xref: /linux-6.15/kernel/workqueue.c (revision 8034b314)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <[email protected]>
9  *     Andrew Morton
10  *     Kai Petzke <[email protected]>
11  *     Theodore Ts'o <[email protected]>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <[email protected]>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 
59 #include "workqueue_internal.h"
60 
61 enum worker_pool_flags {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 *
78 	 * As there can only be one concurrent BH execution context per CPU, a
79 	 * BH pool is per-CPU and always DISASSOCIATED.
80 	 */
81 	POOL_BH			= 1 << 0,	/* is a BH pool */
82 	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
83 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
84 	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
85 };
86 
87 enum worker_flags {
88 	/* worker flags */
89 	WORKER_DIE		= 1 << 1,	/* die die die */
90 	WORKER_IDLE		= 1 << 2,	/* is idle */
91 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
92 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
93 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
94 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
95 
96 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
97 				  WORKER_UNBOUND | WORKER_REBOUND,
98 };
99 
100 enum work_cancel_flags {
101 	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
102 	WORK_CANCEL_DISABLE	= 1 << 1,	/* canceling to disable */
103 };
104 
105 enum wq_internal_consts {
106 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
107 
108 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
109 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
110 
111 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
112 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
113 
114 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
115 						/* call for help after 10ms
116 						   (min two ticks) */
117 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
118 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
119 
120 	/*
121 	 * Rescue workers are used only on emergencies and shared by
122 	 * all cpus.  Give MIN_NICE.
123 	 */
124 	RESCUER_NICE_LEVEL	= MIN_NICE,
125 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
126 
127 	WQ_NAME_LEN		= 32,
128 };
129 
130 /*
131  * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
132  * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
133  * msecs_to_jiffies() can't be an initializer.
134  */
135 #define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
136 #define BH_WORKER_RESTARTS	10
137 
138 /*
139  * Structure fields follow one of the following exclusion rules.
140  *
141  * I: Modifiable by initialization/destruction paths and read-only for
142  *    everyone else.
143  *
144  * P: Preemption protected.  Disabling preemption is enough and should
145  *    only be modified and accessed from the local cpu.
146  *
147  * L: pool->lock protected.  Access with pool->lock held.
148  *
149  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
150  *     reads.
151  *
152  * K: Only modified by worker while holding pool->lock. Can be safely read by
153  *    self, while holding pool->lock or from IRQ context if %current is the
154  *    kworker.
155  *
156  * S: Only modified by worker self.
157  *
158  * A: wq_pool_attach_mutex protected.
159  *
160  * PL: wq_pool_mutex protected.
161  *
162  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
163  *
164  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
165  *
166  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
167  *      RCU for reads.
168  *
169  * WQ: wq->mutex protected.
170  *
171  * WR: wq->mutex protected for writes.  RCU protected for reads.
172  *
173  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
174  *     with READ_ONCE() without locking.
175  *
176  * MD: wq_mayday_lock protected.
177  *
178  * WD: Used internally by the watchdog.
179  */
180 
181 /* struct worker is defined in workqueue_internal.h */
182 
183 struct worker_pool {
184 	raw_spinlock_t		lock;		/* the pool lock */
185 	int			cpu;		/* I: the associated cpu */
186 	int			node;		/* I: the associated node ID */
187 	int			id;		/* I: pool ID */
188 	unsigned int		flags;		/* L: flags */
189 
190 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
191 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
192 
193 	/*
194 	 * The counter is incremented in a process context on the associated CPU
195 	 * w/ preemption disabled, and decremented or reset in the same context
196 	 * but w/ pool->lock held. The readers grab pool->lock and are
197 	 * guaranteed to see if the counter reached zero.
198 	 */
199 	int			nr_running;
200 
201 	struct list_head	worklist;	/* L: list of pending works */
202 
203 	int			nr_workers;	/* L: total number of workers */
204 	int			nr_idle;	/* L: currently idle workers */
205 
206 	struct list_head	idle_list;	/* L: list of idle workers */
207 	struct timer_list	idle_timer;	/* L: worker idle timeout */
208 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
209 
210 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
211 
212 	/* a workers is either on busy_hash or idle_list, or the manager */
213 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
214 						/* L: hash of busy workers */
215 
216 	struct worker		*manager;	/* L: purely informational */
217 	struct list_head	workers;	/* A: attached workers */
218 	struct list_head        dying_workers;  /* A: workers about to die */
219 	struct completion	*detach_completion; /* all workers detached */
220 
221 	struct ida		worker_ida;	/* worker IDs for task name */
222 
223 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
224 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
225 	int			refcnt;		/* PL: refcnt for unbound pools */
226 
227 	/*
228 	 * Destruction of pool is RCU protected to allow dereferences
229 	 * from get_work_pool().
230 	 */
231 	struct rcu_head		rcu;
232 };
233 
234 /*
235  * Per-pool_workqueue statistics. These can be monitored using
236  * tools/workqueue/wq_monitor.py.
237  */
238 enum pool_workqueue_stats {
239 	PWQ_STAT_STARTED,	/* work items started execution */
240 	PWQ_STAT_COMPLETED,	/* work items completed execution */
241 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
242 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
243 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
244 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
245 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
246 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
247 
248 	PWQ_NR_STATS,
249 };
250 
251 /*
252  * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
253  * of work_struct->data are used for flags and the remaining high bits
254  * point to the pwq; thus, pwqs need to be aligned at two's power of the
255  * number of flag bits.
256  */
257 struct pool_workqueue {
258 	struct worker_pool	*pool;		/* I: the associated pool */
259 	struct workqueue_struct *wq;		/* I: the owning workqueue */
260 	int			work_color;	/* L: current color */
261 	int			flush_color;	/* L: flushing color */
262 	int			refcnt;		/* L: reference count */
263 	int			nr_in_flight[WORK_NR_COLORS];
264 						/* L: nr of in_flight works */
265 	bool			plugged;	/* L: execution suspended */
266 
267 	/*
268 	 * nr_active management and WORK_STRUCT_INACTIVE:
269 	 *
270 	 * When pwq->nr_active >= max_active, new work item is queued to
271 	 * pwq->inactive_works instead of pool->worklist and marked with
272 	 * WORK_STRUCT_INACTIVE.
273 	 *
274 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
275 	 * nr_active and all work items in pwq->inactive_works are marked with
276 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
277 	 * in pwq->inactive_works. Some of them are ready to run in
278 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
279 	 * wq_barrier which is used for flush_work() and should not participate
280 	 * in nr_active. For non-barrier work item, it is marked with
281 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
282 	 */
283 	int			nr_active;	/* L: nr of active works */
284 	struct list_head	inactive_works;	/* L: inactive works */
285 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
286 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
287 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
288 
289 	u64			stats[PWQ_NR_STATS];
290 
291 	/*
292 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
293 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
294 	 * RCU protected so that the first pwq can be determined without
295 	 * grabbing wq->mutex.
296 	 */
297 	struct kthread_work	release_work;
298 	struct rcu_head		rcu;
299 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
300 
301 /*
302  * Structure used to wait for workqueue flush.
303  */
304 struct wq_flusher {
305 	struct list_head	list;		/* WQ: list of flushers */
306 	int			flush_color;	/* WQ: flush color waiting for */
307 	struct completion	done;		/* flush completion */
308 };
309 
310 struct wq_device;
311 
312 /*
313  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
314  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
315  * As sharing a single nr_active across multiple sockets can be very expensive,
316  * the counting and enforcement is per NUMA node.
317  *
318  * The following struct is used to enforce per-node max_active. When a pwq wants
319  * to start executing a work item, it should increment ->nr using
320  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
321  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
322  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
323  * round-robin order.
324  */
325 struct wq_node_nr_active {
326 	int			max;		/* per-node max_active */
327 	atomic_t		nr;		/* per-node nr_active */
328 	raw_spinlock_t		lock;		/* nests inside pool locks */
329 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
330 };
331 
332 /*
333  * The externally visible workqueue.  It relays the issued work items to
334  * the appropriate worker_pool through its pool_workqueues.
335  */
336 struct workqueue_struct {
337 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
338 	struct list_head	list;		/* PR: list of all workqueues */
339 
340 	struct mutex		mutex;		/* protects this wq */
341 	int			work_color;	/* WQ: current work color */
342 	int			flush_color;	/* WQ: current flush color */
343 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
344 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
345 	struct list_head	flusher_queue;	/* WQ: flush waiters */
346 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
347 
348 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
349 	struct worker		*rescuer;	/* MD: rescue worker */
350 
351 	int			nr_drainers;	/* WQ: drain in progress */
352 
353 	/* See alloc_workqueue() function comment for info on min/max_active */
354 	int			max_active;	/* WO: max active works */
355 	int			min_active;	/* WO: min active works */
356 	int			saved_max_active; /* WQ: saved max_active */
357 	int			saved_min_active; /* WQ: saved min_active */
358 
359 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
360 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
361 
362 #ifdef CONFIG_SYSFS
363 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
364 #endif
365 #ifdef CONFIG_LOCKDEP
366 	char			*lock_name;
367 	struct lock_class_key	key;
368 	struct lockdep_map	lockdep_map;
369 #endif
370 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
371 
372 	/*
373 	 * Destruction of workqueue_struct is RCU protected to allow walking
374 	 * the workqueues list without grabbing wq_pool_mutex.
375 	 * This is used to dump all workqueues from sysrq.
376 	 */
377 	struct rcu_head		rcu;
378 
379 	/* hot fields used during command issue, aligned to cacheline */
380 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
381 	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
382 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
383 };
384 
385 /*
386  * Each pod type describes how CPUs should be grouped for unbound workqueues.
387  * See the comment above workqueue_attrs->affn_scope.
388  */
389 struct wq_pod_type {
390 	int			nr_pods;	/* number of pods */
391 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
392 	int			*pod_node;	/* pod -> node */
393 	int			*cpu_pod;	/* cpu -> pod */
394 };
395 
396 struct work_offq_data {
397 	u32			pool_id;
398 	u32			disable;
399 	u32			flags;
400 };
401 
402 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
403 	[WQ_AFFN_DFL]		= "default",
404 	[WQ_AFFN_CPU]		= "cpu",
405 	[WQ_AFFN_SMT]		= "smt",
406 	[WQ_AFFN_CACHE]		= "cache",
407 	[WQ_AFFN_NUMA]		= "numa",
408 	[WQ_AFFN_SYSTEM]	= "system",
409 };
410 
411 /*
412  * Per-cpu work items which run for longer than the following threshold are
413  * automatically considered CPU intensive and excluded from concurrency
414  * management to prevent them from noticeably delaying other per-cpu work items.
415  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
416  * The actual value is initialized in wq_cpu_intensive_thresh_init().
417  */
418 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
419 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
421 static unsigned int wq_cpu_intensive_warning_thresh = 4;
422 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
423 #endif
424 
425 /* see the comment above the definition of WQ_POWER_EFFICIENT */
426 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
427 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
428 
429 static bool wq_online;			/* can kworkers be created yet? */
430 static bool wq_topo_initialized __read_mostly = false;
431 
432 static struct kmem_cache *pwq_cache;
433 
434 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
435 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
436 
437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
438 static struct workqueue_attrs *wq_update_pod_attrs_buf;
439 
440 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
441 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
443 /* wait for manager to go away */
444 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
445 
446 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
447 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
448 
449 /* PL&A: allowable cpus for unbound wqs and work items */
450 static cpumask_var_t wq_unbound_cpumask;
451 
452 /* PL: user requested unbound cpumask via sysfs */
453 static cpumask_var_t wq_requested_unbound_cpumask;
454 
455 /* PL: isolated cpumask to be excluded from unbound cpumask */
456 static cpumask_var_t wq_isolated_cpumask;
457 
458 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
459 static struct cpumask wq_cmdline_cpumask __initdata;
460 
461 /* CPU where unbound work was last round robin scheduled from this CPU */
462 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
463 
464 /*
465  * Local execution of unbound work items is no longer guaranteed.  The
466  * following always forces round-robin CPU selection on unbound work items
467  * to uncover usages which depend on it.
468  */
469 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
470 static bool wq_debug_force_rr_cpu = true;
471 #else
472 static bool wq_debug_force_rr_cpu = false;
473 #endif
474 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
475 
476 /* to raise softirq for the BH worker pools on other CPUs */
477 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS],
478 				     bh_pool_irq_works);
479 
480 /* the BH worker pools */
481 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
482 				     bh_worker_pools);
483 
484 /* the per-cpu worker pools */
485 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
486 				     cpu_worker_pools);
487 
488 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
489 
490 /* PL: hash of all unbound pools keyed by pool->attrs */
491 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
492 
493 /* I: attributes used when instantiating standard unbound pools on demand */
494 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
495 
496 /* I: attributes used when instantiating ordered pools on demand */
497 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
498 
499 /*
500  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
501  * process context while holding a pool lock. Bounce to a dedicated kthread
502  * worker to avoid A-A deadlocks.
503  */
504 static struct kthread_worker *pwq_release_worker __ro_after_init;
505 
506 struct workqueue_struct *system_wq __ro_after_init;
507 EXPORT_SYMBOL(system_wq);
508 struct workqueue_struct *system_highpri_wq __ro_after_init;
509 EXPORT_SYMBOL_GPL(system_highpri_wq);
510 struct workqueue_struct *system_long_wq __ro_after_init;
511 EXPORT_SYMBOL_GPL(system_long_wq);
512 struct workqueue_struct *system_unbound_wq __ro_after_init;
513 EXPORT_SYMBOL_GPL(system_unbound_wq);
514 struct workqueue_struct *system_freezable_wq __ro_after_init;
515 EXPORT_SYMBOL_GPL(system_freezable_wq);
516 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
517 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
518 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
519 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
520 struct workqueue_struct *system_bh_wq;
521 EXPORT_SYMBOL_GPL(system_bh_wq);
522 struct workqueue_struct *system_bh_highpri_wq;
523 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
524 
525 static int worker_thread(void *__worker);
526 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
527 static void show_pwq(struct pool_workqueue *pwq);
528 static void show_one_worker_pool(struct worker_pool *pool);
529 
530 #define CREATE_TRACE_POINTS
531 #include <trace/events/workqueue.h>
532 
533 #define assert_rcu_or_pool_mutex()					\
534 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
535 			 !lockdep_is_held(&wq_pool_mutex),		\
536 			 "RCU or wq_pool_mutex should be held")
537 
538 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
539 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
540 			 !lockdep_is_held(&wq->mutex) &&		\
541 			 !lockdep_is_held(&wq_pool_mutex),		\
542 			 "RCU, wq->mutex or wq_pool_mutex should be held")
543 
544 #define for_each_bh_worker_pool(pool, cpu)				\
545 	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
546 	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
547 	     (pool)++)
548 
549 #define for_each_cpu_worker_pool(pool, cpu)				\
550 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
551 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
552 	     (pool)++)
553 
554 /**
555  * for_each_pool - iterate through all worker_pools in the system
556  * @pool: iteration cursor
557  * @pi: integer used for iteration
558  *
559  * This must be called either with wq_pool_mutex held or RCU read
560  * locked.  If the pool needs to be used beyond the locking in effect, the
561  * caller is responsible for guaranteeing that the pool stays online.
562  *
563  * The if/else clause exists only for the lockdep assertion and can be
564  * ignored.
565  */
566 #define for_each_pool(pool, pi)						\
567 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
568 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
569 		else
570 
571 /**
572  * for_each_pool_worker - iterate through all workers of a worker_pool
573  * @worker: iteration cursor
574  * @pool: worker_pool to iterate workers of
575  *
576  * This must be called with wq_pool_attach_mutex.
577  *
578  * The if/else clause exists only for the lockdep assertion and can be
579  * ignored.
580  */
581 #define for_each_pool_worker(worker, pool)				\
582 	list_for_each_entry((worker), &(pool)->workers, node)		\
583 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
584 		else
585 
586 /**
587  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
588  * @pwq: iteration cursor
589  * @wq: the target workqueue
590  *
591  * This must be called either with wq->mutex held or RCU read locked.
592  * If the pwq needs to be used beyond the locking in effect, the caller is
593  * responsible for guaranteeing that the pwq stays online.
594  *
595  * The if/else clause exists only for the lockdep assertion and can be
596  * ignored.
597  */
598 #define for_each_pwq(pwq, wq)						\
599 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
600 				 lockdep_is_held(&(wq->mutex)))
601 
602 #ifdef CONFIG_DEBUG_OBJECTS_WORK
603 
604 static const struct debug_obj_descr work_debug_descr;
605 
606 static void *work_debug_hint(void *addr)
607 {
608 	return ((struct work_struct *) addr)->func;
609 }
610 
611 static bool work_is_static_object(void *addr)
612 {
613 	struct work_struct *work = addr;
614 
615 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
616 }
617 
618 /*
619  * fixup_init is called when:
620  * - an active object is initialized
621  */
622 static bool work_fixup_init(void *addr, enum debug_obj_state state)
623 {
624 	struct work_struct *work = addr;
625 
626 	switch (state) {
627 	case ODEBUG_STATE_ACTIVE:
628 		cancel_work_sync(work);
629 		debug_object_init(work, &work_debug_descr);
630 		return true;
631 	default:
632 		return false;
633 	}
634 }
635 
636 /*
637  * fixup_free is called when:
638  * - an active object is freed
639  */
640 static bool work_fixup_free(void *addr, enum debug_obj_state state)
641 {
642 	struct work_struct *work = addr;
643 
644 	switch (state) {
645 	case ODEBUG_STATE_ACTIVE:
646 		cancel_work_sync(work);
647 		debug_object_free(work, &work_debug_descr);
648 		return true;
649 	default:
650 		return false;
651 	}
652 }
653 
654 static const struct debug_obj_descr work_debug_descr = {
655 	.name		= "work_struct",
656 	.debug_hint	= work_debug_hint,
657 	.is_static_object = work_is_static_object,
658 	.fixup_init	= work_fixup_init,
659 	.fixup_free	= work_fixup_free,
660 };
661 
662 static inline void debug_work_activate(struct work_struct *work)
663 {
664 	debug_object_activate(work, &work_debug_descr);
665 }
666 
667 static inline void debug_work_deactivate(struct work_struct *work)
668 {
669 	debug_object_deactivate(work, &work_debug_descr);
670 }
671 
672 void __init_work(struct work_struct *work, int onstack)
673 {
674 	if (onstack)
675 		debug_object_init_on_stack(work, &work_debug_descr);
676 	else
677 		debug_object_init(work, &work_debug_descr);
678 }
679 EXPORT_SYMBOL_GPL(__init_work);
680 
681 void destroy_work_on_stack(struct work_struct *work)
682 {
683 	debug_object_free(work, &work_debug_descr);
684 }
685 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
686 
687 void destroy_delayed_work_on_stack(struct delayed_work *work)
688 {
689 	destroy_timer_on_stack(&work->timer);
690 	debug_object_free(&work->work, &work_debug_descr);
691 }
692 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
693 
694 #else
695 static inline void debug_work_activate(struct work_struct *work) { }
696 static inline void debug_work_deactivate(struct work_struct *work) { }
697 #endif
698 
699 /**
700  * worker_pool_assign_id - allocate ID and assign it to @pool
701  * @pool: the pool pointer of interest
702  *
703  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
704  * successfully, -errno on failure.
705  */
706 static int worker_pool_assign_id(struct worker_pool *pool)
707 {
708 	int ret;
709 
710 	lockdep_assert_held(&wq_pool_mutex);
711 
712 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
713 			GFP_KERNEL);
714 	if (ret >= 0) {
715 		pool->id = ret;
716 		return 0;
717 	}
718 	return ret;
719 }
720 
721 static struct pool_workqueue __rcu **
722 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
723 {
724        if (cpu >= 0)
725                return per_cpu_ptr(wq->cpu_pwq, cpu);
726        else
727                return &wq->dfl_pwq;
728 }
729 
730 /* @cpu < 0 for dfl_pwq */
731 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
732 {
733 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
734 				     lockdep_is_held(&wq_pool_mutex) ||
735 				     lockdep_is_held(&wq->mutex));
736 }
737 
738 /**
739  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
740  * @wq: workqueue of interest
741  *
742  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
743  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
744  * default pwq is always mapped to the pool with the current effective cpumask.
745  */
746 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
747 {
748 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
749 }
750 
751 static unsigned int work_color_to_flags(int color)
752 {
753 	return color << WORK_STRUCT_COLOR_SHIFT;
754 }
755 
756 static int get_work_color(unsigned long work_data)
757 {
758 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
759 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
760 }
761 
762 static int work_next_color(int color)
763 {
764 	return (color + 1) % WORK_NR_COLORS;
765 }
766 
767 static unsigned long pool_offq_flags(struct worker_pool *pool)
768 {
769 	return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
770 }
771 
772 /*
773  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
774  * contain the pointer to the queued pwq.  Once execution starts, the flag
775  * is cleared and the high bits contain OFFQ flags and pool ID.
776  *
777  * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
778  * can be used to set the pwq, pool or clear work->data. These functions should
779  * only be called while the work is owned - ie. while the PENDING bit is set.
780  *
781  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
782  * corresponding to a work.  Pool is available once the work has been
783  * queued anywhere after initialization until it is sync canceled.  pwq is
784  * available only while the work item is queued.
785  */
786 static inline void set_work_data(struct work_struct *work, unsigned long data)
787 {
788 	WARN_ON_ONCE(!work_pending(work));
789 	atomic_long_set(&work->data, data | work_static(work));
790 }
791 
792 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
793 			 unsigned long flags)
794 {
795 	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
796 		      WORK_STRUCT_PWQ | flags);
797 }
798 
799 static void set_work_pool_and_keep_pending(struct work_struct *work,
800 					   int pool_id, unsigned long flags)
801 {
802 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
803 		      WORK_STRUCT_PENDING | flags);
804 }
805 
806 static void set_work_pool_and_clear_pending(struct work_struct *work,
807 					    int pool_id, unsigned long flags)
808 {
809 	/*
810 	 * The following wmb is paired with the implied mb in
811 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
812 	 * here are visible to and precede any updates by the next PENDING
813 	 * owner.
814 	 */
815 	smp_wmb();
816 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
817 		      flags);
818 	/*
819 	 * The following mb guarantees that previous clear of a PENDING bit
820 	 * will not be reordered with any speculative LOADS or STORES from
821 	 * work->current_func, which is executed afterwards.  This possible
822 	 * reordering can lead to a missed execution on attempt to queue
823 	 * the same @work.  E.g. consider this case:
824 	 *
825 	 *   CPU#0                         CPU#1
826 	 *   ----------------------------  --------------------------------
827 	 *
828 	 * 1  STORE event_indicated
829 	 * 2  queue_work_on() {
830 	 * 3    test_and_set_bit(PENDING)
831 	 * 4 }                             set_..._and_clear_pending() {
832 	 * 5                                 set_work_data() # clear bit
833 	 * 6                                 smp_mb()
834 	 * 7                               work->current_func() {
835 	 * 8				      LOAD event_indicated
836 	 *				   }
837 	 *
838 	 * Without an explicit full barrier speculative LOAD on line 8 can
839 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
840 	 * CPU#0 observes the PENDING bit is still set and new execution of
841 	 * a @work is not queued in a hope, that CPU#1 will eventually
842 	 * finish the queued @work.  Meanwhile CPU#1 does not see
843 	 * event_indicated is set, because speculative LOAD was executed
844 	 * before actual STORE.
845 	 */
846 	smp_mb();
847 }
848 
849 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
850 {
851 	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
852 }
853 
854 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
855 {
856 	unsigned long data = atomic_long_read(&work->data);
857 
858 	if (data & WORK_STRUCT_PWQ)
859 		return work_struct_pwq(data);
860 	else
861 		return NULL;
862 }
863 
864 /**
865  * get_work_pool - return the worker_pool a given work was associated with
866  * @work: the work item of interest
867  *
868  * Pools are created and destroyed under wq_pool_mutex, and allows read
869  * access under RCU read lock.  As such, this function should be
870  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
871  *
872  * All fields of the returned pool are accessible as long as the above
873  * mentioned locking is in effect.  If the returned pool needs to be used
874  * beyond the critical section, the caller is responsible for ensuring the
875  * returned pool is and stays online.
876  *
877  * Return: The worker_pool @work was last associated with.  %NULL if none.
878  */
879 static struct worker_pool *get_work_pool(struct work_struct *work)
880 {
881 	unsigned long data = atomic_long_read(&work->data);
882 	int pool_id;
883 
884 	assert_rcu_or_pool_mutex();
885 
886 	if (data & WORK_STRUCT_PWQ)
887 		return work_struct_pwq(data)->pool;
888 
889 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
890 	if (pool_id == WORK_OFFQ_POOL_NONE)
891 		return NULL;
892 
893 	return idr_find(&worker_pool_idr, pool_id);
894 }
895 
896 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
897 {
898 	return (v >> shift) & ((1 << bits) - 1);
899 }
900 
901 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
902 {
903 	WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
904 
905 	offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
906 					WORK_OFFQ_POOL_BITS);
907 	offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
908 					WORK_OFFQ_DISABLE_BITS);
909 	offqd->flags = data & WORK_OFFQ_FLAG_MASK;
910 }
911 
912 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
913 {
914 	return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
915 		((unsigned long)offqd->flags);
916 }
917 
918 /*
919  * Policy functions.  These define the policies on how the global worker
920  * pools are managed.  Unless noted otherwise, these functions assume that
921  * they're being called with pool->lock held.
922  */
923 
924 /*
925  * Need to wake up a worker?  Called from anything but currently
926  * running workers.
927  *
928  * Note that, because unbound workers never contribute to nr_running, this
929  * function will always return %true for unbound pools as long as the
930  * worklist isn't empty.
931  */
932 static bool need_more_worker(struct worker_pool *pool)
933 {
934 	return !list_empty(&pool->worklist) && !pool->nr_running;
935 }
936 
937 /* Can I start working?  Called from busy but !running workers. */
938 static bool may_start_working(struct worker_pool *pool)
939 {
940 	return pool->nr_idle;
941 }
942 
943 /* Do I need to keep working?  Called from currently running workers. */
944 static bool keep_working(struct worker_pool *pool)
945 {
946 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
947 }
948 
949 /* Do we need a new worker?  Called from manager. */
950 static bool need_to_create_worker(struct worker_pool *pool)
951 {
952 	return need_more_worker(pool) && !may_start_working(pool);
953 }
954 
955 /* Do we have too many workers and should some go away? */
956 static bool too_many_workers(struct worker_pool *pool)
957 {
958 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
959 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
960 	int nr_busy = pool->nr_workers - nr_idle;
961 
962 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
963 }
964 
965 /**
966  * worker_set_flags - set worker flags and adjust nr_running accordingly
967  * @worker: self
968  * @flags: flags to set
969  *
970  * Set @flags in @worker->flags and adjust nr_running accordingly.
971  */
972 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
973 {
974 	struct worker_pool *pool = worker->pool;
975 
976 	lockdep_assert_held(&pool->lock);
977 
978 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
979 	if ((flags & WORKER_NOT_RUNNING) &&
980 	    !(worker->flags & WORKER_NOT_RUNNING)) {
981 		pool->nr_running--;
982 	}
983 
984 	worker->flags |= flags;
985 }
986 
987 /**
988  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
989  * @worker: self
990  * @flags: flags to clear
991  *
992  * Clear @flags in @worker->flags and adjust nr_running accordingly.
993  */
994 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
995 {
996 	struct worker_pool *pool = worker->pool;
997 	unsigned int oflags = worker->flags;
998 
999 	lockdep_assert_held(&pool->lock);
1000 
1001 	worker->flags &= ~flags;
1002 
1003 	/*
1004 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1005 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1006 	 * of multiple flags, not a single flag.
1007 	 */
1008 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1009 		if (!(worker->flags & WORKER_NOT_RUNNING))
1010 			pool->nr_running++;
1011 }
1012 
1013 /* Return the first idle worker.  Called with pool->lock held. */
1014 static struct worker *first_idle_worker(struct worker_pool *pool)
1015 {
1016 	if (unlikely(list_empty(&pool->idle_list)))
1017 		return NULL;
1018 
1019 	return list_first_entry(&pool->idle_list, struct worker, entry);
1020 }
1021 
1022 /**
1023  * worker_enter_idle - enter idle state
1024  * @worker: worker which is entering idle state
1025  *
1026  * @worker is entering idle state.  Update stats and idle timer if
1027  * necessary.
1028  *
1029  * LOCKING:
1030  * raw_spin_lock_irq(pool->lock).
1031  */
1032 static void worker_enter_idle(struct worker *worker)
1033 {
1034 	struct worker_pool *pool = worker->pool;
1035 
1036 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1037 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1038 			 (worker->hentry.next || worker->hentry.pprev)))
1039 		return;
1040 
1041 	/* can't use worker_set_flags(), also called from create_worker() */
1042 	worker->flags |= WORKER_IDLE;
1043 	pool->nr_idle++;
1044 	worker->last_active = jiffies;
1045 
1046 	/* idle_list is LIFO */
1047 	list_add(&worker->entry, &pool->idle_list);
1048 
1049 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1050 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1051 
1052 	/* Sanity check nr_running. */
1053 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1054 }
1055 
1056 /**
1057  * worker_leave_idle - leave idle state
1058  * @worker: worker which is leaving idle state
1059  *
1060  * @worker is leaving idle state.  Update stats.
1061  *
1062  * LOCKING:
1063  * raw_spin_lock_irq(pool->lock).
1064  */
1065 static void worker_leave_idle(struct worker *worker)
1066 {
1067 	struct worker_pool *pool = worker->pool;
1068 
1069 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1070 		return;
1071 	worker_clr_flags(worker, WORKER_IDLE);
1072 	pool->nr_idle--;
1073 	list_del_init(&worker->entry);
1074 }
1075 
1076 /**
1077  * find_worker_executing_work - find worker which is executing a work
1078  * @pool: pool of interest
1079  * @work: work to find worker for
1080  *
1081  * Find a worker which is executing @work on @pool by searching
1082  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1083  * to match, its current execution should match the address of @work and
1084  * its work function.  This is to avoid unwanted dependency between
1085  * unrelated work executions through a work item being recycled while still
1086  * being executed.
1087  *
1088  * This is a bit tricky.  A work item may be freed once its execution
1089  * starts and nothing prevents the freed area from being recycled for
1090  * another work item.  If the same work item address ends up being reused
1091  * before the original execution finishes, workqueue will identify the
1092  * recycled work item as currently executing and make it wait until the
1093  * current execution finishes, introducing an unwanted dependency.
1094  *
1095  * This function checks the work item address and work function to avoid
1096  * false positives.  Note that this isn't complete as one may construct a
1097  * work function which can introduce dependency onto itself through a
1098  * recycled work item.  Well, if somebody wants to shoot oneself in the
1099  * foot that badly, there's only so much we can do, and if such deadlock
1100  * actually occurs, it should be easy to locate the culprit work function.
1101  *
1102  * CONTEXT:
1103  * raw_spin_lock_irq(pool->lock).
1104  *
1105  * Return:
1106  * Pointer to worker which is executing @work if found, %NULL
1107  * otherwise.
