xref: /linux-6.15/kernel/workqueue.c (revision 4fafd5b0)
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <[email protected]>
12  *   Andrew Morton
13  *   Kai Petzke <[email protected]>
14  *   Theodore Ts'o <[email protected]>
15  *
16  * Made to use alloc_percpu by Christoph Lameter.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 #include <trace/workqueue.h>
37 
38 /*
39  * The per-CPU workqueue (if single thread, we always use the first
40  * possible cpu).
41  */
42 struct cpu_workqueue_struct {
43 
44 	spinlock_t lock;
45 
46 	struct list_head worklist;
47 	wait_queue_head_t more_work;
48 	struct work_struct *current_work;
49 
50 	struct workqueue_struct *wq;
51 	struct task_struct *thread;
52 
53 	int run_depth;		/* Detect run_workqueue() recursion depth */
54 } ____cacheline_aligned;
55 
56 /*
57  * The externally visible workqueue abstraction is an array of
58  * per-CPU workqueues:
59  */
60 struct workqueue_struct {
61 	struct cpu_workqueue_struct *cpu_wq;
62 	struct list_head list;
63 	const char *name;
64 	int singlethread;
65 	int freezeable;		/* Freeze threads during suspend */
66 	int rt;
67 #ifdef CONFIG_LOCKDEP
68 	struct lockdep_map lockdep_map;
69 #endif
70 };
71 
72 /* Serializes the accesses to the list of workqueues. */
73 static DEFINE_SPINLOCK(workqueue_lock);
74 static LIST_HEAD(workqueues);
75 
76 static int singlethread_cpu __read_mostly;
77 static const struct cpumask *cpu_singlethread_map __read_mostly;
78 /*
79  * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
80  * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
81  * which comes in between can't use for_each_online_cpu(). We could
82  * use cpu_possible_map, the cpumask below is more a documentation
83  * than optimization.
84  */
85 static cpumask_var_t cpu_populated_map __read_mostly;
86 
87 /* If it's single threaded, it isn't in the list of workqueues. */
88 static inline int is_wq_single_threaded(struct workqueue_struct *wq)
89 {
90 	return wq->singlethread;
91 }
92 
93 static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq)
94 {
95 	return is_wq_single_threaded(wq)
96 		? cpu_singlethread_map : cpu_populated_map;
97 }
98 
99 static
100 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
101 {
102 	if (unlikely(is_wq_single_threaded(wq)))
103 		cpu = singlethread_cpu;
104 	return per_cpu_ptr(wq->cpu_wq, cpu);
105 }
106 
107 /*
108  * Set the workqueue on which a work item is to be run
109  * - Must *only* be called if the pending flag is set
110  */
111 static inline void set_wq_data(struct work_struct *work,
112 				struct cpu_workqueue_struct *cwq)
113 {
114 	unsigned long new;
115 
116 	BUG_ON(!work_pending(work));
117 
118 	new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
119 	new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
120 	atomic_long_set(&work->data, new);
121 }
122 
123 static inline
124 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
125 {
126 	return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
127 }
128 
129 DEFINE_TRACE(workqueue_insertion);
130 
131 static void insert_work(struct cpu_workqueue_struct *cwq,
132 			struct work_struct *work, struct list_head *head)
133 {
134 	trace_workqueue_insertion(cwq->thread, work);
135 
136 	set_wq_data(work, cwq);
137 	/*
138 	 * Ensure that we get the right work->data if we see the
139 	 * result of list_add() below, see try_to_grab_pending().
140 	 */
141 	smp_wmb();
142 	list_add_tail(&work->entry, head);
143 	wake_up(&cwq->more_work);
144 }
145 
146 static void __queue_work(struct cpu_workqueue_struct *cwq,
147 			 struct work_struct *work)
148 {
149 	unsigned long flags;
150 
151 	spin_lock_irqsave(&cwq->lock, flags);
152 	insert_work(cwq, work, &cwq->worklist);
153 	spin_unlock_irqrestore(&cwq->lock, flags);
154 }
155 
156 /**
157  * queue_work - queue work on a workqueue
158  * @wq: workqueue to use
159  * @work: work to queue
160  *
161  * Returns 0 if @work was already on a queue, non-zero otherwise.
