1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <[email protected]> 9 * Andrew Morton 10 * Kai Petzke <[email protected]> 11 * Theodore Ts'o <[email protected]> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <[email protected]> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/interrupt.h> 33 #include <linux/signal.h> 34 #include <linux/completion.h> 35 #include <linux/workqueue.h> 36 #include <linux/slab.h> 37 #include <linux/cpu.h> 38 #include <linux/notifier.h> 39 #include <linux/kthread.h> 40 #include <linux/hardirq.h> 41 #include <linux/mempolicy.h> 42 #include <linux/freezer.h> 43 #include <linux/debug_locks.h> 44 #include <linux/lockdep.h> 45 #include <linux/idr.h> 46 #include <linux/jhash.h> 47 #include <linux/hashtable.h> 48 #include <linux/rculist.h> 49 #include <linux/nodemask.h> 50 #include <linux/moduleparam.h> 51 #include <linux/uaccess.h> 52 #include <linux/sched/isolation.h> 53 #include <linux/sched/debug.h> 54 #include <linux/nmi.h> 55 #include <linux/kvm_para.h> 56 #include <linux/delay.h> 57 #include <linux/irq_work.h> 58 59 #include "workqueue_internal.h" 60 61 enum worker_pool_flags { 62 /* 63 * worker_pool flags 64 * 65 * A bound pool is either associated or disassociated with its CPU. 66 * While associated (!DISASSOCIATED), all workers are bound to the 67 * CPU and none has %WORKER_UNBOUND set and concurrency management 68 * is in effect. 69 * 70 * While DISASSOCIATED, the cpu may be offline and all workers have 71 * %WORKER_UNBOUND set and concurrency management disabled, and may 72 * be executing on any CPU. The pool behaves as an unbound one. 73 * 74 * Note that DISASSOCIATED should be flipped only while holding 75 * wq_pool_attach_mutex to avoid changing binding state while 76 * worker_attach_to_pool() is in progress. 77 * 78 * As there can only be one concurrent BH execution context per CPU, a 79 * BH pool is per-CPU and always DISASSOCIATED. 80 */ 81 POOL_BH = 1 << 0, /* is a BH pool */ 82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */ 83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */ 85 }; 86 87 enum worker_flags { 88 /* worker flags */ 89 WORKER_DIE = 1 << 1, /* die die die */ 90 WORKER_IDLE = 1 << 2, /* is idle */ 91 WORKER_PREP = 1 << 3, /* preparing to run works */ 92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 94 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 95 96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 97 WORKER_UNBOUND | WORKER_REBOUND, 98 }; 99 100 enum work_cancel_flags { 101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */ 102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */ 103 }; 104 105 enum wq_internal_consts { 106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 107 108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 110 111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 113 114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 115 /* call for help after 10ms 116 (min two ticks) */ 117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 118 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 119 120 /* 121 * Rescue workers are used only on emergencies and shared by 122 * all cpus. Give MIN_NICE. 123 */ 124 RESCUER_NICE_LEVEL = MIN_NICE, 125 HIGHPRI_NICE_LEVEL = MIN_NICE, 126 127 WQ_NAME_LEN = 32, 128 }; 129 130 /* 131 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and 132 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because 133 * msecs_to_jiffies() can't be an initializer. 134 */ 135 #define BH_WORKER_JIFFIES msecs_to_jiffies(2) 136 #define BH_WORKER_RESTARTS 10 137 138 /* 139 * Structure fields follow one of the following exclusion rules. 140 * 141 * I: Modifiable by initialization/destruction paths and read-only for 142 * everyone else. 143 * 144 * P: Preemption protected. Disabling preemption is enough and should 145 * only be modified and accessed from the local cpu. 146 * 147 * L: pool->lock protected. Access with pool->lock held. 148 * 149 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for 150 * reads. 151 * 152 * K: Only modified by worker while holding pool->lock. Can be safely read by 153 * self, while holding pool->lock or from IRQ context if %current is the 154 * kworker. 155 * 156 * S: Only modified by worker self. 157 * 158 * A: wq_pool_attach_mutex protected. 159 * 160 * PL: wq_pool_mutex protected. 161 * 162 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 163 * 164 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 165 * 166 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 167 * RCU for reads. 168 * 169 * WQ: wq->mutex protected. 170 * 171 * WR: wq->mutex protected for writes. RCU protected for reads. 172 * 173 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read 174 * with READ_ONCE() without locking. 175 * 176 * MD: wq_mayday_lock protected. 177 * 178 * WD: Used internally by the watchdog. 179 */ 180 181 /* struct worker is defined in workqueue_internal.h */ 182 183 struct worker_pool { 184 raw_spinlock_t lock; /* the pool lock */ 185 int cpu; /* I: the associated cpu */ 186 int node; /* I: the associated node ID */ 187 int id; /* I: pool ID */ 188 unsigned int flags; /* L: flags */ 189 190 unsigned long watchdog_ts; /* L: watchdog timestamp */ 191 bool cpu_stall; /* WD: stalled cpu bound pool */ 192 193 /* 194 * The counter is incremented in a process context on the associated CPU 195 * w/ preemption disabled, and decremented or reset in the same context 196 * but w/ pool->lock held. The readers grab pool->lock and are 197 * guaranteed to see if the counter reached zero. 198 */ 199 int nr_running; 200 201 struct list_head worklist; /* L: list of pending works */ 202 203 int nr_workers; /* L: total number of workers */ 204 int nr_idle; /* L: currently idle workers */ 205 206 struct list_head idle_list; /* L: list of idle workers */ 207 struct timer_list idle_timer; /* L: worker idle timeout */ 208 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 209 210 struct timer_list mayday_timer; /* L: SOS timer for workers */ 211 212 /* a workers is either on busy_hash or idle_list, or the manager */ 213 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 214 /* L: hash of busy workers */ 215 216 struct worker *manager; /* L: purely informational */ 217 struct list_head workers; /* A: attached workers */ 218 219 struct ida worker_ida; /* worker IDs for task name */ 220 221 struct workqueue_attrs *attrs; /* I: worker attributes */ 222 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 223 int refcnt; /* PL: refcnt for unbound pools */ 224 225 /* 226 * Destruction of pool is RCU protected to allow dereferences 227 * from get_work_pool(). 228 */ 229 struct rcu_head rcu; 230 }; 231 232 /* 233 * Per-pool_workqueue statistics. These can be monitored using 234 * tools/workqueue/wq_monitor.py. 235 */ 236 enum pool_workqueue_stats { 237 PWQ_STAT_STARTED, /* work items started execution */ 238 PWQ_STAT_COMPLETED, /* work items completed execution */ 239 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 240 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 241 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 242 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 243 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 244 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 245 246 PWQ_NR_STATS, 247 }; 248 249 /* 250 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT 251 * of work_struct->data are used for flags and the remaining high bits 252 * point to the pwq; thus, pwqs need to be aligned at two's power of the 253 * number of flag bits. 254 */ 255 struct pool_workqueue { 256 struct worker_pool *pool; /* I: the associated pool */ 257 struct workqueue_struct *wq; /* I: the owning workqueue */ 258 int work_color; /* L: current color */ 259 int flush_color; /* L: flushing color */ 260 int refcnt; /* L: reference count */ 261 int nr_in_flight[WORK_NR_COLORS]; 262 /* L: nr of in_flight works */ 263 bool plugged; /* L: execution suspended */ 264 265 /* 266 * nr_active management and WORK_STRUCT_INACTIVE: 267 * 268 * When pwq->nr_active >= max_active, new work item is queued to 269 * pwq->inactive_works instead of pool->worklist and marked with 270 * WORK_STRUCT_INACTIVE. 271 * 272 * All work items marked with WORK_STRUCT_INACTIVE do not participate in 273 * nr_active and all work items in pwq->inactive_works are marked with 274 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are 275 * in pwq->inactive_works. Some of them are ready to run in 276 * pool->worklist or worker->scheduled. Those work itmes are only struct 277 * wq_barrier which is used for flush_work() and should not participate 278 * in nr_active. For non-barrier work item, it is marked with 279 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 280 */ 281 int nr_active; /* L: nr of active works */ 282 struct list_head inactive_works; /* L: inactive works */ 283 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ 284 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 285 struct list_head mayday_node; /* MD: node on wq->maydays */ 286 287 u64 stats[PWQ_NR_STATS]; 288 289 /* 290 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 291 * and pwq_release_workfn() for details. pool_workqueue itself is also 292 * RCU protected so that the first pwq can be determined without 293 * grabbing wq->mutex. 294 */ 295 struct kthread_work release_work; 296 struct rcu_head rcu; 297 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT); 298 299 /* 300 * Structure used to wait for workqueue flush. 301 */ 302 struct wq_flusher { 303 struct list_head list; /* WQ: list of flushers */ 304 int flush_color; /* WQ: flush color waiting for */ 305 struct completion done; /* flush completion */ 306 }; 307 308 struct wq_device; 309 310 /* 311 * Unlike in a per-cpu workqueue where max_active limits its concurrency level 312 * on each CPU, in an unbound workqueue, max_active applies to the whole system. 313 * As sharing a single nr_active across multiple sockets can be very expensive, 314 * the counting and enforcement is per NUMA node. 315 * 316 * The following struct is used to enforce per-node max_active. When a pwq wants 317 * to start executing a work item, it should increment ->nr using 318 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over 319 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish 320 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in 321 * round-robin order. 322 */ 323 struct wq_node_nr_active { 324 int max; /* per-node max_active */ 325 atomic_t nr; /* per-node nr_active */ 326 raw_spinlock_t lock; /* nests inside pool locks */ 327 struct list_head pending_pwqs; /* LN: pwqs with inactive works */ 328 }; 329 330 /* 331 * The externally visible workqueue. It relays the issued work items to 332 * the appropriate worker_pool through its pool_workqueues. 333 */ 334 struct workqueue_struct { 335 struct list_head pwqs; /* WR: all pwqs of this wq */ 336 struct list_head list; /* PR: list of all workqueues */ 337 338 struct mutex mutex; /* protects this wq */ 339 int work_color; /* WQ: current work color */ 340 int flush_color; /* WQ: current flush color */ 341 atomic_t nr_pwqs_to_flush; /* flush in progress */ 342 struct wq_flusher *first_flusher; /* WQ: first flusher */ 343 struct list_head flusher_queue; /* WQ: flush waiters */ 344 struct list_head flusher_overflow; /* WQ: flush overflow list */ 345 346 struct list_head maydays; /* MD: pwqs requesting rescue */ 347 struct worker *rescuer; /* MD: rescue worker */ 348 349 int nr_drainers; /* WQ: drain in progress */ 350 351 /* See alloc_workqueue() function comment for info on min/max_active */ 352 int max_active; /* WO: max active works */ 353 int min_active; /* WO: min active works */ 354 int saved_max_active; /* WQ: saved max_active */ 355 int saved_min_active; /* WQ: saved min_active */ 356 357 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 358 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ 359 360 #ifdef CONFIG_SYSFS 361 struct wq_device *wq_dev; /* I: for sysfs interface */ 362 #endif 363 #ifdef CONFIG_LOCKDEP 364 char *lock_name; 365 struct lock_class_key key; 366 struct lockdep_map lockdep_map; 367 #endif 368 char name[WQ_NAME_LEN]; /* I: workqueue name */ 369 370 /* 371 * Destruction of workqueue_struct is RCU protected to allow walking 372 * the workqueues list without grabbing wq_pool_mutex. 373 * This is used to dump all workqueues from sysrq. 374 */ 375 struct rcu_head rcu; 376 377 /* hot fields used during command issue, aligned to cacheline */ 378 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 379 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */ 380 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ 381 }; 382 383 /* 384 * Each pod type describes how CPUs should be grouped for unbound workqueues. 385 * See the comment above workqueue_attrs->affn_scope. 386 */ 387 struct wq_pod_type { 388 int nr_pods; /* number of pods */ 389 cpumask_var_t *pod_cpus; /* pod -> cpus */ 390 int *pod_node; /* pod -> node */ 391 int *cpu_pod; /* cpu -> pod */ 392 }; 393 394 struct work_offq_data { 395 u32 pool_id; 396 u32 disable; 397 u32 flags; 398 }; 399 400 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 401 [WQ_AFFN_DFL] = "default", 402 [WQ_AFFN_CPU] = "cpu", 403 [WQ_AFFN_SMT] = "smt", 404 [WQ_AFFN_CACHE] = "cache", 405 [WQ_AFFN_NUMA] = "numa", 406 [WQ_AFFN_SYSTEM] = "system", 407 }; 408 409 /* 410 * Per-cpu work items which run for longer than the following threshold are 411 * automatically considered CPU intensive and excluded from concurrency 412 * management to prevent them from noticeably delaying other per-cpu work items. 413 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 414 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 415 */ 416 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 417 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 418 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 419 static unsigned int wq_cpu_intensive_warning_thresh = 4; 420 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644); 421 #endif 422 423 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 424 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 425 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 426 427 static bool wq_online; /* can kworkers be created yet? */ 428 static bool wq_topo_initialized __read_mostly = false; 429 430 static struct kmem_cache *pwq_cache; 431 432 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 433 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 434 435 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 436 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf; 437 438 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 439 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 440 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 441 /* wait for manager to go away */ 442 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 443 444 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 445 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 446 447 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */ 448 static cpumask_var_t wq_online_cpumask; 449 450 /* PL&A: allowable cpus for unbound wqs and work items */ 451 static cpumask_var_t wq_unbound_cpumask; 452 453 /* PL: user requested unbound cpumask via sysfs */ 454 static cpumask_var_t wq_requested_unbound_cpumask; 455 456 /* PL: isolated cpumask to be excluded from unbound cpumask */ 457 static cpumask_var_t wq_isolated_cpumask; 458 459 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 460 static struct cpumask wq_cmdline_cpumask __initdata; 461 462 /* CPU where unbound work was last round robin scheduled from this CPU */ 463 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 464 465 /* 466 * Local execution of unbound work items is no longer guaranteed. The 467 * following always forces round-robin CPU selection on unbound work items 468 * to uncover usages which depend on it. 469 */ 470 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 471 static bool wq_debug_force_rr_cpu = true; 472 #else 473 static bool wq_debug_force_rr_cpu = false; 474 #endif 475 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 476 477 /* to raise softirq for the BH worker pools on other CPUs */ 478 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], 479 bh_pool_irq_works); 480 481 /* the BH worker pools */ 482 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 483 bh_worker_pools); 484 485 /* the per-cpu worker pools */ 486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 487 cpu_worker_pools); 488 489 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 490 491 /* PL: hash of all unbound pools keyed by pool->attrs */ 492 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 493 494 /* I: attributes used when instantiating standard unbound pools on demand */ 495 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 496 497 /* I: attributes used when instantiating ordered pools on demand */ 498 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 499 500 /* 501 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 502 * process context while holding a pool lock. Bounce to a dedicated kthread 503 * worker to avoid A-A deadlocks. 504 */ 505 static struct kthread_worker *pwq_release_worker __ro_after_init; 506 507 struct workqueue_struct *system_wq __ro_after_init; 508 EXPORT_SYMBOL(system_wq); 509 struct workqueue_struct *system_highpri_wq __ro_after_init; 510 EXPORT_SYMBOL_GPL(system_highpri_wq); 511 struct workqueue_struct *system_long_wq __ro_after_init; 512 EXPORT_SYMBOL_GPL(system_long_wq); 513 struct workqueue_struct *system_unbound_wq __ro_after_init; 514 EXPORT_SYMBOL_GPL(system_unbound_wq); 515 struct workqueue_struct *system_freezable_wq __ro_after_init; 516 EXPORT_SYMBOL_GPL(system_freezable_wq); 517 struct workqueue_struct *system_power_efficient_wq __ro_after_init; 518 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 519 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; 520 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 521 struct workqueue_struct *system_bh_wq; 522 EXPORT_SYMBOL_GPL(system_bh_wq); 523 struct workqueue_struct *system_bh_highpri_wq; 524 EXPORT_SYMBOL_GPL(system_bh_highpri_wq); 525 526 static int worker_thread(void *__worker); 527 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 528 static void show_pwq(struct pool_workqueue *pwq); 529 static void show_one_worker_pool(struct worker_pool *pool); 530 531 #define CREATE_TRACE_POINTS 532 #include <trace/events/workqueue.h> 533 534 #define assert_rcu_or_pool_mutex() \ 535 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 536 !lockdep_is_held(&wq_pool_mutex), \ 537 "RCU or wq_pool_mutex should be held") 538 539 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 540 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 541 !lockdep_is_held(&wq->mutex) && \ 542 !lockdep_is_held(&wq_pool_mutex), \ 543 "RCU, wq->mutex or wq_pool_mutex should be held") 544 545 #define for_each_bh_worker_pool(pool, cpu) \ 546 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \ 547 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 548 (pool)++) 549 550 #define for_each_cpu_worker_pool(pool, cpu) \ 551 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 552 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 553 (pool)++) 554 555 /** 556 * for_each_pool - iterate through all worker_pools in the system 557 * @pool: iteration cursor 558 * @pi: integer used for iteration 559 * 560 * This must be called either with wq_pool_mutex held or RCU read 561 * locked. If the pool needs to be used beyond the locking in effect, the 562 * caller is responsible for guaranteeing that the pool stays online. 563 * 564 * The if/else clause exists only for the lockdep assertion and can be 565 * ignored. 566 */ 567 #define for_each_pool(pool, pi) \ 568 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 569 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 570 else 571 572 /** 573 * for_each_pool_worker - iterate through all workers of a worker_pool 574 * @worker: iteration cursor 575 * @pool: worker_pool to iterate workers of 576 * 577 * This must be called with wq_pool_attach_mutex. 578 * 579 * The if/else clause exists only for the lockdep assertion and can be 580 * ignored. 581 */ 582 #define for_each_pool_worker(worker, pool) \ 583 list_for_each_entry((worker), &(pool)->workers, node) \ 584 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 585 else 586 587 /** 588 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 589 * @pwq: iteration cursor 590 * @wq: the target workqueue 591 * 592 * This must be called either with wq->mutex held or RCU read locked. 593 * If the pwq needs to be used beyond the locking in effect, the caller is 594 * responsible for guaranteeing that the pwq stays online. 595 * 596 * The if/else clause exists only for the lockdep assertion and can be 597 * ignored. 598 */ 599 #define for_each_pwq(pwq, wq) \ 600 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 601 lockdep_is_held(&(wq->mutex))) 602 603 #ifdef CONFIG_DEBUG_OBJECTS_WORK 604 605 static const struct debug_obj_descr work_debug_descr; 606 607 static void *work_debug_hint(void *addr) 608 { 609 return ((struct work_struct *) addr)->func; 610 } 611 612 static bool work_is_static_object(void *addr) 613 { 614 struct work_struct *work = addr; 615 616 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 617 } 618 619 /* 620 * fixup_init is called when: 621 * - an active object is initialized 622 */ 623 static bool work_fixup_init(void *addr, enum debug_obj_state state) 624 { 625 struct work_struct *work = addr; 626 627 switch (state) { 628 case ODEBUG_STATE_ACTIVE: 629 cancel_work_sync(work); 630 debug_object_init(work, &work_debug_descr); 631 return true; 632 default: 633 return false; 634 } 635 } 636 637 /* 638 * fixup_free is called when: 639 * - an active object is freed 640 */ 641 static bool work_fixup_free(void *addr, enum debug_obj_state state) 642 { 643 struct work_struct *work = addr; 644 645 switch (state) { 646 case ODEBUG_STATE_ACTIVE: 647 cancel_work_sync(work); 648 debug_object_free(work, &work_debug_descr); 649 return true; 650 default: 651 return false; 652 } 653 } 654 655 static const struct debug_obj_descr work_debug_descr = { 656 .name = "work_struct", 657 .debug_hint = work_debug_hint, 658 .is_static_object = work_is_static_object, 659 .fixup_init = work_fixup_init, 660 .fixup_free = work_fixup_free, 661 }; 662 663 static inline void debug_work_activate(struct work_struct *work) 664 { 665 debug_object_activate(work, &work_debug_descr); 666 } 667 668 static inline void debug_work_deactivate(struct work_struct *work) 669 { 670 debug_object_deactivate(work, &work_debug_descr); 671 } 672 673 void __init_work(struct work_struct *work, int onstack) 674 { 675 if (onstack) 676 debug_object_init_on_stack(work, &work_debug_descr); 677 else 678 debug_object_init(work, &work_debug_descr); 679 } 680 EXPORT_SYMBOL_GPL(__init_work); 681 682 void destroy_work_on_stack(struct work_struct *work) 683 { 684 debug_object_free(work, &work_debug_descr); 685 } 686 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 687 688 void destroy_delayed_work_on_stack(struct delayed_work *work) 689 { 690 destroy_timer_on_stack(&work->timer); 691 debug_object_free(&work->work, &work_debug_descr); 692 } 693 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 694 695 #else 696 static inline void debug_work_activate(struct work_struct *work) { } 697 static inline void debug_work_deactivate(struct work_struct *work) { } 698 #endif 699 700 /** 701 * worker_pool_assign_id - allocate ID and assign it to @pool 702 * @pool: the pool pointer of interest 703 * 704 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 705 * successfully, -errno on failure. 706 */ 707 static int worker_pool_assign_id(struct worker_pool *pool) 708 { 709 int ret; 710 711 lockdep_assert_held(&wq_pool_mutex); 712 713 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 714 GFP_KERNEL); 715 if (ret >= 0) { 716 pool->id = ret; 717 return 0; 718 } 719 return ret; 720 } 721 722 static struct pool_workqueue __rcu ** 723 unbound_pwq_slot(struct workqueue_struct *wq, int cpu) 724 { 725 if (cpu >= 0) 726 return per_cpu_ptr(wq->cpu_pwq, cpu); 727 else 728 return &wq->dfl_pwq; 729 } 730 731 /* @cpu < 0 for dfl_pwq */ 732 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) 733 { 734 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), 735 lockdep_is_held(&wq_pool_mutex) || 736 lockdep_is_held(&wq->mutex)); 737 } 738 739 /** 740 * unbound_effective_cpumask - effective cpumask of an unbound workqueue 741 * @wq: workqueue of interest 742 * 743 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which 744 * is masked with wq_unbound_cpumask to determine the effective cpumask. The 745 * default pwq is always mapped to the pool with the current effective cpumask. 746 */ 747 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) 748 { 749 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask; 750 } 751 752 static unsigned int work_color_to_flags(int color) 753 { 754 return color << WORK_STRUCT_COLOR_SHIFT; 755 } 756 757 static int get_work_color(unsigned long work_data) 758 { 759 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 760 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 761 } 762 763 static int work_next_color(int color) 764 { 765 return (color + 1) % WORK_NR_COLORS; 766 } 767 768 static unsigned long pool_offq_flags(struct worker_pool *pool) 769 { 770 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0; 771 } 772 773 /* 774 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 775 * contain the pointer to the queued pwq. Once execution starts, the flag 776 * is cleared and the high bits contain OFFQ flags and pool ID. 777 * 778 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling() 779 * can be used to set the pwq, pool or clear work->data. These functions should 780 * only be called while the work is owned - ie. while the PENDING bit is set. 781 * 782 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 783 * corresponding to a work. Pool is available once the work has been 784 * queued anywhere after initialization until it is sync canceled. pwq is 785 * available only while the work item is queued. 786 */ 787 static inline void set_work_data(struct work_struct *work, unsigned long data) 788 { 789 WARN_ON_ONCE(!work_pending(work)); 790 atomic_long_set(&work->data, data | work_static(work)); 791 } 792 793 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 794 unsigned long flags) 795 { 796 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING | 797 WORK_STRUCT_PWQ | flags); 798 } 799 800 static void set_work_pool_and_keep_pending(struct work_struct *work, 801 int pool_id, unsigned long flags) 802 { 803 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 804 WORK_STRUCT_PENDING | flags); 805 } 806 807 static void set_work_pool_and_clear_pending(struct work_struct *work, 808 int pool_id, unsigned long flags) 809 { 810 /* 811 * The following wmb is paired with the implied mb in 812 * test_and_set_bit(PENDING) and ensures all updates to @work made 813 * here are visible to and precede any updates by the next PENDING 814 * owner. 815 */ 816 smp_wmb(); 817 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 818 flags); 819 /* 820 * The following mb guarantees that previous clear of a PENDING bit 821 * will not be reordered with any speculative LOADS or STORES from 822 * work->current_func, which is executed afterwards. This possible 823 * reordering can lead to a missed execution on attempt to queue 824 * the same @work. E.g. consider this case: 825 * 826 * CPU#0 CPU#1 827 * ---------------------------- -------------------------------- 828 * 829 * 1 STORE event_indicated 830 * 2 queue_work_on() { 831 * 3 test_and_set_bit(PENDING) 832 * 4 } set_..._and_clear_pending() { 833 * 5 set_work_data() # clear bit 834 * 6 smp_mb() 835 * 7 work->current_func() { 836 * 8 LOAD event_indicated 837 * } 838 * 839 * Without an explicit full barrier speculative LOAD on line 8 can 840 * be executed before CPU#0 does STORE on line 1. If that happens, 841 * CPU#0 observes the PENDING bit is still set and new execution of 842 * a @work is not queued in a hope, that CPU#1 will eventually 843 * finish the queued @work. Meanwhile CPU#1 does not see 844 * event_indicated is set, because speculative LOAD was executed 845 * before actual STORE. 846 */ 847 smp_mb(); 848 } 849 850 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 851 { 852 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK); 853 } 854 855 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 856 { 857 unsigned long data = atomic_long_read(&work->data); 858 859 if (data & WORK_STRUCT_PWQ) 860 return work_struct_pwq(data); 861 else 862 return NULL; 863 } 864 865 /** 866 * get_work_pool - return the worker_pool a given work was associated with 867 * @work: the work item of interest 868 * 869 * Pools are created and destroyed under wq_pool_mutex, and allows read 870 * access under RCU read lock. As such, this function should be 871 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 872 * 873 * All fields of the returned pool are accessible as long as the above 874 * mentioned locking is in effect. If the returned pool needs to be used 875 * beyond the critical section, the caller is responsible for ensuring the 876 * returned pool is and stays online. 877 * 878 * Return: The worker_pool @work was last associated with. %NULL if none. 879 */ 880 static struct worker_pool *get_work_pool(struct work_struct *work) 881 { 882 unsigned long data = atomic_long_read(&work->data); 883 int pool_id; 884 885 assert_rcu_or_pool_mutex(); 886 887 if (data & WORK_STRUCT_PWQ) 888 return work_struct_pwq(data)->pool; 889 890 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 891 if (pool_id == WORK_OFFQ_POOL_NONE) 892 return NULL; 893 894 return idr_find(&worker_pool_idr, pool_id); 895 } 896 897 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits) 898 { 899 return (v >> shift) & ((1 << bits) - 1); 900 } 901 902 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data) 903 { 904 WARN_ON_ONCE(data & WORK_STRUCT_PWQ); 905 906 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT, 907 WORK_OFFQ_POOL_BITS); 908 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT, 909 WORK_OFFQ_DISABLE_BITS); 910 offqd->flags = data & WORK_OFFQ_FLAG_MASK; 911 } 912 913 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd) 914 { 915 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) | 916 ((unsigned long)offqd->flags); 917 } 918 919 /* 920 * Policy functions. These define the policies on how the global worker 921 * pools are managed. Unless noted otherwise, these functions assume that 922 * they're being called with pool->lock held. 923 */ 924 925 /* 926 * Need to wake up a worker? Called from anything but currently 927 * running workers. 