1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <[email protected]> 9 * Andrew Morton 10 * Kai Petzke <[email protected]> 11 * Theodore Ts'o <[email protected]> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <[email protected]> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/interrupt.h> 33 #include <linux/signal.h> 34 #include <linux/completion.h> 35 #include <linux/workqueue.h> 36 #include <linux/slab.h> 37 #include <linux/cpu.h> 38 #include <linux/notifier.h> 39 #include <linux/kthread.h> 40 #include <linux/hardirq.h> 41 #include <linux/mempolicy.h> 42 #include <linux/freezer.h> 43 #include <linux/debug_locks.h> 44 #include <linux/lockdep.h> 45 #include <linux/idr.h> 46 #include <linux/jhash.h> 47 #include <linux/hashtable.h> 48 #include <linux/rculist.h> 49 #include <linux/nodemask.h> 50 #include <linux/moduleparam.h> 51 #include <linux/uaccess.h> 52 #include <linux/sched/isolation.h> 53 #include <linux/sched/debug.h> 54 #include <linux/nmi.h> 55 #include <linux/kvm_para.h> 56 #include <linux/delay.h> 57 #include <linux/irq_work.h> 58 59 #include "workqueue_internal.h" 60 61 enum worker_pool_flags { 62 /* 63 * worker_pool flags 64 * 65 * A bound pool is either associated or disassociated with its CPU. 66 * While associated (!DISASSOCIATED), all workers are bound to the 67 * CPU and none has %WORKER_UNBOUND set and concurrency management 68 * is in effect. 69 * 70 * While DISASSOCIATED, the cpu may be offline and all workers have 71 * %WORKER_UNBOUND set and concurrency management disabled, and may 72 * be executing on any CPU. The pool behaves as an unbound one. 73 * 74 * Note that DISASSOCIATED should be flipped only while holding 75 * wq_pool_attach_mutex to avoid changing binding state while 76 * worker_attach_to_pool() is in progress. 77 * 78 * As there can only be one concurrent BH execution context per CPU, a 79 * BH pool is per-CPU and always DISASSOCIATED. 80 */ 81 POOL_BH = 1 << 0, /* is a BH pool */ 82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */ 83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */ 85 }; 86 87 enum worker_flags { 88 /* worker flags */ 89 WORKER_DIE = 1 << 1, /* die die die */ 90 WORKER_IDLE = 1 << 2, /* is idle */ 91 WORKER_PREP = 1 << 3, /* preparing to run works */ 92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 94 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 95 96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 97 WORKER_UNBOUND | WORKER_REBOUND, 98 }; 99 100 enum work_cancel_flags { 101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */ 102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */ 103 }; 104 105 enum wq_internal_consts { 106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 107 108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 110 111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 113 114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 115 /* call for help after 10ms 116 (min two ticks) */ 117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 118 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 119 120 /* 121 * Rescue workers are used only on emergencies and shared by 122 * all cpus. Give MIN_NICE. 123 */ 124 RESCUER_NICE_LEVEL = MIN_NICE, 125 HIGHPRI_NICE_LEVEL = MIN_NICE, 126 127 WQ_NAME_LEN = 32, 128 }; 129 130 /* 131 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and 132 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because 133 * msecs_to_jiffies() can't be an initializer. 134 */ 135 #define BH_WORKER_JIFFIES msecs_to_jiffies(2) 136 #define BH_WORKER_RESTARTS 10 137 138 /* 139 * Structure fields follow one of the following exclusion rules. 140 * 141 * I: Modifiable by initialization/destruction paths and read-only for 142 * everyone else. 143 * 144 * P: Preemption protected. Disabling preemption is enough and should 145 * only be modified and accessed from the local cpu. 146 * 147 * L: pool->lock protected. Access with pool->lock held. 148 * 149 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for 150 * reads. 151 * 152 * K: Only modified by worker while holding pool->lock. Can be safely read by 153 * self, while holding pool->lock or from IRQ context if %current is the 154 * kworker. 155 * 156 * S: Only modified by worker self. 157 * 158 * A: wq_pool_attach_mutex protected. 159 * 160 * PL: wq_pool_mutex protected. 161 * 162 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 163 * 164 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 165 * 166 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 167 * RCU for reads. 168 * 169 * WQ: wq->mutex protected. 170 * 171 * WR: wq->mutex protected for writes. RCU protected for reads. 172 * 173 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read 174 * with READ_ONCE() without locking. 175 * 176 * MD: wq_mayday_lock protected. 177 * 178 * WD: Used internally by the watchdog. 179 */ 180 181 /* struct worker is defined in workqueue_internal.h */ 182 183 struct worker_pool { 184 raw_spinlock_t lock; /* the pool lock */ 185 int cpu; /* I: the associated cpu */ 186 int node; /* I: the associated node ID */ 187 int id; /* I: pool ID */ 188 unsigned int flags; /* L: flags */ 189 190 unsigned long watchdog_ts; /* L: watchdog timestamp */ 191 bool cpu_stall; /* WD: stalled cpu bound pool */ 192 193 /* 194 * The counter is incremented in a process context on the associated CPU 195 * w/ preemption disabled, and decremented or reset in the same context 196 * but w/ pool->lock held. The readers grab pool->lock and are 197 * guaranteed to see if the counter reached zero. 198 */ 199 int nr_running; 200 201 struct list_head worklist; /* L: list of pending works */ 202 203 int nr_workers; /* L: total number of workers */ 204 int nr_idle; /* L: currently idle workers */ 205 206 struct list_head idle_list; /* L: list of idle workers */ 207 struct timer_list idle_timer; /* L: worker idle timeout */ 208 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 209 210 struct timer_list mayday_timer; /* L: SOS timer for workers */ 211 212 /* a workers is either on busy_hash or idle_list, or the manager */ 213 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 214 /* L: hash of busy workers */ 215 216 struct worker *manager; /* L: purely informational */ 217 struct list_head workers; /* A: attached workers */ 218 struct list_head dying_workers; /* A: workers about to die */ 219 struct completion *detach_completion; /* all workers detached */ 220 221 struct ida worker_ida; /* worker IDs for task name */ 222 223 struct workqueue_attrs *attrs; /* I: worker attributes */ 224 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 225 int refcnt; /* PL: refcnt for unbound pools */ 226 227 /* 228 * Destruction of pool is RCU protected to allow dereferences 229 * from get_work_pool(). 230 */ 231 struct rcu_head rcu; 232 }; 233 234 /* 235 * Per-pool_workqueue statistics. These can be monitored using 236 * tools/workqueue/wq_monitor.py. 237 */ 238 enum pool_workqueue_stats { 239 PWQ_STAT_STARTED, /* work items started execution */ 240 PWQ_STAT_COMPLETED, /* work items completed execution */ 241 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 242 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 243 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 244 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 245 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 246 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 247 248 PWQ_NR_STATS, 249 }; 250 251 /* 252 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT 253 * of work_struct->data are used for flags and the remaining high bits 254 * point to the pwq; thus, pwqs need to be aligned at two's power of the 255 * number of flag bits. 256 */ 257 struct pool_workqueue { 258 struct worker_pool *pool; /* I: the associated pool */ 259 struct workqueue_struct *wq; /* I: the owning workqueue */ 260 int work_color; /* L: current color */ 261 int flush_color; /* L: flushing color */ 262 int refcnt; /* L: reference count */ 263 int nr_in_flight[WORK_NR_COLORS]; 264 /* L: nr of in_flight works */ 265 bool plugged; /* L: execution suspended */ 266 267 /* 268 * nr_active management and WORK_STRUCT_INACTIVE: 269 * 270 * When pwq->nr_active >= max_active, new work item is queued to 271 * pwq->inactive_works instead of pool->worklist and marked with 272 * WORK_STRUCT_INACTIVE. 273 * 274 * All work items marked with WORK_STRUCT_INACTIVE do not participate in 275 * nr_active and all work items in pwq->inactive_works are marked with 276 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are 277 * in pwq->inactive_works. Some of them are ready to run in 278 * pool->worklist or worker->scheduled. Those work itmes are only struct 279 * wq_barrier which is used for flush_work() and should not participate 280 * in nr_active. For non-barrier work item, it is marked with 281 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 282 */ 283 int nr_active; /* L: nr of active works */ 284 struct list_head inactive_works; /* L: inactive works */ 285 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ 286 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 287 struct list_head mayday_node; /* MD: node on wq->maydays */ 288 289 u64 stats[PWQ_NR_STATS]; 290 291 /* 292 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 293 * and pwq_release_workfn() for details. pool_workqueue itself is also 294 * RCU protected so that the first pwq can be determined without 295 * grabbing wq->mutex. 296 */ 297 struct kthread_work release_work; 298 struct rcu_head rcu; 299 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT); 300 301 /* 302 * Structure used to wait for workqueue flush. 303 */ 304 struct wq_flusher { 305 struct list_head list; /* WQ: list of flushers */ 306 int flush_color; /* WQ: flush color waiting for */ 307 struct completion done; /* flush completion */ 308 }; 309 310 struct wq_device; 311 312 /* 313 * Unlike in a per-cpu workqueue where max_active limits its concurrency level 314 * on each CPU, in an unbound workqueue, max_active applies to the whole system. 315 * As sharing a single nr_active across multiple sockets can be very expensive, 316 * the counting and enforcement is per NUMA node. 317 * 318 * The following struct is used to enforce per-node max_active. When a pwq wants 319 * to start executing a work item, it should increment ->nr using 320 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over 321 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish 322 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in 323 * round-robin order. 324 */ 325 struct wq_node_nr_active { 326 int max; /* per-node max_active */ 327 atomic_t nr; /* per-node nr_active */ 328 raw_spinlock_t lock; /* nests inside pool locks */ 329 struct list_head pending_pwqs; /* LN: pwqs with inactive works */ 330 }; 331 332 /* 333 * The externally visible workqueue. It relays the issued work items to 334 * the appropriate worker_pool through its pool_workqueues. 335 */ 336 struct workqueue_struct { 337 struct list_head pwqs; /* WR: all pwqs of this wq */ 338 struct list_head list; /* PR: list of all workqueues */ 339 340 struct mutex mutex; /* protects this wq */ 341 int work_color; /* WQ: current work color */ 342 int flush_color; /* WQ: current flush color */ 343 atomic_t nr_pwqs_to_flush; /* flush in progress */ 344 struct wq_flusher *first_flusher; /* WQ: first flusher */ 345 struct list_head flusher_queue; /* WQ: flush waiters */ 346 struct list_head flusher_overflow; /* WQ: flush overflow list */ 347 348 struct list_head maydays; /* MD: pwqs requesting rescue */ 349 struct worker *rescuer; /* MD: rescue worker */ 350 351 int nr_drainers; /* WQ: drain in progress */ 352 353 /* See alloc_workqueue() function comment for info on min/max_active */ 354 int max_active; /* WO: max active works */ 355 int min_active; /* WO: min active works */ 356 int saved_max_active; /* WQ: saved max_active */ 357 int saved_min_active; /* WQ: saved min_active */ 358 359 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 360 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ 361 362 #ifdef CONFIG_SYSFS 363 struct wq_device *wq_dev; /* I: for sysfs interface */ 364 #endif 365 #ifdef CONFIG_LOCKDEP 366 char *lock_name; 367 struct lock_class_key key; 368 struct lockdep_map lockdep_map; 369 #endif 370 char name[WQ_NAME_LEN]; /* I: workqueue name */ 371 372 /* 373 * Destruction of workqueue_struct is RCU protected to allow walking 374 * the workqueues list without grabbing wq_pool_mutex. 375 * This is used to dump all workqueues from sysrq. 376 */ 377 struct rcu_head rcu; 378 379 /* hot fields used during command issue, aligned to cacheline */ 380 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 381 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */ 382 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ 383 }; 384 385 /* 386 * Each pod type describes how CPUs should be grouped for unbound workqueues. 387 * See the comment above workqueue_attrs->affn_scope. 388 */ 389 struct wq_pod_type { 390 int nr_pods; /* number of pods */ 391 cpumask_var_t *pod_cpus; /* pod -> cpus */ 392 int *pod_node; /* pod -> node */ 393 int *cpu_pod; /* cpu -> pod */ 394 }; 395 396 struct work_offq_data { 397 u32 pool_id; 398 u32 disable; 399 u32 flags; 400 }; 401 402 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 403 [WQ_AFFN_DFL] = "default", 404 [WQ_AFFN_CPU] = "cpu", 405 [WQ_AFFN_SMT] = "smt", 406 [WQ_AFFN_CACHE] = "cache", 407 [WQ_AFFN_NUMA] = "numa", 408 [WQ_AFFN_SYSTEM] = "system", 409 }; 410 411 /* 412 * Per-cpu work items which run for longer than the following threshold are 413 * automatically considered CPU intensive and excluded from concurrency 414 * management to prevent them from noticeably delaying other per-cpu work items. 415 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 416 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 417 */ 418 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 419 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 421 static unsigned int wq_cpu_intensive_warning_thresh = 4; 422 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644); 423 #endif 424 425 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 426 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 427 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 428 429 static bool wq_online; /* can kworkers be created yet? */ 430 static bool wq_topo_initialized __read_mostly = false; 431 432 static struct kmem_cache *pwq_cache; 433 434 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 435 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 436 437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 438 static struct workqueue_attrs *wq_update_pod_attrs_buf; 439 440 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 441 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 443 /* wait for manager to go away */ 444 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 445 446 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 447 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 448 449 /* PL&A: allowable cpus for unbound wqs and work items */ 450 static cpumask_var_t wq_unbound_cpumask; 451 452 /* PL: user requested unbound cpumask via sysfs */ 453 static cpumask_var_t wq_requested_unbound_cpumask; 454 455 /* PL: isolated cpumask to be excluded from unbound cpumask */ 456 static cpumask_var_t wq_isolated_cpumask; 457 458 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 459 static struct cpumask wq_cmdline_cpumask __initdata; 460 461 /* CPU where unbound work was last round robin scheduled from this CPU */ 462 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 463 464 /* 465 * Local execution of unbound work items is no longer guaranteed. The 466 * following always forces round-robin CPU selection on unbound work items 467 * to uncover usages which depend on it. 468 */ 469 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 470 static bool wq_debug_force_rr_cpu = true; 471 #else 472 static bool wq_debug_force_rr_cpu = false; 473 #endif 474 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 475 476 /* to raise softirq for the BH worker pools on other CPUs */ 477 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], 478 bh_pool_irq_works); 479 480 /* the BH worker pools */ 481 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 482 bh_worker_pools); 483 484 /* the per-cpu worker pools */ 485 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 486 cpu_worker_pools); 487 488 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 489 490 /* PL: hash of all unbound pools keyed by pool->attrs */ 491 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 492 493 /* I: attributes used when instantiating standard unbound pools on demand */ 494 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 495 496 /* I: attributes used when instantiating ordered pools on demand */ 497 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 498 499 /* 500 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 501 * process context while holding a pool lock. Bounce to a dedicated kthread 502 * worker to avoid A-A deadlocks. 503 */ 504 static struct kthread_worker *pwq_release_worker __ro_after_init; 505 506 struct workqueue_struct *system_wq __ro_after_init; 507 EXPORT_SYMBOL(system_wq); 508 struct workqueue_struct *system_highpri_wq __ro_after_init; 509 EXPORT_SYMBOL_GPL(system_highpri_wq); 510 struct workqueue_struct *system_long_wq __ro_after_init; 511 EXPORT_SYMBOL_GPL(system_long_wq); 512 struct workqueue_struct *system_unbound_wq __ro_after_init; 513 EXPORT_SYMBOL_GPL(system_unbound_wq); 514 struct workqueue_struct *system_freezable_wq __ro_after_init; 515 EXPORT_SYMBOL_GPL(system_freezable_wq); 516 struct workqueue_struct *system_power_efficient_wq __ro_after_init; 517 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 518 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; 519 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 520 struct workqueue_struct *system_bh_wq; 521 EXPORT_SYMBOL_GPL(system_bh_wq); 522 struct workqueue_struct *system_bh_highpri_wq; 523 EXPORT_SYMBOL_GPL(system_bh_highpri_wq); 524 525 static int worker_thread(void *__worker); 526 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 527 static void show_pwq(struct pool_workqueue *pwq); 528 static void show_one_worker_pool(struct worker_pool *pool); 529 530 #define CREATE_TRACE_POINTS 531 #include <trace/events/workqueue.h> 532 533 #define assert_rcu_or_pool_mutex() \ 534 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 535 !lockdep_is_held(&wq_pool_mutex), \ 536 "RCU or wq_pool_mutex should be held") 537 538 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 539 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 540 !lockdep_is_held(&wq->mutex) && \ 541 !lockdep_is_held(&wq_pool_mutex), \ 542 "RCU, wq->mutex or wq_pool_mutex should be held") 543 544 #define for_each_bh_worker_pool(pool, cpu) \ 545 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \ 546 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 547 (pool)++) 548 549 #define for_each_cpu_worker_pool(pool, cpu) \ 550 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 551 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 552 (pool)++) 553 554 /** 555 * for_each_pool - iterate through all worker_pools in the system 556 * @pool: iteration cursor 557 * @pi: integer used for iteration 558 * 559 * This must be called either with wq_pool_mutex held or RCU read 560 * locked. If the pool needs to be used beyond the locking in effect, the 561 * caller is responsible for guaranteeing that the pool stays online. 562 * 563 * The if/else clause exists only for the lockdep assertion and can be 564 * ignored. 565 */ 566 #define for_each_pool(pool, pi) \ 567 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 568 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 569 else 570 571 /** 572 * for_each_pool_worker - iterate through all workers of a worker_pool 573 * @worker: iteration cursor 574 * @pool: worker_pool to iterate workers of 575 * 576 * This must be called with wq_pool_attach_mutex. 577 * 578 * The if/else clause exists only for the lockdep assertion and can be 579 * ignored. 580 */ 581 #define for_each_pool_worker(worker, pool) \ 582 list_for_each_entry((worker), &(pool)->workers, node) \ 583 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 584 else 585 586 /** 587 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 588 * @pwq: iteration cursor 589 * @wq: the target workqueue 590 * 591 * This must be called either with wq->mutex held or RCU read locked. 592 * If the pwq needs to be used beyond the locking in effect, the caller is 593 * responsible for guaranteeing that the pwq stays online. 594 * 595 * The if/else clause exists only for the lockdep assertion and can be 596 * ignored. 597 */ 598 #define for_each_pwq(pwq, wq) \ 599 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 600 lockdep_is_held(&(wq->mutex))) 601 602 #ifdef CONFIG_DEBUG_OBJECTS_WORK 603 604 static const struct debug_obj_descr work_debug_descr; 605 606 static void *work_debug_hint(void *addr) 607 { 608 return ((struct work_struct *) addr)->func; 609 } 610 611 static bool work_is_static_object(void *addr) 612 { 613 struct work_struct *work = addr; 614 615 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 616 } 617 618 /* 619 * fixup_init is called when: 620 * - an active object is initialized 621 */ 622 static bool work_fixup_init(void *addr, enum debug_obj_state state) 623 { 624 struct work_struct *work = addr; 625 626 switch (state) { 627 case ODEBUG_STATE_ACTIVE: 628 cancel_work_sync(work); 629 debug_object_init(work, &work_debug_descr); 630 return true; 631 default: 632 return false; 633 } 634 } 635 636 /* 637 * fixup_free is called when: 638 * - an active object is freed 639 */ 640 static bool work_fixup_free(void *addr, enum debug_obj_state state) 641 { 642 struct work_struct *work = addr; 643 644 switch (state) { 645 case ODEBUG_STATE_ACTIVE: 646 cancel_work_sync(work); 647 debug_object_free(work, &work_debug_descr); 648 return true; 649 default: 650 return false; 651 } 652 } 653 654 static const struct debug_obj_descr work_debug_descr = { 655 .name = "work_struct", 656 .debug_hint = work_debug_hint, 657 .is_static_object = work_is_static_object, 658 .fixup_init = work_fixup_init, 659 .fixup_free = work_fixup_free, 660 }; 661 662 static inline void debug_work_activate(struct work_struct *work) 663 { 664 debug_object_activate(work, &work_debug_descr); 665 } 666 667 static inline void debug_work_deactivate(struct work_struct *work) 668 { 669 debug_object_deactivate(work, &work_debug_descr); 670 } 671 672 void __init_work(struct work_struct *work, int onstack) 673 { 674 if (onstack) 675 debug_object_init_on_stack(work, &work_debug_descr); 676 else 677 debug_object_init(work, &work_debug_descr); 678 } 679 EXPORT_SYMBOL_GPL(__init_work); 680 681 void destroy_work_on_stack(struct work_struct *work) 682 { 683 debug_object_free(work, &work_debug_descr); 684 } 685 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 686 687 void destroy_delayed_work_on_stack(struct delayed_work *work) 688 { 689 destroy_timer_on_stack(&work->timer); 690 debug_object_free(&work->work, &work_debug_descr); 691 } 692 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 693 694 #else 695 static inline void debug_work_activate(struct work_struct *work) { } 696 static inline void debug_work_deactivate(struct work_struct *work) { } 697 #endif 698 699 /** 700 * worker_pool_assign_id - allocate ID and assign it to @pool 701 * @pool: the pool pointer of interest 702 * 703 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 704 * successfully, -errno on failure. 705 */ 706 static int worker_pool_assign_id(struct worker_pool *pool) 707 { 708 int ret; 709 710 lockdep_assert_held(&wq_pool_mutex); 711 712 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 713 GFP_KERNEL); 714 if (ret >= 0) { 715 pool->id = ret; 716 return 0; 717 } 718 return ret; 719 } 720 721 static struct pool_workqueue __rcu ** 722 unbound_pwq_slot(struct workqueue_struct *wq, int cpu) 723 { 724 if (cpu >= 0) 725 return per_cpu_ptr(wq->cpu_pwq, cpu); 726 else 727 return &wq->dfl_pwq; 728 } 729 730 /* @cpu < 0 for dfl_pwq */ 731 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) 732 { 733 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), 734 lockdep_is_held(&wq_pool_mutex) || 735 lockdep_is_held(&wq->mutex)); 736 } 737 738 /** 739 * unbound_effective_cpumask - effective cpumask of an unbound workqueue 740 * @wq: workqueue of interest 741 * 742 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which 743 * is masked with wq_unbound_cpumask to determine the effective cpumask. The 744 * default pwq is always mapped to the pool with the current effective cpumask. 745 */ 746 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) 747 { 748 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask; 749 } 750 751 static unsigned int work_color_to_flags(int color) 752 { 753 return color << WORK_STRUCT_COLOR_SHIFT; 754 } 755 756 static int get_work_color(unsigned long work_data) 757 { 758 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 759 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 760 } 761 762 static int work_next_color(int color) 763 { 764 return (color + 1) % WORK_NR_COLORS; 765 } 766 767 static unsigned long pool_offq_flags(struct worker_pool *pool) 768 { 769 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0; 770 } 771 772 /* 773 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 774 * contain the pointer to the queued pwq. Once execution starts, the flag 775 * is cleared and the high bits contain OFFQ flags and pool ID. 776 * 777 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling() 778 * can be used to set the pwq, pool or clear work->data. These functions should 779 * only be called while the work is owned - ie. while the PENDING bit is set. 780 * 781 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 782 * corresponding to a work. Pool is available once the work has been 783 * queued anywhere after initialization until it is sync canceled. pwq is 784 * available only while the work item is queued. 785 */ 786 static inline void set_work_data(struct work_struct *work, unsigned long data) 787 { 788 WARN_ON_ONCE(!work_pending(work)); 789 atomic_long_set(&work->data, data | work_static(work)); 790 } 791 792 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 793 unsigned long flags) 794 { 795 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING | 796 WORK_STRUCT_PWQ | flags); 797 } 798 799 static void set_work_pool_and_keep_pending(struct work_struct *work, 800 int pool_id, unsigned long flags) 801 { 802 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 803 WORK_STRUCT_PENDING | flags); 804 } 805 806 static void set_work_pool_and_clear_pending(struct work_struct *work, 807 int pool_id, unsigned long flags) 808 { 809 /* 810 * The following wmb is paired with the implied mb in 811 * test_and_set_bit(PENDING) and ensures all updates to @work made 812 * here are visible to and precede any updates by the next PENDING 813 * owner. 814 */ 815 smp_wmb(); 816 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 817 flags); 818 /* 819 * The following mb guarantees that previous clear of a PENDING bit 820 * will not be reordered with any speculative LOADS or STORES from 821 * work->current_func, which is executed afterwards. This possible 822 * reordering can lead to a missed execution on attempt to queue 823 * the same @work. E.g. consider this case: 824 * 825 * CPU#0 CPU#1 826 * ---------------------------- -------------------------------- 827 * 828 * 1 STORE event_indicated 829 * 2 queue_work_on() { 830 * 3 test_and_set_bit(PENDING) 831 * 4 } set_..._and_clear_pending() { 832 * 5 set_work_data() # clear bit 833 * 6 smp_mb() 834 * 7 work->current_func() { 835 * 8 LOAD event_indicated 836 * } 837 * 838 * Without an explicit full barrier speculative LOAD on line 8 can 839 * be executed before CPU#0 does STORE on line 1. If that happens, 840 * CPU#0 observes the PENDING bit is still set and new execution of 841 * a @work is not queued in a hope, that CPU#1 will eventually 842 * finish the queued @work. Meanwhile CPU#1 does not see 843 * event_indicated is set, because speculative LOAD was executed 844 * before actual STORE. 845 */ 846 smp_mb(); 847 } 848 849 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 850 { 851 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK); 852 } 853 854 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 855 { 856 unsigned long data = atomic_long_read(&work->data); 857 858 if (data & WORK_STRUCT_PWQ) 859 return work_struct_pwq(data); 860 else 861 return NULL; 862 } 863 864 /** 865 * get_work_pool - return the worker_pool a given work was associated with 866 * @work: the work item of interest 867 * 868 * Pools are created and destroyed under wq_pool_mutex, and allows read 869 * access under RCU read lock. As such, this function should be 870 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 871 * 872 * All fields of the returned pool are accessible as long as the above 873 * mentioned locking is in effect. If the returned pool needs to be used 874 * beyond the critical section, the caller is responsible for ensuring the 875 * returned pool is and stays online. 876 * 877 * Return: The worker_pool @work was last associated with. %NULL if none. 878 */ 879 static struct worker_pool *get_work_pool(struct work_struct *work) 880 { 881 unsigned long data = atomic_long_read(&work->data); 882 int pool_id; 883 884 assert_rcu_or_pool_mutex(); 885 886 if (data & WORK_STRUCT_PWQ) 887 return work_struct_pwq(data)->pool; 888 889 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 890 if (pool_id == WORK_OFFQ_POOL_NONE) 891 return NULL; 892 893 return idr_find(&worker_pool_idr, pool_id); 894 } 895 896 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits) 897 { 898 return (v >> shift) & ((1 << bits) - 1); 899 } 900 901 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data) 902 { 903 WARN_ON_ONCE(data & WORK_STRUCT_PWQ); 904 905 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT, 906 WORK_OFFQ_POOL_BITS); 907 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT, 908 WORK_OFFQ_DISABLE_BITS); 909 offqd->flags = data & WORK_OFFQ_FLAG_MASK; 910 } 911 912 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd) 913 { 914 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) | 915 ((unsigned long)offqd->flags); 916 } 917 918 /* 919 * Policy functions. These define the policies on how the global worker 920 * pools are managed. Unless noted otherwise, these functions assume that 921 * they're being called with pool->lock held. 922 */ 923 924 /* 925 * Need to wake up a worker? Called from anything but currently 926 * running workers. 927 * 928 * Note that, because unbound workers never contribute to nr_running, this 929 * function will always return %true for unbound pools as long as the 930 * worklist isn't empty. 