xref: /linux-6.15/kernel/workqueue.c (revision 616db877)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <[email protected]>
9  *     Andrew Morton
10  *     Kai Petzke <[email protected]>
11  *     Theodore Ts'o <[email protected]>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <[email protected]>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/sched/debug.h>
53 #include <linux/nmi.h>
54 #include <linux/kvm_para.h>
55 
56 #include "workqueue_internal.h"
57 
58 enum {
59 	/*
60 	 * worker_pool flags
61 	 *
62 	 * A bound pool is either associated or disassociated with its CPU.
63 	 * While associated (!DISASSOCIATED), all workers are bound to the
64 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
65 	 * is in effect.
66 	 *
67 	 * While DISASSOCIATED, the cpu may be offline and all workers have
68 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
69 	 * be executing on any CPU.  The pool behaves as an unbound one.
70 	 *
71 	 * Note that DISASSOCIATED should be flipped only while holding
72 	 * wq_pool_attach_mutex to avoid changing binding state while
73 	 * worker_attach_to_pool() is in progress.
74 	 */
75 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
76 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
77 
78 	/* worker flags */
79 	WORKER_DIE		= 1 << 1,	/* die die die */
80 	WORKER_IDLE		= 1 << 2,	/* is idle */
81 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
82 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
83 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
84 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
85 
86 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
87 				  WORKER_UNBOUND | WORKER_REBOUND,
88 
89 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
90 
91 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
92 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
93 
94 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
95 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
96 
97 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
98 						/* call for help after 10ms
99 						   (min two ticks) */
100 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
101 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
102 
103 	/*
104 	 * Rescue workers are used only on emergencies and shared by
105 	 * all cpus.  Give MIN_NICE.
106 	 */
107 	RESCUER_NICE_LEVEL	= MIN_NICE,
108 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
109 
110 	WQ_NAME_LEN		= 24,
111 };
112 
113 /*
114  * Structure fields follow one of the following exclusion rules.
115  *
116  * I: Modifiable by initialization/destruction paths and read-only for
117  *    everyone else.
118  *
119  * P: Preemption protected.  Disabling preemption is enough and should
120  *    only be modified and accessed from the local cpu.
121  *
122  * L: pool->lock protected.  Access with pool->lock held.
123  *
124  * X: During normal operation, modification requires pool->lock and should
125  *    be done only from local cpu.  Either disabling preemption on local
126  *    cpu or grabbing pool->lock is enough for read access.  If
127  *    POOL_DISASSOCIATED is set, it's identical to L.
128  *
129  * K: Only modified by worker while holding pool->lock. Can be safely read by
130  *    self, while holding pool->lock or from IRQ context if %current is the
131  *    kworker.
132  *
133  * S: Only modified by worker self.
134  *
135  * A: wq_pool_attach_mutex protected.
136  *
137  * PL: wq_pool_mutex protected.
138  *
139  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
140  *
141  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
142  *
143  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
144  *      RCU for reads.
145  *
146  * WQ: wq->mutex protected.
147  *
148  * WR: wq->mutex protected for writes.  RCU protected for reads.
149  *
150  * MD: wq_mayday_lock protected.
151  *
152  * WD: Used internally by the watchdog.
153  */
154 
155 /* struct worker is defined in workqueue_internal.h */
156 
157 struct worker_pool {
158 	raw_spinlock_t		lock;		/* the pool lock */
159 	int			cpu;		/* I: the associated cpu */
160 	int			node;		/* I: the associated node ID */
161 	int			id;		/* I: pool ID */
162 	unsigned int		flags;		/* X: flags */
163 
164 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
165 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
166 
167 	/*
168 	 * The counter is incremented in a process context on the associated CPU
169 	 * w/ preemption disabled, and decremented or reset in the same context
170 	 * but w/ pool->lock held. The readers grab pool->lock and are
171 	 * guaranteed to see if the counter reached zero.
172 	 */
173 	int			nr_running;
174 
175 	struct list_head	worklist;	/* L: list of pending works */
176 
177 	int			nr_workers;	/* L: total number of workers */
178 	int			nr_idle;	/* L: currently idle workers */
179 
180 	struct list_head	idle_list;	/* L: list of idle workers */
181 	struct timer_list	idle_timer;	/* L: worker idle timeout */
182 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
183 
184 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
185 
186 	/* a workers is either on busy_hash or idle_list, or the manager */
187 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
188 						/* L: hash of busy workers */
189 
190 	struct worker		*manager;	/* L: purely informational */
191 	struct list_head	workers;	/* A: attached workers */
192 	struct list_head        dying_workers;  /* A: workers about to die */
193 	struct completion	*detach_completion; /* all workers detached */
194 
195 	struct ida		worker_ida;	/* worker IDs for task name */
196 
197 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
198 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
199 	int			refcnt;		/* PL: refcnt for unbound pools */
200 
201 	/*
202 	 * Destruction of pool is RCU protected to allow dereferences
203 	 * from get_work_pool().
204 	 */
205 	struct rcu_head		rcu;
206 };
207 
208 /*
209  * Per-pool_workqueue statistics. These can be monitored using
210  * tools/workqueue/wq_monitor.py.
211  */
212 enum pool_workqueue_stats {
213 	PWQ_STAT_STARTED,	/* work items started execution */
214 	PWQ_STAT_COMPLETED,	/* work items completed execution */
215 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
216 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
217 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
218 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
219 
220 	PWQ_NR_STATS,
221 };
222 
223 /*
224  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
225  * of work_struct->data are used for flags and the remaining high bits
226  * point to the pwq; thus, pwqs need to be aligned at two's power of the
227  * number of flag bits.
228  */
229 struct pool_workqueue {
230 	struct worker_pool	*pool;		/* I: the associated pool */
231 	struct workqueue_struct *wq;		/* I: the owning workqueue */
232 	int			work_color;	/* L: current color */
233 	int			flush_color;	/* L: flushing color */
234 	int			refcnt;		/* L: reference count */
235 	int			nr_in_flight[WORK_NR_COLORS];
236 						/* L: nr of in_flight works */
237 
238 	/*
239 	 * nr_active management and WORK_STRUCT_INACTIVE:
240 	 *
241 	 * When pwq->nr_active >= max_active, new work item is queued to
242 	 * pwq->inactive_works instead of pool->worklist and marked with
243 	 * WORK_STRUCT_INACTIVE.
244 	 *
245 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
246 	 * in pwq->nr_active and all work items in pwq->inactive_works are
247 	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
248 	 * work items are in pwq->inactive_works.  Some of them are ready to
249 	 * run in pool->worklist or worker->scheduled.  Those work itmes are
250 	 * only struct wq_barrier which is used for flush_work() and should
251 	 * not participate in pwq->nr_active.  For non-barrier work item, it
252 	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
253 	 */
254 	int			nr_active;	/* L: nr of active works */
255 	int			max_active;	/* L: max active works */
256 	struct list_head	inactive_works;	/* L: inactive works */
257 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
258 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
259 
260 	u64			stats[PWQ_NR_STATS];
261 
262 	/*
263 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
264 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
265 	 * itself is also RCU protected so that the first pwq can be
266 	 * determined without grabbing wq->mutex.
267 	 */
268 	struct work_struct	unbound_release_work;
269 	struct rcu_head		rcu;
270 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
271 
272 /*
273  * Structure used to wait for workqueue flush.
274  */
275 struct wq_flusher {
276 	struct list_head	list;		/* WQ: list of flushers */
277 	int			flush_color;	/* WQ: flush color waiting for */
278 	struct completion	done;		/* flush completion */
279 };
280 
281 struct wq_device;
282 
283 /*
284  * The externally visible workqueue.  It relays the issued work items to
285  * the appropriate worker_pool through its pool_workqueues.
286  */
287 struct workqueue_struct {
288 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
289 	struct list_head	list;		/* PR: list of all workqueues */
290 
291 	struct mutex		mutex;		/* protects this wq */
292 	int			work_color;	/* WQ: current work color */
293 	int			flush_color;	/* WQ: current flush color */
294 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
295 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
296 	struct list_head	flusher_queue;	/* WQ: flush waiters */
297 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
298 
299 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
300 	struct worker		*rescuer;	/* MD: rescue worker */
301 
302 	int			nr_drainers;	/* WQ: drain in progress */
303 	int			saved_max_active; /* WQ: saved pwq max_active */
304 
305 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
306 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
307 
308 #ifdef CONFIG_SYSFS
309 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
310 #endif
311 #ifdef CONFIG_LOCKDEP
312 	char			*lock_name;
313 	struct lock_class_key	key;
314 	struct lockdep_map	lockdep_map;
315 #endif
316 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
317 
318 	/*
319 	 * Destruction of workqueue_struct is RCU protected to allow walking
320 	 * the workqueues list without grabbing wq_pool_mutex.
321 	 * This is used to dump all workqueues from sysrq.
322 	 */
323 	struct rcu_head		rcu;
324 
325 	/* hot fields used during command issue, aligned to cacheline */
326 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
327 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
328 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
329 };
330 
331 static struct kmem_cache *pwq_cache;
332 
333 static cpumask_var_t *wq_numa_possible_cpumask;
334 					/* possible CPUs of each node */
335 
336 /*
337  * Per-cpu work items which run for longer than the following threshold are
338  * automatically considered CPU intensive and excluded from concurrency
339  * management to prevent them from noticeably delaying other per-cpu work items.
340  */
341 static unsigned long wq_cpu_intensive_thresh_us = 10000;
342 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
343 
344 static bool wq_disable_numa;
345 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
346 
347 /* see the comment above the definition of WQ_POWER_EFFICIENT */
348 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
349 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
350 
351 static bool wq_online;			/* can kworkers be created yet? */
352 
353 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
354 
355 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
356 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
357 
358 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
359 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
360 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
361 /* wait for manager to go away */
362 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
363 
364 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
365 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
366 
367 /* PL&A: allowable cpus for unbound wqs and work items */
368 static cpumask_var_t wq_unbound_cpumask;
369 
370 /* CPU where unbound work was last round robin scheduled from this CPU */
371 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
372 
373 /*
374  * Local execution of unbound work items is no longer guaranteed.  The
375  * following always forces round-robin CPU selection on unbound work items
376  * to uncover usages which depend on it.
377  */
378 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
379 static bool wq_debug_force_rr_cpu = true;
380 #else
381 static bool wq_debug_force_rr_cpu = false;
382 #endif
383 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
384 
385 /* the per-cpu worker pools */
386 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
387 
388 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
389 
390 /* PL: hash of all unbound pools keyed by pool->attrs */
391 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
392 
393 /* I: attributes used when instantiating standard unbound pools on demand */
394 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
395 
396 /* I: attributes used when instantiating ordered pools on demand */
397 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
398 
399 struct workqueue_struct *system_wq __read_mostly;
400 EXPORT_SYMBOL(system_wq);
401 struct workqueue_struct *system_highpri_wq __read_mostly;
402 EXPORT_SYMBOL_GPL(system_highpri_wq);
403 struct workqueue_struct *system_long_wq __read_mostly;
404 EXPORT_SYMBOL_GPL(system_long_wq);
405 struct workqueue_struct *system_unbound_wq __read_mostly;
406 EXPORT_SYMBOL_GPL(system_unbound_wq);
407 struct workqueue_struct *system_freezable_wq __read_mostly;
408 EXPORT_SYMBOL_GPL(system_freezable_wq);
409 struct workqueue_struct *system_power_efficient_wq __read_mostly;
410 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
411 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
412 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
413 
414 static int worker_thread(void *__worker);
415 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
416 static void show_pwq(struct pool_workqueue *pwq);
417 static void show_one_worker_pool(struct worker_pool *pool);
418 
419 #define CREATE_TRACE_POINTS
420 #include <trace/events/workqueue.h>
421 
422 #define assert_rcu_or_pool_mutex()					\
423 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
424 			 !lockdep_is_held(&wq_pool_mutex),		\
425 			 "RCU or wq_pool_mutex should be held")
426 
427 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
428 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
429 			 !lockdep_is_held(&wq->mutex) &&		\
430 			 !lockdep_is_held(&wq_pool_mutex),		\
431 			 "RCU, wq->mutex or wq_pool_mutex should be held")
432 
433 #define for_each_cpu_worker_pool(pool, cpu)				\
434 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
435 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
436 	     (pool)++)
437 
438 /**
439  * for_each_pool - iterate through all worker_pools in the system
440  * @pool: iteration cursor
441  * @pi: integer used for iteration
442  *
443  * This must be called either with wq_pool_mutex held or RCU read
444  * locked.  If the pool needs to be used beyond the locking in effect, the
445  * caller is responsible for guaranteeing that the pool stays online.
446  *
447  * The if/else clause exists only for the lockdep assertion and can be
448  * ignored.
449  */
450 #define for_each_pool(pool, pi)						\
451 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
452 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
453 		else
454 
455 /**
456  * for_each_pool_worker - iterate through all workers of a worker_pool
457  * @worker: iteration cursor
458  * @pool: worker_pool to iterate workers of
459  *
460  * This must be called with wq_pool_attach_mutex.
461  *
462  * The if/else clause exists only for the lockdep assertion and can be
463  * ignored.
464  */
465 #define for_each_pool_worker(worker, pool)				\
466 	list_for_each_entry((worker), &(pool)->workers, node)		\
467 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
468 		else
469 
470 /**
471  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
472  * @pwq: iteration cursor
473  * @wq: the target workqueue
474  *
475  * This must be called either with wq->mutex held or RCU read locked.
476  * If the pwq needs to be used beyond the locking in effect, the caller is
477  * responsible for guaranteeing that the pwq stays online.
478  *
479  * The if/else clause exists only for the lockdep assertion and can be
480  * ignored.
481  */
482 #define for_each_pwq(pwq, wq)						\
483 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
484 				 lockdep_is_held(&(wq->mutex)))
485 
486 #ifdef CONFIG_DEBUG_OBJECTS_WORK
487 
488 static const struct debug_obj_descr work_debug_descr;
489 
490 static void *work_debug_hint(void *addr)
491 {
492 	return ((struct work_struct *) addr)->func;
493 }
494 
495 static bool work_is_static_object(void *addr)
496 {
497 	struct work_struct *work = addr;
498 
499 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
500 }
501 
502 /*
503  * fixup_init is called when:
504  * - an active object is initialized
505  */
506 static bool work_fixup_init(void *addr, enum debug_obj_state state)
507 {
508 	struct work_struct *work = addr;
509 
510 	switch (state) {
511 	case ODEBUG_STATE_ACTIVE:
512 		cancel_work_sync(work);
513 		debug_object_init(work, &work_debug_descr);
514 		return true;
515 	default:
516 		return false;
517 	}
518 }
519 
520 /*
521  * fixup_free is called when:
522  * - an active object is freed
523  */
524 static bool work_fixup_free(void *addr, enum debug_obj_state state)
525 {
526 	struct work_struct *work = addr;
527 
528 	switch (state) {
529 	case ODEBUG_STATE_ACTIVE:
530 		cancel_work_sync(work);
531 		debug_object_free(work, &work_debug_descr);
532 		return true;
533 	default:
534 		return false;
535 	}
536 }
537 
538 static const struct debug_obj_descr work_debug_descr = {
539 	.name		= "work_struct",
540 	.debug_hint	= work_debug_hint,
541 	.is_static_object = work_is_static_object,
542 	.fixup_init	= work_fixup_init,
543 	.fixup_free	= work_fixup_free,
544 };
545 
546 static inline void debug_work_activate(struct work_struct *work)
547 {
548 	debug_object_activate(work, &work_debug_descr);
549 }
550 
551 static inline void debug_work_deactivate(struct work_struct *work)
552 {
553 	debug_object_deactivate(work, &work_debug_descr);
554 }
555 
556 void __init_work(struct work_struct *work, int onstack)
557 {
558 	if (onstack)
559 		debug_object_init_on_stack(work, &work_debug_descr);
560 	else
561 		debug_object_init(work, &work_debug_descr);
562 }
563 EXPORT_SYMBOL_GPL(__init_work);
564 
565 void destroy_work_on_stack(struct work_struct *work)
566 {
567 	debug_object_free(work, &work_debug_descr);
568 }
569 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
570 
571 void destroy_delayed_work_on_stack(struct delayed_work *work)
572 {
573 	destroy_timer_on_stack(&work->timer);
574 	debug_object_free(&work->work, &work_debug_descr);
575 }
576 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
577 
578 #else
579 static inline void debug_work_activate(struct work_struct *work) { }
580 static inline void debug_work_deactivate(struct work_struct *work) { }
581 #endif
582 
583 /**
584  * worker_pool_assign_id - allocate ID and assign it to @pool
585  * @pool: the pool pointer of interest
586  *
587  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
588  * successfully, -errno on failure.
589  */
590 static int worker_pool_assign_id(struct worker_pool *pool)
591 {
592 	int ret;
593 
594 	lockdep_assert_held(&wq_pool_mutex);
595 
596 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
597 			GFP_KERNEL);
598 	if (ret >= 0) {
599 		pool->id = ret;
600 		return 0;
601 	}
602 	return ret;
603 }
604 
605 /**
606  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
607  * @wq: the target workqueue
608  * @node: the node ID
609  *
610  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
611  * read locked.
612  * If the pwq needs to be used beyond the locking in effect, the caller is
613  * responsible for guaranteeing that the pwq stays online.
614  *
615  * Return: The unbound pool_workqueue for @node.
616  */
617 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
618 						  int node)
619 {
620 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
621 
622 	/*
623 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
624 	 * delayed item is pending.  The plan is to keep CPU -> NODE
625 	 * mapping valid and stable across CPU on/offlines.  Once that
626 	 * happens, this workaround can be removed.
627 	 */
628 	if (unlikely(node == NUMA_NO_NODE))
629 		return wq->dfl_pwq;
630 
631 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
632 }
633 
634 static unsigned int work_color_to_flags(int color)
635 {
636 	return color << WORK_STRUCT_COLOR_SHIFT;
637 }
638 
639 static int get_work_color(unsigned long work_data)
640 {
641 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
642 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
643 }
644 
645 static int work_next_color(int color)
646 {
647 	return (color + 1) % WORK_NR_COLORS;
648 }
649 
650 /*
651  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
652  * contain the pointer to the queued pwq.  Once execution starts, the flag
653  * is cleared and the high bits contain OFFQ flags and pool ID.
654  *
655  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
656  * and clear_work_data() can be used to set the pwq, pool or clear
657  * work->data.  These functions should only be called while the work is
658  * owned - ie. while the PENDING bit is set.
659  *
660  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
661  * corresponding to a work.  Pool is available once the work has been
662  * queued anywhere after initialization until it is sync canceled.  pwq is
663  * available only while the work item is queued.
664  *
665  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
666  * canceled.  While being canceled, a work item may have its PENDING set
667  * but stay off timer and worklist for arbitrarily long and nobody should
668  * try to steal the PENDING bit.
669  */
670 static inline void set_work_data(struct work_struct *work, unsigned long data,
671 				 unsigned long flags)
672 {
673 	WARN_ON_ONCE(!work_pending(work));
674 	atomic_long_set(&work->data, data | flags | work_static(work));
675 }
676 
677 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
678 			 unsigned long extra_flags)
679 {
680 	set_work_data(work, (unsigned long)pwq,
681 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
682 }
683 
684 static void set_work_pool_and_keep_pending(struct work_struct *work,
685 					   int pool_id)
686 {
687 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
688 		      WORK_STRUCT_PENDING);
689 }
690 
691 static void set_work_pool_and_clear_pending(struct work_struct *work,
692 					    int pool_id)
693 {
694 	/*
695 	 * The following wmb is paired with the implied mb in
696 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
697 	 * here are visible to and precede any updates by the next PENDING
698 	 * owner.
699 	 */
700 	smp_wmb();
701 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
702 	/*
703 	 * The following mb guarantees that previous clear of a PENDING bit
704 	 * will not be reordered with any speculative LOADS or STORES from
705 	 * work->current_func, which is executed afterwards.  This possible
706 	 * reordering can lead to a missed execution on attempt to queue
707 	 * the same @work.  E.g. consider this case:
708 	 *
709 	 *   CPU#0                         CPU#1
710 	 *   ----------------------------  --------------------------------
711 	 *
712 	 * 1  STORE event_indicated
713 	 * 2  queue_work_on() {
714 	 * 3    test_and_set_bit(PENDING)
715 	 * 4 }                             set_..._and_clear_pending() {
716 	 * 5                                 set_work_data() # clear bit
717 	 * 6                                 smp_mb()
718 	 * 7                               work->current_func() {
719 	 * 8				      LOAD event_indicated
720 	 *				   }
721 	 *
722 	 * Without an explicit full barrier speculative LOAD on line 8 can
723 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
724 	 * CPU#0 observes the PENDING bit is still set and new execution of
725 	 * a @work is not queued in a hope, that CPU#1 will eventually
726 	 * finish the queued @work.  Meanwhile CPU#1 does not see
727 	 * event_indicated is set, because speculative LOAD was executed
728 	 * before actual STORE.
729 	 */
730 	smp_mb();
731 }
732 
733 static void clear_work_data(struct work_struct *work)
734 {
735 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
736 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
737 }
738 
739 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
740 {
741 	unsigned long data = atomic_long_read(&work->data);
742 
743 	if (data & WORK_STRUCT_PWQ)
744 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
745 	else
746 		return NULL;
747 }
748 
749 /**
750  * get_work_pool - return the worker_pool a given work was associated with
751  * @work: the work item of interest
752  *
753  * Pools are created and destroyed under wq_pool_mutex, and allows read
754  * access under RCU read lock.  As such, this function should be
755  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
756  *
757  * All fields of the returned pool are accessible as long as the above
758  * mentioned locking is in effect.  If the returned pool needs to be used
759  * beyond the critical section, the caller is responsible for ensuring the
760  * returned pool is and stays online.
761  *
762  * Return: The worker_pool @work was last associated with.  %NULL if none.
763  */
764 static struct worker_pool *get_work_pool(struct work_struct *work)
765 {
766 	unsigned long data = atomic_long_read(&work->data);
767 	int pool_id;
768 
769 	assert_rcu_or_pool_mutex();
770 
771 	if (data & WORK_STRUCT_PWQ)
772 		return ((struct pool_workqueue *)
773 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
774 
775 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
776 	if (pool_id == WORK_OFFQ_POOL_NONE)
777 		return NULL;
778 
779 	return idr_find(&worker_pool_idr, pool_id);
780 }
781 
782 /**
783  * get_work_pool_id - return the worker pool ID a given work is associated with
784  * @work: the work item of interest
785  *
786  * Return: The worker_pool ID @work was last associated with.
787  * %WORK_OFFQ_POOL_NONE if none.
788  */
789 static int get_work_pool_id(struct work_struct *work)
790 {
791 	unsigned long data = atomic_long_read(&work->data);
792 
793 	if (data & WORK_STRUCT_PWQ)
794 		return ((struct pool_workqueue *)
795 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
796 
797 	return data >> WORK_OFFQ_POOL_SHIFT;
798 }
799 
800 static void mark_work_canceling(struct work_struct *work)
801 {
802 	unsigned long pool_id = get_work_pool_id(work);
803 
804 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
805 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
806 }
807 
808 static bool work_is_canceling(struct work_struct *work)
809 {
810 	unsigned long data = atomic_long_read(&work->data);
811 
812 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
813 }
814 
815 /*
816  * Policy functions.  These define the policies on how the global worker
817  * pools are managed.  Unless noted otherwise, these functions assume that
818  * they're being called with pool->lock held.
819  */
820 
821 static bool __need_more_worker(struct worker_pool *pool)
822 {
823 	return !pool->nr_running;
824 }
825 
826 /*
827  * Need to wake up a worker?  Called from anything but currently
828  * running workers.
829  *
830  * Note that, because unbound workers never contribute to nr_running, this
831  * function will always return %true for unbound pools as long as the
832  * worklist isn't empty.
833  */
834 static bool need_more_worker(struct worker_pool *pool)
835 {
836 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
837 }
838 
839 /* Can I start working?  Called from busy but !running workers. */
840 static bool may_start_working(struct worker_pool *pool)
841 {
842 	return pool->nr_idle;
843 }
844 
845 /* Do I need to keep working?  Called from currently running workers. */
846 static bool keep_working(struct worker_pool *pool)
847 {
848 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
849 }
850 
851 /* Do we need a new worker?  Called from manager. */
852 static bool need_to_create_worker(struct worker_pool *pool)
853 {
854 	return need_more_worker(pool) && !may_start_working(pool);
855 }
856 
857 /* Do we have too many workers and should some go away? */
858 static bool too_many_workers(struct worker_pool *pool)
859 {
860 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
861 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
862 	int nr_busy = pool->nr_workers - nr_idle;
863 
864 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
865 }
866 
867 /*
868  * Wake up functions.
869  */
870 
871 /* Return the first idle worker.  Called with pool->lock held. */
872 static struct worker *first_idle_worker(struct worker_pool *pool)
873 {
874 	if (unlikely(list_empty(&pool->idle_list)))
875 		return NULL;
876 
877 	return list_first_entry(&pool->idle_list, struct worker, entry);
878 }
879 
880 /**
881  * wake_up_worker - wake up an idle worker
882  * @pool: worker pool to wake worker from
883  *
884  * Wake up the first idle worker of @pool.
885  *
886  * CONTEXT:
887  * raw_spin_lock_irq(pool->lock).
