1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <[email protected]> 9 * Andrew Morton 10 * Kai Petzke <[email protected]> 11 * Theodore Ts'o <[email protected]> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <[email protected]> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/sched/debug.h> 53 #include <linux/nmi.h> 54 #include <linux/kvm_para.h> 55 #include <linux/delay.h> 56 57 #include "workqueue_internal.h" 58 59 enum { 60 /* 61 * worker_pool flags 62 * 63 * A bound pool is either associated or disassociated with its CPU. 64 * While associated (!DISASSOCIATED), all workers are bound to the 65 * CPU and none has %WORKER_UNBOUND set and concurrency management 66 * is in effect. 67 * 68 * While DISASSOCIATED, the cpu may be offline and all workers have 69 * %WORKER_UNBOUND set and concurrency management disabled, and may 70 * be executing on any CPU. The pool behaves as an unbound one. 71 * 72 * Note that DISASSOCIATED should be flipped only while holding 73 * wq_pool_attach_mutex to avoid changing binding state while 74 * worker_attach_to_pool() is in progress. 75 */ 76 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 77 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 78 79 /* worker flags */ 80 WORKER_DIE = 1 << 1, /* die die die */ 81 WORKER_IDLE = 1 << 2, /* is idle */ 82 WORKER_PREP = 1 << 3, /* preparing to run works */ 83 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 84 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 85 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 86 87 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 88 WORKER_UNBOUND | WORKER_REBOUND, 89 90 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 91 92 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 93 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 94 95 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 96 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 97 98 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 99 /* call for help after 10ms 100 (min two ticks) */ 101 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 102 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 103 104 /* 105 * Rescue workers are used only on emergencies and shared by 106 * all cpus. Give MIN_NICE. 107 */ 108 RESCUER_NICE_LEVEL = MIN_NICE, 109 HIGHPRI_NICE_LEVEL = MIN_NICE, 110 111 WQ_NAME_LEN = 32, 112 }; 113 114 /* 115 * Structure fields follow one of the following exclusion rules. 116 * 117 * I: Modifiable by initialization/destruction paths and read-only for 118 * everyone else. 119 * 120 * P: Preemption protected. Disabling preemption is enough and should 121 * only be modified and accessed from the local cpu. 122 * 123 * L: pool->lock protected. Access with pool->lock held. 124 * 125 * K: Only modified by worker while holding pool->lock. Can be safely read by 126 * self, while holding pool->lock or from IRQ context if %current is the 127 * kworker. 128 * 129 * S: Only modified by worker self. 130 * 131 * A: wq_pool_attach_mutex protected. 132 * 133 * PL: wq_pool_mutex protected. 134 * 135 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 136 * 137 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 138 * 139 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 140 * RCU for reads. 141 * 142 * WQ: wq->mutex protected. 143 * 144 * WR: wq->mutex protected for writes. RCU protected for reads. 145 * 146 * MD: wq_mayday_lock protected. 147 * 148 * WD: Used internally by the watchdog. 149 */ 150 151 /* struct worker is defined in workqueue_internal.h */ 152 153 struct worker_pool { 154 raw_spinlock_t lock; /* the pool lock */ 155 int cpu; /* I: the associated cpu */ 156 int node; /* I: the associated node ID */ 157 int id; /* I: pool ID */ 158 unsigned int flags; /* L: flags */ 159 160 unsigned long watchdog_ts; /* L: watchdog timestamp */ 161 bool cpu_stall; /* WD: stalled cpu bound pool */ 162 163 /* 164 * The counter is incremented in a process context on the associated CPU 165 * w/ preemption disabled, and decremented or reset in the same context 166 * but w/ pool->lock held. The readers grab pool->lock and are 167 * guaranteed to see if the counter reached zero. 168 */ 169 int nr_running; 170 171 struct list_head worklist; /* L: list of pending works */ 172 173 int nr_workers; /* L: total number of workers */ 174 int nr_idle; /* L: currently idle workers */ 175 176 struct list_head idle_list; /* L: list of idle workers */ 177 struct timer_list idle_timer; /* L: worker idle timeout */ 178 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 179 180 struct timer_list mayday_timer; /* L: SOS timer for workers */ 181 182 /* a workers is either on busy_hash or idle_list, or the manager */ 183 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 184 /* L: hash of busy workers */ 185 186 struct worker *manager; /* L: purely informational */ 187 struct list_head workers; /* A: attached workers */ 188 struct list_head dying_workers; /* A: workers about to die */ 189 struct completion *detach_completion; /* all workers detached */ 190 191 struct ida worker_ida; /* worker IDs for task name */ 192 193 struct workqueue_attrs *attrs; /* I: worker attributes */ 194 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 195 int refcnt; /* PL: refcnt for unbound pools */ 196 197 /* 198 * Destruction of pool is RCU protected to allow dereferences 199 * from get_work_pool(). 200 */ 201 struct rcu_head rcu; 202 }; 203 204 /* 205 * Per-pool_workqueue statistics. These can be monitored using 206 * tools/workqueue/wq_monitor.py. 207 */ 208 enum pool_workqueue_stats { 209 PWQ_STAT_STARTED, /* work items started execution */ 210 PWQ_STAT_COMPLETED, /* work items completed execution */ 211 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 212 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 213 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 214 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 215 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 216 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 217 218 PWQ_NR_STATS, 219 }; 220 221 /* 222 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 223 * of work_struct->data are used for flags and the remaining high bits 224 * point to the pwq; thus, pwqs need to be aligned at two's power of the 225 * number of flag bits. 226 */ 227 struct pool_workqueue { 228 struct worker_pool *pool; /* I: the associated pool */ 229 struct workqueue_struct *wq; /* I: the owning workqueue */ 230 int work_color; /* L: current color */ 231 int flush_color; /* L: flushing color */ 232 int refcnt; /* L: reference count */ 233 int nr_in_flight[WORK_NR_COLORS]; 234 /* L: nr of in_flight works */ 235 236 /* 237 * nr_active management and WORK_STRUCT_INACTIVE: 238 * 239 * When pwq->nr_active >= max_active, new work item is queued to 240 * pwq->inactive_works instead of pool->worklist and marked with 241 * WORK_STRUCT_INACTIVE. 242 * 243 * All work items marked with WORK_STRUCT_INACTIVE do not participate 244 * in pwq->nr_active and all work items in pwq->inactive_works are 245 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE 246 * work items are in pwq->inactive_works. Some of them are ready to 247 * run in pool->worklist or worker->scheduled. Those work itmes are 248 * only struct wq_barrier which is used for flush_work() and should 249 * not participate in pwq->nr_active. For non-barrier work item, it 250 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 251 */ 252 int nr_active; /* L: nr of active works */ 253 int max_active; /* L: max active works */ 254 struct list_head inactive_works; /* L: inactive works */ 255 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 256 struct list_head mayday_node; /* MD: node on wq->maydays */ 257 258 u64 stats[PWQ_NR_STATS]; 259 260 /* 261 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 262 * and pwq_release_workfn() for details. pool_workqueue itself is also 263 * RCU protected so that the first pwq can be determined without 264 * grabbing wq->mutex. 265 */ 266 struct kthread_work release_work; 267 struct rcu_head rcu; 268 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 269 270 /* 271 * Structure used to wait for workqueue flush. 272 */ 273 struct wq_flusher { 274 struct list_head list; /* WQ: list of flushers */ 275 int flush_color; /* WQ: flush color waiting for */ 276 struct completion done; /* flush completion */ 277 }; 278 279 struct wq_device; 280 281 /* 282 * The externally visible workqueue. It relays the issued work items to 283 * the appropriate worker_pool through its pool_workqueues. 284 */ 285 struct workqueue_struct { 286 struct list_head pwqs; /* WR: all pwqs of this wq */ 287 struct list_head list; /* PR: list of all workqueues */ 288 289 struct mutex mutex; /* protects this wq */ 290 int work_color; /* WQ: current work color */ 291 int flush_color; /* WQ: current flush color */ 292 atomic_t nr_pwqs_to_flush; /* flush in progress */ 293 struct wq_flusher *first_flusher; /* WQ: first flusher */ 294 struct list_head flusher_queue; /* WQ: flush waiters */ 295 struct list_head flusher_overflow; /* WQ: flush overflow list */ 296 297 struct list_head maydays; /* MD: pwqs requesting rescue */ 298 struct worker *rescuer; /* MD: rescue worker */ 299 300 int nr_drainers; /* WQ: drain in progress */ 301 int saved_max_active; /* WQ: saved pwq max_active */ 302 303 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 304 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 305 306 #ifdef CONFIG_SYSFS 307 struct wq_device *wq_dev; /* I: for sysfs interface */ 308 #endif 309 #ifdef CONFIG_LOCKDEP 310 char *lock_name; 311 struct lock_class_key key; 312 struct lockdep_map lockdep_map; 313 #endif 314 char name[WQ_NAME_LEN]; /* I: workqueue name */ 315 316 /* 317 * Destruction of workqueue_struct is RCU protected to allow walking 318 * the workqueues list without grabbing wq_pool_mutex. 319 * This is used to dump all workqueues from sysrq. 320 */ 321 struct rcu_head rcu; 322 323 /* hot fields used during command issue, aligned to cacheline */ 324 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 325 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */ 326 }; 327 328 static struct kmem_cache *pwq_cache; 329 330 /* 331 * Each pod type describes how CPUs should be grouped for unbound workqueues. 332 * See the comment above workqueue_attrs->affn_scope. 333 */ 334 struct wq_pod_type { 335 int nr_pods; /* number of pods */ 336 cpumask_var_t *pod_cpus; /* pod -> cpus */ 337 int *pod_node; /* pod -> node */ 338 int *cpu_pod; /* cpu -> pod */ 339 }; 340 341 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 342 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 343 344 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 345 [WQ_AFFN_DFL] = "default", 346 [WQ_AFFN_CPU] = "cpu", 347 [WQ_AFFN_SMT] = "smt", 348 [WQ_AFFN_CACHE] = "cache", 349 [WQ_AFFN_NUMA] = "numa", 350 [WQ_AFFN_SYSTEM] = "system", 351 }; 352 353 /* 354 * Per-cpu work items which run for longer than the following threshold are 355 * automatically considered CPU intensive and excluded from concurrency 356 * management to prevent them from noticeably delaying other per-cpu work items. 357 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 358 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 359 */ 360 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 361 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 362 363 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 364 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 365 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 366 367 static bool wq_online; /* can kworkers be created yet? */ 368 369 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 370 static struct workqueue_attrs *wq_update_pod_attrs_buf; 371 372 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 373 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 374 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 375 /* wait for manager to go away */ 376 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 377 378 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 379 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 380 381 /* PL&A: allowable cpus for unbound wqs and work items */ 382 static cpumask_var_t wq_unbound_cpumask; 383 384 /* PL: user requested unbound cpumask via sysfs */ 385 static cpumask_var_t wq_requested_unbound_cpumask; 386 387 /* PL: isolated cpumask to be excluded from unbound cpumask */ 388 static cpumask_var_t wq_isolated_cpumask; 389 390 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 391 static struct cpumask wq_cmdline_cpumask __initdata; 392 393 /* CPU where unbound work was last round robin scheduled from this CPU */ 394 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 395 396 /* 397 * Local execution of unbound work items is no longer guaranteed. The 398 * following always forces round-robin CPU selection on unbound work items 399 * to uncover usages which depend on it. 400 */ 401 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 402 static bool wq_debug_force_rr_cpu = true; 403 #else 404 static bool wq_debug_force_rr_cpu = false; 405 #endif 406 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 407 408 /* the per-cpu worker pools */ 409 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 410 411 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 412 413 /* PL: hash of all unbound pools keyed by pool->attrs */ 414 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 415 416 /* I: attributes used when instantiating standard unbound pools on demand */ 417 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 418 419 /* I: attributes used when instantiating ordered pools on demand */ 420 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 421 422 /* 423 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 424 * process context while holding a pool lock. Bounce to a dedicated kthread 425 * worker to avoid A-A deadlocks. 426 */ 427 static struct kthread_worker *pwq_release_worker __ro_after_init; 428 429 struct workqueue_struct *system_wq __ro_after_init; 430 EXPORT_SYMBOL(system_wq); 431 struct workqueue_struct *system_highpri_wq __ro_after_init; 432 EXPORT_SYMBOL_GPL(system_highpri_wq); 433 struct workqueue_struct *system_long_wq __ro_after_init; 434 EXPORT_SYMBOL_GPL(system_long_wq); 435 struct workqueue_struct *system_unbound_wq __ro_after_init; 436 EXPORT_SYMBOL_GPL(system_unbound_wq); 437 struct workqueue_struct *system_freezable_wq __ro_after_init; 438 EXPORT_SYMBOL_GPL(system_freezable_wq); 439 struct workqueue_struct *system_power_efficient_wq __ro_after_init; 440 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 441 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; 442 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 443 444 static int worker_thread(void *__worker); 445 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 446 static void show_pwq(struct pool_workqueue *pwq); 447 static void show_one_worker_pool(struct worker_pool *pool); 448 449 #define CREATE_TRACE_POINTS 450 #include <trace/events/workqueue.h> 451 452 #define assert_rcu_or_pool_mutex() \ 453 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 454 !lockdep_is_held(&wq_pool_mutex), \ 455 "RCU or wq_pool_mutex should be held") 456 457 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 458 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 459 !lockdep_is_held(&wq->mutex) && \ 460 !lockdep_is_held(&wq_pool_mutex), \ 461 "RCU, wq->mutex or wq_pool_mutex should be held") 462 463 #define for_each_cpu_worker_pool(pool, cpu) \ 464 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 465 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 466 (pool)++) 467 468 /** 469 * for_each_pool - iterate through all worker_pools in the system 470 * @pool: iteration cursor 471 * @pi: integer used for iteration 472 * 473 * This must be called either with wq_pool_mutex held or RCU read 474 * locked. If the pool needs to be used beyond the locking in effect, the 475 * caller is responsible for guaranteeing that the pool stays online. 476 * 477 * The if/else clause exists only for the lockdep assertion and can be 478 * ignored. 479 */ 480 #define for_each_pool(pool, pi) \ 481 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 482 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 483 else 484 485 /** 486 * for_each_pool_worker - iterate through all workers of a worker_pool 487 * @worker: iteration cursor 488 * @pool: worker_pool to iterate workers of 489 * 490 * This must be called with wq_pool_attach_mutex. 491 * 492 * The if/else clause exists only for the lockdep assertion and can be 493 * ignored. 494 */ 495 #define for_each_pool_worker(worker, pool) \ 496 list_for_each_entry((worker), &(pool)->workers, node) \ 497 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 498 else 499 500 /** 501 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 502 * @pwq: iteration cursor 503 * @wq: the target workqueue 504 * 505 * This must be called either with wq->mutex held or RCU read locked. 506 * If the pwq needs to be used beyond the locking in effect, the caller is 507 * responsible for guaranteeing that the pwq stays online. 508 * 509 * The if/else clause exists only for the lockdep assertion and can be 510 * ignored. 511 */ 512 #define for_each_pwq(pwq, wq) \ 513 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 514 lockdep_is_held(&(wq->mutex))) 515 516 #ifdef CONFIG_DEBUG_OBJECTS_WORK 517 518 static const struct debug_obj_descr work_debug_descr; 519 520 static void *work_debug_hint(void *addr) 521 { 522 return ((struct work_struct *) addr)->func; 523 } 524 525 static bool work_is_static_object(void *addr) 526 { 527 struct work_struct *work = addr; 528 529 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 530 } 531 532 /* 533 * fixup_init is called when: 534 * - an active object is initialized 535 */ 536 static bool work_fixup_init(void *addr, enum debug_obj_state state) 537 { 538 struct work_struct *work = addr; 539 540 switch (state) { 541 case ODEBUG_STATE_ACTIVE: 542 cancel_work_sync(work); 543 debug_object_init(work, &work_debug_descr); 544 return true; 545 default: 546 return false; 547 } 548 } 549 550 /* 551 * fixup_free is called when: 552 * - an active object is freed 553 */ 554 static bool work_fixup_free(void *addr, enum debug_obj_state state) 555 { 556 struct work_struct *work = addr; 557 558 switch (state) { 559 case ODEBUG_STATE_ACTIVE: 560 cancel_work_sync(work); 561 debug_object_free(work, &work_debug_descr); 562 return true; 563 default: 564 return false; 565 } 566 } 567 568 static const struct debug_obj_descr work_debug_descr = { 569 .name = "work_struct", 570 .debug_hint = work_debug_hint, 571 .is_static_object = work_is_static_object, 572 .fixup_init = work_fixup_init, 573 .fixup_free = work_fixup_free, 574 }; 575 576 static inline void debug_work_activate(struct work_struct *work) 577 { 578 debug_object_activate(work, &work_debug_descr); 579 } 580 581 static inline void debug_work_deactivate(struct work_struct *work) 582 { 583 debug_object_deactivate(work, &work_debug_descr); 584 } 585 586 void __init_work(struct work_struct *work, int onstack) 587 { 588 if (onstack) 589 debug_object_init_on_stack(work, &work_debug_descr); 590 else 591 debug_object_init(work, &work_debug_descr); 592 } 593 EXPORT_SYMBOL_GPL(__init_work); 594 595 void destroy_work_on_stack(struct work_struct *work) 596 { 597 debug_object_free(work, &work_debug_descr); 598 } 599 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 600 601 void destroy_delayed_work_on_stack(struct delayed_work *work) 602 { 603 destroy_timer_on_stack(&work->timer); 604 debug_object_free(&work->work, &work_debug_descr); 605 } 606 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 607 608 #else 609 static inline void debug_work_activate(struct work_struct *work) { } 610 static inline void debug_work_deactivate(struct work_struct *work) { } 611 #endif 612 613 /** 614 * worker_pool_assign_id - allocate ID and assign it to @pool 615 * @pool: the pool pointer of interest 616 * 617 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 618 * successfully, -errno on failure. 619 */ 620 static int worker_pool_assign_id(struct worker_pool *pool) 621 { 622 int ret; 623 624 lockdep_assert_held(&wq_pool_mutex); 625 626 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 627 GFP_KERNEL); 628 if (ret >= 0) { 629 pool->id = ret; 630 return 0; 631 } 632 return ret; 633 } 634 635 static unsigned int work_color_to_flags(int color) 636 { 637 return color << WORK_STRUCT_COLOR_SHIFT; 638 } 639 640 static int get_work_color(unsigned long work_data) 641 { 642 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 643 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 644 } 645 646 static int work_next_color(int color) 647 { 648 return (color + 1) % WORK_NR_COLORS; 649 } 650 651 /* 652 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 653 * contain the pointer to the queued pwq. Once execution starts, the flag 654 * is cleared and the high bits contain OFFQ flags and pool ID. 655 * 656 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 657 * and clear_work_data() can be used to set the pwq, pool or clear 658 * work->data. These functions should only be called while the work is 659 * owned - ie. while the PENDING bit is set. 660 * 661 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 662 * corresponding to a work. Pool is available once the work has been 663 * queued anywhere after initialization until it is sync canceled. pwq is 664 * available only while the work item is queued. 665 * 666 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 667 * canceled. While being canceled, a work item may have its PENDING set 668 * but stay off timer and worklist for arbitrarily long and nobody should 669 * try to steal the PENDING bit. 670 */ 671 static inline void set_work_data(struct work_struct *work, unsigned long data, 672 unsigned long flags) 673 { 674 WARN_ON_ONCE(!work_pending(work)); 675 atomic_long_set(&work->data, data | flags | work_static(work)); 676 } 677 678 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 679 unsigned long extra_flags) 680 { 681 set_work_data(work, (unsigned long)pwq, 682 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 683 } 684 685 static void set_work_pool_and_keep_pending(struct work_struct *work, 686 int pool_id) 687 { 688 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 689 WORK_STRUCT_PENDING); 690 } 691 692 static void set_work_pool_and_clear_pending(struct work_struct *work, 693 int pool_id) 694 { 695 /* 696 * The following wmb is paired with the implied mb in 697 * test_and_set_bit(PENDING) and ensures all updates to @work made 698 * here are visible to and precede any updates by the next PENDING 699 * owner. 700 */ 701 smp_wmb(); 702 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 703 /* 704 * The following mb guarantees that previous clear of a PENDING bit 705 * will not be reordered with any speculative LOADS or STORES from 706 * work->current_func, which is executed afterwards. This possible 707 * reordering can lead to a missed execution on attempt to queue 708 * the same @work. E.g. consider this case: 709 * 710 * CPU#0 CPU#1 711 * ---------------------------- -------------------------------- 712 * 713 * 1 STORE event_indicated 714 * 2 queue_work_on() { 715 * 3 test_and_set_bit(PENDING) 716 * 4 } set_..._and_clear_pending() { 717 * 5 set_work_data() # clear bit 718 * 6 smp_mb() 719 * 7 work->current_func() { 720 * 8 LOAD event_indicated 721 * } 722 * 723 * Without an explicit full barrier speculative LOAD on line 8 can 724 * be executed before CPU#0 does STORE on line 1. If that happens, 725 * CPU#0 observes the PENDING bit is still set and new execution of 726 * a @work is not queued in a hope, that CPU#1 will eventually 727 * finish the queued @work. Meanwhile CPU#1 does not see 728 * event_indicated is set, because speculative LOAD was executed 729 * before actual STORE. 730 */ 731 smp_mb(); 732 } 733 734 static void clear_work_data(struct work_struct *work) 735 { 736 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 737 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 738 } 739 740 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 741 { 742 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK); 743 } 744 745 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 746 { 747 unsigned long data = atomic_long_read(&work->data); 748 749 if (data & WORK_STRUCT_PWQ) 750 return work_struct_pwq(data); 751 else 752 return NULL; 753 } 754 755 /** 756 * get_work_pool - return the worker_pool a given work was associated with 757 * @work: the work item of interest 758 * 759 * Pools are created and destroyed under wq_pool_mutex, and allows read 760 * access under RCU read lock. As such, this function should be 761 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 762 * 763 * All fields of the returned pool are accessible as long as the above 764 * mentioned locking is in effect. If the returned pool needs to be used 765 * beyond the critical section, the caller is responsible for ensuring the 766 * returned pool is and stays online. 767 * 768 * Return: The worker_pool @work was last associated with. %NULL if none. 769 */ 770 static struct worker_pool *get_work_pool(struct work_struct *work) 771 { 772 unsigned long data = atomic_long_read(&work->data); 773 int pool_id; 774 775 assert_rcu_or_pool_mutex(); 776 777 if (data & WORK_STRUCT_PWQ) 778 return work_struct_pwq(data)->pool; 779 780 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 781 if (pool_id == WORK_OFFQ_POOL_NONE) 782 return NULL; 783 784 return idr_find(&worker_pool_idr, pool_id); 785 } 786 787 /** 788 * get_work_pool_id - return the worker pool ID a given work is associated with 789 * @work: the work item of interest 790 * 791 * Return: The worker_pool ID @work was last associated with. 792 * %WORK_OFFQ_POOL_NONE if none. 793 */ 794 static int get_work_pool_id(struct work_struct *work) 795 { 796 unsigned long data = atomic_long_read(&work->data); 797 798 if (data & WORK_STRUCT_PWQ) 799 return work_struct_pwq(data)->pool->id; 800 801 return data >> WORK_OFFQ_POOL_SHIFT; 802 } 803 804 static void mark_work_canceling(struct work_struct *work) 805 { 806 unsigned long pool_id = get_work_pool_id(work); 807 808 pool_id <<= WORK_OFFQ_POOL_SHIFT; 809 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 810 } 811 812 static bool work_is_canceling(struct work_struct *work) 813 { 814 unsigned long data = atomic_long_read(&work->data); 815 816 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 817 } 818 819 /* 820 * Policy functions. These define the policies on how the global worker 821 * pools are managed. Unless noted otherwise, these functions assume that 822 * they're being called with pool->lock held. 823 */ 824 825 /* 826 * Need to wake up a worker? Called from anything but currently 827 * running workers. 