xref: /linux-6.15/kernel/workqueue.c (revision b2b1f933)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <[email protected]>
9  *     Andrew Morton
10  *     Kai Petzke <[email protected]>
11  *     Theodore Ts'o <[email protected]>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <[email protected]>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 
59 #include "workqueue_internal.h"
60 
61 enum worker_pool_flags {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 *
78 	 * As there can only be one concurrent BH execution context per CPU, a
79 	 * BH pool is per-CPU and always DISASSOCIATED.
80 	 */
81 	POOL_BH			= 1 << 0,	/* is a BH pool */
82 	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
83 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
84 	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
85 };
86 
87 enum worker_flags {
88 	/* worker flags */
89 	WORKER_DIE		= 1 << 1,	/* die die die */
90 	WORKER_IDLE		= 1 << 2,	/* is idle */
91 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
92 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
93 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
94 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
95 
96 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
97 				  WORKER_UNBOUND | WORKER_REBOUND,
98 };
99 
100 enum work_cancel_flags {
101 	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
102 	WORK_CANCEL_DISABLE	= 1 << 1,	/* canceling to disable */
103 };
104 
105 enum wq_internal_consts {
106 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
107 
108 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
109 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
110 
111 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
112 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
113 
114 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
115 						/* call for help after 10ms
116 						   (min two ticks) */
117 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
118 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
119 
120 	/*
121 	 * Rescue workers are used only on emergencies and shared by
122 	 * all cpus.  Give MIN_NICE.
123 	 */
124 	RESCUER_NICE_LEVEL	= MIN_NICE,
125 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
126 
127 	WQ_NAME_LEN		= 32,
128 };
129 
130 /*
131  * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
132  * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
133  * msecs_to_jiffies() can't be an initializer.
134  */
135 #define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
136 #define BH_WORKER_RESTARTS	10
137 
138 /*
139  * Structure fields follow one of the following exclusion rules.
140  *
141  * I: Modifiable by initialization/destruction paths and read-only for
142  *    everyone else.
143  *
144  * P: Preemption protected.  Disabling preemption is enough and should
145  *    only be modified and accessed from the local cpu.
146  *
147  * L: pool->lock protected.  Access with pool->lock held.
148  *
149  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
150  *     reads.
151  *
152  * K: Only modified by worker while holding pool->lock. Can be safely read by
153  *    self, while holding pool->lock or from IRQ context if %current is the
154  *    kworker.
155  *
156  * S: Only modified by worker self.
157  *
158  * A: wq_pool_attach_mutex protected.
159  *
160  * PL: wq_pool_mutex protected.
161  *
162  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
163  *
164  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
165  *
166  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
167  *      RCU for reads.
168  *
169  * WQ: wq->mutex protected.
170  *
171  * WR: wq->mutex protected for writes.  RCU protected for reads.
172  *
173  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
174  *     with READ_ONCE() without locking.
175  *
176  * MD: wq_mayday_lock protected.
177  *
178  * WD: Used internally by the watchdog.
179  */
180 
181 /* struct worker is defined in workqueue_internal.h */
182 
183 struct worker_pool {
184 	raw_spinlock_t		lock;		/* the pool lock */
185 	int			cpu;		/* I: the associated cpu */
186 	int			node;		/* I: the associated node ID */
187 	int			id;		/* I: pool ID */
188 	unsigned int		flags;		/* L: flags */
189 
190 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
191 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
192 
193 	/*
194 	 * The counter is incremented in a process context on the associated CPU
195 	 * w/ preemption disabled, and decremented or reset in the same context
196 	 * but w/ pool->lock held. The readers grab pool->lock and are
197 	 * guaranteed to see if the counter reached zero.
198 	 */
199 	int			nr_running;
200 
201 	struct list_head	worklist;	/* L: list of pending works */
202 
203 	int			nr_workers;	/* L: total number of workers */
204 	int			nr_idle;	/* L: currently idle workers */
205 
206 	struct list_head	idle_list;	/* L: list of idle workers */
207 	struct timer_list	idle_timer;	/* L: worker idle timeout */
208 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
209 
210 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
211 
212 	/* a workers is either on busy_hash or idle_list, or the manager */
213 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
214 						/* L: hash of busy workers */
215 
216 	struct worker		*manager;	/* L: purely informational */
217 	struct list_head	workers;	/* A: attached workers */
218 
219 	struct ida		worker_ida;	/* worker IDs for task name */
220 
221 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
222 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
223 	int			refcnt;		/* PL: refcnt for unbound pools */
224 
225 	/*
226 	 * Destruction of pool is RCU protected to allow dereferences
227 	 * from get_work_pool().
228 	 */
229 	struct rcu_head		rcu;
230 };
231 
232 /*
233  * Per-pool_workqueue statistics. These can be monitored using
234  * tools/workqueue/wq_monitor.py.
235  */
236 enum pool_workqueue_stats {
237 	PWQ_STAT_STARTED,	/* work items started execution */
238 	PWQ_STAT_COMPLETED,	/* work items completed execution */
239 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
240 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
241 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
242 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
243 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
244 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
245 
246 	PWQ_NR_STATS,
247 };
248 
249 /*
250  * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
251  * of work_struct->data are used for flags and the remaining high bits
252  * point to the pwq; thus, pwqs need to be aligned at two's power of the
253  * number of flag bits.
254  */
255 struct pool_workqueue {
256 	struct worker_pool	*pool;		/* I: the associated pool */
257 	struct workqueue_struct *wq;		/* I: the owning workqueue */
258 	int			work_color;	/* L: current color */
259 	int			flush_color;	/* L: flushing color */
260 	int			refcnt;		/* L: reference count */
261 	int			nr_in_flight[WORK_NR_COLORS];
262 						/* L: nr of in_flight works */
263 	bool			plugged;	/* L: execution suspended */
264 
265 	/*
266 	 * nr_active management and WORK_STRUCT_INACTIVE:
267 	 *
268 	 * When pwq->nr_active >= max_active, new work item is queued to
269 	 * pwq->inactive_works instead of pool->worklist and marked with
270 	 * WORK_STRUCT_INACTIVE.
271 	 *
272 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
273 	 * nr_active and all work items in pwq->inactive_works are marked with
274 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
275 	 * in pwq->inactive_works. Some of them are ready to run in
276 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
277 	 * wq_barrier which is used for flush_work() and should not participate
278 	 * in nr_active. For non-barrier work item, it is marked with
279 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
280 	 */
281 	int			nr_active;	/* L: nr of active works */
282 	struct list_head	inactive_works;	/* L: inactive works */
283 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
284 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
285 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
286 
287 	u64			stats[PWQ_NR_STATS];
288 
289 	/*
290 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
291 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
292 	 * RCU protected so that the first pwq can be determined without
293 	 * grabbing wq->mutex.
294 	 */
295 	struct kthread_work	release_work;
296 	struct rcu_head		rcu;
297 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
298 
299 /*
300  * Structure used to wait for workqueue flush.
301  */
302 struct wq_flusher {
303 	struct list_head	list;		/* WQ: list of flushers */
304 	int			flush_color;	/* WQ: flush color waiting for */
305 	struct completion	done;		/* flush completion */
306 };
307 
308 struct wq_device;
309 
310 /*
311  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
312  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
313  * As sharing a single nr_active across multiple sockets can be very expensive,
314  * the counting and enforcement is per NUMA node.
315  *
316  * The following struct is used to enforce per-node max_active. When a pwq wants
317  * to start executing a work item, it should increment ->nr using
318  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
319  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
320  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
321  * round-robin order.
322  */
323 struct wq_node_nr_active {
324 	int			max;		/* per-node max_active */
325 	atomic_t		nr;		/* per-node nr_active */
326 	raw_spinlock_t		lock;		/* nests inside pool locks */
327 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
328 };
329 
330 /*
331  * The externally visible workqueue.  It relays the issued work items to
332  * the appropriate worker_pool through its pool_workqueues.
333  */
334 struct workqueue_struct {
335 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
336 	struct list_head	list;		/* PR: list of all workqueues */
337 
338 	struct mutex		mutex;		/* protects this wq */
339 	int			work_color;	/* WQ: current work color */
340 	int			flush_color;	/* WQ: current flush color */
341 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
342 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
343 	struct list_head	flusher_queue;	/* WQ: flush waiters */
344 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
345 
346 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
347 	struct worker		*rescuer;	/* MD: rescue worker */
348 
349 	int			nr_drainers;	/* WQ: drain in progress */
350 
351 	/* See alloc_workqueue() function comment for info on min/max_active */
352 	int			max_active;	/* WO: max active works */
353 	int			min_active;	/* WO: min active works */
354 	int			saved_max_active; /* WQ: saved max_active */
355 	int			saved_min_active; /* WQ: saved min_active */
356 
357 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
358 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
359 
360 #ifdef CONFIG_SYSFS
361 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
362 #endif
363 #ifdef CONFIG_LOCKDEP
364 	char			*lock_name;
365 	struct lock_class_key	key;
366 	struct lockdep_map	lockdep_map;
367 #endif
368 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
369 
370 	/*
371 	 * Destruction of workqueue_struct is RCU protected to allow walking
372 	 * the workqueues list without grabbing wq_pool_mutex.
373 	 * This is used to dump all workqueues from sysrq.
374 	 */
375 	struct rcu_head		rcu;
376 
377 	/* hot fields used during command issue, aligned to cacheline */
378 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
379 	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
380 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
381 };
382 
383 /*
384  * Each pod type describes how CPUs should be grouped for unbound workqueues.
385  * See the comment above workqueue_attrs->affn_scope.
386  */
387 struct wq_pod_type {
388 	int			nr_pods;	/* number of pods */
389 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
390 	int			*pod_node;	/* pod -> node */
391 	int			*cpu_pod;	/* cpu -> pod */
392 };
393 
394 struct work_offq_data {
395 	u32			pool_id;
396 	u32			disable;
397 	u32			flags;
398 };
399 
400 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
401 	[WQ_AFFN_DFL]		= "default",
402 	[WQ_AFFN_CPU]		= "cpu",
403 	[WQ_AFFN_SMT]		= "smt",
404 	[WQ_AFFN_CACHE]		= "cache",
405 	[WQ_AFFN_NUMA]		= "numa",
406 	[WQ_AFFN_SYSTEM]	= "system",
407 };
408 
409 /*
410  * Per-cpu work items which run for longer than the following threshold are
411  * automatically considered CPU intensive and excluded from concurrency
412  * management to prevent them from noticeably delaying other per-cpu work items.
413  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
414  * The actual value is initialized in wq_cpu_intensive_thresh_init().
415  */
416 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
417 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
418 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
419 static unsigned int wq_cpu_intensive_warning_thresh = 4;
420 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
421 #endif
422 
423 /* see the comment above the definition of WQ_POWER_EFFICIENT */
424 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
425 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
426 
427 static bool wq_online;			/* can kworkers be created yet? */
428 static bool wq_topo_initialized __read_mostly = false;
429 
430 static struct kmem_cache *pwq_cache;
431 
432 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
433 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
434 
435 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
436 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
437 
438 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
439 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
440 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
441 /* wait for manager to go away */
442 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
443 
444 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
445 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
446 
447 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
448 static cpumask_var_t wq_online_cpumask;
449 
450 /* PL&A: allowable cpus for unbound wqs and work items */
451 static cpumask_var_t wq_unbound_cpumask;
452 
453 /* PL: user requested unbound cpumask via sysfs */
454 static cpumask_var_t wq_requested_unbound_cpumask;
455 
456 /* PL: isolated cpumask to be excluded from unbound cpumask */
457 static cpumask_var_t wq_isolated_cpumask;
458 
459 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
460 static struct cpumask wq_cmdline_cpumask __initdata;
461 
462 /* CPU where unbound work was last round robin scheduled from this CPU */
463 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
464 
465 /*
466  * Local execution of unbound work items is no longer guaranteed.  The
467  * following always forces round-robin CPU selection on unbound work items
468  * to uncover usages which depend on it.
469  */
470 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
471 static bool wq_debug_force_rr_cpu = true;
472 #else
473 static bool wq_debug_force_rr_cpu = false;
474 #endif
475 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
476 
477 /* to raise softirq for the BH worker pools on other CPUs */
478 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS],
479 				     bh_pool_irq_works);
480 
481 /* the BH worker pools */
482 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
483 				     bh_worker_pools);
484 
485 /* the per-cpu worker pools */
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
487 				     cpu_worker_pools);
488 
489 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
490 
491 /* PL: hash of all unbound pools keyed by pool->attrs */
492 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
493 
494 /* I: attributes used when instantiating standard unbound pools on demand */
495 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
496 
497 /* I: attributes used when instantiating ordered pools on demand */
498 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
499 
500 /*
501  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
502  * process context while holding a pool lock. Bounce to a dedicated kthread
503  * worker to avoid A-A deadlocks.
504  */
505 static struct kthread_worker *pwq_release_worker __ro_after_init;
506 
507 struct workqueue_struct *system_wq __ro_after_init;
508 EXPORT_SYMBOL(system_wq);
509 struct workqueue_struct *system_highpri_wq __ro_after_init;
510 EXPORT_SYMBOL_GPL(system_highpri_wq);
511 struct workqueue_struct *system_long_wq __ro_after_init;
512 EXPORT_SYMBOL_GPL(system_long_wq);
513 struct workqueue_struct *system_unbound_wq __ro_after_init;
514 EXPORT_SYMBOL_GPL(system_unbound_wq);
515 struct workqueue_struct *system_freezable_wq __ro_after_init;
516 EXPORT_SYMBOL_GPL(system_freezable_wq);
517 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
518 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
519 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
520 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
521 struct workqueue_struct *system_bh_wq;
522 EXPORT_SYMBOL_GPL(system_bh_wq);
523 struct workqueue_struct *system_bh_highpri_wq;
524 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
525 
526 static int worker_thread(void *__worker);
527 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
528 static void show_pwq(struct pool_workqueue *pwq);
529 static void show_one_worker_pool(struct worker_pool *pool);
530 
531 #define CREATE_TRACE_POINTS
532 #include <trace/events/workqueue.h>
533 
534 #define assert_rcu_or_pool_mutex()					\
535 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
536 			 !lockdep_is_held(&wq_pool_mutex),		\
537 			 "RCU or wq_pool_mutex should be held")
538 
539 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
540 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
541 			 !lockdep_is_held(&wq->mutex) &&		\
542 			 !lockdep_is_held(&wq_pool_mutex),		\
543 			 "RCU, wq->mutex or wq_pool_mutex should be held")
544 
545 #define for_each_bh_worker_pool(pool, cpu)				\
546 	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
547 	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
548 	     (pool)++)
549 
550 #define for_each_cpu_worker_pool(pool, cpu)				\
551 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
552 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
553 	     (pool)++)
554 
555 /**
556  * for_each_pool - iterate through all worker_pools in the system
557  * @pool: iteration cursor
558  * @pi: integer used for iteration
559  *
560  * This must be called either with wq_pool_mutex held or RCU read
561  * locked.  If the pool needs to be used beyond the locking in effect, the
562  * caller is responsible for guaranteeing that the pool stays online.
563  *
564  * The if/else clause exists only for the lockdep assertion and can be
565  * ignored.
566  */
567 #define for_each_pool(pool, pi)						\
568 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
569 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
570 		else
571 
572 /**
573  * for_each_pool_worker - iterate through all workers of a worker_pool
574  * @worker: iteration cursor
575  * @pool: worker_pool to iterate workers of
576  *
577  * This must be called with wq_pool_attach_mutex.
578  *
579  * The if/else clause exists only for the lockdep assertion and can be
580  * ignored.
581  */
582 #define for_each_pool_worker(worker, pool)				\
583 	list_for_each_entry((worker), &(pool)->workers, node)		\
584 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
585 		else
586 
587 /**
588  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
589  * @pwq: iteration cursor
590  * @wq: the target workqueue
591  *
592  * This must be called either with wq->mutex held or RCU read locked.
593  * If the pwq needs to be used beyond the locking in effect, the caller is
594  * responsible for guaranteeing that the pwq stays online.
595  *
596  * The if/else clause exists only for the lockdep assertion and can be
597  * ignored.
598  */
599 #define for_each_pwq(pwq, wq)						\
600 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
601 				 lockdep_is_held(&(wq->mutex)))
602 
603 #ifdef CONFIG_DEBUG_OBJECTS_WORK
604 
605 static const struct debug_obj_descr work_debug_descr;
606 
607 static void *work_debug_hint(void *addr)
608 {
609 	return ((struct work_struct *) addr)->func;
610 }
611 
612 static bool work_is_static_object(void *addr)
613 {
614 	struct work_struct *work = addr;
615 
616 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
617 }
618 
619 /*
620  * fixup_init is called when:
621  * - an active object is initialized
622  */
623 static bool work_fixup_init(void *addr, enum debug_obj_state state)
624 {
625 	struct work_struct *work = addr;
626 
627 	switch (state) {
628 	case ODEBUG_STATE_ACTIVE:
629 		cancel_work_sync(work);
630 		debug_object_init(work, &work_debug_descr);
631 		return true;
632 	default:
633 		return false;
634 	}
635 }
636 
637 /*
638  * fixup_free is called when:
639  * - an active object is freed
640  */
641 static bool work_fixup_free(void *addr, enum debug_obj_state state)
642 {
643 	struct work_struct *work = addr;
644 
645 	switch (state) {
646 	case ODEBUG_STATE_ACTIVE:
647 		cancel_work_sync(work);
648 		debug_object_free(work, &work_debug_descr);
649 		return true;
650 	default:
651 		return false;
652 	}
653 }
654 
655 static const struct debug_obj_descr work_debug_descr = {
656 	.name		= "work_struct",
657 	.debug_hint	= work_debug_hint,
658 	.is_static_object = work_is_static_object,
659 	.fixup_init	= work_fixup_init,
660 	.fixup_free	= work_fixup_free,
661 };
662 
663 static inline void debug_work_activate(struct work_struct *work)
664 {
665 	debug_object_activate(work, &work_debug_descr);
666 }
667 
668 static inline void debug_work_deactivate(struct work_struct *work)
669 {
670 	debug_object_deactivate(work, &work_debug_descr);
671 }
672 
673 void __init_work(struct work_struct *work, int onstack)
674 {
675 	if (onstack)
676 		debug_object_init_on_stack(work, &work_debug_descr);
677 	else
678 		debug_object_init(work, &work_debug_descr);
679 }
680 EXPORT_SYMBOL_GPL(__init_work);
681 
682 void destroy_work_on_stack(struct work_struct *work)
683 {
684 	debug_object_free(work, &work_debug_descr);
685 }
686 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
687 
688 void destroy_delayed_work_on_stack(struct delayed_work *work)
689 {
690 	destroy_timer_on_stack(&work->timer);
691 	debug_object_free(&work->work, &work_debug_descr);
692 }
693 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
694 
695 #else
696 static inline void debug_work_activate(struct work_struct *work) { }
697 static inline void debug_work_deactivate(struct work_struct *work) { }
698 #endif
699 
700 /**
701  * worker_pool_assign_id - allocate ID and assign it to @pool
702  * @pool: the pool pointer of interest
703  *
704  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
705  * successfully, -errno on failure.
706  */
707 static int worker_pool_assign_id(struct worker_pool *pool)
708 {
709 	int ret;
710 
711 	lockdep_assert_held(&wq_pool_mutex);
712 
713 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
714 			GFP_KERNEL);
715 	if (ret >= 0) {
716 		pool->id = ret;
717 		return 0;
718 	}
719 	return ret;
720 }
721 
722 static struct pool_workqueue __rcu **
723 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
724 {
725        if (cpu >= 0)
726                return per_cpu_ptr(wq->cpu_pwq, cpu);
727        else
728                return &wq->dfl_pwq;
729 }
730 
731 /* @cpu < 0 for dfl_pwq */
732 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
733 {
734 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
735 				     lockdep_is_held(&wq_pool_mutex) ||
736 				     lockdep_is_held(&wq->mutex));
737 }
738 
739 /**
740  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
741  * @wq: workqueue of interest
742  *
743  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
744  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
745  * default pwq is always mapped to the pool with the current effective cpumask.
746  */
747 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
748 {
749 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
750 }
751 
752 static unsigned int work_color_to_flags(int color)
753 {
754 	return color << WORK_STRUCT_COLOR_SHIFT;
755 }
756 
757 static int get_work_color(unsigned long work_data)
758 {
759 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
760 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
761 }
762 
763 static int work_next_color(int color)
764 {
765 	return (color + 1) % WORK_NR_COLORS;
766 }
767 
768 static unsigned long pool_offq_flags(struct worker_pool *pool)
769 {
770 	return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
771 }
772 
773 /*
774  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
775  * contain the pointer to the queued pwq.  Once execution starts, the flag
776  * is cleared and the high bits contain OFFQ flags and pool ID.
777  *
778  * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
779  * can be used to set the pwq, pool or clear work->data. These functions should
780  * only be called while the work is owned - ie. while the PENDING bit is set.
781  *
782  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
783  * corresponding to a work.  Pool is available once the work has been
784  * queued anywhere after initialization until it is sync canceled.  pwq is
785  * available only while the work item is queued.
786  */
787 static inline void set_work_data(struct work_struct *work, unsigned long data)
788 {
789 	WARN_ON_ONCE(!work_pending(work));
790 	atomic_long_set(&work->data, data | work_static(work));
791 }
792 
793 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
794 			 unsigned long flags)
795 {
796 	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
797 		      WORK_STRUCT_PWQ | flags);
798 }
799 
800 static void set_work_pool_and_keep_pending(struct work_struct *work,
801 					   int pool_id, unsigned long flags)
802 {
803 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
804 		      WORK_STRUCT_PENDING | flags);
805 }
806 
807 static void set_work_pool_and_clear_pending(struct work_struct *work,
808 					    int pool_id, unsigned long flags)
809 {
810 	/*
811 	 * The following wmb is paired with the implied mb in
812 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
813 	 * here are visible to and precede any updates by the next PENDING
814 	 * owner.
815 	 */
816 	smp_wmb();
817 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
818 		      flags);
819 	/*
820 	 * The following mb guarantees that previous clear of a PENDING bit
821 	 * will not be reordered with any speculative LOADS or STORES from
822 	 * work->current_func, which is executed afterwards.  This possible
823 	 * reordering can lead to a missed execution on attempt to queue
824 	 * the same @work.  E.g. consider this case:
825 	 *
826 	 *   CPU#0                         CPU#1
827 	 *   ----------------------------  --------------------------------
828 	 *
829 	 * 1  STORE event_indicated
830 	 * 2  queue_work_on() {
831 	 * 3    test_and_set_bit(PENDING)
832 	 * 4 }                             set_..._and_clear_pending() {
833 	 * 5                                 set_work_data() # clear bit
834 	 * 6                                 smp_mb()
835 	 * 7                               work->current_func() {
836 	 * 8				      LOAD event_indicated
837 	 *				   }
838 	 *
839 	 * Without an explicit full barrier speculative LOAD on line 8 can
840 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
841 	 * CPU#0 observes the PENDING bit is still set and new execution of
842 	 * a @work is not queued in a hope, that CPU#1 will eventually
843 	 * finish the queued @work.  Meanwhile CPU#1 does not see
844 	 * event_indicated is set, because speculative LOAD was executed
845 	 * before actual STORE.
846 	 */
847 	smp_mb();
848 }
849 
850 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
851 {
852 	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
853 }
854 
855 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
856 {
857 	unsigned long data = atomic_long_read(&work->data);
858 
859 	if (data & WORK_STRUCT_PWQ)
860 		return work_struct_pwq(data);
861 	else
862 		return NULL;
863 }
864 
865 /**
866  * get_work_pool - return the worker_pool a given work was associated with
867  * @work: the work item of interest
868  *
869  * Pools are created and destroyed under wq_pool_mutex, and allows read
870  * access under RCU read lock.  As such, this function should be
871  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
872  *
873  * All fields of the returned pool are accessible as long as the above
874  * mentioned locking is in effect.  If the returned pool needs to be used
875  * beyond the critical section, the caller is responsible for ensuring the
876  * returned pool is and stays online.
877  *
878  * Return: The worker_pool @work was last associated with.  %NULL if none.
879  */
880 static struct worker_pool *get_work_pool(struct work_struct *work)
881 {
882 	unsigned long data = atomic_long_read(&work->data);
883 	int pool_id;
884 
885 	assert_rcu_or_pool_mutex();
886 
887 	if (data & WORK_STRUCT_PWQ)
888 		return work_struct_pwq(data)->pool;
889 
890 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
891 	if (pool_id == WORK_OFFQ_POOL_NONE)
892 		return NULL;
893 
894 	return idr_find(&worker_pool_idr, pool_id);
895 }
896 
897 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
898 {
899 	return (v >> shift) & ((1 << bits) - 1);
900 }
901 
902 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
903 {
904 	WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
905 
906 	offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
907 					WORK_OFFQ_POOL_BITS);
908 	offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
909 					WORK_OFFQ_DISABLE_BITS);
910 	offqd->flags = data & WORK_OFFQ_FLAG_MASK;
911 }
912 
913 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
914 {
915 	return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
916 		((unsigned long)offqd->flags);
917 }
918 
919 /*
920  * Policy functions.  These define the policies on how the global worker
921  * pools are managed.  Unless noted otherwise, these functions assume that
922  * they're being called with pool->lock held.
923  */
924 
925 /*
926  * Need to wake up a worker?  Called from anything but currently
927  * running workers.
928  *
929  * Note that, because unbound workers never contribute to nr_running, this
930  * function will always return %true for unbound pools as long as the
931  * worklist isn't empty.
932  */
933 static bool need_more_worker(struct worker_pool *pool)
934 {
935 	return !list_empty(&pool->worklist) && !pool->nr_running;
936 }
937 
938 /* Can I start working?  Called from busy but !running workers. */
939 static bool may_start_working(struct worker_pool *pool)
940 {
941 	return pool->nr_idle;
942 }
943 
944 /* Do I need to keep working?  Called from currently running workers. */
945 static bool keep_working(struct worker_pool *pool)
946 {
947 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
948 }
949 
950 /* Do we need a new worker?  Called from manager. */
951 static bool need_to_create_worker(struct worker_pool *pool)
952 {
953 	return need_more_worker(pool) && !may_start_working(pool);
954 }
955 
956 /* Do we have too many workers and should some go away? */
957 static bool too_many_workers(struct worker_pool *pool)
958 {
959 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
960 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
961 	int nr_busy = pool->nr_workers - nr_idle;
962 
963 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
964 }
965 
966 /**
967  * worker_set_flags - set worker flags and adjust nr_running accordingly
968  * @worker: self
969  * @flags: flags to set
970  *
971  * Set @flags in @worker->flags and adjust nr_running accordingly.
972  */
973 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
974 {
975 	struct worker_pool *pool = worker->pool;
976 
977 	lockdep_assert_held(&pool->lock);
978 
979 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
980 	if ((flags & WORKER_NOT_RUNNING) &&
981 	    !(worker->flags & WORKER_NOT_RUNNING)) {
982 		pool->nr_running--;
983 	}
984 
985 	worker->flags |= flags;
986 }
987 
988 /**
989  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
990  * @worker: self
991  * @flags: flags to clear
992  *
993  * Clear @flags in @worker->flags and adjust nr_running accordingly.
994  */
995 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
996 {
997 	struct worker_pool *pool = worker->pool;
998 	unsigned int oflags = worker->flags;
999 
1000 	lockdep_assert_held(&pool->lock);
1001 
1002 	worker->flags &= ~flags;
1003 
1004 	/*
1005 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1006 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1007 	 * of multiple flags, not a single flag.
1008 	 */
1009 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1010 		if (!(worker->flags & WORKER_NOT_RUNNING))
1011 			pool->nr_running++;
1012 }
1013 
1014 /* Return the first idle worker.  Called with pool->lock held. */
1015 static struct worker *first_idle_worker(struct worker_pool *pool)
1016 {
1017 	if (unlikely(list_empty(&pool->idle_list)))
1018 		return NULL;
1019 
1020 	return list_first_entry(&pool->idle_list, struct worker, entry);
1021 }
1022 
1023 /**
1024  * worker_enter_idle - enter idle state
1025  * @worker: worker which is entering idle state
1026  *
1027  * @worker is entering idle state.  Update stats and idle timer if
1028  * necessary.
1029  *
1030  * LOCKING:
1031  * raw_spin_lock_irq(pool->lock).
1032  */
1033 static void worker_enter_idle(struct worker *worker)
1034 {
1035 	struct worker_pool *pool = worker->pool;
1036 
1037 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1038 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1039 			 (worker->hentry.next || worker->hentry.pprev)))
1040 		return;
1041 
1042 	/* can't use worker_set_flags(), also called from create_worker() */
1043 	worker->flags |= WORKER_IDLE;
1044 	pool->nr_idle++;
1045 	worker->last_active = jiffies;
1046 
1047 	/* idle_list is LIFO */
1048 	list_add(&worker->entry, &pool->idle_list);
1049 
1050 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1051 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1052 
1053 	/* Sanity check nr_running. */
1054 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1055 }
1056 
1057 /**
1058  * worker_leave_idle - leave idle state
1059  * @worker: worker which is leaving idle state
1060  *
1061  * @worker is leaving idle state.  Update stats.
1062  *
1063  * LOCKING:
1064  * raw_spin_lock_irq(pool->lock).
1065  */
1066 static void worker_leave_idle(struct worker *worker)
1067 {
1068 	struct worker_pool *pool = worker->pool;
1069 
1070 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1071 		return;
1072 	worker_clr_flags(worker, WORKER_IDLE);
1073 	pool->nr_idle--;
1074 	list_del_init(&worker->entry);
1075 }
1076 
1077 /**
1078  * find_worker_executing_work - find worker which is executing a work
1079  * @pool: pool of interest
1080  * @work: work to find worker for
1081  *
1082  * Find a worker which is executing @work on @pool by searching
1083  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1084  * to match, its current execution should match the address of @work and
1085  * its work function.  This is to avoid unwanted dependency between
1086  * unrelated work executions through a work item being recycled while still
1087  * being executed.
1088  *
1089  * This is a bit tricky.  A work item may be freed once its execution
1090  * starts and nothing prevents the freed area from being recycled for
1091  * another work item.  If the same work item address ends up being reused
1092  * before the original execution finishes, workqueue will identify the
1093  * recycled work item as currently executing and make it wait until the
1094  * current execution finishes, introducing an unwanted dependency.
1095  *
1096  * This function checks the work item address and work function to avoid
1097  * false positives.  Note that this isn't complete as one may construct a
1098  * work function which can introduce dependency onto itself through a
1099  * recycled work item.  Well, if somebody wants to shoot oneself in the
1100  * foot that badly, there's only so much we can do, and if such deadlock
1101  * actually occurs, it should be easy to locate the culprit work function.
1102  *
1103  * CONTEXT:
1104  * raw_spin_lock_irq(pool->lock).
1105  *
1106  * Return:
1107  * Pointer to worker which is executing @work if found, %NULL
1108  * otherwise.
