xref: /linux-6.15/kernel/workqueue.c (revision a6b48c83)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <[email protected]>
9  *     Andrew Morton
10  *     Kai Petzke <[email protected]>
11  *     Theodore Ts'o <[email protected]>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <[email protected]>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/sched/debug.h>
53 #include <linux/nmi.h>
54 #include <linux/kvm_para.h>
55 #include <linux/delay.h>
56 
57 #include "workqueue_internal.h"
58 
59 enum {
60 	/*
61 	 * worker_pool flags
62 	 *
63 	 * A bound pool is either associated or disassociated with its CPU.
64 	 * While associated (!DISASSOCIATED), all workers are bound to the
65 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
66 	 * is in effect.
67 	 *
68 	 * While DISASSOCIATED, the cpu may be offline and all workers have
69 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
70 	 * be executing on any CPU.  The pool behaves as an unbound one.
71 	 *
72 	 * Note that DISASSOCIATED should be flipped only while holding
73 	 * wq_pool_attach_mutex to avoid changing binding state while
74 	 * worker_attach_to_pool() is in progress.
75 	 */
76 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
77 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
78 
79 	/* worker flags */
80 	WORKER_DIE		= 1 << 1,	/* die die die */
81 	WORKER_IDLE		= 1 << 2,	/* is idle */
82 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
83 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
84 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
85 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
86 
87 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
88 				  WORKER_UNBOUND | WORKER_REBOUND,
89 
90 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
91 
92 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
93 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
94 
95 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
96 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
97 
98 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
99 						/* call for help after 10ms
100 						   (min two ticks) */
101 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
102 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
103 
104 	/*
105 	 * Rescue workers are used only on emergencies and shared by
106 	 * all cpus.  Give MIN_NICE.
107 	 */
108 	RESCUER_NICE_LEVEL	= MIN_NICE,
109 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
110 
111 	WQ_NAME_LEN		= 32,
112 };
113 
114 /*
115  * Structure fields follow one of the following exclusion rules.
116  *
117  * I: Modifiable by initialization/destruction paths and read-only for
118  *    everyone else.
119  *
120  * P: Preemption protected.  Disabling preemption is enough and should
121  *    only be modified and accessed from the local cpu.
122  *
123  * L: pool->lock protected.  Access with pool->lock held.
124  *
125  * K: Only modified by worker while holding pool->lock. Can be safely read by
126  *    self, while holding pool->lock or from IRQ context if %current is the
127  *    kworker.
128  *
129  * S: Only modified by worker self.
130  *
131  * A: wq_pool_attach_mutex protected.
132  *
133  * PL: wq_pool_mutex protected.
134  *
135  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
136  *
137  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
138  *
139  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
140  *      RCU for reads.
141  *
142  * WQ: wq->mutex protected.
143  *
144  * WR: wq->mutex protected for writes.  RCU protected for reads.
145  *
146  * MD: wq_mayday_lock protected.
147  *
148  * WD: Used internally by the watchdog.
149  */
150 
151 /* struct worker is defined in workqueue_internal.h */
152 
153 struct worker_pool {
154 	raw_spinlock_t		lock;		/* the pool lock */
155 	int			cpu;		/* I: the associated cpu */
156 	int			node;		/* I: the associated node ID */
157 	int			id;		/* I: pool ID */
158 	unsigned int		flags;		/* L: flags */
159 
160 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
161 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
162 
163 	/*
164 	 * The counter is incremented in a process context on the associated CPU
165 	 * w/ preemption disabled, and decremented or reset in the same context
166 	 * but w/ pool->lock held. The readers grab pool->lock and are
167 	 * guaranteed to see if the counter reached zero.
168 	 */
169 	int			nr_running;
170 
171 	struct list_head	worklist;	/* L: list of pending works */
172 
173 	int			nr_workers;	/* L: total number of workers */
174 	int			nr_idle;	/* L: currently idle workers */
175 
176 	struct list_head	idle_list;	/* L: list of idle workers */
177 	struct timer_list	idle_timer;	/* L: worker idle timeout */
178 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
179 
180 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
181 
182 	/* a workers is either on busy_hash or idle_list, or the manager */
183 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
184 						/* L: hash of busy workers */
185 
186 	struct worker		*manager;	/* L: purely informational */
187 	struct list_head	workers;	/* A: attached workers */
188 	struct list_head        dying_workers;  /* A: workers about to die */
189 	struct completion	*detach_completion; /* all workers detached */
190 
191 	struct ida		worker_ida;	/* worker IDs for task name */
192 
193 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
194 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
195 	int			refcnt;		/* PL: refcnt for unbound pools */
196 
197 	/*
198 	 * Destruction of pool is RCU protected to allow dereferences
199 	 * from get_work_pool().
200 	 */
201 	struct rcu_head		rcu;
202 };
203 
204 /*
205  * Per-pool_workqueue statistics. These can be monitored using
206  * tools/workqueue/wq_monitor.py.
207  */
208 enum pool_workqueue_stats {
209 	PWQ_STAT_STARTED,	/* work items started execution */
210 	PWQ_STAT_COMPLETED,	/* work items completed execution */
211 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
212 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
213 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
214 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
215 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
216 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
217 
218 	PWQ_NR_STATS,
219 };
220 
221 /*
222  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
223  * of work_struct->data are used for flags and the remaining high bits
224  * point to the pwq; thus, pwqs need to be aligned at two's power of the
225  * number of flag bits.
226  */
227 struct pool_workqueue {
228 	struct worker_pool	*pool;		/* I: the associated pool */
229 	struct workqueue_struct *wq;		/* I: the owning workqueue */
230 	int			work_color;	/* L: current color */
231 	int			flush_color;	/* L: flushing color */
232 	int			refcnt;		/* L: reference count */
233 	int			nr_in_flight[WORK_NR_COLORS];
234 						/* L: nr of in_flight works */
235 
236 	/*
237 	 * nr_active management and WORK_STRUCT_INACTIVE:
238 	 *
239 	 * When pwq->nr_active >= max_active, new work item is queued to
240 	 * pwq->inactive_works instead of pool->worklist and marked with
241 	 * WORK_STRUCT_INACTIVE.
242 	 *
243 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
244 	 * in pwq->nr_active and all work items in pwq->inactive_works are
245 	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
246 	 * work items are in pwq->inactive_works.  Some of them are ready to
247 	 * run in pool->worklist or worker->scheduled.  Those work itmes are
248 	 * only struct wq_barrier which is used for flush_work() and should
249 	 * not participate in pwq->nr_active.  For non-barrier work item, it
250 	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
251 	 */
252 	int			nr_active;	/* L: nr of active works */
253 	int			max_active;	/* L: max active works */
254 	struct list_head	inactive_works;	/* L: inactive works */
255 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
256 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
257 
258 	u64			stats[PWQ_NR_STATS];
259 
260 	/*
261 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
262 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
263 	 * RCU protected so that the first pwq can be determined without
264 	 * grabbing wq->mutex.
265 	 */
266 	struct kthread_work	release_work;
267 	struct rcu_head		rcu;
268 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
269 
270 /*
271  * Structure used to wait for workqueue flush.
272  */
273 struct wq_flusher {
274 	struct list_head	list;		/* WQ: list of flushers */
275 	int			flush_color;	/* WQ: flush color waiting for */
276 	struct completion	done;		/* flush completion */
277 };
278 
279 struct wq_device;
280 
281 /*
282  * The externally visible workqueue.  It relays the issued work items to
283  * the appropriate worker_pool through its pool_workqueues.
284  */
285 struct workqueue_struct {
286 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
287 	struct list_head	list;		/* PR: list of all workqueues */
288 
289 	struct mutex		mutex;		/* protects this wq */
290 	int			work_color;	/* WQ: current work color */
291 	int			flush_color;	/* WQ: current flush color */
292 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
293 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
294 	struct list_head	flusher_queue;	/* WQ: flush waiters */
295 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
296 
297 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
298 	struct worker		*rescuer;	/* MD: rescue worker */
299 
300 	int			nr_drainers;	/* WQ: drain in progress */
301 	int			saved_max_active; /* WQ: saved pwq max_active */
302 
303 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
304 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
305 
306 #ifdef CONFIG_SYSFS
307 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
308 #endif
309 #ifdef CONFIG_LOCKDEP
310 	char			*lock_name;
311 	struct lock_class_key	key;
312 	struct lockdep_map	lockdep_map;
313 #endif
314 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
315 
316 	/*
317 	 * Destruction of workqueue_struct is RCU protected to allow walking
318 	 * the workqueues list without grabbing wq_pool_mutex.
319 	 * This is used to dump all workqueues from sysrq.
320 	 */
321 	struct rcu_head		rcu;
322 
323 	/* hot fields used during command issue, aligned to cacheline */
324 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
325 	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
326 };
327 
328 static struct kmem_cache *pwq_cache;
329 
330 /*
331  * Each pod type describes how CPUs should be grouped for unbound workqueues.
332  * See the comment above workqueue_attrs->affn_scope.
333  */
334 struct wq_pod_type {
335 	int			nr_pods;	/* number of pods */
336 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
337 	int			*pod_node;	/* pod -> node */
338 	int			*cpu_pod;	/* cpu -> pod */
339 };
340 
341 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
342 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
343 
344 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
345 	[WQ_AFFN_DFL]			= "default",
346 	[WQ_AFFN_CPU]			= "cpu",
347 	[WQ_AFFN_SMT]			= "smt",
348 	[WQ_AFFN_CACHE]			= "cache",
349 	[WQ_AFFN_NUMA]			= "numa",
350 	[WQ_AFFN_SYSTEM]		= "system",
351 };
352 
353 /*
354  * Per-cpu work items which run for longer than the following threshold are
355  * automatically considered CPU intensive and excluded from concurrency
356  * management to prevent them from noticeably delaying other per-cpu work items.
357  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
358  * The actual value is initialized in wq_cpu_intensive_thresh_init().
359  */
360 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
361 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
362 
363 /* see the comment above the definition of WQ_POWER_EFFICIENT */
364 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
365 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
366 
367 static bool wq_online;			/* can kworkers be created yet? */
368 
369 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
370 static struct workqueue_attrs *wq_update_pod_attrs_buf;
371 
372 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
373 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
374 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
375 /* wait for manager to go away */
376 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
377 
378 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
379 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
380 
381 /* PL&A: allowable cpus for unbound wqs and work items */
382 static cpumask_var_t wq_unbound_cpumask;
383 
384 /* PL: user requested unbound cpumask via sysfs */
385 static cpumask_var_t wq_requested_unbound_cpumask;
386 
387 /* PL: isolated cpumask to be excluded from unbound cpumask */
388 static cpumask_var_t wq_isolated_cpumask;
389 
390 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
391 static struct cpumask wq_cmdline_cpumask __initdata;
392 
393 /* CPU where unbound work was last round robin scheduled from this CPU */
394 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
395 
396 /*
397  * Local execution of unbound work items is no longer guaranteed.  The
398  * following always forces round-robin CPU selection on unbound work items
399  * to uncover usages which depend on it.
400  */
401 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
402 static bool wq_debug_force_rr_cpu = true;
403 #else
404 static bool wq_debug_force_rr_cpu = false;
405 #endif
406 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
407 
408 /* the per-cpu worker pools */
409 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
410 
411 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
412 
413 /* PL: hash of all unbound pools keyed by pool->attrs */
414 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
415 
416 /* I: attributes used when instantiating standard unbound pools on demand */
417 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
418 
419 /* I: attributes used when instantiating ordered pools on demand */
420 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
421 
422 /*
423  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
424  * process context while holding a pool lock. Bounce to a dedicated kthread
425  * worker to avoid A-A deadlocks.
426  */
427 static struct kthread_worker *pwq_release_worker __ro_after_init;
428 
429 struct workqueue_struct *system_wq __ro_after_init;
430 EXPORT_SYMBOL(system_wq);
431 struct workqueue_struct *system_highpri_wq __ro_after_init;
432 EXPORT_SYMBOL_GPL(system_highpri_wq);
433 struct workqueue_struct *system_long_wq __ro_after_init;
434 EXPORT_SYMBOL_GPL(system_long_wq);
435 struct workqueue_struct *system_unbound_wq __ro_after_init;
436 EXPORT_SYMBOL_GPL(system_unbound_wq);
437 struct workqueue_struct *system_freezable_wq __ro_after_init;
438 EXPORT_SYMBOL_GPL(system_freezable_wq);
439 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
440 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
441 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
442 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
443 
444 static int worker_thread(void *__worker);
445 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
446 static void show_pwq(struct pool_workqueue *pwq);
447 static void show_one_worker_pool(struct worker_pool *pool);
448 
449 #define CREATE_TRACE_POINTS
450 #include <trace/events/workqueue.h>
451 
452 #define assert_rcu_or_pool_mutex()					\
453 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
454 			 !lockdep_is_held(&wq_pool_mutex),		\
455 			 "RCU or wq_pool_mutex should be held")
456 
457 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
458 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
459 			 !lockdep_is_held(&wq->mutex) &&		\
460 			 !lockdep_is_held(&wq_pool_mutex),		\
461 			 "RCU, wq->mutex or wq_pool_mutex should be held")
462 
463 #define for_each_cpu_worker_pool(pool, cpu)				\
464 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
465 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
466 	     (pool)++)
467 
468 /**
469  * for_each_pool - iterate through all worker_pools in the system
470  * @pool: iteration cursor
471  * @pi: integer used for iteration
472  *
473  * This must be called either with wq_pool_mutex held or RCU read
474  * locked.  If the pool needs to be used beyond the locking in effect, the
475  * caller is responsible for guaranteeing that the pool stays online.
476  *
477  * The if/else clause exists only for the lockdep assertion and can be
478  * ignored.
479  */
480 #define for_each_pool(pool, pi)						\
481 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
482 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
483 		else
484 
485 /**
486  * for_each_pool_worker - iterate through all workers of a worker_pool
487  * @worker: iteration cursor
488  * @pool: worker_pool to iterate workers of
489  *
490  * This must be called with wq_pool_attach_mutex.
491  *
492  * The if/else clause exists only for the lockdep assertion and can be
493  * ignored.
494  */
495 #define for_each_pool_worker(worker, pool)				\
496 	list_for_each_entry((worker), &(pool)->workers, node)		\
497 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
498 		else
499 
500 /**
501  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
502  * @pwq: iteration cursor
503  * @wq: the target workqueue
504  *
505  * This must be called either with wq->mutex held or RCU read locked.
506  * If the pwq needs to be used beyond the locking in effect, the caller is
507  * responsible for guaranteeing that the pwq stays online.
508  *
509  * The if/else clause exists only for the lockdep assertion and can be
510  * ignored.
511  */
512 #define for_each_pwq(pwq, wq)						\
513 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
514 				 lockdep_is_held(&(wq->mutex)))
515 
516 #ifdef CONFIG_DEBUG_OBJECTS_WORK
517 
518 static const struct debug_obj_descr work_debug_descr;
519 
520 static void *work_debug_hint(void *addr)
521 {
522 	return ((struct work_struct *) addr)->func;
523 }
524 
525 static bool work_is_static_object(void *addr)
526 {
527 	struct work_struct *work = addr;
528 
529 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
530 }
531 
532 /*
533  * fixup_init is called when:
534  * - an active object is initialized
535  */
536 static bool work_fixup_init(void *addr, enum debug_obj_state state)
537 {
538 	struct work_struct *work = addr;
539 
540 	switch (state) {
541 	case ODEBUG_STATE_ACTIVE:
542 		cancel_work_sync(work);
543 		debug_object_init(work, &work_debug_descr);
544 		return true;
545 	default:
546 		return false;
547 	}
548 }
549 
550 /*
551  * fixup_free is called when:
552  * - an active object is freed
553  */
554 static bool work_fixup_free(void *addr, enum debug_obj_state state)
555 {
556 	struct work_struct *work = addr;
557 
558 	switch (state) {
559 	case ODEBUG_STATE_ACTIVE:
560 		cancel_work_sync(work);
561 		debug_object_free(work, &work_debug_descr);
562 		return true;
563 	default:
564 		return false;
565 	}
566 }
567 
568 static const struct debug_obj_descr work_debug_descr = {
569 	.name		= "work_struct",
570 	.debug_hint	= work_debug_hint,
571 	.is_static_object = work_is_static_object,
572 	.fixup_init	= work_fixup_init,
573 	.fixup_free	= work_fixup_free,
574 };
575 
576 static inline void debug_work_activate(struct work_struct *work)
577 {
578 	debug_object_activate(work, &work_debug_descr);
579 }
580 
581 static inline void debug_work_deactivate(struct work_struct *work)
582 {
583 	debug_object_deactivate(work, &work_debug_descr);
584 }
585 
586 void __init_work(struct work_struct *work, int onstack)
587 {
588 	if (onstack)
589 		debug_object_init_on_stack(work, &work_debug_descr);
590 	else
591 		debug_object_init(work, &work_debug_descr);
592 }
593 EXPORT_SYMBOL_GPL(__init_work);
594 
595 void destroy_work_on_stack(struct work_struct *work)
596 {
597 	debug_object_free(work, &work_debug_descr);
598 }
599 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
600 
601 void destroy_delayed_work_on_stack(struct delayed_work *work)
602 {
603 	destroy_timer_on_stack(&work->timer);
604 	debug_object_free(&work->work, &work_debug_descr);
605 }
606 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
607 
608 #else
609 static inline void debug_work_activate(struct work_struct *work) { }
610 static inline void debug_work_deactivate(struct work_struct *work) { }
611 #endif
612 
613 /**
614  * worker_pool_assign_id - allocate ID and assign it to @pool
615  * @pool: the pool pointer of interest
616  *
617  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
618  * successfully, -errno on failure.
619  */
620 static int worker_pool_assign_id(struct worker_pool *pool)
621 {
622 	int ret;
623 
624 	lockdep_assert_held(&wq_pool_mutex);
625 
626 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
627 			GFP_KERNEL);
628 	if (ret >= 0) {
629 		pool->id = ret;
630 		return 0;
631 	}
632 	return ret;
633 }
634 
635 static unsigned int work_color_to_flags(int color)
636 {
637 	return color << WORK_STRUCT_COLOR_SHIFT;
638 }
639 
640 static int get_work_color(unsigned long work_data)
641 {
642 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
643 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
644 }
645 
646 static int work_next_color(int color)
647 {
648 	return (color + 1) % WORK_NR_COLORS;
649 }
650 
651 /*
652  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
653  * contain the pointer to the queued pwq.  Once execution starts, the flag
654  * is cleared and the high bits contain OFFQ flags and pool ID.
655  *
656  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
657  * and clear_work_data() can be used to set the pwq, pool or clear
658  * work->data.  These functions should only be called while the work is
659  * owned - ie. while the PENDING bit is set.
660  *
661  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
662  * corresponding to a work.  Pool is available once the work has been
663  * queued anywhere after initialization until it is sync canceled.  pwq is
664  * available only while the work item is queued.
665  *
666  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
667  * canceled.  While being canceled, a work item may have its PENDING set
668  * but stay off timer and worklist for arbitrarily long and nobody should
669  * try to steal the PENDING bit.
670  */
671 static inline void set_work_data(struct work_struct *work, unsigned long data,
672 				 unsigned long flags)
673 {
674 	WARN_ON_ONCE(!work_pending(work));
675 	atomic_long_set(&work->data, data | flags | work_static(work));
676 }
677 
678 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
679 			 unsigned long extra_flags)
680 {
681 	set_work_data(work, (unsigned long)pwq,
682 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
683 }
684 
685 static void set_work_pool_and_keep_pending(struct work_struct *work,
686 					   int pool_id)
687 {
688 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
689 		      WORK_STRUCT_PENDING);
690 }
691 
692 static void set_work_pool_and_clear_pending(struct work_struct *work,
693 					    int pool_id)
694 {
695 	/*
696 	 * The following wmb is paired with the implied mb in
697 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
698 	 * here are visible to and precede any updates by the next PENDING
699 	 * owner.
700 	 */
701 	smp_wmb();
702 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
703 	/*
704 	 * The following mb guarantees that previous clear of a PENDING bit
705 	 * will not be reordered with any speculative LOADS or STORES from
706 	 * work->current_func, which is executed afterwards.  This possible
707 	 * reordering can lead to a missed execution on attempt to queue
708 	 * the same @work.  E.g. consider this case:
709 	 *
710 	 *   CPU#0                         CPU#1
711 	 *   ----------------------------  --------------------------------
712 	 *
713 	 * 1  STORE event_indicated
714 	 * 2  queue_work_on() {
715 	 * 3    test_and_set_bit(PENDING)
716 	 * 4 }                             set_..._and_clear_pending() {
717 	 * 5                                 set_work_data() # clear bit
718 	 * 6                                 smp_mb()
719 	 * 7                               work->current_func() {
720 	 * 8				      LOAD event_indicated
721 	 *				   }
722 	 *
723 	 * Without an explicit full barrier speculative LOAD on line 8 can
724 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
725 	 * CPU#0 observes the PENDING bit is still set and new execution of
726 	 * a @work is not queued in a hope, that CPU#1 will eventually
727 	 * finish the queued @work.  Meanwhile CPU#1 does not see
728 	 * event_indicated is set, because speculative LOAD was executed
729 	 * before actual STORE.
730 	 */
731 	smp_mb();
732 }
733 
734 static void clear_work_data(struct work_struct *work)
735 {
736 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
737 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
738 }
739 
740 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
741 {
742 	return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
743 }
744 
745 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
746 {
747 	unsigned long data = atomic_long_read(&work->data);
748 
749 	if (data & WORK_STRUCT_PWQ)
750 		return work_struct_pwq(data);
751 	else
752 		return NULL;
753 }
754 
755 /**
756  * get_work_pool - return the worker_pool a given work was associated with
757  * @work: the work item of interest
758  *
759  * Pools are created and destroyed under wq_pool_mutex, and allows read
760  * access under RCU read lock.  As such, this function should be
761  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
762  *
763  * All fields of the returned pool are accessible as long as the above
764  * mentioned locking is in effect.  If the returned pool needs to be used
765  * beyond the critical section, the caller is responsible for ensuring the
766  * returned pool is and stays online.
767  *
768  * Return: The worker_pool @work was last associated with.  %NULL if none.
769  */
770 static struct worker_pool *get_work_pool(struct work_struct *work)
771 {
772 	unsigned long data = atomic_long_read(&work->data);
773 	int pool_id;
774 
775 	assert_rcu_or_pool_mutex();
776 
777 	if (data & WORK_STRUCT_PWQ)
778 		return work_struct_pwq(data)->pool;
779 
780 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
781 	if (pool_id == WORK_OFFQ_POOL_NONE)
782 		return NULL;
783 
784 	return idr_find(&worker_pool_idr, pool_id);
785 }
786 
787 /**
788  * get_work_pool_id - return the worker pool ID a given work is associated with
789  * @work: the work item of interest
790  *
791  * Return: The worker_pool ID @work was last associated with.
792  * %WORK_OFFQ_POOL_NONE if none.
793  */
794 static int get_work_pool_id(struct work_struct *work)
795 {
796 	unsigned long data = atomic_long_read(&work->data);
797 
798 	if (data & WORK_STRUCT_PWQ)
799 		return work_struct_pwq(data)->pool->id;
800 
801 	return data >> WORK_OFFQ_POOL_SHIFT;
802 }
803 
804 static void mark_work_canceling(struct work_struct *work)
805 {
806 	unsigned long pool_id = get_work_pool_id(work);
807 
808 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
809 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
810 }
811 
812 static bool work_is_canceling(struct work_struct *work)
813 {
814 	unsigned long data = atomic_long_read(&work->data);
815 
816 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
817 }
818 
819 /*
820  * Policy functions.  These define the policies on how the global worker
821  * pools are managed.  Unless noted otherwise, these functions assume that
822  * they're being called with pool->lock held.
823  */
824 
825 /*
826  * Need to wake up a worker?  Called from anything but currently
827  * running workers.
828  *
829  * Note that, because unbound workers never contribute to nr_running, this
830  * function will always return %true for unbound pools as long as the
831  * worklist isn't empty.
832  */
833 static bool need_more_worker(struct worker_pool *pool)
834 {
835 	return !list_empty(&pool->worklist) && !pool->nr_running;
836 }
837 
838 /* Can I start working?  Called from busy but !running workers. */
839 static bool may_start_working(struct worker_pool *pool)
840 {
841 	return pool->nr_idle;
842 }
843 
844 /* Do I need to keep working?  Called from currently running workers. */
845 static bool keep_working(struct worker_pool *pool)
846 {
847 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
848 }
849 
850 /* Do we need a new worker?  Called from manager. */
851 static bool need_to_create_worker(struct worker_pool *pool)
852 {
853 	return need_more_worker(pool) && !may_start_working(pool);
854 }
855 
856 /* Do we have too many workers and should some go away? */
857 static bool too_many_workers(struct worker_pool *pool)
858 {
859 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
860 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
861 	int nr_busy = pool->nr_workers - nr_idle;
862 
863 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
864 }
865 
866 /**
867  * worker_set_flags - set worker flags and adjust nr_running accordingly
868  * @worker: self
869  * @flags: flags to set
870  *
871  * Set @flags in @worker->flags and adjust nr_running accordingly.
872  */
873 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
874 {
875 	struct worker_pool *pool = worker->pool;
876 
877 	lockdep_assert_held(&pool->lock);
878 
879 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
880 	if ((flags & WORKER_NOT_RUNNING) &&
881 	    !(worker->flags & WORKER_NOT_RUNNING)) {
882 		pool->nr_running--;
883 	}
884 
885 	worker->flags |= flags;
886 }
887 
888 /**
889  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
890  * @worker: self
891  * @flags: flags to clear
892  *
893  * Clear @flags in @worker->flags and adjust nr_running accordingly.
894  */
895 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
896 {
897 	struct worker_pool *pool = worker->pool;
898 	unsigned int oflags = worker->flags;
899 
900 	lockdep_assert_held(&pool->lock);
901 
902 	worker->flags &= ~flags;
903 
904 	/*
905 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
906 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
907 	 * of multiple flags, not a single flag.
908 	 */
909 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
910 		if (!(worker->flags & WORKER_NOT_RUNNING))
911 			pool->nr_running++;
912 }
913 
914 /* Return the first idle worker.  Called with pool->lock held. */
915 static struct worker *first_idle_worker(struct worker_pool *pool)
916 {
917 	if (unlikely(list_empty(&pool->idle_list)))
918 		return NULL;
919 
920 	return list_first_entry(&pool->idle_list, struct worker, entry);
921 }
922 
923 /**
924  * worker_enter_idle - enter idle state
925  * @worker: worker which is entering idle state
926  *
927  * @worker is entering idle state.  Update stats and idle timer if
928  * necessary.
929  *
930  * LOCKING:
931  * raw_spin_lock_irq(pool->lock).