1108  */
1109 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1110 						 struct work_struct *work)
1111 {
1112 	struct worker *worker;
1113 
1114 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1115 			       (unsigned long)work)
1116 		if (worker->current_work == work &&
1117 		    worker->current_func == work->func)
1118 			return worker;
1119 
1120 	return NULL;
1121 }
1122 
1123 /**
1124  * move_linked_works - move linked works to a list
1125  * @work: start of series of works to be scheduled
1126  * @head: target list to append @work to
1127  * @nextp: out parameter for nested worklist walking
1128  *
1129  * Schedule linked works starting from @work to @head. Work series to be
1130  * scheduled starts at @work and includes any consecutive work with
1131  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1132  * @nextp.
1133  *
1134  * CONTEXT:
1135  * raw_spin_lock_irq(pool->lock).
1136  */
1137 static void move_linked_works(struct work_struct *work, struct list_head *head,
1138 			      struct work_struct **nextp)
1139 {
1140 	struct work_struct *n;
1141 
1142 	/*
1143 	 * Linked worklist will always end before the end of the list,
1144 	 * use NULL for list head.
1145 	 */
1146 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1147 		list_move_tail(&work->entry, head);
1148 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1149 			break;
1150 	}
1151 
1152 	/*
1153 	 * If we're already inside safe list traversal and have moved
1154 	 * multiple works to the scheduled queue, the next position
1155 	 * needs to be updated.
1156 	 */
1157 	if (nextp)
1158 		*nextp = n;
1159 }
1160 
1161 /**
1162  * assign_work - assign a work item and its linked work items to a worker
1163  * @work: work to assign
1164  * @worker: worker to assign to
1165  * @nextp: out parameter for nested worklist walking
1166  *
1167  * Assign @work and its linked work items to @worker. If @work is already being
1168  * executed by another worker in the same pool, it'll be punted there.
1169  *
1170  * If @nextp is not NULL, it's updated to point to the next work of the last
1171  * scheduled work. This allows assign_work() to be nested inside
1172  * list_for_each_entry_safe().
1173  *
1174  * Returns %true if @work was successfully assigned to @worker. %false if @work
1175  * was punted to another worker already executing it.
1176  */
1177 static bool assign_work(struct work_struct *work, struct worker *worker,
1178 			struct work_struct **nextp)
1179 {
1180 	struct worker_pool *pool = worker->pool;
1181 	struct worker *collision;
1182 
1183 	lockdep_assert_held(&pool->lock);
1184 
1185 	/*
1186 	 * A single work shouldn't be executed concurrently by multiple workers.
1187 	 * __queue_work() ensures that @work doesn't jump to a different pool
1188 	 * while still running in the previous pool. Here, we should ensure that
1189 	 * @work is not executed concurrently by multiple workers from the same
1190 	 * pool. Check whether anyone is already processing the work. If so,
1191 	 * defer the work to the currently executing one.
1192 	 */
1193 	collision = find_worker_executing_work(pool, work);
1194 	if (unlikely(collision)) {
1195 		move_linked_works(work, &collision->scheduled, nextp);
1196 		return false;
1197 	}
1198 
1199 	move_linked_works(work, &worker->scheduled, nextp);
1200 	return true;
1201 }
1202 
1203 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1204 {
1205 	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1206 
1207 	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1208 }
1209 
1210 static void kick_bh_pool(struct worker_pool *pool)
1211 {
1212 #ifdef CONFIG_SMP
1213 	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1214 	if (unlikely(pool->cpu != smp_processor_id() &&
1215 		     !(pool->flags & POOL_BH_DRAINING))) {
1216 		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1217 		return;
1218 	}
1219 #endif
1220 	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1221 		raise_softirq_irqoff(HI_SOFTIRQ);
1222 	else
1223 		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1224 }
1225 
1226 /**
1227  * kick_pool - wake up an idle worker if necessary
1228  * @pool: pool to kick
1229  *
1230  * @pool may have pending work items. Wake up worker if necessary. Returns
1231  * whether a worker was woken up.
1232  */
1233 static bool kick_pool(struct worker_pool *pool)
1234 {
1235 	struct worker *worker = first_idle_worker(pool);
1236 	struct task_struct *p;
1237 
1238 	lockdep_assert_held(&pool->lock);
1239 
1240 	if (!need_more_worker(pool) || !worker)
1241 		return false;
1242 
1243 	if (pool->flags & POOL_BH) {
1244 		kick_bh_pool(pool);
1245 		return true;
1246 	}
1247 
1248 	p = worker->task;
1249 
1250 #ifdef CONFIG_SMP
1251 	/*
1252 	 * Idle @worker is about to execute @work and waking up provides an
1253 	 * opportunity to migrate @worker at a lower cost by setting the task's
1254 	 * wake_cpu field. Let's see if we want to move @worker to improve
1255 	 * execution locality.
1256 	 *
1257 	 * We're waking the worker that went idle the latest and there's some
1258 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1259 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1260 	 * optimization and the race window is narrow, let's leave as-is for
1261 	 * now. If this becomes pronounced, we can skip over workers which are
1262 	 * still on cpu when picking an idle worker.
1263 	 *
1264 	 * If @pool has non-strict affinity, @worker might have ended up outside
1265 	 * its affinity scope. Repatriate.
1266 	 */
1267 	if (!pool->attrs->affn_strict &&
1268 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1269 		struct work_struct *work = list_first_entry(&pool->worklist,
1270 						struct work_struct, entry);
1271 		p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1272 		get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1273 	}
1274 #endif
1275 	wake_up_process(p);
1276 	return true;
1277 }
1278 
1279 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1280 
1281 /*
1282  * Concurrency-managed per-cpu work items that hog CPU for longer than
1283  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1284  * which prevents them from stalling other concurrency-managed work items. If a
1285  * work function keeps triggering this mechanism, it's likely that the work item
1286  * should be using an unbound workqueue instead.
1287  *
1288  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1289  * and report them so that they can be examined and converted to use unbound
1290  * workqueues as appropriate. To avoid flooding the console, each violating work
1291  * function is tracked and reported with exponential backoff.
1292  */
1293 #define WCI_MAX_ENTS 128
1294 
1295 struct wci_ent {
1296 	work_func_t		func;
1297 	atomic64_t		cnt;
1298 	struct hlist_node	hash_node;
1299 };
1300 
1301 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1302 static int wci_nr_ents;
1303 static DEFINE_RAW_SPINLOCK(wci_lock);
1304 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1305 
1306 static struct wci_ent *wci_find_ent(work_func_t func)
1307 {
1308 	struct wci_ent *ent;
1309 
1310 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1311 				   (unsigned long)func) {
1312 		if (ent->func == func)
1313 			return ent;
1314 	}
1315 	return NULL;
1316 }
1317 
1318 static void wq_cpu_intensive_report(work_func_t func)
1319 {
1320 	struct wci_ent *ent;
1321 
1322 restart:
1323 	ent = wci_find_ent(func);
1324 	if (ent) {
1325 		u64 cnt;
1326 
1327 		/*
1328 		 * Start reporting from the warning_thresh and back off
1329 		 * exponentially.
1330 		 */
1331 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1332 		if (wq_cpu_intensive_warning_thresh &&
1333 		    cnt >= wq_cpu_intensive_warning_thresh &&
1334 		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1335 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1336 					ent->func, wq_cpu_intensive_thresh_us,
1337 					atomic64_read(&ent->cnt));
1338 		return;
1339 	}
1340 
1341 	/*
1342 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1343 	 * is exhausted, something went really wrong and we probably made enough
1344 	 * noise already.
1345 	 */
1346 	if (wci_nr_ents >= WCI_MAX_ENTS)
1347 		return;
1348 
1349 	raw_spin_lock(&wci_lock);
1350 
1351 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1352 		raw_spin_unlock(&wci_lock);
1353 		return;
1354 	}
1355 
1356 	if (wci_find_ent(func)) {
1357 		raw_spin_unlock(&wci_lock);
1358 		goto restart;
1359 	}
1360 
1361 	ent = &wci_ents[wci_nr_ents++];
1362 	ent->func = func;
1363 	atomic64_set(&ent->cnt, 0);
1364 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1365 
1366 	raw_spin_unlock(&wci_lock);
1367 
1368 	goto restart;
1369 }
1370 
1371 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1372 static void wq_cpu_intensive_report(work_func_t func) {}
1373 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1374 
1375 /**
1376  * wq_worker_running - a worker is running again
1377  * @task: task waking up
1378  *
1379  * This function is called when a worker returns from schedule()
1380  */
1381 void wq_worker_running(struct task_struct *task)
1382 {
1383 	struct worker *worker = kthread_data(task);
1384 
1385 	if (!READ_ONCE(worker->sleeping))
1386 		return;
1387 
1388 	/*
1389 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1390 	 * and the nr_running increment below, we may ruin the nr_running reset
1391 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1392 	 * pool. Protect against such race.
1393 	 */
1394 	preempt_disable();
1395 	if (!(worker->flags & WORKER_NOT_RUNNING))
1396 		worker->pool->nr_running++;
1397 	preempt_enable();
1398 
1399 	/*
1400 	 * CPU intensive auto-detection cares about how long a work item hogged
1401 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1402 	 */
1403 	worker->current_at = worker->task->se.sum_exec_runtime;
1404 
1405 	WRITE_ONCE(worker->sleeping, 0);
1406 }
1407 
1408 /**
1409  * wq_worker_sleeping - a worker is going to sleep
1410  * @task: task going to sleep
1411  *
1412  * This function is called from schedule() when a busy worker is
1413  * going to sleep.
1414  */
1415 void wq_worker_sleeping(struct task_struct *task)
1416 {
1417 	struct worker *worker = kthread_data(task);
1418 	struct worker_pool *pool;
1419 
1420 	/*
1421 	 * Rescuers, which may not have all the fields set up like normal
1422 	 * workers, also reach here, let's not access anything before
1423 	 * checking NOT_RUNNING.
1424 	 */
1425 	if (worker->flags & WORKER_NOT_RUNNING)
1426 		return;
1427 
1428 	pool = worker->pool;
1429 
1430 	/* Return if preempted before wq_worker_running() was reached */
1431 	if (READ_ONCE(worker->sleeping))
1432 		return;
1433 
1434 	WRITE_ONCE(worker->sleeping, 1);
1435 	raw_spin_lock_irq(&pool->lock);
1436 
1437 	/*
1438 	 * Recheck in case unbind_workers() preempted us. We don't
1439 	 * want to decrement nr_running after the worker is unbound
1440 	 * and nr_running has been reset.
1441 	 */
1442 	if (worker->flags & WORKER_NOT_RUNNING) {
1443 		raw_spin_unlock_irq(&pool->lock);
1444 		return;
1445 	}
1446 
1447 	pool->nr_running--;
1448 	if (kick_pool(pool))
1449 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1450 
1451 	raw_spin_unlock_irq(&pool->lock);
1452 }
1453 
1454 /**
1455  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1456  * @task: task currently running
1457  *
1458  * Called from scheduler_tick(). We're in the IRQ context and the current
1459  * worker's fields which follow the 'K' locking rule can be accessed safely.
1460  */
1461 void wq_worker_tick(struct task_struct *task)
1462 {
1463 	struct worker *worker = kthread_data(task);
1464 	struct pool_workqueue *pwq = worker->current_pwq;
1465 	struct worker_pool *pool = worker->pool;
1466 
1467 	if (!pwq)
1468 		return;
1469 
1470 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1471 
1472 	if (!wq_cpu_intensive_thresh_us)
1473 		return;
1474 
1475 	/*
1476 	 * If the current worker is concurrency managed and hogged the CPU for
1477 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1478 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1479 	 *
1480 	 * Set @worker->sleeping means that @worker is in the process of
1481 	 * switching out voluntarily and won't be contributing to
1482 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1483 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1484 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1485 	 * We probably want to make this prettier in the future.
1486 	 */
1487 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1488 	    worker->task->se.sum_exec_runtime - worker->current_at <
1489 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1490 		return;
1491 
1492 	raw_spin_lock(&pool->lock);
1493 
1494 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1495 	wq_cpu_intensive_report(worker->current_func);
1496 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1497 
1498 	if (kick_pool(pool))
1499 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1500 
1501 	raw_spin_unlock(&pool->lock);
1502 }
1503 
1504 /**
1505  * wq_worker_last_func - retrieve worker's last work function
1506  * @task: Task to retrieve last work function of.
1507  *
1508  * Determine the last function a worker executed. This is called from
1509  * the scheduler to get a worker's last known identity.
1510  *
1511  * CONTEXT:
1512  * raw_spin_lock_irq(rq->lock)
1513  *
1514  * This function is called during schedule() when a kworker is going
1515  * to sleep. It's used by psi to identify aggregation workers during
1516  * dequeuing, to allow periodic aggregation to shut-off when that
1517  * worker is the last task in the system or cgroup to go to sleep.
1518  *
1519  * As this function doesn't involve any workqueue-related locking, it
1520  * only returns stable values when called from inside the scheduler's
1521  * queuing and dequeuing paths, when @task, which must be a kworker,
1522  * is guaranteed to not be processing any works.
1523  *
1524  * Return:
1525  * The last work function %current executed as a worker, NULL if it
1526  * hasn't executed any work yet.
1527  */
1528 work_func_t wq_worker_last_func(struct task_struct *task)
1529 {
1530 	struct worker *worker = kthread_data(task);
1531 
1532 	return worker->last_func;
1533 }
1534 
1535 /**
1536  * wq_node_nr_active - Determine wq_node_nr_active to use
1537  * @wq: workqueue of interest
1538  * @node: NUMA node, can be %NUMA_NO_NODE
1539  *
1540  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1541  *
1542  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1543  *
1544  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1545  *
1546  * - Otherwise, node_nr_active[@node].
1547  */
1548 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1549 						   int node)
1550 {
1551 	if (!(wq->flags & WQ_UNBOUND))
1552 		return NULL;
1553 
1554 	if (node == NUMA_NO_NODE)
1555 		node = nr_node_ids;
1556 
1557 	return wq->node_nr_active[node];
1558 }
1559 
1560 /**
1561  * wq_update_node_max_active - Update per-node max_actives to use
1562  * @wq: workqueue to update
1563  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1564  *
1565  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1566  * distributed among nodes according to the proportions of numbers of online
1567  * cpus. The result is always between @wq->min_active and max_active.
1568  */
1569 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1570 {
1571 	struct cpumask *effective = unbound_effective_cpumask(wq);
1572 	int min_active = READ_ONCE(wq->min_active);
1573 	int max_active = READ_ONCE(wq->max_active);
1574 	int total_cpus, node;
1575 
1576 	lockdep_assert_held(&wq->mutex);
1577 
1578 	if (!wq_topo_initialized)
1579 		return;
1580 
1581 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1582 		off_cpu = -1;
1583 
1584 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1585 	if (off_cpu >= 0)
1586 		total_cpus--;
1587 
1588 	for_each_node(node) {
1589 		int node_cpus;
1590 
1591 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1592 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1593 			node_cpus--;
1594 
1595 		wq_node_nr_active(wq, node)->max =
1596 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1597 			      min_active, max_active);
1598 	}
1599 
1600 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active;
1601 }
1602 
1603 /**
1604  * get_pwq - get an extra reference on the specified pool_workqueue
1605  * @pwq: pool_workqueue to get
1606  *
1607  * Obtain an extra reference on @pwq.  The caller should guarantee that
1608  * @pwq has positive refcnt and be holding the matching pool->lock.
1609  */
1610 static void get_pwq(struct pool_workqueue *pwq)
1611 {
1612 	lockdep_assert_held(&pwq->pool->lock);
1613 	WARN_ON_ONCE(pwq->refcnt <= 0);
1614 	pwq->refcnt++;
1615 }
1616 
1617 /**
1618  * put_pwq - put a pool_workqueue reference
1619  * @pwq: pool_workqueue to put
1620  *
1621  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1622  * destruction.  The caller should be holding the matching pool->lock.
1623  */
1624 static void put_pwq(struct pool_workqueue *pwq)
1625 {
1626 	lockdep_assert_held(&pwq->pool->lock);
1627 	if (likely(--pwq->refcnt))
1628 		return;
1629 	/*
1630 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1631 	 * kthread_worker to avoid A-A deadlocks.
1632 	 */
1633 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1634 }
1635 
1636 /**
1637  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1638  * @pwq: pool_workqueue to put (can be %NULL)
1639  *
1640  * put_pwq() with locking.  This function also allows %NULL @pwq.
1641  */
1642 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1643 {
1644 	if (pwq) {
1645 		/*
1646 		 * As both pwqs and pools are RCU protected, the
1647 		 * following lock operations are safe.
1648 		 */
1649 		raw_spin_lock_irq(&pwq->pool->lock);
1650 		put_pwq(pwq);
1651 		raw_spin_unlock_irq(&pwq->pool->lock);
1652 	}
1653 }
1654 
1655 static bool pwq_is_empty(struct pool_workqueue *pwq)
1656 {
1657 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1658 }
1659 
1660 static void __pwq_activate_work(struct pool_workqueue *pwq,
1661 				struct work_struct *work)
1662 {
1663 	unsigned long *wdb = work_data_bits(work);
1664 
1665 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1666 	trace_workqueue_activate_work(work);
1667 	if (list_empty(&pwq->pool->worklist))
1668 		pwq->pool->watchdog_ts = jiffies;
1669 	move_linked_works(work, &pwq->pool->worklist, NULL);
1670 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1671 }
1672 
1673 /**
1674  * pwq_activate_work - Activate a work item if inactive
1675  * @pwq: pool_workqueue @work belongs to
1676  * @work: work item to activate
1677  *
1678  * Returns %true if activated. %false if already active.
1679  */
1680 static bool pwq_activate_work(struct pool_workqueue *pwq,
1681 			      struct work_struct *work)
1682 {
1683 	struct worker_pool *pool = pwq->pool;
1684 	struct wq_node_nr_active *nna;
1685 
1686 	lockdep_assert_held(&pool->lock);
1687 
1688 	if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1689 		return false;
1690 
1691 	nna = wq_node_nr_active(pwq->wq, pool->node);
1692 	if (nna)
1693 		atomic_inc(&nna->nr);
1694 
1695 	pwq->nr_active++;
1696 	__pwq_activate_work(pwq, work);
1697 	return true;
1698 }
1699 
1700 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1701 {
1702 	int max = READ_ONCE(nna->max);
1703 
1704 	while (true) {
1705 		int old, tmp;
1706 
1707 		old = atomic_read(&nna->nr);
1708 		if (old >= max)
1709 			return false;
1710 		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1711 		if (tmp == old)
1712 			return true;
1713 	}
1714 }
1715 
1716 /**
1717  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1718  * @pwq: pool_workqueue of interest
1719  * @fill: max_active may have increased, try to increase concurrency level
1720  *
1721  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1722  * successfully obtained. %false otherwise.
1723  */
1724 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1725 {
1726 	struct workqueue_struct *wq = pwq->wq;
1727 	struct worker_pool *pool = pwq->pool;
1728 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1729 	bool obtained = false;
1730 
1731 	lockdep_assert_held(&pool->lock);
1732 
1733 	if (!nna) {
1734 		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1735 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1736 		goto out;
1737 	}
1738 
1739 	if (unlikely(pwq->plugged))
1740 		return false;
1741 
1742 	/*
1743 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1744 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1745 	 * concurrency level. Don't jump the line.
1746 	 *
1747 	 * We need to ignore the pending test after max_active has increased as
1748 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1749 	 * increase it. This is indicated by @fill.
1750 	 */
1751 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1752 		goto out;
1753 
1754 	obtained = tryinc_node_nr_active(nna);
1755 	if (obtained)
1756 		goto out;
1757 
1758 	/*
1759 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1760 	 * and try again. The smp_mb() is paired with the implied memory barrier
1761 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1762 	 * we see the decremented $nna->nr or they see non-empty
1763 	 * $nna->pending_pwqs.
1764 	 */
1765 	raw_spin_lock(&nna->lock);
1766 
1767 	if (list_empty(&pwq->pending_node))
1768 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1769 	else if (likely(!fill))
1770 		goto out_unlock;
1771 
1772 	smp_mb();
1773 
1774 	obtained = tryinc_node_nr_active(nna);
1775 
1776 	/*
1777 	 * If @fill, @pwq might have already been pending. Being spuriously
1778 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1779 	 */
1780 	if (obtained && likely(!fill))
1781 		list_del_init(&pwq->pending_node);
1782 
1783 out_unlock:
1784 	raw_spin_unlock(&nna->lock);
1785 out:
1786 	if (obtained)
1787 		pwq->nr_active++;
1788 	return obtained;
1789 }
1790 
1791 /**
1792  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1793  * @pwq: pool_workqueue of interest
1794  * @fill: max_active may have increased, try to increase concurrency level
1795  *
1796  * Activate the first inactive work item of @pwq if available and allowed by
1797  * max_active limit.
1798  *
1799  * Returns %true if an inactive work item has been activated. %false if no
1800  * inactive work item is found or max_active limit is reached.
1801  */
1802 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1803 {
1804 	struct work_struct *work =
1805 		list_first_entry_or_null(&pwq->inactive_works,
1806 					 struct work_struct, entry);
1807 
1808 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1809 		__pwq_activate_work(pwq, work);
1810 		return true;
1811 	} else {
1812 		return false;
1813 	}
1814 }
1815 
1816 /**
1817  * unplug_oldest_pwq - unplug the oldest pool_workqueue
1818  * @wq: workqueue_struct where its oldest pwq is to be unplugged
1819  *
1820  * This function should only be called for ordered workqueues where only the
1821  * oldest pwq is unplugged, the others are plugged to suspend execution to
1822  * ensure proper work item ordering::
1823  *
1824  *    dfl_pwq --------------+     [P] - plugged
1825  *                          |
1826  *                          v
1827  *    pwqs -> A -> B [P] -> C [P] (newest)
1828  *            |    |        |
1829  *            1    3        5
1830  *            |    |        |
1831  *            2    4        6
1832  *
1833  * When the oldest pwq is drained and removed, this function should be called
1834  * to unplug the next oldest one to start its work item execution. Note that
1835  * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1836  * the list is the oldest.
1837  */
1838 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1839 {
1840 	struct pool_workqueue *pwq;
1841 
1842 	lockdep_assert_held(&wq->mutex);
1843 
1844 	/* Caller should make sure that pwqs isn't empty before calling */
1845 	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1846 				       pwqs_node);
1847 	raw_spin_lock_irq(&pwq->pool->lock);
1848 	if (pwq->plugged) {
1849 		pwq->plugged = false;
1850 		if (pwq_activate_first_inactive(pwq, true))
1851 			kick_pool(pwq->pool);
1852 	}
1853 	raw_spin_unlock_irq(&pwq->pool->lock);
1854 }
1855 
1856 /**
1857  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1858  * @nna: wq_node_nr_active to activate a pending pwq for
1859  * @caller_pool: worker_pool the caller is locking
1860  *
1861  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1862  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1863  */
1864 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1865 				      struct worker_pool *caller_pool)
1866 {
1867 	struct worker_pool *locked_pool = caller_pool;
1868 	struct pool_workqueue *pwq;
1869 	struct work_struct *work;
1870 
1871 	lockdep_assert_held(&caller_pool->lock);
1872 
1873 	raw_spin_lock(&nna->lock);
1874 retry:
1875 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1876 				       struct pool_workqueue, pending_node);
1877 	if (!pwq)
1878 		goto out_unlock;
1879 
1880 	/*
1881 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1882 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1883 	 * / lock dance. For that, we also need to release @nna->lock as it's
1884 	 * nested inside pool locks.
1885 	 */
1886 	if (pwq->pool != locked_pool) {
1887 		raw_spin_unlock(&locked_pool->lock);
1888 		locked_pool = pwq->pool;
1889 		if (!raw_spin_trylock(&locked_pool->lock)) {
1890 			raw_spin_unlock(&nna->lock);
1891 			raw_spin_lock(&locked_pool->lock);
1892 			raw_spin_lock(&nna->lock);
1893 			goto retry;
1894 		}
1895 	}
1896 
1897 	/*
1898 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1899 	 * Drop it from pending_pwqs and see if there's another one.
1900 	 */
1901 	work = list_first_entry_or_null(&pwq->inactive_works,
1902 					struct work_struct, entry);
1903 	if (!work) {
1904 		list_del_init(&pwq->pending_node);
1905 		goto retry;
1906 	}
1907 
1908 	/*
1909 	 * Acquire an nr_active count and activate the inactive work item. If
1910 	 * $pwq still has inactive work items, rotate it to the end of the
1911 	 * pending_pwqs so that we round-robin through them. This means that
1912 	 * inactive work items are not activated in queueing order which is fine
1913 	 * given that there has never been any ordering across different pwqs.
1914 	 */
1915 	if (likely(tryinc_node_nr_active(nna))) {
1916 		pwq->nr_active++;
1917 		__pwq_activate_work(pwq, work);
1918 
1919 		if (list_empty(&pwq->inactive_works))
1920 			list_del_init(&pwq->pending_node);
1921 		else
1922 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1923 
1924 		/* if activating a foreign pool, make sure it's running */
1925 		if (pwq->pool != caller_pool)
1926 			kick_pool(pwq->pool);
1927 	}
1928 
1929 out_unlock:
1930 	raw_spin_unlock(&nna->lock);
1931 	if (locked_pool != caller_pool) {
1932 		raw_spin_unlock(&locked_pool->lock);
1933 		raw_spin_lock(&caller_pool->lock);
1934 	}
1935 }
1936 
1937 /**
1938  * pwq_dec_nr_active - Retire an active count
1939  * @pwq: pool_workqueue of interest
1940  *
1941  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1942  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1943  */
1944 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1945 {
1946 	struct worker_pool *pool = pwq->pool;
1947 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1948 
1949 	lockdep_assert_held(&pool->lock);
1950 
1951 	/*
1952 	 * @pwq->nr_active should be decremented for both percpu and unbound
1953 	 * workqueues.
1954 	 */
1955 	pwq->nr_active--;
1956 
1957 	/*
1958 	 * For a percpu workqueue, it's simple. Just need to kick the first
1959 	 * inactive work item on @pwq itself.
1960 	 */
1961 	if (!nna) {
1962 		pwq_activate_first_inactive(pwq, false);
1963 		return;
1964 	}
1965 
1966 	/*
1967 	 * If @pwq is for an unbound workqueue, it's more complicated because
1968 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1969 	 * pwq needs to wait for an nr_active count, it puts itself on
1970 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1971 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1972 	 * guarantee that either we see non-empty pending_pwqs or they see
1973 	 * decremented $nna->nr.
1974 	 *
1975 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1976 	 * max_active gets updated. However, it is guaranteed to be equal to or
1977 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1978 	 * This maintains the forward progress guarantee.
1979 	 */
1980 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1981 		return;
1982 
1983 	if (!list_empty(&nna->pending_pwqs))
1984 		node_activate_pending_pwq(nna, pool);
1985 }
1986 
1987 /**
1988  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1989  * @pwq: pwq of interest
1990  * @work_data: work_data of work which left the queue
1991  *
1992  * A work either has completed or is removed from pending queue,
1993  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1994  *
1995  * NOTE:
1996  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1997  * and thus should be called after all other state updates for the in-flight
1998  * work item is complete.
1999  *
2000  * CONTEXT:
2001  * raw_spin_lock_irq(pool->lock).
2002  */
2003 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
2004 {
2005 	int color = get_work_color(work_data);
2006 
2007 	if (!(work_data & WORK_STRUCT_INACTIVE))
2008 		pwq_dec_nr_active(pwq);
2009 
2010 	pwq->nr_in_flight[color]--;
2011 
2012 	/* is flush in progress and are we at the flushing tip? */
2013 	if (likely(pwq->flush_color != color))
2014 		goto out_put;
2015 
2016 	/* are there still in-flight works? */
2017 	if (pwq->nr_in_flight[color])
2018 		goto out_put;
2019 
2020 	/* this pwq is done, clear flush_color */
2021 	pwq->flush_color = -1;
2022 
2023 	/*
2024 	 * If this was the last pwq, wake up the first flusher.  It
2025 	 * will handle the rest.
2026 	 */
2027 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2028 		complete(&pwq->wq->first_flusher->done);
2029 out_put:
2030 	put_pwq(pwq);
2031 }
2032 
2033 /**
2034  * try_to_grab_pending - steal work item from worklist and disable irq
2035  * @work: work item to steal
2036  * @cflags: %WORK_CANCEL_ flags
2037  * @irq_flags: place to store irq state
2038  *
2039  * Try to grab PENDING bit of @work.  This function can handle @work in any
2040  * stable state - idle, on timer or on worklist.
2041  *
2042  * Return:
2043  *
2044  *  ========	================================================================
2045  *  1		if @work was pending and we successfully stole PENDING
2046  *  0		if @work was idle and we claimed PENDING
2047  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2048  *  ========	================================================================
2049  *
2050  * Note:
2051  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2052  * interrupted while holding PENDING and @work off queue, irq must be
2053  * disabled on entry.  This, combined with delayed_work->timer being
2054  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2055  *
2056  * On successful return, >= 0, irq is disabled and the caller is
2057  * responsible for releasing it using local_irq_restore(*@irq_flags).
2058  *
2059  * This function is safe to call from any context including IRQ handler.
2060  */
2061 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2062 			       unsigned long *irq_flags)
2063 {
2064 	struct worker_pool *pool;
2065 	struct pool_workqueue *pwq;
2066 
2067 	local_irq_save(*irq_flags);
2068 
2069 	/* try to steal the timer if it exists */
2070 	if (cflags & WORK_CANCEL_DELAYED) {
2071 		struct delayed_work *dwork = to_delayed_work(work);
2072 
2073 		/*
2074 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2075 		 * guaranteed that the timer is not queued anywhere and not
2076 		 * running on the local CPU.
2077 		 */
2078 		if (likely(del_timer(&dwork->timer)))
2079 			return 1;
2080 	}
2081 
2082 	/* try to claim PENDING the normal way */
2083 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2084 		return 0;
2085 
2086 	rcu_read_lock();
2087 	/*
2088 	 * The queueing is in progress, or it is already queued. Try to
2089 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2090 	 */
2091 	pool = get_work_pool(work);
2092 	if (!pool)
2093 		goto fail;
2094 
2095 	raw_spin_lock(&pool->lock);
2096 	/*
2097 	 * work->data is guaranteed to point to pwq only while the work
2098 	 * item is queued on pwq->wq, and both updating work->data to point
2099 	 * to pwq on queueing and to pool on dequeueing are done under
2100 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2101 	 * points to pwq which is associated with a locked pool, the work
2102 	 * item is currently queued on that pool.
2103 	 */
2104 	pwq = get_work_pwq(work);
2105 	if (pwq && pwq->pool == pool) {
2106 		unsigned long work_data;
2107 
2108 		debug_work_deactivate(work);
2109 
2110 		/*
2111 		 * A cancelable inactive work item must be in the
2112 		 * pwq->inactive_works since a queued barrier can't be
2113 		 * canceled (see the comments in insert_wq_barrier()).
