1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <[email protected]> 9 * Andrew Morton 10 * Kai Petzke <[email protected]> 11 * Theodore Ts'o <[email protected]> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <[email protected]> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/sched/debug.h> 53 #include <linux/nmi.h> 54 #include <linux/kvm_para.h> 55 56 #include "workqueue_internal.h" 57 58 enum { 59 /* 60 * worker_pool flags 61 * 62 * A bound pool is either associated or disassociated with its CPU. 63 * While associated (!DISASSOCIATED), all workers are bound to the 64 * CPU and none has %WORKER_UNBOUND set and concurrency management 65 * is in effect. 66 * 67 * While DISASSOCIATED, the cpu may be offline and all workers have 68 * %WORKER_UNBOUND set and concurrency management disabled, and may 69 * be executing on any CPU. The pool behaves as an unbound one. 70 * 71 * Note that DISASSOCIATED should be flipped only while holding 72 * wq_pool_attach_mutex to avoid changing binding state while 73 * worker_attach_to_pool() is in progress. 74 */ 75 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 76 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 77 78 /* worker flags */ 79 WORKER_DIE = 1 << 1, /* die die die */ 80 WORKER_IDLE = 1 << 2, /* is idle */ 81 WORKER_PREP = 1 << 3, /* preparing to run works */ 82 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 83 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 84 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 85 86 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 87 WORKER_UNBOUND | WORKER_REBOUND, 88 89 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 90 91 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 92 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 93 94 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 95 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 96 97 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 98 /* call for help after 10ms 99 (min two ticks) */ 100 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 101 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 102 103 /* 104 * Rescue workers are used only on emergencies and shared by 105 * all cpus. Give MIN_NICE. 106 */ 107 RESCUER_NICE_LEVEL = MIN_NICE, 108 HIGHPRI_NICE_LEVEL = MIN_NICE, 109 110 WQ_NAME_LEN = 24, 111 }; 112 113 /* 114 * Structure fields follow one of the following exclusion rules. 115 * 116 * I: Modifiable by initialization/destruction paths and read-only for 117 * everyone else. 118 * 119 * P: Preemption protected. Disabling preemption is enough and should 120 * only be modified and accessed from the local cpu. 121 * 122 * L: pool->lock protected. Access with pool->lock held. 123 * 124 * X: During normal operation, modification requires pool->lock and should 125 * be done only from local cpu. Either disabling preemption on local 126 * cpu or grabbing pool->lock is enough for read access. If 127 * POOL_DISASSOCIATED is set, it's identical to L. 128 * 129 * K: Only modified by worker while holding pool->lock. Can be safely read by 130 * self, while holding pool->lock or from IRQ context if %current is the 131 * kworker. 132 * 133 * S: Only modified by worker self. 134 * 135 * A: wq_pool_attach_mutex protected. 136 * 137 * PL: wq_pool_mutex protected. 138 * 139 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 140 * 141 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 142 * 143 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 144 * RCU for reads. 145 * 146 * WQ: wq->mutex protected. 147 * 148 * WR: wq->mutex protected for writes. RCU protected for reads. 149 * 150 * MD: wq_mayday_lock protected. 151 * 152 * WD: Used internally by the watchdog. 153 */ 154 155 /* struct worker is defined in workqueue_internal.h */ 156 157 struct worker_pool { 158 raw_spinlock_t lock; /* the pool lock */ 159 int cpu; /* I: the associated cpu */ 160 int node; /* I: the associated node ID */ 161 int id; /* I: pool ID */ 162 unsigned int flags; /* X: flags */ 163 164 unsigned long watchdog_ts; /* L: watchdog timestamp */ 165 bool cpu_stall; /* WD: stalled cpu bound pool */ 166 167 /* 168 * The counter is incremented in a process context on the associated CPU 169 * w/ preemption disabled, and decremented or reset in the same context 170 * but w/ pool->lock held. The readers grab pool->lock and are 171 * guaranteed to see if the counter reached zero. 172 */ 173 int nr_running; 174 175 struct list_head worklist; /* L: list of pending works */ 176 177 int nr_workers; /* L: total number of workers */ 178 int nr_idle; /* L: currently idle workers */ 179 180 struct list_head idle_list; /* L: list of idle workers */ 181 struct timer_list idle_timer; /* L: worker idle timeout */ 182 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 183 184 struct timer_list mayday_timer; /* L: SOS timer for workers */ 185 186 /* a workers is either on busy_hash or idle_list, or the manager */ 187 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 188 /* L: hash of busy workers */ 189 190 struct worker *manager; /* L: purely informational */ 191 struct list_head workers; /* A: attached workers */ 192 struct list_head dying_workers; /* A: workers about to die */ 193 struct completion *detach_completion; /* all workers detached */ 194 195 struct ida worker_ida; /* worker IDs for task name */ 196 197 struct workqueue_attrs *attrs; /* I: worker attributes */ 198 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 199 int refcnt; /* PL: refcnt for unbound pools */ 200 201 /* 202 * Destruction of pool is RCU protected to allow dereferences 203 * from get_work_pool(). 204 */ 205 struct rcu_head rcu; 206 }; 207 208 /* 209 * Per-pool_workqueue statistics. These can be monitored using 210 * tools/workqueue/wq_monitor.py. 211 */ 212 enum pool_workqueue_stats { 213 PWQ_STAT_STARTED, /* work items started execution */ 214 PWQ_STAT_COMPLETED, /* work items completed execution */ 215 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 216 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 217 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 218 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 219 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 220 221 PWQ_NR_STATS, 222 }; 223 224 /* 225 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 226 * of work_struct->data are used for flags and the remaining high bits 227 * point to the pwq; thus, pwqs need to be aligned at two's power of the 228 * number of flag bits. 229 */ 230 struct pool_workqueue { 231 struct worker_pool *pool; /* I: the associated pool */ 232 struct workqueue_struct *wq; /* I: the owning workqueue */ 233 int work_color; /* L: current color */ 234 int flush_color; /* L: flushing color */ 235 int refcnt; /* L: reference count */ 236 int nr_in_flight[WORK_NR_COLORS]; 237 /* L: nr of in_flight works */ 238 239 /* 240 * nr_active management and WORK_STRUCT_INACTIVE: 241 * 242 * When pwq->nr_active >= max_active, new work item is queued to 243 * pwq->inactive_works instead of pool->worklist and marked with 244 * WORK_STRUCT_INACTIVE. 245 * 246 * All work items marked with WORK_STRUCT_INACTIVE do not participate 247 * in pwq->nr_active and all work items in pwq->inactive_works are 248 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE 249 * work items are in pwq->inactive_works. Some of them are ready to 250 * run in pool->worklist or worker->scheduled. Those work itmes are 251 * only struct wq_barrier which is used for flush_work() and should 252 * not participate in pwq->nr_active. For non-barrier work item, it 253 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 254 */ 255 int nr_active; /* L: nr of active works */ 256 int max_active; /* L: max active works */ 257 struct list_head inactive_works; /* L: inactive works */ 258 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 259 struct list_head mayday_node; /* MD: node on wq->maydays */ 260 261 u64 stats[PWQ_NR_STATS]; 262 263 /* 264 * Release of unbound pwq is punted to system_wq. See put_pwq() 265 * and pwq_unbound_release_workfn() for details. pool_workqueue 266 * itself is also RCU protected so that the first pwq can be 267 * determined without grabbing wq->mutex. 268 */ 269 struct work_struct unbound_release_work; 270 struct rcu_head rcu; 271 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 272 273 /* 274 * Structure used to wait for workqueue flush. 275 */ 276 struct wq_flusher { 277 struct list_head list; /* WQ: list of flushers */ 278 int flush_color; /* WQ: flush color waiting for */ 279 struct completion done; /* flush completion */ 280 }; 281 282 struct wq_device; 283 284 /* 285 * The externally visible workqueue. It relays the issued work items to 286 * the appropriate worker_pool through its pool_workqueues. 287 */ 288 struct workqueue_struct { 289 struct list_head pwqs; /* WR: all pwqs of this wq */ 290 struct list_head list; /* PR: list of all workqueues */ 291 292 struct mutex mutex; /* protects this wq */ 293 int work_color; /* WQ: current work color */ 294 int flush_color; /* WQ: current flush color */ 295 atomic_t nr_pwqs_to_flush; /* flush in progress */ 296 struct wq_flusher *first_flusher; /* WQ: first flusher */ 297 struct list_head flusher_queue; /* WQ: flush waiters */ 298 struct list_head flusher_overflow; /* WQ: flush overflow list */ 299 300 struct list_head maydays; /* MD: pwqs requesting rescue */ 301 struct worker *rescuer; /* MD: rescue worker */ 302 303 int nr_drainers; /* WQ: drain in progress */ 304 int saved_max_active; /* WQ: saved pwq max_active */ 305 306 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 307 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 308 309 #ifdef CONFIG_SYSFS 310 struct wq_device *wq_dev; /* I: for sysfs interface */ 311 #endif 312 #ifdef CONFIG_LOCKDEP 313 char *lock_name; 314 struct lock_class_key key; 315 struct lockdep_map lockdep_map; 316 #endif 317 char name[WQ_NAME_LEN]; /* I: workqueue name */ 318 319 /* 320 * Destruction of workqueue_struct is RCU protected to allow walking 321 * the workqueues list without grabbing wq_pool_mutex. 322 * This is used to dump all workqueues from sysrq. 323 */ 324 struct rcu_head rcu; 325 326 /* hot fields used during command issue, aligned to cacheline */ 327 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 328 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 329 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 330 }; 331 332 static struct kmem_cache *pwq_cache; 333 334 static cpumask_var_t *wq_numa_possible_cpumask; 335 /* possible CPUs of each node */ 336 337 /* 338 * Per-cpu work items which run for longer than the following threshold are 339 * automatically considered CPU intensive and excluded from concurrency 340 * management to prevent them from noticeably delaying other per-cpu work items. 341 */ 342 static unsigned long wq_cpu_intensive_thresh_us = 10000; 343 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 344 345 static bool wq_disable_numa; 346 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 347 348 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 349 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 350 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 351 352 static bool wq_online; /* can kworkers be created yet? */ 353 354 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 355 356 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 357 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 358 359 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 360 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 361 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 362 /* wait for manager to go away */ 363 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 364 365 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 366 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 367 368 /* PL&A: allowable cpus for unbound wqs and work items */ 369 static cpumask_var_t wq_unbound_cpumask; 370 371 /* CPU where unbound work was last round robin scheduled from this CPU */ 372 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 373 374 /* 375 * Local execution of unbound work items is no longer guaranteed. The 376 * following always forces round-robin CPU selection on unbound work items 377 * to uncover usages which depend on it. 378 */ 379 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 380 static bool wq_debug_force_rr_cpu = true; 381 #else 382 static bool wq_debug_force_rr_cpu = false; 383 #endif 384 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 385 386 /* the per-cpu worker pools */ 387 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 388 389 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 390 391 /* PL: hash of all unbound pools keyed by pool->attrs */ 392 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 393 394 /* I: attributes used when instantiating standard unbound pools on demand */ 395 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 396 397 /* I: attributes used when instantiating ordered pools on demand */ 398 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 399 400 struct workqueue_struct *system_wq __read_mostly; 401 EXPORT_SYMBOL(system_wq); 402 struct workqueue_struct *system_highpri_wq __read_mostly; 403 EXPORT_SYMBOL_GPL(system_highpri_wq); 404 struct workqueue_struct *system_long_wq __read_mostly; 405 EXPORT_SYMBOL_GPL(system_long_wq); 406 struct workqueue_struct *system_unbound_wq __read_mostly; 407 EXPORT_SYMBOL_GPL(system_unbound_wq); 408 struct workqueue_struct *system_freezable_wq __read_mostly; 409 EXPORT_SYMBOL_GPL(system_freezable_wq); 410 struct workqueue_struct *system_power_efficient_wq __read_mostly; 411 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 412 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 413 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 414 415 static int worker_thread(void *__worker); 416 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 417 static void show_pwq(struct pool_workqueue *pwq); 418 static void show_one_worker_pool(struct worker_pool *pool); 419 420 #define CREATE_TRACE_POINTS 421 #include <trace/events/workqueue.h> 422 423 #define assert_rcu_or_pool_mutex() \ 424 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 425 !lockdep_is_held(&wq_pool_mutex), \ 426 "RCU or wq_pool_mutex should be held") 427 428 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 429 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 430 !lockdep_is_held(&wq->mutex) && \ 431 !lockdep_is_held(&wq_pool_mutex), \ 432 "RCU, wq->mutex or wq_pool_mutex should be held") 433 434 #define for_each_cpu_worker_pool(pool, cpu) \ 435 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 436 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 437 (pool)++) 438 439 /** 440 * for_each_pool - iterate through all worker_pools in the system 441 * @pool: iteration cursor 442 * @pi: integer used for iteration 443 * 444 * This must be called either with wq_pool_mutex held or RCU read 445 * locked. If the pool needs to be used beyond the locking in effect, the 446 * caller is responsible for guaranteeing that the pool stays online. 447 * 448 * The if/else clause exists only for the lockdep assertion and can be 449 * ignored. 450 */ 451 #define for_each_pool(pool, pi) \ 452 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 453 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 454 else 455 456 /** 457 * for_each_pool_worker - iterate through all workers of a worker_pool 458 * @worker: iteration cursor 459 * @pool: worker_pool to iterate workers of 460 * 461 * This must be called with wq_pool_attach_mutex. 462 * 463 * The if/else clause exists only for the lockdep assertion and can be 464 * ignored. 465 */ 466 #define for_each_pool_worker(worker, pool) \ 467 list_for_each_entry((worker), &(pool)->workers, node) \ 468 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 469 else 470 471 /** 472 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 473 * @pwq: iteration cursor 474 * @wq: the target workqueue 475 * 476 * This must be called either with wq->mutex held or RCU read locked. 477 * If the pwq needs to be used beyond the locking in effect, the caller is 478 * responsible for guaranteeing that the pwq stays online. 479 * 480 * The if/else clause exists only for the lockdep assertion and can be 481 * ignored. 482 */ 483 #define for_each_pwq(pwq, wq) \ 484 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 485 lockdep_is_held(&(wq->mutex))) 486 487 #ifdef CONFIG_DEBUG_OBJECTS_WORK 488 489 static const struct debug_obj_descr work_debug_descr; 490 491 static void *work_debug_hint(void *addr) 492 { 493 return ((struct work_struct *) addr)->func; 494 } 495 496 static bool work_is_static_object(void *addr) 497 { 498 struct work_struct *work = addr; 499 500 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 501 } 502 503 /* 504 * fixup_init is called when: 505 * - an active object is initialized 506 */ 507 static bool work_fixup_init(void *addr, enum debug_obj_state state) 508 { 509 struct work_struct *work = addr; 510 511 switch (state) { 512 case ODEBUG_STATE_ACTIVE: 513 cancel_work_sync(work); 514 debug_object_init(work, &work_debug_descr); 515 return true; 516 default: 517 return false; 518 } 519 } 520 521 /* 522 * fixup_free is called when: 523 * - an active object is freed 524 */ 525 static bool work_fixup_free(void *addr, enum debug_obj_state state) 526 { 527 struct work_struct *work = addr; 528 529 switch (state) { 530 case ODEBUG_STATE_ACTIVE: 531 cancel_work_sync(work); 532 debug_object_free(work, &work_debug_descr); 533 return true; 534 default: 535 return false; 536 } 537 } 538 539 static const struct debug_obj_descr work_debug_descr = { 540 .name = "work_struct", 541 .debug_hint = work_debug_hint, 542 .is_static_object = work_is_static_object, 543 .fixup_init = work_fixup_init, 544 .fixup_free = work_fixup_free, 545 }; 546 547 static inline void debug_work_activate(struct work_struct *work) 548 { 549 debug_object_activate(work, &work_debug_descr); 550 } 551 552 static inline void debug_work_deactivate(struct work_struct *work) 553 { 554 debug_object_deactivate(work, &work_debug_descr); 555 } 556 557 void __init_work(struct work_struct *work, int onstack) 558 { 559 if (onstack) 560 debug_object_init_on_stack(work, &work_debug_descr); 561 else 562 debug_object_init(work, &work_debug_descr); 563 } 564 EXPORT_SYMBOL_GPL(__init_work); 565 566 void destroy_work_on_stack(struct work_struct *work) 567 { 568 debug_object_free(work, &work_debug_descr); 569 } 570 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 571 572 void destroy_delayed_work_on_stack(struct delayed_work *work) 573 { 574 destroy_timer_on_stack(&work->timer); 575 debug_object_free(&work->work, &work_debug_descr); 576 } 577 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 578 579 #else 580 static inline void debug_work_activate(struct work_struct *work) { } 581 static inline void debug_work_deactivate(struct work_struct *work) { } 582 #endif 583 584 /** 585 * worker_pool_assign_id - allocate ID and assign it to @pool 586 * @pool: the pool pointer of interest 587 * 588 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 589 * successfully, -errno on failure. 590 */ 591 static int worker_pool_assign_id(struct worker_pool *pool) 592 { 593 int ret; 594 595 lockdep_assert_held(&wq_pool_mutex); 596 597 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 598 GFP_KERNEL); 599 if (ret >= 0) { 600 pool->id = ret; 601 return 0; 602 } 603 return ret; 604 } 605 606 /** 607 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 608 * @wq: the target workqueue 609 * @node: the node ID 610 * 611 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 612 * read locked. 613 * If the pwq needs to be used beyond the locking in effect, the caller is 614 * responsible for guaranteeing that the pwq stays online. 615 * 616 * Return: The unbound pool_workqueue for @node. 617 */ 618 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 619 int node) 620 { 621 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 622 623 /* 624 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 625 * delayed item is pending. The plan is to keep CPU -> NODE 626 * mapping valid and stable across CPU on/offlines. Once that 627 * happens, this workaround can be removed. 628 */ 629 if (unlikely(node == NUMA_NO_NODE)) 630 return wq->dfl_pwq; 631 632 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 633 } 634 635 static unsigned int work_color_to_flags(int color) 636 { 637 return color << WORK_STRUCT_COLOR_SHIFT; 638 } 639 640 static int get_work_color(unsigned long work_data) 641 { 642 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 643 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 644 } 645 646 static int work_next_color(int color) 647 { 648 return (color + 1) % WORK_NR_COLORS; 649 } 650 651 /* 652 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 653 * contain the pointer to the queued pwq. Once execution starts, the flag 654 * is cleared and the high bits contain OFFQ flags and pool ID. 655 * 656 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 657 * and clear_work_data() can be used to set the pwq, pool or clear 658 * work->data. These functions should only be called while the work is 659 * owned - ie. while the PENDING bit is set. 660 * 661 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 662 * corresponding to a work. Pool is available once the work has been 663 * queued anywhere after initialization until it is sync canceled. pwq is 664 * available only while the work item is queued. 665 * 666 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 667 * canceled. While being canceled, a work item may have its PENDING set 668 * but stay off timer and worklist for arbitrarily long and nobody should 669 * try to steal the PENDING bit. 670 */ 671 static inline void set_work_data(struct work_struct *work, unsigned long data, 672 unsigned long flags) 673 { 674 WARN_ON_ONCE(!work_pending(work)); 675 atomic_long_set(&work->data, data | flags | work_static(work)); 676 } 677 678 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 679 unsigned long extra_flags) 680 { 681 set_work_data(work, (unsigned long)pwq, 682 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 683 } 684 685 static void set_work_pool_and_keep_pending(struct work_struct *work, 686 int pool_id) 687 { 688 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 689 WORK_STRUCT_PENDING); 690 } 691 692 static void set_work_pool_and_clear_pending(struct work_struct *work, 693 int pool_id) 694 { 695 /* 696 * The following wmb is paired with the implied mb in 697 * test_and_set_bit(PENDING) and ensures all updates to @work made 698 * here are visible to and precede any updates by the next PENDING 699 * owner. 700 */ 701 smp_wmb(); 702 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 703 /* 704 * The following mb guarantees that previous clear of a PENDING bit 705 * will not be reordered with any speculative LOADS or STORES from 706 * work->current_func, which is executed afterwards. This possible 707 * reordering can lead to a missed execution on attempt to queue 708 * the same @work. E.g. consider this case: 709 * 710 * CPU#0 CPU#1 711 * ---------------------------- -------------------------------- 712 * 713 * 1 STORE event_indicated 714 * 2 queue_work_on() { 715 * 3 test_and_set_bit(PENDING) 716 * 4 } set_..._and_clear_pending() { 717 * 5 set_work_data() # clear bit 718 * 6 smp_mb() 719 * 7 work->current_func() { 720 * 8 LOAD event_indicated 721 * } 722 * 723 * Without an explicit full barrier speculative LOAD on line 8 can 724 * be executed before CPU#0 does STORE on line 1. If that happens, 725 * CPU#0 observes the PENDING bit is still set and new execution of 726 * a @work is not queued in a hope, that CPU#1 will eventually 727 * finish the queued @work. Meanwhile CPU#1 does not see 728 * event_indicated is set, because speculative LOAD was executed 729 * before actual STORE. 730 */ 731 smp_mb(); 732 } 733 734 static void clear_work_data(struct work_struct *work) 735 { 736 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 737 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 738 } 739 740 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 741 { 742 unsigned long data = atomic_long_read(&work->data); 743 744 if (data & WORK_STRUCT_PWQ) 745 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 746 else 747 return NULL; 748 } 749 750 /** 751 * get_work_pool - return the worker_pool a given work was associated with 752 * @work: the work item of interest 753 * 754 * Pools are created and destroyed under wq_pool_mutex, and allows read 755 * access under RCU read lock. As such, this function should be 756 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 757 * 758 * All fields of the returned pool are accessible as long as the above 759 * mentioned locking is in effect. If the returned pool needs to be used 760 * beyond the critical section, the caller is responsible for ensuring the 761 * returned pool is and stays online. 