1 /* 2 * linux/kernel/workqueue.c 3 * 4 * Generic mechanism for defining kernel helper threads for running 5 * arbitrary tasks in process context. 6 * 7 * Started by Ingo Molnar, Copyright (C) 2002 8 * 9 * Derived from the taskqueue/keventd code by: 10 * 11 * David Woodhouse <[email protected]> 12 * Andrew Morton 13 * Kai Petzke <[email protected]> 14 * Theodore Ts'o <[email protected]> 15 * 16 * Made to use alloc_percpu by Christoph Lameter. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/kernel.h> 21 #include <linux/sched.h> 22 #include <linux/init.h> 23 #include <linux/signal.h> 24 #include <linux/completion.h> 25 #include <linux/workqueue.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/notifier.h> 29 #include <linux/kthread.h> 30 #include <linux/hardirq.h> 31 #include <linux/mempolicy.h> 32 #include <linux/freezer.h> 33 #include <linux/kallsyms.h> 34 #include <linux/debug_locks.h> 35 #include <linux/lockdep.h> 36 #include <linux/idr.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/workqueue.h> 40 41 #include "workqueue_sched.h" 42 43 enum { 44 /* global_cwq flags */ 45 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 46 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */ 47 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 48 GCWQ_FREEZING = 1 << 3, /* freeze in progress */ 49 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */ 50 51 /* worker flags */ 52 WORKER_STARTED = 1 << 0, /* started */ 53 WORKER_DIE = 1 << 1, /* die die die */ 54 WORKER_IDLE = 1 << 2, /* is idle */ 55 WORKER_PREP = 1 << 3, /* preparing to run works */ 56 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */ 57 WORKER_REBIND = 1 << 5, /* mom is home, come back */ 58 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 59 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 60 61 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND | 62 WORKER_CPU_INTENSIVE | WORKER_UNBOUND, 63 64 /* gcwq->trustee_state */ 65 TRUSTEE_START = 0, /* start */ 66 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */ 67 TRUSTEE_BUTCHER = 2, /* butcher workers */ 68 TRUSTEE_RELEASE = 3, /* release workers */ 69 TRUSTEE_DONE = 4, /* trustee is done */ 70 71 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 72 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER, 73 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1, 74 75 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 76 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 77 78 MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */ 79 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 80 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 81 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */ 82 83 /* 84 * Rescue workers are used only on emergencies and shared by 85 * all cpus. Give -20. 86 */ 87 RESCUER_NICE_LEVEL = -20, 88 }; 89 90 /* 91 * Structure fields follow one of the following exclusion rules. 92 * 93 * I: Modifiable by initialization/destruction paths and read-only for 94 * everyone else. 95 * 96 * P: Preemption protected. Disabling preemption is enough and should 97 * only be modified and accessed from the local cpu. 98 * 99 * L: gcwq->lock protected. Access with gcwq->lock held. 100 * 101 * X: During normal operation, modification requires gcwq->lock and 102 * should be done only from local cpu. Either disabling preemption 103 * on local cpu or grabbing gcwq->lock is enough for read access. 104 * If GCWQ_DISASSOCIATED is set, it's identical to L. 105 * 106 * F: wq->flush_mutex protected. 107 * 108 * W: workqueue_lock protected. 109 */ 110 111 struct global_cwq; 112 113 /* 114 * The poor guys doing the actual heavy lifting. All on-duty workers 115 * are either serving the manager role, on idle list or on busy hash. 116 */ 117 struct worker { 118 /* on idle list while idle, on busy hash table while busy */ 119 union { 120 struct list_head entry; /* L: while idle */ 121 struct hlist_node hentry; /* L: while busy */ 122 }; 123 124 struct work_struct *current_work; /* L: work being processed */ 125 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */ 126 struct list_head scheduled; /* L: scheduled works */ 127 struct task_struct *task; /* I: worker task */ 128 struct global_cwq *gcwq; /* I: the associated gcwq */ 129 /* 64 bytes boundary on 64bit, 32 on 32bit */ 130 unsigned long last_active; /* L: last active timestamp */ 131 unsigned int flags; /* X: flags */ 132 int id; /* I: worker id */ 133 struct work_struct rebind_work; /* L: rebind worker to cpu */ 134 }; 135 136 /* 137 * Global per-cpu workqueue. There's one and only one for each cpu 138 * and all works are queued and processed here regardless of their 139 * target workqueues. 140 */ 141 struct global_cwq { 142 spinlock_t lock; /* the gcwq lock */ 143 struct list_head worklist; /* L: list of pending works */ 144 unsigned int cpu; /* I: the associated cpu */ 145 unsigned int flags; /* L: GCWQ_* flags */ 146 147 int nr_workers; /* L: total number of workers */ 148 int nr_idle; /* L: currently idle ones */ 149 150 /* workers are chained either in the idle_list or busy_hash */ 151 struct list_head idle_list; /* X: list of idle workers */ 152 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE]; 153 /* L: hash of busy workers */ 154 155 struct timer_list idle_timer; /* L: worker idle timeout */ 156 struct timer_list mayday_timer; /* L: SOS timer for dworkers */ 157 158 struct ida worker_ida; /* L: for worker IDs */ 159 160 struct task_struct *trustee; /* L: for gcwq shutdown */ 161 unsigned int trustee_state; /* L: trustee state */ 162 wait_queue_head_t trustee_wait; /* trustee wait */ 163 struct worker *first_idle; /* L: first idle worker */ 164 } ____cacheline_aligned_in_smp; 165 166 /* 167 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of 168 * work_struct->data are used for flags and thus cwqs need to be 169 * aligned at two's power of the number of flag bits. 170 */ 171 struct cpu_workqueue_struct { 172 struct global_cwq *gcwq; /* I: the associated gcwq */ 173 struct workqueue_struct *wq; /* I: the owning workqueue */ 174 int work_color; /* L: current color */ 175 int flush_color; /* L: flushing color */ 176 int nr_in_flight[WORK_NR_COLORS]; 177 /* L: nr of in_flight works */ 178 int nr_active; /* L: nr of active works */ 179 int max_active; /* L: max active works */ 180 struct list_head delayed_works; /* L: delayed works */ 181 }; 182 183 /* 184 * Structure used to wait for workqueue flush. 185 */ 186 struct wq_flusher { 187 struct list_head list; /* F: list of flushers */ 188 int flush_color; /* F: flush color waiting for */ 189 struct completion done; /* flush completion */ 190 }; 191 192 /* 193 * All cpumasks are assumed to be always set on UP and thus can't be 194 * used to determine whether there's something to be done. 195 */ 196 #ifdef CONFIG_SMP 197 typedef cpumask_var_t mayday_mask_t; 198 #define mayday_test_and_set_cpu(cpu, mask) \ 199 cpumask_test_and_set_cpu((cpu), (mask)) 200 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) 201 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) 202 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp)) 203 #define free_mayday_mask(mask) free_cpumask_var((mask)) 204 #else 205 typedef unsigned long mayday_mask_t; 206 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) 207 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) 208 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) 209 #define alloc_mayday_mask(maskp, gfp) true 210 #define free_mayday_mask(mask) do { } while (0) 211 #endif 212 213 /* 214 * The externally visible workqueue abstraction is an array of 215 * per-CPU workqueues: 216 */ 217 struct workqueue_struct { 218 unsigned int flags; /* I: WQ_* flags */ 219 union { 220 struct cpu_workqueue_struct __percpu *pcpu; 221 struct cpu_workqueue_struct *single; 222 unsigned long v; 223 } cpu_wq; /* I: cwq's */ 224 struct list_head list; /* W: list of all workqueues */ 225 226 struct mutex flush_mutex; /* protects wq flushing */ 227 int work_color; /* F: current work color */ 228 int flush_color; /* F: current flush color */ 229 atomic_t nr_cwqs_to_flush; /* flush in progress */ 230 struct wq_flusher *first_flusher; /* F: first flusher */ 231 struct list_head flusher_queue; /* F: flush waiters */ 232 struct list_head flusher_overflow; /* F: flush overflow list */ 233 234 mayday_mask_t mayday_mask; /* cpus requesting rescue */ 235 struct worker *rescuer; /* I: rescue worker */ 236 237 int saved_max_active; /* W: saved cwq max_active */ 238 const char *name; /* I: workqueue name */ 239 #ifdef CONFIG_LOCKDEP 240 struct lockdep_map lockdep_map; 241 #endif 242 }; 243 244 struct workqueue_struct *system_wq __read_mostly; 245 struct workqueue_struct *system_long_wq __read_mostly; 246 struct workqueue_struct *system_nrt_wq __read_mostly; 247 struct workqueue_struct *system_unbound_wq __read_mostly; 248 EXPORT_SYMBOL_GPL(system_wq); 249 EXPORT_SYMBOL_GPL(system_long_wq); 250 EXPORT_SYMBOL_GPL(system_nrt_wq); 251 EXPORT_SYMBOL_GPL(system_unbound_wq); 252 253 #define for_each_busy_worker(worker, i, pos, gcwq) \ 254 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \ 255 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry) 256 257 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask, 258 unsigned int sw) 259 { 260 if (cpu < nr_cpu_ids) { 261 if (sw & 1) { 262 cpu = cpumask_next(cpu, mask); 263 if (cpu < nr_cpu_ids) 264 return cpu; 265 } 266 if (sw & 2) 267 return WORK_CPU_UNBOUND; 268 } 269 return WORK_CPU_NONE; 270 } 271 272 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, 273 struct workqueue_struct *wq) 274 { 275 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); 276 } 277 278 /* 279 * CPU iterators 280 * 281 * An extra gcwq is defined for an invalid cpu number 282 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any 283 * specific CPU. The following iterators are similar to 284 * for_each_*_cpu() iterators but also considers the unbound gcwq. 285 * 286 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND 287 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND 288 * for_each_cwq_cpu() : possible CPUs for bound workqueues, 289 * WORK_CPU_UNBOUND for unbound workqueues 290 */ 291 #define for_each_gcwq_cpu(cpu) \ 292 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \ 293 (cpu) < WORK_CPU_NONE; \ 294 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3)) 295 296 #define for_each_online_gcwq_cpu(cpu) \ 297 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \ 298 (cpu) < WORK_CPU_NONE; \ 299 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3)) 300 301 #define for_each_cwq_cpu(cpu, wq) \ 302 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \ 303 (cpu) < WORK_CPU_NONE; \ 304 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq))) 305 306 #ifdef CONFIG_LOCKDEP 307 /** 308 * in_workqueue_context() - in context of specified workqueue? 309 * @wq: the workqueue of interest 310 * 311 * Checks lockdep state to see if the current task is executing from 312 * within a workqueue item. This function exists only if lockdep is 313 * enabled. 314 */ 315 int in_workqueue_context(struct workqueue_struct *wq) 316 { 317 return lock_is_held(&wq->lockdep_map); 318 } 319 #endif 320 321 #ifdef CONFIG_DEBUG_OBJECTS_WORK 322 323 static struct debug_obj_descr work_debug_descr; 324 325 /* 326 * fixup_init is called when: 327 * - an active object is initialized 328 */ 329 static int work_fixup_init(void *addr, enum debug_obj_state state) 330 { 331 struct work_struct *work = addr; 332 333 switch (state) { 334 case ODEBUG_STATE_ACTIVE: 335 cancel_work_sync(work); 336 debug_object_init(work, &work_debug_descr); 337 return 1; 338 default: 339 return 0; 340 } 341 } 342 343 /* 344 * fixup_activate is called when: 345 * - an active object is activated 346 * - an unknown object is activated (might be a statically initialized object) 347 */ 348 static int work_fixup_activate(void *addr, enum debug_obj_state state) 349 { 350 struct work_struct *work = addr; 351 352 switch (state) { 353 354 case ODEBUG_STATE_NOTAVAILABLE: 355 /* 356 * This is not really a fixup. The work struct was 357 * statically initialized. We just make sure that it 358 * is tracked in the object tracker. 359 */ 360 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 361 debug_object_init(work, &work_debug_descr); 362 debug_object_activate(work, &work_debug_descr); 363 return 0; 364 } 365 WARN_ON_ONCE(1); 366 return 0; 367 368 case ODEBUG_STATE_ACTIVE: 369 WARN_ON(1); 370 371 default: 372 return 0; 373 } 374 } 375 376 /* 377 * fixup_free is called when: 378 * - an active object is freed 379 */ 380 static int work_fixup_free(void *addr, enum debug_obj_state state) 381 { 382 struct work_struct *work = addr; 383 384 switch (state) { 385 case ODEBUG_STATE_ACTIVE: 386 cancel_work_sync(work); 387 debug_object_free(work, &work_debug_descr); 388 return 1; 389 default: 390 return 0; 391 } 392 } 393 394 static struct debug_obj_descr work_debug_descr = { 395 .name = "work_struct", 396 .fixup_init = work_fixup_init, 397 .fixup_activate = work_fixup_activate, 398 .fixup_free = work_fixup_free, 399 }; 400 401 static inline void debug_work_activate(struct work_struct *work) 402 { 403 debug_object_activate(work, &work_debug_descr); 404 } 405 406 static inline void debug_work_deactivate(struct work_struct *work) 407 { 408 debug_object_deactivate(work, &work_debug_descr); 409 } 410 411 void __init_work(struct work_struct *work, int onstack) 412 { 413 if (onstack) 414 debug_object_init_on_stack(work, &work_debug_descr); 415 else 416 debug_object_init(work, &work_debug_descr); 417 } 418 EXPORT_SYMBOL_GPL(__init_work); 419 420 void destroy_work_on_stack(struct work_struct *work) 421 { 422 debug_object_free(work, &work_debug_descr); 423 } 424 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 425 426 #else 427 static inline void debug_work_activate(struct work_struct *work) { } 428 static inline void debug_work_deactivate(struct work_struct *work) { } 429 #endif 430 431 /* Serializes the accesses to the list of workqueues. */ 432 static DEFINE_SPINLOCK(workqueue_lock); 433 static LIST_HEAD(workqueues); 434 static bool workqueue_freezing; /* W: have wqs started freezing? */ 435 436 /* 437 * The almighty global cpu workqueues. nr_running is the only field 438 * which is expected to be used frequently by other cpus via 439 * try_to_wake_up(). Put it in a separate cacheline. 