1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <[email protected]> 9 * Andrew Morton 10 * Kai Petzke <[email protected]> 11 * Theodore Ts'o <[email protected]> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <[email protected]> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/interrupt.h> 33 #include <linux/signal.h> 34 #include <linux/completion.h> 35 #include <linux/workqueue.h> 36 #include <linux/slab.h> 37 #include <linux/cpu.h> 38 #include <linux/notifier.h> 39 #include <linux/kthread.h> 40 #include <linux/hardirq.h> 41 #include <linux/mempolicy.h> 42 #include <linux/freezer.h> 43 #include <linux/debug_locks.h> 44 #include <linux/lockdep.h> 45 #include <linux/idr.h> 46 #include <linux/jhash.h> 47 #include <linux/hashtable.h> 48 #include <linux/rculist.h> 49 #include <linux/nodemask.h> 50 #include <linux/moduleparam.h> 51 #include <linux/uaccess.h> 52 #include <linux/sched/isolation.h> 53 #include <linux/sched/debug.h> 54 #include <linux/nmi.h> 55 #include <linux/kvm_para.h> 56 #include <linux/delay.h> 57 58 #include "workqueue_internal.h" 59 60 enum worker_pool_flags { 61 /* 62 * worker_pool flags 63 * 64 * A bound pool is either associated or disassociated with its CPU. 65 * While associated (!DISASSOCIATED), all workers are bound to the 66 * CPU and none has %WORKER_UNBOUND set and concurrency management 67 * is in effect. 68 * 69 * While DISASSOCIATED, the cpu may be offline and all workers have 70 * %WORKER_UNBOUND set and concurrency management disabled, and may 71 * be executing on any CPU. The pool behaves as an unbound one. 72 * 73 * Note that DISASSOCIATED should be flipped only while holding 74 * wq_pool_attach_mutex to avoid changing binding state while 75 * worker_attach_to_pool() is in progress. 76 * 77 * As there can only be one concurrent BH execution context per CPU, a 78 * BH pool is per-CPU and always DISASSOCIATED. 79 */ 80 POOL_BH = 1 << 0, /* is a BH pool */ 81 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */ 82 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 83 }; 84 85 enum worker_flags { 86 /* worker flags */ 87 WORKER_DIE = 1 << 1, /* die die die */ 88 WORKER_IDLE = 1 << 2, /* is idle */ 89 WORKER_PREP = 1 << 3, /* preparing to run works */ 90 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 91 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 92 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 93 94 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 95 WORKER_UNBOUND | WORKER_REBOUND, 96 }; 97 98 enum wq_internal_consts { 99 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 100 101 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 102 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 103 104 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 105 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 106 107 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 108 /* call for help after 10ms 109 (min two ticks) */ 110 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 111 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 112 113 /* 114 * Rescue workers are used only on emergencies and shared by 115 * all cpus. Give MIN_NICE. 116 */ 117 RESCUER_NICE_LEVEL = MIN_NICE, 118 HIGHPRI_NICE_LEVEL = MIN_NICE, 119 120 WQ_NAME_LEN = 32, 121 }; 122 123 /* 124 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and 125 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because 126 * msecs_to_jiffies() can't be an initializer. 127 */ 128 #define BH_WORKER_JIFFIES msecs_to_jiffies(2) 129 #define BH_WORKER_RESTARTS 10 130 131 /* 132 * Structure fields follow one of the following exclusion rules. 133 * 134 * I: Modifiable by initialization/destruction paths and read-only for 135 * everyone else. 136 * 137 * P: Preemption protected. Disabling preemption is enough and should 138 * only be modified and accessed from the local cpu. 139 * 140 * L: pool->lock protected. Access with pool->lock held. 141 * 142 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for 143 * reads. 144 * 145 * K: Only modified by worker while holding pool->lock. Can be safely read by 146 * self, while holding pool->lock or from IRQ context if %current is the 147 * kworker. 148 * 149 * S: Only modified by worker self. 150 * 151 * A: wq_pool_attach_mutex protected. 152 * 153 * PL: wq_pool_mutex protected. 154 * 155 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 156 * 157 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 158 * 159 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 160 * RCU for reads. 161 * 162 * WQ: wq->mutex protected. 163 * 164 * WR: wq->mutex protected for writes. RCU protected for reads. 165 * 166 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read 167 * with READ_ONCE() without locking. 168 * 169 * MD: wq_mayday_lock protected. 170 * 171 * WD: Used internally by the watchdog. 172 */ 173 174 /* struct worker is defined in workqueue_internal.h */ 175 176 struct worker_pool { 177 raw_spinlock_t lock; /* the pool lock */ 178 int cpu; /* I: the associated cpu */ 179 int node; /* I: the associated node ID */ 180 int id; /* I: pool ID */ 181 unsigned int flags; /* L: flags */ 182 183 unsigned long watchdog_ts; /* L: watchdog timestamp */ 184 bool cpu_stall; /* WD: stalled cpu bound pool */ 185 186 /* 187 * The counter is incremented in a process context on the associated CPU 188 * w/ preemption disabled, and decremented or reset in the same context 189 * but w/ pool->lock held. The readers grab pool->lock and are 190 * guaranteed to see if the counter reached zero. 191 */ 192 int nr_running; 193 194 struct list_head worklist; /* L: list of pending works */ 195 196 int nr_workers; /* L: total number of workers */ 197 int nr_idle; /* L: currently idle workers */ 198 199 struct list_head idle_list; /* L: list of idle workers */ 200 struct timer_list idle_timer; /* L: worker idle timeout */ 201 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 202 203 struct timer_list mayday_timer; /* L: SOS timer for workers */ 204 205 /* a workers is either on busy_hash or idle_list, or the manager */ 206 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 207 /* L: hash of busy workers */ 208 209 struct worker *manager; /* L: purely informational */ 210 struct list_head workers; /* A: attached workers */ 211 struct list_head dying_workers; /* A: workers about to die */ 212 struct completion *detach_completion; /* all workers detached */ 213 214 struct ida worker_ida; /* worker IDs for task name */ 215 216 struct workqueue_attrs *attrs; /* I: worker attributes */ 217 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 218 int refcnt; /* PL: refcnt for unbound pools */ 219 220 /* 221 * Destruction of pool is RCU protected to allow dereferences 222 * from get_work_pool(). 223 */ 224 struct rcu_head rcu; 225 }; 226 227 /* 228 * Per-pool_workqueue statistics. These can be monitored using 229 * tools/workqueue/wq_monitor.py. 230 */ 231 enum pool_workqueue_stats { 232 PWQ_STAT_STARTED, /* work items started execution */ 233 PWQ_STAT_COMPLETED, /* work items completed execution */ 234 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 235 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 236 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 237 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 238 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 239 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 240 241 PWQ_NR_STATS, 242 }; 243 244 /* 245 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 246 * of work_struct->data are used for flags and the remaining high bits 247 * point to the pwq; thus, pwqs need to be aligned at two's power of the 248 * number of flag bits. 249 */ 250 struct pool_workqueue { 251 struct worker_pool *pool; /* I: the associated pool */ 252 struct workqueue_struct *wq; /* I: the owning workqueue */ 253 int work_color; /* L: current color */ 254 int flush_color; /* L: flushing color */ 255 int refcnt; /* L: reference count */ 256 int nr_in_flight[WORK_NR_COLORS]; 257 /* L: nr of in_flight works */ 258 259 /* 260 * nr_active management and WORK_STRUCT_INACTIVE: 261 * 262 * When pwq->nr_active >= max_active, new work item is queued to 263 * pwq->inactive_works instead of pool->worklist and marked with 264 * WORK_STRUCT_INACTIVE. 265 * 266 * All work items marked with WORK_STRUCT_INACTIVE do not participate in 267 * nr_active and all work items in pwq->inactive_works are marked with 268 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are 269 * in pwq->inactive_works. Some of them are ready to run in 270 * pool->worklist or worker->scheduled. Those work itmes are only struct 271 * wq_barrier which is used for flush_work() and should not participate 272 * in nr_active. For non-barrier work item, it is marked with 273 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 274 */ 275 int nr_active; /* L: nr of active works */ 276 struct list_head inactive_works; /* L: inactive works */ 277 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ 278 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 279 struct list_head mayday_node; /* MD: node on wq->maydays */ 280 281 u64 stats[PWQ_NR_STATS]; 282 283 /* 284 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 285 * and pwq_release_workfn() for details. pool_workqueue itself is also 286 * RCU protected so that the first pwq can be determined without 287 * grabbing wq->mutex. 288 */ 289 struct kthread_work release_work; 290 struct rcu_head rcu; 291 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 292 293 /* 294 * Structure used to wait for workqueue flush. 295 */ 296 struct wq_flusher { 297 struct list_head list; /* WQ: list of flushers */ 298 int flush_color; /* WQ: flush color waiting for */ 299 struct completion done; /* flush completion */ 300 }; 301 302 struct wq_device; 303 304 /* 305 * Unlike in a per-cpu workqueue where max_active limits its concurrency level 306 * on each CPU, in an unbound workqueue, max_active applies to the whole system. 307 * As sharing a single nr_active across multiple sockets can be very expensive, 308 * the counting and enforcement is per NUMA node. 309 * 310 * The following struct is used to enforce per-node max_active. When a pwq wants 311 * to start executing a work item, it should increment ->nr using 312 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over 313 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish 314 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in 315 * round-robin order. 316 */ 317 struct wq_node_nr_active { 318 int max; /* per-node max_active */ 319 atomic_t nr; /* per-node nr_active */ 320 raw_spinlock_t lock; /* nests inside pool locks */ 321 struct list_head pending_pwqs; /* LN: pwqs with inactive works */ 322 }; 323 324 /* 325 * The externally visible workqueue. It relays the issued work items to 326 * the appropriate worker_pool through its pool_workqueues. 327 */ 328 struct workqueue_struct { 329 struct list_head pwqs; /* WR: all pwqs of this wq */ 330 struct list_head list; /* PR: list of all workqueues */ 331 332 struct mutex mutex; /* protects this wq */ 333 int work_color; /* WQ: current work color */ 334 int flush_color; /* WQ: current flush color */ 335 atomic_t nr_pwqs_to_flush; /* flush in progress */ 336 struct wq_flusher *first_flusher; /* WQ: first flusher */ 337 struct list_head flusher_queue; /* WQ: flush waiters */ 338 struct list_head flusher_overflow; /* WQ: flush overflow list */ 339 340 struct list_head maydays; /* MD: pwqs requesting rescue */ 341 struct worker *rescuer; /* MD: rescue worker */ 342 343 int nr_drainers; /* WQ: drain in progress */ 344 345 /* See alloc_workqueue() function comment for info on min/max_active */ 346 int max_active; /* WO: max active works */ 347 int min_active; /* WO: min active works */ 348 int saved_max_active; /* WQ: saved max_active */ 349 int saved_min_active; /* WQ: saved min_active */ 350 351 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 352 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ 353 354 #ifdef CONFIG_SYSFS 355 struct wq_device *wq_dev; /* I: for sysfs interface */ 356 #endif 357 #ifdef CONFIG_LOCKDEP 358 char *lock_name; 359 struct lock_class_key key; 360 struct lockdep_map lockdep_map; 361 #endif 362 char name[WQ_NAME_LEN]; /* I: workqueue name */ 363 364 /* 365 * Destruction of workqueue_struct is RCU protected to allow walking 366 * the workqueues list without grabbing wq_pool_mutex. 367 * This is used to dump all workqueues from sysrq. 368 */ 369 struct rcu_head rcu; 370 371 /* hot fields used during command issue, aligned to cacheline */ 372 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 373 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */ 374 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ 375 }; 376 377 static struct kmem_cache *pwq_cache; 378 379 /* 380 * Each pod type describes how CPUs should be grouped for unbound workqueues. 381 * See the comment above workqueue_attrs->affn_scope. 382 */ 383 struct wq_pod_type { 384 int nr_pods; /* number of pods */ 385 cpumask_var_t *pod_cpus; /* pod -> cpus */ 386 int *pod_node; /* pod -> node */ 387 int *cpu_pod; /* cpu -> pod */ 388 }; 389 390 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 391 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 392 393 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 394 [WQ_AFFN_DFL] = "default", 395 [WQ_AFFN_CPU] = "cpu", 396 [WQ_AFFN_SMT] = "smt", 397 [WQ_AFFN_CACHE] = "cache", 398 [WQ_AFFN_NUMA] = "numa", 399 [WQ_AFFN_SYSTEM] = "system", 400 }; 401 402 static bool wq_topo_initialized __read_mostly = false; 403 404 /* 405 * Per-cpu work items which run for longer than the following threshold are 406 * automatically considered CPU intensive and excluded from concurrency 407 * management to prevent them from noticeably delaying other per-cpu work items. 408 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 409 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 410 */ 411 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 412 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 413 414 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 415 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 416 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 417 418 static bool wq_online; /* can kworkers be created yet? */ 419 420 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 421 static struct workqueue_attrs *wq_update_pod_attrs_buf; 422 423 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 424 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 425 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 426 /* wait for manager to go away */ 427 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 428 429 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 430 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 431 432 /* PL&A: allowable cpus for unbound wqs and work items */ 433 static cpumask_var_t wq_unbound_cpumask; 434 435 /* PL: user requested unbound cpumask via sysfs */ 436 static cpumask_var_t wq_requested_unbound_cpumask; 437 438 /* PL: isolated cpumask to be excluded from unbound cpumask */ 439 static cpumask_var_t wq_isolated_cpumask; 440 441 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 442 static struct cpumask wq_cmdline_cpumask __initdata; 443 444 /* CPU where unbound work was last round robin scheduled from this CPU */ 445 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 446 447 /* 448 * Local execution of unbound work items is no longer guaranteed. The 449 * following always forces round-robin CPU selection on unbound work items 450 * to uncover usages which depend on it. 451 */ 452 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 453 static bool wq_debug_force_rr_cpu = true; 454 #else 455 static bool wq_debug_force_rr_cpu = false; 456 #endif 457 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 458 459 /* the BH worker pools */ 460 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 461 bh_worker_pools); 462 463 /* the per-cpu worker pools */ 464 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 465 cpu_worker_pools); 466 467 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 468 469 /* PL: hash of all unbound pools keyed by pool->attrs */ 470 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 471 472 /* I: attributes used when instantiating standard unbound pools on demand */ 473 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 474 475 /* I: attributes used when instantiating ordered pools on demand */ 476 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 477 478 /* 479 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 480 * process context while holding a pool lock. Bounce to a dedicated kthread 481 * worker to avoid A-A deadlocks. 482 */ 483 static struct kthread_worker *pwq_release_worker __ro_after_init; 484 485 struct workqueue_struct *system_wq __ro_after_init; 486 EXPORT_SYMBOL(system_wq); 487 struct workqueue_struct *system_highpri_wq __ro_after_init; 488 EXPORT_SYMBOL_GPL(system_highpri_wq); 489 struct workqueue_struct *system_long_wq __ro_after_init; 490 EXPORT_SYMBOL_GPL(system_long_wq); 491 struct workqueue_struct *system_unbound_wq __ro_after_init; 492 EXPORT_SYMBOL_GPL(system_unbound_wq); 493 struct workqueue_struct *system_freezable_wq __ro_after_init; 494 EXPORT_SYMBOL_GPL(system_freezable_wq); 495 struct workqueue_struct *system_power_efficient_wq __ro_after_init; 496 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 497 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; 498 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 499 struct workqueue_struct *system_bh_wq; 500 EXPORT_SYMBOL_GPL(system_bh_wq); 501 struct workqueue_struct *system_bh_highpri_wq; 502 EXPORT_SYMBOL_GPL(system_bh_highpri_wq); 503 504 static int worker_thread(void *__worker); 505 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 506 static void show_pwq(struct pool_workqueue *pwq); 507 static void show_one_worker_pool(struct worker_pool *pool); 508 509 #define CREATE_TRACE_POINTS 510 #include <trace/events/workqueue.h> 511 512 #define assert_rcu_or_pool_mutex() \ 513 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 514 !lockdep_is_held(&wq_pool_mutex), \ 515 "RCU or wq_pool_mutex should be held") 516 517 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 518 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 519 !lockdep_is_held(&wq->mutex) && \ 520 !lockdep_is_held(&wq_pool_mutex), \ 521 "RCU, wq->mutex or wq_pool_mutex should be held") 522 523 #define for_each_bh_worker_pool(pool, cpu) \ 524 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \ 525 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 526 (pool)++) 527 528 #define for_each_cpu_worker_pool(pool, cpu) \ 529 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 530 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 531 (pool)++) 532 533 /** 534 * for_each_pool - iterate through all worker_pools in the system 535 * @pool: iteration cursor 536 * @pi: integer used for iteration 537 * 538 * This must be called either with wq_pool_mutex held or RCU read 539 * locked. If the pool needs to be used beyond the locking in effect, the 540 * caller is responsible for guaranteeing that the pool stays online. 541 * 542 * The if/else clause exists only for the lockdep assertion and can be 543 * ignored. 544 */ 545 #define for_each_pool(pool, pi) \ 546 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 547 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 548 else 549 550 /** 551 * for_each_pool_worker - iterate through all workers of a worker_pool 552 * @worker: iteration cursor 553 * @pool: worker_pool to iterate workers of 554 * 555 * This must be called with wq_pool_attach_mutex. 556 * 557 * The if/else clause exists only for the lockdep assertion and can be 558 * ignored. 559 */ 560 #define for_each_pool_worker(worker, pool) \ 561 list_for_each_entry((worker), &(pool)->workers, node) \ 562 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 563 else 564 565 /** 566 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 567 * @pwq: iteration cursor 568 * @wq: the target workqueue 569 * 570 * This must be called either with wq->mutex held or RCU read locked. 571 * If the pwq needs to be used beyond the locking in effect, the caller is 572 * responsible for guaranteeing that the pwq stays online. 573 * 574 * The if/else clause exists only for the lockdep assertion and can be 575 * ignored. 576 */ 577 #define for_each_pwq(pwq, wq) \ 578 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 579 lockdep_is_held(&(wq->mutex))) 580 581 #ifdef CONFIG_DEBUG_OBJECTS_WORK 582 583 static const struct debug_obj_descr work_debug_descr; 584 585 static void *work_debug_hint(void *addr) 586 { 587 return ((struct work_struct *) addr)->func; 588 } 589 590 static bool work_is_static_object(void *addr) 591 { 592 struct work_struct *work = addr; 593 594 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 595 } 596 597 /* 598 * fixup_init is called when: 599 * - an active object is initialized 600 */ 601 static bool work_fixup_init(void *addr, enum debug_obj_state state) 602 { 603 struct work_struct *work = addr; 604 605 switch (state) { 606 case ODEBUG_STATE_ACTIVE: 607 cancel_work_sync(work); 608 debug_object_init(work, &work_debug_descr); 609 return true; 610 default: 611 return false; 612 } 613 } 614 615 /* 616 * fixup_free is called when: 617 * - an active object is freed 618 */ 619 static bool work_fixup_free(void *addr, enum debug_obj_state state) 620 { 621 struct work_struct *work = addr; 622 623 switch (state) { 624 case ODEBUG_STATE_ACTIVE: 625 cancel_work_sync(work); 626 debug_object_free(work, &work_debug_descr); 627 return true; 628 default: 629 return false; 630 } 631 } 632 633 static const struct debug_obj_descr work_debug_descr = { 634 .name = "work_struct", 635 .debug_hint = work_debug_hint, 636 .is_static_object = work_is_static_object, 637 .fixup_init = work_fixup_init, 638 .fixup_free = work_fixup_free, 639 }; 640 641 static inline void debug_work_activate(struct work_struct *work) 642 { 643 debug_object_activate(work, &work_debug_descr); 644 } 645 646 static inline void debug_work_deactivate(struct work_struct *work) 647 { 648 debug_object_deactivate(work, &work_debug_descr); 649 } 650 651 void __init_work(struct work_struct *work, int onstack) 652 { 653 if (onstack) 654 debug_object_init_on_stack(work, &work_debug_descr); 655 else 656 debug_object_init(work, &work_debug_descr); 657 } 658 EXPORT_SYMBOL_GPL(__init_work); 659 660 void destroy_work_on_stack(struct work_struct *work) 661 { 662 debug_object_free(work, &work_debug_descr); 663 } 664 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 665 666 void destroy_delayed_work_on_stack(struct delayed_work *work) 667 { 668 destroy_timer_on_stack(&work->timer); 669 debug_object_free(&work->work, &work_debug_descr); 670 } 671 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 672 673 #else 674 static inline void debug_work_activate(struct work_struct *work) { } 675 static inline void debug_work_deactivate(struct work_struct *work) { } 676 #endif 677 678 /** 679 * worker_pool_assign_id - allocate ID and assign it to @pool 680 * @pool: the pool pointer of interest 681 * 682 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 683 * successfully, -errno on failure. 684 */ 685 static int worker_pool_assign_id(struct worker_pool *pool) 686 { 687 int ret; 688 689 lockdep_assert_held(&wq_pool_mutex); 690 691 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 692 GFP_KERNEL); 693 if (ret >= 0) { 694 pool->id = ret; 695 return 0; 696 } 697 return ret; 698 } 699 700 static struct pool_workqueue __rcu ** 701 unbound_pwq_slot(struct workqueue_struct *wq, int cpu) 702 { 703 if (cpu >= 0) 704 return per_cpu_ptr(wq->cpu_pwq, cpu); 705 else 706 return &wq->dfl_pwq; 707 } 708 709 /* @cpu < 0 for dfl_pwq */ 710 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) 711 { 712 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), 713 lockdep_is_held(&wq_pool_mutex) || 714 lockdep_is_held(&wq->mutex)); 715 } 716 717 /** 718 * unbound_effective_cpumask - effective cpumask of an unbound workqueue 719 * @wq: workqueue of interest 720 * 721 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which 722 * is masked with wq_unbound_cpumask to determine the effective cpumask. The 723 * default pwq is always mapped to the pool with the current effective cpumask. 724 */ 725 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) 726 { 727 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask; 728 } 729 730 static unsigned int work_color_to_flags(int color) 731 { 732 return color << WORK_STRUCT_COLOR_SHIFT; 733 } 734 735 static int get_work_color(unsigned long work_data) 736 { 737 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 738 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 739 } 740 741 static int work_next_color(int color) 742 { 743 return (color + 1) % WORK_NR_COLORS; 744 } 745 746 /* 747 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 748 * contain the pointer to the queued pwq. Once execution starts, the flag 749 * is cleared and the high bits contain OFFQ flags and pool ID. 750 * 751 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 752 * and clear_work_data() can be used to set the pwq, pool or clear 753 * work->data. These functions should only be called while the work is 754 * owned - ie. while the PENDING bit is set. 755 * 756 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 757 * corresponding to a work. Pool is available once the work has been 758 * queued anywhere after initialization until it is sync canceled. pwq is 759 * available only while the work item is queued. 