931 */ 932 static bool need_more_worker(struct worker_pool *pool) 933 { 934 return !list_empty(&pool->worklist) && !pool->nr_running; 935 } 936 937 /* Can I start working? Called from busy but !running workers. */ 938 static bool may_start_working(struct worker_pool *pool) 939 { 940 return pool->nr_idle; 941 } 942 943 /* Do I need to keep working? Called from currently running workers. */ 944 static bool keep_working(struct worker_pool *pool) 945 { 946 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 947 } 948 949 /* Do we need a new worker? Called from manager. */ 950 static bool need_to_create_worker(struct worker_pool *pool) 951 { 952 return need_more_worker(pool) && !may_start_working(pool); 953 } 954 955 /* Do we have too many workers and should some go away? */ 956 static bool too_many_workers(struct worker_pool *pool) 957 { 958 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 959 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 960 int nr_busy = pool->nr_workers - nr_idle; 961 962 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 963 } 964 965 /** 966 * worker_set_flags - set worker flags and adjust nr_running accordingly 967 * @worker: self 968 * @flags: flags to set 969 * 970 * Set @flags in @worker->flags and adjust nr_running accordingly. 971 */ 972 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 973 { 974 struct worker_pool *pool = worker->pool; 975 976 lockdep_assert_held(&pool->lock); 977 978 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 979 if ((flags & WORKER_NOT_RUNNING) && 980 !(worker->flags & WORKER_NOT_RUNNING)) { 981 pool->nr_running--; 982 } 983 984 worker->flags |= flags; 985 } 986 987 /** 988 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 989 * @worker: self 990 * @flags: flags to clear 991 * 992 * Clear @flags in @worker->flags and adjust nr_running accordingly. 993 */ 994 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 995 { 996 struct worker_pool *pool = worker->pool; 997 unsigned int oflags = worker->flags; 998 999 lockdep_assert_held(&pool->lock); 1000 1001 worker->flags &= ~flags; 1002 1003 /* 1004 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1005 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1006 * of multiple flags, not a single flag. 1007 */ 1008 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1009 if (!(worker->flags & WORKER_NOT_RUNNING)) 1010 pool->nr_running++; 1011 } 1012 1013 /* Return the first idle worker. Called with pool->lock held. */ 1014 static struct worker *first_idle_worker(struct worker_pool *pool) 1015 { 1016 if (unlikely(list_empty(&pool->idle_list))) 1017 return NULL; 1018 1019 return list_first_entry(&pool->idle_list, struct worker, entry); 1020 } 1021 1022 /** 1023 * worker_enter_idle - enter idle state 1024 * @worker: worker which is entering idle state 1025 * 1026 * @worker is entering idle state. Update stats and idle timer if 1027 * necessary. 1028 * 1029 * LOCKING: 1030 * raw_spin_lock_irq(pool->lock). 1031 */ 1032 static void worker_enter_idle(struct worker *worker) 1033 { 1034 struct worker_pool *pool = worker->pool; 1035 1036 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1037 WARN_ON_ONCE(!list_empty(&worker->entry) && 1038 (worker->hentry.next || worker->hentry.pprev))) 1039 return; 1040 1041 /* can't use worker_set_flags(), also called from create_worker() */ 1042 worker->flags |= WORKER_IDLE; 1043 pool->nr_idle++; 1044 worker->last_active = jiffies; 1045 1046 /* idle_list is LIFO */ 1047 list_add(&worker->entry, &pool->idle_list); 1048 1049 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1050 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1051 1052 /* Sanity check nr_running. */ 1053 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1054 } 1055 1056 /** 1057 * worker_leave_idle - leave idle state 1058 * @worker: worker which is leaving idle state 1059 * 1060 * @worker is leaving idle state. Update stats. 1061 * 1062 * LOCKING: 1063 * raw_spin_lock_irq(pool->lock). 1064 */ 1065 static void worker_leave_idle(struct worker *worker) 1066 { 1067 struct worker_pool *pool = worker->pool; 1068 1069 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1070 return; 1071 worker_clr_flags(worker, WORKER_IDLE); 1072 pool->nr_idle--; 1073 list_del_init(&worker->entry); 1074 } 1075 1076 /** 1077 * find_worker_executing_work - find worker which is executing a work 1078 * @pool: pool of interest 1079 * @work: work to find worker for 1080 * 1081 * Find a worker which is executing @work on @pool by searching 1082 * @pool->busy_hash which is keyed by the address of @work. For a worker 1083 * to match, its current execution should match the address of @work and 1084 * its work function. This is to avoid unwanted dependency between 1085 * unrelated work executions through a work item being recycled while still 1086 * being executed. 1087 * 1088 * This is a bit tricky. A work item may be freed once its execution 1089 * starts and nothing prevents the freed area from being recycled for 1090 * another work item. If the same work item address ends up being reused 1091 * before the original execution finishes, workqueue will identify the 1092 * recycled work item as currently executing and make it wait until the 1093 * current execution finishes, introducing an unwanted dependency. 1094 * 1095 * This function checks the work item address and work function to avoid 1096 * false positives. Note that this isn't complete as one may construct a 1097 * work function which can introduce dependency onto itself through a 1098 * recycled work item. Well, if somebody wants to shoot oneself in the 1099 * foot that badly, there's only so much we can do, and if such deadlock 1100 * actually occurs, it should be easy to locate the culprit work function. 1101 * 1102 * CONTEXT: 1103 * raw_spin_lock_irq(pool->lock). 1104 * 1105 * Return: 1106 * Pointer to worker which is executing @work if found, %NULL 1107 * otherwise. 1108 */ 1109 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1110 struct work_struct *work) 1111 { 1112 struct worker *worker; 1113 1114 hash_for_each_possible(pool->busy_hash, worker, hentry, 1115 (unsigned long)work) 1116 if (worker->current_work == work && 1117 worker->current_func == work->func) 1118 return worker; 1119 1120 return NULL; 1121 } 1122 1123 /** 1124 * move_linked_works - move linked works to a list 1125 * @work: start of series of works to be scheduled 1126 * @head: target list to append @work to 1127 * @nextp: out parameter for nested worklist walking 1128 * 1129 * Schedule linked works starting from @work to @head. Work series to be 1130 * scheduled starts at @work and includes any consecutive work with 1131 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1132 * @nextp. 1133 * 1134 * CONTEXT: 1135 * raw_spin_lock_irq(pool->lock). 1136 */ 1137 static void move_linked_works(struct work_struct *work, struct list_head *head, 1138 struct work_struct **nextp) 1139 { 1140 struct work_struct *n; 1141 1142 /* 1143 * Linked worklist will always end before the end of the list, 1144 * use NULL for list head. 1145 */ 1146 list_for_each_entry_safe_from(work, n, NULL, entry) { 1147 list_move_tail(&work->entry, head); 1148 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1149 break; 1150 } 1151 1152 /* 1153 * If we're already inside safe list traversal and have moved 1154 * multiple works to the scheduled queue, the next position 1155 * needs to be updated. 1156 */ 1157 if (nextp) 1158 *nextp = n; 1159 } 1160 1161 /** 1162 * assign_work - assign a work item and its linked work items to a worker 1163 * @work: work to assign 1164 * @worker: worker to assign to 1165 * @nextp: out parameter for nested worklist walking 1166 * 1167 * Assign @work and its linked work items to @worker. If @work is already being 1168 * executed by another worker in the same pool, it'll be punted there. 1169 * 1170 * If @nextp is not NULL, it's updated to point to the next work of the last 1171 * scheduled work. This allows assign_work() to be nested inside 1172 * list_for_each_entry_safe(). 1173 * 1174 * Returns %true if @work was successfully assigned to @worker. %false if @work 1175 * was punted to another worker already executing it. 1176 */ 1177 static bool assign_work(struct work_struct *work, struct worker *worker, 1178 struct work_struct **nextp) 1179 { 1180 struct worker_pool *pool = worker->pool; 1181 struct worker *collision; 1182 1183 lockdep_assert_held(&pool->lock); 1184 1185 /* 1186 * A single work shouldn't be executed concurrently by multiple workers. 1187 * __queue_work() ensures that @work doesn't jump to a different pool 1188 * while still running in the previous pool. Here, we should ensure that 1189 * @work is not executed concurrently by multiple workers from the same 1190 * pool. Check whether anyone is already processing the work. If so, 1191 * defer the work to the currently executing one. 1192 */ 1193 collision = find_worker_executing_work(pool, work); 1194 if (unlikely(collision)) { 1195 move_linked_works(work, &collision->scheduled, nextp); 1196 return false; 1197 } 1198 1199 move_linked_works(work, &worker->scheduled, nextp); 1200 return true; 1201 } 1202 1203 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool) 1204 { 1205 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0; 1206 1207 return &per_cpu(bh_pool_irq_works, pool->cpu)[high]; 1208 } 1209 1210 static void kick_bh_pool(struct worker_pool *pool) 1211 { 1212 #ifdef CONFIG_SMP 1213 /* see drain_dead_softirq_workfn() for BH_DRAINING */ 1214 if (unlikely(pool->cpu != smp_processor_id() && 1215 !(pool->flags & POOL_BH_DRAINING))) { 1216 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu); 1217 return; 1218 } 1219 #endif 1220 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 1221 raise_softirq_irqoff(HI_SOFTIRQ); 1222 else 1223 raise_softirq_irqoff(TASKLET_SOFTIRQ); 1224 } 1225 1226 /** 1227 * kick_pool - wake up an idle worker if necessary 1228 * @pool: pool to kick 1229 * 1230 * @pool may have pending work items. Wake up worker if necessary. Returns 1231 * whether a worker was woken up. 1232 */ 1233 static bool kick_pool(struct worker_pool *pool) 1234 { 1235 struct worker *worker = first_idle_worker(pool); 1236 struct task_struct *p; 1237 1238 lockdep_assert_held(&pool->lock); 1239 1240 if (!need_more_worker(pool) || !worker) 1241 return false; 1242 1243 if (pool->flags & POOL_BH) { 1244 kick_bh_pool(pool); 1245 return true; 1246 } 1247 1248 p = worker->task; 1249 1250 #ifdef CONFIG_SMP 1251 /* 1252 * Idle @worker is about to execute @work and waking up provides an 1253 * opportunity to migrate @worker at a lower cost by setting the task's 1254 * wake_cpu field. Let's see if we want to move @worker to improve 1255 * execution locality. 1256 * 1257 * We're waking the worker that went idle the latest and there's some 1258 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1259 * so, setting the wake_cpu won't do anything. As this is a best-effort 1260 * optimization and the race window is narrow, let's leave as-is for 1261 * now. If this becomes pronounced, we can skip over workers which are 1262 * still on cpu when picking an idle worker. 1263 * 1264 * If @pool has non-strict affinity, @worker might have ended up outside 1265 * its affinity scope. Repatriate. 1266 */ 1267 if (!pool->attrs->affn_strict && 1268 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1269 struct work_struct *work = list_first_entry(&pool->worklist, 1270 struct work_struct, entry); 1271 p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask); 1272 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1273 } 1274 #endif 1275 wake_up_process(p); 1276 return true; 1277 } 1278 1279 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1280 1281 /* 1282 * Concurrency-managed per-cpu work items that hog CPU for longer than 1283 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1284 * which prevents them from stalling other concurrency-managed work items. If a 1285 * work function keeps triggering this mechanism, it's likely that the work item 1286 * should be using an unbound workqueue instead. 1287 * 1288 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1289 * and report them so that they can be examined and converted to use unbound 1290 * workqueues as appropriate. To avoid flooding the console, each violating work 1291 * function is tracked and reported with exponential backoff. 1292 */ 1293 #define WCI_MAX_ENTS 128 1294 1295 struct wci_ent { 1296 work_func_t func; 1297 atomic64_t cnt; 1298 struct hlist_node hash_node; 1299 }; 1300 1301 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1302 static int wci_nr_ents; 1303 static DEFINE_RAW_SPINLOCK(wci_lock); 1304 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1305 1306 static struct wci_ent *wci_find_ent(work_func_t func) 1307 { 1308 struct wci_ent *ent; 1309 1310 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1311 (unsigned long)func) { 1312 if (ent->func == func) 1313 return ent; 1314 } 1315 return NULL; 1316 } 1317 1318 static void wq_cpu_intensive_report(work_func_t func) 1319 { 1320 struct wci_ent *ent; 1321 1322 restart: 1323 ent = wci_find_ent(func); 1324 if (ent) { 1325 u64 cnt; 1326 1327 /* 1328 * Start reporting from the warning_thresh and back off 1329 * exponentially. 1330 */ 1331 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1332 if (wq_cpu_intensive_warning_thresh && 1333 cnt >= wq_cpu_intensive_warning_thresh && 1334 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh)) 1335 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1336 ent->func, wq_cpu_intensive_thresh_us, 1337 atomic64_read(&ent->cnt)); 1338 return; 1339 } 1340 1341 /* 1342 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1343 * is exhausted, something went really wrong and we probably made enough 1344 * noise already. 1345 */ 1346 if (wci_nr_ents >= WCI_MAX_ENTS) 1347 return; 1348 1349 raw_spin_lock(&wci_lock); 1350 1351 if (wci_nr_ents >= WCI_MAX_ENTS) { 1352 raw_spin_unlock(&wci_lock); 1353 return; 1354 } 1355 1356 if (wci_find_ent(func)) { 1357 raw_spin_unlock(&wci_lock); 1358 goto restart; 1359 } 1360 1361 ent = &wci_ents[wci_nr_ents++]; 1362 ent->func = func; 1363 atomic64_set(&ent->cnt, 0); 1364 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1365 1366 raw_spin_unlock(&wci_lock); 1367 1368 goto restart; 1369 } 1370 1371 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1372 static void wq_cpu_intensive_report(work_func_t func) {} 1373 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1374 1375 /** 1376 * wq_worker_running - a worker is running again 1377 * @task: task waking up 1378 * 1379 * This function is called when a worker returns from schedule() 1380 */ 1381 void wq_worker_running(struct task_struct *task) 1382 { 1383 struct worker *worker = kthread_data(task); 1384 1385 if (!READ_ONCE(worker->sleeping)) 1386 return; 1387 1388 /* 1389 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1390 * and the nr_running increment below, we may ruin the nr_running reset 1391 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1392 * pool. Protect against such race. 1393 */ 1394 preempt_disable(); 1395 if (!(worker->flags & WORKER_NOT_RUNNING)) 1396 worker->pool->nr_running++; 1397 preempt_enable(); 1398 1399 /* 1400 * CPU intensive auto-detection cares about how long a work item hogged 1401 * CPU without sleeping. Reset the starting timestamp on wakeup. 1402 */ 1403 worker->current_at = worker->task->se.sum_exec_runtime; 1404 1405 WRITE_ONCE(worker->sleeping, 0); 1406 } 1407 1408 /** 1409 * wq_worker_sleeping - a worker is going to sleep 1410 * @task: task going to sleep 1411 * 1412 * This function is called from schedule() when a busy worker is 1413 * going to sleep. 1414 */ 1415 void wq_worker_sleeping(struct task_struct *task) 1416 { 1417 struct worker *worker = kthread_data(task); 1418 struct worker_pool *pool; 1419 1420 /* 1421 * Rescuers, which may not have all the fields set up like normal 1422 * workers, also reach here, let's not access anything before 1423 * checking NOT_RUNNING. 1424 */ 1425 if (worker->flags & WORKER_NOT_RUNNING) 1426 return; 1427 1428 pool = worker->pool; 1429 1430 /* Return if preempted before wq_worker_running() was reached */ 1431 if (READ_ONCE(worker->sleeping)) 1432 return; 1433 1434 WRITE_ONCE(worker->sleeping, 1); 1435 raw_spin_lock_irq(&pool->lock); 1436 1437 /* 1438 * Recheck in case unbind_workers() preempted us. We don't 1439 * want to decrement nr_running after the worker is unbound 1440 * and nr_running has been reset. 1441 */ 1442 if (worker->flags & WORKER_NOT_RUNNING) { 1443 raw_spin_unlock_irq(&pool->lock); 1444 return; 1445 } 1446 1447 pool->nr_running--; 1448 if (kick_pool(pool)) 1449 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1450 1451 raw_spin_unlock_irq(&pool->lock); 1452 } 1453 1454 /** 1455 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1456 * @task: task currently running 1457 * 1458 * Called from scheduler_tick(). We're in the IRQ context and the current 1459 * worker's fields which follow the 'K' locking rule can be accessed safely. 1460 */ 1461 void wq_worker_tick(struct task_struct *task) 1462 { 1463 struct worker *worker = kthread_data(task); 1464 struct pool_workqueue *pwq = worker->current_pwq; 1465 struct worker_pool *pool = worker->pool; 1466 1467 if (!pwq) 1468 return; 1469 1470 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1471 1472 if (!wq_cpu_intensive_thresh_us) 1473 return; 1474 1475 /* 1476 * If the current worker is concurrency managed and hogged the CPU for 1477 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1478 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1479 * 1480 * Set @worker->sleeping means that @worker is in the process of 1481 * switching out voluntarily and won't be contributing to 1482 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1483 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1484 * double decrements. The task is releasing the CPU anyway. Let's skip. 1485 * We probably want to make this prettier in the future. 1486 */ 1487 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1488 worker->task->se.sum_exec_runtime - worker->current_at < 1489 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1490 return; 1491 1492 raw_spin_lock(&pool->lock); 1493 1494 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1495 wq_cpu_intensive_report(worker->current_func); 1496 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1497 1498 if (kick_pool(pool)) 1499 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1500 1501 raw_spin_unlock(&pool->lock); 1502 } 1503 1504 /** 1505 * wq_worker_last_func - retrieve worker's last work function 1506 * @task: Task to retrieve last work function of. 1507 * 1508 * Determine the last function a worker executed. This is called from 1509 * the scheduler to get a worker's last known identity. 1510 * 1511 * CONTEXT: 1512 * raw_spin_lock_irq(rq->lock) 1513 * 1514 * This function is called during schedule() when a kworker is going 1515 * to sleep. It's used by psi to identify aggregation workers during 1516 * dequeuing, to allow periodic aggregation to shut-off when that 1517 * worker is the last task in the system or cgroup to go to sleep. 1518 * 1519 * As this function doesn't involve any workqueue-related locking, it 1520 * only returns stable values when called from inside the scheduler's 1521 * queuing and dequeuing paths, when @task, which must be a kworker, 1522 * is guaranteed to not be processing any works. 1523 * 1524 * Return: 1525 * The last work function %current executed as a worker, NULL if it 1526 * hasn't executed any work yet. 1527 */ 1528 work_func_t wq_worker_last_func(struct task_struct *task) 1529 { 1530 struct worker *worker = kthread_data(task); 1531 1532 return worker->last_func; 1533 } 1534 1535 /** 1536 * wq_node_nr_active - Determine wq_node_nr_active to use 1537 * @wq: workqueue of interest 1538 * @node: NUMA node, can be %NUMA_NO_NODE 1539 * 1540 * Determine wq_node_nr_active to use for @wq on @node. Returns: 1541 * 1542 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. 1543 * 1544 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. 1545 * 1546 * - Otherwise, node_nr_active[@node]. 1547 */ 1548 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, 1549 int node) 1550 { 1551 if (!(wq->flags & WQ_UNBOUND)) 1552 return NULL; 1553 1554 if (node == NUMA_NO_NODE) 1555 node = nr_node_ids; 1556 1557 return wq->node_nr_active[node]; 1558 } 1559 1560 /** 1561 * wq_update_node_max_active - Update per-node max_actives to use 1562 * @wq: workqueue to update 1563 * @off_cpu: CPU that's going down, -1 if a CPU is not going down 1564 * 1565 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is 1566 * distributed among nodes according to the proportions of numbers of online 1567 * cpus. The result is always between @wq->min_active and max_active. 1568 */ 1569 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) 1570 { 1571 struct cpumask *effective = unbound_effective_cpumask(wq); 1572 int min_active = READ_ONCE(wq->min_active); 1573 int max_active = READ_ONCE(wq->max_active); 1574 int total_cpus, node; 1575 1576 lockdep_assert_held(&wq->mutex); 1577 1578 if (!wq_topo_initialized) 1579 return; 1580 1581 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective)) 1582 off_cpu = -1; 1583 1584 total_cpus = cpumask_weight_and(effective, cpu_online_mask); 1585 if (off_cpu >= 0) 1586 total_cpus--; 1587 1588 for_each_node(node) { 1589 int node_cpus; 1590 1591 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node)); 1592 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node) 1593 node_cpus--; 1594 1595 wq_node_nr_active(wq, node)->max = 1596 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), 1597 min_active, max_active); 1598 } 1599 1600 wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active; 1601 } 1602 1603 /** 1604 * get_pwq - get an extra reference on the specified pool_workqueue 1605 * @pwq: pool_workqueue to get 1606 * 1607 * Obtain an extra reference on @pwq. The caller should guarantee that 1608 * @pwq has positive refcnt and be holding the matching pool->lock. 1609 */ 1610 static void get_pwq(struct pool_workqueue *pwq) 1611 { 1612 lockdep_assert_held(&pwq->pool->lock); 1613 WARN_ON_ONCE(pwq->refcnt <= 0); 1614 pwq->refcnt++; 1615 } 1616 1617 /** 1618 * put_pwq - put a pool_workqueue reference 1619 * @pwq: pool_workqueue to put 1620 * 1621 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1622 * destruction. The caller should be holding the matching pool->lock. 1623 */ 1624 static void put_pwq(struct pool_workqueue *pwq) 1625 { 1626 lockdep_assert_held(&pwq->pool->lock); 1627 if (likely(--pwq->refcnt)) 1628 return; 1629 /* 1630 * @pwq can't be released under pool->lock, bounce to a dedicated 1631 * kthread_worker to avoid A-A deadlocks. 1632 */ 1633 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1634 } 1635 1636 /** 1637 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1638 * @pwq: pool_workqueue to put (can be %NULL) 1639 * 1640 * put_pwq() with locking. This function also allows %NULL @pwq. 1641 */ 1642 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1643 { 1644 if (pwq) { 1645 /* 1646 * As both pwqs and pools are RCU protected, the 1647 * following lock operations are safe. 1648 */ 1649 raw_spin_lock_irq(&pwq->pool->lock); 1650 put_pwq(pwq); 1651 raw_spin_unlock_irq(&pwq->pool->lock); 1652 } 1653 } 1654 1655 static bool pwq_is_empty(struct pool_workqueue *pwq) 1656 { 1657 return !pwq->nr_active && list_empty(&pwq->inactive_works); 1658 } 1659 1660 static void __pwq_activate_work(struct pool_workqueue *pwq, 1661 struct work_struct *work) 1662 { 1663 unsigned long *wdb = work_data_bits(work); 1664 1665 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); 1666 trace_workqueue_activate_work(work); 1667 if (list_empty(&pwq->pool->worklist)) 1668 pwq->pool->watchdog_ts = jiffies; 1669 move_linked_works(work, &pwq->pool->worklist, NULL); 1670 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); 1671 } 1672 1673 /** 1674 * pwq_activate_work - Activate a work item if inactive 1675 * @pwq: pool_workqueue @work belongs to 1676 * @work: work item to activate 1677 * 1678 * Returns %true if activated. %false if already active. 1679 */ 1680 static bool pwq_activate_work(struct pool_workqueue *pwq, 1681 struct work_struct *work) 1682 { 1683 struct worker_pool *pool = pwq->pool; 1684 struct wq_node_nr_active *nna; 1685 1686 lockdep_assert_held(&pool->lock); 1687 1688 if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE)) 1689 return false; 1690 1691 nna = wq_node_nr_active(pwq->wq, pool->node); 1692 if (nna) 1693 atomic_inc(&nna->nr); 1694 1695 pwq->nr_active++; 1696 __pwq_activate_work(pwq, work); 1697 return true; 1698 } 1699 1700 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) 1701 { 1702 int max = READ_ONCE(nna->max); 1703 1704 while (true) { 1705 int old, tmp; 1706 1707 old = atomic_read(&nna->nr); 1708 if (old >= max) 1709 return false; 1710 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1); 1711 if (tmp == old) 1712 return true; 1713 } 1714 } 1715 1716 /** 1717 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq 1718 * @pwq: pool_workqueue of interest 1719 * @fill: max_active may have increased, try to increase concurrency level 1720 * 1721 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is 1722 * successfully obtained. %false otherwise. 1723 */ 1724 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) 1725 { 1726 struct workqueue_struct *wq = pwq->wq; 1727 struct worker_pool *pool = pwq->pool; 1728 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node); 1729 bool obtained = false; 1730 1731 lockdep_assert_held(&pool->lock); 1732 1733 if (!nna) { 1734 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */ 1735 obtained = pwq->nr_active < READ_ONCE(wq->max_active); 1736 goto out; 1737 } 1738 1739 if (unlikely(pwq->plugged)) 1740 return false; 1741 1742 /* 1743 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is 1744 * already waiting on $nna, pwq_dec_nr_active() will maintain the 1745 * concurrency level. Don't jump the line. 1746 * 1747 * We need to ignore the pending test after max_active has increased as 1748 * pwq_dec_nr_active() can only maintain the concurrency level but not 1749 * increase it. This is indicated by @fill. 1750 */ 1751 if (!list_empty(&pwq->pending_node) && likely(!fill)) 1752 goto out; 1753 1754 obtained = tryinc_node_nr_active(nna); 1755 if (obtained) 1756 goto out; 1757 1758 /* 1759 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs 1760 * and try again. The smp_mb() is paired with the implied memory barrier 1761 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either 1762 * we see the decremented $nna->nr or they see non-empty 1763 * $nna->pending_pwqs. 1764 */ 1765 raw_spin_lock(&nna->lock); 1766 1767 if (list_empty(&pwq->pending_node)) 1768 list_add_tail(&pwq->pending_node, &nna->pending_pwqs); 1769 else if (likely(!fill)) 1770 goto out_unlock; 1771 1772 smp_mb(); 1773 1774 obtained = tryinc_node_nr_active(nna); 1775 1776 /* 1777 * If @fill, @pwq might have already been pending. Being spuriously 1778 * pending in cold paths doesn't affect anything. Let's leave it be. 1779 */ 1780 if (obtained && likely(!fill)) 1781 list_del_init(&pwq->pending_node); 1782 1783 out_unlock: 1784 raw_spin_unlock(&nna->lock); 1785 out: 1786 if (obtained) 1787 pwq->nr_active++; 1788 return obtained; 1789 } 1790 1791 /** 1792 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq 1793 * @pwq: pool_workqueue of interest 1794 * @fill: max_active may have increased, try to increase concurrency level 1795 * 1796 * Activate the first inactive work item of @pwq if available and allowed by 1797 * max_active limit. 1798 * 1799 * Returns %true if an inactive work item has been activated. %false if no 1800 * inactive work item is found or max_active limit is reached. 1801 */ 1802 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) 1803 { 1804 struct work_struct *work = 1805 list_first_entry_or_null(&pwq->inactive_works, 1806 struct work_struct, entry); 1807 1808 if (work && pwq_tryinc_nr_active(pwq, fill)) { 1809 __pwq_activate_work(pwq, work); 1810 return true; 1811 } else { 1812 return false; 1813 } 1814 } 1815 1816 /** 1817 * unplug_oldest_pwq - unplug the oldest pool_workqueue 1818 * @wq: workqueue_struct where its oldest pwq is to be unplugged 1819 * 1820 * This function should only be called for ordered workqueues where only the 1821 * oldest pwq is unplugged, the others are plugged to suspend execution to 1822 * ensure proper work item ordering:: 1823 * 1824 * dfl_pwq --------------+ [P] - plugged 1825 * | 1826 * v 1827 * pwqs -> A -> B [P] -> C [P] (newest) 1828 * | | | 1829 * 1 3 5 1830 * | | | 1831 * 2 4 6 1832 * 1833 * When the oldest pwq is drained and removed, this function should be called 1834 * to unplug the next oldest one to start its work item execution. Note that 1835 * pwq's are linked into wq->pwqs with the oldest first, so the first one in 1836 * the list is the oldest. 1837 */ 1838 static void unplug_oldest_pwq(struct workqueue_struct *wq) 1839 { 1840 struct pool_workqueue *pwq; 1841 1842 lockdep_assert_held(&wq->mutex); 1843 1844 /* Caller should make sure that pwqs isn't empty before calling */ 1845 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue, 1846 pwqs_node); 1847 raw_spin_lock_irq(&pwq->pool->lock); 1848 if (pwq->plugged) { 1849 pwq->plugged = false; 1850 if (pwq_activate_first_inactive(pwq, true)) 1851 kick_pool(pwq->pool); 1852 } 1853 raw_spin_unlock_irq(&pwq->pool->lock); 1854 } 1855 1856 /** 1857 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active 1858 * @nna: wq_node_nr_active to activate a pending pwq for 1859 * @caller_pool: worker_pool the caller is locking 1860 * 1861 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. 1862 * @caller_pool may be unlocked and relocked to lock other worker_pools. 1863 */ 1864 static void node_activate_pending_pwq(struct wq_node_nr_active *nna, 1865 struct worker_pool *caller_pool) 1866 { 1867 struct worker_pool *locked_pool = caller_pool; 1868 struct pool_workqueue *pwq; 1869 struct work_struct *work; 1870 1871 lockdep_assert_held(&caller_pool->lock); 1872 1873 raw_spin_lock(&nna->lock); 1874 retry: 1875 pwq = list_first_entry_or_null(&nna->pending_pwqs, 1876 struct pool_workqueue, pending_node); 1877 if (!pwq) 1878 goto out_unlock; 1879 1880 /* 1881 * If @pwq is for a different pool than @locked_pool, we need to lock 1882 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock 1883 * / lock dance. For that, we also need to release @nna->lock as it's 1884 * nested inside pool locks. 1885 */ 1886 if (pwq->pool != locked_pool) { 1887 raw_spin_unlock(&locked_pool->lock); 1888 locked_pool = pwq->pool; 1889 if (!raw_spin_trylock(&locked_pool->lock)) { 1890 raw_spin_unlock(&nna->lock); 1891 raw_spin_lock(&locked_pool->lock); 1892 raw_spin_lock(&nna->lock); 1893 goto retry; 1894 } 1895 } 1896 1897 /* 1898 * $pwq may not have any inactive work items due to e.g. cancellations. 