1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <[email protected]> 9 * Andrew Morton 10 * Kai Petzke <[email protected]> 11 * Theodore Ts'o <[email protected]> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <[email protected]> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/interrupt.h> 33 #include <linux/signal.h> 34 #include <linux/completion.h> 35 #include <linux/workqueue.h> 36 #include <linux/slab.h> 37 #include <linux/cpu.h> 38 #include <linux/notifier.h> 39 #include <linux/kthread.h> 40 #include <linux/hardirq.h> 41 #include <linux/mempolicy.h> 42 #include <linux/freezer.h> 43 #include <linux/debug_locks.h> 44 #include <linux/lockdep.h> 45 #include <linux/idr.h> 46 #include <linux/jhash.h> 47 #include <linux/hashtable.h> 48 #include <linux/rculist.h> 49 #include <linux/nodemask.h> 50 #include <linux/moduleparam.h> 51 #include <linux/uaccess.h> 52 #include <linux/sched/isolation.h> 53 #include <linux/sched/debug.h> 54 #include <linux/nmi.h> 55 #include <linux/kvm_para.h> 56 #include <linux/delay.h> 57 #include <linux/irq_work.h> 58 59 #include "workqueue_internal.h" 60 61 enum worker_pool_flags { 62 /* 63 * worker_pool flags 64 * 65 * A bound pool is either associated or disassociated with its CPU. 66 * While associated (!DISASSOCIATED), all workers are bound to the 67 * CPU and none has %WORKER_UNBOUND set and concurrency management 68 * is in effect. 69 * 70 * While DISASSOCIATED, the cpu may be offline and all workers have 71 * %WORKER_UNBOUND set and concurrency management disabled, and may 72 * be executing on any CPU. The pool behaves as an unbound one. 73 * 74 * Note that DISASSOCIATED should be flipped only while holding 75 * wq_pool_attach_mutex to avoid changing binding state while 76 * worker_attach_to_pool() is in progress. 77 * 78 * As there can only be one concurrent BH execution context per CPU, a 79 * BH pool is per-CPU and always DISASSOCIATED. 80 */ 81 POOL_BH = 1 << 0, /* is a BH pool */ 82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */ 83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */ 85 }; 86 87 enum worker_flags { 88 /* worker flags */ 89 WORKER_DIE = 1 << 1, /* die die die */ 90 WORKER_IDLE = 1 << 2, /* is idle */ 91 WORKER_PREP = 1 << 3, /* preparing to run works */ 92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 94 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 95 96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 97 WORKER_UNBOUND | WORKER_REBOUND, 98 }; 99 100 enum work_cancel_flags { 101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */ 102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */ 103 }; 104 105 enum wq_internal_consts { 106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 107 108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 110 111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 113 114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 115 /* call for help after 10ms 116 (min two ticks) */ 117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 118 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 119 120 /* 121 * Rescue workers are used only on emergencies and shared by 122 * all cpus. Give MIN_NICE. 123 */ 124 RESCUER_NICE_LEVEL = MIN_NICE, 125 HIGHPRI_NICE_LEVEL = MIN_NICE, 126 127 WQ_NAME_LEN = 32, 128 }; 129 130 /* 131 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and 132 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because 133 * msecs_to_jiffies() can't be an initializer. 134 */ 135 #define BH_WORKER_JIFFIES msecs_to_jiffies(2) 136 #define BH_WORKER_RESTARTS 10 137 138 /* 139 * Structure fields follow one of the following exclusion rules. 140 * 141 * I: Modifiable by initialization/destruction paths and read-only for 142 * everyone else. 143 * 144 * P: Preemption protected. Disabling preemption is enough and should 145 * only be modified and accessed from the local cpu. 146 * 147 * L: pool->lock protected. Access with pool->lock held. 148 * 149 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for 150 * reads. 151 * 152 * K: Only modified by worker while holding pool->lock. Can be safely read by 153 * self, while holding pool->lock or from IRQ context if %current is the 154 * kworker. 155 * 156 * S: Only modified by worker self. 157 * 158 * A: wq_pool_attach_mutex protected. 159 * 160 * PL: wq_pool_mutex protected. 161 * 162 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 163 * 164 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 165 * 166 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 167 * RCU for reads. 168 * 169 * WQ: wq->mutex protected. 170 * 171 * WR: wq->mutex protected for writes. RCU protected for reads. 172 * 173 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read 174 * with READ_ONCE() without locking. 175 * 176 * MD: wq_mayday_lock protected. 177 * 178 * WD: Used internally by the watchdog. 179 */ 180 181 /* struct worker is defined in workqueue_internal.h */ 182 183 struct worker_pool { 184 raw_spinlock_t lock; /* the pool lock */ 185 int cpu; /* I: the associated cpu */ 186 int node; /* I: the associated node ID */ 187 int id; /* I: pool ID */ 188 unsigned int flags; /* L: flags */ 189 190 unsigned long watchdog_ts; /* L: watchdog timestamp */ 191 bool cpu_stall; /* WD: stalled cpu bound pool */ 192 193 /* 194 * The counter is incremented in a process context on the associated CPU 195 * w/ preemption disabled, and decremented or reset in the same context 196 * but w/ pool->lock held. The readers grab pool->lock and are 197 * guaranteed to see if the counter reached zero. 198 */ 199 int nr_running; 200 201 struct list_head worklist; /* L: list of pending works */ 202 203 int nr_workers; /* L: total number of workers */ 204 int nr_idle; /* L: currently idle workers */ 205 206 struct list_head idle_list; /* L: list of idle workers */ 207 struct timer_list idle_timer; /* L: worker idle timeout */ 208 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 209 210 struct timer_list mayday_timer; /* L: SOS timer for workers */ 211 212 /* a workers is either on busy_hash or idle_list, or the manager */ 213 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 214 /* L: hash of busy workers */ 215 216 struct worker *manager; /* L: purely informational */ 217 struct list_head workers; /* A: attached workers */ 218 219 struct ida worker_ida; /* worker IDs for task name */ 220 221 struct workqueue_attrs *attrs; /* I: worker attributes */ 222 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 223 int refcnt; /* PL: refcnt for unbound pools */ 224 225 /* 226 * Destruction of pool is RCU protected to allow dereferences 227 * from get_work_pool(). 228 */ 229 struct rcu_head rcu; 230 }; 231 232 /* 233 * Per-pool_workqueue statistics. These can be monitored using 234 * tools/workqueue/wq_monitor.py. 235 */ 236 enum pool_workqueue_stats { 237 PWQ_STAT_STARTED, /* work items started execution */ 238 PWQ_STAT_COMPLETED, /* work items completed execution */ 239 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 240 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 241 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 242 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 243 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 244 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 245 246 PWQ_NR_STATS, 247 }; 248 249 /* 250 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT 251 * of work_struct->data are used for flags and the remaining high bits 252 * point to the pwq; thus, pwqs need to be aligned at two's power of the 253 * number of flag bits. 254 */ 255 struct pool_workqueue { 256 struct worker_pool *pool; /* I: the associated pool */ 257 struct workqueue_struct *wq; /* I: the owning workqueue */ 258 int work_color; /* L: current color */ 259 int flush_color; /* L: flushing color */ 260 int refcnt; /* L: reference count */ 261 int nr_in_flight[WORK_NR_COLORS]; 262 /* L: nr of in_flight works */ 263 bool plugged; /* L: execution suspended */ 264 265 /* 266 * nr_active management and WORK_STRUCT_INACTIVE: 267 * 268 * When pwq->nr_active >= max_active, new work item is queued to 269 * pwq->inactive_works instead of pool->worklist and marked with 270 * WORK_STRUCT_INACTIVE. 271 * 272 * All work items marked with WORK_STRUCT_INACTIVE do not participate in 273 * nr_active and all work items in pwq->inactive_works are marked with 274 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are 275 * in pwq->inactive_works. Some of them are ready to run in 276 * pool->worklist or worker->scheduled. Those work itmes are only struct 277 * wq_barrier which is used for flush_work() and should not participate 278 * in nr_active. For non-barrier work item, it is marked with 279 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 280 */ 281 int nr_active; /* L: nr of active works */ 282 struct list_head inactive_works; /* L: inactive works */ 283 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ 284 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 285 struct list_head mayday_node; /* MD: node on wq->maydays */ 286 287 u64 stats[PWQ_NR_STATS]; 288 289 /* 290 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 291 * and pwq_release_workfn() for details. pool_workqueue itself is also 292 * RCU protected so that the first pwq can be determined without 293 * grabbing wq->mutex. 294 */ 295 struct kthread_work release_work; 296 struct rcu_head rcu; 297 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT); 298 299 /* 300 * Structure used to wait for workqueue flush. 301 */ 302 struct wq_flusher { 303 struct list_head list; /* WQ: list of flushers */ 304 int flush_color; /* WQ: flush color waiting for */ 305 struct completion done; /* flush completion */ 306 }; 307 308 struct wq_device; 309 310 /* 311 * Unlike in a per-cpu workqueue where max_active limits its concurrency level 312 * on each CPU, in an unbound workqueue, max_active applies to the whole system. 313 * As sharing a single nr_active across multiple sockets can be very expensive, 314 * the counting and enforcement is per NUMA node. 315 * 316 * The following struct is used to enforce per-node max_active. When a pwq wants 317 * to start executing a work item, it should increment ->nr using 318 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over 319 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish 320 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in 321 * round-robin order. 322 */ 323 struct wq_node_nr_active { 324 int max; /* per-node max_active */ 325 atomic_t nr; /* per-node nr_active */ 326 raw_spinlock_t lock; /* nests inside pool locks */ 327 struct list_head pending_pwqs; /* LN: pwqs with inactive works */ 328 }; 329 330 /* 331 * The externally visible workqueue. It relays the issued work items to 332 * the appropriate worker_pool through its pool_workqueues. 333 */ 334 struct workqueue_struct { 335 struct list_head pwqs; /* WR: all pwqs of this wq */ 336 struct list_head list; /* PR: list of all workqueues */ 337 338 struct mutex mutex; /* protects this wq */ 339 int work_color; /* WQ: current work color */ 340 int flush_color; /* WQ: current flush color */ 341 atomic_t nr_pwqs_to_flush; /* flush in progress */ 342 struct wq_flusher *first_flusher; /* WQ: first flusher */ 343 struct list_head flusher_queue; /* WQ: flush waiters */ 344 struct list_head flusher_overflow; /* WQ: flush overflow list */ 345 346 struct list_head maydays; /* MD: pwqs requesting rescue */ 347 struct worker *rescuer; /* MD: rescue worker */ 348 349 int nr_drainers; /* WQ: drain in progress */ 350 351 /* See alloc_workqueue() function comment for info on min/max_active */ 352 int max_active; /* WO: max active works */ 353 int min_active; /* WO: min active works */ 354 int saved_max_active; /* WQ: saved max_active */ 355 int saved_min_active; /* WQ: saved min_active */ 356 357 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 358 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ 359 360 #ifdef CONFIG_SYSFS 361 struct wq_device *wq_dev; /* I: for sysfs interface */ 362 #endif 363 #ifdef CONFIG_LOCKDEP 364 char *lock_name; 365 struct lock_class_key key; 366 struct lockdep_map lockdep_map; 367 #endif 368 char name[WQ_NAME_LEN]; /* I: workqueue name */ 369 370 /* 371 * Destruction of workqueue_struct is RCU protected to allow walking 372 * the workqueues list without grabbing wq_pool_mutex. 373 * This is used to dump all workqueues from sysrq. 374 */ 375 struct rcu_head rcu; 376 377 /* hot fields used during command issue, aligned to cacheline */ 378 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 379 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */ 380 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ 381 }; 382 383 /* 384 * Each pod type describes how CPUs should be grouped for unbound workqueues. 385 * See the comment above workqueue_attrs->affn_scope. 386 */ 387 struct wq_pod_type { 388 int nr_pods; /* number of pods */ 389 cpumask_var_t *pod_cpus; /* pod -> cpus */ 390 int *pod_node; /* pod -> node */ 391 int *cpu_pod; /* cpu -> pod */ 392 }; 393 394 struct work_offq_data { 395 u32 pool_id; 396 u32 disable; 397 u32 flags; 398 }; 399 400 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 401 [WQ_AFFN_DFL] = "default", 402 [WQ_AFFN_CPU] = "cpu", 403 [WQ_AFFN_SMT] = "smt", 404 [WQ_AFFN_CACHE] = "cache", 405 [WQ_AFFN_NUMA] = "numa", 406 [WQ_AFFN_SYSTEM] = "system", 407 }; 408 409 /* 410 * Per-cpu work items which run for longer than the following threshold are 411 * automatically considered CPU intensive and excluded from concurrency 412 * management to prevent them from noticeably delaying other per-cpu work items. 413 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 414 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 415 */ 416 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 417 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 418 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 419 static unsigned int wq_cpu_intensive_warning_thresh = 4; 420 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644); 421 #endif 422 423 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 424 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 425 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 426 427 static bool wq_online; /* can kworkers be created yet? */ 428 static bool wq_topo_initialized __read_mostly = false; 429 430 static struct kmem_cache *pwq_cache; 431 432 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 433 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 434 435 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 436 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf; 437 438 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 439 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 440 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 441 /* wait for manager to go away */ 442 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 443 444 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 445 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 446 447 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */ 448 static cpumask_var_t wq_online_cpumask; 449 450 /* PL&A: allowable cpus for unbound wqs and work items */ 451 static cpumask_var_t wq_unbound_cpumask; 452 453 /* PL: user requested unbound cpumask via sysfs */ 454 static cpumask_var_t wq_requested_unbound_cpumask; 455 456 /* PL: isolated cpumask to be excluded from unbound cpumask */ 457 static cpumask_var_t wq_isolated_cpumask; 458 459 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 460 static struct cpumask wq_cmdline_cpumask __initdata; 461 462 /* CPU where unbound work was last round robin scheduled from this CPU */ 463 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 464 465 /* 466 * Local execution of unbound work items is no longer guaranteed. The 467 * following always forces round-robin CPU selection on unbound work items 468 * to uncover usages which depend on it. 469 */ 470 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 471 static bool wq_debug_force_rr_cpu = true; 472 #else 473 static bool wq_debug_force_rr_cpu = false; 474 #endif 475 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 476 477 /* to raise softirq for the BH worker pools on other CPUs */ 478 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], 479 bh_pool_irq_works); 480 481 /* the BH worker pools */ 482 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 483 bh_worker_pools); 484 485 /* the per-cpu worker pools */ 486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 487 cpu_worker_pools); 488 489 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 490 491 /* PL: hash of all unbound pools keyed by pool->attrs */ 492 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 493 494 /* I: attributes used when instantiating standard unbound pools on demand */ 495 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 496 497 /* I: attributes used when instantiating ordered pools on demand */ 498 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 499 500 /* 501 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 502 * process context while holding a pool lock. Bounce to a dedicated kthread 503 * worker to avoid A-A deadlocks. 504 */ 505 static struct kthread_worker *pwq_release_worker __ro_after_init; 506 507 struct workqueue_struct *system_wq __ro_after_init; 508 EXPORT_SYMBOL(system_wq); 509 struct workqueue_struct *system_highpri_wq __ro_after_init; 510 EXPORT_SYMBOL_GPL(system_highpri_wq); 511 struct workqueue_struct *system_long_wq __ro_after_init; 512 EXPORT_SYMBOL_GPL(system_long_wq); 513 struct workqueue_struct *system_unbound_wq __ro_after_init; 514 EXPORT_SYMBOL_GPL(system_unbound_wq); 515 struct workqueue_struct *system_freezable_wq __ro_after_init; 516 EXPORT_SYMBOL_GPL(system_freezable_wq); 517 struct workqueue_struct *system_power_efficient_wq __ro_after_init; 518 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 519 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; 520 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 521 struct workqueue_struct *system_bh_wq; 522 EXPORT_SYMBOL_GPL(system_bh_wq); 523 struct workqueue_struct *system_bh_highpri_wq; 524 EXPORT_SYMBOL_GPL(system_bh_highpri_wq); 525 526 static int worker_thread(void *__worker); 527 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 528 static void show_pwq(struct pool_workqueue *pwq); 529 static void show_one_worker_pool(struct worker_pool *pool); 530 531 #define CREATE_TRACE_POINTS 532 #include <trace/events/workqueue.h> 533 534 #define assert_rcu_or_pool_mutex() \ 535 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 536 !lockdep_is_held(&wq_pool_mutex), \ 537 "RCU or wq_pool_mutex should be held") 538 539 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 540 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 541 !lockdep_is_held(&wq->mutex) && \ 542 !lockdep_is_held(&wq_pool_mutex), \ 543 "RCU, wq->mutex or wq_pool_mutex should be held") 544 545 #define for_each_bh_worker_pool(pool, cpu) \ 546 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \ 547 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 548 (pool)++) 549 550 #define for_each_cpu_worker_pool(pool, cpu) \ 551 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 552 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 553 (pool)++) 554 555 /** 556 * for_each_pool - iterate through all worker_pools in the system 557 * @pool: iteration cursor 558 * @pi: integer used for iteration 559 * 560 * This must be called either with wq_pool_mutex held or RCU read 561 * locked. If the pool needs to be used beyond the locking in effect, the 562 * caller is responsible for guaranteeing that the pool stays online. 563 * 564 * The if/else clause exists only for the lockdep assertion and can be 565 * ignored. 566 */ 567 #define for_each_pool(pool, pi) \ 568 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 569 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 570 else 571 572 /** 573 * for_each_pool_worker - iterate through all workers of a worker_pool 574 * @worker: iteration cursor 575 * @pool: worker_pool to iterate workers of 576 * 577 * This must be called with wq_pool_attach_mutex. 578 * 579 * The if/else clause exists only for the lockdep assertion and can be 580 * ignored. 581 */ 582 #define for_each_pool_worker(worker, pool) \ 583 list_for_each_entry((worker), &(pool)->workers, node) \ 584 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 585 else 586 587 /** 588 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 589 * @pwq: iteration cursor 590 * @wq: the target workqueue 591 * 592 * This must be called either with wq->mutex held or RCU read locked. 593 * If the pwq needs to be used beyond the locking in effect, the caller is 594 * responsible for guaranteeing that the pwq stays online. 595 * 596 * The if/else clause exists only for the lockdep assertion and can be 597 * ignored. 598 */ 599 #define for_each_pwq(pwq, wq) \ 600 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 601 lockdep_is_held(&(wq->mutex))) 602 603 #ifdef CONFIG_DEBUG_OBJECTS_WORK 604 605 static const struct debug_obj_descr work_debug_descr; 606 607 static void *work_debug_hint(void *addr) 608 { 609 return ((struct work_struct *) addr)->func; 610 } 611 612 static bool work_is_static_object(void *addr) 613 { 614 struct work_struct *work = addr; 615 616 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 617 } 618 619 /* 620 * fixup_init is called when: 621 * - an active object is initialized 622 */ 623 static bool work_fixup_init(void *addr, enum debug_obj_state state) 624 { 625 struct work_struct *work = addr; 626 627 switch (state) { 628 case ODEBUG_STATE_ACTIVE: 629 cancel_work_sync(work); 630 debug_object_init(work, &work_debug_descr); 631 return true; 632 default: 633 return false; 634 } 635 } 636 637 /* 638 * fixup_free is called when: 639 * - an active object is freed 640 */ 641 static bool work_fixup_free(void *addr, enum debug_obj_state state) 642 { 643 struct work_struct *work = addr; 644 645 switch (state) { 646 case ODEBUG_STATE_ACTIVE: 647 cancel_work_sync(work); 648 debug_object_free(work, &work_debug_descr); 649 return true; 650 default: 651 return false; 652 } 653 } 654 655 static const struct debug_obj_descr work_debug_descr = { 656 .name = "work_struct", 657 .debug_hint = work_debug_hint, 658 .is_static_object = work_is_static_object, 659 .fixup_init = work_fixup_init, 660 .fixup_free = work_fixup_free, 661 }; 662 663 static inline void debug_work_activate(struct work_struct *work) 664 { 665 debug_object_activate(work, &work_debug_descr); 666 } 667 668 static inline void debug_work_deactivate(struct work_struct *work) 669 { 670 debug_object_deactivate(work, &work_debug_descr); 671 } 672 673 void __init_work(struct work_struct *work, int onstack) 674 { 675 if (onstack) 676 debug_object_init_on_stack(work, &work_debug_descr); 677 else 678 debug_object_init(work, &work_debug_descr); 679 } 680 EXPORT_SYMBOL_GPL(__init_work); 681 682 void destroy_work_on_stack(struct work_struct *work) 683 { 684 debug_object_free(work, &work_debug_descr); 685 } 686 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 687 688 void destroy_delayed_work_on_stack(struct delayed_work *work) 689 { 690 destroy_timer_on_stack(&work->timer); 691 debug_object_free(&work->work, &work_debug_descr); 692 } 693 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 694 695 #else 696 static inline void debug_work_activate(struct work_struct *work) { } 697 static inline void debug_work_deactivate(struct work_struct *work) { } 698 #endif 699 700 /** 701 * worker_pool_assign_id - allocate ID and assign it to @pool 702 * @pool: the pool pointer of interest 703 * 704 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 705 * successfully, -errno on failure. 706 */ 707 static int worker_pool_assign_id(struct worker_pool *pool) 708 { 709 int ret; 710 711 lockdep_assert_held(&wq_pool_mutex); 712 713 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 714 GFP_KERNEL); 715 if (ret >= 0) { 716 pool->id = ret; 717 return 0; 718 } 719 return ret; 720 } 721 722 static struct pool_workqueue __rcu ** 723 unbound_pwq_slot(struct workqueue_struct *wq, int cpu) 724 { 725 if (cpu >= 0) 726 return per_cpu_ptr(wq->cpu_pwq, cpu); 727 else 728 return &wq->dfl_pwq; 729 } 730 731 /* @cpu < 0 for dfl_pwq */ 732 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) 733 { 734 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), 735 lockdep_is_held(&wq_pool_mutex) || 736 lockdep_is_held(&wq->mutex)); 737 } 738 739 /** 740 * unbound_effective_cpumask - effective cpumask of an unbound workqueue 741 * @wq: workqueue of interest 742 * 743 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which 744 * is masked with wq_unbound_cpumask to determine the effective cpumask. The 745 * default pwq is always mapped to the pool with the current effective cpumask. 746 */ 747 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) 748 { 749 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask; 750 } 751 752 static unsigned int work_color_to_flags(int color) 753 { 754 return color << WORK_STRUCT_COLOR_SHIFT; 755 } 756 757 static int get_work_color(unsigned long work_data) 758 { 759 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 760 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 761 } 762 763 static int work_next_color(int color) 764 { 765 return (color + 1) % WORK_NR_COLORS; 766 } 767 768 static unsigned long pool_offq_flags(struct worker_pool *pool) 769 { 770 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0; 771 } 772 773 /* 774 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 775 * contain the pointer to the queued pwq. Once execution starts, the flag 776 * is cleared and the high bits contain OFFQ flags and pool ID. 777 * 778 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling() 779 * can be used to set the pwq, pool or clear work->data. These functions should 780 * only be called while the work is owned - ie. while the PENDING bit is set. 781 * 782 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 783 * corresponding to a work. Pool is available once the work has been 784 * queued anywhere after initialization until it is sync canceled. pwq is 785 * available only while the work item is queued. 786 */ 787 static inline void set_work_data(struct work_struct *work, unsigned long data) 788 { 789 WARN_ON_ONCE(!work_pending(work)); 790 atomic_long_set(&work->data, data | work_static(work)); 791 } 792 793 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 794 unsigned long flags) 795 { 796 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING | 797 WORK_STRUCT_PWQ | flags); 798 } 799 800 static void set_work_pool_and_keep_pending(struct work_struct *work, 801 int pool_id, unsigned long flags) 802 { 803 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 804 WORK_STRUCT_PENDING | flags); 805 } 806 807 static void set_work_pool_and_clear_pending(struct work_struct *work, 808 int pool_id, unsigned long flags) 809 { 810 /* 811 * The following wmb is paired with the implied mb in 812 * test_and_set_bit(PENDING) and ensures all updates to @work made 813 * here are visible to and precede any updates by the next PENDING 814 * owner. 815 */ 816 smp_wmb(); 817 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 818 flags); 819 /* 820 * The following mb guarantees that previous clear of a PENDING bit 821 * will not be reordered with any speculative LOADS or STORES from 822 * work->current_func, which is executed afterwards. This possible 823 * reordering can lead to a missed execution on attempt to queue 824 * the same @work. E.g. consider this case: 825 * 826 * CPU#0 CPU#1 827 * ---------------------------- -------------------------------- 828 * 829 * 1 STORE event_indicated 830 * 2 queue_work_on() { 831 * 3 test_and_set_bit(PENDING) 832 * 4 } set_..._and_clear_pending() { 833 * 5 set_work_data() # clear bit 834 * 6 smp_mb() 835 * 7 work->current_func() { 836 * 8 LOAD event_indicated 837 * } 838 * 839 * Without an explicit full barrier speculative LOAD on line 8 can 840 * be executed before CPU#0 does STORE on line 1. If that happens, 841 * CPU#0 observes the PENDING bit is still set and new execution of 842 * a @work is not queued in a hope, that CPU#1 will eventually 843 * finish the queued @work. Meanwhile CPU#1 does not see 844 * event_indicated is set, because speculative LOAD was executed 845 * before actual STORE. 846 */ 847 smp_mb(); 848 } 849 850 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 851 { 852 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK); 853 } 854 855 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 856 { 857 unsigned long data = atomic_long_read(&work->data); 858 859 if (data & WORK_STRUCT_PWQ) 860 return work_struct_pwq(data); 861 else 862 return NULL; 863 } 864 865 /** 866 * get_work_pool - return the worker_pool a given work was associated with 867 * @work: the work item of interest 868 * 869 * Pools are created and destroyed under wq_pool_mutex, and allows read 870 * access under RCU read lock. As such, this function should be 871 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 872 * 873 * All fields of the returned pool are accessible as long as the above 874 * mentioned locking is in effect. If the returned pool needs to be used 875 * beyond the critical section, the caller is responsible for ensuring the 876 * returned pool is and stays online. 877 * 878 * Return: The worker_pool @work was last associated with. %NULL if none. 879 */ 880 static struct worker_pool *get_work_pool(struct work_struct *work) 881 { 882 unsigned long data = atomic_long_read(&work->data); 883 int pool_id; 884 885 assert_rcu_or_pool_mutex(); 886 887 if (data & WORK_STRUCT_PWQ) 888 return work_struct_pwq(data)->pool; 889 890 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 891 if (pool_id == WORK_OFFQ_POOL_NONE) 892 return NULL; 893 894 return idr_find(&worker_pool_idr, pool_id); 895 } 896 897 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits) 898 { 899 return (v >> shift) & ((1 << bits) - 1); 900 } 901 902 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data) 903 { 904 WARN_ON_ONCE(data & WORK_STRUCT_PWQ); 905 906 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT, 907 WORK_OFFQ_POOL_BITS); 908 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT, 909 WORK_OFFQ_DISABLE_BITS); 910 offqd->flags = data & WORK_OFFQ_FLAG_MASK; 911 } 912 913 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd) 914 { 915 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) | 916 ((unsigned long)offqd->flags); 917 } 918 919 /* 920 * Policy functions. These define the policies on how the global worker 921 * pools are managed. Unless noted otherwise, these functions assume that 922 * they're being called with pool->lock held. 923 */ 924 925 /* 926 * Need to wake up a worker? Called from anything but currently 927 * running workers. 