xref: /linux-6.15/kernel/workqueue.c (revision 58629d48)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <[email protected]>
9  *     Andrew Morton
10  *     Kai Petzke <[email protected]>
11  *     Theodore Ts'o <[email protected]>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <[email protected]>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 
59 #include "workqueue_internal.h"
60 
61 enum worker_pool_flags {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 *
78 	 * As there can only be one concurrent BH execution context per CPU, a
79 	 * BH pool is per-CPU and always DISASSOCIATED.
80 	 */
81 	POOL_BH			= 1 << 0,	/* is a BH pool */
82 	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
83 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
84 	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
85 };
86 
87 enum worker_flags {
88 	/* worker flags */
89 	WORKER_DIE		= 1 << 1,	/* die die die */
90 	WORKER_IDLE		= 1 << 2,	/* is idle */
91 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
92 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
93 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
94 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
95 
96 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
97 				  WORKER_UNBOUND | WORKER_REBOUND,
98 };
99 
100 enum work_cancel_flags {
101 	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
102 	WORK_CANCEL_DISABLE	= 1 << 1,	/* canceling to disable */
103 };
104 
105 enum wq_internal_consts {
106 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
107 
108 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
109 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
110 
111 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
112 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
113 
114 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
115 						/* call for help after 10ms
116 						   (min two ticks) */
117 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
118 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
119 
120 	/*
121 	 * Rescue workers are used only on emergencies and shared by
122 	 * all cpus.  Give MIN_NICE.
123 	 */
124 	RESCUER_NICE_LEVEL	= MIN_NICE,
125 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
126 
127 	WQ_NAME_LEN		= 32,
128 };
129 
130 /*
131  * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
132  * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
133  * msecs_to_jiffies() can't be an initializer.
134  */
135 #define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
136 #define BH_WORKER_RESTARTS	10
137 
138 /*
139  * Structure fields follow one of the following exclusion rules.
140  *
141  * I: Modifiable by initialization/destruction paths and read-only for
142  *    everyone else.
143  *
144  * P: Preemption protected.  Disabling preemption is enough and should
145  *    only be modified and accessed from the local cpu.
146  *
147  * L: pool->lock protected.  Access with pool->lock held.
148  *
149  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
150  *     reads.
151  *
152  * K: Only modified by worker while holding pool->lock. Can be safely read by
153  *    self, while holding pool->lock or from IRQ context if %current is the
154  *    kworker.
155  *
156  * S: Only modified by worker self.
157  *
158  * A: wq_pool_attach_mutex protected.
159  *
160  * PL: wq_pool_mutex protected.
161  *
162  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
163  *
164  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
165  *
166  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
167  *      RCU for reads.
168  *
169  * WQ: wq->mutex protected.
170  *
171  * WR: wq->mutex protected for writes.  RCU protected for reads.
172  *
173  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
174  *     with READ_ONCE() without locking.
175  *
176  * MD: wq_mayday_lock protected.
177  *
178  * WD: Used internally by the watchdog.
179  */
180 
181 /* struct worker is defined in workqueue_internal.h */
182 
183 struct worker_pool {
184 	raw_spinlock_t		lock;		/* the pool lock */
185 	int			cpu;		/* I: the associated cpu */
186 	int			node;		/* I: the associated node ID */
187 	int			id;		/* I: pool ID */
188 	unsigned int		flags;		/* L: flags */
189 
190 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
191 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
192 
193 	/*
194 	 * The counter is incremented in a process context on the associated CPU
195 	 * w/ preemption disabled, and decremented or reset in the same context
196 	 * but w/ pool->lock held. The readers grab pool->lock and are
197 	 * guaranteed to see if the counter reached zero.
198 	 */
199 	int			nr_running;
200 
201 	struct list_head	worklist;	/* L: list of pending works */
202 
203 	int			nr_workers;	/* L: total number of workers */
204 	int			nr_idle;	/* L: currently idle workers */
205 
206 	struct list_head	idle_list;	/* L: list of idle workers */
207 	struct timer_list	idle_timer;	/* L: worker idle timeout */
208 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
209 
210 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
211 
212 	/* a workers is either on busy_hash or idle_list, or the manager */
213 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
214 						/* L: hash of busy workers */
215 
216 	struct worker		*manager;	/* L: purely informational */
217 	struct list_head	workers;	/* A: attached workers */
218 
219 	struct ida		worker_ida;	/* worker IDs for task name */
220 
221 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
222 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
223 	int			refcnt;		/* PL: refcnt for unbound pools */
224 
225 	/*
226 	 * Destruction of pool is RCU protected to allow dereferences
227 	 * from get_work_pool().
228 	 */
229 	struct rcu_head		rcu;
230 };
231 
232 /*
233  * Per-pool_workqueue statistics. These can be monitored using
234  * tools/workqueue/wq_monitor.py.
235  */
236 enum pool_workqueue_stats {
237 	PWQ_STAT_STARTED,	/* work items started execution */
238 	PWQ_STAT_COMPLETED,	/* work items completed execution */
239 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
240 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
241 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
242 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
243 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
244 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
245 
246 	PWQ_NR_STATS,
247 };
248 
249 /*
250  * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
251  * of work_struct->data are used for flags and the remaining high bits
252  * point to the pwq; thus, pwqs need to be aligned at two's power of the
253  * number of flag bits.
254  */
255 struct pool_workqueue {
256 	struct worker_pool	*pool;		/* I: the associated pool */
257 	struct workqueue_struct *wq;		/* I: the owning workqueue */
258 	int			work_color;	/* L: current color */
259 	int			flush_color;	/* L: flushing color */
260 	int			refcnt;		/* L: reference count */
261 	int			nr_in_flight[WORK_NR_COLORS];
262 						/* L: nr of in_flight works */
263 	bool			plugged;	/* L: execution suspended */
264 
265 	/*
266 	 * nr_active management and WORK_STRUCT_INACTIVE:
267 	 *
268 	 * When pwq->nr_active >= max_active, new work item is queued to
269 	 * pwq->inactive_works instead of pool->worklist and marked with
270 	 * WORK_STRUCT_INACTIVE.
271 	 *
272 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
273 	 * nr_active and all work items in pwq->inactive_works are marked with
274 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
275 	 * in pwq->inactive_works. Some of them are ready to run in
276 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
277 	 * wq_barrier which is used for flush_work() and should not participate
278 	 * in nr_active. For non-barrier work item, it is marked with
279 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
280 	 */
281 	int			nr_active;	/* L: nr of active works */
282 	struct list_head	inactive_works;	/* L: inactive works */
283 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
284 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
285 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
286 
287 	u64			stats[PWQ_NR_STATS];
288 
289 	/*
290 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
291 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
292 	 * RCU protected so that the first pwq can be determined without
293 	 * grabbing wq->mutex.
294 	 */
295 	struct kthread_work	release_work;
296 	struct rcu_head		rcu;
297 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
298 
299 /*
300  * Structure used to wait for workqueue flush.
301  */
302 struct wq_flusher {
303 	struct list_head	list;		/* WQ: list of flushers */
304 	int			flush_color;	/* WQ: flush color waiting for */
305 	struct completion	done;		/* flush completion */
306 };
307 
308 struct wq_device;
309 
310 /*
311  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
312  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
313  * As sharing a single nr_active across multiple sockets can be very expensive,
314  * the counting and enforcement is per NUMA node.
315  *
316  * The following struct is used to enforce per-node max_active. When a pwq wants
317  * to start executing a work item, it should increment ->nr using
318  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
319  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
320  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
321  * round-robin order.
322  */
323 struct wq_node_nr_active {
324 	int			max;		/* per-node max_active */
325 	atomic_t		nr;		/* per-node nr_active */
326 	raw_spinlock_t		lock;		/* nests inside pool locks */
327 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
328 };
329 
330 /*
331  * The externally visible workqueue.  It relays the issued work items to
332  * the appropriate worker_pool through its pool_workqueues.
333  */
334 struct workqueue_struct {
335 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
336 	struct list_head	list;		/* PR: list of all workqueues */
337 
338 	struct mutex		mutex;		/* protects this wq */
339 	int			work_color;	/* WQ: current work color */
340 	int			flush_color;	/* WQ: current flush color */
341 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
342 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
343 	struct list_head	flusher_queue;	/* WQ: flush waiters */
344 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
345 
346 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
347 	struct worker		*rescuer;	/* MD: rescue worker */
348 
349 	int			nr_drainers;	/* WQ: drain in progress */
350 
351 	/* See alloc_workqueue() function comment for info on min/max_active */
352 	int			max_active;	/* WO: max active works */
353 	int			min_active;	/* WO: min active works */
354 	int			saved_max_active; /* WQ: saved max_active */
355 	int			saved_min_active; /* WQ: saved min_active */
356 
357 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
358 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
359 
360 #ifdef CONFIG_SYSFS
361 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
362 #endif
363 #ifdef CONFIG_LOCKDEP
364 	char			*lock_name;
365 	struct lock_class_key	key;
366 	struct lockdep_map	lockdep_map;
367 #endif
368 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
369 
370 	/*
371 	 * Destruction of workqueue_struct is RCU protected to allow walking
372 	 * the workqueues list without grabbing wq_pool_mutex.
373 	 * This is used to dump all workqueues from sysrq.
374 	 */
375 	struct rcu_head		rcu;
376 
377 	/* hot fields used during command issue, aligned to cacheline */
378 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
379 	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
380 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
381 };
382 
383 /*
384  * Each pod type describes how CPUs should be grouped for unbound workqueues.
385  * See the comment above workqueue_attrs->affn_scope.
386  */
387 struct wq_pod_type {
388 	int			nr_pods;	/* number of pods */
389 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
390 	int			*pod_node;	/* pod -> node */
391 	int			*cpu_pod;	/* cpu -> pod */
392 };
393 
394 struct work_offq_data {
395 	u32			pool_id;
396 	u32			disable;
397 	u32			flags;
398 };
399 
400 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
401 	[WQ_AFFN_DFL]		= "default",
402 	[WQ_AFFN_CPU]		= "cpu",
403 	[WQ_AFFN_SMT]		= "smt",
404 	[WQ_AFFN_CACHE]		= "cache",
405 	[WQ_AFFN_NUMA]		= "numa",
406 	[WQ_AFFN_SYSTEM]	= "system",
407 };
408 
409 /*
410  * Per-cpu work items which run for longer than the following threshold are
411  * automatically considered CPU intensive and excluded from concurrency
412  * management to prevent them from noticeably delaying other per-cpu work items.
413  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
414  * The actual value is initialized in wq_cpu_intensive_thresh_init().
415  */
416 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
417 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
418 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
419 static unsigned int wq_cpu_intensive_warning_thresh = 4;
420 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
421 #endif
422 
423 /* see the comment above the definition of WQ_POWER_EFFICIENT */
424 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
425 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
426 
427 static bool wq_online;			/* can kworkers be created yet? */
428 static bool wq_topo_initialized __read_mostly = false;
429 
430 static struct kmem_cache *pwq_cache;
431 
432 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
433 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
434 
435 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
436 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
437 
438 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
439 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
440 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
441 /* wait for manager to go away */
442 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
443 
444 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
445 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
446 
447 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
448 static cpumask_var_t wq_online_cpumask;
449 
450 /* PL&A: allowable cpus for unbound wqs and work items */
451 static cpumask_var_t wq_unbound_cpumask;
452 
453 /* PL: user requested unbound cpumask via sysfs */
454 static cpumask_var_t wq_requested_unbound_cpumask;
455 
456 /* PL: isolated cpumask to be excluded from unbound cpumask */
457 static cpumask_var_t wq_isolated_cpumask;
458 
459 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
460 static struct cpumask wq_cmdline_cpumask __initdata;
461 
462 /* CPU where unbound work was last round robin scheduled from this CPU */
463 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
464 
465 /*
466  * Local execution of unbound work items is no longer guaranteed.  The
467  * following always forces round-robin CPU selection on unbound work items
468  * to uncover usages which depend on it.
469  */
470 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
471 static bool wq_debug_force_rr_cpu = true;
472 #else
473 static bool wq_debug_force_rr_cpu = false;
474 #endif
475 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
476 
477 /* to raise softirq for the BH worker pools on other CPUs */
478 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS],
479 				     bh_pool_irq_works);
480 
481 /* the BH worker pools */
482 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
483 				     bh_worker_pools);
484 
485 /* the per-cpu worker pools */
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
487 				     cpu_worker_pools);
488 
489 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
490 
491 /* PL: hash of all unbound pools keyed by pool->attrs */
492 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
493 
494 /* I: attributes used when instantiating standard unbound pools on demand */
495 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
496 
497 /* I: attributes used when instantiating ordered pools on demand */
498 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
499 
500 /*
501  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
502  * process context while holding a pool lock. Bounce to a dedicated kthread
503  * worker to avoid A-A deadlocks.
504  */
505 static struct kthread_worker *pwq_release_worker __ro_after_init;
506 
507 struct workqueue_struct *system_wq __ro_after_init;
508 EXPORT_SYMBOL(system_wq);
509 struct workqueue_struct *system_highpri_wq __ro_after_init;
510 EXPORT_SYMBOL_GPL(system_highpri_wq);
511 struct workqueue_struct *system_long_wq __ro_after_init;
512 EXPORT_SYMBOL_GPL(system_long_wq);
513 struct workqueue_struct *system_unbound_wq __ro_after_init;
514 EXPORT_SYMBOL_GPL(system_unbound_wq);
515 struct workqueue_struct *system_freezable_wq __ro_after_init;
516 EXPORT_SYMBOL_GPL(system_freezable_wq);
517 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
518 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
519 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
520 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
521 struct workqueue_struct *system_bh_wq;
522 EXPORT_SYMBOL_GPL(system_bh_wq);
523 struct workqueue_struct *system_bh_highpri_wq;
524 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
525 
526 static int worker_thread(void *__worker);
527 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
528 static void show_pwq(struct pool_workqueue *pwq);
529 static void show_one_worker_pool(struct worker_pool *pool);
530 
531 #define CREATE_TRACE_POINTS
532 #include <trace/events/workqueue.h>
533 
534 #define assert_rcu_or_pool_mutex()					\
535 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
536 			 !lockdep_is_held(&wq_pool_mutex),		\
537 			 "RCU or wq_pool_mutex should be held")
538 
539 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
540 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
541 			 !lockdep_is_held(&wq->mutex) &&		\
542 			 !lockdep_is_held(&wq_pool_mutex),		\
543 			 "RCU, wq->mutex or wq_pool_mutex should be held")
544 
545 #define for_each_bh_worker_pool(pool, cpu)				\
546 	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
547 	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
548 	     (pool)++)
549 
550 #define for_each_cpu_worker_pool(pool, cpu)				\
551 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
552 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
553 	     (pool)++)
554 
555 /**
556  * for_each_pool - iterate through all worker_pools in the system
557  * @pool: iteration cursor
558  * @pi: integer used for iteration
559  *
560  * This must be called either with wq_pool_mutex held or RCU read
561  * locked.  If the pool needs to be used beyond the locking in effect, the
562  * caller is responsible for guaranteeing that the pool stays online.
563  *
564  * The if/else clause exists only for the lockdep assertion and can be
565  * ignored.
566  */
567 #define for_each_pool(pool, pi)						\
568 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
569 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
570 		else
571 
572 /**
573  * for_each_pool_worker - iterate through all workers of a worker_pool
574  * @worker: iteration cursor
575  * @pool: worker_pool to iterate workers of
576  *
577  * This must be called with wq_pool_attach_mutex.
578  *
579  * The if/else clause exists only for the lockdep assertion and can be
580  * ignored.
581  */
582 #define for_each_pool_worker(worker, pool)				\
583 	list_for_each_entry((worker), &(pool)->workers, node)		\
584 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
585 		else
586 
587 /**
588  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
589  * @pwq: iteration cursor
590  * @wq: the target workqueue
591  *
592  * This must be called either with wq->mutex held or RCU read locked.
593  * If the pwq needs to be used beyond the locking in effect, the caller is
594  * responsible for guaranteeing that the pwq stays online.
595  *
596  * The if/else clause exists only for the lockdep assertion and can be
597  * ignored.
598  */
599 #define for_each_pwq(pwq, wq)						\
600 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
601 				 lockdep_is_held(&(wq->mutex)))
602 
603 #ifdef CONFIG_DEBUG_OBJECTS_WORK
604 
605 static const struct debug_obj_descr work_debug_descr;
606 
607 static void *work_debug_hint(void *addr)
608 {
609 	return ((struct work_struct *) addr)->func;
610 }
611 
612 static bool work_is_static_object(void *addr)
613 {
614 	struct work_struct *work = addr;
615 
616 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
617 }
618 
619 /*
620  * fixup_init is called when:
621  * - an active object is initialized
622  */
623 static bool work_fixup_init(void *addr, enum debug_obj_state state)
624 {
625 	struct work_struct *work = addr;
626 
627 	switch (state) {
628 	case ODEBUG_STATE_ACTIVE:
629 		cancel_work_sync(work);
630 		debug_object_init(work, &work_debug_descr);
631 		return true;
632 	default:
633 		return false;
634 	}
635 }
636 
637 /*
638  * fixup_free is called when:
639  * - an active object is freed
640  */
641 static bool work_fixup_free(void *addr, enum debug_obj_state state)
642 {
643 	struct work_struct *work = addr;
644 
645 	switch (state) {
646 	case ODEBUG_STATE_ACTIVE:
647 		cancel_work_sync(work);
648 		debug_object_free(work, &work_debug_descr);
649 		return true;
650 	default:
651 		return false;
652 	}
653 }
654 
655 static const struct debug_obj_descr work_debug_descr = {
656 	.name		= "work_struct",
657 	.debug_hint	= work_debug_hint,
658 	.is_static_object = work_is_static_object,
659 	.fixup_init	= work_fixup_init,
660 	.fixup_free	= work_fixup_free,
661 };
662 
663 static inline void debug_work_activate(struct work_struct *work)
664 {
665 	debug_object_activate(work, &work_debug_descr);
666 }
667 
668 static inline void debug_work_deactivate(struct work_struct *work)
669 {
670 	debug_object_deactivate(work, &work_debug_descr);
671 }
672 
673 void __init_work(struct work_struct *work, int onstack)
674 {
675 	if (onstack)
676 		debug_object_init_on_stack(work, &work_debug_descr);
677 	else
678 		debug_object_init(work, &work_debug_descr);
679 }
680 EXPORT_SYMBOL_GPL(__init_work);
681 
682 void destroy_work_on_stack(struct work_struct *work)
683 {
684 	debug_object_free(work, &work_debug_descr);
685 }
686 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
687 
688 void destroy_delayed_work_on_stack(struct delayed_work *work)
689 {
690 	destroy_timer_on_stack(&work->timer);
691 	debug_object_free(&work->work, &work_debug_descr);
692 }
693 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
694 
695 #else
696 static inline void debug_work_activate(struct work_struct *work) { }
697 static inline void debug_work_deactivate(struct work_struct *work) { }
698 #endif
699 
700 /**
701  * worker_pool_assign_id - allocate ID and assign it to @pool
702  * @pool: the pool pointer of interest
703  *
704  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
705  * successfully, -errno on failure.
706  */
707 static int worker_pool_assign_id(struct worker_pool *pool)
708 {
709 	int ret;
710 
711 	lockdep_assert_held(&wq_pool_mutex);
712 
713 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
714 			GFP_KERNEL);
715 	if (ret >= 0) {
716 		pool->id = ret;
717 		return 0;
718 	}
719 	return ret;
720 }
721 
722 static struct pool_workqueue __rcu **
723 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
724 {
725        if (cpu >= 0)
726                return per_cpu_ptr(wq->cpu_pwq, cpu);
727        else
728                return &wq->dfl_pwq;
729 }
730 
731 /* @cpu < 0 for dfl_pwq */
732 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
733 {
734 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
735 				     lockdep_is_held(&wq_pool_mutex) ||
736 				     lockdep_is_held(&wq->mutex));
737 }
738 
739 /**
740  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
741  * @wq: workqueue of interest
742  *
743  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
744  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
745  * default pwq is always mapped to the pool with the current effective cpumask.
746  */
747 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
748 {
749 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
750 }
751 
752 static unsigned int work_color_to_flags(int color)
753 {
754 	return color << WORK_STRUCT_COLOR_SHIFT;
755 }
756 
757 static int get_work_color(unsigned long work_data)
758 {
759 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
760 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
761 }
762 
763 static int work_next_color(int color)
764 {
765 	return (color + 1) % WORK_NR_COLORS;
766 }
767 
768 static unsigned long pool_offq_flags(struct worker_pool *pool)
769 {
770 	return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
771 }
772 
773 /*
774  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
775  * contain the pointer to the queued pwq.  Once execution starts, the flag
776  * is cleared and the high bits contain OFFQ flags and pool ID.
777  *
778  * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
779  * can be used to set the pwq, pool or clear work->data. These functions should
780  * only be called while the work is owned - ie. while the PENDING bit is set.
781  *
782  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
783  * corresponding to a work.  Pool is available once the work has been
784  * queued anywhere after initialization until it is sync canceled.  pwq is
785  * available only while the work item is queued.
786  */
787 static inline void set_work_data(struct work_struct *work, unsigned long data)
788 {
789 	WARN_ON_ONCE(!work_pending(work));
790 	atomic_long_set(&work->data, data | work_static(work));
791 }
792 
793 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
794 			 unsigned long flags)
795 {
796 	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
797 		      WORK_STRUCT_PWQ | flags);
798 }
799 
800 static void set_work_pool_and_keep_pending(struct work_struct *work,
801 					   int pool_id, unsigned long flags)
802 {
803 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
804 		      WORK_STRUCT_PENDING | flags);
805 }
806 
807 static void set_work_pool_and_clear_pending(struct work_struct *work,
808 					    int pool_id, unsigned long flags)
809 {
810 	/*
811 	 * The following wmb is paired with the implied mb in
812 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
813 	 * here are visible to and precede any updates by the next PENDING
814 	 * owner.
815 	 */
816 	smp_wmb();
817 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
818 		      flags);
819 	/*
820 	 * The following mb guarantees that previous clear of a PENDING bit
821 	 * will not be reordered with any speculative LOADS or STORES from
822 	 * work->current_func, which is executed afterwards.  This possible
823 	 * reordering can lead to a missed execution on attempt to queue
824 	 * the same @work.  E.g. consider this case:
825 	 *
826 	 *   CPU#0                         CPU#1
827 	 *   ----------------------------  --------------------------------
828 	 *
829 	 * 1  STORE event_indicated
830 	 * 2  queue_work_on() {
831 	 * 3    test_and_set_bit(PENDING)
832 	 * 4 }                             set_..._and_clear_pending() {
833 	 * 5                                 set_work_data() # clear bit
834 	 * 6                                 smp_mb()
835 	 * 7                               work->current_func() {
836 	 * 8				      LOAD event_indicated
837 	 *				   }
838 	 *
839 	 * Without an explicit full barrier speculative LOAD on line 8 can
840 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
841 	 * CPU#0 observes the PENDING bit is still set and new execution of
842 	 * a @work is not queued in a hope, that CPU#1 will eventually
843 	 * finish the queued @work.  Meanwhile CPU#1 does not see
844 	 * event_indicated is set, because speculative LOAD was executed
845 	 * before actual STORE.
846 	 */
847 	smp_mb();
848 }
849 
850 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
851 {
852 	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
853 }
854 
855 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
856 {
857 	unsigned long data = atomic_long_read(&work->data);
858 
859 	if (data & WORK_STRUCT_PWQ)
860 		return work_struct_pwq(data);
861 	else
862 		return NULL;
863 }
864 
865 /**
866  * get_work_pool - return the worker_pool a given work was associated with
867  * @work: the work item of interest
868  *
869  * Pools are created and destroyed under wq_pool_mutex, and allows read
870  * access under RCU read lock.  As such, this function should be
871  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
872  *
873  * All fields of the returned pool are accessible as long as the above
874  * mentioned locking is in effect.  If the returned pool needs to be used
875  * beyond the critical section, the caller is responsible for ensuring the
876  * returned pool is and stays online.
877  *
878  * Return: The worker_pool @work was last associated with.  %NULL if none.
879  */
880 static struct worker_pool *get_work_pool(struct work_struct *work)
881 {
882 	unsigned long data = atomic_long_read(&work->data);
883 	int pool_id;
884 
885 	assert_rcu_or_pool_mutex();
886 
887 	if (data & WORK_STRUCT_PWQ)
888 		return work_struct_pwq(data)->pool;
889 
890 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
891 	if (pool_id == WORK_OFFQ_POOL_NONE)
892 		return NULL;
893 
894 	return idr_find(&worker_pool_idr, pool_id);
895 }
896 
897 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
898 {
899 	return (v >> shift) & ((1 << bits) - 1);
900 }
901 
902 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
903 {
904 	WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
905 
906 	offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
907 					WORK_OFFQ_POOL_BITS);
908 	offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
909 					WORK_OFFQ_DISABLE_BITS);
910 	offqd->flags = data & WORK_OFFQ_FLAG_MASK;
911 }
912 
913 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
914 {
915 	return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
916 		((unsigned long)offqd->flags);
917 }
918 
919 /*
920  * Policy functions.  These define the policies on how the global worker
921  * pools are managed.  Unless noted otherwise, these functions assume that
922  * they're being called with pool->lock held.
923  */
924 
925 /*
926  * Need to wake up a worker?  Called from anything but currently
927  * running workers.
928  *
929  * Note that, because unbound workers never contribute to nr_running, this
930  * function will always return %true for unbound pools as long as the
931  * worklist isn't empty.
932  */
933 static bool need_more_worker(struct worker_pool *pool)
934 {
935 	return !list_empty(&pool->worklist) && !pool->nr_running;
936 }
937 
938 /* Can I start working?  Called from busy but !running workers. */
939 static bool may_start_working(struct worker_pool *pool)
940 {
941 	return pool->nr_idle;
942 }
943 
944 /* Do I need to keep working?  Called from currently running workers. */
945 static bool keep_working(struct worker_pool *pool)
946 {
947 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
948 }
949 
950 /* Do we need a new worker?  Called from manager. */
951 static bool need_to_create_worker(struct worker_pool *pool)
952 {
953 	return need_more_worker(pool) && !may_start_working(pool);
954 }
955 
956 /* Do we have too many workers and should some go away? */
957 static bool too_many_workers(struct worker_pool *pool)
958 {
959 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
960 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
961 	int nr_busy = pool->nr_workers - nr_idle;
962 
963 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
964 }
965 
966 /**
967  * worker_set_flags - set worker flags and adjust nr_running accordingly
968  * @worker: self
969  * @flags: flags to set
970  *
971  * Set @flags in @worker->flags and adjust nr_running accordingly.
972  */
973 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
974 {
975 	struct worker_pool *pool = worker->pool;
976 
977 	lockdep_assert_held(&pool->lock);
978 
979 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
980 	if ((flags & WORKER_NOT_RUNNING) &&
981 	    !(worker->flags & WORKER_NOT_RUNNING)) {
982 		pool->nr_running--;
983 	}
984 
985 	worker->flags |= flags;
986 }
987 
988 /**
989  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
990  * @worker: self
991  * @flags: flags to clear
992  *
993  * Clear @flags in @worker->flags and adjust nr_running accordingly.
994  */
995 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
996 {
997 	struct worker_pool *pool = worker->pool;
998 	unsigned int oflags = worker->flags;
999 
1000 	lockdep_assert_held(&pool->lock);
1001 
1002 	worker->flags &= ~flags;
1003 
1004 	/*
1005 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1006 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1007 	 * of multiple flags, not a single flag.
1008 	 */
1009 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1010 		if (!(worker->flags & WORKER_NOT_RUNNING))
1011 			pool->nr_running++;
1012 }
1013 
1014 /* Return the first idle worker.  Called with pool->lock held. */
1015 static struct worker *first_idle_worker(struct worker_pool *pool)
1016 {
1017 	if (unlikely(list_empty(&pool->idle_list)))
1018 		return NULL;
1019 
1020 	return list_first_entry(&pool->idle_list, struct worker, entry);
1021 }
1022 
1023 /**
1024  * worker_enter_idle - enter idle state
1025  * @worker: worker which is entering idle state
1026  *
1027  * @worker is entering idle state.  Update stats and idle timer if
1028  * necessary.
1029  *
1030  * LOCKING:
1031  * raw_spin_lock_irq(pool->lock).
1032  */
1033 static void worker_enter_idle(struct worker *worker)
1034 {
1035 	struct worker_pool *pool = worker->pool;
1036 
1037 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1038 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1039 			 (worker->hentry.next || worker->hentry.pprev)))
1040 		return;
1041 
1042 	/* can't use worker_set_flags(), also called from create_worker() */
1043 	worker->flags |= WORKER_IDLE;
1044 	pool->nr_idle++;
1045 	worker->last_active = jiffies;
1046 
1047 	/* idle_list is LIFO */
1048 	list_add(&worker->entry, &pool->idle_list);
1049 
1050 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1051 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1052 
1053 	/* Sanity check nr_running. */
1054 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1055 }
1056 
1057 /**
1058  * worker_leave_idle - leave idle state
1059  * @worker: worker which is leaving idle state
1060  *
1061  * @worker is leaving idle state.  Update stats.
1062  *
1063  * LOCKING:
1064  * raw_spin_lock_irq(pool->lock).
1065  */
1066 static void worker_leave_idle(struct worker *worker)
1067 {
1068 	struct worker_pool *pool = worker->pool;
1069 
1070 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1071 		return;
1072 	worker_clr_flags(worker, WORKER_IDLE);
1073 	pool->nr_idle--;
1074 	list_del_init(&worker->entry);
1075 }
1076 
1077 /**
1078  * find_worker_executing_work - find worker which is executing a work
1079  * @pool: pool of interest
1080  * @work: work to find worker for
1081  *
1082  * Find a worker which is executing @work on @pool by searching
1083  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1084  * to match, its current execution should match the address of @work and
1085  * its work function.  This is to avoid unwanted dependency between
1086  * unrelated work executions through a work item being recycled while still
1087  * being executed.
1088  *
1089  * This is a bit tricky.  A work item may be freed once its execution
1090  * starts and nothing prevents the freed area from being recycled for
1091  * another work item.  If the same work item address ends up being reused
1092  * before the original execution finishes, workqueue will identify the
1093  * recycled work item as currently executing and make it wait until the
1094  * current execution finishes, introducing an unwanted dependency.
1095  *
1096  * This function checks the work item address and work function to avoid
1097  * false positives.  Note that this isn't complete as one may construct a
1098  * work function which can introduce dependency onto itself through a
1099  * recycled work item.  Well, if somebody wants to shoot oneself in the
1100  * foot that badly, there's only so much we can do, and if such deadlock
1101  * actually occurs, it should be easy to locate the culprit work function.
1102  *
1103  * CONTEXT:
1104  * raw_spin_lock_irq(pool->lock).
1105  *
1106  * Return:
1107  * Pointer to worker which is executing @work if found, %NULL
1108  * otherwise.