162  *
163  * We queue the work to the CPU on which it was submitted, but if the CPU dies
164  * it can be processed by another CPU.
165  */
166 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
167 {
168 	int ret;
169 
170 	ret = queue_work_on(get_cpu(), wq, work);
171 	put_cpu();
172 
173 	return ret;
174 }
175 EXPORT_SYMBOL_GPL(queue_work);
176 
177 /**
178  * queue_work_on - queue work on specific cpu
179  * @cpu: CPU number to execute work on
180  * @wq: workqueue to use
181  * @work: work to queue
182  *
183  * Returns 0 if @work was already on a queue, non-zero otherwise.
184  *
185  * We queue the work to a specific CPU, the caller must ensure it
186  * can't go away.
187  */
188 int
189 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
190 {
191 	int ret = 0;
192 
193 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
194 		BUG_ON(!list_empty(&work->entry));
195 		__queue_work(wq_per_cpu(wq, cpu), work);
196 		ret = 1;
197 	}
198 	return ret;
199 }
200 EXPORT_SYMBOL_GPL(queue_work_on);
201 
202 static void delayed_work_timer_fn(unsigned long __data)
203 {
204 	struct delayed_work *dwork = (struct delayed_work *)__data;
205 	struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
206 	struct workqueue_struct *wq = cwq->wq;
207 
208 	__queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
209 }
210 
211 /**
212  * queue_delayed_work - queue work on a workqueue after delay
213  * @wq: workqueue to use
214  * @dwork: delayable work to queue
215  * @delay: number of jiffies to wait before queueing
216  *
217  * Returns 0 if @work was already on a queue, non-zero otherwise.
218  */
219 int queue_delayed_work(struct workqueue_struct *wq,
220 			struct delayed_work *dwork, unsigned long delay)
221 {
222 	if (delay == 0)
223 		return queue_work(wq, &dwork->work);
224 
225 	return queue_delayed_work_on(-1, wq, dwork, delay);
226 }
227 EXPORT_SYMBOL_GPL(queue_delayed_work);
228 
229 /**
230  * queue_delayed_work_on - queue work on specific CPU after delay
231  * @cpu: CPU number to execute work on
232  * @wq: workqueue to use
233  * @dwork: work to queue
234  * @delay: number of jiffies to wait before queueing
235  *
236  * Returns 0 if @work was already on a queue, non-zero otherwise.
237  */
238 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
239 			struct delayed_work *dwork, unsigned long delay)
240 {
241 	int ret = 0;
242 	struct timer_list *timer = &dwork->timer;
243 	struct work_struct *work = &dwork->work;
244 
245 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
246 		BUG_ON(timer_pending(timer));
247 		BUG_ON(!list_empty(&work->entry));
248 
249 		timer_stats_timer_set_start_info(&dwork->timer);
250 
251 		/* This stores cwq for the moment, for the timer_fn */
252 		set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
253 		timer->expires = jiffies + delay;
254 		timer->data = (unsigned long)dwork;
255 		timer->function = delayed_work_timer_fn;
256 
257 		if (unlikely(cpu >= 0))
258 			add_timer_on(timer, cpu);
259 		else
260 			add_timer(timer);
261 		ret = 1;
262 	}
263 	return ret;
264 }
265 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
266 
267 DEFINE_TRACE(workqueue_execution);
268 
269 static void run_workqueue(struct cpu_workqueue_struct *cwq)
270 {
271 	spin_lock_irq(&cwq->lock);
272 	cwq->run_depth++;
273 	if (cwq->run_depth > 3) {
274 		/* morton gets to eat his hat */
275 		printk("%s: recursion depth exceeded: %d\n",
276 			__func__, cwq->run_depth);
277 		dump_stack();
278 	}
279 	while (!list_empty(&cwq->worklist)) {
280 		struct work_struct *work = list_entry(cwq->worklist.next,
281 						struct work_struct, entry);
282 		work_func_t f = work->func;
283 #ifdef CONFIG_LOCKDEP
284 		/*
285 		 * It is permissible to free the struct work_struct
286 		 * from inside the function that is called from it,
287 		 * this we need to take into account for lockdep too.