928 * 929 * Note that, because unbound workers never contribute to nr_running, this 930 * function will always return %true for unbound pools as long as the 931 * worklist isn't empty. 932 */ 933 static bool need_more_worker(struct worker_pool *pool) 934 { 935 return !list_empty(&pool->worklist) && !pool->nr_running; 936 } 937 938 /* Can I start working? Called from busy but !running workers. */ 939 static bool may_start_working(struct worker_pool *pool) 940 { 941 return pool->nr_idle; 942 } 943 944 /* Do I need to keep working? Called from currently running workers. */ 945 static bool keep_working(struct worker_pool *pool) 946 { 947 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 948 } 949 950 /* Do we need a new worker? Called from manager. */ 951 static bool need_to_create_worker(struct worker_pool *pool) 952 { 953 return need_more_worker(pool) && !may_start_working(pool); 954 } 955 956 /* Do we have too many workers and should some go away? */ 957 static bool too_many_workers(struct worker_pool *pool) 958 { 959 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 960 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 961 int nr_busy = pool->nr_workers - nr_idle; 962 963 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 964 } 965 966 /** 967 * worker_set_flags - set worker flags and adjust nr_running accordingly 968 * @worker: self 969 * @flags: flags to set 970 * 971 * Set @flags in @worker->flags and adjust nr_running accordingly. 972 */ 973 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 974 { 975 struct worker_pool *pool = worker->pool; 976 977 lockdep_assert_held(&pool->lock); 978 979 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 980 if ((flags & WORKER_NOT_RUNNING) && 981 !(worker->flags & WORKER_NOT_RUNNING)) { 982 pool->nr_running--; 983 } 984 985 worker->flags |= flags; 986 } 987 988 /** 989 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 990 * @worker: self 991 * @flags: flags to clear 992 * 993 * Clear @flags in @worker->flags and adjust nr_running accordingly. 994 */ 995 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 996 { 997 struct worker_pool *pool = worker->pool; 998 unsigned int oflags = worker->flags; 999 1000 lockdep_assert_held(&pool->lock); 1001 1002 worker->flags &= ~flags; 1003 1004 /* 1005 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1006 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1007 * of multiple flags, not a single flag. 1008 */ 1009 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1010 if (!(worker->flags & WORKER_NOT_RUNNING)) 1011 pool->nr_running++; 1012 } 1013 1014 /* Return the first idle worker. Called with pool->lock held. */ 1015 static struct worker *first_idle_worker(struct worker_pool *pool) 1016 { 1017 if (unlikely(list_empty(&pool->idle_list))) 1018 return NULL; 1019 1020 return list_first_entry(&pool->idle_list, struct worker, entry); 1021 } 1022 1023 /** 1024 * worker_enter_idle - enter idle state 1025 * @worker: worker which is entering idle state 1026 * 1027 * @worker is entering idle state. Update stats and idle timer if 1028 * necessary. 1029 * 1030 * LOCKING: 1031 * raw_spin_lock_irq(pool->lock). 1032 */ 1033 static void worker_enter_idle(struct worker *worker) 1034 { 1035 struct worker_pool *pool = worker->pool; 1036 1037 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1038 WARN_ON_ONCE(!list_empty(&worker->entry) && 1039 (worker->hentry.next || worker->hentry.pprev))) 1040 return; 1041 1042 /* can't use worker_set_flags(), also called from create_worker() */ 1043 worker->flags |= WORKER_IDLE; 1044 pool->nr_idle++; 1045 worker->last_active = jiffies; 1046 1047 /* idle_list is LIFO */ 1048 list_add(&worker->entry, &pool->idle_list); 1049 1050 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1051 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1052 1053 /* Sanity check nr_running. */ 1054 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1055 } 1056 1057 /** 1058 * worker_leave_idle - leave idle state 1059 * @worker: worker which is leaving idle state 1060 * 1061 * @worker is leaving idle state. Update stats. 1062 * 1063 * LOCKING: 1064 * raw_spin_lock_irq(pool->lock). 1065 */ 1066 static void worker_leave_idle(struct worker *worker) 1067 { 1068 struct worker_pool *pool = worker->pool; 1069 1070 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1071 return; 1072 worker_clr_flags(worker, WORKER_IDLE); 1073 pool->nr_idle--; 1074 list_del_init(&worker->entry); 1075 } 1076 1077 /** 1078 * find_worker_executing_work - find worker which is executing a work 1079 * @pool: pool of interest 1080 * @work: work to find worker for 1081 * 1082 * Find a worker which is executing @work on @pool by searching 1083 * @pool->busy_hash which is keyed by the address of @work. For a worker 1084 * to match, its current execution should match the address of @work and 1085 * its work function. This is to avoid unwanted dependency between 1086 * unrelated work executions through a work item being recycled while still 1087 * being executed. 1088 * 1089 * This is a bit tricky. A work item may be freed once its execution 1090 * starts and nothing prevents the freed area from being recycled for 1091 * another work item. If the same work item address ends up being reused 1092 * before the original execution finishes, workqueue will identify the 1093 * recycled work item as currently executing and make it wait until the 1094 * current execution finishes, introducing an unwanted dependency. 1095 * 1096 * This function checks the work item address and work function to avoid 1097 * false positives. Note that this isn't complete as one may construct a 1098 * work function which can introduce dependency onto itself through a 1099 * recycled work item. Well, if somebody wants to shoot oneself in the 1100 * foot that badly, there's only so much we can do, and if such deadlock 1101 * actually occurs, it should be easy to locate the culprit work function. 1102 * 1103 * CONTEXT: 1104 * raw_spin_lock_irq(pool->lock). 1105 * 1106 * Return: 1107 * Pointer to worker which is executing @work if found, %NULL 1108 * otherwise. 1109 */ 1110 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1111 struct work_struct *work) 1112 { 1113 struct worker *worker; 1114 1115 hash_for_each_possible(pool->busy_hash, worker, hentry, 1116 (unsigned long)work) 1117 if (worker->current_work == work && 1118 worker->current_func == work->func) 1119 return worker; 1120 1121 return NULL; 1122 } 1123 1124 /** 1125 * move_linked_works - move linked works to a list 1126 * @work: start of series of works to be scheduled 1127 * @head: target list to append @work to 1128 * @nextp: out parameter for nested worklist walking 1129 * 1130 * Schedule linked works starting from @work to @head. Work series to be 1131 * scheduled starts at @work and includes any consecutive work with 1132 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1133 * @nextp. 1134 * 1135 * CONTEXT: 1136 * raw_spin_lock_irq(pool->lock). 1137 */ 1138 static void move_linked_works(struct work_struct *work, struct list_head *head, 1139 struct work_struct **nextp) 1140 { 1141 struct work_struct *n; 1142 1143 /* 1144 * Linked worklist will always end before the end of the list, 1145 * use NULL for list head. 1146 */ 1147 list_for_each_entry_safe_from(work, n, NULL, entry) { 1148 list_move_tail(&work->entry, head); 1149 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1150 break; 1151 } 1152 1153 /* 1154 * If we're already inside safe list traversal and have moved 1155 * multiple works to the scheduled queue, the next position 1156 * needs to be updated. 1157 */ 1158 if (nextp) 1159 *nextp = n; 1160 } 1161 1162 /** 1163 * assign_work - assign a work item and its linked work items to a worker 1164 * @work: work to assign 1165 * @worker: worker to assign to 1166 * @nextp: out parameter for nested worklist walking 1167 * 1168 * Assign @work and its linked work items to @worker. If @work is already being 1169 * executed by another worker in the same pool, it'll be punted there. 1170 * 1171 * If @nextp is not NULL, it's updated to point to the next work of the last 1172 * scheduled work. This allows assign_work() to be nested inside 1173 * list_for_each_entry_safe(). 1174 * 1175 * Returns %true if @work was successfully assigned to @worker. %false if @work 1176 * was punted to another worker already executing it. 1177 */ 1178 static bool assign_work(struct work_struct *work, struct worker *worker, 1179 struct work_struct **nextp) 1180 { 1181 struct worker_pool *pool = worker->pool; 1182 struct worker *collision; 1183 1184 lockdep_assert_held(&pool->lock); 1185 1186 /* 1187 * A single work shouldn't be executed concurrently by multiple workers. 1188 * __queue_work() ensures that @work doesn't jump to a different pool 1189 * while still running in the previous pool. Here, we should ensure that 1190 * @work is not executed concurrently by multiple workers from the same 1191 * pool. Check whether anyone is already processing the work. If so, 1192 * defer the work to the currently executing one. 1193 */ 1194 collision = find_worker_executing_work(pool, work); 1195 if (unlikely(collision)) { 1196 move_linked_works(work, &collision->scheduled, nextp); 1197 return false; 1198 } 1199 1200 move_linked_works(work, &worker->scheduled, nextp); 1201 return true; 1202 } 1203 1204 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool) 1205 { 1206 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0; 1207 1208 return &per_cpu(bh_pool_irq_works, pool->cpu)[high]; 1209 } 1210 1211 static void kick_bh_pool(struct worker_pool *pool) 1212 { 1213 #ifdef CONFIG_SMP 1214 /* see drain_dead_softirq_workfn() for BH_DRAINING */ 1215 if (unlikely(pool->cpu != smp_processor_id() && 1216 !(pool->flags & POOL_BH_DRAINING))) { 1217 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu); 1218 return; 1219 } 1220 #endif 1221 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 1222 raise_softirq_irqoff(HI_SOFTIRQ); 1223 else 1224 raise_softirq_irqoff(TASKLET_SOFTIRQ); 1225 } 1226 1227 /** 1228 * kick_pool - wake up an idle worker if necessary 1229 * @pool: pool to kick 1230 * 1231 * @pool may have pending work items. Wake up worker if necessary. Returns 1232 * whether a worker was woken up. 1233 */ 1234 static bool kick_pool(struct worker_pool *pool) 1235 { 1236 struct worker *worker = first_idle_worker(pool); 1237 struct task_struct *p; 1238 1239 lockdep_assert_held(&pool->lock); 1240 1241 if (!need_more_worker(pool) || !worker) 1242 return false; 1243 1244 if (pool->flags & POOL_BH) { 1245 kick_bh_pool(pool); 1246 return true; 1247 } 1248 1249 p = worker->task; 1250 1251 #ifdef CONFIG_SMP 1252 /* 1253 * Idle @worker is about to execute @work and waking up provides an 1254 * opportunity to migrate @worker at a lower cost by setting the task's 1255 * wake_cpu field. Let's see if we want to move @worker to improve 1256 * execution locality. 1257 * 1258 * We're waking the worker that went idle the latest and there's some 1259 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1260 * so, setting the wake_cpu won't do anything. As this is a best-effort 1261 * optimization and the race window is narrow, let's leave as-is for 1262 * now. If this becomes pronounced, we can skip over workers which are 1263 * still on cpu when picking an idle worker. 1264 * 1265 * If @pool has non-strict affinity, @worker might have ended up outside 1266 * its affinity scope. Repatriate. 1267 */ 1268 if (!pool->attrs->affn_strict && 1269 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1270 struct work_struct *work = list_first_entry(&pool->worklist, 1271 struct work_struct, entry); 1272 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask, 1273 cpu_online_mask); 1274 if (wake_cpu < nr_cpu_ids) { 1275 p->wake_cpu = wake_cpu; 1276 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1277 } 1278 } 1279 #endif 1280 wake_up_process(p); 1281 return true; 1282 } 1283 1284 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1285 1286 /* 1287 * Concurrency-managed per-cpu work items that hog CPU for longer than 1288 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1289 * which prevents them from stalling other concurrency-managed work items. If a 1290 * work function keeps triggering this mechanism, it's likely that the work item 1291 * should be using an unbound workqueue instead. 1292 * 1293 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1294 * and report them so that they can be examined and converted to use unbound 1295 * workqueues as appropriate. To avoid flooding the console, each violating work 1296 * function is tracked and reported with exponential backoff. 1297 */ 1298 #define WCI_MAX_ENTS 128 1299 1300 struct wci_ent { 1301 work_func_t func; 1302 atomic64_t cnt; 1303 struct hlist_node hash_node; 1304 }; 1305 1306 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1307 static int wci_nr_ents; 1308 static DEFINE_RAW_SPINLOCK(wci_lock); 1309 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1310 1311 static struct wci_ent *wci_find_ent(work_func_t func) 1312 { 1313 struct wci_ent *ent; 1314 1315 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1316 (unsigned long)func) { 1317 if (ent->func == func) 1318 return ent; 1319 } 1320 return NULL; 1321 } 1322 1323 static void wq_cpu_intensive_report(work_func_t func) 1324 { 1325 struct wci_ent *ent; 1326 1327 restart: 1328 ent = wci_find_ent(func); 1329 if (ent) { 1330 u64 cnt; 1331 1332 /* 1333 * Start reporting from the warning_thresh and back off 1334 * exponentially. 1335 */ 1336 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1337 if (wq_cpu_intensive_warning_thresh && 1338 cnt >= wq_cpu_intensive_warning_thresh && 1339 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh)) 1340 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1341 ent->func, wq_cpu_intensive_thresh_us, 1342 atomic64_read(&ent->cnt)); 1343 return; 1344 } 1345 1346 /* 1347 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1348 * is exhausted, something went really wrong and we probably made enough 1349 * noise already. 1350 */ 1351 if (wci_nr_ents >= WCI_MAX_ENTS) 1352 return; 1353 1354 raw_spin_lock(&wci_lock); 1355 1356 if (wci_nr_ents >= WCI_MAX_ENTS) { 1357 raw_spin_unlock(&wci_lock); 1358 return; 1359 } 1360 1361 if (wci_find_ent(func)) { 1362 raw_spin_unlock(&wci_lock); 1363 goto restart; 1364 } 1365 1366 ent = &wci_ents[wci_nr_ents++]; 1367 ent->func = func; 1368 atomic64_set(&ent->cnt, 0); 1369 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1370 1371 raw_spin_unlock(&wci_lock); 1372 1373 goto restart; 1374 } 1375 1376 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1377 static void wq_cpu_intensive_report(work_func_t func) {} 1378 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1379 1380 /** 1381 * wq_worker_running - a worker is running again 1382 * @task: task waking up 1383 * 1384 * This function is called when a worker returns from schedule() 1385 */ 1386 void wq_worker_running(struct task_struct *task) 1387 { 1388 struct worker *worker = kthread_data(task); 1389 1390 if (!READ_ONCE(worker->sleeping)) 1391 return; 1392 1393 /* 1394 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1395 * and the nr_running increment below, we may ruin the nr_running reset 1396 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1397 * pool. Protect against such race. 1398 */ 1399 preempt_disable(); 1400 if (!(worker->flags & WORKER_NOT_RUNNING)) 1401 worker->pool->nr_running++; 1402 preempt_enable(); 1403 1404 /* 1405 * CPU intensive auto-detection cares about how long a work item hogged 1406 * CPU without sleeping. Reset the starting timestamp on wakeup. 1407 */ 1408 worker->current_at = worker->task->se.sum_exec_runtime; 1409 1410 WRITE_ONCE(worker->sleeping, 0); 1411 } 1412 1413 /** 1414 * wq_worker_sleeping - a worker is going to sleep 1415 * @task: task going to sleep 1416 * 1417 * This function is called from schedule() when a busy worker is 1418 * going to sleep. 1419 */ 1420 void wq_worker_sleeping(struct task_struct *task) 1421 { 1422 struct worker *worker = kthread_data(task); 1423 struct worker_pool *pool; 1424 1425 /* 1426 * Rescuers, which may not have all the fields set up like normal 1427 * workers, also reach here, let's not access anything before 1428 * checking NOT_RUNNING. 1429 */ 1430 if (worker->flags & WORKER_NOT_RUNNING) 1431 return; 1432 1433 pool = worker->pool; 1434 1435 /* Return if preempted before wq_worker_running() was reached */ 1436 if (READ_ONCE(worker->sleeping)) 1437 return; 1438 1439 WRITE_ONCE(worker->sleeping, 1); 1440 raw_spin_lock_irq(&pool->lock); 1441 1442 /* 1443 * Recheck in case unbind_workers() preempted us. We don't 1444 * want to decrement nr_running after the worker is unbound 1445 * and nr_running has been reset. 1446 */ 1447 if (worker->flags & WORKER_NOT_RUNNING) { 1448 raw_spin_unlock_irq(&pool->lock); 1449 return; 1450 } 1451 1452 pool->nr_running--; 1453 if (kick_pool(pool)) 1454 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1455 1456 raw_spin_unlock_irq(&pool->lock); 1457 } 1458 1459 /** 1460 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1461 * @task: task currently running 1462 * 1463 * Called from sched_tick(). We're in the IRQ context and the current 1464 * worker's fields which follow the 'K' locking rule can be accessed safely. 1465 */ 1466 void wq_worker_tick(struct task_struct *task) 1467 { 1468 struct worker *worker = kthread_data(task); 1469 struct pool_workqueue *pwq = worker->current_pwq; 1470 struct worker_pool *pool = worker->pool; 1471 1472 if (!pwq) 1473 return; 1474 1475 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1476 1477 if (!wq_cpu_intensive_thresh_us) 1478 return; 1479 1480 /* 1481 * If the current worker is concurrency managed and hogged the CPU for 1482 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1483 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1484 * 1485 * Set @worker->sleeping means that @worker is in the process of 1486 * switching out voluntarily and won't be contributing to 1487 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1488 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1489 * double decrements. The task is releasing the CPU anyway. Let's skip. 1490 * We probably want to make this prettier in the future. 1491 */ 1492 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1493 worker->task->se.sum_exec_runtime - worker->current_at < 1494 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1495 return; 1496 1497 raw_spin_lock(&pool->lock); 1498 1499 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1500 wq_cpu_intensive_report(worker->current_func); 1501 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1502 1503 if (kick_pool(pool)) 1504 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1505 1506 raw_spin_unlock(&pool->lock); 1507 } 1508 1509 /** 1510 * wq_worker_last_func - retrieve worker's last work function 1511 * @task: Task to retrieve last work function of. 1512 * 1513 * Determine the last function a worker executed. This is called from 1514 * the scheduler to get a worker's last known identity. 1515 * 1516 * CONTEXT: 1517 * raw_spin_lock_irq(rq->lock) 1518 * 1519 * This function is called during schedule() when a kworker is going 1520 * to sleep. It's used by psi to identify aggregation workers during 1521 * dequeuing, to allow periodic aggregation to shut-off when that 1522 * worker is the last task in the system or cgroup to go to sleep. 1523 * 1524 * As this function doesn't involve any workqueue-related locking, it 1525 * only returns stable values when called from inside the scheduler's 1526 * queuing and dequeuing paths, when @task, which must be a kworker, 1527 * is guaranteed to not be processing any works. 1528 * 1529 * Return: 1530 * The last work function %current executed as a worker, NULL if it 1531 * hasn't executed any work yet. 1532 */ 1533 work_func_t wq_worker_last_func(struct task_struct *task) 1534 { 1535 struct worker *worker = kthread_data(task); 1536 1537 return worker->last_func; 1538 } 1539 1540 /** 1541 * wq_node_nr_active - Determine wq_node_nr_active to use 1542 * @wq: workqueue of interest 1543 * @node: NUMA node, can be %NUMA_NO_NODE 1544 * 1545 * Determine wq_node_nr_active to use for @wq on @node. Returns: 1546 * 1547 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. 1548 * 1549 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. 1550 * 1551 * - Otherwise, node_nr_active[@node]. 1552 */ 1553 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, 1554 int node) 1555 { 1556 if (!(wq->flags & WQ_UNBOUND)) 1557 return NULL; 1558 1559 if (node == NUMA_NO_NODE) 1560 node = nr_node_ids; 1561 1562 return wq->node_nr_active[node]; 1563 } 1564 1565 /** 1566 * wq_update_node_max_active - Update per-node max_actives to use 1567 * @wq: workqueue to update 1568 * @off_cpu: CPU that's going down, -1 if a CPU is not going down 1569 * 1570 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is 1571 * distributed among nodes according to the proportions of numbers of online 1572 * cpus. The result is always between @wq->min_active and max_active. 1573 */ 1574 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) 1575 { 1576 struct cpumask *effective = unbound_effective_cpumask(wq); 1577 int min_active = READ_ONCE(wq->min_active); 1578 int max_active = READ_ONCE(wq->max_active); 1579 int total_cpus, node; 1580 1581 lockdep_assert_held(&wq->mutex); 1582 1583 if (!wq_topo_initialized) 1584 return; 1585 1586 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective)) 1587 off_cpu = -1; 1588 1589 total_cpus = cpumask_weight_and(effective, cpu_online_mask); 1590 if (off_cpu >= 0) 1591 total_cpus--; 1592 1593 /* If all CPUs of the wq get offline, use the default values */ 1594 if (unlikely(!total_cpus)) { 1595 for_each_node(node) 1596 wq_node_nr_active(wq, node)->max = min_active; 1597 1598 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1599 return; 1600 } 1601 1602 for_each_node(node) { 1603 int node_cpus; 1604 1605 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node)); 1606 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node) 1607 node_cpus--; 1608 1609 wq_node_nr_active(wq, node)->max = 1610 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), 1611 min_active, max_active); 1612 } 1613 1614 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1615 } 1616 1617 /** 1618 * get_pwq - get an extra reference on the specified pool_workqueue 1619 * @pwq: pool_workqueue to get 1620 * 1621 * Obtain an extra reference on @pwq. The caller should guarantee that 1622 * @pwq has positive refcnt and be holding the matching pool->lock. 1623 */ 1624 static void get_pwq(struct pool_workqueue *pwq) 1625 { 1626 lockdep_assert_held(&pwq->pool->lock); 1627 WARN_ON_ONCE(pwq->refcnt <= 0); 1628 pwq->refcnt++; 1629 } 1630 1631 /** 1632 * put_pwq - put a pool_workqueue reference 1633 * @pwq: pool_workqueue to put 1634 * 1635 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1636 * destruction. The caller should be holding the matching pool->lock. 1637 */ 1638 static void put_pwq(struct pool_workqueue *pwq) 1639 { 1640 lockdep_assert_held(&pwq->pool->lock); 1641 if (likely(--pwq->refcnt)) 1642 return; 1643 /* 1644 * @pwq can't be released under pool->lock, bounce to a dedicated 1645 * kthread_worker to avoid A-A deadlocks. 1646 */ 1647 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1648 } 1649 1650 /** 1651 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1652 * @pwq: pool_workqueue to put (can be %NULL) 1653 * 1654 * put_pwq() with locking. This function also allows %NULL @pwq. 1655 */ 1656 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1657 { 1658 if (pwq) { 1659 /* 1660 * As both pwqs and pools are RCU protected, the 1661 * following lock operations are safe. 1662 */ 1663 raw_spin_lock_irq(&pwq->pool->lock); 1664 put_pwq(pwq); 1665 raw_spin_unlock_irq(&pwq->pool->lock); 1666 } 1667 } 1668 1669 static bool pwq_is_empty(struct pool_workqueue *pwq) 1670 { 1671 return !pwq->nr_active && list_empty(&pwq->inactive_works); 1672 } 1673 1674 static void __pwq_activate_work(struct pool_workqueue *pwq, 1675 struct work_struct *work) 1676 { 1677 unsigned long *wdb = work_data_bits(work); 1678 1679 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); 1680 trace_workqueue_activate_work(work); 1681 if (list_empty(&pwq->pool->worklist)) 1682 pwq->pool->watchdog_ts = jiffies; 1683 move_linked_works(work, &pwq->pool->worklist, NULL); 1684 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); 1685 } 1686 1687 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) 1688 { 1689 int max = READ_ONCE(nna->max); 1690 1691 while (true) { 1692 int old, tmp; 1693 1694 old = atomic_read(&nna->nr); 1695 if (old >= max) 1696 return false; 1697 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1); 1698 if (tmp == old) 1699 return true; 1700 } 1701 } 1702 1703 /** 1704 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq 1705 * @pwq: pool_workqueue of interest 1706 * @fill: max_active may have increased, try to increase concurrency level 1707 * 1708 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is 1709 * successfully obtained. %false otherwise. 1710 */ 1711 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) 1712 { 1713 struct workqueue_struct *wq = pwq->wq; 1714 struct worker_pool *pool = pwq->pool; 1715 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node); 1716 bool obtained = false; 1717 1718 lockdep_assert_held(&pool->lock); 1719 1720 if (!nna) { 1721 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */ 1722 obtained = pwq->nr_active < READ_ONCE(wq->max_active); 1723 goto out; 1724 } 1725 1726 if (unlikely(pwq->plugged)) 1727 return false; 1728 1729 /* 1730 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is 1731 * already waiting on $nna, pwq_dec_nr_active() will maintain the 1732 * concurrency level. Don't jump the line. 1733 * 1734 * We need to ignore the pending test after max_active has increased as 1735 * pwq_dec_nr_active() can only maintain the concurrency level but not 1736 * increase it. This is indicated by @fill. 1737 */ 1738 if (!list_empty(&pwq->pending_node) && likely(!fill)) 1739 goto out; 1740 1741 obtained = tryinc_node_nr_active(nna); 1742 if (obtained) 1743 goto out; 1744 1745 /* 1746 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs 1747 * and try again. The smp_mb() is paired with the implied memory barrier 1748 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either 1749 * we see the decremented $nna->nr or they see non-empty 1750 * $nna->pending_pwqs. 1751 */ 1752 raw_spin_lock(&nna->lock); 1753 1754 if (list_empty(&pwq->pending_node)) 1755 list_add_tail(&pwq->pending_node, &nna->pending_pwqs); 1756 else if (likely(!fill)) 1757 goto out_unlock; 1758 1759 smp_mb(); 1760 1761 obtained = tryinc_node_nr_active(nna); 1762 1763 /* 1764 * If @fill, @pwq might have already been pending. Being spuriously 1765 * pending in cold paths doesn't affect anything. Let's leave it be. 1766 */ 1767 if (obtained && likely(!fill)) 1768 list_del_init(&pwq->pending_node); 1769 1770 out_unlock: 1771 raw_spin_unlock(&nna->lock); 1772 out: 1773 if (obtained) 1774 pwq->nr_active++; 1775 return obtained; 1776 } 1777 1778 /** 1779 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq 1780 * @pwq: pool_workqueue of interest 1781 * @fill: max_active may have increased, try to increase concurrency level 1782 * 1783 * Activate the first inactive work item of @pwq if available and allowed by 1784 * max_active limit. 1785 * 1786 * Returns %true if an inactive work item has been activated. %false if no 1787 * inactive work item is found or max_active limit is reached. 1788 */ 1789 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) 1790 { 1791 struct work_struct *work = 1792 list_first_entry_or_null(&pwq->inactive_works, 1793 struct work_struct, entry); 1794 1795 if (work && pwq_tryinc_nr_active(pwq, fill)) { 1796 __pwq_activate_work(pwq, work); 1797 return true; 1798 } else { 1799 return false; 1800 } 1801 } 1802 1803 /** 1804 * unplug_oldest_pwq - unplug the oldest pool_workqueue 1805 * @wq: workqueue_struct where its oldest pwq is to be unplugged 1806 * 1807 * This function should only be called for ordered workqueues where only the 1808 * oldest pwq is unplugged, the others are plugged to suspend execution to 1809 * ensure proper work item ordering:: 1810 * 1811 * dfl_pwq --------------+ [P] - plugged 1812 * | 1813 * v 1814 * pwqs -> A -> B [P] -> C [P] (newest) 1815 * | | | 1816 * 1 3 5 1817 * | | | 1818 * 2 4 6 1819 * 1820 * When the oldest pwq is drained and removed, this function should be called 1821 * to unplug the next oldest one to start its work item execution. Note that 1822 * pwq's are linked into wq->pwqs with the oldest first, so the first one in 1823 * the list is the oldest. 1824 */ 1825 static void unplug_oldest_pwq(struct workqueue_struct *wq) 1826 { 1827 struct pool_workqueue *pwq; 1828 1829 lockdep_assert_held(&wq->mutex); 1830 1831 /* Caller should make sure that pwqs isn't empty before calling */ 1832 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue, 1833 pwqs_node); 1834 raw_spin_lock_irq(&pwq->pool->lock); 1835 if (pwq->plugged) { 1836 pwq->plugged = false; 1837 if (pwq_activate_first_inactive(pwq, true)) 1838 kick_pool(pwq->pool); 1839 } 1840 raw_spin_unlock_irq(&pwq->pool->lock); 1841 } 1842 1843 /** 1844 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active 1845 * @nna: wq_node_nr_active to activate a pending pwq for 1846 * @caller_pool: worker_pool the caller is locking 1847 * 1848 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. 1849 * @caller_pool may be unlocked and relocked to lock other worker_pools. 1850 */ 1851 static void node_activate_pending_pwq(struct wq_node_nr_active *nna, 1852 struct worker_pool *caller_pool) 1853 { 1854 struct worker_pool *locked_pool = caller_pool; 1855 struct pool_workqueue *pwq; 1856 struct work_struct *work; 1857 1858 lockdep_assert_held(&caller_pool->lock); 1859 1860 raw_spin_lock(&nna->lock); 1861 retry: 1862 pwq = list_first_entry_or_null(&nna->pending_pwqs, 1863 struct pool_workqueue, pending_node); 1864 if (!pwq) 1865 goto out_unlock; 1866 1867 /* 1868 * If @pwq is for a different pool than @locked_pool, we need to lock 1869 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock 1870 * / lock dance. For that, we also need to release @nna->lock as it's 1871 * nested inside pool locks. 1872 */ 1873 if (pwq->pool != locked_pool) { 1874 raw_spin_unlock(&locked_pool->lock); 1875 locked_pool = pwq->pool; 1876 if (!raw_spin_trylock(&locked_pool->lock)) { 1877 raw_spin_unlock(&nna->lock); 1878 raw_spin_lock(&locked_pool->lock); 1879 raw_spin_lock(&nna->lock); 1880 goto retry; 1881 } 1882 } 1883 1884 /* 1885 * $pwq may not have any inactive work items due to e.g. cancellations. 