762 * 763 * Return: The worker_pool @work was last associated with. %NULL if none. 764 */ 765 static struct worker_pool *get_work_pool(struct work_struct *work) 766 { 767 unsigned long data = atomic_long_read(&work->data); 768 int pool_id; 769 770 assert_rcu_or_pool_mutex(); 771 772 if (data & WORK_STRUCT_PWQ) 773 return ((struct pool_workqueue *) 774 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 775 776 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 777 if (pool_id == WORK_OFFQ_POOL_NONE) 778 return NULL; 779 780 return idr_find(&worker_pool_idr, pool_id); 781 } 782 783 /** 784 * get_work_pool_id - return the worker pool ID a given work is associated with 785 * @work: the work item of interest 786 * 787 * Return: The worker_pool ID @work was last associated with. 788 * %WORK_OFFQ_POOL_NONE if none. 789 */ 790 static int get_work_pool_id(struct work_struct *work) 791 { 792 unsigned long data = atomic_long_read(&work->data); 793 794 if (data & WORK_STRUCT_PWQ) 795 return ((struct pool_workqueue *) 796 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 797 798 return data >> WORK_OFFQ_POOL_SHIFT; 799 } 800 801 static void mark_work_canceling(struct work_struct *work) 802 { 803 unsigned long pool_id = get_work_pool_id(work); 804 805 pool_id <<= WORK_OFFQ_POOL_SHIFT; 806 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 807 } 808 809 static bool work_is_canceling(struct work_struct *work) 810 { 811 unsigned long data = atomic_long_read(&work->data); 812 813 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 814 } 815 816 /* 817 * Policy functions. These define the policies on how the global worker 818 * pools are managed. Unless noted otherwise, these functions assume that 819 * they're being called with pool->lock held. 820 */ 821 822 static bool __need_more_worker(struct worker_pool *pool) 823 { 824 return !pool->nr_running; 825 } 826 827 /* 828 * Need to wake up a worker? Called from anything but currently 829 * running workers. 830 * 831 * Note that, because unbound workers never contribute to nr_running, this 832 * function will always return %true for unbound pools as long as the 833 * worklist isn't empty. 834 */ 835 static bool need_more_worker(struct worker_pool *pool) 836 { 837 return !list_empty(&pool->worklist) && __need_more_worker(pool); 838 } 839 840 /* Can I start working? Called from busy but !running workers. */ 841 static bool may_start_working(struct worker_pool *pool) 842 { 843 return pool->nr_idle; 844 } 845 846 /* Do I need to keep working? Called from currently running workers. */ 847 static bool keep_working(struct worker_pool *pool) 848 { 849 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 850 } 851 852 /* Do we need a new worker? Called from manager. */ 853 static bool need_to_create_worker(struct worker_pool *pool) 854 { 855 return need_more_worker(pool) && !may_start_working(pool); 856 } 857 858 /* Do we have too many workers and should some go away? */ 859 static bool too_many_workers(struct worker_pool *pool) 860 { 861 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 862 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 863 int nr_busy = pool->nr_workers - nr_idle; 864 865 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 866 } 867 868 /* 869 * Wake up functions. 870 */ 871 872 /* Return the first idle worker. Called with pool->lock held. */ 873 static struct worker *first_idle_worker(struct worker_pool *pool) 874 { 875 if (unlikely(list_empty(&pool->idle_list))) 876 return NULL; 877 878 return list_first_entry(&pool->idle_list, struct worker, entry); 879 } 880 881 /** 882 * wake_up_worker - wake up an idle worker 883 * @pool: worker pool to wake worker from 884 * 885 * Wake up the first idle worker of @pool. 886 * 887 * CONTEXT: 888 * raw_spin_lock_irq(pool->lock). 889 */ 890 static void wake_up_worker(struct worker_pool *pool) 891 { 892 struct worker *worker = first_idle_worker(pool); 893 894 if (likely(worker)) 895 wake_up_process(worker->task); 896 } 897 898 /** 899 * worker_set_flags - set worker flags and adjust nr_running accordingly 900 * @worker: self 901 * @flags: flags to set 902 * 903 * Set @flags in @worker->flags and adjust nr_running accordingly. 904 * 905 * CONTEXT: 906 * raw_spin_lock_irq(pool->lock) 907 */ 908 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 909 { 910 struct worker_pool *pool = worker->pool; 911 912 WARN_ON_ONCE(worker->task != current); 913 914 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 915 if ((flags & WORKER_NOT_RUNNING) && 916 !(worker->flags & WORKER_NOT_RUNNING)) { 917 pool->nr_running--; 918 } 919 920 worker->flags |= flags; 921 } 922 923 /** 924 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 925 * @worker: self 926 * @flags: flags to clear 927 * 928 * Clear @flags in @worker->flags and adjust nr_running accordingly. 929 * 930 * CONTEXT: 931 * raw_spin_lock_irq(pool->lock) 932 */ 933 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 934 { 935 struct worker_pool *pool = worker->pool; 936 unsigned int oflags = worker->flags; 937 938 WARN_ON_ONCE(worker->task != current); 939 940 worker->flags &= ~flags; 941 942 /* 943 * If transitioning out of NOT_RUNNING, increment nr_running. Note 944 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 945 * of multiple flags, not a single flag. 946 */ 947 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 948 if (!(worker->flags & WORKER_NOT_RUNNING)) 949 pool->nr_running++; 950 } 951 952 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 953 954 /* 955 * Concurrency-managed per-cpu work items that hog CPU for longer than 956 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 957 * which prevents them from stalling other concurrency-managed work items. If a 958 * work function keeps triggering this mechanism, it's likely that the work item 959 * should be using an unbound workqueue instead. 960 * 961 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 962 * and report them so that they can be examined and converted to use unbound 963 * workqueues as appropriate. To avoid flooding the console, each violating work 964 * function is tracked and reported with exponential backoff. 965 */ 966 #define WCI_MAX_ENTS 128 967 968 struct wci_ent { 969 work_func_t func; 970 atomic64_t cnt; 971 struct hlist_node hash_node; 972 }; 973 974 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 975 static int wci_nr_ents; 976 static DEFINE_RAW_SPINLOCK(wci_lock); 977 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 978 979 static struct wci_ent *wci_find_ent(work_func_t func) 980 { 981 struct wci_ent *ent; 982 983 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 984 (unsigned long)func) { 985 if (ent->func == func) 986 return ent; 987 } 988 return NULL; 989 } 990 991 static void wq_cpu_intensive_report(work_func_t func) 992 { 993 struct wci_ent *ent; 994 995 restart: 996 ent = wci_find_ent(func); 997 if (ent) { 998 u64 cnt; 999 1000 /* 1001 * Start reporting from the fourth time and back off 1002 * exponentially. 1003 */ 1004 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1005 if (cnt >= 4 && is_power_of_2(cnt)) 1006 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1007 ent->func, wq_cpu_intensive_thresh_us, 1008 atomic64_read(&ent->cnt)); 1009 return; 1010 } 1011 1012 /* 1013 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1014 * is exhausted, something went really wrong and we probably made enough 1015 * noise already. 1016 */ 1017 if (wci_nr_ents >= WCI_MAX_ENTS) 1018 return; 1019 1020 raw_spin_lock(&wci_lock); 1021 1022 if (wci_nr_ents >= WCI_MAX_ENTS) { 1023 raw_spin_unlock(&wci_lock); 1024 return; 1025 } 1026 1027 if (wci_find_ent(func)) { 1028 raw_spin_unlock(&wci_lock); 1029 goto restart; 1030 } 1031 1032 ent = &wci_ents[wci_nr_ents++]; 1033 ent->func = func; 1034 atomic64_set(&ent->cnt, 1); 1035 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1036 1037 raw_spin_unlock(&wci_lock); 1038 } 1039 1040 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1041 static void wq_cpu_intensive_report(work_func_t func) {} 1042 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1043 1044 /** 1045 * wq_worker_running - a worker is running again 1046 * @task: task waking up 1047 * 1048 * This function is called when a worker returns from schedule() 1049 */ 1050 void wq_worker_running(struct task_struct *task) 1051 { 1052 struct worker *worker = kthread_data(task); 1053 1054 if (!worker->sleeping) 1055 return; 1056 1057 /* 1058 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1059 * and the nr_running increment below, we may ruin the nr_running reset 1060 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1061 * pool. Protect against such race. 1062 */ 1063 preempt_disable(); 1064 if (!(worker->flags & WORKER_NOT_RUNNING)) 1065 worker->pool->nr_running++; 1066 preempt_enable(); 1067 1068 /* 1069 * CPU intensive auto-detection cares about how long a work item hogged 1070 * CPU without sleeping. Reset the starting timestamp on wakeup. 1071 */ 1072 worker->current_at = worker->task->se.sum_exec_runtime; 1073 1074 worker->sleeping = 0; 1075 } 1076 1077 /** 1078 * wq_worker_sleeping - a worker is going to sleep 1079 * @task: task going to sleep 1080 * 1081 * This function is called from schedule() when a busy worker is 1082 * going to sleep. 1083 */ 1084 void wq_worker_sleeping(struct task_struct *task) 1085 { 1086 struct worker *worker = kthread_data(task); 1087 struct worker_pool *pool; 1088 1089 /* 1090 * Rescuers, which may not have all the fields set up like normal 1091 * workers, also reach here, let's not access anything before 1092 * checking NOT_RUNNING. 1093 */ 1094 if (worker->flags & WORKER_NOT_RUNNING) 1095 return; 1096 1097 pool = worker->pool; 1098 1099 /* Return if preempted before wq_worker_running() was reached */ 1100 if (worker->sleeping) 1101 return; 1102 1103 worker->sleeping = 1; 1104 raw_spin_lock_irq(&pool->lock); 1105 1106 /* 1107 * Recheck in case unbind_workers() preempted us. We don't 1108 * want to decrement nr_running after the worker is unbound 1109 * and nr_running has been reset. 1110 */ 1111 if (worker->flags & WORKER_NOT_RUNNING) { 1112 raw_spin_unlock_irq(&pool->lock); 1113 return; 1114 } 1115 1116 pool->nr_running--; 1117 if (need_more_worker(pool)) { 1118 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1119 wake_up_worker(pool); 1120 } 1121 raw_spin_unlock_irq(&pool->lock); 1122 } 1123 1124 /** 1125 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1126 * @task: task currently running 1127 * 1128 * Called from scheduler_tick(). We're in the IRQ context and the current 1129 * worker's fields which follow the 'K' locking rule can be accessed safely. 1130 */ 1131 void wq_worker_tick(struct task_struct *task) 1132 { 1133 struct worker *worker = kthread_data(task); 1134 struct pool_workqueue *pwq = worker->current_pwq; 1135 struct worker_pool *pool = worker->pool; 1136 1137 if (!pwq) 1138 return; 1139 1140 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1141 1142 /* 1143 * If the current worker is concurrency managed and hogged the CPU for 1144 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1145 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1146 */ 1147 if ((worker->flags & WORKER_NOT_RUNNING) || 1148 worker->task->se.sum_exec_runtime - worker->current_at < 1149 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1150 return; 1151 1152 raw_spin_lock(&pool->lock); 1153 1154 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1155 wq_cpu_intensive_report(worker->current_func); 1156 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1157 1158 if (need_more_worker(pool)) { 1159 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1160 wake_up_worker(pool); 1161 } 1162 1163 raw_spin_unlock(&pool->lock); 1164 } 1165 1166 /** 1167 * wq_worker_last_func - retrieve worker's last work function 1168 * @task: Task to retrieve last work function of. 1169 * 1170 * Determine the last function a worker executed. This is called from 1171 * the scheduler to get a worker's last known identity. 1172 * 1173 * CONTEXT: 1174 * raw_spin_lock_irq(rq->lock) 1175 * 1176 * This function is called during schedule() when a kworker is going 1177 * to sleep. It's used by psi to identify aggregation workers during 1178 * dequeuing, to allow periodic aggregation to shut-off when that 1179 * worker is the last task in the system or cgroup to go to sleep. 1180 * 1181 * As this function doesn't involve any workqueue-related locking, it 1182 * only returns stable values when called from inside the scheduler's 1183 * queuing and dequeuing paths, when @task, which must be a kworker, 1184 * is guaranteed to not be processing any works. 1185 * 1186 * Return: 1187 * The last work function %current executed as a worker, NULL if it 1188 * hasn't executed any work yet. 1189 */ 1190 work_func_t wq_worker_last_func(struct task_struct *task) 1191 { 1192 struct worker *worker = kthread_data(task); 1193 1194 return worker->last_func; 1195 } 1196 1197 /** 1198 * find_worker_executing_work - find worker which is executing a work 1199 * @pool: pool of interest 1200 * @work: work to find worker for 1201 * 1202 * Find a worker which is executing @work on @pool by searching 1203 * @pool->busy_hash which is keyed by the address of @work. For a worker 1204 * to match, its current execution should match the address of @work and 1205 * its work function. This is to avoid unwanted dependency between 1206 * unrelated work executions through a work item being recycled while still 1207 * being executed. 1208 * 1209 * This is a bit tricky. A work item may be freed once its execution 1210 * starts and nothing prevents the freed area from being recycled for 1211 * another work item. If the same work item address ends up being reused 1212 * before the original execution finishes, workqueue will identify the 1213 * recycled work item as currently executing and make it wait until the 1214 * current execution finishes, introducing an unwanted dependency. 1215 * 1216 * This function checks the work item address and work function to avoid 1217 * false positives. Note that this isn't complete as one may construct a 1218 * work function which can introduce dependency onto itself through a 1219 * recycled work item. Well, if somebody wants to shoot oneself in the 1220 * foot that badly, there's only so much we can do, and if such deadlock 1221 * actually occurs, it should be easy to locate the culprit work function. 1222 * 1223 * CONTEXT: 1224 * raw_spin_lock_irq(pool->lock). 1225 * 1226 * Return: 1227 * Pointer to worker which is executing @work if found, %NULL 1228 * otherwise. 1229 */ 1230 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1231 struct work_struct *work) 1232 { 1233 struct worker *worker; 1234 1235 hash_for_each_possible(pool->busy_hash, worker, hentry, 1236 (unsigned long)work) 1237 if (worker->current_work == work && 1238 worker->current_func == work->func) 1239 return worker; 1240 1241 return NULL; 1242 } 1243 1244 /** 1245 * move_linked_works - move linked works to a list 1246 * @work: start of series of works to be scheduled 1247 * @head: target list to append @work to 1248 * @nextp: out parameter for nested worklist walking 1249 * 1250 * Schedule linked works starting from @work to @head. Work series to 1251 * be scheduled starts at @work and includes any consecutive work with 1252 * WORK_STRUCT_LINKED set in its predecessor. 1253 * 1254 * If @nextp is not NULL, it's updated to point to the next work of 1255 * the last scheduled work. This allows move_linked_works() to be 1256 * nested inside outer list_for_each_entry_safe(). 1257 * 1258 * CONTEXT: 1259 * raw_spin_lock_irq(pool->lock). 1260 */ 1261 static void move_linked_works(struct work_struct *work, struct list_head *head, 1262 struct work_struct **nextp) 1263 { 1264 struct work_struct *n; 1265 1266 /* 1267 * Linked worklist will always end before the end of the list, 1268 * use NULL for list head. 1269 */ 1270 list_for_each_entry_safe_from(work, n, NULL, entry) { 1271 list_move_tail(&work->entry, head); 1272 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1273 break; 1274 } 1275 1276 /* 1277 * If we're already inside safe list traversal and have moved 1278 * multiple works to the scheduled queue, the next position 1279 * needs to be updated. 1280 */ 1281 if (nextp) 1282 *nextp = n; 1283 } 1284 1285 /** 1286 * get_pwq - get an extra reference on the specified pool_workqueue 1287 * @pwq: pool_workqueue to get 1288 * 1289 * Obtain an extra reference on @pwq. The caller should guarantee that 1290 * @pwq has positive refcnt and be holding the matching pool->lock. 1291 */ 1292 static void get_pwq(struct pool_workqueue *pwq) 1293 { 1294 lockdep_assert_held(&pwq->pool->lock); 1295 WARN_ON_ONCE(pwq->refcnt <= 0); 1296 pwq->refcnt++; 1297 } 1298 1299 /** 1300 * put_pwq - put a pool_workqueue reference 1301 * @pwq: pool_workqueue to put 1302 * 1303 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1304 * destruction. The caller should be holding the matching pool->lock. 1305 */ 1306 static void put_pwq(struct pool_workqueue *pwq) 1307 { 1308 lockdep_assert_held(&pwq->pool->lock); 1309 if (likely(--pwq->refcnt)) 1310 return; 1311 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1312 return; 1313 /* 1314 * @pwq can't be released under pool->lock, bounce to 1315 * pwq_unbound_release_workfn(). This never recurses on the same 1316 * pool->lock as this path is taken only for unbound workqueues and 1317 * the release work item is scheduled on a per-cpu workqueue. To 1318 * avoid lockdep warning, unbound pool->locks are given lockdep 1319 * subclass of 1 in get_unbound_pool(). 1320 */ 1321 schedule_work(&pwq->unbound_release_work); 1322 } 1323 1324 /** 1325 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1326 * @pwq: pool_workqueue to put (can be %NULL) 1327 * 1328 * put_pwq() with locking. This function also allows %NULL @pwq. 1329 */ 1330 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1331 { 1332 if (pwq) { 1333 /* 1334 * As both pwqs and pools are RCU protected, the 1335 * following lock operations are safe. 1336 */ 1337 raw_spin_lock_irq(&pwq->pool->lock); 1338 put_pwq(pwq); 1339 raw_spin_unlock_irq(&pwq->pool->lock); 1340 } 1341 } 1342 1343 static void pwq_activate_inactive_work(struct work_struct *work) 1344 { 1345 struct pool_workqueue *pwq = get_work_pwq(work); 1346 1347 trace_workqueue_activate_work(work); 1348 if (list_empty(&pwq->pool->worklist)) 1349 pwq->pool->watchdog_ts = jiffies; 1350 move_linked_works(work, &pwq->pool->worklist, NULL); 1351 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work)); 1352 pwq->nr_active++; 1353 } 1354 1355 static void pwq_activate_first_inactive(struct pool_workqueue *pwq) 1356 { 1357 struct work_struct *work = list_first_entry(&pwq->inactive_works, 1358 struct work_struct, entry); 1359 1360 pwq_activate_inactive_work(work); 1361 } 1362 1363 /** 1364 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1365 * @pwq: pwq of interest 1366 * @work_data: work_data of work which left the queue 1367 * 1368 * A work either has completed or is removed from pending queue, 1369 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1370 * 1371 * CONTEXT: 1372 * raw_spin_lock_irq(pool->lock). 1373 */ 1374 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1375 { 1376 int color = get_work_color(work_data); 1377 1378 if (!(work_data & WORK_STRUCT_INACTIVE)) { 1379 pwq->nr_active--; 1380 if (!list_empty(&pwq->inactive_works)) { 1381 /* one down, submit an inactive one */ 1382 if (pwq->nr_active < pwq->max_active) 1383 pwq_activate_first_inactive(pwq); 1384 } 1385 } 1386 1387 pwq->nr_in_flight[color]--; 1388 1389 /* is flush in progress and are we at the flushing tip? */ 1390 if (likely(pwq->flush_color != color)) 1391 goto out_put; 1392 1393 /* are there still in-flight works? */ 1394 if (pwq->nr_in_flight[color]) 1395 goto out_put; 1396 1397 /* this pwq is done, clear flush_color */ 1398 pwq->flush_color = -1; 1399 1400 /* 1401 * If this was the last pwq, wake up the first flusher. It 1402 * will handle the rest. 1403 */ 1404 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1405 complete(&pwq->wq->first_flusher->done); 1406 out_put: 1407 put_pwq(pwq); 1408 } 1409 1410 /** 1411 * try_to_grab_pending - steal work item from worklist and disable irq 1412 * @work: work item to steal 1413 * @is_dwork: @work is a delayed_work 1414 * @flags: place to store irq state 1415 * 1416 * Try to grab PENDING bit of @work. This function can handle @work in any 1417 * stable state - idle, on timer or on worklist. 1418 * 1419 * Return: 1420 * 1421 * ======== ================================================================ 1422 * 1 if @work was pending and we successfully stole PENDING 1423 * 0 if @work was idle and we claimed PENDING 1424 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1425 * -ENOENT if someone else is canceling @work, this state may persist 1426 * for arbitrarily long 1427 * ======== ================================================================ 1428 * 1429 * Note: 1430 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1431 * interrupted while holding PENDING and @work off queue, irq must be 1432 * disabled on entry. This, combined with delayed_work->timer being 1433 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1434 * 1435 * On successful return, >= 0, irq is disabled and the caller is 1436 * responsible for releasing it using local_irq_restore(*@flags). 1437 * 1438 * This function is safe to call from any context including IRQ handler. 1439 */ 1440 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1441 unsigned long *flags) 1442 { 1443 struct worker_pool *pool; 1444 struct pool_workqueue *pwq; 1445 1446 local_irq_save(*flags); 1447 1448 /* try to steal the timer if it exists */ 1449 if (is_dwork) { 1450 struct delayed_work *dwork = to_delayed_work(work); 1451 1452 /* 1453 * dwork->timer is irqsafe. If del_timer() fails, it's 1454 * guaranteed that the timer is not queued anywhere and not 1455 * running on the local CPU. 1456 */ 1457 if (likely(del_timer(&dwork->timer))) 1458 return 1; 1459 } 1460 1461 /* try to claim PENDING the normal way */ 1462 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1463 return 0; 1464 1465 rcu_read_lock(); 1466 /* 1467 * The queueing is in progress, or it is already queued. Try to 1468 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1469 */ 1470 pool = get_work_pool(work); 1471 if (!pool) 1472 goto fail; 1473 1474 raw_spin_lock(&pool->lock); 1475 /* 1476 * work->data is guaranteed to point to pwq only while the work 1477 * item is queued on pwq->wq, and both updating work->data to point 1478 * to pwq on queueing and to pool on dequeueing are done under 1479 * pwq->pool->lock. This in turn guarantees that, if work->data 1480 * points to pwq which is associated with a locked pool, the work 1481 * item is currently queued on that pool. 1482 */ 1483 pwq = get_work_pwq(work); 1484 if (pwq && pwq->pool == pool) { 1485 debug_work_deactivate(work); 1486 1487 /* 1488 * A cancelable inactive work item must be in the 1489 * pwq->inactive_works since a queued barrier can't be 1490 * canceled (see the comments in insert_wq_barrier()). 1491 * 1492 * An inactive work item cannot be grabbed directly because 1493 * it might have linked barrier work items which, if left 1494 * on the inactive_works list, will confuse pwq->nr_active 1495 * management later on and cause stall. Make sure the work 1496 * item is activated before grabbing. 1497 */ 1498 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE) 1499 pwq_activate_inactive_work(work); 1500 1501 list_del_init(&work->entry); 1502 pwq_dec_nr_in_flight(pwq, *work_data_bits(work)); 1503 1504 /* work->data points to pwq iff queued, point to pool */ 1505 set_work_pool_and_keep_pending(work, pool->id); 1506 1507 raw_spin_unlock(&pool->lock); 1508 rcu_read_unlock(); 1509 return 1; 1510 } 1511 raw_spin_unlock(&pool->lock); 1512 fail: 1513 rcu_read_unlock(); 1514 local_irq_restore(*flags); 1515 if (work_is_canceling(work)) 1516 return -ENOENT; 1517 cpu_relax(); 1518 return -EAGAIN; 1519 } 1520 1521 /** 1522 * insert_work - insert a work into a pool 1523 * @pwq: pwq @work belongs to 1524 * @work: work to insert 1525 * @head: insertion point 1526 * @extra_flags: extra WORK_STRUCT_* flags to set 1527 * 1528 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1529 * work_struct flags. 1530 * 1531 * CONTEXT: 1532 * raw_spin_lock_irq(pool->lock). 1533 */ 1534 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1535 struct list_head *head, unsigned int extra_flags) 1536 { 1537 struct worker_pool *pool = pwq->pool; 1538 1539 /* record the work call stack in order to print it in KASAN reports */ 1540 kasan_record_aux_stack_noalloc(work); 1541 1542 /* we own @work, set data and link */ 1543 set_work_pwq(work, pwq, extra_flags); 1544 list_add_tail(&work->entry, head); 1545 get_pwq(pwq); 1546 1547 if (__need_more_worker(pool)) 1548 wake_up_worker(pool); 1549 } 1550 1551 /* 1552 * Test whether @work is being queued from another work executing on the 1553 * same workqueue. 