2114 		 *
2115 		 * An inactive work item cannot be grabbed directly because
2116 		 * it might have linked barrier work items which, if left
2117 		 * on the inactive_works list, will confuse pwq->nr_active
2118 		 * management later on and cause stall.  Make sure the work
2119 		 * item is activated before grabbing.
2120 		 */
2121 		pwq_activate_work(pwq, work);
2122 
2123 		list_del_init(&work->entry);
2124 
2125 		/*
2126 		 * work->data points to pwq iff queued. Let's point to pool. As
2127 		 * this destroys work->data needed by the next step, stash it.
2128 		 */
2129 		work_data = *work_data_bits(work);
2130 		set_work_pool_and_keep_pending(work, pool->id,
2131 					       pool_offq_flags(pool));
2132 
2133 		/* must be the last step, see the function comment */
2134 		pwq_dec_nr_in_flight(pwq, work_data);
2135 
2136 		raw_spin_unlock(&pool->lock);
2137 		rcu_read_unlock();
2138 		return 1;
2139 	}
2140 	raw_spin_unlock(&pool->lock);
2141 fail:
2142 	rcu_read_unlock();
2143 	local_irq_restore(*irq_flags);
2144 	return -EAGAIN;
2145 }
2146 
2147 /**
2148  * work_grab_pending - steal work item from worklist and disable irq
2149  * @work: work item to steal
2150  * @cflags: %WORK_CANCEL_ flags
2151  * @irq_flags: place to store IRQ state
2152  *
2153  * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2154  * or on worklist.
2155  *
2156  * Can be called from any context. IRQ is disabled on return with IRQ state
2157  * stored in *@irq_flags. The caller is responsible for re-enabling it using
2158  * local_irq_restore().
2159  *
2160  * Returns %true if @work was pending. %false if idle.
2161  */
2162 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2163 			      unsigned long *irq_flags)
2164 {
2165 	int ret;
2166 
2167 	while (true) {
2168 		ret = try_to_grab_pending(work, cflags, irq_flags);
2169 		if (ret >= 0)
2170 			return ret;
2171 		cpu_relax();
2172 	}
2173 }
2174 
2175 /**
2176  * insert_work - insert a work into a pool
2177  * @pwq: pwq @work belongs to
2178  * @work: work to insert
2179  * @head: insertion point
2180  * @extra_flags: extra WORK_STRUCT_* flags to set
2181  *
2182  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2183  * work_struct flags.
2184  *
2185  * CONTEXT:
2186  * raw_spin_lock_irq(pool->lock).
2187  */
2188 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2189 			struct list_head *head, unsigned int extra_flags)
2190 {
2191 	debug_work_activate(work);
2192 
2193 	/* record the work call stack in order to print it in KASAN reports */
2194 	kasan_record_aux_stack_noalloc(work);
2195 
2196 	/* we own @work, set data and link */
2197 	set_work_pwq(work, pwq, extra_flags);
2198 	list_add_tail(&work->entry, head);
2199 	get_pwq(pwq);
2200 }
2201 
2202 /*
2203  * Test whether @work is being queued from another work executing on the
2204  * same workqueue.
2205  */
2206 static bool is_chained_work(struct workqueue_struct *wq)
2207 {
2208 	struct worker *worker;
2209 
2210 	worker = current_wq_worker();
2211 	/*
2212 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2213 	 * I'm @worker, it's safe to dereference it without locking.
2214 	 */
2215 	return worker && worker->current_pwq->wq == wq;
2216 }
2217 
2218 /*
2219  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2220  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2221  * avoid perturbing sensitive tasks.
2222  */
2223 static int wq_select_unbound_cpu(int cpu)
2224 {
2225 	int new_cpu;
2226 
2227 	if (likely(!wq_debug_force_rr_cpu)) {
2228 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2229 			return cpu;
2230 	} else {
2231 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2232 	}
2233 
2234 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2235 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2236 	if (unlikely(new_cpu >= nr_cpu_ids)) {
2237 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2238 		if (unlikely(new_cpu >= nr_cpu_ids))
2239 			return cpu;
2240 	}
2241 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2242 
2243 	return new_cpu;
2244 }
2245 
2246 static void __queue_work(int cpu, struct workqueue_struct *wq,
2247 			 struct work_struct *work)
2248 {
2249 	struct pool_workqueue *pwq;
2250 	struct worker_pool *last_pool, *pool;
2251 	unsigned int work_flags;
2252 	unsigned int req_cpu = cpu;
2253 
2254 	/*
2255 	 * While a work item is PENDING && off queue, a task trying to
2256 	 * steal the PENDING will busy-loop waiting for it to either get
2257 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2258 	 * happen with IRQ disabled.
2259 	 */
2260 	lockdep_assert_irqs_disabled();
2261 
2262 	/*
2263 	 * For a draining wq, only works from the same workqueue are
2264 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2265 	 * queues a new work item to a wq after destroy_workqueue(wq).
2266 	 */
2267 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2268 		     WARN_ON_ONCE(!is_chained_work(wq))))
2269 		return;
2270 	rcu_read_lock();
2271 retry:
2272 	/* pwq which will be used unless @work is executing elsewhere */
2273 	if (req_cpu == WORK_CPU_UNBOUND) {
2274 		if (wq->flags & WQ_UNBOUND)
2275 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2276 		else
2277 			cpu = raw_smp_processor_id();
2278 	}
2279 
2280 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2281 	pool = pwq->pool;
2282 
2283 	/*
2284 	 * If @work was previously on a different pool, it might still be
2285 	 * running there, in which case the work needs to be queued on that
2286 	 * pool to guarantee non-reentrancy.
2287 	 */
2288 	last_pool = get_work_pool(work);
2289 	if (last_pool && last_pool != pool) {
2290 		struct worker *worker;
2291 
2292 		raw_spin_lock(&last_pool->lock);
2293 
2294 		worker = find_worker_executing_work(last_pool, work);
2295 
2296 		if (worker && worker->current_pwq->wq == wq) {
2297 			pwq = worker->current_pwq;
2298 			pool = pwq->pool;
2299 			WARN_ON_ONCE(pool != last_pool);
2300 		} else {
2301 			/* meh... not running there, queue here */
2302 			raw_spin_unlock(&last_pool->lock);
2303 			raw_spin_lock(&pool->lock);
2304 		}
2305 	} else {
2306 		raw_spin_lock(&pool->lock);
2307 	}
2308 
2309 	/*
2310 	 * pwq is determined and locked. For unbound pools, we could have raced
2311 	 * with pwq release and it could already be dead. If its refcnt is zero,
2312 	 * repeat pwq selection. Note that unbound pwqs never die without
2313 	 * another pwq replacing it in cpu_pwq or while work items are executing
2314 	 * on it, so the retrying is guaranteed to make forward-progress.
2315 	 */
2316 	if (unlikely(!pwq->refcnt)) {
2317 		if (wq->flags & WQ_UNBOUND) {
2318 			raw_spin_unlock(&pool->lock);
2319 			cpu_relax();
2320 			goto retry;
2321 		}
2322 		/* oops */
2323 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2324 			  wq->name, cpu);
2325 	}
2326 
2327 	/* pwq determined, queue */
2328 	trace_workqueue_queue_work(req_cpu, pwq, work);
2329 
2330 	if (WARN_ON(!list_empty(&work->entry)))
2331 		goto out;
2332 
2333 	pwq->nr_in_flight[pwq->work_color]++;
2334 	work_flags = work_color_to_flags(pwq->work_color);
2335 
2336 	/*
2337 	 * Limit the number of concurrently active work items to max_active.
2338 	 * @work must also queue behind existing inactive work items to maintain
2339 	 * ordering when max_active changes. See wq_adjust_max_active().
2340 	 */
2341 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2342 		if (list_empty(&pool->worklist))
2343 			pool->watchdog_ts = jiffies;
2344 
2345 		trace_workqueue_activate_work(work);
2346 		insert_work(pwq, work, &pool->worklist, work_flags);
2347 		kick_pool(pool);
2348 	} else {
2349 		work_flags |= WORK_STRUCT_INACTIVE;
2350 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2351 	}
2352 
2353 out:
2354 	raw_spin_unlock(&pool->lock);
2355 	rcu_read_unlock();
2356 }
2357 
2358 static bool clear_pending_if_disabled(struct work_struct *work)
2359 {
2360 	unsigned long data = *work_data_bits(work);
2361 	struct work_offq_data offqd;
2362 
2363 	if (likely((data & WORK_STRUCT_PWQ) ||
2364 		   !(data & WORK_OFFQ_DISABLE_MASK)))
2365 		return false;
2366 
2367 	work_offqd_unpack(&offqd, data);
2368 	set_work_pool_and_clear_pending(work, offqd.pool_id,
2369 					work_offqd_pack_flags(&offqd));
2370 	return true;
2371 }
2372 
2373 /**
2374  * queue_work_on - queue work on specific cpu
2375  * @cpu: CPU number to execute work on
2376  * @wq: workqueue to use
2377  * @work: work to queue
2378  *
2379  * We queue the work to a specific CPU, the caller must ensure it
2380  * can't go away.  Callers that fail to ensure that the specified
2381  * CPU cannot go away will execute on a randomly chosen CPU.
2382  * But note well that callers specifying a CPU that never has been
2383  * online will get a splat.
2384  *
2385  * Return: %false if @work was already on a queue, %true otherwise.
2386  */
2387 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2388 		   struct work_struct *work)
2389 {
2390 	bool ret = false;
2391 	unsigned long irq_flags;
2392 
2393 	local_irq_save(irq_flags);
2394 
2395 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2396 	    !clear_pending_if_disabled(work)) {
2397 		__queue_work(cpu, wq, work);
2398 		ret = true;
2399 	}
2400 
2401 	local_irq_restore(irq_flags);
2402 	return ret;
2403 }
2404 EXPORT_SYMBOL(queue_work_on);
2405 
2406 /**
2407  * select_numa_node_cpu - Select a CPU based on NUMA node
2408  * @node: NUMA node ID that we want to select a CPU from
2409  *
2410  * This function will attempt to find a "random" cpu available on a given
2411  * node. If there are no CPUs available on the given node it will return
2412  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2413  * available CPU if we need to schedule this work.
2414  */
2415 static int select_numa_node_cpu(int node)
2416 {
2417 	int cpu;
2418 
2419 	/* Delay binding to CPU if node is not valid or online */
2420 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2421 		return WORK_CPU_UNBOUND;
2422 
2423 	/* Use local node/cpu if we are already there */
2424 	cpu = raw_smp_processor_id();
2425 	if (node == cpu_to_node(cpu))
2426 		return cpu;
2427 
2428 	/* Use "random" otherwise know as "first" online CPU of node */
2429 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2430 
2431 	/* If CPU is valid return that, otherwise just defer */
2432 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2433 }
2434 
2435 /**
2436  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2437  * @node: NUMA node that we are targeting the work for
2438  * @wq: workqueue to use
2439  * @work: work to queue
2440  *
2441  * We queue the work to a "random" CPU within a given NUMA node. The basic
2442  * idea here is to provide a way to somehow associate work with a given
2443  * NUMA node.
2444  *
2445  * This function will only make a best effort attempt at getting this onto
2446  * the right NUMA node. If no node is requested or the requested node is
2447  * offline then we just fall back to standard queue_work behavior.
2448  *
2449  * Currently the "random" CPU ends up being the first available CPU in the
2450  * intersection of cpu_online_mask and the cpumask of the node, unless we
2451  * are running on the node. In that case we just use the current CPU.
2452  *
2453  * Return: %false if @work was already on a queue, %true otherwise.
2454  */
2455 bool queue_work_node(int node, struct workqueue_struct *wq,
2456 		     struct work_struct *work)
2457 {
2458 	unsigned long irq_flags;
2459 	bool ret = false;
2460 
2461 	/*
2462 	 * This current implementation is specific to unbound workqueues.
2463 	 * Specifically we only return the first available CPU for a given
2464 	 * node instead of cycling through individual CPUs within the node.
2465 	 *
2466 	 * If this is used with a per-cpu workqueue then the logic in
2467 	 * workqueue_select_cpu_near would need to be updated to allow for
2468 	 * some round robin type logic.
2469 	 */
2470 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2471 
2472 	local_irq_save(irq_flags);
2473 
2474 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2475 	    !clear_pending_if_disabled(work)) {
2476 		int cpu = select_numa_node_cpu(node);
2477 
2478 		__queue_work(cpu, wq, work);
2479 		ret = true;
2480 	}
2481 
2482 	local_irq_restore(irq_flags);
2483 	return ret;
2484 }
2485 EXPORT_SYMBOL_GPL(queue_work_node);
2486 
2487 void delayed_work_timer_fn(struct timer_list *t)
2488 {
2489 	struct delayed_work *dwork = from_timer(dwork, t, timer);
2490 
2491 	/* should have been called from irqsafe timer with irq already off */
2492 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2493 }
2494 EXPORT_SYMBOL(delayed_work_timer_fn);
2495 
2496 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2497 				struct delayed_work *dwork, unsigned long delay)
2498 {
2499 	struct timer_list *timer = &dwork->timer;
2500 	struct work_struct *work = &dwork->work;
2501 
2502 	WARN_ON_ONCE(!wq);
2503 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2504 	WARN_ON_ONCE(timer_pending(timer));
2505 	WARN_ON_ONCE(!list_empty(&work->entry));
2506 
2507 	/*
2508 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2509 	 * both optimization and correctness.  The earliest @timer can
2510 	 * expire is on the closest next tick and delayed_work users depend
2511 	 * on that there's no such delay when @delay is 0.
2512 	 */
2513 	if (!delay) {
2514 		__queue_work(cpu, wq, &dwork->work);
2515 		return;
2516 	}
2517 
2518 	dwork->wq = wq;
2519 	dwork->cpu = cpu;
2520 	timer->expires = jiffies + delay;
2521 
2522 	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2523 		/* If the current cpu is a housekeeping cpu, use it. */
2524 		cpu = smp_processor_id();
2525 		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2526 			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2527 		add_timer_on(timer, cpu);
2528 	} else {
2529 		if (likely(cpu == WORK_CPU_UNBOUND))
2530 			add_timer_global(timer);
2531 		else
2532 			add_timer_on(timer, cpu);
2533 	}
2534 }
2535 
2536 /**
2537  * queue_delayed_work_on - queue work on specific CPU after delay
2538  * @cpu: CPU number to execute work on
2539  * @wq: workqueue to use
2540  * @dwork: work to queue
2541  * @delay: number of jiffies to wait before queueing
2542  *
2543  * Return: %false if @work was already on a queue, %true otherwise.  If
2544  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2545  * execution.
2546  */
2547 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2548 			   struct delayed_work *dwork, unsigned long delay)
2549 {
2550 	struct work_struct *work = &dwork->work;
2551 	bool ret = false;
2552 	unsigned long irq_flags;
2553 
2554 	/* read the comment in __queue_work() */
2555 	local_irq_save(irq_flags);
2556 
2557 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2558 	    !clear_pending_if_disabled(work)) {
2559 		__queue_delayed_work(cpu, wq, dwork, delay);
2560 		ret = true;
2561 	}
2562 
2563 	local_irq_restore(irq_flags);
2564 	return ret;
2565 }
2566 EXPORT_SYMBOL(queue_delayed_work_on);
2567 
2568 /**
2569  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2570  * @cpu: CPU number to execute work on
2571  * @wq: workqueue to use
2572  * @dwork: work to queue
2573  * @delay: number of jiffies to wait before queueing
2574  *
2575  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2576  * modify @dwork's timer so that it expires after @delay.  If @delay is
2577  * zero, @work is guaranteed to be scheduled immediately regardless of its
2578  * current state.
2579  *
2580  * Return: %false if @dwork was idle and queued, %true if @dwork was
2581  * pending and its timer was modified.
2582  *
2583  * This function is safe to call from any context including IRQ handler.
2584  * See try_to_grab_pending() for details.
2585  */
2586 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2587 			 struct delayed_work *dwork, unsigned long delay)
2588 {
2589 	unsigned long irq_flags;
2590 	bool ret;
2591 
2592 	ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2593 
2594 	if (!clear_pending_if_disabled(&dwork->work))
2595 		__queue_delayed_work(cpu, wq, dwork, delay);
2596 
2597 	local_irq_restore(irq_flags);
2598 	return ret;
2599 }
2600 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2601 
2602 static void rcu_work_rcufn(struct rcu_head *rcu)
2603 {
2604 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2605 
2606 	/* read the comment in __queue_work() */
2607 	local_irq_disable();
2608 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2609 	local_irq_enable();
2610 }
2611 
2612 /**
2613  * queue_rcu_work - queue work after a RCU grace period
2614  * @wq: workqueue to use
2615  * @rwork: work to queue
2616  *
2617  * Return: %false if @rwork was already pending, %true otherwise.  Note
2618  * that a full RCU grace period is guaranteed only after a %true return.
2619  * While @rwork is guaranteed to be executed after a %false return, the
2620  * execution may happen before a full RCU grace period has passed.
2621  */
2622 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2623 {
2624 	struct work_struct *work = &rwork->work;
2625 
2626 	/*
2627 	 * rcu_work can't be canceled or disabled. Warn if the user reached
2628 	 * inside @rwork and disabled the inner work.
2629 	 */
2630 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2631 	    !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2632 		rwork->wq = wq;
2633 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2634 		return true;
2635 	}
2636 
2637 	return false;
2638 }
2639 EXPORT_SYMBOL(queue_rcu_work);
2640 
2641 static struct worker *alloc_worker(int node)
2642 {
2643 	struct worker *worker;
2644 
2645 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2646 	if (worker) {
2647 		INIT_LIST_HEAD(&worker->entry);
2648 		INIT_LIST_HEAD(&worker->scheduled);
2649 		INIT_LIST_HEAD(&worker->node);
2650 		/* on creation a worker is in !idle && prep state */
2651 		worker->flags = WORKER_PREP;
2652 	}
2653 	return worker;
2654 }
2655 
2656 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2657 {
2658 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2659 		return pool->attrs->__pod_cpumask;
2660 	else
2661 		return pool->attrs->cpumask;
2662 }
2663 
2664 /**
2665  * worker_attach_to_pool() - attach a worker to a pool
2666  * @worker: worker to be attached
2667  * @pool: the target pool
2668  *
2669  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2670  * cpu-binding of @worker are kept coordinated with the pool across
2671  * cpu-[un]hotplugs.
2672  */
2673 static void worker_attach_to_pool(struct worker *worker,
2674 				  struct worker_pool *pool)
2675 {
2676 	mutex_lock(&wq_pool_attach_mutex);
2677 
2678 	/*
2679 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2680 	 * across this function. See the comments above the flag definition for
2681 	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2682 	 */
2683 	if (pool->flags & POOL_DISASSOCIATED) {
2684 		worker->flags |= WORKER_UNBOUND;
2685 	} else {
2686 		WARN_ON_ONCE(pool->flags & POOL_BH);
2687 		kthread_set_per_cpu(worker->task, pool->cpu);
2688 	}
2689 
2690 	if (worker->rescue_wq)
2691 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2692 
2693 	list_add_tail(&worker->node, &pool->workers);
2694 	worker->pool = pool;
2695 
2696 	mutex_unlock(&wq_pool_attach_mutex);
2697 }
2698 
2699 /**
2700  * worker_detach_from_pool() - detach a worker from its pool
2701  * @worker: worker which is attached to its pool
2702  *
2703  * Undo the attaching which had been done in worker_attach_to_pool().  The
2704  * caller worker shouldn't access to the pool after detached except it has
2705  * other reference to the pool.
2706  */
2707 static void worker_detach_from_pool(struct worker *worker)
2708 {
2709 	struct worker_pool *pool = worker->pool;
2710 	struct completion *detach_completion = NULL;
2711 
2712 	/* there is one permanent BH worker per CPU which should never detach */
2713 	WARN_ON_ONCE(pool->flags & POOL_BH);
2714 
2715 	mutex_lock(&wq_pool_attach_mutex);
2716 
2717 	kthread_set_per_cpu(worker->task, -1);
2718 	list_del(&worker->node);
2719 	worker->pool = NULL;
2720 
2721 	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2722 		detach_completion = pool->detach_completion;
2723 	mutex_unlock(&wq_pool_attach_mutex);
2724 
2725 	/* clear leftover flags without pool->lock after it is detached */
2726 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2727 
2728 	if (detach_completion)
2729 		complete(detach_completion);
2730 }
2731 
2732 /**
2733  * create_worker - create a new workqueue worker
2734  * @pool: pool the new worker will belong to
2735  *
2736  * Create and start a new worker which is attached to @pool.
2737  *
2738  * CONTEXT:
2739  * Might sleep.  Does GFP_KERNEL allocations.
2740  *
2741  * Return:
2742  * Pointer to the newly created worker.
2743  */
2744 static struct worker *create_worker(struct worker_pool *pool)
2745 {
2746 	struct worker *worker;
2747 	int id;
2748 	char id_buf[23];
2749 
2750 	/* ID is needed to determine kthread name */
2751 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2752 	if (id < 0) {
2753 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2754 			    ERR_PTR(id));
2755 		return NULL;
2756 	}
2757 
2758 	worker = alloc_worker(pool->node);
2759 	if (!worker) {
2760 		pr_err_once("workqueue: Failed to allocate a worker\n");
2761 		goto fail;
2762 	}
2763 
2764 	worker->id = id;
2765 
2766 	if (!(pool->flags & POOL_BH)) {
2767 		if (pool->cpu >= 0)
2768 			snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2769 				 pool->attrs->nice < 0  ? "H" : "");
2770 		else
2771 			snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2772 
2773 		worker->task = kthread_create_on_node(worker_thread, worker,
2774 					pool->node, "kworker/%s", id_buf);
2775 		if (IS_ERR(worker->task)) {
2776 			if (PTR_ERR(worker->task) == -EINTR) {
2777 				pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2778 				       id_buf);
2779 			} else {
2780 				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2781 					    worker->task);
2782 			}
2783 			goto fail;
2784 		}
2785 
2786 		set_user_nice(worker->task, pool->attrs->nice);
2787 		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2788 	}
2789 
2790 	/* successful, attach the worker to the pool */
2791 	worker_attach_to_pool(worker, pool);
2792 
2793 	/* start the newly created worker */
2794 	raw_spin_lock_irq(&pool->lock);
2795 
2796 	worker->pool->nr_workers++;
2797 	worker_enter_idle(worker);
2798 
2799 	/*
2800 	 * @worker is waiting on a completion in kthread() and will trigger hung
2801 	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2802 	 * wake it up explicitly.
2803 	 */
2804 	if (worker->task)
2805 		wake_up_process(worker->task);
2806 
2807 	raw_spin_unlock_irq(&pool->lock);
2808 
2809 	return worker;
2810 
2811 fail:
2812 	ida_free(&pool->worker_ida, id);
2813 	kfree(worker);
2814 	return NULL;
2815 }
2816 
2817 static void unbind_worker(struct worker *worker)
2818 {
2819 	lockdep_assert_held(&wq_pool_attach_mutex);
2820 
2821 	kthread_set_per_cpu(worker->task, -1);
2822 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2823 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2824 	else
2825 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2826 }
2827 
2828 static void wake_dying_workers(struct list_head *cull_list)
2829 {
2830 	struct worker *worker, *tmp;
2831 
2832 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2833 		list_del_init(&worker->entry);
2834 		unbind_worker(worker);
2835 		/*
2836 		 * If the worker was somehow already running, then it had to be
2837 		 * in pool->idle_list when set_worker_dying() happened or we
2838 		 * wouldn't have gotten here.
2839 		 *
2840 		 * Thus, the worker must either have observed the WORKER_DIE
2841 		 * flag, or have set its state to TASK_IDLE. Either way, the
2842 		 * below will be observed by the worker and is safe to do
2843 		 * outside of pool->lock.
2844 		 */
2845 		wake_up_process(worker->task);
2846 	}
2847 }
2848 
2849 /**
2850  * set_worker_dying - Tag a worker for destruction
2851  * @worker: worker to be destroyed
2852  * @list: transfer worker away from its pool->idle_list and into list
2853  *
2854  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2855  * should be idle.
2856  *
2857  * CONTEXT:
2858  * raw_spin_lock_irq(pool->lock).
2859  */
2860 static void set_worker_dying(struct worker *worker, struct list_head *list)
2861 {
2862 	struct worker_pool *pool = worker->pool;
2863 
2864 	lockdep_assert_held(&pool->lock);
2865 	lockdep_assert_held(&wq_pool_attach_mutex);
2866 
2867 	/* sanity check frenzy */
2868 	if (WARN_ON(worker->current_work) ||
2869 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2870 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2871 		return;
2872 
2873 	pool->nr_workers--;
2874 	pool->nr_idle--;
2875 
2876 	worker->flags |= WORKER_DIE;
2877 
2878 	list_move(&worker->entry, list);
2879 	list_move(&worker->node, &pool->dying_workers);
2880 }
2881 
2882 /**
2883  * idle_worker_timeout - check if some idle workers can now be deleted.
2884  * @t: The pool's idle_timer that just expired
2885  *
2886  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2887  * worker_leave_idle(), as a worker flicking between idle and active while its
2888  * pool is at the too_many_workers() tipping point would cause too much timer
2889  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2890  * it expire and re-evaluate things from there.
2891  */
2892 static void idle_worker_timeout(struct timer_list *t)
2893 {
2894 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2895 	bool do_cull = false;
2896 
2897 	if (work_pending(&pool->idle_cull_work))
2898 		return;
2899 
2900 	raw_spin_lock_irq(&pool->lock);
2901 
2902 	if (too_many_workers(pool)) {
2903 		struct worker *worker;
2904 		unsigned long expires;
2905 
2906 		/* idle_list is kept in LIFO order, check the last one */
2907 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2908 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2909 		do_cull = !time_before(jiffies, expires);
2910 
2911 		if (!do_cull)
2912 			mod_timer(&pool->idle_timer, expires);
2913 	}
2914 	raw_spin_unlock_irq(&pool->lock);
2915 
2916 	if (do_cull)
2917 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2918 }
2919 
2920 /**
2921  * idle_cull_fn - cull workers that have been idle for too long.
2922  * @work: the pool's work for handling these idle workers
2923  *
2924  * This goes through a pool's idle workers and gets rid of those that have been
2925  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2926  *
2927  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2928  * culled, so this also resets worker affinity. This requires a sleepable
2929  * context, hence the split between timer callback and work item.
2930  */
2931 static void idle_cull_fn(struct work_struct *work)
2932 {
2933 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2934 	LIST_HEAD(cull_list);
2935 
2936 	/*
2937 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2938 	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2939 	 * path. This is required as a previously-preempted worker could run after
2940 	 * set_worker_dying() has happened but before wake_dying_workers() did.
2941 	 */
2942 	mutex_lock(&wq_pool_attach_mutex);
2943 	raw_spin_lock_irq(&pool->lock);
2944 
2945 	while (too_many_workers(pool)) {
2946 		struct worker *worker;
2947 		unsigned long expires;
2948 
2949 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2950 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2951 
2952 		if (time_before(jiffies, expires)) {
2953 			mod_timer(&pool->idle_timer, expires);
2954 			break;
2955 		}
2956 
2957 		set_worker_dying(worker, &cull_list);
2958 	}
2959 
2960 	raw_spin_unlock_irq(&pool->lock);
2961 	wake_dying_workers(&cull_list);
2962 	mutex_unlock(&wq_pool_attach_mutex);
2963 }
2964 
2965 static void send_mayday(struct work_struct *work)
2966 {
2967 	struct pool_workqueue *pwq = get_work_pwq(work);
2968 	struct workqueue_struct *wq = pwq->wq;
2969 
2970 	lockdep_assert_held(&wq_mayday_lock);
2971 
2972 	if (!wq->rescuer)
2973 		return;
2974 
2975 	/* mayday mayday mayday */
2976 	if (list_empty(&pwq->mayday_node)) {
2977 		/*
2978 		 * If @pwq is for an unbound wq, its base ref may be put at
2979 		 * any time due to an attribute change.  Pin @pwq until the
2980 		 * rescuer is done with it.
2981 		 */
2982 		get_pwq(pwq);
2983 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2984 		wake_up_process(wq->rescuer->task);
2985 		pwq->stats[PWQ_STAT_MAYDAY]++;
2986 	}
2987 }
2988 
2989 static void pool_mayday_timeout(struct timer_list *t)
2990 {
2991 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2992 	struct work_struct *work;
2993 
2994 	raw_spin_lock_irq(&pool->lock);
2995 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2996 
2997 	if (need_to_create_worker(pool)) {
2998 		/*
2999 		 * We've been trying to create a new worker but
3000 		 * haven't been successful.  We might be hitting an
3001 		 * allocation deadlock.  Send distress signals to
3002 		 * rescuers.
3003 		 */
3004 		list_for_each_entry(work, &pool->worklist, entry)
3005 			send_mayday(work);
3006 	}
3007 
3008 	raw_spin_unlock(&wq_mayday_lock);
3009 	raw_spin_unlock_irq(&pool->lock);
3010 
3011 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3012 }
3013 
3014 /**
3015  * maybe_create_worker - create a new worker if necessary
3016  * @pool: pool to create a new worker for
3017  *
3018  * Create a new worker for @pool if necessary.  @pool is guaranteed to
3019  * have at least one idle worker on return from this function.  If
3020  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3021  * sent to all rescuers with works scheduled on @pool to resolve
3022  * possible allocation deadlock.
3023  *
3024  * On return, need_to_create_worker() is guaranteed to be %false and
3025  * may_start_working() %true.
3026  *
3027  * LOCKING:
3028  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3029  * multiple times.  Does GFP_KERNEL allocations.  Called only from
3030  * manager.
3031  */
3032 static void maybe_create_worker(struct worker_pool *pool)
3033 __releases(&pool->lock)
3034 __acquires(&pool->lock)
3035 {
3036 restart:
3037 	raw_spin_unlock_irq(&pool->lock);
3038 
3039 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3040 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3041 
3042 	while (true) {
3043 		if (create_worker(pool) || !need_to_create_worker(pool))
3044 			break;
3045 
3046 		schedule_timeout_interruptible(CREATE_COOLDOWN);
3047 
3048 		if (!need_to_create_worker(pool))
3049 			break;
3050 	}
3051 
3052 	del_timer_sync(&pool->mayday_timer);
3053 	raw_spin_lock_irq(&pool->lock);
3054 	/*
3055 	 * This is necessary even after a new worker was just successfully
3056 	 * created as @pool->lock was dropped and the new worker might have
3057 	 * already become busy.
3058 	 */
3059 	if (need_to_create_worker(pool))
3060 		goto restart;
3061 }
3062 
3063 /**
3064  * manage_workers - manage worker pool
3065  * @worker: self
3066  *
3067  * Assume the manager role and manage the worker pool @worker belongs
3068  * to.  At any given time, there can be only zero or one manager per
3069  * pool.  The exclusion is handled automatically by this function.
3070  *
3071  * The caller can safely start processing works on false return.  On
3072  * true return, it's guaranteed that need_to_create_worker() is false
3073  * and may_start_working() is true.