1899 * Drop it from pending_pwqs and see if there's another one. 1900 */ 1901 work = list_first_entry_or_null(&pwq->inactive_works, 1902 struct work_struct, entry); 1903 if (!work) { 1904 list_del_init(&pwq->pending_node); 1905 goto retry; 1906 } 1907 1908 /* 1909 * Acquire an nr_active count and activate the inactive work item. If 1910 * $pwq still has inactive work items, rotate it to the end of the 1911 * pending_pwqs so that we round-robin through them. This means that 1912 * inactive work items are not activated in queueing order which is fine 1913 * given that there has never been any ordering across different pwqs. 1914 */ 1915 if (likely(tryinc_node_nr_active(nna))) { 1916 pwq->nr_active++; 1917 __pwq_activate_work(pwq, work); 1918 1919 if (list_empty(&pwq->inactive_works)) 1920 list_del_init(&pwq->pending_node); 1921 else 1922 list_move_tail(&pwq->pending_node, &nna->pending_pwqs); 1923 1924 /* if activating a foreign pool, make sure it's running */ 1925 if (pwq->pool != caller_pool) 1926 kick_pool(pwq->pool); 1927 } 1928 1929 out_unlock: 1930 raw_spin_unlock(&nna->lock); 1931 if (locked_pool != caller_pool) { 1932 raw_spin_unlock(&locked_pool->lock); 1933 raw_spin_lock(&caller_pool->lock); 1934 } 1935 } 1936 1937 /** 1938 * pwq_dec_nr_active - Retire an active count 1939 * @pwq: pool_workqueue of interest 1940 * 1941 * Decrement @pwq's nr_active and try to activate the first inactive work item. 1942 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. 1943 */ 1944 static void pwq_dec_nr_active(struct pool_workqueue *pwq) 1945 { 1946 struct worker_pool *pool = pwq->pool; 1947 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node); 1948 1949 lockdep_assert_held(&pool->lock); 1950 1951 /* 1952 * @pwq->nr_active should be decremented for both percpu and unbound 1953 * workqueues. 1954 */ 1955 pwq->nr_active--; 1956 1957 /* 1958 * For a percpu workqueue, it's simple. Just need to kick the first 1959 * inactive work item on @pwq itself. 1960 */ 1961 if (!nna) { 1962 pwq_activate_first_inactive(pwq, false); 1963 return; 1964 } 1965 1966 /* 1967 * If @pwq is for an unbound workqueue, it's more complicated because 1968 * multiple pwqs and pools may be sharing the nr_active count. When a 1969 * pwq needs to wait for an nr_active count, it puts itself on 1970 * $nna->pending_pwqs. The following atomic_dec_return()'s implied 1971 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to 1972 * guarantee that either we see non-empty pending_pwqs or they see 1973 * decremented $nna->nr. 1974 * 1975 * $nna->max may change as CPUs come online/offline and @pwq->wq's 1976 * max_active gets updated. However, it is guaranteed to be equal to or 1977 * larger than @pwq->wq->min_active which is above zero unless freezing. 1978 * This maintains the forward progress guarantee. 1979 */ 1980 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max)) 1981 return; 1982 1983 if (!list_empty(&nna->pending_pwqs)) 1984 node_activate_pending_pwq(nna, pool); 1985 } 1986 1987 /** 1988 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1989 * @pwq: pwq of interest 1990 * @work_data: work_data of work which left the queue 1991 * 1992 * A work either has completed or is removed from pending queue, 1993 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1994 * 1995 * NOTE: 1996 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock 1997 * and thus should be called after all other state updates for the in-flight 1998 * work item is complete. 1999 * 2000 * CONTEXT: 2001 * raw_spin_lock_irq(pool->lock). 2002 */ 2003 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 2004 { 2005 int color = get_work_color(work_data); 2006 2007 if (!(work_data & WORK_STRUCT_INACTIVE)) 2008 pwq_dec_nr_active(pwq); 2009 2010 pwq->nr_in_flight[color]--; 2011 2012 /* is flush in progress and are we at the flushing tip? */ 2013 if (likely(pwq->flush_color != color)) 2014 goto out_put; 2015 2016 /* are there still in-flight works? */ 2017 if (pwq->nr_in_flight[color]) 2018 goto out_put; 2019 2020 /* this pwq is done, clear flush_color */ 2021 pwq->flush_color = -1; 2022 2023 /* 2024 * If this was the last pwq, wake up the first flusher. It 2025 * will handle the rest. 2026 */ 2027 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 2028 complete(&pwq->wq->first_flusher->done); 2029 out_put: 2030 put_pwq(pwq); 2031 } 2032 2033 /** 2034 * try_to_grab_pending - steal work item from worklist and disable irq 2035 * @work: work item to steal 2036 * @cflags: %WORK_CANCEL_ flags 2037 * @irq_flags: place to store irq state 2038 * 2039 * Try to grab PENDING bit of @work. This function can handle @work in any 2040 * stable state - idle, on timer or on worklist. 2041 * 2042 * Return: 2043 * 2044 * ======== ================================================================ 2045 * 1 if @work was pending and we successfully stole PENDING 2046 * 0 if @work was idle and we claimed PENDING 2047 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 2048 * ======== ================================================================ 2049 * 2050 * Note: 2051 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 2052 * interrupted while holding PENDING and @work off queue, irq must be 2053 * disabled on entry. This, combined with delayed_work->timer being 2054 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 2055 * 2056 * On successful return, >= 0, irq is disabled and the caller is 2057 * responsible for releasing it using local_irq_restore(*@irq_flags). 2058 * 2059 * This function is safe to call from any context including IRQ handler. 2060 */ 2061 static int try_to_grab_pending(struct work_struct *work, u32 cflags, 2062 unsigned long *irq_flags) 2063 { 2064 struct worker_pool *pool; 2065 struct pool_workqueue *pwq; 2066 2067 local_irq_save(*irq_flags); 2068 2069 /* try to steal the timer if it exists */ 2070 if (cflags & WORK_CANCEL_DELAYED) { 2071 struct delayed_work *dwork = to_delayed_work(work); 2072 2073 /* 2074 * dwork->timer is irqsafe. If del_timer() fails, it's 2075 * guaranteed that the timer is not queued anywhere and not 2076 * running on the local CPU. 2077 */ 2078 if (likely(del_timer(&dwork->timer))) 2079 return 1; 2080 } 2081 2082 /* try to claim PENDING the normal way */ 2083 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2084 return 0; 2085 2086 rcu_read_lock(); 2087 /* 2088 * The queueing is in progress, or it is already queued. Try to 2089 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2090 */ 2091 pool = get_work_pool(work); 2092 if (!pool) 2093 goto fail; 2094 2095 raw_spin_lock(&pool->lock); 2096 /* 2097 * work->data is guaranteed to point to pwq only while the work 2098 * item is queued on pwq->wq, and both updating work->data to point 2099 * to pwq on queueing and to pool on dequeueing are done under 2100 * pwq->pool->lock. This in turn guarantees that, if work->data 2101 * points to pwq which is associated with a locked pool, the work 2102 * item is currently queued on that pool. 2103 */ 2104 pwq = get_work_pwq(work); 2105 if (pwq && pwq->pool == pool) { 2106 unsigned long work_data; 2107 2108 debug_work_deactivate(work); 2109 2110 /* 2111 * A cancelable inactive work item must be in the 2112 * pwq->inactive_works since a queued barrier can't be 2113 * canceled (see the comments in insert_wq_barrier()). 2114 * 2115 * An inactive work item cannot be grabbed directly because 2116 * it might have linked barrier work items which, if left 2117 * on the inactive_works list, will confuse pwq->nr_active 2118 * management later on and cause stall. Make sure the work 2119 * item is activated before grabbing. 2120 */ 2121 pwq_activate_work(pwq, work); 2122 2123 list_del_init(&work->entry); 2124 2125 /* 2126 * work->data points to pwq iff queued. Let's point to pool. As 2127 * this destroys work->data needed by the next step, stash it. 2128 */ 2129 work_data = *work_data_bits(work); 2130 set_work_pool_and_keep_pending(work, pool->id, 2131 pool_offq_flags(pool)); 2132 2133 /* must be the last step, see the function comment */ 2134 pwq_dec_nr_in_flight(pwq, work_data); 2135 2136 raw_spin_unlock(&pool->lock); 2137 rcu_read_unlock(); 2138 return 1; 2139 } 2140 raw_spin_unlock(&pool->lock); 2141 fail: 2142 rcu_read_unlock(); 2143 local_irq_restore(*irq_flags); 2144 return -EAGAIN; 2145 } 2146 2147 /** 2148 * work_grab_pending - steal work item from worklist and disable irq 2149 * @work: work item to steal 2150 * @cflags: %WORK_CANCEL_ flags 2151 * @irq_flags: place to store IRQ state 2152 * 2153 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer 2154 * or on worklist. 2155 * 2156 * Can be called from any context. IRQ is disabled on return with IRQ state 2157 * stored in *@irq_flags. The caller is responsible for re-enabling it using 2158 * local_irq_restore(). 2159 * 2160 * Returns %true if @work was pending. %false if idle. 2161 */ 2162 static bool work_grab_pending(struct work_struct *work, u32 cflags, 2163 unsigned long *irq_flags) 2164 { 2165 int ret; 2166 2167 while (true) { 2168 ret = try_to_grab_pending(work, cflags, irq_flags); 2169 if (ret >= 0) 2170 return ret; 2171 cpu_relax(); 2172 } 2173 } 2174 2175 /** 2176 * insert_work - insert a work into a pool 2177 * @pwq: pwq @work belongs to 2178 * @work: work to insert 2179 * @head: insertion point 2180 * @extra_flags: extra WORK_STRUCT_* flags to set 2181 * 2182 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 2183 * work_struct flags. 2184 * 2185 * CONTEXT: 2186 * raw_spin_lock_irq(pool->lock). 2187 */ 2188 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 2189 struct list_head *head, unsigned int extra_flags) 2190 { 2191 debug_work_activate(work); 2192 2193 /* record the work call stack in order to print it in KASAN reports */ 2194 kasan_record_aux_stack_noalloc(work); 2195 2196 /* we own @work, set data and link */ 2197 set_work_pwq(work, pwq, extra_flags); 2198 list_add_tail(&work->entry, head); 2199 get_pwq(pwq); 2200 } 2201 2202 /* 2203 * Test whether @work is being queued from another work executing on the 2204 * same workqueue. 2205 */ 2206 static bool is_chained_work(struct workqueue_struct *wq) 2207 { 2208 struct worker *worker; 2209 2210 worker = current_wq_worker(); 2211 /* 2212 * Return %true iff I'm a worker executing a work item on @wq. If 2213 * I'm @worker, it's safe to dereference it without locking. 2214 */ 2215 return worker && worker->current_pwq->wq == wq; 2216 } 2217 2218 /* 2219 * When queueing an unbound work item to a wq, prefer local CPU if allowed 2220 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 2221 * avoid perturbing sensitive tasks. 2222 */ 2223 static int wq_select_unbound_cpu(int cpu) 2224 { 2225 int new_cpu; 2226 2227 if (likely(!wq_debug_force_rr_cpu)) { 2228 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 2229 return cpu; 2230 } else { 2231 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 2232 } 2233 2234 new_cpu = __this_cpu_read(wq_rr_cpu_last); 2235 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 2236 if (unlikely(new_cpu >= nr_cpu_ids)) { 2237 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 2238 if (unlikely(new_cpu >= nr_cpu_ids)) 2239 return cpu; 2240 } 2241 __this_cpu_write(wq_rr_cpu_last, new_cpu); 2242 2243 return new_cpu; 2244 } 2245 2246 static void __queue_work(int cpu, struct workqueue_struct *wq, 2247 struct work_struct *work) 2248 { 2249 struct pool_workqueue *pwq; 2250 struct worker_pool *last_pool, *pool; 2251 unsigned int work_flags; 2252 unsigned int req_cpu = cpu; 2253 2254 /* 2255 * While a work item is PENDING && off queue, a task trying to 2256 * steal the PENDING will busy-loop waiting for it to either get 2257 * queued or lose PENDING. Grabbing PENDING and queueing should 2258 * happen with IRQ disabled. 2259 */ 2260 lockdep_assert_irqs_disabled(); 2261 2262 /* 2263 * For a draining wq, only works from the same workqueue are 2264 * allowed. The __WQ_DESTROYING helps to spot the issue that 2265 * queues a new work item to a wq after destroy_workqueue(wq). 2266 */ 2267 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 2268 WARN_ON_ONCE(!is_chained_work(wq)))) 2269 return; 2270 rcu_read_lock(); 2271 retry: 2272 /* pwq which will be used unless @work is executing elsewhere */ 2273 if (req_cpu == WORK_CPU_UNBOUND) { 2274 if (wq->flags & WQ_UNBOUND) 2275 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 2276 else 2277 cpu = raw_smp_processor_id(); 2278 } 2279 2280 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 2281 pool = pwq->pool; 2282 2283 /* 2284 * If @work was previously on a different pool, it might still be 2285 * running there, in which case the work needs to be queued on that 2286 * pool to guarantee non-reentrancy. 2287 */ 2288 last_pool = get_work_pool(work); 2289 if (last_pool && last_pool != pool) { 2290 struct worker *worker; 2291 2292 raw_spin_lock(&last_pool->lock); 2293 2294 worker = find_worker_executing_work(last_pool, work); 2295 2296 if (worker && worker->current_pwq->wq == wq) { 2297 pwq = worker->current_pwq; 2298 pool = pwq->pool; 2299 WARN_ON_ONCE(pool != last_pool); 2300 } else { 2301 /* meh... not running there, queue here */ 2302 raw_spin_unlock(&last_pool->lock); 2303 raw_spin_lock(&pool->lock); 2304 } 2305 } else { 2306 raw_spin_lock(&pool->lock); 2307 } 2308 2309 /* 2310 * pwq is determined and locked. For unbound pools, we could have raced 2311 * with pwq release and it could already be dead. If its refcnt is zero, 2312 * repeat pwq selection. Note that unbound pwqs never die without 2313 * another pwq replacing it in cpu_pwq or while work items are executing 2314 * on it, so the retrying is guaranteed to make forward-progress. 2315 */ 2316 if (unlikely(!pwq->refcnt)) { 2317 if (wq->flags & WQ_UNBOUND) { 2318 raw_spin_unlock(&pool->lock); 2319 cpu_relax(); 2320 goto retry; 2321 } 2322 /* oops */ 2323 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 2324 wq->name, cpu); 2325 } 2326 2327 /* pwq determined, queue */ 2328 trace_workqueue_queue_work(req_cpu, pwq, work); 2329 2330 if (WARN_ON(!list_empty(&work->entry))) 2331 goto out; 2332 2333 pwq->nr_in_flight[pwq->work_color]++; 2334 work_flags = work_color_to_flags(pwq->work_color); 2335 2336 /* 2337 * Limit the number of concurrently active work items to max_active. 2338 * @work must also queue behind existing inactive work items to maintain 2339 * ordering when max_active changes. See wq_adjust_max_active(). 2340 */ 2341 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) { 2342 if (list_empty(&pool->worklist)) 2343 pool->watchdog_ts = jiffies; 2344 2345 trace_workqueue_activate_work(work); 2346 insert_work(pwq, work, &pool->worklist, work_flags); 2347 kick_pool(pool); 2348 } else { 2349 work_flags |= WORK_STRUCT_INACTIVE; 2350 insert_work(pwq, work, &pwq->inactive_works, work_flags); 2351 } 2352 2353 out: 2354 raw_spin_unlock(&pool->lock); 2355 rcu_read_unlock(); 2356 } 2357 2358 static bool clear_pending_if_disabled(struct work_struct *work) 2359 { 2360 unsigned long data = *work_data_bits(work); 2361 struct work_offq_data offqd; 2362 2363 if (likely((data & WORK_STRUCT_PWQ) || 2364 !(data & WORK_OFFQ_DISABLE_MASK))) 2365 return false; 2366 2367 work_offqd_unpack(&offqd, data); 2368 set_work_pool_and_clear_pending(work, offqd.pool_id, 2369 work_offqd_pack_flags(&offqd)); 2370 return true; 2371 } 2372 2373 /** 2374 * queue_work_on - queue work on specific cpu 2375 * @cpu: CPU number to execute work on 2376 * @wq: workqueue to use 2377 * @work: work to queue 2378 * 2379 * We queue the work to a specific CPU, the caller must ensure it 2380 * can't go away. Callers that fail to ensure that the specified 2381 * CPU cannot go away will execute on a randomly chosen CPU. 2382 * But note well that callers specifying a CPU that never has been 2383 * online will get a splat. 2384 * 2385 * Return: %false if @work was already on a queue, %true otherwise. 2386 */ 2387 bool queue_work_on(int cpu, struct workqueue_struct *wq, 2388 struct work_struct *work) 2389 { 2390 bool ret = false; 2391 unsigned long irq_flags; 2392 2393 local_irq_save(irq_flags); 2394 2395 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2396 !clear_pending_if_disabled(work)) { 2397 __queue_work(cpu, wq, work); 2398 ret = true; 2399 } 2400 2401 local_irq_restore(irq_flags); 2402 return ret; 2403 } 2404 EXPORT_SYMBOL(queue_work_on); 2405 2406 /** 2407 * select_numa_node_cpu - Select a CPU based on NUMA node 2408 * @node: NUMA node ID that we want to select a CPU from 2409 * 2410 * This function will attempt to find a "random" cpu available on a given 2411 * node. If there are no CPUs available on the given node it will return 2412 * WORK_CPU_UNBOUND indicating that we should just schedule to any 2413 * available CPU if we need to schedule this work. 2414 */ 2415 static int select_numa_node_cpu(int node) 2416 { 2417 int cpu; 2418 2419 /* Delay binding to CPU if node is not valid or online */ 2420 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 2421 return WORK_CPU_UNBOUND; 2422 2423 /* Use local node/cpu if we are already there */ 2424 cpu = raw_smp_processor_id(); 2425 if (node == cpu_to_node(cpu)) 2426 return cpu; 2427 2428 /* Use "random" otherwise know as "first" online CPU of node */ 2429 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 2430 2431 /* If CPU is valid return that, otherwise just defer */ 2432 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 2433 } 2434 2435 /** 2436 * queue_work_node - queue work on a "random" cpu for a given NUMA node 2437 * @node: NUMA node that we are targeting the work for 2438 * @wq: workqueue to use 2439 * @work: work to queue 2440 * 2441 * We queue the work to a "random" CPU within a given NUMA node. The basic 2442 * idea here is to provide a way to somehow associate work with a given 2443 * NUMA node. 2444 * 2445 * This function will only make a best effort attempt at getting this onto 2446 * the right NUMA node. If no node is requested or the requested node is 2447 * offline then we just fall back to standard queue_work behavior. 2448 * 2449 * Currently the "random" CPU ends up being the first available CPU in the 2450 * intersection of cpu_online_mask and the cpumask of the node, unless we 2451 * are running on the node. In that case we just use the current CPU. 2452 * 2453 * Return: %false if @work was already on a queue, %true otherwise. 2454 */ 2455 bool queue_work_node(int node, struct workqueue_struct *wq, 2456 struct work_struct *work) 2457 { 2458 unsigned long irq_flags; 2459 bool ret = false; 2460 2461 /* 2462 * This current implementation is specific to unbound workqueues. 2463 * Specifically we only return the first available CPU for a given 2464 * node instead of cycling through individual CPUs within the node. 2465 * 2466 * If this is used with a per-cpu workqueue then the logic in 2467 * workqueue_select_cpu_near would need to be updated to allow for 2468 * some round robin type logic. 2469 */ 2470 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 2471 2472 local_irq_save(irq_flags); 2473 2474 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2475 !clear_pending_if_disabled(work)) { 2476 int cpu = select_numa_node_cpu(node); 2477 2478 __queue_work(cpu, wq, work); 2479 ret = true; 2480 } 2481 2482 local_irq_restore(irq_flags); 2483 return ret; 2484 } 2485 EXPORT_SYMBOL_GPL(queue_work_node); 2486 2487 void delayed_work_timer_fn(struct timer_list *t) 2488 { 2489 struct delayed_work *dwork = from_timer(dwork, t, timer); 2490 2491 /* should have been called from irqsafe timer with irq already off */ 2492 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2493 } 2494 EXPORT_SYMBOL(delayed_work_timer_fn); 2495 2496 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 2497 struct delayed_work *dwork, unsigned long delay) 2498 { 2499 struct timer_list *timer = &dwork->timer; 2500 struct work_struct *work = &dwork->work; 2501 2502 WARN_ON_ONCE(!wq); 2503 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 2504 WARN_ON_ONCE(timer_pending(timer)); 2505 WARN_ON_ONCE(!list_empty(&work->entry)); 2506 2507 /* 2508 * If @delay is 0, queue @dwork->work immediately. This is for 2509 * both optimization and correctness. The earliest @timer can 2510 * expire is on the closest next tick and delayed_work users depend 2511 * on that there's no such delay when @delay is 0. 2512 */ 2513 if (!delay) { 2514 __queue_work(cpu, wq, &dwork->work); 2515 return; 2516 } 2517 2518 dwork->wq = wq; 2519 dwork->cpu = cpu; 2520 timer->expires = jiffies + delay; 2521 2522 if (housekeeping_enabled(HK_TYPE_TIMER)) { 2523 /* If the current cpu is a housekeeping cpu, use it. */ 2524 cpu = smp_processor_id(); 2525 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER)) 2526 cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 2527 add_timer_on(timer, cpu); 2528 } else { 2529 if (likely(cpu == WORK_CPU_UNBOUND)) 2530 add_timer_global(timer); 2531 else 2532 add_timer_on(timer, cpu); 2533 } 2534 } 2535 2536 /** 2537 * queue_delayed_work_on - queue work on specific CPU after delay 2538 * @cpu: CPU number to execute work on 2539 * @wq: workqueue to use 2540 * @dwork: work to queue 2541 * @delay: number of jiffies to wait before queueing 2542 * 2543 * Return: %false if @work was already on a queue, %true otherwise. If 2544 * @delay is zero and @dwork is idle, it will be scheduled for immediate 2545 * execution. 2546 */ 2547 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 2548 struct delayed_work *dwork, unsigned long delay) 2549 { 2550 struct work_struct *work = &dwork->work; 2551 bool ret = false; 2552 unsigned long irq_flags; 2553 2554 /* read the comment in __queue_work() */ 2555 local_irq_save(irq_flags); 2556 2557 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2558 !clear_pending_if_disabled(work)) { 2559 __queue_delayed_work(cpu, wq, dwork, delay); 2560 ret = true; 2561 } 2562 2563 local_irq_restore(irq_flags); 2564 return ret; 2565 } 2566 EXPORT_SYMBOL(queue_delayed_work_on); 2567 2568 /** 2569 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2570 * @cpu: CPU number to execute work on 2571 * @wq: workqueue to use 2572 * @dwork: work to queue 2573 * @delay: number of jiffies to wait before queueing 2574 * 2575 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2576 * modify @dwork's timer so that it expires after @delay. If @delay is 2577 * zero, @work is guaranteed to be scheduled immediately regardless of its 2578 * current state. 2579 * 2580 * Return: %false if @dwork was idle and queued, %true if @dwork was 2581 * pending and its timer was modified. 2582 * 2583 * This function is safe to call from any context including IRQ handler. 2584 * See try_to_grab_pending() for details. 2585 */ 2586 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2587 struct delayed_work *dwork, unsigned long delay) 2588 { 2589 unsigned long irq_flags; 2590 bool ret; 2591 2592 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags); 2593 2594 if (!clear_pending_if_disabled(&dwork->work)) 2595 __queue_delayed_work(cpu, wq, dwork, delay); 2596 2597 local_irq_restore(irq_flags); 2598 return ret; 2599 } 2600 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2601 2602 static void rcu_work_rcufn(struct rcu_head *rcu) 2603 { 2604 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2605 2606 /* read the comment in __queue_work() */ 2607 local_irq_disable(); 2608 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2609 local_irq_enable(); 2610 } 2611 2612 /** 2613 * queue_rcu_work - queue work after a RCU grace period 2614 * @wq: workqueue to use 2615 * @rwork: work to queue 2616 * 2617 * Return: %false if @rwork was already pending, %true otherwise. Note 2618 * that a full RCU grace period is guaranteed only after a %true return. 2619 * While @rwork is guaranteed to be executed after a %false return, the 2620 * execution may happen before a full RCU grace period has passed. 2621 */ 2622 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2623 { 2624 struct work_struct *work = &rwork->work; 2625 2626 /* 2627 * rcu_work can't be canceled or disabled. Warn if the user reached 2628 * inside @rwork and disabled the inner work. 2629 */ 2630 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2631 !WARN_ON_ONCE(clear_pending_if_disabled(work))) { 2632 rwork->wq = wq; 2633 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2634 return true; 2635 } 2636 2637 return false; 2638 } 2639 EXPORT_SYMBOL(queue_rcu_work); 2640 2641 static struct worker *alloc_worker(int node) 2642 { 2643 struct worker *worker; 2644 2645 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2646 if (worker) { 2647 INIT_LIST_HEAD(&worker->entry); 2648 INIT_LIST_HEAD(&worker->scheduled); 2649 INIT_LIST_HEAD(&worker->node); 2650 /* on creation a worker is in !idle && prep state */ 2651 worker->flags = WORKER_PREP; 2652 } 2653 return worker; 2654 } 2655 2656 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2657 { 2658 if (pool->cpu < 0 && pool->attrs->affn_strict) 2659 return pool->attrs->__pod_cpumask; 2660 else 2661 return pool->attrs->cpumask; 2662 } 2663 2664 /** 2665 * worker_attach_to_pool() - attach a worker to a pool 2666 * @worker: worker to be attached 2667 * @pool: the target pool 2668 * 2669 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2670 * cpu-binding of @worker are kept coordinated with the pool across 2671 * cpu-[un]hotplugs. 2672 */ 2673 static void worker_attach_to_pool(struct worker *worker, 2674 struct worker_pool *pool) 2675 { 2676 mutex_lock(&wq_pool_attach_mutex); 2677 2678 /* 2679 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable 2680 * across this function. See the comments above the flag definition for 2681 * details. BH workers are, while per-CPU, always DISASSOCIATED. 2682 */ 2683 if (pool->flags & POOL_DISASSOCIATED) { 2684 worker->flags |= WORKER_UNBOUND; 2685 } else { 2686 WARN_ON_ONCE(pool->flags & POOL_BH); 2687 kthread_set_per_cpu(worker->task, pool->cpu); 2688 } 2689 2690 if (worker->rescue_wq) 2691 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2692 2693 list_add_tail(&worker->node, &pool->workers); 2694 worker->pool = pool; 2695 2696 mutex_unlock(&wq_pool_attach_mutex); 2697 } 2698 2699 /** 2700 * worker_detach_from_pool() - detach a worker from its pool 2701 * @worker: worker which is attached to its pool 2702 * 2703 * Undo the attaching which had been done in worker_attach_to_pool(). The 2704 * caller worker shouldn't access to the pool after detached except it has 2705 * other reference to the pool. 2706 */ 2707 static void worker_detach_from_pool(struct worker *worker) 2708 { 2709 struct worker_pool *pool = worker->pool; 2710 struct completion *detach_completion = NULL; 2711 2712 /* there is one permanent BH worker per CPU which should never detach */ 2713 WARN_ON_ONCE(pool->flags & POOL_BH); 2714 2715 mutex_lock(&wq_pool_attach_mutex); 2716 2717 kthread_set_per_cpu(worker->task, -1); 2718 list_del(&worker->node); 2719 worker->pool = NULL; 2720 2721 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers)) 2722 detach_completion = pool->detach_completion; 2723 mutex_unlock(&wq_pool_attach_mutex); 2724 2725 /* clear leftover flags without pool->lock after it is detached */ 2726 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2727 2728 if (detach_completion) 2729 complete(detach_completion); 2730 } 2731 2732 /** 2733 * create_worker - create a new workqueue worker 2734 * @pool: pool the new worker will belong to 2735 * 2736 * Create and start a new worker which is attached to @pool. 2737 * 2738 * CONTEXT: 2739 * Might sleep. Does GFP_KERNEL allocations. 2740 * 2741 * Return: 2742 * Pointer to the newly created worker. 2743 */ 2744 static struct worker *create_worker(struct worker_pool *pool) 2745 { 2746 struct worker *worker; 2747 int id; 2748 char id_buf[23]; 2749 2750 /* ID is needed to determine kthread name */ 2751 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2752 if (id < 0) { 2753 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2754 ERR_PTR(id)); 2755 return NULL; 2756 } 2757 2758 worker = alloc_worker(pool->node); 2759 if (!worker) { 2760 pr_err_once("workqueue: Failed to allocate a worker\n"); 2761 goto fail; 2762 } 2763 2764 worker->id = id; 2765 2766 if (!(pool->flags & POOL_BH)) { 2767 if (pool->cpu >= 0) 2768 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 2769 pool->attrs->nice < 0 ? "H" : ""); 2770 else 2771 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 2772 2773 worker->task = kthread_create_on_node(worker_thread, worker, 2774 pool->node, "kworker/%s", id_buf); 2775 if (IS_ERR(worker->task)) { 2776 if (PTR_ERR(worker->task) == -EINTR) { 2777 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n", 2778 id_buf); 2779 } else { 2780 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2781 worker->task); 2782 } 2783 goto fail; 2784 } 2785 2786 set_user_nice(worker->task, pool->attrs->nice); 2787 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2788 } 2789 2790 /* successful, attach the worker to the pool */ 2791 worker_attach_to_pool(worker, pool); 2792 2793 /* start the newly created worker */ 2794 raw_spin_lock_irq(&pool->lock); 2795 2796 worker->pool->nr_workers++; 2797 worker_enter_idle(worker); 2798 2799 /* 2800 * @worker is waiting on a completion in kthread() and will trigger hung 2801 * check if not woken up soon. As kick_pool() is noop if @pool is empty, 2802 * wake it up explicitly. 2803 */ 2804 if (worker->task) 2805 wake_up_process(worker->task); 2806 2807 raw_spin_unlock_irq(&pool->lock); 2808 2809 return worker; 2810 2811 fail: 2812 ida_free(&pool->worker_ida, id); 2813 kfree(worker); 2814 return NULL; 2815 } 2816 2817 static void unbind_worker(struct worker *worker) 2818 { 2819 lockdep_assert_held(&wq_pool_attach_mutex); 2820 2821 kthread_set_per_cpu(worker->task, -1); 2822 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2823 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2824 else 2825 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2826 } 2827 2828 static void wake_dying_workers(struct list_head *cull_list) 2829 { 2830 struct worker *worker, *tmp; 2831 2832 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2833 list_del_init(&worker->entry); 2834 unbind_worker(worker); 2835 /* 2836 * If the worker was somehow already running, then it had to be 2837 * in pool->idle_list when set_worker_dying() happened or we 2838 * wouldn't have gotten here. 2839 * 2840 * Thus, the worker must either have observed the WORKER_DIE 2841 * flag, or have set its state to TASK_IDLE. Either way, the 2842 * below will be observed by the worker and is safe to do 2843 * outside of pool->lock. 2844 */ 2845 wake_up_process(worker->task); 2846 } 2847 } 2848 2849 /** 2850 * set_worker_dying - Tag a worker for destruction 2851 * @worker: worker to be destroyed 2852 * @list: transfer worker away from its pool->idle_list and into list 2853 * 2854 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2855 * should be idle. 2856 * 2857 * CONTEXT: 2858 * raw_spin_lock_irq(pool->lock). 