888  */
889 static void wake_up_worker(struct worker_pool *pool)
890 {
891 	struct worker *worker = first_idle_worker(pool);
892 
893 	if (likely(worker))
894 		wake_up_process(worker->task);
895 }
896 
897 /**
898  * worker_set_flags - set worker flags and adjust nr_running accordingly
899  * @worker: self
900  * @flags: flags to set
901  *
902  * Set @flags in @worker->flags and adjust nr_running accordingly.
903  *
904  * CONTEXT:
905  * raw_spin_lock_irq(pool->lock)
906  */
907 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
908 {
909 	struct worker_pool *pool = worker->pool;
910 
911 	WARN_ON_ONCE(worker->task != current);
912 
913 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
914 	if ((flags & WORKER_NOT_RUNNING) &&
915 	    !(worker->flags & WORKER_NOT_RUNNING)) {
916 		pool->nr_running--;
917 	}
918 
919 	worker->flags |= flags;
920 }
921 
922 /**
923  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
924  * @worker: self
925  * @flags: flags to clear
926  *
927  * Clear @flags in @worker->flags and adjust nr_running accordingly.
928  *
929  * CONTEXT:
930  * raw_spin_lock_irq(pool->lock)
931  */
932 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
933 {
934 	struct worker_pool *pool = worker->pool;
935 	unsigned int oflags = worker->flags;
936 
937 	WARN_ON_ONCE(worker->task != current);
938 
939 	worker->flags &= ~flags;
940 
941 	/*
942 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
943 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
944 	 * of multiple flags, not a single flag.
945 	 */
946 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
947 		if (!(worker->flags & WORKER_NOT_RUNNING))
948 			pool->nr_running++;
949 }
950 
951 /**
952  * wq_worker_running - a worker is running again
953  * @task: task waking up
954  *
955  * This function is called when a worker returns from schedule()
956  */
957 void wq_worker_running(struct task_struct *task)
958 {
959 	struct worker *worker = kthread_data(task);
960 
961 	if (!worker->sleeping)
962 		return;
963 
964 	/*
965 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
966 	 * and the nr_running increment below, we may ruin the nr_running reset
967 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
968 	 * pool. Protect against such race.
969 	 */
970 	preempt_disable();
971 	if (!(worker->flags & WORKER_NOT_RUNNING))
972 		worker->pool->nr_running++;
973 	preempt_enable();
974 
975 	/*
976 	 * CPU intensive auto-detection cares about how long a work item hogged
977 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
978 	 */
979 	worker->current_at = worker->task->se.sum_exec_runtime;
980 
981 	worker->sleeping = 0;
982 }
983 
984 /**
985  * wq_worker_sleeping - a worker is going to sleep
986  * @task: task going to sleep
987  *
988  * This function is called from schedule() when a busy worker is
989  * going to sleep.
990  */
991 void wq_worker_sleeping(struct task_struct *task)
992 {
993 	struct worker *worker = kthread_data(task);
994 	struct worker_pool *pool;
995 
996 	/*
997 	 * Rescuers, which may not have all the fields set up like normal
998 	 * workers, also reach here, let's not access anything before
999 	 * checking NOT_RUNNING.
1000 	 */
1001 	if (worker->flags & WORKER_NOT_RUNNING)
1002 		return;
1003 
1004 	pool = worker->pool;
1005 
1006 	/* Return if preempted before wq_worker_running() was reached */
1007 	if (worker->sleeping)
1008 		return;
1009 
1010 	worker->sleeping = 1;
1011 	raw_spin_lock_irq(&pool->lock);
1012 
1013 	/*
1014 	 * Recheck in case unbind_workers() preempted us. We don't
1015 	 * want to decrement nr_running after the worker is unbound
1016 	 * and nr_running has been reset.
1017 	 */
1018 	if (worker->flags & WORKER_NOT_RUNNING) {
1019 		raw_spin_unlock_irq(&pool->lock);
1020 		return;
1021 	}
1022 
1023 	pool->nr_running--;
1024 	if (need_more_worker(pool)) {
1025 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1026 		wake_up_worker(pool);
1027 	}
1028 	raw_spin_unlock_irq(&pool->lock);
1029 }
1030 
1031 /**
1032  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1033  * @task: task currently running
1034  *
1035  * Called from scheduler_tick(). We're in the IRQ context and the current
1036  * worker's fields which follow the 'K' locking rule can be accessed safely.
1037  */
1038 void wq_worker_tick(struct task_struct *task)
1039 {
1040 	struct worker *worker = kthread_data(task);
1041 	struct pool_workqueue *pwq = worker->current_pwq;
1042 	struct worker_pool *pool = worker->pool;
1043 
1044 	if (!pwq)
1045 		return;
1046 
1047 	/*
1048 	 * If the current worker is concurrency managed and hogged the CPU for
1049 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1050 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1051 	 */
1052 	if ((worker->flags & WORKER_NOT_RUNNING) ||
1053 	    worker->task->se.sum_exec_runtime - worker->current_at <
1054 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1055 		return;
1056 
1057 	raw_spin_lock(&pool->lock);
1058 
1059 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1060 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1061 
1062 	if (need_more_worker(pool)) {
1063 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1064 		wake_up_worker(pool);
1065 	}
1066 
1067 	raw_spin_unlock(&pool->lock);
1068 }
1069 
1070 /**
1071  * wq_worker_last_func - retrieve worker's last work function
1072  * @task: Task to retrieve last work function of.
1073  *
1074  * Determine the last function a worker executed. This is called from
1075  * the scheduler to get a worker's last known identity.
1076  *
1077  * CONTEXT:
1078  * raw_spin_lock_irq(rq->lock)
1079  *
1080  * This function is called during schedule() when a kworker is going
1081  * to sleep. It's used by psi to identify aggregation workers during
1082  * dequeuing, to allow periodic aggregation to shut-off when that
1083  * worker is the last task in the system or cgroup to go to sleep.
1084  *
1085  * As this function doesn't involve any workqueue-related locking, it
1086  * only returns stable values when called from inside the scheduler's
1087  * queuing and dequeuing paths, when @task, which must be a kworker,
1088  * is guaranteed to not be processing any works.
1089  *
1090  * Return:
1091  * The last work function %current executed as a worker, NULL if it
1092  * hasn't executed any work yet.
1093  */
1094 work_func_t wq_worker_last_func(struct task_struct *task)
1095 {
1096 	struct worker *worker = kthread_data(task);
1097 
1098 	return worker->last_func;
1099 }
1100 
1101 /**
1102  * find_worker_executing_work - find worker which is executing a work
1103  * @pool: pool of interest
1104  * @work: work to find worker for
1105  *
1106  * Find a worker which is executing @work on @pool by searching
1107  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1108  * to match, its current execution should match the address of @work and
1109  * its work function.  This is to avoid unwanted dependency between
1110  * unrelated work executions through a work item being recycled while still
1111  * being executed.
1112  *
1113  * This is a bit tricky.  A work item may be freed once its execution
1114  * starts and nothing prevents the freed area from being recycled for
1115  * another work item.  If the same work item address ends up being reused
1116  * before the original execution finishes, workqueue will identify the
1117  * recycled work item as currently executing and make it wait until the
1118  * current execution finishes, introducing an unwanted dependency.
1119  *
1120  * This function checks the work item address and work function to avoid
1121  * false positives.  Note that this isn't complete as one may construct a
1122  * work function which can introduce dependency onto itself through a
1123  * recycled work item.  Well, if somebody wants to shoot oneself in the
1124  * foot that badly, there's only so much we can do, and if such deadlock
1125  * actually occurs, it should be easy to locate the culprit work function.
1126  *
1127  * CONTEXT:
1128  * raw_spin_lock_irq(pool->lock).
1129  *
1130  * Return:
1131  * Pointer to worker which is executing @work if found, %NULL
1132  * otherwise.
1133  */
1134 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1135 						 struct work_struct *work)
1136 {
1137 	struct worker *worker;
1138 
1139 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1140 			       (unsigned long)work)
1141 		if (worker->current_work == work &&
1142 		    worker->current_func == work->func)
1143 			return worker;
1144 
1145 	return NULL;
1146 }
1147 
1148 /**
1149  * move_linked_works - move linked works to a list
1150  * @work: start of series of works to be scheduled
1151  * @head: target list to append @work to
1152  * @nextp: out parameter for nested worklist walking
1153  *
1154  * Schedule linked works starting from @work to @head.  Work series to
1155  * be scheduled starts at @work and includes any consecutive work with
1156  * WORK_STRUCT_LINKED set in its predecessor.
1157  *
1158  * If @nextp is not NULL, it's updated to point to the next work of
1159  * the last scheduled work.  This allows move_linked_works() to be
1160  * nested inside outer list_for_each_entry_safe().
1161  *
1162  * CONTEXT:
1163  * raw_spin_lock_irq(pool->lock).
1164  */
1165 static void move_linked_works(struct work_struct *work, struct list_head *head,
1166 			      struct work_struct **nextp)
1167 {
1168 	struct work_struct *n;
1169 
1170 	/*
1171 	 * Linked worklist will always end before the end of the list,
1172 	 * use NULL for list head.
1173 	 */
1174 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1175 		list_move_tail(&work->entry, head);
1176 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1177 			break;
1178 	}
1179 
1180 	/*
1181 	 * If we're already inside safe list traversal and have moved
1182 	 * multiple works to the scheduled queue, the next position
1183 	 * needs to be updated.
1184 	 */
1185 	if (nextp)
1186 		*nextp = n;
1187 }
1188 
1189 /**
1190  * get_pwq - get an extra reference on the specified pool_workqueue
1191  * @pwq: pool_workqueue to get
1192  *
1193  * Obtain an extra reference on @pwq.  The caller should guarantee that
1194  * @pwq has positive refcnt and be holding the matching pool->lock.
1195  */
1196 static void get_pwq(struct pool_workqueue *pwq)
1197 {
1198 	lockdep_assert_held(&pwq->pool->lock);
1199 	WARN_ON_ONCE(pwq->refcnt <= 0);
1200 	pwq->refcnt++;
1201 }
1202 
1203 /**
1204  * put_pwq - put a pool_workqueue reference
1205  * @pwq: pool_workqueue to put
1206  *
1207  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1208  * destruction.  The caller should be holding the matching pool->lock.
1209  */
1210 static void put_pwq(struct pool_workqueue *pwq)
1211 {
1212 	lockdep_assert_held(&pwq->pool->lock);
1213 	if (likely(--pwq->refcnt))
1214 		return;
1215 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1216 		return;
1217 	/*
1218 	 * @pwq can't be released under pool->lock, bounce to
1219 	 * pwq_unbound_release_workfn().  This never recurses on the same
1220 	 * pool->lock as this path is taken only for unbound workqueues and
1221 	 * the release work item is scheduled on a per-cpu workqueue.  To
1222 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1223 	 * subclass of 1 in get_unbound_pool().
1224 	 */
1225 	schedule_work(&pwq->unbound_release_work);
1226 }
1227 
1228 /**
1229  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1230  * @pwq: pool_workqueue to put (can be %NULL)
1231  *
1232  * put_pwq() with locking.  This function also allows %NULL @pwq.
1233  */
1234 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1235 {
1236 	if (pwq) {
1237 		/*
1238 		 * As both pwqs and pools are RCU protected, the
1239 		 * following lock operations are safe.
1240 		 */
1241 		raw_spin_lock_irq(&pwq->pool->lock);
1242 		put_pwq(pwq);
1243 		raw_spin_unlock_irq(&pwq->pool->lock);
1244 	}
1245 }
1246 
1247 static void pwq_activate_inactive_work(struct work_struct *work)
1248 {
1249 	struct pool_workqueue *pwq = get_work_pwq(work);
1250 
1251 	trace_workqueue_activate_work(work);
1252 	if (list_empty(&pwq->pool->worklist))
1253 		pwq->pool->watchdog_ts = jiffies;
1254 	move_linked_works(work, &pwq->pool->worklist, NULL);
1255 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1256 	pwq->nr_active++;
1257 }
1258 
1259 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1260 {
1261 	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1262 						    struct work_struct, entry);
1263 
1264 	pwq_activate_inactive_work(work);
1265 }
1266 
1267 /**
1268  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1269  * @pwq: pwq of interest
1270  * @work_data: work_data of work which left the queue
1271  *
1272  * A work either has completed or is removed from pending queue,
1273  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1274  *
1275  * CONTEXT:
1276  * raw_spin_lock_irq(pool->lock).
1277  */
1278 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1279 {
1280 	int color = get_work_color(work_data);
1281 
1282 	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1283 		pwq->nr_active--;
1284 		if (!list_empty(&pwq->inactive_works)) {
1285 			/* one down, submit an inactive one */
1286 			if (pwq->nr_active < pwq->max_active)
1287 				pwq_activate_first_inactive(pwq);
1288 		}
1289 	}
1290 
1291 	pwq->nr_in_flight[color]--;
1292 
1293 	/* is flush in progress and are we at the flushing tip? */
1294 	if (likely(pwq->flush_color != color))
1295 		goto out_put;
1296 
1297 	/* are there still in-flight works? */
1298 	if (pwq->nr_in_flight[color])
1299 		goto out_put;
1300 
1301 	/* this pwq is done, clear flush_color */
1302 	pwq->flush_color = -1;
1303 
1304 	/*
1305 	 * If this was the last pwq, wake up the first flusher.  It
1306 	 * will handle the rest.
1307 	 */
1308 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1309 		complete(&pwq->wq->first_flusher->done);
1310 out_put:
1311 	put_pwq(pwq);
1312 }
1313 
1314 /**
1315  * try_to_grab_pending - steal work item from worklist and disable irq
1316  * @work: work item to steal
1317  * @is_dwork: @work is a delayed_work
1318  * @flags: place to store irq state
1319  *
1320  * Try to grab PENDING bit of @work.  This function can handle @work in any
1321  * stable state - idle, on timer or on worklist.
1322  *
1323  * Return:
1324  *
1325  *  ========	================================================================
1326  *  1		if @work was pending and we successfully stole PENDING
1327  *  0		if @work was idle and we claimed PENDING
1328  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1329  *  -ENOENT	if someone else is canceling @work, this state may persist
1330  *		for arbitrarily long
1331  *  ========	================================================================
1332  *
1333  * Note:
1334  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1335  * interrupted while holding PENDING and @work off queue, irq must be
1336  * disabled on entry.  This, combined with delayed_work->timer being
1337  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1338  *
1339  * On successful return, >= 0, irq is disabled and the caller is
1340  * responsible for releasing it using local_irq_restore(*@flags).
1341  *
1342  * This function is safe to call from any context including IRQ handler.
1343  */
1344 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1345 			       unsigned long *flags)
1346 {
1347 	struct worker_pool *pool;
1348 	struct pool_workqueue *pwq;
1349 
1350 	local_irq_save(*flags);
1351 
1352 	/* try to steal the timer if it exists */
1353 	if (is_dwork) {
1354 		struct delayed_work *dwork = to_delayed_work(work);
1355 
1356 		/*
1357 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1358 		 * guaranteed that the timer is not queued anywhere and not
1359 		 * running on the local CPU.
1360 		 */
1361 		if (likely(del_timer(&dwork->timer)))
1362 			return 1;
1363 	}
1364 
1365 	/* try to claim PENDING the normal way */
1366 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1367 		return 0;
1368 
1369 	rcu_read_lock();
1370 	/*
1371 	 * The queueing is in progress, or it is already queued. Try to
1372 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1373 	 */
1374 	pool = get_work_pool(work);
1375 	if (!pool)
1376 		goto fail;
1377 
1378 	raw_spin_lock(&pool->lock);
1379 	/*
1380 	 * work->data is guaranteed to point to pwq only while the work
1381 	 * item is queued on pwq->wq, and both updating work->data to point
1382 	 * to pwq on queueing and to pool on dequeueing are done under
1383 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1384 	 * points to pwq which is associated with a locked pool, the work
1385 	 * item is currently queued on that pool.
1386 	 */
1387 	pwq = get_work_pwq(work);
1388 	if (pwq && pwq->pool == pool) {
1389 		debug_work_deactivate(work);
1390 
1391 		/*
1392 		 * A cancelable inactive work item must be in the
1393 		 * pwq->inactive_works since a queued barrier can't be
1394 		 * canceled (see the comments in insert_wq_barrier()).
1395 		 *
1396 		 * An inactive work item cannot be grabbed directly because
1397 		 * it might have linked barrier work items which, if left
1398 		 * on the inactive_works list, will confuse pwq->nr_active
1399 		 * management later on and cause stall.  Make sure the work
1400 		 * item is activated before grabbing.
1401 		 */
1402 		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1403 			pwq_activate_inactive_work(work);
1404 
1405 		list_del_init(&work->entry);
1406 		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1407 
1408 		/* work->data points to pwq iff queued, point to pool */
1409 		set_work_pool_and_keep_pending(work, pool->id);
1410 
1411 		raw_spin_unlock(&pool->lock);
1412 		rcu_read_unlock();
1413 		return 1;
1414 	}
1415 	raw_spin_unlock(&pool->lock);
1416 fail:
1417 	rcu_read_unlock();
1418 	local_irq_restore(*flags);
1419 	if (work_is_canceling(work))
1420 		return -ENOENT;
1421 	cpu_relax();
1422 	return -EAGAIN;
1423 }
1424 
1425 /**
1426  * insert_work - insert a work into a pool
1427  * @pwq: pwq @work belongs to
1428  * @work: work to insert
1429  * @head: insertion point
1430  * @extra_flags: extra WORK_STRUCT_* flags to set
1431  *
1432  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1433  * work_struct flags.
1434  *
1435  * CONTEXT:
1436  * raw_spin_lock_irq(pool->lock).
1437  */
1438 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1439 			struct list_head *head, unsigned int extra_flags)
1440 {
1441 	struct worker_pool *pool = pwq->pool;
1442 
1443 	/* record the work call stack in order to print it in KASAN reports */
1444 	kasan_record_aux_stack_noalloc(work);
1445 
1446 	/* we own @work, set data and link */
1447 	set_work_pwq(work, pwq, extra_flags);
1448 	list_add_tail(&work->entry, head);
1449 	get_pwq(pwq);
1450 
1451 	if (__need_more_worker(pool))
1452 		wake_up_worker(pool);
1453 }
1454 
1455 /*
1456  * Test whether @work is being queued from another work executing on the
1457  * same workqueue.
1458  */
1459 static bool is_chained_work(struct workqueue_struct *wq)
1460 {
1461 	struct worker *worker;
1462 
1463 	worker = current_wq_worker();
1464 	/*
1465 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1466 	 * I'm @worker, it's safe to dereference it without locking.
1467 	 */
1468 	return worker && worker->current_pwq->wq == wq;
1469 }
1470 
1471 /*
1472  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1473  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1474  * avoid perturbing sensitive tasks.
1475  */
1476 static int wq_select_unbound_cpu(int cpu)
1477 {
1478 	int new_cpu;
1479 
1480 	if (likely(!wq_debug_force_rr_cpu)) {
1481 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1482 			return cpu;
1483 	} else {
1484 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
1485 	}
1486 
1487 	if (cpumask_empty(wq_unbound_cpumask))
1488 		return cpu;
1489 
1490 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1491 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1492 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1493 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1494 		if (unlikely(new_cpu >= nr_cpu_ids))
1495 			return cpu;
1496 	}
1497 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1498 
1499 	return new_cpu;
1500 }
1501 
1502 static void __queue_work(int cpu, struct workqueue_struct *wq,
1503 			 struct work_struct *work)
1504 {
1505 	struct pool_workqueue *pwq;
1506 	struct worker_pool *last_pool;
1507 	struct list_head *worklist;
1508 	unsigned int work_flags;
1509 	unsigned int req_cpu = cpu;
1510 
1511 	/*
1512 	 * While a work item is PENDING && off queue, a task trying to
1513 	 * steal the PENDING will busy-loop waiting for it to either get
1514 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1515 	 * happen with IRQ disabled.
1516 	 */
1517 	lockdep_assert_irqs_disabled();
1518 
1519 
1520 	/*
1521 	 * For a draining wq, only works from the same workqueue are
1522 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
1523 	 * queues a new work item to a wq after destroy_workqueue(wq).
1524 	 */
1525 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1526 		     WARN_ON_ONCE(!is_chained_work(wq))))
1527 		return;
1528 	rcu_read_lock();
1529 retry:
1530 	/* pwq which will be used unless @work is executing elsewhere */
1531 	if (wq->flags & WQ_UNBOUND) {
1532 		if (req_cpu == WORK_CPU_UNBOUND)
1533 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1534 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1535 	} else {
1536 		if (req_cpu == WORK_CPU_UNBOUND)
1537 			cpu = raw_smp_processor_id();
1538 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1539 	}
1540 
1541 	/*
1542 	 * If @work was previously on a different pool, it might still be
1543 	 * running there, in which case the work needs to be queued on that
1544 	 * pool to guarantee non-reentrancy.
1545 	 */
1546 	last_pool = get_work_pool(work);
1547 	if (last_pool && last_pool != pwq->pool) {
1548 		struct worker *worker;
1549 
1550 		raw_spin_lock(&last_pool->lock);
1551 
1552 		worker = find_worker_executing_work(last_pool, work);
1553 
1554 		if (worker && worker->current_pwq->wq == wq) {
1555 			pwq = worker->current_pwq;
1556 		} else {
1557 			/* meh... not running there, queue here */
1558 			raw_spin_unlock(&last_pool->lock);
1559 			raw_spin_lock(&pwq->pool->lock);
1560 		}
1561 	} else {
1562 		raw_spin_lock(&pwq->pool->lock);
1563 	}
1564 
1565 	/*
1566 	 * pwq is determined and locked.  For unbound pools, we could have
1567 	 * raced with pwq release and it could already be dead.  If its
1568 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1569 	 * without another pwq replacing it in the numa_pwq_tbl or while
1570 	 * work items are executing on it, so the retrying is guaranteed to
1571 	 * make forward-progress.
1572 	 */
1573 	if (unlikely(!pwq->refcnt)) {
1574 		if (wq->flags & WQ_UNBOUND) {
1575 			raw_spin_unlock(&pwq->pool->lock);
1576 			cpu_relax();
1577 			goto retry;
1578 		}
1579 		/* oops */
1580 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1581 			  wq->name, cpu);
1582 	}
1583 
1584 	/* pwq determined, queue */
1585 	trace_workqueue_queue_work(req_cpu, pwq, work);
1586 
1587 	if (WARN_ON(!list_empty(&work->entry)))
1588 		goto out;
1589 
1590 	pwq->nr_in_flight[pwq->work_color]++;
1591 	work_flags = work_color_to_flags(pwq->work_color);
1592 
1593 	if (likely(pwq->nr_active < pwq->max_active)) {
1594 		trace_workqueue_activate_work(work);
1595 		pwq->nr_active++;
1596 		worklist = &pwq->pool->worklist;
1597 		if (list_empty(worklist))
1598 			pwq->pool->watchdog_ts = jiffies;
1599 	} else {
1600 		work_flags |= WORK_STRUCT_INACTIVE;
1601 		worklist = &pwq->inactive_works;
1602 	}
1603 
1604 	debug_work_activate(work);
1605 	insert_work(pwq, work, worklist, work_flags);
1606 
1607 out:
1608 	raw_spin_unlock(&pwq->pool->lock);
1609 	rcu_read_unlock();
1610 }
1611 
1612 /**
1613  * queue_work_on - queue work on specific cpu
1614  * @cpu: CPU number to execute work on
1615  * @wq: workqueue to use
1616  * @work: work to queue
1617  *
1618  * We queue the work to a specific CPU, the caller must ensure it
1619  * can't go away.  Callers that fail to ensure that the specified
1620  * CPU cannot go away will execute on a randomly chosen CPU.
1621  * But note well that callers specifying a CPU that never has been
1622  * online will get a splat.
1623  *
1624  * Return: %false if @work was already on a queue, %true otherwise.
1625  */
1626 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1627 		   struct work_struct *work)
1628 {
1629 	bool ret = false;
1630 	unsigned long flags;
1631 
1632 	local_irq_save(flags);
1633 
1634 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1635 		__queue_work(cpu, wq, work);
1636 		ret = true;
1637 	}
1638 
1639 	local_irq_restore(flags);
1640 	return ret;
1641 }
1642 EXPORT_SYMBOL(queue_work_on);
1643 
1644 /**
1645  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1646  * @node: NUMA node ID that we want to select a CPU from
1647  *
1648  * This function will attempt to find a "random" cpu available on a given
1649  * node. If there are no CPUs available on the given node it will return
1650  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1651  * available CPU if we need to schedule this work.
1652  */
1653 static int workqueue_select_cpu_near(int node)
1654 {
1655 	int cpu;
1656 
1657 	/* No point in doing this if NUMA isn't enabled for workqueues */
1658 	if (!wq_numa_enabled)
1659 		return WORK_CPU_UNBOUND;
1660 
1661 	/* Delay binding to CPU if node is not valid or online */
1662 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1663 		return WORK_CPU_UNBOUND;
1664 
1665 	/* Use local node/cpu if we are already there */
1666 	cpu = raw_smp_processor_id();
1667 	if (node == cpu_to_node(cpu))
1668 		return cpu;
1669 
1670 	/* Use "random" otherwise know as "first" online CPU of node */
1671 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1672 
1673 	/* If CPU is valid return that, otherwise just defer */
1674 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1675 }
1676 
1677 /**
1678  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1679  * @node: NUMA node that we are targeting the work for
1680  * @wq: workqueue to use
1681  * @work: work to queue
1682  *
1683  * We queue the work to a "random" CPU within a given NUMA node. The basic
1684  * idea here is to provide a way to somehow associate work with a given
1685  * NUMA node.
