1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <[email protected]> 9 * Andrew Morton 10 * Kai Petzke <[email protected]> 11 * Theodore Ts'o <[email protected]> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <[email protected]> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/interrupt.h> 33 #include <linux/signal.h> 34 #include <linux/completion.h> 35 #include <linux/workqueue.h> 36 #include <linux/slab.h> 37 #include <linux/cpu.h> 38 #include <linux/notifier.h> 39 #include <linux/kthread.h> 40 #include <linux/hardirq.h> 41 #include <linux/mempolicy.h> 42 #include <linux/freezer.h> 43 #include <linux/debug_locks.h> 44 #include <linux/lockdep.h> 45 #include <linux/idr.h> 46 #include <linux/jhash.h> 47 #include <linux/hashtable.h> 48 #include <linux/rculist.h> 49 #include <linux/nodemask.h> 50 #include <linux/moduleparam.h> 51 #include <linux/uaccess.h> 52 #include <linux/sched/isolation.h> 53 #include <linux/sched/debug.h> 54 #include <linux/nmi.h> 55 #include <linux/kvm_para.h> 56 #include <linux/delay.h> 57 #include <linux/irq_work.h> 58 59 #include "workqueue_internal.h" 60 61 enum worker_pool_flags { 62 /* 63 * worker_pool flags 64 * 65 * A bound pool is either associated or disassociated with its CPU. 66 * While associated (!DISASSOCIATED), all workers are bound to the 67 * CPU and none has %WORKER_UNBOUND set and concurrency management 68 * is in effect. 69 * 70 * While DISASSOCIATED, the cpu may be offline and all workers have 71 * %WORKER_UNBOUND set and concurrency management disabled, and may 72 * be executing on any CPU. The pool behaves as an unbound one. 73 * 74 * Note that DISASSOCIATED should be flipped only while holding 75 * wq_pool_attach_mutex to avoid changing binding state while 76 * worker_attach_to_pool() is in progress. 77 * 78 * As there can only be one concurrent BH execution context per CPU, a 79 * BH pool is per-CPU and always DISASSOCIATED. 80 */ 81 POOL_BH = 1 << 0, /* is a BH pool */ 82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */ 83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */ 85 }; 86 87 enum worker_flags { 88 /* worker flags */ 89 WORKER_DIE = 1 << 1, /* die die die */ 90 WORKER_IDLE = 1 << 2, /* is idle */ 91 WORKER_PREP = 1 << 3, /* preparing to run works */ 92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 94 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 95 96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 97 WORKER_UNBOUND | WORKER_REBOUND, 98 }; 99 100 enum work_cancel_flags { 101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */ 102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */ 103 }; 104 105 enum wq_internal_consts { 106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 107 108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 110 111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 113 114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 115 /* call for help after 10ms 116 (min two ticks) */ 117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 118 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 119 120 /* 121 * Rescue workers are used only on emergencies and shared by 122 * all cpus. Give MIN_NICE. 123 */ 124 RESCUER_NICE_LEVEL = MIN_NICE, 125 HIGHPRI_NICE_LEVEL = MIN_NICE, 126 127 WQ_NAME_LEN = 32, 128 WORKER_ID_LEN = 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */ 129 }; 130 131 /* 132 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and 133 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because 134 * msecs_to_jiffies() can't be an initializer. 135 */ 136 #define BH_WORKER_JIFFIES msecs_to_jiffies(2) 137 #define BH_WORKER_RESTARTS 10 138 139 /* 140 * Structure fields follow one of the following exclusion rules. 141 * 142 * I: Modifiable by initialization/destruction paths and read-only for 143 * everyone else. 144 * 145 * P: Preemption protected. Disabling preemption is enough and should 146 * only be modified and accessed from the local cpu. 147 * 148 * L: pool->lock protected. Access with pool->lock held. 149 * 150 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for 151 * reads. 152 * 153 * K: Only modified by worker while holding pool->lock. Can be safely read by 154 * self, while holding pool->lock or from IRQ context if %current is the 155 * kworker. 156 * 157 * S: Only modified by worker self. 158 * 159 * A: wq_pool_attach_mutex protected. 160 * 161 * PL: wq_pool_mutex protected. 162 * 163 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 164 * 165 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 166 * 167 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 168 * RCU for reads. 169 * 170 * WQ: wq->mutex protected. 171 * 172 * WR: wq->mutex protected for writes. RCU protected for reads. 173 * 174 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read 175 * with READ_ONCE() without locking. 176 * 177 * MD: wq_mayday_lock protected. 178 * 179 * WD: Used internally by the watchdog. 180 */ 181 182 /* struct worker is defined in workqueue_internal.h */ 183 184 struct worker_pool { 185 raw_spinlock_t lock; /* the pool lock */ 186 int cpu; /* I: the associated cpu */ 187 int node; /* I: the associated node ID */ 188 int id; /* I: pool ID */ 189 unsigned int flags; /* L: flags */ 190 191 unsigned long watchdog_ts; /* L: watchdog timestamp */ 192 bool cpu_stall; /* WD: stalled cpu bound pool */ 193 194 /* 195 * The counter is incremented in a process context on the associated CPU 196 * w/ preemption disabled, and decremented or reset in the same context 197 * but w/ pool->lock held. The readers grab pool->lock and are 198 * guaranteed to see if the counter reached zero. 199 */ 200 int nr_running; 201 202 struct list_head worklist; /* L: list of pending works */ 203 204 int nr_workers; /* L: total number of workers */ 205 int nr_idle; /* L: currently idle workers */ 206 207 struct list_head idle_list; /* L: list of idle workers */ 208 struct timer_list idle_timer; /* L: worker idle timeout */ 209 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 210 211 struct timer_list mayday_timer; /* L: SOS timer for workers */ 212 213 /* a workers is either on busy_hash or idle_list, or the manager */ 214 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 215 /* L: hash of busy workers */ 216 217 struct worker *manager; /* L: purely informational */ 218 struct list_head workers; /* A: attached workers */ 219 220 struct ida worker_ida; /* worker IDs for task name */ 221 222 struct workqueue_attrs *attrs; /* I: worker attributes */ 223 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 224 int refcnt; /* PL: refcnt for unbound pools */ 225 226 /* 227 * Destruction of pool is RCU protected to allow dereferences 228 * from get_work_pool(). 229 */ 230 struct rcu_head rcu; 231 }; 232 233 /* 234 * Per-pool_workqueue statistics. These can be monitored using 235 * tools/workqueue/wq_monitor.py. 236 */ 237 enum pool_workqueue_stats { 238 PWQ_STAT_STARTED, /* work items started execution */ 239 PWQ_STAT_COMPLETED, /* work items completed execution */ 240 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 241 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 242 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 243 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 244 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 245 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 246 247 PWQ_NR_STATS, 248 }; 249 250 /* 251 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT 252 * of work_struct->data are used for flags and the remaining high bits 253 * point to the pwq; thus, pwqs need to be aligned at two's power of the 254 * number of flag bits. 255 */ 256 struct pool_workqueue { 257 struct worker_pool *pool; /* I: the associated pool */ 258 struct workqueue_struct *wq; /* I: the owning workqueue */ 259 int work_color; /* L: current color */ 260 int flush_color; /* L: flushing color */ 261 int refcnt; /* L: reference count */ 262 int nr_in_flight[WORK_NR_COLORS]; 263 /* L: nr of in_flight works */ 264 bool plugged; /* L: execution suspended */ 265 266 /* 267 * nr_active management and WORK_STRUCT_INACTIVE: 268 * 269 * When pwq->nr_active >= max_active, new work item is queued to 270 * pwq->inactive_works instead of pool->worklist and marked with 271 * WORK_STRUCT_INACTIVE. 272 * 273 * All work items marked with WORK_STRUCT_INACTIVE do not participate in 274 * nr_active and all work items in pwq->inactive_works are marked with 275 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are 276 * in pwq->inactive_works. Some of them are ready to run in 277 * pool->worklist or worker->scheduled. Those work itmes are only struct 278 * wq_barrier which is used for flush_work() and should not participate 279 * in nr_active. For non-barrier work item, it is marked with 280 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 281 */ 282 int nr_active; /* L: nr of active works */ 283 struct list_head inactive_works; /* L: inactive works */ 284 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ 285 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 286 struct list_head mayday_node; /* MD: node on wq->maydays */ 287 288 u64 stats[PWQ_NR_STATS]; 289 290 /* 291 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 292 * and pwq_release_workfn() for details. pool_workqueue itself is also 293 * RCU protected so that the first pwq can be determined without 294 * grabbing wq->mutex. 295 */ 296 struct kthread_work release_work; 297 struct rcu_head rcu; 298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT); 299 300 /* 301 * Structure used to wait for workqueue flush. 302 */ 303 struct wq_flusher { 304 struct list_head list; /* WQ: list of flushers */ 305 int flush_color; /* WQ: flush color waiting for */ 306 struct completion done; /* flush completion */ 307 }; 308 309 struct wq_device; 310 311 /* 312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level 313 * on each CPU, in an unbound workqueue, max_active applies to the whole system. 314 * As sharing a single nr_active across multiple sockets can be very expensive, 315 * the counting and enforcement is per NUMA node. 316 * 317 * The following struct is used to enforce per-node max_active. When a pwq wants 318 * to start executing a work item, it should increment ->nr using 319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over 320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish 321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in 322 * round-robin order. 323 */ 324 struct wq_node_nr_active { 325 int max; /* per-node max_active */ 326 atomic_t nr; /* per-node nr_active */ 327 raw_spinlock_t lock; /* nests inside pool locks */ 328 struct list_head pending_pwqs; /* LN: pwqs with inactive works */ 329 }; 330 331 /* 332 * The externally visible workqueue. It relays the issued work items to 333 * the appropriate worker_pool through its pool_workqueues. 334 */ 335 struct workqueue_struct { 336 struct list_head pwqs; /* WR: all pwqs of this wq */ 337 struct list_head list; /* PR: list of all workqueues */ 338 339 struct mutex mutex; /* protects this wq */ 340 int work_color; /* WQ: current work color */ 341 int flush_color; /* WQ: current flush color */ 342 atomic_t nr_pwqs_to_flush; /* flush in progress */ 343 struct wq_flusher *first_flusher; /* WQ: first flusher */ 344 struct list_head flusher_queue; /* WQ: flush waiters */ 345 struct list_head flusher_overflow; /* WQ: flush overflow list */ 346 347 struct list_head maydays; /* MD: pwqs requesting rescue */ 348 struct worker *rescuer; /* MD: rescue worker */ 349 350 int nr_drainers; /* WQ: drain in progress */ 351 352 /* See alloc_workqueue() function comment for info on min/max_active */ 353 int max_active; /* WO: max active works */ 354 int min_active; /* WO: min active works */ 355 int saved_max_active; /* WQ: saved max_active */ 356 int saved_min_active; /* WQ: saved min_active */ 357 358 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 359 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ 360 361 #ifdef CONFIG_SYSFS 362 struct wq_device *wq_dev; /* I: for sysfs interface */ 363 #endif 364 #ifdef CONFIG_LOCKDEP 365 char *lock_name; 366 struct lock_class_key key; 367 struct lockdep_map __lockdep_map; 368 struct lockdep_map *lockdep_map; 369 #endif 370 char name[WQ_NAME_LEN]; /* I: workqueue name */ 371 372 /* 373 * Destruction of workqueue_struct is RCU protected to allow walking 374 * the workqueues list without grabbing wq_pool_mutex. 375 * This is used to dump all workqueues from sysrq. 376 */ 377 struct rcu_head rcu; 378 379 /* hot fields used during command issue, aligned to cacheline */ 380 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 381 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */ 382 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ 383 }; 384 385 /* 386 * Each pod type describes how CPUs should be grouped for unbound workqueues. 387 * See the comment above workqueue_attrs->affn_scope. 388 */ 389 struct wq_pod_type { 390 int nr_pods; /* number of pods */ 391 cpumask_var_t *pod_cpus; /* pod -> cpus */ 392 int *pod_node; /* pod -> node */ 393 int *cpu_pod; /* cpu -> pod */ 394 }; 395 396 struct work_offq_data { 397 u32 pool_id; 398 u32 disable; 399 u32 flags; 400 }; 401 402 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 403 [WQ_AFFN_DFL] = "default", 404 [WQ_AFFN_CPU] = "cpu", 405 [WQ_AFFN_SMT] = "smt", 406 [WQ_AFFN_CACHE] = "cache", 407 [WQ_AFFN_NUMA] = "numa", 408 [WQ_AFFN_SYSTEM] = "system", 409 }; 410 411 /* 412 * Per-cpu work items which run for longer than the following threshold are 413 * automatically considered CPU intensive and excluded from concurrency 414 * management to prevent them from noticeably delaying other per-cpu work items. 415 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 416 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 417 */ 418 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 419 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 421 static unsigned int wq_cpu_intensive_warning_thresh = 4; 422 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644); 423 #endif 424 425 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 426 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 427 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 428 429 static bool wq_online; /* can kworkers be created yet? */ 430 static bool wq_topo_initialized __read_mostly = false; 431 432 static struct kmem_cache *pwq_cache; 433 434 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 435 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 436 437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 438 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf; 439 440 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 441 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 443 /* wait for manager to go away */ 444 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 445 446 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 447 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 448 449 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */ 450 static cpumask_var_t wq_online_cpumask; 451 452 /* PL&A: allowable cpus for unbound wqs and work items */ 453 static cpumask_var_t wq_unbound_cpumask; 454 455 /* PL: user requested unbound cpumask via sysfs */ 456 static cpumask_var_t wq_requested_unbound_cpumask; 457 458 /* PL: isolated cpumask to be excluded from unbound cpumask */ 459 static cpumask_var_t wq_isolated_cpumask; 460 461 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 462 static struct cpumask wq_cmdline_cpumask __initdata; 463 464 /* CPU where unbound work was last round robin scheduled from this CPU */ 465 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 466 467 /* 468 * Local execution of unbound work items is no longer guaranteed. The 469 * following always forces round-robin CPU selection on unbound work items 470 * to uncover usages which depend on it. 471 */ 472 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 473 static bool wq_debug_force_rr_cpu = true; 474 #else 475 static bool wq_debug_force_rr_cpu = false; 476 #endif 477 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 478 479 /* to raise softirq for the BH worker pools on other CPUs */ 480 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], 481 bh_pool_irq_works); 482 483 /* the BH worker pools */ 484 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 485 bh_worker_pools); 486 487 /* the per-cpu worker pools */ 488 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 489 cpu_worker_pools); 490 491 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 492 493 /* PL: hash of all unbound pools keyed by pool->attrs */ 494 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 495 496 /* I: attributes used when instantiating standard unbound pools on demand */ 497 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 498 499 /* I: attributes used when instantiating ordered pools on demand */ 500 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 501 502 /* 503 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 504 * process context while holding a pool lock. Bounce to a dedicated kthread 505 * worker to avoid A-A deadlocks. 506 */ 507 static struct kthread_worker *pwq_release_worker __ro_after_init; 508 509 struct workqueue_struct *system_wq __ro_after_init; 510 EXPORT_SYMBOL(system_wq); 511 struct workqueue_struct *system_highpri_wq __ro_after_init; 512 EXPORT_SYMBOL_GPL(system_highpri_wq); 513 struct workqueue_struct *system_long_wq __ro_after_init; 514 EXPORT_SYMBOL_GPL(system_long_wq); 515 struct workqueue_struct *system_unbound_wq __ro_after_init; 516 EXPORT_SYMBOL_GPL(system_unbound_wq); 517 struct workqueue_struct *system_freezable_wq __ro_after_init; 518 EXPORT_SYMBOL_GPL(system_freezable_wq); 519 struct workqueue_struct *system_power_efficient_wq __ro_after_init; 520 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 521 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; 522 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 523 struct workqueue_struct *system_bh_wq; 524 EXPORT_SYMBOL_GPL(system_bh_wq); 525 struct workqueue_struct *system_bh_highpri_wq; 526 EXPORT_SYMBOL_GPL(system_bh_highpri_wq); 527 528 static int worker_thread(void *__worker); 529 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 530 static void show_pwq(struct pool_workqueue *pwq); 531 static void show_one_worker_pool(struct worker_pool *pool); 532 533 #define CREATE_TRACE_POINTS 534 #include <trace/events/workqueue.h> 535 536 #define assert_rcu_or_pool_mutex() \ 537 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 538 !lockdep_is_held(&wq_pool_mutex), \ 539 "RCU or wq_pool_mutex should be held") 540 541 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 542 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 543 !lockdep_is_held(&wq->mutex) && \ 544 !lockdep_is_held(&wq_pool_mutex), \ 545 "RCU, wq->mutex or wq_pool_mutex should be held") 546 547 #define for_each_bh_worker_pool(pool, cpu) \ 548 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \ 549 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 550 (pool)++) 551 552 #define for_each_cpu_worker_pool(pool, cpu) \ 553 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 554 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 555 (pool)++) 556 557 /** 558 * for_each_pool - iterate through all worker_pools in the system 559 * @pool: iteration cursor 560 * @pi: integer used for iteration 561 * 562 * This must be called either with wq_pool_mutex held or RCU read 563 * locked. If the pool needs to be used beyond the locking in effect, the 564 * caller is responsible for guaranteeing that the pool stays online. 565 * 566 * The if/else clause exists only for the lockdep assertion and can be 567 * ignored. 568 */ 569 #define for_each_pool(pool, pi) \ 570 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 571 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 572 else 573 574 /** 575 * for_each_pool_worker - iterate through all workers of a worker_pool 576 * @worker: iteration cursor 577 * @pool: worker_pool to iterate workers of 578 * 579 * This must be called with wq_pool_attach_mutex. 580 * 581 * The if/else clause exists only for the lockdep assertion and can be 582 * ignored. 583 */ 584 #define for_each_pool_worker(worker, pool) \ 585 list_for_each_entry((worker), &(pool)->workers, node) \ 586 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 587 else 588 589 /** 590 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 591 * @pwq: iteration cursor 592 * @wq: the target workqueue 593 * 594 * This must be called either with wq->mutex held or RCU read locked. 595 * If the pwq needs to be used beyond the locking in effect, the caller is 596 * responsible for guaranteeing that the pwq stays online. 597 * 598 * The if/else clause exists only for the lockdep assertion and can be 599 * ignored. 600 */ 601 #define for_each_pwq(pwq, wq) \ 602 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 603 lockdep_is_held(&(wq->mutex))) 604 605 #ifdef CONFIG_DEBUG_OBJECTS_WORK 606 607 static const struct debug_obj_descr work_debug_descr; 608 609 static void *work_debug_hint(void *addr) 610 { 611 return ((struct work_struct *) addr)->func; 612 } 613 614 static bool work_is_static_object(void *addr) 615 { 616 struct work_struct *work = addr; 617 618 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 619 } 620 621 /* 622 * fixup_init is called when: 623 * - an active object is initialized 624 */ 625 static bool work_fixup_init(void *addr, enum debug_obj_state state) 626 { 627 struct work_struct *work = addr; 628 629 switch (state) { 630 case ODEBUG_STATE_ACTIVE: 631 cancel_work_sync(work); 632 debug_object_init(work, &work_debug_descr); 633 return true; 634 default: 635 return false; 636 } 637 } 638 639 /* 640 * fixup_free is called when: 641 * - an active object is freed 642 */ 643 static bool work_fixup_free(void *addr, enum debug_obj_state state) 644 { 645 struct work_struct *work = addr; 646 647 switch (state) { 648 case ODEBUG_STATE_ACTIVE: 649 cancel_work_sync(work); 650 debug_object_free(work, &work_debug_descr); 651 return true; 652 default: 653 return false; 654 } 655 } 656 657 static const struct debug_obj_descr work_debug_descr = { 658 .name = "work_struct", 659 .debug_hint = work_debug_hint, 660 .is_static_object = work_is_static_object, 661 .fixup_init = work_fixup_init, 662 .fixup_free = work_fixup_free, 663 }; 664 665 static inline void debug_work_activate(struct work_struct *work) 666 { 667 debug_object_activate(work, &work_debug_descr); 668 } 669 670 static inline void debug_work_deactivate(struct work_struct *work) 671 { 672 debug_object_deactivate(work, &work_debug_descr); 673 } 674 675 void __init_work(struct work_struct *work, int onstack) 676 { 677 if (onstack) 678 debug_object_init_on_stack(work, &work_debug_descr); 679 else 680 debug_object_init(work, &work_debug_descr); 681 } 682 EXPORT_SYMBOL_GPL(__init_work); 683 684 void destroy_work_on_stack(struct work_struct *work) 685 { 686 debug_object_free(work, &work_debug_descr); 687 } 688 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 689 690 void destroy_delayed_work_on_stack(struct delayed_work *work) 691 { 692 destroy_timer_on_stack(&work->timer); 693 debug_object_free(&work->work, &work_debug_descr); 694 } 695 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 696 697 #else 698 static inline void debug_work_activate(struct work_struct *work) { } 699 static inline void debug_work_deactivate(struct work_struct *work) { } 700 #endif 701 702 /** 703 * worker_pool_assign_id - allocate ID and assign it to @pool 704 * @pool: the pool pointer of interest 705 * 706 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 707 * successfully, -errno on failure. 708 */ 709 static int worker_pool_assign_id(struct worker_pool *pool) 710 { 711 int ret; 712 713 lockdep_assert_held(&wq_pool_mutex); 714 715 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 716 GFP_KERNEL); 717 if (ret >= 0) { 718 pool->id = ret; 719 return 0; 720 } 721 return ret; 722 } 723 724 static struct pool_workqueue __rcu ** 725 unbound_pwq_slot(struct workqueue_struct *wq, int cpu) 726 { 727 if (cpu >= 0) 728 return per_cpu_ptr(wq->cpu_pwq, cpu); 729 else 730 return &wq->dfl_pwq; 731 } 732 733 /* @cpu < 0 for dfl_pwq */ 734 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) 735 { 736 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), 737 lockdep_is_held(&wq_pool_mutex) || 738 lockdep_is_held(&wq->mutex)); 739 } 740 741 /** 742 * unbound_effective_cpumask - effective cpumask of an unbound workqueue 743 * @wq: workqueue of interest 744 * 745 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which 746 * is masked with wq_unbound_cpumask to determine the effective cpumask. The 747 * default pwq is always mapped to the pool with the current effective cpumask. 748 */ 749 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) 750 { 751 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask; 752 } 753 754 static unsigned int work_color_to_flags(int color) 755 { 756 return color << WORK_STRUCT_COLOR_SHIFT; 757 } 758 759 static int get_work_color(unsigned long work_data) 760 { 761 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 762 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 763 } 764 765 static int work_next_color(int color) 766 { 767 return (color + 1) % WORK_NR_COLORS; 768 } 769 770 static unsigned long pool_offq_flags(struct worker_pool *pool) 771 { 772 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0; 773 } 774 775 /* 776 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 777 * contain the pointer to the queued pwq. Once execution starts, the flag 778 * is cleared and the high bits contain OFFQ flags and pool ID. 779 * 780 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling() 781 * can be used to set the pwq, pool or clear work->data. These functions should 782 * only be called while the work is owned - ie. while the PENDING bit is set. 783 * 784 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 785 * corresponding to a work. Pool is available once the work has been 786 * queued anywhere after initialization until it is sync canceled. pwq is 787 * available only while the work item is queued. 788 */ 789 static inline void set_work_data(struct work_struct *work, unsigned long data) 790 { 791 WARN_ON_ONCE(!work_pending(work)); 792 atomic_long_set(&work->data, data | work_static(work)); 793 } 794 795 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 796 unsigned long flags) 797 { 798 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING | 799 WORK_STRUCT_PWQ | flags); 800 } 801 802 static void set_work_pool_and_keep_pending(struct work_struct *work, 803 int pool_id, unsigned long flags) 804 { 805 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 806 WORK_STRUCT_PENDING | flags); 807 } 808 809 static void set_work_pool_and_clear_pending(struct work_struct *work, 810 int pool_id, unsigned long flags) 811 { 812 /* 813 * The following wmb is paired with the implied mb in 814 * test_and_set_bit(PENDING) and ensures all updates to @work made 815 * here are visible to and precede any updates by the next PENDING 816 * owner. 817 */ 818 smp_wmb(); 819 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 820 flags); 821 /* 822 * The following mb guarantees that previous clear of a PENDING bit 823 * will not be reordered with any speculative LOADS or STORES from 824 * work->current_func, which is executed afterwards. This possible 825 * reordering can lead to a missed execution on attempt to queue 826 * the same @work. E.g. consider this case: 827 * 828 * CPU#0 CPU#1 829 * ---------------------------- -------------------------------- 830 * 831 * 1 STORE event_indicated 832 * 2 queue_work_on() { 833 * 3 test_and_set_bit(PENDING) 834 * 4 } set_..._and_clear_pending() { 835 * 5 set_work_data() # clear bit 836 * 6 smp_mb() 837 * 7 work->current_func() { 838 * 8 LOAD event_indicated 839 * } 840 * 841 * Without an explicit full barrier speculative LOAD on line 8 can 842 * be executed before CPU#0 does STORE on line 1. If that happens, 843 * CPU#0 observes the PENDING bit is still set and new execution of 844 * a @work is not queued in a hope, that CPU#1 will eventually 845 * finish the queued @work. Meanwhile CPU#1 does not see 846 * event_indicated is set, because speculative LOAD was executed 847 * before actual STORE. 848 */ 849 smp_mb(); 850 } 851 852 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 853 { 854 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK); 855 } 856 857 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 858 { 859 unsigned long data = atomic_long_read(&work->data); 860 861 if (data & WORK_STRUCT_PWQ) 862 return work_struct_pwq(data); 863 else 864 return NULL; 865 } 866 867 /** 868 * get_work_pool - return the worker_pool a given work was associated with 869 * @work: the work item of interest 870 * 871 * Pools are created and destroyed under wq_pool_mutex, and allows read 872 * access under RCU read lock. As such, this function should be 873 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 874 * 875 * All fields of the returned pool are accessible as long as the above 876 * mentioned locking is in effect. If the returned pool needs to be used 877 * beyond the critical section, the caller is responsible for ensuring the 878 * returned pool is and stays online. 879 * 880 * Return: The worker_pool @work was last associated with. %NULL if none. 881 */ 882 static struct worker_pool *get_work_pool(struct work_struct *work) 883 { 884 unsigned long data = atomic_long_read(&work->data); 885 int pool_id; 886 887 assert_rcu_or_pool_mutex(); 888 889 if (data & WORK_STRUCT_PWQ) 890 return work_struct_pwq(data)->pool; 891 892 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 893 if (pool_id == WORK_OFFQ_POOL_NONE) 894 return NULL; 895 896 return idr_find(&worker_pool_idr, pool_id); 897 } 898 899 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits) 900 { 901 return (v >> shift) & ((1 << bits) - 1); 902 } 903 904 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data) 905 { 906 WARN_ON_ONCE(data & WORK_STRUCT_PWQ); 907 908 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT, 909 WORK_OFFQ_POOL_BITS); 910 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT, 911 WORK_OFFQ_DISABLE_BITS); 912 offqd->flags = data & WORK_OFFQ_FLAG_MASK; 913 } 914 915 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd) 916 { 917 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) | 918 ((unsigned long)offqd->flags); 919 } 920 921 /* 922 * Policy functions. These define the policies on how the global worker 923 * pools are managed. Unless noted otherwise, these functions assume that 924 * they're being called with pool->lock held. 925 */ 926 927 /* 928 * Need to wake up a worker? Called from anything but currently 929 * running workers. 930 * 931 * Note that, because unbound workers never contribute to nr_running, this 932 * function will always return %true for unbound pools as long as the 933 * worklist isn't empty. 