928 * 929 * Note that, because unbound workers never contribute to nr_running, this 930 * function will always return %true for unbound pools as long as the 931 * worklist isn't empty. 932 */ 933 static bool need_more_worker(struct worker_pool *pool) 934 { 935 return !list_empty(&pool->worklist) && !pool->nr_running; 936 } 937 938 /* Can I start working? Called from busy but !running workers. */ 939 static bool may_start_working(struct worker_pool *pool) 940 { 941 return pool->nr_idle; 942 } 943 944 /* Do I need to keep working? Called from currently running workers. */ 945 static bool keep_working(struct worker_pool *pool) 946 { 947 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 948 } 949 950 /* Do we need a new worker? Called from manager. */ 951 static bool need_to_create_worker(struct worker_pool *pool) 952 { 953 return need_more_worker(pool) && !may_start_working(pool); 954 } 955 956 /* Do we have too many workers and should some go away? */ 957 static bool too_many_workers(struct worker_pool *pool) 958 { 959 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 960 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 961 int nr_busy = pool->nr_workers - nr_idle; 962 963 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 964 } 965 966 /** 967 * worker_set_flags - set worker flags and adjust nr_running accordingly 968 * @worker: self 969 * @flags: flags to set 970 * 971 * Set @flags in @worker->flags and adjust nr_running accordingly. 972 */ 973 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 974 { 975 struct worker_pool *pool = worker->pool; 976 977 lockdep_assert_held(&pool->lock); 978 979 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 980 if ((flags & WORKER_NOT_RUNNING) && 981 !(worker->flags & WORKER_NOT_RUNNING)) { 982 pool->nr_running--; 983 } 984 985 worker->flags |= flags; 986 } 987 988 /** 989 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 990 * @worker: self 991 * @flags: flags to clear 992 * 993 * Clear @flags in @worker->flags and adjust nr_running accordingly. 994 */ 995 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 996 { 997 struct worker_pool *pool = worker->pool; 998 unsigned int oflags = worker->flags; 999 1000 lockdep_assert_held(&pool->lock); 1001 1002 worker->flags &= ~flags; 1003 1004 /* 1005 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1006 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1007 * of multiple flags, not a single flag. 1008 */ 1009 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1010 if (!(worker->flags & WORKER_NOT_RUNNING)) 1011 pool->nr_running++; 1012 } 1013 1014 /* Return the first idle worker. Called with pool->lock held. */ 1015 static struct worker *first_idle_worker(struct worker_pool *pool) 1016 { 1017 if (unlikely(list_empty(&pool->idle_list))) 1018 return NULL; 1019 1020 return list_first_entry(&pool->idle_list, struct worker, entry); 1021 } 1022 1023 /** 1024 * worker_enter_idle - enter idle state 1025 * @worker: worker which is entering idle state 1026 * 1027 * @worker is entering idle state. Update stats and idle timer if 1028 * necessary. 1029 * 1030 * LOCKING: 1031 * raw_spin_lock_irq(pool->lock). 1032 */ 1033 static void worker_enter_idle(struct worker *worker) 1034 { 1035 struct worker_pool *pool = worker->pool; 1036 1037 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1038 WARN_ON_ONCE(!list_empty(&worker->entry) && 1039 (worker->hentry.next || worker->hentry.pprev))) 1040 return; 1041 1042 /* can't use worker_set_flags(), also called from create_worker() */ 1043 worker->flags |= WORKER_IDLE; 1044 pool->nr_idle++; 1045 worker->last_active = jiffies; 1046 1047 /* idle_list is LIFO */ 1048 list_add(&worker->entry, &pool->idle_list); 1049 1050 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1051 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1052 1053 /* Sanity check nr_running. */ 1054 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1055 } 1056 1057 /** 1058 * worker_leave_idle - leave idle state 1059 * @worker: worker which is leaving idle state 1060 * 1061 * @worker is leaving idle state. Update stats. 1062 * 1063 * LOCKING: 1064 * raw_spin_lock_irq(pool->lock). 1065 */ 1066 static void worker_leave_idle(struct worker *worker) 1067 { 1068 struct worker_pool *pool = worker->pool; 1069 1070 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1071 return; 1072 worker_clr_flags(worker, WORKER_IDLE); 1073 pool->nr_idle--; 1074 list_del_init(&worker->entry); 1075 } 1076 1077 /** 1078 * find_worker_executing_work - find worker which is executing a work 1079 * @pool: pool of interest 1080 * @work: work to find worker for 1081 * 1082 * Find a worker which is executing @work on @pool by searching 1083 * @pool->busy_hash which is keyed by the address of @work. For a worker 1084 * to match, its current execution should match the address of @work and 1085 * its work function. This is to avoid unwanted dependency between 1086 * unrelated work executions through a work item being recycled while still 1087 * being executed. 1088 * 1089 * This is a bit tricky. A work item may be freed once its execution 1090 * starts and nothing prevents the freed area from being recycled for 1091 * another work item. If the same work item address ends up being reused 1092 * before the original execution finishes, workqueue will identify the 1093 * recycled work item as currently executing and make it wait until the 1094 * current execution finishes, introducing an unwanted dependency. 1095 * 1096 * This function checks the work item address and work function to avoid 1097 * false positives. Note that this isn't complete as one may construct a 1098 * work function which can introduce dependency onto itself through a 1099 * recycled work item. Well, if somebody wants to shoot oneself in the 1100 * foot that badly, there's only so much we can do, and if such deadlock 1101 * actually occurs, it should be easy to locate the culprit work function. 1102 * 1103 * CONTEXT: 1104 * raw_spin_lock_irq(pool->lock). 1105 * 1106 * Return: 1107 * Pointer to worker which is executing @work if found, %NULL 1108 * otherwise. 1109 */ 1110 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1111 struct work_struct *work) 1112 { 1113 struct worker *worker; 1114 1115 hash_for_each_possible(pool->busy_hash, worker, hentry, 1116 (unsigned long)work) 1117 if (worker->current_work == work && 1118 worker->current_func == work->func) 1119 return worker; 1120 1121 return NULL; 1122 } 1123 1124 /** 1125 * move_linked_works - move linked works to a list 1126 * @work: start of series of works to be scheduled 1127 * @head: target list to append @work to 1128 * @nextp: out parameter for nested worklist walking 1129 * 1130 * Schedule linked works starting from @work to @head. Work series to be 1131 * scheduled starts at @work and includes any consecutive work with 1132 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1133 * @nextp. 1134 * 1135 * CONTEXT: 1136 * raw_spin_lock_irq(pool->lock). 1137 */ 1138 static void move_linked_works(struct work_struct *work, struct list_head *head, 1139 struct work_struct **nextp) 1140 { 1141 struct work_struct *n; 1142 1143 /* 1144 * Linked worklist will always end before the end of the list, 1145 * use NULL for list head. 1146 */ 1147 list_for_each_entry_safe_from(work, n, NULL, entry) { 1148 list_move_tail(&work->entry, head); 1149 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1150 break; 1151 } 1152 1153 /* 1154 * If we're already inside safe list traversal and have moved 1155 * multiple works to the scheduled queue, the next position 1156 * needs to be updated. 1157 */ 1158 if (nextp) 1159 *nextp = n; 1160 } 1161 1162 /** 1163 * assign_work - assign a work item and its linked work items to a worker 1164 * @work: work to assign 1165 * @worker: worker to assign to 1166 * @nextp: out parameter for nested worklist walking 1167 * 1168 * Assign @work and its linked work items to @worker. If @work is already being 1169 * executed by another worker in the same pool, it'll be punted there. 1170 * 1171 * If @nextp is not NULL, it's updated to point to the next work of the last 1172 * scheduled work. This allows assign_work() to be nested inside 1173 * list_for_each_entry_safe(). 1174 * 1175 * Returns %true if @work was successfully assigned to @worker. %false if @work 1176 * was punted to another worker already executing it. 1177 */ 1178 static bool assign_work(struct work_struct *work, struct worker *worker, 1179 struct work_struct **nextp) 1180 { 1181 struct worker_pool *pool = worker->pool; 1182 struct worker *collision; 1183 1184 lockdep_assert_held(&pool->lock); 1185 1186 /* 1187 * A single work shouldn't be executed concurrently by multiple workers. 1188 * __queue_work() ensures that @work doesn't jump to a different pool 1189 * while still running in the previous pool. Here, we should ensure that 1190 * @work is not executed concurrently by multiple workers from the same 1191 * pool. Check whether anyone is already processing the work. If so, 1192 * defer the work to the currently executing one. 1193 */ 1194 collision = find_worker_executing_work(pool, work); 1195 if (unlikely(collision)) { 1196 move_linked_works(work, &collision->scheduled, nextp); 1197 return false; 1198 } 1199 1200 move_linked_works(work, &worker->scheduled, nextp); 1201 return true; 1202 } 1203 1204 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool) 1205 { 1206 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0; 1207 1208 return &per_cpu(bh_pool_irq_works, pool->cpu)[high]; 1209 } 1210 1211 static void kick_bh_pool(struct worker_pool *pool) 1212 { 1213 #ifdef CONFIG_SMP 1214 /* see drain_dead_softirq_workfn() for BH_DRAINING */ 1215 if (unlikely(pool->cpu != smp_processor_id() && 1216 !(pool->flags & POOL_BH_DRAINING))) { 1217 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu); 1218 return; 1219 } 1220 #endif 1221 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 1222 raise_softirq_irqoff(HI_SOFTIRQ); 1223 else 1224 raise_softirq_irqoff(TASKLET_SOFTIRQ); 1225 } 1226 1227 /** 1228 * kick_pool - wake up an idle worker if necessary 1229 * @pool: pool to kick 1230 * 1231 * @pool may have pending work items. Wake up worker if necessary. Returns 1232 * whether a worker was woken up. 1233 */ 1234 static bool kick_pool(struct worker_pool *pool) 1235 { 1236 struct worker *worker = first_idle_worker(pool); 1237 struct task_struct *p; 1238 1239 lockdep_assert_held(&pool->lock); 1240 1241 if (!need_more_worker(pool) || !worker) 1242 return false; 1243 1244 if (pool->flags & POOL_BH) { 1245 kick_bh_pool(pool); 1246 return true; 1247 } 1248 1249 p = worker->task; 1250 1251 #ifdef CONFIG_SMP 1252 /* 1253 * Idle @worker is about to execute @work and waking up provides an 1254 * opportunity to migrate @worker at a lower cost by setting the task's 1255 * wake_cpu field. Let's see if we want to move @worker to improve 1256 * execution locality. 1257 * 1258 * We're waking the worker that went idle the latest and there's some 1259 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1260 * so, setting the wake_cpu won't do anything. As this is a best-effort 1261 * optimization and the race window is narrow, let's leave as-is for 1262 * now. If this becomes pronounced, we can skip over workers which are 1263 * still on cpu when picking an idle worker. 1264 * 1265 * If @pool has non-strict affinity, @worker might have ended up outside 1266 * its affinity scope. Repatriate. 1267 */ 1268 if (!pool->attrs->affn_strict && 1269 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1270 struct work_struct *work = list_first_entry(&pool->worklist, 1271 struct work_struct, entry); 1272 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask, 1273 cpu_online_mask); 1274 if (wake_cpu < nr_cpu_ids) { 1275 p->wake_cpu = wake_cpu; 1276 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1277 } 1278 } 1279 #endif 1280 wake_up_process(p); 1281 return true; 1282 } 1283 1284 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1285 1286 /* 1287 * Concurrency-managed per-cpu work items that hog CPU for longer than 1288 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1289 * which prevents them from stalling other concurrency-managed work items. If a 1290 * work function keeps triggering this mechanism, it's likely that the work item 1291 * should be using an unbound workqueue instead. 1292 * 1293 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1294 * and report them so that they can be examined and converted to use unbound 1295 * workqueues as appropriate. To avoid flooding the console, each violating work 1296 * function is tracked and reported with exponential backoff. 1297 */ 1298 #define WCI_MAX_ENTS 128 1299 1300 struct wci_ent { 1301 work_func_t func; 1302 atomic64_t cnt; 1303 struct hlist_node hash_node; 1304 }; 1305 1306 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1307 static int wci_nr_ents; 1308 static DEFINE_RAW_SPINLOCK(wci_lock); 1309 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1310 1311 static struct wci_ent *wci_find_ent(work_func_t func) 1312 { 1313 struct wci_ent *ent; 1314 1315 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1316 (unsigned long)func) { 1317 if (ent->func == func) 1318 return ent; 1319 } 1320 return NULL; 1321 } 1322 1323 static void wq_cpu_intensive_report(work_func_t func) 1324 { 1325 struct wci_ent *ent; 1326 1327 restart: 1328 ent = wci_find_ent(func); 1329 if (ent) { 1330 u64 cnt; 1331 1332 /* 1333 * Start reporting from the warning_thresh and back off 1334 * exponentially. 1335 */ 1336 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1337 if (wq_cpu_intensive_warning_thresh && 1338 cnt >= wq_cpu_intensive_warning_thresh && 1339 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh)) 1340 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1341 ent->func, wq_cpu_intensive_thresh_us, 1342 atomic64_read(&ent->cnt)); 1343 return; 1344 } 1345 1346 /* 1347 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1348 * is exhausted, something went really wrong and we probably made enough 1349 * noise already. 1350 */ 1351 if (wci_nr_ents >= WCI_MAX_ENTS) 1352 return; 1353 1354 raw_spin_lock(&wci_lock); 1355 1356 if (wci_nr_ents >= WCI_MAX_ENTS) { 1357 raw_spin_unlock(&wci_lock); 1358 return; 1359 } 1360 1361 if (wci_find_ent(func)) { 1362 raw_spin_unlock(&wci_lock); 1363 goto restart; 1364 } 1365 1366 ent = &wci_ents[wci_nr_ents++]; 1367 ent->func = func; 1368 atomic64_set(&ent->cnt, 0); 1369 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1370 1371 raw_spin_unlock(&wci_lock); 1372 1373 goto restart; 1374 } 1375 1376 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1377 static void wq_cpu_intensive_report(work_func_t func) {} 1378 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1379 1380 /** 1381 * wq_worker_running - a worker is running again 1382 * @task: task waking up 1383 * 1384 * This function is called when a worker returns from schedule() 1385 */ 1386 void wq_worker_running(struct task_struct *task) 1387 { 1388 struct worker *worker = kthread_data(task); 1389 1390 if (!READ_ONCE(worker->sleeping)) 1391 return; 1392 1393 /* 1394 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1395 * and the nr_running increment below, we may ruin the nr_running reset 1396 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1397 * pool. Protect against such race. 1398 */ 1399 preempt_disable(); 1400 if (!(worker->flags & WORKER_NOT_RUNNING)) 1401 worker->pool->nr_running++; 1402 preempt_enable(); 1403 1404 /* 1405 * CPU intensive auto-detection cares about how long a work item hogged 1406 * CPU without sleeping. Reset the starting timestamp on wakeup. 1407 */ 1408 worker->current_at = worker->task->se.sum_exec_runtime; 1409 1410 WRITE_ONCE(worker->sleeping, 0); 1411 } 1412 1413 /** 1414 * wq_worker_sleeping - a worker is going to sleep 1415 * @task: task going to sleep 1416 * 1417 * This function is called from schedule() when a busy worker is 1418 * going to sleep. 1419 */ 1420 void wq_worker_sleeping(struct task_struct *task) 1421 { 1422 struct worker *worker = kthread_data(task); 1423 struct worker_pool *pool; 1424 1425 /* 1426 * Rescuers, which may not have all the fields set up like normal 1427 * workers, also reach here, let's not access anything before 1428 * checking NOT_RUNNING. 1429 */ 1430 if (worker->flags & WORKER_NOT_RUNNING) 1431 return; 1432 1433 pool = worker->pool; 1434 1435 /* Return if preempted before wq_worker_running() was reached */ 1436 if (READ_ONCE(worker->sleeping)) 1437 return; 1438 1439 WRITE_ONCE(worker->sleeping, 1); 1440 raw_spin_lock_irq(&pool->lock); 1441 1442 /* 1443 * Recheck in case unbind_workers() preempted us. We don't 1444 * want to decrement nr_running after the worker is unbound 1445 * and nr_running has been reset. 1446 */ 1447 if (worker->flags & WORKER_NOT_RUNNING) { 1448 raw_spin_unlock_irq(&pool->lock); 1449 return; 1450 } 1451 1452 pool->nr_running--; 1453 if (kick_pool(pool)) 1454 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1455 1456 raw_spin_unlock_irq(&pool->lock); 1457 } 1458 1459 /** 1460 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1461 * @task: task currently running 1462 * 1463 * Called from sched_tick(). We're in the IRQ context and the current 1464 * worker's fields which follow the 'K' locking rule can be accessed safely. 1465 */ 1466 void wq_worker_tick(struct task_struct *task) 1467 { 1468 struct worker *worker = kthread_data(task); 1469 struct pool_workqueue *pwq = worker->current_pwq; 1470 struct worker_pool *pool = worker->pool; 1471 1472 if (!pwq) 1473 return; 1474 1475 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1476 1477 if (!wq_cpu_intensive_thresh_us) 1478 return; 1479 1480 /* 1481 * If the current worker is concurrency managed and hogged the CPU for 1482 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1483 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1484 * 1485 * Set @worker->sleeping means that @worker is in the process of 1486 * switching out voluntarily and won't be contributing to 1487 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1488 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1489 * double decrements. The task is releasing the CPU anyway. Let's skip. 1490 * We probably want to make this prettier in the future. 1491 */ 1492 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1493 worker->task->se.sum_exec_runtime - worker->current_at < 1494 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1495 return; 1496 1497 raw_spin_lock(&pool->lock); 1498 1499 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1500 wq_cpu_intensive_report(worker->current_func); 1501 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1502 1503 if (kick_pool(pool)) 1504 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1505 1506 raw_spin_unlock(&pool->lock); 1507 } 1508 1509 /** 1510 * wq_worker_last_func - retrieve worker's last work function 1511 * @task: Task to retrieve last work function of. 1512 * 1513 * Determine the last function a worker executed. This is called from 1514 * the scheduler to get a worker's last known identity. 1515 * 1516 * CONTEXT: 1517 * raw_spin_lock_irq(rq->lock) 1518 * 1519 * This function is called during schedule() when a kworker is going 1520 * to sleep. It's used by psi to identify aggregation workers during 1521 * dequeuing, to allow periodic aggregation to shut-off when that 1522 * worker is the last task in the system or cgroup to go to sleep. 1523 * 1524 * As this function doesn't involve any workqueue-related locking, it 1525 * only returns stable values when called from inside the scheduler's 1526 * queuing and dequeuing paths, when @task, which must be a kworker, 1527 * is guaranteed to not be processing any works. 1528 * 1529 * Return: 1530 * The last work function %current executed as a worker, NULL if it 1531 * hasn't executed any work yet. 1532 */ 1533 work_func_t wq_worker_last_func(struct task_struct *task) 1534 { 1535 struct worker *worker = kthread_data(task); 1536 1537 return worker->last_func; 1538 } 1539 1540 /** 1541 * wq_node_nr_active - Determine wq_node_nr_active to use 1542 * @wq: workqueue of interest 1543 * @node: NUMA node, can be %NUMA_NO_NODE 1544 * 1545 * Determine wq_node_nr_active to use for @wq on @node. Returns: 1546 * 1547 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. 1548 * 1549 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. 1550 * 1551 * - Otherwise, node_nr_active[@node]. 1552 */ 1553 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, 1554 int node) 1555 { 1556 if (!(wq->flags & WQ_UNBOUND)) 1557 return NULL; 1558 1559 if (node == NUMA_NO_NODE) 1560 node = nr_node_ids; 1561 1562 return wq->node_nr_active[node]; 1563 } 1564 1565 /** 1566 * wq_update_node_max_active - Update per-node max_actives to use 1567 * @wq: workqueue to update 1568 * @off_cpu: CPU that's going down, -1 if a CPU is not going down 1569 * 1570 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is 1571 * distributed among nodes according to the proportions of numbers of online 1572 * cpus. The result is always between @wq->min_active and max_active. 1573 */ 1574 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) 1575 { 1576 struct cpumask *effective = unbound_effective_cpumask(wq); 1577 int min_active = READ_ONCE(wq->min_active); 1578 int max_active = READ_ONCE(wq->max_active); 1579 int total_cpus, node; 1580 1581 lockdep_assert_held(&wq->mutex); 1582 1583 if (!wq_topo_initialized) 1584 return; 1585 1586 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective)) 1587 off_cpu = -1; 1588 1589 total_cpus = cpumask_weight_and(effective, cpu_online_mask); 1590 if (off_cpu >= 0) 1591 total_cpus--; 1592 1593 /* If all CPUs of the wq get offline, use the default values */ 1594 if (unlikely(!total_cpus)) { 1595 for_each_node(node) 1596 wq_node_nr_active(wq, node)->max = min_active; 1597 1598 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1599 return; 1600 } 1601 1602 for_each_node(node) { 1603 int node_cpus; 1604 1605 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node)); 1606 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node) 1607 node_cpus--; 1608 1609 wq_node_nr_active(wq, node)->max = 1610 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), 1611 min_active, max_active); 1612 } 1613 1614 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1615 } 1616 1617 /** 1618 * get_pwq - get an extra reference on the specified pool_workqueue 1619 * @pwq: pool_workqueue to get 1620 * 1621 * Obtain an extra reference on @pwq. The caller should guarantee that 1622 * @pwq has positive refcnt and be holding the matching pool->lock. 1623 */ 1624 static void get_pwq(struct pool_workqueue *pwq) 1625 { 1626 lockdep_assert_held(&pwq->pool->lock); 1627 WARN_ON_ONCE(pwq->refcnt <= 0); 1628 pwq->refcnt++; 1629 } 1630 1631 /** 1632 * put_pwq - put a pool_workqueue reference 1633 * @pwq: pool_workqueue to put 1634 * 1635 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1636 * destruction. The caller should be holding the matching pool->lock. 1637 */ 1638 static void put_pwq(struct pool_workqueue *pwq) 1639 { 1640 lockdep_assert_held(&pwq->pool->lock); 1641 if (likely(--pwq->refcnt)) 1642 return; 1643 /* 1644 * @pwq can't be released under pool->lock, bounce to a dedicated 1645 * kthread_worker to avoid A-A deadlocks. 1646 */ 1647 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1648 } 1649 1650 /** 1651 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1652 * @pwq: pool_workqueue to put (can be %NULL) 1653 * 1654 * put_pwq() with locking. This function also allows %NULL @pwq. 1655 */ 1656 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1657 { 1658 if (pwq) { 1659 /* 1660 * As both pwqs and pools are RCU protected, the 1661 * following lock operations are safe. 1662 */ 1663 raw_spin_lock_irq(&pwq->pool->lock); 1664 put_pwq(pwq); 1665 raw_spin_unlock_irq(&pwq->pool->lock); 1666 } 1667 } 1668 1669 static bool pwq_is_empty(struct pool_workqueue *pwq) 1670 { 1671 return !pwq->nr_active && list_empty(&pwq->inactive_works); 1672 } 1673 1674 static void __pwq_activate_work(struct pool_workqueue *pwq, 1675 struct work_struct *work) 1676 { 1677 unsigned long *wdb = work_data_bits(work); 1678 1679 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); 1680 trace_workqueue_activate_work(work); 1681 if (list_empty(&pwq->pool->worklist)) 1682 pwq->pool->watchdog_ts = jiffies; 1683 move_linked_works(work, &pwq->pool->worklist, NULL); 1684 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); 1685 } 1686 1687 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) 1688 { 1689 int max = READ_ONCE(nna->max); 1690 1691 while (true) { 1692 int old, tmp; 1693 1694 old = atomic_read(&nna->nr); 1695 if (old >= max) 1696 return false; 1697 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1); 1698 if (tmp == old) 1699 return true; 1700 } 1701 } 1702 1703 /** 1704 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq 1705 * @pwq: pool_workqueue of interest 1706 * @fill: max_active may have increased, try to increase concurrency level 1707 * 1708 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is 1709 * successfully obtained. %false otherwise. 1710 */ 1711 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) 1712 { 1713 struct workqueue_struct *wq = pwq->wq; 1714 struct worker_pool *pool = pwq->pool; 1715 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node); 1716 bool obtained = false; 1717 1718 lockdep_assert_held(&pool->lock); 1719 1720 if (!nna) { 1721 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */ 1722 obtained = pwq->nr_active < READ_ONCE(wq->max_active); 1723 goto out; 1724 } 1725 1726 if (unlikely(pwq->plugged)) 1727 return false; 1728 1729 /* 1730 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is 1731 * already waiting on $nna, pwq_dec_nr_active() will maintain the 1732 * concurrency level. Don't jump the line. 1733 * 1734 * We need to ignore the pending test after max_active has increased as 1735 * pwq_dec_nr_active() can only maintain the concurrency level but not 1736 * increase it. This is indicated by @fill. 1737 */ 1738 if (!list_empty(&pwq->pending_node) && likely(!fill)) 1739 goto out; 1740 1741 obtained = tryinc_node_nr_active(nna); 1742 if (obtained) 1743 goto out; 1744 1745 /* 1746 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs 1747 * and try again. The smp_mb() is paired with the implied memory barrier 1748 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either 1749 * we see the decremented $nna->nr or they see non-empty 1750 * $nna->pending_pwqs. 1751 */ 1752 raw_spin_lock(&nna->lock); 1753 1754 if (list_empty(&pwq->pending_node)) 1755 list_add_tail(&pwq->pending_node, &nna->pending_pwqs); 1756 else if (likely(!fill)) 1757 goto out_unlock; 1758 1759 smp_mb(); 1760 1761 obtained = tryinc_node_nr_active(nna); 1762 1763 /* 1764 * If @fill, @pwq might have already been pending. Being spuriously 1765 * pending in cold paths doesn't affect anything. Let's leave it be. 1766 */ 1767 if (obtained && likely(!fill)) 1768 list_del_init(&pwq->pending_node); 1769 1770 out_unlock: 1771 raw_spin_unlock(&nna->lock); 1772 out: 1773 if (obtained) 1774 pwq->nr_active++; 1775 return obtained; 1776 } 1777 1778 /** 1779 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq 1780 * @pwq: pool_workqueue of interest 1781 * @fill: max_active may have increased, try to increase concurrency level 1782 * 1783 * Activate the first inactive work item of @pwq if available and allowed by 1784 * max_active limit. 1785 * 1786 * Returns %true if an inactive work item has been activated. %false if no 1787 * inactive work item is found or max_active limit is reached. 1788 */ 1789 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) 1790 { 1791 struct work_struct *work = 1792 list_first_entry_or_null(&pwq->inactive_works, 1793 struct work_struct, entry); 1794 1795 if (work && pwq_tryinc_nr_active(pwq, fill)) { 1796 __pwq_activate_work(pwq, work); 1797 return true; 1798 } else { 1799 return false; 1800 } 1801 } 1802 1803 /** 1804 * unplug_oldest_pwq - unplug the oldest pool_workqueue 1805 * @wq: workqueue_struct where its oldest pwq is to be unplugged 1806 * 1807 * This function should only be called for ordered workqueues where only the 1808 * oldest pwq is unplugged, the others are plugged to suspend execution to 1809 * ensure proper work item ordering:: 1810 * 1811 * dfl_pwq --------------+ [P] - plugged 1812 * | 1813 * v 1814 * pwqs -> A -> B [P] -> C [P] (newest) 1815 * | | | 1816 * 1 3 5 1817 * | | | 1818 * 2 4 6 1819 * 1820 * When the oldest pwq is drained and removed, this function should be called 1821 * to unplug the next oldest one to start its work item execution. Note that 1822 * pwq's are linked into wq->pwqs with the oldest first, so the first one in 1823 * the list is the oldest. 1824 */ 1825 static void unplug_oldest_pwq(struct workqueue_struct *wq) 1826 { 1827 struct pool_workqueue *pwq; 1828 1829 lockdep_assert_held(&wq->mutex); 1830 1831 /* Caller should make sure that pwqs isn't empty before calling */ 1832 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue, 1833 pwqs_node); 1834 raw_spin_lock_irq(&pwq->pool->lock); 1835 if (pwq->plugged) { 1836 pwq->plugged = false; 1837 if (pwq_activate_first_inactive(pwq, true)) 1838 kick_pool(pwq->pool); 1839 } 1840 raw_spin_unlock_irq(&pwq->pool->lock); 1841 } 1842 1843 /** 1844 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active 1845 * @nna: wq_node_nr_active to activate a pending pwq for 1846 * @caller_pool: worker_pool the caller is locking 1847 * 1848 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. 1849 * @caller_pool may be unlocked and relocked to lock other worker_pools. 1850 */ 1851 static void node_activate_pending_pwq(struct wq_node_nr_active *nna, 1852 struct worker_pool *caller_pool) 1853 { 1854 struct worker_pool *locked_pool = caller_pool; 1855 struct pool_workqueue *pwq; 1856 struct work_struct *work; 1857 1858 lockdep_assert_held(&caller_pool->lock); 1859 1860 raw_spin_lock(&nna->lock); 1861 retry: 1862 pwq = list_first_entry_or_null(&nna->pending_pwqs, 1863 struct pool_workqueue, pending_node); 1864 if (!pwq) 1865 goto out_unlock; 1866 1867 /* 1868 * If @pwq is for a different pool than @locked_pool, we need to lock 1869 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock 1870 * / lock dance. For that, we also need to release @nna->lock as it's 1871 * nested inside pool locks. 1872 */ 1873 if (pwq->pool != locked_pool) { 1874 raw_spin_unlock(&locked_pool->lock); 1875 locked_pool = pwq->pool; 1876 if (!raw_spin_trylock(&locked_pool->lock)) { 1877 raw_spin_unlock(&nna->lock); 1878 raw_spin_lock(&locked_pool->lock); 1879 raw_spin_lock(&nna->lock); 1880 goto retry; 1881 } 1882 } 1883 1884 /* 1885 * $pwq may not have any inactive work items due to e.g. cancellations. 