1686  *
1687  * This function will only make a best effort attempt at getting this onto
1688  * the right NUMA node. If no node is requested or the requested node is
1689  * offline then we just fall back to standard queue_work behavior.
1690  *
1691  * Currently the "random" CPU ends up being the first available CPU in the
1692  * intersection of cpu_online_mask and the cpumask of the node, unless we
1693  * are running on the node. In that case we just use the current CPU.
1694  *
1695  * Return: %false if @work was already on a queue, %true otherwise.
1696  */
1697 bool queue_work_node(int node, struct workqueue_struct *wq,
1698 		     struct work_struct *work)
1699 {
1700 	unsigned long flags;
1701 	bool ret = false;
1702 
1703 	/*
1704 	 * This current implementation is specific to unbound workqueues.
1705 	 * Specifically we only return the first available CPU for a given
1706 	 * node instead of cycling through individual CPUs within the node.
1707 	 *
1708 	 * If this is used with a per-cpu workqueue then the logic in
1709 	 * workqueue_select_cpu_near would need to be updated to allow for
1710 	 * some round robin type logic.
1711 	 */
1712 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1713 
1714 	local_irq_save(flags);
1715 
1716 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1717 		int cpu = workqueue_select_cpu_near(node);
1718 
1719 		__queue_work(cpu, wq, work);
1720 		ret = true;
1721 	}
1722 
1723 	local_irq_restore(flags);
1724 	return ret;
1725 }
1726 EXPORT_SYMBOL_GPL(queue_work_node);
1727 
1728 void delayed_work_timer_fn(struct timer_list *t)
1729 {
1730 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1731 
1732 	/* should have been called from irqsafe timer with irq already off */
1733 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1734 }
1735 EXPORT_SYMBOL(delayed_work_timer_fn);
1736 
1737 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1738 				struct delayed_work *dwork, unsigned long delay)
1739 {
1740 	struct timer_list *timer = &dwork->timer;
1741 	struct work_struct *work = &dwork->work;
1742 
1743 	WARN_ON_ONCE(!wq);
1744 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1745 	WARN_ON_ONCE(timer_pending(timer));
1746 	WARN_ON_ONCE(!list_empty(&work->entry));
1747 
1748 	/*
1749 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1750 	 * both optimization and correctness.  The earliest @timer can
1751 	 * expire is on the closest next tick and delayed_work users depend
1752 	 * on that there's no such delay when @delay is 0.
1753 	 */
1754 	if (!delay) {
1755 		__queue_work(cpu, wq, &dwork->work);
1756 		return;
1757 	}
1758 
1759 	dwork->wq = wq;
1760 	dwork->cpu = cpu;
1761 	timer->expires = jiffies + delay;
1762 
1763 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1764 		add_timer_on(timer, cpu);
1765 	else
1766 		add_timer(timer);
1767 }
1768 
1769 /**
1770  * queue_delayed_work_on - queue work on specific CPU after delay
1771  * @cpu: CPU number to execute work on
1772  * @wq: workqueue to use
1773  * @dwork: work to queue
1774  * @delay: number of jiffies to wait before queueing
1775  *
1776  * Return: %false if @work was already on a queue, %true otherwise.  If
1777  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1778  * execution.
1779  */
1780 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1781 			   struct delayed_work *dwork, unsigned long delay)
1782 {
1783 	struct work_struct *work = &dwork->work;
1784 	bool ret = false;
1785 	unsigned long flags;
1786 
1787 	/* read the comment in __queue_work() */
1788 	local_irq_save(flags);
1789 
1790 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1791 		__queue_delayed_work(cpu, wq, dwork, delay);
1792 		ret = true;
1793 	}
1794 
1795 	local_irq_restore(flags);
1796 	return ret;
1797 }
1798 EXPORT_SYMBOL(queue_delayed_work_on);
1799 
1800 /**
1801  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1802  * @cpu: CPU number to execute work on
1803  * @wq: workqueue to use
1804  * @dwork: work to queue
1805  * @delay: number of jiffies to wait before queueing
1806  *
1807  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1808  * modify @dwork's timer so that it expires after @delay.  If @delay is
1809  * zero, @work is guaranteed to be scheduled immediately regardless of its
1810  * current state.
1811  *
1812  * Return: %false if @dwork was idle and queued, %true if @dwork was
1813  * pending and its timer was modified.
1814  *
1815  * This function is safe to call from any context including IRQ handler.
1816  * See try_to_grab_pending() for details.
1817  */
1818 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1819 			 struct delayed_work *dwork, unsigned long delay)
1820 {
1821 	unsigned long flags;
1822 	int ret;
1823 
1824 	do {
1825 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1826 	} while (unlikely(ret == -EAGAIN));
1827 
1828 	if (likely(ret >= 0)) {
1829 		__queue_delayed_work(cpu, wq, dwork, delay);
1830 		local_irq_restore(flags);
1831 	}
1832 
1833 	/* -ENOENT from try_to_grab_pending() becomes %true */
1834 	return ret;
1835 }
1836 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1837 
1838 static void rcu_work_rcufn(struct rcu_head *rcu)
1839 {
1840 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1841 
1842 	/* read the comment in __queue_work() */
1843 	local_irq_disable();
1844 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1845 	local_irq_enable();
1846 }
1847 
1848 /**
1849  * queue_rcu_work - queue work after a RCU grace period
1850  * @wq: workqueue to use
1851  * @rwork: work to queue
1852  *
1853  * Return: %false if @rwork was already pending, %true otherwise.  Note
1854  * that a full RCU grace period is guaranteed only after a %true return.
1855  * While @rwork is guaranteed to be executed after a %false return, the
1856  * execution may happen before a full RCU grace period has passed.
1857  */
1858 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1859 {
1860 	struct work_struct *work = &rwork->work;
1861 
1862 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1863 		rwork->wq = wq;
1864 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
1865 		return true;
1866 	}
1867 
1868 	return false;
1869 }
1870 EXPORT_SYMBOL(queue_rcu_work);
1871 
1872 /**
1873  * worker_enter_idle - enter idle state
1874  * @worker: worker which is entering idle state
1875  *
1876  * @worker is entering idle state.  Update stats and idle timer if
1877  * necessary.
1878  *
1879  * LOCKING:
1880  * raw_spin_lock_irq(pool->lock).
1881  */
1882 static void worker_enter_idle(struct worker *worker)
1883 {
1884 	struct worker_pool *pool = worker->pool;
1885 
1886 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1887 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1888 			 (worker->hentry.next || worker->hentry.pprev)))
1889 		return;
1890 
1891 	/* can't use worker_set_flags(), also called from create_worker() */
1892 	worker->flags |= WORKER_IDLE;
1893 	pool->nr_idle++;
1894 	worker->last_active = jiffies;
1895 
1896 	/* idle_list is LIFO */
1897 	list_add(&worker->entry, &pool->idle_list);
1898 
1899 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1900 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1901 
1902 	/* Sanity check nr_running. */
1903 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1904 }
1905 
1906 /**
1907  * worker_leave_idle - leave idle state
1908  * @worker: worker which is leaving idle state
1909  *
1910  * @worker is leaving idle state.  Update stats.
1911  *
1912  * LOCKING:
1913  * raw_spin_lock_irq(pool->lock).
1914  */
1915 static void worker_leave_idle(struct worker *worker)
1916 {
1917 	struct worker_pool *pool = worker->pool;
1918 
1919 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1920 		return;
1921 	worker_clr_flags(worker, WORKER_IDLE);
1922 	pool->nr_idle--;
1923 	list_del_init(&worker->entry);
1924 }
1925 
1926 static struct worker *alloc_worker(int node)
1927 {
1928 	struct worker *worker;
1929 
1930 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1931 	if (worker) {
1932 		INIT_LIST_HEAD(&worker->entry);
1933 		INIT_LIST_HEAD(&worker->scheduled);
1934 		INIT_LIST_HEAD(&worker->node);
1935 		/* on creation a worker is in !idle && prep state */
1936 		worker->flags = WORKER_PREP;
1937 	}
1938 	return worker;
1939 }
1940 
1941 /**
1942  * worker_attach_to_pool() - attach a worker to a pool
1943  * @worker: worker to be attached
1944  * @pool: the target pool
1945  *
1946  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1947  * cpu-binding of @worker are kept coordinated with the pool across
1948  * cpu-[un]hotplugs.
1949  */
1950 static void worker_attach_to_pool(struct worker *worker,
1951 				   struct worker_pool *pool)
1952 {
1953 	mutex_lock(&wq_pool_attach_mutex);
1954 
1955 	/*
1956 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1957 	 * stable across this function.  See the comments above the flag
1958 	 * definition for details.
1959 	 */
1960 	if (pool->flags & POOL_DISASSOCIATED)
1961 		worker->flags |= WORKER_UNBOUND;
1962 	else
1963 		kthread_set_per_cpu(worker->task, pool->cpu);
1964 
1965 	if (worker->rescue_wq)
1966 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1967 
1968 	list_add_tail(&worker->node, &pool->workers);
1969 	worker->pool = pool;
1970 
1971 	mutex_unlock(&wq_pool_attach_mutex);
1972 }
1973 
1974 /**
1975  * worker_detach_from_pool() - detach a worker from its pool
1976  * @worker: worker which is attached to its pool
1977  *
1978  * Undo the attaching which had been done in worker_attach_to_pool().  The
1979  * caller worker shouldn't access to the pool after detached except it has
1980  * other reference to the pool.
1981  */
1982 static void worker_detach_from_pool(struct worker *worker)
1983 {
1984 	struct worker_pool *pool = worker->pool;
1985 	struct completion *detach_completion = NULL;
1986 
1987 	mutex_lock(&wq_pool_attach_mutex);
1988 
1989 	kthread_set_per_cpu(worker->task, -1);
1990 	list_del(&worker->node);
1991 	worker->pool = NULL;
1992 
1993 	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
1994 		detach_completion = pool->detach_completion;
1995 	mutex_unlock(&wq_pool_attach_mutex);
1996 
1997 	/* clear leftover flags without pool->lock after it is detached */
1998 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1999 
2000 	if (detach_completion)
2001 		complete(detach_completion);
2002 }
2003 
2004 /**
2005  * create_worker - create a new workqueue worker
2006  * @pool: pool the new worker will belong to
2007  *
2008  * Create and start a new worker which is attached to @pool.
2009  *
2010  * CONTEXT:
2011  * Might sleep.  Does GFP_KERNEL allocations.
2012  *
2013  * Return:
2014  * Pointer to the newly created worker.
2015  */
2016 static struct worker *create_worker(struct worker_pool *pool)
2017 {
2018 	struct worker *worker;
2019 	int id;
2020 	char id_buf[16];
2021 
2022 	/* ID is needed to determine kthread name */
2023 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2024 	if (id < 0) {
2025 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2026 			    ERR_PTR(id));
2027 		return NULL;
2028 	}
2029 
2030 	worker = alloc_worker(pool->node);
2031 	if (!worker) {
2032 		pr_err_once("workqueue: Failed to allocate a worker\n");
2033 		goto fail;
2034 	}
2035 
2036 	worker->id = id;
2037 
2038 	if (pool->cpu >= 0)
2039 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2040 			 pool->attrs->nice < 0  ? "H" : "");
2041 	else
2042 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2043 
2044 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
2045 					      "kworker/%s", id_buf);
2046 	if (IS_ERR(worker->task)) {
2047 		if (PTR_ERR(worker->task) == -EINTR) {
2048 			pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2049 			       id_buf);
2050 		} else {
2051 			pr_err_once("workqueue: Failed to create a worker thread: %pe",
2052 				    worker->task);
2053 		}
2054 		goto fail;
2055 	}
2056 
2057 	set_user_nice(worker->task, pool->attrs->nice);
2058 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
2059 
2060 	/* successful, attach the worker to the pool */
2061 	worker_attach_to_pool(worker, pool);
2062 
2063 	/* start the newly created worker */
2064 	raw_spin_lock_irq(&pool->lock);
2065 	worker->pool->nr_workers++;
2066 	worker_enter_idle(worker);
2067 	wake_up_process(worker->task);
2068 	raw_spin_unlock_irq(&pool->lock);
2069 
2070 	return worker;
2071 
2072 fail:
2073 	ida_free(&pool->worker_ida, id);
2074 	kfree(worker);
2075 	return NULL;
2076 }
2077 
2078 static void unbind_worker(struct worker *worker)
2079 {
2080 	lockdep_assert_held(&wq_pool_attach_mutex);
2081 
2082 	kthread_set_per_cpu(worker->task, -1);
2083 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2084 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2085 	else
2086 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2087 }
2088 
2089 static void wake_dying_workers(struct list_head *cull_list)
2090 {
2091 	struct worker *worker, *tmp;
2092 
2093 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2094 		list_del_init(&worker->entry);
2095 		unbind_worker(worker);
2096 		/*
2097 		 * If the worker was somehow already running, then it had to be
2098 		 * in pool->idle_list when set_worker_dying() happened or we
2099 		 * wouldn't have gotten here.
2100 		 *
2101 		 * Thus, the worker must either have observed the WORKER_DIE
2102 		 * flag, or have set its state to TASK_IDLE. Either way, the
2103 		 * below will be observed by the worker and is safe to do
2104 		 * outside of pool->lock.
2105 		 */
2106 		wake_up_process(worker->task);
2107 	}
2108 }
2109 
2110 /**
2111  * set_worker_dying - Tag a worker for destruction
2112  * @worker: worker to be destroyed
2113  * @list: transfer worker away from its pool->idle_list and into list
2114  *
2115  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2116  * should be idle.
2117  *
2118  * CONTEXT:
2119  * raw_spin_lock_irq(pool->lock).
2120  */
2121 static void set_worker_dying(struct worker *worker, struct list_head *list)
2122 {
2123 	struct worker_pool *pool = worker->pool;
2124 
2125 	lockdep_assert_held(&pool->lock);
2126 	lockdep_assert_held(&wq_pool_attach_mutex);
2127 
2128 	/* sanity check frenzy */
2129 	if (WARN_ON(worker->current_work) ||
2130 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2131 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2132 		return;
2133 
2134 	pool->nr_workers--;
2135 	pool->nr_idle--;
2136 
2137 	worker->flags |= WORKER_DIE;
2138 
2139 	list_move(&worker->entry, list);
2140 	list_move(&worker->node, &pool->dying_workers);
2141 }
2142 
2143 /**
2144  * idle_worker_timeout - check if some idle workers can now be deleted.
2145  * @t: The pool's idle_timer that just expired
2146  *
2147  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2148  * worker_leave_idle(), as a worker flicking between idle and active while its
2149  * pool is at the too_many_workers() tipping point would cause too much timer
2150  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2151  * it expire and re-evaluate things from there.
2152  */
2153 static void idle_worker_timeout(struct timer_list *t)
2154 {
2155 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2156 	bool do_cull = false;
2157 
2158 	if (work_pending(&pool->idle_cull_work))
2159 		return;
2160 
2161 	raw_spin_lock_irq(&pool->lock);
2162 
2163 	if (too_many_workers(pool)) {
2164 		struct worker *worker;
2165 		unsigned long expires;
2166 
2167 		/* idle_list is kept in LIFO order, check the last one */
2168 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2169 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2170 		do_cull = !time_before(jiffies, expires);
2171 
2172 		if (!do_cull)
2173 			mod_timer(&pool->idle_timer, expires);
2174 	}
2175 	raw_spin_unlock_irq(&pool->lock);
2176 
2177 	if (do_cull)
2178 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2179 }
2180 
2181 /**
2182  * idle_cull_fn - cull workers that have been idle for too long.
2183  * @work: the pool's work for handling these idle workers
2184  *
2185  * This goes through a pool's idle workers and gets rid of those that have been
2186  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2187  *
2188  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2189  * culled, so this also resets worker affinity. This requires a sleepable
2190  * context, hence the split between timer callback and work item.
2191  */
2192 static void idle_cull_fn(struct work_struct *work)
2193 {
2194 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2195 	struct list_head cull_list;
2196 
2197 	INIT_LIST_HEAD(&cull_list);
2198 	/*
2199 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2200 	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2201 	 * path. This is required as a previously-preempted worker could run after
2202 	 * set_worker_dying() has happened but before wake_dying_workers() did.
2203 	 */
2204 	mutex_lock(&wq_pool_attach_mutex);
2205 	raw_spin_lock_irq(&pool->lock);
2206 
2207 	while (too_many_workers(pool)) {
2208 		struct worker *worker;
2209 		unsigned long expires;
2210 
2211 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2212 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2213 
2214 		if (time_before(jiffies, expires)) {
2215 			mod_timer(&pool->idle_timer, expires);
2216 			break;
2217 		}
2218 
2219 		set_worker_dying(worker, &cull_list);
2220 	}
2221 
2222 	raw_spin_unlock_irq(&pool->lock);
2223 	wake_dying_workers(&cull_list);
2224 	mutex_unlock(&wq_pool_attach_mutex);
2225 }
2226 
2227 static void send_mayday(struct work_struct *work)
2228 {
2229 	struct pool_workqueue *pwq = get_work_pwq(work);
2230 	struct workqueue_struct *wq = pwq->wq;
2231 
2232 	lockdep_assert_held(&wq_mayday_lock);
2233 
2234 	if (!wq->rescuer)
2235 		return;
2236 
2237 	/* mayday mayday mayday */
2238 	if (list_empty(&pwq->mayday_node)) {
2239 		/*
2240 		 * If @pwq is for an unbound wq, its base ref may be put at
2241 		 * any time due to an attribute change.  Pin @pwq until the
2242 		 * rescuer is done with it.
2243 		 */
2244 		get_pwq(pwq);
2245 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2246 		wake_up_process(wq->rescuer->task);
2247 		pwq->stats[PWQ_STAT_MAYDAY]++;
2248 	}
2249 }
2250 
2251 static void pool_mayday_timeout(struct timer_list *t)
2252 {
2253 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2254 	struct work_struct *work;
2255 
2256 	raw_spin_lock_irq(&pool->lock);
2257 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2258 
2259 	if (need_to_create_worker(pool)) {
2260 		/*
2261 		 * We've been trying to create a new worker but
2262 		 * haven't been successful.  We might be hitting an
2263 		 * allocation deadlock.  Send distress signals to
2264 		 * rescuers.
2265 		 */
2266 		list_for_each_entry(work, &pool->worklist, entry)
2267 			send_mayday(work);
2268 	}
2269 
2270 	raw_spin_unlock(&wq_mayday_lock);
2271 	raw_spin_unlock_irq(&pool->lock);
2272 
2273 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2274 }
2275 
2276 /**
2277  * maybe_create_worker - create a new worker if necessary
2278  * @pool: pool to create a new worker for
2279  *
2280  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2281  * have at least one idle worker on return from this function.  If
2282  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2283  * sent to all rescuers with works scheduled on @pool to resolve
2284  * possible allocation deadlock.
2285  *
2286  * On return, need_to_create_worker() is guaranteed to be %false and
2287  * may_start_working() %true.
2288  *
2289  * LOCKING:
2290  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2291  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2292  * manager.
2293  */
2294 static void maybe_create_worker(struct worker_pool *pool)
2295 __releases(&pool->lock)
2296 __acquires(&pool->lock)
2297 {
2298 restart:
2299 	raw_spin_unlock_irq(&pool->lock);
2300 
2301 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2302 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2303 
2304 	while (true) {
2305 		if (create_worker(pool) || !need_to_create_worker(pool))
2306 			break;
2307 
2308 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2309 
2310 		if (!need_to_create_worker(pool))
2311 			break;
2312 	}
2313 
2314 	del_timer_sync(&pool->mayday_timer);
2315 	raw_spin_lock_irq(&pool->lock);
2316 	/*
2317 	 * This is necessary even after a new worker was just successfully
2318 	 * created as @pool->lock was dropped and the new worker might have
2319 	 * already become busy.
2320 	 */
2321 	if (need_to_create_worker(pool))
2322 		goto restart;
2323 }
2324 
2325 /**
2326  * manage_workers - manage worker pool
2327  * @worker: self
2328  *
2329  * Assume the manager role and manage the worker pool @worker belongs
2330  * to.  At any given time, there can be only zero or one manager per
2331  * pool.  The exclusion is handled automatically by this function.
2332  *
2333  * The caller can safely start processing works on false return.  On
2334  * true return, it's guaranteed that need_to_create_worker() is false
2335  * and may_start_working() is true.
2336  *
2337  * CONTEXT:
2338  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2339  * multiple times.  Does GFP_KERNEL allocations.
2340  *
2341  * Return:
2342  * %false if the pool doesn't need management and the caller can safely
2343  * start processing works, %true if management function was performed and
2344  * the conditions that the caller verified before calling the function may
2345  * no longer be true.
2346  */
2347 static bool manage_workers(struct worker *worker)
2348 {
2349 	struct worker_pool *pool = worker->pool;
2350 
2351 	if (pool->flags & POOL_MANAGER_ACTIVE)
2352 		return false;
2353 
2354 	pool->flags |= POOL_MANAGER_ACTIVE;
2355 	pool->manager = worker;
2356 
2357 	maybe_create_worker(pool);
2358 
2359 	pool->manager = NULL;
2360 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2361 	rcuwait_wake_up(&manager_wait);
2362 	return true;
2363 }
2364 
2365 /**
2366  * process_one_work - process single work
2367  * @worker: self
2368  * @work: work to process
2369  *
2370  * Process @work.  This function contains all the logics necessary to
2371  * process a single work including synchronization against and
2372  * interaction with other workers on the same cpu, queueing and
2373  * flushing.  As long as context requirement is met, any worker can
2374  * call this function to process a work.
2375  *
2376  * CONTEXT:
2377  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2378  */
2379 static void process_one_work(struct worker *worker, struct work_struct *work)
2380 __releases(&pool->lock)
2381 __acquires(&pool->lock)
2382 {
2383 	struct pool_workqueue *pwq = get_work_pwq(work);
2384 	struct worker_pool *pool = worker->pool;
2385 	unsigned long work_data;
2386 	struct worker *collision;
2387 #ifdef CONFIG_LOCKDEP
2388 	/*
2389 	 * It is permissible to free the struct work_struct from
2390 	 * inside the function that is called from it, this we need to
2391 	 * take into account for lockdep too.  To avoid bogus "held
2392 	 * lock freed" warnings as well as problems when looking into
2393 	 * work->lockdep_map, make a copy and use that here.
2394 	 */
2395 	struct lockdep_map lockdep_map;
2396 
2397 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2398 #endif
2399 	/* ensure we're on the correct CPU */
2400 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2401 		     raw_smp_processor_id() != pool->cpu);
2402 
2403 	/*
2404 	 * A single work shouldn't be executed concurrently by
2405 	 * multiple workers on a single cpu.  Check whether anyone is
2406 	 * already processing the work.  If so, defer the work to the
2407 	 * currently executing one.
2408 	 */
2409 	collision = find_worker_executing_work(pool, work);
2410 	if (unlikely(collision)) {
2411 		move_linked_works(work, &collision->scheduled, NULL);
2412 		return;
2413 	}
2414 
2415 	/* claim and dequeue */
2416 	debug_work_deactivate(work);
2417 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2418 	worker->current_work = work;
2419 	worker->current_func = work->func;
2420 	worker->current_pwq = pwq;
2421 	worker->current_at = worker->task->se.sum_exec_runtime;
2422 	work_data = *work_data_bits(work);
2423 	worker->current_color = get_work_color(work_data);
2424 
2425 	/*
2426 	 * Record wq name for cmdline and debug reporting, may get
2427 	 * overridden through set_worker_desc().
2428 	 */
2429 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2430 
2431 	list_del_init(&work->entry);
2432 
2433 	/*
2434 	 * CPU intensive works don't participate in concurrency management.
2435 	 * They're the scheduler's responsibility.  This takes @worker out
2436 	 * of concurrency management and the next code block will chain
2437 	 * execution of the pending work items.
2438 	 */
2439 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
2440 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2441 
2442 	/*
2443 	 * Wake up another worker if necessary.  The condition is always
2444 	 * false for normal per-cpu workers since nr_running would always
2445 	 * be >= 1 at this point.  This is used to chain execution of the
2446 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2447 	 * UNBOUND and CPU_INTENSIVE ones.
2448 	 */
2449 	if (need_more_worker(pool))
2450 		wake_up_worker(pool);
2451 
2452 	/*
2453 	 * Record the last pool and clear PENDING which should be the last
2454 	 * update to @work.  Also, do this inside @pool->lock so that
2455 	 * PENDING and queued state changes happen together while IRQ is
2456 	 * disabled.
2457 	 */
2458 	set_work_pool_and_clear_pending(work, pool->id);
2459 
2460 	raw_spin_unlock_irq(&pool->lock);
2461 
2462 	lock_map_acquire(&pwq->wq->lockdep_map);
2463 	lock_map_acquire(&lockdep_map);
2464 	/*
2465 	 * Strictly speaking we should mark the invariant state without holding
2466 	 * any locks, that is, before these two lock_map_acquire()'s.
2467 	 *
2468 	 * However, that would result in:
2469 	 *
2470 	 *   A(W1)
2471 	 *   WFC(C)
2472 	 *		A(W1)
2473 	 *		C(C)
2474 	 *
2475 	 * Which would create W1->C->W1 dependencies, even though there is no
2476 	 * actual deadlock possible. There are two solutions, using a
2477 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2478 	 * hit the lockdep limitation on recursive locks, or simply discard
2479 	 * these locks.