288 		 * To avoid bogus "held lock freed" warnings as well
289 		 * as problems when looking into work->lockdep_map,
290 		 * make a copy and use that here.
291 		 */
292 		struct lockdep_map lockdep_map = work->lockdep_map;
293 #endif
294 		trace_workqueue_execution(cwq->thread, work);
295 		cwq->current_work = work;
296 		list_del_init(cwq->worklist.next);
297 		spin_unlock_irq(&cwq->lock);
298 
299 		BUG_ON(get_wq_data(work) != cwq);
300 		work_clear_pending(work);
301 		lock_map_acquire(&cwq->wq->lockdep_map);
302 		lock_map_acquire(&lockdep_map);
303 		f(work);
304 		lock_map_release(&lockdep_map);
305 		lock_map_release(&cwq->wq->lockdep_map);
306 
307 		if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
308 			printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
309 					"%s/0x%08x/%d\n",
310 					current->comm, preempt_count(),
311 				       	task_pid_nr(current));
312 			printk(KERN_ERR "    last function: ");
313 			print_symbol("%s\n", (unsigned long)f);
314 			debug_show_held_locks(current);
315 			dump_stack();
316 		}
317 
318 		spin_lock_irq(&cwq->lock);
319 		cwq->current_work = NULL;
320 	}
321 	cwq->run_depth--;
322 	spin_unlock_irq(&cwq->lock);
323 }
324 
325 static int worker_thread(void *__cwq)
326 {
327 	struct cpu_workqueue_struct *cwq = __cwq;
328 	DEFINE_WAIT(wait);
329 
330 	if (cwq->wq->freezeable)
331 		set_freezable();
332 
333 	set_user_nice(current, -5);
334 
335 	for (;;) {
336 		prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
337 		if (!freezing(current) &&
338 		    !kthread_should_stop() &&
339 		    list_empty(&cwq->worklist))
340 			schedule();
341 		finish_wait(&cwq->more_work, &wait);
342 
343 		try_to_freeze();
344 
345 		if (kthread_should_stop())
346 			break;
347 
348 		run_workqueue(cwq);
349 	}
350 
351 	return 0;
352 }
353 
354 struct wq_barrier {
355 	struct work_struct	work;
356 	struct completion	done;
357 };
358 
359 static void wq_barrier_func(struct work_struct *work)
360 {
361 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
362 	complete(&barr->done);
363 }
364 
365 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
366 			struct wq_barrier *barr, struct list_head *head)
367 {
368 	INIT_WORK(&barr->work, wq_barrier_func);
369 	__set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
370 
371 	init_completion(&barr->done);
372 
373 	insert_work(cwq, &barr->work, head);
374 }
375 
376 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
377 {
378 	int active;
379 
380 	if (cwq->thread == current) {
381 		/*
382 		 * Probably keventd trying to flush its own queue. So simply run
383 		 * it by hand rather than deadlocking.
384 		 */
385 		run_workqueue(cwq);
386 		active = 1;
387 	} else {
388 		struct wq_barrier barr;
389 
390 		active = 0;
391 		spin_lock_irq(&cwq->lock);
392 		if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
393 			insert_wq_barrier(cwq, &barr, &cwq->worklist);
394 			active = 1;
395 		}
396 		spin_unlock_irq(&cwq->lock);
397 
398 		if (active)
399 			wait_for_completion(&barr.done);
400 	}
401 
402 	return active;
403 }
404 
405 /**
406  * flush_workqueue - ensure that any scheduled work has run to completion.
407  * @wq: workqueue to flush
408  *
409  * Forces execution of the workqueue and blocks until its completion.
410  * This is typically used in driver shutdown handlers.
411  *
412  * We sleep until all works which were queued on entry have been handled,
413  * but we are not livelocked by new incoming ones.
