xref: /linux-6.15/kernel/workqueue.c (revision 84c425be)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <[email protected]>
9  *     Andrew Morton
10  *     Kai Petzke <[email protected]>
11  *     Theodore Ts'o <[email protected]>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <[email protected]>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 
59 #include "workqueue_internal.h"
60 
61 enum worker_pool_flags {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 *
78 	 * As there can only be one concurrent BH execution context per CPU, a
79 	 * BH pool is per-CPU and always DISASSOCIATED.
80 	 */
81 	POOL_BH			= 1 << 0,	/* is a BH pool */
82 	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
83 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
84 	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
85 };
86 
87 enum worker_flags {
88 	/* worker flags */
89 	WORKER_DIE		= 1 << 1,	/* die die die */
90 	WORKER_IDLE		= 1 << 2,	/* is idle */
91 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
92 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
93 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
94 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
95 
96 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
97 				  WORKER_UNBOUND | WORKER_REBOUND,
98 };
99 
100 enum work_cancel_flags {
101 	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
102 	WORK_CANCEL_DISABLE	= 1 << 1,	/* canceling to disable */
103 };
104 
105 enum wq_internal_consts {
106 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
107 
108 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
109 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
110 
111 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
112 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
113 
114 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
115 						/* call for help after 10ms
116 						   (min two ticks) */
117 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
118 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
119 
120 	/*
121 	 * Rescue workers are used only on emergencies and shared by
122 	 * all cpus.  Give MIN_NICE.
123 	 */
124 	RESCUER_NICE_LEVEL	= MIN_NICE,
125 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
126 
127 	WQ_NAME_LEN		= 32,
128 	WORKER_ID_LEN		= 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
129 };
130 
131 /*
132  * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
133  * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
134  * msecs_to_jiffies() can't be an initializer.
135  */
136 #define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
137 #define BH_WORKER_RESTARTS	10
138 
139 /*
140  * Structure fields follow one of the following exclusion rules.
141  *
142  * I: Modifiable by initialization/destruction paths and read-only for
143  *    everyone else.
144  *
145  * P: Preemption protected.  Disabling preemption is enough and should
146  *    only be modified and accessed from the local cpu.
147  *
148  * L: pool->lock protected.  Access with pool->lock held.
149  *
150  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
151  *     reads.
152  *
153  * K: Only modified by worker while holding pool->lock. Can be safely read by
154  *    self, while holding pool->lock or from IRQ context if %current is the
155  *    kworker.
156  *
157  * S: Only modified by worker self.
158  *
159  * A: wq_pool_attach_mutex protected.
160  *
161  * PL: wq_pool_mutex protected.
162  *
163  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
164  *
165  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
166  *
167  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
168  *      RCU for reads.
169  *
170  * WQ: wq->mutex protected.
171  *
172  * WR: wq->mutex protected for writes.  RCU protected for reads.
173  *
174  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
175  *     with READ_ONCE() without locking.
176  *
177  * MD: wq_mayday_lock protected.
178  *
179  * WD: Used internally by the watchdog.
180  */
181 
182 /* struct worker is defined in workqueue_internal.h */
183 
184 struct worker_pool {
185 	raw_spinlock_t		lock;		/* the pool lock */
186 	int			cpu;		/* I: the associated cpu */
187 	int			node;		/* I: the associated node ID */
188 	int			id;		/* I: pool ID */
189 	unsigned int		flags;		/* L: flags */
190 
191 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
192 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
193 
194 	/*
195 	 * The counter is incremented in a process context on the associated CPU
196 	 * w/ preemption disabled, and decremented or reset in the same context
197 	 * but w/ pool->lock held. The readers grab pool->lock and are
198 	 * guaranteed to see if the counter reached zero.
199 	 */
200 	int			nr_running;
201 
202 	struct list_head	worklist;	/* L: list of pending works */
203 
204 	int			nr_workers;	/* L: total number of workers */
205 	int			nr_idle;	/* L: currently idle workers */
206 
207 	struct list_head	idle_list;	/* L: list of idle workers */
208 	struct timer_list	idle_timer;	/* L: worker idle timeout */
209 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
210 
211 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
212 
213 	/* a workers is either on busy_hash or idle_list, or the manager */
214 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
215 						/* L: hash of busy workers */
216 
217 	struct worker		*manager;	/* L: purely informational */
218 	struct list_head	workers;	/* A: attached workers */
219 
220 	struct ida		worker_ida;	/* worker IDs for task name */
221 
222 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
223 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
224 	int			refcnt;		/* PL: refcnt for unbound pools */
225 
226 	/*
227 	 * Destruction of pool is RCU protected to allow dereferences
228 	 * from get_work_pool().
229 	 */
230 	struct rcu_head		rcu;
231 };
232 
233 /*
234  * Per-pool_workqueue statistics. These can be monitored using
235  * tools/workqueue/wq_monitor.py.
236  */
237 enum pool_workqueue_stats {
238 	PWQ_STAT_STARTED,	/* work items started execution */
239 	PWQ_STAT_COMPLETED,	/* work items completed execution */
240 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
241 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
242 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
243 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
244 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
245 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
246 
247 	PWQ_NR_STATS,
248 };
249 
250 /*
251  * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
252  * of work_struct->data are used for flags and the remaining high bits
253  * point to the pwq; thus, pwqs need to be aligned at two's power of the
254  * number of flag bits.
255  */
256 struct pool_workqueue {
257 	struct worker_pool	*pool;		/* I: the associated pool */
258 	struct workqueue_struct *wq;		/* I: the owning workqueue */
259 	int			work_color;	/* L: current color */
260 	int			flush_color;	/* L: flushing color */
261 	int			refcnt;		/* L: reference count */
262 	int			nr_in_flight[WORK_NR_COLORS];
263 						/* L: nr of in_flight works */
264 	bool			plugged;	/* L: execution suspended */
265 
266 	/*
267 	 * nr_active management and WORK_STRUCT_INACTIVE:
268 	 *
269 	 * When pwq->nr_active >= max_active, new work item is queued to
270 	 * pwq->inactive_works instead of pool->worklist and marked with
271 	 * WORK_STRUCT_INACTIVE.
272 	 *
273 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
274 	 * nr_active and all work items in pwq->inactive_works are marked with
275 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
276 	 * in pwq->inactive_works. Some of them are ready to run in
277 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
278 	 * wq_barrier which is used for flush_work() and should not participate
279 	 * in nr_active. For non-barrier work item, it is marked with
280 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
281 	 */
282 	int			nr_active;	/* L: nr of active works */
283 	struct list_head	inactive_works;	/* L: inactive works */
284 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
285 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
286 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
287 
288 	u64			stats[PWQ_NR_STATS];
289 
290 	/*
291 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
292 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
293 	 * RCU protected so that the first pwq can be determined without
294 	 * grabbing wq->mutex.
295 	 */
296 	struct kthread_work	release_work;
297 	struct rcu_head		rcu;
298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
299 
300 /*
301  * Structure used to wait for workqueue flush.
302  */
303 struct wq_flusher {
304 	struct list_head	list;		/* WQ: list of flushers */
305 	int			flush_color;	/* WQ: flush color waiting for */
306 	struct completion	done;		/* flush completion */
307 };
308 
309 struct wq_device;
310 
311 /*
312  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
313  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
314  * As sharing a single nr_active across multiple sockets can be very expensive,
315  * the counting and enforcement is per NUMA node.
316  *
317  * The following struct is used to enforce per-node max_active. When a pwq wants
318  * to start executing a work item, it should increment ->nr using
319  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
320  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
321  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
322  * round-robin order.
323  */
324 struct wq_node_nr_active {
325 	int			max;		/* per-node max_active */
326 	atomic_t		nr;		/* per-node nr_active */
327 	raw_spinlock_t		lock;		/* nests inside pool locks */
328 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
329 };
330 
331 /*
332  * The externally visible workqueue.  It relays the issued work items to
333  * the appropriate worker_pool through its pool_workqueues.
334  */
335 struct workqueue_struct {
336 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
337 	struct list_head	list;		/* PR: list of all workqueues */
338 
339 	struct mutex		mutex;		/* protects this wq */
340 	int			work_color;	/* WQ: current work color */
341 	int			flush_color;	/* WQ: current flush color */
342 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
343 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
344 	struct list_head	flusher_queue;	/* WQ: flush waiters */
345 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
346 
347 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
348 	struct worker		*rescuer;	/* MD: rescue worker */
349 
350 	int			nr_drainers;	/* WQ: drain in progress */
351 
352 	/* See alloc_workqueue() function comment for info on min/max_active */
353 	int			max_active;	/* WO: max active works */
354 	int			min_active;	/* WO: min active works */
355 	int			saved_max_active; /* WQ: saved max_active */
356 	int			saved_min_active; /* WQ: saved min_active */
357 
358 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
359 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
360 
361 #ifdef CONFIG_SYSFS
362 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
363 #endif
364 #ifdef CONFIG_LOCKDEP
365 	char			*lock_name;
366 	struct lock_class_key	key;
367 	struct lockdep_map	__lockdep_map;
368 	struct lockdep_map	*lockdep_map;
369 #endif
370 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
371 
372 	/*
373 	 * Destruction of workqueue_struct is RCU protected to allow walking
374 	 * the workqueues list without grabbing wq_pool_mutex.
375 	 * This is used to dump all workqueues from sysrq.
376 	 */
377 	struct rcu_head		rcu;
378 
379 	/* hot fields used during command issue, aligned to cacheline */
380 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
381 	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
382 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
383 };
384 
385 /*
386  * Each pod type describes how CPUs should be grouped for unbound workqueues.
387  * See the comment above workqueue_attrs->affn_scope.
388  */
389 struct wq_pod_type {
390 	int			nr_pods;	/* number of pods */
391 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
392 	int			*pod_node;	/* pod -> node */
393 	int			*cpu_pod;	/* cpu -> pod */
394 };
395 
396 struct work_offq_data {
397 	u32			pool_id;
398 	u32			disable;
399 	u32			flags;
400 };
401 
402 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
403 	[WQ_AFFN_DFL]		= "default",
404 	[WQ_AFFN_CPU]		= "cpu",
405 	[WQ_AFFN_SMT]		= "smt",
406 	[WQ_AFFN_CACHE]		= "cache",
407 	[WQ_AFFN_NUMA]		= "numa",
408 	[WQ_AFFN_SYSTEM]	= "system",
409 };
410 
411 /*
412  * Per-cpu work items which run for longer than the following threshold are
413  * automatically considered CPU intensive and excluded from concurrency
414  * management to prevent them from noticeably delaying other per-cpu work items.
415  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
416  * The actual value is initialized in wq_cpu_intensive_thresh_init().
417  */
418 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
419 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
421 static unsigned int wq_cpu_intensive_warning_thresh = 4;
422 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
423 #endif
424 
425 /* see the comment above the definition of WQ_POWER_EFFICIENT */
426 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
427 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
428 
429 static bool wq_online;			/* can kworkers be created yet? */
430 static bool wq_topo_initialized __read_mostly = false;
431 
432 static struct kmem_cache *pwq_cache;
433 
434 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
435 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
436 
437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
438 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
439 
440 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
441 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
443 /* wait for manager to go away */
444 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
445 
446 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
447 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
448 
449 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
450 static cpumask_var_t wq_online_cpumask;
451 
452 /* PL&A: allowable cpus for unbound wqs and work items */
453 static cpumask_var_t wq_unbound_cpumask;
454 
455 /* PL: user requested unbound cpumask via sysfs */
456 static cpumask_var_t wq_requested_unbound_cpumask;
457 
458 /* PL: isolated cpumask to be excluded from unbound cpumask */
459 static cpumask_var_t wq_isolated_cpumask;
460 
461 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
462 static struct cpumask wq_cmdline_cpumask __initdata;
463 
464 /* CPU where unbound work was last round robin scheduled from this CPU */
465 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
466 
467 /*
468  * Local execution of unbound work items is no longer guaranteed.  The
469  * following always forces round-robin CPU selection on unbound work items
470  * to uncover usages which depend on it.
471  */
472 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
473 static bool wq_debug_force_rr_cpu = true;
474 #else
475 static bool wq_debug_force_rr_cpu = false;
476 #endif
477 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
478 
479 /* to raise softirq for the BH worker pools on other CPUs */
480 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS],
481 				     bh_pool_irq_works);
482 
483 /* the BH worker pools */
484 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
485 				     bh_worker_pools);
486 
487 /* the per-cpu worker pools */
488 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
489 				     cpu_worker_pools);
490 
491 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
492 
493 /* PL: hash of all unbound pools keyed by pool->attrs */
494 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
495 
496 /* I: attributes used when instantiating standard unbound pools on demand */
497 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
498 
499 /* I: attributes used when instantiating ordered pools on demand */
500 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
501 
502 /*
503  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
504  * process context while holding a pool lock. Bounce to a dedicated kthread
505  * worker to avoid A-A deadlocks.
506  */
507 static struct kthread_worker *pwq_release_worker __ro_after_init;
508 
509 struct workqueue_struct *system_wq __ro_after_init;
510 EXPORT_SYMBOL(system_wq);
511 struct workqueue_struct *system_highpri_wq __ro_after_init;
512 EXPORT_SYMBOL_GPL(system_highpri_wq);
513 struct workqueue_struct *system_long_wq __ro_after_init;
514 EXPORT_SYMBOL_GPL(system_long_wq);
515 struct workqueue_struct *system_unbound_wq __ro_after_init;
516 EXPORT_SYMBOL_GPL(system_unbound_wq);
517 struct workqueue_struct *system_freezable_wq __ro_after_init;
518 EXPORT_SYMBOL_GPL(system_freezable_wq);
519 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
520 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
521 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
522 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
523 struct workqueue_struct *system_bh_wq;
524 EXPORT_SYMBOL_GPL(system_bh_wq);
525 struct workqueue_struct *system_bh_highpri_wq;
526 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
527 
528 static int worker_thread(void *__worker);
529 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
530 static void show_pwq(struct pool_workqueue *pwq);
531 static void show_one_worker_pool(struct worker_pool *pool);
532 
533 #define CREATE_TRACE_POINTS
534 #include <trace/events/workqueue.h>
535 
536 #define assert_rcu_or_pool_mutex()					\
537 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
538 			 !lockdep_is_held(&wq_pool_mutex),		\
539 			 "RCU or wq_pool_mutex should be held")
540 
541 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
542 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
543 			 !lockdep_is_held(&wq->mutex) &&		\
544 			 !lockdep_is_held(&wq_pool_mutex),		\
545 			 "RCU, wq->mutex or wq_pool_mutex should be held")
546 
547 #define for_each_bh_worker_pool(pool, cpu)				\
548 	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
549 	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
550 	     (pool)++)
551 
552 #define for_each_cpu_worker_pool(pool, cpu)				\
553 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
554 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
555 	     (pool)++)
556 
557 /**
558  * for_each_pool - iterate through all worker_pools in the system
559  * @pool: iteration cursor
560  * @pi: integer used for iteration
561  *
562  * This must be called either with wq_pool_mutex held or RCU read
563  * locked.  If the pool needs to be used beyond the locking in effect, the
564  * caller is responsible for guaranteeing that the pool stays online.
565  *
566  * The if/else clause exists only for the lockdep assertion and can be
567  * ignored.
568  */
569 #define for_each_pool(pool, pi)						\
570 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
571 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
572 		else
573 
574 /**
575  * for_each_pool_worker - iterate through all workers of a worker_pool
576  * @worker: iteration cursor
577  * @pool: worker_pool to iterate workers of
578  *
579  * This must be called with wq_pool_attach_mutex.
580  *
581  * The if/else clause exists only for the lockdep assertion and can be
582  * ignored.
583  */
584 #define for_each_pool_worker(worker, pool)				\
585 	list_for_each_entry((worker), &(pool)->workers, node)		\
586 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
587 		else
588 
589 /**
590  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
591  * @pwq: iteration cursor
592  * @wq: the target workqueue
593  *
594  * This must be called either with wq->mutex held or RCU read locked.
595  * If the pwq needs to be used beyond the locking in effect, the caller is
596  * responsible for guaranteeing that the pwq stays online.
597  *
598  * The if/else clause exists only for the lockdep assertion and can be
599  * ignored.
600  */
601 #define for_each_pwq(pwq, wq)						\
602 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
603 				 lockdep_is_held(&(wq->mutex)))
604 
605 #ifdef CONFIG_DEBUG_OBJECTS_WORK
606 
607 static const struct debug_obj_descr work_debug_descr;
608 
609 static void *work_debug_hint(void *addr)
610 {
611 	return ((struct work_struct *) addr)->func;
612 }
613 
614 static bool work_is_static_object(void *addr)
615 {
616 	struct work_struct *work = addr;
617 
618 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
619 }
620 
621 /*
622  * fixup_init is called when:
623  * - an active object is initialized
624  */
625 static bool work_fixup_init(void *addr, enum debug_obj_state state)
626 {
627 	struct work_struct *work = addr;
628 
629 	switch (state) {
630 	case ODEBUG_STATE_ACTIVE:
631 		cancel_work_sync(work);
632 		debug_object_init(work, &work_debug_descr);
633 		return true;
634 	default:
635 		return false;
636 	}
637 }
638 
639 /*
640  * fixup_free is called when:
641  * - an active object is freed
642  */
643 static bool work_fixup_free(void *addr, enum debug_obj_state state)
644 {
645 	struct work_struct *work = addr;
646 
647 	switch (state) {
648 	case ODEBUG_STATE_ACTIVE:
649 		cancel_work_sync(work);
650 		debug_object_free(work, &work_debug_descr);
651 		return true;
652 	default:
653 		return false;
654 	}
655 }
656 
657 static const struct debug_obj_descr work_debug_descr = {
658 	.name		= "work_struct",
659 	.debug_hint	= work_debug_hint,
660 	.is_static_object = work_is_static_object,
661 	.fixup_init	= work_fixup_init,
662 	.fixup_free	= work_fixup_free,
663 };
664 
665 static inline void debug_work_activate(struct work_struct *work)
666 {
667 	debug_object_activate(work, &work_debug_descr);
668 }
669 
670 static inline void debug_work_deactivate(struct work_struct *work)
671 {
672 	debug_object_deactivate(work, &work_debug_descr);
673 }
674 
675 void __init_work(struct work_struct *work, int onstack)
676 {
677 	if (onstack)
678 		debug_object_init_on_stack(work, &work_debug_descr);
679 	else
680 		debug_object_init(work, &work_debug_descr);
681 }
682 EXPORT_SYMBOL_GPL(__init_work);
683 
684 void destroy_work_on_stack(struct work_struct *work)
685 {
686 	debug_object_free(work, &work_debug_descr);
687 }
688 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
689 
690 void destroy_delayed_work_on_stack(struct delayed_work *work)
691 {
692 	destroy_timer_on_stack(&work->timer);
693 	debug_object_free(&work->work, &work_debug_descr);
694 }
695 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
696 
697 #else
698 static inline void debug_work_activate(struct work_struct *work) { }
699 static inline void debug_work_deactivate(struct work_struct *work) { }
700 #endif
701 
702 /**
703  * worker_pool_assign_id - allocate ID and assign it to @pool
704  * @pool: the pool pointer of interest
705  *
706  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
707  * successfully, -errno on failure.
708  */
709 static int worker_pool_assign_id(struct worker_pool *pool)
710 {
711 	int ret;
712 
713 	lockdep_assert_held(&wq_pool_mutex);
714 
715 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
716 			GFP_KERNEL);
717 	if (ret >= 0) {
718 		pool->id = ret;
719 		return 0;
720 	}
721 	return ret;
722 }
723 
724 static struct pool_workqueue __rcu **
725 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
726 {
727        if (cpu >= 0)
728                return per_cpu_ptr(wq->cpu_pwq, cpu);
729        else
730                return &wq->dfl_pwq;
731 }
732 
733 /* @cpu < 0 for dfl_pwq */
734 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
735 {
736 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
737 				     lockdep_is_held(&wq_pool_mutex) ||
738 				     lockdep_is_held(&wq->mutex));
739 }
740 
741 /**
742  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
743  * @wq: workqueue of interest
744  *
745  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
746  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
747  * default pwq is always mapped to the pool with the current effective cpumask.
748  */
749 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
750 {
751 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
752 }
753 
754 static unsigned int work_color_to_flags(int color)
755 {
756 	return color << WORK_STRUCT_COLOR_SHIFT;
757 }
758 
759 static int get_work_color(unsigned long work_data)
760 {
761 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
762 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
763 }
764 
765 static int work_next_color(int color)
766 {
767 	return (color + 1) % WORK_NR_COLORS;
768 }
769 
770 static unsigned long pool_offq_flags(struct worker_pool *pool)
771 {
772 	return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
773 }
774 
775 /*
776  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
777  * contain the pointer to the queued pwq.  Once execution starts, the flag
778  * is cleared and the high bits contain OFFQ flags and pool ID.
779  *
780  * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
781  * can be used to set the pwq, pool or clear work->data. These functions should
782  * only be called while the work is owned - ie. while the PENDING bit is set.
783  *
784  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
785  * corresponding to a work.  Pool is available once the work has been
786  * queued anywhere after initialization until it is sync canceled.  pwq is
787  * available only while the work item is queued.
788  */
789 static inline void set_work_data(struct work_struct *work, unsigned long data)
790 {
791 	WARN_ON_ONCE(!work_pending(work));
792 	atomic_long_set(&work->data, data | work_static(work));
793 }
794 
795 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
796 			 unsigned long flags)
797 {
798 	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
799 		      WORK_STRUCT_PWQ | flags);
800 }
801 
802 static void set_work_pool_and_keep_pending(struct work_struct *work,
803 					   int pool_id, unsigned long flags)
804 {
805 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
806 		      WORK_STRUCT_PENDING | flags);
807 }
808 
809 static void set_work_pool_and_clear_pending(struct work_struct *work,
810 					    int pool_id, unsigned long flags)
811 {
812 	/*
813 	 * The following wmb is paired with the implied mb in
814 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
815 	 * here are visible to and precede any updates by the next PENDING
816 	 * owner.
817 	 */
818 	smp_wmb();
819 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
820 		      flags);
821 	/*
822 	 * The following mb guarantees that previous clear of a PENDING bit
823 	 * will not be reordered with any speculative LOADS or STORES from
824 	 * work->current_func, which is executed afterwards.  This possible
825 	 * reordering can lead to a missed execution on attempt to queue
826 	 * the same @work.  E.g. consider this case:
827 	 *
828 	 *   CPU#0                         CPU#1
829 	 *   ----------------------------  --------------------------------
830 	 *
831 	 * 1  STORE event_indicated
832 	 * 2  queue_work_on() {
833 	 * 3    test_and_set_bit(PENDING)
834 	 * 4 }                             set_..._and_clear_pending() {
835 	 * 5                                 set_work_data() # clear bit
836 	 * 6                                 smp_mb()
837 	 * 7                               work->current_func() {
838 	 * 8				      LOAD event_indicated
839 	 *				   }
840 	 *
841 	 * Without an explicit full barrier speculative LOAD on line 8 can
842 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
843 	 * CPU#0 observes the PENDING bit is still set and new execution of
844 	 * a @work is not queued in a hope, that CPU#1 will eventually
845 	 * finish the queued @work.  Meanwhile CPU#1 does not see
846 	 * event_indicated is set, because speculative LOAD was executed
847 	 * before actual STORE.
848 	 */
849 	smp_mb();
850 }
851 
852 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
853 {
854 	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
855 }
856 
857 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
858 {
859 	unsigned long data = atomic_long_read(&work->data);
860 
861 	if (data & WORK_STRUCT_PWQ)
862 		return work_struct_pwq(data);
863 	else
864 		return NULL;
865 }
866 
867 /**
868  * get_work_pool - return the worker_pool a given work was associated with
869  * @work: the work item of interest
870  *
871  * Pools are created and destroyed under wq_pool_mutex, and allows read
872  * access under RCU read lock.  As such, this function should be
873  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
874  *
875  * All fields of the returned pool are accessible as long as the above
876  * mentioned locking is in effect.  If the returned pool needs to be used
877  * beyond the critical section, the caller is responsible for ensuring the
878  * returned pool is and stays online.
879  *
880  * Return: The worker_pool @work was last associated with.  %NULL if none.
881  */
882 static struct worker_pool *get_work_pool(struct work_struct *work)
883 {
884 	unsigned long data = atomic_long_read(&work->data);
885 	int pool_id;
886 
887 	assert_rcu_or_pool_mutex();
888 
889 	if (data & WORK_STRUCT_PWQ)
890 		return work_struct_pwq(data)->pool;
891 
892 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
893 	if (pool_id == WORK_OFFQ_POOL_NONE)
894 		return NULL;
895 
896 	return idr_find(&worker_pool_idr, pool_id);
897 }
898 
899 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
900 {
901 	return (v >> shift) & ((1 << bits) - 1);
902 }
903 
904 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
905 {
906 	WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
907 
908 	offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
909 					WORK_OFFQ_POOL_BITS);
910 	offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
911 					WORK_OFFQ_DISABLE_BITS);
912 	offqd->flags = data & WORK_OFFQ_FLAG_MASK;
913 }
914 
915 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
916 {
917 	return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
918 		((unsigned long)offqd->flags);
919 }
920 
921 /*
922  * Policy functions.  These define the policies on how the global worker
923  * pools are managed.  Unless noted otherwise, these functions assume that
924  * they're being called with pool->lock held.
925  */
926 
927 /*
928  * Need to wake up a worker?  Called from anything but currently
929  * running workers.
930  *
931  * Note that, because unbound workers never contribute to nr_running, this
932  * function will always return %true for unbound pools as long as the
933  * worklist isn't empty.
934  */
935 static bool need_more_worker(struct worker_pool *pool)
936 {
937 	return !list_empty(&pool->worklist) && !pool->nr_running;
938 }
939 
940 /* Can I start working?  Called from busy but !running workers. */
941 static bool may_start_working(struct worker_pool *pool)
942 {
943 	return pool->nr_idle;
944 }
945 
946 /* Do I need to keep working?  Called from currently running workers. */
947 static bool keep_working(struct worker_pool *pool)
948 {
949 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
950 }
951 
952 /* Do we need a new worker?  Called from manager. */
953 static bool need_to_create_worker(struct worker_pool *pool)
954 {
955 	return need_more_worker(pool) && !may_start_working(pool);
956 }
957 
958 /* Do we have too many workers and should some go away? */
959 static bool too_many_workers(struct worker_pool *pool)
960 {
961 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
962 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
963 	int nr_busy = pool->nr_workers - nr_idle;
964 
965 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
966 }
967 
968 /**
969  * worker_set_flags - set worker flags and adjust nr_running accordingly
970  * @worker: self
971  * @flags: flags to set
972  *
973  * Set @flags in @worker->flags and adjust nr_running accordingly.
974  */
975 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
976 {
977 	struct worker_pool *pool = worker->pool;
978 
979 	lockdep_assert_held(&pool->lock);
980 
981 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
982 	if ((flags & WORKER_NOT_RUNNING) &&
983 	    !(worker->flags & WORKER_NOT_RUNNING)) {
984 		pool->nr_running--;
985 	}
986 
987 	worker->flags |= flags;
988 }
989 
990 /**
991  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
992  * @worker: self
993  * @flags: flags to clear
994  *
995  * Clear @flags in @worker->flags and adjust nr_running accordingly.
996  */
997 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
998 {
999 	struct worker_pool *pool = worker->pool;
1000 	unsigned int oflags = worker->flags;
1001 
1002 	lockdep_assert_held(&pool->lock);
1003 
1004 	worker->flags &= ~flags;
1005 
1006 	/*
1007 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1008 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1009 	 * of multiple flags, not a single flag.
1010 	 */
1011 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1012 		if (!(worker->flags & WORKER_NOT_RUNNING))
1013 			pool->nr_running++;
1014 }
1015 
1016 /* Return the first idle worker.  Called with pool->lock held. */
1017 static struct worker *first_idle_worker(struct worker_pool *pool)
1018 {
1019 	if (unlikely(list_empty(&pool->idle_list)))
1020 		return NULL;
1021 
1022 	return list_first_entry(&pool->idle_list, struct worker, entry);
1023 }
1024 
1025 /**
1026  * worker_enter_idle - enter idle state
1027  * @worker: worker which is entering idle state
1028  *
1029  * @worker is entering idle state.  Update stats and idle timer if
1030  * necessary.
1031  *
1032  * LOCKING:
1033  * raw_spin_lock_irq(pool->lock).
1034  */
1035 static void worker_enter_idle(struct worker *worker)
1036 {
1037 	struct worker_pool *pool = worker->pool;
1038 
1039 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1040 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1041 			 (worker->hentry.next || worker->hentry.pprev)))
1042 		return;
1043 
1044 	/* can't use worker_set_flags(), also called from create_worker() */
1045 	worker->flags |= WORKER_IDLE;
1046 	pool->nr_idle++;
1047 	worker->last_active = jiffies;
1048 
1049 	/* idle_list is LIFO */
1050 	list_add(&worker->entry, &pool->idle_list);
1051 
1052 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1053 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1054 
1055 	/* Sanity check nr_running. */
1056 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1057 }
1058 
1059 /**
1060  * worker_leave_idle - leave idle state
1061  * @worker: worker which is leaving idle state
1062  *
1063  * @worker is leaving idle state.  Update stats.
1064  *
1065  * LOCKING:
1066  * raw_spin_lock_irq(pool->lock).
1067  */
1068 static void worker_leave_idle(struct worker *worker)
1069 {
1070 	struct worker_pool *pool = worker->pool;
1071 
1072 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1073 		return;
1074 	worker_clr_flags(worker, WORKER_IDLE);
1075 	pool->nr_idle--;
1076 	list_del_init(&worker->entry);
1077 }
1078 
1079 /**
1080  * find_worker_executing_work - find worker which is executing a work
1081  * @pool: pool of interest
1082  * @work: work to find worker for
1083  *
1084  * Find a worker which is executing @work on @pool by searching
1085  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1086  * to match, its current execution should match the address of @work and
1087  * its work function.  This is to avoid unwanted dependency between
1088  * unrelated work executions through a work item being recycled while still
1089  * being executed.
1090  *
1091  * This is a bit tricky.  A work item may be freed once its execution
1092  * starts and nothing prevents the freed area from being recycled for
1093  * another work item.  If the same work item address ends up being reused
1094  * before the original execution finishes, workqueue will identify the
1095  * recycled work item as currently executing and make it wait until the
1096  * current execution finishes, introducing an unwanted dependency.
1097  *
1098  * This function checks the work item address and work function to avoid
1099  * false positives.  Note that this isn't complete as one may construct a
1100  * work function which can introduce dependency onto itself through a
1101  * recycled work item.  Well, if somebody wants to shoot oneself in the
1102  * foot that badly, there's only so much we can do, and if such deadlock
1103  * actually occurs, it should be easy to locate the culprit work function.
1104  *
1105  * CONTEXT:
1106  * raw_spin_lock_irq(pool->lock).
1107  *
1108  * Return:
1109  * Pointer to worker which is executing @work if found, %NULL
1110  * otherwise.
