xref: /linux-6.15/kernel/workqueue.c (revision 7f7dc377)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <[email protected]>
9  *     Andrew Morton
10  *     Kai Petzke <[email protected]>
11  *     Theodore Ts'o <[email protected]>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <[email protected]>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/sched/debug.h>
53 #include <linux/nmi.h>
54 #include <linux/kvm_para.h>
55 #include <linux/delay.h>
56 
57 #include "workqueue_internal.h"
58 
59 enum {
60 	/*
61 	 * worker_pool flags
62 	 *
63 	 * A bound pool is either associated or disassociated with its CPU.
64 	 * While associated (!DISASSOCIATED), all workers are bound to the
65 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
66 	 * is in effect.
67 	 *
68 	 * While DISASSOCIATED, the cpu may be offline and all workers have
69 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
70 	 * be executing on any CPU.  The pool behaves as an unbound one.
71 	 *
72 	 * Note that DISASSOCIATED should be flipped only while holding
73 	 * wq_pool_attach_mutex to avoid changing binding state while
74 	 * worker_attach_to_pool() is in progress.
75 	 */
76 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
77 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
78 
79 	/* worker flags */
80 	WORKER_DIE		= 1 << 1,	/* die die die */
81 	WORKER_IDLE		= 1 << 2,	/* is idle */
82 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
83 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
84 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
85 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
86 
87 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
88 				  WORKER_UNBOUND | WORKER_REBOUND,
89 
90 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
91 
92 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
93 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
94 
95 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
96 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
97 
98 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
99 						/* call for help after 10ms
100 						   (min two ticks) */
101 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
102 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
103 
104 	/*
105 	 * Rescue workers are used only on emergencies and shared by
106 	 * all cpus.  Give MIN_NICE.
107 	 */
108 	RESCUER_NICE_LEVEL	= MIN_NICE,
109 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
110 
111 	WQ_NAME_LEN		= 24,
112 };
113 
114 /*
115  * Structure fields follow one of the following exclusion rules.
116  *
117  * I: Modifiable by initialization/destruction paths and read-only for
118  *    everyone else.
119  *
120  * P: Preemption protected.  Disabling preemption is enough and should
121  *    only be modified and accessed from the local cpu.
122  *
123  * L: pool->lock protected.  Access with pool->lock held.
124  *
125  * K: Only modified by worker while holding pool->lock. Can be safely read by
126  *    self, while holding pool->lock or from IRQ context if %current is the
127  *    kworker.
128  *
129  * S: Only modified by worker self.
130  *
131  * A: wq_pool_attach_mutex protected.
132  *
133  * PL: wq_pool_mutex protected.
134  *
135  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
136  *
137  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
138  *
139  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
140  *      RCU for reads.
141  *
142  * WQ: wq->mutex protected.
143  *
144  * WR: wq->mutex protected for writes.  RCU protected for reads.
145  *
146  * MD: wq_mayday_lock protected.
147  *
148  * WD: Used internally by the watchdog.
149  */
150 
151 /* struct worker is defined in workqueue_internal.h */
152 
153 struct worker_pool {
154 	raw_spinlock_t		lock;		/* the pool lock */
155 	int			cpu;		/* I: the associated cpu */
156 	int			node;		/* I: the associated node ID */
157 	int			id;		/* I: pool ID */
158 	unsigned int		flags;		/* L: flags */
159 
160 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
161 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
162 
163 	/*
164 	 * The counter is incremented in a process context on the associated CPU
165 	 * w/ preemption disabled, and decremented or reset in the same context
166 	 * but w/ pool->lock held. The readers grab pool->lock and are
167 	 * guaranteed to see if the counter reached zero.
168 	 */
169 	int			nr_running;
170 
171 	struct list_head	worklist;	/* L: list of pending works */
172 
173 	int			nr_workers;	/* L: total number of workers */
174 	int			nr_idle;	/* L: currently idle workers */
175 
176 	struct list_head	idle_list;	/* L: list of idle workers */
177 	struct timer_list	idle_timer;	/* L: worker idle timeout */
178 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
179 
180 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
181 
182 	/* a workers is either on busy_hash or idle_list, or the manager */
183 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
184 						/* L: hash of busy workers */
185 
186 	struct worker		*manager;	/* L: purely informational */
187 	struct list_head	workers;	/* A: attached workers */
188 	struct list_head        dying_workers;  /* A: workers about to die */
189 	struct completion	*detach_completion; /* all workers detached */
190 
191 	struct ida		worker_ida;	/* worker IDs for task name */
192 
193 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
194 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
195 	int			refcnt;		/* PL: refcnt for unbound pools */
196 
197 	/*
198 	 * Destruction of pool is RCU protected to allow dereferences
199 	 * from get_work_pool().
200 	 */
201 	struct rcu_head		rcu;
202 };
203 
204 /*
205  * Per-pool_workqueue statistics. These can be monitored using
206  * tools/workqueue/wq_monitor.py.
207  */
208 enum pool_workqueue_stats {
209 	PWQ_STAT_STARTED,	/* work items started execution */
210 	PWQ_STAT_COMPLETED,	/* work items completed execution */
211 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
212 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
213 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
214 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
215 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
216 
217 	PWQ_NR_STATS,
218 };
219 
220 /*
221  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
222  * of work_struct->data are used for flags and the remaining high bits
223  * point to the pwq; thus, pwqs need to be aligned at two's power of the
224  * number of flag bits.
225  */
226 struct pool_workqueue {
227 	struct worker_pool	*pool;		/* I: the associated pool */
228 	struct workqueue_struct *wq;		/* I: the owning workqueue */
229 	int			work_color;	/* L: current color */
230 	int			flush_color;	/* L: flushing color */
231 	int			refcnt;		/* L: reference count */
232 	int			nr_in_flight[WORK_NR_COLORS];
233 						/* L: nr of in_flight works */
234 
235 	/*
236 	 * nr_active management and WORK_STRUCT_INACTIVE:
237 	 *
238 	 * When pwq->nr_active >= max_active, new work item is queued to
239 	 * pwq->inactive_works instead of pool->worklist and marked with
240 	 * WORK_STRUCT_INACTIVE.
241 	 *
242 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
243 	 * in pwq->nr_active and all work items in pwq->inactive_works are
244 	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
245 	 * work items are in pwq->inactive_works.  Some of them are ready to
246 	 * run in pool->worklist or worker->scheduled.  Those work itmes are
247 	 * only struct wq_barrier which is used for flush_work() and should
248 	 * not participate in pwq->nr_active.  For non-barrier work item, it
249 	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
250 	 */
251 	int			nr_active;	/* L: nr of active works */
252 	int			max_active;	/* L: max active works */
253 	struct list_head	inactive_works;	/* L: inactive works */
254 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
255 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
256 
257 	u64			stats[PWQ_NR_STATS];
258 
259 	/*
260 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
261 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
262 	 * RCU protected so that the first pwq can be determined without
263 	 * grabbing wq->mutex.
264 	 */
265 	struct kthread_work	release_work;
266 	struct rcu_head		rcu;
267 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
268 
269 /*
270  * Structure used to wait for workqueue flush.
271  */
272 struct wq_flusher {
273 	struct list_head	list;		/* WQ: list of flushers */
274 	int			flush_color;	/* WQ: flush color waiting for */
275 	struct completion	done;		/* flush completion */
276 };
277 
278 struct wq_device;
279 
280 /*
281  * The externally visible workqueue.  It relays the issued work items to
282  * the appropriate worker_pool through its pool_workqueues.
283  */
284 struct workqueue_struct {
285 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
286 	struct list_head	list;		/* PR: list of all workqueues */
287 
288 	struct mutex		mutex;		/* protects this wq */
289 	int			work_color;	/* WQ: current work color */
290 	int			flush_color;	/* WQ: current flush color */
291 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
292 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
293 	struct list_head	flusher_queue;	/* WQ: flush waiters */
294 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
295 
296 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
297 	struct worker		*rescuer;	/* MD: rescue worker */
298 
299 	int			nr_drainers;	/* WQ: drain in progress */
300 	int			saved_max_active; /* WQ: saved pwq max_active */
301 
302 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
303 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
304 
305 #ifdef CONFIG_SYSFS
306 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
307 #endif
308 #ifdef CONFIG_LOCKDEP
309 	char			*lock_name;
310 	struct lock_class_key	key;
311 	struct lockdep_map	lockdep_map;
312 #endif
313 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
314 
315 	/*
316 	 * Destruction of workqueue_struct is RCU protected to allow walking
317 	 * the workqueues list without grabbing wq_pool_mutex.
318 	 * This is used to dump all workqueues from sysrq.
319 	 */
320 	struct rcu_head		rcu;
321 
322 	/* hot fields used during command issue, aligned to cacheline */
323 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
324 	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
325 };
326 
327 static struct kmem_cache *pwq_cache;
328 
329 /*
330  * Each pod type describes how CPUs should be grouped for unbound workqueues.
331  * See the comment above workqueue_attrs->affn_scope.
332  */
333 struct wq_pod_type {
334 	int			nr_pods;	/* number of pods */
335 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
336 	int			*pod_node;	/* pod -> node */
337 	int			*cpu_pod;	/* cpu -> pod */
338 };
339 
340 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
341 
342 /*
343  * Per-cpu work items which run for longer than the following threshold are
344  * automatically considered CPU intensive and excluded from concurrency
345  * management to prevent them from noticeably delaying other per-cpu work items.
346  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
347  * The actual value is initialized in wq_cpu_intensive_thresh_init().
348  */
349 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
350 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
351 
352 /* see the comment above the definition of WQ_POWER_EFFICIENT */
353 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
354 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
355 
356 static bool wq_online;			/* can kworkers be created yet? */
357 
358 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
359 static struct workqueue_attrs *wq_update_pod_attrs_buf;
360 static cpumask_var_t wq_update_pod_cpumask_buf;
361 
362 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
363 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
364 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
365 /* wait for manager to go away */
366 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
367 
368 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
369 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
370 
371 /* PL&A: allowable cpus for unbound wqs and work items */
372 static cpumask_var_t wq_unbound_cpumask;
373 
374 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
375 static struct cpumask wq_cmdline_cpumask __initdata;
376 
377 /* CPU where unbound work was last round robin scheduled from this CPU */
378 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
379 
380 /*
381  * Local execution of unbound work items is no longer guaranteed.  The
382  * following always forces round-robin CPU selection on unbound work items
383  * to uncover usages which depend on it.
384  */
385 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
386 static bool wq_debug_force_rr_cpu = true;
387 #else
388 static bool wq_debug_force_rr_cpu = false;
389 #endif
390 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
391 
392 /* the per-cpu worker pools */
393 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
394 
395 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
396 
397 /* PL: hash of all unbound pools keyed by pool->attrs */
398 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
399 
400 /* I: attributes used when instantiating standard unbound pools on demand */
401 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
402 
403 /* I: attributes used when instantiating ordered pools on demand */
404 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
405 
406 /*
407  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
408  * process context while holding a pool lock. Bounce to a dedicated kthread
409  * worker to avoid A-A deadlocks.
410  */
411 static struct kthread_worker *pwq_release_worker;
412 
413 struct workqueue_struct *system_wq __read_mostly;
414 EXPORT_SYMBOL(system_wq);
415 struct workqueue_struct *system_highpri_wq __read_mostly;
416 EXPORT_SYMBOL_GPL(system_highpri_wq);
417 struct workqueue_struct *system_long_wq __read_mostly;
418 EXPORT_SYMBOL_GPL(system_long_wq);
419 struct workqueue_struct *system_unbound_wq __read_mostly;
420 EXPORT_SYMBOL_GPL(system_unbound_wq);
421 struct workqueue_struct *system_freezable_wq __read_mostly;
422 EXPORT_SYMBOL_GPL(system_freezable_wq);
423 struct workqueue_struct *system_power_efficient_wq __read_mostly;
424 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
425 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
426 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
427 
428 static int worker_thread(void *__worker);
429 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
430 static void show_pwq(struct pool_workqueue *pwq);
431 static void show_one_worker_pool(struct worker_pool *pool);
432 
433 #define CREATE_TRACE_POINTS
434 #include <trace/events/workqueue.h>
435 
436 #define assert_rcu_or_pool_mutex()					\
437 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
438 			 !lockdep_is_held(&wq_pool_mutex),		\
439 			 "RCU or wq_pool_mutex should be held")
440 
441 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
442 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
443 			 !lockdep_is_held(&wq->mutex) &&		\
444 			 !lockdep_is_held(&wq_pool_mutex),		\
445 			 "RCU, wq->mutex or wq_pool_mutex should be held")
446 
447 #define for_each_cpu_worker_pool(pool, cpu)				\
448 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
449 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
450 	     (pool)++)
451 
452 /**
453  * for_each_pool - iterate through all worker_pools in the system
454  * @pool: iteration cursor
455  * @pi: integer used for iteration
456  *
457  * This must be called either with wq_pool_mutex held or RCU read
458  * locked.  If the pool needs to be used beyond the locking in effect, the
459  * caller is responsible for guaranteeing that the pool stays online.
460  *
461  * The if/else clause exists only for the lockdep assertion and can be
462  * ignored.
463  */
464 #define for_each_pool(pool, pi)						\
465 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
466 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
467 		else
468 
469 /**
470  * for_each_pool_worker - iterate through all workers of a worker_pool
471  * @worker: iteration cursor
472  * @pool: worker_pool to iterate workers of
473  *
474  * This must be called with wq_pool_attach_mutex.
475  *
476  * The if/else clause exists only for the lockdep assertion and can be
477  * ignored.
478  */
479 #define for_each_pool_worker(worker, pool)				\
480 	list_for_each_entry((worker), &(pool)->workers, node)		\
481 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
482 		else
483 
484 /**
485  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
486  * @pwq: iteration cursor
487  * @wq: the target workqueue
488  *
489  * This must be called either with wq->mutex held or RCU read locked.
490  * If the pwq needs to be used beyond the locking in effect, the caller is
491  * responsible for guaranteeing that the pwq stays online.
492  *
493  * The if/else clause exists only for the lockdep assertion and can be
494  * ignored.
495  */
496 #define for_each_pwq(pwq, wq)						\
497 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
498 				 lockdep_is_held(&(wq->mutex)))
499 
500 #ifdef CONFIG_DEBUG_OBJECTS_WORK
501 
502 static const struct debug_obj_descr work_debug_descr;
503 
504 static void *work_debug_hint(void *addr)
505 {
506 	return ((struct work_struct *) addr)->func;
507 }
508 
509 static bool work_is_static_object(void *addr)
510 {
511 	struct work_struct *work = addr;
512 
513 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
514 }
515 
516 /*
517  * fixup_init is called when:
518  * - an active object is initialized
519  */
520 static bool work_fixup_init(void *addr, enum debug_obj_state state)
521 {
522 	struct work_struct *work = addr;
523 
524 	switch (state) {
525 	case ODEBUG_STATE_ACTIVE:
526 		cancel_work_sync(work);
527 		debug_object_init(work, &work_debug_descr);
528 		return true;
529 	default:
530 		return false;
531 	}
532 }
533 
534 /*
535  * fixup_free is called when:
536  * - an active object is freed
537  */
538 static bool work_fixup_free(void *addr, enum debug_obj_state state)
539 {
540 	struct work_struct *work = addr;
541 
542 	switch (state) {
543 	case ODEBUG_STATE_ACTIVE:
544 		cancel_work_sync(work);
545 		debug_object_free(work, &work_debug_descr);
546 		return true;
547 	default:
548 		return false;
549 	}
550 }
551 
552 static const struct debug_obj_descr work_debug_descr = {
553 	.name		= "work_struct",
554 	.debug_hint	= work_debug_hint,
555 	.is_static_object = work_is_static_object,
556 	.fixup_init	= work_fixup_init,
557 	.fixup_free	= work_fixup_free,
558 };
559 
560 static inline void debug_work_activate(struct work_struct *work)
561 {
562 	debug_object_activate(work, &work_debug_descr);
563 }
564 
565 static inline void debug_work_deactivate(struct work_struct *work)
566 {
567 	debug_object_deactivate(work, &work_debug_descr);
568 }
569 
570 void __init_work(struct work_struct *work, int onstack)
571 {
572 	if (onstack)
573 		debug_object_init_on_stack(work, &work_debug_descr);
574 	else
575 		debug_object_init(work, &work_debug_descr);
576 }
577 EXPORT_SYMBOL_GPL(__init_work);
578 
579 void destroy_work_on_stack(struct work_struct *work)
580 {
581 	debug_object_free(work, &work_debug_descr);
582 }
583 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
584 
585 void destroy_delayed_work_on_stack(struct delayed_work *work)
586 {
587 	destroy_timer_on_stack(&work->timer);
588 	debug_object_free(&work->work, &work_debug_descr);
589 }
590 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
591 
592 #else
593 static inline void debug_work_activate(struct work_struct *work) { }
594 static inline void debug_work_deactivate(struct work_struct *work) { }
595 #endif
596 
597 /**
598  * worker_pool_assign_id - allocate ID and assign it to @pool
599  * @pool: the pool pointer of interest
600  *
601  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
602  * successfully, -errno on failure.
603  */
604 static int worker_pool_assign_id(struct worker_pool *pool)
605 {
606 	int ret;
607 
608 	lockdep_assert_held(&wq_pool_mutex);
609 
610 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
611 			GFP_KERNEL);
612 	if (ret >= 0) {
613 		pool->id = ret;
614 		return 0;
615 	}
616 	return ret;
617 }
618 
619 static unsigned int work_color_to_flags(int color)
620 {
621 	return color << WORK_STRUCT_COLOR_SHIFT;
622 }
623 
624 static int get_work_color(unsigned long work_data)
625 {
626 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
627 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
628 }
629 
630 static int work_next_color(int color)
631 {
632 	return (color + 1) % WORK_NR_COLORS;
633 }
634 
635 /*
636  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
637  * contain the pointer to the queued pwq.  Once execution starts, the flag
638  * is cleared and the high bits contain OFFQ flags and pool ID.
639  *
640  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
641  * and clear_work_data() can be used to set the pwq, pool or clear
642  * work->data.  These functions should only be called while the work is
643  * owned - ie. while the PENDING bit is set.
644  *
645  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
646  * corresponding to a work.  Pool is available once the work has been
647  * queued anywhere after initialization until it is sync canceled.  pwq is
648  * available only while the work item is queued.
649  *
650  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
651  * canceled.  While being canceled, a work item may have its PENDING set
652  * but stay off timer and worklist for arbitrarily long and nobody should
653  * try to steal the PENDING bit.
654  */
655 static inline void set_work_data(struct work_struct *work, unsigned long data,
656 				 unsigned long flags)
657 {
658 	WARN_ON_ONCE(!work_pending(work));
659 	atomic_long_set(&work->data, data | flags | work_static(work));
660 }
661 
662 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
663 			 unsigned long extra_flags)
664 {
665 	set_work_data(work, (unsigned long)pwq,
666 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
667 }
668 
669 static void set_work_pool_and_keep_pending(struct work_struct *work,
670 					   int pool_id)
671 {
672 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
673 		      WORK_STRUCT_PENDING);
674 }
675 
676 static void set_work_pool_and_clear_pending(struct work_struct *work,
677 					    int pool_id)
678 {
679 	/*
680 	 * The following wmb is paired with the implied mb in
681 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
682 	 * here are visible to and precede any updates by the next PENDING
683 	 * owner.
684 	 */
685 	smp_wmb();
686 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
687 	/*
688 	 * The following mb guarantees that previous clear of a PENDING bit
689 	 * will not be reordered with any speculative LOADS or STORES from
690 	 * work->current_func, which is executed afterwards.  This possible
691 	 * reordering can lead to a missed execution on attempt to queue
692 	 * the same @work.  E.g. consider this case:
693 	 *
694 	 *   CPU#0                         CPU#1
695 	 *   ----------------------------  --------------------------------
696 	 *
697 	 * 1  STORE event_indicated
698 	 * 2  queue_work_on() {
699 	 * 3    test_and_set_bit(PENDING)
700 	 * 4 }                             set_..._and_clear_pending() {
701 	 * 5                                 set_work_data() # clear bit
702 	 * 6                                 smp_mb()
703 	 * 7                               work->current_func() {
704 	 * 8				      LOAD event_indicated
705 	 *				   }
706 	 *
707 	 * Without an explicit full barrier speculative LOAD on line 8 can
708 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
709 	 * CPU#0 observes the PENDING bit is still set and new execution of
710 	 * a @work is not queued in a hope, that CPU#1 will eventually
711 	 * finish the queued @work.  Meanwhile CPU#1 does not see
712 	 * event_indicated is set, because speculative LOAD was executed
713 	 * before actual STORE.
714 	 */
715 	smp_mb();
716 }
717 
718 static void clear_work_data(struct work_struct *work)
719 {
720 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
721 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
722 }
723 
724 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
725 {
726 	return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
727 }
728 
729 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
730 {
731 	unsigned long data = atomic_long_read(&work->data);
732 
733 	if (data & WORK_STRUCT_PWQ)
734 		return work_struct_pwq(data);
735 	else
736 		return NULL;
737 }
738 
739 /**
740  * get_work_pool - return the worker_pool a given work was associated with
741  * @work: the work item of interest
742  *
743  * Pools are created and destroyed under wq_pool_mutex, and allows read
744  * access under RCU read lock.  As such, this function should be
745  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
746  *
747  * All fields of the returned pool are accessible as long as the above
748  * mentioned locking is in effect.  If the returned pool needs to be used
749  * beyond the critical section, the caller is responsible for ensuring the
750  * returned pool is and stays online.
751  *
752  * Return: The worker_pool @work was last associated with.  %NULL if none.
753  */
754 static struct worker_pool *get_work_pool(struct work_struct *work)
755 {
756 	unsigned long data = atomic_long_read(&work->data);
757 	int pool_id;
758 
759 	assert_rcu_or_pool_mutex();
760 
761 	if (data & WORK_STRUCT_PWQ)
762 		return work_struct_pwq(data)->pool;
763 
764 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
765 	if (pool_id == WORK_OFFQ_POOL_NONE)
766 		return NULL;
767 
768 	return idr_find(&worker_pool_idr, pool_id);
769 }
770 
771 /**
772  * get_work_pool_id - return the worker pool ID a given work is associated with
773  * @work: the work item of interest
774  *
775  * Return: The worker_pool ID @work was last associated with.
776  * %WORK_OFFQ_POOL_NONE if none.
777  */
778 static int get_work_pool_id(struct work_struct *work)
779 {
780 	unsigned long data = atomic_long_read(&work->data);
781 
782 	if (data & WORK_STRUCT_PWQ)
783 		return work_struct_pwq(data)->pool->id;
784 
785 	return data >> WORK_OFFQ_POOL_SHIFT;
786 }
787 
788 static void mark_work_canceling(struct work_struct *work)
789 {
790 	unsigned long pool_id = get_work_pool_id(work);
791 
792 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
793 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
794 }
795 
796 static bool work_is_canceling(struct work_struct *work)
797 {
798 	unsigned long data = atomic_long_read(&work->data);
799 
800 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
801 }
802 
803 /*
804  * Policy functions.  These define the policies on how the global worker
805  * pools are managed.  Unless noted otherwise, these functions assume that
806  * they're being called with pool->lock held.
807  */
808 
809 static bool __need_more_worker(struct worker_pool *pool)
810 {
811 	return !pool->nr_running;
812 }
813 
814 /*
815  * Need to wake up a worker?  Called from anything but currently
816  * running workers.
817  *
818  * Note that, because unbound workers never contribute to nr_running, this
819  * function will always return %true for unbound pools as long as the
820  * worklist isn't empty.
821  */
822 static bool need_more_worker(struct worker_pool *pool)
823 {
824 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
825 }
826 
827 /* Can I start working?  Called from busy but !running workers. */
828 static bool may_start_working(struct worker_pool *pool)
829 {
830 	return pool->nr_idle;
831 }
832 
833 /* Do I need to keep working?  Called from currently running workers. */
834 static bool keep_working(struct worker_pool *pool)
835 {
836 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
837 }
838 
839 /* Do we need a new worker?  Called from manager. */
840 static bool need_to_create_worker(struct worker_pool *pool)
841 {
842 	return need_more_worker(pool) && !may_start_working(pool);
843 }
844 
845 /* Do we have too many workers and should some go away? */
846 static bool too_many_workers(struct worker_pool *pool)
847 {
848 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
849 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
850 	int nr_busy = pool->nr_workers - nr_idle;
851 
852 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
853 }
854 
855 /**
856  * worker_set_flags - set worker flags and adjust nr_running accordingly
857  * @worker: self
858  * @flags: flags to set
859  *
860  * Set @flags in @worker->flags and adjust nr_running accordingly.
861  */
862 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
863 {
864 	struct worker_pool *pool = worker->pool;
865 
866 	lockdep_assert_held(&pool->lock);
867 
868 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
869 	if ((flags & WORKER_NOT_RUNNING) &&
870 	    !(worker->flags & WORKER_NOT_RUNNING)) {
871 		pool->nr_running--;
872 	}
873 
874 	worker->flags |= flags;
875 }
876 
877 /**
878  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
879  * @worker: self
880  * @flags: flags to clear
881  *
882  * Clear @flags in @worker->flags and adjust nr_running accordingly.
883  */
884 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
885 {
886 	struct worker_pool *pool = worker->pool;
887 	unsigned int oflags = worker->flags;
888 
889 	lockdep_assert_held(&pool->lock);
890 
891 	worker->flags &= ~flags;
892 
893 	/*
894 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
895 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
896 	 * of multiple flags, not a single flag.
897 	 */
898 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
899 		if (!(worker->flags & WORKER_NOT_RUNNING))
900 			pool->nr_running++;
901 }
902 
903 /* Return the first idle worker.  Called with pool->lock held. */
904 static struct worker *first_idle_worker(struct worker_pool *pool)
905 {
906 	if (unlikely(list_empty(&pool->idle_list)))
907 		return NULL;
908 
909 	return list_first_entry(&pool->idle_list, struct worker, entry);
910 }
911 
912 /**
913  * worker_enter_idle - enter idle state
914  * @worker: worker which is entering idle state
915  *
916  * @worker is entering idle state.  Update stats and idle timer if
917  * necessary.