3074  *
3075  * CONTEXT:
3076  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3077  * multiple times.  Does GFP_KERNEL allocations.
3078  *
3079  * Return:
3080  * %false if the pool doesn't need management and the caller can safely
3081  * start processing works, %true if management function was performed and
3082  * the conditions that the caller verified before calling the function may
3083  * no longer be true.
3084  */
3085 static bool manage_workers(struct worker *worker)
3086 {
3087 	struct worker_pool *pool = worker->pool;
3088 
3089 	if (pool->flags & POOL_MANAGER_ACTIVE)
3090 		return false;
3091 
3092 	pool->flags |= POOL_MANAGER_ACTIVE;
3093 	pool->manager = worker;
3094 
3095 	maybe_create_worker(pool);
3096 
3097 	pool->manager = NULL;
3098 	pool->flags &= ~POOL_MANAGER_ACTIVE;
3099 	rcuwait_wake_up(&manager_wait);
3100 	return true;
3101 }
3102 
3103 /**
3104  * process_one_work - process single work
3105  * @worker: self
3106  * @work: work to process
3107  *
3108  * Process @work.  This function contains all the logics necessary to
3109  * process a single work including synchronization against and
3110  * interaction with other workers on the same cpu, queueing and
3111  * flushing.  As long as context requirement is met, any worker can
3112  * call this function to process a work.
3113  *
3114  * CONTEXT:
3115  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3116  */
3117 static void process_one_work(struct worker *worker, struct work_struct *work)
3118 __releases(&pool->lock)
3119 __acquires(&pool->lock)
3120 {
3121 	struct pool_workqueue *pwq = get_work_pwq(work);
3122 	struct worker_pool *pool = worker->pool;
3123 	unsigned long work_data;
3124 	int lockdep_start_depth, rcu_start_depth;
3125 	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3126 #ifdef CONFIG_LOCKDEP
3127 	/*
3128 	 * It is permissible to free the struct work_struct from
3129 	 * inside the function that is called from it, this we need to
3130 	 * take into account for lockdep too.  To avoid bogus "held
3131 	 * lock freed" warnings as well as problems when looking into
3132 	 * work->lockdep_map, make a copy and use that here.
3133 	 */
3134 	struct lockdep_map lockdep_map;
3135 
3136 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3137 #endif
3138 	/* ensure we're on the correct CPU */
3139 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3140 		     raw_smp_processor_id() != pool->cpu);
3141 
3142 	/* claim and dequeue */
3143 	debug_work_deactivate(work);
3144 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3145 	worker->current_work = work;
3146 	worker->current_func = work->func;
3147 	worker->current_pwq = pwq;
3148 	if (worker->task)
3149 		worker->current_at = worker->task->se.sum_exec_runtime;
3150 	work_data = *work_data_bits(work);
3151 	worker->current_color = get_work_color(work_data);
3152 
3153 	/*
3154 	 * Record wq name for cmdline and debug reporting, may get
3155 	 * overridden through set_worker_desc().
3156 	 */
3157 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3158 
3159 	list_del_init(&work->entry);
3160 
3161 	/*
3162 	 * CPU intensive works don't participate in concurrency management.
3163 	 * They're the scheduler's responsibility.  This takes @worker out
3164 	 * of concurrency management and the next code block will chain
3165 	 * execution of the pending work items.
3166 	 */
3167 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3168 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3169 
3170 	/*
3171 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3172 	 * since nr_running would always be >= 1 at this point. This is used to
3173 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3174 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3175 	 */
3176 	kick_pool(pool);
3177 
3178 	/*
3179 	 * Record the last pool and clear PENDING which should be the last
3180 	 * update to @work.  Also, do this inside @pool->lock so that
3181 	 * PENDING and queued state changes happen together while IRQ is
3182 	 * disabled.
3183 	 */
3184 	set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3185 
3186 	pwq->stats[PWQ_STAT_STARTED]++;
3187 	raw_spin_unlock_irq(&pool->lock);
3188 
3189 	rcu_start_depth = rcu_preempt_depth();
3190 	lockdep_start_depth = lockdep_depth(current);
3191 	/* see drain_dead_softirq_workfn() */
3192 	if (!bh_draining)
3193 		lock_map_acquire(&pwq->wq->lockdep_map);
3194 	lock_map_acquire(&lockdep_map);
3195 	/*
3196 	 * Strictly speaking we should mark the invariant state without holding
3197 	 * any locks, that is, before these two lock_map_acquire()'s.
3198 	 *
3199 	 * However, that would result in:
3200 	 *
3201 	 *   A(W1)
3202 	 *   WFC(C)
3203 	 *		A(W1)
3204 	 *		C(C)
3205 	 *
3206 	 * Which would create W1->C->W1 dependencies, even though there is no
3207 	 * actual deadlock possible. There are two solutions, using a
3208 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3209 	 * hit the lockdep limitation on recursive locks, or simply discard
3210 	 * these locks.
3211 	 *
3212 	 * AFAICT there is no possible deadlock scenario between the
3213 	 * flush_work() and complete() primitives (except for single-threaded
3214 	 * workqueues), so hiding them isn't a problem.
3215 	 */
3216 	lockdep_invariant_state(true);
3217 	trace_workqueue_execute_start(work);
3218 	worker->current_func(work);
3219 	/*
3220 	 * While we must be careful to not use "work" after this, the trace
3221 	 * point will only record its address.
3222 	 */
3223 	trace_workqueue_execute_end(work, worker->current_func);
3224 	pwq->stats[PWQ_STAT_COMPLETED]++;
3225 	lock_map_release(&lockdep_map);
3226 	if (!bh_draining)
3227 		lock_map_release(&pwq->wq->lockdep_map);
3228 
3229 	if (unlikely((worker->task && in_atomic()) ||
3230 		     lockdep_depth(current) != lockdep_start_depth ||
3231 		     rcu_preempt_depth() != rcu_start_depth)) {
3232 		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3233 		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3234 		       current->comm, task_pid_nr(current), preempt_count(),
3235 		       lockdep_start_depth, lockdep_depth(current),
3236 		       rcu_start_depth, rcu_preempt_depth(),
3237 		       worker->current_func);
3238 		debug_show_held_locks(current);
3239 		dump_stack();
3240 	}
3241 
3242 	/*
3243 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3244 	 * kernels, where a requeueing work item waiting for something to
3245 	 * happen could deadlock with stop_machine as such work item could
3246 	 * indefinitely requeue itself while all other CPUs are trapped in
3247 	 * stop_machine. At the same time, report a quiescent RCU state so
3248 	 * the same condition doesn't freeze RCU.
3249 	 */
3250 	if (worker->task)
3251 		cond_resched();
3252 
3253 	raw_spin_lock_irq(&pool->lock);
3254 
3255 	/*
3256 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3257 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3258 	 * wq_cpu_intensive_thresh_us. Clear it.
3259 	 */
3260 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3261 
3262 	/* tag the worker for identification in schedule() */
3263 	worker->last_func = worker->current_func;
3264 
3265 	/* we're done with it, release */
3266 	hash_del(&worker->hentry);
3267 	worker->current_work = NULL;
3268 	worker->current_func = NULL;
3269 	worker->current_pwq = NULL;
3270 	worker->current_color = INT_MAX;
3271 
3272 	/* must be the last step, see the function comment */
3273 	pwq_dec_nr_in_flight(pwq, work_data);
3274 }
3275 
3276 /**
3277  * process_scheduled_works - process scheduled works
3278  * @worker: self
3279  *
3280  * Process all scheduled works.  Please note that the scheduled list
3281  * may change while processing a work, so this function repeatedly
3282  * fetches a work from the top and executes it.
3283  *
3284  * CONTEXT:
3285  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3286  * multiple times.
3287  */
3288 static void process_scheduled_works(struct worker *worker)
3289 {
3290 	struct work_struct *work;
3291 	bool first = true;
3292 
3293 	while ((work = list_first_entry_or_null(&worker->scheduled,
3294 						struct work_struct, entry))) {
3295 		if (first) {
3296 			worker->pool->watchdog_ts = jiffies;
3297 			first = false;
3298 		}
3299 		process_one_work(worker, work);
3300 	}
3301 }
3302 
3303 static void set_pf_worker(bool val)
3304 {
3305 	mutex_lock(&wq_pool_attach_mutex);
3306 	if (val)
3307 		current->flags |= PF_WQ_WORKER;
3308 	else
3309 		current->flags &= ~PF_WQ_WORKER;
3310 	mutex_unlock(&wq_pool_attach_mutex);
3311 }
3312 
3313 /**
3314  * worker_thread - the worker thread function
3315  * @__worker: self
3316  *
3317  * The worker thread function.  All workers belong to a worker_pool -
3318  * either a per-cpu one or dynamic unbound one.  These workers process all
3319  * work items regardless of their specific target workqueue.  The only
3320  * exception is work items which belong to workqueues with a rescuer which
3321  * will be explained in rescuer_thread().
3322  *
3323  * Return: 0
3324  */
3325 static int worker_thread(void *__worker)
3326 {
3327 	struct worker *worker = __worker;
3328 	struct worker_pool *pool = worker->pool;
3329 
3330 	/* tell the scheduler that this is a workqueue worker */
3331 	set_pf_worker(true);
3332 woke_up:
3333 	raw_spin_lock_irq(&pool->lock);
3334 
3335 	/* am I supposed to die? */
3336 	if (unlikely(worker->flags & WORKER_DIE)) {
3337 		raw_spin_unlock_irq(&pool->lock);
3338 		set_pf_worker(false);
3339 
3340 		set_task_comm(worker->task, "kworker/dying");
3341 		ida_free(&pool->worker_ida, worker->id);
3342 		worker_detach_from_pool(worker);
3343 		WARN_ON_ONCE(!list_empty(&worker->entry));
3344 		kfree(worker);
3345 		return 0;
3346 	}
3347 
3348 	worker_leave_idle(worker);
3349 recheck:
3350 	/* no more worker necessary? */
3351 	if (!need_more_worker(pool))
3352 		goto sleep;
3353 
3354 	/* do we need to manage? */
3355 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3356 		goto recheck;
3357 
3358 	/*
3359 	 * ->scheduled list can only be filled while a worker is
3360 	 * preparing to process a work or actually processing it.
3361 	 * Make sure nobody diddled with it while I was sleeping.
3362 	 */
3363 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3364 
3365 	/*
3366 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3367 	 * worker or that someone else has already assumed the manager
3368 	 * role.  This is where @worker starts participating in concurrency
3369 	 * management if applicable and concurrency management is restored
3370 	 * after being rebound.  See rebind_workers() for details.
3371 	 */
3372 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3373 
3374 	do {
3375 		struct work_struct *work =
3376 			list_first_entry(&pool->worklist,
3377 					 struct work_struct, entry);
3378 
3379 		if (assign_work(work, worker, NULL))
3380 			process_scheduled_works(worker);
3381 	} while (keep_working(pool));
3382 
3383 	worker_set_flags(worker, WORKER_PREP);
3384 sleep:
3385 	/*
3386 	 * pool->lock is held and there's no work to process and no need to
3387 	 * manage, sleep.  Workers are woken up only while holding
3388 	 * pool->lock or from local cpu, so setting the current state
3389 	 * before releasing pool->lock is enough to prevent losing any
3390 	 * event.
3391 	 */
3392 	worker_enter_idle(worker);
3393 	__set_current_state(TASK_IDLE);
3394 	raw_spin_unlock_irq(&pool->lock);
3395 	schedule();
3396 	goto woke_up;
3397 }
3398 
3399 /**
3400  * rescuer_thread - the rescuer thread function
3401  * @__rescuer: self
3402  *
3403  * Workqueue rescuer thread function.  There's one rescuer for each
3404  * workqueue which has WQ_MEM_RECLAIM set.
3405  *
3406  * Regular work processing on a pool may block trying to create a new
3407  * worker which uses GFP_KERNEL allocation which has slight chance of
3408  * developing into deadlock if some works currently on the same queue
3409  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3410  * the problem rescuer solves.
3411  *
3412  * When such condition is possible, the pool summons rescuers of all
3413  * workqueues which have works queued on the pool and let them process
3414  * those works so that forward progress can be guaranteed.
3415  *
3416  * This should happen rarely.
3417  *
3418  * Return: 0
3419  */
3420 static int rescuer_thread(void *__rescuer)
3421 {
3422 	struct worker *rescuer = __rescuer;
3423 	struct workqueue_struct *wq = rescuer->rescue_wq;
3424 	bool should_stop;
3425 
3426 	set_user_nice(current, RESCUER_NICE_LEVEL);
3427 
3428 	/*
3429 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3430 	 * doesn't participate in concurrency management.
3431 	 */
3432 	set_pf_worker(true);
3433 repeat:
3434 	set_current_state(TASK_IDLE);
3435 
3436 	/*
3437 	 * By the time the rescuer is requested to stop, the workqueue
3438 	 * shouldn't have any work pending, but @wq->maydays may still have
3439 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3440 	 * all the work items before the rescuer got to them.  Go through
3441 	 * @wq->maydays processing before acting on should_stop so that the
3442 	 * list is always empty on exit.
3443 	 */
3444 	should_stop = kthread_should_stop();
3445 
3446 	/* see whether any pwq is asking for help */
3447 	raw_spin_lock_irq(&wq_mayday_lock);
3448 
3449 	while (!list_empty(&wq->maydays)) {
3450 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3451 					struct pool_workqueue, mayday_node);
3452 		struct worker_pool *pool = pwq->pool;
3453 		struct work_struct *work, *n;
3454 
3455 		__set_current_state(TASK_RUNNING);
3456 		list_del_init(&pwq->mayday_node);
3457 
3458 		raw_spin_unlock_irq(&wq_mayday_lock);
3459 
3460 		worker_attach_to_pool(rescuer, pool);
3461 
3462 		raw_spin_lock_irq(&pool->lock);
3463 
3464 		/*
3465 		 * Slurp in all works issued via this workqueue and
3466 		 * process'em.
3467 		 */
3468 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3469 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3470 			if (get_work_pwq(work) == pwq &&
3471 			    assign_work(work, rescuer, &n))
3472 				pwq->stats[PWQ_STAT_RESCUED]++;
3473 		}
3474 
3475 		if (!list_empty(&rescuer->scheduled)) {
3476 			process_scheduled_works(rescuer);
3477 
3478 			/*
3479 			 * The above execution of rescued work items could
3480 			 * have created more to rescue through
3481 			 * pwq_activate_first_inactive() or chained
3482 			 * queueing.  Let's put @pwq back on mayday list so
3483 			 * that such back-to-back work items, which may be
3484 			 * being used to relieve memory pressure, don't
3485 			 * incur MAYDAY_INTERVAL delay inbetween.
3486 			 */
3487 			if (pwq->nr_active && need_to_create_worker(pool)) {
3488 				raw_spin_lock(&wq_mayday_lock);
3489 				/*
3490 				 * Queue iff we aren't racing destruction
3491 				 * and somebody else hasn't queued it already.
3492 				 */
3493 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3494 					get_pwq(pwq);
3495 					list_add_tail(&pwq->mayday_node, &wq->maydays);
3496 				}
3497 				raw_spin_unlock(&wq_mayday_lock);
3498 			}
3499 		}
3500 
3501 		/*
3502 		 * Put the reference grabbed by send_mayday().  @pool won't
3503 		 * go away while we're still attached to it.
3504 		 */
3505 		put_pwq(pwq);
3506 
3507 		/*
3508 		 * Leave this pool. Notify regular workers; otherwise, we end up
3509 		 * with 0 concurrency and stalling the execution.
3510 		 */
3511 		kick_pool(pool);
3512 
3513 		raw_spin_unlock_irq(&pool->lock);
3514 
3515 		worker_detach_from_pool(rescuer);
3516 
3517 		raw_spin_lock_irq(&wq_mayday_lock);
3518 	}
3519 
3520 	raw_spin_unlock_irq(&wq_mayday_lock);
3521 
3522 	if (should_stop) {
3523 		__set_current_state(TASK_RUNNING);
3524 		set_pf_worker(false);
3525 		return 0;
3526 	}
3527 
3528 	/* rescuers should never participate in concurrency management */
3529 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3530 	schedule();
3531 	goto repeat;
3532 }
3533 
3534 static void bh_worker(struct worker *worker)
3535 {
3536 	struct worker_pool *pool = worker->pool;
3537 	int nr_restarts = BH_WORKER_RESTARTS;
3538 	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3539 
3540 	raw_spin_lock_irq(&pool->lock);
3541 	worker_leave_idle(worker);
3542 
3543 	/*
3544 	 * This function follows the structure of worker_thread(). See there for
3545 	 * explanations on each step.
3546 	 */
3547 	if (!need_more_worker(pool))
3548 		goto done;
3549 
3550 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3551 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3552 
3553 	do {
3554 		struct work_struct *work =
3555 			list_first_entry(&pool->worklist,
3556 					 struct work_struct, entry);
3557 
3558 		if (assign_work(work, worker, NULL))
3559 			process_scheduled_works(worker);
3560 	} while (keep_working(pool) &&
3561 		 --nr_restarts && time_before(jiffies, end));
3562 
3563 	worker_set_flags(worker, WORKER_PREP);
3564 done:
3565 	worker_enter_idle(worker);
3566 	kick_pool(pool);
3567 	raw_spin_unlock_irq(&pool->lock);
3568 }
3569 
3570 /*
3571  * TODO: Convert all tasklet users to workqueue and use softirq directly.
3572  *
3573  * This is currently called from tasklet[_hi]action() and thus is also called
3574  * whenever there are tasklets to run. Let's do an early exit if there's nothing
3575  * queued. Once conversion from tasklet is complete, the need_more_worker() test
3576  * can be dropped.
3577  *
3578  * After full conversion, we'll add worker->softirq_action, directly use the
3579  * softirq action and obtain the worker pointer from the softirq_action pointer.
3580  */
3581 void workqueue_softirq_action(bool highpri)
3582 {
3583 	struct worker_pool *pool =
3584 		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3585 	if (need_more_worker(pool))
3586 		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3587 }
3588 
3589 struct wq_drain_dead_softirq_work {
3590 	struct work_struct	work;
3591 	struct worker_pool	*pool;
3592 	struct completion	done;
3593 };
3594 
3595 static void drain_dead_softirq_workfn(struct work_struct *work)
3596 {
3597 	struct wq_drain_dead_softirq_work *dead_work =
3598 		container_of(work, struct wq_drain_dead_softirq_work, work);
3599 	struct worker_pool *pool = dead_work->pool;
3600 	bool repeat;
3601 
3602 	/*
3603 	 * @pool's CPU is dead and we want to execute its still pending work
3604 	 * items from this BH work item which is running on a different CPU. As
3605 	 * its CPU is dead, @pool can't be kicked and, as work execution path
3606 	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3607 	 * @pool with %POOL_BH_DRAINING for the special treatments.
3608 	 */
3609 	raw_spin_lock_irq(&pool->lock);
3610 	pool->flags |= POOL_BH_DRAINING;
3611 	raw_spin_unlock_irq(&pool->lock);
3612 
3613 	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3614 
3615 	raw_spin_lock_irq(&pool->lock);
3616 	pool->flags &= ~POOL_BH_DRAINING;
3617 	repeat = need_more_worker(pool);
3618 	raw_spin_unlock_irq(&pool->lock);
3619 
3620 	/*
3621 	 * bh_worker() might hit consecutive execution limit and bail. If there
3622 	 * still are pending work items, reschedule self and return so that we
3623 	 * don't hog this CPU's BH.
3624 	 */
3625 	if (repeat) {
3626 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3627 			queue_work(system_bh_highpri_wq, work);
3628 		else
3629 			queue_work(system_bh_wq, work);
3630 	} else {
3631 		complete(&dead_work->done);
3632 	}
3633 }
3634 
3635 /*
3636  * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3637  * possible to allocate dead_work per CPU and avoid flushing. However, then we
3638  * have to worry about draining overlapping with CPU coming back online or
3639  * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3640  * on). Let's keep it simple and drain them synchronously. These are BH work
3641  * items which shouldn't be requeued on the same pool. Shouldn't take long.
3642  */
3643 void workqueue_softirq_dead(unsigned int cpu)
3644 {
3645 	int i;
3646 
3647 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3648 		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3649 		struct wq_drain_dead_softirq_work dead_work;
3650 
3651 		if (!need_more_worker(pool))
3652 			continue;
3653 
3654 		INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3655 		dead_work.pool = pool;
3656 		init_completion(&dead_work.done);
3657 
3658 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3659 			queue_work(system_bh_highpri_wq, &dead_work.work);
3660 		else
3661 			queue_work(system_bh_wq, &dead_work.work);
3662 
3663 		wait_for_completion(&dead_work.done);
3664 	}
3665 }
3666 
3667 /**
3668  * check_flush_dependency - check for flush dependency sanity
3669  * @target_wq: workqueue being flushed
3670  * @target_work: work item being flushed (NULL for workqueue flushes)
3671  *
3672  * %current is trying to flush the whole @target_wq or @target_work on it.
3673  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3674  * reclaiming memory or running on a workqueue which doesn't have
3675  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3676  * a deadlock.
3677  */
3678 static void check_flush_dependency(struct workqueue_struct *target_wq,
3679 				   struct work_struct *target_work)
3680 {
3681 	work_func_t target_func = target_work ? target_work->func : NULL;
3682 	struct worker *worker;
3683 
3684 	if (target_wq->flags & WQ_MEM_RECLAIM)
3685 		return;
3686 
3687 	worker = current_wq_worker();
3688 
3689 	WARN_ONCE(current->flags & PF_MEMALLOC,
3690 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3691 		  current->pid, current->comm, target_wq->name, target_func);
3692 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3693 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3694 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3695 		  worker->current_pwq->wq->name, worker->current_func,
3696 		  target_wq->name, target_func);
3697 }
3698 
3699 struct wq_barrier {
3700 	struct work_struct	work;
3701 	struct completion	done;
3702 	struct task_struct	*task;	/* purely informational */
3703 };
3704 
3705 static void wq_barrier_func(struct work_struct *work)
3706 {
3707 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3708 	complete(&barr->done);
3709 }
3710 
3711 /**
3712  * insert_wq_barrier - insert a barrier work
3713  * @pwq: pwq to insert barrier into
3714  * @barr: wq_barrier to insert
3715  * @target: target work to attach @barr to
3716  * @worker: worker currently executing @target, NULL if @target is not executing
3717  *
3718  * @barr is linked to @target such that @barr is completed only after
3719  * @target finishes execution.  Please note that the ordering
3720  * guarantee is observed only with respect to @target and on the local
3721  * cpu.
3722  *
3723  * Currently, a queued barrier can't be canceled.  This is because
3724  * try_to_grab_pending() can't determine whether the work to be
3725  * grabbed is at the head of the queue and thus can't clear LINKED
3726  * flag of the previous work while there must be a valid next work
3727  * after a work with LINKED flag set.
3728  *
3729  * Note that when @worker is non-NULL, @target may be modified
3730  * underneath us, so we can't reliably determine pwq from @target.
3731  *
3732  * CONTEXT:
3733  * raw_spin_lock_irq(pool->lock).
3734  */
3735 static void insert_wq_barrier(struct pool_workqueue *pwq,
3736 			      struct wq_barrier *barr,
3737 			      struct work_struct *target, struct worker *worker)
3738 {
3739 	static __maybe_unused struct lock_class_key bh_key, thr_key;
3740 	unsigned int work_flags = 0;
3741 	unsigned int work_color;
3742 	struct list_head *head;
3743 
3744 	/*
3745 	 * debugobject calls are safe here even with pool->lock locked
3746 	 * as we know for sure that this will not trigger any of the
3747 	 * checks and call back into the fixup functions where we
3748 	 * might deadlock.
3749 	 *
3750 	 * BH and threaded workqueues need separate lockdep keys to avoid
3751 	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3752 	 * usage".
3753 	 */
3754 	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3755 			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3756 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3757 
3758 	init_completion_map(&barr->done, &target->lockdep_map);
3759 
3760 	barr->task = current;
3761 
3762 	/* The barrier work item does not participate in nr_active. */
3763 	work_flags |= WORK_STRUCT_INACTIVE;
3764 
3765 	/*
3766 	 * If @target is currently being executed, schedule the
3767 	 * barrier to the worker; otherwise, put it after @target.
3768 	 */
3769 	if (worker) {
3770 		head = worker->scheduled.next;
3771 		work_color = worker->current_color;
3772 	} else {
3773 		unsigned long *bits = work_data_bits(target);
3774 
3775 		head = target->entry.next;
3776 		/* there can already be other linked works, inherit and set */
3777 		work_flags |= *bits & WORK_STRUCT_LINKED;
3778 		work_color = get_work_color(*bits);
3779 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3780 	}
3781 
3782 	pwq->nr_in_flight[work_color]++;
3783 	work_flags |= work_color_to_flags(work_color);
3784 
3785 	insert_work(pwq, &barr->work, head, work_flags);
3786 }
3787 
3788 /**
3789  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3790  * @wq: workqueue being flushed
3791  * @flush_color: new flush color, < 0 for no-op
3792  * @work_color: new work color, < 0 for no-op
3793  *
3794  * Prepare pwqs for workqueue flushing.
3795  *
3796  * If @flush_color is non-negative, flush_color on all pwqs should be
3797  * -1.  If no pwq has in-flight commands at the specified color, all
3798  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3799  * has in flight commands, its pwq->flush_color is set to
3800  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3801  * wakeup logic is armed and %true is returned.
3802  *
3803  * The caller should have initialized @wq->first_flusher prior to
3804  * calling this function with non-negative @flush_color.  If
3805  * @flush_color is negative, no flush color update is done and %false
3806  * is returned.
3807  *
3808  * If @work_color is non-negative, all pwqs should have the same
3809  * work_color which is previous to @work_color and all will be
3810  * advanced to @work_color.
3811  *
3812  * CONTEXT:
3813  * mutex_lock(wq->mutex).
3814  *
3815  * Return:
3816  * %true if @flush_color >= 0 and there's something to flush.  %false
3817  * otherwise.
3818  */
3819 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3820 				      int flush_color, int work_color)
3821 {
3822 	bool wait = false;
3823 	struct pool_workqueue *pwq;
3824 
3825 	if (flush_color >= 0) {
3826 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3827 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3828 	}
3829 
3830 	for_each_pwq(pwq, wq) {
3831 		struct worker_pool *pool = pwq->pool;
3832 
3833 		raw_spin_lock_irq(&pool->lock);
3834 
3835 		if (flush_color >= 0) {
3836 			WARN_ON_ONCE(pwq->flush_color != -1);
3837 
3838 			if (pwq->nr_in_flight[flush_color]) {
3839 				pwq->flush_color = flush_color;
3840 				atomic_inc(&wq->nr_pwqs_to_flush);
3841 				wait = true;
3842 			}
3843 		}
3844 
3845 		if (work_color >= 0) {
3846 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3847 			pwq->work_color = work_color;
3848 		}
3849 
3850 		raw_spin_unlock_irq(&pool->lock);
3851 	}
3852 
3853 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3854 		complete(&wq->first_flusher->done);
3855 
3856 	return wait;
3857 }
3858 
3859 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3860 {
3861 #ifdef CONFIG_LOCKDEP
3862 	if (wq->flags & WQ_BH)
3863 		local_bh_disable();
3864 
3865 	lock_map_acquire(&wq->lockdep_map);
3866 	lock_map_release(&wq->lockdep_map);
3867 
3868 	if (wq->flags & WQ_BH)
3869 		local_bh_enable();
3870 #endif
3871 }
3872 
3873 static void touch_work_lockdep_map(struct work_struct *work,
3874 				   struct workqueue_struct *wq)
3875 {
3876 #ifdef CONFIG_LOCKDEP
3877 	if (wq->flags & WQ_BH)
3878 		local_bh_disable();
3879 
3880 	lock_map_acquire(&work->lockdep_map);
3881 	lock_map_release(&work->lockdep_map);
3882 
3883 	if (wq->flags & WQ_BH)
3884 		local_bh_enable();
3885 #endif
3886 }
3887 
3888 /**
3889  * __flush_workqueue - ensure that any scheduled work has run to completion.
3890  * @wq: workqueue to flush
3891  *
3892  * This function sleeps until all work items which were queued on entry
3893  * have finished execution, but it is not livelocked by new incoming ones.
3894  */
3895 void __flush_workqueue(struct workqueue_struct *wq)
3896 {
3897 	struct wq_flusher this_flusher = {
3898 		.list = LIST_HEAD_INIT(this_flusher.list),
3899 		.flush_color = -1,
3900 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3901 	};
3902 	int next_color;
3903 
3904 	if (WARN_ON(!wq_online))
3905 		return;
3906 
3907 	touch_wq_lockdep_map(wq);
3908 
3909 	mutex_lock(&wq->mutex);
3910 
3911 	/*
3912 	 * Start-to-wait phase
3913 	 */
3914 	next_color = work_next_color(wq->work_color);
3915 
3916 	if (next_color != wq->flush_color) {
3917 		/*
3918 		 * Color space is not full.  The current work_color
3919 		 * becomes our flush_color and work_color is advanced
3920 		 * by one.
3921 		 */
3922 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3923 		this_flusher.flush_color = wq->work_color;
3924 		wq->work_color = next_color;
3925 
3926 		if (!wq->first_flusher) {
3927 			/* no flush in progress, become the first flusher */
3928 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3929 
3930 			wq->first_flusher = &this_flusher;
3931 
3932 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3933 						       wq->work_color)) {
3934 				/* nothing to flush, done */
3935 				wq->flush_color = next_color;
3936 				wq->first_flusher = NULL;
3937 				goto out_unlock;
3938 			}
3939 		} else {
3940 			/* wait in queue */
3941 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3942 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3943 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3944 		}
3945 	} else {
3946 		/*
3947 		 * Oops, color space is full, wait on overflow queue.
3948 		 * The next flush completion will assign us
3949 		 * flush_color and transfer to flusher_queue.
3950 		 */
3951 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3952 	}
3953 
3954 	check_flush_dependency(wq, NULL);
3955 
3956 	mutex_unlock(&wq->mutex);
3957 
3958 	wait_for_completion(&this_flusher.done);
3959 
3960 	/*
3961 	 * Wake-up-and-cascade phase
3962 	 *
3963 	 * First flushers are responsible for cascading flushes and
3964 	 * handling overflow.  Non-first flushers can simply return.
3965 	 */
3966 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3967 		return;
3968 
3969 	mutex_lock(&wq->mutex);
3970 
3971 	/* we might have raced, check again with mutex held */
3972 	if (wq->first_flusher != &this_flusher)
3973 		goto out_unlock;
3974 
3975 	WRITE_ONCE(wq->first_flusher, NULL);
3976 
3977 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3978 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3979 
3980 	while (true) {
3981 		struct wq_flusher *next, *tmp;
3982 
3983 		/* complete all the flushers sharing the current flush color */
3984 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3985 			if (next->flush_color != wq->flush_color)
3986 				break;
3987 			list_del_init(&next->list);
3988 			complete(&next->done);
3989 		}
3990 
3991 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3992 			     wq->flush_color != work_next_color(wq->work_color));
3993 
3994 		/* this flush_color is finished, advance by one */
3995 		wq->flush_color = work_next_color(wq->flush_color);
3996 
3997 		/* one color has been freed, handle overflow queue */
3998 		if (!list_empty(&wq->flusher_overflow)) {
3999 			/*
4000 			 * Assign the same color to all overflowed
4001 			 * flushers, advance work_color and append to
4002 			 * flusher_queue.  This is the start-to-wait
4003 			 * phase for these overflowed flushers.