2859 */ 2860 static void set_worker_dying(struct worker *worker, struct list_head *list) 2861 { 2862 struct worker_pool *pool = worker->pool; 2863 2864 lockdep_assert_held(&pool->lock); 2865 lockdep_assert_held(&wq_pool_attach_mutex); 2866 2867 /* sanity check frenzy */ 2868 if (WARN_ON(worker->current_work) || 2869 WARN_ON(!list_empty(&worker->scheduled)) || 2870 WARN_ON(!(worker->flags & WORKER_IDLE))) 2871 return; 2872 2873 pool->nr_workers--; 2874 pool->nr_idle--; 2875 2876 worker->flags |= WORKER_DIE; 2877 2878 list_move(&worker->entry, list); 2879 list_move(&worker->node, &pool->dying_workers); 2880 } 2881 2882 /** 2883 * idle_worker_timeout - check if some idle workers can now be deleted. 2884 * @t: The pool's idle_timer that just expired 2885 * 2886 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2887 * worker_leave_idle(), as a worker flicking between idle and active while its 2888 * pool is at the too_many_workers() tipping point would cause too much timer 2889 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2890 * it expire and re-evaluate things from there. 2891 */ 2892 static void idle_worker_timeout(struct timer_list *t) 2893 { 2894 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2895 bool do_cull = false; 2896 2897 if (work_pending(&pool->idle_cull_work)) 2898 return; 2899 2900 raw_spin_lock_irq(&pool->lock); 2901 2902 if (too_many_workers(pool)) { 2903 struct worker *worker; 2904 unsigned long expires; 2905 2906 /* idle_list is kept in LIFO order, check the last one */ 2907 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2908 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2909 do_cull = !time_before(jiffies, expires); 2910 2911 if (!do_cull) 2912 mod_timer(&pool->idle_timer, expires); 2913 } 2914 raw_spin_unlock_irq(&pool->lock); 2915 2916 if (do_cull) 2917 queue_work(system_unbound_wq, &pool->idle_cull_work); 2918 } 2919 2920 /** 2921 * idle_cull_fn - cull workers that have been idle for too long. 2922 * @work: the pool's work for handling these idle workers 2923 * 2924 * This goes through a pool's idle workers and gets rid of those that have been 2925 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2926 * 2927 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2928 * culled, so this also resets worker affinity. This requires a sleepable 2929 * context, hence the split between timer callback and work item. 2930 */ 2931 static void idle_cull_fn(struct work_struct *work) 2932 { 2933 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2934 LIST_HEAD(cull_list); 2935 2936 /* 2937 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2938 * cannot proceed beyong worker_detach_from_pool() in its self-destruct 2939 * path. This is required as a previously-preempted worker could run after 2940 * set_worker_dying() has happened but before wake_dying_workers() did. 2941 */ 2942 mutex_lock(&wq_pool_attach_mutex); 2943 raw_spin_lock_irq(&pool->lock); 2944 2945 while (too_many_workers(pool)) { 2946 struct worker *worker; 2947 unsigned long expires; 2948 2949 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2950 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2951 2952 if (time_before(jiffies, expires)) { 2953 mod_timer(&pool->idle_timer, expires); 2954 break; 2955 } 2956 2957 set_worker_dying(worker, &cull_list); 2958 } 2959 2960 raw_spin_unlock_irq(&pool->lock); 2961 wake_dying_workers(&cull_list); 2962 mutex_unlock(&wq_pool_attach_mutex); 2963 } 2964 2965 static void send_mayday(struct work_struct *work) 2966 { 2967 struct pool_workqueue *pwq = get_work_pwq(work); 2968 struct workqueue_struct *wq = pwq->wq; 2969 2970 lockdep_assert_held(&wq_mayday_lock); 2971 2972 if (!wq->rescuer) 2973 return; 2974 2975 /* mayday mayday mayday */ 2976 if (list_empty(&pwq->mayday_node)) { 2977 /* 2978 * If @pwq is for an unbound wq, its base ref may be put at 2979 * any time due to an attribute change. Pin @pwq until the 2980 * rescuer is done with it. 2981 */ 2982 get_pwq(pwq); 2983 list_add_tail(&pwq->mayday_node, &wq->maydays); 2984 wake_up_process(wq->rescuer->task); 2985 pwq->stats[PWQ_STAT_MAYDAY]++; 2986 } 2987 } 2988 2989 static void pool_mayday_timeout(struct timer_list *t) 2990 { 2991 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2992 struct work_struct *work; 2993 2994 raw_spin_lock_irq(&pool->lock); 2995 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2996 2997 if (need_to_create_worker(pool)) { 2998 /* 2999 * We've been trying to create a new worker but 3000 * haven't been successful. We might be hitting an 3001 * allocation deadlock. Send distress signals to 3002 * rescuers. 3003 */ 3004 list_for_each_entry(work, &pool->worklist, entry) 3005 send_mayday(work); 3006 } 3007 3008 raw_spin_unlock(&wq_mayday_lock); 3009 raw_spin_unlock_irq(&pool->lock); 3010 3011 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 3012 } 3013 3014 /** 3015 * maybe_create_worker - create a new worker if necessary 3016 * @pool: pool to create a new worker for 3017 * 3018 * Create a new worker for @pool if necessary. @pool is guaranteed to 3019 * have at least one idle worker on return from this function. If 3020 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 3021 * sent to all rescuers with works scheduled on @pool to resolve 3022 * possible allocation deadlock. 3023 * 3024 * On return, need_to_create_worker() is guaranteed to be %false and 3025 * may_start_working() %true. 3026 * 3027 * LOCKING: 3028 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3029 * multiple times. Does GFP_KERNEL allocations. Called only from 3030 * manager. 3031 */ 3032 static void maybe_create_worker(struct worker_pool *pool) 3033 __releases(&pool->lock) 3034 __acquires(&pool->lock) 3035 { 3036 restart: 3037 raw_spin_unlock_irq(&pool->lock); 3038 3039 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 3040 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 3041 3042 while (true) { 3043 if (create_worker(pool) || !need_to_create_worker(pool)) 3044 break; 3045 3046 schedule_timeout_interruptible(CREATE_COOLDOWN); 3047 3048 if (!need_to_create_worker(pool)) 3049 break; 3050 } 3051 3052 del_timer_sync(&pool->mayday_timer); 3053 raw_spin_lock_irq(&pool->lock); 3054 /* 3055 * This is necessary even after a new worker was just successfully 3056 * created as @pool->lock was dropped and the new worker might have 3057 * already become busy. 3058 */ 3059 if (need_to_create_worker(pool)) 3060 goto restart; 3061 } 3062 3063 /** 3064 * manage_workers - manage worker pool 3065 * @worker: self 3066 * 3067 * Assume the manager role and manage the worker pool @worker belongs 3068 * to. At any given time, there can be only zero or one manager per 3069 * pool. The exclusion is handled automatically by this function. 3070 * 3071 * The caller can safely start processing works on false return. On 3072 * true return, it's guaranteed that need_to_create_worker() is false 3073 * and may_start_working() is true. 3074 * 3075 * CONTEXT: 3076 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3077 * multiple times. Does GFP_KERNEL allocations. 3078 * 3079 * Return: 3080 * %false if the pool doesn't need management and the caller can safely 3081 * start processing works, %true if management function was performed and 3082 * the conditions that the caller verified before calling the function may 3083 * no longer be true. 3084 */ 3085 static bool manage_workers(struct worker *worker) 3086 { 3087 struct worker_pool *pool = worker->pool; 3088 3089 if (pool->flags & POOL_MANAGER_ACTIVE) 3090 return false; 3091 3092 pool->flags |= POOL_MANAGER_ACTIVE; 3093 pool->manager = worker; 3094 3095 maybe_create_worker(pool); 3096 3097 pool->manager = NULL; 3098 pool->flags &= ~POOL_MANAGER_ACTIVE; 3099 rcuwait_wake_up(&manager_wait); 3100 return true; 3101 } 3102 3103 /** 3104 * process_one_work - process single work 3105 * @worker: self 3106 * @work: work to process 3107 * 3108 * Process @work. This function contains all the logics necessary to 3109 * process a single work including synchronization against and 3110 * interaction with other workers on the same cpu, queueing and 3111 * flushing. As long as context requirement is met, any worker can 3112 * call this function to process a work. 3113 * 3114 * CONTEXT: 3115 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 3116 */ 3117 static void process_one_work(struct worker *worker, struct work_struct *work) 3118 __releases(&pool->lock) 3119 __acquires(&pool->lock) 3120 { 3121 struct pool_workqueue *pwq = get_work_pwq(work); 3122 struct worker_pool *pool = worker->pool; 3123 unsigned long work_data; 3124 int lockdep_start_depth, rcu_start_depth; 3125 bool bh_draining = pool->flags & POOL_BH_DRAINING; 3126 #ifdef CONFIG_LOCKDEP 3127 /* 3128 * It is permissible to free the struct work_struct from 3129 * inside the function that is called from it, this we need to 3130 * take into account for lockdep too. To avoid bogus "held 3131 * lock freed" warnings as well as problems when looking into 3132 * work->lockdep_map, make a copy and use that here. 3133 */ 3134 struct lockdep_map lockdep_map; 3135 3136 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 3137 #endif 3138 /* ensure we're on the correct CPU */ 3139 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 3140 raw_smp_processor_id() != pool->cpu); 3141 3142 /* claim and dequeue */ 3143 debug_work_deactivate(work); 3144 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 3145 worker->current_work = work; 3146 worker->current_func = work->func; 3147 worker->current_pwq = pwq; 3148 if (worker->task) 3149 worker->current_at = worker->task->se.sum_exec_runtime; 3150 work_data = *work_data_bits(work); 3151 worker->current_color = get_work_color(work_data); 3152 3153 /* 3154 * Record wq name for cmdline and debug reporting, may get 3155 * overridden through set_worker_desc(). 3156 */ 3157 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 3158 3159 list_del_init(&work->entry); 3160 3161 /* 3162 * CPU intensive works don't participate in concurrency management. 3163 * They're the scheduler's responsibility. This takes @worker out 3164 * of concurrency management and the next code block will chain 3165 * execution of the pending work items. 3166 */ 3167 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 3168 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 3169 3170 /* 3171 * Kick @pool if necessary. It's always noop for per-cpu worker pools 3172 * since nr_running would always be >= 1 at this point. This is used to 3173 * chain execution of the pending work items for WORKER_NOT_RUNNING 3174 * workers such as the UNBOUND and CPU_INTENSIVE ones. 3175 */ 3176 kick_pool(pool); 3177 3178 /* 3179 * Record the last pool and clear PENDING which should be the last 3180 * update to @work. Also, do this inside @pool->lock so that 3181 * PENDING and queued state changes happen together while IRQ is 3182 * disabled. 3183 */ 3184 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool)); 3185 3186 pwq->stats[PWQ_STAT_STARTED]++; 3187 raw_spin_unlock_irq(&pool->lock); 3188 3189 rcu_start_depth = rcu_preempt_depth(); 3190 lockdep_start_depth = lockdep_depth(current); 3191 /* see drain_dead_softirq_workfn() */ 3192 if (!bh_draining) 3193 lock_map_acquire(&pwq->wq->lockdep_map); 3194 lock_map_acquire(&lockdep_map); 3195 /* 3196 * Strictly speaking we should mark the invariant state without holding 3197 * any locks, that is, before these two lock_map_acquire()'s. 3198 * 3199 * However, that would result in: 3200 * 3201 * A(W1) 3202 * WFC(C) 3203 * A(W1) 3204 * C(C) 3205 * 3206 * Which would create W1->C->W1 dependencies, even though there is no 3207 * actual deadlock possible. There are two solutions, using a 3208 * read-recursive acquire on the work(queue) 'locks', but this will then 3209 * hit the lockdep limitation on recursive locks, or simply discard 3210 * these locks. 3211 * 3212 * AFAICT there is no possible deadlock scenario between the 3213 * flush_work() and complete() primitives (except for single-threaded 3214 * workqueues), so hiding them isn't a problem. 3215 */ 3216 lockdep_invariant_state(true); 3217 trace_workqueue_execute_start(work); 3218 worker->current_func(work); 3219 /* 3220 * While we must be careful to not use "work" after this, the trace 3221 * point will only record its address. 3222 */ 3223 trace_workqueue_execute_end(work, worker->current_func); 3224 pwq->stats[PWQ_STAT_COMPLETED]++; 3225 lock_map_release(&lockdep_map); 3226 if (!bh_draining) 3227 lock_map_release(&pwq->wq->lockdep_map); 3228 3229 if (unlikely((worker->task && in_atomic()) || 3230 lockdep_depth(current) != lockdep_start_depth || 3231 rcu_preempt_depth() != rcu_start_depth)) { 3232 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n" 3233 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n", 3234 current->comm, task_pid_nr(current), preempt_count(), 3235 lockdep_start_depth, lockdep_depth(current), 3236 rcu_start_depth, rcu_preempt_depth(), 3237 worker->current_func); 3238 debug_show_held_locks(current); 3239 dump_stack(); 3240 } 3241 3242 /* 3243 * The following prevents a kworker from hogging CPU on !PREEMPTION 3244 * kernels, where a requeueing work item waiting for something to 3245 * happen could deadlock with stop_machine as such work item could 3246 * indefinitely requeue itself while all other CPUs are trapped in 3247 * stop_machine. At the same time, report a quiescent RCU state so 3248 * the same condition doesn't freeze RCU. 3249 */ 3250 if (worker->task) 3251 cond_resched(); 3252 3253 raw_spin_lock_irq(&pool->lock); 3254 3255 /* 3256 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 3257 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 3258 * wq_cpu_intensive_thresh_us. Clear it. 3259 */ 3260 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 3261 3262 /* tag the worker for identification in schedule() */ 3263 worker->last_func = worker->current_func; 3264 3265 /* we're done with it, release */ 3266 hash_del(&worker->hentry); 3267 worker->current_work = NULL; 3268 worker->current_func = NULL; 3269 worker->current_pwq = NULL; 3270 worker->current_color = INT_MAX; 3271 3272 /* must be the last step, see the function comment */ 3273 pwq_dec_nr_in_flight(pwq, work_data); 3274 } 3275 3276 /** 3277 * process_scheduled_works - process scheduled works 3278 * @worker: self 3279 * 3280 * Process all scheduled works. Please note that the scheduled list 3281 * may change while processing a work, so this function repeatedly 3282 * fetches a work from the top and executes it. 3283 * 3284 * CONTEXT: 3285 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3286 * multiple times. 3287 */ 3288 static void process_scheduled_works(struct worker *worker) 3289 { 3290 struct work_struct *work; 3291 bool first = true; 3292 3293 while ((work = list_first_entry_or_null(&worker->scheduled, 3294 struct work_struct, entry))) { 3295 if (first) { 3296 worker->pool->watchdog_ts = jiffies; 3297 first = false; 3298 } 3299 process_one_work(worker, work); 3300 } 3301 } 3302 3303 static void set_pf_worker(bool val) 3304 { 3305 mutex_lock(&wq_pool_attach_mutex); 3306 if (val) 3307 current->flags |= PF_WQ_WORKER; 3308 else 3309 current->flags &= ~PF_WQ_WORKER; 3310 mutex_unlock(&wq_pool_attach_mutex); 3311 } 3312 3313 /** 3314 * worker_thread - the worker thread function 3315 * @__worker: self 3316 * 3317 * The worker thread function. All workers belong to a worker_pool - 3318 * either a per-cpu one or dynamic unbound one. These workers process all 3319 * work items regardless of their specific target workqueue. The only 3320 * exception is work items which belong to workqueues with a rescuer which 3321 * will be explained in rescuer_thread(). 3322 * 3323 * Return: 0 3324 */ 3325 static int worker_thread(void *__worker) 3326 { 3327 struct worker *worker = __worker; 3328 struct worker_pool *pool = worker->pool; 3329 3330 /* tell the scheduler that this is a workqueue worker */ 3331 set_pf_worker(true); 3332 woke_up: 3333 raw_spin_lock_irq(&pool->lock); 3334 3335 /* am I supposed to die? */ 3336 if (unlikely(worker->flags & WORKER_DIE)) { 3337 raw_spin_unlock_irq(&pool->lock); 3338 set_pf_worker(false); 3339 3340 set_task_comm(worker->task, "kworker/dying"); 3341 ida_free(&pool->worker_ida, worker->id); 3342 worker_detach_from_pool(worker); 3343 WARN_ON_ONCE(!list_empty(&worker->entry)); 3344 kfree(worker); 3345 return 0; 3346 } 3347 3348 worker_leave_idle(worker); 3349 recheck: 3350 /* no more worker necessary? */ 3351 if (!need_more_worker(pool)) 3352 goto sleep; 3353 3354 /* do we need to manage? */ 3355 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 3356 goto recheck; 3357 3358 /* 3359 * ->scheduled list can only be filled while a worker is 3360 * preparing to process a work or actually processing it. 3361 * Make sure nobody diddled with it while I was sleeping. 3362 */ 3363 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3364 3365 /* 3366 * Finish PREP stage. We're guaranteed to have at least one idle 3367 * worker or that someone else has already assumed the manager 3368 * role. This is where @worker starts participating in concurrency 3369 * management if applicable and concurrency management is restored 3370 * after being rebound. See rebind_workers() for details. 3371 */ 3372 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3373 3374 do { 3375 struct work_struct *work = 3376 list_first_entry(&pool->worklist, 3377 struct work_struct, entry); 3378 3379 if (assign_work(work, worker, NULL)) 3380 process_scheduled_works(worker); 3381 } while (keep_working(pool)); 3382 3383 worker_set_flags(worker, WORKER_PREP); 3384 sleep: 3385 /* 3386 * pool->lock is held and there's no work to process and no need to 3387 * manage, sleep. Workers are woken up only while holding 3388 * pool->lock or from local cpu, so setting the current state 3389 * before releasing pool->lock is enough to prevent losing any 3390 * event. 3391 */ 3392 worker_enter_idle(worker); 3393 __set_current_state(TASK_IDLE); 3394 raw_spin_unlock_irq(&pool->lock); 3395 schedule(); 3396 goto woke_up; 3397 } 3398 3399 /** 3400 * rescuer_thread - the rescuer thread function 3401 * @__rescuer: self 3402 * 3403 * Workqueue rescuer thread function. There's one rescuer for each 3404 * workqueue which has WQ_MEM_RECLAIM set. 3405 * 3406 * Regular work processing on a pool may block trying to create a new 3407 * worker which uses GFP_KERNEL allocation which has slight chance of 3408 * developing into deadlock if some works currently on the same queue 3409 * need to be processed to satisfy the GFP_KERNEL allocation. This is 3410 * the problem rescuer solves. 3411 * 3412 * When such condition is possible, the pool summons rescuers of all 3413 * workqueues which have works queued on the pool and let them process 3414 * those works so that forward progress can be guaranteed. 3415 * 3416 * This should happen rarely. 3417 * 3418 * Return: 0 3419 */ 3420 static int rescuer_thread(void *__rescuer) 3421 { 3422 struct worker *rescuer = __rescuer; 3423 struct workqueue_struct *wq = rescuer->rescue_wq; 3424 bool should_stop; 3425 3426 set_user_nice(current, RESCUER_NICE_LEVEL); 3427 3428 /* 3429 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 3430 * doesn't participate in concurrency management. 3431 */ 3432 set_pf_worker(true); 3433 repeat: 3434 set_current_state(TASK_IDLE); 3435 3436 /* 3437 * By the time the rescuer is requested to stop, the workqueue 3438 * shouldn't have any work pending, but @wq->maydays may still have 3439 * pwq(s) queued. This can happen by non-rescuer workers consuming 3440 * all the work items before the rescuer got to them. Go through 3441 * @wq->maydays processing before acting on should_stop so that the 3442 * list is always empty on exit. 3443 */ 3444 should_stop = kthread_should_stop(); 3445 3446 /* see whether any pwq is asking for help */ 3447 raw_spin_lock_irq(&wq_mayday_lock); 3448 3449 while (!list_empty(&wq->maydays)) { 3450 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 3451 struct pool_workqueue, mayday_node); 3452 struct worker_pool *pool = pwq->pool; 3453 struct work_struct *work, *n; 3454 3455 __set_current_state(TASK_RUNNING); 3456 list_del_init(&pwq->mayday_node); 3457 3458 raw_spin_unlock_irq(&wq_mayday_lock); 3459 3460 worker_attach_to_pool(rescuer, pool); 3461 3462 raw_spin_lock_irq(&pool->lock); 3463 3464 /* 3465 * Slurp in all works issued via this workqueue and 3466 * process'em. 3467 */ 3468 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 3469 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 3470 if (get_work_pwq(work) == pwq && 3471 assign_work(work, rescuer, &n)) 3472 pwq->stats[PWQ_STAT_RESCUED]++; 3473 } 3474 3475 if (!list_empty(&rescuer->scheduled)) { 3476 process_scheduled_works(rescuer); 3477 3478 /* 3479 * The above execution of rescued work items could 3480 * have created more to rescue through 3481 * pwq_activate_first_inactive() or chained 3482 * queueing. Let's put @pwq back on mayday list so 3483 * that such back-to-back work items, which may be 3484 * being used to relieve memory pressure, don't 3485 * incur MAYDAY_INTERVAL delay inbetween. 3486 */ 3487 if (pwq->nr_active && need_to_create_worker(pool)) { 3488 raw_spin_lock(&wq_mayday_lock); 3489 /* 3490 * Queue iff we aren't racing destruction 3491 * and somebody else hasn't queued it already. 3492 */ 3493 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 3494 get_pwq(pwq); 3495 list_add_tail(&pwq->mayday_node, &wq->maydays); 3496 } 3497 raw_spin_unlock(&wq_mayday_lock); 3498 } 3499 } 3500 3501 /* 3502 * Put the reference grabbed by send_mayday(). @pool won't 3503 * go away while we're still attached to it. 3504 */ 3505 put_pwq(pwq); 3506 3507 /* 3508 * Leave this pool. Notify regular workers; otherwise, we end up 3509 * with 0 concurrency and stalling the execution. 3510 */ 3511 kick_pool(pool); 3512 3513 raw_spin_unlock_irq(&pool->lock); 3514 3515 worker_detach_from_pool(rescuer); 3516 3517 raw_spin_lock_irq(&wq_mayday_lock); 3518 } 3519 3520 raw_spin_unlock_irq(&wq_mayday_lock); 3521 3522 if (should_stop) { 3523 __set_current_state(TASK_RUNNING); 3524 set_pf_worker(false); 3525 return 0; 3526 } 3527 3528 /* rescuers should never participate in concurrency management */ 3529 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 3530 schedule(); 3531 goto repeat; 3532 } 3533 3534 static void bh_worker(struct worker *worker) 3535 { 3536 struct worker_pool *pool = worker->pool; 3537 int nr_restarts = BH_WORKER_RESTARTS; 3538 unsigned long end = jiffies + BH_WORKER_JIFFIES; 3539 3540 raw_spin_lock_irq(&pool->lock); 3541 worker_leave_idle(worker); 3542 3543 /* 3544 * This function follows the structure of worker_thread(). See there for 3545 * explanations on each step. 3546 */ 3547 if (!need_more_worker(pool)) 3548 goto done; 3549 3550 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3551 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3552 3553 do { 3554 struct work_struct *work = 3555 list_first_entry(&pool->worklist, 3556 struct work_struct, entry); 3557 3558 if (assign_work(work, worker, NULL)) 3559 process_scheduled_works(worker); 3560 } while (keep_working(pool) && 3561 --nr_restarts && time_before(jiffies, end)); 3562 3563 worker_set_flags(worker, WORKER_PREP); 3564 done: 3565 worker_enter_idle(worker); 3566 kick_pool(pool); 3567 raw_spin_unlock_irq(&pool->lock); 3568 } 3569 3570 /* 3571 * TODO: Convert all tasklet users to workqueue and use softirq directly. 3572 * 3573 * This is currently called from tasklet[_hi]action() and thus is also called 3574 * whenever there are tasklets to run. Let's do an early exit if there's nothing 3575 * queued. Once conversion from tasklet is complete, the need_more_worker() test 3576 * can be dropped. 3577 * 3578 * After full conversion, we'll add worker->softirq_action, directly use the 3579 * softirq action and obtain the worker pointer from the softirq_action pointer. 3580 */ 3581 void workqueue_softirq_action(bool highpri) 3582 { 3583 struct worker_pool *pool = 3584 &per_cpu(bh_worker_pools, smp_processor_id())[highpri]; 3585 if (need_more_worker(pool)) 3586 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3587 } 3588 3589 struct wq_drain_dead_softirq_work { 3590 struct work_struct work; 3591 struct worker_pool *pool; 3592 struct completion done; 3593 }; 3594 3595 static void drain_dead_softirq_workfn(struct work_struct *work) 3596 { 3597 struct wq_drain_dead_softirq_work *dead_work = 3598 container_of(work, struct wq_drain_dead_softirq_work, work); 3599 struct worker_pool *pool = dead_work->pool; 3600 bool repeat; 3601 3602 /* 3603 * @pool's CPU is dead and we want to execute its still pending work 3604 * items from this BH work item which is running on a different CPU. As 3605 * its CPU is dead, @pool can't be kicked and, as work execution path 3606 * will be nested, a lockdep annotation needs to be suppressed. Mark 3607 * @pool with %POOL_BH_DRAINING for the special treatments. 3608 */ 3609 raw_spin_lock_irq(&pool->lock); 3610 pool->flags |= POOL_BH_DRAINING; 3611 raw_spin_unlock_irq(&pool->lock); 3612 3613 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3614 3615 raw_spin_lock_irq(&pool->lock); 3616 pool->flags &= ~POOL_BH_DRAINING; 3617 repeat = need_more_worker(pool); 3618 raw_spin_unlock_irq(&pool->lock); 3619 3620 /* 3621 * bh_worker() might hit consecutive execution limit and bail. If there 3622 * still are pending work items, reschedule self and return so that we 3623 * don't hog this CPU's BH. 3624 */ 3625 if (repeat) { 3626 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3627 queue_work(system_bh_highpri_wq, work); 3628 else 3629 queue_work(system_bh_wq, work); 3630 } else { 3631 complete(&dead_work->done); 3632 } 3633 } 3634 3635 /* 3636 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's 3637 * possible to allocate dead_work per CPU and avoid flushing. However, then we 3638 * have to worry about draining overlapping with CPU coming back online or 3639 * nesting (one CPU's dead_work queued on another CPU which is also dead and so 3640 * on). Let's keep it simple and drain them synchronously. These are BH work 3641 * items which shouldn't be requeued on the same pool. Shouldn't take long. 3642 */ 3643 void workqueue_softirq_dead(unsigned int cpu) 3644 { 3645 int i; 3646 3647 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 3648 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i]; 3649 struct wq_drain_dead_softirq_work dead_work; 3650 3651 if (!need_more_worker(pool)) 3652 continue; 3653 3654 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn); 3655 dead_work.pool = pool; 3656 init_completion(&dead_work.done); 3657 3658 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3659 queue_work(system_bh_highpri_wq, &dead_work.work); 3660 else 3661 queue_work(system_bh_wq, &dead_work.work); 3662 3663 wait_for_completion(&dead_work.done); 3664 } 3665 } 3666 3667 /** 3668 * check_flush_dependency - check for flush dependency sanity 3669 * @target_wq: workqueue being flushed 3670 * @target_work: work item being flushed (NULL for workqueue flushes) 3671 * 3672 * %current is trying to flush the whole @target_wq or @target_work on it. 3673 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 3674 * reclaiming memory or running on a workqueue which doesn't have 3675 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 3676 * a deadlock. 3677 */ 3678 static void check_flush_dependency(struct workqueue_struct *target_wq, 3679 struct work_struct *target_work) 3680 { 3681 work_func_t target_func = target_work ? target_work->func : NULL; 3682 struct worker *worker; 3683 3684 if (target_wq->flags & WQ_MEM_RECLAIM) 3685 return; 3686 3687 worker = current_wq_worker(); 3688 3689 WARN_ONCE(current->flags & PF_MEMALLOC, 3690 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 3691 current->pid, current->comm, target_wq->name, target_func); 3692 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 3693 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 3694 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 3695 worker->current_pwq->wq->name, worker->current_func, 3696 target_wq->name, target_func); 3697 } 3698 3699 struct wq_barrier { 3700 struct work_struct work; 3701 struct completion done; 3702 struct task_struct *task; /* purely informational */ 3703 }; 3704 3705 static void wq_barrier_func(struct work_struct *work) 3706 { 3707 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 3708 complete(&barr->done); 3709 } 3710 3711 /** 3712 * insert_wq_barrier - insert a barrier work 3713 * @pwq: pwq to insert barrier into 3714 * @barr: wq_barrier to insert 3715 * @target: target work to attach @barr to 3716 * @worker: worker currently executing @target, NULL if @target is not executing 3717 * 3718 * @barr is linked to @target such that @barr is completed only after 3719 * @target finishes execution. Please note that the ordering 3720 * guarantee is observed only with respect to @target and on the local 3721 * cpu. 3722 * 3723 * Currently, a queued barrier can't be canceled. This is because 3724 * try_to_grab_pending() can't determine whether the work to be 3725 * grabbed is at the head of the queue and thus can't clear LINKED 3726 * flag of the previous work while there must be a valid next work 3727 * after a work with LINKED flag set. 3728 * 3729 * Note that when @worker is non-NULL, @target may be modified 3730 * underneath us, so we can't reliably determine pwq from @target. 3731 * 3732 * CONTEXT: 3733 * raw_spin_lock_irq(pool->lock). 3734 */ 3735 static void insert_wq_barrier(struct pool_workqueue *pwq, 3736 struct wq_barrier *barr, 3737 struct work_struct *target, struct worker *worker) 3738 { 3739 static __maybe_unused struct lock_class_key bh_key, thr_key; 3740 unsigned int work_flags = 0; 3741 unsigned int work_color; 3742 struct list_head *head; 3743 3744 /* 3745 * debugobject calls are safe here even with pool->lock locked 3746 * as we know for sure that this will not trigger any of the 3747 * checks and call back into the fixup functions where we 3748 * might deadlock. 3749 * 3750 * BH and threaded workqueues need separate lockdep keys to avoid 3751 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} 3752 * usage". 3753 */ 3754 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func, 3755 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key); 3756 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3757 3758 init_completion_map(&barr->done, &target->lockdep_map); 3759 3760 barr->task = current; 3761 3762 /* The barrier work item does not participate in nr_active. */ 3763 work_flags |= WORK_STRUCT_INACTIVE; 3764 3765 /* 3766 * If @target is currently being executed, schedule the 3767 * barrier to the worker; otherwise, put it after @target. 