1109  */
1110 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1111 						 struct work_struct *work)
1112 {
1113 	struct worker *worker;
1114 
1115 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1116 			       (unsigned long)work)
1117 		if (worker->current_work == work &&
1118 		    worker->current_func == work->func)
1119 			return worker;
1120 
1121 	return NULL;
1122 }
1123 
1124 /**
1125  * move_linked_works - move linked works to a list
1126  * @work: start of series of works to be scheduled
1127  * @head: target list to append @work to
1128  * @nextp: out parameter for nested worklist walking
1129  *
1130  * Schedule linked works starting from @work to @head. Work series to be
1131  * scheduled starts at @work and includes any consecutive work with
1132  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1133  * @nextp.
1134  *
1135  * CONTEXT:
1136  * raw_spin_lock_irq(pool->lock).
1137  */
1138 static void move_linked_works(struct work_struct *work, struct list_head *head,
1139 			      struct work_struct **nextp)
1140 {
1141 	struct work_struct *n;
1142 
1143 	/*
1144 	 * Linked worklist will always end before the end of the list,
1145 	 * use NULL for list head.
1146 	 */
1147 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1148 		list_move_tail(&work->entry, head);
1149 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1150 			break;
1151 	}
1152 
1153 	/*
1154 	 * If we're already inside safe list traversal and have moved
1155 	 * multiple works to the scheduled queue, the next position
1156 	 * needs to be updated.
1157 	 */
1158 	if (nextp)
1159 		*nextp = n;
1160 }
1161 
1162 /**
1163  * assign_work - assign a work item and its linked work items to a worker
1164  * @work: work to assign
1165  * @worker: worker to assign to
1166  * @nextp: out parameter for nested worklist walking
1167  *
1168  * Assign @work and its linked work items to @worker. If @work is already being
1169  * executed by another worker in the same pool, it'll be punted there.
1170  *
1171  * If @nextp is not NULL, it's updated to point to the next work of the last
1172  * scheduled work. This allows assign_work() to be nested inside
1173  * list_for_each_entry_safe().
1174  *
1175  * Returns %true if @work was successfully assigned to @worker. %false if @work
1176  * was punted to another worker already executing it.
1177  */
1178 static bool assign_work(struct work_struct *work, struct worker *worker,
1179 			struct work_struct **nextp)
1180 {
1181 	struct worker_pool *pool = worker->pool;
1182 	struct worker *collision;
1183 
1184 	lockdep_assert_held(&pool->lock);
1185 
1186 	/*
1187 	 * A single work shouldn't be executed concurrently by multiple workers.
1188 	 * __queue_work() ensures that @work doesn't jump to a different pool
1189 	 * while still running in the previous pool. Here, we should ensure that
1190 	 * @work is not executed concurrently by multiple workers from the same
1191 	 * pool. Check whether anyone is already processing the work. If so,
1192 	 * defer the work to the currently executing one.
1193 	 */
1194 	collision = find_worker_executing_work(pool, work);
1195 	if (unlikely(collision)) {
1196 		move_linked_works(work, &collision->scheduled, nextp);
1197 		return false;
1198 	}
1199 
1200 	move_linked_works(work, &worker->scheduled, nextp);
1201 	return true;
1202 }
1203 
1204 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1205 {
1206 	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1207 
1208 	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1209 }
1210 
1211 static void kick_bh_pool(struct worker_pool *pool)
1212 {
1213 #ifdef CONFIG_SMP
1214 	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1215 	if (unlikely(pool->cpu != smp_processor_id() &&
1216 		     !(pool->flags & POOL_BH_DRAINING))) {
1217 		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1218 		return;
1219 	}
1220 #endif
1221 	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1222 		raise_softirq_irqoff(HI_SOFTIRQ);
1223 	else
1224 		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1225 }
1226 
1227 /**
1228  * kick_pool - wake up an idle worker if necessary
1229  * @pool: pool to kick
1230  *
1231  * @pool may have pending work items. Wake up worker if necessary. Returns
1232  * whether a worker was woken up.
1233  */
1234 static bool kick_pool(struct worker_pool *pool)
1235 {
1236 	struct worker *worker = first_idle_worker(pool);
1237 	struct task_struct *p;
1238 
1239 	lockdep_assert_held(&pool->lock);
1240 
1241 	if (!need_more_worker(pool) || !worker)
1242 		return false;
1243 
1244 	if (pool->flags & POOL_BH) {
1245 		kick_bh_pool(pool);
1246 		return true;
1247 	}
1248 
1249 	p = worker->task;
1250 
1251 #ifdef CONFIG_SMP
1252 	/*
1253 	 * Idle @worker is about to execute @work and waking up provides an
1254 	 * opportunity to migrate @worker at a lower cost by setting the task's
1255 	 * wake_cpu field. Let's see if we want to move @worker to improve
1256 	 * execution locality.
1257 	 *
1258 	 * We're waking the worker that went idle the latest and there's some
1259 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1260 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1261 	 * optimization and the race window is narrow, let's leave as-is for
1262 	 * now. If this becomes pronounced, we can skip over workers which are
1263 	 * still on cpu when picking an idle worker.
1264 	 *
1265 	 * If @pool has non-strict affinity, @worker might have ended up outside
1266 	 * its affinity scope. Repatriate.
1267 	 */
1268 	if (!pool->attrs->affn_strict &&
1269 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1270 		struct work_struct *work = list_first_entry(&pool->worklist,
1271 						struct work_struct, entry);
1272 		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1273 							  cpu_online_mask);
1274 		if (wake_cpu < nr_cpu_ids) {
1275 			p->wake_cpu = wake_cpu;
1276 			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1277 		}
1278 	}
1279 #endif
1280 	wake_up_process(p);
1281 	return true;
1282 }
1283 
1284 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1285 
1286 /*
1287  * Concurrency-managed per-cpu work items that hog CPU for longer than
1288  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1289  * which prevents them from stalling other concurrency-managed work items. If a
1290  * work function keeps triggering this mechanism, it's likely that the work item
1291  * should be using an unbound workqueue instead.
1292  *
1293  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1294  * and report them so that they can be examined and converted to use unbound
1295  * workqueues as appropriate. To avoid flooding the console, each violating work
1296  * function is tracked and reported with exponential backoff.
1297  */
1298 #define WCI_MAX_ENTS 128
1299 
1300 struct wci_ent {
1301 	work_func_t		func;
1302 	atomic64_t		cnt;
1303 	struct hlist_node	hash_node;
1304 };
1305 
1306 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1307 static int wci_nr_ents;
1308 static DEFINE_RAW_SPINLOCK(wci_lock);
1309 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1310 
1311 static struct wci_ent *wci_find_ent(work_func_t func)
1312 {
1313 	struct wci_ent *ent;
1314 
1315 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1316 				   (unsigned long)func) {
1317 		if (ent->func == func)
1318 			return ent;
1319 	}
1320 	return NULL;
1321 }
1322 
1323 static void wq_cpu_intensive_report(work_func_t func)
1324 {
1325 	struct wci_ent *ent;
1326 
1327 restart:
1328 	ent = wci_find_ent(func);
1329 	if (ent) {
1330 		u64 cnt;
1331 
1332 		/*
1333 		 * Start reporting from the warning_thresh and back off
1334 		 * exponentially.
1335 		 */
1336 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1337 		if (wq_cpu_intensive_warning_thresh &&
1338 		    cnt >= wq_cpu_intensive_warning_thresh &&
1339 		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1340 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1341 					ent->func, wq_cpu_intensive_thresh_us,
1342 					atomic64_read(&ent->cnt));
1343 		return;
1344 	}
1345 
1346 	/*
1347 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1348 	 * is exhausted, something went really wrong and we probably made enough
1349 	 * noise already.
1350 	 */
1351 	if (wci_nr_ents >= WCI_MAX_ENTS)
1352 		return;
1353 
1354 	raw_spin_lock(&wci_lock);
1355 
1356 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1357 		raw_spin_unlock(&wci_lock);
1358 		return;
1359 	}
1360 
1361 	if (wci_find_ent(func)) {
1362 		raw_spin_unlock(&wci_lock);
1363 		goto restart;
1364 	}
1365 
1366 	ent = &wci_ents[wci_nr_ents++];
1367 	ent->func = func;
1368 	atomic64_set(&ent->cnt, 0);
1369 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1370 
1371 	raw_spin_unlock(&wci_lock);
1372 
1373 	goto restart;
1374 }
1375 
1376 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1377 static void wq_cpu_intensive_report(work_func_t func) {}
1378 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1379 
1380 /**
1381  * wq_worker_running - a worker is running again
1382  * @task: task waking up
1383  *
1384  * This function is called when a worker returns from schedule()
1385  */
1386 void wq_worker_running(struct task_struct *task)
1387 {
1388 	struct worker *worker = kthread_data(task);
1389 
1390 	if (!READ_ONCE(worker->sleeping))
1391 		return;
1392 
1393 	/*
1394 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1395 	 * and the nr_running increment below, we may ruin the nr_running reset
1396 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1397 	 * pool. Protect against such race.
1398 	 */
1399 	preempt_disable();
1400 	if (!(worker->flags & WORKER_NOT_RUNNING))
1401 		worker->pool->nr_running++;
1402 	preempt_enable();
1403 
1404 	/*
1405 	 * CPU intensive auto-detection cares about how long a work item hogged
1406 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1407 	 */
1408 	worker->current_at = worker->task->se.sum_exec_runtime;
1409 
1410 	WRITE_ONCE(worker->sleeping, 0);
1411 }
1412 
1413 /**
1414  * wq_worker_sleeping - a worker is going to sleep
1415  * @task: task going to sleep
1416  *
1417  * This function is called from schedule() when a busy worker is
1418  * going to sleep.
1419  */
1420 void wq_worker_sleeping(struct task_struct *task)
1421 {
1422 	struct worker *worker = kthread_data(task);
1423 	struct worker_pool *pool;
1424 
1425 	/*
1426 	 * Rescuers, which may not have all the fields set up like normal
1427 	 * workers, also reach here, let's not access anything before
1428 	 * checking NOT_RUNNING.
1429 	 */
1430 	if (worker->flags & WORKER_NOT_RUNNING)
1431 		return;
1432 
1433 	pool = worker->pool;
1434 
1435 	/* Return if preempted before wq_worker_running() was reached */
1436 	if (READ_ONCE(worker->sleeping))
1437 		return;
1438 
1439 	WRITE_ONCE(worker->sleeping, 1);
1440 	raw_spin_lock_irq(&pool->lock);
1441 
1442 	/*
1443 	 * Recheck in case unbind_workers() preempted us. We don't
1444 	 * want to decrement nr_running after the worker is unbound
1445 	 * and nr_running has been reset.
1446 	 */
1447 	if (worker->flags & WORKER_NOT_RUNNING) {
1448 		raw_spin_unlock_irq(&pool->lock);
1449 		return;
1450 	}
1451 
1452 	pool->nr_running--;
1453 	if (kick_pool(pool))
1454 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1455 
1456 	raw_spin_unlock_irq(&pool->lock);
1457 }
1458 
1459 /**
1460  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1461  * @task: task currently running
1462  *
1463  * Called from sched_tick(). We're in the IRQ context and the current
1464  * worker's fields which follow the 'K' locking rule can be accessed safely.
1465  */
1466 void wq_worker_tick(struct task_struct *task)
1467 {
1468 	struct worker *worker = kthread_data(task);
1469 	struct pool_workqueue *pwq = worker->current_pwq;
1470 	struct worker_pool *pool = worker->pool;
1471 
1472 	if (!pwq)
1473 		return;
1474 
1475 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1476 
1477 	if (!wq_cpu_intensive_thresh_us)
1478 		return;
1479 
1480 	/*
1481 	 * If the current worker is concurrency managed and hogged the CPU for
1482 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1483 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1484 	 *
1485 	 * Set @worker->sleeping means that @worker is in the process of
1486 	 * switching out voluntarily and won't be contributing to
1487 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1488 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1489 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1490 	 * We probably want to make this prettier in the future.
1491 	 */
1492 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1493 	    worker->task->se.sum_exec_runtime - worker->current_at <
1494 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1495 		return;
1496 
1497 	raw_spin_lock(&pool->lock);
1498 
1499 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1500 	wq_cpu_intensive_report(worker->current_func);
1501 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1502 
1503 	if (kick_pool(pool))
1504 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1505 
1506 	raw_spin_unlock(&pool->lock);
1507 }
1508 
1509 /**
1510  * wq_worker_last_func - retrieve worker's last work function
1511  * @task: Task to retrieve last work function of.
1512  *
1513  * Determine the last function a worker executed. This is called from
1514  * the scheduler to get a worker's last known identity.
1515  *
1516  * CONTEXT:
1517  * raw_spin_lock_irq(rq->lock)
1518  *
1519  * This function is called during schedule() when a kworker is going
1520  * to sleep. It's used by psi to identify aggregation workers during
1521  * dequeuing, to allow periodic aggregation to shut-off when that
1522  * worker is the last task in the system or cgroup to go to sleep.
1523  *
1524  * As this function doesn't involve any workqueue-related locking, it
1525  * only returns stable values when called from inside the scheduler's
1526  * queuing and dequeuing paths, when @task, which must be a kworker,
1527  * is guaranteed to not be processing any works.
1528  *
1529  * Return:
1530  * The last work function %current executed as a worker, NULL if it
1531  * hasn't executed any work yet.
1532  */
1533 work_func_t wq_worker_last_func(struct task_struct *task)
1534 {
1535 	struct worker *worker = kthread_data(task);
1536 
1537 	return worker->last_func;
1538 }
1539 
1540 /**
1541  * wq_node_nr_active - Determine wq_node_nr_active to use
1542  * @wq: workqueue of interest
1543  * @node: NUMA node, can be %NUMA_NO_NODE
1544  *
1545  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1546  *
1547  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1548  *
1549  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1550  *
1551  * - Otherwise, node_nr_active[@node].
1552  */
1553 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1554 						   int node)
1555 {
1556 	if (!(wq->flags & WQ_UNBOUND))
1557 		return NULL;
1558 
1559 	if (node == NUMA_NO_NODE)
1560 		node = nr_node_ids;
1561 
1562 	return wq->node_nr_active[node];
1563 }
1564 
1565 /**
1566  * wq_update_node_max_active - Update per-node max_actives to use
1567  * @wq: workqueue to update
1568  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1569  *
1570  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1571  * distributed among nodes according to the proportions of numbers of online
1572  * cpus. The result is always between @wq->min_active and max_active.
1573  */
1574 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1575 {
1576 	struct cpumask *effective = unbound_effective_cpumask(wq);
1577 	int min_active = READ_ONCE(wq->min_active);
1578 	int max_active = READ_ONCE(wq->max_active);
1579 	int total_cpus, node;
1580 
1581 	lockdep_assert_held(&wq->mutex);
1582 
1583 	if (!wq_topo_initialized)
1584 		return;
1585 
1586 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1587 		off_cpu = -1;
1588 
1589 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1590 	if (off_cpu >= 0)
1591 		total_cpus--;
1592 
1593 	/* If all CPUs of the wq get offline, use the default values */
1594 	if (unlikely(!total_cpus)) {
1595 		for_each_node(node)
1596 			wq_node_nr_active(wq, node)->max = min_active;
1597 
1598 		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1599 		return;
1600 	}
1601 
1602 	for_each_node(node) {
1603 		int node_cpus;
1604 
1605 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1606 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1607 			node_cpus--;
1608 
1609 		wq_node_nr_active(wq, node)->max =
1610 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1611 			      min_active, max_active);
1612 	}
1613 
1614 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1615 }
1616 
1617 /**
1618  * get_pwq - get an extra reference on the specified pool_workqueue
1619  * @pwq: pool_workqueue to get
1620  *
1621  * Obtain an extra reference on @pwq.  The caller should guarantee that
1622  * @pwq has positive refcnt and be holding the matching pool->lock.
1623  */
1624 static void get_pwq(struct pool_workqueue *pwq)
1625 {
1626 	lockdep_assert_held(&pwq->pool->lock);
1627 	WARN_ON_ONCE(pwq->refcnt <= 0);
1628 	pwq->refcnt++;
1629 }
1630 
1631 /**
1632  * put_pwq - put a pool_workqueue reference
1633  * @pwq: pool_workqueue to put
1634  *
1635  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1636  * destruction.  The caller should be holding the matching pool->lock.
1637  */
1638 static void put_pwq(struct pool_workqueue *pwq)
1639 {
1640 	lockdep_assert_held(&pwq->pool->lock);
1641 	if (likely(--pwq->refcnt))
1642 		return;
1643 	/*
1644 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1645 	 * kthread_worker to avoid A-A deadlocks.
1646 	 */
1647 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1648 }
1649 
1650 /**
1651  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1652  * @pwq: pool_workqueue to put (can be %NULL)
1653  *
1654  * put_pwq() with locking.  This function also allows %NULL @pwq.
1655  */
1656 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1657 {
1658 	if (pwq) {
1659 		/*
1660 		 * As both pwqs and pools are RCU protected, the
1661 		 * following lock operations are safe.
1662 		 */
1663 		raw_spin_lock_irq(&pwq->pool->lock);
1664 		put_pwq(pwq);
1665 		raw_spin_unlock_irq(&pwq->pool->lock);
1666 	}
1667 }
1668 
1669 static bool pwq_is_empty(struct pool_workqueue *pwq)
1670 {
1671 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1672 }
1673 
1674 static void __pwq_activate_work(struct pool_workqueue *pwq,
1675 				struct work_struct *work)
1676 {
1677 	unsigned long *wdb = work_data_bits(work);
1678 
1679 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1680 	trace_workqueue_activate_work(work);
1681 	if (list_empty(&pwq->pool->worklist))
1682 		pwq->pool->watchdog_ts = jiffies;
1683 	move_linked_works(work, &pwq->pool->worklist, NULL);
1684 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1685 }
1686 
1687 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1688 {
1689 	int max = READ_ONCE(nna->max);
1690 
1691 	while (true) {
1692 		int old, tmp;
1693 
1694 		old = atomic_read(&nna->nr);
1695 		if (old >= max)
1696 			return false;
1697 		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1698 		if (tmp == old)
1699 			return true;
1700 	}
1701 }
1702 
1703 /**
1704  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1705  * @pwq: pool_workqueue of interest
1706  * @fill: max_active may have increased, try to increase concurrency level
1707  *
1708  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1709  * successfully obtained. %false otherwise.
1710  */
1711 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1712 {
1713 	struct workqueue_struct *wq = pwq->wq;
1714 	struct worker_pool *pool = pwq->pool;
1715 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1716 	bool obtained = false;
1717 
1718 	lockdep_assert_held(&pool->lock);
1719 
1720 	if (!nna) {
1721 		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1722 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1723 		goto out;
1724 	}
1725 
1726 	if (unlikely(pwq->plugged))
1727 		return false;
1728 
1729 	/*
1730 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1731 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1732 	 * concurrency level. Don't jump the line.
1733 	 *
1734 	 * We need to ignore the pending test after max_active has increased as
1735 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1736 	 * increase it. This is indicated by @fill.
1737 	 */
1738 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1739 		goto out;
1740 
1741 	obtained = tryinc_node_nr_active(nna);
1742 	if (obtained)
1743 		goto out;
1744 
1745 	/*
1746 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1747 	 * and try again. The smp_mb() is paired with the implied memory barrier
1748 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1749 	 * we see the decremented $nna->nr or they see non-empty
1750 	 * $nna->pending_pwqs.
1751 	 */
1752 	raw_spin_lock(&nna->lock);
1753 
1754 	if (list_empty(&pwq->pending_node))
1755 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1756 	else if (likely(!fill))
1757 		goto out_unlock;
1758 
1759 	smp_mb();
1760 
1761 	obtained = tryinc_node_nr_active(nna);
1762 
1763 	/*
1764 	 * If @fill, @pwq might have already been pending. Being spuriously
1765 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1766 	 */
1767 	if (obtained && likely(!fill))
1768 		list_del_init(&pwq->pending_node);
1769 
1770 out_unlock:
1771 	raw_spin_unlock(&nna->lock);
1772 out:
1773 	if (obtained)
1774 		pwq->nr_active++;
1775 	return obtained;
1776 }
1777 
1778 /**
1779  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1780  * @pwq: pool_workqueue of interest
1781  * @fill: max_active may have increased, try to increase concurrency level
1782  *
1783  * Activate the first inactive work item of @pwq if available and allowed by
1784  * max_active limit.
1785  *
1786  * Returns %true if an inactive work item has been activated. %false if no
1787  * inactive work item is found or max_active limit is reached.
1788  */
1789 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1790 {
1791 	struct work_struct *work =
1792 		list_first_entry_or_null(&pwq->inactive_works,
1793 					 struct work_struct, entry);
1794 
1795 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1796 		__pwq_activate_work(pwq, work);
1797 		return true;
1798 	} else {
1799 		return false;
1800 	}
1801 }
1802 
1803 /**
1804  * unplug_oldest_pwq - unplug the oldest pool_workqueue
1805  * @wq: workqueue_struct where its oldest pwq is to be unplugged
1806  *
1807  * This function should only be called for ordered workqueues where only the
1808  * oldest pwq is unplugged, the others are plugged to suspend execution to
1809  * ensure proper work item ordering::
1810  *
1811  *    dfl_pwq --------------+     [P] - plugged
1812  *                          |
1813  *                          v
1814  *    pwqs -> A -> B [P] -> C [P] (newest)
1815  *            |    |        |
1816  *            1    3        5
1817  *            |    |        |
1818  *            2    4        6
1819  *
1820  * When the oldest pwq is drained and removed, this function should be called
1821  * to unplug the next oldest one to start its work item execution. Note that
1822  * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1823  * the list is the oldest.
1824  */
1825 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1826 {
1827 	struct pool_workqueue *pwq;
1828 
1829 	lockdep_assert_held(&wq->mutex);
1830 
1831 	/* Caller should make sure that pwqs isn't empty before calling */
1832 	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1833 				       pwqs_node);
1834 	raw_spin_lock_irq(&pwq->pool->lock);
1835 	if (pwq->plugged) {
1836 		pwq->plugged = false;
1837 		if (pwq_activate_first_inactive(pwq, true))
1838 			kick_pool(pwq->pool);
1839 	}
1840 	raw_spin_unlock_irq(&pwq->pool->lock);
1841 }
1842 
1843 /**
1844  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1845  * @nna: wq_node_nr_active to activate a pending pwq for
1846  * @caller_pool: worker_pool the caller is locking
1847  *
1848  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1849  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1850  */
1851 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1852 				      struct worker_pool *caller_pool)
1853 {
1854 	struct worker_pool *locked_pool = caller_pool;
1855 	struct pool_workqueue *pwq;
1856 	struct work_struct *work;
1857 
1858 	lockdep_assert_held(&caller_pool->lock);
1859 
1860 	raw_spin_lock(&nna->lock);
1861 retry:
1862 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1863 				       struct pool_workqueue, pending_node);
1864 	if (!pwq)
1865 		goto out_unlock;
1866 
1867 	/*
1868 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1869 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1870 	 * / lock dance. For that, we also need to release @nna->lock as it's
1871 	 * nested inside pool locks.
1872 	 */
1873 	if (pwq->pool != locked_pool) {
1874 		raw_spin_unlock(&locked_pool->lock);
1875 		locked_pool = pwq->pool;
1876 		if (!raw_spin_trylock(&locked_pool->lock)) {
1877 			raw_spin_unlock(&nna->lock);
1878 			raw_spin_lock(&locked_pool->lock);
1879 			raw_spin_lock(&nna->lock);
1880 			goto retry;
1881 		}
1882 	}
1883 
1884 	/*
1885 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1886 	 * Drop it from pending_pwqs and see if there's another one.
1887 	 */
1888 	work = list_first_entry_or_null(&pwq->inactive_works,
1889 					struct work_struct, entry);
1890 	if (!work) {
1891 		list_del_init(&pwq->pending_node);
1892 		goto retry;
1893 	}
1894 
1895 	/*
1896 	 * Acquire an nr_active count and activate the inactive work item. If
1897 	 * $pwq still has inactive work items, rotate it to the end of the
1898 	 * pending_pwqs so that we round-robin through them. This means that
1899 	 * inactive work items are not activated in queueing order which is fine
1900 	 * given that there has never been any ordering across different pwqs.
1901 	 */
1902 	if (likely(tryinc_node_nr_active(nna))) {
1903 		pwq->nr_active++;
1904 		__pwq_activate_work(pwq, work);
1905 
1906 		if (list_empty(&pwq->inactive_works))
1907 			list_del_init(&pwq->pending_node);
1908 		else
1909 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1910 
1911 		/* if activating a foreign pool, make sure it's running */
1912 		if (pwq->pool != caller_pool)
1913 			kick_pool(pwq->pool);
1914 	}
1915 
1916 out_unlock:
1917 	raw_spin_unlock(&nna->lock);
1918 	if (locked_pool != caller_pool) {
1919 		raw_spin_unlock(&locked_pool->lock);
1920 		raw_spin_lock(&caller_pool->lock);
1921 	}
1922 }
1923 
1924 /**
1925  * pwq_dec_nr_active - Retire an active count
1926  * @pwq: pool_workqueue of interest
1927  *
1928  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1929  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1930  */
1931 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1932 {
1933 	struct worker_pool *pool = pwq->pool;
1934 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1935 
1936 	lockdep_assert_held(&pool->lock);
1937 
1938 	/*
1939 	 * @pwq->nr_active should be decremented for both percpu and unbound
1940 	 * workqueues.
1941 	 */
1942 	pwq->nr_active--;
1943 
1944 	/*
1945 	 * For a percpu workqueue, it's simple. Just need to kick the first
1946 	 * inactive work item on @pwq itself.
1947 	 */
1948 	if (!nna) {
1949 		pwq_activate_first_inactive(pwq, false);
1950 		return;
1951 	}
1952 
1953 	/*
1954 	 * If @pwq is for an unbound workqueue, it's more complicated because
1955 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1956 	 * pwq needs to wait for an nr_active count, it puts itself on
1957 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1958 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1959 	 * guarantee that either we see non-empty pending_pwqs or they see
1960 	 * decremented $nna->nr.
1961 	 *
1962 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1963 	 * max_active gets updated. However, it is guaranteed to be equal to or
1964 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1965 	 * This maintains the forward progress guarantee.
1966 	 */
1967 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1968 		return;
1969 
1970 	if (!list_empty(&nna->pending_pwqs))
1971 		node_activate_pending_pwq(nna, pool);
1972 }
1973 
1974 /**
1975  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1976  * @pwq: pwq of interest
1977  * @work_data: work_data of work which left the queue
1978  *
1979  * A work either has completed or is removed from pending queue,
1980  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1981  *
1982  * NOTE:
1983  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1984  * and thus should be called after all other state updates for the in-flight
1985  * work item is complete.
1986  *
1987  * CONTEXT:
1988  * raw_spin_lock_irq(pool->lock).
1989  */
1990 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1991 {
1992 	int color = get_work_color(work_data);
1993 
1994 	if (!(work_data & WORK_STRUCT_INACTIVE))
1995 		pwq_dec_nr_active(pwq);
1996 
1997 	pwq->nr_in_flight[color]--;
1998 
1999 	/* is flush in progress and are we at the flushing tip? */
2000 	if (likely(pwq->flush_color != color))
2001 		goto out_put;
2002 
2003 	/* are there still in-flight works? */
2004 	if (pwq->nr_in_flight[color])
2005 		goto out_put;
2006 
2007 	/* this pwq is done, clear flush_color */
2008 	pwq->flush_color = -1;
2009 
2010 	/*
2011 	 * If this was the last pwq, wake up the first flusher.  It
2012 	 * will handle the rest.
2013 	 */
2014 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2015 		complete(&pwq->wq->first_flusher->done);
2016 out_put:
2017 	put_pwq(pwq);
2018 }
2019 
2020 /**
2021  * try_to_grab_pending - steal work item from worklist and disable irq
2022  * @work: work item to steal
2023  * @cflags: %WORK_CANCEL_ flags
2024  * @irq_flags: place to store irq state
2025  *
2026  * Try to grab PENDING bit of @work.  This function can handle @work in any
2027  * stable state - idle, on timer or on worklist.
2028  *
2029  * Return:
2030  *
2031  *  ========	================================================================
2032  *  1		if @work was pending and we successfully stole PENDING
2033  *  0		if @work was idle and we claimed PENDING
2034  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2035  *  ========	================================================================
2036  *
2037  * Note:
2038  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2039  * interrupted while holding PENDING and @work off queue, irq must be
2040  * disabled on entry.  This, combined with delayed_work->timer being
2041  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2042  *
2043  * On successful return, >= 0, irq is disabled and the caller is
2044  * responsible for releasing it using local_irq_restore(*@irq_flags).
2045  *
2046  * This function is safe to call from any context including IRQ handler.
2047  */
2048 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2049 			       unsigned long *irq_flags)
2050 {
2051 	struct worker_pool *pool;
2052 	struct pool_workqueue *pwq;
2053 
2054 	local_irq_save(*irq_flags);
2055 
2056 	/* try to steal the timer if it exists */
2057 	if (cflags & WORK_CANCEL_DELAYED) {
2058 		struct delayed_work *dwork = to_delayed_work(work);
2059 
2060 		/*
2061 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2062 		 * guaranteed that the timer is not queued anywhere and not
2063 		 * running on the local CPU.
2064 		 */
2065 		if (likely(del_timer(&dwork->timer)))
2066 			return 1;
2067 	}
2068 
2069 	/* try to claim PENDING the normal way */
2070 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2071 		return 0;
2072 
2073 	rcu_read_lock();
2074 	/*
2075 	 * The queueing is in progress, or it is already queued. Try to
2076 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2077 	 */
2078 	pool = get_work_pool(work);
2079 	if (!pool)
2080 		goto fail;
2081 
2082 	raw_spin_lock(&pool->lock);
2083 	/*
2084 	 * work->data is guaranteed to point to pwq only while the work
2085 	 * item is queued on pwq->wq, and both updating work->data to point
2086 	 * to pwq on queueing and to pool on dequeueing are done under
2087 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2088 	 * points to pwq which is associated with a locked pool, the work
2089 	 * item is currently queued on that pool.
2090 	 */
2091 	pwq = get_work_pwq(work);
2092 	if (pwq && pwq->pool == pool) {
2093 		unsigned long work_data = *work_data_bits(work);
2094 
2095 		debug_work_deactivate(work);
2096 
2097 		/*
2098 		 * A cancelable inactive work item must be in the
2099 		 * pwq->inactive_works since a queued barrier can't be
2100 		 * canceled (see the comments in insert_wq_barrier()).
2101 		 *
2102 		 * An inactive work item cannot be deleted directly because
2103 		 * it might have linked barrier work items which, if left
2104 		 * on the inactive_works list, will confuse pwq->nr_active
2105 		 * management later on and cause stall.  Move the linked
2106 		 * barrier work items to the worklist when deleting the grabbed
2107 		 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2108 		 * it doesn't participate in nr_active management in later
2109 		 * pwq_dec_nr_in_flight().