1554 */ 1555 static bool is_chained_work(struct workqueue_struct *wq) 1556 { 1557 struct worker *worker; 1558 1559 worker = current_wq_worker(); 1560 /* 1561 * Return %true iff I'm a worker executing a work item on @wq. If 1562 * I'm @worker, it's safe to dereference it without locking. 1563 */ 1564 return worker && worker->current_pwq->wq == wq; 1565 } 1566 1567 /* 1568 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1569 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1570 * avoid perturbing sensitive tasks. 1571 */ 1572 static int wq_select_unbound_cpu(int cpu) 1573 { 1574 int new_cpu; 1575 1576 if (likely(!wq_debug_force_rr_cpu)) { 1577 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1578 return cpu; 1579 } else { 1580 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1581 } 1582 1583 if (cpumask_empty(wq_unbound_cpumask)) 1584 return cpu; 1585 1586 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1587 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1588 if (unlikely(new_cpu >= nr_cpu_ids)) { 1589 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1590 if (unlikely(new_cpu >= nr_cpu_ids)) 1591 return cpu; 1592 } 1593 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1594 1595 return new_cpu; 1596 } 1597 1598 static void __queue_work(int cpu, struct workqueue_struct *wq, 1599 struct work_struct *work) 1600 { 1601 struct pool_workqueue *pwq; 1602 struct worker_pool *last_pool; 1603 struct list_head *worklist; 1604 unsigned int work_flags; 1605 unsigned int req_cpu = cpu; 1606 1607 /* 1608 * While a work item is PENDING && off queue, a task trying to 1609 * steal the PENDING will busy-loop waiting for it to either get 1610 * queued or lose PENDING. Grabbing PENDING and queueing should 1611 * happen with IRQ disabled. 1612 */ 1613 lockdep_assert_irqs_disabled(); 1614 1615 1616 /* 1617 * For a draining wq, only works from the same workqueue are 1618 * allowed. The __WQ_DESTROYING helps to spot the issue that 1619 * queues a new work item to a wq after destroy_workqueue(wq). 1620 */ 1621 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 1622 WARN_ON_ONCE(!is_chained_work(wq)))) 1623 return; 1624 rcu_read_lock(); 1625 retry: 1626 /* pwq which will be used unless @work is executing elsewhere */ 1627 if (wq->flags & WQ_UNBOUND) { 1628 if (req_cpu == WORK_CPU_UNBOUND) 1629 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1630 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1631 } else { 1632 if (req_cpu == WORK_CPU_UNBOUND) 1633 cpu = raw_smp_processor_id(); 1634 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1635 } 1636 1637 /* 1638 * If @work was previously on a different pool, it might still be 1639 * running there, in which case the work needs to be queued on that 1640 * pool to guarantee non-reentrancy. 1641 */ 1642 last_pool = get_work_pool(work); 1643 if (last_pool && last_pool != pwq->pool) { 1644 struct worker *worker; 1645 1646 raw_spin_lock(&last_pool->lock); 1647 1648 worker = find_worker_executing_work(last_pool, work); 1649 1650 if (worker && worker->current_pwq->wq == wq) { 1651 pwq = worker->current_pwq; 1652 } else { 1653 /* meh... not running there, queue here */ 1654 raw_spin_unlock(&last_pool->lock); 1655 raw_spin_lock(&pwq->pool->lock); 1656 } 1657 } else { 1658 raw_spin_lock(&pwq->pool->lock); 1659 } 1660 1661 /* 1662 * pwq is determined and locked. For unbound pools, we could have 1663 * raced with pwq release and it could already be dead. If its 1664 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1665 * without another pwq replacing it in the numa_pwq_tbl or while 1666 * work items are executing on it, so the retrying is guaranteed to 1667 * make forward-progress. 1668 */ 1669 if (unlikely(!pwq->refcnt)) { 1670 if (wq->flags & WQ_UNBOUND) { 1671 raw_spin_unlock(&pwq->pool->lock); 1672 cpu_relax(); 1673 goto retry; 1674 } 1675 /* oops */ 1676 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1677 wq->name, cpu); 1678 } 1679 1680 /* pwq determined, queue */ 1681 trace_workqueue_queue_work(req_cpu, pwq, work); 1682 1683 if (WARN_ON(!list_empty(&work->entry))) 1684 goto out; 1685 1686 pwq->nr_in_flight[pwq->work_color]++; 1687 work_flags = work_color_to_flags(pwq->work_color); 1688 1689 if (likely(pwq->nr_active < pwq->max_active)) { 1690 trace_workqueue_activate_work(work); 1691 pwq->nr_active++; 1692 worklist = &pwq->pool->worklist; 1693 if (list_empty(worklist)) 1694 pwq->pool->watchdog_ts = jiffies; 1695 } else { 1696 work_flags |= WORK_STRUCT_INACTIVE; 1697 worklist = &pwq->inactive_works; 1698 } 1699 1700 debug_work_activate(work); 1701 insert_work(pwq, work, worklist, work_flags); 1702 1703 out: 1704 raw_spin_unlock(&pwq->pool->lock); 1705 rcu_read_unlock(); 1706 } 1707 1708 /** 1709 * queue_work_on - queue work on specific cpu 1710 * @cpu: CPU number to execute work on 1711 * @wq: workqueue to use 1712 * @work: work to queue 1713 * 1714 * We queue the work to a specific CPU, the caller must ensure it 1715 * can't go away. Callers that fail to ensure that the specified 1716 * CPU cannot go away will execute on a randomly chosen CPU. 1717 * But note well that callers specifying a CPU that never has been 1718 * online will get a splat. 1719 * 1720 * Return: %false if @work was already on a queue, %true otherwise. 1721 */ 1722 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1723 struct work_struct *work) 1724 { 1725 bool ret = false; 1726 unsigned long flags; 1727 1728 local_irq_save(flags); 1729 1730 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1731 __queue_work(cpu, wq, work); 1732 ret = true; 1733 } 1734 1735 local_irq_restore(flags); 1736 return ret; 1737 } 1738 EXPORT_SYMBOL(queue_work_on); 1739 1740 /** 1741 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1742 * @node: NUMA node ID that we want to select a CPU from 1743 * 1744 * This function will attempt to find a "random" cpu available on a given 1745 * node. If there are no CPUs available on the given node it will return 1746 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1747 * available CPU if we need to schedule this work. 1748 */ 1749 static int workqueue_select_cpu_near(int node) 1750 { 1751 int cpu; 1752 1753 /* No point in doing this if NUMA isn't enabled for workqueues */ 1754 if (!wq_numa_enabled) 1755 return WORK_CPU_UNBOUND; 1756 1757 /* Delay binding to CPU if node is not valid or online */ 1758 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1759 return WORK_CPU_UNBOUND; 1760 1761 /* Use local node/cpu if we are already there */ 1762 cpu = raw_smp_processor_id(); 1763 if (node == cpu_to_node(cpu)) 1764 return cpu; 1765 1766 /* Use "random" otherwise know as "first" online CPU of node */ 1767 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1768 1769 /* If CPU is valid return that, otherwise just defer */ 1770 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1771 } 1772 1773 /** 1774 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1775 * @node: NUMA node that we are targeting the work for 1776 * @wq: workqueue to use 1777 * @work: work to queue 1778 * 1779 * We queue the work to a "random" CPU within a given NUMA node. The basic 1780 * idea here is to provide a way to somehow associate work with a given 1781 * NUMA node. 1782 * 1783 * This function will only make a best effort attempt at getting this onto 1784 * the right NUMA node. If no node is requested or the requested node is 1785 * offline then we just fall back to standard queue_work behavior. 1786 * 1787 * Currently the "random" CPU ends up being the first available CPU in the 1788 * intersection of cpu_online_mask and the cpumask of the node, unless we 1789 * are running on the node. In that case we just use the current CPU. 1790 * 1791 * Return: %false if @work was already on a queue, %true otherwise. 1792 */ 1793 bool queue_work_node(int node, struct workqueue_struct *wq, 1794 struct work_struct *work) 1795 { 1796 unsigned long flags; 1797 bool ret = false; 1798 1799 /* 1800 * This current implementation is specific to unbound workqueues. 1801 * Specifically we only return the first available CPU for a given 1802 * node instead of cycling through individual CPUs within the node. 1803 * 1804 * If this is used with a per-cpu workqueue then the logic in 1805 * workqueue_select_cpu_near would need to be updated to allow for 1806 * some round robin type logic. 1807 */ 1808 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1809 1810 local_irq_save(flags); 1811 1812 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1813 int cpu = workqueue_select_cpu_near(node); 1814 1815 __queue_work(cpu, wq, work); 1816 ret = true; 1817 } 1818 1819 local_irq_restore(flags); 1820 return ret; 1821 } 1822 EXPORT_SYMBOL_GPL(queue_work_node); 1823 1824 void delayed_work_timer_fn(struct timer_list *t) 1825 { 1826 struct delayed_work *dwork = from_timer(dwork, t, timer); 1827 1828 /* should have been called from irqsafe timer with irq already off */ 1829 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1830 } 1831 EXPORT_SYMBOL(delayed_work_timer_fn); 1832 1833 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1834 struct delayed_work *dwork, unsigned long delay) 1835 { 1836 struct timer_list *timer = &dwork->timer; 1837 struct work_struct *work = &dwork->work; 1838 1839 WARN_ON_ONCE(!wq); 1840 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1841 WARN_ON_ONCE(timer_pending(timer)); 1842 WARN_ON_ONCE(!list_empty(&work->entry)); 1843 1844 /* 1845 * If @delay is 0, queue @dwork->work immediately. This is for 1846 * both optimization and correctness. The earliest @timer can 1847 * expire is on the closest next tick and delayed_work users depend 1848 * on that there's no such delay when @delay is 0. 1849 */ 1850 if (!delay) { 1851 __queue_work(cpu, wq, &dwork->work); 1852 return; 1853 } 1854 1855 dwork->wq = wq; 1856 dwork->cpu = cpu; 1857 timer->expires = jiffies + delay; 1858 1859 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1860 add_timer_on(timer, cpu); 1861 else 1862 add_timer(timer); 1863 } 1864 1865 /** 1866 * queue_delayed_work_on - queue work on specific CPU after delay 1867 * @cpu: CPU number to execute work on 1868 * @wq: workqueue to use 1869 * @dwork: work to queue 1870 * @delay: number of jiffies to wait before queueing 1871 * 1872 * Return: %false if @work was already on a queue, %true otherwise. If 1873 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1874 * execution. 1875 */ 1876 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1877 struct delayed_work *dwork, unsigned long delay) 1878 { 1879 struct work_struct *work = &dwork->work; 1880 bool ret = false; 1881 unsigned long flags; 1882 1883 /* read the comment in __queue_work() */ 1884 local_irq_save(flags); 1885 1886 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1887 __queue_delayed_work(cpu, wq, dwork, delay); 1888 ret = true; 1889 } 1890 1891 local_irq_restore(flags); 1892 return ret; 1893 } 1894 EXPORT_SYMBOL(queue_delayed_work_on); 1895 1896 /** 1897 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1898 * @cpu: CPU number to execute work on 1899 * @wq: workqueue to use 1900 * @dwork: work to queue 1901 * @delay: number of jiffies to wait before queueing 1902 * 1903 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1904 * modify @dwork's timer so that it expires after @delay. If @delay is 1905 * zero, @work is guaranteed to be scheduled immediately regardless of its 1906 * current state. 1907 * 1908 * Return: %false if @dwork was idle and queued, %true if @dwork was 1909 * pending and its timer was modified. 1910 * 1911 * This function is safe to call from any context including IRQ handler. 1912 * See try_to_grab_pending() for details. 1913 */ 1914 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1915 struct delayed_work *dwork, unsigned long delay) 1916 { 1917 unsigned long flags; 1918 int ret; 1919 1920 do { 1921 ret = try_to_grab_pending(&dwork->work, true, &flags); 1922 } while (unlikely(ret == -EAGAIN)); 1923 1924 if (likely(ret >= 0)) { 1925 __queue_delayed_work(cpu, wq, dwork, delay); 1926 local_irq_restore(flags); 1927 } 1928 1929 /* -ENOENT from try_to_grab_pending() becomes %true */ 1930 return ret; 1931 } 1932 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1933 1934 static void rcu_work_rcufn(struct rcu_head *rcu) 1935 { 1936 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1937 1938 /* read the comment in __queue_work() */ 1939 local_irq_disable(); 1940 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1941 local_irq_enable(); 1942 } 1943 1944 /** 1945 * queue_rcu_work - queue work after a RCU grace period 1946 * @wq: workqueue to use 1947 * @rwork: work to queue 1948 * 1949 * Return: %false if @rwork was already pending, %true otherwise. Note 1950 * that a full RCU grace period is guaranteed only after a %true return. 1951 * While @rwork is guaranteed to be executed after a %false return, the 1952 * execution may happen before a full RCU grace period has passed. 1953 */ 1954 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1955 { 1956 struct work_struct *work = &rwork->work; 1957 1958 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1959 rwork->wq = wq; 1960 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 1961 return true; 1962 } 1963 1964 return false; 1965 } 1966 EXPORT_SYMBOL(queue_rcu_work); 1967 1968 /** 1969 * worker_enter_idle - enter idle state 1970 * @worker: worker which is entering idle state 1971 * 1972 * @worker is entering idle state. Update stats and idle timer if 1973 * necessary. 1974 * 1975 * LOCKING: 1976 * raw_spin_lock_irq(pool->lock). 1977 */ 1978 static void worker_enter_idle(struct worker *worker) 1979 { 1980 struct worker_pool *pool = worker->pool; 1981 1982 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1983 WARN_ON_ONCE(!list_empty(&worker->entry) && 1984 (worker->hentry.next || worker->hentry.pprev))) 1985 return; 1986 1987 /* can't use worker_set_flags(), also called from create_worker() */ 1988 worker->flags |= WORKER_IDLE; 1989 pool->nr_idle++; 1990 worker->last_active = jiffies; 1991 1992 /* idle_list is LIFO */ 1993 list_add(&worker->entry, &pool->idle_list); 1994 1995 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1996 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1997 1998 /* Sanity check nr_running. */ 1999 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 2000 } 2001 2002 /** 2003 * worker_leave_idle - leave idle state 2004 * @worker: worker which is leaving idle state 2005 * 2006 * @worker is leaving idle state. Update stats. 2007 * 2008 * LOCKING: 2009 * raw_spin_lock_irq(pool->lock). 2010 */ 2011 static void worker_leave_idle(struct worker *worker) 2012 { 2013 struct worker_pool *pool = worker->pool; 2014 2015 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 2016 return; 2017 worker_clr_flags(worker, WORKER_IDLE); 2018 pool->nr_idle--; 2019 list_del_init(&worker->entry); 2020 } 2021 2022 static struct worker *alloc_worker(int node) 2023 { 2024 struct worker *worker; 2025 2026 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2027 if (worker) { 2028 INIT_LIST_HEAD(&worker->entry); 2029 INIT_LIST_HEAD(&worker->scheduled); 2030 INIT_LIST_HEAD(&worker->node); 2031 /* on creation a worker is in !idle && prep state */ 2032 worker->flags = WORKER_PREP; 2033 } 2034 return worker; 2035 } 2036 2037 /** 2038 * worker_attach_to_pool() - attach a worker to a pool 2039 * @worker: worker to be attached 2040 * @pool: the target pool 2041 * 2042 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2043 * cpu-binding of @worker are kept coordinated with the pool across 2044 * cpu-[un]hotplugs. 2045 */ 2046 static void worker_attach_to_pool(struct worker *worker, 2047 struct worker_pool *pool) 2048 { 2049 mutex_lock(&wq_pool_attach_mutex); 2050 2051 /* 2052 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 2053 * stable across this function. See the comments above the flag 2054 * definition for details. 2055 */ 2056 if (pool->flags & POOL_DISASSOCIATED) 2057 worker->flags |= WORKER_UNBOUND; 2058 else 2059 kthread_set_per_cpu(worker->task, pool->cpu); 2060 2061 if (worker->rescue_wq) 2062 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 2063 2064 list_add_tail(&worker->node, &pool->workers); 2065 worker->pool = pool; 2066 2067 mutex_unlock(&wq_pool_attach_mutex); 2068 } 2069 2070 /** 2071 * worker_detach_from_pool() - detach a worker from its pool 2072 * @worker: worker which is attached to its pool 2073 * 2074 * Undo the attaching which had been done in worker_attach_to_pool(). The 2075 * caller worker shouldn't access to the pool after detached except it has 2076 * other reference to the pool. 2077 */ 2078 static void worker_detach_from_pool(struct worker *worker) 2079 { 2080 struct worker_pool *pool = worker->pool; 2081 struct completion *detach_completion = NULL; 2082 2083 mutex_lock(&wq_pool_attach_mutex); 2084 2085 kthread_set_per_cpu(worker->task, -1); 2086 list_del(&worker->node); 2087 worker->pool = NULL; 2088 2089 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers)) 2090 detach_completion = pool->detach_completion; 2091 mutex_unlock(&wq_pool_attach_mutex); 2092 2093 /* clear leftover flags without pool->lock after it is detached */ 2094 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2095 2096 if (detach_completion) 2097 complete(detach_completion); 2098 } 2099 2100 /** 2101 * create_worker - create a new workqueue worker 2102 * @pool: pool the new worker will belong to 2103 * 2104 * Create and start a new worker which is attached to @pool. 2105 * 2106 * CONTEXT: 2107 * Might sleep. Does GFP_KERNEL allocations. 2108 * 2109 * Return: 2110 * Pointer to the newly created worker. 2111 */ 2112 static struct worker *create_worker(struct worker_pool *pool) 2113 { 2114 struct worker *worker; 2115 int id; 2116 char id_buf[16]; 2117 2118 /* ID is needed to determine kthread name */ 2119 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2120 if (id < 0) { 2121 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2122 ERR_PTR(id)); 2123 return NULL; 2124 } 2125 2126 worker = alloc_worker(pool->node); 2127 if (!worker) { 2128 pr_err_once("workqueue: Failed to allocate a worker\n"); 2129 goto fail; 2130 } 2131 2132 worker->id = id; 2133 2134 if (pool->cpu >= 0) 2135 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 2136 pool->attrs->nice < 0 ? "H" : ""); 2137 else 2138 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 2139 2140 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 2141 "kworker/%s", id_buf); 2142 if (IS_ERR(worker->task)) { 2143 if (PTR_ERR(worker->task) == -EINTR) { 2144 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n", 2145 id_buf); 2146 } else { 2147 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2148 worker->task); 2149 } 2150 goto fail; 2151 } 2152 2153 set_user_nice(worker->task, pool->attrs->nice); 2154 kthread_bind_mask(worker->task, pool->attrs->cpumask); 2155 2156 /* successful, attach the worker to the pool */ 2157 worker_attach_to_pool(worker, pool); 2158 2159 /* start the newly created worker */ 2160 raw_spin_lock_irq(&pool->lock); 2161 worker->pool->nr_workers++; 2162 worker_enter_idle(worker); 2163 wake_up_process(worker->task); 2164 raw_spin_unlock_irq(&pool->lock); 2165 2166 return worker; 2167 2168 fail: 2169 ida_free(&pool->worker_ida, id); 2170 kfree(worker); 2171 return NULL; 2172 } 2173 2174 static void unbind_worker(struct worker *worker) 2175 { 2176 lockdep_assert_held(&wq_pool_attach_mutex); 2177 2178 kthread_set_per_cpu(worker->task, -1); 2179 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2180 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2181 else 2182 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2183 } 2184 2185 static void wake_dying_workers(struct list_head *cull_list) 2186 { 2187 struct worker *worker, *tmp; 2188 2189 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2190 list_del_init(&worker->entry); 2191 unbind_worker(worker); 2192 /* 2193 * If the worker was somehow already running, then it had to be 2194 * in pool->idle_list when set_worker_dying() happened or we 2195 * wouldn't have gotten here. 2196 * 2197 * Thus, the worker must either have observed the WORKER_DIE 2198 * flag, or have set its state to TASK_IDLE. Either way, the 2199 * below will be observed by the worker and is safe to do 2200 * outside of pool->lock. 2201 */ 2202 wake_up_process(worker->task); 2203 } 2204 } 2205 2206 /** 2207 * set_worker_dying - Tag a worker for destruction 2208 * @worker: worker to be destroyed 2209 * @list: transfer worker away from its pool->idle_list and into list 2210 * 2211 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2212 * should be idle. 2213 * 2214 * CONTEXT: 2215 * raw_spin_lock_irq(pool->lock). 2216 */ 2217 static void set_worker_dying(struct worker *worker, struct list_head *list) 2218 { 2219 struct worker_pool *pool = worker->pool; 2220 2221 lockdep_assert_held(&pool->lock); 2222 lockdep_assert_held(&wq_pool_attach_mutex); 2223 2224 /* sanity check frenzy */ 2225 if (WARN_ON(worker->current_work) || 2226 WARN_ON(!list_empty(&worker->scheduled)) || 2227 WARN_ON(!(worker->flags & WORKER_IDLE))) 2228 return; 2229 2230 pool->nr_workers--; 2231 pool->nr_idle--; 2232 2233 worker->flags |= WORKER_DIE; 2234 2235 list_move(&worker->entry, list); 2236 list_move(&worker->node, &pool->dying_workers); 2237 } 2238 2239 /** 2240 * idle_worker_timeout - check if some idle workers can now be deleted. 2241 * @t: The pool's idle_timer that just expired 2242 * 2243 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2244 * worker_leave_idle(), as a worker flicking between idle and active while its 2245 * pool is at the too_many_workers() tipping point would cause too much timer 2246 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2247 * it expire and re-evaluate things from there. 2248 */ 2249 static void idle_worker_timeout(struct timer_list *t) 2250 { 2251 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2252 bool do_cull = false; 2253 2254 if (work_pending(&pool->idle_cull_work)) 2255 return; 2256 2257 raw_spin_lock_irq(&pool->lock); 2258 2259 if (too_many_workers(pool)) { 2260 struct worker *worker; 2261 unsigned long expires; 2262 2263 /* idle_list is kept in LIFO order, check the last one */ 2264 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2265 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2266 do_cull = !time_before(jiffies, expires); 2267 2268 if (!do_cull) 2269 mod_timer(&pool->idle_timer, expires); 2270 } 2271 raw_spin_unlock_irq(&pool->lock); 2272 2273 if (do_cull) 2274 queue_work(system_unbound_wq, &pool->idle_cull_work); 2275 } 2276 2277 /** 2278 * idle_cull_fn - cull workers that have been idle for too long. 2279 * @work: the pool's work for handling these idle workers 2280 * 2281 * This goes through a pool's idle workers and gets rid of those that have been 2282 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2283 * 2284 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2285 * culled, so this also resets worker affinity. This requires a sleepable 2286 * context, hence the split between timer callback and work item. 2287 */ 2288 static void idle_cull_fn(struct work_struct *work) 2289 { 2290 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2291 struct list_head cull_list; 2292 2293 INIT_LIST_HEAD(&cull_list); 2294 /* 2295 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2296 * cannot proceed beyong worker_detach_from_pool() in its self-destruct 2297 * path. This is required as a previously-preempted worker could run after 2298 * set_worker_dying() has happened but before wake_dying_workers() did. 2299 */ 2300 mutex_lock(&wq_pool_attach_mutex); 2301 raw_spin_lock_irq(&pool->lock); 2302 2303 while (too_many_workers(pool)) { 2304 struct worker *worker; 2305 unsigned long expires; 2306 2307 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2308 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2309 2310 if (time_before(jiffies, expires)) { 2311 mod_timer(&pool->idle_timer, expires); 2312 break; 2313 } 2314 2315 set_worker_dying(worker, &cull_list); 2316 } 2317 2318 raw_spin_unlock_irq(&pool->lock); 2319 wake_dying_workers(&cull_list); 2320 mutex_unlock(&wq_pool_attach_mutex); 2321 } 2322 2323 static void send_mayday(struct work_struct *work) 2324 { 2325 struct pool_workqueue *pwq = get_work_pwq(work); 2326 struct workqueue_struct *wq = pwq->wq; 2327 2328 lockdep_assert_held(&wq_mayday_lock); 2329 2330 if (!wq->rescuer) 2331 return; 2332 2333 /* mayday mayday mayday */ 2334 if (list_empty(&pwq->mayday_node)) { 2335 /* 2336 * If @pwq is for an unbound wq, its base ref may be put at 2337 * any time due to an attribute change. Pin @pwq until the 2338 * rescuer is done with it. 2339 */ 2340 get_pwq(pwq); 2341 list_add_tail(&pwq->mayday_node, &wq->maydays); 2342 wake_up_process(wq->rescuer->task); 2343 pwq->stats[PWQ_STAT_MAYDAY]++; 2344 } 2345 } 2346 2347 static void pool_mayday_timeout(struct timer_list *t) 2348 { 2349 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2350 struct work_struct *work; 2351 2352 raw_spin_lock_irq(&pool->lock); 2353 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2354 2355 if (need_to_create_worker(pool)) { 2356 /* 2357 * We've been trying to create a new worker but 2358 * haven't been successful. We might be hitting an 2359 * allocation deadlock. Send distress signals to 2360 * rescuers. 