402 show_one_workqueue(wq); 6403 } 6404 6405 rcu_read_unlock(); 6406 } 6407 6408 /* used to show worker information through /proc/PID/{comm,stat,status} */ 6409 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 6410 { 6411 /* stabilize PF_WQ_WORKER and worker pool association */ 6412 mutex_lock(&wq_pool_attach_mutex); 6413 6414 if (task->flags & PF_WQ_WORKER) { 6415 struct worker *worker = kthread_data(task); 6416 struct worker_pool *pool = worker->pool; 6417 int off; 6418 6419 off = format_worker_id(buf, size, worker, pool); 6420 6421 if (pool) { 6422 raw_spin_lock_irq(&pool->lock); 6423 /* 6424 * ->desc tracks information (wq name or 6425 * set_worker_desc()) for the latest execution. If 6426 * current, prepend '+', otherwise '-'. 6427 */ 6428 if (worker->desc[0] != '\0') { 6429 if (worker->current_work) 6430 scnprintf(buf + off, size - off, "+%s", 6431 worker->desc); 6432 else 6433 scnprintf(buf + off, size - off, "-%s", 6434 worker->desc); 6435 } 6436 raw_spin_unlock_irq(&pool->lock); 6437 } 6438 } else { 6439 strscpy(buf, task->comm, size); 6440 } 6441 6442 mutex_unlock(&wq_pool_attach_mutex); 6443 } 6444 6445 #ifdef CONFIG_SMP 6446 6447 /* 6448 * CPU hotplug. 6449 * 6450 * There are two challenges in supporting CPU hotplug. Firstly, there 6451 * are a lot of assumptions on strong associations among work, pwq and 6452 * pool which make migrating pending and scheduled works very 6453 * difficult to implement without impacting hot paths. Secondly, 6454 * worker pools serve mix of short, long and very long running works making 6455 * blocked draining impractical. 6456 * 6457 * This is solved by allowing the pools to be disassociated from the CPU 6458 * running as an unbound one and allowing it to be reattached later if the 6459 * cpu comes back online. 6460 */ 6461 6462 static void unbind_workers(int cpu) 6463 { 6464 struct worker_pool *pool; 6465 struct worker *worker; 6466 6467 for_each_cpu_worker_pool(pool, cpu) { 6468 mutex_lock(&wq_pool_attach_mutex); 6469 raw_spin_lock_irq(&pool->lock); 6470 6471 /* 6472 * We've blocked all attach/detach operations. Make all workers 6473 * unbound and set DISASSOCIATED. Before this, all workers 6474 * must be on the cpu. After this, they may become diasporas. 6475 * And the preemption disabled section in their sched callbacks 6476 * are guaranteed to see WORKER_UNBOUND since the code here 6477 * is on the same cpu. 6478 */ 6479 for_each_pool_worker(worker, pool) 6480 worker->flags |= WORKER_UNBOUND; 6481 6482 pool->flags |= POOL_DISASSOCIATED; 6483 6484 /* 6485 * The handling of nr_running in sched callbacks are disabled 6486 * now. Zap nr_running. After this, nr_running stays zero and 6487 * need_more_worker() and keep_working() are always true as 6488 * long as the worklist is not empty. This pool now behaves as 6489 * an unbound (in terms of concurrency management) pool which 6490 * are served by workers tied to the pool. 6491 */ 6492 pool->nr_running = 0; 6493 6494 /* 6495 * With concurrency management just turned off, a busy 6496 * worker blocking could lead to lengthy stalls. Kick off 6497 * unbound chain execution of currently pending work items. 6498 */ 6499 kick_pool(pool); 6500 6501 raw_spin_unlock_irq(&pool->lock); 6502 6503 for_each_pool_worker(worker, pool) 6504 unbind_worker(worker); 6505 6506 mutex_unlock(&wq_pool_attach_mutex); 6507 } 6508 } 6509 6510 /** 6511 * rebind_workers - rebind all workers of a pool to the associated CPU 6512 * @pool: pool of interest 6513 * 6514 * @pool->cpu is coming online. Rebind all workers to the CPU. 6515 */ 6516 static void rebind_workers(struct worker_pool *pool) 6517 { 6518 struct worker *worker; 6519 6520 lockdep_assert_held(&wq_pool_attach_mutex); 6521 6522 /* 6523 * Restore CPU affinity of all workers. As all idle workers should 6524 * be on the run-queue of the associated CPU before any local 6525 * wake-ups for concurrency management happen, restore CPU affinity 6526 * of all workers first and then clear UNBOUND. As we're called 6527 * from CPU_ONLINE, the following shouldn't fail. 6528 */ 6529 for_each_pool_worker(worker, pool) { 6530 kthread_set_per_cpu(worker->task, pool->cpu); 6531 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 6532 pool_allowed_cpus(pool)) < 0); 6533 } 6534 6535 raw_spin_lock_irq(&pool->lock); 6536 6537 pool->flags &= ~POOL_DISASSOCIATED; 6538 6539 for_each_pool_worker(worker, pool) { 6540 unsigned int worker_flags = worker->flags; 6541 6542 /* 6543 * We want to clear UNBOUND but can't directly call 6544 * worker_clr_flags() or adjust nr_running. Atomically 6545 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 6546 * @worker will clear REBOUND using worker_clr_flags() when 6547 * it initiates the next execution cycle thus restoring 6548 * concurrency management. Note that when or whether 6549 * @worker clears REBOUND doesn't affect correctness. 6550 * 6551 * WRITE_ONCE() is necessary because @worker->flags may be 6552 * tested without holding any lock in 6553 * wq_worker_running(). Without it, NOT_RUNNING test may 6554 * fail incorrectly leading to premature concurrency 6555 * management operations. 6556 */ 6557 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 6558 worker_flags |= WORKER_REBOUND; 6559 worker_flags &= ~WORKER_UNBOUND; 6560 WRITE_ONCE(worker->flags, worker_flags); 6561 } 6562 6563 raw_spin_unlock_irq(&pool->lock); 6564 } 6565 6566 /** 6567 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 6568 * @pool: unbound pool of interest 6569 * @cpu: the CPU which is coming up 6570 * 6571 * An unbound pool may end up with a cpumask which doesn't have any online 6572 * CPUs. When a worker of such pool get scheduled, the scheduler resets 6573 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 6574 * online CPU before, cpus_allowed of all its workers should be restored. 