2110 		 */
2111 		if (work_data & WORK_STRUCT_INACTIVE)
2112 			move_linked_works(work, &pwq->pool->worklist, NULL);
2113 
2114 		list_del_init(&work->entry);
2115 
2116 		/*
2117 		 * work->data points to pwq iff queued. Let's point to pool. As
2118 		 * this destroys work->data needed by the next step, stash it.
2119 		 */
2120 		set_work_pool_and_keep_pending(work, pool->id,
2121 					       pool_offq_flags(pool));
2122 
2123 		/* must be the last step, see the function comment */
2124 		pwq_dec_nr_in_flight(pwq, work_data);
2125 
2126 		raw_spin_unlock(&pool->lock);
2127 		rcu_read_unlock();
2128 		return 1;
2129 	}
2130 	raw_spin_unlock(&pool->lock);
2131 fail:
2132 	rcu_read_unlock();
2133 	local_irq_restore(*irq_flags);
2134 	return -EAGAIN;
2135 }
2136 
2137 /**
2138  * work_grab_pending - steal work item from worklist and disable irq
2139  * @work: work item to steal
2140  * @cflags: %WORK_CANCEL_ flags
2141  * @irq_flags: place to store IRQ state
2142  *
2143  * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2144  * or on worklist.
2145  *
2146  * Can be called from any context. IRQ is disabled on return with IRQ state
2147  * stored in *@irq_flags. The caller is responsible for re-enabling it using
2148  * local_irq_restore().
2149  *
2150  * Returns %true if @work was pending. %false if idle.
2151  */
2152 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2153 			      unsigned long *irq_flags)
2154 {
2155 	int ret;
2156 
2157 	while (true) {
2158 		ret = try_to_grab_pending(work, cflags, irq_flags);
2159 		if (ret >= 0)
2160 			return ret;
2161 		cpu_relax();
2162 	}
2163 }
2164 
2165 /**
2166  * insert_work - insert a work into a pool
2167  * @pwq: pwq @work belongs to
2168  * @work: work to insert
2169  * @head: insertion point
2170  * @extra_flags: extra WORK_STRUCT_* flags to set
2171  *
2172  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2173  * work_struct flags.
2174  *
2175  * CONTEXT:
2176  * raw_spin_lock_irq(pool->lock).
2177  */
2178 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2179 			struct list_head *head, unsigned int extra_flags)
2180 {
2181 	debug_work_activate(work);
2182 
2183 	/* record the work call stack in order to print it in KASAN reports */
2184 	kasan_record_aux_stack_noalloc(work);
2185 
2186 	/* we own @work, set data and link */
2187 	set_work_pwq(work, pwq, extra_flags);
2188 	list_add_tail(&work->entry, head);
2189 	get_pwq(pwq);
2190 }
2191 
2192 /*
2193  * Test whether @work is being queued from another work executing on the
2194  * same workqueue.
2195  */
2196 static bool is_chained_work(struct workqueue_struct *wq)
2197 {
2198 	struct worker *worker;
2199 
2200 	worker = current_wq_worker();
2201 	/*
2202 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2203 	 * I'm @worker, it's safe to dereference it without locking.
2204 	 */
2205 	return worker && worker->current_pwq->wq == wq;
2206 }
2207 
2208 /*
2209  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2210  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2211  * avoid perturbing sensitive tasks.
2212  */
2213 static int wq_select_unbound_cpu(int cpu)
2214 {
2215 	int new_cpu;
2216 
2217 	if (likely(!wq_debug_force_rr_cpu)) {
2218 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2219 			return cpu;
2220 	} else {
2221 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2222 	}
2223 
2224 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2225 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2226 	if (unlikely(new_cpu >= nr_cpu_ids)) {
2227 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2228 		if (unlikely(new_cpu >= nr_cpu_ids))
2229 			return cpu;
2230 	}
2231 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2232 
2233 	return new_cpu;
2234 }
2235 
2236 static void __queue_work(int cpu, struct workqueue_struct *wq,
2237 			 struct work_struct *work)
2238 {
2239 	struct pool_workqueue *pwq;
2240 	struct worker_pool *last_pool, *pool;
2241 	unsigned int work_flags;
2242 	unsigned int req_cpu = cpu;
2243 
2244 	/*
2245 	 * While a work item is PENDING && off queue, a task trying to
2246 	 * steal the PENDING will busy-loop waiting for it to either get
2247 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2248 	 * happen with IRQ disabled.
2249 	 */
2250 	lockdep_assert_irqs_disabled();
2251 
2252 	/*
2253 	 * For a draining wq, only works from the same workqueue are
2254 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2255 	 * queues a new work item to a wq after destroy_workqueue(wq).
2256 	 */
2257 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2258 		     WARN_ON_ONCE(!is_chained_work(wq))))
2259 		return;
2260 	rcu_read_lock();
2261 retry:
2262 	/* pwq which will be used unless @work is executing elsewhere */
2263 	if (req_cpu == WORK_CPU_UNBOUND) {
2264 		if (wq->flags & WQ_UNBOUND)
2265 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2266 		else
2267 			cpu = raw_smp_processor_id();
2268 	}
2269 
2270 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2271 	pool = pwq->pool;
2272 
2273 	/*
2274 	 * If @work was previously on a different pool, it might still be
2275 	 * running there, in which case the work needs to be queued on that
2276 	 * pool to guarantee non-reentrancy.
2277 	 *
2278 	 * For ordered workqueue, work items must be queued on the newest pwq
2279 	 * for accurate order management.  Guaranteed order also guarantees
2280 	 * non-reentrancy.  See the comments above unplug_oldest_pwq().
2281 	 */
2282 	last_pool = get_work_pool(work);
2283 	if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2284 		struct worker *worker;
2285 
2286 		raw_spin_lock(&last_pool->lock);
2287 
2288 		worker = find_worker_executing_work(last_pool, work);
2289 
2290 		if (worker && worker->current_pwq->wq == wq) {
2291 			pwq = worker->current_pwq;
2292 			pool = pwq->pool;
2293 			WARN_ON_ONCE(pool != last_pool);
2294 		} else {
2295 			/* meh... not running there, queue here */
2296 			raw_spin_unlock(&last_pool->lock);
2297 			raw_spin_lock(&pool->lock);
2298 		}
2299 	} else {
2300 		raw_spin_lock(&pool->lock);
2301 	}
2302 
2303 	/*
2304 	 * pwq is determined and locked. For unbound pools, we could have raced
2305 	 * with pwq release and it could already be dead. If its refcnt is zero,
2306 	 * repeat pwq selection. Note that unbound pwqs never die without
2307 	 * another pwq replacing it in cpu_pwq or while work items are executing
2308 	 * on it, so the retrying is guaranteed to make forward-progress.
2309 	 */
2310 	if (unlikely(!pwq->refcnt)) {
2311 		if (wq->flags & WQ_UNBOUND) {
2312 			raw_spin_unlock(&pool->lock);
2313 			cpu_relax();
2314 			goto retry;
2315 		}
2316 		/* oops */
2317 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2318 			  wq->name, cpu);
2319 	}
2320 
2321 	/* pwq determined, queue */
2322 	trace_workqueue_queue_work(req_cpu, pwq, work);
2323 
2324 	if (WARN_ON(!list_empty(&work->entry)))
2325 		goto out;
2326 
2327 	pwq->nr_in_flight[pwq->work_color]++;
2328 	work_flags = work_color_to_flags(pwq->work_color);
2329 
2330 	/*
2331 	 * Limit the number of concurrently active work items to max_active.
2332 	 * @work must also queue behind existing inactive work items to maintain
2333 	 * ordering when max_active changes. See wq_adjust_max_active().
2334 	 */
2335 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2336 		if (list_empty(&pool->worklist))
2337 			pool->watchdog_ts = jiffies;
2338 
2339 		trace_workqueue_activate_work(work);
2340 		insert_work(pwq, work, &pool->worklist, work_flags);
2341 		kick_pool(pool);
2342 	} else {
2343 		work_flags |= WORK_STRUCT_INACTIVE;
2344 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2345 	}
2346 
2347 out:
2348 	raw_spin_unlock(&pool->lock);
2349 	rcu_read_unlock();
2350 }
2351 
2352 static bool clear_pending_if_disabled(struct work_struct *work)
2353 {
2354 	unsigned long data = *work_data_bits(work);
2355 	struct work_offq_data offqd;
2356 
2357 	if (likely((data & WORK_STRUCT_PWQ) ||
2358 		   !(data & WORK_OFFQ_DISABLE_MASK)))
2359 		return false;
2360 
2361 	work_offqd_unpack(&offqd, data);
2362 	set_work_pool_and_clear_pending(work, offqd.pool_id,
2363 					work_offqd_pack_flags(&offqd));
2364 	return true;
2365 }
2366 
2367 /**
2368  * queue_work_on - queue work on specific cpu
2369  * @cpu: CPU number to execute work on
2370  * @wq: workqueue to use
2371  * @work: work to queue
2372  *
2373  * We queue the work to a specific CPU, the caller must ensure it
2374  * can't go away.  Callers that fail to ensure that the specified
2375  * CPU cannot go away will execute on a randomly chosen CPU.
2376  * But note well that callers specifying a CPU that never has been
2377  * online will get a splat.
2378  *
2379  * Return: %false if @work was already on a queue, %true otherwise.
2380  */
2381 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2382 		   struct work_struct *work)
2383 {
2384 	bool ret = false;
2385 	unsigned long irq_flags;
2386 
2387 	local_irq_save(irq_flags);
2388 
2389 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2390 	    !clear_pending_if_disabled(work)) {
2391 		__queue_work(cpu, wq, work);
2392 		ret = true;
2393 	}
2394 
2395 	local_irq_restore(irq_flags);
2396 	return ret;
2397 }
2398 EXPORT_SYMBOL(queue_work_on);
2399 
2400 /**
2401  * select_numa_node_cpu - Select a CPU based on NUMA node
2402  * @node: NUMA node ID that we want to select a CPU from
2403  *
2404  * This function will attempt to find a "random" cpu available on a given
2405  * node. If there are no CPUs available on the given node it will return
2406  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2407  * available CPU if we need to schedule this work.
2408  */
2409 static int select_numa_node_cpu(int node)
2410 {
2411 	int cpu;
2412 
2413 	/* Delay binding to CPU if node is not valid or online */
2414 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2415 		return WORK_CPU_UNBOUND;
2416 
2417 	/* Use local node/cpu if we are already there */
2418 	cpu = raw_smp_processor_id();
2419 	if (node == cpu_to_node(cpu))
2420 		return cpu;
2421 
2422 	/* Use "random" otherwise know as "first" online CPU of node */
2423 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2424 
2425 	/* If CPU is valid return that, otherwise just defer */
2426 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2427 }
2428 
2429 /**
2430  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2431  * @node: NUMA node that we are targeting the work for
2432  * @wq: workqueue to use
2433  * @work: work to queue
2434  *
2435  * We queue the work to a "random" CPU within a given NUMA node. The basic
2436  * idea here is to provide a way to somehow associate work with a given
2437  * NUMA node.
2438  *
2439  * This function will only make a best effort attempt at getting this onto
2440  * the right NUMA node. If no node is requested or the requested node is
2441  * offline then we just fall back to standard queue_work behavior.
2442  *
2443  * Currently the "random" CPU ends up being the first available CPU in the
2444  * intersection of cpu_online_mask and the cpumask of the node, unless we
2445  * are running on the node. In that case we just use the current CPU.
2446  *
2447  * Return: %false if @work was already on a queue, %true otherwise.
2448  */
2449 bool queue_work_node(int node, struct workqueue_struct *wq,
2450 		     struct work_struct *work)
2451 {
2452 	unsigned long irq_flags;
2453 	bool ret = false;
2454 
2455 	/*
2456 	 * This current implementation is specific to unbound workqueues.
2457 	 * Specifically we only return the first available CPU for a given
2458 	 * node instead of cycling through individual CPUs within the node.
2459 	 *
2460 	 * If this is used with a per-cpu workqueue then the logic in
2461 	 * workqueue_select_cpu_near would need to be updated to allow for
2462 	 * some round robin type logic.
2463 	 */
2464 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2465 
2466 	local_irq_save(irq_flags);
2467 
2468 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2469 	    !clear_pending_if_disabled(work)) {
2470 		int cpu = select_numa_node_cpu(node);
2471 
2472 		__queue_work(cpu, wq, work);
2473 		ret = true;
2474 	}
2475 
2476 	local_irq_restore(irq_flags);
2477 	return ret;
2478 }
2479 EXPORT_SYMBOL_GPL(queue_work_node);
2480 
2481 void delayed_work_timer_fn(struct timer_list *t)
2482 {
2483 	struct delayed_work *dwork = from_timer(dwork, t, timer);
2484 
2485 	/* should have been called from irqsafe timer with irq already off */
2486 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2487 }
2488 EXPORT_SYMBOL(delayed_work_timer_fn);
2489 
2490 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2491 				struct delayed_work *dwork, unsigned long delay)
2492 {
2493 	struct timer_list *timer = &dwork->timer;
2494 	struct work_struct *work = &dwork->work;
2495 
2496 	WARN_ON_ONCE(!wq);
2497 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2498 	WARN_ON_ONCE(timer_pending(timer));
2499 	WARN_ON_ONCE(!list_empty(&work->entry));
2500 
2501 	/*
2502 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2503 	 * both optimization and correctness.  The earliest @timer can
2504 	 * expire is on the closest next tick and delayed_work users depend
2505 	 * on that there's no such delay when @delay is 0.
2506 	 */
2507 	if (!delay) {
2508 		__queue_work(cpu, wq, &dwork->work);
2509 		return;
2510 	}
2511 
2512 	dwork->wq = wq;
2513 	dwork->cpu = cpu;
2514 	timer->expires = jiffies + delay;
2515 
2516 	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2517 		/* If the current cpu is a housekeeping cpu, use it. */
2518 		cpu = smp_processor_id();
2519 		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2520 			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2521 		add_timer_on(timer, cpu);
2522 	} else {
2523 		if (likely(cpu == WORK_CPU_UNBOUND))
2524 			add_timer_global(timer);
2525 		else
2526 			add_timer_on(timer, cpu);
2527 	}
2528 }
2529 
2530 /**
2531  * queue_delayed_work_on - queue work on specific CPU after delay
2532  * @cpu: CPU number to execute work on
2533  * @wq: workqueue to use
2534  * @dwork: work to queue
2535  * @delay: number of jiffies to wait before queueing
2536  *
2537  * Return: %false if @work was already on a queue, %true otherwise.  If
2538  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2539  * execution.
2540  */
2541 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2542 			   struct delayed_work *dwork, unsigned long delay)
2543 {
2544 	struct work_struct *work = &dwork->work;
2545 	bool ret = false;
2546 	unsigned long irq_flags;
2547 
2548 	/* read the comment in __queue_work() */
2549 	local_irq_save(irq_flags);
2550 
2551 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2552 	    !clear_pending_if_disabled(work)) {
2553 		__queue_delayed_work(cpu, wq, dwork, delay);
2554 		ret = true;
2555 	}
2556 
2557 	local_irq_restore(irq_flags);
2558 	return ret;
2559 }
2560 EXPORT_SYMBOL(queue_delayed_work_on);
2561 
2562 /**
2563  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2564  * @cpu: CPU number to execute work on
2565  * @wq: workqueue to use
2566  * @dwork: work to queue
2567  * @delay: number of jiffies to wait before queueing
2568  *
2569  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2570  * modify @dwork's timer so that it expires after @delay.  If @delay is
2571  * zero, @work is guaranteed to be scheduled immediately regardless of its
2572  * current state.
2573  *
2574  * Return: %false if @dwork was idle and queued, %true if @dwork was
2575  * pending and its timer was modified.
2576  *
2577  * This function is safe to call from any context including IRQ handler.
2578  * See try_to_grab_pending() for details.
2579  */
2580 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2581 			 struct delayed_work *dwork, unsigned long delay)
2582 {
2583 	unsigned long irq_flags;
2584 	bool ret;
2585 
2586 	ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2587 
2588 	if (!clear_pending_if_disabled(&dwork->work))
2589 		__queue_delayed_work(cpu, wq, dwork, delay);
2590 
2591 	local_irq_restore(irq_flags);
2592 	return ret;
2593 }
2594 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2595 
2596 static void rcu_work_rcufn(struct rcu_head *rcu)
2597 {
2598 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2599 
2600 	/* read the comment in __queue_work() */
2601 	local_irq_disable();
2602 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2603 	local_irq_enable();
2604 }
2605 
2606 /**
2607  * queue_rcu_work - queue work after a RCU grace period
2608  * @wq: workqueue to use
2609  * @rwork: work to queue
2610  *
2611  * Return: %false if @rwork was already pending, %true otherwise.  Note
2612  * that a full RCU grace period is guaranteed only after a %true return.
2613  * While @rwork is guaranteed to be executed after a %false return, the
2614  * execution may happen before a full RCU grace period has passed.
2615  */
2616 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2617 {
2618 	struct work_struct *work = &rwork->work;
2619 
2620 	/*
2621 	 * rcu_work can't be canceled or disabled. Warn if the user reached
2622 	 * inside @rwork and disabled the inner work.
2623 	 */
2624 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2625 	    !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2626 		rwork->wq = wq;
2627 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2628 		return true;
2629 	}
2630 
2631 	return false;
2632 }
2633 EXPORT_SYMBOL(queue_rcu_work);
2634 
2635 static struct worker *alloc_worker(int node)
2636 {
2637 	struct worker *worker;
2638 
2639 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2640 	if (worker) {
2641 		INIT_LIST_HEAD(&worker->entry);
2642 		INIT_LIST_HEAD(&worker->scheduled);
2643 		INIT_LIST_HEAD(&worker->node);
2644 		/* on creation a worker is in !idle && prep state */
2645 		worker->flags = WORKER_PREP;
2646 	}
2647 	return worker;
2648 }
2649 
2650 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2651 {
2652 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2653 		return pool->attrs->__pod_cpumask;
2654 	else
2655 		return pool->attrs->cpumask;
2656 }
2657 
2658 /**
2659  * worker_attach_to_pool() - attach a worker to a pool
2660  * @worker: worker to be attached
2661  * @pool: the target pool
2662  *
2663  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2664  * cpu-binding of @worker are kept coordinated with the pool across
2665  * cpu-[un]hotplugs.
2666  */
2667 static void worker_attach_to_pool(struct worker *worker,
2668 				  struct worker_pool *pool)
2669 {
2670 	mutex_lock(&wq_pool_attach_mutex);
2671 
2672 	/*
2673 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2674 	 * across this function. See the comments above the flag definition for
2675 	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2676 	 */
2677 	if (pool->flags & POOL_DISASSOCIATED) {
2678 		worker->flags |= WORKER_UNBOUND;
2679 	} else {
2680 		WARN_ON_ONCE(pool->flags & POOL_BH);
2681 		kthread_set_per_cpu(worker->task, pool->cpu);
2682 	}
2683 
2684 	if (worker->rescue_wq)
2685 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2686 
2687 	list_add_tail(&worker->node, &pool->workers);
2688 	worker->pool = pool;
2689 
2690 	mutex_unlock(&wq_pool_attach_mutex);
2691 }
2692 
2693 static void unbind_worker(struct worker *worker)
2694 {
2695 	lockdep_assert_held(&wq_pool_attach_mutex);
2696 
2697 	kthread_set_per_cpu(worker->task, -1);
2698 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2699 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2700 	else
2701 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2702 }
2703 
2704 
2705 static void detach_worker(struct worker *worker)
2706 {
2707 	lockdep_assert_held(&wq_pool_attach_mutex);
2708 
2709 	unbind_worker(worker);
2710 	list_del(&worker->node);
2711 	worker->pool = NULL;
2712 }
2713 
2714 /**
2715  * worker_detach_from_pool() - detach a worker from its pool
2716  * @worker: worker which is attached to its pool
2717  *
2718  * Undo the attaching which had been done in worker_attach_to_pool().  The
2719  * caller worker shouldn't access to the pool after detached except it has
2720  * other reference to the pool.
2721  */
2722 static void worker_detach_from_pool(struct worker *worker)
2723 {
2724 	struct worker_pool *pool = worker->pool;
2725 
2726 	/* there is one permanent BH worker per CPU which should never detach */
2727 	WARN_ON_ONCE(pool->flags & POOL_BH);
2728 
2729 	mutex_lock(&wq_pool_attach_mutex);
2730 	detach_worker(worker);
2731 	mutex_unlock(&wq_pool_attach_mutex);
2732 
2733 	/* clear leftover flags without pool->lock after it is detached */
2734 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2735 }
2736 
2737 /**
2738  * create_worker - create a new workqueue worker
2739  * @pool: pool the new worker will belong to
2740  *
2741  * Create and start a new worker which is attached to @pool.
2742  *
2743  * CONTEXT:
2744  * Might sleep.  Does GFP_KERNEL allocations.
2745  *
2746  * Return:
2747  * Pointer to the newly created worker.
2748  */
2749 static struct worker *create_worker(struct worker_pool *pool)
2750 {
2751 	struct worker *worker;
2752 	int id;
2753 	char id_buf[23];
2754 
2755 	/* ID is needed to determine kthread name */
2756 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2757 	if (id < 0) {
2758 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2759 			    ERR_PTR(id));
2760 		return NULL;
2761 	}
2762 
2763 	worker = alloc_worker(pool->node);
2764 	if (!worker) {
2765 		pr_err_once("workqueue: Failed to allocate a worker\n");
2766 		goto fail;
2767 	}
2768 
2769 	worker->id = id;
2770 
2771 	if (!(pool->flags & POOL_BH)) {
2772 		if (pool->cpu >= 0)
2773 			snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2774 				 pool->attrs->nice < 0  ? "H" : "");
2775 		else
2776 			snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2777 
2778 		worker->task = kthread_create_on_node(worker_thread, worker,
2779 					pool->node, "kworker/%s", id_buf);
2780 		if (IS_ERR(worker->task)) {
2781 			if (PTR_ERR(worker->task) == -EINTR) {
2782 				pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2783 				       id_buf);
2784 			} else {
2785 				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2786 					    worker->task);
2787 			}
2788 			goto fail;
2789 		}
2790 
2791 		set_user_nice(worker->task, pool->attrs->nice);
2792 		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2793 	}
2794 
2795 	/* successful, attach the worker to the pool */
2796 	worker_attach_to_pool(worker, pool);
2797 
2798 	/* start the newly created worker */
2799 	raw_spin_lock_irq(&pool->lock);
2800 
2801 	worker->pool->nr_workers++;
2802 	worker_enter_idle(worker);
2803 
2804 	/*
2805 	 * @worker is waiting on a completion in kthread() and will trigger hung
2806 	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2807 	 * wake it up explicitly.
2808 	 */
2809 	if (worker->task)
2810 		wake_up_process(worker->task);
2811 
2812 	raw_spin_unlock_irq(&pool->lock);
2813 
2814 	return worker;
2815 
2816 fail:
2817 	ida_free(&pool->worker_ida, id);
2818 	kfree(worker);
2819 	return NULL;
2820 }
2821 
2822 static void detach_dying_workers(struct list_head *cull_list)
2823 {
2824 	struct worker *worker;
2825 
2826 	list_for_each_entry(worker, cull_list, entry)
2827 		detach_worker(worker);
2828 }
2829 
2830 static void reap_dying_workers(struct list_head *cull_list)
2831 {
2832 	struct worker *worker, *tmp;
2833 
2834 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2835 		list_del_init(&worker->entry);
2836 		kthread_stop_put(worker->task);
2837 		kfree(worker);
2838 	}
2839 }
2840 
2841 /**
2842  * set_worker_dying - Tag a worker for destruction
2843  * @worker: worker to be destroyed
2844  * @list: transfer worker away from its pool->idle_list and into list
2845  *
2846  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2847  * should be idle.
2848  *
2849  * CONTEXT:
2850  * raw_spin_lock_irq(pool->lock).
2851  */
2852 static void set_worker_dying(struct worker *worker, struct list_head *list)
2853 {
2854 	struct worker_pool *pool = worker->pool;
2855 
2856 	lockdep_assert_held(&pool->lock);
2857 	lockdep_assert_held(&wq_pool_attach_mutex);
2858 
2859 	/* sanity check frenzy */
2860 	if (WARN_ON(worker->current_work) ||
2861 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2862 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2863 		return;
2864 
2865 	pool->nr_workers--;
2866 	pool->nr_idle--;
2867 
2868 	worker->flags |= WORKER_DIE;
2869 
2870 	list_move(&worker->entry, list);
2871 
2872 	/* get an extra task struct reference for later kthread_stop_put() */
2873 	get_task_struct(worker->task);
2874 }
2875 
2876 /**
2877  * idle_worker_timeout - check if some idle workers can now be deleted.
2878  * @t: The pool's idle_timer that just expired
2879  *
2880  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2881  * worker_leave_idle(), as a worker flicking between idle and active while its
2882  * pool is at the too_many_workers() tipping point would cause too much timer
2883  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2884  * it expire and re-evaluate things from there.
2885  */
2886 static void idle_worker_timeout(struct timer_list *t)
2887 {
2888 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2889 	bool do_cull = false;
2890 
2891 	if (work_pending(&pool->idle_cull_work))
2892 		return;
2893 
2894 	raw_spin_lock_irq(&pool->lock);
2895 
2896 	if (too_many_workers(pool)) {
2897 		struct worker *worker;
2898 		unsigned long expires;
2899 
2900 		/* idle_list is kept in LIFO order, check the last one */
2901 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2902 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2903 		do_cull = !time_before(jiffies, expires);
2904 
2905 		if (!do_cull)
2906 			mod_timer(&pool->idle_timer, expires);
2907 	}
2908 	raw_spin_unlock_irq(&pool->lock);
2909 
2910 	if (do_cull)
2911 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2912 }
2913 
2914 /**
2915  * idle_cull_fn - cull workers that have been idle for too long.
2916  * @work: the pool's work for handling these idle workers
2917  *
2918  * This goes through a pool's idle workers and gets rid of those that have been
2919  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2920  *
2921  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2922  * culled, so this also resets worker affinity. This requires a sleepable
2923  * context, hence the split between timer callback and work item.
2924  */
2925 static void idle_cull_fn(struct work_struct *work)
2926 {
2927 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2928 	LIST_HEAD(cull_list);
2929 
2930 	/*
2931 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2932 	 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2933 	 * This is required as a previously-preempted worker could run after
2934 	 * set_worker_dying() has happened but before detach_dying_workers() did.
2935 	 */
2936 	mutex_lock(&wq_pool_attach_mutex);
2937 	raw_spin_lock_irq(&pool->lock);
2938 
2939 	while (too_many_workers(pool)) {
2940 		struct worker *worker;
2941 		unsigned long expires;
2942 
2943 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2944 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2945 
2946 		if (time_before(jiffies, expires)) {
2947 			mod_timer(&pool->idle_timer, expires);
2948 			break;
2949 		}
2950 
2951 		set_worker_dying(worker, &cull_list);
2952 	}
2953 
2954 	raw_spin_unlock_irq(&pool->lock);
2955 	detach_dying_workers(&cull_list);
2956 	mutex_unlock(&wq_pool_attach_mutex);
2957 
2958 	reap_dying_workers(&cull_list);
2959 }
2960 
2961 static void send_mayday(struct work_struct *work)
2962 {
2963 	struct pool_workqueue *pwq = get_work_pwq(work);
2964 	struct workqueue_struct *wq = pwq->wq;
2965 
2966 	lockdep_assert_held(&wq_mayday_lock);
2967 
2968 	if (!wq->rescuer)
2969 		return;
2970 
2971 	/* mayday mayday mayday */
2972 	if (list_empty(&pwq->mayday_node)) {
2973 		/*
2974 		 * If @pwq is for an unbound wq, its base ref may be put at
2975 		 * any time due to an attribute change.  Pin @pwq until the
2976 		 * rescuer is done with it.
2977 		 */
2978 		get_pwq(pwq);
2979 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2980 		wake_up_process(wq->rescuer->task);
2981 		pwq->stats[PWQ_STAT_MAYDAY]++;
2982 	}
2983 }
2984 
2985 static void pool_mayday_timeout(struct timer_list *t)
2986 {
2987 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2988 	struct work_struct *work;
2989 
2990 	raw_spin_lock_irq(&pool->lock);
2991 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2992 
2993 	if (need_to_create_worker(pool)) {
2994 		/*
2995 		 * We've been trying to create a new worker but
2996 		 * haven't been successful.  We might be hitting an
2997 		 * allocation deadlock.  Send distress signals to
2998 		 * rescuers.
2999 		 */
3000 		list_for_each_entry(work, &pool->worklist, entry)
3001 			send_mayday(work);
3002 	}
3003 
3004 	raw_spin_unlock(&wq_mayday_lock);
3005 	raw_spin_unlock_irq(&pool->lock);
3006 
3007 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3008 }
3009 
3010 /**
3011  * maybe_create_worker - create a new worker if necessary
3012  * @pool: pool to create a new worker for
3013  *
3014  * Create a new worker for @pool if necessary.  @pool is guaranteed to
3015  * have at least one idle worker on return from this function.  If
3016  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3017  * sent to all rescuers with works scheduled on @pool to resolve
3018  * possible allocation deadlock.
3019  *
3020  * On return, need_to_create_worker() is guaranteed to be %false and
3021  * may_start_working() %true.
3022  *
3023  * LOCKING:
3024  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3025  * multiple times.  Does GFP_KERNEL allocations.  Called only from
3026  * manager.
3027  */
3028 static void maybe_create_worker(struct worker_pool *pool)
3029 __releases(&pool->lock)
3030 __acquires(&pool->lock)
3031 {
3032 restart:
3033 	raw_spin_unlock_irq(&pool->lock);
3034 
3035 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3036 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3037 
3038 	while (true) {
3039 		if (create_worker(pool) || !need_to_create_worker(pool))
3040 			break;
3041 
3042 		schedule_timeout_interruptible(CREATE_COOLDOWN);
3043 
3044 		if (!need_to_create_worker(pool))
3045 			break;
3046 	}
3047 
3048 	del_timer_sync(&pool->mayday_timer);
3049 	raw_spin_lock_irq(&pool->lock);
3050 	/*
3051 	 * This is necessary even after a new worker was just successfully
3052 	 * created as @pool->lock was dropped and the new worker might have
3053 	 * already become busy.
3054 	 */
3055 	if (need_to_create_worker(pool))
3056 		goto restart;
3057 }
3058 
3059 /**
3060  * manage_workers - manage worker pool
3061  * @worker: self
3062  *
3063  * Assume the manager role and manage the worker pool @worker belongs
3064  * to.  At any given time, there can be only zero or one manager per
3065  * pool.  The exclusion is handled automatically by this function.
3066  *
3067  * The caller can safely start processing works on false return.  On
3068  * true return, it's guaranteed that need_to_create_worker() is false
3069  * and may_start_working() is true.