3768 */ 3769 if (worker) { 3770 head = worker->scheduled.next; 3771 work_color = worker->current_color; 3772 } else { 3773 unsigned long *bits = work_data_bits(target); 3774 3775 head = target->entry.next; 3776 /* there can already be other linked works, inherit and set */ 3777 work_flags |= *bits & WORK_STRUCT_LINKED; 3778 work_color = get_work_color(*bits); 3779 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3780 } 3781 3782 pwq->nr_in_flight[work_color]++; 3783 work_flags |= work_color_to_flags(work_color); 3784 3785 insert_work(pwq, &barr->work, head, work_flags); 3786 } 3787 3788 /** 3789 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3790 * @wq: workqueue being flushed 3791 * @flush_color: new flush color, < 0 for no-op 3792 * @work_color: new work color, < 0 for no-op 3793 * 3794 * Prepare pwqs for workqueue flushing. 3795 * 3796 * If @flush_color is non-negative, flush_color on all pwqs should be 3797 * -1. If no pwq has in-flight commands at the specified color, all 3798 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3799 * has in flight commands, its pwq->flush_color is set to 3800 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3801 * wakeup logic is armed and %true is returned. 3802 * 3803 * The caller should have initialized @wq->first_flusher prior to 3804 * calling this function with non-negative @flush_color. If 3805 * @flush_color is negative, no flush color update is done and %false 3806 * is returned. 3807 * 3808 * If @work_color is non-negative, all pwqs should have the same 3809 * work_color which is previous to @work_color and all will be 3810 * advanced to @work_color. 3811 * 3812 * CONTEXT: 3813 * mutex_lock(wq->mutex). 3814 * 3815 * Return: 3816 * %true if @flush_color >= 0 and there's something to flush. %false 3817 * otherwise. 3818 */ 3819 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3820 int flush_color, int work_color) 3821 { 3822 bool wait = false; 3823 struct pool_workqueue *pwq; 3824 3825 if (flush_color >= 0) { 3826 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3827 atomic_set(&wq->nr_pwqs_to_flush, 1); 3828 } 3829 3830 for_each_pwq(pwq, wq) { 3831 struct worker_pool *pool = pwq->pool; 3832 3833 raw_spin_lock_irq(&pool->lock); 3834 3835 if (flush_color >= 0) { 3836 WARN_ON_ONCE(pwq->flush_color != -1); 3837 3838 if (pwq->nr_in_flight[flush_color]) { 3839 pwq->flush_color = flush_color; 3840 atomic_inc(&wq->nr_pwqs_to_flush); 3841 wait = true; 3842 } 3843 } 3844 3845 if (work_color >= 0) { 3846 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3847 pwq->work_color = work_color; 3848 } 3849 3850 raw_spin_unlock_irq(&pool->lock); 3851 } 3852 3853 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3854 complete(&wq->first_flusher->done); 3855 3856 return wait; 3857 } 3858 3859 static void touch_wq_lockdep_map(struct workqueue_struct *wq) 3860 { 3861 #ifdef CONFIG_LOCKDEP 3862 if (wq->flags & WQ_BH) 3863 local_bh_disable(); 3864 3865 lock_map_acquire(&wq->lockdep_map); 3866 lock_map_release(&wq->lockdep_map); 3867 3868 if (wq->flags & WQ_BH) 3869 local_bh_enable(); 3870 #endif 3871 } 3872 3873 static void touch_work_lockdep_map(struct work_struct *work, 3874 struct workqueue_struct *wq) 3875 { 3876 #ifdef CONFIG_LOCKDEP 3877 if (wq->flags & WQ_BH) 3878 local_bh_disable(); 3879 3880 lock_map_acquire(&work->lockdep_map); 3881 lock_map_release(&work->lockdep_map); 3882 3883 if (wq->flags & WQ_BH) 3884 local_bh_enable(); 3885 #endif 3886 } 3887 3888 /** 3889 * __flush_workqueue - ensure that any scheduled work has run to completion. 3890 * @wq: workqueue to flush 3891 * 3892 * This function sleeps until all work items which were queued on entry 3893 * have finished execution, but it is not livelocked by new incoming ones. 3894 */ 3895 void __flush_workqueue(struct workqueue_struct *wq) 3896 { 3897 struct wq_flusher this_flusher = { 3898 .list = LIST_HEAD_INIT(this_flusher.list), 3899 .flush_color = -1, 3900 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 3901 }; 3902 int next_color; 3903 3904 if (WARN_ON(!wq_online)) 3905 return; 3906 3907 touch_wq_lockdep_map(wq); 3908 3909 mutex_lock(&wq->mutex); 3910 3911 /* 3912 * Start-to-wait phase 3913 */ 3914 next_color = work_next_color(wq->work_color); 3915 3916 if (next_color != wq->flush_color) { 3917 /* 3918 * Color space is not full. The current work_color 3919 * becomes our flush_color and work_color is advanced 3920 * by one. 3921 */ 3922 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3923 this_flusher.flush_color = wq->work_color; 3924 wq->work_color = next_color; 3925 3926 if (!wq->first_flusher) { 3927 /* no flush in progress, become the first flusher */ 3928 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3929 3930 wq->first_flusher = &this_flusher; 3931 3932 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3933 wq->work_color)) { 3934 /* nothing to flush, done */ 3935 wq->flush_color = next_color; 3936 wq->first_flusher = NULL; 3937 goto out_unlock; 3938 } 3939 } else { 3940 /* wait in queue */ 3941 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3942 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3943 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3944 } 3945 } else { 3946 /* 3947 * Oops, color space is full, wait on overflow queue. 3948 * The next flush completion will assign us 3949 * flush_color and transfer to flusher_queue. 3950 */ 3951 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3952 } 3953 3954 check_flush_dependency(wq, NULL); 3955 3956 mutex_unlock(&wq->mutex); 3957 3958 wait_for_completion(&this_flusher.done); 3959 3960 /* 3961 * Wake-up-and-cascade phase 3962 * 3963 * First flushers are responsible for cascading flushes and 3964 * handling overflow. Non-first flushers can simply return. 3965 */ 3966 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3967 return; 3968 3969 mutex_lock(&wq->mutex); 3970 3971 /* we might have raced, check again with mutex held */ 3972 if (wq->first_flusher != &this_flusher) 3973 goto out_unlock; 3974 3975 WRITE_ONCE(wq->first_flusher, NULL); 3976 3977 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3978 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3979 3980 while (true) { 3981 struct wq_flusher *next, *tmp; 3982 3983 /* complete all the flushers sharing the current flush color */ 3984 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3985 if (next->flush_color != wq->flush_color) 3986 break; 3987 list_del_init(&next->list); 3988 complete(&next->done); 3989 } 3990 3991 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 3992 wq->flush_color != work_next_color(wq->work_color)); 3993 3994 /* this flush_color is finished, advance by one */ 3995 wq->flush_color = work_next_color(wq->flush_color); 3996 3997 /* one color has been freed, handle overflow queue */ 3998 if (!list_empty(&wq->flusher_overflow)) { 3999 /* 4000 * Assign the same color to all overflowed 4001 * flushers, advance work_color and append to 4002 * flusher_queue. This is the start-to-wait 4003 * phase for these overflowed flushers. 4004 */ 4005 list_for_each_entry(tmp, &wq->flusher_overflow, list) 4006 tmp->flush_color = wq->work_color; 4007 4008 wq->work_color = work_next_color(wq->work_color); 4009 4010 list_splice_tail_init(&wq->flusher_overflow, 4011 &wq->flusher_queue); 4012 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 4013 } 4014 4015 if (list_empty(&wq->flusher_queue)) { 4016 WARN_ON_ONCE(wq->flush_color != wq->work_color); 4017 break; 4018 } 4019 4020 /* 4021 * Need to flush more colors. Make the next flusher 4022 * the new first flusher and arm pwqs. 4023 */ 4024 WARN_ON_ONCE(wq->flush_color == wq->work_color); 4025 WARN_ON_ONCE(wq->flush_color != next->flush_color); 4026 4027 list_del_init(&next->list); 4028 wq->first_flusher = next; 4029 4030 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 4031 break; 4032 4033 /* 4034 * Meh... this color is already done, clear first 4035 * flusher and repeat cascading. 4036 */ 4037 wq->first_flusher = NULL; 4038 } 4039 4040 out_unlock: 4041 mutex_unlock(&wq->mutex); 4042 } 4043 EXPORT_SYMBOL(__flush_workqueue); 4044 4045 /** 4046 * drain_workqueue - drain a workqueue 4047 * @wq: workqueue to drain 4048 * 4049 * Wait until the workqueue becomes empty. While draining is in progress, 4050 * only chain queueing is allowed. IOW, only currently pending or running 4051 * work items on @wq can queue further work items on it. @wq is flushed 4052 * repeatedly until it becomes empty. The number of flushing is determined 4053 * by the depth of chaining and should be relatively short. Whine if it 4054 * takes too long. 4055 */ 4056 void drain_workqueue(struct workqueue_struct *wq) 4057 { 4058 unsigned int flush_cnt = 0; 4059 struct pool_workqueue *pwq; 4060 4061 /* 4062 * __queue_work() needs to test whether there are drainers, is much 4063 * hotter than drain_workqueue() and already looks at @wq->flags. 4064 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 4065 */ 4066 mutex_lock(&wq->mutex); 4067 if (!wq->nr_drainers++) 4068 wq->flags |= __WQ_DRAINING; 4069 mutex_unlock(&wq->mutex); 4070 reflush: 4071 __flush_workqueue(wq); 4072 4073 mutex_lock(&wq->mutex); 4074 4075 for_each_pwq(pwq, wq) { 4076 bool drained; 4077 4078 raw_spin_lock_irq(&pwq->pool->lock); 4079 drained = pwq_is_empty(pwq); 4080 raw_spin_unlock_irq(&pwq->pool->lock); 4081 4082 if (drained) 4083 continue; 4084 4085 if (++flush_cnt == 10 || 4086 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 4087 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 4088 wq->name, __func__, flush_cnt); 4089 4090 mutex_unlock(&wq->mutex); 4091 goto reflush; 4092 } 4093 4094 if (!--wq->nr_drainers) 4095 wq->flags &= ~__WQ_DRAINING; 4096 mutex_unlock(&wq->mutex); 4097 } 4098 EXPORT_SYMBOL_GPL(drain_workqueue); 4099 4100 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 4101 bool from_cancel) 4102 { 4103 struct worker *worker = NULL; 4104 struct worker_pool *pool; 4105 struct pool_workqueue *pwq; 4106 struct workqueue_struct *wq; 4107 4108 rcu_read_lock(); 4109 pool = get_work_pool(work); 4110 if (!pool) { 4111 rcu_read_unlock(); 4112 return false; 4113 } 4114 4115 raw_spin_lock_irq(&pool->lock); 4116 /* see the comment in try_to_grab_pending() with the same code */ 4117 pwq = get_work_pwq(work); 4118 if (pwq) { 4119 if (unlikely(pwq->pool != pool)) 4120 goto already_gone; 4121 } else { 4122 worker = find_worker_executing_work(pool, work); 4123 if (!worker) 4124 goto already_gone; 4125 pwq = worker->current_pwq; 4126 } 4127 4128 wq = pwq->wq; 4129 check_flush_dependency(wq, work); 4130 4131 insert_wq_barrier(pwq, barr, work, worker); 4132 raw_spin_unlock_irq(&pool->lock); 4133 4134 touch_work_lockdep_map(work, wq); 4135 4136 /* 4137 * Force a lock recursion deadlock when using flush_work() inside a 4138 * single-threaded or rescuer equipped workqueue. 4139 * 4140 * For single threaded workqueues the deadlock happens when the work 4141 * is after the work issuing the flush_work(). For rescuer equipped 4142 * workqueues the deadlock happens when the rescuer stalls, blocking 4143 * forward progress. 4144 */ 4145 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer)) 4146 touch_wq_lockdep_map(wq); 4147 4148 rcu_read_unlock(); 4149 return true; 4150 already_gone: 4151 raw_spin_unlock_irq(&pool->lock); 4152 rcu_read_unlock(); 4153 return false; 4154 } 4155 4156 static bool __flush_work(struct work_struct *work, bool from_cancel) 4157 { 4158 struct wq_barrier barr; 4159 unsigned long data; 4160 4161 if (WARN_ON(!wq_online)) 4162 return false; 4163 4164 if (WARN_ON(!work->func)) 4165 return false; 4166 4167 if (!start_flush_work(work, &barr, from_cancel)) 4168 return false; 4169 4170 /* 4171 * start_flush_work() returned %true. If @from_cancel is set, we know 4172 * that @work must have been executing during start_flush_work() and 4173 * can't currently be queued. Its data must contain OFFQ bits. If @work 4174 * was queued on a BH workqueue, we also know that it was running in the 4175 * BH context and thus can be busy-waited. 4176 */ 4177 data = *work_data_bits(work); 4178 if (from_cancel && 4179 !WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_BH)) { 4180 /* 4181 * On RT, prevent a live lock when %current preempted soft 4182 * interrupt processing or prevents ksoftirqd from running by 4183 * keeping flipping BH. If the BH work item runs on a different 4184 * CPU then this has no effect other than doing the BH 4185 * disable/enable dance for nothing. This is copied from 4186 * kernel/softirq.c::tasklet_unlock_spin_wait(). 4187 */ 4188 while (!try_wait_for_completion(&barr.done)) { 4189 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4190 local_bh_disable(); 4191 local_bh_enable(); 4192 } else { 4193 cpu_relax(); 4194 } 4195 } 4196 } else { 4197 wait_for_completion(&barr.done); 4198 } 4199 4200 destroy_work_on_stack(&barr.work); 4201 return true; 4202 } 4203 4204 /** 4205 * flush_work - wait for a work to finish executing the last queueing instance 4206 * @work: the work to flush 4207 * 4208 * Wait until @work has finished execution. @work is guaranteed to be idle 4209 * on return if it hasn't been requeued since flush started. 4210 * 4211 * Return: 4212 * %true if flush_work() waited for the work to finish execution, 4213 * %false if it was already idle. 4214 */ 4215 bool flush_work(struct work_struct *work) 4216 { 4217 might_sleep(); 4218 return __flush_work(work, false); 4219 } 4220 EXPORT_SYMBOL_GPL(flush_work); 4221 4222 /** 4223 * flush_delayed_work - wait for a dwork to finish executing the last queueing 4224 * @dwork: the delayed work to flush 4225 * 4226 * Delayed timer is cancelled and the pending work is queued for 4227 * immediate execution. Like flush_work(), this function only 4228 * considers the last queueing instance of @dwork. 4229 * 4230 * Return: 4231 * %true if flush_work() waited for the work to finish execution, 4232 * %false if it was already idle. 4233 */ 4234 bool flush_delayed_work(struct delayed_work *dwork) 4235 { 4236 local_irq_disable(); 4237 if (del_timer_sync(&dwork->timer)) 4238 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 4239 local_irq_enable(); 4240 return flush_work(&dwork->work); 4241 } 4242 EXPORT_SYMBOL(flush_delayed_work); 4243 4244 /** 4245 * flush_rcu_work - wait for a rwork to finish executing the last queueing 4246 * @rwork: the rcu work to flush 4247 * 4248 * Return: 4249 * %true if flush_rcu_work() waited for the work to finish execution, 4250 * %false if it was already idle. 4251 */ 4252 bool flush_rcu_work(struct rcu_work *rwork) 4253 { 4254 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 4255 rcu_barrier(); 4256 flush_work(&rwork->work); 4257 return true; 4258 } else { 4259 return flush_work(&rwork->work); 4260 } 4261 } 4262 EXPORT_SYMBOL(flush_rcu_work); 4263 4264 static void work_offqd_disable(struct work_offq_data *offqd) 4265 { 4266 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1; 4267 4268 if (likely(offqd->disable < max)) 4269 offqd->disable++; 4270 else 4271 WARN_ONCE(true, "workqueue: work disable count overflowed\n"); 4272 } 4273 4274 static void work_offqd_enable(struct work_offq_data *offqd) 4275 { 4276 if (likely(offqd->disable > 0)) 4277 offqd->disable--; 4278 else 4279 WARN_ONCE(true, "workqueue: work disable count underflowed\n"); 4280 } 4281 4282 static bool __cancel_work(struct work_struct *work, u32 cflags) 4283 { 4284 struct work_offq_data offqd; 4285 unsigned long irq_flags; 4286 int ret; 4287 4288 ret = work_grab_pending(work, cflags, &irq_flags); 4289 4290 work_offqd_unpack(&offqd, *work_data_bits(work)); 4291 4292 if (cflags & WORK_CANCEL_DISABLE) 4293 work_offqd_disable(&offqd); 4294 4295 set_work_pool_and_clear_pending(work, offqd.pool_id, 4296 work_offqd_pack_flags(&offqd)); 4297 local_irq_restore(irq_flags); 4298 return ret; 4299 } 4300 4301 static bool __cancel_work_sync(struct work_struct *work, u32 cflags) 4302 { 4303 bool ret; 4304 4305 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE); 4306 4307 if (*work_data_bits(work) & WORK_OFFQ_BH) 4308 WARN_ON_ONCE(in_hardirq()); 4309 else 4310 might_sleep(); 4311 4312 /* 4313 * Skip __flush_work() during early boot when we know that @work isn't 4314 * executing. This allows canceling during early boot. 4315 */ 4316 if (wq_online) 4317 __flush_work(work, true); 4318 4319 if (!(cflags & WORK_CANCEL_DISABLE)) 4320 enable_work(work); 4321 4322 return ret; 4323 } 4324 4325 /* 4326 * See cancel_delayed_work() 4327 */ 4328 bool cancel_work(struct work_struct *work) 4329 { 4330 return __cancel_work(work, 0); 4331 } 4332 EXPORT_SYMBOL(cancel_work); 4333 4334 /** 4335 * cancel_work_sync - cancel a work and wait for it to finish 4336 * @work: the work to cancel 4337 * 4338 * Cancel @work and wait for its execution to finish. This function can be used 4339 * even if the work re-queues itself or migrates to another workqueue. On return 4340 * from this function, @work is guaranteed to be not pending or executing on any 4341 * CPU as long as there aren't racing enqueues. 4342 * 4343 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's. 4344 * Use cancel_delayed_work_sync() instead. 4345 * 4346 * Must be called from a sleepable context if @work was last queued on a non-BH 4347 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4348 * if @work was last queued on a BH workqueue. 4349 * 4350 * Returns %true if @work was pending, %false otherwise. 4351 */ 4352 bool cancel_work_sync(struct work_struct *work) 4353 { 4354 return __cancel_work_sync(work, 0); 4355 } 4356 EXPORT_SYMBOL_GPL(cancel_work_sync); 4357 4358 /** 4359 * cancel_delayed_work - cancel a delayed work 4360 * @dwork: delayed_work to cancel 4361 * 4362 * Kill off a pending delayed_work. 4363 * 4364 * Return: %true if @dwork was pending and canceled; %false if it wasn't 4365 * pending. 4366 * 4367 * Note: 4368 * The work callback function may still be running on return, unless 4369 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 4370 * use cancel_delayed_work_sync() to wait on it. 4371 * 4372 * This function is safe to call from any context including IRQ handler. 4373 */ 4374 bool cancel_delayed_work(struct delayed_work *dwork) 4375 { 4376 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED); 4377 } 4378 EXPORT_SYMBOL(cancel_delayed_work); 4379 4380 /** 4381 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 4382 * @dwork: the delayed work cancel 4383 * 4384 * This is cancel_work_sync() for delayed works. 4385 * 4386 * Return: 4387 * %true if @dwork was pending, %false otherwise. 4388 */ 4389 bool cancel_delayed_work_sync(struct delayed_work *dwork) 4390 { 4391 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED); 4392 } 4393 EXPORT_SYMBOL(cancel_delayed_work_sync); 4394 4395 /** 4396 * disable_work - Disable and cancel a work item 4397 * @work: work item to disable 4398 * 4399 * Disable @work by incrementing its disable count and cancel it if currently 4400 * pending. As long as the disable count is non-zero, any attempt to queue @work 4401 * will fail and return %false. The maximum supported disable depth is 2 to the 4402 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536. 4403 * 4404 * Can be called from any context. Returns %true if @work was pending, %false 4405 * otherwise. 4406 */ 4407 bool disable_work(struct work_struct *work) 4408 { 4409 return __cancel_work(work, WORK_CANCEL_DISABLE); 4410 } 4411 EXPORT_SYMBOL_GPL(disable_work); 4412 4413 /** 4414 * disable_work_sync - Disable, cancel and drain a work item 4415 * @work: work item to disable 4416 * 4417 * Similar to disable_work() but also wait for @work to finish if currently 4418 * executing. 4419 * 4420 * Must be called from a sleepable context if @work was last queued on a non-BH 4421 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4422 * if @work was last queued on a BH workqueue. 4423 * 4424 * Returns %true if @work was pending, %false otherwise. 4425 */ 4426 bool disable_work_sync(struct work_struct *work) 4427 { 4428 return __cancel_work_sync(work, WORK_CANCEL_DISABLE); 4429 } 4430 EXPORT_SYMBOL_GPL(disable_work_sync); 4431 4432 /** 4433 * enable_work - Enable a work item 4434 * @work: work item to enable 4435 * 4436 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can 4437 * only be queued if its disable count is 0. 4438 * 4439 * Can be called from any context. Returns %true if the disable count reached 0. 4440 * Otherwise, %false. 4441 */ 4442 bool enable_work(struct work_struct *work) 4443 { 4444 struct work_offq_data offqd; 4445 unsigned long irq_flags; 4446 4447 work_grab_pending(work, 0, &irq_flags); 4448 4449 work_offqd_unpack(&offqd, *work_data_bits(work)); 4450 work_offqd_enable(&offqd); 4451 set_work_pool_and_clear_pending(work, offqd.pool_id, 4452 work_offqd_pack_flags(&offqd)); 4453 local_irq_restore(irq_flags); 4454 4455 return !offqd.disable; 4456 } 4457 EXPORT_SYMBOL_GPL(enable_work); 4458 4459 /** 4460 * disable_delayed_work - Disable and cancel a delayed work item 4461 * @dwork: delayed work item to disable 4462 * 4463 * disable_work() for delayed work items. 4464 */ 4465 bool disable_delayed_work(struct delayed_work *dwork) 4466 { 4467 return __cancel_work(&dwork->work, 4468 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4469 } 4470 EXPORT_SYMBOL_GPL(disable_delayed_work); 4471 4472 /** 4473 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item 4474 * @dwork: delayed work item to disable 4475 * 4476 * disable_work_sync() for delayed work items. 4477 */ 4478 bool disable_delayed_work_sync(struct delayed_work *dwork) 4479 { 4480 return __cancel_work_sync(&dwork->work, 4481 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4482 } 4483 EXPORT_SYMBOL_GPL(disable_delayed_work_sync); 4484 4485 /** 4486 * enable_delayed_work - Enable a delayed work item 4487 * @dwork: delayed work item to enable 4488 * 4489 * enable_work() for delayed work items. 4490 */ 4491 bool enable_delayed_work(struct delayed_work *dwork) 4492 { 4493 return enable_work(&dwork->work); 4494 } 4495 EXPORT_SYMBOL_GPL(enable_delayed_work); 4496 4497 /** 4498 * schedule_on_each_cpu - execute a function synchronously on each online CPU 4499 * @func: the function to call 4500 * 4501 * schedule_on_each_cpu() executes @func on each online CPU using the 4502 * system workqueue and blocks until all CPUs have completed. 4503 * schedule_on_each_cpu() is very slow. 4504 * 4505 * Return: 4506 * 0 on success, -errno on failure. 4507 */ 4508 int schedule_on_each_cpu(work_func_t func) 4509 { 4510 int cpu; 4511 struct work_struct __percpu *works; 4512 4513 works = alloc_percpu(struct work_struct); 4514 if (!works) 4515 return -ENOMEM; 4516 4517 cpus_read_lock(); 4518 4519 for_each_online_cpu(cpu) { 4520 struct work_struct *work = per_cpu_ptr(works, cpu); 4521 4522 INIT_WORK(work, func); 4523 schedule_work_on(cpu, work); 4524 } 4525 4526 for_each_online_cpu(cpu) 4527 flush_work(per_cpu_ptr(works, cpu)); 4528 4529 cpus_read_unlock(); 4530 free_percpu(works); 4531 return 0; 4532 } 4533 4534 /** 4535 * execute_in_process_context - reliably execute the routine with user context 4536 * @fn: the function to execute 4537 * @ew: guaranteed storage for the execute work structure (must 4538 * be available when the work executes) 4539 * 4540 * Executes the function immediately if process context is available, 4541 * otherwise schedules the function for delayed execution. 4542 * 4543 * Return: 0 - function was executed 4544 * 1 - function was scheduled for execution 4545 */ 4546 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 4547 { 4548 if (!in_interrupt()) { 4549 fn(&ew->work); 4550 return 0; 4551 } 4552 4553 INIT_WORK(&ew->work, fn); 4554 schedule_work(&ew->work); 4555 4556 return 1; 4557 } 4558 EXPORT_SYMBOL_GPL(execute_in_process_context); 4559 4560 /** 4561 * free_workqueue_attrs - free a workqueue_attrs 4562 * @attrs: workqueue_attrs to free 4563 * 4564 * Undo alloc_workqueue_attrs(). 4565 */ 4566 void free_workqueue_attrs(struct workqueue_attrs *attrs) 4567 { 4568 if (attrs) { 4569 free_cpumask_var(attrs->cpumask); 4570 free_cpumask_var(attrs->__pod_cpumask); 4571 kfree(attrs); 4572 } 4573 } 4574 4575 /** 4576 * alloc_workqueue_attrs - allocate a workqueue_attrs 4577 * 4578 * Allocate a new workqueue_attrs, initialize with default settings and 4579 * return it. 4580 * 4581 * Return: The allocated new workqueue_attr on success. %NULL on failure. 4582 */ 4583 struct workqueue_attrs *alloc_workqueue_attrs(void) 4584 { 4585 struct workqueue_attrs *attrs; 4586 4587 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 4588 if (!attrs) 4589 goto fail; 4590 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 4591 goto fail; 4592 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 4593 goto fail; 4594 4595 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4596 attrs->affn_scope = WQ_AFFN_DFL; 4597 return attrs; 4598 fail: 4599 free_workqueue_attrs(attrs); 4600 return NULL; 4601 } 4602 4603 static void copy_workqueue_attrs(struct workqueue_attrs *to, 4604 const struct workqueue_attrs *from) 4605 { 4606 to->nice = from->nice; 4607 cpumask_copy(to->cpumask, from->cpumask); 4608 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 4609 to->affn_strict = from->affn_strict; 4610 4611 /* 4612 * Unlike hash and equality test, copying shouldn't ignore wq-only 4613 * fields as copying is used for both pool and wq attrs. Instead, 4614 * get_unbound_pool() explicitly clears the fields. 4615 */ 4616 to->affn_scope = from->affn_scope; 4617 to->ordered = from->ordered; 4618 } 4619 4620 /* 4621 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 4622 * comments in 'struct workqueue_attrs' definition. 4623 */ 4624 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 4625 { 4626 attrs->affn_scope = WQ_AFFN_NR_TYPES; 4627 attrs->ordered = false; 4628 if (attrs->affn_strict) 4629 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4630 } 4631 4632 /* hash value of the content of @attr */ 4633 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 4634 { 4635 u32 hash = 0; 4636 4637 hash = jhash_1word(attrs->nice, hash); 4638 hash = jhash_1word(attrs->affn_strict, hash); 4639 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 4640 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4641 if (!attrs->affn_strict) 4642 hash = jhash(cpumask_bits(attrs->cpumask), 4643 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4644 return hash; 4645 } 4646 4647 /* content equality test */ 4648 static bool wqattrs_equal(const struct workqueue_attrs *a, 4649 const struct workqueue_attrs *b) 4650 { 4651 if (a->nice != b->nice) 4652 return false; 4653 if (a->affn_strict != b->affn_strict) 4654 return false; 4655 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 4656 return false; 4657 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask)) 4658 return false; 4659 return true; 4660 } 4661 4662 /* Update @attrs with actually available CPUs */ 4663 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 4664 const cpumask_t *unbound_cpumask) 4665 { 4666 /* 4667 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 4668 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 4669 * @unbound_cpumask. 4670 */ 4671 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 4672 if (unlikely(cpumask_empty(attrs->cpumask))) 4673 cpumask_copy(attrs->cpumask, unbound_cpumask); 4674 } 4675 4676 /* find wq_pod_type to use for @attrs */ 4677 static const struct wq_pod_type * 4678 wqattrs_pod_type(const struct workqueue_attrs *attrs) 4679 { 4680 enum wq_affn_scope scope; 4681 struct wq_pod_type *pt; 4682 4683 /* to synchronize access to wq_affn_dfl */ 4684 lockdep_assert_held(&wq_pool_mutex); 4685 4686 if (attrs->affn_scope == WQ_AFFN_DFL) 4687 scope = wq_affn_dfl; 4688 else 4689 scope = attrs->affn_scope; 4690 4691 pt = &wq_pod_types[scope]; 4692 4693 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 4694 likely(pt->nr_pods)) 4695 return pt; 4696 4697 /* 4698 * Before workqueue_init_topology(), only SYSTEM is available which is 4699 * initialized in workqueue_init_early(). 4700 */ 4701 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 4702 BUG_ON(!pt->nr_pods); 4703 return pt; 4704 } 4705 4706 /** 4707 * init_worker_pool - initialize a newly zalloc'd worker_pool 4708 * @pool: worker_pool to initialize 4709 * 4710 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 4711 * 4712 * Return: 0 on success, -errno on failure. Even on failure, all fields 4713 * inside @pool proper are initialized and put_unbound_pool() can be called 4714 * on @pool safely to release it. 4715 */ 4716 static int init_worker_pool(struct worker_pool *pool) 4717 { 4718 raw_spin_lock_init(&pool->lock); 4719 pool->id = -1; 4720 pool->cpu = -1; 4721 pool->node = NUMA_NO_NODE; 4722 pool->flags |= POOL_DISASSOCIATED; 4723 pool->watchdog_ts = jiffies; 4724 INIT_LIST_HEAD(&pool->worklist); 4725 INIT_LIST_HEAD(&pool->idle_list); 4726 hash_init(pool->busy_hash); 4727 4728 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 4729 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 4730 4731 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 4732 4733 INIT_LIST_HEAD(&pool->workers); 4734 INIT_LIST_HEAD(&pool->dying_workers); 4735 4736 ida_init(&pool->worker_ida); 4737 INIT_HLIST_NODE(&pool->hash_node); 4738 pool->refcnt = 1; 4739 4740 /* shouldn't fail above this point */ 4741 pool->attrs = alloc_workqueue_attrs(); 4742 if (!pool->attrs) 4743 return -ENOMEM; 4744 4745 wqattrs_clear_for_pool(pool->attrs); 4746 4747 return 0; 4748 } 4749 4750 #ifdef CONFIG_LOCKDEP 4751 static void wq_init_lockdep(struct workqueue_struct *wq) 4752 { 4753 char *lock_name; 4754 4755 lockdep_register_key(&wq->key); 4756 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 4757 if (!lock_name) 4758 lock_name = wq->name; 4759 4760 wq->lock_name = lock_name; 4761 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 4762 } 4763 4764 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4765 { 4766 lockdep_unregister_key(&wq->key); 4767 } 4768 4769 static void wq_free_lockdep(struct workqueue_struct *wq) 4770 { 4771 if (wq->lock_name != wq->name) 4772 kfree(wq->lock_name); 4773 } 4774 #else 4775 static void wq_init_lockdep(struct workqueue_struct *wq) 4776 { 4777 } 4778 4779 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4780 { 4781 } 4782 4783 static void wq_free_lockdep(struct workqueue_struct *wq) 4784 { 4785 } 4786 #endif 4787 4788 static void free_node_nr_active(struct wq_node_nr_active **nna_ar) 4789 { 4790 int node; 4791 4792 for_each_node(node) { 4793 kfree(nna_ar[node]); 4794 nna_ar[node] = NULL; 4795 } 4796 4797 kfree(nna_ar[nr_node_ids]); 4798 nna_ar[nr_node_ids] = NULL; 4799 } 4800 4801 static void init_node_nr_active(struct wq_node_nr_active *nna) 4802 { 4803 nna->max = WQ_DFL_MIN_ACTIVE; 4804 atomic_set(&nna->nr, 0); 4805 raw_spin_lock_init(&nna->lock); 4806 INIT_LIST_HEAD(&nna->pending_pwqs); 4807 } 4808 4809 /* 4810 * Each node's nr_active counter will be accessed mostly from its own node and 4811 * should be allocated in the node. 4812 */ 4813 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) 4814 { 4815 struct wq_node_nr_active *nna; 4816 int node; 4817 4818 for_each_node(node) { 4819 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node); 4820 if (!nna) 4821 goto err_free; 4822 init_node_nr_active(nna); 4823 nna_ar[node] = nna; 4824 } 4825 4826 /* [nr_node_ids] is used as the fallback */ 4827 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); 4828 if (!nna) 4829 goto err_free; 4830 init_node_nr_active(nna); 4831 nna_ar[nr_node_ids] = nna; 4832 4833 return 0; 4834 4835 err_free: 4836 free_node_nr_active(nna_ar); 4837 return -ENOMEM; 4838 } 4839 4840 static void rcu_free_wq(struct rcu_head *rcu) 4841 { 4842 struct workqueue_struct *wq = 4843 container_of(rcu, struct workqueue_struct, rcu); 4844 4845 if (wq->flags & WQ_UNBOUND) 4846 free_node_nr_active(wq->node_nr_active); 4847 4848 wq_free_lockdep(wq); 4849 free_percpu(wq->cpu_pwq); 4850 free_workqueue_attrs(wq->unbound_attrs); 4851 kfree(wq); 4852 } 4853 4854 static void rcu_free_pool(struct rcu_head *rcu) 4855 { 4856 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 4857 4858 ida_destroy(&pool->worker_ida); 4859 free_workqueue_attrs(pool->attrs); 4860 kfree(pool); 4861 } 4862 4863 /** 4864 * put_unbound_pool - put a worker_pool 4865 * @pool: worker_pool to put 4866 * 4867 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 4868 * safe manner. get_unbound_pool() calls this function on its failure path 4869 * and this function should be able to release pools which went through, 4870 * successfully or not, init_worker_pool(). 