4004 			 */
4005 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4006 				tmp->flush_color = wq->work_color;
4007 
4008 			wq->work_color = work_next_color(wq->work_color);
4009 
4010 			list_splice_tail_init(&wq->flusher_overflow,
4011 					      &wq->flusher_queue);
4012 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4013 		}
4014 
4015 		if (list_empty(&wq->flusher_queue)) {
4016 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4017 			break;
4018 		}
4019 
4020 		/*
4021 		 * Need to flush more colors.  Make the next flusher
4022 		 * the new first flusher and arm pwqs.
4023 		 */
4024 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4025 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4026 
4027 		list_del_init(&next->list);
4028 		wq->first_flusher = next;
4029 
4030 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4031 			break;
4032 
4033 		/*
4034 		 * Meh... this color is already done, clear first
4035 		 * flusher and repeat cascading.
4036 		 */
4037 		wq->first_flusher = NULL;
4038 	}
4039 
4040 out_unlock:
4041 	mutex_unlock(&wq->mutex);
4042 }
4043 EXPORT_SYMBOL(__flush_workqueue);
4044 
4045 /**
4046  * drain_workqueue - drain a workqueue
4047  * @wq: workqueue to drain
4048  *
4049  * Wait until the workqueue becomes empty.  While draining is in progress,
4050  * only chain queueing is allowed.  IOW, only currently pending or running
4051  * work items on @wq can queue further work items on it.  @wq is flushed
4052  * repeatedly until it becomes empty.  The number of flushing is determined
4053  * by the depth of chaining and should be relatively short.  Whine if it
4054  * takes too long.
4055  */
4056 void drain_workqueue(struct workqueue_struct *wq)
4057 {
4058 	unsigned int flush_cnt = 0;
4059 	struct pool_workqueue *pwq;
4060 
4061 	/*
4062 	 * __queue_work() needs to test whether there are drainers, is much
4063 	 * hotter than drain_workqueue() and already looks at @wq->flags.
4064 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4065 	 */
4066 	mutex_lock(&wq->mutex);
4067 	if (!wq->nr_drainers++)
4068 		wq->flags |= __WQ_DRAINING;
4069 	mutex_unlock(&wq->mutex);
4070 reflush:
4071 	__flush_workqueue(wq);
4072 
4073 	mutex_lock(&wq->mutex);
4074 
4075 	for_each_pwq(pwq, wq) {
4076 		bool drained;
4077 
4078 		raw_spin_lock_irq(&pwq->pool->lock);
4079 		drained = pwq_is_empty(pwq);
4080 		raw_spin_unlock_irq(&pwq->pool->lock);
4081 
4082 		if (drained)
4083 			continue;
4084 
4085 		if (++flush_cnt == 10 ||
4086 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4087 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4088 				wq->name, __func__, flush_cnt);
4089 
4090 		mutex_unlock(&wq->mutex);
4091 		goto reflush;
4092 	}
4093 
4094 	if (!--wq->nr_drainers)
4095 		wq->flags &= ~__WQ_DRAINING;
4096 	mutex_unlock(&wq->mutex);
4097 }
4098 EXPORT_SYMBOL_GPL(drain_workqueue);
4099 
4100 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4101 			     bool from_cancel)
4102 {
4103 	struct worker *worker = NULL;
4104 	struct worker_pool *pool;
4105 	struct pool_workqueue *pwq;
4106 	struct workqueue_struct *wq;
4107 
4108 	rcu_read_lock();
4109 	pool = get_work_pool(work);
4110 	if (!pool) {
4111 		rcu_read_unlock();
4112 		return false;
4113 	}
4114 
4115 	raw_spin_lock_irq(&pool->lock);
4116 	/* see the comment in try_to_grab_pending() with the same code */
4117 	pwq = get_work_pwq(work);
4118 	if (pwq) {
4119 		if (unlikely(pwq->pool != pool))
4120 			goto already_gone;
4121 	} else {
4122 		worker = find_worker_executing_work(pool, work);
4123 		if (!worker)
4124 			goto already_gone;
4125 		pwq = worker->current_pwq;
4126 	}
4127 
4128 	wq = pwq->wq;
4129 	check_flush_dependency(wq, work);
4130 
4131 	insert_wq_barrier(pwq, barr, work, worker);
4132 	raw_spin_unlock_irq(&pool->lock);
4133 
4134 	touch_work_lockdep_map(work, wq);
4135 
4136 	/*
4137 	 * Force a lock recursion deadlock when using flush_work() inside a
4138 	 * single-threaded or rescuer equipped workqueue.
4139 	 *
4140 	 * For single threaded workqueues the deadlock happens when the work
4141 	 * is after the work issuing the flush_work(). For rescuer equipped
4142 	 * workqueues the deadlock happens when the rescuer stalls, blocking
4143 	 * forward progress.
4144 	 */
4145 	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4146 		touch_wq_lockdep_map(wq);
4147 
4148 	rcu_read_unlock();
4149 	return true;
4150 already_gone:
4151 	raw_spin_unlock_irq(&pool->lock);
4152 	rcu_read_unlock();
4153 	return false;
4154 }
4155 
4156 static bool __flush_work(struct work_struct *work, bool from_cancel)
4157 {
4158 	struct wq_barrier barr;
4159 	unsigned long data;
4160 
4161 	if (WARN_ON(!wq_online))
4162 		return false;
4163 
4164 	if (WARN_ON(!work->func))
4165 		return false;
4166 
4167 	if (!start_flush_work(work, &barr, from_cancel))
4168 		return false;
4169 
4170 	/*
4171 	 * start_flush_work() returned %true. If @from_cancel is set, we know
4172 	 * that @work must have been executing during start_flush_work() and
4173 	 * can't currently be queued. Its data must contain OFFQ bits. If @work
4174 	 * was queued on a BH workqueue, we also know that it was running in the
4175 	 * BH context and thus can be busy-waited.
4176 	 */
4177 	data = *work_data_bits(work);
4178 	if (from_cancel &&
4179 	    !WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_BH)) {
4180 		/*
4181 		 * On RT, prevent a live lock when %current preempted soft
4182 		 * interrupt processing or prevents ksoftirqd from running by
4183 		 * keeping flipping BH. If the BH work item runs on a different
4184 		 * CPU then this has no effect other than doing the BH
4185 		 * disable/enable dance for nothing. This is copied from
4186 		 * kernel/softirq.c::tasklet_unlock_spin_wait().
4187 		 */
4188 		while (!try_wait_for_completion(&barr.done)) {
4189 			if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4190 				local_bh_disable();
4191 				local_bh_enable();
4192 			} else {
4193 				cpu_relax();
4194 			}
4195 		}
4196 	} else {
4197 		wait_for_completion(&barr.done);
4198 	}
4199 
4200 	destroy_work_on_stack(&barr.work);
4201 	return true;
4202 }
4203 
4204 /**
4205  * flush_work - wait for a work to finish executing the last queueing instance
4206  * @work: the work to flush
4207  *
4208  * Wait until @work has finished execution.  @work is guaranteed to be idle
4209  * on return if it hasn't been requeued since flush started.
4210  *
4211  * Return:
4212  * %true if flush_work() waited for the work to finish execution,
4213  * %false if it was already idle.
4214  */
4215 bool flush_work(struct work_struct *work)
4216 {
4217 	might_sleep();
4218 	return __flush_work(work, false);
4219 }
4220 EXPORT_SYMBOL_GPL(flush_work);
4221 
4222 /**
4223  * flush_delayed_work - wait for a dwork to finish executing the last queueing
4224  * @dwork: the delayed work to flush
4225  *
4226  * Delayed timer is cancelled and the pending work is queued for
4227  * immediate execution.  Like flush_work(), this function only
4228  * considers the last queueing instance of @dwork.
4229  *
4230  * Return:
4231  * %true if flush_work() waited for the work to finish execution,
4232  * %false if it was already idle.
4233  */
4234 bool flush_delayed_work(struct delayed_work *dwork)
4235 {
4236 	local_irq_disable();
4237 	if (del_timer_sync(&dwork->timer))
4238 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4239 	local_irq_enable();
4240 	return flush_work(&dwork->work);
4241 }
4242 EXPORT_SYMBOL(flush_delayed_work);
4243 
4244 /**
4245  * flush_rcu_work - wait for a rwork to finish executing the last queueing
4246  * @rwork: the rcu work to flush
4247  *
4248  * Return:
4249  * %true if flush_rcu_work() waited for the work to finish execution,
4250  * %false if it was already idle.
4251  */
4252 bool flush_rcu_work(struct rcu_work *rwork)
4253 {
4254 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4255 		rcu_barrier();
4256 		flush_work(&rwork->work);
4257 		return true;
4258 	} else {
4259 		return flush_work(&rwork->work);
4260 	}
4261 }
4262 EXPORT_SYMBOL(flush_rcu_work);
4263 
4264 static void work_offqd_disable(struct work_offq_data *offqd)
4265 {
4266 	const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4267 
4268 	if (likely(offqd->disable < max))
4269 		offqd->disable++;
4270 	else
4271 		WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4272 }
4273 
4274 static void work_offqd_enable(struct work_offq_data *offqd)
4275 {
4276 	if (likely(offqd->disable > 0))
4277 		offqd->disable--;
4278 	else
4279 		WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4280 }
4281 
4282 static bool __cancel_work(struct work_struct *work, u32 cflags)
4283 {
4284 	struct work_offq_data offqd;
4285 	unsigned long irq_flags;
4286 	int ret;
4287 
4288 	ret = work_grab_pending(work, cflags, &irq_flags);
4289 
4290 	work_offqd_unpack(&offqd, *work_data_bits(work));
4291 
4292 	if (cflags & WORK_CANCEL_DISABLE)
4293 		work_offqd_disable(&offqd);
4294 
4295 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4296 					work_offqd_pack_flags(&offqd));
4297 	local_irq_restore(irq_flags);
4298 	return ret;
4299 }
4300 
4301 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4302 {
4303 	bool ret;
4304 
4305 	ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4306 
4307 	if (*work_data_bits(work) & WORK_OFFQ_BH)
4308 		WARN_ON_ONCE(in_hardirq());
4309 	else
4310 		might_sleep();
4311 
4312 	/*
4313 	 * Skip __flush_work() during early boot when we know that @work isn't
4314 	 * executing. This allows canceling during early boot.
4315 	 */
4316 	if (wq_online)
4317 		__flush_work(work, true);
4318 
4319 	if (!(cflags & WORK_CANCEL_DISABLE))
4320 		enable_work(work);
4321 
4322 	return ret;
4323 }
4324 
4325 /*
4326  * See cancel_delayed_work()
4327  */
4328 bool cancel_work(struct work_struct *work)
4329 {
4330 	return __cancel_work(work, 0);
4331 }
4332 EXPORT_SYMBOL(cancel_work);
4333 
4334 /**
4335  * cancel_work_sync - cancel a work and wait for it to finish
4336  * @work: the work to cancel
4337  *
4338  * Cancel @work and wait for its execution to finish. This function can be used
4339  * even if the work re-queues itself or migrates to another workqueue. On return
4340  * from this function, @work is guaranteed to be not pending or executing on any
4341  * CPU as long as there aren't racing enqueues.
4342  *
4343  * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4344  * Use cancel_delayed_work_sync() instead.
4345  *
4346  * Must be called from a sleepable context if @work was last queued on a non-BH
4347  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4348  * if @work was last queued on a BH workqueue.
4349  *
4350  * Returns %true if @work was pending, %false otherwise.
4351  */
4352 bool cancel_work_sync(struct work_struct *work)
4353 {
4354 	return __cancel_work_sync(work, 0);
4355 }
4356 EXPORT_SYMBOL_GPL(cancel_work_sync);
4357 
4358 /**
4359  * cancel_delayed_work - cancel a delayed work
4360  * @dwork: delayed_work to cancel
4361  *
4362  * Kill off a pending delayed_work.
4363  *
4364  * Return: %true if @dwork was pending and canceled; %false if it wasn't
4365  * pending.
4366  *
4367  * Note:
4368  * The work callback function may still be running on return, unless
4369  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4370  * use cancel_delayed_work_sync() to wait on it.
4371  *
4372  * This function is safe to call from any context including IRQ handler.
4373  */
4374 bool cancel_delayed_work(struct delayed_work *dwork)
4375 {
4376 	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4377 }
4378 EXPORT_SYMBOL(cancel_delayed_work);
4379 
4380 /**
4381  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4382  * @dwork: the delayed work cancel
4383  *
4384  * This is cancel_work_sync() for delayed works.
4385  *
4386  * Return:
4387  * %true if @dwork was pending, %false otherwise.
4388  */
4389 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4390 {
4391 	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4392 }
4393 EXPORT_SYMBOL(cancel_delayed_work_sync);
4394 
4395 /**
4396  * disable_work - Disable and cancel a work item
4397  * @work: work item to disable
4398  *
4399  * Disable @work by incrementing its disable count and cancel it if currently
4400  * pending. As long as the disable count is non-zero, any attempt to queue @work
4401  * will fail and return %false. The maximum supported disable depth is 2 to the
4402  * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4403  *
4404  * Can be called from any context. Returns %true if @work was pending, %false
4405  * otherwise.
4406  */
4407 bool disable_work(struct work_struct *work)
4408 {
4409 	return __cancel_work(work, WORK_CANCEL_DISABLE);
4410 }
4411 EXPORT_SYMBOL_GPL(disable_work);
4412 
4413 /**
4414  * disable_work_sync - Disable, cancel and drain a work item
4415  * @work: work item to disable
4416  *
4417  * Similar to disable_work() but also wait for @work to finish if currently
4418  * executing.
4419  *
4420  * Must be called from a sleepable context if @work was last queued on a non-BH
4421  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4422  * if @work was last queued on a BH workqueue.
4423  *
4424  * Returns %true if @work was pending, %false otherwise.
4425  */
4426 bool disable_work_sync(struct work_struct *work)
4427 {
4428 	return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4429 }
4430 EXPORT_SYMBOL_GPL(disable_work_sync);
4431 
4432 /**
4433  * enable_work - Enable a work item
4434  * @work: work item to enable
4435  *
4436  * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4437  * only be queued if its disable count is 0.
4438  *
4439  * Can be called from any context. Returns %true if the disable count reached 0.
4440  * Otherwise, %false.
4441  */
4442 bool enable_work(struct work_struct *work)
4443 {
4444 	struct work_offq_data offqd;
4445 	unsigned long irq_flags;
4446 
4447 	work_grab_pending(work, 0, &irq_flags);
4448 
4449 	work_offqd_unpack(&offqd, *work_data_bits(work));
4450 	work_offqd_enable(&offqd);
4451 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4452 					work_offqd_pack_flags(&offqd));
4453 	local_irq_restore(irq_flags);
4454 
4455 	return !offqd.disable;
4456 }
4457 EXPORT_SYMBOL_GPL(enable_work);
4458 
4459 /**
4460  * disable_delayed_work - Disable and cancel a delayed work item
4461  * @dwork: delayed work item to disable
4462  *
4463  * disable_work() for delayed work items.
4464  */
4465 bool disable_delayed_work(struct delayed_work *dwork)
4466 {
4467 	return __cancel_work(&dwork->work,
4468 			     WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4469 }
4470 EXPORT_SYMBOL_GPL(disable_delayed_work);
4471 
4472 /**
4473  * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4474  * @dwork: delayed work item to disable
4475  *
4476  * disable_work_sync() for delayed work items.
4477  */
4478 bool disable_delayed_work_sync(struct delayed_work *dwork)
4479 {
4480 	return __cancel_work_sync(&dwork->work,
4481 				  WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4482 }
4483 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4484 
4485 /**
4486  * enable_delayed_work - Enable a delayed work item
4487  * @dwork: delayed work item to enable
4488  *
4489  * enable_work() for delayed work items.
4490  */
4491 bool enable_delayed_work(struct delayed_work *dwork)
4492 {
4493 	return enable_work(&dwork->work);
4494 }
4495 EXPORT_SYMBOL_GPL(enable_delayed_work);
4496 
4497 /**
4498  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4499  * @func: the function to call
4500  *
4501  * schedule_on_each_cpu() executes @func on each online CPU using the
4502  * system workqueue and blocks until all CPUs have completed.
4503  * schedule_on_each_cpu() is very slow.
4504  *
4505  * Return:
4506  * 0 on success, -errno on failure.
4507  */
4508 int schedule_on_each_cpu(work_func_t func)
4509 {
4510 	int cpu;
4511 	struct work_struct __percpu *works;
4512 
4513 	works = alloc_percpu(struct work_struct);
4514 	if (!works)
4515 		return -ENOMEM;
4516 
4517 	cpus_read_lock();
4518 
4519 	for_each_online_cpu(cpu) {
4520 		struct work_struct *work = per_cpu_ptr(works, cpu);
4521 
4522 		INIT_WORK(work, func);
4523 		schedule_work_on(cpu, work);
4524 	}
4525 
4526 	for_each_online_cpu(cpu)
4527 		flush_work(per_cpu_ptr(works, cpu));
4528 
4529 	cpus_read_unlock();
4530 	free_percpu(works);
4531 	return 0;
4532 }
4533 
4534 /**
4535  * execute_in_process_context - reliably execute the routine with user context
4536  * @fn:		the function to execute
4537  * @ew:		guaranteed storage for the execute work structure (must
4538  *		be available when the work executes)
4539  *
4540  * Executes the function immediately if process context is available,
4541  * otherwise schedules the function for delayed execution.
4542  *
4543  * Return:	0 - function was executed
4544  *		1 - function was scheduled for execution
4545  */
4546 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4547 {
4548 	if (!in_interrupt()) {
4549 		fn(&ew->work);
4550 		return 0;
4551 	}
4552 
4553 	INIT_WORK(&ew->work, fn);
4554 	schedule_work(&ew->work);
4555 
4556 	return 1;
4557 }
4558 EXPORT_SYMBOL_GPL(execute_in_process_context);
4559 
4560 /**
4561  * free_workqueue_attrs - free a workqueue_attrs
4562  * @attrs: workqueue_attrs to free
4563  *
4564  * Undo alloc_workqueue_attrs().
4565  */
4566 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4567 {
4568 	if (attrs) {
4569 		free_cpumask_var(attrs->cpumask);
4570 		free_cpumask_var(attrs->__pod_cpumask);
4571 		kfree(attrs);
4572 	}
4573 }
4574 
4575 /**
4576  * alloc_workqueue_attrs - allocate a workqueue_attrs
4577  *
4578  * Allocate a new workqueue_attrs, initialize with default settings and
4579  * return it.
4580  *
4581  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4582  */
4583 struct workqueue_attrs *alloc_workqueue_attrs(void)
4584 {
4585 	struct workqueue_attrs *attrs;
4586 
4587 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4588 	if (!attrs)
4589 		goto fail;
4590 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4591 		goto fail;
4592 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4593 		goto fail;
4594 
4595 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4596 	attrs->affn_scope = WQ_AFFN_DFL;
4597 	return attrs;
4598 fail:
4599 	free_workqueue_attrs(attrs);
4600 	return NULL;
4601 }
4602 
4603 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4604 				 const struct workqueue_attrs *from)
4605 {
4606 	to->nice = from->nice;
4607 	cpumask_copy(to->cpumask, from->cpumask);
4608 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4609 	to->affn_strict = from->affn_strict;
4610 
4611 	/*
4612 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4613 	 * fields as copying is used for both pool and wq attrs. Instead,
4614 	 * get_unbound_pool() explicitly clears the fields.
4615 	 */
4616 	to->affn_scope = from->affn_scope;
4617 	to->ordered = from->ordered;
4618 }
4619 
4620 /*
4621  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4622  * comments in 'struct workqueue_attrs' definition.
4623  */
4624 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4625 {
4626 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4627 	attrs->ordered = false;
4628 	if (attrs->affn_strict)
4629 		cpumask_copy(attrs->cpumask, cpu_possible_mask);
4630 }
4631 
4632 /* hash value of the content of @attr */
4633 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4634 {
4635 	u32 hash = 0;
4636 
4637 	hash = jhash_1word(attrs->nice, hash);
4638 	hash = jhash_1word(attrs->affn_strict, hash);
4639 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4640 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4641 	if (!attrs->affn_strict)
4642 		hash = jhash(cpumask_bits(attrs->cpumask),
4643 			     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4644 	return hash;
4645 }
4646 
4647 /* content equality test */
4648 static bool wqattrs_equal(const struct workqueue_attrs *a,
4649 			  const struct workqueue_attrs *b)
4650 {
4651 	if (a->nice != b->nice)
4652 		return false;
4653 	if (a->affn_strict != b->affn_strict)
4654 		return false;
4655 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4656 		return false;
4657 	if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4658 		return false;
4659 	return true;
4660 }
4661 
4662 /* Update @attrs with actually available CPUs */
4663 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4664 				      const cpumask_t *unbound_cpumask)
4665 {
4666 	/*
4667 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4668 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4669 	 * @unbound_cpumask.
4670 	 */
4671 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4672 	if (unlikely(cpumask_empty(attrs->cpumask)))
4673 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4674 }
4675 
4676 /* find wq_pod_type to use for @attrs */
4677 static const struct wq_pod_type *
4678 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4679 {
4680 	enum wq_affn_scope scope;
4681 	struct wq_pod_type *pt;
4682 
4683 	/* to synchronize access to wq_affn_dfl */
4684 	lockdep_assert_held(&wq_pool_mutex);
4685 
4686 	if (attrs->affn_scope == WQ_AFFN_DFL)
4687 		scope = wq_affn_dfl;
4688 	else
4689 		scope = attrs->affn_scope;
4690 
4691 	pt = &wq_pod_types[scope];
4692 
4693 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4694 	    likely(pt->nr_pods))
4695 		return pt;
4696 
4697 	/*
4698 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4699 	 * initialized in workqueue_init_early().
4700 	 */
4701 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4702 	BUG_ON(!pt->nr_pods);
4703 	return pt;
4704 }
4705 
4706 /**
4707  * init_worker_pool - initialize a newly zalloc'd worker_pool
4708  * @pool: worker_pool to initialize
4709  *
4710  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4711  *
4712  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4713  * inside @pool proper are initialized and put_unbound_pool() can be called
4714  * on @pool safely to release it.
4715  */
4716 static int init_worker_pool(struct worker_pool *pool)
4717 {
4718 	raw_spin_lock_init(&pool->lock);
4719 	pool->id = -1;
4720 	pool->cpu = -1;
4721 	pool->node = NUMA_NO_NODE;
4722 	pool->flags |= POOL_DISASSOCIATED;
4723 	pool->watchdog_ts = jiffies;
4724 	INIT_LIST_HEAD(&pool->worklist);
4725 	INIT_LIST_HEAD(&pool->idle_list);
4726 	hash_init(pool->busy_hash);
4727 
4728 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4729 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4730 
4731 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4732 
4733 	INIT_LIST_HEAD(&pool->workers);
4734 	INIT_LIST_HEAD(&pool->dying_workers);
4735 
4736 	ida_init(&pool->worker_ida);
4737 	INIT_HLIST_NODE(&pool->hash_node);
4738 	pool->refcnt = 1;
4739 
4740 	/* shouldn't fail above this point */
4741 	pool->attrs = alloc_workqueue_attrs();
4742 	if (!pool->attrs)
4743 		return -ENOMEM;
4744 
4745 	wqattrs_clear_for_pool(pool->attrs);
4746 
4747 	return 0;
4748 }
4749 
4750 #ifdef CONFIG_LOCKDEP
4751 static void wq_init_lockdep(struct workqueue_struct *wq)
4752 {
4753 	char *lock_name;
4754 
4755 	lockdep_register_key(&wq->key);
4756 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4757 	if (!lock_name)
4758 		lock_name = wq->name;
4759 
4760 	wq->lock_name = lock_name;
4761 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4762 }
4763 
4764 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4765 {
4766 	lockdep_unregister_key(&wq->key);
4767 }
4768 
4769 static void wq_free_lockdep(struct workqueue_struct *wq)
4770 {
4771 	if (wq->lock_name != wq->name)
4772 		kfree(wq->lock_name);
4773 }
4774 #else
4775 static void wq_init_lockdep(struct workqueue_struct *wq)
4776 {
4777 }
4778 
4779 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4780 {
4781 }
4782 
4783 static void wq_free_lockdep(struct workqueue_struct *wq)
4784 {
4785 }
4786 #endif
4787 
4788 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4789 {
4790 	int node;
4791 
4792 	for_each_node(node) {
4793 		kfree(nna_ar[node]);
4794 		nna_ar[node] = NULL;
4795 	}
4796 
4797 	kfree(nna_ar[nr_node_ids]);
4798 	nna_ar[nr_node_ids] = NULL;
4799 }
4800 
4801 static void init_node_nr_active(struct wq_node_nr_active *nna)
4802 {
4803 	nna->max = WQ_DFL_MIN_ACTIVE;
4804 	atomic_set(&nna->nr, 0);
4805 	raw_spin_lock_init(&nna->lock);
4806 	INIT_LIST_HEAD(&nna->pending_pwqs);
4807 }
4808 
4809 /*
4810  * Each node's nr_active counter will be accessed mostly from its own node and
4811  * should be allocated in the node.
4812  */
4813 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4814 {
4815 	struct wq_node_nr_active *nna;
4816 	int node;
4817 
4818 	for_each_node(node) {
4819 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4820 		if (!nna)
4821 			goto err_free;
4822 		init_node_nr_active(nna);
4823 		nna_ar[node] = nna;
4824 	}
4825 
4826 	/* [nr_node_ids] is used as the fallback */
4827 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4828 	if (!nna)
4829 		goto err_free;
4830 	init_node_nr_active(nna);
4831 	nna_ar[nr_node_ids] = nna;
4832 
4833 	return 0;
4834 
4835 err_free:
4836 	free_node_nr_active(nna_ar);
4837 	return -ENOMEM;
4838 }
4839 
4840 static void rcu_free_wq(struct rcu_head *rcu)
4841 {
4842 	struct workqueue_struct *wq =
4843 		container_of(rcu, struct workqueue_struct, rcu);
4844 
4845 	if (wq->flags & WQ_UNBOUND)
4846 		free_node_nr_active(wq->node_nr_active);
4847 
4848 	wq_free_lockdep(wq);
4849 	free_percpu(wq->cpu_pwq);
4850 	free_workqueue_attrs(wq->unbound_attrs);
4851 	kfree(wq);
4852 }
4853 
4854 static void rcu_free_pool(struct rcu_head *rcu)
4855 {
4856 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4857 
4858 	ida_destroy(&pool->worker_ida);
4859 	free_workqueue_attrs(pool->attrs);
4860 	kfree(pool);
4861 }
4862 
4863 /**
4864  * put_unbound_pool - put a worker_pool
4865  * @pool: worker_pool to put
4866  *
4867  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4868  * safe manner.  get_unbound_pool() calls this function on its failure path
4869  * and this function should be able to release pools which went through,
4870  * successfully or not, init_worker_pool().
4871  *
4872  * Should be called with wq_pool_mutex held.
4873  */
4874 static void put_unbound_pool(struct worker_pool *pool)
4875 {
4876 	DECLARE_COMPLETION_ONSTACK(detach_completion);
4877 	struct worker *worker;
4878 	LIST_HEAD(cull_list);
4879 
4880 	lockdep_assert_held(&wq_pool_mutex);
4881 
4882 	if (--pool->refcnt)
4883 		return;
4884 
4885 	/* sanity checks */
4886 	if (WARN_ON(!(pool->cpu < 0)) ||
4887 	    WARN_ON(!list_empty(&pool->worklist)))
4888 		return;
4889 
4890 	/* release id and unhash */
4891 	if (pool->id >= 0)
4892 		idr_remove(&worker_pool_idr, pool->id);
4893 	hash_del(&pool->hash_node);
4894 
4895 	/*
4896 	 * Become the manager and destroy all workers.  This prevents
4897 	 * @pool's workers from blocking on attach_mutex.  We're the last
4898 	 * manager and @pool gets freed with the flag set.
4899 	 *
4900 	 * Having a concurrent manager is quite unlikely to happen as we can
4901 	 * only get here with
4902 	 *   pwq->refcnt == pool->refcnt == 0
4903 	 * which implies no work queued to the pool, which implies no worker can
4904 	 * become the manager. However a worker could have taken the role of
4905 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4906 	 * drops pool->lock
4907 	 */
4908 	while (true) {
4909 		rcuwait_wait_event(&manager_wait,
4910 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4911 				   TASK_UNINTERRUPTIBLE);
4912 
4913 		mutex_lock(&wq_pool_attach_mutex);
4914 		raw_spin_lock_irq(&pool->lock);
4915 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4916 			pool->flags |= POOL_MANAGER_ACTIVE;
4917 			break;
4918 		}
4919 		raw_spin_unlock_irq(&pool->lock);
4920 		mutex_unlock(&wq_pool_attach_mutex);
4921 	}
4922 
4923 	while ((worker = first_idle_worker(pool)))
4924 		set_worker_dying(worker, &cull_list);
4925 	WARN_ON(pool->nr_workers || pool->nr_idle);
4926 	raw_spin_unlock_irq(&pool->lock);
4927 
4928 	wake_dying_workers(&cull_list);
4929 
4930 	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4931 		pool->detach_completion = &detach_completion;
4932 	mutex_unlock(&wq_pool_attach_mutex);
4933 
4934 	if (pool->detach_completion)
4935 		wait_for_completion(pool->detach_completion);
4936 
4937 	/* shut down the timers */
4938 	del_timer_sync(&pool->idle_timer);
4939 	cancel_work_sync(&pool->idle_cull_work);
4940 	del_timer_sync(&pool->mayday_timer);
4941 
4942 	/* RCU protected to allow dereferences from get_work_pool() */
4943 	call_rcu(&pool->rcu, rcu_free_pool);
4944 }
4945 
4946 /**
4947  * get_unbound_pool - get a worker_pool with the specified attributes
4948  * @attrs: the attributes of the worker_pool to get
4949  *
4950  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4951  * reference count and return it.  If there already is a matching
4952  * worker_pool, it will be used; otherwise, this function attempts to
4953  * create a new one.
4954  *
4955  * Should be called with wq_pool_mutex held.
4956  *
4957  * Return: On success, a worker_pool with the same attributes as @attrs.
4958  * On failure, %NULL.