6575 */ 6576 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 6577 { 6578 static cpumask_t cpumask; 6579 struct worker *worker; 6580 6581 lockdep_assert_held(&wq_pool_attach_mutex); 6582 6583 /* is @cpu allowed for @pool? */ 6584 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 6585 return; 6586 6587 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 6588 6589 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 6590 for_each_pool_worker(worker, pool) 6591 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 6592 } 6593 6594 int workqueue_prepare_cpu(unsigned int cpu) 6595 { 6596 struct worker_pool *pool; 6597 6598 for_each_cpu_worker_pool(pool, cpu) { 6599 if (pool->nr_workers) 6600 continue; 6601 if (!create_worker(pool)) 6602 return -ENOMEM; 6603 } 6604 return 0; 6605 } 6606 6607 int workqueue_online_cpu(unsigned int cpu) 6608 { 6609 struct worker_pool *pool; 6610 struct workqueue_struct *wq; 6611 int pi; 6612 6613 mutex_lock(&wq_pool_mutex); 6614 6615 cpumask_set_cpu(cpu, wq_online_cpumask); 6616 6617 for_each_pool(pool, pi) { 6618 /* BH pools aren't affected by hotplug */ 6619 if (pool->flags & POOL_BH) 6620 continue; 6621 6622 mutex_lock(&wq_pool_attach_mutex); 6623 if (pool->cpu == cpu) 6624 rebind_workers(pool); 6625 else if (pool->cpu < 0) 6626 restore_unbound_workers_cpumask(pool, cpu); 6627 mutex_unlock(&wq_pool_attach_mutex); 6628 } 6629 6630 /* update pod affinity of unbound workqueues */ 6631 list_for_each_entry(wq, &workqueues, list) { 6632 struct workqueue_attrs *attrs = wq->unbound_attrs; 6633 6634 if (attrs) { 6635 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6636 int tcpu; 6637 6638 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6639 unbound_wq_update_pwq(wq, tcpu); 6640 6641 mutex_lock(&wq->mutex); 6642 wq_update_node_max_active(wq, -1); 6643 mutex_unlock(&wq->mutex); 6644 } 6645 } 6646 6647 mutex_unlock(&wq_pool_mutex); 6648 return 0; 6649 } 6650 6651 int workqueue_offline_cpu(unsigned int cpu) 6652 { 6653 struct workqueue_struct *wq; 6654 6655 /* unbinding per-cpu workers should happen on the local CPU */ 6656 if (WARN_ON(cpu != smp_processor_id())) 6657 return -1; 6658 6659 unbind_workers(cpu); 6660 6661 /* update pod affinity of unbound workqueues */ 6662 mutex_lock(&wq_pool_mutex); 6663 6664 cpumask_clear_cpu(cpu, wq_online_cpumask); 6665 6666 list_for_each_entry(wq, &workqueues, list) { 6667 struct workqueue_attrs *attrs = wq->unbound_attrs; 6668 6669 if (attrs) { 6670 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6671 int tcpu; 6672 6673 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6674 unbound_wq_update_pwq(wq, tcpu); 6675 6676 mutex_lock(&wq->mutex); 6677 wq_update_node_max_active(wq, cpu); 6678 mutex_unlock(&wq->mutex); 6679 } 6680 } 6681 mutex_unlock(&wq_pool_mutex); 6682 6683 return 0; 6684 } 6685 6686 struct work_for_cpu { 6687 struct work_struct work; 6688 long (*fn)(void *); 6689 void *arg; 6690 long ret; 6691 }; 6692 6693 static void work_for_cpu_fn(struct work_struct *work) 6694 { 6695 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 6696 6697 wfc->ret = wfc->fn(wfc->arg); 6698 } 6699 6700 /** 6701 * work_on_cpu_key - run a function in thread context on a particular cpu 6702 * @cpu: the cpu to run on 6703 * @fn: the function to run 6704 * @arg: the function arg 6705 * @key: The lock class key for lock debugging purposes 6706 * 6707 * It is up to the caller to ensure that the cpu doesn't go offline. 6708 * The caller must not hold any locks which would prevent @fn from completing. 6709 * 6710 * Return: The value @fn returns. 6711 */ 6712 long work_on_cpu_key(int cpu, long (*fn)(void *), 6713 void *arg, struct lock_class_key *key) 6714 { 6715 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 6716 6717 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 6718 schedule_work_on(cpu, &wfc.work); 6719 flush_work(&wfc.work); 6720 destroy_work_on_stack(&wfc.work); 6721 return wfc.ret; 6722 } 6723 EXPORT_SYMBOL_GPL(work_on_cpu_key); 6724 6725 /** 6726 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 6727 * @cpu: the cpu to run on 6728 * @fn: the function to run 6729 * @arg: the function argument 6730 * @key: The lock class key for lock debugging purposes 6731 * 6732 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 6733 * any locks which would prevent @fn from completing. 6734 * 6735 * Return: The value @fn returns. 6736 */ 6737 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 6738 void *arg, struct lock_class_key *key) 6739 { 6740 long ret = -ENODEV; 6741 6742 cpus_read_lock(); 6743 if (cpu_online(cpu)) 6744 ret = work_on_cpu_key(cpu, fn, arg, key); 6745 cpus_read_unlock(); 6746 return ret; 6747 } 6748 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 6749 #endif /* CONFIG_SMP */ 6750 6751 #ifdef CONFIG_FREEZER 6752 6753 /** 6754 * freeze_workqueues_begin - begin freezing workqueues 6755 * 6756 * Start freezing workqueues. After this function returns, all freezable 6757 * workqueues will queue new works to their inactive_works list instead of 6758 * pool->worklist. 6759 * 6760 * CONTEXT: 6761 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6762 */ 6763 void freeze_workqueues_begin(void) 6764 { 6765 struct workqueue_struct *wq; 6766 6767 mutex_lock(&wq_pool_mutex); 6768 6769 WARN_ON_ONCE(workqueue_freezing); 6770 workqueue_freezing = true; 6771 6772 list_for_each_entry(wq, &workqueues, list) { 6773 mutex_lock(&wq->mutex); 6774 wq_adjust_max_active(wq); 6775 mutex_unlock(&wq->mutex); 6776 } 6777 6778 mutex_unlock(&wq_pool_mutex); 6779 } 6780 6781 /** 6782 * freeze_workqueues_busy - are freezable workqueues still busy? 6783 * 6784 * Check whether freezing is complete. This function must be called 6785 * between freeze_workqueues_begin() and thaw_workqueues(). 6786 * 6787 * CONTEXT: 6788 * Grabs and releases wq_pool_mutex. 6789 * 6790 * Return: 6791 * %true if some freezable workqueues are still busy. %false if freezing 6792 * is complete. 6793 */ 6794 bool freeze_workqueues_busy(void) 6795 { 6796 bool busy = false; 6797 struct workqueue_struct *wq; 6798 struct pool_workqueue *pwq; 6799 6800 mutex_lock(&wq_pool_mutex); 6801 6802 WARN_ON_ONCE(!workqueue_freezing); 6803 6804 list_for_each_entry(wq, &workqueues, list) { 6805 if (!