1111  */
1112 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1113 						 struct work_struct *work)
1114 {
1115 	struct worker *worker;
1116 
1117 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1118 			       (unsigned long)work)
1119 		if (worker->current_work == work &&
1120 		    worker->current_func == work->func)
1121 			return worker;
1122 
1123 	return NULL;
1124 }
1125 
1126 /**
1127  * move_linked_works - move linked works to a list
1128  * @work: start of series of works to be scheduled
1129  * @head: target list to append @work to
1130  * @nextp: out parameter for nested worklist walking
1131  *
1132  * Schedule linked works starting from @work to @head. Work series to be
1133  * scheduled starts at @work and includes any consecutive work with
1134  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1135  * @nextp.
1136  *
1137  * CONTEXT:
1138  * raw_spin_lock_irq(pool->lock).
1139  */
1140 static void move_linked_works(struct work_struct *work, struct list_head *head,
1141 			      struct work_struct **nextp)
1142 {
1143 	struct work_struct *n;
1144 
1145 	/*
1146 	 * Linked worklist will always end before the end of the list,
1147 	 * use NULL for list head.
1148 	 */
1149 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1150 		list_move_tail(&work->entry, head);
1151 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1152 			break;
1153 	}
1154 
1155 	/*
1156 	 * If we're already inside safe list traversal and have moved
1157 	 * multiple works to the scheduled queue, the next position
1158 	 * needs to be updated.
1159 	 */
1160 	if (nextp)
1161 		*nextp = n;
1162 }
1163 
1164 /**
1165  * assign_work - assign a work item and its linked work items to a worker
1166  * @work: work to assign
1167  * @worker: worker to assign to
1168  * @nextp: out parameter for nested worklist walking
1169  *
1170  * Assign @work and its linked work items to @worker. If @work is already being
1171  * executed by another worker in the same pool, it'll be punted there.
1172  *
1173  * If @nextp is not NULL, it's updated to point to the next work of the last
1174  * scheduled work. This allows assign_work() to be nested inside
1175  * list_for_each_entry_safe().
1176  *
1177  * Returns %true if @work was successfully assigned to @worker. %false if @work
1178  * was punted to another worker already executing it.
1179  */
1180 static bool assign_work(struct work_struct *work, struct worker *worker,
1181 			struct work_struct **nextp)
1182 {
1183 	struct worker_pool *pool = worker->pool;
1184 	struct worker *collision;
1185 
1186 	lockdep_assert_held(&pool->lock);
1187 
1188 	/*
1189 	 * A single work shouldn't be executed concurrently by multiple workers.
1190 	 * __queue_work() ensures that @work doesn't jump to a different pool
1191 	 * while still running in the previous pool. Here, we should ensure that
1192 	 * @work is not executed concurrently by multiple workers from the same
1193 	 * pool. Check whether anyone is already processing the work. If so,
1194 	 * defer the work to the currently executing one.
1195 	 */
1196 	collision = find_worker_executing_work(pool, work);
1197 	if (unlikely(collision)) {
1198 		move_linked_works(work, &collision->scheduled, nextp);
1199 		return false;
1200 	}
1201 
1202 	move_linked_works(work, &worker->scheduled, nextp);
1203 	return true;
1204 }
1205 
1206 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1207 {
1208 	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1209 
1210 	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1211 }
1212 
1213 static void kick_bh_pool(struct worker_pool *pool)
1214 {
1215 #ifdef CONFIG_SMP
1216 	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1217 	if (unlikely(pool->cpu != smp_processor_id() &&
1218 		     !(pool->flags & POOL_BH_DRAINING))) {
1219 		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1220 		return;
1221 	}
1222 #endif
1223 	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1224 		raise_softirq_irqoff(HI_SOFTIRQ);
1225 	else
1226 		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1227 }
1228 
1229 /**
1230  * kick_pool - wake up an idle worker if necessary
1231  * @pool: pool to kick
1232  *
1233  * @pool may have pending work items. Wake up worker if necessary. Returns
1234  * whether a worker was woken up.
1235  */
1236 static bool kick_pool(struct worker_pool *pool)
1237 {
1238 	struct worker *worker = first_idle_worker(pool);
1239 	struct task_struct *p;
1240 
1241 	lockdep_assert_held(&pool->lock);
1242 
1243 	if (!need_more_worker(pool) || !worker)
1244 		return false;
1245 
1246 	if (pool->flags & POOL_BH) {
1247 		kick_bh_pool(pool);
1248 		return true;
1249 	}
1250 
1251 	p = worker->task;
1252 
1253 #ifdef CONFIG_SMP
1254 	/*
1255 	 * Idle @worker is about to execute @work and waking up provides an
1256 	 * opportunity to migrate @worker at a lower cost by setting the task's
1257 	 * wake_cpu field. Let's see if we want to move @worker to improve
1258 	 * execution locality.
1259 	 *
1260 	 * We're waking the worker that went idle the latest and there's some
1261 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1262 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1263 	 * optimization and the race window is narrow, let's leave as-is for
1264 	 * now. If this becomes pronounced, we can skip over workers which are
1265 	 * still on cpu when picking an idle worker.
1266 	 *
1267 	 * If @pool has non-strict affinity, @worker might have ended up outside
1268 	 * its affinity scope. Repatriate.
1269 	 */
1270 	if (!pool->attrs->affn_strict &&
1271 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1272 		struct work_struct *work = list_first_entry(&pool->worklist,
1273 						struct work_struct, entry);
1274 		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1275 							  cpu_online_mask);
1276 		if (wake_cpu < nr_cpu_ids) {
1277 			p->wake_cpu = wake_cpu;
1278 			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1279 		}
1280 	}
1281 #endif
1282 	wake_up_process(p);
1283 	return true;
1284 }
1285 
1286 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1287 
1288 /*
1289  * Concurrency-managed per-cpu work items that hog CPU for longer than
1290  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1291  * which prevents them from stalling other concurrency-managed work items. If a
1292  * work function keeps triggering this mechanism, it's likely that the work item
1293  * should be using an unbound workqueue instead.
1294  *
1295  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1296  * and report them so that they can be examined and converted to use unbound
1297  * workqueues as appropriate. To avoid flooding the console, each violating work
1298  * function is tracked and reported with exponential backoff.
1299  */
1300 #define WCI_MAX_ENTS 128
1301 
1302 struct wci_ent {
1303 	work_func_t		func;
1304 	atomic64_t		cnt;
1305 	struct hlist_node	hash_node;
1306 };
1307 
1308 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1309 static int wci_nr_ents;
1310 static DEFINE_RAW_SPINLOCK(wci_lock);
1311 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1312 
1313 static struct wci_ent *wci_find_ent(work_func_t func)
1314 {
1315 	struct wci_ent *ent;
1316 
1317 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1318 				   (unsigned long)func) {
1319 		if (ent->func == func)
1320 			return ent;
1321 	}
1322 	return NULL;
1323 }
1324 
1325 static void wq_cpu_intensive_report(work_func_t func)
1326 {
1327 	struct wci_ent *ent;
1328 
1329 restart:
1330 	ent = wci_find_ent(func);
1331 	if (ent) {
1332 		u64 cnt;
1333 
1334 		/*
1335 		 * Start reporting from the warning_thresh and back off
1336 		 * exponentially.
1337 		 */
1338 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1339 		if (wq_cpu_intensive_warning_thresh &&
1340 		    cnt >= wq_cpu_intensive_warning_thresh &&
1341 		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1342 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1343 					ent->func, wq_cpu_intensive_thresh_us,
1344 					atomic64_read(&ent->cnt));
1345 		return;
1346 	}
1347 
1348 	/*
1349 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1350 	 * is exhausted, something went really wrong and we probably made enough
1351 	 * noise already.
1352 	 */
1353 	if (wci_nr_ents >= WCI_MAX_ENTS)
1354 		return;
1355 
1356 	raw_spin_lock(&wci_lock);
1357 
1358 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1359 		raw_spin_unlock(&wci_lock);
1360 		return;
1361 	}
1362 
1363 	if (wci_find_ent(func)) {
1364 		raw_spin_unlock(&wci_lock);
1365 		goto restart;
1366 	}
1367 
1368 	ent = &wci_ents[wci_nr_ents++];
1369 	ent->func = func;
1370 	atomic64_set(&ent->cnt, 0);
1371 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1372 
1373 	raw_spin_unlock(&wci_lock);
1374 
1375 	goto restart;
1376 }
1377 
1378 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1379 static void wq_cpu_intensive_report(work_func_t func) {}
1380 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1381 
1382 /**
1383  * wq_worker_running - a worker is running again
1384  * @task: task waking up
1385  *
1386  * This function is called when a worker returns from schedule()
1387  */
1388 void wq_worker_running(struct task_struct *task)
1389 {
1390 	struct worker *worker = kthread_data(task);
1391 
1392 	if (!READ_ONCE(worker->sleeping))
1393 		return;
1394 
1395 	/*
1396 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1397 	 * and the nr_running increment below, we may ruin the nr_running reset
1398 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1399 	 * pool. Protect against such race.
1400 	 */
1401 	preempt_disable();
1402 	if (!(worker->flags & WORKER_NOT_RUNNING))
1403 		worker->pool->nr_running++;
1404 	preempt_enable();
1405 
1406 	/*
1407 	 * CPU intensive auto-detection cares about how long a work item hogged
1408 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1409 	 */
1410 	worker->current_at = worker->task->se.sum_exec_runtime;
1411 
1412 	WRITE_ONCE(worker->sleeping, 0);
1413 }
1414 
1415 /**
1416  * wq_worker_sleeping - a worker is going to sleep
1417  * @task: task going to sleep
1418  *
1419  * This function is called from schedule() when a busy worker is
1420  * going to sleep.
1421  */
1422 void wq_worker_sleeping(struct task_struct *task)
1423 {
1424 	struct worker *worker = kthread_data(task);
1425 	struct worker_pool *pool;
1426 
1427 	/*
1428 	 * Rescuers, which may not have all the fields set up like normal
1429 	 * workers, also reach here, let's not access anything before
1430 	 * checking NOT_RUNNING.
1431 	 */
1432 	if (worker->flags & WORKER_NOT_RUNNING)
1433 		return;
1434 
1435 	pool = worker->pool;
1436 
1437 	/* Return if preempted before wq_worker_running() was reached */
1438 	if (READ_ONCE(worker->sleeping))
1439 		return;
1440 
1441 	WRITE_ONCE(worker->sleeping, 1);
1442 	raw_spin_lock_irq(&pool->lock);
1443 
1444 	/*
1445 	 * Recheck in case unbind_workers() preempted us. We don't
1446 	 * want to decrement nr_running after the worker is unbound
1447 	 * and nr_running has been reset.
1448 	 */
1449 	if (worker->flags & WORKER_NOT_RUNNING) {
1450 		raw_spin_unlock_irq(&pool->lock);
1451 		return;
1452 	}
1453 
1454 	pool->nr_running--;
1455 	if (kick_pool(pool))
1456 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1457 
1458 	raw_spin_unlock_irq(&pool->lock);
1459 }
1460 
1461 /**
1462  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1463  * @task: task currently running
1464  *
1465  * Called from sched_tick(). We're in the IRQ context and the current
1466  * worker's fields which follow the 'K' locking rule can be accessed safely.
1467  */
1468 void wq_worker_tick(struct task_struct *task)
1469 {
1470 	struct worker *worker = kthread_data(task);
1471 	struct pool_workqueue *pwq = worker->current_pwq;
1472 	struct worker_pool *pool = worker->pool;
1473 
1474 	if (!pwq)
1475 		return;
1476 
1477 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1478 
1479 	if (!wq_cpu_intensive_thresh_us)
1480 		return;
1481 
1482 	/*
1483 	 * If the current worker is concurrency managed and hogged the CPU for
1484 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1485 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1486 	 *
1487 	 * Set @worker->sleeping means that @worker is in the process of
1488 	 * switching out voluntarily and won't be contributing to
1489 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1490 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1491 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1492 	 * We probably want to make this prettier in the future.
1493 	 */
1494 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1495 	    worker->task->se.sum_exec_runtime - worker->current_at <
1496 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1497 		return;
1498 
1499 	raw_spin_lock(&pool->lock);
1500 
1501 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1502 	wq_cpu_intensive_report(worker->current_func);
1503 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1504 
1505 	if (kick_pool(pool))
1506 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1507 
1508 	raw_spin_unlock(&pool->lock);
1509 }
1510 
1511 /**
1512  * wq_worker_last_func - retrieve worker's last work function
1513  * @task: Task to retrieve last work function of.
1514  *
1515  * Determine the last function a worker executed. This is called from
1516  * the scheduler to get a worker's last known identity.
1517  *
1518  * CONTEXT:
1519  * raw_spin_lock_irq(rq->lock)
1520  *
1521  * This function is called during schedule() when a kworker is going
1522  * to sleep. It's used by psi to identify aggregation workers during
1523  * dequeuing, to allow periodic aggregation to shut-off when that
1524  * worker is the last task in the system or cgroup to go to sleep.
1525  *
1526  * As this function doesn't involve any workqueue-related locking, it
1527  * only returns stable values when called from inside the scheduler's
1528  * queuing and dequeuing paths, when @task, which must be a kworker,
1529  * is guaranteed to not be processing any works.
1530  *
1531  * Return:
1532  * The last work function %current executed as a worker, NULL if it
1533  * hasn't executed any work yet.
1534  */
1535 work_func_t wq_worker_last_func(struct task_struct *task)
1536 {
1537 	struct worker *worker = kthread_data(task);
1538 
1539 	return worker->last_func;
1540 }
1541 
1542 /**
1543  * wq_node_nr_active - Determine wq_node_nr_active to use
1544  * @wq: workqueue of interest
1545  * @node: NUMA node, can be %NUMA_NO_NODE
1546  *
1547  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1548  *
1549  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1550  *
1551  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1552  *
1553  * - Otherwise, node_nr_active[@node].
1554  */
1555 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1556 						   int node)
1557 {
1558 	if (!(wq->flags & WQ_UNBOUND))
1559 		return NULL;
1560 
1561 	if (node == NUMA_NO_NODE)
1562 		node = nr_node_ids;
1563 
1564 	return wq->node_nr_active[node];
1565 }
1566 
1567 /**
1568  * wq_update_node_max_active - Update per-node max_actives to use
1569  * @wq: workqueue to update
1570  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1571  *
1572  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1573  * distributed among nodes according to the proportions of numbers of online
1574  * cpus. The result is always between @wq->min_active and max_active.
1575  */
1576 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1577 {
1578 	struct cpumask *effective = unbound_effective_cpumask(wq);
1579 	int min_active = READ_ONCE(wq->min_active);
1580 	int max_active = READ_ONCE(wq->max_active);
1581 	int total_cpus, node;
1582 
1583 	lockdep_assert_held(&wq->mutex);
1584 
1585 	if (!wq_topo_initialized)
1586 		return;
1587 
1588 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1589 		off_cpu = -1;
1590 
1591 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1592 	if (off_cpu >= 0)
1593 		total_cpus--;
1594 
1595 	/* If all CPUs of the wq get offline, use the default values */
1596 	if (unlikely(!total_cpus)) {
1597 		for_each_node(node)
1598 			wq_node_nr_active(wq, node)->max = min_active;
1599 
1600 		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1601 		return;
1602 	}
1603 
1604 	for_each_node(node) {
1605 		int node_cpus;
1606 
1607 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1608 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1609 			node_cpus--;
1610 
1611 		wq_node_nr_active(wq, node)->max =
1612 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1613 			      min_active, max_active);
1614 	}
1615 
1616 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1617 }
1618 
1619 /**
1620  * get_pwq - get an extra reference on the specified pool_workqueue
1621  * @pwq: pool_workqueue to get
1622  *
1623  * Obtain an extra reference on @pwq.  The caller should guarantee that
1624  * @pwq has positive refcnt and be holding the matching pool->lock.
1625  */
1626 static void get_pwq(struct pool_workqueue *pwq)
1627 {
1628 	lockdep_assert_held(&pwq->pool->lock);
1629 	WARN_ON_ONCE(pwq->refcnt <= 0);
1630 	pwq->refcnt++;
1631 }
1632 
1633 /**
1634  * put_pwq - put a pool_workqueue reference
1635  * @pwq: pool_workqueue to put
1636  *
1637  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1638  * destruction.  The caller should be holding the matching pool->lock.
1639  */
1640 static void put_pwq(struct pool_workqueue *pwq)
1641 {
1642 	lockdep_assert_held(&pwq->pool->lock);
1643 	if (likely(--pwq->refcnt))
1644 		return;
1645 	/*
1646 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1647 	 * kthread_worker to avoid A-A deadlocks.
1648 	 */
1649 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1650 }
1651 
1652 /**
1653  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1654  * @pwq: pool_workqueue to put (can be %NULL)
1655  *
1656  * put_pwq() with locking.  This function also allows %NULL @pwq.
1657  */
1658 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1659 {
1660 	if (pwq) {
1661 		/*
1662 		 * As both pwqs and pools are RCU protected, the
1663 		 * following lock operations are safe.
1664 		 */
1665 		raw_spin_lock_irq(&pwq->pool->lock);
1666 		put_pwq(pwq);
1667 		raw_spin_unlock_irq(&pwq->pool->lock);
1668 	}
1669 }
1670 
1671 static bool pwq_is_empty(struct pool_workqueue *pwq)
1672 {
1673 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1674 }
1675 
1676 static void __pwq_activate_work(struct pool_workqueue *pwq,
1677 				struct work_struct *work)
1678 {
1679 	unsigned long *wdb = work_data_bits(work);
1680 
1681 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1682 	trace_workqueue_activate_work(work);
1683 	if (list_empty(&pwq->pool->worklist))
1684 		pwq->pool->watchdog_ts = jiffies;
1685 	move_linked_works(work, &pwq->pool->worklist, NULL);
1686 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1687 }
1688 
1689 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1690 {
1691 	int max = READ_ONCE(nna->max);
1692 
1693 	while (true) {
1694 		int old, tmp;
1695 
1696 		old = atomic_read(&nna->nr);
1697 		if (old >= max)
1698 			return false;
1699 		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1700 		if (tmp == old)
1701 			return true;
1702 	}
1703 }
1704 
1705 /**
1706  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1707  * @pwq: pool_workqueue of interest
1708  * @fill: max_active may have increased, try to increase concurrency level
1709  *
1710  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1711  * successfully obtained. %false otherwise.
1712  */
1713 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1714 {
1715 	struct workqueue_struct *wq = pwq->wq;
1716 	struct worker_pool *pool = pwq->pool;
1717 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1718 	bool obtained = false;
1719 
1720 	lockdep_assert_held(&pool->lock);
1721 
1722 	if (!nna) {
1723 		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1724 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1725 		goto out;
1726 	}
1727 
1728 	if (unlikely(pwq->plugged))
1729 		return false;
1730 
1731 	/*
1732 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1733 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1734 	 * concurrency level. Don't jump the line.
1735 	 *
1736 	 * We need to ignore the pending test after max_active has increased as
1737 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1738 	 * increase it. This is indicated by @fill.
1739 	 */
1740 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1741 		goto out;
1742 
1743 	obtained = tryinc_node_nr_active(nna);
1744 	if (obtained)
1745 		goto out;
1746 
1747 	/*
1748 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1749 	 * and try again. The smp_mb() is paired with the implied memory barrier
1750 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1751 	 * we see the decremented $nna->nr or they see non-empty
1752 	 * $nna->pending_pwqs.
1753 	 */
1754 	raw_spin_lock(&nna->lock);
1755 
1756 	if (list_empty(&pwq->pending_node))
1757 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1758 	else if (likely(!fill))
1759 		goto out_unlock;
1760 
1761 	smp_mb();
1762 
1763 	obtained = tryinc_node_nr_active(nna);
1764 
1765 	/*
1766 	 * If @fill, @pwq might have already been pending. Being spuriously
1767 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1768 	 */
1769 	if (obtained && likely(!fill))
1770 		list_del_init(&pwq->pending_node);
1771 
1772 out_unlock:
1773 	raw_spin_unlock(&nna->lock);
1774 out:
1775 	if (obtained)
1776 		pwq->nr_active++;
1777 	return obtained;
1778 }
1779 
1780 /**
1781  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1782  * @pwq: pool_workqueue of interest
1783  * @fill: max_active may have increased, try to increase concurrency level
1784  *
1785  * Activate the first inactive work item of @pwq if available and allowed by
1786  * max_active limit.
1787  *
1788  * Returns %true if an inactive work item has been activated. %false if no
1789  * inactive work item is found or max_active limit is reached.
1790  */
1791 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1792 {
1793 	struct work_struct *work =
1794 		list_first_entry_or_null(&pwq->inactive_works,
1795 					 struct work_struct, entry);
1796 
1797 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1798 		__pwq_activate_work(pwq, work);
1799 		return true;
1800 	} else {
1801 		return false;
1802 	}
1803 }
1804 
1805 /**
1806  * unplug_oldest_pwq - unplug the oldest pool_workqueue
1807  * @wq: workqueue_struct where its oldest pwq is to be unplugged
1808  *
1809  * This function should only be called for ordered workqueues where only the
1810  * oldest pwq is unplugged, the others are plugged to suspend execution to
1811  * ensure proper work item ordering::
1812  *
1813  *    dfl_pwq --------------+     [P] - plugged
1814  *                          |
1815  *                          v
1816  *    pwqs -> A -> B [P] -> C [P] (newest)
1817  *            |    |        |
1818  *            1    3        5
1819  *            |    |        |
1820  *            2    4        6
1821  *
1822  * When the oldest pwq is drained and removed, this function should be called
1823  * to unplug the next oldest one to start its work item execution. Note that
1824  * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1825  * the list is the oldest.
1826  */
1827 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1828 {
1829 	struct pool_workqueue *pwq;
1830 
1831 	lockdep_assert_held(&wq->mutex);
1832 
1833 	/* Caller should make sure that pwqs isn't empty before calling */
1834 	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1835 				       pwqs_node);
1836 	raw_spin_lock_irq(&pwq->pool->lock);
1837 	if (pwq->plugged) {
1838 		pwq->plugged = false;
1839 		if (pwq_activate_first_inactive(pwq, true))
1840 			kick_pool(pwq->pool);
1841 	}
1842 	raw_spin_unlock_irq(&pwq->pool->lock);
1843 }
1844 
1845 /**
1846  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1847  * @nna: wq_node_nr_active to activate a pending pwq for
1848  * @caller_pool: worker_pool the caller is locking
1849  *
1850  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1851  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1852  */
1853 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1854 				      struct worker_pool *caller_pool)
1855 {
1856 	struct worker_pool *locked_pool = caller_pool;
1857 	struct pool_workqueue *pwq;
1858 	struct work_struct *work;
1859 
1860 	lockdep_assert_held(&caller_pool->lock);
1861 
1862 	raw_spin_lock(&nna->lock);
1863 retry:
1864 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1865 				       struct pool_workqueue, pending_node);
1866 	if (!pwq)
1867 		goto out_unlock;
1868 
1869 	/*
1870 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1871 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1872 	 * / lock dance. For that, we also need to release @nna->lock as it's
1873 	 * nested inside pool locks.
1874 	 */
1875 	if (pwq->pool != locked_pool) {
1876 		raw_spin_unlock(&locked_pool->lock);
1877 		locked_pool = pwq->pool;
1878 		if (!raw_spin_trylock(&locked_pool->lock)) {
1879 			raw_spin_unlock(&nna->lock);
1880 			raw_spin_lock(&locked_pool->lock);
1881 			raw_spin_lock(&nna->lock);
1882 			goto retry;
1883 		}
1884 	}
1885 
1886 	/*
1887 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1888 	 * Drop it from pending_pwqs and see if there's another one.
1889 	 */
1890 	work = list_first_entry_or_null(&pwq->inactive_works,
1891 					struct work_struct, entry);
1892 	if (!work) {
1893 		list_del_init(&pwq->pending_node);
1894 		goto retry;
1895 	}
1896 
1897 	/*
1898 	 * Acquire an nr_active count and activate the inactive work item. If
1899 	 * $pwq still has inactive work items, rotate it to the end of the
1900 	 * pending_pwqs so that we round-robin through them. This means that
1901 	 * inactive work items are not activated in queueing order which is fine
1902 	 * given that there has never been any ordering across different pwqs.
1903 	 */
1904 	if (likely(tryinc_node_nr_active(nna))) {
1905 		pwq->nr_active++;
1906 		__pwq_activate_work(pwq, work);
1907 
1908 		if (list_empty(&pwq->inactive_works))
1909 			list_del_init(&pwq->pending_node);
1910 		else
1911 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1912 
1913 		/* if activating a foreign pool, make sure it's running */
1914 		if (pwq->pool != caller_pool)
1915 			kick_pool(pwq->pool);
1916 	}
1917 
1918 out_unlock:
1919 	raw_spin_unlock(&nna->lock);
1920 	if (locked_pool != caller_pool) {
1921 		raw_spin_unlock(&locked_pool->lock);
1922 		raw_spin_lock(&caller_pool->lock);
1923 	}
1924 }
1925 
1926 /**
1927  * pwq_dec_nr_active - Retire an active count
1928  * @pwq: pool_workqueue of interest
1929  *
1930  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1931  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1932  */
1933 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1934 {
1935 	struct worker_pool *pool = pwq->pool;
1936 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1937 
1938 	lockdep_assert_held(&pool->lock);
1939 
1940 	/*
1941 	 * @pwq->nr_active should be decremented for both percpu and unbound
1942 	 * workqueues.
1943 	 */
1944 	pwq->nr_active--;
1945 
1946 	/*
1947 	 * For a percpu workqueue, it's simple. Just need to kick the first
1948 	 * inactive work item on @pwq itself.
1949 	 */
1950 	if (!nna) {
1951 		pwq_activate_first_inactive(pwq, false);
1952 		return;
1953 	}
1954 
1955 	/*
1956 	 * If @pwq is for an unbound workqueue, it's more complicated because
1957 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1958 	 * pwq needs to wait for an nr_active count, it puts itself on
1959 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1960 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1961 	 * guarantee that either we see non-empty pending_pwqs or they see
1962 	 * decremented $nna->nr.
1963 	 *
1964 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1965 	 * max_active gets updated. However, it is guaranteed to be equal to or
1966 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1967 	 * This maintains the forward progress guarantee.
1968 	 */
1969 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1970 		return;
1971 
1972 	if (!list_empty(&nna->pending_pwqs))
1973 		node_activate_pending_pwq(nna, pool);
1974 }
1975 
1976 /**
1977  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1978  * @pwq: pwq of interest
1979  * @work_data: work_data of work which left the queue
1980  *
1981  * A work either has completed or is removed from pending queue,
1982  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1983  *
1984  * NOTE:
1985  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1986  * and thus should be called after all other state updates for the in-flight
1987  * work item is complete.
1988  *
1989  * CONTEXT:
1990  * raw_spin_lock_irq(pool->lock).
1991  */
1992 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1993 {
1994 	int color = get_work_color(work_data);
1995 
1996 	if (!(work_data & WORK_STRUCT_INACTIVE))
1997 		pwq_dec_nr_active(pwq);
1998 
1999 	pwq->nr_in_flight[color]--;
2000 
2001 	/* is flush in progress and are we at the flushing tip? */
2002 	if (likely(pwq->flush_color != color))
2003 		goto out_put;
2004 
2005 	/* are there still in-flight works? */
2006 	if (pwq->nr_in_flight[color])
2007 		goto out_put;
2008 
2009 	/* this pwq is done, clear flush_color */
2010 	pwq->flush_color = -1;
2011 
2012 	/*
2013 	 * If this was the last pwq, wake up the first flusher.  It
2014 	 * will handle the rest.
2015 	 */
2016 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2017 		complete(&pwq->wq->first_flusher->done);
2018 out_put:
2019 	put_pwq(pwq);
2020 }
2021 
2022 /**
2023  * try_to_grab_pending - steal work item from worklist and disable irq
2024  * @work: work item to steal
2025  * @cflags: %WORK_CANCEL_ flags
2026  * @irq_flags: place to store irq state
2027  *
2028  * Try to grab PENDING bit of @work.  This function can handle @work in any
2029  * stable state - idle, on timer or on worklist.
2030  *
2031  * Return:
2032  *
2033  *  ========	================================================================
2034  *  1		if @work was pending and we successfully stole PENDING
2035  *  0		if @work was idle and we claimed PENDING
2036  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2037  *  ========	================================================================
2038  *
2039  * Note:
2040  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2041  * interrupted while holding PENDING and @work off queue, irq must be
2042  * disabled on entry.  This, combined with delayed_work->timer being
2043  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2044  *
2045  * On successful return, >= 0, irq is disabled and the caller is
2046  * responsible for releasing it using local_irq_restore(*@irq_flags).
2047  *
2048  * This function is safe to call from any context including IRQ handler.
2049  */
2050 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2051 			       unsigned long *irq_flags)
2052 {
2053 	struct worker_pool *pool;
2054 	struct pool_workqueue *pwq;
2055 
2056 	local_irq_save(*irq_flags);
2057 
2058 	/* try to steal the timer if it exists */
2059 	if (cflags & WORK_CANCEL_DELAYED) {
2060 		struct delayed_work *dwork = to_delayed_work(work);
2061 
2062 		/*
2063 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2064 		 * guaranteed that the timer is not queued anywhere and not
2065 		 * running on the local CPU.
2066 		 */
2067 		if (likely(del_timer(&dwork->timer)))
2068 			return 1;
2069 	}
2070 
2071 	/* try to claim PENDING the normal way */
2072 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2073 		return 0;
2074 
2075 	rcu_read_lock();
2076 	/*
2077 	 * The queueing is in progress, or it is already queued. Try to
2078 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2079 	 */
2080 	pool = get_work_pool(work);
2081 	if (!pool)
2082 		goto fail;
2083 
2084 	raw_spin_lock(&pool->lock);
2085 	/*
2086 	 * work->data is guaranteed to point to pwq only while the work
2087 	 * item is queued on pwq->wq, and both updating work->data to point
2088 	 * to pwq on queueing and to pool on dequeueing are done under
2089 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2090 	 * points to pwq which is associated with a locked pool, the work
2091 	 * item is currently queued on that pool.
2092 	 */
2093 	pwq = get_work_pwq(work);
2094 	if (pwq && pwq->pool == pool) {
2095 		unsigned long work_data = *work_data_bits(work);
2096 
2097 		debug_work_deactivate(work);
2098 
2099 		/*
2100 		 * A cancelable inactive work item must be in the
2101 		 * pwq->inactive_works since a queued barrier can't be
2102 		 * canceled (see the comments in insert_wq_barrier()).
2103 		 *
2104 		 * An inactive work item cannot be deleted directly because
2105 		 * it might have linked barrier work items which, if left
2106 		 * on the inactive_works list, will confuse pwq->nr_active
2107 		 * management later on and cause stall.  Move the linked
2108 		 * barrier work items to the worklist when deleting the grabbed
2109 		 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2110 		 * it doesn't participate in nr_active management in later
2111 		 * pwq_dec_nr_in_flight().
2112 		 */
2113 		if (work_data & WORK_STRUCT_INACTIVE)
2114 			move_linked_works(work, &pwq->pool->worklist, NULL);
2115 
2116 		list_del_init(&work->entry);
2117 
2118 		/*
2119 		 * work->data points to pwq iff queued. Let's point to pool. As
2120 		 * this destroys work->data needed by the next step, stash it.