1886 * Drop it from pending_pwqs and see if there's another one. 1887 */ 1888 work = list_first_entry_or_null(&pwq->inactive_works, 1889 struct work_struct, entry); 1890 if (!work) { 1891 list_del_init(&pwq->pending_node); 1892 goto retry; 1893 } 1894 1895 /* 1896 * Acquire an nr_active count and activate the inactive work item. If 1897 * $pwq still has inactive work items, rotate it to the end of the 1898 * pending_pwqs so that we round-robin through them. This means that 1899 * inactive work items are not activated in queueing order which is fine 1900 * given that there has never been any ordering across different pwqs. 1901 */ 1902 if (likely(tryinc_node_nr_active(nna))) { 1903 pwq->nr_active++; 1904 __pwq_activate_work(pwq, work); 1905 1906 if (list_empty(&pwq->inactive_works)) 1907 list_del_init(&pwq->pending_node); 1908 else 1909 list_move_tail(&pwq->pending_node, &nna->pending_pwqs); 1910 1911 /* if activating a foreign pool, make sure it's running */ 1912 if (pwq->pool != caller_pool) 1913 kick_pool(pwq->pool); 1914 } 1915 1916 out_unlock: 1917 raw_spin_unlock(&nna->lock); 1918 if (locked_pool != caller_pool) { 1919 raw_spin_unlock(&locked_pool->lock); 1920 raw_spin_lock(&caller_pool->lock); 1921 } 1922 } 1923 1924 /** 1925 * pwq_dec_nr_active - Retire an active count 1926 * @pwq: pool_workqueue of interest 1927 * 1928 * Decrement @pwq's nr_active and try to activate the first inactive work item. 1929 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. 1930 */ 1931 static void pwq_dec_nr_active(struct pool_workqueue *pwq) 1932 { 1933 struct worker_pool *pool = pwq->pool; 1934 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node); 1935 1936 lockdep_assert_held(&pool->lock); 1937 1938 /* 1939 * @pwq->nr_active should be decremented for both percpu and unbound 1940 * workqueues. 1941 */ 1942 pwq->nr_active--; 1943 1944 /* 1945 * For a percpu workqueue, it's simple. Just need to kick the first 1946 * inactive work item on @pwq itself. 1947 */ 1948 if (!nna) { 1949 pwq_activate_first_inactive(pwq, false); 1950 return; 1951 } 1952 1953 /* 1954 * If @pwq is for an unbound workqueue, it's more complicated because 1955 * multiple pwqs and pools may be sharing the nr_active count. When a 1956 * pwq needs to wait for an nr_active count, it puts itself on 1957 * $nna->pending_pwqs. The following atomic_dec_return()'s implied 1958 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to 1959 * guarantee that either we see non-empty pending_pwqs or they see 1960 * decremented $nna->nr. 1961 * 1962 * $nna->max may change as CPUs come online/offline and @pwq->wq's 1963 * max_active gets updated. However, it is guaranteed to be equal to or 1964 * larger than @pwq->wq->min_active which is above zero unless freezing. 1965 * This maintains the forward progress guarantee. 1966 */ 1967 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max)) 1968 return; 1969 1970 if (!list_empty(&nna->pending_pwqs)) 1971 node_activate_pending_pwq(nna, pool); 1972 } 1973 1974 /** 1975 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1976 * @pwq: pwq of interest 1977 * @work_data: work_data of work which left the queue 1978 * 1979 * A work either has completed or is removed from pending queue, 1980 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1981 * 1982 * NOTE: 1983 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock 1984 * and thus should be called after all other state updates for the in-flight 1985 * work item is complete. 1986 * 1987 * CONTEXT: 1988 * raw_spin_lock_irq(pool->lock). 1989 */ 1990 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1991 { 1992 int color = get_work_color(work_data); 1993 1994 if (!(work_data & WORK_STRUCT_INACTIVE)) 1995 pwq_dec_nr_active(pwq); 1996 1997 pwq->nr_in_flight[color]--; 1998 1999 /* is flush in progress and are we at the flushing tip? */ 2000 if (likely(pwq->flush_color != color)) 2001 goto out_put; 2002 2003 /* are there still in-flight works? */ 2004 if (pwq->nr_in_flight[color]) 2005 goto out_put; 2006 2007 /* this pwq is done, clear flush_color */ 2008 pwq->flush_color = -1; 2009 2010 /* 2011 * If this was the last pwq, wake up the first flusher. It 2012 * will handle the rest. 2013 */ 2014 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 2015 complete(&pwq->wq->first_flusher->done); 2016 out_put: 2017 put_pwq(pwq); 2018 } 2019 2020 /** 2021 * try_to_grab_pending - steal work item from worklist and disable irq 2022 * @work: work item to steal 2023 * @cflags: %WORK_CANCEL_ flags 2024 * @irq_flags: place to store irq state 2025 * 2026 * Try to grab PENDING bit of @work. This function can handle @work in any 2027 * stable state - idle, on timer or on worklist. 2028 * 2029 * Return: 2030 * 2031 * ======== ================================================================ 2032 * 1 if @work was pending and we successfully stole PENDING 2033 * 0 if @work was idle and we claimed PENDING 2034 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 2035 * ======== ================================================================ 2036 * 2037 * Note: 2038 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 2039 * interrupted while holding PENDING and @work off queue, irq must be 2040 * disabled on entry. This, combined with delayed_work->timer being 2041 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 2042 * 2043 * On successful return, >= 0, irq is disabled and the caller is 2044 * responsible for releasing it using local_irq_restore(*@irq_flags). 2045 * 2046 * This function is safe to call from any context including IRQ handler. 2047 */ 2048 static int try_to_grab_pending(struct work_struct *work, u32 cflags, 2049 unsigned long *irq_flags) 2050 { 2051 struct worker_pool *pool; 2052 struct pool_workqueue *pwq; 2053 2054 local_irq_save(*irq_flags); 2055 2056 /* try to steal the timer if it exists */ 2057 if (cflags & WORK_CANCEL_DELAYED) { 2058 struct delayed_work *dwork = to_delayed_work(work); 2059 2060 /* 2061 * dwork->timer is irqsafe. If del_timer() fails, it's 2062 * guaranteed that the timer is not queued anywhere and not 2063 * running on the local CPU. 2064 */ 2065 if (likely(del_timer(&dwork->timer))) 2066 return 1; 2067 } 2068 2069 /* try to claim PENDING the normal way */ 2070 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2071 return 0; 2072 2073 rcu_read_lock(); 2074 /* 2075 * The queueing is in progress, or it is already queued. Try to 2076 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2077 */ 2078 pool = get_work_pool(work); 2079 if (!pool) 2080 goto fail; 2081 2082 raw_spin_lock(&pool->lock); 2083 /* 2084 * work->data is guaranteed to point to pwq only while the work 2085 * item is queued on pwq->wq, and both updating work->data to point 2086 * to pwq on queueing and to pool on dequeueing are done under 2087 * pwq->pool->lock. This in turn guarantees that, if work->data 2088 * points to pwq which is associated with a locked pool, the work 2089 * item is currently queued on that pool. 2090 */ 2091 pwq = get_work_pwq(work); 2092 if (pwq && pwq->pool == pool) { 2093 unsigned long work_data = *work_data_bits(work); 2094 2095 debug_work_deactivate(work); 2096 2097 /* 2098 * A cancelable inactive work item must be in the 2099 * pwq->inactive_works since a queued barrier can't be 2100 * canceled (see the comments in insert_wq_barrier()). 2101 * 2102 * An inactive work item cannot be deleted directly because 2103 * it might have linked barrier work items which, if left 2104 * on the inactive_works list, will confuse pwq->nr_active 2105 * management later on and cause stall. Move the linked 2106 * barrier work items to the worklist when deleting the grabbed 2107 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that 2108 * it doesn't participate in nr_active management in later 2109 * pwq_dec_nr_in_flight(). 2110 */ 2111 if (work_data & WORK_STRUCT_INACTIVE) 2112 move_linked_works(work, &pwq->pool->worklist, NULL); 2113 2114 list_del_init(&work->entry); 2115 2116 /* 2117 * work->data points to pwq iff queued. Let's point to pool. As 2118 * this destroys work->data needed by the next step, stash it. 2119 */ 2120 set_work_pool_and_keep_pending(work, pool->id, 2121 pool_offq_flags(pool)); 2122 2123 /* must be the last step, see the function comment */ 2124 pwq_dec_nr_in_flight(pwq, work_data); 2125 2126 raw_spin_unlock(&pool->lock); 2127 rcu_read_unlock(); 2128 return 1; 2129 } 2130 raw_spin_unlock(&pool->lock); 2131 fail: 2132 rcu_read_unlock(); 2133 local_irq_restore(*irq_flags); 2134 return -EAGAIN; 2135 } 2136 2137 /** 2138 * work_grab_pending - steal work item from worklist and disable irq 2139 * @work: work item to steal 2140 * @cflags: %WORK_CANCEL_ flags 2141 * @irq_flags: place to store IRQ state 2142 * 2143 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer 2144 * or on worklist. 2145 * 2146 * Can be called from any context. IRQ is disabled on return with IRQ state 2147 * stored in *@irq_flags. The caller is responsible for re-enabling it using 2148 * local_irq_restore(). 2149 * 2150 * Returns %true if @work was pending. %false if idle. 2151 */ 2152 static bool work_grab_pending(struct work_struct *work, u32 cflags, 2153 unsigned long *irq_flags) 2154 { 2155 int ret; 2156 2157 while (true) { 2158 ret = try_to_grab_pending(work, cflags, irq_flags); 2159 if (ret >= 0) 2160 return ret; 2161 cpu_relax(); 2162 } 2163 } 2164 2165 /** 2166 * insert_work - insert a work into a pool 2167 * @pwq: pwq @work belongs to 2168 * @work: work to insert 2169 * @head: insertion point 2170 * @extra_flags: extra WORK_STRUCT_* flags to set 2171 * 2172 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 2173 * work_struct flags. 2174 * 2175 * CONTEXT: 2176 * raw_spin_lock_irq(pool->lock). 2177 */ 2178 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 2179 struct list_head *head, unsigned int extra_flags) 2180 { 2181 debug_work_activate(work); 2182 2183 /* record the work call stack in order to print it in KASAN reports */ 2184 kasan_record_aux_stack_noalloc(work); 2185 2186 /* we own @work, set data and link */ 2187 set_work_pwq(work, pwq, extra_flags); 2188 list_add_tail(&work->entry, head); 2189 get_pwq(pwq); 2190 } 2191 2192 /* 2193 * Test whether @work is being queued from another work executing on the 2194 * same workqueue. 2195 */ 2196 static bool is_chained_work(struct workqueue_struct *wq) 2197 { 2198 struct worker *worker; 2199 2200 worker = current_wq_worker(); 2201 /* 2202 * Return %true iff I'm a worker executing a work item on @wq. If 2203 * I'm @worker, it's safe to dereference it without locking. 2204 */ 2205 return worker && worker->current_pwq->wq == wq; 2206 } 2207 2208 /* 2209 * When queueing an unbound work item to a wq, prefer local CPU if allowed 2210 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 2211 * avoid perturbing sensitive tasks. 2212 */ 2213 static int wq_select_unbound_cpu(int cpu) 2214 { 2215 int new_cpu; 2216 2217 if (likely(!wq_debug_force_rr_cpu)) { 2218 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 2219 return cpu; 2220 } else { 2221 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 2222 } 2223 2224 new_cpu = __this_cpu_read(wq_rr_cpu_last); 2225 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 2226 if (unlikely(new_cpu >= nr_cpu_ids)) { 2227 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 2228 if (unlikely(new_cpu >= nr_cpu_ids)) 2229 return cpu; 2230 } 2231 __this_cpu_write(wq_rr_cpu_last, new_cpu); 2232 2233 return new_cpu; 2234 } 2235 2236 static void __queue_work(int cpu, struct workqueue_struct *wq, 2237 struct work_struct *work) 2238 { 2239 struct pool_workqueue *pwq; 2240 struct worker_pool *last_pool, *pool; 2241 unsigned int work_flags; 2242 unsigned int req_cpu = cpu; 2243 2244 /* 2245 * While a work item is PENDING && off queue, a task trying to 2246 * steal the PENDING will busy-loop waiting for it to either get 2247 * queued or lose PENDING. Grabbing PENDING and queueing should 2248 * happen with IRQ disabled. 2249 */ 2250 lockdep_assert_irqs_disabled(); 2251 2252 /* 2253 * For a draining wq, only works from the same workqueue are 2254 * allowed. The __WQ_DESTROYING helps to spot the issue that 2255 * queues a new work item to a wq after destroy_workqueue(wq). 2256 */ 2257 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 2258 WARN_ON_ONCE(!is_chained_work(wq)))) 2259 return; 2260 rcu_read_lock(); 2261 retry: 2262 /* pwq which will be used unless @work is executing elsewhere */ 2263 if (req_cpu == WORK_CPU_UNBOUND) { 2264 if (wq->flags & WQ_UNBOUND) 2265 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 2266 else 2267 cpu = raw_smp_processor_id(); 2268 } 2269 2270 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 2271 pool = pwq->pool; 2272 2273 /* 2274 * If @work was previously on a different pool, it might still be 2275 * running there, in which case the work needs to be queued on that 2276 * pool to guarantee non-reentrancy. 2277 * 2278 * For ordered workqueue, work items must be queued on the newest pwq 2279 * for accurate order management. Guaranteed order also guarantees 2280 * non-reentrancy. See the comments above unplug_oldest_pwq(). 2281 */ 2282 last_pool = get_work_pool(work); 2283 if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) { 2284 struct worker *worker; 2285 2286 raw_spin_lock(&last_pool->lock); 2287 2288 worker = find_worker_executing_work(last_pool, work); 2289 2290 if (worker && worker->current_pwq->wq == wq) { 2291 pwq = worker->current_pwq; 2292 pool = pwq->pool; 2293 WARN_ON_ONCE(pool != last_pool); 2294 } else { 2295 /* meh... not running there, queue here */ 2296 raw_spin_unlock(&last_pool->lock); 2297 raw_spin_lock(&pool->lock); 2298 } 2299 } else { 2300 raw_spin_lock(&pool->lock); 2301 } 2302 2303 /* 2304 * pwq is determined and locked. For unbound pools, we could have raced 2305 * with pwq release and it could already be dead. If its refcnt is zero, 2306 * repeat pwq selection. Note that unbound pwqs never die without 2307 * another pwq replacing it in cpu_pwq or while work items are executing 2308 * on it, so the retrying is guaranteed to make forward-progress. 2309 */ 2310 if (unlikely(!pwq->refcnt)) { 2311 if (wq->flags & WQ_UNBOUND) { 2312 raw_spin_unlock(&pool->lock); 2313 cpu_relax(); 2314 goto retry; 2315 } 2316 /* oops */ 2317 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 2318 wq->name, cpu); 2319 } 2320 2321 /* pwq determined, queue */ 2322 trace_workqueue_queue_work(req_cpu, pwq, work); 2323 2324 if (WARN_ON(!list_empty(&work->entry))) 2325 goto out; 2326 2327 pwq->nr_in_flight[pwq->work_color]++; 2328 work_flags = work_color_to_flags(pwq->work_color); 2329 2330 /* 2331 * Limit the number of concurrently active work items to max_active. 2332 * @work must also queue behind existing inactive work items to maintain 2333 * ordering when max_active changes. See wq_adjust_max_active(). 2334 */ 2335 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) { 2336 if (list_empty(&pool->worklist)) 2337 pool->watchdog_ts = jiffies; 2338 2339 trace_workqueue_activate_work(work); 2340 insert_work(pwq, work, &pool->worklist, work_flags); 2341 kick_pool(pool); 2342 } else { 2343 work_flags |= WORK_STRUCT_INACTIVE; 2344 insert_work(pwq, work, &pwq->inactive_works, work_flags); 2345 } 2346 2347 out: 2348 raw_spin_unlock(&pool->lock); 2349 rcu_read_unlock(); 2350 } 2351 2352 static bool clear_pending_if_disabled(struct work_struct *work) 2353 { 2354 unsigned long data = *work_data_bits(work); 2355 struct work_offq_data offqd; 2356 2357 if (likely((data & WORK_STRUCT_PWQ) || 2358 !(data & WORK_OFFQ_DISABLE_MASK))) 2359 return false; 2360 2361 work_offqd_unpack(&offqd, data); 2362 set_work_pool_and_clear_pending(work, offqd.pool_id, 2363 work_offqd_pack_flags(&offqd)); 2364 return true; 2365 } 2366 2367 /** 2368 * queue_work_on - queue work on specific cpu 2369 * @cpu: CPU number to execute work on 2370 * @wq: workqueue to use 2371 * @work: work to queue 2372 * 2373 * We queue the work to a specific CPU, the caller must ensure it 2374 * can't go away. Callers that fail to ensure that the specified 2375 * CPU cannot go away will execute on a randomly chosen CPU. 2376 * But note well that callers specifying a CPU that never has been 2377 * online will get a splat. 2378 * 2379 * Return: %false if @work was already on a queue, %true otherwise. 2380 */ 2381 bool queue_work_on(int cpu, struct workqueue_struct *wq, 2382 struct work_struct *work) 2383 { 2384 bool ret = false; 2385 unsigned long irq_flags; 2386 2387 local_irq_save(irq_flags); 2388 2389 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2390 !clear_pending_if_disabled(work)) { 2391 __queue_work(cpu, wq, work); 2392 ret = true; 2393 } 2394 2395 local_irq_restore(irq_flags); 2396 return ret; 2397 } 2398 EXPORT_SYMBOL(queue_work_on); 2399 2400 /** 2401 * select_numa_node_cpu - Select a CPU based on NUMA node 2402 * @node: NUMA node ID that we want to select a CPU from 2403 * 2404 * This function will attempt to find a "random" cpu available on a given 2405 * node. If there are no CPUs available on the given node it will return 2406 * WORK_CPU_UNBOUND indicating that we should just schedule to any 2407 * available CPU if we need to schedule this work. 2408 */ 2409 static int select_numa_node_cpu(int node) 2410 { 2411 int cpu; 2412 2413 /* Delay binding to CPU if node is not valid or online */ 2414 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 2415 return WORK_CPU_UNBOUND; 2416 2417 /* Use local node/cpu if we are already there */ 2418 cpu = raw_smp_processor_id(); 2419 if (node == cpu_to_node(cpu)) 2420 return cpu; 2421 2422 /* Use "random" otherwise know as "first" online CPU of node */ 2423 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 2424 2425 /* If CPU is valid return that, otherwise just defer */ 2426 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 2427 } 2428 2429 /** 2430 * queue_work_node - queue work on a "random" cpu for a given NUMA node 2431 * @node: NUMA node that we are targeting the work for 2432 * @wq: workqueue to use 2433 * @work: work to queue 2434 * 2435 * We queue the work to a "random" CPU within a given NUMA node. The basic 2436 * idea here is to provide a way to somehow associate work with a given 2437 * NUMA node. 2438 * 2439 * This function will only make a best effort attempt at getting this onto 2440 * the right NUMA node. If no node is requested or the requested node is 2441 * offline then we just fall back to standard queue_work behavior. 2442 * 2443 * Currently the "random" CPU ends up being the first available CPU in the 2444 * intersection of cpu_online_mask and the cpumask of the node, unless we 2445 * are running on the node. In that case we just use the current CPU. 2446 * 2447 * Return: %false if @work was already on a queue, %true otherwise. 2448 */ 2449 bool queue_work_node(int node, struct workqueue_struct *wq, 2450 struct work_struct *work) 2451 { 2452 unsigned long irq_flags; 2453 bool ret = false; 2454 2455 /* 2456 * This current implementation is specific to unbound workqueues. 2457 * Specifically we only return the first available CPU for a given 2458 * node instead of cycling through individual CPUs within the node. 2459 * 2460 * If this is used with a per-cpu workqueue then the logic in 2461 * workqueue_select_cpu_near would need to be updated to allow for 2462 * some round robin type logic. 2463 */ 2464 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 2465 2466 local_irq_save(irq_flags); 2467 2468 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2469 !clear_pending_if_disabled(work)) { 2470 int cpu = select_numa_node_cpu(node); 2471 2472 __queue_work(cpu, wq, work); 2473 ret = true; 2474 } 2475 2476 local_irq_restore(irq_flags); 2477 return ret; 2478 } 2479 EXPORT_SYMBOL_GPL(queue_work_node); 2480 2481 void delayed_work_timer_fn(struct timer_list *t) 2482 { 2483 struct delayed_work *dwork = from_timer(dwork, t, timer); 2484 2485 /* should have been called from irqsafe timer with irq already off */ 2486 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2487 } 2488 EXPORT_SYMBOL(delayed_work_timer_fn); 2489 2490 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 2491 struct delayed_work *dwork, unsigned long delay) 2492 { 2493 struct timer_list *timer = &dwork->timer; 2494 struct work_struct *work = &dwork->work; 2495 2496 WARN_ON_ONCE(!wq); 2497 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 2498 WARN_ON_ONCE(timer_pending(timer)); 2499 WARN_ON_ONCE(!list_empty(&work->entry)); 2500 2501 /* 2502 * If @delay is 0, queue @dwork->work immediately. This is for 2503 * both optimization and correctness. The earliest @timer can 2504 * expire is on the closest next tick and delayed_work users depend 2505 * on that there's no such delay when @delay is 0. 2506 */ 2507 if (!delay) { 2508 __queue_work(cpu, wq, &dwork->work); 2509 return; 2510 } 2511 2512 dwork->wq = wq; 2513 dwork->cpu = cpu; 2514 timer->expires = jiffies + delay; 2515 2516 if (housekeeping_enabled(HK_TYPE_TIMER)) { 2517 /* If the current cpu is a housekeeping cpu, use it. */ 2518 cpu = smp_processor_id(); 2519 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER)) 2520 cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 2521 add_timer_on(timer, cpu); 2522 } else { 2523 if (likely(cpu == WORK_CPU_UNBOUND)) 2524 add_timer_global(timer); 2525 else 2526 add_timer_on(timer, cpu); 2527 } 2528 } 2529 2530 /** 2531 * queue_delayed_work_on - queue work on specific CPU after delay 2532 * @cpu: CPU number to execute work on 2533 * @wq: workqueue to use 2534 * @dwork: work to queue 2535 * @delay: number of jiffies to wait before queueing 2536 * 2537 * Return: %false if @work was already on a queue, %true otherwise. If 2538 * @delay is zero and @dwork is idle, it will be scheduled for immediate 2539 * execution. 2540 */ 2541 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 2542 struct delayed_work *dwork, unsigned long delay) 2543 { 2544 struct work_struct *work = &dwork->work; 2545 bool ret = false; 2546 unsigned long irq_flags; 2547 2548 /* read the comment in __queue_work() */ 2549 local_irq_save(irq_flags); 2550 2551 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2552 !clear_pending_if_disabled(work)) { 2553 __queue_delayed_work(cpu, wq, dwork, delay); 2554 ret = true; 2555 } 2556 2557 local_irq_restore(irq_flags); 2558 return ret; 2559 } 2560 EXPORT_SYMBOL(queue_delayed_work_on); 2561 2562 /** 2563 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2564 * @cpu: CPU number to execute work on 2565 * @wq: workqueue to use 2566 * @dwork: work to queue 2567 * @delay: number of jiffies to wait before queueing 2568 * 2569 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2570 * modify @dwork's timer so that it expires after @delay. If @delay is 2571 * zero, @work is guaranteed to be scheduled immediately regardless of its 2572 * current state. 2573 * 2574 * Return: %false if @dwork was idle and queued, %true if @dwork was 2575 * pending and its timer was modified. 2576 * 2577 * This function is safe to call from any context including IRQ handler. 2578 * See try_to_grab_pending() for details. 2579 */ 2580 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2581 struct delayed_work *dwork, unsigned long delay) 2582 { 2583 unsigned long irq_flags; 2584 bool ret; 2585 2586 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags); 2587 2588 if (!clear_pending_if_disabled(&dwork->work)) 2589 __queue_delayed_work(cpu, wq, dwork, delay); 2590 2591 local_irq_restore(irq_flags); 2592 return ret; 2593 } 2594 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2595 2596 static void rcu_work_rcufn(struct rcu_head *rcu) 2597 { 2598 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2599 2600 /* read the comment in __queue_work() */ 2601 local_irq_disable(); 2602 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2603 local_irq_enable(); 2604 } 2605 2606 /** 2607 * queue_rcu_work - queue work after a RCU grace period 2608 * @wq: workqueue to use 2609 * @rwork: work to queue 2610 * 2611 * Return: %false if @rwork was already pending, %true otherwise. Note 2612 * that a full RCU grace period is guaranteed only after a %true return. 2613 * While @rwork is guaranteed to be executed after a %false return, the 2614 * execution may happen before a full RCU grace period has passed. 2615 */ 2616 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2617 { 2618 struct work_struct *work = &rwork->work; 2619 2620 /* 2621 * rcu_work can't be canceled or disabled. Warn if the user reached 2622 * inside @rwork and disabled the inner work. 2623 */ 2624 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2625 !WARN_ON_ONCE(clear_pending_if_disabled(work))) { 2626 rwork->wq = wq; 2627 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2628 return true; 2629 } 2630 2631 return false; 2632 } 2633 EXPORT_SYMBOL(queue_rcu_work); 2634 2635 static struct worker *alloc_worker(int node) 2636 { 2637 struct worker *worker; 2638 2639 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2640 if (worker) { 2641 INIT_LIST_HEAD(&worker->entry); 2642 INIT_LIST_HEAD(&worker->scheduled); 2643 INIT_LIST_HEAD(&worker->node); 2644 /* on creation a worker is in !idle && prep state */ 2645 worker->flags = WORKER_PREP; 2646 } 2647 return worker; 2648 } 2649 2650 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2651 { 2652 if (pool->cpu < 0 && pool->attrs->affn_strict) 2653 return pool->attrs->__pod_cpumask; 2654 else 2655 return pool->attrs->cpumask; 2656 } 2657 2658 /** 2659 * worker_attach_to_pool() - attach a worker to a pool 2660 * @worker: worker to be attached 2661 * @pool: the target pool 2662 * 2663 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2664 * cpu-binding of @worker are kept coordinated with the pool across 2665 * cpu-[un]hotplugs. 2666 */ 2667 static void worker_attach_to_pool(struct worker *worker, 2668 struct worker_pool *pool) 2669 { 2670 mutex_lock(&wq_pool_attach_mutex); 2671 2672 /* 2673 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable 2674 * across this function. See the comments above the flag definition for 2675 * details. BH workers are, while per-CPU, always DISASSOCIATED. 2676 */ 2677 if (pool->flags & POOL_DISASSOCIATED) { 2678 worker->flags |= WORKER_UNBOUND; 2679 } else { 2680 WARN_ON_ONCE(pool->flags & POOL_BH); 2681 kthread_set_per_cpu(worker->task, pool->cpu); 2682 } 2683 2684 if (worker->rescue_wq) 2685 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2686 2687 list_add_tail(&worker->node, &pool->workers); 2688 worker->pool = pool; 2689 2690 mutex_unlock(&wq_pool_attach_mutex); 2691 } 2692 2693 static void unbind_worker(struct worker *worker) 2694 { 2695 lockdep_assert_held(&wq_pool_attach_mutex); 2696 2697 kthread_set_per_cpu(worker->task, -1); 2698 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2699 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2700 else 2701 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2702 } 2703 2704 2705 static void detach_worker(struct worker *worker) 2706 { 2707 lockdep_assert_held(&wq_pool_attach_mutex); 2708 2709 unbind_worker(worker); 2710 list_del(&worker->node); 2711 worker->pool = NULL; 2712 } 2713 2714 /** 2715 * worker_detach_from_pool() - detach a worker from its pool 2716 * @worker: worker which is attached to its pool 2717 * 2718 * Undo the attaching which had been done in worker_attach_to_pool(). The 2719 * caller worker shouldn't access to the pool after detached except it has 2720 * other reference to the pool. 2721 */ 2722 static void worker_detach_from_pool(struct worker *worker) 2723 { 2724 struct worker_pool *pool = worker->pool; 2725 2726 /* there is one permanent BH worker per CPU which should never detach */ 2727 WARN_ON_ONCE(pool->flags & POOL_BH); 2728 2729 mutex_lock(&wq_pool_attach_mutex); 2730 detach_worker(worker); 2731 mutex_unlock(&wq_pool_attach_mutex); 2732 2733 /* clear leftover flags without pool->lock after it is detached */ 2734 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2735 } 2736 2737 /** 2738 * create_worker - create a new workqueue worker 2739 * @pool: pool the new worker will belong to 2740 * 2741 * Create and start a new worker which is attached to @pool. 2742 * 2743 * CONTEXT: 2744 * Might sleep. Does GFP_KERNEL allocations. 2745 * 2746 * Return: 2747 * Pointer to the newly created worker. 2748 */ 2749 static struct worker *create_worker(struct worker_pool *pool) 2750 { 2751 struct worker *worker; 2752 int id; 2753 char id_buf[23]; 2754 2755 /* ID is needed to determine kthread name */ 2756 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2757 if (id < 0) { 2758 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2759 ERR_PTR(id)); 2760 return NULL; 2761 } 2762 2763 worker = alloc_worker(pool->node); 2764 if (!worker) { 2765 pr_err_once("workqueue: Failed to allocate a worker\n"); 2766 goto fail; 2767 } 2768 2769 worker->id = id; 2770 2771 if (!(pool->flags & POOL_BH)) { 2772 if (pool->cpu >= 0) 2773 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 2774 pool->attrs->nice < 0 ? "H" : ""); 2775 else 2776 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 2777 2778 worker->task = kthread_create_on_node(worker_thread, worker, 2779 pool->node, "kworker/%s", id_buf); 2780 if (IS_ERR(worker->task)) { 2781 if (PTR_ERR(worker->task) == -EINTR) { 2782 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n", 2783 id_buf); 2784 } else { 2785 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2786 worker->task); 2787 } 2788 goto fail; 2789 } 2790 2791 set_user_nice(worker->task, pool->attrs->nice); 2792 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2793 } 2794 2795 /* successful, attach the worker to the pool */ 2796 worker_attach_to_pool(worker, pool); 2797 2798 /* start the newly created worker */ 2799 raw_spin_lock_irq(&pool->lock); 2800 2801 worker->pool->nr_workers++; 2802 worker_enter_idle(worker); 2803 2804 /* 2805 * @worker is waiting on a completion in kthread() and will trigger hung 2806 * check if not woken up soon. As kick_pool() is noop if @pool is empty, 2807 * wake it up explicitly. 2808 */ 2809 if (worker->task) 2810 wake_up_process(worker->task); 2811 2812 raw_spin_unlock_irq(&pool->lock); 2813 2814 return worker; 2815 2816 fail: 2817 ida_free(&pool->worker_ida, id); 2818 kfree(worker); 2819 return NULL; 2820 } 2821 2822 static void detach_dying_workers(struct list_head *cull_list) 2823 { 2824 struct worker *worker; 2825 2826 list_for_each_entry(worker, cull_list, entry) 2827 detach_worker(worker); 2828 } 2829 2830 static void reap_dying_workers(struct list_head *cull_list) 2831 { 2832 struct worker *worker, *tmp; 2833 2834 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2835 list_del_init(&worker->entry); 2836 kthread_stop_put(worker->task); 2837 kfree(worker); 2838 } 2839 } 2840 2841 /** 2842 * set_worker_dying - Tag a worker for destruction 2843 * @worker: worker to be destroyed 2844 * @list: transfer worker away from its pool->idle_list and into list 2845 * 2846 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2847 * should be idle. 2848 * 2849 * CONTEXT: 2850 * raw_spin_lock_irq(pool->lock). 