1109  */
1110 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1111 						 struct work_struct *work)
1112 {
1113 	struct worker *worker;
1114 
1115 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1116 			       (unsigned long)work)
1117 		if (worker->current_work == work &&
1118 		    worker->current_func == work->func)
1119 			return worker;
1120 
1121 	return NULL;
1122 }
1123 
1124 /**
1125  * move_linked_works - move linked works to a list
1126  * @work: start of series of works to be scheduled
1127  * @head: target list to append @work to
1128  * @nextp: out parameter for nested worklist walking
1129  *
1130  * Schedule linked works starting from @work to @head. Work series to be
1131  * scheduled starts at @work and includes any consecutive work with
1132  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1133  * @nextp.
1134  *
1135  * CONTEXT:
1136  * raw_spin_lock_irq(pool->lock).
1137  */
1138 static void move_linked_works(struct work_struct *work, struct list_head *head,
1139 			      struct work_struct **nextp)
1140 {
1141 	struct work_struct *n;
1142 
1143 	/*
1144 	 * Linked worklist will always end before the end of the list,
1145 	 * use NULL for list head.
1146 	 */
1147 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1148 		list_move_tail(&work->entry, head);
1149 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1150 			break;
1151 	}
1152 
1153 	/*
1154 	 * If we're already inside safe list traversal and have moved
1155 	 * multiple works to the scheduled queue, the next position
1156 	 * needs to be updated.
1157 	 */
1158 	if (nextp)
1159 		*nextp = n;
1160 }
1161 
1162 /**
1163  * assign_work - assign a work item and its linked work items to a worker
1164  * @work: work to assign
1165  * @worker: worker to assign to
1166  * @nextp: out parameter for nested worklist walking
1167  *
1168  * Assign @work and its linked work items to @worker. If @work is already being
1169  * executed by another worker in the same pool, it'll be punted there.
1170  *
1171  * If @nextp is not NULL, it's updated to point to the next work of the last
1172  * scheduled work. This allows assign_work() to be nested inside
1173  * list_for_each_entry_safe().
1174  *
1175  * Returns %true if @work was successfully assigned to @worker. %false if @work
1176  * was punted to another worker already executing it.
1177  */
1178 static bool assign_work(struct work_struct *work, struct worker *worker,
1179 			struct work_struct **nextp)
1180 {
1181 	struct worker_pool *pool = worker->pool;
1182 	struct worker *collision;
1183 
1184 	lockdep_assert_held(&pool->lock);
1185 
1186 	/*
1187 	 * A single work shouldn't be executed concurrently by multiple workers.
1188 	 * __queue_work() ensures that @work doesn't jump to a different pool
1189 	 * while still running in the previous pool. Here, we should ensure that
1190 	 * @work is not executed concurrently by multiple workers from the same
1191 	 * pool. Check whether anyone is already processing the work. If so,
1192 	 * defer the work to the currently executing one.
1193 	 */
1194 	collision = find_worker_executing_work(pool, work);
1195 	if (unlikely(collision)) {
1196 		move_linked_works(work, &collision->scheduled, nextp);
1197 		return false;
1198 	}
1199 
1200 	move_linked_works(work, &worker->scheduled, nextp);
1201 	return true;
1202 }
1203 
1204 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1205 {
1206 	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1207 
1208 	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1209 }
1210 
1211 static void kick_bh_pool(struct worker_pool *pool)
1212 {
1213 #ifdef CONFIG_SMP
1214 	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1215 	if (unlikely(pool->cpu != smp_processor_id() &&
1216 		     !(pool->flags & POOL_BH_DRAINING))) {
1217 		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1218 		return;
1219 	}
1220 #endif
1221 	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1222 		raise_softirq_irqoff(HI_SOFTIRQ);
1223 	else
1224 		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1225 }
1226 
1227 /**
1228  * kick_pool - wake up an idle worker if necessary
1229  * @pool: pool to kick
1230  *
1231  * @pool may have pending work items. Wake up worker if necessary. Returns
1232  * whether a worker was woken up.
1233  */
1234 static bool kick_pool(struct worker_pool *pool)
1235 {
1236 	struct worker *worker = first_idle_worker(pool);
1237 	struct task_struct *p;
1238 
1239 	lockdep_assert_held(&pool->lock);
1240 
1241 	if (!need_more_worker(pool) || !worker)
1242 		return false;
1243 
1244 	if (pool->flags & POOL_BH) {
1245 		kick_bh_pool(pool);
1246 		return true;
1247 	}
1248 
1249 	p = worker->task;
1250 
1251 #ifdef CONFIG_SMP
1252 	/*
1253 	 * Idle @worker is about to execute @work and waking up provides an
1254 	 * opportunity to migrate @worker at a lower cost by setting the task's
1255 	 * wake_cpu field. Let's see if we want to move @worker to improve
1256 	 * execution locality.
1257 	 *
1258 	 * We're waking the worker that went idle the latest and there's some
1259 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1260 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1261 	 * optimization and the race window is narrow, let's leave as-is for
1262 	 * now. If this becomes pronounced, we can skip over workers which are
1263 	 * still on cpu when picking an idle worker.
1264 	 *
1265 	 * If @pool has non-strict affinity, @worker might have ended up outside
1266 	 * its affinity scope. Repatriate.
1267 	 */
1268 	if (!pool->attrs->affn_strict &&
1269 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1270 		struct work_struct *work = list_first_entry(&pool->worklist,
1271 						struct work_struct, entry);
1272 		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1273 							  cpu_online_mask);
1274 		if (wake_cpu < nr_cpu_ids) {
1275 			p->wake_cpu = wake_cpu;
1276 			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1277 		}
1278 	}
1279 #endif
1280 	wake_up_process(p);
1281 	return true;
1282 }
1283 
1284 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1285 
1286 /*
1287  * Concurrency-managed per-cpu work items that hog CPU for longer than
1288  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1289  * which prevents them from stalling other concurrency-managed work items. If a
1290  * work function keeps triggering this mechanism, it's likely that the work item
1291  * should be using an unbound workqueue instead.
1292  *
1293  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1294  * and report them so that they can be examined and converted to use unbound
1295  * workqueues as appropriate. To avoid flooding the console, each violating work
1296  * function is tracked and reported with exponential backoff.
1297  */
1298 #define WCI_MAX_ENTS 128
1299 
1300 struct wci_ent {
1301 	work_func_t		func;
1302 	atomic64_t		cnt;
1303 	struct hlist_node	hash_node;
1304 };
1305 
1306 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1307 static int wci_nr_ents;
1308 static DEFINE_RAW_SPINLOCK(wci_lock);
1309 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1310 
1311 static struct wci_ent *wci_find_ent(work_func_t func)
1312 {
1313 	struct wci_ent *ent;
1314 
1315 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1316 				   (unsigned long)func) {
1317 		if (ent->func == func)
1318 			return ent;
1319 	}
1320 	return NULL;
1321 }
1322 
1323 static void wq_cpu_intensive_report(work_func_t func)
1324 {
1325 	struct wci_ent *ent;
1326 
1327 restart:
1328 	ent = wci_find_ent(func);
1329 	if (ent) {
1330 		u64 cnt;
1331 
1332 		/*
1333 		 * Start reporting from the warning_thresh and back off
1334 		 * exponentially.
1335 		 */
1336 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1337 		if (wq_cpu_intensive_warning_thresh &&
1338 		    cnt >= wq_cpu_intensive_warning_thresh &&
1339 		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1340 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1341 					ent->func, wq_cpu_intensive_thresh_us,
1342 					atomic64_read(&ent->cnt));
1343 		return;
1344 	}
1345 
1346 	/*
1347 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1348 	 * is exhausted, something went really wrong and we probably made enough
1349 	 * noise already.
1350 	 */
1351 	if (wci_nr_ents >= WCI_MAX_ENTS)
1352 		return;
1353 
1354 	raw_spin_lock(&wci_lock);
1355 
1356 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1357 		raw_spin_unlock(&wci_lock);
1358 		return;
1359 	}
1360 
1361 	if (wci_find_ent(func)) {
1362 		raw_spin_unlock(&wci_lock);
1363 		goto restart;
1364 	}
1365 
1366 	ent = &wci_ents[wci_nr_ents++];
1367 	ent->func = func;
1368 	atomic64_set(&ent->cnt, 0);
1369 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1370 
1371 	raw_spin_unlock(&wci_lock);
1372 
1373 	goto restart;
1374 }
1375 
1376 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1377 static void wq_cpu_intensive_report(work_func_t func) {}
1378 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1379 
1380 /**
1381  * wq_worker_running - a worker is running again
1382  * @task: task waking up
1383  *
1384  * This function is called when a worker returns from schedule()
1385  */
1386 void wq_worker_running(struct task_struct *task)
1387 {
1388 	struct worker *worker = kthread_data(task);
1389 
1390 	if (!READ_ONCE(worker->sleeping))
1391 		return;
1392 
1393 	/*
1394 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1395 	 * and the nr_running increment below, we may ruin the nr_running reset
1396 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1397 	 * pool. Protect against such race.
1398 	 */
1399 	preempt_disable();
1400 	if (!(worker->flags & WORKER_NOT_RUNNING))
1401 		worker->pool->nr_running++;
1402 	preempt_enable();
1403 
1404 	/*
1405 	 * CPU intensive auto-detection cares about how long a work item hogged
1406 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1407 	 */
1408 	worker->current_at = worker->task->se.sum_exec_runtime;
1409 
1410 	WRITE_ONCE(worker->sleeping, 0);
1411 }
1412 
1413 /**
1414  * wq_worker_sleeping - a worker is going to sleep
1415  * @task: task going to sleep
1416  *
1417  * This function is called from schedule() when a busy worker is
1418  * going to sleep.
1419  */
1420 void wq_worker_sleeping(struct task_struct *task)
1421 {
1422 	struct worker *worker = kthread_data(task);
1423 	struct worker_pool *pool;
1424 
1425 	/*
1426 	 * Rescuers, which may not have all the fields set up like normal
1427 	 * workers, also reach here, let's not access anything before
1428 	 * checking NOT_RUNNING.
1429 	 */
1430 	if (worker->flags & WORKER_NOT_RUNNING)
1431 		return;
1432 
1433 	pool = worker->pool;
1434 
1435 	/* Return if preempted before wq_worker_running() was reached */
1436 	if (READ_ONCE(worker->sleeping))
1437 		return;
1438 
1439 	WRITE_ONCE(worker->sleeping, 1);
1440 	raw_spin_lock_irq(&pool->lock);
1441 
1442 	/*
1443 	 * Recheck in case unbind_workers() preempted us. We don't
1444 	 * want to decrement nr_running after the worker is unbound
1445 	 * and nr_running has been reset.
1446 	 */
1447 	if (worker->flags & WORKER_NOT_RUNNING) {
1448 		raw_spin_unlock_irq(&pool->lock);
1449 		return;
1450 	}
1451 
1452 	pool->nr_running--;
1453 	if (kick_pool(pool))
1454 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1455 
1456 	raw_spin_unlock_irq(&pool->lock);
1457 }
1458 
1459 /**
1460  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1461  * @task: task currently running
1462  *
1463  * Called from sched_tick(). We're in the IRQ context and the current
1464  * worker's fields which follow the 'K' locking rule can be accessed safely.
1465  */
1466 void wq_worker_tick(struct task_struct *task)
1467 {
1468 	struct worker *worker = kthread_data(task);
1469 	struct pool_workqueue *pwq = worker->current_pwq;
1470 	struct worker_pool *pool = worker->pool;
1471 
1472 	if (!pwq)
1473 		return;
1474 
1475 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1476 
1477 	if (!wq_cpu_intensive_thresh_us)
1478 		return;
1479 
1480 	/*
1481 	 * If the current worker is concurrency managed and hogged the CPU for
1482 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1483 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1484 	 *
1485 	 * Set @worker->sleeping means that @worker is in the process of
1486 	 * switching out voluntarily and won't be contributing to
1487 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1488 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1489 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1490 	 * We probably want to make this prettier in the future.
1491 	 */
1492 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1493 	    worker->task->se.sum_exec_runtime - worker->current_at <
1494 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1495 		return;
1496 
1497 	raw_spin_lock(&pool->lock);
1498 
1499 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1500 	wq_cpu_intensive_report(worker->current_func);
1501 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1502 
1503 	if (kick_pool(pool))
1504 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1505 
1506 	raw_spin_unlock(&pool->lock);
1507 }
1508 
1509 /**
1510  * wq_worker_last_func - retrieve worker's last work function
1511  * @task: Task to retrieve last work function of.
1512  *
1513  * Determine the last function a worker executed. This is called from
1514  * the scheduler to get a worker's last known identity.
1515  *
1516  * CONTEXT:
1517  * raw_spin_lock_irq(rq->lock)
1518  *
1519  * This function is called during schedule() when a kworker is going
1520  * to sleep. It's used by psi to identify aggregation workers during
1521  * dequeuing, to allow periodic aggregation to shut-off when that
1522  * worker is the last task in the system or cgroup to go to sleep.
1523  *
1524  * As this function doesn't involve any workqueue-related locking, it
1525  * only returns stable values when called from inside the scheduler's
1526  * queuing and dequeuing paths, when @task, which must be a kworker,
1527  * is guaranteed to not be processing any works.
1528  *
1529  * Return:
1530  * The last work function %current executed as a worker, NULL if it
1531  * hasn't executed any work yet.
1532  */
1533 work_func_t wq_worker_last_func(struct task_struct *task)
1534 {
1535 	struct worker *worker = kthread_data(task);
1536 
1537 	return worker->last_func;
1538 }
1539 
1540 /**
1541  * wq_node_nr_active - Determine wq_node_nr_active to use
1542  * @wq: workqueue of interest
1543  * @node: NUMA node, can be %NUMA_NO_NODE
1544  *
1545  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1546  *
1547  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1548  *
1549  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1550  *
1551  * - Otherwise, node_nr_active[@node].
1552  */
1553 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1554 						   int node)
1555 {
1556 	if (!(wq->flags & WQ_UNBOUND))
1557 		return NULL;
1558 
1559 	if (node == NUMA_NO_NODE)
1560 		node = nr_node_ids;
1561 
1562 	return wq->node_nr_active[node];
1563 }
1564 
1565 /**
1566  * wq_update_node_max_active - Update per-node max_actives to use
1567  * @wq: workqueue to update
1568  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1569  *
1570  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1571  * distributed among nodes according to the proportions of numbers of online
1572  * cpus. The result is always between @wq->min_active and max_active.
1573  */
1574 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1575 {
1576 	struct cpumask *effective = unbound_effective_cpumask(wq);
1577 	int min_active = READ_ONCE(wq->min_active);
1578 	int max_active = READ_ONCE(wq->max_active);
1579 	int total_cpus, node;
1580 
1581 	lockdep_assert_held(&wq->mutex);
1582 
1583 	if (!wq_topo_initialized)
1584 		return;
1585 
1586 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1587 		off_cpu = -1;
1588 
1589 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1590 	if (off_cpu >= 0)
1591 		total_cpus--;
1592 
1593 	/* If all CPUs of the wq get offline, use the default values */
1594 	if (unlikely(!total_cpus)) {
1595 		for_each_node(node)
1596 			wq_node_nr_active(wq, node)->max = min_active;
1597 
1598 		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1599 		return;
1600 	}
1601 
1602 	for_each_node(node) {
1603 		int node_cpus;
1604 
1605 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1606 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1607 			node_cpus--;
1608 
1609 		wq_node_nr_active(wq, node)->max =
1610 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1611 			      min_active, max_active);
1612 	}
1613 
1614 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1615 }
1616 
1617 /**
1618  * get_pwq - get an extra reference on the specified pool_workqueue
1619  * @pwq: pool_workqueue to get
1620  *
1621  * Obtain an extra reference on @pwq.  The caller should guarantee that
1622  * @pwq has positive refcnt and be holding the matching pool->lock.
1623  */
1624 static void get_pwq(struct pool_workqueue *pwq)
1625 {
1626 	lockdep_assert_held(&pwq->pool->lock);
1627 	WARN_ON_ONCE(pwq->refcnt <= 0);
1628 	pwq->refcnt++;
1629 }
1630 
1631 /**
1632  * put_pwq - put a pool_workqueue reference
1633  * @pwq: pool_workqueue to put
1634  *
1635  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1636  * destruction.  The caller should be holding the matching pool->lock.
1637  */
1638 static void put_pwq(struct pool_workqueue *pwq)
1639 {
1640 	lockdep_assert_held(&pwq->pool->lock);
1641 	if (likely(--pwq->refcnt))
1642 		return;
1643 	/*
1644 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1645 	 * kthread_worker to avoid A-A deadlocks.
1646 	 */
1647 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1648 }
1649 
1650 /**
1651  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1652  * @pwq: pool_workqueue to put (can be %NULL)
1653  *
1654  * put_pwq() with locking.  This function also allows %NULL @pwq.
1655  */
1656 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1657 {
1658 	if (pwq) {
1659 		/*
1660 		 * As both pwqs and pools are RCU protected, the
1661 		 * following lock operations are safe.
1662 		 */
1663 		raw_spin_lock_irq(&pwq->pool->lock);
1664 		put_pwq(pwq);
1665 		raw_spin_unlock_irq(&pwq->pool->lock);
1666 	}
1667 }
1668 
1669 static bool pwq_is_empty(struct pool_workqueue *pwq)
1670 {
1671 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1672 }
1673 
1674 static void __pwq_activate_work(struct pool_workqueue *pwq,
1675 				struct work_struct *work)
1676 {
1677 	unsigned long *wdb = work_data_bits(work);
1678 
1679 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1680 	trace_workqueue_activate_work(work);
1681 	if (list_empty(&pwq->pool->worklist))
1682 		pwq->pool->watchdog_ts = jiffies;
1683 	move_linked_works(work, &pwq->pool->worklist, NULL);
1684 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1685 }
1686 
1687 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1688 {
1689 	int max = READ_ONCE(nna->max);
1690 
1691 	while (true) {
1692 		int old, tmp;
1693 
1694 		old = atomic_read(&nna->nr);
1695 		if (old >= max)
1696 			return false;
1697 		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1698 		if (tmp == old)
1699 			return true;
1700 	}
1701 }
1702 
1703 /**
1704  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1705  * @pwq: pool_workqueue of interest
1706  * @fill: max_active may have increased, try to increase concurrency level
1707  *
1708  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1709  * successfully obtained. %false otherwise.
1710  */
1711 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1712 {
1713 	struct workqueue_struct *wq = pwq->wq;
1714 	struct worker_pool *pool = pwq->pool;
1715 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1716 	bool obtained = false;
1717 
1718 	lockdep_assert_held(&pool->lock);
1719 
1720 	if (!nna) {
1721 		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1722 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1723 		goto out;
1724 	}
1725 
1726 	if (unlikely(pwq->plugged))
1727 		return false;
1728 
1729 	/*
1730 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1731 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1732 	 * concurrency level. Don't jump the line.
1733 	 *
1734 	 * We need to ignore the pending test after max_active has increased as
1735 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1736 	 * increase it. This is indicated by @fill.
1737 	 */
1738 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1739 		goto out;
1740 
1741 	obtained = tryinc_node_nr_active(nna);
1742 	if (obtained)
1743 		goto out;
1744 
1745 	/*
1746 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1747 	 * and try again. The smp_mb() is paired with the implied memory barrier
1748 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1749 	 * we see the decremented $nna->nr or they see non-empty
1750 	 * $nna->pending_pwqs.
1751 	 */
1752 	raw_spin_lock(&nna->lock);
1753 
1754 	if (list_empty(&pwq->pending_node))
1755 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1756 	else if (likely(!fill))
1757 		goto out_unlock;
1758 
1759 	smp_mb();
1760 
1761 	obtained = tryinc_node_nr_active(nna);
1762 
1763 	/*
1764 	 * If @fill, @pwq might have already been pending. Being spuriously
1765 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1766 	 */
1767 	if (obtained && likely(!fill))
1768 		list_del_init(&pwq->pending_node);
1769 
1770 out_unlock:
1771 	raw_spin_unlock(&nna->lock);
1772 out:
1773 	if (obtained)
1774 		pwq->nr_active++;
1775 	return obtained;
1776 }
1777 
1778 /**
1779  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1780  * @pwq: pool_workqueue of interest
1781  * @fill: max_active may have increased, try to increase concurrency level
1782  *
1783  * Activate the first inactive work item of @pwq if available and allowed by
1784  * max_active limit.
1785  *
1786  * Returns %true if an inactive work item has been activated. %false if no
1787  * inactive work item is found or max_active limit is reached.
1788  */
1789 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1790 {
1791 	struct work_struct *work =
1792 		list_first_entry_or_null(&pwq->inactive_works,
1793 					 struct work_struct, entry);
1794 
1795 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1796 		__pwq_activate_work(pwq, work);
1797 		return true;
1798 	} else {
1799 		return false;
1800 	}
1801 }
1802 
1803 /**
1804  * unplug_oldest_pwq - unplug the oldest pool_workqueue
1805  * @wq: workqueue_struct where its oldest pwq is to be unplugged
1806  *
1807  * This function should only be called for ordered workqueues where only the
1808  * oldest pwq is unplugged, the others are plugged to suspend execution to
1809  * ensure proper work item ordering::
1810  *
1811  *    dfl_pwq --------------+     [P] - plugged
1812  *                          |
1813  *                          v
1814  *    pwqs -> A -> B [P] -> C [P] (newest)
1815  *            |    |        |
1816  *            1    3        5
1817  *            |    |        |
1818  *            2    4        6
1819  *
1820  * When the oldest pwq is drained and removed, this function should be called
1821  * to unplug the next oldest one to start its work item execution. Note that
1822  * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1823  * the list is the oldest.
1824  */
1825 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1826 {
1827 	struct pool_workqueue *pwq;
1828 
1829 	lockdep_assert_held(&wq->mutex);
1830 
1831 	/* Caller should make sure that pwqs isn't empty before calling */
1832 	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1833 				       pwqs_node);
1834 	raw_spin_lock_irq(&pwq->pool->lock);
1835 	if (pwq->plugged) {
1836 		pwq->plugged = false;
1837 		if (pwq_activate_first_inactive(pwq, true))
1838 			kick_pool(pwq->pool);
1839 	}
1840 	raw_spin_unlock_irq(&pwq->pool->lock);
1841 }
1842 
1843 /**
1844  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1845  * @nna: wq_node_nr_active to activate a pending pwq for
1846  * @caller_pool: worker_pool the caller is locking
1847  *
1848  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1849  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1850  */
1851 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1852 				      struct worker_pool *caller_pool)
1853 {
1854 	struct worker_pool *locked_pool = caller_pool;
1855 	struct pool_workqueue *pwq;
1856 	struct work_struct *work;
1857 
1858 	lockdep_assert_held(&caller_pool->lock);
1859 
1860 	raw_spin_lock(&nna->lock);
1861 retry:
1862 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1863 				       struct pool_workqueue, pending_node);
1864 	if (!pwq)
1865 		goto out_unlock;
1866 
1867 	/*
1868 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1869 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1870 	 * / lock dance. For that, we also need to release @nna->lock as it's
1871 	 * nested inside pool locks.
1872 	 */
1873 	if (pwq->pool != locked_pool) {
1874 		raw_spin_unlock(&locked_pool->lock);
1875 		locked_pool = pwq->pool;
1876 		if (!raw_spin_trylock(&locked_pool->lock)) {
1877 			raw_spin_unlock(&nna->lock);
1878 			raw_spin_lock(&locked_pool->lock);
1879 			raw_spin_lock(&nna->lock);
1880 			goto retry;
1881 		}
1882 	}
1883 
1884 	/*
1885 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1886 	 * Drop it from pending_pwqs and see if there's another one.
1887 	 */
1888 	work = list_first_entry_or_null(&pwq->inactive_works,
1889 					struct work_struct, entry);
1890 	if (!work) {
1891 		list_del_init(&pwq->pending_node);
1892 		goto retry;
1893 	}
1894 
1895 	/*
1896 	 * Acquire an nr_active count and activate the inactive work item. If
1897 	 * $pwq still has inactive work items, rotate it to the end of the
1898 	 * pending_pwqs so that we round-robin through them. This means that
1899 	 * inactive work items are not activated in queueing order which is fine
1900 	 * given that there has never been any ordering across different pwqs.
1901 	 */
1902 	if (likely(tryinc_node_nr_active(nna))) {
1903 		pwq->nr_active++;
1904 		__pwq_activate_work(pwq, work);
1905 
1906 		if (list_empty(&pwq->inactive_works))
1907 			list_del_init(&pwq->pending_node);
1908 		else
1909 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1910 
1911 		/* if activating a foreign pool, make sure it's running */
1912 		if (pwq->pool != caller_pool)
1913 			kick_pool(pwq->pool);
1914 	}
1915 
1916 out_unlock:
1917 	raw_spin_unlock(&nna->lock);
1918 	if (locked_pool != caller_pool) {
1919 		raw_spin_unlock(&locked_pool->lock);
1920 		raw_spin_lock(&caller_pool->lock);
1921 	}
1922 }
1923 
1924 /**
1925  * pwq_dec_nr_active - Retire an active count
1926  * @pwq: pool_workqueue of interest
1927  *
1928  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1929  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1930  */
1931 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1932 {
1933 	struct worker_pool *pool = pwq->pool;
1934 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1935 
1936 	lockdep_assert_held(&pool->lock);
1937 
1938 	/*
1939 	 * @pwq->nr_active should be decremented for both percpu and unbound
1940 	 * workqueues.
1941 	 */
1942 	pwq->nr_active--;
1943 
1944 	/*
1945 	 * For a percpu workqueue, it's simple. Just need to kick the first
1946 	 * inactive work item on @pwq itself.
1947 	 */
1948 	if (!nna) {
1949 		pwq_activate_first_inactive(pwq, false);
1950 		return;
1951 	}
1952 
1953 	/*
1954 	 * If @pwq is for an unbound workqueue, it's more complicated because
1955 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1956 	 * pwq needs to wait for an nr_active count, it puts itself on
1957 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1958 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1959 	 * guarantee that either we see non-empty pending_pwqs or they see
1960 	 * decremented $nna->nr.
1961 	 *
1962 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1963 	 * max_active gets updated. However, it is guaranteed to be equal to or
1964 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1965 	 * This maintains the forward progress guarantee.
1966 	 */
1967 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1968 		return;
1969 
1970 	if (!list_empty(&nna->pending_pwqs))
1971 		node_activate_pending_pwq(nna, pool);
1972 }
1973 
1974 /**
1975  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1976  * @pwq: pwq of interest
1977  * @work_data: work_data of work which left the queue
1978  *
1979  * A work either has completed or is removed from pending queue,
1980  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1981  *
1982  * NOTE:
1983  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1984  * and thus should be called after all other state updates for the in-flight
1985  * work item is complete.
1986  *
1987  * CONTEXT:
1988  * raw_spin_lock_irq(pool->lock).
1989  */
1990 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1991 {
1992 	int color = get_work_color(work_data);
1993 
1994 	if (!(work_data & WORK_STRUCT_INACTIVE))
1995 		pwq_dec_nr_active(pwq);
1996 
1997 	pwq->nr_in_flight[color]--;
1998 
1999 	/* is flush in progress and are we at the flushing tip? */
2000 	if (likely(pwq->flush_color != color))
2001 		goto out_put;
2002 
2003 	/* are there still in-flight works? */
2004 	if (pwq->nr_in_flight[color])
2005 		goto out_put;
2006 
2007 	/* this pwq is done, clear flush_color */
2008 	pwq->flush_color = -1;
2009 
2010 	/*
2011 	 * If this was the last pwq, wake up the first flusher.  It
2012 	 * will handle the rest.
2013 	 */
2014 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2015 		complete(&pwq->wq->first_flusher->done);
2016 out_put:
2017 	put_pwq(pwq);
2018 }
2019 
2020 /**
2021  * try_to_grab_pending - steal work item from worklist and disable irq
2022  * @work: work item to steal
2023  * @cflags: %WORK_CANCEL_ flags
2024  * @irq_flags: place to store irq state
2025  *
2026  * Try to grab PENDING bit of @work.  This function can handle @work in any
2027  * stable state - idle, on timer or on worklist.
2028  *
2029  * Return:
2030  *
2031  *  ========	================================================================
2032  *  1		if @work was pending and we successfully stole PENDING
2033  *  0		if @work was idle and we claimed PENDING
2034  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2035  *  ========	================================================================
2036  *
2037  * Note:
2038  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2039  * interrupted while holding PENDING and @work off queue, irq must be
2040  * disabled on entry.  This, combined with delayed_work->timer being
2041  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2042  *
2043  * On successful return, >= 0, irq is disabled and the caller is
2044  * responsible for releasing it using local_irq_restore(*@irq_flags).
2045  *
2046  * This function is safe to call from any context including IRQ handler.
2047  */
2048 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2049 			       unsigned long *irq_flags)
2050 {
2051 	struct worker_pool *pool;
2052 	struct pool_workqueue *pwq;
2053 
2054 	local_irq_save(*irq_flags);
2055 
2056 	/* try to steal the timer if it exists */
2057 	if (cflags & WORK_CANCEL_DELAYED) {
2058 		struct delayed_work *dwork = to_delayed_work(work);
2059 
2060 		/*
2061 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2062 		 * guaranteed that the timer is not queued anywhere and not
2063 		 * running on the local CPU.
2064 		 */
2065 		if (likely(del_timer(&dwork->timer)))
2066 			return 1;
2067 	}
2068 
2069 	/* try to claim PENDING the normal way */
2070 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2071 		return 0;
2072 
2073 	rcu_read_lock();
2074 	/*
2075 	 * The queueing is in progress, or it is already queued. Try to
2076 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2077 	 */
2078 	pool = get_work_pool(work);
2079 	if (!pool)
2080 		goto fail;
2081 
2082 	raw_spin_lock(&pool->lock);
2083 	/*
2084 	 * work->data is guaranteed to point to pwq only while the work
2085 	 * item is queued on pwq->wq, and both updating work->data to point
2086 	 * to pwq on queueing and to pool on dequeueing are done under
2087 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2088 	 * points to pwq which is associated with a locked pool, the work
2089 	 * item is currently queued on that pool.
2090 	 */
2091 	pwq = get_work_pwq(work);
2092 	if (pwq && pwq->pool == pool) {
2093 		unsigned long work_data = *work_data_bits(work);
2094 
2095 		debug_work_deactivate(work);
2096 
2097 		/*
2098 		 * A cancelable inactive work item must be in the
2099 		 * pwq->inactive_works since a queued barrier can't be
2100 		 * canceled (see the comments in insert_wq_barrier()).
2101 		 *
2102 		 * An inactive work item cannot be deleted directly because
2103 		 * it might have linked barrier work items which, if left
2104 		 * on the inactive_works list, will confuse pwq->nr_active
2105 		 * management later on and cause stall.  Move the linked
2106 		 * barrier work items to the worklist when deleting the grabbed
2107 		 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2108 		 * it doesn't participate in nr_active management in later
2109 		 * pwq_dec_nr_in_flight().