2121 		 */
2122 		set_work_pool_and_keep_pending(work, pool->id,
2123 					       pool_offq_flags(pool));
2124 
2125 		/* must be the last step, see the function comment */
2126 		pwq_dec_nr_in_flight(pwq, work_data);
2127 
2128 		raw_spin_unlock(&pool->lock);
2129 		rcu_read_unlock();
2130 		return 1;
2131 	}
2132 	raw_spin_unlock(&pool->lock);
2133 fail:
2134 	rcu_read_unlock();
2135 	local_irq_restore(*irq_flags);
2136 	return -EAGAIN;
2137 }
2138 
2139 /**
2140  * work_grab_pending - steal work item from worklist and disable irq
2141  * @work: work item to steal
2142  * @cflags: %WORK_CANCEL_ flags
2143  * @irq_flags: place to store IRQ state
2144  *
2145  * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2146  * or on worklist.
2147  *
2148  * Can be called from any context. IRQ is disabled on return with IRQ state
2149  * stored in *@irq_flags. The caller is responsible for re-enabling it using
2150  * local_irq_restore().
2151  *
2152  * Returns %true if @work was pending. %false if idle.
2153  */
2154 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2155 			      unsigned long *irq_flags)
2156 {
2157 	int ret;
2158 
2159 	while (true) {
2160 		ret = try_to_grab_pending(work, cflags, irq_flags);
2161 		if (ret >= 0)
2162 			return ret;
2163 		cpu_relax();
2164 	}
2165 }
2166 
2167 /**
2168  * insert_work - insert a work into a pool
2169  * @pwq: pwq @work belongs to
2170  * @work: work to insert
2171  * @head: insertion point
2172  * @extra_flags: extra WORK_STRUCT_* flags to set
2173  *
2174  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2175  * work_struct flags.
2176  *
2177  * CONTEXT:
2178  * raw_spin_lock_irq(pool->lock).
2179  */
2180 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2181 			struct list_head *head, unsigned int extra_flags)
2182 {
2183 	debug_work_activate(work);
2184 
2185 	/* record the work call stack in order to print it in KASAN reports */
2186 	kasan_record_aux_stack_noalloc(work);
2187 
2188 	/* we own @work, set data and link */
2189 	set_work_pwq(work, pwq, extra_flags);
2190 	list_add_tail(&work->entry, head);
2191 	get_pwq(pwq);
2192 }
2193 
2194 /*
2195  * Test whether @work is being queued from another work executing on the
2196  * same workqueue.
2197  */
2198 static bool is_chained_work(struct workqueue_struct *wq)
2199 {
2200 	struct worker *worker;
2201 
2202 	worker = current_wq_worker();
2203 	/*
2204 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2205 	 * I'm @worker, it's safe to dereference it without locking.
2206 	 */
2207 	return worker && worker->current_pwq->wq == wq;
2208 }
2209 
2210 /*
2211  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2212  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2213  * avoid perturbing sensitive tasks.
2214  */
2215 static int wq_select_unbound_cpu(int cpu)
2216 {
2217 	int new_cpu;
2218 
2219 	if (likely(!wq_debug_force_rr_cpu)) {
2220 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2221 			return cpu;
2222 	} else {
2223 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2224 	}
2225 
2226 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2227 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2228 	if (unlikely(new_cpu >= nr_cpu_ids)) {
2229 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2230 		if (unlikely(new_cpu >= nr_cpu_ids))
2231 			return cpu;
2232 	}
2233 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2234 
2235 	return new_cpu;
2236 }
2237 
2238 static void __queue_work(int cpu, struct workqueue_struct *wq,
2239 			 struct work_struct *work)
2240 {
2241 	struct pool_workqueue *pwq;
2242 	struct worker_pool *last_pool, *pool;
2243 	unsigned int work_flags;
2244 	unsigned int req_cpu = cpu;
2245 
2246 	/*
2247 	 * While a work item is PENDING && off queue, a task trying to
2248 	 * steal the PENDING will busy-loop waiting for it to either get
2249 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2250 	 * happen with IRQ disabled.
2251 	 */
2252 	lockdep_assert_irqs_disabled();
2253 
2254 	/*
2255 	 * For a draining wq, only works from the same workqueue are
2256 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2257 	 * queues a new work item to a wq after destroy_workqueue(wq).
2258 	 */
2259 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2260 		     WARN_ON_ONCE(!is_chained_work(wq))))
2261 		return;
2262 	rcu_read_lock();
2263 retry:
2264 	/* pwq which will be used unless @work is executing elsewhere */
2265 	if (req_cpu == WORK_CPU_UNBOUND) {
2266 		if (wq->flags & WQ_UNBOUND)
2267 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2268 		else
2269 			cpu = raw_smp_processor_id();
2270 	}
2271 
2272 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2273 	pool = pwq->pool;
2274 
2275 	/*
2276 	 * If @work was previously on a different pool, it might still be
2277 	 * running there, in which case the work needs to be queued on that
2278 	 * pool to guarantee non-reentrancy.
2279 	 *
2280 	 * For ordered workqueue, work items must be queued on the newest pwq
2281 	 * for accurate order management.  Guaranteed order also guarantees
2282 	 * non-reentrancy.  See the comments above unplug_oldest_pwq().
2283 	 */
2284 	last_pool = get_work_pool(work);
2285 	if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2286 		struct worker *worker;
2287 
2288 		raw_spin_lock(&last_pool->lock);
2289 
2290 		worker = find_worker_executing_work(last_pool, work);
2291 
2292 		if (worker && worker->current_pwq->wq == wq) {
2293 			pwq = worker->current_pwq;
2294 			pool = pwq->pool;
2295 			WARN_ON_ONCE(pool != last_pool);
2296 		} else {
2297 			/* meh... not running there, queue here */
2298 			raw_spin_unlock(&last_pool->lock);
2299 			raw_spin_lock(&pool->lock);
2300 		}
2301 	} else {
2302 		raw_spin_lock(&pool->lock);
2303 	}
2304 
2305 	/*
2306 	 * pwq is determined and locked. For unbound pools, we could have raced
2307 	 * with pwq release and it could already be dead. If its refcnt is zero,
2308 	 * repeat pwq selection. Note that unbound pwqs never die without
2309 	 * another pwq replacing it in cpu_pwq or while work items are executing
2310 	 * on it, so the retrying is guaranteed to make forward-progress.
2311 	 */
2312 	if (unlikely(!pwq->refcnt)) {
2313 		if (wq->flags & WQ_UNBOUND) {
2314 			raw_spin_unlock(&pool->lock);
2315 			cpu_relax();
2316 			goto retry;
2317 		}
2318 		/* oops */
2319 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2320 			  wq->name, cpu);
2321 	}
2322 
2323 	/* pwq determined, queue */
2324 	trace_workqueue_queue_work(req_cpu, pwq, work);
2325 
2326 	if (WARN_ON(!list_empty(&work->entry)))
2327 		goto out;
2328 
2329 	pwq->nr_in_flight[pwq->work_color]++;
2330 	work_flags = work_color_to_flags(pwq->work_color);
2331 
2332 	/*
2333 	 * Limit the number of concurrently active work items to max_active.
2334 	 * @work must also queue behind existing inactive work items to maintain
2335 	 * ordering when max_active changes. See wq_adjust_max_active().
2336 	 */
2337 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2338 		if (list_empty(&pool->worklist))
2339 			pool->watchdog_ts = jiffies;
2340 
2341 		trace_workqueue_activate_work(work);
2342 		insert_work(pwq, work, &pool->worklist, work_flags);
2343 		kick_pool(pool);
2344 	} else {
2345 		work_flags |= WORK_STRUCT_INACTIVE;
2346 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2347 	}
2348 
2349 out:
2350 	raw_spin_unlock(&pool->lock);
2351 	rcu_read_unlock();
2352 }
2353 
2354 static bool clear_pending_if_disabled(struct work_struct *work)
2355 {
2356 	unsigned long data = *work_data_bits(work);
2357 	struct work_offq_data offqd;
2358 
2359 	if (likely((data & WORK_STRUCT_PWQ) ||
2360 		   !(data & WORK_OFFQ_DISABLE_MASK)))
2361 		return false;
2362 
2363 	work_offqd_unpack(&offqd, data);
2364 	set_work_pool_and_clear_pending(work, offqd.pool_id,
2365 					work_offqd_pack_flags(&offqd));
2366 	return true;
2367 }
2368 
2369 /**
2370  * queue_work_on - queue work on specific cpu
2371  * @cpu: CPU number to execute work on
2372  * @wq: workqueue to use
2373  * @work: work to queue
2374  *
2375  * We queue the work to a specific CPU, the caller must ensure it
2376  * can't go away.  Callers that fail to ensure that the specified
2377  * CPU cannot go away will execute on a randomly chosen CPU.
2378  * But note well that callers specifying a CPU that never has been
2379  * online will get a splat.
2380  *
2381  * Return: %false if @work was already on a queue, %true otherwise.
2382  */
2383 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2384 		   struct work_struct *work)
2385 {
2386 	bool ret = false;
2387 	unsigned long irq_flags;
2388 
2389 	local_irq_save(irq_flags);
2390 
2391 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2392 	    !clear_pending_if_disabled(work)) {
2393 		__queue_work(cpu, wq, work);
2394 		ret = true;
2395 	}
2396 
2397 	local_irq_restore(irq_flags);
2398 	return ret;
2399 }
2400 EXPORT_SYMBOL(queue_work_on);
2401 
2402 /**
2403  * select_numa_node_cpu - Select a CPU based on NUMA node
2404  * @node: NUMA node ID that we want to select a CPU from
2405  *
2406  * This function will attempt to find a "random" cpu available on a given
2407  * node. If there are no CPUs available on the given node it will return
2408  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2409  * available CPU if we need to schedule this work.
2410  */
2411 static int select_numa_node_cpu(int node)
2412 {
2413 	int cpu;
2414 
2415 	/* Delay binding to CPU if node is not valid or online */
2416 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2417 		return WORK_CPU_UNBOUND;
2418 
2419 	/* Use local node/cpu if we are already there */
2420 	cpu = raw_smp_processor_id();
2421 	if (node == cpu_to_node(cpu))
2422 		return cpu;
2423 
2424 	/* Use "random" otherwise know as "first" online CPU of node */
2425 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2426 
2427 	/* If CPU is valid return that, otherwise just defer */
2428 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2429 }
2430 
2431 /**
2432  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2433  * @node: NUMA node that we are targeting the work for
2434  * @wq: workqueue to use
2435  * @work: work to queue
2436  *
2437  * We queue the work to a "random" CPU within a given NUMA node. The basic
2438  * idea here is to provide a way to somehow associate work with a given
2439  * NUMA node.
2440  *
2441  * This function will only make a best effort attempt at getting this onto
2442  * the right NUMA node. If no node is requested or the requested node is
2443  * offline then we just fall back to standard queue_work behavior.
2444  *
2445  * Currently the "random" CPU ends up being the first available CPU in the
2446  * intersection of cpu_online_mask and the cpumask of the node, unless we
2447  * are running on the node. In that case we just use the current CPU.
2448  *
2449  * Return: %false if @work was already on a queue, %true otherwise.
2450  */
2451 bool queue_work_node(int node, struct workqueue_struct *wq,
2452 		     struct work_struct *work)
2453 {
2454 	unsigned long irq_flags;
2455 	bool ret = false;
2456 
2457 	/*
2458 	 * This current implementation is specific to unbound workqueues.
2459 	 * Specifically we only return the first available CPU for a given
2460 	 * node instead of cycling through individual CPUs within the node.
2461 	 *
2462 	 * If this is used with a per-cpu workqueue then the logic in
2463 	 * workqueue_select_cpu_near would need to be updated to allow for
2464 	 * some round robin type logic.
2465 	 */
2466 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2467 
2468 	local_irq_save(irq_flags);
2469 
2470 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2471 	    !clear_pending_if_disabled(work)) {
2472 		int cpu = select_numa_node_cpu(node);
2473 
2474 		__queue_work(cpu, wq, work);
2475 		ret = true;
2476 	}
2477 
2478 	local_irq_restore(irq_flags);
2479 	return ret;
2480 }
2481 EXPORT_SYMBOL_GPL(queue_work_node);
2482 
2483 void delayed_work_timer_fn(struct timer_list *t)
2484 {
2485 	struct delayed_work *dwork = from_timer(dwork, t, timer);
2486 
2487 	/* should have been called from irqsafe timer with irq already off */
2488 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2489 }
2490 EXPORT_SYMBOL(delayed_work_timer_fn);
2491 
2492 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2493 				struct delayed_work *dwork, unsigned long delay)
2494 {
2495 	struct timer_list *timer = &dwork->timer;
2496 	struct work_struct *work = &dwork->work;
2497 
2498 	WARN_ON_ONCE(!wq);
2499 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2500 	WARN_ON_ONCE(timer_pending(timer));
2501 	WARN_ON_ONCE(!list_empty(&work->entry));
2502 
2503 	/*
2504 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2505 	 * both optimization and correctness.  The earliest @timer can
2506 	 * expire is on the closest next tick and delayed_work users depend
2507 	 * on that there's no such delay when @delay is 0.
2508 	 */
2509 	if (!delay) {
2510 		__queue_work(cpu, wq, &dwork->work);
2511 		return;
2512 	}
2513 
2514 	dwork->wq = wq;
2515 	dwork->cpu = cpu;
2516 	timer->expires = jiffies + delay;
2517 
2518 	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2519 		/* If the current cpu is a housekeeping cpu, use it. */
2520 		cpu = smp_processor_id();
2521 		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2522 			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2523 		add_timer_on(timer, cpu);
2524 	} else {
2525 		if (likely(cpu == WORK_CPU_UNBOUND))
2526 			add_timer_global(timer);
2527 		else
2528 			add_timer_on(timer, cpu);
2529 	}
2530 }
2531 
2532 /**
2533  * queue_delayed_work_on - queue work on specific CPU after delay
2534  * @cpu: CPU number to execute work on
2535  * @wq: workqueue to use
2536  * @dwork: work to queue
2537  * @delay: number of jiffies to wait before queueing
2538  *
2539  * Return: %false if @work was already on a queue, %true otherwise.  If
2540  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2541  * execution.
2542  */
2543 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2544 			   struct delayed_work *dwork, unsigned long delay)
2545 {
2546 	struct work_struct *work = &dwork->work;
2547 	bool ret = false;
2548 	unsigned long irq_flags;
2549 
2550 	/* read the comment in __queue_work() */
2551 	local_irq_save(irq_flags);
2552 
2553 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2554 	    !clear_pending_if_disabled(work)) {
2555 		__queue_delayed_work(cpu, wq, dwork, delay);
2556 		ret = true;
2557 	}
2558 
2559 	local_irq_restore(irq_flags);
2560 	return ret;
2561 }
2562 EXPORT_SYMBOL(queue_delayed_work_on);
2563 
2564 /**
2565  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2566  * @cpu: CPU number to execute work on
2567  * @wq: workqueue to use
2568  * @dwork: work to queue
2569  * @delay: number of jiffies to wait before queueing
2570  *
2571  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2572  * modify @dwork's timer so that it expires after @delay.  If @delay is
2573  * zero, @work is guaranteed to be scheduled immediately regardless of its
2574  * current state.
2575  *
2576  * Return: %false if @dwork was idle and queued, %true if @dwork was
2577  * pending and its timer was modified.
2578  *
2579  * This function is safe to call from any context including IRQ handler.
2580  * See try_to_grab_pending() for details.
2581  */
2582 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2583 			 struct delayed_work *dwork, unsigned long delay)
2584 {
2585 	unsigned long irq_flags;
2586 	bool ret;
2587 
2588 	ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2589 
2590 	if (!clear_pending_if_disabled(&dwork->work))
2591 		__queue_delayed_work(cpu, wq, dwork, delay);
2592 
2593 	local_irq_restore(irq_flags);
2594 	return ret;
2595 }
2596 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2597 
2598 static void rcu_work_rcufn(struct rcu_head *rcu)
2599 {
2600 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2601 
2602 	/* read the comment in __queue_work() */
2603 	local_irq_disable();
2604 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2605 	local_irq_enable();
2606 }
2607 
2608 /**
2609  * queue_rcu_work - queue work after a RCU grace period
2610  * @wq: workqueue to use
2611  * @rwork: work to queue
2612  *
2613  * Return: %false if @rwork was already pending, %true otherwise.  Note
2614  * that a full RCU grace period is guaranteed only after a %true return.
2615  * While @rwork is guaranteed to be executed after a %false return, the
2616  * execution may happen before a full RCU grace period has passed.
2617  */
2618 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2619 {
2620 	struct work_struct *work = &rwork->work;
2621 
2622 	/*
2623 	 * rcu_work can't be canceled or disabled. Warn if the user reached
2624 	 * inside @rwork and disabled the inner work.
2625 	 */
2626 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2627 	    !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2628 		rwork->wq = wq;
2629 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2630 		return true;
2631 	}
2632 
2633 	return false;
2634 }
2635 EXPORT_SYMBOL(queue_rcu_work);
2636 
2637 static struct worker *alloc_worker(int node)
2638 {
2639 	struct worker *worker;
2640 
2641 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2642 	if (worker) {
2643 		INIT_LIST_HEAD(&worker->entry);
2644 		INIT_LIST_HEAD(&worker->scheduled);
2645 		INIT_LIST_HEAD(&worker->node);
2646 		/* on creation a worker is in !idle && prep state */
2647 		worker->flags = WORKER_PREP;
2648 	}
2649 	return worker;
2650 }
2651 
2652 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2653 {
2654 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2655 		return pool->attrs->__pod_cpumask;
2656 	else
2657 		return pool->attrs->cpumask;
2658 }
2659 
2660 /**
2661  * worker_attach_to_pool() - attach a worker to a pool
2662  * @worker: worker to be attached
2663  * @pool: the target pool
2664  *
2665  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2666  * cpu-binding of @worker are kept coordinated with the pool across
2667  * cpu-[un]hotplugs.
2668  */
2669 static void worker_attach_to_pool(struct worker *worker,
2670 				  struct worker_pool *pool)
2671 {
2672 	mutex_lock(&wq_pool_attach_mutex);
2673 
2674 	/*
2675 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2676 	 * across this function. See the comments above the flag definition for
2677 	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2678 	 */
2679 	if (pool->flags & POOL_DISASSOCIATED) {
2680 		worker->flags |= WORKER_UNBOUND;
2681 	} else {
2682 		WARN_ON_ONCE(pool->flags & POOL_BH);
2683 		kthread_set_per_cpu(worker->task, pool->cpu);
2684 	}
2685 
2686 	if (worker->rescue_wq)
2687 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2688 
2689 	list_add_tail(&worker->node, &pool->workers);
2690 	worker->pool = pool;
2691 
2692 	mutex_unlock(&wq_pool_attach_mutex);
2693 }
2694 
2695 static void unbind_worker(struct worker *worker)
2696 {
2697 	lockdep_assert_held(&wq_pool_attach_mutex);
2698 
2699 	kthread_set_per_cpu(worker->task, -1);
2700 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2701 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2702 	else
2703 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2704 }
2705 
2706 
2707 static void detach_worker(struct worker *worker)
2708 {
2709 	lockdep_assert_held(&wq_pool_attach_mutex);
2710 
2711 	unbind_worker(worker);
2712 	list_del(&worker->node);
2713 	worker->pool = NULL;
2714 }
2715 
2716 /**
2717  * worker_detach_from_pool() - detach a worker from its pool
2718  * @worker: worker which is attached to its pool
2719  *
2720  * Undo the attaching which had been done in worker_attach_to_pool().  The
2721  * caller worker shouldn't access to the pool after detached except it has
2722  * other reference to the pool.
2723  */
2724 static void worker_detach_from_pool(struct worker *worker)
2725 {
2726 	struct worker_pool *pool = worker->pool;
2727 
2728 	/* there is one permanent BH worker per CPU which should never detach */
2729 	WARN_ON_ONCE(pool->flags & POOL_BH);
2730 
2731 	mutex_lock(&wq_pool_attach_mutex);
2732 	detach_worker(worker);
2733 	mutex_unlock(&wq_pool_attach_mutex);
2734 
2735 	/* clear leftover flags without pool->lock after it is detached */
2736 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2737 }
2738 
2739 static int format_worker_id(char *buf, size_t size, struct worker *worker,
2740 			    struct worker_pool *pool)
2741 {
2742 	if (worker->rescue_wq)
2743 		return scnprintf(buf, size, "kworker/R-%s",
2744 				 worker->rescue_wq->name);
2745 
2746 	if (pool) {
2747 		if (pool->cpu >= 0)
2748 			return scnprintf(buf, size, "kworker/%d:%d%s",
2749 					 pool->cpu, worker->id,
2750 					 pool->attrs->nice < 0  ? "H" : "");
2751 		else
2752 			return scnprintf(buf, size, "kworker/u%d:%d",
2753 					 pool->id, worker->id);
2754 	} else {
2755 		return scnprintf(buf, size, "kworker/dying");
2756 	}
2757 }
2758 
2759 /**
2760  * create_worker - create a new workqueue worker
2761  * @pool: pool the new worker will belong to
2762  *
2763  * Create and start a new worker which is attached to @pool.
2764  *
2765  * CONTEXT:
2766  * Might sleep.  Does GFP_KERNEL allocations.
2767  *
2768  * Return:
2769  * Pointer to the newly created worker.
2770  */
2771 static struct worker *create_worker(struct worker_pool *pool)
2772 {
2773 	struct worker *worker;
2774 	int id;
2775 
2776 	/* ID is needed to determine kthread name */
2777 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2778 	if (id < 0) {
2779 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2780 			    ERR_PTR(id));
2781 		return NULL;
2782 	}
2783 
2784 	worker = alloc_worker(pool->node);
2785 	if (!worker) {
2786 		pr_err_once("workqueue: Failed to allocate a worker\n");
2787 		goto fail;
2788 	}
2789 
2790 	worker->id = id;
2791 
2792 	if (!(pool->flags & POOL_BH)) {
2793 		char id_buf[WORKER_ID_LEN];
2794 
2795 		format_worker_id(id_buf, sizeof(id_buf), worker, pool);
2796 		worker->task = kthread_create_on_node(worker_thread, worker,
2797 						      pool->node, "%s", id_buf);
2798 		if (IS_ERR(worker->task)) {
2799 			if (PTR_ERR(worker->task) == -EINTR) {
2800 				pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2801 				       id_buf);
2802 			} else {
2803 				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2804 					    worker->task);
2805 			}
2806 			goto fail;
2807 		}
2808 
2809 		set_user_nice(worker->task, pool->attrs->nice);
2810 		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2811 	}
2812 
2813 	/* successful, attach the worker to the pool */
2814 	worker_attach_to_pool(worker, pool);
2815 
2816 	/* start the newly created worker */
2817 	raw_spin_lock_irq(&pool->lock);
2818 
2819 	worker->pool->nr_workers++;
2820 	worker_enter_idle(worker);
2821 
2822 	/*
2823 	 * @worker is waiting on a completion in kthread() and will trigger hung
2824 	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2825 	 * wake it up explicitly.
2826 	 */
2827 	if (worker->task)
2828 		wake_up_process(worker->task);
2829 
2830 	raw_spin_unlock_irq(&pool->lock);
2831 
2832 	return worker;
2833 
2834 fail:
2835 	ida_free(&pool->worker_ida, id);
2836 	kfree(worker);
2837 	return NULL;
2838 }
2839 
2840 static void detach_dying_workers(struct list_head *cull_list)
2841 {
2842 	struct worker *worker;
2843 
2844 	list_for_each_entry(worker, cull_list, entry)
2845 		detach_worker(worker);
2846 }
2847 
2848 static void reap_dying_workers(struct list_head *cull_list)
2849 {
2850 	struct worker *worker, *tmp;
2851 
2852 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2853 		list_del_init(&worker->entry);
2854 		kthread_stop_put(worker->task);
2855 		kfree(worker);
2856 	}
2857 }
2858 
2859 /**
2860  * set_worker_dying - Tag a worker for destruction
2861  * @worker: worker to be destroyed
2862  * @list: transfer worker away from its pool->idle_list and into list
2863  *
2864  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2865  * should be idle.
2866  *
2867  * CONTEXT:
2868  * raw_spin_lock_irq(pool->lock).
2869  */
2870 static void set_worker_dying(struct worker *worker, struct list_head *list)
2871 {
2872 	struct worker_pool *pool = worker->pool;
2873 
2874 	lockdep_assert_held(&pool->lock);
2875 	lockdep_assert_held(&wq_pool_attach_mutex);
2876 
2877 	/* sanity check frenzy */
2878 	if (WARN_ON(worker->current_work) ||
2879 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2880 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2881 		return;
2882 
2883 	pool->nr_workers--;
2884 	pool->nr_idle--;
2885 
2886 	worker->flags |= WORKER_DIE;
2887 
2888 	list_move(&worker->entry, list);
2889 
2890 	/* get an extra task struct reference for later kthread_stop_put() */
2891 	get_task_struct(worker->task);
2892 }
2893 
2894 /**
2895  * idle_worker_timeout - check if some idle workers can now be deleted.
2896  * @t: The pool's idle_timer that just expired
2897  *
2898  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2899  * worker_leave_idle(), as a worker flicking between idle and active while its
2900  * pool is at the too_many_workers() tipping point would cause too much timer
2901  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2902  * it expire and re-evaluate things from there.
2903  */
2904 static void idle_worker_timeout(struct timer_list *t)
2905 {
2906 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2907 	bool do_cull = false;
2908 
2909 	if (work_pending(&pool->idle_cull_work))
2910 		return;
2911 
2912 	raw_spin_lock_irq(&pool->lock);
2913 
2914 	if (too_many_workers(pool)) {
2915 		struct worker *worker;
2916 		unsigned long expires;
2917 
2918 		/* idle_list is kept in LIFO order, check the last one */
2919 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2920 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2921 		do_cull = !time_before(jiffies, expires);
2922 
2923 		if (!do_cull)
2924 			mod_timer(&pool->idle_timer, expires);
2925 	}
2926 	raw_spin_unlock_irq(&pool->lock);
2927 
2928 	if (do_cull)
2929 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2930 }
2931 
2932 /**
2933  * idle_cull_fn - cull workers that have been idle for too long.
2934  * @work: the pool's work for handling these idle workers
2935  *
2936  * This goes through a pool's idle workers and gets rid of those that have been
2937  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2938  *
2939  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2940  * culled, so this also resets worker affinity. This requires a sleepable
2941  * context, hence the split between timer callback and work item.
2942  */
2943 static void idle_cull_fn(struct work_struct *work)
2944 {
2945 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2946 	LIST_HEAD(cull_list);
2947 
2948 	/*
2949 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2950 	 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2951 	 * This is required as a previously-preempted worker could run after
2952 	 * set_worker_dying() has happened but before detach_dying_workers() did.
2953 	 */
2954 	mutex_lock(&wq_pool_attach_mutex);
2955 	raw_spin_lock_irq(&pool->lock);
2956 
2957 	while (too_many_workers(pool)) {
2958 		struct worker *worker;
2959 		unsigned long expires;
2960 
2961 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2962 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2963 
2964 		if (time_before(jiffies, expires)) {
2965 			mod_timer(&pool->idle_timer, expires);
2966 			break;
2967 		}
2968 
2969 		set_worker_dying(worker, &cull_list);
2970 	}
2971 
2972 	raw_spin_unlock_irq(&pool->lock);
2973 	detach_dying_workers(&cull_list);
2974 	mutex_unlock(&wq_pool_attach_mutex);
2975 
2976 	reap_dying_workers(&cull_list);
2977 }
2978 
2979 static void send_mayday(struct work_struct *work)
2980 {
2981 	struct pool_workqueue *pwq = get_work_pwq(work);
2982 	struct workqueue_struct *wq = pwq->wq;
2983 
2984 	lockdep_assert_held(&wq_mayday_lock);
2985 
2986 	if (!wq->rescuer)
2987 		return;
2988 
2989 	/* mayday mayday mayday */
2990 	if (list_empty(&pwq->mayday_node)) {
2991 		/*
2992 		 * If @pwq is for an unbound wq, its base ref may be put at
2993 		 * any time due to an attribute change.  Pin @pwq until the
2994 		 * rescuer is done with it.
2995 		 */
2996 		get_pwq(pwq);
2997 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2998 		wake_up_process(wq->rescuer->task);
2999 		pwq->stats[PWQ_STAT_MAYDAY]++;
3000 	}
3001 }
3002 
3003 static void pool_mayday_timeout(struct timer_list *t)
3004 {
3005 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
3006 	struct work_struct *work;
3007 
3008 	raw_spin_lock_irq(&pool->lock);
3009 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3010 
3011 	if (need_to_create_worker(pool)) {
3012 		/*
3013 		 * We've been trying to create a new worker but
3014 		 * haven't been successful.  We might be hitting an
3015 		 * allocation deadlock.  Send distress signals to
3016 		 * rescuers.
3017 		 */
3018 		list_for_each_entry(work, &pool->worklist, entry)
3019 			send_mayday(work);
3020 	}
3021 
3022 	raw_spin_unlock(&wq_mayday_lock);
3023 	raw_spin_unlock_irq(&pool->lock);
3024 
3025 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3026 }
3027 
3028 /**
3029  * maybe_create_worker - create a new worker if necessary
3030  * @pool: pool to create a new worker for
3031  *
3032  * Create a new worker for @pool if necessary.  @pool is guaranteed to
3033  * have at least one idle worker on return from this function.  If
3034  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3035  * sent to all rescuers with works scheduled on @pool to resolve
3036  * possible allocation deadlock.
3037  *
3038  * On return, need_to_create_worker() is guaranteed to be %false and
3039  * may_start_working() %true.
3040  *
3041  * LOCKING:
3042  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3043  * multiple times.  Does GFP_KERNEL allocations.  Called only from
3044  * manager.
3045  */
3046 static void maybe_create_worker(struct worker_pool *pool)
3047 __releases(&pool->lock)
3048 __acquires(&pool->lock)
3049 {
3050 restart:
3051 	raw_spin_unlock_irq(&pool->lock);
3052 
3053 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3054 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3055 
3056 	while (true) {
3057 		if (create_worker(pool) || !need_to_create_worker(pool))
3058 			break;
3059 
3060 		schedule_timeout_interruptible(CREATE_COOLDOWN);
3061 
3062 		if (!need_to_create_worker(pool))
3063 			break;
3064 	}
3065 
3066 	del_timer_sync(&pool->mayday_timer);
3067 	raw_spin_lock_irq(&pool->lock);
3068 	/*
3069 	 * This is necessary even after a new worker was just successfully
3070 	 * created as @pool->lock was dropped and the new worker might have
3071 	 * already become busy.
3072 	 */
3073 	if (need_to_create_worker(pool))
3074 		goto restart;
3075 }
3076 
3077 /**
3078  * manage_workers - manage worker pool
3079  * @worker: self
3080  *
3081  * Assume the manager role and manage the worker pool @worker belongs
3082  * to.  At any given time, there can be only zero or one manager per
3083  * pool.  The exclusion is handled automatically by this function.
3084  *
3085  * The caller can safely start processing works on false return.  On
3086  * true return, it's guaranteed that need_to_create_worker() is false
3087  * and may_start_working() is true.