(wq->flags & WQ_FREEZABLE)) 6806 continue; 6807 /* 6808 * nr_active is monotonically decreasing. It's safe 6809 * to peek without lock. 6810 */ 6811 rcu_read_lock(); 6812 for_each_pwq(pwq, wq) { 6813 WARN_ON_ONCE(pwq->nr_active < 0); 6814 if (pwq->nr_active) { 6815 busy = true; 6816 rcu_read_unlock(); 6817 goto out_unlock; 6818 } 6819 } 6820 rcu_read_unlock(); 6821 } 6822 out_unlock: 6823 mutex_unlock(&wq_pool_mutex); 6824 return busy; 6825 } 6826 6827 /** 6828 * thaw_workqueues - thaw workqueues 6829 * 6830 * Thaw workqueues. Normal queueing is restored and all collected 6831 * frozen works are transferred to their respective pool worklists. 6832 * 6833 * CONTEXT: 6834 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6835 */ 6836 void thaw_workqueues(void) 6837 { 6838 struct workqueue_struct *wq; 6839 6840 mutex_lock(&wq_pool_mutex); 6841 6842 if (!workqueue_freezing) 6843 goto out_unlock; 6844 6845 workqueue_freezing = false; 6846 6847 /* restore max_active and repopulate worklist */ 6848 list_for_each_entry(wq, &workqueues, list) { 6849 mutex_lock(&wq->mutex); 6850 wq_adjust_max_active(wq); 6851 mutex_unlock(&wq->mutex); 6852 } 6853 6854 out_unlock: 6855 mutex_unlock(&wq_pool_mutex); 6856 } 6857 #endif /* CONFIG_FREEZER */ 6858 6859 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 6860 { 6861 LIST_HEAD(ctxs); 6862 int ret = 0; 6863 struct workqueue_struct *wq; 6864 struct apply_wqattrs_ctx *ctx, *n; 6865 6866 lockdep_assert_held(&wq_pool_mutex); 6867 6868 list_for_each_entry(wq, &workqueues, list) { 6869 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING)) 6870 continue; 6871 6872 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 6873 if (IS_ERR(ctx)) { 6874 ret = PTR_ERR(ctx); 6875 break; 6876 } 6877 6878 list_add_tail(&ctx->list, &ctxs); 6879 } 6880 6881 list_for_each_entry_safe(ctx, n, &ctxs, list) { 6882 if (!ret) 6883 apply_wqattrs_commit(ctx); 6884 apply_wqattrs_cleanup(ctx); 6885 } 6886 6887 if (!ret) { 6888 mutex_lock(&wq_pool_attach_mutex); 6889 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 6890 mutex_unlock(&wq_pool_attach_mutex); 6891 } 6892 return ret; 6893 } 6894 6895 /** 6896 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask 6897 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask 6898 * 6899 * This function can be called from cpuset code to provide a set of isolated 6900 * CPUs that should be excluded from wq_unbound_cpumask. 6901 */ 6902 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) 6903 { 6904 cpumask_var_t cpumask; 6905 int ret = 0; 6906 6907 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6908 return -ENOMEM; 6909 6910 mutex_lock(&wq_pool_mutex); 6911 6912 /* 6913 * If the operation fails, it will fall back to 6914 * wq_requested_unbound_cpumask which is initially set to 6915 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten 6916 * by any subsequent write to workqueue/cpumask sysfs file. 6917 */ 6918 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask)) 6919 cpumask_copy(cpumask, wq_requested_unbound_cpumask); 6920 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 6921 ret = workqueue_apply_unbound_cpumask(cpumask); 6922 6923 /* Save the current isolated cpumask & export it via sysfs */ 6924 if (!ret) 6925 cpumask_copy(wq_isolated_cpumask, exclude_cpumask); 6926 6927 mutex_unlock(&wq_pool_mutex); 6928 free_cpumask_var(cpumask); 6929 return ret; 6930 } 6931 6932 static int parse_affn_scope(const char *val) 6933 { 6934 int i; 6935 6936 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 6937 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 6938 return i; 6939 } 6940 return -EINVAL; 6941 } 6942 6943 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 6944 { 6945 struct workqueue_struct *wq; 6946 int affn, cpu; 6947 6948 affn = parse_affn_scope(val); 6949 if (affn < 0) 6950 return affn; 6951 if (affn == WQ_AFFN_DFL) 6952 return -EINVAL; 6953 6954 cpus_read_lock(); 6955 mutex_lock(&wq_pool_mutex); 6956 6957 wq_affn_dfl = affn; 6958 6959 list_for_each_entry(wq, &workqueues, list) { 6960 for_each_online_cpu(cpu) 6961 unbound_wq_update_pwq(wq, cpu); 6962 } 6963 6964 mutex_unlock(&wq_pool_mutex); 6965 cpus_read_unlock(); 6966 6967 return 0; 6968 } 6969 6970 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 6971 { 6972 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 6973 } 6974 6975 static const struct kernel_param_ops wq_affn_dfl_ops = { 6976 .set = wq_affn_dfl_set, 6977 .get = wq_affn_dfl_get, 6978 }; 6979 6980 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 6981 6982 #ifdef CONFIG_SYSFS 6983 /* 6984 * Workqueues with WQ_SYSFS flag set is visible to userland via 6985 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 6986 * following attributes. 6987 * 6988 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 6989 * max_active RW int : maximum number of in-flight work items 6990 * 6991 * Unbound workqueues have the following extra attributes. 