3070  *
3071  * CONTEXT:
3072  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3073  * multiple times.  Does GFP_KERNEL allocations.
3074  *
3075  * Return:
3076  * %false if the pool doesn't need management and the caller can safely
3077  * start processing works, %true if management function was performed and
3078  * the conditions that the caller verified before calling the function may
3079  * no longer be true.
3080  */
3081 static bool manage_workers(struct worker *worker)
3082 {
3083 	struct worker_pool *pool = worker->pool;
3084 
3085 	if (pool->flags & POOL_MANAGER_ACTIVE)
3086 		return false;
3087 
3088 	pool->flags |= POOL_MANAGER_ACTIVE;
3089 	pool->manager = worker;
3090 
3091 	maybe_create_worker(pool);
3092 
3093 	pool->manager = NULL;
3094 	pool->flags &= ~POOL_MANAGER_ACTIVE;
3095 	rcuwait_wake_up(&manager_wait);
3096 	return true;
3097 }
3098 
3099 /**
3100  * process_one_work - process single work
3101  * @worker: self
3102  * @work: work to process
3103  *
3104  * Process @work.  This function contains all the logics necessary to
3105  * process a single work including synchronization against and
3106  * interaction with other workers on the same cpu, queueing and
3107  * flushing.  As long as context requirement is met, any worker can
3108  * call this function to process a work.
3109  *
3110  * CONTEXT:
3111  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3112  */
3113 static void process_one_work(struct worker *worker, struct work_struct *work)
3114 __releases(&pool->lock)
3115 __acquires(&pool->lock)
3116 {
3117 	struct pool_workqueue *pwq = get_work_pwq(work);
3118 	struct worker_pool *pool = worker->pool;
3119 	unsigned long work_data;
3120 	int lockdep_start_depth, rcu_start_depth;
3121 	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3122 #ifdef CONFIG_LOCKDEP
3123 	/*
3124 	 * It is permissible to free the struct work_struct from
3125 	 * inside the function that is called from it, this we need to
3126 	 * take into account for lockdep too.  To avoid bogus "held
3127 	 * lock freed" warnings as well as problems when looking into
3128 	 * work->lockdep_map, make a copy and use that here.
3129 	 */
3130 	struct lockdep_map lockdep_map;
3131 
3132 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3133 #endif
3134 	/* ensure we're on the correct CPU */
3135 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3136 		     raw_smp_processor_id() != pool->cpu);
3137 
3138 	/* claim and dequeue */
3139 	debug_work_deactivate(work);
3140 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3141 	worker->current_work = work;
3142 	worker->current_func = work->func;
3143 	worker->current_pwq = pwq;
3144 	if (worker->task)
3145 		worker->current_at = worker->task->se.sum_exec_runtime;
3146 	work_data = *work_data_bits(work);
3147 	worker->current_color = get_work_color(work_data);
3148 
3149 	/*
3150 	 * Record wq name for cmdline and debug reporting, may get
3151 	 * overridden through set_worker_desc().
3152 	 */
3153 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3154 
3155 	list_del_init(&work->entry);
3156 
3157 	/*
3158 	 * CPU intensive works don't participate in concurrency management.
3159 	 * They're the scheduler's responsibility.  This takes @worker out
3160 	 * of concurrency management and the next code block will chain
3161 	 * execution of the pending work items.
3162 	 */
3163 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3164 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3165 
3166 	/*
3167 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3168 	 * since nr_running would always be >= 1 at this point. This is used to
3169 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3170 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3171 	 */
3172 	kick_pool(pool);
3173 
3174 	/*
3175 	 * Record the last pool and clear PENDING which should be the last
3176 	 * update to @work.  Also, do this inside @pool->lock so that
3177 	 * PENDING and queued state changes happen together while IRQ is
3178 	 * disabled.
3179 	 */
3180 	set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3181 
3182 	pwq->stats[PWQ_STAT_STARTED]++;
3183 	raw_spin_unlock_irq(&pool->lock);
3184 
3185 	rcu_start_depth = rcu_preempt_depth();
3186 	lockdep_start_depth = lockdep_depth(current);
3187 	/* see drain_dead_softirq_workfn() */
3188 	if (!bh_draining)
3189 		lock_map_acquire(&pwq->wq->lockdep_map);
3190 	lock_map_acquire(&lockdep_map);
3191 	/*
3192 	 * Strictly speaking we should mark the invariant state without holding
3193 	 * any locks, that is, before these two lock_map_acquire()'s.
3194 	 *
3195 	 * However, that would result in:
3196 	 *
3197 	 *   A(W1)
3198 	 *   WFC(C)
3199 	 *		A(W1)
3200 	 *		C(C)
3201 	 *
3202 	 * Which would create W1->C->W1 dependencies, even though there is no
3203 	 * actual deadlock possible. There are two solutions, using a
3204 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3205 	 * hit the lockdep limitation on recursive locks, or simply discard
3206 	 * these locks.
3207 	 *
3208 	 * AFAICT there is no possible deadlock scenario between the
3209 	 * flush_work() and complete() primitives (except for single-threaded
3210 	 * workqueues), so hiding them isn't a problem.
3211 	 */
3212 	lockdep_invariant_state(true);
3213 	trace_workqueue_execute_start(work);
3214 	worker->current_func(work);
3215 	/*
3216 	 * While we must be careful to not use "work" after this, the trace
3217 	 * point will only record its address.
3218 	 */
3219 	trace_workqueue_execute_end(work, worker->current_func);
3220 	pwq->stats[PWQ_STAT_COMPLETED]++;
3221 	lock_map_release(&lockdep_map);
3222 	if (!bh_draining)
3223 		lock_map_release(&pwq->wq->lockdep_map);
3224 
3225 	if (unlikely((worker->task && in_atomic()) ||
3226 		     lockdep_depth(current) != lockdep_start_depth ||
3227 		     rcu_preempt_depth() != rcu_start_depth)) {
3228 		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3229 		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3230 		       current->comm, task_pid_nr(current), preempt_count(),
3231 		       lockdep_start_depth, lockdep_depth(current),
3232 		       rcu_start_depth, rcu_preempt_depth(),
3233 		       worker->current_func);
3234 		debug_show_held_locks(current);
3235 		dump_stack();
3236 	}
3237 
3238 	/*
3239 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3240 	 * kernels, where a requeueing work item waiting for something to
3241 	 * happen could deadlock with stop_machine as such work item could
3242 	 * indefinitely requeue itself while all other CPUs are trapped in
3243 	 * stop_machine. At the same time, report a quiescent RCU state so
3244 	 * the same condition doesn't freeze RCU.
3245 	 */
3246 	if (worker->task)
3247 		cond_resched();
3248 
3249 	raw_spin_lock_irq(&pool->lock);
3250 
3251 	/*
3252 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3253 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3254 	 * wq_cpu_intensive_thresh_us. Clear it.
3255 	 */
3256 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3257 
3258 	/* tag the worker for identification in schedule() */
3259 	worker->last_func = worker->current_func;
3260 
3261 	/* we're done with it, release */
3262 	hash_del(&worker->hentry);
3263 	worker->current_work = NULL;
3264 	worker->current_func = NULL;
3265 	worker->current_pwq = NULL;
3266 	worker->current_color = INT_MAX;
3267 
3268 	/* must be the last step, see the function comment */
3269 	pwq_dec_nr_in_flight(pwq, work_data);
3270 }
3271 
3272 /**
3273  * process_scheduled_works - process scheduled works
3274  * @worker: self
3275  *
3276  * Process all scheduled works.  Please note that the scheduled list
3277  * may change while processing a work, so this function repeatedly
3278  * fetches a work from the top and executes it.
3279  *
3280  * CONTEXT:
3281  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3282  * multiple times.
3283  */
3284 static void process_scheduled_works(struct worker *worker)
3285 {
3286 	struct work_struct *work;
3287 	bool first = true;
3288 
3289 	while ((work = list_first_entry_or_null(&worker->scheduled,
3290 						struct work_struct, entry))) {
3291 		if (first) {
3292 			worker->pool->watchdog_ts = jiffies;
3293 			first = false;
3294 		}
3295 		process_one_work(worker, work);
3296 	}
3297 }
3298 
3299 static void set_pf_worker(bool val)
3300 {
3301 	mutex_lock(&wq_pool_attach_mutex);
3302 	if (val)
3303 		current->flags |= PF_WQ_WORKER;
3304 	else
3305 		current->flags &= ~PF_WQ_WORKER;
3306 	mutex_unlock(&wq_pool_attach_mutex);
3307 }
3308 
3309 /**
3310  * worker_thread - the worker thread function
3311  * @__worker: self
3312  *
3313  * The worker thread function.  All workers belong to a worker_pool -
3314  * either a per-cpu one or dynamic unbound one.  These workers process all
3315  * work items regardless of their specific target workqueue.  The only
3316  * exception is work items which belong to workqueues with a rescuer which
3317  * will be explained in rescuer_thread().
3318  *
3319  * Return: 0
3320  */
3321 static int worker_thread(void *__worker)
3322 {
3323 	struct worker *worker = __worker;
3324 	struct worker_pool *pool = worker->pool;
3325 
3326 	/* tell the scheduler that this is a workqueue worker */
3327 	set_pf_worker(true);
3328 woke_up:
3329 	raw_spin_lock_irq(&pool->lock);
3330 
3331 	/* am I supposed to die? */
3332 	if (unlikely(worker->flags & WORKER_DIE)) {
3333 		raw_spin_unlock_irq(&pool->lock);
3334 		set_pf_worker(false);
3335 
3336 		set_task_comm(worker->task, "kworker/dying");
3337 		ida_free(&pool->worker_ida, worker->id);
3338 		WARN_ON_ONCE(!list_empty(&worker->entry));
3339 		return 0;
3340 	}
3341 
3342 	worker_leave_idle(worker);
3343 recheck:
3344 	/* no more worker necessary? */
3345 	if (!need_more_worker(pool))
3346 		goto sleep;
3347 
3348 	/* do we need to manage? */
3349 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3350 		goto recheck;
3351 
3352 	/*
3353 	 * ->scheduled list can only be filled while a worker is
3354 	 * preparing to process a work or actually processing it.
3355 	 * Make sure nobody diddled with it while I was sleeping.
3356 	 */
3357 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3358 
3359 	/*
3360 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3361 	 * worker or that someone else has already assumed the manager
3362 	 * role.  This is where @worker starts participating in concurrency
3363 	 * management if applicable and concurrency management is restored
3364 	 * after being rebound.  See rebind_workers() for details.
3365 	 */
3366 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3367 
3368 	do {
3369 		struct work_struct *work =
3370 			list_first_entry(&pool->worklist,
3371 					 struct work_struct, entry);
3372 
3373 		if (assign_work(work, worker, NULL))
3374 			process_scheduled_works(worker);
3375 	} while (keep_working(pool));
3376 
3377 	worker_set_flags(worker, WORKER_PREP);
3378 sleep:
3379 	/*
3380 	 * pool->lock is held and there's no work to process and no need to
3381 	 * manage, sleep.  Workers are woken up only while holding
3382 	 * pool->lock or from local cpu, so setting the current state
3383 	 * before releasing pool->lock is enough to prevent losing any
3384 	 * event.
3385 	 */
3386 	worker_enter_idle(worker);
3387 	__set_current_state(TASK_IDLE);
3388 	raw_spin_unlock_irq(&pool->lock);
3389 	schedule();
3390 	goto woke_up;
3391 }
3392 
3393 /**
3394  * rescuer_thread - the rescuer thread function
3395  * @__rescuer: self
3396  *
3397  * Workqueue rescuer thread function.  There's one rescuer for each
3398  * workqueue which has WQ_MEM_RECLAIM set.
3399  *
3400  * Regular work processing on a pool may block trying to create a new
3401  * worker which uses GFP_KERNEL allocation which has slight chance of
3402  * developing into deadlock if some works currently on the same queue
3403  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3404  * the problem rescuer solves.
3405  *
3406  * When such condition is possible, the pool summons rescuers of all
3407  * workqueues which have works queued on the pool and let them process
3408  * those works so that forward progress can be guaranteed.
3409  *
3410  * This should happen rarely.
3411  *
3412  * Return: 0
3413  */
3414 static int rescuer_thread(void *__rescuer)
3415 {
3416 	struct worker *rescuer = __rescuer;
3417 	struct workqueue_struct *wq = rescuer->rescue_wq;
3418 	bool should_stop;
3419 
3420 	set_user_nice(current, RESCUER_NICE_LEVEL);
3421 
3422 	/*
3423 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3424 	 * doesn't participate in concurrency management.
3425 	 */
3426 	set_pf_worker(true);
3427 repeat:
3428 	set_current_state(TASK_IDLE);
3429 
3430 	/*
3431 	 * By the time the rescuer is requested to stop, the workqueue
3432 	 * shouldn't have any work pending, but @wq->maydays may still have
3433 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3434 	 * all the work items before the rescuer got to them.  Go through
3435 	 * @wq->maydays processing before acting on should_stop so that the
3436 	 * list is always empty on exit.
3437 	 */
3438 	should_stop = kthread_should_stop();
3439 
3440 	/* see whether any pwq is asking for help */
3441 	raw_spin_lock_irq(&wq_mayday_lock);
3442 
3443 	while (!list_empty(&wq->maydays)) {
3444 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3445 					struct pool_workqueue, mayday_node);
3446 		struct worker_pool *pool = pwq->pool;
3447 		struct work_struct *work, *n;
3448 
3449 		__set_current_state(TASK_RUNNING);
3450 		list_del_init(&pwq->mayday_node);
3451 
3452 		raw_spin_unlock_irq(&wq_mayday_lock);
3453 
3454 		worker_attach_to_pool(rescuer, pool);
3455 
3456 		raw_spin_lock_irq(&pool->lock);
3457 
3458 		/*
3459 		 * Slurp in all works issued via this workqueue and
3460 		 * process'em.
3461 		 */
3462 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3463 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3464 			if (get_work_pwq(work) == pwq &&
3465 			    assign_work(work, rescuer, &n))
3466 				pwq->stats[PWQ_STAT_RESCUED]++;
3467 		}
3468 
3469 		if (!list_empty(&rescuer->scheduled)) {
3470 			process_scheduled_works(rescuer);
3471 
3472 			/*
3473 			 * The above execution of rescued work items could
3474 			 * have created more to rescue through
3475 			 * pwq_activate_first_inactive() or chained
3476 			 * queueing.  Let's put @pwq back on mayday list so
3477 			 * that such back-to-back work items, which may be
3478 			 * being used to relieve memory pressure, don't
3479 			 * incur MAYDAY_INTERVAL delay inbetween.
3480 			 */
3481 			if (pwq->nr_active && need_to_create_worker(pool)) {
3482 				raw_spin_lock(&wq_mayday_lock);
3483 				/*
3484 				 * Queue iff we aren't racing destruction
3485 				 * and somebody else hasn't queued it already.
3486 				 */
3487 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3488 					get_pwq(pwq);
3489 					list_add_tail(&pwq->mayday_node, &wq->maydays);
3490 				}
3491 				raw_spin_unlock(&wq_mayday_lock);
3492 			}
3493 		}
3494 
3495 		/*
3496 		 * Put the reference grabbed by send_mayday().  @pool won't
3497 		 * go away while we're still attached to it.
3498 		 */
3499 		put_pwq(pwq);
3500 
3501 		/*
3502 		 * Leave this pool. Notify regular workers; otherwise, we end up
3503 		 * with 0 concurrency and stalling the execution.
3504 		 */
3505 		kick_pool(pool);
3506 
3507 		raw_spin_unlock_irq(&pool->lock);
3508 
3509 		worker_detach_from_pool(rescuer);
3510 
3511 		raw_spin_lock_irq(&wq_mayday_lock);
3512 	}
3513 
3514 	raw_spin_unlock_irq(&wq_mayday_lock);
3515 
3516 	if (should_stop) {
3517 		__set_current_state(TASK_RUNNING);
3518 		set_pf_worker(false);
3519 		return 0;
3520 	}
3521 
3522 	/* rescuers should never participate in concurrency management */
3523 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3524 	schedule();
3525 	goto repeat;
3526 }
3527 
3528 static void bh_worker(struct worker *worker)
3529 {
3530 	struct worker_pool *pool = worker->pool;
3531 	int nr_restarts = BH_WORKER_RESTARTS;
3532 	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3533 
3534 	raw_spin_lock_irq(&pool->lock);
3535 	worker_leave_idle(worker);
3536 
3537 	/*
3538 	 * This function follows the structure of worker_thread(). See there for
3539 	 * explanations on each step.
3540 	 */
3541 	if (!need_more_worker(pool))
3542 		goto done;
3543 
3544 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3545 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3546 
3547 	do {
3548 		struct work_struct *work =
3549 			list_first_entry(&pool->worklist,
3550 					 struct work_struct, entry);
3551 
3552 		if (assign_work(work, worker, NULL))
3553 			process_scheduled_works(worker);
3554 	} while (keep_working(pool) &&
3555 		 --nr_restarts && time_before(jiffies, end));
3556 
3557 	worker_set_flags(worker, WORKER_PREP);
3558 done:
3559 	worker_enter_idle(worker);
3560 	kick_pool(pool);
3561 	raw_spin_unlock_irq(&pool->lock);
3562 }
3563 
3564 /*
3565  * TODO: Convert all tasklet users to workqueue and use softirq directly.
3566  *
3567  * This is currently called from tasklet[_hi]action() and thus is also called
3568  * whenever there are tasklets to run. Let's do an early exit if there's nothing
3569  * queued. Once conversion from tasklet is complete, the need_more_worker() test
3570  * can be dropped.
3571  *
3572  * After full conversion, we'll add worker->softirq_action, directly use the
3573  * softirq action and obtain the worker pointer from the softirq_action pointer.
3574  */
3575 void workqueue_softirq_action(bool highpri)
3576 {
3577 	struct worker_pool *pool =
3578 		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3579 	if (need_more_worker(pool))
3580 		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3581 }
3582 
3583 struct wq_drain_dead_softirq_work {
3584 	struct work_struct	work;
3585 	struct worker_pool	*pool;
3586 	struct completion	done;
3587 };
3588 
3589 static void drain_dead_softirq_workfn(struct work_struct *work)
3590 {
3591 	struct wq_drain_dead_softirq_work *dead_work =
3592 		container_of(work, struct wq_drain_dead_softirq_work, work);
3593 	struct worker_pool *pool = dead_work->pool;
3594 	bool repeat;
3595 
3596 	/*
3597 	 * @pool's CPU is dead and we want to execute its still pending work
3598 	 * items from this BH work item which is running on a different CPU. As
3599 	 * its CPU is dead, @pool can't be kicked and, as work execution path
3600 	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3601 	 * @pool with %POOL_BH_DRAINING for the special treatments.
3602 	 */
3603 	raw_spin_lock_irq(&pool->lock);
3604 	pool->flags |= POOL_BH_DRAINING;
3605 	raw_spin_unlock_irq(&pool->lock);
3606 
3607 	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3608 
3609 	raw_spin_lock_irq(&pool->lock);
3610 	pool->flags &= ~POOL_BH_DRAINING;
3611 	repeat = need_more_worker(pool);
3612 	raw_spin_unlock_irq(&pool->lock);
3613 
3614 	/*
3615 	 * bh_worker() might hit consecutive execution limit and bail. If there
3616 	 * still are pending work items, reschedule self and return so that we
3617 	 * don't hog this CPU's BH.
3618 	 */
3619 	if (repeat) {
3620 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3621 			queue_work(system_bh_highpri_wq, work);
3622 		else
3623 			queue_work(system_bh_wq, work);
3624 	} else {
3625 		complete(&dead_work->done);
3626 	}
3627 }
3628 
3629 /*
3630  * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3631  * possible to allocate dead_work per CPU and avoid flushing. However, then we
3632  * have to worry about draining overlapping with CPU coming back online or
3633  * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3634  * on). Let's keep it simple and drain them synchronously. These are BH work
3635  * items which shouldn't be requeued on the same pool. Shouldn't take long.
3636  */
3637 void workqueue_softirq_dead(unsigned int cpu)
3638 {
3639 	int i;
3640 
3641 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3642 		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3643 		struct wq_drain_dead_softirq_work dead_work;
3644 
3645 		if (!need_more_worker(pool))
3646 			continue;
3647 
3648 		INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3649 		dead_work.pool = pool;
3650 		init_completion(&dead_work.done);
3651 
3652 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3653 			queue_work(system_bh_highpri_wq, &dead_work.work);
3654 		else
3655 			queue_work(system_bh_wq, &dead_work.work);
3656 
3657 		wait_for_completion(&dead_work.done);
3658 		destroy_work_on_stack(&dead_work.work);
3659 	}
3660 }
3661 
3662 /**
3663  * check_flush_dependency - check for flush dependency sanity
3664  * @target_wq: workqueue being flushed
3665  * @target_work: work item being flushed (NULL for workqueue flushes)
3666  *
3667  * %current is trying to flush the whole @target_wq or @target_work on it.
3668  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3669  * reclaiming memory or running on a workqueue which doesn't have
3670  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3671  * a deadlock.
3672  */
3673 static void check_flush_dependency(struct workqueue_struct *target_wq,
3674 				   struct work_struct *target_work)
3675 {
3676 	work_func_t target_func = target_work ? target_work->func : NULL;
3677 	struct worker *worker;
3678 
3679 	if (target_wq->flags & WQ_MEM_RECLAIM)
3680 		return;
3681 
3682 	worker = current_wq_worker();
3683 
3684 	WARN_ONCE(current->flags & PF_MEMALLOC,
3685 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3686 		  current->pid, current->comm, target_wq->name, target_func);
3687 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3688 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3689 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3690 		  worker->current_pwq->wq->name, worker->current_func,
3691 		  target_wq->name, target_func);
3692 }
3693 
3694 struct wq_barrier {
3695 	struct work_struct	work;
3696 	struct completion	done;
3697 	struct task_struct	*task;	/* purely informational */
3698 };
3699 
3700 static void wq_barrier_func(struct work_struct *work)
3701 {
3702 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3703 	complete(&barr->done);
3704 }
3705 
3706 /**
3707  * insert_wq_barrier - insert a barrier work
3708  * @pwq: pwq to insert barrier into
3709  * @barr: wq_barrier to insert
3710  * @target: target work to attach @barr to
3711  * @worker: worker currently executing @target, NULL if @target is not executing
3712  *
3713  * @barr is linked to @target such that @barr is completed only after
3714  * @target finishes execution.  Please note that the ordering
3715  * guarantee is observed only with respect to @target and on the local
3716  * cpu.
3717  *
3718  * Currently, a queued barrier can't be canceled.  This is because
3719  * try_to_grab_pending() can't determine whether the work to be
3720  * grabbed is at the head of the queue and thus can't clear LINKED
3721  * flag of the previous work while there must be a valid next work
3722  * after a work with LINKED flag set.
3723  *
3724  * Note that when @worker is non-NULL, @target may be modified
3725  * underneath us, so we can't reliably determine pwq from @target.
3726  *
3727  * CONTEXT:
3728  * raw_spin_lock_irq(pool->lock).
3729  */
3730 static void insert_wq_barrier(struct pool_workqueue *pwq,
3731 			      struct wq_barrier *barr,
3732 			      struct work_struct *target, struct worker *worker)
3733 {
3734 	static __maybe_unused struct lock_class_key bh_key, thr_key;
3735 	unsigned int work_flags = 0;
3736 	unsigned int work_color;
3737 	struct list_head *head;
3738 
3739 	/*
3740 	 * debugobject calls are safe here even with pool->lock locked
3741 	 * as we know for sure that this will not trigger any of the
3742 	 * checks and call back into the fixup functions where we
3743 	 * might deadlock.
3744 	 *
3745 	 * BH and threaded workqueues need separate lockdep keys to avoid
3746 	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3747 	 * usage".
3748 	 */
3749 	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3750 			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3751 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3752 
3753 	init_completion_map(&barr->done, &target->lockdep_map);
3754 
3755 	barr->task = current;
3756 
3757 	/* The barrier work item does not participate in nr_active. */
3758 	work_flags |= WORK_STRUCT_INACTIVE;
3759 
3760 	/*
3761 	 * If @target is currently being executed, schedule the
3762 	 * barrier to the worker; otherwise, put it after @target.
3763 	 */
3764 	if (worker) {
3765 		head = worker->scheduled.next;
3766 		work_color = worker->current_color;
3767 	} else {
3768 		unsigned long *bits = work_data_bits(target);
3769 
3770 		head = target->entry.next;
3771 		/* there can already be other linked works, inherit and set */
3772 		work_flags |= *bits & WORK_STRUCT_LINKED;
3773 		work_color = get_work_color(*bits);
3774 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3775 	}
3776 
3777 	pwq->nr_in_flight[work_color]++;
3778 	work_flags |= work_color_to_flags(work_color);
3779 
3780 	insert_work(pwq, &barr->work, head, work_flags);
3781 }
3782 
3783 /**
3784  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3785  * @wq: workqueue being flushed
3786  * @flush_color: new flush color, < 0 for no-op
3787  * @work_color: new work color, < 0 for no-op
3788  *
3789  * Prepare pwqs for workqueue flushing.
3790  *
3791  * If @flush_color is non-negative, flush_color on all pwqs should be
3792  * -1.  If no pwq has in-flight commands at the specified color, all
3793  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3794  * has in flight commands, its pwq->flush_color is set to
3795  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3796  * wakeup logic is armed and %true is returned.
3797  *
3798  * The caller should have initialized @wq->first_flusher prior to
3799  * calling this function with non-negative @flush_color.  If
3800  * @flush_color is negative, no flush color update is done and %false
3801  * is returned.
3802  *
3803  * If @work_color is non-negative, all pwqs should have the same
3804  * work_color which is previous to @work_color and all will be
3805  * advanced to @work_color.
3806  *
3807  * CONTEXT:
3808  * mutex_lock(wq->mutex).
3809  *
3810  * Return:
3811  * %true if @flush_color >= 0 and there's something to flush.  %false
3812  * otherwise.
3813  */
3814 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3815 				      int flush_color, int work_color)
3816 {
3817 	bool wait = false;
3818 	struct pool_workqueue *pwq;
3819 
3820 	if (flush_color >= 0) {
3821 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3822 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3823 	}
3824 
3825 	for_each_pwq(pwq, wq) {
3826 		struct worker_pool *pool = pwq->pool;
3827 
3828 		raw_spin_lock_irq(&pool->lock);
3829 
3830 		if (flush_color >= 0) {
3831 			WARN_ON_ONCE(pwq->flush_color != -1);
3832 
3833 			if (pwq->nr_in_flight[flush_color]) {
3834 				pwq->flush_color = flush_color;
3835 				atomic_inc(&wq->nr_pwqs_to_flush);
3836 				wait = true;
3837 			}
3838 		}
3839 
3840 		if (work_color >= 0) {
3841 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3842 			pwq->work_color = work_color;
3843 		}
3844 
3845 		raw_spin_unlock_irq(&pool->lock);
3846 	}
3847 
3848 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3849 		complete(&wq->first_flusher->done);
3850 
3851 	return wait;
3852 }
3853 
3854 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3855 {
3856 #ifdef CONFIG_LOCKDEP
3857 	if (wq->flags & WQ_BH)
3858 		local_bh_disable();
3859 
3860 	lock_map_acquire(&wq->lockdep_map);
3861 	lock_map_release(&wq->lockdep_map);
3862 
3863 	if (wq->flags & WQ_BH)
3864 		local_bh_enable();
3865 #endif
3866 }
3867 
3868 static void touch_work_lockdep_map(struct work_struct *work,
3869 				   struct workqueue_struct *wq)
3870 {
3871 #ifdef CONFIG_LOCKDEP
3872 	if (wq->flags & WQ_BH)
3873 		local_bh_disable();
3874 
3875 	lock_map_acquire(&work->lockdep_map);
3876 	lock_map_release(&work->lockdep_map);
3877 
3878 	if (wq->flags & WQ_BH)
3879 		local_bh_enable();
3880 #endif
3881 }
3882 
3883 /**
3884  * __flush_workqueue - ensure that any scheduled work has run to completion.
3885  * @wq: workqueue to flush
3886  *
3887  * This function sleeps until all work items which were queued on entry
3888  * have finished execution, but it is not livelocked by new incoming ones.
3889  */
3890 void __flush_workqueue(struct workqueue_struct *wq)
3891 {
3892 	struct wq_flusher this_flusher = {
3893 		.list = LIST_HEAD_INIT(this_flusher.list),
3894 		.flush_color = -1,
3895 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3896 	};
3897 	int next_color;
3898 
3899 	if (WARN_ON(!wq_online))
3900 		return;
3901 
3902 	touch_wq_lockdep_map(wq);
3903 
3904 	mutex_lock(&wq->mutex);
3905 
3906 	/*
3907 	 * Start-to-wait phase
3908 	 */
3909 	next_color = work_next_color(wq->work_color);
3910 
3911 	if (next_color != wq->flush_color) {
3912 		/*
3913 		 * Color space is not full.  The current work_color
3914 		 * becomes our flush_color and work_color is advanced
3915 		 * by one.
3916 		 */
3917 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3918 		this_flusher.flush_color = wq->work_color;
3919 		wq->work_color = next_color;
3920 
3921 		if (!wq->first_flusher) {
3922 			/* no flush in progress, become the first flusher */
3923 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3924 
3925 			wq->first_flusher = &this_flusher;
3926 
3927 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3928 						       wq->work_color)) {
3929 				/* nothing to flush, done */
3930 				wq->flush_color = next_color;
3931 				wq->first_flusher = NULL;
3932 				goto out_unlock;
3933 			}
3934 		} else {
3935 			/* wait in queue */
3936 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3937 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3938 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3939 		}
3940 	} else {
3941 		/*
3942 		 * Oops, color space is full, wait on overflow queue.
3943 		 * The next flush completion will assign us
3944 		 * flush_color and transfer to flusher_queue.
3945 		 */
3946 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3947 	}
3948 
3949 	check_flush_dependency(wq, NULL);
3950 
3951 	mutex_unlock(&wq->mutex);
3952 
3953 	wait_for_completion(&this_flusher.done);
3954 
3955 	/*
3956 	 * Wake-up-and-cascade phase
3957 	 *
3958 	 * First flushers are responsible for cascading flushes and
3959 	 * handling overflow.  Non-first flushers can simply return.