4959  */
4960 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4961 {
4962 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4963 	u32 hash = wqattrs_hash(attrs);
4964 	struct worker_pool *pool;
4965 	int pod, node = NUMA_NO_NODE;
4966 
4967 	lockdep_assert_held(&wq_pool_mutex);
4968 
4969 	/* do we already have a matching pool? */
4970 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4971 		if (wqattrs_equal(pool->attrs, attrs)) {
4972 			pool->refcnt++;
4973 			return pool;
4974 		}
4975 	}
4976 
4977 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4978 	for (pod = 0; pod < pt->nr_pods; pod++) {
4979 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4980 			node = pt->pod_node[pod];
4981 			break;
4982 		}
4983 	}
4984 
4985 	/* nope, create a new one */
4986 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4987 	if (!pool || init_worker_pool(pool) < 0)
4988 		goto fail;
4989 
4990 	pool->node = node;
4991 	copy_workqueue_attrs(pool->attrs, attrs);
4992 	wqattrs_clear_for_pool(pool->attrs);
4993 
4994 	if (worker_pool_assign_id(pool) < 0)
4995 		goto fail;
4996 
4997 	/* create and start the initial worker */
4998 	if (wq_online && !create_worker(pool))
4999 		goto fail;
5000 
5001 	/* install */
5002 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
5003 
5004 	return pool;
5005 fail:
5006 	if (pool)
5007 		put_unbound_pool(pool);
5008 	return NULL;
5009 }
5010 
5011 static void rcu_free_pwq(struct rcu_head *rcu)
5012 {
5013 	kmem_cache_free(pwq_cache,
5014 			container_of(rcu, struct pool_workqueue, rcu));
5015 }
5016 
5017 /*
5018  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5019  * refcnt and needs to be destroyed.
5020  */
5021 static void pwq_release_workfn(struct kthread_work *work)
5022 {
5023 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5024 						  release_work);
5025 	struct workqueue_struct *wq = pwq->wq;
5026 	struct worker_pool *pool = pwq->pool;
5027 	bool is_last = false;
5028 
5029 	/*
5030 	 * When @pwq is not linked, it doesn't hold any reference to the
5031 	 * @wq, and @wq is invalid to access.
5032 	 */
5033 	if (!list_empty(&pwq->pwqs_node)) {
5034 		mutex_lock(&wq->mutex);
5035 		list_del_rcu(&pwq->pwqs_node);
5036 		is_last = list_empty(&wq->pwqs);
5037 
5038 		/*
5039 		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5040 		 */
5041 		if (!is_last && (wq->flags & __WQ_ORDERED))
5042 			unplug_oldest_pwq(wq);
5043 
5044 		mutex_unlock(&wq->mutex);
5045 	}
5046 
5047 	if (wq->flags & WQ_UNBOUND) {
5048 		mutex_lock(&wq_pool_mutex);
5049 		put_unbound_pool(pool);
5050 		mutex_unlock(&wq_pool_mutex);
5051 	}
5052 
5053 	if (!list_empty(&pwq->pending_node)) {
5054 		struct wq_node_nr_active *nna =
5055 			wq_node_nr_active(pwq->wq, pwq->pool->node);
5056 
5057 		raw_spin_lock_irq(&nna->lock);
5058 		list_del_init(&pwq->pending_node);
5059 		raw_spin_unlock_irq(&nna->lock);
5060 	}
5061 
5062 	call_rcu(&pwq->rcu, rcu_free_pwq);
5063 
5064 	/*
5065 	 * If we're the last pwq going away, @wq is already dead and no one
5066 	 * is gonna access it anymore.  Schedule RCU free.
5067 	 */
5068 	if (is_last) {
5069 		wq_unregister_lockdep(wq);
5070 		call_rcu(&wq->rcu, rcu_free_wq);
5071 	}
5072 }
5073 
5074 /* initialize newly allocated @pwq which is associated with @wq and @pool */
5075 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5076 		     struct worker_pool *pool)
5077 {
5078 	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5079 
5080 	memset(pwq, 0, sizeof(*pwq));
5081 
5082 	pwq->pool = pool;
5083 	pwq->wq = wq;
5084 	pwq->flush_color = -1;
5085 	pwq->refcnt = 1;
5086 	INIT_LIST_HEAD(&pwq->inactive_works);
5087 	INIT_LIST_HEAD(&pwq->pending_node);
5088 	INIT_LIST_HEAD(&pwq->pwqs_node);
5089 	INIT_LIST_HEAD(&pwq->mayday_node);
5090 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
5091 }
5092 
5093 /* sync @pwq with the current state of its associated wq and link it */
5094 static void link_pwq(struct pool_workqueue *pwq)
5095 {
5096 	struct workqueue_struct *wq = pwq->wq;
5097 
5098 	lockdep_assert_held(&wq->mutex);
5099 
5100 	/* may be called multiple times, ignore if already linked */
5101 	if (!list_empty(&pwq->pwqs_node))
5102 		return;
5103 
5104 	/* set the matching work_color */
5105 	pwq->work_color = wq->work_color;
5106 
5107 	/* link in @pwq */
5108 	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5109 }
5110 
5111 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5112 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5113 					const struct workqueue_attrs *attrs)
5114 {
5115 	struct worker_pool *pool;
5116 	struct pool_workqueue *pwq;
5117 
5118 	lockdep_assert_held(&wq_pool_mutex);
5119 
5120 	pool = get_unbound_pool(attrs);
5121 	if (!pool)
5122 		return NULL;
5123 
5124 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5125 	if (!pwq) {
5126 		put_unbound_pool(pool);
5127 		return NULL;
5128 	}
5129 
5130 	init_pwq(pwq, wq, pool);
5131 	return pwq;
5132 }
5133 
5134 /**
5135  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5136  * @attrs: the wq_attrs of the default pwq of the target workqueue
5137  * @cpu: the target CPU
5138  * @cpu_going_down: if >= 0, the CPU to consider as offline
5139  *
5140  * Calculate the cpumask a workqueue with @attrs should use on @pod. If
5141  * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
5142  * The result is stored in @attrs->__pod_cpumask.
5143  *
5144  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5145  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5146  * intersection of the possible CPUs of @pod and @attrs->cpumask.
5147  *
5148  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5149  */
5150 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
5151 				int cpu_going_down)
5152 {
5153 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5154 	int pod = pt->cpu_pod[cpu];
5155 
5156 	/* does @pod have any online CPUs @attrs wants? */
5157 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5158 	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
5159 	if (cpu_going_down >= 0)
5160 		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
5161 
5162 	if (cpumask_empty(attrs->__pod_cpumask)) {
5163 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5164 		return;
5165 	}
5166 
5167 	/* yeap, return possible CPUs in @pod that @attrs wants */
5168 	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
5169 
5170 	if (cpumask_empty(attrs->__pod_cpumask))
5171 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
5172 				"possible intersect\n");
5173 }
5174 
5175 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
5176 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5177 					int cpu, struct pool_workqueue *pwq)
5178 {
5179 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5180 	struct pool_workqueue *old_pwq;
5181 
5182 	lockdep_assert_held(&wq_pool_mutex);
5183 	lockdep_assert_held(&wq->mutex);
5184 
5185 	/* link_pwq() can handle duplicate calls */
5186 	link_pwq(pwq);
5187 
5188 	old_pwq = rcu_access_pointer(*slot);
5189 	rcu_assign_pointer(*slot, pwq);
5190 	return old_pwq;
5191 }
5192 
5193 /* context to store the prepared attrs & pwqs before applying */
5194 struct apply_wqattrs_ctx {
5195 	struct workqueue_struct	*wq;		/* target workqueue */
5196 	struct workqueue_attrs	*attrs;		/* attrs to apply */
5197 	struct list_head	list;		/* queued for batching commit */
5198 	struct pool_workqueue	*dfl_pwq;
5199 	struct pool_workqueue	*pwq_tbl[];
5200 };
5201 
5202 /* free the resources after success or abort */
5203 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5204 {
5205 	if (ctx) {
5206 		int cpu;
5207 
5208 		for_each_possible_cpu(cpu)
5209 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5210 		put_pwq_unlocked(ctx->dfl_pwq);
5211 
5212 		free_workqueue_attrs(ctx->attrs);
5213 
5214 		kfree(ctx);
5215 	}
5216 }
5217 
5218 /* allocate the attrs and pwqs for later installation */
5219 static struct apply_wqattrs_ctx *
5220 apply_wqattrs_prepare(struct workqueue_struct *wq,
5221 		      const struct workqueue_attrs *attrs,
5222 		      const cpumask_var_t unbound_cpumask)
5223 {
5224 	struct apply_wqattrs_ctx *ctx;
5225 	struct workqueue_attrs *new_attrs;
5226 	int cpu;
5227 
5228 	lockdep_assert_held(&wq_pool_mutex);
5229 
5230 	if (WARN_ON(attrs->affn_scope < 0 ||
5231 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5232 		return ERR_PTR(-EINVAL);
5233 
5234 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5235 
5236 	new_attrs = alloc_workqueue_attrs();
5237 	if (!ctx || !new_attrs)
5238 		goto out_free;
5239 
5240 	/*
5241 	 * If something goes wrong during CPU up/down, we'll fall back to
5242 	 * the default pwq covering whole @attrs->cpumask.  Always create
5243 	 * it even if we don't use it immediately.
5244 	 */
5245 	copy_workqueue_attrs(new_attrs, attrs);
5246 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5247 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5248 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5249 	if (!ctx->dfl_pwq)
5250 		goto out_free;
5251 
5252 	for_each_possible_cpu(cpu) {
5253 		if (new_attrs->ordered) {
5254 			ctx->dfl_pwq->refcnt++;
5255 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5256 		} else {
5257 			wq_calc_pod_cpumask(new_attrs, cpu, -1);
5258 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5259 			if (!ctx->pwq_tbl[cpu])
5260 				goto out_free;
5261 		}
5262 	}
5263 
5264 	/* save the user configured attrs and sanitize it. */
5265 	copy_workqueue_attrs(new_attrs, attrs);
5266 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5267 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5268 	ctx->attrs = new_attrs;
5269 
5270 	/*
5271 	 * For initialized ordered workqueues, there should only be one pwq
5272 	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5273 	 * of newly queued work items until execution of older work items in
5274 	 * the old pwq's have completed.
5275 	 */
5276 	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5277 		ctx->dfl_pwq->plugged = true;
5278 
5279 	ctx->wq = wq;
5280 	return ctx;
5281 
5282 out_free:
5283 	free_workqueue_attrs(new_attrs);
5284 	apply_wqattrs_cleanup(ctx);
5285 	return ERR_PTR(-ENOMEM);
5286 }
5287 
5288 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5289 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5290 {
5291 	int cpu;
5292 
5293 	/* all pwqs have been created successfully, let's install'em */
5294 	mutex_lock(&ctx->wq->mutex);
5295 
5296 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5297 
5298 	/* save the previous pwqs and install the new ones */
5299 	for_each_possible_cpu(cpu)
5300 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5301 							ctx->pwq_tbl[cpu]);
5302 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5303 
5304 	/* update node_nr_active->max */
5305 	wq_update_node_max_active(ctx->wq, -1);
5306 
5307 	/* rescuer needs to respect wq cpumask changes */
5308 	if (ctx->wq->rescuer)
5309 		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5310 				     unbound_effective_cpumask(ctx->wq));
5311 
5312 	mutex_unlock(&ctx->wq->mutex);
5313 }
5314 
5315 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5316 					const struct workqueue_attrs *attrs)
5317 {
5318 	struct apply_wqattrs_ctx *ctx;
5319 
5320 	/* only unbound workqueues can change attributes */
5321 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5322 		return -EINVAL;
5323 
5324 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5325 	if (IS_ERR(ctx))
5326 		return PTR_ERR(ctx);
5327 
5328 	/* the ctx has been prepared successfully, let's commit it */
5329 	apply_wqattrs_commit(ctx);
5330 	apply_wqattrs_cleanup(ctx);
5331 
5332 	return 0;
5333 }
5334 
5335 /**
5336  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5337  * @wq: the target workqueue
5338  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5339  *
5340  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5341  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5342  * work items are affine to the pod it was issued on. Older pwqs are released as
5343  * in-flight work items finish. Note that a work item which repeatedly requeues
5344  * itself back-to-back will stay on its current pwq.
5345  *
5346  * Performs GFP_KERNEL allocations.
5347  *
5348  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
5349  *
5350  * Return: 0 on success and -errno on failure.
5351  */
5352 int apply_workqueue_attrs(struct workqueue_struct *wq,
5353 			  const struct workqueue_attrs *attrs)
5354 {
5355 	int ret;
5356 
5357 	lockdep_assert_cpus_held();
5358 
5359 	mutex_lock(&wq_pool_mutex);
5360 	ret = apply_workqueue_attrs_locked(wq, attrs);
5361 	mutex_unlock(&wq_pool_mutex);
5362 
5363 	return ret;
5364 }
5365 
5366 /**
5367  * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
5368  * @wq: the target workqueue
5369  * @cpu: the CPU to update pool association for
5370  * @hotplug_cpu: the CPU coming up or going down
5371  * @online: whether @cpu is coming up or going down
5372  *
5373  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5374  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
5375  * @wq accordingly.
5376  *
5377  *
5378  * If pod affinity can't be adjusted due to memory allocation failure, it falls
5379  * back to @wq->dfl_pwq which may not be optimal but is always correct.
5380  *
5381  * Note that when the last allowed CPU of a pod goes offline for a workqueue
5382  * with a cpumask spanning multiple pods, the workers which were already
5383  * executing the work items for the workqueue will lose their CPU affinity and
5384  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5385  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5386  * responsibility to flush the work item from CPU_DOWN_PREPARE.
5387  */
5388 static void wq_update_pod(struct workqueue_struct *wq, int cpu,
5389 			  int hotplug_cpu, bool online)
5390 {
5391 	int off_cpu = online ? -1 : hotplug_cpu;
5392 	struct pool_workqueue *old_pwq = NULL, *pwq;
5393 	struct workqueue_attrs *target_attrs;
5394 
5395 	lockdep_assert_held(&wq_pool_mutex);
5396 
5397 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5398 		return;
5399 
5400 	/*
5401 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5402 	 * Let's use a preallocated one.  The following buf is protected by
5403 	 * CPU hotplug exclusion.
5404 	 */
5405 	target_attrs = wq_update_pod_attrs_buf;
5406 
5407 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5408 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5409 
5410 	/* nothing to do if the target cpumask matches the current pwq */
5411 	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
5412 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5413 		return;
5414 
5415 	/* create a new pwq */
5416 	pwq = alloc_unbound_pwq(wq, target_attrs);
5417 	if (!pwq) {
5418 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5419 			wq->name);
5420 		goto use_dfl_pwq;
5421 	}
5422 
5423 	/* Install the new pwq. */
5424 	mutex_lock(&wq->mutex);
5425 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5426 	goto out_unlock;
5427 
5428 use_dfl_pwq:
5429 	mutex_lock(&wq->mutex);
5430 	pwq = unbound_pwq(wq, -1);
5431 	raw_spin_lock_irq(&pwq->pool->lock);
5432 	get_pwq(pwq);
5433 	raw_spin_unlock_irq(&pwq->pool->lock);
5434 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5435 out_unlock:
5436 	mutex_unlock(&wq->mutex);
5437 	put_pwq_unlocked(old_pwq);
5438 }
5439 
5440 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5441 {
5442 	bool highpri = wq->flags & WQ_HIGHPRI;
5443 	int cpu, ret;
5444 
5445 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5446 	if (!wq->cpu_pwq)
5447 		goto enomem;
5448 
5449 	if (!(wq->flags & WQ_UNBOUND)) {
5450 		for_each_possible_cpu(cpu) {
5451 			struct pool_workqueue **pwq_p;
5452 			struct worker_pool __percpu *pools;
5453 			struct worker_pool *pool;
5454 
5455 			if (wq->flags & WQ_BH)
5456 				pools = bh_worker_pools;
5457 			else
5458 				pools = cpu_worker_pools;
5459 
5460 			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5461 			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5462 
5463 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5464 						       pool->node);
5465 			if (!*pwq_p)
5466 				goto enomem;
5467 
5468 			init_pwq(*pwq_p, wq, pool);
5469 
5470 			mutex_lock(&wq->mutex);
5471 			link_pwq(*pwq_p);
5472 			mutex_unlock(&wq->mutex);
5473 		}
5474 		return 0;
5475 	}
5476 
5477 	cpus_read_lock();
5478 	if (wq->flags & __WQ_ORDERED) {
5479 		struct pool_workqueue *dfl_pwq;
5480 
5481 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5482 		/* there should only be single pwq for ordering guarantee */
5483 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5484 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5485 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5486 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5487 	} else {
5488 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
5489 	}
5490 	cpus_read_unlock();
5491 
5492 	/* for unbound pwq, flush the pwq_release_worker ensures that the
5493 	 * pwq_release_workfn() completes before calling kfree(wq).
5494 	 */
5495 	if (ret)
5496 		kthread_flush_worker(pwq_release_worker);
5497 
5498 	return ret;
5499 
5500 enomem:
5501 	if (wq->cpu_pwq) {
5502 		for_each_possible_cpu(cpu) {
5503 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5504 
5505 			if (pwq)
5506 				kmem_cache_free(pwq_cache, pwq);
5507 		}
5508 		free_percpu(wq->cpu_pwq);
5509 		wq->cpu_pwq = NULL;
5510 	}
5511 	return -ENOMEM;
5512 }
5513 
5514 static int wq_clamp_max_active(int max_active, unsigned int flags,
5515 			       const char *name)
5516 {
5517 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5518 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5519 			max_active, name, 1, WQ_MAX_ACTIVE);
5520 
5521 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5522 }
5523 
5524 /*
5525  * Workqueues which may be used during memory reclaim should have a rescuer
5526  * to guarantee forward progress.
5527  */
5528 static int init_rescuer(struct workqueue_struct *wq)
5529 {
5530 	struct worker *rescuer;
5531 	int ret;
5532 
5533 	if (!(wq->flags & WQ_MEM_RECLAIM))
5534 		return 0;
5535 
5536 	rescuer = alloc_worker(NUMA_NO_NODE);
5537 	if (!rescuer) {
5538 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5539 		       wq->name);
5540 		return -ENOMEM;
5541 	}
5542 
5543 	rescuer->rescue_wq = wq;
5544 	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
5545 	if (IS_ERR(rescuer->task)) {
5546 		ret = PTR_ERR(rescuer->task);
5547 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5548 		       wq->name, ERR_PTR(ret));
5549 		kfree(rescuer);
5550 		return ret;
5551 	}
5552 
5553 	wq->rescuer = rescuer;
5554 	if (wq->flags & WQ_UNBOUND)
5555 		kthread_bind_mask(rescuer->task, wq_unbound_cpumask);
5556 	else
5557 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5558 	wake_up_process(rescuer->task);
5559 
5560 	return 0;
5561 }
5562 
5563 /**
5564  * wq_adjust_max_active - update a wq's max_active to the current setting
5565  * @wq: target workqueue
5566  *
5567  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5568  * activate inactive work items accordingly. If @wq is freezing, clear
5569  * @wq->max_active to zero.
5570  */
5571 static void wq_adjust_max_active(struct workqueue_struct *wq)
5572 {
5573 	bool activated;
5574 	int new_max, new_min;
5575 
5576 	lockdep_assert_held(&wq->mutex);
5577 
5578 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5579 		new_max = 0;
5580 		new_min = 0;
5581 	} else {
5582 		new_max = wq->saved_max_active;
5583 		new_min = wq->saved_min_active;
5584 	}
5585 
5586 	if (wq->max_active == new_max && wq->min_active == new_min)
5587 		return;
5588 
5589 	/*
5590 	 * Update @wq->max/min_active and then kick inactive work items if more
5591 	 * active work items are allowed. This doesn't break work item ordering
5592 	 * because new work items are always queued behind existing inactive
5593 	 * work items if there are any.
5594 	 */
5595 	WRITE_ONCE(wq->max_active, new_max);
5596 	WRITE_ONCE(wq->min_active, new_min);
5597 
5598 	if (wq->flags & WQ_UNBOUND)
5599 		wq_update_node_max_active(wq, -1);
5600 
5601 	if (new_max == 0)
5602 		return;
5603 
5604 	/*
5605 	 * Round-robin through pwq's activating the first inactive work item
5606 	 * until max_active is filled.
5607 	 */
5608 	do {
5609 		struct pool_workqueue *pwq;
5610 
5611 		activated = false;
5612 		for_each_pwq(pwq, wq) {
5613 			unsigned long irq_flags;
5614 
5615 			/* can be called during early boot w/ irq disabled */
5616 			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5617 			if (pwq_activate_first_inactive(pwq, true)) {
5618 				activated = true;
5619 				kick_pool(pwq->pool);
5620 			}
5621 			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5622 		}
5623 	} while (activated);
5624 }
5625 
5626 __printf(1, 4)
5627 struct workqueue_struct *alloc_workqueue(const char *fmt,
5628 					 unsigned int flags,
5629 					 int max_active, ...)
5630 {
5631 	va_list args;
5632 	struct workqueue_struct *wq;
5633 	size_t wq_size;
5634 	int name_len;
5635 
5636 	if (flags & WQ_BH) {
5637 		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5638 			return NULL;
5639 		if (WARN_ON_ONCE(max_active))
5640 			return NULL;
5641 	}
5642 
5643 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5644 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5645 		flags |= WQ_UNBOUND;
5646 
5647 	/* allocate wq and format name */
5648 	if (flags & WQ_UNBOUND)
5649 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5650 	else
5651 		wq_size = sizeof(*wq);
5652 
5653 	wq = kzalloc(wq_size, GFP_KERNEL);
5654 	if (!wq)
5655 		return NULL;
5656 
5657 	if (flags & WQ_UNBOUND) {
5658 		wq->unbound_attrs = alloc_workqueue_attrs();
5659 		if (!wq->unbound_attrs)
5660 			goto err_free_wq;
5661 	}
5662 
5663 	va_start(args, max_active);
5664 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5665 	va_end(args);
5666 
5667 	if (name_len >= WQ_NAME_LEN)
5668 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5669 			     wq->name);
5670 
5671 	if (flags & WQ_BH) {
5672 		/*
5673 		 * BH workqueues always share a single execution context per CPU
5674 		 * and don't impose any max_active limit.
5675 		 */
5676 		max_active = INT_MAX;
5677 	} else {
5678 		max_active = max_active ?: WQ_DFL_ACTIVE;
5679 		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5680 	}
5681 
5682 	/* init wq */
5683 	wq->flags = flags;
5684 	wq->max_active = max_active;
5685 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5686 	wq->saved_max_active = wq->max_active;
5687 	wq->saved_min_active = wq->min_active;
5688 	mutex_init(&wq->mutex);
5689 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5690 	INIT_LIST_HEAD(&wq->pwqs);
5691 	INIT_LIST_HEAD(&wq->flusher_queue);
5692 	INIT_LIST_HEAD(&wq->flusher_overflow);
5693 	INIT_LIST_HEAD(&wq->maydays);
5694 
5695 	wq_init_lockdep(wq);
5696 	INIT_LIST_HEAD(&wq->list);
5697 
5698 	if (flags & WQ_UNBOUND) {
5699 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5700 			goto err_unreg_lockdep;
5701 	}
5702 
5703 	if (alloc_and_link_pwqs(wq) < 0)
5704 		goto err_free_node_nr_active;
5705 
5706 	if (wq_online && init_rescuer(wq) < 0)
5707 		goto err_destroy;
5708 
5709 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5710 		goto err_destroy;
5711 
5712 	/*
5713 	 * wq_pool_mutex protects global freeze state and workqueues list.
5714 	 * Grab it, adjust max_active and add the new @wq to workqueues
5715 	 * list.
5716 	 */
5717 	mutex_lock(&wq_pool_mutex);
5718 
5719 	mutex_lock(&wq->mutex);
5720 	wq_adjust_max_active(wq);
5721 	mutex_unlock(&wq->mutex);
5722 
5723 	list_add_tail_rcu(&wq->list, &workqueues);
5724 
5725 	mutex_unlock(&wq_pool_mutex);
5726 
5727 	return wq;
5728 
5729 err_free_node_nr_active:
5730 	if (wq->flags & WQ_UNBOUND)
5731 		free_node_nr_active(wq->node_nr_active);
5732 err_unreg_lockdep:
5733 	wq_unregister_lockdep(wq);
5734 	wq_free_lockdep(wq);
5735 err_free_wq:
5736 	free_workqueue_attrs(wq->unbound_attrs);
5737 	kfree(wq);
5738 	return NULL;
5739 err_destroy:
5740 	destroy_workqueue(wq);
5741 	return NULL;
5742 }
5743 EXPORT_SYMBOL_GPL(alloc_workqueue);
5744 
5745 static bool pwq_busy(struct pool_workqueue *pwq)
5746 {
5747 	int i;
5748 
5749 	for (i = 0; i < WORK_NR_COLORS; i++)
5750 		if (pwq->nr_in_flight[i])
5751 			return true;
5752 
5753 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5754 		return true;
5755 	if (!pwq_is_empty(pwq))
5756 		return true;
5757 
5758 	return false;
5759 }
5760 
5761 /**
5762  * destroy_workqueue - safely terminate a workqueue
5763  * @wq: target workqueue
5764  *
5765  * Safely destroy a workqueue. All work currently pending will be done first.
5766  */
5767 void destroy_workqueue(struct workqueue_struct *wq)
5768 {
5769 	struct pool_workqueue *pwq;
5770 	int cpu;
5771 
5772 	/*
5773 	 * Remove it from sysfs first so that sanity check failure doesn't
5774 	 * lead to sysfs name conflicts.
5775 	 */
5776 	workqueue_sysfs_unregister(wq);
5777 
5778 	/* mark the workqueue destruction is in progress */
5779 	mutex_lock(&wq->mutex);
5780 	wq->flags |= __WQ_DESTROYING;
5781 	mutex_unlock(&wq->mutex);
5782 
5783 	/* drain it before proceeding with destruction */
5784 	drain_workqueue(wq);
5785 
5786 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5787 	if (wq->rescuer) {
5788 		struct worker *rescuer = wq->rescuer;
5789 
5790 		/* this prevents new queueing */
5791 		raw_spin_lock_irq(&wq_mayday_lock);
5792 		wq->rescuer = NULL;
5793 		raw_spin_unlock_irq(&wq_mayday_lock);
5794 
5795 		/* rescuer will empty maydays list before exiting */
5796 		kthread_stop(rescuer->task);
5797 		kfree(rescuer);
5798 	}
5799 
5800 	/*
5801 	 * Sanity checks - grab all the locks so that we wait for all
5802 	 * in-flight operations which may do put_pwq().
5803 	 */
5804 	mutex_lock(&wq_pool_mutex);
5805 	mutex_lock(&wq->mutex);
5806 	for_each_pwq(pwq, wq) {
5807 		raw_spin_lock_irq(&pwq->pool->lock);
5808 		if (WARN_ON(pwq_busy(pwq))) {
5809 			pr_warn("%s: %s has the following busy pwq\n",
5810 				__func__, wq->name);
5811 			show_pwq(pwq);
5812 			raw_spin_unlock_irq(&pwq->pool->lock);
5813 			mutex_unlock(&wq->mutex);
5814 			mutex_unlock(&wq_pool_mutex);
5815 			show_one_workqueue(wq);
5816 			return;
5817 		}
5818 		raw_spin_unlock_irq(&pwq->pool->lock);
5819 	}
5820 	mutex_unlock(&wq->mutex);
5821 
5822 	/*
5823 	 * wq list is used to freeze wq, remove from list after
5824 	 * flushing is complete in case freeze races us.
5825 	 */
5826 	list_del_rcu(&wq->list);
5827 	mutex_unlock(&wq_pool_mutex);
5828 
5829 	/*
5830 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5831 	 * to put the base refs. @wq will be auto-destroyed from the last
5832 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5833 	 */
5834 	rcu_read_lock();
5835 
5836 	for_each_possible_cpu(cpu) {
5837 		put_pwq_unlocked(unbound_pwq(wq, cpu));
5838 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5839 	}
5840 
5841 	put_pwq_unlocked(unbound_pwq(wq, -1));
5842 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5843 
5844 	rcu_read_unlock();
5845 }
5846 EXPORT_SYMBOL_GPL(destroy_workqueue);
5847 
5848 /**
5849  * workqueue_set_max_active - adjust max_active of a workqueue
5850  * @wq: target workqueue
5851  * @max_active: new max_active value.
5852  *
5853  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5854  * comment.
5855  *
5856  * CONTEXT:
5857  * Don't call from IRQ context.
5858  */
5859 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5860 {
5861 	/* max_active doesn't mean anything for BH workqueues */
5862 	if (WARN_ON(wq->flags & WQ_BH))
5863 		return;
5864 	/* disallow meddling with max_active for ordered workqueues */
5865 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5866 		return;
5867 
5868 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5869 
5870 	mutex_lock(&wq->mutex);
5871 
5872 	wq->saved_max_active = max_active;
5873 	if (wq->flags & WQ_UNBOUND)
5874 		wq->saved_min_active = min(wq->saved_min_active, max_active);
5875 
5876 	wq_adjust_max_active(wq);
5877 
5878 	mutex_unlock(&wq->mutex);
5879 }
5880 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5881 
5882 /**
5883  * workqueue_set_min_active - adjust min_active of an unbound workqueue
5884  * @wq: target unbound workqueue
5885  * @min_active: new min_active value
5886  *
5887  * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5888  * unbound workqueue is not guaranteed to be able to process max_active
5889  * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5890  * able to process min_active number of interdependent work items which is
5891  * %WQ_DFL_MIN_ACTIVE by default.
5892  *
5893  * Use this function to adjust the min_active value between 0 and the current
5894  * max_active.
5895  */
5896 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5897 {
5898 	/* min_active is only meaningful for non-ordered unbound workqueues */
5899 	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5900 		    WQ_UNBOUND))
5901 		return;
5902 
5903 	mutex_lock(&wq->mutex);
5904 	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5905 	wq_adjust_max_active(wq);
5906 	mutex_unlock(&wq->mutex);
5907 }
5908 
5909 /**
5910  * current_work - retrieve %current task's work struct
5911  *
5912  * Determine if %current task is a workqueue worker and what it's working on.
5913  * Useful to find out the context that the %current task is running in.
5914  *
5915  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5916  */
5917 struct work_struct *current_work(void)
5918 {
5919 	struct worker *worker = current_wq_worker();
5920 
5921 	return worker ? worker->current_work : NULL;
5922 }
5923 EXPORT_SYMBOL(current_work);
5924 
5925 /**
5926  * current_is_workqueue_rescuer - is %current workqueue rescuer?
5927  *
5928  * Determine whether %current is a workqueue rescuer.  Can be used from
5929  * work functions to determine whether it's being run off the rescuer task.
5930  *
5931  * Return: %true if %current is a workqueue rescuer. %false otherwise.
5932  */
5933 bool current_is_workqueue_rescuer(void)
5934 {
5935 	struct worker *worker = current_wq_worker();
5936 
5937 	return worker && worker->rescue_wq;
5938 }
5939 
5940 /**
5941  * workqueue_congested - test whether a workqueue is congested
5942  * @cpu: CPU in question
5943  * @wq: target workqueue
5944  *
5945  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
5946  * no synchronization around this function and the test result is
5947  * unreliable and only useful as advisory hints or for debugging.