1886 * Drop it from pending_pwqs and see if there's another one. 1887 */ 1888 work = list_first_entry_or_null(&pwq->inactive_works, 1889 struct work_struct, entry); 1890 if (!work) { 1891 list_del_init(&pwq->pending_node); 1892 goto retry; 1893 } 1894 1895 /* 1896 * Acquire an nr_active count and activate the inactive work item. If 1897 * $pwq still has inactive work items, rotate it to the end of the 1898 * pending_pwqs so that we round-robin through them. This means that 1899 * inactive work items are not activated in queueing order which is fine 1900 * given that there has never been any ordering across different pwqs. 1901 */ 1902 if (likely(tryinc_node_nr_active(nna))) { 1903 pwq->nr_active++; 1904 __pwq_activate_work(pwq, work); 1905 1906 if (list_empty(&pwq->inactive_works)) 1907 list_del_init(&pwq->pending_node); 1908 else 1909 list_move_tail(&pwq->pending_node, &nna->pending_pwqs); 1910 1911 /* if activating a foreign pool, make sure it's running */ 1912 if (pwq->pool != caller_pool) 1913 kick_pool(pwq->pool); 1914 } 1915 1916 out_unlock: 1917 raw_spin_unlock(&nna->lock); 1918 if (locked_pool != caller_pool) { 1919 raw_spin_unlock(&locked_pool->lock); 1920 raw_spin_lock(&caller_pool->lock); 1921 } 1922 } 1923 1924 /** 1925 * pwq_dec_nr_active - Retire an active count 1926 * @pwq: pool_workqueue of interest 1927 * 1928 * Decrement @pwq's nr_active and try to activate the first inactive work item. 1929 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. 1930 */ 1931 static void pwq_dec_nr_active(struct pool_workqueue *pwq) 1932 { 1933 struct worker_pool *pool = pwq->pool; 1934 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node); 1935 1936 lockdep_assert_held(&pool->lock); 1937 1938 /* 1939 * @pwq->nr_active should be decremented for both percpu and unbound 1940 * workqueues. 1941 */ 1942 pwq->nr_active--; 1943 1944 /* 1945 * For a percpu workqueue, it's simple. Just need to kick the first 1946 * inactive work item on @pwq itself. 1947 */ 1948 if (!nna) { 1949 pwq_activate_first_inactive(pwq, false); 1950 return; 1951 } 1952 1953 /* 1954 * If @pwq is for an unbound workqueue, it's more complicated because 1955 * multiple pwqs and pools may be sharing the nr_active count. When a 1956 * pwq needs to wait for an nr_active count, it puts itself on 1957 * $nna->pending_pwqs. The following atomic_dec_return()'s implied 1958 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to 1959 * guarantee that either we see non-empty pending_pwqs or they see 1960 * decremented $nna->nr. 1961 * 1962 * $nna->max may change as CPUs come online/offline and @pwq->wq's 1963 * max_active gets updated. However, it is guaranteed to be equal to or 1964 * larger than @pwq->wq->min_active which is above zero unless freezing. 1965 * This maintains the forward progress guarantee. 1966 */ 1967 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max)) 1968 return; 1969 1970 if (!list_empty(&nna->pending_pwqs)) 1971 node_activate_pending_pwq(nna, pool); 1972 } 1973 1974 /** 1975 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1976 * @pwq: pwq of interest 1977 * @work_data: work_data of work which left the queue 1978 * 1979 * A work either has completed or is removed from pending queue, 1980 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1981 * 1982 * NOTE: 1983 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock 1984 * and thus should be called after all other state updates for the in-flight 1985 * work item is complete. 1986 * 1987 * CONTEXT: 1988 * raw_spin_lock_irq(pool->lock). 1989 */ 1990 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1991 { 1992 int color = get_work_color(work_data); 1993 1994 if (!(work_data & WORK_STRUCT_INACTIVE)) 1995 pwq_dec_nr_active(pwq); 1996 1997 pwq->nr_in_flight[color]--; 1998 1999 /* is flush in progress and are we at the flushing tip? */ 2000 if (likely(pwq->flush_color != color)) 2001 goto out_put; 2002 2003 /* are there still in-flight works? */ 2004 if (pwq->nr_in_flight[color]) 2005 goto out_put; 2006 2007 /* this pwq is done, clear flush_color */ 2008 pwq->flush_color = -1; 2009 2010 /* 2011 * If this was the last pwq, wake up the first flusher. It 2012 * will handle the rest. 2013 */ 2014 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 2015 complete(&pwq->wq->first_flusher->done); 2016 out_put: 2017 put_pwq(pwq); 2018 } 2019 2020 /** 2021 * try_to_grab_pending - steal work item from worklist and disable irq 2022 * @work: work item to steal 2023 * @cflags: %WORK_CANCEL_ flags 2024 * @irq_flags: place to store irq state 2025 * 2026 * Try to grab PENDING bit of @work. This function can handle @work in any 2027 * stable state - idle, on timer or on worklist. 2028 * 2029 * Return: 2030 * 2031 * ======== ================================================================ 2032 * 1 if @work was pending and we successfully stole PENDING 2033 * 0 if @work was idle and we claimed PENDING 2034 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 2035 * ======== ================================================================ 2036 * 2037 * Note: 2038 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 2039 * interrupted while holding PENDING and @work off queue, irq must be 2040 * disabled on entry. This, combined with delayed_work->timer being 2041 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 2042 * 2043 * On successful return, >= 0, irq is disabled and the caller is 2044 * responsible for releasing it using local_irq_restore(*@irq_flags). 2045 * 2046 * This function is safe to call from any context including IRQ handler. 2047 */ 2048 static int try_to_grab_pending(struct work_struct *work, u32 cflags, 2049 unsigned long *irq_flags) 2050 { 2051 struct worker_pool *pool; 2052 struct pool_workqueue *pwq; 2053 2054 local_irq_save(*irq_flags); 2055 2056 /* try to steal the timer if it exists */ 2057 if (cflags & WORK_CANCEL_DELAYED) { 2058 struct delayed_work *dwork = to_delayed_work(work); 2059 2060 /* 2061 * dwork->timer is irqsafe. If del_timer() fails, it's 2062 * guaranteed that the timer is not queued anywhere and not 2063 * running on the local CPU. 2064 */ 2065 if (likely(del_timer(&dwork->timer))) 2066 return 1; 2067 } 2068 2069 /* try to claim PENDING the normal way */ 2070 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2071 return 0; 2072 2073 rcu_read_lock(); 2074 /* 2075 * The queueing is in progress, or it is already queued. Try to 2076 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2077 */ 2078 pool = get_work_pool(work); 2079 if (!pool) 2080 goto fail; 2081 2082 raw_spin_lock(&pool->lock); 2083 /* 2084 * work->data is guaranteed to point to pwq only while the work 2085 * item is queued on pwq->wq, and both updating work->data to point 2086 * to pwq on queueing and to pool on dequeueing are done under 2087 * pwq->pool->lock. This in turn guarantees that, if work->data 2088 * points to pwq which is associated with a locked pool, the work 2089 * item is currently queued on that pool. 2090 */ 2091 pwq = get_work_pwq(work); 2092 if (pwq && pwq->pool == pool) { 2093 unsigned long work_data = *work_data_bits(work); 2094 2095 debug_work_deactivate(work); 2096 2097 /* 2098 * A cancelable inactive work item must be in the 2099 * pwq->inactive_works since a queued barrier can't be 2100 * canceled (see the comments in insert_wq_barrier()). 2101 * 2102 * An inactive work item cannot be deleted directly because 2103 * it might have linked barrier work items which, if left 2104 * on the inactive_works list, will confuse pwq->nr_active 2105 * management later on and cause stall. Move the linked 2106 * barrier work items to the worklist when deleting the grabbed 2107 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that 2108 * it doesn't participate in nr_active management in later 2109 * pwq_dec_nr_in_flight(). 2110 */ 2111 if (work_data & WORK_STRUCT_INACTIVE) 2112 move_linked_works(work, &pwq->pool->worklist, NULL); 2113 2114 list_del_init(&work->entry); 2115 2116 /* 2117 * work->data points to pwq iff queued. Let's point to pool. As 2118 * this destroys work->data needed by the next step, stash it. 2119 */ 2120 set_work_pool_and_keep_pending(work, pool->id, 2121 pool_offq_flags(pool)); 2122 2123 /* must be the last step, see the function comment */ 2124 pwq_dec_nr_in_flight(pwq, work_data); 2125 2126 raw_spin_unlock(&pool->lock); 2127 rcu_read_unlock(); 2128 return 1; 2129 } 2130 raw_spin_unlock(&pool->lock); 2131 fail: 2132 rcu_read_unlock(); 2133 local_irq_restore(*irq_flags); 2134 return -EAGAIN; 2135 } 2136 2137 /** 2138 * work_grab_pending - steal work item from worklist and disable irq 2139 * @work: work item to steal 2140 * @cflags: %WORK_CANCEL_ flags 2141 * @irq_flags: place to store IRQ state 2142 * 2143 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer 2144 * or on worklist. 2145 * 2146 * Can be called from any context. IRQ is disabled on return with IRQ state 2147 * stored in *@irq_flags. The caller is responsible for re-enabling it using 2148 * local_irq_restore(). 2149 * 2150 * Returns %true if @work was pending. %false if idle. 2151 */ 2152 static bool work_grab_pending(struct work_struct *work, u32 cflags, 2153 unsigned long *irq_flags) 2154 { 2155 int ret; 2156 2157 while (true) { 2158 ret = try_to_grab_pending(work, cflags, irq_flags); 2159 if (ret >= 0) 2160 return ret; 2161 cpu_relax(); 2162 } 2163 } 2164 2165 /** 2166 * insert_work - insert a work into a pool 2167 * @pwq: pwq @work belongs to 2168 * @work: work to insert 2169 * @head: insertion point 2170 * @extra_flags: extra WORK_STRUCT_* flags to set 2171 * 2172 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 2173 * work_struct flags. 2174 * 2175 * CONTEXT: 2176 * raw_spin_lock_irq(pool->lock). 2177 */ 2178 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 2179 struct list_head *head, unsigned int extra_flags) 2180 { 2181 debug_work_activate(work); 2182 2183 /* record the work call stack in order to print it in KASAN reports */ 2184 kasan_record_aux_stack_noalloc(work); 2185 2186 /* we own @work, set data and link */ 2187 set_work_pwq(work, pwq, extra_flags); 2188 list_add_tail(&work->entry, head); 2189 get_pwq(pwq); 2190 } 2191 2192 /* 2193 * Test whether @work is being queued from another work executing on the 2194 * same workqueue. 2195 */ 2196 static bool is_chained_work(struct workqueue_struct *wq) 2197 { 2198 struct worker *worker; 2199 2200 worker = current_wq_worker(); 2201 /* 2202 * Return %true iff I'm a worker executing a work item on @wq. If 2203 * I'm @worker, it's safe to dereference it without locking. 2204 */ 2205 return worker && worker->current_pwq->wq == wq; 2206 } 2207 2208 /* 2209 * When queueing an unbound work item to a wq, prefer local CPU if allowed 2210 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 2211 * avoid perturbing sensitive tasks. 2212 */ 2213 static int wq_select_unbound_cpu(int cpu) 2214 { 2215 int new_cpu; 2216 2217 if (likely(!wq_debug_force_rr_cpu)) { 2218 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 2219 return cpu; 2220 } else { 2221 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 2222 } 2223 2224 new_cpu = __this_cpu_read(wq_rr_cpu_last); 2225 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 2226 if (unlikely(new_cpu >= nr_cpu_ids)) { 2227 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 2228 if (unlikely(new_cpu >= nr_cpu_ids)) 2229 return cpu; 2230 } 2231 __this_cpu_write(wq_rr_cpu_last, new_cpu); 2232 2233 return new_cpu; 2234 } 2235 2236 static void __queue_work(int cpu, struct workqueue_struct *wq, 2237 struct work_struct *work) 2238 { 2239 struct pool_workqueue *pwq; 2240 struct worker_pool *last_pool, *pool; 2241 unsigned int work_flags; 2242 unsigned int req_cpu = cpu; 2243 2244 /* 2245 * While a work item is PENDING && off queue, a task trying to 2246 * steal the PENDING will busy-loop waiting for it to either get 2247 * queued or lose PENDING. Grabbing PENDING and queueing should 2248 * happen with IRQ disabled. 2249 */ 2250 lockdep_assert_irqs_disabled(); 2251 2252 /* 2253 * For a draining wq, only works from the same workqueue are 2254 * allowed. The __WQ_DESTROYING helps to spot the issue that 2255 * queues a new work item to a wq after destroy_workqueue(wq). 2256 */ 2257 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 2258 WARN_ON_ONCE(!is_chained_work(wq)))) 2259 return; 2260 rcu_read_lock(); 2261 retry: 2262 /* pwq which will be used unless @work is executing elsewhere */ 2263 if (req_cpu == WORK_CPU_UNBOUND) { 2264 if (wq->flags & WQ_UNBOUND) 2265 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 2266 else 2267 cpu = raw_smp_processor_id(); 2268 } 2269 2270 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 2271 pool = pwq->pool; 2272 2273 /* 2274 * If @work was previously on a different pool, it might still be 2275 * running there, in which case the work needs to be queued on that 2276 * pool to guarantee non-reentrancy. 2277 */ 2278 last_pool = get_work_pool(work); 2279 if (last_pool && last_pool != pool) { 2280 struct worker *worker; 2281 2282 raw_spin_lock(&last_pool->lock); 2283 2284 worker = find_worker_executing_work(last_pool, work); 2285 2286 if (worker && worker->current_pwq->wq == wq) { 2287 pwq = worker->current_pwq; 2288 pool = pwq->pool; 2289 WARN_ON_ONCE(pool != last_pool); 2290 } else { 2291 /* meh... not running there, queue here */ 2292 raw_spin_unlock(&last_pool->lock); 2293 raw_spin_lock(&pool->lock); 2294 } 2295 } else { 2296 raw_spin_lock(&pool->lock); 2297 } 2298 2299 /* 2300 * pwq is determined and locked. For unbound pools, we could have raced 2301 * with pwq release and it could already be dead. If its refcnt is zero, 2302 * repeat pwq selection. Note that unbound pwqs never die without 2303 * another pwq replacing it in cpu_pwq or while work items are executing 2304 * on it, so the retrying is guaranteed to make forward-progress. 2305 */ 2306 if (unlikely(!pwq->refcnt)) { 2307 if (wq->flags & WQ_UNBOUND) { 2308 raw_spin_unlock(&pool->lock); 2309 cpu_relax(); 2310 goto retry; 2311 } 2312 /* oops */ 2313 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 2314 wq->name, cpu); 2315 } 2316 2317 /* pwq determined, queue */ 2318 trace_workqueue_queue_work(req_cpu, pwq, work); 2319 2320 if (WARN_ON(!list_empty(&work->entry))) 2321 goto out; 2322 2323 pwq->nr_in_flight[pwq->work_color]++; 2324 work_flags = work_color_to_flags(pwq->work_color); 2325 2326 /* 2327 * Limit the number of concurrently active work items to max_active. 2328 * @work must also queue behind existing inactive work items to maintain 2329 * ordering when max_active changes. See wq_adjust_max_active(). 2330 */ 2331 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) { 2332 if (list_empty(&pool->worklist)) 2333 pool->watchdog_ts = jiffies; 2334 2335 trace_workqueue_activate_work(work); 2336 insert_work(pwq, work, &pool->worklist, work_flags); 2337 kick_pool(pool); 2338 } else { 2339 work_flags |= WORK_STRUCT_INACTIVE; 2340 insert_work(pwq, work, &pwq->inactive_works, work_flags); 2341 } 2342 2343 out: 2344 raw_spin_unlock(&pool->lock); 2345 rcu_read_unlock(); 2346 } 2347 2348 static bool clear_pending_if_disabled(struct work_struct *work) 2349 { 2350 unsigned long data = *work_data_bits(work); 2351 struct work_offq_data offqd; 2352 2353 if (likely((data & WORK_STRUCT_PWQ) || 2354 !(data & WORK_OFFQ_DISABLE_MASK))) 2355 return false; 2356 2357 work_offqd_unpack(&offqd, data); 2358 set_work_pool_and_clear_pending(work, offqd.pool_id, 2359 work_offqd_pack_flags(&offqd)); 2360 return true; 2361 } 2362 2363 /** 2364 * queue_work_on - queue work on specific cpu 2365 * @cpu: CPU number to execute work on 2366 * @wq: workqueue to use 2367 * @work: work to queue 2368 * 2369 * We queue the work to a specific CPU, the caller must ensure it 2370 * can't go away. Callers that fail to ensure that the specified 2371 * CPU cannot go away will execute on a randomly chosen CPU. 2372 * But note well that callers specifying a CPU that never has been 2373 * online will get a splat. 2374 * 2375 * Return: %false if @work was already on a queue, %true otherwise. 2376 */ 2377 bool queue_work_on(int cpu, struct workqueue_struct *wq, 2378 struct work_struct *work) 2379 { 2380 bool ret = false; 2381 unsigned long irq_flags; 2382 2383 local_irq_save(irq_flags); 2384 2385 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2386 !clear_pending_if_disabled(work)) { 2387 __queue_work(cpu, wq, work); 2388 ret = true; 2389 } 2390 2391 local_irq_restore(irq_flags); 2392 return ret; 2393 } 2394 EXPORT_SYMBOL(queue_work_on); 2395 2396 /** 2397 * select_numa_node_cpu - Select a CPU based on NUMA node 2398 * @node: NUMA node ID that we want to select a CPU from 2399 * 2400 * This function will attempt to find a "random" cpu available on a given 2401 * node. If there are no CPUs available on the given node it will return 2402 * WORK_CPU_UNBOUND indicating that we should just schedule to any 2403 * available CPU if we need to schedule this work. 2404 */ 2405 static int select_numa_node_cpu(int node) 2406 { 2407 int cpu; 2408 2409 /* Delay binding to CPU if node is not valid or online */ 2410 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 2411 return WORK_CPU_UNBOUND; 2412 2413 /* Use local node/cpu if we are already there */ 2414 cpu = raw_smp_processor_id(); 2415 if (node == cpu_to_node(cpu)) 2416 return cpu; 2417 2418 /* Use "random" otherwise know as "first" online CPU of node */ 2419 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 2420 2421 /* If CPU is valid return that, otherwise just defer */ 2422 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 2423 } 2424 2425 /** 2426 * queue_work_node - queue work on a "random" cpu for a given NUMA node 2427 * @node: NUMA node that we are targeting the work for 2428 * @wq: workqueue to use 2429 * @work: work to queue 2430 * 2431 * We queue the work to a "random" CPU within a given NUMA node. The basic 2432 * idea here is to provide a way to somehow associate work with a given 2433 * NUMA node. 2434 * 2435 * This function will only make a best effort attempt at getting this onto 2436 * the right NUMA node. If no node is requested or the requested node is 2437 * offline then we just fall back to standard queue_work behavior. 2438 * 2439 * Currently the "random" CPU ends up being the first available CPU in the 2440 * intersection of cpu_online_mask and the cpumask of the node, unless we 2441 * are running on the node. In that case we just use the current CPU. 2442 * 2443 * Return: %false if @work was already on a queue, %true otherwise. 2444 */ 2445 bool queue_work_node(int node, struct workqueue_struct *wq, 2446 struct work_struct *work) 2447 { 2448 unsigned long irq_flags; 2449 bool ret = false; 2450 2451 /* 2452 * This current implementation is specific to unbound workqueues. 2453 * Specifically we only return the first available CPU for a given 2454 * node instead of cycling through individual CPUs within the node. 2455 * 2456 * If this is used with a per-cpu workqueue then the logic in 2457 * workqueue_select_cpu_near would need to be updated to allow for 2458 * some round robin type logic. 2459 */ 2460 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 2461 2462 local_irq_save(irq_flags); 2463 2464 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2465 !clear_pending_if_disabled(work)) { 2466 int cpu = select_numa_node_cpu(node); 2467 2468 __queue_work(cpu, wq, work); 2469 ret = true; 2470 } 2471 2472 local_irq_restore(irq_flags); 2473 return ret; 2474 } 2475 EXPORT_SYMBOL_GPL(queue_work_node); 2476 2477 void delayed_work_timer_fn(struct timer_list *t) 2478 { 2479 struct delayed_work *dwork = from_timer(dwork, t, timer); 2480 2481 /* should have been called from irqsafe timer with irq already off */ 2482 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2483 } 2484 EXPORT_SYMBOL(delayed_work_timer_fn); 2485 2486 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 2487 struct delayed_work *dwork, unsigned long delay) 2488 { 2489 struct timer_list *timer = &dwork->timer; 2490 struct work_struct *work = &dwork->work; 2491 2492 WARN_ON_ONCE(!wq); 2493 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 2494 WARN_ON_ONCE(timer_pending(timer)); 2495 WARN_ON_ONCE(!list_empty(&work->entry)); 2496 2497 /* 2498 * If @delay is 0, queue @dwork->work immediately. This is for 2499 * both optimization and correctness. The earliest @timer can 2500 * expire is on the closest next tick and delayed_work users depend 2501 * on that there's no such delay when @delay is 0. 2502 */ 2503 if (!delay) { 2504 __queue_work(cpu, wq, &dwork->work); 2505 return; 2506 } 2507 2508 dwork->wq = wq; 2509 dwork->cpu = cpu; 2510 timer->expires = jiffies + delay; 2511 2512 if (housekeeping_enabled(HK_TYPE_TIMER)) { 2513 /* If the current cpu is a housekeeping cpu, use it. */ 2514 cpu = smp_processor_id(); 2515 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER)) 2516 cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 2517 add_timer_on(timer, cpu); 2518 } else { 2519 if (likely(cpu == WORK_CPU_UNBOUND)) 2520 add_timer_global(timer); 2521 else 2522 add_timer_on(timer, cpu); 2523 } 2524 } 2525 2526 /** 2527 * queue_delayed_work_on - queue work on specific CPU after delay 2528 * @cpu: CPU number to execute work on 2529 * @wq: workqueue to use 2530 * @dwork: work to queue 2531 * @delay: number of jiffies to wait before queueing 2532 * 2533 * Return: %false if @work was already on a queue, %true otherwise. If 2534 * @delay is zero and @dwork is idle, it will be scheduled for immediate 2535 * execution. 2536 */ 2537 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 2538 struct delayed_work *dwork, unsigned long delay) 2539 { 2540 struct work_struct *work = &dwork->work; 2541 bool ret = false; 2542 unsigned long irq_flags; 2543 2544 /* read the comment in __queue_work() */ 2545 local_irq_save(irq_flags); 2546 2547 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2548 !clear_pending_if_disabled(work)) { 2549 __queue_delayed_work(cpu, wq, dwork, delay); 2550 ret = true; 2551 } 2552 2553 local_irq_restore(irq_flags); 2554 return ret; 2555 } 2556 EXPORT_SYMBOL(queue_delayed_work_on); 2557 2558 /** 2559 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2560 * @cpu: CPU number to execute work on 2561 * @wq: workqueue to use 2562 * @dwork: work to queue 2563 * @delay: number of jiffies to wait before queueing 2564 * 2565 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2566 * modify @dwork's timer so that it expires after @delay. If @delay is 2567 * zero, @work is guaranteed to be scheduled immediately regardless of its 2568 * current state. 2569 * 2570 * Return: %false if @dwork was idle and queued, %true if @dwork was 2571 * pending and its timer was modified. 2572 * 2573 * This function is safe to call from any context including IRQ handler. 2574 * See try_to_grab_pending() for details. 2575 */ 2576 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2577 struct delayed_work *dwork, unsigned long delay) 2578 { 2579 unsigned long irq_flags; 2580 bool ret; 2581 2582 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags); 2583 2584 if (!clear_pending_if_disabled(&dwork->work)) 2585 __queue_delayed_work(cpu, wq, dwork, delay); 2586 2587 local_irq_restore(irq_flags); 2588 return ret; 2589 } 2590 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2591 2592 static void rcu_work_rcufn(struct rcu_head *rcu) 2593 { 2594 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2595 2596 /* read the comment in __queue_work() */ 2597 local_irq_disable(); 2598 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2599 local_irq_enable(); 2600 } 2601 2602 /** 2603 * queue_rcu_work - queue work after a RCU grace period 2604 * @wq: workqueue to use 2605 * @rwork: work to queue 2606 * 2607 * Return: %false if @rwork was already pending, %true otherwise. Note 2608 * that a full RCU grace period is guaranteed only after a %true return. 2609 * While @rwork is guaranteed to be executed after a %false return, the 2610 * execution may happen before a full RCU grace period has passed. 2611 */ 2612 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2613 { 2614 struct work_struct *work = &rwork->work; 2615 2616 /* 2617 * rcu_work can't be canceled or disabled. Warn if the user reached 2618 * inside @rwork and disabled the inner work. 2619 */ 2620 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2621 !WARN_ON_ONCE(clear_pending_if_disabled(work))) { 2622 rwork->wq = wq; 2623 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2624 return true; 2625 } 2626 2627 return false; 2628 } 2629 EXPORT_SYMBOL(queue_rcu_work); 2630 2631 static struct worker *alloc_worker(int node) 2632 { 2633 struct worker *worker; 2634 2635 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2636 if (worker) { 2637 INIT_LIST_HEAD(&worker->entry); 2638 INIT_LIST_HEAD(&worker->scheduled); 2639 INIT_LIST_HEAD(&worker->node); 2640 /* on creation a worker is in !idle && prep state */ 2641 worker->flags = WORKER_PREP; 2642 } 2643 return worker; 2644 } 2645 2646 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2647 { 2648 if (pool->cpu < 0 && pool->attrs->affn_strict) 2649 return pool->attrs->__pod_cpumask; 2650 else 2651 return pool->attrs->cpumask; 2652 } 2653 2654 /** 2655 * worker_attach_to_pool() - attach a worker to a pool 2656 * @worker: worker to be attached 2657 * @pool: the target pool 2658 * 2659 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2660 * cpu-binding of @worker are kept coordinated with the pool across 2661 * cpu-[un]hotplugs. 2662 */ 2663 static void worker_attach_to_pool(struct worker *worker, 2664 struct worker_pool *pool) 2665 { 2666 mutex_lock(&wq_pool_attach_mutex); 2667 2668 /* 2669 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable 2670 * across this function. See the comments above the flag definition for 2671 * details. BH workers are, while per-CPU, always DISASSOCIATED. 2672 */ 2673 if (pool->flags & POOL_DISASSOCIATED) { 2674 worker->flags |= WORKER_UNBOUND; 2675 } else { 2676 WARN_ON_ONCE(pool->flags & POOL_BH); 2677 kthread_set_per_cpu(worker->task, pool->cpu); 2678 } 2679 2680 if (worker->rescue_wq) 2681 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2682 2683 list_add_tail(&worker->node, &pool->workers); 2684 worker->pool = pool; 2685 2686 mutex_unlock(&wq_pool_attach_mutex); 2687 } 2688 2689 static void unbind_worker(struct worker *worker) 2690 { 2691 lockdep_assert_held(&wq_pool_attach_mutex); 2692 2693 kthread_set_per_cpu(worker->task, -1); 2694 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2695 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2696 else 2697 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2698 } 2699 2700 2701 static void detach_worker(struct worker *worker) 2702 { 2703 lockdep_assert_held(&wq_pool_attach_mutex); 2704 2705 unbind_worker(worker); 2706 list_del(&worker->node); 2707 worker->pool = NULL; 2708 } 2709 2710 /** 2711 * worker_detach_from_pool() - detach a worker from its pool 2712 * @worker: worker which is attached to its pool 2713 * 2714 * Undo the attaching which had been done in worker_attach_to_pool(). The 2715 * caller worker shouldn't access to the pool after detached except it has 2716 * other reference to the pool. 2717 */ 2718 static void worker_detach_from_pool(struct worker *worker) 2719 { 2720 struct worker_pool *pool = worker->pool; 2721 2722 /* there is one permanent BH worker per CPU which should never detach */ 2723 WARN_ON_ONCE(pool->flags & POOL_BH); 2724 2725 mutex_lock(&wq_pool_attach_mutex); 2726 detach_worker(worker); 2727 mutex_unlock(&wq_pool_attach_mutex); 2728 2729 /* clear leftover flags without pool->lock after it is detached */ 2730 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2731 } 2732 2733 /** 2734 * create_worker - create a new workqueue worker 2735 * @pool: pool the new worker will belong to 2736 * 2737 * Create and start a new worker which is attached to @pool. 2738 * 2739 * CONTEXT: 2740 * Might sleep. Does GFP_KERNEL allocations. 2741 * 2742 * Return: 2743 * Pointer to the newly created worker. 2744 */ 2745 static struct worker *create_worker(struct worker_pool *pool) 2746 { 2747 struct worker *worker; 2748 int id; 2749 char id_buf[23]; 2750 2751 /* ID is needed to determine kthread name */ 2752 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2753 if (id < 0) { 2754 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2755 ERR_PTR(id)); 2756 return NULL; 2757 } 2758 2759 worker = alloc_worker(pool->node); 2760 if (!worker) { 2761 pr_err_once("workqueue: Failed to allocate a worker\n"); 2762 goto fail; 2763 } 2764 2765 worker->id = id; 2766 2767 if (!(pool->flags & POOL_BH)) { 2768 if (pool->cpu >= 0) 2769 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 2770 pool->attrs->nice < 0 ? "H" : ""); 2771 else 2772 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 2773 2774 worker->task = kthread_create_on_node(worker_thread, worker, 2775 pool->node, "kworker/%s", id_buf); 2776 if (IS_ERR(worker->task)) { 2777 if (PTR_ERR(worker->task) == -EINTR) { 2778 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n", 2779 id_buf); 2780 } else { 2781 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2782 worker->task); 2783 } 2784 goto fail; 2785 } 2786 2787 set_user_nice(worker->task, pool->attrs->nice); 2788 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2789 } 2790 2791 /* successful, attach the worker to the pool */ 2792 worker_attach_to_pool(worker, pool); 2793 2794 /* start the newly created worker */ 2795 raw_spin_lock_irq(&pool->lock); 2796 2797 worker->pool->nr_workers++; 2798 worker_enter_idle(worker); 2799 2800 /* 2801 * @worker is waiting on a completion in kthread() and will trigger hung 2802 * check if not woken up soon. As kick_pool() is noop if @pool is empty, 2803 * wake it up explicitly. 2804 */ 2805 if (worker->task) 2806 wake_up_process(worker->task); 2807 2808 raw_spin_unlock_irq(&pool->lock); 2809 2810 return worker; 2811 2812 fail: 2813 ida_free(&pool->worker_ida, id); 2814 kfree(worker); 2815 return NULL; 2816 } 2817 2818 static void detach_dying_workers(struct list_head *cull_list) 2819 { 2820 struct worker *worker; 2821 2822 list_for_each_entry(worker, cull_list, entry) 2823 detach_worker(worker); 2824 } 2825 2826 static void reap_dying_workers(struct list_head *cull_list) 2827 { 2828 struct worker *worker, *tmp; 2829 2830 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2831 list_del_init(&worker->entry); 2832 kthread_stop_put(worker->task); 2833 kfree(worker); 2834 } 2835 } 2836 2837 /** 2838 * set_worker_dying - Tag a worker for destruction 2839 * @worker: worker to be destroyed 2840 * @list: transfer worker away from its pool->idle_list and into list 2841 * 2842 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2843 * should be idle. 2844 * 2845 * CONTEXT: 2846 * raw_spin_lock_irq(pool->lock). 