932  */
933 static void worker_enter_idle(struct worker *worker)
934 {
935 	struct worker_pool *pool = worker->pool;
936 
937 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
938 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
939 			 (worker->hentry.next || worker->hentry.pprev)))
940 		return;
941 
942 	/* can't use worker_set_flags(), also called from create_worker() */
943 	worker->flags |= WORKER_IDLE;
944 	pool->nr_idle++;
945 	worker->last_active = jiffies;
946 
947 	/* idle_list is LIFO */
948 	list_add(&worker->entry, &pool->idle_list);
949 
950 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
951 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
952 
953 	/* Sanity check nr_running. */
954 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
955 }
956 
957 /**
958  * worker_leave_idle - leave idle state
959  * @worker: worker which is leaving idle state
960  *
961  * @worker is leaving idle state.  Update stats.
962  *
963  * LOCKING:
964  * raw_spin_lock_irq(pool->lock).
965  */
966 static void worker_leave_idle(struct worker *worker)
967 {
968 	struct worker_pool *pool = worker->pool;
969 
970 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
971 		return;
972 	worker_clr_flags(worker, WORKER_IDLE);
973 	pool->nr_idle--;
974 	list_del_init(&worker->entry);
975 }
976 
977 /**
978  * find_worker_executing_work - find worker which is executing a work
979  * @pool: pool of interest
980  * @work: work to find worker for
981  *
982  * Find a worker which is executing @work on @pool by searching
983  * @pool->busy_hash which is keyed by the address of @work.  For a worker
984  * to match, its current execution should match the address of @work and
985  * its work function.  This is to avoid unwanted dependency between
986  * unrelated work executions through a work item being recycled while still
987  * being executed.
988  *
989  * This is a bit tricky.  A work item may be freed once its execution
990  * starts and nothing prevents the freed area from being recycled for
991  * another work item.  If the same work item address ends up being reused
992  * before the original execution finishes, workqueue will identify the
993  * recycled work item as currently executing and make it wait until the
994  * current execution finishes, introducing an unwanted dependency.
995  *
996  * This function checks the work item address and work function to avoid
997  * false positives.  Note that this isn't complete as one may construct a
998  * work function which can introduce dependency onto itself through a
999  * recycled work item.  Well, if somebody wants to shoot oneself in the
1000  * foot that badly, there's only so much we can do, and if such deadlock
1001  * actually occurs, it should be easy to locate the culprit work function.
1002  *
1003  * CONTEXT:
1004  * raw_spin_lock_irq(pool->lock).
1005  *
1006  * Return:
1007  * Pointer to worker which is executing @work if found, %NULL
1008  * otherwise.
1009  */
1010 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1011 						 struct work_struct *work)
1012 {
1013 	struct worker *worker;
1014 
1015 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1016 			       (unsigned long)work)
1017 		if (worker->current_work == work &&
1018 		    worker->current_func == work->func)
1019 			return worker;
1020 
1021 	return NULL;
1022 }
1023 
1024 /**
1025  * move_linked_works - move linked works to a list
1026  * @work: start of series of works to be scheduled
1027  * @head: target list to append @work to
1028  * @nextp: out parameter for nested worklist walking
1029  *
1030  * Schedule linked works starting from @work to @head. Work series to be
1031  * scheduled starts at @work and includes any consecutive work with
1032  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1033  * @nextp.
1034  *
1035  * CONTEXT:
1036  * raw_spin_lock_irq(pool->lock).
1037  */
1038 static void move_linked_works(struct work_struct *work, struct list_head *head,
1039 			      struct work_struct **nextp)
1040 {
1041 	struct work_struct *n;
1042 
1043 	/*
1044 	 * Linked worklist will always end before the end of the list,
1045 	 * use NULL for list head.
1046 	 */
1047 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1048 		list_move_tail(&work->entry, head);
1049 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1050 			break;
1051 	}
1052 
1053 	/*
1054 	 * If we're already inside safe list traversal and have moved
1055 	 * multiple works to the scheduled queue, the next position
1056 	 * needs to be updated.
1057 	 */
1058 	if (nextp)
1059 		*nextp = n;
1060 }
1061 
1062 /**
1063  * assign_work - assign a work item and its linked work items to a worker
1064  * @work: work to assign
1065  * @worker: worker to assign to
1066  * @nextp: out parameter for nested worklist walking
1067  *
1068  * Assign @work and its linked work items to @worker. If @work is already being
1069  * executed by another worker in the same pool, it'll be punted there.
1070  *
1071  * If @nextp is not NULL, it's updated to point to the next work of the last
1072  * scheduled work. This allows assign_work() to be nested inside
1073  * list_for_each_entry_safe().
1074  *
1075  * Returns %true if @work was successfully assigned to @worker. %false if @work
1076  * was punted to another worker already executing it.
1077  */
1078 static bool assign_work(struct work_struct *work, struct worker *worker,
1079 			struct work_struct **nextp)
1080 {
1081 	struct worker_pool *pool = worker->pool;
1082 	struct worker *collision;
1083 
1084 	lockdep_assert_held(&pool->lock);
1085 
1086 	/*
1087 	 * A single work shouldn't be executed concurrently by multiple workers.
1088 	 * __queue_work() ensures that @work doesn't jump to a different pool
1089 	 * while still running in the previous pool. Here, we should ensure that
1090 	 * @work is not executed concurrently by multiple workers from the same
1091 	 * pool. Check whether anyone is already processing the work. If so,
1092 	 * defer the work to the currently executing one.
1093 	 */
1094 	collision = find_worker_executing_work(pool, work);
1095 	if (unlikely(collision)) {
1096 		move_linked_works(work, &collision->scheduled, nextp);
1097 		return false;
1098 	}
1099 
1100 	move_linked_works(work, &worker->scheduled, nextp);
1101 	return true;
1102 }
1103 
1104 /**
1105  * kick_pool - wake up an idle worker if necessary
1106  * @pool: pool to kick
1107  *
1108  * @pool may have pending work items. Wake up worker if necessary. Returns
1109  * whether a worker was woken up.
1110  */
1111 static bool kick_pool(struct worker_pool *pool)
1112 {
1113 	struct worker *worker = first_idle_worker(pool);
1114 	struct task_struct *p;
1115 
1116 	lockdep_assert_held(&pool->lock);
1117 
1118 	if (!need_more_worker(pool) || !worker)
1119 		return false;
1120 
1121 	p = worker->task;
1122 
1123 #ifdef CONFIG_SMP
1124 	/*
1125 	 * Idle @worker is about to execute @work and waking up provides an
1126 	 * opportunity to migrate @worker at a lower cost by setting the task's
1127 	 * wake_cpu field. Let's see if we want to move @worker to improve
1128 	 * execution locality.
1129 	 *
1130 	 * We're waking the worker that went idle the latest and there's some
1131 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1132 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1133 	 * optimization and the race window is narrow, let's leave as-is for
1134 	 * now. If this becomes pronounced, we can skip over workers which are
1135 	 * still on cpu when picking an idle worker.
1136 	 *
1137 	 * If @pool has non-strict affinity, @worker might have ended up outside
1138 	 * its affinity scope. Repatriate.
1139 	 */
1140 	if (!pool->attrs->affn_strict &&
1141 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1142 		struct work_struct *work = list_first_entry(&pool->worklist,
1143 						struct work_struct, entry);
1144 		p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1145 		get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1146 	}
1147 #endif
1148 	wake_up_process(p);
1149 	return true;
1150 }
1151 
1152 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1153 
1154 /*
1155  * Concurrency-managed per-cpu work items that hog CPU for longer than
1156  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1157  * which prevents them from stalling other concurrency-managed work items. If a
1158  * work function keeps triggering this mechanism, it's likely that the work item
1159  * should be using an unbound workqueue instead.
1160  *
1161  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1162  * and report them so that they can be examined and converted to use unbound
1163  * workqueues as appropriate. To avoid flooding the console, each violating work
1164  * function is tracked and reported with exponential backoff.
1165  */
1166 #define WCI_MAX_ENTS 128
1167 
1168 struct wci_ent {
1169 	work_func_t		func;
1170 	atomic64_t		cnt;
1171 	struct hlist_node	hash_node;
1172 };
1173 
1174 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1175 static int wci_nr_ents;
1176 static DEFINE_RAW_SPINLOCK(wci_lock);
1177 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1178 
1179 static struct wci_ent *wci_find_ent(work_func_t func)
1180 {
1181 	struct wci_ent *ent;
1182 
1183 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1184 				   (unsigned long)func) {
1185 		if (ent->func == func)
1186 			return ent;
1187 	}
1188 	return NULL;
1189 }
1190 
1191 static void wq_cpu_intensive_report(work_func_t func)
1192 {
1193 	struct wci_ent *ent;
1194 
1195 restart:
1196 	ent = wci_find_ent(func);
1197 	if (ent) {
1198 		u64 cnt;
1199 
1200 		/*
1201 		 * Start reporting from the fourth time and back off
1202 		 * exponentially.
1203 		 */
1204 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1205 		if (cnt >= 4 && is_power_of_2(cnt))
1206 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1207 					ent->func, wq_cpu_intensive_thresh_us,
1208 					atomic64_read(&ent->cnt));
1209 		return;
1210 	}
1211 
1212 	/*
1213 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1214 	 * is exhausted, something went really wrong and we probably made enough
1215 	 * noise already.
1216 	 */
1217 	if (wci_nr_ents >= WCI_MAX_ENTS)
1218 		return;
1219 
1220 	raw_spin_lock(&wci_lock);
1221 
1222 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1223 		raw_spin_unlock(&wci_lock);
1224 		return;
1225 	}
1226 
1227 	if (wci_find_ent(func)) {
1228 		raw_spin_unlock(&wci_lock);
1229 		goto restart;
1230 	}
1231 
1232 	ent = &wci_ents[wci_nr_ents++];
1233 	ent->func = func;
1234 	atomic64_set(&ent->cnt, 1);
1235 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1236 
1237 	raw_spin_unlock(&wci_lock);
1238 }
1239 
1240 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1241 static void wq_cpu_intensive_report(work_func_t func) {}
1242 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1243 
1244 /**
1245  * wq_worker_running - a worker is running again
1246  * @task: task waking up
1247  *
1248  * This function is called when a worker returns from schedule()
1249  */
1250 void wq_worker_running(struct task_struct *task)
1251 {
1252 	struct worker *worker = kthread_data(task);
1253 
1254 	if (!READ_ONCE(worker->sleeping))
1255 		return;
1256 
1257 	/*
1258 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1259 	 * and the nr_running increment below, we may ruin the nr_running reset
1260 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1261 	 * pool. Protect against such race.
1262 	 */
1263 	preempt_disable();
1264 	if (!(worker->flags & WORKER_NOT_RUNNING))
1265 		worker->pool->nr_running++;
1266 	preempt_enable();
1267 
1268 	/*
1269 	 * CPU intensive auto-detection cares about how long a work item hogged
1270 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1271 	 */
1272 	worker->current_at = worker->task->se.sum_exec_runtime;
1273 
1274 	WRITE_ONCE(worker->sleeping, 0);
1275 }
1276 
1277 /**
1278  * wq_worker_sleeping - a worker is going to sleep
1279  * @task: task going to sleep
1280  *
1281  * This function is called from schedule() when a busy worker is
1282  * going to sleep.
1283  */
1284 void wq_worker_sleeping(struct task_struct *task)
1285 {
1286 	struct worker *worker = kthread_data(task);
1287 	struct worker_pool *pool;
1288 
1289 	/*
1290 	 * Rescuers, which may not have all the fields set up like normal
1291 	 * workers, also reach here, let's not access anything before
1292 	 * checking NOT_RUNNING.
1293 	 */
1294 	if (worker->flags & WORKER_NOT_RUNNING)
1295 		return;
1296 
1297 	pool = worker->pool;
1298 
1299 	/* Return if preempted before wq_worker_running() was reached */
1300 	if (READ_ONCE(worker->sleeping))
1301 		return;
1302 
1303 	WRITE_ONCE(worker->sleeping, 1);
1304 	raw_spin_lock_irq(&pool->lock);
1305 
1306 	/*
1307 	 * Recheck in case unbind_workers() preempted us. We don't
1308 	 * want to decrement nr_running after the worker is unbound
1309 	 * and nr_running has been reset.
1310 	 */
1311 	if (worker->flags & WORKER_NOT_RUNNING) {
1312 		raw_spin_unlock_irq(&pool->lock);
1313 		return;
1314 	}
1315 
1316 	pool->nr_running--;
1317 	if (kick_pool(pool))
1318 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1319 
1320 	raw_spin_unlock_irq(&pool->lock);
1321 }
1322 
1323 /**
1324  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1325  * @task: task currently running
1326  *
1327  * Called from scheduler_tick(). We're in the IRQ context and the current
1328  * worker's fields which follow the 'K' locking rule can be accessed safely.
1329  */
1330 void wq_worker_tick(struct task_struct *task)
1331 {
1332 	struct worker *worker = kthread_data(task);
1333 	struct pool_workqueue *pwq = worker->current_pwq;
1334 	struct worker_pool *pool = worker->pool;
1335 
1336 	if (!pwq)
1337 		return;
1338 
1339 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1340 
1341 	if (!wq_cpu_intensive_thresh_us)
1342 		return;
1343 
1344 	/*
1345 	 * If the current worker is concurrency managed and hogged the CPU for
1346 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1347 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1348 	 *
1349 	 * Set @worker->sleeping means that @worker is in the process of
1350 	 * switching out voluntarily and won't be contributing to
1351 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1352 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1353 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1354 	 * We probably want to make this prettier in the future.
1355 	 */
1356 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1357 	    worker->task->se.sum_exec_runtime - worker->current_at <
1358 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1359 		return;
1360 
1361 	raw_spin_lock(&pool->lock);
1362 
1363 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1364 	wq_cpu_intensive_report(worker->current_func);
1365 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1366 
1367 	if (kick_pool(pool))
1368 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1369 
1370 	raw_spin_unlock(&pool->lock);
1371 }
1372 
1373 /**
1374  * wq_worker_last_func - retrieve worker's last work function
1375  * @task: Task to retrieve last work function of.
1376  *
1377  * Determine the last function a worker executed. This is called from
1378  * the scheduler to get a worker's last known identity.
1379  *
1380  * CONTEXT:
1381  * raw_spin_lock_irq(rq->lock)
1382  *
1383  * This function is called during schedule() when a kworker is going
1384  * to sleep. It's used by psi to identify aggregation workers during
1385  * dequeuing, to allow periodic aggregation to shut-off when that
1386  * worker is the last task in the system or cgroup to go to sleep.
1387  *
1388  * As this function doesn't involve any workqueue-related locking, it
1389  * only returns stable values when called from inside the scheduler's
1390  * queuing and dequeuing paths, when @task, which must be a kworker,
1391  * is guaranteed to not be processing any works.
1392  *
1393  * Return:
1394  * The last work function %current executed as a worker, NULL if it
1395  * hasn't executed any work yet.
1396  */
1397 work_func_t wq_worker_last_func(struct task_struct *task)
1398 {
1399 	struct worker *worker = kthread_data(task);
1400 
1401 	return worker->last_func;
1402 }
1403 
1404 /**
1405  * get_pwq - get an extra reference on the specified pool_workqueue
1406  * @pwq: pool_workqueue to get
1407  *
1408  * Obtain an extra reference on @pwq.  The caller should guarantee that
1409  * @pwq has positive refcnt and be holding the matching pool->lock.
1410  */
1411 static void get_pwq(struct pool_workqueue *pwq)
1412 {
1413 	lockdep_assert_held(&pwq->pool->lock);
1414 	WARN_ON_ONCE(pwq->refcnt <= 0);
1415 	pwq->refcnt++;
1416 }
1417 
1418 /**
1419  * put_pwq - put a pool_workqueue reference
1420  * @pwq: pool_workqueue to put
1421  *
1422  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1423  * destruction.  The caller should be holding the matching pool->lock.
1424  */
1425 static void put_pwq(struct pool_workqueue *pwq)
1426 {
1427 	lockdep_assert_held(&pwq->pool->lock);
1428 	if (likely(--pwq->refcnt))
1429 		return;
1430 	/*
1431 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1432 	 * kthread_worker to avoid A-A deadlocks.
1433 	 */
1434 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1435 }
1436 
1437 /**
1438  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1439  * @pwq: pool_workqueue to put (can be %NULL)
1440  *
1441  * put_pwq() with locking.  This function also allows %NULL @pwq.
1442  */
1443 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1444 {
1445 	if (pwq) {
1446 		/*
1447 		 * As both pwqs and pools are RCU protected, the
1448 		 * following lock operations are safe.
1449 		 */
1450 		raw_spin_lock_irq(&pwq->pool->lock);
1451 		put_pwq(pwq);
1452 		raw_spin_unlock_irq(&pwq->pool->lock);
1453 	}
1454 }
1455 
1456 static void pwq_activate_inactive_work(struct work_struct *work)
1457 {
1458 	struct pool_workqueue *pwq = get_work_pwq(work);
1459 
1460 	trace_workqueue_activate_work(work);
1461 	if (list_empty(&pwq->pool->worklist))
1462 		pwq->pool->watchdog_ts = jiffies;
1463 	move_linked_works(work, &pwq->pool->worklist, NULL);
1464 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1465 	pwq->nr_active++;
1466 }
1467 
1468 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1469 {
1470 	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1471 						    struct work_struct, entry);
1472 
1473 	pwq_activate_inactive_work(work);
1474 }
1475 
1476 /**
1477  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1478  * @pwq: pwq of interest
1479  * @work_data: work_data of work which left the queue
1480  *
1481  * A work either has completed or is removed from pending queue,
1482  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1483  *
1484  * CONTEXT:
1485  * raw_spin_lock_irq(pool->lock).
1486  */
1487 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1488 {
1489 	int color = get_work_color(work_data);
1490 
1491 	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1492 		pwq->nr_active--;
1493 		if (!list_empty(&pwq->inactive_works)) {
1494 			/* one down, submit an inactive one */
1495 			if (pwq->nr_active < pwq->max_active)
1496 				pwq_activate_first_inactive(pwq);
1497 		}
1498 	}
1499 
1500 	pwq->nr_in_flight[color]--;
1501 
1502 	/* is flush in progress and are we at the flushing tip? */
1503 	if (likely(pwq->flush_color != color))
1504 		goto out_put;
1505 
1506 	/* are there still in-flight works? */
1507 	if (pwq->nr_in_flight[color])
1508 		goto out_put;
1509 
1510 	/* this pwq is done, clear flush_color */
1511 	pwq->flush_color = -1;
1512 
1513 	/*
1514 	 * If this was the last pwq, wake up the first flusher.  It
1515 	 * will handle the rest.
1516 	 */
1517 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1518 		complete(&pwq->wq->first_flusher->done);
1519 out_put:
1520 	put_pwq(pwq);
1521 }
1522 
1523 /**
1524  * try_to_grab_pending - steal work item from worklist and disable irq
1525  * @work: work item to steal
1526  * @is_dwork: @work is a delayed_work
1527  * @flags: place to store irq state
1528  *
1529  * Try to grab PENDING bit of @work.  This function can handle @work in any
1530  * stable state - idle, on timer or on worklist.
1531  *
1532  * Return:
1533  *
1534  *  ========	================================================================
1535  *  1		if @work was pending and we successfully stole PENDING
1536  *  0		if @work was idle and we claimed PENDING
1537  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1538  *  -ENOENT	if someone else is canceling @work, this state may persist
1539  *		for arbitrarily long
1540  *  ========	================================================================
1541  *
1542  * Note:
1543  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1544  * interrupted while holding PENDING and @work off queue, irq must be
1545  * disabled on entry.  This, combined with delayed_work->timer being
1546  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1547  *
1548  * On successful return, >= 0, irq is disabled and the caller is
1549  * responsible for releasing it using local_irq_restore(*@flags).
1550  *
1551  * This function is safe to call from any context including IRQ handler.
1552  */
1553 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1554 			       unsigned long *flags)
1555 {
1556 	struct worker_pool *pool;
1557 	struct pool_workqueue *pwq;
1558 
1559 	local_irq_save(*flags);
1560 
1561 	/* try to steal the timer if it exists */
1562 	if (is_dwork) {
1563 		struct delayed_work *dwork = to_delayed_work(work);
1564 
1565 		/*
1566 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1567 		 * guaranteed that the timer is not queued anywhere and not
1568 		 * running on the local CPU.
1569 		 */
1570 		if (likely(del_timer(&dwork->timer)))
1571 			return 1;
1572 	}
1573 
1574 	/* try to claim PENDING the normal way */
1575 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1576 		return 0;
1577 
1578 	rcu_read_lock();
1579 	/*
1580 	 * The queueing is in progress, or it is already queued. Try to
1581 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1582 	 */
1583 	pool = get_work_pool(work);
1584 	if (!pool)
1585 		goto fail;
1586 
1587 	raw_spin_lock(&pool->lock);
1588 	/*
1589 	 * work->data is guaranteed to point to pwq only while the work
1590 	 * item is queued on pwq->wq, and both updating work->data to point
1591 	 * to pwq on queueing and to pool on dequeueing are done under
1592 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1593 	 * points to pwq which is associated with a locked pool, the work
1594 	 * item is currently queued on that pool.
1595 	 */
1596 	pwq = get_work_pwq(work);
1597 	if (pwq && pwq->pool == pool) {
1598 		debug_work_deactivate(work);
1599 
1600 		/*
1601 		 * A cancelable inactive work item must be in the
1602 		 * pwq->inactive_works since a queued barrier can't be
1603 		 * canceled (see the comments in insert_wq_barrier()).
1604 		 *
1605 		 * An inactive work item cannot be grabbed directly because
1606 		 * it might have linked barrier work items which, if left
1607 		 * on the inactive_works list, will confuse pwq->nr_active
1608 		 * management later on and cause stall.  Make sure the work
1609 		 * item is activated before grabbing.
1610 		 */
1611 		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1612 			pwq_activate_inactive_work(work);
1613 
1614 		list_del_init(&work->entry);
1615 		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1616 
1617 		/* work->data points to pwq iff queued, point to pool */
1618 		set_work_pool_and_keep_pending(work, pool->id);
1619 
1620 		raw_spin_unlock(&pool->lock);
1621 		rcu_read_unlock();
1622 		return 1;
1623 	}
1624 	raw_spin_unlock(&pool->lock);
1625 fail:
1626 	rcu_read_unlock();
1627 	local_irq_restore(*flags);
1628 	if (work_is_canceling(work))
1629 		return -ENOENT;
1630 	cpu_relax();
1631 	return -EAGAIN;
1632 }
1633 
1634 /**
1635  * insert_work - insert a work into a pool
1636  * @pwq: pwq @work belongs to
1637  * @work: work to insert
1638  * @head: insertion point
1639  * @extra_flags: extra WORK_STRUCT_* flags to set
1640  *
1641  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1642  * work_struct flags.
1643  *
1644  * CONTEXT:
1645  * raw_spin_lock_irq(pool->lock).
1646  */
1647 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1648 			struct list_head *head, unsigned int extra_flags)
1649 {
1650 	debug_work_activate(work);
1651 
1652 	/* record the work call stack in order to print it in KASAN reports */
1653 	kasan_record_aux_stack_noalloc(work);
1654 
1655 	/* we own @work, set data and link */
1656 	set_work_pwq(work, pwq, extra_flags);
1657 	list_add_tail(&work->entry, head);
1658 	get_pwq(pwq);
1659 }
1660 
1661 /*
1662  * Test whether @work is being queued from another work executing on the
1663  * same workqueue.
1664  */
1665 static bool is_chained_work(struct workqueue_struct *wq)
1666 {
1667 	struct worker *worker;
1668 
1669 	worker = current_wq_worker();
1670 	/*
1671 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1672 	 * I'm @worker, it's safe to dereference it without locking.
1673 	 */
1674 	return worker && worker->current_pwq->wq == wq;
1675 }
1676 
1677 /*
1678  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1679  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1680  * avoid perturbing sensitive tasks.
1681  */
1682 static int wq_select_unbound_cpu(int cpu)
1683 {
1684 	int new_cpu;
1685 
1686 	if (likely(!wq_debug_force_rr_cpu)) {
1687 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1688 			return cpu;
1689 	} else {
1690 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
1691 	}
1692 
1693 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1694 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1695 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1696 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1697 		if (unlikely(new_cpu >= nr_cpu_ids))
1698 			return cpu;
1699 	}
1700 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1701 
1702 	return new_cpu;
1703 }
1704 
1705 static void __queue_work(int cpu, struct workqueue_struct *wq,
1706 			 struct work_struct *work)
1707 {
1708 	struct pool_workqueue *pwq;
1709 	struct worker_pool *last_pool, *pool;
1710 	unsigned int work_flags;
1711 	unsigned int req_cpu = cpu;
1712 
1713 	/*
1714 	 * While a work item is PENDING && off queue, a task trying to
1715 	 * steal the PENDING will busy-loop waiting for it to either get
1716 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1717 	 * happen with IRQ disabled.
1718 	 */
1719 	lockdep_assert_irqs_disabled();
1720 
1721 
1722 	/*
1723 	 * For a draining wq, only works from the same workqueue are
1724 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
1725 	 * queues a new work item to a wq after destroy_workqueue(wq).
1726 	 */
1727 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1728 		     WARN_ON_ONCE(!is_chained_work(wq))))
1729 		return;
1730 	rcu_read_lock();
1731 retry:
1732 	/* pwq which will be used unless @work is executing elsewhere */
1733 	if (req_cpu == WORK_CPU_UNBOUND) {
1734 		if (wq->flags & WQ_UNBOUND)
1735 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1736 		else
1737 			cpu = raw_smp_processor_id();
1738 	}
1739 
1740 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
1741 	pool = pwq->pool;
1742 
1743 	/*
1744 	 * If @work was previously on a different pool, it might still be
1745 	 * running there, in which case the work needs to be queued on that
1746 	 * pool to guarantee non-reentrancy.
1747 	 */
1748 	last_pool = get_work_pool(work);
1749 	if (last_pool && last_pool != pool) {
1750 		struct worker *worker;
1751 
1752 		raw_spin_lock(&last_pool->lock);
1753 
1754 		worker = find_worker_executing_work(last_pool, work);
1755 
1756 		if (worker && worker->current_pwq->wq == wq) {
1757 			pwq = worker->current_pwq;
1758 			pool = pwq->pool;
1759 			WARN_ON_ONCE(pool != last_pool);
1760 		} else {
1761 			/* meh... not running there, queue here */
1762 			raw_spin_unlock(&last_pool->lock);
1763 			raw_spin_lock(&pool->lock);
1764 		}
1765 	} else {
1766 		raw_spin_lock(&pool->lock);
1767 	}
1768 
1769 	/*
1770 	 * pwq is determined and locked. For unbound pools, we could have raced
1771 	 * with pwq release and it could already be dead. If its refcnt is zero,
1772 	 * repeat pwq selection. Note that unbound pwqs never die without
1773 	 * another pwq replacing it in cpu_pwq or while work items are executing
1774 	 * on it, so the retrying is guaranteed to make forward-progress.