5948  *
5949  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5950  *
5951  * With the exception of ordered workqueues, all workqueues have per-cpu
5952  * pool_workqueues, each with its own congested state. A workqueue being
5953  * congested on one CPU doesn't mean that the workqueue is contested on any
5954  * other CPUs.
5955  *
5956  * Return:
5957  * %true if congested, %false otherwise.
5958  */
5959 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5960 {
5961 	struct pool_workqueue *pwq;
5962 	bool ret;
5963 
5964 	rcu_read_lock();
5965 	preempt_disable();
5966 
5967 	if (cpu == WORK_CPU_UNBOUND)
5968 		cpu = smp_processor_id();
5969 
5970 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5971 	ret = !list_empty(&pwq->inactive_works);
5972 
5973 	preempt_enable();
5974 	rcu_read_unlock();
5975 
5976 	return ret;
5977 }
5978 EXPORT_SYMBOL_GPL(workqueue_congested);
5979 
5980 /**
5981  * work_busy - test whether a work is currently pending or running
5982  * @work: the work to be tested
5983  *
5984  * Test whether @work is currently pending or running.  There is no
5985  * synchronization around this function and the test result is
5986  * unreliable and only useful as advisory hints or for debugging.
5987  *
5988  * Return:
5989  * OR'd bitmask of WORK_BUSY_* bits.
5990  */
5991 unsigned int work_busy(struct work_struct *work)
5992 {
5993 	struct worker_pool *pool;
5994 	unsigned long irq_flags;
5995 	unsigned int ret = 0;
5996 
5997 	if (work_pending(work))
5998 		ret |= WORK_BUSY_PENDING;
5999 
6000 	rcu_read_lock();
6001 	pool = get_work_pool(work);
6002 	if (pool) {
6003 		raw_spin_lock_irqsave(&pool->lock, irq_flags);
6004 		if (find_worker_executing_work(pool, work))
6005 			ret |= WORK_BUSY_RUNNING;
6006 		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6007 	}
6008 	rcu_read_unlock();
6009 
6010 	return ret;
6011 }
6012 EXPORT_SYMBOL_GPL(work_busy);
6013 
6014 /**
6015  * set_worker_desc - set description for the current work item
6016  * @fmt: printf-style format string
6017  * @...: arguments for the format string
6018  *
6019  * This function can be called by a running work function to describe what
6020  * the work item is about.  If the worker task gets dumped, this
6021  * information will be printed out together to help debugging.  The
6022  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6023  */
6024 void set_worker_desc(const char *fmt, ...)
6025 {
6026 	struct worker *worker = current_wq_worker();
6027 	va_list args;
6028 
6029 	if (worker) {
6030 		va_start(args, fmt);
6031 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6032 		va_end(args);
6033 	}
6034 }
6035 EXPORT_SYMBOL_GPL(set_worker_desc);
6036 
6037 /**
6038  * print_worker_info - print out worker information and description
6039  * @log_lvl: the log level to use when printing
6040  * @task: target task
6041  *
6042  * If @task is a worker and currently executing a work item, print out the
6043  * name of the workqueue being serviced and worker description set with
6044  * set_worker_desc() by the currently executing work item.
6045  *
6046  * This function can be safely called on any task as long as the
6047  * task_struct itself is accessible.  While safe, this function isn't
6048  * synchronized and may print out mixups or garbages of limited length.
6049  */
6050 void print_worker_info(const char *log_lvl, struct task_struct *task)
6051 {
6052 	work_func_t *fn = NULL;
6053 	char name[WQ_NAME_LEN] = { };
6054 	char desc[WORKER_DESC_LEN] = { };
6055 	struct pool_workqueue *pwq = NULL;
6056 	struct workqueue_struct *wq = NULL;
6057 	struct worker *worker;
6058 
6059 	if (!(task->flags & PF_WQ_WORKER))
6060 		return;
6061 
6062 	/*
6063 	 * This function is called without any synchronization and @task
6064 	 * could be in any state.  Be careful with dereferences.
6065 	 */
6066 	worker = kthread_probe_data(task);
6067 
6068 	/*
6069 	 * Carefully copy the associated workqueue's workfn, name and desc.
6070 	 * Keep the original last '\0' in case the original is garbage.
6071 	 */
6072 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6073 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6074 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6075 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6076 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6077 
6078 	if (fn || name[0] || desc[0]) {
6079 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6080 		if (strcmp(name, desc))
6081 			pr_cont(" (%s)", desc);
6082 		pr_cont("\n");
6083 	}
6084 }
6085 
6086 static void pr_cont_pool_info(struct worker_pool *pool)
6087 {
6088 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6089 	if (pool->node != NUMA_NO_NODE)
6090 		pr_cont(" node=%d", pool->node);
6091 	pr_cont(" flags=0x%x", pool->flags);
6092 	if (pool->flags & POOL_BH)
6093 		pr_cont(" bh%s",
6094 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6095 	else
6096 		pr_cont(" nice=%d", pool->attrs->nice);
6097 }
6098 
6099 static void pr_cont_worker_id(struct worker *worker)
6100 {
6101 	struct worker_pool *pool = worker->pool;
6102 
6103 	if (pool->flags & WQ_BH)
6104 		pr_cont("bh%s",
6105 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6106 	else
6107 		pr_cont("%d%s", task_pid_nr(worker->task),
6108 			worker->rescue_wq ? "(RESCUER)" : "");
6109 }
6110 
6111 struct pr_cont_work_struct {
6112 	bool comma;
6113 	work_func_t func;
6114 	long ctr;
6115 };
6116 
6117 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6118 {
6119 	if (!pcwsp->ctr)
6120 		goto out_record;
6121 	if (func == pcwsp->func) {
6122 		pcwsp->ctr++;
6123 		return;
6124 	}
6125 	if (pcwsp->ctr == 1)
6126 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6127 	else
6128 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6129 	pcwsp->ctr = 0;
6130 out_record:
6131 	if ((long)func == -1L)
6132 		return;
6133 	pcwsp->comma = comma;
6134 	pcwsp->func = func;
6135 	pcwsp->ctr = 1;
6136 }
6137 
6138 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6139 {
6140 	if (work->func == wq_barrier_func) {
6141 		struct wq_barrier *barr;
6142 
6143 		barr = container_of(work, struct wq_barrier, work);
6144 
6145 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6146 		pr_cont("%s BAR(%d)", comma ? "," : "",
6147 			task_pid_nr(barr->task));
6148 	} else {
6149 		if (!comma)
6150 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6151 		pr_cont_work_flush(comma, work->func, pcwsp);
6152 	}
6153 }
6154 
6155 static void show_pwq(struct pool_workqueue *pwq)
6156 {
6157 	struct pr_cont_work_struct pcws = { .ctr = 0, };
6158 	struct worker_pool *pool = pwq->pool;
6159 	struct work_struct *work;
6160 	struct worker *worker;
6161 	bool has_in_flight = false, has_pending = false;
6162 	int bkt;
6163 
6164 	pr_info("  pwq %d:", pool->id);
6165 	pr_cont_pool_info(pool);
6166 
6167 	pr_cont(" active=%d refcnt=%d%s\n",
6168 		pwq->nr_active, pwq->refcnt,
6169 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6170 
6171 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6172 		if (worker->current_pwq == pwq) {
6173 			has_in_flight = true;
6174 			break;
6175 		}
6176 	}
6177 	if (has_in_flight) {
6178 		bool comma = false;
6179 
6180 		pr_info("    in-flight:");
6181 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6182 			if (worker->current_pwq != pwq)
6183 				continue;
6184 
6185 			pr_cont(" %s", comma ? "," : "");
6186 			pr_cont_worker_id(worker);
6187 			pr_cont(":%ps", worker->current_func);
6188 			list_for_each_entry(work, &worker->scheduled, entry)
6189 				pr_cont_work(false, work, &pcws);
6190 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6191 			comma = true;
6192 		}
6193 		pr_cont("\n");
6194 	}
6195 
6196 	list_for_each_entry(work, &pool->worklist, entry) {
6197 		if (get_work_pwq(work) == pwq) {
6198 			has_pending = true;
6199 			break;
6200 		}
6201 	}
6202 	if (has_pending) {
6203 		bool comma = false;
6204 
6205 		pr_info("    pending:");
6206 		list_for_each_entry(work, &pool->worklist, entry) {
6207 			if (get_work_pwq(work) != pwq)
6208 				continue;
6209 
6210 			pr_cont_work(comma, work, &pcws);
6211 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6212 		}
6213 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6214 		pr_cont("\n");
6215 	}
6216 
6217 	if (!list_empty(&pwq->inactive_works)) {
6218 		bool comma = false;
6219 
6220 		pr_info("    inactive:");
6221 		list_for_each_entry(work, &pwq->inactive_works, entry) {
6222 			pr_cont_work(comma, work, &pcws);
6223 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6224 		}
6225 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6226 		pr_cont("\n");
6227 	}
6228 }
6229 
6230 /**
6231  * show_one_workqueue - dump state of specified workqueue
6232  * @wq: workqueue whose state will be printed
6233  */
6234 void show_one_workqueue(struct workqueue_struct *wq)
6235 {
6236 	struct pool_workqueue *pwq;
6237 	bool idle = true;
6238 	unsigned long irq_flags;
6239 
6240 	for_each_pwq(pwq, wq) {
6241 		if (!pwq_is_empty(pwq)) {
6242 			idle = false;
6243 			break;
6244 		}
6245 	}
6246 	if (idle) /* Nothing to print for idle workqueue */
6247 		return;
6248 
6249 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6250 
6251 	for_each_pwq(pwq, wq) {
6252 		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6253 		if (!pwq_is_empty(pwq)) {
6254 			/*
6255 			 * Defer printing to avoid deadlocks in console
6256 			 * drivers that queue work while holding locks
6257 			 * also taken in their write paths.
6258 			 */
6259 			printk_deferred_enter();
6260 			show_pwq(pwq);
6261 			printk_deferred_exit();
6262 		}
6263 		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6264 		/*
6265 		 * We could be printing a lot from atomic context, e.g.
6266 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6267 		 * hard lockup.
6268 		 */
6269 		touch_nmi_watchdog();
6270 	}
6271 
6272 }
6273 
6274 /**
6275  * show_one_worker_pool - dump state of specified worker pool
6276  * @pool: worker pool whose state will be printed
6277  */
6278 static void show_one_worker_pool(struct worker_pool *pool)
6279 {
6280 	struct worker *worker;
6281 	bool first = true;
6282 	unsigned long irq_flags;
6283 	unsigned long hung = 0;
6284 
6285 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6286 	if (pool->nr_workers == pool->nr_idle)
6287 		goto next_pool;
6288 
6289 	/* How long the first pending work is waiting for a worker. */
6290 	if (!list_empty(&pool->worklist))
6291 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6292 
6293 	/*
6294 	 * Defer printing to avoid deadlocks in console drivers that
6295 	 * queue work while holding locks also taken in their write
6296 	 * paths.
6297 	 */
6298 	printk_deferred_enter();
6299 	pr_info("pool %d:", pool->id);
6300 	pr_cont_pool_info(pool);
6301 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6302 	if (pool->manager)
6303 		pr_cont(" manager: %d",
6304 			task_pid_nr(pool->manager->task));
6305 	list_for_each_entry(worker, &pool->idle_list, entry) {
6306 		pr_cont(" %s", first ? "idle: " : "");
6307 		pr_cont_worker_id(worker);
6308 		first = false;
6309 	}
6310 	pr_cont("\n");
6311 	printk_deferred_exit();
6312 next_pool:
6313 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6314 	/*
6315 	 * We could be printing a lot from atomic context, e.g.
6316 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6317 	 * hard lockup.
6318 	 */
6319 	touch_nmi_watchdog();
6320 
6321 }
6322 
6323 /**
6324  * show_all_workqueues - dump workqueue state
6325  *
6326  * Called from a sysrq handler and prints out all busy workqueues and pools.
6327  */
6328 void show_all_workqueues(void)
6329 {
6330 	struct workqueue_struct *wq;
6331 	struct worker_pool *pool;
6332 	int pi;
6333 
6334 	rcu_read_lock();
6335 
6336 	pr_info("Showing busy workqueues and worker pools:\n");
6337 
6338 	list_for_each_entry_rcu(wq, &workqueues, list)
6339 		show_one_workqueue(wq);
6340 
6341 	for_each_pool(pool, pi)
6342 		show_one_worker_pool(pool);
6343 
6344 	rcu_read_unlock();
6345 }
6346 
6347 /**
6348  * show_freezable_workqueues - dump freezable workqueue state
6349  *
6350  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6351  * still busy.
6352  */
6353 void show_freezable_workqueues(void)
6354 {
6355 	struct workqueue_struct *wq;
6356 
6357 	rcu_read_lock();
6358 
6359 	pr_info("Showing freezable workqueues that are still busy:\n");
6360 
6361 	list_for_each_entry_rcu(wq, &workqueues, list) {
6362 		if (!(wq->flags & WQ_FREEZABLE))
6363 			continue;
6364 		show_one_workqueue(wq);
6365 	}
6366 
6367 	rcu_read_unlock();
6368 }
6369 
6370 /* used to show worker information through /proc/PID/{comm,stat,status} */
6371 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6372 {
6373 	int off;
6374 
6375 	/* always show the actual comm */
6376 	off = strscpy(buf, task->comm, size);
6377 	if (off < 0)
6378 		return;
6379 
6380 	/* stabilize PF_WQ_WORKER and worker pool association */
6381 	mutex_lock(&wq_pool_attach_mutex);
6382 
6383 	if (task->flags & PF_WQ_WORKER) {
6384 		struct worker *worker = kthread_data(task);
6385 		struct worker_pool *pool = worker->pool;
6386 
6387 		if (pool) {
6388 			raw_spin_lock_irq(&pool->lock);
6389 			/*
6390 			 * ->desc tracks information (wq name or
6391 			 * set_worker_desc()) for the latest execution.  If
6392 			 * current, prepend '+', otherwise '-'.
6393 			 */
6394 			if (worker->desc[0] != '\0') {
6395 				if (worker->current_work)
6396 					scnprintf(buf + off, size - off, "+%s",
6397 						  worker->desc);
6398 				else
6399 					scnprintf(buf + off, size - off, "-%s",
6400 						  worker->desc);
6401 			}
6402 			raw_spin_unlock_irq(&pool->lock);
6403 		}
6404 	}
6405 
6406 	mutex_unlock(&wq_pool_attach_mutex);
6407 }
6408 
6409 #ifdef CONFIG_SMP
6410 
6411 /*
6412  * CPU hotplug.
6413  *
6414  * There are two challenges in supporting CPU hotplug.  Firstly, there
6415  * are a lot of assumptions on strong associations among work, pwq and
6416  * pool which make migrating pending and scheduled works very
6417  * difficult to implement without impacting hot paths.  Secondly,
6418  * worker pools serve mix of short, long and very long running works making
6419  * blocked draining impractical.
6420  *
6421  * This is solved by allowing the pools to be disassociated from the CPU
6422  * running as an unbound one and allowing it to be reattached later if the
6423  * cpu comes back online.
6424  */
6425 
6426 static void unbind_workers(int cpu)
6427 {
6428 	struct worker_pool *pool;
6429 	struct worker *worker;
6430 
6431 	for_each_cpu_worker_pool(pool, cpu) {
6432 		mutex_lock(&wq_pool_attach_mutex);
6433 		raw_spin_lock_irq(&pool->lock);
6434 
6435 		/*
6436 		 * We've blocked all attach/detach operations. Make all workers
6437 		 * unbound and set DISASSOCIATED.  Before this, all workers
6438 		 * must be on the cpu.  After this, they may become diasporas.
6439 		 * And the preemption disabled section in their sched callbacks
6440 		 * are guaranteed to see WORKER_UNBOUND since the code here
6441 		 * is on the same cpu.
6442 		 */
6443 		for_each_pool_worker(worker, pool)
6444 			worker->flags |= WORKER_UNBOUND;
6445 
6446 		pool->flags |= POOL_DISASSOCIATED;
6447 
6448 		/*
6449 		 * The handling of nr_running in sched callbacks are disabled
6450 		 * now.  Zap nr_running.  After this, nr_running stays zero and
6451 		 * need_more_worker() and keep_working() are always true as
6452 		 * long as the worklist is not empty.  This pool now behaves as
6453 		 * an unbound (in terms of concurrency management) pool which
6454 		 * are served by workers tied to the pool.
6455 		 */
6456 		pool->nr_running = 0;
6457 
6458 		/*
6459 		 * With concurrency management just turned off, a busy
6460 		 * worker blocking could lead to lengthy stalls.  Kick off
6461 		 * unbound chain execution of currently pending work items.
6462 		 */
6463 		kick_pool(pool);
6464 
6465 		raw_spin_unlock_irq(&pool->lock);
6466 
6467 		for_each_pool_worker(worker, pool)
6468 			unbind_worker(worker);
6469 
6470 		mutex_unlock(&wq_pool_attach_mutex);
6471 	}
6472 }
6473 
6474 /**
6475  * rebind_workers - rebind all workers of a pool to the associated CPU
6476  * @pool: pool of interest
6477  *
6478  * @pool->cpu is coming online.  Rebind all workers to the CPU.
6479  */
6480 static void rebind_workers(struct worker_pool *pool)
6481 {
6482 	struct worker *worker;
6483 
6484 	lockdep_assert_held(&wq_pool_attach_mutex);
6485 
6486 	/*
6487 	 * Restore CPU affinity of all workers.  As all idle workers should
6488 	 * be on the run-queue of the associated CPU before any local
6489 	 * wake-ups for concurrency management happen, restore CPU affinity
6490 	 * of all workers first and then clear UNBOUND.  As we're called
6491 	 * from CPU_ONLINE, the following shouldn't fail.
6492 	 */
6493 	for_each_pool_worker(worker, pool) {
6494 		kthread_set_per_cpu(worker->task, pool->cpu);
6495 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6496 						  pool_allowed_cpus(pool)) < 0);
6497 	}
6498 
6499 	raw_spin_lock_irq(&pool->lock);
6500 
6501 	pool->flags &= ~POOL_DISASSOCIATED;
6502 
6503 	for_each_pool_worker(worker, pool) {
6504 		unsigned int worker_flags = worker->flags;
6505 
6506 		/*
6507 		 * We want to clear UNBOUND but can't directly call
6508 		 * worker_clr_flags() or adjust nr_running.  Atomically
6509 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6510 		 * @worker will clear REBOUND using worker_clr_flags() when
6511 		 * it initiates the next execution cycle thus restoring
6512 		 * concurrency management.  Note that when or whether
6513 		 * @worker clears REBOUND doesn't affect correctness.
6514 		 *
6515 		 * WRITE_ONCE() is necessary because @worker->flags may be
6516 		 * tested without holding any lock in
6517 		 * wq_worker_running().  Without it, NOT_RUNNING test may
6518 		 * fail incorrectly leading to premature concurrency
6519 		 * management operations.
6520 		 */
6521 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6522 		worker_flags |= WORKER_REBOUND;
6523 		worker_flags &= ~WORKER_UNBOUND;
6524 		WRITE_ONCE(worker->flags, worker_flags);
6525 	}
6526 
6527 	raw_spin_unlock_irq(&pool->lock);
6528 }
6529 
6530 /**
6531  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6532  * @pool: unbound pool of interest
6533  * @cpu: the CPU which is coming up
6534  *
6535  * An unbound pool may end up with a cpumask which doesn't have any online
6536  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6537  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6538  * online CPU before, cpus_allowed of all its workers should be restored.
6539  */
6540 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6541 {
6542 	static cpumask_t cpumask;
6543 	struct worker *worker;
6544 
6545 	lockdep_assert_held(&wq_pool_attach_mutex);
6546 
6547 	/* is @cpu allowed for @pool? */
6548 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6549 		return;
6550 
6551 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6552 
6553 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6554 	for_each_pool_worker(worker, pool)
6555 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6556 }
6557 
6558 int workqueue_prepare_cpu(unsigned int cpu)
6559 {
6560 	struct worker_pool *pool;
6561 
6562 	for_each_cpu_worker_pool(pool, cpu) {
6563 		if (pool->nr_workers)
6564 			continue;
6565 		if (!create_worker(pool))
6566 			return -ENOMEM;
6567 	}
6568 	return 0;
6569 }
6570 
6571 int workqueue_online_cpu(unsigned int cpu)
6572 {
6573 	struct worker_pool *pool;
6574 	struct workqueue_struct *wq;
6575 	int pi;
6576 
6577 	mutex_lock(&wq_pool_mutex);
6578 
6579 	for_each_pool(pool, pi) {
6580 		/* BH pools aren't affected by hotplug */
6581 		if (pool->flags & POOL_BH)
6582 			continue;
6583 
6584 		mutex_lock(&wq_pool_attach_mutex);
6585 		if (pool->cpu == cpu)
6586 			rebind_workers(pool);
6587 		else if (pool->cpu < 0)
6588 			restore_unbound_workers_cpumask(pool, cpu);
6589 		mutex_unlock(&wq_pool_attach_mutex);
6590 	}
6591 
6592 	/* update pod affinity of unbound workqueues */
6593 	list_for_each_entry(wq, &workqueues, list) {
6594 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6595 
6596 		if (attrs) {
6597 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6598 			int tcpu;
6599 
6600 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6601 				wq_update_pod(wq, tcpu, cpu, true);
6602 
6603 			mutex_lock(&wq->mutex);
6604 			wq_update_node_max_active(wq, -1);
6605 			mutex_unlock(&wq->mutex);
6606 		}
6607 	}
6608 
6609 	mutex_unlock(&wq_pool_mutex);
6610 	return 0;
6611 }
6612 
6613 int workqueue_offline_cpu(unsigned int cpu)
6614 {
6615 	struct workqueue_struct *wq;
6616 
6617 	/* unbinding per-cpu workers should happen on the local CPU */
6618 	if (WARN_ON(cpu != smp_processor_id()))
6619 		return -1;
6620 
6621 	unbind_workers(cpu);
6622 
6623 	/* update pod affinity of unbound workqueues */
6624 	mutex_lock(&wq_pool_mutex);
6625 	list_for_each_entry(wq, &workqueues, list) {
6626 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6627 
6628 		if (attrs) {
6629 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6630 			int tcpu;
6631 
6632 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6633 				wq_update_pod(wq, tcpu, cpu, false);
6634 
6635 			mutex_lock(&wq->mutex);
6636 			wq_update_node_max_active(wq, cpu);
6637 			mutex_unlock(&wq->mutex);
6638 		}
6639 	}
6640 	mutex_unlock(&wq_pool_mutex);
6641 
6642 	return 0;
6643 }
6644 
6645 struct work_for_cpu {
6646 	struct work_struct work;
6647 	long (*fn)(void *);
6648 	void *arg;
6649 	long ret;
6650 };
6651 
6652 static void work_for_cpu_fn(struct work_struct *work)
6653 {
6654 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6655 
6656 	wfc->ret = wfc->fn(wfc->arg);
6657 }
6658 
6659 /**
6660  * work_on_cpu_key - run a function in thread context on a particular cpu
6661  * @cpu: the cpu to run on
6662  * @fn: the function to run
6663  * @arg: the function arg
6664  * @key: The lock class key for lock debugging purposes
6665  *
6666  * It is up to the caller to ensure that the cpu doesn't go offline.
6667  * The caller must not hold any locks which would prevent @fn from completing.
6668  *
6669  * Return: The value @fn returns.
6670  */
6671 long work_on_cpu_key(int cpu, long (*fn)(void *),
6672 		     void *arg, struct lock_class_key *key)
6673 {
6674 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6675 
6676 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6677 	schedule_work_on(cpu, &wfc.work);
6678 	flush_work(&wfc.work);
6679 	destroy_work_on_stack(&wfc.work);
6680 	return wfc.ret;
6681 }
6682 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6683 
6684 /**
6685  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6686  * @cpu: the cpu to run on
6687  * @fn:  the function to run
6688  * @arg: the function argument
6689  * @key: The lock class key for lock debugging purposes
6690  *
6691  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6692  * any locks which would prevent @fn from completing.
6693  *
6694  * Return: The value @fn returns.
6695  */
6696 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6697 			  void *arg, struct lock_class_key *key)
6698 {
6699 	long ret = -ENODEV;
6700 
6701 	cpus_read_lock();
6702 	if (cpu_online(cpu))
6703 		ret = work_on_cpu_key(cpu, fn, arg, key);
6704 	cpus_read_unlock();
6705 	return ret;
6706 }
6707 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6708 #endif /* CONFIG_SMP */
6709 
6710 #ifdef CONFIG_FREEZER
6711 
6712 /**
6713  * freeze_workqueues_begin - begin freezing workqueues
6714  *
6715  * Start freezing workqueues.  After this function returns, all freezable
6716  * workqueues will queue new works to their inactive_works list instead of
6717  * pool->worklist.
6718  *
6719  * CONTEXT:
6720  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6721  */
6722 void freeze_workqueues_begin(void)
6723 {
6724 	struct workqueue_struct *wq;
6725 
6726 	mutex_lock(&wq_pool_mutex);
6727 
6728 	WARN_ON_ONCE(workqueue_freezing);
6729 	workqueue_freezing = true;
6730 
6731 	list_for_each_entry(wq, &workqueues, list) {
6732 		mutex_lock(&wq->mutex);
6733 		wq_adjust_max_active(wq);
6734 		mutex_unlock(&wq->mutex);
6735 	}
6736 
6737 	mutex_unlock(&wq_pool_mutex);
6738 }
6739 
6740 /**
6741  * freeze_workqueues_busy - are freezable workqueues still busy?
6742  *
6743  * Check whether freezing is complete.  This function must be called
6744  * between freeze_workqueues_begin() and thaw_workqueues().
6745  *
6746  * CONTEXT:
6747  * Grabs and releases wq_pool_mutex.
6748  *
6749  * Return:
6750  * %true if some freezable workqueues are still busy.  %false if freezing
6751  * is complete.
6752  */
6753 bool freeze_workqueues_busy(void)
6754 {
6755 	bool busy = false;
6756 	struct workqueue_struct *wq;
6757 	struct pool_workqueue *pwq;
6758 
6759 	mutex_lock(&wq_pool_mutex);
6760 
6761 	WARN_ON_ONCE(!workqueue_freezing);
6762 
6763 	list_for_each_entry(wq, &workqueues, list) {
6764 		if (!(wq->flags & WQ_FREEZABLE))
6765 			continue;
6766 		/*
6767 		 * nr_active is monotonically decreasing.  It's safe
6768 		 * to peek without lock.
6769 		 */
6770 		rcu_read_lock();
6771 		for_each_pwq(pwq, wq) {
6772 			WARN_ON_ONCE(pwq->nr_active < 0);
6773 			if (pwq->nr_active) {
6774 				busy = true;
6775 				rcu_read_unlock();
6776 				goto out_unlock;
6777 			}
6778 		}
6779 		rcu_read_unlock();
6780 	}
6781 out_unlock:
6782 	mutex_unlock(&wq_pool_mutex);
6783 	return busy;
6784 }
6785 
6786 /**
6787  * thaw_workqueues - thaw workqueues
6788  *
6789  * Thaw workqueues.  Normal queueing is restored and all collected
6790  * frozen works are transferred to their respective pool worklists.
6791  *
6792  * CONTEXT:
6793  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6794  */
6795 void thaw_workqueues(void)
6796 {
6797 	struct workqueue_struct *wq;
6798 
6799 	mutex_lock(&wq_pool_mutex);
6800 
6801 	if (!workqueue_freezing)
6802 		goto out_unlock;
6803 
6804 	workqueue_freezing = false;
6805 
6806 	/* restore max_active and repopulate worklist */
6807 	list_for_each_entry(wq, &workqueues, list) {
6808 		mutex_lock(&wq->mutex);
6809 		wq_adjust_max_active(wq);
6810 		mutex_unlock(&wq->mutex);
6811 	}
6812 
6813 out_unlock:
6814 	mutex_unlock(&wq_pool_mutex);
6815 }
6816 #endif /* CONFIG_FREEZER */
6817 
6818 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6819 {
6820 	LIST_HEAD(ctxs);
6821 	int ret = 0;
6822 	struct workqueue_struct *wq;
6823 	struct apply_wqattrs_ctx *ctx, *n;
6824 
6825 	lockdep_assert_held(&wq_pool_mutex);
6826 
6827 	list_for_each_entry(wq, &workqueues, list) {
6828 		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6829 			continue;
6830 
6831 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6832 		if (IS_ERR(ctx)) {
6833 			ret = PTR_ERR(ctx);
6834 			break;
6835 		}
6836 
6837 		list_add_tail(&ctx->list, &ctxs);
6838 	}
6839 
6840 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6841 		if (!ret)
6842 			apply_wqattrs_commit(ctx);
6843 		apply_wqattrs_cleanup(ctx);
6844 	}
6845 
6846 	if (!ret) {
6847 		mutex_lock(&wq_pool_attach_mutex);
6848 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6849 		mutex_unlock(&wq_pool_attach_mutex);
6850 	}
6851 	return ret;
6852 }
6853 
6854 /**
6855  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6856  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6857  *
6858  * This function can be called from cpuset code to provide a set of isolated
6859  * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6860  * either cpus_read_lock or cpus_write_lock.
6861  */
6862 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6863 {
6864 	cpumask_var_t cpumask;
6865 	int ret = 0;
6866 
6867 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6868 		return -ENOMEM;
6869 
6870 	lockdep_assert_cpus_held();
6871 	mutex_lock(&wq_pool_mutex);
6872 
6873 	/* Save the current isolated cpumask & export it via sysfs */
6874 	cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6875 
6876 	/*
6877 	 * If the operation fails, it will fall back to
6878 	 * wq_requested_unbound_cpumask which is initially set to
6879 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6880 	 * by any subsequent write to workqueue/cpumask sysfs file.
6881 	 */
6882 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6883 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6884 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6885 		ret = workqueue_apply_unbound_cpumask(cpumask);
6886 
6887 	mutex_unlock(&wq_pool_mutex);
6888 	free_cpumask_var(cpumask);
6889 	return ret;
6890 }
6891 
6892 static int parse_affn_scope(const char *val)
6893 {
6894 	int i;
6895 
6896 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6897 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6898 			return i;
6899 	}
6900 	return -EINVAL;
6901 }
6902 
6903 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6904 {
6905 	struct workqueue_struct *wq;
6906 	int affn, cpu;
6907 
6908 	affn = parse_affn_scope(val);
6909 	if (affn < 0)
6910 		return affn;
6911 	if (affn == WQ_AFFN_DFL)
6912 		return -EINVAL;
6913 
6914 	cpus_read_lock();
6915 	mutex_lock(&wq_pool_mutex);
6916 
6917 	wq_affn_dfl = affn;
6918 
6919 	list_for_each_entry(wq, &workqueues, list) {
6920 		for_each_online_cpu(cpu) {
6921 			wq_update_pod(wq, cpu, cpu, true);
6922 		}
6923 	}
6924 
6925 	mutex_unlock(&wq_pool_mutex);
6926 	cpus_read_unlock();
6927 
6928 	return 0;
6929 }
6930 
6931 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6932 {
6933 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6934 }
6935 
6936 static const struct kernel_param_ops wq_affn_dfl_ops = {
6937 	.set	= wq_affn_dfl_set,
6938 	.get	= wq_affn_dfl_get,
6939 };
6940 
6941 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6942 
6943 #ifdef CONFIG_SYSFS
6944 /*
6945  * Workqueues with WQ_SYSFS flag set is visible to userland via
6946  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
6947  * following attributes.