828 * 829 * Note that, because unbound workers never contribute to nr_running, this 830 * function will always return %true for unbound pools as long as the 831 * worklist isn't empty. 832 */ 833 static bool need_more_worker(struct worker_pool *pool) 834 { 835 return !list_empty(&pool->worklist) && !pool->nr_running; 836 } 837 838 /* Can I start working? Called from busy but !running workers. */ 839 static bool may_start_working(struct worker_pool *pool) 840 { 841 return pool->nr_idle; 842 } 843 844 /* Do I need to keep working? Called from currently running workers. */ 845 static bool keep_working(struct worker_pool *pool) 846 { 847 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 848 } 849 850 /* Do we need a new worker? Called from manager. */ 851 static bool need_to_create_worker(struct worker_pool *pool) 852 { 853 return need_more_worker(pool) && !may_start_working(pool); 854 } 855 856 /* Do we have too many workers and should some go away? */ 857 static bool too_many_workers(struct worker_pool *pool) 858 { 859 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 860 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 861 int nr_busy = pool->nr_workers - nr_idle; 862 863 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 864 } 865 866 /** 867 * worker_set_flags - set worker flags and adjust nr_running accordingly 868 * @worker: self 869 * @flags: flags to set 870 * 871 * Set @flags in @worker->flags and adjust nr_running accordingly. 872 */ 873 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 874 { 875 struct worker_pool *pool = worker->pool; 876 877 lockdep_assert_held(&pool->lock); 878 879 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 880 if ((flags & WORKER_NOT_RUNNING) && 881 !(worker->flags & WORKER_NOT_RUNNING)) { 882 pool->nr_running--; 883 } 884 885 worker->flags |= flags; 886 } 887 888 /** 889 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 890 * @worker: self 891 * @flags: flags to clear 892 * 893 * Clear @flags in @worker->flags and adjust nr_running accordingly. 894 */ 895 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 896 { 897 struct worker_pool *pool = worker->pool; 898 unsigned int oflags = worker->flags; 899 900 lockdep_assert_held(&pool->lock); 901 902 worker->flags &= ~flags; 903 904 /* 905 * If transitioning out of NOT_RUNNING, increment nr_running. Note 906 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 907 * of multiple flags, not a single flag. 908 */ 909 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 910 if (!(worker->flags & WORKER_NOT_RUNNING)) 911 pool->nr_running++; 912 } 913 914 /* Return the first idle worker. Called with pool->lock held. */ 915 static struct worker *first_idle_worker(struct worker_pool *pool) 916 { 917 if (unlikely(list_empty(&pool->idle_list))) 918 return NULL; 919 920 return list_first_entry(&pool->idle_list, struct worker, entry); 921 } 922 923 /** 924 * worker_enter_idle - enter idle state 925 * @worker: worker which is entering idle state 926 * 927 * @worker is entering idle state. Update stats and idle timer if 928 * necessary. 929 * 930 * LOCKING: 931 * raw_spin_lock_irq(pool->lock). 932 */ 933 static void worker_enter_idle(struct worker *worker) 934 { 935 struct worker_pool *pool = worker->pool; 936 937 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 938 WARN_ON_ONCE(!list_empty(&worker->entry) && 939 (worker->hentry.next || worker->hentry.pprev))) 940 return; 941 942 /* can't use worker_set_flags(), also called from create_worker() */ 943 worker->flags |= WORKER_IDLE; 944 pool->nr_idle++; 945 worker->last_active = jiffies; 946 947 /* idle_list is LIFO */ 948 list_add(&worker->entry, &pool->idle_list); 949 950 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 951 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 952 953 /* Sanity check nr_running. */ 954 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 955 } 956 957 /** 958 * worker_leave_idle - leave idle state 959 * @worker: worker which is leaving idle state 960 * 961 * @worker is leaving idle state. Update stats. 962 * 963 * LOCKING: 964 * raw_spin_lock_irq(pool->lock). 965 */ 966 static void worker_leave_idle(struct worker *worker) 967 { 968 struct worker_pool *pool = worker->pool; 969 970 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 971 return; 972 worker_clr_flags(worker, WORKER_IDLE); 973 pool->nr_idle--; 974 list_del_init(&worker->entry); 975 } 976 977 /** 978 * find_worker_executing_work - find worker which is executing a work 979 * @pool: pool of interest 980 * @work: work to find worker for 981 * 982 * Find a worker which is executing @work on @pool by searching 983 * @pool->busy_hash which is keyed by the address of @work. For a worker 984 * to match, its current execution should match the address of @work and 985 * its work function. This is to avoid unwanted dependency between 986 * unrelated work executions through a work item being recycled while still 987 * being executed. 988 * 989 * This is a bit tricky. A work item may be freed once its execution 990 * starts and nothing prevents the freed area from being recycled for 991 * another work item. If the same work item address ends up being reused 992 * before the original execution finishes, workqueue will identify the 993 * recycled work item as currently executing and make it wait until the 994 * current execution finishes, introducing an unwanted dependency. 995 * 996 * This function checks the work item address and work function to avoid 997 * false positives. Note that this isn't complete as one may construct a 998 * work function which can introduce dependency onto itself through a 999 * recycled work item. Well, if somebody wants to shoot oneself in the 1000 * foot that badly, there's only so much we can do, and if such deadlock 1001 * actually occurs, it should be easy to locate the culprit work function. 1002 * 1003 * CONTEXT: 1004 * raw_spin_lock_irq(pool->lock). 1005 * 1006 * Return: 1007 * Pointer to worker which is executing @work if found, %NULL 1008 * otherwise. 1009 */ 1010 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1011 struct work_struct *work) 1012 { 1013 struct worker *worker; 1014 1015 hash_for_each_possible(pool->busy_hash, worker, hentry, 1016 (unsigned long)work) 1017 if (worker->current_work == work && 1018 worker->current_func == work->func) 1019 return worker; 1020 1021 return NULL; 1022 } 1023 1024 /** 1025 * move_linked_works - move linked works to a list 1026 * @work: start of series of works to be scheduled 1027 * @head: target list to append @work to 1028 * @nextp: out parameter for nested worklist walking 1029 * 1030 * Schedule linked works starting from @work to @head. Work series to be 1031 * scheduled starts at @work and includes any consecutive work with 1032 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1033 * @nextp. 1034 * 1035 * CONTEXT: 1036 * raw_spin_lock_irq(pool->lock). 1037 */ 1038 static void move_linked_works(struct work_struct *work, struct list_head *head, 1039 struct work_struct **nextp) 1040 { 1041 struct work_struct *n; 1042 1043 /* 1044 * Linked worklist will always end before the end of the list, 1045 * use NULL for list head. 1046 */ 1047 list_for_each_entry_safe_from(work, n, NULL, entry) { 1048 list_move_tail(&work->entry, head); 1049 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1050 break; 1051 } 1052 1053 /* 1054 * If we're already inside safe list traversal and have moved 1055 * multiple works to the scheduled queue, the next position 1056 * needs to be updated. 1057 */ 1058 if (nextp) 1059 *nextp = n; 1060 } 1061 1062 /** 1063 * assign_work - assign a work item and its linked work items to a worker 1064 * @work: work to assign 1065 * @worker: worker to assign to 1066 * @nextp: out parameter for nested worklist walking 1067 * 1068 * Assign @work and its linked work items to @worker. If @work is already being 1069 * executed by another worker in the same pool, it'll be punted there. 1070 * 1071 * If @nextp is not NULL, it's updated to point to the next work of the last 1072 * scheduled work. This allows assign_work() to be nested inside 1073 * list_for_each_entry_safe(). 1074 * 1075 * Returns %true if @work was successfully assigned to @worker. %false if @work 1076 * was punted to another worker already executing it. 1077 */ 1078 static bool assign_work(struct work_struct *work, struct worker *worker, 1079 struct work_struct **nextp) 1080 { 1081 struct worker_pool *pool = worker->pool; 1082 struct worker *collision; 1083 1084 lockdep_assert_held(&pool->lock); 1085 1086 /* 1087 * A single work shouldn't be executed concurrently by multiple workers. 1088 * __queue_work() ensures that @work doesn't jump to a different pool 1089 * while still running in the previous pool. Here, we should ensure that 1090 * @work is not executed concurrently by multiple workers from the same 1091 * pool. Check whether anyone is already processing the work. If so, 1092 * defer the work to the currently executing one. 1093 */ 1094 collision = find_worker_executing_work(pool, work); 1095 if (unlikely(collision)) { 1096 move_linked_works(work, &collision->scheduled, nextp); 1097 return false; 1098 } 1099 1100 move_linked_works(work, &worker->scheduled, nextp); 1101 return true; 1102 } 1103 1104 /** 1105 * kick_pool - wake up an idle worker if necessary 1106 * @pool: pool to kick 1107 * 1108 * @pool may have pending work items. Wake up worker if necessary. Returns 1109 * whether a worker was woken up. 1110 */ 1111 static bool kick_pool(struct worker_pool *pool) 1112 { 1113 struct worker *worker = first_idle_worker(pool); 1114 struct task_struct *p; 1115 1116 lockdep_assert_held(&pool->lock); 1117 1118 if (!need_more_worker(pool) || !worker) 1119 return false; 1120 1121 p = worker->task; 1122 1123 #ifdef CONFIG_SMP 1124 /* 1125 * Idle @worker is about to execute @work and waking up provides an 1126 * opportunity to migrate @worker at a lower cost by setting the task's 1127 * wake_cpu field. Let's see if we want to move @worker to improve 1128 * execution locality. 1129 * 1130 * We're waking the worker that went idle the latest and there's some 1131 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1132 * so, setting the wake_cpu won't do anything. As this is a best-effort 1133 * optimization and the race window is narrow, let's leave as-is for 1134 * now. If this becomes pronounced, we can skip over workers which are 1135 * still on cpu when picking an idle worker. 1136 * 1137 * If @pool has non-strict affinity, @worker might have ended up outside 1138 * its affinity scope. Repatriate. 1139 */ 1140 if (!pool->attrs->affn_strict && 1141 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1142 struct work_struct *work = list_first_entry(&pool->worklist, 1143 struct work_struct, entry); 1144 p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask); 1145 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1146 } 1147 #endif 1148 wake_up_process(p); 1149 return true; 1150 } 1151 1152 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1153 1154 /* 1155 * Concurrency-managed per-cpu work items that hog CPU for longer than 1156 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1157 * which prevents them from stalling other concurrency-managed work items. If a 1158 * work function keeps triggering this mechanism, it's likely that the work item 1159 * should be using an unbound workqueue instead. 1160 * 1161 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1162 * and report them so that they can be examined and converted to use unbound 1163 * workqueues as appropriate. To avoid flooding the console, each violating work 1164 * function is tracked and reported with exponential backoff. 1165 */ 1166 #define WCI_MAX_ENTS 128 1167 1168 struct wci_ent { 1169 work_func_t func; 1170 atomic64_t cnt; 1171 struct hlist_node hash_node; 1172 }; 1173 1174 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1175 static int wci_nr_ents; 1176 static DEFINE_RAW_SPINLOCK(wci_lock); 1177 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1178 1179 static struct wci_ent *wci_find_ent(work_func_t func) 1180 { 1181 struct wci_ent *ent; 1182 1183 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1184 (unsigned long)func) { 1185 if (ent->func == func) 1186 return ent; 1187 } 1188 return NULL; 1189 } 1190 1191 static void wq_cpu_intensive_report(work_func_t func) 1192 { 1193 struct wci_ent *ent; 1194 1195 restart: 1196 ent = wci_find_ent(func); 1197 if (ent) { 1198 u64 cnt; 1199 1200 /* 1201 * Start reporting from the fourth time and back off 1202 * exponentially. 1203 */ 1204 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1205 if (cnt >= 4 && is_power_of_2(cnt)) 1206 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1207 ent->func, wq_cpu_intensive_thresh_us, 1208 atomic64_read(&ent->cnt)); 1209 return; 1210 } 1211 1212 /* 1213 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1214 * is exhausted, something went really wrong and we probably made enough 1215 * noise already. 1216 */ 1217 if (wci_nr_ents >= WCI_MAX_ENTS) 1218 return; 1219 1220 raw_spin_lock(&wci_lock); 1221 1222 if (wci_nr_ents >= WCI_MAX_ENTS) { 1223 raw_spin_unlock(&wci_lock); 1224 return; 1225 } 1226 1227 if (wci_find_ent(func)) { 1228 raw_spin_unlock(&wci_lock); 1229 goto restart; 1230 } 1231 1232 ent = &wci_ents[wci_nr_ents++]; 1233 ent->func = func; 1234 atomic64_set(&ent->cnt, 1); 1235 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1236 1237 raw_spin_unlock(&wci_lock); 1238 } 1239 1240 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1241 static void wq_cpu_intensive_report(work_func_t func) {} 1242 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1243 1244 /** 1245 * wq_worker_running - a worker is running again 1246 * @task: task waking up 1247 * 1248 * This function is called when a worker returns from schedule() 1249 */ 1250 void wq_worker_running(struct task_struct *task) 1251 { 1252 struct worker *worker = kthread_data(task); 1253 1254 if (!READ_ONCE(worker->sleeping)) 1255 return; 1256 1257 /* 1258 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1259 * and the nr_running increment below, we may ruin the nr_running reset 1260 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1261 * pool. Protect against such race. 1262 */ 1263 preempt_disable(); 1264 if (!(worker->flags & WORKER_NOT_RUNNING)) 1265 worker->pool->nr_running++; 1266 preempt_enable(); 1267 1268 /* 1269 * CPU intensive auto-detection cares about how long a work item hogged 1270 * CPU without sleeping. Reset the starting timestamp on wakeup. 1271 */ 1272 worker->current_at = worker->task->se.sum_exec_runtime; 1273 1274 WRITE_ONCE(worker->sleeping, 0); 1275 } 1276 1277 /** 1278 * wq_worker_sleeping - a worker is going to sleep 1279 * @task: task going to sleep 1280 * 1281 * This function is called from schedule() when a busy worker is 1282 * going to sleep. 1283 */ 1284 void wq_worker_sleeping(struct task_struct *task) 1285 { 1286 struct worker *worker = kthread_data(task); 1287 struct worker_pool *pool; 1288 1289 /* 1290 * Rescuers, which may not have all the fields set up like normal 1291 * workers, also reach here, let's not access anything before 1292 * checking NOT_RUNNING. 1293 */ 1294 if (worker->flags & WORKER_NOT_RUNNING) 1295 return; 1296 1297 pool = worker->pool; 1298 1299 /* Return if preempted before wq_worker_running() was reached */ 1300 if (READ_ONCE(worker->sleeping)) 1301 return; 1302 1303 WRITE_ONCE(worker->sleeping, 1); 1304 raw_spin_lock_irq(&pool->lock); 1305 1306 /* 1307 * Recheck in case unbind_workers() preempted us. We don't 1308 * want to decrement nr_running after the worker is unbound 1309 * and nr_running has been reset. 1310 */ 1311 if (worker->flags & WORKER_NOT_RUNNING) { 1312 raw_spin_unlock_irq(&pool->lock); 1313 return; 1314 } 1315 1316 pool->nr_running--; 1317 if (kick_pool(pool)) 1318 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1319 1320 raw_spin_unlock_irq(&pool->lock); 1321 } 1322 1323 /** 1324 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1325 * @task: task currently running 1326 * 1327 * Called from scheduler_tick(). We're in the IRQ context and the current 1328 * worker's fields which follow the 'K' locking rule can be accessed safely. 1329 */ 1330 void wq_worker_tick(struct task_struct *task) 1331 { 1332 struct worker *worker = kthread_data(task); 1333 struct pool_workqueue *pwq = worker->current_pwq; 1334 struct worker_pool *pool = worker->pool; 1335 1336 if (!pwq) 1337 return; 1338 1339 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1340 1341 if (!wq_cpu_intensive_thresh_us) 1342 return; 1343 1344 /* 1345 * If the current worker is concurrency managed and hogged the CPU for 1346 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1347 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1348 * 1349 * Set @worker->sleeping means that @worker is in the process of 1350 * switching out voluntarily and won't be contributing to 1351 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1352 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1353 * double decrements. The task is releasing the CPU anyway. Let's skip. 1354 * We probably want to make this prettier in the future. 1355 */ 1356 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1357 worker->task->se.sum_exec_runtime - worker->current_at < 1358 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1359 return; 1360 1361 raw_spin_lock(&pool->lock); 1362 1363 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1364 wq_cpu_intensive_report(worker->current_func); 1365 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1366 1367 if (kick_pool(pool)) 1368 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1369 1370 raw_spin_unlock(&pool->lock); 1371 } 1372 1373 /** 1374 * wq_worker_last_func - retrieve worker's last work function 1375 * @task: Task to retrieve last work function of. 1376 * 1377 * Determine the last function a worker executed. This is called from 1378 * the scheduler to get a worker's last known identity. 1379 * 1380 * CONTEXT: 1381 * raw_spin_lock_irq(rq->lock) 1382 * 1383 * This function is called during schedule() when a kworker is going 1384 * to sleep. It's used by psi to identify aggregation workers during 1385 * dequeuing, to allow periodic aggregation to shut-off when that 1386 * worker is the last task in the system or cgroup to go to sleep. 1387 * 1388 * As this function doesn't involve any workqueue-related locking, it 1389 * only returns stable values when called from inside the scheduler's 1390 * queuing and dequeuing paths, when @task, which must be a kworker, 1391 * is guaranteed to not be processing any works. 1392 * 1393 * Return: 1394 * The last work function %current executed as a worker, NULL if it 1395 * hasn't executed any work yet. 1396 */ 1397 work_func_t wq_worker_last_func(struct task_struct *task) 1398 { 1399 struct worker *worker = kthread_data(task); 1400 1401 return worker->last_func; 1402 } 1403 1404 /** 1405 * get_pwq - get an extra reference on the specified pool_workqueue 1406 * @pwq: pool_workqueue to get 1407 * 1408 * Obtain an extra reference on @pwq. The caller should guarantee that 1409 * @pwq has positive refcnt and be holding the matching pool->lock. 1410 */ 1411 static void get_pwq(struct pool_workqueue *pwq) 1412 { 1413 lockdep_assert_held(&pwq->pool->lock); 1414 WARN_ON_ONCE(pwq->refcnt <= 0); 1415 pwq->refcnt++; 1416 } 1417 1418 /** 1419 * put_pwq - put a pool_workqueue reference 1420 * @pwq: pool_workqueue to put 1421 * 1422 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1423 * destruction. The caller should be holding the matching pool->lock. 1424 */ 1425 static void put_pwq(struct pool_workqueue *pwq) 1426 { 1427 lockdep_assert_held(&pwq->pool->lock); 1428 if (likely(--pwq->refcnt)) 1429 return; 1430 /* 1431 * @pwq can't be released under pool->lock, bounce to a dedicated 1432 * kthread_worker to avoid A-A deadlocks. 1433 */ 1434 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1435 } 1436 1437 /** 1438 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1439 * @pwq: pool_workqueue to put (can be %NULL) 1440 * 1441 * put_pwq() with locking. This function also allows %NULL @pwq. 1442 */ 1443 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1444 { 1445 if (pwq) { 1446 /* 1447 * As both pwqs and pools are RCU protected, the 1448 * following lock operations are safe. 1449 */ 1450 raw_spin_lock_irq(&pwq->pool->lock); 1451 put_pwq(pwq); 1452 raw_spin_unlock_irq(&pwq->pool->lock); 1453 } 1454 } 1455 1456 static void pwq_activate_inactive_work(struct work_struct *work) 1457 { 1458 struct pool_workqueue *pwq = get_work_pwq(work); 1459 1460 trace_workqueue_activate_work(work); 1461 if (list_empty(&pwq->pool->worklist)) 1462 pwq->pool->watchdog_ts = jiffies; 1463 move_linked_works(work, &pwq->pool->worklist, NULL); 1464 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work)); 1465 pwq->nr_active++; 1466 } 1467 1468 static void pwq_activate_first_inactive(struct pool_workqueue *pwq) 1469 { 1470 struct work_struct *work = list_first_entry(&pwq->inactive_works, 1471 struct work_struct, entry); 1472 1473 pwq_activate_inactive_work(work); 1474 } 1475 1476 /** 1477 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1478 * @pwq: pwq of interest 1479 * @work_data: work_data of work which left the queue 1480 * 1481 * A work either has completed or is removed from pending queue, 1482 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1483 * 1484 * CONTEXT: 1485 * raw_spin_lock_irq(pool->lock). 1486 */ 1487 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1488 { 1489 int color = get_work_color(work_data); 1490 1491 if (!(work_data & WORK_STRUCT_INACTIVE)) { 1492 pwq->nr_active--; 1493 if (!list_empty(&pwq->inactive_works)) { 1494 /* one down, submit an inactive one */ 1495 if (pwq->nr_active < pwq->max_active) 1496 pwq_activate_first_inactive(pwq); 1497 } 1498 } 1499 1500 pwq->nr_in_flight[color]--; 1501 1502 /* is flush in progress and are we at the flushing tip? */ 1503 if (likely(pwq->flush_color != color)) 1504 goto out_put; 1505 1506 /* are there still in-flight works? */ 1507 if (pwq->nr_in_flight[color]) 1508 goto out_put; 1509 1510 /* this pwq is done, clear flush_color */ 1511 pwq->flush_color = -1; 1512 1513 /* 1514 * If this was the last pwq, wake up the first flusher. It 1515 * will handle the rest. 1516 */ 1517 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1518 complete(&pwq->wq->first_flusher->done); 1519 out_put: 1520 put_pwq(pwq); 1521 } 1522 1523 /** 1524 * try_to_grab_pending - steal work item from worklist and disable irq 1525 * @work: work item to steal 1526 * @is_dwork: @work is a delayed_work 1527 * @flags: place to store irq state 1528 * 1529 * Try to grab PENDING bit of @work. This function can handle @work in any 1530 * stable state - idle, on timer or on worklist. 1531 * 1532 * Return: 1533 * 1534 * ======== ================================================================ 1535 * 1 if @work was pending and we successfully stole PENDING 1536 * 0 if @work was idle and we claimed PENDING 1537 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1538 * -ENOENT if someone else is canceling @work, this state may persist 1539 * for arbitrarily long 1540 * ======== ================================================================ 1541 * 1542 * Note: 1543 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1544 * interrupted while holding PENDING and @work off queue, irq must be 1545 * disabled on entry. This, combined with delayed_work->timer being 1546 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1547 * 1548 * On successful return, >= 0, irq is disabled and the caller is 1549 * responsible for releasing it using local_irq_restore(*@flags). 1550 * 1551 * This function is safe to call from any context including IRQ handler. 1552 */ 1553 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1554 unsigned long *flags) 1555 { 1556 struct worker_pool *pool; 1557 struct pool_workqueue *pwq; 1558 1559 local_irq_save(*flags); 1560 1561 /* try to steal the timer if it exists */ 1562 if (is_dwork) { 1563 struct delayed_work *dwork = to_delayed_work(work); 1564 1565 /* 1566 * dwork->timer is irqsafe. If del_timer() fails, it's 1567 * guaranteed that the timer is not queued anywhere and not 1568 * running on the local CPU. 1569 */ 1570 if (likely(del_timer(&dwork->timer))) 1571 return 1; 1572 } 1573 1574 /* try to claim PENDING the normal way */ 1575 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1576 return 0; 1577 1578 rcu_read_lock(); 1579 /* 1580 * The queueing is in progress, or it is already queued. Try to 1581 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1582 */ 1583 pool = get_work_pool(work); 1584 if (!pool) 1585 goto fail; 1586 1587 raw_spin_lock(&pool->lock); 1588 /* 1589 * work->data is guaranteed to point to pwq only while the work 1590 * item is queued on pwq->wq, and both updating work->data to point 1591 * to pwq on queueing and to pool on dequeueing are done under 1592 * pwq->pool->lock. This in turn guarantees that, if work->data 1593 * points to pwq which is associated with a locked pool, the work 1594 * item is currently queued on that pool. 1595 */ 1596 pwq = get_work_pwq(work); 1597 if (pwq && pwq->pool == pool) { 1598 debug_work_deactivate(work); 1599 1600 /* 1601 * A cancelable inactive work item must be in the 1602 * pwq->inactive_works since a queued barrier can't be 1603 * canceled (see the comments in insert_wq_barrier()). 1604 * 1605 * An inactive work item cannot be grabbed directly because 1606 * it might have linked barrier work items which, if left 1607 * on the inactive_works list, will confuse pwq->nr_active 1608 * management later on and cause stall. Make sure the work 1609 * item is activated before grabbing. 1610 */ 1611 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE) 1612 pwq_activate_inactive_work(work); 1613 1614 list_del_init(&work->entry); 1615 pwq_dec_nr_in_flight(pwq, *work_data_bits(work)); 1616 1617 /* work->data points to pwq iff queued, point to pool */ 1618 set_work_pool_and_keep_pending(work, pool->id); 1619 1620 raw_spin_unlock(&pool->lock); 1621 rcu_read_unlock(); 1622 return 1; 1623 } 1624 raw_spin_unlock(&pool->lock); 1625 fail: 1626 rcu_read_unlock(); 1627 local_irq_restore(*flags); 1628 if (work_is_canceling(work)) 1629 return -ENOENT; 1630 cpu_relax(); 1631 return -EAGAIN; 1632 } 1633 1634 /** 1635 * insert_work - insert a work into a pool 1636 * @pwq: pwq @work belongs to 1637 * @work: work to insert 1638 * @head: insertion point 1639 * @extra_flags: extra WORK_STRUCT_* flags to set 1640 * 1641 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1642 * work_struct flags. 