2847 */ 2848 static void set_worker_dying(struct worker *worker, struct list_head *list) 2849 { 2850 struct worker_pool *pool = worker->pool; 2851 2852 lockdep_assert_held(&pool->lock); 2853 lockdep_assert_held(&wq_pool_attach_mutex); 2854 2855 /* sanity check frenzy */ 2856 if (WARN_ON(worker->current_work) || 2857 WARN_ON(!list_empty(&worker->scheduled)) || 2858 WARN_ON(!(worker->flags & WORKER_IDLE))) 2859 return; 2860 2861 pool->nr_workers--; 2862 pool->nr_idle--; 2863 2864 worker->flags |= WORKER_DIE; 2865 2866 list_move(&worker->entry, list); 2867 2868 /* get an extra task struct reference for later kthread_stop_put() */ 2869 get_task_struct(worker->task); 2870 } 2871 2872 /** 2873 * idle_worker_timeout - check if some idle workers can now be deleted. 2874 * @t: The pool's idle_timer that just expired 2875 * 2876 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2877 * worker_leave_idle(), as a worker flicking between idle and active while its 2878 * pool is at the too_many_workers() tipping point would cause too much timer 2879 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2880 * it expire and re-evaluate things from there. 2881 */ 2882 static void idle_worker_timeout(struct timer_list *t) 2883 { 2884 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2885 bool do_cull = false; 2886 2887 if (work_pending(&pool->idle_cull_work)) 2888 return; 2889 2890 raw_spin_lock_irq(&pool->lock); 2891 2892 if (too_many_workers(pool)) { 2893 struct worker *worker; 2894 unsigned long expires; 2895 2896 /* idle_list is kept in LIFO order, check the last one */ 2897 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2898 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2899 do_cull = !time_before(jiffies, expires); 2900 2901 if (!do_cull) 2902 mod_timer(&pool->idle_timer, expires); 2903 } 2904 raw_spin_unlock_irq(&pool->lock); 2905 2906 if (do_cull) 2907 queue_work(system_unbound_wq, &pool->idle_cull_work); 2908 } 2909 2910 /** 2911 * idle_cull_fn - cull workers that have been idle for too long. 2912 * @work: the pool's work for handling these idle workers 2913 * 2914 * This goes through a pool's idle workers and gets rid of those that have been 2915 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2916 * 2917 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2918 * culled, so this also resets worker affinity. This requires a sleepable 2919 * context, hence the split between timer callback and work item. 2920 */ 2921 static void idle_cull_fn(struct work_struct *work) 2922 { 2923 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2924 LIST_HEAD(cull_list); 2925 2926 /* 2927 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2928 * cannot proceed beyong set_pf_worker() in its self-destruct path. 2929 * This is required as a previously-preempted worker could run after 2930 * set_worker_dying() has happened but before detach_dying_workers() did. 2931 */ 2932 mutex_lock(&wq_pool_attach_mutex); 2933 raw_spin_lock_irq(&pool->lock); 2934 2935 while (too_many_workers(pool)) { 2936 struct worker *worker; 2937 unsigned long expires; 2938 2939 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2940 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2941 2942 if (time_before(jiffies, expires)) { 2943 mod_timer(&pool->idle_timer, expires); 2944 break; 2945 } 2946 2947 set_worker_dying(worker, &cull_list); 2948 } 2949 2950 raw_spin_unlock_irq(&pool->lock); 2951 detach_dying_workers(&cull_list); 2952 mutex_unlock(&wq_pool_attach_mutex); 2953 2954 reap_dying_workers(&cull_list); 2955 } 2956 2957 static void send_mayday(struct work_struct *work) 2958 { 2959 struct pool_workqueue *pwq = get_work_pwq(work); 2960 struct workqueue_struct *wq = pwq->wq; 2961 2962 lockdep_assert_held(&wq_mayday_lock); 2963 2964 if (!wq->rescuer) 2965 return; 2966 2967 /* mayday mayday mayday */ 2968 if (list_empty(&pwq->mayday_node)) { 2969 /* 2970 * If @pwq is for an unbound wq, its base ref may be put at 2971 * any time due to an attribute change. Pin @pwq until the 2972 * rescuer is done with it. 2973 */ 2974 get_pwq(pwq); 2975 list_add_tail(&pwq->mayday_node, &wq->maydays); 2976 wake_up_process(wq->rescuer->task); 2977 pwq->stats[PWQ_STAT_MAYDAY]++; 2978 } 2979 } 2980 2981 static void pool_mayday_timeout(struct timer_list *t) 2982 { 2983 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2984 struct work_struct *work; 2985 2986 raw_spin_lock_irq(&pool->lock); 2987 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2988 2989 if (need_to_create_worker(pool)) { 2990 /* 2991 * We've been trying to create a new worker but 2992 * haven't been successful. We might be hitting an 2993 * allocation deadlock. Send distress signals to 2994 * rescuers. 2995 */ 2996 list_for_each_entry(work, &pool->worklist, entry) 2997 send_mayday(work); 2998 } 2999 3000 raw_spin_unlock(&wq_mayday_lock); 3001 raw_spin_unlock_irq(&pool->lock); 3002 3003 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 3004 } 3005 3006 /** 3007 * maybe_create_worker - create a new worker if necessary 3008 * @pool: pool to create a new worker for 3009 * 3010 * Create a new worker for @pool if necessary. @pool is guaranteed to 3011 * have at least one idle worker on return from this function. If 3012 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 3013 * sent to all rescuers with works scheduled on @pool to resolve 3014 * possible allocation deadlock. 3015 * 3016 * On return, need_to_create_worker() is guaranteed to be %false and 3017 * may_start_working() %true. 3018 * 3019 * LOCKING: 3020 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3021 * multiple times. Does GFP_KERNEL allocations. Called only from 3022 * manager. 3023 */ 3024 static void maybe_create_worker(struct worker_pool *pool) 3025 __releases(&pool->lock) 3026 __acquires(&pool->lock) 3027 { 3028 restart: 3029 raw_spin_unlock_irq(&pool->lock); 3030 3031 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 3032 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 3033 3034 while (true) { 3035 if (create_worker(pool) || !need_to_create_worker(pool)) 3036 break; 3037 3038 schedule_timeout_interruptible(CREATE_COOLDOWN); 3039 3040 if (!need_to_create_worker(pool)) 3041 break; 3042 } 3043 3044 del_timer_sync(&pool->mayday_timer); 3045 raw_spin_lock_irq(&pool->lock); 3046 /* 3047 * This is necessary even after a new worker was just successfully 3048 * created as @pool->lock was dropped and the new worker might have 3049 * already become busy. 3050 */ 3051 if (need_to_create_worker(pool)) 3052 goto restart; 3053 } 3054 3055 /** 3056 * manage_workers - manage worker pool 3057 * @worker: self 3058 * 3059 * Assume the manager role and manage the worker pool @worker belongs 3060 * to. At any given time, there can be only zero or one manager per 3061 * pool. The exclusion is handled automatically by this function. 3062 * 3063 * The caller can safely start processing works on false return. On 3064 * true return, it's guaranteed that need_to_create_worker() is false 3065 * and may_start_working() is true. 3066 * 3067 * CONTEXT: 3068 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3069 * multiple times. Does GFP_KERNEL allocations. 3070 * 3071 * Return: 3072 * %false if the pool doesn't need management and the caller can safely 3073 * start processing works, %true if management function was performed and 3074 * the conditions that the caller verified before calling the function may 3075 * no longer be true. 3076 */ 3077 static bool manage_workers(struct worker *worker) 3078 { 3079 struct worker_pool *pool = worker->pool; 3080 3081 if (pool->flags & POOL_MANAGER_ACTIVE) 3082 return false; 3083 3084 pool->flags |= POOL_MANAGER_ACTIVE; 3085 pool->manager = worker; 3086 3087 maybe_create_worker(pool); 3088 3089 pool->manager = NULL; 3090 pool->flags &= ~POOL_MANAGER_ACTIVE; 3091 rcuwait_wake_up(&manager_wait); 3092 return true; 3093 } 3094 3095 /** 3096 * process_one_work - process single work 3097 * @worker: self 3098 * @work: work to process 3099 * 3100 * Process @work. This function contains all the logics necessary to 3101 * process a single work including synchronization against and 3102 * interaction with other workers on the same cpu, queueing and 3103 * flushing. As long as context requirement is met, any worker can 3104 * call this function to process a work. 3105 * 3106 * CONTEXT: 3107 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 3108 */ 3109 static void process_one_work(struct worker *worker, struct work_struct *work) 3110 __releases(&pool->lock) 3111 __acquires(&pool->lock) 3112 { 3113 struct pool_workqueue *pwq = get_work_pwq(work); 3114 struct worker_pool *pool = worker->pool; 3115 unsigned long work_data; 3116 int lockdep_start_depth, rcu_start_depth; 3117 bool bh_draining = pool->flags & POOL_BH_DRAINING; 3118 #ifdef CONFIG_LOCKDEP 3119 /* 3120 * It is permissible to free the struct work_struct from 3121 * inside the function that is called from it, this we need to 3122 * take into account for lockdep too. To avoid bogus "held 3123 * lock freed" warnings as well as problems when looking into 3124 * work->lockdep_map, make a copy and use that here. 3125 */ 3126 struct lockdep_map lockdep_map; 3127 3128 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 3129 #endif 3130 /* ensure we're on the correct CPU */ 3131 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 3132 raw_smp_processor_id() != pool->cpu); 3133 3134 /* claim and dequeue */ 3135 debug_work_deactivate(work); 3136 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 3137 worker->current_work = work; 3138 worker->current_func = work->func; 3139 worker->current_pwq = pwq; 3140 if (worker->task) 3141 worker->current_at = worker->task->se.sum_exec_runtime; 3142 work_data = *work_data_bits(work); 3143 worker->current_color = get_work_color(work_data); 3144 3145 /* 3146 * Record wq name for cmdline and debug reporting, may get 3147 * overridden through set_worker_desc(). 3148 */ 3149 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 3150 3151 list_del_init(&work->entry); 3152 3153 /* 3154 * CPU intensive works don't participate in concurrency management. 3155 * They're the scheduler's responsibility. This takes @worker out 3156 * of concurrency management and the next code block will chain 3157 * execution of the pending work items. 3158 */ 3159 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 3160 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 3161 3162 /* 3163 * Kick @pool if necessary. It's always noop for per-cpu worker pools 3164 * since nr_running would always be >= 1 at this point. This is used to 3165 * chain execution of the pending work items for WORKER_NOT_RUNNING 3166 * workers such as the UNBOUND and CPU_INTENSIVE ones. 3167 */ 3168 kick_pool(pool); 3169 3170 /* 3171 * Record the last pool and clear PENDING which should be the last 3172 * update to @work. Also, do this inside @pool->lock so that 3173 * PENDING and queued state changes happen together while IRQ is 3174 * disabled. 3175 */ 3176 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool)); 3177 3178 pwq->stats[PWQ_STAT_STARTED]++; 3179 raw_spin_unlock_irq(&pool->lock); 3180 3181 rcu_start_depth = rcu_preempt_depth(); 3182 lockdep_start_depth = lockdep_depth(current); 3183 /* see drain_dead_softirq_workfn() */ 3184 if (!bh_draining) 3185 lock_map_acquire(&pwq->wq->lockdep_map); 3186 lock_map_acquire(&lockdep_map); 3187 /* 3188 * Strictly speaking we should mark the invariant state without holding 3189 * any locks, that is, before these two lock_map_acquire()'s. 3190 * 3191 * However, that would result in: 3192 * 3193 * A(W1) 3194 * WFC(C) 3195 * A(W1) 3196 * C(C) 3197 * 3198 * Which would create W1->C->W1 dependencies, even though there is no 3199 * actual deadlock possible. There are two solutions, using a 3200 * read-recursive acquire on the work(queue) 'locks', but this will then 3201 * hit the lockdep limitation on recursive locks, or simply discard 3202 * these locks. 3203 * 3204 * AFAICT there is no possible deadlock scenario between the 3205 * flush_work() and complete() primitives (except for single-threaded 3206 * workqueues), so hiding them isn't a problem. 3207 */ 3208 lockdep_invariant_state(true); 3209 trace_workqueue_execute_start(work); 3210 worker->current_func(work); 3211 /* 3212 * While we must be careful to not use "work" after this, the trace 3213 * point will only record its address. 3214 */ 3215 trace_workqueue_execute_end(work, worker->current_func); 3216 pwq->stats[PWQ_STAT_COMPLETED]++; 3217 lock_map_release(&lockdep_map); 3218 if (!bh_draining) 3219 lock_map_release(&pwq->wq->lockdep_map); 3220 3221 if (unlikely((worker->task && in_atomic()) || 3222 lockdep_depth(current) != lockdep_start_depth || 3223 rcu_preempt_depth() != rcu_start_depth)) { 3224 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n" 3225 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n", 3226 current->comm, task_pid_nr(current), preempt_count(), 3227 lockdep_start_depth, lockdep_depth(current), 3228 rcu_start_depth, rcu_preempt_depth(), 3229 worker->current_func); 3230 debug_show_held_locks(current); 3231 dump_stack(); 3232 } 3233 3234 /* 3235 * The following prevents a kworker from hogging CPU on !PREEMPTION 3236 * kernels, where a requeueing work item waiting for something to 3237 * happen could deadlock with stop_machine as such work item could 3238 * indefinitely requeue itself while all other CPUs are trapped in 3239 * stop_machine. At the same time, report a quiescent RCU state so 3240 * the same condition doesn't freeze RCU. 3241 */ 3242 if (worker->task) 3243 cond_resched(); 3244 3245 raw_spin_lock_irq(&pool->lock); 3246 3247 /* 3248 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 3249 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 3250 * wq_cpu_intensive_thresh_us. Clear it. 3251 */ 3252 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 3253 3254 /* tag the worker for identification in schedule() */ 3255 worker->last_func = worker->current_func; 3256 3257 /* we're done with it, release */ 3258 hash_del(&worker->hentry); 3259 worker->current_work = NULL; 3260 worker->current_func = NULL; 3261 worker->current_pwq = NULL; 3262 worker->current_color = INT_MAX; 3263 3264 /* must be the last step, see the function comment */ 3265 pwq_dec_nr_in_flight(pwq, work_data); 3266 } 3267 3268 /** 3269 * process_scheduled_works - process scheduled works 3270 * @worker: self 3271 * 3272 * Process all scheduled works. Please note that the scheduled list 3273 * may change while processing a work, so this function repeatedly 3274 * fetches a work from the top and executes it. 3275 * 3276 * CONTEXT: 3277 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3278 * multiple times. 3279 */ 3280 static void process_scheduled_works(struct worker *worker) 3281 { 3282 struct work_struct *work; 3283 bool first = true; 3284 3285 while ((work = list_first_entry_or_null(&worker->scheduled, 3286 struct work_struct, entry))) { 3287 if (first) { 3288 worker->pool->watchdog_ts = jiffies; 3289 first = false; 3290 } 3291 process_one_work(worker, work); 3292 } 3293 } 3294 3295 static void set_pf_worker(bool val) 3296 { 3297 mutex_lock(&wq_pool_attach_mutex); 3298 if (val) 3299 current->flags |= PF_WQ_WORKER; 3300 else 3301 current->flags &= ~PF_WQ_WORKER; 3302 mutex_unlock(&wq_pool_attach_mutex); 3303 } 3304 3305 /** 3306 * worker_thread - the worker thread function 3307 * @__worker: self 3308 * 3309 * The worker thread function. All workers belong to a worker_pool - 3310 * either a per-cpu one or dynamic unbound one. These workers process all 3311 * work items regardless of their specific target workqueue. The only 3312 * exception is work items which belong to workqueues with a rescuer which 3313 * will be explained in rescuer_thread(). 3314 * 3315 * Return: 0 3316 */ 3317 static int worker_thread(void *__worker) 3318 { 3319 struct worker *worker = __worker; 3320 struct worker_pool *pool = worker->pool; 3321 3322 /* tell the scheduler that this is a workqueue worker */ 3323 set_pf_worker(true); 3324 woke_up: 3325 raw_spin_lock_irq(&pool->lock); 3326 3327 /* am I supposed to die? */ 3328 if (unlikely(worker->flags & WORKER_DIE)) { 3329 raw_spin_unlock_irq(&pool->lock); 3330 set_pf_worker(false); 3331 3332 set_task_comm(worker->task, "kworker/dying"); 3333 ida_free(&pool->worker_ida, worker->id); 3334 WARN_ON_ONCE(!list_empty(&worker->entry)); 3335 return 0; 3336 } 3337 3338 worker_leave_idle(worker); 3339 recheck: 3340 /* no more worker necessary? */ 3341 if (!need_more_worker(pool)) 3342 goto sleep; 3343 3344 /* do we need to manage? */ 3345 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 3346 goto recheck; 3347 3348 /* 3349 * ->scheduled list can only be filled while a worker is 3350 * preparing to process a work or actually processing it. 3351 * Make sure nobody diddled with it while I was sleeping. 3352 */ 3353 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3354 3355 /* 3356 * Finish PREP stage. We're guaranteed to have at least one idle 3357 * worker or that someone else has already assumed the manager 3358 * role. This is where @worker starts participating in concurrency 3359 * management if applicable and concurrency management is restored 3360 * after being rebound. See rebind_workers() for details. 3361 */ 3362 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3363 3364 do { 3365 struct work_struct *work = 3366 list_first_entry(&pool->worklist, 3367 struct work_struct, entry); 3368 3369 if (assign_work(work, worker, NULL)) 3370 process_scheduled_works(worker); 3371 } while (keep_working(pool)); 3372 3373 worker_set_flags(worker, WORKER_PREP); 3374 sleep: 3375 /* 3376 * pool->lock is held and there's no work to process and no need to 3377 * manage, sleep. Workers are woken up only while holding 3378 * pool->lock or from local cpu, so setting the current state 3379 * before releasing pool->lock is enough to prevent losing any 3380 * event. 3381 */ 3382 worker_enter_idle(worker); 3383 __set_current_state(TASK_IDLE); 3384 raw_spin_unlock_irq(&pool->lock); 3385 schedule(); 3386 goto woke_up; 3387 } 3388 3389 /** 3390 * rescuer_thread - the rescuer thread function 3391 * @__rescuer: self 3392 * 3393 * Workqueue rescuer thread function. There's one rescuer for each 3394 * workqueue which has WQ_MEM_RECLAIM set. 3395 * 3396 * Regular work processing on a pool may block trying to create a new 3397 * worker which uses GFP_KERNEL allocation which has slight chance of 3398 * developing into deadlock if some works currently on the same queue 3399 * need to be processed to satisfy the GFP_KERNEL allocation. This is 3400 * the problem rescuer solves. 3401 * 3402 * When such condition is possible, the pool summons rescuers of all 3403 * workqueues which have works queued on the pool and let them process 3404 * those works so that forward progress can be guaranteed. 3405 * 3406 * This should happen rarely. 3407 * 3408 * Return: 0 3409 */ 3410 static int rescuer_thread(void *__rescuer) 3411 { 3412 struct worker *rescuer = __rescuer; 3413 struct workqueue_struct *wq = rescuer->rescue_wq; 3414 bool should_stop; 3415 3416 set_user_nice(current, RESCUER_NICE_LEVEL); 3417 3418 /* 3419 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 3420 * doesn't participate in concurrency management. 3421 */ 3422 set_pf_worker(true); 3423 repeat: 3424 set_current_state(TASK_IDLE); 3425 3426 /* 3427 * By the time the rescuer is requested to stop, the workqueue 3428 * shouldn't have any work pending, but @wq->maydays may still have 3429 * pwq(s) queued. This can happen by non-rescuer workers consuming 3430 * all the work items before the rescuer got to them. Go through 3431 * @wq->maydays processing before acting on should_stop so that the 3432 * list is always empty on exit. 3433 */ 3434 should_stop = kthread_should_stop(); 3435 3436 /* see whether any pwq is asking for help */ 3437 raw_spin_lock_irq(&wq_mayday_lock); 3438 3439 while (!list_empty(&wq->maydays)) { 3440 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 3441 struct pool_workqueue, mayday_node); 3442 struct worker_pool *pool = pwq->pool; 3443 struct work_struct *work, *n; 3444 3445 __set_current_state(TASK_RUNNING); 3446 list_del_init(&pwq->mayday_node); 3447 3448 raw_spin_unlock_irq(&wq_mayday_lock); 3449 3450 worker_attach_to_pool(rescuer, pool); 3451 3452 raw_spin_lock_irq(&pool->lock); 3453 3454 /* 3455 * Slurp in all works issued via this workqueue and 3456 * process'em. 3457 */ 3458 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 3459 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 3460 if (get_work_pwq(work) == pwq && 3461 assign_work(work, rescuer, &n)) 3462 pwq->stats[PWQ_STAT_RESCUED]++; 3463 } 3464 3465 if (!list_empty(&rescuer->scheduled)) { 3466 process_scheduled_works(rescuer); 3467 3468 /* 3469 * The above execution of rescued work items could 3470 * have created more to rescue through 3471 * pwq_activate_first_inactive() or chained 3472 * queueing. Let's put @pwq back on mayday list so 3473 * that such back-to-back work items, which may be 3474 * being used to relieve memory pressure, don't 3475 * incur MAYDAY_INTERVAL delay inbetween. 3476 */ 3477 if (pwq->nr_active && need_to_create_worker(pool)) { 3478 raw_spin_lock(&wq_mayday_lock); 3479 /* 3480 * Queue iff we aren't racing destruction 3481 * and somebody else hasn't queued it already. 3482 */ 3483 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 3484 get_pwq(pwq); 3485 list_add_tail(&pwq->mayday_node, &wq->maydays); 3486 } 3487 raw_spin_unlock(&wq_mayday_lock); 3488 } 3489 } 3490 3491 /* 3492 * Put the reference grabbed by send_mayday(). @pool won't 3493 * go away while we're still attached to it. 3494 */ 3495 put_pwq(pwq); 3496 3497 /* 3498 * Leave this pool. Notify regular workers; otherwise, we end up 3499 * with 0 concurrency and stalling the execution. 3500 */ 3501 kick_pool(pool); 3502 3503 raw_spin_unlock_irq(&pool->lock); 3504 3505 worker_detach_from_pool(rescuer); 3506 3507 raw_spin_lock_irq(&wq_mayday_lock); 3508 } 3509 3510 raw_spin_unlock_irq(&wq_mayday_lock); 3511 3512 if (should_stop) { 3513 __set_current_state(TASK_RUNNING); 3514 set_pf_worker(false); 3515 return 0; 3516 } 3517 3518 /* rescuers should never participate in concurrency management */ 3519 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 3520 schedule(); 3521 goto repeat; 3522 } 3523 3524 static void bh_worker(struct worker *worker) 3525 { 3526 struct worker_pool *pool = worker->pool; 3527 int nr_restarts = BH_WORKER_RESTARTS; 3528 unsigned long end = jiffies + BH_WORKER_JIFFIES; 3529 3530 raw_spin_lock_irq(&pool->lock); 3531 worker_leave_idle(worker); 3532 3533 /* 3534 * This function follows the structure of worker_thread(). See there for 3535 * explanations on each step. 3536 */ 3537 if (!need_more_worker(pool)) 3538 goto done; 3539 3540 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3541 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3542 3543 do { 3544 struct work_struct *work = 3545 list_first_entry(&pool->worklist, 3546 struct work_struct, entry); 3547 3548 if (assign_work(work, worker, NULL)) 3549 process_scheduled_works(worker); 3550 } while (keep_working(pool) && 3551 --nr_restarts && time_before(jiffies, end)); 3552 3553 worker_set_flags(worker, WORKER_PREP); 3554 done: 3555 worker_enter_idle(worker); 3556 kick_pool(pool); 3557 raw_spin_unlock_irq(&pool->lock); 3558 } 3559 3560 /* 3561 * TODO: Convert all tasklet users to workqueue and use softirq directly. 3562 * 3563 * This is currently called from tasklet[_hi]action() and thus is also called 3564 * whenever there are tasklets to run. Let's do an early exit if there's nothing 3565 * queued. Once conversion from tasklet is complete, the need_more_worker() test 3566 * can be dropped. 3567 * 3568 * After full conversion, we'll add worker->softirq_action, directly use the 3569 * softirq action and obtain the worker pointer from the softirq_action pointer. 3570 */ 3571 void workqueue_softirq_action(bool highpri) 3572 { 3573 struct worker_pool *pool = 3574 &per_cpu(bh_worker_pools, smp_processor_id())[highpri]; 3575 if (need_more_worker(pool)) 3576 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3577 } 3578 3579 struct wq_drain_dead_softirq_work { 3580 struct work_struct work; 3581 struct worker_pool *pool; 3582 struct completion done; 3583 }; 3584 3585 static void drain_dead_softirq_workfn(struct work_struct *work) 3586 { 3587 struct wq_drain_dead_softirq_work *dead_work = 3588 container_of(work, struct wq_drain_dead_softirq_work, work); 3589 struct worker_pool *pool = dead_work->pool; 3590 bool repeat; 3591 3592 /* 3593 * @pool's CPU is dead and we want to execute its still pending work 3594 * items from this BH work item which is running on a different CPU. As 3595 * its CPU is dead, @pool can't be kicked and, as work execution path 3596 * will be nested, a lockdep annotation needs to be suppressed. Mark 3597 * @pool with %POOL_BH_DRAINING for the special treatments. 3598 */ 3599 raw_spin_lock_irq(&pool->lock); 3600 pool->flags |= POOL_BH_DRAINING; 3601 raw_spin_unlock_irq(&pool->lock); 3602 3603 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3604 3605 raw_spin_lock_irq(&pool->lock); 3606 pool->flags &= ~POOL_BH_DRAINING; 3607 repeat = need_more_worker(pool); 3608 raw_spin_unlock_irq(&pool->lock); 3609 3610 /* 3611 * bh_worker() might hit consecutive execution limit and bail. If there 3612 * still are pending work items, reschedule self and return so that we 3613 * don't hog this CPU's BH. 3614 */ 3615 if (repeat) { 3616 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3617 queue_work(system_bh_highpri_wq, work); 3618 else 3619 queue_work(system_bh_wq, work); 3620 } else { 3621 complete(&dead_work->done); 3622 } 3623 } 3624 3625 /* 3626 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's 3627 * possible to allocate dead_work per CPU and avoid flushing. However, then we 3628 * have to worry about draining overlapping with CPU coming back online or 3629 * nesting (one CPU's dead_work queued on another CPU which is also dead and so 3630 * on). Let's keep it simple and drain them synchronously. These are BH work 3631 * items which shouldn't be requeued on the same pool. Shouldn't take long. 3632 */ 3633 void workqueue_softirq_dead(unsigned int cpu) 3634 { 3635 int i; 3636 3637 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 3638 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i]; 3639 struct wq_drain_dead_softirq_work dead_work; 3640 3641 if (!need_more_worker(pool)) 3642 continue; 3643 3644 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn); 3645 dead_work.pool = pool; 3646 init_completion(&dead_work.done); 3647 3648 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3649 queue_work(system_bh_highpri_wq, &dead_work.work); 3650 else 3651 queue_work(system_bh_wq, &dead_work.work); 3652 3653 wait_for_completion(&dead_work.done); 3654 destroy_work_on_stack(&dead_work.work); 3655 } 3656 } 3657 3658 /** 3659 * check_flush_dependency - check for flush dependency sanity 3660 * @target_wq: workqueue being flushed 3661 * @target_work: work item being flushed (NULL for workqueue flushes) 3662 * 3663 * %current is trying to flush the whole @target_wq or @target_work on it. 3664 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 3665 * reclaiming memory or running on a workqueue which doesn't have 3666 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 3667 * a deadlock. 3668 */ 3669 static void check_flush_dependency(struct workqueue_struct *target_wq, 3670 struct work_struct *target_work) 3671 { 3672 work_func_t target_func = target_work ? target_work->func : NULL; 3673 struct worker *worker; 3674 3675 if (target_wq->flags & WQ_MEM_RECLAIM) 3676 return; 3677 3678 worker = current_wq_worker(); 3679 3680 WARN_ONCE(current->flags & PF_MEMALLOC, 3681 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 3682 current->pid, current->comm, target_wq->name, target_func); 3683 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 3684 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 3685 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 3686 worker->current_pwq->wq->name, worker->current_func, 3687 target_wq->name, target_func); 3688 } 3689 3690 struct wq_barrier { 3691 struct work_struct work; 3692 struct completion done; 3693 struct task_struct *task; /* purely informational */ 3694 }; 3695 3696 static void wq_barrier_func(struct work_struct *work) 3697 { 3698 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 3699 complete(&barr->done); 3700 } 3701 3702 /** 3703 * insert_wq_barrier - insert a barrier work 3704 * @pwq: pwq to insert barrier into 3705 * @barr: wq_barrier to insert 3706 * @target: target work to attach @barr to 3707 * @worker: worker currently executing @target, NULL if @target is not executing 3708 * 3709 * @barr is linked to @target such that @barr is completed only after 3710 * @target finishes execution. Please note that the ordering 3711 * guarantee is observed only with respect to @target and on the local 3712 * cpu. 3713 * 3714 * Currently, a queued barrier can't be canceled. This is because 3715 * try_to_grab_pending() can't determine whether the work to be 3716 * grabbed is at the head of the queue and thus can't clear LINKED 3717 * flag of the previous work while there must be a valid next work 3718 * after a work with LINKED flag set. 3719 * 3720 * Note that when @worker is non-NULL, @target may be modified 3721 * underneath us, so we can't reliably determine pwq from @target. 3722 * 3723 * CONTEXT: 3724 * raw_spin_lock_irq(pool->lock). 3725 */ 3726 static void insert_wq_barrier(struct pool_workqueue *pwq, 3727 struct wq_barrier *barr, 3728 struct work_struct *target, struct worker *worker) 3729 { 3730 static __maybe_unused struct lock_class_key bh_key, thr_key; 3731 unsigned int work_flags = 0; 3732 unsigned int work_color; 3733 struct list_head *head; 3734 3735 /* 3736 * debugobject calls are safe here even with pool->lock locked 3737 * as we know for sure that this will not trigger any of the 3738 * checks and call back into the fixup functions where we 3739 * might deadlock. 3740 * 3741 * BH and threaded workqueues need separate lockdep keys to avoid 3742 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} 3743 * usage". 3744 */ 3745 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func, 3746 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key); 3747 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3748 3749 init_completion_map(&barr->done, &target->lockdep_map); 3750 3751 barr->task = current; 3752 3753 /* The barrier work item does not participate in nr_active. */ 3754 work_flags |= WORK_STRUCT_INACTIVE; 3755 3756 /* 3757 * If @target is currently being executed, schedule the 3758 * barrier to the worker; otherwise, put it after @target. 