2110 		 */
2111 		if (work_data & WORK_STRUCT_INACTIVE)
2112 			move_linked_works(work, &pwq->pool->worklist, NULL);
2113 
2114 		list_del_init(&work->entry);
2115 
2116 		/*
2117 		 * work->data points to pwq iff queued. Let's point to pool. As
2118 		 * this destroys work->data needed by the next step, stash it.
2119 		 */
2120 		set_work_pool_and_keep_pending(work, pool->id,
2121 					       pool_offq_flags(pool));
2122 
2123 		/* must be the last step, see the function comment */
2124 		pwq_dec_nr_in_flight(pwq, work_data);
2125 
2126 		raw_spin_unlock(&pool->lock);
2127 		rcu_read_unlock();
2128 		return 1;
2129 	}
2130 	raw_spin_unlock(&pool->lock);
2131 fail:
2132 	rcu_read_unlock();
2133 	local_irq_restore(*irq_flags);
2134 	return -EAGAIN;
2135 }
2136 
2137 /**
2138  * work_grab_pending - steal work item from worklist and disable irq
2139  * @work: work item to steal
2140  * @cflags: %WORK_CANCEL_ flags
2141  * @irq_flags: place to store IRQ state
2142  *
2143  * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2144  * or on worklist.
2145  *
2146  * Can be called from any context. IRQ is disabled on return with IRQ state
2147  * stored in *@irq_flags. The caller is responsible for re-enabling it using
2148  * local_irq_restore().
2149  *
2150  * Returns %true if @work was pending. %false if idle.
2151  */
2152 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2153 			      unsigned long *irq_flags)
2154 {
2155 	int ret;
2156 
2157 	while (true) {
2158 		ret = try_to_grab_pending(work, cflags, irq_flags);
2159 		if (ret >= 0)
2160 			return ret;
2161 		cpu_relax();
2162 	}
2163 }
2164 
2165 /**
2166  * insert_work - insert a work into a pool
2167  * @pwq: pwq @work belongs to
2168  * @work: work to insert
2169  * @head: insertion point
2170  * @extra_flags: extra WORK_STRUCT_* flags to set
2171  *
2172  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2173  * work_struct flags.
2174  *
2175  * CONTEXT:
2176  * raw_spin_lock_irq(pool->lock).
2177  */
2178 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2179 			struct list_head *head, unsigned int extra_flags)
2180 {
2181 	debug_work_activate(work);
2182 
2183 	/* record the work call stack in order to print it in KASAN reports */
2184 	kasan_record_aux_stack_noalloc(work);
2185 
2186 	/* we own @work, set data and link */
2187 	set_work_pwq(work, pwq, extra_flags);
2188 	list_add_tail(&work->entry, head);
2189 	get_pwq(pwq);
2190 }
2191 
2192 /*
2193  * Test whether @work is being queued from another work executing on the
2194  * same workqueue.
2195  */
2196 static bool is_chained_work(struct workqueue_struct *wq)
2197 {
2198 	struct worker *worker;
2199 
2200 	worker = current_wq_worker();
2201 	/*
2202 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2203 	 * I'm @worker, it's safe to dereference it without locking.
2204 	 */
2205 	return worker && worker->current_pwq->wq == wq;
2206 }
2207 
2208 /*
2209  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2210  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2211  * avoid perturbing sensitive tasks.
2212  */
2213 static int wq_select_unbound_cpu(int cpu)
2214 {
2215 	int new_cpu;
2216 
2217 	if (likely(!wq_debug_force_rr_cpu)) {
2218 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2219 			return cpu;
2220 	} else {
2221 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2222 	}
2223 
2224 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2225 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2226 	if (unlikely(new_cpu >= nr_cpu_ids)) {
2227 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2228 		if (unlikely(new_cpu >= nr_cpu_ids))
2229 			return cpu;
2230 	}
2231 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2232 
2233 	return new_cpu;
2234 }
2235 
2236 static void __queue_work(int cpu, struct workqueue_struct *wq,
2237 			 struct work_struct *work)
2238 {
2239 	struct pool_workqueue *pwq;
2240 	struct worker_pool *last_pool, *pool;
2241 	unsigned int work_flags;
2242 	unsigned int req_cpu = cpu;
2243 
2244 	/*
2245 	 * While a work item is PENDING && off queue, a task trying to
2246 	 * steal the PENDING will busy-loop waiting for it to either get
2247 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2248 	 * happen with IRQ disabled.
2249 	 */
2250 	lockdep_assert_irqs_disabled();
2251 
2252 	/*
2253 	 * For a draining wq, only works from the same workqueue are
2254 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2255 	 * queues a new work item to a wq after destroy_workqueue(wq).
2256 	 */
2257 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2258 		     WARN_ON_ONCE(!is_chained_work(wq))))
2259 		return;
2260 	rcu_read_lock();
2261 retry:
2262 	/* pwq which will be used unless @work is executing elsewhere */
2263 	if (req_cpu == WORK_CPU_UNBOUND) {
2264 		if (wq->flags & WQ_UNBOUND)
2265 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2266 		else
2267 			cpu = raw_smp_processor_id();
2268 	}
2269 
2270 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2271 	pool = pwq->pool;
2272 
2273 	/*
2274 	 * If @work was previously on a different pool, it might still be
2275 	 * running there, in which case the work needs to be queued on that
2276 	 * pool to guarantee non-reentrancy.
2277 	 */
2278 	last_pool = get_work_pool(work);
2279 	if (last_pool && last_pool != pool) {
2280 		struct worker *worker;
2281 
2282 		raw_spin_lock(&last_pool->lock);
2283 
2284 		worker = find_worker_executing_work(last_pool, work);
2285 
2286 		if (worker && worker->current_pwq->wq == wq) {
2287 			pwq = worker->current_pwq;
2288 			pool = pwq->pool;
2289 			WARN_ON_ONCE(pool != last_pool);
2290 		} else {
2291 			/* meh... not running there, queue here */
2292 			raw_spin_unlock(&last_pool->lock);
2293 			raw_spin_lock(&pool->lock);
2294 		}
2295 	} else {
2296 		raw_spin_lock(&pool->lock);
2297 	}
2298 
2299 	/*
2300 	 * pwq is determined and locked. For unbound pools, we could have raced
2301 	 * with pwq release and it could already be dead. If its refcnt is zero,
2302 	 * repeat pwq selection. Note that unbound pwqs never die without
2303 	 * another pwq replacing it in cpu_pwq or while work items are executing
2304 	 * on it, so the retrying is guaranteed to make forward-progress.
2305 	 */
2306 	if (unlikely(!pwq->refcnt)) {
2307 		if (wq->flags & WQ_UNBOUND) {
2308 			raw_spin_unlock(&pool->lock);
2309 			cpu_relax();
2310 			goto retry;
2311 		}
2312 		/* oops */
2313 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2314 			  wq->name, cpu);
2315 	}
2316 
2317 	/* pwq determined, queue */
2318 	trace_workqueue_queue_work(req_cpu, pwq, work);
2319 
2320 	if (WARN_ON(!list_empty(&work->entry)))
2321 		goto out;
2322 
2323 	pwq->nr_in_flight[pwq->work_color]++;
2324 	work_flags = work_color_to_flags(pwq->work_color);
2325 
2326 	/*
2327 	 * Limit the number of concurrently active work items to max_active.
2328 	 * @work must also queue behind existing inactive work items to maintain
2329 	 * ordering when max_active changes. See wq_adjust_max_active().
2330 	 */
2331 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2332 		if (list_empty(&pool->worklist))
2333 			pool->watchdog_ts = jiffies;
2334 
2335 		trace_workqueue_activate_work(work);
2336 		insert_work(pwq, work, &pool->worklist, work_flags);
2337 		kick_pool(pool);
2338 	} else {
2339 		work_flags |= WORK_STRUCT_INACTIVE;
2340 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2341 	}
2342 
2343 out:
2344 	raw_spin_unlock(&pool->lock);
2345 	rcu_read_unlock();
2346 }
2347 
2348 static bool clear_pending_if_disabled(struct work_struct *work)
2349 {
2350 	unsigned long data = *work_data_bits(work);
2351 	struct work_offq_data offqd;
2352 
2353 	if (likely((data & WORK_STRUCT_PWQ) ||
2354 		   !(data & WORK_OFFQ_DISABLE_MASK)))
2355 		return false;
2356 
2357 	work_offqd_unpack(&offqd, data);
2358 	set_work_pool_and_clear_pending(work, offqd.pool_id,
2359 					work_offqd_pack_flags(&offqd));
2360 	return true;
2361 }
2362 
2363 /**
2364  * queue_work_on - queue work on specific cpu
2365  * @cpu: CPU number to execute work on
2366  * @wq: workqueue to use
2367  * @work: work to queue
2368  *
2369  * We queue the work to a specific CPU, the caller must ensure it
2370  * can't go away.  Callers that fail to ensure that the specified
2371  * CPU cannot go away will execute on a randomly chosen CPU.
2372  * But note well that callers specifying a CPU that never has been
2373  * online will get a splat.
2374  *
2375  * Return: %false if @work was already on a queue, %true otherwise.
2376  */
2377 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2378 		   struct work_struct *work)
2379 {
2380 	bool ret = false;
2381 	unsigned long irq_flags;
2382 
2383 	local_irq_save(irq_flags);
2384 
2385 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2386 	    !clear_pending_if_disabled(work)) {
2387 		__queue_work(cpu, wq, work);
2388 		ret = true;
2389 	}
2390 
2391 	local_irq_restore(irq_flags);
2392 	return ret;
2393 }
2394 EXPORT_SYMBOL(queue_work_on);
2395 
2396 /**
2397  * select_numa_node_cpu - Select a CPU based on NUMA node
2398  * @node: NUMA node ID that we want to select a CPU from
2399  *
2400  * This function will attempt to find a "random" cpu available on a given
2401  * node. If there are no CPUs available on the given node it will return
2402  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2403  * available CPU if we need to schedule this work.
2404  */
2405 static int select_numa_node_cpu(int node)
2406 {
2407 	int cpu;
2408 
2409 	/* Delay binding to CPU if node is not valid or online */
2410 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2411 		return WORK_CPU_UNBOUND;
2412 
2413 	/* Use local node/cpu if we are already there */
2414 	cpu = raw_smp_processor_id();
2415 	if (node == cpu_to_node(cpu))
2416 		return cpu;
2417 
2418 	/* Use "random" otherwise know as "first" online CPU of node */
2419 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2420 
2421 	/* If CPU is valid return that, otherwise just defer */
2422 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2423 }
2424 
2425 /**
2426  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2427  * @node: NUMA node that we are targeting the work for
2428  * @wq: workqueue to use
2429  * @work: work to queue
2430  *
2431  * We queue the work to a "random" CPU within a given NUMA node. The basic
2432  * idea here is to provide a way to somehow associate work with a given
2433  * NUMA node.
2434  *
2435  * This function will only make a best effort attempt at getting this onto
2436  * the right NUMA node. If no node is requested or the requested node is
2437  * offline then we just fall back to standard queue_work behavior.
2438  *
2439  * Currently the "random" CPU ends up being the first available CPU in the
2440  * intersection of cpu_online_mask and the cpumask of the node, unless we
2441  * are running on the node. In that case we just use the current CPU.
2442  *
2443  * Return: %false if @work was already on a queue, %true otherwise.
2444  */
2445 bool queue_work_node(int node, struct workqueue_struct *wq,
2446 		     struct work_struct *work)
2447 {
2448 	unsigned long irq_flags;
2449 	bool ret = false;
2450 
2451 	/*
2452 	 * This current implementation is specific to unbound workqueues.
2453 	 * Specifically we only return the first available CPU for a given
2454 	 * node instead of cycling through individual CPUs within the node.
2455 	 *
2456 	 * If this is used with a per-cpu workqueue then the logic in
2457 	 * workqueue_select_cpu_near would need to be updated to allow for
2458 	 * some round robin type logic.
2459 	 */
2460 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2461 
2462 	local_irq_save(irq_flags);
2463 
2464 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2465 	    !clear_pending_if_disabled(work)) {
2466 		int cpu = select_numa_node_cpu(node);
2467 
2468 		__queue_work(cpu, wq, work);
2469 		ret = true;
2470 	}
2471 
2472 	local_irq_restore(irq_flags);
2473 	return ret;
2474 }
2475 EXPORT_SYMBOL_GPL(queue_work_node);
2476 
2477 void delayed_work_timer_fn(struct timer_list *t)
2478 {
2479 	struct delayed_work *dwork = from_timer(dwork, t, timer);
2480 
2481 	/* should have been called from irqsafe timer with irq already off */
2482 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2483 }
2484 EXPORT_SYMBOL(delayed_work_timer_fn);
2485 
2486 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2487 				struct delayed_work *dwork, unsigned long delay)
2488 {
2489 	struct timer_list *timer = &dwork->timer;
2490 	struct work_struct *work = &dwork->work;
2491 
2492 	WARN_ON_ONCE(!wq);
2493 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2494 	WARN_ON_ONCE(timer_pending(timer));
2495 	WARN_ON_ONCE(!list_empty(&work->entry));
2496 
2497 	/*
2498 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2499 	 * both optimization and correctness.  The earliest @timer can
2500 	 * expire is on the closest next tick and delayed_work users depend
2501 	 * on that there's no such delay when @delay is 0.
2502 	 */
2503 	if (!delay) {
2504 		__queue_work(cpu, wq, &dwork->work);
2505 		return;
2506 	}
2507 
2508 	dwork->wq = wq;
2509 	dwork->cpu = cpu;
2510 	timer->expires = jiffies + delay;
2511 
2512 	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2513 		/* If the current cpu is a housekeeping cpu, use it. */
2514 		cpu = smp_processor_id();
2515 		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2516 			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2517 		add_timer_on(timer, cpu);
2518 	} else {
2519 		if (likely(cpu == WORK_CPU_UNBOUND))
2520 			add_timer_global(timer);
2521 		else
2522 			add_timer_on(timer, cpu);
2523 	}
2524 }
2525 
2526 /**
2527  * queue_delayed_work_on - queue work on specific CPU after delay
2528  * @cpu: CPU number to execute work on
2529  * @wq: workqueue to use
2530  * @dwork: work to queue
2531  * @delay: number of jiffies to wait before queueing
2532  *
2533  * Return: %false if @work was already on a queue, %true otherwise.  If
2534  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2535  * execution.
2536  */
2537 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2538 			   struct delayed_work *dwork, unsigned long delay)
2539 {
2540 	struct work_struct *work = &dwork->work;
2541 	bool ret = false;
2542 	unsigned long irq_flags;
2543 
2544 	/* read the comment in __queue_work() */
2545 	local_irq_save(irq_flags);
2546 
2547 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2548 	    !clear_pending_if_disabled(work)) {
2549 		__queue_delayed_work(cpu, wq, dwork, delay);
2550 		ret = true;
2551 	}
2552 
2553 	local_irq_restore(irq_flags);
2554 	return ret;
2555 }
2556 EXPORT_SYMBOL(queue_delayed_work_on);
2557 
2558 /**
2559  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2560  * @cpu: CPU number to execute work on
2561  * @wq: workqueue to use
2562  * @dwork: work to queue
2563  * @delay: number of jiffies to wait before queueing
2564  *
2565  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2566  * modify @dwork's timer so that it expires after @delay.  If @delay is
2567  * zero, @work is guaranteed to be scheduled immediately regardless of its
2568  * current state.
2569  *
2570  * Return: %false if @dwork was idle and queued, %true if @dwork was
2571  * pending and its timer was modified.
2572  *
2573  * This function is safe to call from any context including IRQ handler.
2574  * See try_to_grab_pending() for details.
2575  */
2576 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2577 			 struct delayed_work *dwork, unsigned long delay)
2578 {
2579 	unsigned long irq_flags;
2580 	bool ret;
2581 
2582 	ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2583 
2584 	if (!clear_pending_if_disabled(&dwork->work))
2585 		__queue_delayed_work(cpu, wq, dwork, delay);
2586 
2587 	local_irq_restore(irq_flags);
2588 	return ret;
2589 }
2590 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2591 
2592 static void rcu_work_rcufn(struct rcu_head *rcu)
2593 {
2594 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2595 
2596 	/* read the comment in __queue_work() */
2597 	local_irq_disable();
2598 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2599 	local_irq_enable();
2600 }
2601 
2602 /**
2603  * queue_rcu_work - queue work after a RCU grace period
2604  * @wq: workqueue to use
2605  * @rwork: work to queue
2606  *
2607  * Return: %false if @rwork was already pending, %true otherwise.  Note
2608  * that a full RCU grace period is guaranteed only after a %true return.
2609  * While @rwork is guaranteed to be executed after a %false return, the
2610  * execution may happen before a full RCU grace period has passed.
2611  */
2612 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2613 {
2614 	struct work_struct *work = &rwork->work;
2615 
2616 	/*
2617 	 * rcu_work can't be canceled or disabled. Warn if the user reached
2618 	 * inside @rwork and disabled the inner work.
2619 	 */
2620 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2621 	    !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2622 		rwork->wq = wq;
2623 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2624 		return true;
2625 	}
2626 
2627 	return false;
2628 }
2629 EXPORT_SYMBOL(queue_rcu_work);
2630 
2631 static struct worker *alloc_worker(int node)
2632 {
2633 	struct worker *worker;
2634 
2635 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2636 	if (worker) {
2637 		INIT_LIST_HEAD(&worker->entry);
2638 		INIT_LIST_HEAD(&worker->scheduled);
2639 		INIT_LIST_HEAD(&worker->node);
2640 		/* on creation a worker is in !idle && prep state */
2641 		worker->flags = WORKER_PREP;
2642 	}
2643 	return worker;
2644 }
2645 
2646 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2647 {
2648 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2649 		return pool->attrs->__pod_cpumask;
2650 	else
2651 		return pool->attrs->cpumask;
2652 }
2653 
2654 /**
2655  * worker_attach_to_pool() - attach a worker to a pool
2656  * @worker: worker to be attached
2657  * @pool: the target pool
2658  *
2659  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2660  * cpu-binding of @worker are kept coordinated with the pool across
2661  * cpu-[un]hotplugs.
2662  */
2663 static void worker_attach_to_pool(struct worker *worker,
2664 				  struct worker_pool *pool)
2665 {
2666 	mutex_lock(&wq_pool_attach_mutex);
2667 
2668 	/*
2669 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2670 	 * across this function. See the comments above the flag definition for
2671 	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2672 	 */
2673 	if (pool->flags & POOL_DISASSOCIATED) {
2674 		worker->flags |= WORKER_UNBOUND;
2675 	} else {
2676 		WARN_ON_ONCE(pool->flags & POOL_BH);
2677 		kthread_set_per_cpu(worker->task, pool->cpu);
2678 	}
2679 
2680 	if (worker->rescue_wq)
2681 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2682 
2683 	list_add_tail(&worker->node, &pool->workers);
2684 	worker->pool = pool;
2685 
2686 	mutex_unlock(&wq_pool_attach_mutex);
2687 }
2688 
2689 static void unbind_worker(struct worker *worker)
2690 {
2691 	lockdep_assert_held(&wq_pool_attach_mutex);
2692 
2693 	kthread_set_per_cpu(worker->task, -1);
2694 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2695 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2696 	else
2697 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2698 }
2699 
2700 
2701 static void detach_worker(struct worker *worker)
2702 {
2703 	lockdep_assert_held(&wq_pool_attach_mutex);
2704 
2705 	unbind_worker(worker);
2706 	list_del(&worker->node);
2707 	worker->pool = NULL;
2708 }
2709 
2710 /**
2711  * worker_detach_from_pool() - detach a worker from its pool
2712  * @worker: worker which is attached to its pool
2713  *
2714  * Undo the attaching which had been done in worker_attach_to_pool().  The
2715  * caller worker shouldn't access to the pool after detached except it has
2716  * other reference to the pool.
2717  */
2718 static void worker_detach_from_pool(struct worker *worker)
2719 {
2720 	struct worker_pool *pool = worker->pool;
2721 
2722 	/* there is one permanent BH worker per CPU which should never detach */
2723 	WARN_ON_ONCE(pool->flags & POOL_BH);
2724 
2725 	mutex_lock(&wq_pool_attach_mutex);
2726 	detach_worker(worker);
2727 	mutex_unlock(&wq_pool_attach_mutex);
2728 
2729 	/* clear leftover flags without pool->lock after it is detached */
2730 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2731 }
2732 
2733 /**
2734  * create_worker - create a new workqueue worker
2735  * @pool: pool the new worker will belong to
2736  *
2737  * Create and start a new worker which is attached to @pool.
2738  *
2739  * CONTEXT:
2740  * Might sleep.  Does GFP_KERNEL allocations.
2741  *
2742  * Return:
2743  * Pointer to the newly created worker.
2744  */
2745 static struct worker *create_worker(struct worker_pool *pool)
2746 {
2747 	struct worker *worker;
2748 	int id;
2749 	char id_buf[23];
2750 
2751 	/* ID is needed to determine kthread name */
2752 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2753 	if (id < 0) {
2754 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2755 			    ERR_PTR(id));
2756 		return NULL;
2757 	}
2758 
2759 	worker = alloc_worker(pool->node);
2760 	if (!worker) {
2761 		pr_err_once("workqueue: Failed to allocate a worker\n");
2762 		goto fail;
2763 	}
2764 
2765 	worker->id = id;
2766 
2767 	if (!(pool->flags & POOL_BH)) {
2768 		if (pool->cpu >= 0)
2769 			snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2770 				 pool->attrs->nice < 0  ? "H" : "");
2771 		else
2772 			snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2773 
2774 		worker->task = kthread_create_on_node(worker_thread, worker,
2775 					pool->node, "kworker/%s", id_buf);
2776 		if (IS_ERR(worker->task)) {
2777 			if (PTR_ERR(worker->task) == -EINTR) {
2778 				pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2779 				       id_buf);
2780 			} else {
2781 				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2782 					    worker->task);
2783 			}
2784 			goto fail;
2785 		}
2786 
2787 		set_user_nice(worker->task, pool->attrs->nice);
2788 		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2789 	}
2790 
2791 	/* successful, attach the worker to the pool */
2792 	worker_attach_to_pool(worker, pool);
2793 
2794 	/* start the newly created worker */
2795 	raw_spin_lock_irq(&pool->lock);
2796 
2797 	worker->pool->nr_workers++;
2798 	worker_enter_idle(worker);
2799 
2800 	/*
2801 	 * @worker is waiting on a completion in kthread() and will trigger hung
2802 	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2803 	 * wake it up explicitly.
2804 	 */
2805 	if (worker->task)
2806 		wake_up_process(worker->task);
2807 
2808 	raw_spin_unlock_irq(&pool->lock);
2809 
2810 	return worker;
2811 
2812 fail:
2813 	ida_free(&pool->worker_ida, id);
2814 	kfree(worker);
2815 	return NULL;
2816 }
2817 
2818 static void detach_dying_workers(struct list_head *cull_list)
2819 {
2820 	struct worker *worker;
2821 
2822 	list_for_each_entry(worker, cull_list, entry)
2823 		detach_worker(worker);
2824 }
2825 
2826 static void reap_dying_workers(struct list_head *cull_list)
2827 {
2828 	struct worker *worker, *tmp;
2829 
2830 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2831 		list_del_init(&worker->entry);
2832 		kthread_stop_put(worker->task);
2833 		kfree(worker);
2834 	}
2835 }
2836 
2837 /**
2838  * set_worker_dying - Tag a worker for destruction
2839  * @worker: worker to be destroyed
2840  * @list: transfer worker away from its pool->idle_list and into list
2841  *
2842  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2843  * should be idle.
2844  *
2845  * CONTEXT:
2846  * raw_spin_lock_irq(pool->lock).
2847  */
2848 static void set_worker_dying(struct worker *worker, struct list_head *list)
2849 {
2850 	struct worker_pool *pool = worker->pool;
2851 
2852 	lockdep_assert_held(&pool->lock);
2853 	lockdep_assert_held(&wq_pool_attach_mutex);
2854 
2855 	/* sanity check frenzy */
2856 	if (WARN_ON(worker->current_work) ||
2857 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2858 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2859 		return;
2860 
2861 	pool->nr_workers--;
2862 	pool->nr_idle--;
2863 
2864 	worker->flags |= WORKER_DIE;
2865 
2866 	list_move(&worker->entry, list);
2867 
2868 	/* get an extra task struct reference for later kthread_stop_put() */
2869 	get_task_struct(worker->task);
2870 }
2871 
2872 /**
2873  * idle_worker_timeout - check if some idle workers can now be deleted.
2874  * @t: The pool's idle_timer that just expired
2875  *
2876  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2877  * worker_leave_idle(), as a worker flicking between idle and active while its
2878  * pool is at the too_many_workers() tipping point would cause too much timer
2879  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2880  * it expire and re-evaluate things from there.
2881  */
2882 static void idle_worker_timeout(struct timer_list *t)
2883 {
2884 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2885 	bool do_cull = false;
2886 
2887 	if (work_pending(&pool->idle_cull_work))
2888 		return;
2889 
2890 	raw_spin_lock_irq(&pool->lock);
2891 
2892 	if (too_many_workers(pool)) {
2893 		struct worker *worker;
2894 		unsigned long expires;
2895 
2896 		/* idle_list is kept in LIFO order, check the last one */
2897 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2898 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2899 		do_cull = !time_before(jiffies, expires);
2900 
2901 		if (!do_cull)
2902 			mod_timer(&pool->idle_timer, expires);
2903 	}
2904 	raw_spin_unlock_irq(&pool->lock);
2905 
2906 	if (do_cull)
2907 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2908 }
2909 
2910 /**
2911  * idle_cull_fn - cull workers that have been idle for too long.
2912  * @work: the pool's work for handling these idle workers
2913  *
2914  * This goes through a pool's idle workers and gets rid of those that have been
2915  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2916  *
2917  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2918  * culled, so this also resets worker affinity. This requires a sleepable
2919  * context, hence the split between timer callback and work item.
2920  */
2921 static void idle_cull_fn(struct work_struct *work)
2922 {
2923 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2924 	LIST_HEAD(cull_list);
2925 
2926 	/*
2927 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2928 	 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2929 	 * This is required as a previously-preempted worker could run after
2930 	 * set_worker_dying() has happened but before detach_dying_workers() did.
2931 	 */
2932 	mutex_lock(&wq_pool_attach_mutex);
2933 	raw_spin_lock_irq(&pool->lock);
2934 
2935 	while (too_many_workers(pool)) {
2936 		struct worker *worker;
2937 		unsigned long expires;
2938 
2939 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2940 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2941 
2942 		if (time_before(jiffies, expires)) {
2943 			mod_timer(&pool->idle_timer, expires);
2944 			break;
2945 		}
2946 
2947 		set_worker_dying(worker, &cull_list);
2948 	}
2949 
2950 	raw_spin_unlock_irq(&pool->lock);
2951 	detach_dying_workers(&cull_list);
2952 	mutex_unlock(&wq_pool_attach_mutex);
2953 
2954 	reap_dying_workers(&cull_list);
2955 }
2956 
2957 static void send_mayday(struct work_struct *work)
2958 {
2959 	struct pool_workqueue *pwq = get_work_pwq(work);
2960 	struct workqueue_struct *wq = pwq->wq;
2961 
2962 	lockdep_assert_held(&wq_mayday_lock);
2963 
2964 	if (!wq->rescuer)
2965 		return;
2966 
2967 	/* mayday mayday mayday */
2968 	if (list_empty(&pwq->mayday_node)) {
2969 		/*
2970 		 * If @pwq is for an unbound wq, its base ref may be put at
2971 		 * any time due to an attribute change.  Pin @pwq until the
2972 		 * rescuer is done with it.
2973 		 */
2974 		get_pwq(pwq);
2975 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2976 		wake_up_process(wq->rescuer->task);
2977 		pwq->stats[PWQ_STAT_MAYDAY]++;
2978 	}
2979 }
2980 
2981 static void pool_mayday_timeout(struct timer_list *t)
2982 {
2983 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2984 	struct work_struct *work;
2985 
2986 	raw_spin_lock_irq(&pool->lock);
2987 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2988 
2989 	if (need_to_create_worker(pool)) {
2990 		/*
2991 		 * We've been trying to create a new worker but
2992 		 * haven't been successful.  We might be hitting an
2993 		 * allocation deadlock.  Send distress signals to
2994 		 * rescuers.
2995 		 */
2996 		list_for_each_entry(work, &pool->worklist, entry)
2997 			send_mayday(work);
2998 	}
2999 
3000 	raw_spin_unlock(&wq_mayday_lock);
3001 	raw_spin_unlock_irq(&pool->lock);
3002 
3003 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3004 }
3005 
3006 /**
3007  * maybe_create_worker - create a new worker if necessary
3008  * @pool: pool to create a new worker for
3009  *
3010  * Create a new worker for @pool if necessary.  @pool is guaranteed to
3011  * have at least one idle worker on return from this function.  If
3012  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3013  * sent to all rescuers with works scheduled on @pool to resolve
3014  * possible allocation deadlock.
3015  *
3016  * On return, need_to_create_worker() is guaranteed to be %false and
3017  * may_start_working() %true.
3018  *
3019  * LOCKING:
3020  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3021  * multiple times.  Does GFP_KERNEL allocations.  Called only from
3022  * manager.
3023  */
3024 static void maybe_create_worker(struct worker_pool *pool)
3025 __releases(&pool->lock)
3026 __acquires(&pool->lock)
3027 {
3028 restart:
3029 	raw_spin_unlock_irq(&pool->lock);
3030 
3031 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3032 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3033 
3034 	while (true) {
3035 		if (create_worker(pool) || !need_to_create_worker(pool))
3036 			break;
3037 
3038 		schedule_timeout_interruptible(CREATE_COOLDOWN);
3039 
3040 		if (!need_to_create_worker(pool))
3041 			break;
3042 	}
3043 
3044 	del_timer_sync(&pool->mayday_timer);
3045 	raw_spin_lock_irq(&pool->lock);
3046 	/*
3047 	 * This is necessary even after a new worker was just successfully
3048 	 * created as @pool->lock was dropped and the new worker might have
3049 	 * already become busy.
3050 	 */
3051 	if (need_to_create_worker(pool))
3052 		goto restart;
3053 }
3054 
3055 /**
3056  * manage_workers - manage worker pool
3057  * @worker: self
3058  *
3059  * Assume the manager role and manage the worker pool @worker belongs
3060  * to.  At any given time, there can be only zero or one manager per
3061  * pool.  The exclusion is handled automatically by this function.
3062  *
3063  * The caller can safely start processing works on false return.  On
3064  * true return, it's guaranteed that need_to_create_worker() is false
3065  * and may_start_working() is true.