1775 	 */
1776 	if (unlikely(!pwq->refcnt)) {
1777 		if (wq->flags & WQ_UNBOUND) {
1778 			raw_spin_unlock(&pool->lock);
1779 			cpu_relax();
1780 			goto retry;
1781 		}
1782 		/* oops */
1783 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1784 			  wq->name, cpu);
1785 	}
1786 
1787 	/* pwq determined, queue */
1788 	trace_workqueue_queue_work(req_cpu, pwq, work);
1789 
1790 	if (WARN_ON(!list_empty(&work->entry)))
1791 		goto out;
1792 
1793 	pwq->nr_in_flight[pwq->work_color]++;
1794 	work_flags = work_color_to_flags(pwq->work_color);
1795 
1796 	if (likely(pwq->nr_active < pwq->max_active)) {
1797 		if (list_empty(&pool->worklist))
1798 			pool->watchdog_ts = jiffies;
1799 
1800 		trace_workqueue_activate_work(work);
1801 		pwq->nr_active++;
1802 		insert_work(pwq, work, &pool->worklist, work_flags);
1803 		kick_pool(pool);
1804 	} else {
1805 		work_flags |= WORK_STRUCT_INACTIVE;
1806 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
1807 	}
1808 
1809 out:
1810 	raw_spin_unlock(&pool->lock);
1811 	rcu_read_unlock();
1812 }
1813 
1814 /**
1815  * queue_work_on - queue work on specific cpu
1816  * @cpu: CPU number to execute work on
1817  * @wq: workqueue to use
1818  * @work: work to queue
1819  *
1820  * We queue the work to a specific CPU, the caller must ensure it
1821  * can't go away.  Callers that fail to ensure that the specified
1822  * CPU cannot go away will execute on a randomly chosen CPU.
1823  * But note well that callers specifying a CPU that never has been
1824  * online will get a splat.
1825  *
1826  * Return: %false if @work was already on a queue, %true otherwise.
1827  */
1828 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1829 		   struct work_struct *work)
1830 {
1831 	bool ret = false;
1832 	unsigned long flags;
1833 
1834 	local_irq_save(flags);
1835 
1836 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1837 		__queue_work(cpu, wq, work);
1838 		ret = true;
1839 	}
1840 
1841 	local_irq_restore(flags);
1842 	return ret;
1843 }
1844 EXPORT_SYMBOL(queue_work_on);
1845 
1846 /**
1847  * select_numa_node_cpu - Select a CPU based on NUMA node
1848  * @node: NUMA node ID that we want to select a CPU from
1849  *
1850  * This function will attempt to find a "random" cpu available on a given
1851  * node. If there are no CPUs available on the given node it will return
1852  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1853  * available CPU if we need to schedule this work.
1854  */
1855 static int select_numa_node_cpu(int node)
1856 {
1857 	int cpu;
1858 
1859 	/* Delay binding to CPU if node is not valid or online */
1860 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1861 		return WORK_CPU_UNBOUND;
1862 
1863 	/* Use local node/cpu if we are already there */
1864 	cpu = raw_smp_processor_id();
1865 	if (node == cpu_to_node(cpu))
1866 		return cpu;
1867 
1868 	/* Use "random" otherwise know as "first" online CPU of node */
1869 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1870 
1871 	/* If CPU is valid return that, otherwise just defer */
1872 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1873 }
1874 
1875 /**
1876  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1877  * @node: NUMA node that we are targeting the work for
1878  * @wq: workqueue to use
1879  * @work: work to queue
1880  *
1881  * We queue the work to a "random" CPU within a given NUMA node. The basic
1882  * idea here is to provide a way to somehow associate work with a given
1883  * NUMA node.
1884  *
1885  * This function will only make a best effort attempt at getting this onto
1886  * the right NUMA node. If no node is requested or the requested node is
1887  * offline then we just fall back to standard queue_work behavior.
1888  *
1889  * Currently the "random" CPU ends up being the first available CPU in the
1890  * intersection of cpu_online_mask and the cpumask of the node, unless we
1891  * are running on the node. In that case we just use the current CPU.
1892  *
1893  * Return: %false if @work was already on a queue, %true otherwise.
1894  */
1895 bool queue_work_node(int node, struct workqueue_struct *wq,
1896 		     struct work_struct *work)
1897 {
1898 	unsigned long flags;
1899 	bool ret = false;
1900 
1901 	/*
1902 	 * This current implementation is specific to unbound workqueues.
1903 	 * Specifically we only return the first available CPU for a given
1904 	 * node instead of cycling through individual CPUs within the node.
1905 	 *
1906 	 * If this is used with a per-cpu workqueue then the logic in
1907 	 * workqueue_select_cpu_near would need to be updated to allow for
1908 	 * some round robin type logic.
1909 	 */
1910 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1911 
1912 	local_irq_save(flags);
1913 
1914 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1915 		int cpu = select_numa_node_cpu(node);
1916 
1917 		__queue_work(cpu, wq, work);
1918 		ret = true;
1919 	}
1920 
1921 	local_irq_restore(flags);
1922 	return ret;
1923 }
1924 EXPORT_SYMBOL_GPL(queue_work_node);
1925 
1926 void delayed_work_timer_fn(struct timer_list *t)
1927 {
1928 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1929 
1930 	/* should have been called from irqsafe timer with irq already off */
1931 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1932 }
1933 EXPORT_SYMBOL(delayed_work_timer_fn);
1934 
1935 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1936 				struct delayed_work *dwork, unsigned long delay)
1937 {
1938 	struct timer_list *timer = &dwork->timer;
1939 	struct work_struct *work = &dwork->work;
1940 
1941 	WARN_ON_ONCE(!wq);
1942 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1943 	WARN_ON_ONCE(timer_pending(timer));
1944 	WARN_ON_ONCE(!list_empty(&work->entry));
1945 
1946 	/*
1947 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1948 	 * both optimization and correctness.  The earliest @timer can
1949 	 * expire is on the closest next tick and delayed_work users depend
1950 	 * on that there's no such delay when @delay is 0.
1951 	 */
1952 	if (!delay) {
1953 		__queue_work(cpu, wq, &dwork->work);
1954 		return;
1955 	}
1956 
1957 	dwork->wq = wq;
1958 	dwork->cpu = cpu;
1959 	timer->expires = jiffies + delay;
1960 
1961 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1962 		add_timer_on(timer, cpu);
1963 	else
1964 		add_timer(timer);
1965 }
1966 
1967 /**
1968  * queue_delayed_work_on - queue work on specific CPU after delay
1969  * @cpu: CPU number to execute work on
1970  * @wq: workqueue to use
1971  * @dwork: work to queue
1972  * @delay: number of jiffies to wait before queueing
1973  *
1974  * Return: %false if @work was already on a queue, %true otherwise.  If
1975  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1976  * execution.
1977  */
1978 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1979 			   struct delayed_work *dwork, unsigned long delay)
1980 {
1981 	struct work_struct *work = &dwork->work;
1982 	bool ret = false;
1983 	unsigned long flags;
1984 
1985 	/* read the comment in __queue_work() */
1986 	local_irq_save(flags);
1987 
1988 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1989 		__queue_delayed_work(cpu, wq, dwork, delay);
1990 		ret = true;
1991 	}
1992 
1993 	local_irq_restore(flags);
1994 	return ret;
1995 }
1996 EXPORT_SYMBOL(queue_delayed_work_on);
1997 
1998 /**
1999  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2000  * @cpu: CPU number to execute work on
2001  * @wq: workqueue to use
2002  * @dwork: work to queue
2003  * @delay: number of jiffies to wait before queueing
2004  *
2005  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2006  * modify @dwork's timer so that it expires after @delay.  If @delay is
2007  * zero, @work is guaranteed to be scheduled immediately regardless of its
2008  * current state.
2009  *
2010  * Return: %false if @dwork was idle and queued, %true if @dwork was
2011  * pending and its timer was modified.
2012  *
2013  * This function is safe to call from any context including IRQ handler.
2014  * See try_to_grab_pending() for details.
2015  */
2016 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2017 			 struct delayed_work *dwork, unsigned long delay)
2018 {
2019 	unsigned long flags;
2020 	int ret;
2021 
2022 	do {
2023 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2024 	} while (unlikely(ret == -EAGAIN));
2025 
2026 	if (likely(ret >= 0)) {
2027 		__queue_delayed_work(cpu, wq, dwork, delay);
2028 		local_irq_restore(flags);
2029 	}
2030 
2031 	/* -ENOENT from try_to_grab_pending() becomes %true */
2032 	return ret;
2033 }
2034 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2035 
2036 static void rcu_work_rcufn(struct rcu_head *rcu)
2037 {
2038 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2039 
2040 	/* read the comment in __queue_work() */
2041 	local_irq_disable();
2042 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2043 	local_irq_enable();
2044 }
2045 
2046 /**
2047  * queue_rcu_work - queue work after a RCU grace period
2048  * @wq: workqueue to use
2049  * @rwork: work to queue
2050  *
2051  * Return: %false if @rwork was already pending, %true otherwise.  Note
2052  * that a full RCU grace period is guaranteed only after a %true return.
2053  * While @rwork is guaranteed to be executed after a %false return, the
2054  * execution may happen before a full RCU grace period has passed.
2055  */
2056 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2057 {
2058 	struct work_struct *work = &rwork->work;
2059 
2060 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2061 		rwork->wq = wq;
2062 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2063 		return true;
2064 	}
2065 
2066 	return false;
2067 }
2068 EXPORT_SYMBOL(queue_rcu_work);
2069 
2070 static struct worker *alloc_worker(int node)
2071 {
2072 	struct worker *worker;
2073 
2074 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2075 	if (worker) {
2076 		INIT_LIST_HEAD(&worker->entry);
2077 		INIT_LIST_HEAD(&worker->scheduled);
2078 		INIT_LIST_HEAD(&worker->node);
2079 		/* on creation a worker is in !idle && prep state */
2080 		worker->flags = WORKER_PREP;
2081 	}
2082 	return worker;
2083 }
2084 
2085 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2086 {
2087 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2088 		return pool->attrs->__pod_cpumask;
2089 	else
2090 		return pool->attrs->cpumask;
2091 }
2092 
2093 /**
2094  * worker_attach_to_pool() - attach a worker to a pool
2095  * @worker: worker to be attached
2096  * @pool: the target pool
2097  *
2098  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2099  * cpu-binding of @worker are kept coordinated with the pool across
2100  * cpu-[un]hotplugs.
2101  */
2102 static void worker_attach_to_pool(struct worker *worker,
2103 				   struct worker_pool *pool)
2104 {
2105 	mutex_lock(&wq_pool_attach_mutex);
2106 
2107 	/*
2108 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
2109 	 * stable across this function.  See the comments above the flag
2110 	 * definition for details.
2111 	 */
2112 	if (pool->flags & POOL_DISASSOCIATED)
2113 		worker->flags |= WORKER_UNBOUND;
2114 	else
2115 		kthread_set_per_cpu(worker->task, pool->cpu);
2116 
2117 	if (worker->rescue_wq)
2118 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2119 
2120 	list_add_tail(&worker->node, &pool->workers);
2121 	worker->pool = pool;
2122 
2123 	mutex_unlock(&wq_pool_attach_mutex);
2124 }
2125 
2126 /**
2127  * worker_detach_from_pool() - detach a worker from its pool
2128  * @worker: worker which is attached to its pool
2129  *
2130  * Undo the attaching which had been done in worker_attach_to_pool().  The
2131  * caller worker shouldn't access to the pool after detached except it has
2132  * other reference to the pool.
2133  */
2134 static void worker_detach_from_pool(struct worker *worker)
2135 {
2136 	struct worker_pool *pool = worker->pool;
2137 	struct completion *detach_completion = NULL;
2138 
2139 	mutex_lock(&wq_pool_attach_mutex);
2140 
2141 	kthread_set_per_cpu(worker->task, -1);
2142 	list_del(&worker->node);
2143 	worker->pool = NULL;
2144 
2145 	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2146 		detach_completion = pool->detach_completion;
2147 	mutex_unlock(&wq_pool_attach_mutex);
2148 
2149 	/* clear leftover flags without pool->lock after it is detached */
2150 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2151 
2152 	if (detach_completion)
2153 		complete(detach_completion);
2154 }
2155 
2156 /**
2157  * create_worker - create a new workqueue worker
2158  * @pool: pool the new worker will belong to
2159  *
2160  * Create and start a new worker which is attached to @pool.
2161  *
2162  * CONTEXT:
2163  * Might sleep.  Does GFP_KERNEL allocations.
2164  *
2165  * Return:
2166  * Pointer to the newly created worker.
2167  */
2168 static struct worker *create_worker(struct worker_pool *pool)
2169 {
2170 	struct worker *worker;
2171 	int id;
2172 	char id_buf[23];
2173 
2174 	/* ID is needed to determine kthread name */
2175 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2176 	if (id < 0) {
2177 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2178 			    ERR_PTR(id));
2179 		return NULL;
2180 	}
2181 
2182 	worker = alloc_worker(pool->node);
2183 	if (!worker) {
2184 		pr_err_once("workqueue: Failed to allocate a worker\n");
2185 		goto fail;
2186 	}
2187 
2188 	worker->id = id;
2189 
2190 	if (pool->cpu >= 0)
2191 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2192 			 pool->attrs->nice < 0  ? "H" : "");
2193 	else
2194 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2195 
2196 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
2197 					      "kworker/%s", id_buf);
2198 	if (IS_ERR(worker->task)) {
2199 		if (PTR_ERR(worker->task) == -EINTR) {
2200 			pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2201 			       id_buf);
2202 		} else {
2203 			pr_err_once("workqueue: Failed to create a worker thread: %pe",
2204 				    worker->task);
2205 		}
2206 		goto fail;
2207 	}
2208 
2209 	set_user_nice(worker->task, pool->attrs->nice);
2210 	kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2211 
2212 	/* successful, attach the worker to the pool */
2213 	worker_attach_to_pool(worker, pool);
2214 
2215 	/* start the newly created worker */
2216 	raw_spin_lock_irq(&pool->lock);
2217 
2218 	worker->pool->nr_workers++;
2219 	worker_enter_idle(worker);
2220 	kick_pool(pool);
2221 
2222 	/*
2223 	 * @worker is waiting on a completion in kthread() and will trigger hung
2224 	 * check if not woken up soon. As kick_pool() might not have waken it
2225 	 * up, wake it up explicitly once more.
2226 	 */
2227 	wake_up_process(worker->task);
2228 
2229 	raw_spin_unlock_irq(&pool->lock);
2230 
2231 	return worker;
2232 
2233 fail:
2234 	ida_free(&pool->worker_ida, id);
2235 	kfree(worker);
2236 	return NULL;
2237 }
2238 
2239 static void unbind_worker(struct worker *worker)
2240 {
2241 	lockdep_assert_held(&wq_pool_attach_mutex);
2242 
2243 	kthread_set_per_cpu(worker->task, -1);
2244 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2245 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2246 	else
2247 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2248 }
2249 
2250 static void wake_dying_workers(struct list_head *cull_list)
2251 {
2252 	struct worker *worker, *tmp;
2253 
2254 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2255 		list_del_init(&worker->entry);
2256 		unbind_worker(worker);
2257 		/*
2258 		 * If the worker was somehow already running, then it had to be
2259 		 * in pool->idle_list when set_worker_dying() happened or we
2260 		 * wouldn't have gotten here.
2261 		 *
2262 		 * Thus, the worker must either have observed the WORKER_DIE
2263 		 * flag, or have set its state to TASK_IDLE. Either way, the
2264 		 * below will be observed by the worker and is safe to do
2265 		 * outside of pool->lock.
2266 		 */
2267 		wake_up_process(worker->task);
2268 	}
2269 }
2270 
2271 /**
2272  * set_worker_dying - Tag a worker for destruction
2273  * @worker: worker to be destroyed
2274  * @list: transfer worker away from its pool->idle_list and into list
2275  *
2276  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2277  * should be idle.
2278  *
2279  * CONTEXT:
2280  * raw_spin_lock_irq(pool->lock).
2281  */
2282 static void set_worker_dying(struct worker *worker, struct list_head *list)
2283 {
2284 	struct worker_pool *pool = worker->pool;
2285 
2286 	lockdep_assert_held(&pool->lock);
2287 	lockdep_assert_held(&wq_pool_attach_mutex);
2288 
2289 	/* sanity check frenzy */
2290 	if (WARN_ON(worker->current_work) ||
2291 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2292 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2293 		return;
2294 
2295 	pool->nr_workers--;
2296 	pool->nr_idle--;
2297 
2298 	worker->flags |= WORKER_DIE;
2299 
2300 	list_move(&worker->entry, list);
2301 	list_move(&worker->node, &pool->dying_workers);
2302 }
2303 
2304 /**
2305  * idle_worker_timeout - check if some idle workers can now be deleted.
2306  * @t: The pool's idle_timer that just expired
2307  *
2308  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2309  * worker_leave_idle(), as a worker flicking between idle and active while its
2310  * pool is at the too_many_workers() tipping point would cause too much timer
2311  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2312  * it expire and re-evaluate things from there.
2313  */
2314 static void idle_worker_timeout(struct timer_list *t)
2315 {
2316 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2317 	bool do_cull = false;
2318 
2319 	if (work_pending(&pool->idle_cull_work))
2320 		return;
2321 
2322 	raw_spin_lock_irq(&pool->lock);
2323 
2324 	if (too_many_workers(pool)) {
2325 		struct worker *worker;
2326 		unsigned long expires;
2327 
2328 		/* idle_list is kept in LIFO order, check the last one */
2329 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2330 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2331 		do_cull = !time_before(jiffies, expires);
2332 
2333 		if (!do_cull)
2334 			mod_timer(&pool->idle_timer, expires);
2335 	}
2336 	raw_spin_unlock_irq(&pool->lock);
2337 
2338 	if (do_cull)
2339 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2340 }
2341 
2342 /**
2343  * idle_cull_fn - cull workers that have been idle for too long.
2344  * @work: the pool's work for handling these idle workers
2345  *
2346  * This goes through a pool's idle workers and gets rid of those that have been
2347  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2348  *
2349  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2350  * culled, so this also resets worker affinity. This requires a sleepable
2351  * context, hence the split between timer callback and work item.
2352  */
2353 static void idle_cull_fn(struct work_struct *work)
2354 {
2355 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2356 	LIST_HEAD(cull_list);
2357 
2358 	/*
2359 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2360 	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2361 	 * path. This is required as a previously-preempted worker could run after
2362 	 * set_worker_dying() has happened but before wake_dying_workers() did.
2363 	 */
2364 	mutex_lock(&wq_pool_attach_mutex);
2365 	raw_spin_lock_irq(&pool->lock);
2366 
2367 	while (too_many_workers(pool)) {
2368 		struct worker *worker;
2369 		unsigned long expires;
2370 
2371 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2372 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2373 
2374 		if (time_before(jiffies, expires)) {
2375 			mod_timer(&pool->idle_timer, expires);
2376 			break;
2377 		}
2378 
2379 		set_worker_dying(worker, &cull_list);
2380 	}
2381 
2382 	raw_spin_unlock_irq(&pool->lock);
2383 	wake_dying_workers(&cull_list);
2384 	mutex_unlock(&wq_pool_attach_mutex);
2385 }
2386 
2387 static void send_mayday(struct work_struct *work)
2388 {
2389 	struct pool_workqueue *pwq = get_work_pwq(work);
2390 	struct workqueue_struct *wq = pwq->wq;
2391 
2392 	lockdep_assert_held(&wq_mayday_lock);
2393 
2394 	if (!wq->rescuer)
2395 		return;
2396 
2397 	/* mayday mayday mayday */
2398 	if (list_empty(&pwq->mayday_node)) {
2399 		/*
2400 		 * If @pwq is for an unbound wq, its base ref may be put at
2401 		 * any time due to an attribute change.  Pin @pwq until the
2402 		 * rescuer is done with it.
2403 		 */
2404 		get_pwq(pwq);
2405 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2406 		wake_up_process(wq->rescuer->task);
2407 		pwq->stats[PWQ_STAT_MAYDAY]++;
2408 	}
2409 }
2410 
2411 static void pool_mayday_timeout(struct timer_list *t)
2412 {
2413 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2414 	struct work_struct *work;
2415 
2416 	raw_spin_lock_irq(&pool->lock);
2417 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2418 
2419 	if (need_to_create_worker(pool)) {
2420 		/*
2421 		 * We've been trying to create a new worker but
2422 		 * haven't been successful.  We might be hitting an
2423 		 * allocation deadlock.  Send distress signals to
2424 		 * rescuers.
2425 		 */
2426 		list_for_each_entry(work, &pool->worklist, entry)
2427 			send_mayday(work);
2428 	}
2429 
2430 	raw_spin_unlock(&wq_mayday_lock);
2431 	raw_spin_unlock_irq(&pool->lock);
2432 
2433 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2434 }
2435 
2436 /**
2437  * maybe_create_worker - create a new worker if necessary
2438  * @pool: pool to create a new worker for
2439  *
2440  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2441  * have at least one idle worker on return from this function.  If
2442  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2443  * sent to all rescuers with works scheduled on @pool to resolve
2444  * possible allocation deadlock.
2445  *
2446  * On return, need_to_create_worker() is guaranteed to be %false and
2447  * may_start_working() %true.
2448  *
2449  * LOCKING:
2450  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2451  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2452  * manager.
2453  */
2454 static void maybe_create_worker(struct worker_pool *pool)
2455 __releases(&pool->lock)
2456 __acquires(&pool->lock)
2457 {
2458 restart:
2459 	raw_spin_unlock_irq(&pool->lock);
2460 
2461 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2462 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2463 
2464 	while (true) {
2465 		if (create_worker(pool) || !need_to_create_worker(pool))
2466 			break;
2467 
2468 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2469 
2470 		if (!need_to_create_worker(pool))
2471 			break;
2472 	}
2473 
2474 	del_timer_sync(&pool->mayday_timer);
2475 	raw_spin_lock_irq(&pool->lock);
2476 	/*
2477 	 * This is necessary even after a new worker was just successfully
2478 	 * created as @pool->lock was dropped and the new worker might have
2479 	 * already become busy.
2480 	 */
2481 	if (need_to_create_worker(pool))
2482 		goto restart;
2483 }
2484 
2485 /**
2486  * manage_workers - manage worker pool
2487  * @worker: self
2488  *
2489  * Assume the manager role and manage the worker pool @worker belongs
2490  * to.  At any given time, there can be only zero or one manager per
2491  * pool.  The exclusion is handled automatically by this function.
2492  *
2493  * The caller can safely start processing works on false return.  On
2494  * true return, it's guaranteed that need_to_create_worker() is false
2495  * and may_start_working() is true.
2496  *
2497  * CONTEXT:
2498  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2499  * multiple times.  Does GFP_KERNEL allocations.
2500  *
2501  * Return:
2502  * %false if the pool doesn't need management and the caller can safely
2503  * start processing works, %true if management function was performed and
2504  * the conditions that the caller verified before calling the function may
2505  * no longer be true.
2506  */
2507 static bool manage_workers(struct worker *worker)
2508 {
2509 	struct worker_pool *pool = worker->pool;
2510 
2511 	if (pool->flags & POOL_MANAGER_ACTIVE)
2512 		return false;
2513 
2514 	pool->flags |= POOL_MANAGER_ACTIVE;
2515 	pool->manager = worker;
2516 
2517 	maybe_create_worker(pool);
2518 
2519 	pool->manager = NULL;
2520 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2521 	rcuwait_wake_up(&manager_wait);
2522 	return true;
2523 }
2524 
2525 /**
2526  * process_one_work - process single work
2527  * @worker: self
2528  * @work: work to process
2529  *
2530  * Process @work.  This function contains all the logics necessary to
2531  * process a single work including synchronization against and
2532  * interaction with other workers on the same cpu, queueing and
2533  * flushing.  As long as context requirement is met, any worker can
2534  * call this function to process a work.
2535  *
2536  * CONTEXT:
2537  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2538  */
2539 static void process_one_work(struct worker *worker, struct work_struct *work)
2540 __releases(&pool->lock)
2541 __acquires(&pool->lock)
2542 {
2543 	struct pool_workqueue *pwq = get_work_pwq(work);
2544 	struct worker_pool *pool = worker->pool;
2545 	unsigned long work_data;
2546 #ifdef CONFIG_LOCKDEP
2547 	/*
2548 	 * It is permissible to free the struct work_struct from
2549 	 * inside the function that is called from it, this we need to
2550 	 * take into account for lockdep too.  To avoid bogus "held
2551 	 * lock freed" warnings as well as problems when looking into
2552 	 * work->lockdep_map, make a copy and use that here.
2553 	 */
2554 	struct lockdep_map lockdep_map;
2555 
2556 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2557 #endif
2558 	/* ensure we're on the correct CPU */
2559 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2560 		     raw_smp_processor_id() != pool->cpu);
2561 
2562 	/* claim and dequeue */
2563 	debug_work_deactivate(work);
2564 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2565 	worker->current_work = work;
2566 	worker->current_func = work->func;
2567 	worker->current_pwq = pwq;
2568 	worker->current_at = worker->task->se.sum_exec_runtime;
2569 	work_data = *work_data_bits(work);
2570 	worker->current_color = get_work_color(work_data);
2571 
2572 	/*
2573 	 * Record wq name for cmdline and debug reporting, may get
2574 	 * overridden through set_worker_desc().
2575 	 */
2576 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2577 
2578 	list_del_init(&work->entry);
2579 
2580 	/*
2581 	 * CPU intensive works don't participate in concurrency management.
2582 	 * They're the scheduler's responsibility.  This takes @worker out
2583 	 * of concurrency management and the next code block will chain
2584 	 * execution of the pending work items.
2585 	 */
2586 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
2587 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2588 
2589 	/*
2590 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
2591 	 * since nr_running would always be >= 1 at this point. This is used to
2592 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
2593 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
2594 	 */
2595 	kick_pool(pool);
2596 
2597 	/*
2598 	 * Record the last pool and clear PENDING which should be the last
2599 	 * update to @work.  Also, do this inside @pool->lock so that
2600 	 * PENDING and queued state changes happen together while IRQ is
2601 	 * disabled.
2602 	 */
2603 	set_work_pool_and_clear_pending(work, pool->id);
2604 
2605 	pwq->stats[PWQ_STAT_STARTED]++;
2606 	raw_spin_unlock_irq(&pool->lock);
2607 
2608 	lock_map_acquire(&pwq->wq->lockdep_map);
2609 	lock_map_acquire(&lockdep_map);
2610 	/*
2611 	 * Strictly speaking we should mark the invariant state without holding
2612 	 * any locks, that is, before these two lock_map_acquire()'s.
2613 	 *
2614 	 * However, that would result in:
2615 	 *
2616 	 *   A(W1)
2617 	 *   WFC(C)
2618 	 *		A(W1)
2619 	 *		C(C)
2620 	 *
2621 	 * Which would create W1->C->W1 dependencies, even though there is no
2622 	 * actual deadlock possible. There are two solutions, using a
2623 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2624 	 * hit the lockdep limitation on recursive locks, or simply discard
2625 	 * these locks.
2626 	 *
2627 	 * AFAICT there is no possible deadlock scenario between the
2628 	 * flush_work() and complete() primitives (except for single-threaded
2629 	 * workqueues), so hiding them isn't a problem.
2630 	 */
2631 	lockdep_invariant_state(true);
2632 	trace_workqueue_execute_start(work);
2633 	worker->current_func(work);
2634 	/*
2635 	 * While we must be careful to not use "work" after this, the trace
2636 	 * point will only record its address.