1643 * 1644 * CONTEXT: 1645 * raw_spin_lock_irq(pool->lock). 1646 */ 1647 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1648 struct list_head *head, unsigned int extra_flags) 1649 { 1650 debug_work_activate(work); 1651 1652 /* record the work call stack in order to print it in KASAN reports */ 1653 kasan_record_aux_stack_noalloc(work); 1654 1655 /* we own @work, set data and link */ 1656 set_work_pwq(work, pwq, extra_flags); 1657 list_add_tail(&work->entry, head); 1658 get_pwq(pwq); 1659 } 1660 1661 /* 1662 * Test whether @work is being queued from another work executing on the 1663 * same workqueue. 1664 */ 1665 static bool is_chained_work(struct workqueue_struct *wq) 1666 { 1667 struct worker *worker; 1668 1669 worker = current_wq_worker(); 1670 /* 1671 * Return %true iff I'm a worker executing a work item on @wq. If 1672 * I'm @worker, it's safe to dereference it without locking. 1673 */ 1674 return worker && worker->current_pwq->wq == wq; 1675 } 1676 1677 /* 1678 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1679 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1680 * avoid perturbing sensitive tasks. 1681 */ 1682 static int wq_select_unbound_cpu(int cpu) 1683 { 1684 int new_cpu; 1685 1686 if (likely(!wq_debug_force_rr_cpu)) { 1687 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1688 return cpu; 1689 } else { 1690 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1691 } 1692 1693 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1694 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1695 if (unlikely(new_cpu >= nr_cpu_ids)) { 1696 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1697 if (unlikely(new_cpu >= nr_cpu_ids)) 1698 return cpu; 1699 } 1700 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1701 1702 return new_cpu; 1703 } 1704 1705 static void __queue_work(int cpu, struct workqueue_struct *wq, 1706 struct work_struct *work) 1707 { 1708 struct pool_workqueue *pwq; 1709 struct worker_pool *last_pool, *pool; 1710 unsigned int work_flags; 1711 unsigned int req_cpu = cpu; 1712 1713 /* 1714 * While a work item is PENDING && off queue, a task trying to 1715 * steal the PENDING will busy-loop waiting for it to either get 1716 * queued or lose PENDING. Grabbing PENDING and queueing should 1717 * happen with IRQ disabled. 1718 */ 1719 lockdep_assert_irqs_disabled(); 1720 1721 1722 /* 1723 * For a draining wq, only works from the same workqueue are 1724 * allowed. The __WQ_DESTROYING helps to spot the issue that 1725 * queues a new work item to a wq after destroy_workqueue(wq). 1726 */ 1727 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 1728 WARN_ON_ONCE(!is_chained_work(wq)))) 1729 return; 1730 rcu_read_lock(); 1731 retry: 1732 /* pwq which will be used unless @work is executing elsewhere */ 1733 if (req_cpu == WORK_CPU_UNBOUND) { 1734 if (wq->flags & WQ_UNBOUND) 1735 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1736 else 1737 cpu = raw_smp_processor_id(); 1738 } 1739 1740 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 1741 pool = pwq->pool; 1742 1743 /* 1744 * If @work was previously on a different pool, it might still be 1745 * running there, in which case the work needs to be queued on that 1746 * pool to guarantee non-reentrancy. 1747 */ 1748 last_pool = get_work_pool(work); 1749 if (last_pool && last_pool != pool) { 1750 struct worker *worker; 1751 1752 raw_spin_lock(&last_pool->lock); 1753 1754 worker = find_worker_executing_work(last_pool, work); 1755 1756 if (worker && worker->current_pwq->wq == wq) { 1757 pwq = worker->current_pwq; 1758 pool = pwq->pool; 1759 WARN_ON_ONCE(pool != last_pool); 1760 } else { 1761 /* meh... not running there, queue here */ 1762 raw_spin_unlock(&last_pool->lock); 1763 raw_spin_lock(&pool->lock); 1764 } 1765 } else { 1766 raw_spin_lock(&pool->lock); 1767 } 1768 1769 /* 1770 * pwq is determined and locked. For unbound pools, we could have raced 1771 * with pwq release and it could already be dead. If its refcnt is zero, 1772 * repeat pwq selection. Note that unbound pwqs never die without 1773 * another pwq replacing it in cpu_pwq or while work items are executing 1774 * on it, so the retrying is guaranteed to make forward-progress. 1775 */ 1776 if (unlikely(!pwq->refcnt)) { 1777 if (wq->flags & WQ_UNBOUND) { 1778 raw_spin_unlock(&pool->lock); 1779 cpu_relax(); 1780 goto retry; 1781 } 1782 /* oops */ 1783 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1784 wq->name, cpu); 1785 } 1786 1787 /* pwq determined, queue */ 1788 trace_workqueue_queue_work(req_cpu, pwq, work); 1789 1790 if (WARN_ON(!list_empty(&work->entry))) 1791 goto out; 1792 1793 pwq->nr_in_flight[pwq->work_color]++; 1794 work_flags = work_color_to_flags(pwq->work_color); 1795 1796 if (likely(pwq->nr_active < pwq->max_active)) { 1797 if (list_empty(&pool->worklist)) 1798 pool->watchdog_ts = jiffies; 1799 1800 trace_workqueue_activate_work(work); 1801 pwq->nr_active++; 1802 insert_work(pwq, work, &pool->worklist, work_flags); 1803 kick_pool(pool); 1804 } else { 1805 work_flags |= WORK_STRUCT_INACTIVE; 1806 insert_work(pwq, work, &pwq->inactive_works, work_flags); 1807 } 1808 1809 out: 1810 raw_spin_unlock(&pool->lock); 1811 rcu_read_unlock(); 1812 } 1813 1814 /** 1815 * queue_work_on - queue work on specific cpu 1816 * @cpu: CPU number to execute work on 1817 * @wq: workqueue to use 1818 * @work: work to queue 1819 * 1820 * We queue the work to a specific CPU, the caller must ensure it 1821 * can't go away. Callers that fail to ensure that the specified 1822 * CPU cannot go away will execute on a randomly chosen CPU. 1823 * But note well that callers specifying a CPU that never has been 1824 * online will get a splat. 1825 * 1826 * Return: %false if @work was already on a queue, %true otherwise. 1827 */ 1828 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1829 struct work_struct *work) 1830 { 1831 bool ret = false; 1832 unsigned long flags; 1833 1834 local_irq_save(flags); 1835 1836 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1837 __queue_work(cpu, wq, work); 1838 ret = true; 1839 } 1840 1841 local_irq_restore(flags); 1842 return ret; 1843 } 1844 EXPORT_SYMBOL(queue_work_on); 1845 1846 /** 1847 * select_numa_node_cpu - Select a CPU based on NUMA node 1848 * @node: NUMA node ID that we want to select a CPU from 1849 * 1850 * This function will attempt to find a "random" cpu available on a given 1851 * node. If there are no CPUs available on the given node it will return 1852 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1853 * available CPU if we need to schedule this work. 1854 */ 1855 static int select_numa_node_cpu(int node) 1856 { 1857 int cpu; 1858 1859 /* Delay binding to CPU if node is not valid or online */ 1860 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1861 return WORK_CPU_UNBOUND; 1862 1863 /* Use local node/cpu if we are already there */ 1864 cpu = raw_smp_processor_id(); 1865 if (node == cpu_to_node(cpu)) 1866 return cpu; 1867 1868 /* Use "random" otherwise know as "first" online CPU of node */ 1869 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1870 1871 /* If CPU is valid return that, otherwise just defer */ 1872 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1873 } 1874 1875 /** 1876 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1877 * @node: NUMA node that we are targeting the work for 1878 * @wq: workqueue to use 1879 * @work: work to queue 1880 * 1881 * We queue the work to a "random" CPU within a given NUMA node. The basic 1882 * idea here is to provide a way to somehow associate work with a given 1883 * NUMA node. 1884 * 1885 * This function will only make a best effort attempt at getting this onto 1886 * the right NUMA node. If no node is requested or the requested node is 1887 * offline then we just fall back to standard queue_work behavior. 1888 * 1889 * Currently the "random" CPU ends up being the first available CPU in the 1890 * intersection of cpu_online_mask and the cpumask of the node, unless we 1891 * are running on the node. In that case we just use the current CPU. 1892 * 1893 * Return: %false if @work was already on a queue, %true otherwise. 1894 */ 1895 bool queue_work_node(int node, struct workqueue_struct *wq, 1896 struct work_struct *work) 1897 { 1898 unsigned long flags; 1899 bool ret = false; 1900 1901 /* 1902 * This current implementation is specific to unbound workqueues. 1903 * Specifically we only return the first available CPU for a given 1904 * node instead of cycling through individual CPUs within the node. 1905 * 1906 * If this is used with a per-cpu workqueue then the logic in 1907 * workqueue_select_cpu_near would need to be updated to allow for 1908 * some round robin type logic. 1909 */ 1910 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1911 1912 local_irq_save(flags); 1913 1914 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1915 int cpu = select_numa_node_cpu(node); 1916 1917 __queue_work(cpu, wq, work); 1918 ret = true; 1919 } 1920 1921 local_irq_restore(flags); 1922 return ret; 1923 } 1924 EXPORT_SYMBOL_GPL(queue_work_node); 1925 1926 void delayed_work_timer_fn(struct timer_list *t) 1927 { 1928 struct delayed_work *dwork = from_timer(dwork, t, timer); 1929 1930 /* should have been called from irqsafe timer with irq already off */ 1931 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1932 } 1933 EXPORT_SYMBOL(delayed_work_timer_fn); 1934 1935 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1936 struct delayed_work *dwork, unsigned long delay) 1937 { 1938 struct timer_list *timer = &dwork->timer; 1939 struct work_struct *work = &dwork->work; 1940 1941 WARN_ON_ONCE(!wq); 1942 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1943 WARN_ON_ONCE(timer_pending(timer)); 1944 WARN_ON_ONCE(!list_empty(&work->entry)); 1945 1946 /* 1947 * If @delay is 0, queue @dwork->work immediately. This is for 1948 * both optimization and correctness. The earliest @timer can 1949 * expire is on the closest next tick and delayed_work users depend 1950 * on that there's no such delay when @delay is 0. 1951 */ 1952 if (!delay) { 1953 __queue_work(cpu, wq, &dwork->work); 1954 return; 1955 } 1956 1957 dwork->wq = wq; 1958 dwork->cpu = cpu; 1959 timer->expires = jiffies + delay; 1960 1961 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1962 add_timer_on(timer, cpu); 1963 else 1964 add_timer(timer); 1965 } 1966 1967 /** 1968 * queue_delayed_work_on - queue work on specific CPU after delay 1969 * @cpu: CPU number to execute work on 1970 * @wq: workqueue to use 1971 * @dwork: work to queue 1972 * @delay: number of jiffies to wait before queueing 1973 * 1974 * Return: %false if @work was already on a queue, %true otherwise. If 1975 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1976 * execution. 1977 */ 1978 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1979 struct delayed_work *dwork, unsigned long delay) 1980 { 1981 struct work_struct *work = &dwork->work; 1982 bool ret = false; 1983 unsigned long flags; 1984 1985 /* read the comment in __queue_work() */ 1986 local_irq_save(flags); 1987 1988 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1989 __queue_delayed_work(cpu, wq, dwork, delay); 1990 ret = true; 1991 } 1992 1993 local_irq_restore(flags); 1994 return ret; 1995 } 1996 EXPORT_SYMBOL(queue_delayed_work_on); 1997 1998 /** 1999 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2000 * @cpu: CPU number to execute work on 2001 * @wq: workqueue to use 2002 * @dwork: work to queue 2003 * @delay: number of jiffies to wait before queueing 2004 * 2005 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2006 * modify @dwork's timer so that it expires after @delay. If @delay is 2007 * zero, @work is guaranteed to be scheduled immediately regardless of its 2008 * current state. 2009 * 2010 * Return: %false if @dwork was idle and queued, %true if @dwork was 2011 * pending and its timer was modified. 2012 * 2013 * This function is safe to call from any context including IRQ handler. 2014 * See try_to_grab_pending() for details. 2015 */ 2016 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2017 struct delayed_work *dwork, unsigned long delay) 2018 { 2019 unsigned long flags; 2020 int ret; 2021 2022 do { 2023 ret = try_to_grab_pending(&dwork->work, true, &flags); 2024 } while (unlikely(ret == -EAGAIN)); 2025 2026 if (likely(ret >= 0)) { 2027 __queue_delayed_work(cpu, wq, dwork, delay); 2028 local_irq_restore(flags); 2029 } 2030 2031 /* -ENOENT from try_to_grab_pending() becomes %true */ 2032 return ret; 2033 } 2034 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2035 2036 static void rcu_work_rcufn(struct rcu_head *rcu) 2037 { 2038 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2039 2040 /* read the comment in __queue_work() */ 2041 local_irq_disable(); 2042 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2043 local_irq_enable(); 2044 } 2045 2046 /** 2047 * queue_rcu_work - queue work after a RCU grace period 2048 * @wq: workqueue to use 2049 * @rwork: work to queue 2050 * 2051 * Return: %false if @rwork was already pending, %true otherwise. Note 2052 * that a full RCU grace period is guaranteed only after a %true return. 2053 * While @rwork is guaranteed to be executed after a %false return, the 2054 * execution may happen before a full RCU grace period has passed. 2055 */ 2056 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2057 { 2058 struct work_struct *work = &rwork->work; 2059 2060 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2061 rwork->wq = wq; 2062 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2063 return true; 2064 } 2065 2066 return false; 2067 } 2068 EXPORT_SYMBOL(queue_rcu_work); 2069 2070 static struct worker *alloc_worker(int node) 2071 { 2072 struct worker *worker; 2073 2074 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2075 if (worker) { 2076 INIT_LIST_HEAD(&worker->entry); 2077 INIT_LIST_HEAD(&worker->scheduled); 2078 INIT_LIST_HEAD(&worker->node); 2079 /* on creation a worker is in !idle && prep state */ 2080 worker->flags = WORKER_PREP; 2081 } 2082 return worker; 2083 } 2084 2085 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2086 { 2087 if (pool->cpu < 0 && pool->attrs->affn_strict) 2088 return pool->attrs->__pod_cpumask; 2089 else 2090 return pool->attrs->cpumask; 2091 } 2092 2093 /** 2094 * worker_attach_to_pool() - attach a worker to a pool 2095 * @worker: worker to be attached 2096 * @pool: the target pool 2097 * 2098 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2099 * cpu-binding of @worker are kept coordinated with the pool across 2100 * cpu-[un]hotplugs. 2101 */ 2102 static void worker_attach_to_pool(struct worker *worker, 2103 struct worker_pool *pool) 2104 { 2105 mutex_lock(&wq_pool_attach_mutex); 2106 2107 /* 2108 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 2109 * stable across this function. See the comments above the flag 2110 * definition for details. 2111 */ 2112 if (pool->flags & POOL_DISASSOCIATED) 2113 worker->flags |= WORKER_UNBOUND; 2114 else 2115 kthread_set_per_cpu(worker->task, pool->cpu); 2116 2117 if (worker->rescue_wq) 2118 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2119 2120 list_add_tail(&worker->node, &pool->workers); 2121 worker->pool = pool; 2122 2123 mutex_unlock(&wq_pool_attach_mutex); 2124 } 2125 2126 /** 2127 * worker_detach_from_pool() - detach a worker from its pool 2128 * @worker: worker which is attached to its pool 2129 * 2130 * Undo the attaching which had been done in worker_attach_to_pool(). The 2131 * caller worker shouldn't access to the pool after detached except it has 2132 * other reference to the pool. 2133 */ 2134 static void worker_detach_from_pool(struct worker *worker) 2135 { 2136 struct worker_pool *pool = worker->pool; 2137 struct completion *detach_completion = NULL; 2138 2139 mutex_lock(&wq_pool_attach_mutex); 2140 2141 kthread_set_per_cpu(worker->task, -1); 2142 list_del(&worker->node); 2143 worker->pool = NULL; 2144 2145 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers)) 2146 detach_completion = pool->detach_completion; 2147 mutex_unlock(&wq_pool_attach_mutex); 2148 2149 /* clear leftover flags without pool->lock after it is detached */ 2150 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2151 2152 if (detach_completion) 2153 complete(detach_completion); 2154 } 2155 2156 /** 2157 * create_worker - create a new workqueue worker 2158 * @pool: pool the new worker will belong to 2159 * 2160 * Create and start a new worker which is attached to @pool. 2161 * 2162 * CONTEXT: 2163 * Might sleep. Does GFP_KERNEL allocations. 2164 * 2165 * Return: 2166 * Pointer to the newly created worker. 2167 */ 2168 static struct worker *create_worker(struct worker_pool *pool) 2169 { 2170 struct worker *worker; 2171 int id; 2172 char id_buf[23]; 2173 2174 /* ID is needed to determine kthread name */ 2175 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2176 if (id < 0) { 2177 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2178 ERR_PTR(id)); 2179 return NULL; 2180 } 2181 2182 worker = alloc_worker(pool->node); 2183 if (!worker) { 2184 pr_err_once("workqueue: Failed to allocate a worker\n"); 2185 goto fail; 2186 } 2187 2188 worker->id = id; 2189 2190 if (pool->cpu >= 0) 2191 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 2192 pool->attrs->nice < 0 ? "H" : ""); 2193 else 2194 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 2195 2196 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 2197 "kworker/%s", id_buf); 2198 if (IS_ERR(worker->task)) { 2199 if (PTR_ERR(worker->task) == -EINTR) { 2200 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n", 2201 id_buf); 2202 } else { 2203 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2204 worker->task); 2205 } 2206 goto fail; 2207 } 2208 2209 set_user_nice(worker->task, pool->attrs->nice); 2210 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2211 2212 /* successful, attach the worker to the pool */ 2213 worker_attach_to_pool(worker, pool); 2214 2215 /* start the newly created worker */ 2216 raw_spin_lock_irq(&pool->lock); 2217 2218 worker->pool->nr_workers++; 2219 worker_enter_idle(worker); 2220 kick_pool(pool); 2221 2222 /* 2223 * @worker is waiting on a completion in kthread() and will trigger hung 2224 * check if not woken up soon. As kick_pool() might not have waken it 2225 * up, wake it up explicitly once more. 2226 */ 2227 wake_up_process(worker->task); 2228 2229 raw_spin_unlock_irq(&pool->lock); 2230 2231 return worker; 2232 2233 fail: 2234 ida_free(&pool->worker_ida, id); 2235 kfree(worker); 2236 return NULL; 2237 } 2238 2239 static void unbind_worker(struct worker *worker) 2240 { 2241 lockdep_assert_held(&wq_pool_attach_mutex); 2242 2243 kthread_set_per_cpu(worker->task, -1); 2244 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2245 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2246 else 2247 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2248 } 2249 2250 static void wake_dying_workers(struct list_head *cull_list) 2251 { 2252 struct worker *worker, *tmp; 2253 2254 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2255 list_del_init(&worker->entry); 2256 unbind_worker(worker); 2257 /* 2258 * If the worker was somehow already running, then it had to be 2259 * in pool->idle_list when set_worker_dying() happened or we 2260 * wouldn't have gotten here. 2261 * 2262 * Thus, the worker must either have observed the WORKER_DIE 2263 * flag, or have set its state to TASK_IDLE. Either way, the 2264 * below will be observed by the worker and is safe to do 2265 * outside of pool->lock. 2266 */ 2267 wake_up_process(worker->task); 2268 } 2269 } 2270 2271 /** 2272 * set_worker_dying - Tag a worker for destruction 2273 * @worker: worker to be destroyed 2274 * @list: transfer worker away from its pool->idle_list and into list 2275 * 2276 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2277 * should be idle. 2278 * 2279 * CONTEXT: 2280 * raw_spin_lock_irq(pool->lock). 2281 */ 2282 static void set_worker_dying(struct worker *worker, struct list_head *list) 2283 { 2284 struct worker_pool *pool = worker->pool; 2285 2286 lockdep_assert_held(&pool->lock); 2287 lockdep_assert_held(&wq_pool_attach_mutex); 2288 2289 /* sanity check frenzy */ 2290 if (WARN_ON(worker->current_work) || 2291 WARN_ON(!list_empty(&worker->scheduled)) || 2292 WARN_ON(!(worker->flags & WORKER_IDLE))) 2293 return; 2294 2295 pool->nr_workers--; 2296 pool->nr_idle--; 2297 2298 worker->flags |= WORKER_DIE; 2299 2300 list_move(&worker->entry, list); 2301 list_move(&worker->node, &pool->dying_workers); 2302 } 2303 2304 /** 2305 * idle_worker_timeout - check if some idle workers can now be deleted. 2306 * @t: The pool's idle_timer that just expired 2307 * 2308 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2309 * worker_leave_idle(), as a worker flicking between idle and active while its 2310 * pool is at the too_many_workers() tipping point would cause too much timer 2311 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2312 * it expire and re-evaluate things from there. 2313 */ 2314 static void idle_worker_timeout(struct timer_list *t) 2315 { 2316 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2317 bool do_cull = false; 2318 2319 if (work_pending(&pool->idle_cull_work)) 2320 return; 2321 2322 raw_spin_lock_irq(&pool->lock); 2323 2324 if (too_many_workers(pool)) { 2325 struct worker *worker; 2326 unsigned long expires; 2327 2328 /* idle_list is kept in LIFO order, check the last one */ 2329 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2330 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2331 do_cull = !time_before(jiffies, expires); 2332 2333 if (!do_cull) 2334 mod_timer(&pool->idle_timer, expires); 2335 } 2336 raw_spin_unlock_irq(&pool->lock); 2337 2338 if (do_cull) 2339 queue_work(system_unbound_wq, &pool->idle_cull_work); 2340 } 2341 2342 /** 2343 * idle_cull_fn - cull workers that have been idle for too long. 2344 * @work: the pool's work for handling these idle workers 2345 * 2346 * This goes through a pool's idle workers and gets rid of those that have been 2347 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2348 * 2349 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2350 * culled, so this also resets worker affinity. This requires a sleepable 2351 * context, hence the split between timer callback and work item. 2352 */ 2353 static void idle_cull_fn(struct work_struct *work) 2354 { 2355 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2356 LIST_HEAD(cull_list); 2357 2358 /* 2359 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2360 * cannot proceed beyong worker_detach_from_pool() in its self-destruct 2361 * path. This is required as a previously-preempted worker could run after 2362 * set_worker_dying() has happened but before wake_dying_workers() did. 2363 */ 2364 mutex_lock(&wq_pool_attach_mutex); 2365 raw_spin_lock_irq(&pool->lock); 2366 2367 while (too_many_workers(pool)) { 2368 struct worker *worker; 2369 unsigned long expires; 2370 2371 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2372 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2373 2374 if (time_before(jiffies, expires)) { 2375 mod_timer(&pool->idle_timer, expires); 2376 break; 2377 } 2378 2379 set_worker_dying(worker, &cull_list); 2380 } 2381 2382 raw_spin_unlock_irq(&pool->lock); 2383 wake_dying_workers(&cull_list); 2384 mutex_unlock(&wq_pool_attach_mutex); 2385 } 2386 2387 static void send_mayday(struct work_struct *work) 2388 { 2389 struct pool_workqueue *pwq = get_work_pwq(work); 2390 struct workqueue_struct *wq = pwq->wq; 2391 2392 lockdep_assert_held(&wq_mayday_lock); 2393 2394 if (!wq->rescuer) 2395 return; 2396 2397 /* mayday mayday mayday */ 2398 if (list_empty(&pwq->mayday_node)) { 2399 /* 2400 * If @pwq is for an unbound wq, its base ref may be put at 2401 * any time due to an attribute change. Pin @pwq until the 2402 * rescuer is done with it. 2403 */ 2404 get_pwq(pwq); 2405 list_add_tail(&pwq->mayday_node, &wq->maydays); 2406 wake_up_process(wq->rescuer->task); 2407 pwq->stats[PWQ_STAT_MAYDAY]++; 2408 } 2409 } 2410 2411 static void pool_mayday_timeout(struct timer_list *t) 2412 { 2413 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2414 struct work_struct *work; 2415 2416 raw_spin_lock_irq(&pool->lock); 2417 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2418 2419 if (need_to_create_worker(pool)) { 2420 /* 2421 * We've been trying to create a new worker but 2422 * haven't been successful. We might be hitting an 2423 * allocation deadlock. Send distress signals to 2424 * rescuers. 2425 */ 2426 list_for_each_entry(work, &pool->worklist, entry) 2427 send_mayday(work); 2428 } 2429 2430 raw_spin_unlock(&wq_mayday_lock); 2431 raw_spin_unlock_irq(&pool->lock); 2432 2433 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2434 } 2435 2436 /** 2437 * maybe_create_worker - create a new worker if necessary 2438 * @pool: pool to create a new worker for 2439 * 2440 * Create a new worker for @pool if necessary. @pool is guaranteed to 2441 * have at least one idle worker on return from this function. If 2442 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2443 * sent to all rescuers with works scheduled on @pool to resolve 2444 * possible allocation deadlock. 2445 * 2446 * On return, need_to_create_worker() is guaranteed to be %false and 2447 * may_start_working() %true. 2448 * 2449 * LOCKING: 2450 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2451 * multiple times. Does GFP_KERNEL allocations. Called only from 2452 * manager. 2453 */ 2454 static void maybe_create_worker(struct worker_pool *pool) 2455 __releases(&pool->lock) 2456 __acquires(&pool->lock) 2457 { 2458 restart: 2459 raw_spin_unlock_irq(&pool->lock); 2460 2461 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2462 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2463 2464 while (true) { 2465 if (create_worker(pool) || !need_to_create_worker(pool)) 2466 break; 2467 2468 schedule_timeout_interruptible(CREATE_COOLDOWN); 2469 2470 if (!need_to_create_worker(pool)) 2471 break; 2472 } 2473 2474 del_timer_sync(&pool->mayday_timer); 2475 raw_spin_lock_irq(&pool->lock); 2476 /* 2477 * This is necessary even after a new worker was just successfully 2478 * created as @pool->lock was dropped and the new worker might have 2479 * already become busy. 2480 */ 2481 if (need_to_create_worker(pool)) 2482 goto restart; 2483 } 2484 2485 /** 2486 * manage_workers - manage worker pool 2487 * @worker: self 2488 * 2489 * Assume the manager role and manage the worker pool @worker belongs 2490 * to. At any given time, there can be only zero or one manager per 2491 * pool. The exclusion is handled automatically by this function. 