918  *
919  * LOCKING:
920  * raw_spin_lock_irq(pool->lock).
921  */
922 static void worker_enter_idle(struct worker *worker)
923 {
924 	struct worker_pool *pool = worker->pool;
925 
926 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
927 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
928 			 (worker->hentry.next || worker->hentry.pprev)))
929 		return;
930 
931 	/* can't use worker_set_flags(), also called from create_worker() */
932 	worker->flags |= WORKER_IDLE;
933 	pool->nr_idle++;
934 	worker->last_active = jiffies;
935 
936 	/* idle_list is LIFO */
937 	list_add(&worker->entry, &pool->idle_list);
938 
939 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
940 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
941 
942 	/* Sanity check nr_running. */
943 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
944 }
945 
946 /**
947  * worker_leave_idle - leave idle state
948  * @worker: worker which is leaving idle state
949  *
950  * @worker is leaving idle state.  Update stats.
951  *
952  * LOCKING:
953  * raw_spin_lock_irq(pool->lock).
954  */
955 static void worker_leave_idle(struct worker *worker)
956 {
957 	struct worker_pool *pool = worker->pool;
958 
959 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
960 		return;
961 	worker_clr_flags(worker, WORKER_IDLE);
962 	pool->nr_idle--;
963 	list_del_init(&worker->entry);
964 }
965 
966 /**
967  * find_worker_executing_work - find worker which is executing a work
968  * @pool: pool of interest
969  * @work: work to find worker for
970  *
971  * Find a worker which is executing @work on @pool by searching
972  * @pool->busy_hash which is keyed by the address of @work.  For a worker
973  * to match, its current execution should match the address of @work and
974  * its work function.  This is to avoid unwanted dependency between
975  * unrelated work executions through a work item being recycled while still
976  * being executed.
977  *
978  * This is a bit tricky.  A work item may be freed once its execution
979  * starts and nothing prevents the freed area from being recycled for
980  * another work item.  If the same work item address ends up being reused
981  * before the original execution finishes, workqueue will identify the
982  * recycled work item as currently executing and make it wait until the
983  * current execution finishes, introducing an unwanted dependency.
984  *
985  * This function checks the work item address and work function to avoid
986  * false positives.  Note that this isn't complete as one may construct a
987  * work function which can introduce dependency onto itself through a
988  * recycled work item.  Well, if somebody wants to shoot oneself in the
989  * foot that badly, there's only so much we can do, and if such deadlock
990  * actually occurs, it should be easy to locate the culprit work function.
991  *
992  * CONTEXT:
993  * raw_spin_lock_irq(pool->lock).
994  *
995  * Return:
996  * Pointer to worker which is executing @work if found, %NULL
997  * otherwise.
998  */
999 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1000 						 struct work_struct *work)
1001 {
1002 	struct worker *worker;
1003 
1004 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1005 			       (unsigned long)work)
1006 		if (worker->current_work == work &&
1007 		    worker->current_func == work->func)
1008 			return worker;
1009 
1010 	return NULL;
1011 }
1012 
1013 /**
1014  * move_linked_works - move linked works to a list
1015  * @work: start of series of works to be scheduled
1016  * @head: target list to append @work to
1017  * @nextp: out parameter for nested worklist walking
1018  *
1019  * Schedule linked works starting from @work to @head.  Work series to
1020  * be scheduled starts at @work and includes any consecutive work with
1021  * WORK_STRUCT_LINKED set in its predecessor.
1022  *
1023  * If @nextp is not NULL, it's updated to point to the next work of
1024  * the last scheduled work.  This allows move_linked_works() to be
1025  * nested inside outer list_for_each_entry_safe().
1026  *
1027  * CONTEXT:
1028  * raw_spin_lock_irq(pool->lock).
1029  */
1030 static void move_linked_works(struct work_struct *work, struct list_head *head,
1031 			      struct work_struct **nextp)
1032 {
1033 	struct work_struct *n;
1034 
1035 	/*
1036 	 * Linked worklist will always end before the end of the list,
1037 	 * use NULL for list head.
1038 	 */
1039 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1040 		list_move_tail(&work->entry, head);
1041 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042 			break;
1043 	}
1044 
1045 	/*
1046 	 * If we're already inside safe list traversal and have moved
1047 	 * multiple works to the scheduled queue, the next position
1048 	 * needs to be updated.
1049 	 */
1050 	if (nextp)
1051 		*nextp = n;
1052 }
1053 
1054 /**
1055  * wake_up_worker - wake up an idle worker
1056  * @pool: worker pool to wake worker from
1057  *
1058  * Wake up the first idle worker of @pool.
1059  *
1060  * CONTEXT:
1061  * raw_spin_lock_irq(pool->lock).
1062  */
1063 static void wake_up_worker(struct worker_pool *pool)
1064 {
1065 	struct worker *worker = first_idle_worker(pool);
1066 
1067 	if (likely(worker))
1068 		wake_up_process(worker->task);
1069 }
1070 
1071 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1072 
1073 /*
1074  * Concurrency-managed per-cpu work items that hog CPU for longer than
1075  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1076  * which prevents them from stalling other concurrency-managed work items. If a
1077  * work function keeps triggering this mechanism, it's likely that the work item
1078  * should be using an unbound workqueue instead.
1079  *
1080  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1081  * and report them so that they can be examined and converted to use unbound
1082  * workqueues as appropriate. To avoid flooding the console, each violating work
1083  * function is tracked and reported with exponential backoff.
1084  */
1085 #define WCI_MAX_ENTS 128
1086 
1087 struct wci_ent {
1088 	work_func_t		func;
1089 	atomic64_t		cnt;
1090 	struct hlist_node	hash_node;
1091 };
1092 
1093 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1094 static int wci_nr_ents;
1095 static DEFINE_RAW_SPINLOCK(wci_lock);
1096 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1097 
1098 static struct wci_ent *wci_find_ent(work_func_t func)
1099 {
1100 	struct wci_ent *ent;
1101 
1102 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1103 				   (unsigned long)func) {
1104 		if (ent->func == func)
1105 			return ent;
1106 	}
1107 	return NULL;
1108 }
1109 
1110 static void wq_cpu_intensive_report(work_func_t func)
1111 {
1112 	struct wci_ent *ent;
1113 
1114 restart:
1115 	ent = wci_find_ent(func);
1116 	if (ent) {
1117 		u64 cnt;
1118 
1119 		/*
1120 		 * Start reporting from the fourth time and back off
1121 		 * exponentially.
1122 		 */
1123 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1124 		if (cnt >= 4 && is_power_of_2(cnt))
1125 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1126 					ent->func, wq_cpu_intensive_thresh_us,
1127 					atomic64_read(&ent->cnt));
1128 		return;
1129 	}
1130 
1131 	/*
1132 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1133 	 * is exhausted, something went really wrong and we probably made enough
1134 	 * noise already.
1135 	 */
1136 	if (wci_nr_ents >= WCI_MAX_ENTS)
1137 		return;
1138 
1139 	raw_spin_lock(&wci_lock);
1140 
1141 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1142 		raw_spin_unlock(&wci_lock);
1143 		return;
1144 	}
1145 
1146 	if (wci_find_ent(func)) {
1147 		raw_spin_unlock(&wci_lock);
1148 		goto restart;
1149 	}
1150 
1151 	ent = &wci_ents[wci_nr_ents++];
1152 	ent->func = func;
1153 	atomic64_set(&ent->cnt, 1);
1154 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1155 
1156 	raw_spin_unlock(&wci_lock);
1157 }
1158 
1159 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1160 static void wq_cpu_intensive_report(work_func_t func) {}
1161 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1162 
1163 /**
1164  * wq_worker_running - a worker is running again
1165  * @task: task waking up
1166  *
1167  * This function is called when a worker returns from schedule()
1168  */
1169 void wq_worker_running(struct task_struct *task)
1170 {
1171 	struct worker *worker = kthread_data(task);
1172 
1173 	if (!READ_ONCE(worker->sleeping))
1174 		return;
1175 
1176 	/*
1177 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1178 	 * and the nr_running increment below, we may ruin the nr_running reset
1179 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1180 	 * pool. Protect against such race.
1181 	 */
1182 	preempt_disable();
1183 	if (!(worker->flags & WORKER_NOT_RUNNING))
1184 		worker->pool->nr_running++;
1185 	preempt_enable();
1186 
1187 	/*
1188 	 * CPU intensive auto-detection cares about how long a work item hogged
1189 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1190 	 */
1191 	worker->current_at = worker->task->se.sum_exec_runtime;
1192 
1193 	WRITE_ONCE(worker->sleeping, 0);
1194 }
1195 
1196 /**
1197  * wq_worker_sleeping - a worker is going to sleep
1198  * @task: task going to sleep
1199  *
1200  * This function is called from schedule() when a busy worker is
1201  * going to sleep.
1202  */
1203 void wq_worker_sleeping(struct task_struct *task)
1204 {
1205 	struct worker *worker = kthread_data(task);
1206 	struct worker_pool *pool;
1207 
1208 	/*
1209 	 * Rescuers, which may not have all the fields set up like normal
1210 	 * workers, also reach here, let's not access anything before
1211 	 * checking NOT_RUNNING.
1212 	 */
1213 	if (worker->flags & WORKER_NOT_RUNNING)
1214 		return;
1215 
1216 	pool = worker->pool;
1217 
1218 	/* Return if preempted before wq_worker_running() was reached */
1219 	if (READ_ONCE(worker->sleeping))
1220 		return;
1221 
1222 	WRITE_ONCE(worker->sleeping, 1);
1223 	raw_spin_lock_irq(&pool->lock);
1224 
1225 	/*
1226 	 * Recheck in case unbind_workers() preempted us. We don't
1227 	 * want to decrement nr_running after the worker is unbound
1228 	 * and nr_running has been reset.
1229 	 */
1230 	if (worker->flags & WORKER_NOT_RUNNING) {
1231 		raw_spin_unlock_irq(&pool->lock);
1232 		return;
1233 	}
1234 
1235 	pool->nr_running--;
1236 	if (need_more_worker(pool)) {
1237 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1238 		wake_up_worker(pool);
1239 	}
1240 	raw_spin_unlock_irq(&pool->lock);
1241 }
1242 
1243 /**
1244  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1245  * @task: task currently running
1246  *
1247  * Called from scheduler_tick(). We're in the IRQ context and the current
1248  * worker's fields which follow the 'K' locking rule can be accessed safely.
1249  */
1250 void wq_worker_tick(struct task_struct *task)
1251 {
1252 	struct worker *worker = kthread_data(task);
1253 	struct pool_workqueue *pwq = worker->current_pwq;
1254 	struct worker_pool *pool = worker->pool;
1255 
1256 	if (!pwq)
1257 		return;
1258 
1259 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1260 
1261 	if (!wq_cpu_intensive_thresh_us)
1262 		return;
1263 
1264 	/*
1265 	 * If the current worker is concurrency managed and hogged the CPU for
1266 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1267 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1268 	 *
1269 	 * Set @worker->sleeping means that @worker is in the process of
1270 	 * switching out voluntarily and won't be contributing to
1271 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1272 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1273 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1274 	 * We probably want to make this prettier in the future.
1275 	 */
1276 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1277 	    worker->task->se.sum_exec_runtime - worker->current_at <
1278 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1279 		return;
1280 
1281 	raw_spin_lock(&pool->lock);
1282 
1283 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1284 	wq_cpu_intensive_report(worker->current_func);
1285 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1286 
1287 	if (need_more_worker(pool)) {
1288 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1289 		wake_up_worker(pool);
1290 	}
1291 
1292 	raw_spin_unlock(&pool->lock);
1293 }
1294 
1295 /**
1296  * wq_worker_last_func - retrieve worker's last work function
1297  * @task: Task to retrieve last work function of.
1298  *
1299  * Determine the last function a worker executed. This is called from
1300  * the scheduler to get a worker's last known identity.
1301  *
1302  * CONTEXT:
1303  * raw_spin_lock_irq(rq->lock)
1304  *
1305  * This function is called during schedule() when a kworker is going
1306  * to sleep. It's used by psi to identify aggregation workers during
1307  * dequeuing, to allow periodic aggregation to shut-off when that
1308  * worker is the last task in the system or cgroup to go to sleep.
1309  *
1310  * As this function doesn't involve any workqueue-related locking, it
1311  * only returns stable values when called from inside the scheduler's
1312  * queuing and dequeuing paths, when @task, which must be a kworker,
1313  * is guaranteed to not be processing any works.
1314  *
1315  * Return:
1316  * The last work function %current executed as a worker, NULL if it
1317  * hasn't executed any work yet.
1318  */
1319 work_func_t wq_worker_last_func(struct task_struct *task)
1320 {
1321 	struct worker *worker = kthread_data(task);
1322 
1323 	return worker->last_func;
1324 }
1325 
1326 /**
1327  * get_pwq - get an extra reference on the specified pool_workqueue
1328  * @pwq: pool_workqueue to get
1329  *
1330  * Obtain an extra reference on @pwq.  The caller should guarantee that
1331  * @pwq has positive refcnt and be holding the matching pool->lock.
1332  */
1333 static void get_pwq(struct pool_workqueue *pwq)
1334 {
1335 	lockdep_assert_held(&pwq->pool->lock);
1336 	WARN_ON_ONCE(pwq->refcnt <= 0);
1337 	pwq->refcnt++;
1338 }
1339 
1340 /**
1341  * put_pwq - put a pool_workqueue reference
1342  * @pwq: pool_workqueue to put
1343  *
1344  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1345  * destruction.  The caller should be holding the matching pool->lock.
1346  */
1347 static void put_pwq(struct pool_workqueue *pwq)
1348 {
1349 	lockdep_assert_held(&pwq->pool->lock);
1350 	if (likely(--pwq->refcnt))
1351 		return;
1352 	/*
1353 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1354 	 * kthread_worker to avoid A-A deadlocks.
1355 	 */
1356 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1357 }
1358 
1359 /**
1360  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1361  * @pwq: pool_workqueue to put (can be %NULL)
1362  *
1363  * put_pwq() with locking.  This function also allows %NULL @pwq.
1364  */
1365 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1366 {
1367 	if (pwq) {
1368 		/*
1369 		 * As both pwqs and pools are RCU protected, the
1370 		 * following lock operations are safe.
1371 		 */
1372 		raw_spin_lock_irq(&pwq->pool->lock);
1373 		put_pwq(pwq);
1374 		raw_spin_unlock_irq(&pwq->pool->lock);
1375 	}
1376 }
1377 
1378 static void pwq_activate_inactive_work(struct work_struct *work)
1379 {
1380 	struct pool_workqueue *pwq = get_work_pwq(work);
1381 
1382 	trace_workqueue_activate_work(work);
1383 	if (list_empty(&pwq->pool->worklist))
1384 		pwq->pool->watchdog_ts = jiffies;
1385 	move_linked_works(work, &pwq->pool->worklist, NULL);
1386 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1387 	pwq->nr_active++;
1388 }
1389 
1390 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1391 {
1392 	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1393 						    struct work_struct, entry);
1394 
1395 	pwq_activate_inactive_work(work);
1396 }
1397 
1398 /**
1399  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1400  * @pwq: pwq of interest
1401  * @work_data: work_data of work which left the queue
1402  *
1403  * A work either has completed or is removed from pending queue,
1404  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1405  *
1406  * CONTEXT:
1407  * raw_spin_lock_irq(pool->lock).
1408  */
1409 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1410 {
1411 	int color = get_work_color(work_data);
1412 
1413 	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1414 		pwq->nr_active--;
1415 		if (!list_empty(&pwq->inactive_works)) {
1416 			/* one down, submit an inactive one */
1417 			if (pwq->nr_active < pwq->max_active)
1418 				pwq_activate_first_inactive(pwq);
1419 		}
1420 	}
1421 
1422 	pwq->nr_in_flight[color]--;
1423 
1424 	/* is flush in progress and are we at the flushing tip? */
1425 	if (likely(pwq->flush_color != color))
1426 		goto out_put;
1427 
1428 	/* are there still in-flight works? */
1429 	if (pwq->nr_in_flight[color])
1430 		goto out_put;
1431 
1432 	/* this pwq is done, clear flush_color */
1433 	pwq->flush_color = -1;
1434 
1435 	/*
1436 	 * If this was the last pwq, wake up the first flusher.  It
1437 	 * will handle the rest.
1438 	 */
1439 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1440 		complete(&pwq->wq->first_flusher->done);
1441 out_put:
1442 	put_pwq(pwq);
1443 }
1444 
1445 /**
1446  * try_to_grab_pending - steal work item from worklist and disable irq
1447  * @work: work item to steal
1448  * @is_dwork: @work is a delayed_work
1449  * @flags: place to store irq state
1450  *
1451  * Try to grab PENDING bit of @work.  This function can handle @work in any
1452  * stable state - idle, on timer or on worklist.
1453  *
1454  * Return:
1455  *
1456  *  ========	================================================================
1457  *  1		if @work was pending and we successfully stole PENDING
1458  *  0		if @work was idle and we claimed PENDING
1459  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1460  *  -ENOENT	if someone else is canceling @work, this state may persist
1461  *		for arbitrarily long
1462  *  ========	================================================================
1463  *
1464  * Note:
1465  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1466  * interrupted while holding PENDING and @work off queue, irq must be
1467  * disabled on entry.  This, combined with delayed_work->timer being
1468  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1469  *
1470  * On successful return, >= 0, irq is disabled and the caller is
1471  * responsible for releasing it using local_irq_restore(*@flags).
1472  *
1473  * This function is safe to call from any context including IRQ handler.
1474  */
1475 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1476 			       unsigned long *flags)
1477 {
1478 	struct worker_pool *pool;
1479 	struct pool_workqueue *pwq;
1480 
1481 	local_irq_save(*flags);
1482 
1483 	/* try to steal the timer if it exists */
1484 	if (is_dwork) {
1485 		struct delayed_work *dwork = to_delayed_work(work);
1486 
1487 		/*
1488 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1489 		 * guaranteed that the timer is not queued anywhere and not
1490 		 * running on the local CPU.
1491 		 */
1492 		if (likely(del_timer(&dwork->timer)))
1493 			return 1;
1494 	}
1495 
1496 	/* try to claim PENDING the normal way */
1497 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1498 		return 0;
1499 
1500 	rcu_read_lock();
1501 	/*
1502 	 * The queueing is in progress, or it is already queued. Try to
1503 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1504 	 */
1505 	pool = get_work_pool(work);
1506 	if (!pool)
1507 		goto fail;
1508 
1509 	raw_spin_lock(&pool->lock);
1510 	/*
1511 	 * work->data is guaranteed to point to pwq only while the work
1512 	 * item is queued on pwq->wq, and both updating work->data to point
1513 	 * to pwq on queueing and to pool on dequeueing are done under
1514 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1515 	 * points to pwq which is associated with a locked pool, the work
1516 	 * item is currently queued on that pool.
1517 	 */
1518 	pwq = get_work_pwq(work);
1519 	if (pwq && pwq->pool == pool) {
1520 		debug_work_deactivate(work);
1521 
1522 		/*
1523 		 * A cancelable inactive work item must be in the
1524 		 * pwq->inactive_works since a queued barrier can't be
1525 		 * canceled (see the comments in insert_wq_barrier()).
1526 		 *
1527 		 * An inactive work item cannot be grabbed directly because
1528 		 * it might have linked barrier work items which, if left
1529 		 * on the inactive_works list, will confuse pwq->nr_active
1530 		 * management later on and cause stall.  Make sure the work
1531 		 * item is activated before grabbing.
1532 		 */
1533 		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1534 			pwq_activate_inactive_work(work);
1535 
1536 		list_del_init(&work->entry);
1537 		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1538 
1539 		/* work->data points to pwq iff queued, point to pool */
1540 		set_work_pool_and_keep_pending(work, pool->id);
1541 
1542 		raw_spin_unlock(&pool->lock);
1543 		rcu_read_unlock();
1544 		return 1;
1545 	}
1546 	raw_spin_unlock(&pool->lock);
1547 fail:
1548 	rcu_read_unlock();
1549 	local_irq_restore(*flags);
1550 	if (work_is_canceling(work))
1551 		return -ENOENT;
1552 	cpu_relax();
1553 	return -EAGAIN;
1554 }
1555 
1556 /**
1557  * insert_work - insert a work into a pool
1558  * @pwq: pwq @work belongs to
1559  * @work: work to insert
1560  * @head: insertion point
1561  * @extra_flags: extra WORK_STRUCT_* flags to set
1562  *
1563  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1564  * work_struct flags.
1565  *
1566  * CONTEXT:
1567  * raw_spin_lock_irq(pool->lock).
1568  */
1569 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1570 			struct list_head *head, unsigned int extra_flags)
1571 {
1572 	debug_work_activate(work);
1573 
1574 	/* record the work call stack in order to print it in KASAN reports */
1575 	kasan_record_aux_stack_noalloc(work);
1576 
1577 	/* we own @work, set data and link */
1578 	set_work_pwq(work, pwq, extra_flags);
1579 	list_add_tail(&work->entry, head);
1580 	get_pwq(pwq);
1581 }
1582 
1583 /*
1584  * Test whether @work is being queued from another work executing on the
1585  * same workqueue.
1586  */
1587 static bool is_chained_work(struct workqueue_struct *wq)
1588 {
1589 	struct worker *worker;
1590 
1591 	worker = current_wq_worker();
1592 	/*
1593 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1594 	 * I'm @worker, it's safe to dereference it without locking.
1595 	 */
1596 	return worker && worker->current_pwq->wq == wq;
1597 }
1598 
1599 /*
1600  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1601  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1602  * avoid perturbing sensitive tasks.
1603  */
1604 static int wq_select_unbound_cpu(int cpu)
1605 {
1606 	int new_cpu;
1607 
1608 	if (likely(!wq_debug_force_rr_cpu)) {
1609 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1610 			return cpu;
1611 	} else {
1612 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
1613 	}
1614 
1615 	if (cpumask_empty(wq_unbound_cpumask))
1616 		return cpu;
1617 
1618 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1619 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1620 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1621 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1622 		if (unlikely(new_cpu >= nr_cpu_ids))
1623 			return cpu;
1624 	}
1625 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1626 
1627 	return new_cpu;
1628 }
1629 
1630 static void __queue_work(int cpu, struct workqueue_struct *wq,
1631 			 struct work_struct *work)
1632 {
1633 	struct pool_workqueue *pwq;
1634 	struct worker_pool *last_pool, *pool;
1635 	unsigned int work_flags;
1636 	unsigned int req_cpu = cpu;
1637 
1638 	/*
1639 	 * While a work item is PENDING && off queue, a task trying to
1640 	 * steal the PENDING will busy-loop waiting for it to either get
1641 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1642 	 * happen with IRQ disabled.
1643 	 */
1644 	lockdep_assert_irqs_disabled();
1645 
1646 
1647 	/*
1648 	 * For a draining wq, only works from the same workqueue are
1649 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
1650 	 * queues a new work item to a wq after destroy_workqueue(wq).
1651 	 */
1652 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1653 		     WARN_ON_ONCE(!is_chained_work(wq))))
1654 		return;
1655 	rcu_read_lock();
1656 retry:
1657 	/* pwq which will be used unless @work is executing elsewhere */
1658 	if (req_cpu == WORK_CPU_UNBOUND) {
1659 		if (wq->flags & WQ_UNBOUND)
1660 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1661 		else
1662 			cpu = raw_smp_processor_id();
1663 	}
1664 
1665 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
1666 	pool = pwq->pool;
1667 
1668 	/*
1669 	 * If @work was previously on a different pool, it might still be
1670 	 * running there, in which case the work needs to be queued on that
1671 	 * pool to guarantee non-reentrancy.
1672 	 */
1673 	last_pool = get_work_pool(work);
1674 	if (last_pool && last_pool != pool) {
1675 		struct worker *worker;
1676 
1677 		raw_spin_lock(&last_pool->lock);
1678 
1679 		worker = find_worker_executing_work(last_pool, work);
1680 
1681 		if (worker && worker->current_pwq->wq == wq) {
1682 			pwq = worker->current_pwq;
1683 			pool = pwq->pool;
1684 			WARN_ON_ONCE(pool != last_pool);
1685 		} else {
1686 			/* meh... not running there, queue here */
1687 			raw_spin_unlock(&last_pool->lock);
1688 			raw_spin_lock(&pool->lock);
1689 		}
1690 	} else {
1691 		raw_spin_lock(&pool->lock);
1692 	}
1693 
1694 	/*
1695 	 * pwq is determined and locked. For unbound pools, we could have raced
1696 	 * with pwq release and it could already be dead. If its refcnt is zero,
1697 	 * repeat pwq selection. Note that unbound pwqs never die without
1698 	 * another pwq replacing it in cpu_pwq or while work items are executing
1699 	 * on it, so the retrying is guaranteed to make forward-progress.
1700 	 */
1701 	if (unlikely(!pwq->refcnt)) {
1702 		if (wq->flags & WQ_UNBOUND) {
1703 			raw_spin_unlock(&pool->lock);
1704 			cpu_relax();
1705 			goto retry;
1706 		}
1707 		/* oops */
1708 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1709 			  wq->name, cpu);
1710 	}
1711 
1712 	/* pwq determined, queue */
1713 	trace_workqueue_queue_work(req_cpu, pwq, work);
1714 
1715 	if (WARN_ON(!list_empty(&work->entry)))
1716 		goto out;
1717 
1718 	pwq->nr_in_flight[pwq->work_color]++;
1719 	work_flags = work_color_to_flags(pwq->work_color);
1720 
1721 	if (likely(pwq->nr_active < pwq->max_active)) {
1722 		if (list_empty(&pool->worklist))
1723 			pool->watchdog_ts = jiffies;
1724 
1725 		trace_workqueue_activate_work(work);
1726 		pwq->nr_active++;
1727 		insert_work(pwq, work, &pool->worklist, work_flags);
1728 
1729 		if (__need_more_worker(pool))
1730 			wake_up_worker(pool);
1731 	} else {
1732 		work_flags |= WORK_STRUCT_INACTIVE;
1733 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
1734 	}
1735 
1736 out:
1737 	raw_spin_unlock(&pool->lock);
1738 	rcu_read_unlock();
1739 }
1740 
1741 /**
1742  * queue_work_on - queue work on specific cpu
1743  * @cpu: CPU number to execute work on
1744  * @wq: workqueue to use
1745  * @work: work to queue
1746  *
1747  * We queue the work to a specific CPU, the caller must ensure it
1748  * can't go away.  Callers that fail to ensure that the specified
1749  * CPU cannot go away will execute on a randomly chosen CPU.