440 */ 441 static DEFINE_PER_CPU(struct global_cwq, global_cwq); 442 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running); 443 444 /* 445 * Global cpu workqueue and nr_running counter for unbound gcwq. The 446 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its 447 * workers have WORKER_UNBOUND set. 448 */ 449 static struct global_cwq unbound_global_cwq; 450 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */ 451 452 static int worker_thread(void *__worker); 453 454 static struct global_cwq *get_gcwq(unsigned int cpu) 455 { 456 if (cpu != WORK_CPU_UNBOUND) 457 return &per_cpu(global_cwq, cpu); 458 else 459 return &unbound_global_cwq; 460 } 461 462 static atomic_t *get_gcwq_nr_running(unsigned int cpu) 463 { 464 if (cpu != WORK_CPU_UNBOUND) 465 return &per_cpu(gcwq_nr_running, cpu); 466 else 467 return &unbound_gcwq_nr_running; 468 } 469 470 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu, 471 struct workqueue_struct *wq) 472 { 473 if (!(wq->flags & WQ_UNBOUND)) { 474 if (likely(cpu < nr_cpu_ids)) { 475 #ifdef CONFIG_SMP 476 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu); 477 #else 478 return wq->cpu_wq.single; 479 #endif 480 } 481 } else if (likely(cpu == WORK_CPU_UNBOUND)) 482 return wq->cpu_wq.single; 483 return NULL; 484 } 485 486 static unsigned int work_color_to_flags(int color) 487 { 488 return color << WORK_STRUCT_COLOR_SHIFT; 489 } 490 491 static int get_work_color(struct work_struct *work) 492 { 493 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 494 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 495 } 496 497 static int work_next_color(int color) 498 { 499 return (color + 1) % WORK_NR_COLORS; 500 } 501 502 /* 503 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the 504 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is 505 * cleared and the work data contains the cpu number it was last on. 506 * 507 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the 508 * cwq, cpu or clear work->data. These functions should only be 509 * called while the work is owned - ie. while the PENDING bit is set. 510 * 511 * get_work_[g]cwq() can be used to obtain the gcwq or cwq 512 * corresponding to a work. gcwq is available once the work has been 513 * queued anywhere after initialization. cwq is available only from 514 * queueing until execution starts. 515 */ 516 static inline void set_work_data(struct work_struct *work, unsigned long data, 517 unsigned long flags) 518 { 519 BUG_ON(!work_pending(work)); 520 atomic_long_set(&work->data, data | flags | work_static(work)); 521 } 522 523 static void set_work_cwq(struct work_struct *work, 524 struct cpu_workqueue_struct *cwq, 525 unsigned long extra_flags) 526 { 527 set_work_data(work, (unsigned long)cwq, 528 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags); 529 } 530 531 static void set_work_cpu(struct work_struct *work, unsigned int cpu) 532 { 533 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING); 534 } 535 536 static void clear_work_data(struct work_struct *work) 537 { 538 set_work_data(work, WORK_STRUCT_NO_CPU, 0); 539 } 540 541 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work) 542 { 543 unsigned long data = atomic_long_read(&work->data); 544 545 if (data & WORK_STRUCT_CWQ) 546 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 547 else 548 return NULL; 549 } 550 551 static struct global_cwq *get_work_gcwq(struct work_struct *work) 552 { 553 unsigned long data = atomic_long_read(&work->data); 554 unsigned int cpu; 555 556 if (data & WORK_STRUCT_CWQ) 557 return ((struct cpu_workqueue_struct *) 558 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq; 559 560 cpu = data >> WORK_STRUCT_FLAG_BITS; 561 if (cpu == WORK_CPU_NONE) 562 return NULL; 563 564 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND); 565 return get_gcwq(cpu); 566 } 567 568 /* 569 * Policy functions. These define the policies on how the global 570 * worker pool is managed. Unless noted otherwise, these functions 571 * assume that they're being called with gcwq->lock held. 572 */ 573 574 static bool __need_more_worker(struct global_cwq *gcwq) 575 { 576 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) || 577 gcwq->flags & GCWQ_HIGHPRI_PENDING; 578 } 579 580 /* 581 * Need to wake up a worker? Called from anything but currently 582 * running workers. 583 */ 584 static bool need_more_worker(struct global_cwq *gcwq) 585 { 586 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq); 587 } 588 589 /* Can I start working? Called from busy but !running workers. */ 590 static bool may_start_working(struct global_cwq *gcwq) 591 { 592 return gcwq->nr_idle; 593 } 594 595 /* Do I need to keep working? Called from currently running workers. */ 596 static bool keep_working(struct global_cwq *gcwq) 597 { 598 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 599 600 return !list_empty(&gcwq->worklist) && atomic_read(nr_running) <= 1; 601 } 602 603 /* Do we need a new worker? Called from manager. */ 604 static bool need_to_create_worker(struct global_cwq *gcwq) 605 { 606 return need_more_worker(gcwq) && !may_start_working(gcwq); 607 } 608 609 /* Do I need to be the manager? */ 610 static bool need_to_manage_workers(struct global_cwq *gcwq) 611 { 612 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS; 613 } 614 615 /* Do we have too many workers and should some go away? */ 616 static bool too_many_workers(struct global_cwq *gcwq) 617 { 618 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS; 619 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */ 620 int nr_busy = gcwq->nr_workers - nr_idle; 621 622 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 623 } 624 625 /* 626 * Wake up functions. 627 */ 628 629 /* Return the first worker. Safe with preemption disabled */ 630 static struct worker *first_worker(struct global_cwq *gcwq) 631 { 632 if (unlikely(list_empty(&gcwq->idle_list))) 633 return NULL; 634 635 return list_first_entry(&gcwq->idle_list, struct worker, entry); 636 } 637 638 /** 639 * wake_up_worker - wake up an idle worker 640 * @gcwq: gcwq to wake worker for 641 * 642 * Wake up the first idle worker of @gcwq. 643 * 644 * CONTEXT: 645 * spin_lock_irq(gcwq->lock). 646 */ 647 static void wake_up_worker(struct global_cwq *gcwq) 648 { 649 struct worker *worker = first_worker(gcwq); 650 651 if (likely(worker)) 652 wake_up_process(worker->task); 653 } 654 655 /** 656 * wq_worker_waking_up - a worker is waking up 657 * @task: task waking up 658 * @cpu: CPU @task is waking up to 659 * 660 * This function is called during try_to_wake_up() when a worker is 661 * being awoken. 662 * 663 * CONTEXT: 664 * spin_lock_irq(rq->lock) 665 */ 666 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) 667 { 668 struct worker *worker = kthread_data(task); 669 670 if (likely(!(worker->flags & WORKER_NOT_RUNNING))) 671 atomic_inc(get_gcwq_nr_running(cpu)); 672 } 673 674 /** 675 * wq_worker_sleeping - a worker is going to sleep 676 * @task: task going to sleep 677 * @cpu: CPU in question, must be the current CPU number 678 * 679 * This function is called during schedule() when a busy worker is 680 * going to sleep. Worker on the same cpu can be woken up by 681 * returning pointer to its task. 682 * 683 * CONTEXT: 684 * spin_lock_irq(rq->lock) 685 * 686 * RETURNS: 687 * Worker task on @cpu to wake up, %NULL if none. 688 */ 689 struct task_struct *wq_worker_sleeping(struct task_struct *task, 690 unsigned int cpu) 691 { 692 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 693 struct global_cwq *gcwq = get_gcwq(cpu); 694 atomic_t *nr_running = get_gcwq_nr_running(cpu); 695 696 if (unlikely(worker->flags & WORKER_NOT_RUNNING)) 697 return NULL; 698 699 /* this can only happen on the local cpu */ 700 BUG_ON(cpu != raw_smp_processor_id()); 701 702 /* 703 * The counterpart of the following dec_and_test, implied mb, 704 * worklist not empty test sequence is in insert_work(). 705 * Please read comment there. 706 * 707 * NOT_RUNNING is clear. This means that trustee is not in 708 * charge and we're running on the local cpu w/ rq lock held 709 * and preemption disabled, which in turn means that none else 710 * could be manipulating idle_list, so dereferencing idle_list 711 * without gcwq lock is safe. 712 */ 713 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist)) 714 to_wakeup = first_worker(gcwq); 715 return to_wakeup ? to_wakeup->task : NULL; 716 } 717 718 /** 719 * worker_set_flags - set worker flags and adjust nr_running accordingly 720 * @worker: self 721 * @flags: flags to set 722 * @wakeup: wakeup an idle worker if necessary 723 * 724 * Set @flags in @worker->flags and adjust nr_running accordingly. If 725 * nr_running becomes zero and @wakeup is %true, an idle worker is 726 * woken up. 727 * 728 * CONTEXT: 729 * spin_lock_irq(gcwq->lock) 730 */ 731 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 732 bool wakeup) 733 { 734 struct global_cwq *gcwq = worker->gcwq; 735 736 WARN_ON_ONCE(worker->task != current); 737 738 /* 739 * If transitioning into NOT_RUNNING, adjust nr_running and 740 * wake up an idle worker as necessary if requested by 741 * @wakeup. 742 */ 743 if ((flags & WORKER_NOT_RUNNING) && 744 !(worker->flags & WORKER_NOT_RUNNING)) { 745 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 746 747 if (wakeup) { 748 if (atomic_dec_and_test(nr_running) && 749 !list_empty(&gcwq->worklist)) 750 wake_up_worker(gcwq); 751 } else 752 atomic_dec(nr_running); 753 } 754 755 worker->flags |= flags; 756 } 757 758 /** 759 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 760 * @worker: self 761 * @flags: flags to clear 762 * 763 * Clear @flags in @worker->flags and adjust nr_running accordingly. 764 * 765 * CONTEXT: 766 * spin_lock_irq(gcwq->lock) 767 */ 768 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 769 { 770 struct global_cwq *gcwq = worker->gcwq; 771 unsigned int oflags = worker->flags; 772 773 WARN_ON_ONCE(worker->task != current); 774 775 worker->flags &= ~flags; 776 777 /* if transitioning out of NOT_RUNNING, increment nr_running */ 778 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 779 if (!(worker->flags & WORKER_NOT_RUNNING)) 780 atomic_inc(get_gcwq_nr_running(gcwq->cpu)); 781 } 782 783 /** 784 * busy_worker_head - return the busy hash head for a work 785 * @gcwq: gcwq of interest 786 * @work: work to be hashed 787 * 788 * Return hash head of @gcwq for @work. 789 * 790 * CONTEXT: 791 * spin_lock_irq(gcwq->lock). 792 * 793 * RETURNS: 794 * Pointer to the hash head. 795 */ 796 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq, 797 struct work_struct *work) 798 { 799 const int base_shift = ilog2(sizeof(struct work_struct)); 800 unsigned long v = (unsigned long)work; 801 802 /* simple shift and fold hash, do we need something better? */ 803 v >>= base_shift; 804 v += v >> BUSY_WORKER_HASH_ORDER; 805 v &= BUSY_WORKER_HASH_MASK; 806 807 return &gcwq->busy_hash[v]; 808 } 809 810 /** 811 * __find_worker_executing_work - find worker which is executing a work 812 * @gcwq: gcwq of interest 813 * @bwh: hash head as returned by busy_worker_head() 814 * @work: work to find worker for 815 * 816 * Find a worker which is executing @work on @gcwq. @bwh should be 817 * the hash head obtained by calling busy_worker_head() with the same 818 * work. 819 * 820 * CONTEXT: 821 * spin_lock_irq(gcwq->lock). 822 * 823 * RETURNS: 824 * Pointer to worker which is executing @work if found, NULL 825 * otherwise. 826 */ 827 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq, 828 struct hlist_head *bwh, 829 struct work_struct *work) 830 { 831 struct worker *worker; 832 struct hlist_node *tmp; 833 834 hlist_for_each_entry(worker, tmp, bwh, hentry) 835 if (worker->current_work == work) 836 return worker; 837 return NULL; 838 } 839 840 /** 841 * find_worker_executing_work - find worker which is executing a work 842 * @gcwq: gcwq of interest 843 * @work: work to find worker for 844 * 845 * Find a worker which is executing @work on @gcwq. This function is 846 * identical to __find_worker_executing_work() except that this 847 * function calculates @bwh itself. 848 * 849 * CONTEXT: 850 * spin_lock_irq(gcwq->lock). 851 * 852 * RETURNS: 853 * Pointer to worker which is executing @work if found, NULL 854 * otherwise. 855 */ 856 static struct worker *find_worker_executing_work(struct global_cwq *gcwq, 857 struct work_struct *work) 858 { 859 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work), 860 work); 861 } 862 863 /** 864 * gcwq_determine_ins_pos - find insertion position 865 * @gcwq: gcwq of interest 866 * @cwq: cwq a work is being queued for 867 * 868 * A work for @cwq is about to be queued on @gcwq, determine insertion 869 * position for the work. If @cwq is for HIGHPRI wq, the work is 870 * queued at the head of the queue but in FIFO order with respect to 871 * other HIGHPRI works; otherwise, at the end of the queue. This 872 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that 873 * there are HIGHPRI works pending. 874 * 875 * CONTEXT: 876 * spin_lock_irq(gcwq->lock). 877 * 878 * RETURNS: 879 * Pointer to inserstion position. 