3066  *
3067  * CONTEXT:
3068  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3069  * multiple times.  Does GFP_KERNEL allocations.
3070  *
3071  * Return:
3072  * %false if the pool doesn't need management and the caller can safely
3073  * start processing works, %true if management function was performed and
3074  * the conditions that the caller verified before calling the function may
3075  * no longer be true.
3076  */
3077 static bool manage_workers(struct worker *worker)
3078 {
3079 	struct worker_pool *pool = worker->pool;
3080 
3081 	if (pool->flags & POOL_MANAGER_ACTIVE)
3082 		return false;
3083 
3084 	pool->flags |= POOL_MANAGER_ACTIVE;
3085 	pool->manager = worker;
3086 
3087 	maybe_create_worker(pool);
3088 
3089 	pool->manager = NULL;
3090 	pool->flags &= ~POOL_MANAGER_ACTIVE;
3091 	rcuwait_wake_up(&manager_wait);
3092 	return true;
3093 }
3094 
3095 /**
3096  * process_one_work - process single work
3097  * @worker: self
3098  * @work: work to process
3099  *
3100  * Process @work.  This function contains all the logics necessary to
3101  * process a single work including synchronization against and
3102  * interaction with other workers on the same cpu, queueing and
3103  * flushing.  As long as context requirement is met, any worker can
3104  * call this function to process a work.
3105  *
3106  * CONTEXT:
3107  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3108  */
3109 static void process_one_work(struct worker *worker, struct work_struct *work)
3110 __releases(&pool->lock)
3111 __acquires(&pool->lock)
3112 {
3113 	struct pool_workqueue *pwq = get_work_pwq(work);
3114 	struct worker_pool *pool = worker->pool;
3115 	unsigned long work_data;
3116 	int lockdep_start_depth, rcu_start_depth;
3117 	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3118 #ifdef CONFIG_LOCKDEP
3119 	/*
3120 	 * It is permissible to free the struct work_struct from
3121 	 * inside the function that is called from it, this we need to
3122 	 * take into account for lockdep too.  To avoid bogus "held
3123 	 * lock freed" warnings as well as problems when looking into
3124 	 * work->lockdep_map, make a copy and use that here.
3125 	 */
3126 	struct lockdep_map lockdep_map;
3127 
3128 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3129 #endif
3130 	/* ensure we're on the correct CPU */
3131 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3132 		     raw_smp_processor_id() != pool->cpu);
3133 
3134 	/* claim and dequeue */
3135 	debug_work_deactivate(work);
3136 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3137 	worker->current_work = work;
3138 	worker->current_func = work->func;
3139 	worker->current_pwq = pwq;
3140 	if (worker->task)
3141 		worker->current_at = worker->task->se.sum_exec_runtime;
3142 	work_data = *work_data_bits(work);
3143 	worker->current_color = get_work_color(work_data);
3144 
3145 	/*
3146 	 * Record wq name for cmdline and debug reporting, may get
3147 	 * overridden through set_worker_desc().
3148 	 */
3149 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3150 
3151 	list_del_init(&work->entry);
3152 
3153 	/*
3154 	 * CPU intensive works don't participate in concurrency management.
3155 	 * They're the scheduler's responsibility.  This takes @worker out
3156 	 * of concurrency management and the next code block will chain
3157 	 * execution of the pending work items.
3158 	 */
3159 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3160 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3161 
3162 	/*
3163 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3164 	 * since nr_running would always be >= 1 at this point. This is used to
3165 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3166 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3167 	 */
3168 	kick_pool(pool);
3169 
3170 	/*
3171 	 * Record the last pool and clear PENDING which should be the last
3172 	 * update to @work.  Also, do this inside @pool->lock so that
3173 	 * PENDING and queued state changes happen together while IRQ is
3174 	 * disabled.
3175 	 */
3176 	set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3177 
3178 	pwq->stats[PWQ_STAT_STARTED]++;
3179 	raw_spin_unlock_irq(&pool->lock);
3180 
3181 	rcu_start_depth = rcu_preempt_depth();
3182 	lockdep_start_depth = lockdep_depth(current);
3183 	/* see drain_dead_softirq_workfn() */
3184 	if (!bh_draining)
3185 		lock_map_acquire(&pwq->wq->lockdep_map);
3186 	lock_map_acquire(&lockdep_map);
3187 	/*
3188 	 * Strictly speaking we should mark the invariant state without holding
3189 	 * any locks, that is, before these two lock_map_acquire()'s.
3190 	 *
3191 	 * However, that would result in:
3192 	 *
3193 	 *   A(W1)
3194 	 *   WFC(C)
3195 	 *		A(W1)
3196 	 *		C(C)
3197 	 *
3198 	 * Which would create W1->C->W1 dependencies, even though there is no
3199 	 * actual deadlock possible. There are two solutions, using a
3200 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3201 	 * hit the lockdep limitation on recursive locks, or simply discard
3202 	 * these locks.
3203 	 *
3204 	 * AFAICT there is no possible deadlock scenario between the
3205 	 * flush_work() and complete() primitives (except for single-threaded
3206 	 * workqueues), so hiding them isn't a problem.
3207 	 */
3208 	lockdep_invariant_state(true);
3209 	trace_workqueue_execute_start(work);
3210 	worker->current_func(work);
3211 	/*
3212 	 * While we must be careful to not use "work" after this, the trace
3213 	 * point will only record its address.
3214 	 */
3215 	trace_workqueue_execute_end(work, worker->current_func);
3216 	pwq->stats[PWQ_STAT_COMPLETED]++;
3217 	lock_map_release(&lockdep_map);
3218 	if (!bh_draining)
3219 		lock_map_release(&pwq->wq->lockdep_map);
3220 
3221 	if (unlikely((worker->task && in_atomic()) ||
3222 		     lockdep_depth(current) != lockdep_start_depth ||
3223 		     rcu_preempt_depth() != rcu_start_depth)) {
3224 		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3225 		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3226 		       current->comm, task_pid_nr(current), preempt_count(),
3227 		       lockdep_start_depth, lockdep_depth(current),
3228 		       rcu_start_depth, rcu_preempt_depth(),
3229 		       worker->current_func);
3230 		debug_show_held_locks(current);
3231 		dump_stack();
3232 	}
3233 
3234 	/*
3235 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3236 	 * kernels, where a requeueing work item waiting for something to
3237 	 * happen could deadlock with stop_machine as such work item could
3238 	 * indefinitely requeue itself while all other CPUs are trapped in
3239 	 * stop_machine. At the same time, report a quiescent RCU state so
3240 	 * the same condition doesn't freeze RCU.
3241 	 */
3242 	if (worker->task)
3243 		cond_resched();
3244 
3245 	raw_spin_lock_irq(&pool->lock);
3246 
3247 	/*
3248 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3249 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3250 	 * wq_cpu_intensive_thresh_us. Clear it.
3251 	 */
3252 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3253 
3254 	/* tag the worker for identification in schedule() */
3255 	worker->last_func = worker->current_func;
3256 
3257 	/* we're done with it, release */
3258 	hash_del(&worker->hentry);
3259 	worker->current_work = NULL;
3260 	worker->current_func = NULL;
3261 	worker->current_pwq = NULL;
3262 	worker->current_color = INT_MAX;
3263 
3264 	/* must be the last step, see the function comment */
3265 	pwq_dec_nr_in_flight(pwq, work_data);
3266 }
3267 
3268 /**
3269  * process_scheduled_works - process scheduled works
3270  * @worker: self
3271  *
3272  * Process all scheduled works.  Please note that the scheduled list
3273  * may change while processing a work, so this function repeatedly
3274  * fetches a work from the top and executes it.
3275  *
3276  * CONTEXT:
3277  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3278  * multiple times.
3279  */
3280 static void process_scheduled_works(struct worker *worker)
3281 {
3282 	struct work_struct *work;
3283 	bool first = true;
3284 
3285 	while ((work = list_first_entry_or_null(&worker->scheduled,
3286 						struct work_struct, entry))) {
3287 		if (first) {
3288 			worker->pool->watchdog_ts = jiffies;
3289 			first = false;
3290 		}
3291 		process_one_work(worker, work);
3292 	}
3293 }
3294 
3295 static void set_pf_worker(bool val)
3296 {
3297 	mutex_lock(&wq_pool_attach_mutex);
3298 	if (val)
3299 		current->flags |= PF_WQ_WORKER;
3300 	else
3301 		current->flags &= ~PF_WQ_WORKER;
3302 	mutex_unlock(&wq_pool_attach_mutex);
3303 }
3304 
3305 /**
3306  * worker_thread - the worker thread function
3307  * @__worker: self
3308  *
3309  * The worker thread function.  All workers belong to a worker_pool -
3310  * either a per-cpu one or dynamic unbound one.  These workers process all
3311  * work items regardless of their specific target workqueue.  The only
3312  * exception is work items which belong to workqueues with a rescuer which
3313  * will be explained in rescuer_thread().
3314  *
3315  * Return: 0
3316  */
3317 static int worker_thread(void *__worker)
3318 {
3319 	struct worker *worker = __worker;
3320 	struct worker_pool *pool = worker->pool;
3321 
3322 	/* tell the scheduler that this is a workqueue worker */
3323 	set_pf_worker(true);
3324 woke_up:
3325 	raw_spin_lock_irq(&pool->lock);
3326 
3327 	/* am I supposed to die? */
3328 	if (unlikely(worker->flags & WORKER_DIE)) {
3329 		raw_spin_unlock_irq(&pool->lock);
3330 		set_pf_worker(false);
3331 
3332 		set_task_comm(worker->task, "kworker/dying");
3333 		ida_free(&pool->worker_ida, worker->id);
3334 		WARN_ON_ONCE(!list_empty(&worker->entry));
3335 		return 0;
3336 	}
3337 
3338 	worker_leave_idle(worker);
3339 recheck:
3340 	/* no more worker necessary? */
3341 	if (!need_more_worker(pool))
3342 		goto sleep;
3343 
3344 	/* do we need to manage? */
3345 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3346 		goto recheck;
3347 
3348 	/*
3349 	 * ->scheduled list can only be filled while a worker is
3350 	 * preparing to process a work or actually processing it.
3351 	 * Make sure nobody diddled with it while I was sleeping.
3352 	 */
3353 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3354 
3355 	/*
3356 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3357 	 * worker or that someone else has already assumed the manager
3358 	 * role.  This is where @worker starts participating in concurrency
3359 	 * management if applicable and concurrency management is restored
3360 	 * after being rebound.  See rebind_workers() for details.
3361 	 */
3362 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3363 
3364 	do {
3365 		struct work_struct *work =
3366 			list_first_entry(&pool->worklist,
3367 					 struct work_struct, entry);
3368 
3369 		if (assign_work(work, worker, NULL))
3370 			process_scheduled_works(worker);
3371 	} while (keep_working(pool));
3372 
3373 	worker_set_flags(worker, WORKER_PREP);
3374 sleep:
3375 	/*
3376 	 * pool->lock is held and there's no work to process and no need to
3377 	 * manage, sleep.  Workers are woken up only while holding
3378 	 * pool->lock or from local cpu, so setting the current state
3379 	 * before releasing pool->lock is enough to prevent losing any
3380 	 * event.
3381 	 */
3382 	worker_enter_idle(worker);
3383 	__set_current_state(TASK_IDLE);
3384 	raw_spin_unlock_irq(&pool->lock);
3385 	schedule();
3386 	goto woke_up;
3387 }
3388 
3389 /**
3390  * rescuer_thread - the rescuer thread function
3391  * @__rescuer: self
3392  *
3393  * Workqueue rescuer thread function.  There's one rescuer for each
3394  * workqueue which has WQ_MEM_RECLAIM set.
3395  *
3396  * Regular work processing on a pool may block trying to create a new
3397  * worker which uses GFP_KERNEL allocation which has slight chance of
3398  * developing into deadlock if some works currently on the same queue
3399  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3400  * the problem rescuer solves.
3401  *
3402  * When such condition is possible, the pool summons rescuers of all
3403  * workqueues which have works queued on the pool and let them process
3404  * those works so that forward progress can be guaranteed.
3405  *
3406  * This should happen rarely.
3407  *
3408  * Return: 0
3409  */
3410 static int rescuer_thread(void *__rescuer)
3411 {
3412 	struct worker *rescuer = __rescuer;
3413 	struct workqueue_struct *wq = rescuer->rescue_wq;
3414 	bool should_stop;
3415 
3416 	set_user_nice(current, RESCUER_NICE_LEVEL);
3417 
3418 	/*
3419 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3420 	 * doesn't participate in concurrency management.
3421 	 */
3422 	set_pf_worker(true);
3423 repeat:
3424 	set_current_state(TASK_IDLE);
3425 
3426 	/*
3427 	 * By the time the rescuer is requested to stop, the workqueue
3428 	 * shouldn't have any work pending, but @wq->maydays may still have
3429 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3430 	 * all the work items before the rescuer got to them.  Go through
3431 	 * @wq->maydays processing before acting on should_stop so that the
3432 	 * list is always empty on exit.
3433 	 */
3434 	should_stop = kthread_should_stop();
3435 
3436 	/* see whether any pwq is asking for help */
3437 	raw_spin_lock_irq(&wq_mayday_lock);
3438 
3439 	while (!list_empty(&wq->maydays)) {
3440 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3441 					struct pool_workqueue, mayday_node);
3442 		struct worker_pool *pool = pwq->pool;
3443 		struct work_struct *work, *n;
3444 
3445 		__set_current_state(TASK_RUNNING);
3446 		list_del_init(&pwq->mayday_node);
3447 
3448 		raw_spin_unlock_irq(&wq_mayday_lock);
3449 
3450 		worker_attach_to_pool(rescuer, pool);
3451 
3452 		raw_spin_lock_irq(&pool->lock);
3453 
3454 		/*
3455 		 * Slurp in all works issued via this workqueue and
3456 		 * process'em.
3457 		 */
3458 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3459 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3460 			if (get_work_pwq(work) == pwq &&
3461 			    assign_work(work, rescuer, &n))
3462 				pwq->stats[PWQ_STAT_RESCUED]++;
3463 		}
3464 
3465 		if (!list_empty(&rescuer->scheduled)) {
3466 			process_scheduled_works(rescuer);
3467 
3468 			/*
3469 			 * The above execution of rescued work items could
3470 			 * have created more to rescue through
3471 			 * pwq_activate_first_inactive() or chained
3472 			 * queueing.  Let's put @pwq back on mayday list so
3473 			 * that such back-to-back work items, which may be
3474 			 * being used to relieve memory pressure, don't
3475 			 * incur MAYDAY_INTERVAL delay inbetween.
3476 			 */
3477 			if (pwq->nr_active && need_to_create_worker(pool)) {
3478 				raw_spin_lock(&wq_mayday_lock);
3479 				/*
3480 				 * Queue iff we aren't racing destruction
3481 				 * and somebody else hasn't queued it already.
3482 				 */
3483 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3484 					get_pwq(pwq);
3485 					list_add_tail(&pwq->mayday_node, &wq->maydays);
3486 				}
3487 				raw_spin_unlock(&wq_mayday_lock);
3488 			}
3489 		}
3490 
3491 		/*
3492 		 * Put the reference grabbed by send_mayday().  @pool won't
3493 		 * go away while we're still attached to it.
3494 		 */
3495 		put_pwq(pwq);
3496 
3497 		/*
3498 		 * Leave this pool. Notify regular workers; otherwise, we end up
3499 		 * with 0 concurrency and stalling the execution.
3500 		 */
3501 		kick_pool(pool);
3502 
3503 		raw_spin_unlock_irq(&pool->lock);
3504 
3505 		worker_detach_from_pool(rescuer);
3506 
3507 		raw_spin_lock_irq(&wq_mayday_lock);
3508 	}
3509 
3510 	raw_spin_unlock_irq(&wq_mayday_lock);
3511 
3512 	if (should_stop) {
3513 		__set_current_state(TASK_RUNNING);
3514 		set_pf_worker(false);
3515 		return 0;
3516 	}
3517 
3518 	/* rescuers should never participate in concurrency management */
3519 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3520 	schedule();
3521 	goto repeat;
3522 }
3523 
3524 static void bh_worker(struct worker *worker)
3525 {
3526 	struct worker_pool *pool = worker->pool;
3527 	int nr_restarts = BH_WORKER_RESTARTS;
3528 	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3529 
3530 	raw_spin_lock_irq(&pool->lock);
3531 	worker_leave_idle(worker);
3532 
3533 	/*
3534 	 * This function follows the structure of worker_thread(). See there for
3535 	 * explanations on each step.
3536 	 */
3537 	if (!need_more_worker(pool))
3538 		goto done;
3539 
3540 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3541 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3542 
3543 	do {
3544 		struct work_struct *work =
3545 			list_first_entry(&pool->worklist,
3546 					 struct work_struct, entry);
3547 
3548 		if (assign_work(work, worker, NULL))
3549 			process_scheduled_works(worker);
3550 	} while (keep_working(pool) &&
3551 		 --nr_restarts && time_before(jiffies, end));
3552 
3553 	worker_set_flags(worker, WORKER_PREP);
3554 done:
3555 	worker_enter_idle(worker);
3556 	kick_pool(pool);
3557 	raw_spin_unlock_irq(&pool->lock);
3558 }
3559 
3560 /*
3561  * TODO: Convert all tasklet users to workqueue and use softirq directly.
3562  *
3563  * This is currently called from tasklet[_hi]action() and thus is also called
3564  * whenever there are tasklets to run. Let's do an early exit if there's nothing
3565  * queued. Once conversion from tasklet is complete, the need_more_worker() test
3566  * can be dropped.
3567  *
3568  * After full conversion, we'll add worker->softirq_action, directly use the
3569  * softirq action and obtain the worker pointer from the softirq_action pointer.
3570  */
3571 void workqueue_softirq_action(bool highpri)
3572 {
3573 	struct worker_pool *pool =
3574 		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3575 	if (need_more_worker(pool))
3576 		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3577 }
3578 
3579 struct wq_drain_dead_softirq_work {
3580 	struct work_struct	work;
3581 	struct worker_pool	*pool;
3582 	struct completion	done;
3583 };
3584 
3585 static void drain_dead_softirq_workfn(struct work_struct *work)
3586 {
3587 	struct wq_drain_dead_softirq_work *dead_work =
3588 		container_of(work, struct wq_drain_dead_softirq_work, work);
3589 	struct worker_pool *pool = dead_work->pool;
3590 	bool repeat;
3591 
3592 	/*
3593 	 * @pool's CPU is dead and we want to execute its still pending work
3594 	 * items from this BH work item which is running on a different CPU. As
3595 	 * its CPU is dead, @pool can't be kicked and, as work execution path
3596 	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3597 	 * @pool with %POOL_BH_DRAINING for the special treatments.
3598 	 */
3599 	raw_spin_lock_irq(&pool->lock);
3600 	pool->flags |= POOL_BH_DRAINING;
3601 	raw_spin_unlock_irq(&pool->lock);
3602 
3603 	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3604 
3605 	raw_spin_lock_irq(&pool->lock);
3606 	pool->flags &= ~POOL_BH_DRAINING;
3607 	repeat = need_more_worker(pool);
3608 	raw_spin_unlock_irq(&pool->lock);
3609 
3610 	/*
3611 	 * bh_worker() might hit consecutive execution limit and bail. If there
3612 	 * still are pending work items, reschedule self and return so that we
3613 	 * don't hog this CPU's BH.
3614 	 */
3615 	if (repeat) {
3616 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3617 			queue_work(system_bh_highpri_wq, work);
3618 		else
3619 			queue_work(system_bh_wq, work);
3620 	} else {
3621 		complete(&dead_work->done);
3622 	}
3623 }
3624 
3625 /*
3626  * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3627  * possible to allocate dead_work per CPU and avoid flushing. However, then we
3628  * have to worry about draining overlapping with CPU coming back online or
3629  * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3630  * on). Let's keep it simple and drain them synchronously. These are BH work
3631  * items which shouldn't be requeued on the same pool. Shouldn't take long.
3632  */
3633 void workqueue_softirq_dead(unsigned int cpu)
3634 {
3635 	int i;
3636 
3637 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3638 		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3639 		struct wq_drain_dead_softirq_work dead_work;
3640 
3641 		if (!need_more_worker(pool))
3642 			continue;
3643 
3644 		INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3645 		dead_work.pool = pool;
3646 		init_completion(&dead_work.done);
3647 
3648 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3649 			queue_work(system_bh_highpri_wq, &dead_work.work);
3650 		else
3651 			queue_work(system_bh_wq, &dead_work.work);
3652 
3653 		wait_for_completion(&dead_work.done);
3654 		destroy_work_on_stack(&dead_work.work);
3655 	}
3656 }
3657 
3658 /**
3659  * check_flush_dependency - check for flush dependency sanity
3660  * @target_wq: workqueue being flushed
3661  * @target_work: work item being flushed (NULL for workqueue flushes)
3662  *
3663  * %current is trying to flush the whole @target_wq or @target_work on it.
3664  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3665  * reclaiming memory or running on a workqueue which doesn't have
3666  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3667  * a deadlock.
3668  */
3669 static void check_flush_dependency(struct workqueue_struct *target_wq,
3670 				   struct work_struct *target_work)
3671 {
3672 	work_func_t target_func = target_work ? target_work->func : NULL;
3673 	struct worker *worker;
3674 
3675 	if (target_wq->flags & WQ_MEM_RECLAIM)
3676 		return;
3677 
3678 	worker = current_wq_worker();
3679 
3680 	WARN_ONCE(current->flags & PF_MEMALLOC,
3681 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3682 		  current->pid, current->comm, target_wq->name, target_func);
3683 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3684 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3685 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3686 		  worker->current_pwq->wq->name, worker->current_func,
3687 		  target_wq->name, target_func);
3688 }
3689 
3690 struct wq_barrier {
3691 	struct work_struct	work;
3692 	struct completion	done;
3693 	struct task_struct	*task;	/* purely informational */
3694 };
3695 
3696 static void wq_barrier_func(struct work_struct *work)
3697 {
3698 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3699 	complete(&barr->done);
3700 }
3701 
3702 /**
3703  * insert_wq_barrier - insert a barrier work
3704  * @pwq: pwq to insert barrier into
3705  * @barr: wq_barrier to insert
3706  * @target: target work to attach @barr to
3707  * @worker: worker currently executing @target, NULL if @target is not executing
3708  *
3709  * @barr is linked to @target such that @barr is completed only after
3710  * @target finishes execution.  Please note that the ordering
3711  * guarantee is observed only with respect to @target and on the local
3712  * cpu.
3713  *
3714  * Currently, a queued barrier can't be canceled.  This is because
3715  * try_to_grab_pending() can't determine whether the work to be
3716  * grabbed is at the head of the queue and thus can't clear LINKED
3717  * flag of the previous work while there must be a valid next work
3718  * after a work with LINKED flag set.
3719  *
3720  * Note that when @worker is non-NULL, @target may be modified
3721  * underneath us, so we can't reliably determine pwq from @target.
3722  *
3723  * CONTEXT:
3724  * raw_spin_lock_irq(pool->lock).
3725  */
3726 static void insert_wq_barrier(struct pool_workqueue *pwq,
3727 			      struct wq_barrier *barr,
3728 			      struct work_struct *target, struct worker *worker)
3729 {
3730 	static __maybe_unused struct lock_class_key bh_key, thr_key;
3731 	unsigned int work_flags = 0;
3732 	unsigned int work_color;
3733 	struct list_head *head;
3734 
3735 	/*
3736 	 * debugobject calls are safe here even with pool->lock locked
3737 	 * as we know for sure that this will not trigger any of the
3738 	 * checks and call back into the fixup functions where we
3739 	 * might deadlock.
3740 	 *
3741 	 * BH and threaded workqueues need separate lockdep keys to avoid
3742 	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3743 	 * usage".
3744 	 */
3745 	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3746 			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3747 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3748 
3749 	init_completion_map(&barr->done, &target->lockdep_map);
3750 
3751 	barr->task = current;
3752 
3753 	/* The barrier work item does not participate in nr_active. */
3754 	work_flags |= WORK_STRUCT_INACTIVE;
3755 
3756 	/*
3757 	 * If @target is currently being executed, schedule the
3758 	 * barrier to the worker; otherwise, put it after @target.
3759 	 */
3760 	if (worker) {
3761 		head = worker->scheduled.next;
3762 		work_color = worker->current_color;
3763 	} else {
3764 		unsigned long *bits = work_data_bits(target);
3765 
3766 		head = target->entry.next;
3767 		/* there can already be other linked works, inherit and set */
3768 		work_flags |= *bits & WORK_STRUCT_LINKED;
3769 		work_color = get_work_color(*bits);
3770 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3771 	}
3772 
3773 	pwq->nr_in_flight[work_color]++;
3774 	work_flags |= work_color_to_flags(work_color);
3775 
3776 	insert_work(pwq, &barr->work, head, work_flags);
3777 }
3778 
3779 /**
3780  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3781  * @wq: workqueue being flushed
3782  * @flush_color: new flush color, < 0 for no-op
3783  * @work_color: new work color, < 0 for no-op
3784  *
3785  * Prepare pwqs for workqueue flushing.
3786  *
3787  * If @flush_color is non-negative, flush_color on all pwqs should be
3788  * -1.  If no pwq has in-flight commands at the specified color, all
3789  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3790  * has in flight commands, its pwq->flush_color is set to
3791  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3792  * wakeup logic is armed and %true is returned.
3793  *
3794  * The caller should have initialized @wq->first_flusher prior to
3795  * calling this function with non-negative @flush_color.  If
3796  * @flush_color is negative, no flush color update is done and %false
3797  * is returned.
3798  *
3799  * If @work_color is non-negative, all pwqs should have the same
3800  * work_color which is previous to @work_color and all will be
3801  * advanced to @work_color.
3802  *
3803  * CONTEXT:
3804  * mutex_lock(wq->mutex).
3805  *
3806  * Return:
3807  * %true if @flush_color >= 0 and there's something to flush.  %false
3808  * otherwise.
3809  */
3810 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3811 				      int flush_color, int work_color)
3812 {
3813 	bool wait = false;
3814 	struct pool_workqueue *pwq;
3815 
3816 	if (flush_color >= 0) {
3817 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3818 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3819 	}
3820 
3821 	for_each_pwq(pwq, wq) {
3822 		struct worker_pool *pool = pwq->pool;
3823 
3824 		raw_spin_lock_irq(&pool->lock);
3825 
3826 		if (flush_color >= 0) {
3827 			WARN_ON_ONCE(pwq->flush_color != -1);
3828 
3829 			if (pwq->nr_in_flight[flush_color]) {
3830 				pwq->flush_color = flush_color;
3831 				atomic_inc(&wq->nr_pwqs_to_flush);
3832 				wait = true;
3833 			}
3834 		}
3835 
3836 		if (work_color >= 0) {
3837 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3838 			pwq->work_color = work_color;
3839 		}
3840 
3841 		raw_spin_unlock_irq(&pool->lock);
3842 	}
3843 
3844 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3845 		complete(&wq->first_flusher->done);
3846 
3847 	return wait;
3848 }
3849 
3850 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3851 {
3852 #ifdef CONFIG_LOCKDEP
3853 	if (wq->flags & WQ_BH)
3854 		local_bh_disable();
3855 
3856 	lock_map_acquire(&wq->lockdep_map);
3857 	lock_map_release(&wq->lockdep_map);
3858 
3859 	if (wq->flags & WQ_BH)
3860 		local_bh_enable();
3861 #endif
3862 }
3863 
3864 static void touch_work_lockdep_map(struct work_struct *work,
3865 				   struct workqueue_struct *wq)
3866 {
3867 #ifdef CONFIG_LOCKDEP
3868 	if (wq->flags & WQ_BH)
3869 		local_bh_disable();
3870 
3871 	lock_map_acquire(&work->lockdep_map);
3872 	lock_map_release(&work->lockdep_map);
3873 
3874 	if (wq->flags & WQ_BH)
3875 		local_bh_enable();
3876 #endif
3877 }
3878 
3879 /**
3880  * __flush_workqueue - ensure that any scheduled work has run to completion.
3881  * @wq: workqueue to flush
3882  *
3883  * This function sleeps until all work items which were queued on entry
3884  * have finished execution, but it is not livelocked by new incoming ones.
3885  */
3886 void __flush_workqueue(struct workqueue_struct *wq)
3887 {
3888 	struct wq_flusher this_flusher = {
3889 		.list = LIST_HEAD_INIT(this_flusher.list),
3890 		.flush_color = -1,
3891 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3892 	};
3893 	int next_color;
3894 
3895 	if (WARN_ON(!wq_online))
3896 		return;
3897 
3898 	touch_wq_lockdep_map(wq);
3899 
3900 	mutex_lock(&wq->mutex);
3901 
3902 	/*
3903 	 * Start-to-wait phase
3904 	 */
3905 	next_color = work_next_color(wq->work_color);
3906 
3907 	if (next_color != wq->flush_color) {
3908 		/*
3909 		 * Color space is not full.  The current work_color
3910 		 * becomes our flush_color and work_color is advanced
3911 		 * by one.
3912 		 */
3913 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3914 		this_flusher.flush_color = wq->work_color;
3915 		wq->work_color = next_color;
3916 
3917 		if (!wq->first_flusher) {
3918 			/* no flush in progress, become the first flusher */
3919 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3920 
3921 			wq->first_flusher = &this_flusher;
3922 
3923 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3924 						       wq->work_color)) {
3925 				/* nothing to flush, done */
3926 				wq->flush_color = next_color;
3927 				wq->first_flusher = NULL;
3928 				goto out_unlock;
3929 			}
3930 		} else {
3931 			/* wait in queue */
3932 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3933 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3934 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3935 		}
3936 	} else {
3937 		/*
3938 		 * Oops, color space is full, wait on overflow queue.
3939 		 * The next flush completion will assign us
3940 		 * flush_color and transfer to flusher_queue.
3941 		 */
3942 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3943 	}
3944 
3945 	check_flush_dependency(wq, NULL);
3946 
3947 	mutex_unlock(&wq->mutex);
3948 
3949 	wait_for_completion(&this_flusher.done);
3950 
3951 	/*
3952 	 * Wake-up-and-cascade phase
3953 	 *
3954 	 * First flushers are responsible for cascading flushes and
3955 	 * handling overflow.  Non-first flushers can simply return.
3956 	 */
3957 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3958 		return;
3959 
3960 	mutex_lock(&wq->mutex);
3961 
3962 	/* we might have raced, check again with mutex held */
3963 	if (wq->first_flusher != &this_flusher)
3964 		goto out_unlock;
3965 
3966 	WRITE_ONCE(wq->first_flusher, NULL);
3967 
3968 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3969 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3970 
3971 	while (true) {
3972 		struct wq_flusher *next, *tmp;
3973 
3974 		/* complete all the flushers sharing the current flush color */
3975 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3976 			if (next->flush_color != wq->flush_color)
3977 				break;
3978 			list_del_init(&next->list);
3979 			complete(&next->done);
3980 		}
3981 
3982 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3983 			     wq->flush_color != work_next_color(wq->work_color));
3984 
3985 		/* this flush_color is finished, advance by one */
3986 		wq->flush_color = work_next_color(wq->flush_color);
3987 
3988 		/* one color has been freed, handle overflow queue */
3989 		if (!list_empty(&wq->flusher_overflow)) {
3990 			/*
3991 			 * Assign the same color to all overflowed
3992 			 * flushers, advance work_color and append to
3993 			 * flusher_queue.  This is the start-to-wait
3994 			 * phase for these overflowed flushers.