1750  * But note well that callers specifying a CPU that never has been
1751  * online will get a splat.
1752  *
1753  * Return: %false if @work was already on a queue, %true otherwise.
1754  */
1755 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1756 		   struct work_struct *work)
1757 {
1758 	bool ret = false;
1759 	unsigned long flags;
1760 
1761 	local_irq_save(flags);
1762 
1763 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1764 		__queue_work(cpu, wq, work);
1765 		ret = true;
1766 	}
1767 
1768 	local_irq_restore(flags);
1769 	return ret;
1770 }
1771 EXPORT_SYMBOL(queue_work_on);
1772 
1773 /**
1774  * select_numa_node_cpu - Select a CPU based on NUMA node
1775  * @node: NUMA node ID that we want to select a CPU from
1776  *
1777  * This function will attempt to find a "random" cpu available on a given
1778  * node. If there are no CPUs available on the given node it will return
1779  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1780  * available CPU if we need to schedule this work.
1781  */
1782 static int select_numa_node_cpu(int node)
1783 {
1784 	int cpu;
1785 
1786 	/* Delay binding to CPU if node is not valid or online */
1787 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1788 		return WORK_CPU_UNBOUND;
1789 
1790 	/* Use local node/cpu if we are already there */
1791 	cpu = raw_smp_processor_id();
1792 	if (node == cpu_to_node(cpu))
1793 		return cpu;
1794 
1795 	/* Use "random" otherwise know as "first" online CPU of node */
1796 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1797 
1798 	/* If CPU is valid return that, otherwise just defer */
1799 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1800 }
1801 
1802 /**
1803  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1804  * @node: NUMA node that we are targeting the work for
1805  * @wq: workqueue to use
1806  * @work: work to queue
1807  *
1808  * We queue the work to a "random" CPU within a given NUMA node. The basic
1809  * idea here is to provide a way to somehow associate work with a given
1810  * NUMA node.
1811  *
1812  * This function will only make a best effort attempt at getting this onto
1813  * the right NUMA node. If no node is requested or the requested node is
1814  * offline then we just fall back to standard queue_work behavior.
1815  *
1816  * Currently the "random" CPU ends up being the first available CPU in the
1817  * intersection of cpu_online_mask and the cpumask of the node, unless we
1818  * are running on the node. In that case we just use the current CPU.
1819  *
1820  * Return: %false if @work was already on a queue, %true otherwise.
1821  */
1822 bool queue_work_node(int node, struct workqueue_struct *wq,
1823 		     struct work_struct *work)
1824 {
1825 	unsigned long flags;
1826 	bool ret = false;
1827 
1828 	/*
1829 	 * This current implementation is specific to unbound workqueues.
1830 	 * Specifically we only return the first available CPU for a given
1831 	 * node instead of cycling through individual CPUs within the node.
1832 	 *
1833 	 * If this is used with a per-cpu workqueue then the logic in
1834 	 * workqueue_select_cpu_near would need to be updated to allow for
1835 	 * some round robin type logic.
1836 	 */
1837 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1838 
1839 	local_irq_save(flags);
1840 
1841 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1842 		int cpu = select_numa_node_cpu(node);
1843 
1844 		__queue_work(cpu, wq, work);
1845 		ret = true;
1846 	}
1847 
1848 	local_irq_restore(flags);
1849 	return ret;
1850 }
1851 EXPORT_SYMBOL_GPL(queue_work_node);
1852 
1853 void delayed_work_timer_fn(struct timer_list *t)
1854 {
1855 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1856 
1857 	/* should have been called from irqsafe timer with irq already off */
1858 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1859 }
1860 EXPORT_SYMBOL(delayed_work_timer_fn);
1861 
1862 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1863 				struct delayed_work *dwork, unsigned long delay)
1864 {
1865 	struct timer_list *timer = &dwork->timer;
1866 	struct work_struct *work = &dwork->work;
1867 
1868 	WARN_ON_ONCE(!wq);
1869 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1870 	WARN_ON_ONCE(timer_pending(timer));
1871 	WARN_ON_ONCE(!list_empty(&work->entry));
1872 
1873 	/*
1874 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1875 	 * both optimization and correctness.  The earliest @timer can
1876 	 * expire is on the closest next tick and delayed_work users depend
1877 	 * on that there's no such delay when @delay is 0.
1878 	 */
1879 	if (!delay) {
1880 		__queue_work(cpu, wq, &dwork->work);
1881 		return;
1882 	}
1883 
1884 	dwork->wq = wq;
1885 	dwork->cpu = cpu;
1886 	timer->expires = jiffies + delay;
1887 
1888 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1889 		add_timer_on(timer, cpu);
1890 	else
1891 		add_timer(timer);
1892 }
1893 
1894 /**
1895  * queue_delayed_work_on - queue work on specific CPU after delay
1896  * @cpu: CPU number to execute work on
1897  * @wq: workqueue to use
1898  * @dwork: work to queue
1899  * @delay: number of jiffies to wait before queueing
1900  *
1901  * Return: %false if @work was already on a queue, %true otherwise.  If
1902  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1903  * execution.
1904  */
1905 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1906 			   struct delayed_work *dwork, unsigned long delay)
1907 {
1908 	struct work_struct *work = &dwork->work;
1909 	bool ret = false;
1910 	unsigned long flags;
1911 
1912 	/* read the comment in __queue_work() */
1913 	local_irq_save(flags);
1914 
1915 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1916 		__queue_delayed_work(cpu, wq, dwork, delay);
1917 		ret = true;
1918 	}
1919 
1920 	local_irq_restore(flags);
1921 	return ret;
1922 }
1923 EXPORT_SYMBOL(queue_delayed_work_on);
1924 
1925 /**
1926  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1927  * @cpu: CPU number to execute work on
1928  * @wq: workqueue to use
1929  * @dwork: work to queue
1930  * @delay: number of jiffies to wait before queueing
1931  *
1932  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1933  * modify @dwork's timer so that it expires after @delay.  If @delay is
1934  * zero, @work is guaranteed to be scheduled immediately regardless of its
1935  * current state.
1936  *
1937  * Return: %false if @dwork was idle and queued, %true if @dwork was
1938  * pending and its timer was modified.
1939  *
1940  * This function is safe to call from any context including IRQ handler.
1941  * See try_to_grab_pending() for details.
1942  */
1943 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1944 			 struct delayed_work *dwork, unsigned long delay)
1945 {
1946 	unsigned long flags;
1947 	int ret;
1948 
1949 	do {
1950 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1951 	} while (unlikely(ret == -EAGAIN));
1952 
1953 	if (likely(ret >= 0)) {
1954 		__queue_delayed_work(cpu, wq, dwork, delay);
1955 		local_irq_restore(flags);
1956 	}
1957 
1958 	/* -ENOENT from try_to_grab_pending() becomes %true */
1959 	return ret;
1960 }
1961 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1962 
1963 static void rcu_work_rcufn(struct rcu_head *rcu)
1964 {
1965 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1966 
1967 	/* read the comment in __queue_work() */
1968 	local_irq_disable();
1969 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1970 	local_irq_enable();
1971 }
1972 
1973 /**
1974  * queue_rcu_work - queue work after a RCU grace period
1975  * @wq: workqueue to use
1976  * @rwork: work to queue
1977  *
1978  * Return: %false if @rwork was already pending, %true otherwise.  Note
1979  * that a full RCU grace period is guaranteed only after a %true return.
1980  * While @rwork is guaranteed to be executed after a %false return, the
1981  * execution may happen before a full RCU grace period has passed.
1982  */
1983 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1984 {
1985 	struct work_struct *work = &rwork->work;
1986 
1987 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1988 		rwork->wq = wq;
1989 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
1990 		return true;
1991 	}
1992 
1993 	return false;
1994 }
1995 EXPORT_SYMBOL(queue_rcu_work);
1996 
1997 static struct worker *alloc_worker(int node)
1998 {
1999 	struct worker *worker;
2000 
2001 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2002 	if (worker) {
2003 		INIT_LIST_HEAD(&worker->entry);
2004 		INIT_LIST_HEAD(&worker->scheduled);
2005 		INIT_LIST_HEAD(&worker->node);
2006 		/* on creation a worker is in !idle && prep state */
2007 		worker->flags = WORKER_PREP;
2008 	}
2009 	return worker;
2010 }
2011 
2012 /**
2013  * worker_attach_to_pool() - attach a worker to a pool
2014  * @worker: worker to be attached
2015  * @pool: the target pool
2016  *
2017  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2018  * cpu-binding of @worker are kept coordinated with the pool across
2019  * cpu-[un]hotplugs.
2020  */
2021 static void worker_attach_to_pool(struct worker *worker,
2022 				   struct worker_pool *pool)
2023 {
2024 	mutex_lock(&wq_pool_attach_mutex);
2025 
2026 	/*
2027 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
2028 	 * stable across this function.  See the comments above the flag
2029 	 * definition for details.
2030 	 */
2031 	if (pool->flags & POOL_DISASSOCIATED)
2032 		worker->flags |= WORKER_UNBOUND;
2033 	else
2034 		kthread_set_per_cpu(worker->task, pool->cpu);
2035 
2036 	if (worker->rescue_wq)
2037 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
2038 
2039 	list_add_tail(&worker->node, &pool->workers);
2040 	worker->pool = pool;
2041 
2042 	mutex_unlock(&wq_pool_attach_mutex);
2043 }
2044 
2045 /**
2046  * worker_detach_from_pool() - detach a worker from its pool
2047  * @worker: worker which is attached to its pool
2048  *
2049  * Undo the attaching which had been done in worker_attach_to_pool().  The
2050  * caller worker shouldn't access to the pool after detached except it has
2051  * other reference to the pool.
2052  */
2053 static void worker_detach_from_pool(struct worker *worker)
2054 {
2055 	struct worker_pool *pool = worker->pool;
2056 	struct completion *detach_completion = NULL;
2057 
2058 	mutex_lock(&wq_pool_attach_mutex);
2059 
2060 	kthread_set_per_cpu(worker->task, -1);
2061 	list_del(&worker->node);
2062 	worker->pool = NULL;
2063 
2064 	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2065 		detach_completion = pool->detach_completion;
2066 	mutex_unlock(&wq_pool_attach_mutex);
2067 
2068 	/* clear leftover flags without pool->lock after it is detached */
2069 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2070 
2071 	if (detach_completion)
2072 		complete(detach_completion);
2073 }
2074 
2075 /**
2076  * create_worker - create a new workqueue worker
2077  * @pool: pool the new worker will belong to
2078  *
2079  * Create and start a new worker which is attached to @pool.
2080  *
2081  * CONTEXT:
2082  * Might sleep.  Does GFP_KERNEL allocations.
2083  *
2084  * Return:
2085  * Pointer to the newly created worker.
2086  */
2087 static struct worker *create_worker(struct worker_pool *pool)
2088 {
2089 	struct worker *worker;
2090 	int id;
2091 	char id_buf[16];
2092 
2093 	/* ID is needed to determine kthread name */
2094 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2095 	if (id < 0) {
2096 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2097 			    ERR_PTR(id));
2098 		return NULL;
2099 	}
2100 
2101 	worker = alloc_worker(pool->node);
2102 	if (!worker) {
2103 		pr_err_once("workqueue: Failed to allocate a worker\n");
2104 		goto fail;
2105 	}
2106 
2107 	worker->id = id;
2108 
2109 	if (pool->cpu >= 0)
2110 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2111 			 pool->attrs->nice < 0  ? "H" : "");
2112 	else
2113 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2114 
2115 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
2116 					      "kworker/%s", id_buf);
2117 	if (IS_ERR(worker->task)) {
2118 		if (PTR_ERR(worker->task) == -EINTR) {
2119 			pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2120 			       id_buf);
2121 		} else {
2122 			pr_err_once("workqueue: Failed to create a worker thread: %pe",
2123 				    worker->task);
2124 		}
2125 		goto fail;
2126 	}
2127 
2128 	set_user_nice(worker->task, pool->attrs->nice);
2129 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
2130 
2131 	/* successful, attach the worker to the pool */
2132 	worker_attach_to_pool(worker, pool);
2133 
2134 	/* start the newly created worker */
2135 	raw_spin_lock_irq(&pool->lock);
2136 	worker->pool->nr_workers++;
2137 	worker_enter_idle(worker);
2138 	wake_up_process(worker->task);
2139 	raw_spin_unlock_irq(&pool->lock);
2140 
2141 	return worker;
2142 
2143 fail:
2144 	ida_free(&pool->worker_ida, id);
2145 	kfree(worker);
2146 	return NULL;
2147 }
2148 
2149 static void unbind_worker(struct worker *worker)
2150 {
2151 	lockdep_assert_held(&wq_pool_attach_mutex);
2152 
2153 	kthread_set_per_cpu(worker->task, -1);
2154 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2155 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2156 	else
2157 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2158 }
2159 
2160 static void wake_dying_workers(struct list_head *cull_list)
2161 {
2162 	struct worker *worker, *tmp;
2163 
2164 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2165 		list_del_init(&worker->entry);
2166 		unbind_worker(worker);
2167 		/*
2168 		 * If the worker was somehow already running, then it had to be
2169 		 * in pool->idle_list when set_worker_dying() happened or we
2170 		 * wouldn't have gotten here.
2171 		 *
2172 		 * Thus, the worker must either have observed the WORKER_DIE
2173 		 * flag, or have set its state to TASK_IDLE. Either way, the
2174 		 * below will be observed by the worker and is safe to do
2175 		 * outside of pool->lock.
2176 		 */
2177 		wake_up_process(worker->task);
2178 	}
2179 }
2180 
2181 /**
2182  * set_worker_dying - Tag a worker for destruction
2183  * @worker: worker to be destroyed
2184  * @list: transfer worker away from its pool->idle_list and into list
2185  *
2186  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2187  * should be idle.
2188  *
2189  * CONTEXT:
2190  * raw_spin_lock_irq(pool->lock).
2191  */
2192 static void set_worker_dying(struct worker *worker, struct list_head *list)
2193 {
2194 	struct worker_pool *pool = worker->pool;
2195 
2196 	lockdep_assert_held(&pool->lock);
2197 	lockdep_assert_held(&wq_pool_attach_mutex);
2198 
2199 	/* sanity check frenzy */
2200 	if (WARN_ON(worker->current_work) ||
2201 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2202 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2203 		return;
2204 
2205 	pool->nr_workers--;
2206 	pool->nr_idle--;
2207 
2208 	worker->flags |= WORKER_DIE;
2209 
2210 	list_move(&worker->entry, list);
2211 	list_move(&worker->node, &pool->dying_workers);
2212 }
2213 
2214 /**
2215  * idle_worker_timeout - check if some idle workers can now be deleted.
2216  * @t: The pool's idle_timer that just expired
2217  *
2218  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2219  * worker_leave_idle(), as a worker flicking between idle and active while its
2220  * pool is at the too_many_workers() tipping point would cause too much timer
2221  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2222  * it expire and re-evaluate things from there.
2223  */
2224 static void idle_worker_timeout(struct timer_list *t)
2225 {
2226 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2227 	bool do_cull = false;
2228 
2229 	if (work_pending(&pool->idle_cull_work))
2230 		return;
2231 
2232 	raw_spin_lock_irq(&pool->lock);
2233 
2234 	if (too_many_workers(pool)) {
2235 		struct worker *worker;
2236 		unsigned long expires;
2237 
2238 		/* idle_list is kept in LIFO order, check the last one */
2239 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2240 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2241 		do_cull = !time_before(jiffies, expires);
2242 
2243 		if (!do_cull)
2244 			mod_timer(&pool->idle_timer, expires);
2245 	}
2246 	raw_spin_unlock_irq(&pool->lock);
2247 
2248 	if (do_cull)
2249 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2250 }
2251 
2252 /**
2253  * idle_cull_fn - cull workers that have been idle for too long.
2254  * @work: the pool's work for handling these idle workers
2255  *
2256  * This goes through a pool's idle workers and gets rid of those that have been
2257  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2258  *
2259  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2260  * culled, so this also resets worker affinity. This requires a sleepable
2261  * context, hence the split between timer callback and work item.
2262  */
2263 static void idle_cull_fn(struct work_struct *work)
2264 {
2265 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2266 	LIST_HEAD(cull_list);
2267 
2268 	/*
2269 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2270 	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2271 	 * path. This is required as a previously-preempted worker could run after
2272 	 * set_worker_dying() has happened but before wake_dying_workers() did.
2273 	 */
2274 	mutex_lock(&wq_pool_attach_mutex);
2275 	raw_spin_lock_irq(&pool->lock);
2276 
2277 	while (too_many_workers(pool)) {
2278 		struct worker *worker;
2279 		unsigned long expires;
2280 
2281 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2282 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2283 
2284 		if (time_before(jiffies, expires)) {
2285 			mod_timer(&pool->idle_timer, expires);
2286 			break;
2287 		}
2288 
2289 		set_worker_dying(worker, &cull_list);
2290 	}
2291 
2292 	raw_spin_unlock_irq(&pool->lock);
2293 	wake_dying_workers(&cull_list);
2294 	mutex_unlock(&wq_pool_attach_mutex);
2295 }
2296 
2297 static void send_mayday(struct work_struct *work)
2298 {
2299 	struct pool_workqueue *pwq = get_work_pwq(work);
2300 	struct workqueue_struct *wq = pwq->wq;
2301 
2302 	lockdep_assert_held(&wq_mayday_lock);
2303 
2304 	if (!wq->rescuer)
2305 		return;
2306 
2307 	/* mayday mayday mayday */
2308 	if (list_empty(&pwq->mayday_node)) {
2309 		/*
2310 		 * If @pwq is for an unbound wq, its base ref may be put at
2311 		 * any time due to an attribute change.  Pin @pwq until the
2312 		 * rescuer is done with it.
2313 		 */
2314 		get_pwq(pwq);
2315 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2316 		wake_up_process(wq->rescuer->task);
2317 		pwq->stats[PWQ_STAT_MAYDAY]++;
2318 	}
2319 }
2320 
2321 static void pool_mayday_timeout(struct timer_list *t)
2322 {
2323 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2324 	struct work_struct *work;
2325 
2326 	raw_spin_lock_irq(&pool->lock);
2327 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2328 
2329 	if (need_to_create_worker(pool)) {
2330 		/*
2331 		 * We've been trying to create a new worker but
2332 		 * haven't been successful.  We might be hitting an
2333 		 * allocation deadlock.  Send distress signals to
2334 		 * rescuers.
2335 		 */
2336 		list_for_each_entry(work, &pool->worklist, entry)
2337 			send_mayday(work);
2338 	}
2339 
2340 	raw_spin_unlock(&wq_mayday_lock);
2341 	raw_spin_unlock_irq(&pool->lock);
2342 
2343 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2344 }
2345 
2346 /**
2347  * maybe_create_worker - create a new worker if necessary
2348  * @pool: pool to create a new worker for
2349  *
2350  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2351  * have at least one idle worker on return from this function.  If
2352  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2353  * sent to all rescuers with works scheduled on @pool to resolve
2354  * possible allocation deadlock.
2355  *
2356  * On return, need_to_create_worker() is guaranteed to be %false and
2357  * may_start_working() %true.
2358  *
2359  * LOCKING:
2360  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2361  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2362  * manager.
2363  */
2364 static void maybe_create_worker(struct worker_pool *pool)
2365 __releases(&pool->lock)
2366 __acquires(&pool->lock)
2367 {
2368 restart:
2369 	raw_spin_unlock_irq(&pool->lock);
2370 
2371 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2372 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2373 
2374 	while (true) {
2375 		if (create_worker(pool) || !need_to_create_worker(pool))
2376 			break;
2377 
2378 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2379 
2380 		if (!need_to_create_worker(pool))
2381 			break;
2382 	}
2383 
2384 	del_timer_sync(&pool->mayday_timer);
2385 	raw_spin_lock_irq(&pool->lock);
2386 	/*
2387 	 * This is necessary even after a new worker was just successfully
2388 	 * created as @pool->lock was dropped and the new worker might have
2389 	 * already become busy.
2390 	 */
2391 	if (need_to_create_worker(pool))
2392 		goto restart;
2393 }
2394 
2395 /**
2396  * manage_workers - manage worker pool
2397  * @worker: self
2398  *
2399  * Assume the manager role and manage the worker pool @worker belongs
2400  * to.  At any given time, there can be only zero or one manager per
2401  * pool.  The exclusion is handled automatically by this function.
2402  *
2403  * The caller can safely start processing works on false return.  On
2404  * true return, it's guaranteed that need_to_create_worker() is false
2405  * and may_start_working() is true.
2406  *
2407  * CONTEXT:
2408  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2409  * multiple times.  Does GFP_KERNEL allocations.
2410  *
2411  * Return:
2412  * %false if the pool doesn't need management and the caller can safely
2413  * start processing works, %true if management function was performed and
2414  * the conditions that the caller verified before calling the function may
2415  * no longer be true.
2416  */
2417 static bool manage_workers(struct worker *worker)
2418 {
2419 	struct worker_pool *pool = worker->pool;
2420 
2421 	if (pool->flags & POOL_MANAGER_ACTIVE)
2422 		return false;
2423 
2424 	pool->flags |= POOL_MANAGER_ACTIVE;
2425 	pool->manager = worker;
2426 
2427 	maybe_create_worker(pool);
2428 
2429 	pool->manager = NULL;
2430 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2431 	rcuwait_wake_up(&manager_wait);
2432 	return true;
2433 }
2434 
2435 /**
2436  * process_one_work - process single work
2437  * @worker: self
2438  * @work: work to process
2439  *
2440  * Process @work.  This function contains all the logics necessary to
2441  * process a single work including synchronization against and
2442  * interaction with other workers on the same cpu, queueing and
2443  * flushing.  As long as context requirement is met, any worker can
2444  * call this function to process a work.
2445  *
2446  * CONTEXT:
2447  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2448  */
2449 static void process_one_work(struct worker *worker, struct work_struct *work)
2450 __releases(&pool->lock)
2451 __acquires(&pool->lock)
2452 {
2453 	struct pool_workqueue *pwq = get_work_pwq(work);
2454 	struct worker_pool *pool = worker->pool;
2455 	unsigned long work_data;
2456 	struct worker *collision;
2457 #ifdef CONFIG_LOCKDEP
2458 	/*
2459 	 * It is permissible to free the struct work_struct from
2460 	 * inside the function that is called from it, this we need to
2461 	 * take into account for lockdep too.  To avoid bogus "held
2462 	 * lock freed" warnings as well as problems when looking into
2463 	 * work->lockdep_map, make a copy and use that here.
2464 	 */
2465 	struct lockdep_map lockdep_map;
2466 
2467 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2468 #endif
2469 	/* ensure we're on the correct CPU */
2470 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2471 		     raw_smp_processor_id() != pool->cpu);
2472 
2473 	/*
2474 	 * A single work shouldn't be executed concurrently by
2475 	 * multiple workers on a single cpu.  Check whether anyone is
2476 	 * already processing the work.  If so, defer the work to the
2477 	 * currently executing one.
2478 	 */
2479 	collision = find_worker_executing_work(pool, work);
2480 	if (unlikely(collision)) {
2481 		move_linked_works(work, &collision->scheduled, NULL);
2482 		return;
2483 	}
2484 
2485 	/* claim and dequeue */
2486 	debug_work_deactivate(work);
2487 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2488 	worker->current_work = work;
2489 	worker->current_func = work->func;
2490 	worker->current_pwq = pwq;
2491 	worker->current_at = worker->task->se.sum_exec_runtime;
2492 	work_data = *work_data_bits(work);
2493 	worker->current_color = get_work_color(work_data);
2494 
2495 	/*
2496 	 * Record wq name for cmdline and debug reporting, may get
2497 	 * overridden through set_worker_desc().
2498 	 */
2499 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2500 
2501 	list_del_init(&work->entry);
2502 
2503 	/*
2504 	 * CPU intensive works don't participate in concurrency management.
2505 	 * They're the scheduler's responsibility.  This takes @worker out
2506 	 * of concurrency management and the next code block will chain
2507 	 * execution of the pending work items.
2508 	 */
2509 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
2510 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2511 
2512 	/*
2513 	 * Wake up another worker if necessary.  The condition is always
2514 	 * false for normal per-cpu workers since nr_running would always
2515 	 * be >= 1 at this point.  This is used to chain execution of the
2516 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2517 	 * UNBOUND and CPU_INTENSIVE ones.
2518 	 */
2519 	if (need_more_worker(pool))
2520 		wake_up_worker(pool);
2521 
2522 	/*
2523 	 * Record the last pool and clear PENDING which should be the last
2524 	 * update to @work.  Also, do this inside @pool->lock so that
2525 	 * PENDING and queued state changes happen together while IRQ is
2526 	 * disabled.
2527 	 */
2528 	set_work_pool_and_clear_pending(work, pool->id);
2529 
2530 	raw_spin_unlock_irq(&pool->lock);
2531 
2532 	lock_map_acquire(&pwq->wq->lockdep_map);
2533 	lock_map_acquire(&lockdep_map);
2534 	/*
2535 	 * Strictly speaking we should mark the invariant state without holding
2536 	 * any locks, that is, before these two lock_map_acquire()'s.