3088  *
3089  * CONTEXT:
3090  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3091  * multiple times.  Does GFP_KERNEL allocations.
3092  *
3093  * Return:
3094  * %false if the pool doesn't need management and the caller can safely
3095  * start processing works, %true if management function was performed and
3096  * the conditions that the caller verified before calling the function may
3097  * no longer be true.
3098  */
3099 static bool manage_workers(struct worker *worker)
3100 {
3101 	struct worker_pool *pool = worker->pool;
3102 
3103 	if (pool->flags & POOL_MANAGER_ACTIVE)
3104 		return false;
3105 
3106 	pool->flags |= POOL_MANAGER_ACTIVE;
3107 	pool->manager = worker;
3108 
3109 	maybe_create_worker(pool);
3110 
3111 	pool->manager = NULL;
3112 	pool->flags &= ~POOL_MANAGER_ACTIVE;
3113 	rcuwait_wake_up(&manager_wait);
3114 	return true;
3115 }
3116 
3117 /**
3118  * process_one_work - process single work
3119  * @worker: self
3120  * @work: work to process
3121  *
3122  * Process @work.  This function contains all the logics necessary to
3123  * process a single work including synchronization against and
3124  * interaction with other workers on the same cpu, queueing and
3125  * flushing.  As long as context requirement is met, any worker can
3126  * call this function to process a work.
3127  *
3128  * CONTEXT:
3129  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3130  */
3131 static void process_one_work(struct worker *worker, struct work_struct *work)
3132 __releases(&pool->lock)
3133 __acquires(&pool->lock)
3134 {
3135 	struct pool_workqueue *pwq = get_work_pwq(work);
3136 	struct worker_pool *pool = worker->pool;
3137 	unsigned long work_data;
3138 	int lockdep_start_depth, rcu_start_depth;
3139 	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3140 #ifdef CONFIG_LOCKDEP
3141 	/*
3142 	 * It is permissible to free the struct work_struct from
3143 	 * inside the function that is called from it, this we need to
3144 	 * take into account for lockdep too.  To avoid bogus "held
3145 	 * lock freed" warnings as well as problems when looking into
3146 	 * work->lockdep_map, make a copy and use that here.
3147 	 */
3148 	struct lockdep_map lockdep_map;
3149 
3150 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3151 #endif
3152 	/* ensure we're on the correct CPU */
3153 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3154 		     raw_smp_processor_id() != pool->cpu);
3155 
3156 	/* claim and dequeue */
3157 	debug_work_deactivate(work);
3158 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3159 	worker->current_work = work;
3160 	worker->current_func = work->func;
3161 	worker->current_pwq = pwq;
3162 	if (worker->task)
3163 		worker->current_at = worker->task->se.sum_exec_runtime;
3164 	work_data = *work_data_bits(work);
3165 	worker->current_color = get_work_color(work_data);
3166 
3167 	/*
3168 	 * Record wq name for cmdline and debug reporting, may get
3169 	 * overridden through set_worker_desc().
3170 	 */
3171 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3172 
3173 	list_del_init(&work->entry);
3174 
3175 	/*
3176 	 * CPU intensive works don't participate in concurrency management.
3177 	 * They're the scheduler's responsibility.  This takes @worker out
3178 	 * of concurrency management and the next code block will chain
3179 	 * execution of the pending work items.
3180 	 */
3181 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3182 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3183 
3184 	/*
3185 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3186 	 * since nr_running would always be >= 1 at this point. This is used to
3187 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3188 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3189 	 */
3190 	kick_pool(pool);
3191 
3192 	/*
3193 	 * Record the last pool and clear PENDING which should be the last
3194 	 * update to @work.  Also, do this inside @pool->lock so that
3195 	 * PENDING and queued state changes happen together while IRQ is
3196 	 * disabled.
3197 	 */
3198 	set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3199 
3200 	pwq->stats[PWQ_STAT_STARTED]++;
3201 	raw_spin_unlock_irq(&pool->lock);
3202 
3203 	rcu_start_depth = rcu_preempt_depth();
3204 	lockdep_start_depth = lockdep_depth(current);
3205 	/* see drain_dead_softirq_workfn() */
3206 	if (!bh_draining)
3207 		lock_map_acquire(pwq->wq->lockdep_map);
3208 	lock_map_acquire(&lockdep_map);
3209 	/*
3210 	 * Strictly speaking we should mark the invariant state without holding
3211 	 * any locks, that is, before these two lock_map_acquire()'s.
3212 	 *
3213 	 * However, that would result in:
3214 	 *
3215 	 *   A(W1)
3216 	 *   WFC(C)
3217 	 *		A(W1)
3218 	 *		C(C)
3219 	 *
3220 	 * Which would create W1->C->W1 dependencies, even though there is no
3221 	 * actual deadlock possible. There are two solutions, using a
3222 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3223 	 * hit the lockdep limitation on recursive locks, or simply discard
3224 	 * these locks.
3225 	 *
3226 	 * AFAICT there is no possible deadlock scenario between the
3227 	 * flush_work() and complete() primitives (except for single-threaded
3228 	 * workqueues), so hiding them isn't a problem.
3229 	 */
3230 	lockdep_invariant_state(true);
3231 	trace_workqueue_execute_start(work);
3232 	worker->current_func(work);
3233 	/*
3234 	 * While we must be careful to not use "work" after this, the trace
3235 	 * point will only record its address.
3236 	 */
3237 	trace_workqueue_execute_end(work, worker->current_func);
3238 	pwq->stats[PWQ_STAT_COMPLETED]++;
3239 	lock_map_release(&lockdep_map);
3240 	if (!bh_draining)
3241 		lock_map_release(pwq->wq->lockdep_map);
3242 
3243 	if (unlikely((worker->task && in_atomic()) ||
3244 		     lockdep_depth(current) != lockdep_start_depth ||
3245 		     rcu_preempt_depth() != rcu_start_depth)) {
3246 		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3247 		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3248 		       current->comm, task_pid_nr(current), preempt_count(),
3249 		       lockdep_start_depth, lockdep_depth(current),
3250 		       rcu_start_depth, rcu_preempt_depth(),
3251 		       worker->current_func);
3252 		debug_show_held_locks(current);
3253 		dump_stack();
3254 	}
3255 
3256 	/*
3257 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3258 	 * kernels, where a requeueing work item waiting for something to
3259 	 * happen could deadlock with stop_machine as such work item could
3260 	 * indefinitely requeue itself while all other CPUs are trapped in
3261 	 * stop_machine. At the same time, report a quiescent RCU state so
3262 	 * the same condition doesn't freeze RCU.
3263 	 */
3264 	if (worker->task)
3265 		cond_resched();
3266 
3267 	raw_spin_lock_irq(&pool->lock);
3268 
3269 	/*
3270 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3271 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3272 	 * wq_cpu_intensive_thresh_us. Clear it.
3273 	 */
3274 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3275 
3276 	/* tag the worker for identification in schedule() */
3277 	worker->last_func = worker->current_func;
3278 
3279 	/* we're done with it, release */
3280 	hash_del(&worker->hentry);
3281 	worker->current_work = NULL;
3282 	worker->current_func = NULL;
3283 	worker->current_pwq = NULL;
3284 	worker->current_color = INT_MAX;
3285 
3286 	/* must be the last step, see the function comment */
3287 	pwq_dec_nr_in_flight(pwq, work_data);
3288 }
3289 
3290 /**
3291  * process_scheduled_works - process scheduled works
3292  * @worker: self
3293  *
3294  * Process all scheduled works.  Please note that the scheduled list
3295  * may change while processing a work, so this function repeatedly
3296  * fetches a work from the top and executes it.
3297  *
3298  * CONTEXT:
3299  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3300  * multiple times.
3301  */
3302 static void process_scheduled_works(struct worker *worker)
3303 {
3304 	struct work_struct *work;
3305 	bool first = true;
3306 
3307 	while ((work = list_first_entry_or_null(&worker->scheduled,
3308 						struct work_struct, entry))) {
3309 		if (first) {
3310 			worker->pool->watchdog_ts = jiffies;
3311 			first = false;
3312 		}
3313 		process_one_work(worker, work);
3314 	}
3315 }
3316 
3317 static void set_pf_worker(bool val)
3318 {
3319 	mutex_lock(&wq_pool_attach_mutex);
3320 	if (val)
3321 		current->flags |= PF_WQ_WORKER;
3322 	else
3323 		current->flags &= ~PF_WQ_WORKER;
3324 	mutex_unlock(&wq_pool_attach_mutex);
3325 }
3326 
3327 /**
3328  * worker_thread - the worker thread function
3329  * @__worker: self
3330  *
3331  * The worker thread function.  All workers belong to a worker_pool -
3332  * either a per-cpu one or dynamic unbound one.  These workers process all
3333  * work items regardless of their specific target workqueue.  The only
3334  * exception is work items which belong to workqueues with a rescuer which
3335  * will be explained in rescuer_thread().
3336  *
3337  * Return: 0
3338  */
3339 static int worker_thread(void *__worker)
3340 {
3341 	struct worker *worker = __worker;
3342 	struct worker_pool *pool = worker->pool;
3343 
3344 	/* tell the scheduler that this is a workqueue worker */
3345 	set_pf_worker(true);
3346 woke_up:
3347 	raw_spin_lock_irq(&pool->lock);
3348 
3349 	/* am I supposed to die? */
3350 	if (unlikely(worker->flags & WORKER_DIE)) {
3351 		raw_spin_unlock_irq(&pool->lock);
3352 		set_pf_worker(false);
3353 
3354 		ida_free(&pool->worker_ida, worker->id);
3355 		WARN_ON_ONCE(!list_empty(&worker->entry));
3356 		return 0;
3357 	}
3358 
3359 	worker_leave_idle(worker);
3360 recheck:
3361 	/* no more worker necessary? */
3362 	if (!need_more_worker(pool))
3363 		goto sleep;
3364 
3365 	/* do we need to manage? */
3366 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3367 		goto recheck;
3368 
3369 	/*
3370 	 * ->scheduled list can only be filled while a worker is
3371 	 * preparing to process a work or actually processing it.
3372 	 * Make sure nobody diddled with it while I was sleeping.
3373 	 */
3374 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3375 
3376 	/*
3377 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3378 	 * worker or that someone else has already assumed the manager
3379 	 * role.  This is where @worker starts participating in concurrency
3380 	 * management if applicable and concurrency management is restored
3381 	 * after being rebound.  See rebind_workers() for details.
3382 	 */
3383 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3384 
3385 	do {
3386 		struct work_struct *work =
3387 			list_first_entry(&pool->worklist,
3388 					 struct work_struct, entry);
3389 
3390 		if (assign_work(work, worker, NULL))
3391 			process_scheduled_works(worker);
3392 	} while (keep_working(pool));
3393 
3394 	worker_set_flags(worker, WORKER_PREP);
3395 sleep:
3396 	/*
3397 	 * pool->lock is held and there's no work to process and no need to
3398 	 * manage, sleep.  Workers are woken up only while holding
3399 	 * pool->lock or from local cpu, so setting the current state
3400 	 * before releasing pool->lock is enough to prevent losing any
3401 	 * event.
3402 	 */
3403 	worker_enter_idle(worker);
3404 	__set_current_state(TASK_IDLE);
3405 	raw_spin_unlock_irq(&pool->lock);
3406 	schedule();
3407 	goto woke_up;
3408 }
3409 
3410 /**
3411  * rescuer_thread - the rescuer thread function
3412  * @__rescuer: self
3413  *
3414  * Workqueue rescuer thread function.  There's one rescuer for each
3415  * workqueue which has WQ_MEM_RECLAIM set.
3416  *
3417  * Regular work processing on a pool may block trying to create a new
3418  * worker which uses GFP_KERNEL allocation which has slight chance of
3419  * developing into deadlock if some works currently on the same queue
3420  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3421  * the problem rescuer solves.
3422  *
3423  * When such condition is possible, the pool summons rescuers of all
3424  * workqueues which have works queued on the pool and let them process
3425  * those works so that forward progress can be guaranteed.
3426  *
3427  * This should happen rarely.
3428  *
3429  * Return: 0
3430  */
3431 static int rescuer_thread(void *__rescuer)
3432 {
3433 	struct worker *rescuer = __rescuer;
3434 	struct workqueue_struct *wq = rescuer->rescue_wq;
3435 	bool should_stop;
3436 
3437 	set_user_nice(current, RESCUER_NICE_LEVEL);
3438 
3439 	/*
3440 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3441 	 * doesn't participate in concurrency management.
3442 	 */
3443 	set_pf_worker(true);
3444 repeat:
3445 	set_current_state(TASK_IDLE);
3446 
3447 	/*
3448 	 * By the time the rescuer is requested to stop, the workqueue
3449 	 * shouldn't have any work pending, but @wq->maydays may still have
3450 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3451 	 * all the work items before the rescuer got to them.  Go through
3452 	 * @wq->maydays processing before acting on should_stop so that the
3453 	 * list is always empty on exit.
3454 	 */
3455 	should_stop = kthread_should_stop();
3456 
3457 	/* see whether any pwq is asking for help */
3458 	raw_spin_lock_irq(&wq_mayday_lock);
3459 
3460 	while (!list_empty(&wq->maydays)) {
3461 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3462 					struct pool_workqueue, mayday_node);
3463 		struct worker_pool *pool = pwq->pool;
3464 		struct work_struct *work, *n;
3465 
3466 		__set_current_state(TASK_RUNNING);
3467 		list_del_init(&pwq->mayday_node);
3468 
3469 		raw_spin_unlock_irq(&wq_mayday_lock);
3470 
3471 		worker_attach_to_pool(rescuer, pool);
3472 
3473 		raw_spin_lock_irq(&pool->lock);
3474 
3475 		/*
3476 		 * Slurp in all works issued via this workqueue and
3477 		 * process'em.
3478 		 */
3479 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3480 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3481 			if (get_work_pwq(work) == pwq &&
3482 			    assign_work(work, rescuer, &n))
3483 				pwq->stats[PWQ_STAT_RESCUED]++;
3484 		}
3485 
3486 		if (!list_empty(&rescuer->scheduled)) {
3487 			process_scheduled_works(rescuer);
3488 
3489 			/*
3490 			 * The above execution of rescued work items could
3491 			 * have created more to rescue through
3492 			 * pwq_activate_first_inactive() or chained
3493 			 * queueing.  Let's put @pwq back on mayday list so
3494 			 * that such back-to-back work items, which may be
3495 			 * being used to relieve memory pressure, don't
3496 			 * incur MAYDAY_INTERVAL delay inbetween.
3497 			 */
3498 			if (pwq->nr_active && need_to_create_worker(pool)) {
3499 				raw_spin_lock(&wq_mayday_lock);
3500 				/*
3501 				 * Queue iff we aren't racing destruction
3502 				 * and somebody else hasn't queued it already.
3503 				 */
3504 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3505 					get_pwq(pwq);
3506 					list_add_tail(&pwq->mayday_node, &wq->maydays);
3507 				}
3508 				raw_spin_unlock(&wq_mayday_lock);
3509 			}
3510 		}
3511 
3512 		/*
3513 		 * Put the reference grabbed by send_mayday().  @pool won't
3514 		 * go away while we're still attached to it.
3515 		 */
3516 		put_pwq(pwq);
3517 
3518 		/*
3519 		 * Leave this pool. Notify regular workers; otherwise, we end up
3520 		 * with 0 concurrency and stalling the execution.
3521 		 */
3522 		kick_pool(pool);
3523 
3524 		raw_spin_unlock_irq(&pool->lock);
3525 
3526 		worker_detach_from_pool(rescuer);
3527 
3528 		raw_spin_lock_irq(&wq_mayday_lock);
3529 	}
3530 
3531 	raw_spin_unlock_irq(&wq_mayday_lock);
3532 
3533 	if (should_stop) {
3534 		__set_current_state(TASK_RUNNING);
3535 		set_pf_worker(false);
3536 		return 0;
3537 	}
3538 
3539 	/* rescuers should never participate in concurrency management */
3540 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3541 	schedule();
3542 	goto repeat;
3543 }
3544 
3545 static void bh_worker(struct worker *worker)
3546 {
3547 	struct worker_pool *pool = worker->pool;
3548 	int nr_restarts = BH_WORKER_RESTARTS;
3549 	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3550 
3551 	raw_spin_lock_irq(&pool->lock);
3552 	worker_leave_idle(worker);
3553 
3554 	/*
3555 	 * This function follows the structure of worker_thread(). See there for
3556 	 * explanations on each step.
3557 	 */
3558 	if (!need_more_worker(pool))
3559 		goto done;
3560 
3561 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3562 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3563 
3564 	do {
3565 		struct work_struct *work =
3566 			list_first_entry(&pool->worklist,
3567 					 struct work_struct, entry);
3568 
3569 		if (assign_work(work, worker, NULL))
3570 			process_scheduled_works(worker);
3571 	} while (keep_working(pool) &&
3572 		 --nr_restarts && time_before(jiffies, end));
3573 
3574 	worker_set_flags(worker, WORKER_PREP);
3575 done:
3576 	worker_enter_idle(worker);
3577 	kick_pool(pool);
3578 	raw_spin_unlock_irq(&pool->lock);
3579 }
3580 
3581 /*
3582  * TODO: Convert all tasklet users to workqueue and use softirq directly.
3583  *
3584  * This is currently called from tasklet[_hi]action() and thus is also called
3585  * whenever there are tasklets to run. Let's do an early exit if there's nothing
3586  * queued. Once conversion from tasklet is complete, the need_more_worker() test
3587  * can be dropped.
3588  *
3589  * After full conversion, we'll add worker->softirq_action, directly use the
3590  * softirq action and obtain the worker pointer from the softirq_action pointer.
3591  */
3592 void workqueue_softirq_action(bool highpri)
3593 {
3594 	struct worker_pool *pool =
3595 		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3596 	if (need_more_worker(pool))
3597 		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3598 }
3599 
3600 struct wq_drain_dead_softirq_work {
3601 	struct work_struct	work;
3602 	struct worker_pool	*pool;
3603 	struct completion	done;
3604 };
3605 
3606 static void drain_dead_softirq_workfn(struct work_struct *work)
3607 {
3608 	struct wq_drain_dead_softirq_work *dead_work =
3609 		container_of(work, struct wq_drain_dead_softirq_work, work);
3610 	struct worker_pool *pool = dead_work->pool;
3611 	bool repeat;
3612 
3613 	/*
3614 	 * @pool's CPU is dead and we want to execute its still pending work
3615 	 * items from this BH work item which is running on a different CPU. As
3616 	 * its CPU is dead, @pool can't be kicked and, as work execution path
3617 	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3618 	 * @pool with %POOL_BH_DRAINING for the special treatments.
3619 	 */
3620 	raw_spin_lock_irq(&pool->lock);
3621 	pool->flags |= POOL_BH_DRAINING;
3622 	raw_spin_unlock_irq(&pool->lock);
3623 
3624 	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3625 
3626 	raw_spin_lock_irq(&pool->lock);
3627 	pool->flags &= ~POOL_BH_DRAINING;
3628 	repeat = need_more_worker(pool);
3629 	raw_spin_unlock_irq(&pool->lock);
3630 
3631 	/*
3632 	 * bh_worker() might hit consecutive execution limit and bail. If there
3633 	 * still are pending work items, reschedule self and return so that we
3634 	 * don't hog this CPU's BH.
3635 	 */
3636 	if (repeat) {
3637 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3638 			queue_work(system_bh_highpri_wq, work);
3639 		else
3640 			queue_work(system_bh_wq, work);
3641 	} else {
3642 		complete(&dead_work->done);
3643 	}
3644 }
3645 
3646 /*
3647  * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3648  * possible to allocate dead_work per CPU and avoid flushing. However, then we
3649  * have to worry about draining overlapping with CPU coming back online or
3650  * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3651  * on). Let's keep it simple and drain them synchronously. These are BH work
3652  * items which shouldn't be requeued on the same pool. Shouldn't take long.
3653  */
3654 void workqueue_softirq_dead(unsigned int cpu)
3655 {
3656 	int i;
3657 
3658 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3659 		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3660 		struct wq_drain_dead_softirq_work dead_work;
3661 
3662 		if (!need_more_worker(pool))
3663 			continue;
3664 
3665 		INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3666 		dead_work.pool = pool;
3667 		init_completion(&dead_work.done);
3668 
3669 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3670 			queue_work(system_bh_highpri_wq, &dead_work.work);
3671 		else
3672 			queue_work(system_bh_wq, &dead_work.work);
3673 
3674 		wait_for_completion(&dead_work.done);
3675 		destroy_work_on_stack(&dead_work.work);
3676 	}
3677 }
3678 
3679 /**
3680  * check_flush_dependency - check for flush dependency sanity
3681  * @target_wq: workqueue being flushed
3682  * @target_work: work item being flushed (NULL for workqueue flushes)
3683  *
3684  * %current is trying to flush the whole @target_wq or @target_work on it.
3685  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3686  * reclaiming memory or running on a workqueue which doesn't have
3687  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3688  * a deadlock.
3689  */
3690 static void check_flush_dependency(struct workqueue_struct *target_wq,
3691 				   struct work_struct *target_work)
3692 {
3693 	work_func_t target_func = target_work ? target_work->func : NULL;
3694 	struct worker *worker;
3695 
3696 	if (target_wq->flags & WQ_MEM_RECLAIM)
3697 		return;
3698 
3699 	worker = current_wq_worker();
3700 
3701 	WARN_ONCE(current->flags & PF_MEMALLOC,
3702 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3703 		  current->pid, current->comm, target_wq->name, target_func);
3704 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3705 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3706 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3707 		  worker->current_pwq->wq->name, worker->current_func,
3708 		  target_wq->name, target_func);
3709 }
3710 
3711 struct wq_barrier {
3712 	struct work_struct	work;
3713 	struct completion	done;
3714 	struct task_struct	*task;	/* purely informational */
3715 };
3716 
3717 static void wq_barrier_func(struct work_struct *work)
3718 {
3719 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3720 	complete(&barr->done);
3721 }
3722 
3723 /**
3724  * insert_wq_barrier - insert a barrier work
3725  * @pwq: pwq to insert barrier into
3726  * @barr: wq_barrier to insert
3727  * @target: target work to attach @barr to
3728  * @worker: worker currently executing @target, NULL if @target is not executing
3729  *
3730  * @barr is linked to @target such that @barr is completed only after
3731  * @target finishes execution.  Please note that the ordering
3732  * guarantee is observed only with respect to @target and on the local
3733  * cpu.
3734  *
3735  * Currently, a queued barrier can't be canceled.  This is because
3736  * try_to_grab_pending() can't determine whether the work to be
3737  * grabbed is at the head of the queue and thus can't clear LINKED
3738  * flag of the previous work while there must be a valid next work
3739  * after a work with LINKED flag set.
3740  *
3741  * Note that when @worker is non-NULL, @target may be modified
3742  * underneath us, so we can't reliably determine pwq from @target.
3743  *
3744  * CONTEXT:
3745  * raw_spin_lock_irq(pool->lock).
3746  */
3747 static void insert_wq_barrier(struct pool_workqueue *pwq,
3748 			      struct wq_barrier *barr,
3749 			      struct work_struct *target, struct worker *worker)
3750 {
3751 	static __maybe_unused struct lock_class_key bh_key, thr_key;
3752 	unsigned int work_flags = 0;
3753 	unsigned int work_color;
3754 	struct list_head *head;
3755 
3756 	/*
3757 	 * debugobject calls are safe here even with pool->lock locked
3758 	 * as we know for sure that this will not trigger any of the
3759 	 * checks and call back into the fixup functions where we
3760 	 * might deadlock.
3761 	 *
3762 	 * BH and threaded workqueues need separate lockdep keys to avoid
3763 	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3764 	 * usage".
3765 	 */
3766 	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3767 			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3768 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3769 
3770 	init_completion_map(&barr->done, &target->lockdep_map);
3771 
3772 	barr->task = current;
3773 
3774 	/* The barrier work item does not participate in nr_active. */
3775 	work_flags |= WORK_STRUCT_INACTIVE;
3776 
3777 	/*
3778 	 * If @target is currently being executed, schedule the
3779 	 * barrier to the worker; otherwise, put it after @target.
3780 	 */
3781 	if (worker) {
3782 		head = worker->scheduled.next;
3783 		work_color = worker->current_color;
3784 	} else {
3785 		unsigned long *bits = work_data_bits(target);
3786 
3787 		head = target->entry.next;
3788 		/* there can already be other linked works, inherit and set */
3789 		work_flags |= *bits & WORK_STRUCT_LINKED;
3790 		work_color = get_work_color(*bits);
3791 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3792 	}
3793 
3794 	pwq->nr_in_flight[work_color]++;
3795 	work_flags |= work_color_to_flags(work_color);
3796 
3797 	insert_work(pwq, &barr->work, head, work_flags);
3798 }
3799 
3800 /**
3801  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3802  * @wq: workqueue being flushed
3803  * @flush_color: new flush color, < 0 for no-op
3804  * @work_color: new work color, < 0 for no-op
3805  *
3806  * Prepare pwqs for workqueue flushing.
3807  *
3808  * If @flush_color is non-negative, flush_color on all pwqs should be
3809  * -1.  If no pwq has in-flight commands at the specified color, all
3810  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3811  * has in flight commands, its pwq->flush_color is set to
3812  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3813  * wakeup logic is armed and %true is returned.
3814  *
3815  * The caller should have initialized @wq->first_flusher prior to
3816  * calling this function with non-negative @flush_color.  If
3817  * @flush_color is negative, no flush color update is done and %false
3818  * is returned.
3819  *
3820  * If @work_color is non-negative, all pwqs should have the same
3821  * work_color which is previous to @work_color and all will be
3822  * advanced to @work_color.
3823  *
3824  * CONTEXT:
3825  * mutex_lock(wq->mutex).
3826  *
3827  * Return:
3828  * %true if @flush_color >= 0 and there's something to flush.  %false
3829  * otherwise.
3830  */
3831 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3832 				      int flush_color, int work_color)
3833 {
3834 	bool wait = false;
3835 	struct pool_workqueue *pwq;
3836 
3837 	if (flush_color >= 0) {
3838 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3839 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3840 	}
3841 
3842 	for_each_pwq(pwq, wq) {
3843 		struct worker_pool *pool = pwq->pool;
3844 
3845 		raw_spin_lock_irq(&pool->lock);
3846 
3847 		if (flush_color >= 0) {
3848 			WARN_ON_ONCE(pwq->flush_color != -1);
3849 
3850 			if (pwq->nr_in_flight[flush_color]) {
3851 				pwq->flush_color = flush_color;
3852 				atomic_inc(&wq->nr_pwqs_to_flush);
3853 				wait = true;
3854 			}
3855 		}
3856 
3857 		if (work_color >= 0) {
3858 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3859 			pwq->work_color = work_color;
3860 		}
3861 
3862 		raw_spin_unlock_irq(&pool->lock);
3863 	}
3864 
3865 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3866 		complete(&wq->first_flusher->done);
3867 
3868 	return wait;
3869 }
3870 
3871 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3872 {
3873 #ifdef CONFIG_LOCKDEP
3874 	if (unlikely(!wq->lockdep_map))
3875 		return;
3876 
3877 	if (wq->flags & WQ_BH)
3878 		local_bh_disable();
3879 
3880 	lock_map_acquire(wq->lockdep_map);
3881 	lock_map_release(wq->lockdep_map);
3882 
3883 	if (wq->flags & WQ_BH)
3884 		local_bh_enable();
3885 #endif
3886 }
3887 
3888 static void touch_work_lockdep_map(struct work_struct *work,
3889 				   struct workqueue_struct *wq)
3890 {
3891 #ifdef CONFIG_LOCKDEP
3892 	if (wq->flags & WQ_BH)
3893 		local_bh_disable();
3894 
3895 	lock_map_acquire(&work->lockdep_map);
3896 	lock_map_release(&work->lockdep_map);
3897 
3898 	if (wq->flags & WQ_BH)
3899 		local_bh_enable();
3900 #endif
3901 }
3902 
3903 /**
3904  * __flush_workqueue - ensure that any scheduled work has run to completion.
3905  * @wq: workqueue to flush
3906  *
3907  * This function sleeps until all work items which were queued on entry
3908  * have finished execution, but it is not livelocked by new incoming ones.
3909  */
3910 void __flush_workqueue(struct workqueue_struct *wq)
3911 {
3912 	struct wq_flusher this_flusher = {
3913 		.list = LIST_HEAD_INIT(this_flusher.list),
3914 		.flush_color = -1,
3915 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)),
3916 	};
3917 	int next_color;
3918 
3919 	if (WARN_ON(!wq_online))
3920 		return;
3921 
3922 	touch_wq_lockdep_map(wq);
3923 
3924 	mutex_lock(&wq->mutex);
3925 
3926 	/*
3927 	 * Start-to-wait phase
3928 	 */
3929 	next_color = work_next_color(wq->work_color);
3930 
3931 	if (next_color != wq->flush_color) {
3932 		/*
3933 		 * Color space is not full.  The current work_color
3934 		 * becomes our flush_color and work_color is advanced
3935 		 * by one.
3936 		 */
3937 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3938 		this_flusher.flush_color = wq->work_color;
3939 		wq->work_color = next_color;
3940 
3941 		if (!wq->first_flusher) {
3942 			/* no flush in progress, become the first flusher */
3943 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3944 
3945 			wq->first_flusher = &this_flusher;
3946 
3947 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3948 						       wq->work_color)) {
3949 				/* nothing to flush, done */
3950 				wq->flush_color = next_color;
3951 				wq->first_flusher = NULL;
3952 				goto out_unlock;
3953 			}
3954 		} else {
3955 			/* wait in queue */
3956 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3957 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3958 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3959 		}
3960 	} else {
3961 		/*
3962 		 * Oops, color space is full, wait on overflow queue.
3963 		 * The next flush completion will assign us
3964 		 * flush_color and transfer to flusher_queue.
3965 		 */
3966 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3967 	}
3968 
3969 	check_flush_dependency(wq, NULL);
3970 
3971 	mutex_unlock(&wq->mutex);
3972 
3973 	wait_for_completion(&this_flusher.done);
3974 
3975 	/*
3976 	 * Wake-up-and-cascade phase
3977 	 *
3978 	 * First flushers are responsible for cascading flushes and
3979 	 * handling overflow.  Non-first flushers can simply return.
3980 	 */
3981 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3982 		return;
3983 
3984 	mutex_lock(&wq->mutex);
3985 
3986 	/* we might have raced, check again with mutex held */
3987 	if (wq->first_flusher != &this_flusher)
3988 		goto out_unlock;
3989 
3990 	WRITE_ONCE(wq->first_flusher, NULL);
3991 
3992 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3993 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3994 
3995 	while (true) {
3996 		struct wq_flusher *next, *tmp;
3997 
3998 		/* complete all the flushers sharing the current flush color */
3999 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4000 			if (next->flush_color != wq->flush_color)
4001 				break;
4002 			list_del_init(&next->list);
4003 			complete(&next->done);
4004 		}
4005 
4006 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4007 			     wq->flush_color != work_next_color(wq->work_color));
4008 
4009 		/* this flush_color is finished, advance by one */
4010 		wq->flush_color = work_next_color(wq->flush_color);
4011 
4012 		/* one color has been freed, handle overflow queue */
4013 		if (!list_empty(&wq->flusher_overflow)) {
4014 			/*
4015 			 * Assign the same color to all overflowed
4016 			 * flushers, advance work_color and append to
4017 			 * flusher_queue.  This is the start-to-wait
4018 			 * phase for these overflowed flushers.