2637 	 */
2638 	trace_workqueue_execute_end(work, worker->current_func);
2639 	pwq->stats[PWQ_STAT_COMPLETED]++;
2640 	lock_map_release(&lockdep_map);
2641 	lock_map_release(&pwq->wq->lockdep_map);
2642 
2643 	if (unlikely(in_atomic() || lockdep_depth(current) > 0 ||
2644 		     rcu_preempt_depth() > 0)) {
2645 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d/%d\n"
2646 		       "     last function: %ps\n",
2647 		       current->comm, preempt_count(), rcu_preempt_depth(),
2648 		       task_pid_nr(current), worker->current_func);
2649 		debug_show_held_locks(current);
2650 		dump_stack();
2651 	}
2652 
2653 	/*
2654 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2655 	 * kernels, where a requeueing work item waiting for something to
2656 	 * happen could deadlock with stop_machine as such work item could
2657 	 * indefinitely requeue itself while all other CPUs are trapped in
2658 	 * stop_machine. At the same time, report a quiescent RCU state so
2659 	 * the same condition doesn't freeze RCU.
2660 	 */
2661 	cond_resched();
2662 
2663 	raw_spin_lock_irq(&pool->lock);
2664 
2665 	/*
2666 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
2667 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
2668 	 * wq_cpu_intensive_thresh_us. Clear it.
2669 	 */
2670 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2671 
2672 	/* tag the worker for identification in schedule() */
2673 	worker->last_func = worker->current_func;
2674 
2675 	/* we're done with it, release */
2676 	hash_del(&worker->hentry);
2677 	worker->current_work = NULL;
2678 	worker->current_func = NULL;
2679 	worker->current_pwq = NULL;
2680 	worker->current_color = INT_MAX;
2681 	pwq_dec_nr_in_flight(pwq, work_data);
2682 }
2683 
2684 /**
2685  * process_scheduled_works - process scheduled works
2686  * @worker: self
2687  *
2688  * Process all scheduled works.  Please note that the scheduled list
2689  * may change while processing a work, so this function repeatedly
2690  * fetches a work from the top and executes it.
2691  *
2692  * CONTEXT:
2693  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2694  * multiple times.
2695  */
2696 static void process_scheduled_works(struct worker *worker)
2697 {
2698 	struct work_struct *work;
2699 	bool first = true;
2700 
2701 	while ((work = list_first_entry_or_null(&worker->scheduled,
2702 						struct work_struct, entry))) {
2703 		if (first) {
2704 			worker->pool->watchdog_ts = jiffies;
2705 			first = false;
2706 		}
2707 		process_one_work(worker, work);
2708 	}
2709 }
2710 
2711 static void set_pf_worker(bool val)
2712 {
2713 	mutex_lock(&wq_pool_attach_mutex);
2714 	if (val)
2715 		current->flags |= PF_WQ_WORKER;
2716 	else
2717 		current->flags &= ~PF_WQ_WORKER;
2718 	mutex_unlock(&wq_pool_attach_mutex);
2719 }
2720 
2721 /**
2722  * worker_thread - the worker thread function
2723  * @__worker: self
2724  *
2725  * The worker thread function.  All workers belong to a worker_pool -
2726  * either a per-cpu one or dynamic unbound one.  These workers process all
2727  * work items regardless of their specific target workqueue.  The only
2728  * exception is work items which belong to workqueues with a rescuer which
2729  * will be explained in rescuer_thread().
2730  *
2731  * Return: 0
2732  */
2733 static int worker_thread(void *__worker)
2734 {
2735 	struct worker *worker = __worker;
2736 	struct worker_pool *pool = worker->pool;
2737 
2738 	/* tell the scheduler that this is a workqueue worker */
2739 	set_pf_worker(true);
2740 woke_up:
2741 	raw_spin_lock_irq(&pool->lock);
2742 
2743 	/* am I supposed to die? */
2744 	if (unlikely(worker->flags & WORKER_DIE)) {
2745 		raw_spin_unlock_irq(&pool->lock);
2746 		set_pf_worker(false);
2747 
2748 		set_task_comm(worker->task, "kworker/dying");
2749 		ida_free(&pool->worker_ida, worker->id);
2750 		worker_detach_from_pool(worker);
2751 		WARN_ON_ONCE(!list_empty(&worker->entry));
2752 		kfree(worker);
2753 		return 0;
2754 	}
2755 
2756 	worker_leave_idle(worker);
2757 recheck:
2758 	/* no more worker necessary? */
2759 	if (!need_more_worker(pool))
2760 		goto sleep;
2761 
2762 	/* do we need to manage? */
2763 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2764 		goto recheck;
2765 
2766 	/*
2767 	 * ->scheduled list can only be filled while a worker is
2768 	 * preparing to process a work or actually processing it.
2769 	 * Make sure nobody diddled with it while I was sleeping.
2770 	 */
2771 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2772 
2773 	/*
2774 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2775 	 * worker or that someone else has already assumed the manager
2776 	 * role.  This is where @worker starts participating in concurrency
2777 	 * management if applicable and concurrency management is restored
2778 	 * after being rebound.  See rebind_workers() for details.
2779 	 */
2780 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2781 
2782 	do {
2783 		struct work_struct *work =
2784 			list_first_entry(&pool->worklist,
2785 					 struct work_struct, entry);
2786 
2787 		if (assign_work(work, worker, NULL))
2788 			process_scheduled_works(worker);
2789 	} while (keep_working(pool));
2790 
2791 	worker_set_flags(worker, WORKER_PREP);
2792 sleep:
2793 	/*
2794 	 * pool->lock is held and there's no work to process and no need to
2795 	 * manage, sleep.  Workers are woken up only while holding
2796 	 * pool->lock or from local cpu, so setting the current state
2797 	 * before releasing pool->lock is enough to prevent losing any
2798 	 * event.
2799 	 */
2800 	worker_enter_idle(worker);
2801 	__set_current_state(TASK_IDLE);
2802 	raw_spin_unlock_irq(&pool->lock);
2803 	schedule();
2804 	goto woke_up;
2805 }
2806 
2807 /**
2808  * rescuer_thread - the rescuer thread function
2809  * @__rescuer: self
2810  *
2811  * Workqueue rescuer thread function.  There's one rescuer for each
2812  * workqueue which has WQ_MEM_RECLAIM set.
2813  *
2814  * Regular work processing on a pool may block trying to create a new
2815  * worker which uses GFP_KERNEL allocation which has slight chance of
2816  * developing into deadlock if some works currently on the same queue
2817  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2818  * the problem rescuer solves.
2819  *
2820  * When such condition is possible, the pool summons rescuers of all
2821  * workqueues which have works queued on the pool and let them process
2822  * those works so that forward progress can be guaranteed.
2823  *
2824  * This should happen rarely.
2825  *
2826  * Return: 0
2827  */
2828 static int rescuer_thread(void *__rescuer)
2829 {
2830 	struct worker *rescuer = __rescuer;
2831 	struct workqueue_struct *wq = rescuer->rescue_wq;
2832 	bool should_stop;
2833 
2834 	set_user_nice(current, RESCUER_NICE_LEVEL);
2835 
2836 	/*
2837 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2838 	 * doesn't participate in concurrency management.
2839 	 */
2840 	set_pf_worker(true);
2841 repeat:
2842 	set_current_state(TASK_IDLE);
2843 
2844 	/*
2845 	 * By the time the rescuer is requested to stop, the workqueue
2846 	 * shouldn't have any work pending, but @wq->maydays may still have
2847 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2848 	 * all the work items before the rescuer got to them.  Go through
2849 	 * @wq->maydays processing before acting on should_stop so that the
2850 	 * list is always empty on exit.
2851 	 */
2852 	should_stop = kthread_should_stop();
2853 
2854 	/* see whether any pwq is asking for help */
2855 	raw_spin_lock_irq(&wq_mayday_lock);
2856 
2857 	while (!list_empty(&wq->maydays)) {
2858 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2859 					struct pool_workqueue, mayday_node);
2860 		struct worker_pool *pool = pwq->pool;
2861 		struct work_struct *work, *n;
2862 
2863 		__set_current_state(TASK_RUNNING);
2864 		list_del_init(&pwq->mayday_node);
2865 
2866 		raw_spin_unlock_irq(&wq_mayday_lock);
2867 
2868 		worker_attach_to_pool(rescuer, pool);
2869 
2870 		raw_spin_lock_irq(&pool->lock);
2871 
2872 		/*
2873 		 * Slurp in all works issued via this workqueue and
2874 		 * process'em.
2875 		 */
2876 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2877 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2878 			if (get_work_pwq(work) == pwq &&
2879 			    assign_work(work, rescuer, &n))
2880 				pwq->stats[PWQ_STAT_RESCUED]++;
2881 		}
2882 
2883 		if (!list_empty(&rescuer->scheduled)) {
2884 			process_scheduled_works(rescuer);
2885 
2886 			/*
2887 			 * The above execution of rescued work items could
2888 			 * have created more to rescue through
2889 			 * pwq_activate_first_inactive() or chained
2890 			 * queueing.  Let's put @pwq back on mayday list so
2891 			 * that such back-to-back work items, which may be
2892 			 * being used to relieve memory pressure, don't
2893 			 * incur MAYDAY_INTERVAL delay inbetween.
2894 			 */
2895 			if (pwq->nr_active && need_to_create_worker(pool)) {
2896 				raw_spin_lock(&wq_mayday_lock);
2897 				/*
2898 				 * Queue iff we aren't racing destruction
2899 				 * and somebody else hasn't queued it already.
2900 				 */
2901 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2902 					get_pwq(pwq);
2903 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2904 				}
2905 				raw_spin_unlock(&wq_mayday_lock);
2906 			}
2907 		}
2908 
2909 		/*
2910 		 * Put the reference grabbed by send_mayday().  @pool won't
2911 		 * go away while we're still attached to it.
2912 		 */
2913 		put_pwq(pwq);
2914 
2915 		/*
2916 		 * Leave this pool. Notify regular workers; otherwise, we end up
2917 		 * with 0 concurrency and stalling the execution.
2918 		 */
2919 		kick_pool(pool);
2920 
2921 		raw_spin_unlock_irq(&pool->lock);
2922 
2923 		worker_detach_from_pool(rescuer);
2924 
2925 		raw_spin_lock_irq(&wq_mayday_lock);
2926 	}
2927 
2928 	raw_spin_unlock_irq(&wq_mayday_lock);
2929 
2930 	if (should_stop) {
2931 		__set_current_state(TASK_RUNNING);
2932 		set_pf_worker(false);
2933 		return 0;
2934 	}
2935 
2936 	/* rescuers should never participate in concurrency management */
2937 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2938 	schedule();
2939 	goto repeat;
2940 }
2941 
2942 /**
2943  * check_flush_dependency - check for flush dependency sanity
2944  * @target_wq: workqueue being flushed
2945  * @target_work: work item being flushed (NULL for workqueue flushes)
2946  *
2947  * %current is trying to flush the whole @target_wq or @target_work on it.
2948  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2949  * reclaiming memory or running on a workqueue which doesn't have
2950  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2951  * a deadlock.
2952  */
2953 static void check_flush_dependency(struct workqueue_struct *target_wq,
2954 				   struct work_struct *target_work)
2955 {
2956 	work_func_t target_func = target_work ? target_work->func : NULL;
2957 	struct worker *worker;
2958 
2959 	if (target_wq->flags & WQ_MEM_RECLAIM)
2960 		return;
2961 
2962 	worker = current_wq_worker();
2963 
2964 	WARN_ONCE(current->flags & PF_MEMALLOC,
2965 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2966 		  current->pid, current->comm, target_wq->name, target_func);
2967 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2968 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2969 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2970 		  worker->current_pwq->wq->name, worker->current_func,
2971 		  target_wq->name, target_func);
2972 }
2973 
2974 struct wq_barrier {
2975 	struct work_struct	work;
2976 	struct completion	done;
2977 	struct task_struct	*task;	/* purely informational */
2978 };
2979 
2980 static void wq_barrier_func(struct work_struct *work)
2981 {
2982 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2983 	complete(&barr->done);
2984 }
2985 
2986 /**
2987  * insert_wq_barrier - insert a barrier work
2988  * @pwq: pwq to insert barrier into
2989  * @barr: wq_barrier to insert
2990  * @target: target work to attach @barr to
2991  * @worker: worker currently executing @target, NULL if @target is not executing
2992  *
2993  * @barr is linked to @target such that @barr is completed only after
2994  * @target finishes execution.  Please note that the ordering
2995  * guarantee is observed only with respect to @target and on the local
2996  * cpu.
2997  *
2998  * Currently, a queued barrier can't be canceled.  This is because
2999  * try_to_grab_pending() can't determine whether the work to be
3000  * grabbed is at the head of the queue and thus can't clear LINKED
3001  * flag of the previous work while there must be a valid next work
3002  * after a work with LINKED flag set.
3003  *
3004  * Note that when @worker is non-NULL, @target may be modified
3005  * underneath us, so we can't reliably determine pwq from @target.
3006  *
3007  * CONTEXT:
3008  * raw_spin_lock_irq(pool->lock).
3009  */
3010 static void insert_wq_barrier(struct pool_workqueue *pwq,
3011 			      struct wq_barrier *barr,
3012 			      struct work_struct *target, struct worker *worker)
3013 {
3014 	unsigned int work_flags = 0;
3015 	unsigned int work_color;
3016 	struct list_head *head;
3017 
3018 	/*
3019 	 * debugobject calls are safe here even with pool->lock locked
3020 	 * as we know for sure that this will not trigger any of the
3021 	 * checks and call back into the fixup functions where we
3022 	 * might deadlock.
3023 	 */
3024 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
3025 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3026 
3027 	init_completion_map(&barr->done, &target->lockdep_map);
3028 
3029 	barr->task = current;
3030 
3031 	/* The barrier work item does not participate in pwq->nr_active. */
3032 	work_flags |= WORK_STRUCT_INACTIVE;
3033 
3034 	/*
3035 	 * If @target is currently being executed, schedule the
3036 	 * barrier to the worker; otherwise, put it after @target.
3037 	 */
3038 	if (worker) {
3039 		head = worker->scheduled.next;
3040 		work_color = worker->current_color;
3041 	} else {
3042 		unsigned long *bits = work_data_bits(target);
3043 
3044 		head = target->entry.next;
3045 		/* there can already be other linked works, inherit and set */
3046 		work_flags |= *bits & WORK_STRUCT_LINKED;
3047 		work_color = get_work_color(*bits);
3048 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3049 	}
3050 
3051 	pwq->nr_in_flight[work_color]++;
3052 	work_flags |= work_color_to_flags(work_color);
3053 
3054 	insert_work(pwq, &barr->work, head, work_flags);
3055 }
3056 
3057 /**
3058  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3059  * @wq: workqueue being flushed
3060  * @flush_color: new flush color, < 0 for no-op
3061  * @work_color: new work color, < 0 for no-op
3062  *
3063  * Prepare pwqs for workqueue flushing.
3064  *
3065  * If @flush_color is non-negative, flush_color on all pwqs should be
3066  * -1.  If no pwq has in-flight commands at the specified color, all
3067  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3068  * has in flight commands, its pwq->flush_color is set to
3069  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3070  * wakeup logic is armed and %true is returned.
3071  *
3072  * The caller should have initialized @wq->first_flusher prior to
3073  * calling this function with non-negative @flush_color.  If
3074  * @flush_color is negative, no flush color update is done and %false
3075  * is returned.
3076  *
3077  * If @work_color is non-negative, all pwqs should have the same
3078  * work_color which is previous to @work_color and all will be
3079  * advanced to @work_color.
3080  *
3081  * CONTEXT:
3082  * mutex_lock(wq->mutex).
3083  *
3084  * Return:
3085  * %true if @flush_color >= 0 and there's something to flush.  %false
3086  * otherwise.
3087  */
3088 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3089 				      int flush_color, int work_color)
3090 {
3091 	bool wait = false;
3092 	struct pool_workqueue *pwq;
3093 
3094 	if (flush_color >= 0) {
3095 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3096 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3097 	}
3098 
3099 	for_each_pwq(pwq, wq) {
3100 		struct worker_pool *pool = pwq->pool;
3101 
3102 		raw_spin_lock_irq(&pool->lock);
3103 
3104 		if (flush_color >= 0) {
3105 			WARN_ON_ONCE(pwq->flush_color != -1);
3106 
3107 			if (pwq->nr_in_flight[flush_color]) {
3108 				pwq->flush_color = flush_color;
3109 				atomic_inc(&wq->nr_pwqs_to_flush);
3110 				wait = true;
3111 			}
3112 		}
3113 
3114 		if (work_color >= 0) {
3115 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3116 			pwq->work_color = work_color;
3117 		}
3118 
3119 		raw_spin_unlock_irq(&pool->lock);
3120 	}
3121 
3122 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3123 		complete(&wq->first_flusher->done);
3124 
3125 	return wait;
3126 }
3127 
3128 /**
3129  * __flush_workqueue - ensure that any scheduled work has run to completion.
3130  * @wq: workqueue to flush
3131  *
3132  * This function sleeps until all work items which were queued on entry
3133  * have finished execution, but it is not livelocked by new incoming ones.
3134  */
3135 void __flush_workqueue(struct workqueue_struct *wq)
3136 {
3137 	struct wq_flusher this_flusher = {
3138 		.list = LIST_HEAD_INIT(this_flusher.list),
3139 		.flush_color = -1,
3140 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3141 	};
3142 	int next_color;
3143 
3144 	if (WARN_ON(!wq_online))
3145 		return;
3146 
3147 	lock_map_acquire(&wq->lockdep_map);
3148 	lock_map_release(&wq->lockdep_map);
3149 
3150 	mutex_lock(&wq->mutex);
3151 
3152 	/*
3153 	 * Start-to-wait phase
3154 	 */
3155 	next_color = work_next_color(wq->work_color);
3156 
3157 	if (next_color != wq->flush_color) {
3158 		/*
3159 		 * Color space is not full.  The current work_color
3160 		 * becomes our flush_color and work_color is advanced
3161 		 * by one.
3162 		 */
3163 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3164 		this_flusher.flush_color = wq->work_color;
3165 		wq->work_color = next_color;
3166 
3167 		if (!wq->first_flusher) {
3168 			/* no flush in progress, become the first flusher */
3169 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3170 
3171 			wq->first_flusher = &this_flusher;
3172 
3173 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3174 						       wq->work_color)) {
3175 				/* nothing to flush, done */
3176 				wq->flush_color = next_color;
3177 				wq->first_flusher = NULL;
3178 				goto out_unlock;
3179 			}
3180 		} else {
3181 			/* wait in queue */
3182 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3183 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3184 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3185 		}
3186 	} else {
3187 		/*
3188 		 * Oops, color space is full, wait on overflow queue.
3189 		 * The next flush completion will assign us
3190 		 * flush_color and transfer to flusher_queue.
3191 		 */
3192 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3193 	}
3194 
3195 	check_flush_dependency(wq, NULL);
3196 
3197 	mutex_unlock(&wq->mutex);
3198 
3199 	wait_for_completion(&this_flusher.done);
3200 
3201 	/*
3202 	 * Wake-up-and-cascade phase
3203 	 *
3204 	 * First flushers are responsible for cascading flushes and
3205 	 * handling overflow.  Non-first flushers can simply return.
3206 	 */
3207 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3208 		return;
3209 
3210 	mutex_lock(&wq->mutex);
3211 
3212 	/* we might have raced, check again with mutex held */
3213 	if (wq->first_flusher != &this_flusher)
3214 		goto out_unlock;
3215 
3216 	WRITE_ONCE(wq->first_flusher, NULL);
3217 
3218 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3219 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3220 
3221 	while (true) {
3222 		struct wq_flusher *next, *tmp;
3223 
3224 		/* complete all the flushers sharing the current flush color */
3225 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3226 			if (next->flush_color != wq->flush_color)
3227 				break;
3228 			list_del_init(&next->list);
3229 			complete(&next->done);
3230 		}
3231 
3232 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3233 			     wq->flush_color != work_next_color(wq->work_color));
3234 
3235 		/* this flush_color is finished, advance by one */
3236 		wq->flush_color = work_next_color(wq->flush_color);
3237 
3238 		/* one color has been freed, handle overflow queue */
3239 		if (!list_empty(&wq->flusher_overflow)) {
3240 			/*
3241 			 * Assign the same color to all overflowed
3242 			 * flushers, advance work_color and append to
3243 			 * flusher_queue.  This is the start-to-wait
3244 			 * phase for these overflowed flushers.
3245 			 */
3246 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
3247 				tmp->flush_color = wq->work_color;
3248 
3249 			wq->work_color = work_next_color(wq->work_color);
3250 
3251 			list_splice_tail_init(&wq->flusher_overflow,
3252 					      &wq->flusher_queue);
3253 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3254 		}
3255 
3256 		if (list_empty(&wq->flusher_queue)) {
3257 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
3258 			break;
3259 		}
3260 
3261 		/*
3262 		 * Need to flush more colors.  Make the next flusher
3263 		 * the new first flusher and arm pwqs.
3264 		 */
3265 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
3266 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
3267 
3268 		list_del_init(&next->list);
3269 		wq->first_flusher = next;
3270 
3271 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3272 			break;
3273 
3274 		/*
3275 		 * Meh... this color is already done, clear first
3276 		 * flusher and repeat cascading.
3277 		 */
3278 		wq->first_flusher = NULL;
3279 	}
3280 
3281 out_unlock:
3282 	mutex_unlock(&wq->mutex);
3283 }
3284 EXPORT_SYMBOL(__flush_workqueue);
3285 
3286 /**
3287  * drain_workqueue - drain a workqueue
3288  * @wq: workqueue to drain
3289  *
3290  * Wait until the workqueue becomes empty.  While draining is in progress,
3291  * only chain queueing is allowed.  IOW, only currently pending or running
3292  * work items on @wq can queue further work items on it.  @wq is flushed
3293  * repeatedly until it becomes empty.  The number of flushing is determined
3294  * by the depth of chaining and should be relatively short.  Whine if it
3295  * takes too long.
3296  */
3297 void drain_workqueue(struct workqueue_struct *wq)
3298 {
3299 	unsigned int flush_cnt = 0;
3300 	struct pool_workqueue *pwq;
3301 
3302 	/*
3303 	 * __queue_work() needs to test whether there are drainers, is much
3304 	 * hotter than drain_workqueue() and already looks at @wq->flags.
3305 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3306 	 */
3307 	mutex_lock(&wq->mutex);
3308 	if (!wq->nr_drainers++)
3309 		wq->flags |= __WQ_DRAINING;
3310 	mutex_unlock(&wq->mutex);
3311 reflush:
3312 	__flush_workqueue(wq);
3313 
3314 	mutex_lock(&wq->mutex);
3315 
3316 	for_each_pwq(pwq, wq) {
3317 		bool drained;
3318 
3319 		raw_spin_lock_irq(&pwq->pool->lock);
3320 		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3321 		raw_spin_unlock_irq(&pwq->pool->lock);
3322 
3323 		if (drained)
3324 			continue;
3325 
3326 		if (++flush_cnt == 10 ||
3327 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3328 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3329 				wq->name, __func__, flush_cnt);
3330 
3331 		mutex_unlock(&wq->mutex);
3332 		goto reflush;
3333 	}
3334 
3335 	if (!--wq->nr_drainers)
3336 		wq->flags &= ~__WQ_DRAINING;
3337 	mutex_unlock(&wq->mutex);
3338 }
3339 EXPORT_SYMBOL_GPL(drain_workqueue);
3340 
3341 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3342 			     bool from_cancel)
3343 {
3344 	struct worker *worker = NULL;
3345 	struct worker_pool *pool;
3346 	struct pool_workqueue *pwq;
3347 
3348 	might_sleep();
3349 
3350 	rcu_read_lock();
3351 	pool = get_work_pool(work);
3352 	if (!pool) {
3353 		rcu_read_unlock();
3354 		return false;
3355 	}
3356 
3357 	raw_spin_lock_irq(&pool->lock);
3358 	/* see the comment in try_to_grab_pending() with the same code */
3359 	pwq = get_work_pwq(work);
3360 	if (pwq) {
3361 		if (unlikely(pwq->pool != pool))
3362 			goto already_gone;
3363 	} else {
3364 		worker = find_worker_executing_work(pool, work);
3365 		if (!worker)
3366 			goto already_gone;
3367 		pwq = worker->current_pwq;
3368 	}
3369 
3370 	check_flush_dependency(pwq->wq, work);
3371 
3372 	insert_wq_barrier(pwq, barr, work, worker);
3373 	raw_spin_unlock_irq(&pool->lock);
3374 
3375 	/*
3376 	 * Force a lock recursion deadlock when using flush_work() inside a
3377 	 * single-threaded or rescuer equipped workqueue.
3378 	 *
3379 	 * For single threaded workqueues the deadlock happens when the work
3380 	 * is after the work issuing the flush_work(). For rescuer equipped
3381 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3382 	 * forward progress.
3383 	 */
3384 	if (!from_cancel &&
3385 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3386 		lock_map_acquire(&pwq->wq->lockdep_map);
3387 		lock_map_release(&pwq->wq->lockdep_map);
3388 	}
3389 	rcu_read_unlock();
3390 	return true;
3391 already_gone:
3392 	raw_spin_unlock_irq(&pool->lock);
3393 	rcu_read_unlock();
3394 	return false;
3395 }
3396 
3397 static bool __flush_work(struct work_struct *work, bool from_cancel)
3398 {
3399 	struct wq_barrier barr;
3400 
3401 	if (WARN_ON(!wq_online))
3402 		return false;
3403 
3404 	if (WARN_ON(!work->func))
3405 		return false;
3406 
3407 	lock_map_acquire(&work->lockdep_map);
3408 	lock_map_release(&work->lockdep_map);
3409 
3410 	if (start_flush_work(work, &barr, from_cancel)) {
3411 		wait_for_completion(&barr.done);
3412 		destroy_work_on_stack(&barr.work);
3413 		return true;
3414 	} else {
3415 		return false;
3416 	}
3417 }
3418 
3419 /**
3420  * flush_work - wait for a work to finish executing the last queueing instance
3421  * @work: the work to flush
3422  *
3423  * Wait until @work has finished execution.  @work is guaranteed to be idle
3424  * on return if it hasn't been requeued since flush started.
3425  *
3426  * Return:
3427  * %true if flush_work() waited for the work to finish execution,
3428  * %false if it was already idle.
3429  */
3430 bool flush_work(struct work_struct *work)
3431 {
3432 	return __flush_work(work, false);
3433 }
3434 EXPORT_SYMBOL_GPL(flush_work);
3435 
3436 struct cwt_wait {
3437 	wait_queue_entry_t		wait;
3438 	struct work_struct	*work;
3439 };
3440 
3441 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3442 {
3443 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3444 
3445 	if (cwait->work != key)
3446 		return 0;
3447 	return autoremove_wake_function(wait, mode, sync, key);
3448 }
3449 
3450 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3451 {
3452 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3453 	unsigned long flags;
3454 	int ret;
3455 
3456 	do {
3457 		ret = try_to_grab_pending(work, is_dwork, &flags);
3458 		/*
3459 		 * If someone else is already canceling, wait for it to
3460 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3461 		 * because we may get scheduled between @work's completion
3462 		 * and the other canceling task resuming and clearing
3463 		 * CANCELING - flush_work() will return false immediately
3464 		 * as @work is no longer busy, try_to_grab_pending() will
3465 		 * return -ENOENT as @work is still being canceled and the
3466 		 * other canceling task won't be able to clear CANCELING as
3467 		 * we're hogging the CPU.