934 */ 935 static bool need_more_worker(struct worker_pool *pool) 936 { 937 return !list_empty(&pool->worklist) && !pool->nr_running; 938 } 939 940 /* Can I start working? Called from busy but !running workers. */ 941 static bool may_start_working(struct worker_pool *pool) 942 { 943 return pool->nr_idle; 944 } 945 946 /* Do I need to keep working? Called from currently running workers. */ 947 static bool keep_working(struct worker_pool *pool) 948 { 949 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 950 } 951 952 /* Do we need a new worker? Called from manager. */ 953 static bool need_to_create_worker(struct worker_pool *pool) 954 { 955 return need_more_worker(pool) && !may_start_working(pool); 956 } 957 958 /* Do we have too many workers and should some go away? */ 959 static bool too_many_workers(struct worker_pool *pool) 960 { 961 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 962 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 963 int nr_busy = pool->nr_workers - nr_idle; 964 965 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 966 } 967 968 /** 969 * worker_set_flags - set worker flags and adjust nr_running accordingly 970 * @worker: self 971 * @flags: flags to set 972 * 973 * Set @flags in @worker->flags and adjust nr_running accordingly. 974 */ 975 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 976 { 977 struct worker_pool *pool = worker->pool; 978 979 lockdep_assert_held(&pool->lock); 980 981 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 982 if ((flags & WORKER_NOT_RUNNING) && 983 !(worker->flags & WORKER_NOT_RUNNING)) { 984 pool->nr_running--; 985 } 986 987 worker->flags |= flags; 988 } 989 990 /** 991 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 992 * @worker: self 993 * @flags: flags to clear 994 * 995 * Clear @flags in @worker->flags and adjust nr_running accordingly. 996 */ 997 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 998 { 999 struct worker_pool *pool = worker->pool; 1000 unsigned int oflags = worker->flags; 1001 1002 lockdep_assert_held(&pool->lock); 1003 1004 worker->flags &= ~flags; 1005 1006 /* 1007 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1008 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1009 * of multiple flags, not a single flag. 1010 */ 1011 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1012 if (!(worker->flags & WORKER_NOT_RUNNING)) 1013 pool->nr_running++; 1014 } 1015 1016 /* Return the first idle worker. Called with pool->lock held. */ 1017 static struct worker *first_idle_worker(struct worker_pool *pool) 1018 { 1019 if (unlikely(list_empty(&pool->idle_list))) 1020 return NULL; 1021 1022 return list_first_entry(&pool->idle_list, struct worker, entry); 1023 } 1024 1025 /** 1026 * worker_enter_idle - enter idle state 1027 * @worker: worker which is entering idle state 1028 * 1029 * @worker is entering idle state. Update stats and idle timer if 1030 * necessary. 1031 * 1032 * LOCKING: 1033 * raw_spin_lock_irq(pool->lock). 1034 */ 1035 static void worker_enter_idle(struct worker *worker) 1036 { 1037 struct worker_pool *pool = worker->pool; 1038 1039 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1040 WARN_ON_ONCE(!list_empty(&worker->entry) && 1041 (worker->hentry.next || worker->hentry.pprev))) 1042 return; 1043 1044 /* can't use worker_set_flags(), also called from create_worker() */ 1045 worker->flags |= WORKER_IDLE; 1046 pool->nr_idle++; 1047 worker->last_active = jiffies; 1048 1049 /* idle_list is LIFO */ 1050 list_add(&worker->entry, &pool->idle_list); 1051 1052 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1053 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1054 1055 /* Sanity check nr_running. */ 1056 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1057 } 1058 1059 /** 1060 * worker_leave_idle - leave idle state 1061 * @worker: worker which is leaving idle state 1062 * 1063 * @worker is leaving idle state. Update stats. 1064 * 1065 * LOCKING: 1066 * raw_spin_lock_irq(pool->lock). 1067 */ 1068 static void worker_leave_idle(struct worker *worker) 1069 { 1070 struct worker_pool *pool = worker->pool; 1071 1072 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1073 return; 1074 worker_clr_flags(worker, WORKER_IDLE); 1075 pool->nr_idle--; 1076 list_del_init(&worker->entry); 1077 } 1078 1079 /** 1080 * find_worker_executing_work - find worker which is executing a work 1081 * @pool: pool of interest 1082 * @work: work to find worker for 1083 * 1084 * Find a worker which is executing @work on @pool by searching 1085 * @pool->busy_hash which is keyed by the address of @work. For a worker 1086 * to match, its current execution should match the address of @work and 1087 * its work function. This is to avoid unwanted dependency between 1088 * unrelated work executions through a work item being recycled while still 1089 * being executed. 1090 * 1091 * This is a bit tricky. A work item may be freed once its execution 1092 * starts and nothing prevents the freed area from being recycled for 1093 * another work item. If the same work item address ends up being reused 1094 * before the original execution finishes, workqueue will identify the 1095 * recycled work item as currently executing and make it wait until the 1096 * current execution finishes, introducing an unwanted dependency. 1097 * 1098 * This function checks the work item address and work function to avoid 1099 * false positives. Note that this isn't complete as one may construct a 1100 * work function which can introduce dependency onto itself through a 1101 * recycled work item. Well, if somebody wants to shoot oneself in the 1102 * foot that badly, there's only so much we can do, and if such deadlock 1103 * actually occurs, it should be easy to locate the culprit work function. 1104 * 1105 * CONTEXT: 1106 * raw_spin_lock_irq(pool->lock). 1107 * 1108 * Return: 1109 * Pointer to worker which is executing @work if found, %NULL 1110 * otherwise. 1111 */ 1112 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1113 struct work_struct *work) 1114 { 1115 struct worker *worker; 1116 1117 hash_for_each_possible(pool->busy_hash, worker, hentry, 1118 (unsigned long)work) 1119 if (worker->current_work == work && 1120 worker->current_func == work->func) 1121 return worker; 1122 1123 return NULL; 1124 } 1125 1126 /** 1127 * move_linked_works - move linked works to a list 1128 * @work: start of series of works to be scheduled 1129 * @head: target list to append @work to 1130 * @nextp: out parameter for nested worklist walking 1131 * 1132 * Schedule linked works starting from @work to @head. Work series to be 1133 * scheduled starts at @work and includes any consecutive work with 1134 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1135 * @nextp. 1136 * 1137 * CONTEXT: 1138 * raw_spin_lock_irq(pool->lock). 1139 */ 1140 static void move_linked_works(struct work_struct *work, struct list_head *head, 1141 struct work_struct **nextp) 1142 { 1143 struct work_struct *n; 1144 1145 /* 1146 * Linked worklist will always end before the end of the list, 1147 * use NULL for list head. 1148 */ 1149 list_for_each_entry_safe_from(work, n, NULL, entry) { 1150 list_move_tail(&work->entry, head); 1151 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1152 break; 1153 } 1154 1155 /* 1156 * If we're already inside safe list traversal and have moved 1157 * multiple works to the scheduled queue, the next position 1158 * needs to be updated. 1159 */ 1160 if (nextp) 1161 *nextp = n; 1162 } 1163 1164 /** 1165 * assign_work - assign a work item and its linked work items to a worker 1166 * @work: work to assign 1167 * @worker: worker to assign to 1168 * @nextp: out parameter for nested worklist walking 1169 * 1170 * Assign @work and its linked work items to @worker. If @work is already being 1171 * executed by another worker in the same pool, it'll be punted there. 1172 * 1173 * If @nextp is not NULL, it's updated to point to the next work of the last 1174 * scheduled work. This allows assign_work() to be nested inside 1175 * list_for_each_entry_safe(). 1176 * 1177 * Returns %true if @work was successfully assigned to @worker. %false if @work 1178 * was punted to another worker already executing it. 1179 */ 1180 static bool assign_work(struct work_struct *work, struct worker *worker, 1181 struct work_struct **nextp) 1182 { 1183 struct worker_pool *pool = worker->pool; 1184 struct worker *collision; 1185 1186 lockdep_assert_held(&pool->lock); 1187 1188 /* 1189 * A single work shouldn't be executed concurrently by multiple workers. 1190 * __queue_work() ensures that @work doesn't jump to a different pool 1191 * while still running in the previous pool. Here, we should ensure that 1192 * @work is not executed concurrently by multiple workers from the same 1193 * pool. Check whether anyone is already processing the work. If so, 1194 * defer the work to the currently executing one. 1195 */ 1196 collision = find_worker_executing_work(pool, work); 1197 if (unlikely(collision)) { 1198 move_linked_works(work, &collision->scheduled, nextp); 1199 return false; 1200 } 1201 1202 move_linked_works(work, &worker->scheduled, nextp); 1203 return true; 1204 } 1205 1206 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool) 1207 { 1208 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0; 1209 1210 return &per_cpu(bh_pool_irq_works, pool->cpu)[high]; 1211 } 1212 1213 static void kick_bh_pool(struct worker_pool *pool) 1214 { 1215 #ifdef CONFIG_SMP 1216 /* see drain_dead_softirq_workfn() for BH_DRAINING */ 1217 if (unlikely(pool->cpu != smp_processor_id() && 1218 !(pool->flags & POOL_BH_DRAINING))) { 1219 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu); 1220 return; 1221 } 1222 #endif 1223 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 1224 raise_softirq_irqoff(HI_SOFTIRQ); 1225 else 1226 raise_softirq_irqoff(TASKLET_SOFTIRQ); 1227 } 1228 1229 /** 1230 * kick_pool - wake up an idle worker if necessary 1231 * @pool: pool to kick 1232 * 1233 * @pool may have pending work items. Wake up worker if necessary. Returns 1234 * whether a worker was woken up. 1235 */ 1236 static bool kick_pool(struct worker_pool *pool) 1237 { 1238 struct worker *worker = first_idle_worker(pool); 1239 struct task_struct *p; 1240 1241 lockdep_assert_held(&pool->lock); 1242 1243 if (!need_more_worker(pool) || !worker) 1244 return false; 1245 1246 if (pool->flags & POOL_BH) { 1247 kick_bh_pool(pool); 1248 return true; 1249 } 1250 1251 p = worker->task; 1252 1253 #ifdef CONFIG_SMP 1254 /* 1255 * Idle @worker is about to execute @work and waking up provides an 1256 * opportunity to migrate @worker at a lower cost by setting the task's 1257 * wake_cpu field. Let's see if we want to move @worker to improve 1258 * execution locality. 1259 * 1260 * We're waking the worker that went idle the latest and there's some 1261 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1262 * so, setting the wake_cpu won't do anything. As this is a best-effort 1263 * optimization and the race window is narrow, let's leave as-is for 1264 * now. If this becomes pronounced, we can skip over workers which are 1265 * still on cpu when picking an idle worker. 1266 * 1267 * If @pool has non-strict affinity, @worker might have ended up outside 1268 * its affinity scope. Repatriate. 1269 */ 1270 if (!pool->attrs->affn_strict && 1271 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1272 struct work_struct *work = list_first_entry(&pool->worklist, 1273 struct work_struct, entry); 1274 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask, 1275 cpu_online_mask); 1276 if (wake_cpu < nr_cpu_ids) { 1277 p->wake_cpu = wake_cpu; 1278 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1279 } 1280 } 1281 #endif 1282 wake_up_process(p); 1283 return true; 1284 } 1285 1286 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1287 1288 /* 1289 * Concurrency-managed per-cpu work items that hog CPU for longer than 1290 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1291 * which prevents them from stalling other concurrency-managed work items. If a 1292 * work function keeps triggering this mechanism, it's likely that the work item 1293 * should be using an unbound workqueue instead. 1294 * 1295 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1296 * and report them so that they can be examined and converted to use unbound 1297 * workqueues as appropriate. To avoid flooding the console, each violating work 1298 * function is tracked and reported with exponential backoff. 1299 */ 1300 #define WCI_MAX_ENTS 128 1301 1302 struct wci_ent { 1303 work_func_t func; 1304 atomic64_t cnt; 1305 struct hlist_node hash_node; 1306 }; 1307 1308 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1309 static int wci_nr_ents; 1310 static DEFINE_RAW_SPINLOCK(wci_lock); 1311 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1312 1313 static struct wci_ent *wci_find_ent(work_func_t func) 1314 { 1315 struct wci_ent *ent; 1316 1317 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1318 (unsigned long)func) { 1319 if (ent->func == func) 1320 return ent; 1321 } 1322 return NULL; 1323 } 1324 1325 static void wq_cpu_intensive_report(work_func_t func) 1326 { 1327 struct wci_ent *ent; 1328 1329 restart: 1330 ent = wci_find_ent(func); 1331 if (ent) { 1332 u64 cnt; 1333 1334 /* 1335 * Start reporting from the warning_thresh and back off 1336 * exponentially. 1337 */ 1338 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1339 if (wq_cpu_intensive_warning_thresh && 1340 cnt >= wq_cpu_intensive_warning_thresh && 1341 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh)) 1342 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1343 ent->func, wq_cpu_intensive_thresh_us, 1344 atomic64_read(&ent->cnt)); 1345 return; 1346 } 1347 1348 /* 1349 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1350 * is exhausted, something went really wrong and we probably made enough 1351 * noise already. 1352 */ 1353 if (wci_nr_ents >= WCI_MAX_ENTS) 1354 return; 1355 1356 raw_spin_lock(&wci_lock); 1357 1358 if (wci_nr_ents >= WCI_MAX_ENTS) { 1359 raw_spin_unlock(&wci_lock); 1360 return; 1361 } 1362 1363 if (wci_find_ent(func)) { 1364 raw_spin_unlock(&wci_lock); 1365 goto restart; 1366 } 1367 1368 ent = &wci_ents[wci_nr_ents++]; 1369 ent->func = func; 1370 atomic64_set(&ent->cnt, 0); 1371 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1372 1373 raw_spin_unlock(&wci_lock); 1374 1375 goto restart; 1376 } 1377 1378 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1379 static void wq_cpu_intensive_report(work_func_t func) {} 1380 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1381 1382 /** 1383 * wq_worker_running - a worker is running again 1384 * @task: task waking up 1385 * 1386 * This function is called when a worker returns from schedule() 1387 */ 1388 void wq_worker_running(struct task_struct *task) 1389 { 1390 struct worker *worker = kthread_data(task); 1391 1392 if (!READ_ONCE(worker->sleeping)) 1393 return; 1394 1395 /* 1396 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1397 * and the nr_running increment below, we may ruin the nr_running reset 1398 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1399 * pool. Protect against such race. 1400 */ 1401 preempt_disable(); 1402 if (!(worker->flags & WORKER_NOT_RUNNING)) 1403 worker->pool->nr_running++; 1404 preempt_enable(); 1405 1406 /* 1407 * CPU intensive auto-detection cares about how long a work item hogged 1408 * CPU without sleeping. Reset the starting timestamp on wakeup. 1409 */ 1410 worker->current_at = worker->task->se.sum_exec_runtime; 1411 1412 WRITE_ONCE(worker->sleeping, 0); 1413 } 1414 1415 /** 1416 * wq_worker_sleeping - a worker is going to sleep 1417 * @task: task going to sleep 1418 * 1419 * This function is called from schedule() when a busy worker is 1420 * going to sleep. 1421 */ 1422 void wq_worker_sleeping(struct task_struct *task) 1423 { 1424 struct worker *worker = kthread_data(task); 1425 struct worker_pool *pool; 1426 1427 /* 1428 * Rescuers, which may not have all the fields set up like normal 1429 * workers, also reach here, let's not access anything before 1430 * checking NOT_RUNNING. 1431 */ 1432 if (worker->flags & WORKER_NOT_RUNNING) 1433 return; 1434 1435 pool = worker->pool; 1436 1437 /* Return if preempted before wq_worker_running() was reached */ 1438 if (READ_ONCE(worker->sleeping)) 1439 return; 1440 1441 WRITE_ONCE(worker->sleeping, 1); 1442 raw_spin_lock_irq(&pool->lock); 1443 1444 /* 1445 * Recheck in case unbind_workers() preempted us. We don't 1446 * want to decrement nr_running after the worker is unbound 1447 * and nr_running has been reset. 1448 */ 1449 if (worker->flags & WORKER_NOT_RUNNING) { 1450 raw_spin_unlock_irq(&pool->lock); 1451 return; 1452 } 1453 1454 pool->nr_running--; 1455 if (kick_pool(pool)) 1456 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1457 1458 raw_spin_unlock_irq(&pool->lock); 1459 } 1460 1461 /** 1462 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1463 * @task: task currently running 1464 * 1465 * Called from sched_tick(). We're in the IRQ context and the current 1466 * worker's fields which follow the 'K' locking rule can be accessed safely. 1467 */ 1468 void wq_worker_tick(struct task_struct *task) 1469 { 1470 struct worker *worker = kthread_data(task); 1471 struct pool_workqueue *pwq = worker->current_pwq; 1472 struct worker_pool *pool = worker->pool; 1473 1474 if (!pwq) 1475 return; 1476 1477 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1478 1479 if (!wq_cpu_intensive_thresh_us) 1480 return; 1481 1482 /* 1483 * If the current worker is concurrency managed and hogged the CPU for 1484 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1485 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1486 * 1487 * Set @worker->sleeping means that @worker is in the process of 1488 * switching out voluntarily and won't be contributing to 1489 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1490 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1491 * double decrements. The task is releasing the CPU anyway. Let's skip. 1492 * We probably want to make this prettier in the future. 1493 */ 1494 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1495 worker->task->se.sum_exec_runtime - worker->current_at < 1496 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1497 return; 1498 1499 raw_spin_lock(&pool->lock); 1500 1501 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1502 wq_cpu_intensive_report(worker->current_func); 1503 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1504 1505 if (kick_pool(pool)) 1506 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1507 1508 raw_spin_unlock(&pool->lock); 1509 } 1510 1511 /** 1512 * wq_worker_last_func - retrieve worker's last work function 1513 * @task: Task to retrieve last work function of. 1514 * 1515 * Determine the last function a worker executed. This is called from 1516 * the scheduler to get a worker's last known identity. 1517 * 1518 * CONTEXT: 1519 * raw_spin_lock_irq(rq->lock) 1520 * 1521 * This function is called during schedule() when a kworker is going 1522 * to sleep. It's used by psi to identify aggregation workers during 1523 * dequeuing, to allow periodic aggregation to shut-off when that 1524 * worker is the last task in the system or cgroup to go to sleep. 1525 * 1526 * As this function doesn't involve any workqueue-related locking, it 1527 * only returns stable values when called from inside the scheduler's 1528 * queuing and dequeuing paths, when @task, which must be a kworker, 1529 * is guaranteed to not be processing any works. 1530 * 1531 * Return: 1532 * The last work function %current executed as a worker, NULL if it 1533 * hasn't executed any work yet. 1534 */ 1535 work_func_t wq_worker_last_func(struct task_struct *task) 1536 { 1537 struct worker *worker = kthread_data(task); 1538 1539 return worker->last_func; 1540 } 1541 1542 /** 1543 * wq_node_nr_active - Determine wq_node_nr_active to use 1544 * @wq: workqueue of interest 1545 * @node: NUMA node, can be %NUMA_NO_NODE 1546 * 1547 * Determine wq_node_nr_active to use for @wq on @node. Returns: 1548 * 1549 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. 1550 * 1551 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. 1552 * 1553 * - Otherwise, node_nr_active[@node]. 1554 */ 1555 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, 1556 int node) 1557 { 1558 if (!(wq->flags & WQ_UNBOUND)) 1559 return NULL; 1560 1561 if (node == NUMA_NO_NODE) 1562 node = nr_node_ids; 1563 1564 return wq->node_nr_active[node]; 1565 } 1566 1567 /** 1568 * wq_update_node_max_active - Update per-node max_actives to use 1569 * @wq: workqueue to update 1570 * @off_cpu: CPU that's going down, -1 if a CPU is not going down 1571 * 1572 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is 1573 * distributed among nodes according to the proportions of numbers of online 1574 * cpus. The result is always between @wq->min_active and max_active. 1575 */ 1576 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) 1577 { 1578 struct cpumask *effective = unbound_effective_cpumask(wq); 1579 int min_active = READ_ONCE(wq->min_active); 1580 int max_active = READ_ONCE(wq->max_active); 1581 int total_cpus, node; 1582 1583 lockdep_assert_held(&wq->mutex); 1584 1585 if (!wq_topo_initialized) 1586 return; 1587 1588 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective)) 1589 off_cpu = -1; 1590 1591 total_cpus = cpumask_weight_and(effective, cpu_online_mask); 1592 if (off_cpu >= 0) 1593 total_cpus--; 1594 1595 /* If all CPUs of the wq get offline, use the default values */ 1596 if (unlikely(!total_cpus)) { 1597 for_each_node(node) 1598 wq_node_nr_active(wq, node)->max = min_active; 1599 1600 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1601 return; 1602 } 1603 1604 for_each_node(node) { 1605 int node_cpus; 1606 1607 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node)); 1608 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node) 1609 node_cpus--; 1610 1611 wq_node_nr_active(wq, node)->max = 1612 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), 1613 min_active, max_active); 1614 } 1615 1616 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1617 } 1618 1619 /** 1620 * get_pwq - get an extra reference on the specified pool_workqueue 1621 * @pwq: pool_workqueue to get 1622 * 1623 * Obtain an extra reference on @pwq. The caller should guarantee that 1624 * @pwq has positive refcnt and be holding the matching pool->lock. 1625 */ 1626 static void get_pwq(struct pool_workqueue *pwq) 1627 { 1628 lockdep_assert_held(&pwq->pool->lock); 1629 WARN_ON_ONCE(pwq->refcnt <= 0); 1630 pwq->refcnt++; 1631 } 1632 1633 /** 1634 * put_pwq - put a pool_workqueue reference 1635 * @pwq: pool_workqueue to put 1636 * 1637 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1638 * destruction. The caller should be holding the matching pool->lock. 1639 */ 1640 static void put_pwq(struct pool_workqueue *pwq) 1641 { 1642 lockdep_assert_held(&pwq->pool->lock); 1643 if (likely(--pwq->refcnt)) 1644 return; 1645 /* 1646 * @pwq can't be released under pool->lock, bounce to a dedicated 1647 * kthread_worker to avoid A-A deadlocks. 1648 */ 1649 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1650 } 1651 1652 /** 1653 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1654 * @pwq: pool_workqueue to put (can be %NULL) 1655 * 1656 * put_pwq() with locking. This function also allows %NULL @pwq. 1657 */ 1658 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1659 { 1660 if (pwq) { 1661 /* 1662 * As both pwqs and pools are RCU protected, the 1663 * following lock operations are safe. 1664 */ 1665 raw_spin_lock_irq(&pwq->pool->lock); 1666 put_pwq(pwq); 1667 raw_spin_unlock_irq(&pwq->pool->lock); 1668 } 1669 } 1670 1671 static bool pwq_is_empty(struct pool_workqueue *pwq) 1672 { 1673 return !pwq->nr_active && list_empty(&pwq->inactive_works); 1674 } 1675 1676 static void __pwq_activate_work(struct pool_workqueue *pwq, 1677 struct work_struct *work) 1678 { 1679 unsigned long *wdb = work_data_bits(work); 1680 1681 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); 1682 trace_workqueue_activate_work(work); 1683 if (list_empty(&pwq->pool->worklist)) 1684 pwq->pool->watchdog_ts = jiffies; 1685 move_linked_works(work, &pwq->pool->worklist, NULL); 1686 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); 1687 } 1688 1689 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) 1690 { 1691 int max = READ_ONCE(nna->max); 1692 1693 while (true) { 1694 int old, tmp; 1695 1696 old = atomic_read(&nna->nr); 1697 if (old >= max) 1698 return false; 1699 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1); 1700 if (tmp == old) 1701 return true; 1702 } 1703 } 1704 1705 /** 1706 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq 1707 * @pwq: pool_workqueue of interest 1708 * @fill: max_active may have increased, try to increase concurrency level 1709 * 1710 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is 1711 * successfully obtained. %false otherwise. 1712 */ 1713 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) 1714 { 1715 struct workqueue_struct *wq = pwq->wq; 1716 struct worker_pool *pool = pwq->pool; 1717 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node); 1718 bool obtained = false; 1719 1720 lockdep_assert_held(&pool->lock); 1721 1722 if (!nna) { 1723 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */ 1724 obtained = pwq->nr_active < READ_ONCE(wq->max_active); 1725 goto out; 1726 } 1727 1728 if (unlikely(pwq->plugged)) 1729 return false; 1730 1731 /* 1732 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is 1733 * already waiting on $nna, pwq_dec_nr_active() will maintain the 1734 * concurrency level. Don't jump the line. 1735 * 1736 * We need to ignore the pending test after max_active has increased as 1737 * pwq_dec_nr_active() can only maintain the concurrency level but not 1738 * increase it. This is indicated by @fill. 1739 */ 1740 if (!list_empty(&pwq->pending_node) && likely(!fill)) 1741 goto out; 1742 1743 obtained = tryinc_node_nr_active(nna); 1744 if (obtained) 1745 goto out; 1746 1747 /* 1748 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs 1749 * and try again. The smp_mb() is paired with the implied memory barrier 1750 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either 1751 * we see the decremented $nna->nr or they see non-empty 1752 * $nna->pending_pwqs. 1753 */ 1754 raw_spin_lock(&nna->lock); 1755 1756 if (list_empty(&pwq->pending_node)) 1757 list_add_tail(&pwq->pending_node, &nna->pending_pwqs); 1758 else if (likely(!fill)) 1759 goto out_unlock; 1760 1761 smp_mb(); 1762 1763 obtained = tryinc_node_nr_active(nna); 1764 1765 /* 1766 * If @fill, @pwq might have already been pending. Being spuriously 1767 * pending in cold paths doesn't affect anything. Let's leave it be. 1768 */ 1769 if (obtained && likely(!fill)) 1770 list_del_init(&pwq->pending_node); 1771 1772 out_unlock: 1773 raw_spin_unlock(&nna->lock); 1774 out: 1775 if (obtained) 1776 pwq->nr_active++; 1777 return obtained; 1778 } 1779 1780 /** 1781 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq 1782 * @pwq: pool_workqueue of interest 1783 * @fill: max_active may have increased, try to increase concurrency level 1784 * 1785 * Activate the first inactive work item of @pwq if available and allowed by 1786 * max_active limit. 1787 * 1788 * Returns %true if an inactive work item has been activated. %false if no 1789 * inactive work item is found or max_active limit is reached. 1790 */ 1791 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) 1792 { 1793 struct work_struct *work = 1794 list_first_entry_or_null(&pwq->inactive_works, 1795 struct work_struct, entry); 1796 1797 if (work && pwq_tryinc_nr_active(pwq, fill)) { 1798 __pwq_activate_work(pwq, work); 1799 return true; 1800 } else { 1801 return false; 1802 } 1803 } 1804 1805 /** 1806 * unplug_oldest_pwq - unplug the oldest pool_workqueue 1807 * @wq: workqueue_struct where its oldest pwq is to be unplugged 1808 * 1809 * This function should only be called for ordered workqueues where only the 1810 * oldest pwq is unplugged, the others are plugged to suspend execution to 1811 * ensure proper work item ordering:: 1812 * 1813 * dfl_pwq --------------+ [P] - plugged 1814 * | 1815 * v 1816 * pwqs -> A -> B [P] -> C [P] (newest) 1817 * | | | 1818 * 1 3 5 1819 * | | | 1820 * 2 4 6 1821 * 1822 * When the oldest pwq is drained and removed, this function should be called 1823 * to unplug the next oldest one to start its work item execution. Note that 1824 * pwq's are linked into wq->pwqs with the oldest first, so the first one in 1825 * the list is the oldest. 1826 */ 1827 static void unplug_oldest_pwq(struct workqueue_struct *wq) 1828 { 1829 struct pool_workqueue *pwq; 1830 1831 lockdep_assert_held(&wq->mutex); 1832 1833 /* Caller should make sure that pwqs isn't empty before calling */ 1834 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue, 1835 pwqs_node); 1836 raw_spin_lock_irq(&pwq->pool->lock); 1837 if (pwq->plugged) { 1838 pwq->plugged = false; 1839 if (pwq_activate_first_inactive(pwq, true)) 1840 kick_pool(pwq->pool); 1841 } 1842 raw_spin_unlock_irq(&pwq->pool->lock); 1843 } 1844 1845 /** 1846 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active 1847 * @nna: wq_node_nr_active to activate a pending pwq for 1848 * @caller_pool: worker_pool the caller is locking 1849 * 1850 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. 1851 * @caller_pool may be unlocked and relocked to lock other worker_pools. 1852 */ 1853 static void node_activate_pending_pwq(struct wq_node_nr_active *nna, 1854 struct worker_pool *caller_pool) 1855 { 1856 struct worker_pool *locked_pool = caller_pool; 1857 struct pool_workqueue *pwq; 1858 struct work_struct *work; 1859 1860 lockdep_assert_held(&caller_pool->lock); 1861 1862 raw_spin_lock(&nna->lock); 1863 retry: 1864 pwq = list_first_entry_or_null(&nna->pending_pwqs, 1865 struct pool_workqueue, pending_node); 1866 if (!pwq) 1867 goto out_unlock; 1868 1869 /* 1870 * If @pwq is for a different pool than @locked_pool, we need to lock 1871 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock 1872 * / lock dance. For that, we also need to release @nna->lock as it's 1873 * nested inside pool locks. 1874 */ 1875 if (pwq->pool != locked_pool) { 1876 raw_spin_unlock(&locked_pool->lock); 1877 locked_pool = pwq->pool; 1878 if (!raw_spin_trylock(&locked_pool->lock)) { 1879 raw_spin_unlock(&nna->lock); 1880 raw_spin_lock(&locked_pool->lock); 1881 raw_spin_lock(&nna->lock); 1882 goto retry; 1883 } 1884 } 1885 1886 /* 1887 * $pwq may not have any inactive work items due to e.g. cancellations. 