880 */ 881 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq, 882 struct cpu_workqueue_struct *cwq) 883 { 884 struct work_struct *twork; 885 886 if (likely(!(cwq->wq->flags & WQ_HIGHPRI))) 887 return &gcwq->worklist; 888 889 list_for_each_entry(twork, &gcwq->worklist, entry) { 890 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork); 891 892 if (!(tcwq->wq->flags & WQ_HIGHPRI)) 893 break; 894 } 895 896 gcwq->flags |= GCWQ_HIGHPRI_PENDING; 897 return &twork->entry; 898 } 899 900 /** 901 * insert_work - insert a work into gcwq 902 * @cwq: cwq @work belongs to 903 * @work: work to insert 904 * @head: insertion point 905 * @extra_flags: extra WORK_STRUCT_* flags to set 906 * 907 * Insert @work which belongs to @cwq into @gcwq after @head. 908 * @extra_flags is or'd to work_struct flags. 909 * 910 * CONTEXT: 911 * spin_lock_irq(gcwq->lock). 912 */ 913 static void insert_work(struct cpu_workqueue_struct *cwq, 914 struct work_struct *work, struct list_head *head, 915 unsigned int extra_flags) 916 { 917 struct global_cwq *gcwq = cwq->gcwq; 918 919 /* we own @work, set data and link */ 920 set_work_cwq(work, cwq, extra_flags); 921 922 /* 923 * Ensure that we get the right work->data if we see the 924 * result of list_add() below, see try_to_grab_pending(). 925 */ 926 smp_wmb(); 927 928 list_add_tail(&work->entry, head); 929 930 /* 931 * Ensure either worker_sched_deactivated() sees the above 932 * list_add_tail() or we see zero nr_running to avoid workers 933 * lying around lazily while there are works to be processed. 934 */ 935 smp_mb(); 936 937 if (__need_more_worker(gcwq)) 938 wake_up_worker(gcwq); 939 } 940 941 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, 942 struct work_struct *work) 943 { 944 struct global_cwq *gcwq; 945 struct cpu_workqueue_struct *cwq; 946 struct list_head *worklist; 947 unsigned int work_flags; 948 unsigned long flags; 949 950 debug_work_activate(work); 951 952 if (WARN_ON_ONCE(wq->flags & WQ_DYING)) 953 return; 954 955 /* determine gcwq to use */ 956 if (!(wq->flags & WQ_UNBOUND)) { 957 struct global_cwq *last_gcwq; 958 959 if (unlikely(cpu == WORK_CPU_UNBOUND)) 960 cpu = raw_smp_processor_id(); 961 962 /* 963 * It's multi cpu. If @wq is non-reentrant and @work 964 * was previously on a different cpu, it might still 965 * be running there, in which case the work needs to 966 * be queued on that cpu to guarantee non-reentrance. 967 */ 968 gcwq = get_gcwq(cpu); 969 if (wq->flags & WQ_NON_REENTRANT && 970 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { 971 struct worker *worker; 972 973 spin_lock_irqsave(&last_gcwq->lock, flags); 974 975 worker = find_worker_executing_work(last_gcwq, work); 976 977 if (worker && worker->current_cwq->wq == wq) 978 gcwq = last_gcwq; 979 else { 980 /* meh... not running there, queue here */ 981 spin_unlock_irqrestore(&last_gcwq->lock, flags); 982 spin_lock_irqsave(&gcwq->lock, flags); 983 } 984 } else 985 spin_lock_irqsave(&gcwq->lock, flags); 986 } else { 987 gcwq = get_gcwq(WORK_CPU_UNBOUND); 988 spin_lock_irqsave(&gcwq->lock, flags); 989 } 990 991 /* gcwq determined, get cwq and queue */ 992 cwq = get_cwq(gcwq->cpu, wq); 993 994 BUG_ON(!list_empty(&work->entry)); 995 996 cwq->nr_in_flight[cwq->work_color]++; 997 work_flags = work_color_to_flags(cwq->work_color); 998 999 if (likely(cwq->nr_active < cwq->max_active)) { 1000 cwq->nr_active++; 1001 worklist = gcwq_determine_ins_pos(gcwq, cwq); 1002 } else { 1003 work_flags |= WORK_STRUCT_DELAYED; 1004 worklist = &cwq->delayed_works; 1005 } 1006 1007 insert_work(cwq, work, worklist, work_flags); 1008 1009 spin_unlock_irqrestore(&gcwq->lock, flags); 1010 } 1011 1012 /** 1013 * queue_work - queue work on a workqueue 1014 * @wq: workqueue to use 1015 * @work: work to queue 1016 * 1017 * Returns 0 if @work was already on a queue, non-zero otherwise. 1018 * 1019 * We queue the work to the CPU on which it was submitted, but if the CPU dies 1020 * it can be processed by another CPU. 1021 */ 1022 int queue_work(struct workqueue_struct *wq, struct work_struct *work) 1023 { 1024 int ret; 1025 1026 ret = queue_work_on(get_cpu(), wq, work); 1027 put_cpu(); 1028 1029 return ret; 1030 } 1031 EXPORT_SYMBOL_GPL(queue_work); 1032 1033 /** 1034 * queue_work_on - queue work on specific cpu 1035 * @cpu: CPU number to execute work on 1036 * @wq: workqueue to use 1037 * @work: work to queue 1038 * 1039 * Returns 0 if @work was already on a queue, non-zero otherwise. 1040 * 1041 * We queue the work to a specific CPU, the caller must ensure it 1042 * can't go away. 1043 */ 1044 int 1045 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) 1046 { 1047 int ret = 0; 1048 1049 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1050 __queue_work(cpu, wq, work); 1051 ret = 1; 1052 } 1053 return ret; 1054 } 1055 EXPORT_SYMBOL_GPL(queue_work_on); 1056 1057 static void delayed_work_timer_fn(unsigned long __data) 1058 { 1059 struct delayed_work *dwork = (struct delayed_work *)__data; 1060 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work); 1061 1062 __queue_work(smp_processor_id(), cwq->wq, &dwork->work); 1063 } 1064 1065 /** 1066 * queue_delayed_work - queue work on a workqueue after delay 1067 * @wq: workqueue to use 1068 * @dwork: delayable work to queue 1069 * @delay: number of jiffies to wait before queueing 1070 * 1071 * Returns 0 if @work was already on a queue, non-zero otherwise. 1072 */ 1073 int queue_delayed_work(struct workqueue_struct *wq, 1074 struct delayed_work *dwork, unsigned long delay) 1075 { 1076 if (delay == 0) 1077 return queue_work(wq, &dwork->work); 1078 1079 return queue_delayed_work_on(-1, wq, dwork, delay); 1080 } 1081 EXPORT_SYMBOL_GPL(queue_delayed_work); 1082 1083 /** 1084 * queue_delayed_work_on - queue work on specific CPU after delay 1085 * @cpu: CPU number to execute work on 1086 * @wq: workqueue to use 1087 * @dwork: work to queue 1088 * @delay: number of jiffies to wait before queueing 1089 * 1090 * Returns 0 if @work was already on a queue, non-zero otherwise. 1091 */ 1092 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1093 struct delayed_work *dwork, unsigned long delay) 1094 { 1095 int ret = 0; 1096 struct timer_list *timer = &dwork->timer; 1097 struct work_struct *work = &dwork->work; 1098 1099 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1100 unsigned int lcpu; 1101 1102 BUG_ON(timer_pending(timer)); 1103 BUG_ON(!list_empty(&work->entry)); 1104 1105 timer_stats_timer_set_start_info(&dwork->timer); 1106 1107 /* 1108 * This stores cwq for the moment, for the timer_fn. 1109 * Note that the work's gcwq is preserved to allow 1110 * reentrance detection for delayed works. 1111 */ 1112 if (!(wq->flags & WQ_UNBOUND)) { 1113 struct global_cwq *gcwq = get_work_gcwq(work); 1114 1115 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND) 1116 lcpu = gcwq->cpu; 1117 else 1118 lcpu = raw_smp_processor_id(); 1119 } else 1120 lcpu = WORK_CPU_UNBOUND; 1121 1122 set_work_cwq(work, get_cwq(lcpu, wq), 0); 1123 1124 timer->expires = jiffies + delay; 1125 timer->data = (unsigned long)dwork; 1126 timer->function = delayed_work_timer_fn; 1127 1128 if (unlikely(cpu >= 0)) 1129 add_timer_on(timer, cpu); 1130 else 1131 add_timer(timer); 1132 ret = 1; 1133 } 1134 return ret; 1135 } 1136 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 1137 1138 /** 1139 * worker_enter_idle - enter idle state 1140 * @worker: worker which is entering idle state 1141 * 1142 * @worker is entering idle state. Update stats and idle timer if 1143 * necessary. 1144 * 1145 * LOCKING: 1146 * spin_lock_irq(gcwq->lock). 1147 */ 1148 static void worker_enter_idle(struct worker *worker) 1149 { 1150 struct global_cwq *gcwq = worker->gcwq; 1151 1152 BUG_ON(worker->flags & WORKER_IDLE); 1153 BUG_ON(!list_empty(&worker->entry) && 1154 (worker->hentry.next || worker->hentry.pprev)); 1155 1156 /* can't use worker_set_flags(), also called from start_worker() */ 1157 worker->flags |= WORKER_IDLE; 1158 gcwq->nr_idle++; 1159 worker->last_active = jiffies; 1160 1161 /* idle_list is LIFO */ 1162 list_add(&worker->entry, &gcwq->idle_list); 1163 1164 if (likely(!(worker->flags & WORKER_ROGUE))) { 1165 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer)) 1166 mod_timer(&gcwq->idle_timer, 1167 jiffies + IDLE_WORKER_TIMEOUT); 1168 } else 1169 wake_up_all(&gcwq->trustee_wait); 1170 1171 /* sanity check nr_running */ 1172 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle && 1173 atomic_read(get_gcwq_nr_running(gcwq->cpu))); 1174 } 1175 1176 /** 1177 * worker_leave_idle - leave idle state 1178 * @worker: worker which is leaving idle state 1179 * 1180 * @worker is leaving idle state. Update stats. 1181 * 1182 * LOCKING: 1183 * spin_lock_irq(gcwq->lock). 1184 */ 1185 static void worker_leave_idle(struct worker *worker) 1186 { 1187 struct global_cwq *gcwq = worker->gcwq; 1188 1189 BUG_ON(!(worker->flags & WORKER_IDLE)); 1190 worker_clr_flags(worker, WORKER_IDLE); 1191 gcwq->nr_idle--; 1192 list_del_init(&worker->entry); 1193 } 1194 1195 /** 1196 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq 1197 * @worker: self 1198 * 1199 * Works which are scheduled while the cpu is online must at least be 1200 * scheduled to a worker which is bound to the cpu so that if they are 1201 * flushed from cpu callbacks while cpu is going down, they are 1202 * guaranteed to execute on the cpu. 1203 * 1204 * This function is to be used by rogue workers and rescuers to bind 1205 * themselves to the target cpu and may race with cpu going down or 1206 * coming online. kthread_bind() can't be used because it may put the 1207 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1208 * verbatim as it's best effort and blocking and gcwq may be 1209 * [dis]associated in the meantime. 1210 * 1211 * This function tries set_cpus_allowed() and locks gcwq and verifies 1212 * the binding against GCWQ_DISASSOCIATED which is set during 1213 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters 1214 * idle state or fetches works without dropping lock, it can guarantee 1215 * the scheduling requirement described in the first paragraph. 1216 * 1217 * CONTEXT: 1218 * Might sleep. Called without any lock but returns with gcwq->lock 1219 * held. 1220 * 1221 * RETURNS: 1222 * %true if the associated gcwq is online (@worker is successfully 1223 * bound), %false if offline. 1224 */ 1225 static bool worker_maybe_bind_and_lock(struct worker *worker) 1226 __acquires(&gcwq->lock) 1227 { 1228 struct global_cwq *gcwq = worker->gcwq; 1229 struct task_struct *task = worker->task; 1230 1231 while (true) { 1232 /* 1233 * The following call may fail, succeed or succeed 1234 * without actually migrating the task to the cpu if 1235 * it races with cpu hotunplug operation. Verify 1236 * against GCWQ_DISASSOCIATED. 1237 */ 1238 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) 1239 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu)); 1240 1241 spin_lock_irq(&gcwq->lock); 1242 if (gcwq->flags & GCWQ_DISASSOCIATED) 1243 return false; 1244 if (task_cpu(task) == gcwq->cpu && 1245 cpumask_equal(¤t->cpus_allowed, 1246 get_cpu_mask(gcwq->cpu))) 1247 return true; 1248 spin_unlock_irq(&gcwq->lock); 1249 1250 /* CPU has come up inbetween, retry migration */ 1251 cpu_relax(); 1252 } 1253 } 1254 1255 /* 1256 * Function for worker->rebind_work used to rebind rogue busy workers 1257 * to the associated cpu which is coming back online. This is 1258 * scheduled by cpu up but can race with other cpu hotplug operations 1259 * and may be executed twice without intervening cpu down. 1260 */ 1261 static void worker_rebind_fn(struct work_struct *work) 1262 { 1263 struct worker *worker = container_of(work, struct worker, rebind_work); 1264 struct global_cwq *gcwq = worker->gcwq; 1265 1266 if (worker_maybe_bind_and_lock(worker)) 1267 worker_clr_flags(worker, WORKER_REBIND); 1268 1269 spin_unlock_irq(&gcwq->lock); 1270 } 1271 1272 static struct worker *alloc_worker(void) 1273 { 1274 struct worker *worker; 1275 1276 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1277 if (worker) { 1278 INIT_LIST_HEAD(&worker->entry); 1279 INIT_LIST_HEAD(&worker->scheduled); 1280 INIT_WORK(&worker->rebind_work, worker_rebind_fn); 1281 /* on creation a worker is in !idle && prep state */ 1282 worker->flags = WORKER_PREP; 1283 } 1284 return worker; 1285 } 1286 1287 /** 1288 * create_worker - create a new workqueue worker 1289 * @gcwq: gcwq the new worker will belong to 1290 * @bind: whether to set affinity to @cpu or not 1291 * 1292 * Create a new worker which is bound to @gcwq. The returned worker 1293 * can be started by calling start_worker() or destroyed using 1294 * destroy_worker(). 1295 * 1296 * CONTEXT: 1297 * Might sleep. Does GFP_KERNEL allocations. 1298 * 1299 * RETURNS: 1300 * Pointer to the newly created worker. 1301 */ 1302 static struct worker *create_worker(struct global_cwq *gcwq, bool bind) 1303 { 1304 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND; 1305 struct worker *worker = NULL; 1306 int id = -1; 1307 1308 spin_lock_irq(&gcwq->lock); 1309 while (ida_get_new(&gcwq->worker_ida, &id)) { 1310 spin_unlock_irq(&gcwq->lock); 1311 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL)) 1312 goto fail; 1313 spin_lock_irq(&gcwq->lock); 1314 } 1315 spin_unlock_irq(&gcwq->lock); 1316 1317 worker = alloc_worker(); 1318 if (!worker) 1319 goto fail; 1320 1321 worker->gcwq = gcwq; 1322 worker->id = id; 1323 1324 if (!on_unbound_cpu) 1325 worker->task = kthread_create(worker_thread, worker, 1326 "kworker/%u:%d", gcwq->cpu, id); 1327 else 1328 worker->task = kthread_create(worker_thread, worker, 1329 "kworker/u:%d", id); 1330 if (IS_ERR(worker->task)) 1331 goto fail; 1332 1333 /* 1334 * A rogue worker will become a regular one if CPU comes 1335 * online later on. Make sure every worker has 1336 * PF_THREAD_BOUND set. 1337 */ 1338 if (bind && !on_unbound_cpu) 1339 kthread_bind(worker->task, gcwq->cpu); 1340 else { 1341 worker->task->flags |= PF_THREAD_BOUND; 1342 if (on_unbound_cpu) 1343 worker->flags |= WORKER_UNBOUND; 1344 } 1345 1346 return worker; 1347 fail: 1348 if (id >= 0) { 1349 spin_lock_irq(&gcwq->lock); 1350 ida_remove(&gcwq->worker_ida, id); 1351 spin_unlock_irq(&gcwq->lock); 1352 } 1353 kfree(worker); 1354 return NULL; 1355 } 1356 1357 /** 1358 * start_worker - start a newly created worker 1359 * @worker: worker to start 1360 * 1361 * Make the gcwq aware of @worker and start it. 1362 * 1363 * CONTEXT: 1364 * spin_lock_irq(gcwq->lock). 