760 * 761 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 762 * canceled. While being canceled, a work item may have its PENDING set 763 * but stay off timer and worklist for arbitrarily long and nobody should 764 * try to steal the PENDING bit. 765 */ 766 static inline void set_work_data(struct work_struct *work, unsigned long data, 767 unsigned long flags) 768 { 769 WARN_ON_ONCE(!work_pending(work)); 770 atomic_long_set(&work->data, data | flags | work_static(work)); 771 } 772 773 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 774 unsigned long extra_flags) 775 { 776 set_work_data(work, (unsigned long)pwq, 777 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 778 } 779 780 static void set_work_pool_and_keep_pending(struct work_struct *work, 781 int pool_id) 782 { 783 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 784 WORK_STRUCT_PENDING); 785 } 786 787 static void set_work_pool_and_clear_pending(struct work_struct *work, 788 int pool_id) 789 { 790 /* 791 * The following wmb is paired with the implied mb in 792 * test_and_set_bit(PENDING) and ensures all updates to @work made 793 * here are visible to and precede any updates by the next PENDING 794 * owner. 795 */ 796 smp_wmb(); 797 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 798 /* 799 * The following mb guarantees that previous clear of a PENDING bit 800 * will not be reordered with any speculative LOADS or STORES from 801 * work->current_func, which is executed afterwards. This possible 802 * reordering can lead to a missed execution on attempt to queue 803 * the same @work. E.g. consider this case: 804 * 805 * CPU#0 CPU#1 806 * ---------------------------- -------------------------------- 807 * 808 * 1 STORE event_indicated 809 * 2 queue_work_on() { 810 * 3 test_and_set_bit(PENDING) 811 * 4 } set_..._and_clear_pending() { 812 * 5 set_work_data() # clear bit 813 * 6 smp_mb() 814 * 7 work->current_func() { 815 * 8 LOAD event_indicated 816 * } 817 * 818 * Without an explicit full barrier speculative LOAD on line 8 can 819 * be executed before CPU#0 does STORE on line 1. If that happens, 820 * CPU#0 observes the PENDING bit is still set and new execution of 821 * a @work is not queued in a hope, that CPU#1 will eventually 822 * finish the queued @work. Meanwhile CPU#1 does not see 823 * event_indicated is set, because speculative LOAD was executed 824 * before actual STORE. 825 */ 826 smp_mb(); 827 } 828 829 static void clear_work_data(struct work_struct *work) 830 { 831 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 832 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 833 } 834 835 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 836 { 837 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK); 838 } 839 840 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 841 { 842 unsigned long data = atomic_long_read(&work->data); 843 844 if (data & WORK_STRUCT_PWQ) 845 return work_struct_pwq(data); 846 else 847 return NULL; 848 } 849 850 /** 851 * get_work_pool - return the worker_pool a given work was associated with 852 * @work: the work item of interest 853 * 854 * Pools are created and destroyed under wq_pool_mutex, and allows read 855 * access under RCU read lock. As such, this function should be 856 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 857 * 858 * All fields of the returned pool are accessible as long as the above 859 * mentioned locking is in effect. If the returned pool needs to be used 860 * beyond the critical section, the caller is responsible for ensuring the 861 * returned pool is and stays online. 862 * 863 * Return: The worker_pool @work was last associated with. %NULL if none. 864 */ 865 static struct worker_pool *get_work_pool(struct work_struct *work) 866 { 867 unsigned long data = atomic_long_read(&work->data); 868 int pool_id; 869 870 assert_rcu_or_pool_mutex(); 871 872 if (data & WORK_STRUCT_PWQ) 873 return work_struct_pwq(data)->pool; 874 875 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 876 if (pool_id == WORK_OFFQ_POOL_NONE) 877 return NULL; 878 879 return idr_find(&worker_pool_idr, pool_id); 880 } 881 882 /** 883 * get_work_pool_id - return the worker pool ID a given work is associated with 884 * @work: the work item of interest 885 * 886 * Return: The worker_pool ID @work was last associated with. 887 * %WORK_OFFQ_POOL_NONE if none. 888 */ 889 static int get_work_pool_id(struct work_struct *work) 890 { 891 unsigned long data = atomic_long_read(&work->data); 892 893 if (data & WORK_STRUCT_PWQ) 894 return work_struct_pwq(data)->pool->id; 895 896 return data >> WORK_OFFQ_POOL_SHIFT; 897 } 898 899 static void mark_work_canceling(struct work_struct *work) 900 { 901 unsigned long pool_id = get_work_pool_id(work); 902 903 pool_id <<= WORK_OFFQ_POOL_SHIFT; 904 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 905 } 906 907 static bool work_is_canceling(struct work_struct *work) 908 { 909 unsigned long data = atomic_long_read(&work->data); 910 911 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 912 } 913 914 /* 915 * Policy functions. These define the policies on how the global worker 916 * pools are managed. Unless noted otherwise, these functions assume that 917 * they're being called with pool->lock held. 918 */ 919 920 /* 921 * Need to wake up a worker? Called from anything but currently 922 * running workers. 923 * 924 * Note that, because unbound workers never contribute to nr_running, this 925 * function will always return %true for unbound pools as long as the 926 * worklist isn't empty. 927 */ 928 static bool need_more_worker(struct worker_pool *pool) 929 { 930 return !list_empty(&pool->worklist) && !pool->nr_running; 931 } 932 933 /* Can I start working? Called from busy but !running workers. */ 934 static bool may_start_working(struct worker_pool *pool) 935 { 936 return pool->nr_idle; 937 } 938 939 /* Do I need to keep working? Called from currently running workers. */ 940 static bool keep_working(struct worker_pool *pool) 941 { 942 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 943 } 944 945 /* Do we need a new worker? Called from manager. */ 946 static bool need_to_create_worker(struct worker_pool *pool) 947 { 948 return need_more_worker(pool) && !may_start_working(pool); 949 } 950 951 /* Do we have too many workers and should some go away? */ 952 static bool too_many_workers(struct worker_pool *pool) 953 { 954 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 955 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 956 int nr_busy = pool->nr_workers - nr_idle; 957 958 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 959 } 960 961 /** 962 * worker_set_flags - set worker flags and adjust nr_running accordingly 963 * @worker: self 964 * @flags: flags to set 965 * 966 * Set @flags in @worker->flags and adjust nr_running accordingly. 967 */ 968 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 969 { 970 struct worker_pool *pool = worker->pool; 971 972 lockdep_assert_held(&pool->lock); 973 974 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 975 if ((flags & WORKER_NOT_RUNNING) && 976 !(worker->flags & WORKER_NOT_RUNNING)) { 977 pool->nr_running--; 978 } 979 980 worker->flags |= flags; 981 } 982 983 /** 984 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 985 * @worker: self 986 * @flags: flags to clear 987 * 988 * Clear @flags in @worker->flags and adjust nr_running accordingly. 989 */ 990 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 991 { 992 struct worker_pool *pool = worker->pool; 993 unsigned int oflags = worker->flags; 994 995 lockdep_assert_held(&pool->lock); 996 997 worker->flags &= ~flags; 998 999 /* 1000 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1001 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1002 * of multiple flags, not a single flag. 1003 */ 1004 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1005 if (!(worker->flags & WORKER_NOT_RUNNING)) 1006 pool->nr_running++; 1007 } 1008 1009 /* Return the first idle worker. Called with pool->lock held. */ 1010 static struct worker *first_idle_worker(struct worker_pool *pool) 1011 { 1012 if (unlikely(list_empty(&pool->idle_list))) 1013 return NULL; 1014 1015 return list_first_entry(&pool->idle_list, struct worker, entry); 1016 } 1017 1018 /** 1019 * worker_enter_idle - enter idle state 1020 * @worker: worker which is entering idle state 1021 * 1022 * @worker is entering idle state. Update stats and idle timer if 1023 * necessary. 1024 * 1025 * LOCKING: 1026 * raw_spin_lock_irq(pool->lock). 1027 */ 1028 static void worker_enter_idle(struct worker *worker) 1029 { 1030 struct worker_pool *pool = worker->pool; 1031 1032 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1033 WARN_ON_ONCE(!list_empty(&worker->entry) && 1034 (worker->hentry.next || worker->hentry.pprev))) 1035 return; 1036 1037 /* can't use worker_set_flags(), also called from create_worker() */ 1038 worker->flags |= WORKER_IDLE; 1039 pool->nr_idle++; 1040 worker->last_active = jiffies; 1041 1042 /* idle_list is LIFO */ 1043 list_add(&worker->entry, &pool->idle_list); 1044 1045 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1046 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1047 1048 /* Sanity check nr_running. */ 1049 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1050 } 1051 1052 /** 1053 * worker_leave_idle - leave idle state 1054 * @worker: worker which is leaving idle state 1055 * 1056 * @worker is leaving idle state. Update stats. 1057 * 1058 * LOCKING: 1059 * raw_spin_lock_irq(pool->lock). 1060 */ 1061 static void worker_leave_idle(struct worker *worker) 1062 { 1063 struct worker_pool *pool = worker->pool; 1064 1065 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1066 return; 1067 worker_clr_flags(worker, WORKER_IDLE); 1068 pool->nr_idle--; 1069 list_del_init(&worker->entry); 1070 } 1071 1072 /** 1073 * find_worker_executing_work - find worker which is executing a work 1074 * @pool: pool of interest 1075 * @work: work to find worker for 1076 * 1077 * Find a worker which is executing @work on @pool by searching 1078 * @pool->busy_hash which is keyed by the address of @work. For a worker 1079 * to match, its current execution should match the address of @work and 1080 * its work function. This is to avoid unwanted dependency between 1081 * unrelated work executions through a work item being recycled while still 1082 * being executed. 1083 * 1084 * This is a bit tricky. A work item may be freed once its execution 1085 * starts and nothing prevents the freed area from being recycled for 1086 * another work item. If the same work item address ends up being reused 1087 * before the original execution finishes, workqueue will identify the 1088 * recycled work item as currently executing and make it wait until the 1089 * current execution finishes, introducing an unwanted dependency. 1090 * 1091 * This function checks the work item address and work function to avoid 1092 * false positives. Note that this isn't complete as one may construct a 1093 * work function which can introduce dependency onto itself through a 1094 * recycled work item. Well, if somebody wants to shoot oneself in the 1095 * foot that badly, there's only so much we can do, and if such deadlock 1096 * actually occurs, it should be easy to locate the culprit work function. 1097 * 1098 * CONTEXT: 1099 * raw_spin_lock_irq(pool->lock). 1100 * 1101 * Return: 1102 * Pointer to worker which is executing @work if found, %NULL 1103 * otherwise. 1104 */ 1105 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1106 struct work_struct *work) 1107 { 1108 struct worker *worker; 1109 1110 hash_for_each_possible(pool->busy_hash, worker, hentry, 1111 (unsigned long)work) 1112 if (worker->current_work == work && 1113 worker->current_func == work->func) 1114 return worker; 1115 1116 return NULL; 1117 } 1118 1119 /** 1120 * move_linked_works - move linked works to a list 1121 * @work: start of series of works to be scheduled 1122 * @head: target list to append @work to 1123 * @nextp: out parameter for nested worklist walking 1124 * 1125 * Schedule linked works starting from @work to @head. Work series to be 1126 * scheduled starts at @work and includes any consecutive work with 1127 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1128 * @nextp. 1129 * 1130 * CONTEXT: 1131 * raw_spin_lock_irq(pool->lock). 1132 */ 1133 static void move_linked_works(struct work_struct *work, struct list_head *head, 1134 struct work_struct **nextp) 1135 { 1136 struct work_struct *n; 1137 1138 /* 1139 * Linked worklist will always end before the end of the list, 1140 * use NULL for list head. 1141 */ 1142 list_for_each_entry_safe_from(work, n, NULL, entry) { 1143 list_move_tail(&work->entry, head); 1144 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1145 break; 1146 } 1147 1148 /* 1149 * If we're already inside safe list traversal and have moved 1150 * multiple works to the scheduled queue, the next position 1151 * needs to be updated. 1152 */ 1153 if (nextp) 1154 *nextp = n; 1155 } 1156 1157 /** 1158 * assign_work - assign a work item and its linked work items to a worker 1159 * @work: work to assign 1160 * @worker: worker to assign to 1161 * @nextp: out parameter for nested worklist walking 1162 * 1163 * Assign @work and its linked work items to @worker. If @work is already being 1164 * executed by another worker in the same pool, it'll be punted there. 1165 * 1166 * If @nextp is not NULL, it's updated to point to the next work of the last 1167 * scheduled work. This allows assign_work() to be nested inside 1168 * list_for_each_entry_safe(). 1169 * 1170 * Returns %true if @work was successfully assigned to @worker. %false if @work 1171 * was punted to another worker already executing it. 1172 */ 1173 static bool assign_work(struct work_struct *work, struct worker *worker, 1174 struct work_struct **nextp) 1175 { 1176 struct worker_pool *pool = worker->pool; 1177 struct worker *collision; 1178 1179 lockdep_assert_held(&pool->lock); 1180 1181 /* 1182 * A single work shouldn't be executed concurrently by multiple workers. 1183 * __queue_work() ensures that @work doesn't jump to a different pool 1184 * while still running in the previous pool. Here, we should ensure that 1185 * @work is not executed concurrently by multiple workers from the same 1186 * pool. Check whether anyone is already processing the work. If so, 1187 * defer the work to the currently executing one. 1188 */ 1189 collision = find_worker_executing_work(pool, work); 1190 if (unlikely(collision)) { 1191 move_linked_works(work, &collision->scheduled, nextp); 1192 return false; 1193 } 1194 1195 move_linked_works(work, &worker->scheduled, nextp); 1196 return true; 1197 } 1198 1199 /** 1200 * kick_pool - wake up an idle worker if necessary 1201 * @pool: pool to kick 1202 * 1203 * @pool may have pending work items. Wake up worker if necessary. Returns 1204 * whether a worker was woken up. 1205 */ 1206 static bool kick_pool(struct worker_pool *pool) 1207 { 1208 struct worker *worker = first_idle_worker(pool); 1209 struct task_struct *p; 1210 1211 lockdep_assert_held(&pool->lock); 1212 1213 if (!need_more_worker(pool) || !worker) 1214 return false; 1215 1216 if (pool->flags & POOL_BH) { 1217 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 1218 raise_softirq_irqoff(HI_SOFTIRQ); 1219 else 1220 raise_softirq_irqoff(TASKLET_SOFTIRQ); 1221 return true; 1222 } 1223 1224 p = worker->task; 1225 1226 #ifdef CONFIG_SMP 1227 /* 1228 * Idle @worker is about to execute @work and waking up provides an 1229 * opportunity to migrate @worker at a lower cost by setting the task's 1230 * wake_cpu field. Let's see if we want to move @worker to improve 1231 * execution locality. 1232 * 1233 * We're waking the worker that went idle the latest and there's some 1234 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1235 * so, setting the wake_cpu won't do anything. As this is a best-effort 1236 * optimization and the race window is narrow, let's leave as-is for 1237 * now. If this becomes pronounced, we can skip over workers which are 1238 * still on cpu when picking an idle worker. 1239 * 1240 * If @pool has non-strict affinity, @worker might have ended up outside 1241 * its affinity scope. Repatriate. 1242 */ 1243 if (!pool->attrs->affn_strict && 1244 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1245 struct work_struct *work = list_first_entry(&pool->worklist, 1246 struct work_struct, entry); 1247 p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask); 1248 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1249 } 1250 #endif 1251 wake_up_process(p); 1252 return true; 1253 } 1254 1255 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1256 1257 /* 1258 * Concurrency-managed per-cpu work items that hog CPU for longer than 1259 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1260 * which prevents them from stalling other concurrency-managed work items. If a 1261 * work function keeps triggering this mechanism, it's likely that the work item 1262 * should be using an unbound workqueue instead. 1263 * 1264 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1265 * and report them so that they can be examined and converted to use unbound 1266 * workqueues as appropriate. To avoid flooding the console, each violating work 1267 * function is tracked and reported with exponential backoff. 1268 */ 1269 #define WCI_MAX_ENTS 128 1270 1271 struct wci_ent { 1272 work_func_t func; 1273 atomic64_t cnt; 1274 struct hlist_node hash_node; 1275 }; 1276 1277 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1278 static int wci_nr_ents; 1279 static DEFINE_RAW_SPINLOCK(wci_lock); 1280 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1281 1282 static struct wci_ent *wci_find_ent(work_func_t func) 1283 { 1284 struct wci_ent *ent; 1285 1286 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1287 (unsigned long)func) { 1288 if (ent->func == func) 1289 return ent; 1290 } 1291 return NULL; 1292 } 1293 1294 static void wq_cpu_intensive_report(work_func_t func) 1295 { 1296 struct wci_ent *ent; 1297 1298 restart: 1299 ent = wci_find_ent(func); 1300 if (ent) { 1301 u64 cnt; 1302 1303 /* 1304 * Start reporting from the fourth time and back off 1305 * exponentially. 1306 */ 1307 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1308 if (cnt >= 4 && is_power_of_2(cnt)) 1309 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1310 ent->func, wq_cpu_intensive_thresh_us, 1311 atomic64_read(&ent->cnt)); 1312 return; 1313 } 1314 1315 /* 1316 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1317 * is exhausted, something went really wrong and we probably made enough 1318 * noise already. 1319 */ 1320 if (wci_nr_ents >= WCI_MAX_ENTS) 1321 return; 1322 1323 raw_spin_lock(&wci_lock); 1324 1325 if (wci_nr_ents >= WCI_MAX_ENTS) { 1326 raw_spin_unlock(&wci_lock); 1327 return; 1328 } 1329 1330 if (wci_find_ent(func)) { 1331 raw_spin_unlock(&wci_lock); 1332 goto restart; 1333 } 1334 1335 ent = &wci_ents[wci_nr_ents++]; 1336 ent->func = func; 1337 atomic64_set(&ent->cnt, 1); 1338 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1339 1340 raw_spin_unlock(&wci_lock); 1341 } 1342 1343 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1344 static void wq_cpu_intensive_report(work_func_t func) {} 1345 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1346 1347 /** 1348 * wq_worker_running - a worker is running again 1349 * @task: task waking up 1350 * 1351 * This function is called when a worker returns from schedule() 1352 */ 1353 void wq_worker_running(struct task_struct *task) 1354 { 1355 struct worker *worker = kthread_data(task); 1356 1357 if (!READ_ONCE(worker->sleeping)) 1358 return; 1359 1360 /* 1361 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1362 * and the nr_running increment below, we may ruin the nr_running reset 1363 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1364 * pool. Protect against such race. 1365 */ 1366 preempt_disable(); 1367 if (!(worker->flags & WORKER_NOT_RUNNING)) 1368 worker->pool->nr_running++; 1369 preempt_enable(); 1370 1371 /* 1372 * CPU intensive auto-detection cares about how long a work item hogged 1373 * CPU without sleeping. Reset the starting timestamp on wakeup. 1374 */ 1375 worker->current_at = worker->task->se.sum_exec_runtime; 1376 1377 WRITE_ONCE(worker->sleeping, 0); 1378 } 1379 1380 /** 1381 * wq_worker_sleeping - a worker is going to sleep 1382 * @task: task going to sleep 1383 * 1384 * This function is called from schedule() when a busy worker is 1385 * going to sleep. 1386 */ 1387 void wq_worker_sleeping(struct task_struct *task) 1388 { 1389 struct worker *worker = kthread_data(task); 1390 struct worker_pool *pool; 1391 1392 /* 1393 * Rescuers, which may not have all the fields set up like normal 1394 * workers, also reach here, let's not access anything before 1395 * checking NOT_RUNNING. 1396 */ 1397 if (worker->flags & WORKER_NOT_RUNNING) 1398 return; 1399 1400 pool = worker->pool; 1401 1402 /* Return if preempted before wq_worker_running() was reached */ 1403 if (READ_ONCE(worker->sleeping)) 1404 return; 1405 1406 WRITE_ONCE(worker->sleeping, 1); 1407 raw_spin_lock_irq(&pool->lock); 1408 1409 /* 1410 * Recheck in case unbind_workers() preempted us. We don't 1411 * want to decrement nr_running after the worker is unbound 1412 * and nr_running has been reset. 1413 */ 1414 if (worker->flags & WORKER_NOT_RUNNING) { 1415 raw_spin_unlock_irq(&pool->lock); 1416 return; 1417 } 1418 1419 pool->nr_running--; 1420 if (kick_pool(pool)) 1421 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1422 1423 raw_spin_unlock_irq(&pool->lock); 1424 } 1425 1426 /** 1427 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1428 * @task: task currently running 1429 * 1430 * Called from scheduler_tick(). We're in the IRQ context and the current 1431 * worker's fields which follow the 'K' locking rule can be accessed safely. 1432 */ 1433 void wq_worker_tick(struct task_struct *task) 1434 { 1435 struct worker *worker = kthread_data(task); 1436 struct pool_workqueue *pwq = worker->current_pwq; 1437 struct worker_pool *pool = worker->pool; 1438 1439 if (!pwq) 1440 return; 1441 1442 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1443 1444 if (!wq_cpu_intensive_thresh_us) 1445 return; 1446 1447 /* 1448 * If the current worker is concurrency managed and hogged the CPU for 1449 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1450 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1451 * 1452 * Set @worker->sleeping means that @worker is in the process of 1453 * switching out voluntarily and won't be contributing to 1454 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1455 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1456 * double decrements. The task is releasing the CPU anyway. Let's skip. 1457 * We probably want to make this prettier in the future. 1458 */ 1459 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1460 worker->task->se.sum_exec_runtime - worker->current_at < 1461 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1462 return; 1463 1464 raw_spin_lock(&pool->lock); 1465 1466 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1467 wq_cpu_intensive_report(worker->current_func); 1468 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1469 1470 if (kick_pool(pool)) 1471 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1472 1473 raw_spin_unlock(&pool->lock); 1474 } 1475 1476 /** 1477 * wq_worker_last_func - retrieve worker's last work function 1478 * @task: Task to retrieve last work function of. 1479 * 1480 * Determine the last function a worker executed. This is called from 1481 * the scheduler to get a worker's last known identity. 1482 * 1483 * CONTEXT: 1484 * raw_spin_lock_irq(rq->lock) 1485 * 1486 * This function is called during schedule() when a kworker is going 1487 * to sleep. It's used by psi to identify aggregation workers during 1488 * dequeuing, to allow periodic aggregation to shut-off when that 1489 * worker is the last task in the system or cgroup to go to sleep. 1490 * 1491 * As this function doesn't involve any workqueue-related locking, it 1492 * only returns stable values when called from inside the scheduler's 1493 * queuing and dequeuing paths, when @task, which must be a kworker, 1494 * is guaranteed to not be processing any works. 1495 * 1496 * Return: 1497 * The last work function %current executed as a worker, NULL if it 1498 * hasn't executed any work yet. 1499 */ 1500 work_func_t wq_worker_last_func(struct task_struct *task) 1501 { 1502 struct worker *worker = kthread_data(task); 1503 1504 return worker->last_func; 1505 } 1506 1507 /** 1508 * wq_node_nr_active - Determine wq_node_nr_active to use 1509 * @wq: workqueue of interest 1510 * @node: NUMA node, can be %NUMA_NO_NODE 1511 * 1512 * Determine wq_node_nr_active to use for @wq on @node. Returns: 1513 * 1514 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. 