1888 * Drop it from pending_pwqs and see if there's another one. 1889 */ 1890 work = list_first_entry_or_null(&pwq->inactive_works, 1891 struct work_struct, entry); 1892 if (!work) { 1893 list_del_init(&pwq->pending_node); 1894 goto retry; 1895 } 1896 1897 /* 1898 * Acquire an nr_active count and activate the inactive work item. If 1899 * $pwq still has inactive work items, rotate it to the end of the 1900 * pending_pwqs so that we round-robin through them. This means that 1901 * inactive work items are not activated in queueing order which is fine 1902 * given that there has never been any ordering across different pwqs. 1903 */ 1904 if (likely(tryinc_node_nr_active(nna))) { 1905 pwq->nr_active++; 1906 __pwq_activate_work(pwq, work); 1907 1908 if (list_empty(&pwq->inactive_works)) 1909 list_del_init(&pwq->pending_node); 1910 else 1911 list_move_tail(&pwq->pending_node, &nna->pending_pwqs); 1912 1913 /* if activating a foreign pool, make sure it's running */ 1914 if (pwq->pool != caller_pool) 1915 kick_pool(pwq->pool); 1916 } 1917 1918 out_unlock: 1919 raw_spin_unlock(&nna->lock); 1920 if (locked_pool != caller_pool) { 1921 raw_spin_unlock(&locked_pool->lock); 1922 raw_spin_lock(&caller_pool->lock); 1923 } 1924 } 1925 1926 /** 1927 * pwq_dec_nr_active - Retire an active count 1928 * @pwq: pool_workqueue of interest 1929 * 1930 * Decrement @pwq's nr_active and try to activate the first inactive work item. 1931 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. 1932 */ 1933 static void pwq_dec_nr_active(struct pool_workqueue *pwq) 1934 { 1935 struct worker_pool *pool = pwq->pool; 1936 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node); 1937 1938 lockdep_assert_held(&pool->lock); 1939 1940 /* 1941 * @pwq->nr_active should be decremented for both percpu and unbound 1942 * workqueues. 1943 */ 1944 pwq->nr_active--; 1945 1946 /* 1947 * For a percpu workqueue, it's simple. Just need to kick the first 1948 * inactive work item on @pwq itself. 1949 */ 1950 if (!nna) { 1951 pwq_activate_first_inactive(pwq, false); 1952 return; 1953 } 1954 1955 /* 1956 * If @pwq is for an unbound workqueue, it's more complicated because 1957 * multiple pwqs and pools may be sharing the nr_active count. When a 1958 * pwq needs to wait for an nr_active count, it puts itself on 1959 * $nna->pending_pwqs. The following atomic_dec_return()'s implied 1960 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to 1961 * guarantee that either we see non-empty pending_pwqs or they see 1962 * decremented $nna->nr. 1963 * 1964 * $nna->max may change as CPUs come online/offline and @pwq->wq's 1965 * max_active gets updated. However, it is guaranteed to be equal to or 1966 * larger than @pwq->wq->min_active which is above zero unless freezing. 1967 * This maintains the forward progress guarantee. 1968 */ 1969 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max)) 1970 return; 1971 1972 if (!list_empty(&nna->pending_pwqs)) 1973 node_activate_pending_pwq(nna, pool); 1974 } 1975 1976 /** 1977 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1978 * @pwq: pwq of interest 1979 * @work_data: work_data of work which left the queue 1980 * 1981 * A work either has completed or is removed from pending queue, 1982 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1983 * 1984 * NOTE: 1985 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock 1986 * and thus should be called after all other state updates for the in-flight 1987 * work item is complete. 1988 * 1989 * CONTEXT: 1990 * raw_spin_lock_irq(pool->lock). 1991 */ 1992 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1993 { 1994 int color = get_work_color(work_data); 1995 1996 if (!(work_data & WORK_STRUCT_INACTIVE)) 1997 pwq_dec_nr_active(pwq); 1998 1999 pwq->nr_in_flight[color]--; 2000 2001 /* is flush in progress and are we at the flushing tip? */ 2002 if (likely(pwq->flush_color != color)) 2003 goto out_put; 2004 2005 /* are there still in-flight works? */ 2006 if (pwq->nr_in_flight[color]) 2007 goto out_put; 2008 2009 /* this pwq is done, clear flush_color */ 2010 pwq->flush_color = -1; 2011 2012 /* 2013 * If this was the last pwq, wake up the first flusher. It 2014 * will handle the rest. 2015 */ 2016 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 2017 complete(&pwq->wq->first_flusher->done); 2018 out_put: 2019 put_pwq(pwq); 2020 } 2021 2022 /** 2023 * try_to_grab_pending - steal work item from worklist and disable irq 2024 * @work: work item to steal 2025 * @cflags: %WORK_CANCEL_ flags 2026 * @irq_flags: place to store irq state 2027 * 2028 * Try to grab PENDING bit of @work. This function can handle @work in any 2029 * stable state - idle, on timer or on worklist. 2030 * 2031 * Return: 2032 * 2033 * ======== ================================================================ 2034 * 1 if @work was pending and we successfully stole PENDING 2035 * 0 if @work was idle and we claimed PENDING 2036 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 2037 * ======== ================================================================ 2038 * 2039 * Note: 2040 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 2041 * interrupted while holding PENDING and @work off queue, irq must be 2042 * disabled on entry. This, combined with delayed_work->timer being 2043 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 2044 * 2045 * On successful return, >= 0, irq is disabled and the caller is 2046 * responsible for releasing it using local_irq_restore(*@irq_flags). 2047 * 2048 * This function is safe to call from any context including IRQ handler. 2049 */ 2050 static int try_to_grab_pending(struct work_struct *work, u32 cflags, 2051 unsigned long *irq_flags) 2052 { 2053 struct worker_pool *pool; 2054 struct pool_workqueue *pwq; 2055 2056 local_irq_save(*irq_flags); 2057 2058 /* try to steal the timer if it exists */ 2059 if (cflags & WORK_CANCEL_DELAYED) { 2060 struct delayed_work *dwork = to_delayed_work(work); 2061 2062 /* 2063 * dwork->timer is irqsafe. If del_timer() fails, it's 2064 * guaranteed that the timer is not queued anywhere and not 2065 * running on the local CPU. 2066 */ 2067 if (likely(del_timer(&dwork->timer))) 2068 return 1; 2069 } 2070 2071 /* try to claim PENDING the normal way */ 2072 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2073 return 0; 2074 2075 rcu_read_lock(); 2076 /* 2077 * The queueing is in progress, or it is already queued. Try to 2078 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2079 */ 2080 pool = get_work_pool(work); 2081 if (!pool) 2082 goto fail; 2083 2084 raw_spin_lock(&pool->lock); 2085 /* 2086 * work->data is guaranteed to point to pwq only while the work 2087 * item is queued on pwq->wq, and both updating work->data to point 2088 * to pwq on queueing and to pool on dequeueing are done under 2089 * pwq->pool->lock. This in turn guarantees that, if work->data 2090 * points to pwq which is associated with a locked pool, the work 2091 * item is currently queued on that pool. 2092 */ 2093 pwq = get_work_pwq(work); 2094 if (pwq && pwq->pool == pool) { 2095 unsigned long work_data = *work_data_bits(work); 2096 2097 debug_work_deactivate(work); 2098 2099 /* 2100 * A cancelable inactive work item must be in the 2101 * pwq->inactive_works since a queued barrier can't be 2102 * canceled (see the comments in insert_wq_barrier()). 2103 * 2104 * An inactive work item cannot be deleted directly because 2105 * it might have linked barrier work items which, if left 2106 * on the inactive_works list, will confuse pwq->nr_active 2107 * management later on and cause stall. Move the linked 2108 * barrier work items to the worklist when deleting the grabbed 2109 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that 2110 * it doesn't participate in nr_active management in later 2111 * pwq_dec_nr_in_flight(). 2112 */ 2113 if (work_data & WORK_STRUCT_INACTIVE) 2114 move_linked_works(work, &pwq->pool->worklist, NULL); 2115 2116 list_del_init(&work->entry); 2117 2118 /* 2119 * work->data points to pwq iff queued. Let's point to pool. As 2120 * this destroys work->data needed by the next step, stash it. 2121 */ 2122 set_work_pool_and_keep_pending(work, pool->id, 2123 pool_offq_flags(pool)); 2124 2125 /* must be the last step, see the function comment */ 2126 pwq_dec_nr_in_flight(pwq, work_data); 2127 2128 raw_spin_unlock(&pool->lock); 2129 rcu_read_unlock(); 2130 return 1; 2131 } 2132 raw_spin_unlock(&pool->lock); 2133 fail: 2134 rcu_read_unlock(); 2135 local_irq_restore(*irq_flags); 2136 return -EAGAIN; 2137 } 2138 2139 /** 2140 * work_grab_pending - steal work item from worklist and disable irq 2141 * @work: work item to steal 2142 * @cflags: %WORK_CANCEL_ flags 2143 * @irq_flags: place to store IRQ state 2144 * 2145 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer 2146 * or on worklist. 2147 * 2148 * Can be called from any context. IRQ is disabled on return with IRQ state 2149 * stored in *@irq_flags. The caller is responsible for re-enabling it using 2150 * local_irq_restore(). 2151 * 2152 * Returns %true if @work was pending. %false if idle. 2153 */ 2154 static bool work_grab_pending(struct work_struct *work, u32 cflags, 2155 unsigned long *irq_flags) 2156 { 2157 int ret; 2158 2159 while (true) { 2160 ret = try_to_grab_pending(work, cflags, irq_flags); 2161 if (ret >= 0) 2162 return ret; 2163 cpu_relax(); 2164 } 2165 } 2166 2167 /** 2168 * insert_work - insert a work into a pool 2169 * @pwq: pwq @work belongs to 2170 * @work: work to insert 2171 * @head: insertion point 2172 * @extra_flags: extra WORK_STRUCT_* flags to set 2173 * 2174 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 2175 * work_struct flags. 2176 * 2177 * CONTEXT: 2178 * raw_spin_lock_irq(pool->lock). 2179 */ 2180 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 2181 struct list_head *head, unsigned int extra_flags) 2182 { 2183 debug_work_activate(work); 2184 2185 /* record the work call stack in order to print it in KASAN reports */ 2186 kasan_record_aux_stack_noalloc(work); 2187 2188 /* we own @work, set data and link */ 2189 set_work_pwq(work, pwq, extra_flags); 2190 list_add_tail(&work->entry, head); 2191 get_pwq(pwq); 2192 } 2193 2194 /* 2195 * Test whether @work is being queued from another work executing on the 2196 * same workqueue. 2197 */ 2198 static bool is_chained_work(struct workqueue_struct *wq) 2199 { 2200 struct worker *worker; 2201 2202 worker = current_wq_worker(); 2203 /* 2204 * Return %true iff I'm a worker executing a work item on @wq. If 2205 * I'm @worker, it's safe to dereference it without locking. 2206 */ 2207 return worker && worker->current_pwq->wq == wq; 2208 } 2209 2210 /* 2211 * When queueing an unbound work item to a wq, prefer local CPU if allowed 2212 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 2213 * avoid perturbing sensitive tasks. 2214 */ 2215 static int wq_select_unbound_cpu(int cpu) 2216 { 2217 int new_cpu; 2218 2219 if (likely(!wq_debug_force_rr_cpu)) { 2220 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 2221 return cpu; 2222 } else { 2223 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 2224 } 2225 2226 new_cpu = __this_cpu_read(wq_rr_cpu_last); 2227 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 2228 if (unlikely(new_cpu >= nr_cpu_ids)) { 2229 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 2230 if (unlikely(new_cpu >= nr_cpu_ids)) 2231 return cpu; 2232 } 2233 __this_cpu_write(wq_rr_cpu_last, new_cpu); 2234 2235 return new_cpu; 2236 } 2237 2238 static void __queue_work(int cpu, struct workqueue_struct *wq, 2239 struct work_struct *work) 2240 { 2241 struct pool_workqueue *pwq; 2242 struct worker_pool *last_pool, *pool; 2243 unsigned int work_flags; 2244 unsigned int req_cpu = cpu; 2245 2246 /* 2247 * While a work item is PENDING && off queue, a task trying to 2248 * steal the PENDING will busy-loop waiting for it to either get 2249 * queued or lose PENDING. Grabbing PENDING and queueing should 2250 * happen with IRQ disabled. 2251 */ 2252 lockdep_assert_irqs_disabled(); 2253 2254 /* 2255 * For a draining wq, only works from the same workqueue are 2256 * allowed. The __WQ_DESTROYING helps to spot the issue that 2257 * queues a new work item to a wq after destroy_workqueue(wq). 2258 */ 2259 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 2260 WARN_ON_ONCE(!is_chained_work(wq)))) 2261 return; 2262 rcu_read_lock(); 2263 retry: 2264 /* pwq which will be used unless @work is executing elsewhere */ 2265 if (req_cpu == WORK_CPU_UNBOUND) { 2266 if (wq->flags & WQ_UNBOUND) 2267 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 2268 else 2269 cpu = raw_smp_processor_id(); 2270 } 2271 2272 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 2273 pool = pwq->pool; 2274 2275 /* 2276 * If @work was previously on a different pool, it might still be 2277 * running there, in which case the work needs to be queued on that 2278 * pool to guarantee non-reentrancy. 2279 * 2280 * For ordered workqueue, work items must be queued on the newest pwq 2281 * for accurate order management. Guaranteed order also guarantees 2282 * non-reentrancy. See the comments above unplug_oldest_pwq(). 2283 */ 2284 last_pool = get_work_pool(work); 2285 if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) { 2286 struct worker *worker; 2287 2288 raw_spin_lock(&last_pool->lock); 2289 2290 worker = find_worker_executing_work(last_pool, work); 2291 2292 if (worker && worker->current_pwq->wq == wq) { 2293 pwq = worker->current_pwq; 2294 pool = pwq->pool; 2295 WARN_ON_ONCE(pool != last_pool); 2296 } else { 2297 /* meh... not running there, queue here */ 2298 raw_spin_unlock(&last_pool->lock); 2299 raw_spin_lock(&pool->lock); 2300 } 2301 } else { 2302 raw_spin_lock(&pool->lock); 2303 } 2304 2305 /* 2306 * pwq is determined and locked. For unbound pools, we could have raced 2307 * with pwq release and it could already be dead. If its refcnt is zero, 2308 * repeat pwq selection. Note that unbound pwqs never die without 2309 * another pwq replacing it in cpu_pwq or while work items are executing 2310 * on it, so the retrying is guaranteed to make forward-progress. 2311 */ 2312 if (unlikely(!pwq->refcnt)) { 2313 if (wq->flags & WQ_UNBOUND) { 2314 raw_spin_unlock(&pool->lock); 2315 cpu_relax(); 2316 goto retry; 2317 } 2318 /* oops */ 2319 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 2320 wq->name, cpu); 2321 } 2322 2323 /* pwq determined, queue */ 2324 trace_workqueue_queue_work(req_cpu, pwq, work); 2325 2326 if (WARN_ON(!list_empty(&work->entry))) 2327 goto out; 2328 2329 pwq->nr_in_flight[pwq->work_color]++; 2330 work_flags = work_color_to_flags(pwq->work_color); 2331 2332 /* 2333 * Limit the number of concurrently active work items to max_active. 2334 * @work must also queue behind existing inactive work items to maintain 2335 * ordering when max_active changes. See wq_adjust_max_active(). 2336 */ 2337 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) { 2338 if (list_empty(&pool->worklist)) 2339 pool->watchdog_ts = jiffies; 2340 2341 trace_workqueue_activate_work(work); 2342 insert_work(pwq, work, &pool->worklist, work_flags); 2343 kick_pool(pool); 2344 } else { 2345 work_flags |= WORK_STRUCT_INACTIVE; 2346 insert_work(pwq, work, &pwq->inactive_works, work_flags); 2347 } 2348 2349 out: 2350 raw_spin_unlock(&pool->lock); 2351 rcu_read_unlock(); 2352 } 2353 2354 static bool clear_pending_if_disabled(struct work_struct *work) 2355 { 2356 unsigned long data = *work_data_bits(work); 2357 struct work_offq_data offqd; 2358 2359 if (likely((data & WORK_STRUCT_PWQ) || 2360 !(data & WORK_OFFQ_DISABLE_MASK))) 2361 return false; 2362 2363 work_offqd_unpack(&offqd, data); 2364 set_work_pool_and_clear_pending(work, offqd.pool_id, 2365 work_offqd_pack_flags(&offqd)); 2366 return true; 2367 } 2368 2369 /** 2370 * queue_work_on - queue work on specific cpu 2371 * @cpu: CPU number to execute work on 2372 * @wq: workqueue to use 2373 * @work: work to queue 2374 * 2375 * We queue the work to a specific CPU, the caller must ensure it 2376 * can't go away. Callers that fail to ensure that the specified 2377 * CPU cannot go away will execute on a randomly chosen CPU. 2378 * But note well that callers specifying a CPU that never has been 2379 * online will get a splat. 2380 * 2381 * Return: %false if @work was already on a queue, %true otherwise. 2382 */ 2383 bool queue_work_on(int cpu, struct workqueue_struct *wq, 2384 struct work_struct *work) 2385 { 2386 bool ret = false; 2387 unsigned long irq_flags; 2388 2389 local_irq_save(irq_flags); 2390 2391 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2392 !clear_pending_if_disabled(work)) { 2393 __queue_work(cpu, wq, work); 2394 ret = true; 2395 } 2396 2397 local_irq_restore(irq_flags); 2398 return ret; 2399 } 2400 EXPORT_SYMBOL(queue_work_on); 2401 2402 /** 2403 * select_numa_node_cpu - Select a CPU based on NUMA node 2404 * @node: NUMA node ID that we want to select a CPU from 2405 * 2406 * This function will attempt to find a "random" cpu available on a given 2407 * node. If there are no CPUs available on the given node it will return 2408 * WORK_CPU_UNBOUND indicating that we should just schedule to any 2409 * available CPU if we need to schedule this work. 2410 */ 2411 static int select_numa_node_cpu(int node) 2412 { 2413 int cpu; 2414 2415 /* Delay binding to CPU if node is not valid or online */ 2416 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 2417 return WORK_CPU_UNBOUND; 2418 2419 /* Use local node/cpu if we are already there */ 2420 cpu = raw_smp_processor_id(); 2421 if (node == cpu_to_node(cpu)) 2422 return cpu; 2423 2424 /* Use "random" otherwise know as "first" online CPU of node */ 2425 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 2426 2427 /* If CPU is valid return that, otherwise just defer */ 2428 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 2429 } 2430 2431 /** 2432 * queue_work_node - queue work on a "random" cpu for a given NUMA node 2433 * @node: NUMA node that we are targeting the work for 2434 * @wq: workqueue to use 2435 * @work: work to queue 2436 * 2437 * We queue the work to a "random" CPU within a given NUMA node. The basic 2438 * idea here is to provide a way to somehow associate work with a given 2439 * NUMA node. 2440 * 2441 * This function will only make a best effort attempt at getting this onto 2442 * the right NUMA node. If no node is requested or the requested node is 2443 * offline then we just fall back to standard queue_work behavior. 2444 * 2445 * Currently the "random" CPU ends up being the first available CPU in the 2446 * intersection of cpu_online_mask and the cpumask of the node, unless we 2447 * are running on the node. In that case we just use the current CPU. 2448 * 2449 * Return: %false if @work was already on a queue, %true otherwise. 2450 */ 2451 bool queue_work_node(int node, struct workqueue_struct *wq, 2452 struct work_struct *work) 2453 { 2454 unsigned long irq_flags; 2455 bool ret = false; 2456 2457 /* 2458 * This current implementation is specific to unbound workqueues. 2459 * Specifically we only return the first available CPU for a given 2460 * node instead of cycling through individual CPUs within the node. 2461 * 2462 * If this is used with a per-cpu workqueue then the logic in 2463 * workqueue_select_cpu_near would need to be updated to allow for 2464 * some round robin type logic. 2465 */ 2466 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 2467 2468 local_irq_save(irq_flags); 2469 2470 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2471 !clear_pending_if_disabled(work)) { 2472 int cpu = select_numa_node_cpu(node); 2473 2474 __queue_work(cpu, wq, work); 2475 ret = true; 2476 } 2477 2478 local_irq_restore(irq_flags); 2479 return ret; 2480 } 2481 EXPORT_SYMBOL_GPL(queue_work_node); 2482 2483 void delayed_work_timer_fn(struct timer_list *t) 2484 { 2485 struct delayed_work *dwork = from_timer(dwork, t, timer); 2486 2487 /* should have been called from irqsafe timer with irq already off */ 2488 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2489 } 2490 EXPORT_SYMBOL(delayed_work_timer_fn); 2491 2492 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 2493 struct delayed_work *dwork, unsigned long delay) 2494 { 2495 struct timer_list *timer = &dwork->timer; 2496 struct work_struct *work = &dwork->work; 2497 2498 WARN_ON_ONCE(!wq); 2499 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 2500 WARN_ON_ONCE(timer_pending(timer)); 2501 WARN_ON_ONCE(!list_empty(&work->entry)); 2502 2503 /* 2504 * If @delay is 0, queue @dwork->work immediately. This is for 2505 * both optimization and correctness. The earliest @timer can 2506 * expire is on the closest next tick and delayed_work users depend 2507 * on that there's no such delay when @delay is 0. 2508 */ 2509 if (!delay) { 2510 __queue_work(cpu, wq, &dwork->work); 2511 return; 2512 } 2513 2514 dwork->wq = wq; 2515 dwork->cpu = cpu; 2516 timer->expires = jiffies + delay; 2517 2518 if (housekeeping_enabled(HK_TYPE_TIMER)) { 2519 /* If the current cpu is a housekeeping cpu, use it. */ 2520 cpu = smp_processor_id(); 2521 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER)) 2522 cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 2523 add_timer_on(timer, cpu); 2524 } else { 2525 if (likely(cpu == WORK_CPU_UNBOUND)) 2526 add_timer_global(timer); 2527 else 2528 add_timer_on(timer, cpu); 2529 } 2530 } 2531 2532 /** 2533 * queue_delayed_work_on - queue work on specific CPU after delay 2534 * @cpu: CPU number to execute work on 2535 * @wq: workqueue to use 2536 * @dwork: work to queue 2537 * @delay: number of jiffies to wait before queueing 2538 * 2539 * Return: %false if @work was already on a queue, %true otherwise. If 2540 * @delay is zero and @dwork is idle, it will be scheduled for immediate 2541 * execution. 2542 */ 2543 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 2544 struct delayed_work *dwork, unsigned long delay) 2545 { 2546 struct work_struct *work = &dwork->work; 2547 bool ret = false; 2548 unsigned long irq_flags; 2549 2550 /* read the comment in __queue_work() */ 2551 local_irq_save(irq_flags); 2552 2553 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2554 !clear_pending_if_disabled(work)) { 2555 __queue_delayed_work(cpu, wq, dwork, delay); 2556 ret = true; 2557 } 2558 2559 local_irq_restore(irq_flags); 2560 return ret; 2561 } 2562 EXPORT_SYMBOL(queue_delayed_work_on); 2563 2564 /** 2565 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2566 * @cpu: CPU number to execute work on 2567 * @wq: workqueue to use 2568 * @dwork: work to queue 2569 * @delay: number of jiffies to wait before queueing 2570 * 2571 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2572 * modify @dwork's timer so that it expires after @delay. If @delay is 2573 * zero, @work is guaranteed to be scheduled immediately regardless of its 2574 * current state. 2575 * 2576 * Return: %false if @dwork was idle and queued, %true if @dwork was 2577 * pending and its timer was modified. 2578 * 2579 * This function is safe to call from any context including IRQ handler. 2580 * See try_to_grab_pending() for details. 2581 */ 2582 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2583 struct delayed_work *dwork, unsigned long delay) 2584 { 2585 unsigned long irq_flags; 2586 bool ret; 2587 2588 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags); 2589 2590 if (!clear_pending_if_disabled(&dwork->work)) 2591 __queue_delayed_work(cpu, wq, dwork, delay); 2592 2593 local_irq_restore(irq_flags); 2594 return ret; 2595 } 2596 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2597 2598 static void rcu_work_rcufn(struct rcu_head *rcu) 2599 { 2600 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2601 2602 /* read the comment in __queue_work() */ 2603 local_irq_disable(); 2604 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2605 local_irq_enable(); 2606 } 2607 2608 /** 2609 * queue_rcu_work - queue work after a RCU grace period 2610 * @wq: workqueue to use 2611 * @rwork: work to queue 2612 * 2613 * Return: %false if @rwork was already pending, %true otherwise. Note 2614 * that a full RCU grace period is guaranteed only after a %true return. 2615 * While @rwork is guaranteed to be executed after a %false return, the 2616 * execution may happen before a full RCU grace period has passed. 2617 */ 2618 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2619 { 2620 struct work_struct *work = &rwork->work; 2621 2622 /* 2623 * rcu_work can't be canceled or disabled. Warn if the user reached 2624 * inside @rwork and disabled the inner work. 2625 */ 2626 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2627 !WARN_ON_ONCE(clear_pending_if_disabled(work))) { 2628 rwork->wq = wq; 2629 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2630 return true; 2631 } 2632 2633 return false; 2634 } 2635 EXPORT_SYMBOL(queue_rcu_work); 2636 2637 static struct worker *alloc_worker(int node) 2638 { 2639 struct worker *worker; 2640 2641 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2642 if (worker) { 2643 INIT_LIST_HEAD(&worker->entry); 2644 INIT_LIST_HEAD(&worker->scheduled); 2645 INIT_LIST_HEAD(&worker->node); 2646 /* on creation a worker is in !idle && prep state */ 2647 worker->flags = WORKER_PREP; 2648 } 2649 return worker; 2650 } 2651 2652 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2653 { 2654 if (pool->cpu < 0 && pool->attrs->affn_strict) 2655 return pool->attrs->__pod_cpumask; 2656 else 2657 return pool->attrs->cpumask; 2658 } 2659 2660 /** 2661 * worker_attach_to_pool() - attach a worker to a pool 2662 * @worker: worker to be attached 2663 * @pool: the target pool 2664 * 2665 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2666 * cpu-binding of @worker are kept coordinated with the pool across 2667 * cpu-[un]hotplugs. 2668 */ 2669 static void worker_attach_to_pool(struct worker *worker, 2670 struct worker_pool *pool) 2671 { 2672 mutex_lock(&wq_pool_attach_mutex); 2673 2674 /* 2675 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable 2676 * across this function. See the comments above the flag definition for 2677 * details. BH workers are, while per-CPU, always DISASSOCIATED. 2678 */ 2679 if (pool->flags & POOL_DISASSOCIATED) { 2680 worker->flags |= WORKER_UNBOUND; 2681 } else { 2682 WARN_ON_ONCE(pool->flags & POOL_BH); 2683 kthread_set_per_cpu(worker->task, pool->cpu); 2684 } 2685 2686 if (worker->rescue_wq) 2687 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2688 2689 list_add_tail(&worker->node, &pool->workers); 2690 worker->pool = pool; 2691 2692 mutex_unlock(&wq_pool_attach_mutex); 2693 } 2694 2695 static void unbind_worker(struct worker *worker) 2696 { 2697 lockdep_assert_held(&wq_pool_attach_mutex); 2698 2699 kthread_set_per_cpu(worker->task, -1); 2700 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2701 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2702 else 2703 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2704 } 2705 2706 2707 static void detach_worker(struct worker *worker) 2708 { 2709 lockdep_assert_held(&wq_pool_attach_mutex); 2710 2711 unbind_worker(worker); 2712 list_del(&worker->node); 2713 worker->pool = NULL; 2714 } 2715 2716 /** 2717 * worker_detach_from_pool() - detach a worker from its pool 2718 * @worker: worker which is attached to its pool 2719 * 2720 * Undo the attaching which had been done in worker_attach_to_pool(). The 2721 * caller worker shouldn't access to the pool after detached except it has 2722 * other reference to the pool. 2723 */ 2724 static void worker_detach_from_pool(struct worker *worker) 2725 { 2726 struct worker_pool *pool = worker->pool; 2727 2728 /* there is one permanent BH worker per CPU which should never detach */ 2729 WARN_ON_ONCE(pool->flags & POOL_BH); 2730 2731 mutex_lock(&wq_pool_attach_mutex); 2732 detach_worker(worker); 2733 mutex_unlock(&wq_pool_attach_mutex); 2734 2735 /* clear leftover flags without pool->lock after it is detached */ 2736 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2737 } 2738 2739 static int format_worker_id(char *buf, size_t size, struct worker *worker, 2740 struct worker_pool *pool) 2741 { 2742 if (worker->rescue_wq) 2743 return scnprintf(buf, size, "kworker/R-%s", 2744 worker->rescue_wq->name); 2745 2746 if (pool) { 2747 if (pool->cpu >= 0) 2748 return scnprintf(buf, size, "kworker/%d:%d%s", 2749 pool->cpu, worker->id, 2750 pool->attrs->nice < 0 ? "H" : ""); 2751 else 2752 return scnprintf(buf, size, "kworker/u%d:%d", 2753 pool->id, worker->id); 2754 } else { 2755 return scnprintf(buf, size, "kworker/dying"); 2756 } 2757 } 2758 2759 /** 2760 * create_worker - create a new workqueue worker 2761 * @pool: pool the new worker will belong to 2762 * 2763 * Create and start a new worker which is attached to @pool. 2764 * 2765 * CONTEXT: 2766 * Might sleep. Does GFP_KERNEL allocations. 2767 * 2768 * Return: 2769 * Pointer to the newly created worker. 2770 */ 2771 static struct worker *create_worker(struct worker_pool *pool) 2772 { 2773 struct worker *worker; 2774 int id; 2775 2776 /* ID is needed to determine kthread name */ 2777 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2778 if (id < 0) { 2779 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2780 ERR_PTR(id)); 2781 return NULL; 2782 } 2783 2784 worker = alloc_worker(pool->node); 2785 if (!worker) { 2786 pr_err_once("workqueue: Failed to allocate a worker\n"); 2787 goto fail; 2788 } 2789 2790 worker->id = id; 2791 2792 if (!(pool->flags & POOL_BH)) { 2793 char id_buf[WORKER_ID_LEN]; 2794 2795 format_worker_id(id_buf, sizeof(id_buf), worker, pool); 2796 worker->task = kthread_create_on_node(worker_thread, worker, 2797 pool->node, "%s", id_buf); 2798 if (IS_ERR(worker->task)) { 2799 if (PTR_ERR(worker->task) == -EINTR) { 2800 pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n", 2801 id_buf); 2802 } else { 2803 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2804 worker->task); 2805 } 2806 goto fail; 2807 } 2808 2809 set_user_nice(worker->task, pool->attrs->nice); 2810 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2811 } 2812 2813 /* successful, attach the worker to the pool */ 2814 worker_attach_to_pool(worker, pool); 2815 2816 /* start the newly created worker */ 2817 raw_spin_lock_irq(&pool->lock); 2818 2819 worker->pool->nr_workers++; 2820 worker_enter_idle(worker); 2821 2822 /* 2823 * @worker is waiting on a completion in kthread() and will trigger hung 2824 * check if not woken up soon. As kick_pool() is noop if @pool is empty, 2825 * wake it up explicitly. 2826 */ 2827 if (worker->task) 2828 wake_up_process(worker->task); 2829 2830 raw_spin_unlock_irq(&pool->lock); 2831 2832 return worker; 2833 2834 fail: 2835 ida_free(&pool->worker_ida, id); 2836 kfree(worker); 2837 return NULL; 2838 } 2839 2840 static void detach_dying_workers(struct list_head *cull_list) 2841 { 2842 struct worker *worker; 2843 2844 list_for_each_entry(worker, cull_list, entry) 2845 detach_worker(worker); 2846 } 2847 2848 static void reap_dying_workers(struct list_head *cull_list) 2849 { 2850 struct worker *worker, *tmp; 2851 2852 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2853 list_del_init(&worker->entry); 2854 kthread_stop_put(worker->task); 2855 kfree(worker); 2856 } 2857 } 2858 2859 /** 2860 * set_worker_dying - Tag a worker for destruction 2861 * @worker: worker to be destroyed 2862 * @list: transfer worker away from its pool->idle_list and into list 2863 * 2864 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2865 * should be idle. 2866 * 2867 * CONTEXT: 2868 * raw_spin_lock_irq(pool->lock). 