1365 */ 1366 static void start_worker(struct worker *worker) 1367 { 1368 worker->flags |= WORKER_STARTED; 1369 worker->gcwq->nr_workers++; 1370 worker_enter_idle(worker); 1371 wake_up_process(worker->task); 1372 } 1373 1374 /** 1375 * destroy_worker - destroy a workqueue worker 1376 * @worker: worker to be destroyed 1377 * 1378 * Destroy @worker and adjust @gcwq stats accordingly. 1379 * 1380 * CONTEXT: 1381 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1382 */ 1383 static void destroy_worker(struct worker *worker) 1384 { 1385 struct global_cwq *gcwq = worker->gcwq; 1386 int id = worker->id; 1387 1388 /* sanity check frenzy */ 1389 BUG_ON(worker->current_work); 1390 BUG_ON(!list_empty(&worker->scheduled)); 1391 1392 if (worker->flags & WORKER_STARTED) 1393 gcwq->nr_workers--; 1394 if (worker->flags & WORKER_IDLE) 1395 gcwq->nr_idle--; 1396 1397 list_del_init(&worker->entry); 1398 worker->flags |= WORKER_DIE; 1399 1400 spin_unlock_irq(&gcwq->lock); 1401 1402 kthread_stop(worker->task); 1403 kfree(worker); 1404 1405 spin_lock_irq(&gcwq->lock); 1406 ida_remove(&gcwq->worker_ida, id); 1407 } 1408 1409 static void idle_worker_timeout(unsigned long __gcwq) 1410 { 1411 struct global_cwq *gcwq = (void *)__gcwq; 1412 1413 spin_lock_irq(&gcwq->lock); 1414 1415 if (too_many_workers(gcwq)) { 1416 struct worker *worker; 1417 unsigned long expires; 1418 1419 /* idle_list is kept in LIFO order, check the last one */ 1420 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1421 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1422 1423 if (time_before(jiffies, expires)) 1424 mod_timer(&gcwq->idle_timer, expires); 1425 else { 1426 /* it's been idle for too long, wake up manager */ 1427 gcwq->flags |= GCWQ_MANAGE_WORKERS; 1428 wake_up_worker(gcwq); 1429 } 1430 } 1431 1432 spin_unlock_irq(&gcwq->lock); 1433 } 1434 1435 static bool send_mayday(struct work_struct *work) 1436 { 1437 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1438 struct workqueue_struct *wq = cwq->wq; 1439 unsigned int cpu; 1440 1441 if (!(wq->flags & WQ_RESCUER)) 1442 return false; 1443 1444 /* mayday mayday mayday */ 1445 cpu = cwq->gcwq->cpu; 1446 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ 1447 if (cpu == WORK_CPU_UNBOUND) 1448 cpu = 0; 1449 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) 1450 wake_up_process(wq->rescuer->task); 1451 return true; 1452 } 1453 1454 static void gcwq_mayday_timeout(unsigned long __gcwq) 1455 { 1456 struct global_cwq *gcwq = (void *)__gcwq; 1457 struct work_struct *work; 1458 1459 spin_lock_irq(&gcwq->lock); 1460 1461 if (need_to_create_worker(gcwq)) { 1462 /* 1463 * We've been trying to create a new worker but 1464 * haven't been successful. We might be hitting an 1465 * allocation deadlock. Send distress signals to 1466 * rescuers. 1467 */ 1468 list_for_each_entry(work, &gcwq->worklist, entry) 1469 send_mayday(work); 1470 } 1471 1472 spin_unlock_irq(&gcwq->lock); 1473 1474 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL); 1475 } 1476 1477 /** 1478 * maybe_create_worker - create a new worker if necessary 1479 * @gcwq: gcwq to create a new worker for 1480 * 1481 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to 1482 * have at least one idle worker on return from this function. If 1483 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1484 * sent to all rescuers with works scheduled on @gcwq to resolve 1485 * possible allocation deadlock. 1486 * 1487 * On return, need_to_create_worker() is guaranteed to be false and 1488 * may_start_working() true. 1489 * 1490 * LOCKING: 1491 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1492 * multiple times. Does GFP_KERNEL allocations. Called only from 1493 * manager. 1494 * 1495 * RETURNS: 1496 * false if no action was taken and gcwq->lock stayed locked, true 1497 * otherwise. 1498 */ 1499 static bool maybe_create_worker(struct global_cwq *gcwq) 1500 __releases(&gcwq->lock) 1501 __acquires(&gcwq->lock) 1502 { 1503 if (!need_to_create_worker(gcwq)) 1504 return false; 1505 restart: 1506 spin_unlock_irq(&gcwq->lock); 1507 1508 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1509 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1510 1511 while (true) { 1512 struct worker *worker; 1513 1514 worker = create_worker(gcwq, true); 1515 if (worker) { 1516 del_timer_sync(&gcwq->mayday_timer); 1517 spin_lock_irq(&gcwq->lock); 1518 start_worker(worker); 1519 BUG_ON(need_to_create_worker(gcwq)); 1520 return true; 1521 } 1522 1523 if (!need_to_create_worker(gcwq)) 1524 break; 1525 1526 __set_current_state(TASK_INTERRUPTIBLE); 1527 schedule_timeout(CREATE_COOLDOWN); 1528 1529 if (!need_to_create_worker(gcwq)) 1530 break; 1531 } 1532 1533 del_timer_sync(&gcwq->mayday_timer); 1534 spin_lock_irq(&gcwq->lock); 1535 if (need_to_create_worker(gcwq)) 1536 goto restart; 1537 return true; 1538 } 1539 1540 /** 1541 * maybe_destroy_worker - destroy workers which have been idle for a while 1542 * @gcwq: gcwq to destroy workers for 1543 * 1544 * Destroy @gcwq workers which have been idle for longer than 1545 * IDLE_WORKER_TIMEOUT. 1546 * 1547 * LOCKING: 1548 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1549 * multiple times. Called only from manager. 1550 * 1551 * RETURNS: 1552 * false if no action was taken and gcwq->lock stayed locked, true 1553 * otherwise. 1554 */ 1555 static bool maybe_destroy_workers(struct global_cwq *gcwq) 1556 { 1557 bool ret = false; 1558 1559 while (too_many_workers(gcwq)) { 1560 struct worker *worker; 1561 unsigned long expires; 1562 1563 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1564 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1565 1566 if (time_before(jiffies, expires)) { 1567 mod_timer(&gcwq->idle_timer, expires); 1568 break; 1569 } 1570 1571 destroy_worker(worker); 1572 ret = true; 1573 } 1574 1575 return ret; 1576 } 1577 1578 /** 1579 * manage_workers - manage worker pool 1580 * @worker: self 1581 * 1582 * Assume the manager role and manage gcwq worker pool @worker belongs 1583 * to. At any given time, there can be only zero or one manager per 1584 * gcwq. The exclusion is handled automatically by this function. 1585 * 1586 * The caller can safely start processing works on false return. On 1587 * true return, it's guaranteed that need_to_create_worker() is false 1588 * and may_start_working() is true. 1589 * 1590 * CONTEXT: 1591 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1592 * multiple times. Does GFP_KERNEL allocations. 1593 * 1594 * RETURNS: 1595 * false if no action was taken and gcwq->lock stayed locked, true if 1596 * some action was taken. 1597 */ 1598 static bool manage_workers(struct worker *worker) 1599 { 1600 struct global_cwq *gcwq = worker->gcwq; 1601 bool ret = false; 1602 1603 if (gcwq->flags & GCWQ_MANAGING_WORKERS) 1604 return ret; 1605 1606 gcwq->flags &= ~GCWQ_MANAGE_WORKERS; 1607 gcwq->flags |= GCWQ_MANAGING_WORKERS; 1608 1609 /* 1610 * Destroy and then create so that may_start_working() is true 1611 * on return. 1612 */ 1613 ret |= maybe_destroy_workers(gcwq); 1614 ret |= maybe_create_worker(gcwq); 1615 1616 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 1617 1618 /* 1619 * The trustee might be waiting to take over the manager 1620 * position, tell it we're done. 1621 */ 1622 if (unlikely(gcwq->trustee)) 1623 wake_up_all(&gcwq->trustee_wait); 1624 1625 return ret; 1626 } 1627 1628 /** 1629 * move_linked_works - move linked works to a list 1630 * @work: start of series of works to be scheduled 1631 * @head: target list to append @work to 1632 * @nextp: out paramter for nested worklist walking 1633 * 1634 * Schedule linked works starting from @work to @head. Work series to 1635 * be scheduled starts at @work and includes any consecutive work with 1636 * WORK_STRUCT_LINKED set in its predecessor. 1637 * 1638 * If @nextp is not NULL, it's updated to point to the next work of 1639 * the last scheduled work. This allows move_linked_works() to be 1640 * nested inside outer list_for_each_entry_safe(). 1641 * 1642 * CONTEXT: 1643 * spin_lock_irq(gcwq->lock). 1644 */ 1645 static void move_linked_works(struct work_struct *work, struct list_head *head, 1646 struct work_struct **nextp) 1647 { 1648 struct work_struct *n; 1649 1650 /* 1651 * Linked worklist will always end before the end of the list, 1652 * use NULL for list head. 1653 */ 1654 list_for_each_entry_safe_from(work, n, NULL, entry) { 1655 list_move_tail(&work->entry, head); 1656 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1657 break; 1658 } 1659 1660 /* 1661 * If we're already inside safe list traversal and have moved 1662 * multiple works to the scheduled queue, the next position 1663 * needs to be updated. 1664 */ 1665 if (nextp) 1666 *nextp = n; 1667 } 1668 1669 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq) 1670 { 1671 struct work_struct *work = list_first_entry(&cwq->delayed_works, 1672 struct work_struct, entry); 1673 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq); 1674 1675 move_linked_works(work, pos, NULL); 1676 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1677 cwq->nr_active++; 1678 } 1679 1680 /** 1681 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight 1682 * @cwq: cwq of interest 1683 * @color: color of work which left the queue 1684 * @delayed: for a delayed work 1685 * 1686 * A work either has completed or is removed from pending queue, 1687 * decrement nr_in_flight of its cwq and handle workqueue flushing. 1688 * 1689 * CONTEXT: 1690 * spin_lock_irq(gcwq->lock). 1691 */ 1692 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color, 1693 bool delayed) 1694 { 1695 /* ignore uncolored works */ 1696 if (color == WORK_NO_COLOR) 1697 return; 1698 1699 cwq->nr_in_flight[color]--; 1700 1701 if (!delayed) { 1702 cwq->nr_active--; 1703 if (!list_empty(&cwq->delayed_works)) { 1704 /* one down, submit a delayed one */ 1705 if (cwq->nr_active < cwq->max_active) 1706 cwq_activate_first_delayed(cwq); 1707 } 1708 } 1709 1710 /* is flush in progress and are we at the flushing tip? */ 1711 if (likely(cwq->flush_color != color)) 1712 return; 1713 1714 /* are there still in-flight works? */ 1715 if (cwq->nr_in_flight[color]) 1716 return; 1717 1718 /* this cwq is done, clear flush_color */ 1719 cwq->flush_color = -1; 1720 1721 /* 1722 * If this was the last cwq, wake up the first flusher. It 1723 * will handle the rest. 1724 */ 1725 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush)) 1726 complete(&cwq->wq->first_flusher->done); 1727 } 1728 1729 /** 1730 * process_one_work - process single work 1731 * @worker: self 1732 * @work: work to process 1733 * 1734 * Process @work. This function contains all the logics necessary to 1735 * process a single work including synchronization against and 1736 * interaction with other workers on the same cpu, queueing and 1737 * flushing. As long as context requirement is met, any worker can 1738 * call this function to process a work. 1739 * 1740 * CONTEXT: 1741 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1742 */ 1743 static void process_one_work(struct worker *worker, struct work_struct *work) 1744 __releases(&gcwq->lock) 1745 __acquires(&gcwq->lock) 1746 { 1747 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1748 struct global_cwq *gcwq = cwq->gcwq; 1749 struct hlist_head *bwh = busy_worker_head(gcwq, work); 1750 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE; 1751 work_func_t f = work->func; 1752 int work_color; 1753 struct worker *collision; 1754 #ifdef CONFIG_LOCKDEP 1755 /* 1756 * It is permissible to free the struct work_struct from 1757 * inside the function that is called from it, this we need to 1758 * take into account for lockdep too. To avoid bogus "held 1759 * lock freed" warnings as well as problems when looking into 1760 * work->lockdep_map, make a copy and use that here. 1761 */ 1762 struct lockdep_map lockdep_map = work->lockdep_map; 1763 #endif 1764 /* 1765 * A single work shouldn't be executed concurrently by 1766 * multiple workers on a single cpu. Check whether anyone is 1767 * already processing the work. If so, defer the work to the 1768 * currently executing one. 1769 */ 1770 collision = __find_worker_executing_work(gcwq, bwh, work); 1771 if (unlikely(collision)) { 1772 move_linked_works(work, &collision->scheduled, NULL); 1773 return; 1774 } 1775 1776 /* claim and process */ 1777 debug_work_deactivate(work); 1778 hlist_add_head(&worker->hentry, bwh); 1779 worker->current_work = work; 1780 worker->current_cwq = cwq; 1781 work_color = get_work_color(work); 1782 1783 /* record the current cpu number in the work data and dequeue */ 1784 set_work_cpu(work, gcwq->cpu); 1785 list_del_init(&work->entry); 1786 1787 /* 1788 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI, 1789 * wake up another worker; otherwise, clear HIGHPRI_PENDING. 1790 */ 1791 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) { 1792 struct work_struct *nwork = list_first_entry(&gcwq->worklist, 1793 struct work_struct, entry); 1794 1795 if (!list_empty(&gcwq->worklist) && 1796 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI) 1797 wake_up_worker(gcwq); 1798 else 1799 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING; 1800 } 1801 1802 /* 1803 * CPU intensive works don't participate in concurrency 1804 * management. They're the scheduler's responsibility. 