2851 */ 2852 static void set_worker_dying(struct worker *worker, struct list_head *list) 2853 { 2854 struct worker_pool *pool = worker->pool; 2855 2856 lockdep_assert_held(&pool->lock); 2857 lockdep_assert_held(&wq_pool_attach_mutex); 2858 2859 /* sanity check frenzy */ 2860 if (WARN_ON(worker->current_work) || 2861 WARN_ON(!list_empty(&worker->scheduled)) || 2862 WARN_ON(!(worker->flags & WORKER_IDLE))) 2863 return; 2864 2865 pool->nr_workers--; 2866 pool->nr_idle--; 2867 2868 worker->flags |= WORKER_DIE; 2869 2870 list_move(&worker->entry, list); 2871 2872 /* get an extra task struct reference for later kthread_stop_put() */ 2873 get_task_struct(worker->task); 2874 } 2875 2876 /** 2877 * idle_worker_timeout - check if some idle workers can now be deleted. 2878 * @t: The pool's idle_timer that just expired 2879 * 2880 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2881 * worker_leave_idle(), as a worker flicking between idle and active while its 2882 * pool is at the too_many_workers() tipping point would cause too much timer 2883 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2884 * it expire and re-evaluate things from there. 2885 */ 2886 static void idle_worker_timeout(struct timer_list *t) 2887 { 2888 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2889 bool do_cull = false; 2890 2891 if (work_pending(&pool->idle_cull_work)) 2892 return; 2893 2894 raw_spin_lock_irq(&pool->lock); 2895 2896 if (too_many_workers(pool)) { 2897 struct worker *worker; 2898 unsigned long expires; 2899 2900 /* idle_list is kept in LIFO order, check the last one */ 2901 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2902 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2903 do_cull = !time_before(jiffies, expires); 2904 2905 if (!do_cull) 2906 mod_timer(&pool->idle_timer, expires); 2907 } 2908 raw_spin_unlock_irq(&pool->lock); 2909 2910 if (do_cull) 2911 queue_work(system_unbound_wq, &pool->idle_cull_work); 2912 } 2913 2914 /** 2915 * idle_cull_fn - cull workers that have been idle for too long. 2916 * @work: the pool's work for handling these idle workers 2917 * 2918 * This goes through a pool's idle workers and gets rid of those that have been 2919 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2920 * 2921 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2922 * culled, so this also resets worker affinity. This requires a sleepable 2923 * context, hence the split between timer callback and work item. 2924 */ 2925 static void idle_cull_fn(struct work_struct *work) 2926 { 2927 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2928 LIST_HEAD(cull_list); 2929 2930 /* 2931 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2932 * cannot proceed beyong set_pf_worker() in its self-destruct path. 2933 * This is required as a previously-preempted worker could run after 2934 * set_worker_dying() has happened but before detach_dying_workers() did. 2935 */ 2936 mutex_lock(&wq_pool_attach_mutex); 2937 raw_spin_lock_irq(&pool->lock); 2938 2939 while (too_many_workers(pool)) { 2940 struct worker *worker; 2941 unsigned long expires; 2942 2943 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2944 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2945 2946 if (time_before(jiffies, expires)) { 2947 mod_timer(&pool->idle_timer, expires); 2948 break; 2949 } 2950 2951 set_worker_dying(worker, &cull_list); 2952 } 2953 2954 raw_spin_unlock_irq(&pool->lock); 2955 detach_dying_workers(&cull_list); 2956 mutex_unlock(&wq_pool_attach_mutex); 2957 2958 reap_dying_workers(&cull_list); 2959 } 2960 2961 static void send_mayday(struct work_struct *work) 2962 { 2963 struct pool_workqueue *pwq = get_work_pwq(work); 2964 struct workqueue_struct *wq = pwq->wq; 2965 2966 lockdep_assert_held(&wq_mayday_lock); 2967 2968 if (!wq->rescuer) 2969 return; 2970 2971 /* mayday mayday mayday */ 2972 if (list_empty(&pwq->mayday_node)) { 2973 /* 2974 * If @pwq is for an unbound wq, its base ref may be put at 2975 * any time due to an attribute change. Pin @pwq until the 2976 * rescuer is done with it. 2977 */ 2978 get_pwq(pwq); 2979 list_add_tail(&pwq->mayday_node, &wq->maydays); 2980 wake_up_process(wq->rescuer->task); 2981 pwq->stats[PWQ_STAT_MAYDAY]++; 2982 } 2983 } 2984 2985 static void pool_mayday_timeout(struct timer_list *t) 2986 { 2987 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2988 struct work_struct *work; 2989 2990 raw_spin_lock_irq(&pool->lock); 2991 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2992 2993 if (need_to_create_worker(pool)) { 2994 /* 2995 * We've been trying to create a new worker but 2996 * haven't been successful. We might be hitting an 2997 * allocation deadlock. Send distress signals to 2998 * rescuers. 2999 */ 3000 list_for_each_entry(work, &pool->worklist, entry) 3001 send_mayday(work); 3002 } 3003 3004 raw_spin_unlock(&wq_mayday_lock); 3005 raw_spin_unlock_irq(&pool->lock); 3006 3007 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 3008 } 3009 3010 /** 3011 * maybe_create_worker - create a new worker if necessary 3012 * @pool: pool to create a new worker for 3013 * 3014 * Create a new worker for @pool if necessary. @pool is guaranteed to 3015 * have at least one idle worker on return from this function. If 3016 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 3017 * sent to all rescuers with works scheduled on @pool to resolve 3018 * possible allocation deadlock. 3019 * 3020 * On return, need_to_create_worker() is guaranteed to be %false and 3021 * may_start_working() %true. 3022 * 3023 * LOCKING: 3024 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3025 * multiple times. Does GFP_KERNEL allocations. Called only from 3026 * manager. 3027 */ 3028 static void maybe_create_worker(struct worker_pool *pool) 3029 __releases(&pool->lock) 3030 __acquires(&pool->lock) 3031 { 3032 restart: 3033 raw_spin_unlock_irq(&pool->lock); 3034 3035 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 3036 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 3037 3038 while (true) { 3039 if (create_worker(pool) || !need_to_create_worker(pool)) 3040 break; 3041 3042 schedule_timeout_interruptible(CREATE_COOLDOWN); 3043 3044 if (!need_to_create_worker(pool)) 3045 break; 3046 } 3047 3048 del_timer_sync(&pool->mayday_timer); 3049 raw_spin_lock_irq(&pool->lock); 3050 /* 3051 * This is necessary even after a new worker was just successfully 3052 * created as @pool->lock was dropped and the new worker might have 3053 * already become busy. 3054 */ 3055 if (need_to_create_worker(pool)) 3056 goto restart; 3057 } 3058 3059 /** 3060 * manage_workers - manage worker pool 3061 * @worker: self 3062 * 3063 * Assume the manager role and manage the worker pool @worker belongs 3064 * to. At any given time, there can be only zero or one manager per 3065 * pool. The exclusion is handled automatically by this function. 3066 * 3067 * The caller can safely start processing works on false return. On 3068 * true return, it's guaranteed that need_to_create_worker() is false 3069 * and may_start_working() is true. 3070 * 3071 * CONTEXT: 3072 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3073 * multiple times. Does GFP_KERNEL allocations. 3074 * 3075 * Return: 3076 * %false if the pool doesn't need management and the caller can safely 3077 * start processing works, %true if management function was performed and 3078 * the conditions that the caller verified before calling the function may 3079 * no longer be true. 3080 */ 3081 static bool manage_workers(struct worker *worker) 3082 { 3083 struct worker_pool *pool = worker->pool; 3084 3085 if (pool->flags & POOL_MANAGER_ACTIVE) 3086 return false; 3087 3088 pool->flags |= POOL_MANAGER_ACTIVE; 3089 pool->manager = worker; 3090 3091 maybe_create_worker(pool); 3092 3093 pool->manager = NULL; 3094 pool->flags &= ~POOL_MANAGER_ACTIVE; 3095 rcuwait_wake_up(&manager_wait); 3096 return true; 3097 } 3098 3099 /** 3100 * process_one_work - process single work 3101 * @worker: self 3102 * @work: work to process 3103 * 3104 * Process @work. This function contains all the logics necessary to 3105 * process a single work including synchronization against and 3106 * interaction with other workers on the same cpu, queueing and 3107 * flushing. As long as context requirement is met, any worker can 3108 * call this function to process a work. 3109 * 3110 * CONTEXT: 3111 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 3112 */ 3113 static void process_one_work(struct worker *worker, struct work_struct *work) 3114 __releases(&pool->lock) 3115 __acquires(&pool->lock) 3116 { 3117 struct pool_workqueue *pwq = get_work_pwq(work); 3118 struct worker_pool *pool = worker->pool; 3119 unsigned long work_data; 3120 int lockdep_start_depth, rcu_start_depth; 3121 bool bh_draining = pool->flags & POOL_BH_DRAINING; 3122 #ifdef CONFIG_LOCKDEP 3123 /* 3124 * It is permissible to free the struct work_struct from 3125 * inside the function that is called from it, this we need to 3126 * take into account for lockdep too. To avoid bogus "held 3127 * lock freed" warnings as well as problems when looking into 3128 * work->lockdep_map, make a copy and use that here. 3129 */ 3130 struct lockdep_map lockdep_map; 3131 3132 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 3133 #endif 3134 /* ensure we're on the correct CPU */ 3135 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 3136 raw_smp_processor_id() != pool->cpu); 3137 3138 /* claim and dequeue */ 3139 debug_work_deactivate(work); 3140 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 3141 worker->current_work = work; 3142 worker->current_func = work->func; 3143 worker->current_pwq = pwq; 3144 if (worker->task) 3145 worker->current_at = worker->task->se.sum_exec_runtime; 3146 work_data = *work_data_bits(work); 3147 worker->current_color = get_work_color(work_data); 3148 3149 /* 3150 * Record wq name for cmdline and debug reporting, may get 3151 * overridden through set_worker_desc(). 3152 */ 3153 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 3154 3155 list_del_init(&work->entry); 3156 3157 /* 3158 * CPU intensive works don't participate in concurrency management. 3159 * They're the scheduler's responsibility. This takes @worker out 3160 * of concurrency management and the next code block will chain 3161 * execution of the pending work items. 3162 */ 3163 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 3164 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 3165 3166 /* 3167 * Kick @pool if necessary. It's always noop for per-cpu worker pools 3168 * since nr_running would always be >= 1 at this point. This is used to 3169 * chain execution of the pending work items for WORKER_NOT_RUNNING 3170 * workers such as the UNBOUND and CPU_INTENSIVE ones. 3171 */ 3172 kick_pool(pool); 3173 3174 /* 3175 * Record the last pool and clear PENDING which should be the last 3176 * update to @work. Also, do this inside @pool->lock so that 3177 * PENDING and queued state changes happen together while IRQ is 3178 * disabled. 3179 */ 3180 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool)); 3181 3182 pwq->stats[PWQ_STAT_STARTED]++; 3183 raw_spin_unlock_irq(&pool->lock); 3184 3185 rcu_start_depth = rcu_preempt_depth(); 3186 lockdep_start_depth = lockdep_depth(current); 3187 /* see drain_dead_softirq_workfn() */ 3188 if (!bh_draining) 3189 lock_map_acquire(&pwq->wq->lockdep_map); 3190 lock_map_acquire(&lockdep_map); 3191 /* 3192 * Strictly speaking we should mark the invariant state without holding 3193 * any locks, that is, before these two lock_map_acquire()'s. 3194 * 3195 * However, that would result in: 3196 * 3197 * A(W1) 3198 * WFC(C) 3199 * A(W1) 3200 * C(C) 3201 * 3202 * Which would create W1->C->W1 dependencies, even though there is no 3203 * actual deadlock possible. There are two solutions, using a 3204 * read-recursive acquire on the work(queue) 'locks', but this will then 3205 * hit the lockdep limitation on recursive locks, or simply discard 3206 * these locks. 3207 * 3208 * AFAICT there is no possible deadlock scenario between the 3209 * flush_work() and complete() primitives (except for single-threaded 3210 * workqueues), so hiding them isn't a problem. 3211 */ 3212 lockdep_invariant_state(true); 3213 trace_workqueue_execute_start(work); 3214 worker->current_func(work); 3215 /* 3216 * While we must be careful to not use "work" after this, the trace 3217 * point will only record its address. 3218 */ 3219 trace_workqueue_execute_end(work, worker->current_func); 3220 pwq->stats[PWQ_STAT_COMPLETED]++; 3221 lock_map_release(&lockdep_map); 3222 if (!bh_draining) 3223 lock_map_release(&pwq->wq->lockdep_map); 3224 3225 if (unlikely((worker->task && in_atomic()) || 3226 lockdep_depth(current) != lockdep_start_depth || 3227 rcu_preempt_depth() != rcu_start_depth)) { 3228 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n" 3229 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n", 3230 current->comm, task_pid_nr(current), preempt_count(), 3231 lockdep_start_depth, lockdep_depth(current), 3232 rcu_start_depth, rcu_preempt_depth(), 3233 worker->current_func); 3234 debug_show_held_locks(current); 3235 dump_stack(); 3236 } 3237 3238 /* 3239 * The following prevents a kworker from hogging CPU on !PREEMPTION 3240 * kernels, where a requeueing work item waiting for something to 3241 * happen could deadlock with stop_machine as such work item could 3242 * indefinitely requeue itself while all other CPUs are trapped in 3243 * stop_machine. At the same time, report a quiescent RCU state so 3244 * the same condition doesn't freeze RCU. 3245 */ 3246 if (worker->task) 3247 cond_resched(); 3248 3249 raw_spin_lock_irq(&pool->lock); 3250 3251 /* 3252 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 3253 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 3254 * wq_cpu_intensive_thresh_us. Clear it. 3255 */ 3256 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 3257 3258 /* tag the worker for identification in schedule() */ 3259 worker->last_func = worker->current_func; 3260 3261 /* we're done with it, release */ 3262 hash_del(&worker->hentry); 3263 worker->current_work = NULL; 3264 worker->current_func = NULL; 3265 worker->current_pwq = NULL; 3266 worker->current_color = INT_MAX; 3267 3268 /* must be the last step, see the function comment */ 3269 pwq_dec_nr_in_flight(pwq, work_data); 3270 } 3271 3272 /** 3273 * process_scheduled_works - process scheduled works 3274 * @worker: self 3275 * 3276 * Process all scheduled works. Please note that the scheduled list 3277 * may change while processing a work, so this function repeatedly 3278 * fetches a work from the top and executes it. 3279 * 3280 * CONTEXT: 3281 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3282 * multiple times. 3283 */ 3284 static void process_scheduled_works(struct worker *worker) 3285 { 3286 struct work_struct *work; 3287 bool first = true; 3288 3289 while ((work = list_first_entry_or_null(&worker->scheduled, 3290 struct work_struct, entry))) { 3291 if (first) { 3292 worker->pool->watchdog_ts = jiffies; 3293 first = false; 3294 } 3295 process_one_work(worker, work); 3296 } 3297 } 3298 3299 static void set_pf_worker(bool val) 3300 { 3301 mutex_lock(&wq_pool_attach_mutex); 3302 if (val) 3303 current->flags |= PF_WQ_WORKER; 3304 else 3305 current->flags &= ~PF_WQ_WORKER; 3306 mutex_unlock(&wq_pool_attach_mutex); 3307 } 3308 3309 /** 3310 * worker_thread - the worker thread function 3311 * @__worker: self 3312 * 3313 * The worker thread function. All workers belong to a worker_pool - 3314 * either a per-cpu one or dynamic unbound one. These workers process all 3315 * work items regardless of their specific target workqueue. The only 3316 * exception is work items which belong to workqueues with a rescuer which 3317 * will be explained in rescuer_thread(). 3318 * 3319 * Return: 0 3320 */ 3321 static int worker_thread(void *__worker) 3322 { 3323 struct worker *worker = __worker; 3324 struct worker_pool *pool = worker->pool; 3325 3326 /* tell the scheduler that this is a workqueue worker */ 3327 set_pf_worker(true); 3328 woke_up: 3329 raw_spin_lock_irq(&pool->lock); 3330 3331 /* am I supposed to die? */ 3332 if (unlikely(worker->flags & WORKER_DIE)) { 3333 raw_spin_unlock_irq(&pool->lock); 3334 set_pf_worker(false); 3335 3336 set_task_comm(worker->task, "kworker/dying"); 3337 ida_free(&pool->worker_ida, worker->id); 3338 WARN_ON_ONCE(!list_empty(&worker->entry)); 3339 return 0; 3340 } 3341 3342 worker_leave_idle(worker); 3343 recheck: 3344 /* no more worker necessary? */ 3345 if (!need_more_worker(pool)) 3346 goto sleep; 3347 3348 /* do we need to manage? */ 3349 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 3350 goto recheck; 3351 3352 /* 3353 * ->scheduled list can only be filled while a worker is 3354 * preparing to process a work or actually processing it. 3355 * Make sure nobody diddled with it while I was sleeping. 3356 */ 3357 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3358 3359 /* 3360 * Finish PREP stage. We're guaranteed to have at least one idle 3361 * worker or that someone else has already assumed the manager 3362 * role. This is where @worker starts participating in concurrency 3363 * management if applicable and concurrency management is restored 3364 * after being rebound. See rebind_workers() for details. 3365 */ 3366 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3367 3368 do { 3369 struct work_struct *work = 3370 list_first_entry(&pool->worklist, 3371 struct work_struct, entry); 3372 3373 if (assign_work(work, worker, NULL)) 3374 process_scheduled_works(worker); 3375 } while (keep_working(pool)); 3376 3377 worker_set_flags(worker, WORKER_PREP); 3378 sleep: 3379 /* 3380 * pool->lock is held and there's no work to process and no need to 3381 * manage, sleep. Workers are woken up only while holding 3382 * pool->lock or from local cpu, so setting the current state 3383 * before releasing pool->lock is enough to prevent losing any 3384 * event. 3385 */ 3386 worker_enter_idle(worker); 3387 __set_current_state(TASK_IDLE); 3388 raw_spin_unlock_irq(&pool->lock); 3389 schedule(); 3390 goto woke_up; 3391 } 3392 3393 /** 3394 * rescuer_thread - the rescuer thread function 3395 * @__rescuer: self 3396 * 3397 * Workqueue rescuer thread function. There's one rescuer for each 3398 * workqueue which has WQ_MEM_RECLAIM set. 3399 * 3400 * Regular work processing on a pool may block trying to create a new 3401 * worker which uses GFP_KERNEL allocation which has slight chance of 3402 * developing into deadlock if some works currently on the same queue 3403 * need to be processed to satisfy the GFP_KERNEL allocation. This is 3404 * the problem rescuer solves. 3405 * 3406 * When such condition is possible, the pool summons rescuers of all 3407 * workqueues which have works queued on the pool and let them process 3408 * those works so that forward progress can be guaranteed. 3409 * 3410 * This should happen rarely. 3411 * 3412 * Return: 0 3413 */ 3414 static int rescuer_thread(void *__rescuer) 3415 { 3416 struct worker *rescuer = __rescuer; 3417 struct workqueue_struct *wq = rescuer->rescue_wq; 3418 bool should_stop; 3419 3420 set_user_nice(current, RESCUER_NICE_LEVEL); 3421 3422 /* 3423 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 3424 * doesn't participate in concurrency management. 3425 */ 3426 set_pf_worker(true); 3427 repeat: 3428 set_current_state(TASK_IDLE); 3429 3430 /* 3431 * By the time the rescuer is requested to stop, the workqueue 3432 * shouldn't have any work pending, but @wq->maydays may still have 3433 * pwq(s) queued. This can happen by non-rescuer workers consuming 3434 * all the work items before the rescuer got to them. Go through 3435 * @wq->maydays processing before acting on should_stop so that the 3436 * list is always empty on exit. 3437 */ 3438 should_stop = kthread_should_stop(); 3439 3440 /* see whether any pwq is asking for help */ 3441 raw_spin_lock_irq(&wq_mayday_lock); 3442 3443 while (!list_empty(&wq->maydays)) { 3444 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 3445 struct pool_workqueue, mayday_node); 3446 struct worker_pool *pool = pwq->pool; 3447 struct work_struct *work, *n; 3448 3449 __set_current_state(TASK_RUNNING); 3450 list_del_init(&pwq->mayday_node); 3451 3452 raw_spin_unlock_irq(&wq_mayday_lock); 3453 3454 worker_attach_to_pool(rescuer, pool); 3455 3456 raw_spin_lock_irq(&pool->lock); 3457 3458 /* 3459 * Slurp in all works issued via this workqueue and 3460 * process'em. 3461 */ 3462 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 3463 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 3464 if (get_work_pwq(work) == pwq && 3465 assign_work(work, rescuer, &n)) 3466 pwq->stats[PWQ_STAT_RESCUED]++; 3467 } 3468 3469 if (!list_empty(&rescuer->scheduled)) { 3470 process_scheduled_works(rescuer); 3471 3472 /* 3473 * The above execution of rescued work items could 3474 * have created more to rescue through 3475 * pwq_activate_first_inactive() or chained 3476 * queueing. Let's put @pwq back on mayday list so 3477 * that such back-to-back work items, which may be 3478 * being used to relieve memory pressure, don't 3479 * incur MAYDAY_INTERVAL delay inbetween. 3480 */ 3481 if (pwq->nr_active && need_to_create_worker(pool)) { 3482 raw_spin_lock(&wq_mayday_lock); 3483 /* 3484 * Queue iff we aren't racing destruction 3485 * and somebody else hasn't queued it already. 3486 */ 3487 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 3488 get_pwq(pwq); 3489 list_add_tail(&pwq->mayday_node, &wq->maydays); 3490 } 3491 raw_spin_unlock(&wq_mayday_lock); 3492 } 3493 } 3494 3495 /* 3496 * Put the reference grabbed by send_mayday(). @pool won't 3497 * go away while we're still attached to it. 3498 */ 3499 put_pwq(pwq); 3500 3501 /* 3502 * Leave this pool. Notify regular workers; otherwise, we end up 3503 * with 0 concurrency and stalling the execution. 3504 */ 3505 kick_pool(pool); 3506 3507 raw_spin_unlock_irq(&pool->lock); 3508 3509 worker_detach_from_pool(rescuer); 3510 3511 raw_spin_lock_irq(&wq_mayday_lock); 3512 } 3513 3514 raw_spin_unlock_irq(&wq_mayday_lock); 3515 3516 if (should_stop) { 3517 __set_current_state(TASK_RUNNING); 3518 set_pf_worker(false); 3519 return 0; 3520 } 3521 3522 /* rescuers should never participate in concurrency management */ 3523 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 3524 schedule(); 3525 goto repeat; 3526 } 3527 3528 static void bh_worker(struct worker *worker) 3529 { 3530 struct worker_pool *pool = worker->pool; 3531 int nr_restarts = BH_WORKER_RESTARTS; 3532 unsigned long end = jiffies + BH_WORKER_JIFFIES; 3533 3534 raw_spin_lock_irq(&pool->lock); 3535 worker_leave_idle(worker); 3536 3537 /* 3538 * This function follows the structure of worker_thread(). See there for 3539 * explanations on each step. 3540 */ 3541 if (!need_more_worker(pool)) 3542 goto done; 3543 3544 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3545 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3546 3547 do { 3548 struct work_struct *work = 3549 list_first_entry(&pool->worklist, 3550 struct work_struct, entry); 3551 3552 if (assign_work(work, worker, NULL)) 3553 process_scheduled_works(worker); 3554 } while (keep_working(pool) && 3555 --nr_restarts && time_before(jiffies, end)); 3556 3557 worker_set_flags(worker, WORKER_PREP); 3558 done: 3559 worker_enter_idle(worker); 3560 kick_pool(pool); 3561 raw_spin_unlock_irq(&pool->lock); 3562 } 3563 3564 /* 3565 * TODO: Convert all tasklet users to workqueue and use softirq directly. 3566 * 3567 * This is currently called from tasklet[_hi]action() and thus is also called 3568 * whenever there are tasklets to run. Let's do an early exit if there's nothing 3569 * queued. Once conversion from tasklet is complete, the need_more_worker() test 3570 * can be dropped. 3571 * 3572 * After full conversion, we'll add worker->softirq_action, directly use the 3573 * softirq action and obtain the worker pointer from the softirq_action pointer. 3574 */ 3575 void workqueue_softirq_action(bool highpri) 3576 { 3577 struct worker_pool *pool = 3578 &per_cpu(bh_worker_pools, smp_processor_id())[highpri]; 3579 if (need_more_worker(pool)) 3580 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3581 } 3582 3583 struct wq_drain_dead_softirq_work { 3584 struct work_struct work; 3585 struct worker_pool *pool; 3586 struct completion done; 3587 }; 3588 3589 static void drain_dead_softirq_workfn(struct work_struct *work) 3590 { 3591 struct wq_drain_dead_softirq_work *dead_work = 3592 container_of(work, struct wq_drain_dead_softirq_work, work); 3593 struct worker_pool *pool = dead_work->pool; 3594 bool repeat; 3595 3596 /* 3597 * @pool's CPU is dead and we want to execute its still pending work 3598 * items from this BH work item which is running on a different CPU. As 3599 * its CPU is dead, @pool can't be kicked and, as work execution path 3600 * will be nested, a lockdep annotation needs to be suppressed. Mark 3601 * @pool with %POOL_BH_DRAINING for the special treatments. 3602 */ 3603 raw_spin_lock_irq(&pool->lock); 3604 pool->flags |= POOL_BH_DRAINING; 3605 raw_spin_unlock_irq(&pool->lock); 3606 3607 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3608 3609 raw_spin_lock_irq(&pool->lock); 3610 pool->flags &= ~POOL_BH_DRAINING; 3611 repeat = need_more_worker(pool); 3612 raw_spin_unlock_irq(&pool->lock); 3613 3614 /* 3615 * bh_worker() might hit consecutive execution limit and bail. If there 3616 * still are pending work items, reschedule self and return so that we 3617 * don't hog this CPU's BH. 3618 */ 3619 if (repeat) { 3620 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3621 queue_work(system_bh_highpri_wq, work); 3622 else 3623 queue_work(system_bh_wq, work); 3624 } else { 3625 complete(&dead_work->done); 3626 } 3627 } 3628 3629 /* 3630 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's 3631 * possible to allocate dead_work per CPU and avoid flushing. However, then we 3632 * have to worry about draining overlapping with CPU coming back online or 3633 * nesting (one CPU's dead_work queued on another CPU which is also dead and so 3634 * on). Let's keep it simple and drain them synchronously. These are BH work 3635 * items which shouldn't be requeued on the same pool. Shouldn't take long. 3636 */ 3637 void workqueue_softirq_dead(unsigned int cpu) 3638 { 3639 int i; 3640 3641 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 3642 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i]; 3643 struct wq_drain_dead_softirq_work dead_work; 3644 3645 if (!need_more_worker(pool)) 3646 continue; 3647 3648 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn); 3649 dead_work.pool = pool; 3650 init_completion(&dead_work.done); 3651 3652 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3653 queue_work(system_bh_highpri_wq, &dead_work.work); 3654 else 3655 queue_work(system_bh_wq, &dead_work.work); 3656 3657 wait_for_completion(&dead_work.done); 3658 destroy_work_on_stack(&dead_work.work); 3659 } 3660 } 3661 3662 /** 3663 * check_flush_dependency - check for flush dependency sanity 3664 * @target_wq: workqueue being flushed 3665 * @target_work: work item being flushed (NULL for workqueue flushes) 3666 * 3667 * %current is trying to flush the whole @target_wq or @target_work on it. 3668 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 3669 * reclaiming memory or running on a workqueue which doesn't have 3670 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 3671 * a deadlock. 3672 */ 3673 static void check_flush_dependency(struct workqueue_struct *target_wq, 3674 struct work_struct *target_work) 3675 { 3676 work_func_t target_func = target_work ? target_work->func : NULL; 3677 struct worker *worker; 3678 3679 if (target_wq->flags & WQ_MEM_RECLAIM) 3680 return; 3681 3682 worker = current_wq_worker(); 3683 3684 WARN_ONCE(current->flags & PF_MEMALLOC, 3685 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 3686 current->pid, current->comm, target_wq->name, target_func); 3687 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 3688 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 3689 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 3690 worker->current_pwq->wq->name, worker->current_func, 3691 target_wq->name, target_func); 3692 } 3693 3694 struct wq_barrier { 3695 struct work_struct work; 3696 struct completion done; 3697 struct task_struct *task; /* purely informational */ 3698 }; 3699 3700 static void wq_barrier_func(struct work_struct *work) 3701 { 3702 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 3703 complete(&barr->done); 3704 } 3705 3706 /** 3707 * insert_wq_barrier - insert a barrier work 3708 * @pwq: pwq to insert barrier into 3709 * @barr: wq_barrier to insert 3710 * @target: target work to attach @barr to 3711 * @worker: worker currently executing @target, NULL if @target is not executing 3712 * 3713 * @barr is linked to @target such that @barr is completed only after 3714 * @target finishes execution. Please note that the ordering 3715 * guarantee is observed only with respect to @target and on the local 3716 * cpu. 3717 * 3718 * Currently, a queued barrier can't be canceled. This is because 3719 * try_to_grab_pending() can't determine whether the work to be 3720 * grabbed is at the head of the queue and thus can't clear LINKED 3721 * flag of the previous work while there must be a valid next work 3722 * after a work with LINKED flag set. 3723 * 3724 * Note that when @worker is non-NULL, @target may be modified 3725 * underneath us, so we can't reliably determine pwq from @target. 3726 * 3727 * CONTEXT: 3728 * raw_spin_lock_irq(pool->lock). 3729 */ 3730 static void insert_wq_barrier(struct pool_workqueue *pwq, 3731 struct wq_barrier *barr, 3732 struct work_struct *target, struct worker *worker) 3733 { 3734 static __maybe_unused struct lock_class_key bh_key, thr_key; 3735 unsigned int work_flags = 0; 3736 unsigned int work_color; 3737 struct list_head *head; 3738 3739 /* 3740 * debugobject calls are safe here even with pool->lock locked 3741 * as we know for sure that this will not trigger any of the 3742 * checks and call back into the fixup functions where we 3743 * might deadlock. 3744 * 3745 * BH and threaded workqueues need separate lockdep keys to avoid 3746 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} 3747 * usage". 3748 */ 3749 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func, 3750 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key); 3751 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3752 3753 init_completion_map(&barr->done, &target->lockdep_map); 3754 3755 barr->task = current; 3756 3757 /* The barrier work item does not participate in nr_active. */ 3758 work_flags |= WORK_STRUCT_INACTIVE; 3759 3760 /* 3761 * If @target is currently being executed, schedule the 3762 * barrier to the worker; otherwise, put it after @target. 