4019 			 */
4020 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4021 				tmp->flush_color = wq->work_color;
4022 
4023 			wq->work_color = work_next_color(wq->work_color);
4024 
4025 			list_splice_tail_init(&wq->flusher_overflow,
4026 					      &wq->flusher_queue);
4027 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4028 		}
4029 
4030 		if (list_empty(&wq->flusher_queue)) {
4031 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4032 			break;
4033 		}
4034 
4035 		/*
4036 		 * Need to flush more colors.  Make the next flusher
4037 		 * the new first flusher and arm pwqs.
4038 		 */
4039 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4040 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4041 
4042 		list_del_init(&next->list);
4043 		wq->first_flusher = next;
4044 
4045 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4046 			break;
4047 
4048 		/*
4049 		 * Meh... this color is already done, clear first
4050 		 * flusher and repeat cascading.
4051 		 */
4052 		wq->first_flusher = NULL;
4053 	}
4054 
4055 out_unlock:
4056 	mutex_unlock(&wq->mutex);
4057 }
4058 EXPORT_SYMBOL(__flush_workqueue);
4059 
4060 /**
4061  * drain_workqueue - drain a workqueue
4062  * @wq: workqueue to drain
4063  *
4064  * Wait until the workqueue becomes empty.  While draining is in progress,
4065  * only chain queueing is allowed.  IOW, only currently pending or running
4066  * work items on @wq can queue further work items on it.  @wq is flushed
4067  * repeatedly until it becomes empty.  The number of flushing is determined
4068  * by the depth of chaining and should be relatively short.  Whine if it
4069  * takes too long.
4070  */
4071 void drain_workqueue(struct workqueue_struct *wq)
4072 {
4073 	unsigned int flush_cnt = 0;
4074 	struct pool_workqueue *pwq;
4075 
4076 	/*
4077 	 * __queue_work() needs to test whether there are drainers, is much
4078 	 * hotter than drain_workqueue() and already looks at @wq->flags.
4079 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4080 	 */
4081 	mutex_lock(&wq->mutex);
4082 	if (!wq->nr_drainers++)
4083 		wq->flags |= __WQ_DRAINING;
4084 	mutex_unlock(&wq->mutex);
4085 reflush:
4086 	__flush_workqueue(wq);
4087 
4088 	mutex_lock(&wq->mutex);
4089 
4090 	for_each_pwq(pwq, wq) {
4091 		bool drained;
4092 
4093 		raw_spin_lock_irq(&pwq->pool->lock);
4094 		drained = pwq_is_empty(pwq);
4095 		raw_spin_unlock_irq(&pwq->pool->lock);
4096 
4097 		if (drained)
4098 			continue;
4099 
4100 		if (++flush_cnt == 10 ||
4101 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4102 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4103 				wq->name, __func__, flush_cnt);
4104 
4105 		mutex_unlock(&wq->mutex);
4106 		goto reflush;
4107 	}
4108 
4109 	if (!--wq->nr_drainers)
4110 		wq->flags &= ~__WQ_DRAINING;
4111 	mutex_unlock(&wq->mutex);
4112 }
4113 EXPORT_SYMBOL_GPL(drain_workqueue);
4114 
4115 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4116 			     bool from_cancel)
4117 {
4118 	struct worker *worker = NULL;
4119 	struct worker_pool *pool;
4120 	struct pool_workqueue *pwq;
4121 	struct workqueue_struct *wq;
4122 
4123 	rcu_read_lock();
4124 	pool = get_work_pool(work);
4125 	if (!pool) {
4126 		rcu_read_unlock();
4127 		return false;
4128 	}
4129 
4130 	raw_spin_lock_irq(&pool->lock);
4131 	/* see the comment in try_to_grab_pending() with the same code */
4132 	pwq = get_work_pwq(work);
4133 	if (pwq) {
4134 		if (unlikely(pwq->pool != pool))
4135 			goto already_gone;
4136 	} else {
4137 		worker = find_worker_executing_work(pool, work);
4138 		if (!worker)
4139 			goto already_gone;
4140 		pwq = worker->current_pwq;
4141 	}
4142 
4143 	wq = pwq->wq;
4144 	check_flush_dependency(wq, work);
4145 
4146 	insert_wq_barrier(pwq, barr, work, worker);
4147 	raw_spin_unlock_irq(&pool->lock);
4148 
4149 	touch_work_lockdep_map(work, wq);
4150 
4151 	/*
4152 	 * Force a lock recursion deadlock when using flush_work() inside a
4153 	 * single-threaded or rescuer equipped workqueue.
4154 	 *
4155 	 * For single threaded workqueues the deadlock happens when the work
4156 	 * is after the work issuing the flush_work(). For rescuer equipped
4157 	 * workqueues the deadlock happens when the rescuer stalls, blocking
4158 	 * forward progress.
4159 	 */
4160 	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4161 		touch_wq_lockdep_map(wq);
4162 
4163 	rcu_read_unlock();
4164 	return true;
4165 already_gone:
4166 	raw_spin_unlock_irq(&pool->lock);
4167 	rcu_read_unlock();
4168 	return false;
4169 }
4170 
4171 static bool __flush_work(struct work_struct *work, bool from_cancel)
4172 {
4173 	struct wq_barrier barr;
4174 	unsigned long data;
4175 
4176 	if (WARN_ON(!wq_online))
4177 		return false;
4178 
4179 	if (WARN_ON(!work->func))
4180 		return false;
4181 
4182 	if (!start_flush_work(work, &barr, from_cancel))
4183 		return false;
4184 
4185 	/*
4186 	 * start_flush_work() returned %true. If @from_cancel is set, we know
4187 	 * that @work must have been executing during start_flush_work() and
4188 	 * can't currently be queued. Its data must contain OFFQ bits. If @work
4189 	 * was queued on a BH workqueue, we also know that it was running in the
4190 	 * BH context and thus can be busy-waited.
4191 	 */
4192 	data = *work_data_bits(work);
4193 	if (from_cancel &&
4194 	    !WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_BH)) {
4195 		/*
4196 		 * On RT, prevent a live lock when %current preempted soft
4197 		 * interrupt processing or prevents ksoftirqd from running by
4198 		 * keeping flipping BH. If the BH work item runs on a different
4199 		 * CPU then this has no effect other than doing the BH
4200 		 * disable/enable dance for nothing. This is copied from
4201 		 * kernel/softirq.c::tasklet_unlock_spin_wait().
4202 		 */
4203 		while (!try_wait_for_completion(&barr.done)) {
4204 			if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4205 				local_bh_disable();
4206 				local_bh_enable();
4207 			} else {
4208 				cpu_relax();
4209 			}
4210 		}
4211 	} else {
4212 		wait_for_completion(&barr.done);
4213 	}
4214 
4215 	destroy_work_on_stack(&barr.work);
4216 	return true;
4217 }
4218 
4219 /**
4220  * flush_work - wait for a work to finish executing the last queueing instance
4221  * @work: the work to flush
4222  *
4223  * Wait until @work has finished execution.  @work is guaranteed to be idle
4224  * on return if it hasn't been requeued since flush started.
4225  *
4226  * Return:
4227  * %true if flush_work() waited for the work to finish execution,
4228  * %false if it was already idle.
4229  */
4230 bool flush_work(struct work_struct *work)
4231 {
4232 	might_sleep();
4233 	return __flush_work(work, false);
4234 }
4235 EXPORT_SYMBOL_GPL(flush_work);
4236 
4237 /**
4238  * flush_delayed_work - wait for a dwork to finish executing the last queueing
4239  * @dwork: the delayed work to flush
4240  *
4241  * Delayed timer is cancelled and the pending work is queued for
4242  * immediate execution.  Like flush_work(), this function only
4243  * considers the last queueing instance of @dwork.
4244  *
4245  * Return:
4246  * %true if flush_work() waited for the work to finish execution,
4247  * %false if it was already idle.
4248  */
4249 bool flush_delayed_work(struct delayed_work *dwork)
4250 {
4251 	local_irq_disable();
4252 	if (del_timer_sync(&dwork->timer))
4253 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4254 	local_irq_enable();
4255 	return flush_work(&dwork->work);
4256 }
4257 EXPORT_SYMBOL(flush_delayed_work);
4258 
4259 /**
4260  * flush_rcu_work - wait for a rwork to finish executing the last queueing
4261  * @rwork: the rcu work to flush
4262  *
4263  * Return:
4264  * %true if flush_rcu_work() waited for the work to finish execution,
4265  * %false if it was already idle.
4266  */
4267 bool flush_rcu_work(struct rcu_work *rwork)
4268 {
4269 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4270 		rcu_barrier();
4271 		flush_work(&rwork->work);
4272 		return true;
4273 	} else {
4274 		return flush_work(&rwork->work);
4275 	}
4276 }
4277 EXPORT_SYMBOL(flush_rcu_work);
4278 
4279 static void work_offqd_disable(struct work_offq_data *offqd)
4280 {
4281 	const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4282 
4283 	if (likely(offqd->disable < max))
4284 		offqd->disable++;
4285 	else
4286 		WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4287 }
4288 
4289 static void work_offqd_enable(struct work_offq_data *offqd)
4290 {
4291 	if (likely(offqd->disable > 0))
4292 		offqd->disable--;
4293 	else
4294 		WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4295 }
4296 
4297 static bool __cancel_work(struct work_struct *work, u32 cflags)
4298 {
4299 	struct work_offq_data offqd;
4300 	unsigned long irq_flags;
4301 	int ret;
4302 
4303 	ret = work_grab_pending(work, cflags, &irq_flags);
4304 
4305 	work_offqd_unpack(&offqd, *work_data_bits(work));
4306 
4307 	if (cflags & WORK_CANCEL_DISABLE)
4308 		work_offqd_disable(&offqd);
4309 
4310 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4311 					work_offqd_pack_flags(&offqd));
4312 	local_irq_restore(irq_flags);
4313 	return ret;
4314 }
4315 
4316 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4317 {
4318 	bool ret;
4319 
4320 	ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4321 
4322 	if (*work_data_bits(work) & WORK_OFFQ_BH)
4323 		WARN_ON_ONCE(in_hardirq());
4324 	else
4325 		might_sleep();
4326 
4327 	/*
4328 	 * Skip __flush_work() during early boot when we know that @work isn't
4329 	 * executing. This allows canceling during early boot.
4330 	 */
4331 	if (wq_online)
4332 		__flush_work(work, true);
4333 
4334 	if (!(cflags & WORK_CANCEL_DISABLE))
4335 		enable_work(work);
4336 
4337 	return ret;
4338 }
4339 
4340 /*
4341  * See cancel_delayed_work()
4342  */
4343 bool cancel_work(struct work_struct *work)
4344 {
4345 	return __cancel_work(work, 0);
4346 }
4347 EXPORT_SYMBOL(cancel_work);
4348 
4349 /**
4350  * cancel_work_sync - cancel a work and wait for it to finish
4351  * @work: the work to cancel
4352  *
4353  * Cancel @work and wait for its execution to finish. This function can be used
4354  * even if the work re-queues itself or migrates to another workqueue. On return
4355  * from this function, @work is guaranteed to be not pending or executing on any
4356  * CPU as long as there aren't racing enqueues.
4357  *
4358  * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4359  * Use cancel_delayed_work_sync() instead.
4360  *
4361  * Must be called from a sleepable context if @work was last queued on a non-BH
4362  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4363  * if @work was last queued on a BH workqueue.
4364  *
4365  * Returns %true if @work was pending, %false otherwise.
4366  */
4367 bool cancel_work_sync(struct work_struct *work)
4368 {
4369 	return __cancel_work_sync(work, 0);
4370 }
4371 EXPORT_SYMBOL_GPL(cancel_work_sync);
4372 
4373 /**
4374  * cancel_delayed_work - cancel a delayed work
4375  * @dwork: delayed_work to cancel
4376  *
4377  * Kill off a pending delayed_work.
4378  *
4379  * Return: %true if @dwork was pending and canceled; %false if it wasn't
4380  * pending.
4381  *
4382  * Note:
4383  * The work callback function may still be running on return, unless
4384  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4385  * use cancel_delayed_work_sync() to wait on it.
4386  *
4387  * This function is safe to call from any context including IRQ handler.
4388  */
4389 bool cancel_delayed_work(struct delayed_work *dwork)
4390 {
4391 	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4392 }
4393 EXPORT_SYMBOL(cancel_delayed_work);
4394 
4395 /**
4396  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4397  * @dwork: the delayed work cancel
4398  *
4399  * This is cancel_work_sync() for delayed works.
4400  *
4401  * Return:
4402  * %true if @dwork was pending, %false otherwise.
4403  */
4404 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4405 {
4406 	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4407 }
4408 EXPORT_SYMBOL(cancel_delayed_work_sync);
4409 
4410 /**
4411  * disable_work - Disable and cancel a work item
4412  * @work: work item to disable
4413  *
4414  * Disable @work by incrementing its disable count and cancel it if currently
4415  * pending. As long as the disable count is non-zero, any attempt to queue @work
4416  * will fail and return %false. The maximum supported disable depth is 2 to the
4417  * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4418  *
4419  * Can be called from any context. Returns %true if @work was pending, %false
4420  * otherwise.
4421  */
4422 bool disable_work(struct work_struct *work)
4423 {
4424 	return __cancel_work(work, WORK_CANCEL_DISABLE);
4425 }
4426 EXPORT_SYMBOL_GPL(disable_work);
4427 
4428 /**
4429  * disable_work_sync - Disable, cancel and drain a work item
4430  * @work: work item to disable
4431  *
4432  * Similar to disable_work() but also wait for @work to finish if currently
4433  * executing.
4434  *
4435  * Must be called from a sleepable context if @work was last queued on a non-BH
4436  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4437  * if @work was last queued on a BH workqueue.
4438  *
4439  * Returns %true if @work was pending, %false otherwise.
4440  */
4441 bool disable_work_sync(struct work_struct *work)
4442 {
4443 	return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4444 }
4445 EXPORT_SYMBOL_GPL(disable_work_sync);
4446 
4447 /**
4448  * enable_work - Enable a work item
4449  * @work: work item to enable
4450  *
4451  * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4452  * only be queued if its disable count is 0.
4453  *
4454  * Can be called from any context. Returns %true if the disable count reached 0.
4455  * Otherwise, %false.
4456  */
4457 bool enable_work(struct work_struct *work)
4458 {
4459 	struct work_offq_data offqd;
4460 	unsigned long irq_flags;
4461 
4462 	work_grab_pending(work, 0, &irq_flags);
4463 
4464 	work_offqd_unpack(&offqd, *work_data_bits(work));
4465 	work_offqd_enable(&offqd);
4466 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4467 					work_offqd_pack_flags(&offqd));
4468 	local_irq_restore(irq_flags);
4469 
4470 	return !offqd.disable;
4471 }
4472 EXPORT_SYMBOL_GPL(enable_work);
4473 
4474 /**
4475  * disable_delayed_work - Disable and cancel a delayed work item
4476  * @dwork: delayed work item to disable
4477  *
4478  * disable_work() for delayed work items.
4479  */
4480 bool disable_delayed_work(struct delayed_work *dwork)
4481 {
4482 	return __cancel_work(&dwork->work,
4483 			     WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4484 }
4485 EXPORT_SYMBOL_GPL(disable_delayed_work);
4486 
4487 /**
4488  * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4489  * @dwork: delayed work item to disable
4490  *
4491  * disable_work_sync() for delayed work items.
4492  */
4493 bool disable_delayed_work_sync(struct delayed_work *dwork)
4494 {
4495 	return __cancel_work_sync(&dwork->work,
4496 				  WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4497 }
4498 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4499 
4500 /**
4501  * enable_delayed_work - Enable a delayed work item
4502  * @dwork: delayed work item to enable
4503  *
4504  * enable_work() for delayed work items.
4505  */
4506 bool enable_delayed_work(struct delayed_work *dwork)
4507 {
4508 	return enable_work(&dwork->work);
4509 }
4510 EXPORT_SYMBOL_GPL(enable_delayed_work);
4511 
4512 /**
4513  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4514  * @func: the function to call
4515  *
4516  * schedule_on_each_cpu() executes @func on each online CPU using the
4517  * system workqueue and blocks until all CPUs have completed.
4518  * schedule_on_each_cpu() is very slow.
4519  *
4520  * Return:
4521  * 0 on success, -errno on failure.
4522  */
4523 int schedule_on_each_cpu(work_func_t func)
4524 {
4525 	int cpu;
4526 	struct work_struct __percpu *works;
4527 
4528 	works = alloc_percpu(struct work_struct);
4529 	if (!works)
4530 		return -ENOMEM;
4531 
4532 	cpus_read_lock();
4533 
4534 	for_each_online_cpu(cpu) {
4535 		struct work_struct *work = per_cpu_ptr(works, cpu);
4536 
4537 		INIT_WORK(work, func);
4538 		schedule_work_on(cpu, work);
4539 	}
4540 
4541 	for_each_online_cpu(cpu)
4542 		flush_work(per_cpu_ptr(works, cpu));
4543 
4544 	cpus_read_unlock();
4545 	free_percpu(works);
4546 	return 0;
4547 }
4548 
4549 /**
4550  * execute_in_process_context - reliably execute the routine with user context
4551  * @fn:		the function to execute
4552  * @ew:		guaranteed storage for the execute work structure (must
4553  *		be available when the work executes)
4554  *
4555  * Executes the function immediately if process context is available,
4556  * otherwise schedules the function for delayed execution.
4557  *
4558  * Return:	0 - function was executed
4559  *		1 - function was scheduled for execution
4560  */
4561 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4562 {
4563 	if (!in_interrupt()) {
4564 		fn(&ew->work);
4565 		return 0;
4566 	}
4567 
4568 	INIT_WORK(&ew->work, fn);
4569 	schedule_work(&ew->work);
4570 
4571 	return 1;
4572 }
4573 EXPORT_SYMBOL_GPL(execute_in_process_context);
4574 
4575 /**
4576  * free_workqueue_attrs - free a workqueue_attrs
4577  * @attrs: workqueue_attrs to free
4578  *
4579  * Undo alloc_workqueue_attrs().
4580  */
4581 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4582 {
4583 	if (attrs) {
4584 		free_cpumask_var(attrs->cpumask);
4585 		free_cpumask_var(attrs->__pod_cpumask);
4586 		kfree(attrs);
4587 	}
4588 }
4589 
4590 /**
4591  * alloc_workqueue_attrs - allocate a workqueue_attrs
4592  *
4593  * Allocate a new workqueue_attrs, initialize with default settings and
4594  * return it.
4595  *
4596  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4597  */
4598 struct workqueue_attrs *alloc_workqueue_attrs(void)
4599 {
4600 	struct workqueue_attrs *attrs;
4601 
4602 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4603 	if (!attrs)
4604 		goto fail;
4605 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4606 		goto fail;
4607 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4608 		goto fail;
4609 
4610 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4611 	attrs->affn_scope = WQ_AFFN_DFL;
4612 	return attrs;
4613 fail:
4614 	free_workqueue_attrs(attrs);
4615 	return NULL;
4616 }
4617 
4618 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4619 				 const struct workqueue_attrs *from)
4620 {
4621 	to->nice = from->nice;
4622 	cpumask_copy(to->cpumask, from->cpumask);
4623 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4624 	to->affn_strict = from->affn_strict;
4625 
4626 	/*
4627 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4628 	 * fields as copying is used for both pool and wq attrs. Instead,
4629 	 * get_unbound_pool() explicitly clears the fields.
4630 	 */
4631 	to->affn_scope = from->affn_scope;
4632 	to->ordered = from->ordered;
4633 }
4634 
4635 /*
4636  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4637  * comments in 'struct workqueue_attrs' definition.
4638  */
4639 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4640 {
4641 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4642 	attrs->ordered = false;
4643 	if (attrs->affn_strict)
4644 		cpumask_copy(attrs->cpumask, cpu_possible_mask);
4645 }
4646 
4647 /* hash value of the content of @attr */
4648 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4649 {
4650 	u32 hash = 0;
4651 
4652 	hash = jhash_1word(attrs->nice, hash);
4653 	hash = jhash_1word(attrs->affn_strict, hash);
4654 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4655 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4656 	if (!attrs->affn_strict)
4657 		hash = jhash(cpumask_bits(attrs->cpumask),
4658 			     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4659 	return hash;
4660 }
4661 
4662 /* content equality test */
4663 static bool wqattrs_equal(const struct workqueue_attrs *a,
4664 			  const struct workqueue_attrs *b)
4665 {
4666 	if (a->nice != b->nice)
4667 		return false;
4668 	if (a->affn_strict != b->affn_strict)
4669 		return false;
4670 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4671 		return false;
4672 	if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4673 		return false;
4674 	return true;
4675 }
4676 
4677 /* Update @attrs with actually available CPUs */
4678 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4679 				      const cpumask_t *unbound_cpumask)
4680 {
4681 	/*
4682 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4683 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4684 	 * @unbound_cpumask.
4685 	 */
4686 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4687 	if (unlikely(cpumask_empty(attrs->cpumask)))
4688 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4689 }
4690 
4691 /* find wq_pod_type to use for @attrs */
4692 static const struct wq_pod_type *
4693 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4694 {
4695 	enum wq_affn_scope scope;
4696 	struct wq_pod_type *pt;
4697 
4698 	/* to synchronize access to wq_affn_dfl */
4699 	lockdep_assert_held(&wq_pool_mutex);
4700 
4701 	if (attrs->affn_scope == WQ_AFFN_DFL)
4702 		scope = wq_affn_dfl;
4703 	else
4704 		scope = attrs->affn_scope;
4705 
4706 	pt = &wq_pod_types[scope];
4707 
4708 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4709 	    likely(pt->nr_pods))
4710 		return pt;
4711 
4712 	/*
4713 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4714 	 * initialized in workqueue_init_early().
4715 	 */
4716 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4717 	BUG_ON(!pt->nr_pods);
4718 	return pt;
4719 }
4720 
4721 /**
4722  * init_worker_pool - initialize a newly zalloc'd worker_pool
4723  * @pool: worker_pool to initialize
4724  *
4725  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4726  *
4727  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4728  * inside @pool proper are initialized and put_unbound_pool() can be called
4729  * on @pool safely to release it.
4730  */
4731 static int init_worker_pool(struct worker_pool *pool)
4732 {
4733 	raw_spin_lock_init(&pool->lock);
4734 	pool->id = -1;
4735 	pool->cpu = -1;
4736 	pool->node = NUMA_NO_NODE;
4737 	pool->flags |= POOL_DISASSOCIATED;
4738 	pool->watchdog_ts = jiffies;
4739 	INIT_LIST_HEAD(&pool->worklist);
4740 	INIT_LIST_HEAD(&pool->idle_list);
4741 	hash_init(pool->busy_hash);
4742 
4743 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4744 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4745 
4746 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4747 
4748 	INIT_LIST_HEAD(&pool->workers);
4749 
4750 	ida_init(&pool->worker_ida);
4751 	INIT_HLIST_NODE(&pool->hash_node);
4752 	pool->refcnt = 1;
4753 
4754 	/* shouldn't fail above this point */
4755 	pool->attrs = alloc_workqueue_attrs();
4756 	if (!pool->attrs)
4757 		return -ENOMEM;
4758 
4759 	wqattrs_clear_for_pool(pool->attrs);
4760 
4761 	return 0;
4762 }
4763 
4764 #ifdef CONFIG_LOCKDEP
4765 static void wq_init_lockdep(struct workqueue_struct *wq)
4766 {
4767 	char *lock_name;
4768 
4769 	lockdep_register_key(&wq->key);
4770 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4771 	if (!lock_name)
4772 		lock_name = wq->name;
4773 
4774 	wq->lock_name = lock_name;
4775 	wq->lockdep_map = &wq->__lockdep_map;
4776 	lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0);
4777 }
4778 
4779 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4780 {
4781 	if (wq->lockdep_map != &wq->__lockdep_map)
4782 		return;
4783 
4784 	lockdep_unregister_key(&wq->key);
4785 }
4786 
4787 static void wq_free_lockdep(struct workqueue_struct *wq)
4788 {
4789 	if (wq->lockdep_map != &wq->__lockdep_map)
4790 		return;
4791 
4792 	if (wq->lock_name != wq->name)
4793 		kfree(wq->lock_name);
4794 }
4795 #else
4796 static void wq_init_lockdep(struct workqueue_struct *wq)
4797 {
4798 }
4799 
4800 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4801 {
4802 }
4803 
4804 static void wq_free_lockdep(struct workqueue_struct *wq)
4805 {
4806 }
4807 #endif
4808 
4809 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4810 {
4811 	int node;
4812 
4813 	for_each_node(node) {
4814 		kfree(nna_ar[node]);
4815 		nna_ar[node] = NULL;
4816 	}
4817 
4818 	kfree(nna_ar[nr_node_ids]);
4819 	nna_ar[nr_node_ids] = NULL;
4820 }
4821 
4822 static void init_node_nr_active(struct wq_node_nr_active *nna)
4823 {
4824 	nna->max = WQ_DFL_MIN_ACTIVE;
4825 	atomic_set(&nna->nr, 0);
4826 	raw_spin_lock_init(&nna->lock);
4827 	INIT_LIST_HEAD(&nna->pending_pwqs);
4828 }
4829 
4830 /*
4831  * Each node's nr_active counter will be accessed mostly from its own node and
4832  * should be allocated in the node.
4833  */
4834 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4835 {
4836 	struct wq_node_nr_active *nna;
4837 	int node;
4838 
4839 	for_each_node(node) {
4840 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4841 		if (!nna)
4842 			goto err_free;
4843 		init_node_nr_active(nna);
4844 		nna_ar[node] = nna;
4845 	}
4846 
4847 	/* [nr_node_ids] is used as the fallback */
4848 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4849 	if (!nna)
4850 		goto err_free;
4851 	init_node_nr_active(nna);
4852 	nna_ar[nr_node_ids] = nna;
4853 
4854 	return 0;
4855 
4856 err_free:
4857 	free_node_nr_active(nna_ar);
4858 	return -ENOMEM;
4859 }
4860 
4861 static void rcu_free_wq(struct rcu_head *rcu)
4862 {
4863 	struct workqueue_struct *wq =
4864 		container_of(rcu, struct workqueue_struct, rcu);
4865 
4866 	if (wq->flags & WQ_UNBOUND)
4867 		free_node_nr_active(wq->node_nr_active);
4868 
4869 	wq_free_lockdep(wq);
4870 	free_percpu(wq->cpu_pwq);
4871 	free_workqueue_attrs(wq->unbound_attrs);
4872 	kfree(wq);
4873 }
4874 
4875 static void rcu_free_pool(struct rcu_head *rcu)
4876 {
4877 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4878 
4879 	ida_destroy(&pool->worker_ida);
4880 	free_workqueue_attrs(pool->attrs);
4881 	kfree(pool);
4882 }
4883 
4884 /**
4885  * put_unbound_pool - put a worker_pool
4886  * @pool: worker_pool to put
4887  *
4888  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4889  * safe manner.  get_unbound_pool() calls this function on its failure path
4890  * and this function should be able to release pools which went through,
4891  * successfully or not, init_worker_pool().
4892  *
4893  * Should be called with wq_pool_mutex held.
4894  */
4895 static void put_unbound_pool(struct worker_pool *pool)
4896 {
4897 	struct worker *worker;
4898 	LIST_HEAD(cull_list);
4899 
4900 	lockdep_assert_held(&wq_pool_mutex);
4901 
4902 	if (--pool->refcnt)
4903 		return;
4904 
4905 	/* sanity checks */
4906 	if (WARN_ON(!(pool->cpu < 0)) ||
4907 	    WARN_ON(!list_empty(&pool->worklist)))
4908 		return;
4909 
4910 	/* release id and unhash */
4911 	if (pool->id >= 0)
4912 		idr_remove(&worker_pool_idr, pool->id);
4913 	hash_del(&pool->hash_node);
4914 
4915 	/*
4916 	 * Become the manager and destroy all workers.  This prevents
4917 	 * @pool's workers from blocking on attach_mutex.  We're the last
4918 	 * manager and @pool gets freed with the flag set.
4919 	 *
4920 	 * Having a concurrent manager is quite unlikely to happen as we can
4921 	 * only get here with
4922 	 *   pwq->refcnt == pool->refcnt == 0
4923 	 * which implies no work queued to the pool, which implies no worker can
4924 	 * become the manager. However a worker could have taken the role of
4925 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4926 	 * drops pool->lock
4927 	 */
4928 	while (true) {
4929 		rcuwait_wait_event(&manager_wait,
4930 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4931 				   TASK_UNINTERRUPTIBLE);
4932 
4933 		mutex_lock(&wq_pool_attach_mutex);
4934 		raw_spin_lock_irq(&pool->lock);
4935 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4936 			pool->flags |= POOL_MANAGER_ACTIVE;
4937 			break;
4938 		}
4939 		raw_spin_unlock_irq(&pool->lock);
4940 		mutex_unlock(&wq_pool_attach_mutex);
4941 	}
4942 
4943 	while ((worker = first_idle_worker(pool)))
4944 		set_worker_dying(worker, &cull_list);
4945 	WARN_ON(pool->nr_workers || pool->nr_idle);
4946 	raw_spin_unlock_irq(&pool->lock);
4947 
4948 	detach_dying_workers(&cull_list);
4949 
4950 	mutex_unlock(&wq_pool_attach_mutex);
4951 
4952 	reap_dying_workers(&cull_list);
4953 
4954 	/* shut down the timers */
4955 	del_timer_sync(&pool->idle_timer);
4956 	cancel_work_sync(&pool->idle_cull_work);
4957 	del_timer_sync(&pool->mayday_timer);
4958 
4959 	/* RCU protected to allow dereferences from get_work_pool() */
4960 	call_rcu(&pool->rcu, rcu_free_pool);
4961 }
4962 
4963 /**
4964  * get_unbound_pool - get a worker_pool with the specified attributes
4965  * @attrs: the attributes of the worker_pool to get
4966  *
4967  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4968  * reference count and return it.  If there already is a matching
4969  * worker_pool, it will be used; otherwise, this function attempts to
4970  * create a new one.
4971  *
4972  * Should be called with wq_pool_mutex held.
4973  *
4974  * Return: On success, a worker_pool with the same attributes as @attrs.
4975  * On failure, %NULL.