414  *
415  * This function used to run the workqueues itself.  Now we just wait for the
416  * helper threads to do it.
417  */
418 void flush_workqueue(struct workqueue_struct *wq)
419 {
420 	const struct cpumask *cpu_map = wq_cpu_map(wq);
421 	int cpu;
422 
423 	might_sleep();
424 	lock_map_acquire(&wq->lockdep_map);
425 	lock_map_release(&wq->lockdep_map);
426 	for_each_cpu_mask_nr(cpu, *cpu_map)
427 		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
428 }
429 EXPORT_SYMBOL_GPL(flush_workqueue);
430 
431 /**
432  * flush_work - block until a work_struct's callback has terminated
433  * @work: the work which is to be flushed
434  *
435  * Returns false if @work has already terminated.
436  *
437  * It is expected that, prior to calling flush_work(), the caller has
438  * arranged for the work to not be requeued, otherwise it doesn't make
439  * sense to use this function.
440  */
441 int flush_work(struct work_struct *work)
442 {
443 	struct cpu_workqueue_struct *cwq;
444 	struct list_head *prev;
445 	struct wq_barrier barr;
446 
447 	might_sleep();
448 	cwq = get_wq_data(work);
449 	if (!cwq)
450 		return 0;
451 
452 	lock_map_acquire(&cwq->wq->lockdep_map);
453 	lock_map_release(&cwq->wq->lockdep_map);
454 
455 	prev = NULL;
456 	spin_lock_irq(&cwq->lock);
457 	if (!list_empty(&work->entry)) {
458 		/*
459 		 * See the comment near try_to_grab_pending()->smp_rmb().
460 		 * If it was re-queued under us we are not going to wait.
461 		 */
462 		smp_rmb();
463 		if (unlikely(cwq != get_wq_data(work)))
464 			goto out;
465 		prev = &work->entry;
466 	} else {
467 		if (cwq->current_work != work)
468 			goto out;
469 		prev = &cwq->worklist;
470 	}
471 	insert_wq_barrier(cwq, &barr, prev->next);
472 out:
473 	spin_unlock_irq(&cwq->lock);
474 	if (!prev)
475 		return 0;
476 
477 	wait_for_completion(&barr.done);
478 	return 1;
479 }
480 EXPORT_SYMBOL_GPL(flush_work);
481 
482 /*
483  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
484  * so this work can't be re-armed in any way.
485  */
486 static int try_to_grab_pending(struct work_struct *work)
487 {
488 	struct cpu_workqueue_struct *cwq;
489 	int ret = -1;
490 
491 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
492 		return 0;
493 
494 	/*
495 	 * The queueing is in progress, or it is already queued. Try to
496 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
497 	 */
498 
499 	cwq = get_wq_data(work);
500 	if (!cwq)
501 		return ret;
502 
503 	spin_lock_irq(&cwq->lock);
504 	if (!list_empty(&work->entry)) {
505 		/*
506 		 * This work is queued, but perhaps we locked the wrong cwq.
507 		 * In that case we must see the new value after rmb(), see
508 		 * insert_work()->wmb().