3995 			 */
3996 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
3997 				tmp->flush_color = wq->work_color;
3998 
3999 			wq->work_color = work_next_color(wq->work_color);
4000 
4001 			list_splice_tail_init(&wq->flusher_overflow,
4002 					      &wq->flusher_queue);
4003 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4004 		}
4005 
4006 		if (list_empty(&wq->flusher_queue)) {
4007 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4008 			break;
4009 		}
4010 
4011 		/*
4012 		 * Need to flush more colors.  Make the next flusher
4013 		 * the new first flusher and arm pwqs.
4014 		 */
4015 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4016 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4017 
4018 		list_del_init(&next->list);
4019 		wq->first_flusher = next;
4020 
4021 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4022 			break;
4023 
4024 		/*
4025 		 * Meh... this color is already done, clear first
4026 		 * flusher and repeat cascading.
4027 		 */
4028 		wq->first_flusher = NULL;
4029 	}
4030 
4031 out_unlock:
4032 	mutex_unlock(&wq->mutex);
4033 }
4034 EXPORT_SYMBOL(__flush_workqueue);
4035 
4036 /**
4037  * drain_workqueue - drain a workqueue
4038  * @wq: workqueue to drain
4039  *
4040  * Wait until the workqueue becomes empty.  While draining is in progress,
4041  * only chain queueing is allowed.  IOW, only currently pending or running
4042  * work items on @wq can queue further work items on it.  @wq is flushed
4043  * repeatedly until it becomes empty.  The number of flushing is determined
4044  * by the depth of chaining and should be relatively short.  Whine if it
4045  * takes too long.
4046  */
4047 void drain_workqueue(struct workqueue_struct *wq)
4048 {
4049 	unsigned int flush_cnt = 0;
4050 	struct pool_workqueue *pwq;
4051 
4052 	/*
4053 	 * __queue_work() needs to test whether there are drainers, is much
4054 	 * hotter than drain_workqueue() and already looks at @wq->flags.
4055 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4056 	 */
4057 	mutex_lock(&wq->mutex);
4058 	if (!wq->nr_drainers++)
4059 		wq->flags |= __WQ_DRAINING;
4060 	mutex_unlock(&wq->mutex);
4061 reflush:
4062 	__flush_workqueue(wq);
4063 
4064 	mutex_lock(&wq->mutex);
4065 
4066 	for_each_pwq(pwq, wq) {
4067 		bool drained;
4068 
4069 		raw_spin_lock_irq(&pwq->pool->lock);
4070 		drained = pwq_is_empty(pwq);
4071 		raw_spin_unlock_irq(&pwq->pool->lock);
4072 
4073 		if (drained)
4074 			continue;
4075 
4076 		if (++flush_cnt == 10 ||
4077 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4078 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4079 				wq->name, __func__, flush_cnt);
4080 
4081 		mutex_unlock(&wq->mutex);
4082 		goto reflush;
4083 	}
4084 
4085 	if (!--wq->nr_drainers)
4086 		wq->flags &= ~__WQ_DRAINING;
4087 	mutex_unlock(&wq->mutex);
4088 }
4089 EXPORT_SYMBOL_GPL(drain_workqueue);
4090 
4091 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4092 			     bool from_cancel)
4093 {
4094 	struct worker *worker = NULL;
4095 	struct worker_pool *pool;
4096 	struct pool_workqueue *pwq;
4097 	struct workqueue_struct *wq;
4098 
4099 	rcu_read_lock();
4100 	pool = get_work_pool(work);
4101 	if (!pool) {
4102 		rcu_read_unlock();
4103 		return false;
4104 	}
4105 
4106 	raw_spin_lock_irq(&pool->lock);
4107 	/* see the comment in try_to_grab_pending() with the same code */
4108 	pwq = get_work_pwq(work);
4109 	if (pwq) {
4110 		if (unlikely(pwq->pool != pool))
4111 			goto already_gone;
4112 	} else {
4113 		worker = find_worker_executing_work(pool, work);
4114 		if (!worker)
4115 			goto already_gone;
4116 		pwq = worker->current_pwq;
4117 	}
4118 
4119 	wq = pwq->wq;
4120 	check_flush_dependency(wq, work);
4121 
4122 	insert_wq_barrier(pwq, barr, work, worker);
4123 	raw_spin_unlock_irq(&pool->lock);
4124 
4125 	touch_work_lockdep_map(work, wq);
4126 
4127 	/*
4128 	 * Force a lock recursion deadlock when using flush_work() inside a
4129 	 * single-threaded or rescuer equipped workqueue.
4130 	 *
4131 	 * For single threaded workqueues the deadlock happens when the work
4132 	 * is after the work issuing the flush_work(). For rescuer equipped
4133 	 * workqueues the deadlock happens when the rescuer stalls, blocking
4134 	 * forward progress.
4135 	 */
4136 	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4137 		touch_wq_lockdep_map(wq);
4138 
4139 	rcu_read_unlock();
4140 	return true;
4141 already_gone:
4142 	raw_spin_unlock_irq(&pool->lock);
4143 	rcu_read_unlock();
4144 	return false;
4145 }
4146 
4147 static bool __flush_work(struct work_struct *work, bool from_cancel)
4148 {
4149 	struct wq_barrier barr;
4150 	unsigned long data;
4151 
4152 	if (WARN_ON(!wq_online))
4153 		return false;
4154 
4155 	if (WARN_ON(!work->func))
4156 		return false;
4157 
4158 	if (!start_flush_work(work, &barr, from_cancel))
4159 		return false;
4160 
4161 	/*
4162 	 * start_flush_work() returned %true. If @from_cancel is set, we know
4163 	 * that @work must have been executing during start_flush_work() and
4164 	 * can't currently be queued. Its data must contain OFFQ bits. If @work
4165 	 * was queued on a BH workqueue, we also know that it was running in the
4166 	 * BH context and thus can be busy-waited.
4167 	 */
4168 	data = *work_data_bits(work);
4169 	if (from_cancel &&
4170 	    !WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_BH)) {
4171 		/*
4172 		 * On RT, prevent a live lock when %current preempted soft
4173 		 * interrupt processing or prevents ksoftirqd from running by
4174 		 * keeping flipping BH. If the BH work item runs on a different
4175 		 * CPU then this has no effect other than doing the BH
4176 		 * disable/enable dance for nothing. This is copied from
4177 		 * kernel/softirq.c::tasklet_unlock_spin_wait().
4178 		 */
4179 		while (!try_wait_for_completion(&barr.done)) {
4180 			if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4181 				local_bh_disable();
4182 				local_bh_enable();
4183 			} else {
4184 				cpu_relax();
4185 			}
4186 		}
4187 	} else {
4188 		wait_for_completion(&barr.done);
4189 	}
4190 
4191 	destroy_work_on_stack(&barr.work);
4192 	return true;
4193 }
4194 
4195 /**
4196  * flush_work - wait for a work to finish executing the last queueing instance
4197  * @work: the work to flush
4198  *
4199  * Wait until @work has finished execution.  @work is guaranteed to be idle
4200  * on return if it hasn't been requeued since flush started.
4201  *
4202  * Return:
4203  * %true if flush_work() waited for the work to finish execution,
4204  * %false if it was already idle.
4205  */
4206 bool flush_work(struct work_struct *work)
4207 {
4208 	might_sleep();
4209 	return __flush_work(work, false);
4210 }
4211 EXPORT_SYMBOL_GPL(flush_work);
4212 
4213 /**
4214  * flush_delayed_work - wait for a dwork to finish executing the last queueing
4215  * @dwork: the delayed work to flush
4216  *
4217  * Delayed timer is cancelled and the pending work is queued for
4218  * immediate execution.  Like flush_work(), this function only
4219  * considers the last queueing instance of @dwork.
4220  *
4221  * Return:
4222  * %true if flush_work() waited for the work to finish execution,
4223  * %false if it was already idle.
4224  */
4225 bool flush_delayed_work(struct delayed_work *dwork)
4226 {
4227 	local_irq_disable();
4228 	if (del_timer_sync(&dwork->timer))
4229 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4230 	local_irq_enable();
4231 	return flush_work(&dwork->work);
4232 }
4233 EXPORT_SYMBOL(flush_delayed_work);
4234 
4235 /**
4236  * flush_rcu_work - wait for a rwork to finish executing the last queueing
4237  * @rwork: the rcu work to flush
4238  *
4239  * Return:
4240  * %true if flush_rcu_work() waited for the work to finish execution,
4241  * %false if it was already idle.
4242  */
4243 bool flush_rcu_work(struct rcu_work *rwork)
4244 {
4245 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4246 		rcu_barrier();
4247 		flush_work(&rwork->work);
4248 		return true;
4249 	} else {
4250 		return flush_work(&rwork->work);
4251 	}
4252 }
4253 EXPORT_SYMBOL(flush_rcu_work);
4254 
4255 static void work_offqd_disable(struct work_offq_data *offqd)
4256 {
4257 	const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4258 
4259 	if (likely(offqd->disable < max))
4260 		offqd->disable++;
4261 	else
4262 		WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4263 }
4264 
4265 static void work_offqd_enable(struct work_offq_data *offqd)
4266 {
4267 	if (likely(offqd->disable > 0))
4268 		offqd->disable--;
4269 	else
4270 		WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4271 }
4272 
4273 static bool __cancel_work(struct work_struct *work, u32 cflags)
4274 {
4275 	struct work_offq_data offqd;
4276 	unsigned long irq_flags;
4277 	int ret;
4278 
4279 	ret = work_grab_pending(work, cflags, &irq_flags);
4280 
4281 	work_offqd_unpack(&offqd, *work_data_bits(work));
4282 
4283 	if (cflags & WORK_CANCEL_DISABLE)
4284 		work_offqd_disable(&offqd);
4285 
4286 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4287 					work_offqd_pack_flags(&offqd));
4288 	local_irq_restore(irq_flags);
4289 	return ret;
4290 }
4291 
4292 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4293 {
4294 	bool ret;
4295 
4296 	ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4297 
4298 	if (*work_data_bits(work) & WORK_OFFQ_BH)
4299 		WARN_ON_ONCE(in_hardirq());
4300 	else
4301 		might_sleep();
4302 
4303 	/*
4304 	 * Skip __flush_work() during early boot when we know that @work isn't
4305 	 * executing. This allows canceling during early boot.
4306 	 */
4307 	if (wq_online)
4308 		__flush_work(work, true);
4309 
4310 	if (!(cflags & WORK_CANCEL_DISABLE))
4311 		enable_work(work);
4312 
4313 	return ret;
4314 }
4315 
4316 /*
4317  * See cancel_delayed_work()
4318  */
4319 bool cancel_work(struct work_struct *work)
4320 {
4321 	return __cancel_work(work, 0);
4322 }
4323 EXPORT_SYMBOL(cancel_work);
4324 
4325 /**
4326  * cancel_work_sync - cancel a work and wait for it to finish
4327  * @work: the work to cancel
4328  *
4329  * Cancel @work and wait for its execution to finish. This function can be used
4330  * even if the work re-queues itself or migrates to another workqueue. On return
4331  * from this function, @work is guaranteed to be not pending or executing on any
4332  * CPU as long as there aren't racing enqueues.
4333  *
4334  * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4335  * Use cancel_delayed_work_sync() instead.
4336  *
4337  * Must be called from a sleepable context if @work was last queued on a non-BH
4338  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4339  * if @work was last queued on a BH workqueue.
4340  *
4341  * Returns %true if @work was pending, %false otherwise.
4342  */
4343 bool cancel_work_sync(struct work_struct *work)
4344 {
4345 	return __cancel_work_sync(work, 0);
4346 }
4347 EXPORT_SYMBOL_GPL(cancel_work_sync);
4348 
4349 /**
4350  * cancel_delayed_work - cancel a delayed work
4351  * @dwork: delayed_work to cancel
4352  *
4353  * Kill off a pending delayed_work.
4354  *
4355  * Return: %true if @dwork was pending and canceled; %false if it wasn't
4356  * pending.
4357  *
4358  * Note:
4359  * The work callback function may still be running on return, unless
4360  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4361  * use cancel_delayed_work_sync() to wait on it.
4362  *
4363  * This function is safe to call from any context including IRQ handler.
4364  */
4365 bool cancel_delayed_work(struct delayed_work *dwork)
4366 {
4367 	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4368 }
4369 EXPORT_SYMBOL(cancel_delayed_work);
4370 
4371 /**
4372  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4373  * @dwork: the delayed work cancel
4374  *
4375  * This is cancel_work_sync() for delayed works.
4376  *
4377  * Return:
4378  * %true if @dwork was pending, %false otherwise.
4379  */
4380 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4381 {
4382 	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4383 }
4384 EXPORT_SYMBOL(cancel_delayed_work_sync);
4385 
4386 /**
4387  * disable_work - Disable and cancel a work item
4388  * @work: work item to disable
4389  *
4390  * Disable @work by incrementing its disable count and cancel it if currently
4391  * pending. As long as the disable count is non-zero, any attempt to queue @work
4392  * will fail and return %false. The maximum supported disable depth is 2 to the
4393  * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4394  *
4395  * Can be called from any context. Returns %true if @work was pending, %false
4396  * otherwise.
4397  */
4398 bool disable_work(struct work_struct *work)
4399 {
4400 	return __cancel_work(work, WORK_CANCEL_DISABLE);
4401 }
4402 EXPORT_SYMBOL_GPL(disable_work);
4403 
4404 /**
4405  * disable_work_sync - Disable, cancel and drain a work item
4406  * @work: work item to disable
4407  *
4408  * Similar to disable_work() but also wait for @work to finish if currently
4409  * executing.
4410  *
4411  * Must be called from a sleepable context if @work was last queued on a non-BH
4412  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4413  * if @work was last queued on a BH workqueue.
4414  *
4415  * Returns %true if @work was pending, %false otherwise.
4416  */
4417 bool disable_work_sync(struct work_struct *work)
4418 {
4419 	return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4420 }
4421 EXPORT_SYMBOL_GPL(disable_work_sync);
4422 
4423 /**
4424  * enable_work - Enable a work item
4425  * @work: work item to enable
4426  *
4427  * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4428  * only be queued if its disable count is 0.
4429  *
4430  * Can be called from any context. Returns %true if the disable count reached 0.
4431  * Otherwise, %false.
4432  */
4433 bool enable_work(struct work_struct *work)
4434 {
4435 	struct work_offq_data offqd;
4436 	unsigned long irq_flags;
4437 
4438 	work_grab_pending(work, 0, &irq_flags);
4439 
4440 	work_offqd_unpack(&offqd, *work_data_bits(work));
4441 	work_offqd_enable(&offqd);
4442 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4443 					work_offqd_pack_flags(&offqd));
4444 	local_irq_restore(irq_flags);
4445 
4446 	return !offqd.disable;
4447 }
4448 EXPORT_SYMBOL_GPL(enable_work);
4449 
4450 /**
4451  * disable_delayed_work - Disable and cancel a delayed work item
4452  * @dwork: delayed work item to disable
4453  *
4454  * disable_work() for delayed work items.
4455  */
4456 bool disable_delayed_work(struct delayed_work *dwork)
4457 {
4458 	return __cancel_work(&dwork->work,
4459 			     WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4460 }
4461 EXPORT_SYMBOL_GPL(disable_delayed_work);
4462 
4463 /**
4464  * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4465  * @dwork: delayed work item to disable
4466  *
4467  * disable_work_sync() for delayed work items.
4468  */
4469 bool disable_delayed_work_sync(struct delayed_work *dwork)
4470 {
4471 	return __cancel_work_sync(&dwork->work,
4472 				  WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4473 }
4474 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4475 
4476 /**
4477  * enable_delayed_work - Enable a delayed work item
4478  * @dwork: delayed work item to enable
4479  *
4480  * enable_work() for delayed work items.
4481  */
4482 bool enable_delayed_work(struct delayed_work *dwork)
4483 {
4484 	return enable_work(&dwork->work);
4485 }
4486 EXPORT_SYMBOL_GPL(enable_delayed_work);
4487 
4488 /**
4489  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4490  * @func: the function to call
4491  *
4492  * schedule_on_each_cpu() executes @func on each online CPU using the
4493  * system workqueue and blocks until all CPUs have completed.
4494  * schedule_on_each_cpu() is very slow.
4495  *
4496  * Return:
4497  * 0 on success, -errno on failure.
4498  */
4499 int schedule_on_each_cpu(work_func_t func)
4500 {
4501 	int cpu;
4502 	struct work_struct __percpu *works;
4503 
4504 	works = alloc_percpu(struct work_struct);
4505 	if (!works)
4506 		return -ENOMEM;
4507 
4508 	cpus_read_lock();
4509 
4510 	for_each_online_cpu(cpu) {
4511 		struct work_struct *work = per_cpu_ptr(works, cpu);
4512 
4513 		INIT_WORK(work, func);
4514 		schedule_work_on(cpu, work);
4515 	}
4516 
4517 	for_each_online_cpu(cpu)
4518 		flush_work(per_cpu_ptr(works, cpu));
4519 
4520 	cpus_read_unlock();
4521 	free_percpu(works);
4522 	return 0;
4523 }
4524 
4525 /**
4526  * execute_in_process_context - reliably execute the routine with user context
4527  * @fn:		the function to execute
4528  * @ew:		guaranteed storage for the execute work structure (must
4529  *		be available when the work executes)
4530  *
4531  * Executes the function immediately if process context is available,
4532  * otherwise schedules the function for delayed execution.
4533  *
4534  * Return:	0 - function was executed
4535  *		1 - function was scheduled for execution
4536  */
4537 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4538 {
4539 	if (!in_interrupt()) {
4540 		fn(&ew->work);
4541 		return 0;
4542 	}
4543 
4544 	INIT_WORK(&ew->work, fn);
4545 	schedule_work(&ew->work);
4546 
4547 	return 1;
4548 }
4549 EXPORT_SYMBOL_GPL(execute_in_process_context);
4550 
4551 /**
4552  * free_workqueue_attrs - free a workqueue_attrs
4553  * @attrs: workqueue_attrs to free
4554  *
4555  * Undo alloc_workqueue_attrs().
4556  */
4557 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4558 {
4559 	if (attrs) {
4560 		free_cpumask_var(attrs->cpumask);
4561 		free_cpumask_var(attrs->__pod_cpumask);
4562 		kfree(attrs);
4563 	}
4564 }
4565 
4566 /**
4567  * alloc_workqueue_attrs - allocate a workqueue_attrs
4568  *
4569  * Allocate a new workqueue_attrs, initialize with default settings and
4570  * return it.
4571  *
4572  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4573  */
4574 struct workqueue_attrs *alloc_workqueue_attrs(void)
4575 {
4576 	struct workqueue_attrs *attrs;
4577 
4578 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4579 	if (!attrs)
4580 		goto fail;
4581 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4582 		goto fail;
4583 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4584 		goto fail;
4585 
4586 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4587 	attrs->affn_scope = WQ_AFFN_DFL;
4588 	return attrs;
4589 fail:
4590 	free_workqueue_attrs(attrs);
4591 	return NULL;
4592 }
4593 
4594 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4595 				 const struct workqueue_attrs *from)
4596 {
4597 	to->nice = from->nice;
4598 	cpumask_copy(to->cpumask, from->cpumask);
4599 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4600 	to->affn_strict = from->affn_strict;
4601 
4602 	/*
4603 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4604 	 * fields as copying is used for both pool and wq attrs. Instead,
4605 	 * get_unbound_pool() explicitly clears the fields.
4606 	 */
4607 	to->affn_scope = from->affn_scope;
4608 	to->ordered = from->ordered;
4609 }
4610 
4611 /*
4612  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4613  * comments in 'struct workqueue_attrs' definition.
4614  */
4615 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4616 {
4617 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4618 	attrs->ordered = false;
4619 	if (attrs->affn_strict)
4620 		cpumask_copy(attrs->cpumask, cpu_possible_mask);
4621 }
4622 
4623 /* hash value of the content of @attr */
4624 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4625 {
4626 	u32 hash = 0;
4627 
4628 	hash = jhash_1word(attrs->nice, hash);
4629 	hash = jhash_1word(attrs->affn_strict, hash);
4630 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4631 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4632 	if (!attrs->affn_strict)
4633 		hash = jhash(cpumask_bits(attrs->cpumask),
4634 			     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4635 	return hash;
4636 }
4637 
4638 /* content equality test */
4639 static bool wqattrs_equal(const struct workqueue_attrs *a,
4640 			  const struct workqueue_attrs *b)
4641 {
4642 	if (a->nice != b->nice)
4643 		return false;
4644 	if (a->affn_strict != b->affn_strict)
4645 		return false;
4646 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4647 		return false;
4648 	if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4649 		return false;
4650 	return true;
4651 }
4652 
4653 /* Update @attrs with actually available CPUs */
4654 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4655 				      const cpumask_t *unbound_cpumask)
4656 {
4657 	/*
4658 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4659 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4660 	 * @unbound_cpumask.
4661 	 */
4662 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4663 	if (unlikely(cpumask_empty(attrs->cpumask)))
4664 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4665 }
4666 
4667 /* find wq_pod_type to use for @attrs */
4668 static const struct wq_pod_type *
4669 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4670 {
4671 	enum wq_affn_scope scope;
4672 	struct wq_pod_type *pt;
4673 
4674 	/* to synchronize access to wq_affn_dfl */
4675 	lockdep_assert_held(&wq_pool_mutex);
4676 
4677 	if (attrs->affn_scope == WQ_AFFN_DFL)
4678 		scope = wq_affn_dfl;
4679 	else
4680 		scope = attrs->affn_scope;
4681 
4682 	pt = &wq_pod_types[scope];
4683 
4684 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4685 	    likely(pt->nr_pods))
4686 		return pt;
4687 
4688 	/*
4689 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4690 	 * initialized in workqueue_init_early().
4691 	 */
4692 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4693 	BUG_ON(!pt->nr_pods);
4694 	return pt;
4695 }
4696 
4697 /**
4698  * init_worker_pool - initialize a newly zalloc'd worker_pool
4699  * @pool: worker_pool to initialize
4700  *
4701  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4702  *
4703  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4704  * inside @pool proper are initialized and put_unbound_pool() can be called
4705  * on @pool safely to release it.
4706  */
4707 static int init_worker_pool(struct worker_pool *pool)
4708 {
4709 	raw_spin_lock_init(&pool->lock);
4710 	pool->id = -1;
4711 	pool->cpu = -1;
4712 	pool->node = NUMA_NO_NODE;
4713 	pool->flags |= POOL_DISASSOCIATED;
4714 	pool->watchdog_ts = jiffies;
4715 	INIT_LIST_HEAD(&pool->worklist);
4716 	INIT_LIST_HEAD(&pool->idle_list);
4717 	hash_init(pool->busy_hash);
4718 
4719 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4720 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4721 
4722 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4723 
4724 	INIT_LIST_HEAD(&pool->workers);
4725 
4726 	ida_init(&pool->worker_ida);
4727 	INIT_HLIST_NODE(&pool->hash_node);
4728 	pool->refcnt = 1;
4729 
4730 	/* shouldn't fail above this point */
4731 	pool->attrs = alloc_workqueue_attrs();
4732 	if (!pool->attrs)
4733 		return -ENOMEM;
4734 
4735 	wqattrs_clear_for_pool(pool->attrs);
4736 
4737 	return 0;
4738 }
4739 
4740 #ifdef CONFIG_LOCKDEP
4741 static void wq_init_lockdep(struct workqueue_struct *wq)
4742 {
4743 	char *lock_name;
4744 
4745 	lockdep_register_key(&wq->key);
4746 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4747 	if (!lock_name)
4748 		lock_name = wq->name;
4749 
4750 	wq->lock_name = lock_name;
4751 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4752 }
4753 
4754 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4755 {
4756 	lockdep_unregister_key(&wq->key);
4757 }
4758 
4759 static void wq_free_lockdep(struct workqueue_struct *wq)
4760 {
4761 	if (wq->lock_name != wq->name)
4762 		kfree(wq->lock_name);
4763 }
4764 #else
4765 static void wq_init_lockdep(struct workqueue_struct *wq)
4766 {
4767 }
4768 
4769 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4770 {
4771 }
4772 
4773 static void wq_free_lockdep(struct workqueue_struct *wq)
4774 {
4775 }
4776 #endif
4777 
4778 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4779 {
4780 	int node;
4781 
4782 	for_each_node(node) {
4783 		kfree(nna_ar[node]);
4784 		nna_ar[node] = NULL;
4785 	}
4786 
4787 	kfree(nna_ar[nr_node_ids]);
4788 	nna_ar[nr_node_ids] = NULL;
4789 }
4790 
4791 static void init_node_nr_active(struct wq_node_nr_active *nna)
4792 {
4793 	nna->max = WQ_DFL_MIN_ACTIVE;
4794 	atomic_set(&nna->nr, 0);
4795 	raw_spin_lock_init(&nna->lock);
4796 	INIT_LIST_HEAD(&nna->pending_pwqs);
4797 }
4798 
4799 /*
4800  * Each node's nr_active counter will be accessed mostly from its own node and
4801  * should be allocated in the node.
4802  */
4803 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4804 {
4805 	struct wq_node_nr_active *nna;
4806 	int node;
4807 
4808 	for_each_node(node) {
4809 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4810 		if (!nna)
4811 			goto err_free;
4812 		init_node_nr_active(nna);
4813 		nna_ar[node] = nna;
4814 	}
4815 
4816 	/* [nr_node_ids] is used as the fallback */
4817 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4818 	if (!nna)
4819 		goto err_free;
4820 	init_node_nr_active(nna);
4821 	nna_ar[nr_node_ids] = nna;
4822 
4823 	return 0;
4824 
4825 err_free:
4826 	free_node_nr_active(nna_ar);
4827 	return -ENOMEM;
4828 }
4829 
4830 static void rcu_free_wq(struct rcu_head *rcu)
4831 {
4832 	struct workqueue_struct *wq =
4833 		container_of(rcu, struct workqueue_struct, rcu);
4834 
4835 	if (wq->flags & WQ_UNBOUND)
4836 		free_node_nr_active(wq->node_nr_active);
4837 
4838 	wq_free_lockdep(wq);
4839 	free_percpu(wq->cpu_pwq);
4840 	free_workqueue_attrs(wq->unbound_attrs);
4841 	kfree(wq);
4842 }
4843 
4844 static void rcu_free_pool(struct rcu_head *rcu)
4845 {
4846 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4847 
4848 	ida_destroy(&pool->worker_ida);
4849 	free_workqueue_attrs(pool->attrs);
4850 	kfree(pool);
4851 }
4852 
4853 /**
4854  * put_unbound_pool - put a worker_pool
4855  * @pool: worker_pool to put
4856  *
4857  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4858  * safe manner.  get_unbound_pool() calls this function on its failure path
4859  * and this function should be able to release pools which went through,
4860  * successfully or not, init_worker_pool().
4861  *
4862  * Should be called with wq_pool_mutex held.
4863  */
4864 static void put_unbound_pool(struct worker_pool *pool)
4865 {
4866 	struct worker *worker;
4867 	LIST_HEAD(cull_list);
4868 
4869 	lockdep_assert_held(&wq_pool_mutex);
4870 
4871 	if (--pool->refcnt)
4872 		return;
4873 
4874 	/* sanity checks */
4875 	if (WARN_ON(!(pool->cpu < 0)) ||
4876 	    WARN_ON(!list_empty(&pool->worklist)))
4877 		return;
4878 
4879 	/* release id and unhash */
4880 	if (pool->id >= 0)
4881 		idr_remove(&worker_pool_idr, pool->id);
4882 	hash_del(&pool->hash_node);
4883 
4884 	/*
4885 	 * Become the manager and destroy all workers.  This prevents
4886 	 * @pool's workers from blocking on attach_mutex.  We're the last
4887 	 * manager and @pool gets freed with the flag set.
4888 	 *
4889 	 * Having a concurrent manager is quite unlikely to happen as we can
4890 	 * only get here with
4891 	 *   pwq->refcnt == pool->refcnt == 0
4892 	 * which implies no work queued to the pool, which implies no worker can
4893 	 * become the manager. However a worker could have taken the role of
4894 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4895 	 * drops pool->lock
4896 	 */
4897 	while (true) {
4898 		rcuwait_wait_event(&manager_wait,
4899 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4900 				   TASK_UNINTERRUPTIBLE);
4901 
4902 		mutex_lock(&wq_pool_attach_mutex);
4903 		raw_spin_lock_irq(&pool->lock);
4904 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4905 			pool->flags |= POOL_MANAGER_ACTIVE;
4906 			break;
4907 		}
4908 		raw_spin_unlock_irq(&pool->lock);
4909 		mutex_unlock(&wq_pool_attach_mutex);
4910 	}
4911 
4912 	while ((worker = first_idle_worker(pool)))
4913 		set_worker_dying(worker, &cull_list);
4914 	WARN_ON(pool->nr_workers || pool->nr_idle);
4915 	raw_spin_unlock_irq(&pool->lock);
4916 
4917 	detach_dying_workers(&cull_list);
4918 
4919 	mutex_unlock(&wq_pool_attach_mutex);
4920 
4921 	reap_dying_workers(&cull_list);
4922 
4923 	/* shut down the timers */
4924 	del_timer_sync(&pool->idle_timer);
4925 	cancel_work_sync(&pool->idle_cull_work);
4926 	del_timer_sync(&pool->mayday_timer);
4927 
4928 	/* RCU protected to allow dereferences from get_work_pool() */
4929 	call_rcu(&pool->rcu, rcu_free_pool);
4930 }
4931 
4932 /**
4933  * get_unbound_pool - get a worker_pool with the specified attributes
4934  * @attrs: the attributes of the worker_pool to get
4935  *
4936  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4937  * reference count and return it.  If there already is a matching
4938  * worker_pool, it will be used; otherwise, this function attempts to
4939  * create a new one.
4940  *
4941  * Should be called with wq_pool_mutex held.
4942  *
4943  * Return: On success, a worker_pool with the same attributes as @attrs.
4944  * On failure, %NULL.