2480 	 *
2481 	 * AFAICT there is no possible deadlock scenario between the
2482 	 * flush_work() and complete() primitives (except for single-threaded
2483 	 * workqueues), so hiding them isn't a problem.
2484 	 */
2485 	lockdep_invariant_state(true);
2486 	pwq->stats[PWQ_STAT_STARTED]++;
2487 	trace_workqueue_execute_start(work);
2488 	worker->current_func(work);
2489 	/*
2490 	 * While we must be careful to not use "work" after this, the trace
2491 	 * point will only record its address.
2492 	 */
2493 	trace_workqueue_execute_end(work, worker->current_func);
2494 	pwq->stats[PWQ_STAT_COMPLETED]++;
2495 	lock_map_release(&lockdep_map);
2496 	lock_map_release(&pwq->wq->lockdep_map);
2497 
2498 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2499 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2500 		       "     last function: %ps\n",
2501 		       current->comm, preempt_count(), task_pid_nr(current),
2502 		       worker->current_func);
2503 		debug_show_held_locks(current);
2504 		dump_stack();
2505 	}
2506 
2507 	/*
2508 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2509 	 * kernels, where a requeueing work item waiting for something to
2510 	 * happen could deadlock with stop_machine as such work item could
2511 	 * indefinitely requeue itself while all other CPUs are trapped in
2512 	 * stop_machine. At the same time, report a quiescent RCU state so
2513 	 * the same condition doesn't freeze RCU.
2514 	 */
2515 	cond_resched();
2516 
2517 	raw_spin_lock_irq(&pool->lock);
2518 
2519 	/*
2520 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
2521 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
2522 	 * wq_cpu_intensive_thresh_us. Clear it.
2523 	 */
2524 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2525 
2526 	/* tag the worker for identification in schedule() */
2527 	worker->last_func = worker->current_func;
2528 
2529 	/* we're done with it, release */
2530 	hash_del(&worker->hentry);
2531 	worker->current_work = NULL;
2532 	worker->current_func = NULL;
2533 	worker->current_pwq = NULL;
2534 	worker->current_color = INT_MAX;
2535 	pwq_dec_nr_in_flight(pwq, work_data);
2536 }
2537 
2538 /**
2539  * process_scheduled_works - process scheduled works
2540  * @worker: self
2541  *
2542  * Process all scheduled works.  Please note that the scheduled list
2543  * may change while processing a work, so this function repeatedly
2544  * fetches a work from the top and executes it.
2545  *
2546  * CONTEXT:
2547  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2548  * multiple times.
2549  */
2550 static void process_scheduled_works(struct worker *worker)
2551 {
2552 	while (!list_empty(&worker->scheduled)) {
2553 		struct work_struct *work = list_first_entry(&worker->scheduled,
2554 						struct work_struct, entry);
2555 		process_one_work(worker, work);
2556 	}
2557 }
2558 
2559 static void set_pf_worker(bool val)
2560 {
2561 	mutex_lock(&wq_pool_attach_mutex);
2562 	if (val)
2563 		current->flags |= PF_WQ_WORKER;
2564 	else
2565 		current->flags &= ~PF_WQ_WORKER;
2566 	mutex_unlock(&wq_pool_attach_mutex);
2567 }
2568 
2569 /**
2570  * worker_thread - the worker thread function
2571  * @__worker: self
2572  *
2573  * The worker thread function.  All workers belong to a worker_pool -
2574  * either a per-cpu one or dynamic unbound one.  These workers process all
2575  * work items regardless of their specific target workqueue.  The only
2576  * exception is work items which belong to workqueues with a rescuer which
2577  * will be explained in rescuer_thread().
2578  *
2579  * Return: 0
2580  */
2581 static int worker_thread(void *__worker)
2582 {
2583 	struct worker *worker = __worker;
2584 	struct worker_pool *pool = worker->pool;
2585 
2586 	/* tell the scheduler that this is a workqueue worker */
2587 	set_pf_worker(true);
2588 woke_up:
2589 	raw_spin_lock_irq(&pool->lock);
2590 
2591 	/* am I supposed to die? */
2592 	if (unlikely(worker->flags & WORKER_DIE)) {
2593 		raw_spin_unlock_irq(&pool->lock);
2594 		set_pf_worker(false);
2595 
2596 		set_task_comm(worker->task, "kworker/dying");
2597 		ida_free(&pool->worker_ida, worker->id);
2598 		worker_detach_from_pool(worker);
2599 		WARN_ON_ONCE(!list_empty(&worker->entry));
2600 		kfree(worker);
2601 		return 0;
2602 	}
2603 
2604 	worker_leave_idle(worker);
2605 recheck:
2606 	/* no more worker necessary? */
2607 	if (!need_more_worker(pool))
2608 		goto sleep;
2609 
2610 	/* do we need to manage? */
2611 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2612 		goto recheck;
2613 
2614 	/*
2615 	 * ->scheduled list can only be filled while a worker is
2616 	 * preparing to process a work or actually processing it.
2617 	 * Make sure nobody diddled with it while I was sleeping.
2618 	 */
2619 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2620 
2621 	/*
2622 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2623 	 * worker or that someone else has already assumed the manager
2624 	 * role.  This is where @worker starts participating in concurrency
2625 	 * management if applicable and concurrency management is restored
2626 	 * after being rebound.  See rebind_workers() for details.
2627 	 */
2628 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2629 
2630 	do {
2631 		struct work_struct *work =
2632 			list_first_entry(&pool->worklist,
2633 					 struct work_struct, entry);
2634 
2635 		pool->watchdog_ts = jiffies;
2636 
2637 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2638 			/* optimization path, not strictly necessary */
2639 			process_one_work(worker, work);
2640 			if (unlikely(!list_empty(&worker->scheduled)))
2641 				process_scheduled_works(worker);
2642 		} else {
2643 			move_linked_works(work, &worker->scheduled, NULL);
2644 			process_scheduled_works(worker);
2645 		}
2646 	} while (keep_working(pool));
2647 
2648 	worker_set_flags(worker, WORKER_PREP);
2649 sleep:
2650 	/*
2651 	 * pool->lock is held and there's no work to process and no need to
2652 	 * manage, sleep.  Workers are woken up only while holding
2653 	 * pool->lock or from local cpu, so setting the current state
2654 	 * before releasing pool->lock is enough to prevent losing any
2655 	 * event.
2656 	 */
2657 	worker_enter_idle(worker);
2658 	__set_current_state(TASK_IDLE);
2659 	raw_spin_unlock_irq(&pool->lock);
2660 	schedule();
2661 	goto woke_up;
2662 }
2663 
2664 /**
2665  * rescuer_thread - the rescuer thread function
2666  * @__rescuer: self
2667  *
2668  * Workqueue rescuer thread function.  There's one rescuer for each
2669  * workqueue which has WQ_MEM_RECLAIM set.
2670  *
2671  * Regular work processing on a pool may block trying to create a new
2672  * worker which uses GFP_KERNEL allocation which has slight chance of
2673  * developing into deadlock if some works currently on the same queue
2674  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2675  * the problem rescuer solves.
2676  *
2677  * When such condition is possible, the pool summons rescuers of all
2678  * workqueues which have works queued on the pool and let them process
2679  * those works so that forward progress can be guaranteed.
2680  *
2681  * This should happen rarely.
2682  *
2683  * Return: 0
2684  */
2685 static int rescuer_thread(void *__rescuer)
2686 {
2687 	struct worker *rescuer = __rescuer;
2688 	struct workqueue_struct *wq = rescuer->rescue_wq;
2689 	struct list_head *scheduled = &rescuer->scheduled;
2690 	bool should_stop;
2691 
2692 	set_user_nice(current, RESCUER_NICE_LEVEL);
2693 
2694 	/*
2695 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2696 	 * doesn't participate in concurrency management.
2697 	 */
2698 	set_pf_worker(true);
2699 repeat:
2700 	set_current_state(TASK_IDLE);
2701 
2702 	/*
2703 	 * By the time the rescuer is requested to stop, the workqueue
2704 	 * shouldn't have any work pending, but @wq->maydays may still have
2705 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2706 	 * all the work items before the rescuer got to them.  Go through
2707 	 * @wq->maydays processing before acting on should_stop so that the
2708 	 * list is always empty on exit.
2709 	 */
2710 	should_stop = kthread_should_stop();
2711 
2712 	/* see whether any pwq is asking for help */
2713 	raw_spin_lock_irq(&wq_mayday_lock);
2714 
2715 	while (!list_empty(&wq->maydays)) {
2716 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2717 					struct pool_workqueue, mayday_node);
2718 		struct worker_pool *pool = pwq->pool;
2719 		struct work_struct *work, *n;
2720 		bool first = true;
2721 
2722 		__set_current_state(TASK_RUNNING);
2723 		list_del_init(&pwq->mayday_node);
2724 
2725 		raw_spin_unlock_irq(&wq_mayday_lock);
2726 
2727 		worker_attach_to_pool(rescuer, pool);
2728 
2729 		raw_spin_lock_irq(&pool->lock);
2730 
2731 		/*
2732 		 * Slurp in all works issued via this workqueue and
2733 		 * process'em.
2734 		 */
2735 		WARN_ON_ONCE(!list_empty(scheduled));
2736 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2737 			if (get_work_pwq(work) == pwq) {
2738 				if (first)
2739 					pool->watchdog_ts = jiffies;
2740 				move_linked_works(work, scheduled, &n);
2741 				pwq->stats[PWQ_STAT_RESCUED]++;
2742 			}
2743 			first = false;
2744 		}
2745 
2746 		if (!list_empty(scheduled)) {
2747 			process_scheduled_works(rescuer);
2748 
2749 			/*
2750 			 * The above execution of rescued work items could
2751 			 * have created more to rescue through
2752 			 * pwq_activate_first_inactive() or chained
2753 			 * queueing.  Let's put @pwq back on mayday list so
2754 			 * that such back-to-back work items, which may be
2755 			 * being used to relieve memory pressure, don't
2756 			 * incur MAYDAY_INTERVAL delay inbetween.
2757 			 */
2758 			if (pwq->nr_active && need_to_create_worker(pool)) {
2759 				raw_spin_lock(&wq_mayday_lock);
2760 				/*
2761 				 * Queue iff we aren't racing destruction
2762 				 * and somebody else hasn't queued it already.
2763 				 */
2764 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2765 					get_pwq(pwq);
2766 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2767 				}
2768 				raw_spin_unlock(&wq_mayday_lock);
2769 			}
2770 		}
2771 
2772 		/*
2773 		 * Put the reference grabbed by send_mayday().  @pool won't
2774 		 * go away while we're still attached to it.
2775 		 */
2776 		put_pwq(pwq);
2777 
2778 		/*
2779 		 * Leave this pool.  If need_more_worker() is %true, notify a
2780 		 * regular worker; otherwise, we end up with 0 concurrency
2781 		 * and stalling the execution.
2782 		 */
2783 		if (need_more_worker(pool))
2784 			wake_up_worker(pool);
2785 
2786 		raw_spin_unlock_irq(&pool->lock);
2787 
2788 		worker_detach_from_pool(rescuer);
2789 
2790 		raw_spin_lock_irq(&wq_mayday_lock);
2791 	}
2792 
2793 	raw_spin_unlock_irq(&wq_mayday_lock);
2794 
2795 	if (should_stop) {
2796 		__set_current_state(TASK_RUNNING);
2797 		set_pf_worker(false);
2798 		return 0;
2799 	}
2800 
2801 	/* rescuers should never participate in concurrency management */
2802 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2803 	schedule();
2804 	goto repeat;
2805 }
2806 
2807 /**
2808  * check_flush_dependency - check for flush dependency sanity
2809  * @target_wq: workqueue being flushed
2810  * @target_work: work item being flushed (NULL for workqueue flushes)
2811  *
2812  * %current is trying to flush the whole @target_wq or @target_work on it.
2813  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2814  * reclaiming memory or running on a workqueue which doesn't have
2815  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2816  * a deadlock.
2817  */
2818 static void check_flush_dependency(struct workqueue_struct *target_wq,
2819 				   struct work_struct *target_work)
2820 {
2821 	work_func_t target_func = target_work ? target_work->func : NULL;
2822 	struct worker *worker;
2823 
2824 	if (target_wq->flags & WQ_MEM_RECLAIM)
2825 		return;
2826 
2827 	worker = current_wq_worker();
2828 
2829 	WARN_ONCE(current->flags & PF_MEMALLOC,
2830 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2831 		  current->pid, current->comm, target_wq->name, target_func);
2832 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2833 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2834 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2835 		  worker->current_pwq->wq->name, worker->current_func,
2836 		  target_wq->name, target_func);
2837 }
2838 
2839 struct wq_barrier {
2840 	struct work_struct	work;
2841 	struct completion	done;
2842 	struct task_struct	*task;	/* purely informational */
2843 };
2844 
2845 static void wq_barrier_func(struct work_struct *work)
2846 {
2847 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2848 	complete(&barr->done);
2849 }
2850 
2851 /**
2852  * insert_wq_barrier - insert a barrier work
2853  * @pwq: pwq to insert barrier into
2854  * @barr: wq_barrier to insert
2855  * @target: target work to attach @barr to
2856  * @worker: worker currently executing @target, NULL if @target is not executing
2857  *
2858  * @barr is linked to @target such that @barr is completed only after
2859  * @target finishes execution.  Please note that the ordering
2860  * guarantee is observed only with respect to @target and on the local
2861  * cpu.
2862  *
2863  * Currently, a queued barrier can't be canceled.  This is because
2864  * try_to_grab_pending() can't determine whether the work to be
2865  * grabbed is at the head of the queue and thus can't clear LINKED
2866  * flag of the previous work while there must be a valid next work
2867  * after a work with LINKED flag set.
2868  *
2869  * Note that when @worker is non-NULL, @target may be modified
2870  * underneath us, so we can't reliably determine pwq from @target.
2871  *
2872  * CONTEXT:
2873  * raw_spin_lock_irq(pool->lock).
2874  */
2875 static void insert_wq_barrier(struct pool_workqueue *pwq,
2876 			      struct wq_barrier *barr,
2877 			      struct work_struct *target, struct worker *worker)
2878 {
2879 	unsigned int work_flags = 0;
2880 	unsigned int work_color;
2881 	struct list_head *head;
2882 
2883 	/*
2884 	 * debugobject calls are safe here even with pool->lock locked
2885 	 * as we know for sure that this will not trigger any of the
2886 	 * checks and call back into the fixup functions where we
2887 	 * might deadlock.
2888 	 */
2889 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2890 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2891 
2892 	init_completion_map(&barr->done, &target->lockdep_map);
2893 
2894 	barr->task = current;
2895 
2896 	/* The barrier work item does not participate in pwq->nr_active. */
2897 	work_flags |= WORK_STRUCT_INACTIVE;
2898 
2899 	/*
2900 	 * If @target is currently being executed, schedule the
2901 	 * barrier to the worker; otherwise, put it after @target.
2902 	 */
2903 	if (worker) {
2904 		head = worker->scheduled.next;
2905 		work_color = worker->current_color;
2906 	} else {
2907 		unsigned long *bits = work_data_bits(target);
2908 
2909 		head = target->entry.next;
2910 		/* there can already be other linked works, inherit and set */
2911 		work_flags |= *bits & WORK_STRUCT_LINKED;
2912 		work_color = get_work_color(*bits);
2913 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2914 	}
2915 
2916 	pwq->nr_in_flight[work_color]++;
2917 	work_flags |= work_color_to_flags(work_color);
2918 
2919 	debug_work_activate(&barr->work);
2920 	insert_work(pwq, &barr->work, head, work_flags);
2921 }
2922 
2923 /**
2924  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2925  * @wq: workqueue being flushed
2926  * @flush_color: new flush color, < 0 for no-op
2927  * @work_color: new work color, < 0 for no-op
2928  *
2929  * Prepare pwqs for workqueue flushing.
2930  *
2931  * If @flush_color is non-negative, flush_color on all pwqs should be
2932  * -1.  If no pwq has in-flight commands at the specified color, all
2933  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2934  * has in flight commands, its pwq->flush_color is set to
2935  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2936  * wakeup logic is armed and %true is returned.
2937  *
2938  * The caller should have initialized @wq->first_flusher prior to
2939  * calling this function with non-negative @flush_color.  If
2940  * @flush_color is negative, no flush color update is done and %false
2941  * is returned.
2942  *
2943  * If @work_color is non-negative, all pwqs should have the same
2944  * work_color which is previous to @work_color and all will be
2945  * advanced to @work_color.
2946  *
2947  * CONTEXT:
2948  * mutex_lock(wq->mutex).
2949  *
2950  * Return:
2951  * %true if @flush_color >= 0 and there's something to flush.  %false
2952  * otherwise.
2953  */
2954 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2955 				      int flush_color, int work_color)
2956 {
2957 	bool wait = false;
2958 	struct pool_workqueue *pwq;
2959 
2960 	if (flush_color >= 0) {
2961 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2962 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2963 	}
2964 
2965 	for_each_pwq(pwq, wq) {
2966 		struct worker_pool *pool = pwq->pool;
2967 
2968 		raw_spin_lock_irq(&pool->lock);
2969 
2970 		if (flush_color >= 0) {
2971 			WARN_ON_ONCE(pwq->flush_color != -1);
2972 
2973 			if (pwq->nr_in_flight[flush_color]) {
2974 				pwq->flush_color = flush_color;
2975 				atomic_inc(&wq->nr_pwqs_to_flush);
2976 				wait = true;
2977 			}
2978 		}
2979 
2980 		if (work_color >= 0) {
2981 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2982 			pwq->work_color = work_color;
2983 		}
2984 
2985 		raw_spin_unlock_irq(&pool->lock);
2986 	}
2987 
2988 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2989 		complete(&wq->first_flusher->done);
2990 
2991 	return wait;
2992 }
2993 
2994 /**
2995  * __flush_workqueue - ensure that any scheduled work has run to completion.
2996  * @wq: workqueue to flush
2997  *
2998  * This function sleeps until all work items which were queued on entry
2999  * have finished execution, but it is not livelocked by new incoming ones.
3000  */
3001 void __flush_workqueue(struct workqueue_struct *wq)
3002 {
3003 	struct wq_flusher this_flusher = {
3004 		.list = LIST_HEAD_INIT(this_flusher.list),
3005 		.flush_color = -1,
3006 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3007 	};
3008 	int next_color;
3009 
3010 	if (WARN_ON(!wq_online))
3011 		return;
3012 
3013 	lock_map_acquire(&wq->lockdep_map);
3014 	lock_map_release(&wq->lockdep_map);
3015 
3016 	mutex_lock(&wq->mutex);
3017 
3018 	/*
3019 	 * Start-to-wait phase
3020 	 */
3021 	next_color = work_next_color(wq->work_color);
3022 
3023 	if (next_color != wq->flush_color) {
3024 		/*
3025 		 * Color space is not full.  The current work_color
3026 		 * becomes our flush_color and work_color is advanced
3027 		 * by one.
3028 		 */
3029 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3030 		this_flusher.flush_color = wq->work_color;
3031 		wq->work_color = next_color;
3032 
3033 		if (!wq->first_flusher) {
3034 			/* no flush in progress, become the first flusher */
3035 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3036 
3037 			wq->first_flusher = &this_flusher;
3038 
3039 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3040 						       wq->work_color)) {
3041 				/* nothing to flush, done */
3042 				wq->flush_color = next_color;
3043 				wq->first_flusher = NULL;
3044 				goto out_unlock;
3045 			}
3046 		} else {
3047 			/* wait in queue */
3048 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3049 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3050 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3051 		}
3052 	} else {
3053 		/*
3054 		 * Oops, color space is full, wait on overflow queue.
3055 		 * The next flush completion will assign us
3056 		 * flush_color and transfer to flusher_queue.
3057 		 */
3058 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3059 	}
3060 
3061 	check_flush_dependency(wq, NULL);
3062 
3063 	mutex_unlock(&wq->mutex);
3064 
3065 	wait_for_completion(&this_flusher.done);
3066 
3067 	/*
3068 	 * Wake-up-and-cascade phase
3069 	 *
3070 	 * First flushers are responsible for cascading flushes and
3071 	 * handling overflow.  Non-first flushers can simply return.
3072 	 */
3073 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3074 		return;
3075 
3076 	mutex_lock(&wq->mutex);
3077 
3078 	/* we might have raced, check again with mutex held */
3079 	if (wq->first_flusher != &this_flusher)
3080 		goto out_unlock;
3081 
3082 	WRITE_ONCE(wq->first_flusher, NULL);
3083 
3084 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3085 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3086 
3087 	while (true) {
3088 		struct wq_flusher *next, *tmp;
3089 
3090 		/* complete all the flushers sharing the current flush color */
3091 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3092 			if (next->flush_color != wq->flush_color)
3093 				break;
3094 			list_del_init(&next->list);
3095 			complete(&next->done);
3096 		}
3097 
3098 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3099 			     wq->flush_color != work_next_color(wq->work_color));
3100 
3101 		/* this flush_color is finished, advance by one */
3102 		wq->flush_color = work_next_color(wq->flush_color);
3103 
3104 		/* one color has been freed, handle overflow queue */
3105 		if (!list_empty(&wq->flusher_overflow)) {
3106 			/*
3107 			 * Assign the same color to all overflowed
3108 			 * flushers, advance work_color and append to
3109 			 * flusher_queue.  This is the start-to-wait
3110 			 * phase for these overflowed flushers.
3111 			 */
3112 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
3113 				tmp->flush_color = wq->work_color;
3114 
3115 			wq->work_color = work_next_color(wq->work_color);
3116 
3117 			list_splice_tail_init(&wq->flusher_overflow,
3118 					      &wq->flusher_queue);
3119 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3120 		}
3121 
3122 		if (list_empty(&wq->flusher_queue)) {
3123 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
3124 			break;
3125 		}
3126 
3127 		/*
3128 		 * Need to flush more colors.  Make the next flusher
3129 		 * the new first flusher and arm pwqs.
3130 		 */
3131 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
3132 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
3133 
3134 		list_del_init(&next->list);
3135 		wq->first_flusher = next;
3136 
3137 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3138 			break;
3139 
3140 		/*
3141 		 * Meh... this color is already done, clear first
3142 		 * flusher and repeat cascading.
3143 		 */
3144 		wq->first_flusher = NULL;
3145 	}
3146 
3147 out_unlock:
3148 	mutex_unlock(&wq->mutex);
3149 }
3150 EXPORT_SYMBOL(__flush_workqueue);
3151 
3152 /**
3153  * drain_workqueue - drain a workqueue
3154  * @wq: workqueue to drain
3155  *
3156  * Wait until the workqueue becomes empty.  While draining is in progress,
3157  * only chain queueing is allowed.  IOW, only currently pending or running
3158  * work items on @wq can queue further work items on it.  @wq is flushed
3159  * repeatedly until it becomes empty.  The number of flushing is determined
3160  * by the depth of chaining and should be relatively short.  Whine if it
3161  * takes too long.
3162  */
3163 void drain_workqueue(struct workqueue_struct *wq)
3164 {
3165 	unsigned int flush_cnt = 0;
3166 	struct pool_workqueue *pwq;
3167 
3168 	/*
3169 	 * __queue_work() needs to test whether there are drainers, is much
3170 	 * hotter than drain_workqueue() and already looks at @wq->flags.
3171 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3172 	 */
3173 	mutex_lock(&wq->mutex);
3174 	if (!wq->nr_drainers++)
3175 		wq->flags |= __WQ_DRAINING;
3176 	mutex_unlock(&wq->mutex);
3177 reflush:
3178 	__flush_workqueue(wq);
3179 
3180 	mutex_lock(&wq->mutex);
3181 
3182 	for_each_pwq(pwq, wq) {
3183 		bool drained;
3184 
3185 		raw_spin_lock_irq(&pwq->pool->lock);
3186 		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3187 		raw_spin_unlock_irq(&pwq->pool->lock);
3188 
3189 		if (drained)
3190 			continue;
3191 
3192 		if (++flush_cnt == 10 ||
3193 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3194 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3195 				wq->name, __func__, flush_cnt);
3196 
3197 		mutex_unlock(&wq->mutex);
3198 		goto reflush;
3199 	}
3200 
3201 	if (!--wq->nr_drainers)
3202 		wq->flags &= ~__WQ_DRAINING;
3203 	mutex_unlock(&wq->mutex);
3204 }
3205 EXPORT_SYMBOL_GPL(drain_workqueue);
3206 
3207 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3208 			     bool from_cancel)
3209 {
3210 	struct worker *worker = NULL;
3211 	struct worker_pool *pool;
3212 	struct pool_workqueue *pwq;
3213 
3214 	might_sleep();
3215 
3216 	rcu_read_lock();
3217 	pool = get_work_pool(work);
3218 	if (!pool) {
3219 		rcu_read_unlock();
3220 		return false;
3221 	}
3222 
3223 	raw_spin_lock_irq(&pool->lock);
3224 	/* see the comment in try_to_grab_pending() with the same code */
3225 	pwq = get_work_pwq(work);
3226 	if (pwq) {
3227 		if (unlikely(pwq->pool != pool))
3228 			goto already_gone;
3229 	} else {
3230 		worker = find_worker_executing_work(pool, work);
3231 		if (!worker)
3232 			goto already_gone;
3233 		pwq = worker->current_pwq;
3234 	}
3235 
3236 	check_flush_dependency(pwq->wq, work);
3237 
3238 	insert_wq_barrier(pwq, barr, work, worker);
3239 	raw_spin_unlock_irq(&pool->lock);
3240 
3241 	/*
3242 	 * Force a lock recursion deadlock when using flush_work() inside a
3243 	 * single-threaded or rescuer equipped workqueue.