1515 * 1516 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. 1517 * 1518 * - Otherwise, node_nr_active[@node]. 1519 */ 1520 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, 1521 int node) 1522 { 1523 if (!(wq->flags & WQ_UNBOUND)) 1524 return NULL; 1525 1526 if (node == NUMA_NO_NODE) 1527 node = nr_node_ids; 1528 1529 return wq->node_nr_active[node]; 1530 } 1531 1532 /** 1533 * wq_update_node_max_active - Update per-node max_actives to use 1534 * @wq: workqueue to update 1535 * @off_cpu: CPU that's going down, -1 if a CPU is not going down 1536 * 1537 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is 1538 * distributed among nodes according to the proportions of numbers of online 1539 * cpus. The result is always between @wq->min_active and max_active. 1540 */ 1541 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) 1542 { 1543 struct cpumask *effective = unbound_effective_cpumask(wq); 1544 int min_active = READ_ONCE(wq->min_active); 1545 int max_active = READ_ONCE(wq->max_active); 1546 int total_cpus, node; 1547 1548 lockdep_assert_held(&wq->mutex); 1549 1550 if (!wq_topo_initialized) 1551 return; 1552 1553 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective)) 1554 off_cpu = -1; 1555 1556 total_cpus = cpumask_weight_and(effective, cpu_online_mask); 1557 if (off_cpu >= 0) 1558 total_cpus--; 1559 1560 for_each_node(node) { 1561 int node_cpus; 1562 1563 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node)); 1564 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node) 1565 node_cpus--; 1566 1567 wq_node_nr_active(wq, node)->max = 1568 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), 1569 min_active, max_active); 1570 } 1571 1572 wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active; 1573 } 1574 1575 /** 1576 * get_pwq - get an extra reference on the specified pool_workqueue 1577 * @pwq: pool_workqueue to get 1578 * 1579 * Obtain an extra reference on @pwq. The caller should guarantee that 1580 * @pwq has positive refcnt and be holding the matching pool->lock. 1581 */ 1582 static void get_pwq(struct pool_workqueue *pwq) 1583 { 1584 lockdep_assert_held(&pwq->pool->lock); 1585 WARN_ON_ONCE(pwq->refcnt <= 0); 1586 pwq->refcnt++; 1587 } 1588 1589 /** 1590 * put_pwq - put a pool_workqueue reference 1591 * @pwq: pool_workqueue to put 1592 * 1593 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1594 * destruction. The caller should be holding the matching pool->lock. 1595 */ 1596 static void put_pwq(struct pool_workqueue *pwq) 1597 { 1598 lockdep_assert_held(&pwq->pool->lock); 1599 if (likely(--pwq->refcnt)) 1600 return; 1601 /* 1602 * @pwq can't be released under pool->lock, bounce to a dedicated 1603 * kthread_worker to avoid A-A deadlocks. 1604 */ 1605 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1606 } 1607 1608 /** 1609 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1610 * @pwq: pool_workqueue to put (can be %NULL) 1611 * 1612 * put_pwq() with locking. This function also allows %NULL @pwq. 1613 */ 1614 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1615 { 1616 if (pwq) { 1617 /* 1618 * As both pwqs and pools are RCU protected, the 1619 * following lock operations are safe. 1620 */ 1621 raw_spin_lock_irq(&pwq->pool->lock); 1622 put_pwq(pwq); 1623 raw_spin_unlock_irq(&pwq->pool->lock); 1624 } 1625 } 1626 1627 static bool pwq_is_empty(struct pool_workqueue *pwq) 1628 { 1629 return !pwq->nr_active && list_empty(&pwq->inactive_works); 1630 } 1631 1632 static void __pwq_activate_work(struct pool_workqueue *pwq, 1633 struct work_struct *work) 1634 { 1635 unsigned long *wdb = work_data_bits(work); 1636 1637 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); 1638 trace_workqueue_activate_work(work); 1639 if (list_empty(&pwq->pool->worklist)) 1640 pwq->pool->watchdog_ts = jiffies; 1641 move_linked_works(work, &pwq->pool->worklist, NULL); 1642 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); 1643 } 1644 1645 /** 1646 * pwq_activate_work - Activate a work item if inactive 1647 * @pwq: pool_workqueue @work belongs to 1648 * @work: work item to activate 1649 * 1650 * Returns %true if activated. %false if already active. 1651 */ 1652 static bool pwq_activate_work(struct pool_workqueue *pwq, 1653 struct work_struct *work) 1654 { 1655 struct worker_pool *pool = pwq->pool; 1656 struct wq_node_nr_active *nna; 1657 1658 lockdep_assert_held(&pool->lock); 1659 1660 if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE)) 1661 return false; 1662 1663 nna = wq_node_nr_active(pwq->wq, pool->node); 1664 if (nna) 1665 atomic_inc(&nna->nr); 1666 1667 pwq->nr_active++; 1668 __pwq_activate_work(pwq, work); 1669 return true; 1670 } 1671 1672 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) 1673 { 1674 int max = READ_ONCE(nna->max); 1675 1676 while (true) { 1677 int old, tmp; 1678 1679 old = atomic_read(&nna->nr); 1680 if (old >= max) 1681 return false; 1682 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1); 1683 if (tmp == old) 1684 return true; 1685 } 1686 } 1687 1688 /** 1689 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq 1690 * @pwq: pool_workqueue of interest 1691 * @fill: max_active may have increased, try to increase concurrency level 1692 * 1693 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is 1694 * successfully obtained. %false otherwise. 1695 */ 1696 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) 1697 { 1698 struct workqueue_struct *wq = pwq->wq; 1699 struct worker_pool *pool = pwq->pool; 1700 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node); 1701 bool obtained = false; 1702 1703 lockdep_assert_held(&pool->lock); 1704 1705 if (!nna) { 1706 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */ 1707 obtained = pwq->nr_active < READ_ONCE(wq->max_active); 1708 goto out; 1709 } 1710 1711 /* 1712 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is 1713 * already waiting on $nna, pwq_dec_nr_active() will maintain the 1714 * concurrency level. Don't jump the line. 1715 * 1716 * We need to ignore the pending test after max_active has increased as 1717 * pwq_dec_nr_active() can only maintain the concurrency level but not 1718 * increase it. This is indicated by @fill. 1719 */ 1720 if (!list_empty(&pwq->pending_node) && likely(!fill)) 1721 goto out; 1722 1723 obtained = tryinc_node_nr_active(nna); 1724 if (obtained) 1725 goto out; 1726 1727 /* 1728 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs 1729 * and try again. The smp_mb() is paired with the implied memory barrier 1730 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either 1731 * we see the decremented $nna->nr or they see non-empty 1732 * $nna->pending_pwqs. 1733 */ 1734 raw_spin_lock(&nna->lock); 1735 1736 if (list_empty(&pwq->pending_node)) 1737 list_add_tail(&pwq->pending_node, &nna->pending_pwqs); 1738 else if (likely(!fill)) 1739 goto out_unlock; 1740 1741 smp_mb(); 1742 1743 obtained = tryinc_node_nr_active(nna); 1744 1745 /* 1746 * If @fill, @pwq might have already been pending. Being spuriously 1747 * pending in cold paths doesn't affect anything. Let's leave it be. 1748 */ 1749 if (obtained && likely(!fill)) 1750 list_del_init(&pwq->pending_node); 1751 1752 out_unlock: 1753 raw_spin_unlock(&nna->lock); 1754 out: 1755 if (obtained) 1756 pwq->nr_active++; 1757 return obtained; 1758 } 1759 1760 /** 1761 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq 1762 * @pwq: pool_workqueue of interest 1763 * @fill: max_active may have increased, try to increase concurrency level 1764 * 1765 * Activate the first inactive work item of @pwq if available and allowed by 1766 * max_active limit. 1767 * 1768 * Returns %true if an inactive work item has been activated. %false if no 1769 * inactive work item is found or max_active limit is reached. 1770 */ 1771 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) 1772 { 1773 struct work_struct *work = 1774 list_first_entry_or_null(&pwq->inactive_works, 1775 struct work_struct, entry); 1776 1777 if (work && pwq_tryinc_nr_active(pwq, fill)) { 1778 __pwq_activate_work(pwq, work); 1779 return true; 1780 } else { 1781 return false; 1782 } 1783 } 1784 1785 /** 1786 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active 1787 * @nna: wq_node_nr_active to activate a pending pwq for 1788 * @caller_pool: worker_pool the caller is locking 1789 * 1790 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. 1791 * @caller_pool may be unlocked and relocked to lock other worker_pools. 1792 */ 1793 static void node_activate_pending_pwq(struct wq_node_nr_active *nna, 1794 struct worker_pool *caller_pool) 1795 { 1796 struct worker_pool *locked_pool = caller_pool; 1797 struct pool_workqueue *pwq; 1798 struct work_struct *work; 1799 1800 lockdep_assert_held(&caller_pool->lock); 1801 1802 raw_spin_lock(&nna->lock); 1803 retry: 1804 pwq = list_first_entry_or_null(&nna->pending_pwqs, 1805 struct pool_workqueue, pending_node); 1806 if (!pwq) 1807 goto out_unlock; 1808 1809 /* 1810 * If @pwq is for a different pool than @locked_pool, we need to lock 1811 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock 1812 * / lock dance. For that, we also need to release @nna->lock as it's 1813 * nested inside pool locks. 1814 */ 1815 if (pwq->pool != locked_pool) { 1816 raw_spin_unlock(&locked_pool->lock); 1817 locked_pool = pwq->pool; 1818 if (!raw_spin_trylock(&locked_pool->lock)) { 1819 raw_spin_unlock(&nna->lock); 1820 raw_spin_lock(&locked_pool->lock); 1821 raw_spin_lock(&nna->lock); 1822 goto retry; 1823 } 1824 } 1825 1826 /* 1827 * $pwq may not have any inactive work items due to e.g. cancellations. 1828 * Drop it from pending_pwqs and see if there's another one. 1829 */ 1830 work = list_first_entry_or_null(&pwq->inactive_works, 1831 struct work_struct, entry); 1832 if (!work) { 1833 list_del_init(&pwq->pending_node); 1834 goto retry; 1835 } 1836 1837 /* 1838 * Acquire an nr_active count and activate the inactive work item. If 1839 * $pwq still has inactive work items, rotate it to the end of the 1840 * pending_pwqs so that we round-robin through them. This means that 1841 * inactive work items are not activated in queueing order which is fine 1842 * given that there has never been any ordering across different pwqs. 1843 */ 1844 if (likely(tryinc_node_nr_active(nna))) { 1845 pwq->nr_active++; 1846 __pwq_activate_work(pwq, work); 1847 1848 if (list_empty(&pwq->inactive_works)) 1849 list_del_init(&pwq->pending_node); 1850 else 1851 list_move_tail(&pwq->pending_node, &nna->pending_pwqs); 1852 1853 /* if activating a foreign pool, make sure it's running */ 1854 if (pwq->pool != caller_pool) 1855 kick_pool(pwq->pool); 1856 } 1857 1858 out_unlock: 1859 raw_spin_unlock(&nna->lock); 1860 if (locked_pool != caller_pool) { 1861 raw_spin_unlock(&locked_pool->lock); 1862 raw_spin_lock(&caller_pool->lock); 1863 } 1864 } 1865 1866 /** 1867 * pwq_dec_nr_active - Retire an active count 1868 * @pwq: pool_workqueue of interest 1869 * 1870 * Decrement @pwq's nr_active and try to activate the first inactive work item. 1871 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. 1872 */ 1873 static void pwq_dec_nr_active(struct pool_workqueue *pwq) 1874 { 1875 struct worker_pool *pool = pwq->pool; 1876 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node); 1877 1878 lockdep_assert_held(&pool->lock); 1879 1880 /* 1881 * @pwq->nr_active should be decremented for both percpu and unbound 1882 * workqueues. 1883 */ 1884 pwq->nr_active--; 1885 1886 /* 1887 * For a percpu workqueue, it's simple. Just need to kick the first 1888 * inactive work item on @pwq itself. 1889 */ 1890 if (!nna) { 1891 pwq_activate_first_inactive(pwq, false); 1892 return; 1893 } 1894 1895 /* 1896 * If @pwq is for an unbound workqueue, it's more complicated because 1897 * multiple pwqs and pools may be sharing the nr_active count. When a 1898 * pwq needs to wait for an nr_active count, it puts itself on 1899 * $nna->pending_pwqs. The following atomic_dec_return()'s implied 1900 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to 1901 * guarantee that either we see non-empty pending_pwqs or they see 1902 * decremented $nna->nr. 1903 * 1904 * $nna->max may change as CPUs come online/offline and @pwq->wq's 1905 * max_active gets updated. However, it is guaranteed to be equal to or 1906 * larger than @pwq->wq->min_active which is above zero unless freezing. 1907 * This maintains the forward progress guarantee. 1908 */ 1909 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max)) 1910 return; 1911 1912 if (!list_empty(&nna->pending_pwqs)) 1913 node_activate_pending_pwq(nna, pool); 1914 } 1915 1916 /** 1917 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1918 * @pwq: pwq of interest 1919 * @work_data: work_data of work which left the queue 1920 * 1921 * A work either has completed or is removed from pending queue, 1922 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1923 * 1924 * NOTE: 1925 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock 1926 * and thus should be called after all other state updates for the in-flight 1927 * work item is complete. 1928 * 1929 * CONTEXT: 1930 * raw_spin_lock_irq(pool->lock). 1931 */ 1932 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1933 { 1934 int color = get_work_color(work_data); 1935 1936 if (!(work_data & WORK_STRUCT_INACTIVE)) 1937 pwq_dec_nr_active(pwq); 1938 1939 pwq->nr_in_flight[color]--; 1940 1941 /* is flush in progress and are we at the flushing tip? */ 1942 if (likely(pwq->flush_color != color)) 1943 goto out_put; 1944 1945 /* are there still in-flight works? */ 1946 if (pwq->nr_in_flight[color]) 1947 goto out_put; 1948 1949 /* this pwq is done, clear flush_color */ 1950 pwq->flush_color = -1; 1951 1952 /* 1953 * If this was the last pwq, wake up the first flusher. It 1954 * will handle the rest. 1955 */ 1956 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1957 complete(&pwq->wq->first_flusher->done); 1958 out_put: 1959 put_pwq(pwq); 1960 } 1961 1962 /** 1963 * try_to_grab_pending - steal work item from worklist and disable irq 1964 * @work: work item to steal 1965 * @is_dwork: @work is a delayed_work 1966 * @flags: place to store irq state 1967 * 1968 * Try to grab PENDING bit of @work. This function can handle @work in any 1969 * stable state - idle, on timer or on worklist. 1970 * 1971 * Return: 1972 * 1973 * ======== ================================================================ 1974 * 1 if @work was pending and we successfully stole PENDING 1975 * 0 if @work was idle and we claimed PENDING 1976 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1977 * -ENOENT if someone else is canceling @work, this state may persist 1978 * for arbitrarily long 1979 * ======== ================================================================ 1980 * 1981 * Note: 1982 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1983 * interrupted while holding PENDING and @work off queue, irq must be 1984 * disabled on entry. This, combined with delayed_work->timer being 1985 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1986 * 1987 * On successful return, >= 0, irq is disabled and the caller is 1988 * responsible for releasing it using local_irq_restore(*@flags). 1989 * 1990 * This function is safe to call from any context including IRQ handler. 1991 */ 1992 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1993 unsigned long *flags) 1994 { 1995 struct worker_pool *pool; 1996 struct pool_workqueue *pwq; 1997 1998 local_irq_save(*flags); 1999 2000 /* try to steal the timer if it exists */ 2001 if (is_dwork) { 2002 struct delayed_work *dwork = to_delayed_work(work); 2003 2004 /* 2005 * dwork->timer is irqsafe. If del_timer() fails, it's 2006 * guaranteed that the timer is not queued anywhere and not 2007 * running on the local CPU. 2008 */ 2009 if (likely(del_timer(&dwork->timer))) 2010 return 1; 2011 } 2012 2013 /* try to claim PENDING the normal way */ 2014 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2015 return 0; 2016 2017 rcu_read_lock(); 2018 /* 2019 * The queueing is in progress, or it is already queued. Try to 2020 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2021 */ 2022 pool = get_work_pool(work); 2023 if (!pool) 2024 goto fail; 2025 2026 raw_spin_lock(&pool->lock); 2027 /* 2028 * work->data is guaranteed to point to pwq only while the work 2029 * item is queued on pwq->wq, and both updating work->data to point 2030 * to pwq on queueing and to pool on dequeueing are done under 2031 * pwq->pool->lock. This in turn guarantees that, if work->data 2032 * points to pwq which is associated with a locked pool, the work 2033 * item is currently queued on that pool. 2034 */ 2035 pwq = get_work_pwq(work); 2036 if (pwq && pwq->pool == pool) { 2037 unsigned long work_data; 2038 2039 debug_work_deactivate(work); 2040 2041 /* 2042 * A cancelable inactive work item must be in the 2043 * pwq->inactive_works since a queued barrier can't be 2044 * canceled (see the comments in insert_wq_barrier()). 2045 * 2046 * An inactive work item cannot be grabbed directly because 2047 * it might have linked barrier work items which, if left 2048 * on the inactive_works list, will confuse pwq->nr_active 2049 * management later on and cause stall. Make sure the work 2050 * item is activated before grabbing. 2051 */ 2052 pwq_activate_work(pwq, work); 2053 2054 list_del_init(&work->entry); 2055 2056 /* 2057 * work->data points to pwq iff queued. Let's point to pool. As 2058 * this destroys work->data needed by the next step, stash it. 2059 */ 2060 work_data = *work_data_bits(work); 2061 set_work_pool_and_keep_pending(work, pool->id); 2062 2063 /* must be the last step, see the function comment */ 2064 pwq_dec_nr_in_flight(pwq, work_data); 2065 2066 raw_spin_unlock(&pool->lock); 2067 rcu_read_unlock(); 2068 return 1; 2069 } 2070 raw_spin_unlock(&pool->lock); 2071 fail: 2072 rcu_read_unlock(); 2073 local_irq_restore(*flags); 2074 if (work_is_canceling(work)) 2075 return -ENOENT; 2076 cpu_relax(); 2077 return -EAGAIN; 2078 } 2079 2080 /** 2081 * insert_work - insert a work into a pool 2082 * @pwq: pwq @work belongs to 2083 * @work: work to insert 2084 * @head: insertion point 2085 * @extra_flags: extra WORK_STRUCT_* flags to set 2086 * 2087 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 2088 * work_struct flags. 2089 * 2090 * CONTEXT: 2091 * raw_spin_lock_irq(pool->lock). 2092 */ 2093 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 2094 struct list_head *head, unsigned int extra_flags) 2095 { 2096 debug_work_activate(work); 2097 2098 /* record the work call stack in order to print it in KASAN reports */ 2099 kasan_record_aux_stack_noalloc(work); 2100 2101 /* we own @work, set data and link */ 2102 set_work_pwq(work, pwq, extra_flags); 2103 list_add_tail(&work->entry, head); 2104 get_pwq(pwq); 2105 } 2106 2107 /* 2108 * Test whether @work is being queued from another work executing on the 2109 * same workqueue. 2110 */ 2111 static bool is_chained_work(struct workqueue_struct *wq) 2112 { 2113 struct worker *worker; 2114 2115 worker = current_wq_worker(); 2116 /* 2117 * Return %true iff I'm a worker executing a work item on @wq. If 2118 * I'm @worker, it's safe to dereference it without locking. 2119 */ 2120 return worker && worker->current_pwq->wq == wq; 2121 } 2122 2123 /* 2124 * When queueing an unbound work item to a wq, prefer local CPU if allowed 2125 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 2126 * avoid perturbing sensitive tasks. 2127 */ 2128 static int wq_select_unbound_cpu(int cpu) 2129 { 2130 int new_cpu; 2131 2132 if (likely(!wq_debug_force_rr_cpu)) { 2133 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 2134 return cpu; 2135 } else { 2136 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 2137 } 2138 2139 new_cpu = __this_cpu_read(wq_rr_cpu_last); 2140 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 2141 if (unlikely(new_cpu >= nr_cpu_ids)) { 2142 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 2143 if (unlikely(new_cpu >= nr_cpu_ids)) 2144 return cpu; 2145 } 2146 __this_cpu_write(wq_rr_cpu_last, new_cpu); 2147 2148 return new_cpu; 2149 } 2150 2151 static void __queue_work(int cpu, struct workqueue_struct *wq, 2152 struct work_struct *work) 2153 { 2154 struct pool_workqueue *pwq; 2155 struct worker_pool *last_pool, *pool; 2156 unsigned int work_flags; 2157 unsigned int req_cpu = cpu; 2158 2159 /* 2160 * While a work item is PENDING && off queue, a task trying to 2161 * steal the PENDING will busy-loop waiting for it to either get 2162 * queued or lose PENDING. Grabbing PENDING and queueing should 2163 * happen with IRQ disabled. 2164 */ 2165 lockdep_assert_irqs_disabled(); 2166 2167 2168 /* 2169 * For a draining wq, only works from the same workqueue are 2170 * allowed. The __WQ_DESTROYING helps to spot the issue that 2171 * queues a new work item to a wq after destroy_workqueue(wq). 2172 */ 2173 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 2174 WARN_ON_ONCE(!is_chained_work(wq)))) 2175 return; 2176 rcu_read_lock(); 2177 retry: 2178 /* pwq which will be used unless @work is executing elsewhere */ 2179 if (req_cpu == WORK_CPU_UNBOUND) { 2180 if (wq->flags & WQ_UNBOUND) 2181 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 2182 else 2183 cpu = raw_smp_processor_id(); 2184 } 2185 2186 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 2187 pool = pwq->pool; 2188 2189 /* 2190 * If @work was previously on a different pool, it might still be 2191 * running there, in which case the work needs to be queued on that 2192 * pool to guarantee non-reentrancy. 2193 */ 2194 last_pool = get_work_pool(work); 2195 if (last_pool && last_pool != pool) { 2196 struct worker *worker; 2197 2198 raw_spin_lock(&last_pool->lock); 2199 2200 worker = find_worker_executing_work(last_pool, work); 2201 2202 if (worker && worker->current_pwq->wq == wq) { 2203 pwq = worker->current_pwq; 2204 pool = pwq->pool; 2205 WARN_ON_ONCE(pool != last_pool); 2206 } else { 2207 /* meh... not running there, queue here */ 2208 raw_spin_unlock(&last_pool->lock); 2209 raw_spin_lock(&pool->lock); 2210 } 2211 } else { 2212 raw_spin_lock(&pool->lock); 2213 } 2214 2215 /* 2216 * pwq is determined and locked. For unbound pools, we could have raced 2217 * with pwq release and it could already be dead. If its refcnt is zero, 2218 * repeat pwq selection. Note that unbound pwqs never die without 2219 * another pwq replacing it in cpu_pwq or while work items are executing 2220 * on it, so the retrying is guaranteed to make forward-progress. 2221 */ 2222 if (unlikely(!pwq->refcnt)) { 2223 if (wq->flags & WQ_UNBOUND) { 2224 raw_spin_unlock(&pool->lock); 2225 cpu_relax(); 2226 goto retry; 2227 } 2228 /* oops */ 2229 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 2230 wq->name, cpu); 2231 } 2232 2233 /* pwq determined, queue */ 2234 trace_workqueue_queue_work(req_cpu, pwq, work); 2235 2236 if (WARN_ON(!list_empty(&work->entry))) 2237 goto out; 2238 2239 pwq->nr_in_flight[pwq->work_color]++; 2240 work_flags = work_color_to_flags(pwq->work_color); 2241 2242 /* 2243 * Limit the number of concurrently active work items to max_active. 2244 * @work must also queue behind existing inactive work items to maintain 2245 * ordering when max_active changes. See wq_adjust_max_active(). 2246 */ 2247 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) { 2248 if (list_empty(&pool->worklist)) 2249 pool->watchdog_ts = jiffies; 2250 2251 trace_workqueue_activate_work(work); 2252 insert_work(pwq, work, &pool->worklist, work_flags); 2253 kick_pool(pool); 2254 } else { 2255 work_flags |= WORK_STRUCT_INACTIVE; 2256 insert_work(pwq, work, &pwq->inactive_works, work_flags); 2257 } 2258 2259 out: 2260 raw_spin_unlock(&pool->lock); 2261 rcu_read_unlock(); 2262 } 2263 2264 /** 2265 * queue_work_on - queue work on specific cpu 2266 * @cpu: CPU number to execute work on 2267 * @wq: workqueue to use 2268 * @work: work to queue 2269 * 2270 * We queue the work to a specific CPU, the caller must ensure it 2271 * can't go away. Callers that fail to ensure that the specified 2272 * CPU cannot go away will execute on a randomly chosen CPU. 2273 * But note well that callers specifying a CPU that never has been 2274 * online will get a splat. 2275 * 2276 * Return: %false if @work was already on a queue, %true otherwise. 