6992 * 6993 * nice RW int : nice value of the workers 6994 * cpumask RW mask : bitmask of allowed CPUs for the workers 6995 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 6996 * affinity_strict RW bool : worker CPU affinity is strict 6997 */ 6998 struct wq_device { 6999 struct workqueue_struct *wq; 7000 struct device dev; 7001 }; 7002 7003 static struct workqueue_struct *dev_to_wq(struct device *dev) 7004 { 7005 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7006 7007 return wq_dev->wq; 7008 } 7009 7010 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 7011 char *buf) 7012 { 7013 struct workqueue_struct *wq = dev_to_wq(dev); 7014 7015 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 7016 } 7017 static DEVICE_ATTR_RO(per_cpu); 7018 7019 static ssize_t max_active_show(struct device *dev, 7020 struct device_attribute *attr, char *buf) 7021 { 7022 struct workqueue_struct *wq = dev_to_wq(dev); 7023 7024 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 7025 } 7026 7027 static ssize_t max_active_store(struct device *dev, 7028 struct device_attribute *attr, const char *buf, 7029 size_t count) 7030 { 7031 struct workqueue_struct *wq = dev_to_wq(dev); 7032 int val; 7033 7034 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 7035 return -EINVAL; 7036 7037 workqueue_set_max_active(wq, val); 7038 return count; 7039 } 7040 static DEVICE_ATTR_RW(max_active); 7041 7042 static struct attribute *wq_sysfs_attrs[] = { 7043 &dev_attr_per_cpu.attr, 7044 &dev_attr_max_active.attr, 7045 NULL, 7046 }; 7047 ATTRIBUTE_GROUPS(wq_sysfs); 7048 7049 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 7050 char *buf) 7051 { 7052 struct workqueue_struct *wq = dev_to_wq(dev); 7053 int written; 7054 7055 mutex_lock(&wq->mutex); 7056 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 7057 mutex_unlock(&wq->mutex); 7058 7059 return written; 7060 } 7061 7062 /* prepare workqueue_attrs for sysfs store operations */ 7063 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 7064 { 7065 struct workqueue_attrs *attrs; 7066 7067 lockdep_assert_held(&wq_pool_mutex); 7068 7069 attrs = alloc_workqueue_attrs(); 7070 if (!attrs) 7071 return NULL; 7072 7073 copy_workqueue_attrs(attrs, wq->unbound_attrs); 7074 return attrs; 7075 } 7076 7077 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 7078 const char *buf, size_t count) 7079 { 7080 struct workqueue_struct *wq = dev_to_wq(dev); 7081 struct workqueue_attrs *attrs; 7082 int ret = -ENOMEM; 7083 7084 apply_wqattrs_lock(); 7085 7086 attrs = wq_sysfs_prep_attrs(wq); 7087 if (!attrs) 7088 goto out_unlock; 7089 7090 if (sscanf(buf, "%d", &attrs->nice) == 1 && 7091 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 7092 ret = apply_workqueue_attrs_locked(wq, attrs); 7093 else 7094 ret = -EINVAL; 7095 7096 out_unlock: 7097 apply_wqattrs_unlock(); 7098 free_workqueue_attrs(attrs); 7099 return ret ?: count; 7100 } 7101 7102 static ssize_t wq_cpumask_show(struct device *dev, 7103 struct device_attribute *attr, char *buf) 7104 { 7105 struct workqueue_struct *wq = dev_to_wq(dev); 7106 int written; 7107 7108 mutex_lock(&wq->mutex); 7109 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 7110 cpumask_pr_args(wq->unbound_attrs->cpumask)); 7111 mutex_unlock(&wq->mutex); 7112 return written; 7113 } 7114 7115 static ssize_t wq_cpumask_store(struct device *dev, 7116 struct device_attribute *attr, 7117 const char *buf, size_t count) 7118 { 7119 struct workqueue_struct *wq = dev_to_wq(dev); 7120 struct workqueue_attrs *attrs; 7121 int ret = -ENOMEM; 7122 7123 apply_wqattrs_lock(); 7124 7125 attrs = wq_sysfs_prep_attrs(wq); 7126 if (!attrs) 7127 goto out_unlock; 7128 7129 ret = cpumask_parse(buf, attrs->cpumask); 7130 if (!ret) 7131 ret = apply_workqueue_attrs_locked(wq, attrs); 7132 7133 out_unlock: 7134 apply_wqattrs_unlock(); 7135 free_workqueue_attrs(attrs); 7136 return ret ?: count; 7137 } 7138 7139 static ssize_t wq_affn_scope_show(struct device *dev, 7140 struct device_attribute *attr, char *buf) 7141 { 7142 struct workqueue_struct *wq = dev_to_wq(dev); 7143 int written; 7144 7145 mutex_lock(&wq->mutex); 7146 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 7147 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 7148 wq_affn_names[WQ_AFFN_DFL], 7149 wq_affn_names[wq_affn_dfl]); 7150 else 7151 written = scnprintf(buf, PAGE_SIZE, "%s\n", 7152 wq_affn_names[wq->unbound_attrs->affn_scope]); 7153 mutex_unlock(&wq->mutex); 7154 7155 return written; 7156 } 7157 7158 static ssize_t wq_affn_scope_store(struct device *dev, 7159 struct device_attribute *attr, 7160 const char *buf, size_t count) 7161 { 7162 struct workqueue_struct *wq = dev_to_wq(dev); 7163 struct workqueue_attrs *attrs; 7164 int affn, ret = -ENOMEM; 7165 7166 affn = parse_affn_scope(buf); 7167 if (affn < 0) 7168 return affn; 7169 7170 apply_wqattrs_lock(); 7171 attrs = wq_sysfs_prep_attrs(wq); 7172 if (attrs) { 7173 attrs->affn_scope = affn; 7174 ret = apply_workqueue_attrs_locked(wq, attrs); 7175 } 7176 apply_wqattrs_unlock(); 7177 free_workqueue_attrs(attrs); 7178 return ret ?: count; 7179 } 7180 7181 static ssize_t wq_affinity_strict_show(struct device *dev, 7182 struct device_attribute *attr, char *buf) 7183 { 7184 struct workqueue_struct *wq = dev_to_wq(dev); 7185 7186 return scnprintf(buf, PAGE_SIZE, "%d\n", 7187 wq->unbound_attrs->affn_strict); 7188 } 7189 7190 static ssize_t wq_affinity_strict_store(struct device *dev, 7191 struct device_attribute *attr, 7192 const char *buf, size_t count) 7193 { 7194 struct workqueue_struct *wq = dev_to_wq(dev); 7195 struct workqueue_attrs *attrs; 7196 int v, ret = -ENOMEM; 7197 7198 if (sscanf(buf, "%d", &v) != 1) 7199 return -EINVAL; 7200 7201 apply_wqattrs_lock(); 7202 attrs = wq_sysfs_prep_attrs(wq); 7203 if (attrs) { 7204 attrs->affn_strict = (bool)v; 7205 ret = apply_workqueue_attrs_locked(wq, attrs); 7206 } 7207 apply_wqattrs_unlock(); 7208 free_workqueue_attrs(attrs); 7209 return ret ?: count; 7210 } 7211 7212 static struct device_attribute wq_sysfs_unbound_attrs[] = { 7213 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 7214 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 7215 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 7216 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 7217 __ATTR_NULL, 7218 }; 7219 7220 static const struct bus_type wq_subsys = { 7221 .name = "workqueue", 7222 .dev_groups = wq_sysfs_groups, 7223 }; 7224 7225 /** 7226 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 7227 * @cpumask: the cpumask to set 7228 * 7229 * The low-level workqueues cpumask is a global cpumask that limits 7230 * the affinity of all unbound workqueues. This function check the @cpumask 7231 * and apply it to all unbound workqueues and updates all pwqs of them. 7232 * 7233 * Return: 0 - Success 7234 * -EINVAL - Invalid @cpumask 7235 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 7236 */ 7237 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 7238 { 7239 int ret = -EINVAL; 7240 7241 /* 7242 * Not excluding isolated cpus on purpose. 