2869 */ 2870 static void set_worker_dying(struct worker *worker, struct list_head *list) 2871 { 2872 struct worker_pool *pool = worker->pool; 2873 2874 lockdep_assert_held(&pool->lock); 2875 lockdep_assert_held(&wq_pool_attach_mutex); 2876 2877 /* sanity check frenzy */ 2878 if (WARN_ON(worker->current_work) || 2879 WARN_ON(!list_empty(&worker->scheduled)) || 2880 WARN_ON(!(worker->flags & WORKER_IDLE))) 2881 return; 2882 2883 pool->nr_workers--; 2884 pool->nr_idle--; 2885 2886 worker->flags |= WORKER_DIE; 2887 2888 list_move(&worker->entry, list); 2889 2890 /* get an extra task struct reference for later kthread_stop_put() */ 2891 get_task_struct(worker->task); 2892 } 2893 2894 /** 2895 * idle_worker_timeout - check if some idle workers can now be deleted. 2896 * @t: The pool's idle_timer that just expired 2897 * 2898 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2899 * worker_leave_idle(), as a worker flicking between idle and active while its 2900 * pool is at the too_many_workers() tipping point would cause too much timer 2901 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2902 * it expire and re-evaluate things from there. 2903 */ 2904 static void idle_worker_timeout(struct timer_list *t) 2905 { 2906 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2907 bool do_cull = false; 2908 2909 if (work_pending(&pool->idle_cull_work)) 2910 return; 2911 2912 raw_spin_lock_irq(&pool->lock); 2913 2914 if (too_many_workers(pool)) { 2915 struct worker *worker; 2916 unsigned long expires; 2917 2918 /* idle_list is kept in LIFO order, check the last one */ 2919 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2920 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2921 do_cull = !time_before(jiffies, expires); 2922 2923 if (!do_cull) 2924 mod_timer(&pool->idle_timer, expires); 2925 } 2926 raw_spin_unlock_irq(&pool->lock); 2927 2928 if (do_cull) 2929 queue_work(system_unbound_wq, &pool->idle_cull_work); 2930 } 2931 2932 /** 2933 * idle_cull_fn - cull workers that have been idle for too long. 2934 * @work: the pool's work for handling these idle workers 2935 * 2936 * This goes through a pool's idle workers and gets rid of those that have been 2937 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2938 * 2939 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2940 * culled, so this also resets worker affinity. This requires a sleepable 2941 * context, hence the split between timer callback and work item. 2942 */ 2943 static void idle_cull_fn(struct work_struct *work) 2944 { 2945 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2946 LIST_HEAD(cull_list); 2947 2948 /* 2949 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2950 * cannot proceed beyong set_pf_worker() in its self-destruct path. 2951 * This is required as a previously-preempted worker could run after 2952 * set_worker_dying() has happened but before detach_dying_workers() did. 2953 */ 2954 mutex_lock(&wq_pool_attach_mutex); 2955 raw_spin_lock_irq(&pool->lock); 2956 2957 while (too_many_workers(pool)) { 2958 struct worker *worker; 2959 unsigned long expires; 2960 2961 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2962 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2963 2964 if (time_before(jiffies, expires)) { 2965 mod_timer(&pool->idle_timer, expires); 2966 break; 2967 } 2968 2969 set_worker_dying(worker, &cull_list); 2970 } 2971 2972 raw_spin_unlock_irq(&pool->lock); 2973 detach_dying_workers(&cull_list); 2974 mutex_unlock(&wq_pool_attach_mutex); 2975 2976 reap_dying_workers(&cull_list); 2977 } 2978 2979 static void send_mayday(struct work_struct *work) 2980 { 2981 struct pool_workqueue *pwq = get_work_pwq(work); 2982 struct workqueue_struct *wq = pwq->wq; 2983 2984 lockdep_assert_held(&wq_mayday_lock); 2985 2986 if (!wq->rescuer) 2987 return; 2988 2989 /* mayday mayday mayday */ 2990 if (list_empty(&pwq->mayday_node)) { 2991 /* 2992 * If @pwq is for an unbound wq, its base ref may be put at 2993 * any time due to an attribute change. Pin @pwq until the 2994 * rescuer is done with it. 2995 */ 2996 get_pwq(pwq); 2997 list_add_tail(&pwq->mayday_node, &wq->maydays); 2998 wake_up_process(wq->rescuer->task); 2999 pwq->stats[PWQ_STAT_MAYDAY]++; 3000 } 3001 } 3002 3003 static void pool_mayday_timeout(struct timer_list *t) 3004 { 3005 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 3006 struct work_struct *work; 3007 3008 raw_spin_lock_irq(&pool->lock); 3009 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 3010 3011 if (need_to_create_worker(pool)) { 3012 /* 3013 * We've been trying to create a new worker but 3014 * haven't been successful. We might be hitting an 3015 * allocation deadlock. Send distress signals to 3016 * rescuers. 3017 */ 3018 list_for_each_entry(work, &pool->worklist, entry) 3019 send_mayday(work); 3020 } 3021 3022 raw_spin_unlock(&wq_mayday_lock); 3023 raw_spin_unlock_irq(&pool->lock); 3024 3025 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 3026 } 3027 3028 /** 3029 * maybe_create_worker - create a new worker if necessary 3030 * @pool: pool to create a new worker for 3031 * 3032 * Create a new worker for @pool if necessary. @pool is guaranteed to 3033 * have at least one idle worker on return from this function. If 3034 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 3035 * sent to all rescuers with works scheduled on @pool to resolve 3036 * possible allocation deadlock. 3037 * 3038 * On return, need_to_create_worker() is guaranteed to be %false and 3039 * may_start_working() %true. 3040 * 3041 * LOCKING: 3042 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3043 * multiple times. Does GFP_KERNEL allocations. Called only from 3044 * manager. 3045 */ 3046 static void maybe_create_worker(struct worker_pool *pool) 3047 __releases(&pool->lock) 3048 __acquires(&pool->lock) 3049 { 3050 restart: 3051 raw_spin_unlock_irq(&pool->lock); 3052 3053 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 3054 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 3055 3056 while (true) { 3057 if (create_worker(pool) || !need_to_create_worker(pool)) 3058 break; 3059 3060 schedule_timeout_interruptible(CREATE_COOLDOWN); 3061 3062 if (!need_to_create_worker(pool)) 3063 break; 3064 } 3065 3066 del_timer_sync(&pool->mayday_timer); 3067 raw_spin_lock_irq(&pool->lock); 3068 /* 3069 * This is necessary even after a new worker was just successfully 3070 * created as @pool->lock was dropped and the new worker might have 3071 * already become busy. 3072 */ 3073 if (need_to_create_worker(pool)) 3074 goto restart; 3075 } 3076 3077 /** 3078 * manage_workers - manage worker pool 3079 * @worker: self 3080 * 3081 * Assume the manager role and manage the worker pool @worker belongs 3082 * to. At any given time, there can be only zero or one manager per 3083 * pool. The exclusion is handled automatically by this function. 3084 * 3085 * The caller can safely start processing works on false return. On 3086 * true return, it's guaranteed that need_to_create_worker() is false 3087 * and may_start_working() is true. 3088 * 3089 * CONTEXT: 3090 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3091 * multiple times. Does GFP_KERNEL allocations. 3092 * 3093 * Return: 3094 * %false if the pool doesn't need management and the caller can safely 3095 * start processing works, %true if management function was performed and 3096 * the conditions that the caller verified before calling the function may 3097 * no longer be true. 3098 */ 3099 static bool manage_workers(struct worker *worker) 3100 { 3101 struct worker_pool *pool = worker->pool; 3102 3103 if (pool->flags & POOL_MANAGER_ACTIVE) 3104 return false; 3105 3106 pool->flags |= POOL_MANAGER_ACTIVE; 3107 pool->manager = worker; 3108 3109 maybe_create_worker(pool); 3110 3111 pool->manager = NULL; 3112 pool->flags &= ~POOL_MANAGER_ACTIVE; 3113 rcuwait_wake_up(&manager_wait); 3114 return true; 3115 } 3116 3117 /** 3118 * process_one_work - process single work 3119 * @worker: self 3120 * @work: work to process 3121 * 3122 * Process @work. This function contains all the logics necessary to 3123 * process a single work including synchronization against and 3124 * interaction with other workers on the same cpu, queueing and 3125 * flushing. As long as context requirement is met, any worker can 3126 * call this function to process a work. 3127 * 3128 * CONTEXT: 3129 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 3130 */ 3131 static void process_one_work(struct worker *worker, struct work_struct *work) 3132 __releases(&pool->lock) 3133 __acquires(&pool->lock) 3134 { 3135 struct pool_workqueue *pwq = get_work_pwq(work); 3136 struct worker_pool *pool = worker->pool; 3137 unsigned long work_data; 3138 int lockdep_start_depth, rcu_start_depth; 3139 bool bh_draining = pool->flags & POOL_BH_DRAINING; 3140 #ifdef CONFIG_LOCKDEP 3141 /* 3142 * It is permissible to free the struct work_struct from 3143 * inside the function that is called from it, this we need to 3144 * take into account for lockdep too. To avoid bogus "held 3145 * lock freed" warnings as well as problems when looking into 3146 * work->lockdep_map, make a copy and use that here. 3147 */ 3148 struct lockdep_map lockdep_map; 3149 3150 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 3151 #endif 3152 /* ensure we're on the correct CPU */ 3153 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 3154 raw_smp_processor_id() != pool->cpu); 3155 3156 /* claim and dequeue */ 3157 debug_work_deactivate(work); 3158 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 3159 worker->current_work = work; 3160 worker->current_func = work->func; 3161 worker->current_pwq = pwq; 3162 if (worker->task) 3163 worker->current_at = worker->task->se.sum_exec_runtime; 3164 work_data = *work_data_bits(work); 3165 worker->current_color = get_work_color(work_data); 3166 3167 /* 3168 * Record wq name for cmdline and debug reporting, may get 3169 * overridden through set_worker_desc(). 3170 */ 3171 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 3172 3173 list_del_init(&work->entry); 3174 3175 /* 3176 * CPU intensive works don't participate in concurrency management. 3177 * They're the scheduler's responsibility. This takes @worker out 3178 * of concurrency management and the next code block will chain 3179 * execution of the pending work items. 3180 */ 3181 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 3182 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 3183 3184 /* 3185 * Kick @pool if necessary. It's always noop for per-cpu worker pools 3186 * since nr_running would always be >= 1 at this point. This is used to 3187 * chain execution of the pending work items for WORKER_NOT_RUNNING 3188 * workers such as the UNBOUND and CPU_INTENSIVE ones. 3189 */ 3190 kick_pool(pool); 3191 3192 /* 3193 * Record the last pool and clear PENDING which should be the last 3194 * update to @work. Also, do this inside @pool->lock so that 3195 * PENDING and queued state changes happen together while IRQ is 3196 * disabled. 3197 */ 3198 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool)); 3199 3200 pwq->stats[PWQ_STAT_STARTED]++; 3201 raw_spin_unlock_irq(&pool->lock); 3202 3203 rcu_start_depth = rcu_preempt_depth(); 3204 lockdep_start_depth = lockdep_depth(current); 3205 /* see drain_dead_softirq_workfn() */ 3206 if (!bh_draining) 3207 lock_map_acquire(pwq->wq->lockdep_map); 3208 lock_map_acquire(&lockdep_map); 3209 /* 3210 * Strictly speaking we should mark the invariant state without holding 3211 * any locks, that is, before these two lock_map_acquire()'s. 3212 * 3213 * However, that would result in: 3214 * 3215 * A(W1) 3216 * WFC(C) 3217 * A(W1) 3218 * C(C) 3219 * 3220 * Which would create W1->C->W1 dependencies, even though there is no 3221 * actual deadlock possible. There are two solutions, using a 3222 * read-recursive acquire on the work(queue) 'locks', but this will then 3223 * hit the lockdep limitation on recursive locks, or simply discard 3224 * these locks. 3225 * 3226 * AFAICT there is no possible deadlock scenario between the 3227 * flush_work() and complete() primitives (except for single-threaded 3228 * workqueues), so hiding them isn't a problem. 3229 */ 3230 lockdep_invariant_state(true); 3231 trace_workqueue_execute_start(work); 3232 worker->current_func(work); 3233 /* 3234 * While we must be careful to not use "work" after this, the trace 3235 * point will only record its address. 3236 */ 3237 trace_workqueue_execute_end(work, worker->current_func); 3238 pwq->stats[PWQ_STAT_COMPLETED]++; 3239 lock_map_release(&lockdep_map); 3240 if (!bh_draining) 3241 lock_map_release(pwq->wq->lockdep_map); 3242 3243 if (unlikely((worker->task && in_atomic()) || 3244 lockdep_depth(current) != lockdep_start_depth || 3245 rcu_preempt_depth() != rcu_start_depth)) { 3246 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n" 3247 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n", 3248 current->comm, task_pid_nr(current), preempt_count(), 3249 lockdep_start_depth, lockdep_depth(current), 3250 rcu_start_depth, rcu_preempt_depth(), 3251 worker->current_func); 3252 debug_show_held_locks(current); 3253 dump_stack(); 3254 } 3255 3256 /* 3257 * The following prevents a kworker from hogging CPU on !PREEMPTION 3258 * kernels, where a requeueing work item waiting for something to 3259 * happen could deadlock with stop_machine as such work item could 3260 * indefinitely requeue itself while all other CPUs are trapped in 3261 * stop_machine. At the same time, report a quiescent RCU state so 3262 * the same condition doesn't freeze RCU. 3263 */ 3264 if (worker->task) 3265 cond_resched(); 3266 3267 raw_spin_lock_irq(&pool->lock); 3268 3269 /* 3270 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 3271 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 3272 * wq_cpu_intensive_thresh_us. Clear it. 3273 */ 3274 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 3275 3276 /* tag the worker for identification in schedule() */ 3277 worker->last_func = worker->current_func; 3278 3279 /* we're done with it, release */ 3280 hash_del(&worker->hentry); 3281 worker->current_work = NULL; 3282 worker->current_func = NULL; 3283 worker->current_pwq = NULL; 3284 worker->current_color = INT_MAX; 3285 3286 /* must be the last step, see the function comment */ 3287 pwq_dec_nr_in_flight(pwq, work_data); 3288 } 3289 3290 /** 3291 * process_scheduled_works - process scheduled works 3292 * @worker: self 3293 * 3294 * Process all scheduled works. Please note that the scheduled list 3295 * may change while processing a work, so this function repeatedly 3296 * fetches a work from the top and executes it. 3297 * 3298 * CONTEXT: 3299 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3300 * multiple times. 3301 */ 3302 static void process_scheduled_works(struct worker *worker) 3303 { 3304 struct work_struct *work; 3305 bool first = true; 3306 3307 while ((work = list_first_entry_or_null(&worker->scheduled, 3308 struct work_struct, entry))) { 3309 if (first) { 3310 worker->pool->watchdog_ts = jiffies; 3311 first = false; 3312 } 3313 process_one_work(worker, work); 3314 } 3315 } 3316 3317 static void set_pf_worker(bool val) 3318 { 3319 mutex_lock(&wq_pool_attach_mutex); 3320 if (val) 3321 current->flags |= PF_WQ_WORKER; 3322 else 3323 current->flags &= ~PF_WQ_WORKER; 3324 mutex_unlock(&wq_pool_attach_mutex); 3325 } 3326 3327 /** 3328 * worker_thread - the worker thread function 3329 * @__worker: self 3330 * 3331 * The worker thread function. All workers belong to a worker_pool - 3332 * either a per-cpu one or dynamic unbound one. These workers process all 3333 * work items regardless of their specific target workqueue. The only 3334 * exception is work items which belong to workqueues with a rescuer which 3335 * will be explained in rescuer_thread(). 3336 * 3337 * Return: 0 3338 */ 3339 static int worker_thread(void *__worker) 3340 { 3341 struct worker *worker = __worker; 3342 struct worker_pool *pool = worker->pool; 3343 3344 /* tell the scheduler that this is a workqueue worker */ 3345 set_pf_worker(true); 3346 woke_up: 3347 raw_spin_lock_irq(&pool->lock); 3348 3349 /* am I supposed to die? */ 3350 if (unlikely(worker->flags & WORKER_DIE)) { 3351 raw_spin_unlock_irq(&pool->lock); 3352 set_pf_worker(false); 3353 3354 ida_free(&pool->worker_ida, worker->id); 3355 WARN_ON_ONCE(!list_empty(&worker->entry)); 3356 return 0; 3357 } 3358 3359 worker_leave_idle(worker); 3360 recheck: 3361 /* no more worker necessary? */ 3362 if (!need_more_worker(pool)) 3363 goto sleep; 3364 3365 /* do we need to manage? */ 3366 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 3367 goto recheck; 3368 3369 /* 3370 * ->scheduled list can only be filled while a worker is 3371 * preparing to process a work or actually processing it. 3372 * Make sure nobody diddled with it while I was sleeping. 3373 */ 3374 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3375 3376 /* 3377 * Finish PREP stage. We're guaranteed to have at least one idle 3378 * worker or that someone else has already assumed the manager 3379 * role. This is where @worker starts participating in concurrency 3380 * management if applicable and concurrency management is restored 3381 * after being rebound. See rebind_workers() for details. 3382 */ 3383 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3384 3385 do { 3386 struct work_struct *work = 3387 list_first_entry(&pool->worklist, 3388 struct work_struct, entry); 3389 3390 if (assign_work(work, worker, NULL)) 3391 process_scheduled_works(worker); 3392 } while (keep_working(pool)); 3393 3394 worker_set_flags(worker, WORKER_PREP); 3395 sleep: 3396 /* 3397 * pool->lock is held and there's no work to process and no need to 3398 * manage, sleep. Workers are woken up only while holding 3399 * pool->lock or from local cpu, so setting the current state 3400 * before releasing pool->lock is enough to prevent losing any 3401 * event. 3402 */ 3403 worker_enter_idle(worker); 3404 __set_current_state(TASK_IDLE); 3405 raw_spin_unlock_irq(&pool->lock); 3406 schedule(); 3407 goto woke_up; 3408 } 3409 3410 /** 3411 * rescuer_thread - the rescuer thread function 3412 * @__rescuer: self 3413 * 3414 * Workqueue rescuer thread function. There's one rescuer for each 3415 * workqueue which has WQ_MEM_RECLAIM set. 3416 * 3417 * Regular work processing on a pool may block trying to create a new 3418 * worker which uses GFP_KERNEL allocation which has slight chance of 3419 * developing into deadlock if some works currently on the same queue 3420 * need to be processed to satisfy the GFP_KERNEL allocation. This is 3421 * the problem rescuer solves. 3422 * 3423 * When such condition is possible, the pool summons rescuers of all 3424 * workqueues which have works queued on the pool and let them process 3425 * those works so that forward progress can be guaranteed. 3426 * 3427 * This should happen rarely. 3428 * 3429 * Return: 0 3430 */ 3431 static int rescuer_thread(void *__rescuer) 3432 { 3433 struct worker *rescuer = __rescuer; 3434 struct workqueue_struct *wq = rescuer->rescue_wq; 3435 bool should_stop; 3436 3437 set_user_nice(current, RESCUER_NICE_LEVEL); 3438 3439 /* 3440 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 3441 * doesn't participate in concurrency management. 3442 */ 3443 set_pf_worker(true); 3444 repeat: 3445 set_current_state(TASK_IDLE); 3446 3447 /* 3448 * By the time the rescuer is requested to stop, the workqueue 3449 * shouldn't have any work pending, but @wq->maydays may still have 3450 * pwq(s) queued. This can happen by non-rescuer workers consuming 3451 * all the work items before the rescuer got to them. Go through 3452 * @wq->maydays processing before acting on should_stop so that the 3453 * list is always empty on exit. 3454 */ 3455 should_stop = kthread_should_stop(); 3456 3457 /* see whether any pwq is asking for help */ 3458 raw_spin_lock_irq(&wq_mayday_lock); 3459 3460 while (!list_empty(&wq->maydays)) { 3461 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 3462 struct pool_workqueue, mayday_node); 3463 struct worker_pool *pool = pwq->pool; 3464 struct work_struct *work, *n; 3465 3466 __set_current_state(TASK_RUNNING); 3467 list_del_init(&pwq->mayday_node); 3468 3469 raw_spin_unlock_irq(&wq_mayday_lock); 3470 3471 worker_attach_to_pool(rescuer, pool); 3472 3473 raw_spin_lock_irq(&pool->lock); 3474 3475 /* 3476 * Slurp in all works issued via this workqueue and 3477 * process'em. 3478 */ 3479 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 3480 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 3481 if (get_work_pwq(work) == pwq && 3482 assign_work(work, rescuer, &n)) 3483 pwq->stats[PWQ_STAT_RESCUED]++; 3484 } 3485 3486 if (!list_empty(&rescuer->scheduled)) { 3487 process_scheduled_works(rescuer); 3488 3489 /* 3490 * The above execution of rescued work items could 3491 * have created more to rescue through 3492 * pwq_activate_first_inactive() or chained 3493 * queueing. Let's put @pwq back on mayday list so 3494 * that such back-to-back work items, which may be 3495 * being used to relieve memory pressure, don't 3496 * incur MAYDAY_INTERVAL delay inbetween. 3497 */ 3498 if (pwq->nr_active && need_to_create_worker(pool)) { 3499 raw_spin_lock(&wq_mayday_lock); 3500 /* 3501 * Queue iff we aren't racing destruction 3502 * and somebody else hasn't queued it already. 3503 */ 3504 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 3505 get_pwq(pwq); 3506 list_add_tail(&pwq->mayday_node, &wq->maydays); 3507 } 3508 raw_spin_unlock(&wq_mayday_lock); 3509 } 3510 } 3511 3512 /* 3513 * Put the reference grabbed by send_mayday(). @pool won't 3514 * go away while we're still attached to it. 3515 */ 3516 put_pwq(pwq); 3517 3518 /* 3519 * Leave this pool. Notify regular workers; otherwise, we end up 3520 * with 0 concurrency and stalling the execution. 3521 */ 3522 kick_pool(pool); 3523 3524 raw_spin_unlock_irq(&pool->lock); 3525 3526 worker_detach_from_pool(rescuer); 3527 3528 raw_spin_lock_irq(&wq_mayday_lock); 3529 } 3530 3531 raw_spin_unlock_irq(&wq_mayday_lock); 3532 3533 if (should_stop) { 3534 __set_current_state(TASK_RUNNING); 3535 set_pf_worker(false); 3536 return 0; 3537 } 3538 3539 /* rescuers should never participate in concurrency management */ 3540 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 3541 schedule(); 3542 goto repeat; 3543 } 3544 3545 static void bh_worker(struct worker *worker) 3546 { 3547 struct worker_pool *pool = worker->pool; 3548 int nr_restarts = BH_WORKER_RESTARTS; 3549 unsigned long end = jiffies + BH_WORKER_JIFFIES; 3550 3551 raw_spin_lock_irq(&pool->lock); 3552 worker_leave_idle(worker); 3553 3554 /* 3555 * This function follows the structure of worker_thread(). See there for 3556 * explanations on each step. 3557 */ 3558 if (!need_more_worker(pool)) 3559 goto done; 3560 3561 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3562 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3563 3564 do { 3565 struct work_struct *work = 3566 list_first_entry(&pool->worklist, 3567 struct work_struct, entry); 3568 3569 if (assign_work(work, worker, NULL)) 3570 process_scheduled_works(worker); 3571 } while (keep_working(pool) && 3572 --nr_restarts && time_before(jiffies, end)); 3573 3574 worker_set_flags(worker, WORKER_PREP); 3575 done: 3576 worker_enter_idle(worker); 3577 kick_pool(pool); 3578 raw_spin_unlock_irq(&pool->lock); 3579 } 3580 3581 /* 3582 * TODO: Convert all tasklet users to workqueue and use softirq directly. 3583 * 3584 * This is currently called from tasklet[_hi]action() and thus is also called 3585 * whenever there are tasklets to run. Let's do an early exit if there's nothing 3586 * queued. Once conversion from tasklet is complete, the need_more_worker() test 3587 * can be dropped. 3588 * 3589 * After full conversion, we'll add worker->softirq_action, directly use the 3590 * softirq action and obtain the worker pointer from the softirq_action pointer. 3591 */ 3592 void workqueue_softirq_action(bool highpri) 3593 { 3594 struct worker_pool *pool = 3595 &per_cpu(bh_worker_pools, smp_processor_id())[highpri]; 3596 if (need_more_worker(pool)) 3597 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3598 } 3599 3600 struct wq_drain_dead_softirq_work { 3601 struct work_struct work; 3602 struct worker_pool *pool; 3603 struct completion done; 3604 }; 3605 3606 static void drain_dead_softirq_workfn(struct work_struct *work) 3607 { 3608 struct wq_drain_dead_softirq_work *dead_work = 3609 container_of(work, struct wq_drain_dead_softirq_work, work); 3610 struct worker_pool *pool = dead_work->pool; 3611 bool repeat; 3612 3613 /* 3614 * @pool's CPU is dead and we want to execute its still pending work 3615 * items from this BH work item which is running on a different CPU. As 3616 * its CPU is dead, @pool can't be kicked and, as work execution path 3617 * will be nested, a lockdep annotation needs to be suppressed. Mark 3618 * @pool with %POOL_BH_DRAINING for the special treatments. 3619 */ 3620 raw_spin_lock_irq(&pool->lock); 3621 pool->flags |= POOL_BH_DRAINING; 3622 raw_spin_unlock_irq(&pool->lock); 3623 3624 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3625 3626 raw_spin_lock_irq(&pool->lock); 3627 pool->flags &= ~POOL_BH_DRAINING; 3628 repeat = need_more_worker(pool); 3629 raw_spin_unlock_irq(&pool->lock); 3630 3631 /* 3632 * bh_worker() might hit consecutive execution limit and bail. If there 3633 * still are pending work items, reschedule self and return so that we 3634 * don't hog this CPU's BH. 3635 */ 3636 if (repeat) { 3637 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3638 queue_work(system_bh_highpri_wq, work); 3639 else 3640 queue_work(system_bh_wq, work); 3641 } else { 3642 complete(&dead_work->done); 3643 } 3644 } 3645 3646 /* 3647 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's 3648 * possible to allocate dead_work per CPU and avoid flushing. However, then we 3649 * have to worry about draining overlapping with CPU coming back online or 3650 * nesting (one CPU's dead_work queued on another CPU which is also dead and so 3651 * on). Let's keep it simple and drain them synchronously. These are BH work 3652 * items which shouldn't be requeued on the same pool. Shouldn't take long. 3653 */ 3654 void workqueue_softirq_dead(unsigned int cpu) 3655 { 3656 int i; 3657 3658 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 3659 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i]; 3660 struct wq_drain_dead_softirq_work dead_work; 3661 3662 if (!need_more_worker(pool)) 3663 continue; 3664 3665 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn); 3666 dead_work.pool = pool; 3667 init_completion(&dead_work.done); 3668 3669 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3670 queue_work(system_bh_highpri_wq, &dead_work.work); 3671 else 3672 queue_work(system_bh_wq, &dead_work.work); 3673 3674 wait_for_completion(&dead_work.done); 3675 destroy_work_on_stack(&dead_work.work); 3676 } 3677 } 3678 3679 /** 3680 * check_flush_dependency - check for flush dependency sanity 3681 * @target_wq: workqueue being flushed 3682 * @target_work: work item being flushed (NULL for workqueue flushes) 3683 * 3684 * %current is trying to flush the whole @target_wq or @target_work on it. 3685 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 3686 * reclaiming memory or running on a workqueue which doesn't have 3687 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 3688 * a deadlock. 3689 */ 3690 static void check_flush_dependency(struct workqueue_struct *target_wq, 3691 struct work_struct *target_work) 3692 { 3693 work_func_t target_func = target_work ? target_work->func : NULL; 3694 struct worker *worker; 3695 3696 if (target_wq->flags & WQ_MEM_RECLAIM) 3697 return; 3698 3699 worker = current_wq_worker(); 3700 3701 WARN_ONCE(current->flags & PF_MEMALLOC, 3702 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 3703 current->pid, current->comm, target_wq->name, target_func); 3704 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 3705 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 3706 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 3707 worker->current_pwq->wq->name, worker->current_func, 3708 target_wq->name, target_func); 3709 } 3710 3711 struct wq_barrier { 3712 struct work_struct work; 3713 struct completion done; 3714 struct task_struct *task; /* purely informational */ 3715 }; 3716 3717 static void wq_barrier_func(struct work_struct *work) 3718 { 3719 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 3720 complete(&barr->done); 3721 } 3722 3723 /** 3724 * insert_wq_barrier - insert a barrier work 3725 * @pwq: pwq to insert barrier into 3726 * @barr: wq_barrier to insert 3727 * @target: target work to attach @barr to 3728 * @worker: worker currently executing @target, NULL if @target is not executing 3729 * 3730 * @barr is linked to @target such that @barr is completed only after 3731 * @target finishes execution. Please note that the ordering 3732 * guarantee is observed only with respect to @target and on the local 3733 * cpu. 3734 * 3735 * Currently, a queued barrier can't be canceled. This is because 3736 * try_to_grab_pending() can't determine whether the work to be 3737 * grabbed is at the head of the queue and thus can't clear LINKED 3738 * flag of the previous work while there must be a valid next work 3739 * after a work with LINKED flag set. 3740 * 3741 * Note that when @worker is non-NULL, @target may be modified 3742 * underneath us, so we can't reliably determine pwq from @target. 3743 * 3744 * CONTEXT: 3745 * raw_spin_lock_irq(pool->lock). 3746 */ 3747 static void insert_wq_barrier(struct pool_workqueue *pwq, 3748 struct wq_barrier *barr, 3749 struct work_struct *target, struct worker *worker) 3750 { 3751 static __maybe_unused struct lock_class_key bh_key, thr_key; 3752 unsigned int work_flags = 0; 3753 unsigned int work_color; 3754 struct list_head *head; 3755 3756 /* 3757 * debugobject calls are safe here even with pool->lock locked 3758 * as we know for sure that this will not trigger any of the 3759 * checks and call back into the fixup functions where we 3760 * might deadlock. 3761 * 3762 * BH and threaded workqueues need separate lockdep keys to avoid 3763 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} 3764 * usage". 3765 */ 3766 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func, 3767 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key); 3768 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3769 3770 init_completion_map(&barr->done, &target->lockdep_map); 3771 3772 barr->task = current; 3773 3774 /* The barrier work item does not participate in nr_active. */ 3775 work_flags |= WORK_STRUCT_INACTIVE; 3776 3777 /* 3778 * If @target is currently being executed, schedule the 3779 * barrier to the worker; otherwise, put it after @target. 3780 */ 3781 if (worker) { 3782 head = worker->scheduled.next; 3783 work_color = worker->current_color; 3784 } else { 3785 unsigned long *bits = work_data_bits(target); 3786 3787 head = target->entry.next; 3788 /* there can already be other linked works, inherit and set */ 3789 work_flags |= *bits & WORK_STRUCT_LINKED; 3790 work_color = get_work_color(*bits); 3791 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3792 } 3793 3794 pwq->nr_in_flight[work_color]++; 3795 work_flags |= work_color_to_flags(work_color); 3796 3797 insert_work(pwq, &barr->work, head, work_flags); 3798 } 3799 3800 /** 3801 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3802 * @wq: workqueue being flushed 3803 * @flush_color: new flush color, < 0 for no-op 3804 * @work_color: new work color, < 0 for no-op 3805 * 3806 * Prepare pwqs for workqueue flushing. 