3244 	 *
3245 	 * For single threaded workqueues the deadlock happens when the work
3246 	 * is after the work issuing the flush_work(). For rescuer equipped
3247 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3248 	 * forward progress.
3249 	 */
3250 	if (!from_cancel &&
3251 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3252 		lock_map_acquire(&pwq->wq->lockdep_map);
3253 		lock_map_release(&pwq->wq->lockdep_map);
3254 	}
3255 	rcu_read_unlock();
3256 	return true;
3257 already_gone:
3258 	raw_spin_unlock_irq(&pool->lock);
3259 	rcu_read_unlock();
3260 	return false;
3261 }
3262 
3263 static bool __flush_work(struct work_struct *work, bool from_cancel)
3264 {
3265 	struct wq_barrier barr;
3266 
3267 	if (WARN_ON(!wq_online))
3268 		return false;
3269 
3270 	if (WARN_ON(!work->func))
3271 		return false;
3272 
3273 	lock_map_acquire(&work->lockdep_map);
3274 	lock_map_release(&work->lockdep_map);
3275 
3276 	if (start_flush_work(work, &barr, from_cancel)) {
3277 		wait_for_completion(&barr.done);
3278 		destroy_work_on_stack(&barr.work);
3279 		return true;
3280 	} else {
3281 		return false;
3282 	}
3283 }
3284 
3285 /**
3286  * flush_work - wait for a work to finish executing the last queueing instance
3287  * @work: the work to flush
3288  *
3289  * Wait until @work has finished execution.  @work is guaranteed to be idle
3290  * on return if it hasn't been requeued since flush started.
3291  *
3292  * Return:
3293  * %true if flush_work() waited for the work to finish execution,
3294  * %false if it was already idle.
3295  */
3296 bool flush_work(struct work_struct *work)
3297 {
3298 	return __flush_work(work, false);
3299 }
3300 EXPORT_SYMBOL_GPL(flush_work);
3301 
3302 struct cwt_wait {
3303 	wait_queue_entry_t		wait;
3304 	struct work_struct	*work;
3305 };
3306 
3307 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3308 {
3309 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3310 
3311 	if (cwait->work != key)
3312 		return 0;
3313 	return autoremove_wake_function(wait, mode, sync, key);
3314 }
3315 
3316 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3317 {
3318 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3319 	unsigned long flags;
3320 	int ret;
3321 
3322 	do {
3323 		ret = try_to_grab_pending(work, is_dwork, &flags);
3324 		/*
3325 		 * If someone else is already canceling, wait for it to
3326 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3327 		 * because we may get scheduled between @work's completion
3328 		 * and the other canceling task resuming and clearing
3329 		 * CANCELING - flush_work() will return false immediately
3330 		 * as @work is no longer busy, try_to_grab_pending() will
3331 		 * return -ENOENT as @work is still being canceled and the
3332 		 * other canceling task won't be able to clear CANCELING as
3333 		 * we're hogging the CPU.
3334 		 *
3335 		 * Let's wait for completion using a waitqueue.  As this
3336 		 * may lead to the thundering herd problem, use a custom
3337 		 * wake function which matches @work along with exclusive
3338 		 * wait and wakeup.
3339 		 */
3340 		if (unlikely(ret == -ENOENT)) {
3341 			struct cwt_wait cwait;
3342 
3343 			init_wait(&cwait.wait);
3344 			cwait.wait.func = cwt_wakefn;
3345 			cwait.work = work;
3346 
3347 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3348 						  TASK_UNINTERRUPTIBLE);
3349 			if (work_is_canceling(work))
3350 				schedule();
3351 			finish_wait(&cancel_waitq, &cwait.wait);
3352 		}
3353 	} while (unlikely(ret < 0));
3354 
3355 	/* tell other tasks trying to grab @work to back off */
3356 	mark_work_canceling(work);
3357 	local_irq_restore(flags);
3358 
3359 	/*
3360 	 * This allows canceling during early boot.  We know that @work
3361 	 * isn't executing.
3362 	 */
3363 	if (wq_online)
3364 		__flush_work(work, true);
3365 
3366 	clear_work_data(work);
3367 
3368 	/*
3369 	 * Paired with prepare_to_wait() above so that either
3370 	 * waitqueue_active() is visible here or !work_is_canceling() is
3371 	 * visible there.
3372 	 */
3373 	smp_mb();
3374 	if (waitqueue_active(&cancel_waitq))
3375 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3376 
3377 	return ret;
3378 }
3379 
3380 /**
3381  * cancel_work_sync - cancel a work and wait for it to finish
3382  * @work: the work to cancel
3383  *
3384  * Cancel @work and wait for its execution to finish.  This function
3385  * can be used even if the work re-queues itself or migrates to
3386  * another workqueue.  On return from this function, @work is
3387  * guaranteed to be not pending or executing on any CPU.
3388  *
3389  * cancel_work_sync(&delayed_work->work) must not be used for
3390  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3391  *
3392  * The caller must ensure that the workqueue on which @work was last
3393  * queued can't be destroyed before this function returns.
3394  *
3395  * Return:
3396  * %true if @work was pending, %false otherwise.
3397  */
3398 bool cancel_work_sync(struct work_struct *work)
3399 {
3400 	return __cancel_work_timer(work, false);
3401 }
3402 EXPORT_SYMBOL_GPL(cancel_work_sync);
3403 
3404 /**
3405  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3406  * @dwork: the delayed work to flush
3407  *
3408  * Delayed timer is cancelled and the pending work is queued for
3409  * immediate execution.  Like flush_work(), this function only
3410  * considers the last queueing instance of @dwork.
3411  *
3412  * Return:
3413  * %true if flush_work() waited for the work to finish execution,
3414  * %false if it was already idle.
3415  */
3416 bool flush_delayed_work(struct delayed_work *dwork)
3417 {
3418 	local_irq_disable();
3419 	if (del_timer_sync(&dwork->timer))
3420 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3421 	local_irq_enable();
3422 	return flush_work(&dwork->work);
3423 }
3424 EXPORT_SYMBOL(flush_delayed_work);
3425 
3426 /**
3427  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3428  * @rwork: the rcu work to flush
3429  *
3430  * Return:
3431  * %true if flush_rcu_work() waited for the work to finish execution,
3432  * %false if it was already idle.
3433  */
3434 bool flush_rcu_work(struct rcu_work *rwork)
3435 {
3436 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3437 		rcu_barrier();
3438 		flush_work(&rwork->work);
3439 		return true;
3440 	} else {
3441 		return flush_work(&rwork->work);
3442 	}
3443 }
3444 EXPORT_SYMBOL(flush_rcu_work);
3445 
3446 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3447 {
3448 	unsigned long flags;
3449 	int ret;
3450 
3451 	do {
3452 		ret = try_to_grab_pending(work, is_dwork, &flags);
3453 	} while (unlikely(ret == -EAGAIN));
3454 
3455 	if (unlikely(ret < 0))
3456 		return false;
3457 
3458 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3459 	local_irq_restore(flags);
3460 	return ret;
3461 }
3462 
3463 /*
3464  * See cancel_delayed_work()
3465  */
3466 bool cancel_work(struct work_struct *work)
3467 {
3468 	return __cancel_work(work, false);
3469 }
3470 EXPORT_SYMBOL(cancel_work);
3471 
3472 /**
3473  * cancel_delayed_work - cancel a delayed work
3474  * @dwork: delayed_work to cancel
3475  *
3476  * Kill off a pending delayed_work.
3477  *
3478  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3479  * pending.
3480  *
3481  * Note:
3482  * The work callback function may still be running on return, unless
3483  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3484  * use cancel_delayed_work_sync() to wait on it.
3485  *
3486  * This function is safe to call from any context including IRQ handler.
3487  */
3488 bool cancel_delayed_work(struct delayed_work *dwork)
3489 {
3490 	return __cancel_work(&dwork->work, true);
3491 }
3492 EXPORT_SYMBOL(cancel_delayed_work);
3493 
3494 /**
3495  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3496  * @dwork: the delayed work cancel
3497  *
3498  * This is cancel_work_sync() for delayed works.
3499  *
3500  * Return:
3501  * %true if @dwork was pending, %false otherwise.
3502  */
3503 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3504 {
3505 	return __cancel_work_timer(&dwork->work, true);
3506 }
3507 EXPORT_SYMBOL(cancel_delayed_work_sync);
3508 
3509 /**
3510  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3511  * @func: the function to call
3512  *
3513  * schedule_on_each_cpu() executes @func on each online CPU using the
3514  * system workqueue and blocks until all CPUs have completed.
3515  * schedule_on_each_cpu() is very slow.
3516  *
3517  * Return:
3518  * 0 on success, -errno on failure.
3519  */
3520 int schedule_on_each_cpu(work_func_t func)
3521 {
3522 	int cpu;
3523 	struct work_struct __percpu *works;
3524 
3525 	works = alloc_percpu(struct work_struct);
3526 	if (!works)
3527 		return -ENOMEM;
3528 
3529 	cpus_read_lock();
3530 
3531 	for_each_online_cpu(cpu) {
3532 		struct work_struct *work = per_cpu_ptr(works, cpu);
3533 
3534 		INIT_WORK(work, func);
3535 		schedule_work_on(cpu, work);
3536 	}
3537 
3538 	for_each_online_cpu(cpu)
3539 		flush_work(per_cpu_ptr(works, cpu));
3540 
3541 	cpus_read_unlock();
3542 	free_percpu(works);
3543 	return 0;
3544 }
3545 
3546 /**
3547  * execute_in_process_context - reliably execute the routine with user context
3548  * @fn:		the function to execute
3549  * @ew:		guaranteed storage for the execute work structure (must
3550  *		be available when the work executes)
3551  *
3552  * Executes the function immediately if process context is available,
3553  * otherwise schedules the function for delayed execution.
3554  *
3555  * Return:	0 - function was executed
3556  *		1 - function was scheduled for execution
3557  */
3558 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3559 {
3560 	if (!in_interrupt()) {
3561 		fn(&ew->work);
3562 		return 0;
3563 	}
3564 
3565 	INIT_WORK(&ew->work, fn);
3566 	schedule_work(&ew->work);
3567 
3568 	return 1;
3569 }
3570 EXPORT_SYMBOL_GPL(execute_in_process_context);
3571 
3572 /**
3573  * free_workqueue_attrs - free a workqueue_attrs
3574  * @attrs: workqueue_attrs to free
3575  *
3576  * Undo alloc_workqueue_attrs().
3577  */
3578 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3579 {
3580 	if (attrs) {
3581 		free_cpumask_var(attrs->cpumask);
3582 		kfree(attrs);
3583 	}
3584 }
3585 
3586 /**
3587  * alloc_workqueue_attrs - allocate a workqueue_attrs
3588  *
3589  * Allocate a new workqueue_attrs, initialize with default settings and
3590  * return it.
3591  *
3592  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3593  */
3594 struct workqueue_attrs *alloc_workqueue_attrs(void)
3595 {
3596 	struct workqueue_attrs *attrs;
3597 
3598 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3599 	if (!attrs)
3600 		goto fail;
3601 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3602 		goto fail;
3603 
3604 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3605 	return attrs;
3606 fail:
3607 	free_workqueue_attrs(attrs);
3608 	return NULL;
3609 }
3610 
3611 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3612 				 const struct workqueue_attrs *from)
3613 {
3614 	to->nice = from->nice;
3615 	cpumask_copy(to->cpumask, from->cpumask);
3616 	/*
3617 	 * Unlike hash and equality test, this function doesn't ignore
3618 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3619 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3620 	 */
3621 	to->no_numa = from->no_numa;
3622 }
3623 
3624 /* hash value of the content of @attr */
3625 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3626 {
3627 	u32 hash = 0;
3628 
3629 	hash = jhash_1word(attrs->nice, hash);
3630 	hash = jhash(cpumask_bits(attrs->cpumask),
3631 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3632 	return hash;
3633 }
3634 
3635 /* content equality test */
3636 static bool wqattrs_equal(const struct workqueue_attrs *a,
3637 			  const struct workqueue_attrs *b)
3638 {
3639 	if (a->nice != b->nice)
3640 		return false;
3641 	if (!cpumask_equal(a->cpumask, b->cpumask))
3642 		return false;
3643 	return true;
3644 }
3645 
3646 /**
3647  * init_worker_pool - initialize a newly zalloc'd worker_pool
3648  * @pool: worker_pool to initialize
3649  *
3650  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3651  *
3652  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3653  * inside @pool proper are initialized and put_unbound_pool() can be called
3654  * on @pool safely to release it.
3655  */
3656 static int init_worker_pool(struct worker_pool *pool)
3657 {
3658 	raw_spin_lock_init(&pool->lock);
3659 	pool->id = -1;
3660 	pool->cpu = -1;
3661 	pool->node = NUMA_NO_NODE;
3662 	pool->flags |= POOL_DISASSOCIATED;
3663 	pool->watchdog_ts = jiffies;
3664 	INIT_LIST_HEAD(&pool->worklist);
3665 	INIT_LIST_HEAD(&pool->idle_list);
3666 	hash_init(pool->busy_hash);
3667 
3668 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3669 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
3670 
3671 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3672 
3673 	INIT_LIST_HEAD(&pool->workers);
3674 	INIT_LIST_HEAD(&pool->dying_workers);
3675 
3676 	ida_init(&pool->worker_ida);
3677 	INIT_HLIST_NODE(&pool->hash_node);
3678 	pool->refcnt = 1;
3679 
3680 	/* shouldn't fail above this point */
3681 	pool->attrs = alloc_workqueue_attrs();
3682 	if (!pool->attrs)
3683 		return -ENOMEM;
3684 	return 0;
3685 }
3686 
3687 #ifdef CONFIG_LOCKDEP
3688 static void wq_init_lockdep(struct workqueue_struct *wq)
3689 {
3690 	char *lock_name;
3691 
3692 	lockdep_register_key(&wq->key);
3693 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3694 	if (!lock_name)
3695 		lock_name = wq->name;
3696 
3697 	wq->lock_name = lock_name;
3698 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3699 }
3700 
3701 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3702 {
3703 	lockdep_unregister_key(&wq->key);
3704 }
3705 
3706 static void wq_free_lockdep(struct workqueue_struct *wq)
3707 {
3708 	if (wq->lock_name != wq->name)
3709 		kfree(wq->lock_name);
3710 }
3711 #else
3712 static void wq_init_lockdep(struct workqueue_struct *wq)
3713 {
3714 }
3715 
3716 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3717 {
3718 }
3719 
3720 static void wq_free_lockdep(struct workqueue_struct *wq)
3721 {
3722 }
3723 #endif
3724 
3725 static void rcu_free_wq(struct rcu_head *rcu)
3726 {
3727 	struct workqueue_struct *wq =
3728 		container_of(rcu, struct workqueue_struct, rcu);
3729 
3730 	wq_free_lockdep(wq);
3731 
3732 	if (!(wq->flags & WQ_UNBOUND))
3733 		free_percpu(wq->cpu_pwqs);
3734 	else
3735 		free_workqueue_attrs(wq->unbound_attrs);
3736 
3737 	kfree(wq);
3738 }
3739 
3740 static void rcu_free_pool(struct rcu_head *rcu)
3741 {
3742 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3743 
3744 	ida_destroy(&pool->worker_ida);
3745 	free_workqueue_attrs(pool->attrs);
3746 	kfree(pool);
3747 }
3748 
3749 /**
3750  * put_unbound_pool - put a worker_pool
3751  * @pool: worker_pool to put
3752  *
3753  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3754  * safe manner.  get_unbound_pool() calls this function on its failure path
3755  * and this function should be able to release pools which went through,
3756  * successfully or not, init_worker_pool().
3757  *
3758  * Should be called with wq_pool_mutex held.
3759  */
3760 static void put_unbound_pool(struct worker_pool *pool)
3761 {
3762 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3763 	struct list_head cull_list;
3764 	struct worker *worker;
3765 
3766 	INIT_LIST_HEAD(&cull_list);
3767 
3768 	lockdep_assert_held(&wq_pool_mutex);
3769 
3770 	if (--pool->refcnt)
3771 		return;
3772 
3773 	/* sanity checks */
3774 	if (WARN_ON(!(pool->cpu < 0)) ||
3775 	    WARN_ON(!list_empty(&pool->worklist)))
3776 		return;
3777 
3778 	/* release id and unhash */
3779 	if (pool->id >= 0)
3780 		idr_remove(&worker_pool_idr, pool->id);
3781 	hash_del(&pool->hash_node);
3782 
3783 	/*
3784 	 * Become the manager and destroy all workers.  This prevents
3785 	 * @pool's workers from blocking on attach_mutex.  We're the last
3786 	 * manager and @pool gets freed with the flag set.
3787 	 *
3788 	 * Having a concurrent manager is quite unlikely to happen as we can
3789 	 * only get here with
3790 	 *   pwq->refcnt == pool->refcnt == 0
3791 	 * which implies no work queued to the pool, which implies no worker can
3792 	 * become the manager. However a worker could have taken the role of
3793 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
3794 	 * drops pool->lock
3795 	 */
3796 	while (true) {
3797 		rcuwait_wait_event(&manager_wait,
3798 				   !(pool->flags & POOL_MANAGER_ACTIVE),
3799 				   TASK_UNINTERRUPTIBLE);
3800 
3801 		mutex_lock(&wq_pool_attach_mutex);
3802 		raw_spin_lock_irq(&pool->lock);
3803 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
3804 			pool->flags |= POOL_MANAGER_ACTIVE;
3805 			break;
3806 		}
3807 		raw_spin_unlock_irq(&pool->lock);
3808 		mutex_unlock(&wq_pool_attach_mutex);
3809 	}
3810 
3811 	while ((worker = first_idle_worker(pool)))
3812 		set_worker_dying(worker, &cull_list);
3813 	WARN_ON(pool->nr_workers || pool->nr_idle);
3814 	raw_spin_unlock_irq(&pool->lock);
3815 
3816 	wake_dying_workers(&cull_list);
3817 
3818 	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
3819 		pool->detach_completion = &detach_completion;
3820 	mutex_unlock(&wq_pool_attach_mutex);
3821 
3822 	if (pool->detach_completion)
3823 		wait_for_completion(pool->detach_completion);
3824 
3825 	/* shut down the timers */
3826 	del_timer_sync(&pool->idle_timer);
3827 	cancel_work_sync(&pool->idle_cull_work);
3828 	del_timer_sync(&pool->mayday_timer);
3829 
3830 	/* RCU protected to allow dereferences from get_work_pool() */
3831 	call_rcu(&pool->rcu, rcu_free_pool);
3832 }
3833 
3834 /**
3835  * get_unbound_pool - get a worker_pool with the specified attributes
3836  * @attrs: the attributes of the worker_pool to get
3837  *
3838  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3839  * reference count and return it.  If there already is a matching
3840  * worker_pool, it will be used; otherwise, this function attempts to
3841  * create a new one.
3842  *
3843  * Should be called with wq_pool_mutex held.
3844  *
3845  * Return: On success, a worker_pool with the same attributes as @attrs.
3846  * On failure, %NULL.
3847  */
3848 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3849 {
3850 	u32 hash = wqattrs_hash(attrs);
3851 	struct worker_pool *pool;
3852 	int node;
3853 	int target_node = NUMA_NO_NODE;
3854 
3855 	lockdep_assert_held(&wq_pool_mutex);
3856 
3857 	/* do we already have a matching pool? */
3858 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3859 		if (wqattrs_equal(pool->attrs, attrs)) {
3860 			pool->refcnt++;
3861 			return pool;
3862 		}
3863 	}
3864 
3865 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3866 	if (wq_numa_enabled) {
3867 		for_each_node(node) {
3868 			if (cpumask_subset(attrs->cpumask,
3869 					   wq_numa_possible_cpumask[node])) {
3870 				target_node = node;
3871 				break;
3872 			}
3873 		}
3874 	}
3875 
3876 	/* nope, create a new one */
3877 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3878 	if (!pool || init_worker_pool(pool) < 0)
3879 		goto fail;
3880 
3881 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3882 	copy_workqueue_attrs(pool->attrs, attrs);
3883 	pool->node = target_node;
3884 
3885 	/*
3886 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3887 	 * 'struct workqueue_attrs' comments for detail.
3888 	 */
3889 	pool->attrs->no_numa = false;
3890 
3891 	if (worker_pool_assign_id(pool) < 0)
3892 		goto fail;
3893 
3894 	/* create and start the initial worker */
3895 	if (wq_online && !create_worker(pool))
3896 		goto fail;
3897 
3898 	/* install */
3899 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3900 
3901 	return pool;
3902 fail:
3903 	if (pool)
3904 		put_unbound_pool(pool);
3905 	return NULL;
3906 }
3907 
3908 static void rcu_free_pwq(struct rcu_head *rcu)
3909 {
3910 	kmem_cache_free(pwq_cache,
3911 			container_of(rcu, struct pool_workqueue, rcu));
3912 }
3913 
3914 /*
3915  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3916  * and needs to be destroyed.
3917  */
3918 static void pwq_unbound_release_workfn(struct work_struct *work)
3919 {
3920 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3921 						  unbound_release_work);
3922 	struct workqueue_struct *wq = pwq->wq;
3923 	struct worker_pool *pool = pwq->pool;
3924 	bool is_last = false;
3925 
3926 	/*
3927 	 * when @pwq is not linked, it doesn't hold any reference to the
3928 	 * @wq, and @wq is invalid to access.
3929 	 */
3930 	if (!list_empty(&pwq->pwqs_node)) {
3931 		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3932 			return;
3933 
3934 		mutex_lock(&wq->mutex);
3935 		list_del_rcu(&pwq->pwqs_node);
3936 		is_last = list_empty(&wq->pwqs);
3937 		mutex_unlock(&wq->mutex);
3938 	}
3939 
3940 	mutex_lock(&wq_pool_mutex);
3941 	put_unbound_pool(pool);
3942 	mutex_unlock(&wq_pool_mutex);
3943 
3944 	call_rcu(&pwq->rcu, rcu_free_pwq);
3945 
3946 	/*
3947 	 * If we're the last pwq going away, @wq is already dead and no one
3948 	 * is gonna access it anymore.  Schedule RCU free.
3949 	 */
3950 	if (is_last) {
3951 		wq_unregister_lockdep(wq);
3952 		call_rcu(&wq->rcu, rcu_free_wq);
3953 	}
3954 }
3955 
3956 /**
3957  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3958  * @pwq: target pool_workqueue
3959  *
3960  * If @pwq isn't freezing, set @pwq->max_active to the associated
3961  * workqueue's saved_max_active and activate inactive work items
3962  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3963  */
3964 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3965 {
3966 	struct workqueue_struct *wq = pwq->wq;
3967 	bool freezable = wq->flags & WQ_FREEZABLE;
3968 	unsigned long flags;
3969 
3970 	/* for @wq->saved_max_active */
3971 	lockdep_assert_held(&wq->mutex);
3972 
3973 	/* fast exit for non-freezable wqs */
3974 	if (!freezable && pwq->max_active == wq->saved_max_active)
3975 		return;
3976 
3977 	/* this function can be called during early boot w/ irq disabled */
3978 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3979 
3980 	/*
3981 	 * During [un]freezing, the caller is responsible for ensuring that
3982 	 * this function is called at least once after @workqueue_freezing
3983 	 * is updated and visible.
3984 	 */
3985 	if (!freezable || !workqueue_freezing) {
3986 		bool kick = false;
3987 
3988 		pwq->max_active = wq->saved_max_active;
3989 
3990 		while (!list_empty(&pwq->inactive_works) &&
3991 		       pwq->nr_active < pwq->max_active) {
3992 			pwq_activate_first_inactive(pwq);
3993 			kick = true;
3994 		}
3995 
3996 		/*
3997 		 * Need to kick a worker after thawed or an unbound wq's
3998 		 * max_active is bumped. In realtime scenarios, always kicking a
3999 		 * worker will cause interference on the isolated cpu cores, so
4000 		 * let's kick iff work items were activated.
4001 		 */
4002 		if (kick)
4003 			wake_up_worker(pwq->pool);
4004 	} else {
4005 		pwq->max_active = 0;
4006 	}
4007 
4008 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4009 }
4010 
4011 /* initialize newly allocated @pwq which is associated with @wq and @pool */
4012 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4013 		     struct worker_pool *pool)
4014 {
4015 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
4016 
4017 	memset(pwq, 0, sizeof(*pwq));
4018 
4019 	pwq->pool = pool;
4020 	pwq->wq = wq;
4021 	pwq->flush_color = -1;
4022 	pwq->refcnt = 1;
4023 	INIT_LIST_HEAD(&pwq->inactive_works);
4024 	INIT_LIST_HEAD(&pwq->pwqs_node);
4025 	INIT_LIST_HEAD(&pwq->mayday_node);
4026 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
4027 }
4028 
4029 /* sync @pwq with the current state of its associated wq and link it */
4030 static void link_pwq(struct pool_workqueue *pwq)
4031 {
4032 	struct workqueue_struct *wq = pwq->wq;
4033 
4034 	lockdep_assert_held(&wq->mutex);
4035 
4036 	/* may be called multiple times, ignore if already linked */
4037 	if (!list_empty(&pwq->pwqs_node))
4038 		return;
4039 
4040 	/* set the matching work_color */
4041 	pwq->work_color = wq->work_color;
4042 
4043 	/* sync max_active to the current setting */
4044 	pwq_adjust_max_active(pwq);
4045 
4046 	/* link in @pwq */
4047 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4048 }
4049 
4050 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4051 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4052 					const struct workqueue_attrs *attrs)
4053 {
4054 	struct worker_pool *pool;
4055 	struct pool_workqueue *pwq;
4056 
4057 	lockdep_assert_held(&wq_pool_mutex);
4058 
4059 	pool = get_unbound_pool(attrs);
4060 	if (!pool)
4061 		return NULL;
4062 
4063 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4064 	if (!pwq) {
4065 		put_unbound_pool(pool);
4066 		return NULL;
4067 	}
4068 
4069 	init_pwq(pwq, wq, pool);
4070 	return pwq;
4071 }
4072 
4073 /**
4074  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
4075  * @attrs: the wq_attrs of the default pwq of the target workqueue
4076  * @node: the target NUMA node
4077  * @cpu_going_down: if >= 0, the CPU to consider as offline
4078  * @cpumask: outarg, the resulting cpumask
4079  *
4080  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
4081  * @cpu_going_down is >= 0, that cpu is considered offline during
4082  * calculation.  The result is stored in @cpumask.