2492 * 2493 * The caller can safely start processing works on false return. On 2494 * true return, it's guaranteed that need_to_create_worker() is false 2495 * and may_start_working() is true. 2496 * 2497 * CONTEXT: 2498 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2499 * multiple times. Does GFP_KERNEL allocations. 2500 * 2501 * Return: 2502 * %false if the pool doesn't need management and the caller can safely 2503 * start processing works, %true if management function was performed and 2504 * the conditions that the caller verified before calling the function may 2505 * no longer be true. 2506 */ 2507 static bool manage_workers(struct worker *worker) 2508 { 2509 struct worker_pool *pool = worker->pool; 2510 2511 if (pool->flags & POOL_MANAGER_ACTIVE) 2512 return false; 2513 2514 pool->flags |= POOL_MANAGER_ACTIVE; 2515 pool->manager = worker; 2516 2517 maybe_create_worker(pool); 2518 2519 pool->manager = NULL; 2520 pool->flags &= ~POOL_MANAGER_ACTIVE; 2521 rcuwait_wake_up(&manager_wait); 2522 return true; 2523 } 2524 2525 /** 2526 * process_one_work - process single work 2527 * @worker: self 2528 * @work: work to process 2529 * 2530 * Process @work. This function contains all the logics necessary to 2531 * process a single work including synchronization against and 2532 * interaction with other workers on the same cpu, queueing and 2533 * flushing. As long as context requirement is met, any worker can 2534 * call this function to process a work. 2535 * 2536 * CONTEXT: 2537 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 2538 */ 2539 static void process_one_work(struct worker *worker, struct work_struct *work) 2540 __releases(&pool->lock) 2541 __acquires(&pool->lock) 2542 { 2543 struct pool_workqueue *pwq = get_work_pwq(work); 2544 struct worker_pool *pool = worker->pool; 2545 unsigned long work_data; 2546 #ifdef CONFIG_LOCKDEP 2547 /* 2548 * It is permissible to free the struct work_struct from 2549 * inside the function that is called from it, this we need to 2550 * take into account for lockdep too. To avoid bogus "held 2551 * lock freed" warnings as well as problems when looking into 2552 * work->lockdep_map, make a copy and use that here. 2553 */ 2554 struct lockdep_map lockdep_map; 2555 2556 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2557 #endif 2558 /* ensure we're on the correct CPU */ 2559 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2560 raw_smp_processor_id() != pool->cpu); 2561 2562 /* claim and dequeue */ 2563 debug_work_deactivate(work); 2564 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2565 worker->current_work = work; 2566 worker->current_func = work->func; 2567 worker->current_pwq = pwq; 2568 worker->current_at = worker->task->se.sum_exec_runtime; 2569 work_data = *work_data_bits(work); 2570 worker->current_color = get_work_color(work_data); 2571 2572 /* 2573 * Record wq name for cmdline and debug reporting, may get 2574 * overridden through set_worker_desc(). 2575 */ 2576 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2577 2578 list_del_init(&work->entry); 2579 2580 /* 2581 * CPU intensive works don't participate in concurrency management. 2582 * They're the scheduler's responsibility. This takes @worker out 2583 * of concurrency management and the next code block will chain 2584 * execution of the pending work items. 2585 */ 2586 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 2587 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2588 2589 /* 2590 * Kick @pool if necessary. It's always noop for per-cpu worker pools 2591 * since nr_running would always be >= 1 at this point. This is used to 2592 * chain execution of the pending work items for WORKER_NOT_RUNNING 2593 * workers such as the UNBOUND and CPU_INTENSIVE ones. 2594 */ 2595 kick_pool(pool); 2596 2597 /* 2598 * Record the last pool and clear PENDING which should be the last 2599 * update to @work. Also, do this inside @pool->lock so that 2600 * PENDING and queued state changes happen together while IRQ is 2601 * disabled. 2602 */ 2603 set_work_pool_and_clear_pending(work, pool->id); 2604 2605 pwq->stats[PWQ_STAT_STARTED]++; 2606 raw_spin_unlock_irq(&pool->lock); 2607 2608 lock_map_acquire(&pwq->wq->lockdep_map); 2609 lock_map_acquire(&lockdep_map); 2610 /* 2611 * Strictly speaking we should mark the invariant state without holding 2612 * any locks, that is, before these two lock_map_acquire()'s. 2613 * 2614 * However, that would result in: 2615 * 2616 * A(W1) 2617 * WFC(C) 2618 * A(W1) 2619 * C(C) 2620 * 2621 * Which would create W1->C->W1 dependencies, even though there is no 2622 * actual deadlock possible. There are two solutions, using a 2623 * read-recursive acquire on the work(queue) 'locks', but this will then 2624 * hit the lockdep limitation on recursive locks, or simply discard 2625 * these locks. 2626 * 2627 * AFAICT there is no possible deadlock scenario between the 2628 * flush_work() and complete() primitives (except for single-threaded 2629 * workqueues), so hiding them isn't a problem. 2630 */ 2631 lockdep_invariant_state(true); 2632 trace_workqueue_execute_start(work); 2633 worker->current_func(work); 2634 /* 2635 * While we must be careful to not use "work" after this, the trace 2636 * point will only record its address. 2637 */ 2638 trace_workqueue_execute_end(work, worker->current_func); 2639 pwq->stats[PWQ_STAT_COMPLETED]++; 2640 lock_map_release(&lockdep_map); 2641 lock_map_release(&pwq->wq->lockdep_map); 2642 2643 if (unlikely(in_atomic() || lockdep_depth(current) > 0 || 2644 rcu_preempt_depth() > 0)) { 2645 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d/%d\n" 2646 " last function: %ps\n", 2647 current->comm, preempt_count(), rcu_preempt_depth(), 2648 task_pid_nr(current), worker->current_func); 2649 debug_show_held_locks(current); 2650 dump_stack(); 2651 } 2652 2653 /* 2654 * The following prevents a kworker from hogging CPU on !PREEMPTION 2655 * kernels, where a requeueing work item waiting for something to 2656 * happen could deadlock with stop_machine as such work item could 2657 * indefinitely requeue itself while all other CPUs are trapped in 2658 * stop_machine. At the same time, report a quiescent RCU state so 2659 * the same condition doesn't freeze RCU. 2660 */ 2661 cond_resched(); 2662 2663 raw_spin_lock_irq(&pool->lock); 2664 2665 /* 2666 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 2667 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 2668 * wq_cpu_intensive_thresh_us. Clear it. 2669 */ 2670 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2671 2672 /* tag the worker for identification in schedule() */ 2673 worker->last_func = worker->current_func; 2674 2675 /* we're done with it, release */ 2676 hash_del(&worker->hentry); 2677 worker->current_work = NULL; 2678 worker->current_func = NULL; 2679 worker->current_pwq = NULL; 2680 worker->current_color = INT_MAX; 2681 pwq_dec_nr_in_flight(pwq, work_data); 2682 } 2683 2684 /** 2685 * process_scheduled_works - process scheduled works 2686 * @worker: self 2687 * 2688 * Process all scheduled works. Please note that the scheduled list 2689 * may change while processing a work, so this function repeatedly 2690 * fetches a work from the top and executes it. 2691 * 2692 * CONTEXT: 2693 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2694 * multiple times. 2695 */ 2696 static void process_scheduled_works(struct worker *worker) 2697 { 2698 struct work_struct *work; 2699 bool first = true; 2700 2701 while ((work = list_first_entry_or_null(&worker->scheduled, 2702 struct work_struct, entry))) { 2703 if (first) { 2704 worker->pool->watchdog_ts = jiffies; 2705 first = false; 2706 } 2707 process_one_work(worker, work); 2708 } 2709 } 2710 2711 static void set_pf_worker(bool val) 2712 { 2713 mutex_lock(&wq_pool_attach_mutex); 2714 if (val) 2715 current->flags |= PF_WQ_WORKER; 2716 else 2717 current->flags &= ~PF_WQ_WORKER; 2718 mutex_unlock(&wq_pool_attach_mutex); 2719 } 2720 2721 /** 2722 * worker_thread - the worker thread function 2723 * @__worker: self 2724 * 2725 * The worker thread function. All workers belong to a worker_pool - 2726 * either a per-cpu one or dynamic unbound one. These workers process all 2727 * work items regardless of their specific target workqueue. The only 2728 * exception is work items which belong to workqueues with a rescuer which 2729 * will be explained in rescuer_thread(). 2730 * 2731 * Return: 0 2732 */ 2733 static int worker_thread(void *__worker) 2734 { 2735 struct worker *worker = __worker; 2736 struct worker_pool *pool = worker->pool; 2737 2738 /* tell the scheduler that this is a workqueue worker */ 2739 set_pf_worker(true); 2740 woke_up: 2741 raw_spin_lock_irq(&pool->lock); 2742 2743 /* am I supposed to die? */ 2744 if (unlikely(worker->flags & WORKER_DIE)) { 2745 raw_spin_unlock_irq(&pool->lock); 2746 set_pf_worker(false); 2747 2748 set_task_comm(worker->task, "kworker/dying"); 2749 ida_free(&pool->worker_ida, worker->id); 2750 worker_detach_from_pool(worker); 2751 WARN_ON_ONCE(!list_empty(&worker->entry)); 2752 kfree(worker); 2753 return 0; 2754 } 2755 2756 worker_leave_idle(worker); 2757 recheck: 2758 /* no more worker necessary? */ 2759 if (!need_more_worker(pool)) 2760 goto sleep; 2761 2762 /* do we need to manage? */ 2763 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2764 goto recheck; 2765 2766 /* 2767 * ->scheduled list can only be filled while a worker is 2768 * preparing to process a work or actually processing it. 2769 * Make sure nobody diddled with it while I was sleeping. 2770 */ 2771 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2772 2773 /* 2774 * Finish PREP stage. We're guaranteed to have at least one idle 2775 * worker or that someone else has already assumed the manager 2776 * role. This is where @worker starts participating in concurrency 2777 * management if applicable and concurrency management is restored 2778 * after being rebound. See rebind_workers() for details. 2779 */ 2780 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2781 2782 do { 2783 struct work_struct *work = 2784 list_first_entry(&pool->worklist, 2785 struct work_struct, entry); 2786 2787 if (assign_work(work, worker, NULL)) 2788 process_scheduled_works(worker); 2789 } while (keep_working(pool)); 2790 2791 worker_set_flags(worker, WORKER_PREP); 2792 sleep: 2793 /* 2794 * pool->lock is held and there's no work to process and no need to 2795 * manage, sleep. Workers are woken up only while holding 2796 * pool->lock or from local cpu, so setting the current state 2797 * before releasing pool->lock is enough to prevent losing any 2798 * event. 2799 */ 2800 worker_enter_idle(worker); 2801 __set_current_state(TASK_IDLE); 2802 raw_spin_unlock_irq(&pool->lock); 2803 schedule(); 2804 goto woke_up; 2805 } 2806 2807 /** 2808 * rescuer_thread - the rescuer thread function 2809 * @__rescuer: self 2810 * 2811 * Workqueue rescuer thread function. There's one rescuer for each 2812 * workqueue which has WQ_MEM_RECLAIM set. 2813 * 2814 * Regular work processing on a pool may block trying to create a new 2815 * worker which uses GFP_KERNEL allocation which has slight chance of 2816 * developing into deadlock if some works currently on the same queue 2817 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2818 * the problem rescuer solves. 2819 * 2820 * When such condition is possible, the pool summons rescuers of all 2821 * workqueues which have works queued on the pool and let them process 2822 * those works so that forward progress can be guaranteed. 2823 * 2824 * This should happen rarely. 2825 * 2826 * Return: 0 2827 */ 2828 static int rescuer_thread(void *__rescuer) 2829 { 2830 struct worker *rescuer = __rescuer; 2831 struct workqueue_struct *wq = rescuer->rescue_wq; 2832 bool should_stop; 2833 2834 set_user_nice(current, RESCUER_NICE_LEVEL); 2835 2836 /* 2837 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2838 * doesn't participate in concurrency management. 2839 */ 2840 set_pf_worker(true); 2841 repeat: 2842 set_current_state(TASK_IDLE); 2843 2844 /* 2845 * By the time the rescuer is requested to stop, the workqueue 2846 * shouldn't have any work pending, but @wq->maydays may still have 2847 * pwq(s) queued. This can happen by non-rescuer workers consuming 2848 * all the work items before the rescuer got to them. Go through 2849 * @wq->maydays processing before acting on should_stop so that the 2850 * list is always empty on exit. 2851 */ 2852 should_stop = kthread_should_stop(); 2853 2854 /* see whether any pwq is asking for help */ 2855 raw_spin_lock_irq(&wq_mayday_lock); 2856 2857 while (!list_empty(&wq->maydays)) { 2858 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2859 struct pool_workqueue, mayday_node); 2860 struct worker_pool *pool = pwq->pool; 2861 struct work_struct *work, *n; 2862 2863 __set_current_state(TASK_RUNNING); 2864 list_del_init(&pwq->mayday_node); 2865 2866 raw_spin_unlock_irq(&wq_mayday_lock); 2867 2868 worker_attach_to_pool(rescuer, pool); 2869 2870 raw_spin_lock_irq(&pool->lock); 2871 2872 /* 2873 * Slurp in all works issued via this workqueue and 2874 * process'em. 2875 */ 2876 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 2877 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2878 if (get_work_pwq(work) == pwq && 2879 assign_work(work, rescuer, &n)) 2880 pwq->stats[PWQ_STAT_RESCUED]++; 2881 } 2882 2883 if (!list_empty(&rescuer->scheduled)) { 2884 process_scheduled_works(rescuer); 2885 2886 /* 2887 * The above execution of rescued work items could 2888 * have created more to rescue through 2889 * pwq_activate_first_inactive() or chained 2890 * queueing. Let's put @pwq back on mayday list so 2891 * that such back-to-back work items, which may be 2892 * being used to relieve memory pressure, don't 2893 * incur MAYDAY_INTERVAL delay inbetween. 2894 */ 2895 if (pwq->nr_active && need_to_create_worker(pool)) { 2896 raw_spin_lock(&wq_mayday_lock); 2897 /* 2898 * Queue iff we aren't racing destruction 2899 * and somebody else hasn't queued it already. 2900 */ 2901 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2902 get_pwq(pwq); 2903 list_add_tail(&pwq->mayday_node, &wq->maydays); 2904 } 2905 raw_spin_unlock(&wq_mayday_lock); 2906 } 2907 } 2908 2909 /* 2910 * Put the reference grabbed by send_mayday(). @pool won't 2911 * go away while we're still attached to it. 2912 */ 2913 put_pwq(pwq); 2914 2915 /* 2916 * Leave this pool. Notify regular workers; otherwise, we end up 2917 * with 0 concurrency and stalling the execution. 2918 */ 2919 kick_pool(pool); 2920 2921 raw_spin_unlock_irq(&pool->lock); 2922 2923 worker_detach_from_pool(rescuer); 2924 2925 raw_spin_lock_irq(&wq_mayday_lock); 2926 } 2927 2928 raw_spin_unlock_irq(&wq_mayday_lock); 2929 2930 if (should_stop) { 2931 __set_current_state(TASK_RUNNING); 2932 set_pf_worker(false); 2933 return 0; 2934 } 2935 2936 /* rescuers should never participate in concurrency management */ 2937 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2938 schedule(); 2939 goto repeat; 2940 } 2941 2942 /** 2943 * check_flush_dependency - check for flush dependency sanity 2944 * @target_wq: workqueue being flushed 2945 * @target_work: work item being flushed (NULL for workqueue flushes) 2946 * 2947 * %current is trying to flush the whole @target_wq or @target_work on it. 2948 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2949 * reclaiming memory or running on a workqueue which doesn't have 2950 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2951 * a deadlock. 2952 */ 2953 static void check_flush_dependency(struct workqueue_struct *target_wq, 2954 struct work_struct *target_work) 2955 { 2956 work_func_t target_func = target_work ? target_work->func : NULL; 2957 struct worker *worker; 2958 2959 if (target_wq->flags & WQ_MEM_RECLAIM) 2960 return; 2961 2962 worker = current_wq_worker(); 2963 2964 WARN_ONCE(current->flags & PF_MEMALLOC, 2965 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2966 current->pid, current->comm, target_wq->name, target_func); 2967 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2968 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2969 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2970 worker->current_pwq->wq->name, worker->current_func, 2971 target_wq->name, target_func); 2972 } 2973 2974 struct wq_barrier { 2975 struct work_struct work; 2976 struct completion done; 2977 struct task_struct *task; /* purely informational */ 2978 }; 2979 2980 static void wq_barrier_func(struct work_struct *work) 2981 { 2982 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2983 complete(&barr->done); 2984 } 2985 2986 /** 2987 * insert_wq_barrier - insert a barrier work 2988 * @pwq: pwq to insert barrier into 2989 * @barr: wq_barrier to insert 2990 * @target: target work to attach @barr to 2991 * @worker: worker currently executing @target, NULL if @target is not executing 2992 * 2993 * @barr is linked to @target such that @barr is completed only after 2994 * @target finishes execution. Please note that the ordering 2995 * guarantee is observed only with respect to @target and on the local 2996 * cpu. 2997 * 2998 * Currently, a queued barrier can't be canceled. This is because 2999 * try_to_grab_pending() can't determine whether the work to be 3000 * grabbed is at the head of the queue and thus can't clear LINKED 3001 * flag of the previous work while there must be a valid next work 3002 * after a work with LINKED flag set. 3003 * 3004 * Note that when @worker is non-NULL, @target may be modified 3005 * underneath us, so we can't reliably determine pwq from @target. 3006 * 3007 * CONTEXT: 3008 * raw_spin_lock_irq(pool->lock). 3009 */ 3010 static void insert_wq_barrier(struct pool_workqueue *pwq, 3011 struct wq_barrier *barr, 3012 struct work_struct *target, struct worker *worker) 3013 { 3014 unsigned int work_flags = 0; 3015 unsigned int work_color; 3016 struct list_head *head; 3017 3018 /* 3019 * debugobject calls are safe here even with pool->lock locked 3020 * as we know for sure that this will not trigger any of the 3021 * checks and call back into the fixup functions where we 3022 * might deadlock. 3023 */ 3024 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 3025 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3026 3027 init_completion_map(&barr->done, &target->lockdep_map); 3028 3029 barr->task = current; 3030 3031 /* The barrier work item does not participate in pwq->nr_active. */ 3032 work_flags |= WORK_STRUCT_INACTIVE; 3033 3034 /* 3035 * If @target is currently being executed, schedule the 3036 * barrier to the worker; otherwise, put it after @target. 3037 */ 3038 if (worker) { 3039 head = worker->scheduled.next; 3040 work_color = worker->current_color; 3041 } else { 3042 unsigned long *bits = work_data_bits(target); 3043 3044 head = target->entry.next; 3045 /* there can already be other linked works, inherit and set */ 3046 work_flags |= *bits & WORK_STRUCT_LINKED; 3047 work_color = get_work_color(*bits); 3048 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3049 } 3050 3051 pwq->nr_in_flight[work_color]++; 3052 work_flags |= work_color_to_flags(work_color); 3053 3054 insert_work(pwq, &barr->work, head, work_flags); 3055 } 3056 3057 /** 3058 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3059 * @wq: workqueue being flushed 3060 * @flush_color: new flush color, < 0 for no-op 3061 * @work_color: new work color, < 0 for no-op 3062 * 3063 * Prepare pwqs for workqueue flushing. 3064 * 3065 * If @flush_color is non-negative, flush_color on all pwqs should be 3066 * -1. If no pwq has in-flight commands at the specified color, all 3067 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3068 * has in flight commands, its pwq->flush_color is set to 3069 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3070 * wakeup logic is armed and %true is returned. 3071 * 3072 * The caller should have initialized @wq->first_flusher prior to 3073 * calling this function with non-negative @flush_color. If 3074 * @flush_color is negative, no flush color update is done and %false 3075 * is returned. 3076 * 3077 * If @work_color is non-negative, all pwqs should have the same 3078 * work_color which is previous to @work_color and all will be 3079 * advanced to @work_color. 3080 * 3081 * CONTEXT: 3082 * mutex_lock(wq->mutex). 3083 * 3084 * Return: 3085 * %true if @flush_color >= 0 and there's something to flush. %false 3086 * otherwise. 3087 */ 3088 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3089 int flush_color, int work_color) 3090 { 3091 bool wait = false; 3092 struct pool_workqueue *pwq; 3093 3094 if (flush_color >= 0) { 3095 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3096 atomic_set(&wq->nr_pwqs_to_flush, 1); 3097 } 3098 3099 for_each_pwq(pwq, wq) { 3100 struct worker_pool *pool = pwq->pool; 3101 3102 raw_spin_lock_irq(&pool->lock); 3103 3104 if (flush_color >= 0) { 3105 WARN_ON_ONCE(pwq->flush_color != -1); 3106 3107 if (pwq->nr_in_flight[flush_color]) { 3108 pwq->flush_color = flush_color; 3109 atomic_inc(&wq->nr_pwqs_to_flush); 3110 wait = true; 3111 } 3112 } 3113 3114 if (work_color >= 0) { 3115 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3116 pwq->work_color = work_color; 3117 } 3118 3119 raw_spin_unlock_irq(&pool->lock); 3120 } 3121 3122 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3123 complete(&wq->first_flusher->done); 3124 3125 return wait; 3126 } 3127 3128 /** 3129 * __flush_workqueue - ensure that any scheduled work has run to completion. 3130 * @wq: workqueue to flush 3131 * 3132 * This function sleeps until all work items which were queued on entry 3133 * have finished execution, but it is not livelocked by new incoming ones. 3134 */ 3135 void __flush_workqueue(struct workqueue_struct *wq) 3136 { 3137 struct wq_flusher this_flusher = { 3138 .list = LIST_HEAD_INIT(this_flusher.list), 3139 .flush_color = -1, 3140 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 3141 }; 3142 int next_color; 3143 3144 if (WARN_ON(!wq_online)) 3145 return; 3146 3147 lock_map_acquire(&wq->lockdep_map); 3148 lock_map_release(&wq->lockdep_map); 3149 3150 mutex_lock(&wq->mutex); 3151 3152 /* 3153 * Start-to-wait phase 3154 */ 3155 next_color = work_next_color(wq->work_color); 3156 3157 if (next_color != wq->flush_color) { 3158 /* 3159 * Color space is not full. The current work_color 3160 * becomes our flush_color and work_color is advanced 3161 * by one. 3162 */ 3163 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3164 this_flusher.flush_color = wq->work_color; 3165 wq->work_color = next_color; 3166 3167 if (!wq->first_flusher) { 3168 /* no flush in progress, become the first flusher */ 3169 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3170 3171 wq->first_flusher = &this_flusher; 3172 3173 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3174 wq->work_color)) { 3175 /* nothing to flush, done */ 3176 wq->flush_color = next_color; 3177 wq->first_flusher = NULL; 3178 goto out_unlock; 3179 } 3180 } else { 3181 /* wait in queue */ 3182 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3183 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3184 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3185 } 3186 } else { 3187 /* 3188 * Oops, color space is full, wait on overflow queue. 3189 * The next flush completion will assign us 3190 * flush_color and transfer to flusher_queue. 3191 */ 3192 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3193 } 3194 3195 check_flush_dependency(wq, NULL); 3196 3197 mutex_unlock(&wq->mutex); 3198 3199 wait_for_completion(&this_flusher.done); 3200 3201 /* 3202 * Wake-up-and-cascade phase 3203 * 3204 * First flushers are responsible for cascading flushes and 3205 * handling overflow. Non-first flushers can simply return. 3206 */ 3207 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3208 return; 3209 3210 mutex_lock(&wq->mutex); 3211 3212 /* we might have raced, check again with mutex held */ 3213 if (wq->first_flusher != &this_flusher) 3214 goto out_unlock; 3215 3216 WRITE_ONCE(wq->first_flusher, NULL); 3217 3218 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3219 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3220 3221 while (true) { 3222 struct wq_flusher *next, *tmp; 3223 3224 /* complete all the flushers sharing the current flush color */ 3225 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3226 if (next->flush_color != wq->flush_color) 3227 break; 3228 list_del_init(&next->list); 3229 complete(&next->done); 3230 } 3231 3232 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 3233 wq->flush_color != work_next_color(wq->work_color)); 3234 3235 /* this flush_color is finished, advance by one */ 3236 wq->flush_color = work_next_color(wq->flush_color); 3237 3238 /* one color has been freed, handle overflow queue */ 3239 if (!list_empty(&wq->flusher_overflow)) { 3240 /* 3241 * Assign the same color to all overflowed 3242 * flushers, advance work_color and append to 3243 * flusher_queue. This is the start-to-wait 3244 * phase for these overflowed flushers. 3245 */ 3246 list_for_each_entry(tmp, &wq->flusher_overflow, list) 3247 tmp->flush_color = wq->work_color; 3248 3249 wq->work_color = work_next_color(wq->work_color); 3250 3251 list_splice_tail_init(&wq->flusher_overflow, 3252 &wq->flusher_queue); 3253 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3254 } 3255 3256 if (list_empty(&wq->flusher_queue)) { 3257 WARN_ON_ONCE(wq->flush_color != wq->work_color); 3258 break; 3259 } 3260 3261 /* 3262 * Need to flush more colors. Make the next flusher 3263 * the new first flusher and arm pwqs. 3264 */ 3265 WARN_ON_ONCE(wq->flush_color == wq->work_color); 3266 WARN_ON_ONCE(wq->flush_color != next->flush_color); 3267 3268 list_del_init(&next->list); 3269 wq->first_flusher = next; 3270 3271 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 3272 break; 3273 3274 /* 3275 * Meh... this color is already done, clear first 3276 * flusher and repeat cascading. 