7243 * If the user wishes to include them, we allow that. 7244 */ 7245 cpumask_and(cpumask, cpumask, cpu_possible_mask); 7246 if (!cpumask_empty(cpumask)) { 7247 ret = 0; 7248 apply_wqattrs_lock(); 7249 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 7250 ret = workqueue_apply_unbound_cpumask(cpumask); 7251 if (!ret) 7252 cpumask_copy(wq_requested_unbound_cpumask, cpumask); 7253 apply_wqattrs_unlock(); 7254 } 7255 7256 return ret; 7257 } 7258 7259 static ssize_t __wq_cpumask_show(struct device *dev, 7260 struct device_attribute *attr, char *buf, cpumask_var_t mask) 7261 { 7262 int written; 7263 7264 mutex_lock(&wq_pool_mutex); 7265 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 7266 mutex_unlock(&wq_pool_mutex); 7267 7268 return written; 7269 } 7270 7271 static ssize_t cpumask_requested_show(struct device *dev, 7272 struct device_attribute *attr, char *buf) 7273 { 7274 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask); 7275 } 7276 static DEVICE_ATTR_RO(cpumask_requested); 7277 7278 static ssize_t cpumask_isolated_show(struct device *dev, 7279 struct device_attribute *attr, char *buf) 7280 { 7281 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask); 7282 } 7283 static DEVICE_ATTR_RO(cpumask_isolated); 7284 7285 static ssize_t cpumask_show(struct device *dev, 7286 struct device_attribute *attr, char *buf) 7287 { 7288 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask); 7289 } 7290 7291 static ssize_t cpumask_store(struct device *dev, 7292 struct device_attribute *attr, const char *buf, size_t count) 7293 { 7294 cpumask_var_t cpumask; 7295 int ret; 7296 7297 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 7298 return -ENOMEM; 7299 7300 ret = cpumask_parse(buf, cpumask); 7301 if (!ret) 7302 ret = workqueue_set_unbound_cpumask(cpumask); 7303 7304 free_cpumask_var(cpumask); 7305 return ret ? ret : count; 7306 } 7307 static DEVICE_ATTR_RW(cpumask); 7308 7309 static struct attribute *wq_sysfs_cpumask_attrs[] = { 7310 &dev_attr_cpumask.attr, 7311 &dev_attr_cpumask_requested.attr, 7312 &dev_attr_cpumask_isolated.attr, 7313 NULL, 7314 }; 7315 ATTRIBUTE_GROUPS(wq_sysfs_cpumask); 7316 7317 static int __init wq_sysfs_init(void) 7318 { 7319 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups); 7320 } 7321 core_initcall(wq_sysfs_init); 7322 7323 static void wq_device_release(struct device *dev) 7324 { 7325 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7326 7327 kfree(wq_dev); 7328 } 7329 7330 /** 7331 * workqueue_sysfs_register - make a workqueue visible in sysfs 7332 * @wq: the workqueue to register 7333 * 7334 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 7335 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 7336 * which is the preferred method. 7337 * 7338 * Workqueue user should use this function directly iff it wants to apply 7339 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 7340 * apply_workqueue_attrs() may race against userland updating the 7341 * attributes. 7342 * 7343 * Return: 0 on success, -errno on failure. 7344 */ 7345 int workqueue_sysfs_register(struct workqueue_struct *wq) 7346 { 7347 struct wq_device *wq_dev; 7348 int ret; 7349 7350 /* 7351 * Adjusting max_active breaks ordering guarantee. Disallow exposing 7352 * ordered workqueues. 7353 */ 7354 if (WARN_ON(wq->flags & __WQ_ORDERED)) 7355 return -EINVAL; 7356 7357 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 7358 if (!wq_dev) 7359 return -ENOMEM; 7360 7361 wq_dev->wq = wq; 7362 wq_dev->dev.bus = &wq_subsys; 7363 wq_dev->dev.release = wq_device_release; 7364 dev_set_name(&wq_dev->dev, "%s", wq->name); 7365 7366 /* 7367 * unbound_attrs are created separately. Suppress uevent until 7368 * everything is ready. 7369 */ 7370 dev_set_uevent_suppress(&wq_dev->dev, true); 7371 7372 ret = device_register(&wq_dev->dev); 7373 if (ret) { 7374 put_device(&wq_dev->dev); 7375 wq->wq_dev = NULL; 7376 return ret; 7377 } 7378 7379 if (wq->flags & WQ_UNBOUND) { 7380 struct device_attribute *attr; 7381 7382 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 7383 ret = device_create_file(&wq_dev->dev, attr); 7384 if (ret) { 7385 device_unregister(&wq_dev->dev); 7386 wq->wq_dev = NULL; 7387 return ret; 7388 } 7389 } 7390 } 7391 7392 dev_set_uevent_suppress(&wq_dev->dev, false); 7393 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 7394 return 0; 7395 } 7396 7397 /** 7398 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 7399 * @wq: the workqueue to unregister 7400 * 7401 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 7402 */ 7403 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 7404 { 7405 struct wq_device *wq_dev = wq->wq_dev; 7406 7407 if (!wq->wq_dev) 7408 return; 7409 7410 wq->wq_dev = NULL; 7411 device_unregister(&wq_dev->dev); 7412 } 7413 #else /* CONFIG_SYSFS */ 7414 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 7415 #endif /* CONFIG_SYSFS */ 7416 7417 /* 7418 * Workqueue watchdog. 7419 * 7420 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 7421 * flush dependency, a concurrency managed work item which stays RUNNING 7422 * indefinitely. Workqueue stalls can be very difficult to debug as the 7423 * usual warning mechanisms don't trigger and internal workqueue state is 7424 * largely opaque. 7425 * 7426 * Workqueue watchdog monitors all worker pools periodically and dumps 7427 * state if some pools failed to make forward progress for a while where 7428 * forward progress is defined as the first item on ->worklist changing. 