3763 */ 3764 if (worker) { 3765 head = worker->scheduled.next; 3766 work_color = worker->current_color; 3767 } else { 3768 unsigned long *bits = work_data_bits(target); 3769 3770 head = target->entry.next; 3771 /* there can already be other linked works, inherit and set */ 3772 work_flags |= *bits & WORK_STRUCT_LINKED; 3773 work_color = get_work_color(*bits); 3774 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3775 } 3776 3777 pwq->nr_in_flight[work_color]++; 3778 work_flags |= work_color_to_flags(work_color); 3779 3780 insert_work(pwq, &barr->work, head, work_flags); 3781 } 3782 3783 /** 3784 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3785 * @wq: workqueue being flushed 3786 * @flush_color: new flush color, < 0 for no-op 3787 * @work_color: new work color, < 0 for no-op 3788 * 3789 * Prepare pwqs for workqueue flushing. 3790 * 3791 * If @flush_color is non-negative, flush_color on all pwqs should be 3792 * -1. If no pwq has in-flight commands at the specified color, all 3793 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3794 * has in flight commands, its pwq->flush_color is set to 3795 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3796 * wakeup logic is armed and %true is returned. 3797 * 3798 * The caller should have initialized @wq->first_flusher prior to 3799 * calling this function with non-negative @flush_color. If 3800 * @flush_color is negative, no flush color update is done and %false 3801 * is returned. 3802 * 3803 * If @work_color is non-negative, all pwqs should have the same 3804 * work_color which is previous to @work_color and all will be 3805 * advanced to @work_color. 3806 * 3807 * CONTEXT: 3808 * mutex_lock(wq->mutex). 3809 * 3810 * Return: 3811 * %true if @flush_color >= 0 and there's something to flush. %false 3812 * otherwise. 3813 */ 3814 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3815 int flush_color, int work_color) 3816 { 3817 bool wait = false; 3818 struct pool_workqueue *pwq; 3819 3820 if (flush_color >= 0) { 3821 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3822 atomic_set(&wq->nr_pwqs_to_flush, 1); 3823 } 3824 3825 for_each_pwq(pwq, wq) { 3826 struct worker_pool *pool = pwq->pool; 3827 3828 raw_spin_lock_irq(&pool->lock); 3829 3830 if (flush_color >= 0) { 3831 WARN_ON_ONCE(pwq->flush_color != -1); 3832 3833 if (pwq->nr_in_flight[flush_color]) { 3834 pwq->flush_color = flush_color; 3835 atomic_inc(&wq->nr_pwqs_to_flush); 3836 wait = true; 3837 } 3838 } 3839 3840 if (work_color >= 0) { 3841 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3842 pwq->work_color = work_color; 3843 } 3844 3845 raw_spin_unlock_irq(&pool->lock); 3846 } 3847 3848 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3849 complete(&wq->first_flusher->done); 3850 3851 return wait; 3852 } 3853 3854 static void touch_wq_lockdep_map(struct workqueue_struct *wq) 3855 { 3856 #ifdef CONFIG_LOCKDEP 3857 if (wq->flags & WQ_BH) 3858 local_bh_disable(); 3859 3860 lock_map_acquire(&wq->lockdep_map); 3861 lock_map_release(&wq->lockdep_map); 3862 3863 if (wq->flags & WQ_BH) 3864 local_bh_enable(); 3865 #endif 3866 } 3867 3868 static void touch_work_lockdep_map(struct work_struct *work, 3869 struct workqueue_struct *wq) 3870 { 3871 #ifdef CONFIG_LOCKDEP 3872 if (wq->flags & WQ_BH) 3873 local_bh_disable(); 3874 3875 lock_map_acquire(&work->lockdep_map); 3876 lock_map_release(&work->lockdep_map); 3877 3878 if (wq->flags & WQ_BH) 3879 local_bh_enable(); 3880 #endif 3881 } 3882 3883 /** 3884 * __flush_workqueue - ensure that any scheduled work has run to completion. 3885 * @wq: workqueue to flush 3886 * 3887 * This function sleeps until all work items which were queued on entry 3888 * have finished execution, but it is not livelocked by new incoming ones. 3889 */ 3890 void __flush_workqueue(struct workqueue_struct *wq) 3891 { 3892 struct wq_flusher this_flusher = { 3893 .list = LIST_HEAD_INIT(this_flusher.list), 3894 .flush_color = -1, 3895 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 3896 }; 3897 int next_color; 3898 3899 if (WARN_ON(!wq_online)) 3900 return; 3901 3902 touch_wq_lockdep_map(wq); 3903 3904 mutex_lock(&wq->mutex); 3905 3906 /* 3907 * Start-to-wait phase 3908 */ 3909 next_color = work_next_color(wq->work_color); 3910 3911 if (next_color != wq->flush_color) { 3912 /* 3913 * Color space is not full. The current work_color 3914 * becomes our flush_color and work_color is advanced 3915 * by one. 3916 */ 3917 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3918 this_flusher.flush_color = wq->work_color; 3919 wq->work_color = next_color; 3920 3921 if (!wq->first_flusher) { 3922 /* no flush in progress, become the first flusher */ 3923 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3924 3925 wq->first_flusher = &this_flusher; 3926 3927 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3928 wq->work_color)) { 3929 /* nothing to flush, done */ 3930 wq->flush_color = next_color; 3931 wq->first_flusher = NULL; 3932 goto out_unlock; 3933 } 3934 } else { 3935 /* wait in queue */ 3936 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3937 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3938 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3939 } 3940 } else { 3941 /* 3942 * Oops, color space is full, wait on overflow queue. 3943 * The next flush completion will assign us 3944 * flush_color and transfer to flusher_queue. 3945 */ 3946 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3947 } 3948 3949 check_flush_dependency(wq, NULL); 3950 3951 mutex_unlock(&wq->mutex); 3952 3953 wait_for_completion(&this_flusher.done); 3954 3955 /* 3956 * Wake-up-and-cascade phase 3957 * 3958 * First flushers are responsible for cascading flushes and 3959 * handling overflow. Non-first flushers can simply return. 3960 */ 3961 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3962 return; 3963 3964 mutex_lock(&wq->mutex); 3965 3966 /* we might have raced, check again with mutex held */ 3967 if (wq->first_flusher != &this_flusher) 3968 goto out_unlock; 3969 3970 WRITE_ONCE(wq->first_flusher, NULL); 3971 3972 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3973 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3974 3975 while (true) { 3976 struct wq_flusher *next, *tmp; 3977 3978 /* complete all the flushers sharing the current flush color */ 3979 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3980 if (next->flush_color != wq->flush_color) 3981 break; 3982 list_del_init(&next->list); 3983 complete(&next->done); 3984 } 3985 3986 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 3987 wq->flush_color != work_next_color(wq->work_color)); 3988 3989 /* this flush_color is finished, advance by one */ 3990 wq->flush_color = work_next_color(wq->flush_color); 3991 3992 /* one color has been freed, handle overflow queue */ 3993 if (!list_empty(&wq->flusher_overflow)) { 3994 /* 3995 * Assign the same color to all overflowed 3996 * flushers, advance work_color and append to 3997 * flusher_queue. This is the start-to-wait 3998 * phase for these overflowed flushers. 3999 */ 4000 list_for_each_entry(tmp, &wq->flusher_overflow, list) 4001 tmp->flush_color = wq->work_color; 4002 4003 wq->work_color = work_next_color(wq->work_color); 4004 4005 list_splice_tail_init(&wq->flusher_overflow, 4006 &wq->flusher_queue); 4007 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 4008 } 4009 4010 if (list_empty(&wq->flusher_queue)) { 4011 WARN_ON_ONCE(wq->flush_color != wq->work_color); 4012 break; 4013 } 4014 4015 /* 4016 * Need to flush more colors. Make the next flusher 4017 * the new first flusher and arm pwqs. 4018 */ 4019 WARN_ON_ONCE(wq->flush_color == wq->work_color); 4020 WARN_ON_ONCE(wq->flush_color != next->flush_color); 4021 4022 list_del_init(&next->list); 4023 wq->first_flusher = next; 4024 4025 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 4026 break; 4027 4028 /* 4029 * Meh... this color is already done, clear first 4030 * flusher and repeat cascading. 4031 */ 4032 wq->first_flusher = NULL; 4033 } 4034 4035 out_unlock: 4036 mutex_unlock(&wq->mutex); 4037 } 4038 EXPORT_SYMBOL(__flush_workqueue); 4039 4040 /** 4041 * drain_workqueue - drain a workqueue 4042 * @wq: workqueue to drain 4043 * 4044 * Wait until the workqueue becomes empty. While draining is in progress, 4045 * only chain queueing is allowed. IOW, only currently pending or running 4046 * work items on @wq can queue further work items on it. @wq is flushed 4047 * repeatedly until it becomes empty. The number of flushing is determined 4048 * by the depth of chaining and should be relatively short. Whine if it 4049 * takes too long. 4050 */ 4051 void drain_workqueue(struct workqueue_struct *wq) 4052 { 4053 unsigned int flush_cnt = 0; 4054 struct pool_workqueue *pwq; 4055 4056 /* 4057 * __queue_work() needs to test whether there are drainers, is much 4058 * hotter than drain_workqueue() and already looks at @wq->flags. 4059 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 4060 */ 4061 mutex_lock(&wq->mutex); 4062 if (!wq->nr_drainers++) 4063 wq->flags |= __WQ_DRAINING; 4064 mutex_unlock(&wq->mutex); 4065 reflush: 4066 __flush_workqueue(wq); 4067 4068 mutex_lock(&wq->mutex); 4069 4070 for_each_pwq(pwq, wq) { 4071 bool drained; 4072 4073 raw_spin_lock_irq(&pwq->pool->lock); 4074 drained = pwq_is_empty(pwq); 4075 raw_spin_unlock_irq(&pwq->pool->lock); 4076 4077 if (drained) 4078 continue; 4079 4080 if (++flush_cnt == 10 || 4081 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 4082 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 4083 wq->name, __func__, flush_cnt); 4084 4085 mutex_unlock(&wq->mutex); 4086 goto reflush; 4087 } 4088 4089 if (!--wq->nr_drainers) 4090 wq->flags &= ~__WQ_DRAINING; 4091 mutex_unlock(&wq->mutex); 4092 } 4093 EXPORT_SYMBOL_GPL(drain_workqueue); 4094 4095 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 4096 bool from_cancel) 4097 { 4098 struct worker *worker = NULL; 4099 struct worker_pool *pool; 4100 struct pool_workqueue *pwq; 4101 struct workqueue_struct *wq; 4102 4103 rcu_read_lock(); 4104 pool = get_work_pool(work); 4105 if (!pool) { 4106 rcu_read_unlock(); 4107 return false; 4108 } 4109 4110 raw_spin_lock_irq(&pool->lock); 4111 /* see the comment in try_to_grab_pending() with the same code */ 4112 pwq = get_work_pwq(work); 4113 if (pwq) { 4114 if (unlikely(pwq->pool != pool)) 4115 goto already_gone; 4116 } else { 4117 worker = find_worker_executing_work(pool, work); 4118 if (!worker) 4119 goto already_gone; 4120 pwq = worker->current_pwq; 4121 } 4122 4123 wq = pwq->wq; 4124 check_flush_dependency(wq, work); 4125 4126 insert_wq_barrier(pwq, barr, work, worker); 4127 raw_spin_unlock_irq(&pool->lock); 4128 4129 touch_work_lockdep_map(work, wq); 4130 4131 /* 4132 * Force a lock recursion deadlock when using flush_work() inside a 4133 * single-threaded or rescuer equipped workqueue. 4134 * 4135 * For single threaded workqueues the deadlock happens when the work 4136 * is after the work issuing the flush_work(). For rescuer equipped 4137 * workqueues the deadlock happens when the rescuer stalls, blocking 4138 * forward progress. 4139 */ 4140 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer)) 4141 touch_wq_lockdep_map(wq); 4142 4143 rcu_read_unlock(); 4144 return true; 4145 already_gone: 4146 raw_spin_unlock_irq(&pool->lock); 4147 rcu_read_unlock(); 4148 return false; 4149 } 4150 4151 static bool __flush_work(struct work_struct *work, bool from_cancel) 4152 { 4153 struct wq_barrier barr; 4154 unsigned long data; 4155 4156 if (WARN_ON(!wq_online)) 4157 return false; 4158 4159 if (WARN_ON(!work->func)) 4160 return false; 4161 4162 if (!start_flush_work(work, &barr, from_cancel)) 4163 return false; 4164 4165 /* 4166 * start_flush_work() returned %true. If @from_cancel is set, we know 4167 * that @work must have been executing during start_flush_work() and 4168 * can't currently be queued. Its data must contain OFFQ bits. If @work 4169 * was queued on a BH workqueue, we also know that it was running in the 4170 * BH context and thus can be busy-waited. 4171 */ 4172 data = *work_data_bits(work); 4173 if (from_cancel && 4174 !WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_BH)) { 4175 /* 4176 * On RT, prevent a live lock when %current preempted soft 4177 * interrupt processing or prevents ksoftirqd from running by 4178 * keeping flipping BH. If the BH work item runs on a different 4179 * CPU then this has no effect other than doing the BH 4180 * disable/enable dance for nothing. This is copied from 4181 * kernel/softirq.c::tasklet_unlock_spin_wait(). 4182 */ 4183 while (!try_wait_for_completion(&barr.done)) { 4184 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4185 local_bh_disable(); 4186 local_bh_enable(); 4187 } else { 4188 cpu_relax(); 4189 } 4190 } 4191 } else { 4192 wait_for_completion(&barr.done); 4193 } 4194 4195 destroy_work_on_stack(&barr.work); 4196 return true; 4197 } 4198 4199 /** 4200 * flush_work - wait for a work to finish executing the last queueing instance 4201 * @work: the work to flush 4202 * 4203 * Wait until @work has finished execution. @work is guaranteed to be idle 4204 * on return if it hasn't been requeued since flush started. 4205 * 4206 * Return: 4207 * %true if flush_work() waited for the work to finish execution, 4208 * %false if it was already idle. 4209 */ 4210 bool flush_work(struct work_struct *work) 4211 { 4212 might_sleep(); 4213 return __flush_work(work, false); 4214 } 4215 EXPORT_SYMBOL_GPL(flush_work); 4216 4217 /** 4218 * flush_delayed_work - wait for a dwork to finish executing the last queueing 4219 * @dwork: the delayed work to flush 4220 * 4221 * Delayed timer is cancelled and the pending work is queued for 4222 * immediate execution. Like flush_work(), this function only 4223 * considers the last queueing instance of @dwork. 4224 * 4225 * Return: 4226 * %true if flush_work() waited for the work to finish execution, 4227 * %false if it was already idle. 4228 */ 4229 bool flush_delayed_work(struct delayed_work *dwork) 4230 { 4231 local_irq_disable(); 4232 if (del_timer_sync(&dwork->timer)) 4233 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 4234 local_irq_enable(); 4235 return flush_work(&dwork->work); 4236 } 4237 EXPORT_SYMBOL(flush_delayed_work); 4238 4239 /** 4240 * flush_rcu_work - wait for a rwork to finish executing the last queueing 4241 * @rwork: the rcu work to flush 4242 * 4243 * Return: 4244 * %true if flush_rcu_work() waited for the work to finish execution, 4245 * %false if it was already idle. 4246 */ 4247 bool flush_rcu_work(struct rcu_work *rwork) 4248 { 4249 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 4250 rcu_barrier(); 4251 flush_work(&rwork->work); 4252 return true; 4253 } else { 4254 return flush_work(&rwork->work); 4255 } 4256 } 4257 EXPORT_SYMBOL(flush_rcu_work); 4258 4259 static void work_offqd_disable(struct work_offq_data *offqd) 4260 { 4261 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1; 4262 4263 if (likely(offqd->disable < max)) 4264 offqd->disable++; 4265 else 4266 WARN_ONCE(true, "workqueue: work disable count overflowed\n"); 4267 } 4268 4269 static void work_offqd_enable(struct work_offq_data *offqd) 4270 { 4271 if (likely(offqd->disable > 0)) 4272 offqd->disable--; 4273 else 4274 WARN_ONCE(true, "workqueue: work disable count underflowed\n"); 4275 } 4276 4277 static bool __cancel_work(struct work_struct *work, u32 cflags) 4278 { 4279 struct work_offq_data offqd; 4280 unsigned long irq_flags; 4281 int ret; 4282 4283 ret = work_grab_pending(work, cflags, &irq_flags); 4284 4285 work_offqd_unpack(&offqd, *work_data_bits(work)); 4286 4287 if (cflags & WORK_CANCEL_DISABLE) 4288 work_offqd_disable(&offqd); 4289 4290 set_work_pool_and_clear_pending(work, offqd.pool_id, 4291 work_offqd_pack_flags(&offqd)); 4292 local_irq_restore(irq_flags); 4293 return ret; 4294 } 4295 4296 static bool __cancel_work_sync(struct work_struct *work, u32 cflags) 4297 { 4298 bool ret; 4299 4300 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE); 4301 4302 if (*work_data_bits(work) & WORK_OFFQ_BH) 4303 WARN_ON_ONCE(in_hardirq()); 4304 else 4305 might_sleep(); 4306 4307 /* 4308 * Skip __flush_work() during early boot when we know that @work isn't 4309 * executing. This allows canceling during early boot. 4310 */ 4311 if (wq_online) 4312 __flush_work(work, true); 4313 4314 if (!(cflags & WORK_CANCEL_DISABLE)) 4315 enable_work(work); 4316 4317 return ret; 4318 } 4319 4320 /* 4321 * See cancel_delayed_work() 4322 */ 4323 bool cancel_work(struct work_struct *work) 4324 { 4325 return __cancel_work(work, 0); 4326 } 4327 EXPORT_SYMBOL(cancel_work); 4328 4329 /** 4330 * cancel_work_sync - cancel a work and wait for it to finish 4331 * @work: the work to cancel 4332 * 4333 * Cancel @work and wait for its execution to finish. This function can be used 4334 * even if the work re-queues itself or migrates to another workqueue. On return 4335 * from this function, @work is guaranteed to be not pending or executing on any 4336 * CPU as long as there aren't racing enqueues. 4337 * 4338 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's. 4339 * Use cancel_delayed_work_sync() instead. 4340 * 4341 * Must be called from a sleepable context if @work was last queued on a non-BH 4342 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4343 * if @work was last queued on a BH workqueue. 4344 * 4345 * Returns %true if @work was pending, %false otherwise. 4346 */ 4347 bool cancel_work_sync(struct work_struct *work) 4348 { 4349 return __cancel_work_sync(work, 0); 4350 } 4351 EXPORT_SYMBOL_GPL(cancel_work_sync); 4352 4353 /** 4354 * cancel_delayed_work - cancel a delayed work 4355 * @dwork: delayed_work to cancel 4356 * 4357 * Kill off a pending delayed_work. 4358 * 4359 * Return: %true if @dwork was pending and canceled; %false if it wasn't 4360 * pending. 4361 * 4362 * Note: 4363 * The work callback function may still be running on return, unless 4364 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 4365 * use cancel_delayed_work_sync() to wait on it. 4366 * 4367 * This function is safe to call from any context including IRQ handler. 4368 */ 4369 bool cancel_delayed_work(struct delayed_work *dwork) 4370 { 4371 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED); 4372 } 4373 EXPORT_SYMBOL(cancel_delayed_work); 4374 4375 /** 4376 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 4377 * @dwork: the delayed work cancel 4378 * 4379 * This is cancel_work_sync() for delayed works. 4380 * 4381 * Return: 4382 * %true if @dwork was pending, %false otherwise. 4383 */ 4384 bool cancel_delayed_work_sync(struct delayed_work *dwork) 4385 { 4386 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED); 4387 } 4388 EXPORT_SYMBOL(cancel_delayed_work_sync); 4389 4390 /** 4391 * disable_work - Disable and cancel a work item 4392 * @work: work item to disable 4393 * 4394 * Disable @work by incrementing its disable count and cancel it if currently 4395 * pending. As long as the disable count is non-zero, any attempt to queue @work 4396 * will fail and return %false. The maximum supported disable depth is 2 to the 4397 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536. 4398 * 4399 * Can be called from any context. Returns %true if @work was pending, %false 4400 * otherwise. 4401 */ 4402 bool disable_work(struct work_struct *work) 4403 { 4404 return __cancel_work(work, WORK_CANCEL_DISABLE); 4405 } 4406 EXPORT_SYMBOL_GPL(disable_work); 4407 4408 /** 4409 * disable_work_sync - Disable, cancel and drain a work item 4410 * @work: work item to disable 4411 * 4412 * Similar to disable_work() but also wait for @work to finish if currently 4413 * executing. 4414 * 4415 * Must be called from a sleepable context if @work was last queued on a non-BH 4416 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4417 * if @work was last queued on a BH workqueue. 4418 * 4419 * Returns %true if @work was pending, %false otherwise. 4420 */ 4421 bool disable_work_sync(struct work_struct *work) 4422 { 4423 return __cancel_work_sync(work, WORK_CANCEL_DISABLE); 4424 } 4425 EXPORT_SYMBOL_GPL(disable_work_sync); 4426 4427 /** 4428 * enable_work - Enable a work item 4429 * @work: work item to enable 4430 * 4431 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can 4432 * only be queued if its disable count is 0. 4433 * 4434 * Can be called from any context. Returns %true if the disable count reached 0. 4435 * Otherwise, %false. 4436 */ 4437 bool enable_work(struct work_struct *work) 4438 { 4439 struct work_offq_data offqd; 4440 unsigned long irq_flags; 4441 4442 work_grab_pending(work, 0, &irq_flags); 4443 4444 work_offqd_unpack(&offqd, *work_data_bits(work)); 4445 work_offqd_enable(&offqd); 4446 set_work_pool_and_clear_pending(work, offqd.pool_id, 4447 work_offqd_pack_flags(&offqd)); 4448 local_irq_restore(irq_flags); 4449 4450 return !offqd.disable; 4451 } 4452 EXPORT_SYMBOL_GPL(enable_work); 4453 4454 /** 4455 * disable_delayed_work - Disable and cancel a delayed work item 4456 * @dwork: delayed work item to disable 4457 * 4458 * disable_work() for delayed work items. 4459 */ 4460 bool disable_delayed_work(struct delayed_work *dwork) 4461 { 4462 return __cancel_work(&dwork->work, 4463 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4464 } 4465 EXPORT_SYMBOL_GPL(disable_delayed_work); 4466 4467 /** 4468 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item 4469 * @dwork: delayed work item to disable 4470 * 4471 * disable_work_sync() for delayed work items. 4472 */ 4473 bool disable_delayed_work_sync(struct delayed_work *dwork) 4474 { 4475 return __cancel_work_sync(&dwork->work, 4476 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4477 } 4478 EXPORT_SYMBOL_GPL(disable_delayed_work_sync); 4479 4480 /** 4481 * enable_delayed_work - Enable a delayed work item 4482 * @dwork: delayed work item to enable 4483 * 4484 * enable_work() for delayed work items. 4485 */ 4486 bool enable_delayed_work(struct delayed_work *dwork) 4487 { 4488 return enable_work(&dwork->work); 4489 } 4490 EXPORT_SYMBOL_GPL(enable_delayed_work); 4491 4492 /** 4493 * schedule_on_each_cpu - execute a function synchronously on each online CPU 4494 * @func: the function to call 4495 * 4496 * schedule_on_each_cpu() executes @func on each online CPU using the 4497 * system workqueue and blocks until all CPUs have completed. 4498 * schedule_on_each_cpu() is very slow. 4499 * 4500 * Return: 4501 * 0 on success, -errno on failure. 4502 */ 4503 int schedule_on_each_cpu(work_func_t func) 4504 { 4505 int cpu; 4506 struct work_struct __percpu *works; 4507 4508 works = alloc_percpu(struct work_struct); 4509 if (!works) 4510 return -ENOMEM; 4511 4512 cpus_read_lock(); 4513 4514 for_each_online_cpu(cpu) { 4515 struct work_struct *work = per_cpu_ptr(works, cpu); 4516 4517 INIT_WORK(work, func); 4518 schedule_work_on(cpu, work); 4519 } 4520 4521 for_each_online_cpu(cpu) 4522 flush_work(per_cpu_ptr(works, cpu)); 4523 4524 cpus_read_unlock(); 4525 free_percpu(works); 4526 return 0; 4527 } 4528 4529 /** 4530 * execute_in_process_context - reliably execute the routine with user context 4531 * @fn: the function to execute 4532 * @ew: guaranteed storage for the execute work structure (must 4533 * be available when the work executes) 4534 * 4535 * Executes the function immediately if process context is available, 4536 * otherwise schedules the function for delayed execution. 4537 * 4538 * Return: 0 - function was executed 4539 * 1 - function was scheduled for execution 4540 */ 4541 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 4542 { 4543 if (!in_interrupt()) { 4544 fn(&ew->work); 4545 return 0; 4546 } 4547 4548 INIT_WORK(&ew->work, fn); 4549 schedule_work(&ew->work); 4550 4551 return 1; 4552 } 4553 EXPORT_SYMBOL_GPL(execute_in_process_context); 4554 4555 /** 4556 * free_workqueue_attrs - free a workqueue_attrs 4557 * @attrs: workqueue_attrs to free 4558 * 4559 * Undo alloc_workqueue_attrs(). 4560 */ 4561 void free_workqueue_attrs(struct workqueue_attrs *attrs) 4562 { 4563 if (attrs) { 4564 free_cpumask_var(attrs->cpumask); 4565 free_cpumask_var(attrs->__pod_cpumask); 4566 kfree(attrs); 4567 } 4568 } 4569 4570 /** 4571 * alloc_workqueue_attrs - allocate a workqueue_attrs 4572 * 4573 * Allocate a new workqueue_attrs, initialize with default settings and 4574 * return it. 4575 * 4576 * Return: The allocated new workqueue_attr on success. %NULL on failure. 4577 */ 4578 struct workqueue_attrs *alloc_workqueue_attrs(void) 4579 { 4580 struct workqueue_attrs *attrs; 4581 4582 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 4583 if (!attrs) 4584 goto fail; 4585 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 4586 goto fail; 4587 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 4588 goto fail; 4589 4590 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4591 attrs->affn_scope = WQ_AFFN_DFL; 4592 return attrs; 4593 fail: 4594 free_workqueue_attrs(attrs); 4595 return NULL; 4596 } 4597 4598 static void copy_workqueue_attrs(struct workqueue_attrs *to, 4599 const struct workqueue_attrs *from) 4600 { 4601 to->nice = from->nice; 4602 cpumask_copy(to->cpumask, from->cpumask); 4603 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 4604 to->affn_strict = from->affn_strict; 4605 4606 /* 4607 * Unlike hash and equality test, copying shouldn't ignore wq-only 4608 * fields as copying is used for both pool and wq attrs. Instead, 4609 * get_unbound_pool() explicitly clears the fields. 4610 */ 4611 to->affn_scope = from->affn_scope; 4612 to->ordered = from->ordered; 4613 } 4614 4615 /* 4616 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 4617 * comments in 'struct workqueue_attrs' definition. 4618 */ 4619 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 4620 { 4621 attrs->affn_scope = WQ_AFFN_NR_TYPES; 4622 attrs->ordered = false; 4623 if (attrs->affn_strict) 4624 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4625 } 4626 4627 /* hash value of the content of @attr */ 4628 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 4629 { 4630 u32 hash = 0; 4631 4632 hash = jhash_1word(attrs->nice, hash); 4633 hash = jhash_1word(attrs->affn_strict, hash); 4634 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 4635 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4636 if (!attrs->affn_strict) 4637 hash = jhash(cpumask_bits(attrs->cpumask), 4638 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4639 return hash; 4640 } 4641 4642 /* content equality test */ 4643 static bool wqattrs_equal(const struct workqueue_attrs *a, 4644 const struct workqueue_attrs *b) 4645 { 4646 if (a->nice != b->nice) 4647 return false; 4648 if (a->affn_strict != b->affn_strict) 4649 return false; 4650 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 4651 return false; 4652 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask)) 4653 return false; 4654 return true; 4655 } 4656 4657 /* Update @attrs with actually available CPUs */ 4658 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 4659 const cpumask_t *unbound_cpumask) 4660 { 4661 /* 4662 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 4663 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 4664 * @unbound_cpumask. 4665 */ 4666 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 4667 if (unlikely(cpumask_empty(attrs->cpumask))) 4668 cpumask_copy(attrs->cpumask, unbound_cpumask); 4669 } 4670 4671 /* find wq_pod_type to use for @attrs */ 4672 static const struct wq_pod_type * 4673 wqattrs_pod_type(const struct workqueue_attrs *attrs) 4674 { 4675 enum wq_affn_scope scope; 4676 struct wq_pod_type *pt; 4677 4678 /* to synchronize access to wq_affn_dfl */ 4679 lockdep_assert_held(&wq_pool_mutex); 4680 4681 if (attrs->affn_scope == WQ_AFFN_DFL) 4682 scope = wq_affn_dfl; 4683 else 4684 scope = attrs->affn_scope; 4685 4686 pt = &wq_pod_types[scope]; 4687 4688 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 4689 likely(pt->nr_pods)) 4690 return pt; 4691 4692 /* 4693 * Before workqueue_init_topology(), only SYSTEM is available which is 4694 * initialized in workqueue_init_early(). 4695 */ 4696 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 4697 BUG_ON(!pt->nr_pods); 4698 return pt; 4699 } 4700 4701 /** 4702 * init_worker_pool - initialize a newly zalloc'd worker_pool 4703 * @pool: worker_pool to initialize 4704 * 4705 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 4706 * 4707 * Return: 0 on success, -errno on failure. Even on failure, all fields 4708 * inside @pool proper are initialized and put_unbound_pool() can be called 4709 * on @pool safely to release it. 4710 */ 4711 static int init_worker_pool(struct worker_pool *pool) 4712 { 4713 raw_spin_lock_init(&pool->lock); 4714 pool->id = -1; 4715 pool->cpu = -1; 4716 pool->node = NUMA_NO_NODE; 4717 pool->flags |= POOL_DISASSOCIATED; 4718 pool->watchdog_ts = jiffies; 4719 INIT_LIST_HEAD(&pool->worklist); 4720 INIT_LIST_HEAD(&pool->idle_list); 4721 hash_init(pool->busy_hash); 4722 4723 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 4724 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 4725 4726 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 4727 4728 INIT_LIST_HEAD(&pool->workers); 4729 4730 ida_init(&pool->worker_ida); 4731 INIT_HLIST_NODE(&pool->hash_node); 4732 pool->refcnt = 1; 4733 4734 /* shouldn't fail above this point */ 4735 pool->attrs = alloc_workqueue_attrs(); 4736 if (!pool->attrs) 4737 return -ENOMEM; 4738 4739 wqattrs_clear_for_pool(pool->attrs); 4740 4741 return 0; 4742 } 4743 4744 #ifdef CONFIG_LOCKDEP 4745 static void wq_init_lockdep(struct workqueue_struct *wq) 4746 { 4747 char *lock_name; 4748 4749 lockdep_register_key(&wq->key); 4750 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 4751 if (!lock_name) 4752 lock_name = wq->name; 4753 4754 wq->lock_name = lock_name; 4755 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 4756 } 4757 4758 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4759 { 4760 lockdep_unregister_key(&wq->key); 4761 } 4762 4763 static void wq_free_lockdep(struct workqueue_struct *wq) 4764 { 4765 if (wq->lock_name != wq->name) 4766 kfree(wq->lock_name); 4767 } 4768 #else 4769 static void wq_init_lockdep(struct workqueue_struct *wq) 4770 { 4771 } 4772 4773 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4774 { 4775 } 4776 4777 static void wq_free_lockdep(struct workqueue_struct *wq) 4778 { 4779 } 4780 #endif 4781 4782 static void free_node_nr_active(struct wq_node_nr_active **nna_ar) 4783 { 4784 int node; 4785 4786 for_each_node(node) { 4787 kfree(nna_ar[node]); 4788 nna_ar[node] = NULL; 4789 } 4790 4791 kfree(nna_ar[nr_node_ids]); 4792 nna_ar[nr_node_ids] = NULL; 4793 } 4794 4795 static void init_node_nr_active(struct wq_node_nr_active *nna) 4796 { 4797 nna->max = WQ_DFL_MIN_ACTIVE; 4798 atomic_set(&nna->nr, 0); 4799 raw_spin_lock_init(&nna->lock); 4800 INIT_LIST_HEAD(&nna->pending_pwqs); 4801 } 4802 4803 /* 4804 * Each node's nr_active counter will be accessed mostly from its own node and 4805 * should be allocated in the node. 4806 */ 4807 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) 4808 { 4809 struct wq_node_nr_active *nna; 4810 int node; 4811 4812 for_each_node(node) { 4813 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node); 4814 if (!nna) 4815 goto err_free; 4816 init_node_nr_active(nna); 4817 nna_ar[node] = nna; 4818 } 4819 4820 /* [nr_node_ids] is used as the fallback */ 4821 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); 4822 if (!nna) 4823 goto err_free; 4824 init_node_nr_active(nna); 4825 nna_ar[nr_node_ids] = nna; 4826 4827 return 0; 4828 4829 err_free: 4830 free_node_nr_active(nna_ar); 4831 return -ENOMEM; 4832 } 4833 4834 static void rcu_free_wq(struct rcu_head *rcu) 4835 { 4836 struct workqueue_struct *wq = 4837 container_of(rcu, struct workqueue_struct, rcu); 4838 4839 if (wq->flags & WQ_UNBOUND) 4840 free_node_nr_active(wq->node_nr_active); 4841 4842 wq_free_lockdep(wq); 4843 free_percpu(wq->cpu_pwq); 4844 free_workqueue_attrs(wq->unbound_attrs); 4845 kfree(wq); 4846 } 4847 4848 static void rcu_free_pool(struct rcu_head *rcu) 4849 { 4850 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 4851 4852 ida_destroy(&pool->worker_ida); 4853 free_workqueue_attrs(pool->attrs); 4854 kfree(pool); 4855 } 4856 4857 /** 4858 * put_unbound_pool - put a worker_pool 4859 * @pool: worker_pool to put 4860 * 4861 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 4862 * safe manner. get_unbound_pool() calls this function on its failure path 4863 * and this function should be able to release pools which went through, 4864 * successfully or not, init_worker_pool(). 