2277 */ 2278 bool queue_work_on(int cpu, struct workqueue_struct *wq, 2279 struct work_struct *work) 2280 { 2281 bool ret = false; 2282 unsigned long flags; 2283 2284 local_irq_save(flags); 2285 2286 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2287 __queue_work(cpu, wq, work); 2288 ret = true; 2289 } 2290 2291 local_irq_restore(flags); 2292 return ret; 2293 } 2294 EXPORT_SYMBOL(queue_work_on); 2295 2296 /** 2297 * select_numa_node_cpu - Select a CPU based on NUMA node 2298 * @node: NUMA node ID that we want to select a CPU from 2299 * 2300 * This function will attempt to find a "random" cpu available on a given 2301 * node. If there are no CPUs available on the given node it will return 2302 * WORK_CPU_UNBOUND indicating that we should just schedule to any 2303 * available CPU if we need to schedule this work. 2304 */ 2305 static int select_numa_node_cpu(int node) 2306 { 2307 int cpu; 2308 2309 /* Delay binding to CPU if node is not valid or online */ 2310 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 2311 return WORK_CPU_UNBOUND; 2312 2313 /* Use local node/cpu if we are already there */ 2314 cpu = raw_smp_processor_id(); 2315 if (node == cpu_to_node(cpu)) 2316 return cpu; 2317 2318 /* Use "random" otherwise know as "first" online CPU of node */ 2319 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 2320 2321 /* If CPU is valid return that, otherwise just defer */ 2322 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 2323 } 2324 2325 /** 2326 * queue_work_node - queue work on a "random" cpu for a given NUMA node 2327 * @node: NUMA node that we are targeting the work for 2328 * @wq: workqueue to use 2329 * @work: work to queue 2330 * 2331 * We queue the work to a "random" CPU within a given NUMA node. The basic 2332 * idea here is to provide a way to somehow associate work with a given 2333 * NUMA node. 2334 * 2335 * This function will only make a best effort attempt at getting this onto 2336 * the right NUMA node. If no node is requested or the requested node is 2337 * offline then we just fall back to standard queue_work behavior. 2338 * 2339 * Currently the "random" CPU ends up being the first available CPU in the 2340 * intersection of cpu_online_mask and the cpumask of the node, unless we 2341 * are running on the node. In that case we just use the current CPU. 2342 * 2343 * Return: %false if @work was already on a queue, %true otherwise. 2344 */ 2345 bool queue_work_node(int node, struct workqueue_struct *wq, 2346 struct work_struct *work) 2347 { 2348 unsigned long flags; 2349 bool ret = false; 2350 2351 /* 2352 * This current implementation is specific to unbound workqueues. 2353 * Specifically we only return the first available CPU for a given 2354 * node instead of cycling through individual CPUs within the node. 2355 * 2356 * If this is used with a per-cpu workqueue then the logic in 2357 * workqueue_select_cpu_near would need to be updated to allow for 2358 * some round robin type logic. 2359 */ 2360 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 2361 2362 local_irq_save(flags); 2363 2364 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2365 int cpu = select_numa_node_cpu(node); 2366 2367 __queue_work(cpu, wq, work); 2368 ret = true; 2369 } 2370 2371 local_irq_restore(flags); 2372 return ret; 2373 } 2374 EXPORT_SYMBOL_GPL(queue_work_node); 2375 2376 void delayed_work_timer_fn(struct timer_list *t) 2377 { 2378 struct delayed_work *dwork = from_timer(dwork, t, timer); 2379 2380 /* should have been called from irqsafe timer with irq already off */ 2381 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2382 } 2383 EXPORT_SYMBOL(delayed_work_timer_fn); 2384 2385 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 2386 struct delayed_work *dwork, unsigned long delay) 2387 { 2388 struct timer_list *timer = &dwork->timer; 2389 struct work_struct *work = &dwork->work; 2390 2391 WARN_ON_ONCE(!wq); 2392 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 2393 WARN_ON_ONCE(timer_pending(timer)); 2394 WARN_ON_ONCE(!list_empty(&work->entry)); 2395 2396 /* 2397 * If @delay is 0, queue @dwork->work immediately. This is for 2398 * both optimization and correctness. The earliest @timer can 2399 * expire is on the closest next tick and delayed_work users depend 2400 * on that there's no such delay when @delay is 0. 2401 */ 2402 if (!delay) { 2403 __queue_work(cpu, wq, &dwork->work); 2404 return; 2405 } 2406 2407 dwork->wq = wq; 2408 dwork->cpu = cpu; 2409 timer->expires = jiffies + delay; 2410 2411 if (housekeeping_enabled(HK_TYPE_TIMER)) { 2412 /* If the current cpu is a housekeeping cpu, use it. */ 2413 cpu = smp_processor_id(); 2414 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER)) 2415 cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 2416 add_timer_on(timer, cpu); 2417 } else { 2418 if (likely(cpu == WORK_CPU_UNBOUND)) 2419 add_timer(timer); 2420 else 2421 add_timer_on(timer, cpu); 2422 } 2423 } 2424 2425 /** 2426 * queue_delayed_work_on - queue work on specific CPU after delay 2427 * @cpu: CPU number to execute work on 2428 * @wq: workqueue to use 2429 * @dwork: work to queue 2430 * @delay: number of jiffies to wait before queueing 2431 * 2432 * Return: %false if @work was already on a queue, %true otherwise. If 2433 * @delay is zero and @dwork is idle, it will be scheduled for immediate 2434 * execution. 2435 */ 2436 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 2437 struct delayed_work *dwork, unsigned long delay) 2438 { 2439 struct work_struct *work = &dwork->work; 2440 bool ret = false; 2441 unsigned long flags; 2442 2443 /* read the comment in __queue_work() */ 2444 local_irq_save(flags); 2445 2446 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2447 __queue_delayed_work(cpu, wq, dwork, delay); 2448 ret = true; 2449 } 2450 2451 local_irq_restore(flags); 2452 return ret; 2453 } 2454 EXPORT_SYMBOL(queue_delayed_work_on); 2455 2456 /** 2457 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2458 * @cpu: CPU number to execute work on 2459 * @wq: workqueue to use 2460 * @dwork: work to queue 2461 * @delay: number of jiffies to wait before queueing 2462 * 2463 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2464 * modify @dwork's timer so that it expires after @delay. If @delay is 2465 * zero, @work is guaranteed to be scheduled immediately regardless of its 2466 * current state. 2467 * 2468 * Return: %false if @dwork was idle and queued, %true if @dwork was 2469 * pending and its timer was modified. 2470 * 2471 * This function is safe to call from any context including IRQ handler. 2472 * See try_to_grab_pending() for details. 2473 */ 2474 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2475 struct delayed_work *dwork, unsigned long delay) 2476 { 2477 unsigned long flags; 2478 int ret; 2479 2480 do { 2481 ret = try_to_grab_pending(&dwork->work, true, &flags); 2482 } while (unlikely(ret == -EAGAIN)); 2483 2484 if (likely(ret >= 0)) { 2485 __queue_delayed_work(cpu, wq, dwork, delay); 2486 local_irq_restore(flags); 2487 } 2488 2489 /* -ENOENT from try_to_grab_pending() becomes %true */ 2490 return ret; 2491 } 2492 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2493 2494 static void rcu_work_rcufn(struct rcu_head *rcu) 2495 { 2496 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2497 2498 /* read the comment in __queue_work() */ 2499 local_irq_disable(); 2500 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2501 local_irq_enable(); 2502 } 2503 2504 /** 2505 * queue_rcu_work - queue work after a RCU grace period 2506 * @wq: workqueue to use 2507 * @rwork: work to queue 2508 * 2509 * Return: %false if @rwork was already pending, %true otherwise. Note 2510 * that a full RCU grace period is guaranteed only after a %true return. 2511 * While @rwork is guaranteed to be executed after a %false return, the 2512 * execution may happen before a full RCU grace period has passed. 2513 */ 2514 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2515 { 2516 struct work_struct *work = &rwork->work; 2517 2518 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2519 rwork->wq = wq; 2520 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2521 return true; 2522 } 2523 2524 return false; 2525 } 2526 EXPORT_SYMBOL(queue_rcu_work); 2527 2528 static struct worker *alloc_worker(int node) 2529 { 2530 struct worker *worker; 2531 2532 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2533 if (worker) { 2534 INIT_LIST_HEAD(&worker->entry); 2535 INIT_LIST_HEAD(&worker->scheduled); 2536 INIT_LIST_HEAD(&worker->node); 2537 /* on creation a worker is in !idle && prep state */ 2538 worker->flags = WORKER_PREP; 2539 } 2540 return worker; 2541 } 2542 2543 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2544 { 2545 if (pool->cpu < 0 && pool->attrs->affn_strict) 2546 return pool->attrs->__pod_cpumask; 2547 else 2548 return pool->attrs->cpumask; 2549 } 2550 2551 /** 2552 * worker_attach_to_pool() - attach a worker to a pool 2553 * @worker: worker to be attached 2554 * @pool: the target pool 2555 * 2556 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2557 * cpu-binding of @worker are kept coordinated with the pool across 2558 * cpu-[un]hotplugs. 2559 */ 2560 static void worker_attach_to_pool(struct worker *worker, 2561 struct worker_pool *pool) 2562 { 2563 mutex_lock(&wq_pool_attach_mutex); 2564 2565 /* 2566 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable 2567 * across this function. See the comments above the flag definition for 2568 * details. BH workers are, while per-CPU, always DISASSOCIATED. 2569 */ 2570 if (pool->flags & POOL_DISASSOCIATED) { 2571 worker->flags |= WORKER_UNBOUND; 2572 } else { 2573 WARN_ON_ONCE(pool->flags & POOL_BH); 2574 kthread_set_per_cpu(worker->task, pool->cpu); 2575 } 2576 2577 if (worker->rescue_wq) 2578 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2579 2580 list_add_tail(&worker->node, &pool->workers); 2581 worker->pool = pool; 2582 2583 mutex_unlock(&wq_pool_attach_mutex); 2584 } 2585 2586 /** 2587 * worker_detach_from_pool() - detach a worker from its pool 2588 * @worker: worker which is attached to its pool 2589 * 2590 * Undo the attaching which had been done in worker_attach_to_pool(). The 2591 * caller worker shouldn't access to the pool after detached except it has 2592 * other reference to the pool. 2593 */ 2594 static void worker_detach_from_pool(struct worker *worker) 2595 { 2596 struct worker_pool *pool = worker->pool; 2597 struct completion *detach_completion = NULL; 2598 2599 /* there is one permanent BH worker per CPU which should never detach */ 2600 WARN_ON_ONCE(pool->flags & POOL_BH); 2601 2602 mutex_lock(&wq_pool_attach_mutex); 2603 2604 kthread_set_per_cpu(worker->task, -1); 2605 list_del(&worker->node); 2606 worker->pool = NULL; 2607 2608 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers)) 2609 detach_completion = pool->detach_completion; 2610 mutex_unlock(&wq_pool_attach_mutex); 2611 2612 /* clear leftover flags without pool->lock after it is detached */ 2613 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2614 2615 if (detach_completion) 2616 complete(detach_completion); 2617 } 2618 2619 /** 2620 * create_worker - create a new workqueue worker 2621 * @pool: pool the new worker will belong to 2622 * 2623 * Create and start a new worker which is attached to @pool. 2624 * 2625 * CONTEXT: 2626 * Might sleep. Does GFP_KERNEL allocations. 2627 * 2628 * Return: 2629 * Pointer to the newly created worker. 2630 */ 2631 static struct worker *create_worker(struct worker_pool *pool) 2632 { 2633 struct worker *worker; 2634 int id; 2635 char id_buf[23]; 2636 2637 /* ID is needed to determine kthread name */ 2638 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2639 if (id < 0) { 2640 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2641 ERR_PTR(id)); 2642 return NULL; 2643 } 2644 2645 worker = alloc_worker(pool->node); 2646 if (!worker) { 2647 pr_err_once("workqueue: Failed to allocate a worker\n"); 2648 goto fail; 2649 } 2650 2651 worker->id = id; 2652 2653 if (!(pool->flags & POOL_BH)) { 2654 if (pool->cpu >= 0) 2655 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 2656 pool->attrs->nice < 0 ? "H" : ""); 2657 else 2658 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 2659 2660 worker->task = kthread_create_on_node(worker_thread, worker, 2661 pool->node, "kworker/%s", id_buf); 2662 if (IS_ERR(worker->task)) { 2663 if (PTR_ERR(worker->task) == -EINTR) { 2664 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n", 2665 id_buf); 2666 } else { 2667 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2668 worker->task); 2669 } 2670 goto fail; 2671 } 2672 2673 set_user_nice(worker->task, pool->attrs->nice); 2674 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2675 } 2676 2677 /* successful, attach the worker to the pool */ 2678 worker_attach_to_pool(worker, pool); 2679 2680 /* start the newly created worker */ 2681 raw_spin_lock_irq(&pool->lock); 2682 2683 worker->pool->nr_workers++; 2684 worker_enter_idle(worker); 2685 2686 /* 2687 * @worker is waiting on a completion in kthread() and will trigger hung 2688 * check if not woken up soon. As kick_pool() is noop if @pool is empty, 2689 * wake it up explicitly. 2690 */ 2691 if (worker->task) 2692 wake_up_process(worker->task); 2693 2694 raw_spin_unlock_irq(&pool->lock); 2695 2696 return worker; 2697 2698 fail: 2699 ida_free(&pool->worker_ida, id); 2700 kfree(worker); 2701 return NULL; 2702 } 2703 2704 static void unbind_worker(struct worker *worker) 2705 { 2706 lockdep_assert_held(&wq_pool_attach_mutex); 2707 2708 kthread_set_per_cpu(worker->task, -1); 2709 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2710 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2711 else 2712 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2713 } 2714 2715 static void wake_dying_workers(struct list_head *cull_list) 2716 { 2717 struct worker *worker, *tmp; 2718 2719 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2720 list_del_init(&worker->entry); 2721 unbind_worker(worker); 2722 /* 2723 * If the worker was somehow already running, then it had to be 2724 * in pool->idle_list when set_worker_dying() happened or we 2725 * wouldn't have gotten here. 2726 * 2727 * Thus, the worker must either have observed the WORKER_DIE 2728 * flag, or have set its state to TASK_IDLE. Either way, the 2729 * below will be observed by the worker and is safe to do 2730 * outside of pool->lock. 2731 */ 2732 wake_up_process(worker->task); 2733 } 2734 } 2735 2736 /** 2737 * set_worker_dying - Tag a worker for destruction 2738 * @worker: worker to be destroyed 2739 * @list: transfer worker away from its pool->idle_list and into list 2740 * 2741 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2742 * should be idle. 2743 * 2744 * CONTEXT: 2745 * raw_spin_lock_irq(pool->lock). 2746 */ 2747 static void set_worker_dying(struct worker *worker, struct list_head *list) 2748 { 2749 struct worker_pool *pool = worker->pool; 2750 2751 lockdep_assert_held(&pool->lock); 2752 lockdep_assert_held(&wq_pool_attach_mutex); 2753 2754 /* sanity check frenzy */ 2755 if (WARN_ON(worker->current_work) || 2756 WARN_ON(!list_empty(&worker->scheduled)) || 2757 WARN_ON(!(worker->flags & WORKER_IDLE))) 2758 return; 2759 2760 pool->nr_workers--; 2761 pool->nr_idle--; 2762 2763 worker->flags |= WORKER_DIE; 2764 2765 list_move(&worker->entry, list); 2766 list_move(&worker->node, &pool->dying_workers); 2767 } 2768 2769 /** 2770 * idle_worker_timeout - check if some idle workers can now be deleted. 2771 * @t: The pool's idle_timer that just expired 2772 * 2773 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2774 * worker_leave_idle(), as a worker flicking between idle and active while its 2775 * pool is at the too_many_workers() tipping point would cause too much timer 2776 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2777 * it expire and re-evaluate things from there. 2778 */ 2779 static void idle_worker_timeout(struct timer_list *t) 2780 { 2781 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2782 bool do_cull = false; 2783 2784 if (work_pending(&pool->idle_cull_work)) 2785 return; 2786 2787 raw_spin_lock_irq(&pool->lock); 2788 2789 if (too_many_workers(pool)) { 2790 struct worker *worker; 2791 unsigned long expires; 2792 2793 /* idle_list is kept in LIFO order, check the last one */ 2794 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2795 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2796 do_cull = !time_before(jiffies, expires); 2797 2798 if (!do_cull) 2799 mod_timer(&pool->idle_timer, expires); 2800 } 2801 raw_spin_unlock_irq(&pool->lock); 2802 2803 if (do_cull) 2804 queue_work(system_unbound_wq, &pool->idle_cull_work); 2805 } 2806 2807 /** 2808 * idle_cull_fn - cull workers that have been idle for too long. 2809 * @work: the pool's work for handling these idle workers 2810 * 2811 * This goes through a pool's idle workers and gets rid of those that have been 2812 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2813 * 2814 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2815 * culled, so this also resets worker affinity. This requires a sleepable 2816 * context, hence the split between timer callback and work item. 2817 */ 2818 static void idle_cull_fn(struct work_struct *work) 2819 { 2820 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2821 LIST_HEAD(cull_list); 2822 2823 /* 2824 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2825 * cannot proceed beyong worker_detach_from_pool() in its self-destruct 2826 * path. This is required as a previously-preempted worker could run after 2827 * set_worker_dying() has happened but before wake_dying_workers() did. 2828 */ 2829 mutex_lock(&wq_pool_attach_mutex); 2830 raw_spin_lock_irq(&pool->lock); 2831 2832 while (too_many_workers(pool)) { 2833 struct worker *worker; 2834 unsigned long expires; 2835 2836 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2837 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2838 2839 if (time_before(jiffies, expires)) { 2840 mod_timer(&pool->idle_timer, expires); 2841 break; 2842 } 2843 2844 set_worker_dying(worker, &cull_list); 2845 } 2846 2847 raw_spin_unlock_irq(&pool->lock); 2848 wake_dying_workers(&cull_list); 2849 mutex_unlock(&wq_pool_attach_mutex); 2850 } 2851 2852 static void send_mayday(struct work_struct *work) 2853 { 2854 struct pool_workqueue *pwq = get_work_pwq(work); 2855 struct workqueue_struct *wq = pwq->wq; 2856 2857 lockdep_assert_held(&wq_mayday_lock); 2858 2859 if (!wq->rescuer) 2860 return; 2861 2862 /* mayday mayday mayday */ 2863 if (list_empty(&pwq->mayday_node)) { 2864 /* 2865 * If @pwq is for an unbound wq, its base ref may be put at 2866 * any time due to an attribute change. Pin @pwq until the 2867 * rescuer is done with it. 2868 */ 2869 get_pwq(pwq); 2870 list_add_tail(&pwq->mayday_node, &wq->maydays); 2871 wake_up_process(wq->rescuer->task); 2872 pwq->stats[PWQ_STAT_MAYDAY]++; 2873 } 2874 } 2875 2876 static void pool_mayday_timeout(struct timer_list *t) 2877 { 2878 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2879 struct work_struct *work; 2880 2881 raw_spin_lock_irq(&pool->lock); 2882 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2883 2884 if (need_to_create_worker(pool)) { 2885 /* 2886 * We've been trying to create a new worker but 2887 * haven't been successful. We might be hitting an 2888 * allocation deadlock. Send distress signals to 2889 * rescuers. 2890 */ 2891 list_for_each_entry(work, &pool->worklist, entry) 2892 send_mayday(work); 2893 } 2894 2895 raw_spin_unlock(&wq_mayday_lock); 2896 raw_spin_unlock_irq(&pool->lock); 2897 2898 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2899 } 2900 2901 /** 2902 * maybe_create_worker - create a new worker if necessary 2903 * @pool: pool to create a new worker for 2904 * 2905 * Create a new worker for @pool if necessary. @pool is guaranteed to 2906 * have at least one idle worker on return from this function. If 2907 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2908 * sent to all rescuers with works scheduled on @pool to resolve 2909 * possible allocation deadlock. 2910 * 2911 * On return, need_to_create_worker() is guaranteed to be %false and 2912 * may_start_working() %true. 2913 * 2914 * LOCKING: 2915 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2916 * multiple times. Does GFP_KERNEL allocations. Called only from 2917 * manager. 2918 */ 2919 static void maybe_create_worker(struct worker_pool *pool) 2920 __releases(&pool->lock) 2921 __acquires(&pool->lock) 2922 { 2923 restart: 2924 raw_spin_unlock_irq(&pool->lock); 2925 2926 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2927 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2928 2929 while (true) { 2930 if (create_worker(pool) || !need_to_create_worker(pool)) 2931 break; 2932 2933 schedule_timeout_interruptible(CREATE_COOLDOWN); 2934 2935 if (!need_to_create_worker(pool)) 2936 break; 2937 } 2938 2939 del_timer_sync(&pool->mayday_timer); 2940 raw_spin_lock_irq(&pool->lock); 2941 /* 2942 * This is necessary even after a new worker was just successfully 2943 * created as @pool->lock was dropped and the new worker might have 2944 * already become busy. 2945 */ 2946 if (need_to_create_worker(pool)) 2947 goto restart; 2948 } 2949 2950 /** 2951 * manage_workers - manage worker pool 2952 * @worker: self 2953 * 2954 * Assume the manager role and manage the worker pool @worker belongs 2955 * to. At any given time, there can be only zero or one manager per 2956 * pool. The exclusion is handled automatically by this function. 2957 * 2958 * The caller can safely start processing works on false return. On 2959 * true return, it's guaranteed that need_to_create_worker() is false 2960 * and may_start_working() is true. 2961 * 2962 * CONTEXT: 2963 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2964 * multiple times. Does GFP_KERNEL allocations. 2965 * 2966 * Return: 2967 * %false if the pool doesn't need management and the caller can safely 2968 * start processing works, %true if management function was performed and 2969 * the conditions that the caller verified before calling the function may 2970 * no longer be true. 2971 */ 2972 static bool manage_workers(struct worker *worker) 2973 { 2974 struct worker_pool *pool = worker->pool; 2975 2976 if (pool->flags & POOL_MANAGER_ACTIVE) 2977 return false; 2978 2979 pool->flags |= POOL_MANAGER_ACTIVE; 2980 pool->manager = worker; 2981 2982 maybe_create_worker(pool); 2983 2984 pool->manager = NULL; 2985 pool->flags &= ~POOL_MANAGER_ACTIVE; 2986 rcuwait_wake_up(&manager_wait); 2987 return true; 2988 } 2989 2990 /** 2991 * process_one_work - process single work 2992 * @worker: self 2993 * @work: work to process 2994 * 2995 * Process @work. This function contains all the logics necessary to 2996 * process a single work including synchronization against and 2997 * interaction with other workers on the same cpu, queueing and 2998 * flushing. As long as context requirement is met, any worker can 2999 * call this function to process a work. 3000 * 3001 * CONTEXT: 3002 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 3003 */ 3004 static void process_one_work(struct worker *worker, struct work_struct *work) 3005 __releases(&pool->lock) 3006 __acquires(&pool->lock) 3007 { 3008 struct pool_workqueue *pwq = get_work_pwq(work); 3009 struct worker_pool *pool = worker->pool; 3010 unsigned long work_data; 3011 int lockdep_start_depth, rcu_start_depth; 3012 #ifdef CONFIG_LOCKDEP 3013 /* 3014 * It is permissible to free the struct work_struct from 3015 * inside the function that is called from it, this we need to 3016 * take into account for lockdep too. To avoid bogus "held 3017 * lock freed" warnings as well as problems when looking into 3018 * work->lockdep_map, make a copy and use that here. 3019 */ 3020 struct lockdep_map lockdep_map; 3021 3022 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 3023 #endif 3024 /* ensure we're on the correct CPU */ 3025 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 3026 raw_smp_processor_id() != pool->cpu); 3027 3028 /* claim and dequeue */ 3029 debug_work_deactivate(work); 3030 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 3031 worker->current_work = work; 3032 worker->current_func = work->func; 3033 worker->current_pwq = pwq; 3034 if (worker->task) 3035 worker->current_at = worker->task->se.sum_exec_runtime; 3036 work_data = *work_data_bits(work); 3037 worker->current_color = get_work_color(work_data); 3038 3039 /* 3040 * Record wq name for cmdline and debug reporting, may get 3041 * overridden through set_worker_desc(). 3042 */ 3043 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 3044 3045 list_del_init(&work->entry); 3046 3047 /* 3048 * CPU intensive works don't participate in concurrency management. 3049 * They're the scheduler's responsibility. This takes @worker out 3050 * of concurrency management and the next code block will chain 3051 * execution of the pending work items. 3052 */ 3053 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 3054 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 3055 3056 /* 3057 * Kick @pool if necessary. It's always noop for per-cpu worker pools 3058 * since nr_running would always be >= 1 at this point. This is used to 3059 * chain execution of the pending work items for WORKER_NOT_RUNNING 3060 * workers such as the UNBOUND and CPU_INTENSIVE ones. 3061 */ 3062 kick_pool(pool); 3063 3064 /* 3065 * Record the last pool and clear PENDING which should be the last 3066 * update to @work. Also, do this inside @pool->lock so that 3067 * PENDING and queued state changes happen together while IRQ is 3068 * disabled. 