3960 	 */
3961 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3962 		return;
3963 
3964 	mutex_lock(&wq->mutex);
3965 
3966 	/* we might have raced, check again with mutex held */
3967 	if (wq->first_flusher != &this_flusher)
3968 		goto out_unlock;
3969 
3970 	WRITE_ONCE(wq->first_flusher, NULL);
3971 
3972 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3973 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3974 
3975 	while (true) {
3976 		struct wq_flusher *next, *tmp;
3977 
3978 		/* complete all the flushers sharing the current flush color */
3979 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3980 			if (next->flush_color != wq->flush_color)
3981 				break;
3982 			list_del_init(&next->list);
3983 			complete(&next->done);
3984 		}
3985 
3986 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3987 			     wq->flush_color != work_next_color(wq->work_color));
3988 
3989 		/* this flush_color is finished, advance by one */
3990 		wq->flush_color = work_next_color(wq->flush_color);
3991 
3992 		/* one color has been freed, handle overflow queue */
3993 		if (!list_empty(&wq->flusher_overflow)) {
3994 			/*
3995 			 * Assign the same color to all overflowed
3996 			 * flushers, advance work_color and append to
3997 			 * flusher_queue.  This is the start-to-wait
3998 			 * phase for these overflowed flushers.
3999 			 */
4000 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4001 				tmp->flush_color = wq->work_color;
4002 
4003 			wq->work_color = work_next_color(wq->work_color);
4004 
4005 			list_splice_tail_init(&wq->flusher_overflow,
4006 					      &wq->flusher_queue);
4007 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4008 		}
4009 
4010 		if (list_empty(&wq->flusher_queue)) {
4011 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4012 			break;
4013 		}
4014 
4015 		/*
4016 		 * Need to flush more colors.  Make the next flusher
4017 		 * the new first flusher and arm pwqs.
4018 		 */
4019 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4020 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4021 
4022 		list_del_init(&next->list);
4023 		wq->first_flusher = next;
4024 
4025 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4026 			break;
4027 
4028 		/*
4029 		 * Meh... this color is already done, clear first
4030 		 * flusher and repeat cascading.
4031 		 */
4032 		wq->first_flusher = NULL;
4033 	}
4034 
4035 out_unlock:
4036 	mutex_unlock(&wq->mutex);
4037 }
4038 EXPORT_SYMBOL(__flush_workqueue);
4039 
4040 /**
4041  * drain_workqueue - drain a workqueue
4042  * @wq: workqueue to drain
4043  *
4044  * Wait until the workqueue becomes empty.  While draining is in progress,
4045  * only chain queueing is allowed.  IOW, only currently pending or running
4046  * work items on @wq can queue further work items on it.  @wq is flushed
4047  * repeatedly until it becomes empty.  The number of flushing is determined
4048  * by the depth of chaining and should be relatively short.  Whine if it
4049  * takes too long.
4050  */
4051 void drain_workqueue(struct workqueue_struct *wq)
4052 {
4053 	unsigned int flush_cnt = 0;
4054 	struct pool_workqueue *pwq;
4055 
4056 	/*
4057 	 * __queue_work() needs to test whether there are drainers, is much
4058 	 * hotter than drain_workqueue() and already looks at @wq->flags.
4059 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4060 	 */
4061 	mutex_lock(&wq->mutex);
4062 	if (!wq->nr_drainers++)
4063 		wq->flags |= __WQ_DRAINING;
4064 	mutex_unlock(&wq->mutex);
4065 reflush:
4066 	__flush_workqueue(wq);
4067 
4068 	mutex_lock(&wq->mutex);
4069 
4070 	for_each_pwq(pwq, wq) {
4071 		bool drained;
4072 
4073 		raw_spin_lock_irq(&pwq->pool->lock);
4074 		drained = pwq_is_empty(pwq);
4075 		raw_spin_unlock_irq(&pwq->pool->lock);
4076 
4077 		if (drained)
4078 			continue;
4079 
4080 		if (++flush_cnt == 10 ||
4081 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4082 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4083 				wq->name, __func__, flush_cnt);
4084 
4085 		mutex_unlock(&wq->mutex);
4086 		goto reflush;
4087 	}
4088 
4089 	if (!--wq->nr_drainers)
4090 		wq->flags &= ~__WQ_DRAINING;
4091 	mutex_unlock(&wq->mutex);
4092 }
4093 EXPORT_SYMBOL_GPL(drain_workqueue);
4094 
4095 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4096 			     bool from_cancel)
4097 {
4098 	struct worker *worker = NULL;
4099 	struct worker_pool *pool;
4100 	struct pool_workqueue *pwq;
4101 	struct workqueue_struct *wq;
4102 
4103 	rcu_read_lock();
4104 	pool = get_work_pool(work);
4105 	if (!pool) {
4106 		rcu_read_unlock();
4107 		return false;
4108 	}
4109 
4110 	raw_spin_lock_irq(&pool->lock);
4111 	/* see the comment in try_to_grab_pending() with the same code */
4112 	pwq = get_work_pwq(work);
4113 	if (pwq) {
4114 		if (unlikely(pwq->pool != pool))
4115 			goto already_gone;
4116 	} else {
4117 		worker = find_worker_executing_work(pool, work);
4118 		if (!worker)
4119 			goto already_gone;
4120 		pwq = worker->current_pwq;
4121 	}
4122 
4123 	wq = pwq->wq;
4124 	check_flush_dependency(wq, work);
4125 
4126 	insert_wq_barrier(pwq, barr, work, worker);
4127 	raw_spin_unlock_irq(&pool->lock);
4128 
4129 	touch_work_lockdep_map(work, wq);
4130 
4131 	/*
4132 	 * Force a lock recursion deadlock when using flush_work() inside a
4133 	 * single-threaded or rescuer equipped workqueue.
4134 	 *
4135 	 * For single threaded workqueues the deadlock happens when the work
4136 	 * is after the work issuing the flush_work(). For rescuer equipped
4137 	 * workqueues the deadlock happens when the rescuer stalls, blocking
4138 	 * forward progress.
4139 	 */
4140 	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4141 		touch_wq_lockdep_map(wq);
4142 
4143 	rcu_read_unlock();
4144 	return true;
4145 already_gone:
4146 	raw_spin_unlock_irq(&pool->lock);
4147 	rcu_read_unlock();
4148 	return false;
4149 }
4150 
4151 static bool __flush_work(struct work_struct *work, bool from_cancel)
4152 {
4153 	struct wq_barrier barr;
4154 	unsigned long data;
4155 
4156 	if (WARN_ON(!wq_online))
4157 		return false;
4158 
4159 	if (WARN_ON(!work->func))
4160 		return false;
4161 
4162 	if (!start_flush_work(work, &barr, from_cancel))
4163 		return false;
4164 
4165 	/*
4166 	 * start_flush_work() returned %true. If @from_cancel is set, we know
4167 	 * that @work must have been executing during start_flush_work() and
4168 	 * can't currently be queued. Its data must contain OFFQ bits. If @work
4169 	 * was queued on a BH workqueue, we also know that it was running in the
4170 	 * BH context and thus can be busy-waited.
4171 	 */
4172 	data = *work_data_bits(work);
4173 	if (from_cancel &&
4174 	    !WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_BH)) {
4175 		/*
4176 		 * On RT, prevent a live lock when %current preempted soft
4177 		 * interrupt processing or prevents ksoftirqd from running by
4178 		 * keeping flipping BH. If the BH work item runs on a different
4179 		 * CPU then this has no effect other than doing the BH
4180 		 * disable/enable dance for nothing. This is copied from
4181 		 * kernel/softirq.c::tasklet_unlock_spin_wait().
4182 		 */
4183 		while (!try_wait_for_completion(&barr.done)) {
4184 			if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4185 				local_bh_disable();
4186 				local_bh_enable();
4187 			} else {
4188 				cpu_relax();
4189 			}
4190 		}
4191 	} else {
4192 		wait_for_completion(&barr.done);
4193 	}
4194 
4195 	destroy_work_on_stack(&barr.work);
4196 	return true;
4197 }
4198 
4199 /**
4200  * flush_work - wait for a work to finish executing the last queueing instance
4201  * @work: the work to flush
4202  *
4203  * Wait until @work has finished execution.  @work is guaranteed to be idle
4204  * on return if it hasn't been requeued since flush started.
4205  *
4206  * Return:
4207  * %true if flush_work() waited for the work to finish execution,
4208  * %false if it was already idle.
4209  */
4210 bool flush_work(struct work_struct *work)
4211 {
4212 	might_sleep();
4213 	return __flush_work(work, false);
4214 }
4215 EXPORT_SYMBOL_GPL(flush_work);
4216 
4217 /**
4218  * flush_delayed_work - wait for a dwork to finish executing the last queueing
4219  * @dwork: the delayed work to flush
4220  *
4221  * Delayed timer is cancelled and the pending work is queued for
4222  * immediate execution.  Like flush_work(), this function only
4223  * considers the last queueing instance of @dwork.
4224  *
4225  * Return:
4226  * %true if flush_work() waited for the work to finish execution,
4227  * %false if it was already idle.
4228  */
4229 bool flush_delayed_work(struct delayed_work *dwork)
4230 {
4231 	local_irq_disable();
4232 	if (del_timer_sync(&dwork->timer))
4233 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4234 	local_irq_enable();
4235 	return flush_work(&dwork->work);
4236 }
4237 EXPORT_SYMBOL(flush_delayed_work);
4238 
4239 /**
4240  * flush_rcu_work - wait for a rwork to finish executing the last queueing
4241  * @rwork: the rcu work to flush
4242  *
4243  * Return:
4244  * %true if flush_rcu_work() waited for the work to finish execution,
4245  * %false if it was already idle.
4246  */
4247 bool flush_rcu_work(struct rcu_work *rwork)
4248 {
4249 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4250 		rcu_barrier();
4251 		flush_work(&rwork->work);
4252 		return true;
4253 	} else {
4254 		return flush_work(&rwork->work);
4255 	}
4256 }
4257 EXPORT_SYMBOL(flush_rcu_work);
4258 
4259 static void work_offqd_disable(struct work_offq_data *offqd)
4260 {
4261 	const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4262 
4263 	if (likely(offqd->disable < max))
4264 		offqd->disable++;
4265 	else
4266 		WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4267 }
4268 
4269 static void work_offqd_enable(struct work_offq_data *offqd)
4270 {
4271 	if (likely(offqd->disable > 0))
4272 		offqd->disable--;
4273 	else
4274 		WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4275 }
4276 
4277 static bool __cancel_work(struct work_struct *work, u32 cflags)
4278 {
4279 	struct work_offq_data offqd;
4280 	unsigned long irq_flags;
4281 	int ret;
4282 
4283 	ret = work_grab_pending(work, cflags, &irq_flags);
4284 
4285 	work_offqd_unpack(&offqd, *work_data_bits(work));
4286 
4287 	if (cflags & WORK_CANCEL_DISABLE)
4288 		work_offqd_disable(&offqd);
4289 
4290 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4291 					work_offqd_pack_flags(&offqd));
4292 	local_irq_restore(irq_flags);
4293 	return ret;
4294 }
4295 
4296 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4297 {
4298 	bool ret;
4299 
4300 	ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4301 
4302 	if (*work_data_bits(work) & WORK_OFFQ_BH)
4303 		WARN_ON_ONCE(in_hardirq());
4304 	else
4305 		might_sleep();
4306 
4307 	/*
4308 	 * Skip __flush_work() during early boot when we know that @work isn't
4309 	 * executing. This allows canceling during early boot.
4310 	 */
4311 	if (wq_online)
4312 		__flush_work(work, true);
4313 
4314 	if (!(cflags & WORK_CANCEL_DISABLE))
4315 		enable_work(work);
4316 
4317 	return ret;
4318 }
4319 
4320 /*
4321  * See cancel_delayed_work()
4322  */
4323 bool cancel_work(struct work_struct *work)
4324 {
4325 	return __cancel_work(work, 0);
4326 }
4327 EXPORT_SYMBOL(cancel_work);
4328 
4329 /**
4330  * cancel_work_sync - cancel a work and wait for it to finish
4331  * @work: the work to cancel
4332  *
4333  * Cancel @work and wait for its execution to finish. This function can be used
4334  * even if the work re-queues itself or migrates to another workqueue. On return
4335  * from this function, @work is guaranteed to be not pending or executing on any
4336  * CPU as long as there aren't racing enqueues.
4337  *
4338  * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4339  * Use cancel_delayed_work_sync() instead.
4340  *
4341  * Must be called from a sleepable context if @work was last queued on a non-BH
4342  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4343  * if @work was last queued on a BH workqueue.
4344  *
4345  * Returns %true if @work was pending, %false otherwise.
4346  */
4347 bool cancel_work_sync(struct work_struct *work)
4348 {
4349 	return __cancel_work_sync(work, 0);
4350 }
4351 EXPORT_SYMBOL_GPL(cancel_work_sync);
4352 
4353 /**
4354  * cancel_delayed_work - cancel a delayed work
4355  * @dwork: delayed_work to cancel
4356  *
4357  * Kill off a pending delayed_work.
4358  *
4359  * Return: %true if @dwork was pending and canceled; %false if it wasn't
4360  * pending.
4361  *
4362  * Note:
4363  * The work callback function may still be running on return, unless
4364  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4365  * use cancel_delayed_work_sync() to wait on it.
4366  *
4367  * This function is safe to call from any context including IRQ handler.
4368  */
4369 bool cancel_delayed_work(struct delayed_work *dwork)
4370 {
4371 	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4372 }
4373 EXPORT_SYMBOL(cancel_delayed_work);
4374 
4375 /**
4376  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4377  * @dwork: the delayed work cancel
4378  *
4379  * This is cancel_work_sync() for delayed works.
4380  *
4381  * Return:
4382  * %true if @dwork was pending, %false otherwise.
4383  */
4384 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4385 {
4386 	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4387 }
4388 EXPORT_SYMBOL(cancel_delayed_work_sync);
4389 
4390 /**
4391  * disable_work - Disable and cancel a work item
4392  * @work: work item to disable
4393  *
4394  * Disable @work by incrementing its disable count and cancel it if currently
4395  * pending. As long as the disable count is non-zero, any attempt to queue @work
4396  * will fail and return %false. The maximum supported disable depth is 2 to the
4397  * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4398  *
4399  * Can be called from any context. Returns %true if @work was pending, %false
4400  * otherwise.
4401  */
4402 bool disable_work(struct work_struct *work)
4403 {
4404 	return __cancel_work(work, WORK_CANCEL_DISABLE);
4405 }
4406 EXPORT_SYMBOL_GPL(disable_work);
4407 
4408 /**
4409  * disable_work_sync - Disable, cancel and drain a work item
4410  * @work: work item to disable
4411  *
4412  * Similar to disable_work() but also wait for @work to finish if currently
4413  * executing.
4414  *
4415  * Must be called from a sleepable context if @work was last queued on a non-BH
4416  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4417  * if @work was last queued on a BH workqueue.
4418  *
4419  * Returns %true if @work was pending, %false otherwise.
4420  */
4421 bool disable_work_sync(struct work_struct *work)
4422 {
4423 	return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4424 }
4425 EXPORT_SYMBOL_GPL(disable_work_sync);
4426 
4427 /**
4428  * enable_work - Enable a work item
4429  * @work: work item to enable
4430  *
4431  * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4432  * only be queued if its disable count is 0.
4433  *
4434  * Can be called from any context. Returns %true if the disable count reached 0.
4435  * Otherwise, %false.
4436  */
4437 bool enable_work(struct work_struct *work)
4438 {
4439 	struct work_offq_data offqd;
4440 	unsigned long irq_flags;
4441 
4442 	work_grab_pending(work, 0, &irq_flags);
4443 
4444 	work_offqd_unpack(&offqd, *work_data_bits(work));
4445 	work_offqd_enable(&offqd);
4446 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4447 					work_offqd_pack_flags(&offqd));
4448 	local_irq_restore(irq_flags);
4449 
4450 	return !offqd.disable;
4451 }
4452 EXPORT_SYMBOL_GPL(enable_work);
4453 
4454 /**
4455  * disable_delayed_work - Disable and cancel a delayed work item
4456  * @dwork: delayed work item to disable
4457  *
4458  * disable_work() for delayed work items.
4459  */
4460 bool disable_delayed_work(struct delayed_work *dwork)
4461 {
4462 	return __cancel_work(&dwork->work,
4463 			     WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4464 }
4465 EXPORT_SYMBOL_GPL(disable_delayed_work);
4466 
4467 /**
4468  * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4469  * @dwork: delayed work item to disable
4470  *
4471  * disable_work_sync() for delayed work items.
4472  */
4473 bool disable_delayed_work_sync(struct delayed_work *dwork)
4474 {
4475 	return __cancel_work_sync(&dwork->work,
4476 				  WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4477 }
4478 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4479 
4480 /**
4481  * enable_delayed_work - Enable a delayed work item
4482  * @dwork: delayed work item to enable
4483  *
4484  * enable_work() for delayed work items.
4485  */
4486 bool enable_delayed_work(struct delayed_work *dwork)
4487 {
4488 	return enable_work(&dwork->work);
4489 }
4490 EXPORT_SYMBOL_GPL(enable_delayed_work);
4491 
4492 /**
4493  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4494  * @func: the function to call
4495  *
4496  * schedule_on_each_cpu() executes @func on each online CPU using the
4497  * system workqueue and blocks until all CPUs have completed.
4498  * schedule_on_each_cpu() is very slow.
4499  *
4500  * Return:
4501  * 0 on success, -errno on failure.
4502  */
4503 int schedule_on_each_cpu(work_func_t func)
4504 {
4505 	int cpu;
4506 	struct work_struct __percpu *works;
4507 
4508 	works = alloc_percpu(struct work_struct);
4509 	if (!works)
4510 		return -ENOMEM;
4511 
4512 	cpus_read_lock();
4513 
4514 	for_each_online_cpu(cpu) {
4515 		struct work_struct *work = per_cpu_ptr(works, cpu);
4516 
4517 		INIT_WORK(work, func);
4518 		schedule_work_on(cpu, work);
4519 	}
4520 
4521 	for_each_online_cpu(cpu)
4522 		flush_work(per_cpu_ptr(works, cpu));
4523 
4524 	cpus_read_unlock();
4525 	free_percpu(works);
4526 	return 0;
4527 }
4528 
4529 /**
4530  * execute_in_process_context - reliably execute the routine with user context
4531  * @fn:		the function to execute
4532  * @ew:		guaranteed storage for the execute work structure (must
4533  *		be available when the work executes)
4534  *
4535  * Executes the function immediately if process context is available,
4536  * otherwise schedules the function for delayed execution.
4537  *
4538  * Return:	0 - function was executed
4539  *		1 - function was scheduled for execution
4540  */
4541 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4542 {
4543 	if (!in_interrupt()) {
4544 		fn(&ew->work);
4545 		return 0;
4546 	}
4547 
4548 	INIT_WORK(&ew->work, fn);
4549 	schedule_work(&ew->work);
4550 
4551 	return 1;
4552 }
4553 EXPORT_SYMBOL_GPL(execute_in_process_context);
4554 
4555 /**
4556  * free_workqueue_attrs - free a workqueue_attrs
4557  * @attrs: workqueue_attrs to free
4558  *
4559  * Undo alloc_workqueue_attrs().
4560  */
4561 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4562 {
4563 	if (attrs) {
4564 		free_cpumask_var(attrs->cpumask);
4565 		free_cpumask_var(attrs->__pod_cpumask);
4566 		kfree(attrs);
4567 	}
4568 }
4569 
4570 /**
4571  * alloc_workqueue_attrs - allocate a workqueue_attrs
4572  *
4573  * Allocate a new workqueue_attrs, initialize with default settings and
4574  * return it.
4575  *
4576  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4577  */
4578 struct workqueue_attrs *alloc_workqueue_attrs(void)
4579 {
4580 	struct workqueue_attrs *attrs;
4581 
4582 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4583 	if (!attrs)
4584 		goto fail;
4585 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4586 		goto fail;
4587 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4588 		goto fail;
4589 
4590 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4591 	attrs->affn_scope = WQ_AFFN_DFL;
4592 	return attrs;
4593 fail:
4594 	free_workqueue_attrs(attrs);
4595 	return NULL;
4596 }
4597 
4598 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4599 				 const struct workqueue_attrs *from)
4600 {
4601 	to->nice = from->nice;
4602 	cpumask_copy(to->cpumask, from->cpumask);
4603 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4604 	to->affn_strict = from->affn_strict;
4605 
4606 	/*
4607 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4608 	 * fields as copying is used for both pool and wq attrs. Instead,
4609 	 * get_unbound_pool() explicitly clears the fields.
4610 	 */
4611 	to->affn_scope = from->affn_scope;
4612 	to->ordered = from->ordered;
4613 }
4614 
4615 /*
4616  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4617  * comments in 'struct workqueue_attrs' definition.
4618  */
4619 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4620 {
4621 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4622 	attrs->ordered = false;
4623 	if (attrs->affn_strict)
4624 		cpumask_copy(attrs->cpumask, cpu_possible_mask);
4625 }
4626 
4627 /* hash value of the content of @attr */
4628 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4629 {
4630 	u32 hash = 0;
4631 
4632 	hash = jhash_1word(attrs->nice, hash);
4633 	hash = jhash_1word(attrs->affn_strict, hash);
4634 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4635 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4636 	if (!attrs->affn_strict)
4637 		hash = jhash(cpumask_bits(attrs->cpumask),
4638 			     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4639 	return hash;
4640 }
4641 
4642 /* content equality test */
4643 static bool wqattrs_equal(const struct workqueue_attrs *a,
4644 			  const struct workqueue_attrs *b)
4645 {
4646 	if (a->nice != b->nice)
4647 		return false;
4648 	if (a->affn_strict != b->affn_strict)
4649 		return false;
4650 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4651 		return false;
4652 	if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4653 		return false;
4654 	return true;
4655 }
4656 
4657 /* Update @attrs with actually available CPUs */
4658 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4659 				      const cpumask_t *unbound_cpumask)
4660 {
4661 	/*
4662 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4663 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4664 	 * @unbound_cpumask.
4665 	 */
4666 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4667 	if (unlikely(cpumask_empty(attrs->cpumask)))
4668 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4669 }
4670 
4671 /* find wq_pod_type to use for @attrs */
4672 static const struct wq_pod_type *
4673 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4674 {
4675 	enum wq_affn_scope scope;
4676 	struct wq_pod_type *pt;
4677 
4678 	/* to synchronize access to wq_affn_dfl */
4679 	lockdep_assert_held(&wq_pool_mutex);
4680 
4681 	if (attrs->affn_scope == WQ_AFFN_DFL)
4682 		scope = wq_affn_dfl;
4683 	else
4684 		scope = attrs->affn_scope;
4685 
4686 	pt = &wq_pod_types[scope];
4687 
4688 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4689 	    likely(pt->nr_pods))
4690 		return pt;
4691 
4692 	/*
4693 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4694 	 * initialized in workqueue_init_early().
4695 	 */
4696 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4697 	BUG_ON(!pt->nr_pods);
4698 	return pt;
4699 }
4700 
4701 /**
4702  * init_worker_pool - initialize a newly zalloc'd worker_pool
4703  * @pool: worker_pool to initialize
4704  *
4705  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4706  *
4707  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4708  * inside @pool proper are initialized and put_unbound_pool() can be called
4709  * on @pool safely to release it.
4710  */
4711 static int init_worker_pool(struct worker_pool *pool)
4712 {
4713 	raw_spin_lock_init(&pool->lock);
4714 	pool->id = -1;
4715 	pool->cpu = -1;
4716 	pool->node = NUMA_NO_NODE;
4717 	pool->flags |= POOL_DISASSOCIATED;
4718 	pool->watchdog_ts = jiffies;
4719 	INIT_LIST_HEAD(&pool->worklist);
4720 	INIT_LIST_HEAD(&pool->idle_list);
4721 	hash_init(pool->busy_hash);
4722 
4723 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4724 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4725 
4726 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4727 
4728 	INIT_LIST_HEAD(&pool->workers);
4729 
4730 	ida_init(&pool->worker_ida);
4731 	INIT_HLIST_NODE(&pool->hash_node);
4732 	pool->refcnt = 1;
4733 
4734 	/* shouldn't fail above this point */
4735 	pool->attrs = alloc_workqueue_attrs();
4736 	if (!pool->attrs)
4737 		return -ENOMEM;
4738 
4739 	wqattrs_clear_for_pool(pool->attrs);
4740 
4741 	return 0;
4742 }
4743 
4744 #ifdef CONFIG_LOCKDEP
4745 static void wq_init_lockdep(struct workqueue_struct *wq)
4746 {
4747 	char *lock_name;
4748 
4749 	lockdep_register_key(&wq->key);
4750 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4751 	if (!lock_name)
4752 		lock_name = wq->name;
4753 
4754 	wq->lock_name = lock_name;
4755 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4756 }
4757 
4758 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4759 {
4760 	lockdep_unregister_key(&wq->key);
4761 }
4762 
4763 static void wq_free_lockdep(struct workqueue_struct *wq)
4764 {
4765 	if (wq->lock_name != wq->name)
4766 		kfree(wq->lock_name);
4767 }
4768 #else
4769 static void wq_init_lockdep(struct workqueue_struct *wq)
4770 {
4771 }
4772 
4773 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4774 {
4775 }
4776 
4777 static void wq_free_lockdep(struct workqueue_struct *wq)
4778 {
4779 }
4780 #endif
4781 
4782 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4783 {
4784 	int node;
4785 
4786 	for_each_node(node) {
4787 		kfree(nna_ar[node]);
4788 		nna_ar[node] = NULL;
4789 	}
4790 
4791 	kfree(nna_ar[nr_node_ids]);
4792 	nna_ar[nr_node_ids] = NULL;
4793 }
4794 
4795 static void init_node_nr_active(struct wq_node_nr_active *nna)
4796 {
4797 	nna->max = WQ_DFL_MIN_ACTIVE;
4798 	atomic_set(&nna->nr, 0);
4799 	raw_spin_lock_init(&nna->lock);
4800 	INIT_LIST_HEAD(&nna->pending_pwqs);
4801 }
4802 
4803 /*
4804  * Each node's nr_active counter will be accessed mostly from its own node and
4805  * should be allocated in the node.
4806  */
4807 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4808 {
4809 	struct wq_node_nr_active *nna;
4810 	int node;
4811 
4812 	for_each_node(node) {
4813 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4814 		if (!nna)
4815 			goto err_free;
4816 		init_node_nr_active(nna);
4817 		nna_ar[node] = nna;
4818 	}
4819 
4820 	/* [nr_node_ids] is used as the fallback */
4821 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4822 	if (!nna)
4823 		goto err_free;
4824 	init_node_nr_active(nna);
4825 	nna_ar[nr_node_ids] = nna;
4826 
4827 	return 0;
4828 
4829 err_free:
4830 	free_node_nr_active(nna_ar);
4831 	return -ENOMEM;
4832 }
4833 
4834 static void rcu_free_wq(struct rcu_head *rcu)
4835 {
4836 	struct workqueue_struct *wq =
4837 		container_of(rcu, struct workqueue_struct, rcu);
4838 
4839 	if (wq->flags & WQ_UNBOUND)
4840 		free_node_nr_active(wq->node_nr_active);
4841 
4842 	wq_free_lockdep(wq);
4843 	free_percpu(wq->cpu_pwq);
4844 	free_workqueue_attrs(wq->unbound_attrs);
4845 	kfree(wq);
4846 }
4847 
4848 static void rcu_free_pool(struct rcu_head *rcu)
4849 {
4850 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4851 
4852 	ida_destroy(&pool->worker_ida);
4853 	free_workqueue_attrs(pool->attrs);
4854 	kfree(pool);
4855 }
4856 
4857 /**
4858  * put_unbound_pool - put a worker_pool
4859  * @pool: worker_pool to put
4860  *
4861  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4862  * safe manner.  get_unbound_pool() calls this function on its failure path
4863  * and this function should be able to release pools which went through,
4864  * successfully or not, init_worker_pool().
4865  *
4866  * Should be called with wq_pool_mutex held.
4867  */
4868 static void put_unbound_pool(struct worker_pool *pool)
4869 {
4870 	struct worker *worker;
4871 	LIST_HEAD(cull_list);
4872 
4873 	lockdep_assert_held(&wq_pool_mutex);
4874 
4875 	if (--pool->refcnt)
4876 		return;
4877 
4878 	/* sanity checks */
4879 	if (WARN_ON(!(pool->cpu < 0)) ||
4880 	    WARN_ON(!list_empty(&pool->worklist)))
4881 		return;
4882 
4883 	/* release id and unhash */
4884 	if (pool->id >= 0)
4885 		idr_remove(&worker_pool_idr, pool->id);
4886 	hash_del(&pool->hash_node);
4887 
4888 	/*
4889 	 * Become the manager and destroy all workers.  This prevents
4890 	 * @pool's workers from blocking on attach_mutex.  We're the last
4891 	 * manager and @pool gets freed with the flag set.
4892 	 *
4893 	 * Having a concurrent manager is quite unlikely to happen as we can
4894 	 * only get here with
4895 	 *   pwq->refcnt == pool->refcnt == 0
4896 	 * which implies no work queued to the pool, which implies no worker can
4897 	 * become the manager. However a worker could have taken the role of
4898 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4899 	 * drops pool->lock
4900 	 */
4901 	while (true) {
4902 		rcuwait_wait_event(&manager_wait,
4903 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4904 				   TASK_UNINTERRUPTIBLE);
4905 
4906 		mutex_lock(&wq_pool_attach_mutex);
4907 		raw_spin_lock_irq(&pool->lock);
4908 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4909 			pool->flags |= POOL_MANAGER_ACTIVE;
4910 			break;
4911 		}
4912 		raw_spin_unlock_irq(&pool->lock);
4913 		mutex_unlock(&wq_pool_attach_mutex);
4914 	}
4915 
4916 	while ((worker = first_idle_worker(pool)))
4917 		set_worker_dying(worker, &cull_list);
4918 	WARN_ON(pool->nr_workers || pool->nr_idle);
4919 	raw_spin_unlock_irq(&pool->lock);
4920 
4921 	detach_dying_workers(&cull_list);
4922 
4923 	mutex_unlock(&wq_pool_attach_mutex);
4924 
4925 	reap_dying_workers(&cull_list);
4926 
4927 	/* shut down the timers */
4928 	del_timer_sync(&pool->idle_timer);
4929 	cancel_work_sync(&pool->idle_cull_work);
4930 	del_timer_sync(&pool->mayday_timer);
4931 
4932 	/* RCU protected to allow dereferences from get_work_pool() */
4933 	call_rcu(&pool->rcu, rcu_free_pool);
4934 }
4935 
4936 /**
4937  * get_unbound_pool - get a worker_pool with the specified attributes
4938  * @attrs: the attributes of the worker_pool to get
4939  *
4940  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4941  * reference count and return it.  If there already is a matching
4942  * worker_pool, it will be used; otherwise, this function attempts to
4943  * create a new one.
4944  *
4945  * Should be called with wq_pool_mutex held.
4946  *
4947  * Return: On success, a worker_pool with the same attributes as @attrs.
4948  * On failure, %NULL.