4945  */
4946 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4947 {
4948 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4949 	u32 hash = wqattrs_hash(attrs);
4950 	struct worker_pool *pool;
4951 	int pod, node = NUMA_NO_NODE;
4952 
4953 	lockdep_assert_held(&wq_pool_mutex);
4954 
4955 	/* do we already have a matching pool? */
4956 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4957 		if (wqattrs_equal(pool->attrs, attrs)) {
4958 			pool->refcnt++;
4959 			return pool;
4960 		}
4961 	}
4962 
4963 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4964 	for (pod = 0; pod < pt->nr_pods; pod++) {
4965 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4966 			node = pt->pod_node[pod];
4967 			break;
4968 		}
4969 	}
4970 
4971 	/* nope, create a new one */
4972 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4973 	if (!pool || init_worker_pool(pool) < 0)
4974 		goto fail;
4975 
4976 	pool->node = node;
4977 	copy_workqueue_attrs(pool->attrs, attrs);
4978 	wqattrs_clear_for_pool(pool->attrs);
4979 
4980 	if (worker_pool_assign_id(pool) < 0)
4981 		goto fail;
4982 
4983 	/* create and start the initial worker */
4984 	if (wq_online && !create_worker(pool))
4985 		goto fail;
4986 
4987 	/* install */
4988 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
4989 
4990 	return pool;
4991 fail:
4992 	if (pool)
4993 		put_unbound_pool(pool);
4994 	return NULL;
4995 }
4996 
4997 /*
4998  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4999  * refcnt and needs to be destroyed.
5000  */
5001 static void pwq_release_workfn(struct kthread_work *work)
5002 {
5003 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5004 						  release_work);
5005 	struct workqueue_struct *wq = pwq->wq;
5006 	struct worker_pool *pool = pwq->pool;
5007 	bool is_last = false;
5008 
5009 	/*
5010 	 * When @pwq is not linked, it doesn't hold any reference to the
5011 	 * @wq, and @wq is invalid to access.
5012 	 */
5013 	if (!list_empty(&pwq->pwqs_node)) {
5014 		mutex_lock(&wq->mutex);
5015 		list_del_rcu(&pwq->pwqs_node);
5016 		is_last = list_empty(&wq->pwqs);
5017 
5018 		/*
5019 		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5020 		 */
5021 		if (!is_last && (wq->flags & __WQ_ORDERED))
5022 			unplug_oldest_pwq(wq);
5023 
5024 		mutex_unlock(&wq->mutex);
5025 	}
5026 
5027 	if (wq->flags & WQ_UNBOUND) {
5028 		mutex_lock(&wq_pool_mutex);
5029 		put_unbound_pool(pool);
5030 		mutex_unlock(&wq_pool_mutex);
5031 	}
5032 
5033 	if (!list_empty(&pwq->pending_node)) {
5034 		struct wq_node_nr_active *nna =
5035 			wq_node_nr_active(pwq->wq, pwq->pool->node);
5036 
5037 		raw_spin_lock_irq(&nna->lock);
5038 		list_del_init(&pwq->pending_node);
5039 		raw_spin_unlock_irq(&nna->lock);
5040 	}
5041 
5042 	kfree_rcu(pwq, rcu);
5043 
5044 	/*
5045 	 * If we're the last pwq going away, @wq is already dead and no one
5046 	 * is gonna access it anymore.  Schedule RCU free.
5047 	 */
5048 	if (is_last) {
5049 		wq_unregister_lockdep(wq);
5050 		call_rcu(&wq->rcu, rcu_free_wq);
5051 	}
5052 }
5053 
5054 /* initialize newly allocated @pwq which is associated with @wq and @pool */
5055 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5056 		     struct worker_pool *pool)
5057 {
5058 	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5059 
5060 	memset(pwq, 0, sizeof(*pwq));
5061 
5062 	pwq->pool = pool;
5063 	pwq->wq = wq;
5064 	pwq->flush_color = -1;
5065 	pwq->refcnt = 1;
5066 	INIT_LIST_HEAD(&pwq->inactive_works);
5067 	INIT_LIST_HEAD(&pwq->pending_node);
5068 	INIT_LIST_HEAD(&pwq->pwqs_node);
5069 	INIT_LIST_HEAD(&pwq->mayday_node);
5070 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
5071 }
5072 
5073 /* sync @pwq with the current state of its associated wq and link it */
5074 static void link_pwq(struct pool_workqueue *pwq)
5075 {
5076 	struct workqueue_struct *wq = pwq->wq;
5077 
5078 	lockdep_assert_held(&wq->mutex);
5079 
5080 	/* may be called multiple times, ignore if already linked */
5081 	if (!list_empty(&pwq->pwqs_node))
5082 		return;
5083 
5084 	/* set the matching work_color */
5085 	pwq->work_color = wq->work_color;
5086 
5087 	/* link in @pwq */
5088 	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5089 }
5090 
5091 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5092 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5093 					const struct workqueue_attrs *attrs)
5094 {
5095 	struct worker_pool *pool;
5096 	struct pool_workqueue *pwq;
5097 
5098 	lockdep_assert_held(&wq_pool_mutex);
5099 
5100 	pool = get_unbound_pool(attrs);
5101 	if (!pool)
5102 		return NULL;
5103 
5104 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5105 	if (!pwq) {
5106 		put_unbound_pool(pool);
5107 		return NULL;
5108 	}
5109 
5110 	init_pwq(pwq, wq, pool);
5111 	return pwq;
5112 }
5113 
5114 static void apply_wqattrs_lock(void)
5115 {
5116 	mutex_lock(&wq_pool_mutex);
5117 }
5118 
5119 static void apply_wqattrs_unlock(void)
5120 {
5121 	mutex_unlock(&wq_pool_mutex);
5122 }
5123 
5124 /**
5125  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5126  * @attrs: the wq_attrs of the default pwq of the target workqueue
5127  * @cpu: the target CPU
5128  *
5129  * Calculate the cpumask a workqueue with @attrs should use on @pod.
5130  * The result is stored in @attrs->__pod_cpumask.
5131  *
5132  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5133  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5134  * intersection of the possible CPUs of @pod and @attrs->cpumask.
5135  *
5136  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5137  */
5138 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5139 {
5140 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5141 	int pod = pt->cpu_pod[cpu];
5142 
5143 	/* calculate possible CPUs in @pod that @attrs wants */
5144 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5145 	/* does @pod have any online CPUs @attrs wants? */
5146 	if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5147 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5148 		return;
5149 	}
5150 }
5151 
5152 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
5153 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5154 					int cpu, struct pool_workqueue *pwq)
5155 {
5156 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5157 	struct pool_workqueue *old_pwq;
5158 
5159 	lockdep_assert_held(&wq_pool_mutex);
5160 	lockdep_assert_held(&wq->mutex);
5161 
5162 	/* link_pwq() can handle duplicate calls */
5163 	link_pwq(pwq);
5164 
5165 	old_pwq = rcu_access_pointer(*slot);
5166 	rcu_assign_pointer(*slot, pwq);
5167 	return old_pwq;
5168 }
5169 
5170 /* context to store the prepared attrs & pwqs before applying */
5171 struct apply_wqattrs_ctx {
5172 	struct workqueue_struct	*wq;		/* target workqueue */
5173 	struct workqueue_attrs	*attrs;		/* attrs to apply */
5174 	struct list_head	list;		/* queued for batching commit */
5175 	struct pool_workqueue	*dfl_pwq;
5176 	struct pool_workqueue	*pwq_tbl[];
5177 };
5178 
5179 /* free the resources after success or abort */
5180 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5181 {
5182 	if (ctx) {
5183 		int cpu;
5184 
5185 		for_each_possible_cpu(cpu)
5186 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5187 		put_pwq_unlocked(ctx->dfl_pwq);
5188 
5189 		free_workqueue_attrs(ctx->attrs);
5190 
5191 		kfree(ctx);
5192 	}
5193 }
5194 
5195 /* allocate the attrs and pwqs for later installation */
5196 static struct apply_wqattrs_ctx *
5197 apply_wqattrs_prepare(struct workqueue_struct *wq,
5198 		      const struct workqueue_attrs *attrs,
5199 		      const cpumask_var_t unbound_cpumask)
5200 {
5201 	struct apply_wqattrs_ctx *ctx;
5202 	struct workqueue_attrs *new_attrs;
5203 	int cpu;
5204 
5205 	lockdep_assert_held(&wq_pool_mutex);
5206 
5207 	if (WARN_ON(attrs->affn_scope < 0 ||
5208 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5209 		return ERR_PTR(-EINVAL);
5210 
5211 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5212 
5213 	new_attrs = alloc_workqueue_attrs();
5214 	if (!ctx || !new_attrs)
5215 		goto out_free;
5216 
5217 	/*
5218 	 * If something goes wrong during CPU up/down, we'll fall back to
5219 	 * the default pwq covering whole @attrs->cpumask.  Always create
5220 	 * it even if we don't use it immediately.
5221 	 */
5222 	copy_workqueue_attrs(new_attrs, attrs);
5223 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5224 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5225 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5226 	if (!ctx->dfl_pwq)
5227 		goto out_free;
5228 
5229 	for_each_possible_cpu(cpu) {
5230 		if (new_attrs->ordered) {
5231 			ctx->dfl_pwq->refcnt++;
5232 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5233 		} else {
5234 			wq_calc_pod_cpumask(new_attrs, cpu);
5235 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5236 			if (!ctx->pwq_tbl[cpu])
5237 				goto out_free;
5238 		}
5239 	}
5240 
5241 	/* save the user configured attrs and sanitize it. */
5242 	copy_workqueue_attrs(new_attrs, attrs);
5243 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5244 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5245 	ctx->attrs = new_attrs;
5246 
5247 	/*
5248 	 * For initialized ordered workqueues, there should only be one pwq
5249 	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5250 	 * of newly queued work items until execution of older work items in
5251 	 * the old pwq's have completed.
5252 	 */
5253 	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5254 		ctx->dfl_pwq->plugged = true;
5255 
5256 	ctx->wq = wq;
5257 	return ctx;
5258 
5259 out_free:
5260 	free_workqueue_attrs(new_attrs);
5261 	apply_wqattrs_cleanup(ctx);
5262 	return ERR_PTR(-ENOMEM);
5263 }
5264 
5265 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5266 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5267 {
5268 	int cpu;
5269 
5270 	/* all pwqs have been created successfully, let's install'em */
5271 	mutex_lock(&ctx->wq->mutex);
5272 
5273 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5274 
5275 	/* save the previous pwqs and install the new ones */
5276 	for_each_possible_cpu(cpu)
5277 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5278 							ctx->pwq_tbl[cpu]);
5279 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5280 
5281 	/* update node_nr_active->max */
5282 	wq_update_node_max_active(ctx->wq, -1);
5283 
5284 	/* rescuer needs to respect wq cpumask changes */
5285 	if (ctx->wq->rescuer)
5286 		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5287 				     unbound_effective_cpumask(ctx->wq));
5288 
5289 	mutex_unlock(&ctx->wq->mutex);
5290 }
5291 
5292 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5293 					const struct workqueue_attrs *attrs)
5294 {
5295 	struct apply_wqattrs_ctx *ctx;
5296 
5297 	/* only unbound workqueues can change attributes */
5298 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5299 		return -EINVAL;
5300 
5301 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5302 	if (IS_ERR(ctx))
5303 		return PTR_ERR(ctx);
5304 
5305 	/* the ctx has been prepared successfully, let's commit it */
5306 	apply_wqattrs_commit(ctx);
5307 	apply_wqattrs_cleanup(ctx);
5308 
5309 	return 0;
5310 }
5311 
5312 /**
5313  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5314  * @wq: the target workqueue
5315  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5316  *
5317  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5318  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5319  * work items are affine to the pod it was issued on. Older pwqs are released as
5320  * in-flight work items finish. Note that a work item which repeatedly requeues
5321  * itself back-to-back will stay on its current pwq.
5322  *
5323  * Performs GFP_KERNEL allocations.
5324  *
5325  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
5326  *
5327  * Return: 0 on success and -errno on failure.
5328  */
5329 int apply_workqueue_attrs(struct workqueue_struct *wq,
5330 			  const struct workqueue_attrs *attrs)
5331 {
5332 	int ret;
5333 
5334 	lockdep_assert_cpus_held();
5335 
5336 	mutex_lock(&wq_pool_mutex);
5337 	ret = apply_workqueue_attrs_locked(wq, attrs);
5338 	mutex_unlock(&wq_pool_mutex);
5339 
5340 	return ret;
5341 }
5342 
5343 /**
5344  * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5345  * @wq: the target workqueue
5346  * @cpu: the CPU to update the pwq slot for
5347  *
5348  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5349  * %CPU_DOWN_FAILED.  @cpu is in the same pod of the CPU being hot[un]plugged.
5350  *
5351  *
5352  * If pod affinity can't be adjusted due to memory allocation failure, it falls
5353  * back to @wq->dfl_pwq which may not be optimal but is always correct.
5354  *
5355  * Note that when the last allowed CPU of a pod goes offline for a workqueue
5356  * with a cpumask spanning multiple pods, the workers which were already
5357  * executing the work items for the workqueue will lose their CPU affinity and
5358  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5359  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5360  * responsibility to flush the work item from CPU_DOWN_PREPARE.
5361  */
5362 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5363 {
5364 	struct pool_workqueue *old_pwq = NULL, *pwq;
5365 	struct workqueue_attrs *target_attrs;
5366 
5367 	lockdep_assert_held(&wq_pool_mutex);
5368 
5369 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5370 		return;
5371 
5372 	/*
5373 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5374 	 * Let's use a preallocated one.  The following buf is protected by
5375 	 * CPU hotplug exclusion.
5376 	 */
5377 	target_attrs = unbound_wq_update_pwq_attrs_buf;
5378 
5379 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5380 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5381 
5382 	/* nothing to do if the target cpumask matches the current pwq */
5383 	wq_calc_pod_cpumask(target_attrs, cpu);
5384 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5385 		return;
5386 
5387 	/* create a new pwq */
5388 	pwq = alloc_unbound_pwq(wq, target_attrs);
5389 	if (!pwq) {
5390 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5391 			wq->name);
5392 		goto use_dfl_pwq;
5393 	}
5394 
5395 	/* Install the new pwq. */
5396 	mutex_lock(&wq->mutex);
5397 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5398 	goto out_unlock;
5399 
5400 use_dfl_pwq:
5401 	mutex_lock(&wq->mutex);
5402 	pwq = unbound_pwq(wq, -1);
5403 	raw_spin_lock_irq(&pwq->pool->lock);
5404 	get_pwq(pwq);
5405 	raw_spin_unlock_irq(&pwq->pool->lock);
5406 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5407 out_unlock:
5408 	mutex_unlock(&wq->mutex);
5409 	put_pwq_unlocked(old_pwq);
5410 }
5411 
5412 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5413 {
5414 	bool highpri = wq->flags & WQ_HIGHPRI;
5415 	int cpu, ret;
5416 
5417 	lockdep_assert_cpus_held();
5418 	lockdep_assert_held(&wq_pool_mutex);
5419 
5420 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5421 	if (!wq->cpu_pwq)
5422 		goto enomem;
5423 
5424 	if (!(wq->flags & WQ_UNBOUND)) {
5425 		struct worker_pool __percpu *pools;
5426 
5427 		if (wq->flags & WQ_BH)
5428 			pools = bh_worker_pools;
5429 		else
5430 			pools = cpu_worker_pools;
5431 
5432 		for_each_possible_cpu(cpu) {
5433 			struct pool_workqueue **pwq_p;
5434 			struct worker_pool *pool;
5435 
5436 			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5437 			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5438 
5439 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5440 						       pool->node);
5441 			if (!*pwq_p)
5442 				goto enomem;
5443 
5444 			init_pwq(*pwq_p, wq, pool);
5445 
5446 			mutex_lock(&wq->mutex);
5447 			link_pwq(*pwq_p);
5448 			mutex_unlock(&wq->mutex);
5449 		}
5450 		return 0;
5451 	}
5452 
5453 	if (wq->flags & __WQ_ORDERED) {
5454 		struct pool_workqueue *dfl_pwq;
5455 
5456 		ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5457 		/* there should only be single pwq for ordering guarantee */
5458 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5459 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5460 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5461 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5462 	} else {
5463 		ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5464 	}
5465 
5466 	return ret;
5467 
5468 enomem:
5469 	if (wq->cpu_pwq) {
5470 		for_each_possible_cpu(cpu) {
5471 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5472 
5473 			if (pwq)
5474 				kmem_cache_free(pwq_cache, pwq);
5475 		}
5476 		free_percpu(wq->cpu_pwq);
5477 		wq->cpu_pwq = NULL;
5478 	}
5479 	return -ENOMEM;
5480 }
5481 
5482 static int wq_clamp_max_active(int max_active, unsigned int flags,
5483 			       const char *name)
5484 {
5485 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5486 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5487 			max_active, name, 1, WQ_MAX_ACTIVE);
5488 
5489 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5490 }
5491 
5492 /*
5493  * Workqueues which may be used during memory reclaim should have a rescuer
5494  * to guarantee forward progress.
5495  */
5496 static int init_rescuer(struct workqueue_struct *wq)
5497 {
5498 	struct worker *rescuer;
5499 	int ret;
5500 
5501 	lockdep_assert_held(&wq_pool_mutex);
5502 
5503 	if (!(wq->flags & WQ_MEM_RECLAIM))
5504 		return 0;
5505 
5506 	rescuer = alloc_worker(NUMA_NO_NODE);
5507 	if (!rescuer) {
5508 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5509 		       wq->name);
5510 		return -ENOMEM;
5511 	}
5512 
5513 	rescuer->rescue_wq = wq;
5514 	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
5515 	if (IS_ERR(rescuer->task)) {
5516 		ret = PTR_ERR(rescuer->task);
5517 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5518 		       wq->name, ERR_PTR(ret));
5519 		kfree(rescuer);
5520 		return ret;
5521 	}
5522 
5523 	wq->rescuer = rescuer;
5524 	if (wq->flags & WQ_UNBOUND)
5525 		kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq));
5526 	else
5527 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5528 	wake_up_process(rescuer->task);
5529 
5530 	return 0;
5531 }
5532 
5533 /**
5534  * wq_adjust_max_active - update a wq's max_active to the current setting
5535  * @wq: target workqueue
5536  *
5537  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5538  * activate inactive work items accordingly. If @wq is freezing, clear
5539  * @wq->max_active to zero.
5540  */
5541 static void wq_adjust_max_active(struct workqueue_struct *wq)
5542 {
5543 	bool activated;
5544 	int new_max, new_min;
5545 
5546 	lockdep_assert_held(&wq->mutex);
5547 
5548 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5549 		new_max = 0;
5550 		new_min = 0;
5551 	} else {
5552 		new_max = wq->saved_max_active;
5553 		new_min = wq->saved_min_active;
5554 	}
5555 
5556 	if (wq->max_active == new_max && wq->min_active == new_min)
5557 		return;
5558 
5559 	/*
5560 	 * Update @wq->max/min_active and then kick inactive work items if more
5561 	 * active work items are allowed. This doesn't break work item ordering
5562 	 * because new work items are always queued behind existing inactive
5563 	 * work items if there are any.
5564 	 */
5565 	WRITE_ONCE(wq->max_active, new_max);
5566 	WRITE_ONCE(wq->min_active, new_min);
5567 
5568 	if (wq->flags & WQ_UNBOUND)
5569 		wq_update_node_max_active(wq, -1);
5570 
5571 	if (new_max == 0)
5572 		return;
5573 
5574 	/*
5575 	 * Round-robin through pwq's activating the first inactive work item
5576 	 * until max_active is filled.
5577 	 */
5578 	do {
5579 		struct pool_workqueue *pwq;
5580 
5581 		activated = false;
5582 		for_each_pwq(pwq, wq) {
5583 			unsigned long irq_flags;
5584 
5585 			/* can be called during early boot w/ irq disabled */
5586 			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5587 			if (pwq_activate_first_inactive(pwq, true)) {
5588 				activated = true;
5589 				kick_pool(pwq->pool);
5590 			}
5591 			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5592 		}
5593 	} while (activated);
5594 }
5595 
5596 __printf(1, 4)
5597 struct workqueue_struct *alloc_workqueue(const char *fmt,
5598 					 unsigned int flags,
5599 					 int max_active, ...)
5600 {
5601 	va_list args;
5602 	struct workqueue_struct *wq;
5603 	size_t wq_size;
5604 	int name_len;
5605 
5606 	if (flags & WQ_BH) {
5607 		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5608 			return NULL;
5609 		if (WARN_ON_ONCE(max_active))
5610 			return NULL;
5611 	}
5612 
5613 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5614 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5615 		flags |= WQ_UNBOUND;
5616 
5617 	/* allocate wq and format name */
5618 	if (flags & WQ_UNBOUND)
5619 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5620 	else
5621 		wq_size = sizeof(*wq);
5622 
5623 	wq = kzalloc(wq_size, GFP_KERNEL);
5624 	if (!wq)
5625 		return NULL;
5626 
5627 	if (flags & WQ_UNBOUND) {
5628 		wq->unbound_attrs = alloc_workqueue_attrs();
5629 		if (!wq->unbound_attrs)
5630 			goto err_free_wq;
5631 	}
5632 
5633 	va_start(args, max_active);
5634 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5635 	va_end(args);
5636 
5637 	if (name_len >= WQ_NAME_LEN)
5638 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5639 			     wq->name);
5640 
5641 	if (flags & WQ_BH) {
5642 		/*
5643 		 * BH workqueues always share a single execution context per CPU
5644 		 * and don't impose any max_active limit.
5645 		 */
5646 		max_active = INT_MAX;
5647 	} else {
5648 		max_active = max_active ?: WQ_DFL_ACTIVE;
5649 		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5650 	}
5651 
5652 	/* init wq */
5653 	wq->flags = flags;
5654 	wq->max_active = max_active;
5655 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5656 	wq->saved_max_active = wq->max_active;
5657 	wq->saved_min_active = wq->min_active;
5658 	mutex_init(&wq->mutex);
5659 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5660 	INIT_LIST_HEAD(&wq->pwqs);
5661 	INIT_LIST_HEAD(&wq->flusher_queue);
5662 	INIT_LIST_HEAD(&wq->flusher_overflow);
5663 	INIT_LIST_HEAD(&wq->maydays);
5664 
5665 	wq_init_lockdep(wq);
5666 	INIT_LIST_HEAD(&wq->list);
5667 
5668 	if (flags & WQ_UNBOUND) {
5669 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5670 			goto err_unreg_lockdep;
5671 	}
5672 
5673 	/*
5674 	 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5675 	 * and the global freeze state.  alloc_and_link_pwqs() also requires
5676 	 * cpus_read_lock() for PWQs' affinities.
5677 	 */
5678 	apply_wqattrs_lock();
5679 
5680 	if (alloc_and_link_pwqs(wq) < 0)
5681 		goto err_unlock_free_node_nr_active;
5682 
5683 	mutex_lock(&wq->mutex);
5684 	wq_adjust_max_active(wq);
5685 	mutex_unlock(&wq->mutex);
5686 
5687 	list_add_tail_rcu(&wq->list, &workqueues);
5688 
5689 	if (wq_online && init_rescuer(wq) < 0)
5690 		goto err_unlock_destroy;
5691 
5692 	apply_wqattrs_unlock();
5693 
5694 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5695 		goto err_destroy;
5696 
5697 	return wq;
5698 
5699 err_unlock_free_node_nr_active:
5700 	apply_wqattrs_unlock();
5701 	/*
5702 	 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5703 	 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5704 	 * completes before calling kfree(wq).
5705 	 */
5706 	if (wq->flags & WQ_UNBOUND) {
5707 		kthread_flush_worker(pwq_release_worker);
5708 		free_node_nr_active(wq->node_nr_active);
5709 	}
5710 err_unreg_lockdep:
5711 	wq_unregister_lockdep(wq);
5712 	wq_free_lockdep(wq);
5713 err_free_wq:
5714 	free_workqueue_attrs(wq->unbound_attrs);
5715 	kfree(wq);
5716 	return NULL;
5717 err_unlock_destroy:
5718 	apply_wqattrs_unlock();
5719 err_destroy:
5720 	destroy_workqueue(wq);
5721 	return NULL;
5722 }
5723 EXPORT_SYMBOL_GPL(alloc_workqueue);
5724 
5725 static bool pwq_busy(struct pool_workqueue *pwq)
5726 {
5727 	int i;
5728 
5729 	for (i = 0; i < WORK_NR_COLORS; i++)
5730 		if (pwq->nr_in_flight[i])
5731 			return true;
5732 
5733 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5734 		return true;
5735 	if (!pwq_is_empty(pwq))
5736 		return true;
5737 
5738 	return false;
5739 }
5740 
5741 /**
5742  * destroy_workqueue - safely terminate a workqueue
5743  * @wq: target workqueue
5744  *
5745  * Safely destroy a workqueue. All work currently pending will be done first.
5746  */
5747 void destroy_workqueue(struct workqueue_struct *wq)
5748 {
5749 	struct pool_workqueue *pwq;
5750 	int cpu;
5751 
5752 	/*
5753 	 * Remove it from sysfs first so that sanity check failure doesn't
5754 	 * lead to sysfs name conflicts.
5755 	 */
5756 	workqueue_sysfs_unregister(wq);
5757 
5758 	/* mark the workqueue destruction is in progress */
5759 	mutex_lock(&wq->mutex);
5760 	wq->flags |= __WQ_DESTROYING;
5761 	mutex_unlock(&wq->mutex);
5762 
5763 	/* drain it before proceeding with destruction */
5764 	drain_workqueue(wq);
5765 
5766 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5767 	if (wq->rescuer) {
5768 		struct worker *rescuer = wq->rescuer;
5769 
5770 		/* this prevents new queueing */
5771 		raw_spin_lock_irq(&wq_mayday_lock);
5772 		wq->rescuer = NULL;
5773 		raw_spin_unlock_irq(&wq_mayday_lock);
5774 
5775 		/* rescuer will empty maydays list before exiting */
5776 		kthread_stop(rescuer->task);
5777 		kfree(rescuer);
5778 	}
5779 
5780 	/*
5781 	 * Sanity checks - grab all the locks so that we wait for all
5782 	 * in-flight operations which may do put_pwq().
5783 	 */
5784 	mutex_lock(&wq_pool_mutex);
5785 	mutex_lock(&wq->mutex);
5786 	for_each_pwq(pwq, wq) {
5787 		raw_spin_lock_irq(&pwq->pool->lock);
5788 		if (WARN_ON(pwq_busy(pwq))) {
5789 			pr_warn("%s: %s has the following busy pwq\n",
5790 				__func__, wq->name);
5791 			show_pwq(pwq);
5792 			raw_spin_unlock_irq(&pwq->pool->lock);
5793 			mutex_unlock(&wq->mutex);
5794 			mutex_unlock(&wq_pool_mutex);
5795 			show_one_workqueue(wq);
5796 			return;
5797 		}
5798 		raw_spin_unlock_irq(&pwq->pool->lock);
5799 	}
5800 	mutex_unlock(&wq->mutex);
5801 
5802 	/*
5803 	 * wq list is used to freeze wq, remove from list after
5804 	 * flushing is complete in case freeze races us.
5805 	 */
5806 	list_del_rcu(&wq->list);
5807 	mutex_unlock(&wq_pool_mutex);
5808 
5809 	/*
5810 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5811 	 * to put the base refs. @wq will be auto-destroyed from the last
5812 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5813 	 */
5814 	rcu_read_lock();
5815 
5816 	for_each_possible_cpu(cpu) {
5817 		put_pwq_unlocked(unbound_pwq(wq, cpu));
5818 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5819 	}
5820 
5821 	put_pwq_unlocked(unbound_pwq(wq, -1));
5822 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5823 
5824 	rcu_read_unlock();
5825 }
5826 EXPORT_SYMBOL_GPL(destroy_workqueue);
5827 
5828 /**
5829  * workqueue_set_max_active - adjust max_active of a workqueue
5830  * @wq: target workqueue
5831  * @max_active: new max_active value.
5832  *
5833  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5834  * comment.
5835  *
5836  * CONTEXT:
5837  * Don't call from IRQ context.
5838  */
5839 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5840 {
5841 	/* max_active doesn't mean anything for BH workqueues */
5842 	if (WARN_ON(wq->flags & WQ_BH))
5843 		return;
5844 	/* disallow meddling with max_active for ordered workqueues */
5845 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5846 		return;
5847 
5848 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5849 
5850 	mutex_lock(&wq->mutex);
5851 
5852 	wq->saved_max_active = max_active;
5853 	if (wq->flags & WQ_UNBOUND)
5854 		wq->saved_min_active = min(wq->saved_min_active, max_active);
5855 
5856 	wq_adjust_max_active(wq);
5857 
5858 	mutex_unlock(&wq->mutex);
5859 }
5860 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5861 
5862 /**
5863  * workqueue_set_min_active - adjust min_active of an unbound workqueue
5864  * @wq: target unbound workqueue
5865  * @min_active: new min_active value
5866  *
5867  * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5868  * unbound workqueue is not guaranteed to be able to process max_active
5869  * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5870  * able to process min_active number of interdependent work items which is
5871  * %WQ_DFL_MIN_ACTIVE by default.
5872  *
5873  * Use this function to adjust the min_active value between 0 and the current
5874  * max_active.
5875  */
5876 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5877 {
5878 	/* min_active is only meaningful for non-ordered unbound workqueues */
5879 	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5880 		    WQ_UNBOUND))
5881 		return;
5882 
5883 	mutex_lock(&wq->mutex);
5884 	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5885 	wq_adjust_max_active(wq);
5886 	mutex_unlock(&wq->mutex);
5887 }
5888 
5889 /**
5890  * current_work - retrieve %current task's work struct
5891  *
5892  * Determine if %current task is a workqueue worker and what it's working on.
5893  * Useful to find out the context that the %current task is running in.
5894  *
5895  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5896  */
5897 struct work_struct *current_work(void)
5898 {
5899 	struct worker *worker = current_wq_worker();
5900 
5901 	return worker ? worker->current_work : NULL;
5902 }
5903 EXPORT_SYMBOL(current_work);
5904 
5905 /**
5906  * current_is_workqueue_rescuer - is %current workqueue rescuer?
5907  *
5908  * Determine whether %current is a workqueue rescuer.  Can be used from
5909  * work functions to determine whether it's being run off the rescuer task.
5910  *
5911  * Return: %true if %current is a workqueue rescuer. %false otherwise.
5912  */
5913 bool current_is_workqueue_rescuer(void)
5914 {
5915 	struct worker *worker = current_wq_worker();
5916 
5917 	return worker && worker->rescue_wq;
5918 }
5919 
5920 /**
5921  * workqueue_congested - test whether a workqueue is congested
5922  * @cpu: CPU in question
5923  * @wq: target workqueue
5924  *
5925  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
5926  * no synchronization around this function and the test result is
5927  * unreliable and only useful as advisory hints or for debugging.
5928  *
5929  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5930  *
5931  * With the exception of ordered workqueues, all workqueues have per-cpu
5932  * pool_workqueues, each with its own congested state. A workqueue being
5933  * congested on one CPU doesn't mean that the workqueue is contested on any
5934  * other CPUs.