2537 	 *
2538 	 * However, that would result in:
2539 	 *
2540 	 *   A(W1)
2541 	 *   WFC(C)
2542 	 *		A(W1)
2543 	 *		C(C)
2544 	 *
2545 	 * Which would create W1->C->W1 dependencies, even though there is no
2546 	 * actual deadlock possible. There are two solutions, using a
2547 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2548 	 * hit the lockdep limitation on recursive locks, or simply discard
2549 	 * these locks.
2550 	 *
2551 	 * AFAICT there is no possible deadlock scenario between the
2552 	 * flush_work() and complete() primitives (except for single-threaded
2553 	 * workqueues), so hiding them isn't a problem.
2554 	 */
2555 	lockdep_invariant_state(true);
2556 	pwq->stats[PWQ_STAT_STARTED]++;
2557 	trace_workqueue_execute_start(work);
2558 	worker->current_func(work);
2559 	/*
2560 	 * While we must be careful to not use "work" after this, the trace
2561 	 * point will only record its address.
2562 	 */
2563 	trace_workqueue_execute_end(work, worker->current_func);
2564 	pwq->stats[PWQ_STAT_COMPLETED]++;
2565 	lock_map_release(&lockdep_map);
2566 	lock_map_release(&pwq->wq->lockdep_map);
2567 
2568 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2569 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2570 		       "     last function: %ps\n",
2571 		       current->comm, preempt_count(), task_pid_nr(current),
2572 		       worker->current_func);
2573 		debug_show_held_locks(current);
2574 		dump_stack();
2575 	}
2576 
2577 	/*
2578 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2579 	 * kernels, where a requeueing work item waiting for something to
2580 	 * happen could deadlock with stop_machine as such work item could
2581 	 * indefinitely requeue itself while all other CPUs are trapped in
2582 	 * stop_machine. At the same time, report a quiescent RCU state so
2583 	 * the same condition doesn't freeze RCU.
2584 	 */
2585 	cond_resched();
2586 
2587 	raw_spin_lock_irq(&pool->lock);
2588 
2589 	/*
2590 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
2591 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
2592 	 * wq_cpu_intensive_thresh_us. Clear it.
2593 	 */
2594 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2595 
2596 	/* tag the worker for identification in schedule() */
2597 	worker->last_func = worker->current_func;
2598 
2599 	/* we're done with it, release */
2600 	hash_del(&worker->hentry);
2601 	worker->current_work = NULL;
2602 	worker->current_func = NULL;
2603 	worker->current_pwq = NULL;
2604 	worker->current_color = INT_MAX;
2605 	pwq_dec_nr_in_flight(pwq, work_data);
2606 }
2607 
2608 /**
2609  * process_scheduled_works - process scheduled works
2610  * @worker: self
2611  *
2612  * Process all scheduled works.  Please note that the scheduled list
2613  * may change while processing a work, so this function repeatedly
2614  * fetches a work from the top and executes it.
2615  *
2616  * CONTEXT:
2617  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2618  * multiple times.
2619  */
2620 static void process_scheduled_works(struct worker *worker)
2621 {
2622 	struct work_struct *work;
2623 	bool first = true;
2624 
2625 	while ((work = list_first_entry_or_null(&worker->scheduled,
2626 						struct work_struct, entry))) {
2627 		if (first) {
2628 			worker->pool->watchdog_ts = jiffies;
2629 			first = false;
2630 		}
2631 		process_one_work(worker, work);
2632 	}
2633 }
2634 
2635 static void set_pf_worker(bool val)
2636 {
2637 	mutex_lock(&wq_pool_attach_mutex);
2638 	if (val)
2639 		current->flags |= PF_WQ_WORKER;
2640 	else
2641 		current->flags &= ~PF_WQ_WORKER;
2642 	mutex_unlock(&wq_pool_attach_mutex);
2643 }
2644 
2645 /**
2646  * worker_thread - the worker thread function
2647  * @__worker: self
2648  *
2649  * The worker thread function.  All workers belong to a worker_pool -
2650  * either a per-cpu one or dynamic unbound one.  These workers process all
2651  * work items regardless of their specific target workqueue.  The only
2652  * exception is work items which belong to workqueues with a rescuer which
2653  * will be explained in rescuer_thread().
2654  *
2655  * Return: 0
2656  */
2657 static int worker_thread(void *__worker)
2658 {
2659 	struct worker *worker = __worker;
2660 	struct worker_pool *pool = worker->pool;
2661 
2662 	/* tell the scheduler that this is a workqueue worker */
2663 	set_pf_worker(true);
2664 woke_up:
2665 	raw_spin_lock_irq(&pool->lock);
2666 
2667 	/* am I supposed to die? */
2668 	if (unlikely(worker->flags & WORKER_DIE)) {
2669 		raw_spin_unlock_irq(&pool->lock);
2670 		set_pf_worker(false);
2671 
2672 		set_task_comm(worker->task, "kworker/dying");
2673 		ida_free(&pool->worker_ida, worker->id);
2674 		worker_detach_from_pool(worker);
2675 		WARN_ON_ONCE(!list_empty(&worker->entry));
2676 		kfree(worker);
2677 		return 0;
2678 	}
2679 
2680 	worker_leave_idle(worker);
2681 recheck:
2682 	/* no more worker necessary? */
2683 	if (!need_more_worker(pool))
2684 		goto sleep;
2685 
2686 	/* do we need to manage? */
2687 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2688 		goto recheck;
2689 
2690 	/*
2691 	 * ->scheduled list can only be filled while a worker is
2692 	 * preparing to process a work or actually processing it.
2693 	 * Make sure nobody diddled with it while I was sleeping.
2694 	 */
2695 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2696 
2697 	/*
2698 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2699 	 * worker or that someone else has already assumed the manager
2700 	 * role.  This is where @worker starts participating in concurrency
2701 	 * management if applicable and concurrency management is restored
2702 	 * after being rebound.  See rebind_workers() for details.
2703 	 */
2704 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2705 
2706 	do {
2707 		struct work_struct *work =
2708 			list_first_entry(&pool->worklist,
2709 					 struct work_struct, entry);
2710 
2711 		move_linked_works(work, &worker->scheduled, NULL);
2712 		process_scheduled_works(worker);
2713 	} while (keep_working(pool));
2714 
2715 	worker_set_flags(worker, WORKER_PREP);
2716 sleep:
2717 	/*
2718 	 * pool->lock is held and there's no work to process and no need to
2719 	 * manage, sleep.  Workers are woken up only while holding
2720 	 * pool->lock or from local cpu, so setting the current state
2721 	 * before releasing pool->lock is enough to prevent losing any
2722 	 * event.
2723 	 */
2724 	worker_enter_idle(worker);
2725 	__set_current_state(TASK_IDLE);
2726 	raw_spin_unlock_irq(&pool->lock);
2727 	schedule();
2728 	goto woke_up;
2729 }
2730 
2731 /**
2732  * rescuer_thread - the rescuer thread function
2733  * @__rescuer: self
2734  *
2735  * Workqueue rescuer thread function.  There's one rescuer for each
2736  * workqueue which has WQ_MEM_RECLAIM set.
2737  *
2738  * Regular work processing on a pool may block trying to create a new
2739  * worker which uses GFP_KERNEL allocation which has slight chance of
2740  * developing into deadlock if some works currently on the same queue
2741  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2742  * the problem rescuer solves.
2743  *
2744  * When such condition is possible, the pool summons rescuers of all
2745  * workqueues which have works queued on the pool and let them process
2746  * those works so that forward progress can be guaranteed.
2747  *
2748  * This should happen rarely.
2749  *
2750  * Return: 0
2751  */
2752 static int rescuer_thread(void *__rescuer)
2753 {
2754 	struct worker *rescuer = __rescuer;
2755 	struct workqueue_struct *wq = rescuer->rescue_wq;
2756 	struct list_head *scheduled = &rescuer->scheduled;
2757 	bool should_stop;
2758 
2759 	set_user_nice(current, RESCUER_NICE_LEVEL);
2760 
2761 	/*
2762 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2763 	 * doesn't participate in concurrency management.
2764 	 */
2765 	set_pf_worker(true);
2766 repeat:
2767 	set_current_state(TASK_IDLE);
2768 
2769 	/*
2770 	 * By the time the rescuer is requested to stop, the workqueue
2771 	 * shouldn't have any work pending, but @wq->maydays may still have
2772 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2773 	 * all the work items before the rescuer got to them.  Go through
2774 	 * @wq->maydays processing before acting on should_stop so that the
2775 	 * list is always empty on exit.
2776 	 */
2777 	should_stop = kthread_should_stop();
2778 
2779 	/* see whether any pwq is asking for help */
2780 	raw_spin_lock_irq(&wq_mayday_lock);
2781 
2782 	while (!list_empty(&wq->maydays)) {
2783 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2784 					struct pool_workqueue, mayday_node);
2785 		struct worker_pool *pool = pwq->pool;
2786 		struct work_struct *work, *n;
2787 
2788 		__set_current_state(TASK_RUNNING);
2789 		list_del_init(&pwq->mayday_node);
2790 
2791 		raw_spin_unlock_irq(&wq_mayday_lock);
2792 
2793 		worker_attach_to_pool(rescuer, pool);
2794 
2795 		raw_spin_lock_irq(&pool->lock);
2796 
2797 		/*
2798 		 * Slurp in all works issued via this workqueue and
2799 		 * process'em.
2800 		 */
2801 		WARN_ON_ONCE(!list_empty(scheduled));
2802 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2803 			if (get_work_pwq(work) == pwq) {
2804 				move_linked_works(work, scheduled, &n);
2805 				pwq->stats[PWQ_STAT_RESCUED]++;
2806 			}
2807 		}
2808 
2809 		if (!list_empty(scheduled)) {
2810 			process_scheduled_works(rescuer);
2811 
2812 			/*
2813 			 * The above execution of rescued work items could
2814 			 * have created more to rescue through
2815 			 * pwq_activate_first_inactive() or chained
2816 			 * queueing.  Let's put @pwq back on mayday list so
2817 			 * that such back-to-back work items, which may be
2818 			 * being used to relieve memory pressure, don't
2819 			 * incur MAYDAY_INTERVAL delay inbetween.
2820 			 */
2821 			if (pwq->nr_active && need_to_create_worker(pool)) {
2822 				raw_spin_lock(&wq_mayday_lock);
2823 				/*
2824 				 * Queue iff we aren't racing destruction
2825 				 * and somebody else hasn't queued it already.
2826 				 */
2827 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2828 					get_pwq(pwq);
2829 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2830 				}
2831 				raw_spin_unlock(&wq_mayday_lock);
2832 			}
2833 		}
2834 
2835 		/*
2836 		 * Put the reference grabbed by send_mayday().  @pool won't
2837 		 * go away while we're still attached to it.
2838 		 */
2839 		put_pwq(pwq);
2840 
2841 		/*
2842 		 * Leave this pool.  If need_more_worker() is %true, notify a
2843 		 * regular worker; otherwise, we end up with 0 concurrency
2844 		 * and stalling the execution.
2845 		 */
2846 		if (need_more_worker(pool))
2847 			wake_up_worker(pool);
2848 
2849 		raw_spin_unlock_irq(&pool->lock);
2850 
2851 		worker_detach_from_pool(rescuer);
2852 
2853 		raw_spin_lock_irq(&wq_mayday_lock);
2854 	}
2855 
2856 	raw_spin_unlock_irq(&wq_mayday_lock);
2857 
2858 	if (should_stop) {
2859 		__set_current_state(TASK_RUNNING);
2860 		set_pf_worker(false);
2861 		return 0;
2862 	}
2863 
2864 	/* rescuers should never participate in concurrency management */
2865 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2866 	schedule();
2867 	goto repeat;
2868 }
2869 
2870 /**
2871  * check_flush_dependency - check for flush dependency sanity
2872  * @target_wq: workqueue being flushed
2873  * @target_work: work item being flushed (NULL for workqueue flushes)
2874  *
2875  * %current is trying to flush the whole @target_wq or @target_work on it.
2876  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2877  * reclaiming memory or running on a workqueue which doesn't have
2878  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2879  * a deadlock.
2880  */
2881 static void check_flush_dependency(struct workqueue_struct *target_wq,
2882 				   struct work_struct *target_work)
2883 {
2884 	work_func_t target_func = target_work ? target_work->func : NULL;
2885 	struct worker *worker;
2886 
2887 	if (target_wq->flags & WQ_MEM_RECLAIM)
2888 		return;
2889 
2890 	worker = current_wq_worker();
2891 
2892 	WARN_ONCE(current->flags & PF_MEMALLOC,
2893 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2894 		  current->pid, current->comm, target_wq->name, target_func);
2895 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2896 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2897 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2898 		  worker->current_pwq->wq->name, worker->current_func,
2899 		  target_wq->name, target_func);
2900 }
2901 
2902 struct wq_barrier {
2903 	struct work_struct	work;
2904 	struct completion	done;
2905 	struct task_struct	*task;	/* purely informational */
2906 };
2907 
2908 static void wq_barrier_func(struct work_struct *work)
2909 {
2910 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2911 	complete(&barr->done);
2912 }
2913 
2914 /**
2915  * insert_wq_barrier - insert a barrier work
2916  * @pwq: pwq to insert barrier into
2917  * @barr: wq_barrier to insert
2918  * @target: target work to attach @barr to
2919  * @worker: worker currently executing @target, NULL if @target is not executing
2920  *
2921  * @barr is linked to @target such that @barr is completed only after
2922  * @target finishes execution.  Please note that the ordering
2923  * guarantee is observed only with respect to @target and on the local
2924  * cpu.
2925  *
2926  * Currently, a queued barrier can't be canceled.  This is because
2927  * try_to_grab_pending() can't determine whether the work to be
2928  * grabbed is at the head of the queue and thus can't clear LINKED
2929  * flag of the previous work while there must be a valid next work
2930  * after a work with LINKED flag set.
2931  *
2932  * Note that when @worker is non-NULL, @target may be modified
2933  * underneath us, so we can't reliably determine pwq from @target.
2934  *
2935  * CONTEXT:
2936  * raw_spin_lock_irq(pool->lock).
2937  */
2938 static void insert_wq_barrier(struct pool_workqueue *pwq,
2939 			      struct wq_barrier *barr,
2940 			      struct work_struct *target, struct worker *worker)
2941 {
2942 	unsigned int work_flags = 0;
2943 	unsigned int work_color;
2944 	struct list_head *head;
2945 
2946 	/*
2947 	 * debugobject calls are safe here even with pool->lock locked
2948 	 * as we know for sure that this will not trigger any of the
2949 	 * checks and call back into the fixup functions where we
2950 	 * might deadlock.
2951 	 */
2952 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2953 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2954 
2955 	init_completion_map(&barr->done, &target->lockdep_map);
2956 
2957 	barr->task = current;
2958 
2959 	/* The barrier work item does not participate in pwq->nr_active. */
2960 	work_flags |= WORK_STRUCT_INACTIVE;
2961 
2962 	/*
2963 	 * If @target is currently being executed, schedule the
2964 	 * barrier to the worker; otherwise, put it after @target.
2965 	 */
2966 	if (worker) {
2967 		head = worker->scheduled.next;
2968 		work_color = worker->current_color;
2969 	} else {
2970 		unsigned long *bits = work_data_bits(target);
2971 
2972 		head = target->entry.next;
2973 		/* there can already be other linked works, inherit and set */
2974 		work_flags |= *bits & WORK_STRUCT_LINKED;
2975 		work_color = get_work_color(*bits);
2976 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2977 	}
2978 
2979 	pwq->nr_in_flight[work_color]++;
2980 	work_flags |= work_color_to_flags(work_color);
2981 
2982 	insert_work(pwq, &barr->work, head, work_flags);
2983 }
2984 
2985 /**
2986  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2987  * @wq: workqueue being flushed
2988  * @flush_color: new flush color, < 0 for no-op
2989  * @work_color: new work color, < 0 for no-op
2990  *
2991  * Prepare pwqs for workqueue flushing.
2992  *
2993  * If @flush_color is non-negative, flush_color on all pwqs should be
2994  * -1.  If no pwq has in-flight commands at the specified color, all
2995  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2996  * has in flight commands, its pwq->flush_color is set to
2997  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2998  * wakeup logic is armed and %true is returned.
2999  *
3000  * The caller should have initialized @wq->first_flusher prior to
3001  * calling this function with non-negative @flush_color.  If
3002  * @flush_color is negative, no flush color update is done and %false
3003  * is returned.
3004  *
3005  * If @work_color is non-negative, all pwqs should have the same
3006  * work_color which is previous to @work_color and all will be
3007  * advanced to @work_color.
3008  *
3009  * CONTEXT:
3010  * mutex_lock(wq->mutex).
3011  *
3012  * Return:
3013  * %true if @flush_color >= 0 and there's something to flush.  %false
3014  * otherwise.
3015  */
3016 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3017 				      int flush_color, int work_color)
3018 {
3019 	bool wait = false;
3020 	struct pool_workqueue *pwq;
3021 
3022 	if (flush_color >= 0) {
3023 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3024 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3025 	}
3026 
3027 	for_each_pwq(pwq, wq) {
3028 		struct worker_pool *pool = pwq->pool;
3029 
3030 		raw_spin_lock_irq(&pool->lock);
3031 
3032 		if (flush_color >= 0) {
3033 			WARN_ON_ONCE(pwq->flush_color != -1);
3034 
3035 			if (pwq->nr_in_flight[flush_color]) {
3036 				pwq->flush_color = flush_color;
3037 				atomic_inc(&wq->nr_pwqs_to_flush);
3038 				wait = true;
3039 			}
3040 		}
3041 
3042 		if (work_color >= 0) {
3043 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3044 			pwq->work_color = work_color;
3045 		}
3046 
3047 		raw_spin_unlock_irq(&pool->lock);
3048 	}
3049 
3050 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3051 		complete(&wq->first_flusher->done);
3052 
3053 	return wait;
3054 }
3055 
3056 /**
3057  * __flush_workqueue - ensure that any scheduled work has run to completion.
3058  * @wq: workqueue to flush
3059  *
3060  * This function sleeps until all work items which were queued on entry
3061  * have finished execution, but it is not livelocked by new incoming ones.
3062  */
3063 void __flush_workqueue(struct workqueue_struct *wq)
3064 {
3065 	struct wq_flusher this_flusher = {
3066 		.list = LIST_HEAD_INIT(this_flusher.list),
3067 		.flush_color = -1,
3068 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3069 	};
3070 	int next_color;
3071 
3072 	if (WARN_ON(!wq_online))
3073 		return;
3074 
3075 	lock_map_acquire(&wq->lockdep_map);
3076 	lock_map_release(&wq->lockdep_map);
3077 
3078 	mutex_lock(&wq->mutex);
3079 
3080 	/*
3081 	 * Start-to-wait phase
3082 	 */
3083 	next_color = work_next_color(wq->work_color);
3084 
3085 	if (next_color != wq->flush_color) {
3086 		/*
3087 		 * Color space is not full.  The current work_color
3088 		 * becomes our flush_color and work_color is advanced
3089 		 * by one.
3090 		 */
3091 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3092 		this_flusher.flush_color = wq->work_color;
3093 		wq->work_color = next_color;
3094 
3095 		if (!wq->first_flusher) {
3096 			/* no flush in progress, become the first flusher */
3097 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3098 
3099 			wq->first_flusher = &this_flusher;
3100 
3101 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3102 						       wq->work_color)) {
3103 				/* nothing to flush, done */
3104 				wq->flush_color = next_color;
3105 				wq->first_flusher = NULL;
3106 				goto out_unlock;
3107 			}
3108 		} else {
3109 			/* wait in queue */
3110 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3111 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3112 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3113 		}
3114 	} else {
3115 		/*
3116 		 * Oops, color space is full, wait on overflow queue.
3117 		 * The next flush completion will assign us
3118 		 * flush_color and transfer to flusher_queue.
3119 		 */
3120 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3121 	}
3122 
3123 	check_flush_dependency(wq, NULL);
3124 
3125 	mutex_unlock(&wq->mutex);
3126 
3127 	wait_for_completion(&this_flusher.done);
3128 
3129 	/*
3130 	 * Wake-up-and-cascade phase
3131 	 *
3132 	 * First flushers are responsible for cascading flushes and
3133 	 * handling overflow.  Non-first flushers can simply return.
3134 	 */
3135 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3136 		return;
3137 
3138 	mutex_lock(&wq->mutex);
3139 
3140 	/* we might have raced, check again with mutex held */
3141 	if (wq->first_flusher != &this_flusher)
3142 		goto out_unlock;
3143 
3144 	WRITE_ONCE(wq->first_flusher, NULL);
3145 
3146 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3147 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3148 
3149 	while (true) {
3150 		struct wq_flusher *next, *tmp;
3151 
3152 		/* complete all the flushers sharing the current flush color */
3153 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3154 			if (next->flush_color != wq->flush_color)
3155 				break;
3156 			list_del_init(&next->list);
3157 			complete(&next->done);
3158 		}
3159 
3160 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3161 			     wq->flush_color != work_next_color(wq->work_color));
3162 
3163 		/* this flush_color is finished, advance by one */
3164 		wq->flush_color = work_next_color(wq->flush_color);
3165 
3166 		/* one color has been freed, handle overflow queue */
3167 		if (!list_empty(&wq->flusher_overflow)) {
3168 			/*
3169 			 * Assign the same color to all overflowed
3170 			 * flushers, advance work_color and append to
3171 			 * flusher_queue.  This is the start-to-wait
3172 			 * phase for these overflowed flushers.
3173 			 */
3174 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
3175 				tmp->flush_color = wq->work_color;
3176 
3177 			wq->work_color = work_next_color(wq->work_color);
3178 
3179 			list_splice_tail_init(&wq->flusher_overflow,
3180 					      &wq->flusher_queue);
3181 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3182 		}
3183 
3184 		if (list_empty(&wq->flusher_queue)) {
3185 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
3186 			break;
3187 		}
3188 
3189 		/*
3190 		 * Need to flush more colors.  Make the next flusher
3191 		 * the new first flusher and arm pwqs.
3192 		 */
3193 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
3194 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
3195 
3196 		list_del_init(&next->list);
3197 		wq->first_flusher = next;
3198 
3199 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3200 			break;
3201 
3202 		/*
3203 		 * Meh... this color is already done, clear first
3204 		 * flusher and repeat cascading.
3205 		 */
3206 		wq->first_flusher = NULL;
3207 	}
3208 
3209 out_unlock:
3210 	mutex_unlock(&wq->mutex);
3211 }
3212 EXPORT_SYMBOL(__flush_workqueue);
3213 
3214 /**
3215  * drain_workqueue - drain a workqueue
3216  * @wq: workqueue to drain
3217  *
3218  * Wait until the workqueue becomes empty.  While draining is in progress,
3219  * only chain queueing is allowed.  IOW, only currently pending or running
3220  * work items on @wq can queue further work items on it.  @wq is flushed
3221  * repeatedly until it becomes empty.  The number of flushing is determined
3222  * by the depth of chaining and should be relatively short.  Whine if it
3223  * takes too long.
3224  */
3225 void drain_workqueue(struct workqueue_struct *wq)
3226 {
3227 	unsigned int flush_cnt = 0;
3228 	struct pool_workqueue *pwq;
3229 
3230 	/*
3231 	 * __queue_work() needs to test whether there are drainers, is much
3232 	 * hotter than drain_workqueue() and already looks at @wq->flags.
3233 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3234 	 */
3235 	mutex_lock(&wq->mutex);
3236 	if (!wq->nr_drainers++)
3237 		wq->flags |= __WQ_DRAINING;
3238 	mutex_unlock(&wq->mutex);
3239 reflush:
3240 	__flush_workqueue(wq);
3241 
3242 	mutex_lock(&wq->mutex);
3243 
3244 	for_each_pwq(pwq, wq) {
3245 		bool drained;
3246 
3247 		raw_spin_lock_irq(&pwq->pool->lock);
3248 		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3249 		raw_spin_unlock_irq(&pwq->pool->lock);
3250 
3251 		if (drained)
3252 			continue;
3253 
3254 		if (++flush_cnt == 10 ||
3255 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3256 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3257 				wq->name, __func__, flush_cnt);
3258 
3259 		mutex_unlock(&wq->mutex);
3260 		goto reflush;
3261 	}
3262 
3263 	if (!--wq->nr_drainers)
3264 		wq->flags &= ~__WQ_DRAINING;
3265 	mutex_unlock(&wq->mutex);
3266 }
3267 EXPORT_SYMBOL_GPL(drain_workqueue);
3268 
3269 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3270 			     bool from_cancel)
3271 {
3272 	struct worker *worker = NULL;
3273 	struct worker_pool *pool;
3274 	struct pool_workqueue *pwq;
3275 
3276 	might_sleep();
3277 
3278 	rcu_read_lock();
3279 	pool = get_work_pool(work);
3280 	if (!pool) {
3281 		rcu_read_unlock();
3282 		return false;
3283 	}
3284 
3285 	raw_spin_lock_irq(&pool->lock);
3286 	/* see the comment in try_to_grab_pending() with the same code */
3287 	pwq = get_work_pwq(work);
3288 	if (pwq) {
3289 		if (unlikely(pwq->pool != pool))
3290 			goto already_gone;
3291 	} else {
3292 		worker = find_worker_executing_work(pool, work);
3293 		if (!worker)
3294 			goto already_gone;
3295 		pwq = worker->current_pwq;
3296 	}
3297 
3298 	check_flush_dependency(pwq->wq, work);
3299 
3300 	insert_wq_barrier(pwq, barr, work, worker);
3301 	raw_spin_unlock_irq(&pool->lock);
3302 
3303 	/*
3304 	 * Force a lock recursion deadlock when using flush_work() inside a
3305 	 * single-threaded or rescuer equipped workqueue.
3306 	 *
3307 	 * For single threaded workqueues the deadlock happens when the work
3308 	 * is after the work issuing the flush_work(). For rescuer equipped
3309 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3310 	 * forward progress.