4949  */
4950 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4951 {
4952 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4953 	u32 hash = wqattrs_hash(attrs);
4954 	struct worker_pool *pool;
4955 	int pod, node = NUMA_NO_NODE;
4956 
4957 	lockdep_assert_held(&wq_pool_mutex);
4958 
4959 	/* do we already have a matching pool? */
4960 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4961 		if (wqattrs_equal(pool->attrs, attrs)) {
4962 			pool->refcnt++;
4963 			return pool;
4964 		}
4965 	}
4966 
4967 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4968 	for (pod = 0; pod < pt->nr_pods; pod++) {
4969 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4970 			node = pt->pod_node[pod];
4971 			break;
4972 		}
4973 	}
4974 
4975 	/* nope, create a new one */
4976 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4977 	if (!pool || init_worker_pool(pool) < 0)
4978 		goto fail;
4979 
4980 	pool->node = node;
4981 	copy_workqueue_attrs(pool->attrs, attrs);
4982 	wqattrs_clear_for_pool(pool->attrs);
4983 
4984 	if (worker_pool_assign_id(pool) < 0)
4985 		goto fail;
4986 
4987 	/* create and start the initial worker */
4988 	if (wq_online && !create_worker(pool))
4989 		goto fail;
4990 
4991 	/* install */
4992 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
4993 
4994 	return pool;
4995 fail:
4996 	if (pool)
4997 		put_unbound_pool(pool);
4998 	return NULL;
4999 }
5000 
5001 /*
5002  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5003  * refcnt and needs to be destroyed.
5004  */
5005 static void pwq_release_workfn(struct kthread_work *work)
5006 {
5007 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5008 						  release_work);
5009 	struct workqueue_struct *wq = pwq->wq;
5010 	struct worker_pool *pool = pwq->pool;
5011 	bool is_last = false;
5012 
5013 	/*
5014 	 * When @pwq is not linked, it doesn't hold any reference to the
5015 	 * @wq, and @wq is invalid to access.
5016 	 */
5017 	if (!list_empty(&pwq->pwqs_node)) {
5018 		mutex_lock(&wq->mutex);
5019 		list_del_rcu(&pwq->pwqs_node);
5020 		is_last = list_empty(&wq->pwqs);
5021 
5022 		/*
5023 		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5024 		 */
5025 		if (!is_last && (wq->flags & __WQ_ORDERED))
5026 			unplug_oldest_pwq(wq);
5027 
5028 		mutex_unlock(&wq->mutex);
5029 	}
5030 
5031 	if (wq->flags & WQ_UNBOUND) {
5032 		mutex_lock(&wq_pool_mutex);
5033 		put_unbound_pool(pool);
5034 		mutex_unlock(&wq_pool_mutex);
5035 	}
5036 
5037 	if (!list_empty(&pwq->pending_node)) {
5038 		struct wq_node_nr_active *nna =
5039 			wq_node_nr_active(pwq->wq, pwq->pool->node);
5040 
5041 		raw_spin_lock_irq(&nna->lock);
5042 		list_del_init(&pwq->pending_node);
5043 		raw_spin_unlock_irq(&nna->lock);
5044 	}
5045 
5046 	kfree_rcu(pwq, rcu);
5047 
5048 	/*
5049 	 * If we're the last pwq going away, @wq is already dead and no one
5050 	 * is gonna access it anymore.  Schedule RCU free.
5051 	 */
5052 	if (is_last) {
5053 		wq_unregister_lockdep(wq);
5054 		call_rcu(&wq->rcu, rcu_free_wq);
5055 	}
5056 }
5057 
5058 /* initialize newly allocated @pwq which is associated with @wq and @pool */
5059 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5060 		     struct worker_pool *pool)
5061 {
5062 	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5063 
5064 	memset(pwq, 0, sizeof(*pwq));
5065 
5066 	pwq->pool = pool;
5067 	pwq->wq = wq;
5068 	pwq->flush_color = -1;
5069 	pwq->refcnt = 1;
5070 	INIT_LIST_HEAD(&pwq->inactive_works);
5071 	INIT_LIST_HEAD(&pwq->pending_node);
5072 	INIT_LIST_HEAD(&pwq->pwqs_node);
5073 	INIT_LIST_HEAD(&pwq->mayday_node);
5074 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
5075 }
5076 
5077 /* sync @pwq with the current state of its associated wq and link it */
5078 static void link_pwq(struct pool_workqueue *pwq)
5079 {
5080 	struct workqueue_struct *wq = pwq->wq;
5081 
5082 	lockdep_assert_held(&wq->mutex);
5083 
5084 	/* may be called multiple times, ignore if already linked */
5085 	if (!list_empty(&pwq->pwqs_node))
5086 		return;
5087 
5088 	/* set the matching work_color */
5089 	pwq->work_color = wq->work_color;
5090 
5091 	/* link in @pwq */
5092 	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5093 }
5094 
5095 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5096 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5097 					const struct workqueue_attrs *attrs)
5098 {
5099 	struct worker_pool *pool;
5100 	struct pool_workqueue *pwq;
5101 
5102 	lockdep_assert_held(&wq_pool_mutex);
5103 
5104 	pool = get_unbound_pool(attrs);
5105 	if (!pool)
5106 		return NULL;
5107 
5108 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5109 	if (!pwq) {
5110 		put_unbound_pool(pool);
5111 		return NULL;
5112 	}
5113 
5114 	init_pwq(pwq, wq, pool);
5115 	return pwq;
5116 }
5117 
5118 static void apply_wqattrs_lock(void)
5119 {
5120 	mutex_lock(&wq_pool_mutex);
5121 }
5122 
5123 static void apply_wqattrs_unlock(void)
5124 {
5125 	mutex_unlock(&wq_pool_mutex);
5126 }
5127 
5128 /**
5129  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5130  * @attrs: the wq_attrs of the default pwq of the target workqueue
5131  * @cpu: the target CPU
5132  *
5133  * Calculate the cpumask a workqueue with @attrs should use on @pod.
5134  * The result is stored in @attrs->__pod_cpumask.
5135  *
5136  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5137  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5138  * intersection of the possible CPUs of @pod and @attrs->cpumask.
5139  *
5140  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5141  */
5142 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5143 {
5144 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5145 	int pod = pt->cpu_pod[cpu];
5146 
5147 	/* calculate possible CPUs in @pod that @attrs wants */
5148 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5149 	/* does @pod have any online CPUs @attrs wants? */
5150 	if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5151 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5152 		return;
5153 	}
5154 }
5155 
5156 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
5157 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5158 					int cpu, struct pool_workqueue *pwq)
5159 {
5160 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5161 	struct pool_workqueue *old_pwq;
5162 
5163 	lockdep_assert_held(&wq_pool_mutex);
5164 	lockdep_assert_held(&wq->mutex);
5165 
5166 	/* link_pwq() can handle duplicate calls */
5167 	link_pwq(pwq);
5168 
5169 	old_pwq = rcu_access_pointer(*slot);
5170 	rcu_assign_pointer(*slot, pwq);
5171 	return old_pwq;
5172 }
5173 
5174 /* context to store the prepared attrs & pwqs before applying */
5175 struct apply_wqattrs_ctx {
5176 	struct workqueue_struct	*wq;		/* target workqueue */
5177 	struct workqueue_attrs	*attrs;		/* attrs to apply */
5178 	struct list_head	list;		/* queued for batching commit */
5179 	struct pool_workqueue	*dfl_pwq;
5180 	struct pool_workqueue	*pwq_tbl[];
5181 };
5182 
5183 /* free the resources after success or abort */
5184 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5185 {
5186 	if (ctx) {
5187 		int cpu;
5188 
5189 		for_each_possible_cpu(cpu)
5190 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5191 		put_pwq_unlocked(ctx->dfl_pwq);
5192 
5193 		free_workqueue_attrs(ctx->attrs);
5194 
5195 		kfree(ctx);
5196 	}
5197 }
5198 
5199 /* allocate the attrs and pwqs for later installation */
5200 static struct apply_wqattrs_ctx *
5201 apply_wqattrs_prepare(struct workqueue_struct *wq,
5202 		      const struct workqueue_attrs *attrs,
5203 		      const cpumask_var_t unbound_cpumask)
5204 {
5205 	struct apply_wqattrs_ctx *ctx;
5206 	struct workqueue_attrs *new_attrs;
5207 	int cpu;
5208 
5209 	lockdep_assert_held(&wq_pool_mutex);
5210 
5211 	if (WARN_ON(attrs->affn_scope < 0 ||
5212 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5213 		return ERR_PTR(-EINVAL);
5214 
5215 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5216 
5217 	new_attrs = alloc_workqueue_attrs();
5218 	if (!ctx || !new_attrs)
5219 		goto out_free;
5220 
5221 	/*
5222 	 * If something goes wrong during CPU up/down, we'll fall back to
5223 	 * the default pwq covering whole @attrs->cpumask.  Always create
5224 	 * it even if we don't use it immediately.
5225 	 */
5226 	copy_workqueue_attrs(new_attrs, attrs);
5227 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5228 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5229 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5230 	if (!ctx->dfl_pwq)
5231 		goto out_free;
5232 
5233 	for_each_possible_cpu(cpu) {
5234 		if (new_attrs->ordered) {
5235 			ctx->dfl_pwq->refcnt++;
5236 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5237 		} else {
5238 			wq_calc_pod_cpumask(new_attrs, cpu);
5239 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5240 			if (!ctx->pwq_tbl[cpu])
5241 				goto out_free;
5242 		}
5243 	}
5244 
5245 	/* save the user configured attrs and sanitize it. */
5246 	copy_workqueue_attrs(new_attrs, attrs);
5247 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5248 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5249 	ctx->attrs = new_attrs;
5250 
5251 	/*
5252 	 * For initialized ordered workqueues, there should only be one pwq
5253 	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5254 	 * of newly queued work items until execution of older work items in
5255 	 * the old pwq's have completed.
5256 	 */
5257 	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5258 		ctx->dfl_pwq->plugged = true;
5259 
5260 	ctx->wq = wq;
5261 	return ctx;
5262 
5263 out_free:
5264 	free_workqueue_attrs(new_attrs);
5265 	apply_wqattrs_cleanup(ctx);
5266 	return ERR_PTR(-ENOMEM);
5267 }
5268 
5269 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5270 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5271 {
5272 	int cpu;
5273 
5274 	/* all pwqs have been created successfully, let's install'em */
5275 	mutex_lock(&ctx->wq->mutex);
5276 
5277 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5278 
5279 	/* save the previous pwqs and install the new ones */
5280 	for_each_possible_cpu(cpu)
5281 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5282 							ctx->pwq_tbl[cpu]);
5283 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5284 
5285 	/* update node_nr_active->max */
5286 	wq_update_node_max_active(ctx->wq, -1);
5287 
5288 	/* rescuer needs to respect wq cpumask changes */
5289 	if (ctx->wq->rescuer)
5290 		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5291 				     unbound_effective_cpumask(ctx->wq));
5292 
5293 	mutex_unlock(&ctx->wq->mutex);
5294 }
5295 
5296 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5297 					const struct workqueue_attrs *attrs)
5298 {
5299 	struct apply_wqattrs_ctx *ctx;
5300 
5301 	/* only unbound workqueues can change attributes */
5302 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5303 		return -EINVAL;
5304 
5305 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5306 	if (IS_ERR(ctx))
5307 		return PTR_ERR(ctx);
5308 
5309 	/* the ctx has been prepared successfully, let's commit it */
5310 	apply_wqattrs_commit(ctx);
5311 	apply_wqattrs_cleanup(ctx);
5312 
5313 	return 0;
5314 }
5315 
5316 /**
5317  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5318  * @wq: the target workqueue
5319  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5320  *
5321  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5322  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5323  * work items are affine to the pod it was issued on. Older pwqs are released as
5324  * in-flight work items finish. Note that a work item which repeatedly requeues
5325  * itself back-to-back will stay on its current pwq.
5326  *
5327  * Performs GFP_KERNEL allocations.
5328  *
5329  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
5330  *
5331  * Return: 0 on success and -errno on failure.
5332  */
5333 int apply_workqueue_attrs(struct workqueue_struct *wq,
5334 			  const struct workqueue_attrs *attrs)
5335 {
5336 	int ret;
5337 
5338 	lockdep_assert_cpus_held();
5339 
5340 	mutex_lock(&wq_pool_mutex);
5341 	ret = apply_workqueue_attrs_locked(wq, attrs);
5342 	mutex_unlock(&wq_pool_mutex);
5343 
5344 	return ret;
5345 }
5346 
5347 /**
5348  * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5349  * @wq: the target workqueue
5350  * @cpu: the CPU to update the pwq slot for
5351  *
5352  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5353  * %CPU_DOWN_FAILED.  @cpu is in the same pod of the CPU being hot[un]plugged.
5354  *
5355  *
5356  * If pod affinity can't be adjusted due to memory allocation failure, it falls
5357  * back to @wq->dfl_pwq which may not be optimal but is always correct.
5358  *
5359  * Note that when the last allowed CPU of a pod goes offline for a workqueue
5360  * with a cpumask spanning multiple pods, the workers which were already
5361  * executing the work items for the workqueue will lose their CPU affinity and
5362  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5363  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5364  * responsibility to flush the work item from CPU_DOWN_PREPARE.
5365  */
5366 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5367 {
5368 	struct pool_workqueue *old_pwq = NULL, *pwq;
5369 	struct workqueue_attrs *target_attrs;
5370 
5371 	lockdep_assert_held(&wq_pool_mutex);
5372 
5373 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5374 		return;
5375 
5376 	/*
5377 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5378 	 * Let's use a preallocated one.  The following buf is protected by
5379 	 * CPU hotplug exclusion.
5380 	 */
5381 	target_attrs = unbound_wq_update_pwq_attrs_buf;
5382 
5383 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5384 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5385 
5386 	/* nothing to do if the target cpumask matches the current pwq */
5387 	wq_calc_pod_cpumask(target_attrs, cpu);
5388 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5389 		return;
5390 
5391 	/* create a new pwq */
5392 	pwq = alloc_unbound_pwq(wq, target_attrs);
5393 	if (!pwq) {
5394 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5395 			wq->name);
5396 		goto use_dfl_pwq;
5397 	}
5398 
5399 	/* Install the new pwq. */
5400 	mutex_lock(&wq->mutex);
5401 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5402 	goto out_unlock;
5403 
5404 use_dfl_pwq:
5405 	mutex_lock(&wq->mutex);
5406 	pwq = unbound_pwq(wq, -1);
5407 	raw_spin_lock_irq(&pwq->pool->lock);
5408 	get_pwq(pwq);
5409 	raw_spin_unlock_irq(&pwq->pool->lock);
5410 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5411 out_unlock:
5412 	mutex_unlock(&wq->mutex);
5413 	put_pwq_unlocked(old_pwq);
5414 }
5415 
5416 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5417 {
5418 	bool highpri = wq->flags & WQ_HIGHPRI;
5419 	int cpu, ret;
5420 
5421 	lockdep_assert_cpus_held();
5422 	lockdep_assert_held(&wq_pool_mutex);
5423 
5424 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5425 	if (!wq->cpu_pwq)
5426 		goto enomem;
5427 
5428 	if (!(wq->flags & WQ_UNBOUND)) {
5429 		struct worker_pool __percpu *pools;
5430 
5431 		if (wq->flags & WQ_BH)
5432 			pools = bh_worker_pools;
5433 		else
5434 			pools = cpu_worker_pools;
5435 
5436 		for_each_possible_cpu(cpu) {
5437 			struct pool_workqueue **pwq_p;
5438 			struct worker_pool *pool;
5439 
5440 			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5441 			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5442 
5443 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5444 						       pool->node);
5445 			if (!*pwq_p)
5446 				goto enomem;
5447 
5448 			init_pwq(*pwq_p, wq, pool);
5449 
5450 			mutex_lock(&wq->mutex);
5451 			link_pwq(*pwq_p);
5452 			mutex_unlock(&wq->mutex);
5453 		}
5454 		return 0;
5455 	}
5456 
5457 	if (wq->flags & __WQ_ORDERED) {
5458 		struct pool_workqueue *dfl_pwq;
5459 
5460 		ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5461 		/* there should only be single pwq for ordering guarantee */
5462 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5463 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5464 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5465 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5466 	} else {
5467 		ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5468 	}
5469 
5470 	return ret;
5471 
5472 enomem:
5473 	if (wq->cpu_pwq) {
5474 		for_each_possible_cpu(cpu) {
5475 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5476 
5477 			if (pwq)
5478 				kmem_cache_free(pwq_cache, pwq);
5479 		}
5480 		free_percpu(wq->cpu_pwq);
5481 		wq->cpu_pwq = NULL;
5482 	}
5483 	return -ENOMEM;
5484 }
5485 
5486 static int wq_clamp_max_active(int max_active, unsigned int flags,
5487 			       const char *name)
5488 {
5489 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5490 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5491 			max_active, name, 1, WQ_MAX_ACTIVE);
5492 
5493 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5494 }
5495 
5496 /*
5497  * Workqueues which may be used during memory reclaim should have a rescuer
5498  * to guarantee forward progress.
5499  */
5500 static int init_rescuer(struct workqueue_struct *wq)
5501 {
5502 	struct worker *rescuer;
5503 	int ret;
5504 
5505 	lockdep_assert_held(&wq_pool_mutex);
5506 
5507 	if (!(wq->flags & WQ_MEM_RECLAIM))
5508 		return 0;
5509 
5510 	rescuer = alloc_worker(NUMA_NO_NODE);
5511 	if (!rescuer) {
5512 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5513 		       wq->name);
5514 		return -ENOMEM;
5515 	}
5516 
5517 	rescuer->rescue_wq = wq;
5518 	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
5519 	if (IS_ERR(rescuer->task)) {
5520 		ret = PTR_ERR(rescuer->task);
5521 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5522 		       wq->name, ERR_PTR(ret));
5523 		kfree(rescuer);
5524 		return ret;
5525 	}
5526 
5527 	wq->rescuer = rescuer;
5528 	if (wq->flags & WQ_UNBOUND)
5529 		kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq));
5530 	else
5531 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5532 	wake_up_process(rescuer->task);
5533 
5534 	return 0;
5535 }
5536 
5537 /**
5538  * wq_adjust_max_active - update a wq's max_active to the current setting
5539  * @wq: target workqueue
5540  *
5541  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5542  * activate inactive work items accordingly. If @wq is freezing, clear
5543  * @wq->max_active to zero.
5544  */
5545 static void wq_adjust_max_active(struct workqueue_struct *wq)
5546 {
5547 	bool activated;
5548 	int new_max, new_min;
5549 
5550 	lockdep_assert_held(&wq->mutex);
5551 
5552 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5553 		new_max = 0;
5554 		new_min = 0;
5555 	} else {
5556 		new_max = wq->saved_max_active;
5557 		new_min = wq->saved_min_active;
5558 	}
5559 
5560 	if (wq->max_active == new_max && wq->min_active == new_min)
5561 		return;
5562 
5563 	/*
5564 	 * Update @wq->max/min_active and then kick inactive work items if more
5565 	 * active work items are allowed. This doesn't break work item ordering
5566 	 * because new work items are always queued behind existing inactive
5567 	 * work items if there are any.
5568 	 */
5569 	WRITE_ONCE(wq->max_active, new_max);
5570 	WRITE_ONCE(wq->min_active, new_min);
5571 
5572 	if (wq->flags & WQ_UNBOUND)
5573 		wq_update_node_max_active(wq, -1);
5574 
5575 	if (new_max == 0)
5576 		return;
5577 
5578 	/*
5579 	 * Round-robin through pwq's activating the first inactive work item
5580 	 * until max_active is filled.
5581 	 */
5582 	do {
5583 		struct pool_workqueue *pwq;
5584 
5585 		activated = false;
5586 		for_each_pwq(pwq, wq) {
5587 			unsigned long irq_flags;
5588 
5589 			/* can be called during early boot w/ irq disabled */
5590 			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5591 			if (pwq_activate_first_inactive(pwq, true)) {
5592 				activated = true;
5593 				kick_pool(pwq->pool);
5594 			}
5595 			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5596 		}
5597 	} while (activated);
5598 }
5599 
5600 __printf(1, 4)
5601 struct workqueue_struct *alloc_workqueue(const char *fmt,
5602 					 unsigned int flags,
5603 					 int max_active, ...)
5604 {
5605 	va_list args;
5606 	struct workqueue_struct *wq;
5607 	size_t wq_size;
5608 	int name_len;
5609 
5610 	if (flags & WQ_BH) {
5611 		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5612 			return NULL;
5613 		if (WARN_ON_ONCE(max_active))
5614 			return NULL;
5615 	}
5616 
5617 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5618 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5619 		flags |= WQ_UNBOUND;
5620 
5621 	/* allocate wq and format name */
5622 	if (flags & WQ_UNBOUND)
5623 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5624 	else
5625 		wq_size = sizeof(*wq);
5626 
5627 	wq = kzalloc(wq_size, GFP_KERNEL);
5628 	if (!wq)
5629 		return NULL;
5630 
5631 	if (flags & WQ_UNBOUND) {
5632 		wq->unbound_attrs = alloc_workqueue_attrs();
5633 		if (!wq->unbound_attrs)
5634 			goto err_free_wq;
5635 	}
5636 
5637 	va_start(args, max_active);
5638 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5639 	va_end(args);
5640 
5641 	if (name_len >= WQ_NAME_LEN)
5642 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5643 			     wq->name);
5644 
5645 	if (flags & WQ_BH) {
5646 		/*
5647 		 * BH workqueues always share a single execution context per CPU
5648 		 * and don't impose any max_active limit.
5649 		 */
5650 		max_active = INT_MAX;
5651 	} else {
5652 		max_active = max_active ?: WQ_DFL_ACTIVE;
5653 		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5654 	}
5655 
5656 	/* init wq */
5657 	wq->flags = flags;
5658 	wq->max_active = max_active;
5659 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5660 	wq->saved_max_active = wq->max_active;
5661 	wq->saved_min_active = wq->min_active;
5662 	mutex_init(&wq->mutex);
5663 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5664 	INIT_LIST_HEAD(&wq->pwqs);
5665 	INIT_LIST_HEAD(&wq->flusher_queue);
5666 	INIT_LIST_HEAD(&wq->flusher_overflow);
5667 	INIT_LIST_HEAD(&wq->maydays);
5668 
5669 	wq_init_lockdep(wq);
5670 	INIT_LIST_HEAD(&wq->list);
5671 
5672 	if (flags & WQ_UNBOUND) {
5673 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5674 			goto err_unreg_lockdep;
5675 	}
5676 
5677 	/*
5678 	 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5679 	 * and the global freeze state.  alloc_and_link_pwqs() also requires
5680 	 * cpus_read_lock() for PWQs' affinities.
5681 	 */
5682 	apply_wqattrs_lock();
5683 
5684 	if (alloc_and_link_pwqs(wq) < 0)
5685 		goto err_unlock_free_node_nr_active;
5686 
5687 	mutex_lock(&wq->mutex);
5688 	wq_adjust_max_active(wq);
5689 	mutex_unlock(&wq->mutex);
5690 
5691 	list_add_tail_rcu(&wq->list, &workqueues);
5692 
5693 	if (wq_online && init_rescuer(wq) < 0)
5694 		goto err_unlock_destroy;
5695 
5696 	apply_wqattrs_unlock();
5697 
5698 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5699 		goto err_destroy;
5700 
5701 	return wq;
5702 
5703 err_unlock_free_node_nr_active:
5704 	apply_wqattrs_unlock();
5705 	/*
5706 	 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5707 	 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5708 	 * completes before calling kfree(wq).
5709 	 */
5710 	if (wq->flags & WQ_UNBOUND) {
5711 		kthread_flush_worker(pwq_release_worker);
5712 		free_node_nr_active(wq->node_nr_active);
5713 	}
5714 err_unreg_lockdep:
5715 	wq_unregister_lockdep(wq);
5716 	wq_free_lockdep(wq);
5717 err_free_wq:
5718 	free_workqueue_attrs(wq->unbound_attrs);
5719 	kfree(wq);
5720 	return NULL;
5721 err_unlock_destroy:
5722 	apply_wqattrs_unlock();
5723 err_destroy:
5724 	destroy_workqueue(wq);
5725 	return NULL;
5726 }
5727 EXPORT_SYMBOL_GPL(alloc_workqueue);
5728 
5729 static bool pwq_busy(struct pool_workqueue *pwq)
5730 {
5731 	int i;
5732 
5733 	for (i = 0; i < WORK_NR_COLORS; i++)
5734 		if (pwq->nr_in_flight[i])
5735 			return true;
5736 
5737 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5738 		return true;
5739 	if (!pwq_is_empty(pwq))
5740 		return true;
5741 
5742 	return false;
5743 }
5744 
5745 /**
5746  * destroy_workqueue - safely terminate a workqueue
5747  * @wq: target workqueue
5748  *
5749  * Safely destroy a workqueue. All work currently pending will be done first.
5750  */
5751 void destroy_workqueue(struct workqueue_struct *wq)
5752 {
5753 	struct pool_workqueue *pwq;
5754 	int cpu;
5755 
5756 	/*
5757 	 * Remove it from sysfs first so that sanity check failure doesn't
5758 	 * lead to sysfs name conflicts.
5759 	 */
5760 	workqueue_sysfs_unregister(wq);
5761 
5762 	/* mark the workqueue destruction is in progress */
5763 	mutex_lock(&wq->mutex);
5764 	wq->flags |= __WQ_DESTROYING;
5765 	mutex_unlock(&wq->mutex);
5766 
5767 	/* drain it before proceeding with destruction */
5768 	drain_workqueue(wq);
5769 
5770 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5771 	if (wq->rescuer) {
5772 		struct worker *rescuer = wq->rescuer;
5773 
5774 		/* this prevents new queueing */
5775 		raw_spin_lock_irq(&wq_mayday_lock);
5776 		wq->rescuer = NULL;
5777 		raw_spin_unlock_irq(&wq_mayday_lock);
5778 
5779 		/* rescuer will empty maydays list before exiting */
5780 		kthread_stop(rescuer->task);
5781 		kfree(rescuer);
5782 	}
5783 
5784 	/*
5785 	 * Sanity checks - grab all the locks so that we wait for all
5786 	 * in-flight operations which may do put_pwq().
5787 	 */
5788 	mutex_lock(&wq_pool_mutex);
5789 	mutex_lock(&wq->mutex);
5790 	for_each_pwq(pwq, wq) {
5791 		raw_spin_lock_irq(&pwq->pool->lock);
5792 		if (WARN_ON(pwq_busy(pwq))) {
5793 			pr_warn("%s: %s has the following busy pwq\n",
5794 				__func__, wq->name);
5795 			show_pwq(pwq);
5796 			raw_spin_unlock_irq(&pwq->pool->lock);
5797 			mutex_unlock(&wq->mutex);
5798 			mutex_unlock(&wq_pool_mutex);
5799 			show_one_workqueue(wq);
5800 			return;
5801 		}
5802 		raw_spin_unlock_irq(&pwq->pool->lock);
5803 	}
5804 	mutex_unlock(&wq->mutex);
5805 
5806 	/*
5807 	 * wq list is used to freeze wq, remove from list after
5808 	 * flushing is complete in case freeze races us.
5809 	 */
5810 	list_del_rcu(&wq->list);
5811 	mutex_unlock(&wq_pool_mutex);
5812 
5813 	/*
5814 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5815 	 * to put the base refs. @wq will be auto-destroyed from the last
5816 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5817 	 */
5818 	rcu_read_lock();
5819 
5820 	for_each_possible_cpu(cpu) {
5821 		put_pwq_unlocked(unbound_pwq(wq, cpu));
5822 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5823 	}
5824 
5825 	put_pwq_unlocked(unbound_pwq(wq, -1));
5826 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5827 
5828 	rcu_read_unlock();
5829 }
5830 EXPORT_SYMBOL_GPL(destroy_workqueue);
5831 
5832 /**
5833  * workqueue_set_max_active - adjust max_active of a workqueue
5834  * @wq: target workqueue
5835  * @max_active: new max_active value.
5836  *
5837  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5838  * comment.
5839  *
5840  * CONTEXT:
5841  * Don't call from IRQ context.
5842  */
5843 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5844 {
5845 	/* max_active doesn't mean anything for BH workqueues */
5846 	if (WARN_ON(wq->flags & WQ_BH))
5847 		return;
5848 	/* disallow meddling with max_active for ordered workqueues */
5849 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5850 		return;
5851 
5852 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5853 
5854 	mutex_lock(&wq->mutex);
5855 
5856 	wq->saved_max_active = max_active;
5857 	if (wq->flags & WQ_UNBOUND)
5858 		wq->saved_min_active = min(wq->saved_min_active, max_active);
5859 
5860 	wq_adjust_max_active(wq);
5861 
5862 	mutex_unlock(&wq->mutex);
5863 }
5864 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5865 
5866 /**
5867  * workqueue_set_min_active - adjust min_active of an unbound workqueue
5868  * @wq: target unbound workqueue
5869  * @min_active: new min_active value
5870  *
5871  * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5872  * unbound workqueue is not guaranteed to be able to process max_active
5873  * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5874  * able to process min_active number of interdependent work items which is
5875  * %WQ_DFL_MIN_ACTIVE by default.
5876  *
5877  * Use this function to adjust the min_active value between 0 and the current
5878  * max_active.
5879  */
5880 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5881 {
5882 	/* min_active is only meaningful for non-ordered unbound workqueues */
5883 	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5884 		    WQ_UNBOUND))
5885 		return;
5886 
5887 	mutex_lock(&wq->mutex);
5888 	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5889 	wq_adjust_max_active(wq);
5890 	mutex_unlock(&wq->mutex);
5891 }
5892 
5893 /**
5894  * current_work - retrieve %current task's work struct
5895  *
5896  * Determine if %current task is a workqueue worker and what it's working on.
5897  * Useful to find out the context that the %current task is running in.
5898  *
5899  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5900  */
5901 struct work_struct *current_work(void)
5902 {
5903 	struct worker *worker = current_wq_worker();
5904 
5905 	return worker ? worker->current_work : NULL;
5906 }
5907 EXPORT_SYMBOL(current_work);
5908 
5909 /**
5910  * current_is_workqueue_rescuer - is %current workqueue rescuer?
5911  *
5912  * Determine whether %current is a workqueue rescuer.  Can be used from
5913  * work functions to determine whether it's being run off the rescuer task.
5914  *
5915  * Return: %true if %current is a workqueue rescuer. %false otherwise.
5916  */
5917 bool current_is_workqueue_rescuer(void)
5918 {
5919 	struct worker *worker = current_wq_worker();
5920 
5921 	return worker && worker->rescue_wq;
5922 }
5923 
5924 /**
5925  * workqueue_congested - test whether a workqueue is congested
5926  * @cpu: CPU in question
5927  * @wq: target workqueue
5928  *
5929  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
5930  * no synchronization around this function and the test result is
5931  * unreliable and only useful as advisory hints or for debugging.
5932  *
5933  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5934  *
5935  * With the exception of ordered workqueues, all workqueues have per-cpu
5936  * pool_workqueues, each with its own congested state. A workqueue being
5937  * congested on one CPU doesn't mean that the workqueue is contested on any
5938  * other CPUs.