3069 */ 3070 set_work_pool_and_clear_pending(work, pool->id); 3071 3072 pwq->stats[PWQ_STAT_STARTED]++; 3073 raw_spin_unlock_irq(&pool->lock); 3074 3075 rcu_start_depth = rcu_preempt_depth(); 3076 lockdep_start_depth = lockdep_depth(current); 3077 lock_map_acquire(&pwq->wq->lockdep_map); 3078 lock_map_acquire(&lockdep_map); 3079 /* 3080 * Strictly speaking we should mark the invariant state without holding 3081 * any locks, that is, before these two lock_map_acquire()'s. 3082 * 3083 * However, that would result in: 3084 * 3085 * A(W1) 3086 * WFC(C) 3087 * A(W1) 3088 * C(C) 3089 * 3090 * Which would create W1->C->W1 dependencies, even though there is no 3091 * actual deadlock possible. There are two solutions, using a 3092 * read-recursive acquire on the work(queue) 'locks', but this will then 3093 * hit the lockdep limitation on recursive locks, or simply discard 3094 * these locks. 3095 * 3096 * AFAICT there is no possible deadlock scenario between the 3097 * flush_work() and complete() primitives (except for single-threaded 3098 * workqueues), so hiding them isn't a problem. 3099 */ 3100 lockdep_invariant_state(true); 3101 trace_workqueue_execute_start(work); 3102 worker->current_func(work); 3103 /* 3104 * While we must be careful to not use "work" after this, the trace 3105 * point will only record its address. 3106 */ 3107 trace_workqueue_execute_end(work, worker->current_func); 3108 pwq->stats[PWQ_STAT_COMPLETED]++; 3109 lock_map_release(&lockdep_map); 3110 lock_map_release(&pwq->wq->lockdep_map); 3111 3112 if (unlikely((worker->task && in_atomic()) || 3113 lockdep_depth(current) != lockdep_start_depth || 3114 rcu_preempt_depth() != rcu_start_depth)) { 3115 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n" 3116 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n", 3117 current->comm, task_pid_nr(current), preempt_count(), 3118 lockdep_start_depth, lockdep_depth(current), 3119 rcu_start_depth, rcu_preempt_depth(), 3120 worker->current_func); 3121 debug_show_held_locks(current); 3122 dump_stack(); 3123 } 3124 3125 /* 3126 * The following prevents a kworker from hogging CPU on !PREEMPTION 3127 * kernels, where a requeueing work item waiting for something to 3128 * happen could deadlock with stop_machine as such work item could 3129 * indefinitely requeue itself while all other CPUs are trapped in 3130 * stop_machine. At the same time, report a quiescent RCU state so 3131 * the same condition doesn't freeze RCU. 3132 */ 3133 if (worker->task) 3134 cond_resched(); 3135 3136 raw_spin_lock_irq(&pool->lock); 3137 3138 /* 3139 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 3140 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 3141 * wq_cpu_intensive_thresh_us. Clear it. 3142 */ 3143 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 3144 3145 /* tag the worker for identification in schedule() */ 3146 worker->last_func = worker->current_func; 3147 3148 /* we're done with it, release */ 3149 hash_del(&worker->hentry); 3150 worker->current_work = NULL; 3151 worker->current_func = NULL; 3152 worker->current_pwq = NULL; 3153 worker->current_color = INT_MAX; 3154 3155 /* must be the last step, see the function comment */ 3156 pwq_dec_nr_in_flight(pwq, work_data); 3157 } 3158 3159 /** 3160 * process_scheduled_works - process scheduled works 3161 * @worker: self 3162 * 3163 * Process all scheduled works. Please note that the scheduled list 3164 * may change while processing a work, so this function repeatedly 3165 * fetches a work from the top and executes it. 3166 * 3167 * CONTEXT: 3168 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3169 * multiple times. 3170 */ 3171 static void process_scheduled_works(struct worker *worker) 3172 { 3173 struct work_struct *work; 3174 bool first = true; 3175 3176 while ((work = list_first_entry_or_null(&worker->scheduled, 3177 struct work_struct, entry))) { 3178 if (first) { 3179 worker->pool->watchdog_ts = jiffies; 3180 first = false; 3181 } 3182 process_one_work(worker, work); 3183 } 3184 } 3185 3186 static void set_pf_worker(bool val) 3187 { 3188 mutex_lock(&wq_pool_attach_mutex); 3189 if (val) 3190 current->flags |= PF_WQ_WORKER; 3191 else 3192 current->flags &= ~PF_WQ_WORKER; 3193 mutex_unlock(&wq_pool_attach_mutex); 3194 } 3195 3196 /** 3197 * worker_thread - the worker thread function 3198 * @__worker: self 3199 * 3200 * The worker thread function. All workers belong to a worker_pool - 3201 * either a per-cpu one or dynamic unbound one. These workers process all 3202 * work items regardless of their specific target workqueue. The only 3203 * exception is work items which belong to workqueues with a rescuer which 3204 * will be explained in rescuer_thread(). 3205 * 3206 * Return: 0 3207 */ 3208 static int worker_thread(void *__worker) 3209 { 3210 struct worker *worker = __worker; 3211 struct worker_pool *pool = worker->pool; 3212 3213 /* tell the scheduler that this is a workqueue worker */ 3214 set_pf_worker(true); 3215 woke_up: 3216 raw_spin_lock_irq(&pool->lock); 3217 3218 /* am I supposed to die? */ 3219 if (unlikely(worker->flags & WORKER_DIE)) { 3220 raw_spin_unlock_irq(&pool->lock); 3221 set_pf_worker(false); 3222 3223 set_task_comm(worker->task, "kworker/dying"); 3224 ida_free(&pool->worker_ida, worker->id); 3225 worker_detach_from_pool(worker); 3226 WARN_ON_ONCE(!list_empty(&worker->entry)); 3227 kfree(worker); 3228 return 0; 3229 } 3230 3231 worker_leave_idle(worker); 3232 recheck: 3233 /* no more worker necessary? */ 3234 if (!need_more_worker(pool)) 3235 goto sleep; 3236 3237 /* do we need to manage? */ 3238 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 3239 goto recheck; 3240 3241 /* 3242 * ->scheduled list can only be filled while a worker is 3243 * preparing to process a work or actually processing it. 3244 * Make sure nobody diddled with it while I was sleeping. 3245 */ 3246 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3247 3248 /* 3249 * Finish PREP stage. We're guaranteed to have at least one idle 3250 * worker or that someone else has already assumed the manager 3251 * role. This is where @worker starts participating in concurrency 3252 * management if applicable and concurrency management is restored 3253 * after being rebound. See rebind_workers() for details. 3254 */ 3255 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3256 3257 do { 3258 struct work_struct *work = 3259 list_first_entry(&pool->worklist, 3260 struct work_struct, entry); 3261 3262 if (assign_work(work, worker, NULL)) 3263 process_scheduled_works(worker); 3264 } while (keep_working(pool)); 3265 3266 worker_set_flags(worker, WORKER_PREP); 3267 sleep: 3268 /* 3269 * pool->lock is held and there's no work to process and no need to 3270 * manage, sleep. Workers are woken up only while holding 3271 * pool->lock or from local cpu, so setting the current state 3272 * before releasing pool->lock is enough to prevent losing any 3273 * event. 3274 */ 3275 worker_enter_idle(worker); 3276 __set_current_state(TASK_IDLE); 3277 raw_spin_unlock_irq(&pool->lock); 3278 schedule(); 3279 goto woke_up; 3280 } 3281 3282 /** 3283 * rescuer_thread - the rescuer thread function 3284 * @__rescuer: self 3285 * 3286 * Workqueue rescuer thread function. There's one rescuer for each 3287 * workqueue which has WQ_MEM_RECLAIM set. 3288 * 3289 * Regular work processing on a pool may block trying to create a new 3290 * worker which uses GFP_KERNEL allocation which has slight chance of 3291 * developing into deadlock if some works currently on the same queue 3292 * need to be processed to satisfy the GFP_KERNEL allocation. This is 3293 * the problem rescuer solves. 3294 * 3295 * When such condition is possible, the pool summons rescuers of all 3296 * workqueues which have works queued on the pool and let them process 3297 * those works so that forward progress can be guaranteed. 3298 * 3299 * This should happen rarely. 3300 * 3301 * Return: 0 3302 */ 3303 static int rescuer_thread(void *__rescuer) 3304 { 3305 struct worker *rescuer = __rescuer; 3306 struct workqueue_struct *wq = rescuer->rescue_wq; 3307 bool should_stop; 3308 3309 set_user_nice(current, RESCUER_NICE_LEVEL); 3310 3311 /* 3312 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 3313 * doesn't participate in concurrency management. 3314 */ 3315 set_pf_worker(true); 3316 repeat: 3317 set_current_state(TASK_IDLE); 3318 3319 /* 3320 * By the time the rescuer is requested to stop, the workqueue 3321 * shouldn't have any work pending, but @wq->maydays may still have 3322 * pwq(s) queued. This can happen by non-rescuer workers consuming 3323 * all the work items before the rescuer got to them. Go through 3324 * @wq->maydays processing before acting on should_stop so that the 3325 * list is always empty on exit. 3326 */ 3327 should_stop = kthread_should_stop(); 3328 3329 /* see whether any pwq is asking for help */ 3330 raw_spin_lock_irq(&wq_mayday_lock); 3331 3332 while (!list_empty(&wq->maydays)) { 3333 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 3334 struct pool_workqueue, mayday_node); 3335 struct worker_pool *pool = pwq->pool; 3336 struct work_struct *work, *n; 3337 3338 __set_current_state(TASK_RUNNING); 3339 list_del_init(&pwq->mayday_node); 3340 3341 raw_spin_unlock_irq(&wq_mayday_lock); 3342 3343 worker_attach_to_pool(rescuer, pool); 3344 3345 raw_spin_lock_irq(&pool->lock); 3346 3347 /* 3348 * Slurp in all works issued via this workqueue and 3349 * process'em. 3350 */ 3351 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 3352 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 3353 if (get_work_pwq(work) == pwq && 3354 assign_work(work, rescuer, &n)) 3355 pwq->stats[PWQ_STAT_RESCUED]++; 3356 } 3357 3358 if (!list_empty(&rescuer->scheduled)) { 3359 process_scheduled_works(rescuer); 3360 3361 /* 3362 * The above execution of rescued work items could 3363 * have created more to rescue through 3364 * pwq_activate_first_inactive() or chained 3365 * queueing. Let's put @pwq back on mayday list so 3366 * that such back-to-back work items, which may be 3367 * being used to relieve memory pressure, don't 3368 * incur MAYDAY_INTERVAL delay inbetween. 3369 */ 3370 if (pwq->nr_active && need_to_create_worker(pool)) { 3371 raw_spin_lock(&wq_mayday_lock); 3372 /* 3373 * Queue iff we aren't racing destruction 3374 * and somebody else hasn't queued it already. 3375 */ 3376 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 3377 get_pwq(pwq); 3378 list_add_tail(&pwq->mayday_node, &wq->maydays); 3379 } 3380 raw_spin_unlock(&wq_mayday_lock); 3381 } 3382 } 3383 3384 /* 3385 * Put the reference grabbed by send_mayday(). @pool won't 3386 * go away while we're still attached to it. 3387 */ 3388 put_pwq(pwq); 3389 3390 /* 3391 * Leave this pool. Notify regular workers; otherwise, we end up 3392 * with 0 concurrency and stalling the execution. 3393 */ 3394 kick_pool(pool); 3395 3396 raw_spin_unlock_irq(&pool->lock); 3397 3398 worker_detach_from_pool(rescuer); 3399 3400 raw_spin_lock_irq(&wq_mayday_lock); 3401 } 3402 3403 raw_spin_unlock_irq(&wq_mayday_lock); 3404 3405 if (should_stop) { 3406 __set_current_state(TASK_RUNNING); 3407 set_pf_worker(false); 3408 return 0; 3409 } 3410 3411 /* rescuers should never participate in concurrency management */ 3412 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 3413 schedule(); 3414 goto repeat; 3415 } 3416 3417 static void bh_worker(struct worker *worker) 3418 { 3419 struct worker_pool *pool = worker->pool; 3420 int nr_restarts = BH_WORKER_RESTARTS; 3421 unsigned long end = jiffies + BH_WORKER_JIFFIES; 3422 3423 raw_spin_lock_irq(&pool->lock); 3424 worker_leave_idle(worker); 3425 3426 /* 3427 * This function follows the structure of worker_thread(). See there for 3428 * explanations on each step. 3429 */ 3430 if (!need_more_worker(pool)) 3431 goto done; 3432 3433 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3434 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3435 3436 do { 3437 struct work_struct *work = 3438 list_first_entry(&pool->worklist, 3439 struct work_struct, entry); 3440 3441 if (assign_work(work, worker, NULL)) 3442 process_scheduled_works(worker); 3443 } while (keep_working(pool) && 3444 --nr_restarts && time_before(jiffies, end)); 3445 3446 worker_set_flags(worker, WORKER_PREP); 3447 done: 3448 worker_enter_idle(worker); 3449 kick_pool(pool); 3450 raw_spin_unlock_irq(&pool->lock); 3451 } 3452 3453 /* 3454 * TODO: Convert all tasklet users to workqueue and use softirq directly. 3455 * 3456 * This is currently called from tasklet[_hi]action() and thus is also called 3457 * whenever there are tasklets to run. Let's do an early exit if there's nothing 3458 * queued. Once conversion from tasklet is complete, the need_more_worker() test 3459 * can be dropped. 3460 * 3461 * After full conversion, we'll add worker->softirq_action, directly use the 3462 * softirq action and obtain the worker pointer from the softirq_action pointer. 3463 */ 3464 void workqueue_softirq_action(bool highpri) 3465 { 3466 struct worker_pool *pool = 3467 &per_cpu(bh_worker_pools, smp_processor_id())[highpri]; 3468 if (need_more_worker(pool)) 3469 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3470 } 3471 3472 /** 3473 * check_flush_dependency - check for flush dependency sanity 3474 * @target_wq: workqueue being flushed 3475 * @target_work: work item being flushed (NULL for workqueue flushes) 3476 * 3477 * %current is trying to flush the whole @target_wq or @target_work on it. 3478 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 3479 * reclaiming memory or running on a workqueue which doesn't have 3480 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 3481 * a deadlock. 3482 */ 3483 static void check_flush_dependency(struct workqueue_struct *target_wq, 3484 struct work_struct *target_work) 3485 { 3486 work_func_t target_func = target_work ? target_work->func : NULL; 3487 struct worker *worker; 3488 3489 if (target_wq->flags & WQ_MEM_RECLAIM) 3490 return; 3491 3492 worker = current_wq_worker(); 3493 3494 WARN_ONCE(current->flags & PF_MEMALLOC, 3495 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 3496 current->pid, current->comm, target_wq->name, target_func); 3497 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 3498 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 3499 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 3500 worker->current_pwq->wq->name, worker->current_func, 3501 target_wq->name, target_func); 3502 } 3503 3504 struct wq_barrier { 3505 struct work_struct work; 3506 struct completion done; 3507 struct task_struct *task; /* purely informational */ 3508 }; 3509 3510 static void wq_barrier_func(struct work_struct *work) 3511 { 3512 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 3513 complete(&barr->done); 3514 } 3515 3516 /** 3517 * insert_wq_barrier - insert a barrier work 3518 * @pwq: pwq to insert barrier into 3519 * @barr: wq_barrier to insert 3520 * @target: target work to attach @barr to 3521 * @worker: worker currently executing @target, NULL if @target is not executing 3522 * 3523 * @barr is linked to @target such that @barr is completed only after 3524 * @target finishes execution. Please note that the ordering 3525 * guarantee is observed only with respect to @target and on the local 3526 * cpu. 3527 * 3528 * Currently, a queued barrier can't be canceled. This is because 3529 * try_to_grab_pending() can't determine whether the work to be 3530 * grabbed is at the head of the queue and thus can't clear LINKED 3531 * flag of the previous work while there must be a valid next work 3532 * after a work with LINKED flag set. 3533 * 3534 * Note that when @worker is non-NULL, @target may be modified 3535 * underneath us, so we can't reliably determine pwq from @target. 3536 * 3537 * CONTEXT: 3538 * raw_spin_lock_irq(pool->lock). 3539 */ 3540 static void insert_wq_barrier(struct pool_workqueue *pwq, 3541 struct wq_barrier *barr, 3542 struct work_struct *target, struct worker *worker) 3543 { 3544 static __maybe_unused struct lock_class_key bh_key, thr_key; 3545 unsigned int work_flags = 0; 3546 unsigned int work_color; 3547 struct list_head *head; 3548 3549 /* 3550 * debugobject calls are safe here even with pool->lock locked 3551 * as we know for sure that this will not trigger any of the 3552 * checks and call back into the fixup functions where we 3553 * might deadlock. 3554 * 3555 * BH and threaded workqueues need separate lockdep keys to avoid 3556 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} 3557 * usage". 3558 */ 3559 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func, 3560 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key); 3561 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3562 3563 init_completion_map(&barr->done, &target->lockdep_map); 3564 3565 barr->task = current; 3566 3567 /* The barrier work item does not participate in nr_active. */ 3568 work_flags |= WORK_STRUCT_INACTIVE; 3569 3570 /* 3571 * If @target is currently being executed, schedule the 3572 * barrier to the worker; otherwise, put it after @target. 3573 */ 3574 if (worker) { 3575 head = worker->scheduled.next; 3576 work_color = worker->current_color; 3577 } else { 3578 unsigned long *bits = work_data_bits(target); 3579 3580 head = target->entry.next; 3581 /* there can already be other linked works, inherit and set */ 3582 work_flags |= *bits & WORK_STRUCT_LINKED; 3583 work_color = get_work_color(*bits); 3584 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3585 } 3586 3587 pwq->nr_in_flight[work_color]++; 3588 work_flags |= work_color_to_flags(work_color); 3589 3590 insert_work(pwq, &barr->work, head, work_flags); 3591 } 3592 3593 /** 3594 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3595 * @wq: workqueue being flushed 3596 * @flush_color: new flush color, < 0 for no-op 3597 * @work_color: new work color, < 0 for no-op 3598 * 3599 * Prepare pwqs for workqueue flushing. 3600 * 3601 * If @flush_color is non-negative, flush_color on all pwqs should be 3602 * -1. If no pwq has in-flight commands at the specified color, all 3603 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3604 * has in flight commands, its pwq->flush_color is set to 3605 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3606 * wakeup logic is armed and %true is returned. 3607 * 3608 * The caller should have initialized @wq->first_flusher prior to 3609 * calling this function with non-negative @flush_color. If 3610 * @flush_color is negative, no flush color update is done and %false 3611 * is returned. 3612 * 3613 * If @work_color is non-negative, all pwqs should have the same 3614 * work_color which is previous to @work_color and all will be 3615 * advanced to @work_color. 3616 * 3617 * CONTEXT: 3618 * mutex_lock(wq->mutex). 3619 * 3620 * Return: 3621 * %true if @flush_color >= 0 and there's something to flush. %false 3622 * otherwise. 3623 */ 3624 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3625 int flush_color, int work_color) 3626 { 3627 bool wait = false; 3628 struct pool_workqueue *pwq; 3629 3630 if (flush_color >= 0) { 3631 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3632 atomic_set(&wq->nr_pwqs_to_flush, 1); 3633 } 3634 3635 for_each_pwq(pwq, wq) { 3636 struct worker_pool *pool = pwq->pool; 3637 3638 raw_spin_lock_irq(&pool->lock); 3639 3640 if (flush_color >= 0) { 3641 WARN_ON_ONCE(pwq->flush_color != -1); 3642 3643 if (pwq->nr_in_flight[flush_color]) { 3644 pwq->flush_color = flush_color; 3645 atomic_inc(&wq->nr_pwqs_to_flush); 3646 wait = true; 3647 } 3648 } 3649 3650 if (work_color >= 0) { 3651 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3652 pwq->work_color = work_color; 3653 } 3654 3655 raw_spin_unlock_irq(&pool->lock); 3656 } 3657 3658 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3659 complete(&wq->first_flusher->done); 3660 3661 return wait; 3662 } 3663 3664 static void touch_wq_lockdep_map(struct workqueue_struct *wq) 3665 { 3666 #ifdef CONFIG_LOCKDEP 3667 if (wq->flags & WQ_BH) 3668 local_bh_disable(); 3669 3670 lock_map_acquire(&wq->lockdep_map); 3671 lock_map_release(&wq->lockdep_map); 3672 3673 if (wq->flags & WQ_BH) 3674 local_bh_enable(); 3675 #endif 3676 } 3677 3678 static void touch_work_lockdep_map(struct work_struct *work, 3679 struct workqueue_struct *wq) 3680 { 3681 #ifdef CONFIG_LOCKDEP 3682 if (wq->flags & WQ_BH) 3683 local_bh_disable(); 3684 3685 lock_map_acquire(&work->lockdep_map); 3686 lock_map_release(&work->lockdep_map); 3687 3688 if (wq->flags & WQ_BH) 3689 local_bh_enable(); 3690 #endif 3691 } 3692 3693 /** 3694 * __flush_workqueue - ensure that any scheduled work has run to completion. 3695 * @wq: workqueue to flush 3696 * 3697 * This function sleeps until all work items which were queued on entry 3698 * have finished execution, but it is not livelocked by new incoming ones. 3699 */ 3700 void __flush_workqueue(struct workqueue_struct *wq) 3701 { 3702 struct wq_flusher this_flusher = { 3703 .list = LIST_HEAD_INIT(this_flusher.list), 3704 .flush_color = -1, 3705 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 3706 }; 3707 int next_color; 3708 3709 if (WARN_ON(!wq_online)) 3710 return; 3711 3712 touch_wq_lockdep_map(wq); 3713 3714 mutex_lock(&wq->mutex); 3715 3716 /* 3717 * Start-to-wait phase 3718 */ 3719 next_color = work_next_color(wq->work_color); 3720 3721 if (next_color != wq->flush_color) { 3722 /* 3723 * Color space is not full. The current work_color 3724 * becomes our flush_color and work_color is advanced 3725 * by one. 3726 */ 3727 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3728 this_flusher.flush_color = wq->work_color; 3729 wq->work_color = next_color; 3730 3731 if (!wq->first_flusher) { 3732 /* no flush in progress, become the first flusher */ 3733 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3734 3735 wq->first_flusher = &this_flusher; 3736 3737 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3738 wq->work_color)) { 3739 /* nothing to flush, done */ 3740 wq->flush_color = next_color; 3741 wq->first_flusher = NULL; 3742 goto out_unlock; 3743 } 3744 } else { 3745 /* wait in queue */ 3746 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3747 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3748 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3749 } 3750 } else { 3751 /* 3752 * Oops, color space is full, wait on overflow queue. 3753 * The next flush completion will assign us 3754 * flush_color and transfer to flusher_queue. 3755 */ 3756 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3757 } 3758 3759 check_flush_dependency(wq, NULL); 3760 3761 mutex_unlock(&wq->mutex); 3762 3763 wait_for_completion(&this_flusher.done); 3764 3765 /* 3766 * Wake-up-and-cascade phase 3767 * 3768 * First flushers are responsible for cascading flushes and 3769 * handling overflow. Non-first flushers can simply return. 3770 */ 3771 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3772 return; 3773 3774 mutex_lock(&wq->mutex); 3775 3776 /* we might have raced, check again with mutex held */ 3777 if (wq->first_flusher != &this_flusher) 3778 goto out_unlock; 3779 3780 WRITE_ONCE(wq->first_flusher, NULL); 3781 3782 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3783 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3784 3785 while (true) { 3786 struct wq_flusher *next, *tmp; 3787 3788 /* complete all the flushers sharing the current flush color */ 3789 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3790 if (next->flush_color != wq->flush_color) 3791 break; 3792 list_del_init(&next->list); 3793 complete(&next->done); 3794 } 3795 3796 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 3797 wq->flush_color != work_next_color(wq->work_color)); 3798 3799 /* this flush_color is finished, advance by one */ 3800 wq->flush_color = work_next_color(wq->flush_color); 3801 3802 /* one color has been freed, handle overflow queue */ 3803 if (!list_empty(&wq->flusher_overflow)) { 3804 /* 3805 * Assign the same color to all overflowed 3806 * flushers, advance work_color and append to 3807 * flusher_queue. This is the start-to-wait 3808 * phase for these overflowed flushers. 3809 */ 3810 list_for_each_entry(tmp, &wq->flusher_overflow, list) 3811 tmp->flush_color = wq->work_color; 3812 3813 wq->work_color = work_next_color(wq->work_color); 3814 3815 list_splice_tail_init(&wq->flusher_overflow, 3816 &wq->flusher_queue); 3817 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3818 } 3819 3820 if (list_empty(&wq->flusher_queue)) { 3821 WARN_ON_ONCE(wq->flush_color != wq->work_color); 3822 break; 3823 } 3824 3825 /* 3826 * Need to flush more colors. Make the next flusher 3827 * the new first flusher and arm pwqs. 3828 */ 3829 WARN_ON_ONCE(wq->flush_color == wq->work_color); 3830 WARN_ON_ONCE(wq->flush_color != next->flush_color); 3831 3832 list_del_init(&next->list); 3833 wq->first_flusher = next; 3834 3835 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 3836 break; 3837 3838 /* 3839 * Meh... this color is already done, clear first 3840 * flusher and repeat cascading. 