3468 		 *
3469 		 * Let's wait for completion using a waitqueue.  As this
3470 		 * may lead to the thundering herd problem, use a custom
3471 		 * wake function which matches @work along with exclusive
3472 		 * wait and wakeup.
3473 		 */
3474 		if (unlikely(ret == -ENOENT)) {
3475 			struct cwt_wait cwait;
3476 
3477 			init_wait(&cwait.wait);
3478 			cwait.wait.func = cwt_wakefn;
3479 			cwait.work = work;
3480 
3481 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3482 						  TASK_UNINTERRUPTIBLE);
3483 			if (work_is_canceling(work))
3484 				schedule();
3485 			finish_wait(&cancel_waitq, &cwait.wait);
3486 		}
3487 	} while (unlikely(ret < 0));
3488 
3489 	/* tell other tasks trying to grab @work to back off */
3490 	mark_work_canceling(work);
3491 	local_irq_restore(flags);
3492 
3493 	/*
3494 	 * This allows canceling during early boot.  We know that @work
3495 	 * isn't executing.
3496 	 */
3497 	if (wq_online)
3498 		__flush_work(work, true);
3499 
3500 	clear_work_data(work);
3501 
3502 	/*
3503 	 * Paired with prepare_to_wait() above so that either
3504 	 * waitqueue_active() is visible here or !work_is_canceling() is
3505 	 * visible there.
3506 	 */
3507 	smp_mb();
3508 	if (waitqueue_active(&cancel_waitq))
3509 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3510 
3511 	return ret;
3512 }
3513 
3514 /**
3515  * cancel_work_sync - cancel a work and wait for it to finish
3516  * @work: the work to cancel
3517  *
3518  * Cancel @work and wait for its execution to finish.  This function
3519  * can be used even if the work re-queues itself or migrates to
3520  * another workqueue.  On return from this function, @work is
3521  * guaranteed to be not pending or executing on any CPU.
3522  *
3523  * cancel_work_sync(&delayed_work->work) must not be used for
3524  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3525  *
3526  * The caller must ensure that the workqueue on which @work was last
3527  * queued can't be destroyed before this function returns.
3528  *
3529  * Return:
3530  * %true if @work was pending, %false otherwise.
3531  */
3532 bool cancel_work_sync(struct work_struct *work)
3533 {
3534 	return __cancel_work_timer(work, false);
3535 }
3536 EXPORT_SYMBOL_GPL(cancel_work_sync);
3537 
3538 /**
3539  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3540  * @dwork: the delayed work to flush
3541  *
3542  * Delayed timer is cancelled and the pending work is queued for
3543  * immediate execution.  Like flush_work(), this function only
3544  * considers the last queueing instance of @dwork.
3545  *
3546  * Return:
3547  * %true if flush_work() waited for the work to finish execution,
3548  * %false if it was already idle.
3549  */
3550 bool flush_delayed_work(struct delayed_work *dwork)
3551 {
3552 	local_irq_disable();
3553 	if (del_timer_sync(&dwork->timer))
3554 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3555 	local_irq_enable();
3556 	return flush_work(&dwork->work);
3557 }
3558 EXPORT_SYMBOL(flush_delayed_work);
3559 
3560 /**
3561  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3562  * @rwork: the rcu work to flush
3563  *
3564  * Return:
3565  * %true if flush_rcu_work() waited for the work to finish execution,
3566  * %false if it was already idle.
3567  */
3568 bool flush_rcu_work(struct rcu_work *rwork)
3569 {
3570 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3571 		rcu_barrier();
3572 		flush_work(&rwork->work);
3573 		return true;
3574 	} else {
3575 		return flush_work(&rwork->work);
3576 	}
3577 }
3578 EXPORT_SYMBOL(flush_rcu_work);
3579 
3580 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3581 {
3582 	unsigned long flags;
3583 	int ret;
3584 
3585 	do {
3586 		ret = try_to_grab_pending(work, is_dwork, &flags);
3587 	} while (unlikely(ret == -EAGAIN));
3588 
3589 	if (unlikely(ret < 0))
3590 		return false;
3591 
3592 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3593 	local_irq_restore(flags);
3594 	return ret;
3595 }
3596 
3597 /*
3598  * See cancel_delayed_work()
3599  */
3600 bool cancel_work(struct work_struct *work)
3601 {
3602 	return __cancel_work(work, false);
3603 }
3604 EXPORT_SYMBOL(cancel_work);
3605 
3606 /**
3607  * cancel_delayed_work - cancel a delayed work
3608  * @dwork: delayed_work to cancel
3609  *
3610  * Kill off a pending delayed_work.
3611  *
3612  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3613  * pending.
3614  *
3615  * Note:
3616  * The work callback function may still be running on return, unless
3617  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3618  * use cancel_delayed_work_sync() to wait on it.
3619  *
3620  * This function is safe to call from any context including IRQ handler.
3621  */
3622 bool cancel_delayed_work(struct delayed_work *dwork)
3623 {
3624 	return __cancel_work(&dwork->work, true);
3625 }
3626 EXPORT_SYMBOL(cancel_delayed_work);
3627 
3628 /**
3629  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3630  * @dwork: the delayed work cancel
3631  *
3632  * This is cancel_work_sync() for delayed works.
3633  *
3634  * Return:
3635  * %true if @dwork was pending, %false otherwise.
3636  */
3637 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3638 {
3639 	return __cancel_work_timer(&dwork->work, true);
3640 }
3641 EXPORT_SYMBOL(cancel_delayed_work_sync);
3642 
3643 /**
3644  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3645  * @func: the function to call
3646  *
3647  * schedule_on_each_cpu() executes @func on each online CPU using the
3648  * system workqueue and blocks until all CPUs have completed.
3649  * schedule_on_each_cpu() is very slow.
3650  *
3651  * Return:
3652  * 0 on success, -errno on failure.
3653  */
3654 int schedule_on_each_cpu(work_func_t func)
3655 {
3656 	int cpu;
3657 	struct work_struct __percpu *works;
3658 
3659 	works = alloc_percpu(struct work_struct);
3660 	if (!works)
3661 		return -ENOMEM;
3662 
3663 	cpus_read_lock();
3664 
3665 	for_each_online_cpu(cpu) {
3666 		struct work_struct *work = per_cpu_ptr(works, cpu);
3667 
3668 		INIT_WORK(work, func);
3669 		schedule_work_on(cpu, work);
3670 	}
3671 
3672 	for_each_online_cpu(cpu)
3673 		flush_work(per_cpu_ptr(works, cpu));
3674 
3675 	cpus_read_unlock();
3676 	free_percpu(works);
3677 	return 0;
3678 }
3679 
3680 /**
3681  * execute_in_process_context - reliably execute the routine with user context
3682  * @fn:		the function to execute
3683  * @ew:		guaranteed storage for the execute work structure (must
3684  *		be available when the work executes)
3685  *
3686  * Executes the function immediately if process context is available,
3687  * otherwise schedules the function for delayed execution.
3688  *
3689  * Return:	0 - function was executed
3690  *		1 - function was scheduled for execution
3691  */
3692 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3693 {
3694 	if (!in_interrupt()) {
3695 		fn(&ew->work);
3696 		return 0;
3697 	}
3698 
3699 	INIT_WORK(&ew->work, fn);
3700 	schedule_work(&ew->work);
3701 
3702 	return 1;
3703 }
3704 EXPORT_SYMBOL_GPL(execute_in_process_context);
3705 
3706 /**
3707  * free_workqueue_attrs - free a workqueue_attrs
3708  * @attrs: workqueue_attrs to free
3709  *
3710  * Undo alloc_workqueue_attrs().
3711  */
3712 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3713 {
3714 	if (attrs) {
3715 		free_cpumask_var(attrs->cpumask);
3716 		free_cpumask_var(attrs->__pod_cpumask);
3717 		kfree(attrs);
3718 	}
3719 }
3720 
3721 /**
3722  * alloc_workqueue_attrs - allocate a workqueue_attrs
3723  *
3724  * Allocate a new workqueue_attrs, initialize with default settings and
3725  * return it.
3726  *
3727  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3728  */
3729 struct workqueue_attrs *alloc_workqueue_attrs(void)
3730 {
3731 	struct workqueue_attrs *attrs;
3732 
3733 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3734 	if (!attrs)
3735 		goto fail;
3736 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3737 		goto fail;
3738 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
3739 		goto fail;
3740 
3741 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3742 	attrs->affn_scope = WQ_AFFN_DFL;
3743 	return attrs;
3744 fail:
3745 	free_workqueue_attrs(attrs);
3746 	return NULL;
3747 }
3748 
3749 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3750 				 const struct workqueue_attrs *from)
3751 {
3752 	to->nice = from->nice;
3753 	cpumask_copy(to->cpumask, from->cpumask);
3754 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
3755 	to->affn_strict = from->affn_strict;
3756 
3757 	/*
3758 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
3759 	 * fields as copying is used for both pool and wq attrs. Instead,
3760 	 * get_unbound_pool() explicitly clears the fields.
3761 	 */
3762 	to->affn_scope = from->affn_scope;
3763 	to->ordered = from->ordered;
3764 }
3765 
3766 /*
3767  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
3768  * comments in 'struct workqueue_attrs' definition.
3769  */
3770 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
3771 {
3772 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
3773 	attrs->ordered = false;
3774 }
3775 
3776 /* hash value of the content of @attr */
3777 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3778 {
3779 	u32 hash = 0;
3780 
3781 	hash = jhash_1word(attrs->nice, hash);
3782 	hash = jhash(cpumask_bits(attrs->cpumask),
3783 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3784 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
3785 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3786 	hash = jhash_1word(attrs->affn_strict, hash);
3787 	return hash;
3788 }
3789 
3790 /* content equality test */
3791 static bool wqattrs_equal(const struct workqueue_attrs *a,
3792 			  const struct workqueue_attrs *b)
3793 {
3794 	if (a->nice != b->nice)
3795 		return false;
3796 	if (!cpumask_equal(a->cpumask, b->cpumask))
3797 		return false;
3798 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
3799 		return false;
3800 	if (a->affn_strict != b->affn_strict)
3801 		return false;
3802 	return true;
3803 }
3804 
3805 /* Update @attrs with actually available CPUs */
3806 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
3807 				      const cpumask_t *unbound_cpumask)
3808 {
3809 	/*
3810 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
3811 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
3812 	 * @unbound_cpumask.
3813 	 */
3814 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
3815 	if (unlikely(cpumask_empty(attrs->cpumask)))
3816 		cpumask_copy(attrs->cpumask, unbound_cpumask);
3817 }
3818 
3819 /* find wq_pod_type to use for @attrs */
3820 static const struct wq_pod_type *
3821 wqattrs_pod_type(const struct workqueue_attrs *attrs)
3822 {
3823 	enum wq_affn_scope scope;
3824 	struct wq_pod_type *pt;
3825 
3826 	/* to synchronize access to wq_affn_dfl */
3827 	lockdep_assert_held(&wq_pool_mutex);
3828 
3829 	if (attrs->affn_scope == WQ_AFFN_DFL)
3830 		scope = wq_affn_dfl;
3831 	else
3832 		scope = attrs->affn_scope;
3833 
3834 	pt = &wq_pod_types[scope];
3835 
3836 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
3837 	    likely(pt->nr_pods))
3838 		return pt;
3839 
3840 	/*
3841 	 * Before workqueue_init_topology(), only SYSTEM is available which is
3842 	 * initialized in workqueue_init_early().
3843 	 */
3844 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
3845 	BUG_ON(!pt->nr_pods);
3846 	return pt;
3847 }
3848 
3849 /**
3850  * init_worker_pool - initialize a newly zalloc'd worker_pool
3851  * @pool: worker_pool to initialize
3852  *
3853  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3854  *
3855  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3856  * inside @pool proper are initialized and put_unbound_pool() can be called
3857  * on @pool safely to release it.
3858  */
3859 static int init_worker_pool(struct worker_pool *pool)
3860 {
3861 	raw_spin_lock_init(&pool->lock);
3862 	pool->id = -1;
3863 	pool->cpu = -1;
3864 	pool->node = NUMA_NO_NODE;
3865 	pool->flags |= POOL_DISASSOCIATED;
3866 	pool->watchdog_ts = jiffies;
3867 	INIT_LIST_HEAD(&pool->worklist);
3868 	INIT_LIST_HEAD(&pool->idle_list);
3869 	hash_init(pool->busy_hash);
3870 
3871 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3872 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
3873 
3874 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3875 
3876 	INIT_LIST_HEAD(&pool->workers);
3877 	INIT_LIST_HEAD(&pool->dying_workers);
3878 
3879 	ida_init(&pool->worker_ida);
3880 	INIT_HLIST_NODE(&pool->hash_node);
3881 	pool->refcnt = 1;
3882 
3883 	/* shouldn't fail above this point */
3884 	pool->attrs = alloc_workqueue_attrs();
3885 	if (!pool->attrs)
3886 		return -ENOMEM;
3887 
3888 	wqattrs_clear_for_pool(pool->attrs);
3889 
3890 	return 0;
3891 }
3892 
3893 #ifdef CONFIG_LOCKDEP
3894 static void wq_init_lockdep(struct workqueue_struct *wq)
3895 {
3896 	char *lock_name;
3897 
3898 	lockdep_register_key(&wq->key);
3899 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3900 	if (!lock_name)
3901 		lock_name = wq->name;
3902 
3903 	wq->lock_name = lock_name;
3904 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3905 }
3906 
3907 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3908 {
3909 	lockdep_unregister_key(&wq->key);
3910 }
3911 
3912 static void wq_free_lockdep(struct workqueue_struct *wq)
3913 {
3914 	if (wq->lock_name != wq->name)
3915 		kfree(wq->lock_name);
3916 }
3917 #else
3918 static void wq_init_lockdep(struct workqueue_struct *wq)
3919 {
3920 }
3921 
3922 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3923 {
3924 }
3925 
3926 static void wq_free_lockdep(struct workqueue_struct *wq)
3927 {
3928 }
3929 #endif
3930 
3931 static void rcu_free_wq(struct rcu_head *rcu)
3932 {
3933 	struct workqueue_struct *wq =
3934 		container_of(rcu, struct workqueue_struct, rcu);
3935 
3936 	wq_free_lockdep(wq);
3937 	free_percpu(wq->cpu_pwq);
3938 	free_workqueue_attrs(wq->unbound_attrs);
3939 	kfree(wq);
3940 }
3941 
3942 static void rcu_free_pool(struct rcu_head *rcu)
3943 {
3944 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3945 
3946 	ida_destroy(&pool->worker_ida);
3947 	free_workqueue_attrs(pool->attrs);
3948 	kfree(pool);
3949 }
3950 
3951 /**
3952  * put_unbound_pool - put a worker_pool
3953  * @pool: worker_pool to put
3954  *
3955  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3956  * safe manner.  get_unbound_pool() calls this function on its failure path
3957  * and this function should be able to release pools which went through,
3958  * successfully or not, init_worker_pool().
3959  *
3960  * Should be called with wq_pool_mutex held.
3961  */
3962 static void put_unbound_pool(struct worker_pool *pool)
3963 {
3964 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3965 	struct worker *worker;
3966 	LIST_HEAD(cull_list);
3967 
3968 	lockdep_assert_held(&wq_pool_mutex);
3969 
3970 	if (--pool->refcnt)
3971 		return;
3972 
3973 	/* sanity checks */
3974 	if (WARN_ON(!(pool->cpu < 0)) ||
3975 	    WARN_ON(!list_empty(&pool->worklist)))
3976 		return;
3977 
3978 	/* release id and unhash */
3979 	if (pool->id >= 0)
3980 		idr_remove(&worker_pool_idr, pool->id);
3981 	hash_del(&pool->hash_node);
3982 
3983 	/*
3984 	 * Become the manager and destroy all workers.  This prevents
3985 	 * @pool's workers from blocking on attach_mutex.  We're the last
3986 	 * manager and @pool gets freed with the flag set.
3987 	 *
3988 	 * Having a concurrent manager is quite unlikely to happen as we can
3989 	 * only get here with
3990 	 *   pwq->refcnt == pool->refcnt == 0
3991 	 * which implies no work queued to the pool, which implies no worker can
3992 	 * become the manager. However a worker could have taken the role of
3993 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
3994 	 * drops pool->lock
3995 	 */
3996 	while (true) {
3997 		rcuwait_wait_event(&manager_wait,
3998 				   !(pool->flags & POOL_MANAGER_ACTIVE),
3999 				   TASK_UNINTERRUPTIBLE);
4000 
4001 		mutex_lock(&wq_pool_attach_mutex);
4002 		raw_spin_lock_irq(&pool->lock);
4003 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4004 			pool->flags |= POOL_MANAGER_ACTIVE;
4005 			break;
4006 		}
4007 		raw_spin_unlock_irq(&pool->lock);
4008 		mutex_unlock(&wq_pool_attach_mutex);
4009 	}
4010 
4011 	while ((worker = first_idle_worker(pool)))
4012 		set_worker_dying(worker, &cull_list);
4013 	WARN_ON(pool->nr_workers || pool->nr_idle);
4014 	raw_spin_unlock_irq(&pool->lock);
4015 
4016 	wake_dying_workers(&cull_list);
4017 
4018 	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4019 		pool->detach_completion = &detach_completion;
4020 	mutex_unlock(&wq_pool_attach_mutex);
4021 
4022 	if (pool->detach_completion)
4023 		wait_for_completion(pool->detach_completion);
4024 
4025 	/* shut down the timers */
4026 	del_timer_sync(&pool->idle_timer);
4027 	cancel_work_sync(&pool->idle_cull_work);
4028 	del_timer_sync(&pool->mayday_timer);
4029 
4030 	/* RCU protected to allow dereferences from get_work_pool() */
4031 	call_rcu(&pool->rcu, rcu_free_pool);
4032 }
4033 
4034 /**
4035  * get_unbound_pool - get a worker_pool with the specified attributes
4036  * @attrs: the attributes of the worker_pool to get
4037  *
4038  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4039  * reference count and return it.  If there already is a matching
4040  * worker_pool, it will be used; otherwise, this function attempts to
4041  * create a new one.
4042  *
4043  * Should be called with wq_pool_mutex held.
4044  *
4045  * Return: On success, a worker_pool with the same attributes as @attrs.
4046  * On failure, %NULL.
4047  */
4048 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4049 {
4050 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4051 	u32 hash = wqattrs_hash(attrs);
4052 	struct worker_pool *pool;
4053 	int pod, node = NUMA_NO_NODE;
4054 
4055 	lockdep_assert_held(&wq_pool_mutex);
4056 
4057 	/* do we already have a matching pool? */
4058 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4059 		if (wqattrs_equal(pool->attrs, attrs)) {
4060 			pool->refcnt++;
4061 			return pool;
4062 		}
4063 	}
4064 
4065 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4066 	for (pod = 0; pod < pt->nr_pods; pod++) {
4067 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4068 			node = pt->pod_node[pod];
4069 			break;
4070 		}
4071 	}
4072 
4073 	/* nope, create a new one */
4074 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4075 	if (!pool || init_worker_pool(pool) < 0)
4076 		goto fail;
4077 
4078 	pool->node = node;
4079 	copy_workqueue_attrs(pool->attrs, attrs);
4080 	wqattrs_clear_for_pool(pool->attrs);
4081 
4082 	if (worker_pool_assign_id(pool) < 0)
4083 		goto fail;
4084 
4085 	/* create and start the initial worker */
4086 	if (wq_online && !create_worker(pool))
4087 		goto fail;
4088 
4089 	/* install */
4090 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
4091 
4092 	return pool;
4093 fail:
4094 	if (pool)
4095 		put_unbound_pool(pool);
4096 	return NULL;
4097 }
4098 
4099 static void rcu_free_pwq(struct rcu_head *rcu)
4100 {
4101 	kmem_cache_free(pwq_cache,
4102 			container_of(rcu, struct pool_workqueue, rcu));
4103 }
4104 
4105 /*
4106  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4107  * refcnt and needs to be destroyed.
4108  */
4109 static void pwq_release_workfn(struct kthread_work *work)
4110 {
4111 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4112 						  release_work);
4113 	struct workqueue_struct *wq = pwq->wq;
4114 	struct worker_pool *pool = pwq->pool;
4115 	bool is_last = false;
4116 
4117 	/*
4118 	 * When @pwq is not linked, it doesn't hold any reference to the
4119 	 * @wq, and @wq is invalid to access.
4120 	 */
4121 	if (!list_empty(&pwq->pwqs_node)) {
4122 		mutex_lock(&wq->mutex);
4123 		list_del_rcu(&pwq->pwqs_node);
4124 		is_last = list_empty(&wq->pwqs);
4125 		mutex_unlock(&wq->mutex);
4126 	}
4127 
4128 	if (wq->flags & WQ_UNBOUND) {
4129 		mutex_lock(&wq_pool_mutex);
4130 		put_unbound_pool(pool);
4131 		mutex_unlock(&wq_pool_mutex);
4132 	}
4133 
4134 	call_rcu(&pwq->rcu, rcu_free_pwq);
4135 
4136 	/*
4137 	 * If we're the last pwq going away, @wq is already dead and no one
4138 	 * is gonna access it anymore.  Schedule RCU free.
4139 	 */
4140 	if (is_last) {
4141 		wq_unregister_lockdep(wq);
4142 		call_rcu(&wq->rcu, rcu_free_wq);
4143 	}
4144 }
4145 
4146 /**
4147  * pwq_adjust_max_active - update a pwq's max_active to the current setting
4148  * @pwq: target pool_workqueue
4149  *
4150  * If @pwq isn't freezing, set @pwq->max_active to the associated
4151  * workqueue's saved_max_active and activate inactive work items
4152  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
4153  */
4154 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4155 {
4156 	struct workqueue_struct *wq = pwq->wq;
4157 	bool freezable = wq->flags & WQ_FREEZABLE;
4158 	unsigned long flags;
4159 
4160 	/* for @wq->saved_max_active */
4161 	lockdep_assert_held(&wq->mutex);
4162 
4163 	/* fast exit for non-freezable wqs */
4164 	if (!freezable && pwq->max_active == wq->saved_max_active)
4165 		return;
4166 
4167 	/* this function can be called during early boot w/ irq disabled */
4168 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4169 
4170 	/*
4171 	 * During [un]freezing, the caller is responsible for ensuring that
4172 	 * this function is called at least once after @workqueue_freezing
4173 	 * is updated and visible.
4174 	 */
4175 	if (!freezable || !workqueue_freezing) {
4176 		pwq->max_active = wq->saved_max_active;
4177 
4178 		while (!list_empty(&pwq->inactive_works) &&
4179 		       pwq->nr_active < pwq->max_active)
4180 			pwq_activate_first_inactive(pwq);
4181 
4182 		kick_pool(pwq->pool);
4183 	} else {
4184 		pwq->max_active = 0;
4185 	}
4186 
4187 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4188 }
4189 
4190 /* initialize newly allocated @pwq which is associated with @wq and @pool */
4191 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4192 		     struct worker_pool *pool)
4193 {
4194 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
4195 
4196 	memset(pwq, 0, sizeof(*pwq));
4197 
4198 	pwq->pool = pool;
4199 	pwq->wq = wq;
4200 	pwq->flush_color = -1;
4201 	pwq->refcnt = 1;
4202 	INIT_LIST_HEAD(&pwq->inactive_works);
4203 	INIT_LIST_HEAD(&pwq->pwqs_node);
4204 	INIT_LIST_HEAD(&pwq->mayday_node);
4205 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
4206 }
4207 
4208 /* sync @pwq with the current state of its associated wq and link it */
4209 static void link_pwq(struct pool_workqueue *pwq)
4210 {
4211 	struct workqueue_struct *wq = pwq->wq;
4212 
4213 	lockdep_assert_held(&wq->mutex);
4214 
4215 	/* may be called multiple times, ignore if already linked */
4216 	if (!list_empty(&pwq->pwqs_node))
4217 		return;
4218 
4219 	/* set the matching work_color */
4220 	pwq->work_color = wq->work_color;
4221 
4222 	/* sync max_active to the current setting */
4223 	pwq_adjust_max_active(pwq);
4224 
4225 	/* link in @pwq */
4226 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4227 }
4228 
4229 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4230 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4231 					const struct workqueue_attrs *attrs)
4232 {
4233 	struct worker_pool *pool;
4234 	struct pool_workqueue *pwq;
4235 
4236 	lockdep_assert_held(&wq_pool_mutex);
4237 
4238 	pool = get_unbound_pool(attrs);
4239 	if (!pool)
4240 		return NULL;
4241 
4242 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4243 	if (!pwq) {
4244 		put_unbound_pool(pool);
4245 		return NULL;
4246 	}
4247 
4248 	init_pwq(pwq, wq, pool);
4249 	return pwq;
4250 }
4251 
4252 /**
4253  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
4254  * @attrs: the wq_attrs of the default pwq of the target workqueue
4255  * @cpu: the target CPU
4256  * @cpu_going_down: if >= 0, the CPU to consider as offline
4257  *
4258  * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4259  * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
4260  * The result is stored in @attrs->__pod_cpumask.
4261  *
4262  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4263  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4264  * intersection of the possible CPUs of @pod and @attrs->cpumask.