5939  *
5940  * Return:
5941  * %true if congested, %false otherwise.
5942  */
5943 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5944 {
5945 	struct pool_workqueue *pwq;
5946 	bool ret;
5947 
5948 	rcu_read_lock();
5949 	preempt_disable();
5950 
5951 	if (cpu == WORK_CPU_UNBOUND)
5952 		cpu = smp_processor_id();
5953 
5954 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5955 	ret = !list_empty(&pwq->inactive_works);
5956 
5957 	preempt_enable();
5958 	rcu_read_unlock();
5959 
5960 	return ret;
5961 }
5962 EXPORT_SYMBOL_GPL(workqueue_congested);
5963 
5964 /**
5965  * work_busy - test whether a work is currently pending or running
5966  * @work: the work to be tested
5967  *
5968  * Test whether @work is currently pending or running.  There is no
5969  * synchronization around this function and the test result is
5970  * unreliable and only useful as advisory hints or for debugging.
5971  *
5972  * Return:
5973  * OR'd bitmask of WORK_BUSY_* bits.
5974  */
5975 unsigned int work_busy(struct work_struct *work)
5976 {
5977 	struct worker_pool *pool;
5978 	unsigned long irq_flags;
5979 	unsigned int ret = 0;
5980 
5981 	if (work_pending(work))
5982 		ret |= WORK_BUSY_PENDING;
5983 
5984 	rcu_read_lock();
5985 	pool = get_work_pool(work);
5986 	if (pool) {
5987 		raw_spin_lock_irqsave(&pool->lock, irq_flags);
5988 		if (find_worker_executing_work(pool, work))
5989 			ret |= WORK_BUSY_RUNNING;
5990 		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
5991 	}
5992 	rcu_read_unlock();
5993 
5994 	return ret;
5995 }
5996 EXPORT_SYMBOL_GPL(work_busy);
5997 
5998 /**
5999  * set_worker_desc - set description for the current work item
6000  * @fmt: printf-style format string
6001  * @...: arguments for the format string
6002  *
6003  * This function can be called by a running work function to describe what
6004  * the work item is about.  If the worker task gets dumped, this
6005  * information will be printed out together to help debugging.  The
6006  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6007  */
6008 void set_worker_desc(const char *fmt, ...)
6009 {
6010 	struct worker *worker = current_wq_worker();
6011 	va_list args;
6012 
6013 	if (worker) {
6014 		va_start(args, fmt);
6015 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6016 		va_end(args);
6017 	}
6018 }
6019 EXPORT_SYMBOL_GPL(set_worker_desc);
6020 
6021 /**
6022  * print_worker_info - print out worker information and description
6023  * @log_lvl: the log level to use when printing
6024  * @task: target task
6025  *
6026  * If @task is a worker and currently executing a work item, print out the
6027  * name of the workqueue being serviced and worker description set with
6028  * set_worker_desc() by the currently executing work item.
6029  *
6030  * This function can be safely called on any task as long as the
6031  * task_struct itself is accessible.  While safe, this function isn't
6032  * synchronized and may print out mixups or garbages of limited length.
6033  */
6034 void print_worker_info(const char *log_lvl, struct task_struct *task)
6035 {
6036 	work_func_t *fn = NULL;
6037 	char name[WQ_NAME_LEN] = { };
6038 	char desc[WORKER_DESC_LEN] = { };
6039 	struct pool_workqueue *pwq = NULL;
6040 	struct workqueue_struct *wq = NULL;
6041 	struct worker *worker;
6042 
6043 	if (!(task->flags & PF_WQ_WORKER))
6044 		return;
6045 
6046 	/*
6047 	 * This function is called without any synchronization and @task
6048 	 * could be in any state.  Be careful with dereferences.
6049 	 */
6050 	worker = kthread_probe_data(task);
6051 
6052 	/*
6053 	 * Carefully copy the associated workqueue's workfn, name and desc.
6054 	 * Keep the original last '\0' in case the original is garbage.
6055 	 */
6056 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6057 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6058 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6059 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6060 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6061 
6062 	if (fn || name[0] || desc[0]) {
6063 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6064 		if (strcmp(name, desc))
6065 			pr_cont(" (%s)", desc);
6066 		pr_cont("\n");
6067 	}
6068 }
6069 
6070 static void pr_cont_pool_info(struct worker_pool *pool)
6071 {
6072 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6073 	if (pool->node != NUMA_NO_NODE)
6074 		pr_cont(" node=%d", pool->node);
6075 	pr_cont(" flags=0x%x", pool->flags);
6076 	if (pool->flags & POOL_BH)
6077 		pr_cont(" bh%s",
6078 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6079 	else
6080 		pr_cont(" nice=%d", pool->attrs->nice);
6081 }
6082 
6083 static void pr_cont_worker_id(struct worker *worker)
6084 {
6085 	struct worker_pool *pool = worker->pool;
6086 
6087 	if (pool->flags & WQ_BH)
6088 		pr_cont("bh%s",
6089 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6090 	else
6091 		pr_cont("%d%s", task_pid_nr(worker->task),
6092 			worker->rescue_wq ? "(RESCUER)" : "");
6093 }
6094 
6095 struct pr_cont_work_struct {
6096 	bool comma;
6097 	work_func_t func;
6098 	long ctr;
6099 };
6100 
6101 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6102 {
6103 	if (!pcwsp->ctr)
6104 		goto out_record;
6105 	if (func == pcwsp->func) {
6106 		pcwsp->ctr++;
6107 		return;
6108 	}
6109 	if (pcwsp->ctr == 1)
6110 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6111 	else
6112 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6113 	pcwsp->ctr = 0;
6114 out_record:
6115 	if ((long)func == -1L)
6116 		return;
6117 	pcwsp->comma = comma;
6118 	pcwsp->func = func;
6119 	pcwsp->ctr = 1;
6120 }
6121 
6122 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6123 {
6124 	if (work->func == wq_barrier_func) {
6125 		struct wq_barrier *barr;
6126 
6127 		barr = container_of(work, struct wq_barrier, work);
6128 
6129 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6130 		pr_cont("%s BAR(%d)", comma ? "," : "",
6131 			task_pid_nr(barr->task));
6132 	} else {
6133 		if (!comma)
6134 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6135 		pr_cont_work_flush(comma, work->func, pcwsp);
6136 	}
6137 }
6138 
6139 static void show_pwq(struct pool_workqueue *pwq)
6140 {
6141 	struct pr_cont_work_struct pcws = { .ctr = 0, };
6142 	struct worker_pool *pool = pwq->pool;
6143 	struct work_struct *work;
6144 	struct worker *worker;
6145 	bool has_in_flight = false, has_pending = false;
6146 	int bkt;
6147 
6148 	pr_info("  pwq %d:", pool->id);
6149 	pr_cont_pool_info(pool);
6150 
6151 	pr_cont(" active=%d refcnt=%d%s\n",
6152 		pwq->nr_active, pwq->refcnt,
6153 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6154 
6155 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6156 		if (worker->current_pwq == pwq) {
6157 			has_in_flight = true;
6158 			break;
6159 		}
6160 	}
6161 	if (has_in_flight) {
6162 		bool comma = false;
6163 
6164 		pr_info("    in-flight:");
6165 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6166 			if (worker->current_pwq != pwq)
6167 				continue;
6168 
6169 			pr_cont(" %s", comma ? "," : "");
6170 			pr_cont_worker_id(worker);
6171 			pr_cont(":%ps", worker->current_func);
6172 			list_for_each_entry(work, &worker->scheduled, entry)
6173 				pr_cont_work(false, work, &pcws);
6174 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6175 			comma = true;
6176 		}
6177 		pr_cont("\n");
6178 	}
6179 
6180 	list_for_each_entry(work, &pool->worklist, entry) {
6181 		if (get_work_pwq(work) == pwq) {
6182 			has_pending = true;
6183 			break;
6184 		}
6185 	}
6186 	if (has_pending) {
6187 		bool comma = false;
6188 
6189 		pr_info("    pending:");
6190 		list_for_each_entry(work, &pool->worklist, entry) {
6191 			if (get_work_pwq(work) != pwq)
6192 				continue;
6193 
6194 			pr_cont_work(comma, work, &pcws);
6195 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6196 		}
6197 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6198 		pr_cont("\n");
6199 	}
6200 
6201 	if (!list_empty(&pwq->inactive_works)) {
6202 		bool comma = false;
6203 
6204 		pr_info("    inactive:");
6205 		list_for_each_entry(work, &pwq->inactive_works, entry) {
6206 			pr_cont_work(comma, work, &pcws);
6207 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6208 		}
6209 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6210 		pr_cont("\n");
6211 	}
6212 }
6213 
6214 /**
6215  * show_one_workqueue - dump state of specified workqueue
6216  * @wq: workqueue whose state will be printed
6217  */
6218 void show_one_workqueue(struct workqueue_struct *wq)
6219 {
6220 	struct pool_workqueue *pwq;
6221 	bool idle = true;
6222 	unsigned long irq_flags;
6223 
6224 	for_each_pwq(pwq, wq) {
6225 		if (!pwq_is_empty(pwq)) {
6226 			idle = false;
6227 			break;
6228 		}
6229 	}
6230 	if (idle) /* Nothing to print for idle workqueue */
6231 		return;
6232 
6233 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6234 
6235 	for_each_pwq(pwq, wq) {
6236 		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6237 		if (!pwq_is_empty(pwq)) {
6238 			/*
6239 			 * Defer printing to avoid deadlocks in console
6240 			 * drivers that queue work while holding locks
6241 			 * also taken in their write paths.
6242 			 */
6243 			printk_deferred_enter();
6244 			show_pwq(pwq);
6245 			printk_deferred_exit();
6246 		}
6247 		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6248 		/*
6249 		 * We could be printing a lot from atomic context, e.g.
6250 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6251 		 * hard lockup.
6252 		 */
6253 		touch_nmi_watchdog();
6254 	}
6255 
6256 }
6257 
6258 /**
6259  * show_one_worker_pool - dump state of specified worker pool
6260  * @pool: worker pool whose state will be printed
6261  */
6262 static void show_one_worker_pool(struct worker_pool *pool)
6263 {
6264 	struct worker *worker;
6265 	bool first = true;
6266 	unsigned long irq_flags;
6267 	unsigned long hung = 0;
6268 
6269 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6270 	if (pool->nr_workers == pool->nr_idle)
6271 		goto next_pool;
6272 
6273 	/* How long the first pending work is waiting for a worker. */
6274 	if (!list_empty(&pool->worklist))
6275 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6276 
6277 	/*
6278 	 * Defer printing to avoid deadlocks in console drivers that
6279 	 * queue work while holding locks also taken in their write
6280 	 * paths.
6281 	 */
6282 	printk_deferred_enter();
6283 	pr_info("pool %d:", pool->id);
6284 	pr_cont_pool_info(pool);
6285 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6286 	if (pool->manager)
6287 		pr_cont(" manager: %d",
6288 			task_pid_nr(pool->manager->task));
6289 	list_for_each_entry(worker, &pool->idle_list, entry) {
6290 		pr_cont(" %s", first ? "idle: " : "");
6291 		pr_cont_worker_id(worker);
6292 		first = false;
6293 	}
6294 	pr_cont("\n");
6295 	printk_deferred_exit();
6296 next_pool:
6297 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6298 	/*
6299 	 * We could be printing a lot from atomic context, e.g.
6300 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6301 	 * hard lockup.
6302 	 */
6303 	touch_nmi_watchdog();
6304 
6305 }
6306 
6307 /**
6308  * show_all_workqueues - dump workqueue state
6309  *
6310  * Called from a sysrq handler and prints out all busy workqueues and pools.
6311  */
6312 void show_all_workqueues(void)
6313 {
6314 	struct workqueue_struct *wq;
6315 	struct worker_pool *pool;
6316 	int pi;
6317 
6318 	rcu_read_lock();
6319 
6320 	pr_info("Showing busy workqueues and worker pools:\n");
6321 
6322 	list_for_each_entry_rcu(wq, &workqueues, list)
6323 		show_one_workqueue(wq);
6324 
6325 	for_each_pool(pool, pi)
6326 		show_one_worker_pool(pool);
6327 
6328 	rcu_read_unlock();
6329 }
6330 
6331 /**
6332  * show_freezable_workqueues - dump freezable workqueue state
6333  *
6334  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6335  * still busy.
6336  */
6337 void show_freezable_workqueues(void)
6338 {
6339 	struct workqueue_struct *wq;
6340 
6341 	rcu_read_lock();
6342 
6343 	pr_info("Showing freezable workqueues that are still busy:\n");
6344 
6345 	list_for_each_entry_rcu(wq, &workqueues, list) {
6346 		if (!(wq->flags & WQ_FREEZABLE))
6347 			continue;
6348 		show_one_workqueue(wq);
6349 	}
6350 
6351 	rcu_read_unlock();
6352 }
6353 
6354 /* used to show worker information through /proc/PID/{comm,stat,status} */
6355 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6356 {
6357 	int off;
6358 
6359 	/* always show the actual comm */
6360 	off = strscpy(buf, task->comm, size);
6361 	if (off < 0)
6362 		return;
6363 
6364 	/* stabilize PF_WQ_WORKER and worker pool association */
6365 	mutex_lock(&wq_pool_attach_mutex);
6366 
6367 	if (task->flags & PF_WQ_WORKER) {
6368 		struct worker *worker = kthread_data(task);
6369 		struct worker_pool *pool = worker->pool;
6370 
6371 		if (pool) {
6372 			raw_spin_lock_irq(&pool->lock);
6373 			/*
6374 			 * ->desc tracks information (wq name or
6375 			 * set_worker_desc()) for the latest execution.  If
6376 			 * current, prepend '+', otherwise '-'.
6377 			 */
6378 			if (worker->desc[0] != '\0') {
6379 				if (worker->current_work)
6380 					scnprintf(buf + off, size - off, "+%s",
6381 						  worker->desc);
6382 				else
6383 					scnprintf(buf + off, size - off, "-%s",
6384 						  worker->desc);
6385 			}
6386 			raw_spin_unlock_irq(&pool->lock);
6387 		}
6388 	}
6389 
6390 	mutex_unlock(&wq_pool_attach_mutex);
6391 }
6392 
6393 #ifdef CONFIG_SMP
6394 
6395 /*
6396  * CPU hotplug.
6397  *
6398  * There are two challenges in supporting CPU hotplug.  Firstly, there
6399  * are a lot of assumptions on strong associations among work, pwq and
6400  * pool which make migrating pending and scheduled works very
6401  * difficult to implement without impacting hot paths.  Secondly,
6402  * worker pools serve mix of short, long and very long running works making
6403  * blocked draining impractical.
6404  *
6405  * This is solved by allowing the pools to be disassociated from the CPU
6406  * running as an unbound one and allowing it to be reattached later if the
6407  * cpu comes back online.
6408  */
6409 
6410 static void unbind_workers(int cpu)
6411 {
6412 	struct worker_pool *pool;
6413 	struct worker *worker;
6414 
6415 	for_each_cpu_worker_pool(pool, cpu) {
6416 		mutex_lock(&wq_pool_attach_mutex);
6417 		raw_spin_lock_irq(&pool->lock);
6418 
6419 		/*
6420 		 * We've blocked all attach/detach operations. Make all workers
6421 		 * unbound and set DISASSOCIATED.  Before this, all workers
6422 		 * must be on the cpu.  After this, they may become diasporas.
6423 		 * And the preemption disabled section in their sched callbacks
6424 		 * are guaranteed to see WORKER_UNBOUND since the code here
6425 		 * is on the same cpu.
6426 		 */
6427 		for_each_pool_worker(worker, pool)
6428 			worker->flags |= WORKER_UNBOUND;
6429 
6430 		pool->flags |= POOL_DISASSOCIATED;
6431 
6432 		/*
6433 		 * The handling of nr_running in sched callbacks are disabled
6434 		 * now.  Zap nr_running.  After this, nr_running stays zero and
6435 		 * need_more_worker() and keep_working() are always true as
6436 		 * long as the worklist is not empty.  This pool now behaves as
6437 		 * an unbound (in terms of concurrency management) pool which
6438 		 * are served by workers tied to the pool.
6439 		 */
6440 		pool->nr_running = 0;
6441 
6442 		/*
6443 		 * With concurrency management just turned off, a busy
6444 		 * worker blocking could lead to lengthy stalls.  Kick off
6445 		 * unbound chain execution of currently pending work items.
6446 		 */
6447 		kick_pool(pool);
6448 
6449 		raw_spin_unlock_irq(&pool->lock);
6450 
6451 		for_each_pool_worker(worker, pool)
6452 			unbind_worker(worker);
6453 
6454 		mutex_unlock(&wq_pool_attach_mutex);
6455 	}
6456 }
6457 
6458 /**
6459  * rebind_workers - rebind all workers of a pool to the associated CPU
6460  * @pool: pool of interest
6461  *
6462  * @pool->cpu is coming online.  Rebind all workers to the CPU.
6463  */
6464 static void rebind_workers(struct worker_pool *pool)
6465 {
6466 	struct worker *worker;
6467 
6468 	lockdep_assert_held(&wq_pool_attach_mutex);
6469 
6470 	/*
6471 	 * Restore CPU affinity of all workers.  As all idle workers should
6472 	 * be on the run-queue of the associated CPU before any local
6473 	 * wake-ups for concurrency management happen, restore CPU affinity
6474 	 * of all workers first and then clear UNBOUND.  As we're called
6475 	 * from CPU_ONLINE, the following shouldn't fail.
6476 	 */
6477 	for_each_pool_worker(worker, pool) {
6478 		kthread_set_per_cpu(worker->task, pool->cpu);
6479 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6480 						  pool_allowed_cpus(pool)) < 0);
6481 	}
6482 
6483 	raw_spin_lock_irq(&pool->lock);
6484 
6485 	pool->flags &= ~POOL_DISASSOCIATED;
6486 
6487 	for_each_pool_worker(worker, pool) {
6488 		unsigned int worker_flags = worker->flags;
6489 
6490 		/*
6491 		 * We want to clear UNBOUND but can't directly call
6492 		 * worker_clr_flags() or adjust nr_running.  Atomically
6493 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6494 		 * @worker will clear REBOUND using worker_clr_flags() when
6495 		 * it initiates the next execution cycle thus restoring
6496 		 * concurrency management.  Note that when or whether
6497 		 * @worker clears REBOUND doesn't affect correctness.
6498 		 *
6499 		 * WRITE_ONCE() is necessary because @worker->flags may be
6500 		 * tested without holding any lock in
6501 		 * wq_worker_running().  Without it, NOT_RUNNING test may
6502 		 * fail incorrectly leading to premature concurrency
6503 		 * management operations.
6504 		 */
6505 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6506 		worker_flags |= WORKER_REBOUND;
6507 		worker_flags &= ~WORKER_UNBOUND;
6508 		WRITE_ONCE(worker->flags, worker_flags);
6509 	}
6510 
6511 	raw_spin_unlock_irq(&pool->lock);
6512 }
6513 
6514 /**
6515  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6516  * @pool: unbound pool of interest
6517  * @cpu: the CPU which is coming up
6518  *
6519  * An unbound pool may end up with a cpumask which doesn't have any online
6520  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6521  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6522  * online CPU before, cpus_allowed of all its workers should be restored.
6523  */
6524 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6525 {
6526 	static cpumask_t cpumask;
6527 	struct worker *worker;
6528 
6529 	lockdep_assert_held(&wq_pool_attach_mutex);
6530 
6531 	/* is @cpu allowed for @pool? */
6532 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6533 		return;
6534 
6535 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6536 
6537 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6538 	for_each_pool_worker(worker, pool)
6539 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6540 }
6541 
6542 int workqueue_prepare_cpu(unsigned int cpu)
6543 {
6544 	struct worker_pool *pool;
6545 
6546 	for_each_cpu_worker_pool(pool, cpu) {
6547 		if (pool->nr_workers)
6548 			continue;
6549 		if (!create_worker(pool))
6550 			return -ENOMEM;
6551 	}
6552 	return 0;
6553 }
6554 
6555 int workqueue_online_cpu(unsigned int cpu)
6556 {
6557 	struct worker_pool *pool;
6558 	struct workqueue_struct *wq;
6559 	int pi;
6560 
6561 	mutex_lock(&wq_pool_mutex);
6562 
6563 	cpumask_set_cpu(cpu, wq_online_cpumask);
6564 
6565 	for_each_pool(pool, pi) {
6566 		/* BH pools aren't affected by hotplug */
6567 		if (pool->flags & POOL_BH)
6568 			continue;
6569 
6570 		mutex_lock(&wq_pool_attach_mutex);
6571 		if (pool->cpu == cpu)
6572 			rebind_workers(pool);
6573 		else if (pool->cpu < 0)
6574 			restore_unbound_workers_cpumask(pool, cpu);
6575 		mutex_unlock(&wq_pool_attach_mutex);
6576 	}
6577 
6578 	/* update pod affinity of unbound workqueues */
6579 	list_for_each_entry(wq, &workqueues, list) {
6580 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6581 
6582 		if (attrs) {
6583 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6584 			int tcpu;
6585 
6586 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6587 				unbound_wq_update_pwq(wq, tcpu);
6588 
6589 			mutex_lock(&wq->mutex);
6590 			wq_update_node_max_active(wq, -1);
6591 			mutex_unlock(&wq->mutex);
6592 		}
6593 	}
6594 
6595 	mutex_unlock(&wq_pool_mutex);
6596 	return 0;
6597 }
6598 
6599 int workqueue_offline_cpu(unsigned int cpu)
6600 {
6601 	struct workqueue_struct *wq;
6602 
6603 	/* unbinding per-cpu workers should happen on the local CPU */
6604 	if (WARN_ON(cpu != smp_processor_id()))
6605 		return -1;
6606 
6607 	unbind_workers(cpu);
6608 
6609 	/* update pod affinity of unbound workqueues */
6610 	mutex_lock(&wq_pool_mutex);
6611 
6612 	cpumask_clear_cpu(cpu, wq_online_cpumask);
6613 
6614 	list_for_each_entry(wq, &workqueues, list) {
6615 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6616 
6617 		if (attrs) {
6618 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6619 			int tcpu;
6620 
6621 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6622 				unbound_wq_update_pwq(wq, tcpu);
6623 
6624 			mutex_lock(&wq->mutex);
6625 			wq_update_node_max_active(wq, cpu);
6626 			mutex_unlock(&wq->mutex);
6627 		}
6628 	}
6629 	mutex_unlock(&wq_pool_mutex);
6630 
6631 	return 0;
6632 }
6633 
6634 struct work_for_cpu {
6635 	struct work_struct work;
6636 	long (*fn)(void *);
6637 	void *arg;
6638 	long ret;
6639 };
6640 
6641 static void work_for_cpu_fn(struct work_struct *work)
6642 {
6643 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6644 
6645 	wfc->ret = wfc->fn(wfc->arg);
6646 }
6647 
6648 /**
6649  * work_on_cpu_key - run a function in thread context on a particular cpu
6650  * @cpu: the cpu to run on
6651  * @fn: the function to run
6652  * @arg: the function arg
6653  * @key: The lock class key for lock debugging purposes
6654  *
6655  * It is up to the caller to ensure that the cpu doesn't go offline.
6656  * The caller must not hold any locks which would prevent @fn from completing.
6657  *
6658  * Return: The value @fn returns.
6659  */
6660 long work_on_cpu_key(int cpu, long (*fn)(void *),
6661 		     void *arg, struct lock_class_key *key)
6662 {
6663 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6664 
6665 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6666 	schedule_work_on(cpu, &wfc.work);
6667 	flush_work(&wfc.work);
6668 	destroy_work_on_stack(&wfc.work);
6669 	return wfc.ret;
6670 }
6671 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6672 
6673 /**
6674  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6675  * @cpu: the cpu to run on
6676  * @fn:  the function to run
6677  * @arg: the function argument
6678  * @key: The lock class key for lock debugging purposes
6679  *
6680  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6681  * any locks which would prevent @fn from completing.
6682  *
6683  * Return: The value @fn returns.
6684  */
6685 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6686 			  void *arg, struct lock_class_key *key)
6687 {
6688 	long ret = -ENODEV;
6689 
6690 	cpus_read_lock();
6691 	if (cpu_online(cpu))
6692 		ret = work_on_cpu_key(cpu, fn, arg, key);
6693 	cpus_read_unlock();
6694 	return ret;
6695 }
6696 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6697 #endif /* CONFIG_SMP */
6698 
6699 #ifdef CONFIG_FREEZER
6700 
6701 /**
6702  * freeze_workqueues_begin - begin freezing workqueues
6703  *
6704  * Start freezing workqueues.  After this function returns, all freezable
6705  * workqueues will queue new works to their inactive_works list instead of
6706  * pool->worklist.
6707  *
6708  * CONTEXT:
6709  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6710  */
6711 void freeze_workqueues_begin(void)
6712 {
6713 	struct workqueue_struct *wq;
6714 
6715 	mutex_lock(&wq_pool_mutex);
6716 
6717 	WARN_ON_ONCE(workqueue_freezing);
6718 	workqueue_freezing = true;
6719 
6720 	list_for_each_entry(wq, &workqueues, list) {
6721 		mutex_lock(&wq->mutex);
6722 		wq_adjust_max_active(wq);
6723 		mutex_unlock(&wq->mutex);
6724 	}
6725 
6726 	mutex_unlock(&wq_pool_mutex);
6727 }
6728 
6729 /**
6730  * freeze_workqueues_busy - are freezable workqueues still busy?
6731  *
6732  * Check whether freezing is complete.  This function must be called
6733  * between freeze_workqueues_begin() and thaw_workqueues().
6734  *
6735  * CONTEXT:
6736  * Grabs and releases wq_pool_mutex.
6737  *
6738  * Return:
6739  * %true if some freezable workqueues are still busy.  %false if freezing
6740  * is complete.
6741  */
6742 bool freeze_workqueues_busy(void)
6743 {
6744 	bool busy = false;
6745 	struct workqueue_struct *wq;
6746 	struct pool_workqueue *pwq;
6747 
6748 	mutex_lock(&wq_pool_mutex);
6749 
6750 	WARN_ON_ONCE(!workqueue_freezing);
6751 
6752 	list_for_each_entry(wq, &workqueues, list) {
6753 		if (!(wq->flags & WQ_FREEZABLE))
6754 			continue;
6755 		/*
6756 		 * nr_active is monotonically decreasing.  It's safe
6757 		 * to peek without lock.
6758 		 */
6759 		rcu_read_lock();
6760 		for_each_pwq(pwq, wq) {
6761 			WARN_ON_ONCE(pwq->nr_active < 0);
6762 			if (pwq->nr_active) {
6763 				busy = true;
6764 				rcu_read_unlock();
6765 				goto out_unlock;
6766 			}
6767 		}
6768 		rcu_read_unlock();
6769 	}
6770 out_unlock:
6771 	mutex_unlock(&wq_pool_mutex);
6772 	return busy;
6773 }
6774 
6775 /**
6776  * thaw_workqueues - thaw workqueues
6777  *
6778  * Thaw workqueues.  Normal queueing is restored and all collected
6779  * frozen works are transferred to their respective pool worklists.
6780  *
6781  * CONTEXT:
6782  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6783  */
6784 void thaw_workqueues(void)
6785 {
6786 	struct workqueue_struct *wq;
6787 
6788 	mutex_lock(&wq_pool_mutex);
6789 
6790 	if (!workqueue_freezing)
6791 		goto out_unlock;
6792 
6793 	workqueue_freezing = false;
6794 
6795 	/* restore max_active and repopulate worklist */
6796 	list_for_each_entry(wq, &workqueues, list) {
6797 		mutex_lock(&wq->mutex);
6798 		wq_adjust_max_active(wq);
6799 		mutex_unlock(&wq->mutex);
6800 	}
6801 
6802 out_unlock:
6803 	mutex_unlock(&wq_pool_mutex);
6804 }
6805 #endif /* CONFIG_FREEZER */
6806 
6807 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6808 {
6809 	LIST_HEAD(ctxs);
6810 	int ret = 0;
6811 	struct workqueue_struct *wq;
6812 	struct apply_wqattrs_ctx *ctx, *n;
6813 
6814 	lockdep_assert_held(&wq_pool_mutex);
6815 
6816 	list_for_each_entry(wq, &workqueues, list) {
6817 		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6818 			continue;
6819 
6820 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6821 		if (IS_ERR(ctx)) {
6822 			ret = PTR_ERR(ctx);
6823 			break;
6824 		}
6825 
6826 		list_add_tail(&ctx->list, &ctxs);
6827 	}
6828 
6829 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6830 		if (!ret)
6831 			apply_wqattrs_commit(ctx);
6832 		apply_wqattrs_cleanup(ctx);
6833 	}
6834 
6835 	if (!ret) {
6836 		mutex_lock(&wq_pool_attach_mutex);
6837 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6838 		mutex_unlock(&wq_pool_attach_mutex);
6839 	}
6840 	return ret;
6841 }
6842 
6843 /**
6844  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6845  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6846  *
6847  * This function can be called from cpuset code to provide a set of isolated
6848  * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6849  * either cpus_read_lock or cpus_write_lock.
6850  */
6851 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6852 {
6853 	cpumask_var_t cpumask;
6854 	int ret = 0;
6855 
6856 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6857 		return -ENOMEM;
6858 
6859 	lockdep_assert_cpus_held();
6860 	mutex_lock(&wq_pool_mutex);
6861 
6862 	/*
6863 	 * If the operation fails, it will fall back to
6864 	 * wq_requested_unbound_cpumask which is initially set to
6865 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6866 	 * by any subsequent write to workqueue/cpumask sysfs file.
6867 	 */
6868 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6869 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6870 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6871 		ret = workqueue_apply_unbound_cpumask(cpumask);
6872 
6873 	/* Save the current isolated cpumask & export it via sysfs */
6874 	if (!ret)
6875 		cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6876 
6877 	mutex_unlock(&wq_pool_mutex);
6878 	free_cpumask_var(cpumask);
6879 	return ret;
6880 }
6881 
6882 static int parse_affn_scope(const char *val)
6883 {
6884 	int i;
6885 
6886 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6887 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6888 			return i;
6889 	}
6890 	return -EINVAL;
6891 }
6892 
6893 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6894 {
6895 	struct workqueue_struct *wq;
6896 	int affn, cpu;
6897 
6898 	affn = parse_affn_scope(val);
6899 	if (affn < 0)
6900 		return affn;
6901 	if (affn == WQ_AFFN_DFL)
6902 		return -EINVAL;
6903 
6904 	cpus_read_lock();
6905 	mutex_lock(&wq_pool_mutex);
6906 
6907 	wq_affn_dfl = affn;
6908 
6909 	list_for_each_entry(wq, &workqueues, list) {
6910 		for_each_online_cpu(cpu)
6911 			unbound_wq_update_pwq(wq, cpu);
6912 	}
6913 
6914 	mutex_unlock(&wq_pool_mutex);
6915 	cpus_read_unlock();
6916 
6917 	return 0;
6918 }
6919 
6920 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6921 {
6922 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6923 }
6924 
6925 static const struct kernel_param_ops wq_affn_dfl_ops = {
6926 	.set	= wq_affn_dfl_set,
6927 	.get	= wq_affn_dfl_get,
6928 };
6929 
6930 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6931 
6932 #ifdef CONFIG_SYSFS
6933 /*
6934  * Workqueues with WQ_SYSFS flag set is visible to userland via
6935  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
6936  * following attributes.