2361 */ 2362 list_for_each_entry(work, &pool->worklist, entry) 2363 send_mayday(work); 2364 } 2365 2366 raw_spin_unlock(&wq_mayday_lock); 2367 raw_spin_unlock_irq(&pool->lock); 2368 2369 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2370 } 2371 2372 /** 2373 * maybe_create_worker - create a new worker if necessary 2374 * @pool: pool to create a new worker for 2375 * 2376 * Create a new worker for @pool if necessary. @pool is guaranteed to 2377 * have at least one idle worker on return from this function. If 2378 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2379 * sent to all rescuers with works scheduled on @pool to resolve 2380 * possible allocation deadlock. 2381 * 2382 * On return, need_to_create_worker() is guaranteed to be %false and 2383 * may_start_working() %true. 2384 * 2385 * LOCKING: 2386 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2387 * multiple times. Does GFP_KERNEL allocations. Called only from 2388 * manager. 2389 */ 2390 static void maybe_create_worker(struct worker_pool *pool) 2391 __releases(&pool->lock) 2392 __acquires(&pool->lock) 2393 { 2394 restart: 2395 raw_spin_unlock_irq(&pool->lock); 2396 2397 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2398 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2399 2400 while (true) { 2401 if (create_worker(pool) || !need_to_create_worker(pool)) 2402 break; 2403 2404 schedule_timeout_interruptible(CREATE_COOLDOWN); 2405 2406 if (!need_to_create_worker(pool)) 2407 break; 2408 } 2409 2410 del_timer_sync(&pool->mayday_timer); 2411 raw_spin_lock_irq(&pool->lock); 2412 /* 2413 * This is necessary even after a new worker was just successfully 2414 * created as @pool->lock was dropped and the new worker might have 2415 * already become busy. 2416 */ 2417 if (need_to_create_worker(pool)) 2418 goto restart; 2419 } 2420 2421 /** 2422 * manage_workers - manage worker pool 2423 * @worker: self 2424 * 2425 * Assume the manager role and manage the worker pool @worker belongs 2426 * to. At any given time, there can be only zero or one manager per 2427 * pool. The exclusion is handled automatically by this function. 2428 * 2429 * The caller can safely start processing works on false return. On 2430 * true return, it's guaranteed that need_to_create_worker() is false 2431 * and may_start_working() is true. 2432 * 2433 * CONTEXT: 2434 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2435 * multiple times. Does GFP_KERNEL allocations. 2436 * 2437 * Return: 2438 * %false if the pool doesn't need management and the caller can safely 2439 * start processing works, %true if management function was performed and 2440 * the conditions that the caller verified before calling the function may 2441 * no longer be true. 2442 */ 2443 static bool manage_workers(struct worker *worker) 2444 { 2445 struct worker_pool *pool = worker->pool; 2446 2447 if (pool->flags & POOL_MANAGER_ACTIVE) 2448 return false; 2449 2450 pool->flags |= POOL_MANAGER_ACTIVE; 2451 pool->manager = worker; 2452 2453 maybe_create_worker(pool); 2454 2455 pool->manager = NULL; 2456 pool->flags &= ~POOL_MANAGER_ACTIVE; 2457 rcuwait_wake_up(&manager_wait); 2458 return true; 2459 } 2460 2461 /** 2462 * process_one_work - process single work 2463 * @worker: self 2464 * @work: work to process 2465 * 2466 * Process @work. This function contains all the logics necessary to 2467 * process a single work including synchronization against and 2468 * interaction with other workers on the same cpu, queueing and 2469 * flushing. As long as context requirement is met, any worker can 2470 * call this function to process a work. 2471 * 2472 * CONTEXT: 2473 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 2474 */ 2475 static void process_one_work(struct worker *worker, struct work_struct *work) 2476 __releases(&pool->lock) 2477 __acquires(&pool->lock) 2478 { 2479 struct pool_workqueue *pwq = get_work_pwq(work); 2480 struct worker_pool *pool = worker->pool; 2481 unsigned long work_data; 2482 struct worker *collision; 2483 #ifdef CONFIG_LOCKDEP 2484 /* 2485 * It is permissible to free the struct work_struct from 2486 * inside the function that is called from it, this we need to 2487 * take into account for lockdep too. To avoid bogus "held 2488 * lock freed" warnings as well as problems when looking into 2489 * work->lockdep_map, make a copy and use that here. 2490 */ 2491 struct lockdep_map lockdep_map; 2492 2493 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2494 #endif 2495 /* ensure we're on the correct CPU */ 2496 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2497 raw_smp_processor_id() != pool->cpu); 2498 2499 /* 2500 * A single work shouldn't be executed concurrently by 2501 * multiple workers on a single cpu. Check whether anyone is 2502 * already processing the work. If so, defer the work to the 2503 * currently executing one. 2504 */ 2505 collision = find_worker_executing_work(pool, work); 2506 if (unlikely(collision)) { 2507 move_linked_works(work, &collision->scheduled, NULL); 2508 return; 2509 } 2510 2511 /* claim and dequeue */ 2512 debug_work_deactivate(work); 2513 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2514 worker->current_work = work; 2515 worker->current_func = work->func; 2516 worker->current_pwq = pwq; 2517 worker->current_at = worker->task->se.sum_exec_runtime; 2518 work_data = *work_data_bits(work); 2519 worker->current_color = get_work_color(work_data); 2520 2521 /* 2522 * Record wq name for cmdline and debug reporting, may get 2523 * overridden through set_worker_desc(). 2524 */ 2525 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2526 2527 list_del_init(&work->entry); 2528 2529 /* 2530 * CPU intensive works don't participate in concurrency management. 2531 * They're the scheduler's responsibility. This takes @worker out 2532 * of concurrency management and the next code block will chain 2533 * execution of the pending work items. 2534 */ 2535 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 2536 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2537 2538 /* 2539 * Wake up another worker if necessary. The condition is always 2540 * false for normal per-cpu workers since nr_running would always 2541 * be >= 1 at this point. This is used to chain execution of the 2542 * pending work items for WORKER_NOT_RUNNING workers such as the 2543 * UNBOUND and CPU_INTENSIVE ones. 2544 */ 2545 if (need_more_worker(pool)) 2546 wake_up_worker(pool); 2547 2548 /* 2549 * Record the last pool and clear PENDING which should be the last 2550 * update to @work. Also, do this inside @pool->lock so that 2551 * PENDING and queued state changes happen together while IRQ is 2552 * disabled. 2553 */ 2554 set_work_pool_and_clear_pending(work, pool->id); 2555 2556 raw_spin_unlock_irq(&pool->lock); 2557 2558 lock_map_acquire(&pwq->wq->lockdep_map); 2559 lock_map_acquire(&lockdep_map); 2560 /* 2561 * Strictly speaking we should mark the invariant state without holding 2562 * any locks, that is, before these two lock_map_acquire()'s. 2563 * 2564 * However, that would result in: 2565 * 2566 * A(W1) 2567 * WFC(C) 2568 * A(W1) 2569 * C(C) 2570 * 2571 * Which would create W1->C->W1 dependencies, even though there is no 2572 * actual deadlock possible. There are two solutions, using a 2573 * read-recursive acquire on the work(queue) 'locks', but this will then 2574 * hit the lockdep limitation on recursive locks, or simply discard 2575 * these locks. 2576 * 2577 * AFAICT there is no possible deadlock scenario between the 2578 * flush_work() and complete() primitives (except for single-threaded 2579 * workqueues), so hiding them isn't a problem. 2580 */ 2581 lockdep_invariant_state(true); 2582 pwq->stats[PWQ_STAT_STARTED]++; 2583 trace_workqueue_execute_start(work); 2584 worker->current_func(work); 2585 /* 2586 * While we must be careful to not use "work" after this, the trace 2587 * point will only record its address. 2588 */ 2589 trace_workqueue_execute_end(work, worker->current_func); 2590 pwq->stats[PWQ_STAT_COMPLETED]++; 2591 lock_map_release(&lockdep_map); 2592 lock_map_release(&pwq->wq->lockdep_map); 2593 2594 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2595 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2596 " last function: %ps\n", 2597 current->comm, preempt_count(), task_pid_nr(current), 2598 worker->current_func); 2599 debug_show_held_locks(current); 2600 dump_stack(); 2601 } 2602 2603 /* 2604 * The following prevents a kworker from hogging CPU on !PREEMPTION 2605 * kernels, where a requeueing work item waiting for something to 2606 * happen could deadlock with stop_machine as such work item could 2607 * indefinitely requeue itself while all other CPUs are trapped in 2608 * stop_machine. At the same time, report a quiescent RCU state so 2609 * the same condition doesn't freeze RCU. 2610 */ 2611 cond_resched(); 2612 2613 raw_spin_lock_irq(&pool->lock); 2614 2615 /* 2616 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 2617 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 2618 * wq_cpu_intensive_thresh_us. Clear it. 2619 */ 2620 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2621 2622 /* tag the worker for identification in schedule() */ 2623 worker->last_func = worker->current_func; 2624 2625 /* we're done with it, release */ 2626 hash_del(&worker->hentry); 2627 worker->current_work = NULL; 2628 worker->current_func = NULL; 2629 worker->current_pwq = NULL; 2630 worker->current_color = INT_MAX; 2631 pwq_dec_nr_in_flight(pwq, work_data); 2632 } 2633 2634 /** 2635 * process_scheduled_works - process scheduled works 2636 * @worker: self 2637 * 2638 * Process all scheduled works. Please note that the scheduled list 2639 * may change while processing a work, so this function repeatedly 2640 * fetches a work from the top and executes it. 2641 * 2642 * CONTEXT: 2643 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2644 * multiple times. 2645 */ 2646 static void process_scheduled_works(struct worker *worker) 2647 { 2648 while (!list_empty(&worker->scheduled)) { 2649 struct work_struct *work = list_first_entry(&worker->scheduled, 2650 struct work_struct, entry); 2651 process_one_work(worker, work); 2652 } 2653 } 2654 2655 static void set_pf_worker(bool val) 2656 { 2657 mutex_lock(&wq_pool_attach_mutex); 2658 if (val) 2659 current->flags |= PF_WQ_WORKER; 2660 else 2661 current->flags &= ~PF_WQ_WORKER; 2662 mutex_unlock(&wq_pool_attach_mutex); 2663 } 2664 2665 /** 2666 * worker_thread - the worker thread function 2667 * @__worker: self 2668 * 2669 * The worker thread function. All workers belong to a worker_pool - 2670 * either a per-cpu one or dynamic unbound one. These workers process all 2671 * work items regardless of their specific target workqueue. The only 2672 * exception is work items which belong to workqueues with a rescuer which 2673 * will be explained in rescuer_thread(). 2674 * 2675 * Return: 0 2676 */ 2677 static int worker_thread(void *__worker) 2678 { 2679 struct worker *worker = __worker; 2680 struct worker_pool *pool = worker->pool; 2681 2682 /* tell the scheduler that this is a workqueue worker */ 2683 set_pf_worker(true); 2684 woke_up: 2685 raw_spin_lock_irq(&pool->lock); 2686 2687 /* am I supposed to die? */ 2688 if (unlikely(worker->flags & WORKER_DIE)) { 2689 raw_spin_unlock_irq(&pool->lock); 2690 set_pf_worker(false); 2691 2692 set_task_comm(worker->task, "kworker/dying"); 2693 ida_free(&pool->worker_ida, worker->id); 2694 worker_detach_from_pool(worker); 2695 WARN_ON_ONCE(!list_empty(&worker->entry)); 2696 kfree(worker); 2697 return 0; 2698 } 2699 2700 worker_leave_idle(worker); 2701 recheck: 2702 /* no more worker necessary? */ 2703 if (!need_more_worker(pool)) 2704 goto sleep; 2705 2706 /* do we need to manage? */ 2707 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2708 goto recheck; 2709 2710 /* 2711 * ->scheduled list can only be filled while a worker is 2712 * preparing to process a work or actually processing it. 2713 * Make sure nobody diddled with it while I was sleeping. 2714 */ 2715 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2716 2717 /* 2718 * Finish PREP stage. We're guaranteed to have at least one idle 2719 * worker or that someone else has already assumed the manager 2720 * role. This is where @worker starts participating in concurrency 2721 * management if applicable and concurrency management is restored 2722 * after being rebound. See rebind_workers() for details. 2723 */ 2724 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2725 2726 do { 2727 struct work_struct *work = 2728 list_first_entry(&pool->worklist, 2729 struct work_struct, entry); 2730 2731 pool->watchdog_ts = jiffies; 2732 2733 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2734 /* optimization path, not strictly necessary */ 2735 process_one_work(worker, work); 2736 if (unlikely(!list_empty(&worker->scheduled))) 2737 process_scheduled_works(worker); 2738 } else { 2739 move_linked_works(work, &worker->scheduled, NULL); 2740 process_scheduled_works(worker); 2741 } 2742 } while (keep_working(pool)); 2743 2744 worker_set_flags(worker, WORKER_PREP); 2745 sleep: 2746 /* 2747 * pool->lock is held and there's no work to process and no need to 2748 * manage, sleep. Workers are woken up only while holding 2749 * pool->lock or from local cpu, so setting the current state 2750 * before releasing pool->lock is enough to prevent losing any 2751 * event. 2752 */ 2753 worker_enter_idle(worker); 2754 __set_current_state(TASK_IDLE); 2755 raw_spin_unlock_irq(&pool->lock); 2756 schedule(); 2757 goto woke_up; 2758 } 2759 2760 /** 2761 * rescuer_thread - the rescuer thread function 2762 * @__rescuer: self 2763 * 2764 * Workqueue rescuer thread function. There's one rescuer for each 2765 * workqueue which has WQ_MEM_RECLAIM set. 2766 * 2767 * Regular work processing on a pool may block trying to create a new 2768 * worker which uses GFP_KERNEL allocation which has slight chance of 2769 * developing into deadlock if some works currently on the same queue 2770 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2771 * the problem rescuer solves. 2772 * 2773 * When such condition is possible, the pool summons rescuers of all 2774 * workqueues which have works queued on the pool and let them process 2775 * those works so that forward progress can be guaranteed. 2776 * 2777 * This should happen rarely. 2778 * 2779 * Return: 0 2780 */ 2781 static int rescuer_thread(void *__rescuer) 2782 { 2783 struct worker *rescuer = __rescuer; 2784 struct workqueue_struct *wq = rescuer->rescue_wq; 2785 struct list_head *scheduled = &rescuer->scheduled; 2786 bool should_stop; 2787 2788 set_user_nice(current, RESCUER_NICE_LEVEL); 2789 2790 /* 2791 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2792 * doesn't participate in concurrency management. 2793 */ 2794 set_pf_worker(true); 2795 repeat: 2796 set_current_state(TASK_IDLE); 2797 2798 /* 2799 * By the time the rescuer is requested to stop, the workqueue 2800 * shouldn't have any work pending, but @wq->maydays may still have 2801 * pwq(s) queued. This can happen by non-rescuer workers consuming 2802 * all the work items before the rescuer got to them. Go through 2803 * @wq->maydays processing before acting on should_stop so that the 2804 * list is always empty on exit. 2805 */ 2806 should_stop = kthread_should_stop(); 2807 2808 /* see whether any pwq is asking for help */ 2809 raw_spin_lock_irq(&wq_mayday_lock); 2810 2811 while (!list_empty(&wq->maydays)) { 2812 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2813 struct pool_workqueue, mayday_node); 2814 struct worker_pool *pool = pwq->pool; 2815 struct work_struct *work, *n; 2816 bool first = true; 2817 2818 __set_current_state(TASK_RUNNING); 2819 list_del_init(&pwq->mayday_node); 2820 2821 raw_spin_unlock_irq(&wq_mayday_lock); 2822 2823 worker_attach_to_pool(rescuer, pool); 2824 2825 raw_spin_lock_irq(&pool->lock); 2826 2827 /* 2828 * Slurp in all works issued via this workqueue and 2829 * process'em. 2830 */ 2831 WARN_ON_ONCE(!list_empty(scheduled)); 2832 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2833 if (get_work_pwq(work) == pwq) { 2834 if (first) 2835 pool->watchdog_ts = jiffies; 2836 move_linked_works(work, scheduled, &n); 2837 pwq->stats[PWQ_STAT_RESCUED]++; 2838 } 2839 first = false; 2840 } 2841 2842 if (!list_empty(scheduled)) { 2843 process_scheduled_works(rescuer); 2844 2845 /* 2846 * The above execution of rescued work items could 2847 * have created more to rescue through 2848 * pwq_activate_first_inactive() or chained 2849 * queueing. Let's put @pwq back on mayday list so 2850 * that such back-to-back work items, which may be 2851 * being used to relieve memory pressure, don't 2852 * incur MAYDAY_INTERVAL delay inbetween. 2853 */ 2854 if (pwq->nr_active && need_to_create_worker(pool)) { 2855 raw_spin_lock(&wq_mayday_lock); 2856 /* 2857 * Queue iff we aren't racing destruction 2858 * and somebody else hasn't queued it already. 2859 */ 2860 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2861 get_pwq(pwq); 2862 list_add_tail(&pwq->mayday_node, &wq->maydays); 2863 } 2864 raw_spin_unlock(&wq_mayday_lock); 2865 } 2866 } 2867 2868 /* 2869 * Put the reference grabbed by send_mayday(). @pool won't 2870 * go away while we're still attached to it. 2871 */ 2872 put_pwq(pwq); 2873 2874 /* 2875 * Leave this pool. If need_more_worker() is %true, notify a 2876 * regular worker; otherwise, we end up with 0 concurrency 2877 * and stalling the execution. 2878 */ 2879 if (need_more_worker(pool)) 2880 wake_up_worker(pool); 2881 2882 raw_spin_unlock_irq(&pool->lock); 2883 2884 worker_detach_from_pool(rescuer); 2885 2886 raw_spin_lock_irq(&wq_mayday_lock); 2887 } 2888 2889 raw_spin_unlock_irq(&wq_mayday_lock); 2890 2891 if (should_stop) { 2892 __set_current_state(TASK_RUNNING); 2893 set_pf_worker(false); 2894 return 0; 2895 } 2896 2897 /* rescuers should never participate in concurrency management */ 2898 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2899 schedule(); 2900 goto repeat; 2901 } 2902 2903 /** 2904 * check_flush_dependency - check for flush dependency sanity 2905 * @target_wq: workqueue being flushed 2906 * @target_work: work item being flushed (NULL for workqueue flushes) 2907 * 2908 * %current is trying to flush the whole @target_wq or @target_work on it. 2909 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2910 * reclaiming memory or running on a workqueue which doesn't have 2911 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2912 * a deadlock. 2913 */ 2914 static void check_flush_dependency(struct workqueue_struct *target_wq, 2915 struct work_struct *target_work) 2916 { 2917 work_func_t target_func = target_work ? target_work->func : NULL; 2918 struct worker *worker; 2919 2920 if (target_wq->flags & WQ_MEM_RECLAIM) 2921 return; 2922 2923 worker = current_wq_worker(); 2924 2925 WARN_ONCE(current->flags & PF_MEMALLOC, 2926 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2927 current->pid, current->comm, target_wq->name, target_func); 2928 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2929 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2930 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2931 worker->current_pwq->wq->name, worker->current_func, 2932 target_wq->name, target_func); 2933 } 2934 2935 struct wq_barrier { 2936 struct work_struct work; 2937 struct completion done; 2938 struct task_struct *task; /* purely informational */ 2939 }; 2940 2941 static void wq_barrier_func(struct work_struct *work) 2942 { 2943 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2944 complete(&barr->done); 2945 } 2946 2947 /** 2948 * insert_wq_barrier - insert a barrier work 2949 * @pwq: pwq to insert barrier into 2950 * @barr: wq_barrier to insert 2951 * @target: target work to attach @barr to 2952 * @worker: worker currently executing @target, NULL if @target is not executing 2953 * 2954 * @barr is linked to @target such that @barr is completed only after 2955 * @target finishes execution. Please note that the ordering 2956 * guarantee is observed only with respect to @target and on the local 2957 * cpu. 2958 * 2959 * Currently, a queued barrier can't be canceled. This is because 2960 * try_to_grab_pending() can't determine whether the work to be 2961 * grabbed is at the head of the queue and thus can't clear LINKED 2962 * flag of the previous work while there must be a valid next work 2963 * after a work with LINKED flag set. 2964 * 2965 * Note that when @worker is non-NULL, @target may be modified 2966 * underneath us, so we can't reliably determine pwq from @target. 2967 * 2968 * CONTEXT: 2969 * raw_spin_lock_irq(pool->lock). 2970 */ 2971 static void insert_wq_barrier(struct pool_workqueue *pwq, 2972 struct wq_barrier *barr, 2973 struct work_struct *target, struct worker *worker) 2974 { 2975 unsigned int work_flags = 0; 2976 unsigned int work_color; 2977 struct list_head *head; 2978 2979 /* 2980 * debugobject calls are safe here even with pool->lock locked 2981 * as we know for sure that this will not trigger any of the 2982 * checks and call back into the fixup functions where we 2983 * might deadlock. 2984 */ 2985 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2986 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2987 2988 init_completion_map(&barr->done, &target->lockdep_map); 2989 2990 barr->task = current; 2991 2992 /* The barrier work item does not participate in pwq->nr_active. */ 2993 work_flags |= WORK_STRUCT_INACTIVE; 2994 2995 /* 2996 * If @target is currently being executed, schedule the 2997 * barrier to the worker; otherwise, put it after @target. 2998 */ 2999 if (worker) { 3000 head = worker->scheduled.next; 3001 work_color = worker->current_color; 3002 } else { 3003 unsigned long *bits = work_data_bits(target); 3004 3005 head = target->entry.next; 3006 /* there can already be other linked works, inherit and set */ 3007 work_flags |= *bits & WORK_STRUCT_LINKED; 3008 work_color = get_work_color(*bits); 3009 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3010 } 3011 3012 pwq->nr_in_flight[work_color]++; 3013 work_flags |= work_color_to_flags(work_color); 3014 3015 debug_work_activate(&barr->work); 3016 insert_work(pwq, &barr->work, head, work_flags); 3017 } 3018 3019 /** 3020 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3021 * @wq: workqueue being flushed 3022 * @flush_color: new flush color, < 0 for no-op 3023 * @work_color: new work color, < 0 for no-op 3024 * 3025 * Prepare pwqs for workqueue flushing. 3026 * 3027 * If @flush_color is non-negative, flush_color on all pwqs should be 3028 * -1. If no pwq has in-flight commands at the specified color, all 3029 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3030 * has in flight commands, its pwq->flush_color is set to 3031 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3032 * wakeup logic is armed and %true is returned. 3033 * 3034 * The caller should have initialized @wq->first_flusher prior to 3035 * calling this function with non-negative @flush_color. If 3036 * @flush_color is negative, no flush color update is done and %false 3037 * is returned. 3038 * 3039 * If @work_color is non-negative, all pwqs should have the same 3040 * work_color which is previous to @work_color and all will be 3041 * advanced to @work_color. 3042 * 3043 * CONTEXT: 3044 * mutex_lock(wq->mutex). 3045 * 3046 * Return: 3047 * %true if @flush_color >= 0 and there's something to flush. %false 3048 * otherwise. 3049 */ 3050 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3051 int flush_color, int work_color) 3052 { 3053 bool wait = false; 3054 struct pool_workqueue *pwq; 3055 3056 if (flush_color >= 0) { 3057 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3058 atomic_set(&wq->nr_pwqs_to_flush, 1); 3059 } 3060 3061 for_each_pwq(pwq, wq) { 3062 struct worker_pool *pool = pwq->pool; 3063 3064 raw_spin_lock_irq(&pool->lock); 3065 3066 if (flush_color >= 0) { 3067 WARN_ON_ONCE(pwq->flush_color != -1); 3068 3069 if (pwq->nr_in_flight[flush_color]) { 3070 pwq->flush_color = flush_color; 3071 atomic_inc(&wq->nr_pwqs_to_flush); 3072 wait = true; 3073 } 3074 } 3075 3076 if (work_color >= 0) { 3077 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3078 pwq->work_color = work_color; 3079 } 3080 3081 raw_spin_unlock_irq(&pool->lock); 3082 } 3083 3084 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3085 complete(&wq->first_flusher->done); 3086 3087 return wait; 3088 } 3089 3090 /** 3091 * __flush_workqueue - ensure that any scheduled work has run to completion. 