4976  */
4977 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4978 {
4979 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4980 	u32 hash = wqattrs_hash(attrs);
4981 	struct worker_pool *pool;
4982 	int pod, node = NUMA_NO_NODE;
4983 
4984 	lockdep_assert_held(&wq_pool_mutex);
4985 
4986 	/* do we already have a matching pool? */
4987 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4988 		if (wqattrs_equal(pool->attrs, attrs)) {
4989 			pool->refcnt++;
4990 			return pool;
4991 		}
4992 	}
4993 
4994 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4995 	for (pod = 0; pod < pt->nr_pods; pod++) {
4996 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4997 			node = pt->pod_node[pod];
4998 			break;
4999 		}
5000 	}
5001 
5002 	/* nope, create a new one */
5003 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5004 	if (!pool || init_worker_pool(pool) < 0)
5005 		goto fail;
5006 
5007 	pool->node = node;
5008 	copy_workqueue_attrs(pool->attrs, attrs);
5009 	wqattrs_clear_for_pool(pool->attrs);
5010 
5011 	if (worker_pool_assign_id(pool) < 0)
5012 		goto fail;
5013 
5014 	/* create and start the initial worker */
5015 	if (wq_online && !create_worker(pool))
5016 		goto fail;
5017 
5018 	/* install */
5019 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
5020 
5021 	return pool;
5022 fail:
5023 	if (pool)
5024 		put_unbound_pool(pool);
5025 	return NULL;
5026 }
5027 
5028 /*
5029  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5030  * refcnt and needs to be destroyed.
5031  */
5032 static void pwq_release_workfn(struct kthread_work *work)
5033 {
5034 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5035 						  release_work);
5036 	struct workqueue_struct *wq = pwq->wq;
5037 	struct worker_pool *pool = pwq->pool;
5038 	bool is_last = false;
5039 
5040 	/*
5041 	 * When @pwq is not linked, it doesn't hold any reference to the
5042 	 * @wq, and @wq is invalid to access.
5043 	 */
5044 	if (!list_empty(&pwq->pwqs_node)) {
5045 		mutex_lock(&wq->mutex);
5046 		list_del_rcu(&pwq->pwqs_node);
5047 		is_last = list_empty(&wq->pwqs);
5048 
5049 		/*
5050 		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5051 		 */
5052 		if (!is_last && (wq->flags & __WQ_ORDERED))
5053 			unplug_oldest_pwq(wq);
5054 
5055 		mutex_unlock(&wq->mutex);
5056 	}
5057 
5058 	if (wq->flags & WQ_UNBOUND) {
5059 		mutex_lock(&wq_pool_mutex);
5060 		put_unbound_pool(pool);
5061 		mutex_unlock(&wq_pool_mutex);
5062 	}
5063 
5064 	if (!list_empty(&pwq->pending_node)) {
5065 		struct wq_node_nr_active *nna =
5066 			wq_node_nr_active(pwq->wq, pwq->pool->node);
5067 
5068 		raw_spin_lock_irq(&nna->lock);
5069 		list_del_init(&pwq->pending_node);
5070 		raw_spin_unlock_irq(&nna->lock);
5071 	}
5072 
5073 	kfree_rcu(pwq, rcu);
5074 
5075 	/*
5076 	 * If we're the last pwq going away, @wq is already dead and no one
5077 	 * is gonna access it anymore.  Schedule RCU free.
5078 	 */
5079 	if (is_last) {
5080 		wq_unregister_lockdep(wq);
5081 		call_rcu(&wq->rcu, rcu_free_wq);
5082 	}
5083 }
5084 
5085 /* initialize newly allocated @pwq which is associated with @wq and @pool */
5086 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5087 		     struct worker_pool *pool)
5088 {
5089 	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5090 
5091 	memset(pwq, 0, sizeof(*pwq));
5092 
5093 	pwq->pool = pool;
5094 	pwq->wq = wq;
5095 	pwq->flush_color = -1;
5096 	pwq->refcnt = 1;
5097 	INIT_LIST_HEAD(&pwq->inactive_works);
5098 	INIT_LIST_HEAD(&pwq->pending_node);
5099 	INIT_LIST_HEAD(&pwq->pwqs_node);
5100 	INIT_LIST_HEAD(&pwq->mayday_node);
5101 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
5102 }
5103 
5104 /* sync @pwq with the current state of its associated wq and link it */
5105 static void link_pwq(struct pool_workqueue *pwq)
5106 {
5107 	struct workqueue_struct *wq = pwq->wq;
5108 
5109 	lockdep_assert_held(&wq->mutex);
5110 
5111 	/* may be called multiple times, ignore if already linked */
5112 	if (!list_empty(&pwq->pwqs_node))
5113 		return;
5114 
5115 	/* set the matching work_color */
5116 	pwq->work_color = wq->work_color;
5117 
5118 	/* link in @pwq */
5119 	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5120 }
5121 
5122 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5123 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5124 					const struct workqueue_attrs *attrs)
5125 {
5126 	struct worker_pool *pool;
5127 	struct pool_workqueue *pwq;
5128 
5129 	lockdep_assert_held(&wq_pool_mutex);
5130 
5131 	pool = get_unbound_pool(attrs);
5132 	if (!pool)
5133 		return NULL;
5134 
5135 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5136 	if (!pwq) {
5137 		put_unbound_pool(pool);
5138 		return NULL;
5139 	}
5140 
5141 	init_pwq(pwq, wq, pool);
5142 	return pwq;
5143 }
5144 
5145 static void apply_wqattrs_lock(void)
5146 {
5147 	mutex_lock(&wq_pool_mutex);
5148 }
5149 
5150 static void apply_wqattrs_unlock(void)
5151 {
5152 	mutex_unlock(&wq_pool_mutex);
5153 }
5154 
5155 /**
5156  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5157  * @attrs: the wq_attrs of the default pwq of the target workqueue
5158  * @cpu: the target CPU
5159  *
5160  * Calculate the cpumask a workqueue with @attrs should use on @pod.
5161  * The result is stored in @attrs->__pod_cpumask.
5162  *
5163  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5164  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5165  * intersection of the possible CPUs of @pod and @attrs->cpumask.
5166  *
5167  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5168  */
5169 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5170 {
5171 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5172 	int pod = pt->cpu_pod[cpu];
5173 
5174 	/* calculate possible CPUs in @pod that @attrs wants */
5175 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5176 	/* does @pod have any online CPUs @attrs wants? */
5177 	if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5178 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5179 		return;
5180 	}
5181 }
5182 
5183 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
5184 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5185 					int cpu, struct pool_workqueue *pwq)
5186 {
5187 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5188 	struct pool_workqueue *old_pwq;
5189 
5190 	lockdep_assert_held(&wq_pool_mutex);
5191 	lockdep_assert_held(&wq->mutex);
5192 
5193 	/* link_pwq() can handle duplicate calls */
5194 	link_pwq(pwq);
5195 
5196 	old_pwq = rcu_access_pointer(*slot);
5197 	rcu_assign_pointer(*slot, pwq);
5198 	return old_pwq;
5199 }
5200 
5201 /* context to store the prepared attrs & pwqs before applying */
5202 struct apply_wqattrs_ctx {
5203 	struct workqueue_struct	*wq;		/* target workqueue */
5204 	struct workqueue_attrs	*attrs;		/* attrs to apply */
5205 	struct list_head	list;		/* queued for batching commit */
5206 	struct pool_workqueue	*dfl_pwq;
5207 	struct pool_workqueue	*pwq_tbl[];
5208 };
5209 
5210 /* free the resources after success or abort */
5211 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5212 {
5213 	if (ctx) {
5214 		int cpu;
5215 
5216 		for_each_possible_cpu(cpu)
5217 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5218 		put_pwq_unlocked(ctx->dfl_pwq);
5219 
5220 		free_workqueue_attrs(ctx->attrs);
5221 
5222 		kfree(ctx);
5223 	}
5224 }
5225 
5226 /* allocate the attrs and pwqs for later installation */
5227 static struct apply_wqattrs_ctx *
5228 apply_wqattrs_prepare(struct workqueue_struct *wq,
5229 		      const struct workqueue_attrs *attrs,
5230 		      const cpumask_var_t unbound_cpumask)
5231 {
5232 	struct apply_wqattrs_ctx *ctx;
5233 	struct workqueue_attrs *new_attrs;
5234 	int cpu;
5235 
5236 	lockdep_assert_held(&wq_pool_mutex);
5237 
5238 	if (WARN_ON(attrs->affn_scope < 0 ||
5239 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5240 		return ERR_PTR(-EINVAL);
5241 
5242 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5243 
5244 	new_attrs = alloc_workqueue_attrs();
5245 	if (!ctx || !new_attrs)
5246 		goto out_free;
5247 
5248 	/*
5249 	 * If something goes wrong during CPU up/down, we'll fall back to
5250 	 * the default pwq covering whole @attrs->cpumask.  Always create
5251 	 * it even if we don't use it immediately.
5252 	 */
5253 	copy_workqueue_attrs(new_attrs, attrs);
5254 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5255 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5256 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5257 	if (!ctx->dfl_pwq)
5258 		goto out_free;
5259 
5260 	for_each_possible_cpu(cpu) {
5261 		if (new_attrs->ordered) {
5262 			ctx->dfl_pwq->refcnt++;
5263 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5264 		} else {
5265 			wq_calc_pod_cpumask(new_attrs, cpu);
5266 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5267 			if (!ctx->pwq_tbl[cpu])
5268 				goto out_free;
5269 		}
5270 	}
5271 
5272 	/* save the user configured attrs and sanitize it. */
5273 	copy_workqueue_attrs(new_attrs, attrs);
5274 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5275 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5276 	ctx->attrs = new_attrs;
5277 
5278 	/*
5279 	 * For initialized ordered workqueues, there should only be one pwq
5280 	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5281 	 * of newly queued work items until execution of older work items in
5282 	 * the old pwq's have completed.
5283 	 */
5284 	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5285 		ctx->dfl_pwq->plugged = true;
5286 
5287 	ctx->wq = wq;
5288 	return ctx;
5289 
5290 out_free:
5291 	free_workqueue_attrs(new_attrs);
5292 	apply_wqattrs_cleanup(ctx);
5293 	return ERR_PTR(-ENOMEM);
5294 }
5295 
5296 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5297 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5298 {
5299 	int cpu;
5300 
5301 	/* all pwqs have been created successfully, let's install'em */
5302 	mutex_lock(&ctx->wq->mutex);
5303 
5304 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5305 
5306 	/* save the previous pwqs and install the new ones */
5307 	for_each_possible_cpu(cpu)
5308 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5309 							ctx->pwq_tbl[cpu]);
5310 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5311 
5312 	/* update node_nr_active->max */
5313 	wq_update_node_max_active(ctx->wq, -1);
5314 
5315 	/* rescuer needs to respect wq cpumask changes */
5316 	if (ctx->wq->rescuer)
5317 		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5318 				     unbound_effective_cpumask(ctx->wq));
5319 
5320 	mutex_unlock(&ctx->wq->mutex);
5321 }
5322 
5323 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5324 					const struct workqueue_attrs *attrs)
5325 {
5326 	struct apply_wqattrs_ctx *ctx;
5327 
5328 	/* only unbound workqueues can change attributes */
5329 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5330 		return -EINVAL;
5331 
5332 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5333 	if (IS_ERR(ctx))
5334 		return PTR_ERR(ctx);
5335 
5336 	/* the ctx has been prepared successfully, let's commit it */
5337 	apply_wqattrs_commit(ctx);
5338 	apply_wqattrs_cleanup(ctx);
5339 
5340 	return 0;
5341 }
5342 
5343 /**
5344  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5345  * @wq: the target workqueue
5346  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5347  *
5348  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5349  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5350  * work items are affine to the pod it was issued on. Older pwqs are released as
5351  * in-flight work items finish. Note that a work item which repeatedly requeues
5352  * itself back-to-back will stay on its current pwq.
5353  *
5354  * Performs GFP_KERNEL allocations.
5355  *
5356  * Return: 0 on success and -errno on failure.
5357  */
5358 int apply_workqueue_attrs(struct workqueue_struct *wq,
5359 			  const struct workqueue_attrs *attrs)
5360 {
5361 	int ret;
5362 
5363 	mutex_lock(&wq_pool_mutex);
5364 	ret = apply_workqueue_attrs_locked(wq, attrs);
5365 	mutex_unlock(&wq_pool_mutex);
5366 
5367 	return ret;
5368 }
5369 
5370 /**
5371  * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5372  * @wq: the target workqueue
5373  * @cpu: the CPU to update the pwq slot for
5374  *
5375  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5376  * %CPU_DOWN_FAILED.  @cpu is in the same pod of the CPU being hot[un]plugged.
5377  *
5378  *
5379  * If pod affinity can't be adjusted due to memory allocation failure, it falls
5380  * back to @wq->dfl_pwq which may not be optimal but is always correct.
5381  *
5382  * Note that when the last allowed CPU of a pod goes offline for a workqueue
5383  * with a cpumask spanning multiple pods, the workers which were already
5384  * executing the work items for the workqueue will lose their CPU affinity and
5385  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5386  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5387  * responsibility to flush the work item from CPU_DOWN_PREPARE.
5388  */
5389 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5390 {
5391 	struct pool_workqueue *old_pwq = NULL, *pwq;
5392 	struct workqueue_attrs *target_attrs;
5393 
5394 	lockdep_assert_held(&wq_pool_mutex);
5395 
5396 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5397 		return;
5398 
5399 	/*
5400 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5401 	 * Let's use a preallocated one.  The following buf is protected by
5402 	 * CPU hotplug exclusion.
5403 	 */
5404 	target_attrs = unbound_wq_update_pwq_attrs_buf;
5405 
5406 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5407 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5408 
5409 	/* nothing to do if the target cpumask matches the current pwq */
5410 	wq_calc_pod_cpumask(target_attrs, cpu);
5411 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5412 		return;
5413 
5414 	/* create a new pwq */
5415 	pwq = alloc_unbound_pwq(wq, target_attrs);
5416 	if (!pwq) {
5417 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5418 			wq->name);
5419 		goto use_dfl_pwq;
5420 	}
5421 
5422 	/* Install the new pwq. */
5423 	mutex_lock(&wq->mutex);
5424 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5425 	goto out_unlock;
5426 
5427 use_dfl_pwq:
5428 	mutex_lock(&wq->mutex);
5429 	pwq = unbound_pwq(wq, -1);
5430 	raw_spin_lock_irq(&pwq->pool->lock);
5431 	get_pwq(pwq);
5432 	raw_spin_unlock_irq(&pwq->pool->lock);
5433 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5434 out_unlock:
5435 	mutex_unlock(&wq->mutex);
5436 	put_pwq_unlocked(old_pwq);
5437 }
5438 
5439 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5440 {
5441 	bool highpri = wq->flags & WQ_HIGHPRI;
5442 	int cpu, ret;
5443 
5444 	lockdep_assert_held(&wq_pool_mutex);
5445 
5446 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5447 	if (!wq->cpu_pwq)
5448 		goto enomem;
5449 
5450 	if (!(wq->flags & WQ_UNBOUND)) {
5451 		struct worker_pool __percpu *pools;
5452 
5453 		if (wq->flags & WQ_BH)
5454 			pools = bh_worker_pools;
5455 		else
5456 			pools = cpu_worker_pools;
5457 
5458 		for_each_possible_cpu(cpu) {
5459 			struct pool_workqueue **pwq_p;
5460 			struct worker_pool *pool;
5461 
5462 			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5463 			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5464 
5465 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5466 						       pool->node);
5467 			if (!*pwq_p)
5468 				goto enomem;
5469 
5470 			init_pwq(*pwq_p, wq, pool);
5471 
5472 			mutex_lock(&wq->mutex);
5473 			link_pwq(*pwq_p);
5474 			mutex_unlock(&wq->mutex);
5475 		}
5476 		return 0;
5477 	}
5478 
5479 	if (wq->flags & __WQ_ORDERED) {
5480 		struct pool_workqueue *dfl_pwq;
5481 
5482 		ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5483 		/* there should only be single pwq for ordering guarantee */
5484 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5485 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5486 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5487 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5488 	} else {
5489 		ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5490 	}
5491 
5492 	return ret;
5493 
5494 enomem:
5495 	if (wq->cpu_pwq) {
5496 		for_each_possible_cpu(cpu) {
5497 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5498 
5499 			if (pwq)
5500 				kmem_cache_free(pwq_cache, pwq);
5501 		}
5502 		free_percpu(wq->cpu_pwq);
5503 		wq->cpu_pwq = NULL;
5504 	}
5505 	return -ENOMEM;
5506 }
5507 
5508 static int wq_clamp_max_active(int max_active, unsigned int flags,
5509 			       const char *name)
5510 {
5511 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5512 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5513 			max_active, name, 1, WQ_MAX_ACTIVE);
5514 
5515 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5516 }
5517 
5518 /*
5519  * Workqueues which may be used during memory reclaim should have a rescuer
5520  * to guarantee forward progress.
5521  */
5522 static int init_rescuer(struct workqueue_struct *wq)
5523 {
5524 	struct worker *rescuer;
5525 	char id_buf[WORKER_ID_LEN];
5526 	int ret;
5527 
5528 	lockdep_assert_held(&wq_pool_mutex);
5529 
5530 	if (!(wq->flags & WQ_MEM_RECLAIM))
5531 		return 0;
5532 
5533 	rescuer = alloc_worker(NUMA_NO_NODE);
5534 	if (!rescuer) {
5535 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5536 		       wq->name);
5537 		return -ENOMEM;
5538 	}
5539 
5540 	rescuer->rescue_wq = wq;
5541 	format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5542 
5543 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
5544 	if (IS_ERR(rescuer->task)) {
5545 		ret = PTR_ERR(rescuer->task);
5546 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5547 		       wq->name, ERR_PTR(ret));
5548 		kfree(rescuer);
5549 		return ret;
5550 	}
5551 
5552 	wq->rescuer = rescuer;
5553 	if (wq->flags & WQ_UNBOUND)
5554 		kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq));
5555 	else
5556 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5557 	wake_up_process(rescuer->task);
5558 
5559 	return 0;
5560 }
5561 
5562 /**
5563  * wq_adjust_max_active - update a wq's max_active to the current setting
5564  * @wq: target workqueue
5565  *
5566  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5567  * activate inactive work items accordingly. If @wq is freezing, clear
5568  * @wq->max_active to zero.
5569  */
5570 static void wq_adjust_max_active(struct workqueue_struct *wq)
5571 {
5572 	bool activated;
5573 	int new_max, new_min;
5574 
5575 	lockdep_assert_held(&wq->mutex);
5576 
5577 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5578 		new_max = 0;
5579 		new_min = 0;
5580 	} else {
5581 		new_max = wq->saved_max_active;
5582 		new_min = wq->saved_min_active;
5583 	}
5584 
5585 	if (wq->max_active == new_max && wq->min_active == new_min)
5586 		return;
5587 
5588 	/*
5589 	 * Update @wq->max/min_active and then kick inactive work items if more
5590 	 * active work items are allowed. This doesn't break work item ordering
5591 	 * because new work items are always queued behind existing inactive
5592 	 * work items if there are any.
5593 	 */
5594 	WRITE_ONCE(wq->max_active, new_max);
5595 	WRITE_ONCE(wq->min_active, new_min);
5596 
5597 	if (wq->flags & WQ_UNBOUND)
5598 		wq_update_node_max_active(wq, -1);
5599 
5600 	if (new_max == 0)
5601 		return;
5602 
5603 	/*
5604 	 * Round-robin through pwq's activating the first inactive work item
5605 	 * until max_active is filled.
5606 	 */
5607 	do {
5608 		struct pool_workqueue *pwq;
5609 
5610 		activated = false;
5611 		for_each_pwq(pwq, wq) {
5612 			unsigned long irq_flags;
5613 
5614 			/* can be called during early boot w/ irq disabled */
5615 			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5616 			if (pwq_activate_first_inactive(pwq, true)) {
5617 				activated = true;
5618 				kick_pool(pwq->pool);
5619 			}
5620 			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5621 		}
5622 	} while (activated);
5623 }
5624 
5625 static struct workqueue_struct *__alloc_workqueue(const char *fmt,
5626 						  unsigned int flags,
5627 						  int max_active, va_list args)
5628 {
5629 	struct workqueue_struct *wq;
5630 	size_t wq_size;
5631 	int name_len;
5632 
5633 	if (flags & WQ_BH) {
5634 		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5635 			return NULL;
5636 		if (WARN_ON_ONCE(max_active))
5637 			return NULL;
5638 	}
5639 
5640 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5641 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5642 		flags |= WQ_UNBOUND;
5643 
5644 	/* allocate wq and format name */
5645 	if (flags & WQ_UNBOUND)
5646 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5647 	else
5648 		wq_size = sizeof(*wq);
5649 
5650 	wq = kzalloc(wq_size, GFP_KERNEL);
5651 	if (!wq)
5652 		return NULL;
5653 
5654 	if (flags & WQ_UNBOUND) {
5655 		wq->unbound_attrs = alloc_workqueue_attrs();
5656 		if (!wq->unbound_attrs)
5657 			goto err_free_wq;
5658 	}
5659 
5660 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5661 
5662 	if (name_len >= WQ_NAME_LEN)
5663 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5664 			     wq->name);
5665 
5666 	if (flags & WQ_BH) {
5667 		/*
5668 		 * BH workqueues always share a single execution context per CPU
5669 		 * and don't impose any max_active limit.
5670 		 */
5671 		max_active = INT_MAX;
5672 	} else {
5673 		max_active = max_active ?: WQ_DFL_ACTIVE;
5674 		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5675 	}
5676 
5677 	/* init wq */
5678 	wq->flags = flags;
5679 	wq->max_active = max_active;
5680 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5681 	wq->saved_max_active = wq->max_active;
5682 	wq->saved_min_active = wq->min_active;
5683 	mutex_init(&wq->mutex);
5684 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5685 	INIT_LIST_HEAD(&wq->pwqs);
5686 	INIT_LIST_HEAD(&wq->flusher_queue);
5687 	INIT_LIST_HEAD(&wq->flusher_overflow);
5688 	INIT_LIST_HEAD(&wq->maydays);
5689 
5690 	INIT_LIST_HEAD(&wq->list);
5691 
5692 	if (flags & WQ_UNBOUND) {
5693 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5694 			goto err_free_wq;
5695 	}
5696 
5697 	/*
5698 	 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5699 	 * and the global freeze state.
5700 	 */
5701 	apply_wqattrs_lock();
5702 
5703 	if (alloc_and_link_pwqs(wq) < 0)
5704 		goto err_unlock_free_node_nr_active;
5705 
5706 	mutex_lock(&wq->mutex);
5707 	wq_adjust_max_active(wq);
5708 	mutex_unlock(&wq->mutex);
5709 
5710 	list_add_tail_rcu(&wq->list, &workqueues);
5711 
5712 	if (wq_online && init_rescuer(wq) < 0)
5713 		goto err_unlock_destroy;
5714 
5715 	apply_wqattrs_unlock();
5716 
5717 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5718 		goto err_destroy;
5719 
5720 	return wq;
5721 
5722 err_unlock_free_node_nr_active:
5723 	apply_wqattrs_unlock();
5724 	/*
5725 	 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5726 	 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5727 	 * completes before calling kfree(wq).
5728 	 */
5729 	if (wq->flags & WQ_UNBOUND) {
5730 		kthread_flush_worker(pwq_release_worker);
5731 		free_node_nr_active(wq->node_nr_active);
5732 	}
5733 err_free_wq:
5734 	free_workqueue_attrs(wq->unbound_attrs);
5735 	kfree(wq);
5736 	return NULL;
5737 err_unlock_destroy:
5738 	apply_wqattrs_unlock();
5739 err_destroy:
5740 	destroy_workqueue(wq);
5741 	return NULL;
5742 }
5743 
5744 __printf(1, 4)
5745 struct workqueue_struct *alloc_workqueue(const char *fmt,
5746 					 unsigned int flags,
5747 					 int max_active, ...)
5748 {
5749 	struct workqueue_struct *wq;
5750 	va_list args;
5751 
5752 	va_start(args, max_active);
5753 	wq = __alloc_workqueue(fmt, flags, max_active, args);
5754 	va_end(args);
5755 	if (!wq)
5756 		return NULL;
5757 
5758 	wq_init_lockdep(wq);
5759 
5760 	return wq;
5761 }
5762 EXPORT_SYMBOL_GPL(alloc_workqueue);
5763 
5764 #ifdef CONFIG_LOCKDEP
5765 __printf(1, 5)
5766 struct workqueue_struct *
5767 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags,
5768 			    int max_active, struct lockdep_map *lockdep_map, ...)
5769 {
5770 	struct workqueue_struct *wq;
5771 	va_list args;
5772 
5773 	va_start(args, lockdep_map);
5774 	wq = __alloc_workqueue(fmt, flags, max_active, args);
5775 	va_end(args);
5776 	if (!wq)
5777 		return NULL;
5778 
5779 	wq->lockdep_map = lockdep_map;
5780 
5781 	return wq;
5782 }
5783 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map);
5784 #endif
5785 
5786 static bool pwq_busy(struct pool_workqueue *pwq)
5787 {
5788 	int i;
5789 
5790 	for (i = 0; i < WORK_NR_COLORS; i++)
5791 		if (pwq->nr_in_flight[i])
5792 			return true;
5793 
5794 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5795 		return true;
5796 	if (!pwq_is_empty(pwq))
5797 		return true;
5798 
5799 	return false;
5800 }
5801 
5802 /**
5803  * destroy_workqueue - safely terminate a workqueue
5804  * @wq: target workqueue
5805  *
5806  * Safely destroy a workqueue. All work currently pending will be done first.
5807  */
5808 void destroy_workqueue(struct workqueue_struct *wq)
5809 {
5810 	struct pool_workqueue *pwq;
5811 	int cpu;
5812 
5813 	/*
5814 	 * Remove it from sysfs first so that sanity check failure doesn't
5815 	 * lead to sysfs name conflicts.
5816 	 */
5817 	workqueue_sysfs_unregister(wq);
5818 
5819 	/* mark the workqueue destruction is in progress */
5820 	mutex_lock(&wq->mutex);
5821 	wq->flags |= __WQ_DESTROYING;
5822 	mutex_unlock(&wq->mutex);
5823 
5824 	/* drain it before proceeding with destruction */
5825 	drain_workqueue(wq);
5826 
5827 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5828 	if (wq->rescuer) {
5829 		struct worker *rescuer = wq->rescuer;
5830 
5831 		/* this prevents new queueing */
5832 		raw_spin_lock_irq(&wq_mayday_lock);
5833 		wq->rescuer = NULL;
5834 		raw_spin_unlock_irq(&wq_mayday_lock);
5835 
5836 		/* rescuer will empty maydays list before exiting */
5837 		kthread_stop(rescuer->task);
5838 		kfree(rescuer);
5839 	}
5840 
5841 	/*
5842 	 * Sanity checks - grab all the locks so that we wait for all
5843 	 * in-flight operations which may do put_pwq().
5844 	 */
5845 	mutex_lock(&wq_pool_mutex);
5846 	mutex_lock(&wq->mutex);
5847 	for_each_pwq(pwq, wq) {
5848 		raw_spin_lock_irq(&pwq->pool->lock);
5849 		if (WARN_ON(pwq_busy(pwq))) {
5850 			pr_warn("%s: %s has the following busy pwq\n",
5851 				__func__, wq->name);
5852 			show_pwq(pwq);
5853 			raw_spin_unlock_irq(&pwq->pool->lock);
5854 			mutex_unlock(&wq->mutex);
5855 			mutex_unlock(&wq_pool_mutex);
5856 			show_one_workqueue(wq);
5857 			return;
5858 		}
5859 		raw_spin_unlock_irq(&pwq->pool->lock);
5860 	}
5861 	mutex_unlock(&wq->mutex);
5862 
5863 	/*
5864 	 * wq list is used to freeze wq, remove from list after
5865 	 * flushing is complete in case freeze races us.
5866 	 */
5867 	list_del_rcu(&wq->list);
5868 	mutex_unlock(&wq_pool_mutex);
5869 
5870 	/*
5871 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5872 	 * to put the base refs. @wq will be auto-destroyed from the last
5873 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5874 	 */
5875 	rcu_read_lock();
5876 
5877 	for_each_possible_cpu(cpu) {
5878 		put_pwq_unlocked(unbound_pwq(wq, cpu));
5879 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5880 	}
5881 
5882 	put_pwq_unlocked(unbound_pwq(wq, -1));
5883 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5884 
5885 	rcu_read_unlock();
5886 }
5887 EXPORT_SYMBOL_GPL(destroy_workqueue);
5888 
5889 /**
5890  * workqueue_set_max_active - adjust max_active of a workqueue
5891  * @wq: target workqueue
5892  * @max_active: new max_active value.
5893  *
5894  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5895  * comment.
5896  *
5897  * CONTEXT:
5898  * Don't call from IRQ context.
5899  */
5900 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5901 {
5902 	/* max_active doesn't mean anything for BH workqueues */
5903 	if (WARN_ON(wq->flags & WQ_BH))
5904 		return;
5905 	/* disallow meddling with max_active for ordered workqueues */
5906 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5907 		return;
5908 
5909 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5910 
5911 	mutex_lock(&wq->mutex);
5912 
5913 	wq->saved_max_active = max_active;
5914 	if (wq->flags & WQ_UNBOUND)
5915 		wq->saved_min_active = min(wq->saved_min_active, max_active);
5916 
5917 	wq_adjust_max_active(wq);
5918 
5919 	mutex_unlock(&wq->mutex);
5920 }
5921 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5922 
5923 /**
5924  * workqueue_set_min_active - adjust min_active of an unbound workqueue
5925  * @wq: target unbound workqueue
5926  * @min_active: new min_active value
5927  *
5928  * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5929  * unbound workqueue is not guaranteed to be able to process max_active
5930  * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5931  * able to process min_active number of interdependent work items which is
5932  * %WQ_DFL_MIN_ACTIVE by default.
5933  *
5934  * Use this function to adjust the min_active value between 0 and the current
5935  * max_active.
5936  */
5937 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5938 {
5939 	/* min_active is only meaningful for non-ordered unbound workqueues */
5940 	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5941 		    WQ_UNBOUND))
5942 		return;
5943 
5944 	mutex_lock(&wq->mutex);
5945 	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5946 	wq_adjust_max_active(wq);
5947 	mutex_unlock(&wq->mutex);
5948 }
5949 
5950 /**
5951  * current_work - retrieve %current task's work struct
5952  *
5953  * Determine if %current task is a workqueue worker and what it's working on.
5954  * Useful to find out the context that the %current task is running in.
5955  *
5956  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5957  */
5958 struct work_struct *current_work(void)
5959 {
5960 	struct worker *worker = current_wq_worker();
5961 
5962 	return worker ? worker->current_work : NULL;
5963 }
5964 EXPORT_SYMBOL(current_work);
5965 
5966 /**
5967  * current_is_workqueue_rescuer - is %current workqueue rescuer?
5968  *
5969  * Determine whether %current is a workqueue rescuer.  Can be used from
5970  * work functions to determine whether it's being run off the rescuer task.
5971  *
5972  * Return: %true if %current is a workqueue rescuer. %false otherwise.
5973  */
5974 bool current_is_workqueue_rescuer(void)
5975 {
5976 	struct worker *worker = current_wq_worker();
5977 
5978 	return worker && worker->rescue_wq;
5979 }
5980 
5981 /**
5982  * workqueue_congested - test whether a workqueue is congested
5983  * @cpu: CPU in question
5984  * @wq: target workqueue
5985  *
5986  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
5987  * no synchronization around this function and the test result is
5988  * unreliable and only useful as advisory hints or for debugging.