1805 */ 1806 if (unlikely(cpu_intensive)) 1807 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 1808 1809 spin_unlock_irq(&gcwq->lock); 1810 1811 work_clear_pending(work); 1812 lock_map_acquire(&cwq->wq->lockdep_map); 1813 lock_map_acquire(&lockdep_map); 1814 trace_workqueue_execute_start(work); 1815 f(work); 1816 /* 1817 * While we must be careful to not use "work" after this, the trace 1818 * point will only record its address. 1819 */ 1820 trace_workqueue_execute_end(work); 1821 lock_map_release(&lockdep_map); 1822 lock_map_release(&cwq->wq->lockdep_map); 1823 1824 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 1825 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 1826 "%s/0x%08x/%d\n", 1827 current->comm, preempt_count(), task_pid_nr(current)); 1828 printk(KERN_ERR " last function: "); 1829 print_symbol("%s\n", (unsigned long)f); 1830 debug_show_held_locks(current); 1831 dump_stack(); 1832 } 1833 1834 spin_lock_irq(&gcwq->lock); 1835 1836 /* clear cpu intensive status */ 1837 if (unlikely(cpu_intensive)) 1838 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 1839 1840 /* we're done with it, release */ 1841 hlist_del_init(&worker->hentry); 1842 worker->current_work = NULL; 1843 worker->current_cwq = NULL; 1844 cwq_dec_nr_in_flight(cwq, work_color, false); 1845 } 1846 1847 /** 1848 * process_scheduled_works - process scheduled works 1849 * @worker: self 1850 * 1851 * Process all scheduled works. Please note that the scheduled list 1852 * may change while processing a work, so this function repeatedly 1853 * fetches a work from the top and executes it. 1854 * 1855 * CONTEXT: 1856 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1857 * multiple times. 1858 */ 1859 static void process_scheduled_works(struct worker *worker) 1860 { 1861 while (!list_empty(&worker->scheduled)) { 1862 struct work_struct *work = list_first_entry(&worker->scheduled, 1863 struct work_struct, entry); 1864 process_one_work(worker, work); 1865 } 1866 } 1867 1868 /** 1869 * worker_thread - the worker thread function 1870 * @__worker: self 1871 * 1872 * The gcwq worker thread function. There's a single dynamic pool of 1873 * these per each cpu. These workers process all works regardless of 1874 * their specific target workqueue. The only exception is works which 1875 * belong to workqueues with a rescuer which will be explained in 1876 * rescuer_thread(). 1877 */ 1878 static int worker_thread(void *__worker) 1879 { 1880 struct worker *worker = __worker; 1881 struct global_cwq *gcwq = worker->gcwq; 1882 1883 /* tell the scheduler that this is a workqueue worker */ 1884 worker->task->flags |= PF_WQ_WORKER; 1885 woke_up: 1886 spin_lock_irq(&gcwq->lock); 1887 1888 /* DIE can be set only while we're idle, checking here is enough */ 1889 if (worker->flags & WORKER_DIE) { 1890 spin_unlock_irq(&gcwq->lock); 1891 worker->task->flags &= ~PF_WQ_WORKER; 1892 return 0; 1893 } 1894 1895 worker_leave_idle(worker); 1896 recheck: 1897 /* no more worker necessary? */ 1898 if (!need_more_worker(gcwq)) 1899 goto sleep; 1900 1901 /* do we need to manage? */ 1902 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker)) 1903 goto recheck; 1904 1905 /* 1906 * ->scheduled list can only be filled while a worker is 1907 * preparing to process a work or actually processing it. 1908 * Make sure nobody diddled with it while I was sleeping. 1909 */ 1910 BUG_ON(!list_empty(&worker->scheduled)); 1911 1912 /* 1913 * When control reaches this point, we're guaranteed to have 1914 * at least one idle worker or that someone else has already 1915 * assumed the manager role. 1916 */ 1917 worker_clr_flags(worker, WORKER_PREP); 1918 1919 do { 1920 struct work_struct *work = 1921 list_first_entry(&gcwq->worklist, 1922 struct work_struct, entry); 1923 1924 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 1925 /* optimization path, not strictly necessary */ 1926 process_one_work(worker, work); 1927 if (unlikely(!list_empty(&worker->scheduled))) 1928 process_scheduled_works(worker); 1929 } else { 1930 move_linked_works(work, &worker->scheduled, NULL); 1931 process_scheduled_works(worker); 1932 } 1933 } while (keep_working(gcwq)); 1934 1935 worker_set_flags(worker, WORKER_PREP, false); 1936 sleep: 1937 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker)) 1938 goto recheck; 1939 1940 /* 1941 * gcwq->lock is held and there's no work to process and no 1942 * need to manage, sleep. Workers are woken up only while 1943 * holding gcwq->lock or from local cpu, so setting the 1944 * current state before releasing gcwq->lock is enough to 1945 * prevent losing any event. 1946 */ 1947 worker_enter_idle(worker); 1948 __set_current_state(TASK_INTERRUPTIBLE); 1949 spin_unlock_irq(&gcwq->lock); 1950 schedule(); 1951 goto woke_up; 1952 } 1953 1954 /** 1955 * rescuer_thread - the rescuer thread function 1956 * @__wq: the associated workqueue 1957 * 1958 * Workqueue rescuer thread function. There's one rescuer for each 1959 * workqueue which has WQ_RESCUER set. 1960 * 1961 * Regular work processing on a gcwq may block trying to create a new 1962 * worker which uses GFP_KERNEL allocation which has slight chance of 1963 * developing into deadlock if some works currently on the same queue 1964 * need to be processed to satisfy the GFP_KERNEL allocation. This is 1965 * the problem rescuer solves. 1966 * 1967 * When such condition is possible, the gcwq summons rescuers of all 1968 * workqueues which have works queued on the gcwq and let them process 1969 * those works so that forward progress can be guaranteed. 1970 * 1971 * This should happen rarely. 1972 */ 1973 static int rescuer_thread(void *__wq) 1974 { 1975 struct workqueue_struct *wq = __wq; 1976 struct worker *rescuer = wq->rescuer; 1977 struct list_head *scheduled = &rescuer->scheduled; 1978 bool is_unbound = wq->flags & WQ_UNBOUND; 1979 unsigned int cpu; 1980 1981 set_user_nice(current, RESCUER_NICE_LEVEL); 1982 repeat: 1983 set_current_state(TASK_INTERRUPTIBLE); 1984 1985 if (kthread_should_stop()) 1986 return 0; 1987 1988 /* 1989 * See whether any cpu is asking for help. Unbounded 1990 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. 1991 */ 1992 for_each_mayday_cpu(cpu, wq->mayday_mask) { 1993 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; 1994 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq); 1995 struct global_cwq *gcwq = cwq->gcwq; 1996 struct work_struct *work, *n; 1997 1998 __set_current_state(TASK_RUNNING); 1999 mayday_clear_cpu(cpu, wq->mayday_mask); 2000 2001 /* migrate to the target cpu if possible */ 2002 rescuer->gcwq = gcwq; 2003 worker_maybe_bind_and_lock(rescuer); 2004 2005 /* 2006 * Slurp in all works issued via this workqueue and 2007 * process'em. 2008 */ 2009 BUG_ON(!list_empty(&rescuer->scheduled)); 2010 list_for_each_entry_safe(work, n, &gcwq->worklist, entry) 2011 if (get_work_cwq(work) == cwq) 2012 move_linked_works(work, scheduled, &n); 2013 2014 process_scheduled_works(rescuer); 2015 spin_unlock_irq(&gcwq->lock); 2016 } 2017 2018 schedule(); 2019 goto repeat; 2020 } 2021 2022 struct wq_barrier { 2023 struct work_struct work; 2024 struct completion done; 2025 }; 2026 2027 static void wq_barrier_func(struct work_struct *work) 2028 { 2029 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2030 complete(&barr->done); 2031 } 2032 2033 /** 2034 * insert_wq_barrier - insert a barrier work 2035 * @cwq: cwq to insert barrier into 2036 * @barr: wq_barrier to insert 2037 * @target: target work to attach @barr to 2038 * @worker: worker currently executing @target, NULL if @target is not executing 2039 * 2040 * @barr is linked to @target such that @barr is completed only after 2041 * @target finishes execution. Please note that the ordering 2042 * guarantee is observed only with respect to @target and on the local 2043 * cpu. 2044 * 2045 * Currently, a queued barrier can't be canceled. This is because 2046 * try_to_grab_pending() can't determine whether the work to be 2047 * grabbed is at the head of the queue and thus can't clear LINKED 2048 * flag of the previous work while there must be a valid next work 2049 * after a work with LINKED flag set. 2050 * 2051 * Note that when @worker is non-NULL, @target may be modified 2052 * underneath us, so we can't reliably determine cwq from @target. 2053 * 2054 * CONTEXT: 2055 * spin_lock_irq(gcwq->lock). 2056 */ 2057 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 2058 struct wq_barrier *barr, 2059 struct work_struct *target, struct worker *worker) 2060 { 2061 struct list_head *head; 2062 unsigned int linked = 0; 2063 2064 /* 2065 * debugobject calls are safe here even with gcwq->lock locked 2066 * as we know for sure that this will not trigger any of the 2067 * checks and call back into the fixup functions where we 2068 * might deadlock. 2069 */ 2070 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func); 2071 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2072 init_completion(&barr->done); 2073 2074 /* 2075 * If @target is currently being executed, schedule the 2076 * barrier to the worker; otherwise, put it after @target. 2077 */ 2078 if (worker) 2079 head = worker->scheduled.next; 2080 else { 2081 unsigned long *bits = work_data_bits(target); 2082 2083 head = target->entry.next; 2084 /* there can already be other linked works, inherit and set */ 2085 linked = *bits & WORK_STRUCT_LINKED; 2086 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2087 } 2088 2089 debug_work_activate(&barr->work); 2090 insert_work(cwq, &barr->work, head, 2091 work_color_to_flags(WORK_NO_COLOR) | linked); 2092 } 2093 2094 /** 2095 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing 2096 * @wq: workqueue being flushed 2097 * @flush_color: new flush color, < 0 for no-op 2098 * @work_color: new work color, < 0 for no-op 2099 * 2100 * Prepare cwqs for workqueue flushing. 2101 * 2102 * If @flush_color is non-negative, flush_color on all cwqs should be 2103 * -1. If no cwq has in-flight commands at the specified color, all 2104 * cwq->flush_color's stay at -1 and %false is returned. If any cwq 2105 * has in flight commands, its cwq->flush_color is set to 2106 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq 2107 * wakeup logic is armed and %true is returned. 2108 * 2109 * The caller should have initialized @wq->first_flusher prior to 2110 * calling this function with non-negative @flush_color. If 2111 * @flush_color is negative, no flush color update is done and %false 2112 * is returned. 2113 * 2114 * If @work_color is non-negative, all cwqs should have the same 2115 * work_color which is previous to @work_color and all will be 2116 * advanced to @work_color. 2117 * 2118 * CONTEXT: 2119 * mutex_lock(wq->flush_mutex). 2120 * 2121 * RETURNS: 2122 * %true if @flush_color >= 0 and there's something to flush. %false 2123 * otherwise. 2124 */ 2125 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq, 2126 int flush_color, int work_color) 2127 { 2128 bool wait = false; 2129 unsigned int cpu; 2130 2131 if (flush_color >= 0) { 2132 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush)); 2133 atomic_set(&wq->nr_cwqs_to_flush, 1); 2134 } 2135 2136 for_each_cwq_cpu(cpu, wq) { 2137 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2138 struct global_cwq *gcwq = cwq->gcwq; 2139 2140 spin_lock_irq(&gcwq->lock); 2141 2142 if (flush_color >= 0) { 2143 BUG_ON(cwq->flush_color != -1); 2144 2145 if (cwq->nr_in_flight[flush_color]) { 2146 cwq->flush_color = flush_color; 2147 atomic_inc(&wq->nr_cwqs_to_flush); 2148 wait = true; 2149 } 2150 } 2151 2152 if (work_color >= 0) { 2153 BUG_ON(work_color != work_next_color(cwq->work_color)); 2154 cwq->work_color = work_color; 2155 } 2156 2157 spin_unlock_irq(&gcwq->lock); 2158 } 2159 2160 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush)) 2161 complete(&wq->first_flusher->done); 2162 2163 return wait; 2164 } 2165 2166 /** 2167 * flush_workqueue - ensure that any scheduled work has run to completion. 2168 * @wq: workqueue to flush 2169 * 2170 * Forces execution of the workqueue and blocks until its completion. 2171 * This is typically used in driver shutdown handlers. 2172 * 2173 * We sleep until all works which were queued on entry have been handled, 2174 * but we are not livelocked by new incoming ones. 2175 */ 2176 void flush_workqueue(struct workqueue_struct *wq) 2177 { 2178 struct wq_flusher this_flusher = { 2179 .list = LIST_HEAD_INIT(this_flusher.list), 2180 .flush_color = -1, 2181 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2182 }; 2183 int next_color; 2184 2185 lock_map_acquire(&wq->lockdep_map); 2186 lock_map_release(&wq->lockdep_map); 2187 2188 mutex_lock(&wq->flush_mutex); 2189 2190 /* 2191 * Start-to-wait phase 2192 */ 2193 next_color = work_next_color(wq->work_color); 2194 2195 if (next_color != wq->flush_color) { 2196 /* 2197 * Color space is not full. The current work_color 2198 * becomes our flush_color and work_color is advanced 2199 * by one. 2200 */ 2201 BUG_ON(!list_empty(&wq->flusher_overflow)); 2202 this_flusher.flush_color = wq->work_color; 2203 wq->work_color = next_color; 2204 2205 if (!wq->first_flusher) { 2206 /* no flush in progress, become the first flusher */ 2207 BUG_ON(wq->flush_color != this_flusher.flush_color); 2208 2209 wq->first_flusher = &this_flusher; 2210 2211 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color, 2212 wq->work_color)) { 2213 /* nothing to flush, done */ 2214 wq->flush_color = next_color; 2215 wq->first_flusher = NULL; 2216 goto out_unlock; 2217 } 2218 } else { 2219 /* wait in queue */ 2220 BUG_ON(wq->flush_color == this_flusher.flush_color); 2221 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2222 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2223 } 2224 } else { 2225 /* 2226 * Oops, color space is full, wait on overflow queue. 