3092 * @wq: workqueue to flush 3093 * 3094 * This function sleeps until all work items which were queued on entry 3095 * have finished execution, but it is not livelocked by new incoming ones. 3096 */ 3097 void __flush_workqueue(struct workqueue_struct *wq) 3098 { 3099 struct wq_flusher this_flusher = { 3100 .list = LIST_HEAD_INIT(this_flusher.list), 3101 .flush_color = -1, 3102 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 3103 }; 3104 int next_color; 3105 3106 if (WARN_ON(!wq_online)) 3107 return; 3108 3109 lock_map_acquire(&wq->lockdep_map); 3110 lock_map_release(&wq->lockdep_map); 3111 3112 mutex_lock(&wq->mutex); 3113 3114 /* 3115 * Start-to-wait phase 3116 */ 3117 next_color = work_next_color(wq->work_color); 3118 3119 if (next_color != wq->flush_color) { 3120 /* 3121 * Color space is not full. The current work_color 3122 * becomes our flush_color and work_color is advanced 3123 * by one. 3124 */ 3125 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3126 this_flusher.flush_color = wq->work_color; 3127 wq->work_color = next_color; 3128 3129 if (!wq->first_flusher) { 3130 /* no flush in progress, become the first flusher */ 3131 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3132 3133 wq->first_flusher = &this_flusher; 3134 3135 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3136 wq->work_color)) { 3137 /* nothing to flush, done */ 3138 wq->flush_color = next_color; 3139 wq->first_flusher = NULL; 3140 goto out_unlock; 3141 } 3142 } else { 3143 /* wait in queue */ 3144 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3145 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3146 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3147 } 3148 } else { 3149 /* 3150 * Oops, color space is full, wait on overflow queue. 3151 * The next flush completion will assign us 3152 * flush_color and transfer to flusher_queue. 3153 */ 3154 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3155 } 3156 3157 check_flush_dependency(wq, NULL); 3158 3159 mutex_unlock(&wq->mutex); 3160 3161 wait_for_completion(&this_flusher.done); 3162 3163 /* 3164 * Wake-up-and-cascade phase 3165 * 3166 * First flushers are responsible for cascading flushes and 3167 * handling overflow. Non-first flushers can simply return. 3168 */ 3169 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3170 return; 3171 3172 mutex_lock(&wq->mutex); 3173 3174 /* we might have raced, check again with mutex held */ 3175 if (wq->first_flusher != &this_flusher) 3176 goto out_unlock; 3177 3178 WRITE_ONCE(wq->first_flusher, NULL); 3179 3180 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3181 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3182 3183 while (true) { 3184 struct wq_flusher *next, *tmp; 3185 3186 /* complete all the flushers sharing the current flush color */ 3187 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3188 if (next->flush_color != wq->flush_color) 3189 break; 3190 list_del_init(&next->list); 3191 complete(&next->done); 3192 } 3193 3194 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 3195 wq->flush_color != work_next_color(wq->work_color)); 3196 3197 /* this flush_color is finished, advance by one */ 3198 wq->flush_color = work_next_color(wq->flush_color); 3199 3200 /* one color has been freed, handle overflow queue */ 3201 if (!list_empty(&wq->flusher_overflow)) { 3202 /* 3203 * Assign the same color to all overflowed 3204 * flushers, advance work_color and append to 3205 * flusher_queue. This is the start-to-wait 3206 * phase for these overflowed flushers. 3207 */ 3208 list_for_each_entry(tmp, &wq->flusher_overflow, list) 3209 tmp->flush_color = wq->work_color; 3210 3211 wq->work_color = work_next_color(wq->work_color); 3212 3213 list_splice_tail_init(&wq->flusher_overflow, 3214 &wq->flusher_queue); 3215 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3216 } 3217 3218 if (list_empty(&wq->flusher_queue)) { 3219 WARN_ON_ONCE(wq->flush_color != wq->work_color); 3220 break; 3221 } 3222 3223 /* 3224 * Need to flush more colors. Make the next flusher 3225 * the new first flusher and arm pwqs. 3226 */ 3227 WARN_ON_ONCE(wq->flush_color == wq->work_color); 3228 WARN_ON_ONCE(wq->flush_color != next->flush_color); 3229 3230 list_del_init(&next->list); 3231 wq->first_flusher = next; 3232 3233 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 3234 break; 3235 3236 /* 3237 * Meh... this color is already done, clear first 3238 * flusher and repeat cascading. 3239 */ 3240 wq->first_flusher = NULL; 3241 } 3242 3243 out_unlock: 3244 mutex_unlock(&wq->mutex); 3245 } 3246 EXPORT_SYMBOL(__flush_workqueue); 3247 3248 /** 3249 * drain_workqueue - drain a workqueue 3250 * @wq: workqueue to drain 3251 * 3252 * Wait until the workqueue becomes empty. While draining is in progress, 3253 * only chain queueing is allowed. IOW, only currently pending or running 3254 * work items on @wq can queue further work items on it. @wq is flushed 3255 * repeatedly until it becomes empty. The number of flushing is determined 3256 * by the depth of chaining and should be relatively short. Whine if it 3257 * takes too long. 3258 */ 3259 void drain_workqueue(struct workqueue_struct *wq) 3260 { 3261 unsigned int flush_cnt = 0; 3262 struct pool_workqueue *pwq; 3263 3264 /* 3265 * __queue_work() needs to test whether there are drainers, is much 3266 * hotter than drain_workqueue() and already looks at @wq->flags. 3267 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 3268 */ 3269 mutex_lock(&wq->mutex); 3270 if (!wq->nr_drainers++) 3271 wq->flags |= __WQ_DRAINING; 3272 mutex_unlock(&wq->mutex); 3273 reflush: 3274 __flush_workqueue(wq); 3275 3276 mutex_lock(&wq->mutex); 3277 3278 for_each_pwq(pwq, wq) { 3279 bool drained; 3280 3281 raw_spin_lock_irq(&pwq->pool->lock); 3282 drained = !pwq->nr_active && list_empty(&pwq->inactive_works); 3283 raw_spin_unlock_irq(&pwq->pool->lock); 3284 3285 if (drained) 3286 continue; 3287 3288 if (++flush_cnt == 10 || 3289 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 3290 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 3291 wq->name, __func__, flush_cnt); 3292 3293 mutex_unlock(&wq->mutex); 3294 goto reflush; 3295 } 3296 3297 if (!--wq->nr_drainers) 3298 wq->flags &= ~__WQ_DRAINING; 3299 mutex_unlock(&wq->mutex); 3300 } 3301 EXPORT_SYMBOL_GPL(drain_workqueue); 3302 3303 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 3304 bool from_cancel) 3305 { 3306 struct worker *worker = NULL; 3307 struct worker_pool *pool; 3308 struct pool_workqueue *pwq; 3309 3310 might_sleep(); 3311 3312 rcu_read_lock(); 3313 pool = get_work_pool(work); 3314 if (!pool) { 3315 rcu_read_unlock(); 3316 return false; 3317 } 3318 3319 raw_spin_lock_irq(&pool->lock); 3320 /* see the comment in try_to_grab_pending() with the same code */ 3321 pwq = get_work_pwq(work); 3322 if (pwq) { 3323 if (unlikely(pwq->pool != pool)) 3324 goto already_gone; 3325 } else { 3326 worker = find_worker_executing_work(pool, work); 3327 if (!worker) 3328 goto already_gone; 3329 pwq = worker->current_pwq; 3330 } 3331 3332 check_flush_dependency(pwq->wq, work); 3333 3334 insert_wq_barrier(pwq, barr, work, worker); 3335 raw_spin_unlock_irq(&pool->lock); 3336 3337 /* 3338 * Force a lock recursion deadlock when using flush_work() inside a 3339 * single-threaded or rescuer equipped workqueue. 3340 * 3341 * For single threaded workqueues the deadlock happens when the work 3342 * is after the work issuing the flush_work(). For rescuer equipped 3343 * workqueues the deadlock happens when the rescuer stalls, blocking 3344 * forward progress. 3345 */ 3346 if (!from_cancel && 3347 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3348 lock_map_acquire(&pwq->wq->lockdep_map); 3349 lock_map_release(&pwq->wq->lockdep_map); 3350 } 3351 rcu_read_unlock(); 3352 return true; 3353 already_gone: 3354 raw_spin_unlock_irq(&pool->lock); 3355 rcu_read_unlock(); 3356 return false; 3357 } 3358 3359 static bool __flush_work(struct work_struct *work, bool from_cancel) 3360 { 3361 struct wq_barrier barr; 3362 3363 if (WARN_ON(!wq_online)) 3364 return false; 3365 3366 if (WARN_ON(!work->func)) 3367 return false; 3368 3369 lock_map_acquire(&work->lockdep_map); 3370 lock_map_release(&work->lockdep_map); 3371 3372 if (start_flush_work(work, &barr, from_cancel)) { 3373 wait_for_completion(&barr.done); 3374 destroy_work_on_stack(&barr.work); 3375 return true; 3376 } else { 3377 return false; 3378 } 3379 } 3380 3381 /** 3382 * flush_work - wait for a work to finish executing the last queueing instance 3383 * @work: the work to flush 3384 * 3385 * Wait until @work has finished execution. @work is guaranteed to be idle 3386 * on return if it hasn't been requeued since flush started. 3387 * 3388 * Return: 3389 * %true if flush_work() waited for the work to finish execution, 3390 * %false if it was already idle. 3391 */ 3392 bool flush_work(struct work_struct *work) 3393 { 3394 return __flush_work(work, false); 3395 } 3396 EXPORT_SYMBOL_GPL(flush_work); 3397 3398 struct cwt_wait { 3399 wait_queue_entry_t wait; 3400 struct work_struct *work; 3401 }; 3402 3403 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3404 { 3405 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3406 3407 if (cwait->work != key) 3408 return 0; 3409 return autoremove_wake_function(wait, mode, sync, key); 3410 } 3411 3412 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3413 { 3414 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3415 unsigned long flags; 3416 int ret; 3417 3418 do { 3419 ret = try_to_grab_pending(work, is_dwork, &flags); 3420 /* 3421 * If someone else is already canceling, wait for it to 3422 * finish. flush_work() doesn't work for PREEMPT_NONE 3423 * because we may get scheduled between @work's completion 3424 * and the other canceling task resuming and clearing 3425 * CANCELING - flush_work() will return false immediately 3426 * as @work is no longer busy, try_to_grab_pending() will 3427 * return -ENOENT as @work is still being canceled and the 3428 * other canceling task won't be able to clear CANCELING as 3429 * we're hogging the CPU. 3430 * 3431 * Let's wait for completion using a waitqueue. As this 3432 * may lead to the thundering herd problem, use a custom 3433 * wake function which matches @work along with exclusive 3434 * wait and wakeup. 3435 */ 3436 if (unlikely(ret == -ENOENT)) { 3437 struct cwt_wait cwait; 3438 3439 init_wait(&cwait.wait); 3440 cwait.wait.func = cwt_wakefn; 3441 cwait.work = work; 3442 3443 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3444 TASK_UNINTERRUPTIBLE); 3445 if (work_is_canceling(work)) 3446 schedule(); 3447 finish_wait(&cancel_waitq, &cwait.wait); 3448 } 3449 } while (unlikely(ret < 0)); 3450 3451 /* tell other tasks trying to grab @work to back off */ 3452 mark_work_canceling(work); 3453 local_irq_restore(flags); 3454 3455 /* 3456 * This allows canceling during early boot. We know that @work 3457 * isn't executing. 3458 */ 3459 if (wq_online) 3460 __flush_work(work, true); 3461 3462 clear_work_data(work); 3463 3464 /* 3465 * Paired with prepare_to_wait() above so that either 3466 * waitqueue_active() is visible here or !work_is_canceling() is 3467 * visible there. 3468 */ 3469 smp_mb(); 3470 if (waitqueue_active(&cancel_waitq)) 3471 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3472 3473 return ret; 3474 } 3475 3476 /** 3477 * cancel_work_sync - cancel a work and wait for it to finish 3478 * @work: the work to cancel 3479 * 3480 * Cancel @work and wait for its execution to finish. This function 3481 * can be used even if the work re-queues itself or migrates to 3482 * another workqueue. On return from this function, @work is 3483 * guaranteed to be not pending or executing on any CPU. 3484 * 3485 * cancel_work_sync(&delayed_work->work) must not be used for 3486 * delayed_work's. Use cancel_delayed_work_sync() instead. 3487 * 3488 * The caller must ensure that the workqueue on which @work was last 3489 * queued can't be destroyed before this function returns. 3490 * 3491 * Return: 3492 * %true if @work was pending, %false otherwise. 3493 */ 3494 bool cancel_work_sync(struct work_struct *work) 3495 { 3496 return __cancel_work_timer(work, false); 3497 } 3498 EXPORT_SYMBOL_GPL(cancel_work_sync); 3499 3500 /** 3501 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3502 * @dwork: the delayed work to flush 3503 * 3504 * Delayed timer is cancelled and the pending work is queued for 3505 * immediate execution. Like flush_work(), this function only 3506 * considers the last queueing instance of @dwork. 3507 * 3508 * Return: 3509 * %true if flush_work() waited for the work to finish execution, 3510 * %false if it was already idle. 3511 */ 3512 bool flush_delayed_work(struct delayed_work *dwork) 3513 { 3514 local_irq_disable(); 3515 if (del_timer_sync(&dwork->timer)) 3516 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3517 local_irq_enable(); 3518 return flush_work(&dwork->work); 3519 } 3520 EXPORT_SYMBOL(flush_delayed_work); 3521 3522 /** 3523 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3524 * @rwork: the rcu work to flush 3525 * 3526 * Return: 3527 * %true if flush_rcu_work() waited for the work to finish execution, 3528 * %false if it was already idle. 3529 */ 3530 bool flush_rcu_work(struct rcu_work *rwork) 3531 { 3532 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3533 rcu_barrier(); 3534 flush_work(&rwork->work); 3535 return true; 3536 } else { 3537 return flush_work(&rwork->work); 3538 } 3539 } 3540 EXPORT_SYMBOL(flush_rcu_work); 3541 3542 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3543 { 3544 unsigned long flags; 3545 int ret; 3546 3547 do { 3548 ret = try_to_grab_pending(work, is_dwork, &flags); 3549 } while (unlikely(ret == -EAGAIN)); 3550 3551 if (unlikely(ret < 0)) 3552 return false; 3553 3554 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3555 local_irq_restore(flags); 3556 return ret; 3557 } 3558 3559 /* 3560 * See cancel_delayed_work() 3561 */ 3562 bool cancel_work(struct work_struct *work) 3563 { 3564 return __cancel_work(work, false); 3565 } 3566 EXPORT_SYMBOL(cancel_work); 3567 3568 /** 3569 * cancel_delayed_work - cancel a delayed work 3570 * @dwork: delayed_work to cancel 3571 * 3572 * Kill off a pending delayed_work. 3573 * 3574 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3575 * pending. 3576 * 3577 * Note: 3578 * The work callback function may still be running on return, unless 3579 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3580 * use cancel_delayed_work_sync() to wait on it. 3581 * 3582 * This function is safe to call from any context including IRQ handler. 3583 */ 3584 bool cancel_delayed_work(struct delayed_work *dwork) 3585 { 3586 return __cancel_work(&dwork->work, true); 3587 } 3588 EXPORT_SYMBOL(cancel_delayed_work); 3589 3590 /** 3591 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3592 * @dwork: the delayed work cancel 3593 * 3594 * This is cancel_work_sync() for delayed works. 3595 * 3596 * Return: 3597 * %true if @dwork was pending, %false otherwise. 3598 */ 3599 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3600 { 3601 return __cancel_work_timer(&dwork->work, true); 3602 } 3603 EXPORT_SYMBOL(cancel_delayed_work_sync); 3604 3605 /** 3606 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3607 * @func: the function to call 3608 * 3609 * schedule_on_each_cpu() executes @func on each online CPU using the 3610 * system workqueue and blocks until all CPUs have completed. 3611 * schedule_on_each_cpu() is very slow. 3612 * 3613 * Return: 3614 * 0 on success, -errno on failure. 3615 */ 3616 int schedule_on_each_cpu(work_func_t func) 3617 { 3618 int cpu; 3619 struct work_struct __percpu *works; 3620 3621 works = alloc_percpu(struct work_struct); 3622 if (!works) 3623 return -ENOMEM; 3624 3625 cpus_read_lock(); 3626 3627 for_each_online_cpu(cpu) { 3628 struct work_struct *work = per_cpu_ptr(works, cpu); 3629 3630 INIT_WORK(work, func); 3631 schedule_work_on(cpu, work); 3632 } 3633 3634 for_each_online_cpu(cpu) 3635 flush_work(per_cpu_ptr(works, cpu)); 3636 3637 cpus_read_unlock(); 3638 free_percpu(works); 3639 return 0; 3640 } 3641 3642 /** 3643 * execute_in_process_context - reliably execute the routine with user context 3644 * @fn: the function to execute 3645 * @ew: guaranteed storage for the execute work structure (must 3646 * be available when the work executes) 3647 * 3648 * Executes the function immediately if process context is available, 3649 * otherwise schedules the function for delayed execution. 3650 * 3651 * Return: 0 - function was executed 3652 * 1 - function was scheduled for execution 3653 */ 3654 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3655 { 3656 if (!in_interrupt()) { 3657 fn(&ew->work); 3658 return 0; 3659 } 3660 3661 INIT_WORK(&ew->work, fn); 3662 schedule_work(&ew->work); 3663 3664 return 1; 3665 } 3666 EXPORT_SYMBOL_GPL(execute_in_process_context); 3667 3668 /** 3669 * free_workqueue_attrs - free a workqueue_attrs 3670 * @attrs: workqueue_attrs to free 3671 * 3672 * Undo alloc_workqueue_attrs(). 3673 */ 3674 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3675 { 3676 if (attrs) { 3677 free_cpumask_var(attrs->cpumask); 3678 kfree(attrs); 3679 } 3680 } 3681 3682 /** 3683 * alloc_workqueue_attrs - allocate a workqueue_attrs 3684 * 3685 * Allocate a new workqueue_attrs, initialize with default settings and 3686 * return it. 3687 * 3688 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3689 */ 3690 struct workqueue_attrs *alloc_workqueue_attrs(void) 3691 { 3692 struct workqueue_attrs *attrs; 3693 3694 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3695 if (!attrs) 3696 goto fail; 3697 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3698 goto fail; 3699 3700 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3701 return attrs; 3702 fail: 3703 free_workqueue_attrs(attrs); 3704 return NULL; 3705 } 3706 3707 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3708 const struct workqueue_attrs *from) 3709 { 3710 to->nice = from->nice; 3711 cpumask_copy(to->cpumask, from->cpumask); 3712 /* 3713 * Unlike hash and equality test, this function doesn't ignore 3714 * ->no_numa as it is used for both pool and wq attrs. Instead, 3715 * get_unbound_pool() explicitly clears ->no_numa after copying. 3716 */ 3717 to->no_numa = from->no_numa; 3718 } 3719 3720 /* hash value of the content of @attr */ 3721 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3722 { 3723 u32 hash = 0; 3724 3725 hash = jhash_1word(attrs->nice, hash); 3726 hash = jhash(cpumask_bits(attrs->cpumask), 3727 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3728 return hash; 3729 } 3730 3731 /* content equality test */ 3732 static bool wqattrs_equal(const struct workqueue_attrs *a, 3733 const struct workqueue_attrs *b) 3734 { 3735 if (a->nice != b->nice) 3736 return false; 3737 if (!cpumask_equal(a->cpumask, b->cpumask)) 3738 return false; 3739 return true; 3740 } 3741 3742 /** 3743 * init_worker_pool - initialize a newly zalloc'd worker_pool 3744 * @pool: worker_pool to initialize 3745 * 3746 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3747 * 3748 * Return: 0 on success, -errno on failure. Even on failure, all fields 3749 * inside @pool proper are initialized and put_unbound_pool() can be called 3750 * on @pool safely to release it. 3751 */ 3752 static int init_worker_pool(struct worker_pool *pool) 3753 { 3754 raw_spin_lock_init(&pool->lock); 3755 pool->id = -1; 3756 pool->cpu = -1; 3757 pool->node = NUMA_NO_NODE; 3758 pool->flags |= POOL_DISASSOCIATED; 3759 pool->watchdog_ts = jiffies; 3760 INIT_LIST_HEAD(&pool->worklist); 3761 INIT_LIST_HEAD(&pool->idle_list); 3762 hash_init(pool->busy_hash); 3763 3764 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3765 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 3766 3767 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3768 3769 INIT_LIST_HEAD(&pool->workers); 3770 INIT_LIST_HEAD(&pool->dying_workers); 3771 3772 ida_init(&pool->worker_ida); 3773 INIT_HLIST_NODE(&pool->hash_node); 3774 pool->refcnt = 1; 3775 3776 /* shouldn't fail above this point */ 3777 pool->attrs = alloc_workqueue_attrs(); 3778 if (!pool->attrs) 3779 return -ENOMEM; 3780 return 0; 3781 } 3782 3783 #ifdef CONFIG_LOCKDEP 3784 static void wq_init_lockdep(struct workqueue_struct *wq) 3785 { 3786 char *lock_name; 3787 3788 lockdep_register_key(&wq->key); 3789 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3790 if (!lock_name) 3791 lock_name = wq->name; 3792 3793 wq->lock_name = lock_name; 3794 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3795 } 3796 3797 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3798 { 3799 lockdep_unregister_key(&wq->key); 3800 } 3801 3802 static void wq_free_lockdep(struct workqueue_struct *wq) 3803 { 3804 if (wq->lock_name != wq->name) 3805 kfree(wq->lock_name); 3806 } 3807 #else 3808 static void wq_init_lockdep(struct workqueue_struct *wq) 3809 { 3810 } 3811 3812 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3813 { 3814 } 3815 3816 static void wq_free_lockdep(struct workqueue_struct *wq) 3817 { 3818 } 3819 #endif 3820 3821 static void rcu_free_wq(struct rcu_head *rcu) 3822 { 3823 struct workqueue_struct *wq = 3824 container_of(rcu, struct workqueue_struct, rcu); 3825 3826 wq_free_lockdep(wq); 3827 3828 if (!(wq->flags & WQ_UNBOUND)) 3829 free_percpu(wq->cpu_pwqs); 3830 else 3831 free_workqueue_attrs(wq->unbound_attrs); 3832 3833 kfree(wq); 3834 } 3835 3836 static void rcu_free_pool(struct rcu_head *rcu) 3837 { 3838 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3839 3840 ida_destroy(&pool->worker_ida); 3841 free_workqueue_attrs(pool->attrs); 3842 kfree(pool); 3843 } 3844 3845 /** 3846 * put_unbound_pool - put a worker_pool 3847 * @pool: worker_pool to put 3848 * 3849 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3850 * safe manner. get_unbound_pool() calls this function on its failure path 3851 * and this function should be able to release pools which went through, 3852 * successfully or not, init_worker_pool(). 3853 * 3854 * Should be called with wq_pool_mutex held. 3855 */ 3856 static void put_unbound_pool(struct worker_pool *pool) 3857 { 3858 DECLARE_COMPLETION_ONSTACK(detach_completion); 3859 struct list_head cull_list; 3860 struct worker *worker; 3861 3862 INIT_LIST_HEAD(&cull_list); 3863 3864 lockdep_assert_held(&wq_pool_mutex); 3865 3866 if (--pool->refcnt) 3867 return; 3868 3869 /* sanity checks */ 3870 if (WARN_ON(!(pool->cpu < 0)) || 3871 WARN_ON(!list_empty(&pool->worklist))) 3872 return; 3873 3874 /* release id and unhash */ 3875 if (pool->id >= 0) 3876 idr_remove(&worker_pool_idr, pool->id); 3877 hash_del(&pool->hash_node); 3878 3879 /* 3880 * Become the manager and destroy all workers. This prevents 3881 * @pool's workers from blocking on attach_mutex. We're the last 3882 * manager and @pool gets freed with the flag set. 3883 * 3884 * Having a concurrent manager is quite unlikely to happen as we can 3885 * only get here with 3886 * pwq->refcnt == pool->refcnt == 0 3887 * which implies no work queued to the pool, which implies no worker can 3888 * become the manager. However a worker could have taken the role of 3889 * manager before the refcnts dropped to 0, since maybe_create_worker() 3890 * drops pool->lock 3891 */ 3892 while (true) { 3893 rcuwait_wait_event(&manager_wait, 3894 !(pool->flags & POOL_MANAGER_ACTIVE), 3895 TASK_UNINTERRUPTIBLE); 3896 3897 mutex_lock(&wq_pool_attach_mutex); 3898 raw_spin_lock_irq(&pool->lock); 3899 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 3900 pool->flags |= POOL_MANAGER_ACTIVE; 3901 break; 3902 } 3903 raw_spin_unlock_irq(&pool->lock); 3904 mutex_unlock(&wq_pool_attach_mutex); 3905 } 3906 3907 while ((worker = first_idle_worker(pool))) 3908 set_worker_dying(worker, &cull_list); 3909 WARN_ON(pool->nr_workers || pool->nr_idle); 3910 raw_spin_unlock_irq(&pool->lock); 3911 3912 wake_dying_workers(&cull_list); 3913 3914 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers)) 3915 pool->detach_completion = &detach_completion; 3916 mutex_unlock(&wq_pool_attach_mutex); 3917 3918 if (pool->detach_completion) 3919 wait_for_completion(pool->detach_completion); 3920 3921 /* shut down the timers */ 3922 del_timer_sync(&pool->idle_timer); 3923 cancel_work_sync(&pool->idle_cull_work); 3924 del_timer_sync(&pool->mayday_timer); 3925 3926 /* RCU protected to allow dereferences from get_work_pool() */ 3927 call_rcu(&pool->rcu, rcu_free_pool); 3928 } 3929 3930 /** 3931 * get_unbound_pool - get a worker_pool with the specified attributes 3932 * @attrs: the attributes of the worker_pool to get 3933 * 3934 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3935 * reference count and return it. If there already is a matching 3936 * worker_pool, it will be used; otherwise, this function attempts to 3937 * create a new one. 3938 * 3939 * Should be called with wq_pool_mutex held. 3940 * 3941 * Return: On success, a worker_pool with the same attributes as @attrs. 3942 * On failure, %NULL. 3943 */ 3944 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3945 { 3946 u32 hash = wqattrs_hash(attrs); 3947 struct worker_pool *pool; 3948 int node; 3949 int target_node = NUMA_NO_NODE; 3950 3951 lockdep_assert_held(&wq_pool_mutex); 3952 3953 /* do we already have a matching pool? */ 3954 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3955 if (wqattrs_equal(pool->attrs, attrs)) { 3956 pool->refcnt++; 3957 return pool; 3958 } 3959 } 3960 3961 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3962 if (wq_numa_enabled) { 3963 for_each_node(node) { 3964 if (cpumask_subset(attrs->cpumask, 3965 wq_numa_possible_cpumask[node])) { 3966 target_node = node; 3967 break; 3968 } 3969 } 3970 } 3971 3972 /* nope, create a new one */ 3973 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3974 if (!pool || init_worker_pool(pool) < 0) 3975 goto fail; 3976 3977 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3978 copy_workqueue_attrs(pool->attrs, attrs); 3979 pool->node = target_node; 3980 3981 /* 3982 * no_numa isn't a worker_pool attribute, always clear it. See 3983 * 'struct workqueue_attrs' comments for detail. 