5989  *
5990  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5991  *
5992  * With the exception of ordered workqueues, all workqueues have per-cpu
5993  * pool_workqueues, each with its own congested state. A workqueue being
5994  * congested on one CPU doesn't mean that the workqueue is contested on any
5995  * other CPUs.
5996  *
5997  * Return:
5998  * %true if congested, %false otherwise.
5999  */
6000 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
6001 {
6002 	struct pool_workqueue *pwq;
6003 	bool ret;
6004 
6005 	rcu_read_lock();
6006 	preempt_disable();
6007 
6008 	if (cpu == WORK_CPU_UNBOUND)
6009 		cpu = smp_processor_id();
6010 
6011 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
6012 	ret = !list_empty(&pwq->inactive_works);
6013 
6014 	preempt_enable();
6015 	rcu_read_unlock();
6016 
6017 	return ret;
6018 }
6019 EXPORT_SYMBOL_GPL(workqueue_congested);
6020 
6021 /**
6022  * work_busy - test whether a work is currently pending or running
6023  * @work: the work to be tested
6024  *
6025  * Test whether @work is currently pending or running.  There is no
6026  * synchronization around this function and the test result is
6027  * unreliable and only useful as advisory hints or for debugging.
6028  *
6029  * Return:
6030  * OR'd bitmask of WORK_BUSY_* bits.
6031  */
6032 unsigned int work_busy(struct work_struct *work)
6033 {
6034 	struct worker_pool *pool;
6035 	unsigned long irq_flags;
6036 	unsigned int ret = 0;
6037 
6038 	if (work_pending(work))
6039 		ret |= WORK_BUSY_PENDING;
6040 
6041 	rcu_read_lock();
6042 	pool = get_work_pool(work);
6043 	if (pool) {
6044 		raw_spin_lock_irqsave(&pool->lock, irq_flags);
6045 		if (find_worker_executing_work(pool, work))
6046 			ret |= WORK_BUSY_RUNNING;
6047 		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6048 	}
6049 	rcu_read_unlock();
6050 
6051 	return ret;
6052 }
6053 EXPORT_SYMBOL_GPL(work_busy);
6054 
6055 /**
6056  * set_worker_desc - set description for the current work item
6057  * @fmt: printf-style format string
6058  * @...: arguments for the format string
6059  *
6060  * This function can be called by a running work function to describe what
6061  * the work item is about.  If the worker task gets dumped, this
6062  * information will be printed out together to help debugging.  The
6063  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6064  */
6065 void set_worker_desc(const char *fmt, ...)
6066 {
6067 	struct worker *worker = current_wq_worker();
6068 	va_list args;
6069 
6070 	if (worker) {
6071 		va_start(args, fmt);
6072 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6073 		va_end(args);
6074 	}
6075 }
6076 EXPORT_SYMBOL_GPL(set_worker_desc);
6077 
6078 /**
6079  * print_worker_info - print out worker information and description
6080  * @log_lvl: the log level to use when printing
6081  * @task: target task
6082  *
6083  * If @task is a worker and currently executing a work item, print out the
6084  * name of the workqueue being serviced and worker description set with
6085  * set_worker_desc() by the currently executing work item.
6086  *
6087  * This function can be safely called on any task as long as the
6088  * task_struct itself is accessible.  While safe, this function isn't
6089  * synchronized and may print out mixups or garbages of limited length.
6090  */
6091 void print_worker_info(const char *log_lvl, struct task_struct *task)
6092 {
6093 	work_func_t *fn = NULL;
6094 	char name[WQ_NAME_LEN] = { };
6095 	char desc[WORKER_DESC_LEN] = { };
6096 	struct pool_workqueue *pwq = NULL;
6097 	struct workqueue_struct *wq = NULL;
6098 	struct worker *worker;
6099 
6100 	if (!(task->flags & PF_WQ_WORKER))
6101 		return;
6102 
6103 	/*
6104 	 * This function is called without any synchronization and @task
6105 	 * could be in any state.  Be careful with dereferences.
6106 	 */
6107 	worker = kthread_probe_data(task);
6108 
6109 	/*
6110 	 * Carefully copy the associated workqueue's workfn, name and desc.
6111 	 * Keep the original last '\0' in case the original is garbage.
6112 	 */
6113 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6114 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6115 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6116 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6117 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6118 
6119 	if (fn || name[0] || desc[0]) {
6120 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6121 		if (strcmp(name, desc))
6122 			pr_cont(" (%s)", desc);
6123 		pr_cont("\n");
6124 	}
6125 }
6126 
6127 static void pr_cont_pool_info(struct worker_pool *pool)
6128 {
6129 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6130 	if (pool->node != NUMA_NO_NODE)
6131 		pr_cont(" node=%d", pool->node);
6132 	pr_cont(" flags=0x%x", pool->flags);
6133 	if (pool->flags & POOL_BH)
6134 		pr_cont(" bh%s",
6135 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6136 	else
6137 		pr_cont(" nice=%d", pool->attrs->nice);
6138 }
6139 
6140 static void pr_cont_worker_id(struct worker *worker)
6141 {
6142 	struct worker_pool *pool = worker->pool;
6143 
6144 	if (pool->flags & WQ_BH)
6145 		pr_cont("bh%s",
6146 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6147 	else
6148 		pr_cont("%d%s", task_pid_nr(worker->task),
6149 			worker->rescue_wq ? "(RESCUER)" : "");
6150 }
6151 
6152 struct pr_cont_work_struct {
6153 	bool comma;
6154 	work_func_t func;
6155 	long ctr;
6156 };
6157 
6158 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6159 {
6160 	if (!pcwsp->ctr)
6161 		goto out_record;
6162 	if (func == pcwsp->func) {
6163 		pcwsp->ctr++;
6164 		return;
6165 	}
6166 	if (pcwsp->ctr == 1)
6167 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6168 	else
6169 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6170 	pcwsp->ctr = 0;
6171 out_record:
6172 	if ((long)func == -1L)
6173 		return;
6174 	pcwsp->comma = comma;
6175 	pcwsp->func = func;
6176 	pcwsp->ctr = 1;
6177 }
6178 
6179 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6180 {
6181 	if (work->func == wq_barrier_func) {
6182 		struct wq_barrier *barr;
6183 
6184 		barr = container_of(work, struct wq_barrier, work);
6185 
6186 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6187 		pr_cont("%s BAR(%d)", comma ? "," : "",
6188 			task_pid_nr(barr->task));
6189 	} else {
6190 		if (!comma)
6191 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6192 		pr_cont_work_flush(comma, work->func, pcwsp);
6193 	}
6194 }
6195 
6196 static void show_pwq(struct pool_workqueue *pwq)
6197 {
6198 	struct pr_cont_work_struct pcws = { .ctr = 0, };
6199 	struct worker_pool *pool = pwq->pool;
6200 	struct work_struct *work;
6201 	struct worker *worker;
6202 	bool has_in_flight = false, has_pending = false;
6203 	int bkt;
6204 
6205 	pr_info("  pwq %d:", pool->id);
6206 	pr_cont_pool_info(pool);
6207 
6208 	pr_cont(" active=%d refcnt=%d%s\n",
6209 		pwq->nr_active, pwq->refcnt,
6210 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6211 
6212 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6213 		if (worker->current_pwq == pwq) {
6214 			has_in_flight = true;
6215 			break;
6216 		}
6217 	}
6218 	if (has_in_flight) {
6219 		bool comma = false;
6220 
6221 		pr_info("    in-flight:");
6222 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6223 			if (worker->current_pwq != pwq)
6224 				continue;
6225 
6226 			pr_cont(" %s", comma ? "," : "");
6227 			pr_cont_worker_id(worker);
6228 			pr_cont(":%ps", worker->current_func);
6229 			list_for_each_entry(work, &worker->scheduled, entry)
6230 				pr_cont_work(false, work, &pcws);
6231 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6232 			comma = true;
6233 		}
6234 		pr_cont("\n");
6235 	}
6236 
6237 	list_for_each_entry(work, &pool->worklist, entry) {
6238 		if (get_work_pwq(work) == pwq) {
6239 			has_pending = true;
6240 			break;
6241 		}
6242 	}
6243 	if (has_pending) {
6244 		bool comma = false;
6245 
6246 		pr_info("    pending:");
6247 		list_for_each_entry(work, &pool->worklist, entry) {
6248 			if (get_work_pwq(work) != pwq)
6249 				continue;
6250 
6251 			pr_cont_work(comma, work, &pcws);
6252 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6253 		}
6254 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6255 		pr_cont("\n");
6256 	}
6257 
6258 	if (!list_empty(&pwq->inactive_works)) {
6259 		bool comma = false;
6260 
6261 		pr_info("    inactive:");
6262 		list_for_each_entry(work, &pwq->inactive_works, entry) {
6263 			pr_cont_work(comma, work, &pcws);
6264 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6265 		}
6266 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6267 		pr_cont("\n");
6268 	}
6269 }
6270 
6271 /**
6272  * show_one_workqueue - dump state of specified workqueue
6273  * @wq: workqueue whose state will be printed
6274  */
6275 void show_one_workqueue(struct workqueue_struct *wq)
6276 {
6277 	struct pool_workqueue *pwq;
6278 	bool idle = true;
6279 	unsigned long irq_flags;
6280 
6281 	for_each_pwq(pwq, wq) {
6282 		if (!pwq_is_empty(pwq)) {
6283 			idle = false;
6284 			break;
6285 		}
6286 	}
6287 	if (idle) /* Nothing to print for idle workqueue */
6288 		return;
6289 
6290 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6291 
6292 	for_each_pwq(pwq, wq) {
6293 		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6294 		if (!pwq_is_empty(pwq)) {
6295 			/*
6296 			 * Defer printing to avoid deadlocks in console
6297 			 * drivers that queue work while holding locks
6298 			 * also taken in their write paths.
6299 			 */
6300 			printk_deferred_enter();
6301 			show_pwq(pwq);
6302 			printk_deferred_exit();
6303 		}
6304 		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6305 		/*
6306 		 * We could be printing a lot from atomic context, e.g.
6307 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6308 		 * hard lockup.
6309 		 */
6310 		touch_nmi_watchdog();
6311 	}
6312 
6313 }
6314 
6315 /**
6316  * show_one_worker_pool - dump state of specified worker pool
6317  * @pool: worker pool whose state will be printed
6318  */
6319 static void show_one_worker_pool(struct worker_pool *pool)
6320 {
6321 	struct worker *worker;
6322 	bool first = true;
6323 	unsigned long irq_flags;
6324 	unsigned long hung = 0;
6325 
6326 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6327 	if (pool->nr_workers == pool->nr_idle)
6328 		goto next_pool;
6329 
6330 	/* How long the first pending work is waiting for a worker. */
6331 	if (!list_empty(&pool->worklist))
6332 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6333 
6334 	/*
6335 	 * Defer printing to avoid deadlocks in console drivers that
6336 	 * queue work while holding locks also taken in their write
6337 	 * paths.
6338 	 */
6339 	printk_deferred_enter();
6340 	pr_info("pool %d:", pool->id);
6341 	pr_cont_pool_info(pool);
6342 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6343 	if (pool->manager)
6344 		pr_cont(" manager: %d",
6345 			task_pid_nr(pool->manager->task));
6346 	list_for_each_entry(worker, &pool->idle_list, entry) {
6347 		pr_cont(" %s", first ? "idle: " : "");
6348 		pr_cont_worker_id(worker);
6349 		first = false;
6350 	}
6351 	pr_cont("\n");
6352 	printk_deferred_exit();
6353 next_pool:
6354 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6355 	/*
6356 	 * We could be printing a lot from atomic context, e.g.
6357 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6358 	 * hard lockup.
6359 	 */
6360 	touch_nmi_watchdog();
6361 
6362 }
6363 
6364 /**
6365  * show_all_workqueues - dump workqueue state
6366  *
6367  * Called from a sysrq handler and prints out all busy workqueues and pools.
6368  */
6369 void show_all_workqueues(void)
6370 {
6371 	struct workqueue_struct *wq;
6372 	struct worker_pool *pool;
6373 	int pi;
6374 
6375 	rcu_read_lock();
6376 
6377 	pr_info("Showing busy workqueues and worker pools:\n");
6378 
6379 	list_for_each_entry_rcu(wq, &workqueues, list)
6380 		show_one_workqueue(wq);
6381 
6382 	for_each_pool(pool, pi)
6383 		show_one_worker_pool(pool);
6384 
6385 	rcu_read_unlock();
6386 }
6387 
6388 /**
6389  * show_freezable_workqueues - dump freezable workqueue state
6390  *
6391  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6392  * still busy.
6393  */
6394 void show_freezable_workqueues(void)
6395 {
6396 	struct workqueue_struct *wq;
6397 
6398 	rcu_read_lock();
6399 
6400 	pr_info("Showing freezable workqueues that are still busy:\n");
6401 
6402 	list_for_each_entry_rcu(wq, &workqueues, list) {
6403 		if (!(wq->flags & WQ_FREEZABLE))
6404 			continue;
6405 		show_one_workqueue(wq);
6406 	}
6407 
6408 	rcu_read_unlock();
6409 }
6410 
6411 /* used to show worker information through /proc/PID/{comm,stat,status} */
6412 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6413 {
6414 	/* stabilize PF_WQ_WORKER and worker pool association */
6415 	mutex_lock(&wq_pool_attach_mutex);
6416 
6417 	if (task->flags & PF_WQ_WORKER) {
6418 		struct worker *worker = kthread_data(task);
6419 		struct worker_pool *pool = worker->pool;
6420 		int off;
6421 
6422 		off = format_worker_id(buf, size, worker, pool);
6423 
6424 		if (pool) {
6425 			raw_spin_lock_irq(&pool->lock);
6426 			/*
6427 			 * ->desc tracks information (wq name or
6428 			 * set_worker_desc()) for the latest execution.  If
6429 			 * current, prepend '+', otherwise '-'.
6430 			 */
6431 			if (worker->desc[0] != '\0') {
6432 				if (worker->current_work)
6433 					scnprintf(buf + off, size - off, "+%s",
6434 						  worker->desc);
6435 				else
6436 					scnprintf(buf + off, size - off, "-%s",
6437 						  worker->desc);
6438 			}
6439 			raw_spin_unlock_irq(&pool->lock);
6440 		}
6441 	} else {
6442 		strscpy(buf, task->comm, size);
6443 	}
6444 
6445 	mutex_unlock(&wq_pool_attach_mutex);
6446 }
6447 
6448 #ifdef CONFIG_SMP
6449 
6450 /*
6451  * CPU hotplug.
6452  *
6453  * There are two challenges in supporting CPU hotplug.  Firstly, there
6454  * are a lot of assumptions on strong associations among work, pwq and
6455  * pool which make migrating pending and scheduled works very
6456  * difficult to implement without impacting hot paths.  Secondly,
6457  * worker pools serve mix of short, long and very long running works making
6458  * blocked draining impractical.
6459  *
6460  * This is solved by allowing the pools to be disassociated from the CPU
6461  * running as an unbound one and allowing it to be reattached later if the
6462  * cpu comes back online.
6463  */
6464 
6465 static void unbind_workers(int cpu)
6466 {
6467 	struct worker_pool *pool;
6468 	struct worker *worker;
6469 
6470 	for_each_cpu_worker_pool(pool, cpu) {
6471 		mutex_lock(&wq_pool_attach_mutex);
6472 		raw_spin_lock_irq(&pool->lock);
6473 
6474 		/*
6475 		 * We've blocked all attach/detach operations. Make all workers
6476 		 * unbound and set DISASSOCIATED.  Before this, all workers
6477 		 * must be on the cpu.  After this, they may become diasporas.
6478 		 * And the preemption disabled section in their sched callbacks
6479 		 * are guaranteed to see WORKER_UNBOUND since the code here
6480 		 * is on the same cpu.
6481 		 */
6482 		for_each_pool_worker(worker, pool)
6483 			worker->flags |= WORKER_UNBOUND;
6484 
6485 		pool->flags |= POOL_DISASSOCIATED;
6486 
6487 		/*
6488 		 * The handling of nr_running in sched callbacks are disabled
6489 		 * now.  Zap nr_running.  After this, nr_running stays zero and
6490 		 * need_more_worker() and keep_working() are always true as
6491 		 * long as the worklist is not empty.  This pool now behaves as
6492 		 * an unbound (in terms of concurrency management) pool which
6493 		 * are served by workers tied to the pool.
6494 		 */
6495 		pool->nr_running = 0;
6496 
6497 		/*
6498 		 * With concurrency management just turned off, a busy
6499 		 * worker blocking could lead to lengthy stalls.  Kick off
6500 		 * unbound chain execution of currently pending work items.
6501 		 */
6502 		kick_pool(pool);
6503 
6504 		raw_spin_unlock_irq(&pool->lock);
6505 
6506 		for_each_pool_worker(worker, pool)
6507 			unbind_worker(worker);
6508 
6509 		mutex_unlock(&wq_pool_attach_mutex);
6510 	}
6511 }
6512 
6513 /**
6514  * rebind_workers - rebind all workers of a pool to the associated CPU
6515  * @pool: pool of interest
6516  *
6517  * @pool->cpu is coming online.  Rebind all workers to the CPU.
6518  */
6519 static void rebind_workers(struct worker_pool *pool)
6520 {
6521 	struct worker *worker;
6522 
6523 	lockdep_assert_held(&wq_pool_attach_mutex);
6524 
6525 	/*
6526 	 * Restore CPU affinity of all workers.  As all idle workers should
6527 	 * be on the run-queue of the associated CPU before any local
6528 	 * wake-ups for concurrency management happen, restore CPU affinity
6529 	 * of all workers first and then clear UNBOUND.  As we're called
6530 	 * from CPU_ONLINE, the following shouldn't fail.
6531 	 */
6532 	for_each_pool_worker(worker, pool) {
6533 		kthread_set_per_cpu(worker->task, pool->cpu);
6534 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6535 						  pool_allowed_cpus(pool)) < 0);
6536 	}
6537 
6538 	raw_spin_lock_irq(&pool->lock);
6539 
6540 	pool->flags &= ~POOL_DISASSOCIATED;
6541 
6542 	for_each_pool_worker(worker, pool) {
6543 		unsigned int worker_flags = worker->flags;
6544 
6545 		/*
6546 		 * We want to clear UNBOUND but can't directly call
6547 		 * worker_clr_flags() or adjust nr_running.  Atomically
6548 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6549 		 * @worker will clear REBOUND using worker_clr_flags() when
6550 		 * it initiates the next execution cycle thus restoring
6551 		 * concurrency management.  Note that when or whether
6552 		 * @worker clears REBOUND doesn't affect correctness.
6553 		 *
6554 		 * WRITE_ONCE() is necessary because @worker->flags may be
6555 		 * tested without holding any lock in
6556 		 * wq_worker_running().  Without it, NOT_RUNNING test may
6557 		 * fail incorrectly leading to premature concurrency
6558 		 * management operations.
6559 		 */
6560 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6561 		worker_flags |= WORKER_REBOUND;
6562 		worker_flags &= ~WORKER_UNBOUND;
6563 		WRITE_ONCE(worker->flags, worker_flags);
6564 	}
6565 
6566 	raw_spin_unlock_irq(&pool->lock);
6567 }
6568 
6569 /**
6570  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6571  * @pool: unbound pool of interest
6572  * @cpu: the CPU which is coming up
6573  *
6574  * An unbound pool may end up with a cpumask which doesn't have any online
6575  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6576  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6577  * online CPU before, cpus_allowed of all its workers should be restored.
6578  */
6579 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6580 {
6581 	static cpumask_t cpumask;
6582 	struct worker *worker;
6583 
6584 	lockdep_assert_held(&wq_pool_attach_mutex);
6585 
6586 	/* is @cpu allowed for @pool? */
6587 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6588 		return;
6589 
6590 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6591 
6592 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6593 	for_each_pool_worker(worker, pool)
6594 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6595 }
6596 
6597 int workqueue_prepare_cpu(unsigned int cpu)
6598 {
6599 	struct worker_pool *pool;
6600 
6601 	for_each_cpu_worker_pool(pool, cpu) {
6602 		if (pool->nr_workers)
6603 			continue;
6604 		if (!create_worker(pool))
6605 			return -ENOMEM;
6606 	}
6607 	return 0;
6608 }
6609 
6610 int workqueue_online_cpu(unsigned int cpu)
6611 {
6612 	struct worker_pool *pool;
6613 	struct workqueue_struct *wq;
6614 	int pi;
6615 
6616 	mutex_lock(&wq_pool_mutex);
6617 
6618 	cpumask_set_cpu(cpu, wq_online_cpumask);
6619 
6620 	for_each_pool(pool, pi) {
6621 		/* BH pools aren't affected by hotplug */
6622 		if (pool->flags & POOL_BH)
6623 			continue;
6624 
6625 		mutex_lock(&wq_pool_attach_mutex);
6626 		if (pool->cpu == cpu)
6627 			rebind_workers(pool);
6628 		else if (pool->cpu < 0)
6629 			restore_unbound_workers_cpumask(pool, cpu);
6630 		mutex_unlock(&wq_pool_attach_mutex);
6631 	}
6632 
6633 	/* update pod affinity of unbound workqueues */
6634 	list_for_each_entry(wq, &workqueues, list) {
6635 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6636 
6637 		if (attrs) {
6638 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6639 			int tcpu;
6640 
6641 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6642 				unbound_wq_update_pwq(wq, tcpu);
6643 
6644 			mutex_lock(&wq->mutex);
6645 			wq_update_node_max_active(wq, -1);
6646 			mutex_unlock(&wq->mutex);
6647 		}
6648 	}
6649 
6650 	mutex_unlock(&wq_pool_mutex);
6651 	return 0;
6652 }
6653 
6654 int workqueue_offline_cpu(unsigned int cpu)
6655 {
6656 	struct workqueue_struct *wq;
6657 
6658 	/* unbinding per-cpu workers should happen on the local CPU */
6659 	if (WARN_ON(cpu != smp_processor_id()))
6660 		return -1;
6661 
6662 	unbind_workers(cpu);
6663 
6664 	/* update pod affinity of unbound workqueues */
6665 	mutex_lock(&wq_pool_mutex);
6666 
6667 	cpumask_clear_cpu(cpu, wq_online_cpumask);
6668 
6669 	list_for_each_entry(wq, &workqueues, list) {
6670 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6671 
6672 		if (attrs) {
6673 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6674 			int tcpu;
6675 
6676 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6677 				unbound_wq_update_pwq(wq, tcpu);
6678 
6679 			mutex_lock(&wq->mutex);
6680 			wq_update_node_max_active(wq, cpu);
6681 			mutex_unlock(&wq->mutex);
6682 		}
6683 	}
6684 	mutex_unlock(&wq_pool_mutex);
6685 
6686 	return 0;
6687 }
6688 
6689 struct work_for_cpu {
6690 	struct work_struct work;
6691 	long (*fn)(void *);
6692 	void *arg;
6693 	long ret;
6694 };
6695 
6696 static void work_for_cpu_fn(struct work_struct *work)
6697 {
6698 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6699 
6700 	wfc->ret = wfc->fn(wfc->arg);
6701 }
6702 
6703 /**
6704  * work_on_cpu_key - run a function in thread context on a particular cpu
6705  * @cpu: the cpu to run on
6706  * @fn: the function to run
6707  * @arg: the function arg
6708  * @key: The lock class key for lock debugging purposes
6709  *
6710  * It is up to the caller to ensure that the cpu doesn't go offline.
6711  * The caller must not hold any locks which would prevent @fn from completing.
6712  *
6713  * Return: The value @fn returns.
6714  */
6715 long work_on_cpu_key(int cpu, long (*fn)(void *),
6716 		     void *arg, struct lock_class_key *key)
6717 {
6718 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6719 
6720 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6721 	schedule_work_on(cpu, &wfc.work);
6722 	flush_work(&wfc.work);
6723 	destroy_work_on_stack(&wfc.work);
6724 	return wfc.ret;
6725 }
6726 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6727 
6728 /**
6729  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6730  * @cpu: the cpu to run on
6731  * @fn:  the function to run
6732  * @arg: the function argument
6733  * @key: The lock class key for lock debugging purposes
6734  *
6735  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6736  * any locks which would prevent @fn from completing.
6737  *
6738  * Return: The value @fn returns.
6739  */
6740 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6741 			  void *arg, struct lock_class_key *key)
6742 {
6743 	long ret = -ENODEV;
6744 
6745 	cpus_read_lock();
6746 	if (cpu_online(cpu))
6747 		ret = work_on_cpu_key(cpu, fn, arg, key);
6748 	cpus_read_unlock();
6749 	return ret;
6750 }
6751 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6752 #endif /* CONFIG_SMP */
6753 
6754 #ifdef CONFIG_FREEZER
6755 
6756 /**
6757  * freeze_workqueues_begin - begin freezing workqueues
6758  *
6759  * Start freezing workqueues.  After this function returns, all freezable
6760  * workqueues will queue new works to their inactive_works list instead of
6761  * pool->worklist.
6762  *
6763  * CONTEXT:
6764  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6765  */
6766 void freeze_workqueues_begin(void)
6767 {
6768 	struct workqueue_struct *wq;
6769 
6770 	mutex_lock(&wq_pool_mutex);
6771 
6772 	WARN_ON_ONCE(workqueue_freezing);
6773 	workqueue_freezing = true;
6774 
6775 	list_for_each_entry(wq, &workqueues, list) {
6776 		mutex_lock(&wq->mutex);
6777 		wq_adjust_max_active(wq);
6778 		mutex_unlock(&wq->mutex);
6779 	}
6780 
6781 	mutex_unlock(&wq_pool_mutex);
6782 }
6783 
6784 /**
6785  * freeze_workqueues_busy - are freezable workqueues still busy?
6786  *
6787  * Check whether freezing is complete.  This function must be called
6788  * between freeze_workqueues_begin() and thaw_workqueues().
6789  *
6790  * CONTEXT:
6791  * Grabs and releases wq_pool_mutex.
6792  *
6793  * Return:
6794  * %true if some freezable workqueues are still busy.  %false if freezing
6795  * is complete.
6796  */
6797 bool freeze_workqueues_busy(void)
6798 {
6799 	bool busy = false;
6800 	struct workqueue_struct *wq;
6801 	struct pool_workqueue *pwq;
6802 
6803 	mutex_lock(&wq_pool_mutex);
6804 
6805 	WARN_ON_ONCE(!workqueue_freezing);
6806 
6807 	list_for_each_entry(wq, &workqueues, list) {
6808 		if (!(wq->flags & WQ_FREEZABLE))
6809 			continue;
6810 		/*
6811 		 * nr_active is monotonically decreasing.  It's safe
6812 		 * to peek without lock.
6813 		 */
6814 		rcu_read_lock();
6815 		for_each_pwq(pwq, wq) {
6816 			WARN_ON_ONCE(pwq->nr_active < 0);
6817 			if (pwq->nr_active) {
6818 				busy = true;
6819 				rcu_read_unlock();
6820 				goto out_unlock;
6821 			}
6822 		}
6823 		rcu_read_unlock();
6824 	}
6825 out_unlock:
6826 	mutex_unlock(&wq_pool_mutex);
6827 	return busy;
6828 }
6829 
6830 /**
6831  * thaw_workqueues - thaw workqueues
6832  *
6833  * Thaw workqueues.  Normal queueing is restored and all collected
6834  * frozen works are transferred to their respective pool worklists.
6835  *
6836  * CONTEXT:
6837  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6838  */
6839 void thaw_workqueues(void)
6840 {
6841 	struct workqueue_struct *wq;
6842 
6843 	mutex_lock(&wq_pool_mutex);
6844 
6845 	if (!workqueue_freezing)
6846 		goto out_unlock;
6847 
6848 	workqueue_freezing = false;
6849 
6850 	/* restore max_active and repopulate worklist */
6851 	list_for_each_entry(wq, &workqueues, list) {
6852 		mutex_lock(&wq->mutex);
6853 		wq_adjust_max_active(wq);
6854 		mutex_unlock(&wq->mutex);
6855 	}
6856 
6857 out_unlock:
6858 	mutex_unlock(&wq_pool_mutex);
6859 }
6860 #endif /* CONFIG_FREEZER */
6861 
6862 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6863 {
6864 	LIST_HEAD(ctxs);
6865 	int ret = 0;
6866 	struct workqueue_struct *wq;
6867 	struct apply_wqattrs_ctx *ctx, *n;
6868 
6869 	lockdep_assert_held(&wq_pool_mutex);
6870 
6871 	list_for_each_entry(wq, &workqueues, list) {
6872 		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6873 			continue;
6874 
6875 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6876 		if (IS_ERR(ctx)) {
6877 			ret = PTR_ERR(ctx);
6878 			break;
6879 		}
6880 
6881 		list_add_tail(&ctx->list, &ctxs);
6882 	}
6883 
6884 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6885 		if (!ret)
6886 			apply_wqattrs_commit(ctx);
6887 		apply_wqattrs_cleanup(ctx);
6888 	}
6889 
6890 	if (!ret) {
6891 		mutex_lock(&wq_pool_attach_mutex);
6892 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6893 		mutex_unlock(&wq_pool_attach_mutex);
6894 	}
6895 	return ret;
6896 }
6897 
6898 /**
6899  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6900  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6901  *
6902  * This function can be called from cpuset code to provide a set of isolated
6903  * CPUs that should be excluded from wq_unbound_cpumask.
6904  */
6905 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6906 {
6907 	cpumask_var_t cpumask;
6908 	int ret = 0;
6909 
6910 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6911 		return -ENOMEM;
6912 
6913 	mutex_lock(&wq_pool_mutex);
6914 
6915 	/*
6916 	 * If the operation fails, it will fall back to
6917 	 * wq_requested_unbound_cpumask which is initially set to
6918 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6919 	 * by any subsequent write to workqueue/cpumask sysfs file.
6920 	 */
6921 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6922 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6923 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6924 		ret = workqueue_apply_unbound_cpumask(cpumask);
6925 
6926 	/* Save the current isolated cpumask & export it via sysfs */
6927 	if (!ret)
6928 		cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6929 
6930 	mutex_unlock(&wq_pool_mutex);
6931 	free_cpumask_var(cpumask);
6932 	return ret;
6933 }
6934 
6935 static int parse_affn_scope(const char *val)
6936 {
6937 	int i;
6938 
6939 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6940 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6941 			return i;
6942 	}
6943 	return -EINVAL;
6944 }
6945 
6946 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6947 {
6948 	struct workqueue_struct *wq;
6949 	int affn, cpu;
6950 
6951 	affn = parse_affn_scope(val);
6952 	if (affn < 0)
6953 		return affn;
6954 	if (affn == WQ_AFFN_DFL)
6955 		return -EINVAL;
6956 
6957 	cpus_read_lock();
6958 	mutex_lock(&wq_pool_mutex);
6959 
6960 	wq_affn_dfl = affn;
6961 
6962 	list_for_each_entry(wq, &workqueues, list) {
6963 		for_each_online_cpu(cpu)
6964 			unbound_wq_update_pwq(wq, cpu);
6965 	}
6966 
6967 	mutex_unlock(&wq_pool_mutex);
6968 	cpus_read_unlock();
6969 
6970 	return 0;
6971 }
6972 
6973 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6974 {
6975 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6976 }
6977 
6978 static const struct kernel_param_ops wq_affn_dfl_ops = {
6979 	.set	= wq_affn_dfl_set,
6980 	.get	= wq_affn_dfl_get,
6981 };
6982 
6983 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6984 
6985 #ifdef CONFIG_SYSFS
6986 /*
6987  * Workqueues with WQ_SYSFS flag set is visible to userland via
6988  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
6989  * following attributes.