3311 	 */
3312 	if (!from_cancel &&
3313 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3314 		lock_map_acquire(&pwq->wq->lockdep_map);
3315 		lock_map_release(&pwq->wq->lockdep_map);
3316 	}
3317 	rcu_read_unlock();
3318 	return true;
3319 already_gone:
3320 	raw_spin_unlock_irq(&pool->lock);
3321 	rcu_read_unlock();
3322 	return false;
3323 }
3324 
3325 static bool __flush_work(struct work_struct *work, bool from_cancel)
3326 {
3327 	struct wq_barrier barr;
3328 
3329 	if (WARN_ON(!wq_online))
3330 		return false;
3331 
3332 	if (WARN_ON(!work->func))
3333 		return false;
3334 
3335 	lock_map_acquire(&work->lockdep_map);
3336 	lock_map_release(&work->lockdep_map);
3337 
3338 	if (start_flush_work(work, &barr, from_cancel)) {
3339 		wait_for_completion(&barr.done);
3340 		destroy_work_on_stack(&barr.work);
3341 		return true;
3342 	} else {
3343 		return false;
3344 	}
3345 }
3346 
3347 /**
3348  * flush_work - wait for a work to finish executing the last queueing instance
3349  * @work: the work to flush
3350  *
3351  * Wait until @work has finished execution.  @work is guaranteed to be idle
3352  * on return if it hasn't been requeued since flush started.
3353  *
3354  * Return:
3355  * %true if flush_work() waited for the work to finish execution,
3356  * %false if it was already idle.
3357  */
3358 bool flush_work(struct work_struct *work)
3359 {
3360 	return __flush_work(work, false);
3361 }
3362 EXPORT_SYMBOL_GPL(flush_work);
3363 
3364 struct cwt_wait {
3365 	wait_queue_entry_t		wait;
3366 	struct work_struct	*work;
3367 };
3368 
3369 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3370 {
3371 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3372 
3373 	if (cwait->work != key)
3374 		return 0;
3375 	return autoremove_wake_function(wait, mode, sync, key);
3376 }
3377 
3378 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3379 {
3380 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3381 	unsigned long flags;
3382 	int ret;
3383 
3384 	do {
3385 		ret = try_to_grab_pending(work, is_dwork, &flags);
3386 		/*
3387 		 * If someone else is already canceling, wait for it to
3388 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3389 		 * because we may get scheduled between @work's completion
3390 		 * and the other canceling task resuming and clearing
3391 		 * CANCELING - flush_work() will return false immediately
3392 		 * as @work is no longer busy, try_to_grab_pending() will
3393 		 * return -ENOENT as @work is still being canceled and the
3394 		 * other canceling task won't be able to clear CANCELING as
3395 		 * we're hogging the CPU.
3396 		 *
3397 		 * Let's wait for completion using a waitqueue.  As this
3398 		 * may lead to the thundering herd problem, use a custom
3399 		 * wake function which matches @work along with exclusive
3400 		 * wait and wakeup.
3401 		 */
3402 		if (unlikely(ret == -ENOENT)) {
3403 			struct cwt_wait cwait;
3404 
3405 			init_wait(&cwait.wait);
3406 			cwait.wait.func = cwt_wakefn;
3407 			cwait.work = work;
3408 
3409 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3410 						  TASK_UNINTERRUPTIBLE);
3411 			if (work_is_canceling(work))
3412 				schedule();
3413 			finish_wait(&cancel_waitq, &cwait.wait);
3414 		}
3415 	} while (unlikely(ret < 0));
3416 
3417 	/* tell other tasks trying to grab @work to back off */
3418 	mark_work_canceling(work);
3419 	local_irq_restore(flags);
3420 
3421 	/*
3422 	 * This allows canceling during early boot.  We know that @work
3423 	 * isn't executing.
3424 	 */
3425 	if (wq_online)
3426 		__flush_work(work, true);
3427 
3428 	clear_work_data(work);
3429 
3430 	/*
3431 	 * Paired with prepare_to_wait() above so that either
3432 	 * waitqueue_active() is visible here or !work_is_canceling() is
3433 	 * visible there.
3434 	 */
3435 	smp_mb();
3436 	if (waitqueue_active(&cancel_waitq))
3437 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3438 
3439 	return ret;
3440 }
3441 
3442 /**
3443  * cancel_work_sync - cancel a work and wait for it to finish
3444  * @work: the work to cancel
3445  *
3446  * Cancel @work and wait for its execution to finish.  This function
3447  * can be used even if the work re-queues itself or migrates to
3448  * another workqueue.  On return from this function, @work is
3449  * guaranteed to be not pending or executing on any CPU.
3450  *
3451  * cancel_work_sync(&delayed_work->work) must not be used for
3452  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3453  *
3454  * The caller must ensure that the workqueue on which @work was last
3455  * queued can't be destroyed before this function returns.
3456  *
3457  * Return:
3458  * %true if @work was pending, %false otherwise.
3459  */
3460 bool cancel_work_sync(struct work_struct *work)
3461 {
3462 	return __cancel_work_timer(work, false);
3463 }
3464 EXPORT_SYMBOL_GPL(cancel_work_sync);
3465 
3466 /**
3467  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3468  * @dwork: the delayed work to flush
3469  *
3470  * Delayed timer is cancelled and the pending work is queued for
3471  * immediate execution.  Like flush_work(), this function only
3472  * considers the last queueing instance of @dwork.
3473  *
3474  * Return:
3475  * %true if flush_work() waited for the work to finish execution,
3476  * %false if it was already idle.
3477  */
3478 bool flush_delayed_work(struct delayed_work *dwork)
3479 {
3480 	local_irq_disable();
3481 	if (del_timer_sync(&dwork->timer))
3482 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3483 	local_irq_enable();
3484 	return flush_work(&dwork->work);
3485 }
3486 EXPORT_SYMBOL(flush_delayed_work);
3487 
3488 /**
3489  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3490  * @rwork: the rcu work to flush
3491  *
3492  * Return:
3493  * %true if flush_rcu_work() waited for the work to finish execution,
3494  * %false if it was already idle.
3495  */
3496 bool flush_rcu_work(struct rcu_work *rwork)
3497 {
3498 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3499 		rcu_barrier();
3500 		flush_work(&rwork->work);
3501 		return true;
3502 	} else {
3503 		return flush_work(&rwork->work);
3504 	}
3505 }
3506 EXPORT_SYMBOL(flush_rcu_work);
3507 
3508 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3509 {
3510 	unsigned long flags;
3511 	int ret;
3512 
3513 	do {
3514 		ret = try_to_grab_pending(work, is_dwork, &flags);
3515 	} while (unlikely(ret == -EAGAIN));
3516 
3517 	if (unlikely(ret < 0))
3518 		return false;
3519 
3520 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3521 	local_irq_restore(flags);
3522 	return ret;
3523 }
3524 
3525 /*
3526  * See cancel_delayed_work()
3527  */
3528 bool cancel_work(struct work_struct *work)
3529 {
3530 	return __cancel_work(work, false);
3531 }
3532 EXPORT_SYMBOL(cancel_work);
3533 
3534 /**
3535  * cancel_delayed_work - cancel a delayed work
3536  * @dwork: delayed_work to cancel
3537  *
3538  * Kill off a pending delayed_work.
3539  *
3540  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3541  * pending.
3542  *
3543  * Note:
3544  * The work callback function may still be running on return, unless
3545  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3546  * use cancel_delayed_work_sync() to wait on it.
3547  *
3548  * This function is safe to call from any context including IRQ handler.
3549  */
3550 bool cancel_delayed_work(struct delayed_work *dwork)
3551 {
3552 	return __cancel_work(&dwork->work, true);
3553 }
3554 EXPORT_SYMBOL(cancel_delayed_work);
3555 
3556 /**
3557  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3558  * @dwork: the delayed work cancel
3559  *
3560  * This is cancel_work_sync() for delayed works.
3561  *
3562  * Return:
3563  * %true if @dwork was pending, %false otherwise.
3564  */
3565 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3566 {
3567 	return __cancel_work_timer(&dwork->work, true);
3568 }
3569 EXPORT_SYMBOL(cancel_delayed_work_sync);
3570 
3571 /**
3572  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3573  * @func: the function to call
3574  *
3575  * schedule_on_each_cpu() executes @func on each online CPU using the
3576  * system workqueue and blocks until all CPUs have completed.
3577  * schedule_on_each_cpu() is very slow.
3578  *
3579  * Return:
3580  * 0 on success, -errno on failure.
3581  */
3582 int schedule_on_each_cpu(work_func_t func)
3583 {
3584 	int cpu;
3585 	struct work_struct __percpu *works;
3586 
3587 	works = alloc_percpu(struct work_struct);
3588 	if (!works)
3589 		return -ENOMEM;
3590 
3591 	cpus_read_lock();
3592 
3593 	for_each_online_cpu(cpu) {
3594 		struct work_struct *work = per_cpu_ptr(works, cpu);
3595 
3596 		INIT_WORK(work, func);
3597 		schedule_work_on(cpu, work);
3598 	}
3599 
3600 	for_each_online_cpu(cpu)
3601 		flush_work(per_cpu_ptr(works, cpu));
3602 
3603 	cpus_read_unlock();
3604 	free_percpu(works);
3605 	return 0;
3606 }
3607 
3608 /**
3609  * execute_in_process_context - reliably execute the routine with user context
3610  * @fn:		the function to execute
3611  * @ew:		guaranteed storage for the execute work structure (must
3612  *		be available when the work executes)
3613  *
3614  * Executes the function immediately if process context is available,
3615  * otherwise schedules the function for delayed execution.
3616  *
3617  * Return:	0 - function was executed
3618  *		1 - function was scheduled for execution
3619  */
3620 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3621 {
3622 	if (!in_interrupt()) {
3623 		fn(&ew->work);
3624 		return 0;
3625 	}
3626 
3627 	INIT_WORK(&ew->work, fn);
3628 	schedule_work(&ew->work);
3629 
3630 	return 1;
3631 }
3632 EXPORT_SYMBOL_GPL(execute_in_process_context);
3633 
3634 /**
3635  * free_workqueue_attrs - free a workqueue_attrs
3636  * @attrs: workqueue_attrs to free
3637  *
3638  * Undo alloc_workqueue_attrs().
3639  */
3640 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3641 {
3642 	if (attrs) {
3643 		free_cpumask_var(attrs->cpumask);
3644 		kfree(attrs);
3645 	}
3646 }
3647 
3648 /**
3649  * alloc_workqueue_attrs - allocate a workqueue_attrs
3650  *
3651  * Allocate a new workqueue_attrs, initialize with default settings and
3652  * return it.
3653  *
3654  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3655  */
3656 struct workqueue_attrs *alloc_workqueue_attrs(void)
3657 {
3658 	struct workqueue_attrs *attrs;
3659 
3660 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3661 	if (!attrs)
3662 		goto fail;
3663 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3664 		goto fail;
3665 
3666 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3667 	attrs->affn_scope = WQ_AFFN_DFL;
3668 	return attrs;
3669 fail:
3670 	free_workqueue_attrs(attrs);
3671 	return NULL;
3672 }
3673 
3674 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3675 				 const struct workqueue_attrs *from)
3676 {
3677 	to->nice = from->nice;
3678 	cpumask_copy(to->cpumask, from->cpumask);
3679 
3680 	/*
3681 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
3682 	 * fields as copying is used for both pool and wq attrs. Instead,
3683 	 * get_unbound_pool() explicitly clears the fields.
3684 	 */
3685 	to->affn_scope = from->affn_scope;
3686 	to->ordered = from->ordered;
3687 }
3688 
3689 /*
3690  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
3691  * comments in 'struct workqueue_attrs' definition.
3692  */
3693 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
3694 {
3695 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
3696 	attrs->ordered = false;
3697 }
3698 
3699 /* hash value of the content of @attr */
3700 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3701 {
3702 	u32 hash = 0;
3703 
3704 	hash = jhash_1word(attrs->nice, hash);
3705 	hash = jhash(cpumask_bits(attrs->cpumask),
3706 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3707 	return hash;
3708 }
3709 
3710 /* content equality test */
3711 static bool wqattrs_equal(const struct workqueue_attrs *a,
3712 			  const struct workqueue_attrs *b)
3713 {
3714 	if (a->nice != b->nice)
3715 		return false;
3716 	if (!cpumask_equal(a->cpumask, b->cpumask))
3717 		return false;
3718 	return true;
3719 }
3720 
3721 /* Update @attrs with actually available CPUs */
3722 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
3723 				      const cpumask_t *unbound_cpumask)
3724 {
3725 	/*
3726 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
3727 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
3728 	 * @unbound_cpumask.
3729 	 */
3730 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
3731 	if (unlikely(cpumask_empty(attrs->cpumask)))
3732 		cpumask_copy(attrs->cpumask, unbound_cpumask);
3733 }
3734 
3735 /* find wq_pod_type to use for @attrs */
3736 static const struct wq_pod_type *
3737 wqattrs_pod_type(const struct workqueue_attrs *attrs)
3738 {
3739 	struct wq_pod_type *pt = &wq_pod_types[attrs->affn_scope];
3740 
3741 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
3742 	    likely(pt->nr_pods))
3743 		return pt;
3744 
3745 	/*
3746 	 * Before workqueue_init_topology(), only SYSTEM is available which is
3747 	 * initialized in workqueue_init_early().
3748 	 */
3749 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
3750 	BUG_ON(!pt->nr_pods);
3751 	return pt;
3752 }
3753 
3754 /**
3755  * init_worker_pool - initialize a newly zalloc'd worker_pool
3756  * @pool: worker_pool to initialize
3757  *
3758  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3759  *
3760  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3761  * inside @pool proper are initialized and put_unbound_pool() can be called
3762  * on @pool safely to release it.
3763  */
3764 static int init_worker_pool(struct worker_pool *pool)
3765 {
3766 	raw_spin_lock_init(&pool->lock);
3767 	pool->id = -1;
3768 	pool->cpu = -1;
3769 	pool->node = NUMA_NO_NODE;
3770 	pool->flags |= POOL_DISASSOCIATED;
3771 	pool->watchdog_ts = jiffies;
3772 	INIT_LIST_HEAD(&pool->worklist);
3773 	INIT_LIST_HEAD(&pool->idle_list);
3774 	hash_init(pool->busy_hash);
3775 
3776 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3777 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
3778 
3779 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3780 
3781 	INIT_LIST_HEAD(&pool->workers);
3782 	INIT_LIST_HEAD(&pool->dying_workers);
3783 
3784 	ida_init(&pool->worker_ida);
3785 	INIT_HLIST_NODE(&pool->hash_node);
3786 	pool->refcnt = 1;
3787 
3788 	/* shouldn't fail above this point */
3789 	pool->attrs = alloc_workqueue_attrs();
3790 	if (!pool->attrs)
3791 		return -ENOMEM;
3792 
3793 	wqattrs_clear_for_pool(pool->attrs);
3794 
3795 	return 0;
3796 }
3797 
3798 #ifdef CONFIG_LOCKDEP
3799 static void wq_init_lockdep(struct workqueue_struct *wq)
3800 {
3801 	char *lock_name;
3802 
3803 	lockdep_register_key(&wq->key);
3804 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3805 	if (!lock_name)
3806 		lock_name = wq->name;
3807 
3808 	wq->lock_name = lock_name;
3809 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3810 }
3811 
3812 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3813 {
3814 	lockdep_unregister_key(&wq->key);
3815 }
3816 
3817 static void wq_free_lockdep(struct workqueue_struct *wq)
3818 {
3819 	if (wq->lock_name != wq->name)
3820 		kfree(wq->lock_name);
3821 }
3822 #else
3823 static void wq_init_lockdep(struct workqueue_struct *wq)
3824 {
3825 }
3826 
3827 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3828 {
3829 }
3830 
3831 static void wq_free_lockdep(struct workqueue_struct *wq)
3832 {
3833 }
3834 #endif
3835 
3836 static void rcu_free_wq(struct rcu_head *rcu)
3837 {
3838 	struct workqueue_struct *wq =
3839 		container_of(rcu, struct workqueue_struct, rcu);
3840 
3841 	wq_free_lockdep(wq);
3842 	free_percpu(wq->cpu_pwq);
3843 	free_workqueue_attrs(wq->unbound_attrs);
3844 	kfree(wq);
3845 }
3846 
3847 static void rcu_free_pool(struct rcu_head *rcu)
3848 {
3849 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3850 
3851 	ida_destroy(&pool->worker_ida);
3852 	free_workqueue_attrs(pool->attrs);
3853 	kfree(pool);
3854 }
3855 
3856 /**
3857  * put_unbound_pool - put a worker_pool
3858  * @pool: worker_pool to put
3859  *
3860  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3861  * safe manner.  get_unbound_pool() calls this function on its failure path
3862  * and this function should be able to release pools which went through,
3863  * successfully or not, init_worker_pool().
3864  *
3865  * Should be called with wq_pool_mutex held.
3866  */
3867 static void put_unbound_pool(struct worker_pool *pool)
3868 {
3869 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3870 	struct worker *worker;
3871 	LIST_HEAD(cull_list);
3872 
3873 	lockdep_assert_held(&wq_pool_mutex);
3874 
3875 	if (--pool->refcnt)
3876 		return;
3877 
3878 	/* sanity checks */
3879 	if (WARN_ON(!(pool->cpu < 0)) ||
3880 	    WARN_ON(!list_empty(&pool->worklist)))
3881 		return;
3882 
3883 	/* release id and unhash */
3884 	if (pool->id >= 0)
3885 		idr_remove(&worker_pool_idr, pool->id);
3886 	hash_del(&pool->hash_node);
3887 
3888 	/*
3889 	 * Become the manager and destroy all workers.  This prevents
3890 	 * @pool's workers from blocking on attach_mutex.  We're the last
3891 	 * manager and @pool gets freed with the flag set.
3892 	 *
3893 	 * Having a concurrent manager is quite unlikely to happen as we can
3894 	 * only get here with
3895 	 *   pwq->refcnt == pool->refcnt == 0
3896 	 * which implies no work queued to the pool, which implies no worker can
3897 	 * become the manager. However a worker could have taken the role of
3898 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
3899 	 * drops pool->lock
3900 	 */
3901 	while (true) {
3902 		rcuwait_wait_event(&manager_wait,
3903 				   !(pool->flags & POOL_MANAGER_ACTIVE),
3904 				   TASK_UNINTERRUPTIBLE);
3905 
3906 		mutex_lock(&wq_pool_attach_mutex);
3907 		raw_spin_lock_irq(&pool->lock);
3908 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
3909 			pool->flags |= POOL_MANAGER_ACTIVE;
3910 			break;
3911 		}
3912 		raw_spin_unlock_irq(&pool->lock);
3913 		mutex_unlock(&wq_pool_attach_mutex);
3914 	}
3915 
3916 	while ((worker = first_idle_worker(pool)))
3917 		set_worker_dying(worker, &cull_list);
3918 	WARN_ON(pool->nr_workers || pool->nr_idle);
3919 	raw_spin_unlock_irq(&pool->lock);
3920 
3921 	wake_dying_workers(&cull_list);
3922 
3923 	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
3924 		pool->detach_completion = &detach_completion;
3925 	mutex_unlock(&wq_pool_attach_mutex);
3926 
3927 	if (pool->detach_completion)
3928 		wait_for_completion(pool->detach_completion);
3929 
3930 	/* shut down the timers */
3931 	del_timer_sync(&pool->idle_timer);
3932 	cancel_work_sync(&pool->idle_cull_work);
3933 	del_timer_sync(&pool->mayday_timer);
3934 
3935 	/* RCU protected to allow dereferences from get_work_pool() */
3936 	call_rcu(&pool->rcu, rcu_free_pool);
3937 }
3938 
3939 /**
3940  * get_unbound_pool - get a worker_pool with the specified attributes
3941  * @attrs: the attributes of the worker_pool to get
3942  *
3943  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3944  * reference count and return it.  If there already is a matching
3945  * worker_pool, it will be used; otherwise, this function attempts to
3946  * create a new one.
3947  *
3948  * Should be called with wq_pool_mutex held.
3949  *
3950  * Return: On success, a worker_pool with the same attributes as @attrs.
3951  * On failure, %NULL.
3952  */
3953 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3954 {
3955 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
3956 	u32 hash = wqattrs_hash(attrs);
3957 	struct worker_pool *pool;
3958 	int pod, node = NUMA_NO_NODE;
3959 
3960 	lockdep_assert_held(&wq_pool_mutex);
3961 
3962 	/* do we already have a matching pool? */
3963 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3964 		if (wqattrs_equal(pool->attrs, attrs)) {
3965 			pool->refcnt++;
3966 			return pool;
3967 		}
3968 	}
3969 
3970 	/* If cpumask is contained inside a NUMA pod, that's our NUMA node */
3971 	for (pod = 0; pod < pt->nr_pods; pod++) {
3972 		if (cpumask_subset(attrs->cpumask, pt->pod_cpus[pod])) {
3973 			node = pt->pod_node[pod];
3974 			break;
3975 		}
3976 	}
3977 
3978 	/* nope, create a new one */
3979 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
3980 	if (!pool || init_worker_pool(pool) < 0)
3981 		goto fail;
3982 
3983 	pool->node = node;
3984 	copy_workqueue_attrs(pool->attrs, attrs);
3985 	wqattrs_clear_for_pool(pool->attrs);
3986 
3987 	if (worker_pool_assign_id(pool) < 0)
3988 		goto fail;
3989 
3990 	/* create and start the initial worker */
3991 	if (wq_online && !create_worker(pool))
3992 		goto fail;
3993 
3994 	/* install */
3995 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3996 
3997 	return pool;
3998 fail:
3999 	if (pool)
4000 		put_unbound_pool(pool);
4001 	return NULL;
4002 }
4003 
4004 static void rcu_free_pwq(struct rcu_head *rcu)
4005 {
4006 	kmem_cache_free(pwq_cache,
4007 			container_of(rcu, struct pool_workqueue, rcu));
4008 }
4009 
4010 /*
4011  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4012  * refcnt and needs to be destroyed.
4013  */
4014 static void pwq_release_workfn(struct kthread_work *work)
4015 {
4016 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4017 						  release_work);
4018 	struct workqueue_struct *wq = pwq->wq;
4019 	struct worker_pool *pool = pwq->pool;
4020 	bool is_last = false;
4021 
4022 	/*
4023 	 * When @pwq is not linked, it doesn't hold any reference to the
4024 	 * @wq, and @wq is invalid to access.
4025 	 */
4026 	if (!list_empty(&pwq->pwqs_node)) {
4027 		mutex_lock(&wq->mutex);
4028 		list_del_rcu(&pwq->pwqs_node);
4029 		is_last = list_empty(&wq->pwqs);
4030 		mutex_unlock(&wq->mutex);
4031 	}
4032 
4033 	if (wq->flags & WQ_UNBOUND) {
4034 		mutex_lock(&wq_pool_mutex);
4035 		put_unbound_pool(pool);
4036 		mutex_unlock(&wq_pool_mutex);
4037 	}
4038 
4039 	call_rcu(&pwq->rcu, rcu_free_pwq);
4040 
4041 	/*
4042 	 * If we're the last pwq going away, @wq is already dead and no one
4043 	 * is gonna access it anymore.  Schedule RCU free.
4044 	 */
4045 	if (is_last) {
4046 		wq_unregister_lockdep(wq);
4047 		call_rcu(&wq->rcu, rcu_free_wq);
4048 	}
4049 }
4050 
4051 /**
4052  * pwq_adjust_max_active - update a pwq's max_active to the current setting
4053  * @pwq: target pool_workqueue
4054  *
4055  * If @pwq isn't freezing, set @pwq->max_active to the associated
4056  * workqueue's saved_max_active and activate inactive work items
4057  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
4058  */
4059 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4060 {
4061 	struct workqueue_struct *wq = pwq->wq;
4062 	bool freezable = wq->flags & WQ_FREEZABLE;
4063 	unsigned long flags;
4064 
4065 	/* for @wq->saved_max_active */
4066 	lockdep_assert_held(&wq->mutex);
4067 
4068 	/* fast exit for non-freezable wqs */
4069 	if (!freezable && pwq->max_active == wq->saved_max_active)
4070 		return;
4071 
4072 	/* this function can be called during early boot w/ irq disabled */
4073 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4074 
4075 	/*
4076 	 * During [un]freezing, the caller is responsible for ensuring that
4077 	 * this function is called at least once after @workqueue_freezing
4078 	 * is updated and visible.
4079 	 */
4080 	if (!freezable || !workqueue_freezing) {
4081 		bool kick = false;
4082 
4083 		pwq->max_active = wq->saved_max_active;
4084 
4085 		while (!list_empty(&pwq->inactive_works) &&
4086 		       pwq->nr_active < pwq->max_active) {
4087 			pwq_activate_first_inactive(pwq);
4088 			kick = true;
4089 		}
4090 
4091 		/*
4092 		 * Need to kick a worker after thawed or an unbound wq's
4093 		 * max_active is bumped. In realtime scenarios, always kicking a
4094 		 * worker will cause interference on the isolated cpu cores, so
4095 		 * let's kick iff work items were activated.