4265  *
4266  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
4267  */
4268 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
4269 				int cpu_going_down)
4270 {
4271 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4272 	int pod = pt->cpu_pod[cpu];
4273 
4274 	/* does @pod have any online CPUs @attrs wants? */
4275 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
4276 	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
4277 	if (cpu_going_down >= 0)
4278 		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
4279 
4280 	if (cpumask_empty(attrs->__pod_cpumask)) {
4281 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
4282 		return;
4283 	}
4284 
4285 	/* yeap, return possible CPUs in @pod that @attrs wants */
4286 	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
4287 
4288 	if (cpumask_empty(attrs->__pod_cpumask))
4289 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4290 				"possible intersect\n");
4291 }
4292 
4293 /* install @pwq into @wq's cpu_pwq and return the old pwq */
4294 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4295 					int cpu, struct pool_workqueue *pwq)
4296 {
4297 	struct pool_workqueue *old_pwq;
4298 
4299 	lockdep_assert_held(&wq_pool_mutex);
4300 	lockdep_assert_held(&wq->mutex);
4301 
4302 	/* link_pwq() can handle duplicate calls */
4303 	link_pwq(pwq);
4304 
4305 	old_pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4306 	rcu_assign_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu), pwq);
4307 	return old_pwq;
4308 }
4309 
4310 /* context to store the prepared attrs & pwqs before applying */
4311 struct apply_wqattrs_ctx {
4312 	struct workqueue_struct	*wq;		/* target workqueue */
4313 	struct workqueue_attrs	*attrs;		/* attrs to apply */
4314 	struct list_head	list;		/* queued for batching commit */
4315 	struct pool_workqueue	*dfl_pwq;
4316 	struct pool_workqueue	*pwq_tbl[];
4317 };
4318 
4319 /* free the resources after success or abort */
4320 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4321 {
4322 	if (ctx) {
4323 		int cpu;
4324 
4325 		for_each_possible_cpu(cpu)
4326 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
4327 		put_pwq_unlocked(ctx->dfl_pwq);
4328 
4329 		free_workqueue_attrs(ctx->attrs);
4330 
4331 		kfree(ctx);
4332 	}
4333 }
4334 
4335 /* allocate the attrs and pwqs for later installation */
4336 static struct apply_wqattrs_ctx *
4337 apply_wqattrs_prepare(struct workqueue_struct *wq,
4338 		      const struct workqueue_attrs *attrs,
4339 		      const cpumask_var_t unbound_cpumask)
4340 {
4341 	struct apply_wqattrs_ctx *ctx;
4342 	struct workqueue_attrs *new_attrs;
4343 	int cpu;
4344 
4345 	lockdep_assert_held(&wq_pool_mutex);
4346 
4347 	if (WARN_ON(attrs->affn_scope < 0 ||
4348 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4349 		return ERR_PTR(-EINVAL);
4350 
4351 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
4352 
4353 	new_attrs = alloc_workqueue_attrs();
4354 	if (!ctx || !new_attrs)
4355 		goto out_free;
4356 
4357 	/*
4358 	 * If something goes wrong during CPU up/down, we'll fall back to
4359 	 * the default pwq covering whole @attrs->cpumask.  Always create
4360 	 * it even if we don't use it immediately.
4361 	 */
4362 	copy_workqueue_attrs(new_attrs, attrs);
4363 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
4364 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4365 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4366 	if (!ctx->dfl_pwq)
4367 		goto out_free;
4368 
4369 	for_each_possible_cpu(cpu) {
4370 		if (new_attrs->ordered) {
4371 			ctx->dfl_pwq->refcnt++;
4372 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
4373 		} else {
4374 			wq_calc_pod_cpumask(new_attrs, cpu, -1);
4375 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
4376 			if (!ctx->pwq_tbl[cpu])
4377 				goto out_free;
4378 		}
4379 	}
4380 
4381 	/* save the user configured attrs and sanitize it. */
4382 	copy_workqueue_attrs(new_attrs, attrs);
4383 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4384 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4385 	ctx->attrs = new_attrs;
4386 
4387 	ctx->wq = wq;
4388 	return ctx;
4389 
4390 out_free:
4391 	free_workqueue_attrs(new_attrs);
4392 	apply_wqattrs_cleanup(ctx);
4393 	return ERR_PTR(-ENOMEM);
4394 }
4395 
4396 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4397 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4398 {
4399 	int cpu;
4400 
4401 	/* all pwqs have been created successfully, let's install'em */
4402 	mutex_lock(&ctx->wq->mutex);
4403 
4404 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4405 
4406 	/* save the previous pwq and install the new one */
4407 	for_each_possible_cpu(cpu)
4408 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
4409 							ctx->pwq_tbl[cpu]);
4410 
4411 	/* @dfl_pwq might not have been used, ensure it's linked */
4412 	link_pwq(ctx->dfl_pwq);
4413 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4414 
4415 	mutex_unlock(&ctx->wq->mutex);
4416 }
4417 
4418 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4419 					const struct workqueue_attrs *attrs)
4420 {
4421 	struct apply_wqattrs_ctx *ctx;
4422 
4423 	/* only unbound workqueues can change attributes */
4424 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4425 		return -EINVAL;
4426 
4427 	/* creating multiple pwqs breaks ordering guarantee */
4428 	if (!list_empty(&wq->pwqs)) {
4429 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4430 			return -EINVAL;
4431 
4432 		wq->flags &= ~__WQ_ORDERED;
4433 	}
4434 
4435 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4436 	if (IS_ERR(ctx))
4437 		return PTR_ERR(ctx);
4438 
4439 	/* the ctx has been prepared successfully, let's commit it */
4440 	apply_wqattrs_commit(ctx);
4441 	apply_wqattrs_cleanup(ctx);
4442 
4443 	return 0;
4444 }
4445 
4446 /**
4447  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4448  * @wq: the target workqueue
4449  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4450  *
4451  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
4452  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
4453  * work items are affine to the pod it was issued on. Older pwqs are released as
4454  * in-flight work items finish. Note that a work item which repeatedly requeues
4455  * itself back-to-back will stay on its current pwq.
4456  *
4457  * Performs GFP_KERNEL allocations.
4458  *
4459  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4460  *
4461  * Return: 0 on success and -errno on failure.
4462  */
4463 int apply_workqueue_attrs(struct workqueue_struct *wq,
4464 			  const struct workqueue_attrs *attrs)
4465 {
4466 	int ret;
4467 
4468 	lockdep_assert_cpus_held();
4469 
4470 	mutex_lock(&wq_pool_mutex);
4471 	ret = apply_workqueue_attrs_locked(wq, attrs);
4472 	mutex_unlock(&wq_pool_mutex);
4473 
4474 	return ret;
4475 }
4476 
4477 /**
4478  * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4479  * @wq: the target workqueue
4480  * @cpu: the CPU to update pool association for
4481  * @hotplug_cpu: the CPU coming up or going down
4482  * @online: whether @cpu is coming up or going down
4483  *
4484  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4485  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
4486  * @wq accordingly.
4487  *
4488  *
4489  * If pod affinity can't be adjusted due to memory allocation failure, it falls
4490  * back to @wq->dfl_pwq which may not be optimal but is always correct.
4491  *
4492  * Note that when the last allowed CPU of a pod goes offline for a workqueue
4493  * with a cpumask spanning multiple pods, the workers which were already
4494  * executing the work items for the workqueue will lose their CPU affinity and
4495  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
4496  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
4497  * responsibility to flush the work item from CPU_DOWN_PREPARE.
4498  */
4499 static void wq_update_pod(struct workqueue_struct *wq, int cpu,
4500 			  int hotplug_cpu, bool online)
4501 {
4502 	int off_cpu = online ? -1 : hotplug_cpu;
4503 	struct pool_workqueue *old_pwq = NULL, *pwq;
4504 	struct workqueue_attrs *target_attrs;
4505 
4506 	lockdep_assert_held(&wq_pool_mutex);
4507 
4508 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4509 		return;
4510 
4511 	/*
4512 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4513 	 * Let's use a preallocated one.  The following buf is protected by
4514 	 * CPU hotplug exclusion.
4515 	 */
4516 	target_attrs = wq_update_pod_attrs_buf;
4517 
4518 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4519 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4520 
4521 	/* nothing to do if the target cpumask matches the current pwq */
4522 	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
4523 	pwq = rcu_dereference_protected(*per_cpu_ptr(wq->cpu_pwq, cpu),
4524 					lockdep_is_held(&wq_pool_mutex));
4525 	if (wqattrs_equal(target_attrs, pwq->pool->attrs))
4526 		return;
4527 
4528 	/* create a new pwq */
4529 	pwq = alloc_unbound_pwq(wq, target_attrs);
4530 	if (!pwq) {
4531 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
4532 			wq->name);
4533 		goto use_dfl_pwq;
4534 	}
4535 
4536 	/* Install the new pwq. */
4537 	mutex_lock(&wq->mutex);
4538 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
4539 	goto out_unlock;
4540 
4541 use_dfl_pwq:
4542 	mutex_lock(&wq->mutex);
4543 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4544 	get_pwq(wq->dfl_pwq);
4545 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4546 	old_pwq = install_unbound_pwq(wq, cpu, wq->dfl_pwq);
4547 out_unlock:
4548 	mutex_unlock(&wq->mutex);
4549 	put_pwq_unlocked(old_pwq);
4550 }
4551 
4552 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4553 {
4554 	bool highpri = wq->flags & WQ_HIGHPRI;
4555 	int cpu, ret;
4556 
4557 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
4558 	if (!wq->cpu_pwq)
4559 		goto enomem;
4560 
4561 	if (!(wq->flags & WQ_UNBOUND)) {
4562 		for_each_possible_cpu(cpu) {
4563 			struct pool_workqueue **pwq_p =
4564 				per_cpu_ptr(wq->cpu_pwq, cpu);
4565 			struct worker_pool *pool =
4566 				&(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]);
4567 
4568 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
4569 						       pool->node);
4570 			if (!*pwq_p)
4571 				goto enomem;
4572 
4573 			init_pwq(*pwq_p, wq, pool);
4574 
4575 			mutex_lock(&wq->mutex);
4576 			link_pwq(*pwq_p);
4577 			mutex_unlock(&wq->mutex);
4578 		}
4579 		return 0;
4580 	}
4581 
4582 	cpus_read_lock();
4583 	if (wq->flags & __WQ_ORDERED) {
4584 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4585 		/* there should only be single pwq for ordering guarantee */
4586 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4587 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4588 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4589 	} else {
4590 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4591 	}
4592 	cpus_read_unlock();
4593 
4594 	/* for unbound pwq, flush the pwq_release_worker ensures that the
4595 	 * pwq_release_workfn() completes before calling kfree(wq).
4596 	 */
4597 	if (ret)
4598 		kthread_flush_worker(pwq_release_worker);
4599 
4600 	return ret;
4601 
4602 enomem:
4603 	if (wq->cpu_pwq) {
4604 		for_each_possible_cpu(cpu) {
4605 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4606 
4607 			if (pwq)
4608 				kmem_cache_free(pwq_cache, pwq);
4609 		}
4610 		free_percpu(wq->cpu_pwq);
4611 		wq->cpu_pwq = NULL;
4612 	}
4613 	return -ENOMEM;
4614 }
4615 
4616 static int wq_clamp_max_active(int max_active, unsigned int flags,
4617 			       const char *name)
4618 {
4619 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
4620 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4621 			max_active, name, 1, WQ_MAX_ACTIVE);
4622 
4623 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
4624 }
4625 
4626 /*
4627  * Workqueues which may be used during memory reclaim should have a rescuer
4628  * to guarantee forward progress.
4629  */
4630 static int init_rescuer(struct workqueue_struct *wq)
4631 {
4632 	struct worker *rescuer;
4633 	int ret;
4634 
4635 	if (!(wq->flags & WQ_MEM_RECLAIM))
4636 		return 0;
4637 
4638 	rescuer = alloc_worker(NUMA_NO_NODE);
4639 	if (!rescuer) {
4640 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
4641 		       wq->name);
4642 		return -ENOMEM;
4643 	}
4644 
4645 	rescuer->rescue_wq = wq;
4646 	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
4647 	if (IS_ERR(rescuer->task)) {
4648 		ret = PTR_ERR(rescuer->task);
4649 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
4650 		       wq->name, ERR_PTR(ret));
4651 		kfree(rescuer);
4652 		return ret;
4653 	}
4654 
4655 	wq->rescuer = rescuer;
4656 	if (wq->flags & WQ_UNBOUND)
4657 		kthread_bind_mask(rescuer->task, wq->unbound_attrs->cpumask);
4658 	else
4659 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
4660 	wake_up_process(rescuer->task);
4661 
4662 	return 0;
4663 }
4664 
4665 __printf(1, 4)
4666 struct workqueue_struct *alloc_workqueue(const char *fmt,
4667 					 unsigned int flags,
4668 					 int max_active, ...)
4669 {
4670 	va_list args;
4671 	struct workqueue_struct *wq;
4672 	struct pool_workqueue *pwq;
4673 	int len;
4674 
4675 	/*
4676 	 * Unbound && max_active == 1 used to imply ordered, which is no longer
4677 	 * the case on many machines due to per-pod pools. While
4678 	 * alloc_ordered_workqueue() is the right way to create an ordered
4679 	 * workqueue, keep the previous behavior to avoid subtle breakages.
4680 	 */
4681 	if ((flags & WQ_UNBOUND) && max_active == 1)
4682 		flags |= __WQ_ORDERED;
4683 
4684 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4685 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4686 		flags |= WQ_UNBOUND;
4687 
4688 	/* allocate wq and format name */
4689 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
4690 	if (!wq)
4691 		return NULL;
4692 
4693 	if (flags & WQ_UNBOUND) {
4694 		wq->unbound_attrs = alloc_workqueue_attrs();
4695 		if (!wq->unbound_attrs)
4696 			goto err_free_wq;
4697 	}
4698 
4699 	va_start(args, max_active);
4700 	len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4701 	va_end(args);
4702 
4703 	if (len >= WQ_NAME_LEN)
4704 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", wq->name);
4705 
4706 	max_active = max_active ?: WQ_DFL_ACTIVE;
4707 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4708 
4709 	/* init wq */
4710 	wq->flags = flags;
4711 	wq->saved_max_active = max_active;
4712 	mutex_init(&wq->mutex);
4713 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4714 	INIT_LIST_HEAD(&wq->pwqs);
4715 	INIT_LIST_HEAD(&wq->flusher_queue);
4716 	INIT_LIST_HEAD(&wq->flusher_overflow);
4717 	INIT_LIST_HEAD(&wq->maydays);
4718 
4719 	wq_init_lockdep(wq);
4720 	INIT_LIST_HEAD(&wq->list);
4721 
4722 	if (alloc_and_link_pwqs(wq) < 0)
4723 		goto err_unreg_lockdep;
4724 
4725 	if (wq_online && init_rescuer(wq) < 0)
4726 		goto err_destroy;
4727 
4728 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4729 		goto err_destroy;
4730 
4731 	/*
4732 	 * wq_pool_mutex protects global freeze state and workqueues list.
4733 	 * Grab it, adjust max_active and add the new @wq to workqueues
4734 	 * list.
4735 	 */
4736 	mutex_lock(&wq_pool_mutex);
4737 
4738 	mutex_lock(&wq->mutex);
4739 	for_each_pwq(pwq, wq)
4740 		pwq_adjust_max_active(pwq);
4741 	mutex_unlock(&wq->mutex);
4742 
4743 	list_add_tail_rcu(&wq->list, &workqueues);
4744 
4745 	mutex_unlock(&wq_pool_mutex);
4746 
4747 	return wq;
4748 
4749 err_unreg_lockdep:
4750 	wq_unregister_lockdep(wq);
4751 	wq_free_lockdep(wq);
4752 err_free_wq:
4753 	free_workqueue_attrs(wq->unbound_attrs);
4754 	kfree(wq);
4755 	return NULL;
4756 err_destroy:
4757 	destroy_workqueue(wq);
4758 	return NULL;
4759 }
4760 EXPORT_SYMBOL_GPL(alloc_workqueue);
4761 
4762 static bool pwq_busy(struct pool_workqueue *pwq)
4763 {
4764 	int i;
4765 
4766 	for (i = 0; i < WORK_NR_COLORS; i++)
4767 		if (pwq->nr_in_flight[i])
4768 			return true;
4769 
4770 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4771 		return true;
4772 	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4773 		return true;
4774 
4775 	return false;
4776 }
4777 
4778 /**
4779  * destroy_workqueue - safely terminate a workqueue
4780  * @wq: target workqueue
4781  *
4782  * Safely destroy a workqueue. All work currently pending will be done first.
4783  */
4784 void destroy_workqueue(struct workqueue_struct *wq)
4785 {
4786 	struct pool_workqueue *pwq;
4787 	int cpu;
4788 
4789 	/*
4790 	 * Remove it from sysfs first so that sanity check failure doesn't
4791 	 * lead to sysfs name conflicts.
4792 	 */
4793 	workqueue_sysfs_unregister(wq);
4794 
4795 	/* mark the workqueue destruction is in progress */
4796 	mutex_lock(&wq->mutex);
4797 	wq->flags |= __WQ_DESTROYING;
4798 	mutex_unlock(&wq->mutex);
4799 
4800 	/* drain it before proceeding with destruction */
4801 	drain_workqueue(wq);
4802 
4803 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4804 	if (wq->rescuer) {
4805 		struct worker *rescuer = wq->rescuer;
4806 
4807 		/* this prevents new queueing */
4808 		raw_spin_lock_irq(&wq_mayday_lock);
4809 		wq->rescuer = NULL;
4810 		raw_spin_unlock_irq(&wq_mayday_lock);
4811 
4812 		/* rescuer will empty maydays list before exiting */
4813 		kthread_stop(rescuer->task);
4814 		kfree(rescuer);
4815 	}
4816 
4817 	/*
4818 	 * Sanity checks - grab all the locks so that we wait for all
4819 	 * in-flight operations which may do put_pwq().
4820 	 */
4821 	mutex_lock(&wq_pool_mutex);
4822 	mutex_lock(&wq->mutex);
4823 	for_each_pwq(pwq, wq) {
4824 		raw_spin_lock_irq(&pwq->pool->lock);
4825 		if (WARN_ON(pwq_busy(pwq))) {
4826 			pr_warn("%s: %s has the following busy pwq\n",
4827 				__func__, wq->name);
4828 			show_pwq(pwq);
4829 			raw_spin_unlock_irq(&pwq->pool->lock);
4830 			mutex_unlock(&wq->mutex);
4831 			mutex_unlock(&wq_pool_mutex);
4832 			show_one_workqueue(wq);
4833 			return;
4834 		}
4835 		raw_spin_unlock_irq(&pwq->pool->lock);
4836 	}
4837 	mutex_unlock(&wq->mutex);
4838 
4839 	/*
4840 	 * wq list is used to freeze wq, remove from list after
4841 	 * flushing is complete in case freeze races us.
4842 	 */
4843 	list_del_rcu(&wq->list);
4844 	mutex_unlock(&wq_pool_mutex);
4845 
4846 	/*
4847 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
4848 	 * to put the base refs. @wq will be auto-destroyed from the last
4849 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
4850 	 */
4851 	rcu_read_lock();
4852 
4853 	for_each_possible_cpu(cpu) {
4854 		pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4855 		RCU_INIT_POINTER(*per_cpu_ptr(wq->cpu_pwq, cpu), NULL);
4856 		put_pwq_unlocked(pwq);
4857 	}
4858 
4859 	put_pwq_unlocked(wq->dfl_pwq);
4860 	wq->dfl_pwq = NULL;
4861 
4862 	rcu_read_unlock();
4863 }
4864 EXPORT_SYMBOL_GPL(destroy_workqueue);
4865 
4866 /**
4867  * workqueue_set_max_active - adjust max_active of a workqueue
4868  * @wq: target workqueue
4869  * @max_active: new max_active value.
4870  *
4871  * Set max_active of @wq to @max_active.
4872  *
4873  * CONTEXT:
4874  * Don't call from IRQ context.
4875  */
4876 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4877 {
4878 	struct pool_workqueue *pwq;
4879 
4880 	/* disallow meddling with max_active for ordered workqueues */
4881 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4882 		return;
4883 
4884 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4885 
4886 	mutex_lock(&wq->mutex);
4887 
4888 	wq->flags &= ~__WQ_ORDERED;
4889 	wq->saved_max_active = max_active;
4890 
4891 	for_each_pwq(pwq, wq)
4892 		pwq_adjust_max_active(pwq);
4893 
4894 	mutex_unlock(&wq->mutex);
4895 }
4896 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4897 
4898 /**
4899  * current_work - retrieve %current task's work struct
4900  *
4901  * Determine if %current task is a workqueue worker and what it's working on.
4902  * Useful to find out the context that the %current task is running in.
4903  *
4904  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4905  */
4906 struct work_struct *current_work(void)
4907 {
4908 	struct worker *worker = current_wq_worker();
4909 
4910 	return worker ? worker->current_work : NULL;
4911 }
4912 EXPORT_SYMBOL(current_work);
4913 
4914 /**
4915  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4916  *
4917  * Determine whether %current is a workqueue rescuer.  Can be used from
4918  * work functions to determine whether it's being run off the rescuer task.
4919  *
4920  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4921  */
4922 bool current_is_workqueue_rescuer(void)
4923 {
4924 	struct worker *worker = current_wq_worker();
4925 
4926 	return worker && worker->rescue_wq;
4927 }
4928 
4929 /**
4930  * workqueue_congested - test whether a workqueue is congested
4931  * @cpu: CPU in question
4932  * @wq: target workqueue
4933  *
4934  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4935  * no synchronization around this function and the test result is
4936  * unreliable and only useful as advisory hints or for debugging.
4937  *
4938  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4939  *
4940  * With the exception of ordered workqueues, all workqueues have per-cpu
4941  * pool_workqueues, each with its own congested state. A workqueue being
4942  * congested on one CPU doesn't mean that the workqueue is contested on any
4943  * other CPUs.
4944  *
4945  * Return:
4946  * %true if congested, %false otherwise.
4947  */
4948 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4949 {
4950 	struct pool_workqueue *pwq;
4951 	bool ret;
4952 
4953 	rcu_read_lock();
4954 	preempt_disable();
4955 
4956 	if (cpu == WORK_CPU_UNBOUND)
4957 		cpu = smp_processor_id();
4958 
4959 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4960 	ret = !list_empty(&pwq->inactive_works);
4961 
4962 	preempt_enable();
4963 	rcu_read_unlock();
4964 
4965 	return ret;
4966 }
4967 EXPORT_SYMBOL_GPL(workqueue_congested);
4968 
4969 /**
4970  * work_busy - test whether a work is currently pending or running
4971  * @work: the work to be tested
4972  *
4973  * Test whether @work is currently pending or running.  There is no
4974  * synchronization around this function and the test result is
4975  * unreliable and only useful as advisory hints or for debugging.
4976  *
4977  * Return:
4978  * OR'd bitmask of WORK_BUSY_* bits.
4979  */
4980 unsigned int work_busy(struct work_struct *work)
4981 {
4982 	struct worker_pool *pool;
4983 	unsigned long flags;
4984 	unsigned int ret = 0;
4985 
4986 	if (work_pending(work))
4987 		ret |= WORK_BUSY_PENDING;
4988 
4989 	rcu_read_lock();
4990 	pool = get_work_pool(work);
4991 	if (pool) {
4992 		raw_spin_lock_irqsave(&pool->lock, flags);
4993 		if (find_worker_executing_work(pool, work))
4994 			ret |= WORK_BUSY_RUNNING;
4995 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4996 	}
4997 	rcu_read_unlock();
4998 
4999 	return ret;
5000 }
5001 EXPORT_SYMBOL_GPL(work_busy);
5002 
5003 /**
5004  * set_worker_desc - set description for the current work item
5005  * @fmt: printf-style format string
5006  * @...: arguments for the format string
5007  *
5008  * This function can be called by a running work function to describe what
5009  * the work item is about.  If the worker task gets dumped, this
5010  * information will be printed out together to help debugging.  The
5011  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5012  */
5013 void set_worker_desc(const char *fmt, ...)
5014 {
5015 	struct worker *worker = current_wq_worker();
5016 	va_list args;
5017 
5018 	if (worker) {
5019 		va_start(args, fmt);
5020 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5021 		va_end(args);
5022 	}
5023 }
5024 EXPORT_SYMBOL_GPL(set_worker_desc);
5025 
5026 /**
5027  * print_worker_info - print out worker information and description
5028  * @log_lvl: the log level to use when printing
5029  * @task: target task
5030  *
5031  * If @task is a worker and currently executing a work item, print out the
5032  * name of the workqueue being serviced and worker description set with
5033  * set_worker_desc() by the currently executing work item.
5034  *
5035  * This function can be safely called on any task as long as the
5036  * task_struct itself is accessible.  While safe, this function isn't
5037  * synchronized and may print out mixups or garbages of limited length.
5038  */
5039 void print_worker_info(const char *log_lvl, struct task_struct *task)
5040 {
5041 	work_func_t *fn = NULL;
5042 	char name[WQ_NAME_LEN] = { };
5043 	char desc[WORKER_DESC_LEN] = { };
5044 	struct pool_workqueue *pwq = NULL;
5045 	struct workqueue_struct *wq = NULL;
5046 	struct worker *worker;
5047 
5048 	if (!(task->flags & PF_WQ_WORKER))
5049 		return;
5050 
5051 	/*
5052 	 * This function is called without any synchronization and @task
5053 	 * could be in any state.  Be careful with dereferences.
5054 	 */
5055 	worker = kthread_probe_data(task);
5056 
5057 	/*
5058 	 * Carefully copy the associated workqueue's workfn, name and desc.
5059 	 * Keep the original last '\0' in case the original is garbage.
5060 	 */
5061 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5062 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5063 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5064 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5065 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5066 
5067 	if (fn || name[0] || desc[0]) {
5068 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5069 		if (strcmp(name, desc))
5070 			pr_cont(" (%s)", desc);
5071 		pr_cont("\n");
5072 	}
5073 }
5074 
5075 static void pr_cont_pool_info(struct worker_pool *pool)
5076 {
5077 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5078 	if (pool->node != NUMA_NO_NODE)
5079 		pr_cont(" node=%d", pool->node);
5080 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
5081 }
5082 
5083 struct pr_cont_work_struct {
5084 	bool comma;
5085 	work_func_t func;
5086 	long ctr;
5087 };
5088 
5089 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5090 {
5091 	if (!pcwsp->ctr)
5092 		goto out_record;
5093 	if (func == pcwsp->func) {
5094 		pcwsp->ctr++;
5095 		return;
5096 	}
5097 	if (pcwsp->ctr == 1)
5098 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5099 	else
5100 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5101 	pcwsp->ctr = 0;
5102 out_record:
5103 	if ((long)func == -1L)
5104 		return;
5105 	pcwsp->comma = comma;
5106 	pcwsp->func = func;
5107 	pcwsp->ctr = 1;
5108 }
5109 
5110 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
5111 {
5112 	if (work->func == wq_barrier_func) {
5113 		struct wq_barrier *barr;
5114 
5115 		barr = container_of(work, struct wq_barrier, work);
5116 
5117 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5118 		pr_cont("%s BAR(%d)", comma ? "," : "",
5119 			task_pid_nr(barr->task));
5120 	} else {
5121 		if (!comma)
5122 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5123 		pr_cont_work_flush(comma, work->func, pcwsp);
5124 	}
5125 }
5126 
5127 static void show_pwq(struct pool_workqueue *pwq)
5128 {
5129 	struct pr_cont_work_struct pcws = { .ctr = 0, };
5130 	struct worker_pool *pool = pwq->pool;
5131 	struct work_struct *work;
5132 	struct worker *worker;
5133 	bool has_in_flight = false, has_pending = false;
5134 	int bkt;
5135 
5136 	pr_info("  pwq %d:", pool->id);
5137 	pr_cont_pool_info(pool);
5138 
5139 	pr_cont(" active=%d/%d refcnt=%d%s\n",
5140 		pwq->nr_active, pwq->max_active, pwq->refcnt,
5141 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5142 
5143 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5144 		if (worker->current_pwq == pwq) {
5145 			has_in_flight = true;
5146 			break;
5147 		}
5148 	}
5149 	if (has_in_flight) {
5150 		bool comma = false;
5151 
5152 		pr_info("    in-flight:");
5153 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5154 			if (worker->current_pwq != pwq)
5155 				continue;
5156 
5157 			pr_cont("%s %d%s:%ps", comma ? "," : "",
5158 				task_pid_nr(worker->task),
5159 				worker->rescue_wq ? "(RESCUER)" : "",
5160 				worker->current_func);
5161 			list_for_each_entry(work, &worker->scheduled, entry)
5162 				pr_cont_work(false, work, &pcws);
5163 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5164 			comma = true;
5165 		}
5166 		pr_cont("\n");
5167 	}
5168 
5169 	list_for_each_entry(work, &pool->worklist, entry) {
5170 		if (get_work_pwq(work) == pwq) {
5171 			has_pending = true;
5172 			break;
5173 		}
5174 	}
5175 	if (has_pending) {
5176 		bool comma = false;
5177 
5178 		pr_info("    pending:");
5179 		list_for_each_entry(work, &pool->worklist, entry) {
5180 			if (get_work_pwq(work) != pwq)
5181 				continue;
5182 
5183 			pr_cont_work(comma, work, &pcws);
5184 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5185 		}
5186 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5187 		pr_cont("\n");
5188 	}
5189 
5190 	if (!list_empty(&pwq->inactive_works)) {
5191 		bool comma = false;
5192 
5193 		pr_info("    inactive:");
5194 		list_for_each_entry(work, &pwq->inactive_works, entry) {
5195 			pr_cont_work(comma, work, &pcws);
5196 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5197 		}
5198 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5199 		pr_cont("\n");
5200 	}
5201 }
5202 
5203 /**
5204  * show_one_workqueue - dump state of specified workqueue
5205  * @wq: workqueue whose state will be printed
5206  */
5207 void show_one_workqueue(struct workqueue_struct *wq)
5208 {
5209 	struct pool_workqueue *pwq;
5210 	bool idle = true;
5211 	unsigned long flags;
5212 
5213 	for_each_pwq(pwq, wq) {
5214 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5215 			idle = false;
5216 			break;
5217 		}
5218 	}
5219 	if (idle) /* Nothing to print for idle workqueue */
5220 		return;
5221 
5222 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
5223 
5224 	for_each_pwq(pwq, wq) {
5225 		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5226 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5227 			/*
5228 			 * Defer printing to avoid deadlocks in console
5229 			 * drivers that queue work while holding locks
5230 			 * also taken in their write paths.