5935  *
5936  * Return:
5937  * %true if congested, %false otherwise.
5938  */
5939 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5940 {
5941 	struct pool_workqueue *pwq;
5942 	bool ret;
5943 
5944 	rcu_read_lock();
5945 	preempt_disable();
5946 
5947 	if (cpu == WORK_CPU_UNBOUND)
5948 		cpu = smp_processor_id();
5949 
5950 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5951 	ret = !list_empty(&pwq->inactive_works);
5952 
5953 	preempt_enable();
5954 	rcu_read_unlock();
5955 
5956 	return ret;
5957 }
5958 EXPORT_SYMBOL_GPL(workqueue_congested);
5959 
5960 /**
5961  * work_busy - test whether a work is currently pending or running
5962  * @work: the work to be tested
5963  *
5964  * Test whether @work is currently pending or running.  There is no
5965  * synchronization around this function and the test result is
5966  * unreliable and only useful as advisory hints or for debugging.
5967  *
5968  * Return:
5969  * OR'd bitmask of WORK_BUSY_* bits.
5970  */
5971 unsigned int work_busy(struct work_struct *work)
5972 {
5973 	struct worker_pool *pool;
5974 	unsigned long irq_flags;
5975 	unsigned int ret = 0;
5976 
5977 	if (work_pending(work))
5978 		ret |= WORK_BUSY_PENDING;
5979 
5980 	rcu_read_lock();
5981 	pool = get_work_pool(work);
5982 	if (pool) {
5983 		raw_spin_lock_irqsave(&pool->lock, irq_flags);
5984 		if (find_worker_executing_work(pool, work))
5985 			ret |= WORK_BUSY_RUNNING;
5986 		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
5987 	}
5988 	rcu_read_unlock();
5989 
5990 	return ret;
5991 }
5992 EXPORT_SYMBOL_GPL(work_busy);
5993 
5994 /**
5995  * set_worker_desc - set description for the current work item
5996  * @fmt: printf-style format string
5997  * @...: arguments for the format string
5998  *
5999  * This function can be called by a running work function to describe what
6000  * the work item is about.  If the worker task gets dumped, this
6001  * information will be printed out together to help debugging.  The
6002  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6003  */
6004 void set_worker_desc(const char *fmt, ...)
6005 {
6006 	struct worker *worker = current_wq_worker();
6007 	va_list args;
6008 
6009 	if (worker) {
6010 		va_start(args, fmt);
6011 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6012 		va_end(args);
6013 	}
6014 }
6015 EXPORT_SYMBOL_GPL(set_worker_desc);
6016 
6017 /**
6018  * print_worker_info - print out worker information and description
6019  * @log_lvl: the log level to use when printing
6020  * @task: target task
6021  *
6022  * If @task is a worker and currently executing a work item, print out the
6023  * name of the workqueue being serviced and worker description set with
6024  * set_worker_desc() by the currently executing work item.
6025  *
6026  * This function can be safely called on any task as long as the
6027  * task_struct itself is accessible.  While safe, this function isn't
6028  * synchronized and may print out mixups or garbages of limited length.
6029  */
6030 void print_worker_info(const char *log_lvl, struct task_struct *task)
6031 {
6032 	work_func_t *fn = NULL;
6033 	char name[WQ_NAME_LEN] = { };
6034 	char desc[WORKER_DESC_LEN] = { };
6035 	struct pool_workqueue *pwq = NULL;
6036 	struct workqueue_struct *wq = NULL;
6037 	struct worker *worker;
6038 
6039 	if (!(task->flags & PF_WQ_WORKER))
6040 		return;
6041 
6042 	/*
6043 	 * This function is called without any synchronization and @task
6044 	 * could be in any state.  Be careful with dereferences.
6045 	 */
6046 	worker = kthread_probe_data(task);
6047 
6048 	/*
6049 	 * Carefully copy the associated workqueue's workfn, name and desc.
6050 	 * Keep the original last '\0' in case the original is garbage.
6051 	 */
6052 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6053 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6054 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6055 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6056 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6057 
6058 	if (fn || name[0] || desc[0]) {
6059 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6060 		if (strcmp(name, desc))
6061 			pr_cont(" (%s)", desc);
6062 		pr_cont("\n");
6063 	}
6064 }
6065 
6066 static void pr_cont_pool_info(struct worker_pool *pool)
6067 {
6068 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6069 	if (pool->node != NUMA_NO_NODE)
6070 		pr_cont(" node=%d", pool->node);
6071 	pr_cont(" flags=0x%x", pool->flags);
6072 	if (pool->flags & POOL_BH)
6073 		pr_cont(" bh%s",
6074 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6075 	else
6076 		pr_cont(" nice=%d", pool->attrs->nice);
6077 }
6078 
6079 static void pr_cont_worker_id(struct worker *worker)
6080 {
6081 	struct worker_pool *pool = worker->pool;
6082 
6083 	if (pool->flags & WQ_BH)
6084 		pr_cont("bh%s",
6085 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6086 	else
6087 		pr_cont("%d%s", task_pid_nr(worker->task),
6088 			worker->rescue_wq ? "(RESCUER)" : "");
6089 }
6090 
6091 struct pr_cont_work_struct {
6092 	bool comma;
6093 	work_func_t func;
6094 	long ctr;
6095 };
6096 
6097 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6098 {
6099 	if (!pcwsp->ctr)
6100 		goto out_record;
6101 	if (func == pcwsp->func) {
6102 		pcwsp->ctr++;
6103 		return;
6104 	}
6105 	if (pcwsp->ctr == 1)
6106 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6107 	else
6108 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6109 	pcwsp->ctr = 0;
6110 out_record:
6111 	if ((long)func == -1L)
6112 		return;
6113 	pcwsp->comma = comma;
6114 	pcwsp->func = func;
6115 	pcwsp->ctr = 1;
6116 }
6117 
6118 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6119 {
6120 	if (work->func == wq_barrier_func) {
6121 		struct wq_barrier *barr;
6122 
6123 		barr = container_of(work, struct wq_barrier, work);
6124 
6125 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6126 		pr_cont("%s BAR(%d)", comma ? "," : "",
6127 			task_pid_nr(barr->task));
6128 	} else {
6129 		if (!comma)
6130 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6131 		pr_cont_work_flush(comma, work->func, pcwsp);
6132 	}
6133 }
6134 
6135 static void show_pwq(struct pool_workqueue *pwq)
6136 {
6137 	struct pr_cont_work_struct pcws = { .ctr = 0, };
6138 	struct worker_pool *pool = pwq->pool;
6139 	struct work_struct *work;
6140 	struct worker *worker;
6141 	bool has_in_flight = false, has_pending = false;
6142 	int bkt;
6143 
6144 	pr_info("  pwq %d:", pool->id);
6145 	pr_cont_pool_info(pool);
6146 
6147 	pr_cont(" active=%d refcnt=%d%s\n",
6148 		pwq->nr_active, pwq->refcnt,
6149 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6150 
6151 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6152 		if (worker->current_pwq == pwq) {
6153 			has_in_flight = true;
6154 			break;
6155 		}
6156 	}
6157 	if (has_in_flight) {
6158 		bool comma = false;
6159 
6160 		pr_info("    in-flight:");
6161 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6162 			if (worker->current_pwq != pwq)
6163 				continue;
6164 
6165 			pr_cont(" %s", comma ? "," : "");
6166 			pr_cont_worker_id(worker);
6167 			pr_cont(":%ps", worker->current_func);
6168 			list_for_each_entry(work, &worker->scheduled, entry)
6169 				pr_cont_work(false, work, &pcws);
6170 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6171 			comma = true;
6172 		}
6173 		pr_cont("\n");
6174 	}
6175 
6176 	list_for_each_entry(work, &pool->worklist, entry) {
6177 		if (get_work_pwq(work) == pwq) {
6178 			has_pending = true;
6179 			break;
6180 		}
6181 	}
6182 	if (has_pending) {
6183 		bool comma = false;
6184 
6185 		pr_info("    pending:");
6186 		list_for_each_entry(work, &pool->worklist, entry) {
6187 			if (get_work_pwq(work) != pwq)
6188 				continue;
6189 
6190 			pr_cont_work(comma, work, &pcws);
6191 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6192 		}
6193 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6194 		pr_cont("\n");
6195 	}
6196 
6197 	if (!list_empty(&pwq->inactive_works)) {
6198 		bool comma = false;
6199 
6200 		pr_info("    inactive:");
6201 		list_for_each_entry(work, &pwq->inactive_works, entry) {
6202 			pr_cont_work(comma, work, &pcws);
6203 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6204 		}
6205 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6206 		pr_cont("\n");
6207 	}
6208 }
6209 
6210 /**
6211  * show_one_workqueue - dump state of specified workqueue
6212  * @wq: workqueue whose state will be printed
6213  */
6214 void show_one_workqueue(struct workqueue_struct *wq)
6215 {
6216 	struct pool_workqueue *pwq;
6217 	bool idle = true;
6218 	unsigned long irq_flags;
6219 
6220 	for_each_pwq(pwq, wq) {
6221 		if (!pwq_is_empty(pwq)) {
6222 			idle = false;
6223 			break;
6224 		}
6225 	}
6226 	if (idle) /* Nothing to print for idle workqueue */
6227 		return;
6228 
6229 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6230 
6231 	for_each_pwq(pwq, wq) {
6232 		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6233 		if (!pwq_is_empty(pwq)) {
6234 			/*
6235 			 * Defer printing to avoid deadlocks in console
6236 			 * drivers that queue work while holding locks
6237 			 * also taken in their write paths.
6238 			 */
6239 			printk_deferred_enter();
6240 			show_pwq(pwq);
6241 			printk_deferred_exit();
6242 		}
6243 		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6244 		/*
6245 		 * We could be printing a lot from atomic context, e.g.
6246 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6247 		 * hard lockup.
6248 		 */
6249 		touch_nmi_watchdog();
6250 	}
6251 
6252 }
6253 
6254 /**
6255  * show_one_worker_pool - dump state of specified worker pool
6256  * @pool: worker pool whose state will be printed
6257  */
6258 static void show_one_worker_pool(struct worker_pool *pool)
6259 {
6260 	struct worker *worker;
6261 	bool first = true;
6262 	unsigned long irq_flags;
6263 	unsigned long hung = 0;
6264 
6265 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6266 	if (pool->nr_workers == pool->nr_idle)
6267 		goto next_pool;
6268 
6269 	/* How long the first pending work is waiting for a worker. */
6270 	if (!list_empty(&pool->worklist))
6271 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6272 
6273 	/*
6274 	 * Defer printing to avoid deadlocks in console drivers that
6275 	 * queue work while holding locks also taken in their write
6276 	 * paths.
6277 	 */
6278 	printk_deferred_enter();
6279 	pr_info("pool %d:", pool->id);
6280 	pr_cont_pool_info(pool);
6281 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6282 	if (pool->manager)
6283 		pr_cont(" manager: %d",
6284 			task_pid_nr(pool->manager->task));
6285 	list_for_each_entry(worker, &pool->idle_list, entry) {
6286 		pr_cont(" %s", first ? "idle: " : "");
6287 		pr_cont_worker_id(worker);
6288 		first = false;
6289 	}
6290 	pr_cont("\n");
6291 	printk_deferred_exit();
6292 next_pool:
6293 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6294 	/*
6295 	 * We could be printing a lot from atomic context, e.g.
6296 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6297 	 * hard lockup.
6298 	 */
6299 	touch_nmi_watchdog();
6300 
6301 }
6302 
6303 /**
6304  * show_all_workqueues - dump workqueue state
6305  *
6306  * Called from a sysrq handler and prints out all busy workqueues and pools.
6307  */
6308 void show_all_workqueues(void)
6309 {
6310 	struct workqueue_struct *wq;
6311 	struct worker_pool *pool;
6312 	int pi;
6313 
6314 	rcu_read_lock();
6315 
6316 	pr_info("Showing busy workqueues and worker pools:\n");
6317 
6318 	list_for_each_entry_rcu(wq, &workqueues, list)
6319 		show_one_workqueue(wq);
6320 
6321 	for_each_pool(pool, pi)
6322 		show_one_worker_pool(pool);
6323 
6324 	rcu_read_unlock();
6325 }
6326 
6327 /**
6328  * show_freezable_workqueues - dump freezable workqueue state
6329  *
6330  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6331  * still busy.
6332  */
6333 void show_freezable_workqueues(void)
6334 {
6335 	struct workqueue_struct *wq;
6336 
6337 	rcu_read_lock();
6338 
6339 	pr_info("Showing freezable workqueues that are still busy:\n");
6340 
6341 	list_for_each_entry_rcu(wq, &workqueues, list) {
6342 		if (!(wq->flags & WQ_FREEZABLE))
6343 			continue;
6344 		show_one_workqueue(wq);
6345 	}
6346 
6347 	rcu_read_unlock();
6348 }
6349 
6350 /* used to show worker information through /proc/PID/{comm,stat,status} */
6351 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6352 {
6353 	int off;
6354 
6355 	/* always show the actual comm */
6356 	off = strscpy(buf, task->comm, size);
6357 	if (off < 0)
6358 		return;
6359 
6360 	/* stabilize PF_WQ_WORKER and worker pool association */
6361 	mutex_lock(&wq_pool_attach_mutex);
6362 
6363 	if (task->flags & PF_WQ_WORKER) {
6364 		struct worker *worker = kthread_data(task);
6365 		struct worker_pool *pool = worker->pool;
6366 
6367 		if (pool) {
6368 			raw_spin_lock_irq(&pool->lock);
6369 			/*
6370 			 * ->desc tracks information (wq name or
6371 			 * set_worker_desc()) for the latest execution.  If
6372 			 * current, prepend '+', otherwise '-'.
6373 			 */
6374 			if (worker->desc[0] != '\0') {
6375 				if (worker->current_work)
6376 					scnprintf(buf + off, size - off, "+%s",
6377 						  worker->desc);
6378 				else
6379 					scnprintf(buf + off, size - off, "-%s",
6380 						  worker->desc);
6381 			}
6382 			raw_spin_unlock_irq(&pool->lock);
6383 		}
6384 	}
6385 
6386 	mutex_unlock(&wq_pool_attach_mutex);
6387 }
6388 
6389 #ifdef CONFIG_SMP
6390 
6391 /*
6392  * CPU hotplug.
6393  *
6394  * There are two challenges in supporting CPU hotplug.  Firstly, there
6395  * are a lot of assumptions on strong associations among work, pwq and
6396  * pool which make migrating pending and scheduled works very
6397  * difficult to implement without impacting hot paths.  Secondly,
6398  * worker pools serve mix of short, long and very long running works making
6399  * blocked draining impractical.
6400  *
6401  * This is solved by allowing the pools to be disassociated from the CPU
6402  * running as an unbound one and allowing it to be reattached later if the
6403  * cpu comes back online.
6404  */
6405 
6406 static void unbind_workers(int cpu)
6407 {
6408 	struct worker_pool *pool;
6409 	struct worker *worker;
6410 
6411 	for_each_cpu_worker_pool(pool, cpu) {
6412 		mutex_lock(&wq_pool_attach_mutex);
6413 		raw_spin_lock_irq(&pool->lock);
6414 
6415 		/*
6416 		 * We've blocked all attach/detach operations. Make all workers
6417 		 * unbound and set DISASSOCIATED.  Before this, all workers
6418 		 * must be on the cpu.  After this, they may become diasporas.
6419 		 * And the preemption disabled section in their sched callbacks
6420 		 * are guaranteed to see WORKER_UNBOUND since the code here
6421 		 * is on the same cpu.
6422 		 */
6423 		for_each_pool_worker(worker, pool)
6424 			worker->flags |= WORKER_UNBOUND;
6425 
6426 		pool->flags |= POOL_DISASSOCIATED;
6427 
6428 		/*
6429 		 * The handling of nr_running in sched callbacks are disabled
6430 		 * now.  Zap nr_running.  After this, nr_running stays zero and
6431 		 * need_more_worker() and keep_working() are always true as
6432 		 * long as the worklist is not empty.  This pool now behaves as
6433 		 * an unbound (in terms of concurrency management) pool which
6434 		 * are served by workers tied to the pool.
6435 		 */
6436 		pool->nr_running = 0;
6437 
6438 		/*
6439 		 * With concurrency management just turned off, a busy
6440 		 * worker blocking could lead to lengthy stalls.  Kick off
6441 		 * unbound chain execution of currently pending work items.
6442 		 */
6443 		kick_pool(pool);
6444 
6445 		raw_spin_unlock_irq(&pool->lock);
6446 
6447 		for_each_pool_worker(worker, pool)
6448 			unbind_worker(worker);
6449 
6450 		mutex_unlock(&wq_pool_attach_mutex);
6451 	}
6452 }
6453 
6454 /**
6455  * rebind_workers - rebind all workers of a pool to the associated CPU
6456  * @pool: pool of interest
6457  *
6458  * @pool->cpu is coming online.  Rebind all workers to the CPU.
6459  */
6460 static void rebind_workers(struct worker_pool *pool)
6461 {
6462 	struct worker *worker;
6463 
6464 	lockdep_assert_held(&wq_pool_attach_mutex);
6465 
6466 	/*
6467 	 * Restore CPU affinity of all workers.  As all idle workers should
6468 	 * be on the run-queue of the associated CPU before any local
6469 	 * wake-ups for concurrency management happen, restore CPU affinity
6470 	 * of all workers first and then clear UNBOUND.  As we're called
6471 	 * from CPU_ONLINE, the following shouldn't fail.
6472 	 */
6473 	for_each_pool_worker(worker, pool) {
6474 		kthread_set_per_cpu(worker->task, pool->cpu);
6475 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6476 						  pool_allowed_cpus(pool)) < 0);
6477 	}
6478 
6479 	raw_spin_lock_irq(&pool->lock);
6480 
6481 	pool->flags &= ~POOL_DISASSOCIATED;
6482 
6483 	for_each_pool_worker(worker, pool) {
6484 		unsigned int worker_flags = worker->flags;
6485 
6486 		/*
6487 		 * We want to clear UNBOUND but can't directly call
6488 		 * worker_clr_flags() or adjust nr_running.  Atomically
6489 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6490 		 * @worker will clear REBOUND using worker_clr_flags() when
6491 		 * it initiates the next execution cycle thus restoring
6492 		 * concurrency management.  Note that when or whether
6493 		 * @worker clears REBOUND doesn't affect correctness.
6494 		 *
6495 		 * WRITE_ONCE() is necessary because @worker->flags may be
6496 		 * tested without holding any lock in
6497 		 * wq_worker_running().  Without it, NOT_RUNNING test may
6498 		 * fail incorrectly leading to premature concurrency
6499 		 * management operations.
6500 		 */
6501 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6502 		worker_flags |= WORKER_REBOUND;
6503 		worker_flags &= ~WORKER_UNBOUND;
6504 		WRITE_ONCE(worker->flags, worker_flags);
6505 	}
6506 
6507 	raw_spin_unlock_irq(&pool->lock);
6508 }
6509 
6510 /**
6511  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6512  * @pool: unbound pool of interest
6513  * @cpu: the CPU which is coming up
6514  *
6515  * An unbound pool may end up with a cpumask which doesn't have any online
6516  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6517  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6518  * online CPU before, cpus_allowed of all its workers should be restored.
6519  */
6520 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6521 {
6522 	static cpumask_t cpumask;
6523 	struct worker *worker;
6524 
6525 	lockdep_assert_held(&wq_pool_attach_mutex);
6526 
6527 	/* is @cpu allowed for @pool? */
6528 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6529 		return;
6530 
6531 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6532 
6533 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6534 	for_each_pool_worker(worker, pool)
6535 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6536 }
6537 
6538 int workqueue_prepare_cpu(unsigned int cpu)
6539 {
6540 	struct worker_pool *pool;
6541 
6542 	for_each_cpu_worker_pool(pool, cpu) {
6543 		if (pool->nr_workers)
6544 			continue;
6545 		if (!create_worker(pool))
6546 			return -ENOMEM;
6547 	}
6548 	return 0;
6549 }
6550 
6551 int workqueue_online_cpu(unsigned int cpu)
6552 {
6553 	struct worker_pool *pool;
6554 	struct workqueue_struct *wq;
6555 	int pi;
6556 
6557 	mutex_lock(&wq_pool_mutex);
6558 
6559 	cpumask_set_cpu(cpu, wq_online_cpumask);
6560 
6561 	for_each_pool(pool, pi) {
6562 		/* BH pools aren't affected by hotplug */
6563 		if (pool->flags & POOL_BH)
6564 			continue;
6565 
6566 		mutex_lock(&wq_pool_attach_mutex);
6567 		if (pool->cpu == cpu)
6568 			rebind_workers(pool);
6569 		else if (pool->cpu < 0)
6570 			restore_unbound_workers_cpumask(pool, cpu);
6571 		mutex_unlock(&wq_pool_attach_mutex);
6572 	}
6573 
6574 	/* update pod affinity of unbound workqueues */
6575 	list_for_each_entry(wq, &workqueues, list) {
6576 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6577 
6578 		if (attrs) {
6579 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6580 			int tcpu;
6581 
6582 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6583 				unbound_wq_update_pwq(wq, tcpu);
6584 
6585 			mutex_lock(&wq->mutex);
6586 			wq_update_node_max_active(wq, -1);
6587 			mutex_unlock(&wq->mutex);
6588 		}
6589 	}
6590 
6591 	mutex_unlock(&wq_pool_mutex);
6592 	return 0;
6593 }
6594 
6595 int workqueue_offline_cpu(unsigned int cpu)
6596 {
6597 	struct workqueue_struct *wq;
6598 
6599 	/* unbinding per-cpu workers should happen on the local CPU */
6600 	if (WARN_ON(cpu != smp_processor_id()))
6601 		return -1;
6602 
6603 	unbind_workers(cpu);
6604 
6605 	/* update pod affinity of unbound workqueues */
6606 	mutex_lock(&wq_pool_mutex);
6607 
6608 	cpumask_clear_cpu(cpu, wq_online_cpumask);
6609 
6610 	list_for_each_entry(wq, &workqueues, list) {
6611 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6612 
6613 		if (attrs) {
6614 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6615 			int tcpu;
6616 
6617 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6618 				unbound_wq_update_pwq(wq, tcpu);
6619 
6620 			mutex_lock(&wq->mutex);
6621 			wq_update_node_max_active(wq, cpu);
6622 			mutex_unlock(&wq->mutex);
6623 		}
6624 	}
6625 	mutex_unlock(&wq_pool_mutex);
6626 
6627 	return 0;
6628 }
6629 
6630 struct work_for_cpu {
6631 	struct work_struct work;
6632 	long (*fn)(void *);
6633 	void *arg;
6634 	long ret;
6635 };
6636 
6637 static void work_for_cpu_fn(struct work_struct *work)
6638 {
6639 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6640 
6641 	wfc->ret = wfc->fn(wfc->arg);
6642 }
6643 
6644 /**
6645  * work_on_cpu_key - run a function in thread context on a particular cpu
6646  * @cpu: the cpu to run on
6647  * @fn: the function to run
6648  * @arg: the function arg
6649  * @key: The lock class key for lock debugging purposes
6650  *
6651  * It is up to the caller to ensure that the cpu doesn't go offline.
6652  * The caller must not hold any locks which would prevent @fn from completing.
6653  *
6654  * Return: The value @fn returns.
6655  */
6656 long work_on_cpu_key(int cpu, long (*fn)(void *),
6657 		     void *arg, struct lock_class_key *key)
6658 {
6659 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6660 
6661 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6662 	schedule_work_on(cpu, &wfc.work);
6663 	flush_work(&wfc.work);
6664 	destroy_work_on_stack(&wfc.work);
6665 	return wfc.ret;
6666 }
6667 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6668 
6669 /**
6670  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6671  * @cpu: the cpu to run on
6672  * @fn:  the function to run
6673  * @arg: the function argument
6674  * @key: The lock class key for lock debugging purposes
6675  *
6676  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6677  * any locks which would prevent @fn from completing.
6678  *
6679  * Return: The value @fn returns.
6680  */
6681 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6682 			  void *arg, struct lock_class_key *key)
6683 {
6684 	long ret = -ENODEV;
6685 
6686 	cpus_read_lock();
6687 	if (cpu_online(cpu))
6688 		ret = work_on_cpu_key(cpu, fn, arg, key);
6689 	cpus_read_unlock();
6690 	return ret;
6691 }
6692 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6693 #endif /* CONFIG_SMP */
6694 
6695 #ifdef CONFIG_FREEZER
6696 
6697 /**
6698  * freeze_workqueues_begin - begin freezing workqueues
6699  *
6700  * Start freezing workqueues.  After this function returns, all freezable
6701  * workqueues will queue new works to their inactive_works list instead of
6702  * pool->worklist.
6703  *
6704  * CONTEXT:
6705  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6706  */
6707 void freeze_workqueues_begin(void)
6708 {
6709 	struct workqueue_struct *wq;
6710 
6711 	mutex_lock(&wq_pool_mutex);
6712 
6713 	WARN_ON_ONCE(workqueue_freezing);
6714 	workqueue_freezing = true;
6715 
6716 	list_for_each_entry(wq, &workqueues, list) {
6717 		mutex_lock(&wq->mutex);
6718 		wq_adjust_max_active(wq);
6719 		mutex_unlock(&wq->mutex);
6720 	}
6721 
6722 	mutex_unlock(&wq_pool_mutex);
6723 }
6724 
6725 /**
6726  * freeze_workqueues_busy - are freezable workqueues still busy?
6727  *
6728  * Check whether freezing is complete.  This function must be called
6729  * between freeze_workqueues_begin() and thaw_workqueues().
6730  *
6731  * CONTEXT:
6732  * Grabs and releases wq_pool_mutex.
6733  *
6734  * Return:
6735  * %true if some freezable workqueues are still busy.  %false if freezing
6736  * is complete.
6737  */
6738 bool freeze_workqueues_busy(void)
6739 {
6740 	bool busy = false;
6741 	struct workqueue_struct *wq;
6742 	struct pool_workqueue *pwq;
6743 
6744 	mutex_lock(&wq_pool_mutex);
6745 
6746 	WARN_ON_ONCE(!workqueue_freezing);
6747 
6748 	list_for_each_entry(wq, &workqueues, list) {
6749 		if (!(wq->flags & WQ_FREEZABLE))
6750 			continue;
6751 		/*
6752 		 * nr_active is monotonically decreasing.  It's safe
6753 		 * to peek without lock.
6754 		 */
6755 		rcu_read_lock();
6756 		for_each_pwq(pwq, wq) {
6757 			WARN_ON_ONCE(pwq->nr_active < 0);
6758 			if (pwq->nr_active) {
6759 				busy = true;
6760 				rcu_read_unlock();
6761 				goto out_unlock;
6762 			}
6763 		}
6764 		rcu_read_unlock();
6765 	}
6766 out_unlock:
6767 	mutex_unlock(&wq_pool_mutex);
6768 	return busy;
6769 }
6770 
6771 /**
6772  * thaw_workqueues - thaw workqueues
6773  *
6774  * Thaw workqueues.  Normal queueing is restored and all collected
6775  * frozen works are transferred to their respective pool worklists.
6776  *
6777  * CONTEXT:
6778  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6779  */
6780 void thaw_workqueues(void)
6781 {
6782 	struct workqueue_struct *wq;
6783 
6784 	mutex_lock(&wq_pool_mutex);
6785 
6786 	if (!workqueue_freezing)
6787 		goto out_unlock;
6788 
6789 	workqueue_freezing = false;
6790 
6791 	/* restore max_active and repopulate worklist */
6792 	list_for_each_entry(wq, &workqueues, list) {
6793 		mutex_lock(&wq->mutex);
6794 		wq_adjust_max_active(wq);
6795 		mutex_unlock(&wq->mutex);
6796 	}
6797 
6798 out_unlock:
6799 	mutex_unlock(&wq_pool_mutex);
6800 }
6801 #endif /* CONFIG_FREEZER */
6802 
6803 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6804 {
6805 	LIST_HEAD(ctxs);
6806 	int ret = 0;
6807 	struct workqueue_struct *wq;
6808 	struct apply_wqattrs_ctx *ctx, *n;
6809 
6810 	lockdep_assert_held(&wq_pool_mutex);
6811 
6812 	list_for_each_entry(wq, &workqueues, list) {
6813 		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6814 			continue;
6815 
6816 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6817 		if (IS_ERR(ctx)) {
6818 			ret = PTR_ERR(ctx);
6819 			break;
6820 		}
6821 
6822 		list_add_tail(&ctx->list, &ctxs);
6823 	}
6824 
6825 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6826 		if (!ret)
6827 			apply_wqattrs_commit(ctx);
6828 		apply_wqattrs_cleanup(ctx);
6829 	}
6830 
6831 	if (!ret) {
6832 		mutex_lock(&wq_pool_attach_mutex);
6833 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6834 		mutex_unlock(&wq_pool_attach_mutex);
6835 	}
6836 	return ret;
6837 }
6838 
6839 /**
6840  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6841  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6842  *
6843  * This function can be called from cpuset code to provide a set of isolated
6844  * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6845  * either cpus_read_lock or cpus_write_lock.
6846  */
6847 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6848 {
6849 	cpumask_var_t cpumask;
6850 	int ret = 0;
6851 
6852 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6853 		return -ENOMEM;
6854 
6855 	lockdep_assert_cpus_held();
6856 	mutex_lock(&wq_pool_mutex);
6857 
6858 	/*
6859 	 * If the operation fails, it will fall back to
6860 	 * wq_requested_unbound_cpumask which is initially set to
6861 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6862 	 * by any subsequent write to workqueue/cpumask sysfs file.
6863 	 */
6864 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6865 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6866 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6867 		ret = workqueue_apply_unbound_cpumask(cpumask);
6868 
6869 	/* Save the current isolated cpumask & export it via sysfs */
6870 	if (!ret)
6871 		cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6872 
6873 	mutex_unlock(&wq_pool_mutex);
6874 	free_cpumask_var(cpumask);
6875 	return ret;
6876 }
6877 
6878 static int parse_affn_scope(const char *val)
6879 {
6880 	int i;
6881 
6882 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6883 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6884 			return i;
6885 	}
6886 	return -EINVAL;
6887 }
6888 
6889 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6890 {
6891 	struct workqueue_struct *wq;
6892 	int affn, cpu;
6893 
6894 	affn = parse_affn_scope(val);
6895 	if (affn < 0)
6896 		return affn;
6897 	if (affn == WQ_AFFN_DFL)
6898 		return -EINVAL;
6899 
6900 	cpus_read_lock();
6901 	mutex_lock(&wq_pool_mutex);
6902 
6903 	wq_affn_dfl = affn;
6904 
6905 	list_for_each_entry(wq, &workqueues, list) {
6906 		for_each_online_cpu(cpu)
6907 			unbound_wq_update_pwq(wq, cpu);
6908 	}
6909 
6910 	mutex_unlock(&wq_pool_mutex);
6911 	cpus_read_unlock();
6912 
6913 	return 0;
6914 }
6915 
6916 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6917 {
6918 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6919 }
6920 
6921 static const struct kernel_param_ops wq_affn_dfl_ops = {
6922 	.set	= wq_affn_dfl_set,
6923 	.get	= wq_affn_dfl_get,
6924 };
6925 
6926 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6927 
6928 #ifdef CONFIG_SYSFS
6929 /*
6930  * Workqueues with WQ_SYSFS flag set is visible to userland via
6931  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
6932  * following attributes.