3277 */ 3278 wq->first_flusher = NULL; 3279 } 3280 3281 out_unlock: 3282 mutex_unlock(&wq->mutex); 3283 } 3284 EXPORT_SYMBOL(__flush_workqueue); 3285 3286 /** 3287 * drain_workqueue - drain a workqueue 3288 * @wq: workqueue to drain 3289 * 3290 * Wait until the workqueue becomes empty. While draining is in progress, 3291 * only chain queueing is allowed. IOW, only currently pending or running 3292 * work items on @wq can queue further work items on it. @wq is flushed 3293 * repeatedly until it becomes empty. The number of flushing is determined 3294 * by the depth of chaining and should be relatively short. Whine if it 3295 * takes too long. 3296 */ 3297 void drain_workqueue(struct workqueue_struct *wq) 3298 { 3299 unsigned int flush_cnt = 0; 3300 struct pool_workqueue *pwq; 3301 3302 /* 3303 * __queue_work() needs to test whether there are drainers, is much 3304 * hotter than drain_workqueue() and already looks at @wq->flags. 3305 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 3306 */ 3307 mutex_lock(&wq->mutex); 3308 if (!wq->nr_drainers++) 3309 wq->flags |= __WQ_DRAINING; 3310 mutex_unlock(&wq->mutex); 3311 reflush: 3312 __flush_workqueue(wq); 3313 3314 mutex_lock(&wq->mutex); 3315 3316 for_each_pwq(pwq, wq) { 3317 bool drained; 3318 3319 raw_spin_lock_irq(&pwq->pool->lock); 3320 drained = !pwq->nr_active && list_empty(&pwq->inactive_works); 3321 raw_spin_unlock_irq(&pwq->pool->lock); 3322 3323 if (drained) 3324 continue; 3325 3326 if (++flush_cnt == 10 || 3327 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 3328 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 3329 wq->name, __func__, flush_cnt); 3330 3331 mutex_unlock(&wq->mutex); 3332 goto reflush; 3333 } 3334 3335 if (!--wq->nr_drainers) 3336 wq->flags &= ~__WQ_DRAINING; 3337 mutex_unlock(&wq->mutex); 3338 } 3339 EXPORT_SYMBOL_GPL(drain_workqueue); 3340 3341 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 3342 bool from_cancel) 3343 { 3344 struct worker *worker = NULL; 3345 struct worker_pool *pool; 3346 struct pool_workqueue *pwq; 3347 3348 might_sleep(); 3349 3350 rcu_read_lock(); 3351 pool = get_work_pool(work); 3352 if (!pool) { 3353 rcu_read_unlock(); 3354 return false; 3355 } 3356 3357 raw_spin_lock_irq(&pool->lock); 3358 /* see the comment in try_to_grab_pending() with the same code */ 3359 pwq = get_work_pwq(work); 3360 if (pwq) { 3361 if (unlikely(pwq->pool != pool)) 3362 goto already_gone; 3363 } else { 3364 worker = find_worker_executing_work(pool, work); 3365 if (!worker) 3366 goto already_gone; 3367 pwq = worker->current_pwq; 3368 } 3369 3370 check_flush_dependency(pwq->wq, work); 3371 3372 insert_wq_barrier(pwq, barr, work, worker); 3373 raw_spin_unlock_irq(&pool->lock); 3374 3375 /* 3376 * Force a lock recursion deadlock when using flush_work() inside a 3377 * single-threaded or rescuer equipped workqueue. 3378 * 3379 * For single threaded workqueues the deadlock happens when the work 3380 * is after the work issuing the flush_work(). For rescuer equipped 3381 * workqueues the deadlock happens when the rescuer stalls, blocking 3382 * forward progress. 3383 */ 3384 if (!from_cancel && 3385 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3386 lock_map_acquire(&pwq->wq->lockdep_map); 3387 lock_map_release(&pwq->wq->lockdep_map); 3388 } 3389 rcu_read_unlock(); 3390 return true; 3391 already_gone: 3392 raw_spin_unlock_irq(&pool->lock); 3393 rcu_read_unlock(); 3394 return false; 3395 } 3396 3397 static bool __flush_work(struct work_struct *work, bool from_cancel) 3398 { 3399 struct wq_barrier barr; 3400 3401 if (WARN_ON(!wq_online)) 3402 return false; 3403 3404 if (WARN_ON(!work->func)) 3405 return false; 3406 3407 lock_map_acquire(&work->lockdep_map); 3408 lock_map_release(&work->lockdep_map); 3409 3410 if (start_flush_work(work, &barr, from_cancel)) { 3411 wait_for_completion(&barr.done); 3412 destroy_work_on_stack(&barr.work); 3413 return true; 3414 } else { 3415 return false; 3416 } 3417 } 3418 3419 /** 3420 * flush_work - wait for a work to finish executing the last queueing instance 3421 * @work: the work to flush 3422 * 3423 * Wait until @work has finished execution. @work is guaranteed to be idle 3424 * on return if it hasn't been requeued since flush started. 3425 * 3426 * Return: 3427 * %true if flush_work() waited for the work to finish execution, 3428 * %false if it was already idle. 3429 */ 3430 bool flush_work(struct work_struct *work) 3431 { 3432 return __flush_work(work, false); 3433 } 3434 EXPORT_SYMBOL_GPL(flush_work); 3435 3436 struct cwt_wait { 3437 wait_queue_entry_t wait; 3438 struct work_struct *work; 3439 }; 3440 3441 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3442 { 3443 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3444 3445 if (cwait->work != key) 3446 return 0; 3447 return autoremove_wake_function(wait, mode, sync, key); 3448 } 3449 3450 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3451 { 3452 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3453 unsigned long flags; 3454 int ret; 3455 3456 do { 3457 ret = try_to_grab_pending(work, is_dwork, &flags); 3458 /* 3459 * If someone else is already canceling, wait for it to 3460 * finish. flush_work() doesn't work for PREEMPT_NONE 3461 * because we may get scheduled between @work's completion 3462 * and the other canceling task resuming and clearing 3463 * CANCELING - flush_work() will return false immediately 3464 * as @work is no longer busy, try_to_grab_pending() will 3465 * return -ENOENT as @work is still being canceled and the 3466 * other canceling task won't be able to clear CANCELING as 3467 * we're hogging the CPU. 3468 * 3469 * Let's wait for completion using a waitqueue. As this 3470 * may lead to the thundering herd problem, use a custom 3471 * wake function which matches @work along with exclusive 3472 * wait and wakeup. 3473 */ 3474 if (unlikely(ret == -ENOENT)) { 3475 struct cwt_wait cwait; 3476 3477 init_wait(&cwait.wait); 3478 cwait.wait.func = cwt_wakefn; 3479 cwait.work = work; 3480 3481 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3482 TASK_UNINTERRUPTIBLE); 3483 if (work_is_canceling(work)) 3484 schedule(); 3485 finish_wait(&cancel_waitq, &cwait.wait); 3486 } 3487 } while (unlikely(ret < 0)); 3488 3489 /* tell other tasks trying to grab @work to back off */ 3490 mark_work_canceling(work); 3491 local_irq_restore(flags); 3492 3493 /* 3494 * This allows canceling during early boot. We know that @work 3495 * isn't executing. 3496 */ 3497 if (wq_online) 3498 __flush_work(work, true); 3499 3500 clear_work_data(work); 3501 3502 /* 3503 * Paired with prepare_to_wait() above so that either 3504 * waitqueue_active() is visible here or !work_is_canceling() is 3505 * visible there. 3506 */ 3507 smp_mb(); 3508 if (waitqueue_active(&cancel_waitq)) 3509 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3510 3511 return ret; 3512 } 3513 3514 /** 3515 * cancel_work_sync - cancel a work and wait for it to finish 3516 * @work: the work to cancel 3517 * 3518 * Cancel @work and wait for its execution to finish. This function 3519 * can be used even if the work re-queues itself or migrates to 3520 * another workqueue. On return from this function, @work is 3521 * guaranteed to be not pending or executing on any CPU. 3522 * 3523 * cancel_work_sync(&delayed_work->work) must not be used for 3524 * delayed_work's. Use cancel_delayed_work_sync() instead. 3525 * 3526 * The caller must ensure that the workqueue on which @work was last 3527 * queued can't be destroyed before this function returns. 3528 * 3529 * Return: 3530 * %true if @work was pending, %false otherwise. 3531 */ 3532 bool cancel_work_sync(struct work_struct *work) 3533 { 3534 return __cancel_work_timer(work, false); 3535 } 3536 EXPORT_SYMBOL_GPL(cancel_work_sync); 3537 3538 /** 3539 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3540 * @dwork: the delayed work to flush 3541 * 3542 * Delayed timer is cancelled and the pending work is queued for 3543 * immediate execution. Like flush_work(), this function only 3544 * considers the last queueing instance of @dwork. 3545 * 3546 * Return: 3547 * %true if flush_work() waited for the work to finish execution, 3548 * %false if it was already idle. 3549 */ 3550 bool flush_delayed_work(struct delayed_work *dwork) 3551 { 3552 local_irq_disable(); 3553 if (del_timer_sync(&dwork->timer)) 3554 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3555 local_irq_enable(); 3556 return flush_work(&dwork->work); 3557 } 3558 EXPORT_SYMBOL(flush_delayed_work); 3559 3560 /** 3561 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3562 * @rwork: the rcu work to flush 3563 * 3564 * Return: 3565 * %true if flush_rcu_work() waited for the work to finish execution, 3566 * %false if it was already idle. 3567 */ 3568 bool flush_rcu_work(struct rcu_work *rwork) 3569 { 3570 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3571 rcu_barrier(); 3572 flush_work(&rwork->work); 3573 return true; 3574 } else { 3575 return flush_work(&rwork->work); 3576 } 3577 } 3578 EXPORT_SYMBOL(flush_rcu_work); 3579 3580 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3581 { 3582 unsigned long flags; 3583 int ret; 3584 3585 do { 3586 ret = try_to_grab_pending(work, is_dwork, &flags); 3587 } while (unlikely(ret == -EAGAIN)); 3588 3589 if (unlikely(ret < 0)) 3590 return false; 3591 3592 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3593 local_irq_restore(flags); 3594 return ret; 3595 } 3596 3597 /* 3598 * See cancel_delayed_work() 3599 */ 3600 bool cancel_work(struct work_struct *work) 3601 { 3602 return __cancel_work(work, false); 3603 } 3604 EXPORT_SYMBOL(cancel_work); 3605 3606 /** 3607 * cancel_delayed_work - cancel a delayed work 3608 * @dwork: delayed_work to cancel 3609 * 3610 * Kill off a pending delayed_work. 3611 * 3612 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3613 * pending. 3614 * 3615 * Note: 3616 * The work callback function may still be running on return, unless 3617 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3618 * use cancel_delayed_work_sync() to wait on it. 3619 * 3620 * This function is safe to call from any context including IRQ handler. 3621 */ 3622 bool cancel_delayed_work(struct delayed_work *dwork) 3623 { 3624 return __cancel_work(&dwork->work, true); 3625 } 3626 EXPORT_SYMBOL(cancel_delayed_work); 3627 3628 /** 3629 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3630 * @dwork: the delayed work cancel 3631 * 3632 * This is cancel_work_sync() for delayed works. 3633 * 3634 * Return: 3635 * %true if @dwork was pending, %false otherwise. 3636 */ 3637 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3638 { 3639 return __cancel_work_timer(&dwork->work, true); 3640 } 3641 EXPORT_SYMBOL(cancel_delayed_work_sync); 3642 3643 /** 3644 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3645 * @func: the function to call 3646 * 3647 * schedule_on_each_cpu() executes @func on each online CPU using the 3648 * system workqueue and blocks until all CPUs have completed. 3649 * schedule_on_each_cpu() is very slow. 3650 * 3651 * Return: 3652 * 0 on success, -errno on failure. 3653 */ 3654 int schedule_on_each_cpu(work_func_t func) 3655 { 3656 int cpu; 3657 struct work_struct __percpu *works; 3658 3659 works = alloc_percpu(struct work_struct); 3660 if (!works) 3661 return -ENOMEM; 3662 3663 cpus_read_lock(); 3664 3665 for_each_online_cpu(cpu) { 3666 struct work_struct *work = per_cpu_ptr(works, cpu); 3667 3668 INIT_WORK(work, func); 3669 schedule_work_on(cpu, work); 3670 } 3671 3672 for_each_online_cpu(cpu) 3673 flush_work(per_cpu_ptr(works, cpu)); 3674 3675 cpus_read_unlock(); 3676 free_percpu(works); 3677 return 0; 3678 } 3679 3680 /** 3681 * execute_in_process_context - reliably execute the routine with user context 3682 * @fn: the function to execute 3683 * @ew: guaranteed storage for the execute work structure (must 3684 * be available when the work executes) 3685 * 3686 * Executes the function immediately if process context is available, 3687 * otherwise schedules the function for delayed execution. 3688 * 3689 * Return: 0 - function was executed 3690 * 1 - function was scheduled for execution 3691 */ 3692 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3693 { 3694 if (!in_interrupt()) { 3695 fn(&ew->work); 3696 return 0; 3697 } 3698 3699 INIT_WORK(&ew->work, fn); 3700 schedule_work(&ew->work); 3701 3702 return 1; 3703 } 3704 EXPORT_SYMBOL_GPL(execute_in_process_context); 3705 3706 /** 3707 * free_workqueue_attrs - free a workqueue_attrs 3708 * @attrs: workqueue_attrs to free 3709 * 3710 * Undo alloc_workqueue_attrs(). 3711 */ 3712 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3713 { 3714 if (attrs) { 3715 free_cpumask_var(attrs->cpumask); 3716 free_cpumask_var(attrs->__pod_cpumask); 3717 kfree(attrs); 3718 } 3719 } 3720 3721 /** 3722 * alloc_workqueue_attrs - allocate a workqueue_attrs 3723 * 3724 * Allocate a new workqueue_attrs, initialize with default settings and 3725 * return it. 3726 * 3727 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3728 */ 3729 struct workqueue_attrs *alloc_workqueue_attrs(void) 3730 { 3731 struct workqueue_attrs *attrs; 3732 3733 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3734 if (!attrs) 3735 goto fail; 3736 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3737 goto fail; 3738 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 3739 goto fail; 3740 3741 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3742 attrs->affn_scope = WQ_AFFN_DFL; 3743 return attrs; 3744 fail: 3745 free_workqueue_attrs(attrs); 3746 return NULL; 3747 } 3748 3749 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3750 const struct workqueue_attrs *from) 3751 { 3752 to->nice = from->nice; 3753 cpumask_copy(to->cpumask, from->cpumask); 3754 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 3755 to->affn_strict = from->affn_strict; 3756 3757 /* 3758 * Unlike hash and equality test, copying shouldn't ignore wq-only 3759 * fields as copying is used for both pool and wq attrs. Instead, 3760 * get_unbound_pool() explicitly clears the fields. 3761 */ 3762 to->affn_scope = from->affn_scope; 3763 to->ordered = from->ordered; 3764 } 3765 3766 /* 3767 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 3768 * comments in 'struct workqueue_attrs' definition. 3769 */ 3770 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 3771 { 3772 attrs->affn_scope = WQ_AFFN_NR_TYPES; 3773 attrs->ordered = false; 3774 } 3775 3776 /* hash value of the content of @attr */ 3777 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3778 { 3779 u32 hash = 0; 3780 3781 hash = jhash_1word(attrs->nice, hash); 3782 hash = jhash(cpumask_bits(attrs->cpumask), 3783 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3784 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 3785 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3786 hash = jhash_1word(attrs->affn_strict, hash); 3787 return hash; 3788 } 3789 3790 /* content equality test */ 3791 static bool wqattrs_equal(const struct workqueue_attrs *a, 3792 const struct workqueue_attrs *b) 3793 { 3794 if (a->nice != b->nice) 3795 return false; 3796 if (!cpumask_equal(a->cpumask, b->cpumask)) 3797 return false; 3798 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 3799 return false; 3800 if (a->affn_strict != b->affn_strict) 3801 return false; 3802 return true; 3803 } 3804 3805 /* Update @attrs with actually available CPUs */ 3806 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 3807 const cpumask_t *unbound_cpumask) 3808 { 3809 /* 3810 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 3811 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 3812 * @unbound_cpumask. 3813 */ 3814 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 3815 if (unlikely(cpumask_empty(attrs->cpumask))) 3816 cpumask_copy(attrs->cpumask, unbound_cpumask); 3817 } 3818 3819 /* find wq_pod_type to use for @attrs */ 3820 static const struct wq_pod_type * 3821 wqattrs_pod_type(const struct workqueue_attrs *attrs) 3822 { 3823 enum wq_affn_scope scope; 3824 struct wq_pod_type *pt; 3825 3826 /* to synchronize access to wq_affn_dfl */ 3827 lockdep_assert_held(&wq_pool_mutex); 3828 3829 if (attrs->affn_scope == WQ_AFFN_DFL) 3830 scope = wq_affn_dfl; 3831 else 3832 scope = attrs->affn_scope; 3833 3834 pt = &wq_pod_types[scope]; 3835 3836 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 3837 likely(pt->nr_pods)) 3838 return pt; 3839 3840 /* 3841 * Before workqueue_init_topology(), only SYSTEM is available which is 3842 * initialized in workqueue_init_early(). 3843 */ 3844 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 3845 BUG_ON(!pt->nr_pods); 3846 return pt; 3847 } 3848 3849 /** 3850 * init_worker_pool - initialize a newly zalloc'd worker_pool 3851 * @pool: worker_pool to initialize 3852 * 3853 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3854 * 3855 * Return: 0 on success, -errno on failure. Even on failure, all fields 3856 * inside @pool proper are initialized and put_unbound_pool() can be called 3857 * on @pool safely to release it. 3858 */ 3859 static int init_worker_pool(struct worker_pool *pool) 3860 { 3861 raw_spin_lock_init(&pool->lock); 3862 pool->id = -1; 3863 pool->cpu = -1; 3864 pool->node = NUMA_NO_NODE; 3865 pool->flags |= POOL_DISASSOCIATED; 3866 pool->watchdog_ts = jiffies; 3867 INIT_LIST_HEAD(&pool->worklist); 3868 INIT_LIST_HEAD(&pool->idle_list); 3869 hash_init(pool->busy_hash); 3870 3871 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3872 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 3873 3874 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3875 3876 INIT_LIST_HEAD(&pool->workers); 3877 INIT_LIST_HEAD(&pool->dying_workers); 3878 3879 ida_init(&pool->worker_ida); 3880 INIT_HLIST_NODE(&pool->hash_node); 3881 pool->refcnt = 1; 3882 3883 /* shouldn't fail above this point */ 3884 pool->attrs = alloc_workqueue_attrs(); 3885 if (!pool->attrs) 3886 return -ENOMEM; 3887 3888 wqattrs_clear_for_pool(pool->attrs); 3889 3890 return 0; 3891 } 3892 3893 #ifdef CONFIG_LOCKDEP 3894 static void wq_init_lockdep(struct workqueue_struct *wq) 3895 { 3896 char *lock_name; 3897 3898 lockdep_register_key(&wq->key); 3899 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3900 if (!lock_name) 3901 lock_name = wq->name; 3902 3903 wq->lock_name = lock_name; 3904 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3905 } 3906 3907 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3908 { 3909 lockdep_unregister_key(&wq->key); 3910 } 3911 3912 static void wq_free_lockdep(struct workqueue_struct *wq) 3913 { 3914 if (wq->lock_name != wq->name) 3915 kfree(wq->lock_name); 3916 } 3917 #else 3918 static void wq_init_lockdep(struct workqueue_struct *wq) 3919 { 3920 } 3921 3922 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3923 { 3924 } 3925 3926 static void wq_free_lockdep(struct workqueue_struct *wq) 3927 { 3928 } 3929 #endif 3930 3931 static void rcu_free_wq(struct rcu_head *rcu) 3932 { 3933 struct workqueue_struct *wq = 3934 container_of(rcu, struct workqueue_struct, rcu); 3935 3936 wq_free_lockdep(wq); 3937 free_percpu(wq->cpu_pwq); 3938 free_workqueue_attrs(wq->unbound_attrs); 3939 kfree(wq); 3940 } 3941 3942 static void rcu_free_pool(struct rcu_head *rcu) 3943 { 3944 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3945 3946 ida_destroy(&pool->worker_ida); 3947 free_workqueue_attrs(pool->attrs); 3948 kfree(pool); 3949 } 3950 3951 /** 3952 * put_unbound_pool - put a worker_pool 3953 * @pool: worker_pool to put 3954 * 3955 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3956 * safe manner. get_unbound_pool() calls this function on its failure path 3957 * and this function should be able to release pools which went through, 3958 * successfully or not, init_worker_pool(). 3959 * 3960 * Should be called with wq_pool_mutex held. 3961 */ 3962 static void put_unbound_pool(struct worker_pool *pool) 3963 { 3964 DECLARE_COMPLETION_ONSTACK(detach_completion); 3965 struct worker *worker; 3966 LIST_HEAD(cull_list); 3967 3968 lockdep_assert_held(&wq_pool_mutex); 3969 3970 if (--pool->refcnt) 3971 return; 3972 3973 /* sanity checks */ 3974 if (WARN_ON(!(pool->cpu < 0)) || 3975 WARN_ON(!list_empty(&pool->worklist))) 3976 return; 3977 3978 /* release id and unhash */ 3979 if (pool->id >= 0) 3980 idr_remove(&worker_pool_idr, pool->id); 3981 hash_del(&pool->hash_node); 3982 3983 /* 3984 * Become the manager and destroy all workers. This prevents 3985 * @pool's workers from blocking on attach_mutex. We're the last 3986 * manager and @pool gets freed with the flag set. 3987 * 3988 * Having a concurrent manager is quite unlikely to happen as we can 3989 * only get here with 3990 * pwq->refcnt == pool->refcnt == 0 3991 * which implies no work queued to the pool, which implies no worker can 3992 * become the manager. However a worker could have taken the role of 3993 * manager before the refcnts dropped to 0, since maybe_create_worker() 3994 * drops pool->lock 3995 */ 3996 while (true) { 3997 rcuwait_wait_event(&manager_wait, 3998 !(pool->flags & POOL_MANAGER_ACTIVE), 3999 TASK_UNINTERRUPTIBLE); 4000 4001 mutex_lock(&wq_pool_attach_mutex); 4002 raw_spin_lock_irq(&pool->lock); 4003 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4004 pool->flags |= POOL_MANAGER_ACTIVE; 4005 break; 4006 } 4007 raw_spin_unlock_irq(&pool->lock); 4008 mutex_unlock(&wq_pool_attach_mutex); 4009 } 4010 4011 while ((worker = first_idle_worker(pool))) 4012 set_worker_dying(worker, &cull_list); 4013 WARN_ON(pool->nr_workers || pool->nr_idle); 4014 raw_spin_unlock_irq(&pool->lock); 4015 4016 wake_dying_workers(&cull_list); 4017 4018 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers)) 4019 pool->detach_completion = &detach_completion; 4020 mutex_unlock(&wq_pool_attach_mutex); 4021 4022 if (pool->detach_completion) 4023 wait_for_completion(pool->detach_completion); 4024 4025 /* shut down the timers */ 4026 del_timer_sync(&pool->idle_timer); 4027 cancel_work_sync(&pool->idle_cull_work); 4028 del_timer_sync(&pool->mayday_timer); 4029 4030 /* RCU protected to allow dereferences from get_work_pool() */ 4031 call_rcu(&pool->rcu, rcu_free_pool); 4032 } 4033 4034 /** 4035 * get_unbound_pool - get a worker_pool with the specified attributes 4036 * @attrs: the attributes of the worker_pool to get 4037 * 4038 * Obtain a worker_pool which has the same attributes as @attrs, bump the 4039 * reference count and return it. If there already is a matching 4040 * worker_pool, it will be used; otherwise, this function attempts to 4041 * create a new one. 4042 * 4043 * Should be called with wq_pool_mutex held. 4044 * 4045 * Return: On success, a worker_pool with the same attributes as @attrs. 4046 * On failure, %NULL. 4047 */ 4048 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 4049 { 4050 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 4051 u32 hash = wqattrs_hash(attrs); 4052 struct worker_pool *pool; 4053 int pod, node = NUMA_NO_NODE; 4054 4055 lockdep_assert_held(&wq_pool_mutex); 4056 4057 /* do we already have a matching pool? */ 4058 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 4059 if (wqattrs_equal(pool->attrs, attrs)) { 4060 pool->refcnt++; 4061 return pool; 4062 } 4063 } 4064 4065 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 4066 for (pod = 0; pod < pt->nr_pods; pod++) { 4067 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 4068 node = pt->pod_node[pod]; 4069 break; 4070 } 4071 } 4072 4073 /* nope, create a new one */ 4074 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 4075 if (!pool || init_worker_pool(pool) < 0) 4076 goto fail; 4077 4078 pool->node = node; 4079 copy_workqueue_attrs(pool->attrs, attrs); 4080 wqattrs_clear_for_pool(pool->attrs); 4081 4082 if (worker_pool_assign_id(pool) < 0) 4083 goto fail; 4084 4085 /* create and start the initial worker */ 4086 if (wq_online && !create_worker(pool)) 4087 goto fail; 4088 4089 /* install */ 4090 hash_add(unbound_pool_hash, &pool->hash_node, hash); 4091 4092 return pool; 4093 fail: 4094 if (pool) 4095 put_unbound_pool(pool); 4096 return NULL; 4097 } 4098 4099 static void rcu_free_pwq(struct rcu_head *rcu) 4100 { 4101 kmem_cache_free(pwq_cache, 4102 container_of(rcu, struct pool_workqueue, rcu)); 4103 } 4104 4105 /* 4106 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 4107 * refcnt and needs to be destroyed. 4108 */ 4109 static void pwq_release_workfn(struct kthread_work *work) 4110 { 4111 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 4112 release_work); 4113 struct workqueue_struct *wq = pwq->wq; 4114 struct worker_pool *pool = pwq->pool; 4115 bool is_last = false; 4116 4117 /* 4118 * When @pwq is not linked, it doesn't hold any reference to the 4119 * @wq, and @wq is invalid to access. 4120 */ 4121 if (!list_empty(&pwq->pwqs_node)) { 4122 mutex_lock(&wq->mutex); 4123 list_del_rcu(&pwq->pwqs_node); 4124 is_last = list_empty(&wq->pwqs); 4125 mutex_unlock(&wq->mutex); 4126 } 4127 4128 if (wq->flags & WQ_UNBOUND) { 4129 mutex_lock(&wq_pool_mutex); 4130 put_unbound_pool(pool); 4131 mutex_unlock(&wq_pool_mutex); 4132 } 4133 4134 call_rcu(&pwq->rcu, rcu_free_pwq); 4135 4136 /* 4137 * If we're the last pwq going away, @wq is already dead and no one 4138 * is gonna access it anymore. Schedule RCU free. 4139 */ 4140 if (is_last) { 4141 wq_unregister_lockdep(wq); 4142 call_rcu(&wq->rcu, rcu_free_wq); 4143 } 4144 } 4145 4146 /** 4147 * pwq_adjust_max_active - update a pwq's max_active to the current setting 4148 * @pwq: target pool_workqueue 4149 * 4150 * If @pwq isn't freezing, set @pwq->max_active to the associated 4151 * workqueue's saved_max_active and activate inactive work items 4152 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 4153 */ 4154 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 4155 { 4156 struct workqueue_struct *wq = pwq->wq; 4157 bool freezable = wq->flags & WQ_FREEZABLE; 4158 unsigned long flags; 4159 4160 /* for @wq->saved_max_active */ 4161 lockdep_assert_held(&wq->mutex); 4162 4163 /* fast exit for non-freezable wqs */ 4164 if (!freezable && pwq->max_active == wq->saved_max_active) 4165 return; 4166 4167 /* this function can be called during early boot w/ irq disabled */ 4168 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 4169 4170 /* 4171 * During [un]freezing, the caller is responsible for ensuring that 4172 * this function is called at least once after @workqueue_freezing 4173 * is updated and visible. 