2227 * The next flush completion will assign us 2228 * flush_color and transfer to flusher_queue. 2229 */ 2230 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2231 } 2232 2233 mutex_unlock(&wq->flush_mutex); 2234 2235 wait_for_completion(&this_flusher.done); 2236 2237 /* 2238 * Wake-up-and-cascade phase 2239 * 2240 * First flushers are responsible for cascading flushes and 2241 * handling overflow. Non-first flushers can simply return. 2242 */ 2243 if (wq->first_flusher != &this_flusher) 2244 return; 2245 2246 mutex_lock(&wq->flush_mutex); 2247 2248 /* we might have raced, check again with mutex held */ 2249 if (wq->first_flusher != &this_flusher) 2250 goto out_unlock; 2251 2252 wq->first_flusher = NULL; 2253 2254 BUG_ON(!list_empty(&this_flusher.list)); 2255 BUG_ON(wq->flush_color != this_flusher.flush_color); 2256 2257 while (true) { 2258 struct wq_flusher *next, *tmp; 2259 2260 /* complete all the flushers sharing the current flush color */ 2261 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2262 if (next->flush_color != wq->flush_color) 2263 break; 2264 list_del_init(&next->list); 2265 complete(&next->done); 2266 } 2267 2268 BUG_ON(!list_empty(&wq->flusher_overflow) && 2269 wq->flush_color != work_next_color(wq->work_color)); 2270 2271 /* this flush_color is finished, advance by one */ 2272 wq->flush_color = work_next_color(wq->flush_color); 2273 2274 /* one color has been freed, handle overflow queue */ 2275 if (!list_empty(&wq->flusher_overflow)) { 2276 /* 2277 * Assign the same color to all overflowed 2278 * flushers, advance work_color and append to 2279 * flusher_queue. This is the start-to-wait 2280 * phase for these overflowed flushers. 2281 */ 2282 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2283 tmp->flush_color = wq->work_color; 2284 2285 wq->work_color = work_next_color(wq->work_color); 2286 2287 list_splice_tail_init(&wq->flusher_overflow, 2288 &wq->flusher_queue); 2289 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2290 } 2291 2292 if (list_empty(&wq->flusher_queue)) { 2293 BUG_ON(wq->flush_color != wq->work_color); 2294 break; 2295 } 2296 2297 /* 2298 * Need to flush more colors. Make the next flusher 2299 * the new first flusher and arm cwqs. 2300 */ 2301 BUG_ON(wq->flush_color == wq->work_color); 2302 BUG_ON(wq->flush_color != next->flush_color); 2303 2304 list_del_init(&next->list); 2305 wq->first_flusher = next; 2306 2307 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1)) 2308 break; 2309 2310 /* 2311 * Meh... this color is already done, clear first 2312 * flusher and repeat cascading. 2313 */ 2314 wq->first_flusher = NULL; 2315 } 2316 2317 out_unlock: 2318 mutex_unlock(&wq->flush_mutex); 2319 } 2320 EXPORT_SYMBOL_GPL(flush_workqueue); 2321 2322 /** 2323 * flush_work - block until a work_struct's callback has terminated 2324 * @work: the work which is to be flushed 2325 * 2326 * Returns false if @work has already terminated. 2327 * 2328 * It is expected that, prior to calling flush_work(), the caller has 2329 * arranged for the work to not be requeued, otherwise it doesn't make 2330 * sense to use this function. 2331 */ 2332 int flush_work(struct work_struct *work) 2333 { 2334 struct worker *worker = NULL; 2335 struct global_cwq *gcwq; 2336 struct cpu_workqueue_struct *cwq; 2337 struct wq_barrier barr; 2338 2339 might_sleep(); 2340 gcwq = get_work_gcwq(work); 2341 if (!gcwq) 2342 return 0; 2343 2344 spin_lock_irq(&gcwq->lock); 2345 if (!list_empty(&work->entry)) { 2346 /* 2347 * See the comment near try_to_grab_pending()->smp_rmb(). 2348 * If it was re-queued to a different gcwq under us, we 2349 * are not going to wait. 2350 */ 2351 smp_rmb(); 2352 cwq = get_work_cwq(work); 2353 if (unlikely(!cwq || gcwq != cwq->gcwq)) 2354 goto already_gone; 2355 } else { 2356 worker = find_worker_executing_work(gcwq, work); 2357 if (!worker) 2358 goto already_gone; 2359 cwq = worker->current_cwq; 2360 } 2361 2362 insert_wq_barrier(cwq, &barr, work, worker); 2363 spin_unlock_irq(&gcwq->lock); 2364 2365 lock_map_acquire(&cwq->wq->lockdep_map); 2366 lock_map_release(&cwq->wq->lockdep_map); 2367 2368 wait_for_completion(&barr.done); 2369 destroy_work_on_stack(&barr.work); 2370 return 1; 2371 already_gone: 2372 spin_unlock_irq(&gcwq->lock); 2373 return 0; 2374 } 2375 EXPORT_SYMBOL_GPL(flush_work); 2376 2377 /* 2378 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 2379 * so this work can't be re-armed in any way. 2380 */ 2381 static int try_to_grab_pending(struct work_struct *work) 2382 { 2383 struct global_cwq *gcwq; 2384 int ret = -1; 2385 2386 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2387 return 0; 2388 2389 /* 2390 * The queueing is in progress, or it is already queued. Try to 2391 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2392 */ 2393 gcwq = get_work_gcwq(work); 2394 if (!gcwq) 2395 return ret; 2396 2397 spin_lock_irq(&gcwq->lock); 2398 if (!list_empty(&work->entry)) { 2399 /* 2400 * This work is queued, but perhaps we locked the wrong gcwq. 2401 * In that case we must see the new value after rmb(), see 2402 * insert_work()->wmb(). 2403 */ 2404 smp_rmb(); 2405 if (gcwq == get_work_gcwq(work)) { 2406 debug_work_deactivate(work); 2407 list_del_init(&work->entry); 2408 cwq_dec_nr_in_flight(get_work_cwq(work), 2409 get_work_color(work), 2410 *work_data_bits(work) & WORK_STRUCT_DELAYED); 2411 ret = 1; 2412 } 2413 } 2414 spin_unlock_irq(&gcwq->lock); 2415 2416 return ret; 2417 } 2418 2419 static void wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work) 2420 { 2421 struct wq_barrier barr; 2422 struct worker *worker; 2423 2424 spin_lock_irq(&gcwq->lock); 2425 2426 worker = find_worker_executing_work(gcwq, work); 2427 if (unlikely(worker)) 2428 insert_wq_barrier(worker->current_cwq, &barr, work, worker); 2429 2430 spin_unlock_irq(&gcwq->lock); 2431 2432 if (unlikely(worker)) { 2433 wait_for_completion(&barr.done); 2434 destroy_work_on_stack(&barr.work); 2435 } 2436 } 2437 2438 static void wait_on_work(struct work_struct *work) 2439 { 2440 int cpu; 2441 2442 might_sleep(); 2443 2444 lock_map_acquire(&work->lockdep_map); 2445 lock_map_release(&work->lockdep_map); 2446 2447 for_each_gcwq_cpu(cpu) 2448 wait_on_cpu_work(get_gcwq(cpu), work); 2449 } 2450 2451 static int __cancel_work_timer(struct work_struct *work, 2452 struct timer_list* timer) 2453 { 2454 int ret; 2455 2456 do { 2457 ret = (timer && likely(del_timer(timer))); 2458 if (!ret) 2459 ret = try_to_grab_pending(work); 2460 wait_on_work(work); 2461 } while (unlikely(ret < 0)); 2462 2463 clear_work_data(work); 2464 return ret; 2465 } 2466 2467 /** 2468 * cancel_work_sync - block until a work_struct's callback has terminated 2469 * @work: the work which is to be flushed 2470 * 2471 * Returns true if @work was pending. 2472 * 2473 * cancel_work_sync() will cancel the work if it is queued. If the work's 2474 * callback appears to be running, cancel_work_sync() will block until it 2475 * has completed. 2476 * 2477 * It is possible to use this function if the work re-queues itself. It can 2478 * cancel the work even if it migrates to another workqueue, however in that 2479 * case it only guarantees that work->func() has completed on the last queued 2480 * workqueue. 2481 * 2482 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not 2483 * pending, otherwise it goes into a busy-wait loop until the timer expires. 2484 * 2485 * The caller must ensure that workqueue_struct on which this work was last 2486 * queued can't be destroyed before this function returns. 2487 */ 2488 int cancel_work_sync(struct work_struct *work) 2489 { 2490 return __cancel_work_timer(work, NULL); 2491 } 2492 EXPORT_SYMBOL_GPL(cancel_work_sync); 2493 2494 /** 2495 * cancel_delayed_work_sync - reliably kill off a delayed work. 2496 * @dwork: the delayed work struct 2497 * 2498 * Returns true if @dwork was pending. 2499 * 2500 * It is possible to use this function if @dwork rearms itself via queue_work() 2501 * or queue_delayed_work(). See also the comment for cancel_work_sync(). 2502 */ 2503 int cancel_delayed_work_sync(struct delayed_work *dwork) 2504 { 2505 return __cancel_work_timer(&dwork->work, &dwork->timer); 2506 } 2507 EXPORT_SYMBOL(cancel_delayed_work_sync); 2508 2509 /** 2510 * schedule_work - put work task in global workqueue 2511 * @work: job to be done 2512 * 2513 * Returns zero if @work was already on the kernel-global workqueue and 2514 * non-zero otherwise. 2515 * 2516 * This puts a job in the kernel-global workqueue if it was not already 2517 * queued and leaves it in the same position on the kernel-global 2518 * workqueue otherwise. 2519 */ 2520 int schedule_work(struct work_struct *work) 2521 { 2522 return queue_work(system_wq, work); 2523 } 2524 EXPORT_SYMBOL(schedule_work); 2525 2526 /* 2527 * schedule_work_on - put work task on a specific cpu 2528 * @cpu: cpu to put the work task on 2529 * @work: job to be done 2530 * 2531 * This puts a job on a specific cpu 2532 */ 2533 int schedule_work_on(int cpu, struct work_struct *work) 2534 { 2535 return queue_work_on(cpu, system_wq, work); 2536 } 2537 EXPORT_SYMBOL(schedule_work_on); 2538 2539 /** 2540 * schedule_delayed_work - put work task in global workqueue after delay 2541 * @dwork: job to be done 2542 * @delay: number of jiffies to wait or 0 for immediate execution 2543 * 2544 * After waiting for a given time this puts a job in the kernel-global 2545 * workqueue. 2546 */ 2547 int schedule_delayed_work(struct delayed_work *dwork, 2548 unsigned long delay) 2549 { 2550 return queue_delayed_work(system_wq, dwork, delay); 2551 } 2552 EXPORT_SYMBOL(schedule_delayed_work); 2553 2554 /** 2555 * flush_delayed_work - block until a dwork_struct's callback has terminated 2556 * @dwork: the delayed work which is to be flushed 2557 * 2558 * Any timeout is cancelled, and any pending work is run immediately. 2559 */ 2560 void flush_delayed_work(struct delayed_work *dwork) 2561 { 2562 if (del_timer_sync(&dwork->timer)) { 2563 __queue_work(get_cpu(), get_work_cwq(&dwork->work)->wq, 2564 &dwork->work); 2565 put_cpu(); 2566 } 2567 flush_work(&dwork->work); 2568 } 2569 EXPORT_SYMBOL(flush_delayed_work); 2570 2571 /** 2572 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 2573 * @cpu: cpu to use 2574 * @dwork: job to be done 2575 * @delay: number of jiffies to wait 2576 * 2577 * After waiting for a given time this puts a job in the kernel-global 2578 * workqueue on the specified CPU. 2579 */ 2580 int schedule_delayed_work_on(int cpu, 2581 struct delayed_work *dwork, unsigned long delay) 2582 { 2583 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 2584 } 2585 EXPORT_SYMBOL(schedule_delayed_work_on); 2586 2587 /** 2588 * schedule_on_each_cpu - call a function on each online CPU from keventd 2589 * @func: the function to call 2590 * 2591 * Returns zero on success. 2592 * Returns -ve errno on failure. 2593 * 2594 * schedule_on_each_cpu() is very slow. 2595 */ 2596 int schedule_on_each_cpu(work_func_t func) 2597 { 2598 int cpu; 2599 struct work_struct __percpu *works; 2600 2601 works = alloc_percpu(struct work_struct); 2602 if (!works) 2603 return -ENOMEM; 2604 2605 get_online_cpus(); 2606 2607 for_each_online_cpu(cpu) { 2608 struct work_struct *work = per_cpu_ptr(works, cpu); 2609 2610 INIT_WORK(work, func); 2611 schedule_work_on(cpu, work); 2612 } 2613 2614 for_each_online_cpu(cpu) 2615 flush_work(per_cpu_ptr(works, cpu)); 2616 2617 put_online_cpus(); 2618 free_percpu(works); 2619 return 0; 2620 } 2621 2622 /** 2623 * flush_scheduled_work - ensure that any scheduled work has run to completion. 2624 * 2625 * Forces execution of the kernel-global workqueue and blocks until its 2626 * completion. 2627 * 2628 * Think twice before calling this function! It's very easy to get into 2629 * trouble if you don't take great care. Either of the following situations 2630 * will lead to deadlock: 2631 * 2632 * One of the work items currently on the workqueue needs to acquire 2633 * a lock held by your code or its caller. 2634 * 2635 * Your code is running in the context of a work routine. 2636 * 2637 * They will be detected by lockdep when they occur, but the first might not 2638 * occur very often. It depends on what work items are on the workqueue and 2639 * what locks they need, which you have no control over. 2640 * 2641 * In most situations flushing the entire workqueue is overkill; you merely 2642 * need to know that a particular work item isn't queued and isn't running. 2643 * In such cases you should use cancel_delayed_work_sync() or 2644 * cancel_work_sync() instead. 2645 */ 2646 void flush_scheduled_work(void) 2647 { 2648 flush_workqueue(system_wq); 2649 } 2650 EXPORT_SYMBOL(flush_scheduled_work); 2651 2652 /** 2653 * execute_in_process_context - reliably execute the routine with user context 2654 * @fn: the function to execute 2655 * @ew: guaranteed storage for the execute work structure (must 2656 * be available when the work executes) 2657 * 2658 * Executes the function immediately if process context is available, 2659 * otherwise schedules the function for delayed execution. 2660 * 2661 * Returns: 0 - function was executed 2662 * 1 - function was scheduled for execution 2663 */ 2664 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 2665 { 2666 if (!in_interrupt()) { 2667 fn(&ew->work); 2668 return 0; 2669 } 2670 2671 INIT_WORK(&ew->work, fn); 2672 schedule_work(&ew->work); 2673 2674 return 1; 2675 } 2676 EXPORT_SYMBOL_GPL(execute_in_process_context); 2677 2678 int keventd_up(void) 2679 { 2680 return system_wq != NULL; 2681 } 2682 2683 static int alloc_cwqs(struct workqueue_struct *wq) 2684 { 2685 /* 2686 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. 