7429 * 7430 * This mechanism is controlled through the kernel parameter 7431 * "workqueue.watchdog_thresh" which can be updated at runtime through the 7432 * corresponding sysfs parameter file. 7433 */ 7434 #ifdef CONFIG_WQ_WATCHDOG 7435 7436 static unsigned long wq_watchdog_thresh = 30; 7437 static struct timer_list wq_watchdog_timer; 7438 7439 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 7440 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 7441 7442 static unsigned int wq_panic_on_stall; 7443 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644); 7444 7445 /* 7446 * Show workers that might prevent the processing of pending work items. 7447 * The only candidates are CPU-bound workers in the running state. 7448 * Pending work items should be handled by another idle worker 7449 * in all other situations. 7450 */ 7451 static void show_cpu_pool_hog(struct worker_pool *pool) 7452 { 7453 struct worker *worker; 7454 unsigned long irq_flags; 7455 int bkt; 7456 7457 raw_spin_lock_irqsave(&pool->lock, irq_flags); 7458 7459 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 7460 if (task_is_running(worker->task)) { 7461 /* 7462 * Defer printing to avoid deadlocks in console 7463 * drivers that queue work while holding locks 7464 * also taken in their write paths. 7465 */ 7466 printk_deferred_enter(); 7467 7468 pr_info("pool %d:\n", pool->id); 7469 sched_show_task(worker->task); 7470 7471 printk_deferred_exit(); 7472 } 7473 } 7474 7475 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 7476 } 7477 7478 static void show_cpu_pools_hogs(void) 7479 { 7480 struct worker_pool *pool; 7481 int pi; 7482 7483 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 7484 7485 rcu_read_lock(); 7486 7487 for_each_pool(pool, pi) { 7488 if (pool->cpu_stall) 7489 show_cpu_pool_hog(pool); 7490 7491 } 7492 7493 rcu_read_unlock(); 7494 } 7495 7496 static void panic_on_wq_watchdog(void) 7497 { 7498 static unsigned int wq_stall; 7499 7500 if (wq_panic_on_stall) { 7501 wq_stall++; 7502 BUG_ON(wq_stall >= wq_panic_on_stall); 7503 } 7504 } 7505 7506 static void wq_watchdog_reset_touched(void) 7507 { 7508 int cpu; 7509 7510 wq_watchdog_touched = jiffies; 7511 for_each_possible_cpu(cpu) 7512 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7513 } 7514 7515 static void wq_watchdog_timer_fn(struct timer_list *unused) 7516 { 7517 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7518 bool lockup_detected = false; 7519 bool cpu_pool_stall = false; 7520 unsigned long now = jiffies; 7521 struct worker_pool *pool; 7522 int pi; 7523 7524 if (!thresh) 7525 return; 7526 7527 rcu_read_lock(); 7528 7529 for_each_pool(pool, pi) { 7530 unsigned long pool_ts, touched, ts; 7531 7532 pool->cpu_stall = false; 7533 if (list_empty(&pool->worklist)) 7534 continue; 7535 7536 /* 7537 * If a virtual machine is stopped by the host it can look to 7538 * the watchdog like a stall. 7539 */ 7540 kvm_check_and_clear_guest_paused(); 7541 7542 /* get the latest of pool and touched timestamps */ 7543 if (pool->cpu >= 0) 7544 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 7545 else 7546 touched = READ_ONCE(wq_watchdog_touched); 7547 pool_ts = READ_ONCE(pool->watchdog_ts); 7548 7549 if (time_after(pool_ts, touched)) 7550 ts = pool_ts; 7551 else 7552 ts = touched; 7553 7554 /* did we stall? */ 7555 if (time_after(now, ts + thresh)) { 7556 lockup_detected = true; 7557 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) { 7558 pool->cpu_stall = true; 7559 cpu_pool_stall = true; 7560 } 7561 pr_emerg("BUG: workqueue lockup - pool"); 7562 pr_cont_pool_info(pool); 7563 pr_cont(" stuck for %us!\n", 7564 jiffies_to_msecs(now - pool_ts) / 1000); 7565 } 7566 7567 7568 } 7569 7570 rcu_read_unlock(); 7571 7572 if (lockup_detected) 7573 show_all_workqueues(); 7574 7575 if (cpu_pool_stall) 7576 show_cpu_pools_hogs(); 7577 7578 if (lockup_detected) 7579 panic_on_wq_watchdog(); 7580 7581 wq_watchdog_reset_touched(); 7582 mod_timer(&wq_watchdog_timer, jiffies + thresh); 7583 } 7584 7585 notrace void wq_watchdog_touch(int cpu) 7586 { 7587 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7588 unsigned long touch_ts = READ_ONCE(wq_watchdog_touched); 7589 unsigned long now = jiffies; 7590 7591 if (cpu >= 0) 7592 per_cpu(wq_watchdog_touched_cpu, cpu) = now; 7593 else 7594 WARN_ONCE(1, "%s should be called with valid CPU", __func__); 7595 7596 /* Don't unnecessarily store to global cacheline */ 7597 if (time_after(now, touch_ts + thresh / 4)) 7598 WRITE_ONCE(wq_watchdog_touched, jiffies); 7599 } 7600 7601 static void wq_watchdog_set_thresh(unsigned long thresh) 7602 { 7603 wq_watchdog_thresh = 0; 7604 del_timer_sync(&wq_watchdog_timer); 7605 7606 if (thresh) { 7607 wq_watchdog_thresh = thresh; 7608 wq_watchdog_reset_touched(); 7609 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 7610 } 7611 } 7612 7613 static int wq_watchdog_param_set_thresh(const char *val, 7614 const struct kernel_param *kp) 7615 { 7616 unsigned long thresh; 7617 int ret; 7618 7619 ret = kstrtoul(val, 0, &thresh); 7620 if (ret) 7621 return ret; 7622 7623 if (system_wq) 7624 wq_watchdog_set_thresh(thresh); 7625 else 7626 wq_watchdog_thresh = thresh; 7627 7628 return 0; 7629 } 7630 7631 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 7632 .set = wq_watchdog_param_set_thresh, 7633 .get = param_get_ulong, 7634 }; 7635 7636 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 7637 0644); 7638 7639 static void wq_watchdog_init(void) 7640 { 7641 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 7642 wq_watchdog_set_thresh(wq_watchdog_thresh); 7643 } 7644 7645 #else /* CONFIG_WQ_WATCHDOG */ 7646 7647 static inline void wq_watchdog_init(void) { } 7648 7649 #endif /* CONFIG_WQ_WATCHDOG */ 7650 7651 static void bh_pool_kick_normal(struct irq_work *irq_work) 7652 { 7653 raise_softirq_irqoff(TASKLET_SOFTIRQ); 7654 } 7655 7656 static void bh_pool_kick_highpri(struct irq_work *irq_work) 7657 { 7658 raise_softirq_irqoff(HI_SOFTIRQ); 7659 } 7660 7661 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 7662 { 7663 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 7664 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 7665 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 7666 return; 7667 } 7668 