6948  *
6949  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
6950  *  max_active		RW int	: maximum number of in-flight work items
6951  *
6952  * Unbound workqueues have the following extra attributes.
6953  *
6954  *  nice		RW int	: nice value of the workers
6955  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
6956  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
6957  *  affinity_strict	RW bool : worker CPU affinity is strict
6958  */
6959 struct wq_device {
6960 	struct workqueue_struct		*wq;
6961 	struct device			dev;
6962 };
6963 
6964 static struct workqueue_struct *dev_to_wq(struct device *dev)
6965 {
6966 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6967 
6968 	return wq_dev->wq;
6969 }
6970 
6971 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6972 			    char *buf)
6973 {
6974 	struct workqueue_struct *wq = dev_to_wq(dev);
6975 
6976 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6977 }
6978 static DEVICE_ATTR_RO(per_cpu);
6979 
6980 static ssize_t max_active_show(struct device *dev,
6981 			       struct device_attribute *attr, char *buf)
6982 {
6983 	struct workqueue_struct *wq = dev_to_wq(dev);
6984 
6985 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6986 }
6987 
6988 static ssize_t max_active_store(struct device *dev,
6989 				struct device_attribute *attr, const char *buf,
6990 				size_t count)
6991 {
6992 	struct workqueue_struct *wq = dev_to_wq(dev);
6993 	int val;
6994 
6995 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6996 		return -EINVAL;
6997 
6998 	workqueue_set_max_active(wq, val);
6999 	return count;
7000 }
7001 static DEVICE_ATTR_RW(max_active);
7002 
7003 static struct attribute *wq_sysfs_attrs[] = {
7004 	&dev_attr_per_cpu.attr,
7005 	&dev_attr_max_active.attr,
7006 	NULL,
7007 };
7008 ATTRIBUTE_GROUPS(wq_sysfs);
7009 
7010 static void apply_wqattrs_lock(void)
7011 {
7012 	/* CPUs should stay stable across pwq creations and installations */
7013 	cpus_read_lock();
7014 	mutex_lock(&wq_pool_mutex);
7015 }
7016 
7017 static void apply_wqattrs_unlock(void)
7018 {
7019 	mutex_unlock(&wq_pool_mutex);
7020 	cpus_read_unlock();
7021 }
7022 
7023 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7024 			    char *buf)
7025 {
7026 	struct workqueue_struct *wq = dev_to_wq(dev);
7027 	int written;
7028 
7029 	mutex_lock(&wq->mutex);
7030 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7031 	mutex_unlock(&wq->mutex);
7032 
7033 	return written;
7034 }
7035 
7036 /* prepare workqueue_attrs for sysfs store operations */
7037 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7038 {
7039 	struct workqueue_attrs *attrs;
7040 
7041 	lockdep_assert_held(&wq_pool_mutex);
7042 
7043 	attrs = alloc_workqueue_attrs();
7044 	if (!attrs)
7045 		return NULL;
7046 
7047 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
7048 	return attrs;
7049 }
7050 
7051 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7052 			     const char *buf, size_t count)
7053 {
7054 	struct workqueue_struct *wq = dev_to_wq(dev);
7055 	struct workqueue_attrs *attrs;
7056 	int ret = -ENOMEM;
7057 
7058 	apply_wqattrs_lock();
7059 
7060 	attrs = wq_sysfs_prep_attrs(wq);
7061 	if (!attrs)
7062 		goto out_unlock;
7063 
7064 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7065 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7066 		ret = apply_workqueue_attrs_locked(wq, attrs);
7067 	else
7068 		ret = -EINVAL;
7069 
7070 out_unlock:
7071 	apply_wqattrs_unlock();
7072 	free_workqueue_attrs(attrs);
7073 	return ret ?: count;
7074 }
7075 
7076 static ssize_t wq_cpumask_show(struct device *dev,
7077 			       struct device_attribute *attr, char *buf)
7078 {
7079 	struct workqueue_struct *wq = dev_to_wq(dev);
7080 	int written;
7081 
7082 	mutex_lock(&wq->mutex);
7083 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7084 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
7085 	mutex_unlock(&wq->mutex);
7086 	return written;
7087 }
7088 
7089 static ssize_t wq_cpumask_store(struct device *dev,
7090 				struct device_attribute *attr,
7091 				const char *buf, size_t count)
7092 {
7093 	struct workqueue_struct *wq = dev_to_wq(dev);
7094 	struct workqueue_attrs *attrs;
7095 	int ret = -ENOMEM;
7096 
7097 	apply_wqattrs_lock();
7098 
7099 	attrs = wq_sysfs_prep_attrs(wq);
7100 	if (!attrs)
7101 		goto out_unlock;
7102 
7103 	ret = cpumask_parse(buf, attrs->cpumask);
7104 	if (!ret)
7105 		ret = apply_workqueue_attrs_locked(wq, attrs);
7106 
7107 out_unlock:
7108 	apply_wqattrs_unlock();
7109 	free_workqueue_attrs(attrs);
7110 	return ret ?: count;
7111 }
7112 
7113 static ssize_t wq_affn_scope_show(struct device *dev,
7114 				  struct device_attribute *attr, char *buf)
7115 {
7116 	struct workqueue_struct *wq = dev_to_wq(dev);
7117 	int written;
7118 
7119 	mutex_lock(&wq->mutex);
7120 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7121 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7122 				    wq_affn_names[WQ_AFFN_DFL],
7123 				    wq_affn_names[wq_affn_dfl]);
7124 	else
7125 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7126 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7127 	mutex_unlock(&wq->mutex);
7128 
7129 	return written;
7130 }
7131 
7132 static ssize_t wq_affn_scope_store(struct device *dev,
7133 				   struct device_attribute *attr,
7134 				   const char *buf, size_t count)
7135 {
7136 	struct workqueue_struct *wq = dev_to_wq(dev);
7137 	struct workqueue_attrs *attrs;
7138 	int affn, ret = -ENOMEM;
7139 
7140 	affn = parse_affn_scope(buf);
7141 	if (affn < 0)
7142 		return affn;
7143 
7144 	apply_wqattrs_lock();
7145 	attrs = wq_sysfs_prep_attrs(wq);
7146 	if (attrs) {
7147 		attrs->affn_scope = affn;
7148 		ret = apply_workqueue_attrs_locked(wq, attrs);
7149 	}
7150 	apply_wqattrs_unlock();
7151 	free_workqueue_attrs(attrs);
7152 	return ret ?: count;
7153 }
7154 
7155 static ssize_t wq_affinity_strict_show(struct device *dev,
7156 				       struct device_attribute *attr, char *buf)
7157 {
7158 	struct workqueue_struct *wq = dev_to_wq(dev);
7159 
7160 	return scnprintf(buf, PAGE_SIZE, "%d\n",
7161 			 wq->unbound_attrs->affn_strict);
7162 }
7163 
7164 static ssize_t wq_affinity_strict_store(struct device *dev,
7165 					struct device_attribute *attr,
7166 					const char *buf, size_t count)
7167 {
7168 	struct workqueue_struct *wq = dev_to_wq(dev);
7169 	struct workqueue_attrs *attrs;
7170 	int v, ret = -ENOMEM;
7171 
7172 	if (sscanf(buf, "%d", &v) != 1)
7173 		return -EINVAL;
7174 
7175 	apply_wqattrs_lock();
7176 	attrs = wq_sysfs_prep_attrs(wq);
7177 	if (attrs) {
7178 		attrs->affn_strict = (bool)v;
7179 		ret = apply_workqueue_attrs_locked(wq, attrs);
7180 	}
7181 	apply_wqattrs_unlock();
7182 	free_workqueue_attrs(attrs);
7183 	return ret ?: count;
7184 }
7185 
7186 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7187 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7188 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7189 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7190 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7191 	__ATTR_NULL,
7192 };
7193 
7194 static const struct bus_type wq_subsys = {
7195 	.name				= "workqueue",
7196 	.dev_groups			= wq_sysfs_groups,
7197 };
7198 
7199 /**
7200  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7201  *  @cpumask: the cpumask to set
7202  *
7203  *  The low-level workqueues cpumask is a global cpumask that limits
7204  *  the affinity of all unbound workqueues.  This function check the @cpumask
7205  *  and apply it to all unbound workqueues and updates all pwqs of them.
7206  *
7207  *  Return:	0	- Success
7208  *		-EINVAL	- Invalid @cpumask
7209  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7210  */
7211 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7212 {
7213 	int ret = -EINVAL;
7214 
7215 	/*
7216 	 * Not excluding isolated cpus on purpose.
7217 	 * If the user wishes to include them, we allow that.
7218 	 */
7219 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7220 	if (!cpumask_empty(cpumask)) {
7221 		apply_wqattrs_lock();
7222 		cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7223 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
7224 			ret = 0;
7225 			goto out_unlock;
7226 		}
7227 
7228 		ret = workqueue_apply_unbound_cpumask(cpumask);
7229 
7230 out_unlock:
7231 		apply_wqattrs_unlock();
7232 	}
7233 
7234 	return ret;
7235 }
7236 
7237 static ssize_t __wq_cpumask_show(struct device *dev,
7238 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7239 {
7240 	int written;
7241 
7242 	mutex_lock(&wq_pool_mutex);
7243 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7244 	mutex_unlock(&wq_pool_mutex);
7245 
7246 	return written;
7247 }
7248 
7249 static ssize_t cpumask_requested_show(struct device *dev,
7250 		struct device_attribute *attr, char *buf)
7251 {
7252 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7253 }
7254 static DEVICE_ATTR_RO(cpumask_requested);
7255 
7256 static ssize_t cpumask_isolated_show(struct device *dev,
7257 		struct device_attribute *attr, char *buf)
7258 {
7259 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7260 }
7261 static DEVICE_ATTR_RO(cpumask_isolated);
7262 
7263 static ssize_t cpumask_show(struct device *dev,
7264 		struct device_attribute *attr, char *buf)
7265 {
7266 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7267 }
7268 
7269 static ssize_t cpumask_store(struct device *dev,
7270 		struct device_attribute *attr, const char *buf, size_t count)
7271 {
7272 	cpumask_var_t cpumask;
7273 	int ret;
7274 
7275 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7276 		return -ENOMEM;
7277 
7278 	ret = cpumask_parse(buf, cpumask);
7279 	if (!ret)
7280 		ret = workqueue_set_unbound_cpumask(cpumask);
7281 
7282 	free_cpumask_var(cpumask);
7283 	return ret ? ret : count;
7284 }
7285 static DEVICE_ATTR_RW(cpumask);
7286 
7287 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7288 	&dev_attr_cpumask.attr,
7289 	&dev_attr_cpumask_requested.attr,
7290 	&dev_attr_cpumask_isolated.attr,
7291 	NULL,
7292 };
7293 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7294 
7295 static int __init wq_sysfs_init(void)
7296 {
7297 	return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7298 }
7299 core_initcall(wq_sysfs_init);
7300 
7301 static void wq_device_release(struct device *dev)
7302 {
7303 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7304 
7305 	kfree(wq_dev);
7306 }
7307 
7308 /**
7309  * workqueue_sysfs_register - make a workqueue visible in sysfs
7310  * @wq: the workqueue to register
7311  *
7312  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7313  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7314  * which is the preferred method.
7315  *
7316  * Workqueue user should use this function directly iff it wants to apply
7317  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7318  * apply_workqueue_attrs() may race against userland updating the
7319  * attributes.
7320  *
7321  * Return: 0 on success, -errno on failure.
7322  */
7323 int workqueue_sysfs_register(struct workqueue_struct *wq)
7324 {
7325 	struct wq_device *wq_dev;
7326 	int ret;
7327 
7328 	/*
7329 	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7330 	 * ordered workqueues.
7331 	 */
7332 	if (WARN_ON(wq->flags & __WQ_ORDERED))
7333 		return -EINVAL;
7334 
7335 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7336 	if (!wq_dev)
7337 		return -ENOMEM;
7338 
7339 	wq_dev->wq = wq;
7340 	wq_dev->dev.bus = &wq_subsys;
7341 	wq_dev->dev.release = wq_device_release;
7342 	dev_set_name(&wq_dev->dev, "%s", wq->name);
7343 
7344 	/*
7345 	 * unbound_attrs are created separately.  Suppress uevent until
7346 	 * everything is ready.
7347 	 */
7348 	dev_set_uevent_suppress(&wq_dev->dev, true);
7349 
7350 	ret = device_register(&wq_dev->dev);
7351 	if (ret) {
7352 		put_device(&wq_dev->dev);
7353 		wq->wq_dev = NULL;
7354 		return ret;
7355 	}
7356 
7357 	if (wq->flags & WQ_UNBOUND) {
7358 		struct device_attribute *attr;
7359 
7360 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7361 			ret = device_create_file(&wq_dev->dev, attr);
7362 			if (ret) {
7363 				device_unregister(&wq_dev->dev);
7364 				wq->wq_dev = NULL;
7365 				return ret;
7366 			}
7367 		}
7368 	}
7369 
7370 	dev_set_uevent_suppress(&wq_dev->dev, false);
7371 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7372 	return 0;
7373 }
7374 
7375 /**
7376  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7377  * @wq: the workqueue to unregister
7378  *
7379  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7380  */
7381 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7382 {
7383 	struct wq_device *wq_dev = wq->wq_dev;
7384 
7385 	if (!wq->wq_dev)
7386 		return;
7387 
7388 	wq->wq_dev = NULL;
7389 	device_unregister(&wq_dev->dev);
7390 }
7391 #else	/* CONFIG_SYSFS */
7392 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7393 #endif	/* CONFIG_SYSFS */
7394 
7395 /*
7396  * Workqueue watchdog.
7397  *
7398  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7399  * flush dependency, a concurrency managed work item which stays RUNNING
7400  * indefinitely.  Workqueue stalls can be very difficult to debug as the
7401  * usual warning mechanisms don't trigger and internal workqueue state is
7402  * largely opaque.
7403  *
7404  * Workqueue watchdog monitors all worker pools periodically and dumps
7405  * state if some pools failed to make forward progress for a while where
7406  * forward progress is defined as the first item on ->worklist changing.
7407  *
7408  * This mechanism is controlled through the kernel parameter
7409  * "workqueue.watchdog_thresh" which can be updated at runtime through the
7410  * corresponding sysfs parameter file.
7411  */
7412 #ifdef CONFIG_WQ_WATCHDOG
7413 
7414 static unsigned long wq_watchdog_thresh = 30;
7415 static struct timer_list wq_watchdog_timer;
7416 
7417 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7418 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7419 
7420 /*
7421  * Show workers that might prevent the processing of pending work items.
7422  * The only candidates are CPU-bound workers in the running state.
7423  * Pending work items should be handled by another idle worker
7424  * in all other situations.
7425  */
7426 static void show_cpu_pool_hog(struct worker_pool *pool)
7427 {
7428 	struct worker *worker;
7429 	unsigned long irq_flags;
7430 	int bkt;
7431 
7432 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7433 
7434 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7435 		if (task_is_running(worker->task)) {
7436 			/*
7437 			 * Defer printing to avoid deadlocks in console
7438 			 * drivers that queue work while holding locks
7439 			 * also taken in their write paths.
7440 			 */
7441 			printk_deferred_enter();
7442 
7443 			pr_info("pool %d:\n", pool->id);
7444 			sched_show_task(worker->task);
7445 
7446 			printk_deferred_exit();
7447 		}
7448 	}
7449 
7450 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7451 }
7452 
7453 static void show_cpu_pools_hogs(void)
7454 {
7455 	struct worker_pool *pool;
7456 	int pi;
7457 
7458 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7459 
7460 	rcu_read_lock();
7461 
7462 	for_each_pool(pool, pi) {
7463 		if (pool->cpu_stall)
7464 			show_cpu_pool_hog(pool);
7465 
7466 	}
7467 
7468 	rcu_read_unlock();
7469 }
7470 
7471 static void wq_watchdog_reset_touched(void)
7472 {
7473 	int cpu;
7474 
7475 	wq_watchdog_touched = jiffies;
7476 	for_each_possible_cpu(cpu)
7477 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7478 }
7479 
7480 static void wq_watchdog_timer_fn(struct timer_list *unused)
7481 {
7482 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7483 	bool lockup_detected = false;
7484 	bool cpu_pool_stall = false;
7485 	unsigned long now = jiffies;
7486 	struct worker_pool *pool;
7487 	int pi;
7488 
7489 	if (!thresh)
7490 		return;
7491 
7492 	rcu_read_lock();
7493 
7494 	for_each_pool(pool, pi) {
7495 		unsigned long pool_ts, touched, ts;
7496 
7497 		pool->cpu_stall = false;
7498 		if (list_empty(&pool->worklist))
7499 			continue;
7500 
7501 		/*
7502 		 * If a virtual machine is stopped by the host it can look to
7503 		 * the watchdog like a stall.
7504 		 */
7505 		kvm_check_and_clear_guest_paused();
7506 
7507 		/* get the latest of pool and touched timestamps */
7508 		if (pool->cpu >= 0)
7509 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7510 		else
7511 			touched = READ_ONCE(wq_watchdog_touched);
7512 		pool_ts = READ_ONCE(pool->watchdog_ts);
7513 
7514 		if (time_after(pool_ts, touched))
7515 			ts = pool_ts;
7516 		else
7517 			ts = touched;
7518 
7519 		/* did we stall? */
7520 		if (time_after(now, ts + thresh)) {
7521 			lockup_detected = true;
7522 			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7523 				pool->cpu_stall = true;
7524 				cpu_pool_stall = true;
7525 			}
7526 			pr_emerg("BUG: workqueue lockup - pool");
7527 			pr_cont_pool_info(pool);
7528 			pr_cont(" stuck for %us!\n",
7529 				jiffies_to_msecs(now - pool_ts) / 1000);
7530 		}
7531 
7532 
7533 	}
7534 
7535 	rcu_read_unlock();
7536 
7537 	if (lockup_detected)
7538 		show_all_workqueues();
7539 
7540 	if (cpu_pool_stall)
7541 		show_cpu_pools_hogs();
7542 
7543 	wq_watchdog_reset_touched();
7544 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7545 }
7546 
7547 notrace void wq_watchdog_touch(int cpu)
7548 {
7549 	if (cpu >= 0)
7550 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7551 
7552 	wq_watchdog_touched = jiffies;
7553 }
7554 
7555 static void wq_watchdog_set_thresh(unsigned long thresh)
7556 {
7557 	wq_watchdog_thresh = 0;
7558 	del_timer_sync(&wq_watchdog_timer);
7559 
7560 	if (thresh) {
7561 		wq_watchdog_thresh = thresh;
7562 		wq_watchdog_reset_touched();
7563 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7564 	}
7565 }
7566 
7567 static int wq_watchdog_param_set_thresh(const char *val,
7568 					const struct kernel_param *kp)
7569 {
7570 	unsigned long thresh;
7571 	int ret;
7572 
7573 	ret = kstrtoul(val, 0, &thresh);
7574 	if (ret)
7575 		return ret;
7576 
7577 	if (system_wq)
7578 		wq_watchdog_set_thresh(thresh);
7579 	else
7580 		wq_watchdog_thresh = thresh;
7581 
7582 	return 0;
7583 }
7584 
7585 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7586 	.set	= wq_watchdog_param_set_thresh,
7587 	.get	= param_get_ulong,
7588 };
7589 
7590 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7591 		0644);
7592 
7593 static void wq_watchdog_init(void)
7594 {
7595 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7596 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7597 }
7598 
7599 #else	/* CONFIG_WQ_WATCHDOG */
7600 
7601 static inline void wq_watchdog_init(void) { }
7602 
7603 #endif	/* CONFIG_WQ_WATCHDOG */
7604 
7605 static void bh_pool_kick_normal(struct irq_work *irq_work)
7606 {
7607 	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7608 }
7609 
7610 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7611 {
7612 	raise_softirq_irqoff(HI_SOFTIRQ);
7613 }
7614 
7615 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7616 {
7617 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7618 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7619 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7620 		return;
7621 	}
7622 
7623 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7624 }
7625 
7626 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7627 {
7628 	BUG_ON(init_worker_pool(pool));
7629 	pool->cpu = cpu;
7630 	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7631 	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7632 	pool->attrs->nice = nice;
7633 	pool->attrs->affn_strict = true;
7634 	pool->node = cpu_to_node(cpu);
7635 
7636 	/* alloc pool ID */
7637 	mutex_lock(&wq_pool_mutex);
7638 	BUG_ON(worker_pool_assign_id(pool));
7639 	mutex_unlock(&wq_pool_mutex);
7640 }
7641 
7642 /**
7643  * workqueue_init_early - early init for workqueue subsystem
7644  *
7645  * This is the first step of three-staged workqueue subsystem initialization and
7646  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7647  * up. It sets up all the data structures and system workqueues and allows early
7648  * boot code to create workqueues and queue/cancel work items. Actual work item
7649  * execution starts only after kthreads can be created and scheduled right
7650  * before early initcalls.
7651  */
7652 void __init workqueue_init_early(void)
7653 {
7654 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7655 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7656 	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7657 						       bh_pool_kick_highpri };
7658 	int i, cpu;
7659 
7660 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7661 
7662 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7663 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7664 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7665 
7666 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7667 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7668 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7669 	if (!cpumask_empty(&wq_cmdline_cpumask))
7670 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7671 
7672 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7673 
7674 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7675 
7676 	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7677 	BUG_ON(!wq_update_pod_attrs_buf);
7678 
7679 	/*
7680 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7681 	 * This allows workqueue items to be moved to HK CPUs.
7682 	 */
7683 	if (housekeeping_enabled(HK_TYPE_TICK))
7684 		wq_power_efficient = true;
7685 
7686 	/* initialize WQ_AFFN_SYSTEM pods */
7687 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7688 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7689 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7690 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7691 
7692 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7693 
7694 	pt->nr_pods = 1;
7695 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7696 	pt->pod_node[0] = NUMA_NO_NODE;
7697 	pt->cpu_pod[0] = 0;
7698 
7699 	/* initialize BH and CPU pools */
7700 	for_each_possible_cpu(cpu) {
7701 		struct worker_pool *pool;
7702 
7703 		i = 0;
7704 		for_each_bh_worker_pool(pool, cpu) {
7705 			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7706 			pool->flags |= POOL_BH;
7707 			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7708 			i++;
7709 		}
7710 
7711 		i = 0;
7712 		for_each_cpu_worker_pool(pool, cpu)
7713 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7714 	}
7715 
7716 	/* create default unbound and ordered wq attrs */
7717 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7718 		struct workqueue_attrs *attrs;
7719 
7720 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7721 		attrs->nice = std_nice[i];
7722 		unbound_std_wq_attrs[i] = attrs;
7723 
7724 		/*
7725 		 * An ordered wq should have only one pwq as ordering is
7726 		 * guaranteed by max_active which is enforced by pwqs.
7727 		 */
7728 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7729 		attrs->nice = std_nice[i];
7730 		attrs->ordered = true;
7731 		ordered_wq_attrs[i] = attrs;
7732 	}
7733 
7734 	system_wq = alloc_workqueue("events", 0, 0);
7735 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7736 	system_long_wq = alloc_workqueue("events_long", 0, 0);
7737 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7738 					    WQ_MAX_ACTIVE);
7739 	system_freezable_wq = alloc_workqueue("events_freezable",
7740 					      WQ_FREEZABLE, 0);
7741 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7742 					      WQ_POWER_EFFICIENT, 0);
7743 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7744 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7745 					      0);
7746 	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7747 	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7748 					       WQ_BH | WQ_HIGHPRI, 0);
7749 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7750 	       !system_unbound_wq || !system_freezable_wq ||
7751 	       !system_power_efficient_wq ||
7752 	       !system_freezable_power_efficient_wq ||
7753 	       !system_bh_wq || !system_bh_highpri_wq);
7754 }
7755 
7756 static void __init wq_cpu_intensive_thresh_init(void)
7757 {
7758 	unsigned long thresh;
7759 	unsigned long bogo;
7760 
7761 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7762 	BUG_ON(IS_ERR(pwq_release_worker));
7763 
7764 	/* if the user set it to a specific value, keep it */
7765 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7766 		return;
7767 
7768 	/*
7769 	 * The default of 10ms is derived from the fact that most modern (as of
7770 	 * 2023) processors can do a lot in 10ms and that it's just below what
7771 	 * most consider human-perceivable. However, the kernel also runs on a
7772 	 * lot slower CPUs including microcontrollers where the threshold is way
7773 	 * too low.
7774 	 *
7775 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7776 	 * This is by no means accurate but it doesn't have to be. The mechanism
7777 	 * is still useful even when the threshold is fully scaled up. Also, as
7778 	 * the reports would usually be applicable to everyone, some machines
7779 	 * operating on longer thresholds won't significantly diminish their
7780 	 * usefulness.
7781 	 */
7782 	thresh = 10 * USEC_PER_MSEC;
7783 
7784 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7785 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7786 	if (bogo < 4000)
7787 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7788 
7789 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7790 		 loops_per_jiffy, bogo, thresh);
7791 
7792 	wq_cpu_intensive_thresh_us = thresh;
7793 }
7794 
7795 /**
7796  * workqueue_init - bring workqueue subsystem fully online
7797  *
7798  * This is the second step of three-staged workqueue subsystem initialization
7799  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7800  * been created and work items queued on them, but there are no kworkers
7801  * executing the work items yet. Populate the worker pools with the initial
7802  * workers and enable future kworker creations.
7803  */
7804 void __init workqueue_init(void)
7805 {
7806 	struct workqueue_struct *wq;
7807 	struct worker_pool *pool;
7808 	int cpu, bkt;
7809 
7810 	wq_cpu_intensive_thresh_init();
7811 
7812 	mutex_lock(&wq_pool_mutex);
7813 
7814 	/*
7815 	 * Per-cpu pools created earlier could be missing node hint. Fix them
7816 	 * up. Also, create a rescuer for workqueues that requested it.
7817 	 */
7818 	for_each_possible_cpu(cpu) {
7819 		for_each_bh_worker_pool(pool, cpu)
7820 			pool->node = cpu_to_node(cpu);
7821 		for_each_cpu_worker_pool(pool, cpu)
7822 			pool->node = cpu_to_node(cpu);
7823 	}
7824 
7825 	list_for_each_entry(wq, &workqueues, list) {
7826 		WARN(init_rescuer(wq),
7827 		     "workqueue: failed to create early rescuer for %s",
7828 		     wq->name);
7829 	}
7830 
7831 	mutex_unlock(&wq_pool_mutex);
7832 
7833 	/*
7834 	 * Create the initial workers. A BH pool has one pseudo worker that
7835 	 * represents the shared BH execution context and thus doesn't get
7836 	 * affected by hotplug events. Create the BH pseudo workers for all
7837 	 * possible CPUs here.
7838 	 */
7839 	for_each_possible_cpu(cpu)
7840 		for_each_bh_worker_pool(pool, cpu)
7841 			BUG_ON(!create_worker(pool));
7842 
7843 	for_each_online_cpu(cpu) {
7844 		for_each_cpu_worker_pool(pool, cpu) {
7845 			pool->flags &= ~POOL_DISASSOCIATED;
7846 			BUG_ON(!create_worker(pool));
7847 		}
7848 	}
7849 
7850 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7851 		BUG_ON(!create_worker(pool));
7852 
7853 	wq_online = true;
7854 	wq_watchdog_init();
7855 }
7856 
7857 /*
7858  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7859  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7860  * and consecutive pod ID. The rest of @pt is initialized accordingly.
7861  */
7862 static void __init init_pod_type(struct wq_pod_type *pt,
7863 				 bool (*cpus_share_pod)(int, int))
7864 {
7865 	int cur, pre, cpu, pod;
7866 
7867 	pt->nr_pods = 0;
7868 
7869 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7870 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7871 	BUG_ON(!pt->cpu_pod);
7872 
7873 	for_each_possible_cpu(cur) {
7874 		for_each_possible_cpu(pre) {
7875 			if (pre >= cur) {
7876 				pt->cpu_pod[cur] = pt->nr_pods++;
7877 				break;
7878 			}
7879 			if (cpus_share_pod(cur, pre)) {
7880 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7881 				break;
7882 			}
7883 		}
7884 	}
7885 
7886 	/* init the rest to match @pt->cpu_pod[] */
7887 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7888 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7889 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7890 
7891 	for (pod = 0; pod < pt->nr_pods; pod++)
7892 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7893 
7894 	for_each_possible_cpu(cpu) {
7895 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7896 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7897 	}
7898 }
7899 
7900 static bool __init cpus_dont_share(int cpu0, int cpu1)
7901 {
7902 	return false;
7903 }
7904 
7905 static bool __init cpus_share_smt(int cpu0, int cpu1)
7906 {
7907 #ifdef CONFIG_SCHED_SMT
7908 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7909 #else
7910 	return false;
7911 #endif
7912 }
7913 
7914 static bool __init cpus_share_numa(int cpu0, int cpu1)
7915 {
7916 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7917 }
7918 
7919 /**
7920  * workqueue_init_topology - initialize CPU pods for unbound workqueues
7921  *
7922  * This is the third step of three-staged workqueue subsystem initialization and
7923  * invoked after SMP and topology information are fully initialized. It
7924  * initializes the unbound CPU pods accordingly.
7925  */
7926 void __init workqueue_init_topology(void)
7927 {
7928 	struct workqueue_struct *wq;
7929 	int cpu;
7930 
7931 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7932 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7933 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7934 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7935 
7936 	wq_topo_initialized = true;
7937 
7938 	mutex_lock(&wq_pool_mutex);
7939 
7940 	/*
7941 	 * Workqueues allocated earlier would have all CPUs sharing the default
7942 	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7943 	 * combinations to apply per-pod sharing.
7944 	 */
7945 	list_for_each_entry(wq, &workqueues, list) {
7946 		for_each_online_cpu(cpu)
7947 			wq_update_pod(wq, cpu, cpu, true);
7948 		if (wq->flags & WQ_UNBOUND) {
7949 			mutex_lock(&wq->mutex);
7950 			wq_update_node_max_active(wq, -1);
7951 			mutex_unlock(&wq->mutex);
7952 		}
7953 	}
7954 
7955 	mutex_unlock(&wq_pool_mutex);
7956 }
7957 
7958 void __warn_flushing_systemwide_wq(void)
7959 {
7960 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7961 	dump_stack();
7962 }
7963 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
7964 
7965 static int __init workqueue_unbound_cpus_setup(char *str)
7966 {
7967 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7968 		cpumask_clear(&wq_cmdline_cpumask);
7969 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7970 	}
7971 
7972 	return 1;
7973 }
7974 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
7975