509 		 */
510 		smp_rmb();
511 		if (cwq == get_wq_data(work)) {
512 			list_del_init(&work->entry);
513 			ret = 1;
514 		}
515 	}
516 	spin_unlock_irq(&cwq->lock);
517 
518 	return ret;
519 }
520 
521 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
522 				struct work_struct *work)
523 {
524 	struct wq_barrier barr;
525 	int running = 0;
526 
527 	spin_lock_irq(&cwq->lock);
528 	if (unlikely(cwq->current_work == work)) {
529 		insert_wq_barrier(cwq, &barr, cwq->worklist.next);
530 		running = 1;
531 	}
532 	spin_unlock_irq(&cwq->lock);
533 
534 	if (unlikely(running))
535 		wait_for_completion(&barr.done);
536 }
537 
538 static void wait_on_work(struct work_struct *work)
539 {
540 	struct cpu_workqueue_struct *cwq;
541 	struct workqueue_struct *wq;
542 	const struct cpumask *cpu_map;
543 	int cpu;
544 
545 	might_sleep();
546 
547 	lock_map_acquire(&work->lockdep_map);
548 	lock_map_release(&work->lockdep_map);
549 
550 	cwq = get_wq_data(work);
551 	if (!cwq)
552 		return;
553 
554 	wq = cwq->wq;
555 	cpu_map = wq_cpu_map(wq);
556 
557 	for_each_cpu_mask_nr(cpu, *cpu_map)
558 		wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
559 }
560 
561 static int __cancel_work_timer(struct work_struct *work,
562 				struct timer_list* timer)
563 {
564 	int ret;
565 
566 	do {
567 		ret = (timer && likely(del_timer(timer)));
568 		if (!ret)
569 			ret = try_to_grab_pending(work);
570 		wait_on_work(work);
571 	} while (unlikely(ret < 0));
572 
573 	work_clear_pending(work);
574 	return ret;
575 }
576 
577 /**
578  * cancel_work_sync - block until a work_struct's callback has terminated
579  * @work: the work which is to be flushed
580  *
581  * Returns true if @work was pending.
582  *
583  * cancel_work_sync() will cancel the work if it is queued. If the work's
584  * callback appears to be running, cancel_work_sync() will block until it
585  * has completed.
586  *
587  * It is possible to use this function if the work re-queues itself. It can
588  * cancel the work even if it migrates to another workqueue, however in that
589  * case it only guarantees that work->func() has completed on the last queued
590  * workqueue.
591  *
592  * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
593  * pending, otherwise it goes into a busy-wait loop until the timer expires.
594  *
595  * The caller must ensure that workqueue_struct on which this work was last
596  * queued can't be destroyed before this function returns.
597  */
598 int cancel_work_sync(struct work_struct *work)
599 {
600 	return __cancel_work_timer(work, NULL);
601 }
602 EXPORT_SYMBOL_GPL(cancel_work_sync);
603 
604 /**
605  * cancel_delayed_work_sync - reliably kill off a delayed work.
606  * @dwork: the delayed work struct
607  *
608  * Returns true if @dwork was pending.
609  *
610  * It is possible to use this function if @dwork rearms itself via queue_work()
611  * or queue_delayed_work(). See also the comment for cancel_work_sync().
612  */
613 int cancel_delayed_work_sync(struct delayed_work *dwork)
614 {
615 	return __cancel_work_timer(&dwork->work, &dwork->timer);
616 }
617 EXPORT_SYMBOL(cancel_delayed_work_sync);
618 
619 static struct workqueue_struct *keventd_wq __read_mostly;
620 
621 /**
622  * schedule_work - put work task in global workqueue
623  * @work: job to be done
624  *
625  * This puts a job in the kernel-global workqueue.
626  */
627 int schedule_work(struct work_struct *work)
628 {
629 	return queue_work(keventd_wq, work);
630 }
631 EXPORT_SYMBOL(schedule_work);
632 
633 /*
634  * schedule_work_on - put work task on a specific cpu
635  * @cpu: cpu to put the work task on
636  * @work: job to be done
637  *
638  * This puts a job on a specific cpu
639  */
640 int schedule_work_on(int cpu, struct work_struct *work)
641 {
642 	return queue_work_on(cpu, keventd_wq, work);
643 }
644 EXPORT_SYMBOL(schedule_work_on);
645 
646 /**
647  * schedule_delayed_work - put work task in global workqueue after delay
648  * @dwork: job to be done
649  * @delay: number of jiffies to wait or 0 for immediate execution
650  *
651  * After waiting for a given time this puts a job in the kernel-global
652  * workqueue.
653  */
654 int schedule_delayed_work(struct delayed_work *dwork,
655 					unsigned long delay)
656 {
657 	return queue_delayed_work(keventd_wq, dwork, delay);
658 }
659 EXPORT_SYMBOL(schedule_delayed_work);
660 
661 /**
662  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
663  * @cpu: cpu to use
664  * @dwork: job to be done
665  * @delay: number of jiffies to wait
666  *
667  * After waiting for a given time this puts a job in the kernel-global
668  * workqueue on the specified CPU.