3841 */ 3842 wq->first_flusher = NULL; 3843 } 3844 3845 out_unlock: 3846 mutex_unlock(&wq->mutex); 3847 } 3848 EXPORT_SYMBOL(__flush_workqueue); 3849 3850 /** 3851 * drain_workqueue - drain a workqueue 3852 * @wq: workqueue to drain 3853 * 3854 * Wait until the workqueue becomes empty. While draining is in progress, 3855 * only chain queueing is allowed. IOW, only currently pending or running 3856 * work items on @wq can queue further work items on it. @wq is flushed 3857 * repeatedly until it becomes empty. The number of flushing is determined 3858 * by the depth of chaining and should be relatively short. Whine if it 3859 * takes too long. 3860 */ 3861 void drain_workqueue(struct workqueue_struct *wq) 3862 { 3863 unsigned int flush_cnt = 0; 3864 struct pool_workqueue *pwq; 3865 3866 /* 3867 * __queue_work() needs to test whether there are drainers, is much 3868 * hotter than drain_workqueue() and already looks at @wq->flags. 3869 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 3870 */ 3871 mutex_lock(&wq->mutex); 3872 if (!wq->nr_drainers++) 3873 wq->flags |= __WQ_DRAINING; 3874 mutex_unlock(&wq->mutex); 3875 reflush: 3876 __flush_workqueue(wq); 3877 3878 mutex_lock(&wq->mutex); 3879 3880 for_each_pwq(pwq, wq) { 3881 bool drained; 3882 3883 raw_spin_lock_irq(&pwq->pool->lock); 3884 drained = pwq_is_empty(pwq); 3885 raw_spin_unlock_irq(&pwq->pool->lock); 3886 3887 if (drained) 3888 continue; 3889 3890 if (++flush_cnt == 10 || 3891 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 3892 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 3893 wq->name, __func__, flush_cnt); 3894 3895 mutex_unlock(&wq->mutex); 3896 goto reflush; 3897 } 3898 3899 if (!--wq->nr_drainers) 3900 wq->flags &= ~__WQ_DRAINING; 3901 mutex_unlock(&wq->mutex); 3902 } 3903 EXPORT_SYMBOL_GPL(drain_workqueue); 3904 3905 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 3906 bool from_cancel) 3907 { 3908 struct worker *worker = NULL; 3909 struct worker_pool *pool; 3910 struct pool_workqueue *pwq; 3911 struct workqueue_struct *wq; 3912 3913 might_sleep(); 3914 3915 rcu_read_lock(); 3916 pool = get_work_pool(work); 3917 if (!pool) { 3918 rcu_read_unlock(); 3919 return false; 3920 } 3921 3922 raw_spin_lock_irq(&pool->lock); 3923 /* see the comment in try_to_grab_pending() with the same code */ 3924 pwq = get_work_pwq(work); 3925 if (pwq) { 3926 if (unlikely(pwq->pool != pool)) 3927 goto already_gone; 3928 } else { 3929 worker = find_worker_executing_work(pool, work); 3930 if (!worker) 3931 goto already_gone; 3932 pwq = worker->current_pwq; 3933 } 3934 3935 wq = pwq->wq; 3936 check_flush_dependency(wq, work); 3937 3938 insert_wq_barrier(pwq, barr, work, worker); 3939 raw_spin_unlock_irq(&pool->lock); 3940 3941 touch_work_lockdep_map(work, wq); 3942 3943 /* 3944 * Force a lock recursion deadlock when using flush_work() inside a 3945 * single-threaded or rescuer equipped workqueue. 3946 * 3947 * For single threaded workqueues the deadlock happens when the work 3948 * is after the work issuing the flush_work(). For rescuer equipped 3949 * workqueues the deadlock happens when the rescuer stalls, blocking 3950 * forward progress. 3951 */ 3952 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer)) 3953 touch_wq_lockdep_map(wq); 3954 3955 rcu_read_unlock(); 3956 return true; 3957 already_gone: 3958 raw_spin_unlock_irq(&pool->lock); 3959 rcu_read_unlock(); 3960 return false; 3961 } 3962 3963 static bool __flush_work(struct work_struct *work, bool from_cancel) 3964 { 3965 struct wq_barrier barr; 3966 3967 if (WARN_ON(!wq_online)) 3968 return false; 3969 3970 if (WARN_ON(!work->func)) 3971 return false; 3972 3973 if (start_flush_work(work, &barr, from_cancel)) { 3974 wait_for_completion(&barr.done); 3975 destroy_work_on_stack(&barr.work); 3976 return true; 3977 } else { 3978 return false; 3979 } 3980 } 3981 3982 /** 3983 * flush_work - wait for a work to finish executing the last queueing instance 3984 * @work: the work to flush 3985 * 3986 * Wait until @work has finished execution. @work is guaranteed to be idle 3987 * on return if it hasn't been requeued since flush started. 3988 * 3989 * Return: 3990 * %true if flush_work() waited for the work to finish execution, 3991 * %false if it was already idle. 3992 */ 3993 bool flush_work(struct work_struct *work) 3994 { 3995 return __flush_work(work, false); 3996 } 3997 EXPORT_SYMBOL_GPL(flush_work); 3998 3999 struct cwt_wait { 4000 wait_queue_entry_t wait; 4001 struct work_struct *work; 4002 }; 4003 4004 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 4005 { 4006 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 4007 4008 if (cwait->work != key) 4009 return 0; 4010 return autoremove_wake_function(wait, mode, sync, key); 4011 } 4012 4013 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 4014 { 4015 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 4016 unsigned long flags; 4017 int ret; 4018 4019 do { 4020 ret = try_to_grab_pending(work, is_dwork, &flags); 4021 /* 4022 * If someone else is already canceling, wait for it to 4023 * finish. flush_work() doesn't work for PREEMPT_NONE 4024 * because we may get scheduled between @work's completion 4025 * and the other canceling task resuming and clearing 4026 * CANCELING - flush_work() will return false immediately 4027 * as @work is no longer busy, try_to_grab_pending() will 4028 * return -ENOENT as @work is still being canceled and the 4029 * other canceling task won't be able to clear CANCELING as 4030 * we're hogging the CPU. 4031 * 4032 * Let's wait for completion using a waitqueue. As this 4033 * may lead to the thundering herd problem, use a custom 4034 * wake function which matches @work along with exclusive 4035 * wait and wakeup. 4036 */ 4037 if (unlikely(ret == -ENOENT)) { 4038 struct cwt_wait cwait; 4039 4040 init_wait(&cwait.wait); 4041 cwait.wait.func = cwt_wakefn; 4042 cwait.work = work; 4043 4044 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 4045 TASK_UNINTERRUPTIBLE); 4046 if (work_is_canceling(work)) 4047 schedule(); 4048 finish_wait(&cancel_waitq, &cwait.wait); 4049 } 4050 } while (unlikely(ret < 0)); 4051 4052 /* tell other tasks trying to grab @work to back off */ 4053 mark_work_canceling(work); 4054 local_irq_restore(flags); 4055 4056 /* 4057 * This allows canceling during early boot. We know that @work 4058 * isn't executing. 4059 */ 4060 if (wq_online) 4061 __flush_work(work, true); 4062 4063 clear_work_data(work); 4064 4065 /* 4066 * Paired with prepare_to_wait() above so that either 4067 * waitqueue_active() is visible here or !work_is_canceling() is 4068 * visible there. 4069 */ 4070 smp_mb(); 4071 if (waitqueue_active(&cancel_waitq)) 4072 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 4073 4074 return ret; 4075 } 4076 4077 /** 4078 * cancel_work_sync - cancel a work and wait for it to finish 4079 * @work: the work to cancel 4080 * 4081 * Cancel @work and wait for its execution to finish. This function 4082 * can be used even if the work re-queues itself or migrates to 4083 * another workqueue. On return from this function, @work is 4084 * guaranteed to be not pending or executing on any CPU. 4085 * 4086 * cancel_work_sync(&delayed_work->work) must not be used for 4087 * delayed_work's. Use cancel_delayed_work_sync() instead. 4088 * 4089 * The caller must ensure that the workqueue on which @work was last 4090 * queued can't be destroyed before this function returns. 4091 * 4092 * Return: 4093 * %true if @work was pending, %false otherwise. 4094 */ 4095 bool cancel_work_sync(struct work_struct *work) 4096 { 4097 return __cancel_work_timer(work, false); 4098 } 4099 EXPORT_SYMBOL_GPL(cancel_work_sync); 4100 4101 /** 4102 * flush_delayed_work - wait for a dwork to finish executing the last queueing 4103 * @dwork: the delayed work to flush 4104 * 4105 * Delayed timer is cancelled and the pending work is queued for 4106 * immediate execution. Like flush_work(), this function only 4107 * considers the last queueing instance of @dwork. 4108 * 4109 * Return: 4110 * %true if flush_work() waited for the work to finish execution, 4111 * %false if it was already idle. 4112 */ 4113 bool flush_delayed_work(struct delayed_work *dwork) 4114 { 4115 local_irq_disable(); 4116 if (del_timer_sync(&dwork->timer)) 4117 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 4118 local_irq_enable(); 4119 return flush_work(&dwork->work); 4120 } 4121 EXPORT_SYMBOL(flush_delayed_work); 4122 4123 /** 4124 * flush_rcu_work - wait for a rwork to finish executing the last queueing 4125 * @rwork: the rcu work to flush 4126 * 4127 * Return: 4128 * %true if flush_rcu_work() waited for the work to finish execution, 4129 * %false if it was already idle. 4130 */ 4131 bool flush_rcu_work(struct rcu_work *rwork) 4132 { 4133 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 4134 rcu_barrier(); 4135 flush_work(&rwork->work); 4136 return true; 4137 } else { 4138 return flush_work(&rwork->work); 4139 } 4140 } 4141 EXPORT_SYMBOL(flush_rcu_work); 4142 4143 static bool __cancel_work(struct work_struct *work, bool is_dwork) 4144 { 4145 unsigned long flags; 4146 int ret; 4147 4148 do { 4149 ret = try_to_grab_pending(work, is_dwork, &flags); 4150 } while (unlikely(ret == -EAGAIN)); 4151 4152 if (unlikely(ret < 0)) 4153 return false; 4154 4155 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 4156 local_irq_restore(flags); 4157 return ret; 4158 } 4159 4160 /* 4161 * See cancel_delayed_work() 4162 */ 4163 bool cancel_work(struct work_struct *work) 4164 { 4165 return __cancel_work(work, false); 4166 } 4167 EXPORT_SYMBOL(cancel_work); 4168 4169 /** 4170 * cancel_delayed_work - cancel a delayed work 4171 * @dwork: delayed_work to cancel 4172 * 4173 * Kill off a pending delayed_work. 4174 * 4175 * Return: %true if @dwork was pending and canceled; %false if it wasn't 4176 * pending. 4177 * 4178 * Note: 4179 * The work callback function may still be running on return, unless 4180 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 4181 * use cancel_delayed_work_sync() to wait on it. 4182 * 4183 * This function is safe to call from any context including IRQ handler. 4184 */ 4185 bool cancel_delayed_work(struct delayed_work *dwork) 4186 { 4187 return __cancel_work(&dwork->work, true); 4188 } 4189 EXPORT_SYMBOL(cancel_delayed_work); 4190 4191 /** 4192 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 4193 * @dwork: the delayed work cancel 4194 * 4195 * This is cancel_work_sync() for delayed works. 4196 * 4197 * Return: 4198 * %true if @dwork was pending, %false otherwise. 4199 */ 4200 bool cancel_delayed_work_sync(struct delayed_work *dwork) 4201 { 4202 return __cancel_work_timer(&dwork->work, true); 4203 } 4204 EXPORT_SYMBOL(cancel_delayed_work_sync); 4205 4206 /** 4207 * schedule_on_each_cpu - execute a function synchronously on each online CPU 4208 * @func: the function to call 4209 * 4210 * schedule_on_each_cpu() executes @func on each online CPU using the 4211 * system workqueue and blocks until all CPUs have completed. 4212 * schedule_on_each_cpu() is very slow. 4213 * 4214 * Return: 4215 * 0 on success, -errno on failure. 4216 */ 4217 int schedule_on_each_cpu(work_func_t func) 4218 { 4219 int cpu; 4220 struct work_struct __percpu *works; 4221 4222 works = alloc_percpu(struct work_struct); 4223 if (!works) 4224 return -ENOMEM; 4225 4226 cpus_read_lock(); 4227 4228 for_each_online_cpu(cpu) { 4229 struct work_struct *work = per_cpu_ptr(works, cpu); 4230 4231 INIT_WORK(work, func); 4232 schedule_work_on(cpu, work); 4233 } 4234 4235 for_each_online_cpu(cpu) 4236 flush_work(per_cpu_ptr(works, cpu)); 4237 4238 cpus_read_unlock(); 4239 free_percpu(works); 4240 return 0; 4241 } 4242 4243 /** 4244 * execute_in_process_context - reliably execute the routine with user context 4245 * @fn: the function to execute 4246 * @ew: guaranteed storage for the execute work structure (must 4247 * be available when the work executes) 4248 * 4249 * Executes the function immediately if process context is available, 4250 * otherwise schedules the function for delayed execution. 4251 * 4252 * Return: 0 - function was executed 4253 * 1 - function was scheduled for execution 4254 */ 4255 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 4256 { 4257 if (!in_interrupt()) { 4258 fn(&ew->work); 4259 return 0; 4260 } 4261 4262 INIT_WORK(&ew->work, fn); 4263 schedule_work(&ew->work); 4264 4265 return 1; 4266 } 4267 EXPORT_SYMBOL_GPL(execute_in_process_context); 4268 4269 /** 4270 * free_workqueue_attrs - free a workqueue_attrs 4271 * @attrs: workqueue_attrs to free 4272 * 4273 * Undo alloc_workqueue_attrs(). 4274 */ 4275 void free_workqueue_attrs(struct workqueue_attrs *attrs) 4276 { 4277 if (attrs) { 4278 free_cpumask_var(attrs->cpumask); 4279 free_cpumask_var(attrs->__pod_cpumask); 4280 kfree(attrs); 4281 } 4282 } 4283 4284 /** 4285 * alloc_workqueue_attrs - allocate a workqueue_attrs 4286 * 4287 * Allocate a new workqueue_attrs, initialize with default settings and 4288 * return it. 4289 * 4290 * Return: The allocated new workqueue_attr on success. %NULL on failure. 4291 */ 4292 struct workqueue_attrs *alloc_workqueue_attrs(void) 4293 { 4294 struct workqueue_attrs *attrs; 4295 4296 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 4297 if (!attrs) 4298 goto fail; 4299 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 4300 goto fail; 4301 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 4302 goto fail; 4303 4304 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4305 attrs->affn_scope = WQ_AFFN_DFL; 4306 return attrs; 4307 fail: 4308 free_workqueue_attrs(attrs); 4309 return NULL; 4310 } 4311 4312 static void copy_workqueue_attrs(struct workqueue_attrs *to, 4313 const struct workqueue_attrs *from) 4314 { 4315 to->nice = from->nice; 4316 cpumask_copy(to->cpumask, from->cpumask); 4317 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 4318 to->affn_strict = from->affn_strict; 4319 4320 /* 4321 * Unlike hash and equality test, copying shouldn't ignore wq-only 4322 * fields as copying is used for both pool and wq attrs. Instead, 4323 * get_unbound_pool() explicitly clears the fields. 4324 */ 4325 to->affn_scope = from->affn_scope; 4326 to->ordered = from->ordered; 4327 } 4328 4329 /* 4330 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 4331 * comments in 'struct workqueue_attrs' definition. 4332 */ 4333 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 4334 { 4335 attrs->affn_scope = WQ_AFFN_NR_TYPES; 4336 attrs->ordered = false; 4337 } 4338 4339 /* hash value of the content of @attr */ 4340 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 4341 { 4342 u32 hash = 0; 4343 4344 hash = jhash_1word(attrs->nice, hash); 4345 hash = jhash(cpumask_bits(attrs->cpumask), 4346 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4347 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 4348 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4349 hash = jhash_1word(attrs->affn_strict, hash); 4350 return hash; 4351 } 4352 4353 /* content equality test */ 4354 static bool wqattrs_equal(const struct workqueue_attrs *a, 4355 const struct workqueue_attrs *b) 4356 { 4357 if (a->nice != b->nice) 4358 return false; 4359 if (!cpumask_equal(a->cpumask, b->cpumask)) 4360 return false; 4361 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 4362 return false; 4363 if (a->affn_strict != b->affn_strict) 4364 return false; 4365 return true; 4366 } 4367 4368 /* Update @attrs with actually available CPUs */ 4369 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 4370 const cpumask_t *unbound_cpumask) 4371 { 4372 /* 4373 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 4374 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 4375 * @unbound_cpumask. 4376 */ 4377 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 4378 if (unlikely(cpumask_empty(attrs->cpumask))) 4379 cpumask_copy(attrs->cpumask, unbound_cpumask); 4380 } 4381 4382 /* find wq_pod_type to use for @attrs */ 4383 static const struct wq_pod_type * 4384 wqattrs_pod_type(const struct workqueue_attrs *attrs) 4385 { 4386 enum wq_affn_scope scope; 4387 struct wq_pod_type *pt; 4388 4389 /* to synchronize access to wq_affn_dfl */ 4390 lockdep_assert_held(&wq_pool_mutex); 4391 4392 if (attrs->affn_scope == WQ_AFFN_DFL) 4393 scope = wq_affn_dfl; 4394 else 4395 scope = attrs->affn_scope; 4396 4397 pt = &wq_pod_types[scope]; 4398 4399 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 4400 likely(pt->nr_pods)) 4401 return pt; 4402 4403 /* 4404 * Before workqueue_init_topology(), only SYSTEM is available which is 4405 * initialized in workqueue_init_early(). 4406 */ 4407 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 4408 BUG_ON(!pt->nr_pods); 4409 return pt; 4410 } 4411 4412 /** 4413 * init_worker_pool - initialize a newly zalloc'd worker_pool 4414 * @pool: worker_pool to initialize 4415 * 4416 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 4417 * 4418 * Return: 0 on success, -errno on failure. Even on failure, all fields 4419 * inside @pool proper are initialized and put_unbound_pool() can be called 4420 * on @pool safely to release it. 4421 */ 4422 static int init_worker_pool(struct worker_pool *pool) 4423 { 4424 raw_spin_lock_init(&pool->lock); 4425 pool->id = -1; 4426 pool->cpu = -1; 4427 pool->node = NUMA_NO_NODE; 4428 pool->flags |= POOL_DISASSOCIATED; 4429 pool->watchdog_ts = jiffies; 4430 INIT_LIST_HEAD(&pool->worklist); 4431 INIT_LIST_HEAD(&pool->idle_list); 4432 hash_init(pool->busy_hash); 4433 4434 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 4435 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 4436 4437 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 4438 4439 INIT_LIST_HEAD(&pool->workers); 4440 INIT_LIST_HEAD(&pool->dying_workers); 4441 4442 ida_init(&pool->worker_ida); 4443 INIT_HLIST_NODE(&pool->hash_node); 4444 pool->refcnt = 1; 4445 4446 /* shouldn't fail above this point */ 4447 pool->attrs = alloc_workqueue_attrs(); 4448 if (!pool->attrs) 4449 return -ENOMEM; 4450 4451 wqattrs_clear_for_pool(pool->attrs); 4452 4453 return 0; 4454 } 4455 4456 #ifdef CONFIG_LOCKDEP 4457 static void wq_init_lockdep(struct workqueue_struct *wq) 4458 { 4459 char *lock_name; 4460 4461 lockdep_register_key(&wq->key); 4462 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 4463 if (!lock_name) 4464 lock_name = wq->name; 4465 4466 wq->lock_name = lock_name; 4467 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 4468 } 4469 4470 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4471 { 4472 lockdep_unregister_key(&wq->key); 4473 } 4474 4475 static void wq_free_lockdep(struct workqueue_struct *wq) 4476 { 4477 if (wq->lock_name != wq->name) 4478 kfree(wq->lock_name); 4479 } 4480 #else 4481 static void wq_init_lockdep(struct workqueue_struct *wq) 4482 { 4483 } 4484 4485 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4486 { 4487 } 4488 4489 static void wq_free_lockdep(struct workqueue_struct *wq) 4490 { 4491 } 4492 #endif 4493 4494 static void free_node_nr_active(struct wq_node_nr_active **nna_ar) 4495 { 4496 int node; 4497 4498 for_each_node(node) { 4499 kfree(nna_ar[node]); 4500 nna_ar[node] = NULL; 4501 } 4502 4503 kfree(nna_ar[nr_node_ids]); 4504 nna_ar[nr_node_ids] = NULL; 4505 } 4506 4507 static void init_node_nr_active(struct wq_node_nr_active *nna) 4508 { 4509 nna->max = WQ_DFL_MIN_ACTIVE; 4510 atomic_set(&nna->nr, 0); 4511 raw_spin_lock_init(&nna->lock); 4512 INIT_LIST_HEAD(&nna->pending_pwqs); 4513 } 4514 4515 /* 4516 * Each node's nr_active counter will be accessed mostly from its own node and 4517 * should be allocated in the node. 4518 */ 4519 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) 4520 { 4521 struct wq_node_nr_active *nna; 4522 int node; 4523 4524 for_each_node(node) { 4525 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node); 4526 if (!nna) 4527 goto err_free; 4528 init_node_nr_active(nna); 4529 nna_ar[node] = nna; 4530 } 4531 4532 /* [nr_node_ids] is used as the fallback */ 4533 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); 4534 if (!nna) 4535 goto err_free; 4536 init_node_nr_active(nna); 4537 nna_ar[nr_node_ids] = nna; 4538 4539 return 0; 4540 4541 err_free: 4542 free_node_nr_active(nna_ar); 4543 return -ENOMEM; 4544 } 4545 4546 static void rcu_free_wq(struct rcu_head *rcu) 4547 { 4548 struct workqueue_struct *wq = 4549 container_of(rcu, struct workqueue_struct, rcu); 4550 4551 if (wq->flags & WQ_UNBOUND) 4552 free_node_nr_active(wq->node_nr_active); 4553 4554 wq_free_lockdep(wq); 4555 free_percpu(wq->cpu_pwq); 4556 free_workqueue_attrs(wq->unbound_attrs); 4557 kfree(wq); 4558 } 4559 4560 static void rcu_free_pool(struct rcu_head *rcu) 4561 { 4562 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 4563 4564 ida_destroy(&pool->worker_ida); 4565 free_workqueue_attrs(pool->attrs); 4566 kfree(pool); 4567 } 4568 4569 /** 4570 * put_unbound_pool - put a worker_pool 4571 * @pool: worker_pool to put 4572 * 4573 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 4574 * safe manner. get_unbound_pool() calls this function on its failure path 4575 * and this function should be able to release pools which went through, 4576 * successfully or not, init_worker_pool(). 4577 * 4578 * Should be called with wq_pool_mutex held. 4579 */ 4580 static void put_unbound_pool(struct worker_pool *pool) 4581 { 4582 DECLARE_COMPLETION_ONSTACK(detach_completion); 4583 struct worker *worker; 4584 LIST_HEAD(cull_list); 4585 4586 lockdep_assert_held(&wq_pool_mutex); 4587 4588 if (--pool->refcnt) 4589 return; 4590 4591 /* sanity checks */ 4592 if (WARN_ON(!(pool->cpu < 0)) || 4593 WARN_ON(!list_empty(&pool->worklist))) 4594 return; 4595 4596 /* release id and unhash */ 4597 if (pool->id >= 0) 4598 idr_remove(&worker_pool_idr, pool->id); 4599 hash_del(&pool->hash_node); 4600 4601 /* 4602 * Become the manager and destroy all workers. This prevents 4603 * @pool's workers from blocking on attach_mutex. We're the last 4604 * manager and @pool gets freed with the flag set. 4605 * 4606 * Having a concurrent manager is quite unlikely to happen as we can 4607 * only get here with 4608 * pwq->refcnt == pool->refcnt == 0 4609 * which implies no work queued to the pool, which implies no worker can 4610 * become the manager. However a worker could have taken the role of 4611 * manager before the refcnts dropped to 0, since maybe_create_worker() 4612 * drops pool->lock 4613 */ 4614 while (true) { 4615 rcuwait_wait_event(&manager_wait, 4616 !(pool->flags & POOL_MANAGER_ACTIVE), 4617 TASK_UNINTERRUPTIBLE); 4618 4619 mutex_lock(&wq_pool_attach_mutex); 4620 raw_spin_lock_irq(&pool->lock); 4621 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4622 pool->flags |= POOL_MANAGER_ACTIVE; 4623 break; 4624 } 4625 raw_spin_unlock_irq(&pool->lock); 4626 mutex_unlock(&wq_pool_attach_mutex); 4627 } 4628 4629 while ((worker = first_idle_worker(pool))) 4630 set_worker_dying(worker, &cull_list); 4631 WARN_ON(pool->nr_workers || pool->nr_idle); 4632 raw_spin_unlock_irq(&pool->lock); 4633 4634 wake_dying_workers(&cull_list); 4635 4636 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers)) 4637 pool->detach_completion = &detach_completion; 4638 mutex_unlock(&wq_pool_attach_mutex); 4639 4640 if (pool->detach_completion) 4641 wait_for_completion(pool->detach_completion); 4642 4643 /* shut down the timers */ 4644 del_timer_sync(&pool->idle_timer); 4645 cancel_work_sync(&pool->idle_cull_work); 4646 del_timer_sync(&pool->mayday_timer); 4647 4648 /* RCU protected to allow dereferences from get_work_pool() */ 4649 call_rcu(&pool->rcu, rcu_free_pool); 4650 } 4651 4652 /** 4653 * get_unbound_pool - get a worker_pool with the specified attributes 4654 * @attrs: the attributes of the worker_pool to get 4655 * 4656 * Obtain a worker_pool which has the same attributes as @attrs, bump the 4657 * reference count and return it. If there already is a matching 4658 * worker_pool, it will be used; otherwise, this function attempts to 4659 * create a new one. 4660 * 4661 * Should be called with wq_pool_mutex held. 4662 * 4663 * Return: On success, a worker_pool with the same attributes as @attrs. 4664 * On failure, %NULL. 4665 */ 4666 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 4667 { 4668 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 4669 u32 hash = wqattrs_hash(attrs); 4670 struct worker_pool *pool; 4671 int pod, node = NUMA_NO_NODE; 4672 4673 lockdep_assert_held(&wq_pool_mutex); 4674 4675 /* do we already have a matching pool? */ 4676 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 4677 if (wqattrs_equal(pool->attrs, attrs)) { 4678 pool->refcnt++; 4679 return pool; 4680 } 4681 } 4682 4683 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 4684 for (pod = 0; pod < pt->nr_pods; pod++) { 4685 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 4686 node = pt->pod_node[pod]; 4687 break; 4688 } 4689 } 4690 4691 /* nope, create a new one */ 4692 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 4693 if (!pool || init_worker_pool(pool) < 0) 4694 goto fail; 4695 4696 pool->node = node; 4697 copy_workqueue_attrs(pool->attrs, attrs); 4698 wqattrs_clear_for_pool(pool->attrs); 4699 4700 if (worker_pool_assign_id(pool) < 0) 4701 goto fail; 4702 4703 /* create and start the initial worker */ 4704 if (wq_online && !create_worker(pool)) 4705 goto fail; 4706 4707 /* install */ 4708 hash_add(unbound_pool_hash, &pool->hash_node, hash); 4709 4710 return pool; 4711 fail: 4712 if (pool) 4713 put_unbound_pool(pool); 4714 return NULL; 4715 } 4716 4717 static void rcu_free_pwq(struct rcu_head *rcu) 4718 { 4719 kmem_cache_free(pwq_cache, 4720 container_of(rcu, struct pool_workqueue, rcu)); 4721 } 4722 4723 /* 4724 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 4725 * refcnt and needs to be destroyed. 