4174 */ 4175 if (!freezable || !workqueue_freezing) { 4176 pwq->max_active = wq->saved_max_active; 4177 4178 while (!list_empty(&pwq->inactive_works) && 4179 pwq->nr_active < pwq->max_active) 4180 pwq_activate_first_inactive(pwq); 4181 4182 kick_pool(pwq->pool); 4183 } else { 4184 pwq->max_active = 0; 4185 } 4186 4187 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 4188 } 4189 4190 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 4191 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 4192 struct worker_pool *pool) 4193 { 4194 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 4195 4196 memset(pwq, 0, sizeof(*pwq)); 4197 4198 pwq->pool = pool; 4199 pwq->wq = wq; 4200 pwq->flush_color = -1; 4201 pwq->refcnt = 1; 4202 INIT_LIST_HEAD(&pwq->inactive_works); 4203 INIT_LIST_HEAD(&pwq->pwqs_node); 4204 INIT_LIST_HEAD(&pwq->mayday_node); 4205 kthread_init_work(&pwq->release_work, pwq_release_workfn); 4206 } 4207 4208 /* sync @pwq with the current state of its associated wq and link it */ 4209 static void link_pwq(struct pool_workqueue *pwq) 4210 { 4211 struct workqueue_struct *wq = pwq->wq; 4212 4213 lockdep_assert_held(&wq->mutex); 4214 4215 /* may be called multiple times, ignore if already linked */ 4216 if (!list_empty(&pwq->pwqs_node)) 4217 return; 4218 4219 /* set the matching work_color */ 4220 pwq->work_color = wq->work_color; 4221 4222 /* sync max_active to the current setting */ 4223 pwq_adjust_max_active(pwq); 4224 4225 /* link in @pwq */ 4226 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 4227 } 4228 4229 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 4230 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 4231 const struct workqueue_attrs *attrs) 4232 { 4233 struct worker_pool *pool; 4234 struct pool_workqueue *pwq; 4235 4236 lockdep_assert_held(&wq_pool_mutex); 4237 4238 pool = get_unbound_pool(attrs); 4239 if (!pool) 4240 return NULL; 4241 4242 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 4243 if (!pwq) { 4244 put_unbound_pool(pool); 4245 return NULL; 4246 } 4247 4248 init_pwq(pwq, wq, pool); 4249 return pwq; 4250 } 4251 4252 /** 4253 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 4254 * @attrs: the wq_attrs of the default pwq of the target workqueue 4255 * @cpu: the target CPU 4256 * @cpu_going_down: if >= 0, the CPU to consider as offline 4257 * 4258 * Calculate the cpumask a workqueue with @attrs should use on @pod. If 4259 * @cpu_going_down is >= 0, that cpu is considered offline during calculation. 4260 * The result is stored in @attrs->__pod_cpumask. 4261 * 4262 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 4263 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 4264 * intersection of the possible CPUs of @pod and @attrs->cpumask. 4265 * 4266 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 4267 */ 4268 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu, 4269 int cpu_going_down) 4270 { 4271 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 4272 int pod = pt->cpu_pod[cpu]; 4273 4274 /* does @pod have any online CPUs @attrs wants? */ 4275 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 4276 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask); 4277 if (cpu_going_down >= 0) 4278 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask); 4279 4280 if (cpumask_empty(attrs->__pod_cpumask)) { 4281 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 4282 return; 4283 } 4284 4285 /* yeap, return possible CPUs in @pod that @attrs wants */ 4286 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]); 4287 4288 if (cpumask_empty(attrs->__pod_cpumask)) 4289 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 4290 "possible intersect\n"); 4291 } 4292 4293 /* install @pwq into @wq's cpu_pwq and return the old pwq */ 4294 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 4295 int cpu, struct pool_workqueue *pwq) 4296 { 4297 struct pool_workqueue *old_pwq; 4298 4299 lockdep_assert_held(&wq_pool_mutex); 4300 lockdep_assert_held(&wq->mutex); 4301 4302 /* link_pwq() can handle duplicate calls */ 4303 link_pwq(pwq); 4304 4305 old_pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu)); 4306 rcu_assign_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu), pwq); 4307 return old_pwq; 4308 } 4309 4310 /* context to store the prepared attrs & pwqs before applying */ 4311 struct apply_wqattrs_ctx { 4312 struct workqueue_struct *wq; /* target workqueue */ 4313 struct workqueue_attrs *attrs; /* attrs to apply */ 4314 struct list_head list; /* queued for batching commit */ 4315 struct pool_workqueue *dfl_pwq; 4316 struct pool_workqueue *pwq_tbl[]; 4317 }; 4318 4319 /* free the resources after success or abort */ 4320 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 4321 { 4322 if (ctx) { 4323 int cpu; 4324 4325 for_each_possible_cpu(cpu) 4326 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 4327 put_pwq_unlocked(ctx->dfl_pwq); 4328 4329 free_workqueue_attrs(ctx->attrs); 4330 4331 kfree(ctx); 4332 } 4333 } 4334 4335 /* allocate the attrs and pwqs for later installation */ 4336 static struct apply_wqattrs_ctx * 4337 apply_wqattrs_prepare(struct workqueue_struct *wq, 4338 const struct workqueue_attrs *attrs, 4339 const cpumask_var_t unbound_cpumask) 4340 { 4341 struct apply_wqattrs_ctx *ctx; 4342 struct workqueue_attrs *new_attrs; 4343 int cpu; 4344 4345 lockdep_assert_held(&wq_pool_mutex); 4346 4347 if (WARN_ON(attrs->affn_scope < 0 || 4348 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 4349 return ERR_PTR(-EINVAL); 4350 4351 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 4352 4353 new_attrs = alloc_workqueue_attrs(); 4354 if (!ctx || !new_attrs) 4355 goto out_free; 4356 4357 /* 4358 * If something goes wrong during CPU up/down, we'll fall back to 4359 * the default pwq covering whole @attrs->cpumask. Always create 4360 * it even if we don't use it immediately. 4361 */ 4362 copy_workqueue_attrs(new_attrs, attrs); 4363 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 4364 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 4365 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 4366 if (!ctx->dfl_pwq) 4367 goto out_free; 4368 4369 for_each_possible_cpu(cpu) { 4370 if (new_attrs->ordered) { 4371 ctx->dfl_pwq->refcnt++; 4372 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 4373 } else { 4374 wq_calc_pod_cpumask(new_attrs, cpu, -1); 4375 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 4376 if (!ctx->pwq_tbl[cpu]) 4377 goto out_free; 4378 } 4379 } 4380 4381 /* save the user configured attrs and sanitize it. */ 4382 copy_workqueue_attrs(new_attrs, attrs); 4383 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 4384 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 4385 ctx->attrs = new_attrs; 4386 4387 ctx->wq = wq; 4388 return ctx; 4389 4390 out_free: 4391 free_workqueue_attrs(new_attrs); 4392 apply_wqattrs_cleanup(ctx); 4393 return ERR_PTR(-ENOMEM); 4394 } 4395 4396 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 4397 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 4398 { 4399 int cpu; 4400 4401 /* all pwqs have been created successfully, let's install'em */ 4402 mutex_lock(&ctx->wq->mutex); 4403 4404 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 4405 4406 /* save the previous pwq and install the new one */ 4407 for_each_possible_cpu(cpu) 4408 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 4409 ctx->pwq_tbl[cpu]); 4410 4411 /* @dfl_pwq might not have been used, ensure it's linked */ 4412 link_pwq(ctx->dfl_pwq); 4413 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 4414 4415 mutex_unlock(&ctx->wq->mutex); 4416 } 4417 4418 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4419 const struct workqueue_attrs *attrs) 4420 { 4421 struct apply_wqattrs_ctx *ctx; 4422 4423 /* only unbound workqueues can change attributes */ 4424 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4425 return -EINVAL; 4426 4427 /* creating multiple pwqs breaks ordering guarantee */ 4428 if (!list_empty(&wq->pwqs)) { 4429 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4430 return -EINVAL; 4431 4432 wq->flags &= ~__WQ_ORDERED; 4433 } 4434 4435 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 4436 if (IS_ERR(ctx)) 4437 return PTR_ERR(ctx); 4438 4439 /* the ctx has been prepared successfully, let's commit it */ 4440 apply_wqattrs_commit(ctx); 4441 apply_wqattrs_cleanup(ctx); 4442 4443 return 0; 4444 } 4445 4446 /** 4447 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4448 * @wq: the target workqueue 4449 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4450 * 4451 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 4452 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 4453 * work items are affine to the pod it was issued on. Older pwqs are released as 4454 * in-flight work items finish. Note that a work item which repeatedly requeues 4455 * itself back-to-back will stay on its current pwq. 4456 * 4457 * Performs GFP_KERNEL allocations. 4458 * 4459 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 4460 * 4461 * Return: 0 on success and -errno on failure. 4462 */ 4463 int apply_workqueue_attrs(struct workqueue_struct *wq, 4464 const struct workqueue_attrs *attrs) 4465 { 4466 int ret; 4467 4468 lockdep_assert_cpus_held(); 4469 4470 mutex_lock(&wq_pool_mutex); 4471 ret = apply_workqueue_attrs_locked(wq, attrs); 4472 mutex_unlock(&wq_pool_mutex); 4473 4474 return ret; 4475 } 4476 4477 /** 4478 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug 4479 * @wq: the target workqueue 4480 * @cpu: the CPU to update pool association for 4481 * @hotplug_cpu: the CPU coming up or going down 4482 * @online: whether @cpu is coming up or going down 4483 * 4484 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4485 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of 4486 * @wq accordingly. 4487 * 4488 * 4489 * If pod affinity can't be adjusted due to memory allocation failure, it falls 4490 * back to @wq->dfl_pwq which may not be optimal but is always correct. 4491 * 4492 * Note that when the last allowed CPU of a pod goes offline for a workqueue 4493 * with a cpumask spanning multiple pods, the workers which were already 4494 * executing the work items for the workqueue will lose their CPU affinity and 4495 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 4496 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 4497 * responsibility to flush the work item from CPU_DOWN_PREPARE. 4498 */ 4499 static void wq_update_pod(struct workqueue_struct *wq, int cpu, 4500 int hotplug_cpu, bool online) 4501 { 4502 int off_cpu = online ? -1 : hotplug_cpu; 4503 struct pool_workqueue *old_pwq = NULL, *pwq; 4504 struct workqueue_attrs *target_attrs; 4505 4506 lockdep_assert_held(&wq_pool_mutex); 4507 4508 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 4509 return; 4510 4511 /* 4512 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4513 * Let's use a preallocated one. The following buf is protected by 4514 * CPU hotplug exclusion. 4515 */ 4516 target_attrs = wq_update_pod_attrs_buf; 4517 4518 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4519 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 4520 4521 /* nothing to do if the target cpumask matches the current pwq */ 4522 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu); 4523 pwq = rcu_dereference_protected(*per_cpu_ptr(wq->cpu_pwq, cpu), 4524 lockdep_is_held(&wq_pool_mutex)); 4525 if (wqattrs_equal(target_attrs, pwq->pool->attrs)) 4526 return; 4527 4528 /* create a new pwq */ 4529 pwq = alloc_unbound_pwq(wq, target_attrs); 4530 if (!pwq) { 4531 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 4532 wq->name); 4533 goto use_dfl_pwq; 4534 } 4535 4536 /* Install the new pwq. */ 4537 mutex_lock(&wq->mutex); 4538 old_pwq = install_unbound_pwq(wq, cpu, pwq); 4539 goto out_unlock; 4540 4541 use_dfl_pwq: 4542 mutex_lock(&wq->mutex); 4543 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); 4544 get_pwq(wq->dfl_pwq); 4545 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4546 old_pwq = install_unbound_pwq(wq, cpu, wq->dfl_pwq); 4547 out_unlock: 4548 mutex_unlock(&wq->mutex); 4549 put_pwq_unlocked(old_pwq); 4550 } 4551 4552 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4553 { 4554 bool highpri = wq->flags & WQ_HIGHPRI; 4555 int cpu, ret; 4556 4557 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 4558 if (!wq->cpu_pwq) 4559 goto enomem; 4560 4561 if (!(wq->flags & WQ_UNBOUND)) { 4562 for_each_possible_cpu(cpu) { 4563 struct pool_workqueue **pwq_p = 4564 per_cpu_ptr(wq->cpu_pwq, cpu); 4565 struct worker_pool *pool = 4566 &(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]); 4567 4568 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 4569 pool->node); 4570 if (!*pwq_p) 4571 goto enomem; 4572 4573 init_pwq(*pwq_p, wq, pool); 4574 4575 mutex_lock(&wq->mutex); 4576 link_pwq(*pwq_p); 4577 mutex_unlock(&wq->mutex); 4578 } 4579 return 0; 4580 } 4581 4582 cpus_read_lock(); 4583 if (wq->flags & __WQ_ORDERED) { 4584 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4585 /* there should only be single pwq for ordering guarantee */ 4586 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4587 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4588 "ordering guarantee broken for workqueue %s\n", wq->name); 4589 } else { 4590 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4591 } 4592 cpus_read_unlock(); 4593 4594 /* for unbound pwq, flush the pwq_release_worker ensures that the 4595 * pwq_release_workfn() completes before calling kfree(wq). 4596 */ 4597 if (ret) 4598 kthread_flush_worker(pwq_release_worker); 4599 4600 return ret; 4601 4602 enomem: 4603 if (wq->cpu_pwq) { 4604 for_each_possible_cpu(cpu) { 4605 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 4606 4607 if (pwq) 4608 kmem_cache_free(pwq_cache, pwq); 4609 } 4610 free_percpu(wq->cpu_pwq); 4611 wq->cpu_pwq = NULL; 4612 } 4613 return -ENOMEM; 4614 } 4615 4616 static int wq_clamp_max_active(int max_active, unsigned int flags, 4617 const char *name) 4618 { 4619 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 4620 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4621 max_active, name, 1, WQ_MAX_ACTIVE); 4622 4623 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 4624 } 4625 4626 /* 4627 * Workqueues which may be used during memory reclaim should have a rescuer 4628 * to guarantee forward progress. 4629 */ 4630 static int init_rescuer(struct workqueue_struct *wq) 4631 { 4632 struct worker *rescuer; 4633 int ret; 4634 4635 if (!(wq->flags & WQ_MEM_RECLAIM)) 4636 return 0; 4637 4638 rescuer = alloc_worker(NUMA_NO_NODE); 4639 if (!rescuer) { 4640 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 4641 wq->name); 4642 return -ENOMEM; 4643 } 4644 4645 rescuer->rescue_wq = wq; 4646 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name); 4647 if (IS_ERR(rescuer->task)) { 4648 ret = PTR_ERR(rescuer->task); 4649 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 4650 wq->name, ERR_PTR(ret)); 4651 kfree(rescuer); 4652 return ret; 4653 } 4654 4655 wq->rescuer = rescuer; 4656 if (wq->flags & WQ_UNBOUND) 4657 kthread_bind_mask(rescuer->task, wq->unbound_attrs->cpumask); 4658 else 4659 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4660 wake_up_process(rescuer->task); 4661 4662 return 0; 4663 } 4664 4665 __printf(1, 4) 4666 struct workqueue_struct *alloc_workqueue(const char *fmt, 4667 unsigned int flags, 4668 int max_active, ...) 4669 { 4670 va_list args; 4671 struct workqueue_struct *wq; 4672 struct pool_workqueue *pwq; 4673 int len; 4674 4675 /* 4676 * Unbound && max_active == 1 used to imply ordered, which is no longer 4677 * the case on many machines due to per-pod pools. While 4678 * alloc_ordered_workqueue() is the right way to create an ordered 4679 * workqueue, keep the previous behavior to avoid subtle breakages. 4680 */ 4681 if ((flags & WQ_UNBOUND) && max_active == 1) 4682 flags |= __WQ_ORDERED; 4683 4684 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4685 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4686 flags |= WQ_UNBOUND; 4687 4688 /* allocate wq and format name */ 4689 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 4690 if (!wq) 4691 return NULL; 4692 4693 if (flags & WQ_UNBOUND) { 4694 wq->unbound_attrs = alloc_workqueue_attrs(); 4695 if (!wq->unbound_attrs) 4696 goto err_free_wq; 4697 } 4698 4699 va_start(args, max_active); 4700 len = vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4701 va_end(args); 4702 4703 if (len >= WQ_NAME_LEN) 4704 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", wq->name); 4705 4706 max_active = max_active ?: WQ_DFL_ACTIVE; 4707 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4708 4709 /* init wq */ 4710 wq->flags = flags; 4711 wq->saved_max_active = max_active; 4712 mutex_init(&wq->mutex); 4713 atomic_set(&wq->nr_pwqs_to_flush, 0); 4714 INIT_LIST_HEAD(&wq->pwqs); 4715 INIT_LIST_HEAD(&wq->flusher_queue); 4716 INIT_LIST_HEAD(&wq->flusher_overflow); 4717 INIT_LIST_HEAD(&wq->maydays); 4718 4719 wq_init_lockdep(wq); 4720 INIT_LIST_HEAD(&wq->list); 4721 4722 if (alloc_and_link_pwqs(wq) < 0) 4723 goto err_unreg_lockdep; 4724 4725 if (wq_online && init_rescuer(wq) < 0) 4726 goto err_destroy; 4727 4728 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4729 goto err_destroy; 4730 4731 /* 4732 * wq_pool_mutex protects global freeze state and workqueues list. 4733 * Grab it, adjust max_active and add the new @wq to workqueues 4734 * list. 4735 */ 4736 mutex_lock(&wq_pool_mutex); 4737 4738 mutex_lock(&wq->mutex); 4739 for_each_pwq(pwq, wq) 4740 pwq_adjust_max_active(pwq); 4741 mutex_unlock(&wq->mutex); 4742 4743 list_add_tail_rcu(&wq->list, &workqueues); 4744 4745 mutex_unlock(&wq_pool_mutex); 4746 4747 return wq; 4748 4749 err_unreg_lockdep: 4750 wq_unregister_lockdep(wq); 4751 wq_free_lockdep(wq); 4752 err_free_wq: 4753 free_workqueue_attrs(wq->unbound_attrs); 4754 kfree(wq); 4755 return NULL; 4756 err_destroy: 4757 destroy_workqueue(wq); 4758 return NULL; 4759 } 4760 EXPORT_SYMBOL_GPL(alloc_workqueue); 4761 4762 static bool pwq_busy(struct pool_workqueue *pwq) 4763 { 4764 int i; 4765 4766 for (i = 0; i < WORK_NR_COLORS; i++) 4767 if (pwq->nr_in_flight[i]) 4768 return true; 4769 4770 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4771 return true; 4772 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) 4773 return true; 4774 4775 return false; 4776 } 4777 4778 /** 4779 * destroy_workqueue - safely terminate a workqueue 4780 * @wq: target workqueue 4781 * 4782 * Safely destroy a workqueue. All work currently pending will be done first. 4783 */ 4784 void destroy_workqueue(struct workqueue_struct *wq) 4785 { 4786 struct pool_workqueue *pwq; 4787 int cpu; 4788 4789 /* 4790 * Remove it from sysfs first so that sanity check failure doesn't 4791 * lead to sysfs name conflicts. 4792 */ 4793 workqueue_sysfs_unregister(wq); 4794 4795 /* mark the workqueue destruction is in progress */ 4796 mutex_lock(&wq->mutex); 4797 wq->flags |= __WQ_DESTROYING; 4798 mutex_unlock(&wq->mutex); 4799 4800 /* drain it before proceeding with destruction */ 4801 drain_workqueue(wq); 4802 4803 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4804 if (wq->rescuer) { 4805 struct worker *rescuer = wq->rescuer; 4806 4807 /* this prevents new queueing */ 4808 raw_spin_lock_irq(&wq_mayday_lock); 4809 wq->rescuer = NULL; 4810 raw_spin_unlock_irq(&wq_mayday_lock); 4811 4812 /* rescuer will empty maydays list before exiting */ 4813 kthread_stop(rescuer->task); 4814 kfree(rescuer); 4815 } 4816 4817 /* 4818 * Sanity checks - grab all the locks so that we wait for all 4819 * in-flight operations which may do put_pwq(). 4820 */ 4821 mutex_lock(&wq_pool_mutex); 4822 mutex_lock(&wq->mutex); 4823 for_each_pwq(pwq, wq) { 4824 raw_spin_lock_irq(&pwq->pool->lock); 4825 if (WARN_ON(pwq_busy(pwq))) { 4826 pr_warn("%s: %s has the following busy pwq\n", 4827 __func__, wq->name); 4828 show_pwq(pwq); 4829 raw_spin_unlock_irq(&pwq->pool->lock); 4830 mutex_unlock(&wq->mutex); 4831 mutex_unlock(&wq_pool_mutex); 4832 show_one_workqueue(wq); 4833 return; 4834 } 4835 raw_spin_unlock_irq(&pwq->pool->lock); 4836 } 4837 mutex_unlock(&wq->mutex); 4838 4839 /* 4840 * wq list is used to freeze wq, remove from list after 4841 * flushing is complete in case freeze races us. 4842 */ 4843 list_del_rcu(&wq->list); 4844 mutex_unlock(&wq_pool_mutex); 4845 4846 /* 4847 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 4848 * to put the base refs. @wq will be auto-destroyed from the last 4849 * pwq_put. RCU read lock prevents @wq from going away from under us. 4850 */ 4851 rcu_read_lock(); 4852 4853 for_each_possible_cpu(cpu) { 4854 pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu)); 4855 RCU_INIT_POINTER(*per_cpu_ptr(wq->cpu_pwq, cpu), NULL); 4856 put_pwq_unlocked(pwq); 4857 } 4858 4859 put_pwq_unlocked(wq->dfl_pwq); 4860 wq->dfl_pwq = NULL; 4861 4862 rcu_read_unlock(); 4863 } 4864 EXPORT_SYMBOL_GPL(destroy_workqueue); 4865 4866 /** 4867 * workqueue_set_max_active - adjust max_active of a workqueue 4868 * @wq: target workqueue 4869 * @max_active: new max_active value. 4870 * 4871 * Set max_active of @wq to @max_active. 4872 * 4873 * CONTEXT: 4874 * Don't call from IRQ context. 4875 */ 4876 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4877 { 4878 struct pool_workqueue *pwq; 4879 4880 /* disallow meddling with max_active for ordered workqueues */ 4881 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4882 return; 4883 4884 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4885 4886 mutex_lock(&wq->mutex); 4887 4888 wq->flags &= ~__WQ_ORDERED; 4889 wq->saved_max_active = max_active; 4890 4891 for_each_pwq(pwq, wq) 4892 pwq_adjust_max_active(pwq); 4893 4894 mutex_unlock(&wq->mutex); 4895 } 4896 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4897 4898 /** 4899 * current_work - retrieve %current task's work struct 4900 * 4901 * Determine if %current task is a workqueue worker and what it's working on. 4902 * Useful to find out the context that the %current task is running in. 4903 * 4904 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4905 */ 4906 struct work_struct *current_work(void) 4907 { 4908 struct worker *worker = current_wq_worker(); 4909 4910 return worker ? worker->current_work : NULL; 4911 } 4912 EXPORT_SYMBOL(current_work); 4913 4914 /** 4915 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4916 * 4917 * Determine whether %current is a workqueue rescuer. Can be used from 4918 * work functions to determine whether it's being run off the rescuer task. 4919 * 4920 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4921 */ 4922 bool current_is_workqueue_rescuer(void) 4923 { 4924 struct worker *worker = current_wq_worker(); 4925 4926 return worker && worker->rescue_wq; 4927 } 4928 4929 /** 4930 * workqueue_congested - test whether a workqueue is congested 4931 * @cpu: CPU in question 4932 * @wq: target workqueue 4933 * 4934 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4935 * no synchronization around this function and the test result is 4936 * unreliable and only useful as advisory hints or for debugging. 4937 * 4938 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4939 * 4940 * With the exception of ordered workqueues, all workqueues have per-cpu 4941 * pool_workqueues, each with its own congested state. A workqueue being 4942 * congested on one CPU doesn't mean that the workqueue is contested on any 4943 * other CPUs. 4944 * 4945 * Return: 4946 * %true if congested, %false otherwise. 4947 */ 4948 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4949 { 4950 struct pool_workqueue *pwq; 4951 bool ret; 4952 4953 rcu_read_lock(); 4954 preempt_disable(); 4955 4956 if (cpu == WORK_CPU_UNBOUND) 4957 cpu = smp_processor_id(); 4958 4959 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 4960 ret = !list_empty(&pwq->inactive_works); 4961 4962 preempt_enable(); 4963 rcu_read_unlock(); 4964 4965 return ret; 4966 } 4967 EXPORT_SYMBOL_GPL(workqueue_congested); 4968 4969 /** 4970 * work_busy - test whether a work is currently pending or running 4971 * @work: the work to be tested 4972 * 4973 * Test whether @work is currently pending or running. There is no 4974 * synchronization around this function and the test result is 4975 * unreliable and only useful as advisory hints or for debugging. 4976 * 4977 * Return: 4978 * OR'd bitmask of WORK_BUSY_* bits. 4979 */ 4980 unsigned int work_busy(struct work_struct *work) 4981 { 4982 struct worker_pool *pool; 4983 unsigned long flags; 4984 unsigned int ret = 0; 4985 4986 if (work_pending(work)) 4987 ret |= WORK_BUSY_PENDING; 4988 4989 rcu_read_lock(); 4990 pool = get_work_pool(work); 4991 if (pool) { 4992 raw_spin_lock_irqsave(&pool->lock, flags); 4993 if (find_worker_executing_work(pool, work)) 4994 ret |= WORK_BUSY_RUNNING; 4995 raw_spin_unlock_irqrestore(&pool->lock, flags); 4996 } 4997 rcu_read_unlock(); 4998 4999 return ret; 5000 } 5001 EXPORT_SYMBOL_GPL(work_busy); 5002 5003 /** 5004 * set_worker_desc - set description for the current work item 5005 * @fmt: printf-style format string 5006 * @...: arguments for the format string 5007 * 5008 * This function can be called by a running work function to describe what 5009 * the work item is about. If the worker task gets dumped, this 5010 * information will be printed out together to help debugging. The 5011 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 5012 */ 5013 void set_worker_desc(const char *fmt, ...) 5014 { 5015 struct worker *worker = current_wq_worker(); 5016 va_list args; 5017 5018 if (worker) { 5019 va_start(args, fmt); 5020 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 5021 va_end(args); 5022 } 5023 } 5024 EXPORT_SYMBOL_GPL(set_worker_desc); 5025 5026 /** 5027 * print_worker_info - print out worker information and description 5028 * @log_lvl: the log level to use when printing 5029 * @task: target task 5030 * 5031 * If @task is a worker and currently executing a work item, print out the 5032 * name of the workqueue being serviced and worker description set with 5033 * set_worker_desc() by the currently executing work item. 5034 * 5035 * This function can be safely called on any task as long as the 5036 * task_struct itself is accessible. While safe, this function isn't 5037 * synchronized and may print out mixups or garbages of limited length. 5038 */ 5039 void print_worker_info(const char *log_lvl, struct task_struct *task) 5040 { 5041 work_func_t *fn = NULL; 5042 char name[WQ_NAME_LEN] = { }; 5043 char desc[WORKER_DESC_LEN] = { }; 5044 struct pool_workqueue *pwq = NULL; 5045 struct workqueue_struct *wq = NULL; 5046 struct worker *worker; 5047 5048 if (!(task->flags & PF_WQ_WORKER)) 5049 return; 5050 5051 /* 5052 * This function is called without any synchronization and @task 5053 * could be in any state. Be careful with dereferences. 5054 */ 5055 worker = kthread_probe_data(task); 5056 5057 /* 5058 * Carefully copy the associated workqueue's workfn, name and desc. 5059 * Keep the original last '\0' in case the original is garbage. 