7669 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 7670 } 7671 7672 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice) 7673 { 7674 BUG_ON(init_worker_pool(pool)); 7675 pool->cpu = cpu; 7676 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 7677 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 7678 pool->attrs->nice = nice; 7679 pool->attrs->affn_strict = true; 7680 pool->node = cpu_to_node(cpu); 7681 7682 /* alloc pool ID */ 7683 mutex_lock(&wq_pool_mutex); 7684 BUG_ON(worker_pool_assign_id(pool)); 7685 mutex_unlock(&wq_pool_mutex); 7686 } 7687 7688 /** 7689 * workqueue_init_early - early init for workqueue subsystem 7690 * 7691 * This is the first step of three-staged workqueue subsystem initialization and 7692 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 7693 * up. It sets up all the data structures and system workqueues and allows early 7694 * boot code to create workqueues and queue/cancel work items. Actual work item 7695 * execution starts only after kthreads can be created and scheduled right 7696 * before early initcalls. 7697 */ 7698 void __init workqueue_init_early(void) 7699 { 7700 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 7701 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 7702 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal, 7703 bh_pool_kick_highpri }; 7704 int i, cpu; 7705 7706 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 7707 7708 BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL)); 7709 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 7710 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); 7711 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); 7712 7713 cpumask_copy(wq_online_cpumask, cpu_online_mask); 7714 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 7715 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 7716 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 7717 if (!cpumask_empty(&wq_cmdline_cpumask)) 7718 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 7719 7720 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask); 7721 7722 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 7723 7724 unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs(); 7725 BUG_ON(!unbound_wq_update_pwq_attrs_buf); 7726 7727 /* 7728 * If nohz_full is enabled, set power efficient workqueue as unbound. 7729 * This allows workqueue items to be moved to HK CPUs. 7730 */ 7731 if (housekeeping_enabled(HK_TYPE_TICK)) 7732 wq_power_efficient = true; 7733 7734 /* initialize WQ_AFFN_SYSTEM pods */ 7735 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7736 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 7737 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7738 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 7739 7740 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 7741 7742 pt->nr_pods = 1; 7743 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 7744 pt->pod_node[0] = NUMA_NO_NODE; 7745 pt->cpu_pod[0] = 0; 7746 7747 /* initialize BH and CPU pools */ 7748 for_each_possible_cpu(cpu) { 7749 struct worker_pool *pool; 7750 7751 i = 0; 7752 for_each_bh_worker_pool(pool, cpu) { 7753 init_cpu_worker_pool(pool, cpu, std_nice[i]); 7754 pool->flags |= POOL_BH; 7755 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]); 7756 i++; 7757 } 7758 7759 i = 0; 7760 for_each_cpu_worker_pool(pool, cpu) 7761 init_cpu_worker_pool(pool, cpu, std_nice[i++]); 7762 } 7763 7764 /* create default unbound and ordered wq attrs */ 7765 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 7766 struct workqueue_attrs *attrs; 7767 7768 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7769 attrs->nice = std_nice[i]; 7770 unbound_std_wq_attrs[i] = attrs; 7771 7772 /* 7773 * An ordered wq should have only one pwq as ordering is 7774 * guaranteed by max_active which is enforced by pwqs. 7775 */ 7776 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7777 attrs->nice = std_nice[i]; 7778 attrs->ordered = true; 7779 ordered_wq_attrs[i] = attrs; 7780 } 7781 7782 system_wq = alloc_workqueue("events", 0, 0); 7783 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 7784 system_long_wq = alloc_workqueue("events_long", 0, 0); 7785 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 7786 WQ_MAX_ACTIVE); 7787 system_freezable_wq = alloc_workqueue("events_freezable", 7788 WQ_FREEZABLE, 0); 7789 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 7790 WQ_POWER_EFFICIENT, 0); 7791 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient", 7792 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 7793 0); 7794 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0); 7795 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri", 7796 WQ_BH | WQ_HIGHPRI, 0); 7797 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 7798 !system_unbound_wq || !system_freezable_wq || 7799 !system_power_efficient_wq || 7800 !system_freezable_power_efficient_wq || 7801 !system_bh_wq || !system_bh_highpri_wq); 7802 } 7803 7804 static void __init wq_cpu_intensive_thresh_init(void) 7805 { 7806 unsigned long thresh; 7807 unsigned long bogo; 7808 7809 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); 7810 BUG_ON(IS_ERR(pwq_release_worker)); 7811 7812 /* if the user set it to a specific value, keep it */ 7813 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 7814 return; 7815 7816 /* 7817 * The default of 10ms is derived from the fact that most modern (as of 7818 * 2023) processors can do a lot in 10ms and that it's just below what 7819 * most consider human-perceivable. However, the kernel also runs on a 7820 * lot slower CPUs including microcontrollers where the threshold is way 7821 * too low. 7822 * 7823 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 7824 * This is by no means accurate but it doesn't have to be. The mechanism 7825 * is still useful even when the threshold is fully scaled up. Also, as 7826 * the reports would usually be applicable to everyone, some machines 7827 * operating on longer thresholds won't significantly diminish their 7828 * usefulness. 