669  */
670 int schedule_delayed_work_on(int cpu,
671 			struct delayed_work *dwork, unsigned long delay)
672 {
673 	return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
674 }
675 EXPORT_SYMBOL(schedule_delayed_work_on);
676 
677 /**
678  * schedule_on_each_cpu - call a function on each online CPU from keventd
679  * @func: the function to call
680  *
681  * Returns zero on success.
682  * Returns -ve errno on failure.
683  *
684  * schedule_on_each_cpu() is very slow.
685  */
686 int schedule_on_each_cpu(work_func_t func)
687 {
688 	int cpu;
689 	struct work_struct *works;
690 
691 	works = alloc_percpu(struct work_struct);
692 	if (!works)
693 		return -ENOMEM;
694 
695 	get_online_cpus();
696 	for_each_online_cpu(cpu) {
697 		struct work_struct *work = per_cpu_ptr(works, cpu);
698 
699 		INIT_WORK(work, func);
700 		schedule_work_on(cpu, work);
701 	}
702 	for_each_online_cpu(cpu)
703 		flush_work(per_cpu_ptr(works, cpu));
704 	put_online_cpus();
705 	free_percpu(works);
706 	return 0;
707 }
708 
709 void flush_scheduled_work(void)
710 {
711 	flush_workqueue(keventd_wq);
712 }
713 EXPORT_SYMBOL(flush_scheduled_work);
714 
715 /**
716  * execute_in_process_context - reliably execute the routine with user context
717  * @fn:		the function to execute
718  * @ew:		guaranteed storage for the execute work structure (must
719  *		be available when the work executes)
720  *
721  * Executes the function immediately if process context is available,
722  * otherwise schedules the function for delayed execution.
723  *
724  * Returns:	0 - function was executed
725  *		1 - function was scheduled for execution
726  */
727 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
728 {
729 	if (!in_interrupt()) {
730 		fn(&ew->work);
731 		return 0;
732 	}
733 
734 	INIT_WORK(&ew->work, fn);
735 	schedule_work(&ew->work);
736 
737 	return 1;
738 }
739 EXPORT_SYMBOL_GPL(execute_in_process_context);
740 
741 int keventd_up(void)
742 {
743 	return keventd_wq != NULL;
744 }
745 
746 int current_is_keventd(void)
747 {
748 	struct cpu_workqueue_struct *cwq;
749 	int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
750 	int ret = 0;
751 
752 	BUG_ON(!keventd_wq);
753 
754 	cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
755 	if (current == cwq->thread)
756 		ret = 1;
757 
758 	return ret;
759 
760 }
761 
762 static struct cpu_workqueue_struct *
763 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
764 {
765 	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
766 
767 	cwq->wq = wq;
768 	spin_lock_init(&cwq->lock);
769 	INIT_LIST_HEAD(&cwq->worklist);
770 	init_waitqueue_head(&cwq->more_work);
771 
772 	return cwq;
773 }
774 
775 DEFINE_TRACE(workqueue_creation);
776 
777 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
778 {
779 	struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
780 	struct workqueue_struct *wq = cwq->wq;
781 	const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d";
782 	struct task_struct *p;
783 
784 	p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
785 	/*
786 	 * Nobody can add the work_struct to this cwq,
787 	 *	if (caller is __create_workqueue)
788 	 *		nobody should see this wq
789 	 *	else // caller is CPU_UP_PREPARE
790 	 *		cpu is not on cpu_online_map
791 	 * so we can abort safely.