5060 */ 5061 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 5062 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 5063 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 5064 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 5065 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 5066 5067 if (fn || name[0] || desc[0]) { 5068 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 5069 if (strcmp(name, desc)) 5070 pr_cont(" (%s)", desc); 5071 pr_cont("\n"); 5072 } 5073 } 5074 5075 static void pr_cont_pool_info(struct worker_pool *pool) 5076 { 5077 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 5078 if (pool->node != NUMA_NO_NODE) 5079 pr_cont(" node=%d", pool->node); 5080 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 5081 } 5082 5083 struct pr_cont_work_struct { 5084 bool comma; 5085 work_func_t func; 5086 long ctr; 5087 }; 5088 5089 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 5090 { 5091 if (!pcwsp->ctr) 5092 goto out_record; 5093 if (func == pcwsp->func) { 5094 pcwsp->ctr++; 5095 return; 5096 } 5097 if (pcwsp->ctr == 1) 5098 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 5099 else 5100 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 5101 pcwsp->ctr = 0; 5102 out_record: 5103 if ((long)func == -1L) 5104 return; 5105 pcwsp->comma = comma; 5106 pcwsp->func = func; 5107 pcwsp->ctr = 1; 5108 } 5109 5110 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 5111 { 5112 if (work->func == wq_barrier_func) { 5113 struct wq_barrier *barr; 5114 5115 barr = container_of(work, struct wq_barrier, work); 5116 5117 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 5118 pr_cont("%s BAR(%d)", comma ? "," : "", 5119 task_pid_nr(barr->task)); 5120 } else { 5121 if (!comma) 5122 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 5123 pr_cont_work_flush(comma, work->func, pcwsp); 5124 } 5125 } 5126 5127 static void show_pwq(struct pool_workqueue *pwq) 5128 { 5129 struct pr_cont_work_struct pcws = { .ctr = 0, }; 5130 struct worker_pool *pool = pwq->pool; 5131 struct work_struct *work; 5132 struct worker *worker; 5133 bool has_in_flight = false, has_pending = false; 5134 int bkt; 5135 5136 pr_info(" pwq %d:", pool->id); 5137 pr_cont_pool_info(pool); 5138 5139 pr_cont(" active=%d/%d refcnt=%d%s\n", 5140 pwq->nr_active, pwq->max_active, pwq->refcnt, 5141 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 5142 5143 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 5144 if (worker->current_pwq == pwq) { 5145 has_in_flight = true; 5146 break; 5147 } 5148 } 5149 if (has_in_flight) { 5150 bool comma = false; 5151 5152 pr_info(" in-flight:"); 5153 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 5154 if (worker->current_pwq != pwq) 5155 continue; 5156 5157 pr_cont("%s %d%s:%ps", comma ? "," : "", 5158 task_pid_nr(worker->task), 5159 worker->rescue_wq ? "(RESCUER)" : "", 5160 worker->current_func); 5161 list_for_each_entry(work, &worker->scheduled, entry) 5162 pr_cont_work(false, work, &pcws); 5163 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5164 comma = true; 5165 } 5166 pr_cont("\n"); 5167 } 5168 5169 list_for_each_entry(work, &pool->worklist, entry) { 5170 if (get_work_pwq(work) == pwq) { 5171 has_pending = true; 5172 break; 5173 } 5174 } 5175 if (has_pending) { 5176 bool comma = false; 5177 5178 pr_info(" pending:"); 5179 list_for_each_entry(work, &pool->worklist, entry) { 5180 if (get_work_pwq(work) != pwq) 5181 continue; 5182 5183 pr_cont_work(comma, work, &pcws); 5184 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 5185 } 5186 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5187 pr_cont("\n"); 5188 } 5189 5190 if (!list_empty(&pwq->inactive_works)) { 5191 bool comma = false; 5192 5193 pr_info(" inactive:"); 5194 list_for_each_entry(work, &pwq->inactive_works, entry) { 5195 pr_cont_work(comma, work, &pcws); 5196 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 5197 } 5198 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5199 pr_cont("\n"); 5200 } 5201 } 5202 5203 /** 5204 * show_one_workqueue - dump state of specified workqueue 5205 * @wq: workqueue whose state will be printed 5206 */ 5207 void show_one_workqueue(struct workqueue_struct *wq) 5208 { 5209 struct pool_workqueue *pwq; 5210 bool idle = true; 5211 unsigned long flags; 5212 5213 for_each_pwq(pwq, wq) { 5214 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 5215 idle = false; 5216 break; 5217 } 5218 } 5219 if (idle) /* Nothing to print for idle workqueue */ 5220 return; 5221 5222 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 5223 5224 for_each_pwq(pwq, wq) { 5225 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 5226 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 5227 /* 5228 * Defer printing to avoid deadlocks in console 5229 * drivers that queue work while holding locks 5230 * also taken in their write paths. 5231 */ 5232 printk_deferred_enter(); 5233 show_pwq(pwq); 5234 printk_deferred_exit(); 5235 } 5236 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 5237 /* 5238 * We could be printing a lot from atomic context, e.g. 5239 * sysrq-t -> show_all_workqueues(). Avoid triggering 5240 * hard lockup. 5241 */ 5242 touch_nmi_watchdog(); 5243 } 5244 5245 } 5246 5247 /** 5248 * show_one_worker_pool - dump state of specified worker pool 5249 * @pool: worker pool whose state will be printed 5250 */ 5251 static void show_one_worker_pool(struct worker_pool *pool) 5252 { 5253 struct worker *worker; 5254 bool first = true; 5255 unsigned long flags; 5256 unsigned long hung = 0; 5257 5258 raw_spin_lock_irqsave(&pool->lock, flags); 5259 if (pool->nr_workers == pool->nr_idle) 5260 goto next_pool; 5261 5262 /* How long the first pending work is waiting for a worker. */ 5263 if (!list_empty(&pool->worklist)) 5264 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 5265 5266 /* 5267 * Defer printing to avoid deadlocks in console drivers that 5268 * queue work while holding locks also taken in their write 5269 * paths. 5270 */ 5271 printk_deferred_enter(); 5272 pr_info("pool %d:", pool->id); 5273 pr_cont_pool_info(pool); 5274 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 5275 if (pool->manager) 5276 pr_cont(" manager: %d", 5277 task_pid_nr(pool->manager->task)); 5278 list_for_each_entry(worker, &pool->idle_list, entry) { 5279 pr_cont(" %s%d", first ? "idle: " : "", 5280 task_pid_nr(worker->task)); 5281 first = false; 5282 } 5283 pr_cont("\n"); 5284 printk_deferred_exit(); 5285 next_pool: 5286 raw_spin_unlock_irqrestore(&pool->lock, flags); 5287 /* 5288 * We could be printing a lot from atomic context, e.g. 5289 * sysrq-t -> show_all_workqueues(). Avoid triggering 5290 * hard lockup. 5291 */ 5292 touch_nmi_watchdog(); 5293 5294 } 5295 5296 /** 5297 * show_all_workqueues - dump workqueue state 5298 * 5299 * Called from a sysrq handler and prints out all busy workqueues and pools. 5300 */ 5301 void show_all_workqueues(void) 5302 { 5303 struct workqueue_struct *wq; 5304 struct worker_pool *pool; 5305 int pi; 5306 5307 rcu_read_lock(); 5308 5309 pr_info("Showing busy workqueues and worker pools:\n"); 5310 5311 list_for_each_entry_rcu(wq, &workqueues, list) 5312 show_one_workqueue(wq); 5313 5314 for_each_pool(pool, pi) 5315 show_one_worker_pool(pool); 5316 5317 rcu_read_unlock(); 5318 } 5319 5320 /** 5321 * show_freezable_workqueues - dump freezable workqueue state 5322 * 5323 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 5324 * still busy. 5325 */ 5326 void show_freezable_workqueues(void) 5327 { 5328 struct workqueue_struct *wq; 5329 5330 rcu_read_lock(); 5331 5332 pr_info("Showing freezable workqueues that are still busy:\n"); 5333 5334 list_for_each_entry_rcu(wq, &workqueues, list) { 5335 if (!(wq->flags & WQ_FREEZABLE)) 5336 continue; 5337 show_one_workqueue(wq); 5338 } 5339 5340 rcu_read_unlock(); 5341 } 5342 5343 /* used to show worker information through /proc/PID/{comm,stat,status} */ 5344 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 5345 { 5346 int off; 5347 5348 /* always show the actual comm */ 5349 off = strscpy(buf, task->comm, size); 5350 if (off < 0) 5351 return; 5352 5353 /* stabilize PF_WQ_WORKER and worker pool association */ 5354 mutex_lock(&wq_pool_attach_mutex); 5355 5356 if (task->flags & PF_WQ_WORKER) { 5357 struct worker *worker = kthread_data(task); 5358 struct worker_pool *pool = worker->pool; 5359 5360 if (pool) { 5361 raw_spin_lock_irq(&pool->lock); 5362 /* 5363 * ->desc tracks information (wq name or 5364 * set_worker_desc()) for the latest execution. If 5365 * current, prepend '+', otherwise '-'. 5366 */ 5367 if (worker->desc[0] != '\0') { 5368 if (worker->current_work) 5369 scnprintf(buf + off, size - off, "+%s", 5370 worker->desc); 5371 else 5372 scnprintf(buf + off, size - off, "-%s", 5373 worker->desc); 5374 } 5375 raw_spin_unlock_irq(&pool->lock); 5376 } 5377 } 5378 5379 mutex_unlock(&wq_pool_attach_mutex); 5380 } 5381 5382 #ifdef CONFIG_SMP 5383 5384 /* 5385 * CPU hotplug. 5386 * 5387 * There are two challenges in supporting CPU hotplug. Firstly, there 5388 * are a lot of assumptions on strong associations among work, pwq and 5389 * pool which make migrating pending and scheduled works very 5390 * difficult to implement without impacting hot paths. Secondly, 5391 * worker pools serve mix of short, long and very long running works making 5392 * blocked draining impractical. 5393 * 5394 * This is solved by allowing the pools to be disassociated from the CPU 5395 * running as an unbound one and allowing it to be reattached later if the 5396 * cpu comes back online. 5397 */ 5398 5399 static void unbind_workers(int cpu) 5400 { 5401 struct worker_pool *pool; 5402 struct worker *worker; 5403 5404 for_each_cpu_worker_pool(pool, cpu) { 5405 mutex_lock(&wq_pool_attach_mutex); 5406 raw_spin_lock_irq(&pool->lock); 5407 5408 /* 5409 * We've blocked all attach/detach operations. Make all workers 5410 * unbound and set DISASSOCIATED. Before this, all workers 5411 * must be on the cpu. After this, they may become diasporas. 5412 * And the preemption disabled section in their sched callbacks 5413 * are guaranteed to see WORKER_UNBOUND since the code here 5414 * is on the same cpu. 5415 */ 5416 for_each_pool_worker(worker, pool) 5417 worker->flags |= WORKER_UNBOUND; 5418 5419 pool->flags |= POOL_DISASSOCIATED; 5420 5421 /* 5422 * The handling of nr_running in sched callbacks are disabled 5423 * now. Zap nr_running. After this, nr_running stays zero and 5424 * need_more_worker() and keep_working() are always true as 5425 * long as the worklist is not empty. This pool now behaves as 5426 * an unbound (in terms of concurrency management) pool which 5427 * are served by workers tied to the pool. 5428 */ 5429 pool->nr_running = 0; 5430 5431 /* 5432 * With concurrency management just turned off, a busy 5433 * worker blocking could lead to lengthy stalls. Kick off 5434 * unbound chain execution of currently pending work items. 5435 */ 5436 kick_pool(pool); 5437 5438 raw_spin_unlock_irq(&pool->lock); 5439 5440 for_each_pool_worker(worker, pool) 5441 unbind_worker(worker); 5442 5443 mutex_unlock(&wq_pool_attach_mutex); 5444 } 5445 } 5446 5447 /** 5448 * rebind_workers - rebind all workers of a pool to the associated CPU 5449 * @pool: pool of interest 5450 * 5451 * @pool->cpu is coming online. Rebind all workers to the CPU. 5452 */ 5453 static void rebind_workers(struct worker_pool *pool) 5454 { 5455 struct worker *worker; 5456 5457 lockdep_assert_held(&wq_pool_attach_mutex); 5458 5459 /* 5460 * Restore CPU affinity of all workers. As all idle workers should 5461 * be on the run-queue of the associated CPU before any local 5462 * wake-ups for concurrency management happen, restore CPU affinity 5463 * of all workers first and then clear UNBOUND. As we're called 5464 * from CPU_ONLINE, the following shouldn't fail. 5465 */ 5466 for_each_pool_worker(worker, pool) { 5467 kthread_set_per_cpu(worker->task, pool->cpu); 5468 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 5469 pool_allowed_cpus(pool)) < 0); 5470 } 5471 5472 raw_spin_lock_irq(&pool->lock); 5473 5474 pool->flags &= ~POOL_DISASSOCIATED; 5475 5476 for_each_pool_worker(worker, pool) { 5477 unsigned int worker_flags = worker->flags; 5478 5479 /* 5480 * We want to clear UNBOUND but can't directly call 5481 * worker_clr_flags() or adjust nr_running. Atomically 5482 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 5483 * @worker will clear REBOUND using worker_clr_flags() when 5484 * it initiates the next execution cycle thus restoring 5485 * concurrency management. Note that when or whether 5486 * @worker clears REBOUND doesn't affect correctness. 5487 * 5488 * WRITE_ONCE() is necessary because @worker->flags may be 5489 * tested without holding any lock in 5490 * wq_worker_running(). Without it, NOT_RUNNING test may 5491 * fail incorrectly leading to premature concurrency 5492 * management operations. 5493 */ 5494 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 5495 worker_flags |= WORKER_REBOUND; 5496 worker_flags &= ~WORKER_UNBOUND; 5497 WRITE_ONCE(worker->flags, worker_flags); 5498 } 5499 5500 raw_spin_unlock_irq(&pool->lock); 5501 } 5502 5503 /** 5504 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 5505 * @pool: unbound pool of interest 5506 * @cpu: the CPU which is coming up 5507 * 5508 * An unbound pool may end up with a cpumask which doesn't have any online 5509 * CPUs. When a worker of such pool get scheduled, the scheduler resets 5510 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 5511 * online CPU before, cpus_allowed of all its workers should be restored. 5512 */ 5513 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5514 { 5515 static cpumask_t cpumask; 5516 struct worker *worker; 5517 5518 lockdep_assert_held(&wq_pool_attach_mutex); 5519 5520 /* is @cpu allowed for @pool? */ 5521 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5522 return; 5523 5524 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5525 5526 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5527 for_each_pool_worker(worker, pool) 5528 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5529 } 5530 5531 int workqueue_prepare_cpu(unsigned int cpu) 5532 { 5533 struct worker_pool *pool; 5534 5535 for_each_cpu_worker_pool(pool, cpu) { 5536 if (pool->nr_workers) 5537 continue; 5538 if (!create_worker(pool)) 5539 return -ENOMEM; 5540 } 5541 return 0; 5542 } 5543 5544 int workqueue_online_cpu(unsigned int cpu) 5545 { 5546 struct worker_pool *pool; 5547 struct workqueue_struct *wq; 5548 int pi; 5549 5550 mutex_lock(&wq_pool_mutex); 5551 5552 for_each_pool(pool, pi) { 5553 mutex_lock(&wq_pool_attach_mutex); 5554 5555 if (pool->cpu == cpu) 5556 rebind_workers(pool); 5557 else if (pool->cpu < 0) 5558 restore_unbound_workers_cpumask(pool, cpu); 5559 5560 mutex_unlock(&wq_pool_attach_mutex); 5561 } 5562 5563 /* update pod affinity of unbound workqueues */ 5564 list_for_each_entry(wq, &workqueues, list) { 5565 struct workqueue_attrs *attrs = wq->unbound_attrs; 5566 5567 if (attrs) { 5568 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5569 int tcpu; 5570 5571 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 5572 wq_update_pod(wq, tcpu, cpu, true); 5573 } 5574 } 5575 5576 mutex_unlock(&wq_pool_mutex); 5577 return 0; 5578 } 5579 5580 int workqueue_offline_cpu(unsigned int cpu) 5581 { 5582 struct workqueue_struct *wq; 5583 5584 /* unbinding per-cpu workers should happen on the local CPU */ 5585 if (WARN_ON(cpu != smp_processor_id())) 5586 return -1; 5587 5588 unbind_workers(cpu); 5589 5590 /* update pod affinity of unbound workqueues */ 5591 mutex_lock(&wq_pool_mutex); 5592 list_for_each_entry(wq, &workqueues, list) { 5593 struct workqueue_attrs *attrs = wq->unbound_attrs; 5594 5595 if (attrs) { 5596 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5597 int tcpu; 5598 5599 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 5600 wq_update_pod(wq, tcpu, cpu, false); 5601 } 5602 } 5603 mutex_unlock(&wq_pool_mutex); 5604 5605 return 0; 5606 } 5607 5608 struct work_for_cpu { 5609 struct work_struct work; 5610 long (*fn)(void *); 5611 void *arg; 5612 long ret; 5613 }; 5614 5615 static void work_for_cpu_fn(struct work_struct *work) 5616 { 5617 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5618 5619 wfc->ret = wfc->fn(wfc->arg); 5620 } 5621 5622 /** 5623 * work_on_cpu_key - run a function in thread context on a particular cpu 5624 * @cpu: the cpu to run on 5625 * @fn: the function to run 5626 * @arg: the function arg 5627 * @key: The lock class key for lock debugging purposes 5628 * 5629 * It is up to the caller to ensure that the cpu doesn't go offline. 5630 * The caller must not hold any locks which would prevent @fn from completing. 5631 * 5632 * Return: The value @fn returns. 5633 */ 5634 long work_on_cpu_key(int cpu, long (*fn)(void *), 5635 void *arg, struct lock_class_key *key) 5636 { 5637 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5638 5639 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 5640 schedule_work_on(cpu, &wfc.work); 5641 flush_work(&wfc.work); 5642 destroy_work_on_stack(&wfc.work); 5643 return wfc.ret; 5644 } 5645 EXPORT_SYMBOL_GPL(work_on_cpu_key); 5646 5647 /** 5648 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 5649 * @cpu: the cpu to run on 5650 * @fn: the function to run 5651 * @arg: the function argument 5652 * @key: The lock class key for lock debugging purposes 5653 * 5654 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5655 * any locks which would prevent @fn from completing. 5656 * 5657 * Return: The value @fn returns. 5658 */ 5659 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 5660 void *arg, struct lock_class_key *key) 5661 { 5662 long ret = -ENODEV; 5663 5664 cpus_read_lock(); 5665 if (cpu_online(cpu)) 5666 ret = work_on_cpu_key(cpu, fn, arg, key); 5667 cpus_read_unlock(); 5668 return ret; 5669 } 5670 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 5671 #endif /* CONFIG_SMP */ 5672 5673 #ifdef CONFIG_FREEZER 5674 5675 /** 5676 * freeze_workqueues_begin - begin freezing workqueues 5677 * 5678 * Start freezing workqueues. After this function returns, all freezable 5679 * workqueues will queue new works to their inactive_works list instead of 5680 * pool->worklist. 5681 * 5682 * CONTEXT: 5683 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5684 */ 5685 void freeze_workqueues_begin(void) 5686 { 5687 struct workqueue_struct *wq; 5688 struct pool_workqueue *pwq; 5689 5690 mutex_lock(&wq_pool_mutex); 5691 5692 WARN_ON_ONCE(workqueue_freezing); 5693 workqueue_freezing = true; 5694 5695 list_for_each_entry(wq, &workqueues, list) { 5696 mutex_lock(&wq->mutex); 5697 for_each_pwq(pwq, wq) 5698 pwq_adjust_max_active(pwq); 5699 mutex_unlock(&wq->mutex); 5700 } 5701 5702 mutex_unlock(&wq_pool_mutex); 5703 } 5704 5705 /** 5706 * freeze_workqueues_busy - are freezable workqueues still busy? 5707 * 5708 * Check whether freezing is complete. This function must be called 5709 * between freeze_workqueues_begin() and thaw_workqueues(). 5710 * 5711 * CONTEXT: 5712 * Grabs and releases wq_pool_mutex. 5713 * 5714 * Return: 5715 * %true if some freezable workqueues are still busy. %false if freezing 5716 * is complete. 5717 */ 5718 bool freeze_workqueues_busy(void) 5719 { 5720 bool busy = false; 5721 struct workqueue_struct *wq; 5722 struct pool_workqueue *pwq; 5723 5724 mutex_lock(&wq_pool_mutex); 5725 5726 WARN_ON_ONCE(!workqueue_freezing); 5727 5728 list_for_each_entry(wq, &workqueues, list) { 5729 if (!(wq->flags & WQ_FREEZABLE)) 5730 continue; 5731 /* 5732 * nr_active is monotonically decreasing. It's safe 5733 * to peek without lock. 5734 */ 5735 rcu_read_lock(); 5736 for_each_pwq(pwq, wq) { 5737 WARN_ON_ONCE(pwq->nr_active < 0); 5738 if (pwq->nr_active) { 5739 busy = true; 5740 rcu_read_unlock(); 5741 goto out_unlock; 5742 } 5743 } 5744 rcu_read_unlock(); 5745 } 5746 out_unlock: 5747 mutex_unlock(&wq_pool_mutex); 5748 return busy; 5749 } 5750 5751 /** 5752 * thaw_workqueues - thaw workqueues 5753 * 5754 * Thaw workqueues. Normal queueing is restored and all collected 5755 * frozen works are transferred to their respective pool worklists. 5756 * 5757 * CONTEXT: 5758 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5759 */ 5760 void thaw_workqueues(void) 5761 { 5762 struct workqueue_struct *wq; 5763 struct pool_workqueue *pwq; 5764 5765 mutex_lock(&wq_pool_mutex); 5766 5767 if (!workqueue_freezing) 5768 goto out_unlock; 5769 5770 workqueue_freezing = false; 5771 5772 /* restore max_active and repopulate worklist */ 5773 list_for_each_entry(wq, &workqueues, list) { 5774 mutex_lock(&wq->mutex); 5775 for_each_pwq(pwq, wq) 5776 pwq_adjust_max_active(pwq); 5777 mutex_unlock(&wq->mutex); 5778 } 5779 5780 out_unlock: 5781 mutex_unlock(&wq_pool_mutex); 5782 } 5783 #endif /* CONFIG_FREEZER */ 5784 5785 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 5786 { 5787 LIST_HEAD(ctxs); 5788 int ret = 0; 5789 struct workqueue_struct *wq; 5790 struct apply_wqattrs_ctx *ctx, *n; 5791 5792 lockdep_assert_held(&wq_pool_mutex); 5793 5794 list_for_each_entry(wq, &workqueues, list) { 5795 if (!(wq->flags & WQ_UNBOUND)) 5796 continue; 5797 5798 /* creating multiple pwqs breaks ordering guarantee */ 5799 if (!list_empty(&wq->pwqs)) { 5800 if (wq->flags & __WQ_ORDERED_EXPLICIT) 5801 continue; 5802 wq->flags &= ~__WQ_ORDERED; 5803 } 5804 5805 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 5806 if (IS_ERR(ctx)) { 5807 ret = PTR_ERR(ctx); 5808 break; 5809 } 5810 5811 list_add_tail(&ctx->list, &ctxs); 5812 } 5813 5814 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5815 if (!ret) 5816 apply_wqattrs_commit(ctx); 5817 apply_wqattrs_cleanup(ctx); 5818 } 5819 5820 if (!ret) { 5821 mutex_lock(&wq_pool_attach_mutex); 5822 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 5823 mutex_unlock(&wq_pool_attach_mutex); 5824 } 5825 return ret; 5826 } 5827 5828 /** 5829 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask 5830 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask 5831 * 5832 * This function can be called from cpuset code to provide a set of isolated 5833 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold 5834 * either cpus_read_lock or cpus_write_lock. 5835 */ 5836 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) 5837 { 5838 cpumask_var_t cpumask; 5839 int ret = 0; 5840 5841 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5842 return -ENOMEM; 5843 5844 lockdep_assert_cpus_held(); 5845 mutex_lock(&wq_pool_mutex); 5846 5847 /* Save the current isolated cpumask & export it via sysfs */ 5848 cpumask_copy(wq_isolated_cpumask, exclude_cpumask); 5849 5850 /* 5851 * If the operation fails, it will fall back to 5852 * wq_requested_unbound_cpumask which is initially set to 5853 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten 5854 * by any subsequent write to workqueue/cpumask sysfs file. 5855 */ 5856 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask)) 5857 cpumask_copy(cpumask, wq_requested_unbound_cpumask); 5858 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 5859 ret = workqueue_apply_unbound_cpumask(cpumask); 5860 5861 mutex_unlock(&wq_pool_mutex); 5862 free_cpumask_var(cpumask); 5863 return ret; 5864 } 5865 5866 static int parse_affn_scope(const char *val) 5867 { 5868 int i; 5869 5870 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 5871 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 5872 return i; 5873 } 5874 return -EINVAL; 5875 } 5876 5877 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 5878 { 5879 struct workqueue_struct *wq; 5880 int affn, cpu; 5881 5882 affn = parse_affn_scope(val); 5883 if (affn < 0) 5884 return affn; 5885 if (affn == WQ_AFFN_DFL) 5886 return -EINVAL; 5887 5888 cpus_read_lock(); 5889 mutex_lock(&wq_pool_mutex); 5890 5891 wq_affn_dfl = affn; 5892 5893 list_for_each_entry(wq, &workqueues, list) { 5894 for_each_online_cpu(cpu) { 5895 wq_update_pod(wq, cpu, cpu, true); 5896 } 5897 } 5898 5899 mutex_unlock(&wq_pool_mutex); 5900 cpus_read_unlock(); 5901 5902 return 0; 5903 } 5904 5905 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 5906 { 5907 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 5908 } 5909 5910 static const struct kernel_param_ops wq_affn_dfl_ops = { 5911 .set = wq_affn_dfl_set, 5912 .get = wq_affn_dfl_get, 5913 }; 5914 5915 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 5916 5917 #ifdef CONFIG_SYSFS 5918 /* 5919 * Workqueues with WQ_SYSFS flag set is visible to userland via 5920 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5921 * following attributes. 5922 * 5923 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5924 * max_active RW int : maximum number of in-flight work items 5925 * 5926 * Unbound workqueues have the following extra attributes. 