2687 * Make sure that the alignment isn't lower than that of 2688 * unsigned long long. 2689 */ 2690 const size_t size = sizeof(struct cpu_workqueue_struct); 2691 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, 2692 __alignof__(unsigned long long)); 2693 #ifdef CONFIG_SMP 2694 bool percpu = !(wq->flags & WQ_UNBOUND); 2695 #else 2696 bool percpu = false; 2697 #endif 2698 2699 if (percpu) 2700 wq->cpu_wq.pcpu = __alloc_percpu(size, align); 2701 else { 2702 void *ptr; 2703 2704 /* 2705 * Allocate enough room to align cwq and put an extra 2706 * pointer at the end pointing back to the originally 2707 * allocated pointer which will be used for free. 2708 */ 2709 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); 2710 if (ptr) { 2711 wq->cpu_wq.single = PTR_ALIGN(ptr, align); 2712 *(void **)(wq->cpu_wq.single + 1) = ptr; 2713 } 2714 } 2715 2716 /* just in case, make sure it's actually aligned */ 2717 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align)); 2718 return wq->cpu_wq.v ? 0 : -ENOMEM; 2719 } 2720 2721 static void free_cwqs(struct workqueue_struct *wq) 2722 { 2723 #ifdef CONFIG_SMP 2724 bool percpu = !(wq->flags & WQ_UNBOUND); 2725 #else 2726 bool percpu = false; 2727 #endif 2728 2729 if (percpu) 2730 free_percpu(wq->cpu_wq.pcpu); 2731 else if (wq->cpu_wq.single) { 2732 /* the pointer to free is stored right after the cwq */ 2733 kfree(*(void **)(wq->cpu_wq.single + 1)); 2734 } 2735 } 2736 2737 static int wq_clamp_max_active(int max_active, unsigned int flags, 2738 const char *name) 2739 { 2740 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 2741 2742 if (max_active < 1 || max_active > lim) 2743 printk(KERN_WARNING "workqueue: max_active %d requested for %s " 2744 "is out of range, clamping between %d and %d\n", 2745 max_active, name, 1, lim); 2746 2747 return clamp_val(max_active, 1, lim); 2748 } 2749 2750 struct workqueue_struct *__alloc_workqueue_key(const char *name, 2751 unsigned int flags, 2752 int max_active, 2753 struct lock_class_key *key, 2754 const char *lock_name) 2755 { 2756 struct workqueue_struct *wq; 2757 unsigned int cpu; 2758 2759 /* 2760 * Unbound workqueues aren't concurrency managed and should be 2761 * dispatched to workers immediately. 2762 */ 2763 if (flags & WQ_UNBOUND) 2764 flags |= WQ_HIGHPRI; 2765 2766 max_active = max_active ?: WQ_DFL_ACTIVE; 2767 max_active = wq_clamp_max_active(max_active, flags, name); 2768 2769 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 2770 if (!wq) 2771 goto err; 2772 2773 wq->flags = flags; 2774 wq->saved_max_active = max_active; 2775 mutex_init(&wq->flush_mutex); 2776 atomic_set(&wq->nr_cwqs_to_flush, 0); 2777 INIT_LIST_HEAD(&wq->flusher_queue); 2778 INIT_LIST_HEAD(&wq->flusher_overflow); 2779 2780 wq->name = name; 2781 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 2782 INIT_LIST_HEAD(&wq->list); 2783 2784 if (alloc_cwqs(wq) < 0) 2785 goto err; 2786 2787 for_each_cwq_cpu(cpu, wq) { 2788 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2789 struct global_cwq *gcwq = get_gcwq(cpu); 2790 2791 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK); 2792 cwq->gcwq = gcwq; 2793 cwq->wq = wq; 2794 cwq->flush_color = -1; 2795 cwq->max_active = max_active; 2796 INIT_LIST_HEAD(&cwq->delayed_works); 2797 } 2798 2799 if (flags & WQ_RESCUER) { 2800 struct worker *rescuer; 2801 2802 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) 2803 goto err; 2804 2805 wq->rescuer = rescuer = alloc_worker(); 2806 if (!rescuer) 2807 goto err; 2808 2809 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name); 2810 if (IS_ERR(rescuer->task)) 2811 goto err; 2812 2813 rescuer->task->flags |= PF_THREAD_BOUND; 2814 wake_up_process(rescuer->task); 2815 } 2816 2817 /* 2818 * workqueue_lock protects global freeze state and workqueues 2819 * list. Grab it, set max_active accordingly and add the new 2820 * workqueue to workqueues list. 2821 */ 2822 spin_lock(&workqueue_lock); 2823 2824 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE) 2825 for_each_cwq_cpu(cpu, wq) 2826 get_cwq(cpu, wq)->max_active = 0; 2827 2828 list_add(&wq->list, &workqueues); 2829 2830 spin_unlock(&workqueue_lock); 2831 2832 return wq; 2833 err: 2834 if (wq) { 2835 free_cwqs(wq); 2836 free_mayday_mask(wq->mayday_mask); 2837 kfree(wq->rescuer); 2838 kfree(wq); 2839 } 2840 return NULL; 2841 } 2842 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 2843 2844 /** 2845 * destroy_workqueue - safely terminate a workqueue 2846 * @wq: target workqueue 2847 * 2848 * Safely destroy a workqueue. All work currently pending will be done first. 2849 */ 2850 void destroy_workqueue(struct workqueue_struct *wq) 2851 { 2852 unsigned int cpu; 2853 2854 wq->flags |= WQ_DYING; 2855 flush_workqueue(wq); 2856 2857 /* 2858 * wq list is used to freeze wq, remove from list after 2859 * flushing is complete in case freeze races us. 2860 */ 2861 spin_lock(&workqueue_lock); 2862 list_del(&wq->list); 2863 spin_unlock(&workqueue_lock); 2864 2865 /* sanity check */ 2866 for_each_cwq_cpu(cpu, wq) { 2867 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2868 int i; 2869 2870 for (i = 0; i < WORK_NR_COLORS; i++) 2871 BUG_ON(cwq->nr_in_flight[i]); 2872 BUG_ON(cwq->nr_active); 2873 BUG_ON(!list_empty(&cwq->delayed_works)); 2874 } 2875 2876 if (wq->flags & WQ_RESCUER) { 2877 kthread_stop(wq->rescuer->task); 2878 free_mayday_mask(wq->mayday_mask); 2879 kfree(wq->rescuer); 2880 } 2881 2882 free_cwqs(wq); 2883 kfree(wq); 2884 } 2885 EXPORT_SYMBOL_GPL(destroy_workqueue); 2886 2887 /** 2888 * workqueue_set_max_active - adjust max_active of a workqueue 2889 * @wq: target workqueue 2890 * @max_active: new max_active value. 2891 * 2892 * Set max_active of @wq to @max_active. 2893 * 2894 * CONTEXT: 2895 * Don't call from IRQ context. 2896 */ 2897 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 2898 { 2899 unsigned int cpu; 2900 2901 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 2902 2903 spin_lock(&workqueue_lock); 2904 2905 wq->saved_max_active = max_active; 2906 2907 for_each_cwq_cpu(cpu, wq) { 2908 struct global_cwq *gcwq = get_gcwq(cpu); 2909 2910 spin_lock_irq(&gcwq->lock); 2911 2912 if (!(wq->flags & WQ_FREEZEABLE) || 2913 !(gcwq->flags & GCWQ_FREEZING)) 2914 get_cwq(gcwq->cpu, wq)->max_active = max_active; 2915 2916 spin_unlock_irq(&gcwq->lock); 2917 } 2918 2919 spin_unlock(&workqueue_lock); 2920 } 2921 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 2922 2923 /** 2924 * workqueue_congested - test whether a workqueue is congested 2925 * @cpu: CPU in question 2926 * @wq: target workqueue 2927 * 2928 * Test whether @wq's cpu workqueue for @cpu is congested. There is 2929 * no synchronization around this function and the test result is 2930 * unreliable and only useful as advisory hints or for debugging. 2931 * 2932 * RETURNS: 2933 * %true if congested, %false otherwise. 2934 */ 2935 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) 2936 { 2937 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2938 2939 return !list_empty(&cwq->delayed_works); 2940 } 2941 EXPORT_SYMBOL_GPL(workqueue_congested); 2942 2943 /** 2944 * work_cpu - return the last known associated cpu for @work 2945 * @work: the work of interest 2946 * 2947 * RETURNS: 2948 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise. 2949 */ 2950 unsigned int work_cpu(struct work_struct *work) 2951 { 2952 struct global_cwq *gcwq = get_work_gcwq(work); 2953 2954 return gcwq ? gcwq->cpu : WORK_CPU_NONE; 2955 } 2956 EXPORT_SYMBOL_GPL(work_cpu); 2957 2958 /** 2959 * work_busy - test whether a work is currently pending or running 2960 * @work: the work to be tested 2961 * 2962 * Test whether @work is currently pending or running. There is no 2963 * synchronization around this function and the test result is 2964 * unreliable and only useful as advisory hints or for debugging. 2965 * Especially for reentrant wqs, the pending state might hide the 2966 * running state. 2967 * 2968 * RETURNS: 2969 * OR'd bitmask of WORK_BUSY_* bits. 2970 */ 2971 unsigned int work_busy(struct work_struct *work) 2972 { 2973 struct global_cwq *gcwq = get_work_gcwq(work); 2974 unsigned long flags; 2975 unsigned int ret = 0; 2976 2977 if (!gcwq) 2978 return false; 2979 2980 spin_lock_irqsave(&gcwq->lock, flags); 2981 2982 if (work_pending(work)) 2983 ret |= WORK_BUSY_PENDING; 2984 if (find_worker_executing_work(gcwq, work)) 2985 ret |= WORK_BUSY_RUNNING; 2986 2987 spin_unlock_irqrestore(&gcwq->lock, flags); 2988 2989 return ret; 2990 } 2991 EXPORT_SYMBOL_GPL(work_busy); 2992 2993 /* 2994 * CPU hotplug. 2995 * 2996 * There are two challenges in supporting CPU hotplug. Firstly, there 2997 * are a lot of assumptions on strong associations among work, cwq and 2998 * gcwq which make migrating pending and scheduled works very 2999 * difficult to implement without impacting hot paths. Secondly, 3000 * gcwqs serve mix of short, long and very long running works making 3001 * blocked draining impractical. 3002 * 3003 * This is solved by allowing a gcwq to be detached from CPU, running 3004 * it with unbound (rogue) workers and allowing it to be reattached 3005 * later if the cpu comes back online. A separate thread is created 3006 * to govern a gcwq in such state and is called the trustee of the 3007 * gcwq. 3008 * 3009 * Trustee states and their descriptions. 3010 * 3011 * START Command state used on startup. On CPU_DOWN_PREPARE, a 3012 * new trustee is started with this state. 3013 * 3014 * IN_CHARGE Once started, trustee will enter this state after 3015 * assuming the manager role and making all existing 3016 * workers rogue. DOWN_PREPARE waits for trustee to 3017 * enter this state. After reaching IN_CHARGE, trustee 3018 * tries to execute the pending worklist until it's empty 3019 * and the state is set to BUTCHER, or the state is set 3020 * to RELEASE. 3021 * 3022 * BUTCHER Command state which is set by the cpu callback after 3023 * the cpu has went down. Once this state is set trustee 3024 * knows that there will be no new works on the worklist 3025 * and once the worklist is empty it can proceed to 3026 * killing idle workers. 3027 * 3028 * RELEASE Command state which is set by the cpu callback if the 3029 * cpu down has been canceled or it has come online 3030 * again. After recognizing this state, trustee stops 3031 * trying to drain or butcher and clears ROGUE, rebinds 3032 * all remaining workers back to the cpu and releases 3033 * manager role. 3034 * 3035 * DONE Trustee will enter this state after BUTCHER or RELEASE 3036 * is complete. 3037 * 3038 * trustee CPU draining 3039 * took over down complete 3040 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE 3041 * | | ^ 3042 * | CPU is back online v return workers | 3043 * ----------------> RELEASE -------------- 3044 */ 3045 3046 /** 3047 * trustee_wait_event_timeout - timed event wait for trustee 3048 * @cond: condition to wait for 3049 * @timeout: timeout in jiffies 3050 * 3051 * wait_event_timeout() for trustee to use. Handles locking and 3052 * checks for RELEASE request. 3053 * 3054 * CONTEXT: 3055 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3056 * multiple times. To be used by trustee. 3057 * 3058 * RETURNS: 3059 * Positive indicating left time if @cond is satisfied, 0 if timed 3060 * out, -1 if canceled. 3061 */ 3062 #define trustee_wait_event_timeout(cond, timeout) ({ \ 3063 long __ret = (timeout); \ 3064 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \ 3065 __ret) { \ 3066 spin_unlock_irq(&gcwq->lock); \ 3067 __wait_event_timeout(gcwq->trustee_wait, (cond) || \ 3068 (gcwq->trustee_state == TRUSTEE_RELEASE), \ 3069 __ret); \ 3070 spin_lock_irq(&gcwq->lock); \ 3071 } \ 3072 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \ 3073 }) 3074 3075 /** 3076 * trustee_wait_event - event wait for trustee 3077 * @cond: condition to wait for 3078 * 3079 * wait_event() for trustee to use. Automatically handles locking and 3080 * checks for CANCEL request. 3081 * 3082 * CONTEXT: 3083 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3084 * multiple times. To be used by trustee. 3085 * 3086 * RETURNS: 3087 * 0 if @cond is satisfied, -1 if canceled. 3088 */ 3089 #define trustee_wait_event(cond) ({ \ 3090 long __ret1; \ 3091 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\ 3092 __ret1 < 0 ? -1 : 0; \ 3093 }) 3094 3095 static int __cpuinit trustee_thread(void *__gcwq) 3096 { 3097 struct global_cwq *gcwq = __gcwq; 3098 struct worker *worker; 3099 struct work_struct *work; 3100 struct hlist_node *pos; 3101 long rc; 3102 int i; 3103 3104 BUG_ON(gcwq->cpu != smp_processor_id()); 3105 3106 spin_lock_irq(&gcwq->lock); 3107 /* 3108 * Claim the manager position and make all workers rogue. 3109 * Trustee must be bound to the target cpu and can't be 3110 * cancelled. 3111 */ 3112 BUG_ON(gcwq->cpu != smp_processor_id()); 3113 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS)); 3114 BUG_ON(rc < 0); 3115 3116 gcwq->flags |= GCWQ_MANAGING_WORKERS; 3117 3118 list_for_each_entry(worker, &gcwq->idle_list, entry) 3119 worker->flags |= WORKER_ROGUE; 3120 3121 for_each_busy_worker(worker, i, pos, gcwq) 3122 worker->flags |= WORKER_ROGUE; 3123 3124 /* 3125 * Call schedule() so that we cross rq->lock and thus can 3126 * guarantee sched callbacks see the rogue flag. This is 3127 * necessary as scheduler callbacks may be invoked from other 3128 * cpus. 3129 */ 3130 spin_unlock_irq(&gcwq->lock); 3131 schedule(); 3132 spin_lock_irq(&gcwq->lock); 3133 3134 /* 3135 * Sched callbacks are disabled now. Zap nr_running. After 3136 * this, nr_running stays zero and need_more_worker() and 3137 * keep_working() are always true as long as the worklist is 3138 * not empty. 