4865 * 4866 * Should be called with wq_pool_mutex held. 4867 */ 4868 static void put_unbound_pool(struct worker_pool *pool) 4869 { 4870 struct worker *worker; 4871 LIST_HEAD(cull_list); 4872 4873 lockdep_assert_held(&wq_pool_mutex); 4874 4875 if (--pool->refcnt) 4876 return; 4877 4878 /* sanity checks */ 4879 if (WARN_ON(!(pool->cpu < 0)) || 4880 WARN_ON(!list_empty(&pool->worklist))) 4881 return; 4882 4883 /* release id and unhash */ 4884 if (pool->id >= 0) 4885 idr_remove(&worker_pool_idr, pool->id); 4886 hash_del(&pool->hash_node); 4887 4888 /* 4889 * Become the manager and destroy all workers. This prevents 4890 * @pool's workers from blocking on attach_mutex. We're the last 4891 * manager and @pool gets freed with the flag set. 4892 * 4893 * Having a concurrent manager is quite unlikely to happen as we can 4894 * only get here with 4895 * pwq->refcnt == pool->refcnt == 0 4896 * which implies no work queued to the pool, which implies no worker can 4897 * become the manager. However a worker could have taken the role of 4898 * manager before the refcnts dropped to 0, since maybe_create_worker() 4899 * drops pool->lock 4900 */ 4901 while (true) { 4902 rcuwait_wait_event(&manager_wait, 4903 !(pool->flags & POOL_MANAGER_ACTIVE), 4904 TASK_UNINTERRUPTIBLE); 4905 4906 mutex_lock(&wq_pool_attach_mutex); 4907 raw_spin_lock_irq(&pool->lock); 4908 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4909 pool->flags |= POOL_MANAGER_ACTIVE; 4910 break; 4911 } 4912 raw_spin_unlock_irq(&pool->lock); 4913 mutex_unlock(&wq_pool_attach_mutex); 4914 } 4915 4916 while ((worker = first_idle_worker(pool))) 4917 set_worker_dying(worker, &cull_list); 4918 WARN_ON(pool->nr_workers || pool->nr_idle); 4919 raw_spin_unlock_irq(&pool->lock); 4920 4921 detach_dying_workers(&cull_list); 4922 4923 mutex_unlock(&wq_pool_attach_mutex); 4924 4925 reap_dying_workers(&cull_list); 4926 4927 /* shut down the timers */ 4928 del_timer_sync(&pool->idle_timer); 4929 cancel_work_sync(&pool->idle_cull_work); 4930 del_timer_sync(&pool->mayday_timer); 4931 4932 /* RCU protected to allow dereferences from get_work_pool() */ 4933 call_rcu(&pool->rcu, rcu_free_pool); 4934 } 4935 4936 /** 4937 * get_unbound_pool - get a worker_pool with the specified attributes 4938 * @attrs: the attributes of the worker_pool to get 4939 * 4940 * Obtain a worker_pool which has the same attributes as @attrs, bump the 4941 * reference count and return it. If there already is a matching 4942 * worker_pool, it will be used; otherwise, this function attempts to 4943 * create a new one. 4944 * 4945 * Should be called with wq_pool_mutex held. 4946 * 4947 * Return: On success, a worker_pool with the same attributes as @attrs. 4948 * On failure, %NULL. 4949 */ 4950 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 4951 { 4952 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 4953 u32 hash = wqattrs_hash(attrs); 4954 struct worker_pool *pool; 4955 int pod, node = NUMA_NO_NODE; 4956 4957 lockdep_assert_held(&wq_pool_mutex); 4958 4959 /* do we already have a matching pool? */ 4960 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 4961 if (wqattrs_equal(pool->attrs, attrs)) { 4962 pool->refcnt++; 4963 return pool; 4964 } 4965 } 4966 4967 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 4968 for (pod = 0; pod < pt->nr_pods; pod++) { 4969 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 4970 node = pt->pod_node[pod]; 4971 break; 4972 } 4973 } 4974 4975 /* nope, create a new one */ 4976 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 4977 if (!pool || init_worker_pool(pool) < 0) 4978 goto fail; 4979 4980 pool->node = node; 4981 copy_workqueue_attrs(pool->attrs, attrs); 4982 wqattrs_clear_for_pool(pool->attrs); 4983 4984 if (worker_pool_assign_id(pool) < 0) 4985 goto fail; 4986 4987 /* create and start the initial worker */ 4988 if (wq_online && !create_worker(pool)) 4989 goto fail; 4990 4991 /* install */ 4992 hash_add(unbound_pool_hash, &pool->hash_node, hash); 4993 4994 return pool; 4995 fail: 4996 if (pool) 4997 put_unbound_pool(pool); 4998 return NULL; 4999 } 5000 5001 /* 5002 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 5003 * refcnt and needs to be destroyed. 5004 */ 5005 static void pwq_release_workfn(struct kthread_work *work) 5006 { 5007 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 5008 release_work); 5009 struct workqueue_struct *wq = pwq->wq; 5010 struct worker_pool *pool = pwq->pool; 5011 bool is_last = false; 5012 5013 /* 5014 * When @pwq is not linked, it doesn't hold any reference to the 5015 * @wq, and @wq is invalid to access. 5016 */ 5017 if (!list_empty(&pwq->pwqs_node)) { 5018 mutex_lock(&wq->mutex); 5019 list_del_rcu(&pwq->pwqs_node); 5020 is_last = list_empty(&wq->pwqs); 5021 5022 /* 5023 * For ordered workqueue with a plugged dfl_pwq, restart it now. 5024 */ 5025 if (!is_last && (wq->flags & __WQ_ORDERED)) 5026 unplug_oldest_pwq(wq); 5027 5028 mutex_unlock(&wq->mutex); 5029 } 5030 5031 if (wq->flags & WQ_UNBOUND) { 5032 mutex_lock(&wq_pool_mutex); 5033 put_unbound_pool(pool); 5034 mutex_unlock(&wq_pool_mutex); 5035 } 5036 5037 if (!list_empty(&pwq->pending_node)) { 5038 struct wq_node_nr_active *nna = 5039 wq_node_nr_active(pwq->wq, pwq->pool->node); 5040 5041 raw_spin_lock_irq(&nna->lock); 5042 list_del_init(&pwq->pending_node); 5043 raw_spin_unlock_irq(&nna->lock); 5044 } 5045 5046 kfree_rcu(pwq, rcu); 5047 5048 /* 5049 * If we're the last pwq going away, @wq is already dead and no one 5050 * is gonna access it anymore. Schedule RCU free. 5051 */ 5052 if (is_last) { 5053 wq_unregister_lockdep(wq); 5054 call_rcu(&wq->rcu, rcu_free_wq); 5055 } 5056 } 5057 5058 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 5059 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 5060 struct worker_pool *pool) 5061 { 5062 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK); 5063 5064 memset(pwq, 0, sizeof(*pwq)); 5065 5066 pwq->pool = pool; 5067 pwq->wq = wq; 5068 pwq->flush_color = -1; 5069 pwq->refcnt = 1; 5070 INIT_LIST_HEAD(&pwq->inactive_works); 5071 INIT_LIST_HEAD(&pwq->pending_node); 5072 INIT_LIST_HEAD(&pwq->pwqs_node); 5073 INIT_LIST_HEAD(&pwq->mayday_node); 5074 kthread_init_work(&pwq->release_work, pwq_release_workfn); 5075 } 5076 5077 /* sync @pwq with the current state of its associated wq and link it */ 5078 static void link_pwq(struct pool_workqueue *pwq) 5079 { 5080 struct workqueue_struct *wq = pwq->wq; 5081 5082 lockdep_assert_held(&wq->mutex); 5083 5084 /* may be called multiple times, ignore if already linked */ 5085 if (!list_empty(&pwq->pwqs_node)) 5086 return; 5087 5088 /* set the matching work_color */ 5089 pwq->work_color = wq->work_color; 5090 5091 /* link in @pwq */ 5092 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs); 5093 } 5094 5095 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 5096 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 5097 const struct workqueue_attrs *attrs) 5098 { 5099 struct worker_pool *pool; 5100 struct pool_workqueue *pwq; 5101 5102 lockdep_assert_held(&wq_pool_mutex); 5103 5104 pool = get_unbound_pool(attrs); 5105 if (!pool) 5106 return NULL; 5107 5108 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 5109 if (!pwq) { 5110 put_unbound_pool(pool); 5111 return NULL; 5112 } 5113 5114 init_pwq(pwq, wq, pool); 5115 return pwq; 5116 } 5117 5118 static void apply_wqattrs_lock(void) 5119 { 5120 mutex_lock(&wq_pool_mutex); 5121 } 5122 5123 static void apply_wqattrs_unlock(void) 5124 { 5125 mutex_unlock(&wq_pool_mutex); 5126 } 5127 5128 /** 5129 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 5130 * @attrs: the wq_attrs of the default pwq of the target workqueue 5131 * @cpu: the target CPU 5132 * 5133 * Calculate the cpumask a workqueue with @attrs should use on @pod. 5134 * The result is stored in @attrs->__pod_cpumask. 5135 * 5136 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 5137 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 5138 * intersection of the possible CPUs of @pod and @attrs->cpumask. 5139 * 5140 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 5141 */ 5142 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu) 5143 { 5144 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5145 int pod = pt->cpu_pod[cpu]; 5146 5147 /* calculate possible CPUs in @pod that @attrs wants */ 5148 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 5149 /* does @pod have any online CPUs @attrs wants? */ 5150 if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) { 5151 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 5152 return; 5153 } 5154 } 5155 5156 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ 5157 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 5158 int cpu, struct pool_workqueue *pwq) 5159 { 5160 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); 5161 struct pool_workqueue *old_pwq; 5162 5163 lockdep_assert_held(&wq_pool_mutex); 5164 lockdep_assert_held(&wq->mutex); 5165 5166 /* link_pwq() can handle duplicate calls */ 5167 link_pwq(pwq); 5168 5169 old_pwq = rcu_access_pointer(*slot); 5170 rcu_assign_pointer(*slot, pwq); 5171 return old_pwq; 5172 } 5173 5174 /* context to store the prepared attrs & pwqs before applying */ 5175 struct apply_wqattrs_ctx { 5176 struct workqueue_struct *wq; /* target workqueue */ 5177 struct workqueue_attrs *attrs; /* attrs to apply */ 5178 struct list_head list; /* queued for batching commit */ 5179 struct pool_workqueue *dfl_pwq; 5180 struct pool_workqueue *pwq_tbl[]; 5181 }; 5182 5183 /* free the resources after success or abort */ 5184 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 5185 { 5186 if (ctx) { 5187 int cpu; 5188 5189 for_each_possible_cpu(cpu) 5190 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 5191 put_pwq_unlocked(ctx->dfl_pwq); 5192 5193 free_workqueue_attrs(ctx->attrs); 5194 5195 kfree(ctx); 5196 } 5197 } 5198 5199 /* allocate the attrs and pwqs for later installation */ 5200 static struct apply_wqattrs_ctx * 5201 apply_wqattrs_prepare(struct workqueue_struct *wq, 5202 const struct workqueue_attrs *attrs, 5203 const cpumask_var_t unbound_cpumask) 5204 { 5205 struct apply_wqattrs_ctx *ctx; 5206 struct workqueue_attrs *new_attrs; 5207 int cpu; 5208 5209 lockdep_assert_held(&wq_pool_mutex); 5210 5211 if (WARN_ON(attrs->affn_scope < 0 || 5212 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 5213 return ERR_PTR(-EINVAL); 5214 5215 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 5216 5217 new_attrs = alloc_workqueue_attrs(); 5218 if (!ctx || !new_attrs) 5219 goto out_free; 5220 5221 /* 5222 * If something goes wrong during CPU up/down, we'll fall back to 5223 * the default pwq covering whole @attrs->cpumask. Always create 5224 * it even if we don't use it immediately. 5225 */ 5226 copy_workqueue_attrs(new_attrs, attrs); 5227 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 5228 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5229 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 5230 if (!ctx->dfl_pwq) 5231 goto out_free; 5232 5233 for_each_possible_cpu(cpu) { 5234 if (new_attrs->ordered) { 5235 ctx->dfl_pwq->refcnt++; 5236 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 5237 } else { 5238 wq_calc_pod_cpumask(new_attrs, cpu); 5239 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 5240 if (!ctx->pwq_tbl[cpu]) 5241 goto out_free; 5242 } 5243 } 5244 5245 /* save the user configured attrs and sanitize it. */ 5246 copy_workqueue_attrs(new_attrs, attrs); 5247 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 5248 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5249 ctx->attrs = new_attrs; 5250 5251 /* 5252 * For initialized ordered workqueues, there should only be one pwq 5253 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution 5254 * of newly queued work items until execution of older work items in 5255 * the old pwq's have completed. 5256 */ 5257 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)) 5258 ctx->dfl_pwq->plugged = true; 5259 5260 ctx->wq = wq; 5261 return ctx; 5262 5263 out_free: 5264 free_workqueue_attrs(new_attrs); 5265 apply_wqattrs_cleanup(ctx); 5266 return ERR_PTR(-ENOMEM); 5267 } 5268 5269 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 5270 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 5271 { 5272 int cpu; 5273 5274 /* all pwqs have been created successfully, let's install'em */ 5275 mutex_lock(&ctx->wq->mutex); 5276 5277 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 5278 5279 /* save the previous pwqs and install the new ones */ 5280 for_each_possible_cpu(cpu) 5281 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 5282 ctx->pwq_tbl[cpu]); 5283 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq); 5284 5285 /* update node_nr_active->max */ 5286 wq_update_node_max_active(ctx->wq, -1); 5287 5288 /* rescuer needs to respect wq cpumask changes */ 5289 if (ctx->wq->rescuer) 5290 set_cpus_allowed_ptr(ctx->wq->rescuer->task, 5291 unbound_effective_cpumask(ctx->wq)); 5292 5293 mutex_unlock(&ctx->wq->mutex); 5294 } 5295 5296 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 5297 const struct workqueue_attrs *attrs) 5298 { 5299 struct apply_wqattrs_ctx *ctx; 5300 5301 /* only unbound workqueues can change attributes */ 5302 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 5303 return -EINVAL; 5304 5305 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 5306 if (IS_ERR(ctx)) 5307 return PTR_ERR(ctx); 5308 5309 /* the ctx has been prepared successfully, let's commit it */ 5310 apply_wqattrs_commit(ctx); 5311 apply_wqattrs_cleanup(ctx); 5312 5313 return 0; 5314 } 5315 5316 /** 5317 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 5318 * @wq: the target workqueue 5319 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 5320 * 5321 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 5322 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 5323 * work items are affine to the pod it was issued on. Older pwqs are released as 5324 * in-flight work items finish. Note that a work item which repeatedly requeues 5325 * itself back-to-back will stay on its current pwq. 5326 * 5327 * Performs GFP_KERNEL allocations. 5328 * 5329 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 5330 * 5331 * Return: 0 on success and -errno on failure. 5332 */ 5333 int apply_workqueue_attrs(struct workqueue_struct *wq, 5334 const struct workqueue_attrs *attrs) 5335 { 5336 int ret; 5337 5338 lockdep_assert_cpus_held(); 5339 5340 mutex_lock(&wq_pool_mutex); 5341 ret = apply_workqueue_attrs_locked(wq, attrs); 5342 mutex_unlock(&wq_pool_mutex); 5343 5344 return ret; 5345 } 5346 5347 /** 5348 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug 5349 * @wq: the target workqueue 5350 * @cpu: the CPU to update the pwq slot for 5351 * 5352 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 5353 * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged. 5354 * 5355 * 5356 * If pod affinity can't be adjusted due to memory allocation failure, it falls 5357 * back to @wq->dfl_pwq which may not be optimal but is always correct. 5358 * 5359 * Note that when the last allowed CPU of a pod goes offline for a workqueue 5360 * with a cpumask spanning multiple pods, the workers which were already 5361 * executing the work items for the workqueue will lose their CPU affinity and 5362 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 5363 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 5364 * responsibility to flush the work item from CPU_DOWN_PREPARE. 5365 */ 5366 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu) 5367 { 5368 struct pool_workqueue *old_pwq = NULL, *pwq; 5369 struct workqueue_attrs *target_attrs; 5370 5371 lockdep_assert_held(&wq_pool_mutex); 5372 5373 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 5374 return; 5375 5376 /* 5377 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 5378 * Let's use a preallocated one. The following buf is protected by 5379 * CPU hotplug exclusion. 5380 */ 5381 target_attrs = unbound_wq_update_pwq_attrs_buf; 5382 5383 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 5384 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 5385 5386 /* nothing to do if the target cpumask matches the current pwq */ 5387 wq_calc_pod_cpumask(target_attrs, cpu); 5388 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs)) 5389 return; 5390 5391 /* create a new pwq */ 5392 pwq = alloc_unbound_pwq(wq, target_attrs); 5393 if (!pwq) { 5394 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 5395 wq->name); 5396 goto use_dfl_pwq; 5397 } 5398 5399 /* Install the new pwq. */ 5400 mutex_lock(&wq->mutex); 5401 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5402 goto out_unlock; 5403 5404 use_dfl_pwq: 5405 mutex_lock(&wq->mutex); 5406 pwq = unbound_pwq(wq, -1); 5407 raw_spin_lock_irq(&pwq->pool->lock); 5408 get_pwq(pwq); 5409 raw_spin_unlock_irq(&pwq->pool->lock); 5410 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5411 out_unlock: 5412 mutex_unlock(&wq->mutex); 5413 put_pwq_unlocked(old_pwq); 5414 } 5415 5416 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 5417 { 5418 bool highpri = wq->flags & WQ_HIGHPRI; 5419 int cpu, ret; 5420 5421 lockdep_assert_cpus_held(); 5422 lockdep_assert_held(&wq_pool_mutex); 5423 5424 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 5425 if (!wq->cpu_pwq) 5426 goto enomem; 5427 5428 if (!(wq->flags & WQ_UNBOUND)) { 5429 struct worker_pool __percpu *pools; 5430 5431 if (wq->flags & WQ_BH) 5432 pools = bh_worker_pools; 5433 else 5434 pools = cpu_worker_pools; 5435 5436 for_each_possible_cpu(cpu) { 5437 struct pool_workqueue **pwq_p; 5438 struct worker_pool *pool; 5439 5440 pool = &(per_cpu_ptr(pools, cpu)[highpri]); 5441 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu); 5442 5443 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 5444 pool->node); 5445 if (!*pwq_p) 5446 goto enomem; 5447 5448 init_pwq(*pwq_p, wq, pool); 5449 5450 mutex_lock(&wq->mutex); 5451 link_pwq(*pwq_p); 5452 mutex_unlock(&wq->mutex); 5453 } 5454 return 0; 5455 } 5456 5457 if (wq->flags & __WQ_ORDERED) { 5458 struct pool_workqueue *dfl_pwq; 5459 5460 ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]); 5461 /* there should only be single pwq for ordering guarantee */ 5462 dfl_pwq = rcu_access_pointer(wq->dfl_pwq); 5463 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || 5464 wq->pwqs.prev != &dfl_pwq->pwqs_node), 5465 "ordering guarantee broken for workqueue %s\n", wq->name); 5466 } else { 5467 ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]); 5468 } 5469 5470 return ret; 5471 5472 enomem: 5473 if (wq->cpu_pwq) { 5474 for_each_possible_cpu(cpu) { 5475 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5476 5477 if (pwq) 5478 kmem_cache_free(pwq_cache, pwq); 5479 } 5480 free_percpu(wq->cpu_pwq); 5481 wq->cpu_pwq = NULL; 5482 } 5483 return -ENOMEM; 5484 } 5485 5486 static int wq_clamp_max_active(int max_active, unsigned int flags, 5487 const char *name) 5488 { 5489 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 5490 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 5491 max_active, name, 1, WQ_MAX_ACTIVE); 5492 5493 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 5494 } 5495 5496 /* 5497 * Workqueues which may be used during memory reclaim should have a rescuer 5498 * to guarantee forward progress. 5499 */ 5500 static int init_rescuer(struct workqueue_struct *wq) 5501 { 5502 struct worker *rescuer; 5503 int ret; 5504 5505 lockdep_assert_held(&wq_pool_mutex); 5506 5507 if (!(wq->flags & WQ_MEM_RECLAIM)) 5508 return 0; 5509 5510 rescuer = alloc_worker(NUMA_NO_NODE); 5511 if (!rescuer) { 5512 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 5513 wq->name); 5514 return -ENOMEM; 5515 } 5516 5517 rescuer->rescue_wq = wq; 5518 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name); 5519 if (IS_ERR(rescuer->task)) { 5520 ret = PTR_ERR(rescuer->task); 5521 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 5522 wq->name, ERR_PTR(ret)); 5523 kfree(rescuer); 5524 return ret; 5525 } 5526 5527 wq->rescuer = rescuer; 5528 if (wq->flags & WQ_UNBOUND) 5529 kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq)); 5530 else 5531 kthread_bind_mask(rescuer->task, cpu_possible_mask); 5532 wake_up_process(rescuer->task); 5533 5534 return 0; 5535 } 5536 5537 /** 5538 * wq_adjust_max_active - update a wq's max_active to the current setting 5539 * @wq: target workqueue 5540 * 5541 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and 5542 * activate inactive work items accordingly. If @wq is freezing, clear 5543 * @wq->max_active to zero. 5544 */ 5545 static void wq_adjust_max_active(struct workqueue_struct *wq) 5546 { 5547 bool activated; 5548 int new_max, new_min; 5549 5550 lockdep_assert_held(&wq->mutex); 5551 5552 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { 5553 new_max = 0; 5554 new_min = 0; 5555 } else { 5556 new_max = wq->saved_max_active; 5557 new_min = wq->saved_min_active; 5558 } 5559 5560 if (wq->max_active == new_max && wq->min_active == new_min) 5561 return; 5562 5563 /* 5564 * Update @wq->max/min_active and then kick inactive work items if more 5565 * active work items are allowed. This doesn't break work item ordering 5566 * because new work items are always queued behind existing inactive 5567 * work items if there are any. 5568 */ 5569 WRITE_ONCE(wq->max_active, new_max); 5570 WRITE_ONCE(wq->min_active, new_min); 5571 5572 if (wq->flags & WQ_UNBOUND) 5573 wq_update_node_max_active(wq, -1); 5574 5575 if (new_max == 0) 5576 return; 5577 5578 /* 5579 * Round-robin through pwq's activating the first inactive work item 5580 * until max_active is filled. 5581 */ 5582 do { 5583 struct pool_workqueue *pwq; 5584 5585 activated = false; 5586 for_each_pwq(pwq, wq) { 5587 unsigned long irq_flags; 5588 5589 /* can be called during early boot w/ irq disabled */ 5590 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 5591 if (pwq_activate_first_inactive(pwq, true)) { 5592 activated = true; 5593 kick_pool(pwq->pool); 5594 } 5595 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 5596 } 5597 } while (activated); 5598 } 5599 5600 __printf(1, 4) 5601 struct workqueue_struct *alloc_workqueue(const char *fmt, 5602 unsigned int flags, 5603 int max_active, ...) 5604 { 5605 va_list args; 5606 struct workqueue_struct *wq; 5607 size_t wq_size; 5608 int name_len; 5609 5610 if (flags & WQ_BH) { 5611 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS)) 5612 return NULL; 5613 if (WARN_ON_ONCE(max_active)) 5614 return NULL; 5615 } 5616 5617 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 5618 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 5619 flags |= WQ_UNBOUND; 5620 5621 /* allocate wq and format name */ 5622 if (flags & WQ_UNBOUND) 5623 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); 5624 else 5625 wq_size = sizeof(*wq); 5626 5627 wq = kzalloc(wq_size, GFP_KERNEL); 5628 if (!wq) 5629 return NULL; 5630 5631 if (flags & WQ_UNBOUND) { 5632 wq->unbound_attrs = alloc_workqueue_attrs(); 5633 if (!wq->unbound_attrs) 5634 goto err_free_wq; 5635 } 5636 5637 va_start(args, max_active); 5638 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args); 5639 va_end(args); 5640 5641 if (name_len >= WQ_NAME_LEN) 5642 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", 5643 wq->name); 5644 5645 if (flags & WQ_BH) { 5646 /* 5647 * BH workqueues always share a single execution context per CPU 5648 * and don't impose any max_active limit. 5649 */ 5650 max_active = INT_MAX; 5651 } else { 5652 max_active = max_active ?: WQ_DFL_ACTIVE; 5653 max_active = wq_clamp_max_active(max_active, flags, wq->name); 5654 } 5655 5656 /* init wq */ 5657 wq->flags = flags; 5658 wq->max_active = max_active; 5659 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); 5660 wq->saved_max_active = wq->max_active; 5661 wq->saved_min_active = wq->min_active; 5662 mutex_init(&wq->mutex); 5663 atomic_set(&wq->nr_pwqs_to_flush, 0); 5664 INIT_LIST_HEAD(&wq->pwqs); 5665 INIT_LIST_HEAD(&wq->flusher_queue); 5666 INIT_LIST_HEAD(&wq->flusher_overflow); 5667 INIT_LIST_HEAD(&wq->maydays); 5668 5669 wq_init_lockdep(wq); 5670 INIT_LIST_HEAD(&wq->list); 5671 5672 if (flags & WQ_UNBOUND) { 5673 if (alloc_node_nr_active(wq->node_nr_active) < 0) 5674 goto err_unreg_lockdep; 5675 } 5676 5677 /* 5678 * wq_pool_mutex protects the workqueues list, allocations of PWQs, 5679 * and the global freeze state. alloc_and_link_pwqs() also requires 5680 * cpus_read_lock() for PWQs' affinities. 5681 */ 5682 apply_wqattrs_lock(); 5683 5684 if (alloc_and_link_pwqs(wq) < 0) 5685 goto err_unlock_free_node_nr_active; 5686 5687 mutex_lock(&wq->mutex); 5688 wq_adjust_max_active(wq); 5689 mutex_unlock(&wq->mutex); 5690 5691 list_add_tail_rcu(&wq->list, &workqueues); 5692 5693 if (wq_online && init_rescuer(wq) < 0) 5694 goto err_unlock_destroy; 5695 5696 apply_wqattrs_unlock(); 5697 5698 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 5699 goto err_destroy; 5700 5701 return wq; 5702 5703 err_unlock_free_node_nr_active: 5704 apply_wqattrs_unlock(); 5705 /* 5706 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work, 5707 * flushing the pwq_release_worker ensures that the pwq_release_workfn() 5708 * completes before calling kfree(wq). 5709 */ 5710 if (wq->flags & WQ_UNBOUND) { 5711 kthread_flush_worker(pwq_release_worker); 5712 free_node_nr_active(wq->node_nr_active); 5713 } 5714 err_unreg_lockdep: 5715 wq_unregister_lockdep(wq); 5716 wq_free_lockdep(wq); 5717 err_free_wq: 5718 free_workqueue_attrs(wq->unbound_attrs); 5719 kfree(wq); 5720 return NULL; 5721 err_unlock_destroy: 5722 apply_wqattrs_unlock(); 5723 err_destroy: 5724 destroy_workqueue(wq); 5725 return NULL; 5726 } 5727 EXPORT_SYMBOL_GPL(alloc_workqueue); 5728 5729 static bool pwq_busy(struct pool_workqueue *pwq) 5730 { 5731 int i; 5732 5733 for (i = 0; i < WORK_NR_COLORS; i++) 5734 if (pwq->nr_in_flight[i]) 5735 return true; 5736 5737 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) 5738 return true; 5739 if (!pwq_is_empty(pwq)) 5740 return true; 5741 5742 return false; 5743 } 5744 5745 /** 5746 * destroy_workqueue - safely terminate a workqueue 5747 * @wq: target workqueue 5748 * 5749 * Safely destroy a workqueue. All work currently pending will be done first. 5750 */ 5751 void destroy_workqueue(struct workqueue_struct *wq) 5752 { 5753 struct pool_workqueue *pwq; 5754 int cpu; 5755 5756 /* 5757 * Remove it from sysfs first so that sanity check failure doesn't 5758 * lead to sysfs name conflicts. 5759 */ 5760 workqueue_sysfs_unregister(wq); 5761 5762 /* mark the workqueue destruction is in progress */ 5763 mutex_lock(&wq->mutex); 5764 wq->flags |= __WQ_DESTROYING; 5765 mutex_unlock(&wq->mutex); 5766 5767 /* drain it before proceeding with destruction */ 5768 drain_workqueue(wq); 5769 5770 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 5771 if (wq->rescuer) { 5772 struct worker *rescuer = wq->rescuer; 5773 5774 /* this prevents new queueing */ 5775 raw_spin_lock_irq(&wq_mayday_lock); 5776 wq->rescuer = NULL; 5777 raw_spin_unlock_irq(&wq_mayday_lock); 5778 5779 /* rescuer will empty maydays list before exiting */ 5780 kthread_stop(rescuer->task); 5781 kfree(rescuer); 5782 } 5783 5784 /* 5785 * Sanity checks - grab all the locks so that we wait for all 5786 * in-flight operations which may do put_pwq(). 5787 */ 5788 mutex_lock(&wq_pool_mutex); 5789 mutex_lock(&wq->mutex); 5790 for_each_pwq(pwq, wq) { 5791 raw_spin_lock_irq(&pwq->pool->lock); 5792 if (WARN_ON(pwq_busy(pwq))) { 5793 pr_warn("%s: %s has the following busy pwq\n", 5794 __func__, wq->name); 5795 show_pwq(pwq); 5796 raw_spin_unlock_irq(&pwq->pool->lock); 5797 mutex_unlock(&wq->mutex); 5798 mutex_unlock(&wq_pool_mutex); 5799 show_one_workqueue(wq); 5800 return; 5801 } 5802 raw_spin_unlock_irq(&pwq->pool->lock); 5803 } 5804 mutex_unlock(&wq->mutex); 5805 5806 /* 5807 * wq list is used to freeze wq, remove from list after 5808 * flushing is complete in case freeze races us. 5809 */ 5810 list_del_rcu(&wq->list); 5811 mutex_unlock(&wq_pool_mutex); 5812 5813 /* 5814 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 5815 * to put the base refs. @wq will be auto-destroyed from the last 5816 * pwq_put. RCU read lock prevents @wq from going away from under us. 5817 */ 5818 rcu_read_lock(); 5819 5820 for_each_possible_cpu(cpu) { 5821 put_pwq_unlocked(unbound_pwq(wq, cpu)); 5822 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); 5823 } 5824 5825 put_pwq_unlocked(unbound_pwq(wq, -1)); 5826 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); 5827 5828 rcu_read_unlock(); 5829 } 5830 EXPORT_SYMBOL_GPL(destroy_workqueue); 5831 5832 /** 5833 * workqueue_set_max_active - adjust max_active of a workqueue 5834 * @wq: target workqueue 5835 * @max_active: new max_active value. 5836 * 5837 * Set max_active of @wq to @max_active. See the alloc_workqueue() function 5838 * comment. 5839 * 5840 * CONTEXT: 5841 * Don't call from IRQ context. 