4096 		 */
4097 		if (kick)
4098 			wake_up_worker(pwq->pool);
4099 	} else {
4100 		pwq->max_active = 0;
4101 	}
4102 
4103 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4104 }
4105 
4106 /* initialize newly allocated @pwq which is associated with @wq and @pool */
4107 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4108 		     struct worker_pool *pool)
4109 {
4110 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
4111 
4112 	memset(pwq, 0, sizeof(*pwq));
4113 
4114 	pwq->pool = pool;
4115 	pwq->wq = wq;
4116 	pwq->flush_color = -1;
4117 	pwq->refcnt = 1;
4118 	INIT_LIST_HEAD(&pwq->inactive_works);
4119 	INIT_LIST_HEAD(&pwq->pwqs_node);
4120 	INIT_LIST_HEAD(&pwq->mayday_node);
4121 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
4122 }
4123 
4124 /* sync @pwq with the current state of its associated wq and link it */
4125 static void link_pwq(struct pool_workqueue *pwq)
4126 {
4127 	struct workqueue_struct *wq = pwq->wq;
4128 
4129 	lockdep_assert_held(&wq->mutex);
4130 
4131 	/* may be called multiple times, ignore if already linked */
4132 	if (!list_empty(&pwq->pwqs_node))
4133 		return;
4134 
4135 	/* set the matching work_color */
4136 	pwq->work_color = wq->work_color;
4137 
4138 	/* sync max_active to the current setting */
4139 	pwq_adjust_max_active(pwq);
4140 
4141 	/* link in @pwq */
4142 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4143 }
4144 
4145 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4146 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4147 					const struct workqueue_attrs *attrs)
4148 {
4149 	struct worker_pool *pool;
4150 	struct pool_workqueue *pwq;
4151 
4152 	lockdep_assert_held(&wq_pool_mutex);
4153 
4154 	pool = get_unbound_pool(attrs);
4155 	if (!pool)
4156 		return NULL;
4157 
4158 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4159 	if (!pwq) {
4160 		put_unbound_pool(pool);
4161 		return NULL;
4162 	}
4163 
4164 	init_pwq(pwq, wq, pool);
4165 	return pwq;
4166 }
4167 
4168 /**
4169  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
4170  * @attrs: the wq_attrs of the default pwq of the target workqueue
4171  * @cpu: the target CPU
4172  * @cpu_going_down: if >= 0, the CPU to consider as offline
4173  * @cpumask: outarg, the resulting cpumask
4174  *
4175  * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4176  * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
4177  * The result is stored in @cpumask.
4178  *
4179  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4180  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4181  * intersection of the possible CPUs of @pod and @attrs->cpumask.
4182  *
4183  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
4184  */
4185 static void wq_calc_pod_cpumask(const struct workqueue_attrs *attrs, int cpu,
4186 				int cpu_going_down, cpumask_t *cpumask)
4187 {
4188 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4189 	int pod = pt->cpu_pod[cpu];
4190 
4191 	/* does @pod have any online CPUs @attrs wants? */
4192 	cpumask_and(cpumask, pt->pod_cpus[pod], attrs->cpumask);
4193 	cpumask_and(cpumask, cpumask, cpu_online_mask);
4194 	if (cpu_going_down >= 0)
4195 		cpumask_clear_cpu(cpu_going_down, cpumask);
4196 
4197 	if (cpumask_empty(cpumask)) {
4198 		cpumask_copy(cpumask, attrs->cpumask);
4199 		return;
4200 	}
4201 
4202 	/* yeap, return possible CPUs in @pod that @attrs wants */
4203 	cpumask_and(cpumask, attrs->cpumask, pt->pod_cpus[pod]);
4204 
4205 	if (cpumask_empty(cpumask))
4206 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4207 				"possible intersect\n");
4208 }
4209 
4210 /* install @pwq into @wq's cpu_pwq and return the old pwq */
4211 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4212 					int cpu, struct pool_workqueue *pwq)
4213 {
4214 	struct pool_workqueue *old_pwq;
4215 
4216 	lockdep_assert_held(&wq_pool_mutex);
4217 	lockdep_assert_held(&wq->mutex);
4218 
4219 	/* link_pwq() can handle duplicate calls */
4220 	link_pwq(pwq);
4221 
4222 	old_pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4223 	rcu_assign_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu), pwq);
4224 	return old_pwq;
4225 }
4226 
4227 /* context to store the prepared attrs & pwqs before applying */
4228 struct apply_wqattrs_ctx {
4229 	struct workqueue_struct	*wq;		/* target workqueue */
4230 	struct workqueue_attrs	*attrs;		/* attrs to apply */
4231 	struct list_head	list;		/* queued for batching commit */
4232 	struct pool_workqueue	*dfl_pwq;
4233 	struct pool_workqueue	*pwq_tbl[];
4234 };
4235 
4236 /* free the resources after success or abort */
4237 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4238 {
4239 	if (ctx) {
4240 		int cpu;
4241 
4242 		for_each_possible_cpu(cpu)
4243 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
4244 		put_pwq_unlocked(ctx->dfl_pwq);
4245 
4246 		free_workqueue_attrs(ctx->attrs);
4247 
4248 		kfree(ctx);
4249 	}
4250 }
4251 
4252 /* allocate the attrs and pwqs for later installation */
4253 static struct apply_wqattrs_ctx *
4254 apply_wqattrs_prepare(struct workqueue_struct *wq,
4255 		      const struct workqueue_attrs *attrs,
4256 		      const cpumask_var_t unbound_cpumask)
4257 {
4258 	struct apply_wqattrs_ctx *ctx;
4259 	struct workqueue_attrs *new_attrs, *tmp_attrs;
4260 	int cpu;
4261 
4262 	lockdep_assert_held(&wq_pool_mutex);
4263 
4264 	if (WARN_ON(attrs->affn_scope < 0 ||
4265 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4266 		return ERR_PTR(-EINVAL);
4267 
4268 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
4269 
4270 	new_attrs = alloc_workqueue_attrs();
4271 	tmp_attrs = alloc_workqueue_attrs();
4272 	if (!ctx || !new_attrs || !tmp_attrs)
4273 		goto out_free;
4274 
4275 	/*
4276 	 * If something goes wrong during CPU up/down, we'll fall back to
4277 	 * the default pwq covering whole @attrs->cpumask.  Always create
4278 	 * it even if we don't use it immediately.
4279 	 */
4280 	copy_workqueue_attrs(new_attrs, attrs);
4281 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
4282 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4283 	if (!ctx->dfl_pwq)
4284 		goto out_free;
4285 
4286 	/*
4287 	 * We may create multiple pwqs with differing cpumasks. Make a copy of
4288 	 * @new_attrs which will be modified and used to obtain pools.
4289 	 */
4290 	copy_workqueue_attrs(tmp_attrs, new_attrs);
4291 
4292 	for_each_possible_cpu(cpu) {
4293 		if (new_attrs->ordered) {
4294 			ctx->dfl_pwq->refcnt++;
4295 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
4296 		} else {
4297 			wq_calc_pod_cpumask(new_attrs, cpu, -1, tmp_attrs->cpumask);
4298 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, tmp_attrs);
4299 			if (!ctx->pwq_tbl[cpu])
4300 				goto out_free;
4301 		}
4302 	}
4303 
4304 	/* save the user configured attrs and sanitize it. */
4305 	copy_workqueue_attrs(new_attrs, attrs);
4306 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4307 	ctx->attrs = new_attrs;
4308 
4309 	ctx->wq = wq;
4310 	free_workqueue_attrs(tmp_attrs);
4311 	return ctx;
4312 
4313 out_free:
4314 	free_workqueue_attrs(tmp_attrs);
4315 	free_workqueue_attrs(new_attrs);
4316 	apply_wqattrs_cleanup(ctx);
4317 	return ERR_PTR(-ENOMEM);
4318 }
4319 
4320 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4321 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4322 {
4323 	int cpu;
4324 
4325 	/* all pwqs have been created successfully, let's install'em */
4326 	mutex_lock(&ctx->wq->mutex);
4327 
4328 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4329 
4330 	/* save the previous pwq and install the new one */
4331 	for_each_possible_cpu(cpu)
4332 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
4333 							ctx->pwq_tbl[cpu]);
4334 
4335 	/* @dfl_pwq might not have been used, ensure it's linked */
4336 	link_pwq(ctx->dfl_pwq);
4337 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4338 
4339 	mutex_unlock(&ctx->wq->mutex);
4340 }
4341 
4342 static void apply_wqattrs_lock(void)
4343 {
4344 	/* CPUs should stay stable across pwq creations and installations */
4345 	cpus_read_lock();
4346 	mutex_lock(&wq_pool_mutex);
4347 }
4348 
4349 static void apply_wqattrs_unlock(void)
4350 {
4351 	mutex_unlock(&wq_pool_mutex);
4352 	cpus_read_unlock();
4353 }
4354 
4355 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4356 					const struct workqueue_attrs *attrs)
4357 {
4358 	struct apply_wqattrs_ctx *ctx;
4359 
4360 	/* only unbound workqueues can change attributes */
4361 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4362 		return -EINVAL;
4363 
4364 	/* creating multiple pwqs breaks ordering guarantee */
4365 	if (!list_empty(&wq->pwqs)) {
4366 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4367 			return -EINVAL;
4368 
4369 		wq->flags &= ~__WQ_ORDERED;
4370 	}
4371 
4372 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4373 	if (IS_ERR(ctx))
4374 		return PTR_ERR(ctx);
4375 
4376 	/* the ctx has been prepared successfully, let's commit it */
4377 	apply_wqattrs_commit(ctx);
4378 	apply_wqattrs_cleanup(ctx);
4379 
4380 	return 0;
4381 }
4382 
4383 /**
4384  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4385  * @wq: the target workqueue
4386  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4387  *
4388  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
4389  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
4390  * work items are affine to the pod it was issued on. Older pwqs are released as
4391  * in-flight work items finish. Note that a work item which repeatedly requeues
4392  * itself back-to-back will stay on its current pwq.
4393  *
4394  * Performs GFP_KERNEL allocations.
4395  *
4396  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4397  *
4398  * Return: 0 on success and -errno on failure.
4399  */
4400 int apply_workqueue_attrs(struct workqueue_struct *wq,
4401 			  const struct workqueue_attrs *attrs)
4402 {
4403 	int ret;
4404 
4405 	lockdep_assert_cpus_held();
4406 
4407 	mutex_lock(&wq_pool_mutex);
4408 	ret = apply_workqueue_attrs_locked(wq, attrs);
4409 	mutex_unlock(&wq_pool_mutex);
4410 
4411 	return ret;
4412 }
4413 
4414 /**
4415  * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4416  * @wq: the target workqueue
4417  * @cpu: the CPU to update pool association for
4418  * @hotplug_cpu: the CPU coming up or going down
4419  * @online: whether @cpu is coming up or going down
4420  *
4421  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4422  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
4423  * @wq accordingly.
4424  *
4425  *
4426  * If pod affinity can't be adjusted due to memory allocation failure, it falls
4427  * back to @wq->dfl_pwq which may not be optimal but is always correct.
4428  *
4429  * Note that when the last allowed CPU of a pod goes offline for a workqueue
4430  * with a cpumask spanning multiple pods, the workers which were already
4431  * executing the work items for the workqueue will lose their CPU affinity and
4432  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
4433  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
4434  * responsibility to flush the work item from CPU_DOWN_PREPARE.
4435  */
4436 static void wq_update_pod(struct workqueue_struct *wq, int cpu,
4437 			  int hotplug_cpu, bool online)
4438 {
4439 	int off_cpu = online ? -1 : hotplug_cpu;
4440 	struct pool_workqueue *old_pwq = NULL, *pwq;
4441 	struct workqueue_attrs *target_attrs;
4442 	cpumask_t *cpumask;
4443 
4444 	lockdep_assert_held(&wq_pool_mutex);
4445 
4446 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4447 		return;
4448 
4449 	/*
4450 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4451 	 * Let's use a preallocated one.  The following buf is protected by
4452 	 * CPU hotplug exclusion.
4453 	 */
4454 	target_attrs = wq_update_pod_attrs_buf;
4455 	cpumask = wq_update_pod_cpumask_buf;
4456 
4457 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4458 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
4459 
4460 	/* nothing to do if the target cpumask matches the current pwq */
4461 	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu, cpumask);
4462 	pwq = rcu_dereference_protected(*per_cpu_ptr(wq->cpu_pwq, cpu),
4463 					lockdep_is_held(&wq_pool_mutex));
4464 	if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4465 		return;
4466 
4467 	/* create a new pwq */
4468 	cpumask_copy(target_attrs->cpumask, cpumask);
4469 	pwq = alloc_unbound_pwq(wq, target_attrs);
4470 	if (!pwq) {
4471 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
4472 			wq->name);
4473 		goto use_dfl_pwq;
4474 	}
4475 
4476 	/* Install the new pwq. */
4477 	mutex_lock(&wq->mutex);
4478 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
4479 	goto out_unlock;
4480 
4481 use_dfl_pwq:
4482 	mutex_lock(&wq->mutex);
4483 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4484 	get_pwq(wq->dfl_pwq);
4485 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4486 	old_pwq = install_unbound_pwq(wq, cpu, wq->dfl_pwq);
4487 out_unlock:
4488 	mutex_unlock(&wq->mutex);
4489 	put_pwq_unlocked(old_pwq);
4490 }
4491 
4492 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4493 {
4494 	bool highpri = wq->flags & WQ_HIGHPRI;
4495 	int cpu, ret;
4496 
4497 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
4498 	if (!wq->cpu_pwq)
4499 		goto enomem;
4500 
4501 	if (!(wq->flags & WQ_UNBOUND)) {
4502 		for_each_possible_cpu(cpu) {
4503 			struct pool_workqueue **pwq_p =
4504 				per_cpu_ptr(wq->cpu_pwq, cpu);
4505 			struct worker_pool *pool =
4506 				&(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]);
4507 
4508 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
4509 						       pool->node);
4510 			if (!*pwq_p)
4511 				goto enomem;
4512 
4513 			init_pwq(*pwq_p, wq, pool);
4514 
4515 			mutex_lock(&wq->mutex);
4516 			link_pwq(*pwq_p);
4517 			mutex_unlock(&wq->mutex);
4518 		}
4519 		return 0;
4520 	}
4521 
4522 	cpus_read_lock();
4523 	if (wq->flags & __WQ_ORDERED) {
4524 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4525 		/* there should only be single pwq for ordering guarantee */
4526 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4527 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4528 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4529 	} else {
4530 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4531 	}
4532 	cpus_read_unlock();
4533 
4534 	return ret;
4535 
4536 enomem:
4537 	if (wq->cpu_pwq) {
4538 		for_each_possible_cpu(cpu)
4539 			kfree(*per_cpu_ptr(wq->cpu_pwq, cpu));
4540 		free_percpu(wq->cpu_pwq);
4541 		wq->cpu_pwq = NULL;
4542 	}
4543 	return -ENOMEM;
4544 }
4545 
4546 static int wq_clamp_max_active(int max_active, unsigned int flags,
4547 			       const char *name)
4548 {
4549 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
4550 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4551 			max_active, name, 1, WQ_MAX_ACTIVE);
4552 
4553 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
4554 }
4555 
4556 /*
4557  * Workqueues which may be used during memory reclaim should have a rescuer
4558  * to guarantee forward progress.
4559  */
4560 static int init_rescuer(struct workqueue_struct *wq)
4561 {
4562 	struct worker *rescuer;
4563 	int ret;
4564 
4565 	if (!(wq->flags & WQ_MEM_RECLAIM))
4566 		return 0;
4567 
4568 	rescuer = alloc_worker(NUMA_NO_NODE);
4569 	if (!rescuer) {
4570 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
4571 		       wq->name);
4572 		return -ENOMEM;
4573 	}
4574 
4575 	rescuer->rescue_wq = wq;
4576 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4577 	if (IS_ERR(rescuer->task)) {
4578 		ret = PTR_ERR(rescuer->task);
4579 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
4580 		       wq->name, ERR_PTR(ret));
4581 		kfree(rescuer);
4582 		return ret;
4583 	}
4584 
4585 	wq->rescuer = rescuer;
4586 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4587 	wake_up_process(rescuer->task);
4588 
4589 	return 0;
4590 }
4591 
4592 __printf(1, 4)
4593 struct workqueue_struct *alloc_workqueue(const char *fmt,
4594 					 unsigned int flags,
4595 					 int max_active, ...)
4596 {
4597 	va_list args;
4598 	struct workqueue_struct *wq;
4599 	struct pool_workqueue *pwq;
4600 
4601 	/*
4602 	 * Unbound && max_active == 1 used to imply ordered, which is no longer
4603 	 * the case on many machines due to per-pod pools. While
4604 	 * alloc_ordered_workqueue() is the right way to create an ordered
4605 	 * workqueue, keep the previous behavior to avoid subtle breakages.
4606 	 */
4607 	if ((flags & WQ_UNBOUND) && max_active == 1)
4608 		flags |= __WQ_ORDERED;
4609 
4610 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4611 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4612 		flags |= WQ_UNBOUND;
4613 
4614 	/* allocate wq and format name */
4615 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
4616 	if (!wq)
4617 		return NULL;
4618 
4619 	if (flags & WQ_UNBOUND) {
4620 		wq->unbound_attrs = alloc_workqueue_attrs();
4621 		if (!wq->unbound_attrs)
4622 			goto err_free_wq;
4623 	}
4624 
4625 	va_start(args, max_active);
4626 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4627 	va_end(args);
4628 
4629 	max_active = max_active ?: WQ_DFL_ACTIVE;
4630 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4631 
4632 	/* init wq */
4633 	wq->flags = flags;
4634 	wq->saved_max_active = max_active;
4635 	mutex_init(&wq->mutex);
4636 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4637 	INIT_LIST_HEAD(&wq->pwqs);
4638 	INIT_LIST_HEAD(&wq->flusher_queue);
4639 	INIT_LIST_HEAD(&wq->flusher_overflow);
4640 	INIT_LIST_HEAD(&wq->maydays);
4641 
4642 	wq_init_lockdep(wq);
4643 	INIT_LIST_HEAD(&wq->list);
4644 
4645 	if (alloc_and_link_pwqs(wq) < 0)
4646 		goto err_unreg_lockdep;
4647 
4648 	if (wq_online && init_rescuer(wq) < 0)
4649 		goto err_destroy;
4650 
4651 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4652 		goto err_destroy;
4653 
4654 	/*
4655 	 * wq_pool_mutex protects global freeze state and workqueues list.
4656 	 * Grab it, adjust max_active and add the new @wq to workqueues
4657 	 * list.
4658 	 */
4659 	mutex_lock(&wq_pool_mutex);
4660 
4661 	mutex_lock(&wq->mutex);
4662 	for_each_pwq(pwq, wq)
4663 		pwq_adjust_max_active(pwq);
4664 	mutex_unlock(&wq->mutex);
4665 
4666 	list_add_tail_rcu(&wq->list, &workqueues);
4667 
4668 	mutex_unlock(&wq_pool_mutex);
4669 
4670 	return wq;
4671 
4672 err_unreg_lockdep:
4673 	wq_unregister_lockdep(wq);
4674 	wq_free_lockdep(wq);
4675 err_free_wq:
4676 	free_workqueue_attrs(wq->unbound_attrs);
4677 	kfree(wq);
4678 	return NULL;
4679 err_destroy:
4680 	destroy_workqueue(wq);
4681 	return NULL;
4682 }
4683 EXPORT_SYMBOL_GPL(alloc_workqueue);
4684 
4685 static bool pwq_busy(struct pool_workqueue *pwq)
4686 {
4687 	int i;
4688 
4689 	for (i = 0; i < WORK_NR_COLORS; i++)
4690 		if (pwq->nr_in_flight[i])
4691 			return true;
4692 
4693 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4694 		return true;
4695 	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4696 		return true;
4697 
4698 	return false;
4699 }
4700 
4701 /**
4702  * destroy_workqueue - safely terminate a workqueue
4703  * @wq: target workqueue
4704  *
4705  * Safely destroy a workqueue. All work currently pending will be done first.
4706  */
4707 void destroy_workqueue(struct workqueue_struct *wq)
4708 {
4709 	struct pool_workqueue *pwq;
4710 	int cpu;
4711 
4712 	/*
4713 	 * Remove it from sysfs first so that sanity check failure doesn't
4714 	 * lead to sysfs name conflicts.
4715 	 */
4716 	workqueue_sysfs_unregister(wq);
4717 
4718 	/* mark the workqueue destruction is in progress */
4719 	mutex_lock(&wq->mutex);
4720 	wq->flags |= __WQ_DESTROYING;
4721 	mutex_unlock(&wq->mutex);
4722 
4723 	/* drain it before proceeding with destruction */
4724 	drain_workqueue(wq);
4725 
4726 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4727 	if (wq->rescuer) {
4728 		struct worker *rescuer = wq->rescuer;
4729 
4730 		/* this prevents new queueing */
4731 		raw_spin_lock_irq(&wq_mayday_lock);
4732 		wq->rescuer = NULL;
4733 		raw_spin_unlock_irq(&wq_mayday_lock);
4734 
4735 		/* rescuer will empty maydays list before exiting */
4736 		kthread_stop(rescuer->task);
4737 		kfree(rescuer);
4738 	}
4739 
4740 	/*
4741 	 * Sanity checks - grab all the locks so that we wait for all
4742 	 * in-flight operations which may do put_pwq().
4743 	 */
4744 	mutex_lock(&wq_pool_mutex);
4745 	mutex_lock(&wq->mutex);
4746 	for_each_pwq(pwq, wq) {
4747 		raw_spin_lock_irq(&pwq->pool->lock);
4748 		if (WARN_ON(pwq_busy(pwq))) {
4749 			pr_warn("%s: %s has the following busy pwq\n",
4750 				__func__, wq->name);
4751 			show_pwq(pwq);
4752 			raw_spin_unlock_irq(&pwq->pool->lock);
4753 			mutex_unlock(&wq->mutex);
4754 			mutex_unlock(&wq_pool_mutex);
4755 			show_one_workqueue(wq);
4756 			return;
4757 		}
4758 		raw_spin_unlock_irq(&pwq->pool->lock);
4759 	}
4760 	mutex_unlock(&wq->mutex);
4761 
4762 	/*
4763 	 * wq list is used to freeze wq, remove from list after
4764 	 * flushing is complete in case freeze races us.
4765 	 */
4766 	list_del_rcu(&wq->list);
4767 	mutex_unlock(&wq_pool_mutex);
4768 
4769 	/*
4770 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
4771 	 * to put the base refs. @wq will be auto-destroyed from the last
4772 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
4773 	 */
4774 	rcu_read_lock();
4775 
4776 	for_each_possible_cpu(cpu) {
4777 		pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4778 		RCU_INIT_POINTER(*per_cpu_ptr(wq->cpu_pwq, cpu), NULL);
4779 		put_pwq_unlocked(pwq);
4780 	}
4781 
4782 	put_pwq_unlocked(wq->dfl_pwq);
4783 	wq->dfl_pwq = NULL;
4784 
4785 	rcu_read_unlock();
4786 }
4787 EXPORT_SYMBOL_GPL(destroy_workqueue);
4788 
4789 /**
4790  * workqueue_set_max_active - adjust max_active of a workqueue
4791  * @wq: target workqueue
4792  * @max_active: new max_active value.
4793  *
4794  * Set max_active of @wq to @max_active.
4795  *
4796  * CONTEXT:
4797  * Don't call from IRQ context.
4798  */
4799 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4800 {
4801 	struct pool_workqueue *pwq;
4802 
4803 	/* disallow meddling with max_active for ordered workqueues */
4804 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4805 		return;
4806 
4807 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4808 
4809 	mutex_lock(&wq->mutex);
4810 
4811 	wq->flags &= ~__WQ_ORDERED;
4812 	wq->saved_max_active = max_active;
4813 
4814 	for_each_pwq(pwq, wq)
4815 		pwq_adjust_max_active(pwq);
4816 
4817 	mutex_unlock(&wq->mutex);
4818 }
4819 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4820 
4821 /**
4822  * current_work - retrieve %current task's work struct
4823  *
4824  * Determine if %current task is a workqueue worker and what it's working on.
4825  * Useful to find out the context that the %current task is running in.
4826  *
4827  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4828  */
4829 struct work_struct *current_work(void)
4830 {
4831 	struct worker *worker = current_wq_worker();
4832 
4833 	return worker ? worker->current_work : NULL;
4834 }
4835 EXPORT_SYMBOL(current_work);
4836 
4837 /**
4838  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4839  *
4840  * Determine whether %current is a workqueue rescuer.  Can be used from
4841  * work functions to determine whether it's being run off the rescuer task.
4842  *
4843  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4844  */
4845 bool current_is_workqueue_rescuer(void)
4846 {
4847 	struct worker *worker = current_wq_worker();
4848 
4849 	return worker && worker->rescue_wq;
4850 }
4851 
4852 /**
4853  * workqueue_congested - test whether a workqueue is congested
4854  * @cpu: CPU in question
4855  * @wq: target workqueue
4856  *
4857  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4858  * no synchronization around this function and the test result is
4859  * unreliable and only useful as advisory hints or for debugging.
4860  *
4861  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4862  *
4863  * With the exception of ordered workqueues, all workqueues have per-cpu
4864  * pool_workqueues, each with its own congested state. A workqueue being
4865  * congested on one CPU doesn't mean that the workqueue is contested on any
4866  * other CPUs.
4867  *
4868  * Return:
4869  * %true if congested, %false otherwise.
4870  */
4871 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4872 {
4873 	struct pool_workqueue *pwq;
4874 	bool ret;
4875 
4876 	rcu_read_lock();
4877 	preempt_disable();
4878 
4879 	if (cpu == WORK_CPU_UNBOUND)
4880 		cpu = smp_processor_id();
4881 
4882 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4883 	ret = !list_empty(&pwq->inactive_works);
4884 
4885 	preempt_enable();
4886 	rcu_read_unlock();
4887 
4888 	return ret;
4889 }
4890 EXPORT_SYMBOL_GPL(workqueue_congested);
4891 
4892 /**
4893  * work_busy - test whether a work is currently pending or running
4894  * @work: the work to be tested
4895  *
4896  * Test whether @work is currently pending or running.  There is no
4897  * synchronization around this function and the test result is
4898  * unreliable and only useful as advisory hints or for debugging.
4899  *
4900  * Return:
4901  * OR'd bitmask of WORK_BUSY_* bits.