4871 * 4872 * Should be called with wq_pool_mutex held. 4873 */ 4874 static void put_unbound_pool(struct worker_pool *pool) 4875 { 4876 DECLARE_COMPLETION_ONSTACK(detach_completion); 4877 struct worker *worker; 4878 LIST_HEAD(cull_list); 4879 4880 lockdep_assert_held(&wq_pool_mutex); 4881 4882 if (--pool->refcnt) 4883 return; 4884 4885 /* sanity checks */ 4886 if (WARN_ON(!(pool->cpu < 0)) || 4887 WARN_ON(!list_empty(&pool->worklist))) 4888 return; 4889 4890 /* release id and unhash */ 4891 if (pool->id >= 0) 4892 idr_remove(&worker_pool_idr, pool->id); 4893 hash_del(&pool->hash_node); 4894 4895 /* 4896 * Become the manager and destroy all workers. This prevents 4897 * @pool's workers from blocking on attach_mutex. We're the last 4898 * manager and @pool gets freed with the flag set. 4899 * 4900 * Having a concurrent manager is quite unlikely to happen as we can 4901 * only get here with 4902 * pwq->refcnt == pool->refcnt == 0 4903 * which implies no work queued to the pool, which implies no worker can 4904 * become the manager. However a worker could have taken the role of 4905 * manager before the refcnts dropped to 0, since maybe_create_worker() 4906 * drops pool->lock 4907 */ 4908 while (true) { 4909 rcuwait_wait_event(&manager_wait, 4910 !(pool->flags & POOL_MANAGER_ACTIVE), 4911 TASK_UNINTERRUPTIBLE); 4912 4913 mutex_lock(&wq_pool_attach_mutex); 4914 raw_spin_lock_irq(&pool->lock); 4915 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4916 pool->flags |= POOL_MANAGER_ACTIVE; 4917 break; 4918 } 4919 raw_spin_unlock_irq(&pool->lock); 4920 mutex_unlock(&wq_pool_attach_mutex); 4921 } 4922 4923 while ((worker = first_idle_worker(pool))) 4924 set_worker_dying(worker, &cull_list); 4925 WARN_ON(pool->nr_workers || pool->nr_idle); 4926 raw_spin_unlock_irq(&pool->lock); 4927 4928 wake_dying_workers(&cull_list); 4929 4930 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers)) 4931 pool->detach_completion = &detach_completion; 4932 mutex_unlock(&wq_pool_attach_mutex); 4933 4934 if (pool->detach_completion) 4935 wait_for_completion(pool->detach_completion); 4936 4937 /* shut down the timers */ 4938 del_timer_sync(&pool->idle_timer); 4939 cancel_work_sync(&pool->idle_cull_work); 4940 del_timer_sync(&pool->mayday_timer); 4941 4942 /* RCU protected to allow dereferences from get_work_pool() */ 4943 call_rcu(&pool->rcu, rcu_free_pool); 4944 } 4945 4946 /** 4947 * get_unbound_pool - get a worker_pool with the specified attributes 4948 * @attrs: the attributes of the worker_pool to get 4949 * 4950 * Obtain a worker_pool which has the same attributes as @attrs, bump the 4951 * reference count and return it. If there already is a matching 4952 * worker_pool, it will be used; otherwise, this function attempts to 4953 * create a new one. 4954 * 4955 * Should be called with wq_pool_mutex held. 4956 * 4957 * Return: On success, a worker_pool with the same attributes as @attrs. 4958 * On failure, %NULL. 4959 */ 4960 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 4961 { 4962 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 4963 u32 hash = wqattrs_hash(attrs); 4964 struct worker_pool *pool; 4965 int pod, node = NUMA_NO_NODE; 4966 4967 lockdep_assert_held(&wq_pool_mutex); 4968 4969 /* do we already have a matching pool? */ 4970 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 4971 if (wqattrs_equal(pool->attrs, attrs)) { 4972 pool->refcnt++; 4973 return pool; 4974 } 4975 } 4976 4977 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 4978 for (pod = 0; pod < pt->nr_pods; pod++) { 4979 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 4980 node = pt->pod_node[pod]; 4981 break; 4982 } 4983 } 4984 4985 /* nope, create a new one */ 4986 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 4987 if (!pool || init_worker_pool(pool) < 0) 4988 goto fail; 4989 4990 pool->node = node; 4991 copy_workqueue_attrs(pool->attrs, attrs); 4992 wqattrs_clear_for_pool(pool->attrs); 4993 4994 if (worker_pool_assign_id(pool) < 0) 4995 goto fail; 4996 4997 /* create and start the initial worker */ 4998 if (wq_online && !create_worker(pool)) 4999 goto fail; 5000 5001 /* install */ 5002 hash_add(unbound_pool_hash, &pool->hash_node, hash); 5003 5004 return pool; 5005 fail: 5006 if (pool) 5007 put_unbound_pool(pool); 5008 return NULL; 5009 } 5010 5011 static void rcu_free_pwq(struct rcu_head *rcu) 5012 { 5013 kmem_cache_free(pwq_cache, 5014 container_of(rcu, struct pool_workqueue, rcu)); 5015 } 5016 5017 /* 5018 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 5019 * refcnt and needs to be destroyed. 5020 */ 5021 static void pwq_release_workfn(struct kthread_work *work) 5022 { 5023 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 5024 release_work); 5025 struct workqueue_struct *wq = pwq->wq; 5026 struct worker_pool *pool = pwq->pool; 5027 bool is_last = false; 5028 5029 /* 5030 * When @pwq is not linked, it doesn't hold any reference to the 5031 * @wq, and @wq is invalid to access. 5032 */ 5033 if (!list_empty(&pwq->pwqs_node)) { 5034 mutex_lock(&wq->mutex); 5035 list_del_rcu(&pwq->pwqs_node); 5036 is_last = list_empty(&wq->pwqs); 5037 5038 /* 5039 * For ordered workqueue with a plugged dfl_pwq, restart it now. 5040 */ 5041 if (!is_last && (wq->flags & __WQ_ORDERED)) 5042 unplug_oldest_pwq(wq); 5043 5044 mutex_unlock(&wq->mutex); 5045 } 5046 5047 if (wq->flags & WQ_UNBOUND) { 5048 mutex_lock(&wq_pool_mutex); 5049 put_unbound_pool(pool); 5050 mutex_unlock(&wq_pool_mutex); 5051 } 5052 5053 if (!list_empty(&pwq->pending_node)) { 5054 struct wq_node_nr_active *nna = 5055 wq_node_nr_active(pwq->wq, pwq->pool->node); 5056 5057 raw_spin_lock_irq(&nna->lock); 5058 list_del_init(&pwq->pending_node); 5059 raw_spin_unlock_irq(&nna->lock); 5060 } 5061 5062 call_rcu(&pwq->rcu, rcu_free_pwq); 5063 5064 /* 5065 * If we're the last pwq going away, @wq is already dead and no one 5066 * is gonna access it anymore. Schedule RCU free. 5067 */ 5068 if (is_last) { 5069 wq_unregister_lockdep(wq); 5070 call_rcu(&wq->rcu, rcu_free_wq); 5071 } 5072 } 5073 5074 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 5075 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 5076 struct worker_pool *pool) 5077 { 5078 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK); 5079 5080 memset(pwq, 0, sizeof(*pwq)); 5081 5082 pwq->pool = pool; 5083 pwq->wq = wq; 5084 pwq->flush_color = -1; 5085 pwq->refcnt = 1; 5086 INIT_LIST_HEAD(&pwq->inactive_works); 5087 INIT_LIST_HEAD(&pwq->pending_node); 5088 INIT_LIST_HEAD(&pwq->pwqs_node); 5089 INIT_LIST_HEAD(&pwq->mayday_node); 5090 kthread_init_work(&pwq->release_work, pwq_release_workfn); 5091 } 5092 5093 /* sync @pwq with the current state of its associated wq and link it */ 5094 static void link_pwq(struct pool_workqueue *pwq) 5095 { 5096 struct workqueue_struct *wq = pwq->wq; 5097 5098 lockdep_assert_held(&wq->mutex); 5099 5100 /* may be called multiple times, ignore if already linked */ 5101 if (!list_empty(&pwq->pwqs_node)) 5102 return; 5103 5104 /* set the matching work_color */ 5105 pwq->work_color = wq->work_color; 5106 5107 /* link in @pwq */ 5108 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs); 5109 } 5110 5111 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 5112 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 5113 const struct workqueue_attrs *attrs) 5114 { 5115 struct worker_pool *pool; 5116 struct pool_workqueue *pwq; 5117 5118 lockdep_assert_held(&wq_pool_mutex); 5119 5120 pool = get_unbound_pool(attrs); 5121 if (!pool) 5122 return NULL; 5123 5124 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 5125 if (!pwq) { 5126 put_unbound_pool(pool); 5127 return NULL; 5128 } 5129 5130 init_pwq(pwq, wq, pool); 5131 return pwq; 5132 } 5133 5134 /** 5135 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 5136 * @attrs: the wq_attrs of the default pwq of the target workqueue 5137 * @cpu: the target CPU 5138 * @cpu_going_down: if >= 0, the CPU to consider as offline 5139 * 5140 * Calculate the cpumask a workqueue with @attrs should use on @pod. If 5141 * @cpu_going_down is >= 0, that cpu is considered offline during calculation. 5142 * The result is stored in @attrs->__pod_cpumask. 5143 * 5144 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 5145 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 5146 * intersection of the possible CPUs of @pod and @attrs->cpumask. 5147 * 5148 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 5149 */ 5150 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu, 5151 int cpu_going_down) 5152 { 5153 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5154 int pod = pt->cpu_pod[cpu]; 5155 5156 /* does @pod have any online CPUs @attrs wants? */ 5157 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 5158 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask); 5159 if (cpu_going_down >= 0) 5160 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask); 5161 5162 if (cpumask_empty(attrs->__pod_cpumask)) { 5163 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 5164 return; 5165 } 5166 5167 /* yeap, return possible CPUs in @pod that @attrs wants */ 5168 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]); 5169 5170 if (cpumask_empty(attrs->__pod_cpumask)) 5171 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 5172 "possible intersect\n"); 5173 } 5174 5175 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ 5176 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 5177 int cpu, struct pool_workqueue *pwq) 5178 { 5179 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); 5180 struct pool_workqueue *old_pwq; 5181 5182 lockdep_assert_held(&wq_pool_mutex); 5183 lockdep_assert_held(&wq->mutex); 5184 5185 /* link_pwq() can handle duplicate calls */ 5186 link_pwq(pwq); 5187 5188 old_pwq = rcu_access_pointer(*slot); 5189 rcu_assign_pointer(*slot, pwq); 5190 return old_pwq; 5191 } 5192 5193 /* context to store the prepared attrs & pwqs before applying */ 5194 struct apply_wqattrs_ctx { 5195 struct workqueue_struct *wq; /* target workqueue */ 5196 struct workqueue_attrs *attrs; /* attrs to apply */ 5197 struct list_head list; /* queued for batching commit */ 5198 struct pool_workqueue *dfl_pwq; 5199 struct pool_workqueue *pwq_tbl[]; 5200 }; 5201 5202 /* free the resources after success or abort */ 5203 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 5204 { 5205 if (ctx) { 5206 int cpu; 5207 5208 for_each_possible_cpu(cpu) 5209 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 5210 put_pwq_unlocked(ctx->dfl_pwq); 5211 5212 free_workqueue_attrs(ctx->attrs); 5213 5214 kfree(ctx); 5215 } 5216 } 5217 5218 /* allocate the attrs and pwqs for later installation */ 5219 static struct apply_wqattrs_ctx * 5220 apply_wqattrs_prepare(struct workqueue_struct *wq, 5221 const struct workqueue_attrs *attrs, 5222 const cpumask_var_t unbound_cpumask) 5223 { 5224 struct apply_wqattrs_ctx *ctx; 5225 struct workqueue_attrs *new_attrs; 5226 int cpu; 5227 5228 lockdep_assert_held(&wq_pool_mutex); 5229 5230 if (WARN_ON(attrs->affn_scope < 0 || 5231 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 5232 return ERR_PTR(-EINVAL); 5233 5234 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 5235 5236 new_attrs = alloc_workqueue_attrs(); 5237 if (!ctx || !new_attrs) 5238 goto out_free; 5239 5240 /* 5241 * If something goes wrong during CPU up/down, we'll fall back to 5242 * the default pwq covering whole @attrs->cpumask. Always create 5243 * it even if we don't use it immediately. 5244 */ 5245 copy_workqueue_attrs(new_attrs, attrs); 5246 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 5247 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5248 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 5249 if (!ctx->dfl_pwq) 5250 goto out_free; 5251 5252 for_each_possible_cpu(cpu) { 5253 if (new_attrs->ordered) { 5254 ctx->dfl_pwq->refcnt++; 5255 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 5256 } else { 5257 wq_calc_pod_cpumask(new_attrs, cpu, -1); 5258 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 5259 if (!ctx->pwq_tbl[cpu]) 5260 goto out_free; 5261 } 5262 } 5263 5264 /* save the user configured attrs and sanitize it. */ 5265 copy_workqueue_attrs(new_attrs, attrs); 5266 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 5267 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5268 ctx->attrs = new_attrs; 5269 5270 /* 5271 * For initialized ordered workqueues, there should only be one pwq 5272 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution 5273 * of newly queued work items until execution of older work items in 5274 * the old pwq's have completed. 5275 */ 5276 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)) 5277 ctx->dfl_pwq->plugged = true; 5278 5279 ctx->wq = wq; 5280 return ctx; 5281 5282 out_free: 5283 free_workqueue_attrs(new_attrs); 5284 apply_wqattrs_cleanup(ctx); 5285 return ERR_PTR(-ENOMEM); 5286 } 5287 5288 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 5289 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 5290 { 5291 int cpu; 5292 5293 /* all pwqs have been created successfully, let's install'em */ 5294 mutex_lock(&ctx->wq->mutex); 5295 5296 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 5297 5298 /* save the previous pwqs and install the new ones */ 5299 for_each_possible_cpu(cpu) 5300 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 5301 ctx->pwq_tbl[cpu]); 5302 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq); 5303 5304 /* update node_nr_active->max */ 5305 wq_update_node_max_active(ctx->wq, -1); 5306 5307 /* rescuer needs to respect wq cpumask changes */ 5308 if (ctx->wq->rescuer) 5309 set_cpus_allowed_ptr(ctx->wq->rescuer->task, 5310 unbound_effective_cpumask(ctx->wq)); 5311 5312 mutex_unlock(&ctx->wq->mutex); 5313 } 5314 5315 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 5316 const struct workqueue_attrs *attrs) 5317 { 5318 struct apply_wqattrs_ctx *ctx; 5319 5320 /* only unbound workqueues can change attributes */ 5321 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 5322 return -EINVAL; 5323 5324 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 5325 if (IS_ERR(ctx)) 5326 return PTR_ERR(ctx); 5327 5328 /* the ctx has been prepared successfully, let's commit it */ 5329 apply_wqattrs_commit(ctx); 5330 apply_wqattrs_cleanup(ctx); 5331 5332 return 0; 5333 } 5334 5335 /** 5336 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 5337 * @wq: the target workqueue 5338 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 5339 * 5340 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 5341 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 5342 * work items are affine to the pod it was issued on. Older pwqs are released as 5343 * in-flight work items finish. Note that a work item which repeatedly requeues 5344 * itself back-to-back will stay on its current pwq. 5345 * 5346 * Performs GFP_KERNEL allocations. 5347 * 5348 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 5349 * 5350 * Return: 0 on success and -errno on failure. 5351 */ 5352 int apply_workqueue_attrs(struct workqueue_struct *wq, 5353 const struct workqueue_attrs *attrs) 5354 { 5355 int ret; 5356 5357 lockdep_assert_cpus_held(); 5358 5359 mutex_lock(&wq_pool_mutex); 5360 ret = apply_workqueue_attrs_locked(wq, attrs); 5361 mutex_unlock(&wq_pool_mutex); 5362 5363 return ret; 5364 } 5365 5366 /** 5367 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug 5368 * @wq: the target workqueue 5369 * @cpu: the CPU to update pool association for 5370 * @hotplug_cpu: the CPU coming up or going down 5371 * @online: whether @cpu is coming up or going down 5372 * 5373 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 5374 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of 5375 * @wq accordingly. 5376 * 5377 * 5378 * If pod affinity can't be adjusted due to memory allocation failure, it falls 5379 * back to @wq->dfl_pwq which may not be optimal but is always correct. 5380 * 5381 * Note that when the last allowed CPU of a pod goes offline for a workqueue 5382 * with a cpumask spanning multiple pods, the workers which were already 5383 * executing the work items for the workqueue will lose their CPU affinity and 5384 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 5385 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 5386 * responsibility to flush the work item from CPU_DOWN_PREPARE. 5387 */ 5388 static void wq_update_pod(struct workqueue_struct *wq, int cpu, 5389 int hotplug_cpu, bool online) 5390 { 5391 int off_cpu = online ? -1 : hotplug_cpu; 5392 struct pool_workqueue *old_pwq = NULL, *pwq; 5393 struct workqueue_attrs *target_attrs; 5394 5395 lockdep_assert_held(&wq_pool_mutex); 5396 5397 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 5398 return; 5399 5400 /* 5401 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 5402 * Let's use a preallocated one. The following buf is protected by 5403 * CPU hotplug exclusion. 5404 */ 5405 target_attrs = wq_update_pod_attrs_buf; 5406 5407 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 5408 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 5409 5410 /* nothing to do if the target cpumask matches the current pwq */ 5411 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu); 5412 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs)) 5413 return; 5414 5415 /* create a new pwq */ 5416 pwq = alloc_unbound_pwq(wq, target_attrs); 5417 if (!pwq) { 5418 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 5419 wq->name); 5420 goto use_dfl_pwq; 5421 } 5422 5423 /* Install the new pwq. */ 5424 mutex_lock(&wq->mutex); 5425 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5426 goto out_unlock; 5427 5428 use_dfl_pwq: 5429 mutex_lock(&wq->mutex); 5430 pwq = unbound_pwq(wq, -1); 5431 raw_spin_lock_irq(&pwq->pool->lock); 5432 get_pwq(pwq); 5433 raw_spin_unlock_irq(&pwq->pool->lock); 5434 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5435 out_unlock: 5436 mutex_unlock(&wq->mutex); 5437 put_pwq_unlocked(old_pwq); 5438 } 5439 5440 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 5441 { 5442 bool highpri = wq->flags & WQ_HIGHPRI; 5443 int cpu, ret; 5444 5445 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 5446 if (!wq->cpu_pwq) 5447 goto enomem; 5448 5449 if (!(wq->flags & WQ_UNBOUND)) { 5450 for_each_possible_cpu(cpu) { 5451 struct pool_workqueue **pwq_p; 5452 struct worker_pool __percpu *pools; 5453 struct worker_pool *pool; 5454 5455 if (wq->flags & WQ_BH) 5456 pools = bh_worker_pools; 5457 else 5458 pools = cpu_worker_pools; 5459 5460 pool = &(per_cpu_ptr(pools, cpu)[highpri]); 5461 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu); 5462 5463 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 5464 pool->node); 5465 if (!*pwq_p) 5466 goto enomem; 5467 5468 init_pwq(*pwq_p, wq, pool); 5469 5470 mutex_lock(&wq->mutex); 5471 link_pwq(*pwq_p); 5472 mutex_unlock(&wq->mutex); 5473 } 5474 return 0; 5475 } 5476 5477 cpus_read_lock(); 5478 if (wq->flags & __WQ_ORDERED) { 5479 struct pool_workqueue *dfl_pwq; 5480 5481 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 5482 /* there should only be single pwq for ordering guarantee */ 5483 dfl_pwq = rcu_access_pointer(wq->dfl_pwq); 5484 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || 5485 wq->pwqs.prev != &dfl_pwq->pwqs_node), 5486 "ordering guarantee broken for workqueue %s\n", wq->name); 5487 } else { 5488 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 5489 } 5490 cpus_read_unlock(); 5491 5492 /* for unbound pwq, flush the pwq_release_worker ensures that the 5493 * pwq_release_workfn() completes before calling kfree(wq). 5494 */ 5495 if (ret) 5496 kthread_flush_worker(pwq_release_worker); 5497 5498 return ret; 5499 5500 enomem: 5501 if (wq->cpu_pwq) { 5502 for_each_possible_cpu(cpu) { 5503 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5504 5505 if (pwq) 5506 kmem_cache_free(pwq_cache, pwq); 5507 } 5508 free_percpu(wq->cpu_pwq); 5509 wq->cpu_pwq = NULL; 5510 } 5511 return -ENOMEM; 5512 } 5513 5514 static int wq_clamp_max_active(int max_active, unsigned int flags, 5515 const char *name) 5516 { 5517 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 5518 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 5519 max_active, name, 1, WQ_MAX_ACTIVE); 5520 5521 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 5522 } 5523 5524 /* 5525 * Workqueues which may be used during memory reclaim should have a rescuer 5526 * to guarantee forward progress. 5527 */ 5528 static int init_rescuer(struct workqueue_struct *wq) 5529 { 5530 struct worker *rescuer; 5531 int ret; 5532 5533 if (!(wq->flags & WQ_MEM_RECLAIM)) 5534 return 0; 5535 5536 rescuer = alloc_worker(NUMA_NO_NODE); 5537 if (!rescuer) { 5538 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 5539 wq->name); 5540 return -ENOMEM; 5541 } 5542 5543 rescuer->rescue_wq = wq; 5544 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name); 5545 if (IS_ERR(rescuer->task)) { 5546 ret = PTR_ERR(rescuer->task); 5547 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 5548 wq->name, ERR_PTR(ret)); 5549 kfree(rescuer); 5550 return ret; 5551 } 5552 5553 wq->rescuer = rescuer; 5554 if (wq->flags & WQ_UNBOUND) 5555 kthread_bind_mask(rescuer->task, wq_unbound_cpumask); 5556 else 5557 kthread_bind_mask(rescuer->task, cpu_possible_mask); 5558 wake_up_process(rescuer->task); 5559 5560 return 0; 5561 } 5562 5563 /** 5564 * wq_adjust_max_active - update a wq's max_active to the current setting 5565 * @wq: target workqueue 5566 * 5567 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and 5568 * activate inactive work items accordingly. If @wq is freezing, clear 5569 * @wq->max_active to zero. 5570 */ 5571 static void wq_adjust_max_active(struct workqueue_struct *wq) 5572 { 5573 bool activated; 5574 int new_max, new_min; 5575 5576 lockdep_assert_held(&wq->mutex); 5577 5578 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { 5579 new_max = 0; 5580 new_min = 0; 5581 } else { 5582 new_max = wq->saved_max_active; 5583 new_min = wq->saved_min_active; 5584 } 5585 5586 if (wq->max_active == new_max && wq->min_active == new_min) 5587 return; 5588 5589 /* 5590 * Update @wq->max/min_active and then kick inactive work items if more 5591 * active work items are allowed. This doesn't break work item ordering 5592 * because new work items are always queued behind existing inactive 5593 * work items if there are any. 5594 */ 5595 WRITE_ONCE(wq->max_active, new_max); 5596 WRITE_ONCE(wq->min_active, new_min); 5597 5598 if (wq->flags & WQ_UNBOUND) 5599 wq_update_node_max_active(wq, -1); 5600 5601 if (new_max == 0) 5602 return; 5603 5604 /* 5605 * Round-robin through pwq's activating the first inactive work item 5606 * until max_active is filled. 5607 */ 5608 do { 5609 struct pool_workqueue *pwq; 5610 5611 activated = false; 5612 for_each_pwq(pwq, wq) { 5613 unsigned long irq_flags; 5614 5615 /* can be called during early boot w/ irq disabled */ 5616 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 5617 if (pwq_activate_first_inactive(pwq, true)) { 5618 activated = true; 5619 kick_pool(pwq->pool); 5620 } 5621 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 5622 } 5623 } while (activated); 5624 } 5625 5626 __printf(1, 4) 5627 struct workqueue_struct *alloc_workqueue(const char *fmt, 5628 unsigned int flags, 5629 int max_active, ...) 5630 { 5631 va_list args; 5632 struct workqueue_struct *wq; 5633 size_t wq_size; 5634 int name_len; 5635 5636 if (flags & WQ_BH) { 5637 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS)) 5638 return NULL; 5639 if (WARN_ON_ONCE(max_active)) 5640 return NULL; 5641 } 5642 5643 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 5644 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 5645 flags |= WQ_UNBOUND; 5646 5647 /* allocate wq and format name */ 5648 if (flags & WQ_UNBOUND) 5649 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); 5650 else 5651 wq_size = sizeof(*wq); 5652 5653 wq = kzalloc(wq_size, GFP_KERNEL); 5654 if (!wq) 5655 return NULL; 5656 5657 if (flags & WQ_UNBOUND) { 5658 wq->unbound_attrs = alloc_workqueue_attrs(); 5659 if (!wq->unbound_attrs) 5660 goto err_free_wq; 5661 } 5662 5663 va_start(args, max_active); 5664 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args); 5665 va_end(args); 5666 5667 if (name_len >= WQ_NAME_LEN) 5668 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", 5669 wq->name); 5670 5671 if (flags & WQ_BH) { 5672 /* 5673 * BH workqueues always share a single execution context per CPU 5674 * and don't impose any max_active limit. 5675 */ 5676 max_active = INT_MAX; 5677 } else { 5678 max_active = max_active ?: WQ_DFL_ACTIVE; 5679 max_active = wq_clamp_max_active(max_active, flags, wq->name); 5680 } 5681 5682 /* init wq */ 5683 wq->flags = flags; 5684 wq->max_active = max_active; 5685 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); 5686 wq->saved_max_active = wq->max_active; 5687 wq->saved_min_active = wq->min_active; 5688 mutex_init(&wq->mutex); 5689 atomic_set(&wq->nr_pwqs_to_flush, 0); 5690 INIT_LIST_HEAD(&wq->pwqs); 5691 INIT_LIST_HEAD(&wq->flusher_queue); 5692 INIT_LIST_HEAD(&wq->flusher_overflow); 5693 INIT_LIST_HEAD(&wq->maydays); 5694 5695 wq_init_lockdep(wq); 5696 INIT_LIST_HEAD(&wq->list); 5697 5698 if (flags & WQ_UNBOUND) { 5699 if (alloc_node_nr_active(wq->node_nr_active) < 0) 5700 goto err_unreg_lockdep; 5701 } 5702 5703 if (alloc_and_link_pwqs(wq) < 0) 5704 goto err_free_node_nr_active; 5705 5706 if (wq_online && init_rescuer(wq) < 0) 5707 goto err_destroy; 5708 5709 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 5710 goto err_destroy; 5711 5712 /* 5713 * wq_pool_mutex protects global freeze state and workqueues list. 5714 * Grab it, adjust max_active and add the new @wq to workqueues 5715 * list. 5716 */ 5717 mutex_lock(&wq_pool_mutex); 5718 5719 mutex_lock(&wq->mutex); 5720 wq_adjust_max_active(wq); 5721 mutex_unlock(&wq->mutex); 5722 5723 list_add_tail_rcu(&wq->list, &workqueues); 5724 5725 mutex_unlock(&wq_pool_mutex); 5726 5727 return wq; 5728 5729 err_free_node_nr_active: 5730 if (wq->flags & WQ_UNBOUND) 5731 free_node_nr_active(wq->node_nr_active); 5732 err_unreg_lockdep: 5733 wq_unregister_lockdep(wq); 5734 wq_free_lockdep(wq); 5735 err_free_wq: 5736 free_workqueue_attrs(wq->unbound_attrs); 5737 kfree(wq); 5738 return NULL; 5739 err_destroy: 5740 destroy_workqueue(wq); 5741 return NULL; 5742 } 5743 EXPORT_SYMBOL_GPL(alloc_workqueue); 5744 5745 static bool pwq_busy(struct pool_workqueue *pwq) 5746 { 5747 int i; 5748 5749 for (i = 0; i < WORK_NR_COLORS; i++) 5750 if (pwq->nr_in_flight[i]) 5751 return true; 5752 5753 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) 5754 return true; 5755 if (!pwq_is_empty(pwq)) 5756 return true; 5757 5758 return false; 5759 } 5760 5761 /** 5762 * destroy_workqueue - safely terminate a workqueue 5763 * @wq: target workqueue 5764 * 5765 * Safely destroy a workqueue. All work currently pending will be done first. 5766 */ 5767 void destroy_workqueue(struct workqueue_struct *wq) 5768 { 5769 struct pool_workqueue *pwq; 5770 int cpu; 5771 5772 /* 5773 * Remove it from sysfs first so that sanity check failure doesn't 5774 * lead to sysfs name conflicts. 5775 */ 5776 workqueue_sysfs_unregister(wq); 5777 5778 /* mark the workqueue destruction is in progress */ 5779 mutex_lock(&wq->mutex); 5780 wq->flags |= __WQ_DESTROYING; 5781 mutex_unlock(&wq->mutex); 5782 5783 /* drain it before proceeding with destruction */ 5784 drain_workqueue(wq); 5785 5786 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 5787 if (wq->rescuer) { 5788 struct worker *rescuer = wq->rescuer; 5789 5790 /* this prevents new queueing */ 5791 raw_spin_lock_irq(&wq_mayday_lock); 5792 wq->rescuer = NULL; 5793 raw_spin_unlock_irq(&wq_mayday_lock); 5794 5795 /* rescuer will empty maydays list before exiting */ 5796 kthread_stop(rescuer->task); 5797 kfree(rescuer); 5798 } 5799 5800 /* 5801 * Sanity checks - grab all the locks so that we wait for all 5802 * in-flight operations which may do put_pwq(). 5803 */ 5804 mutex_lock(&wq_pool_mutex); 5805 mutex_lock(&wq->mutex); 5806 for_each_pwq(pwq, wq) { 5807 raw_spin_lock_irq(&pwq->pool->lock); 5808 if (WARN_ON(pwq_busy(pwq))) { 5809 pr_warn("%s: %s has the following busy pwq\n", 5810 __func__, wq->name); 5811 show_pwq(pwq); 5812 raw_spin_unlock_irq(&pwq->pool->lock); 5813 mutex_unlock(&wq->mutex); 5814 mutex_unlock(&wq_pool_mutex); 5815 show_one_workqueue(wq); 5816 return; 5817 } 5818 raw_spin_unlock_irq(&pwq->pool->lock); 5819 } 5820 mutex_unlock(&wq->mutex); 5821 5822 /* 5823 * wq list is used to freeze wq, remove from list after 5824 * flushing is complete in case freeze races us. 5825 */ 5826 list_del_rcu(&wq->list); 5827 mutex_unlock(&wq_pool_mutex); 5828 5829 /* 5830 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 5831 * to put the base refs. @wq will be auto-destroyed from the last 5832 * pwq_put. RCU read lock prevents @wq from going away from under us. 5833 */ 5834 rcu_read_lock(); 5835 5836 for_each_possible_cpu(cpu) { 5837 put_pwq_unlocked(unbound_pwq(wq, cpu)); 5838 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); 5839 } 5840 5841 put_pwq_unlocked(unbound_pwq(wq, -1)); 5842 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); 5843 5844 rcu_read_unlock(); 5845 } 5846 EXPORT_SYMBOL_GPL(destroy_workqueue); 5847 5848 /** 5849 * workqueue_set_max_active - adjust max_active of a workqueue 5850 * @wq: target workqueue 5851 * @max_active: new max_active value. 5852 * 5853 * Set max_active of @wq to @max_active. See the alloc_workqueue() function 5854 * comment. 5855 * 5856 * CONTEXT: 5857 * Don't call from IRQ context. 