5842 */ 5843 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 5844 { 5845 /* max_active doesn't mean anything for BH workqueues */ 5846 if (WARN_ON(wq->flags & WQ_BH)) 5847 return; 5848 /* disallow meddling with max_active for ordered workqueues */ 5849 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5850 return; 5851 5852 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 5853 5854 mutex_lock(&wq->mutex); 5855 5856 wq->saved_max_active = max_active; 5857 if (wq->flags & WQ_UNBOUND) 5858 wq->saved_min_active = min(wq->saved_min_active, max_active); 5859 5860 wq_adjust_max_active(wq); 5861 5862 mutex_unlock(&wq->mutex); 5863 } 5864 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 5865 5866 /** 5867 * workqueue_set_min_active - adjust min_active of an unbound workqueue 5868 * @wq: target unbound workqueue 5869 * @min_active: new min_active value 5870 * 5871 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an 5872 * unbound workqueue is not guaranteed to be able to process max_active 5873 * interdependent work items. Instead, an unbound workqueue is guaranteed to be 5874 * able to process min_active number of interdependent work items which is 5875 * %WQ_DFL_MIN_ACTIVE by default. 5876 * 5877 * Use this function to adjust the min_active value between 0 and the current 5878 * max_active. 5879 */ 5880 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active) 5881 { 5882 /* min_active is only meaningful for non-ordered unbound workqueues */ 5883 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) != 5884 WQ_UNBOUND)) 5885 return; 5886 5887 mutex_lock(&wq->mutex); 5888 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active); 5889 wq_adjust_max_active(wq); 5890 mutex_unlock(&wq->mutex); 5891 } 5892 5893 /** 5894 * current_work - retrieve %current task's work struct 5895 * 5896 * Determine if %current task is a workqueue worker and what it's working on. 5897 * Useful to find out the context that the %current task is running in. 5898 * 5899 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 5900 */ 5901 struct work_struct *current_work(void) 5902 { 5903 struct worker *worker = current_wq_worker(); 5904 5905 return worker ? worker->current_work : NULL; 5906 } 5907 EXPORT_SYMBOL(current_work); 5908 5909 /** 5910 * current_is_workqueue_rescuer - is %current workqueue rescuer? 5911 * 5912 * Determine whether %current is a workqueue rescuer. Can be used from 5913 * work functions to determine whether it's being run off the rescuer task. 5914 * 5915 * Return: %true if %current is a workqueue rescuer. %false otherwise. 5916 */ 5917 bool current_is_workqueue_rescuer(void) 5918 { 5919 struct worker *worker = current_wq_worker(); 5920 5921 return worker && worker->rescue_wq; 5922 } 5923 5924 /** 5925 * workqueue_congested - test whether a workqueue is congested 5926 * @cpu: CPU in question 5927 * @wq: target workqueue 5928 * 5929 * Test whether @wq's cpu workqueue for @cpu is congested. There is 5930 * no synchronization around this function and the test result is 5931 * unreliable and only useful as advisory hints or for debugging. 5932 * 5933 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 5934 * 5935 * With the exception of ordered workqueues, all workqueues have per-cpu 5936 * pool_workqueues, each with its own congested state. A workqueue being 5937 * congested on one CPU doesn't mean that the workqueue is contested on any 5938 * other CPUs. 5939 * 5940 * Return: 5941 * %true if congested, %false otherwise. 5942 */ 5943 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 5944 { 5945 struct pool_workqueue *pwq; 5946 bool ret; 5947 5948 rcu_read_lock(); 5949 preempt_disable(); 5950 5951 if (cpu == WORK_CPU_UNBOUND) 5952 cpu = smp_processor_id(); 5953 5954 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5955 ret = !list_empty(&pwq->inactive_works); 5956 5957 preempt_enable(); 5958 rcu_read_unlock(); 5959 5960 return ret; 5961 } 5962 EXPORT_SYMBOL_GPL(workqueue_congested); 5963 5964 /** 5965 * work_busy - test whether a work is currently pending or running 5966 * @work: the work to be tested 5967 * 5968 * Test whether @work is currently pending or running. There is no 5969 * synchronization around this function and the test result is 5970 * unreliable and only useful as advisory hints or for debugging. 5971 * 5972 * Return: 5973 * OR'd bitmask of WORK_BUSY_* bits. 5974 */ 5975 unsigned int work_busy(struct work_struct *work) 5976 { 5977 struct worker_pool *pool; 5978 unsigned long irq_flags; 5979 unsigned int ret = 0; 5980 5981 if (work_pending(work)) 5982 ret |= WORK_BUSY_PENDING; 5983 5984 rcu_read_lock(); 5985 pool = get_work_pool(work); 5986 if (pool) { 5987 raw_spin_lock_irqsave(&pool->lock, irq_flags); 5988 if (find_worker_executing_work(pool, work)) 5989 ret |= WORK_BUSY_RUNNING; 5990 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 5991 } 5992 rcu_read_unlock(); 5993 5994 return ret; 5995 } 5996 EXPORT_SYMBOL_GPL(work_busy); 5997 5998 /** 5999 * set_worker_desc - set description for the current work item 6000 * @fmt: printf-style format string 6001 * @...: arguments for the format string 6002 * 6003 * This function can be called by a running work function to describe what 6004 * the work item is about. If the worker task gets dumped, this 6005 * information will be printed out together to help debugging. The 6006 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 6007 */ 6008 void set_worker_desc(const char *fmt, ...) 6009 { 6010 struct worker *worker = current_wq_worker(); 6011 va_list args; 6012 6013 if (worker) { 6014 va_start(args, fmt); 6015 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 6016 va_end(args); 6017 } 6018 } 6019 EXPORT_SYMBOL_GPL(set_worker_desc); 6020 6021 /** 6022 * print_worker_info - print out worker information and description 6023 * @log_lvl: the log level to use when printing 6024 * @task: target task 6025 * 6026 * If @task is a worker and currently executing a work item, print out the 6027 * name of the workqueue being serviced and worker description set with 6028 * set_worker_desc() by the currently executing work item. 6029 * 6030 * This function can be safely called on any task as long as the 6031 * task_struct itself is accessible. While safe, this function isn't 6032 * synchronized and may print out mixups or garbages of limited length. 6033 */ 6034 void print_worker_info(const char *log_lvl, struct task_struct *task) 6035 { 6036 work_func_t *fn = NULL; 6037 char name[WQ_NAME_LEN] = { }; 6038 char desc[WORKER_DESC_LEN] = { }; 6039 struct pool_workqueue *pwq = NULL; 6040 struct workqueue_struct *wq = NULL; 6041 struct worker *worker; 6042 6043 if (!(task->flags & PF_WQ_WORKER)) 6044 return; 6045 6046 /* 6047 * This function is called without any synchronization and @task 6048 * could be in any state. Be careful with dereferences. 6049 */ 6050 worker = kthread_probe_data(task); 6051 6052 /* 6053 * Carefully copy the associated workqueue's workfn, name and desc. 6054 * Keep the original last '\0' in case the original is garbage. 6055 */ 6056 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 6057 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 6058 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 6059 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 6060 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 6061 6062 if (fn || name[0] || desc[0]) { 6063 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 6064 if (strcmp(name, desc)) 6065 pr_cont(" (%s)", desc); 6066 pr_cont("\n"); 6067 } 6068 } 6069 6070 static void pr_cont_pool_info(struct worker_pool *pool) 6071 { 6072 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 6073 if (pool->node != NUMA_NO_NODE) 6074 pr_cont(" node=%d", pool->node); 6075 pr_cont(" flags=0x%x", pool->flags); 6076 if (pool->flags & POOL_BH) 6077 pr_cont(" bh%s", 6078 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6079 else 6080 pr_cont(" nice=%d", pool->attrs->nice); 6081 } 6082 6083 static void pr_cont_worker_id(struct worker *worker) 6084 { 6085 struct worker_pool *pool = worker->pool; 6086 6087 if (pool->flags & WQ_BH) 6088 pr_cont("bh%s", 6089 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6090 else 6091 pr_cont("%d%s", task_pid_nr(worker->task), 6092 worker->rescue_wq ? "(RESCUER)" : ""); 6093 } 6094 6095 struct pr_cont_work_struct { 6096 bool comma; 6097 work_func_t func; 6098 long ctr; 6099 }; 6100 6101 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 6102 { 6103 if (!pcwsp->ctr) 6104 goto out_record; 6105 if (func == pcwsp->func) { 6106 pcwsp->ctr++; 6107 return; 6108 } 6109 if (pcwsp->ctr == 1) 6110 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 6111 else 6112 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 6113 pcwsp->ctr = 0; 6114 out_record: 6115 if ((long)func == -1L) 6116 return; 6117 pcwsp->comma = comma; 6118 pcwsp->func = func; 6119 pcwsp->ctr = 1; 6120 } 6121 6122 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 6123 { 6124 if (work->func == wq_barrier_func) { 6125 struct wq_barrier *barr; 6126 6127 barr = container_of(work, struct wq_barrier, work); 6128 6129 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6130 pr_cont("%s BAR(%d)", comma ? "," : "", 6131 task_pid_nr(barr->task)); 6132 } else { 6133 if (!comma) 6134 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6135 pr_cont_work_flush(comma, work->func, pcwsp); 6136 } 6137 } 6138 6139 static void show_pwq(struct pool_workqueue *pwq) 6140 { 6141 struct pr_cont_work_struct pcws = { .ctr = 0, }; 6142 struct worker_pool *pool = pwq->pool; 6143 struct work_struct *work; 6144 struct worker *worker; 6145 bool has_in_flight = false, has_pending = false; 6146 int bkt; 6147 6148 pr_info(" pwq %d:", pool->id); 6149 pr_cont_pool_info(pool); 6150 6151 pr_cont(" active=%d refcnt=%d%s\n", 6152 pwq->nr_active, pwq->refcnt, 6153 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 6154 6155 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6156 if (worker->current_pwq == pwq) { 6157 has_in_flight = true; 6158 break; 6159 } 6160 } 6161 if (has_in_flight) { 6162 bool comma = false; 6163 6164 pr_info(" in-flight:"); 6165 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6166 if (worker->current_pwq != pwq) 6167 continue; 6168 6169 pr_cont(" %s", comma ? "," : ""); 6170 pr_cont_worker_id(worker); 6171 pr_cont(":%ps", worker->current_func); 6172 list_for_each_entry(work, &worker->scheduled, entry) 6173 pr_cont_work(false, work, &pcws); 6174 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6175 comma = true; 6176 } 6177 pr_cont("\n"); 6178 } 6179 6180 list_for_each_entry(work, &pool->worklist, entry) { 6181 if (get_work_pwq(work) == pwq) { 6182 has_pending = true; 6183 break; 6184 } 6185 } 6186 if (has_pending) { 6187 bool comma = false; 6188 6189 pr_info(" pending:"); 6190 list_for_each_entry(work, &pool->worklist, entry) { 6191 if (get_work_pwq(work) != pwq) 6192 continue; 6193 6194 pr_cont_work(comma, work, &pcws); 6195 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6196 } 6197 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6198 pr_cont("\n"); 6199 } 6200 6201 if (!list_empty(&pwq->inactive_works)) { 6202 bool comma = false; 6203 6204 pr_info(" inactive:"); 6205 list_for_each_entry(work, &pwq->inactive_works, entry) { 6206 pr_cont_work(comma, work, &pcws); 6207 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6208 } 6209 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6210 pr_cont("\n"); 6211 } 6212 } 6213 6214 /** 6215 * show_one_workqueue - dump state of specified workqueue 6216 * @wq: workqueue whose state will be printed 6217 */ 6218 void show_one_workqueue(struct workqueue_struct *wq) 6219 { 6220 struct pool_workqueue *pwq; 6221 bool idle = true; 6222 unsigned long irq_flags; 6223 6224 for_each_pwq(pwq, wq) { 6225 if (!pwq_is_empty(pwq)) { 6226 idle = false; 6227 break; 6228 } 6229 } 6230 if (idle) /* Nothing to print for idle workqueue */ 6231 return; 6232 6233 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 6234 6235 for_each_pwq(pwq, wq) { 6236 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 6237 if (!pwq_is_empty(pwq)) { 6238 /* 6239 * Defer printing to avoid deadlocks in console 6240 * drivers that queue work while holding locks 6241 * also taken in their write paths. 6242 */ 6243 printk_deferred_enter(); 6244 show_pwq(pwq); 6245 printk_deferred_exit(); 6246 } 6247 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 6248 /* 6249 * We could be printing a lot from atomic context, e.g. 6250 * sysrq-t -> show_all_workqueues(). Avoid triggering 6251 * hard lockup. 6252 */ 6253 touch_nmi_watchdog(); 6254 } 6255 6256 } 6257 6258 /** 6259 * show_one_worker_pool - dump state of specified worker pool 6260 * @pool: worker pool whose state will be printed 6261 */ 6262 static void show_one_worker_pool(struct worker_pool *pool) 6263 { 6264 struct worker *worker; 6265 bool first = true; 6266 unsigned long irq_flags; 6267 unsigned long hung = 0; 6268 6269 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6270 if (pool->nr_workers == pool->nr_idle) 6271 goto next_pool; 6272 6273 /* How long the first pending work is waiting for a worker. */ 6274 if (!list_empty(&pool->worklist)) 6275 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 6276 6277 /* 6278 * Defer printing to avoid deadlocks in console drivers that 6279 * queue work while holding locks also taken in their write 6280 * paths. 6281 */ 6282 printk_deferred_enter(); 6283 pr_info("pool %d:", pool->id); 6284 pr_cont_pool_info(pool); 6285 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 6286 if (pool->manager) 6287 pr_cont(" manager: %d", 6288 task_pid_nr(pool->manager->task)); 6289 list_for_each_entry(worker, &pool->idle_list, entry) { 6290 pr_cont(" %s", first ? "idle: " : ""); 6291 pr_cont_worker_id(worker); 6292 first = false; 6293 } 6294 pr_cont("\n"); 6295 printk_deferred_exit(); 6296 next_pool: 6297 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6298 /* 6299 * We could be printing a lot from atomic context, e.g. 6300 * sysrq-t -> show_all_workqueues(). Avoid triggering 6301 * hard lockup. 6302 */ 6303 touch_nmi_watchdog(); 6304 6305 } 6306 6307 /** 6308 * show_all_workqueues - dump workqueue state 6309 * 6310 * Called from a sysrq handler and prints out all busy workqueues and pools. 6311 */ 6312 void show_all_workqueues(void) 6313 { 6314 struct workqueue_struct *wq; 6315 struct worker_pool *pool; 6316 int pi; 6317 6318 rcu_read_lock(); 6319 6320 pr_info("Showing busy workqueues and worker pools:\n"); 6321 6322 list_for_each_entry_rcu(wq, &workqueues, list) 6323 show_one_workqueue(wq); 6324 6325 for_each_pool(pool, pi) 6326 show_one_worker_pool(pool); 6327 6328 rcu_read_unlock(); 6329 } 6330 6331 /** 6332 * show_freezable_workqueues - dump freezable workqueue state 6333 * 6334 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 6335 * still busy. 6336 */ 6337 void show_freezable_workqueues(void) 6338 { 6339 struct workqueue_struct *wq; 6340 6341 rcu_read_lock(); 6342 6343 pr_info("Showing freezable workqueues that are still busy:\n"); 6344 6345 list_for_each_entry_rcu(wq, &workqueues, list) { 6346 if (!(wq->flags & WQ_FREEZABLE)) 6347 continue; 6348 show_one_workqueue(wq); 6349 } 6350 6351 rcu_read_unlock(); 6352 } 6353 6354 /* used to show worker information through /proc/PID/{comm,stat,status} */ 6355 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 6356 { 6357 int off; 6358 6359 /* always show the actual comm */ 6360 off = strscpy(buf, task->comm, size); 6361 if (off < 0) 6362 return; 6363 6364 /* stabilize PF_WQ_WORKER and worker pool association */ 6365 mutex_lock(&wq_pool_attach_mutex); 6366 6367 if (task->flags & PF_WQ_WORKER) { 6368 struct worker *worker = kthread_data(task); 6369 struct worker_pool *pool = worker->pool; 6370 6371 if (pool) { 6372 raw_spin_lock_irq(&pool->lock); 6373 /* 6374 * ->desc tracks information (wq name or 6375 * set_worker_desc()) for the latest execution. If 6376 * current, prepend '+', otherwise '-'. 6377 */ 6378 if (worker->desc[0] != '\0') { 6379 if (worker->current_work) 6380 scnprintf(buf + off, size - off, "+%s", 6381 worker->desc); 6382 else 6383 scnprintf(buf + off, size - off, "-%s", 6384 worker->desc); 6385 } 6386 raw_spin_unlock_irq(&pool->lock); 6387 } 6388 } 6389 6390 mutex_unlock(&wq_pool_attach_mutex); 6391 } 6392 6393 #ifdef CONFIG_SMP 6394 6395 /* 6396 * CPU hotplug. 6397 * 6398 * There are two challenges in supporting CPU hotplug. Firstly, there 6399 * are a lot of assumptions on strong associations among work, pwq and 6400 * pool which make migrating pending and scheduled works very 6401 * difficult to implement without impacting hot paths. Secondly, 6402 * worker pools serve mix of short, long and very long running works making 6403 * blocked draining impractical. 6404 * 6405 * This is solved by allowing the pools to be disassociated from the CPU 6406 * running as an unbound one and allowing it to be reattached later if the 6407 * cpu comes back online. 6408 */ 6409 6410 static void unbind_workers(int cpu) 6411 { 6412 struct worker_pool *pool; 6413 struct worker *worker; 6414 6415 for_each_cpu_worker_pool(pool, cpu) { 6416 mutex_lock(&wq_pool_attach_mutex); 6417 raw_spin_lock_irq(&pool->lock); 6418 6419 /* 6420 * We've blocked all attach/detach operations. Make all workers 6421 * unbound and set DISASSOCIATED. Before this, all workers 6422 * must be on the cpu. After this, they may become diasporas. 6423 * And the preemption disabled section in their sched callbacks 6424 * are guaranteed to see WORKER_UNBOUND since the code here 6425 * is on the same cpu. 6426 */ 6427 for_each_pool_worker(worker, pool) 6428 worker->flags |= WORKER_UNBOUND; 6429 6430 pool->flags |= POOL_DISASSOCIATED; 6431 6432 /* 6433 * The handling of nr_running in sched callbacks are disabled 6434 * now. Zap nr_running. After this, nr_running stays zero and 6435 * need_more_worker() and keep_working() are always true as 6436 * long as the worklist is not empty. This pool now behaves as 6437 * an unbound (in terms of concurrency management) pool which 6438 * are served by workers tied to the pool. 6439 */ 6440 pool->nr_running = 0; 6441 6442 /* 6443 * With concurrency management just turned off, a busy 6444 * worker blocking could lead to lengthy stalls. Kick off 6445 * unbound chain execution of currently pending work items. 6446 */ 6447 kick_pool(pool); 6448 6449 raw_spin_unlock_irq(&pool->lock); 6450 6451 for_each_pool_worker(worker, pool) 6452 unbind_worker(worker); 6453 6454 mutex_unlock(&wq_pool_attach_mutex); 6455 } 6456 } 6457 6458 /** 6459 * rebind_workers - rebind all workers of a pool to the associated CPU 6460 * @pool: pool of interest 6461 * 6462 * @pool->cpu is coming online. Rebind all workers to the CPU. 6463 */ 6464 static void rebind_workers(struct worker_pool *pool) 6465 { 6466 struct worker *worker; 6467 6468 lockdep_assert_held(&wq_pool_attach_mutex); 6469 6470 /* 6471 * Restore CPU affinity of all workers. As all idle workers should 6472 * be on the run-queue of the associated CPU before any local 6473 * wake-ups for concurrency management happen, restore CPU affinity 6474 * of all workers first and then clear UNBOUND. As we're called 6475 * from CPU_ONLINE, the following shouldn't fail. 6476 */ 6477 for_each_pool_worker(worker, pool) { 6478 kthread_set_per_cpu(worker->task, pool->cpu); 6479 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 6480 pool_allowed_cpus(pool)) < 0); 6481 } 6482 6483 raw_spin_lock_irq(&pool->lock); 6484 6485 pool->flags &= ~POOL_DISASSOCIATED; 6486 6487 for_each_pool_worker(worker, pool) { 6488 unsigned int worker_flags = worker->flags; 6489 6490 /* 6491 * We want to clear UNBOUND but can't directly call 6492 * worker_clr_flags() or adjust nr_running. Atomically 6493 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 6494 * @worker will clear REBOUND using worker_clr_flags() when 6495 * it initiates the next execution cycle thus restoring 6496 * concurrency management. Note that when or whether 6497 * @worker clears REBOUND doesn't affect correctness. 6498 * 6499 * WRITE_ONCE() is necessary because @worker->flags may be 6500 * tested without holding any lock in 6501 * wq_worker_running(). Without it, NOT_RUNNING test may 6502 * fail incorrectly leading to premature concurrency 6503 * management operations. 6504 */ 6505 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 6506 worker_flags |= WORKER_REBOUND; 6507 worker_flags &= ~WORKER_UNBOUND; 6508 WRITE_ONCE(worker->flags, worker_flags); 6509 } 6510 6511 raw_spin_unlock_irq(&pool->lock); 6512 } 6513 6514 /** 6515 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 6516 * @pool: unbound pool of interest 6517 * @cpu: the CPU which is coming up 6518 * 6519 * An unbound pool may end up with a cpumask which doesn't have any online 6520 * CPUs. When a worker of such pool get scheduled, the scheduler resets 6521 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 6522 * online CPU before, cpus_allowed of all its workers should be restored. 6523 */ 6524 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 6525 { 6526 static cpumask_t cpumask; 6527 struct worker *worker; 6528 6529 lockdep_assert_held(&wq_pool_attach_mutex); 6530 6531 /* is @cpu allowed for @pool? */ 6532 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 6533 return; 6534 6535 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 6536 6537 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 6538 for_each_pool_worker(worker, pool) 6539 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 6540 } 6541 6542 int workqueue_prepare_cpu(unsigned int cpu) 6543 { 6544 struct worker_pool *pool; 6545 6546 for_each_cpu_worker_pool(pool, cpu) { 6547 if (pool->nr_workers) 6548 continue; 6549 if (!create_worker(pool)) 6550 return -ENOMEM; 6551 } 6552 return 0; 6553 } 6554 6555 int workqueue_online_cpu(unsigned int cpu) 6556 { 6557 struct worker_pool *pool; 6558 struct workqueue_struct *wq; 6559 int pi; 6560 6561 mutex_lock(&wq_pool_mutex); 6562 6563 cpumask_set_cpu(cpu, wq_online_cpumask); 6564 6565 for_each_pool(pool, pi) { 6566 /* BH pools aren't affected by hotplug */ 6567 if (pool->flags & POOL_BH) 6568 continue; 6569 6570 mutex_lock(&wq_pool_attach_mutex); 6571 if (pool->cpu == cpu) 6572 rebind_workers(pool); 6573 else if (pool->cpu < 0) 6574 restore_unbound_workers_cpumask(pool, cpu); 6575 mutex_unlock(&wq_pool_attach_mutex); 6576 } 6577 6578 /* update pod affinity of unbound workqueues */ 6579 list_for_each_entry(wq, &workqueues, list) { 6580 struct workqueue_attrs *attrs = wq->unbound_attrs; 6581 6582 if (attrs) { 6583 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6584 int tcpu; 6585 6586 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6587 unbound_wq_update_pwq(wq, tcpu); 6588 6589 mutex_lock(&wq->mutex); 6590 wq_update_node_max_active(wq, -1); 6591 mutex_unlock(&wq->mutex); 6592 } 6593 } 6594 6595 mutex_unlock(&wq_pool_mutex); 6596 return 0; 6597 } 6598 6599 int workqueue_offline_cpu(unsigned int cpu) 6600 { 6601 struct workqueue_struct *wq; 6602 6603 /* unbinding per-cpu workers should happen on the local CPU */ 6604 if (WARN_ON(cpu != smp_processor_id())) 6605 return -1; 6606 6607 unbind_workers(cpu); 6608 6609 /* update pod affinity of unbound workqueues */ 6610 mutex_lock(&wq_pool_mutex); 6611 6612 cpumask_clear_cpu(cpu, wq_online_cpumask); 6613 6614 list_for_each_entry(wq, &workqueues, list) { 6615 struct workqueue_attrs *attrs = wq->unbound_attrs; 6616 6617 if (attrs) { 6618 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6619 int tcpu; 6620 6621 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6622 unbound_wq_update_pwq(wq, tcpu); 6623 6624 mutex_lock(&wq->mutex); 6625 wq_update_node_max_active(wq, cpu); 6626 mutex_unlock(&wq->mutex); 6627 } 6628 } 6629 mutex_unlock(&wq_pool_mutex); 6630 6631 return 0; 6632 } 6633 6634 struct work_for_cpu { 6635 struct work_struct work; 6636 long (*fn)(void *); 6637 void *arg; 6638 long ret; 6639 }; 6640 6641 static void work_for_cpu_fn(struct work_struct *work) 6642 { 6643 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 6644 6645 wfc->ret = wfc->fn(wfc->arg); 6646 } 6647 6648 /** 6649 * work_on_cpu_key - run a function in thread context on a particular cpu 6650 * @cpu: the cpu to run on 6651 * @fn: the function to run 6652 * @arg: the function arg 6653 * @key: The lock class key for lock debugging purposes 6654 * 6655 * It is up to the caller to ensure that the cpu doesn't go offline. 6656 * The caller must not hold any locks which would prevent @fn from completing. 6657 * 6658 * Return: The value @fn returns. 6659 */ 6660 long work_on_cpu_key(int cpu, long (*fn)(void *), 6661 void *arg, struct lock_class_key *key) 6662 { 6663 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 6664 6665 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 6666 schedule_work_on(cpu, &wfc.work); 6667 flush_work(&wfc.work); 6668 destroy_work_on_stack(&wfc.work); 6669 return wfc.ret; 6670 } 6671 EXPORT_SYMBOL_GPL(work_on_cpu_key); 6672 6673 /** 6674 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 6675 * @cpu: the cpu to run on 6676 * @fn: the function to run 6677 * @arg: the function argument 6678 * @key: The lock class key for lock debugging purposes 6679 * 6680 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 6681 * any locks which would prevent @fn from completing. 6682 * 6683 * Return: The value @fn returns. 6684 */ 6685 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 6686 void *arg, struct lock_class_key *key) 6687 { 6688 long ret = -ENODEV; 6689 6690 cpus_read_lock(); 6691 if (cpu_online(cpu)) 6692 ret = work_on_cpu_key(cpu, fn, arg, key); 6693 cpus_read_unlock(); 6694 return ret; 6695 } 6696 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 6697 #endif /* CONFIG_SMP */ 6698 6699 #ifdef CONFIG_FREEZER 6700 6701 /** 6702 * freeze_workqueues_begin - begin freezing workqueues 6703 * 6704 * Start freezing workqueues. After this function returns, all freezable 6705 * workqueues will queue new works to their inactive_works list instead of 6706 * pool->worklist. 6707 * 6708 * CONTEXT: 6709 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6710 */ 6711 void freeze_workqueues_begin(void) 6712 { 6713 struct workqueue_struct *wq; 6714 6715 mutex_lock(&wq_pool_mutex); 6716 6717 WARN_ON_ONCE(workqueue_freezing); 6718 workqueue_freezing = true; 6719 6720 list_for_each_entry(wq, &workqueues, list) { 6721 mutex_lock(&wq->mutex); 6722 wq_adjust_max_active(wq); 6723 mutex_unlock(&wq->mutex); 6724 } 6725 6726 mutex_unlock(&wq_pool_mutex); 6727 } 6728 6729 /** 6730 * freeze_workqueues_busy - are freezable workqueues still busy? 6731 * 6732 * Check whether freezing is complete. This function must be called 6733 * between freeze_workqueues_begin() and thaw_workqueues(). 6734 * 6735 * CONTEXT: 6736 * Grabs and releases wq_pool_mutex. 6737 * 6738 * Return: 6739 * %true if some freezable workqueues are still busy. %false if freezing 6740 * is complete. 6741 */ 6742 bool freeze_workqueues_busy(void) 6743 { 6744 bool busy = false; 6745 struct workqueue_struct *wq; 6746 struct pool_workqueue *pwq; 6747 6748 mutex_lock(&wq_pool_mutex); 6749 6750 WARN_ON_ONCE(!workqueue_freezing); 6751 6752 list_for_each_entry(wq, &workqueues, list) { 6753 if (!(wq->flags & WQ_FREEZABLE)) 6754 continue; 6755 /* 6756 * nr_active is monotonically decreasing. It's safe 6757 * to peek without lock. 6758 */ 6759 rcu_read_lock(); 6760 for_each_pwq(pwq, wq) { 6761 WARN_ON_ONCE(pwq->nr_active < 0); 6762 if (pwq->nr_active) { 6763 busy = true; 6764 rcu_read_unlock(); 6765 goto out_unlock; 6766 } 6767 } 6768 rcu_read_unlock(); 6769 } 6770 out_unlock: 6771 mutex_unlock(&wq_pool_mutex); 6772 return busy; 6773 } 6774 6775 /** 6776 * thaw_workqueues - thaw workqueues 6777 * 6778 * Thaw workqueues. Normal queueing is restored and all collected 6779 * frozen works are transferred to their respective pool worklists. 6780 * 6781 * CONTEXT: 6782 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6783 */ 6784 void thaw_workqueues(void) 6785 { 6786 struct workqueue_struct *wq; 6787 6788 mutex_lock(&wq_pool_mutex); 6789 6790 if (!workqueue_freezing) 6791 goto out_unlock; 6792 6793 workqueue_freezing = false; 6794 6795 /* restore max_active and repopulate worklist */ 6796 list_for_each_entry(wq, &workqueues, list) { 6797 mutex_lock(&wq->mutex); 6798 wq_adjust_max_active(wq); 6799 mutex_unlock(&wq->mutex); 6800 } 6801 6802 out_unlock: 6803 mutex_unlock(&wq_pool_mutex); 6804 } 6805 #endif /* CONFIG_FREEZER */ 6806 6807 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 6808 { 6809 LIST_HEAD(ctxs); 6810 int ret = 0; 6811 struct workqueue_struct *wq; 6812 struct apply_wqattrs_ctx *ctx, *n; 6813 6814 lockdep_assert_held(&wq_pool_mutex); 6815 6816 list_for_each_entry(wq, &workqueues, list) { 6817 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING)) 6818 continue; 6819 6820 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 6821 if (IS_ERR(ctx)) { 6822 ret = PTR_ERR(ctx); 6823 break; 6824 } 6825 6826 list_add_tail(&ctx->list, &ctxs); 6827 } 6828 6829 list_for_each_entry_safe(ctx, n, &ctxs, list) { 6830 if (!ret) 6831 apply_wqattrs_commit(ctx); 6832 apply_wqattrs_cleanup(ctx); 6833 } 6834 6835 if (!ret) { 6836 mutex_lock(&wq_pool_attach_mutex); 6837 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 6838 mutex_unlock(&wq_pool_attach_mutex); 6839 } 6840 return ret; 6841 } 6842 6843 /** 6844 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask 6845 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask 6846 * 6847 * This function can be called from cpuset code to provide a set of isolated 6848 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold 6849 * either cpus_read_lock or cpus_write_lock. 6850 */ 6851 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) 6852 { 6853 cpumask_var_t cpumask; 6854 int ret = 0; 6855 6856 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6857 return -ENOMEM; 6858 6859 lockdep_assert_cpus_held(); 6860 mutex_lock(&wq_pool_mutex); 6861 6862 /* 6863 * If the operation fails, it will fall back to 6864 * wq_requested_unbound_cpumask which is initially set to 6865 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten 6866 * by any subsequent write to workqueue/cpumask sysfs file. 6867 */ 6868 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask)) 6869 cpumask_copy(cpumask, wq_requested_unbound_cpumask); 6870 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 6871 ret = workqueue_apply_unbound_cpumask(cpumask); 6872 6873 /* Save the current isolated cpumask & export it via sysfs */ 6874 if (!ret) 6875 cpumask_copy(wq_isolated_cpumask, exclude_cpumask); 6876 6877 mutex_unlock(&wq_pool_mutex); 6878 free_cpumask_var(cpumask); 6879 return ret; 6880 } 6881 6882 static int parse_affn_scope(const char *val) 6883 { 6884 int i; 6885 6886 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 6887 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 6888 return i; 6889 } 6890 return -EINVAL; 6891 } 6892 6893 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 6894 { 6895 struct workqueue_struct *wq; 6896 int affn, cpu; 6897 6898 affn = parse_affn_scope(val); 6899 if (affn < 0) 6900 return affn; 6901 if (affn == WQ_AFFN_DFL) 6902 return -EINVAL; 6903 6904 cpus_read_lock(); 6905 mutex_lock(&wq_pool_mutex); 6906 6907 wq_affn_dfl = affn; 6908 6909 list_for_each_entry(wq, &workqueues, list) { 6910 for_each_online_cpu(cpu) 6911 unbound_wq_update_pwq(wq, cpu); 6912 } 6913 6914 mutex_unlock(&wq_pool_mutex); 6915 cpus_read_unlock(); 6916 6917 return 0; 6918 } 6919 6920 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 6921 { 6922 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 6923 } 6924 6925 static const struct kernel_param_ops wq_affn_dfl_ops = { 6926 .set = wq_affn_dfl_set, 6927 .get = wq_affn_dfl_get, 6928 }; 6929 6930 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 6931 6932 #ifdef CONFIG_SYSFS 6933 /* 6934 * Workqueues with WQ_SYSFS flag set is visible to userland via 6935 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 6936 * following attributes. 