3984 */ 3985 pool->attrs->no_numa = false; 3986 3987 if (worker_pool_assign_id(pool) < 0) 3988 goto fail; 3989 3990 /* create and start the initial worker */ 3991 if (wq_online && !create_worker(pool)) 3992 goto fail; 3993 3994 /* install */ 3995 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3996 3997 return pool; 3998 fail: 3999 if (pool) 4000 put_unbound_pool(pool); 4001 return NULL; 4002 } 4003 4004 static void rcu_free_pwq(struct rcu_head *rcu) 4005 { 4006 kmem_cache_free(pwq_cache, 4007 container_of(rcu, struct pool_workqueue, rcu)); 4008 } 4009 4010 /* 4011 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 4012 * and needs to be destroyed. 4013 */ 4014 static void pwq_unbound_release_workfn(struct work_struct *work) 4015 { 4016 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 4017 unbound_release_work); 4018 struct workqueue_struct *wq = pwq->wq; 4019 struct worker_pool *pool = pwq->pool; 4020 bool is_last = false; 4021 4022 /* 4023 * when @pwq is not linked, it doesn't hold any reference to the 4024 * @wq, and @wq is invalid to access. 4025 */ 4026 if (!list_empty(&pwq->pwqs_node)) { 4027 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 4028 return; 4029 4030 mutex_lock(&wq->mutex); 4031 list_del_rcu(&pwq->pwqs_node); 4032 is_last = list_empty(&wq->pwqs); 4033 mutex_unlock(&wq->mutex); 4034 } 4035 4036 mutex_lock(&wq_pool_mutex); 4037 put_unbound_pool(pool); 4038 mutex_unlock(&wq_pool_mutex); 4039 4040 call_rcu(&pwq->rcu, rcu_free_pwq); 4041 4042 /* 4043 * If we're the last pwq going away, @wq is already dead and no one 4044 * is gonna access it anymore. Schedule RCU free. 4045 */ 4046 if (is_last) { 4047 wq_unregister_lockdep(wq); 4048 call_rcu(&wq->rcu, rcu_free_wq); 4049 } 4050 } 4051 4052 /** 4053 * pwq_adjust_max_active - update a pwq's max_active to the current setting 4054 * @pwq: target pool_workqueue 4055 * 4056 * If @pwq isn't freezing, set @pwq->max_active to the associated 4057 * workqueue's saved_max_active and activate inactive work items 4058 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 4059 */ 4060 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 4061 { 4062 struct workqueue_struct *wq = pwq->wq; 4063 bool freezable = wq->flags & WQ_FREEZABLE; 4064 unsigned long flags; 4065 4066 /* for @wq->saved_max_active */ 4067 lockdep_assert_held(&wq->mutex); 4068 4069 /* fast exit for non-freezable wqs */ 4070 if (!freezable && pwq->max_active == wq->saved_max_active) 4071 return; 4072 4073 /* this function can be called during early boot w/ irq disabled */ 4074 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 4075 4076 /* 4077 * During [un]freezing, the caller is responsible for ensuring that 4078 * this function is called at least once after @workqueue_freezing 4079 * is updated and visible. 4080 */ 4081 if (!freezable || !workqueue_freezing) { 4082 bool kick = false; 4083 4084 pwq->max_active = wq->saved_max_active; 4085 4086 while (!list_empty(&pwq->inactive_works) && 4087 pwq->nr_active < pwq->max_active) { 4088 pwq_activate_first_inactive(pwq); 4089 kick = true; 4090 } 4091 4092 /* 4093 * Need to kick a worker after thawed or an unbound wq's 4094 * max_active is bumped. In realtime scenarios, always kicking a 4095 * worker will cause interference on the isolated cpu cores, so 4096 * let's kick iff work items were activated. 4097 */ 4098 if (kick) 4099 wake_up_worker(pwq->pool); 4100 } else { 4101 pwq->max_active = 0; 4102 } 4103 4104 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 4105 } 4106 4107 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 4108 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 4109 struct worker_pool *pool) 4110 { 4111 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 4112 4113 memset(pwq, 0, sizeof(*pwq)); 4114 4115 pwq->pool = pool; 4116 pwq->wq = wq; 4117 pwq->flush_color = -1; 4118 pwq->refcnt = 1; 4119 INIT_LIST_HEAD(&pwq->inactive_works); 4120 INIT_LIST_HEAD(&pwq->pwqs_node); 4121 INIT_LIST_HEAD(&pwq->mayday_node); 4122 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 4123 } 4124 4125 /* sync @pwq with the current state of its associated wq and link it */ 4126 static void link_pwq(struct pool_workqueue *pwq) 4127 { 4128 struct workqueue_struct *wq = pwq->wq; 4129 4130 lockdep_assert_held(&wq->mutex); 4131 4132 /* may be called multiple times, ignore if already linked */ 4133 if (!list_empty(&pwq->pwqs_node)) 4134 return; 4135 4136 /* set the matching work_color */ 4137 pwq->work_color = wq->work_color; 4138 4139 /* sync max_active to the current setting */ 4140 pwq_adjust_max_active(pwq); 4141 4142 /* link in @pwq */ 4143 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 4144 } 4145 4146 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 4147 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 4148 const struct workqueue_attrs *attrs) 4149 { 4150 struct worker_pool *pool; 4151 struct pool_workqueue *pwq; 4152 4153 lockdep_assert_held(&wq_pool_mutex); 4154 4155 pool = get_unbound_pool(attrs); 4156 if (!pool) 4157 return NULL; 4158 4159 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 4160 if (!pwq) { 4161 put_unbound_pool(pool); 4162 return NULL; 4163 } 4164 4165 init_pwq(pwq, wq, pool); 4166 return pwq; 4167 } 4168 4169 /** 4170 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 4171 * @attrs: the wq_attrs of the default pwq of the target workqueue 4172 * @node: the target NUMA node 4173 * @cpu_going_down: if >= 0, the CPU to consider as offline 4174 * @cpumask: outarg, the resulting cpumask 4175 * 4176 * Calculate the cpumask a workqueue with @attrs should use on @node. If 4177 * @cpu_going_down is >= 0, that cpu is considered offline during 4178 * calculation. The result is stored in @cpumask. 4179 * 4180 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 4181 * enabled and @node has online CPUs requested by @attrs, the returned 4182 * cpumask is the intersection of the possible CPUs of @node and 4183 * @attrs->cpumask. 4184 * 4185 * The caller is responsible for ensuring that the cpumask of @node stays 4186 * stable. 4187 * 4188 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 4189 * %false if equal. 4190 */ 4191 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 4192 int cpu_going_down, cpumask_t *cpumask) 4193 { 4194 if (!wq_numa_enabled || attrs->no_numa) 4195 goto use_dfl; 4196 4197 /* does @node have any online CPUs @attrs wants? */ 4198 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 4199 if (cpu_going_down >= 0) 4200 cpumask_clear_cpu(cpu_going_down, cpumask); 4201 4202 if (cpumask_empty(cpumask)) 4203 goto use_dfl; 4204 4205 /* yeap, return possible CPUs in @node that @attrs wants */ 4206 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 4207 4208 if (cpumask_empty(cpumask)) { 4209 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 4210 "possible intersect\n"); 4211 return false; 4212 } 4213 4214 return !cpumask_equal(cpumask, attrs->cpumask); 4215 4216 use_dfl: 4217 cpumask_copy(cpumask, attrs->cpumask); 4218 return false; 4219 } 4220 4221 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 4222 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 4223 int node, 4224 struct pool_workqueue *pwq) 4225 { 4226 struct pool_workqueue *old_pwq; 4227 4228 lockdep_assert_held(&wq_pool_mutex); 4229 lockdep_assert_held(&wq->mutex); 4230 4231 /* link_pwq() can handle duplicate calls */ 4232 link_pwq(pwq); 4233 4234 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4235 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 4236 return old_pwq; 4237 } 4238 4239 /* context to store the prepared attrs & pwqs before applying */ 4240 struct apply_wqattrs_ctx { 4241 struct workqueue_struct *wq; /* target workqueue */ 4242 struct workqueue_attrs *attrs; /* attrs to apply */ 4243 struct list_head list; /* queued for batching commit */ 4244 struct pool_workqueue *dfl_pwq; 4245 struct pool_workqueue *pwq_tbl[]; 4246 }; 4247 4248 /* free the resources after success or abort */ 4249 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 4250 { 4251 if (ctx) { 4252 int node; 4253 4254 for_each_node(node) 4255 put_pwq_unlocked(ctx->pwq_tbl[node]); 4256 put_pwq_unlocked(ctx->dfl_pwq); 4257 4258 free_workqueue_attrs(ctx->attrs); 4259 4260 kfree(ctx); 4261 } 4262 } 4263 4264 /* allocate the attrs and pwqs for later installation */ 4265 static struct apply_wqattrs_ctx * 4266 apply_wqattrs_prepare(struct workqueue_struct *wq, 4267 const struct workqueue_attrs *attrs, 4268 const cpumask_var_t unbound_cpumask) 4269 { 4270 struct apply_wqattrs_ctx *ctx; 4271 struct workqueue_attrs *new_attrs, *tmp_attrs; 4272 int node; 4273 4274 lockdep_assert_held(&wq_pool_mutex); 4275 4276 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 4277 4278 new_attrs = alloc_workqueue_attrs(); 4279 tmp_attrs = alloc_workqueue_attrs(); 4280 if (!ctx || !new_attrs || !tmp_attrs) 4281 goto out_free; 4282 4283 /* 4284 * Calculate the attrs of the default pwq with unbound_cpumask 4285 * which is wq_unbound_cpumask or to set to wq_unbound_cpumask. 4286 * If the user configured cpumask doesn't overlap with the 4287 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 4288 */ 4289 copy_workqueue_attrs(new_attrs, attrs); 4290 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask); 4291 if (unlikely(cpumask_empty(new_attrs->cpumask))) 4292 cpumask_copy(new_attrs->cpumask, unbound_cpumask); 4293 4294 /* 4295 * We may create multiple pwqs with differing cpumasks. Make a 4296 * copy of @new_attrs which will be modified and used to obtain 4297 * pools. 4298 */ 4299 copy_workqueue_attrs(tmp_attrs, new_attrs); 4300 4301 /* 4302 * If something goes wrong during CPU up/down, we'll fall back to 4303 * the default pwq covering whole @attrs->cpumask. Always create 4304 * it even if we don't use it immediately. 4305 */ 4306 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 4307 if (!ctx->dfl_pwq) 4308 goto out_free; 4309 4310 for_each_node(node) { 4311 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 4312 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 4313 if (!ctx->pwq_tbl[node]) 4314 goto out_free; 4315 } else { 4316 ctx->dfl_pwq->refcnt++; 4317 ctx->pwq_tbl[node] = ctx->dfl_pwq; 4318 } 4319 } 4320 4321 /* save the user configured attrs and sanitize it. */ 4322 copy_workqueue_attrs(new_attrs, attrs); 4323 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 4324 ctx->attrs = new_attrs; 4325 4326 ctx->wq = wq; 4327 free_workqueue_attrs(tmp_attrs); 4328 return ctx; 4329 4330 out_free: 4331 free_workqueue_attrs(tmp_attrs); 4332 free_workqueue_attrs(new_attrs); 4333 apply_wqattrs_cleanup(ctx); 4334 return NULL; 4335 } 4336 4337 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 4338 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 4339 { 4340 int node; 4341 4342 /* all pwqs have been created successfully, let's install'em */ 4343 mutex_lock(&ctx->wq->mutex); 4344 4345 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 4346 4347 /* save the previous pwq and install the new one */ 4348 for_each_node(node) 4349 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 4350 ctx->pwq_tbl[node]); 4351 4352 /* @dfl_pwq might not have been used, ensure it's linked */ 4353 link_pwq(ctx->dfl_pwq); 4354 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 4355 4356 mutex_unlock(&ctx->wq->mutex); 4357 } 4358 4359 static void apply_wqattrs_lock(void) 4360 { 4361 /* CPUs should stay stable across pwq creations and installations */ 4362 cpus_read_lock(); 4363 mutex_lock(&wq_pool_mutex); 4364 } 4365 4366 static void apply_wqattrs_unlock(void) 4367 { 4368 mutex_unlock(&wq_pool_mutex); 4369 cpus_read_unlock(); 4370 } 4371 4372 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4373 const struct workqueue_attrs *attrs) 4374 { 4375 struct apply_wqattrs_ctx *ctx; 4376 4377 /* only unbound workqueues can change attributes */ 4378 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4379 return -EINVAL; 4380 4381 /* creating multiple pwqs breaks ordering guarantee */ 4382 if (!list_empty(&wq->pwqs)) { 4383 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4384 return -EINVAL; 4385 4386 wq->flags &= ~__WQ_ORDERED; 4387 } 4388 4389 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 4390 if (!ctx) 4391 return -ENOMEM; 4392 4393 /* the ctx has been prepared successfully, let's commit it */ 4394 apply_wqattrs_commit(ctx); 4395 apply_wqattrs_cleanup(ctx); 4396 4397 return 0; 4398 } 4399 4400 /** 4401 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4402 * @wq: the target workqueue 4403 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4404 * 4405 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4406 * machines, this function maps a separate pwq to each NUMA node with 4407 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4408 * NUMA node it was issued on. Older pwqs are released as in-flight work 4409 * items finish. Note that a work item which repeatedly requeues itself 4410 * back-to-back will stay on its current pwq. 4411 * 4412 * Performs GFP_KERNEL allocations. 4413 * 4414 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 4415 * 4416 * Return: 0 on success and -errno on failure. 4417 */ 4418 int apply_workqueue_attrs(struct workqueue_struct *wq, 4419 const struct workqueue_attrs *attrs) 4420 { 4421 int ret; 4422 4423 lockdep_assert_cpus_held(); 4424 4425 mutex_lock(&wq_pool_mutex); 4426 ret = apply_workqueue_attrs_locked(wq, attrs); 4427 mutex_unlock(&wq_pool_mutex); 4428 4429 return ret; 4430 } 4431 4432 /** 4433 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4434 * @wq: the target workqueue 4435 * @cpu: the CPU coming up or going down 4436 * @online: whether @cpu is coming up or going down 4437 * 4438 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4439 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4440 * @wq accordingly. 4441 * 4442 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4443 * falls back to @wq->dfl_pwq which may not be optimal but is always 4444 * correct. 4445 * 4446 * Note that when the last allowed CPU of a NUMA node goes offline for a 4447 * workqueue with a cpumask spanning multiple nodes, the workers which were 4448 * already executing the work items for the workqueue will lose their CPU 4449 * affinity and may execute on any CPU. This is similar to how per-cpu 4450 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4451 * affinity, it's the user's responsibility to flush the work item from 4452 * CPU_DOWN_PREPARE. 4453 */ 4454 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4455 bool online) 4456 { 4457 int node = cpu_to_node(cpu); 4458 int cpu_off = online ? -1 : cpu; 4459 struct pool_workqueue *old_pwq = NULL, *pwq; 4460 struct workqueue_attrs *target_attrs; 4461 cpumask_t *cpumask; 4462 4463 lockdep_assert_held(&wq_pool_mutex); 4464 4465 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4466 wq->unbound_attrs->no_numa) 4467 return; 4468 4469 /* 4470 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4471 * Let's use a preallocated one. The following buf is protected by 4472 * CPU hotplug exclusion. 4473 */ 4474 target_attrs = wq_update_unbound_numa_attrs_buf; 4475 cpumask = target_attrs->cpumask; 4476 4477 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4478 pwq = unbound_pwq_by_node(wq, node); 4479 4480 /* 4481 * Let's determine what needs to be done. If the target cpumask is 4482 * different from the default pwq's, we need to compare it to @pwq's 4483 * and create a new one if they don't match. If the target cpumask 4484 * equals the default pwq's, the default pwq should be used. 4485 */ 4486 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4487 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4488 return; 4489 } else { 4490 goto use_dfl_pwq; 4491 } 4492 4493 /* create a new pwq */ 4494 pwq = alloc_unbound_pwq(wq, target_attrs); 4495 if (!pwq) { 4496 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4497 wq->name); 4498 goto use_dfl_pwq; 4499 } 4500 4501 /* Install the new pwq. */ 4502 mutex_lock(&wq->mutex); 4503 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4504 goto out_unlock; 4505 4506 use_dfl_pwq: 4507 mutex_lock(&wq->mutex); 4508 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); 4509 get_pwq(wq->dfl_pwq); 4510 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4511 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4512 out_unlock: 4513 mutex_unlock(&wq->mutex); 4514 put_pwq_unlocked(old_pwq); 4515 } 4516 4517 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4518 { 4519 bool highpri = wq->flags & WQ_HIGHPRI; 4520 int cpu, ret; 4521 4522 if (!(wq->flags & WQ_UNBOUND)) { 4523 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4524 if (!wq->cpu_pwqs) 4525 return -ENOMEM; 4526 4527 for_each_possible_cpu(cpu) { 4528 struct pool_workqueue *pwq = 4529 per_cpu_ptr(wq->cpu_pwqs, cpu); 4530 struct worker_pool *cpu_pools = 4531 per_cpu(cpu_worker_pools, cpu); 4532 4533 init_pwq(pwq, wq, &cpu_pools[highpri]); 4534 4535 mutex_lock(&wq->mutex); 4536 link_pwq(pwq); 4537 mutex_unlock(&wq->mutex); 4538 } 4539 return 0; 4540 } 4541 4542 cpus_read_lock(); 4543 if (wq->flags & __WQ_ORDERED) { 4544 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4545 /* there should only be single pwq for ordering guarantee */ 4546 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4547 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4548 "ordering guarantee broken for workqueue %s\n", wq->name); 4549 } else { 4550 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4551 } 4552 cpus_read_unlock(); 4553 4554 return ret; 4555 } 4556 4557 static int wq_clamp_max_active(int max_active, unsigned int flags, 4558 const char *name) 4559 { 4560 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4561 4562 if (max_active < 1 || max_active > lim) 4563 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4564 max_active, name, 1, lim); 4565 4566 return clamp_val(max_active, 1, lim); 4567 } 4568 4569 /* 4570 * Workqueues which may be used during memory reclaim should have a rescuer 4571 * to guarantee forward progress. 4572 */ 4573 static int init_rescuer(struct workqueue_struct *wq) 4574 { 4575 struct worker *rescuer; 4576 int ret; 4577 4578 if (!(wq->flags & WQ_MEM_RECLAIM)) 4579 return 0; 4580 4581 rescuer = alloc_worker(NUMA_NO_NODE); 4582 if (!rescuer) { 4583 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 4584 wq->name); 4585 return -ENOMEM; 4586 } 4587 4588 rescuer->rescue_wq = wq; 4589 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4590 if (IS_ERR(rescuer->task)) { 4591 ret = PTR_ERR(rescuer->task); 4592 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 4593 wq->name, ERR_PTR(ret)); 4594 kfree(rescuer); 4595 return ret; 4596 } 4597 4598 wq->rescuer = rescuer; 4599 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4600 wake_up_process(rescuer->task); 4601 4602 return 0; 4603 } 4604 4605 __printf(1, 4) 4606 struct workqueue_struct *alloc_workqueue(const char *fmt, 4607 unsigned int flags, 4608 int max_active, ...) 4609 { 4610 size_t tbl_size = 0; 4611 va_list args; 4612 struct workqueue_struct *wq; 4613 struct pool_workqueue *pwq; 4614 4615 /* 4616 * Unbound && max_active == 1 used to imply ordered, which is no 4617 * longer the case on NUMA machines due to per-node pools. While 4618 * alloc_ordered_workqueue() is the right way to create an ordered 4619 * workqueue, keep the previous behavior to avoid subtle breakages 4620 * on NUMA. 4621 */ 4622 if ((flags & WQ_UNBOUND) && max_active == 1) 4623 flags |= __WQ_ORDERED; 4624 4625 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4626 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4627 flags |= WQ_UNBOUND; 4628 4629 /* allocate wq and format name */ 4630 if (flags & WQ_UNBOUND) 4631 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4632 4633 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4634 if (!wq) 4635 return NULL; 4636 4637 if (flags & WQ_UNBOUND) { 4638 wq->unbound_attrs = alloc_workqueue_attrs(); 4639 if (!wq->unbound_attrs) 4640 goto err_free_wq; 4641 } 4642 4643 va_start(args, max_active); 4644 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4645 va_end(args); 4646 4647 max_active = max_active ?: WQ_DFL_ACTIVE; 4648 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4649 4650 /* init wq */ 4651 wq->flags = flags; 4652 wq->saved_max_active = max_active; 4653 mutex_init(&wq->mutex); 4654 atomic_set(&wq->nr_pwqs_to_flush, 0); 4655 INIT_LIST_HEAD(&wq->pwqs); 4656 INIT_LIST_HEAD(&wq->flusher_queue); 4657 INIT_LIST_HEAD(&wq->flusher_overflow); 4658 INIT_LIST_HEAD(&wq->maydays); 4659 4660 wq_init_lockdep(wq); 4661 INIT_LIST_HEAD(&wq->list); 4662 4663 if (alloc_and_link_pwqs(wq) < 0) 4664 goto err_unreg_lockdep; 4665 4666 if (wq_online && init_rescuer(wq) < 0) 4667 goto err_destroy; 4668 4669 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4670 goto err_destroy; 4671 4672 /* 4673 * wq_pool_mutex protects global freeze state and workqueues list. 4674 * Grab it, adjust max_active and add the new @wq to workqueues 4675 * list. 4676 */ 4677 mutex_lock(&wq_pool_mutex); 4678 4679 mutex_lock(&wq->mutex); 4680 for_each_pwq(pwq, wq) 4681 pwq_adjust_max_active(pwq); 4682 mutex_unlock(&wq->mutex); 4683 4684 list_add_tail_rcu(&wq->list, &workqueues); 4685 4686 mutex_unlock(&wq_pool_mutex); 4687 4688 return wq; 4689 4690 err_unreg_lockdep: 4691 wq_unregister_lockdep(wq); 4692 wq_free_lockdep(wq); 4693 err_free_wq: 4694 free_workqueue_attrs(wq->unbound_attrs); 4695 kfree(wq); 4696 return NULL; 4697 err_destroy: 4698 destroy_workqueue(wq); 4699 return NULL; 4700 } 4701 EXPORT_SYMBOL_GPL(alloc_workqueue); 4702 4703 static bool pwq_busy(struct pool_workqueue *pwq) 4704 { 4705 int i; 4706 4707 for (i = 0; i < WORK_NR_COLORS; i++) 4708 if (pwq->nr_in_flight[i]) 4709 return true; 4710 4711 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4712 return true; 4713 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) 4714 return true; 4715 4716 return false; 4717 } 4718 4719 /** 4720 * destroy_workqueue - safely terminate a workqueue 4721 * @wq: target workqueue 4722 * 4723 * Safely destroy a workqueue. All work currently pending will be done first. 4724 */ 4725 void destroy_workqueue(struct workqueue_struct *wq) 4726 { 4727 struct pool_workqueue *pwq; 4728 int node; 4729 4730 /* 4731 * Remove it from sysfs first so that sanity check failure doesn't 4732 * lead to sysfs name conflicts. 4733 */ 4734 workqueue_sysfs_unregister(wq); 4735 4736 /* mark the workqueue destruction is in progress */ 4737 mutex_lock(&wq->mutex); 4738 wq->flags |= __WQ_DESTROYING; 4739 mutex_unlock(&wq->mutex); 4740 4741 /* drain it before proceeding with destruction */ 4742 drain_workqueue(wq); 4743 4744 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4745 if (wq->rescuer) { 4746 struct worker *rescuer = wq->rescuer; 4747 4748 /* this prevents new queueing */ 4749 raw_spin_lock_irq(&wq_mayday_lock); 4750 wq->rescuer = NULL; 4751 raw_spin_unlock_irq(&wq_mayday_lock); 4752 4753 /* rescuer will empty maydays list before exiting */ 4754 kthread_stop(rescuer->task); 4755 kfree(rescuer); 4756 } 4757 4758 /* 4759 * Sanity checks - grab all the locks so that we wait for all 4760 * in-flight operations which may do put_pwq(). 4761 */ 4762 mutex_lock(&wq_pool_mutex); 4763 mutex_lock(&wq->mutex); 4764 for_each_pwq(pwq, wq) { 4765 raw_spin_lock_irq(&pwq->pool->lock); 4766 if (WARN_ON(pwq_busy(pwq))) { 4767 pr_warn("%s: %s has the following busy pwq\n", 4768 __func__, wq->name); 4769 show_pwq(pwq); 4770 raw_spin_unlock_irq(&pwq->pool->lock); 4771 mutex_unlock(&wq->mutex); 4772 mutex_unlock(&wq_pool_mutex); 4773 show_one_workqueue(wq); 4774 return; 4775 } 4776 raw_spin_unlock_irq(&pwq->pool->lock); 4777 } 4778 mutex_unlock(&wq->mutex); 4779 4780 /* 4781 * wq list is used to freeze wq, remove from list after 4782 * flushing is complete in case freeze races us. 4783 */ 4784 list_del_rcu(&wq->list); 4785 mutex_unlock(&wq_pool_mutex); 4786 4787 if (!(wq->flags & WQ_UNBOUND)) { 4788 wq_unregister_lockdep(wq); 4789 /* 4790 * The base ref is never dropped on per-cpu pwqs. Directly 4791 * schedule RCU free. 4792 */ 4793 call_rcu(&wq->rcu, rcu_free_wq); 4794 } else { 4795 /* 4796 * We're the sole accessor of @wq at this point. Directly 4797 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4798 * @wq will be freed when the last pwq is released. 4799 */ 4800 for_each_node(node) { 4801 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4802 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4803 put_pwq_unlocked(pwq); 4804 } 4805 4806 /* 4807 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4808 * put. Don't access it afterwards. 4809 */ 4810 pwq = wq->dfl_pwq; 4811 wq->dfl_pwq = NULL; 4812 put_pwq_unlocked(pwq); 4813 } 4814 } 4815 EXPORT_SYMBOL_GPL(destroy_workqueue); 4816 4817 /** 4818 * workqueue_set_max_active - adjust max_active of a workqueue 4819 * @wq: target workqueue 4820 * @max_active: new max_active value. 