4083  *
4084  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
4085  * enabled and @node has online CPUs requested by @attrs, the returned
4086  * cpumask is the intersection of the possible CPUs of @node and
4087  * @attrs->cpumask.
4088  *
4089  * The caller is responsible for ensuring that the cpumask of @node stays
4090  * stable.
4091  *
4092  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
4093  * %false if equal.
4094  */
4095 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
4096 				 int cpu_going_down, cpumask_t *cpumask)
4097 {
4098 	if (!wq_numa_enabled || attrs->no_numa)
4099 		goto use_dfl;
4100 
4101 	/* does @node have any online CPUs @attrs wants? */
4102 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
4103 	if (cpu_going_down >= 0)
4104 		cpumask_clear_cpu(cpu_going_down, cpumask);
4105 
4106 	if (cpumask_empty(cpumask))
4107 		goto use_dfl;
4108 
4109 	/* yeap, return possible CPUs in @node that @attrs wants */
4110 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
4111 
4112 	if (cpumask_empty(cpumask)) {
4113 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4114 				"possible intersect\n");
4115 		return false;
4116 	}
4117 
4118 	return !cpumask_equal(cpumask, attrs->cpumask);
4119 
4120 use_dfl:
4121 	cpumask_copy(cpumask, attrs->cpumask);
4122 	return false;
4123 }
4124 
4125 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
4126 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
4127 						   int node,
4128 						   struct pool_workqueue *pwq)
4129 {
4130 	struct pool_workqueue *old_pwq;
4131 
4132 	lockdep_assert_held(&wq_pool_mutex);
4133 	lockdep_assert_held(&wq->mutex);
4134 
4135 	/* link_pwq() can handle duplicate calls */
4136 	link_pwq(pwq);
4137 
4138 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4139 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
4140 	return old_pwq;
4141 }
4142 
4143 /* context to store the prepared attrs & pwqs before applying */
4144 struct apply_wqattrs_ctx {
4145 	struct workqueue_struct	*wq;		/* target workqueue */
4146 	struct workqueue_attrs	*attrs;		/* attrs to apply */
4147 	struct list_head	list;		/* queued for batching commit */
4148 	struct pool_workqueue	*dfl_pwq;
4149 	struct pool_workqueue	*pwq_tbl[];
4150 };
4151 
4152 /* free the resources after success or abort */
4153 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4154 {
4155 	if (ctx) {
4156 		int node;
4157 
4158 		for_each_node(node)
4159 			put_pwq_unlocked(ctx->pwq_tbl[node]);
4160 		put_pwq_unlocked(ctx->dfl_pwq);
4161 
4162 		free_workqueue_attrs(ctx->attrs);
4163 
4164 		kfree(ctx);
4165 	}
4166 }
4167 
4168 /* allocate the attrs and pwqs for later installation */
4169 static struct apply_wqattrs_ctx *
4170 apply_wqattrs_prepare(struct workqueue_struct *wq,
4171 		      const struct workqueue_attrs *attrs,
4172 		      const cpumask_var_t unbound_cpumask)
4173 {
4174 	struct apply_wqattrs_ctx *ctx;
4175 	struct workqueue_attrs *new_attrs, *tmp_attrs;
4176 	int node;
4177 
4178 	lockdep_assert_held(&wq_pool_mutex);
4179 
4180 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
4181 
4182 	new_attrs = alloc_workqueue_attrs();
4183 	tmp_attrs = alloc_workqueue_attrs();
4184 	if (!ctx || !new_attrs || !tmp_attrs)
4185 		goto out_free;
4186 
4187 	/*
4188 	 * Calculate the attrs of the default pwq with unbound_cpumask
4189 	 * which is wq_unbound_cpumask or to set to wq_unbound_cpumask.
4190 	 * If the user configured cpumask doesn't overlap with the
4191 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
4192 	 */
4193 	copy_workqueue_attrs(new_attrs, attrs);
4194 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask);
4195 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
4196 		cpumask_copy(new_attrs->cpumask, unbound_cpumask);
4197 
4198 	/*
4199 	 * We may create multiple pwqs with differing cpumasks.  Make a
4200 	 * copy of @new_attrs which will be modified and used to obtain
4201 	 * pools.
4202 	 */
4203 	copy_workqueue_attrs(tmp_attrs, new_attrs);
4204 
4205 	/*
4206 	 * If something goes wrong during CPU up/down, we'll fall back to
4207 	 * the default pwq covering whole @attrs->cpumask.  Always create
4208 	 * it even if we don't use it immediately.
4209 	 */
4210 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4211 	if (!ctx->dfl_pwq)
4212 		goto out_free;
4213 
4214 	for_each_node(node) {
4215 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4216 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4217 			if (!ctx->pwq_tbl[node])
4218 				goto out_free;
4219 		} else {
4220 			ctx->dfl_pwq->refcnt++;
4221 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
4222 		}
4223 	}
4224 
4225 	/* save the user configured attrs and sanitize it. */
4226 	copy_workqueue_attrs(new_attrs, attrs);
4227 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4228 	ctx->attrs = new_attrs;
4229 
4230 	ctx->wq = wq;
4231 	free_workqueue_attrs(tmp_attrs);
4232 	return ctx;
4233 
4234 out_free:
4235 	free_workqueue_attrs(tmp_attrs);
4236 	free_workqueue_attrs(new_attrs);
4237 	apply_wqattrs_cleanup(ctx);
4238 	return NULL;
4239 }
4240 
4241 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4242 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4243 {
4244 	int node;
4245 
4246 	/* all pwqs have been created successfully, let's install'em */
4247 	mutex_lock(&ctx->wq->mutex);
4248 
4249 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4250 
4251 	/* save the previous pwq and install the new one */
4252 	for_each_node(node)
4253 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4254 							  ctx->pwq_tbl[node]);
4255 
4256 	/* @dfl_pwq might not have been used, ensure it's linked */
4257 	link_pwq(ctx->dfl_pwq);
4258 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4259 
4260 	mutex_unlock(&ctx->wq->mutex);
4261 }
4262 
4263 static void apply_wqattrs_lock(void)
4264 {
4265 	/* CPUs should stay stable across pwq creations and installations */
4266 	cpus_read_lock();
4267 	mutex_lock(&wq_pool_mutex);
4268 }
4269 
4270 static void apply_wqattrs_unlock(void)
4271 {
4272 	mutex_unlock(&wq_pool_mutex);
4273 	cpus_read_unlock();
4274 }
4275 
4276 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4277 					const struct workqueue_attrs *attrs)
4278 {
4279 	struct apply_wqattrs_ctx *ctx;
4280 
4281 	/* only unbound workqueues can change attributes */
4282 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4283 		return -EINVAL;
4284 
4285 	/* creating multiple pwqs breaks ordering guarantee */
4286 	if (!list_empty(&wq->pwqs)) {
4287 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4288 			return -EINVAL;
4289 
4290 		wq->flags &= ~__WQ_ORDERED;
4291 	}
4292 
4293 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4294 	if (!ctx)
4295 		return -ENOMEM;
4296 
4297 	/* the ctx has been prepared successfully, let's commit it */
4298 	apply_wqattrs_commit(ctx);
4299 	apply_wqattrs_cleanup(ctx);
4300 
4301 	return 0;
4302 }
4303 
4304 /**
4305  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4306  * @wq: the target workqueue
4307  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4308  *
4309  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4310  * machines, this function maps a separate pwq to each NUMA node with
4311  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4312  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4313  * items finish.  Note that a work item which repeatedly requeues itself
4314  * back-to-back will stay on its current pwq.
4315  *
4316  * Performs GFP_KERNEL allocations.
4317  *
4318  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4319  *
4320  * Return: 0 on success and -errno on failure.
4321  */
4322 int apply_workqueue_attrs(struct workqueue_struct *wq,
4323 			  const struct workqueue_attrs *attrs)
4324 {
4325 	int ret;
4326 
4327 	lockdep_assert_cpus_held();
4328 
4329 	mutex_lock(&wq_pool_mutex);
4330 	ret = apply_workqueue_attrs_locked(wq, attrs);
4331 	mutex_unlock(&wq_pool_mutex);
4332 
4333 	return ret;
4334 }
4335 
4336 /**
4337  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4338  * @wq: the target workqueue
4339  * @cpu: the CPU coming up or going down
4340  * @online: whether @cpu is coming up or going down
4341  *
4342  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4343  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4344  * @wq accordingly.
4345  *
4346  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4347  * falls back to @wq->dfl_pwq which may not be optimal but is always
4348  * correct.
4349  *
4350  * Note that when the last allowed CPU of a NUMA node goes offline for a
4351  * workqueue with a cpumask spanning multiple nodes, the workers which were
4352  * already executing the work items for the workqueue will lose their CPU
4353  * affinity and may execute on any CPU.  This is similar to how per-cpu
4354  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4355  * affinity, it's the user's responsibility to flush the work item from
4356  * CPU_DOWN_PREPARE.
4357  */
4358 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4359 				   bool online)
4360 {
4361 	int node = cpu_to_node(cpu);
4362 	int cpu_off = online ? -1 : cpu;
4363 	struct pool_workqueue *old_pwq = NULL, *pwq;
4364 	struct workqueue_attrs *target_attrs;
4365 	cpumask_t *cpumask;
4366 
4367 	lockdep_assert_held(&wq_pool_mutex);
4368 
4369 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4370 	    wq->unbound_attrs->no_numa)
4371 		return;
4372 
4373 	/*
4374 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4375 	 * Let's use a preallocated one.  The following buf is protected by
4376 	 * CPU hotplug exclusion.
4377 	 */
4378 	target_attrs = wq_update_unbound_numa_attrs_buf;
4379 	cpumask = target_attrs->cpumask;
4380 
4381 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4382 	pwq = unbound_pwq_by_node(wq, node);
4383 
4384 	/*
4385 	 * Let's determine what needs to be done.  If the target cpumask is
4386 	 * different from the default pwq's, we need to compare it to @pwq's
4387 	 * and create a new one if they don't match.  If the target cpumask
4388 	 * equals the default pwq's, the default pwq should be used.
4389 	 */
4390 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4391 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4392 			return;
4393 	} else {
4394 		goto use_dfl_pwq;
4395 	}
4396 
4397 	/* create a new pwq */
4398 	pwq = alloc_unbound_pwq(wq, target_attrs);
4399 	if (!pwq) {
4400 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4401 			wq->name);
4402 		goto use_dfl_pwq;
4403 	}
4404 
4405 	/* Install the new pwq. */
4406 	mutex_lock(&wq->mutex);
4407 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4408 	goto out_unlock;
4409 
4410 use_dfl_pwq:
4411 	mutex_lock(&wq->mutex);
4412 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4413 	get_pwq(wq->dfl_pwq);
4414 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4415 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4416 out_unlock:
4417 	mutex_unlock(&wq->mutex);
4418 	put_pwq_unlocked(old_pwq);
4419 }
4420 
4421 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4422 {
4423 	bool highpri = wq->flags & WQ_HIGHPRI;
4424 	int cpu, ret;
4425 
4426 	if (!(wq->flags & WQ_UNBOUND)) {
4427 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4428 		if (!wq->cpu_pwqs)
4429 			return -ENOMEM;
4430 
4431 		for_each_possible_cpu(cpu) {
4432 			struct pool_workqueue *pwq =
4433 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4434 			struct worker_pool *cpu_pools =
4435 				per_cpu(cpu_worker_pools, cpu);
4436 
4437 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4438 
4439 			mutex_lock(&wq->mutex);
4440 			link_pwq(pwq);
4441 			mutex_unlock(&wq->mutex);
4442 		}
4443 		return 0;
4444 	}
4445 
4446 	cpus_read_lock();
4447 	if (wq->flags & __WQ_ORDERED) {
4448 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4449 		/* there should only be single pwq for ordering guarantee */
4450 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4451 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4452 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4453 	} else {
4454 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4455 	}
4456 	cpus_read_unlock();
4457 
4458 	return ret;
4459 }
4460 
4461 static int wq_clamp_max_active(int max_active, unsigned int flags,
4462 			       const char *name)
4463 {
4464 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4465 
4466 	if (max_active < 1 || max_active > lim)
4467 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4468 			max_active, name, 1, lim);
4469 
4470 	return clamp_val(max_active, 1, lim);
4471 }
4472 
4473 /*
4474  * Workqueues which may be used during memory reclaim should have a rescuer
4475  * to guarantee forward progress.
4476  */
4477 static int init_rescuer(struct workqueue_struct *wq)
4478 {
4479 	struct worker *rescuer;
4480 	int ret;
4481 
4482 	if (!(wq->flags & WQ_MEM_RECLAIM))
4483 		return 0;
4484 
4485 	rescuer = alloc_worker(NUMA_NO_NODE);
4486 	if (!rescuer) {
4487 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
4488 		       wq->name);
4489 		return -ENOMEM;
4490 	}
4491 
4492 	rescuer->rescue_wq = wq;
4493 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4494 	if (IS_ERR(rescuer->task)) {
4495 		ret = PTR_ERR(rescuer->task);
4496 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
4497 		       wq->name, ERR_PTR(ret));
4498 		kfree(rescuer);
4499 		return ret;
4500 	}
4501 
4502 	wq->rescuer = rescuer;
4503 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4504 	wake_up_process(rescuer->task);
4505 
4506 	return 0;
4507 }
4508 
4509 __printf(1, 4)
4510 struct workqueue_struct *alloc_workqueue(const char *fmt,
4511 					 unsigned int flags,
4512 					 int max_active, ...)
4513 {
4514 	size_t tbl_size = 0;
4515 	va_list args;
4516 	struct workqueue_struct *wq;
4517 	struct pool_workqueue *pwq;
4518 
4519 	/*
4520 	 * Unbound && max_active == 1 used to imply ordered, which is no
4521 	 * longer the case on NUMA machines due to per-node pools.  While
4522 	 * alloc_ordered_workqueue() is the right way to create an ordered
4523 	 * workqueue, keep the previous behavior to avoid subtle breakages
4524 	 * on NUMA.
4525 	 */
4526 	if ((flags & WQ_UNBOUND) && max_active == 1)
4527 		flags |= __WQ_ORDERED;
4528 
4529 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4530 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4531 		flags |= WQ_UNBOUND;
4532 
4533 	/* allocate wq and format name */
4534 	if (flags & WQ_UNBOUND)
4535 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4536 
4537 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4538 	if (!wq)
4539 		return NULL;
4540 
4541 	if (flags & WQ_UNBOUND) {
4542 		wq->unbound_attrs = alloc_workqueue_attrs();
4543 		if (!wq->unbound_attrs)
4544 			goto err_free_wq;
4545 	}
4546 
4547 	va_start(args, max_active);
4548 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4549 	va_end(args);
4550 
4551 	max_active = max_active ?: WQ_DFL_ACTIVE;
4552 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4553 
4554 	/* init wq */
4555 	wq->flags = flags;
4556 	wq->saved_max_active = max_active;
4557 	mutex_init(&wq->mutex);
4558 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4559 	INIT_LIST_HEAD(&wq->pwqs);
4560 	INIT_LIST_HEAD(&wq->flusher_queue);
4561 	INIT_LIST_HEAD(&wq->flusher_overflow);
4562 	INIT_LIST_HEAD(&wq->maydays);
4563 
4564 	wq_init_lockdep(wq);
4565 	INIT_LIST_HEAD(&wq->list);
4566 
4567 	if (alloc_and_link_pwqs(wq) < 0)
4568 		goto err_unreg_lockdep;
4569 
4570 	if (wq_online && init_rescuer(wq) < 0)
4571 		goto err_destroy;
4572 
4573 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4574 		goto err_destroy;
4575 
4576 	/*
4577 	 * wq_pool_mutex protects global freeze state and workqueues list.
4578 	 * Grab it, adjust max_active and add the new @wq to workqueues
4579 	 * list.
4580 	 */
4581 	mutex_lock(&wq_pool_mutex);
4582 
4583 	mutex_lock(&wq->mutex);
4584 	for_each_pwq(pwq, wq)
4585 		pwq_adjust_max_active(pwq);
4586 	mutex_unlock(&wq->mutex);
4587 
4588 	list_add_tail_rcu(&wq->list, &workqueues);
4589 
4590 	mutex_unlock(&wq_pool_mutex);
4591 
4592 	return wq;
4593 
4594 err_unreg_lockdep:
4595 	wq_unregister_lockdep(wq);
4596 	wq_free_lockdep(wq);
4597 err_free_wq:
4598 	free_workqueue_attrs(wq->unbound_attrs);
4599 	kfree(wq);
4600 	return NULL;
4601 err_destroy:
4602 	destroy_workqueue(wq);
4603 	return NULL;
4604 }
4605 EXPORT_SYMBOL_GPL(alloc_workqueue);
4606 
4607 static bool pwq_busy(struct pool_workqueue *pwq)
4608 {
4609 	int i;
4610 
4611 	for (i = 0; i < WORK_NR_COLORS; i++)
4612 		if (pwq->nr_in_flight[i])
4613 			return true;
4614 
4615 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4616 		return true;
4617 	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4618 		return true;
4619 
4620 	return false;
4621 }
4622 
4623 /**
4624  * destroy_workqueue - safely terminate a workqueue
4625  * @wq: target workqueue
4626  *
4627  * Safely destroy a workqueue. All work currently pending will be done first.
4628  */
4629 void destroy_workqueue(struct workqueue_struct *wq)
4630 {
4631 	struct pool_workqueue *pwq;
4632 	int node;
4633 
4634 	/*
4635 	 * Remove it from sysfs first so that sanity check failure doesn't
4636 	 * lead to sysfs name conflicts.
4637 	 */
4638 	workqueue_sysfs_unregister(wq);
4639 
4640 	/* mark the workqueue destruction is in progress */
4641 	mutex_lock(&wq->mutex);
4642 	wq->flags |= __WQ_DESTROYING;
4643 	mutex_unlock(&wq->mutex);
4644 
4645 	/* drain it before proceeding with destruction */
4646 	drain_workqueue(wq);
4647 
4648 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4649 	if (wq->rescuer) {
4650 		struct worker *rescuer = wq->rescuer;
4651 
4652 		/* this prevents new queueing */
4653 		raw_spin_lock_irq(&wq_mayday_lock);
4654 		wq->rescuer = NULL;
4655 		raw_spin_unlock_irq(&wq_mayday_lock);
4656 
4657 		/* rescuer will empty maydays list before exiting */
4658 		kthread_stop(rescuer->task);
4659 		kfree(rescuer);
4660 	}
4661 
4662 	/*
4663 	 * Sanity checks - grab all the locks so that we wait for all
4664 	 * in-flight operations which may do put_pwq().
4665 	 */
4666 	mutex_lock(&wq_pool_mutex);
4667 	mutex_lock(&wq->mutex);
4668 	for_each_pwq(pwq, wq) {
4669 		raw_spin_lock_irq(&pwq->pool->lock);
4670 		if (WARN_ON(pwq_busy(pwq))) {
4671 			pr_warn("%s: %s has the following busy pwq\n",
4672 				__func__, wq->name);
4673 			show_pwq(pwq);
4674 			raw_spin_unlock_irq(&pwq->pool->lock);
4675 			mutex_unlock(&wq->mutex);
4676 			mutex_unlock(&wq_pool_mutex);
4677 			show_one_workqueue(wq);
4678 			return;
4679 		}
4680 		raw_spin_unlock_irq(&pwq->pool->lock);
4681 	}
4682 	mutex_unlock(&wq->mutex);
4683 
4684 	/*
4685 	 * wq list is used to freeze wq, remove from list after
4686 	 * flushing is complete in case freeze races us.
4687 	 */
4688 	list_del_rcu(&wq->list);
4689 	mutex_unlock(&wq_pool_mutex);
4690 
4691 	if (!(wq->flags & WQ_UNBOUND)) {
4692 		wq_unregister_lockdep(wq);
4693 		/*
4694 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4695 		 * schedule RCU free.
4696 		 */
4697 		call_rcu(&wq->rcu, rcu_free_wq);
4698 	} else {
4699 		/*
4700 		 * We're the sole accessor of @wq at this point.  Directly
4701 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4702 		 * @wq will be freed when the last pwq is released.
4703 		 */
4704 		for_each_node(node) {
4705 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4706 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4707 			put_pwq_unlocked(pwq);
4708 		}
4709 
4710 		/*
4711 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4712 		 * put.  Don't access it afterwards.
4713 		 */
4714 		pwq = wq->dfl_pwq;
4715 		wq->dfl_pwq = NULL;
4716 		put_pwq_unlocked(pwq);
4717 	}
4718 }
4719 EXPORT_SYMBOL_GPL(destroy_workqueue);
4720 
4721 /**
4722  * workqueue_set_max_active - adjust max_active of a workqueue
4723  * @wq: target workqueue
4724  * @max_active: new max_active value.
4725  *
4726  * Set max_active of @wq to @max_active.
4727  *
4728  * CONTEXT:
4729  * Don't call from IRQ context.
4730  */
4731 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4732 {
4733 	struct pool_workqueue *pwq;
4734 
4735 	/* disallow meddling with max_active for ordered workqueues */
4736 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4737 		return;
4738 
4739 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4740 
4741 	mutex_lock(&wq->mutex);
4742 
4743 	wq->flags &= ~__WQ_ORDERED;
4744 	wq->saved_max_active = max_active;
4745 
4746 	for_each_pwq(pwq, wq)
4747 		pwq_adjust_max_active(pwq);
4748 
4749 	mutex_unlock(&wq->mutex);
4750 }
4751 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4752 
4753 /**
4754  * current_work - retrieve %current task's work struct
4755  *
4756  * Determine if %current task is a workqueue worker and what it's working on.
4757  * Useful to find out the context that the %current task is running in.
4758  *
4759  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4760  */
4761 struct work_struct *current_work(void)
4762 {
4763 	struct worker *worker = current_wq_worker();
4764 
4765 	return worker ? worker->current_work : NULL;
4766 }
4767 EXPORT_SYMBOL(current_work);
4768 
4769 /**
4770  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4771  *
4772  * Determine whether %current is a workqueue rescuer.  Can be used from
4773  * work functions to determine whether it's being run off the rescuer task.
4774  *
4775  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4776  */
4777 bool current_is_workqueue_rescuer(void)
4778 {
4779 	struct worker *worker = current_wq_worker();
4780 
4781 	return worker && worker->rescue_wq;
4782 }
4783 
4784 /**
4785  * workqueue_congested - test whether a workqueue is congested
4786  * @cpu: CPU in question
4787  * @wq: target workqueue
4788  *
4789  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4790  * no synchronization around this function and the test result is
4791  * unreliable and only useful as advisory hints or for debugging.
4792  *
4793  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4794  * Note that both per-cpu and unbound workqueues may be associated with
4795  * multiple pool_workqueues which have separate congested states.  A
4796  * workqueue being congested on one CPU doesn't mean the workqueue is also
4797  * contested on other CPUs / NUMA nodes.
4798  *
4799  * Return:
4800  * %true if congested, %false otherwise.
4801  */
4802 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4803 {
4804 	struct pool_workqueue *pwq;
4805 	bool ret;
4806 
4807 	rcu_read_lock();
4808 	preempt_disable();
4809 
4810 	if (cpu == WORK_CPU_UNBOUND)
4811 		cpu = smp_processor_id();
4812 
4813 	if (!(wq->flags & WQ_UNBOUND))
4814 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4815 	else
4816 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4817 
4818 	ret = !list_empty(&pwq->inactive_works);
4819 	preempt_enable();
4820 	rcu_read_unlock();
4821 
4822 	return ret;
4823 }
4824 EXPORT_SYMBOL_GPL(workqueue_congested);
4825 
4826 /**
4827  * work_busy - test whether a work is currently pending or running
4828  * @work: the work to be tested
4829  *
4830  * Test whether @work is currently pending or running.  There is no
4831  * synchronization around this function and the test result is
4832  * unreliable and only useful as advisory hints or for debugging.
4833  *
4834  * Return:
4835  * OR'd bitmask of WORK_BUSY_* bits.