3759 */ 3760 if (worker) { 3761 head = worker->scheduled.next; 3762 work_color = worker->current_color; 3763 } else { 3764 unsigned long *bits = work_data_bits(target); 3765 3766 head = target->entry.next; 3767 /* there can already be other linked works, inherit and set */ 3768 work_flags |= *bits & WORK_STRUCT_LINKED; 3769 work_color = get_work_color(*bits); 3770 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3771 } 3772 3773 pwq->nr_in_flight[work_color]++; 3774 work_flags |= work_color_to_flags(work_color); 3775 3776 insert_work(pwq, &barr->work, head, work_flags); 3777 } 3778 3779 /** 3780 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3781 * @wq: workqueue being flushed 3782 * @flush_color: new flush color, < 0 for no-op 3783 * @work_color: new work color, < 0 for no-op 3784 * 3785 * Prepare pwqs for workqueue flushing. 3786 * 3787 * If @flush_color is non-negative, flush_color on all pwqs should be 3788 * -1. If no pwq has in-flight commands at the specified color, all 3789 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3790 * has in flight commands, its pwq->flush_color is set to 3791 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3792 * wakeup logic is armed and %true is returned. 3793 * 3794 * The caller should have initialized @wq->first_flusher prior to 3795 * calling this function with non-negative @flush_color. If 3796 * @flush_color is negative, no flush color update is done and %false 3797 * is returned. 3798 * 3799 * If @work_color is non-negative, all pwqs should have the same 3800 * work_color which is previous to @work_color and all will be 3801 * advanced to @work_color. 3802 * 3803 * CONTEXT: 3804 * mutex_lock(wq->mutex). 3805 * 3806 * Return: 3807 * %true if @flush_color >= 0 and there's something to flush. %false 3808 * otherwise. 3809 */ 3810 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3811 int flush_color, int work_color) 3812 { 3813 bool wait = false; 3814 struct pool_workqueue *pwq; 3815 3816 if (flush_color >= 0) { 3817 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3818 atomic_set(&wq->nr_pwqs_to_flush, 1); 3819 } 3820 3821 for_each_pwq(pwq, wq) { 3822 struct worker_pool *pool = pwq->pool; 3823 3824 raw_spin_lock_irq(&pool->lock); 3825 3826 if (flush_color >= 0) { 3827 WARN_ON_ONCE(pwq->flush_color != -1); 3828 3829 if (pwq->nr_in_flight[flush_color]) { 3830 pwq->flush_color = flush_color; 3831 atomic_inc(&wq->nr_pwqs_to_flush); 3832 wait = true; 3833 } 3834 } 3835 3836 if (work_color >= 0) { 3837 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3838 pwq->work_color = work_color; 3839 } 3840 3841 raw_spin_unlock_irq(&pool->lock); 3842 } 3843 3844 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3845 complete(&wq->first_flusher->done); 3846 3847 return wait; 3848 } 3849 3850 static void touch_wq_lockdep_map(struct workqueue_struct *wq) 3851 { 3852 #ifdef CONFIG_LOCKDEP 3853 if (wq->flags & WQ_BH) 3854 local_bh_disable(); 3855 3856 lock_map_acquire(&wq->lockdep_map); 3857 lock_map_release(&wq->lockdep_map); 3858 3859 if (wq->flags & WQ_BH) 3860 local_bh_enable(); 3861 #endif 3862 } 3863 3864 static void touch_work_lockdep_map(struct work_struct *work, 3865 struct workqueue_struct *wq) 3866 { 3867 #ifdef CONFIG_LOCKDEP 3868 if (wq->flags & WQ_BH) 3869 local_bh_disable(); 3870 3871 lock_map_acquire(&work->lockdep_map); 3872 lock_map_release(&work->lockdep_map); 3873 3874 if (wq->flags & WQ_BH) 3875 local_bh_enable(); 3876 #endif 3877 } 3878 3879 /** 3880 * __flush_workqueue - ensure that any scheduled work has run to completion. 3881 * @wq: workqueue to flush 3882 * 3883 * This function sleeps until all work items which were queued on entry 3884 * have finished execution, but it is not livelocked by new incoming ones. 3885 */ 3886 void __flush_workqueue(struct workqueue_struct *wq) 3887 { 3888 struct wq_flusher this_flusher = { 3889 .list = LIST_HEAD_INIT(this_flusher.list), 3890 .flush_color = -1, 3891 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 3892 }; 3893 int next_color; 3894 3895 if (WARN_ON(!wq_online)) 3896 return; 3897 3898 touch_wq_lockdep_map(wq); 3899 3900 mutex_lock(&wq->mutex); 3901 3902 /* 3903 * Start-to-wait phase 3904 */ 3905 next_color = work_next_color(wq->work_color); 3906 3907 if (next_color != wq->flush_color) { 3908 /* 3909 * Color space is not full. The current work_color 3910 * becomes our flush_color and work_color is advanced 3911 * by one. 3912 */ 3913 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3914 this_flusher.flush_color = wq->work_color; 3915 wq->work_color = next_color; 3916 3917 if (!wq->first_flusher) { 3918 /* no flush in progress, become the first flusher */ 3919 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3920 3921 wq->first_flusher = &this_flusher; 3922 3923 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3924 wq->work_color)) { 3925 /* nothing to flush, done */ 3926 wq->flush_color = next_color; 3927 wq->first_flusher = NULL; 3928 goto out_unlock; 3929 } 3930 } else { 3931 /* wait in queue */ 3932 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3933 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3934 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3935 } 3936 } else { 3937 /* 3938 * Oops, color space is full, wait on overflow queue. 3939 * The next flush completion will assign us 3940 * flush_color and transfer to flusher_queue. 3941 */ 3942 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3943 } 3944 3945 check_flush_dependency(wq, NULL); 3946 3947 mutex_unlock(&wq->mutex); 3948 3949 wait_for_completion(&this_flusher.done); 3950 3951 /* 3952 * Wake-up-and-cascade phase 3953 * 3954 * First flushers are responsible for cascading flushes and 3955 * handling overflow. Non-first flushers can simply return. 3956 */ 3957 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3958 return; 3959 3960 mutex_lock(&wq->mutex); 3961 3962 /* we might have raced, check again with mutex held */ 3963 if (wq->first_flusher != &this_flusher) 3964 goto out_unlock; 3965 3966 WRITE_ONCE(wq->first_flusher, NULL); 3967 3968 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3969 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3970 3971 while (true) { 3972 struct wq_flusher *next, *tmp; 3973 3974 /* complete all the flushers sharing the current flush color */ 3975 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3976 if (next->flush_color != wq->flush_color) 3977 break; 3978 list_del_init(&next->list); 3979 complete(&next->done); 3980 } 3981 3982 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 3983 wq->flush_color != work_next_color(wq->work_color)); 3984 3985 /* this flush_color is finished, advance by one */ 3986 wq->flush_color = work_next_color(wq->flush_color); 3987 3988 /* one color has been freed, handle overflow queue */ 3989 if (!list_empty(&wq->flusher_overflow)) { 3990 /* 3991 * Assign the same color to all overflowed 3992 * flushers, advance work_color and append to 3993 * flusher_queue. This is the start-to-wait 3994 * phase for these overflowed flushers. 3995 */ 3996 list_for_each_entry(tmp, &wq->flusher_overflow, list) 3997 tmp->flush_color = wq->work_color; 3998 3999 wq->work_color = work_next_color(wq->work_color); 4000 4001 list_splice_tail_init(&wq->flusher_overflow, 4002 &wq->flusher_queue); 4003 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 4004 } 4005 4006 if (list_empty(&wq->flusher_queue)) { 4007 WARN_ON_ONCE(wq->flush_color != wq->work_color); 4008 break; 4009 } 4010 4011 /* 4012 * Need to flush more colors. Make the next flusher 4013 * the new first flusher and arm pwqs. 4014 */ 4015 WARN_ON_ONCE(wq->flush_color == wq->work_color); 4016 WARN_ON_ONCE(wq->flush_color != next->flush_color); 4017 4018 list_del_init(&next->list); 4019 wq->first_flusher = next; 4020 4021 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 4022 break; 4023 4024 /* 4025 * Meh... this color is already done, clear first 4026 * flusher and repeat cascading. 4027 */ 4028 wq->first_flusher = NULL; 4029 } 4030 4031 out_unlock: 4032 mutex_unlock(&wq->mutex); 4033 } 4034 EXPORT_SYMBOL(__flush_workqueue); 4035 4036 /** 4037 * drain_workqueue - drain a workqueue 4038 * @wq: workqueue to drain 4039 * 4040 * Wait until the workqueue becomes empty. While draining is in progress, 4041 * only chain queueing is allowed. IOW, only currently pending or running 4042 * work items on @wq can queue further work items on it. @wq is flushed 4043 * repeatedly until it becomes empty. The number of flushing is determined 4044 * by the depth of chaining and should be relatively short. Whine if it 4045 * takes too long. 4046 */ 4047 void drain_workqueue(struct workqueue_struct *wq) 4048 { 4049 unsigned int flush_cnt = 0; 4050 struct pool_workqueue *pwq; 4051 4052 /* 4053 * __queue_work() needs to test whether there are drainers, is much 4054 * hotter than drain_workqueue() and already looks at @wq->flags. 4055 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 4056 */ 4057 mutex_lock(&wq->mutex); 4058 if (!wq->nr_drainers++) 4059 wq->flags |= __WQ_DRAINING; 4060 mutex_unlock(&wq->mutex); 4061 reflush: 4062 __flush_workqueue(wq); 4063 4064 mutex_lock(&wq->mutex); 4065 4066 for_each_pwq(pwq, wq) { 4067 bool drained; 4068 4069 raw_spin_lock_irq(&pwq->pool->lock); 4070 drained = pwq_is_empty(pwq); 4071 raw_spin_unlock_irq(&pwq->pool->lock); 4072 4073 if (drained) 4074 continue; 4075 4076 if (++flush_cnt == 10 || 4077 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 4078 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 4079 wq->name, __func__, flush_cnt); 4080 4081 mutex_unlock(&wq->mutex); 4082 goto reflush; 4083 } 4084 4085 if (!--wq->nr_drainers) 4086 wq->flags &= ~__WQ_DRAINING; 4087 mutex_unlock(&wq->mutex); 4088 } 4089 EXPORT_SYMBOL_GPL(drain_workqueue); 4090 4091 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 4092 bool from_cancel) 4093 { 4094 struct worker *worker = NULL; 4095 struct worker_pool *pool; 4096 struct pool_workqueue *pwq; 4097 struct workqueue_struct *wq; 4098 4099 rcu_read_lock(); 4100 pool = get_work_pool(work); 4101 if (!pool) { 4102 rcu_read_unlock(); 4103 return false; 4104 } 4105 4106 raw_spin_lock_irq(&pool->lock); 4107 /* see the comment in try_to_grab_pending() with the same code */ 4108 pwq = get_work_pwq(work); 4109 if (pwq) { 4110 if (unlikely(pwq->pool != pool)) 4111 goto already_gone; 4112 } else { 4113 worker = find_worker_executing_work(pool, work); 4114 if (!worker) 4115 goto already_gone; 4116 pwq = worker->current_pwq; 4117 } 4118 4119 wq = pwq->wq; 4120 check_flush_dependency(wq, work); 4121 4122 insert_wq_barrier(pwq, barr, work, worker); 4123 raw_spin_unlock_irq(&pool->lock); 4124 4125 touch_work_lockdep_map(work, wq); 4126 4127 /* 4128 * Force a lock recursion deadlock when using flush_work() inside a 4129 * single-threaded or rescuer equipped workqueue. 4130 * 4131 * For single threaded workqueues the deadlock happens when the work 4132 * is after the work issuing the flush_work(). For rescuer equipped 4133 * workqueues the deadlock happens when the rescuer stalls, blocking 4134 * forward progress. 4135 */ 4136 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer)) 4137 touch_wq_lockdep_map(wq); 4138 4139 rcu_read_unlock(); 4140 return true; 4141 already_gone: 4142 raw_spin_unlock_irq(&pool->lock); 4143 rcu_read_unlock(); 4144 return false; 4145 } 4146 4147 static bool __flush_work(struct work_struct *work, bool from_cancel) 4148 { 4149 struct wq_barrier barr; 4150 unsigned long data; 4151 4152 if (WARN_ON(!wq_online)) 4153 return false; 4154 4155 if (WARN_ON(!work->func)) 4156 return false; 4157 4158 if (!start_flush_work(work, &barr, from_cancel)) 4159 return false; 4160 4161 /* 4162 * start_flush_work() returned %true. If @from_cancel is set, we know 4163 * that @work must have been executing during start_flush_work() and 4164 * can't currently be queued. Its data must contain OFFQ bits. If @work 4165 * was queued on a BH workqueue, we also know that it was running in the 4166 * BH context and thus can be busy-waited. 4167 */ 4168 data = *work_data_bits(work); 4169 if (from_cancel && 4170 !WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_BH)) { 4171 /* 4172 * On RT, prevent a live lock when %current preempted soft 4173 * interrupt processing or prevents ksoftirqd from running by 4174 * keeping flipping BH. If the BH work item runs on a different 4175 * CPU then this has no effect other than doing the BH 4176 * disable/enable dance for nothing. This is copied from 4177 * kernel/softirq.c::tasklet_unlock_spin_wait(). 4178 */ 4179 while (!try_wait_for_completion(&barr.done)) { 4180 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4181 local_bh_disable(); 4182 local_bh_enable(); 4183 } else { 4184 cpu_relax(); 4185 } 4186 } 4187 } else { 4188 wait_for_completion(&barr.done); 4189 } 4190 4191 destroy_work_on_stack(&barr.work); 4192 return true; 4193 } 4194 4195 /** 4196 * flush_work - wait for a work to finish executing the last queueing instance 4197 * @work: the work to flush 4198 * 4199 * Wait until @work has finished execution. @work is guaranteed to be idle 4200 * on return if it hasn't been requeued since flush started. 4201 * 4202 * Return: 4203 * %true if flush_work() waited for the work to finish execution, 4204 * %false if it was already idle. 4205 */ 4206 bool flush_work(struct work_struct *work) 4207 { 4208 might_sleep(); 4209 return __flush_work(work, false); 4210 } 4211 EXPORT_SYMBOL_GPL(flush_work); 4212 4213 /** 4214 * flush_delayed_work - wait for a dwork to finish executing the last queueing 4215 * @dwork: the delayed work to flush 4216 * 4217 * Delayed timer is cancelled and the pending work is queued for 4218 * immediate execution. Like flush_work(), this function only 4219 * considers the last queueing instance of @dwork. 4220 * 4221 * Return: 4222 * %true if flush_work() waited for the work to finish execution, 4223 * %false if it was already idle. 4224 */ 4225 bool flush_delayed_work(struct delayed_work *dwork) 4226 { 4227 local_irq_disable(); 4228 if (del_timer_sync(&dwork->timer)) 4229 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 4230 local_irq_enable(); 4231 return flush_work(&dwork->work); 4232 } 4233 EXPORT_SYMBOL(flush_delayed_work); 4234 4235 /** 4236 * flush_rcu_work - wait for a rwork to finish executing the last queueing 4237 * @rwork: the rcu work to flush 4238 * 4239 * Return: 4240 * %true if flush_rcu_work() waited for the work to finish execution, 4241 * %false if it was already idle. 4242 */ 4243 bool flush_rcu_work(struct rcu_work *rwork) 4244 { 4245 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 4246 rcu_barrier(); 4247 flush_work(&rwork->work); 4248 return true; 4249 } else { 4250 return flush_work(&rwork->work); 4251 } 4252 } 4253 EXPORT_SYMBOL(flush_rcu_work); 4254 4255 static void work_offqd_disable(struct work_offq_data *offqd) 4256 { 4257 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1; 4258 4259 if (likely(offqd->disable < max)) 4260 offqd->disable++; 4261 else 4262 WARN_ONCE(true, "workqueue: work disable count overflowed\n"); 4263 } 4264 4265 static void work_offqd_enable(struct work_offq_data *offqd) 4266 { 4267 if (likely(offqd->disable > 0)) 4268 offqd->disable--; 4269 else 4270 WARN_ONCE(true, "workqueue: work disable count underflowed\n"); 4271 } 4272 4273 static bool __cancel_work(struct work_struct *work, u32 cflags) 4274 { 4275 struct work_offq_data offqd; 4276 unsigned long irq_flags; 4277 int ret; 4278 4279 ret = work_grab_pending(work, cflags, &irq_flags); 4280 4281 work_offqd_unpack(&offqd, *work_data_bits(work)); 4282 4283 if (cflags & WORK_CANCEL_DISABLE) 4284 work_offqd_disable(&offqd); 4285 4286 set_work_pool_and_clear_pending(work, offqd.pool_id, 4287 work_offqd_pack_flags(&offqd)); 4288 local_irq_restore(irq_flags); 4289 return ret; 4290 } 4291 4292 static bool __cancel_work_sync(struct work_struct *work, u32 cflags) 4293 { 4294 bool ret; 4295 4296 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE); 4297 4298 if (*work_data_bits(work) & WORK_OFFQ_BH) 4299 WARN_ON_ONCE(in_hardirq()); 4300 else 4301 might_sleep(); 4302 4303 /* 4304 * Skip __flush_work() during early boot when we know that @work isn't 4305 * executing. This allows canceling during early boot. 4306 */ 4307 if (wq_online) 4308 __flush_work(work, true); 4309 4310 if (!(cflags & WORK_CANCEL_DISABLE)) 4311 enable_work(work); 4312 4313 return ret; 4314 } 4315 4316 /* 4317 * See cancel_delayed_work() 4318 */ 4319 bool cancel_work(struct work_struct *work) 4320 { 4321 return __cancel_work(work, 0); 4322 } 4323 EXPORT_SYMBOL(cancel_work); 4324 4325 /** 4326 * cancel_work_sync - cancel a work and wait for it to finish 4327 * @work: the work to cancel 4328 * 4329 * Cancel @work and wait for its execution to finish. This function can be used 4330 * even if the work re-queues itself or migrates to another workqueue. On return 4331 * from this function, @work is guaranteed to be not pending or executing on any 4332 * CPU as long as there aren't racing enqueues. 4333 * 4334 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's. 4335 * Use cancel_delayed_work_sync() instead. 4336 * 4337 * Must be called from a sleepable context if @work was last queued on a non-BH 4338 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4339 * if @work was last queued on a BH workqueue. 4340 * 4341 * Returns %true if @work was pending, %false otherwise. 4342 */ 4343 bool cancel_work_sync(struct work_struct *work) 4344 { 4345 return __cancel_work_sync(work, 0); 4346 } 4347 EXPORT_SYMBOL_GPL(cancel_work_sync); 4348 4349 /** 4350 * cancel_delayed_work - cancel a delayed work 4351 * @dwork: delayed_work to cancel 4352 * 4353 * Kill off a pending delayed_work. 4354 * 4355 * Return: %true if @dwork was pending and canceled; %false if it wasn't 4356 * pending. 4357 * 4358 * Note: 4359 * The work callback function may still be running on return, unless 4360 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 4361 * use cancel_delayed_work_sync() to wait on it. 4362 * 4363 * This function is safe to call from any context including IRQ handler. 4364 */ 4365 bool cancel_delayed_work(struct delayed_work *dwork) 4366 { 4367 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED); 4368 } 4369 EXPORT_SYMBOL(cancel_delayed_work); 4370 4371 /** 4372 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 4373 * @dwork: the delayed work cancel 4374 * 4375 * This is cancel_work_sync() for delayed works. 4376 * 4377 * Return: 4378 * %true if @dwork was pending, %false otherwise. 4379 */ 4380 bool cancel_delayed_work_sync(struct delayed_work *dwork) 4381 { 4382 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED); 4383 } 4384 EXPORT_SYMBOL(cancel_delayed_work_sync); 4385 4386 /** 4387 * disable_work - Disable and cancel a work item 4388 * @work: work item to disable 4389 * 4390 * Disable @work by incrementing its disable count and cancel it if currently 4391 * pending. As long as the disable count is non-zero, any attempt to queue @work 4392 * will fail and return %false. The maximum supported disable depth is 2 to the 4393 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536. 4394 * 4395 * Can be called from any context. Returns %true if @work was pending, %false 4396 * otherwise. 4397 */ 4398 bool disable_work(struct work_struct *work) 4399 { 4400 return __cancel_work(work, WORK_CANCEL_DISABLE); 4401 } 4402 EXPORT_SYMBOL_GPL(disable_work); 4403 4404 /** 4405 * disable_work_sync - Disable, cancel and drain a work item 4406 * @work: work item to disable 4407 * 4408 * Similar to disable_work() but also wait for @work to finish if currently 4409 * executing. 4410 * 4411 * Must be called from a sleepable context if @work was last queued on a non-BH 4412 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4413 * if @work was last queued on a BH workqueue. 4414 * 4415 * Returns %true if @work was pending, %false otherwise. 4416 */ 4417 bool disable_work_sync(struct work_struct *work) 4418 { 4419 return __cancel_work_sync(work, WORK_CANCEL_DISABLE); 4420 } 4421 EXPORT_SYMBOL_GPL(disable_work_sync); 4422 4423 /** 4424 * enable_work - Enable a work item 4425 * @work: work item to enable 4426 * 4427 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can 4428 * only be queued if its disable count is 0. 4429 * 4430 * Can be called from any context. Returns %true if the disable count reached 0. 4431 * Otherwise, %false. 4432 */ 4433 bool enable_work(struct work_struct *work) 4434 { 4435 struct work_offq_data offqd; 4436 unsigned long irq_flags; 4437 4438 work_grab_pending(work, 0, &irq_flags); 4439 4440 work_offqd_unpack(&offqd, *work_data_bits(work)); 4441 work_offqd_enable(&offqd); 4442 set_work_pool_and_clear_pending(work, offqd.pool_id, 4443 work_offqd_pack_flags(&offqd)); 4444 local_irq_restore(irq_flags); 4445 4446 return !offqd.disable; 4447 } 4448 EXPORT_SYMBOL_GPL(enable_work); 4449 4450 /** 4451 * disable_delayed_work - Disable and cancel a delayed work item 4452 * @dwork: delayed work item to disable 4453 * 4454 * disable_work() for delayed work items. 4455 */ 4456 bool disable_delayed_work(struct delayed_work *dwork) 4457 { 4458 return __cancel_work(&dwork->work, 4459 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4460 } 4461 EXPORT_SYMBOL_GPL(disable_delayed_work); 4462 4463 /** 4464 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item 4465 * @dwork: delayed work item to disable 4466 * 4467 * disable_work_sync() for delayed work items. 4468 */ 4469 bool disable_delayed_work_sync(struct delayed_work *dwork) 4470 { 4471 return __cancel_work_sync(&dwork->work, 4472 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4473 } 4474 EXPORT_SYMBOL_GPL(disable_delayed_work_sync); 4475 4476 /** 4477 * enable_delayed_work - Enable a delayed work item 4478 * @dwork: delayed work item to enable 4479 * 4480 * enable_work() for delayed work items. 4481 */ 4482 bool enable_delayed_work(struct delayed_work *dwork) 4483 { 4484 return enable_work(&dwork->work); 4485 } 4486 EXPORT_SYMBOL_GPL(enable_delayed_work); 4487 4488 /** 4489 * schedule_on_each_cpu - execute a function synchronously on each online CPU 4490 * @func: the function to call 4491 * 4492 * schedule_on_each_cpu() executes @func on each online CPU using the 4493 * system workqueue and blocks until all CPUs have completed. 4494 * schedule_on_each_cpu() is very slow. 4495 * 4496 * Return: 4497 * 0 on success, -errno on failure. 4498 */ 4499 int schedule_on_each_cpu(work_func_t func) 4500 { 4501 int cpu; 4502 struct work_struct __percpu *works; 4503 4504 works = alloc_percpu(struct work_struct); 4505 if (!works) 4506 return -ENOMEM; 4507 4508 cpus_read_lock(); 4509 4510 for_each_online_cpu(cpu) { 4511 struct work_struct *work = per_cpu_ptr(works, cpu); 4512 4513 INIT_WORK(work, func); 4514 schedule_work_on(cpu, work); 4515 } 4516 4517 for_each_online_cpu(cpu) 4518 flush_work(per_cpu_ptr(works, cpu)); 4519 4520 cpus_read_unlock(); 4521 free_percpu(works); 4522 return 0; 4523 } 4524 4525 /** 4526 * execute_in_process_context - reliably execute the routine with user context 4527 * @fn: the function to execute 4528 * @ew: guaranteed storage for the execute work structure (must 4529 * be available when the work executes) 4530 * 4531 * Executes the function immediately if process context is available, 4532 * otherwise schedules the function for delayed execution. 4533 * 4534 * Return: 0 - function was executed 4535 * 1 - function was scheduled for execution 4536 */ 4537 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 4538 { 4539 if (!in_interrupt()) { 4540 fn(&ew->work); 4541 return 0; 4542 } 4543 4544 INIT_WORK(&ew->work, fn); 4545 schedule_work(&ew->work); 4546 4547 return 1; 4548 } 4549 EXPORT_SYMBOL_GPL(execute_in_process_context); 4550 4551 /** 4552 * free_workqueue_attrs - free a workqueue_attrs 4553 * @attrs: workqueue_attrs to free 4554 * 4555 * Undo alloc_workqueue_attrs(). 4556 */ 4557 void free_workqueue_attrs(struct workqueue_attrs *attrs) 4558 { 4559 if (attrs) { 4560 free_cpumask_var(attrs->cpumask); 4561 free_cpumask_var(attrs->__pod_cpumask); 4562 kfree(attrs); 4563 } 4564 } 4565 4566 /** 4567 * alloc_workqueue_attrs - allocate a workqueue_attrs 4568 * 4569 * Allocate a new workqueue_attrs, initialize with default settings and 4570 * return it. 4571 * 4572 * Return: The allocated new workqueue_attr on success. %NULL on failure. 4573 */ 4574 struct workqueue_attrs *alloc_workqueue_attrs(void) 4575 { 4576 struct workqueue_attrs *attrs; 4577 4578 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 4579 if (!attrs) 4580 goto fail; 4581 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 4582 goto fail; 4583 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 4584 goto fail; 4585 4586 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4587 attrs->affn_scope = WQ_AFFN_DFL; 4588 return attrs; 4589 fail: 4590 free_workqueue_attrs(attrs); 4591 return NULL; 4592 } 4593 4594 static void copy_workqueue_attrs(struct workqueue_attrs *to, 4595 const struct workqueue_attrs *from) 4596 { 4597 to->nice = from->nice; 4598 cpumask_copy(to->cpumask, from->cpumask); 4599 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 4600 to->affn_strict = from->affn_strict; 4601 4602 /* 4603 * Unlike hash and equality test, copying shouldn't ignore wq-only 4604 * fields as copying is used for both pool and wq attrs. Instead, 4605 * get_unbound_pool() explicitly clears the fields. 4606 */ 4607 to->affn_scope = from->affn_scope; 4608 to->ordered = from->ordered; 4609 } 4610 4611 /* 4612 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 4613 * comments in 'struct workqueue_attrs' definition. 4614 */ 4615 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 4616 { 4617 attrs->affn_scope = WQ_AFFN_NR_TYPES; 4618 attrs->ordered = false; 4619 if (attrs->affn_strict) 4620 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4621 } 4622 4623 /* hash value of the content of @attr */ 4624 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 4625 { 4626 u32 hash = 0; 4627 4628 hash = jhash_1word(attrs->nice, hash); 4629 hash = jhash_1word(attrs->affn_strict, hash); 4630 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 4631 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4632 if (!attrs->affn_strict) 4633 hash = jhash(cpumask_bits(attrs->cpumask), 4634 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4635 return hash; 4636 } 4637 4638 /* content equality test */ 4639 static bool wqattrs_equal(const struct workqueue_attrs *a, 4640 const struct workqueue_attrs *b) 4641 { 4642 if (a->nice != b->nice) 4643 return false; 4644 if (a->affn_strict != b->affn_strict) 4645 return false; 4646 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 4647 return false; 4648 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask)) 4649 return false; 4650 return true; 4651 } 4652 4653 /* Update @attrs with actually available CPUs */ 4654 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 4655 const cpumask_t *unbound_cpumask) 4656 { 4657 /* 4658 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 4659 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 4660 * @unbound_cpumask. 4661 */ 4662 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 4663 if (unlikely(cpumask_empty(attrs->cpumask))) 4664 cpumask_copy(attrs->cpumask, unbound_cpumask); 4665 } 4666 4667 /* find wq_pod_type to use for @attrs */ 4668 static const struct wq_pod_type * 4669 wqattrs_pod_type(const struct workqueue_attrs *attrs) 4670 { 4671 enum wq_affn_scope scope; 4672 struct wq_pod_type *pt; 4673 4674 /* to synchronize access to wq_affn_dfl */ 4675 lockdep_assert_held(&wq_pool_mutex); 4676 4677 if (attrs->affn_scope == WQ_AFFN_DFL) 4678 scope = wq_affn_dfl; 4679 else 4680 scope = attrs->affn_scope; 4681 4682 pt = &wq_pod_types[scope]; 4683 4684 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 4685 likely(pt->nr_pods)) 4686 return pt; 4687 4688 /* 4689 * Before workqueue_init_topology(), only SYSTEM is available which is 4690 * initialized in workqueue_init_early(). 4691 */ 4692 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 4693 BUG_ON(!pt->nr_pods); 4694 return pt; 4695 } 4696 4697 /** 4698 * init_worker_pool - initialize a newly zalloc'd worker_pool 4699 * @pool: worker_pool to initialize 4700 * 4701 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 4702 * 4703 * Return: 0 on success, -errno on failure. Even on failure, all fields 4704 * inside @pool proper are initialized and put_unbound_pool() can be called 4705 * on @pool safely to release it. 4706 */ 4707 static int init_worker_pool(struct worker_pool *pool) 4708 { 4709 raw_spin_lock_init(&pool->lock); 4710 pool->id = -1; 4711 pool->cpu = -1; 4712 pool->node = NUMA_NO_NODE; 4713 pool->flags |= POOL_DISASSOCIATED; 4714 pool->watchdog_ts = jiffies; 4715 INIT_LIST_HEAD(&pool->worklist); 4716 INIT_LIST_HEAD(&pool->idle_list); 4717 hash_init(pool->busy_hash); 4718 4719 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 4720 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 4721 4722 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 4723 4724 INIT_LIST_HEAD(&pool->workers); 4725 4726 ida_init(&pool->worker_ida); 4727 INIT_HLIST_NODE(&pool->hash_node); 4728 pool->refcnt = 1; 4729 4730 /* shouldn't fail above this point */ 4731 pool->attrs = alloc_workqueue_attrs(); 4732 if (!pool->attrs) 4733 return -ENOMEM; 4734 4735 wqattrs_clear_for_pool(pool->attrs); 4736 4737 return 0; 4738 } 4739 4740 #ifdef CONFIG_LOCKDEP 4741 static void wq_init_lockdep(struct workqueue_struct *wq) 4742 { 4743 char *lock_name; 4744 4745 lockdep_register_key(&wq->key); 4746 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 4747 if (!lock_name) 4748 lock_name = wq->name; 4749 4750 wq->lock_name = lock_name; 4751 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 4752 } 4753 4754 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4755 { 4756 lockdep_unregister_key(&wq->key); 4757 } 4758 4759 static void wq_free_lockdep(struct workqueue_struct *wq) 4760 { 4761 if (wq->lock_name != wq->name) 4762 kfree(wq->lock_name); 4763 } 4764 #else 4765 static void wq_init_lockdep(struct workqueue_struct *wq) 4766 { 4767 } 4768 4769 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4770 { 4771 } 4772 4773 static void wq_free_lockdep(struct workqueue_struct *wq) 4774 { 4775 } 4776 #endif 4777 4778 static void free_node_nr_active(struct wq_node_nr_active **nna_ar) 4779 { 4780 int node; 4781 4782 for_each_node(node) { 4783 kfree(nna_ar[node]); 4784 nna_ar[node] = NULL; 4785 } 4786 4787 kfree(nna_ar[nr_node_ids]); 4788 nna_ar[nr_node_ids] = NULL; 4789 } 4790 4791 static void init_node_nr_active(struct wq_node_nr_active *nna) 4792 { 4793 nna->max = WQ_DFL_MIN_ACTIVE; 4794 atomic_set(&nna->nr, 0); 4795 raw_spin_lock_init(&nna->lock); 4796 INIT_LIST_HEAD(&nna->pending_pwqs); 4797 } 4798 4799 /* 4800 * Each node's nr_active counter will be accessed mostly from its own node and 4801 * should be allocated in the node. 4802 */ 4803 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) 4804 { 4805 struct wq_node_nr_active *nna; 4806 int node; 4807 4808 for_each_node(node) { 4809 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node); 4810 if (!nna) 4811 goto err_free; 4812 init_node_nr_active(nna); 4813 nna_ar[node] = nna; 4814 } 4815 4816 /* [nr_node_ids] is used as the fallback */ 4817 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); 4818 if (!nna) 4819 goto err_free; 4820 init_node_nr_active(nna); 4821 nna_ar[nr_node_ids] = nna; 4822 4823 return 0; 4824 4825 err_free: 4826 free_node_nr_active(nna_ar); 4827 return -ENOMEM; 4828 } 4829 4830 static void rcu_free_wq(struct rcu_head *rcu) 4831 { 4832 struct workqueue_struct *wq = 4833 container_of(rcu, struct workqueue_struct, rcu); 4834 4835 if (wq->flags & WQ_UNBOUND) 4836 free_node_nr_active(wq->node_nr_active); 4837 4838 wq_free_lockdep(wq); 4839 free_percpu(wq->cpu_pwq); 4840 free_workqueue_attrs(wq->unbound_attrs); 4841 kfree(wq); 4842 } 4843 4844 static void rcu_free_pool(struct rcu_head *rcu) 4845 { 4846 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 4847 4848 ida_destroy(&pool->worker_ida); 4849 free_workqueue_attrs(pool->attrs); 4850 kfree(pool); 4851 } 4852 4853 /** 4854 * put_unbound_pool - put a worker_pool 4855 * @pool: worker_pool to put 4856 * 4857 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 4858 * safe manner. get_unbound_pool() calls this function on its failure path 4859 * and this function should be able to release pools which went through, 4860 * successfully or not, init_worker_pool(). 