4821 * 4822 * Set max_active of @wq to @max_active. 4823 * 4824 * CONTEXT: 4825 * Don't call from IRQ context. 4826 */ 4827 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4828 { 4829 struct pool_workqueue *pwq; 4830 4831 /* disallow meddling with max_active for ordered workqueues */ 4832 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4833 return; 4834 4835 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4836 4837 mutex_lock(&wq->mutex); 4838 4839 wq->flags &= ~__WQ_ORDERED; 4840 wq->saved_max_active = max_active; 4841 4842 for_each_pwq(pwq, wq) 4843 pwq_adjust_max_active(pwq); 4844 4845 mutex_unlock(&wq->mutex); 4846 } 4847 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4848 4849 /** 4850 * current_work - retrieve %current task's work struct 4851 * 4852 * Determine if %current task is a workqueue worker and what it's working on. 4853 * Useful to find out the context that the %current task is running in. 4854 * 4855 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4856 */ 4857 struct work_struct *current_work(void) 4858 { 4859 struct worker *worker = current_wq_worker(); 4860 4861 return worker ? worker->current_work : NULL; 4862 } 4863 EXPORT_SYMBOL(current_work); 4864 4865 /** 4866 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4867 * 4868 * Determine whether %current is a workqueue rescuer. Can be used from 4869 * work functions to determine whether it's being run off the rescuer task. 4870 * 4871 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4872 */ 4873 bool current_is_workqueue_rescuer(void) 4874 { 4875 struct worker *worker = current_wq_worker(); 4876 4877 return worker && worker->rescue_wq; 4878 } 4879 4880 /** 4881 * workqueue_congested - test whether a workqueue is congested 4882 * @cpu: CPU in question 4883 * @wq: target workqueue 4884 * 4885 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4886 * no synchronization around this function and the test result is 4887 * unreliable and only useful as advisory hints or for debugging. 4888 * 4889 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4890 * Note that both per-cpu and unbound workqueues may be associated with 4891 * multiple pool_workqueues which have separate congested states. A 4892 * workqueue being congested on one CPU doesn't mean the workqueue is also 4893 * contested on other CPUs / NUMA nodes. 4894 * 4895 * Return: 4896 * %true if congested, %false otherwise. 4897 */ 4898 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4899 { 4900 struct pool_workqueue *pwq; 4901 bool ret; 4902 4903 rcu_read_lock(); 4904 preempt_disable(); 4905 4906 if (cpu == WORK_CPU_UNBOUND) 4907 cpu = smp_processor_id(); 4908 4909 if (!(wq->flags & WQ_UNBOUND)) 4910 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4911 else 4912 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4913 4914 ret = !list_empty(&pwq->inactive_works); 4915 preempt_enable(); 4916 rcu_read_unlock(); 4917 4918 return ret; 4919 } 4920 EXPORT_SYMBOL_GPL(workqueue_congested); 4921 4922 /** 4923 * work_busy - test whether a work is currently pending or running 4924 * @work: the work to be tested 4925 * 4926 * Test whether @work is currently pending or running. There is no 4927 * synchronization around this function and the test result is 4928 * unreliable and only useful as advisory hints or for debugging. 4929 * 4930 * Return: 4931 * OR'd bitmask of WORK_BUSY_* bits. 4932 */ 4933 unsigned int work_busy(struct work_struct *work) 4934 { 4935 struct worker_pool *pool; 4936 unsigned long flags; 4937 unsigned int ret = 0; 4938 4939 if (work_pending(work)) 4940 ret |= WORK_BUSY_PENDING; 4941 4942 rcu_read_lock(); 4943 pool = get_work_pool(work); 4944 if (pool) { 4945 raw_spin_lock_irqsave(&pool->lock, flags); 4946 if (find_worker_executing_work(pool, work)) 4947 ret |= WORK_BUSY_RUNNING; 4948 raw_spin_unlock_irqrestore(&pool->lock, flags); 4949 } 4950 rcu_read_unlock(); 4951 4952 return ret; 4953 } 4954 EXPORT_SYMBOL_GPL(work_busy); 4955 4956 /** 4957 * set_worker_desc - set description for the current work item 4958 * @fmt: printf-style format string 4959 * @...: arguments for the format string 4960 * 4961 * This function can be called by a running work function to describe what 4962 * the work item is about. If the worker task gets dumped, this 4963 * information will be printed out together to help debugging. The 4964 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4965 */ 4966 void set_worker_desc(const char *fmt, ...) 4967 { 4968 struct worker *worker = current_wq_worker(); 4969 va_list args; 4970 4971 if (worker) { 4972 va_start(args, fmt); 4973 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4974 va_end(args); 4975 } 4976 } 4977 EXPORT_SYMBOL_GPL(set_worker_desc); 4978 4979 /** 4980 * print_worker_info - print out worker information and description 4981 * @log_lvl: the log level to use when printing 4982 * @task: target task 4983 * 4984 * If @task is a worker and currently executing a work item, print out the 4985 * name of the workqueue being serviced and worker description set with 4986 * set_worker_desc() by the currently executing work item. 4987 * 4988 * This function can be safely called on any task as long as the 4989 * task_struct itself is accessible. While safe, this function isn't 4990 * synchronized and may print out mixups or garbages of limited length. 4991 */ 4992 void print_worker_info(const char *log_lvl, struct task_struct *task) 4993 { 4994 work_func_t *fn = NULL; 4995 char name[WQ_NAME_LEN] = { }; 4996 char desc[WORKER_DESC_LEN] = { }; 4997 struct pool_workqueue *pwq = NULL; 4998 struct workqueue_struct *wq = NULL; 4999 struct worker *worker; 5000 5001 if (!(task->flags & PF_WQ_WORKER)) 5002 return; 5003 5004 /* 5005 * This function is called without any synchronization and @task 5006 * could be in any state. Be careful with dereferences. 5007 */ 5008 worker = kthread_probe_data(task); 5009 5010 /* 5011 * Carefully copy the associated workqueue's workfn, name and desc. 5012 * Keep the original last '\0' in case the original is garbage. 5013 */ 5014 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 5015 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 5016 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 5017 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 5018 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 5019 5020 if (fn || name[0] || desc[0]) { 5021 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 5022 if (strcmp(name, desc)) 5023 pr_cont(" (%s)", desc); 5024 pr_cont("\n"); 5025 } 5026 } 5027 5028 static void pr_cont_pool_info(struct worker_pool *pool) 5029 { 5030 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 5031 if (pool->node != NUMA_NO_NODE) 5032 pr_cont(" node=%d", pool->node); 5033 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 5034 } 5035 5036 struct pr_cont_work_struct { 5037 bool comma; 5038 work_func_t func; 5039 long ctr; 5040 }; 5041 5042 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 5043 { 5044 if (!pcwsp->ctr) 5045 goto out_record; 5046 if (func == pcwsp->func) { 5047 pcwsp->ctr++; 5048 return; 5049 } 5050 if (pcwsp->ctr == 1) 5051 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 5052 else 5053 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 5054 pcwsp->ctr = 0; 5055 out_record: 5056 if ((long)func == -1L) 5057 return; 5058 pcwsp->comma = comma; 5059 pcwsp->func = func; 5060 pcwsp->ctr = 1; 5061 } 5062 5063 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 5064 { 5065 if (work->func == wq_barrier_func) { 5066 struct wq_barrier *barr; 5067 5068 barr = container_of(work, struct wq_barrier, work); 5069 5070 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 5071 pr_cont("%s BAR(%d)", comma ? "," : "", 5072 task_pid_nr(barr->task)); 5073 } else { 5074 if (!comma) 5075 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 5076 pr_cont_work_flush(comma, work->func, pcwsp); 5077 } 5078 } 5079 5080 static void show_pwq(struct pool_workqueue *pwq) 5081 { 5082 struct pr_cont_work_struct pcws = { .ctr = 0, }; 5083 struct worker_pool *pool = pwq->pool; 5084 struct work_struct *work; 5085 struct worker *worker; 5086 bool has_in_flight = false, has_pending = false; 5087 int bkt; 5088 5089 pr_info(" pwq %d:", pool->id); 5090 pr_cont_pool_info(pool); 5091 5092 pr_cont(" active=%d/%d refcnt=%d%s\n", 5093 pwq->nr_active, pwq->max_active, pwq->refcnt, 5094 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 5095 5096 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 5097 if (worker->current_pwq == pwq) { 5098 has_in_flight = true; 5099 break; 5100 } 5101 } 5102 if (has_in_flight) { 5103 bool comma = false; 5104 5105 pr_info(" in-flight:"); 5106 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 5107 if (worker->current_pwq != pwq) 5108 continue; 5109 5110 pr_cont("%s %d%s:%ps", comma ? "," : "", 5111 task_pid_nr(worker->task), 5112 worker->rescue_wq ? "(RESCUER)" : "", 5113 worker->current_func); 5114 list_for_each_entry(work, &worker->scheduled, entry) 5115 pr_cont_work(false, work, &pcws); 5116 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5117 comma = true; 5118 } 5119 pr_cont("\n"); 5120 } 5121 5122 list_for_each_entry(work, &pool->worklist, entry) { 5123 if (get_work_pwq(work) == pwq) { 5124 has_pending = true; 5125 break; 5126 } 5127 } 5128 if (has_pending) { 5129 bool comma = false; 5130 5131 pr_info(" pending:"); 5132 list_for_each_entry(work, &pool->worklist, entry) { 5133 if (get_work_pwq(work) != pwq) 5134 continue; 5135 5136 pr_cont_work(comma, work, &pcws); 5137 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 5138 } 5139 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5140 pr_cont("\n"); 5141 } 5142 5143 if (!list_empty(&pwq->inactive_works)) { 5144 bool comma = false; 5145 5146 pr_info(" inactive:"); 5147 list_for_each_entry(work, &pwq->inactive_works, entry) { 5148 pr_cont_work(comma, work, &pcws); 5149 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 5150 } 5151 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5152 pr_cont("\n"); 5153 } 5154 } 5155 5156 /** 5157 * show_one_workqueue - dump state of specified workqueue 5158 * @wq: workqueue whose state will be printed 5159 */ 5160 void show_one_workqueue(struct workqueue_struct *wq) 5161 { 5162 struct pool_workqueue *pwq; 5163 bool idle = true; 5164 unsigned long flags; 5165 5166 for_each_pwq(pwq, wq) { 5167 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 5168 idle = false; 5169 break; 5170 } 5171 } 5172 if (idle) /* Nothing to print for idle workqueue */ 5173 return; 5174 5175 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 5176 5177 for_each_pwq(pwq, wq) { 5178 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 5179 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 5180 /* 5181 * Defer printing to avoid deadlocks in console 5182 * drivers that queue work while holding locks 5183 * also taken in their write paths. 5184 */ 5185 printk_deferred_enter(); 5186 show_pwq(pwq); 5187 printk_deferred_exit(); 5188 } 5189 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 5190 /* 5191 * We could be printing a lot from atomic context, e.g. 5192 * sysrq-t -> show_all_workqueues(). Avoid triggering 5193 * hard lockup. 5194 */ 5195 touch_nmi_watchdog(); 5196 } 5197 5198 } 5199 5200 /** 5201 * show_one_worker_pool - dump state of specified worker pool 5202 * @pool: worker pool whose state will be printed 5203 */ 5204 static void show_one_worker_pool(struct worker_pool *pool) 5205 { 5206 struct worker *worker; 5207 bool first = true; 5208 unsigned long flags; 5209 unsigned long hung = 0; 5210 5211 raw_spin_lock_irqsave(&pool->lock, flags); 5212 if (pool->nr_workers == pool->nr_idle) 5213 goto next_pool; 5214 5215 /* How long the first pending work is waiting for a worker. */ 5216 if (!list_empty(&pool->worklist)) 5217 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 5218 5219 /* 5220 * Defer printing to avoid deadlocks in console drivers that 5221 * queue work while holding locks also taken in their write 5222 * paths. 5223 */ 5224 printk_deferred_enter(); 5225 pr_info("pool %d:", pool->id); 5226 pr_cont_pool_info(pool); 5227 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 5228 if (pool->manager) 5229 pr_cont(" manager: %d", 5230 task_pid_nr(pool->manager->task)); 5231 list_for_each_entry(worker, &pool->idle_list, entry) { 5232 pr_cont(" %s%d", first ? "idle: " : "", 5233 task_pid_nr(worker->task)); 5234 first = false; 5235 } 5236 pr_cont("\n"); 5237 printk_deferred_exit(); 5238 next_pool: 5239 raw_spin_unlock_irqrestore(&pool->lock, flags); 5240 /* 5241 * We could be printing a lot from atomic context, e.g. 5242 * sysrq-t -> show_all_workqueues(). Avoid triggering 5243 * hard lockup. 5244 */ 5245 touch_nmi_watchdog(); 5246 5247 } 5248 5249 /** 5250 * show_all_workqueues - dump workqueue state 5251 * 5252 * Called from a sysrq handler and prints out all busy workqueues and pools. 5253 */ 5254 void show_all_workqueues(void) 5255 { 5256 struct workqueue_struct *wq; 5257 struct worker_pool *pool; 5258 int pi; 5259 5260 rcu_read_lock(); 5261 5262 pr_info("Showing busy workqueues and worker pools:\n"); 5263 5264 list_for_each_entry_rcu(wq, &workqueues, list) 5265 show_one_workqueue(wq); 5266 5267 for_each_pool(pool, pi) 5268 show_one_worker_pool(pool); 5269 5270 rcu_read_unlock(); 5271 } 5272 5273 /** 5274 * show_freezable_workqueues - dump freezable workqueue state 5275 * 5276 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 5277 * still busy. 5278 */ 5279 void show_freezable_workqueues(void) 5280 { 5281 struct workqueue_struct *wq; 5282 5283 rcu_read_lock(); 5284 5285 pr_info("Showing freezable workqueues that are still busy:\n"); 5286 5287 list_for_each_entry_rcu(wq, &workqueues, list) { 5288 if (!(wq->flags & WQ_FREEZABLE)) 5289 continue; 5290 show_one_workqueue(wq); 5291 } 5292 5293 rcu_read_unlock(); 5294 } 5295 5296 /* used to show worker information through /proc/PID/{comm,stat,status} */ 5297 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 5298 { 5299 int off; 5300 5301 /* always show the actual comm */ 5302 off = strscpy(buf, task->comm, size); 5303 if (off < 0) 5304 return; 5305 5306 /* stabilize PF_WQ_WORKER and worker pool association */ 5307 mutex_lock(&wq_pool_attach_mutex); 5308 5309 if (task->flags & PF_WQ_WORKER) { 5310 struct worker *worker = kthread_data(task); 5311 struct worker_pool *pool = worker->pool; 5312 5313 if (pool) { 5314 raw_spin_lock_irq(&pool->lock); 5315 /* 5316 * ->desc tracks information (wq name or 5317 * set_worker_desc()) for the latest execution. If 5318 * current, prepend '+', otherwise '-'. 5319 */ 5320 if (worker->desc[0] != '\0') { 5321 if (worker->current_work) 5322 scnprintf(buf + off, size - off, "+%s", 5323 worker->desc); 5324 else 5325 scnprintf(buf + off, size - off, "-%s", 5326 worker->desc); 5327 } 5328 raw_spin_unlock_irq(&pool->lock); 5329 } 5330 } 5331 5332 mutex_unlock(&wq_pool_attach_mutex); 5333 } 5334 5335 #ifdef CONFIG_SMP 5336 5337 /* 5338 * CPU hotplug. 5339 * 5340 * There are two challenges in supporting CPU hotplug. Firstly, there 5341 * are a lot of assumptions on strong associations among work, pwq and 5342 * pool which make migrating pending and scheduled works very 5343 * difficult to implement without impacting hot paths. Secondly, 5344 * worker pools serve mix of short, long and very long running works making 5345 * blocked draining impractical. 5346 * 5347 * This is solved by allowing the pools to be disassociated from the CPU 5348 * running as an unbound one and allowing it to be reattached later if the 5349 * cpu comes back online. 5350 */ 5351 5352 static void unbind_workers(int cpu) 5353 { 5354 struct worker_pool *pool; 5355 struct worker *worker; 5356 5357 for_each_cpu_worker_pool(pool, cpu) { 5358 mutex_lock(&wq_pool_attach_mutex); 5359 raw_spin_lock_irq(&pool->lock); 5360 5361 /* 5362 * We've blocked all attach/detach operations. Make all workers 5363 * unbound and set DISASSOCIATED. Before this, all workers 5364 * must be on the cpu. After this, they may become diasporas. 5365 * And the preemption disabled section in their sched callbacks 5366 * are guaranteed to see WORKER_UNBOUND since the code here 5367 * is on the same cpu. 5368 */ 5369 for_each_pool_worker(worker, pool) 5370 worker->flags |= WORKER_UNBOUND; 5371 5372 pool->flags |= POOL_DISASSOCIATED; 5373 5374 /* 5375 * The handling of nr_running in sched callbacks are disabled 5376 * now. Zap nr_running. After this, nr_running stays zero and 5377 * need_more_worker() and keep_working() are always true as 5378 * long as the worklist is not empty. This pool now behaves as 5379 * an unbound (in terms of concurrency management) pool which 5380 * are served by workers tied to the pool. 5381 */ 5382 pool->nr_running = 0; 5383 5384 /* 5385 * With concurrency management just turned off, a busy 5386 * worker blocking could lead to lengthy stalls. Kick off 5387 * unbound chain execution of currently pending work items. 5388 */ 5389 wake_up_worker(pool); 5390 5391 raw_spin_unlock_irq(&pool->lock); 5392 5393 for_each_pool_worker(worker, pool) 5394 unbind_worker(worker); 5395 5396 mutex_unlock(&wq_pool_attach_mutex); 5397 } 5398 } 5399 5400 /** 5401 * rebind_workers - rebind all workers of a pool to the associated CPU 5402 * @pool: pool of interest 5403 * 5404 * @pool->cpu is coming online. Rebind all workers to the CPU. 5405 */ 5406 static void rebind_workers(struct worker_pool *pool) 5407 { 5408 struct worker *worker; 5409 5410 lockdep_assert_held(&wq_pool_attach_mutex); 5411 5412 /* 5413 * Restore CPU affinity of all workers. As all idle workers should 5414 * be on the run-queue of the associated CPU before any local 5415 * wake-ups for concurrency management happen, restore CPU affinity 5416 * of all workers first and then clear UNBOUND. As we're called 5417 * from CPU_ONLINE, the following shouldn't fail. 5418 */ 5419 for_each_pool_worker(worker, pool) { 5420 kthread_set_per_cpu(worker->task, pool->cpu); 5421 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 5422 pool->attrs->cpumask) < 0); 5423 } 5424 5425 raw_spin_lock_irq(&pool->lock); 5426 5427 pool->flags &= ~POOL_DISASSOCIATED; 5428 5429 for_each_pool_worker(worker, pool) { 5430 unsigned int worker_flags = worker->flags; 5431 5432 /* 5433 * We want to clear UNBOUND but can't directly call 5434 * worker_clr_flags() or adjust nr_running. Atomically 5435 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 5436 * @worker will clear REBOUND using worker_clr_flags() when 5437 * it initiates the next execution cycle thus restoring 5438 * concurrency management. Note that when or whether 5439 * @worker clears REBOUND doesn't affect correctness. 5440 * 5441 * WRITE_ONCE() is necessary because @worker->flags may be 5442 * tested without holding any lock in 5443 * wq_worker_running(). Without it, NOT_RUNNING test may 5444 * fail incorrectly leading to premature concurrency 5445 * management operations. 5446 */ 5447 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 5448 worker_flags |= WORKER_REBOUND; 5449 worker_flags &= ~WORKER_UNBOUND; 5450 WRITE_ONCE(worker->flags, worker_flags); 5451 } 5452 5453 raw_spin_unlock_irq(&pool->lock); 5454 } 5455 5456 /** 5457 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 5458 * @pool: unbound pool of interest 5459 * @cpu: the CPU which is coming up 5460 * 5461 * An unbound pool may end up with a cpumask which doesn't have any online 5462 * CPUs. When a worker of such pool get scheduled, the scheduler resets 5463 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 5464 * online CPU before, cpus_allowed of all its workers should be restored. 5465 */ 5466 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5467 { 5468 static cpumask_t cpumask; 5469 struct worker *worker; 5470 5471 lockdep_assert_held(&wq_pool_attach_mutex); 5472 5473 /* is @cpu allowed for @pool? */ 5474 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5475 return; 5476 5477 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5478 5479 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5480 for_each_pool_worker(worker, pool) 5481 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5482 } 5483 5484 int workqueue_prepare_cpu(unsigned int cpu) 5485 { 5486 struct worker_pool *pool; 5487 5488 for_each_cpu_worker_pool(pool, cpu) { 5489 if (pool->nr_workers) 5490 continue; 5491 if (!create_worker(pool)) 5492 return -ENOMEM; 5493 } 5494 return 0; 5495 } 5496 5497 int workqueue_online_cpu(unsigned int cpu) 5498 { 5499 struct worker_pool *pool; 5500 struct workqueue_struct *wq; 5501 int pi; 5502 5503 mutex_lock(&wq_pool_mutex); 5504 5505 for_each_pool(pool, pi) { 5506 mutex_lock(&wq_pool_attach_mutex); 5507 5508 if (pool->cpu == cpu) 5509 rebind_workers(pool); 5510 else if (pool->cpu < 0) 5511 restore_unbound_workers_cpumask(pool, cpu); 5512 5513 mutex_unlock(&wq_pool_attach_mutex); 5514 } 5515 5516 /* update NUMA affinity of unbound workqueues */ 5517 list_for_each_entry(wq, &workqueues, list) 5518 wq_update_unbound_numa(wq, cpu, true); 5519 5520 mutex_unlock(&wq_pool_mutex); 5521 return 0; 5522 } 5523 5524 int workqueue_offline_cpu(unsigned int cpu) 5525 { 5526 struct workqueue_struct *wq; 5527 5528 /* unbinding per-cpu workers should happen on the local CPU */ 5529 if (WARN_ON(cpu != smp_processor_id())) 5530 return -1; 5531 5532 unbind_workers(cpu); 5533 5534 /* update NUMA affinity of unbound workqueues */ 5535 mutex_lock(&wq_pool_mutex); 5536 list_for_each_entry(wq, &workqueues, list) 5537 wq_update_unbound_numa(wq, cpu, false); 5538 mutex_unlock(&wq_pool_mutex); 5539 5540 return 0; 5541 } 5542 5543 struct work_for_cpu { 5544 struct work_struct work; 5545 long (*fn)(void *); 5546 void *arg; 5547 long ret; 5548 }; 5549 5550 static void work_for_cpu_fn(struct work_struct *work) 5551 { 5552 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5553 5554 wfc->ret = wfc->fn(wfc->arg); 5555 } 5556 5557 /** 5558 * work_on_cpu - run a function in thread context on a particular cpu 5559 * @cpu: the cpu to run on 5560 * @fn: the function to run 5561 * @arg: the function arg 5562 * 5563 * It is up to the caller to ensure that the cpu doesn't go offline. 5564 * The caller must not hold any locks which would prevent @fn from completing. 5565 * 5566 * Return: The value @fn returns. 5567 */ 5568 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5569 { 5570 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5571 5572 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5573 schedule_work_on(cpu, &wfc.work); 5574 flush_work(&wfc.work); 5575 destroy_work_on_stack(&wfc.work); 5576 return wfc.ret; 5577 } 5578 EXPORT_SYMBOL_GPL(work_on_cpu); 5579 5580 /** 5581 * work_on_cpu_safe - run a function in thread context on a particular cpu 5582 * @cpu: the cpu to run on 5583 * @fn: the function to run 5584 * @arg: the function argument 5585 * 5586 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5587 * any locks which would prevent @fn from completing. 5588 * 5589 * Return: The value @fn returns. 5590 */ 5591 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5592 { 5593 long ret = -ENODEV; 5594 5595 cpus_read_lock(); 5596 if (cpu_online(cpu)) 5597 ret = work_on_cpu(cpu, fn, arg); 5598 cpus_read_unlock(); 5599 return ret; 5600 } 5601 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5602 #endif /* CONFIG_SMP */ 5603 5604 #ifdef CONFIG_FREEZER 5605 5606 /** 5607 * freeze_workqueues_begin - begin freezing workqueues 5608 * 5609 * Start freezing workqueues. After this function returns, all freezable 5610 * workqueues will queue new works to their inactive_works list instead of 5611 * pool->worklist. 5612 * 5613 * CONTEXT: 5614 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5615 */ 5616 void freeze_workqueues_begin(void) 5617 { 5618 struct workqueue_struct *wq; 5619 struct pool_workqueue *pwq; 5620 5621 mutex_lock(&wq_pool_mutex); 5622 5623 WARN_ON_ONCE(workqueue_freezing); 5624 workqueue_freezing = true; 5625 5626 list_for_each_entry(wq, &workqueues, list) { 5627 mutex_lock(&wq->mutex); 5628 for_each_pwq(pwq, wq) 5629 pwq_adjust_max_active(pwq); 5630 mutex_unlock(&wq->mutex); 5631 } 5632 5633 mutex_unlock(&wq_pool_mutex); 5634 } 5635 5636 /** 5637 * freeze_workqueues_busy - are freezable workqueues still busy? 5638 * 5639 * Check whether freezing is complete. This function must be called 5640 * between freeze_workqueues_begin() and thaw_workqueues(). 5641 * 5642 * CONTEXT: 5643 * Grabs and releases wq_pool_mutex. 5644 * 5645 * Return: 5646 * %true if some freezable workqueues are still busy. %false if freezing 5647 * is complete. 5648 */ 5649 bool freeze_workqueues_busy(void) 5650 { 5651 bool busy = false; 5652 struct workqueue_struct *wq; 5653 struct pool_workqueue *pwq; 5654 5655 mutex_lock(&wq_pool_mutex); 5656 5657 WARN_ON_ONCE(!workqueue_freezing); 5658 5659 list_for_each_entry(wq, &workqueues, list) { 5660 if (!