4836  */
4837 unsigned int work_busy(struct work_struct *work)
4838 {
4839 	struct worker_pool *pool;
4840 	unsigned long flags;
4841 	unsigned int ret = 0;
4842 
4843 	if (work_pending(work))
4844 		ret |= WORK_BUSY_PENDING;
4845 
4846 	rcu_read_lock();
4847 	pool = get_work_pool(work);
4848 	if (pool) {
4849 		raw_spin_lock_irqsave(&pool->lock, flags);
4850 		if (find_worker_executing_work(pool, work))
4851 			ret |= WORK_BUSY_RUNNING;
4852 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4853 	}
4854 	rcu_read_unlock();
4855 
4856 	return ret;
4857 }
4858 EXPORT_SYMBOL_GPL(work_busy);
4859 
4860 /**
4861  * set_worker_desc - set description for the current work item
4862  * @fmt: printf-style format string
4863  * @...: arguments for the format string
4864  *
4865  * This function can be called by a running work function to describe what
4866  * the work item is about.  If the worker task gets dumped, this
4867  * information will be printed out together to help debugging.  The
4868  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4869  */
4870 void set_worker_desc(const char *fmt, ...)
4871 {
4872 	struct worker *worker = current_wq_worker();
4873 	va_list args;
4874 
4875 	if (worker) {
4876 		va_start(args, fmt);
4877 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4878 		va_end(args);
4879 	}
4880 }
4881 EXPORT_SYMBOL_GPL(set_worker_desc);
4882 
4883 /**
4884  * print_worker_info - print out worker information and description
4885  * @log_lvl: the log level to use when printing
4886  * @task: target task
4887  *
4888  * If @task is a worker and currently executing a work item, print out the
4889  * name of the workqueue being serviced and worker description set with
4890  * set_worker_desc() by the currently executing work item.
4891  *
4892  * This function can be safely called on any task as long as the
4893  * task_struct itself is accessible.  While safe, this function isn't
4894  * synchronized and may print out mixups or garbages of limited length.
4895  */
4896 void print_worker_info(const char *log_lvl, struct task_struct *task)
4897 {
4898 	work_func_t *fn = NULL;
4899 	char name[WQ_NAME_LEN] = { };
4900 	char desc[WORKER_DESC_LEN] = { };
4901 	struct pool_workqueue *pwq = NULL;
4902 	struct workqueue_struct *wq = NULL;
4903 	struct worker *worker;
4904 
4905 	if (!(task->flags & PF_WQ_WORKER))
4906 		return;
4907 
4908 	/*
4909 	 * This function is called without any synchronization and @task
4910 	 * could be in any state.  Be careful with dereferences.
4911 	 */
4912 	worker = kthread_probe_data(task);
4913 
4914 	/*
4915 	 * Carefully copy the associated workqueue's workfn, name and desc.
4916 	 * Keep the original last '\0' in case the original is garbage.
4917 	 */
4918 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4919 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4920 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4921 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4922 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4923 
4924 	if (fn || name[0] || desc[0]) {
4925 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4926 		if (strcmp(name, desc))
4927 			pr_cont(" (%s)", desc);
4928 		pr_cont("\n");
4929 	}
4930 }
4931 
4932 static void pr_cont_pool_info(struct worker_pool *pool)
4933 {
4934 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4935 	if (pool->node != NUMA_NO_NODE)
4936 		pr_cont(" node=%d", pool->node);
4937 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4938 }
4939 
4940 struct pr_cont_work_struct {
4941 	bool comma;
4942 	work_func_t func;
4943 	long ctr;
4944 };
4945 
4946 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
4947 {
4948 	if (!pcwsp->ctr)
4949 		goto out_record;
4950 	if (func == pcwsp->func) {
4951 		pcwsp->ctr++;
4952 		return;
4953 	}
4954 	if (pcwsp->ctr == 1)
4955 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
4956 	else
4957 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
4958 	pcwsp->ctr = 0;
4959 out_record:
4960 	if ((long)func == -1L)
4961 		return;
4962 	pcwsp->comma = comma;
4963 	pcwsp->func = func;
4964 	pcwsp->ctr = 1;
4965 }
4966 
4967 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
4968 {
4969 	if (work->func == wq_barrier_func) {
4970 		struct wq_barrier *barr;
4971 
4972 		barr = container_of(work, struct wq_barrier, work);
4973 
4974 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
4975 		pr_cont("%s BAR(%d)", comma ? "," : "",
4976 			task_pid_nr(barr->task));
4977 	} else {
4978 		if (!comma)
4979 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
4980 		pr_cont_work_flush(comma, work->func, pcwsp);
4981 	}
4982 }
4983 
4984 static void show_pwq(struct pool_workqueue *pwq)
4985 {
4986 	struct pr_cont_work_struct pcws = { .ctr = 0, };
4987 	struct worker_pool *pool = pwq->pool;
4988 	struct work_struct *work;
4989 	struct worker *worker;
4990 	bool has_in_flight = false, has_pending = false;
4991 	int bkt;
4992 
4993 	pr_info("  pwq %d:", pool->id);
4994 	pr_cont_pool_info(pool);
4995 
4996 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4997 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4998 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4999 
5000 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5001 		if (worker->current_pwq == pwq) {
5002 			has_in_flight = true;
5003 			break;
5004 		}
5005 	}
5006 	if (has_in_flight) {
5007 		bool comma = false;
5008 
5009 		pr_info("    in-flight:");
5010 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5011 			if (worker->current_pwq != pwq)
5012 				continue;
5013 
5014 			pr_cont("%s %d%s:%ps", comma ? "," : "",
5015 				task_pid_nr(worker->task),
5016 				worker->rescue_wq ? "(RESCUER)" : "",
5017 				worker->current_func);
5018 			list_for_each_entry(work, &worker->scheduled, entry)
5019 				pr_cont_work(false, work, &pcws);
5020 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5021 			comma = true;
5022 		}
5023 		pr_cont("\n");
5024 	}
5025 
5026 	list_for_each_entry(work, &pool->worklist, entry) {
5027 		if (get_work_pwq(work) == pwq) {
5028 			has_pending = true;
5029 			break;
5030 		}
5031 	}
5032 	if (has_pending) {
5033 		bool comma = false;
5034 
5035 		pr_info("    pending:");
5036 		list_for_each_entry(work, &pool->worklist, entry) {
5037 			if (get_work_pwq(work) != pwq)
5038 				continue;
5039 
5040 			pr_cont_work(comma, work, &pcws);
5041 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5042 		}
5043 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5044 		pr_cont("\n");
5045 	}
5046 
5047 	if (!list_empty(&pwq->inactive_works)) {
5048 		bool comma = false;
5049 
5050 		pr_info("    inactive:");
5051 		list_for_each_entry(work, &pwq->inactive_works, entry) {
5052 			pr_cont_work(comma, work, &pcws);
5053 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5054 		}
5055 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5056 		pr_cont("\n");
5057 	}
5058 }
5059 
5060 /**
5061  * show_one_workqueue - dump state of specified workqueue
5062  * @wq: workqueue whose state will be printed
5063  */
5064 void show_one_workqueue(struct workqueue_struct *wq)
5065 {
5066 	struct pool_workqueue *pwq;
5067 	bool idle = true;
5068 	unsigned long flags;
5069 
5070 	for_each_pwq(pwq, wq) {
5071 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5072 			idle = false;
5073 			break;
5074 		}
5075 	}
5076 	if (idle) /* Nothing to print for idle workqueue */
5077 		return;
5078 
5079 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
5080 
5081 	for_each_pwq(pwq, wq) {
5082 		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5083 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5084 			/*
5085 			 * Defer printing to avoid deadlocks in console
5086 			 * drivers that queue work while holding locks
5087 			 * also taken in their write paths.
5088 			 */
5089 			printk_deferred_enter();
5090 			show_pwq(pwq);
5091 			printk_deferred_exit();
5092 		}
5093 		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5094 		/*
5095 		 * We could be printing a lot from atomic context, e.g.
5096 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
5097 		 * hard lockup.
5098 		 */
5099 		touch_nmi_watchdog();
5100 	}
5101 
5102 }
5103 
5104 /**
5105  * show_one_worker_pool - dump state of specified worker pool
5106  * @pool: worker pool whose state will be printed
5107  */
5108 static void show_one_worker_pool(struct worker_pool *pool)
5109 {
5110 	struct worker *worker;
5111 	bool first = true;
5112 	unsigned long flags;
5113 	unsigned long hung = 0;
5114 
5115 	raw_spin_lock_irqsave(&pool->lock, flags);
5116 	if (pool->nr_workers == pool->nr_idle)
5117 		goto next_pool;
5118 
5119 	/* How long the first pending work is waiting for a worker. */
5120 	if (!list_empty(&pool->worklist))
5121 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5122 
5123 	/*
5124 	 * Defer printing to avoid deadlocks in console drivers that
5125 	 * queue work while holding locks also taken in their write
5126 	 * paths.
5127 	 */
5128 	printk_deferred_enter();
5129 	pr_info("pool %d:", pool->id);
5130 	pr_cont_pool_info(pool);
5131 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
5132 	if (pool->manager)
5133 		pr_cont(" manager: %d",
5134 			task_pid_nr(pool->manager->task));
5135 	list_for_each_entry(worker, &pool->idle_list, entry) {
5136 		pr_cont(" %s%d", first ? "idle: " : "",
5137 			task_pid_nr(worker->task));
5138 		first = false;
5139 	}
5140 	pr_cont("\n");
5141 	printk_deferred_exit();
5142 next_pool:
5143 	raw_spin_unlock_irqrestore(&pool->lock, flags);
5144 	/*
5145 	 * We could be printing a lot from atomic context, e.g.
5146 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
5147 	 * hard lockup.
5148 	 */
5149 	touch_nmi_watchdog();
5150 
5151 }
5152 
5153 /**
5154  * show_all_workqueues - dump workqueue state
5155  *
5156  * Called from a sysrq handler and prints out all busy workqueues and pools.
5157  */
5158 void show_all_workqueues(void)
5159 {
5160 	struct workqueue_struct *wq;
5161 	struct worker_pool *pool;
5162 	int pi;
5163 
5164 	rcu_read_lock();
5165 
5166 	pr_info("Showing busy workqueues and worker pools:\n");
5167 
5168 	list_for_each_entry_rcu(wq, &workqueues, list)
5169 		show_one_workqueue(wq);
5170 
5171 	for_each_pool(pool, pi)
5172 		show_one_worker_pool(pool);
5173 
5174 	rcu_read_unlock();
5175 }
5176 
5177 /**
5178  * show_freezable_workqueues - dump freezable workqueue state
5179  *
5180  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5181  * still busy.
5182  */
5183 void show_freezable_workqueues(void)
5184 {
5185 	struct workqueue_struct *wq;
5186 
5187 	rcu_read_lock();
5188 
5189 	pr_info("Showing freezable workqueues that are still busy:\n");
5190 
5191 	list_for_each_entry_rcu(wq, &workqueues, list) {
5192 		if (!(wq->flags & WQ_FREEZABLE))
5193 			continue;
5194 		show_one_workqueue(wq);
5195 	}
5196 
5197 	rcu_read_unlock();
5198 }
5199 
5200 /* used to show worker information through /proc/PID/{comm,stat,status} */
5201 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5202 {
5203 	int off;
5204 
5205 	/* always show the actual comm */
5206 	off = strscpy(buf, task->comm, size);
5207 	if (off < 0)
5208 		return;
5209 
5210 	/* stabilize PF_WQ_WORKER and worker pool association */
5211 	mutex_lock(&wq_pool_attach_mutex);
5212 
5213 	if (task->flags & PF_WQ_WORKER) {
5214 		struct worker *worker = kthread_data(task);
5215 		struct worker_pool *pool = worker->pool;
5216 
5217 		if (pool) {
5218 			raw_spin_lock_irq(&pool->lock);
5219 			/*
5220 			 * ->desc tracks information (wq name or
5221 			 * set_worker_desc()) for the latest execution.  If
5222 			 * current, prepend '+', otherwise '-'.
5223 			 */
5224 			if (worker->desc[0] != '\0') {
5225 				if (worker->current_work)
5226 					scnprintf(buf + off, size - off, "+%s",
5227 						  worker->desc);
5228 				else
5229 					scnprintf(buf + off, size - off, "-%s",
5230 						  worker->desc);
5231 			}
5232 			raw_spin_unlock_irq(&pool->lock);
5233 		}
5234 	}
5235 
5236 	mutex_unlock(&wq_pool_attach_mutex);
5237 }
5238 
5239 #ifdef CONFIG_SMP
5240 
5241 /*
5242  * CPU hotplug.
5243  *
5244  * There are two challenges in supporting CPU hotplug.  Firstly, there
5245  * are a lot of assumptions on strong associations among work, pwq and
5246  * pool which make migrating pending and scheduled works very
5247  * difficult to implement without impacting hot paths.  Secondly,
5248  * worker pools serve mix of short, long and very long running works making
5249  * blocked draining impractical.
5250  *
5251  * This is solved by allowing the pools to be disassociated from the CPU
5252  * running as an unbound one and allowing it to be reattached later if the
5253  * cpu comes back online.
5254  */
5255 
5256 static void unbind_workers(int cpu)
5257 {
5258 	struct worker_pool *pool;
5259 	struct worker *worker;
5260 
5261 	for_each_cpu_worker_pool(pool, cpu) {
5262 		mutex_lock(&wq_pool_attach_mutex);
5263 		raw_spin_lock_irq(&pool->lock);
5264 
5265 		/*
5266 		 * We've blocked all attach/detach operations. Make all workers
5267 		 * unbound and set DISASSOCIATED.  Before this, all workers
5268 		 * must be on the cpu.  After this, they may become diasporas.
5269 		 * And the preemption disabled section in their sched callbacks
5270 		 * are guaranteed to see WORKER_UNBOUND since the code here
5271 		 * is on the same cpu.
5272 		 */
5273 		for_each_pool_worker(worker, pool)
5274 			worker->flags |= WORKER_UNBOUND;
5275 
5276 		pool->flags |= POOL_DISASSOCIATED;
5277 
5278 		/*
5279 		 * The handling of nr_running in sched callbacks are disabled
5280 		 * now.  Zap nr_running.  After this, nr_running stays zero and
5281 		 * need_more_worker() and keep_working() are always true as
5282 		 * long as the worklist is not empty.  This pool now behaves as
5283 		 * an unbound (in terms of concurrency management) pool which
5284 		 * are served by workers tied to the pool.
5285 		 */
5286 		pool->nr_running = 0;
5287 
5288 		/*
5289 		 * With concurrency management just turned off, a busy
5290 		 * worker blocking could lead to lengthy stalls.  Kick off
5291 		 * unbound chain execution of currently pending work items.
5292 		 */
5293 		wake_up_worker(pool);
5294 
5295 		raw_spin_unlock_irq(&pool->lock);
5296 
5297 		for_each_pool_worker(worker, pool)
5298 			unbind_worker(worker);
5299 
5300 		mutex_unlock(&wq_pool_attach_mutex);
5301 	}
5302 }
5303 
5304 /**
5305  * rebind_workers - rebind all workers of a pool to the associated CPU
5306  * @pool: pool of interest
5307  *
5308  * @pool->cpu is coming online.  Rebind all workers to the CPU.
5309  */
5310 static void rebind_workers(struct worker_pool *pool)
5311 {
5312 	struct worker *worker;
5313 
5314 	lockdep_assert_held(&wq_pool_attach_mutex);
5315 
5316 	/*
5317 	 * Restore CPU affinity of all workers.  As all idle workers should
5318 	 * be on the run-queue of the associated CPU before any local
5319 	 * wake-ups for concurrency management happen, restore CPU affinity
5320 	 * of all workers first and then clear UNBOUND.  As we're called
5321 	 * from CPU_ONLINE, the following shouldn't fail.
5322 	 */
5323 	for_each_pool_worker(worker, pool) {
5324 		kthread_set_per_cpu(worker->task, pool->cpu);
5325 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5326 						  pool->attrs->cpumask) < 0);
5327 	}
5328 
5329 	raw_spin_lock_irq(&pool->lock);
5330 
5331 	pool->flags &= ~POOL_DISASSOCIATED;
5332 
5333 	for_each_pool_worker(worker, pool) {
5334 		unsigned int worker_flags = worker->flags;
5335 
5336 		/*
5337 		 * We want to clear UNBOUND but can't directly call
5338 		 * worker_clr_flags() or adjust nr_running.  Atomically
5339 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5340 		 * @worker will clear REBOUND using worker_clr_flags() when
5341 		 * it initiates the next execution cycle thus restoring
5342 		 * concurrency management.  Note that when or whether
5343 		 * @worker clears REBOUND doesn't affect correctness.
5344 		 *
5345 		 * WRITE_ONCE() is necessary because @worker->flags may be
5346 		 * tested without holding any lock in
5347 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5348 		 * fail incorrectly leading to premature concurrency
5349 		 * management operations.
5350 		 */
5351 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5352 		worker_flags |= WORKER_REBOUND;
5353 		worker_flags &= ~WORKER_UNBOUND;
5354 		WRITE_ONCE(worker->flags, worker_flags);
5355 	}
5356 
5357 	raw_spin_unlock_irq(&pool->lock);
5358 }
5359 
5360 /**
5361  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5362  * @pool: unbound pool of interest
5363  * @cpu: the CPU which is coming up
5364  *
5365  * An unbound pool may end up with a cpumask which doesn't have any online
5366  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5367  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5368  * online CPU before, cpus_allowed of all its workers should be restored.
5369  */
5370 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5371 {
5372 	static cpumask_t cpumask;
5373 	struct worker *worker;
5374 
5375 	lockdep_assert_held(&wq_pool_attach_mutex);
5376 
5377 	/* is @cpu allowed for @pool? */
5378 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5379 		return;
5380 
5381 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5382 
5383 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5384 	for_each_pool_worker(worker, pool)
5385 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5386 }
5387 
5388 int workqueue_prepare_cpu(unsigned int cpu)
5389 {
5390 	struct worker_pool *pool;
5391 
5392 	for_each_cpu_worker_pool(pool, cpu) {
5393 		if (pool->nr_workers)
5394 			continue;
5395 		if (!create_worker(pool))
5396 			return -ENOMEM;
5397 	}
5398 	return 0;
5399 }
5400 
5401 int workqueue_online_cpu(unsigned int cpu)
5402 {
5403 	struct worker_pool *pool;
5404 	struct workqueue_struct *wq;
5405 	int pi;
5406 
5407 	mutex_lock(&wq_pool_mutex);
5408 
5409 	for_each_pool(pool, pi) {
5410 		mutex_lock(&wq_pool_attach_mutex);
5411 
5412 		if (pool->cpu == cpu)
5413 			rebind_workers(pool);
5414 		else if (pool->cpu < 0)
5415 			restore_unbound_workers_cpumask(pool, cpu);
5416 
5417 		mutex_unlock(&wq_pool_attach_mutex);
5418 	}
5419 
5420 	/* update NUMA affinity of unbound workqueues */
5421 	list_for_each_entry(wq, &workqueues, list)
5422 		wq_update_unbound_numa(wq, cpu, true);
5423 
5424 	mutex_unlock(&wq_pool_mutex);
5425 	return 0;
5426 }
5427 
5428 int workqueue_offline_cpu(unsigned int cpu)
5429 {
5430 	struct workqueue_struct *wq;
5431 
5432 	/* unbinding per-cpu workers should happen on the local CPU */
5433 	if (WARN_ON(cpu != smp_processor_id()))
5434 		return -1;
5435 
5436 	unbind_workers(cpu);
5437 
5438 	/* update NUMA affinity of unbound workqueues */
5439 	mutex_lock(&wq_pool_mutex);
5440 	list_for_each_entry(wq, &workqueues, list)
5441 		wq_update_unbound_numa(wq, cpu, false);
5442 	mutex_unlock(&wq_pool_mutex);
5443 
5444 	return 0;
5445 }
5446 
5447 struct work_for_cpu {
5448 	struct work_struct work;
5449 	long (*fn)(void *);
5450 	void *arg;
5451 	long ret;
5452 };
5453 
5454 static void work_for_cpu_fn(struct work_struct *work)
5455 {
5456 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5457 
5458 	wfc->ret = wfc->fn(wfc->arg);
5459 }
5460 
5461 /**
5462  * work_on_cpu - run a function in thread context on a particular cpu
5463  * @cpu: the cpu to run on
5464  * @fn: the function to run
5465  * @arg: the function arg
5466  *
5467  * It is up to the caller to ensure that the cpu doesn't go offline.
5468  * The caller must not hold any locks which would prevent @fn from completing.
5469  *
5470  * Return: The value @fn returns.
5471  */
5472 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5473 {
5474 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5475 
5476 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5477 	schedule_work_on(cpu, &wfc.work);
5478 	flush_work(&wfc.work);
5479 	destroy_work_on_stack(&wfc.work);
5480 	return wfc.ret;
5481 }
5482 EXPORT_SYMBOL_GPL(work_on_cpu);
5483 
5484 /**
5485  * work_on_cpu_safe - run a function in thread context on a particular cpu
5486  * @cpu: the cpu to run on
5487  * @fn:  the function to run
5488  * @arg: the function argument
5489  *
5490  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5491  * any locks which would prevent @fn from completing.
5492  *
5493  * Return: The value @fn returns.
5494  */
5495 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5496 {
5497 	long ret = -ENODEV;
5498 
5499 	cpus_read_lock();
5500 	if (cpu_online(cpu))
5501 		ret = work_on_cpu(cpu, fn, arg);
5502 	cpus_read_unlock();
5503 	return ret;
5504 }
5505 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5506 #endif /* CONFIG_SMP */
5507 
5508 #ifdef CONFIG_FREEZER
5509 
5510 /**
5511  * freeze_workqueues_begin - begin freezing workqueues
5512  *
5513  * Start freezing workqueues.  After this function returns, all freezable
5514  * workqueues will queue new works to their inactive_works list instead of
5515  * pool->worklist.
5516  *
5517  * CONTEXT:
5518  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5519  */
5520 void freeze_workqueues_begin(void)
5521 {
5522 	struct workqueue_struct *wq;
5523 	struct pool_workqueue *pwq;
5524 
5525 	mutex_lock(&wq_pool_mutex);
5526 
5527 	WARN_ON_ONCE(workqueue_freezing);
5528 	workqueue_freezing = true;
5529 
5530 	list_for_each_entry(wq, &workqueues, list) {
5531 		mutex_lock(&wq->mutex);
5532 		for_each_pwq(pwq, wq)
5533 			pwq_adjust_max_active(pwq);
5534 		mutex_unlock(&wq->mutex);
5535 	}
5536 
5537 	mutex_unlock(&wq_pool_mutex);
5538 }
5539 
5540 /**
5541  * freeze_workqueues_busy - are freezable workqueues still busy?
5542  *
5543  * Check whether freezing is complete.  This function must be called
5544  * between freeze_workqueues_begin() and thaw_workqueues().
5545  *
5546  * CONTEXT:
5547  * Grabs and releases wq_pool_mutex.
5548  *
5549  * Return:
5550  * %true if some freezable workqueues are still busy.  %false if freezing
5551  * is complete.
5552  */
5553 bool freeze_workqueues_busy(void)
5554 {
5555 	bool busy = false;
5556 	struct workqueue_struct *wq;
5557 	struct pool_workqueue *pwq;
5558 
5559 	mutex_lock(&wq_pool_mutex);
5560 
5561 	WARN_ON_ONCE(!workqueue_freezing);
5562 
5563 	list_for_each_entry(wq, &workqueues, list) {
5564 		if (!(wq->flags & WQ_FREEZABLE))
5565 			continue;
5566 		/*
5567 		 * nr_active is monotonically decreasing.  It's safe
5568 		 * to peek without lock.
5569 		 */
5570 		rcu_read_lock();
5571 		for_each_pwq(pwq, wq) {
5572 			WARN_ON_ONCE(pwq->nr_active < 0);
5573 			if (pwq->nr_active) {
5574 				busy = true;
5575 				rcu_read_unlock();
5576 				goto out_unlock;
5577 			}
5578 		}
5579 		rcu_read_unlock();
5580 	}
5581 out_unlock:
5582 	mutex_unlock(&wq_pool_mutex);
5583 	return busy;
5584 }
5585 
5586 /**
5587  * thaw_workqueues - thaw workqueues
5588  *
5589  * Thaw workqueues.  Normal queueing is restored and all collected
5590  * frozen works are transferred to their respective pool worklists.
5591  *
5592  * CONTEXT:
5593  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5594  */
5595 void thaw_workqueues(void)
5596 {
5597 	struct workqueue_struct *wq;
5598 	struct pool_workqueue *pwq;
5599 
5600 	mutex_lock(&wq_pool_mutex);
5601 
5602 	if (!workqueue_freezing)
5603 		goto out_unlock;
5604 
5605 	workqueue_freezing = false;
5606 
5607 	/* restore max_active and repopulate worklist */
5608 	list_for_each_entry(wq, &workqueues, list) {
5609 		mutex_lock(&wq->mutex);
5610 		for_each_pwq(pwq, wq)
5611 			pwq_adjust_max_active(pwq);
5612 		mutex_unlock(&wq->mutex);
5613 	}
5614 
5615 out_unlock:
5616 	mutex_unlock(&wq_pool_mutex);
5617 }
5618 #endif /* CONFIG_FREEZER */
5619 
5620 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5621 {
5622 	LIST_HEAD(ctxs);
5623 	int ret = 0;
5624 	struct workqueue_struct *wq;
5625 	struct apply_wqattrs_ctx *ctx, *n;
5626 
5627 	lockdep_assert_held(&wq_pool_mutex);
5628 
5629 	list_for_each_entry(wq, &workqueues, list) {
5630 		if (!(wq->flags & WQ_UNBOUND))
5631 			continue;
5632 		/* creating multiple pwqs breaks ordering guarantee */
5633 		if (wq->flags & __WQ_ORDERED)
5634 			continue;
5635 
5636 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
5637 		if (!ctx) {
5638 			ret = -ENOMEM;
5639 			break;
5640 		}
5641 
5642 		list_add_tail(&ctx->list, &ctxs);
5643 	}
5644 
5645 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5646 		if (!ret)
5647 			apply_wqattrs_commit(ctx);
5648 		apply_wqattrs_cleanup(ctx);
5649 	}
5650 
5651 	if (!ret) {
5652 		mutex_lock(&wq_pool_attach_mutex);
5653 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5654 		mutex_unlock(&wq_pool_attach_mutex);
5655 	}
5656 	return ret;
5657 }
5658 
5659 /**
5660  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5661  *  @cpumask: the cpumask to set
5662  *
5663  *  The low-level workqueues cpumask is a global cpumask that limits
5664  *  the affinity of all unbound workqueues.  This function check the @cpumask
5665  *  and apply it to all unbound workqueues and updates all pwqs of them.