4902  */
4903 unsigned int work_busy(struct work_struct *work)
4904 {
4905 	struct worker_pool *pool;
4906 	unsigned long flags;
4907 	unsigned int ret = 0;
4908 
4909 	if (work_pending(work))
4910 		ret |= WORK_BUSY_PENDING;
4911 
4912 	rcu_read_lock();
4913 	pool = get_work_pool(work);
4914 	if (pool) {
4915 		raw_spin_lock_irqsave(&pool->lock, flags);
4916 		if (find_worker_executing_work(pool, work))
4917 			ret |= WORK_BUSY_RUNNING;
4918 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4919 	}
4920 	rcu_read_unlock();
4921 
4922 	return ret;
4923 }
4924 EXPORT_SYMBOL_GPL(work_busy);
4925 
4926 /**
4927  * set_worker_desc - set description for the current work item
4928  * @fmt: printf-style format string
4929  * @...: arguments for the format string
4930  *
4931  * This function can be called by a running work function to describe what
4932  * the work item is about.  If the worker task gets dumped, this
4933  * information will be printed out together to help debugging.  The
4934  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4935  */
4936 void set_worker_desc(const char *fmt, ...)
4937 {
4938 	struct worker *worker = current_wq_worker();
4939 	va_list args;
4940 
4941 	if (worker) {
4942 		va_start(args, fmt);
4943 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4944 		va_end(args);
4945 	}
4946 }
4947 EXPORT_SYMBOL_GPL(set_worker_desc);
4948 
4949 /**
4950  * print_worker_info - print out worker information and description
4951  * @log_lvl: the log level to use when printing
4952  * @task: target task
4953  *
4954  * If @task is a worker and currently executing a work item, print out the
4955  * name of the workqueue being serviced and worker description set with
4956  * set_worker_desc() by the currently executing work item.
4957  *
4958  * This function can be safely called on any task as long as the
4959  * task_struct itself is accessible.  While safe, this function isn't
4960  * synchronized and may print out mixups or garbages of limited length.
4961  */
4962 void print_worker_info(const char *log_lvl, struct task_struct *task)
4963 {
4964 	work_func_t *fn = NULL;
4965 	char name[WQ_NAME_LEN] = { };
4966 	char desc[WORKER_DESC_LEN] = { };
4967 	struct pool_workqueue *pwq = NULL;
4968 	struct workqueue_struct *wq = NULL;
4969 	struct worker *worker;
4970 
4971 	if (!(task->flags & PF_WQ_WORKER))
4972 		return;
4973 
4974 	/*
4975 	 * This function is called without any synchronization and @task
4976 	 * could be in any state.  Be careful with dereferences.
4977 	 */
4978 	worker = kthread_probe_data(task);
4979 
4980 	/*
4981 	 * Carefully copy the associated workqueue's workfn, name and desc.
4982 	 * Keep the original last '\0' in case the original is garbage.
4983 	 */
4984 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4985 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4986 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4987 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4988 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4989 
4990 	if (fn || name[0] || desc[0]) {
4991 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4992 		if (strcmp(name, desc))
4993 			pr_cont(" (%s)", desc);
4994 		pr_cont("\n");
4995 	}
4996 }
4997 
4998 static void pr_cont_pool_info(struct worker_pool *pool)
4999 {
5000 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5001 	if (pool->node != NUMA_NO_NODE)
5002 		pr_cont(" node=%d", pool->node);
5003 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
5004 }
5005 
5006 struct pr_cont_work_struct {
5007 	bool comma;
5008 	work_func_t func;
5009 	long ctr;
5010 };
5011 
5012 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5013 {
5014 	if (!pcwsp->ctr)
5015 		goto out_record;
5016 	if (func == pcwsp->func) {
5017 		pcwsp->ctr++;
5018 		return;
5019 	}
5020 	if (pcwsp->ctr == 1)
5021 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5022 	else
5023 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5024 	pcwsp->ctr = 0;
5025 out_record:
5026 	if ((long)func == -1L)
5027 		return;
5028 	pcwsp->comma = comma;
5029 	pcwsp->func = func;
5030 	pcwsp->ctr = 1;
5031 }
5032 
5033 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
5034 {
5035 	if (work->func == wq_barrier_func) {
5036 		struct wq_barrier *barr;
5037 
5038 		barr = container_of(work, struct wq_barrier, work);
5039 
5040 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5041 		pr_cont("%s BAR(%d)", comma ? "," : "",
5042 			task_pid_nr(barr->task));
5043 	} else {
5044 		if (!comma)
5045 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5046 		pr_cont_work_flush(comma, work->func, pcwsp);
5047 	}
5048 }
5049 
5050 static void show_pwq(struct pool_workqueue *pwq)
5051 {
5052 	struct pr_cont_work_struct pcws = { .ctr = 0, };
5053 	struct worker_pool *pool = pwq->pool;
5054 	struct work_struct *work;
5055 	struct worker *worker;
5056 	bool has_in_flight = false, has_pending = false;
5057 	int bkt;
5058 
5059 	pr_info("  pwq %d:", pool->id);
5060 	pr_cont_pool_info(pool);
5061 
5062 	pr_cont(" active=%d/%d refcnt=%d%s\n",
5063 		pwq->nr_active, pwq->max_active, pwq->refcnt,
5064 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5065 
5066 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5067 		if (worker->current_pwq == pwq) {
5068 			has_in_flight = true;
5069 			break;
5070 		}
5071 	}
5072 	if (has_in_flight) {
5073 		bool comma = false;
5074 
5075 		pr_info("    in-flight:");
5076 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5077 			if (worker->current_pwq != pwq)
5078 				continue;
5079 
5080 			pr_cont("%s %d%s:%ps", comma ? "," : "",
5081 				task_pid_nr(worker->task),
5082 				worker->rescue_wq ? "(RESCUER)" : "",
5083 				worker->current_func);
5084 			list_for_each_entry(work, &worker->scheduled, entry)
5085 				pr_cont_work(false, work, &pcws);
5086 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5087 			comma = true;
5088 		}
5089 		pr_cont("\n");
5090 	}
5091 
5092 	list_for_each_entry(work, &pool->worklist, entry) {
5093 		if (get_work_pwq(work) == pwq) {
5094 			has_pending = true;
5095 			break;
5096 		}
5097 	}
5098 	if (has_pending) {
5099 		bool comma = false;
5100 
5101 		pr_info("    pending:");
5102 		list_for_each_entry(work, &pool->worklist, entry) {
5103 			if (get_work_pwq(work) != pwq)
5104 				continue;
5105 
5106 			pr_cont_work(comma, work, &pcws);
5107 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5108 		}
5109 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5110 		pr_cont("\n");
5111 	}
5112 
5113 	if (!list_empty(&pwq->inactive_works)) {
5114 		bool comma = false;
5115 
5116 		pr_info("    inactive:");
5117 		list_for_each_entry(work, &pwq->inactive_works, entry) {
5118 			pr_cont_work(comma, work, &pcws);
5119 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5120 		}
5121 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5122 		pr_cont("\n");
5123 	}
5124 }
5125 
5126 /**
5127  * show_one_workqueue - dump state of specified workqueue
5128  * @wq: workqueue whose state will be printed
5129  */
5130 void show_one_workqueue(struct workqueue_struct *wq)
5131 {
5132 	struct pool_workqueue *pwq;
5133 	bool idle = true;
5134 	unsigned long flags;
5135 
5136 	for_each_pwq(pwq, wq) {
5137 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5138 			idle = false;
5139 			break;
5140 		}
5141 	}
5142 	if (idle) /* Nothing to print for idle workqueue */
5143 		return;
5144 
5145 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
5146 
5147 	for_each_pwq(pwq, wq) {
5148 		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5149 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5150 			/*
5151 			 * Defer printing to avoid deadlocks in console
5152 			 * drivers that queue work while holding locks
5153 			 * also taken in their write paths.
5154 			 */
5155 			printk_deferred_enter();
5156 			show_pwq(pwq);
5157 			printk_deferred_exit();
5158 		}
5159 		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5160 		/*
5161 		 * We could be printing a lot from atomic context, e.g.
5162 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
5163 		 * hard lockup.
5164 		 */
5165 		touch_nmi_watchdog();
5166 	}
5167 
5168 }
5169 
5170 /**
5171  * show_one_worker_pool - dump state of specified worker pool
5172  * @pool: worker pool whose state will be printed
5173  */
5174 static void show_one_worker_pool(struct worker_pool *pool)
5175 {
5176 	struct worker *worker;
5177 	bool first = true;
5178 	unsigned long flags;
5179 	unsigned long hung = 0;
5180 
5181 	raw_spin_lock_irqsave(&pool->lock, flags);
5182 	if (pool->nr_workers == pool->nr_idle)
5183 		goto next_pool;
5184 
5185 	/* How long the first pending work is waiting for a worker. */
5186 	if (!list_empty(&pool->worklist))
5187 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5188 
5189 	/*
5190 	 * Defer printing to avoid deadlocks in console drivers that
5191 	 * queue work while holding locks also taken in their write
5192 	 * paths.
5193 	 */
5194 	printk_deferred_enter();
5195 	pr_info("pool %d:", pool->id);
5196 	pr_cont_pool_info(pool);
5197 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
5198 	if (pool->manager)
5199 		pr_cont(" manager: %d",
5200 			task_pid_nr(pool->manager->task));
5201 	list_for_each_entry(worker, &pool->idle_list, entry) {
5202 		pr_cont(" %s%d", first ? "idle: " : "",
5203 			task_pid_nr(worker->task));
5204 		first = false;
5205 	}
5206 	pr_cont("\n");
5207 	printk_deferred_exit();
5208 next_pool:
5209 	raw_spin_unlock_irqrestore(&pool->lock, flags);
5210 	/*
5211 	 * We could be printing a lot from atomic context, e.g.
5212 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
5213 	 * hard lockup.
5214 	 */
5215 	touch_nmi_watchdog();
5216 
5217 }
5218 
5219 /**
5220  * show_all_workqueues - dump workqueue state
5221  *
5222  * Called from a sysrq handler and prints out all busy workqueues and pools.
5223  */
5224 void show_all_workqueues(void)
5225 {
5226 	struct workqueue_struct *wq;
5227 	struct worker_pool *pool;
5228 	int pi;
5229 
5230 	rcu_read_lock();
5231 
5232 	pr_info("Showing busy workqueues and worker pools:\n");
5233 
5234 	list_for_each_entry_rcu(wq, &workqueues, list)
5235 		show_one_workqueue(wq);
5236 
5237 	for_each_pool(pool, pi)
5238 		show_one_worker_pool(pool);
5239 
5240 	rcu_read_unlock();
5241 }
5242 
5243 /**
5244  * show_freezable_workqueues - dump freezable workqueue state
5245  *
5246  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5247  * still busy.
5248  */
5249 void show_freezable_workqueues(void)
5250 {
5251 	struct workqueue_struct *wq;
5252 
5253 	rcu_read_lock();
5254 
5255 	pr_info("Showing freezable workqueues that are still busy:\n");
5256 
5257 	list_for_each_entry_rcu(wq, &workqueues, list) {
5258 		if (!(wq->flags & WQ_FREEZABLE))
5259 			continue;
5260 		show_one_workqueue(wq);
5261 	}
5262 
5263 	rcu_read_unlock();
5264 }
5265 
5266 /* used to show worker information through /proc/PID/{comm,stat,status} */
5267 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5268 {
5269 	int off;
5270 
5271 	/* always show the actual comm */
5272 	off = strscpy(buf, task->comm, size);
5273 	if (off < 0)
5274 		return;
5275 
5276 	/* stabilize PF_WQ_WORKER and worker pool association */
5277 	mutex_lock(&wq_pool_attach_mutex);
5278 
5279 	if (task->flags & PF_WQ_WORKER) {
5280 		struct worker *worker = kthread_data(task);
5281 		struct worker_pool *pool = worker->pool;
5282 
5283 		if (pool) {
5284 			raw_spin_lock_irq(&pool->lock);
5285 			/*
5286 			 * ->desc tracks information (wq name or
5287 			 * set_worker_desc()) for the latest execution.  If
5288 			 * current, prepend '+', otherwise '-'.
5289 			 */
5290 			if (worker->desc[0] != '\0') {
5291 				if (worker->current_work)
5292 					scnprintf(buf + off, size - off, "+%s",
5293 						  worker->desc);
5294 				else
5295 					scnprintf(buf + off, size - off, "-%s",
5296 						  worker->desc);
5297 			}
5298 			raw_spin_unlock_irq(&pool->lock);
5299 		}
5300 	}
5301 
5302 	mutex_unlock(&wq_pool_attach_mutex);
5303 }
5304 
5305 #ifdef CONFIG_SMP
5306 
5307 /*
5308  * CPU hotplug.
5309  *
5310  * There are two challenges in supporting CPU hotplug.  Firstly, there
5311  * are a lot of assumptions on strong associations among work, pwq and
5312  * pool which make migrating pending and scheduled works very
5313  * difficult to implement without impacting hot paths.  Secondly,
5314  * worker pools serve mix of short, long and very long running works making
5315  * blocked draining impractical.
5316  *
5317  * This is solved by allowing the pools to be disassociated from the CPU
5318  * running as an unbound one and allowing it to be reattached later if the
5319  * cpu comes back online.
5320  */
5321 
5322 static void unbind_workers(int cpu)
5323 {
5324 	struct worker_pool *pool;
5325 	struct worker *worker;
5326 
5327 	for_each_cpu_worker_pool(pool, cpu) {
5328 		mutex_lock(&wq_pool_attach_mutex);
5329 		raw_spin_lock_irq(&pool->lock);
5330 
5331 		/*
5332 		 * We've blocked all attach/detach operations. Make all workers
5333 		 * unbound and set DISASSOCIATED.  Before this, all workers
5334 		 * must be on the cpu.  After this, they may become diasporas.
5335 		 * And the preemption disabled section in their sched callbacks
5336 		 * are guaranteed to see WORKER_UNBOUND since the code here
5337 		 * is on the same cpu.
5338 		 */
5339 		for_each_pool_worker(worker, pool)
5340 			worker->flags |= WORKER_UNBOUND;
5341 
5342 		pool->flags |= POOL_DISASSOCIATED;
5343 
5344 		/*
5345 		 * The handling of nr_running in sched callbacks are disabled
5346 		 * now.  Zap nr_running.  After this, nr_running stays zero and
5347 		 * need_more_worker() and keep_working() are always true as
5348 		 * long as the worklist is not empty.  This pool now behaves as
5349 		 * an unbound (in terms of concurrency management) pool which
5350 		 * are served by workers tied to the pool.
5351 		 */
5352 		pool->nr_running = 0;
5353 
5354 		/*
5355 		 * With concurrency management just turned off, a busy
5356 		 * worker blocking could lead to lengthy stalls.  Kick off
5357 		 * unbound chain execution of currently pending work items.
5358 		 */
5359 		wake_up_worker(pool);
5360 
5361 		raw_spin_unlock_irq(&pool->lock);
5362 
5363 		for_each_pool_worker(worker, pool)
5364 			unbind_worker(worker);
5365 
5366 		mutex_unlock(&wq_pool_attach_mutex);
5367 	}
5368 }
5369 
5370 /**
5371  * rebind_workers - rebind all workers of a pool to the associated CPU
5372  * @pool: pool of interest
5373  *
5374  * @pool->cpu is coming online.  Rebind all workers to the CPU.
5375  */
5376 static void rebind_workers(struct worker_pool *pool)
5377 {
5378 	struct worker *worker;
5379 
5380 	lockdep_assert_held(&wq_pool_attach_mutex);
5381 
5382 	/*
5383 	 * Restore CPU affinity of all workers.  As all idle workers should
5384 	 * be on the run-queue of the associated CPU before any local
5385 	 * wake-ups for concurrency management happen, restore CPU affinity
5386 	 * of all workers first and then clear UNBOUND.  As we're called
5387 	 * from CPU_ONLINE, the following shouldn't fail.
5388 	 */
5389 	for_each_pool_worker(worker, pool) {
5390 		kthread_set_per_cpu(worker->task, pool->cpu);
5391 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5392 						  pool->attrs->cpumask) < 0);
5393 	}
5394 
5395 	raw_spin_lock_irq(&pool->lock);
5396 
5397 	pool->flags &= ~POOL_DISASSOCIATED;
5398 
5399 	for_each_pool_worker(worker, pool) {
5400 		unsigned int worker_flags = worker->flags;
5401 
5402 		/*
5403 		 * We want to clear UNBOUND but can't directly call
5404 		 * worker_clr_flags() or adjust nr_running.  Atomically
5405 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5406 		 * @worker will clear REBOUND using worker_clr_flags() when
5407 		 * it initiates the next execution cycle thus restoring
5408 		 * concurrency management.  Note that when or whether
5409 		 * @worker clears REBOUND doesn't affect correctness.
5410 		 *
5411 		 * WRITE_ONCE() is necessary because @worker->flags may be
5412 		 * tested without holding any lock in
5413 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5414 		 * fail incorrectly leading to premature concurrency
5415 		 * management operations.
5416 		 */
5417 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5418 		worker_flags |= WORKER_REBOUND;
5419 		worker_flags &= ~WORKER_UNBOUND;
5420 		WRITE_ONCE(worker->flags, worker_flags);
5421 	}
5422 
5423 	raw_spin_unlock_irq(&pool->lock);
5424 }
5425 
5426 /**
5427  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5428  * @pool: unbound pool of interest
5429  * @cpu: the CPU which is coming up
5430  *
5431  * An unbound pool may end up with a cpumask which doesn't have any online
5432  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5433  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5434  * online CPU before, cpus_allowed of all its workers should be restored.
5435  */
5436 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5437 {
5438 	static cpumask_t cpumask;
5439 	struct worker *worker;
5440 
5441 	lockdep_assert_held(&wq_pool_attach_mutex);
5442 
5443 	/* is @cpu allowed for @pool? */
5444 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5445 		return;
5446 
5447 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5448 
5449 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5450 	for_each_pool_worker(worker, pool)
5451 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5452 }
5453 
5454 int workqueue_prepare_cpu(unsigned int cpu)
5455 {
5456 	struct worker_pool *pool;
5457 
5458 	for_each_cpu_worker_pool(pool, cpu) {
5459 		if (pool->nr_workers)
5460 			continue;
5461 		if (!create_worker(pool))
5462 			return -ENOMEM;
5463 	}
5464 	return 0;
5465 }
5466 
5467 int workqueue_online_cpu(unsigned int cpu)
5468 {
5469 	struct worker_pool *pool;
5470 	struct workqueue_struct *wq;
5471 	int pi;
5472 
5473 	mutex_lock(&wq_pool_mutex);
5474 
5475 	for_each_pool(pool, pi) {
5476 		mutex_lock(&wq_pool_attach_mutex);
5477 
5478 		if (pool->cpu == cpu)
5479 			rebind_workers(pool);
5480 		else if (pool->cpu < 0)
5481 			restore_unbound_workers_cpumask(pool, cpu);
5482 
5483 		mutex_unlock(&wq_pool_attach_mutex);
5484 	}
5485 
5486 	/* update pod affinity of unbound workqueues */
5487 	list_for_each_entry(wq, &workqueues, list) {
5488 		struct workqueue_attrs *attrs = wq->unbound_attrs;
5489 
5490 		if (attrs) {
5491 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5492 			int tcpu;
5493 
5494 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5495 				wq_update_pod(wq, tcpu, cpu, true);
5496 		}
5497 	}
5498 
5499 	mutex_unlock(&wq_pool_mutex);
5500 	return 0;
5501 }
5502 
5503 int workqueue_offline_cpu(unsigned int cpu)
5504 {
5505 	struct workqueue_struct *wq;
5506 
5507 	/* unbinding per-cpu workers should happen on the local CPU */
5508 	if (WARN_ON(cpu != smp_processor_id()))
5509 		return -1;
5510 
5511 	unbind_workers(cpu);
5512 
5513 	/* update pod affinity of unbound workqueues */
5514 	mutex_lock(&wq_pool_mutex);
5515 	list_for_each_entry(wq, &workqueues, list) {
5516 		struct workqueue_attrs *attrs = wq->unbound_attrs;
5517 
5518 		if (attrs) {
5519 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5520 			int tcpu;
5521 
5522 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5523 				wq_update_pod(wq, tcpu, cpu, false);
5524 		}
5525 	}
5526 	mutex_unlock(&wq_pool_mutex);
5527 
5528 	return 0;
5529 }
5530 
5531 struct work_for_cpu {
5532 	struct work_struct work;
5533 	long (*fn)(void *);
5534 	void *arg;
5535 	long ret;
5536 };
5537 
5538 static void work_for_cpu_fn(struct work_struct *work)
5539 {
5540 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5541 
5542 	wfc->ret = wfc->fn(wfc->arg);
5543 }
5544 
5545 /**
5546  * work_on_cpu - run a function in thread context on a particular cpu
5547  * @cpu: the cpu to run on
5548  * @fn: the function to run
5549  * @arg: the function arg
5550  *
5551  * It is up to the caller to ensure that the cpu doesn't go offline.
5552  * The caller must not hold any locks which would prevent @fn from completing.
5553  *
5554  * Return: The value @fn returns.
5555  */
5556 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5557 {
5558 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5559 
5560 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5561 	schedule_work_on(cpu, &wfc.work);
5562 	flush_work(&wfc.work);
5563 	destroy_work_on_stack(&wfc.work);
5564 	return wfc.ret;
5565 }
5566 EXPORT_SYMBOL_GPL(work_on_cpu);
5567 
5568 /**
5569  * work_on_cpu_safe - run a function in thread context on a particular cpu
5570  * @cpu: the cpu to run on
5571  * @fn:  the function to run
5572  * @arg: the function argument
5573  *
5574  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5575  * any locks which would prevent @fn from completing.
5576  *
5577  * Return: The value @fn returns.
5578  */
5579 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5580 {
5581 	long ret = -ENODEV;
5582 
5583 	cpus_read_lock();
5584 	if (cpu_online(cpu))
5585 		ret = work_on_cpu(cpu, fn, arg);
5586 	cpus_read_unlock();
5587 	return ret;
5588 }
5589 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5590 #endif /* CONFIG_SMP */
5591 
5592 #ifdef CONFIG_FREEZER
5593 
5594 /**
5595  * freeze_workqueues_begin - begin freezing workqueues
5596  *
5597  * Start freezing workqueues.  After this function returns, all freezable
5598  * workqueues will queue new works to their inactive_works list instead of
5599  * pool->worklist.
5600  *
5601  * CONTEXT:
5602  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5603  */
5604 void freeze_workqueues_begin(void)
5605 {
5606 	struct workqueue_struct *wq;
5607 	struct pool_workqueue *pwq;
5608 
5609 	mutex_lock(&wq_pool_mutex);
5610 
5611 	WARN_ON_ONCE(workqueue_freezing);
5612 	workqueue_freezing = true;
5613 
5614 	list_for_each_entry(wq, &workqueues, list) {
5615 		mutex_lock(&wq->mutex);
5616 		for_each_pwq(pwq, wq)
5617 			pwq_adjust_max_active(pwq);
5618 		mutex_unlock(&wq->mutex);
5619 	}
5620 
5621 	mutex_unlock(&wq_pool_mutex);
5622 }
5623 
5624 /**
5625  * freeze_workqueues_busy - are freezable workqueues still busy?
5626  *
5627  * Check whether freezing is complete.  This function must be called
5628  * between freeze_workqueues_begin() and thaw_workqueues().
5629  *
5630  * CONTEXT:
5631  * Grabs and releases wq_pool_mutex.
5632  *
5633  * Return:
5634  * %true if some freezable workqueues are still busy.  %false if freezing
5635  * is complete.
5636  */
5637 bool freeze_workqueues_busy(void)
5638 {
5639 	bool busy = false;
5640 	struct workqueue_struct *wq;
5641 	struct pool_workqueue *pwq;
5642 
5643 	mutex_lock(&wq_pool_mutex);
5644 
5645 	WARN_ON_ONCE(!workqueue_freezing);
5646 
5647 	list_for_each_entry(wq, &workqueues, list) {
5648 		if (!(wq->flags & WQ_FREEZABLE))
5649 			continue;
5650 		/*
5651 		 * nr_active is monotonically decreasing.  It's safe
5652 		 * to peek without lock.
5653 		 */
5654 		rcu_read_lock();
5655 		for_each_pwq(pwq, wq) {
5656 			WARN_ON_ONCE(pwq->nr_active < 0);
5657 			if (pwq->nr_active) {
5658 				busy = true;
5659 				rcu_read_unlock();
5660 				goto out_unlock;
5661 			}
5662 		}
5663 		rcu_read_unlock();
5664 	}
5665 out_unlock:
5666 	mutex_unlock(&wq_pool_mutex);
5667 	return busy;
5668 }
5669 
5670 /**
5671  * thaw_workqueues - thaw workqueues
5672  *
5673  * Thaw workqueues.  Normal queueing is restored and all collected
5674  * frozen works are transferred to their respective pool worklists.
5675  *
5676  * CONTEXT:
5677  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5678  */
5679 void thaw_workqueues(void)
5680 {
5681 	struct workqueue_struct *wq;
5682 	struct pool_workqueue *pwq;
5683 
5684 	mutex_lock(&wq_pool_mutex);
5685 
5686 	if (!workqueue_freezing)
5687 		goto out_unlock;
5688 
5689 	workqueue_freezing = false;
5690 
5691 	/* restore max_active and repopulate worklist */
5692 	list_for_each_entry(wq, &workqueues, list) {
5693 		mutex_lock(&wq->mutex);
5694 		for_each_pwq(pwq, wq)
5695 			pwq_adjust_max_active(pwq);
5696 		mutex_unlock(&wq->mutex);
5697 	}
5698 
5699 out_unlock:
5700 	mutex_unlock(&wq_pool_mutex);
5701 }
5702 #endif /* CONFIG_FREEZER */
5703 
5704 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5705 {
5706 	LIST_HEAD(ctxs);
5707 	int ret = 0;
5708 	struct workqueue_struct *wq;
5709 	struct apply_wqattrs_ctx *ctx, *n;
5710 
5711 	lockdep_assert_held(&wq_pool_mutex);
5712 
5713 	list_for_each_entry(wq, &workqueues, list) {
5714 		if (!(wq->flags & WQ_UNBOUND))
5715 			continue;
5716 		/* creating multiple pwqs breaks ordering guarantee */
5717 		if (wq->flags & __WQ_ORDERED)
5718 			continue;
5719 
5720 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
5721 		if (IS_ERR(ctx)) {
5722 			ret = PTR_ERR(ctx);
5723 			break;
5724 		}
5725 
5726 		list_add_tail(&ctx->list, &ctxs);
5727 	}
5728 
5729 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5730 		if (!ret)
5731 			apply_wqattrs_commit(ctx);
5732 		apply_wqattrs_cleanup(ctx);
5733 	}
5734 
5735 	if (!ret) {
5736 		mutex_lock(&wq_pool_attach_mutex);
5737 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5738 		mutex_unlock(&wq_pool_attach_mutex);
5739 	}
5740 	return ret;
5741 }
5742 
5743 /**
5744  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5745  *  @cpumask: the cpumask to set
5746  *
5747  *  The low-level workqueues cpumask is a global cpumask that limits
5748  *  the affinity of all unbound workqueues.  This function check the @cpumask
5749  *  and apply it to all unbound workqueues and updates all pwqs of them.