4861 * 4862 * Should be called with wq_pool_mutex held. 4863 */ 4864 static void put_unbound_pool(struct worker_pool *pool) 4865 { 4866 struct worker *worker; 4867 LIST_HEAD(cull_list); 4868 4869 lockdep_assert_held(&wq_pool_mutex); 4870 4871 if (--pool->refcnt) 4872 return; 4873 4874 /* sanity checks */ 4875 if (WARN_ON(!(pool->cpu < 0)) || 4876 WARN_ON(!list_empty(&pool->worklist))) 4877 return; 4878 4879 /* release id and unhash */ 4880 if (pool->id >= 0) 4881 idr_remove(&worker_pool_idr, pool->id); 4882 hash_del(&pool->hash_node); 4883 4884 /* 4885 * Become the manager and destroy all workers. This prevents 4886 * @pool's workers from blocking on attach_mutex. We're the last 4887 * manager and @pool gets freed with the flag set. 4888 * 4889 * Having a concurrent manager is quite unlikely to happen as we can 4890 * only get here with 4891 * pwq->refcnt == pool->refcnt == 0 4892 * which implies no work queued to the pool, which implies no worker can 4893 * become the manager. However a worker could have taken the role of 4894 * manager before the refcnts dropped to 0, since maybe_create_worker() 4895 * drops pool->lock 4896 */ 4897 while (true) { 4898 rcuwait_wait_event(&manager_wait, 4899 !(pool->flags & POOL_MANAGER_ACTIVE), 4900 TASK_UNINTERRUPTIBLE); 4901 4902 mutex_lock(&wq_pool_attach_mutex); 4903 raw_spin_lock_irq(&pool->lock); 4904 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4905 pool->flags |= POOL_MANAGER_ACTIVE; 4906 break; 4907 } 4908 raw_spin_unlock_irq(&pool->lock); 4909 mutex_unlock(&wq_pool_attach_mutex); 4910 } 4911 4912 while ((worker = first_idle_worker(pool))) 4913 set_worker_dying(worker, &cull_list); 4914 WARN_ON(pool->nr_workers || pool->nr_idle); 4915 raw_spin_unlock_irq(&pool->lock); 4916 4917 detach_dying_workers(&cull_list); 4918 4919 mutex_unlock(&wq_pool_attach_mutex); 4920 4921 reap_dying_workers(&cull_list); 4922 4923 /* shut down the timers */ 4924 del_timer_sync(&pool->idle_timer); 4925 cancel_work_sync(&pool->idle_cull_work); 4926 del_timer_sync(&pool->mayday_timer); 4927 4928 /* RCU protected to allow dereferences from get_work_pool() */ 4929 call_rcu(&pool->rcu, rcu_free_pool); 4930 } 4931 4932 /** 4933 * get_unbound_pool - get a worker_pool with the specified attributes 4934 * @attrs: the attributes of the worker_pool to get 4935 * 4936 * Obtain a worker_pool which has the same attributes as @attrs, bump the 4937 * reference count and return it. If there already is a matching 4938 * worker_pool, it will be used; otherwise, this function attempts to 4939 * create a new one. 4940 * 4941 * Should be called with wq_pool_mutex held. 4942 * 4943 * Return: On success, a worker_pool with the same attributes as @attrs. 4944 * On failure, %NULL. 4945 */ 4946 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 4947 { 4948 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 4949 u32 hash = wqattrs_hash(attrs); 4950 struct worker_pool *pool; 4951 int pod, node = NUMA_NO_NODE; 4952 4953 lockdep_assert_held(&wq_pool_mutex); 4954 4955 /* do we already have a matching pool? */ 4956 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 4957 if (wqattrs_equal(pool->attrs, attrs)) { 4958 pool->refcnt++; 4959 return pool; 4960 } 4961 } 4962 4963 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 4964 for (pod = 0; pod < pt->nr_pods; pod++) { 4965 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 4966 node = pt->pod_node[pod]; 4967 break; 4968 } 4969 } 4970 4971 /* nope, create a new one */ 4972 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 4973 if (!pool || init_worker_pool(pool) < 0) 4974 goto fail; 4975 4976 pool->node = node; 4977 copy_workqueue_attrs(pool->attrs, attrs); 4978 wqattrs_clear_for_pool(pool->attrs); 4979 4980 if (worker_pool_assign_id(pool) < 0) 4981 goto fail; 4982 4983 /* create and start the initial worker */ 4984 if (wq_online && !create_worker(pool)) 4985 goto fail; 4986 4987 /* install */ 4988 hash_add(unbound_pool_hash, &pool->hash_node, hash); 4989 4990 return pool; 4991 fail: 4992 if (pool) 4993 put_unbound_pool(pool); 4994 return NULL; 4995 } 4996 4997 /* 4998 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 4999 * refcnt and needs to be destroyed. 5000 */ 5001 static void pwq_release_workfn(struct kthread_work *work) 5002 { 5003 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 5004 release_work); 5005 struct workqueue_struct *wq = pwq->wq; 5006 struct worker_pool *pool = pwq->pool; 5007 bool is_last = false; 5008 5009 /* 5010 * When @pwq is not linked, it doesn't hold any reference to the 5011 * @wq, and @wq is invalid to access. 5012 */ 5013 if (!list_empty(&pwq->pwqs_node)) { 5014 mutex_lock(&wq->mutex); 5015 list_del_rcu(&pwq->pwqs_node); 5016 is_last = list_empty(&wq->pwqs); 5017 5018 /* 5019 * For ordered workqueue with a plugged dfl_pwq, restart it now. 5020 */ 5021 if (!is_last && (wq->flags & __WQ_ORDERED)) 5022 unplug_oldest_pwq(wq); 5023 5024 mutex_unlock(&wq->mutex); 5025 } 5026 5027 if (wq->flags & WQ_UNBOUND) { 5028 mutex_lock(&wq_pool_mutex); 5029 put_unbound_pool(pool); 5030 mutex_unlock(&wq_pool_mutex); 5031 } 5032 5033 if (!list_empty(&pwq->pending_node)) { 5034 struct wq_node_nr_active *nna = 5035 wq_node_nr_active(pwq->wq, pwq->pool->node); 5036 5037 raw_spin_lock_irq(&nna->lock); 5038 list_del_init(&pwq->pending_node); 5039 raw_spin_unlock_irq(&nna->lock); 5040 } 5041 5042 kfree_rcu(pwq, rcu); 5043 5044 /* 5045 * If we're the last pwq going away, @wq is already dead and no one 5046 * is gonna access it anymore. Schedule RCU free. 5047 */ 5048 if (is_last) { 5049 wq_unregister_lockdep(wq); 5050 call_rcu(&wq->rcu, rcu_free_wq); 5051 } 5052 } 5053 5054 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 5055 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 5056 struct worker_pool *pool) 5057 { 5058 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK); 5059 5060 memset(pwq, 0, sizeof(*pwq)); 5061 5062 pwq->pool = pool; 5063 pwq->wq = wq; 5064 pwq->flush_color = -1; 5065 pwq->refcnt = 1; 5066 INIT_LIST_HEAD(&pwq->inactive_works); 5067 INIT_LIST_HEAD(&pwq->pending_node); 5068 INIT_LIST_HEAD(&pwq->pwqs_node); 5069 INIT_LIST_HEAD(&pwq->mayday_node); 5070 kthread_init_work(&pwq->release_work, pwq_release_workfn); 5071 } 5072 5073 /* sync @pwq with the current state of its associated wq and link it */ 5074 static void link_pwq(struct pool_workqueue *pwq) 5075 { 5076 struct workqueue_struct *wq = pwq->wq; 5077 5078 lockdep_assert_held(&wq->mutex); 5079 5080 /* may be called multiple times, ignore if already linked */ 5081 if (!list_empty(&pwq->pwqs_node)) 5082 return; 5083 5084 /* set the matching work_color */ 5085 pwq->work_color = wq->work_color; 5086 5087 /* link in @pwq */ 5088 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs); 5089 } 5090 5091 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 5092 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 5093 const struct workqueue_attrs *attrs) 5094 { 5095 struct worker_pool *pool; 5096 struct pool_workqueue *pwq; 5097 5098 lockdep_assert_held(&wq_pool_mutex); 5099 5100 pool = get_unbound_pool(attrs); 5101 if (!pool) 5102 return NULL; 5103 5104 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 5105 if (!pwq) { 5106 put_unbound_pool(pool); 5107 return NULL; 5108 } 5109 5110 init_pwq(pwq, wq, pool); 5111 return pwq; 5112 } 5113 5114 static void apply_wqattrs_lock(void) 5115 { 5116 mutex_lock(&wq_pool_mutex); 5117 } 5118 5119 static void apply_wqattrs_unlock(void) 5120 { 5121 mutex_unlock(&wq_pool_mutex); 5122 } 5123 5124 /** 5125 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 5126 * @attrs: the wq_attrs of the default pwq of the target workqueue 5127 * @cpu: the target CPU 5128 * 5129 * Calculate the cpumask a workqueue with @attrs should use on @pod. 5130 * The result is stored in @attrs->__pod_cpumask. 5131 * 5132 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 5133 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 5134 * intersection of the possible CPUs of @pod and @attrs->cpumask. 5135 * 5136 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 5137 */ 5138 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu) 5139 { 5140 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5141 int pod = pt->cpu_pod[cpu]; 5142 5143 /* calculate possible CPUs in @pod that @attrs wants */ 5144 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 5145 /* does @pod have any online CPUs @attrs wants? */ 5146 if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) { 5147 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 5148 return; 5149 } 5150 } 5151 5152 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ 5153 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 5154 int cpu, struct pool_workqueue *pwq) 5155 { 5156 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); 5157 struct pool_workqueue *old_pwq; 5158 5159 lockdep_assert_held(&wq_pool_mutex); 5160 lockdep_assert_held(&wq->mutex); 5161 5162 /* link_pwq() can handle duplicate calls */ 5163 link_pwq(pwq); 5164 5165 old_pwq = rcu_access_pointer(*slot); 5166 rcu_assign_pointer(*slot, pwq); 5167 return old_pwq; 5168 } 5169 5170 /* context to store the prepared attrs & pwqs before applying */ 5171 struct apply_wqattrs_ctx { 5172 struct workqueue_struct *wq; /* target workqueue */ 5173 struct workqueue_attrs *attrs; /* attrs to apply */ 5174 struct list_head list; /* queued for batching commit */ 5175 struct pool_workqueue *dfl_pwq; 5176 struct pool_workqueue *pwq_tbl[]; 5177 }; 5178 5179 /* free the resources after success or abort */ 5180 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 5181 { 5182 if (ctx) { 5183 int cpu; 5184 5185 for_each_possible_cpu(cpu) 5186 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 5187 put_pwq_unlocked(ctx->dfl_pwq); 5188 5189 free_workqueue_attrs(ctx->attrs); 5190 5191 kfree(ctx); 5192 } 5193 } 5194 5195 /* allocate the attrs and pwqs for later installation */ 5196 static struct apply_wqattrs_ctx * 5197 apply_wqattrs_prepare(struct workqueue_struct *wq, 5198 const struct workqueue_attrs *attrs, 5199 const cpumask_var_t unbound_cpumask) 5200 { 5201 struct apply_wqattrs_ctx *ctx; 5202 struct workqueue_attrs *new_attrs; 5203 int cpu; 5204 5205 lockdep_assert_held(&wq_pool_mutex); 5206 5207 if (WARN_ON(attrs->affn_scope < 0 || 5208 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 5209 return ERR_PTR(-EINVAL); 5210 5211 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 5212 5213 new_attrs = alloc_workqueue_attrs(); 5214 if (!ctx || !new_attrs) 5215 goto out_free; 5216 5217 /* 5218 * If something goes wrong during CPU up/down, we'll fall back to 5219 * the default pwq covering whole @attrs->cpumask. Always create 5220 * it even if we don't use it immediately. 5221 */ 5222 copy_workqueue_attrs(new_attrs, attrs); 5223 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 5224 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5225 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 5226 if (!ctx->dfl_pwq) 5227 goto out_free; 5228 5229 for_each_possible_cpu(cpu) { 5230 if (new_attrs->ordered) { 5231 ctx->dfl_pwq->refcnt++; 5232 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 5233 } else { 5234 wq_calc_pod_cpumask(new_attrs, cpu); 5235 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 5236 if (!ctx->pwq_tbl[cpu]) 5237 goto out_free; 5238 } 5239 } 5240 5241 /* save the user configured attrs and sanitize it. */ 5242 copy_workqueue_attrs(new_attrs, attrs); 5243 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 5244 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5245 ctx->attrs = new_attrs; 5246 5247 /* 5248 * For initialized ordered workqueues, there should only be one pwq 5249 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution 5250 * of newly queued work items until execution of older work items in 5251 * the old pwq's have completed. 5252 */ 5253 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)) 5254 ctx->dfl_pwq->plugged = true; 5255 5256 ctx->wq = wq; 5257 return ctx; 5258 5259 out_free: 5260 free_workqueue_attrs(new_attrs); 5261 apply_wqattrs_cleanup(ctx); 5262 return ERR_PTR(-ENOMEM); 5263 } 5264 5265 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 5266 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 5267 { 5268 int cpu; 5269 5270 /* all pwqs have been created successfully, let's install'em */ 5271 mutex_lock(&ctx->wq->mutex); 5272 5273 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 5274 5275 /* save the previous pwqs and install the new ones */ 5276 for_each_possible_cpu(cpu) 5277 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 5278 ctx->pwq_tbl[cpu]); 5279 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq); 5280 5281 /* update node_nr_active->max */ 5282 wq_update_node_max_active(ctx->wq, -1); 5283 5284 /* rescuer needs to respect wq cpumask changes */ 5285 if (ctx->wq->rescuer) 5286 set_cpus_allowed_ptr(ctx->wq->rescuer->task, 5287 unbound_effective_cpumask(ctx->wq)); 5288 5289 mutex_unlock(&ctx->wq->mutex); 5290 } 5291 5292 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 5293 const struct workqueue_attrs *attrs) 5294 { 5295 struct apply_wqattrs_ctx *ctx; 5296 5297 /* only unbound workqueues can change attributes */ 5298 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 5299 return -EINVAL; 5300 5301 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 5302 if (IS_ERR(ctx)) 5303 return PTR_ERR(ctx); 5304 5305 /* the ctx has been prepared successfully, let's commit it */ 5306 apply_wqattrs_commit(ctx); 5307 apply_wqattrs_cleanup(ctx); 5308 5309 return 0; 5310 } 5311 5312 /** 5313 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 5314 * @wq: the target workqueue 5315 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 5316 * 5317 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 5318 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 5319 * work items are affine to the pod it was issued on. Older pwqs are released as 5320 * in-flight work items finish. Note that a work item which repeatedly requeues 5321 * itself back-to-back will stay on its current pwq. 5322 * 5323 * Performs GFP_KERNEL allocations. 5324 * 5325 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 5326 * 5327 * Return: 0 on success and -errno on failure. 5328 */ 5329 int apply_workqueue_attrs(struct workqueue_struct *wq, 5330 const struct workqueue_attrs *attrs) 5331 { 5332 int ret; 5333 5334 lockdep_assert_cpus_held(); 5335 5336 mutex_lock(&wq_pool_mutex); 5337 ret = apply_workqueue_attrs_locked(wq, attrs); 5338 mutex_unlock(&wq_pool_mutex); 5339 5340 return ret; 5341 } 5342 5343 /** 5344 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug 5345 * @wq: the target workqueue 5346 * @cpu: the CPU to update the pwq slot for 5347 * 5348 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 5349 * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged. 5350 * 5351 * 5352 * If pod affinity can't be adjusted due to memory allocation failure, it falls 5353 * back to @wq->dfl_pwq which may not be optimal but is always correct. 5354 * 5355 * Note that when the last allowed CPU of a pod goes offline for a workqueue 5356 * with a cpumask spanning multiple pods, the workers which were already 5357 * executing the work items for the workqueue will lose their CPU affinity and 5358 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 5359 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 5360 * responsibility to flush the work item from CPU_DOWN_PREPARE. 5361 */ 5362 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu) 5363 { 5364 struct pool_workqueue *old_pwq = NULL, *pwq; 5365 struct workqueue_attrs *target_attrs; 5366 5367 lockdep_assert_held(&wq_pool_mutex); 5368 5369 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 5370 return; 5371 5372 /* 5373 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 5374 * Let's use a preallocated one. The following buf is protected by 5375 * CPU hotplug exclusion. 5376 */ 5377 target_attrs = unbound_wq_update_pwq_attrs_buf; 5378 5379 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 5380 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 5381 5382 /* nothing to do if the target cpumask matches the current pwq */ 5383 wq_calc_pod_cpumask(target_attrs, cpu); 5384 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs)) 5385 return; 5386 5387 /* create a new pwq */ 5388 pwq = alloc_unbound_pwq(wq, target_attrs); 5389 if (!pwq) { 5390 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 5391 wq->name); 5392 goto use_dfl_pwq; 5393 } 5394 5395 /* Install the new pwq. */ 5396 mutex_lock(&wq->mutex); 5397 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5398 goto out_unlock; 5399 5400 use_dfl_pwq: 5401 mutex_lock(&wq->mutex); 5402 pwq = unbound_pwq(wq, -1); 5403 raw_spin_lock_irq(&pwq->pool->lock); 5404 get_pwq(pwq); 5405 raw_spin_unlock_irq(&pwq->pool->lock); 5406 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5407 out_unlock: 5408 mutex_unlock(&wq->mutex); 5409 put_pwq_unlocked(old_pwq); 5410 } 5411 5412 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 5413 { 5414 bool highpri = wq->flags & WQ_HIGHPRI; 5415 int cpu, ret; 5416 5417 lockdep_assert_cpus_held(); 5418 lockdep_assert_held(&wq_pool_mutex); 5419 5420 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 5421 if (!wq->cpu_pwq) 5422 goto enomem; 5423 5424 if (!(wq->flags & WQ_UNBOUND)) { 5425 struct worker_pool __percpu *pools; 5426 5427 if (wq->flags & WQ_BH) 5428 pools = bh_worker_pools; 5429 else 5430 pools = cpu_worker_pools; 5431 5432 for_each_possible_cpu(cpu) { 5433 struct pool_workqueue **pwq_p; 5434 struct worker_pool *pool; 5435 5436 pool = &(per_cpu_ptr(pools, cpu)[highpri]); 5437 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu); 5438 5439 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 5440 pool->node); 5441 if (!*pwq_p) 5442 goto enomem; 5443 5444 init_pwq(*pwq_p, wq, pool); 5445 5446 mutex_lock(&wq->mutex); 5447 link_pwq(*pwq_p); 5448 mutex_unlock(&wq->mutex); 5449 } 5450 return 0; 5451 } 5452 5453 if (wq->flags & __WQ_ORDERED) { 5454 struct pool_workqueue *dfl_pwq; 5455 5456 ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]); 5457 /* there should only be single pwq for ordering guarantee */ 5458 dfl_pwq = rcu_access_pointer(wq->dfl_pwq); 5459 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || 5460 wq->pwqs.prev != &dfl_pwq->pwqs_node), 5461 "ordering guarantee broken for workqueue %s\n", wq->name); 5462 } else { 5463 ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]); 5464 } 5465 5466 return ret; 5467 5468 enomem: 5469 if (wq->cpu_pwq) { 5470 for_each_possible_cpu(cpu) { 5471 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5472 5473 if (pwq) 5474 kmem_cache_free(pwq_cache, pwq); 5475 } 5476 free_percpu(wq->cpu_pwq); 5477 wq->cpu_pwq = NULL; 5478 } 5479 return -ENOMEM; 5480 } 5481 5482 static int wq_clamp_max_active(int max_active, unsigned int flags, 5483 const char *name) 5484 { 5485 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 5486 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 5487 max_active, name, 1, WQ_MAX_ACTIVE); 5488 5489 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 5490 } 5491 5492 /* 5493 * Workqueues which may be used during memory reclaim should have a rescuer 5494 * to guarantee forward progress. 5495 */ 5496 static int init_rescuer(struct workqueue_struct *wq) 5497 { 5498 struct worker *rescuer; 5499 int ret; 5500 5501 lockdep_assert_held(&wq_pool_mutex); 5502 5503 if (!(wq->flags & WQ_MEM_RECLAIM)) 5504 return 0; 5505 5506 rescuer = alloc_worker(NUMA_NO_NODE); 5507 if (!rescuer) { 5508 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 5509 wq->name); 5510 return -ENOMEM; 5511 } 5512 5513 rescuer->rescue_wq = wq; 5514 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name); 5515 if (IS_ERR(rescuer->task)) { 5516 ret = PTR_ERR(rescuer->task); 5517 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 5518 wq->name, ERR_PTR(ret)); 5519 kfree(rescuer); 5520 return ret; 5521 } 5522 5523 wq->rescuer = rescuer; 5524 if (wq->flags & WQ_UNBOUND) 5525 kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq)); 5526 else 5527 kthread_bind_mask(rescuer->task, cpu_possible_mask); 5528 wake_up_process(rescuer->task); 5529 5530 return 0; 5531 } 5532 5533 /** 5534 * wq_adjust_max_active - update a wq's max_active to the current setting 5535 * @wq: target workqueue 5536 * 5537 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and 5538 * activate inactive work items accordingly. If @wq is freezing, clear 5539 * @wq->max_active to zero. 5540 */ 5541 static void wq_adjust_max_active(struct workqueue_struct *wq) 5542 { 5543 bool activated; 5544 int new_max, new_min; 5545 5546 lockdep_assert_held(&wq->mutex); 5547 5548 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { 5549 new_max = 0; 5550 new_min = 0; 5551 } else { 5552 new_max = wq->saved_max_active; 5553 new_min = wq->saved_min_active; 5554 } 5555 5556 if (wq->max_active == new_max && wq->min_active == new_min) 5557 return; 5558 5559 /* 5560 * Update @wq->max/min_active and then kick inactive work items if more 5561 * active work items are allowed. This doesn't break work item ordering 5562 * because new work items are always queued behind existing inactive 5563 * work items if there are any. 5564 */ 5565 WRITE_ONCE(wq->max_active, new_max); 5566 WRITE_ONCE(wq->min_active, new_min); 5567 5568 if (wq->flags & WQ_UNBOUND) 5569 wq_update_node_max_active(wq, -1); 5570 5571 if (new_max == 0) 5572 return; 5573 5574 /* 5575 * Round-robin through pwq's activating the first inactive work item 5576 * until max_active is filled. 5577 */ 5578 do { 5579 struct pool_workqueue *pwq; 5580 5581 activated = false; 5582 for_each_pwq(pwq, wq) { 5583 unsigned long irq_flags; 5584 5585 /* can be called during early boot w/ irq disabled */ 5586 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 5587 if (pwq_activate_first_inactive(pwq, true)) { 5588 activated = true; 5589 kick_pool(pwq->pool); 5590 } 5591 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 5592 } 5593 } while (activated); 5594 } 5595 5596 __printf(1, 4) 5597 struct workqueue_struct *alloc_workqueue(const char *fmt, 5598 unsigned int flags, 5599 int max_active, ...) 5600 { 5601 va_list args; 5602 struct workqueue_struct *wq; 5603 size_t wq_size; 5604 int name_len; 5605 5606 if (flags & WQ_BH) { 5607 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS)) 5608 return NULL; 5609 if (WARN_ON_ONCE(max_active)) 5610 return NULL; 5611 } 5612 5613 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 5614 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 5615 flags |= WQ_UNBOUND; 5616 5617 /* allocate wq and format name */ 5618 if (flags & WQ_UNBOUND) 5619 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); 5620 else 5621 wq_size = sizeof(*wq); 5622 5623 wq = kzalloc(wq_size, GFP_KERNEL); 5624 if (!wq) 5625 return NULL; 5626 5627 if (flags & WQ_UNBOUND) { 5628 wq->unbound_attrs = alloc_workqueue_attrs(); 5629 if (!wq->unbound_attrs) 5630 goto err_free_wq; 5631 } 5632 5633 va_start(args, max_active); 5634 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args); 5635 va_end(args); 5636 5637 if (name_len >= WQ_NAME_LEN) 5638 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", 5639 wq->name); 5640 5641 if (flags & WQ_BH) { 5642 /* 5643 * BH workqueues always share a single execution context per CPU 5644 * and don't impose any max_active limit. 5645 */ 5646 max_active = INT_MAX; 5647 } else { 5648 max_active = max_active ?: WQ_DFL_ACTIVE; 5649 max_active = wq_clamp_max_active(max_active, flags, wq->name); 5650 } 5651 5652 /* init wq */ 5653 wq->flags = flags; 5654 wq->max_active = max_active; 5655 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); 5656 wq->saved_max_active = wq->max_active; 5657 wq->saved_min_active = wq->min_active; 5658 mutex_init(&wq->mutex); 5659 atomic_set(&wq->nr_pwqs_to_flush, 0); 5660 INIT_LIST_HEAD(&wq->pwqs); 5661 INIT_LIST_HEAD(&wq->flusher_queue); 5662 INIT_LIST_HEAD(&wq->flusher_overflow); 5663 INIT_LIST_HEAD(&wq->maydays); 5664 5665 wq_init_lockdep(wq); 5666 INIT_LIST_HEAD(&wq->list); 5667 5668 if (flags & WQ_UNBOUND) { 5669 if (alloc_node_nr_active(wq->node_nr_active) < 0) 5670 goto err_unreg_lockdep; 5671 } 5672 5673 /* 5674 * wq_pool_mutex protects the workqueues list, allocations of PWQs, 5675 * and the global freeze state. alloc_and_link_pwqs() also requires 5676 * cpus_read_lock() for PWQs' affinities. 5677 */ 5678 apply_wqattrs_lock(); 5679 5680 if (alloc_and_link_pwqs(wq) < 0) 5681 goto err_unlock_free_node_nr_active; 5682 5683 mutex_lock(&wq->mutex); 5684 wq_adjust_max_active(wq); 5685 mutex_unlock(&wq->mutex); 5686 5687 list_add_tail_rcu(&wq->list, &workqueues); 5688 5689 if (wq_online && init_rescuer(wq) < 0) 5690 goto err_unlock_destroy; 5691 5692 apply_wqattrs_unlock(); 5693 5694 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 5695 goto err_destroy; 5696 5697 return wq; 5698 5699 err_unlock_free_node_nr_active: 5700 apply_wqattrs_unlock(); 5701 /* 5702 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work, 5703 * flushing the pwq_release_worker ensures that the pwq_release_workfn() 5704 * completes before calling kfree(wq). 5705 */ 5706 if (wq->flags & WQ_UNBOUND) { 5707 kthread_flush_worker(pwq_release_worker); 5708 free_node_nr_active(wq->node_nr_active); 5709 } 5710 err_unreg_lockdep: 5711 wq_unregister_lockdep(wq); 5712 wq_free_lockdep(wq); 5713 err_free_wq: 5714 free_workqueue_attrs(wq->unbound_attrs); 5715 kfree(wq); 5716 return NULL; 5717 err_unlock_destroy: 5718 apply_wqattrs_unlock(); 5719 err_destroy: 5720 destroy_workqueue(wq); 5721 return NULL; 5722 } 5723 EXPORT_SYMBOL_GPL(alloc_workqueue); 5724 5725 static bool pwq_busy(struct pool_workqueue *pwq) 5726 { 5727 int i; 5728 5729 for (i = 0; i < WORK_NR_COLORS; i++) 5730 if (pwq->nr_in_flight[i]) 5731 return true; 5732 5733 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) 5734 return true; 5735 if (!pwq_is_empty(pwq)) 5736 return true; 5737 5738 return false; 5739 } 5740 5741 /** 5742 * destroy_workqueue - safely terminate a workqueue 5743 * @wq: target workqueue 5744 * 5745 * Safely destroy a workqueue. All work currently pending will be done first. 5746 */ 5747 void destroy_workqueue(struct workqueue_struct *wq) 5748 { 5749 struct pool_workqueue *pwq; 5750 int cpu; 5751 5752 /* 5753 * Remove it from sysfs first so that sanity check failure doesn't 5754 * lead to sysfs name conflicts. 5755 */ 5756 workqueue_sysfs_unregister(wq); 5757 5758 /* mark the workqueue destruction is in progress */ 5759 mutex_lock(&wq->mutex); 5760 wq->flags |= __WQ_DESTROYING; 5761 mutex_unlock(&wq->mutex); 5762 5763 /* drain it before proceeding with destruction */ 5764 drain_workqueue(wq); 5765 5766 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 5767 if (wq->rescuer) { 5768 struct worker *rescuer = wq->rescuer; 5769 5770 /* this prevents new queueing */ 5771 raw_spin_lock_irq(&wq_mayday_lock); 5772 wq->rescuer = NULL; 5773 raw_spin_unlock_irq(&wq_mayday_lock); 5774 5775 /* rescuer will empty maydays list before exiting */ 5776 kthread_stop(rescuer->task); 5777 kfree(rescuer); 5778 } 5779 5780 /* 5781 * Sanity checks - grab all the locks so that we wait for all 5782 * in-flight operations which may do put_pwq(). 5783 */ 5784 mutex_lock(&wq_pool_mutex); 5785 mutex_lock(&wq->mutex); 5786 for_each_pwq(pwq, wq) { 5787 raw_spin_lock_irq(&pwq->pool->lock); 5788 if (WARN_ON(pwq_busy(pwq))) { 5789 pr_warn("%s: %s has the following busy pwq\n", 5790 __func__, wq->name); 5791 show_pwq(pwq); 5792 raw_spin_unlock_irq(&pwq->pool->lock); 5793 mutex_unlock(&wq->mutex); 5794 mutex_unlock(&wq_pool_mutex); 5795 show_one_workqueue(wq); 5796 return; 5797 } 5798 raw_spin_unlock_irq(&pwq->pool->lock); 5799 } 5800 mutex_unlock(&wq->mutex); 5801 5802 /* 5803 * wq list is used to freeze wq, remove from list after 5804 * flushing is complete in case freeze races us. 5805 */ 5806 list_del_rcu(&wq->list); 5807 mutex_unlock(&wq_pool_mutex); 5808 5809 /* 5810 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 5811 * to put the base refs. @wq will be auto-destroyed from the last 5812 * pwq_put. RCU read lock prevents @wq from going away from under us. 5813 */ 5814 rcu_read_lock(); 5815 5816 for_each_possible_cpu(cpu) { 5817 put_pwq_unlocked(unbound_pwq(wq, cpu)); 5818 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); 5819 } 5820 5821 put_pwq_unlocked(unbound_pwq(wq, -1)); 5822 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); 5823 5824 rcu_read_unlock(); 5825 } 5826 EXPORT_SYMBOL_GPL(destroy_workqueue); 5827 5828 /** 5829 * workqueue_set_max_active - adjust max_active of a workqueue 5830 * @wq: target workqueue 5831 * @max_active: new max_active value. 5832 * 5833 * Set max_active of @wq to @max_active. See the alloc_workqueue() function 5834 * comment. 5835 * 5836 * CONTEXT: 5837 * Don't call from IRQ context. 5838 */ 5839 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 5840 { 5841 /* max_active doesn't mean anything for BH workqueues */ 5842 if (WARN_ON(wq->flags & WQ_BH)) 5843 return; 5844 /* disallow meddling with max_active for ordered workqueues */ 5845 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5846 return; 5847 5848 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 5849 5850 mutex_lock(&wq->mutex); 5851 5852 wq->saved_max_active = max_active; 5853 if (wq->flags & WQ_UNBOUND) 5854 wq->saved_min_active = min(wq->saved_min_active, max_active); 5855 5856 wq_adjust_max_active(wq); 5857 5858 mutex_unlock(&wq->mutex); 5859 } 5860 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 5861 5862 /** 5863 * workqueue_set_min_active - adjust min_active of an unbound workqueue 5864 * @wq: target unbound workqueue 5865 * @min_active: new min_active value 5866 * 5867 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an 5868 * unbound workqueue is not guaranteed to be able to process max_active 5869 * interdependent work items. Instead, an unbound workqueue is guaranteed to be 5870 * able to process min_active number of interdependent work items which is 5871 * %WQ_DFL_MIN_ACTIVE by default. 