3807 * 3808 * If @flush_color is non-negative, flush_color on all pwqs should be 3809 * -1. If no pwq has in-flight commands at the specified color, all 3810 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3811 * has in flight commands, its pwq->flush_color is set to 3812 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3813 * wakeup logic is armed and %true is returned. 3814 * 3815 * The caller should have initialized @wq->first_flusher prior to 3816 * calling this function with non-negative @flush_color. If 3817 * @flush_color is negative, no flush color update is done and %false 3818 * is returned. 3819 * 3820 * If @work_color is non-negative, all pwqs should have the same 3821 * work_color which is previous to @work_color and all will be 3822 * advanced to @work_color. 3823 * 3824 * CONTEXT: 3825 * mutex_lock(wq->mutex). 3826 * 3827 * Return: 3828 * %true if @flush_color >= 0 and there's something to flush. %false 3829 * otherwise. 3830 */ 3831 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3832 int flush_color, int work_color) 3833 { 3834 bool wait = false; 3835 struct pool_workqueue *pwq; 3836 3837 if (flush_color >= 0) { 3838 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3839 atomic_set(&wq->nr_pwqs_to_flush, 1); 3840 } 3841 3842 for_each_pwq(pwq, wq) { 3843 struct worker_pool *pool = pwq->pool; 3844 3845 raw_spin_lock_irq(&pool->lock); 3846 3847 if (flush_color >= 0) { 3848 WARN_ON_ONCE(pwq->flush_color != -1); 3849 3850 if (pwq->nr_in_flight[flush_color]) { 3851 pwq->flush_color = flush_color; 3852 atomic_inc(&wq->nr_pwqs_to_flush); 3853 wait = true; 3854 } 3855 } 3856 3857 if (work_color >= 0) { 3858 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3859 pwq->work_color = work_color; 3860 } 3861 3862 raw_spin_unlock_irq(&pool->lock); 3863 } 3864 3865 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3866 complete(&wq->first_flusher->done); 3867 3868 return wait; 3869 } 3870 3871 static void touch_wq_lockdep_map(struct workqueue_struct *wq) 3872 { 3873 #ifdef CONFIG_LOCKDEP 3874 if (unlikely(!wq->lockdep_map)) 3875 return; 3876 3877 if (wq->flags & WQ_BH) 3878 local_bh_disable(); 3879 3880 lock_map_acquire(wq->lockdep_map); 3881 lock_map_release(wq->lockdep_map); 3882 3883 if (wq->flags & WQ_BH) 3884 local_bh_enable(); 3885 #endif 3886 } 3887 3888 static void touch_work_lockdep_map(struct work_struct *work, 3889 struct workqueue_struct *wq) 3890 { 3891 #ifdef CONFIG_LOCKDEP 3892 if (wq->flags & WQ_BH) 3893 local_bh_disable(); 3894 3895 lock_map_acquire(&work->lockdep_map); 3896 lock_map_release(&work->lockdep_map); 3897 3898 if (wq->flags & WQ_BH) 3899 local_bh_enable(); 3900 #endif 3901 } 3902 3903 /** 3904 * __flush_workqueue - ensure that any scheduled work has run to completion. 3905 * @wq: workqueue to flush 3906 * 3907 * This function sleeps until all work items which were queued on entry 3908 * have finished execution, but it is not livelocked by new incoming ones. 3909 */ 3910 void __flush_workqueue(struct workqueue_struct *wq) 3911 { 3912 struct wq_flusher this_flusher = { 3913 .list = LIST_HEAD_INIT(this_flusher.list), 3914 .flush_color = -1, 3915 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)), 3916 }; 3917 int next_color; 3918 3919 if (WARN_ON(!wq_online)) 3920 return; 3921 3922 touch_wq_lockdep_map(wq); 3923 3924 mutex_lock(&wq->mutex); 3925 3926 /* 3927 * Start-to-wait phase 3928 */ 3929 next_color = work_next_color(wq->work_color); 3930 3931 if (next_color != wq->flush_color) { 3932 /* 3933 * Color space is not full. The current work_color 3934 * becomes our flush_color and work_color is advanced 3935 * by one. 3936 */ 3937 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3938 this_flusher.flush_color = wq->work_color; 3939 wq->work_color = next_color; 3940 3941 if (!wq->first_flusher) { 3942 /* no flush in progress, become the first flusher */ 3943 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3944 3945 wq->first_flusher = &this_flusher; 3946 3947 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3948 wq->work_color)) { 3949 /* nothing to flush, done */ 3950 wq->flush_color = next_color; 3951 wq->first_flusher = NULL; 3952 goto out_unlock; 3953 } 3954 } else { 3955 /* wait in queue */ 3956 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3957 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3958 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3959 } 3960 } else { 3961 /* 3962 * Oops, color space is full, wait on overflow queue. 3963 * The next flush completion will assign us 3964 * flush_color and transfer to flusher_queue. 3965 */ 3966 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3967 } 3968 3969 check_flush_dependency(wq, NULL); 3970 3971 mutex_unlock(&wq->mutex); 3972 3973 wait_for_completion(&this_flusher.done); 3974 3975 /* 3976 * Wake-up-and-cascade phase 3977 * 3978 * First flushers are responsible for cascading flushes and 3979 * handling overflow. Non-first flushers can simply return. 3980 */ 3981 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3982 return; 3983 3984 mutex_lock(&wq->mutex); 3985 3986 /* we might have raced, check again with mutex held */ 3987 if (wq->first_flusher != &this_flusher) 3988 goto out_unlock; 3989 3990 WRITE_ONCE(wq->first_flusher, NULL); 3991 3992 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3993 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3994 3995 while (true) { 3996 struct wq_flusher *next, *tmp; 3997 3998 /* complete all the flushers sharing the current flush color */ 3999 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 4000 if (next->flush_color != wq->flush_color) 4001 break; 4002 list_del_init(&next->list); 4003 complete(&next->done); 4004 } 4005 4006 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 4007 wq->flush_color != work_next_color(wq->work_color)); 4008 4009 /* this flush_color is finished, advance by one */ 4010 wq->flush_color = work_next_color(wq->flush_color); 4011 4012 /* one color has been freed, handle overflow queue */ 4013 if (!list_empty(&wq->flusher_overflow)) { 4014 /* 4015 * Assign the same color to all overflowed 4016 * flushers, advance work_color and append to 4017 * flusher_queue. This is the start-to-wait 4018 * phase for these overflowed flushers. 4019 */ 4020 list_for_each_entry(tmp, &wq->flusher_overflow, list) 4021 tmp->flush_color = wq->work_color; 4022 4023 wq->work_color = work_next_color(wq->work_color); 4024 4025 list_splice_tail_init(&wq->flusher_overflow, 4026 &wq->flusher_queue); 4027 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 4028 } 4029 4030 if (list_empty(&wq->flusher_queue)) { 4031 WARN_ON_ONCE(wq->flush_color != wq->work_color); 4032 break; 4033 } 4034 4035 /* 4036 * Need to flush more colors. Make the next flusher 4037 * the new first flusher and arm pwqs. 4038 */ 4039 WARN_ON_ONCE(wq->flush_color == wq->work_color); 4040 WARN_ON_ONCE(wq->flush_color != next->flush_color); 4041 4042 list_del_init(&next->list); 4043 wq->first_flusher = next; 4044 4045 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 4046 break; 4047 4048 /* 4049 * Meh... this color is already done, clear first 4050 * flusher and repeat cascading. 4051 */ 4052 wq->first_flusher = NULL; 4053 } 4054 4055 out_unlock: 4056 mutex_unlock(&wq->mutex); 4057 } 4058 EXPORT_SYMBOL(__flush_workqueue); 4059 4060 /** 4061 * drain_workqueue - drain a workqueue 4062 * @wq: workqueue to drain 4063 * 4064 * Wait until the workqueue becomes empty. While draining is in progress, 4065 * only chain queueing is allowed. IOW, only currently pending or running 4066 * work items on @wq can queue further work items on it. @wq is flushed 4067 * repeatedly until it becomes empty. The number of flushing is determined 4068 * by the depth of chaining and should be relatively short. Whine if it 4069 * takes too long. 4070 */ 4071 void drain_workqueue(struct workqueue_struct *wq) 4072 { 4073 unsigned int flush_cnt = 0; 4074 struct pool_workqueue *pwq; 4075 4076 /* 4077 * __queue_work() needs to test whether there are drainers, is much 4078 * hotter than drain_workqueue() and already looks at @wq->flags. 4079 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 4080 */ 4081 mutex_lock(&wq->mutex); 4082 if (!wq->nr_drainers++) 4083 wq->flags |= __WQ_DRAINING; 4084 mutex_unlock(&wq->mutex); 4085 reflush: 4086 __flush_workqueue(wq); 4087 4088 mutex_lock(&wq->mutex); 4089 4090 for_each_pwq(pwq, wq) { 4091 bool drained; 4092 4093 raw_spin_lock_irq(&pwq->pool->lock); 4094 drained = pwq_is_empty(pwq); 4095 raw_spin_unlock_irq(&pwq->pool->lock); 4096 4097 if (drained) 4098 continue; 4099 4100 if (++flush_cnt == 10 || 4101 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 4102 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 4103 wq->name, __func__, flush_cnt); 4104 4105 mutex_unlock(&wq->mutex); 4106 goto reflush; 4107 } 4108 4109 if (!--wq->nr_drainers) 4110 wq->flags &= ~__WQ_DRAINING; 4111 mutex_unlock(&wq->mutex); 4112 } 4113 EXPORT_SYMBOL_GPL(drain_workqueue); 4114 4115 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 4116 bool from_cancel) 4117 { 4118 struct worker *worker = NULL; 4119 struct worker_pool *pool; 4120 struct pool_workqueue *pwq; 4121 struct workqueue_struct *wq; 4122 4123 rcu_read_lock(); 4124 pool = get_work_pool(work); 4125 if (!pool) { 4126 rcu_read_unlock(); 4127 return false; 4128 } 4129 4130 raw_spin_lock_irq(&pool->lock); 4131 /* see the comment in try_to_grab_pending() with the same code */ 4132 pwq = get_work_pwq(work); 4133 if (pwq) { 4134 if (unlikely(pwq->pool != pool)) 4135 goto already_gone; 4136 } else { 4137 worker = find_worker_executing_work(pool, work); 4138 if (!worker) 4139 goto already_gone; 4140 pwq = worker->current_pwq; 4141 } 4142 4143 wq = pwq->wq; 4144 check_flush_dependency(wq, work); 4145 4146 insert_wq_barrier(pwq, barr, work, worker); 4147 raw_spin_unlock_irq(&pool->lock); 4148 4149 touch_work_lockdep_map(work, wq); 4150 4151 /* 4152 * Force a lock recursion deadlock when using flush_work() inside a 4153 * single-threaded or rescuer equipped workqueue. 4154 * 4155 * For single threaded workqueues the deadlock happens when the work 4156 * is after the work issuing the flush_work(). For rescuer equipped 4157 * workqueues the deadlock happens when the rescuer stalls, blocking 4158 * forward progress. 4159 */ 4160 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer)) 4161 touch_wq_lockdep_map(wq); 4162 4163 rcu_read_unlock(); 4164 return true; 4165 already_gone: 4166 raw_spin_unlock_irq(&pool->lock); 4167 rcu_read_unlock(); 4168 return false; 4169 } 4170 4171 static bool __flush_work(struct work_struct *work, bool from_cancel) 4172 { 4173 struct wq_barrier barr; 4174 unsigned long data; 4175 4176 if (WARN_ON(!wq_online)) 4177 return false; 4178 4179 if (WARN_ON(!work->func)) 4180 return false; 4181 4182 if (!start_flush_work(work, &barr, from_cancel)) 4183 return false; 4184 4185 /* 4186 * start_flush_work() returned %true. If @from_cancel is set, we know 4187 * that @work must have been executing during start_flush_work() and 4188 * can't currently be queued. Its data must contain OFFQ bits. If @work 4189 * was queued on a BH workqueue, we also know that it was running in the 4190 * BH context and thus can be busy-waited. 4191 */ 4192 data = *work_data_bits(work); 4193 if (from_cancel && 4194 !WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_BH)) { 4195 /* 4196 * On RT, prevent a live lock when %current preempted soft 4197 * interrupt processing or prevents ksoftirqd from running by 4198 * keeping flipping BH. If the BH work item runs on a different 4199 * CPU then this has no effect other than doing the BH 4200 * disable/enable dance for nothing. This is copied from 4201 * kernel/softirq.c::tasklet_unlock_spin_wait(). 4202 */ 4203 while (!try_wait_for_completion(&barr.done)) { 4204 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4205 local_bh_disable(); 4206 local_bh_enable(); 4207 } else { 4208 cpu_relax(); 4209 } 4210 } 4211 } else { 4212 wait_for_completion(&barr.done); 4213 } 4214 4215 destroy_work_on_stack(&barr.work); 4216 return true; 4217 } 4218 4219 /** 4220 * flush_work - wait for a work to finish executing the last queueing instance 4221 * @work: the work to flush 4222 * 4223 * Wait until @work has finished execution. @work is guaranteed to be idle 4224 * on return if it hasn't been requeued since flush started. 4225 * 4226 * Return: 4227 * %true if flush_work() waited for the work to finish execution, 4228 * %false if it was already idle. 4229 */ 4230 bool flush_work(struct work_struct *work) 4231 { 4232 might_sleep(); 4233 return __flush_work(work, false); 4234 } 4235 EXPORT_SYMBOL_GPL(flush_work); 4236 4237 /** 4238 * flush_delayed_work - wait for a dwork to finish executing the last queueing 4239 * @dwork: the delayed work to flush 4240 * 4241 * Delayed timer is cancelled and the pending work is queued for 4242 * immediate execution. Like flush_work(), this function only 4243 * considers the last queueing instance of @dwork. 4244 * 4245 * Return: 4246 * %true if flush_work() waited for the work to finish execution, 4247 * %false if it was already idle. 4248 */ 4249 bool flush_delayed_work(struct delayed_work *dwork) 4250 { 4251 local_irq_disable(); 4252 if (del_timer_sync(&dwork->timer)) 4253 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 4254 local_irq_enable(); 4255 return flush_work(&dwork->work); 4256 } 4257 EXPORT_SYMBOL(flush_delayed_work); 4258 4259 /** 4260 * flush_rcu_work - wait for a rwork to finish executing the last queueing 4261 * @rwork: the rcu work to flush 4262 * 4263 * Return: 4264 * %true if flush_rcu_work() waited for the work to finish execution, 4265 * %false if it was already idle. 4266 */ 4267 bool flush_rcu_work(struct rcu_work *rwork) 4268 { 4269 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 4270 rcu_barrier(); 4271 flush_work(&rwork->work); 4272 return true; 4273 } else { 4274 return flush_work(&rwork->work); 4275 } 4276 } 4277 EXPORT_SYMBOL(flush_rcu_work); 4278 4279 static void work_offqd_disable(struct work_offq_data *offqd) 4280 { 4281 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1; 4282 4283 if (likely(offqd->disable < max)) 4284 offqd->disable++; 4285 else 4286 WARN_ONCE(true, "workqueue: work disable count overflowed\n"); 4287 } 4288 4289 static void work_offqd_enable(struct work_offq_data *offqd) 4290 { 4291 if (likely(offqd->disable > 0)) 4292 offqd->disable--; 4293 else 4294 WARN_ONCE(true, "workqueue: work disable count underflowed\n"); 4295 } 4296 4297 static bool __cancel_work(struct work_struct *work, u32 cflags) 4298 { 4299 struct work_offq_data offqd; 4300 unsigned long irq_flags; 4301 int ret; 4302 4303 ret = work_grab_pending(work, cflags, &irq_flags); 4304 4305 work_offqd_unpack(&offqd, *work_data_bits(work)); 4306 4307 if (cflags & WORK_CANCEL_DISABLE) 4308 work_offqd_disable(&offqd); 4309 4310 set_work_pool_and_clear_pending(work, offqd.pool_id, 4311 work_offqd_pack_flags(&offqd)); 4312 local_irq_restore(irq_flags); 4313 return ret; 4314 } 4315 4316 static bool __cancel_work_sync(struct work_struct *work, u32 cflags) 4317 { 4318 bool ret; 4319 4320 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE); 4321 4322 if (*work_data_bits(work) & WORK_OFFQ_BH) 4323 WARN_ON_ONCE(in_hardirq()); 4324 else 4325 might_sleep(); 4326 4327 /* 4328 * Skip __flush_work() during early boot when we know that @work isn't 4329 * executing. This allows canceling during early boot. 4330 */ 4331 if (wq_online) 4332 __flush_work(work, true); 4333 4334 if (!(cflags & WORK_CANCEL_DISABLE)) 4335 enable_work(work); 4336 4337 return ret; 4338 } 4339 4340 /* 4341 * See cancel_delayed_work() 4342 */ 4343 bool cancel_work(struct work_struct *work) 4344 { 4345 return __cancel_work(work, 0); 4346 } 4347 EXPORT_SYMBOL(cancel_work); 4348 4349 /** 4350 * cancel_work_sync - cancel a work and wait for it to finish 4351 * @work: the work to cancel 4352 * 4353 * Cancel @work and wait for its execution to finish. This function can be used 4354 * even if the work re-queues itself or migrates to another workqueue. On return 4355 * from this function, @work is guaranteed to be not pending or executing on any 4356 * CPU as long as there aren't racing enqueues. 4357 * 4358 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's. 4359 * Use cancel_delayed_work_sync() instead. 4360 * 4361 * Must be called from a sleepable context if @work was last queued on a non-BH 4362 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4363 * if @work was last queued on a BH workqueue. 4364 * 4365 * Returns %true if @work was pending, %false otherwise. 4366 */ 4367 bool cancel_work_sync(struct work_struct *work) 4368 { 4369 return __cancel_work_sync(work, 0); 4370 } 4371 EXPORT_SYMBOL_GPL(cancel_work_sync); 4372 4373 /** 4374 * cancel_delayed_work - cancel a delayed work 4375 * @dwork: delayed_work to cancel 4376 * 4377 * Kill off a pending delayed_work. 4378 * 4379 * Return: %true if @dwork was pending and canceled; %false if it wasn't 4380 * pending. 4381 * 4382 * Note: 4383 * The work callback function may still be running on return, unless 4384 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 4385 * use cancel_delayed_work_sync() to wait on it. 4386 * 4387 * This function is safe to call from any context including IRQ handler. 4388 */ 4389 bool cancel_delayed_work(struct delayed_work *dwork) 4390 { 4391 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED); 4392 } 4393 EXPORT_SYMBOL(cancel_delayed_work); 4394 4395 /** 4396 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 4397 * @dwork: the delayed work cancel 4398 * 4399 * This is cancel_work_sync() for delayed works. 4400 * 4401 * Return: 4402 * %true if @dwork was pending, %false otherwise. 4403 */ 4404 bool cancel_delayed_work_sync(struct delayed_work *dwork) 4405 { 4406 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED); 4407 } 4408 EXPORT_SYMBOL(cancel_delayed_work_sync); 4409 4410 /** 4411 * disable_work - Disable and cancel a work item 4412 * @work: work item to disable 4413 * 4414 * Disable @work by incrementing its disable count and cancel it if currently 4415 * pending. As long as the disable count is non-zero, any attempt to queue @work 4416 * will fail and return %false. The maximum supported disable depth is 2 to the 4417 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536. 4418 * 4419 * Can be called from any context. Returns %true if @work was pending, %false 4420 * otherwise. 4421 */ 4422 bool disable_work(struct work_struct *work) 4423 { 4424 return __cancel_work(work, WORK_CANCEL_DISABLE); 4425 } 4426 EXPORT_SYMBOL_GPL(disable_work); 4427 4428 /** 4429 * disable_work_sync - Disable, cancel and drain a work item 4430 * @work: work item to disable 4431 * 4432 * Similar to disable_work() but also wait for @work to finish if currently 4433 * executing. 4434 * 4435 * Must be called from a sleepable context if @work was last queued on a non-BH 4436 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4437 * if @work was last queued on a BH workqueue. 4438 * 4439 * Returns %true if @work was pending, %false otherwise. 4440 */ 4441 bool disable_work_sync(struct work_struct *work) 4442 { 4443 return __cancel_work_sync(work, WORK_CANCEL_DISABLE); 4444 } 4445 EXPORT_SYMBOL_GPL(disable_work_sync); 4446 4447 /** 4448 * enable_work - Enable a work item 4449 * @work: work item to enable 4450 * 4451 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can 4452 * only be queued if its disable count is 0. 4453 * 4454 * Can be called from any context. Returns %true if the disable count reached 0. 4455 * Otherwise, %false. 4456 */ 4457 bool enable_work(struct work_struct *work) 4458 { 4459 struct work_offq_data offqd; 4460 unsigned long irq_flags; 4461 4462 work_grab_pending(work, 0, &irq_flags); 4463 4464 work_offqd_unpack(&offqd, *work_data_bits(work)); 4465 work_offqd_enable(&offqd); 4466 set_work_pool_and_clear_pending(work, offqd.pool_id, 4467 work_offqd_pack_flags(&offqd)); 4468 local_irq_restore(irq_flags); 4469 4470 return !offqd.disable; 4471 } 4472 EXPORT_SYMBOL_GPL(enable_work); 4473 4474 /** 4475 * disable_delayed_work - Disable and cancel a delayed work item 4476 * @dwork: delayed work item to disable 4477 * 4478 * disable_work() for delayed work items. 4479 */ 4480 bool disable_delayed_work(struct delayed_work *dwork) 4481 { 4482 return __cancel_work(&dwork->work, 4483 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4484 } 4485 EXPORT_SYMBOL_GPL(disable_delayed_work); 4486 4487 /** 4488 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item 4489 * @dwork: delayed work item to disable 4490 * 4491 * disable_work_sync() for delayed work items. 4492 */ 4493 bool disable_delayed_work_sync(struct delayed_work *dwork) 4494 { 4495 return __cancel_work_sync(&dwork->work, 4496 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4497 } 4498 EXPORT_SYMBOL_GPL(disable_delayed_work_sync); 4499 4500 /** 4501 * enable_delayed_work - Enable a delayed work item 4502 * @dwork: delayed work item to enable 4503 * 4504 * enable_work() for delayed work items. 4505 */ 4506 bool enable_delayed_work(struct delayed_work *dwork) 4507 { 4508 return enable_work(&dwork->work); 4509 } 4510 EXPORT_SYMBOL_GPL(enable_delayed_work); 4511 4512 /** 4513 * schedule_on_each_cpu - execute a function synchronously on each online CPU 4514 * @func: the function to call 4515 * 4516 * schedule_on_each_cpu() executes @func on each online CPU using the 4517 * system workqueue and blocks until all CPUs have completed. 4518 * schedule_on_each_cpu() is very slow. 4519 * 4520 * Return: 4521 * 0 on success, -errno on failure. 4522 */ 4523 int schedule_on_each_cpu(work_func_t func) 4524 { 4525 int cpu; 4526 struct work_struct __percpu *works; 4527 4528 works = alloc_percpu(struct work_struct); 4529 if (!works) 4530 return -ENOMEM; 4531 4532 cpus_read_lock(); 4533 4534 for_each_online_cpu(cpu) { 4535 struct work_struct *work = per_cpu_ptr(works, cpu); 4536 4537 INIT_WORK(work, func); 4538 schedule_work_on(cpu, work); 4539 } 4540 4541 for_each_online_cpu(cpu) 4542 flush_work(per_cpu_ptr(works, cpu)); 4543 4544 cpus_read_unlock(); 4545 free_percpu(works); 4546 return 0; 4547 } 4548 4549 /** 4550 * execute_in_process_context - reliably execute the routine with user context 4551 * @fn: the function to execute 4552 * @ew: guaranteed storage for the execute work structure (must 4553 * be available when the work executes) 4554 * 4555 * Executes the function immediately if process context is available, 4556 * otherwise schedules the function for delayed execution. 4557 * 4558 * Return: 0 - function was executed 4559 * 1 - function was scheduled for execution 4560 */ 4561 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 4562 { 4563 if (!in_interrupt()) { 4564 fn(&ew->work); 4565 return 0; 4566 } 4567 4568 INIT_WORK(&ew->work, fn); 4569 schedule_work(&ew->work); 4570 4571 return 1; 4572 } 4573 EXPORT_SYMBOL_GPL(execute_in_process_context); 4574 4575 /** 4576 * free_workqueue_attrs - free a workqueue_attrs 4577 * @attrs: workqueue_attrs to free 4578 * 4579 * Undo alloc_workqueue_attrs(). 4580 */ 4581 void free_workqueue_attrs(struct workqueue_attrs *attrs) 4582 { 4583 if (attrs) { 4584 free_cpumask_var(attrs->cpumask); 4585 free_cpumask_var(attrs->__pod_cpumask); 4586 kfree(attrs); 4587 } 4588 } 4589 4590 /** 4591 * alloc_workqueue_attrs - allocate a workqueue_attrs 4592 * 4593 * Allocate a new workqueue_attrs, initialize with default settings and 4594 * return it. 4595 * 4596 * Return: The allocated new workqueue_attr on success. %NULL on failure. 4597 */ 4598 struct workqueue_attrs *alloc_workqueue_attrs(void) 4599 { 4600 struct workqueue_attrs *attrs; 4601 4602 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 4603 if (!attrs) 4604 goto fail; 4605 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 4606 goto fail; 4607 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 4608 goto fail; 4609 4610 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4611 attrs->affn_scope = WQ_AFFN_DFL; 4612 return attrs; 4613 fail: 4614 free_workqueue_attrs(attrs); 4615 return NULL; 4616 } 4617 4618 static void copy_workqueue_attrs(struct workqueue_attrs *to, 4619 const struct workqueue_attrs *from) 4620 { 4621 to->nice = from->nice; 4622 cpumask_copy(to->cpumask, from->cpumask); 4623 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 4624 to->affn_strict = from->affn_strict; 4625 4626 /* 4627 * Unlike hash and equality test, copying shouldn't ignore wq-only 4628 * fields as copying is used for both pool and wq attrs. Instead, 4629 * get_unbound_pool() explicitly clears the fields. 4630 */ 4631 to->affn_scope = from->affn_scope; 4632 to->ordered = from->ordered; 4633 } 4634 4635 /* 4636 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 4637 * comments in 'struct workqueue_attrs' definition. 4638 */ 4639 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 4640 { 4641 attrs->affn_scope = WQ_AFFN_NR_TYPES; 4642 attrs->ordered = false; 4643 if (attrs->affn_strict) 4644 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4645 } 4646 4647 /* hash value of the content of @attr */ 4648 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 4649 { 4650 u32 hash = 0; 4651 4652 hash = jhash_1word(attrs->nice, hash); 4653 hash = jhash_1word(attrs->affn_strict, hash); 4654 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 4655 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4656 if (!attrs->affn_strict) 4657 hash = jhash(cpumask_bits(attrs->cpumask), 4658 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4659 return hash; 4660 } 4661 4662 /* content equality test */ 4663 static bool wqattrs_equal(const struct workqueue_attrs *a, 4664 const struct workqueue_attrs *b) 4665 { 4666 if (a->nice != b->nice) 4667 return false; 4668 if (a->affn_strict != b->affn_strict) 4669 return false; 4670 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 4671 return false; 4672 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask)) 4673 return false; 4674 return true; 4675 } 4676 4677 /* Update @attrs with actually available CPUs */ 4678 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 4679 const cpumask_t *unbound_cpumask) 4680 { 4681 /* 4682 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 4683 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 4684 * @unbound_cpumask. 4685 */ 4686 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 4687 if (unlikely(cpumask_empty(attrs->cpumask))) 4688 cpumask_copy(attrs->cpumask, unbound_cpumask); 4689 } 4690 4691 /* find wq_pod_type to use for @attrs */ 4692 static const struct wq_pod_type * 4693 wqattrs_pod_type(const struct workqueue_attrs *attrs) 4694 { 4695 enum wq_affn_scope scope; 4696 struct wq_pod_type *pt; 4697 4698 /* to synchronize access to wq_affn_dfl */ 4699 lockdep_assert_held(&wq_pool_mutex); 4700 4701 if (attrs->affn_scope == WQ_AFFN_DFL) 4702 scope = wq_affn_dfl; 4703 else 4704 scope = attrs->affn_scope; 4705 4706 pt = &wq_pod_types[scope]; 4707 4708 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 4709 likely(pt->nr_pods)) 4710 return pt; 4711 4712 /* 4713 * Before workqueue_init_topology(), only SYSTEM is available which is 4714 * initialized in workqueue_init_early(). 4715 */ 4716 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 4717 BUG_ON(!pt->nr_pods); 4718 return pt; 4719 } 4720 4721 /** 4722 * init_worker_pool - initialize a newly zalloc'd worker_pool 4723 * @pool: worker_pool to initialize 4724 * 4725 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 4726 * 4727 * Return: 0 on success, -errno on failure. Even on failure, all fields 4728 * inside @pool proper are initialized and put_unbound_pool() can be called 4729 * on @pool safely to release it. 4730 */ 4731 static int init_worker_pool(struct worker_pool *pool) 4732 { 4733 raw_spin_lock_init(&pool->lock); 4734 pool->id = -1; 4735 pool->cpu = -1; 4736 pool->node = NUMA_NO_NODE; 4737 pool->flags |= POOL_DISASSOCIATED; 4738 pool->watchdog_ts = jiffies; 4739 INIT_LIST_HEAD(&pool->worklist); 4740 INIT_LIST_HEAD(&pool->idle_list); 4741 hash_init(pool->busy_hash); 4742 4743 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 4744 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 4745 4746 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 4747 4748 INIT_LIST_HEAD(&pool->workers); 4749 4750 ida_init(&pool->worker_ida); 4751 INIT_HLIST_NODE(&pool->hash_node); 4752 pool->refcnt = 1; 4753 4754 /* shouldn't fail above this point */ 4755 pool->attrs = alloc_workqueue_attrs(); 4756 if (!pool->attrs) 4757 return -ENOMEM; 4758 4759 wqattrs_clear_for_pool(pool->attrs); 4760 4761 return 0; 4762 } 4763 4764 #ifdef CONFIG_LOCKDEP 4765 static void wq_init_lockdep(struct workqueue_struct *wq) 4766 { 4767 char *lock_name; 4768 4769 lockdep_register_key(&wq->key); 4770 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 4771 if (!lock_name) 4772 lock_name = wq->name; 4773 4774 wq->lock_name = lock_name; 4775 wq->lockdep_map = &wq->__lockdep_map; 4776 lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0); 4777 } 4778 4779 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4780 { 4781 if (wq->lockdep_map != &wq->__lockdep_map) 4782 return; 4783 4784 lockdep_unregister_key(&wq->key); 4785 } 4786 4787 static void wq_free_lockdep(struct workqueue_struct *wq) 4788 { 4789 if (wq->lockdep_map != &wq->__lockdep_map) 4790 return; 4791 4792 if (wq->lock_name != wq->name) 4793 kfree(wq->lock_name); 4794 } 4795 #else 4796 static void wq_init_lockdep(struct workqueue_struct *wq) 4797 { 4798 } 4799 4800 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4801 { 4802 } 4803 4804 static void wq_free_lockdep(struct workqueue_struct *wq) 4805 { 4806 } 4807 #endif 4808 4809 static void free_node_nr_active(struct wq_node_nr_active **nna_ar) 4810 { 4811 int node; 4812 4813 for_each_node(node) { 4814 kfree(nna_ar[node]); 4815 nna_ar[node] = NULL; 4816 } 4817 4818 kfree(nna_ar[nr_node_ids]); 4819 nna_ar[nr_node_ids] = NULL; 4820 } 4821 4822 static void init_node_nr_active(struct wq_node_nr_active *nna) 4823 { 4824 nna->max = WQ_DFL_MIN_ACTIVE; 4825 atomic_set(&nna->nr, 0); 4826 raw_spin_lock_init(&nna->lock); 4827 INIT_LIST_HEAD(&nna->pending_pwqs); 4828 } 4829 4830 /* 4831 * Each node's nr_active counter will be accessed mostly from its own node and 4832 * should be allocated in the node. 4833 */ 4834 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) 4835 { 4836 struct wq_node_nr_active *nna; 4837 int node; 4838 4839 for_each_node(node) { 4840 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node); 4841 if (!nna) 4842 goto err_free; 4843 init_node_nr_active(nna); 4844 nna_ar[node] = nna; 4845 } 4846 4847 /* [nr_node_ids] is used as the fallback */ 4848 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); 4849 if (!nna) 4850 goto err_free; 4851 init_node_nr_active(nna); 4852 nna_ar[nr_node_ids] = nna; 4853 4854 return 0; 4855 4856 err_free: 4857 free_node_nr_active(nna_ar); 4858 return -ENOMEM; 4859 } 4860 4861 static void rcu_free_wq(struct rcu_head *rcu) 4862 { 4863 struct workqueue_struct *wq = 4864 container_of(rcu, struct workqueue_struct, rcu); 4865 4866 if (wq->flags & WQ_UNBOUND) 4867 free_node_nr_active(wq->node_nr_active); 4868 4869 wq_free_lockdep(wq); 4870 free_percpu(wq->cpu_pwq); 4871 free_workqueue_attrs(wq->unbound_attrs); 4872 kfree(wq); 4873 } 4874 4875 static void rcu_free_pool(struct rcu_head *rcu) 4876 { 4877 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 4878 4879 ida_destroy(&pool->worker_ida); 4880 free_workqueue_attrs(pool->attrs); 4881 kfree(pool); 4882 } 4883 4884 /** 4885 * put_unbound_pool - put a worker_pool 4886 * @pool: worker_pool to put 4887 * 4888 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 4889 * safe manner. get_unbound_pool() calls this function on its failure path 4890 * and this function should be able to release pools which went through, 4891 * successfully or not, init_worker_pool(). 