4726 */ 4727 static void pwq_release_workfn(struct kthread_work *work) 4728 { 4729 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 4730 release_work); 4731 struct workqueue_struct *wq = pwq->wq; 4732 struct worker_pool *pool = pwq->pool; 4733 bool is_last = false; 4734 4735 /* 4736 * When @pwq is not linked, it doesn't hold any reference to the 4737 * @wq, and @wq is invalid to access. 4738 */ 4739 if (!list_empty(&pwq->pwqs_node)) { 4740 mutex_lock(&wq->mutex); 4741 list_del_rcu(&pwq->pwqs_node); 4742 is_last = list_empty(&wq->pwqs); 4743 mutex_unlock(&wq->mutex); 4744 } 4745 4746 if (wq->flags & WQ_UNBOUND) { 4747 mutex_lock(&wq_pool_mutex); 4748 put_unbound_pool(pool); 4749 mutex_unlock(&wq_pool_mutex); 4750 } 4751 4752 if (!list_empty(&pwq->pending_node)) { 4753 struct wq_node_nr_active *nna = 4754 wq_node_nr_active(pwq->wq, pwq->pool->node); 4755 4756 raw_spin_lock_irq(&nna->lock); 4757 list_del_init(&pwq->pending_node); 4758 raw_spin_unlock_irq(&nna->lock); 4759 } 4760 4761 call_rcu(&pwq->rcu, rcu_free_pwq); 4762 4763 /* 4764 * If we're the last pwq going away, @wq is already dead and no one 4765 * is gonna access it anymore. Schedule RCU free. 4766 */ 4767 if (is_last) { 4768 wq_unregister_lockdep(wq); 4769 call_rcu(&wq->rcu, rcu_free_wq); 4770 } 4771 } 4772 4773 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 4774 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 4775 struct worker_pool *pool) 4776 { 4777 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 4778 4779 memset(pwq, 0, sizeof(*pwq)); 4780 4781 pwq->pool = pool; 4782 pwq->wq = wq; 4783 pwq->flush_color = -1; 4784 pwq->refcnt = 1; 4785 INIT_LIST_HEAD(&pwq->inactive_works); 4786 INIT_LIST_HEAD(&pwq->pending_node); 4787 INIT_LIST_HEAD(&pwq->pwqs_node); 4788 INIT_LIST_HEAD(&pwq->mayday_node); 4789 kthread_init_work(&pwq->release_work, pwq_release_workfn); 4790 } 4791 4792 /* sync @pwq with the current state of its associated wq and link it */ 4793 static void link_pwq(struct pool_workqueue *pwq) 4794 { 4795 struct workqueue_struct *wq = pwq->wq; 4796 4797 lockdep_assert_held(&wq->mutex); 4798 4799 /* may be called multiple times, ignore if already linked */ 4800 if (!list_empty(&pwq->pwqs_node)) 4801 return; 4802 4803 /* set the matching work_color */ 4804 pwq->work_color = wq->work_color; 4805 4806 /* link in @pwq */ 4807 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 4808 } 4809 4810 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 4811 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 4812 const struct workqueue_attrs *attrs) 4813 { 4814 struct worker_pool *pool; 4815 struct pool_workqueue *pwq; 4816 4817 lockdep_assert_held(&wq_pool_mutex); 4818 4819 pool = get_unbound_pool(attrs); 4820 if (!pool) 4821 return NULL; 4822 4823 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 4824 if (!pwq) { 4825 put_unbound_pool(pool); 4826 return NULL; 4827 } 4828 4829 init_pwq(pwq, wq, pool); 4830 return pwq; 4831 } 4832 4833 /** 4834 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 4835 * @attrs: the wq_attrs of the default pwq of the target workqueue 4836 * @cpu: the target CPU 4837 * @cpu_going_down: if >= 0, the CPU to consider as offline 4838 * 4839 * Calculate the cpumask a workqueue with @attrs should use on @pod. If 4840 * @cpu_going_down is >= 0, that cpu is considered offline during calculation. 4841 * The result is stored in @attrs->__pod_cpumask. 4842 * 4843 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 4844 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 4845 * intersection of the possible CPUs of @pod and @attrs->cpumask. 4846 * 4847 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 4848 */ 4849 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu, 4850 int cpu_going_down) 4851 { 4852 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 4853 int pod = pt->cpu_pod[cpu]; 4854 4855 /* does @pod have any online CPUs @attrs wants? */ 4856 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 4857 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask); 4858 if (cpu_going_down >= 0) 4859 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask); 4860 4861 if (cpumask_empty(attrs->__pod_cpumask)) { 4862 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 4863 return; 4864 } 4865 4866 /* yeap, return possible CPUs in @pod that @attrs wants */ 4867 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]); 4868 4869 if (cpumask_empty(attrs->__pod_cpumask)) 4870 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 4871 "possible intersect\n"); 4872 } 4873 4874 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ 4875 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 4876 int cpu, struct pool_workqueue *pwq) 4877 { 4878 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); 4879 struct pool_workqueue *old_pwq; 4880 4881 lockdep_assert_held(&wq_pool_mutex); 4882 lockdep_assert_held(&wq->mutex); 4883 4884 /* link_pwq() can handle duplicate calls */ 4885 link_pwq(pwq); 4886 4887 old_pwq = rcu_access_pointer(*slot); 4888 rcu_assign_pointer(*slot, pwq); 4889 return old_pwq; 4890 } 4891 4892 /* context to store the prepared attrs & pwqs before applying */ 4893 struct apply_wqattrs_ctx { 4894 struct workqueue_struct *wq; /* target workqueue */ 4895 struct workqueue_attrs *attrs; /* attrs to apply */ 4896 struct list_head list; /* queued for batching commit */ 4897 struct pool_workqueue *dfl_pwq; 4898 struct pool_workqueue *pwq_tbl[]; 4899 }; 4900 4901 /* free the resources after success or abort */ 4902 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 4903 { 4904 if (ctx) { 4905 int cpu; 4906 4907 for_each_possible_cpu(cpu) 4908 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 4909 put_pwq_unlocked(ctx->dfl_pwq); 4910 4911 free_workqueue_attrs(ctx->attrs); 4912 4913 kfree(ctx); 4914 } 4915 } 4916 4917 /* allocate the attrs and pwqs for later installation */ 4918 static struct apply_wqattrs_ctx * 4919 apply_wqattrs_prepare(struct workqueue_struct *wq, 4920 const struct workqueue_attrs *attrs, 4921 const cpumask_var_t unbound_cpumask) 4922 { 4923 struct apply_wqattrs_ctx *ctx; 4924 struct workqueue_attrs *new_attrs; 4925 int cpu; 4926 4927 lockdep_assert_held(&wq_pool_mutex); 4928 4929 if (WARN_ON(attrs->affn_scope < 0 || 4930 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 4931 return ERR_PTR(-EINVAL); 4932 4933 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 4934 4935 new_attrs = alloc_workqueue_attrs(); 4936 if (!ctx || !new_attrs) 4937 goto out_free; 4938 4939 /* 4940 * If something goes wrong during CPU up/down, we'll fall back to 4941 * the default pwq covering whole @attrs->cpumask. Always create 4942 * it even if we don't use it immediately. 4943 */ 4944 copy_workqueue_attrs(new_attrs, attrs); 4945 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 4946 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 4947 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 4948 if (!ctx->dfl_pwq) 4949 goto out_free; 4950 4951 for_each_possible_cpu(cpu) { 4952 if (new_attrs->ordered) { 4953 ctx->dfl_pwq->refcnt++; 4954 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 4955 } else { 4956 wq_calc_pod_cpumask(new_attrs, cpu, -1); 4957 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 4958 if (!ctx->pwq_tbl[cpu]) 4959 goto out_free; 4960 } 4961 } 4962 4963 /* save the user configured attrs and sanitize it. */ 4964 copy_workqueue_attrs(new_attrs, attrs); 4965 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 4966 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 4967 ctx->attrs = new_attrs; 4968 4969 ctx->wq = wq; 4970 return ctx; 4971 4972 out_free: 4973 free_workqueue_attrs(new_attrs); 4974 apply_wqattrs_cleanup(ctx); 4975 return ERR_PTR(-ENOMEM); 4976 } 4977 4978 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 4979 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 4980 { 4981 int cpu; 4982 4983 /* all pwqs have been created successfully, let's install'em */ 4984 mutex_lock(&ctx->wq->mutex); 4985 4986 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 4987 4988 /* save the previous pwqs and install the new ones */ 4989 for_each_possible_cpu(cpu) 4990 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 4991 ctx->pwq_tbl[cpu]); 4992 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq); 4993 4994 /* update node_nr_active->max */ 4995 wq_update_node_max_active(ctx->wq, -1); 4996 4997 mutex_unlock(&ctx->wq->mutex); 4998 } 4999 5000 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 5001 const struct workqueue_attrs *attrs) 5002 { 5003 struct apply_wqattrs_ctx *ctx; 5004 5005 /* only unbound workqueues can change attributes */ 5006 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 5007 return -EINVAL; 5008 5009 /* creating multiple pwqs breaks ordering guarantee */ 5010 if (!list_empty(&wq->pwqs)) { 5011 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5012 return -EINVAL; 5013 5014 wq->flags &= ~__WQ_ORDERED; 5015 } 5016 5017 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 5018 if (IS_ERR(ctx)) 5019 return PTR_ERR(ctx); 5020 5021 /* the ctx has been prepared successfully, let's commit it */ 5022 apply_wqattrs_commit(ctx); 5023 apply_wqattrs_cleanup(ctx); 5024 5025 return 0; 5026 } 5027 5028 /** 5029 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 5030 * @wq: the target workqueue 5031 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 5032 * 5033 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 5034 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 5035 * work items are affine to the pod it was issued on. Older pwqs are released as 5036 * in-flight work items finish. Note that a work item which repeatedly requeues 5037 * itself back-to-back will stay on its current pwq. 5038 * 5039 * Performs GFP_KERNEL allocations. 5040 * 5041 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 5042 * 5043 * Return: 0 on success and -errno on failure. 5044 */ 5045 int apply_workqueue_attrs(struct workqueue_struct *wq, 5046 const struct workqueue_attrs *attrs) 5047 { 5048 int ret; 5049 5050 lockdep_assert_cpus_held(); 5051 5052 mutex_lock(&wq_pool_mutex); 5053 ret = apply_workqueue_attrs_locked(wq, attrs); 5054 mutex_unlock(&wq_pool_mutex); 5055 5056 return ret; 5057 } 5058 5059 /** 5060 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug 5061 * @wq: the target workqueue 5062 * @cpu: the CPU to update pool association for 5063 * @hotplug_cpu: the CPU coming up or going down 5064 * @online: whether @cpu is coming up or going down 5065 * 5066 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 5067 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of 5068 * @wq accordingly. 5069 * 5070 * 5071 * If pod affinity can't be adjusted due to memory allocation failure, it falls 5072 * back to @wq->dfl_pwq which may not be optimal but is always correct. 5073 * 5074 * Note that when the last allowed CPU of a pod goes offline for a workqueue 5075 * with a cpumask spanning multiple pods, the workers which were already 5076 * executing the work items for the workqueue will lose their CPU affinity and 5077 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 5078 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 5079 * responsibility to flush the work item from CPU_DOWN_PREPARE. 5080 */ 5081 static void wq_update_pod(struct workqueue_struct *wq, int cpu, 5082 int hotplug_cpu, bool online) 5083 { 5084 int off_cpu = online ? -1 : hotplug_cpu; 5085 struct pool_workqueue *old_pwq = NULL, *pwq; 5086 struct workqueue_attrs *target_attrs; 5087 5088 lockdep_assert_held(&wq_pool_mutex); 5089 5090 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 5091 return; 5092 5093 /* 5094 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 5095 * Let's use a preallocated one. The following buf is protected by 5096 * CPU hotplug exclusion. 5097 */ 5098 target_attrs = wq_update_pod_attrs_buf; 5099 5100 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 5101 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 5102 5103 /* nothing to do if the target cpumask matches the current pwq */ 5104 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu); 5105 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs)) 5106 return; 5107 5108 /* create a new pwq */ 5109 pwq = alloc_unbound_pwq(wq, target_attrs); 5110 if (!pwq) { 5111 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 5112 wq->name); 5113 goto use_dfl_pwq; 5114 } 5115 5116 /* Install the new pwq. */ 5117 mutex_lock(&wq->mutex); 5118 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5119 goto out_unlock; 5120 5121 use_dfl_pwq: 5122 mutex_lock(&wq->mutex); 5123 pwq = unbound_pwq(wq, -1); 5124 raw_spin_lock_irq(&pwq->pool->lock); 5125 get_pwq(pwq); 5126 raw_spin_unlock_irq(&pwq->pool->lock); 5127 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5128 out_unlock: 5129 mutex_unlock(&wq->mutex); 5130 put_pwq_unlocked(old_pwq); 5131 } 5132 5133 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 5134 { 5135 bool highpri = wq->flags & WQ_HIGHPRI; 5136 int cpu, ret; 5137 5138 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 5139 if (!wq->cpu_pwq) 5140 goto enomem; 5141 5142 if (!(wq->flags & WQ_UNBOUND)) { 5143 for_each_possible_cpu(cpu) { 5144 struct pool_workqueue **pwq_p; 5145 struct worker_pool __percpu *pools; 5146 struct worker_pool *pool; 5147 5148 if (wq->flags & WQ_BH) 5149 pools = bh_worker_pools; 5150 else 5151 pools = cpu_worker_pools; 5152 5153 pool = &(per_cpu_ptr(pools, cpu)[highpri]); 5154 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu); 5155 5156 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 5157 pool->node); 5158 if (!*pwq_p) 5159 goto enomem; 5160 5161 init_pwq(*pwq_p, wq, pool); 5162 5163 mutex_lock(&wq->mutex); 5164 link_pwq(*pwq_p); 5165 mutex_unlock(&wq->mutex); 5166 } 5167 return 0; 5168 } 5169 5170 cpus_read_lock(); 5171 if (wq->flags & __WQ_ORDERED) { 5172 struct pool_workqueue *dfl_pwq; 5173 5174 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 5175 /* there should only be single pwq for ordering guarantee */ 5176 dfl_pwq = rcu_access_pointer(wq->dfl_pwq); 5177 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || 5178 wq->pwqs.prev != &dfl_pwq->pwqs_node), 5179 "ordering guarantee broken for workqueue %s\n", wq->name); 5180 } else { 5181 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 5182 } 5183 cpus_read_unlock(); 5184 5185 /* for unbound pwq, flush the pwq_release_worker ensures that the 5186 * pwq_release_workfn() completes before calling kfree(wq). 5187 */ 5188 if (ret) 5189 kthread_flush_worker(pwq_release_worker); 5190 5191 return ret; 5192 5193 enomem: 5194 if (wq->cpu_pwq) { 5195 for_each_possible_cpu(cpu) { 5196 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5197 5198 if (pwq) 5199 kmem_cache_free(pwq_cache, pwq); 5200 } 5201 free_percpu(wq->cpu_pwq); 5202 wq->cpu_pwq = NULL; 5203 } 5204 return -ENOMEM; 5205 } 5206 5207 static int wq_clamp_max_active(int max_active, unsigned int flags, 5208 const char *name) 5209 { 5210 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 5211 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 5212 max_active, name, 1, WQ_MAX_ACTIVE); 5213 5214 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 5215 } 5216 5217 /* 5218 * Workqueues which may be used during memory reclaim should have a rescuer 5219 * to guarantee forward progress. 5220 */ 5221 static int init_rescuer(struct workqueue_struct *wq) 5222 { 5223 struct worker *rescuer; 5224 int ret; 5225 5226 if (!(wq->flags & WQ_MEM_RECLAIM)) 5227 return 0; 5228 5229 rescuer = alloc_worker(NUMA_NO_NODE); 5230 if (!rescuer) { 5231 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 5232 wq->name); 5233 return -ENOMEM; 5234 } 5235 5236 rescuer->rescue_wq = wq; 5237 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name); 5238 if (IS_ERR(rescuer->task)) { 5239 ret = PTR_ERR(rescuer->task); 5240 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 5241 wq->name, ERR_PTR(ret)); 5242 kfree(rescuer); 5243 return ret; 5244 } 5245 5246 wq->rescuer = rescuer; 5247 if (wq->flags & WQ_UNBOUND) 5248 kthread_bind_mask(rescuer->task, wq->unbound_attrs->cpumask); 5249 else 5250 kthread_bind_mask(rescuer->task, cpu_possible_mask); 5251 wake_up_process(rescuer->task); 5252 5253 return 0; 5254 } 5255 5256 /** 5257 * wq_adjust_max_active - update a wq's max_active to the current setting 5258 * @wq: target workqueue 5259 * 5260 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and 5261 * activate inactive work items accordingly. If @wq is freezing, clear 5262 * @wq->max_active to zero. 5263 */ 5264 static void wq_adjust_max_active(struct workqueue_struct *wq) 5265 { 5266 bool activated; 5267 int new_max, new_min; 5268 5269 lockdep_assert_held(&wq->mutex); 5270 5271 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { 5272 new_max = 0; 5273 new_min = 0; 5274 } else { 5275 new_max = wq->saved_max_active; 5276 new_min = wq->saved_min_active; 5277 } 5278 5279 if (wq->max_active == new_max && wq->min_active == new_min) 5280 return; 5281 5282 /* 5283 * Update @wq->max/min_active and then kick inactive work items if more 5284 * active work items are allowed. This doesn't break work item ordering 5285 * because new work items are always queued behind existing inactive 5286 * work items if there are any. 5287 */ 5288 WRITE_ONCE(wq->max_active, new_max); 5289 WRITE_ONCE(wq->min_active, new_min); 5290 5291 if (wq->flags & WQ_UNBOUND) 5292 wq_update_node_max_active(wq, -1); 5293 5294 if (new_max == 0) 5295 return; 5296 5297 /* 5298 * Round-robin through pwq's activating the first inactive work item 5299 * until max_active is filled. 5300 */ 5301 do { 5302 struct pool_workqueue *pwq; 5303 5304 activated = false; 5305 for_each_pwq(pwq, wq) { 5306 unsigned long flags; 5307 5308 /* can be called during early boot w/ irq disabled */ 5309 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 5310 if (pwq_activate_first_inactive(pwq, true)) { 5311 activated = true; 5312 kick_pool(pwq->pool); 5313 } 5314 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 5315 } 5316 } while (activated); 5317 } 5318 5319 __printf(1, 4) 5320 struct workqueue_struct *alloc_workqueue(const char *fmt, 5321 unsigned int flags, 5322 int max_active, ...) 5323 { 5324 va_list args; 5325 struct workqueue_struct *wq; 5326 size_t wq_size; 5327 int name_len; 5328 5329 if (flags & WQ_BH) { 5330 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS)) 5331 return NULL; 5332 if (WARN_ON_ONCE(max_active)) 5333 return NULL; 5334 } 5335 5336 /* 5337 * Unbound && max_active == 1 used to imply ordered, which is no longer 5338 * the case on many machines due to per-pod pools. While 5339 * alloc_ordered_workqueue() is the right way to create an ordered 5340 * workqueue, keep the previous behavior to avoid subtle breakages. 5341 */ 5342 if ((flags & WQ_UNBOUND) && max_active == 1) 5343 flags |= __WQ_ORDERED; 5344 5345 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 5346 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 5347 flags |= WQ_UNBOUND; 5348 5349 /* allocate wq and format name */ 5350 if (flags & WQ_UNBOUND) 5351 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); 5352 else 5353 wq_size = sizeof(*wq); 5354 5355 wq = kzalloc(wq_size, GFP_KERNEL); 5356 if (!wq) 5357 return NULL; 5358 5359 if (flags & WQ_UNBOUND) { 5360 wq->unbound_attrs = alloc_workqueue_attrs(); 5361 if (!wq->unbound_attrs) 5362 goto err_free_wq; 5363 } 5364 5365 va_start(args, max_active); 5366 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args); 5367 va_end(args); 5368 5369 if (name_len >= WQ_NAME_LEN) 5370 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", 5371 wq->name); 5372 5373 if (flags & WQ_BH) { 5374 /* 5375 * BH workqueues always share a single execution context per CPU 5376 * and don't impose any max_active limit. 5377 */ 5378 max_active = INT_MAX; 5379 } else { 5380 max_active = max_active ?: WQ_DFL_ACTIVE; 5381 max_active = wq_clamp_max_active(max_active, flags, wq->name); 5382 } 5383 5384 /* init wq */ 5385 wq->flags = flags; 5386 wq->max_active = max_active; 5387 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); 5388 wq->saved_max_active = wq->max_active; 5389 wq->saved_min_active = wq->min_active; 5390 mutex_init(&wq->mutex); 5391 atomic_set(&wq->nr_pwqs_to_flush, 0); 5392 INIT_LIST_HEAD(&wq->pwqs); 5393 INIT_LIST_HEAD(&wq->flusher_queue); 5394 INIT_LIST_HEAD(&wq->flusher_overflow); 5395 INIT_LIST_HEAD(&wq->maydays); 5396 5397 wq_init_lockdep(wq); 5398 INIT_LIST_HEAD(&wq->list); 5399 5400 if (flags & WQ_UNBOUND) { 5401 if (alloc_node_nr_active(wq->node_nr_active) < 0) 5402 goto err_unreg_lockdep; 5403 } 5404 5405 if (alloc_and_link_pwqs(wq) < 0) 5406 goto err_free_node_nr_active; 5407 5408 if (wq_online && init_rescuer(wq) < 0) 5409 goto err_destroy; 5410 5411 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 5412 goto err_destroy; 5413 5414 /* 5415 * wq_pool_mutex protects global freeze state and workqueues list. 5416 * Grab it, adjust max_active and add the new @wq to workqueues 5417 * list. 5418 */ 5419 mutex_lock(&wq_pool_mutex); 5420 5421 mutex_lock(&wq->mutex); 5422 wq_adjust_max_active(wq); 5423 mutex_unlock(&wq->mutex); 5424 5425 list_add_tail_rcu(&wq->list, &workqueues); 5426 5427 mutex_unlock(&wq_pool_mutex); 5428 5429 return wq; 5430 5431 err_free_node_nr_active: 5432 if (wq->flags & WQ_UNBOUND) 5433 free_node_nr_active(wq->node_nr_active); 5434 err_unreg_lockdep: 5435 wq_unregister_lockdep(wq); 5436 wq_free_lockdep(wq); 5437 err_free_wq: 5438 free_workqueue_attrs(wq->unbound_attrs); 5439 kfree(wq); 5440 return NULL; 5441 err_destroy: 5442 destroy_workqueue(wq); 5443 return NULL; 5444 } 5445 EXPORT_SYMBOL_GPL(alloc_workqueue); 5446 5447 static bool pwq_busy(struct pool_workqueue *pwq) 5448 { 5449 int i; 5450 5451 for (i = 0; i < WORK_NR_COLORS; i++) 5452 if (pwq->nr_in_flight[i]) 5453 return true; 5454 5455 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) 5456 return true; 5457 if (!pwq_is_empty(pwq)) 5458 return true; 5459 5460 return false; 5461 } 5462 5463 /** 5464 * destroy_workqueue - safely terminate a workqueue 5465 * @wq: target workqueue 5466 * 5467 * Safely destroy a workqueue. All work currently pending will be done first. 5468 */ 5469 void destroy_workqueue(struct workqueue_struct *wq) 5470 { 5471 struct pool_workqueue *pwq; 5472 int cpu; 5473 5474 /* 5475 * Remove it from sysfs first so that sanity check failure doesn't 5476 * lead to sysfs name conflicts. 5477 */ 5478 workqueue_sysfs_unregister(wq); 5479 5480 /* mark the workqueue destruction is in progress */ 5481 mutex_lock(&wq->mutex); 5482 wq->flags |= __WQ_DESTROYING; 5483 mutex_unlock(&wq->mutex); 5484 5485 /* drain it before proceeding with destruction */ 5486 drain_workqueue(wq); 5487 5488 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 5489 if (wq->rescuer) { 5490 struct worker *rescuer = wq->rescuer; 5491 5492 /* this prevents new queueing */ 5493 raw_spin_lock_irq(&wq_mayday_lock); 5494 wq->rescuer = NULL; 5495 raw_spin_unlock_irq(&wq_mayday_lock); 5496 5497 /* rescuer will empty maydays list before exiting */ 5498 kthread_stop(rescuer->task); 5499 kfree(rescuer); 5500 } 5501 5502 /* 5503 * Sanity checks - grab all the locks so that we wait for all 5504 * in-flight operations which may do put_pwq(). 5505 */ 5506 mutex_lock(&wq_pool_mutex); 5507 mutex_lock(&wq->mutex); 5508 for_each_pwq(pwq, wq) { 5509 raw_spin_lock_irq(&pwq->pool->lock); 5510 if (WARN_ON(pwq_busy(pwq))) { 5511 pr_warn("%s: %s has the following busy pwq\n", 5512 __func__, wq->name); 5513 show_pwq(pwq); 5514 raw_spin_unlock_irq(&pwq->pool->lock); 5515 mutex_unlock(&wq->mutex); 5516 mutex_unlock(&wq_pool_mutex); 5517 show_one_workqueue(wq); 5518 return; 5519 } 5520 raw_spin_unlock_irq(&pwq->pool->lock); 5521 } 5522 mutex_unlock(&wq->mutex); 5523 5524 /* 5525 * wq list is used to freeze wq, remove from list after 5526 * flushing is complete in case freeze races us. 5527 */ 5528 list_del_rcu(&wq->list); 5529 mutex_unlock(&wq_pool_mutex); 5530 5531 /* 5532 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 5533 * to put the base refs. @wq will be auto-destroyed from the last 5534 * pwq_put. RCU read lock prevents @wq from going away from under us. 5535 */ 5536 rcu_read_lock(); 5537 5538 for_each_possible_cpu(cpu) { 5539 put_pwq_unlocked(unbound_pwq(wq, cpu)); 5540 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); 5541 } 5542 5543 put_pwq_unlocked(unbound_pwq(wq, -1)); 5544 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); 5545 5546 rcu_read_unlock(); 5547 } 5548 EXPORT_SYMBOL_GPL(destroy_workqueue); 5549 5550 /** 5551 * workqueue_set_max_active - adjust max_active of a workqueue 5552 * @wq: target workqueue 5553 * @max_active: new max_active value. 5554 * 5555 * Set max_active of @wq to @max_active. See the alloc_workqueue() function 5556 * comment. 5557 * 5558 * CONTEXT: 5559 * Don't call from IRQ context. 