792 	 */
793 	if (IS_ERR(p))
794 		return PTR_ERR(p);
795 	if (cwq->wq->rt)
796 		sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
797 	cwq->thread = p;
798 
799 	trace_workqueue_creation(cwq->thread, cpu);
800 
801 	return 0;
802 }
803 
804 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
805 {
806 	struct task_struct *p = cwq->thread;
807 
808 	if (p != NULL) {
809 		if (cpu >= 0)
810 			kthread_bind(p, cpu);
811 		wake_up_process(p);
812 	}
813 }
814 
815 struct workqueue_struct *__create_workqueue_key(const char *name,
816 						int singlethread,
817 						int freezeable,
818 						int rt,
819 						struct lock_class_key *key,
820 						const char *lock_name)
821 {
822 	struct workqueue_struct *wq;
823 	struct cpu_workqueue_struct *cwq;
824 	int err = 0, cpu;
825 
826 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
827 	if (!wq)
828 		return NULL;
829 
830 	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
831 	if (!wq->cpu_wq) {
832 		kfree(wq);
833 		return NULL;
834 	}
835 
836 	wq->name = name;
837 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
838 	wq->singlethread = singlethread;
839 	wq->freezeable = freezeable;
840 	wq->rt = rt;
841 	INIT_LIST_HEAD(&wq->list);
842 
843 	if (singlethread) {
844 		cwq = init_cpu_workqueue(wq, singlethread_cpu);
845 		err = create_workqueue_thread(cwq, singlethread_cpu);
846 		start_workqueue_thread(cwq, -1);
847 	} else {
848 		cpu_maps_update_begin();
849 		/*
850 		 * We must place this wq on list even if the code below fails.
851 		 * cpu_down(cpu) can remove cpu from cpu_populated_map before
852 		 * destroy_workqueue() takes the lock, in that case we leak
853 		 * cwq[cpu]->thread.
854 		 */
855 		spin_lock(&workqueue_lock);
856 		list_add(&wq->list, &workqueues);
857 		spin_unlock(&workqueue_lock);
858 		/*
859 		 * We must initialize cwqs for each possible cpu even if we
860 		 * are going to call destroy_workqueue() finally. Otherwise
861 		 * cpu_up() can hit the uninitialized cwq once we drop the
862 		 * lock.
863 		 */
864 		for_each_possible_cpu(cpu) {
865 			cwq = init_cpu_workqueue(wq, cpu);
866 			if (err || !cpu_online(cpu))
867 				continue;
868 			err = create_workqueue_thread(cwq, cpu);
869 			start_workqueue_thread(cwq, cpu);
870 		}
871 		cpu_maps_update_done();
872 	}
873 
874 	if (err) {
875 		destroy_workqueue(wq);
876 		wq = NULL;
877 	}
878 	return wq;
879 }
880 EXPORT_SYMBOL_GPL(__create_workqueue_key);
881 
882 DEFINE_TRACE(workqueue_destruction);
883 
884 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
885 {
886 	/*
887 	 * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
888 	 * cpu_add_remove_lock protects cwq->thread.
889 	 */
890 	if (cwq->thread == NULL)
891 		return;
892 
893 	lock_map_acquire(&cwq->wq->lockdep_map);
894 	lock_map_release(&cwq->wq->lockdep_map);
895 
896 	flush_cpu_workqueue(cwq);
897 	/*
898 	 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
899 	 * a concurrent flush_workqueue() can insert a barrier after us.
900 	 * However, in that case run_workqueue() won't return and check
901 	 * kthread_should_stop() until it flushes all work_struct's.
902 	 * When ->worklist becomes empty it is safe to exit because no
903 	 * more work_structs can be queued on this cwq: flush_workqueue
904 	 * checks list_empty(), and a "normal" queue_work() can't use
905 	 * a dead CPU.
906 	 */
907 	trace_workqueue_destruction(cwq->thread);
908 	kthread_stop(cwq->thread);
909 	cwq->thread = NULL;
910 }
911 
912 /**
913  * destroy_workqueue - safely terminate a workqueue
914  * @wq: target workqueue
915  *
916  * Safely destroy a workqueue. All work currently pending will be done first.