4892 * 4893 * Should be called with wq_pool_mutex held. 4894 */ 4895 static void put_unbound_pool(struct worker_pool *pool) 4896 { 4897 struct worker *worker; 4898 LIST_HEAD(cull_list); 4899 4900 lockdep_assert_held(&wq_pool_mutex); 4901 4902 if (--pool->refcnt) 4903 return; 4904 4905 /* sanity checks */ 4906 if (WARN_ON(!(pool->cpu < 0)) || 4907 WARN_ON(!list_empty(&pool->worklist))) 4908 return; 4909 4910 /* release id and unhash */ 4911 if (pool->id >= 0) 4912 idr_remove(&worker_pool_idr, pool->id); 4913 hash_del(&pool->hash_node); 4914 4915 /* 4916 * Become the manager and destroy all workers. This prevents 4917 * @pool's workers from blocking on attach_mutex. We're the last 4918 * manager and @pool gets freed with the flag set. 4919 * 4920 * Having a concurrent manager is quite unlikely to happen as we can 4921 * only get here with 4922 * pwq->refcnt == pool->refcnt == 0 4923 * which implies no work queued to the pool, which implies no worker can 4924 * become the manager. However a worker could have taken the role of 4925 * manager before the refcnts dropped to 0, since maybe_create_worker() 4926 * drops pool->lock 4927 */ 4928 while (true) { 4929 rcuwait_wait_event(&manager_wait, 4930 !(pool->flags & POOL_MANAGER_ACTIVE), 4931 TASK_UNINTERRUPTIBLE); 4932 4933 mutex_lock(&wq_pool_attach_mutex); 4934 raw_spin_lock_irq(&pool->lock); 4935 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4936 pool->flags |= POOL_MANAGER_ACTIVE; 4937 break; 4938 } 4939 raw_spin_unlock_irq(&pool->lock); 4940 mutex_unlock(&wq_pool_attach_mutex); 4941 } 4942 4943 while ((worker = first_idle_worker(pool))) 4944 set_worker_dying(worker, &cull_list); 4945 WARN_ON(pool->nr_workers || pool->nr_idle); 4946 raw_spin_unlock_irq(&pool->lock); 4947 4948 detach_dying_workers(&cull_list); 4949 4950 mutex_unlock(&wq_pool_attach_mutex); 4951 4952 reap_dying_workers(&cull_list); 4953 4954 /* shut down the timers */ 4955 del_timer_sync(&pool->idle_timer); 4956 cancel_work_sync(&pool->idle_cull_work); 4957 del_timer_sync(&pool->mayday_timer); 4958 4959 /* RCU protected to allow dereferences from get_work_pool() */ 4960 call_rcu(&pool->rcu, rcu_free_pool); 4961 } 4962 4963 /** 4964 * get_unbound_pool - get a worker_pool with the specified attributes 4965 * @attrs: the attributes of the worker_pool to get 4966 * 4967 * Obtain a worker_pool which has the same attributes as @attrs, bump the 4968 * reference count and return it. If there already is a matching 4969 * worker_pool, it will be used; otherwise, this function attempts to 4970 * create a new one. 4971 * 4972 * Should be called with wq_pool_mutex held. 4973 * 4974 * Return: On success, a worker_pool with the same attributes as @attrs. 4975 * On failure, %NULL. 4976 */ 4977 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 4978 { 4979 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 4980 u32 hash = wqattrs_hash(attrs); 4981 struct worker_pool *pool; 4982 int pod, node = NUMA_NO_NODE; 4983 4984 lockdep_assert_held(&wq_pool_mutex); 4985 4986 /* do we already have a matching pool? */ 4987 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 4988 if (wqattrs_equal(pool->attrs, attrs)) { 4989 pool->refcnt++; 4990 return pool; 4991 } 4992 } 4993 4994 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 4995 for (pod = 0; pod < pt->nr_pods; pod++) { 4996 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 4997 node = pt->pod_node[pod]; 4998 break; 4999 } 5000 } 5001 5002 /* nope, create a new one */ 5003 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 5004 if (!pool || init_worker_pool(pool) < 0) 5005 goto fail; 5006 5007 pool->node = node; 5008 copy_workqueue_attrs(pool->attrs, attrs); 5009 wqattrs_clear_for_pool(pool->attrs); 5010 5011 if (worker_pool_assign_id(pool) < 0) 5012 goto fail; 5013 5014 /* create and start the initial worker */ 5015 if (wq_online && !create_worker(pool)) 5016 goto fail; 5017 5018 /* install */ 5019 hash_add(unbound_pool_hash, &pool->hash_node, hash); 5020 5021 return pool; 5022 fail: 5023 if (pool) 5024 put_unbound_pool(pool); 5025 return NULL; 5026 } 5027 5028 /* 5029 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 5030 * refcnt and needs to be destroyed. 5031 */ 5032 static void pwq_release_workfn(struct kthread_work *work) 5033 { 5034 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 5035 release_work); 5036 struct workqueue_struct *wq = pwq->wq; 5037 struct worker_pool *pool = pwq->pool; 5038 bool is_last = false; 5039 5040 /* 5041 * When @pwq is not linked, it doesn't hold any reference to the 5042 * @wq, and @wq is invalid to access. 5043 */ 5044 if (!list_empty(&pwq->pwqs_node)) { 5045 mutex_lock(&wq->mutex); 5046 list_del_rcu(&pwq->pwqs_node); 5047 is_last = list_empty(&wq->pwqs); 5048 5049 /* 5050 * For ordered workqueue with a plugged dfl_pwq, restart it now. 5051 */ 5052 if (!is_last && (wq->flags & __WQ_ORDERED)) 5053 unplug_oldest_pwq(wq); 5054 5055 mutex_unlock(&wq->mutex); 5056 } 5057 5058 if (wq->flags & WQ_UNBOUND) { 5059 mutex_lock(&wq_pool_mutex); 5060 put_unbound_pool(pool); 5061 mutex_unlock(&wq_pool_mutex); 5062 } 5063 5064 if (!list_empty(&pwq->pending_node)) { 5065 struct wq_node_nr_active *nna = 5066 wq_node_nr_active(pwq->wq, pwq->pool->node); 5067 5068 raw_spin_lock_irq(&nna->lock); 5069 list_del_init(&pwq->pending_node); 5070 raw_spin_unlock_irq(&nna->lock); 5071 } 5072 5073 kfree_rcu(pwq, rcu); 5074 5075 /* 5076 * If we're the last pwq going away, @wq is already dead and no one 5077 * is gonna access it anymore. Schedule RCU free. 5078 */ 5079 if (is_last) { 5080 wq_unregister_lockdep(wq); 5081 call_rcu(&wq->rcu, rcu_free_wq); 5082 } 5083 } 5084 5085 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 5086 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 5087 struct worker_pool *pool) 5088 { 5089 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK); 5090 5091 memset(pwq, 0, sizeof(*pwq)); 5092 5093 pwq->pool = pool; 5094 pwq->wq = wq; 5095 pwq->flush_color = -1; 5096 pwq->refcnt = 1; 5097 INIT_LIST_HEAD(&pwq->inactive_works); 5098 INIT_LIST_HEAD(&pwq->pending_node); 5099 INIT_LIST_HEAD(&pwq->pwqs_node); 5100 INIT_LIST_HEAD(&pwq->mayday_node); 5101 kthread_init_work(&pwq->release_work, pwq_release_workfn); 5102 } 5103 5104 /* sync @pwq with the current state of its associated wq and link it */ 5105 static void link_pwq(struct pool_workqueue *pwq) 5106 { 5107 struct workqueue_struct *wq = pwq->wq; 5108 5109 lockdep_assert_held(&wq->mutex); 5110 5111 /* may be called multiple times, ignore if already linked */ 5112 if (!list_empty(&pwq->pwqs_node)) 5113 return; 5114 5115 /* set the matching work_color */ 5116 pwq->work_color = wq->work_color; 5117 5118 /* link in @pwq */ 5119 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs); 5120 } 5121 5122 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 5123 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 5124 const struct workqueue_attrs *attrs) 5125 { 5126 struct worker_pool *pool; 5127 struct pool_workqueue *pwq; 5128 5129 lockdep_assert_held(&wq_pool_mutex); 5130 5131 pool = get_unbound_pool(attrs); 5132 if (!pool) 5133 return NULL; 5134 5135 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 5136 if (!pwq) { 5137 put_unbound_pool(pool); 5138 return NULL; 5139 } 5140 5141 init_pwq(pwq, wq, pool); 5142 return pwq; 5143 } 5144 5145 static void apply_wqattrs_lock(void) 5146 { 5147 mutex_lock(&wq_pool_mutex); 5148 } 5149 5150 static void apply_wqattrs_unlock(void) 5151 { 5152 mutex_unlock(&wq_pool_mutex); 5153 } 5154 5155 /** 5156 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 5157 * @attrs: the wq_attrs of the default pwq of the target workqueue 5158 * @cpu: the target CPU 5159 * 5160 * Calculate the cpumask a workqueue with @attrs should use on @pod. 5161 * The result is stored in @attrs->__pod_cpumask. 5162 * 5163 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 5164 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 5165 * intersection of the possible CPUs of @pod and @attrs->cpumask. 5166 * 5167 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 5168 */ 5169 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu) 5170 { 5171 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5172 int pod = pt->cpu_pod[cpu]; 5173 5174 /* calculate possible CPUs in @pod that @attrs wants */ 5175 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 5176 /* does @pod have any online CPUs @attrs wants? */ 5177 if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) { 5178 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 5179 return; 5180 } 5181 } 5182 5183 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ 5184 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 5185 int cpu, struct pool_workqueue *pwq) 5186 { 5187 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); 5188 struct pool_workqueue *old_pwq; 5189 5190 lockdep_assert_held(&wq_pool_mutex); 5191 lockdep_assert_held(&wq->mutex); 5192 5193 /* link_pwq() can handle duplicate calls */ 5194 link_pwq(pwq); 5195 5196 old_pwq = rcu_access_pointer(*slot); 5197 rcu_assign_pointer(*slot, pwq); 5198 return old_pwq; 5199 } 5200 5201 /* context to store the prepared attrs & pwqs before applying */ 5202 struct apply_wqattrs_ctx { 5203 struct workqueue_struct *wq; /* target workqueue */ 5204 struct workqueue_attrs *attrs; /* attrs to apply */ 5205 struct list_head list; /* queued for batching commit */ 5206 struct pool_workqueue *dfl_pwq; 5207 struct pool_workqueue *pwq_tbl[]; 5208 }; 5209 5210 /* free the resources after success or abort */ 5211 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 5212 { 5213 if (ctx) { 5214 int cpu; 5215 5216 for_each_possible_cpu(cpu) 5217 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 5218 put_pwq_unlocked(ctx->dfl_pwq); 5219 5220 free_workqueue_attrs(ctx->attrs); 5221 5222 kfree(ctx); 5223 } 5224 } 5225 5226 /* allocate the attrs and pwqs for later installation */ 5227 static struct apply_wqattrs_ctx * 5228 apply_wqattrs_prepare(struct workqueue_struct *wq, 5229 const struct workqueue_attrs *attrs, 5230 const cpumask_var_t unbound_cpumask) 5231 { 5232 struct apply_wqattrs_ctx *ctx; 5233 struct workqueue_attrs *new_attrs; 5234 int cpu; 5235 5236 lockdep_assert_held(&wq_pool_mutex); 5237 5238 if (WARN_ON(attrs->affn_scope < 0 || 5239 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 5240 return ERR_PTR(-EINVAL); 5241 5242 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 5243 5244 new_attrs = alloc_workqueue_attrs(); 5245 if (!ctx || !new_attrs) 5246 goto out_free; 5247 5248 /* 5249 * If something goes wrong during CPU up/down, we'll fall back to 5250 * the default pwq covering whole @attrs->cpumask. Always create 5251 * it even if we don't use it immediately. 5252 */ 5253 copy_workqueue_attrs(new_attrs, attrs); 5254 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 5255 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5256 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 5257 if (!ctx->dfl_pwq) 5258 goto out_free; 5259 5260 for_each_possible_cpu(cpu) { 5261 if (new_attrs->ordered) { 5262 ctx->dfl_pwq->refcnt++; 5263 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 5264 } else { 5265 wq_calc_pod_cpumask(new_attrs, cpu); 5266 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 5267 if (!ctx->pwq_tbl[cpu]) 5268 goto out_free; 5269 } 5270 } 5271 5272 /* save the user configured attrs and sanitize it. */ 5273 copy_workqueue_attrs(new_attrs, attrs); 5274 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 5275 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5276 ctx->attrs = new_attrs; 5277 5278 /* 5279 * For initialized ordered workqueues, there should only be one pwq 5280 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution 5281 * of newly queued work items until execution of older work items in 5282 * the old pwq's have completed. 5283 */ 5284 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)) 5285 ctx->dfl_pwq->plugged = true; 5286 5287 ctx->wq = wq; 5288 return ctx; 5289 5290 out_free: 5291 free_workqueue_attrs(new_attrs); 5292 apply_wqattrs_cleanup(ctx); 5293 return ERR_PTR(-ENOMEM); 5294 } 5295 5296 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 5297 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 5298 { 5299 int cpu; 5300 5301 /* all pwqs have been created successfully, let's install'em */ 5302 mutex_lock(&ctx->wq->mutex); 5303 5304 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 5305 5306 /* save the previous pwqs and install the new ones */ 5307 for_each_possible_cpu(cpu) 5308 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 5309 ctx->pwq_tbl[cpu]); 5310 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq); 5311 5312 /* update node_nr_active->max */ 5313 wq_update_node_max_active(ctx->wq, -1); 5314 5315 /* rescuer needs to respect wq cpumask changes */ 5316 if (ctx->wq->rescuer) 5317 set_cpus_allowed_ptr(ctx->wq->rescuer->task, 5318 unbound_effective_cpumask(ctx->wq)); 5319 5320 mutex_unlock(&ctx->wq->mutex); 5321 } 5322 5323 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 5324 const struct workqueue_attrs *attrs) 5325 { 5326 struct apply_wqattrs_ctx *ctx; 5327 5328 /* only unbound workqueues can change attributes */ 5329 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 5330 return -EINVAL; 5331 5332 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 5333 if (IS_ERR(ctx)) 5334 return PTR_ERR(ctx); 5335 5336 /* the ctx has been prepared successfully, let's commit it */ 5337 apply_wqattrs_commit(ctx); 5338 apply_wqattrs_cleanup(ctx); 5339 5340 return 0; 5341 } 5342 5343 /** 5344 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 5345 * @wq: the target workqueue 5346 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 5347 * 5348 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 5349 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 5350 * work items are affine to the pod it was issued on. Older pwqs are released as 5351 * in-flight work items finish. Note that a work item which repeatedly requeues 5352 * itself back-to-back will stay on its current pwq. 5353 * 5354 * Performs GFP_KERNEL allocations. 5355 * 5356 * Return: 0 on success and -errno on failure. 5357 */ 5358 int apply_workqueue_attrs(struct workqueue_struct *wq, 5359 const struct workqueue_attrs *attrs) 5360 { 5361 int ret; 5362 5363 mutex_lock(&wq_pool_mutex); 5364 ret = apply_workqueue_attrs_locked(wq, attrs); 5365 mutex_unlock(&wq_pool_mutex); 5366 5367 return ret; 5368 } 5369 5370 /** 5371 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug 5372 * @wq: the target workqueue 5373 * @cpu: the CPU to update the pwq slot for 5374 * 5375 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 5376 * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged. 5377 * 5378 * 5379 * If pod affinity can't be adjusted due to memory allocation failure, it falls 5380 * back to @wq->dfl_pwq which may not be optimal but is always correct. 5381 * 5382 * Note that when the last allowed CPU of a pod goes offline for a workqueue 5383 * with a cpumask spanning multiple pods, the workers which were already 5384 * executing the work items for the workqueue will lose their CPU affinity and 5385 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 5386 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 5387 * responsibility to flush the work item from CPU_DOWN_PREPARE. 5388 */ 5389 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu) 5390 { 5391 struct pool_workqueue *old_pwq = NULL, *pwq; 5392 struct workqueue_attrs *target_attrs; 5393 5394 lockdep_assert_held(&wq_pool_mutex); 5395 5396 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 5397 return; 5398 5399 /* 5400 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 5401 * Let's use a preallocated one. The following buf is protected by 5402 * CPU hotplug exclusion. 5403 */ 5404 target_attrs = unbound_wq_update_pwq_attrs_buf; 5405 5406 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 5407 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 5408 5409 /* nothing to do if the target cpumask matches the current pwq */ 5410 wq_calc_pod_cpumask(target_attrs, cpu); 5411 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs)) 5412 return; 5413 5414 /* create a new pwq */ 5415 pwq = alloc_unbound_pwq(wq, target_attrs); 5416 if (!pwq) { 5417 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 5418 wq->name); 5419 goto use_dfl_pwq; 5420 } 5421 5422 /* Install the new pwq. */ 5423 mutex_lock(&wq->mutex); 5424 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5425 goto out_unlock; 5426 5427 use_dfl_pwq: 5428 mutex_lock(&wq->mutex); 5429 pwq = unbound_pwq(wq, -1); 5430 raw_spin_lock_irq(&pwq->pool->lock); 5431 get_pwq(pwq); 5432 raw_spin_unlock_irq(&pwq->pool->lock); 5433 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5434 out_unlock: 5435 mutex_unlock(&wq->mutex); 5436 put_pwq_unlocked(old_pwq); 5437 } 5438 5439 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 5440 { 5441 bool highpri = wq->flags & WQ_HIGHPRI; 5442 int cpu, ret; 5443 5444 lockdep_assert_held(&wq_pool_mutex); 5445 5446 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 5447 if (!wq->cpu_pwq) 5448 goto enomem; 5449 5450 if (!(wq->flags & WQ_UNBOUND)) { 5451 struct worker_pool __percpu *pools; 5452 5453 if (wq->flags & WQ_BH) 5454 pools = bh_worker_pools; 5455 else 5456 pools = cpu_worker_pools; 5457 5458 for_each_possible_cpu(cpu) { 5459 struct pool_workqueue **pwq_p; 5460 struct worker_pool *pool; 5461 5462 pool = &(per_cpu_ptr(pools, cpu)[highpri]); 5463 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu); 5464 5465 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 5466 pool->node); 5467 if (!*pwq_p) 5468 goto enomem; 5469 5470 init_pwq(*pwq_p, wq, pool); 5471 5472 mutex_lock(&wq->mutex); 5473 link_pwq(*pwq_p); 5474 mutex_unlock(&wq->mutex); 5475 } 5476 return 0; 5477 } 5478 5479 if (wq->flags & __WQ_ORDERED) { 5480 struct pool_workqueue *dfl_pwq; 5481 5482 ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]); 5483 /* there should only be single pwq for ordering guarantee */ 5484 dfl_pwq = rcu_access_pointer(wq->dfl_pwq); 5485 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || 5486 wq->pwqs.prev != &dfl_pwq->pwqs_node), 5487 "ordering guarantee broken for workqueue %s\n", wq->name); 5488 } else { 5489 ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]); 5490 } 5491 5492 return ret; 5493 5494 enomem: 5495 if (wq->cpu_pwq) { 5496 for_each_possible_cpu(cpu) { 5497 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5498 5499 if (pwq) 5500 kmem_cache_free(pwq_cache, pwq); 5501 } 5502 free_percpu(wq->cpu_pwq); 5503 wq->cpu_pwq = NULL; 5504 } 5505 return -ENOMEM; 5506 } 5507 5508 static int wq_clamp_max_active(int max_active, unsigned int flags, 5509 const char *name) 5510 { 5511 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 5512 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 5513 max_active, name, 1, WQ_MAX_ACTIVE); 5514 5515 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 5516 } 5517 5518 /* 5519 * Workqueues which may be used during memory reclaim should have a rescuer 5520 * to guarantee forward progress. 5521 */ 5522 static int init_rescuer(struct workqueue_struct *wq) 5523 { 5524 struct worker *rescuer; 5525 char id_buf[WORKER_ID_LEN]; 5526 int ret; 5527 5528 lockdep_assert_held(&wq_pool_mutex); 5529 5530 if (!(wq->flags & WQ_MEM_RECLAIM)) 5531 return 0; 5532 5533 rescuer = alloc_worker(NUMA_NO_NODE); 5534 if (!rescuer) { 5535 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 5536 wq->name); 5537 return -ENOMEM; 5538 } 5539 5540 rescuer->rescue_wq = wq; 5541 format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL); 5542 5543 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf); 5544 if (IS_ERR(rescuer->task)) { 5545 ret = PTR_ERR(rescuer->task); 5546 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 5547 wq->name, ERR_PTR(ret)); 5548 kfree(rescuer); 5549 return ret; 5550 } 5551 5552 wq->rescuer = rescuer; 5553 if (wq->flags & WQ_UNBOUND) 5554 kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq)); 5555 else 5556 kthread_bind_mask(rescuer->task, cpu_possible_mask); 5557 wake_up_process(rescuer->task); 5558 5559 return 0; 5560 } 5561 5562 /** 5563 * wq_adjust_max_active - update a wq's max_active to the current setting 5564 * @wq: target workqueue 5565 * 5566 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and 5567 * activate inactive work items accordingly. If @wq is freezing, clear 5568 * @wq->max_active to zero. 5569 */ 5570 static void wq_adjust_max_active(struct workqueue_struct *wq) 5571 { 5572 bool activated; 5573 int new_max, new_min; 5574 5575 lockdep_assert_held(&wq->mutex); 5576 5577 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { 5578 new_max = 0; 5579 new_min = 0; 5580 } else { 5581 new_max = wq->saved_max_active; 5582 new_min = wq->saved_min_active; 5583 } 5584 5585 if (wq->max_active == new_max && wq->min_active == new_min) 5586 return; 5587 5588 /* 5589 * Update @wq->max/min_active and then kick inactive work items if more 5590 * active work items are allowed. This doesn't break work item ordering 5591 * because new work items are always queued behind existing inactive 5592 * work items if there are any. 5593 */ 5594 WRITE_ONCE(wq->max_active, new_max); 5595 WRITE_ONCE(wq->min_active, new_min); 5596 5597 if (wq->flags & WQ_UNBOUND) 5598 wq_update_node_max_active(wq, -1); 5599 5600 if (new_max == 0) 5601 return; 5602 5603 /* 5604 * Round-robin through pwq's activating the first inactive work item 5605 * until max_active is filled. 5606 */ 5607 do { 5608 struct pool_workqueue *pwq; 5609 5610 activated = false; 5611 for_each_pwq(pwq, wq) { 5612 unsigned long irq_flags; 5613 5614 /* can be called during early boot w/ irq disabled */ 5615 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 5616 if (pwq_activate_first_inactive(pwq, true)) { 5617 activated = true; 5618 kick_pool(pwq->pool); 5619 } 5620 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 5621 } 5622 } while (activated); 5623 } 5624 5625 static struct workqueue_struct *__alloc_workqueue(const char *fmt, 5626 unsigned int flags, 5627 int max_active, va_list args) 5628 { 5629 struct workqueue_struct *wq; 5630 size_t wq_size; 5631 int name_len; 5632 5633 if (flags & WQ_BH) { 5634 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS)) 5635 return NULL; 5636 if (WARN_ON_ONCE(max_active)) 5637 return NULL; 5638 } 5639 5640 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 5641 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 5642 flags |= WQ_UNBOUND; 5643 5644 /* allocate wq and format name */ 5645 if (flags & WQ_UNBOUND) 5646 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); 5647 else 5648 wq_size = sizeof(*wq); 5649 5650 wq = kzalloc(wq_size, GFP_KERNEL); 5651 if (!wq) 5652 return NULL; 5653 5654 if (flags & WQ_UNBOUND) { 5655 wq->unbound_attrs = alloc_workqueue_attrs(); 5656 if (!wq->unbound_attrs) 5657 goto err_free_wq; 5658 } 5659 5660 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args); 5661 5662 if (name_len >= WQ_NAME_LEN) 5663 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", 5664 wq->name); 5665 5666 if (flags & WQ_BH) { 5667 /* 5668 * BH workqueues always share a single execution context per CPU 5669 * and don't impose any max_active limit. 5670 */ 5671 max_active = INT_MAX; 5672 } else { 5673 max_active = max_active ?: WQ_DFL_ACTIVE; 5674 max_active = wq_clamp_max_active(max_active, flags, wq->name); 5675 } 5676 5677 /* init wq */ 5678 wq->flags = flags; 5679 wq->max_active = max_active; 5680 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); 5681 wq->saved_max_active = wq->max_active; 5682 wq->saved_min_active = wq->min_active; 5683 mutex_init(&wq->mutex); 5684 atomic_set(&wq->nr_pwqs_to_flush, 0); 5685 INIT_LIST_HEAD(&wq->pwqs); 5686 INIT_LIST_HEAD(&wq->flusher_queue); 5687 INIT_LIST_HEAD(&wq->flusher_overflow); 5688 INIT_LIST_HEAD(&wq->maydays); 5689 5690 INIT_LIST_HEAD(&wq->list); 5691 5692 if (flags & WQ_UNBOUND) { 5693 if (alloc_node_nr_active(wq->node_nr_active) < 0) 5694 goto err_free_wq; 5695 } 5696 5697 /* 5698 * wq_pool_mutex protects the workqueues list, allocations of PWQs, 5699 * and the global freeze state. 5700 */ 5701 apply_wqattrs_lock(); 5702 5703 if (alloc_and_link_pwqs(wq) < 0) 5704 goto err_unlock_free_node_nr_active; 5705 5706 mutex_lock(&wq->mutex); 5707 wq_adjust_max_active(wq); 5708 mutex_unlock(&wq->mutex); 5709 5710 list_add_tail_rcu(&wq->list, &workqueues); 5711 5712 if (wq_online && init_rescuer(wq) < 0) 5713 goto err_unlock_destroy; 5714 5715 apply_wqattrs_unlock(); 5716 5717 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 5718 goto err_destroy; 5719 5720 return wq; 5721 5722 err_unlock_free_node_nr_active: 5723 apply_wqattrs_unlock(); 5724 /* 5725 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work, 5726 * flushing the pwq_release_worker ensures that the pwq_release_workfn() 5727 * completes before calling kfree(wq). 5728 */ 5729 if (wq->flags & WQ_UNBOUND) { 5730 kthread_flush_worker(pwq_release_worker); 5731 free_node_nr_active(wq->node_nr_active); 5732 } 5733 err_free_wq: 5734 free_workqueue_attrs(wq->unbound_attrs); 5735 kfree(wq); 5736 return NULL; 5737 err_unlock_destroy: 5738 apply_wqattrs_unlock(); 5739 err_destroy: 5740 destroy_workqueue(wq); 5741 return NULL; 5742 } 5743 5744 __printf(1, 4) 5745 struct workqueue_struct *alloc_workqueue(const char *fmt, 5746 unsigned int flags, 5747 int max_active, ...) 5748 { 5749 struct workqueue_struct *wq; 5750 va_list args; 5751 5752 va_start(args, max_active); 5753 wq = __alloc_workqueue(fmt, flags, max_active, args); 5754 va_end(args); 5755 if (!wq) 5756 return NULL; 5757 5758 wq_init_lockdep(wq); 5759 5760 return wq; 5761 } 5762 EXPORT_SYMBOL_GPL(alloc_workqueue); 5763 5764 #ifdef CONFIG_LOCKDEP 5765 __printf(1, 5) 5766 struct workqueue_struct * 5767 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags, 5768 int max_active, struct lockdep_map *lockdep_map, ...) 5769 { 5770 struct workqueue_struct *wq; 5771 va_list args; 5772 5773 va_start(args, lockdep_map); 5774 wq = __alloc_workqueue(fmt, flags, max_active, args); 5775 va_end(args); 5776 if (!wq) 5777 return NULL; 5778 5779 wq->lockdep_map = lockdep_map; 5780 5781 return wq; 5782 } 5783 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map); 5784 #endif 5785 5786 static bool pwq_busy(struct pool_workqueue *pwq) 5787 { 5788 int i; 5789 5790 for (i = 0; i < WORK_NR_COLORS; i++) 5791 if (pwq->nr_in_flight[i]) 5792 return true; 5793 5794 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) 5795 return true; 5796 if (!pwq_is_empty(pwq)) 5797 return true; 5798 5799 return false; 5800 } 5801 5802 /** 5803 * destroy_workqueue - safely terminate a workqueue 5804 * @wq: target workqueue 5805 * 5806 * Safely destroy a workqueue. All work currently pending will be done first. 5807 */ 5808 void destroy_workqueue(struct workqueue_struct *wq) 5809 { 5810 struct pool_workqueue *pwq; 5811 int cpu; 5812 5813 /* 5814 * Remove it from sysfs first so that sanity check failure doesn't 5815 * lead to sysfs name conflicts. 5816 */ 5817 workqueue_sysfs_unregister(wq); 5818 5819 /* mark the workqueue destruction is in progress */ 5820 mutex_lock(&wq->mutex); 5821 wq->flags |= __WQ_DESTROYING; 5822 mutex_unlock(&wq->mutex); 5823 5824 /* drain it before proceeding with destruction */ 5825 drain_workqueue(wq); 5826 5827 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 5828 if (wq->rescuer) { 5829 struct worker *rescuer = wq->rescuer; 5830 5831 /* this prevents new queueing */ 5832 raw_spin_lock_irq(&wq_mayday_lock); 5833 wq->rescuer = NULL; 5834 raw_spin_unlock_irq(&wq_mayday_lock); 5835 5836 /* rescuer will empty maydays list before exiting */ 5837 kthread_stop(rescuer->task); 5838 kfree(rescuer); 5839 } 5840 5841 /* 5842 * Sanity checks - grab all the locks so that we wait for all 5843 * in-flight operations which may do put_pwq(). 5844 */ 5845 mutex_lock(&wq_pool_mutex); 5846 mutex_lock(&wq->mutex); 5847 for_each_pwq(pwq, wq) { 5848 raw_spin_lock_irq(&pwq->pool->lock); 5849 if (WARN_ON(pwq_busy(pwq))) { 5850 pr_warn("%s: %s has the following busy pwq\n", 5851 __func__, wq->name); 5852 show_pwq(pwq); 5853 raw_spin_unlock_irq(&pwq->pool->lock); 5854 mutex_unlock(&wq->mutex); 5855 mutex_unlock(&wq_pool_mutex); 5856 show_one_workqueue(wq); 5857 return; 5858 } 5859 raw_spin_unlock_irq(&pwq->pool->lock); 5860 } 5861 mutex_unlock(&wq->mutex); 5862 5863 /* 5864 * wq list is used to freeze wq, remove from list after 5865 * flushing is complete in case freeze races us. 5866 */ 5867 list_del_rcu(&wq->list); 5868 mutex_unlock(&wq_pool_mutex); 5869 5870 /* 5871 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 5872 * to put the base refs. @wq will be auto-destroyed from the last 5873 * pwq_put. RCU read lock prevents @wq from going away from under us. 5874 */ 5875 rcu_read_lock(); 5876 5877 for_each_possible_cpu(cpu) { 5878 put_pwq_unlocked(unbound_pwq(wq, cpu)); 5879 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); 5880 } 5881 5882 put_pwq_unlocked(unbound_pwq(wq, -1)); 5883 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); 5884 5885 rcu_read_unlock(); 5886 } 5887 EXPORT_SYMBOL_GPL(destroy_workqueue); 5888 5889 /** 5890 * workqueue_set_max_active - adjust max_active of a workqueue 5891 * @wq: target workqueue 5892 * @max_active: new max_active value. 5893 * 5894 * Set max_active of @wq to @max_active. See the alloc_workqueue() function 5895 * comment. 5896 * 5897 * CONTEXT: 5898 * Don't call from IRQ context. 