5858 */ 5859 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 5860 { 5861 /* max_active doesn't mean anything for BH workqueues */ 5862 if (WARN_ON(wq->flags & WQ_BH)) 5863 return; 5864 /* disallow meddling with max_active for ordered workqueues */ 5865 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5866 return; 5867 5868 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 5869 5870 mutex_lock(&wq->mutex); 5871 5872 wq->saved_max_active = max_active; 5873 if (wq->flags & WQ_UNBOUND) 5874 wq->saved_min_active = min(wq->saved_min_active, max_active); 5875 5876 wq_adjust_max_active(wq); 5877 5878 mutex_unlock(&wq->mutex); 5879 } 5880 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 5881 5882 /** 5883 * workqueue_set_min_active - adjust min_active of an unbound workqueue 5884 * @wq: target unbound workqueue 5885 * @min_active: new min_active value 5886 * 5887 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an 5888 * unbound workqueue is not guaranteed to be able to process max_active 5889 * interdependent work items. Instead, an unbound workqueue is guaranteed to be 5890 * able to process min_active number of interdependent work items which is 5891 * %WQ_DFL_MIN_ACTIVE by default. 5892 * 5893 * Use this function to adjust the min_active value between 0 and the current 5894 * max_active. 5895 */ 5896 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active) 5897 { 5898 /* min_active is only meaningful for non-ordered unbound workqueues */ 5899 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) != 5900 WQ_UNBOUND)) 5901 return; 5902 5903 mutex_lock(&wq->mutex); 5904 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active); 5905 wq_adjust_max_active(wq); 5906 mutex_unlock(&wq->mutex); 5907 } 5908 5909 /** 5910 * current_work - retrieve %current task's work struct 5911 * 5912 * Determine if %current task is a workqueue worker and what it's working on. 5913 * Useful to find out the context that the %current task is running in. 5914 * 5915 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 5916 */ 5917 struct work_struct *current_work(void) 5918 { 5919 struct worker *worker = current_wq_worker(); 5920 5921 return worker ? worker->current_work : NULL; 5922 } 5923 EXPORT_SYMBOL(current_work); 5924 5925 /** 5926 * current_is_workqueue_rescuer - is %current workqueue rescuer? 5927 * 5928 * Determine whether %current is a workqueue rescuer. Can be used from 5929 * work functions to determine whether it's being run off the rescuer task. 5930 * 5931 * Return: %true if %current is a workqueue rescuer. %false otherwise. 5932 */ 5933 bool current_is_workqueue_rescuer(void) 5934 { 5935 struct worker *worker = current_wq_worker(); 5936 5937 return worker && worker->rescue_wq; 5938 } 5939 5940 /** 5941 * workqueue_congested - test whether a workqueue is congested 5942 * @cpu: CPU in question 5943 * @wq: target workqueue 5944 * 5945 * Test whether @wq's cpu workqueue for @cpu is congested. There is 5946 * no synchronization around this function and the test result is 5947 * unreliable and only useful as advisory hints or for debugging. 5948 * 5949 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 5950 * 5951 * With the exception of ordered workqueues, all workqueues have per-cpu 5952 * pool_workqueues, each with its own congested state. A workqueue being 5953 * congested on one CPU doesn't mean that the workqueue is contested on any 5954 * other CPUs. 5955 * 5956 * Return: 5957 * %true if congested, %false otherwise. 5958 */ 5959 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 5960 { 5961 struct pool_workqueue *pwq; 5962 bool ret; 5963 5964 rcu_read_lock(); 5965 preempt_disable(); 5966 5967 if (cpu == WORK_CPU_UNBOUND) 5968 cpu = smp_processor_id(); 5969 5970 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5971 ret = !list_empty(&pwq->inactive_works); 5972 5973 preempt_enable(); 5974 rcu_read_unlock(); 5975 5976 return ret; 5977 } 5978 EXPORT_SYMBOL_GPL(workqueue_congested); 5979 5980 /** 5981 * work_busy - test whether a work is currently pending or running 5982 * @work: the work to be tested 5983 * 5984 * Test whether @work is currently pending or running. There is no 5985 * synchronization around this function and the test result is 5986 * unreliable and only useful as advisory hints or for debugging. 5987 * 5988 * Return: 5989 * OR'd bitmask of WORK_BUSY_* bits. 5990 */ 5991 unsigned int work_busy(struct work_struct *work) 5992 { 5993 struct worker_pool *pool; 5994 unsigned long irq_flags; 5995 unsigned int ret = 0; 5996 5997 if (work_pending(work)) 5998 ret |= WORK_BUSY_PENDING; 5999 6000 rcu_read_lock(); 6001 pool = get_work_pool(work); 6002 if (pool) { 6003 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6004 if (find_worker_executing_work(pool, work)) 6005 ret |= WORK_BUSY_RUNNING; 6006 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6007 } 6008 rcu_read_unlock(); 6009 6010 return ret; 6011 } 6012 EXPORT_SYMBOL_GPL(work_busy); 6013 6014 /** 6015 * set_worker_desc - set description for the current work item 6016 * @fmt: printf-style format string 6017 * @...: arguments for the format string 6018 * 6019 * This function can be called by a running work function to describe what 6020 * the work item is about. If the worker task gets dumped, this 6021 * information will be printed out together to help debugging. The 6022 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 6023 */ 6024 void set_worker_desc(const char *fmt, ...) 6025 { 6026 struct worker *worker = current_wq_worker(); 6027 va_list args; 6028 6029 if (worker) { 6030 va_start(args, fmt); 6031 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 6032 va_end(args); 6033 } 6034 } 6035 EXPORT_SYMBOL_GPL(set_worker_desc); 6036 6037 /** 6038 * print_worker_info - print out worker information and description 6039 * @log_lvl: the log level to use when printing 6040 * @task: target task 6041 * 6042 * If @task is a worker and currently executing a work item, print out the 6043 * name of the workqueue being serviced and worker description set with 6044 * set_worker_desc() by the currently executing work item. 6045 * 6046 * This function can be safely called on any task as long as the 6047 * task_struct itself is accessible. While safe, this function isn't 6048 * synchronized and may print out mixups or garbages of limited length. 6049 */ 6050 void print_worker_info(const char *log_lvl, struct task_struct *task) 6051 { 6052 work_func_t *fn = NULL; 6053 char name[WQ_NAME_LEN] = { }; 6054 char desc[WORKER_DESC_LEN] = { }; 6055 struct pool_workqueue *pwq = NULL; 6056 struct workqueue_struct *wq = NULL; 6057 struct worker *worker; 6058 6059 if (!(task->flags & PF_WQ_WORKER)) 6060 return; 6061 6062 /* 6063 * This function is called without any synchronization and @task 6064 * could be in any state. Be careful with dereferences. 6065 */ 6066 worker = kthread_probe_data(task); 6067 6068 /* 6069 * Carefully copy the associated workqueue's workfn, name and desc. 6070 * Keep the original last '\0' in case the original is garbage. 6071 */ 6072 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 6073 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 6074 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 6075 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 6076 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 6077 6078 if (fn || name[0] || desc[0]) { 6079 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 6080 if (strcmp(name, desc)) 6081 pr_cont(" (%s)", desc); 6082 pr_cont("\n"); 6083 } 6084 } 6085 6086 static void pr_cont_pool_info(struct worker_pool *pool) 6087 { 6088 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 6089 if (pool->node != NUMA_NO_NODE) 6090 pr_cont(" node=%d", pool->node); 6091 pr_cont(" flags=0x%x", pool->flags); 6092 if (pool->flags & POOL_BH) 6093 pr_cont(" bh%s", 6094 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6095 else 6096 pr_cont(" nice=%d", pool->attrs->nice); 6097 } 6098 6099 static void pr_cont_worker_id(struct worker *worker) 6100 { 6101 struct worker_pool *pool = worker->pool; 6102 6103 if (pool->flags & WQ_BH) 6104 pr_cont("bh%s", 6105 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6106 else 6107 pr_cont("%d%s", task_pid_nr(worker->task), 6108 worker->rescue_wq ? "(RESCUER)" : ""); 6109 } 6110 6111 struct pr_cont_work_struct { 6112 bool comma; 6113 work_func_t func; 6114 long ctr; 6115 }; 6116 6117 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 6118 { 6119 if (!pcwsp->ctr) 6120 goto out_record; 6121 if (func == pcwsp->func) { 6122 pcwsp->ctr++; 6123 return; 6124 } 6125 if (pcwsp->ctr == 1) 6126 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 6127 else 6128 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 6129 pcwsp->ctr = 0; 6130 out_record: 6131 if ((long)func == -1L) 6132 return; 6133 pcwsp->comma = comma; 6134 pcwsp->func = func; 6135 pcwsp->ctr = 1; 6136 } 6137 6138 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 6139 { 6140 if (work->func == wq_barrier_func) { 6141 struct wq_barrier *barr; 6142 6143 barr = container_of(work, struct wq_barrier, work); 6144 6145 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6146 pr_cont("%s BAR(%d)", comma ? "," : "", 6147 task_pid_nr(barr->task)); 6148 } else { 6149 if (!comma) 6150 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6151 pr_cont_work_flush(comma, work->func, pcwsp); 6152 } 6153 } 6154 6155 static void show_pwq(struct pool_workqueue *pwq) 6156 { 6157 struct pr_cont_work_struct pcws = { .ctr = 0, }; 6158 struct worker_pool *pool = pwq->pool; 6159 struct work_struct *work; 6160 struct worker *worker; 6161 bool has_in_flight = false, has_pending = false; 6162 int bkt; 6163 6164 pr_info(" pwq %d:", pool->id); 6165 pr_cont_pool_info(pool); 6166 6167 pr_cont(" active=%d refcnt=%d%s\n", 6168 pwq->nr_active, pwq->refcnt, 6169 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 6170 6171 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6172 if (worker->current_pwq == pwq) { 6173 has_in_flight = true; 6174 break; 6175 } 6176 } 6177 if (has_in_flight) { 6178 bool comma = false; 6179 6180 pr_info(" in-flight:"); 6181 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6182 if (worker->current_pwq != pwq) 6183 continue; 6184 6185 pr_cont(" %s", comma ? "," : ""); 6186 pr_cont_worker_id(worker); 6187 pr_cont(":%ps", worker->current_func); 6188 list_for_each_entry(work, &worker->scheduled, entry) 6189 pr_cont_work(false, work, &pcws); 6190 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6191 comma = true; 6192 } 6193 pr_cont("\n"); 6194 } 6195 6196 list_for_each_entry(work, &pool->worklist, entry) { 6197 if (get_work_pwq(work) == pwq) { 6198 has_pending = true; 6199 break; 6200 } 6201 } 6202 if (has_pending) { 6203 bool comma = false; 6204 6205 pr_info(" pending:"); 6206 list_for_each_entry(work, &pool->worklist, entry) { 6207 if (get_work_pwq(work) != pwq) 6208 continue; 6209 6210 pr_cont_work(comma, work, &pcws); 6211 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6212 } 6213 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6214 pr_cont("\n"); 6215 } 6216 6217 if (!list_empty(&pwq->inactive_works)) { 6218 bool comma = false; 6219 6220 pr_info(" inactive:"); 6221 list_for_each_entry(work, &pwq->inactive_works, entry) { 6222 pr_cont_work(comma, work, &pcws); 6223 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6224 } 6225 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6226 pr_cont("\n"); 6227 } 6228 } 6229 6230 /** 6231 * show_one_workqueue - dump state of specified workqueue 6232 * @wq: workqueue whose state will be printed 6233 */ 6234 void show_one_workqueue(struct workqueue_struct *wq) 6235 { 6236 struct pool_workqueue *pwq; 6237 bool idle = true; 6238 unsigned long irq_flags; 6239 6240 for_each_pwq(pwq, wq) { 6241 if (!pwq_is_empty(pwq)) { 6242 idle = false; 6243 break; 6244 } 6245 } 6246 if (idle) /* Nothing to print for idle workqueue */ 6247 return; 6248 6249 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 6250 6251 for_each_pwq(pwq, wq) { 6252 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 6253 if (!pwq_is_empty(pwq)) { 6254 /* 6255 * Defer printing to avoid deadlocks in console 6256 * drivers that queue work while holding locks 6257 * also taken in their write paths. 6258 */ 6259 printk_deferred_enter(); 6260 show_pwq(pwq); 6261 printk_deferred_exit(); 6262 } 6263 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 6264 /* 6265 * We could be printing a lot from atomic context, e.g. 6266 * sysrq-t -> show_all_workqueues(). Avoid triggering 6267 * hard lockup. 6268 */ 6269 touch_nmi_watchdog(); 6270 } 6271 6272 } 6273 6274 /** 6275 * show_one_worker_pool - dump state of specified worker pool 6276 * @pool: worker pool whose state will be printed 6277 */ 6278 static void show_one_worker_pool(struct worker_pool *pool) 6279 { 6280 struct worker *worker; 6281 bool first = true; 6282 unsigned long irq_flags; 6283 unsigned long hung = 0; 6284 6285 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6286 if (pool->nr_workers == pool->nr_idle) 6287 goto next_pool; 6288 6289 /* How long the first pending work is waiting for a worker. */ 6290 if (!list_empty(&pool->worklist)) 6291 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 6292 6293 /* 6294 * Defer printing to avoid deadlocks in console drivers that 6295 * queue work while holding locks also taken in their write 6296 * paths. 6297 */ 6298 printk_deferred_enter(); 6299 pr_info("pool %d:", pool->id); 6300 pr_cont_pool_info(pool); 6301 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 6302 if (pool->manager) 6303 pr_cont(" manager: %d", 6304 task_pid_nr(pool->manager->task)); 6305 list_for_each_entry(worker, &pool->idle_list, entry) { 6306 pr_cont(" %s", first ? "idle: " : ""); 6307 pr_cont_worker_id(worker); 6308 first = false; 6309 } 6310 pr_cont("\n"); 6311 printk_deferred_exit(); 6312 next_pool: 6313 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6314 /* 6315 * We could be printing a lot from atomic context, e.g. 6316 * sysrq-t -> show_all_workqueues(). Avoid triggering 6317 * hard lockup. 6318 */ 6319 touch_nmi_watchdog(); 6320 6321 } 6322 6323 /** 6324 * show_all_workqueues - dump workqueue state 6325 * 6326 * Called from a sysrq handler and prints out all busy workqueues and pools. 6327 */ 6328 void show_all_workqueues(void) 6329 { 6330 struct workqueue_struct *wq; 6331 struct worker_pool *pool; 6332 int pi; 6333 6334 rcu_read_lock(); 6335 6336 pr_info("Showing busy workqueues and worker pools:\n"); 6337 6338 list_for_each_entry_rcu(wq, &workqueues, list) 6339 show_one_workqueue(wq); 6340 6341 for_each_pool(pool, pi) 6342 show_one_worker_pool(pool); 6343 6344 rcu_read_unlock(); 6345 } 6346 6347 /** 6348 * show_freezable_workqueues - dump freezable workqueue state 6349 * 6350 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 6351 * still busy. 6352 */ 6353 void show_freezable_workqueues(void) 6354 { 6355 struct workqueue_struct *wq; 6356 6357 rcu_read_lock(); 6358 6359 pr_info("Showing freezable workqueues that are still busy:\n"); 6360 6361 list_for_each_entry_rcu(wq, &workqueues, list) { 6362 if (!(wq->flags & WQ_FREEZABLE)) 6363 continue; 6364 show_one_workqueue(wq); 6365 } 6366 6367 rcu_read_unlock(); 6368 } 6369 6370 /* used to show worker information through /proc/PID/{comm,stat,status} */ 6371 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 6372 { 6373 int off; 6374 6375 /* always show the actual comm */ 6376 off = strscpy(buf, task->comm, size); 6377 if (off < 0) 6378 return; 6379 6380 /* stabilize PF_WQ_WORKER and worker pool association */ 6381 mutex_lock(&wq_pool_attach_mutex); 6382 6383 if (task->flags & PF_WQ_WORKER) { 6384 struct worker *worker = kthread_data(task); 6385 struct worker_pool *pool = worker->pool; 6386 6387 if (pool) { 6388 raw_spin_lock_irq(&pool->lock); 6389 /* 6390 * ->desc tracks information (wq name or 6391 * set_worker_desc()) for the latest execution. If 6392 * current, prepend '+', otherwise '-'. 6393 */ 6394 if (worker->desc[0] != '\0') { 6395 if (worker->current_work) 6396 scnprintf(buf + off, size - off, "+%s", 6397 worker->desc); 6398 else 6399 scnprintf(buf + off, size - off, "-%s", 6400 worker->desc); 6401 } 6402 raw_spin_unlock_irq(&pool->lock); 6403 } 6404 } 6405 6406 mutex_unlock(&wq_pool_attach_mutex); 6407 } 6408 6409 #ifdef CONFIG_SMP 6410 6411 /* 6412 * CPU hotplug. 6413 * 6414 * There are two challenges in supporting CPU hotplug. Firstly, there 6415 * are a lot of assumptions on strong associations among work, pwq and 6416 * pool which make migrating pending and scheduled works very 6417 * difficult to implement without impacting hot paths. Secondly, 6418 * worker pools serve mix of short, long and very long running works making 6419 * blocked draining impractical. 6420 * 6421 * This is solved by allowing the pools to be disassociated from the CPU 6422 * running as an unbound one and allowing it to be reattached later if the 6423 * cpu comes back online. 6424 */ 6425 6426 static void unbind_workers(int cpu) 6427 { 6428 struct worker_pool *pool; 6429 struct worker *worker; 6430 6431 for_each_cpu_worker_pool(pool, cpu) { 6432 mutex_lock(&wq_pool_attach_mutex); 6433 raw_spin_lock_irq(&pool->lock); 6434 6435 /* 6436 * We've blocked all attach/detach operations. Make all workers 6437 * unbound and set DISASSOCIATED. Before this, all workers 6438 * must be on the cpu. After this, they may become diasporas. 6439 * And the preemption disabled section in their sched callbacks 6440 * are guaranteed to see WORKER_UNBOUND since the code here 6441 * is on the same cpu. 6442 */ 6443 for_each_pool_worker(worker, pool) 6444 worker->flags |= WORKER_UNBOUND; 6445 6446 pool->flags |= POOL_DISASSOCIATED; 6447 6448 /* 6449 * The handling of nr_running in sched callbacks are disabled 6450 * now. Zap nr_running. After this, nr_running stays zero and 6451 * need_more_worker() and keep_working() are always true as 6452 * long as the worklist is not empty. This pool now behaves as 6453 * an unbound (in terms of concurrency management) pool which 6454 * are served by workers tied to the pool. 6455 */ 6456 pool->nr_running = 0; 6457 6458 /* 6459 * With concurrency management just turned off, a busy 6460 * worker blocking could lead to lengthy stalls. Kick off 6461 * unbound chain execution of currently pending work items. 6462 */ 6463 kick_pool(pool); 6464 6465 raw_spin_unlock_irq(&pool->lock); 6466 6467 for_each_pool_worker(worker, pool) 6468 unbind_worker(worker); 6469 6470 mutex_unlock(&wq_pool_attach_mutex); 6471 } 6472 } 6473 6474 /** 6475 * rebind_workers - rebind all workers of a pool to the associated CPU 6476 * @pool: pool of interest 6477 * 6478 * @pool->cpu is coming online. Rebind all workers to the CPU. 6479 */ 6480 static void rebind_workers(struct worker_pool *pool) 6481 { 6482 struct worker *worker; 6483 6484 lockdep_assert_held(&wq_pool_attach_mutex); 6485 6486 /* 6487 * Restore CPU affinity of all workers. As all idle workers should 6488 * be on the run-queue of the associated CPU before any local 6489 * wake-ups for concurrency management happen, restore CPU affinity 6490 * of all workers first and then clear UNBOUND. As we're called 6491 * from CPU_ONLINE, the following shouldn't fail. 6492 */ 6493 for_each_pool_worker(worker, pool) { 6494 kthread_set_per_cpu(worker->task, pool->cpu); 6495 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 6496 pool_allowed_cpus(pool)) < 0); 6497 } 6498 6499 raw_spin_lock_irq(&pool->lock); 6500 6501 pool->flags &= ~POOL_DISASSOCIATED; 6502 6503 for_each_pool_worker(worker, pool) { 6504 unsigned int worker_flags = worker->flags; 6505 6506 /* 6507 * We want to clear UNBOUND but can't directly call 6508 * worker_clr_flags() or adjust nr_running. Atomically 6509 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 6510 * @worker will clear REBOUND using worker_clr_flags() when 6511 * it initiates the next execution cycle thus restoring 6512 * concurrency management. Note that when or whether 6513 * @worker clears REBOUND doesn't affect correctness. 6514 * 6515 * WRITE_ONCE() is necessary because @worker->flags may be 6516 * tested without holding any lock in 6517 * wq_worker_running(). Without it, NOT_RUNNING test may 6518 * fail incorrectly leading to premature concurrency 6519 * management operations. 6520 */ 6521 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 6522 worker_flags |= WORKER_REBOUND; 6523 worker_flags &= ~WORKER_UNBOUND; 6524 WRITE_ONCE(worker->flags, worker_flags); 6525 } 6526 6527 raw_spin_unlock_irq(&pool->lock); 6528 } 6529 6530 /** 6531 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 6532 * @pool: unbound pool of interest 6533 * @cpu: the CPU which is coming up 6534 * 6535 * An unbound pool may end up with a cpumask which doesn't have any online 6536 * CPUs. When a worker of such pool get scheduled, the scheduler resets 6537 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 6538 * online CPU before, cpus_allowed of all its workers should be restored. 6539 */ 6540 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 6541 { 6542 static cpumask_t cpumask; 6543 struct worker *worker; 6544 6545 lockdep_assert_held(&wq_pool_attach_mutex); 6546 6547 /* is @cpu allowed for @pool? */ 6548 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 6549 return; 6550 6551 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 6552 6553 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 6554 for_each_pool_worker(worker, pool) 6555 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 6556 } 6557 6558 int workqueue_prepare_cpu(unsigned int cpu) 6559 { 6560 struct worker_pool *pool; 6561 6562 for_each_cpu_worker_pool(pool, cpu) { 6563 if (pool->nr_workers) 6564 continue; 6565 if (!create_worker(pool)) 6566 return -ENOMEM; 6567 } 6568 return 0; 6569 } 6570 6571 int workqueue_online_cpu(unsigned int cpu) 6572 { 6573 struct worker_pool *pool; 6574 struct workqueue_struct *wq; 6575 int pi; 6576 6577 mutex_lock(&wq_pool_mutex); 6578 6579 for_each_pool(pool, pi) { 6580 /* BH pools aren't affected by hotplug */ 6581 if (pool->flags & POOL_BH) 6582 continue; 6583 6584 mutex_lock(&wq_pool_attach_mutex); 6585 if (pool->cpu == cpu) 6586 rebind_workers(pool); 6587 else if (pool->cpu < 0) 6588 restore_unbound_workers_cpumask(pool, cpu); 6589 mutex_unlock(&wq_pool_attach_mutex); 6590 } 6591 6592 /* update pod affinity of unbound workqueues */ 6593 list_for_each_entry(wq, &workqueues, list) { 6594 struct workqueue_attrs *attrs = wq->unbound_attrs; 6595 6596 if (attrs) { 6597 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6598 int tcpu; 6599 6600 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6601 wq_update_pod(wq, tcpu, cpu, true); 6602 6603 mutex_lock(&wq->mutex); 6604 wq_update_node_max_active(wq, -1); 6605 mutex_unlock(&wq->mutex); 6606 } 6607 } 6608 6609 mutex_unlock(&wq_pool_mutex); 6610 return 0; 6611 } 6612 6613 int workqueue_offline_cpu(unsigned int cpu) 6614 { 6615 struct workqueue_struct *wq; 6616 6617 /* unbinding per-cpu workers should happen on the local CPU */ 6618 if (WARN_ON(cpu != smp_processor_id())) 6619 return -1; 6620 6621 unbind_workers(cpu); 6622 6623 /* update pod affinity of unbound workqueues */ 6624 mutex_lock(&wq_pool_mutex); 6625 list_for_each_entry(wq, &workqueues, list) { 6626 struct workqueue_attrs *attrs = wq->unbound_attrs; 6627 6628 if (attrs) { 6629 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6630 int tcpu; 6631 6632 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6633 wq_update_pod(wq, tcpu, cpu, false); 6634 6635 mutex_lock(&wq->mutex); 6636 wq_update_node_max_active(wq, cpu); 6637 mutex_unlock(&wq->mutex); 6638 } 6639 } 6640 mutex_unlock(&wq_pool_mutex); 6641 6642 return 0; 6643 } 6644 6645 struct work_for_cpu { 6646 struct work_struct work; 6647 long (*fn)(void *); 6648 void *arg; 6649 long ret; 6650 }; 6651 6652 static void work_for_cpu_fn(struct work_struct *work) 6653 { 6654 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 6655 6656 wfc->ret = wfc->fn(wfc->arg); 6657 } 6658 6659 /** 6660 * work_on_cpu_key - run a function in thread context on a particular cpu 6661 * @cpu: the cpu to run on 6662 * @fn: the function to run 6663 * @arg: the function arg 6664 * @key: The lock class key for lock debugging purposes 6665 * 6666 * It is up to the caller to ensure that the cpu doesn't go offline. 6667 * The caller must not hold any locks which would prevent @fn from completing. 6668 * 6669 * Return: The value @fn returns. 6670 */ 6671 long work_on_cpu_key(int cpu, long (*fn)(void *), 6672 void *arg, struct lock_class_key *key) 6673 { 6674 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 6675 6676 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 6677 schedule_work_on(cpu, &wfc.work); 6678 flush_work(&wfc.work); 6679 destroy_work_on_stack(&wfc.work); 6680 return wfc.ret; 6681 } 6682 EXPORT_SYMBOL_GPL(work_on_cpu_key); 6683 6684 /** 6685 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 6686 * @cpu: the cpu to run on 6687 * @fn: the function to run 6688 * @arg: the function argument 6689 * @key: The lock class key for lock debugging purposes 6690 * 6691 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 6692 * any locks which would prevent @fn from completing. 6693 * 6694 * Return: The value @fn returns. 6695 */ 6696 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 6697 void *arg, struct lock_class_key *key) 6698 { 6699 long ret = -ENODEV; 6700 6701 cpus_read_lock(); 6702 if (cpu_online(cpu)) 6703 ret = work_on_cpu_key(cpu, fn, arg, key); 6704 cpus_read_unlock(); 6705 return ret; 6706 } 6707 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 6708 #endif /* CONFIG_SMP */ 6709 6710 #ifdef CONFIG_FREEZER 6711 6712 /** 6713 * freeze_workqueues_begin - begin freezing workqueues 6714 * 6715 * Start freezing workqueues. After this function returns, all freezable 6716 * workqueues will queue new works to their inactive_works list instead of 6717 * pool->worklist. 6718 * 6719 * CONTEXT: 6720 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6721 */ 6722 void freeze_workqueues_begin(void) 6723 { 6724 struct workqueue_struct *wq; 6725 6726 mutex_lock(&wq_pool_mutex); 6727 6728 WARN_ON_ONCE(workqueue_freezing); 6729 workqueue_freezing = true; 6730 6731 list_for_each_entry(wq, &workqueues, list) { 6732 mutex_lock(&wq->mutex); 6733 wq_adjust_max_active(wq); 6734 mutex_unlock(&wq->mutex); 6735 } 6736 6737 mutex_unlock(&wq_pool_mutex); 6738 } 6739 6740 /** 6741 * freeze_workqueues_busy - are freezable workqueues still busy? 6742 * 6743 * Check whether freezing is complete. This function must be called 6744 * between freeze_workqueues_begin() and thaw_workqueues(). 6745 * 6746 * CONTEXT: 6747 * Grabs and releases wq_pool_mutex. 6748 * 6749 * Return: 6750 * %true if some freezable workqueues are still busy. %false if freezing 6751 * is complete. 6752 */ 6753 bool freeze_workqueues_busy(void) 6754 { 6755 bool busy = false; 6756 struct workqueue_struct *wq; 6757 struct pool_workqueue *pwq; 6758 6759 mutex_lock(&wq_pool_mutex); 6760 6761 WARN_ON_ONCE(!workqueue_freezing); 6762 6763 list_for_each_entry(wq, &workqueues, list) { 6764 if (!(wq->flags & WQ_FREEZABLE)) 6765 continue; 6766 /* 6767 * nr_active is monotonically decreasing. It's safe 6768 * to peek without lock. 6769 */ 6770 rcu_read_lock(); 6771 for_each_pwq(pwq, wq) { 6772 WARN_ON_ONCE(pwq->nr_active < 0); 6773 if (pwq->nr_active) { 6774 busy = true; 6775 rcu_read_unlock(); 6776 goto out_unlock; 6777 } 6778 } 6779 rcu_read_unlock(); 6780 } 6781 out_unlock: 6782 mutex_unlock(&wq_pool_mutex); 6783 return busy; 6784 } 6785 6786 /** 6787 * thaw_workqueues - thaw workqueues 6788 * 6789 * Thaw workqueues. Normal queueing is restored and all collected 6790 * frozen works are transferred to their respective pool worklists. 6791 * 6792 * CONTEXT: 6793 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6794 */ 6795 void thaw_workqueues(void) 6796 { 6797 struct workqueue_struct *wq; 6798 6799 mutex_lock(&wq_pool_mutex); 6800 6801 if (!workqueue_freezing) 6802 goto out_unlock; 6803 6804 workqueue_freezing = false; 6805 6806 /* restore max_active and repopulate worklist */ 6807 list_for_each_entry(wq, &workqueues, list) { 6808 mutex_lock(&wq->mutex); 6809 wq_adjust_max_active(wq); 6810 mutex_unlock(&wq->mutex); 6811 } 6812 6813 out_unlock: 6814 mutex_unlock(&wq_pool_mutex); 6815 } 6816 #endif /* CONFIG_FREEZER */ 6817 6818 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 6819 { 6820 LIST_HEAD(ctxs); 6821 int ret = 0; 6822 struct workqueue_struct *wq; 6823 struct apply_wqattrs_ctx *ctx, *n; 6824 6825 lockdep_assert_held(&wq_pool_mutex); 6826 6827 list_for_each_entry(wq, &workqueues, list) { 6828 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING)) 6829 continue; 6830 6831 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 6832 if (IS_ERR(ctx)) { 6833 ret = PTR_ERR(ctx); 6834 break; 6835 } 6836 6837 list_add_tail(&ctx->list, &ctxs); 6838 } 6839 6840 list_for_each_entry_safe(ctx, n, &ctxs, list) { 6841 if (!ret) 6842 apply_wqattrs_commit(ctx); 6843 apply_wqattrs_cleanup(ctx); 6844 } 6845 6846 if (!ret) { 6847 mutex_lock(&wq_pool_attach_mutex); 6848 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 6849 mutex_unlock(&wq_pool_attach_mutex); 6850 } 6851 return ret; 6852 } 6853 6854 /** 6855 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask 6856 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask 6857 * 6858 * This function can be called from cpuset code to provide a set of isolated 6859 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold 6860 * either cpus_read_lock or cpus_write_lock. 6861 */ 6862 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) 6863 { 6864 cpumask_var_t cpumask; 6865 int ret = 0; 6866 6867 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6868 return -ENOMEM; 6869 6870 lockdep_assert_cpus_held(); 6871 mutex_lock(&wq_pool_mutex); 6872 6873 /* Save the current isolated cpumask & export it via sysfs */ 6874 cpumask_copy(wq_isolated_cpumask, exclude_cpumask); 6875 6876 /* 6877 * If the operation fails, it will fall back to 6878 * wq_requested_unbound_cpumask which is initially set to 6879 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten 6880 * by any subsequent write to workqueue/cpumask sysfs file. 6881 */ 6882 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask)) 6883 cpumask_copy(cpumask, wq_requested_unbound_cpumask); 6884 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 6885 ret = workqueue_apply_unbound_cpumask(cpumask); 6886 6887 mutex_unlock(&wq_pool_mutex); 6888 free_cpumask_var(cpumask); 6889 return ret; 6890 } 6891 6892 static int parse_affn_scope(const char *val) 6893 { 6894 int i; 6895 6896 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 6897 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 6898 return i; 6899 } 6900 return -EINVAL; 6901 } 6902 6903 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 6904 { 6905 struct workqueue_struct *wq; 6906 int affn, cpu; 6907 6908 affn = parse_affn_scope(val); 6909 if (affn < 0) 6910 return affn; 6911 if (affn == WQ_AFFN_DFL) 6912 return -EINVAL; 6913 6914 cpus_read_lock(); 6915 mutex_lock(&wq_pool_mutex); 6916 6917 wq_affn_dfl = affn; 6918 6919 list_for_each_entry(wq, &workqueues, list) { 6920 for_each_online_cpu(cpu) { 6921 wq_update_pod(wq, cpu, cpu, true); 6922 } 6923 } 6924 6925 mutex_unlock(&wq_pool_mutex); 6926 cpus_read_unlock(); 6927 6928 return 0; 6929 } 6930 6931 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 6932 { 6933 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 6934 } 6935 6936 static const struct kernel_param_ops wq_affn_dfl_ops = { 6937 .set = wq_affn_dfl_set, 6938 .get = wq_affn_dfl_get, 6939 }; 6940 6941 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 6942 6943 #ifdef CONFIG_SYSFS 6944 /* 6945 * Workqueues with WQ_SYSFS flag set is visible to userland via 6946 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 6947 * following attributes. 