5231 			 */
5232 			printk_deferred_enter();
5233 			show_pwq(pwq);
5234 			printk_deferred_exit();
5235 		}
5236 		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5237 		/*
5238 		 * We could be printing a lot from atomic context, e.g.
5239 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
5240 		 * hard lockup.
5241 		 */
5242 		touch_nmi_watchdog();
5243 	}
5244 
5245 }
5246 
5247 /**
5248  * show_one_worker_pool - dump state of specified worker pool
5249  * @pool: worker pool whose state will be printed
5250  */
5251 static void show_one_worker_pool(struct worker_pool *pool)
5252 {
5253 	struct worker *worker;
5254 	bool first = true;
5255 	unsigned long flags;
5256 	unsigned long hung = 0;
5257 
5258 	raw_spin_lock_irqsave(&pool->lock, flags);
5259 	if (pool->nr_workers == pool->nr_idle)
5260 		goto next_pool;
5261 
5262 	/* How long the first pending work is waiting for a worker. */
5263 	if (!list_empty(&pool->worklist))
5264 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5265 
5266 	/*
5267 	 * Defer printing to avoid deadlocks in console drivers that
5268 	 * queue work while holding locks also taken in their write
5269 	 * paths.
5270 	 */
5271 	printk_deferred_enter();
5272 	pr_info("pool %d:", pool->id);
5273 	pr_cont_pool_info(pool);
5274 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
5275 	if (pool->manager)
5276 		pr_cont(" manager: %d",
5277 			task_pid_nr(pool->manager->task));
5278 	list_for_each_entry(worker, &pool->idle_list, entry) {
5279 		pr_cont(" %s%d", first ? "idle: " : "",
5280 			task_pid_nr(worker->task));
5281 		first = false;
5282 	}
5283 	pr_cont("\n");
5284 	printk_deferred_exit();
5285 next_pool:
5286 	raw_spin_unlock_irqrestore(&pool->lock, flags);
5287 	/*
5288 	 * We could be printing a lot from atomic context, e.g.
5289 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
5290 	 * hard lockup.
5291 	 */
5292 	touch_nmi_watchdog();
5293 
5294 }
5295 
5296 /**
5297  * show_all_workqueues - dump workqueue state
5298  *
5299  * Called from a sysrq handler and prints out all busy workqueues and pools.
5300  */
5301 void show_all_workqueues(void)
5302 {
5303 	struct workqueue_struct *wq;
5304 	struct worker_pool *pool;
5305 	int pi;
5306 
5307 	rcu_read_lock();
5308 
5309 	pr_info("Showing busy workqueues and worker pools:\n");
5310 
5311 	list_for_each_entry_rcu(wq, &workqueues, list)
5312 		show_one_workqueue(wq);
5313 
5314 	for_each_pool(pool, pi)
5315 		show_one_worker_pool(pool);
5316 
5317 	rcu_read_unlock();
5318 }
5319 
5320 /**
5321  * show_freezable_workqueues - dump freezable workqueue state
5322  *
5323  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5324  * still busy.
5325  */
5326 void show_freezable_workqueues(void)
5327 {
5328 	struct workqueue_struct *wq;
5329 
5330 	rcu_read_lock();
5331 
5332 	pr_info("Showing freezable workqueues that are still busy:\n");
5333 
5334 	list_for_each_entry_rcu(wq, &workqueues, list) {
5335 		if (!(wq->flags & WQ_FREEZABLE))
5336 			continue;
5337 		show_one_workqueue(wq);
5338 	}
5339 
5340 	rcu_read_unlock();
5341 }
5342 
5343 /* used to show worker information through /proc/PID/{comm,stat,status} */
5344 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5345 {
5346 	int off;
5347 
5348 	/* always show the actual comm */
5349 	off = strscpy(buf, task->comm, size);
5350 	if (off < 0)
5351 		return;
5352 
5353 	/* stabilize PF_WQ_WORKER and worker pool association */
5354 	mutex_lock(&wq_pool_attach_mutex);
5355 
5356 	if (task->flags & PF_WQ_WORKER) {
5357 		struct worker *worker = kthread_data(task);
5358 		struct worker_pool *pool = worker->pool;
5359 
5360 		if (pool) {
5361 			raw_spin_lock_irq(&pool->lock);
5362 			/*
5363 			 * ->desc tracks information (wq name or
5364 			 * set_worker_desc()) for the latest execution.  If
5365 			 * current, prepend '+', otherwise '-'.
5366 			 */
5367 			if (worker->desc[0] != '\0') {
5368 				if (worker->current_work)
5369 					scnprintf(buf + off, size - off, "+%s",
5370 						  worker->desc);
5371 				else
5372 					scnprintf(buf + off, size - off, "-%s",
5373 						  worker->desc);
5374 			}
5375 			raw_spin_unlock_irq(&pool->lock);
5376 		}
5377 	}
5378 
5379 	mutex_unlock(&wq_pool_attach_mutex);
5380 }
5381 
5382 #ifdef CONFIG_SMP
5383 
5384 /*
5385  * CPU hotplug.
5386  *
5387  * There are two challenges in supporting CPU hotplug.  Firstly, there
5388  * are a lot of assumptions on strong associations among work, pwq and
5389  * pool which make migrating pending and scheduled works very
5390  * difficult to implement without impacting hot paths.  Secondly,
5391  * worker pools serve mix of short, long and very long running works making
5392  * blocked draining impractical.
5393  *
5394  * This is solved by allowing the pools to be disassociated from the CPU
5395  * running as an unbound one and allowing it to be reattached later if the
5396  * cpu comes back online.
5397  */
5398 
5399 static void unbind_workers(int cpu)
5400 {
5401 	struct worker_pool *pool;
5402 	struct worker *worker;
5403 
5404 	for_each_cpu_worker_pool(pool, cpu) {
5405 		mutex_lock(&wq_pool_attach_mutex);
5406 		raw_spin_lock_irq(&pool->lock);
5407 
5408 		/*
5409 		 * We've blocked all attach/detach operations. Make all workers
5410 		 * unbound and set DISASSOCIATED.  Before this, all workers
5411 		 * must be on the cpu.  After this, they may become diasporas.
5412 		 * And the preemption disabled section in their sched callbacks
5413 		 * are guaranteed to see WORKER_UNBOUND since the code here
5414 		 * is on the same cpu.
5415 		 */
5416 		for_each_pool_worker(worker, pool)
5417 			worker->flags |= WORKER_UNBOUND;
5418 
5419 		pool->flags |= POOL_DISASSOCIATED;
5420 
5421 		/*
5422 		 * The handling of nr_running in sched callbacks are disabled
5423 		 * now.  Zap nr_running.  After this, nr_running stays zero and
5424 		 * need_more_worker() and keep_working() are always true as
5425 		 * long as the worklist is not empty.  This pool now behaves as
5426 		 * an unbound (in terms of concurrency management) pool which
5427 		 * are served by workers tied to the pool.
5428 		 */
5429 		pool->nr_running = 0;
5430 
5431 		/*
5432 		 * With concurrency management just turned off, a busy
5433 		 * worker blocking could lead to lengthy stalls.  Kick off
5434 		 * unbound chain execution of currently pending work items.
5435 		 */
5436 		kick_pool(pool);
5437 
5438 		raw_spin_unlock_irq(&pool->lock);
5439 
5440 		for_each_pool_worker(worker, pool)
5441 			unbind_worker(worker);
5442 
5443 		mutex_unlock(&wq_pool_attach_mutex);
5444 	}
5445 }
5446 
5447 /**
5448  * rebind_workers - rebind all workers of a pool to the associated CPU
5449  * @pool: pool of interest
5450  *
5451  * @pool->cpu is coming online.  Rebind all workers to the CPU.
5452  */
5453 static void rebind_workers(struct worker_pool *pool)
5454 {
5455 	struct worker *worker;
5456 
5457 	lockdep_assert_held(&wq_pool_attach_mutex);
5458 
5459 	/*
5460 	 * Restore CPU affinity of all workers.  As all idle workers should
5461 	 * be on the run-queue of the associated CPU before any local
5462 	 * wake-ups for concurrency management happen, restore CPU affinity
5463 	 * of all workers first and then clear UNBOUND.  As we're called
5464 	 * from CPU_ONLINE, the following shouldn't fail.
5465 	 */
5466 	for_each_pool_worker(worker, pool) {
5467 		kthread_set_per_cpu(worker->task, pool->cpu);
5468 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5469 						  pool_allowed_cpus(pool)) < 0);
5470 	}
5471 
5472 	raw_spin_lock_irq(&pool->lock);
5473 
5474 	pool->flags &= ~POOL_DISASSOCIATED;
5475 
5476 	for_each_pool_worker(worker, pool) {
5477 		unsigned int worker_flags = worker->flags;
5478 
5479 		/*
5480 		 * We want to clear UNBOUND but can't directly call
5481 		 * worker_clr_flags() or adjust nr_running.  Atomically
5482 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5483 		 * @worker will clear REBOUND using worker_clr_flags() when
5484 		 * it initiates the next execution cycle thus restoring
5485 		 * concurrency management.  Note that when or whether
5486 		 * @worker clears REBOUND doesn't affect correctness.
5487 		 *
5488 		 * WRITE_ONCE() is necessary because @worker->flags may be
5489 		 * tested without holding any lock in
5490 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5491 		 * fail incorrectly leading to premature concurrency
5492 		 * management operations.
5493 		 */
5494 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5495 		worker_flags |= WORKER_REBOUND;
5496 		worker_flags &= ~WORKER_UNBOUND;
5497 		WRITE_ONCE(worker->flags, worker_flags);
5498 	}
5499 
5500 	raw_spin_unlock_irq(&pool->lock);
5501 }
5502 
5503 /**
5504  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5505  * @pool: unbound pool of interest
5506  * @cpu: the CPU which is coming up
5507  *
5508  * An unbound pool may end up with a cpumask which doesn't have any online
5509  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5510  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5511  * online CPU before, cpus_allowed of all its workers should be restored.
5512  */
5513 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5514 {
5515 	static cpumask_t cpumask;
5516 	struct worker *worker;
5517 
5518 	lockdep_assert_held(&wq_pool_attach_mutex);
5519 
5520 	/* is @cpu allowed for @pool? */
5521 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5522 		return;
5523 
5524 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5525 
5526 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5527 	for_each_pool_worker(worker, pool)
5528 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5529 }
5530 
5531 int workqueue_prepare_cpu(unsigned int cpu)
5532 {
5533 	struct worker_pool *pool;
5534 
5535 	for_each_cpu_worker_pool(pool, cpu) {
5536 		if (pool->nr_workers)
5537 			continue;
5538 		if (!create_worker(pool))
5539 			return -ENOMEM;
5540 	}
5541 	return 0;
5542 }
5543 
5544 int workqueue_online_cpu(unsigned int cpu)
5545 {
5546 	struct worker_pool *pool;
5547 	struct workqueue_struct *wq;
5548 	int pi;
5549 
5550 	mutex_lock(&wq_pool_mutex);
5551 
5552 	for_each_pool(pool, pi) {
5553 		mutex_lock(&wq_pool_attach_mutex);
5554 
5555 		if (pool->cpu == cpu)
5556 			rebind_workers(pool);
5557 		else if (pool->cpu < 0)
5558 			restore_unbound_workers_cpumask(pool, cpu);
5559 
5560 		mutex_unlock(&wq_pool_attach_mutex);
5561 	}
5562 
5563 	/* update pod affinity of unbound workqueues */
5564 	list_for_each_entry(wq, &workqueues, list) {
5565 		struct workqueue_attrs *attrs = wq->unbound_attrs;
5566 
5567 		if (attrs) {
5568 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5569 			int tcpu;
5570 
5571 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5572 				wq_update_pod(wq, tcpu, cpu, true);
5573 		}
5574 	}
5575 
5576 	mutex_unlock(&wq_pool_mutex);
5577 	return 0;
5578 }
5579 
5580 int workqueue_offline_cpu(unsigned int cpu)
5581 {
5582 	struct workqueue_struct *wq;
5583 
5584 	/* unbinding per-cpu workers should happen on the local CPU */
5585 	if (WARN_ON(cpu != smp_processor_id()))
5586 		return -1;
5587 
5588 	unbind_workers(cpu);
5589 
5590 	/* update pod affinity of unbound workqueues */
5591 	mutex_lock(&wq_pool_mutex);
5592 	list_for_each_entry(wq, &workqueues, list) {
5593 		struct workqueue_attrs *attrs = wq->unbound_attrs;
5594 
5595 		if (attrs) {
5596 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5597 			int tcpu;
5598 
5599 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5600 				wq_update_pod(wq, tcpu, cpu, false);
5601 		}
5602 	}
5603 	mutex_unlock(&wq_pool_mutex);
5604 
5605 	return 0;
5606 }
5607 
5608 struct work_for_cpu {
5609 	struct work_struct work;
5610 	long (*fn)(void *);
5611 	void *arg;
5612 	long ret;
5613 };
5614 
5615 static void work_for_cpu_fn(struct work_struct *work)
5616 {
5617 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5618 
5619 	wfc->ret = wfc->fn(wfc->arg);
5620 }
5621 
5622 /**
5623  * work_on_cpu_key - run a function in thread context on a particular cpu
5624  * @cpu: the cpu to run on
5625  * @fn: the function to run
5626  * @arg: the function arg
5627  * @key: The lock class key for lock debugging purposes
5628  *
5629  * It is up to the caller to ensure that the cpu doesn't go offline.
5630  * The caller must not hold any locks which would prevent @fn from completing.
5631  *
5632  * Return: The value @fn returns.
5633  */
5634 long work_on_cpu_key(int cpu, long (*fn)(void *),
5635 		     void *arg, struct lock_class_key *key)
5636 {
5637 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5638 
5639 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
5640 	schedule_work_on(cpu, &wfc.work);
5641 	flush_work(&wfc.work);
5642 	destroy_work_on_stack(&wfc.work);
5643 	return wfc.ret;
5644 }
5645 EXPORT_SYMBOL_GPL(work_on_cpu_key);
5646 
5647 /**
5648  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
5649  * @cpu: the cpu to run on
5650  * @fn:  the function to run
5651  * @arg: the function argument
5652  * @key: The lock class key for lock debugging purposes
5653  *
5654  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5655  * any locks which would prevent @fn from completing.
5656  *
5657  * Return: The value @fn returns.
5658  */
5659 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
5660 			  void *arg, struct lock_class_key *key)
5661 {
5662 	long ret = -ENODEV;
5663 
5664 	cpus_read_lock();
5665 	if (cpu_online(cpu))
5666 		ret = work_on_cpu_key(cpu, fn, arg, key);
5667 	cpus_read_unlock();
5668 	return ret;
5669 }
5670 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
5671 #endif /* CONFIG_SMP */
5672 
5673 #ifdef CONFIG_FREEZER
5674 
5675 /**
5676  * freeze_workqueues_begin - begin freezing workqueues
5677  *
5678  * Start freezing workqueues.  After this function returns, all freezable
5679  * workqueues will queue new works to their inactive_works list instead of
5680  * pool->worklist.
5681  *
5682  * CONTEXT:
5683  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5684  */
5685 void freeze_workqueues_begin(void)
5686 {
5687 	struct workqueue_struct *wq;
5688 	struct pool_workqueue *pwq;
5689 
5690 	mutex_lock(&wq_pool_mutex);
5691 
5692 	WARN_ON_ONCE(workqueue_freezing);
5693 	workqueue_freezing = true;
5694 
5695 	list_for_each_entry(wq, &workqueues, list) {
5696 		mutex_lock(&wq->mutex);
5697 		for_each_pwq(pwq, wq)
5698 			pwq_adjust_max_active(pwq);
5699 		mutex_unlock(&wq->mutex);
5700 	}
5701 
5702 	mutex_unlock(&wq_pool_mutex);
5703 }
5704 
5705 /**
5706  * freeze_workqueues_busy - are freezable workqueues still busy?
5707  *
5708  * Check whether freezing is complete.  This function must be called
5709  * between freeze_workqueues_begin() and thaw_workqueues().
5710  *
5711  * CONTEXT:
5712  * Grabs and releases wq_pool_mutex.
5713  *
5714  * Return:
5715  * %true if some freezable workqueues are still busy.  %false if freezing
5716  * is complete.
5717  */
5718 bool freeze_workqueues_busy(void)
5719 {
5720 	bool busy = false;
5721 	struct workqueue_struct *wq;
5722 	struct pool_workqueue *pwq;
5723 
5724 	mutex_lock(&wq_pool_mutex);
5725 
5726 	WARN_ON_ONCE(!workqueue_freezing);
5727 
5728 	list_for_each_entry(wq, &workqueues, list) {
5729 		if (!(wq->flags & WQ_FREEZABLE))
5730 			continue;
5731 		/*
5732 		 * nr_active is monotonically decreasing.  It's safe
5733 		 * to peek without lock.
5734 		 */
5735 		rcu_read_lock();
5736 		for_each_pwq(pwq, wq) {
5737 			WARN_ON_ONCE(pwq->nr_active < 0);
5738 			if (pwq->nr_active) {
5739 				busy = true;
5740 				rcu_read_unlock();
5741 				goto out_unlock;
5742 			}
5743 		}
5744 		rcu_read_unlock();
5745 	}
5746 out_unlock:
5747 	mutex_unlock(&wq_pool_mutex);
5748 	return busy;
5749 }
5750 
5751 /**
5752  * thaw_workqueues - thaw workqueues
5753  *
5754  * Thaw workqueues.  Normal queueing is restored and all collected
5755  * frozen works are transferred to their respective pool worklists.
5756  *
5757  * CONTEXT:
5758  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5759  */
5760 void thaw_workqueues(void)
5761 {
5762 	struct workqueue_struct *wq;
5763 	struct pool_workqueue *pwq;
5764 
5765 	mutex_lock(&wq_pool_mutex);
5766 
5767 	if (!workqueue_freezing)
5768 		goto out_unlock;
5769 
5770 	workqueue_freezing = false;
5771 
5772 	/* restore max_active and repopulate worklist */
5773 	list_for_each_entry(wq, &workqueues, list) {
5774 		mutex_lock(&wq->mutex);
5775 		for_each_pwq(pwq, wq)
5776 			pwq_adjust_max_active(pwq);
5777 		mutex_unlock(&wq->mutex);
5778 	}
5779 
5780 out_unlock:
5781 	mutex_unlock(&wq_pool_mutex);
5782 }
5783 #endif /* CONFIG_FREEZER */
5784 
5785 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5786 {
5787 	LIST_HEAD(ctxs);
5788 	int ret = 0;
5789 	struct workqueue_struct *wq;
5790 	struct apply_wqattrs_ctx *ctx, *n;
5791 
5792 	lockdep_assert_held(&wq_pool_mutex);
5793 
5794 	list_for_each_entry(wq, &workqueues, list) {
5795 		if (!(wq->flags & WQ_UNBOUND))
5796 			continue;
5797 
5798 		/* creating multiple pwqs breaks ordering guarantee */
5799 		if (!list_empty(&wq->pwqs)) {
5800 			if (wq->flags & __WQ_ORDERED_EXPLICIT)
5801 				continue;
5802 			wq->flags &= ~__WQ_ORDERED;
5803 		}
5804 
5805 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
5806 		if (IS_ERR(ctx)) {
5807 			ret = PTR_ERR(ctx);
5808 			break;
5809 		}
5810 
5811 		list_add_tail(&ctx->list, &ctxs);
5812 	}
5813 
5814 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5815 		if (!ret)
5816 			apply_wqattrs_commit(ctx);
5817 		apply_wqattrs_cleanup(ctx);
5818 	}
5819 
5820 	if (!ret) {
5821 		mutex_lock(&wq_pool_attach_mutex);
5822 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5823 		mutex_unlock(&wq_pool_attach_mutex);
5824 	}
5825 	return ret;
5826 }
5827 
5828 /**
5829  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
5830  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
5831  *
5832  * This function can be called from cpuset code to provide a set of isolated
5833  * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
5834  * either cpus_read_lock or cpus_write_lock.
5835  */
5836 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
5837 {
5838 	cpumask_var_t cpumask;
5839 	int ret = 0;
5840 
5841 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5842 		return -ENOMEM;
5843 
5844 	lockdep_assert_cpus_held();
5845 	mutex_lock(&wq_pool_mutex);
5846 
5847 	/* Save the current isolated cpumask & export it via sysfs */
5848 	cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
5849 
5850 	/*
5851 	 * If the operation fails, it will fall back to
5852 	 * wq_requested_unbound_cpumask which is initially set to
5853 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
5854 	 * by any subsequent write to workqueue/cpumask sysfs file.
5855 	 */
5856 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
5857 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
5858 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
5859 		ret = workqueue_apply_unbound_cpumask(cpumask);
5860 
5861 	mutex_unlock(&wq_pool_mutex);
5862 	free_cpumask_var(cpumask);
5863 	return ret;
5864 }
5865 
5866 static int parse_affn_scope(const char *val)
5867 {
5868 	int i;
5869 
5870 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
5871 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
5872 			return i;
5873 	}
5874 	return -EINVAL;
5875 }
5876 
5877 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
5878 {
5879 	struct workqueue_struct *wq;
5880 	int affn, cpu;
5881 
5882 	affn = parse_affn_scope(val);
5883 	if (affn < 0)
5884 		return affn;
5885 	if (affn == WQ_AFFN_DFL)
5886 		return -EINVAL;
5887 
5888 	cpus_read_lock();
5889 	mutex_lock(&wq_pool_mutex);
5890 
5891 	wq_affn_dfl = affn;
5892 
5893 	list_for_each_entry(wq, &workqueues, list) {
5894 		for_each_online_cpu(cpu) {
5895 			wq_update_pod(wq, cpu, cpu, true);
5896 		}
5897 	}
5898 
5899 	mutex_unlock(&wq_pool_mutex);
5900 	cpus_read_unlock();
5901 
5902 	return 0;
5903 }
5904 
5905 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
5906 {
5907 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
5908 }
5909 
5910 static const struct kernel_param_ops wq_affn_dfl_ops = {
5911 	.set	= wq_affn_dfl_set,
5912 	.get	= wq_affn_dfl_get,
5913 };
5914 
5915 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
5916 
5917 #ifdef CONFIG_SYSFS
5918 /*
5919  * Workqueues with WQ_SYSFS flag set is visible to userland via
5920  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5921  * following attributes.
5922  *
5923  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
5924  *  max_active		RW int	: maximum number of in-flight work items
5925  *
5926  * Unbound workqueues have the following extra attributes.