5872 * 5873 * Use this function to adjust the min_active value between 0 and the current 5874 * max_active. 5875 */ 5876 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active) 5877 { 5878 /* min_active is only meaningful for non-ordered unbound workqueues */ 5879 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) != 5880 WQ_UNBOUND)) 5881 return; 5882 5883 mutex_lock(&wq->mutex); 5884 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active); 5885 wq_adjust_max_active(wq); 5886 mutex_unlock(&wq->mutex); 5887 } 5888 5889 /** 5890 * current_work - retrieve %current task's work struct 5891 * 5892 * Determine if %current task is a workqueue worker and what it's working on. 5893 * Useful to find out the context that the %current task is running in. 5894 * 5895 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 5896 */ 5897 struct work_struct *current_work(void) 5898 { 5899 struct worker *worker = current_wq_worker(); 5900 5901 return worker ? worker->current_work : NULL; 5902 } 5903 EXPORT_SYMBOL(current_work); 5904 5905 /** 5906 * current_is_workqueue_rescuer - is %current workqueue rescuer? 5907 * 5908 * Determine whether %current is a workqueue rescuer. Can be used from 5909 * work functions to determine whether it's being run off the rescuer task. 5910 * 5911 * Return: %true if %current is a workqueue rescuer. %false otherwise. 5912 */ 5913 bool current_is_workqueue_rescuer(void) 5914 { 5915 struct worker *worker = current_wq_worker(); 5916 5917 return worker && worker->rescue_wq; 5918 } 5919 5920 /** 5921 * workqueue_congested - test whether a workqueue is congested 5922 * @cpu: CPU in question 5923 * @wq: target workqueue 5924 * 5925 * Test whether @wq's cpu workqueue for @cpu is congested. There is 5926 * no synchronization around this function and the test result is 5927 * unreliable and only useful as advisory hints or for debugging. 5928 * 5929 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 5930 * 5931 * With the exception of ordered workqueues, all workqueues have per-cpu 5932 * pool_workqueues, each with its own congested state. A workqueue being 5933 * congested on one CPU doesn't mean that the workqueue is contested on any 5934 * other CPUs. 5935 * 5936 * Return: 5937 * %true if congested, %false otherwise. 5938 */ 5939 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 5940 { 5941 struct pool_workqueue *pwq; 5942 bool ret; 5943 5944 rcu_read_lock(); 5945 preempt_disable(); 5946 5947 if (cpu == WORK_CPU_UNBOUND) 5948 cpu = smp_processor_id(); 5949 5950 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5951 ret = !list_empty(&pwq->inactive_works); 5952 5953 preempt_enable(); 5954 rcu_read_unlock(); 5955 5956 return ret; 5957 } 5958 EXPORT_SYMBOL_GPL(workqueue_congested); 5959 5960 /** 5961 * work_busy - test whether a work is currently pending or running 5962 * @work: the work to be tested 5963 * 5964 * Test whether @work is currently pending or running. There is no 5965 * synchronization around this function and the test result is 5966 * unreliable and only useful as advisory hints or for debugging. 5967 * 5968 * Return: 5969 * OR'd bitmask of WORK_BUSY_* bits. 5970 */ 5971 unsigned int work_busy(struct work_struct *work) 5972 { 5973 struct worker_pool *pool; 5974 unsigned long irq_flags; 5975 unsigned int ret = 0; 5976 5977 if (work_pending(work)) 5978 ret |= WORK_BUSY_PENDING; 5979 5980 rcu_read_lock(); 5981 pool = get_work_pool(work); 5982 if (pool) { 5983 raw_spin_lock_irqsave(&pool->lock, irq_flags); 5984 if (find_worker_executing_work(pool, work)) 5985 ret |= WORK_BUSY_RUNNING; 5986 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 5987 } 5988 rcu_read_unlock(); 5989 5990 return ret; 5991 } 5992 EXPORT_SYMBOL_GPL(work_busy); 5993 5994 /** 5995 * set_worker_desc - set description for the current work item 5996 * @fmt: printf-style format string 5997 * @...: arguments for the format string 5998 * 5999 * This function can be called by a running work function to describe what 6000 * the work item is about. If the worker task gets dumped, this 6001 * information will be printed out together to help debugging. The 6002 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 6003 */ 6004 void set_worker_desc(const char *fmt, ...) 6005 { 6006 struct worker *worker = current_wq_worker(); 6007 va_list args; 6008 6009 if (worker) { 6010 va_start(args, fmt); 6011 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 6012 va_end(args); 6013 } 6014 } 6015 EXPORT_SYMBOL_GPL(set_worker_desc); 6016 6017 /** 6018 * print_worker_info - print out worker information and description 6019 * @log_lvl: the log level to use when printing 6020 * @task: target task 6021 * 6022 * If @task is a worker and currently executing a work item, print out the 6023 * name of the workqueue being serviced and worker description set with 6024 * set_worker_desc() by the currently executing work item. 6025 * 6026 * This function can be safely called on any task as long as the 6027 * task_struct itself is accessible. While safe, this function isn't 6028 * synchronized and may print out mixups or garbages of limited length. 6029 */ 6030 void print_worker_info(const char *log_lvl, struct task_struct *task) 6031 { 6032 work_func_t *fn = NULL; 6033 char name[WQ_NAME_LEN] = { }; 6034 char desc[WORKER_DESC_LEN] = { }; 6035 struct pool_workqueue *pwq = NULL; 6036 struct workqueue_struct *wq = NULL; 6037 struct worker *worker; 6038 6039 if (!(task->flags & PF_WQ_WORKER)) 6040 return; 6041 6042 /* 6043 * This function is called without any synchronization and @task 6044 * could be in any state. Be careful with dereferences. 6045 */ 6046 worker = kthread_probe_data(task); 6047 6048 /* 6049 * Carefully copy the associated workqueue's workfn, name and desc. 6050 * Keep the original last '\0' in case the original is garbage. 6051 */ 6052 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 6053 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 6054 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 6055 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 6056 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 6057 6058 if (fn || name[0] || desc[0]) { 6059 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 6060 if (strcmp(name, desc)) 6061 pr_cont(" (%s)", desc); 6062 pr_cont("\n"); 6063 } 6064 } 6065 6066 static void pr_cont_pool_info(struct worker_pool *pool) 6067 { 6068 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 6069 if (pool->node != NUMA_NO_NODE) 6070 pr_cont(" node=%d", pool->node); 6071 pr_cont(" flags=0x%x", pool->flags); 6072 if (pool->flags & POOL_BH) 6073 pr_cont(" bh%s", 6074 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6075 else 6076 pr_cont(" nice=%d", pool->attrs->nice); 6077 } 6078 6079 static void pr_cont_worker_id(struct worker *worker) 6080 { 6081 struct worker_pool *pool = worker->pool; 6082 6083 if (pool->flags & WQ_BH) 6084 pr_cont("bh%s", 6085 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6086 else 6087 pr_cont("%d%s", task_pid_nr(worker->task), 6088 worker->rescue_wq ? "(RESCUER)" : ""); 6089 } 6090 6091 struct pr_cont_work_struct { 6092 bool comma; 6093 work_func_t func; 6094 long ctr; 6095 }; 6096 6097 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 6098 { 6099 if (!pcwsp->ctr) 6100 goto out_record; 6101 if (func == pcwsp->func) { 6102 pcwsp->ctr++; 6103 return; 6104 } 6105 if (pcwsp->ctr == 1) 6106 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 6107 else 6108 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 6109 pcwsp->ctr = 0; 6110 out_record: 6111 if ((long)func == -1L) 6112 return; 6113 pcwsp->comma = comma; 6114 pcwsp->func = func; 6115 pcwsp->ctr = 1; 6116 } 6117 6118 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 6119 { 6120 if (work->func == wq_barrier_func) { 6121 struct wq_barrier *barr; 6122 6123 barr = container_of(work, struct wq_barrier, work); 6124 6125 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6126 pr_cont("%s BAR(%d)", comma ? "," : "", 6127 task_pid_nr(barr->task)); 6128 } else { 6129 if (!comma) 6130 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6131 pr_cont_work_flush(comma, work->func, pcwsp); 6132 } 6133 } 6134 6135 static void show_pwq(struct pool_workqueue *pwq) 6136 { 6137 struct pr_cont_work_struct pcws = { .ctr = 0, }; 6138 struct worker_pool *pool = pwq->pool; 6139 struct work_struct *work; 6140 struct worker *worker; 6141 bool has_in_flight = false, has_pending = false; 6142 int bkt; 6143 6144 pr_info(" pwq %d:", pool->id); 6145 pr_cont_pool_info(pool); 6146 6147 pr_cont(" active=%d refcnt=%d%s\n", 6148 pwq->nr_active, pwq->refcnt, 6149 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 6150 6151 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6152 if (worker->current_pwq == pwq) { 6153 has_in_flight = true; 6154 break; 6155 } 6156 } 6157 if (has_in_flight) { 6158 bool comma = false; 6159 6160 pr_info(" in-flight:"); 6161 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6162 if (worker->current_pwq != pwq) 6163 continue; 6164 6165 pr_cont(" %s", comma ? "," : ""); 6166 pr_cont_worker_id(worker); 6167 pr_cont(":%ps", worker->current_func); 6168 list_for_each_entry(work, &worker->scheduled, entry) 6169 pr_cont_work(false, work, &pcws); 6170 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6171 comma = true; 6172 } 6173 pr_cont("\n"); 6174 } 6175 6176 list_for_each_entry(work, &pool->worklist, entry) { 6177 if (get_work_pwq(work) == pwq) { 6178 has_pending = true; 6179 break; 6180 } 6181 } 6182 if (has_pending) { 6183 bool comma = false; 6184 6185 pr_info(" pending:"); 6186 list_for_each_entry(work, &pool->worklist, entry) { 6187 if (get_work_pwq(work) != pwq) 6188 continue; 6189 6190 pr_cont_work(comma, work, &pcws); 6191 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6192 } 6193 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6194 pr_cont("\n"); 6195 } 6196 6197 if (!list_empty(&pwq->inactive_works)) { 6198 bool comma = false; 6199 6200 pr_info(" inactive:"); 6201 list_for_each_entry(work, &pwq->inactive_works, entry) { 6202 pr_cont_work(comma, work, &pcws); 6203 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6204 } 6205 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6206 pr_cont("\n"); 6207 } 6208 } 6209 6210 /** 6211 * show_one_workqueue - dump state of specified workqueue 6212 * @wq: workqueue whose state will be printed 6213 */ 6214 void show_one_workqueue(struct workqueue_struct *wq) 6215 { 6216 struct pool_workqueue *pwq; 6217 bool idle = true; 6218 unsigned long irq_flags; 6219 6220 for_each_pwq(pwq, wq) { 6221 if (!pwq_is_empty(pwq)) { 6222 idle = false; 6223 break; 6224 } 6225 } 6226 if (idle) /* Nothing to print for idle workqueue */ 6227 return; 6228 6229 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 6230 6231 for_each_pwq(pwq, wq) { 6232 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 6233 if (!pwq_is_empty(pwq)) { 6234 /* 6235 * Defer printing to avoid deadlocks in console 6236 * drivers that queue work while holding locks 6237 * also taken in their write paths. 6238 */ 6239 printk_deferred_enter(); 6240 show_pwq(pwq); 6241 printk_deferred_exit(); 6242 } 6243 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 6244 /* 6245 * We could be printing a lot from atomic context, e.g. 6246 * sysrq-t -> show_all_workqueues(). Avoid triggering 6247 * hard lockup. 6248 */ 6249 touch_nmi_watchdog(); 6250 } 6251 6252 } 6253 6254 /** 6255 * show_one_worker_pool - dump state of specified worker pool 6256 * @pool: worker pool whose state will be printed 6257 */ 6258 static void show_one_worker_pool(struct worker_pool *pool) 6259 { 6260 struct worker *worker; 6261 bool first = true; 6262 unsigned long irq_flags; 6263 unsigned long hung = 0; 6264 6265 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6266 if (pool->nr_workers == pool->nr_idle) 6267 goto next_pool; 6268 6269 /* How long the first pending work is waiting for a worker. */ 6270 if (!list_empty(&pool->worklist)) 6271 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 6272 6273 /* 6274 * Defer printing to avoid deadlocks in console drivers that 6275 * queue work while holding locks also taken in their write 6276 * paths. 6277 */ 6278 printk_deferred_enter(); 6279 pr_info("pool %d:", pool->id); 6280 pr_cont_pool_info(pool); 6281 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 6282 if (pool->manager) 6283 pr_cont(" manager: %d", 6284 task_pid_nr(pool->manager->task)); 6285 list_for_each_entry(worker, &pool->idle_list, entry) { 6286 pr_cont(" %s", first ? "idle: " : ""); 6287 pr_cont_worker_id(worker); 6288 first = false; 6289 } 6290 pr_cont("\n"); 6291 printk_deferred_exit(); 6292 next_pool: 6293 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6294 /* 6295 * We could be printing a lot from atomic context, e.g. 6296 * sysrq-t -> show_all_workqueues(). Avoid triggering 6297 * hard lockup. 6298 */ 6299 touch_nmi_watchdog(); 6300 6301 } 6302 6303 /** 6304 * show_all_workqueues - dump workqueue state 6305 * 6306 * Called from a sysrq handler and prints out all busy workqueues and pools. 6307 */ 6308 void show_all_workqueues(void) 6309 { 6310 struct workqueue_struct *wq; 6311 struct worker_pool *pool; 6312 int pi; 6313 6314 rcu_read_lock(); 6315 6316 pr_info("Showing busy workqueues and worker pools:\n"); 6317 6318 list_for_each_entry_rcu(wq, &workqueues, list) 6319 show_one_workqueue(wq); 6320 6321 for_each_pool(pool, pi) 6322 show_one_worker_pool(pool); 6323 6324 rcu_read_unlock(); 6325 } 6326 6327 /** 6328 * show_freezable_workqueues - dump freezable workqueue state 6329 * 6330 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 6331 * still busy. 6332 */ 6333 void show_freezable_workqueues(void) 6334 { 6335 struct workqueue_struct *wq; 6336 6337 rcu_read_lock(); 6338 6339 pr_info("Showing freezable workqueues that are still busy:\n"); 6340 6341 list_for_each_entry_rcu(wq, &workqueues, list) { 6342 if (!(wq->flags & WQ_FREEZABLE)) 6343 continue; 6344 show_one_workqueue(wq); 6345 } 6346 6347 rcu_read_unlock(); 6348 } 6349 6350 /* used to show worker information through /proc/PID/{comm,stat,status} */ 6351 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 6352 { 6353 int off; 6354 6355 /* always show the actual comm */ 6356 off = strscpy(buf, task->comm, size); 6357 if (off < 0) 6358 return; 6359 6360 /* stabilize PF_WQ_WORKER and worker pool association */ 6361 mutex_lock(&wq_pool_attach_mutex); 6362 6363 if (task->flags & PF_WQ_WORKER) { 6364 struct worker *worker = kthread_data(task); 6365 struct worker_pool *pool = worker->pool; 6366 6367 if (pool) { 6368 raw_spin_lock_irq(&pool->lock); 6369 /* 6370 * ->desc tracks information (wq name or 6371 * set_worker_desc()) for the latest execution. If 6372 * current, prepend '+', otherwise '-'. 6373 */ 6374 if (worker->desc[0] != '\0') { 6375 if (worker->current_work) 6376 scnprintf(buf + off, size - off, "+%s", 6377 worker->desc); 6378 else 6379 scnprintf(buf + off, size - off, "-%s", 6380 worker->desc); 6381 } 6382 raw_spin_unlock_irq(&pool->lock); 6383 } 6384 } 6385 6386 mutex_unlock(&wq_pool_attach_mutex); 6387 } 6388 6389 #ifdef CONFIG_SMP 6390 6391 /* 6392 * CPU hotplug. 6393 * 6394 * There are two challenges in supporting CPU hotplug. Firstly, there 6395 * are a lot of assumptions on strong associations among work, pwq and 6396 * pool which make migrating pending and scheduled works very 6397 * difficult to implement without impacting hot paths. Secondly, 6398 * worker pools serve mix of short, long and very long running works making 6399 * blocked draining impractical. 6400 * 6401 * This is solved by allowing the pools to be disassociated from the CPU 6402 * running as an unbound one and allowing it to be reattached later if the 6403 * cpu comes back online. 6404 */ 6405 6406 static void unbind_workers(int cpu) 6407 { 6408 struct worker_pool *pool; 6409 struct worker *worker; 6410 6411 for_each_cpu_worker_pool(pool, cpu) { 6412 mutex_lock(&wq_pool_attach_mutex); 6413 raw_spin_lock_irq(&pool->lock); 6414 6415 /* 6416 * We've blocked all attach/detach operations. Make all workers 6417 * unbound and set DISASSOCIATED. Before this, all workers 6418 * must be on the cpu. After this, they may become diasporas. 6419 * And the preemption disabled section in their sched callbacks 6420 * are guaranteed to see WORKER_UNBOUND since the code here 6421 * is on the same cpu. 6422 */ 6423 for_each_pool_worker(worker, pool) 6424 worker->flags |= WORKER_UNBOUND; 6425 6426 pool->flags |= POOL_DISASSOCIATED; 6427 6428 /* 6429 * The handling of nr_running in sched callbacks are disabled 6430 * now. Zap nr_running. After this, nr_running stays zero and 6431 * need_more_worker() and keep_working() are always true as 6432 * long as the worklist is not empty. This pool now behaves as 6433 * an unbound (in terms of concurrency management) pool which 6434 * are served by workers tied to the pool. 6435 */ 6436 pool->nr_running = 0; 6437 6438 /* 6439 * With concurrency management just turned off, a busy 6440 * worker blocking could lead to lengthy stalls. Kick off 6441 * unbound chain execution of currently pending work items. 6442 */ 6443 kick_pool(pool); 6444 6445 raw_spin_unlock_irq(&pool->lock); 6446 6447 for_each_pool_worker(worker, pool) 6448 unbind_worker(worker); 6449 6450 mutex_unlock(&wq_pool_attach_mutex); 6451 } 6452 } 6453 6454 /** 6455 * rebind_workers - rebind all workers of a pool to the associated CPU 6456 * @pool: pool of interest 6457 * 6458 * @pool->cpu is coming online. Rebind all workers to the CPU. 6459 */ 6460 static void rebind_workers(struct worker_pool *pool) 6461 { 6462 struct worker *worker; 6463 6464 lockdep_assert_held(&wq_pool_attach_mutex); 6465 6466 /* 6467 * Restore CPU affinity of all workers. As all idle workers should 6468 * be on the run-queue of the associated CPU before any local 6469 * wake-ups for concurrency management happen, restore CPU affinity 6470 * of all workers first and then clear UNBOUND. As we're called 6471 * from CPU_ONLINE, the following shouldn't fail. 6472 */ 6473 for_each_pool_worker(worker, pool) { 6474 kthread_set_per_cpu(worker->task, pool->cpu); 6475 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 6476 pool_allowed_cpus(pool)) < 0); 6477 } 6478 6479 raw_spin_lock_irq(&pool->lock); 6480 6481 pool->flags &= ~POOL_DISASSOCIATED; 6482 6483 for_each_pool_worker(worker, pool) { 6484 unsigned int worker_flags = worker->flags; 6485 6486 /* 6487 * We want to clear UNBOUND but can't directly call 6488 * worker_clr_flags() or adjust nr_running. Atomically 6489 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 6490 * @worker will clear REBOUND using worker_clr_flags() when 6491 * it initiates the next execution cycle thus restoring 6492 * concurrency management. Note that when or whether 6493 * @worker clears REBOUND doesn't affect correctness. 6494 * 6495 * WRITE_ONCE() is necessary because @worker->flags may be 6496 * tested without holding any lock in 6497 * wq_worker_running(). Without it, NOT_RUNNING test may 6498 * fail incorrectly leading to premature concurrency 6499 * management operations. 6500 */ 6501 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 6502 worker_flags |= WORKER_REBOUND; 6503 worker_flags &= ~WORKER_UNBOUND; 6504 WRITE_ONCE(worker->flags, worker_flags); 6505 } 6506 6507 raw_spin_unlock_irq(&pool->lock); 6508 } 6509 6510 /** 6511 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 6512 * @pool: unbound pool of interest 6513 * @cpu: the CPU which is coming up 6514 * 6515 * An unbound pool may end up with a cpumask which doesn't have any online 6516 * CPUs. When a worker of such pool get scheduled, the scheduler resets 6517 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 6518 * online CPU before, cpus_allowed of all its workers should be restored. 6519 */ 6520 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 6521 { 6522 static cpumask_t cpumask; 6523 struct worker *worker; 6524 6525 lockdep_assert_held(&wq_pool_attach_mutex); 6526 6527 /* is @cpu allowed for @pool? */ 6528 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 6529 return; 6530 6531 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 6532 6533 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 6534 for_each_pool_worker(worker, pool) 6535 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 6536 } 6537 6538 int workqueue_prepare_cpu(unsigned int cpu) 6539 { 6540 struct worker_pool *pool; 6541 6542 for_each_cpu_worker_pool(pool, cpu) { 6543 if (pool->nr_workers) 6544 continue; 6545 if (!create_worker(pool)) 6546 return -ENOMEM; 6547 } 6548 return 0; 6549 } 6550 6551 int workqueue_online_cpu(unsigned int cpu) 6552 { 6553 struct worker_pool *pool; 6554 struct workqueue_struct *wq; 6555 int pi; 6556 6557 mutex_lock(&wq_pool_mutex); 6558 6559 cpumask_set_cpu(cpu, wq_online_cpumask); 6560 6561 for_each_pool(pool, pi) { 6562 /* BH pools aren't affected by hotplug */ 6563 if (pool->flags & POOL_BH) 6564 continue; 6565 6566 mutex_lock(&wq_pool_attach_mutex); 6567 if (pool->cpu == cpu) 6568 rebind_workers(pool); 6569 else if (pool->cpu < 0) 6570 restore_unbound_workers_cpumask(pool, cpu); 6571 mutex_unlock(&wq_pool_attach_mutex); 6572 } 6573 6574 /* update pod affinity of unbound workqueues */ 6575 list_for_each_entry(wq, &workqueues, list) { 6576 struct workqueue_attrs *attrs = wq->unbound_attrs; 6577 6578 if (attrs) { 6579 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6580 int tcpu; 6581 6582 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6583 unbound_wq_update_pwq(wq, tcpu); 6584 6585 mutex_lock(&wq->mutex); 6586 wq_update_node_max_active(wq, -1); 6587 mutex_unlock(&wq->mutex); 6588 } 6589 } 6590 6591 mutex_unlock(&wq_pool_mutex); 6592 return 0; 6593 } 6594 6595 int workqueue_offline_cpu(unsigned int cpu) 6596 { 6597 struct workqueue_struct *wq; 6598 6599 /* unbinding per-cpu workers should happen on the local CPU */ 6600 if (WARN_ON(cpu != smp_processor_id())) 6601 return -1; 6602 6603 unbind_workers(cpu); 6604 6605 /* update pod affinity of unbound workqueues */ 6606 mutex_lock(&wq_pool_mutex); 6607 6608 cpumask_clear_cpu(cpu, wq_online_cpumask); 6609 6610 list_for_each_entry(wq, &workqueues, list) { 6611 struct workqueue_attrs *attrs = wq->unbound_attrs; 6612 6613 if (attrs) { 6614 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6615 int tcpu; 6616 6617 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6618 unbound_wq_update_pwq(wq, tcpu); 6619 6620 mutex_lock(&wq->mutex); 6621 wq_update_node_max_active(wq, cpu); 6622 mutex_unlock(&wq->mutex); 6623 } 6624 } 6625 mutex_unlock(&wq_pool_mutex); 6626 6627 return 0; 6628 } 6629 6630 struct work_for_cpu { 6631 struct work_struct work; 6632 long (*fn)(void *); 6633 void *arg; 6634 long ret; 6635 }; 6636 6637 static void work_for_cpu_fn(struct work_struct *work) 6638 { 6639 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 6640 6641 wfc->ret = wfc->fn(wfc->arg); 6642 } 6643 6644 /** 6645 * work_on_cpu_key - run a function in thread context on a particular cpu 6646 * @cpu: the cpu to run on 6647 * @fn: the function to run 6648 * @arg: the function arg 6649 * @key: The lock class key for lock debugging purposes 6650 * 6651 * It is up to the caller to ensure that the cpu doesn't go offline. 6652 * The caller must not hold any locks which would prevent @fn from completing. 6653 * 6654 * Return: The value @fn returns. 6655 */ 6656 long work_on_cpu_key(int cpu, long (*fn)(void *), 6657 void *arg, struct lock_class_key *key) 6658 { 6659 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 6660 6661 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 6662 schedule_work_on(cpu, &wfc.work); 6663 flush_work(&wfc.work); 6664 destroy_work_on_stack(&wfc.work); 6665 return wfc.ret; 6666 } 6667 EXPORT_SYMBOL_GPL(work_on_cpu_key); 6668 6669 /** 6670 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 6671 * @cpu: the cpu to run on 6672 * @fn: the function to run 6673 * @arg: the function argument 6674 * @key: The lock class key for lock debugging purposes 6675 * 6676 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 6677 * any locks which would prevent @fn from completing. 6678 * 6679 * Return: The value @fn returns. 6680 */ 6681 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 6682 void *arg, struct lock_class_key *key) 6683 { 6684 long ret = -ENODEV; 6685 6686 cpus_read_lock(); 6687 if (cpu_online(cpu)) 6688 ret = work_on_cpu_key(cpu, fn, arg, key); 6689 cpus_read_unlock(); 6690 return ret; 6691 } 6692 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 6693 #endif /* CONFIG_SMP */ 6694 6695 #ifdef CONFIG_FREEZER 6696 6697 /** 6698 * freeze_workqueues_begin - begin freezing workqueues 6699 * 6700 * Start freezing workqueues. After this function returns, all freezable 6701 * workqueues will queue new works to their inactive_works list instead of 6702 * pool->worklist. 6703 * 6704 * CONTEXT: 6705 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6706 */ 6707 void freeze_workqueues_begin(void) 6708 { 6709 struct workqueue_struct *wq; 6710 6711 mutex_lock(&wq_pool_mutex); 6712 6713 WARN_ON_ONCE(workqueue_freezing); 6714 workqueue_freezing = true; 6715 6716 list_for_each_entry(wq, &workqueues, list) { 6717 mutex_lock(&wq->mutex); 6718 wq_adjust_max_active(wq); 6719 mutex_unlock(&wq->mutex); 6720 } 6721 6722 mutex_unlock(&wq_pool_mutex); 6723 } 6724 6725 /** 6726 * freeze_workqueues_busy - are freezable workqueues still busy? 6727 * 6728 * Check whether freezing is complete. This function must be called 6729 * between freeze_workqueues_begin() and thaw_workqueues(). 6730 * 6731 * CONTEXT: 6732 * Grabs and releases wq_pool_mutex. 6733 * 6734 * Return: 6735 * %true if some freezable workqueues are still busy. %false if freezing 6736 * is complete. 6737 */ 6738 bool freeze_workqueues_busy(void) 6739 { 6740 bool busy = false; 6741 struct workqueue_struct *wq; 6742 struct pool_workqueue *pwq; 6743 6744 mutex_lock(&wq_pool_mutex); 6745 6746 WARN_ON_ONCE(!workqueue_freezing); 6747 6748 list_for_each_entry(wq, &workqueues, list) { 6749 if (!(wq->flags & WQ_FREEZABLE)) 6750 continue; 6751 /* 6752 * nr_active is monotonically decreasing. It's safe 6753 * to peek without lock. 6754 */ 6755 rcu_read_lock(); 6756 for_each_pwq(pwq, wq) { 6757 WARN_ON_ONCE(pwq->nr_active < 0); 6758 if (pwq->nr_active) { 6759 busy = true; 6760 rcu_read_unlock(); 6761 goto out_unlock; 6762 } 6763 } 6764 rcu_read_unlock(); 6765 } 6766 out_unlock: 6767 mutex_unlock(&wq_pool_mutex); 6768 return busy; 6769 } 6770 6771 /** 6772 * thaw_workqueues - thaw workqueues 6773 * 6774 * Thaw workqueues. Normal queueing is restored and all collected 6775 * frozen works are transferred to their respective pool worklists. 6776 * 6777 * CONTEXT: 6778 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6779 */ 6780 void thaw_workqueues(void) 6781 { 6782 struct workqueue_struct *wq; 6783 6784 mutex_lock(&wq_pool_mutex); 6785 6786 if (!workqueue_freezing) 6787 goto out_unlock; 6788 6789 workqueue_freezing = false; 6790 6791 /* restore max_active and repopulate worklist */ 6792 list_for_each_entry(wq, &workqueues, list) { 6793 mutex_lock(&wq->mutex); 6794 wq_adjust_max_active(wq); 6795 mutex_unlock(&wq->mutex); 6796 } 6797 6798 out_unlock: 6799 mutex_unlock(&wq_pool_mutex); 6800 } 6801 #endif /* CONFIG_FREEZER */ 6802 6803 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 6804 { 6805 LIST_HEAD(ctxs); 6806 int ret = 0; 6807 struct workqueue_struct *wq; 6808 struct apply_wqattrs_ctx *ctx, *n; 6809 6810 lockdep_assert_held(&wq_pool_mutex); 6811 6812 list_for_each_entry(wq, &workqueues, list) { 6813 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING)) 6814 continue; 6815 6816 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 6817 if (IS_ERR(ctx)) { 6818 ret = PTR_ERR(ctx); 6819 break; 6820 } 6821 6822 list_add_tail(&ctx->list, &ctxs); 6823 } 6824 6825 list_for_each_entry_safe(ctx, n, &ctxs, list) { 6826 if (!ret) 6827 apply_wqattrs_commit(ctx); 6828 apply_wqattrs_cleanup(ctx); 6829 } 6830 6831 if (!ret) { 6832 mutex_lock(&wq_pool_attach_mutex); 6833 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 6834 mutex_unlock(&wq_pool_attach_mutex); 6835 } 6836 return ret; 6837 } 6838 6839 /** 6840 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask 6841 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask 6842 * 6843 * This function can be called from cpuset code to provide a set of isolated 6844 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold 6845 * either cpus_read_lock or cpus_write_lock. 6846 */ 6847 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) 6848 { 6849 cpumask_var_t cpumask; 6850 int ret = 0; 6851 6852 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6853 return -ENOMEM; 6854 6855 lockdep_assert_cpus_held(); 6856 mutex_lock(&wq_pool_mutex); 6857 6858 /* 6859 * If the operation fails, it will fall back to 6860 * wq_requested_unbound_cpumask which is initially set to 6861 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten 6862 * by any subsequent write to workqueue/cpumask sysfs file. 6863 */ 6864 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask)) 6865 cpumask_copy(cpumask, wq_requested_unbound_cpumask); 6866 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 6867 ret = workqueue_apply_unbound_cpumask(cpumask); 6868 6869 /* Save the current isolated cpumask & export it via sysfs */ 6870 if (!ret) 6871 cpumask_copy(wq_isolated_cpumask, exclude_cpumask); 6872 6873 mutex_unlock(&wq_pool_mutex); 6874 free_cpumask_var(cpumask); 6875 return ret; 6876 } 6877 6878 static int parse_affn_scope(const char *val) 6879 { 6880 int i; 6881 6882 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 6883 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 6884 return i; 6885 } 6886 return -EINVAL; 6887 } 6888 6889 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 6890 { 6891 struct workqueue_struct *wq; 6892 int affn, cpu; 6893 6894 affn = parse_affn_scope(val); 6895 if (affn < 0) 6896 return affn; 6897 if (affn == WQ_AFFN_DFL) 6898 return -EINVAL; 6899 6900 cpus_read_lock(); 6901 mutex_lock(&wq_pool_mutex); 6902 6903 wq_affn_dfl = affn; 6904 6905 list_for_each_entry(wq, &workqueues, list) { 6906 for_each_online_cpu(cpu) 6907 unbound_wq_update_pwq(wq, cpu); 6908 } 6909 6910 mutex_unlock(&wq_pool_mutex); 6911 cpus_read_unlock(); 6912 6913 return 0; 6914 } 6915 6916 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 6917 { 6918 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 6919 } 6920 6921 static const struct kernel_param_ops wq_affn_dfl_ops = { 6922 .set = wq_affn_dfl_set, 6923 .get = wq_affn_dfl_get, 6924 }; 6925 6926 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 6927 6928 #ifdef CONFIG_SYSFS 6929 /* 6930 * Workqueues with WQ_SYSFS flag set is visible to userland via 6931 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 6932 * following attributes. 