6937 * 6938 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 6939 * max_active RW int : maximum number of in-flight work items 6940 * 6941 * Unbound workqueues have the following extra attributes. 6942 * 6943 * nice RW int : nice value of the workers 6944 * cpumask RW mask : bitmask of allowed CPUs for the workers 6945 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 6946 * affinity_strict RW bool : worker CPU affinity is strict 6947 */ 6948 struct wq_device { 6949 struct workqueue_struct *wq; 6950 struct device dev; 6951 }; 6952 6953 static struct workqueue_struct *dev_to_wq(struct device *dev) 6954 { 6955 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6956 6957 return wq_dev->wq; 6958 } 6959 6960 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 6961 char *buf) 6962 { 6963 struct workqueue_struct *wq = dev_to_wq(dev); 6964 6965 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 6966 } 6967 static DEVICE_ATTR_RO(per_cpu); 6968 6969 static ssize_t max_active_show(struct device *dev, 6970 struct device_attribute *attr, char *buf) 6971 { 6972 struct workqueue_struct *wq = dev_to_wq(dev); 6973 6974 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 6975 } 6976 6977 static ssize_t max_active_store(struct device *dev, 6978 struct device_attribute *attr, const char *buf, 6979 size_t count) 6980 { 6981 struct workqueue_struct *wq = dev_to_wq(dev); 6982 int val; 6983 6984 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 6985 return -EINVAL; 6986 6987 workqueue_set_max_active(wq, val); 6988 return count; 6989 } 6990 static DEVICE_ATTR_RW(max_active); 6991 6992 static struct attribute *wq_sysfs_attrs[] = { 6993 &dev_attr_per_cpu.attr, 6994 &dev_attr_max_active.attr, 6995 NULL, 6996 }; 6997 ATTRIBUTE_GROUPS(wq_sysfs); 6998 6999 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 7000 char *buf) 7001 { 7002 struct workqueue_struct *wq = dev_to_wq(dev); 7003 int written; 7004 7005 mutex_lock(&wq->mutex); 7006 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 7007 mutex_unlock(&wq->mutex); 7008 7009 return written; 7010 } 7011 7012 /* prepare workqueue_attrs for sysfs store operations */ 7013 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 7014 { 7015 struct workqueue_attrs *attrs; 7016 7017 lockdep_assert_held(&wq_pool_mutex); 7018 7019 attrs = alloc_workqueue_attrs(); 7020 if (!attrs) 7021 return NULL; 7022 7023 copy_workqueue_attrs(attrs, wq->unbound_attrs); 7024 return attrs; 7025 } 7026 7027 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 7028 const char *buf, size_t count) 7029 { 7030 struct workqueue_struct *wq = dev_to_wq(dev); 7031 struct workqueue_attrs *attrs; 7032 int ret = -ENOMEM; 7033 7034 apply_wqattrs_lock(); 7035 7036 attrs = wq_sysfs_prep_attrs(wq); 7037 if (!attrs) 7038 goto out_unlock; 7039 7040 if (sscanf(buf, "%d", &attrs->nice) == 1 && 7041 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 7042 ret = apply_workqueue_attrs_locked(wq, attrs); 7043 else 7044 ret = -EINVAL; 7045 7046 out_unlock: 7047 apply_wqattrs_unlock(); 7048 free_workqueue_attrs(attrs); 7049 return ret ?: count; 7050 } 7051 7052 static ssize_t wq_cpumask_show(struct device *dev, 7053 struct device_attribute *attr, char *buf) 7054 { 7055 struct workqueue_struct *wq = dev_to_wq(dev); 7056 int written; 7057 7058 mutex_lock(&wq->mutex); 7059 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 7060 cpumask_pr_args(wq->unbound_attrs->cpumask)); 7061 mutex_unlock(&wq->mutex); 7062 return written; 7063 } 7064 7065 static ssize_t wq_cpumask_store(struct device *dev, 7066 struct device_attribute *attr, 7067 const char *buf, size_t count) 7068 { 7069 struct workqueue_struct *wq = dev_to_wq(dev); 7070 struct workqueue_attrs *attrs; 7071 int ret = -ENOMEM; 7072 7073 apply_wqattrs_lock(); 7074 7075 attrs = wq_sysfs_prep_attrs(wq); 7076 if (!attrs) 7077 goto out_unlock; 7078 7079 ret = cpumask_parse(buf, attrs->cpumask); 7080 if (!ret) 7081 ret = apply_workqueue_attrs_locked(wq, attrs); 7082 7083 out_unlock: 7084 apply_wqattrs_unlock(); 7085 free_workqueue_attrs(attrs); 7086 return ret ?: count; 7087 } 7088 7089 static ssize_t wq_affn_scope_show(struct device *dev, 7090 struct device_attribute *attr, char *buf) 7091 { 7092 struct workqueue_struct *wq = dev_to_wq(dev); 7093 int written; 7094 7095 mutex_lock(&wq->mutex); 7096 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 7097 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 7098 wq_affn_names[WQ_AFFN_DFL], 7099 wq_affn_names[wq_affn_dfl]); 7100 else 7101 written = scnprintf(buf, PAGE_SIZE, "%s\n", 7102 wq_affn_names[wq->unbound_attrs->affn_scope]); 7103 mutex_unlock(&wq->mutex); 7104 7105 return written; 7106 } 7107 7108 static ssize_t wq_affn_scope_store(struct device *dev, 7109 struct device_attribute *attr, 7110 const char *buf, size_t count) 7111 { 7112 struct workqueue_struct *wq = dev_to_wq(dev); 7113 struct workqueue_attrs *attrs; 7114 int affn, ret = -ENOMEM; 7115 7116 affn = parse_affn_scope(buf); 7117 if (affn < 0) 7118 return affn; 7119 7120 apply_wqattrs_lock(); 7121 attrs = wq_sysfs_prep_attrs(wq); 7122 if (attrs) { 7123 attrs->affn_scope = affn; 7124 ret = apply_workqueue_attrs_locked(wq, attrs); 7125 } 7126 apply_wqattrs_unlock(); 7127 free_workqueue_attrs(attrs); 7128 return ret ?: count; 7129 } 7130 7131 static ssize_t wq_affinity_strict_show(struct device *dev, 7132 struct device_attribute *attr, char *buf) 7133 { 7134 struct workqueue_struct *wq = dev_to_wq(dev); 7135 7136 return scnprintf(buf, PAGE_SIZE, "%d\n", 7137 wq->unbound_attrs->affn_strict); 7138 } 7139 7140 static ssize_t wq_affinity_strict_store(struct device *dev, 7141 struct device_attribute *attr, 7142 const char *buf, size_t count) 7143 { 7144 struct workqueue_struct *wq = dev_to_wq(dev); 7145 struct workqueue_attrs *attrs; 7146 int v, ret = -ENOMEM; 7147 7148 if (sscanf(buf, "%d", &v) != 1) 7149 return -EINVAL; 7150 7151 apply_wqattrs_lock(); 7152 attrs = wq_sysfs_prep_attrs(wq); 7153 if (attrs) { 7154 attrs->affn_strict = (bool)v; 7155 ret = apply_workqueue_attrs_locked(wq, attrs); 7156 } 7157 apply_wqattrs_unlock(); 7158 free_workqueue_attrs(attrs); 7159 return ret ?: count; 7160 } 7161 7162 static struct device_attribute wq_sysfs_unbound_attrs[] = { 7163 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 7164 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 7165 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 7166 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 7167 __ATTR_NULL, 7168 }; 7169 7170 static const struct bus_type wq_subsys = { 7171 .name = "workqueue", 7172 .dev_groups = wq_sysfs_groups, 7173 }; 7174 7175 /** 7176 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 7177 * @cpumask: the cpumask to set 7178 * 7179 * The low-level workqueues cpumask is a global cpumask that limits 7180 * the affinity of all unbound workqueues. This function check the @cpumask 7181 * and apply it to all unbound workqueues and updates all pwqs of them. 7182 * 7183 * Return: 0 - Success 7184 * -EINVAL - Invalid @cpumask 7185 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 7186 */ 7187 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 7188 { 7189 int ret = -EINVAL; 7190 7191 /* 7192 * Not excluding isolated cpus on purpose. 7193 * If the user wishes to include them, we allow that. 7194 */ 7195 cpumask_and(cpumask, cpumask, cpu_possible_mask); 7196 if (!cpumask_empty(cpumask)) { 7197 ret = 0; 7198 apply_wqattrs_lock(); 7199 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 7200 ret = workqueue_apply_unbound_cpumask(cpumask); 7201 if (!ret) 7202 cpumask_copy(wq_requested_unbound_cpumask, cpumask); 7203 apply_wqattrs_unlock(); 7204 } 7205 7206 return ret; 7207 } 7208 7209 static ssize_t __wq_cpumask_show(struct device *dev, 7210 struct device_attribute *attr, char *buf, cpumask_var_t mask) 7211 { 7212 int written; 7213 7214 mutex_lock(&wq_pool_mutex); 7215 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 7216 mutex_unlock(&wq_pool_mutex); 7217 7218 return written; 7219 } 7220 7221 static ssize_t cpumask_requested_show(struct device *dev, 7222 struct device_attribute *attr, char *buf) 7223 { 7224 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask); 7225 } 7226 static DEVICE_ATTR_RO(cpumask_requested); 7227 7228 static ssize_t cpumask_isolated_show(struct device *dev, 7229 struct device_attribute *attr, char *buf) 7230 { 7231 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask); 7232 } 7233 static DEVICE_ATTR_RO(cpumask_isolated); 7234 7235 static ssize_t cpumask_show(struct device *dev, 7236 struct device_attribute *attr, char *buf) 7237 { 7238 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask); 7239 } 7240 7241 static ssize_t cpumask_store(struct device *dev, 7242 struct device_attribute *attr, const char *buf, size_t count) 7243 { 7244 cpumask_var_t cpumask; 7245 int ret; 7246 7247 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 7248 return -ENOMEM; 7249 7250 ret = cpumask_parse(buf, cpumask); 7251 if (!ret) 7252 ret = workqueue_set_unbound_cpumask(cpumask); 7253 7254 free_cpumask_var(cpumask); 7255 return ret ? ret : count; 7256 } 7257 static DEVICE_ATTR_RW(cpumask); 7258 7259 static struct attribute *wq_sysfs_cpumask_attrs[] = { 7260 &dev_attr_cpumask.attr, 7261 &dev_attr_cpumask_requested.attr, 7262 &dev_attr_cpumask_isolated.attr, 7263 NULL, 7264 }; 7265 ATTRIBUTE_GROUPS(wq_sysfs_cpumask); 7266 7267 static int __init wq_sysfs_init(void) 7268 { 7269 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups); 7270 } 7271 core_initcall(wq_sysfs_init); 7272 7273 static void wq_device_release(struct device *dev) 7274 { 7275 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7276 7277 kfree(wq_dev); 7278 } 7279 7280 /** 7281 * workqueue_sysfs_register - make a workqueue visible in sysfs 7282 * @wq: the workqueue to register 7283 * 7284 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 7285 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 7286 * which is the preferred method. 7287 * 7288 * Workqueue user should use this function directly iff it wants to apply 7289 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 7290 * apply_workqueue_attrs() may race against userland updating the 7291 * attributes. 7292 * 7293 * Return: 0 on success, -errno on failure. 7294 */ 7295 int workqueue_sysfs_register(struct workqueue_struct *wq) 7296 { 7297 struct wq_device *wq_dev; 7298 int ret; 7299 7300 /* 7301 * Adjusting max_active breaks ordering guarantee. Disallow exposing 7302 * ordered workqueues. 7303 */ 7304 if (WARN_ON(wq->flags & __WQ_ORDERED)) 7305 return -EINVAL; 7306 7307 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 7308 if (!wq_dev) 7309 return -ENOMEM; 7310 7311 wq_dev->wq = wq; 7312 wq_dev->dev.bus = &wq_subsys; 7313 wq_dev->dev.release = wq_device_release; 7314 dev_set_name(&wq_dev->dev, "%s", wq->name); 7315 7316 /* 7317 * unbound_attrs are created separately. Suppress uevent until 7318 * everything is ready. 7319 */ 7320 dev_set_uevent_suppress(&wq_dev->dev, true); 7321 7322 ret = device_register(&wq_dev->dev); 7323 if (ret) { 7324 put_device(&wq_dev->dev); 7325 wq->wq_dev = NULL; 7326 return ret; 7327 } 7328 7329 if (wq->flags & WQ_UNBOUND) { 7330 struct device_attribute *attr; 7331 7332 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 7333 ret = device_create_file(&wq_dev->dev, attr); 7334 if (ret) { 7335 device_unregister(&wq_dev->dev); 7336 wq->wq_dev = NULL; 7337 return ret; 7338 } 7339 } 7340 } 7341 7342 dev_set_uevent_suppress(&wq_dev->dev, false); 7343 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 7344 return 0; 7345 } 7346 7347 /** 7348 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 7349 * @wq: the workqueue to unregister 7350 * 7351 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 7352 */ 7353 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 7354 { 7355 struct wq_device *wq_dev = wq->wq_dev; 7356 7357 if (!wq->wq_dev) 7358 return; 7359 7360 wq->wq_dev = NULL; 7361 device_unregister(&wq_dev->dev); 7362 } 7363 #else /* CONFIG_SYSFS */ 7364 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 7365 #endif /* CONFIG_SYSFS */ 7366 7367 /* 7368 * Workqueue watchdog. 7369 * 7370 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 7371 * flush dependency, a concurrency managed work item which stays RUNNING 7372 * indefinitely. Workqueue stalls can be very difficult to debug as the 7373 * usual warning mechanisms don't trigger and internal workqueue state is 7374 * largely opaque. 7375 * 7376 * Workqueue watchdog monitors all worker pools periodically and dumps 7377 * state if some pools failed to make forward progress for a while where 7378 * forward progress is defined as the first item on ->worklist changing. 7379 * 7380 * This mechanism is controlled through the kernel parameter 7381 * "workqueue.watchdog_thresh" which can be updated at runtime through the 7382 * corresponding sysfs parameter file. 7383 */ 7384 #ifdef CONFIG_WQ_WATCHDOG 7385 7386 static unsigned long wq_watchdog_thresh = 30; 7387 static struct timer_list wq_watchdog_timer; 7388 7389 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 7390 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 7391 7392 /* 7393 * Show workers that might prevent the processing of pending work items. 7394 * The only candidates are CPU-bound workers in the running state. 7395 * Pending work items should be handled by another idle worker 7396 * in all other situations. 7397 */ 7398 static void show_cpu_pool_hog(struct worker_pool *pool) 7399 { 7400 struct worker *worker; 7401 unsigned long irq_flags; 7402 int bkt; 7403 7404 raw_spin_lock_irqsave(&pool->lock, irq_flags); 7405 7406 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 7407 if (task_is_running(worker->task)) { 7408 /* 7409 * Defer printing to avoid deadlocks in console 7410 * drivers that queue work while holding locks 7411 * also taken in their write paths. 7412 */ 7413 printk_deferred_enter(); 7414 7415 pr_info("pool %d:\n", pool->id); 7416 sched_show_task(worker->task); 7417 7418 printk_deferred_exit(); 7419 } 7420 } 7421 7422 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 7423 } 7424 7425 static void show_cpu_pools_hogs(void) 7426 { 7427 struct worker_pool *pool; 7428 int pi; 7429 7430 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 7431 7432 rcu_read_lock(); 7433 7434 for_each_pool(pool, pi) { 7435 if (pool->cpu_stall) 7436 show_cpu_pool_hog(pool); 7437 7438 } 7439 7440 rcu_read_unlock(); 7441 } 7442 7443 static void wq_watchdog_reset_touched(void) 7444 { 7445 int cpu; 7446 7447 wq_watchdog_touched = jiffies; 7448 for_each_possible_cpu(cpu) 7449 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7450 } 7451 7452 static void wq_watchdog_timer_fn(struct timer_list *unused) 7453 { 7454 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7455 bool lockup_detected = false; 7456 bool cpu_pool_stall = false; 7457 unsigned long now = jiffies; 7458 struct worker_pool *pool; 7459 int pi; 7460 7461 if (!thresh) 7462 return; 7463 7464 rcu_read_lock(); 7465 7466 for_each_pool(pool, pi) { 7467 unsigned long pool_ts, touched, ts; 7468 7469 pool->cpu_stall = false; 7470 if (list_empty(&pool->worklist)) 7471 continue; 7472 7473 /* 7474 * If a virtual machine is stopped by the host it can look to 7475 * the watchdog like a stall. 7476 */ 7477 kvm_check_and_clear_guest_paused(); 7478 7479 /* get the latest of pool and touched timestamps */ 7480 if (pool->cpu >= 0) 7481 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 7482 else 7483 touched = READ_ONCE(wq_watchdog_touched); 7484 pool_ts = READ_ONCE(pool->watchdog_ts); 7485 7486 if (time_after(pool_ts, touched)) 7487 ts = pool_ts; 7488 else 7489 ts = touched; 7490 7491 /* did we stall? */ 7492 if (time_after(now, ts + thresh)) { 7493 lockup_detected = true; 7494 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) { 7495 pool->cpu_stall = true; 7496 cpu_pool_stall = true; 7497 } 7498 pr_emerg("BUG: workqueue lockup - pool"); 7499 pr_cont_pool_info(pool); 7500 pr_cont(" stuck for %us!\n", 7501 jiffies_to_msecs(now - pool_ts) / 1000); 7502 } 7503 7504 7505 } 7506 7507 rcu_read_unlock(); 7508 7509 if (lockup_detected) 7510 show_all_workqueues(); 7511 7512 if (cpu_pool_stall) 7513 show_cpu_pools_hogs(); 7514 7515 wq_watchdog_reset_touched(); 7516 mod_timer(&wq_watchdog_timer, jiffies + thresh); 7517 } 7518 7519 notrace void wq_watchdog_touch(int cpu) 7520 { 7521 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7522 unsigned long touch_ts = READ_ONCE(wq_watchdog_touched); 7523 unsigned long now = jiffies; 7524 7525 if (cpu >= 0) 7526 per_cpu(wq_watchdog_touched_cpu, cpu) = now; 7527 else 7528 WARN_ONCE(1, "%s should be called with valid CPU", __func__); 7529 7530 /* Don't unnecessarily store to global cacheline */ 7531 if (time_after(now, touch_ts + thresh / 4)) 7532 WRITE_ONCE(wq_watchdog_touched, jiffies); 7533 } 7534 7535 static void wq_watchdog_set_thresh(unsigned long thresh) 7536 { 7537 wq_watchdog_thresh = 0; 7538 del_timer_sync(&wq_watchdog_timer); 7539 7540 if (thresh) { 7541 wq_watchdog_thresh = thresh; 7542 wq_watchdog_reset_touched(); 7543 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 7544 } 7545 } 7546 7547 static int wq_watchdog_param_set_thresh(const char *val, 7548 const struct kernel_param *kp) 7549 { 7550 unsigned long thresh; 7551 int ret; 7552 7553 ret = kstrtoul(val, 0, &thresh); 7554 if (ret) 7555 return ret; 7556 7557 if (system_wq) 7558 wq_watchdog_set_thresh(thresh); 7559 else 7560 wq_watchdog_thresh = thresh; 7561 7562 return 0; 7563 } 7564 7565 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 7566 .set = wq_watchdog_param_set_thresh, 7567 .get = param_get_ulong, 7568 }; 7569 7570 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 7571 0644); 7572 7573 static void wq_watchdog_init(void) 7574 { 7575 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 7576 wq_watchdog_set_thresh(wq_watchdog_thresh); 7577 } 7578 7579 #else /* CONFIG_WQ_WATCHDOG */ 7580 7581 static inline void wq_watchdog_init(void) { } 7582 7583 #endif /* CONFIG_WQ_WATCHDOG */ 7584 7585 static void bh_pool_kick_normal(struct irq_work *irq_work) 7586 { 7587 raise_softirq_irqoff(TASKLET_SOFTIRQ); 7588 } 7589 7590 static void bh_pool_kick_highpri(struct irq_work *irq_work) 7591 { 7592 raise_softirq_irqoff(HI_SOFTIRQ); 7593 } 7594 7595 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 7596 { 7597 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 7598 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 7599 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 7600 return; 7601 } 7602 7603 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 7604 } 7605 7606 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice) 7607 { 7608 BUG_ON(init_worker_pool(pool)); 7609 pool->cpu = cpu; 7610 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 7611 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 7612 pool->attrs->nice = nice; 7613 pool->attrs->affn_strict = true; 7614 pool->node = cpu_to_node(cpu); 7615 7616 /* alloc pool ID */ 7617 mutex_lock(&wq_pool_mutex); 7618 BUG_ON(worker_pool_assign_id(pool)); 7619 mutex_unlock(&wq_pool_mutex); 7620 } 7621 7622 /** 7623 * workqueue_init_early - early init for workqueue subsystem 7624 * 7625 * This is the first step of three-staged workqueue subsystem initialization and 7626 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 7627 * up. It sets up all the data structures and system workqueues and allows early 7628 * boot code to create workqueues and queue/cancel work items. Actual work item 7629 * execution starts only after kthreads can be created and scheduled right 7630 * before early initcalls. 7631 */ 7632 void __init workqueue_init_early(void) 7633 { 7634 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 7635 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 7636 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal, 7637 bh_pool_kick_highpri }; 7638 int i, cpu; 7639 7640 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 7641 7642 BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL)); 7643 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 7644 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); 7645 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); 7646 7647 cpumask_copy(wq_online_cpumask, cpu_online_mask); 7648 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 7649 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 7650 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 7651 if (!cpumask_empty(&wq_cmdline_cpumask)) 7652 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 7653 7654 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask); 7655 7656 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 7657 7658 unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs(); 7659 BUG_ON(!unbound_wq_update_pwq_attrs_buf); 7660 7661 /* 7662 * If nohz_full is enabled, set power efficient workqueue as unbound. 7663 * This allows workqueue items to be moved to HK CPUs. 7664 */ 7665 if (housekeeping_enabled(HK_TYPE_TICK)) 7666 wq_power_efficient = true; 7667 7668 /* initialize WQ_AFFN_SYSTEM pods */ 7669 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7670 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 7671 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7672 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 7673 7674 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 7675 7676 pt->nr_pods = 1; 7677 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 7678 pt->pod_node[0] = NUMA_NO_NODE; 7679 pt->cpu_pod[0] = 0; 7680 7681 /* initialize BH and CPU pools */ 7682 for_each_possible_cpu(cpu) { 7683 struct worker_pool *pool; 7684 7685 i = 0; 7686 for_each_bh_worker_pool(pool, cpu) { 7687 init_cpu_worker_pool(pool, cpu, std_nice[i]); 7688 pool->flags |= POOL_BH; 7689 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]); 7690 i++; 7691 } 7692 7693 i = 0; 7694 for_each_cpu_worker_pool(pool, cpu) 7695 init_cpu_worker_pool(pool, cpu, std_nice[i++]); 7696 } 7697 7698 /* create default unbound and ordered wq attrs */ 7699 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 7700 struct workqueue_attrs *attrs; 7701 7702 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7703 attrs->nice = std_nice[i]; 7704 unbound_std_wq_attrs[i] = attrs; 7705 7706 /* 7707 * An ordered wq should have only one pwq as ordering is 7708 * guaranteed by max_active which is enforced by pwqs. 7709 */ 7710 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7711 attrs->nice = std_nice[i]; 7712 attrs->ordered = true; 7713 ordered_wq_attrs[i] = attrs; 7714 } 7715 7716 system_wq = alloc_workqueue("events", 0, 0); 7717 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 7718 system_long_wq = alloc_workqueue("events_long", 0, 0); 7719 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 7720 WQ_MAX_ACTIVE); 7721 system_freezable_wq = alloc_workqueue("events_freezable", 7722 WQ_FREEZABLE, 0); 7723 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 7724 WQ_POWER_EFFICIENT, 0); 7725 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient", 7726 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 7727 0); 7728 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0); 7729 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri", 7730 WQ_BH | WQ_HIGHPRI, 0); 7731 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 7732 !system_unbound_wq || !system_freezable_wq || 7733 !system_power_efficient_wq || 7734 !system_freezable_power_efficient_wq || 7735 !system_bh_wq || !system_bh_highpri_wq); 7736 } 7737 7738 static void __init wq_cpu_intensive_thresh_init(void) 7739 { 7740 unsigned long thresh; 7741 unsigned long bogo; 7742 7743 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); 7744 BUG_ON(IS_ERR(pwq_release_worker)); 7745 7746 /* if the user set it to a specific value, keep it */ 7747 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 7748 return; 7749 7750 /* 7751 * The default of 10ms is derived from the fact that most modern (as of 7752 * 2023) processors can do a lot in 10ms and that it's just below what 7753 * most consider human-perceivable. However, the kernel also runs on a 7754 * lot slower CPUs including microcontrollers where the threshold is way 7755 * too low. 7756 * 7757 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 7758 * This is by no means accurate but it doesn't have to be. The mechanism 7759 * is still useful even when the threshold is fully scaled up. Also, as 7760 * the reports would usually be applicable to everyone, some machines 7761 * operating on longer thresholds won't significantly diminish their 7762 * usefulness. 7763 */ 7764 thresh = 10 * USEC_PER_MSEC; 7765 7766 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 7767 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 7768 if (bogo < 4000) 7769 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 7770 7771 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 7772 loops_per_jiffy, bogo, thresh); 7773 7774 wq_cpu_intensive_thresh_us = thresh; 7775 } 7776 7777 /** 7778 * workqueue_init - bring workqueue subsystem fully online 7779 * 7780 * This is the second step of three-staged workqueue subsystem initialization 7781 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 7782 * been created and work items queued on them, but there are no kworkers 7783 * executing the work items yet. Populate the worker pools with the initial 7784 * workers and enable future kworker creations. 7785 */ 7786 void __init workqueue_init(void) 7787 { 7788 struct workqueue_struct *wq; 7789 struct worker_pool *pool; 7790 int cpu, bkt; 7791 7792 wq_cpu_intensive_thresh_init(); 7793 7794 mutex_lock(&wq_pool_mutex); 7795 7796 /* 7797 * Per-cpu pools created earlier could be missing node hint. Fix them 7798 * up. Also, create a rescuer for workqueues that requested it. 7799 */ 7800 for_each_possible_cpu(cpu) { 7801 for_each_bh_worker_pool(pool, cpu) 7802 pool->node = cpu_to_node(cpu); 7803 for_each_cpu_worker_pool(pool, cpu) 7804 pool->node = cpu_to_node(cpu); 7805 } 7806 7807 list_for_each_entry(wq, &workqueues, list) { 7808 WARN(init_rescuer(wq), 7809 "workqueue: failed to create early rescuer for %s", 7810 wq->name); 7811 } 7812 7813 mutex_unlock(&wq_pool_mutex); 7814 7815 /* 7816 * Create the initial workers. A BH pool has one pseudo worker that 7817 * represents the shared BH execution context and thus doesn't get 7818 * affected by hotplug events. Create the BH pseudo workers for all 7819 * possible CPUs here. 7820 */ 7821 for_each_possible_cpu(cpu) 7822 for_each_bh_worker_pool(pool, cpu) 7823 BUG_ON(!create_worker(pool)); 7824 7825 for_each_online_cpu(cpu) { 7826 for_each_cpu_worker_pool(pool, cpu) { 7827 pool->flags &= ~POOL_DISASSOCIATED; 7828 BUG_ON(!create_worker(pool)); 7829 } 7830 } 7831 7832 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 7833 BUG_ON(!create_worker(pool)); 7834 7835 wq_online = true; 7836 wq_watchdog_init(); 7837 } 7838 7839 /* 7840 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 7841 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 7842 * and consecutive pod ID. The rest of @pt is initialized accordingly. 7843 */ 7844 static void __init init_pod_type(struct wq_pod_type *pt, 7845 bool (*cpus_share_pod)(int, int)) 7846 { 7847 int cur, pre, cpu, pod; 7848 7849 pt->nr_pods = 0; 7850 7851 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 7852 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7853 BUG_ON(!pt->cpu_pod); 7854 7855 for_each_possible_cpu(cur) { 7856 for_each_possible_cpu(pre) { 7857 if (pre >= cur) { 7858 pt->cpu_pod[cur] = pt->nr_pods++; 7859 break; 7860 } 7861 if (cpus_share_pod(cur, pre)) { 7862 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 7863 break; 7864 } 7865 } 7866 } 7867 7868 /* init the rest to match @pt->cpu_pod[] */ 7869 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7870 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 7871 BUG_ON(!pt->pod_cpus || !pt->pod_node); 7872 7873 for (pod = 0; pod < pt->nr_pods; pod++) 7874 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 7875 7876 for_each_possible_cpu(cpu) { 7877 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 7878 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 7879 } 7880 } 7881 7882 static bool __init cpus_dont_share(int cpu0, int cpu1) 7883 { 7884 return false; 7885 } 7886 7887 static bool __init cpus_share_smt(int cpu0, int cpu1) 7888 { 7889 #ifdef CONFIG_SCHED_SMT 7890 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 7891 #else 7892 return false; 7893 #endif 7894 } 7895 7896 static bool __init cpus_share_numa(int cpu0, int cpu1) 7897 { 7898 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 7899 } 7900 7901 /** 7902 * workqueue_init_topology - initialize CPU pods for unbound workqueues 7903 * 7904 * This is the third step of three-staged workqueue subsystem initialization and 7905 * invoked after SMP and topology information are fully initialized. It 7906 * initializes the unbound CPU pods accordingly. 7907 */ 7908 void __init workqueue_init_topology(void) 7909 { 7910 struct workqueue_struct *wq; 7911 int cpu; 7912 7913 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 7914 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 7915 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 7916 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 7917 7918 wq_topo_initialized = true; 7919 7920 mutex_lock(&wq_pool_mutex); 7921 7922 /* 7923 * Workqueues allocated earlier would have all CPUs sharing the default 7924 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue 7925 * and CPU combinations to apply per-pod sharing. 7926 */ 7927 list_for_each_entry(wq, &workqueues, list) { 7928 for_each_online_cpu(cpu) 7929 unbound_wq_update_pwq(wq, cpu); 7930 if (wq->flags & WQ_UNBOUND) { 7931 mutex_lock(&wq->mutex); 7932 wq_update_node_max_active(wq, -1); 7933 mutex_unlock(&wq->mutex); 7934 } 7935 } 7936 7937 mutex_unlock(&wq_pool_mutex); 7938 } 7939 7940 void __warn_flushing_systemwide_wq(void) 7941 { 7942 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 7943 dump_stack(); 7944 } 7945 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 7946 7947 static int __init workqueue_unbound_cpus_setup(char *str) 7948 { 7949 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 7950 cpumask_clear(&wq_cmdline_cpumask); 7951 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 7952 } 7953 7954 return 1; 7955 } 7956 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 7957