6937  *
6938  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
6939  *  max_active		RW int	: maximum number of in-flight work items
6940  *
6941  * Unbound workqueues have the following extra attributes.
6942  *
6943  *  nice		RW int	: nice value of the workers
6944  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
6945  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
6946  *  affinity_strict	RW bool : worker CPU affinity is strict
6947  */
6948 struct wq_device {
6949 	struct workqueue_struct		*wq;
6950 	struct device			dev;
6951 };
6952 
6953 static struct workqueue_struct *dev_to_wq(struct device *dev)
6954 {
6955 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6956 
6957 	return wq_dev->wq;
6958 }
6959 
6960 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6961 			    char *buf)
6962 {
6963 	struct workqueue_struct *wq = dev_to_wq(dev);
6964 
6965 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6966 }
6967 static DEVICE_ATTR_RO(per_cpu);
6968 
6969 static ssize_t max_active_show(struct device *dev,
6970 			       struct device_attribute *attr, char *buf)
6971 {
6972 	struct workqueue_struct *wq = dev_to_wq(dev);
6973 
6974 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6975 }
6976 
6977 static ssize_t max_active_store(struct device *dev,
6978 				struct device_attribute *attr, const char *buf,
6979 				size_t count)
6980 {
6981 	struct workqueue_struct *wq = dev_to_wq(dev);
6982 	int val;
6983 
6984 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6985 		return -EINVAL;
6986 
6987 	workqueue_set_max_active(wq, val);
6988 	return count;
6989 }
6990 static DEVICE_ATTR_RW(max_active);
6991 
6992 static struct attribute *wq_sysfs_attrs[] = {
6993 	&dev_attr_per_cpu.attr,
6994 	&dev_attr_max_active.attr,
6995 	NULL,
6996 };
6997 ATTRIBUTE_GROUPS(wq_sysfs);
6998 
6999 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7000 			    char *buf)
7001 {
7002 	struct workqueue_struct *wq = dev_to_wq(dev);
7003 	int written;
7004 
7005 	mutex_lock(&wq->mutex);
7006 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7007 	mutex_unlock(&wq->mutex);
7008 
7009 	return written;
7010 }
7011 
7012 /* prepare workqueue_attrs for sysfs store operations */
7013 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7014 {
7015 	struct workqueue_attrs *attrs;
7016 
7017 	lockdep_assert_held(&wq_pool_mutex);
7018 
7019 	attrs = alloc_workqueue_attrs();
7020 	if (!attrs)
7021 		return NULL;
7022 
7023 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
7024 	return attrs;
7025 }
7026 
7027 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7028 			     const char *buf, size_t count)
7029 {
7030 	struct workqueue_struct *wq = dev_to_wq(dev);
7031 	struct workqueue_attrs *attrs;
7032 	int ret = -ENOMEM;
7033 
7034 	apply_wqattrs_lock();
7035 
7036 	attrs = wq_sysfs_prep_attrs(wq);
7037 	if (!attrs)
7038 		goto out_unlock;
7039 
7040 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7041 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7042 		ret = apply_workqueue_attrs_locked(wq, attrs);
7043 	else
7044 		ret = -EINVAL;
7045 
7046 out_unlock:
7047 	apply_wqattrs_unlock();
7048 	free_workqueue_attrs(attrs);
7049 	return ret ?: count;
7050 }
7051 
7052 static ssize_t wq_cpumask_show(struct device *dev,
7053 			       struct device_attribute *attr, char *buf)
7054 {
7055 	struct workqueue_struct *wq = dev_to_wq(dev);
7056 	int written;
7057 
7058 	mutex_lock(&wq->mutex);
7059 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7060 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
7061 	mutex_unlock(&wq->mutex);
7062 	return written;
7063 }
7064 
7065 static ssize_t wq_cpumask_store(struct device *dev,
7066 				struct device_attribute *attr,
7067 				const char *buf, size_t count)
7068 {
7069 	struct workqueue_struct *wq = dev_to_wq(dev);
7070 	struct workqueue_attrs *attrs;
7071 	int ret = -ENOMEM;
7072 
7073 	apply_wqattrs_lock();
7074 
7075 	attrs = wq_sysfs_prep_attrs(wq);
7076 	if (!attrs)
7077 		goto out_unlock;
7078 
7079 	ret = cpumask_parse(buf, attrs->cpumask);
7080 	if (!ret)
7081 		ret = apply_workqueue_attrs_locked(wq, attrs);
7082 
7083 out_unlock:
7084 	apply_wqattrs_unlock();
7085 	free_workqueue_attrs(attrs);
7086 	return ret ?: count;
7087 }
7088 
7089 static ssize_t wq_affn_scope_show(struct device *dev,
7090 				  struct device_attribute *attr, char *buf)
7091 {
7092 	struct workqueue_struct *wq = dev_to_wq(dev);
7093 	int written;
7094 
7095 	mutex_lock(&wq->mutex);
7096 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7097 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7098 				    wq_affn_names[WQ_AFFN_DFL],
7099 				    wq_affn_names[wq_affn_dfl]);
7100 	else
7101 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7102 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7103 	mutex_unlock(&wq->mutex);
7104 
7105 	return written;
7106 }
7107 
7108 static ssize_t wq_affn_scope_store(struct device *dev,
7109 				   struct device_attribute *attr,
7110 				   const char *buf, size_t count)
7111 {
7112 	struct workqueue_struct *wq = dev_to_wq(dev);
7113 	struct workqueue_attrs *attrs;
7114 	int affn, ret = -ENOMEM;
7115 
7116 	affn = parse_affn_scope(buf);
7117 	if (affn < 0)
7118 		return affn;
7119 
7120 	apply_wqattrs_lock();
7121 	attrs = wq_sysfs_prep_attrs(wq);
7122 	if (attrs) {
7123 		attrs->affn_scope = affn;
7124 		ret = apply_workqueue_attrs_locked(wq, attrs);
7125 	}
7126 	apply_wqattrs_unlock();
7127 	free_workqueue_attrs(attrs);
7128 	return ret ?: count;
7129 }
7130 
7131 static ssize_t wq_affinity_strict_show(struct device *dev,
7132 				       struct device_attribute *attr, char *buf)
7133 {
7134 	struct workqueue_struct *wq = dev_to_wq(dev);
7135 
7136 	return scnprintf(buf, PAGE_SIZE, "%d\n",
7137 			 wq->unbound_attrs->affn_strict);
7138 }
7139 
7140 static ssize_t wq_affinity_strict_store(struct device *dev,
7141 					struct device_attribute *attr,
7142 					const char *buf, size_t count)
7143 {
7144 	struct workqueue_struct *wq = dev_to_wq(dev);
7145 	struct workqueue_attrs *attrs;
7146 	int v, ret = -ENOMEM;
7147 
7148 	if (sscanf(buf, "%d", &v) != 1)
7149 		return -EINVAL;
7150 
7151 	apply_wqattrs_lock();
7152 	attrs = wq_sysfs_prep_attrs(wq);
7153 	if (attrs) {
7154 		attrs->affn_strict = (bool)v;
7155 		ret = apply_workqueue_attrs_locked(wq, attrs);
7156 	}
7157 	apply_wqattrs_unlock();
7158 	free_workqueue_attrs(attrs);
7159 	return ret ?: count;
7160 }
7161 
7162 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7163 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7164 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7165 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7166 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7167 	__ATTR_NULL,
7168 };
7169 
7170 static const struct bus_type wq_subsys = {
7171 	.name				= "workqueue",
7172 	.dev_groups			= wq_sysfs_groups,
7173 };
7174 
7175 /**
7176  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7177  *  @cpumask: the cpumask to set
7178  *
7179  *  The low-level workqueues cpumask is a global cpumask that limits
7180  *  the affinity of all unbound workqueues.  This function check the @cpumask
7181  *  and apply it to all unbound workqueues and updates all pwqs of them.
7182  *
7183  *  Return:	0	- Success
7184  *		-EINVAL	- Invalid @cpumask
7185  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7186  */
7187 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7188 {
7189 	int ret = -EINVAL;
7190 
7191 	/*
7192 	 * Not excluding isolated cpus on purpose.
7193 	 * If the user wishes to include them, we allow that.
7194 	 */
7195 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7196 	if (!cpumask_empty(cpumask)) {
7197 		ret = 0;
7198 		apply_wqattrs_lock();
7199 		if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7200 			ret = workqueue_apply_unbound_cpumask(cpumask);
7201 		if (!ret)
7202 			cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7203 		apply_wqattrs_unlock();
7204 	}
7205 
7206 	return ret;
7207 }
7208 
7209 static ssize_t __wq_cpumask_show(struct device *dev,
7210 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7211 {
7212 	int written;
7213 
7214 	mutex_lock(&wq_pool_mutex);
7215 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7216 	mutex_unlock(&wq_pool_mutex);
7217 
7218 	return written;
7219 }
7220 
7221 static ssize_t cpumask_requested_show(struct device *dev,
7222 		struct device_attribute *attr, char *buf)
7223 {
7224 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7225 }
7226 static DEVICE_ATTR_RO(cpumask_requested);
7227 
7228 static ssize_t cpumask_isolated_show(struct device *dev,
7229 		struct device_attribute *attr, char *buf)
7230 {
7231 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7232 }
7233 static DEVICE_ATTR_RO(cpumask_isolated);
7234 
7235 static ssize_t cpumask_show(struct device *dev,
7236 		struct device_attribute *attr, char *buf)
7237 {
7238 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7239 }
7240 
7241 static ssize_t cpumask_store(struct device *dev,
7242 		struct device_attribute *attr, const char *buf, size_t count)
7243 {
7244 	cpumask_var_t cpumask;
7245 	int ret;
7246 
7247 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7248 		return -ENOMEM;
7249 
7250 	ret = cpumask_parse(buf, cpumask);
7251 	if (!ret)
7252 		ret = workqueue_set_unbound_cpumask(cpumask);
7253 
7254 	free_cpumask_var(cpumask);
7255 	return ret ? ret : count;
7256 }
7257 static DEVICE_ATTR_RW(cpumask);
7258 
7259 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7260 	&dev_attr_cpumask.attr,
7261 	&dev_attr_cpumask_requested.attr,
7262 	&dev_attr_cpumask_isolated.attr,
7263 	NULL,
7264 };
7265 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7266 
7267 static int __init wq_sysfs_init(void)
7268 {
7269 	return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7270 }
7271 core_initcall(wq_sysfs_init);
7272 
7273 static void wq_device_release(struct device *dev)
7274 {
7275 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7276 
7277 	kfree(wq_dev);
7278 }
7279 
7280 /**
7281  * workqueue_sysfs_register - make a workqueue visible in sysfs
7282  * @wq: the workqueue to register
7283  *
7284  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7285  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7286  * which is the preferred method.
7287  *
7288  * Workqueue user should use this function directly iff it wants to apply
7289  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7290  * apply_workqueue_attrs() may race against userland updating the
7291  * attributes.
7292  *
7293  * Return: 0 on success, -errno on failure.
7294  */
7295 int workqueue_sysfs_register(struct workqueue_struct *wq)
7296 {
7297 	struct wq_device *wq_dev;
7298 	int ret;
7299 
7300 	/*
7301 	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7302 	 * ordered workqueues.
7303 	 */
7304 	if (WARN_ON(wq->flags & __WQ_ORDERED))
7305 		return -EINVAL;
7306 
7307 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7308 	if (!wq_dev)
7309 		return -ENOMEM;
7310 
7311 	wq_dev->wq = wq;
7312 	wq_dev->dev.bus = &wq_subsys;
7313 	wq_dev->dev.release = wq_device_release;
7314 	dev_set_name(&wq_dev->dev, "%s", wq->name);
7315 
7316 	/*
7317 	 * unbound_attrs are created separately.  Suppress uevent until
7318 	 * everything is ready.
7319 	 */
7320 	dev_set_uevent_suppress(&wq_dev->dev, true);
7321 
7322 	ret = device_register(&wq_dev->dev);
7323 	if (ret) {
7324 		put_device(&wq_dev->dev);
7325 		wq->wq_dev = NULL;
7326 		return ret;
7327 	}
7328 
7329 	if (wq->flags & WQ_UNBOUND) {
7330 		struct device_attribute *attr;
7331 
7332 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7333 			ret = device_create_file(&wq_dev->dev, attr);
7334 			if (ret) {
7335 				device_unregister(&wq_dev->dev);
7336 				wq->wq_dev = NULL;
7337 				return ret;
7338 			}
7339 		}
7340 	}
7341 
7342 	dev_set_uevent_suppress(&wq_dev->dev, false);
7343 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7344 	return 0;
7345 }
7346 
7347 /**
7348  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7349  * @wq: the workqueue to unregister
7350  *
7351  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7352  */
7353 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7354 {
7355 	struct wq_device *wq_dev = wq->wq_dev;
7356 
7357 	if (!wq->wq_dev)
7358 		return;
7359 
7360 	wq->wq_dev = NULL;
7361 	device_unregister(&wq_dev->dev);
7362 }
7363 #else	/* CONFIG_SYSFS */
7364 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7365 #endif	/* CONFIG_SYSFS */
7366 
7367 /*
7368  * Workqueue watchdog.
7369  *
7370  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7371  * flush dependency, a concurrency managed work item which stays RUNNING
7372  * indefinitely.  Workqueue stalls can be very difficult to debug as the
7373  * usual warning mechanisms don't trigger and internal workqueue state is
7374  * largely opaque.
7375  *
7376  * Workqueue watchdog monitors all worker pools periodically and dumps
7377  * state if some pools failed to make forward progress for a while where
7378  * forward progress is defined as the first item on ->worklist changing.
7379  *
7380  * This mechanism is controlled through the kernel parameter
7381  * "workqueue.watchdog_thresh" which can be updated at runtime through the
7382  * corresponding sysfs parameter file.
7383  */
7384 #ifdef CONFIG_WQ_WATCHDOG
7385 
7386 static unsigned long wq_watchdog_thresh = 30;
7387 static struct timer_list wq_watchdog_timer;
7388 
7389 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7390 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7391 
7392 /*
7393  * Show workers that might prevent the processing of pending work items.
7394  * The only candidates are CPU-bound workers in the running state.
7395  * Pending work items should be handled by another idle worker
7396  * in all other situations.
7397  */
7398 static void show_cpu_pool_hog(struct worker_pool *pool)
7399 {
7400 	struct worker *worker;
7401 	unsigned long irq_flags;
7402 	int bkt;
7403 
7404 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7405 
7406 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7407 		if (task_is_running(worker->task)) {
7408 			/*
7409 			 * Defer printing to avoid deadlocks in console
7410 			 * drivers that queue work while holding locks
7411 			 * also taken in their write paths.
7412 			 */
7413 			printk_deferred_enter();
7414 
7415 			pr_info("pool %d:\n", pool->id);
7416 			sched_show_task(worker->task);
7417 
7418 			printk_deferred_exit();
7419 		}
7420 	}
7421 
7422 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7423 }
7424 
7425 static void show_cpu_pools_hogs(void)
7426 {
7427 	struct worker_pool *pool;
7428 	int pi;
7429 
7430 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7431 
7432 	rcu_read_lock();
7433 
7434 	for_each_pool(pool, pi) {
7435 		if (pool->cpu_stall)
7436 			show_cpu_pool_hog(pool);
7437 
7438 	}
7439 
7440 	rcu_read_unlock();
7441 }
7442 
7443 static void wq_watchdog_reset_touched(void)
7444 {
7445 	int cpu;
7446 
7447 	wq_watchdog_touched = jiffies;
7448 	for_each_possible_cpu(cpu)
7449 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7450 }
7451 
7452 static void wq_watchdog_timer_fn(struct timer_list *unused)
7453 {
7454 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7455 	bool lockup_detected = false;
7456 	bool cpu_pool_stall = false;
7457 	unsigned long now = jiffies;
7458 	struct worker_pool *pool;
7459 	int pi;
7460 
7461 	if (!thresh)
7462 		return;
7463 
7464 	rcu_read_lock();
7465 
7466 	for_each_pool(pool, pi) {
7467 		unsigned long pool_ts, touched, ts;
7468 
7469 		pool->cpu_stall = false;
7470 		if (list_empty(&pool->worklist))
7471 			continue;
7472 
7473 		/*
7474 		 * If a virtual machine is stopped by the host it can look to
7475 		 * the watchdog like a stall.
7476 		 */
7477 		kvm_check_and_clear_guest_paused();
7478 
7479 		/* get the latest of pool and touched timestamps */
7480 		if (pool->cpu >= 0)
7481 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7482 		else
7483 			touched = READ_ONCE(wq_watchdog_touched);
7484 		pool_ts = READ_ONCE(pool->watchdog_ts);
7485 
7486 		if (time_after(pool_ts, touched))
7487 			ts = pool_ts;
7488 		else
7489 			ts = touched;
7490 
7491 		/* did we stall? */
7492 		if (time_after(now, ts + thresh)) {
7493 			lockup_detected = true;
7494 			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7495 				pool->cpu_stall = true;
7496 				cpu_pool_stall = true;
7497 			}
7498 			pr_emerg("BUG: workqueue lockup - pool");
7499 			pr_cont_pool_info(pool);
7500 			pr_cont(" stuck for %us!\n",
7501 				jiffies_to_msecs(now - pool_ts) / 1000);
7502 		}
7503 
7504 
7505 	}
7506 
7507 	rcu_read_unlock();
7508 
7509 	if (lockup_detected)
7510 		show_all_workqueues();
7511 
7512 	if (cpu_pool_stall)
7513 		show_cpu_pools_hogs();
7514 
7515 	wq_watchdog_reset_touched();
7516 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7517 }
7518 
7519 notrace void wq_watchdog_touch(int cpu)
7520 {
7521 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7522 	unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7523 	unsigned long now = jiffies;
7524 
7525 	if (cpu >= 0)
7526 		per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7527 	else
7528 		WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7529 
7530 	/* Don't unnecessarily store to global cacheline */
7531 	if (time_after(now, touch_ts + thresh / 4))
7532 		WRITE_ONCE(wq_watchdog_touched, jiffies);
7533 }
7534 
7535 static void wq_watchdog_set_thresh(unsigned long thresh)
7536 {
7537 	wq_watchdog_thresh = 0;
7538 	del_timer_sync(&wq_watchdog_timer);
7539 
7540 	if (thresh) {
7541 		wq_watchdog_thresh = thresh;
7542 		wq_watchdog_reset_touched();
7543 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7544 	}
7545 }
7546 
7547 static int wq_watchdog_param_set_thresh(const char *val,
7548 					const struct kernel_param *kp)
7549 {
7550 	unsigned long thresh;
7551 	int ret;
7552 
7553 	ret = kstrtoul(val, 0, &thresh);
7554 	if (ret)
7555 		return ret;
7556 
7557 	if (system_wq)
7558 		wq_watchdog_set_thresh(thresh);
7559 	else
7560 		wq_watchdog_thresh = thresh;
7561 
7562 	return 0;
7563 }
7564 
7565 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7566 	.set	= wq_watchdog_param_set_thresh,
7567 	.get	= param_get_ulong,
7568 };
7569 
7570 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7571 		0644);
7572 
7573 static void wq_watchdog_init(void)
7574 {
7575 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7576 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7577 }
7578 
7579 #else	/* CONFIG_WQ_WATCHDOG */
7580 
7581 static inline void wq_watchdog_init(void) { }
7582 
7583 #endif	/* CONFIG_WQ_WATCHDOG */
7584 
7585 static void bh_pool_kick_normal(struct irq_work *irq_work)
7586 {
7587 	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7588 }
7589 
7590 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7591 {
7592 	raise_softirq_irqoff(HI_SOFTIRQ);
7593 }
7594 
7595 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7596 {
7597 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7598 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7599 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7600 		return;
7601 	}
7602 
7603 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7604 }
7605 
7606 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7607 {
7608 	BUG_ON(init_worker_pool(pool));
7609 	pool->cpu = cpu;
7610 	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7611 	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7612 	pool->attrs->nice = nice;
7613 	pool->attrs->affn_strict = true;
7614 	pool->node = cpu_to_node(cpu);
7615 
7616 	/* alloc pool ID */
7617 	mutex_lock(&wq_pool_mutex);
7618 	BUG_ON(worker_pool_assign_id(pool));
7619 	mutex_unlock(&wq_pool_mutex);
7620 }
7621 
7622 /**
7623  * workqueue_init_early - early init for workqueue subsystem
7624  *
7625  * This is the first step of three-staged workqueue subsystem initialization and
7626  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7627  * up. It sets up all the data structures and system workqueues and allows early
7628  * boot code to create workqueues and queue/cancel work items. Actual work item
7629  * execution starts only after kthreads can be created and scheduled right
7630  * before early initcalls.
7631  */
7632 void __init workqueue_init_early(void)
7633 {
7634 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7635 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7636 	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7637 						       bh_pool_kick_highpri };
7638 	int i, cpu;
7639 
7640 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7641 
7642 	BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7643 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7644 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7645 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7646 
7647 	cpumask_copy(wq_online_cpumask, cpu_online_mask);
7648 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7649 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7650 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7651 	if (!cpumask_empty(&wq_cmdline_cpumask))
7652 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7653 
7654 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7655 
7656 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7657 
7658 	unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7659 	BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7660 
7661 	/*
7662 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7663 	 * This allows workqueue items to be moved to HK CPUs.
7664 	 */
7665 	if (housekeeping_enabled(HK_TYPE_TICK))
7666 		wq_power_efficient = true;
7667 
7668 	/* initialize WQ_AFFN_SYSTEM pods */
7669 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7670 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7671 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7672 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7673 
7674 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7675 
7676 	pt->nr_pods = 1;
7677 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7678 	pt->pod_node[0] = NUMA_NO_NODE;
7679 	pt->cpu_pod[0] = 0;
7680 
7681 	/* initialize BH and CPU pools */
7682 	for_each_possible_cpu(cpu) {
7683 		struct worker_pool *pool;
7684 
7685 		i = 0;
7686 		for_each_bh_worker_pool(pool, cpu) {
7687 			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7688 			pool->flags |= POOL_BH;
7689 			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7690 			i++;
7691 		}
7692 
7693 		i = 0;
7694 		for_each_cpu_worker_pool(pool, cpu)
7695 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7696 	}
7697 
7698 	/* create default unbound and ordered wq attrs */
7699 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7700 		struct workqueue_attrs *attrs;
7701 
7702 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7703 		attrs->nice = std_nice[i];
7704 		unbound_std_wq_attrs[i] = attrs;
7705 
7706 		/*
7707 		 * An ordered wq should have only one pwq as ordering is
7708 		 * guaranteed by max_active which is enforced by pwqs.
7709 		 */
7710 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7711 		attrs->nice = std_nice[i];
7712 		attrs->ordered = true;
7713 		ordered_wq_attrs[i] = attrs;
7714 	}
7715 
7716 	system_wq = alloc_workqueue("events", 0, 0);
7717 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7718 	system_long_wq = alloc_workqueue("events_long", 0, 0);
7719 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7720 					    WQ_MAX_ACTIVE);
7721 	system_freezable_wq = alloc_workqueue("events_freezable",
7722 					      WQ_FREEZABLE, 0);
7723 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7724 					      WQ_POWER_EFFICIENT, 0);
7725 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7726 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7727 					      0);
7728 	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7729 	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7730 					       WQ_BH | WQ_HIGHPRI, 0);
7731 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7732 	       !system_unbound_wq || !system_freezable_wq ||
7733 	       !system_power_efficient_wq ||
7734 	       !system_freezable_power_efficient_wq ||
7735 	       !system_bh_wq || !system_bh_highpri_wq);
7736 }
7737 
7738 static void __init wq_cpu_intensive_thresh_init(void)
7739 {
7740 	unsigned long thresh;
7741 	unsigned long bogo;
7742 
7743 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7744 	BUG_ON(IS_ERR(pwq_release_worker));
7745 
7746 	/* if the user set it to a specific value, keep it */
7747 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7748 		return;
7749 
7750 	/*
7751 	 * The default of 10ms is derived from the fact that most modern (as of
7752 	 * 2023) processors can do a lot in 10ms and that it's just below what
7753 	 * most consider human-perceivable. However, the kernel also runs on a
7754 	 * lot slower CPUs including microcontrollers where the threshold is way
7755 	 * too low.
7756 	 *
7757 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7758 	 * This is by no means accurate but it doesn't have to be. The mechanism
7759 	 * is still useful even when the threshold is fully scaled up. Also, as
7760 	 * the reports would usually be applicable to everyone, some machines
7761 	 * operating on longer thresholds won't significantly diminish their
7762 	 * usefulness.
7763 	 */
7764 	thresh = 10 * USEC_PER_MSEC;
7765 
7766 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7767 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7768 	if (bogo < 4000)
7769 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7770 
7771 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7772 		 loops_per_jiffy, bogo, thresh);
7773 
7774 	wq_cpu_intensive_thresh_us = thresh;
7775 }
7776 
7777 /**
7778  * workqueue_init - bring workqueue subsystem fully online
7779  *
7780  * This is the second step of three-staged workqueue subsystem initialization
7781  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7782  * been created and work items queued on them, but there are no kworkers
7783  * executing the work items yet. Populate the worker pools with the initial
7784  * workers and enable future kworker creations.
7785  */
7786 void __init workqueue_init(void)
7787 {
7788 	struct workqueue_struct *wq;
7789 	struct worker_pool *pool;
7790 	int cpu, bkt;
7791 
7792 	wq_cpu_intensive_thresh_init();
7793 
7794 	mutex_lock(&wq_pool_mutex);
7795 
7796 	/*
7797 	 * Per-cpu pools created earlier could be missing node hint. Fix them
7798 	 * up. Also, create a rescuer for workqueues that requested it.
7799 	 */
7800 	for_each_possible_cpu(cpu) {
7801 		for_each_bh_worker_pool(pool, cpu)
7802 			pool->node = cpu_to_node(cpu);
7803 		for_each_cpu_worker_pool(pool, cpu)
7804 			pool->node = cpu_to_node(cpu);
7805 	}
7806 
7807 	list_for_each_entry(wq, &workqueues, list) {
7808 		WARN(init_rescuer(wq),
7809 		     "workqueue: failed to create early rescuer for %s",
7810 		     wq->name);
7811 	}
7812 
7813 	mutex_unlock(&wq_pool_mutex);
7814 
7815 	/*
7816 	 * Create the initial workers. A BH pool has one pseudo worker that
7817 	 * represents the shared BH execution context and thus doesn't get
7818 	 * affected by hotplug events. Create the BH pseudo workers for all
7819 	 * possible CPUs here.
7820 	 */
7821 	for_each_possible_cpu(cpu)
7822 		for_each_bh_worker_pool(pool, cpu)
7823 			BUG_ON(!create_worker(pool));
7824 
7825 	for_each_online_cpu(cpu) {
7826 		for_each_cpu_worker_pool(pool, cpu) {
7827 			pool->flags &= ~POOL_DISASSOCIATED;
7828 			BUG_ON(!create_worker(pool));
7829 		}
7830 	}
7831 
7832 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7833 		BUG_ON(!create_worker(pool));
7834 
7835 	wq_online = true;
7836 	wq_watchdog_init();
7837 }
7838 
7839 /*
7840  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7841  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7842  * and consecutive pod ID. The rest of @pt is initialized accordingly.
7843  */
7844 static void __init init_pod_type(struct wq_pod_type *pt,
7845 				 bool (*cpus_share_pod)(int, int))
7846 {
7847 	int cur, pre, cpu, pod;
7848 
7849 	pt->nr_pods = 0;
7850 
7851 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7852 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7853 	BUG_ON(!pt->cpu_pod);
7854 
7855 	for_each_possible_cpu(cur) {
7856 		for_each_possible_cpu(pre) {
7857 			if (pre >= cur) {
7858 				pt->cpu_pod[cur] = pt->nr_pods++;
7859 				break;
7860 			}
7861 			if (cpus_share_pod(cur, pre)) {
7862 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7863 				break;
7864 			}
7865 		}
7866 	}
7867 
7868 	/* init the rest to match @pt->cpu_pod[] */
7869 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7870 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7871 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7872 
7873 	for (pod = 0; pod < pt->nr_pods; pod++)
7874 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7875 
7876 	for_each_possible_cpu(cpu) {
7877 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7878 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7879 	}
7880 }
7881 
7882 static bool __init cpus_dont_share(int cpu0, int cpu1)
7883 {
7884 	return false;
7885 }
7886 
7887 static bool __init cpus_share_smt(int cpu0, int cpu1)
7888 {
7889 #ifdef CONFIG_SCHED_SMT
7890 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7891 #else
7892 	return false;
7893 #endif
7894 }
7895 
7896 static bool __init cpus_share_numa(int cpu0, int cpu1)
7897 {
7898 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7899 }
7900 
7901 /**
7902  * workqueue_init_topology - initialize CPU pods for unbound workqueues
7903  *
7904  * This is the third step of three-staged workqueue subsystem initialization and
7905  * invoked after SMP and topology information are fully initialized. It
7906  * initializes the unbound CPU pods accordingly.
7907  */
7908 void __init workqueue_init_topology(void)
7909 {
7910 	struct workqueue_struct *wq;
7911 	int cpu;
7912 
7913 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7914 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7915 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7916 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7917 
7918 	wq_topo_initialized = true;
7919 
7920 	mutex_lock(&wq_pool_mutex);
7921 
7922 	/*
7923 	 * Workqueues allocated earlier would have all CPUs sharing the default
7924 	 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
7925 	 * and CPU combinations to apply per-pod sharing.
7926 	 */
7927 	list_for_each_entry(wq, &workqueues, list) {
7928 		for_each_online_cpu(cpu)
7929 			unbound_wq_update_pwq(wq, cpu);
7930 		if (wq->flags & WQ_UNBOUND) {
7931 			mutex_lock(&wq->mutex);
7932 			wq_update_node_max_active(wq, -1);
7933 			mutex_unlock(&wq->mutex);
7934 		}
7935 	}
7936 
7937 	mutex_unlock(&wq_pool_mutex);
7938 }
7939 
7940 void __warn_flushing_systemwide_wq(void)
7941 {
7942 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7943 	dump_stack();
7944 }
7945 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
7946 
7947 static int __init workqueue_unbound_cpus_setup(char *str)
7948 {
7949 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7950 		cpumask_clear(&wq_cmdline_cpumask);
7951 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7952 	}
7953 
7954 	return 1;
7955 }
7956 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
7957