5666  *
5667  *  Return:	0	- Success
5668  *  		-EINVAL	- Invalid @cpumask
5669  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5670  */
5671 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5672 {
5673 	int ret = -EINVAL;
5674 
5675 	/*
5676 	 * Not excluding isolated cpus on purpose.
5677 	 * If the user wishes to include them, we allow that.
5678 	 */
5679 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5680 	if (!cpumask_empty(cpumask)) {
5681 		apply_wqattrs_lock();
5682 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5683 			ret = 0;
5684 			goto out_unlock;
5685 		}
5686 
5687 		ret = workqueue_apply_unbound_cpumask(cpumask);
5688 
5689 out_unlock:
5690 		apply_wqattrs_unlock();
5691 	}
5692 
5693 	return ret;
5694 }
5695 
5696 #ifdef CONFIG_SYSFS
5697 /*
5698  * Workqueues with WQ_SYSFS flag set is visible to userland via
5699  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5700  * following attributes.
5701  *
5702  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5703  *  max_active	RW int	: maximum number of in-flight work items
5704  *
5705  * Unbound workqueues have the following extra attributes.
5706  *
5707  *  pool_ids	RO int	: the associated pool IDs for each node
5708  *  nice	RW int	: nice value of the workers
5709  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5710  *  numa	RW bool	: whether enable NUMA affinity
5711  */
5712 struct wq_device {
5713 	struct workqueue_struct		*wq;
5714 	struct device			dev;
5715 };
5716 
5717 static struct workqueue_struct *dev_to_wq(struct device *dev)
5718 {
5719 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5720 
5721 	return wq_dev->wq;
5722 }
5723 
5724 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5725 			    char *buf)
5726 {
5727 	struct workqueue_struct *wq = dev_to_wq(dev);
5728 
5729 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5730 }
5731 static DEVICE_ATTR_RO(per_cpu);
5732 
5733 static ssize_t max_active_show(struct device *dev,
5734 			       struct device_attribute *attr, char *buf)
5735 {
5736 	struct workqueue_struct *wq = dev_to_wq(dev);
5737 
5738 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5739 }
5740 
5741 static ssize_t max_active_store(struct device *dev,
5742 				struct device_attribute *attr, const char *buf,
5743 				size_t count)
5744 {
5745 	struct workqueue_struct *wq = dev_to_wq(dev);
5746 	int val;
5747 
5748 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5749 		return -EINVAL;
5750 
5751 	workqueue_set_max_active(wq, val);
5752 	return count;
5753 }
5754 static DEVICE_ATTR_RW(max_active);
5755 
5756 static struct attribute *wq_sysfs_attrs[] = {
5757 	&dev_attr_per_cpu.attr,
5758 	&dev_attr_max_active.attr,
5759 	NULL,
5760 };
5761 ATTRIBUTE_GROUPS(wq_sysfs);
5762 
5763 static ssize_t wq_pool_ids_show(struct device *dev,
5764 				struct device_attribute *attr, char *buf)
5765 {
5766 	struct workqueue_struct *wq = dev_to_wq(dev);
5767 	const char *delim = "";
5768 	int node, written = 0;
5769 
5770 	cpus_read_lock();
5771 	rcu_read_lock();
5772 	for_each_node(node) {
5773 		written += scnprintf(buf + written, PAGE_SIZE - written,
5774 				     "%s%d:%d", delim, node,
5775 				     unbound_pwq_by_node(wq, node)->pool->id);
5776 		delim = " ";
5777 	}
5778 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5779 	rcu_read_unlock();
5780 	cpus_read_unlock();
5781 
5782 	return written;
5783 }
5784 
5785 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5786 			    char *buf)
5787 {
5788 	struct workqueue_struct *wq = dev_to_wq(dev);
5789 	int written;
5790 
5791 	mutex_lock(&wq->mutex);
5792 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5793 	mutex_unlock(&wq->mutex);
5794 
5795 	return written;
5796 }
5797 
5798 /* prepare workqueue_attrs for sysfs store operations */
5799 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5800 {
5801 	struct workqueue_attrs *attrs;
5802 
5803 	lockdep_assert_held(&wq_pool_mutex);
5804 
5805 	attrs = alloc_workqueue_attrs();
5806 	if (!attrs)
5807 		return NULL;
5808 
5809 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5810 	return attrs;
5811 }
5812 
5813 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5814 			     const char *buf, size_t count)
5815 {
5816 	struct workqueue_struct *wq = dev_to_wq(dev);
5817 	struct workqueue_attrs *attrs;
5818 	int ret = -ENOMEM;
5819 
5820 	apply_wqattrs_lock();
5821 
5822 	attrs = wq_sysfs_prep_attrs(wq);
5823 	if (!attrs)
5824 		goto out_unlock;
5825 
5826 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5827 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5828 		ret = apply_workqueue_attrs_locked(wq, attrs);
5829 	else
5830 		ret = -EINVAL;
5831 
5832 out_unlock:
5833 	apply_wqattrs_unlock();
5834 	free_workqueue_attrs(attrs);
5835 	return ret ?: count;
5836 }
5837 
5838 static ssize_t wq_cpumask_show(struct device *dev,
5839 			       struct device_attribute *attr, char *buf)
5840 {
5841 	struct workqueue_struct *wq = dev_to_wq(dev);
5842 	int written;
5843 
5844 	mutex_lock(&wq->mutex);
5845 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5846 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5847 	mutex_unlock(&wq->mutex);
5848 	return written;
5849 }
5850 
5851 static ssize_t wq_cpumask_store(struct device *dev,
5852 				struct device_attribute *attr,
5853 				const char *buf, size_t count)
5854 {
5855 	struct workqueue_struct *wq = dev_to_wq(dev);
5856 	struct workqueue_attrs *attrs;
5857 	int ret = -ENOMEM;
5858 
5859 	apply_wqattrs_lock();
5860 
5861 	attrs = wq_sysfs_prep_attrs(wq);
5862 	if (!attrs)
5863 		goto out_unlock;
5864 
5865 	ret = cpumask_parse(buf, attrs->cpumask);
5866 	if (!ret)
5867 		ret = apply_workqueue_attrs_locked(wq, attrs);
5868 
5869 out_unlock:
5870 	apply_wqattrs_unlock();
5871 	free_workqueue_attrs(attrs);
5872 	return ret ?: count;
5873 }
5874 
5875 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5876 			    char *buf)
5877 {
5878 	struct workqueue_struct *wq = dev_to_wq(dev);
5879 	int written;
5880 
5881 	mutex_lock(&wq->mutex);
5882 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5883 			    !wq->unbound_attrs->no_numa);
5884 	mutex_unlock(&wq->mutex);
5885 
5886 	return written;
5887 }
5888 
5889 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5890 			     const char *buf, size_t count)
5891 {
5892 	struct workqueue_struct *wq = dev_to_wq(dev);
5893 	struct workqueue_attrs *attrs;
5894 	int v, ret = -ENOMEM;
5895 
5896 	apply_wqattrs_lock();
5897 
5898 	attrs = wq_sysfs_prep_attrs(wq);
5899 	if (!attrs)
5900 		goto out_unlock;
5901 
5902 	ret = -EINVAL;
5903 	if (sscanf(buf, "%d", &v) == 1) {
5904 		attrs->no_numa = !v;
5905 		ret = apply_workqueue_attrs_locked(wq, attrs);
5906 	}
5907 
5908 out_unlock:
5909 	apply_wqattrs_unlock();
5910 	free_workqueue_attrs(attrs);
5911 	return ret ?: count;
5912 }
5913 
5914 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5915 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5916 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5917 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5918 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5919 	__ATTR_NULL,
5920 };
5921 
5922 static struct bus_type wq_subsys = {
5923 	.name				= "workqueue",
5924 	.dev_groups			= wq_sysfs_groups,
5925 };
5926 
5927 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5928 		struct device_attribute *attr, char *buf)
5929 {
5930 	int written;
5931 
5932 	mutex_lock(&wq_pool_mutex);
5933 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5934 			    cpumask_pr_args(wq_unbound_cpumask));
5935 	mutex_unlock(&wq_pool_mutex);
5936 
5937 	return written;
5938 }
5939 
5940 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5941 		struct device_attribute *attr, const char *buf, size_t count)
5942 {
5943 	cpumask_var_t cpumask;
5944 	int ret;
5945 
5946 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5947 		return -ENOMEM;
5948 
5949 	ret = cpumask_parse(buf, cpumask);
5950 	if (!ret)
5951 		ret = workqueue_set_unbound_cpumask(cpumask);
5952 
5953 	free_cpumask_var(cpumask);
5954 	return ret ? ret : count;
5955 }
5956 
5957 static struct device_attribute wq_sysfs_cpumask_attr =
5958 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5959 	       wq_unbound_cpumask_store);
5960 
5961 static int __init wq_sysfs_init(void)
5962 {
5963 	struct device *dev_root;
5964 	int err;
5965 
5966 	err = subsys_virtual_register(&wq_subsys, NULL);
5967 	if (err)
5968 		return err;
5969 
5970 	dev_root = bus_get_dev_root(&wq_subsys);
5971 	if (dev_root) {
5972 		err = device_create_file(dev_root, &wq_sysfs_cpumask_attr);
5973 		put_device(dev_root);
5974 	}
5975 	return err;
5976 }
5977 core_initcall(wq_sysfs_init);
5978 
5979 static void wq_device_release(struct device *dev)
5980 {
5981 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5982 
5983 	kfree(wq_dev);
5984 }
5985 
5986 /**
5987  * workqueue_sysfs_register - make a workqueue visible in sysfs
5988  * @wq: the workqueue to register
5989  *
5990  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5991  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5992  * which is the preferred method.
5993  *
5994  * Workqueue user should use this function directly iff it wants to apply
5995  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5996  * apply_workqueue_attrs() may race against userland updating the
5997  * attributes.
5998  *
5999  * Return: 0 on success, -errno on failure.
6000  */
6001 int workqueue_sysfs_register(struct workqueue_struct *wq)
6002 {
6003 	struct wq_device *wq_dev;
6004 	int ret;
6005 
6006 	/*
6007 	 * Adjusting max_active or creating new pwqs by applying
6008 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
6009 	 * workqueues.
6010 	 */
6011 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6012 		return -EINVAL;
6013 
6014 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
6015 	if (!wq_dev)
6016 		return -ENOMEM;
6017 
6018 	wq_dev->wq = wq;
6019 	wq_dev->dev.bus = &wq_subsys;
6020 	wq_dev->dev.release = wq_device_release;
6021 	dev_set_name(&wq_dev->dev, "%s", wq->name);
6022 
6023 	/*
6024 	 * unbound_attrs are created separately.  Suppress uevent until
6025 	 * everything is ready.
6026 	 */
6027 	dev_set_uevent_suppress(&wq_dev->dev, true);
6028 
6029 	ret = device_register(&wq_dev->dev);
6030 	if (ret) {
6031 		put_device(&wq_dev->dev);
6032 		wq->wq_dev = NULL;
6033 		return ret;
6034 	}
6035 
6036 	if (wq->flags & WQ_UNBOUND) {
6037 		struct device_attribute *attr;
6038 
6039 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
6040 			ret = device_create_file(&wq_dev->dev, attr);
6041 			if (ret) {
6042 				device_unregister(&wq_dev->dev);
6043 				wq->wq_dev = NULL;
6044 				return ret;
6045 			}
6046 		}
6047 	}
6048 
6049 	dev_set_uevent_suppress(&wq_dev->dev, false);
6050 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
6051 	return 0;
6052 }
6053 
6054 /**
6055  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
6056  * @wq: the workqueue to unregister
6057  *
6058  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
6059  */
6060 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
6061 {
6062 	struct wq_device *wq_dev = wq->wq_dev;
6063 
6064 	if (!wq->wq_dev)
6065 		return;
6066 
6067 	wq->wq_dev = NULL;
6068 	device_unregister(&wq_dev->dev);
6069 }
6070 #else	/* CONFIG_SYSFS */
6071 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
6072 #endif	/* CONFIG_SYSFS */
6073 
6074 /*
6075  * Workqueue watchdog.
6076  *
6077  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
6078  * flush dependency, a concurrency managed work item which stays RUNNING
6079  * indefinitely.  Workqueue stalls can be very difficult to debug as the
6080  * usual warning mechanisms don't trigger and internal workqueue state is
6081  * largely opaque.
6082  *
6083  * Workqueue watchdog monitors all worker pools periodically and dumps
6084  * state if some pools failed to make forward progress for a while where
6085  * forward progress is defined as the first item on ->worklist changing.
6086  *
6087  * This mechanism is controlled through the kernel parameter
6088  * "workqueue.watchdog_thresh" which can be updated at runtime through the
6089  * corresponding sysfs parameter file.
6090  */
6091 #ifdef CONFIG_WQ_WATCHDOG
6092 
6093 static unsigned long wq_watchdog_thresh = 30;
6094 static struct timer_list wq_watchdog_timer;
6095 
6096 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6097 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6098 
6099 /*
6100  * Show workers that might prevent the processing of pending work items.
6101  * The only candidates are CPU-bound workers in the running state.
6102  * Pending work items should be handled by another idle worker
6103  * in all other situations.
6104  */
6105 static void show_cpu_pool_hog(struct worker_pool *pool)
6106 {
6107 	struct worker *worker;
6108 	unsigned long flags;
6109 	int bkt;
6110 
6111 	raw_spin_lock_irqsave(&pool->lock, flags);
6112 
6113 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6114 		if (task_is_running(worker->task)) {
6115 			/*
6116 			 * Defer printing to avoid deadlocks in console
6117 			 * drivers that queue work while holding locks
6118 			 * also taken in their write paths.
6119 			 */
6120 			printk_deferred_enter();
6121 
6122 			pr_info("pool %d:\n", pool->id);
6123 			sched_show_task(worker->task);
6124 
6125 			printk_deferred_exit();
6126 		}
6127 	}
6128 
6129 	raw_spin_unlock_irqrestore(&pool->lock, flags);
6130 }
6131 
6132 static void show_cpu_pools_hogs(void)
6133 {
6134 	struct worker_pool *pool;
6135 	int pi;
6136 
6137 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6138 
6139 	rcu_read_lock();
6140 
6141 	for_each_pool(pool, pi) {
6142 		if (pool->cpu_stall)
6143 			show_cpu_pool_hog(pool);
6144 
6145 	}
6146 
6147 	rcu_read_unlock();
6148 }
6149 
6150 static void wq_watchdog_reset_touched(void)
6151 {
6152 	int cpu;
6153 
6154 	wq_watchdog_touched = jiffies;
6155 	for_each_possible_cpu(cpu)
6156 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6157 }
6158 
6159 static void wq_watchdog_timer_fn(struct timer_list *unused)
6160 {
6161 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6162 	bool lockup_detected = false;
6163 	bool cpu_pool_stall = false;
6164 	unsigned long now = jiffies;
6165 	struct worker_pool *pool;
6166 	int pi;
6167 
6168 	if (!thresh)
6169 		return;
6170 
6171 	rcu_read_lock();
6172 
6173 	for_each_pool(pool, pi) {
6174 		unsigned long pool_ts, touched, ts;
6175 
6176 		pool->cpu_stall = false;
6177 		if (list_empty(&pool->worklist))
6178 			continue;
6179 
6180 		/*
6181 		 * If a virtual machine is stopped by the host it can look to
6182 		 * the watchdog like a stall.
6183 		 */
6184 		kvm_check_and_clear_guest_paused();
6185 
6186 		/* get the latest of pool and touched timestamps */
6187 		if (pool->cpu >= 0)
6188 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
6189 		else
6190 			touched = READ_ONCE(wq_watchdog_touched);
6191 		pool_ts = READ_ONCE(pool->watchdog_ts);
6192 
6193 		if (time_after(pool_ts, touched))
6194 			ts = pool_ts;
6195 		else
6196 			ts = touched;
6197 
6198 		/* did we stall? */
6199 		if (time_after(now, ts + thresh)) {
6200 			lockup_detected = true;
6201 			if (pool->cpu >= 0) {
6202 				pool->cpu_stall = true;
6203 				cpu_pool_stall = true;
6204 			}
6205 			pr_emerg("BUG: workqueue lockup - pool");
6206 			pr_cont_pool_info(pool);
6207 			pr_cont(" stuck for %us!\n",
6208 				jiffies_to_msecs(now - pool_ts) / 1000);
6209 		}
6210 
6211 
6212 	}
6213 
6214 	rcu_read_unlock();
6215 
6216 	if (lockup_detected)
6217 		show_all_workqueues();
6218 
6219 	if (cpu_pool_stall)
6220 		show_cpu_pools_hogs();
6221 
6222 	wq_watchdog_reset_touched();
6223 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
6224 }
6225 
6226 notrace void wq_watchdog_touch(int cpu)
6227 {
6228 	if (cpu >= 0)
6229 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6230 
6231 	wq_watchdog_touched = jiffies;
6232 }
6233 
6234 static void wq_watchdog_set_thresh(unsigned long thresh)
6235 {
6236 	wq_watchdog_thresh = 0;
6237 	del_timer_sync(&wq_watchdog_timer);
6238 
6239 	if (thresh) {
6240 		wq_watchdog_thresh = thresh;
6241 		wq_watchdog_reset_touched();
6242 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6243 	}
6244 }
6245 
6246 static int wq_watchdog_param_set_thresh(const char *val,
6247 					const struct kernel_param *kp)
6248 {
6249 	unsigned long thresh;
6250 	int ret;
6251 
6252 	ret = kstrtoul(val, 0, &thresh);
6253 	if (ret)
6254 		return ret;
6255 
6256 	if (system_wq)
6257 		wq_watchdog_set_thresh(thresh);
6258 	else
6259 		wq_watchdog_thresh = thresh;
6260 
6261 	return 0;
6262 }
6263 
6264 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6265 	.set	= wq_watchdog_param_set_thresh,
6266 	.get	= param_get_ulong,
6267 };
6268 
6269 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6270 		0644);
6271 
6272 static void wq_watchdog_init(void)
6273 {
6274 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
6275 	wq_watchdog_set_thresh(wq_watchdog_thresh);
6276 }
6277 
6278 #else	/* CONFIG_WQ_WATCHDOG */
6279 
6280 static inline void wq_watchdog_init(void) { }
6281 
6282 #endif	/* CONFIG_WQ_WATCHDOG */
6283 
6284 static void __init wq_numa_init(void)
6285 {
6286 	cpumask_var_t *tbl;
6287 	int node, cpu;
6288 
6289 	if (num_possible_nodes() <= 1)
6290 		return;
6291 
6292 	if (wq_disable_numa) {
6293 		pr_info("workqueue: NUMA affinity support disabled\n");
6294 		return;
6295 	}
6296 
6297 	for_each_possible_cpu(cpu) {
6298 		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
6299 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
6300 			return;
6301 		}
6302 	}
6303 
6304 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
6305 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
6306 
6307 	/*
6308 	 * We want masks of possible CPUs of each node which isn't readily
6309 	 * available.  Build one from cpu_to_node() which should have been
6310 	 * fully initialized by now.
6311 	 */
6312 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
6313 	BUG_ON(!tbl);
6314 
6315 	for_each_node(node)
6316 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
6317 				node_online(node) ? node : NUMA_NO_NODE));
6318 
6319 	for_each_possible_cpu(cpu) {
6320 		node = cpu_to_node(cpu);
6321 		cpumask_set_cpu(cpu, tbl[node]);
6322 	}
6323 
6324 	wq_numa_possible_cpumask = tbl;
6325 	wq_numa_enabled = true;
6326 }
6327 
6328 /**
6329  * workqueue_init_early - early init for workqueue subsystem
6330  *
6331  * This is the first half of two-staged workqueue subsystem initialization
6332  * and invoked as soon as the bare basics - memory allocation, cpumasks and
6333  * idr are up.  It sets up all the data structures and system workqueues
6334  * and allows early boot code to create workqueues and queue/cancel work
6335  * items.  Actual work item execution starts only after kthreads can be
6336  * created and scheduled right before early initcalls.
6337  */
6338 void __init workqueue_init_early(void)
6339 {
6340 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6341 	int i, cpu;
6342 
6343 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6344 
6345 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6346 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
6347 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
6348 
6349 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6350 
6351 	/* initialize CPU pools */
6352 	for_each_possible_cpu(cpu) {
6353 		struct worker_pool *pool;
6354 
6355 		i = 0;
6356 		for_each_cpu_worker_pool(pool, cpu) {
6357 			BUG_ON(init_worker_pool(pool));
6358 			pool->cpu = cpu;
6359 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6360 			pool->attrs->nice = std_nice[i++];
6361 			pool->node = cpu_to_node(cpu);
6362 
6363 			/* alloc pool ID */
6364 			mutex_lock(&wq_pool_mutex);
6365 			BUG_ON(worker_pool_assign_id(pool));
6366 			mutex_unlock(&wq_pool_mutex);
6367 		}
6368 	}
6369 
6370 	/* create default unbound and ordered wq attrs */
6371 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6372 		struct workqueue_attrs *attrs;
6373 
6374 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6375 		attrs->nice = std_nice[i];
6376 		unbound_std_wq_attrs[i] = attrs;
6377 
6378 		/*
6379 		 * An ordered wq should have only one pwq as ordering is
6380 		 * guaranteed by max_active which is enforced by pwqs.
6381 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
6382 		 */
6383 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6384 		attrs->nice = std_nice[i];
6385 		attrs->no_numa = true;
6386 		ordered_wq_attrs[i] = attrs;
6387 	}
6388 
6389 	system_wq = alloc_workqueue("events", 0, 0);
6390 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6391 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6392 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6393 					    WQ_UNBOUND_MAX_ACTIVE);
6394 	system_freezable_wq = alloc_workqueue("events_freezable",
6395 					      WQ_FREEZABLE, 0);
6396 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6397 					      WQ_POWER_EFFICIENT, 0);
6398 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6399 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6400 					      0);
6401 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6402 	       !system_unbound_wq || !system_freezable_wq ||
6403 	       !system_power_efficient_wq ||
6404 	       !system_freezable_power_efficient_wq);
6405 }
6406 
6407 /**
6408  * workqueue_init - bring workqueue subsystem fully online
6409  *
6410  * This is the latter half of two-staged workqueue subsystem initialization
6411  * and invoked as soon as kthreads can be created and scheduled.
6412  * Workqueues have been created and work items queued on them, but there
6413  * are no kworkers executing the work items yet.  Populate the worker pools
6414  * with the initial workers and enable future kworker creations.
6415  */
6416 void __init workqueue_init(void)
6417 {
6418 	struct workqueue_struct *wq;
6419 	struct worker_pool *pool;
6420 	int cpu, bkt;
6421 
6422 	/*
6423 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6424 	 * CPU to node mapping may not be available that early on some
6425 	 * archs such as power and arm64.  As per-cpu pools created
6426 	 * previously could be missing node hint and unbound pools NUMA
6427 	 * affinity, fix them up.
6428 	 *
6429 	 * Also, while iterating workqueues, create rescuers if requested.
6430 	 */
6431 	wq_numa_init();
6432 
6433 	mutex_lock(&wq_pool_mutex);
6434 
6435 	for_each_possible_cpu(cpu) {
6436 		for_each_cpu_worker_pool(pool, cpu) {
6437 			pool->node = cpu_to_node(cpu);
6438 		}
6439 	}
6440 
6441 	list_for_each_entry(wq, &workqueues, list) {
6442 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6443 		WARN(init_rescuer(wq),
6444 		     "workqueue: failed to create early rescuer for %s",
6445 		     wq->name);
6446 	}
6447 
6448 	mutex_unlock(&wq_pool_mutex);
6449 
6450 	/* create the initial workers */
6451 	for_each_online_cpu(cpu) {
6452 		for_each_cpu_worker_pool(pool, cpu) {
6453 			pool->flags &= ~POOL_DISASSOCIATED;
6454 			BUG_ON(!create_worker(pool));
6455 		}
6456 	}
6457 
6458 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6459 		BUG_ON(!create_worker(pool));
6460 
6461 	wq_online = true;
6462 	wq_watchdog_init();
6463 }
6464 
6465 /*
6466  * Despite the naming, this is a no-op function which is here only for avoiding
6467  * link error. Since compile-time warning may fail to catch, we will need to
6468  * emit run-time warning from __flush_workqueue().
6469  */
6470 void __warn_flushing_systemwide_wq(void) { }
6471 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
6472