3139 */ 3140 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0); 3141 3142 spin_unlock_irq(&gcwq->lock); 3143 del_timer_sync(&gcwq->idle_timer); 3144 spin_lock_irq(&gcwq->lock); 3145 3146 /* 3147 * We're now in charge. Notify and proceed to drain. We need 3148 * to keep the gcwq running during the whole CPU down 3149 * procedure as other cpu hotunplug callbacks may need to 3150 * flush currently running tasks. 3151 */ 3152 gcwq->trustee_state = TRUSTEE_IN_CHARGE; 3153 wake_up_all(&gcwq->trustee_wait); 3154 3155 /* 3156 * The original cpu is in the process of dying and may go away 3157 * anytime now. When that happens, we and all workers would 3158 * be migrated to other cpus. Try draining any left work. We 3159 * want to get it over with ASAP - spam rescuers, wake up as 3160 * many idlers as necessary and create new ones till the 3161 * worklist is empty. Note that if the gcwq is frozen, there 3162 * may be frozen works in freezeable cwqs. Don't declare 3163 * completion while frozen. 3164 */ 3165 while (gcwq->nr_workers != gcwq->nr_idle || 3166 gcwq->flags & GCWQ_FREEZING || 3167 gcwq->trustee_state == TRUSTEE_IN_CHARGE) { 3168 int nr_works = 0; 3169 3170 list_for_each_entry(work, &gcwq->worklist, entry) { 3171 send_mayday(work); 3172 nr_works++; 3173 } 3174 3175 list_for_each_entry(worker, &gcwq->idle_list, entry) { 3176 if (!nr_works--) 3177 break; 3178 wake_up_process(worker->task); 3179 } 3180 3181 if (need_to_create_worker(gcwq)) { 3182 spin_unlock_irq(&gcwq->lock); 3183 worker = create_worker(gcwq, false); 3184 spin_lock_irq(&gcwq->lock); 3185 if (worker) { 3186 worker->flags |= WORKER_ROGUE; 3187 start_worker(worker); 3188 } 3189 } 3190 3191 /* give a breather */ 3192 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0) 3193 break; 3194 } 3195 3196 /* 3197 * Either all works have been scheduled and cpu is down, or 3198 * cpu down has already been canceled. Wait for and butcher 3199 * all workers till we're canceled. 3200 */ 3201 do { 3202 rc = trustee_wait_event(!list_empty(&gcwq->idle_list)); 3203 while (!list_empty(&gcwq->idle_list)) 3204 destroy_worker(list_first_entry(&gcwq->idle_list, 3205 struct worker, entry)); 3206 } while (gcwq->nr_workers && rc >= 0); 3207 3208 /* 3209 * At this point, either draining has completed and no worker 3210 * is left, or cpu down has been canceled or the cpu is being 3211 * brought back up. There shouldn't be any idle one left. 3212 * Tell the remaining busy ones to rebind once it finishes the 3213 * currently scheduled works by scheduling the rebind_work. 3214 */ 3215 WARN_ON(!list_empty(&gcwq->idle_list)); 3216 3217 for_each_busy_worker(worker, i, pos, gcwq) { 3218 struct work_struct *rebind_work = &worker->rebind_work; 3219 3220 /* 3221 * Rebind_work may race with future cpu hotplug 3222 * operations. Use a separate flag to mark that 3223 * rebinding is scheduled. 3224 */ 3225 worker->flags |= WORKER_REBIND; 3226 worker->flags &= ~WORKER_ROGUE; 3227 3228 /* queue rebind_work, wq doesn't matter, use the default one */ 3229 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, 3230 work_data_bits(rebind_work))) 3231 continue; 3232 3233 debug_work_activate(rebind_work); 3234 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work, 3235 worker->scheduled.next, 3236 work_color_to_flags(WORK_NO_COLOR)); 3237 } 3238 3239 /* relinquish manager role */ 3240 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 3241 3242 /* notify completion */ 3243 gcwq->trustee = NULL; 3244 gcwq->trustee_state = TRUSTEE_DONE; 3245 wake_up_all(&gcwq->trustee_wait); 3246 spin_unlock_irq(&gcwq->lock); 3247 return 0; 3248 } 3249 3250 /** 3251 * wait_trustee_state - wait for trustee to enter the specified state 3252 * @gcwq: gcwq the trustee of interest belongs to 3253 * @state: target state to wait for 3254 * 3255 * Wait for the trustee to reach @state. DONE is already matched. 3256 * 3257 * CONTEXT: 3258 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3259 * multiple times. To be used by cpu_callback. 3260 */ 3261 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state) 3262 __releases(&gcwq->lock) 3263 __acquires(&gcwq->lock) 3264 { 3265 if (!(gcwq->trustee_state == state || 3266 gcwq->trustee_state == TRUSTEE_DONE)) { 3267 spin_unlock_irq(&gcwq->lock); 3268 __wait_event(gcwq->trustee_wait, 3269 gcwq->trustee_state == state || 3270 gcwq->trustee_state == TRUSTEE_DONE); 3271 spin_lock_irq(&gcwq->lock); 3272 } 3273 } 3274 3275 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 3276 unsigned long action, 3277 void *hcpu) 3278 { 3279 unsigned int cpu = (unsigned long)hcpu; 3280 struct global_cwq *gcwq = get_gcwq(cpu); 3281 struct task_struct *new_trustee = NULL; 3282 struct worker *uninitialized_var(new_worker); 3283 unsigned long flags; 3284 3285 action &= ~CPU_TASKS_FROZEN; 3286 3287 switch (action) { 3288 case CPU_DOWN_PREPARE: 3289 new_trustee = kthread_create(trustee_thread, gcwq, 3290 "workqueue_trustee/%d\n", cpu); 3291 if (IS_ERR(new_trustee)) 3292 return notifier_from_errno(PTR_ERR(new_trustee)); 3293 kthread_bind(new_trustee, cpu); 3294 /* fall through */ 3295 case CPU_UP_PREPARE: 3296 BUG_ON(gcwq->first_idle); 3297 new_worker = create_worker(gcwq, false); 3298 if (!new_worker) { 3299 if (new_trustee) 3300 kthread_stop(new_trustee); 3301 return NOTIFY_BAD; 3302 } 3303 } 3304 3305 /* some are called w/ irq disabled, don't disturb irq status */ 3306 spin_lock_irqsave(&gcwq->lock, flags); 3307 3308 switch (action) { 3309 case CPU_DOWN_PREPARE: 3310 /* initialize trustee and tell it to acquire the gcwq */ 3311 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE); 3312 gcwq->trustee = new_trustee; 3313 gcwq->trustee_state = TRUSTEE_START; 3314 wake_up_process(gcwq->trustee); 3315 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE); 3316 /* fall through */ 3317 case CPU_UP_PREPARE: 3318 BUG_ON(gcwq->first_idle); 3319 gcwq->first_idle = new_worker; 3320 break; 3321 3322 case CPU_DYING: 3323 /* 3324 * Before this, the trustee and all workers except for 3325 * the ones which are still executing works from 3326 * before the last CPU down must be on the cpu. After 3327 * this, they'll all be diasporas. 3328 */ 3329 gcwq->flags |= GCWQ_DISASSOCIATED; 3330 break; 3331 3332 case CPU_POST_DEAD: 3333 gcwq->trustee_state = TRUSTEE_BUTCHER; 3334 /* fall through */ 3335 case CPU_UP_CANCELED: 3336 destroy_worker(gcwq->first_idle); 3337 gcwq->first_idle = NULL; 3338 break; 3339 3340 case CPU_DOWN_FAILED: 3341 case CPU_ONLINE: 3342 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3343 if (gcwq->trustee_state != TRUSTEE_DONE) { 3344 gcwq->trustee_state = TRUSTEE_RELEASE; 3345 wake_up_process(gcwq->trustee); 3346 wait_trustee_state(gcwq, TRUSTEE_DONE); 3347 } 3348 3349 /* 3350 * Trustee is done and there might be no worker left. 3351 * Put the first_idle in and request a real manager to 3352 * take a look. 3353 */ 3354 spin_unlock_irq(&gcwq->lock); 3355 kthread_bind(gcwq->first_idle->task, cpu); 3356 spin_lock_irq(&gcwq->lock); 3357 gcwq->flags |= GCWQ_MANAGE_WORKERS; 3358 start_worker(gcwq->first_idle); 3359 gcwq->first_idle = NULL; 3360 break; 3361 } 3362 3363 spin_unlock_irqrestore(&gcwq->lock, flags); 3364 3365 return notifier_from_errno(0); 3366 } 3367 3368 #ifdef CONFIG_SMP 3369 3370 struct work_for_cpu { 3371 struct completion completion; 3372 long (*fn)(void *); 3373 void *arg; 3374 long ret; 3375 }; 3376 3377 static int do_work_for_cpu(void *_wfc) 3378 { 3379 struct work_for_cpu *wfc = _wfc; 3380 wfc->ret = wfc->fn(wfc->arg); 3381 complete(&wfc->completion); 3382 return 0; 3383 } 3384 3385 /** 3386 * work_on_cpu - run a function in user context on a particular cpu 3387 * @cpu: the cpu to run on 3388 * @fn: the function to run 3389 * @arg: the function arg 3390 * 3391 * This will return the value @fn returns. 3392 * It is up to the caller to ensure that the cpu doesn't go offline. 3393 * The caller must not hold any locks which would prevent @fn from completing. 3394 */ 3395 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 3396 { 3397 struct task_struct *sub_thread; 3398 struct work_for_cpu wfc = { 3399 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion), 3400 .fn = fn, 3401 .arg = arg, 3402 }; 3403 3404 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu"); 3405 if (IS_ERR(sub_thread)) 3406 return PTR_ERR(sub_thread); 3407 kthread_bind(sub_thread, cpu); 3408 wake_up_process(sub_thread); 3409 wait_for_completion(&wfc.completion); 3410 return wfc.ret; 3411 } 3412 EXPORT_SYMBOL_GPL(work_on_cpu); 3413 #endif /* CONFIG_SMP */ 3414 3415 #ifdef CONFIG_FREEZER 3416 3417 /** 3418 * freeze_workqueues_begin - begin freezing workqueues 3419 * 3420 * Start freezing workqueues. After this function returns, all 3421 * freezeable workqueues will queue new works to their frozen_works 3422 * list instead of gcwq->worklist. 3423 * 3424 * CONTEXT: 3425 * Grabs and releases workqueue_lock and gcwq->lock's. 3426 */ 3427 void freeze_workqueues_begin(void) 3428 { 3429 unsigned int cpu; 3430 3431 spin_lock(&workqueue_lock); 3432 3433 BUG_ON(workqueue_freezing); 3434 workqueue_freezing = true; 3435 3436 for_each_gcwq_cpu(cpu) { 3437 struct global_cwq *gcwq = get_gcwq(cpu); 3438 struct workqueue_struct *wq; 3439 3440 spin_lock_irq(&gcwq->lock); 3441 3442 BUG_ON(gcwq->flags & GCWQ_FREEZING); 3443 gcwq->flags |= GCWQ_FREEZING; 3444 3445 list_for_each_entry(wq, &workqueues, list) { 3446 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3447 3448 if (cwq && wq->flags & WQ_FREEZEABLE) 3449 cwq->max_active = 0; 3450 } 3451 3452 spin_unlock_irq(&gcwq->lock); 3453 } 3454 3455 spin_unlock(&workqueue_lock); 3456 } 3457 3458 /** 3459 * freeze_workqueues_busy - are freezeable workqueues still busy? 3460 * 3461 * Check whether freezing is complete. This function must be called 3462 * between freeze_workqueues_begin() and thaw_workqueues(). 3463 * 3464 * CONTEXT: 3465 * Grabs and releases workqueue_lock. 3466 * 3467 * RETURNS: 3468 * %true if some freezeable workqueues are still busy. %false if 3469 * freezing is complete. 3470 */ 3471 bool freeze_workqueues_busy(void) 3472 { 3473 unsigned int cpu; 3474 bool busy = false; 3475 3476 spin_lock(&workqueue_lock); 3477 3478 BUG_ON(!workqueue_freezing); 3479 3480 for_each_gcwq_cpu(cpu) { 3481 struct workqueue_struct *wq; 3482 /* 3483 * nr_active is monotonically decreasing. It's safe 3484 * to peek without lock. 3485 */ 3486 list_for_each_entry(wq, &workqueues, list) { 3487 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3488 3489 if (!cwq || !(wq->flags & WQ_FREEZEABLE)) 3490 continue; 3491 3492 BUG_ON(cwq->nr_active < 0); 3493 if (cwq->nr_active) { 3494 busy = true; 3495 goto out_unlock; 3496 } 3497 } 3498 } 3499 out_unlock: 3500 spin_unlock(&workqueue_lock); 3501 return busy; 3502 } 3503 3504 /** 3505 * thaw_workqueues - thaw workqueues 3506 * 3507 * Thaw workqueues. Normal queueing is restored and all collected 3508 * frozen works are transferred to their respective gcwq worklists. 3509 * 3510 * CONTEXT: 3511 * Grabs and releases workqueue_lock and gcwq->lock's. 3512 */ 3513 void thaw_workqueues(void) 3514 { 3515 unsigned int cpu; 3516 3517 spin_lock(&workqueue_lock); 3518 3519 if (!workqueue_freezing) 3520 goto out_unlock; 3521 3522 for_each_gcwq_cpu(cpu) { 3523 struct global_cwq *gcwq = get_gcwq(cpu); 3524 struct workqueue_struct *wq; 3525 3526 spin_lock_irq(&gcwq->lock); 3527 3528 BUG_ON(!(gcwq->flags & GCWQ_FREEZING)); 3529 gcwq->flags &= ~GCWQ_FREEZING; 3530 3531 list_for_each_entry(wq, &workqueues, list) { 3532 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3533 3534 if (!cwq || !(wq->flags & WQ_FREEZEABLE)) 3535 continue; 3536 3537 /* restore max_active and repopulate worklist */ 3538 cwq->max_active = wq->saved_max_active; 3539 3540 while (!list_empty(&cwq->delayed_works) && 3541 cwq->nr_active < cwq->max_active) 3542 cwq_activate_first_delayed(cwq); 3543 } 3544 3545 wake_up_worker(gcwq); 3546 3547 spin_unlock_irq(&gcwq->lock); 3548 } 3549 3550 workqueue_freezing = false; 3551 out_unlock: 3552 spin_unlock(&workqueue_lock); 3553 } 3554 #endif /* CONFIG_FREEZER */ 3555 3556 static int __init init_workqueues(void) 3557 { 3558 unsigned int cpu; 3559 int i; 3560 3561 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE); 3562 3563 /* initialize gcwqs */ 3564 for_each_gcwq_cpu(cpu) { 3565 struct global_cwq *gcwq = get_gcwq(cpu); 3566 3567 spin_lock_init(&gcwq->lock); 3568 INIT_LIST_HEAD(&gcwq->worklist); 3569 gcwq->cpu = cpu; 3570 gcwq->flags |= GCWQ_DISASSOCIATED; 3571 3572 INIT_LIST_HEAD(&gcwq->idle_list); 3573 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) 3574 INIT_HLIST_HEAD(&gcwq->busy_hash[i]); 3575 3576 init_timer_deferrable(&gcwq->idle_timer); 3577 gcwq->idle_timer.function = idle_worker_timeout; 3578 gcwq->idle_timer.data = (unsigned long)gcwq; 3579 3580 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout, 3581 (unsigned long)gcwq); 3582 3583 ida_init(&gcwq->worker_ida); 3584 3585 gcwq->trustee_state = TRUSTEE_DONE; 3586 init_waitqueue_head(&gcwq->trustee_wait); 3587 } 3588 3589 /* create the initial worker */ 3590 for_each_online_gcwq_cpu(cpu) { 3591 struct global_cwq *gcwq = get_gcwq(cpu); 3592 struct worker *worker; 3593 3594 if (cpu != WORK_CPU_UNBOUND) 3595 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3596 worker = create_worker(gcwq, true); 3597 BUG_ON(!worker); 3598 spin_lock_irq(&gcwq->lock); 3599 start_worker(worker); 3600 spin_unlock_irq(&gcwq->lock); 3601 } 3602 3603 system_wq = alloc_workqueue("events", 0, 0); 3604 system_long_wq = alloc_workqueue("events_long", 0, 0); 3605 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0); 3606 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 3607 WQ_UNBOUND_MAX_ACTIVE); 3608 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq); 3609 return 0; 3610 } 3611 early_initcall(init_workqueues); 3612