6933 * 6934 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 6935 * max_active RW int : maximum number of in-flight work items 6936 * 6937 * Unbound workqueues have the following extra attributes. 6938 * 6939 * nice RW int : nice value of the workers 6940 * cpumask RW mask : bitmask of allowed CPUs for the workers 6941 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 6942 * affinity_strict RW bool : worker CPU affinity is strict 6943 */ 6944 struct wq_device { 6945 struct workqueue_struct *wq; 6946 struct device dev; 6947 }; 6948 6949 static struct workqueue_struct *dev_to_wq(struct device *dev) 6950 { 6951 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6952 6953 return wq_dev->wq; 6954 } 6955 6956 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 6957 char *buf) 6958 { 6959 struct workqueue_struct *wq = dev_to_wq(dev); 6960 6961 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 6962 } 6963 static DEVICE_ATTR_RO(per_cpu); 6964 6965 static ssize_t max_active_show(struct device *dev, 6966 struct device_attribute *attr, char *buf) 6967 { 6968 struct workqueue_struct *wq = dev_to_wq(dev); 6969 6970 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 6971 } 6972 6973 static ssize_t max_active_store(struct device *dev, 6974 struct device_attribute *attr, const char *buf, 6975 size_t count) 6976 { 6977 struct workqueue_struct *wq = dev_to_wq(dev); 6978 int val; 6979 6980 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 6981 return -EINVAL; 6982 6983 workqueue_set_max_active(wq, val); 6984 return count; 6985 } 6986 static DEVICE_ATTR_RW(max_active); 6987 6988 static struct attribute *wq_sysfs_attrs[] = { 6989 &dev_attr_per_cpu.attr, 6990 &dev_attr_max_active.attr, 6991 NULL, 6992 }; 6993 ATTRIBUTE_GROUPS(wq_sysfs); 6994 6995 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 6996 char *buf) 6997 { 6998 struct workqueue_struct *wq = dev_to_wq(dev); 6999 int written; 7000 7001 mutex_lock(&wq->mutex); 7002 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 7003 mutex_unlock(&wq->mutex); 7004 7005 return written; 7006 } 7007 7008 /* prepare workqueue_attrs for sysfs store operations */ 7009 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 7010 { 7011 struct workqueue_attrs *attrs; 7012 7013 lockdep_assert_held(&wq_pool_mutex); 7014 7015 attrs = alloc_workqueue_attrs(); 7016 if (!attrs) 7017 return NULL; 7018 7019 copy_workqueue_attrs(attrs, wq->unbound_attrs); 7020 return attrs; 7021 } 7022 7023 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 7024 const char *buf, size_t count) 7025 { 7026 struct workqueue_struct *wq = dev_to_wq(dev); 7027 struct workqueue_attrs *attrs; 7028 int ret = -ENOMEM; 7029 7030 apply_wqattrs_lock(); 7031 7032 attrs = wq_sysfs_prep_attrs(wq); 7033 if (!attrs) 7034 goto out_unlock; 7035 7036 if (sscanf(buf, "%d", &attrs->nice) == 1 && 7037 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 7038 ret = apply_workqueue_attrs_locked(wq, attrs); 7039 else 7040 ret = -EINVAL; 7041 7042 out_unlock: 7043 apply_wqattrs_unlock(); 7044 free_workqueue_attrs(attrs); 7045 return ret ?: count; 7046 } 7047 7048 static ssize_t wq_cpumask_show(struct device *dev, 7049 struct device_attribute *attr, char *buf) 7050 { 7051 struct workqueue_struct *wq = dev_to_wq(dev); 7052 int written; 7053 7054 mutex_lock(&wq->mutex); 7055 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 7056 cpumask_pr_args(wq->unbound_attrs->cpumask)); 7057 mutex_unlock(&wq->mutex); 7058 return written; 7059 } 7060 7061 static ssize_t wq_cpumask_store(struct device *dev, 7062 struct device_attribute *attr, 7063 const char *buf, size_t count) 7064 { 7065 struct workqueue_struct *wq = dev_to_wq(dev); 7066 struct workqueue_attrs *attrs; 7067 int ret = -ENOMEM; 7068 7069 apply_wqattrs_lock(); 7070 7071 attrs = wq_sysfs_prep_attrs(wq); 7072 if (!attrs) 7073 goto out_unlock; 7074 7075 ret = cpumask_parse(buf, attrs->cpumask); 7076 if (!ret) 7077 ret = apply_workqueue_attrs_locked(wq, attrs); 7078 7079 out_unlock: 7080 apply_wqattrs_unlock(); 7081 free_workqueue_attrs(attrs); 7082 return ret ?: count; 7083 } 7084 7085 static ssize_t wq_affn_scope_show(struct device *dev, 7086 struct device_attribute *attr, char *buf) 7087 { 7088 struct workqueue_struct *wq = dev_to_wq(dev); 7089 int written; 7090 7091 mutex_lock(&wq->mutex); 7092 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 7093 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 7094 wq_affn_names[WQ_AFFN_DFL], 7095 wq_affn_names[wq_affn_dfl]); 7096 else 7097 written = scnprintf(buf, PAGE_SIZE, "%s\n", 7098 wq_affn_names[wq->unbound_attrs->affn_scope]); 7099 mutex_unlock(&wq->mutex); 7100 7101 return written; 7102 } 7103 7104 static ssize_t wq_affn_scope_store(struct device *dev, 7105 struct device_attribute *attr, 7106 const char *buf, size_t count) 7107 { 7108 struct workqueue_struct *wq = dev_to_wq(dev); 7109 struct workqueue_attrs *attrs; 7110 int affn, ret = -ENOMEM; 7111 7112 affn = parse_affn_scope(buf); 7113 if (affn < 0) 7114 return affn; 7115 7116 apply_wqattrs_lock(); 7117 attrs = wq_sysfs_prep_attrs(wq); 7118 if (attrs) { 7119 attrs->affn_scope = affn; 7120 ret = apply_workqueue_attrs_locked(wq, attrs); 7121 } 7122 apply_wqattrs_unlock(); 7123 free_workqueue_attrs(attrs); 7124 return ret ?: count; 7125 } 7126 7127 static ssize_t wq_affinity_strict_show(struct device *dev, 7128 struct device_attribute *attr, char *buf) 7129 { 7130 struct workqueue_struct *wq = dev_to_wq(dev); 7131 7132 return scnprintf(buf, PAGE_SIZE, "%d\n", 7133 wq->unbound_attrs->affn_strict); 7134 } 7135 7136 static ssize_t wq_affinity_strict_store(struct device *dev, 7137 struct device_attribute *attr, 7138 const char *buf, size_t count) 7139 { 7140 struct workqueue_struct *wq = dev_to_wq(dev); 7141 struct workqueue_attrs *attrs; 7142 int v, ret = -ENOMEM; 7143 7144 if (sscanf(buf, "%d", &v) != 1) 7145 return -EINVAL; 7146 7147 apply_wqattrs_lock(); 7148 attrs = wq_sysfs_prep_attrs(wq); 7149 if (attrs) { 7150 attrs->affn_strict = (bool)v; 7151 ret = apply_workqueue_attrs_locked(wq, attrs); 7152 } 7153 apply_wqattrs_unlock(); 7154 free_workqueue_attrs(attrs); 7155 return ret ?: count; 7156 } 7157 7158 static struct device_attribute wq_sysfs_unbound_attrs[] = { 7159 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 7160 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 7161 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 7162 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 7163 __ATTR_NULL, 7164 }; 7165 7166 static const struct bus_type wq_subsys = { 7167 .name = "workqueue", 7168 .dev_groups = wq_sysfs_groups, 7169 }; 7170 7171 /** 7172 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 7173 * @cpumask: the cpumask to set 7174 * 7175 * The low-level workqueues cpumask is a global cpumask that limits 7176 * the affinity of all unbound workqueues. This function check the @cpumask 7177 * and apply it to all unbound workqueues and updates all pwqs of them. 7178 * 7179 * Return: 0 - Success 7180 * -EINVAL - Invalid @cpumask 7181 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 7182 */ 7183 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 7184 { 7185 int ret = -EINVAL; 7186 7187 /* 7188 * Not excluding isolated cpus on purpose. 7189 * If the user wishes to include them, we allow that. 7190 */ 7191 cpumask_and(cpumask, cpumask, cpu_possible_mask); 7192 if (!cpumask_empty(cpumask)) { 7193 ret = 0; 7194 apply_wqattrs_lock(); 7195 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 7196 ret = workqueue_apply_unbound_cpumask(cpumask); 7197 if (!ret) 7198 cpumask_copy(wq_requested_unbound_cpumask, cpumask); 7199 apply_wqattrs_unlock(); 7200 } 7201 7202 return ret; 7203 } 7204 7205 static ssize_t __wq_cpumask_show(struct device *dev, 7206 struct device_attribute *attr, char *buf, cpumask_var_t mask) 7207 { 7208 int written; 7209 7210 mutex_lock(&wq_pool_mutex); 7211 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 7212 mutex_unlock(&wq_pool_mutex); 7213 7214 return written; 7215 } 7216 7217 static ssize_t cpumask_requested_show(struct device *dev, 7218 struct device_attribute *attr, char *buf) 7219 { 7220 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask); 7221 } 7222 static DEVICE_ATTR_RO(cpumask_requested); 7223 7224 static ssize_t cpumask_isolated_show(struct device *dev, 7225 struct device_attribute *attr, char *buf) 7226 { 7227 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask); 7228 } 7229 static DEVICE_ATTR_RO(cpumask_isolated); 7230 7231 static ssize_t cpumask_show(struct device *dev, 7232 struct device_attribute *attr, char *buf) 7233 { 7234 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask); 7235 } 7236 7237 static ssize_t cpumask_store(struct device *dev, 7238 struct device_attribute *attr, const char *buf, size_t count) 7239 { 7240 cpumask_var_t cpumask; 7241 int ret; 7242 7243 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 7244 return -ENOMEM; 7245 7246 ret = cpumask_parse(buf, cpumask); 7247 if (!ret) 7248 ret = workqueue_set_unbound_cpumask(cpumask); 7249 7250 free_cpumask_var(cpumask); 7251 return ret ? ret : count; 7252 } 7253 static DEVICE_ATTR_RW(cpumask); 7254 7255 static struct attribute *wq_sysfs_cpumask_attrs[] = { 7256 &dev_attr_cpumask.attr, 7257 &dev_attr_cpumask_requested.attr, 7258 &dev_attr_cpumask_isolated.attr, 7259 NULL, 7260 }; 7261 ATTRIBUTE_GROUPS(wq_sysfs_cpumask); 7262 7263 static int __init wq_sysfs_init(void) 7264 { 7265 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups); 7266 } 7267 core_initcall(wq_sysfs_init); 7268 7269 static void wq_device_release(struct device *dev) 7270 { 7271 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7272 7273 kfree(wq_dev); 7274 } 7275 7276 /** 7277 * workqueue_sysfs_register - make a workqueue visible in sysfs 7278 * @wq: the workqueue to register 7279 * 7280 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 7281 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 7282 * which is the preferred method. 7283 * 7284 * Workqueue user should use this function directly iff it wants to apply 7285 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 7286 * apply_workqueue_attrs() may race against userland updating the 7287 * attributes. 7288 * 7289 * Return: 0 on success, -errno on failure. 7290 */ 7291 int workqueue_sysfs_register(struct workqueue_struct *wq) 7292 { 7293 struct wq_device *wq_dev; 7294 int ret; 7295 7296 /* 7297 * Adjusting max_active breaks ordering guarantee. Disallow exposing 7298 * ordered workqueues. 7299 */ 7300 if (WARN_ON(wq->flags & __WQ_ORDERED)) 7301 return -EINVAL; 7302 7303 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 7304 if (!wq_dev) 7305 return -ENOMEM; 7306 7307 wq_dev->wq = wq; 7308 wq_dev->dev.bus = &wq_subsys; 7309 wq_dev->dev.release = wq_device_release; 7310 dev_set_name(&wq_dev->dev, "%s", wq->name); 7311 7312 /* 7313 * unbound_attrs are created separately. Suppress uevent until 7314 * everything is ready. 7315 */ 7316 dev_set_uevent_suppress(&wq_dev->dev, true); 7317 7318 ret = device_register(&wq_dev->dev); 7319 if (ret) { 7320 put_device(&wq_dev->dev); 7321 wq->wq_dev = NULL; 7322 return ret; 7323 } 7324 7325 if (wq->flags & WQ_UNBOUND) { 7326 struct device_attribute *attr; 7327 7328 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 7329 ret = device_create_file(&wq_dev->dev, attr); 7330 if (ret) { 7331 device_unregister(&wq_dev->dev); 7332 wq->wq_dev = NULL; 7333 return ret; 7334 } 7335 } 7336 } 7337 7338 dev_set_uevent_suppress(&wq_dev->dev, false); 7339 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 7340 return 0; 7341 } 7342 7343 /** 7344 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 7345 * @wq: the workqueue to unregister 7346 * 7347 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 7348 */ 7349 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 7350 { 7351 struct wq_device *wq_dev = wq->wq_dev; 7352 7353 if (!wq->wq_dev) 7354 return; 7355 7356 wq->wq_dev = NULL; 7357 device_unregister(&wq_dev->dev); 7358 } 7359 #else /* CONFIG_SYSFS */ 7360 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 7361 #endif /* CONFIG_SYSFS */ 7362 7363 /* 7364 * Workqueue watchdog. 7365 * 7366 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 7367 * flush dependency, a concurrency managed work item which stays RUNNING 7368 * indefinitely. Workqueue stalls can be very difficult to debug as the 7369 * usual warning mechanisms don't trigger and internal workqueue state is 7370 * largely opaque. 7371 * 7372 * Workqueue watchdog monitors all worker pools periodically and dumps 7373 * state if some pools failed to make forward progress for a while where 7374 * forward progress is defined as the first item on ->worklist changing. 7375 * 7376 * This mechanism is controlled through the kernel parameter 7377 * "workqueue.watchdog_thresh" which can be updated at runtime through the 7378 * corresponding sysfs parameter file. 7379 */ 7380 #ifdef CONFIG_WQ_WATCHDOG 7381 7382 static unsigned long wq_watchdog_thresh = 30; 7383 static struct timer_list wq_watchdog_timer; 7384 7385 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 7386 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 7387 7388 /* 7389 * Show workers that might prevent the processing of pending work items. 7390 * The only candidates are CPU-bound workers in the running state. 7391 * Pending work items should be handled by another idle worker 7392 * in all other situations. 7393 */ 7394 static void show_cpu_pool_hog(struct worker_pool *pool) 7395 { 7396 struct worker *worker; 7397 unsigned long irq_flags; 7398 int bkt; 7399 7400 raw_spin_lock_irqsave(&pool->lock, irq_flags); 7401 7402 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 7403 if (task_is_running(worker->task)) { 7404 /* 7405 * Defer printing to avoid deadlocks in console 7406 * drivers that queue work while holding locks 7407 * also taken in their write paths. 7408 */ 7409 printk_deferred_enter(); 7410 7411 pr_info("pool %d:\n", pool->id); 7412 sched_show_task(worker->task); 7413 7414 printk_deferred_exit(); 7415 } 7416 } 7417 7418 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 7419 } 7420 7421 static void show_cpu_pools_hogs(void) 7422 { 7423 struct worker_pool *pool; 7424 int pi; 7425 7426 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 7427 7428 rcu_read_lock(); 7429 7430 for_each_pool(pool, pi) { 7431 if (pool->cpu_stall) 7432 show_cpu_pool_hog(pool); 7433 7434 } 7435 7436 rcu_read_unlock(); 7437 } 7438 7439 static void wq_watchdog_reset_touched(void) 7440 { 7441 int cpu; 7442 7443 wq_watchdog_touched = jiffies; 7444 for_each_possible_cpu(cpu) 7445 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7446 } 7447 7448 static void wq_watchdog_timer_fn(struct timer_list *unused) 7449 { 7450 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7451 bool lockup_detected = false; 7452 bool cpu_pool_stall = false; 7453 unsigned long now = jiffies; 7454 struct worker_pool *pool; 7455 int pi; 7456 7457 if (!thresh) 7458 return; 7459 7460 rcu_read_lock(); 7461 7462 for_each_pool(pool, pi) { 7463 unsigned long pool_ts, touched, ts; 7464 7465 pool->cpu_stall = false; 7466 if (list_empty(&pool->worklist)) 7467 continue; 7468 7469 /* 7470 * If a virtual machine is stopped by the host it can look to 7471 * the watchdog like a stall. 7472 */ 7473 kvm_check_and_clear_guest_paused(); 7474 7475 /* get the latest of pool and touched timestamps */ 7476 if (pool->cpu >= 0) 7477 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 7478 else 7479 touched = READ_ONCE(wq_watchdog_touched); 7480 pool_ts = READ_ONCE(pool->watchdog_ts); 7481 7482 if (time_after(pool_ts, touched)) 7483 ts = pool_ts; 7484 else 7485 ts = touched; 7486 7487 /* did we stall? */ 7488 if (time_after(now, ts + thresh)) { 7489 lockup_detected = true; 7490 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) { 7491 pool->cpu_stall = true; 7492 cpu_pool_stall = true; 7493 } 7494 pr_emerg("BUG: workqueue lockup - pool"); 7495 pr_cont_pool_info(pool); 7496 pr_cont(" stuck for %us!\n", 7497 jiffies_to_msecs(now - pool_ts) / 1000); 7498 } 7499 7500 7501 } 7502 7503 rcu_read_unlock(); 7504 7505 if (lockup_detected) 7506 show_all_workqueues(); 7507 7508 if (cpu_pool_stall) 7509 show_cpu_pools_hogs(); 7510 7511 wq_watchdog_reset_touched(); 7512 mod_timer(&wq_watchdog_timer, jiffies + thresh); 7513 } 7514 7515 notrace void wq_watchdog_touch(int cpu) 7516 { 7517 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7518 unsigned long touch_ts = READ_ONCE(wq_watchdog_touched); 7519 unsigned long now = jiffies; 7520 7521 if (cpu >= 0) 7522 per_cpu(wq_watchdog_touched_cpu, cpu) = now; 7523 else 7524 WARN_ONCE(1, "%s should be called with valid CPU", __func__); 7525 7526 /* Don't unnecessarily store to global cacheline */ 7527 if (time_after(now, touch_ts + thresh / 4)) 7528 WRITE_ONCE(wq_watchdog_touched, jiffies); 7529 } 7530 7531 static void wq_watchdog_set_thresh(unsigned long thresh) 7532 { 7533 wq_watchdog_thresh = 0; 7534 del_timer_sync(&wq_watchdog_timer); 7535 7536 if (thresh) { 7537 wq_watchdog_thresh = thresh; 7538 wq_watchdog_reset_touched(); 7539 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 7540 } 7541 } 7542 7543 static int wq_watchdog_param_set_thresh(const char *val, 7544 const struct kernel_param *kp) 7545 { 7546 unsigned long thresh; 7547 int ret; 7548 7549 ret = kstrtoul(val, 0, &thresh); 7550 if (ret) 7551 return ret; 7552 7553 if (system_wq) 7554 wq_watchdog_set_thresh(thresh); 7555 else 7556 wq_watchdog_thresh = thresh; 7557 7558 return 0; 7559 } 7560 7561 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 7562 .set = wq_watchdog_param_set_thresh, 7563 .get = param_get_ulong, 7564 }; 7565 7566 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 7567 0644); 7568 7569 static void wq_watchdog_init(void) 7570 { 7571 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 7572 wq_watchdog_set_thresh(wq_watchdog_thresh); 7573 } 7574 7575 #else /* CONFIG_WQ_WATCHDOG */ 7576 7577 static inline void wq_watchdog_init(void) { } 7578 7579 #endif /* CONFIG_WQ_WATCHDOG */ 7580 7581 static void bh_pool_kick_normal(struct irq_work *irq_work) 7582 { 7583 raise_softirq_irqoff(TASKLET_SOFTIRQ); 7584 } 7585 7586 static void bh_pool_kick_highpri(struct irq_work *irq_work) 7587 { 7588 raise_softirq_irqoff(HI_SOFTIRQ); 7589 } 7590 7591 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 7592 { 7593 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 7594 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 7595 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 7596 return; 7597 } 7598 7599 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 7600 } 7601 7602 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice) 7603 { 7604 BUG_ON(init_worker_pool(pool)); 7605 pool->cpu = cpu; 7606 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 7607 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 7608 pool->attrs->nice = nice; 7609 pool->attrs->affn_strict = true; 7610 pool->node = cpu_to_node(cpu); 7611 7612 /* alloc pool ID */ 7613 mutex_lock(&wq_pool_mutex); 7614 BUG_ON(worker_pool_assign_id(pool)); 7615 mutex_unlock(&wq_pool_mutex); 7616 } 7617 7618 /** 7619 * workqueue_init_early - early init for workqueue subsystem 7620 * 7621 * This is the first step of three-staged workqueue subsystem initialization and 7622 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 7623 * up. It sets up all the data structures and system workqueues and allows early 7624 * boot code to create workqueues and queue/cancel work items. Actual work item 7625 * execution starts only after kthreads can be created and scheduled right 7626 * before early initcalls. 7627 */ 7628 void __init workqueue_init_early(void) 7629 { 7630 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 7631 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 7632 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal, 7633 bh_pool_kick_highpri }; 7634 int i, cpu; 7635 7636 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 7637 7638 BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL)); 7639 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 7640 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); 7641 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); 7642 7643 cpumask_copy(wq_online_cpumask, cpu_online_mask); 7644 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 7645 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 7646 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 7647 if (!cpumask_empty(&wq_cmdline_cpumask)) 7648 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 7649 7650 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask); 7651 7652 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 7653 7654 unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs(); 7655 BUG_ON(!unbound_wq_update_pwq_attrs_buf); 7656 7657 /* 7658 * If nohz_full is enabled, set power efficient workqueue as unbound. 7659 * This allows workqueue items to be moved to HK CPUs. 7660 */ 7661 if (housekeeping_enabled(HK_TYPE_TICK)) 7662 wq_power_efficient = true; 7663 7664 /* initialize WQ_AFFN_SYSTEM pods */ 7665 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7666 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 7667 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7668 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 7669 7670 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 7671 7672 pt->nr_pods = 1; 7673 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 7674 pt->pod_node[0] = NUMA_NO_NODE; 7675 pt->cpu_pod[0] = 0; 7676 7677 /* initialize BH and CPU pools */ 7678 for_each_possible_cpu(cpu) { 7679 struct worker_pool *pool; 7680 7681 i = 0; 7682 for_each_bh_worker_pool(pool, cpu) { 7683 init_cpu_worker_pool(pool, cpu, std_nice[i]); 7684 pool->flags |= POOL_BH; 7685 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]); 7686 i++; 7687 } 7688 7689 i = 0; 7690 for_each_cpu_worker_pool(pool, cpu) 7691 init_cpu_worker_pool(pool, cpu, std_nice[i++]); 7692 } 7693 7694 /* create default unbound and ordered wq attrs */ 7695 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 7696 struct workqueue_attrs *attrs; 7697 7698 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7699 attrs->nice = std_nice[i]; 7700 unbound_std_wq_attrs[i] = attrs; 7701 7702 /* 7703 * An ordered wq should have only one pwq as ordering is 7704 * guaranteed by max_active which is enforced by pwqs. 7705 */ 7706 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7707 attrs->nice = std_nice[i]; 7708 attrs->ordered = true; 7709 ordered_wq_attrs[i] = attrs; 7710 } 7711 7712 system_wq = alloc_workqueue("events", 0, 0); 7713 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 7714 system_long_wq = alloc_workqueue("events_long", 0, 0); 7715 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 7716 WQ_MAX_ACTIVE); 7717 system_freezable_wq = alloc_workqueue("events_freezable", 7718 WQ_FREEZABLE, 0); 7719 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 7720 WQ_POWER_EFFICIENT, 0); 7721 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient", 7722 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 7723 0); 7724 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0); 7725 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri", 7726 WQ_BH | WQ_HIGHPRI, 0); 7727 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 7728 !system_unbound_wq || !system_freezable_wq || 7729 !system_power_efficient_wq || 7730 !system_freezable_power_efficient_wq || 7731 !system_bh_wq || !system_bh_highpri_wq); 7732 } 7733 7734 static void __init wq_cpu_intensive_thresh_init(void) 7735 { 7736 unsigned long thresh; 7737 unsigned long bogo; 7738 7739 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); 7740 BUG_ON(IS_ERR(pwq_release_worker)); 7741 7742 /* if the user set it to a specific value, keep it */ 7743 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 7744 return; 7745 7746 /* 7747 * The default of 10ms is derived from the fact that most modern (as of 7748 * 2023) processors can do a lot in 10ms and that it's just below what 7749 * most consider human-perceivable. However, the kernel also runs on a 7750 * lot slower CPUs including microcontrollers where the threshold is way 7751 * too low. 7752 * 7753 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 7754 * This is by no means accurate but it doesn't have to be. The mechanism 7755 * is still useful even when the threshold is fully scaled up. Also, as 7756 * the reports would usually be applicable to everyone, some machines 7757 * operating on longer thresholds won't significantly diminish their 7758 * usefulness. 7759 */ 7760 thresh = 10 * USEC_PER_MSEC; 7761 7762 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 7763 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 7764 if (bogo < 4000) 7765 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 7766 7767 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 7768 loops_per_jiffy, bogo, thresh); 7769 7770 wq_cpu_intensive_thresh_us = thresh; 7771 } 7772 7773 /** 7774 * workqueue_init - bring workqueue subsystem fully online 7775 * 7776 * This is the second step of three-staged workqueue subsystem initialization 7777 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 7778 * been created and work items queued on them, but there are no kworkers 7779 * executing the work items yet. Populate the worker pools with the initial 7780 * workers and enable future kworker creations. 7781 */ 7782 void __init workqueue_init(void) 7783 { 7784 struct workqueue_struct *wq; 7785 struct worker_pool *pool; 7786 int cpu, bkt; 7787 7788 wq_cpu_intensive_thresh_init(); 7789 7790 mutex_lock(&wq_pool_mutex); 7791 7792 /* 7793 * Per-cpu pools created earlier could be missing node hint. Fix them 7794 * up. Also, create a rescuer for workqueues that requested it. 7795 */ 7796 for_each_possible_cpu(cpu) { 7797 for_each_bh_worker_pool(pool, cpu) 7798 pool->node = cpu_to_node(cpu); 7799 for_each_cpu_worker_pool(pool, cpu) 7800 pool->node = cpu_to_node(cpu); 7801 } 7802 7803 list_for_each_entry(wq, &workqueues, list) { 7804 WARN(init_rescuer(wq), 7805 "workqueue: failed to create early rescuer for %s", 7806 wq->name); 7807 } 7808 7809 mutex_unlock(&wq_pool_mutex); 7810 7811 /* 7812 * Create the initial workers. A BH pool has one pseudo worker that 7813 * represents the shared BH execution context and thus doesn't get 7814 * affected by hotplug events. Create the BH pseudo workers for all 7815 * possible CPUs here. 7816 */ 7817 for_each_possible_cpu(cpu) 7818 for_each_bh_worker_pool(pool, cpu) 7819 BUG_ON(!create_worker(pool)); 7820 7821 for_each_online_cpu(cpu) { 7822 for_each_cpu_worker_pool(pool, cpu) { 7823 pool->flags &= ~POOL_DISASSOCIATED; 7824 BUG_ON(!create_worker(pool)); 7825 } 7826 } 7827 7828 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 7829 BUG_ON(!create_worker(pool)); 7830 7831 wq_online = true; 7832 wq_watchdog_init(); 7833 } 7834 7835 /* 7836 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 7837 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 7838 * and consecutive pod ID. The rest of @pt is initialized accordingly. 7839 */ 7840 static void __init init_pod_type(struct wq_pod_type *pt, 7841 bool (*cpus_share_pod)(int, int)) 7842 { 7843 int cur, pre, cpu, pod; 7844 7845 pt->nr_pods = 0; 7846 7847 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 7848 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7849 BUG_ON(!pt->cpu_pod); 7850 7851 for_each_possible_cpu(cur) { 7852 for_each_possible_cpu(pre) { 7853 if (pre >= cur) { 7854 pt->cpu_pod[cur] = pt->nr_pods++; 7855 break; 7856 } 7857 if (cpus_share_pod(cur, pre)) { 7858 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 7859 break; 7860 } 7861 } 7862 } 7863 7864 /* init the rest to match @pt->cpu_pod[] */ 7865 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7866 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 7867 BUG_ON(!pt->pod_cpus || !pt->pod_node); 7868 7869 for (pod = 0; pod < pt->nr_pods; pod++) 7870 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 7871 7872 for_each_possible_cpu(cpu) { 7873 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 7874 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 7875 } 7876 } 7877 7878 static bool __init cpus_dont_share(int cpu0, int cpu1) 7879 { 7880 return false; 7881 } 7882 7883 static bool __init cpus_share_smt(int cpu0, int cpu1) 7884 { 7885 #ifdef CONFIG_SCHED_SMT 7886 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 7887 #else 7888 return false; 7889 #endif 7890 } 7891 7892 static bool __init cpus_share_numa(int cpu0, int cpu1) 7893 { 7894 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 7895 } 7896 7897 /** 7898 * workqueue_init_topology - initialize CPU pods for unbound workqueues 7899 * 7900 * This is the third step of three-staged workqueue subsystem initialization and 7901 * invoked after SMP and topology information are fully initialized. It 7902 * initializes the unbound CPU pods accordingly. 7903 */ 7904 void __init workqueue_init_topology(void) 7905 { 7906 struct workqueue_struct *wq; 7907 int cpu; 7908 7909 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 7910 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 7911 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 7912 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 7913 7914 wq_topo_initialized = true; 7915 7916 mutex_lock(&wq_pool_mutex); 7917 7918 /* 7919 * Workqueues allocated earlier would have all CPUs sharing the default 7920 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue 7921 * and CPU combinations to apply per-pod sharing. 7922 */ 7923 list_for_each_entry(wq, &workqueues, list) { 7924 for_each_online_cpu(cpu) 7925 unbound_wq_update_pwq(wq, cpu); 7926 if (wq->flags & WQ_UNBOUND) { 7927 mutex_lock(&wq->mutex); 7928 wq_update_node_max_active(wq, -1); 7929 mutex_unlock(&wq->mutex); 7930 } 7931 } 7932 7933 mutex_unlock(&wq_pool_mutex); 7934 } 7935 7936 void __warn_flushing_systemwide_wq(void) 7937 { 7938 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 7939 dump_stack(); 7940 } 7941 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 7942 7943 static int __init workqueue_unbound_cpus_setup(char *str) 7944 { 7945 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 7946 cpumask_clear(&wq_cmdline_cpumask); 7947 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 7948 } 7949 7950 return 1; 7951 } 7952 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 7953