(wq->flags & WQ_FREEZABLE)) 5661 continue; 5662 /* 5663 * nr_active is monotonically decreasing. It's safe 5664 * to peek without lock. 5665 */ 5666 rcu_read_lock(); 5667 for_each_pwq(pwq, wq) { 5668 WARN_ON_ONCE(pwq->nr_active < 0); 5669 if (pwq->nr_active) { 5670 busy = true; 5671 rcu_read_unlock(); 5672 goto out_unlock; 5673 } 5674 } 5675 rcu_read_unlock(); 5676 } 5677 out_unlock: 5678 mutex_unlock(&wq_pool_mutex); 5679 return busy; 5680 } 5681 5682 /** 5683 * thaw_workqueues - thaw workqueues 5684 * 5685 * Thaw workqueues. Normal queueing is restored and all collected 5686 * frozen works are transferred to their respective pool worklists. 5687 * 5688 * CONTEXT: 5689 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5690 */ 5691 void thaw_workqueues(void) 5692 { 5693 struct workqueue_struct *wq; 5694 struct pool_workqueue *pwq; 5695 5696 mutex_lock(&wq_pool_mutex); 5697 5698 if (!workqueue_freezing) 5699 goto out_unlock; 5700 5701 workqueue_freezing = false; 5702 5703 /* restore max_active and repopulate worklist */ 5704 list_for_each_entry(wq, &workqueues, list) { 5705 mutex_lock(&wq->mutex); 5706 for_each_pwq(pwq, wq) 5707 pwq_adjust_max_active(pwq); 5708 mutex_unlock(&wq->mutex); 5709 } 5710 5711 out_unlock: 5712 mutex_unlock(&wq_pool_mutex); 5713 } 5714 #endif /* CONFIG_FREEZER */ 5715 5716 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 5717 { 5718 LIST_HEAD(ctxs); 5719 int ret = 0; 5720 struct workqueue_struct *wq; 5721 struct apply_wqattrs_ctx *ctx, *n; 5722 5723 lockdep_assert_held(&wq_pool_mutex); 5724 5725 list_for_each_entry(wq, &workqueues, list) { 5726 if (!(wq->flags & WQ_UNBOUND)) 5727 continue; 5728 /* creating multiple pwqs breaks ordering guarantee */ 5729 if (wq->flags & __WQ_ORDERED) 5730 continue; 5731 5732 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 5733 if (!ctx) { 5734 ret = -ENOMEM; 5735 break; 5736 } 5737 5738 list_add_tail(&ctx->list, &ctxs); 5739 } 5740 5741 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5742 if (!ret) 5743 apply_wqattrs_commit(ctx); 5744 apply_wqattrs_cleanup(ctx); 5745 } 5746 5747 if (!ret) { 5748 mutex_lock(&wq_pool_attach_mutex); 5749 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 5750 mutex_unlock(&wq_pool_attach_mutex); 5751 } 5752 return ret; 5753 } 5754 5755 /** 5756 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5757 * @cpumask: the cpumask to set 5758 * 5759 * The low-level workqueues cpumask is a global cpumask that limits 5760 * the affinity of all unbound workqueues. This function check the @cpumask 5761 * and apply it to all unbound workqueues and updates all pwqs of them. 5762 * 5763 * Return: 0 - Success 5764 * -EINVAL - Invalid @cpumask 5765 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5766 */ 5767 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5768 { 5769 int ret = -EINVAL; 5770 5771 /* 5772 * Not excluding isolated cpus on purpose. 5773 * If the user wishes to include them, we allow that. 5774 */ 5775 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5776 if (!cpumask_empty(cpumask)) { 5777 apply_wqattrs_lock(); 5778 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 5779 ret = 0; 5780 goto out_unlock; 5781 } 5782 5783 ret = workqueue_apply_unbound_cpumask(cpumask); 5784 5785 out_unlock: 5786 apply_wqattrs_unlock(); 5787 } 5788 5789 return ret; 5790 } 5791 5792 #ifdef CONFIG_SYSFS 5793 /* 5794 * Workqueues with WQ_SYSFS flag set is visible to userland via 5795 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5796 * following attributes. 5797 * 5798 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5799 * max_active RW int : maximum number of in-flight work items 5800 * 5801 * Unbound workqueues have the following extra attributes. 5802 * 5803 * pool_ids RO int : the associated pool IDs for each node 5804 * nice RW int : nice value of the workers 5805 * cpumask RW mask : bitmask of allowed CPUs for the workers 5806 * numa RW bool : whether enable NUMA affinity 5807 */ 5808 struct wq_device { 5809 struct workqueue_struct *wq; 5810 struct device dev; 5811 }; 5812 5813 static struct workqueue_struct *dev_to_wq(struct device *dev) 5814 { 5815 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5816 5817 return wq_dev->wq; 5818 } 5819 5820 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5821 char *buf) 5822 { 5823 struct workqueue_struct *wq = dev_to_wq(dev); 5824 5825 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5826 } 5827 static DEVICE_ATTR_RO(per_cpu); 5828 5829 static ssize_t max_active_show(struct device *dev, 5830 struct device_attribute *attr, char *buf) 5831 { 5832 struct workqueue_struct *wq = dev_to_wq(dev); 5833 5834 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5835 } 5836 5837 static ssize_t max_active_store(struct device *dev, 5838 struct device_attribute *attr, const char *buf, 5839 size_t count) 5840 { 5841 struct workqueue_struct *wq = dev_to_wq(dev); 5842 int val; 5843 5844 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5845 return -EINVAL; 5846 5847 workqueue_set_max_active(wq, val); 5848 return count; 5849 } 5850 static DEVICE_ATTR_RW(max_active); 5851 5852 static struct attribute *wq_sysfs_attrs[] = { 5853 &dev_attr_per_cpu.attr, 5854 &dev_attr_max_active.attr, 5855 NULL, 5856 }; 5857 ATTRIBUTE_GROUPS(wq_sysfs); 5858 5859 static ssize_t wq_pool_ids_show(struct device *dev, 5860 struct device_attribute *attr, char *buf) 5861 { 5862 struct workqueue_struct *wq = dev_to_wq(dev); 5863 const char *delim = ""; 5864 int node, written = 0; 5865 5866 cpus_read_lock(); 5867 rcu_read_lock(); 5868 for_each_node(node) { 5869 written += scnprintf(buf + written, PAGE_SIZE - written, 5870 "%s%d:%d", delim, node, 5871 unbound_pwq_by_node(wq, node)->pool->id); 5872 delim = " "; 5873 } 5874 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5875 rcu_read_unlock(); 5876 cpus_read_unlock(); 5877 5878 return written; 5879 } 5880 5881 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5882 char *buf) 5883 { 5884 struct workqueue_struct *wq = dev_to_wq(dev); 5885 int written; 5886 5887 mutex_lock(&wq->mutex); 5888 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5889 mutex_unlock(&wq->mutex); 5890 5891 return written; 5892 } 5893 5894 /* prepare workqueue_attrs for sysfs store operations */ 5895 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5896 { 5897 struct workqueue_attrs *attrs; 5898 5899 lockdep_assert_held(&wq_pool_mutex); 5900 5901 attrs = alloc_workqueue_attrs(); 5902 if (!attrs) 5903 return NULL; 5904 5905 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5906 return attrs; 5907 } 5908 5909 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5910 const char *buf, size_t count) 5911 { 5912 struct workqueue_struct *wq = dev_to_wq(dev); 5913 struct workqueue_attrs *attrs; 5914 int ret = -ENOMEM; 5915 5916 apply_wqattrs_lock(); 5917 5918 attrs = wq_sysfs_prep_attrs(wq); 5919 if (!attrs) 5920 goto out_unlock; 5921 5922 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5923 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5924 ret = apply_workqueue_attrs_locked(wq, attrs); 5925 else 5926 ret = -EINVAL; 5927 5928 out_unlock: 5929 apply_wqattrs_unlock(); 5930 free_workqueue_attrs(attrs); 5931 return ret ?: count; 5932 } 5933 5934 static ssize_t wq_cpumask_show(struct device *dev, 5935 struct device_attribute *attr, char *buf) 5936 { 5937 struct workqueue_struct *wq = dev_to_wq(dev); 5938 int written; 5939 5940 mutex_lock(&wq->mutex); 5941 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5942 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5943 mutex_unlock(&wq->mutex); 5944 return written; 5945 } 5946 5947 static ssize_t wq_cpumask_store(struct device *dev, 5948 struct device_attribute *attr, 5949 const char *buf, size_t count) 5950 { 5951 struct workqueue_struct *wq = dev_to_wq(dev); 5952 struct workqueue_attrs *attrs; 5953 int ret = -ENOMEM; 5954 5955 apply_wqattrs_lock(); 5956 5957 attrs = wq_sysfs_prep_attrs(wq); 5958 if (!attrs) 5959 goto out_unlock; 5960 5961 ret = cpumask_parse(buf, attrs->cpumask); 5962 if (!ret) 5963 ret = apply_workqueue_attrs_locked(wq, attrs); 5964 5965 out_unlock: 5966 apply_wqattrs_unlock(); 5967 free_workqueue_attrs(attrs); 5968 return ret ?: count; 5969 } 5970 5971 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5972 char *buf) 5973 { 5974 struct workqueue_struct *wq = dev_to_wq(dev); 5975 int written; 5976 5977 mutex_lock(&wq->mutex); 5978 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5979 !wq->unbound_attrs->no_numa); 5980 mutex_unlock(&wq->mutex); 5981 5982 return written; 5983 } 5984 5985 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5986 const char *buf, size_t count) 5987 { 5988 struct workqueue_struct *wq = dev_to_wq(dev); 5989 struct workqueue_attrs *attrs; 5990 int v, ret = -ENOMEM; 5991 5992 apply_wqattrs_lock(); 5993 5994 attrs = wq_sysfs_prep_attrs(wq); 5995 if (!attrs) 5996 goto out_unlock; 5997 5998 ret = -EINVAL; 5999 if (sscanf(buf, "%d", &v) == 1) { 6000 attrs->no_numa = !v; 6001 ret = apply_workqueue_attrs_locked(wq, attrs); 6002 } 6003 6004 out_unlock: 6005 apply_wqattrs_unlock(); 6006 free_workqueue_attrs(attrs); 6007 return ret ?: count; 6008 } 6009 6010 static struct device_attribute wq_sysfs_unbound_attrs[] = { 6011 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 6012 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 6013 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 6014 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 6015 __ATTR_NULL, 6016 }; 6017 6018 static struct bus_type wq_subsys = { 6019 .name = "workqueue", 6020 .dev_groups = wq_sysfs_groups, 6021 }; 6022 6023 static ssize_t wq_unbound_cpumask_show(struct device *dev, 6024 struct device_attribute *attr, char *buf) 6025 { 6026 int written; 6027 6028 mutex_lock(&wq_pool_mutex); 6029 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 6030 cpumask_pr_args(wq_unbound_cpumask)); 6031 mutex_unlock(&wq_pool_mutex); 6032 6033 return written; 6034 } 6035 6036 static ssize_t wq_unbound_cpumask_store(struct device *dev, 6037 struct device_attribute *attr, const char *buf, size_t count) 6038 { 6039 cpumask_var_t cpumask; 6040 int ret; 6041 6042 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6043 return -ENOMEM; 6044 6045 ret = cpumask_parse(buf, cpumask); 6046 if (!ret) 6047 ret = workqueue_set_unbound_cpumask(cpumask); 6048 6049 free_cpumask_var(cpumask); 6050 return ret ? ret : count; 6051 } 6052 6053 static struct device_attribute wq_sysfs_cpumask_attr = 6054 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 6055 wq_unbound_cpumask_store); 6056 6057 static int __init wq_sysfs_init(void) 6058 { 6059 struct device *dev_root; 6060 int err; 6061 6062 err = subsys_virtual_register(&wq_subsys, NULL); 6063 if (err) 6064 return err; 6065 6066 dev_root = bus_get_dev_root(&wq_subsys); 6067 if (dev_root) { 6068 err = device_create_file(dev_root, &wq_sysfs_cpumask_attr); 6069 put_device(dev_root); 6070 } 6071 return err; 6072 } 6073 core_initcall(wq_sysfs_init); 6074 6075 static void wq_device_release(struct device *dev) 6076 { 6077 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6078 6079 kfree(wq_dev); 6080 } 6081 6082 /** 6083 * workqueue_sysfs_register - make a workqueue visible in sysfs 6084 * @wq: the workqueue to register 6085 * 6086 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 6087 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 6088 * which is the preferred method. 6089 * 6090 * Workqueue user should use this function directly iff it wants to apply 6091 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 6092 * apply_workqueue_attrs() may race against userland updating the 6093 * attributes. 6094 * 6095 * Return: 0 on success, -errno on failure. 6096 */ 6097 int workqueue_sysfs_register(struct workqueue_struct *wq) 6098 { 6099 struct wq_device *wq_dev; 6100 int ret; 6101 6102 /* 6103 * Adjusting max_active or creating new pwqs by applying 6104 * attributes breaks ordering guarantee. Disallow exposing ordered 6105 * workqueues. 6106 */ 6107 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 6108 return -EINVAL; 6109 6110 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 6111 if (!wq_dev) 6112 return -ENOMEM; 6113 6114 wq_dev->wq = wq; 6115 wq_dev->dev.bus = &wq_subsys; 6116 wq_dev->dev.release = wq_device_release; 6117 dev_set_name(&wq_dev->dev, "%s", wq->name); 6118 6119 /* 6120 * unbound_attrs are created separately. Suppress uevent until 6121 * everything is ready. 6122 */ 6123 dev_set_uevent_suppress(&wq_dev->dev, true); 6124 6125 ret = device_register(&wq_dev->dev); 6126 if (ret) { 6127 put_device(&wq_dev->dev); 6128 wq->wq_dev = NULL; 6129 return ret; 6130 } 6131 6132 if (wq->flags & WQ_UNBOUND) { 6133 struct device_attribute *attr; 6134 6135 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 6136 ret = device_create_file(&wq_dev->dev, attr); 6137 if (ret) { 6138 device_unregister(&wq_dev->dev); 6139 wq->wq_dev = NULL; 6140 return ret; 6141 } 6142 } 6143 } 6144 6145 dev_set_uevent_suppress(&wq_dev->dev, false); 6146 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 6147 return 0; 6148 } 6149 6150 /** 6151 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 6152 * @wq: the workqueue to unregister 6153 * 6154 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 6155 */ 6156 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 6157 { 6158 struct wq_device *wq_dev = wq->wq_dev; 6159 6160 if (!wq->wq_dev) 6161 return; 6162 6163 wq->wq_dev = NULL; 6164 device_unregister(&wq_dev->dev); 6165 } 6166 #else /* CONFIG_SYSFS */ 6167 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 6168 #endif /* CONFIG_SYSFS */ 6169 6170 /* 6171 * Workqueue watchdog. 6172 * 6173 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 6174 * flush dependency, a concurrency managed work item which stays RUNNING 6175 * indefinitely. Workqueue stalls can be very difficult to debug as the 6176 * usual warning mechanisms don't trigger and internal workqueue state is 6177 * largely opaque. 6178 * 6179 * Workqueue watchdog monitors all worker pools periodically and dumps 6180 * state if some pools failed to make forward progress for a while where 6181 * forward progress is defined as the first item on ->worklist changing. 6182 * 6183 * This mechanism is controlled through the kernel parameter 6184 * "workqueue.watchdog_thresh" which can be updated at runtime through the 6185 * corresponding sysfs parameter file. 6186 */ 6187 #ifdef CONFIG_WQ_WATCHDOG 6188 6189 static unsigned long wq_watchdog_thresh = 30; 6190 static struct timer_list wq_watchdog_timer; 6191 6192 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 6193 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 6194 6195 /* 6196 * Show workers that might prevent the processing of pending work items. 6197 * The only candidates are CPU-bound workers in the running state. 6198 * Pending work items should be handled by another idle worker 6199 * in all other situations. 6200 */ 6201 static void show_cpu_pool_hog(struct worker_pool *pool) 6202 { 6203 struct worker *worker; 6204 unsigned long flags; 6205 int bkt; 6206 6207 raw_spin_lock_irqsave(&pool->lock, flags); 6208 6209 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6210 if (task_is_running(worker->task)) { 6211 /* 6212 * Defer printing to avoid deadlocks in console 6213 * drivers that queue work while holding locks 6214 * also taken in their write paths. 6215 */ 6216 printk_deferred_enter(); 6217 6218 pr_info("pool %d:\n", pool->id); 6219 sched_show_task(worker->task); 6220 6221 printk_deferred_exit(); 6222 } 6223 } 6224 6225 raw_spin_unlock_irqrestore(&pool->lock, flags); 6226 } 6227 6228 static void show_cpu_pools_hogs(void) 6229 { 6230 struct worker_pool *pool; 6231 int pi; 6232 6233 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 6234 6235 rcu_read_lock(); 6236 6237 for_each_pool(pool, pi) { 6238 if (pool->cpu_stall) 6239 show_cpu_pool_hog(pool); 6240 6241 } 6242 6243 rcu_read_unlock(); 6244 } 6245 6246 static void wq_watchdog_reset_touched(void) 6247 { 6248 int cpu; 6249 6250 wq_watchdog_touched = jiffies; 6251 for_each_possible_cpu(cpu) 6252 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 6253 } 6254 6255 static void wq_watchdog_timer_fn(struct timer_list *unused) 6256 { 6257 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 6258 bool lockup_detected = false; 6259 bool cpu_pool_stall = false; 6260 unsigned long now = jiffies; 6261 struct worker_pool *pool; 6262 int pi; 6263 6264 if (!thresh) 6265 return; 6266 6267 rcu_read_lock(); 6268 6269 for_each_pool(pool, pi) { 6270 unsigned long pool_ts, touched, ts; 6271 6272 pool->cpu_stall = false; 6273 if (list_empty(&pool->worklist)) 6274 continue; 6275 6276 /* 6277 * If a virtual machine is stopped by the host it can look to 6278 * the watchdog like a stall. 6279 */ 6280 kvm_check_and_clear_guest_paused(); 6281 6282 /* get the latest of pool and touched timestamps */ 6283 if (pool->cpu >= 0) 6284 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 6285 else 6286 touched = READ_ONCE(wq_watchdog_touched); 6287 pool_ts = READ_ONCE(pool->watchdog_ts); 6288 6289 if (time_after(pool_ts, touched)) 6290 ts = pool_ts; 6291 else 6292 ts = touched; 6293 6294 /* did we stall? */ 6295 if (time_after(now, ts + thresh)) { 6296 lockup_detected = true; 6297 if (pool->cpu >= 0) { 6298 pool->cpu_stall = true; 6299 cpu_pool_stall = true; 6300 } 6301 pr_emerg("BUG: workqueue lockup - pool"); 6302 pr_cont_pool_info(pool); 6303 pr_cont(" stuck for %us!\n", 6304 jiffies_to_msecs(now - pool_ts) / 1000); 6305 } 6306 6307 6308 } 6309 6310 rcu_read_unlock(); 6311 6312 if (lockup_detected) 6313 show_all_workqueues(); 6314 6315 if (cpu_pool_stall) 6316 show_cpu_pools_hogs(); 6317 6318 wq_watchdog_reset_touched(); 6319 mod_timer(&wq_watchdog_timer, jiffies + thresh); 6320 } 6321 6322 notrace void wq_watchdog_touch(int cpu) 6323 { 6324 if (cpu >= 0) 6325 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 6326 6327 wq_watchdog_touched = jiffies; 6328 } 6329 6330 static void wq_watchdog_set_thresh(unsigned long thresh) 6331 { 6332 wq_watchdog_thresh = 0; 6333 del_timer_sync(&wq_watchdog_timer); 6334 6335 if (thresh) { 6336 wq_watchdog_thresh = thresh; 6337 wq_watchdog_reset_touched(); 6338 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 6339 } 6340 } 6341 6342 static int wq_watchdog_param_set_thresh(const char *val, 6343 const struct kernel_param *kp) 6344 { 6345 unsigned long thresh; 6346 int ret; 6347 6348 ret = kstrtoul(val, 0, &thresh); 6349 if (ret) 6350 return ret; 6351 6352 if (system_wq) 6353 wq_watchdog_set_thresh(thresh); 6354 else 6355 wq_watchdog_thresh = thresh; 6356 6357 return 0; 6358 } 6359 6360 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 6361 .set = wq_watchdog_param_set_thresh, 6362 .get = param_get_ulong, 6363 }; 6364 6365 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 6366 0644); 6367 6368 static void wq_watchdog_init(void) 6369 { 6370 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 6371 wq_watchdog_set_thresh(wq_watchdog_thresh); 6372 } 6373 6374 #else /* CONFIG_WQ_WATCHDOG */ 6375 6376 static inline void wq_watchdog_init(void) { } 6377 6378 #endif /* CONFIG_WQ_WATCHDOG */ 6379 6380 static void __init wq_numa_init(void) 6381 { 6382 cpumask_var_t *tbl; 6383 int node, cpu; 6384 6385 if (num_possible_nodes() <= 1) 6386 return; 6387 6388 if (wq_disable_numa) { 6389 pr_info("workqueue: NUMA affinity support disabled\n"); 6390 return; 6391 } 6392 6393 for_each_possible_cpu(cpu) { 6394 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) { 6395 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 6396 return; 6397 } 6398 } 6399 6400 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 6401 BUG_ON(!wq_update_unbound_numa_attrs_buf); 6402 6403 /* 6404 * We want masks of possible CPUs of each node which isn't readily 6405 * available. Build one from cpu_to_node() which should have been 6406 * fully initialized by now. 6407 */ 6408 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 6409 BUG_ON(!tbl); 6410 6411 for_each_node(node) 6412 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 6413 node_online(node) ? node : NUMA_NO_NODE)); 6414 6415 for_each_possible_cpu(cpu) { 6416 node = cpu_to_node(cpu); 6417 cpumask_set_cpu(cpu, tbl[node]); 6418 } 6419 6420 wq_numa_possible_cpumask = tbl; 6421 wq_numa_enabled = true; 6422 } 6423 6424 /** 6425 * workqueue_init_early - early init for workqueue subsystem 6426 * 6427 * This is the first half of two-staged workqueue subsystem initialization 6428 * and invoked as soon as the bare basics - memory allocation, cpumasks and 6429 * idr are up. It sets up all the data structures and system workqueues 6430 * and allows early boot code to create workqueues and queue/cancel work 6431 * items. Actual work item execution starts only after kthreads can be 6432 * created and scheduled right before early initcalls. 6433 */ 6434 void __init workqueue_init_early(void) 6435 { 6436 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 6437 int i, cpu; 6438 6439 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 6440 6441 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 6442 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ)); 6443 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN)); 6444 6445 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 6446 6447 /* initialize CPU pools */ 6448 for_each_possible_cpu(cpu) { 6449 struct worker_pool *pool; 6450 6451 i = 0; 6452 for_each_cpu_worker_pool(pool, cpu) { 6453 BUG_ON(init_worker_pool(pool)); 6454 pool->cpu = cpu; 6455 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 6456 pool->attrs->nice = std_nice[i++]; 6457 pool->node = cpu_to_node(cpu); 6458 6459 /* alloc pool ID */ 6460 mutex_lock(&wq_pool_mutex); 6461 BUG_ON(worker_pool_assign_id(pool)); 6462 mutex_unlock(&wq_pool_mutex); 6463 } 6464 } 6465 6466 /* create default unbound and ordered wq attrs */ 6467 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 6468 struct workqueue_attrs *attrs; 6469 6470 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6471 attrs->nice = std_nice[i]; 6472 unbound_std_wq_attrs[i] = attrs; 6473 6474 /* 6475 * An ordered wq should have only one pwq as ordering is 6476 * guaranteed by max_active which is enforced by pwqs. 6477 * Turn off NUMA so that dfl_pwq is used for all nodes. 6478 */ 6479 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6480 attrs->nice = std_nice[i]; 6481 attrs->no_numa = true; 6482 ordered_wq_attrs[i] = attrs; 6483 } 6484 6485 system_wq = alloc_workqueue("events", 0, 0); 6486 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 6487 system_long_wq = alloc_workqueue("events_long", 0, 0); 6488 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 6489 WQ_UNBOUND_MAX_ACTIVE); 6490 system_freezable_wq = alloc_workqueue("events_freezable", 6491 WQ_FREEZABLE, 0); 6492 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 6493 WQ_POWER_EFFICIENT, 0); 6494 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 6495 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 6496 0); 6497 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 6498 !system_unbound_wq || !system_freezable_wq || 6499 !system_power_efficient_wq || 6500 !system_freezable_power_efficient_wq); 6501 } 6502 6503 /** 6504 * workqueue_init - bring workqueue subsystem fully online 6505 * 6506 * This is the latter half of two-staged workqueue subsystem initialization 6507 * and invoked as soon as kthreads can be created and scheduled. 6508 * Workqueues have been created and work items queued on them, but there 6509 * are no kworkers executing the work items yet. Populate the worker pools 6510 * with the initial workers and enable future kworker creations. 6511 */ 6512 void __init workqueue_init(void) 6513 { 6514 struct workqueue_struct *wq; 6515 struct worker_pool *pool; 6516 int cpu, bkt; 6517 6518 /* 6519 * It'd be simpler to initialize NUMA in workqueue_init_early() but 6520 * CPU to node mapping may not be available that early on some 6521 * archs such as power and arm64. As per-cpu pools created 6522 * previously could be missing node hint and unbound pools NUMA 6523 * affinity, fix them up. 6524 * 6525 * Also, while iterating workqueues, create rescuers if requested. 6526 */ 6527 wq_numa_init(); 6528 6529 mutex_lock(&wq_pool_mutex); 6530 6531 for_each_possible_cpu(cpu) { 6532 for_each_cpu_worker_pool(pool, cpu) { 6533 pool->node = cpu_to_node(cpu); 6534 } 6535 } 6536 6537 list_for_each_entry(wq, &workqueues, list) { 6538 wq_update_unbound_numa(wq, smp_processor_id(), true); 6539 WARN(init_rescuer(wq), 6540 "workqueue: failed to create early rescuer for %s", 6541 wq->name); 6542 } 6543 6544 mutex_unlock(&wq_pool_mutex); 6545 6546 /* create the initial workers */ 6547 for_each_online_cpu(cpu) { 6548 for_each_cpu_worker_pool(pool, cpu) { 6549 pool->flags &= ~POOL_DISASSOCIATED; 6550 BUG_ON(!create_worker(pool)); 6551 } 6552 } 6553 6554 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6555 BUG_ON(!create_worker(pool)); 6556 6557 wq_online = true; 6558 wq_watchdog_init(); 6559 } 6560 6561 /* 6562 * Despite the naming, this is a no-op function which is here only for avoiding 6563 * link error. Since compile-time warning may fail to catch, we will need to 6564 * emit run-time warning from __flush_workqueue(). 6565 */ 6566 void __warn_flushing_systemwide_wq(void) { } 6567 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 6568