6948 * 6949 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 6950 * max_active RW int : maximum number of in-flight work items 6951 * 6952 * Unbound workqueues have the following extra attributes. 6953 * 6954 * nice RW int : nice value of the workers 6955 * cpumask RW mask : bitmask of allowed CPUs for the workers 6956 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 6957 * affinity_strict RW bool : worker CPU affinity is strict 6958 */ 6959 struct wq_device { 6960 struct workqueue_struct *wq; 6961 struct device dev; 6962 }; 6963 6964 static struct workqueue_struct *dev_to_wq(struct device *dev) 6965 { 6966 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6967 6968 return wq_dev->wq; 6969 } 6970 6971 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 6972 char *buf) 6973 { 6974 struct workqueue_struct *wq = dev_to_wq(dev); 6975 6976 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 6977 } 6978 static DEVICE_ATTR_RO(per_cpu); 6979 6980 static ssize_t max_active_show(struct device *dev, 6981 struct device_attribute *attr, char *buf) 6982 { 6983 struct workqueue_struct *wq = dev_to_wq(dev); 6984 6985 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 6986 } 6987 6988 static ssize_t max_active_store(struct device *dev, 6989 struct device_attribute *attr, const char *buf, 6990 size_t count) 6991 { 6992 struct workqueue_struct *wq = dev_to_wq(dev); 6993 int val; 6994 6995 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 6996 return -EINVAL; 6997 6998 workqueue_set_max_active(wq, val); 6999 return count; 7000 } 7001 static DEVICE_ATTR_RW(max_active); 7002 7003 static struct attribute *wq_sysfs_attrs[] = { 7004 &dev_attr_per_cpu.attr, 7005 &dev_attr_max_active.attr, 7006 NULL, 7007 }; 7008 ATTRIBUTE_GROUPS(wq_sysfs); 7009 7010 static void apply_wqattrs_lock(void) 7011 { 7012 /* CPUs should stay stable across pwq creations and installations */ 7013 cpus_read_lock(); 7014 mutex_lock(&wq_pool_mutex); 7015 } 7016 7017 static void apply_wqattrs_unlock(void) 7018 { 7019 mutex_unlock(&wq_pool_mutex); 7020 cpus_read_unlock(); 7021 } 7022 7023 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 7024 char *buf) 7025 { 7026 struct workqueue_struct *wq = dev_to_wq(dev); 7027 int written; 7028 7029 mutex_lock(&wq->mutex); 7030 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 7031 mutex_unlock(&wq->mutex); 7032 7033 return written; 7034 } 7035 7036 /* prepare workqueue_attrs for sysfs store operations */ 7037 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 7038 { 7039 struct workqueue_attrs *attrs; 7040 7041 lockdep_assert_held(&wq_pool_mutex); 7042 7043 attrs = alloc_workqueue_attrs(); 7044 if (!attrs) 7045 return NULL; 7046 7047 copy_workqueue_attrs(attrs, wq->unbound_attrs); 7048 return attrs; 7049 } 7050 7051 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 7052 const char *buf, size_t count) 7053 { 7054 struct workqueue_struct *wq = dev_to_wq(dev); 7055 struct workqueue_attrs *attrs; 7056 int ret = -ENOMEM; 7057 7058 apply_wqattrs_lock(); 7059 7060 attrs = wq_sysfs_prep_attrs(wq); 7061 if (!attrs) 7062 goto out_unlock; 7063 7064 if (sscanf(buf, "%d", &attrs->nice) == 1 && 7065 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 7066 ret = apply_workqueue_attrs_locked(wq, attrs); 7067 else 7068 ret = -EINVAL; 7069 7070 out_unlock: 7071 apply_wqattrs_unlock(); 7072 free_workqueue_attrs(attrs); 7073 return ret ?: count; 7074 } 7075 7076 static ssize_t wq_cpumask_show(struct device *dev, 7077 struct device_attribute *attr, char *buf) 7078 { 7079 struct workqueue_struct *wq = dev_to_wq(dev); 7080 int written; 7081 7082 mutex_lock(&wq->mutex); 7083 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 7084 cpumask_pr_args(wq->unbound_attrs->cpumask)); 7085 mutex_unlock(&wq->mutex); 7086 return written; 7087 } 7088 7089 static ssize_t wq_cpumask_store(struct device *dev, 7090 struct device_attribute *attr, 7091 const char *buf, size_t count) 7092 { 7093 struct workqueue_struct *wq = dev_to_wq(dev); 7094 struct workqueue_attrs *attrs; 7095 int ret = -ENOMEM; 7096 7097 apply_wqattrs_lock(); 7098 7099 attrs = wq_sysfs_prep_attrs(wq); 7100 if (!attrs) 7101 goto out_unlock; 7102 7103 ret = cpumask_parse(buf, attrs->cpumask); 7104 if (!ret) 7105 ret = apply_workqueue_attrs_locked(wq, attrs); 7106 7107 out_unlock: 7108 apply_wqattrs_unlock(); 7109 free_workqueue_attrs(attrs); 7110 return ret ?: count; 7111 } 7112 7113 static ssize_t wq_affn_scope_show(struct device *dev, 7114 struct device_attribute *attr, char *buf) 7115 { 7116 struct workqueue_struct *wq = dev_to_wq(dev); 7117 int written; 7118 7119 mutex_lock(&wq->mutex); 7120 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 7121 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 7122 wq_affn_names[WQ_AFFN_DFL], 7123 wq_affn_names[wq_affn_dfl]); 7124 else 7125 written = scnprintf(buf, PAGE_SIZE, "%s\n", 7126 wq_affn_names[wq->unbound_attrs->affn_scope]); 7127 mutex_unlock(&wq->mutex); 7128 7129 return written; 7130 } 7131 7132 static ssize_t wq_affn_scope_store(struct device *dev, 7133 struct device_attribute *attr, 7134 const char *buf, size_t count) 7135 { 7136 struct workqueue_struct *wq = dev_to_wq(dev); 7137 struct workqueue_attrs *attrs; 7138 int affn, ret = -ENOMEM; 7139 7140 affn = parse_affn_scope(buf); 7141 if (affn < 0) 7142 return affn; 7143 7144 apply_wqattrs_lock(); 7145 attrs = wq_sysfs_prep_attrs(wq); 7146 if (attrs) { 7147 attrs->affn_scope = affn; 7148 ret = apply_workqueue_attrs_locked(wq, attrs); 7149 } 7150 apply_wqattrs_unlock(); 7151 free_workqueue_attrs(attrs); 7152 return ret ?: count; 7153 } 7154 7155 static ssize_t wq_affinity_strict_show(struct device *dev, 7156 struct device_attribute *attr, char *buf) 7157 { 7158 struct workqueue_struct *wq = dev_to_wq(dev); 7159 7160 return scnprintf(buf, PAGE_SIZE, "%d\n", 7161 wq->unbound_attrs->affn_strict); 7162 } 7163 7164 static ssize_t wq_affinity_strict_store(struct device *dev, 7165 struct device_attribute *attr, 7166 const char *buf, size_t count) 7167 { 7168 struct workqueue_struct *wq = dev_to_wq(dev); 7169 struct workqueue_attrs *attrs; 7170 int v, ret = -ENOMEM; 7171 7172 if (sscanf(buf, "%d", &v) != 1) 7173 return -EINVAL; 7174 7175 apply_wqattrs_lock(); 7176 attrs = wq_sysfs_prep_attrs(wq); 7177 if (attrs) { 7178 attrs->affn_strict = (bool)v; 7179 ret = apply_workqueue_attrs_locked(wq, attrs); 7180 } 7181 apply_wqattrs_unlock(); 7182 free_workqueue_attrs(attrs); 7183 return ret ?: count; 7184 } 7185 7186 static struct device_attribute wq_sysfs_unbound_attrs[] = { 7187 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 7188 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 7189 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 7190 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 7191 __ATTR_NULL, 7192 }; 7193 7194 static const struct bus_type wq_subsys = { 7195 .name = "workqueue", 7196 .dev_groups = wq_sysfs_groups, 7197 }; 7198 7199 /** 7200 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 7201 * @cpumask: the cpumask to set 7202 * 7203 * The low-level workqueues cpumask is a global cpumask that limits 7204 * the affinity of all unbound workqueues. This function check the @cpumask 7205 * and apply it to all unbound workqueues and updates all pwqs of them. 7206 * 7207 * Return: 0 - Success 7208 * -EINVAL - Invalid @cpumask 7209 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 7210 */ 7211 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 7212 { 7213 int ret = -EINVAL; 7214 7215 /* 7216 * Not excluding isolated cpus on purpose. 7217 * If the user wishes to include them, we allow that. 7218 */ 7219 cpumask_and(cpumask, cpumask, cpu_possible_mask); 7220 if (!cpumask_empty(cpumask)) { 7221 apply_wqattrs_lock(); 7222 cpumask_copy(wq_requested_unbound_cpumask, cpumask); 7223 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 7224 ret = 0; 7225 goto out_unlock; 7226 } 7227 7228 ret = workqueue_apply_unbound_cpumask(cpumask); 7229 7230 out_unlock: 7231 apply_wqattrs_unlock(); 7232 } 7233 7234 return ret; 7235 } 7236 7237 static ssize_t __wq_cpumask_show(struct device *dev, 7238 struct device_attribute *attr, char *buf, cpumask_var_t mask) 7239 { 7240 int written; 7241 7242 mutex_lock(&wq_pool_mutex); 7243 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 7244 mutex_unlock(&wq_pool_mutex); 7245 7246 return written; 7247 } 7248 7249 static ssize_t cpumask_requested_show(struct device *dev, 7250 struct device_attribute *attr, char *buf) 7251 { 7252 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask); 7253 } 7254 static DEVICE_ATTR_RO(cpumask_requested); 7255 7256 static ssize_t cpumask_isolated_show(struct device *dev, 7257 struct device_attribute *attr, char *buf) 7258 { 7259 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask); 7260 } 7261 static DEVICE_ATTR_RO(cpumask_isolated); 7262 7263 static ssize_t cpumask_show(struct device *dev, 7264 struct device_attribute *attr, char *buf) 7265 { 7266 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask); 7267 } 7268 7269 static ssize_t cpumask_store(struct device *dev, 7270 struct device_attribute *attr, const char *buf, size_t count) 7271 { 7272 cpumask_var_t cpumask; 7273 int ret; 7274 7275 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 7276 return -ENOMEM; 7277 7278 ret = cpumask_parse(buf, cpumask); 7279 if (!ret) 7280 ret = workqueue_set_unbound_cpumask(cpumask); 7281 7282 free_cpumask_var(cpumask); 7283 return ret ? ret : count; 7284 } 7285 static DEVICE_ATTR_RW(cpumask); 7286 7287 static struct attribute *wq_sysfs_cpumask_attrs[] = { 7288 &dev_attr_cpumask.attr, 7289 &dev_attr_cpumask_requested.attr, 7290 &dev_attr_cpumask_isolated.attr, 7291 NULL, 7292 }; 7293 ATTRIBUTE_GROUPS(wq_sysfs_cpumask); 7294 7295 static int __init wq_sysfs_init(void) 7296 { 7297 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups); 7298 } 7299 core_initcall(wq_sysfs_init); 7300 7301 static void wq_device_release(struct device *dev) 7302 { 7303 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7304 7305 kfree(wq_dev); 7306 } 7307 7308 /** 7309 * workqueue_sysfs_register - make a workqueue visible in sysfs 7310 * @wq: the workqueue to register 7311 * 7312 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 7313 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 7314 * which is the preferred method. 7315 * 7316 * Workqueue user should use this function directly iff it wants to apply 7317 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 7318 * apply_workqueue_attrs() may race against userland updating the 7319 * attributes. 7320 * 7321 * Return: 0 on success, -errno on failure. 7322 */ 7323 int workqueue_sysfs_register(struct workqueue_struct *wq) 7324 { 7325 struct wq_device *wq_dev; 7326 int ret; 7327 7328 /* 7329 * Adjusting max_active breaks ordering guarantee. Disallow exposing 7330 * ordered workqueues. 7331 */ 7332 if (WARN_ON(wq->flags & __WQ_ORDERED)) 7333 return -EINVAL; 7334 7335 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 7336 if (!wq_dev) 7337 return -ENOMEM; 7338 7339 wq_dev->wq = wq; 7340 wq_dev->dev.bus = &wq_subsys; 7341 wq_dev->dev.release = wq_device_release; 7342 dev_set_name(&wq_dev->dev, "%s", wq->name); 7343 7344 /* 7345 * unbound_attrs are created separately. Suppress uevent until 7346 * everything is ready. 7347 */ 7348 dev_set_uevent_suppress(&wq_dev->dev, true); 7349 7350 ret = device_register(&wq_dev->dev); 7351 if (ret) { 7352 put_device(&wq_dev->dev); 7353 wq->wq_dev = NULL; 7354 return ret; 7355 } 7356 7357 if (wq->flags & WQ_UNBOUND) { 7358 struct device_attribute *attr; 7359 7360 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 7361 ret = device_create_file(&wq_dev->dev, attr); 7362 if (ret) { 7363 device_unregister(&wq_dev->dev); 7364 wq->wq_dev = NULL; 7365 return ret; 7366 } 7367 } 7368 } 7369 7370 dev_set_uevent_suppress(&wq_dev->dev, false); 7371 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 7372 return 0; 7373 } 7374 7375 /** 7376 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 7377 * @wq: the workqueue to unregister 7378 * 7379 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 7380 */ 7381 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 7382 { 7383 struct wq_device *wq_dev = wq->wq_dev; 7384 7385 if (!wq->wq_dev) 7386 return; 7387 7388 wq->wq_dev = NULL; 7389 device_unregister(&wq_dev->dev); 7390 } 7391 #else /* CONFIG_SYSFS */ 7392 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 7393 #endif /* CONFIG_SYSFS */ 7394 7395 /* 7396 * Workqueue watchdog. 7397 * 7398 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 7399 * flush dependency, a concurrency managed work item which stays RUNNING 7400 * indefinitely. Workqueue stalls can be very difficult to debug as the 7401 * usual warning mechanisms don't trigger and internal workqueue state is 7402 * largely opaque. 7403 * 7404 * Workqueue watchdog monitors all worker pools periodically and dumps 7405 * state if some pools failed to make forward progress for a while where 7406 * forward progress is defined as the first item on ->worklist changing. 7407 * 7408 * This mechanism is controlled through the kernel parameter 7409 * "workqueue.watchdog_thresh" which can be updated at runtime through the 7410 * corresponding sysfs parameter file. 7411 */ 7412 #ifdef CONFIG_WQ_WATCHDOG 7413 7414 static unsigned long wq_watchdog_thresh = 30; 7415 static struct timer_list wq_watchdog_timer; 7416 7417 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 7418 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 7419 7420 /* 7421 * Show workers that might prevent the processing of pending work items. 7422 * The only candidates are CPU-bound workers in the running state. 7423 * Pending work items should be handled by another idle worker 7424 * in all other situations. 7425 */ 7426 static void show_cpu_pool_hog(struct worker_pool *pool) 7427 { 7428 struct worker *worker; 7429 unsigned long irq_flags; 7430 int bkt; 7431 7432 raw_spin_lock_irqsave(&pool->lock, irq_flags); 7433 7434 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 7435 if (task_is_running(worker->task)) { 7436 /* 7437 * Defer printing to avoid deadlocks in console 7438 * drivers that queue work while holding locks 7439 * also taken in their write paths. 7440 */ 7441 printk_deferred_enter(); 7442 7443 pr_info("pool %d:\n", pool->id); 7444 sched_show_task(worker->task); 7445 7446 printk_deferred_exit(); 7447 } 7448 } 7449 7450 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 7451 } 7452 7453 static void show_cpu_pools_hogs(void) 7454 { 7455 struct worker_pool *pool; 7456 int pi; 7457 7458 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 7459 7460 rcu_read_lock(); 7461 7462 for_each_pool(pool, pi) { 7463 if (pool->cpu_stall) 7464 show_cpu_pool_hog(pool); 7465 7466 } 7467 7468 rcu_read_unlock(); 7469 } 7470 7471 static void wq_watchdog_reset_touched(void) 7472 { 7473 int cpu; 7474 7475 wq_watchdog_touched = jiffies; 7476 for_each_possible_cpu(cpu) 7477 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7478 } 7479 7480 static void wq_watchdog_timer_fn(struct timer_list *unused) 7481 { 7482 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7483 bool lockup_detected = false; 7484 bool cpu_pool_stall = false; 7485 unsigned long now = jiffies; 7486 struct worker_pool *pool; 7487 int pi; 7488 7489 if (!thresh) 7490 return; 7491 7492 rcu_read_lock(); 7493 7494 for_each_pool(pool, pi) { 7495 unsigned long pool_ts, touched, ts; 7496 7497 pool->cpu_stall = false; 7498 if (list_empty(&pool->worklist)) 7499 continue; 7500 7501 /* 7502 * If a virtual machine is stopped by the host it can look to 7503 * the watchdog like a stall. 7504 */ 7505 kvm_check_and_clear_guest_paused(); 7506 7507 /* get the latest of pool and touched timestamps */ 7508 if (pool->cpu >= 0) 7509 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 7510 else 7511 touched = READ_ONCE(wq_watchdog_touched); 7512 pool_ts = READ_ONCE(pool->watchdog_ts); 7513 7514 if (time_after(pool_ts, touched)) 7515 ts = pool_ts; 7516 else 7517 ts = touched; 7518 7519 /* did we stall? */ 7520 if (time_after(now, ts + thresh)) { 7521 lockup_detected = true; 7522 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) { 7523 pool->cpu_stall = true; 7524 cpu_pool_stall = true; 7525 } 7526 pr_emerg("BUG: workqueue lockup - pool"); 7527 pr_cont_pool_info(pool); 7528 pr_cont(" stuck for %us!\n", 7529 jiffies_to_msecs(now - pool_ts) / 1000); 7530 } 7531 7532 7533 } 7534 7535 rcu_read_unlock(); 7536 7537 if (lockup_detected) 7538 show_all_workqueues(); 7539 7540 if (cpu_pool_stall) 7541 show_cpu_pools_hogs(); 7542 7543 wq_watchdog_reset_touched(); 7544 mod_timer(&wq_watchdog_timer, jiffies + thresh); 7545 } 7546 7547 notrace void wq_watchdog_touch(int cpu) 7548 { 7549 if (cpu >= 0) 7550 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7551 7552 wq_watchdog_touched = jiffies; 7553 } 7554 7555 static void wq_watchdog_set_thresh(unsigned long thresh) 7556 { 7557 wq_watchdog_thresh = 0; 7558 del_timer_sync(&wq_watchdog_timer); 7559 7560 if (thresh) { 7561 wq_watchdog_thresh = thresh; 7562 wq_watchdog_reset_touched(); 7563 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 7564 } 7565 } 7566 7567 static int wq_watchdog_param_set_thresh(const char *val, 7568 const struct kernel_param *kp) 7569 { 7570 unsigned long thresh; 7571 int ret; 7572 7573 ret = kstrtoul(val, 0, &thresh); 7574 if (ret) 7575 return ret; 7576 7577 if (system_wq) 7578 wq_watchdog_set_thresh(thresh); 7579 else 7580 wq_watchdog_thresh = thresh; 7581 7582 return 0; 7583 } 7584 7585 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 7586 .set = wq_watchdog_param_set_thresh, 7587 .get = param_get_ulong, 7588 }; 7589 7590 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 7591 0644); 7592 7593 static void wq_watchdog_init(void) 7594 { 7595 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 7596 wq_watchdog_set_thresh(wq_watchdog_thresh); 7597 } 7598 7599 #else /* CONFIG_WQ_WATCHDOG */ 7600 7601 static inline void wq_watchdog_init(void) { } 7602 7603 #endif /* CONFIG_WQ_WATCHDOG */ 7604 7605 static void bh_pool_kick_normal(struct irq_work *irq_work) 7606 { 7607 raise_softirq_irqoff(TASKLET_SOFTIRQ); 7608 } 7609 7610 static void bh_pool_kick_highpri(struct irq_work *irq_work) 7611 { 7612 raise_softirq_irqoff(HI_SOFTIRQ); 7613 } 7614 7615 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 7616 { 7617 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 7618 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 7619 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 7620 return; 7621 } 7622 7623 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 7624 } 7625 7626 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice) 7627 { 7628 BUG_ON(init_worker_pool(pool)); 7629 pool->cpu = cpu; 7630 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 7631 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 7632 pool->attrs->nice = nice; 7633 pool->attrs->affn_strict = true; 7634 pool->node = cpu_to_node(cpu); 7635 7636 /* alloc pool ID */ 7637 mutex_lock(&wq_pool_mutex); 7638 BUG_ON(worker_pool_assign_id(pool)); 7639 mutex_unlock(&wq_pool_mutex); 7640 } 7641 7642 /** 7643 * workqueue_init_early - early init for workqueue subsystem 7644 * 7645 * This is the first step of three-staged workqueue subsystem initialization and 7646 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 7647 * up. It sets up all the data structures and system workqueues and allows early 7648 * boot code to create workqueues and queue/cancel work items. Actual work item 7649 * execution starts only after kthreads can be created and scheduled right 7650 * before early initcalls. 7651 */ 7652 void __init workqueue_init_early(void) 7653 { 7654 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 7655 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 7656 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal, 7657 bh_pool_kick_highpri }; 7658 int i, cpu; 7659 7660 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 7661 7662 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 7663 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); 7664 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); 7665 7666 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 7667 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 7668 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 7669 if (!cpumask_empty(&wq_cmdline_cpumask)) 7670 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 7671 7672 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask); 7673 7674 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 7675 7676 wq_update_pod_attrs_buf = alloc_workqueue_attrs(); 7677 BUG_ON(!wq_update_pod_attrs_buf); 7678 7679 /* 7680 * If nohz_full is enabled, set power efficient workqueue as unbound. 7681 * This allows workqueue items to be moved to HK CPUs. 7682 */ 7683 if (housekeeping_enabled(HK_TYPE_TICK)) 7684 wq_power_efficient = true; 7685 7686 /* initialize WQ_AFFN_SYSTEM pods */ 7687 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7688 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 7689 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7690 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 7691 7692 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 7693 7694 pt->nr_pods = 1; 7695 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 7696 pt->pod_node[0] = NUMA_NO_NODE; 7697 pt->cpu_pod[0] = 0; 7698 7699 /* initialize BH and CPU pools */ 7700 for_each_possible_cpu(cpu) { 7701 struct worker_pool *pool; 7702 7703 i = 0; 7704 for_each_bh_worker_pool(pool, cpu) { 7705 init_cpu_worker_pool(pool, cpu, std_nice[i]); 7706 pool->flags |= POOL_BH; 7707 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]); 7708 i++; 7709 } 7710 7711 i = 0; 7712 for_each_cpu_worker_pool(pool, cpu) 7713 init_cpu_worker_pool(pool, cpu, std_nice[i++]); 7714 } 7715 7716 /* create default unbound and ordered wq attrs */ 7717 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 7718 struct workqueue_attrs *attrs; 7719 7720 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7721 attrs->nice = std_nice[i]; 7722 unbound_std_wq_attrs[i] = attrs; 7723 7724 /* 7725 * An ordered wq should have only one pwq as ordering is 7726 * guaranteed by max_active which is enforced by pwqs. 7727 */ 7728 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7729 attrs->nice = std_nice[i]; 7730 attrs->ordered = true; 7731 ordered_wq_attrs[i] = attrs; 7732 } 7733 7734 system_wq = alloc_workqueue("events", 0, 0); 7735 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 7736 system_long_wq = alloc_workqueue("events_long", 0, 0); 7737 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 7738 WQ_MAX_ACTIVE); 7739 system_freezable_wq = alloc_workqueue("events_freezable", 7740 WQ_FREEZABLE, 0); 7741 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 7742 WQ_POWER_EFFICIENT, 0); 7743 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient", 7744 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 7745 0); 7746 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0); 7747 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri", 7748 WQ_BH | WQ_HIGHPRI, 0); 7749 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 7750 !system_unbound_wq || !system_freezable_wq || 7751 !system_power_efficient_wq || 7752 !system_freezable_power_efficient_wq || 7753 !system_bh_wq || !system_bh_highpri_wq); 7754 } 7755 7756 static void __init wq_cpu_intensive_thresh_init(void) 7757 { 7758 unsigned long thresh; 7759 unsigned long bogo; 7760 7761 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); 7762 BUG_ON(IS_ERR(pwq_release_worker)); 7763 7764 /* if the user set it to a specific value, keep it */ 7765 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 7766 return; 7767 7768 /* 7769 * The default of 10ms is derived from the fact that most modern (as of 7770 * 2023) processors can do a lot in 10ms and that it's just below what 7771 * most consider human-perceivable. However, the kernel also runs on a 7772 * lot slower CPUs including microcontrollers where the threshold is way 7773 * too low. 7774 * 7775 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 7776 * This is by no means accurate but it doesn't have to be. The mechanism 7777 * is still useful even when the threshold is fully scaled up. Also, as 7778 * the reports would usually be applicable to everyone, some machines 7779 * operating on longer thresholds won't significantly diminish their 7780 * usefulness. 7781 */ 7782 thresh = 10 * USEC_PER_MSEC; 7783 7784 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 7785 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 7786 if (bogo < 4000) 7787 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 7788 7789 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 7790 loops_per_jiffy, bogo, thresh); 7791 7792 wq_cpu_intensive_thresh_us = thresh; 7793 } 7794 7795 /** 7796 * workqueue_init - bring workqueue subsystem fully online 7797 * 7798 * This is the second step of three-staged workqueue subsystem initialization 7799 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 7800 * been created and work items queued on them, but there are no kworkers 7801 * executing the work items yet. Populate the worker pools with the initial 7802 * workers and enable future kworker creations. 7803 */ 7804 void __init workqueue_init(void) 7805 { 7806 struct workqueue_struct *wq; 7807 struct worker_pool *pool; 7808 int cpu, bkt; 7809 7810 wq_cpu_intensive_thresh_init(); 7811 7812 mutex_lock(&wq_pool_mutex); 7813 7814 /* 7815 * Per-cpu pools created earlier could be missing node hint. Fix them 7816 * up. Also, create a rescuer for workqueues that requested it. 7817 */ 7818 for_each_possible_cpu(cpu) { 7819 for_each_bh_worker_pool(pool, cpu) 7820 pool->node = cpu_to_node(cpu); 7821 for_each_cpu_worker_pool(pool, cpu) 7822 pool->node = cpu_to_node(cpu); 7823 } 7824 7825 list_for_each_entry(wq, &workqueues, list) { 7826 WARN(init_rescuer(wq), 7827 "workqueue: failed to create early rescuer for %s", 7828 wq->name); 7829 } 7830 7831 mutex_unlock(&wq_pool_mutex); 7832 7833 /* 7834 * Create the initial workers. A BH pool has one pseudo worker that 7835 * represents the shared BH execution context and thus doesn't get 7836 * affected by hotplug events. Create the BH pseudo workers for all 7837 * possible CPUs here. 7838 */ 7839 for_each_possible_cpu(cpu) 7840 for_each_bh_worker_pool(pool, cpu) 7841 BUG_ON(!create_worker(pool)); 7842 7843 for_each_online_cpu(cpu) { 7844 for_each_cpu_worker_pool(pool, cpu) { 7845 pool->flags &= ~POOL_DISASSOCIATED; 7846 BUG_ON(!create_worker(pool)); 7847 } 7848 } 7849 7850 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 7851 BUG_ON(!create_worker(pool)); 7852 7853 wq_online = true; 7854 wq_watchdog_init(); 7855 } 7856 7857 /* 7858 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 7859 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 7860 * and consecutive pod ID. The rest of @pt is initialized accordingly. 7861 */ 7862 static void __init init_pod_type(struct wq_pod_type *pt, 7863 bool (*cpus_share_pod)(int, int)) 7864 { 7865 int cur, pre, cpu, pod; 7866 7867 pt->nr_pods = 0; 7868 7869 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 7870 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7871 BUG_ON(!pt->cpu_pod); 7872 7873 for_each_possible_cpu(cur) { 7874 for_each_possible_cpu(pre) { 7875 if (pre >= cur) { 7876 pt->cpu_pod[cur] = pt->nr_pods++; 7877 break; 7878 } 7879 if (cpus_share_pod(cur, pre)) { 7880 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 7881 break; 7882 } 7883 } 7884 } 7885 7886 /* init the rest to match @pt->cpu_pod[] */ 7887 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7888 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 7889 BUG_ON(!pt->pod_cpus || !pt->pod_node); 7890 7891 for (pod = 0; pod < pt->nr_pods; pod++) 7892 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 7893 7894 for_each_possible_cpu(cpu) { 7895 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 7896 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 7897 } 7898 } 7899 7900 static bool __init cpus_dont_share(int cpu0, int cpu1) 7901 { 7902 return false; 7903 } 7904 7905 static bool __init cpus_share_smt(int cpu0, int cpu1) 7906 { 7907 #ifdef CONFIG_SCHED_SMT 7908 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 7909 #else 7910 return false; 7911 #endif 7912 } 7913 7914 static bool __init cpus_share_numa(int cpu0, int cpu1) 7915 { 7916 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 7917 } 7918 7919 /** 7920 * workqueue_init_topology - initialize CPU pods for unbound workqueues 7921 * 7922 * This is the third step of three-staged workqueue subsystem initialization and 7923 * invoked after SMP and topology information are fully initialized. It 7924 * initializes the unbound CPU pods accordingly. 7925 */ 7926 void __init workqueue_init_topology(void) 7927 { 7928 struct workqueue_struct *wq; 7929 int cpu; 7930 7931 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 7932 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 7933 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 7934 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 7935 7936 wq_topo_initialized = true; 7937 7938 mutex_lock(&wq_pool_mutex); 7939 7940 /* 7941 * Workqueues allocated earlier would have all CPUs sharing the default 7942 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU 7943 * combinations to apply per-pod sharing. 7944 */ 7945 list_for_each_entry(wq, &workqueues, list) { 7946 for_each_online_cpu(cpu) 7947 wq_update_pod(wq, cpu, cpu, true); 7948 if (wq->flags & WQ_UNBOUND) { 7949 mutex_lock(&wq->mutex); 7950 wq_update_node_max_active(wq, -1); 7951 mutex_unlock(&wq->mutex); 7952 } 7953 } 7954 7955 mutex_unlock(&wq_pool_mutex); 7956 } 7957 7958 void __warn_flushing_systemwide_wq(void) 7959 { 7960 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 7961 dump_stack(); 7962 } 7963 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 7964 7965 static int __init workqueue_unbound_cpus_setup(char *str) 7966 { 7967 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 7968 cpumask_clear(&wq_cmdline_cpumask); 7969 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 7970 } 7971 7972 return 1; 7973 } 7974 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 7975