7829 */ 7830 thresh = 10 * USEC_PER_MSEC; 7831 7832 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 7833 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 7834 if (bogo < 4000) 7835 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 7836 7837 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 7838 loops_per_jiffy, bogo, thresh); 7839 7840 wq_cpu_intensive_thresh_us = thresh; 7841 } 7842 7843 /** 7844 * workqueue_init - bring workqueue subsystem fully online 7845 * 7846 * This is the second step of three-staged workqueue subsystem initialization 7847 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 7848 * been created and work items queued on them, but there are no kworkers 7849 * executing the work items yet. Populate the worker pools with the initial 7850 * workers and enable future kworker creations. 7851 */ 7852 void __init workqueue_init(void) 7853 { 7854 struct workqueue_struct *wq; 7855 struct worker_pool *pool; 7856 int cpu, bkt; 7857 7858 wq_cpu_intensive_thresh_init(); 7859 7860 mutex_lock(&wq_pool_mutex); 7861 7862 /* 7863 * Per-cpu pools created earlier could be missing node hint. Fix them 7864 * up. Also, create a rescuer for workqueues that requested it. 7865 */ 7866 for_each_possible_cpu(cpu) { 7867 for_each_bh_worker_pool(pool, cpu) 7868 pool->node = cpu_to_node(cpu); 7869 for_each_cpu_worker_pool(pool, cpu) 7870 pool->node = cpu_to_node(cpu); 7871 } 7872 7873 list_for_each_entry(wq, &workqueues, list) { 7874 WARN(init_rescuer(wq), 7875 "workqueue: failed to create early rescuer for %s", 7876 wq->name); 7877 } 7878 7879 mutex_unlock(&wq_pool_mutex); 7880 7881 /* 7882 * Create the initial workers. A BH pool has one pseudo worker that 7883 * represents the shared BH execution context and thus doesn't get 7884 * affected by hotplug events. Create the BH pseudo workers for all 7885 * possible CPUs here. 7886 */ 7887 for_each_possible_cpu(cpu) 7888 for_each_bh_worker_pool(pool, cpu) 7889 BUG_ON(!create_worker(pool)); 7890 7891 for_each_online_cpu(cpu) { 7892 for_each_cpu_worker_pool(pool, cpu) { 7893 pool->flags &= ~POOL_DISASSOCIATED; 7894 BUG_ON(!create_worker(pool)); 7895 } 7896 } 7897 7898 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 7899 BUG_ON(!create_worker(pool)); 7900 7901 wq_online = true; 7902 wq_watchdog_init(); 7903 } 7904 7905 /* 7906 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 7907 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 7908 * and consecutive pod ID. The rest of @pt is initialized accordingly. 7909 */ 7910 static void __init init_pod_type(struct wq_pod_type *pt, 7911 bool (*cpus_share_pod)(int, int)) 7912 { 7913 int cur, pre, cpu, pod; 7914 7915 pt->nr_pods = 0; 7916 7917 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 7918 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7919 BUG_ON(!pt->cpu_pod); 7920 7921 for_each_possible_cpu(cur) { 7922 for_each_possible_cpu(pre) { 7923 if (pre >= cur) { 7924 pt->cpu_pod[cur] = pt->nr_pods++; 7925 break; 7926 } 7927 if (cpus_share_pod(cur, pre)) { 7928 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 7929 break; 7930 } 7931 } 7932 } 7933 7934 /* init the rest to match @pt->cpu_pod[] */ 7935 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7936 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 7937 BUG_ON(!pt->pod_cpus || !pt->pod_node); 7938 7939 for (pod = 0; pod < pt->nr_pods; pod++) 7940 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 7941 7942 for_each_possible_cpu(cpu) { 7943 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 7944 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 7945 } 7946 } 7947 7948 static bool __init cpus_dont_share(int cpu0, int cpu1) 7949 { 7950 return false; 7951 } 7952 7953 static bool __init cpus_share_smt(int cpu0, int cpu1) 7954 { 7955 #ifdef CONFIG_SCHED_SMT 7956 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 7957 #else 7958 return false; 7959 #endif 7960 } 7961 7962 static bool __init cpus_share_numa(int cpu0, int cpu1) 7963 { 7964 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 7965 } 7966 7967 /** 7968 * workqueue_init_topology - initialize CPU pods for unbound workqueues 7969 * 7970 * This is the third step of three-staged workqueue subsystem initialization and 7971 * invoked after SMP and topology information are fully initialized. It 7972 * initializes the unbound CPU pods accordingly. 7973 */ 7974 void __init workqueue_init_topology(void) 7975 { 7976 struct workqueue_struct *wq; 7977 int cpu; 7978 7979 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 7980 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 7981 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 7982 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 7983 7984 wq_topo_initialized = true; 7985 7986 mutex_lock(&wq_pool_mutex); 7987 7988 /* 7989 * Workqueues allocated earlier would have all CPUs sharing the default 7990 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue 7991 * and CPU combinations to apply per-pod sharing. 7992 */ 7993 list_for_each_entry(wq, &workqueues, list) { 7994 for_each_online_cpu(cpu) 7995 unbound_wq_update_pwq(wq, cpu); 7996 if (wq->flags & WQ_UNBOUND) { 7997 mutex_lock(&wq->mutex); 7998 wq_update_node_max_active(wq, -1); 7999 mutex_unlock(&wq->mutex); 8000 } 8001 } 8002 8003 mutex_unlock(&wq_pool_mutex); 8004 } 8005 8006 void __warn_flushing_systemwide_wq(void) 8007 { 8008 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 8009 dump_stack(); 8010 } 8011 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 8012 8013 static int __init workqueue_unbound_cpus_setup(char *str) 8014 { 8015 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 8016 cpumask_clear(&wq_cmdline_cpumask); 8017 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 8018 } 8019 8020 return 1; 8021 } 8022 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 8023