5927 * 5928 * nice RW int : nice value of the workers 5929 * cpumask RW mask : bitmask of allowed CPUs for the workers 5930 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 5931 * affinity_strict RW bool : worker CPU affinity is strict 5932 */ 5933 struct wq_device { 5934 struct workqueue_struct *wq; 5935 struct device dev; 5936 }; 5937 5938 static struct workqueue_struct *dev_to_wq(struct device *dev) 5939 { 5940 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5941 5942 return wq_dev->wq; 5943 } 5944 5945 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5946 char *buf) 5947 { 5948 struct workqueue_struct *wq = dev_to_wq(dev); 5949 5950 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5951 } 5952 static DEVICE_ATTR_RO(per_cpu); 5953 5954 static ssize_t max_active_show(struct device *dev, 5955 struct device_attribute *attr, char *buf) 5956 { 5957 struct workqueue_struct *wq = dev_to_wq(dev); 5958 5959 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5960 } 5961 5962 static ssize_t max_active_store(struct device *dev, 5963 struct device_attribute *attr, const char *buf, 5964 size_t count) 5965 { 5966 struct workqueue_struct *wq = dev_to_wq(dev); 5967 int val; 5968 5969 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5970 return -EINVAL; 5971 5972 workqueue_set_max_active(wq, val); 5973 return count; 5974 } 5975 static DEVICE_ATTR_RW(max_active); 5976 5977 static struct attribute *wq_sysfs_attrs[] = { 5978 &dev_attr_per_cpu.attr, 5979 &dev_attr_max_active.attr, 5980 NULL, 5981 }; 5982 ATTRIBUTE_GROUPS(wq_sysfs); 5983 5984 static void apply_wqattrs_lock(void) 5985 { 5986 /* CPUs should stay stable across pwq creations and installations */ 5987 cpus_read_lock(); 5988 mutex_lock(&wq_pool_mutex); 5989 } 5990 5991 static void apply_wqattrs_unlock(void) 5992 { 5993 mutex_unlock(&wq_pool_mutex); 5994 cpus_read_unlock(); 5995 } 5996 5997 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5998 char *buf) 5999 { 6000 struct workqueue_struct *wq = dev_to_wq(dev); 6001 int written; 6002 6003 mutex_lock(&wq->mutex); 6004 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 6005 mutex_unlock(&wq->mutex); 6006 6007 return written; 6008 } 6009 6010 /* prepare workqueue_attrs for sysfs store operations */ 6011 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 6012 { 6013 struct workqueue_attrs *attrs; 6014 6015 lockdep_assert_held(&wq_pool_mutex); 6016 6017 attrs = alloc_workqueue_attrs(); 6018 if (!attrs) 6019 return NULL; 6020 6021 copy_workqueue_attrs(attrs, wq->unbound_attrs); 6022 return attrs; 6023 } 6024 6025 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 6026 const char *buf, size_t count) 6027 { 6028 struct workqueue_struct *wq = dev_to_wq(dev); 6029 struct workqueue_attrs *attrs; 6030 int ret = -ENOMEM; 6031 6032 apply_wqattrs_lock(); 6033 6034 attrs = wq_sysfs_prep_attrs(wq); 6035 if (!attrs) 6036 goto out_unlock; 6037 6038 if (sscanf(buf, "%d", &attrs->nice) == 1 && 6039 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 6040 ret = apply_workqueue_attrs_locked(wq, attrs); 6041 else 6042 ret = -EINVAL; 6043 6044 out_unlock: 6045 apply_wqattrs_unlock(); 6046 free_workqueue_attrs(attrs); 6047 return ret ?: count; 6048 } 6049 6050 static ssize_t wq_cpumask_show(struct device *dev, 6051 struct device_attribute *attr, char *buf) 6052 { 6053 struct workqueue_struct *wq = dev_to_wq(dev); 6054 int written; 6055 6056 mutex_lock(&wq->mutex); 6057 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 6058 cpumask_pr_args(wq->unbound_attrs->cpumask)); 6059 mutex_unlock(&wq->mutex); 6060 return written; 6061 } 6062 6063 static ssize_t wq_cpumask_store(struct device *dev, 6064 struct device_attribute *attr, 6065 const char *buf, size_t count) 6066 { 6067 struct workqueue_struct *wq = dev_to_wq(dev); 6068 struct workqueue_attrs *attrs; 6069 int ret = -ENOMEM; 6070 6071 apply_wqattrs_lock(); 6072 6073 attrs = wq_sysfs_prep_attrs(wq); 6074 if (!attrs) 6075 goto out_unlock; 6076 6077 ret = cpumask_parse(buf, attrs->cpumask); 6078 if (!ret) 6079 ret = apply_workqueue_attrs_locked(wq, attrs); 6080 6081 out_unlock: 6082 apply_wqattrs_unlock(); 6083 free_workqueue_attrs(attrs); 6084 return ret ?: count; 6085 } 6086 6087 static ssize_t wq_affn_scope_show(struct device *dev, 6088 struct device_attribute *attr, char *buf) 6089 { 6090 struct workqueue_struct *wq = dev_to_wq(dev); 6091 int written; 6092 6093 mutex_lock(&wq->mutex); 6094 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 6095 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 6096 wq_affn_names[WQ_AFFN_DFL], 6097 wq_affn_names[wq_affn_dfl]); 6098 else 6099 written = scnprintf(buf, PAGE_SIZE, "%s\n", 6100 wq_affn_names[wq->unbound_attrs->affn_scope]); 6101 mutex_unlock(&wq->mutex); 6102 6103 return written; 6104 } 6105 6106 static ssize_t wq_affn_scope_store(struct device *dev, 6107 struct device_attribute *attr, 6108 const char *buf, size_t count) 6109 { 6110 struct workqueue_struct *wq = dev_to_wq(dev); 6111 struct workqueue_attrs *attrs; 6112 int affn, ret = -ENOMEM; 6113 6114 affn = parse_affn_scope(buf); 6115 if (affn < 0) 6116 return affn; 6117 6118 apply_wqattrs_lock(); 6119 attrs = wq_sysfs_prep_attrs(wq); 6120 if (attrs) { 6121 attrs->affn_scope = affn; 6122 ret = apply_workqueue_attrs_locked(wq, attrs); 6123 } 6124 apply_wqattrs_unlock(); 6125 free_workqueue_attrs(attrs); 6126 return ret ?: count; 6127 } 6128 6129 static ssize_t wq_affinity_strict_show(struct device *dev, 6130 struct device_attribute *attr, char *buf) 6131 { 6132 struct workqueue_struct *wq = dev_to_wq(dev); 6133 6134 return scnprintf(buf, PAGE_SIZE, "%d\n", 6135 wq->unbound_attrs->affn_strict); 6136 } 6137 6138 static ssize_t wq_affinity_strict_store(struct device *dev, 6139 struct device_attribute *attr, 6140 const char *buf, size_t count) 6141 { 6142 struct workqueue_struct *wq = dev_to_wq(dev); 6143 struct workqueue_attrs *attrs; 6144 int v, ret = -ENOMEM; 6145 6146 if (sscanf(buf, "%d", &v) != 1) 6147 return -EINVAL; 6148 6149 apply_wqattrs_lock(); 6150 attrs = wq_sysfs_prep_attrs(wq); 6151 if (attrs) { 6152 attrs->affn_strict = (bool)v; 6153 ret = apply_workqueue_attrs_locked(wq, attrs); 6154 } 6155 apply_wqattrs_unlock(); 6156 free_workqueue_attrs(attrs); 6157 return ret ?: count; 6158 } 6159 6160 static struct device_attribute wq_sysfs_unbound_attrs[] = { 6161 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 6162 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 6163 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 6164 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 6165 __ATTR_NULL, 6166 }; 6167 6168 static struct bus_type wq_subsys = { 6169 .name = "workqueue", 6170 .dev_groups = wq_sysfs_groups, 6171 }; 6172 6173 /** 6174 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 6175 * @cpumask: the cpumask to set 6176 * 6177 * The low-level workqueues cpumask is a global cpumask that limits 6178 * the affinity of all unbound workqueues. This function check the @cpumask 6179 * and apply it to all unbound workqueues and updates all pwqs of them. 6180 * 6181 * Return: 0 - Success 6182 * -EINVAL - Invalid @cpumask 6183 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 6184 */ 6185 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 6186 { 6187 int ret = -EINVAL; 6188 6189 /* 6190 * Not excluding isolated cpus on purpose. 6191 * If the user wishes to include them, we allow that. 6192 */ 6193 cpumask_and(cpumask, cpumask, cpu_possible_mask); 6194 if (!cpumask_empty(cpumask)) { 6195 apply_wqattrs_lock(); 6196 cpumask_copy(wq_requested_unbound_cpumask, cpumask); 6197 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 6198 ret = 0; 6199 goto out_unlock; 6200 } 6201 6202 ret = workqueue_apply_unbound_cpumask(cpumask); 6203 6204 out_unlock: 6205 apply_wqattrs_unlock(); 6206 } 6207 6208 return ret; 6209 } 6210 6211 static ssize_t __wq_cpumask_show(struct device *dev, 6212 struct device_attribute *attr, char *buf, cpumask_var_t mask) 6213 { 6214 int written; 6215 6216 mutex_lock(&wq_pool_mutex); 6217 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 6218 mutex_unlock(&wq_pool_mutex); 6219 6220 return written; 6221 } 6222 6223 static ssize_t wq_unbound_cpumask_show(struct device *dev, 6224 struct device_attribute *attr, char *buf) 6225 { 6226 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask); 6227 } 6228 6229 static ssize_t wq_requested_cpumask_show(struct device *dev, 6230 struct device_attribute *attr, char *buf) 6231 { 6232 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask); 6233 } 6234 6235 static ssize_t wq_isolated_cpumask_show(struct device *dev, 6236 struct device_attribute *attr, char *buf) 6237 { 6238 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask); 6239 } 6240 6241 static ssize_t wq_unbound_cpumask_store(struct device *dev, 6242 struct device_attribute *attr, const char *buf, size_t count) 6243 { 6244 cpumask_var_t cpumask; 6245 int ret; 6246 6247 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6248 return -ENOMEM; 6249 6250 ret = cpumask_parse(buf, cpumask); 6251 if (!ret) 6252 ret = workqueue_set_unbound_cpumask(cpumask); 6253 6254 free_cpumask_var(cpumask); 6255 return ret ? ret : count; 6256 } 6257 6258 static struct device_attribute wq_sysfs_cpumask_attrs[] = { 6259 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 6260 wq_unbound_cpumask_store), 6261 __ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL), 6262 __ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL), 6263 __ATTR_NULL, 6264 }; 6265 6266 static int __init wq_sysfs_init(void) 6267 { 6268 struct device *dev_root; 6269 int err; 6270 6271 err = subsys_virtual_register(&wq_subsys, NULL); 6272 if (err) 6273 return err; 6274 6275 dev_root = bus_get_dev_root(&wq_subsys); 6276 if (dev_root) { 6277 struct device_attribute *attr; 6278 6279 for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) { 6280 err = device_create_file(dev_root, attr); 6281 if (err) 6282 break; 6283 } 6284 put_device(dev_root); 6285 } 6286 return err; 6287 } 6288 core_initcall(wq_sysfs_init); 6289 6290 static void wq_device_release(struct device *dev) 6291 { 6292 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6293 6294 kfree(wq_dev); 6295 } 6296 6297 /** 6298 * workqueue_sysfs_register - make a workqueue visible in sysfs 6299 * @wq: the workqueue to register 6300 * 6301 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 6302 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 6303 * which is the preferred method. 6304 * 6305 * Workqueue user should use this function directly iff it wants to apply 6306 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 6307 * apply_workqueue_attrs() may race against userland updating the 6308 * attributes. 6309 * 6310 * Return: 0 on success, -errno on failure. 6311 */ 6312 int workqueue_sysfs_register(struct workqueue_struct *wq) 6313 { 6314 struct wq_device *wq_dev; 6315 int ret; 6316 6317 /* 6318 * Adjusting max_active or creating new pwqs by applying 6319 * attributes breaks ordering guarantee. Disallow exposing ordered 6320 * workqueues. 6321 */ 6322 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 6323 return -EINVAL; 6324 6325 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 6326 if (!wq_dev) 6327 return -ENOMEM; 6328 6329 wq_dev->wq = wq; 6330 wq_dev->dev.bus = &wq_subsys; 6331 wq_dev->dev.release = wq_device_release; 6332 dev_set_name(&wq_dev->dev, "%s", wq->name); 6333 6334 /* 6335 * unbound_attrs are created separately. Suppress uevent until 6336 * everything is ready. 6337 */ 6338 dev_set_uevent_suppress(&wq_dev->dev, true); 6339 6340 ret = device_register(&wq_dev->dev); 6341 if (ret) { 6342 put_device(&wq_dev->dev); 6343 wq->wq_dev = NULL; 6344 return ret; 6345 } 6346 6347 if (wq->flags & WQ_UNBOUND) { 6348 struct device_attribute *attr; 6349 6350 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 6351 ret = device_create_file(&wq_dev->dev, attr); 6352 if (ret) { 6353 device_unregister(&wq_dev->dev); 6354 wq->wq_dev = NULL; 6355 return ret; 6356 } 6357 } 6358 } 6359 6360 dev_set_uevent_suppress(&wq_dev->dev, false); 6361 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 6362 return 0; 6363 } 6364 6365 /** 6366 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 6367 * @wq: the workqueue to unregister 6368 * 6369 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 6370 */ 6371 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 6372 { 6373 struct wq_device *wq_dev = wq->wq_dev; 6374 6375 if (!wq->wq_dev) 6376 return; 6377 6378 wq->wq_dev = NULL; 6379 device_unregister(&wq_dev->dev); 6380 } 6381 #else /* CONFIG_SYSFS */ 6382 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 6383 #endif /* CONFIG_SYSFS */ 6384 6385 /* 6386 * Workqueue watchdog. 6387 * 6388 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 6389 * flush dependency, a concurrency managed work item which stays RUNNING 6390 * indefinitely. Workqueue stalls can be very difficult to debug as the 6391 * usual warning mechanisms don't trigger and internal workqueue state is 6392 * largely opaque. 6393 * 6394 * Workqueue watchdog monitors all worker pools periodically and dumps 6395 * state if some pools failed to make forward progress for a while where 6396 * forward progress is defined as the first item on ->worklist changing. 6397 * 6398 * This mechanism is controlled through the kernel parameter 6399 * "workqueue.watchdog_thresh" which can be updated at runtime through the 6400 * corresponding sysfs parameter file. 6401 */ 6402 #ifdef CONFIG_WQ_WATCHDOG 6403 6404 static unsigned long wq_watchdog_thresh = 30; 6405 static struct timer_list wq_watchdog_timer; 6406 6407 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 6408 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 6409 6410 /* 6411 * Show workers that might prevent the processing of pending work items. 6412 * The only candidates are CPU-bound workers in the running state. 6413 * Pending work items should be handled by another idle worker 6414 * in all other situations. 6415 */ 6416 static void show_cpu_pool_hog(struct worker_pool *pool) 6417 { 6418 struct worker *worker; 6419 unsigned long flags; 6420 int bkt; 6421 6422 raw_spin_lock_irqsave(&pool->lock, flags); 6423 6424 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6425 if (task_is_running(worker->task)) { 6426 /* 6427 * Defer printing to avoid deadlocks in console 6428 * drivers that queue work while holding locks 6429 * also taken in their write paths. 6430 */ 6431 printk_deferred_enter(); 6432 6433 pr_info("pool %d:\n", pool->id); 6434 sched_show_task(worker->task); 6435 6436 printk_deferred_exit(); 6437 } 6438 } 6439 6440 raw_spin_unlock_irqrestore(&pool->lock, flags); 6441 } 6442 6443 static void show_cpu_pools_hogs(void) 6444 { 6445 struct worker_pool *pool; 6446 int pi; 6447 6448 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 6449 6450 rcu_read_lock(); 6451 6452 for_each_pool(pool, pi) { 6453 if (pool->cpu_stall) 6454 show_cpu_pool_hog(pool); 6455 6456 } 6457 6458 rcu_read_unlock(); 6459 } 6460 6461 static void wq_watchdog_reset_touched(void) 6462 { 6463 int cpu; 6464 6465 wq_watchdog_touched = jiffies; 6466 for_each_possible_cpu(cpu) 6467 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 6468 } 6469 6470 static void wq_watchdog_timer_fn(struct timer_list *unused) 6471 { 6472 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 6473 bool lockup_detected = false; 6474 bool cpu_pool_stall = false; 6475 unsigned long now = jiffies; 6476 struct worker_pool *pool; 6477 int pi; 6478 6479 if (!thresh) 6480 return; 6481 6482 rcu_read_lock(); 6483 6484 for_each_pool(pool, pi) { 6485 unsigned long pool_ts, touched, ts; 6486 6487 pool->cpu_stall = false; 6488 if (list_empty(&pool->worklist)) 6489 continue; 6490 6491 /* 6492 * If a virtual machine is stopped by the host it can look to 6493 * the watchdog like a stall. 6494 */ 6495 kvm_check_and_clear_guest_paused(); 6496 6497 /* get the latest of pool and touched timestamps */ 6498 if (pool->cpu >= 0) 6499 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 6500 else 6501 touched = READ_ONCE(wq_watchdog_touched); 6502 pool_ts = READ_ONCE(pool->watchdog_ts); 6503 6504 if (time_after(pool_ts, touched)) 6505 ts = pool_ts; 6506 else 6507 ts = touched; 6508 6509 /* did we stall? */ 6510 if (time_after(now, ts + thresh)) { 6511 lockup_detected = true; 6512 if (pool->cpu >= 0) { 6513 pool->cpu_stall = true; 6514 cpu_pool_stall = true; 6515 } 6516 pr_emerg("BUG: workqueue lockup - pool"); 6517 pr_cont_pool_info(pool); 6518 pr_cont(" stuck for %us!\n", 6519 jiffies_to_msecs(now - pool_ts) / 1000); 6520 } 6521 6522 6523 } 6524 6525 rcu_read_unlock(); 6526 6527 if (lockup_detected) 6528 show_all_workqueues(); 6529 6530 if (cpu_pool_stall) 6531 show_cpu_pools_hogs(); 6532 6533 wq_watchdog_reset_touched(); 6534 mod_timer(&wq_watchdog_timer, jiffies + thresh); 6535 } 6536 6537 notrace void wq_watchdog_touch(int cpu) 6538 { 6539 if (cpu >= 0) 6540 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 6541 6542 wq_watchdog_touched = jiffies; 6543 } 6544 6545 static void wq_watchdog_set_thresh(unsigned long thresh) 6546 { 6547 wq_watchdog_thresh = 0; 6548 del_timer_sync(&wq_watchdog_timer); 6549 6550 if (thresh) { 6551 wq_watchdog_thresh = thresh; 6552 wq_watchdog_reset_touched(); 6553 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 6554 } 6555 } 6556 6557 static int wq_watchdog_param_set_thresh(const char *val, 6558 const struct kernel_param *kp) 6559 { 6560 unsigned long thresh; 6561 int ret; 6562 6563 ret = kstrtoul(val, 0, &thresh); 6564 if (ret) 6565 return ret; 6566 6567 if (system_wq) 6568 wq_watchdog_set_thresh(thresh); 6569 else 6570 wq_watchdog_thresh = thresh; 6571 6572 return 0; 6573 } 6574 6575 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 6576 .set = wq_watchdog_param_set_thresh, 6577 .get = param_get_ulong, 6578 }; 6579 6580 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 6581 0644); 6582 6583 static void wq_watchdog_init(void) 6584 { 6585 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 6586 wq_watchdog_set_thresh(wq_watchdog_thresh); 6587 } 6588 6589 #else /* CONFIG_WQ_WATCHDOG */ 6590 6591 static inline void wq_watchdog_init(void) { } 6592 6593 #endif /* CONFIG_WQ_WATCHDOG */ 6594 6595 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 6596 { 6597 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 6598 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 6599 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 6600 return; 6601 } 6602 6603 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 6604 } 6605 6606 /** 6607 * workqueue_init_early - early init for workqueue subsystem 6608 * 6609 * This is the first step of three-staged workqueue subsystem initialization and 6610 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 6611 * up. It sets up all the data structures and system workqueues and allows early 6612 * boot code to create workqueues and queue/cancel work items. Actual work item 6613 * execution starts only after kthreads can be created and scheduled right 6614 * before early initcalls. 6615 */ 6616 void __init workqueue_init_early(void) 6617 { 6618 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 6619 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 6620 int i, cpu; 6621 6622 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 6623 6624 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 6625 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); 6626 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); 6627 6628 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 6629 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 6630 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 6631 if (!cpumask_empty(&wq_cmdline_cpumask)) 6632 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 6633 6634 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask); 6635 6636 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 6637 6638 wq_update_pod_attrs_buf = alloc_workqueue_attrs(); 6639 BUG_ON(!wq_update_pod_attrs_buf); 6640 6641 /* 6642 * If nohz_full is enabled, set power efficient workqueue as unbound. 6643 * This allows workqueue items to be moved to HK CPUs. 6644 */ 6645 if (housekeeping_enabled(HK_TYPE_TICK)) 6646 wq_power_efficient = true; 6647 6648 /* initialize WQ_AFFN_SYSTEM pods */ 6649 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 6650 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 6651 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 6652 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 6653 6654 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 6655 6656 pt->nr_pods = 1; 6657 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 6658 pt->pod_node[0] = NUMA_NO_NODE; 6659 pt->cpu_pod[0] = 0; 6660 6661 /* initialize CPU pools */ 6662 for_each_possible_cpu(cpu) { 6663 struct worker_pool *pool; 6664 6665 i = 0; 6666 for_each_cpu_worker_pool(pool, cpu) { 6667 BUG_ON(init_worker_pool(pool)); 6668 pool->cpu = cpu; 6669 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 6670 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 6671 pool->attrs->nice = std_nice[i++]; 6672 pool->attrs->affn_strict = true; 6673 pool->node = cpu_to_node(cpu); 6674 6675 /* alloc pool ID */ 6676 mutex_lock(&wq_pool_mutex); 6677 BUG_ON(worker_pool_assign_id(pool)); 6678 mutex_unlock(&wq_pool_mutex); 6679 } 6680 } 6681 6682 /* create default unbound and ordered wq attrs */ 6683 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 6684 struct workqueue_attrs *attrs; 6685 6686 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6687 attrs->nice = std_nice[i]; 6688 unbound_std_wq_attrs[i] = attrs; 6689 6690 /* 6691 * An ordered wq should have only one pwq as ordering is 6692 * guaranteed by max_active which is enforced by pwqs. 6693 */ 6694 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6695 attrs->nice = std_nice[i]; 6696 attrs->ordered = true; 6697 ordered_wq_attrs[i] = attrs; 6698 } 6699 6700 system_wq = alloc_workqueue("events", 0, 0); 6701 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 6702 system_long_wq = alloc_workqueue("events_long", 0, 0); 6703 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 6704 WQ_MAX_ACTIVE); 6705 system_freezable_wq = alloc_workqueue("events_freezable", 6706 WQ_FREEZABLE, 0); 6707 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 6708 WQ_POWER_EFFICIENT, 0); 6709 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 6710 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 6711 0); 6712 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 6713 !system_unbound_wq || !system_freezable_wq || 6714 !system_power_efficient_wq || 6715 !system_freezable_power_efficient_wq); 6716 } 6717 6718 static void __init wq_cpu_intensive_thresh_init(void) 6719 { 6720 unsigned long thresh; 6721 unsigned long bogo; 6722 6723 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); 6724 BUG_ON(IS_ERR(pwq_release_worker)); 6725 6726 /* if the user set it to a specific value, keep it */ 6727 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 6728 return; 6729 6730 /* 6731 * The default of 10ms is derived from the fact that most modern (as of 6732 * 2023) processors can do a lot in 10ms and that it's just below what 6733 * most consider human-perceivable. However, the kernel also runs on a 6734 * lot slower CPUs including microcontrollers where the threshold is way 6735 * too low. 6736 * 6737 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 6738 * This is by no means accurate but it doesn't have to be. The mechanism 6739 * is still useful even when the threshold is fully scaled up. Also, as 6740 * the reports would usually be applicable to everyone, some machines 6741 * operating on longer thresholds won't significantly diminish their 6742 * usefulness. 6743 */ 6744 thresh = 10 * USEC_PER_MSEC; 6745 6746 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 6747 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 6748 if (bogo < 4000) 6749 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 6750 6751 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 6752 loops_per_jiffy, bogo, thresh); 6753 6754 wq_cpu_intensive_thresh_us = thresh; 6755 } 6756 6757 /** 6758 * workqueue_init - bring workqueue subsystem fully online 6759 * 6760 * This is the second step of three-staged workqueue subsystem initialization 6761 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 6762 * been created and work items queued on them, but there are no kworkers 6763 * executing the work items yet. Populate the worker pools with the initial 6764 * workers and enable future kworker creations. 6765 */ 6766 void __init workqueue_init(void) 6767 { 6768 struct workqueue_struct *wq; 6769 struct worker_pool *pool; 6770 int cpu, bkt; 6771 6772 wq_cpu_intensive_thresh_init(); 6773 6774 mutex_lock(&wq_pool_mutex); 6775 6776 /* 6777 * Per-cpu pools created earlier could be missing node hint. Fix them 6778 * up. Also, create a rescuer for workqueues that requested it. 6779 */ 6780 for_each_possible_cpu(cpu) { 6781 for_each_cpu_worker_pool(pool, cpu) { 6782 pool->node = cpu_to_node(cpu); 6783 } 6784 } 6785 6786 list_for_each_entry(wq, &workqueues, list) { 6787 WARN(init_rescuer(wq), 6788 "workqueue: failed to create early rescuer for %s", 6789 wq->name); 6790 } 6791 6792 mutex_unlock(&wq_pool_mutex); 6793 6794 /* create the initial workers */ 6795 for_each_online_cpu(cpu) { 6796 for_each_cpu_worker_pool(pool, cpu) { 6797 pool->flags &= ~POOL_DISASSOCIATED; 6798 BUG_ON(!create_worker(pool)); 6799 } 6800 } 6801 6802 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6803 BUG_ON(!create_worker(pool)); 6804 6805 wq_online = true; 6806 wq_watchdog_init(); 6807 } 6808 6809 /* 6810 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 6811 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 6812 * and consecutive pod ID. The rest of @pt is initialized accordingly. 6813 */ 6814 static void __init init_pod_type(struct wq_pod_type *pt, 6815 bool (*cpus_share_pod)(int, int)) 6816 { 6817 int cur, pre, cpu, pod; 6818 6819 pt->nr_pods = 0; 6820 6821 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 6822 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 6823 BUG_ON(!pt->cpu_pod); 6824 6825 for_each_possible_cpu(cur) { 6826 for_each_possible_cpu(pre) { 6827 if (pre >= cur) { 6828 pt->cpu_pod[cur] = pt->nr_pods++; 6829 break; 6830 } 6831 if (cpus_share_pod(cur, pre)) { 6832 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 6833 break; 6834 } 6835 } 6836 } 6837 6838 /* init the rest to match @pt->cpu_pod[] */ 6839 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 6840 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 6841 BUG_ON(!pt->pod_cpus || !pt->pod_node); 6842 6843 for (pod = 0; pod < pt->nr_pods; pod++) 6844 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 6845 6846 for_each_possible_cpu(cpu) { 6847 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 6848 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 6849 } 6850 } 6851 6852 static bool __init cpus_dont_share(int cpu0, int cpu1) 6853 { 6854 return false; 6855 } 6856 6857 static bool __init cpus_share_smt(int cpu0, int cpu1) 6858 { 6859 #ifdef CONFIG_SCHED_SMT 6860 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 6861 #else 6862 return false; 6863 #endif 6864 } 6865 6866 static bool __init cpus_share_numa(int cpu0, int cpu1) 6867 { 6868 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 6869 } 6870 6871 /** 6872 * workqueue_init_topology - initialize CPU pods for unbound workqueues 6873 * 6874 * This is the third step of there-staged workqueue subsystem initialization and 6875 * invoked after SMP and topology information are fully initialized. It 6876 * initializes the unbound CPU pods accordingly. 6877 */ 6878 void __init workqueue_init_topology(void) 6879 { 6880 struct workqueue_struct *wq; 6881 int cpu; 6882 6883 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 6884 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 6885 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 6886 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 6887 6888 mutex_lock(&wq_pool_mutex); 6889 6890 /* 6891 * Workqueues allocated earlier would have all CPUs sharing the default 6892 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU 6893 * combinations to apply per-pod sharing. 6894 */ 6895 list_for_each_entry(wq, &workqueues, list) { 6896 for_each_online_cpu(cpu) { 6897 wq_update_pod(wq, cpu, cpu, true); 6898 } 6899 } 6900 6901 mutex_unlock(&wq_pool_mutex); 6902 } 6903 6904 void __warn_flushing_systemwide_wq(void) 6905 { 6906 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 6907 dump_stack(); 6908 } 6909 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 6910 6911 static int __init workqueue_unbound_cpus_setup(char *str) 6912 { 6913 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 6914 cpumask_clear(&wq_cmdline_cpumask); 6915 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 6916 } 6917 6918 return 1; 6919 } 6920 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 6921