6933  *
6934  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
6935  *  max_active		RW int	: maximum number of in-flight work items
6936  *
6937  * Unbound workqueues have the following extra attributes.
6938  *
6939  *  nice		RW int	: nice value of the workers
6940  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
6941  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
6942  *  affinity_strict	RW bool : worker CPU affinity is strict
6943  */
6944 struct wq_device {
6945 	struct workqueue_struct		*wq;
6946 	struct device			dev;
6947 };
6948 
6949 static struct workqueue_struct *dev_to_wq(struct device *dev)
6950 {
6951 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6952 
6953 	return wq_dev->wq;
6954 }
6955 
6956 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6957 			    char *buf)
6958 {
6959 	struct workqueue_struct *wq = dev_to_wq(dev);
6960 
6961 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6962 }
6963 static DEVICE_ATTR_RO(per_cpu);
6964 
6965 static ssize_t max_active_show(struct device *dev,
6966 			       struct device_attribute *attr, char *buf)
6967 {
6968 	struct workqueue_struct *wq = dev_to_wq(dev);
6969 
6970 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6971 }
6972 
6973 static ssize_t max_active_store(struct device *dev,
6974 				struct device_attribute *attr, const char *buf,
6975 				size_t count)
6976 {
6977 	struct workqueue_struct *wq = dev_to_wq(dev);
6978 	int val;
6979 
6980 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6981 		return -EINVAL;
6982 
6983 	workqueue_set_max_active(wq, val);
6984 	return count;
6985 }
6986 static DEVICE_ATTR_RW(max_active);
6987 
6988 static struct attribute *wq_sysfs_attrs[] = {
6989 	&dev_attr_per_cpu.attr,
6990 	&dev_attr_max_active.attr,
6991 	NULL,
6992 };
6993 ATTRIBUTE_GROUPS(wq_sysfs);
6994 
6995 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
6996 			    char *buf)
6997 {
6998 	struct workqueue_struct *wq = dev_to_wq(dev);
6999 	int written;
7000 
7001 	mutex_lock(&wq->mutex);
7002 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7003 	mutex_unlock(&wq->mutex);
7004 
7005 	return written;
7006 }
7007 
7008 /* prepare workqueue_attrs for sysfs store operations */
7009 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7010 {
7011 	struct workqueue_attrs *attrs;
7012 
7013 	lockdep_assert_held(&wq_pool_mutex);
7014 
7015 	attrs = alloc_workqueue_attrs();
7016 	if (!attrs)
7017 		return NULL;
7018 
7019 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
7020 	return attrs;
7021 }
7022 
7023 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7024 			     const char *buf, size_t count)
7025 {
7026 	struct workqueue_struct *wq = dev_to_wq(dev);
7027 	struct workqueue_attrs *attrs;
7028 	int ret = -ENOMEM;
7029 
7030 	apply_wqattrs_lock();
7031 
7032 	attrs = wq_sysfs_prep_attrs(wq);
7033 	if (!attrs)
7034 		goto out_unlock;
7035 
7036 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7037 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7038 		ret = apply_workqueue_attrs_locked(wq, attrs);
7039 	else
7040 		ret = -EINVAL;
7041 
7042 out_unlock:
7043 	apply_wqattrs_unlock();
7044 	free_workqueue_attrs(attrs);
7045 	return ret ?: count;
7046 }
7047 
7048 static ssize_t wq_cpumask_show(struct device *dev,
7049 			       struct device_attribute *attr, char *buf)
7050 {
7051 	struct workqueue_struct *wq = dev_to_wq(dev);
7052 	int written;
7053 
7054 	mutex_lock(&wq->mutex);
7055 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7056 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
7057 	mutex_unlock(&wq->mutex);
7058 	return written;
7059 }
7060 
7061 static ssize_t wq_cpumask_store(struct device *dev,
7062 				struct device_attribute *attr,
7063 				const char *buf, size_t count)
7064 {
7065 	struct workqueue_struct *wq = dev_to_wq(dev);
7066 	struct workqueue_attrs *attrs;
7067 	int ret = -ENOMEM;
7068 
7069 	apply_wqattrs_lock();
7070 
7071 	attrs = wq_sysfs_prep_attrs(wq);
7072 	if (!attrs)
7073 		goto out_unlock;
7074 
7075 	ret = cpumask_parse(buf, attrs->cpumask);
7076 	if (!ret)
7077 		ret = apply_workqueue_attrs_locked(wq, attrs);
7078 
7079 out_unlock:
7080 	apply_wqattrs_unlock();
7081 	free_workqueue_attrs(attrs);
7082 	return ret ?: count;
7083 }
7084 
7085 static ssize_t wq_affn_scope_show(struct device *dev,
7086 				  struct device_attribute *attr, char *buf)
7087 {
7088 	struct workqueue_struct *wq = dev_to_wq(dev);
7089 	int written;
7090 
7091 	mutex_lock(&wq->mutex);
7092 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7093 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7094 				    wq_affn_names[WQ_AFFN_DFL],
7095 				    wq_affn_names[wq_affn_dfl]);
7096 	else
7097 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7098 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7099 	mutex_unlock(&wq->mutex);
7100 
7101 	return written;
7102 }
7103 
7104 static ssize_t wq_affn_scope_store(struct device *dev,
7105 				   struct device_attribute *attr,
7106 				   const char *buf, size_t count)
7107 {
7108 	struct workqueue_struct *wq = dev_to_wq(dev);
7109 	struct workqueue_attrs *attrs;
7110 	int affn, ret = -ENOMEM;
7111 
7112 	affn = parse_affn_scope(buf);
7113 	if (affn < 0)
7114 		return affn;
7115 
7116 	apply_wqattrs_lock();
7117 	attrs = wq_sysfs_prep_attrs(wq);
7118 	if (attrs) {
7119 		attrs->affn_scope = affn;
7120 		ret = apply_workqueue_attrs_locked(wq, attrs);
7121 	}
7122 	apply_wqattrs_unlock();
7123 	free_workqueue_attrs(attrs);
7124 	return ret ?: count;
7125 }
7126 
7127 static ssize_t wq_affinity_strict_show(struct device *dev,
7128 				       struct device_attribute *attr, char *buf)
7129 {
7130 	struct workqueue_struct *wq = dev_to_wq(dev);
7131 
7132 	return scnprintf(buf, PAGE_SIZE, "%d\n",
7133 			 wq->unbound_attrs->affn_strict);
7134 }
7135 
7136 static ssize_t wq_affinity_strict_store(struct device *dev,
7137 					struct device_attribute *attr,
7138 					const char *buf, size_t count)
7139 {
7140 	struct workqueue_struct *wq = dev_to_wq(dev);
7141 	struct workqueue_attrs *attrs;
7142 	int v, ret = -ENOMEM;
7143 
7144 	if (sscanf(buf, "%d", &v) != 1)
7145 		return -EINVAL;
7146 
7147 	apply_wqattrs_lock();
7148 	attrs = wq_sysfs_prep_attrs(wq);
7149 	if (attrs) {
7150 		attrs->affn_strict = (bool)v;
7151 		ret = apply_workqueue_attrs_locked(wq, attrs);
7152 	}
7153 	apply_wqattrs_unlock();
7154 	free_workqueue_attrs(attrs);
7155 	return ret ?: count;
7156 }
7157 
7158 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7159 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7160 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7161 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7162 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7163 	__ATTR_NULL,
7164 };
7165 
7166 static const struct bus_type wq_subsys = {
7167 	.name				= "workqueue",
7168 	.dev_groups			= wq_sysfs_groups,
7169 };
7170 
7171 /**
7172  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7173  *  @cpumask: the cpumask to set
7174  *
7175  *  The low-level workqueues cpumask is a global cpumask that limits
7176  *  the affinity of all unbound workqueues.  This function check the @cpumask
7177  *  and apply it to all unbound workqueues and updates all pwqs of them.
7178  *
7179  *  Return:	0	- Success
7180  *		-EINVAL	- Invalid @cpumask
7181  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7182  */
7183 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7184 {
7185 	int ret = -EINVAL;
7186 
7187 	/*
7188 	 * Not excluding isolated cpus on purpose.
7189 	 * If the user wishes to include them, we allow that.
7190 	 */
7191 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7192 	if (!cpumask_empty(cpumask)) {
7193 		ret = 0;
7194 		apply_wqattrs_lock();
7195 		if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7196 			ret = workqueue_apply_unbound_cpumask(cpumask);
7197 		if (!ret)
7198 			cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7199 		apply_wqattrs_unlock();
7200 	}
7201 
7202 	return ret;
7203 }
7204 
7205 static ssize_t __wq_cpumask_show(struct device *dev,
7206 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7207 {
7208 	int written;
7209 
7210 	mutex_lock(&wq_pool_mutex);
7211 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7212 	mutex_unlock(&wq_pool_mutex);
7213 
7214 	return written;
7215 }
7216 
7217 static ssize_t cpumask_requested_show(struct device *dev,
7218 		struct device_attribute *attr, char *buf)
7219 {
7220 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7221 }
7222 static DEVICE_ATTR_RO(cpumask_requested);
7223 
7224 static ssize_t cpumask_isolated_show(struct device *dev,
7225 		struct device_attribute *attr, char *buf)
7226 {
7227 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7228 }
7229 static DEVICE_ATTR_RO(cpumask_isolated);
7230 
7231 static ssize_t cpumask_show(struct device *dev,
7232 		struct device_attribute *attr, char *buf)
7233 {
7234 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7235 }
7236 
7237 static ssize_t cpumask_store(struct device *dev,
7238 		struct device_attribute *attr, const char *buf, size_t count)
7239 {
7240 	cpumask_var_t cpumask;
7241 	int ret;
7242 
7243 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7244 		return -ENOMEM;
7245 
7246 	ret = cpumask_parse(buf, cpumask);
7247 	if (!ret)
7248 		ret = workqueue_set_unbound_cpumask(cpumask);
7249 
7250 	free_cpumask_var(cpumask);
7251 	return ret ? ret : count;
7252 }
7253 static DEVICE_ATTR_RW(cpumask);
7254 
7255 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7256 	&dev_attr_cpumask.attr,
7257 	&dev_attr_cpumask_requested.attr,
7258 	&dev_attr_cpumask_isolated.attr,
7259 	NULL,
7260 };
7261 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7262 
7263 static int __init wq_sysfs_init(void)
7264 {
7265 	return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7266 }
7267 core_initcall(wq_sysfs_init);
7268 
7269 static void wq_device_release(struct device *dev)
7270 {
7271 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7272 
7273 	kfree(wq_dev);
7274 }
7275 
7276 /**
7277  * workqueue_sysfs_register - make a workqueue visible in sysfs
7278  * @wq: the workqueue to register
7279  *
7280  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7281  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7282  * which is the preferred method.
7283  *
7284  * Workqueue user should use this function directly iff it wants to apply
7285  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7286  * apply_workqueue_attrs() may race against userland updating the
7287  * attributes.
7288  *
7289  * Return: 0 on success, -errno on failure.
7290  */
7291 int workqueue_sysfs_register(struct workqueue_struct *wq)
7292 {
7293 	struct wq_device *wq_dev;
7294 	int ret;
7295 
7296 	/*
7297 	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7298 	 * ordered workqueues.
7299 	 */
7300 	if (WARN_ON(wq->flags & __WQ_ORDERED))
7301 		return -EINVAL;
7302 
7303 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7304 	if (!wq_dev)
7305 		return -ENOMEM;
7306 
7307 	wq_dev->wq = wq;
7308 	wq_dev->dev.bus = &wq_subsys;
7309 	wq_dev->dev.release = wq_device_release;
7310 	dev_set_name(&wq_dev->dev, "%s", wq->name);
7311 
7312 	/*
7313 	 * unbound_attrs are created separately.  Suppress uevent until
7314 	 * everything is ready.
7315 	 */
7316 	dev_set_uevent_suppress(&wq_dev->dev, true);
7317 
7318 	ret = device_register(&wq_dev->dev);
7319 	if (ret) {
7320 		put_device(&wq_dev->dev);
7321 		wq->wq_dev = NULL;
7322 		return ret;
7323 	}
7324 
7325 	if (wq->flags & WQ_UNBOUND) {
7326 		struct device_attribute *attr;
7327 
7328 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7329 			ret = device_create_file(&wq_dev->dev, attr);
7330 			if (ret) {
7331 				device_unregister(&wq_dev->dev);
7332 				wq->wq_dev = NULL;
7333 				return ret;
7334 			}
7335 		}
7336 	}
7337 
7338 	dev_set_uevent_suppress(&wq_dev->dev, false);
7339 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7340 	return 0;
7341 }
7342 
7343 /**
7344  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7345  * @wq: the workqueue to unregister
7346  *
7347  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7348  */
7349 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7350 {
7351 	struct wq_device *wq_dev = wq->wq_dev;
7352 
7353 	if (!wq->wq_dev)
7354 		return;
7355 
7356 	wq->wq_dev = NULL;
7357 	device_unregister(&wq_dev->dev);
7358 }
7359 #else	/* CONFIG_SYSFS */
7360 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7361 #endif	/* CONFIG_SYSFS */
7362 
7363 /*
7364  * Workqueue watchdog.
7365  *
7366  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7367  * flush dependency, a concurrency managed work item which stays RUNNING
7368  * indefinitely.  Workqueue stalls can be very difficult to debug as the
7369  * usual warning mechanisms don't trigger and internal workqueue state is
7370  * largely opaque.
7371  *
7372  * Workqueue watchdog monitors all worker pools periodically and dumps
7373  * state if some pools failed to make forward progress for a while where
7374  * forward progress is defined as the first item on ->worklist changing.
7375  *
7376  * This mechanism is controlled through the kernel parameter
7377  * "workqueue.watchdog_thresh" which can be updated at runtime through the
7378  * corresponding sysfs parameter file.
7379  */
7380 #ifdef CONFIG_WQ_WATCHDOG
7381 
7382 static unsigned long wq_watchdog_thresh = 30;
7383 static struct timer_list wq_watchdog_timer;
7384 
7385 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7386 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7387 
7388 /*
7389  * Show workers that might prevent the processing of pending work items.
7390  * The only candidates are CPU-bound workers in the running state.
7391  * Pending work items should be handled by another idle worker
7392  * in all other situations.
7393  */
7394 static void show_cpu_pool_hog(struct worker_pool *pool)
7395 {
7396 	struct worker *worker;
7397 	unsigned long irq_flags;
7398 	int bkt;
7399 
7400 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7401 
7402 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7403 		if (task_is_running(worker->task)) {
7404 			/*
7405 			 * Defer printing to avoid deadlocks in console
7406 			 * drivers that queue work while holding locks
7407 			 * also taken in their write paths.
7408 			 */
7409 			printk_deferred_enter();
7410 
7411 			pr_info("pool %d:\n", pool->id);
7412 			sched_show_task(worker->task);
7413 
7414 			printk_deferred_exit();
7415 		}
7416 	}
7417 
7418 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7419 }
7420 
7421 static void show_cpu_pools_hogs(void)
7422 {
7423 	struct worker_pool *pool;
7424 	int pi;
7425 
7426 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7427 
7428 	rcu_read_lock();
7429 
7430 	for_each_pool(pool, pi) {
7431 		if (pool->cpu_stall)
7432 			show_cpu_pool_hog(pool);
7433 
7434 	}
7435 
7436 	rcu_read_unlock();
7437 }
7438 
7439 static void wq_watchdog_reset_touched(void)
7440 {
7441 	int cpu;
7442 
7443 	wq_watchdog_touched = jiffies;
7444 	for_each_possible_cpu(cpu)
7445 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7446 }
7447 
7448 static void wq_watchdog_timer_fn(struct timer_list *unused)
7449 {
7450 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7451 	bool lockup_detected = false;
7452 	bool cpu_pool_stall = false;
7453 	unsigned long now = jiffies;
7454 	struct worker_pool *pool;
7455 	int pi;
7456 
7457 	if (!thresh)
7458 		return;
7459 
7460 	rcu_read_lock();
7461 
7462 	for_each_pool(pool, pi) {
7463 		unsigned long pool_ts, touched, ts;
7464 
7465 		pool->cpu_stall = false;
7466 		if (list_empty(&pool->worklist))
7467 			continue;
7468 
7469 		/*
7470 		 * If a virtual machine is stopped by the host it can look to
7471 		 * the watchdog like a stall.
7472 		 */
7473 		kvm_check_and_clear_guest_paused();
7474 
7475 		/* get the latest of pool and touched timestamps */
7476 		if (pool->cpu >= 0)
7477 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7478 		else
7479 			touched = READ_ONCE(wq_watchdog_touched);
7480 		pool_ts = READ_ONCE(pool->watchdog_ts);
7481 
7482 		if (time_after(pool_ts, touched))
7483 			ts = pool_ts;
7484 		else
7485 			ts = touched;
7486 
7487 		/* did we stall? */
7488 		if (time_after(now, ts + thresh)) {
7489 			lockup_detected = true;
7490 			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7491 				pool->cpu_stall = true;
7492 				cpu_pool_stall = true;
7493 			}
7494 			pr_emerg("BUG: workqueue lockup - pool");
7495 			pr_cont_pool_info(pool);
7496 			pr_cont(" stuck for %us!\n",
7497 				jiffies_to_msecs(now - pool_ts) / 1000);
7498 		}
7499 
7500 
7501 	}
7502 
7503 	rcu_read_unlock();
7504 
7505 	if (lockup_detected)
7506 		show_all_workqueues();
7507 
7508 	if (cpu_pool_stall)
7509 		show_cpu_pools_hogs();
7510 
7511 	wq_watchdog_reset_touched();
7512 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7513 }
7514 
7515 notrace void wq_watchdog_touch(int cpu)
7516 {
7517 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7518 	unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7519 	unsigned long now = jiffies;
7520 
7521 	if (cpu >= 0)
7522 		per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7523 	else
7524 		WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7525 
7526 	/* Don't unnecessarily store to global cacheline */
7527 	if (time_after(now, touch_ts + thresh / 4))
7528 		WRITE_ONCE(wq_watchdog_touched, jiffies);
7529 }
7530 
7531 static void wq_watchdog_set_thresh(unsigned long thresh)
7532 {
7533 	wq_watchdog_thresh = 0;
7534 	del_timer_sync(&wq_watchdog_timer);
7535 
7536 	if (thresh) {
7537 		wq_watchdog_thresh = thresh;
7538 		wq_watchdog_reset_touched();
7539 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7540 	}
7541 }
7542 
7543 static int wq_watchdog_param_set_thresh(const char *val,
7544 					const struct kernel_param *kp)
7545 {
7546 	unsigned long thresh;
7547 	int ret;
7548 
7549 	ret = kstrtoul(val, 0, &thresh);
7550 	if (ret)
7551 		return ret;
7552 
7553 	if (system_wq)
7554 		wq_watchdog_set_thresh(thresh);
7555 	else
7556 		wq_watchdog_thresh = thresh;
7557 
7558 	return 0;
7559 }
7560 
7561 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7562 	.set	= wq_watchdog_param_set_thresh,
7563 	.get	= param_get_ulong,
7564 };
7565 
7566 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7567 		0644);
7568 
7569 static void wq_watchdog_init(void)
7570 {
7571 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7572 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7573 }
7574 
7575 #else	/* CONFIG_WQ_WATCHDOG */
7576 
7577 static inline void wq_watchdog_init(void) { }
7578 
7579 #endif	/* CONFIG_WQ_WATCHDOG */
7580 
7581 static void bh_pool_kick_normal(struct irq_work *irq_work)
7582 {
7583 	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7584 }
7585 
7586 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7587 {
7588 	raise_softirq_irqoff(HI_SOFTIRQ);
7589 }
7590 
7591 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7592 {
7593 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7594 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7595 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7596 		return;
7597 	}
7598 
7599 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7600 }
7601 
7602 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7603 {
7604 	BUG_ON(init_worker_pool(pool));
7605 	pool->cpu = cpu;
7606 	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7607 	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7608 	pool->attrs->nice = nice;
7609 	pool->attrs->affn_strict = true;
7610 	pool->node = cpu_to_node(cpu);
7611 
7612 	/* alloc pool ID */
7613 	mutex_lock(&wq_pool_mutex);
7614 	BUG_ON(worker_pool_assign_id(pool));
7615 	mutex_unlock(&wq_pool_mutex);
7616 }
7617 
7618 /**
7619  * workqueue_init_early - early init for workqueue subsystem
7620  *
7621  * This is the first step of three-staged workqueue subsystem initialization and
7622  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7623  * up. It sets up all the data structures and system workqueues and allows early
7624  * boot code to create workqueues and queue/cancel work items. Actual work item
7625  * execution starts only after kthreads can be created and scheduled right
7626  * before early initcalls.
7627  */
7628 void __init workqueue_init_early(void)
7629 {
7630 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7631 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7632 	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7633 						       bh_pool_kick_highpri };
7634 	int i, cpu;
7635 
7636 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7637 
7638 	BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7639 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7640 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7641 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7642 
7643 	cpumask_copy(wq_online_cpumask, cpu_online_mask);
7644 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7645 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7646 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7647 	if (!cpumask_empty(&wq_cmdline_cpumask))
7648 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7649 
7650 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7651 
7652 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7653 
7654 	unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7655 	BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7656 
7657 	/*
7658 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7659 	 * This allows workqueue items to be moved to HK CPUs.
7660 	 */
7661 	if (housekeeping_enabled(HK_TYPE_TICK))
7662 		wq_power_efficient = true;
7663 
7664 	/* initialize WQ_AFFN_SYSTEM pods */
7665 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7666 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7667 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7668 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7669 
7670 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7671 
7672 	pt->nr_pods = 1;
7673 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7674 	pt->pod_node[0] = NUMA_NO_NODE;
7675 	pt->cpu_pod[0] = 0;
7676 
7677 	/* initialize BH and CPU pools */
7678 	for_each_possible_cpu(cpu) {
7679 		struct worker_pool *pool;
7680 
7681 		i = 0;
7682 		for_each_bh_worker_pool(pool, cpu) {
7683 			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7684 			pool->flags |= POOL_BH;
7685 			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7686 			i++;
7687 		}
7688 
7689 		i = 0;
7690 		for_each_cpu_worker_pool(pool, cpu)
7691 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7692 	}
7693 
7694 	/* create default unbound and ordered wq attrs */
7695 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7696 		struct workqueue_attrs *attrs;
7697 
7698 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7699 		attrs->nice = std_nice[i];
7700 		unbound_std_wq_attrs[i] = attrs;
7701 
7702 		/*
7703 		 * An ordered wq should have only one pwq as ordering is
7704 		 * guaranteed by max_active which is enforced by pwqs.
7705 		 */
7706 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7707 		attrs->nice = std_nice[i];
7708 		attrs->ordered = true;
7709 		ordered_wq_attrs[i] = attrs;
7710 	}
7711 
7712 	system_wq = alloc_workqueue("events", 0, 0);
7713 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7714 	system_long_wq = alloc_workqueue("events_long", 0, 0);
7715 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7716 					    WQ_MAX_ACTIVE);
7717 	system_freezable_wq = alloc_workqueue("events_freezable",
7718 					      WQ_FREEZABLE, 0);
7719 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7720 					      WQ_POWER_EFFICIENT, 0);
7721 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7722 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7723 					      0);
7724 	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7725 	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7726 					       WQ_BH | WQ_HIGHPRI, 0);
7727 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7728 	       !system_unbound_wq || !system_freezable_wq ||
7729 	       !system_power_efficient_wq ||
7730 	       !system_freezable_power_efficient_wq ||
7731 	       !system_bh_wq || !system_bh_highpri_wq);
7732 }
7733 
7734 static void __init wq_cpu_intensive_thresh_init(void)
7735 {
7736 	unsigned long thresh;
7737 	unsigned long bogo;
7738 
7739 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7740 	BUG_ON(IS_ERR(pwq_release_worker));
7741 
7742 	/* if the user set it to a specific value, keep it */
7743 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7744 		return;
7745 
7746 	/*
7747 	 * The default of 10ms is derived from the fact that most modern (as of
7748 	 * 2023) processors can do a lot in 10ms and that it's just below what
7749 	 * most consider human-perceivable. However, the kernel also runs on a
7750 	 * lot slower CPUs including microcontrollers where the threshold is way
7751 	 * too low.
7752 	 *
7753 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7754 	 * This is by no means accurate but it doesn't have to be. The mechanism
7755 	 * is still useful even when the threshold is fully scaled up. Also, as
7756 	 * the reports would usually be applicable to everyone, some machines
7757 	 * operating on longer thresholds won't significantly diminish their
7758 	 * usefulness.
7759 	 */
7760 	thresh = 10 * USEC_PER_MSEC;
7761 
7762 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7763 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7764 	if (bogo < 4000)
7765 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7766 
7767 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7768 		 loops_per_jiffy, bogo, thresh);
7769 
7770 	wq_cpu_intensive_thresh_us = thresh;
7771 }
7772 
7773 /**
7774  * workqueue_init - bring workqueue subsystem fully online
7775  *
7776  * This is the second step of three-staged workqueue subsystem initialization
7777  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7778  * been created and work items queued on them, but there are no kworkers
7779  * executing the work items yet. Populate the worker pools with the initial
7780  * workers and enable future kworker creations.
7781  */
7782 void __init workqueue_init(void)
7783 {
7784 	struct workqueue_struct *wq;
7785 	struct worker_pool *pool;
7786 	int cpu, bkt;
7787 
7788 	wq_cpu_intensive_thresh_init();
7789 
7790 	mutex_lock(&wq_pool_mutex);
7791 
7792 	/*
7793 	 * Per-cpu pools created earlier could be missing node hint. Fix them
7794 	 * up. Also, create a rescuer for workqueues that requested it.
7795 	 */
7796 	for_each_possible_cpu(cpu) {
7797 		for_each_bh_worker_pool(pool, cpu)
7798 			pool->node = cpu_to_node(cpu);
7799 		for_each_cpu_worker_pool(pool, cpu)
7800 			pool->node = cpu_to_node(cpu);
7801 	}
7802 
7803 	list_for_each_entry(wq, &workqueues, list) {
7804 		WARN(init_rescuer(wq),
7805 		     "workqueue: failed to create early rescuer for %s",
7806 		     wq->name);
7807 	}
7808 
7809 	mutex_unlock(&wq_pool_mutex);
7810 
7811 	/*
7812 	 * Create the initial workers. A BH pool has one pseudo worker that
7813 	 * represents the shared BH execution context and thus doesn't get
7814 	 * affected by hotplug events. Create the BH pseudo workers for all
7815 	 * possible CPUs here.
7816 	 */
7817 	for_each_possible_cpu(cpu)
7818 		for_each_bh_worker_pool(pool, cpu)
7819 			BUG_ON(!create_worker(pool));
7820 
7821 	for_each_online_cpu(cpu) {
7822 		for_each_cpu_worker_pool(pool, cpu) {
7823 			pool->flags &= ~POOL_DISASSOCIATED;
7824 			BUG_ON(!create_worker(pool));
7825 		}
7826 	}
7827 
7828 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7829 		BUG_ON(!create_worker(pool));
7830 
7831 	wq_online = true;
7832 	wq_watchdog_init();
7833 }
7834 
7835 /*
7836  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7837  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7838  * and consecutive pod ID. The rest of @pt is initialized accordingly.
7839  */
7840 static void __init init_pod_type(struct wq_pod_type *pt,
7841 				 bool (*cpus_share_pod)(int, int))
7842 {
7843 	int cur, pre, cpu, pod;
7844 
7845 	pt->nr_pods = 0;
7846 
7847 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7848 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7849 	BUG_ON(!pt->cpu_pod);
7850 
7851 	for_each_possible_cpu(cur) {
7852 		for_each_possible_cpu(pre) {
7853 			if (pre >= cur) {
7854 				pt->cpu_pod[cur] = pt->nr_pods++;
7855 				break;
7856 			}
7857 			if (cpus_share_pod(cur, pre)) {
7858 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7859 				break;
7860 			}
7861 		}
7862 	}
7863 
7864 	/* init the rest to match @pt->cpu_pod[] */
7865 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7866 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7867 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7868 
7869 	for (pod = 0; pod < pt->nr_pods; pod++)
7870 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7871 
7872 	for_each_possible_cpu(cpu) {
7873 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7874 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7875 	}
7876 }
7877 
7878 static bool __init cpus_dont_share(int cpu0, int cpu1)
7879 {
7880 	return false;
7881 }
7882 
7883 static bool __init cpus_share_smt(int cpu0, int cpu1)
7884 {
7885 #ifdef CONFIG_SCHED_SMT
7886 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7887 #else
7888 	return false;
7889 #endif
7890 }
7891 
7892 static bool __init cpus_share_numa(int cpu0, int cpu1)
7893 {
7894 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7895 }
7896 
7897 /**
7898  * workqueue_init_topology - initialize CPU pods for unbound workqueues
7899  *
7900  * This is the third step of three-staged workqueue subsystem initialization and
7901  * invoked after SMP and topology information are fully initialized. It
7902  * initializes the unbound CPU pods accordingly.
7903  */
7904 void __init workqueue_init_topology(void)
7905 {
7906 	struct workqueue_struct *wq;
7907 	int cpu;
7908 
7909 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7910 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7911 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7912 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7913 
7914 	wq_topo_initialized = true;
7915 
7916 	mutex_lock(&wq_pool_mutex);
7917 
7918 	/*
7919 	 * Workqueues allocated earlier would have all CPUs sharing the default
7920 	 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
7921 	 * and CPU combinations to apply per-pod sharing.
7922 	 */
7923 	list_for_each_entry(wq, &workqueues, list) {
7924 		for_each_online_cpu(cpu)
7925 			unbound_wq_update_pwq(wq, cpu);
7926 		if (wq->flags & WQ_UNBOUND) {
7927 			mutex_lock(&wq->mutex);
7928 			wq_update_node_max_active(wq, -1);
7929 			mutex_unlock(&wq->mutex);
7930 		}
7931 	}
7932 
7933 	mutex_unlock(&wq_pool_mutex);
7934 }
7935 
7936 void __warn_flushing_systemwide_wq(void)
7937 {
7938 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7939 	dump_stack();
7940 }
7941 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
7942 
7943 static int __init workqueue_unbound_cpus_setup(char *str)
7944 {
7945 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7946 		cpumask_clear(&wq_cmdline_cpumask);
7947 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7948 	}
7949 
7950 	return 1;
7951 }
7952 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
7953