5927  *
5928  *  nice		RW int	: nice value of the workers
5929  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
5930  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
5931  *  affinity_strict	RW bool : worker CPU affinity is strict
5932  */
5933 struct wq_device {
5934 	struct workqueue_struct		*wq;
5935 	struct device			dev;
5936 };
5937 
5938 static struct workqueue_struct *dev_to_wq(struct device *dev)
5939 {
5940 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5941 
5942 	return wq_dev->wq;
5943 }
5944 
5945 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5946 			    char *buf)
5947 {
5948 	struct workqueue_struct *wq = dev_to_wq(dev);
5949 
5950 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5951 }
5952 static DEVICE_ATTR_RO(per_cpu);
5953 
5954 static ssize_t max_active_show(struct device *dev,
5955 			       struct device_attribute *attr, char *buf)
5956 {
5957 	struct workqueue_struct *wq = dev_to_wq(dev);
5958 
5959 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5960 }
5961 
5962 static ssize_t max_active_store(struct device *dev,
5963 				struct device_attribute *attr, const char *buf,
5964 				size_t count)
5965 {
5966 	struct workqueue_struct *wq = dev_to_wq(dev);
5967 	int val;
5968 
5969 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5970 		return -EINVAL;
5971 
5972 	workqueue_set_max_active(wq, val);
5973 	return count;
5974 }
5975 static DEVICE_ATTR_RW(max_active);
5976 
5977 static struct attribute *wq_sysfs_attrs[] = {
5978 	&dev_attr_per_cpu.attr,
5979 	&dev_attr_max_active.attr,
5980 	NULL,
5981 };
5982 ATTRIBUTE_GROUPS(wq_sysfs);
5983 
5984 static void apply_wqattrs_lock(void)
5985 {
5986 	/* CPUs should stay stable across pwq creations and installations */
5987 	cpus_read_lock();
5988 	mutex_lock(&wq_pool_mutex);
5989 }
5990 
5991 static void apply_wqattrs_unlock(void)
5992 {
5993 	mutex_unlock(&wq_pool_mutex);
5994 	cpus_read_unlock();
5995 }
5996 
5997 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5998 			    char *buf)
5999 {
6000 	struct workqueue_struct *wq = dev_to_wq(dev);
6001 	int written;
6002 
6003 	mutex_lock(&wq->mutex);
6004 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
6005 	mutex_unlock(&wq->mutex);
6006 
6007 	return written;
6008 }
6009 
6010 /* prepare workqueue_attrs for sysfs store operations */
6011 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6012 {
6013 	struct workqueue_attrs *attrs;
6014 
6015 	lockdep_assert_held(&wq_pool_mutex);
6016 
6017 	attrs = alloc_workqueue_attrs();
6018 	if (!attrs)
6019 		return NULL;
6020 
6021 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
6022 	return attrs;
6023 }
6024 
6025 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6026 			     const char *buf, size_t count)
6027 {
6028 	struct workqueue_struct *wq = dev_to_wq(dev);
6029 	struct workqueue_attrs *attrs;
6030 	int ret = -ENOMEM;
6031 
6032 	apply_wqattrs_lock();
6033 
6034 	attrs = wq_sysfs_prep_attrs(wq);
6035 	if (!attrs)
6036 		goto out_unlock;
6037 
6038 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6039 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6040 		ret = apply_workqueue_attrs_locked(wq, attrs);
6041 	else
6042 		ret = -EINVAL;
6043 
6044 out_unlock:
6045 	apply_wqattrs_unlock();
6046 	free_workqueue_attrs(attrs);
6047 	return ret ?: count;
6048 }
6049 
6050 static ssize_t wq_cpumask_show(struct device *dev,
6051 			       struct device_attribute *attr, char *buf)
6052 {
6053 	struct workqueue_struct *wq = dev_to_wq(dev);
6054 	int written;
6055 
6056 	mutex_lock(&wq->mutex);
6057 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6058 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
6059 	mutex_unlock(&wq->mutex);
6060 	return written;
6061 }
6062 
6063 static ssize_t wq_cpumask_store(struct device *dev,
6064 				struct device_attribute *attr,
6065 				const char *buf, size_t count)
6066 {
6067 	struct workqueue_struct *wq = dev_to_wq(dev);
6068 	struct workqueue_attrs *attrs;
6069 	int ret = -ENOMEM;
6070 
6071 	apply_wqattrs_lock();
6072 
6073 	attrs = wq_sysfs_prep_attrs(wq);
6074 	if (!attrs)
6075 		goto out_unlock;
6076 
6077 	ret = cpumask_parse(buf, attrs->cpumask);
6078 	if (!ret)
6079 		ret = apply_workqueue_attrs_locked(wq, attrs);
6080 
6081 out_unlock:
6082 	apply_wqattrs_unlock();
6083 	free_workqueue_attrs(attrs);
6084 	return ret ?: count;
6085 }
6086 
6087 static ssize_t wq_affn_scope_show(struct device *dev,
6088 				  struct device_attribute *attr, char *buf)
6089 {
6090 	struct workqueue_struct *wq = dev_to_wq(dev);
6091 	int written;
6092 
6093 	mutex_lock(&wq->mutex);
6094 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
6095 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
6096 				    wq_affn_names[WQ_AFFN_DFL],
6097 				    wq_affn_names[wq_affn_dfl]);
6098 	else
6099 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
6100 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
6101 	mutex_unlock(&wq->mutex);
6102 
6103 	return written;
6104 }
6105 
6106 static ssize_t wq_affn_scope_store(struct device *dev,
6107 				   struct device_attribute *attr,
6108 				   const char *buf, size_t count)
6109 {
6110 	struct workqueue_struct *wq = dev_to_wq(dev);
6111 	struct workqueue_attrs *attrs;
6112 	int affn, ret = -ENOMEM;
6113 
6114 	affn = parse_affn_scope(buf);
6115 	if (affn < 0)
6116 		return affn;
6117 
6118 	apply_wqattrs_lock();
6119 	attrs = wq_sysfs_prep_attrs(wq);
6120 	if (attrs) {
6121 		attrs->affn_scope = affn;
6122 		ret = apply_workqueue_attrs_locked(wq, attrs);
6123 	}
6124 	apply_wqattrs_unlock();
6125 	free_workqueue_attrs(attrs);
6126 	return ret ?: count;
6127 }
6128 
6129 static ssize_t wq_affinity_strict_show(struct device *dev,
6130 				       struct device_attribute *attr, char *buf)
6131 {
6132 	struct workqueue_struct *wq = dev_to_wq(dev);
6133 
6134 	return scnprintf(buf, PAGE_SIZE, "%d\n",
6135 			 wq->unbound_attrs->affn_strict);
6136 }
6137 
6138 static ssize_t wq_affinity_strict_store(struct device *dev,
6139 					struct device_attribute *attr,
6140 					const char *buf, size_t count)
6141 {
6142 	struct workqueue_struct *wq = dev_to_wq(dev);
6143 	struct workqueue_attrs *attrs;
6144 	int v, ret = -ENOMEM;
6145 
6146 	if (sscanf(buf, "%d", &v) != 1)
6147 		return -EINVAL;
6148 
6149 	apply_wqattrs_lock();
6150 	attrs = wq_sysfs_prep_attrs(wq);
6151 	if (attrs) {
6152 		attrs->affn_strict = (bool)v;
6153 		ret = apply_workqueue_attrs_locked(wq, attrs);
6154 	}
6155 	apply_wqattrs_unlock();
6156 	free_workqueue_attrs(attrs);
6157 	return ret ?: count;
6158 }
6159 
6160 static struct device_attribute wq_sysfs_unbound_attrs[] = {
6161 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6162 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
6163 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
6164 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6165 	__ATTR_NULL,
6166 };
6167 
6168 static struct bus_type wq_subsys = {
6169 	.name				= "workqueue",
6170 	.dev_groups			= wq_sysfs_groups,
6171 };
6172 
6173 /**
6174  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
6175  *  @cpumask: the cpumask to set
6176  *
6177  *  The low-level workqueues cpumask is a global cpumask that limits
6178  *  the affinity of all unbound workqueues.  This function check the @cpumask
6179  *  and apply it to all unbound workqueues and updates all pwqs of them.
6180  *
6181  *  Return:	0	- Success
6182  *		-EINVAL	- Invalid @cpumask
6183  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
6184  */
6185 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
6186 {
6187 	int ret = -EINVAL;
6188 
6189 	/*
6190 	 * Not excluding isolated cpus on purpose.
6191 	 * If the user wishes to include them, we allow that.
6192 	 */
6193 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
6194 	if (!cpumask_empty(cpumask)) {
6195 		apply_wqattrs_lock();
6196 		cpumask_copy(wq_requested_unbound_cpumask, cpumask);
6197 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
6198 			ret = 0;
6199 			goto out_unlock;
6200 		}
6201 
6202 		ret = workqueue_apply_unbound_cpumask(cpumask);
6203 
6204 out_unlock:
6205 		apply_wqattrs_unlock();
6206 	}
6207 
6208 	return ret;
6209 }
6210 
6211 static ssize_t __wq_cpumask_show(struct device *dev,
6212 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
6213 {
6214 	int written;
6215 
6216 	mutex_lock(&wq_pool_mutex);
6217 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
6218 	mutex_unlock(&wq_pool_mutex);
6219 
6220 	return written;
6221 }
6222 
6223 static ssize_t wq_unbound_cpumask_show(struct device *dev,
6224 		struct device_attribute *attr, char *buf)
6225 {
6226 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
6227 }
6228 
6229 static ssize_t wq_requested_cpumask_show(struct device *dev,
6230 		struct device_attribute *attr, char *buf)
6231 {
6232 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
6233 }
6234 
6235 static ssize_t wq_isolated_cpumask_show(struct device *dev,
6236 		struct device_attribute *attr, char *buf)
6237 {
6238 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
6239 }
6240 
6241 static ssize_t wq_unbound_cpumask_store(struct device *dev,
6242 		struct device_attribute *attr, const char *buf, size_t count)
6243 {
6244 	cpumask_var_t cpumask;
6245 	int ret;
6246 
6247 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6248 		return -ENOMEM;
6249 
6250 	ret = cpumask_parse(buf, cpumask);
6251 	if (!ret)
6252 		ret = workqueue_set_unbound_cpumask(cpumask);
6253 
6254 	free_cpumask_var(cpumask);
6255 	return ret ? ret : count;
6256 }
6257 
6258 static struct device_attribute wq_sysfs_cpumask_attrs[] = {
6259 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
6260 	       wq_unbound_cpumask_store),
6261 	__ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
6262 	__ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
6263 	__ATTR_NULL,
6264 };
6265 
6266 static int __init wq_sysfs_init(void)
6267 {
6268 	struct device *dev_root;
6269 	int err;
6270 
6271 	err = subsys_virtual_register(&wq_subsys, NULL);
6272 	if (err)
6273 		return err;
6274 
6275 	dev_root = bus_get_dev_root(&wq_subsys);
6276 	if (dev_root) {
6277 		struct device_attribute *attr;
6278 
6279 		for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
6280 			err = device_create_file(dev_root, attr);
6281 			if (err)
6282 				break;
6283 		}
6284 		put_device(dev_root);
6285 	}
6286 	return err;
6287 }
6288 core_initcall(wq_sysfs_init);
6289 
6290 static void wq_device_release(struct device *dev)
6291 {
6292 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6293 
6294 	kfree(wq_dev);
6295 }
6296 
6297 /**
6298  * workqueue_sysfs_register - make a workqueue visible in sysfs
6299  * @wq: the workqueue to register
6300  *
6301  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
6302  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
6303  * which is the preferred method.
6304  *
6305  * Workqueue user should use this function directly iff it wants to apply
6306  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
6307  * apply_workqueue_attrs() may race against userland updating the
6308  * attributes.
6309  *
6310  * Return: 0 on success, -errno on failure.
6311  */
6312 int workqueue_sysfs_register(struct workqueue_struct *wq)
6313 {
6314 	struct wq_device *wq_dev;
6315 	int ret;
6316 
6317 	/*
6318 	 * Adjusting max_active or creating new pwqs by applying
6319 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
6320 	 * workqueues.
6321 	 */
6322 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6323 		return -EINVAL;
6324 
6325 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
6326 	if (!wq_dev)
6327 		return -ENOMEM;
6328 
6329 	wq_dev->wq = wq;
6330 	wq_dev->dev.bus = &wq_subsys;
6331 	wq_dev->dev.release = wq_device_release;
6332 	dev_set_name(&wq_dev->dev, "%s", wq->name);
6333 
6334 	/*
6335 	 * unbound_attrs are created separately.  Suppress uevent until
6336 	 * everything is ready.
6337 	 */
6338 	dev_set_uevent_suppress(&wq_dev->dev, true);
6339 
6340 	ret = device_register(&wq_dev->dev);
6341 	if (ret) {
6342 		put_device(&wq_dev->dev);
6343 		wq->wq_dev = NULL;
6344 		return ret;
6345 	}
6346 
6347 	if (wq->flags & WQ_UNBOUND) {
6348 		struct device_attribute *attr;
6349 
6350 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
6351 			ret = device_create_file(&wq_dev->dev, attr);
6352 			if (ret) {
6353 				device_unregister(&wq_dev->dev);
6354 				wq->wq_dev = NULL;
6355 				return ret;
6356 			}
6357 		}
6358 	}
6359 
6360 	dev_set_uevent_suppress(&wq_dev->dev, false);
6361 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
6362 	return 0;
6363 }
6364 
6365 /**
6366  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
6367  * @wq: the workqueue to unregister
6368  *
6369  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
6370  */
6371 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
6372 {
6373 	struct wq_device *wq_dev = wq->wq_dev;
6374 
6375 	if (!wq->wq_dev)
6376 		return;
6377 
6378 	wq->wq_dev = NULL;
6379 	device_unregister(&wq_dev->dev);
6380 }
6381 #else	/* CONFIG_SYSFS */
6382 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
6383 #endif	/* CONFIG_SYSFS */
6384 
6385 /*
6386  * Workqueue watchdog.
6387  *
6388  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
6389  * flush dependency, a concurrency managed work item which stays RUNNING
6390  * indefinitely.  Workqueue stalls can be very difficult to debug as the
6391  * usual warning mechanisms don't trigger and internal workqueue state is
6392  * largely opaque.
6393  *
6394  * Workqueue watchdog monitors all worker pools periodically and dumps
6395  * state if some pools failed to make forward progress for a while where
6396  * forward progress is defined as the first item on ->worklist changing.
6397  *
6398  * This mechanism is controlled through the kernel parameter
6399  * "workqueue.watchdog_thresh" which can be updated at runtime through the
6400  * corresponding sysfs parameter file.
6401  */
6402 #ifdef CONFIG_WQ_WATCHDOG
6403 
6404 static unsigned long wq_watchdog_thresh = 30;
6405 static struct timer_list wq_watchdog_timer;
6406 
6407 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6408 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6409 
6410 /*
6411  * Show workers that might prevent the processing of pending work items.
6412  * The only candidates are CPU-bound workers in the running state.
6413  * Pending work items should be handled by another idle worker
6414  * in all other situations.
6415  */
6416 static void show_cpu_pool_hog(struct worker_pool *pool)
6417 {
6418 	struct worker *worker;
6419 	unsigned long flags;
6420 	int bkt;
6421 
6422 	raw_spin_lock_irqsave(&pool->lock, flags);
6423 
6424 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6425 		if (task_is_running(worker->task)) {
6426 			/*
6427 			 * Defer printing to avoid deadlocks in console
6428 			 * drivers that queue work while holding locks
6429 			 * also taken in their write paths.
6430 			 */
6431 			printk_deferred_enter();
6432 
6433 			pr_info("pool %d:\n", pool->id);
6434 			sched_show_task(worker->task);
6435 
6436 			printk_deferred_exit();
6437 		}
6438 	}
6439 
6440 	raw_spin_unlock_irqrestore(&pool->lock, flags);
6441 }
6442 
6443 static void show_cpu_pools_hogs(void)
6444 {
6445 	struct worker_pool *pool;
6446 	int pi;
6447 
6448 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6449 
6450 	rcu_read_lock();
6451 
6452 	for_each_pool(pool, pi) {
6453 		if (pool->cpu_stall)
6454 			show_cpu_pool_hog(pool);
6455 
6456 	}
6457 
6458 	rcu_read_unlock();
6459 }
6460 
6461 static void wq_watchdog_reset_touched(void)
6462 {
6463 	int cpu;
6464 
6465 	wq_watchdog_touched = jiffies;
6466 	for_each_possible_cpu(cpu)
6467 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6468 }
6469 
6470 static void wq_watchdog_timer_fn(struct timer_list *unused)
6471 {
6472 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6473 	bool lockup_detected = false;
6474 	bool cpu_pool_stall = false;
6475 	unsigned long now = jiffies;
6476 	struct worker_pool *pool;
6477 	int pi;
6478 
6479 	if (!thresh)
6480 		return;
6481 
6482 	rcu_read_lock();
6483 
6484 	for_each_pool(pool, pi) {
6485 		unsigned long pool_ts, touched, ts;
6486 
6487 		pool->cpu_stall = false;
6488 		if (list_empty(&pool->worklist))
6489 			continue;
6490 
6491 		/*
6492 		 * If a virtual machine is stopped by the host it can look to
6493 		 * the watchdog like a stall.
6494 		 */
6495 		kvm_check_and_clear_guest_paused();
6496 
6497 		/* get the latest of pool and touched timestamps */
6498 		if (pool->cpu >= 0)
6499 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
6500 		else
6501 			touched = READ_ONCE(wq_watchdog_touched);
6502 		pool_ts = READ_ONCE(pool->watchdog_ts);
6503 
6504 		if (time_after(pool_ts, touched))
6505 			ts = pool_ts;
6506 		else
6507 			ts = touched;
6508 
6509 		/* did we stall? */
6510 		if (time_after(now, ts + thresh)) {
6511 			lockup_detected = true;
6512 			if (pool->cpu >= 0) {
6513 				pool->cpu_stall = true;
6514 				cpu_pool_stall = true;
6515 			}
6516 			pr_emerg("BUG: workqueue lockup - pool");
6517 			pr_cont_pool_info(pool);
6518 			pr_cont(" stuck for %us!\n",
6519 				jiffies_to_msecs(now - pool_ts) / 1000);
6520 		}
6521 
6522 
6523 	}
6524 
6525 	rcu_read_unlock();
6526 
6527 	if (lockup_detected)
6528 		show_all_workqueues();
6529 
6530 	if (cpu_pool_stall)
6531 		show_cpu_pools_hogs();
6532 
6533 	wq_watchdog_reset_touched();
6534 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
6535 }
6536 
6537 notrace void wq_watchdog_touch(int cpu)
6538 {
6539 	if (cpu >= 0)
6540 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6541 
6542 	wq_watchdog_touched = jiffies;
6543 }
6544 
6545 static void wq_watchdog_set_thresh(unsigned long thresh)
6546 {
6547 	wq_watchdog_thresh = 0;
6548 	del_timer_sync(&wq_watchdog_timer);
6549 
6550 	if (thresh) {
6551 		wq_watchdog_thresh = thresh;
6552 		wq_watchdog_reset_touched();
6553 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6554 	}
6555 }
6556 
6557 static int wq_watchdog_param_set_thresh(const char *val,
6558 					const struct kernel_param *kp)
6559 {
6560 	unsigned long thresh;
6561 	int ret;
6562 
6563 	ret = kstrtoul(val, 0, &thresh);
6564 	if (ret)
6565 		return ret;
6566 
6567 	if (system_wq)
6568 		wq_watchdog_set_thresh(thresh);
6569 	else
6570 		wq_watchdog_thresh = thresh;
6571 
6572 	return 0;
6573 }
6574 
6575 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6576 	.set	= wq_watchdog_param_set_thresh,
6577 	.get	= param_get_ulong,
6578 };
6579 
6580 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6581 		0644);
6582 
6583 static void wq_watchdog_init(void)
6584 {
6585 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
6586 	wq_watchdog_set_thresh(wq_watchdog_thresh);
6587 }
6588 
6589 #else	/* CONFIG_WQ_WATCHDOG */
6590 
6591 static inline void wq_watchdog_init(void) { }
6592 
6593 #endif	/* CONFIG_WQ_WATCHDOG */
6594 
6595 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
6596 {
6597 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
6598 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
6599 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
6600 		return;
6601 	}
6602 
6603 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
6604 }
6605 
6606 /**
6607  * workqueue_init_early - early init for workqueue subsystem
6608  *
6609  * This is the first step of three-staged workqueue subsystem initialization and
6610  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
6611  * up. It sets up all the data structures and system workqueues and allows early
6612  * boot code to create workqueues and queue/cancel work items. Actual work item
6613  * execution starts only after kthreads can be created and scheduled right
6614  * before early initcalls.
6615  */
6616 void __init workqueue_init_early(void)
6617 {
6618 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
6619 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6620 	int i, cpu;
6621 
6622 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6623 
6624 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6625 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
6626 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
6627 
6628 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
6629 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
6630 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
6631 	if (!cpumask_empty(&wq_cmdline_cpumask))
6632 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
6633 
6634 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
6635 
6636 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6637 
6638 	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
6639 	BUG_ON(!wq_update_pod_attrs_buf);
6640 
6641 	/*
6642 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
6643 	 * This allows workqueue items to be moved to HK CPUs.
6644 	 */
6645 	if (housekeeping_enabled(HK_TYPE_TICK))
6646 		wq_power_efficient = true;
6647 
6648 	/* initialize WQ_AFFN_SYSTEM pods */
6649 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6650 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
6651 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6652 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
6653 
6654 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
6655 
6656 	pt->nr_pods = 1;
6657 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
6658 	pt->pod_node[0] = NUMA_NO_NODE;
6659 	pt->cpu_pod[0] = 0;
6660 
6661 	/* initialize CPU pools */
6662 	for_each_possible_cpu(cpu) {
6663 		struct worker_pool *pool;
6664 
6665 		i = 0;
6666 		for_each_cpu_worker_pool(pool, cpu) {
6667 			BUG_ON(init_worker_pool(pool));
6668 			pool->cpu = cpu;
6669 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6670 			cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
6671 			pool->attrs->nice = std_nice[i++];
6672 			pool->attrs->affn_strict = true;
6673 			pool->node = cpu_to_node(cpu);
6674 
6675 			/* alloc pool ID */
6676 			mutex_lock(&wq_pool_mutex);
6677 			BUG_ON(worker_pool_assign_id(pool));
6678 			mutex_unlock(&wq_pool_mutex);
6679 		}
6680 	}
6681 
6682 	/* create default unbound and ordered wq attrs */
6683 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6684 		struct workqueue_attrs *attrs;
6685 
6686 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6687 		attrs->nice = std_nice[i];
6688 		unbound_std_wq_attrs[i] = attrs;
6689 
6690 		/*
6691 		 * An ordered wq should have only one pwq as ordering is
6692 		 * guaranteed by max_active which is enforced by pwqs.
6693 		 */
6694 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6695 		attrs->nice = std_nice[i];
6696 		attrs->ordered = true;
6697 		ordered_wq_attrs[i] = attrs;
6698 	}
6699 
6700 	system_wq = alloc_workqueue("events", 0, 0);
6701 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6702 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6703 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6704 					    WQ_MAX_ACTIVE);
6705 	system_freezable_wq = alloc_workqueue("events_freezable",
6706 					      WQ_FREEZABLE, 0);
6707 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6708 					      WQ_POWER_EFFICIENT, 0);
6709 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6710 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6711 					      0);
6712 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6713 	       !system_unbound_wq || !system_freezable_wq ||
6714 	       !system_power_efficient_wq ||
6715 	       !system_freezable_power_efficient_wq);
6716 }
6717 
6718 static void __init wq_cpu_intensive_thresh_init(void)
6719 {
6720 	unsigned long thresh;
6721 	unsigned long bogo;
6722 
6723 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
6724 	BUG_ON(IS_ERR(pwq_release_worker));
6725 
6726 	/* if the user set it to a specific value, keep it */
6727 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
6728 		return;
6729 
6730 	/*
6731 	 * The default of 10ms is derived from the fact that most modern (as of
6732 	 * 2023) processors can do a lot in 10ms and that it's just below what
6733 	 * most consider human-perceivable. However, the kernel also runs on a
6734 	 * lot slower CPUs including microcontrollers where the threshold is way
6735 	 * too low.
6736 	 *
6737 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
6738 	 * This is by no means accurate but it doesn't have to be. The mechanism
6739 	 * is still useful even when the threshold is fully scaled up. Also, as
6740 	 * the reports would usually be applicable to everyone, some machines
6741 	 * operating on longer thresholds won't significantly diminish their
6742 	 * usefulness.
6743 	 */
6744 	thresh = 10 * USEC_PER_MSEC;
6745 
6746 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
6747 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
6748 	if (bogo < 4000)
6749 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
6750 
6751 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
6752 		 loops_per_jiffy, bogo, thresh);
6753 
6754 	wq_cpu_intensive_thresh_us = thresh;
6755 }
6756 
6757 /**
6758  * workqueue_init - bring workqueue subsystem fully online
6759  *
6760  * This is the second step of three-staged workqueue subsystem initialization
6761  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
6762  * been created and work items queued on them, but there are no kworkers
6763  * executing the work items yet. Populate the worker pools with the initial
6764  * workers and enable future kworker creations.
6765  */
6766 void __init workqueue_init(void)
6767 {
6768 	struct workqueue_struct *wq;
6769 	struct worker_pool *pool;
6770 	int cpu, bkt;
6771 
6772 	wq_cpu_intensive_thresh_init();
6773 
6774 	mutex_lock(&wq_pool_mutex);
6775 
6776 	/*
6777 	 * Per-cpu pools created earlier could be missing node hint. Fix them
6778 	 * up. Also, create a rescuer for workqueues that requested it.
6779 	 */
6780 	for_each_possible_cpu(cpu) {
6781 		for_each_cpu_worker_pool(pool, cpu) {
6782 			pool->node = cpu_to_node(cpu);
6783 		}
6784 	}
6785 
6786 	list_for_each_entry(wq, &workqueues, list) {
6787 		WARN(init_rescuer(wq),
6788 		     "workqueue: failed to create early rescuer for %s",
6789 		     wq->name);
6790 	}
6791 
6792 	mutex_unlock(&wq_pool_mutex);
6793 
6794 	/* create the initial workers */
6795 	for_each_online_cpu(cpu) {
6796 		for_each_cpu_worker_pool(pool, cpu) {
6797 			pool->flags &= ~POOL_DISASSOCIATED;
6798 			BUG_ON(!create_worker(pool));
6799 		}
6800 	}
6801 
6802 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6803 		BUG_ON(!create_worker(pool));
6804 
6805 	wq_online = true;
6806 	wq_watchdog_init();
6807 }
6808 
6809 /*
6810  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
6811  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
6812  * and consecutive pod ID. The rest of @pt is initialized accordingly.
6813  */
6814 static void __init init_pod_type(struct wq_pod_type *pt,
6815 				 bool (*cpus_share_pod)(int, int))
6816 {
6817 	int cur, pre, cpu, pod;
6818 
6819 	pt->nr_pods = 0;
6820 
6821 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
6822 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6823 	BUG_ON(!pt->cpu_pod);
6824 
6825 	for_each_possible_cpu(cur) {
6826 		for_each_possible_cpu(pre) {
6827 			if (pre >= cur) {
6828 				pt->cpu_pod[cur] = pt->nr_pods++;
6829 				break;
6830 			}
6831 			if (cpus_share_pod(cur, pre)) {
6832 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
6833 				break;
6834 			}
6835 		}
6836 	}
6837 
6838 	/* init the rest to match @pt->cpu_pod[] */
6839 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6840 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
6841 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
6842 
6843 	for (pod = 0; pod < pt->nr_pods; pod++)
6844 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
6845 
6846 	for_each_possible_cpu(cpu) {
6847 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
6848 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
6849 	}
6850 }
6851 
6852 static bool __init cpus_dont_share(int cpu0, int cpu1)
6853 {
6854 	return false;
6855 }
6856 
6857 static bool __init cpus_share_smt(int cpu0, int cpu1)
6858 {
6859 #ifdef CONFIG_SCHED_SMT
6860 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
6861 #else
6862 	return false;
6863 #endif
6864 }
6865 
6866 static bool __init cpus_share_numa(int cpu0, int cpu1)
6867 {
6868 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
6869 }
6870 
6871 /**
6872  * workqueue_init_topology - initialize CPU pods for unbound workqueues
6873  *
6874  * This is the third step of there-staged workqueue subsystem initialization and
6875  * invoked after SMP and topology information are fully initialized. It
6876  * initializes the unbound CPU pods accordingly.
6877  */
6878 void __init workqueue_init_topology(void)
6879 {
6880 	struct workqueue_struct *wq;
6881 	int cpu;
6882 
6883 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
6884 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
6885 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
6886 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
6887 
6888 	mutex_lock(&wq_pool_mutex);
6889 
6890 	/*
6891 	 * Workqueues allocated earlier would have all CPUs sharing the default
6892 	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
6893 	 * combinations to apply per-pod sharing.
6894 	 */
6895 	list_for_each_entry(wq, &workqueues, list) {
6896 		for_each_online_cpu(cpu) {
6897 			wq_update_pod(wq, cpu, cpu, true);
6898 		}
6899 	}
6900 
6901 	mutex_unlock(&wq_pool_mutex);
6902 }
6903 
6904 void __warn_flushing_systemwide_wq(void)
6905 {
6906 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
6907 	dump_stack();
6908 }
6909 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
6910 
6911 static int __init workqueue_unbound_cpus_setup(char *str)
6912 {
6913 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
6914 		cpumask_clear(&wq_cmdline_cpumask);
6915 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
6916 	}
6917 
6918 	return 1;
6919 }
6920 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
6921