5899 */ 5900 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 5901 { 5902 /* max_active doesn't mean anything for BH workqueues */ 5903 if (WARN_ON(wq->flags & WQ_BH)) 5904 return; 5905 /* disallow meddling with max_active for ordered workqueues */ 5906 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5907 return; 5908 5909 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 5910 5911 mutex_lock(&wq->mutex); 5912 5913 wq->saved_max_active = max_active; 5914 if (wq->flags & WQ_UNBOUND) 5915 wq->saved_min_active = min(wq->saved_min_active, max_active); 5916 5917 wq_adjust_max_active(wq); 5918 5919 mutex_unlock(&wq->mutex); 5920 } 5921 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 5922 5923 /** 5924 * workqueue_set_min_active - adjust min_active of an unbound workqueue 5925 * @wq: target unbound workqueue 5926 * @min_active: new min_active value 5927 * 5928 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an 5929 * unbound workqueue is not guaranteed to be able to process max_active 5930 * interdependent work items. Instead, an unbound workqueue is guaranteed to be 5931 * able to process min_active number of interdependent work items which is 5932 * %WQ_DFL_MIN_ACTIVE by default. 5933 * 5934 * Use this function to adjust the min_active value between 0 and the current 5935 * max_active. 5936 */ 5937 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active) 5938 { 5939 /* min_active is only meaningful for non-ordered unbound workqueues */ 5940 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) != 5941 WQ_UNBOUND)) 5942 return; 5943 5944 mutex_lock(&wq->mutex); 5945 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active); 5946 wq_adjust_max_active(wq); 5947 mutex_unlock(&wq->mutex); 5948 } 5949 5950 /** 5951 * current_work - retrieve %current task's work struct 5952 * 5953 * Determine if %current task is a workqueue worker and what it's working on. 5954 * Useful to find out the context that the %current task is running in. 5955 * 5956 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 5957 */ 5958 struct work_struct *current_work(void) 5959 { 5960 struct worker *worker = current_wq_worker(); 5961 5962 return worker ? worker->current_work : NULL; 5963 } 5964 EXPORT_SYMBOL(current_work); 5965 5966 /** 5967 * current_is_workqueue_rescuer - is %current workqueue rescuer? 5968 * 5969 * Determine whether %current is a workqueue rescuer. Can be used from 5970 * work functions to determine whether it's being run off the rescuer task. 5971 * 5972 * Return: %true if %current is a workqueue rescuer. %false otherwise. 5973 */ 5974 bool current_is_workqueue_rescuer(void) 5975 { 5976 struct worker *worker = current_wq_worker(); 5977 5978 return worker && worker->rescue_wq; 5979 } 5980 5981 /** 5982 * workqueue_congested - test whether a workqueue is congested 5983 * @cpu: CPU in question 5984 * @wq: target workqueue 5985 * 5986 * Test whether @wq's cpu workqueue for @cpu is congested. There is 5987 * no synchronization around this function and the test result is 5988 * unreliable and only useful as advisory hints or for debugging. 5989 * 5990 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 5991 * 5992 * With the exception of ordered workqueues, all workqueues have per-cpu 5993 * pool_workqueues, each with its own congested state. A workqueue being 5994 * congested on one CPU doesn't mean that the workqueue is contested on any 5995 * other CPUs. 5996 * 5997 * Return: 5998 * %true if congested, %false otherwise. 5999 */ 6000 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 6001 { 6002 struct pool_workqueue *pwq; 6003 bool ret; 6004 6005 rcu_read_lock(); 6006 preempt_disable(); 6007 6008 if (cpu == WORK_CPU_UNBOUND) 6009 cpu = smp_processor_id(); 6010 6011 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 6012 ret = !list_empty(&pwq->inactive_works); 6013 6014 preempt_enable(); 6015 rcu_read_unlock(); 6016 6017 return ret; 6018 } 6019 EXPORT_SYMBOL_GPL(workqueue_congested); 6020 6021 /** 6022 * work_busy - test whether a work is currently pending or running 6023 * @work: the work to be tested 6024 * 6025 * Test whether @work is currently pending or running. There is no 6026 * synchronization around this function and the test result is 6027 * unreliable and only useful as advisory hints or for debugging. 6028 * 6029 * Return: 6030 * OR'd bitmask of WORK_BUSY_* bits. 6031 */ 6032 unsigned int work_busy(struct work_struct *work) 6033 { 6034 struct worker_pool *pool; 6035 unsigned long irq_flags; 6036 unsigned int ret = 0; 6037 6038 if (work_pending(work)) 6039 ret |= WORK_BUSY_PENDING; 6040 6041 rcu_read_lock(); 6042 pool = get_work_pool(work); 6043 if (pool) { 6044 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6045 if (find_worker_executing_work(pool, work)) 6046 ret |= WORK_BUSY_RUNNING; 6047 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6048 } 6049 rcu_read_unlock(); 6050 6051 return ret; 6052 } 6053 EXPORT_SYMBOL_GPL(work_busy); 6054 6055 /** 6056 * set_worker_desc - set description for the current work item 6057 * @fmt: printf-style format string 6058 * @...: arguments for the format string 6059 * 6060 * This function can be called by a running work function to describe what 6061 * the work item is about. If the worker task gets dumped, this 6062 * information will be printed out together to help debugging. The 6063 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 6064 */ 6065 void set_worker_desc(const char *fmt, ...) 6066 { 6067 struct worker *worker = current_wq_worker(); 6068 va_list args; 6069 6070 if (worker) { 6071 va_start(args, fmt); 6072 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 6073 va_end(args); 6074 } 6075 } 6076 EXPORT_SYMBOL_GPL(set_worker_desc); 6077 6078 /** 6079 * print_worker_info - print out worker information and description 6080 * @log_lvl: the log level to use when printing 6081 * @task: target task 6082 * 6083 * If @task is a worker and currently executing a work item, print out the 6084 * name of the workqueue being serviced and worker description set with 6085 * set_worker_desc() by the currently executing work item. 6086 * 6087 * This function can be safely called on any task as long as the 6088 * task_struct itself is accessible. While safe, this function isn't 6089 * synchronized and may print out mixups or garbages of limited length. 6090 */ 6091 void print_worker_info(const char *log_lvl, struct task_struct *task) 6092 { 6093 work_func_t *fn = NULL; 6094 char name[WQ_NAME_LEN] = { }; 6095 char desc[WORKER_DESC_LEN] = { }; 6096 struct pool_workqueue *pwq = NULL; 6097 struct workqueue_struct *wq = NULL; 6098 struct worker *worker; 6099 6100 if (!(task->flags & PF_WQ_WORKER)) 6101 return; 6102 6103 /* 6104 * This function is called without any synchronization and @task 6105 * could be in any state. Be careful with dereferences. 6106 */ 6107 worker = kthread_probe_data(task); 6108 6109 /* 6110 * Carefully copy the associated workqueue's workfn, name and desc. 6111 * Keep the original last '\0' in case the original is garbage. 6112 */ 6113 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 6114 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 6115 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 6116 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 6117 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 6118 6119 if (fn || name[0] || desc[0]) { 6120 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 6121 if (strcmp(name, desc)) 6122 pr_cont(" (%s)", desc); 6123 pr_cont("\n"); 6124 } 6125 } 6126 6127 static void pr_cont_pool_info(struct worker_pool *pool) 6128 { 6129 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 6130 if (pool->node != NUMA_NO_NODE) 6131 pr_cont(" node=%d", pool->node); 6132 pr_cont(" flags=0x%x", pool->flags); 6133 if (pool->flags & POOL_BH) 6134 pr_cont(" bh%s", 6135 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6136 else 6137 pr_cont(" nice=%d", pool->attrs->nice); 6138 } 6139 6140 static void pr_cont_worker_id(struct worker *worker) 6141 { 6142 struct worker_pool *pool = worker->pool; 6143 6144 if (pool->flags & WQ_BH) 6145 pr_cont("bh%s", 6146 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6147 else 6148 pr_cont("%d%s", task_pid_nr(worker->task), 6149 worker->rescue_wq ? "(RESCUER)" : ""); 6150 } 6151 6152 struct pr_cont_work_struct { 6153 bool comma; 6154 work_func_t func; 6155 long ctr; 6156 }; 6157 6158 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 6159 { 6160 if (!pcwsp->ctr) 6161 goto out_record; 6162 if (func == pcwsp->func) { 6163 pcwsp->ctr++; 6164 return; 6165 } 6166 if (pcwsp->ctr == 1) 6167 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 6168 else 6169 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 6170 pcwsp->ctr = 0; 6171 out_record: 6172 if ((long)func == -1L) 6173 return; 6174 pcwsp->comma = comma; 6175 pcwsp->func = func; 6176 pcwsp->ctr = 1; 6177 } 6178 6179 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 6180 { 6181 if (work->func == wq_barrier_func) { 6182 struct wq_barrier *barr; 6183 6184 barr = container_of(work, struct wq_barrier, work); 6185 6186 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6187 pr_cont("%s BAR(%d)", comma ? "," : "", 6188 task_pid_nr(barr->task)); 6189 } else { 6190 if (!comma) 6191 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6192 pr_cont_work_flush(comma, work->func, pcwsp); 6193 } 6194 } 6195 6196 static void show_pwq(struct pool_workqueue *pwq) 6197 { 6198 struct pr_cont_work_struct pcws = { .ctr = 0, }; 6199 struct worker_pool *pool = pwq->pool; 6200 struct work_struct *work; 6201 struct worker *worker; 6202 bool has_in_flight = false, has_pending = false; 6203 int bkt; 6204 6205 pr_info(" pwq %d:", pool->id); 6206 pr_cont_pool_info(pool); 6207 6208 pr_cont(" active=%d refcnt=%d%s\n", 6209 pwq->nr_active, pwq->refcnt, 6210 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 6211 6212 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6213 if (worker->current_pwq == pwq) { 6214 has_in_flight = true; 6215 break; 6216 } 6217 } 6218 if (has_in_flight) { 6219 bool comma = false; 6220 6221 pr_info(" in-flight:"); 6222 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6223 if (worker->current_pwq != pwq) 6224 continue; 6225 6226 pr_cont(" %s", comma ? "," : ""); 6227 pr_cont_worker_id(worker); 6228 pr_cont(":%ps", worker->current_func); 6229 list_for_each_entry(work, &worker->scheduled, entry) 6230 pr_cont_work(false, work, &pcws); 6231 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6232 comma = true; 6233 } 6234 pr_cont("\n"); 6235 } 6236 6237 list_for_each_entry(work, &pool->worklist, entry) { 6238 if (get_work_pwq(work) == pwq) { 6239 has_pending = true; 6240 break; 6241 } 6242 } 6243 if (has_pending) { 6244 bool comma = false; 6245 6246 pr_info(" pending:"); 6247 list_for_each_entry(work, &pool->worklist, entry) { 6248 if (get_work_pwq(work) != pwq) 6249 continue; 6250 6251 pr_cont_work(comma, work, &pcws); 6252 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6253 } 6254 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6255 pr_cont("\n"); 6256 } 6257 6258 if (!list_empty(&pwq->inactive_works)) { 6259 bool comma = false; 6260 6261 pr_info(" inactive:"); 6262 list_for_each_entry(work, &pwq->inactive_works, entry) { 6263 pr_cont_work(comma, work, &pcws); 6264 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6265 } 6266 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6267 pr_cont("\n"); 6268 } 6269 } 6270 6271 /** 6272 * show_one_workqueue - dump state of specified workqueue 6273 * @wq: workqueue whose state will be printed 6274 */ 6275 void show_one_workqueue(struct workqueue_struct *wq) 6276 { 6277 struct pool_workqueue *pwq; 6278 bool idle = true; 6279 unsigned long irq_flags; 6280 6281 for_each_pwq(pwq, wq) { 6282 if (!pwq_is_empty(pwq)) { 6283 idle = false; 6284 break; 6285 } 6286 } 6287 if (idle) /* Nothing to print for idle workqueue */ 6288 return; 6289 6290 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 6291 6292 for_each_pwq(pwq, wq) { 6293 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 6294 if (!pwq_is_empty(pwq)) { 6295 /* 6296 * Defer printing to avoid deadlocks in console 6297 * drivers that queue work while holding locks 6298 * also taken in their write paths. 6299 */ 6300 printk_deferred_enter(); 6301 show_pwq(pwq); 6302 printk_deferred_exit(); 6303 } 6304 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 6305 /* 6306 * We could be printing a lot from atomic context, e.g. 6307 * sysrq-t -> show_all_workqueues(). Avoid triggering 6308 * hard lockup. 6309 */ 6310 touch_nmi_watchdog(); 6311 } 6312 6313 } 6314 6315 /** 6316 * show_one_worker_pool - dump state of specified worker pool 6317 * @pool: worker pool whose state will be printed 6318 */ 6319 static void show_one_worker_pool(struct worker_pool *pool) 6320 { 6321 struct worker *worker; 6322 bool first = true; 6323 unsigned long irq_flags; 6324 unsigned long hung = 0; 6325 6326 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6327 if (pool->nr_workers == pool->nr_idle) 6328 goto next_pool; 6329 6330 /* How long the first pending work is waiting for a worker. */ 6331 if (!list_empty(&pool->worklist)) 6332 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 6333 6334 /* 6335 * Defer printing to avoid deadlocks in console drivers that 6336 * queue work while holding locks also taken in their write 6337 * paths. 6338 */ 6339 printk_deferred_enter(); 6340 pr_info("pool %d:", pool->id); 6341 pr_cont_pool_info(pool); 6342 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 6343 if (pool->manager) 6344 pr_cont(" manager: %d", 6345 task_pid_nr(pool->manager->task)); 6346 list_for_each_entry(worker, &pool->idle_list, entry) { 6347 pr_cont(" %s", first ? "idle: " : ""); 6348 pr_cont_worker_id(worker); 6349 first = false; 6350 } 6351 pr_cont("\n"); 6352 printk_deferred_exit(); 6353 next_pool: 6354 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6355 /* 6356 * We could be printing a lot from atomic context, e.g. 6357 * sysrq-t -> show_all_workqueues(). Avoid triggering 6358 * hard lockup. 6359 */ 6360 touch_nmi_watchdog(); 6361 6362 } 6363 6364 /** 6365 * show_all_workqueues - dump workqueue state 6366 * 6367 * Called from a sysrq handler and prints out all busy workqueues and pools. 6368 */ 6369 void show_all_workqueues(void) 6370 { 6371 struct workqueue_struct *wq; 6372 struct worker_pool *pool; 6373 int pi; 6374 6375 rcu_read_lock(); 6376 6377 pr_info("Showing busy workqueues and worker pools:\n"); 6378 6379 list_for_each_entry_rcu(wq, &workqueues, list) 6380 show_one_workqueue(wq); 6381 6382 for_each_pool(pool, pi) 6383 show_one_worker_pool(pool); 6384 6385 rcu_read_unlock(); 6386 } 6387 6388 /** 6389 * show_freezable_workqueues - dump freezable workqueue state 6390 * 6391 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 6392 * still busy. 6393 */ 6394 void show_freezable_workqueues(void) 6395 { 6396 struct workqueue_struct *wq; 6397 6398 rcu_read_lock(); 6399 6400 pr_info("Showing freezable workqueues that are still busy:\n"); 6401 6402 list_for_each_entry_rcu(wq, &workqueues, list) { 6403 if (!(wq->flags & WQ_FREEZABLE)) 6404 continue; 6405 show_one_workqueue(wq); 6406 } 6407 6408 rcu_read_unlock(); 6409 } 6410 6411 /* used to show worker information through /proc/PID/{comm,stat,status} */ 6412 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 6413 { 6414 /* stabilize PF_WQ_WORKER and worker pool association */ 6415 mutex_lock(&wq_pool_attach_mutex); 6416 6417 if (task->flags & PF_WQ_WORKER) { 6418 struct worker *worker = kthread_data(task); 6419 struct worker_pool *pool = worker->pool; 6420 int off; 6421 6422 off = format_worker_id(buf, size, worker, pool); 6423 6424 if (pool) { 6425 raw_spin_lock_irq(&pool->lock); 6426 /* 6427 * ->desc tracks information (wq name or 6428 * set_worker_desc()) for the latest execution. If 6429 * current, prepend '+', otherwise '-'. 6430 */ 6431 if (worker->desc[0] != '\0') { 6432 if (worker->current_work) 6433 scnprintf(buf + off, size - off, "+%s", 6434 worker->desc); 6435 else 6436 scnprintf(buf + off, size - off, "-%s", 6437 worker->desc); 6438 } 6439 raw_spin_unlock_irq(&pool->lock); 6440 } 6441 } else { 6442 strscpy(buf, task->comm, size); 6443 } 6444 6445 mutex_unlock(&wq_pool_attach_mutex); 6446 } 6447 6448 #ifdef CONFIG_SMP 6449 6450 /* 6451 * CPU hotplug. 6452 * 6453 * There are two challenges in supporting CPU hotplug. Firstly, there 6454 * are a lot of assumptions on strong associations among work, pwq and 6455 * pool which make migrating pending and scheduled works very 6456 * difficult to implement without impacting hot paths. Secondly, 6457 * worker pools serve mix of short, long and very long running works making 6458 * blocked draining impractical. 6459 * 6460 * This is solved by allowing the pools to be disassociated from the CPU 6461 * running as an unbound one and allowing it to be reattached later if the 6462 * cpu comes back online. 6463 */ 6464 6465 static void unbind_workers(int cpu) 6466 { 6467 struct worker_pool *pool; 6468 struct worker *worker; 6469 6470 for_each_cpu_worker_pool(pool, cpu) { 6471 mutex_lock(&wq_pool_attach_mutex); 6472 raw_spin_lock_irq(&pool->lock); 6473 6474 /* 6475 * We've blocked all attach/detach operations. Make all workers 6476 * unbound and set DISASSOCIATED. Before this, all workers 6477 * must be on the cpu. After this, they may become diasporas. 6478 * And the preemption disabled section in their sched callbacks 6479 * are guaranteed to see WORKER_UNBOUND since the code here 6480 * is on the same cpu. 6481 */ 6482 for_each_pool_worker(worker, pool) 6483 worker->flags |= WORKER_UNBOUND; 6484 6485 pool->flags |= POOL_DISASSOCIATED; 6486 6487 /* 6488 * The handling of nr_running in sched callbacks are disabled 6489 * now. Zap nr_running. After this, nr_running stays zero and 6490 * need_more_worker() and keep_working() are always true as 6491 * long as the worklist is not empty. This pool now behaves as 6492 * an unbound (in terms of concurrency management) pool which 6493 * are served by workers tied to the pool. 6494 */ 6495 pool->nr_running = 0; 6496 6497 /* 6498 * With concurrency management just turned off, a busy 6499 * worker blocking could lead to lengthy stalls. Kick off 6500 * unbound chain execution of currently pending work items. 6501 */ 6502 kick_pool(pool); 6503 6504 raw_spin_unlock_irq(&pool->lock); 6505 6506 for_each_pool_worker(worker, pool) 6507 unbind_worker(worker); 6508 6509 mutex_unlock(&wq_pool_attach_mutex); 6510 } 6511 } 6512 6513 /** 6514 * rebind_workers - rebind all workers of a pool to the associated CPU 6515 * @pool: pool of interest 6516 * 6517 * @pool->cpu is coming online. Rebind all workers to the CPU. 6518 */ 6519 static void rebind_workers(struct worker_pool *pool) 6520 { 6521 struct worker *worker; 6522 6523 lockdep_assert_held(&wq_pool_attach_mutex); 6524 6525 /* 6526 * Restore CPU affinity of all workers. As all idle workers should 6527 * be on the run-queue of the associated CPU before any local 6528 * wake-ups for concurrency management happen, restore CPU affinity 6529 * of all workers first and then clear UNBOUND. As we're called 6530 * from CPU_ONLINE, the following shouldn't fail. 6531 */ 6532 for_each_pool_worker(worker, pool) { 6533 kthread_set_per_cpu(worker->task, pool->cpu); 6534 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 6535 pool_allowed_cpus(pool)) < 0); 6536 } 6537 6538 raw_spin_lock_irq(&pool->lock); 6539 6540 pool->flags &= ~POOL_DISASSOCIATED; 6541 6542 for_each_pool_worker(worker, pool) { 6543 unsigned int worker_flags = worker->flags; 6544 6545 /* 6546 * We want to clear UNBOUND but can't directly call 6547 * worker_clr_flags() or adjust nr_running. Atomically 6548 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 6549 * @worker will clear REBOUND using worker_clr_flags() when 6550 * it initiates the next execution cycle thus restoring 6551 * concurrency management. Note that when or whether 6552 * @worker clears REBOUND doesn't affect correctness. 6553 * 6554 * WRITE_ONCE() is necessary because @worker->flags may be 6555 * tested without holding any lock in 6556 * wq_worker_running(). Without it, NOT_RUNNING test may 6557 * fail incorrectly leading to premature concurrency 6558 * management operations. 6559 */ 6560 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 6561 worker_flags |= WORKER_REBOUND; 6562 worker_flags &= ~WORKER_UNBOUND; 6563 WRITE_ONCE(worker->flags, worker_flags); 6564 } 6565 6566 raw_spin_unlock_irq(&pool->lock); 6567 } 6568 6569 /** 6570 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 6571 * @pool: unbound pool of interest 6572 * @cpu: the CPU which is coming up 6573 * 6574 * An unbound pool may end up with a cpumask which doesn't have any online 6575 * CPUs. When a worker of such pool get scheduled, the scheduler resets 6576 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 6577 * online CPU before, cpus_allowed of all its workers should be restored. 6578 */ 6579 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 6580 { 6581 static cpumask_t cpumask; 6582 struct worker *worker; 6583 6584 lockdep_assert_held(&wq_pool_attach_mutex); 6585 6586 /* is @cpu allowed for @pool? */ 6587 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 6588 return; 6589 6590 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 6591 6592 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 6593 for_each_pool_worker(worker, pool) 6594 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 6595 } 6596 6597 int workqueue_prepare_cpu(unsigned int cpu) 6598 { 6599 struct worker_pool *pool; 6600 6601 for_each_cpu_worker_pool(pool, cpu) { 6602 if (pool->nr_workers) 6603 continue; 6604 if (!create_worker(pool)) 6605 return -ENOMEM; 6606 } 6607 return 0; 6608 } 6609 6610 int workqueue_online_cpu(unsigned int cpu) 6611 { 6612 struct worker_pool *pool; 6613 struct workqueue_struct *wq; 6614 int pi; 6615 6616 mutex_lock(&wq_pool_mutex); 6617 6618 cpumask_set_cpu(cpu, wq_online_cpumask); 6619 6620 for_each_pool(pool, pi) { 6621 /* BH pools aren't affected by hotplug */ 6622 if (pool->flags & POOL_BH) 6623 continue; 6624 6625 mutex_lock(&wq_pool_attach_mutex); 6626 if (pool->cpu == cpu) 6627 rebind_workers(pool); 6628 else if (pool->cpu < 0) 6629 restore_unbound_workers_cpumask(pool, cpu); 6630 mutex_unlock(&wq_pool_attach_mutex); 6631 } 6632 6633 /* update pod affinity of unbound workqueues */ 6634 list_for_each_entry(wq, &workqueues, list) { 6635 struct workqueue_attrs *attrs = wq->unbound_attrs; 6636 6637 if (attrs) { 6638 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6639 int tcpu; 6640 6641 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6642 unbound_wq_update_pwq(wq, tcpu); 6643 6644 mutex_lock(&wq->mutex); 6645 wq_update_node_max_active(wq, -1); 6646 mutex_unlock(&wq->mutex); 6647 } 6648 } 6649 6650 mutex_unlock(&wq_pool_mutex); 6651 return 0; 6652 } 6653 6654 int workqueue_offline_cpu(unsigned int cpu) 6655 { 6656 struct workqueue_struct *wq; 6657 6658 /* unbinding per-cpu workers should happen on the local CPU */ 6659 if (WARN_ON(cpu != smp_processor_id())) 6660 return -1; 6661 6662 unbind_workers(cpu); 6663 6664 /* update pod affinity of unbound workqueues */ 6665 mutex_lock(&wq_pool_mutex); 6666 6667 cpumask_clear_cpu(cpu, wq_online_cpumask); 6668 6669 list_for_each_entry(wq, &workqueues, list) { 6670 struct workqueue_attrs *attrs = wq->unbound_attrs; 6671 6672 if (attrs) { 6673 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6674 int tcpu; 6675 6676 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6677 unbound_wq_update_pwq(wq, tcpu); 6678 6679 mutex_lock(&wq->mutex); 6680 wq_update_node_max_active(wq, cpu); 6681 mutex_unlock(&wq->mutex); 6682 } 6683 } 6684 mutex_unlock(&wq_pool_mutex); 6685 6686 return 0; 6687 } 6688 6689 struct work_for_cpu { 6690 struct work_struct work; 6691 long (*fn)(void *); 6692 void *arg; 6693 long ret; 6694 }; 6695 6696 static void work_for_cpu_fn(struct work_struct *work) 6697 { 6698 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 6699 6700 wfc->ret = wfc->fn(wfc->arg); 6701 } 6702 6703 /** 6704 * work_on_cpu_key - run a function in thread context on a particular cpu 6705 * @cpu: the cpu to run on 6706 * @fn: the function to run 6707 * @arg: the function arg 6708 * @key: The lock class key for lock debugging purposes 6709 * 6710 * It is up to the caller to ensure that the cpu doesn't go offline. 6711 * The caller must not hold any locks which would prevent @fn from completing. 6712 * 6713 * Return: The value @fn returns. 6714 */ 6715 long work_on_cpu_key(int cpu, long (*fn)(void *), 6716 void *arg, struct lock_class_key *key) 6717 { 6718 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 6719 6720 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 6721 schedule_work_on(cpu, &wfc.work); 6722 flush_work(&wfc.work); 6723 destroy_work_on_stack(&wfc.work); 6724 return wfc.ret; 6725 } 6726 EXPORT_SYMBOL_GPL(work_on_cpu_key); 6727 6728 /** 6729 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 6730 * @cpu: the cpu to run on 6731 * @fn: the function to run 6732 * @arg: the function argument 6733 * @key: The lock class key for lock debugging purposes 6734 * 6735 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 6736 * any locks which would prevent @fn from completing. 6737 * 6738 * Return: The value @fn returns. 6739 */ 6740 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 6741 void *arg, struct lock_class_key *key) 6742 { 6743 long ret = -ENODEV; 6744 6745 cpus_read_lock(); 6746 if (cpu_online(cpu)) 6747 ret = work_on_cpu_key(cpu, fn, arg, key); 6748 cpus_read_unlock(); 6749 return ret; 6750 } 6751 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 6752 #endif /* CONFIG_SMP */ 6753 6754 #ifdef CONFIG_FREEZER 6755 6756 /** 6757 * freeze_workqueues_begin - begin freezing workqueues 6758 * 6759 * Start freezing workqueues. After this function returns, all freezable 6760 * workqueues will queue new works to their inactive_works list instead of 6761 * pool->worklist. 6762 * 6763 * CONTEXT: 6764 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6765 */ 6766 void freeze_workqueues_begin(void) 6767 { 6768 struct workqueue_struct *wq; 6769 6770 mutex_lock(&wq_pool_mutex); 6771 6772 WARN_ON_ONCE(workqueue_freezing); 6773 workqueue_freezing = true; 6774 6775 list_for_each_entry(wq, &workqueues, list) { 6776 mutex_lock(&wq->mutex); 6777 wq_adjust_max_active(wq); 6778 mutex_unlock(&wq->mutex); 6779 } 6780 6781 mutex_unlock(&wq_pool_mutex); 6782 } 6783 6784 /** 6785 * freeze_workqueues_busy - are freezable workqueues still busy? 6786 * 6787 * Check whether freezing is complete. This function must be called 6788 * between freeze_workqueues_begin() and thaw_workqueues(). 6789 * 6790 * CONTEXT: 6791 * Grabs and releases wq_pool_mutex. 6792 * 6793 * Return: 6794 * %true if some freezable workqueues are still busy. %false if freezing 6795 * is complete. 6796 */ 6797 bool freeze_workqueues_busy(void) 6798 { 6799 bool busy = false; 6800 struct workqueue_struct *wq; 6801 struct pool_workqueue *pwq; 6802 6803 mutex_lock(&wq_pool_mutex); 6804 6805 WARN_ON_ONCE(!workqueue_freezing); 6806 6807 list_for_each_entry(wq, &workqueues, list) { 6808 if (!(wq->flags & WQ_FREEZABLE)) 6809 continue; 6810 /* 6811 * nr_active is monotonically decreasing. It's safe 6812 * to peek without lock. 6813 */ 6814 rcu_read_lock(); 6815 for_each_pwq(pwq, wq) { 6816 WARN_ON_ONCE(pwq->nr_active < 0); 6817 if (pwq->nr_active) { 6818 busy = true; 6819 rcu_read_unlock(); 6820 goto out_unlock; 6821 } 6822 } 6823 rcu_read_unlock(); 6824 } 6825 out_unlock: 6826 mutex_unlock(&wq_pool_mutex); 6827 return busy; 6828 } 6829 6830 /** 6831 * thaw_workqueues - thaw workqueues 6832 * 6833 * Thaw workqueues. Normal queueing is restored and all collected 6834 * frozen works are transferred to their respective pool worklists. 6835 * 6836 * CONTEXT: 6837 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6838 */ 6839 void thaw_workqueues(void) 6840 { 6841 struct workqueue_struct *wq; 6842 6843 mutex_lock(&wq_pool_mutex); 6844 6845 if (!workqueue_freezing) 6846 goto out_unlock; 6847 6848 workqueue_freezing = false; 6849 6850 /* restore max_active and repopulate worklist */ 6851 list_for_each_entry(wq, &workqueues, list) { 6852 mutex_lock(&wq->mutex); 6853 wq_adjust_max_active(wq); 6854 mutex_unlock(&wq->mutex); 6855 } 6856 6857 out_unlock: 6858 mutex_unlock(&wq_pool_mutex); 6859 } 6860 #endif /* CONFIG_FREEZER */ 6861 6862 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 6863 { 6864 LIST_HEAD(ctxs); 6865 int ret = 0; 6866 struct workqueue_struct *wq; 6867 struct apply_wqattrs_ctx *ctx, *n; 6868 6869 lockdep_assert_held(&wq_pool_mutex); 6870 6871 list_for_each_entry(wq, &workqueues, list) { 6872 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING)) 6873 continue; 6874 6875 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 6876 if (IS_ERR(ctx)) { 6877 ret = PTR_ERR(ctx); 6878 break; 6879 } 6880 6881 list_add_tail(&ctx->list, &ctxs); 6882 } 6883 6884 list_for_each_entry_safe(ctx, n, &ctxs, list) { 6885 if (!ret) 6886 apply_wqattrs_commit(ctx); 6887 apply_wqattrs_cleanup(ctx); 6888 } 6889 6890 if (!ret) { 6891 mutex_lock(&wq_pool_attach_mutex); 6892 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 6893 mutex_unlock(&wq_pool_attach_mutex); 6894 } 6895 return ret; 6896 } 6897 6898 /** 6899 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask 6900 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask 6901 * 6902 * This function can be called from cpuset code to provide a set of isolated 6903 * CPUs that should be excluded from wq_unbound_cpumask. 6904 */ 6905 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) 6906 { 6907 cpumask_var_t cpumask; 6908 int ret = 0; 6909 6910 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6911 return -ENOMEM; 6912 6913 mutex_lock(&wq_pool_mutex); 6914 6915 /* 6916 * If the operation fails, it will fall back to 6917 * wq_requested_unbound_cpumask which is initially set to 6918 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten 6919 * by any subsequent write to workqueue/cpumask sysfs file. 6920 */ 6921 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask)) 6922 cpumask_copy(cpumask, wq_requested_unbound_cpumask); 6923 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 6924 ret = workqueue_apply_unbound_cpumask(cpumask); 6925 6926 /* Save the current isolated cpumask & export it via sysfs */ 6927 if (!ret) 6928 cpumask_copy(wq_isolated_cpumask, exclude_cpumask); 6929 6930 mutex_unlock(&wq_pool_mutex); 6931 free_cpumask_var(cpumask); 6932 return ret; 6933 } 6934 6935 static int parse_affn_scope(const char *val) 6936 { 6937 int i; 6938 6939 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 6940 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 6941 return i; 6942 } 6943 return -EINVAL; 6944 } 6945 6946 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 6947 { 6948 struct workqueue_struct *wq; 6949 int affn, cpu; 6950 6951 affn = parse_affn_scope(val); 6952 if (affn < 0) 6953 return affn; 6954 if (affn == WQ_AFFN_DFL) 6955 return -EINVAL; 6956 6957 cpus_read_lock(); 6958 mutex_lock(&wq_pool_mutex); 6959 6960 wq_affn_dfl = affn; 6961 6962 list_for_each_entry(wq, &workqueues, list) { 6963 for_each_online_cpu(cpu) 6964 unbound_wq_update_pwq(wq, cpu); 6965 } 6966 6967 mutex_unlock(&wq_pool_mutex); 6968 cpus_read_unlock(); 6969 6970 return 0; 6971 } 6972 6973 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 6974 { 6975 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 6976 } 6977 6978 static const struct kernel_param_ops wq_affn_dfl_ops = { 6979 .set = wq_affn_dfl_set, 6980 .get = wq_affn_dfl_get, 6981 }; 6982 6983 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 6984 6985 #ifdef CONFIG_SYSFS 6986 /* 6987 * Workqueues with WQ_SYSFS flag set is visible to userland via 6988 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 6989 * following attributes. 