6990  *
6991  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
6992  *  max_active		RW int	: maximum number of in-flight work items
6993  *
6994  * Unbound workqueues have the following extra attributes.
6995  *
6996  *  nice		RW int	: nice value of the workers
6997  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
6998  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
6999  *  affinity_strict	RW bool : worker CPU affinity is strict
7000  */
7001 struct wq_device {
7002 	struct workqueue_struct		*wq;
7003 	struct device			dev;
7004 };
7005 
7006 static struct workqueue_struct *dev_to_wq(struct device *dev)
7007 {
7008 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7009 
7010 	return wq_dev->wq;
7011 }
7012 
7013 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
7014 			    char *buf)
7015 {
7016 	struct workqueue_struct *wq = dev_to_wq(dev);
7017 
7018 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
7019 }
7020 static DEVICE_ATTR_RO(per_cpu);
7021 
7022 static ssize_t max_active_show(struct device *dev,
7023 			       struct device_attribute *attr, char *buf)
7024 {
7025 	struct workqueue_struct *wq = dev_to_wq(dev);
7026 
7027 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7028 }
7029 
7030 static ssize_t max_active_store(struct device *dev,
7031 				struct device_attribute *attr, const char *buf,
7032 				size_t count)
7033 {
7034 	struct workqueue_struct *wq = dev_to_wq(dev);
7035 	int val;
7036 
7037 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7038 		return -EINVAL;
7039 
7040 	workqueue_set_max_active(wq, val);
7041 	return count;
7042 }
7043 static DEVICE_ATTR_RW(max_active);
7044 
7045 static struct attribute *wq_sysfs_attrs[] = {
7046 	&dev_attr_per_cpu.attr,
7047 	&dev_attr_max_active.attr,
7048 	NULL,
7049 };
7050 ATTRIBUTE_GROUPS(wq_sysfs);
7051 
7052 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7053 			    char *buf)
7054 {
7055 	struct workqueue_struct *wq = dev_to_wq(dev);
7056 	int written;
7057 
7058 	mutex_lock(&wq->mutex);
7059 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7060 	mutex_unlock(&wq->mutex);
7061 
7062 	return written;
7063 }
7064 
7065 /* prepare workqueue_attrs for sysfs store operations */
7066 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7067 {
7068 	struct workqueue_attrs *attrs;
7069 
7070 	lockdep_assert_held(&wq_pool_mutex);
7071 
7072 	attrs = alloc_workqueue_attrs();
7073 	if (!attrs)
7074 		return NULL;
7075 
7076 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
7077 	return attrs;
7078 }
7079 
7080 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7081 			     const char *buf, size_t count)
7082 {
7083 	struct workqueue_struct *wq = dev_to_wq(dev);
7084 	struct workqueue_attrs *attrs;
7085 	int ret = -ENOMEM;
7086 
7087 	apply_wqattrs_lock();
7088 
7089 	attrs = wq_sysfs_prep_attrs(wq);
7090 	if (!attrs)
7091 		goto out_unlock;
7092 
7093 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7094 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7095 		ret = apply_workqueue_attrs_locked(wq, attrs);
7096 	else
7097 		ret = -EINVAL;
7098 
7099 out_unlock:
7100 	apply_wqattrs_unlock();
7101 	free_workqueue_attrs(attrs);
7102 	return ret ?: count;
7103 }
7104 
7105 static ssize_t wq_cpumask_show(struct device *dev,
7106 			       struct device_attribute *attr, char *buf)
7107 {
7108 	struct workqueue_struct *wq = dev_to_wq(dev);
7109 	int written;
7110 
7111 	mutex_lock(&wq->mutex);
7112 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7113 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
7114 	mutex_unlock(&wq->mutex);
7115 	return written;
7116 }
7117 
7118 static ssize_t wq_cpumask_store(struct device *dev,
7119 				struct device_attribute *attr,
7120 				const char *buf, size_t count)
7121 {
7122 	struct workqueue_struct *wq = dev_to_wq(dev);
7123 	struct workqueue_attrs *attrs;
7124 	int ret = -ENOMEM;
7125 
7126 	apply_wqattrs_lock();
7127 
7128 	attrs = wq_sysfs_prep_attrs(wq);
7129 	if (!attrs)
7130 		goto out_unlock;
7131 
7132 	ret = cpumask_parse(buf, attrs->cpumask);
7133 	if (!ret)
7134 		ret = apply_workqueue_attrs_locked(wq, attrs);
7135 
7136 out_unlock:
7137 	apply_wqattrs_unlock();
7138 	free_workqueue_attrs(attrs);
7139 	return ret ?: count;
7140 }
7141 
7142 static ssize_t wq_affn_scope_show(struct device *dev,
7143 				  struct device_attribute *attr, char *buf)
7144 {
7145 	struct workqueue_struct *wq = dev_to_wq(dev);
7146 	int written;
7147 
7148 	mutex_lock(&wq->mutex);
7149 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7150 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7151 				    wq_affn_names[WQ_AFFN_DFL],
7152 				    wq_affn_names[wq_affn_dfl]);
7153 	else
7154 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7155 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7156 	mutex_unlock(&wq->mutex);
7157 
7158 	return written;
7159 }
7160 
7161 static ssize_t wq_affn_scope_store(struct device *dev,
7162 				   struct device_attribute *attr,
7163 				   const char *buf, size_t count)
7164 {
7165 	struct workqueue_struct *wq = dev_to_wq(dev);
7166 	struct workqueue_attrs *attrs;
7167 	int affn, ret = -ENOMEM;
7168 
7169 	affn = parse_affn_scope(buf);
7170 	if (affn < 0)
7171 		return affn;
7172 
7173 	apply_wqattrs_lock();
7174 	attrs = wq_sysfs_prep_attrs(wq);
7175 	if (attrs) {
7176 		attrs->affn_scope = affn;
7177 		ret = apply_workqueue_attrs_locked(wq, attrs);
7178 	}
7179 	apply_wqattrs_unlock();
7180 	free_workqueue_attrs(attrs);
7181 	return ret ?: count;
7182 }
7183 
7184 static ssize_t wq_affinity_strict_show(struct device *dev,
7185 				       struct device_attribute *attr, char *buf)
7186 {
7187 	struct workqueue_struct *wq = dev_to_wq(dev);
7188 
7189 	return scnprintf(buf, PAGE_SIZE, "%d\n",
7190 			 wq->unbound_attrs->affn_strict);
7191 }
7192 
7193 static ssize_t wq_affinity_strict_store(struct device *dev,
7194 					struct device_attribute *attr,
7195 					const char *buf, size_t count)
7196 {
7197 	struct workqueue_struct *wq = dev_to_wq(dev);
7198 	struct workqueue_attrs *attrs;
7199 	int v, ret = -ENOMEM;
7200 
7201 	if (sscanf(buf, "%d", &v) != 1)
7202 		return -EINVAL;
7203 
7204 	apply_wqattrs_lock();
7205 	attrs = wq_sysfs_prep_attrs(wq);
7206 	if (attrs) {
7207 		attrs->affn_strict = (bool)v;
7208 		ret = apply_workqueue_attrs_locked(wq, attrs);
7209 	}
7210 	apply_wqattrs_unlock();
7211 	free_workqueue_attrs(attrs);
7212 	return ret ?: count;
7213 }
7214 
7215 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7216 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7217 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7218 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7219 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7220 	__ATTR_NULL,
7221 };
7222 
7223 static const struct bus_type wq_subsys = {
7224 	.name				= "workqueue",
7225 	.dev_groups			= wq_sysfs_groups,
7226 };
7227 
7228 /**
7229  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7230  *  @cpumask: the cpumask to set
7231  *
7232  *  The low-level workqueues cpumask is a global cpumask that limits
7233  *  the affinity of all unbound workqueues.  This function check the @cpumask
7234  *  and apply it to all unbound workqueues and updates all pwqs of them.
7235  *
7236  *  Return:	0	- Success
7237  *		-EINVAL	- Invalid @cpumask
7238  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7239  */
7240 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7241 {
7242 	int ret = -EINVAL;
7243 
7244 	/*
7245 	 * Not excluding isolated cpus on purpose.
7246 	 * If the user wishes to include them, we allow that.
7247 	 */
7248 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7249 	if (!cpumask_empty(cpumask)) {
7250 		ret = 0;
7251 		apply_wqattrs_lock();
7252 		if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7253 			ret = workqueue_apply_unbound_cpumask(cpumask);
7254 		if (!ret)
7255 			cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7256 		apply_wqattrs_unlock();
7257 	}
7258 
7259 	return ret;
7260 }
7261 
7262 static ssize_t __wq_cpumask_show(struct device *dev,
7263 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7264 {
7265 	int written;
7266 
7267 	mutex_lock(&wq_pool_mutex);
7268 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7269 	mutex_unlock(&wq_pool_mutex);
7270 
7271 	return written;
7272 }
7273 
7274 static ssize_t cpumask_requested_show(struct device *dev,
7275 		struct device_attribute *attr, char *buf)
7276 {
7277 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7278 }
7279 static DEVICE_ATTR_RO(cpumask_requested);
7280 
7281 static ssize_t cpumask_isolated_show(struct device *dev,
7282 		struct device_attribute *attr, char *buf)
7283 {
7284 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7285 }
7286 static DEVICE_ATTR_RO(cpumask_isolated);
7287 
7288 static ssize_t cpumask_show(struct device *dev,
7289 		struct device_attribute *attr, char *buf)
7290 {
7291 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7292 }
7293 
7294 static ssize_t cpumask_store(struct device *dev,
7295 		struct device_attribute *attr, const char *buf, size_t count)
7296 {
7297 	cpumask_var_t cpumask;
7298 	int ret;
7299 
7300 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7301 		return -ENOMEM;
7302 
7303 	ret = cpumask_parse(buf, cpumask);
7304 	if (!ret)
7305 		ret = workqueue_set_unbound_cpumask(cpumask);
7306 
7307 	free_cpumask_var(cpumask);
7308 	return ret ? ret : count;
7309 }
7310 static DEVICE_ATTR_RW(cpumask);
7311 
7312 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7313 	&dev_attr_cpumask.attr,
7314 	&dev_attr_cpumask_requested.attr,
7315 	&dev_attr_cpumask_isolated.attr,
7316 	NULL,
7317 };
7318 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7319 
7320 static int __init wq_sysfs_init(void)
7321 {
7322 	return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7323 }
7324 core_initcall(wq_sysfs_init);
7325 
7326 static void wq_device_release(struct device *dev)
7327 {
7328 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7329 
7330 	kfree(wq_dev);
7331 }
7332 
7333 /**
7334  * workqueue_sysfs_register - make a workqueue visible in sysfs
7335  * @wq: the workqueue to register
7336  *
7337  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7338  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7339  * which is the preferred method.
7340  *
7341  * Workqueue user should use this function directly iff it wants to apply
7342  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7343  * apply_workqueue_attrs() may race against userland updating the
7344  * attributes.
7345  *
7346  * Return: 0 on success, -errno on failure.
7347  */
7348 int workqueue_sysfs_register(struct workqueue_struct *wq)
7349 {
7350 	struct wq_device *wq_dev;
7351 	int ret;
7352 
7353 	/*
7354 	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7355 	 * ordered workqueues.
7356 	 */
7357 	if (WARN_ON(wq->flags & __WQ_ORDERED))
7358 		return -EINVAL;
7359 
7360 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7361 	if (!wq_dev)
7362 		return -ENOMEM;
7363 
7364 	wq_dev->wq = wq;
7365 	wq_dev->dev.bus = &wq_subsys;
7366 	wq_dev->dev.release = wq_device_release;
7367 	dev_set_name(&wq_dev->dev, "%s", wq->name);
7368 
7369 	/*
7370 	 * unbound_attrs are created separately.  Suppress uevent until
7371 	 * everything is ready.
7372 	 */
7373 	dev_set_uevent_suppress(&wq_dev->dev, true);
7374 
7375 	ret = device_register(&wq_dev->dev);
7376 	if (ret) {
7377 		put_device(&wq_dev->dev);
7378 		wq->wq_dev = NULL;
7379 		return ret;
7380 	}
7381 
7382 	if (wq->flags & WQ_UNBOUND) {
7383 		struct device_attribute *attr;
7384 
7385 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7386 			ret = device_create_file(&wq_dev->dev, attr);
7387 			if (ret) {
7388 				device_unregister(&wq_dev->dev);
7389 				wq->wq_dev = NULL;
7390 				return ret;
7391 			}
7392 		}
7393 	}
7394 
7395 	dev_set_uevent_suppress(&wq_dev->dev, false);
7396 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7397 	return 0;
7398 }
7399 
7400 /**
7401  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7402  * @wq: the workqueue to unregister
7403  *
7404  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7405  */
7406 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7407 {
7408 	struct wq_device *wq_dev = wq->wq_dev;
7409 
7410 	if (!wq->wq_dev)
7411 		return;
7412 
7413 	wq->wq_dev = NULL;
7414 	device_unregister(&wq_dev->dev);
7415 }
7416 #else	/* CONFIG_SYSFS */
7417 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7418 #endif	/* CONFIG_SYSFS */
7419 
7420 /*
7421  * Workqueue watchdog.
7422  *
7423  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7424  * flush dependency, a concurrency managed work item which stays RUNNING
7425  * indefinitely.  Workqueue stalls can be very difficult to debug as the
7426  * usual warning mechanisms don't trigger and internal workqueue state is
7427  * largely opaque.
7428  *
7429  * Workqueue watchdog monitors all worker pools periodically and dumps
7430  * state if some pools failed to make forward progress for a while where
7431  * forward progress is defined as the first item on ->worklist changing.
7432  *
7433  * This mechanism is controlled through the kernel parameter
7434  * "workqueue.watchdog_thresh" which can be updated at runtime through the
7435  * corresponding sysfs parameter file.
7436  */
7437 #ifdef CONFIG_WQ_WATCHDOG
7438 
7439 static unsigned long wq_watchdog_thresh = 30;
7440 static struct timer_list wq_watchdog_timer;
7441 
7442 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7443 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7444 
7445 static unsigned int wq_panic_on_stall;
7446 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644);
7447 
7448 /*
7449  * Show workers that might prevent the processing of pending work items.
7450  * The only candidates are CPU-bound workers in the running state.
7451  * Pending work items should be handled by another idle worker
7452  * in all other situations.
7453  */
7454 static void show_cpu_pool_hog(struct worker_pool *pool)
7455 {
7456 	struct worker *worker;
7457 	unsigned long irq_flags;
7458 	int bkt;
7459 
7460 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7461 
7462 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7463 		if (task_is_running(worker->task)) {
7464 			/*
7465 			 * Defer printing to avoid deadlocks in console
7466 			 * drivers that queue work while holding locks
7467 			 * also taken in their write paths.
7468 			 */
7469 			printk_deferred_enter();
7470 
7471 			pr_info("pool %d:\n", pool->id);
7472 			sched_show_task(worker->task);
7473 
7474 			printk_deferred_exit();
7475 		}
7476 	}
7477 
7478 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7479 }
7480 
7481 static void show_cpu_pools_hogs(void)
7482 {
7483 	struct worker_pool *pool;
7484 	int pi;
7485 
7486 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7487 
7488 	rcu_read_lock();
7489 
7490 	for_each_pool(pool, pi) {
7491 		if (pool->cpu_stall)
7492 			show_cpu_pool_hog(pool);
7493 
7494 	}
7495 
7496 	rcu_read_unlock();
7497 }
7498 
7499 static void panic_on_wq_watchdog(void)
7500 {
7501 	static unsigned int wq_stall;
7502 
7503 	if (wq_panic_on_stall) {
7504 		wq_stall++;
7505 		BUG_ON(wq_stall >= wq_panic_on_stall);
7506 	}
7507 }
7508 
7509 static void wq_watchdog_reset_touched(void)
7510 {
7511 	int cpu;
7512 
7513 	wq_watchdog_touched = jiffies;
7514 	for_each_possible_cpu(cpu)
7515 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7516 }
7517 
7518 static void wq_watchdog_timer_fn(struct timer_list *unused)
7519 {
7520 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7521 	bool lockup_detected = false;
7522 	bool cpu_pool_stall = false;
7523 	unsigned long now = jiffies;
7524 	struct worker_pool *pool;
7525 	int pi;
7526 
7527 	if (!thresh)
7528 		return;
7529 
7530 	rcu_read_lock();
7531 
7532 	for_each_pool(pool, pi) {
7533 		unsigned long pool_ts, touched, ts;
7534 
7535 		pool->cpu_stall = false;
7536 		if (list_empty(&pool->worklist))
7537 			continue;
7538 
7539 		/*
7540 		 * If a virtual machine is stopped by the host it can look to
7541 		 * the watchdog like a stall.
7542 		 */
7543 		kvm_check_and_clear_guest_paused();
7544 
7545 		/* get the latest of pool and touched timestamps */
7546 		if (pool->cpu >= 0)
7547 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7548 		else
7549 			touched = READ_ONCE(wq_watchdog_touched);
7550 		pool_ts = READ_ONCE(pool->watchdog_ts);
7551 
7552 		if (time_after(pool_ts, touched))
7553 			ts = pool_ts;
7554 		else
7555 			ts = touched;
7556 
7557 		/* did we stall? */
7558 		if (time_after(now, ts + thresh)) {
7559 			lockup_detected = true;
7560 			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7561 				pool->cpu_stall = true;
7562 				cpu_pool_stall = true;
7563 			}
7564 			pr_emerg("BUG: workqueue lockup - pool");
7565 			pr_cont_pool_info(pool);
7566 			pr_cont(" stuck for %us!\n",
7567 				jiffies_to_msecs(now - pool_ts) / 1000);
7568 		}
7569 
7570 
7571 	}
7572 
7573 	rcu_read_unlock();
7574 
7575 	if (lockup_detected)
7576 		show_all_workqueues();
7577 
7578 	if (cpu_pool_stall)
7579 		show_cpu_pools_hogs();
7580 
7581 	if (lockup_detected)
7582 		panic_on_wq_watchdog();
7583 
7584 	wq_watchdog_reset_touched();
7585 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7586 }
7587 
7588 notrace void wq_watchdog_touch(int cpu)
7589 {
7590 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7591 	unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7592 	unsigned long now = jiffies;
7593 
7594 	if (cpu >= 0)
7595 		per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7596 	else
7597 		WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7598 
7599 	/* Don't unnecessarily store to global cacheline */
7600 	if (time_after(now, touch_ts + thresh / 4))
7601 		WRITE_ONCE(wq_watchdog_touched, jiffies);
7602 }
7603 
7604 static void wq_watchdog_set_thresh(unsigned long thresh)
7605 {
7606 	wq_watchdog_thresh = 0;
7607 	del_timer_sync(&wq_watchdog_timer);
7608 
7609 	if (thresh) {
7610 		wq_watchdog_thresh = thresh;
7611 		wq_watchdog_reset_touched();
7612 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7613 	}
7614 }
7615 
7616 static int wq_watchdog_param_set_thresh(const char *val,
7617 					const struct kernel_param *kp)
7618 {
7619 	unsigned long thresh;
7620 	int ret;
7621 
7622 	ret = kstrtoul(val, 0, &thresh);
7623 	if (ret)
7624 		return ret;
7625 
7626 	if (system_wq)
7627 		wq_watchdog_set_thresh(thresh);
7628 	else
7629 		wq_watchdog_thresh = thresh;
7630 
7631 	return 0;
7632 }
7633 
7634 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7635 	.set	= wq_watchdog_param_set_thresh,
7636 	.get	= param_get_ulong,
7637 };
7638 
7639 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7640 		0644);
7641 
7642 static void wq_watchdog_init(void)
7643 {
7644 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7645 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7646 }
7647 
7648 #else	/* CONFIG_WQ_WATCHDOG */
7649 
7650 static inline void wq_watchdog_init(void) { }
7651 
7652 #endif	/* CONFIG_WQ_WATCHDOG */
7653 
7654 static void bh_pool_kick_normal(struct irq_work *irq_work)
7655 {
7656 	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7657 }
7658 
7659 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7660 {
7661 	raise_softirq_irqoff(HI_SOFTIRQ);
7662 }
7663 
7664 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7665 {
7666 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7667 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7668 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7669 		return;
7670 	}
7671 
7672 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7673 }
7674 
7675 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7676 {
7677 	BUG_ON(init_worker_pool(pool));
7678 	pool->cpu = cpu;
7679 	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7680 	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7681 	pool->attrs->nice = nice;
7682 	pool->attrs->affn_strict = true;
7683 	pool->node = cpu_to_node(cpu);
7684 
7685 	/* alloc pool ID */
7686 	mutex_lock(&wq_pool_mutex);
7687 	BUG_ON(worker_pool_assign_id(pool));
7688 	mutex_unlock(&wq_pool_mutex);
7689 }
7690 
7691 /**
7692  * workqueue_init_early - early init for workqueue subsystem
7693  *
7694  * This is the first step of three-staged workqueue subsystem initialization and
7695  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7696  * up. It sets up all the data structures and system workqueues and allows early
7697  * boot code to create workqueues and queue/cancel work items. Actual work item
7698  * execution starts only after kthreads can be created and scheduled right
7699  * before early initcalls.
7700  */
7701 void __init workqueue_init_early(void)
7702 {
7703 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7704 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7705 	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7706 						       bh_pool_kick_highpri };
7707 	int i, cpu;
7708 
7709 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7710 
7711 	BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7712 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7713 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7714 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7715 
7716 	cpumask_copy(wq_online_cpumask, cpu_online_mask);
7717 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7718 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7719 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7720 	if (!cpumask_empty(&wq_cmdline_cpumask))
7721 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7722 
7723 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7724 
7725 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7726 
7727 	unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7728 	BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7729 
7730 	/*
7731 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7732 	 * This allows workqueue items to be moved to HK CPUs.
7733 	 */
7734 	if (housekeeping_enabled(HK_TYPE_TICK))
7735 		wq_power_efficient = true;
7736 
7737 	/* initialize WQ_AFFN_SYSTEM pods */
7738 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7739 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7740 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7741 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7742 
7743 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7744 
7745 	pt->nr_pods = 1;
7746 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7747 	pt->pod_node[0] = NUMA_NO_NODE;
7748 	pt->cpu_pod[0] = 0;
7749 
7750 	/* initialize BH and CPU pools */
7751 	for_each_possible_cpu(cpu) {
7752 		struct worker_pool *pool;
7753 
7754 		i = 0;
7755 		for_each_bh_worker_pool(pool, cpu) {
7756 			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7757 			pool->flags |= POOL_BH;
7758 			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7759 			i++;
7760 		}
7761 
7762 		i = 0;
7763 		for_each_cpu_worker_pool(pool, cpu)
7764 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7765 	}
7766 
7767 	/* create default unbound and ordered wq attrs */
7768 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7769 		struct workqueue_attrs *attrs;
7770 
7771 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7772 		attrs->nice = std_nice[i];
7773 		unbound_std_wq_attrs[i] = attrs;
7774 
7775 		/*
7776 		 * An ordered wq should have only one pwq as ordering is
7777 		 * guaranteed by max_active which is enforced by pwqs.
7778 		 */
7779 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7780 		attrs->nice = std_nice[i];
7781 		attrs->ordered = true;
7782 		ordered_wq_attrs[i] = attrs;
7783 	}
7784 
7785 	system_wq = alloc_workqueue("events", 0, 0);
7786 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7787 	system_long_wq = alloc_workqueue("events_long", 0, 0);
7788 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7789 					    WQ_MAX_ACTIVE);
7790 	system_freezable_wq = alloc_workqueue("events_freezable",
7791 					      WQ_FREEZABLE, 0);
7792 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7793 					      WQ_POWER_EFFICIENT, 0);
7794 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7795 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7796 					      0);
7797 	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7798 	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7799 					       WQ_BH | WQ_HIGHPRI, 0);
7800 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7801 	       !system_unbound_wq || !system_freezable_wq ||
7802 	       !system_power_efficient_wq ||
7803 	       !system_freezable_power_efficient_wq ||
7804 	       !system_bh_wq || !system_bh_highpri_wq);
7805 }
7806 
7807 static void __init wq_cpu_intensive_thresh_init(void)
7808 {
7809 	unsigned long thresh;
7810 	unsigned long bogo;
7811 
7812 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7813 	BUG_ON(IS_ERR(pwq_release_worker));
7814 
7815 	/* if the user set it to a specific value, keep it */
7816 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7817 		return;
7818 
7819 	/*
7820 	 * The default of 10ms is derived from the fact that most modern (as of
7821 	 * 2023) processors can do a lot in 10ms and that it's just below what
7822 	 * most consider human-perceivable. However, the kernel also runs on a
7823 	 * lot slower CPUs including microcontrollers where the threshold is way
7824 	 * too low.
7825 	 *
7826 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7827 	 * This is by no means accurate but it doesn't have to be. The mechanism
7828 	 * is still useful even when the threshold is fully scaled up. Also, as
7829 	 * the reports would usually be applicable to everyone, some machines
7830 	 * operating on longer thresholds won't significantly diminish their
7831 	 * usefulness.
7832 	 */
7833 	thresh = 10 * USEC_PER_MSEC;
7834 
7835 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7836 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7837 	if (bogo < 4000)
7838 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7839 
7840 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7841 		 loops_per_jiffy, bogo, thresh);
7842 
7843 	wq_cpu_intensive_thresh_us = thresh;
7844 }
7845 
7846 /**
7847  * workqueue_init - bring workqueue subsystem fully online
7848  *
7849  * This is the second step of three-staged workqueue subsystem initialization
7850  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7851  * been created and work items queued on them, but there are no kworkers
7852  * executing the work items yet. Populate the worker pools with the initial
7853  * workers and enable future kworker creations.
7854  */
7855 void __init workqueue_init(void)
7856 {
7857 	struct workqueue_struct *wq;
7858 	struct worker_pool *pool;
7859 	int cpu, bkt;
7860 
7861 	wq_cpu_intensive_thresh_init();
7862 
7863 	mutex_lock(&wq_pool_mutex);
7864 
7865 	/*
7866 	 * Per-cpu pools created earlier could be missing node hint. Fix them
7867 	 * up. Also, create a rescuer for workqueues that requested it.
7868 	 */
7869 	for_each_possible_cpu(cpu) {
7870 		for_each_bh_worker_pool(pool, cpu)
7871 			pool->node = cpu_to_node(cpu);
7872 		for_each_cpu_worker_pool(pool, cpu)
7873 			pool->node = cpu_to_node(cpu);
7874 	}
7875 
7876 	list_for_each_entry(wq, &workqueues, list) {
7877 		WARN(init_rescuer(wq),
7878 		     "workqueue: failed to create early rescuer for %s",
7879 		     wq->name);
7880 	}
7881 
7882 	mutex_unlock(&wq_pool_mutex);
7883 
7884 	/*
7885 	 * Create the initial workers. A BH pool has one pseudo worker that
7886 	 * represents the shared BH execution context and thus doesn't get
7887 	 * affected by hotplug events. Create the BH pseudo workers for all
7888 	 * possible CPUs here.
7889 	 */
7890 	for_each_possible_cpu(cpu)
7891 		for_each_bh_worker_pool(pool, cpu)
7892 			BUG_ON(!create_worker(pool));
7893 
7894 	for_each_online_cpu(cpu) {
7895 		for_each_cpu_worker_pool(pool, cpu) {
7896 			pool->flags &= ~POOL_DISASSOCIATED;
7897 			BUG_ON(!create_worker(pool));
7898 		}
7899 	}
7900 
7901 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7902 		BUG_ON(!create_worker(pool));
7903 
7904 	wq_online = true;
7905 	wq_watchdog_init();
7906 }
7907 
7908 /*
7909  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7910  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7911  * and consecutive pod ID. The rest of @pt is initialized accordingly.
7912  */
7913 static void __init init_pod_type(struct wq_pod_type *pt,
7914 				 bool (*cpus_share_pod)(int, int))
7915 {
7916 	int cur, pre, cpu, pod;
7917 
7918 	pt->nr_pods = 0;
7919 
7920 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7921 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7922 	BUG_ON(!pt->cpu_pod);
7923 
7924 	for_each_possible_cpu(cur) {
7925 		for_each_possible_cpu(pre) {
7926 			if (pre >= cur) {
7927 				pt->cpu_pod[cur] = pt->nr_pods++;
7928 				break;
7929 			}
7930 			if (cpus_share_pod(cur, pre)) {
7931 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7932 				break;
7933 			}
7934 		}
7935 	}
7936 
7937 	/* init the rest to match @pt->cpu_pod[] */
7938 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7939 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7940 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7941 
7942 	for (pod = 0; pod < pt->nr_pods; pod++)
7943 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7944 
7945 	for_each_possible_cpu(cpu) {
7946 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7947 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7948 	}
7949 }
7950 
7951 static bool __init cpus_dont_share(int cpu0, int cpu1)
7952 {
7953 	return false;
7954 }
7955 
7956 static bool __init cpus_share_smt(int cpu0, int cpu1)
7957 {
7958 #ifdef CONFIG_SCHED_SMT
7959 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7960 #else
7961 	return false;
7962 #endif
7963 }
7964 
7965 static bool __init cpus_share_numa(int cpu0, int cpu1)
7966 {
7967 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7968 }
7969 
7970 /**
7971  * workqueue_init_topology - initialize CPU pods for unbound workqueues
7972  *
7973  * This is the third step of three-staged workqueue subsystem initialization and
7974  * invoked after SMP and topology information are fully initialized. It
7975  * initializes the unbound CPU pods accordingly.
7976  */
7977 void __init workqueue_init_topology(void)
7978 {
7979 	struct workqueue_struct *wq;
7980 	int cpu;
7981 
7982 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7983 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7984 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7985 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7986 
7987 	wq_topo_initialized = true;
7988 
7989 	mutex_lock(&wq_pool_mutex);
7990 
7991 	/*
7992 	 * Workqueues allocated earlier would have all CPUs sharing the default
7993 	 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
7994 	 * and CPU combinations to apply per-pod sharing.
7995 	 */
7996 	list_for_each_entry(wq, &workqueues, list) {
7997 		for_each_online_cpu(cpu)
7998 			unbound_wq_update_pwq(wq, cpu);
7999 		if (wq->flags & WQ_UNBOUND) {
8000 			mutex_lock(&wq->mutex);
8001 			wq_update_node_max_active(wq, -1);
8002 			mutex_unlock(&wq->mutex);
8003 		}
8004 	}
8005 
8006 	mutex_unlock(&wq_pool_mutex);
8007 }
8008 
8009 void __warn_flushing_systemwide_wq(void)
8010 {
8011 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
8012 	dump_stack();
8013 }
8014 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
8015 
8016 static int __init workqueue_unbound_cpus_setup(char *str)
8017 {
8018 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
8019 		cpumask_clear(&wq_cmdline_cpumask);
8020 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
8021 	}
8022 
8023 	return 1;
8024 }
8025 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
8026