5750  *
5751  *  Return:	0	- Success
5752  *  		-EINVAL	- Invalid @cpumask
5753  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5754  */
5755 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5756 {
5757 	int ret = -EINVAL;
5758 
5759 	/*
5760 	 * Not excluding isolated cpus on purpose.
5761 	 * If the user wishes to include them, we allow that.
5762 	 */
5763 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5764 	if (!cpumask_empty(cpumask)) {
5765 		apply_wqattrs_lock();
5766 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5767 			ret = 0;
5768 			goto out_unlock;
5769 		}
5770 
5771 		ret = workqueue_apply_unbound_cpumask(cpumask);
5772 
5773 out_unlock:
5774 		apply_wqattrs_unlock();
5775 	}
5776 
5777 	return ret;
5778 }
5779 
5780 #ifdef CONFIG_SYSFS
5781 /*
5782  * Workqueues with WQ_SYSFS flag set is visible to userland via
5783  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5784  * following attributes.
5785  *
5786  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5787  *  max_active	RW int	: maximum number of in-flight work items
5788  *
5789  * Unbound workqueues have the following extra attributes.
5790  *
5791  *  nice	RW int	: nice value of the workers
5792  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5793  */
5794 struct wq_device {
5795 	struct workqueue_struct		*wq;
5796 	struct device			dev;
5797 };
5798 
5799 static struct workqueue_struct *dev_to_wq(struct device *dev)
5800 {
5801 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5802 
5803 	return wq_dev->wq;
5804 }
5805 
5806 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5807 			    char *buf)
5808 {
5809 	struct workqueue_struct *wq = dev_to_wq(dev);
5810 
5811 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5812 }
5813 static DEVICE_ATTR_RO(per_cpu);
5814 
5815 static ssize_t max_active_show(struct device *dev,
5816 			       struct device_attribute *attr, char *buf)
5817 {
5818 	struct workqueue_struct *wq = dev_to_wq(dev);
5819 
5820 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5821 }
5822 
5823 static ssize_t max_active_store(struct device *dev,
5824 				struct device_attribute *attr, const char *buf,
5825 				size_t count)
5826 {
5827 	struct workqueue_struct *wq = dev_to_wq(dev);
5828 	int val;
5829 
5830 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5831 		return -EINVAL;
5832 
5833 	workqueue_set_max_active(wq, val);
5834 	return count;
5835 }
5836 static DEVICE_ATTR_RW(max_active);
5837 
5838 static struct attribute *wq_sysfs_attrs[] = {
5839 	&dev_attr_per_cpu.attr,
5840 	&dev_attr_max_active.attr,
5841 	NULL,
5842 };
5843 ATTRIBUTE_GROUPS(wq_sysfs);
5844 
5845 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5846 			    char *buf)
5847 {
5848 	struct workqueue_struct *wq = dev_to_wq(dev);
5849 	int written;
5850 
5851 	mutex_lock(&wq->mutex);
5852 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5853 	mutex_unlock(&wq->mutex);
5854 
5855 	return written;
5856 }
5857 
5858 /* prepare workqueue_attrs for sysfs store operations */
5859 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5860 {
5861 	struct workqueue_attrs *attrs;
5862 
5863 	lockdep_assert_held(&wq_pool_mutex);
5864 
5865 	attrs = alloc_workqueue_attrs();
5866 	if (!attrs)
5867 		return NULL;
5868 
5869 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5870 	return attrs;
5871 }
5872 
5873 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5874 			     const char *buf, size_t count)
5875 {
5876 	struct workqueue_struct *wq = dev_to_wq(dev);
5877 	struct workqueue_attrs *attrs;
5878 	int ret = -ENOMEM;
5879 
5880 	apply_wqattrs_lock();
5881 
5882 	attrs = wq_sysfs_prep_attrs(wq);
5883 	if (!attrs)
5884 		goto out_unlock;
5885 
5886 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5887 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5888 		ret = apply_workqueue_attrs_locked(wq, attrs);
5889 	else
5890 		ret = -EINVAL;
5891 
5892 out_unlock:
5893 	apply_wqattrs_unlock();
5894 	free_workqueue_attrs(attrs);
5895 	return ret ?: count;
5896 }
5897 
5898 static ssize_t wq_cpumask_show(struct device *dev,
5899 			       struct device_attribute *attr, char *buf)
5900 {
5901 	struct workqueue_struct *wq = dev_to_wq(dev);
5902 	int written;
5903 
5904 	mutex_lock(&wq->mutex);
5905 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5906 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5907 	mutex_unlock(&wq->mutex);
5908 	return written;
5909 }
5910 
5911 static ssize_t wq_cpumask_store(struct device *dev,
5912 				struct device_attribute *attr,
5913 				const char *buf, size_t count)
5914 {
5915 	struct workqueue_struct *wq = dev_to_wq(dev);
5916 	struct workqueue_attrs *attrs;
5917 	int ret = -ENOMEM;
5918 
5919 	apply_wqattrs_lock();
5920 
5921 	attrs = wq_sysfs_prep_attrs(wq);
5922 	if (!attrs)
5923 		goto out_unlock;
5924 
5925 	ret = cpumask_parse(buf, attrs->cpumask);
5926 	if (!ret)
5927 		ret = apply_workqueue_attrs_locked(wq, attrs);
5928 
5929 out_unlock:
5930 	apply_wqattrs_unlock();
5931 	free_workqueue_attrs(attrs);
5932 	return ret ?: count;
5933 }
5934 
5935 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5936 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5937 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5938 	__ATTR_NULL,
5939 };
5940 
5941 static struct bus_type wq_subsys = {
5942 	.name				= "workqueue",
5943 	.dev_groups			= wq_sysfs_groups,
5944 };
5945 
5946 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5947 		struct device_attribute *attr, char *buf)
5948 {
5949 	int written;
5950 
5951 	mutex_lock(&wq_pool_mutex);
5952 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5953 			    cpumask_pr_args(wq_unbound_cpumask));
5954 	mutex_unlock(&wq_pool_mutex);
5955 
5956 	return written;
5957 }
5958 
5959 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5960 		struct device_attribute *attr, const char *buf, size_t count)
5961 {
5962 	cpumask_var_t cpumask;
5963 	int ret;
5964 
5965 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5966 		return -ENOMEM;
5967 
5968 	ret = cpumask_parse(buf, cpumask);
5969 	if (!ret)
5970 		ret = workqueue_set_unbound_cpumask(cpumask);
5971 
5972 	free_cpumask_var(cpumask);
5973 	return ret ? ret : count;
5974 }
5975 
5976 static struct device_attribute wq_sysfs_cpumask_attr =
5977 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5978 	       wq_unbound_cpumask_store);
5979 
5980 static int __init wq_sysfs_init(void)
5981 {
5982 	struct device *dev_root;
5983 	int err;
5984 
5985 	err = subsys_virtual_register(&wq_subsys, NULL);
5986 	if (err)
5987 		return err;
5988 
5989 	dev_root = bus_get_dev_root(&wq_subsys);
5990 	if (dev_root) {
5991 		err = device_create_file(dev_root, &wq_sysfs_cpumask_attr);
5992 		put_device(dev_root);
5993 	}
5994 	return err;
5995 }
5996 core_initcall(wq_sysfs_init);
5997 
5998 static void wq_device_release(struct device *dev)
5999 {
6000 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6001 
6002 	kfree(wq_dev);
6003 }
6004 
6005 /**
6006  * workqueue_sysfs_register - make a workqueue visible in sysfs
6007  * @wq: the workqueue to register
6008  *
6009  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
6010  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
6011  * which is the preferred method.
6012  *
6013  * Workqueue user should use this function directly iff it wants to apply
6014  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
6015  * apply_workqueue_attrs() may race against userland updating the
6016  * attributes.
6017  *
6018  * Return: 0 on success, -errno on failure.
6019  */
6020 int workqueue_sysfs_register(struct workqueue_struct *wq)
6021 {
6022 	struct wq_device *wq_dev;
6023 	int ret;
6024 
6025 	/*
6026 	 * Adjusting max_active or creating new pwqs by applying
6027 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
6028 	 * workqueues.
6029 	 */
6030 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6031 		return -EINVAL;
6032 
6033 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
6034 	if (!wq_dev)
6035 		return -ENOMEM;
6036 
6037 	wq_dev->wq = wq;
6038 	wq_dev->dev.bus = &wq_subsys;
6039 	wq_dev->dev.release = wq_device_release;
6040 	dev_set_name(&wq_dev->dev, "%s", wq->name);
6041 
6042 	/*
6043 	 * unbound_attrs are created separately.  Suppress uevent until
6044 	 * everything is ready.
6045 	 */
6046 	dev_set_uevent_suppress(&wq_dev->dev, true);
6047 
6048 	ret = device_register(&wq_dev->dev);
6049 	if (ret) {
6050 		put_device(&wq_dev->dev);
6051 		wq->wq_dev = NULL;
6052 		return ret;
6053 	}
6054 
6055 	if (wq->flags & WQ_UNBOUND) {
6056 		struct device_attribute *attr;
6057 
6058 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
6059 			ret = device_create_file(&wq_dev->dev, attr);
6060 			if (ret) {
6061 				device_unregister(&wq_dev->dev);
6062 				wq->wq_dev = NULL;
6063 				return ret;
6064 			}
6065 		}
6066 	}
6067 
6068 	dev_set_uevent_suppress(&wq_dev->dev, false);
6069 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
6070 	return 0;
6071 }
6072 
6073 /**
6074  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
6075  * @wq: the workqueue to unregister
6076  *
6077  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
6078  */
6079 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
6080 {
6081 	struct wq_device *wq_dev = wq->wq_dev;
6082 
6083 	if (!wq->wq_dev)
6084 		return;
6085 
6086 	wq->wq_dev = NULL;
6087 	device_unregister(&wq_dev->dev);
6088 }
6089 #else	/* CONFIG_SYSFS */
6090 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
6091 #endif	/* CONFIG_SYSFS */
6092 
6093 /*
6094  * Workqueue watchdog.
6095  *
6096  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
6097  * flush dependency, a concurrency managed work item which stays RUNNING
6098  * indefinitely.  Workqueue stalls can be very difficult to debug as the
6099  * usual warning mechanisms don't trigger and internal workqueue state is
6100  * largely opaque.
6101  *
6102  * Workqueue watchdog monitors all worker pools periodically and dumps
6103  * state if some pools failed to make forward progress for a while where
6104  * forward progress is defined as the first item on ->worklist changing.
6105  *
6106  * This mechanism is controlled through the kernel parameter
6107  * "workqueue.watchdog_thresh" which can be updated at runtime through the
6108  * corresponding sysfs parameter file.
6109  */
6110 #ifdef CONFIG_WQ_WATCHDOG
6111 
6112 static unsigned long wq_watchdog_thresh = 30;
6113 static struct timer_list wq_watchdog_timer;
6114 
6115 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6116 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6117 
6118 /*
6119  * Show workers that might prevent the processing of pending work items.
6120  * The only candidates are CPU-bound workers in the running state.
6121  * Pending work items should be handled by another idle worker
6122  * in all other situations.
6123  */
6124 static void show_cpu_pool_hog(struct worker_pool *pool)
6125 {
6126 	struct worker *worker;
6127 	unsigned long flags;
6128 	int bkt;
6129 
6130 	raw_spin_lock_irqsave(&pool->lock, flags);
6131 
6132 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6133 		if (task_is_running(worker->task)) {
6134 			/*
6135 			 * Defer printing to avoid deadlocks in console
6136 			 * drivers that queue work while holding locks
6137 			 * also taken in their write paths.
6138 			 */
6139 			printk_deferred_enter();
6140 
6141 			pr_info("pool %d:\n", pool->id);
6142 			sched_show_task(worker->task);
6143 
6144 			printk_deferred_exit();
6145 		}
6146 	}
6147 
6148 	raw_spin_unlock_irqrestore(&pool->lock, flags);
6149 }
6150 
6151 static void show_cpu_pools_hogs(void)
6152 {
6153 	struct worker_pool *pool;
6154 	int pi;
6155 
6156 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6157 
6158 	rcu_read_lock();
6159 
6160 	for_each_pool(pool, pi) {
6161 		if (pool->cpu_stall)
6162 			show_cpu_pool_hog(pool);
6163 
6164 	}
6165 
6166 	rcu_read_unlock();
6167 }
6168 
6169 static void wq_watchdog_reset_touched(void)
6170 {
6171 	int cpu;
6172 
6173 	wq_watchdog_touched = jiffies;
6174 	for_each_possible_cpu(cpu)
6175 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6176 }
6177 
6178 static void wq_watchdog_timer_fn(struct timer_list *unused)
6179 {
6180 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6181 	bool lockup_detected = false;
6182 	bool cpu_pool_stall = false;
6183 	unsigned long now = jiffies;
6184 	struct worker_pool *pool;
6185 	int pi;
6186 
6187 	if (!thresh)
6188 		return;
6189 
6190 	rcu_read_lock();
6191 
6192 	for_each_pool(pool, pi) {
6193 		unsigned long pool_ts, touched, ts;
6194 
6195 		pool->cpu_stall = false;
6196 		if (list_empty(&pool->worklist))
6197 			continue;
6198 
6199 		/*
6200 		 * If a virtual machine is stopped by the host it can look to
6201 		 * the watchdog like a stall.
6202 		 */
6203 		kvm_check_and_clear_guest_paused();
6204 
6205 		/* get the latest of pool and touched timestamps */
6206 		if (pool->cpu >= 0)
6207 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
6208 		else
6209 			touched = READ_ONCE(wq_watchdog_touched);
6210 		pool_ts = READ_ONCE(pool->watchdog_ts);
6211 
6212 		if (time_after(pool_ts, touched))
6213 			ts = pool_ts;
6214 		else
6215 			ts = touched;
6216 
6217 		/* did we stall? */
6218 		if (time_after(now, ts + thresh)) {
6219 			lockup_detected = true;
6220 			if (pool->cpu >= 0) {
6221 				pool->cpu_stall = true;
6222 				cpu_pool_stall = true;
6223 			}
6224 			pr_emerg("BUG: workqueue lockup - pool");
6225 			pr_cont_pool_info(pool);
6226 			pr_cont(" stuck for %us!\n",
6227 				jiffies_to_msecs(now - pool_ts) / 1000);
6228 		}
6229 
6230 
6231 	}
6232 
6233 	rcu_read_unlock();
6234 
6235 	if (lockup_detected)
6236 		show_all_workqueues();
6237 
6238 	if (cpu_pool_stall)
6239 		show_cpu_pools_hogs();
6240 
6241 	wq_watchdog_reset_touched();
6242 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
6243 }
6244 
6245 notrace void wq_watchdog_touch(int cpu)
6246 {
6247 	if (cpu >= 0)
6248 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6249 
6250 	wq_watchdog_touched = jiffies;
6251 }
6252 
6253 static void wq_watchdog_set_thresh(unsigned long thresh)
6254 {
6255 	wq_watchdog_thresh = 0;
6256 	del_timer_sync(&wq_watchdog_timer);
6257 
6258 	if (thresh) {
6259 		wq_watchdog_thresh = thresh;
6260 		wq_watchdog_reset_touched();
6261 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6262 	}
6263 }
6264 
6265 static int wq_watchdog_param_set_thresh(const char *val,
6266 					const struct kernel_param *kp)
6267 {
6268 	unsigned long thresh;
6269 	int ret;
6270 
6271 	ret = kstrtoul(val, 0, &thresh);
6272 	if (ret)
6273 		return ret;
6274 
6275 	if (system_wq)
6276 		wq_watchdog_set_thresh(thresh);
6277 	else
6278 		wq_watchdog_thresh = thresh;
6279 
6280 	return 0;
6281 }
6282 
6283 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6284 	.set	= wq_watchdog_param_set_thresh,
6285 	.get	= param_get_ulong,
6286 };
6287 
6288 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6289 		0644);
6290 
6291 static void wq_watchdog_init(void)
6292 {
6293 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
6294 	wq_watchdog_set_thresh(wq_watchdog_thresh);
6295 }
6296 
6297 #else	/* CONFIG_WQ_WATCHDOG */
6298 
6299 static inline void wq_watchdog_init(void) { }
6300 
6301 #endif	/* CONFIG_WQ_WATCHDOG */
6302 
6303 /**
6304  * workqueue_init_early - early init for workqueue subsystem
6305  *
6306  * This is the first step of three-staged workqueue subsystem initialization and
6307  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
6308  * up. It sets up all the data structures and system workqueues and allows early
6309  * boot code to create workqueues and queue/cancel work items. Actual work item
6310  * execution starts only after kthreads can be created and scheduled right
6311  * before early initcalls.
6312  */
6313 void __init workqueue_init_early(void)
6314 {
6315 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
6316 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6317 	int i, cpu;
6318 
6319 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6320 
6321 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6322 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
6323 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
6324 
6325 	if (!cpumask_empty(&wq_cmdline_cpumask))
6326 		cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, &wq_cmdline_cpumask);
6327 
6328 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6329 
6330 	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
6331 	BUG_ON(!wq_update_pod_attrs_buf);
6332 
6333 	BUG_ON(!alloc_cpumask_var(&wq_update_pod_cpumask_buf, GFP_KERNEL));
6334 
6335 	/* initialize WQ_AFFN_SYSTEM pods */
6336 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6337 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
6338 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6339 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
6340 
6341 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
6342 
6343 	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
6344 	BUG_ON(!wq_update_pod_attrs_buf);
6345 
6346 	pt->nr_pods = 1;
6347 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
6348 	pt->pod_node[0] = NUMA_NO_NODE;
6349 	pt->cpu_pod[0] = 0;
6350 
6351 	/* initialize CPU pools */
6352 	for_each_possible_cpu(cpu) {
6353 		struct worker_pool *pool;
6354 
6355 		i = 0;
6356 		for_each_cpu_worker_pool(pool, cpu) {
6357 			BUG_ON(init_worker_pool(pool));
6358 			pool->cpu = cpu;
6359 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6360 			pool->attrs->nice = std_nice[i++];
6361 			pool->node = cpu_to_node(cpu);
6362 
6363 			/* alloc pool ID */
6364 			mutex_lock(&wq_pool_mutex);
6365 			BUG_ON(worker_pool_assign_id(pool));
6366 			mutex_unlock(&wq_pool_mutex);
6367 		}
6368 	}
6369 
6370 	/* create default unbound and ordered wq attrs */
6371 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6372 		struct workqueue_attrs *attrs;
6373 
6374 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6375 		attrs->nice = std_nice[i];
6376 		unbound_std_wq_attrs[i] = attrs;
6377 
6378 		/*
6379 		 * An ordered wq should have only one pwq as ordering is
6380 		 * guaranteed by max_active which is enforced by pwqs.
6381 		 */
6382 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6383 		attrs->nice = std_nice[i];
6384 		attrs->ordered = true;
6385 		ordered_wq_attrs[i] = attrs;
6386 	}
6387 
6388 	system_wq = alloc_workqueue("events", 0, 0);
6389 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6390 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6391 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6392 					    WQ_MAX_ACTIVE);
6393 	system_freezable_wq = alloc_workqueue("events_freezable",
6394 					      WQ_FREEZABLE, 0);
6395 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6396 					      WQ_POWER_EFFICIENT, 0);
6397 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6398 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6399 					      0);
6400 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6401 	       !system_unbound_wq || !system_freezable_wq ||
6402 	       !system_power_efficient_wq ||
6403 	       !system_freezable_power_efficient_wq);
6404 }
6405 
6406 static void __init wq_cpu_intensive_thresh_init(void)
6407 {
6408 	unsigned long thresh;
6409 	unsigned long bogo;
6410 
6411 	/* if the user set it to a specific value, keep it */
6412 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
6413 		return;
6414 
6415 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
6416 	BUG_ON(IS_ERR(pwq_release_worker));
6417 
6418 	/*
6419 	 * The default of 10ms is derived from the fact that most modern (as of
6420 	 * 2023) processors can do a lot in 10ms and that it's just below what
6421 	 * most consider human-perceivable. However, the kernel also runs on a
6422 	 * lot slower CPUs including microcontrollers where the threshold is way
6423 	 * too low.
6424 	 *
6425 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
6426 	 * This is by no means accurate but it doesn't have to be. The mechanism
6427 	 * is still useful even when the threshold is fully scaled up. Also, as
6428 	 * the reports would usually be applicable to everyone, some machines
6429 	 * operating on longer thresholds won't significantly diminish their
6430 	 * usefulness.
6431 	 */
6432 	thresh = 10 * USEC_PER_MSEC;
6433 
6434 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
6435 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
6436 	if (bogo < 4000)
6437 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
6438 
6439 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
6440 		 loops_per_jiffy, bogo, thresh);
6441 
6442 	wq_cpu_intensive_thresh_us = thresh;
6443 }
6444 
6445 /**
6446  * workqueue_init - bring workqueue subsystem fully online
6447  *
6448  * This is the second step of three-staged workqueue subsystem initialization
6449  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
6450  * been created and work items queued on them, but there are no kworkers
6451  * executing the work items yet. Populate the worker pools with the initial
6452  * workers and enable future kworker creations.
6453  */
6454 void __init workqueue_init(void)
6455 {
6456 	struct workqueue_struct *wq;
6457 	struct worker_pool *pool;
6458 	int cpu, bkt;
6459 
6460 	wq_cpu_intensive_thresh_init();
6461 
6462 	mutex_lock(&wq_pool_mutex);
6463 
6464 	/*
6465 	 * Per-cpu pools created earlier could be missing node hint. Fix them
6466 	 * up. Also, create a rescuer for workqueues that requested it.
6467 	 */
6468 	for_each_possible_cpu(cpu) {
6469 		for_each_cpu_worker_pool(pool, cpu) {
6470 			pool->node = cpu_to_node(cpu);
6471 		}
6472 	}
6473 
6474 	list_for_each_entry(wq, &workqueues, list) {
6475 		WARN(init_rescuer(wq),
6476 		     "workqueue: failed to create early rescuer for %s",
6477 		     wq->name);
6478 	}
6479 
6480 	mutex_unlock(&wq_pool_mutex);
6481 
6482 	/* create the initial workers */
6483 	for_each_online_cpu(cpu) {
6484 		for_each_cpu_worker_pool(pool, cpu) {
6485 			pool->flags &= ~POOL_DISASSOCIATED;
6486 			BUG_ON(!create_worker(pool));
6487 		}
6488 	}
6489 
6490 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6491 		BUG_ON(!create_worker(pool));
6492 
6493 	wq_online = true;
6494 	wq_watchdog_init();
6495 }
6496 
6497 /**
6498  * workqueue_init_topology - initialize CPU pods for unbound workqueues
6499  *
6500  * This is the third step of there-staged workqueue subsystem initialization and
6501  * invoked after SMP and topology information are fully initialized. It
6502  * initializes the unbound CPU pods accordingly.
6503  */
6504 void __init workqueue_init_topology(void)
6505 {
6506 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
6507 	struct workqueue_struct *wq;
6508 	int node, cpu;
6509 
6510 	if (num_possible_nodes() <= 1)
6511 		return;
6512 
6513 	for_each_possible_cpu(cpu) {
6514 		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
6515 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
6516 			return;
6517 		}
6518 	}
6519 
6520 	mutex_lock(&wq_pool_mutex);
6521 
6522 	/*
6523 	 * We want masks of possible CPUs of each node which isn't readily
6524 	 * available.  Build one from cpu_to_node() which should have been
6525 	 * fully initialized by now.
6526 	 */
6527 	pt->pod_cpus = kcalloc(nr_node_ids, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6528 	pt->pod_node = kcalloc(nr_node_ids, sizeof(pt->pod_node[0]), GFP_KERNEL);
6529 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6530 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
6531 
6532 	for_each_node(node)
6533 		BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[node], GFP_KERNEL,
6534 				node_online(node) ? node : NUMA_NO_NODE));
6535 
6536 	for_each_possible_cpu(cpu) {
6537 		node = cpu_to_node(cpu);
6538 		cpumask_set_cpu(cpu, pt->pod_cpus[node]);
6539 		pt->pod_node[node] = node;
6540 		pt->cpu_pod[cpu] = node;
6541 	}
6542 
6543 	pt->nr_pods = nr_node_ids;
6544 
6545 	/*
6546 	 * Workqueues allocated earlier would have all CPUs sharing the default
6547 	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
6548 	 * combinations to apply per-pod sharing.
6549 	 */
6550 	list_for_each_entry(wq, &workqueues, list) {
6551 		for_each_online_cpu(cpu) {
6552 			wq_update_pod(wq, cpu, cpu, true);
6553 		}
6554 	}
6555 
6556 	mutex_unlock(&wq_pool_mutex);
6557 }
6558 
6559 void __warn_flushing_systemwide_wq(void)
6560 {
6561 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
6562 	dump_stack();
6563 }
6564 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
6565 
6566 static int __init workqueue_unbound_cpus_setup(char *str)
6567 {
6568 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
6569 		cpumask_clear(&wq_cmdline_cpumask);
6570 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
6571 	}
6572 
6573 	return 1;
6574 }
6575 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
6576