917  */
918 void destroy_workqueue(struct workqueue_struct *wq)
919 {
920 	const struct cpumask *cpu_map = wq_cpu_map(wq);
921 	int cpu;
922 
923 	cpu_maps_update_begin();
924 	spin_lock(&workqueue_lock);
925 	list_del(&wq->list);
926 	spin_unlock(&workqueue_lock);
927 
928 	for_each_cpu_mask_nr(cpu, *cpu_map)
929 		cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
930  	cpu_maps_update_done();
931 
932 	free_percpu(wq->cpu_wq);
933 	kfree(wq);
934 }
935 EXPORT_SYMBOL_GPL(destroy_workqueue);
936 
937 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
938 						unsigned long action,
939 						void *hcpu)
940 {
941 	unsigned int cpu = (unsigned long)hcpu;
942 	struct cpu_workqueue_struct *cwq;
943 	struct workqueue_struct *wq;
944 	int ret = NOTIFY_OK;
945 
946 	action &= ~CPU_TASKS_FROZEN;
947 
948 	switch (action) {
949 	case CPU_UP_PREPARE:
950 		cpumask_set_cpu(cpu, cpu_populated_map);
951 	}
952 undo:
953 	list_for_each_entry(wq, &workqueues, list) {
954 		cwq = per_cpu_ptr(wq->cpu_wq, cpu);
955 
956 		switch (action) {
957 		case CPU_UP_PREPARE:
958 			if (!create_workqueue_thread(cwq, cpu))
959 				break;
960 			printk(KERN_ERR "workqueue [%s] for %i failed\n",
961 				wq->name, cpu);
962 			action = CPU_UP_CANCELED;
963 			ret = NOTIFY_BAD;
964 			goto undo;
965 
966 		case CPU_ONLINE:
967 			start_workqueue_thread(cwq, cpu);
968 			break;
969 
970 		case CPU_UP_CANCELED:
971 			start_workqueue_thread(cwq, -1);
972 		case CPU_POST_DEAD:
973 			cleanup_workqueue_thread(cwq);
974 			break;
975 		}
976 	}
977 
978 	switch (action) {
979 	case CPU_UP_CANCELED:
980 	case CPU_POST_DEAD:
981 		cpumask_clear_cpu(cpu, cpu_populated_map);
982 	}
983 
984 	return ret;
985 }
986 
987 #ifdef CONFIG_SMP
988 static struct workqueue_struct *work_on_cpu_wq __read_mostly;
989 
990 struct work_for_cpu {
991 	struct work_struct work;
992 	long (*fn)(void *);
993 	void *arg;
994 	long ret;
995 };
996 
997 static void do_work_for_cpu(struct work_struct *w)
998 {
999 	struct work_for_cpu *wfc = container_of(w, struct work_for_cpu, work);
1000 
1001 	wfc->ret = wfc->fn(wfc->arg);
1002 }
1003 
1004 /**
1005  * work_on_cpu - run a function in user context on a particular cpu
1006  * @cpu: the cpu to run on
1007  * @fn: the function to run
1008  * @arg: the function arg
1009  *
1010  * This will return the value @fn returns.
1011  * It is up to the caller to ensure that the cpu doesn't go offline.
1012  */
1013 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
1014 {
1015 	struct work_for_cpu wfc;
1016 
1017 	INIT_WORK(&wfc.work, do_work_for_cpu);
1018 	wfc.fn = fn;
1019 	wfc.arg = arg;
1020 	queue_work_on(cpu, work_on_cpu_wq, &wfc.work);
1021 	flush_work(&wfc.work);
1022 
1023 	return wfc.ret;
1024 }
1025 EXPORT_SYMBOL_GPL(work_on_cpu);
1026 #endif /* CONFIG_SMP */
1027 
1028 void __init init_workqueues(void)
1029 {
1030 	alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL);
1031 
1032 	cpumask_copy(cpu_populated_map, cpu_online_mask);
1033 	singlethread_cpu = cpumask_first(cpu_possible_mask);
1034 	cpu_singlethread_map = cpumask_of(singlethread_cpu);
1035 	hotcpu_notifier(workqueue_cpu_callback, 0);
1036 	keventd_wq = create_workqueue("events");
1037 	BUG_ON(!keventd_wq);
1038 #ifdef CONFIG_SMP
1039 	work_on_cpu_wq = create_workqueue("work_on_cpu");
1040 	BUG_ON(!work_on_cpu_wq);
1041 #endif
1042 }
1043