6990 * 6991 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 6992 * max_active RW int : maximum number of in-flight work items 6993 * 6994 * Unbound workqueues have the following extra attributes. 6995 * 6996 * nice RW int : nice value of the workers 6997 * cpumask RW mask : bitmask of allowed CPUs for the workers 6998 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 6999 * affinity_strict RW bool : worker CPU affinity is strict 7000 */ 7001 struct wq_device { 7002 struct workqueue_struct *wq; 7003 struct device dev; 7004 }; 7005 7006 static struct workqueue_struct *dev_to_wq(struct device *dev) 7007 { 7008 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7009 7010 return wq_dev->wq; 7011 } 7012 7013 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 7014 char *buf) 7015 { 7016 struct workqueue_struct *wq = dev_to_wq(dev); 7017 7018 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 7019 } 7020 static DEVICE_ATTR_RO(per_cpu); 7021 7022 static ssize_t max_active_show(struct device *dev, 7023 struct device_attribute *attr, char *buf) 7024 { 7025 struct workqueue_struct *wq = dev_to_wq(dev); 7026 7027 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 7028 } 7029 7030 static ssize_t max_active_store(struct device *dev, 7031 struct device_attribute *attr, const char *buf, 7032 size_t count) 7033 { 7034 struct workqueue_struct *wq = dev_to_wq(dev); 7035 int val; 7036 7037 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 7038 return -EINVAL; 7039 7040 workqueue_set_max_active(wq, val); 7041 return count; 7042 } 7043 static DEVICE_ATTR_RW(max_active); 7044 7045 static struct attribute *wq_sysfs_attrs[] = { 7046 &dev_attr_per_cpu.attr, 7047 &dev_attr_max_active.attr, 7048 NULL, 7049 }; 7050 ATTRIBUTE_GROUPS(wq_sysfs); 7051 7052 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 7053 char *buf) 7054 { 7055 struct workqueue_struct *wq = dev_to_wq(dev); 7056 int written; 7057 7058 mutex_lock(&wq->mutex); 7059 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 7060 mutex_unlock(&wq->mutex); 7061 7062 return written; 7063 } 7064 7065 /* prepare workqueue_attrs for sysfs store operations */ 7066 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 7067 { 7068 struct workqueue_attrs *attrs; 7069 7070 lockdep_assert_held(&wq_pool_mutex); 7071 7072 attrs = alloc_workqueue_attrs(); 7073 if (!attrs) 7074 return NULL; 7075 7076 copy_workqueue_attrs(attrs, wq->unbound_attrs); 7077 return attrs; 7078 } 7079 7080 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 7081 const char *buf, size_t count) 7082 { 7083 struct workqueue_struct *wq = dev_to_wq(dev); 7084 struct workqueue_attrs *attrs; 7085 int ret = -ENOMEM; 7086 7087 apply_wqattrs_lock(); 7088 7089 attrs = wq_sysfs_prep_attrs(wq); 7090 if (!attrs) 7091 goto out_unlock; 7092 7093 if (sscanf(buf, "%d", &attrs->nice) == 1 && 7094 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 7095 ret = apply_workqueue_attrs_locked(wq, attrs); 7096 else 7097 ret = -EINVAL; 7098 7099 out_unlock: 7100 apply_wqattrs_unlock(); 7101 free_workqueue_attrs(attrs); 7102 return ret ?: count; 7103 } 7104 7105 static ssize_t wq_cpumask_show(struct device *dev, 7106 struct device_attribute *attr, char *buf) 7107 { 7108 struct workqueue_struct *wq = dev_to_wq(dev); 7109 int written; 7110 7111 mutex_lock(&wq->mutex); 7112 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 7113 cpumask_pr_args(wq->unbound_attrs->cpumask)); 7114 mutex_unlock(&wq->mutex); 7115 return written; 7116 } 7117 7118 static ssize_t wq_cpumask_store(struct device *dev, 7119 struct device_attribute *attr, 7120 const char *buf, size_t count) 7121 { 7122 struct workqueue_struct *wq = dev_to_wq(dev); 7123 struct workqueue_attrs *attrs; 7124 int ret = -ENOMEM; 7125 7126 apply_wqattrs_lock(); 7127 7128 attrs = wq_sysfs_prep_attrs(wq); 7129 if (!attrs) 7130 goto out_unlock; 7131 7132 ret = cpumask_parse(buf, attrs->cpumask); 7133 if (!ret) 7134 ret = apply_workqueue_attrs_locked(wq, attrs); 7135 7136 out_unlock: 7137 apply_wqattrs_unlock(); 7138 free_workqueue_attrs(attrs); 7139 return ret ?: count; 7140 } 7141 7142 static ssize_t wq_affn_scope_show(struct device *dev, 7143 struct device_attribute *attr, char *buf) 7144 { 7145 struct workqueue_struct *wq = dev_to_wq(dev); 7146 int written; 7147 7148 mutex_lock(&wq->mutex); 7149 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 7150 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 7151 wq_affn_names[WQ_AFFN_DFL], 7152 wq_affn_names[wq_affn_dfl]); 7153 else 7154 written = scnprintf(buf, PAGE_SIZE, "%s\n", 7155 wq_affn_names[wq->unbound_attrs->affn_scope]); 7156 mutex_unlock(&wq->mutex); 7157 7158 return written; 7159 } 7160 7161 static ssize_t wq_affn_scope_store(struct device *dev, 7162 struct device_attribute *attr, 7163 const char *buf, size_t count) 7164 { 7165 struct workqueue_struct *wq = dev_to_wq(dev); 7166 struct workqueue_attrs *attrs; 7167 int affn, ret = -ENOMEM; 7168 7169 affn = parse_affn_scope(buf); 7170 if (affn < 0) 7171 return affn; 7172 7173 apply_wqattrs_lock(); 7174 attrs = wq_sysfs_prep_attrs(wq); 7175 if (attrs) { 7176 attrs->affn_scope = affn; 7177 ret = apply_workqueue_attrs_locked(wq, attrs); 7178 } 7179 apply_wqattrs_unlock(); 7180 free_workqueue_attrs(attrs); 7181 return ret ?: count; 7182 } 7183 7184 static ssize_t wq_affinity_strict_show(struct device *dev, 7185 struct device_attribute *attr, char *buf) 7186 { 7187 struct workqueue_struct *wq = dev_to_wq(dev); 7188 7189 return scnprintf(buf, PAGE_SIZE, "%d\n", 7190 wq->unbound_attrs->affn_strict); 7191 } 7192 7193 static ssize_t wq_affinity_strict_store(struct device *dev, 7194 struct device_attribute *attr, 7195 const char *buf, size_t count) 7196 { 7197 struct workqueue_struct *wq = dev_to_wq(dev); 7198 struct workqueue_attrs *attrs; 7199 int v, ret = -ENOMEM; 7200 7201 if (sscanf(buf, "%d", &v) != 1) 7202 return -EINVAL; 7203 7204 apply_wqattrs_lock(); 7205 attrs = wq_sysfs_prep_attrs(wq); 7206 if (attrs) { 7207 attrs->affn_strict = (bool)v; 7208 ret = apply_workqueue_attrs_locked(wq, attrs); 7209 } 7210 apply_wqattrs_unlock(); 7211 free_workqueue_attrs(attrs); 7212 return ret ?: count; 7213 } 7214 7215 static struct device_attribute wq_sysfs_unbound_attrs[] = { 7216 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 7217 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 7218 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 7219 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 7220 __ATTR_NULL, 7221 }; 7222 7223 static const struct bus_type wq_subsys = { 7224 .name = "workqueue", 7225 .dev_groups = wq_sysfs_groups, 7226 }; 7227 7228 /** 7229 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 7230 * @cpumask: the cpumask to set 7231 * 7232 * The low-level workqueues cpumask is a global cpumask that limits 7233 * the affinity of all unbound workqueues. This function check the @cpumask 7234 * and apply it to all unbound workqueues and updates all pwqs of them. 7235 * 7236 * Return: 0 - Success 7237 * -EINVAL - Invalid @cpumask 7238 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 7239 */ 7240 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 7241 { 7242 int ret = -EINVAL; 7243 7244 /* 7245 * Not excluding isolated cpus on purpose. 7246 * If the user wishes to include them, we allow that. 7247 */ 7248 cpumask_and(cpumask, cpumask, cpu_possible_mask); 7249 if (!cpumask_empty(cpumask)) { 7250 ret = 0; 7251 apply_wqattrs_lock(); 7252 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 7253 ret = workqueue_apply_unbound_cpumask(cpumask); 7254 if (!ret) 7255 cpumask_copy(wq_requested_unbound_cpumask, cpumask); 7256 apply_wqattrs_unlock(); 7257 } 7258 7259 return ret; 7260 } 7261 7262 static ssize_t __wq_cpumask_show(struct device *dev, 7263 struct device_attribute *attr, char *buf, cpumask_var_t mask) 7264 { 7265 int written; 7266 7267 mutex_lock(&wq_pool_mutex); 7268 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 7269 mutex_unlock(&wq_pool_mutex); 7270 7271 return written; 7272 } 7273 7274 static ssize_t cpumask_requested_show(struct device *dev, 7275 struct device_attribute *attr, char *buf) 7276 { 7277 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask); 7278 } 7279 static DEVICE_ATTR_RO(cpumask_requested); 7280 7281 static ssize_t cpumask_isolated_show(struct device *dev, 7282 struct device_attribute *attr, char *buf) 7283 { 7284 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask); 7285 } 7286 static DEVICE_ATTR_RO(cpumask_isolated); 7287 7288 static ssize_t cpumask_show(struct device *dev, 7289 struct device_attribute *attr, char *buf) 7290 { 7291 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask); 7292 } 7293 7294 static ssize_t cpumask_store(struct device *dev, 7295 struct device_attribute *attr, const char *buf, size_t count) 7296 { 7297 cpumask_var_t cpumask; 7298 int ret; 7299 7300 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 7301 return -ENOMEM; 7302 7303 ret = cpumask_parse(buf, cpumask); 7304 if (!ret) 7305 ret = workqueue_set_unbound_cpumask(cpumask); 7306 7307 free_cpumask_var(cpumask); 7308 return ret ? ret : count; 7309 } 7310 static DEVICE_ATTR_RW(cpumask); 7311 7312 static struct attribute *wq_sysfs_cpumask_attrs[] = { 7313 &dev_attr_cpumask.attr, 7314 &dev_attr_cpumask_requested.attr, 7315 &dev_attr_cpumask_isolated.attr, 7316 NULL, 7317 }; 7318 ATTRIBUTE_GROUPS(wq_sysfs_cpumask); 7319 7320 static int __init wq_sysfs_init(void) 7321 { 7322 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups); 7323 } 7324 core_initcall(wq_sysfs_init); 7325 7326 static void wq_device_release(struct device *dev) 7327 { 7328 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7329 7330 kfree(wq_dev); 7331 } 7332 7333 /** 7334 * workqueue_sysfs_register - make a workqueue visible in sysfs 7335 * @wq: the workqueue to register 7336 * 7337 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 7338 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 7339 * which is the preferred method. 7340 * 7341 * Workqueue user should use this function directly iff it wants to apply 7342 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 7343 * apply_workqueue_attrs() may race against userland updating the 7344 * attributes. 7345 * 7346 * Return: 0 on success, -errno on failure. 7347 */ 7348 int workqueue_sysfs_register(struct workqueue_struct *wq) 7349 { 7350 struct wq_device *wq_dev; 7351 int ret; 7352 7353 /* 7354 * Adjusting max_active breaks ordering guarantee. Disallow exposing 7355 * ordered workqueues. 7356 */ 7357 if (WARN_ON(wq->flags & __WQ_ORDERED)) 7358 return -EINVAL; 7359 7360 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 7361 if (!wq_dev) 7362 return -ENOMEM; 7363 7364 wq_dev->wq = wq; 7365 wq_dev->dev.bus = &wq_subsys; 7366 wq_dev->dev.release = wq_device_release; 7367 dev_set_name(&wq_dev->dev, "%s", wq->name); 7368 7369 /* 7370 * unbound_attrs are created separately. Suppress uevent until 7371 * everything is ready. 7372 */ 7373 dev_set_uevent_suppress(&wq_dev->dev, true); 7374 7375 ret = device_register(&wq_dev->dev); 7376 if (ret) { 7377 put_device(&wq_dev->dev); 7378 wq->wq_dev = NULL; 7379 return ret; 7380 } 7381 7382 if (wq->flags & WQ_UNBOUND) { 7383 struct device_attribute *attr; 7384 7385 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 7386 ret = device_create_file(&wq_dev->dev, attr); 7387 if (ret) { 7388 device_unregister(&wq_dev->dev); 7389 wq->wq_dev = NULL; 7390 return ret; 7391 } 7392 } 7393 } 7394 7395 dev_set_uevent_suppress(&wq_dev->dev, false); 7396 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 7397 return 0; 7398 } 7399 7400 /** 7401 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 7402 * @wq: the workqueue to unregister 7403 * 7404 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 7405 */ 7406 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 7407 { 7408 struct wq_device *wq_dev = wq->wq_dev; 7409 7410 if (!wq->wq_dev) 7411 return; 7412 7413 wq->wq_dev = NULL; 7414 device_unregister(&wq_dev->dev); 7415 } 7416 #else /* CONFIG_SYSFS */ 7417 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 7418 #endif /* CONFIG_SYSFS */ 7419 7420 /* 7421 * Workqueue watchdog. 7422 * 7423 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 7424 * flush dependency, a concurrency managed work item which stays RUNNING 7425 * indefinitely. Workqueue stalls can be very difficult to debug as the 7426 * usual warning mechanisms don't trigger and internal workqueue state is 7427 * largely opaque. 7428 * 7429 * Workqueue watchdog monitors all worker pools periodically and dumps 7430 * state if some pools failed to make forward progress for a while where 7431 * forward progress is defined as the first item on ->worklist changing. 7432 * 7433 * This mechanism is controlled through the kernel parameter 7434 * "workqueue.watchdog_thresh" which can be updated at runtime through the 7435 * corresponding sysfs parameter file. 7436 */ 7437 #ifdef CONFIG_WQ_WATCHDOG 7438 7439 static unsigned long wq_watchdog_thresh = 30; 7440 static struct timer_list wq_watchdog_timer; 7441 7442 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 7443 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 7444 7445 static unsigned int wq_panic_on_stall; 7446 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644); 7447 7448 /* 7449 * Show workers that might prevent the processing of pending work items. 7450 * The only candidates are CPU-bound workers in the running state. 7451 * Pending work items should be handled by another idle worker 7452 * in all other situations. 7453 */ 7454 static void show_cpu_pool_hog(struct worker_pool *pool) 7455 { 7456 struct worker *worker; 7457 unsigned long irq_flags; 7458 int bkt; 7459 7460 raw_spin_lock_irqsave(&pool->lock, irq_flags); 7461 7462 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 7463 if (task_is_running(worker->task)) { 7464 /* 7465 * Defer printing to avoid deadlocks in console 7466 * drivers that queue work while holding locks 7467 * also taken in their write paths. 7468 */ 7469 printk_deferred_enter(); 7470 7471 pr_info("pool %d:\n", pool->id); 7472 sched_show_task(worker->task); 7473 7474 printk_deferred_exit(); 7475 } 7476 } 7477 7478 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 7479 } 7480 7481 static void show_cpu_pools_hogs(void) 7482 { 7483 struct worker_pool *pool; 7484 int pi; 7485 7486 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 7487 7488 rcu_read_lock(); 7489 7490 for_each_pool(pool, pi) { 7491 if (pool->cpu_stall) 7492 show_cpu_pool_hog(pool); 7493 7494 } 7495 7496 rcu_read_unlock(); 7497 } 7498 7499 static void panic_on_wq_watchdog(void) 7500 { 7501 static unsigned int wq_stall; 7502 7503 if (wq_panic_on_stall) { 7504 wq_stall++; 7505 BUG_ON(wq_stall >= wq_panic_on_stall); 7506 } 7507 } 7508 7509 static void wq_watchdog_reset_touched(void) 7510 { 7511 int cpu; 7512 7513 wq_watchdog_touched = jiffies; 7514 for_each_possible_cpu(cpu) 7515 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7516 } 7517 7518 static void wq_watchdog_timer_fn(struct timer_list *unused) 7519 { 7520 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7521 bool lockup_detected = false; 7522 bool cpu_pool_stall = false; 7523 unsigned long now = jiffies; 7524 struct worker_pool *pool; 7525 int pi; 7526 7527 if (!thresh) 7528 return; 7529 7530 rcu_read_lock(); 7531 7532 for_each_pool(pool, pi) { 7533 unsigned long pool_ts, touched, ts; 7534 7535 pool->cpu_stall = false; 7536 if (list_empty(&pool->worklist)) 7537 continue; 7538 7539 /* 7540 * If a virtual machine is stopped by the host it can look to 7541 * the watchdog like a stall. 7542 */ 7543 kvm_check_and_clear_guest_paused(); 7544 7545 /* get the latest of pool and touched timestamps */ 7546 if (pool->cpu >= 0) 7547 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 7548 else 7549 touched = READ_ONCE(wq_watchdog_touched); 7550 pool_ts = READ_ONCE(pool->watchdog_ts); 7551 7552 if (time_after(pool_ts, touched)) 7553 ts = pool_ts; 7554 else 7555 ts = touched; 7556 7557 /* did we stall? */ 7558 if (time_after(now, ts + thresh)) { 7559 lockup_detected = true; 7560 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) { 7561 pool->cpu_stall = true; 7562 cpu_pool_stall = true; 7563 } 7564 pr_emerg("BUG: workqueue lockup - pool"); 7565 pr_cont_pool_info(pool); 7566 pr_cont(" stuck for %us!\n", 7567 jiffies_to_msecs(now - pool_ts) / 1000); 7568 } 7569 7570 7571 } 7572 7573 rcu_read_unlock(); 7574 7575 if (lockup_detected) 7576 show_all_workqueues(); 7577 7578 if (cpu_pool_stall) 7579 show_cpu_pools_hogs(); 7580 7581 if (lockup_detected) 7582 panic_on_wq_watchdog(); 7583 7584 wq_watchdog_reset_touched(); 7585 mod_timer(&wq_watchdog_timer, jiffies + thresh); 7586 } 7587 7588 notrace void wq_watchdog_touch(int cpu) 7589 { 7590 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7591 unsigned long touch_ts = READ_ONCE(wq_watchdog_touched); 7592 unsigned long now = jiffies; 7593 7594 if (cpu >= 0) 7595 per_cpu(wq_watchdog_touched_cpu, cpu) = now; 7596 else 7597 WARN_ONCE(1, "%s should be called with valid CPU", __func__); 7598 7599 /* Don't unnecessarily store to global cacheline */ 7600 if (time_after(now, touch_ts + thresh / 4)) 7601 WRITE_ONCE(wq_watchdog_touched, jiffies); 7602 } 7603 7604 static void wq_watchdog_set_thresh(unsigned long thresh) 7605 { 7606 wq_watchdog_thresh = 0; 7607 del_timer_sync(&wq_watchdog_timer); 7608 7609 if (thresh) { 7610 wq_watchdog_thresh = thresh; 7611 wq_watchdog_reset_touched(); 7612 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 7613 } 7614 } 7615 7616 static int wq_watchdog_param_set_thresh(const char *val, 7617 const struct kernel_param *kp) 7618 { 7619 unsigned long thresh; 7620 int ret; 7621 7622 ret = kstrtoul(val, 0, &thresh); 7623 if (ret) 7624 return ret; 7625 7626 if (system_wq) 7627 wq_watchdog_set_thresh(thresh); 7628 else 7629 wq_watchdog_thresh = thresh; 7630 7631 return 0; 7632 } 7633 7634 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 7635 .set = wq_watchdog_param_set_thresh, 7636 .get = param_get_ulong, 7637 }; 7638 7639 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 7640 0644); 7641 7642 static void wq_watchdog_init(void) 7643 { 7644 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 7645 wq_watchdog_set_thresh(wq_watchdog_thresh); 7646 } 7647 7648 #else /* CONFIG_WQ_WATCHDOG */ 7649 7650 static inline void wq_watchdog_init(void) { } 7651 7652 #endif /* CONFIG_WQ_WATCHDOG */ 7653 7654 static void bh_pool_kick_normal(struct irq_work *irq_work) 7655 { 7656 raise_softirq_irqoff(TASKLET_SOFTIRQ); 7657 } 7658 7659 static void bh_pool_kick_highpri(struct irq_work *irq_work) 7660 { 7661 raise_softirq_irqoff(HI_SOFTIRQ); 7662 } 7663 7664 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 7665 { 7666 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 7667 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 7668 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 7669 return; 7670 } 7671 7672 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 7673 } 7674 7675 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice) 7676 { 7677 BUG_ON(init_worker_pool(pool)); 7678 pool->cpu = cpu; 7679 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 7680 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 7681 pool->attrs->nice = nice; 7682 pool->attrs->affn_strict = true; 7683 pool->node = cpu_to_node(cpu); 7684 7685 /* alloc pool ID */ 7686 mutex_lock(&wq_pool_mutex); 7687 BUG_ON(worker_pool_assign_id(pool)); 7688 mutex_unlock(&wq_pool_mutex); 7689 } 7690 7691 /** 7692 * workqueue_init_early - early init for workqueue subsystem 7693 * 7694 * This is the first step of three-staged workqueue subsystem initialization and 7695 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 7696 * up. It sets up all the data structures and system workqueues and allows early 7697 * boot code to create workqueues and queue/cancel work items. Actual work item 7698 * execution starts only after kthreads can be created and scheduled right 7699 * before early initcalls. 7700 */ 7701 void __init workqueue_init_early(void) 7702 { 7703 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 7704 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 7705 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal, 7706 bh_pool_kick_highpri }; 7707 int i, cpu; 7708 7709 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 7710 7711 BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL)); 7712 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 7713 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); 7714 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); 7715 7716 cpumask_copy(wq_online_cpumask, cpu_online_mask); 7717 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 7718 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 7719 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 7720 if (!cpumask_empty(&wq_cmdline_cpumask)) 7721 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 7722 7723 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask); 7724 7725 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 7726 7727 unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs(); 7728 BUG_ON(!unbound_wq_update_pwq_attrs_buf); 7729 7730 /* 7731 * If nohz_full is enabled, set power efficient workqueue as unbound. 7732 * This allows workqueue items to be moved to HK CPUs. 7733 */ 7734 if (housekeeping_enabled(HK_TYPE_TICK)) 7735 wq_power_efficient = true; 7736 7737 /* initialize WQ_AFFN_SYSTEM pods */ 7738 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7739 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 7740 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7741 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 7742 7743 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 7744 7745 pt->nr_pods = 1; 7746 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 7747 pt->pod_node[0] = NUMA_NO_NODE; 7748 pt->cpu_pod[0] = 0; 7749 7750 /* initialize BH and CPU pools */ 7751 for_each_possible_cpu(cpu) { 7752 struct worker_pool *pool; 7753 7754 i = 0; 7755 for_each_bh_worker_pool(pool, cpu) { 7756 init_cpu_worker_pool(pool, cpu, std_nice[i]); 7757 pool->flags |= POOL_BH; 7758 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]); 7759 i++; 7760 } 7761 7762 i = 0; 7763 for_each_cpu_worker_pool(pool, cpu) 7764 init_cpu_worker_pool(pool, cpu, std_nice[i++]); 7765 } 7766 7767 /* create default unbound and ordered wq attrs */ 7768 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 7769 struct workqueue_attrs *attrs; 7770 7771 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7772 attrs->nice = std_nice[i]; 7773 unbound_std_wq_attrs[i] = attrs; 7774 7775 /* 7776 * An ordered wq should have only one pwq as ordering is 7777 * guaranteed by max_active which is enforced by pwqs. 7778 */ 7779 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7780 attrs->nice = std_nice[i]; 7781 attrs->ordered = true; 7782 ordered_wq_attrs[i] = attrs; 7783 } 7784 7785 system_wq = alloc_workqueue("events", 0, 0); 7786 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 7787 system_long_wq = alloc_workqueue("events_long", 0, 0); 7788 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 7789 WQ_MAX_ACTIVE); 7790 system_freezable_wq = alloc_workqueue("events_freezable", 7791 WQ_FREEZABLE, 0); 7792 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 7793 WQ_POWER_EFFICIENT, 0); 7794 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient", 7795 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 7796 0); 7797 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0); 7798 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri", 7799 WQ_BH | WQ_HIGHPRI, 0); 7800 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 7801 !system_unbound_wq || !system_freezable_wq || 7802 !system_power_efficient_wq || 7803 !system_freezable_power_efficient_wq || 7804 !system_bh_wq || !system_bh_highpri_wq); 7805 } 7806 7807 static void __init wq_cpu_intensive_thresh_init(void) 7808 { 7809 unsigned long thresh; 7810 unsigned long bogo; 7811 7812 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); 7813 BUG_ON(IS_ERR(pwq_release_worker)); 7814 7815 /* if the user set it to a specific value, keep it */ 7816 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 7817 return; 7818 7819 /* 7820 * The default of 10ms is derived from the fact that most modern (as of 7821 * 2023) processors can do a lot in 10ms and that it's just below what 7822 * most consider human-perceivable. However, the kernel also runs on a 7823 * lot slower CPUs including microcontrollers where the threshold is way 7824 * too low. 7825 * 7826 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 7827 * This is by no means accurate but it doesn't have to be. The mechanism 7828 * is still useful even when the threshold is fully scaled up. Also, as 7829 * the reports would usually be applicable to everyone, some machines 7830 * operating on longer thresholds won't significantly diminish their 7831 * usefulness. 7832 */ 7833 thresh = 10 * USEC_PER_MSEC; 7834 7835 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 7836 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 7837 if (bogo < 4000) 7838 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 7839 7840 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 7841 loops_per_jiffy, bogo, thresh); 7842 7843 wq_cpu_intensive_thresh_us = thresh; 7844 } 7845 7846 /** 7847 * workqueue_init - bring workqueue subsystem fully online 7848 * 7849 * This is the second step of three-staged workqueue subsystem initialization 7850 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 7851 * been created and work items queued on them, but there are no kworkers 7852 * executing the work items yet. Populate the worker pools with the initial 7853 * workers and enable future kworker creations. 7854 */ 7855 void __init workqueue_init(void) 7856 { 7857 struct workqueue_struct *wq; 7858 struct worker_pool *pool; 7859 int cpu, bkt; 7860 7861 wq_cpu_intensive_thresh_init(); 7862 7863 mutex_lock(&wq_pool_mutex); 7864 7865 /* 7866 * Per-cpu pools created earlier could be missing node hint. Fix them 7867 * up. Also, create a rescuer for workqueues that requested it. 7868 */ 7869 for_each_possible_cpu(cpu) { 7870 for_each_bh_worker_pool(pool, cpu) 7871 pool->node = cpu_to_node(cpu); 7872 for_each_cpu_worker_pool(pool, cpu) 7873 pool->node = cpu_to_node(cpu); 7874 } 7875 7876 list_for_each_entry(wq, &workqueues, list) { 7877 WARN(init_rescuer(wq), 7878 "workqueue: failed to create early rescuer for %s", 7879 wq->name); 7880 } 7881 7882 mutex_unlock(&wq_pool_mutex); 7883 7884 /* 7885 * Create the initial workers. A BH pool has one pseudo worker that 7886 * represents the shared BH execution context and thus doesn't get 7887 * affected by hotplug events. Create the BH pseudo workers for all 7888 * possible CPUs here. 7889 */ 7890 for_each_possible_cpu(cpu) 7891 for_each_bh_worker_pool(pool, cpu) 7892 BUG_ON(!create_worker(pool)); 7893 7894 for_each_online_cpu(cpu) { 7895 for_each_cpu_worker_pool(pool, cpu) { 7896 pool->flags &= ~POOL_DISASSOCIATED; 7897 BUG_ON(!create_worker(pool)); 7898 } 7899 } 7900 7901 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 7902 BUG_ON(!create_worker(pool)); 7903 7904 wq_online = true; 7905 wq_watchdog_init(); 7906 } 7907 7908 /* 7909 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 7910 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 7911 * and consecutive pod ID. The rest of @pt is initialized accordingly. 7912 */ 7913 static void __init init_pod_type(struct wq_pod_type *pt, 7914 bool (*cpus_share_pod)(int, int)) 7915 { 7916 int cur, pre, cpu, pod; 7917 7918 pt->nr_pods = 0; 7919 7920 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 7921 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7922 BUG_ON(!pt->cpu_pod); 7923 7924 for_each_possible_cpu(cur) { 7925 for_each_possible_cpu(pre) { 7926 if (pre >= cur) { 7927 pt->cpu_pod[cur] = pt->nr_pods++; 7928 break; 7929 } 7930 if (cpus_share_pod(cur, pre)) { 7931 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 7932 break; 7933 } 7934 } 7935 } 7936 7937 /* init the rest to match @pt->cpu_pod[] */ 7938 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7939 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 7940 BUG_ON(!pt->pod_cpus || !pt->pod_node); 7941 7942 for (pod = 0; pod < pt->nr_pods; pod++) 7943 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 7944 7945 for_each_possible_cpu(cpu) { 7946 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 7947 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 7948 } 7949 } 7950 7951 static bool __init cpus_dont_share(int cpu0, int cpu1) 7952 { 7953 return false; 7954 } 7955 7956 static bool __init cpus_share_smt(int cpu0, int cpu1) 7957 { 7958 #ifdef CONFIG_SCHED_SMT 7959 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 7960 #else 7961 return false; 7962 #endif 7963 } 7964 7965 static bool __init cpus_share_numa(int cpu0, int cpu1) 7966 { 7967 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 7968 } 7969 7970 /** 7971 * workqueue_init_topology - initialize CPU pods for unbound workqueues 7972 * 7973 * This is the third step of three-staged workqueue subsystem initialization and 7974 * invoked after SMP and topology information are fully initialized. It 7975 * initializes the unbound CPU pods accordingly. 7976 */ 7977 void __init workqueue_init_topology(void) 7978 { 7979 struct workqueue_struct *wq; 7980 int cpu; 7981 7982 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 7983 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 7984 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 7985 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 7986 7987 wq_topo_initialized = true; 7988 7989 mutex_lock(&wq_pool_mutex); 7990 7991 /* 7992 * Workqueues allocated earlier would have all CPUs sharing the default 7993 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue 7994 * and CPU combinations to apply per-pod sharing. 7995 */ 7996 list_for_each_entry(wq, &workqueues, list) { 7997 for_each_online_cpu(cpu) 7998 unbound_wq_update_pwq(wq, cpu); 7999 if (wq->flags & WQ_UNBOUND) { 8000 mutex_lock(&wq->mutex); 8001 wq_update_node_max_active(wq, -1); 8002 mutex_unlock(&wq->mutex); 8003 } 8004 } 8005 8006 mutex_unlock(&wq_pool_mutex); 8007 } 8008 8009 void __warn_flushing_systemwide_wq(void) 8010 { 8011 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 8012 dump_stack(); 8013 } 8014 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 8015 8016 static int __init workqueue_unbound_cpus_setup(char *str) 8017 { 8018 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 8019 cpumask_clear(&wq_cmdline_cpumask); 8020 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 8021 } 8022 8023 return 1; 8024 } 8025 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 8026