5560 */ 5561 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 5562 { 5563 /* max_active doesn't mean anything for BH workqueues */ 5564 if (WARN_ON(wq->flags & WQ_BH)) 5565 return; 5566 /* disallow meddling with max_active for ordered workqueues */ 5567 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5568 return; 5569 5570 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 5571 5572 mutex_lock(&wq->mutex); 5573 5574 wq->flags &= ~__WQ_ORDERED; 5575 wq->saved_max_active = max_active; 5576 if (wq->flags & WQ_UNBOUND) 5577 wq->saved_min_active = min(wq->saved_min_active, max_active); 5578 5579 wq_adjust_max_active(wq); 5580 5581 mutex_unlock(&wq->mutex); 5582 } 5583 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 5584 5585 /** 5586 * current_work - retrieve %current task's work struct 5587 * 5588 * Determine if %current task is a workqueue worker and what it's working on. 5589 * Useful to find out the context that the %current task is running in. 5590 * 5591 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 5592 */ 5593 struct work_struct *current_work(void) 5594 { 5595 struct worker *worker = current_wq_worker(); 5596 5597 return worker ? worker->current_work : NULL; 5598 } 5599 EXPORT_SYMBOL(current_work); 5600 5601 /** 5602 * current_is_workqueue_rescuer - is %current workqueue rescuer? 5603 * 5604 * Determine whether %current is a workqueue rescuer. Can be used from 5605 * work functions to determine whether it's being run off the rescuer task. 5606 * 5607 * Return: %true if %current is a workqueue rescuer. %false otherwise. 5608 */ 5609 bool current_is_workqueue_rescuer(void) 5610 { 5611 struct worker *worker = current_wq_worker(); 5612 5613 return worker && worker->rescue_wq; 5614 } 5615 5616 /** 5617 * workqueue_congested - test whether a workqueue is congested 5618 * @cpu: CPU in question 5619 * @wq: target workqueue 5620 * 5621 * Test whether @wq's cpu workqueue for @cpu is congested. There is 5622 * no synchronization around this function and the test result is 5623 * unreliable and only useful as advisory hints or for debugging. 5624 * 5625 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 5626 * 5627 * With the exception of ordered workqueues, all workqueues have per-cpu 5628 * pool_workqueues, each with its own congested state. A workqueue being 5629 * congested on one CPU doesn't mean that the workqueue is contested on any 5630 * other CPUs. 5631 * 5632 * Return: 5633 * %true if congested, %false otherwise. 5634 */ 5635 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 5636 { 5637 struct pool_workqueue *pwq; 5638 bool ret; 5639 5640 rcu_read_lock(); 5641 preempt_disable(); 5642 5643 if (cpu == WORK_CPU_UNBOUND) 5644 cpu = smp_processor_id(); 5645 5646 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5647 ret = !list_empty(&pwq->inactive_works); 5648 5649 preempt_enable(); 5650 rcu_read_unlock(); 5651 5652 return ret; 5653 } 5654 EXPORT_SYMBOL_GPL(workqueue_congested); 5655 5656 /** 5657 * work_busy - test whether a work is currently pending or running 5658 * @work: the work to be tested 5659 * 5660 * Test whether @work is currently pending or running. There is no 5661 * synchronization around this function and the test result is 5662 * unreliable and only useful as advisory hints or for debugging. 5663 * 5664 * Return: 5665 * OR'd bitmask of WORK_BUSY_* bits. 5666 */ 5667 unsigned int work_busy(struct work_struct *work) 5668 { 5669 struct worker_pool *pool; 5670 unsigned long flags; 5671 unsigned int ret = 0; 5672 5673 if (work_pending(work)) 5674 ret |= WORK_BUSY_PENDING; 5675 5676 rcu_read_lock(); 5677 pool = get_work_pool(work); 5678 if (pool) { 5679 raw_spin_lock_irqsave(&pool->lock, flags); 5680 if (find_worker_executing_work(pool, work)) 5681 ret |= WORK_BUSY_RUNNING; 5682 raw_spin_unlock_irqrestore(&pool->lock, flags); 5683 } 5684 rcu_read_unlock(); 5685 5686 return ret; 5687 } 5688 EXPORT_SYMBOL_GPL(work_busy); 5689 5690 /** 5691 * set_worker_desc - set description for the current work item 5692 * @fmt: printf-style format string 5693 * @...: arguments for the format string 5694 * 5695 * This function can be called by a running work function to describe what 5696 * the work item is about. If the worker task gets dumped, this 5697 * information will be printed out together to help debugging. The 5698 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 5699 */ 5700 void set_worker_desc(const char *fmt, ...) 5701 { 5702 struct worker *worker = current_wq_worker(); 5703 va_list args; 5704 5705 if (worker) { 5706 va_start(args, fmt); 5707 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 5708 va_end(args); 5709 } 5710 } 5711 EXPORT_SYMBOL_GPL(set_worker_desc); 5712 5713 /** 5714 * print_worker_info - print out worker information and description 5715 * @log_lvl: the log level to use when printing 5716 * @task: target task 5717 * 5718 * If @task is a worker and currently executing a work item, print out the 5719 * name of the workqueue being serviced and worker description set with 5720 * set_worker_desc() by the currently executing work item. 5721 * 5722 * This function can be safely called on any task as long as the 5723 * task_struct itself is accessible. While safe, this function isn't 5724 * synchronized and may print out mixups or garbages of limited length. 5725 */ 5726 void print_worker_info(const char *log_lvl, struct task_struct *task) 5727 { 5728 work_func_t *fn = NULL; 5729 char name[WQ_NAME_LEN] = { }; 5730 char desc[WORKER_DESC_LEN] = { }; 5731 struct pool_workqueue *pwq = NULL; 5732 struct workqueue_struct *wq = NULL; 5733 struct worker *worker; 5734 5735 if (!(task->flags & PF_WQ_WORKER)) 5736 return; 5737 5738 /* 5739 * This function is called without any synchronization and @task 5740 * could be in any state. Be careful with dereferences. 5741 */ 5742 worker = kthread_probe_data(task); 5743 5744 /* 5745 * Carefully copy the associated workqueue's workfn, name and desc. 5746 * Keep the original last '\0' in case the original is garbage. 5747 */ 5748 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 5749 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 5750 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 5751 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 5752 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 5753 5754 if (fn || name[0] || desc[0]) { 5755 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 5756 if (strcmp(name, desc)) 5757 pr_cont(" (%s)", desc); 5758 pr_cont("\n"); 5759 } 5760 } 5761 5762 static void pr_cont_pool_info(struct worker_pool *pool) 5763 { 5764 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 5765 if (pool->node != NUMA_NO_NODE) 5766 pr_cont(" node=%d", pool->node); 5767 pr_cont(" flags=0x%x", pool->flags); 5768 if (pool->flags & POOL_BH) 5769 pr_cont(" bh%s", 5770 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 5771 else 5772 pr_cont(" nice=%d", pool->attrs->nice); 5773 } 5774 5775 static void pr_cont_worker_id(struct worker *worker) 5776 { 5777 struct worker_pool *pool = worker->pool; 5778 5779 if (pool->flags & WQ_BH) 5780 pr_cont("bh%s", 5781 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 5782 else 5783 pr_cont("%d%s", task_pid_nr(worker->task), 5784 worker->rescue_wq ? "(RESCUER)" : ""); 5785 } 5786 5787 struct pr_cont_work_struct { 5788 bool comma; 5789 work_func_t func; 5790 long ctr; 5791 }; 5792 5793 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 5794 { 5795 if (!pcwsp->ctr) 5796 goto out_record; 5797 if (func == pcwsp->func) { 5798 pcwsp->ctr++; 5799 return; 5800 } 5801 if (pcwsp->ctr == 1) 5802 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 5803 else 5804 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 5805 pcwsp->ctr = 0; 5806 out_record: 5807 if ((long)func == -1L) 5808 return; 5809 pcwsp->comma = comma; 5810 pcwsp->func = func; 5811 pcwsp->ctr = 1; 5812 } 5813 5814 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 5815 { 5816 if (work->func == wq_barrier_func) { 5817 struct wq_barrier *barr; 5818 5819 barr = container_of(work, struct wq_barrier, work); 5820 5821 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 5822 pr_cont("%s BAR(%d)", comma ? "," : "", 5823 task_pid_nr(barr->task)); 5824 } else { 5825 if (!comma) 5826 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 5827 pr_cont_work_flush(comma, work->func, pcwsp); 5828 } 5829 } 5830 5831 static void show_pwq(struct pool_workqueue *pwq) 5832 { 5833 struct pr_cont_work_struct pcws = { .ctr = 0, }; 5834 struct worker_pool *pool = pwq->pool; 5835 struct work_struct *work; 5836 struct worker *worker; 5837 bool has_in_flight = false, has_pending = false; 5838 int bkt; 5839 5840 pr_info(" pwq %d:", pool->id); 5841 pr_cont_pool_info(pool); 5842 5843 pr_cont(" active=%d refcnt=%d%s\n", 5844 pwq->nr_active, pwq->refcnt, 5845 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 5846 5847 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 5848 if (worker->current_pwq == pwq) { 5849 has_in_flight = true; 5850 break; 5851 } 5852 } 5853 if (has_in_flight) { 5854 bool comma = false; 5855 5856 pr_info(" in-flight:"); 5857 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 5858 if (worker->current_pwq != pwq) 5859 continue; 5860 5861 pr_cont(" %s", comma ? "," : ""); 5862 pr_cont_worker_id(worker); 5863 pr_cont(":%ps", worker->current_func); 5864 list_for_each_entry(work, &worker->scheduled, entry) 5865 pr_cont_work(false, work, &pcws); 5866 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5867 comma = true; 5868 } 5869 pr_cont("\n"); 5870 } 5871 5872 list_for_each_entry(work, &pool->worklist, entry) { 5873 if (get_work_pwq(work) == pwq) { 5874 has_pending = true; 5875 break; 5876 } 5877 } 5878 if (has_pending) { 5879 bool comma = false; 5880 5881 pr_info(" pending:"); 5882 list_for_each_entry(work, &pool->worklist, entry) { 5883 if (get_work_pwq(work) != pwq) 5884 continue; 5885 5886 pr_cont_work(comma, work, &pcws); 5887 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 5888 } 5889 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5890 pr_cont("\n"); 5891 } 5892 5893 if (!list_empty(&pwq->inactive_works)) { 5894 bool comma = false; 5895 5896 pr_info(" inactive:"); 5897 list_for_each_entry(work, &pwq->inactive_works, entry) { 5898 pr_cont_work(comma, work, &pcws); 5899 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 5900 } 5901 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5902 pr_cont("\n"); 5903 } 5904 } 5905 5906 /** 5907 * show_one_workqueue - dump state of specified workqueue 5908 * @wq: workqueue whose state will be printed 5909 */ 5910 void show_one_workqueue(struct workqueue_struct *wq) 5911 { 5912 struct pool_workqueue *pwq; 5913 bool idle = true; 5914 unsigned long flags; 5915 5916 for_each_pwq(pwq, wq) { 5917 if (!pwq_is_empty(pwq)) { 5918 idle = false; 5919 break; 5920 } 5921 } 5922 if (idle) /* Nothing to print for idle workqueue */ 5923 return; 5924 5925 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 5926 5927 for_each_pwq(pwq, wq) { 5928 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 5929 if (!pwq_is_empty(pwq)) { 5930 /* 5931 * Defer printing to avoid deadlocks in console 5932 * drivers that queue work while holding locks 5933 * also taken in their write paths. 5934 */ 5935 printk_deferred_enter(); 5936 show_pwq(pwq); 5937 printk_deferred_exit(); 5938 } 5939 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 5940 /* 5941 * We could be printing a lot from atomic context, e.g. 5942 * sysrq-t -> show_all_workqueues(). Avoid triggering 5943 * hard lockup. 5944 */ 5945 touch_nmi_watchdog(); 5946 } 5947 5948 } 5949 5950 /** 5951 * show_one_worker_pool - dump state of specified worker pool 5952 * @pool: worker pool whose state will be printed 5953 */ 5954 static void show_one_worker_pool(struct worker_pool *pool) 5955 { 5956 struct worker *worker; 5957 bool first = true; 5958 unsigned long flags; 5959 unsigned long hung = 0; 5960 5961 raw_spin_lock_irqsave(&pool->lock, flags); 5962 if (pool->nr_workers == pool->nr_idle) 5963 goto next_pool; 5964 5965 /* How long the first pending work is waiting for a worker. */ 5966 if (!list_empty(&pool->worklist)) 5967 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 5968 5969 /* 5970 * Defer printing to avoid deadlocks in console drivers that 5971 * queue work while holding locks also taken in their write 5972 * paths. 5973 */ 5974 printk_deferred_enter(); 5975 pr_info("pool %d:", pool->id); 5976 pr_cont_pool_info(pool); 5977 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 5978 if (pool->manager) 5979 pr_cont(" manager: %d", 5980 task_pid_nr(pool->manager->task)); 5981 list_for_each_entry(worker, &pool->idle_list, entry) { 5982 pr_cont(" %s", first ? "idle: " : ""); 5983 pr_cont_worker_id(worker); 5984 first = false; 5985 } 5986 pr_cont("\n"); 5987 printk_deferred_exit(); 5988 next_pool: 5989 raw_spin_unlock_irqrestore(&pool->lock, flags); 5990 /* 5991 * We could be printing a lot from atomic context, e.g. 5992 * sysrq-t -> show_all_workqueues(). Avoid triggering 5993 * hard lockup. 5994 */ 5995 touch_nmi_watchdog(); 5996 5997 } 5998 5999 /** 6000 * show_all_workqueues - dump workqueue state 6001 * 6002 * Called from a sysrq handler and prints out all busy workqueues and pools. 6003 */ 6004 void show_all_workqueues(void) 6005 { 6006 struct workqueue_struct *wq; 6007 struct worker_pool *pool; 6008 int pi; 6009 6010 rcu_read_lock(); 6011 6012 pr_info("Showing busy workqueues and worker pools:\n"); 6013 6014 list_for_each_entry_rcu(wq, &workqueues, list) 6015 show_one_workqueue(wq); 6016 6017 for_each_pool(pool, pi) 6018 show_one_worker_pool(pool); 6019 6020 rcu_read_unlock(); 6021 } 6022 6023 /** 6024 * show_freezable_workqueues - dump freezable workqueue state 6025 * 6026 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 6027 * still busy. 6028 */ 6029 void show_freezable_workqueues(void) 6030 { 6031 struct workqueue_struct *wq; 6032 6033 rcu_read_lock(); 6034 6035 pr_info("Showing freezable workqueues that are still busy:\n"); 6036 6037 list_for_each_entry_rcu(wq, &workqueues, list) { 6038 if (!(wq->flags & WQ_FREEZABLE)) 6039 continue; 6040 show_one_workqueue(wq); 6041 } 6042 6043 rcu_read_unlock(); 6044 } 6045 6046 /* used to show worker information through /proc/PID/{comm,stat,status} */ 6047 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 6048 { 6049 int off; 6050 6051 /* always show the actual comm */ 6052 off = strscpy(buf, task->comm, size); 6053 if (off < 0) 6054 return; 6055 6056 /* stabilize PF_WQ_WORKER and worker pool association */ 6057 mutex_lock(&wq_pool_attach_mutex); 6058 6059 if (task->flags & PF_WQ_WORKER) { 6060 struct worker *worker = kthread_data(task); 6061 struct worker_pool *pool = worker->pool; 6062 6063 if (pool) { 6064 raw_spin_lock_irq(&pool->lock); 6065 /* 6066 * ->desc tracks information (wq name or 6067 * set_worker_desc()) for the latest execution. If 6068 * current, prepend '+', otherwise '-'. 6069 */ 6070 if (worker->desc[0] != '\0') { 6071 if (worker->current_work) 6072 scnprintf(buf + off, size - off, "+%s", 6073 worker->desc); 6074 else 6075 scnprintf(buf + off, size - off, "-%s", 6076 worker->desc); 6077 } 6078 raw_spin_unlock_irq(&pool->lock); 6079 } 6080 } 6081 6082 mutex_unlock(&wq_pool_attach_mutex); 6083 } 6084 6085 #ifdef CONFIG_SMP 6086 6087 /* 6088 * CPU hotplug. 6089 * 6090 * There are two challenges in supporting CPU hotplug. Firstly, there 6091 * are a lot of assumptions on strong associations among work, pwq and 6092 * pool which make migrating pending and scheduled works very 6093 * difficult to implement without impacting hot paths. Secondly, 6094 * worker pools serve mix of short, long and very long running works making 6095 * blocked draining impractical. 6096 * 6097 * This is solved by allowing the pools to be disassociated from the CPU 6098 * running as an unbound one and allowing it to be reattached later if the 6099 * cpu comes back online. 6100 */ 6101 6102 static void unbind_workers(int cpu) 6103 { 6104 struct worker_pool *pool; 6105 struct worker *worker; 6106 6107 for_each_cpu_worker_pool(pool, cpu) { 6108 mutex_lock(&wq_pool_attach_mutex); 6109 raw_spin_lock_irq(&pool->lock); 6110 6111 /* 6112 * We've blocked all attach/detach operations. Make all workers 6113 * unbound and set DISASSOCIATED. Before this, all workers 6114 * must be on the cpu. After this, they may become diasporas. 6115 * And the preemption disabled section in their sched callbacks 6116 * are guaranteed to see WORKER_UNBOUND since the code here 6117 * is on the same cpu. 6118 */ 6119 for_each_pool_worker(worker, pool) 6120 worker->flags |= WORKER_UNBOUND; 6121 6122 pool->flags |= POOL_DISASSOCIATED; 6123 6124 /* 6125 * The handling of nr_running in sched callbacks are disabled 6126 * now. Zap nr_running. After this, nr_running stays zero and 6127 * need_more_worker() and keep_working() are always true as 6128 * long as the worklist is not empty. This pool now behaves as 6129 * an unbound (in terms of concurrency management) pool which 6130 * are served by workers tied to the pool. 6131 */ 6132 pool->nr_running = 0; 6133 6134 /* 6135 * With concurrency management just turned off, a busy 6136 * worker blocking could lead to lengthy stalls. Kick off 6137 * unbound chain execution of currently pending work items. 6138 */ 6139 kick_pool(pool); 6140 6141 raw_spin_unlock_irq(&pool->lock); 6142 6143 for_each_pool_worker(worker, pool) 6144 unbind_worker(worker); 6145 6146 mutex_unlock(&wq_pool_attach_mutex); 6147 } 6148 } 6149 6150 /** 6151 * rebind_workers - rebind all workers of a pool to the associated CPU 6152 * @pool: pool of interest 6153 * 6154 * @pool->cpu is coming online. Rebind all workers to the CPU. 6155 */ 6156 static void rebind_workers(struct worker_pool *pool) 6157 { 6158 struct worker *worker; 6159 6160 lockdep_assert_held(&wq_pool_attach_mutex); 6161 6162 /* 6163 * Restore CPU affinity of all workers. As all idle workers should 6164 * be on the run-queue of the associated CPU before any local 6165 * wake-ups for concurrency management happen, restore CPU affinity 6166 * of all workers first and then clear UNBOUND. As we're called 6167 * from CPU_ONLINE, the following shouldn't fail. 6168 */ 6169 for_each_pool_worker(worker, pool) { 6170 kthread_set_per_cpu(worker->task, pool->cpu); 6171 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 6172 pool_allowed_cpus(pool)) < 0); 6173 } 6174 6175 raw_spin_lock_irq(&pool->lock); 6176 6177 pool->flags &= ~POOL_DISASSOCIATED; 6178 6179 for_each_pool_worker(worker, pool) { 6180 unsigned int worker_flags = worker->flags; 6181 6182 /* 6183 * We want to clear UNBOUND but can't directly call 6184 * worker_clr_flags() or adjust nr_running. Atomically 6185 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 6186 * @worker will clear REBOUND using worker_clr_flags() when 6187 * it initiates the next execution cycle thus restoring 6188 * concurrency management. Note that when or whether 6189 * @worker clears REBOUND doesn't affect correctness. 6190 * 6191 * WRITE_ONCE() is necessary because @worker->flags may be 6192 * tested without holding any lock in 6193 * wq_worker_running(). Without it, NOT_RUNNING test may 6194 * fail incorrectly leading to premature concurrency 6195 * management operations. 6196 */ 6197 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 6198 worker_flags |= WORKER_REBOUND; 6199 worker_flags &= ~WORKER_UNBOUND; 6200 WRITE_ONCE(worker->flags, worker_flags); 6201 } 6202 6203 raw_spin_unlock_irq(&pool->lock); 6204 } 6205 6206 /** 6207 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 6208 * @pool: unbound pool of interest 6209 * @cpu: the CPU which is coming up 6210 * 6211 * An unbound pool may end up with a cpumask which doesn't have any online 6212 * CPUs. When a worker of such pool get scheduled, the scheduler resets 6213 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 6214 * online CPU before, cpus_allowed of all its workers should be restored. 6215 */ 6216 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 6217 { 6218 static cpumask_t cpumask; 6219 struct worker *worker; 6220 6221 lockdep_assert_held(&wq_pool_attach_mutex); 6222 6223 /* is @cpu allowed for @pool? */ 6224 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 6225 return; 6226 6227 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 6228 6229 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 6230 for_each_pool_worker(worker, pool) 6231 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 6232 } 6233 6234 int workqueue_prepare_cpu(unsigned int cpu) 6235 { 6236 struct worker_pool *pool; 6237 6238 for_each_cpu_worker_pool(pool, cpu) { 6239 if (pool->nr_workers) 6240 continue; 6241 if (!create_worker(pool)) 6242 return -ENOMEM; 6243 } 6244 return 0; 6245 } 6246 6247 int workqueue_online_cpu(unsigned int cpu) 6248 { 6249 struct worker_pool *pool; 6250 struct workqueue_struct *wq; 6251 int pi; 6252 6253 mutex_lock(&wq_pool_mutex); 6254 6255 for_each_pool(pool, pi) { 6256 /* BH pools aren't affected by hotplug */ 6257 if (pool->flags & POOL_BH) 6258 continue; 6259 6260 mutex_lock(&wq_pool_attach_mutex); 6261 if (pool->cpu == cpu) 6262 rebind_workers(pool); 6263 else if (pool->cpu < 0) 6264 restore_unbound_workers_cpumask(pool, cpu); 6265 mutex_unlock(&wq_pool_attach_mutex); 6266 } 6267 6268 /* update pod affinity of unbound workqueues */ 6269 list_for_each_entry(wq, &workqueues, list) { 6270 struct workqueue_attrs *attrs = wq->unbound_attrs; 6271 6272 if (attrs) { 6273 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6274 int tcpu; 6275 6276 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6277 wq_update_pod(wq, tcpu, cpu, true); 6278 6279 mutex_lock(&wq->mutex); 6280 wq_update_node_max_active(wq, -1); 6281 mutex_unlock(&wq->mutex); 6282 } 6283 } 6284 6285 mutex_unlock(&wq_pool_mutex); 6286 return 0; 6287 } 6288 6289 int workqueue_offline_cpu(unsigned int cpu) 6290 { 6291 struct workqueue_struct *wq; 6292 6293 /* unbinding per-cpu workers should happen on the local CPU */ 6294 if (WARN_ON(cpu != smp_processor_id())) 6295 return -1; 6296 6297 unbind_workers(cpu); 6298 6299 /* update pod affinity of unbound workqueues */ 6300 mutex_lock(&wq_pool_mutex); 6301 list_for_each_entry(wq, &workqueues, list) { 6302 struct workqueue_attrs *attrs = wq->unbound_attrs; 6303 6304 if (attrs) { 6305 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6306 int tcpu; 6307 6308 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6309 wq_update_pod(wq, tcpu, cpu, false); 6310 6311 mutex_lock(&wq->mutex); 6312 wq_update_node_max_active(wq, cpu); 6313 mutex_unlock(&wq->mutex); 6314 } 6315 } 6316 mutex_unlock(&wq_pool_mutex); 6317 6318 return 0; 6319 } 6320 6321 struct work_for_cpu { 6322 struct work_struct work; 6323 long (*fn)(void *); 6324 void *arg; 6325 long ret; 6326 }; 6327 6328 static void work_for_cpu_fn(struct work_struct *work) 6329 { 6330 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 6331 6332 wfc->ret = wfc->fn(wfc->arg); 6333 } 6334 6335 /** 6336 * work_on_cpu_key - run a function in thread context on a particular cpu 6337 * @cpu: the cpu to run on 6338 * @fn: the function to run 6339 * @arg: the function arg 6340 * @key: The lock class key for lock debugging purposes 6341 * 6342 * It is up to the caller to ensure that the cpu doesn't go offline. 6343 * The caller must not hold any locks which would prevent @fn from completing. 6344 * 6345 * Return: The value @fn returns. 6346 */ 6347 long work_on_cpu_key(int cpu, long (*fn)(void *), 6348 void *arg, struct lock_class_key *key) 6349 { 6350 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 6351 6352 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 6353 schedule_work_on(cpu, &wfc.work); 6354 flush_work(&wfc.work); 6355 destroy_work_on_stack(&wfc.work); 6356 return wfc.ret; 6357 } 6358 EXPORT_SYMBOL_GPL(work_on_cpu_key); 6359 6360 /** 6361 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 6362 * @cpu: the cpu to run on 6363 * @fn: the function to run 6364 * @arg: the function argument 6365 * @key: The lock class key for lock debugging purposes 6366 * 6367 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 6368 * any locks which would prevent @fn from completing. 6369 * 6370 * Return: The value @fn returns. 6371 */ 6372 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 6373 void *arg, struct lock_class_key *key) 6374 { 6375 long ret = -ENODEV; 6376 6377 cpus_read_lock(); 6378 if (cpu_online(cpu)) 6379 ret = work_on_cpu_key(cpu, fn, arg, key); 6380 cpus_read_unlock(); 6381 return ret; 6382 } 6383 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 6384 #endif /* CONFIG_SMP */ 6385 6386 #ifdef CONFIG_FREEZER 6387 6388 /** 6389 * freeze_workqueues_begin - begin freezing workqueues 6390 * 6391 * Start freezing workqueues. After this function returns, all freezable 6392 * workqueues will queue new works to their inactive_works list instead of 6393 * pool->worklist. 6394 * 6395 * CONTEXT: 6396 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6397 */ 6398 void freeze_workqueues_begin(void) 6399 { 6400 struct workqueue_struct *wq; 6401 6402 mutex_lock(&wq_pool_mutex); 6403 6404 WARN_ON_ONCE(workqueue_freezing); 6405 workqueue_freezing = true; 6406 6407 list_for_each_entry(wq, &workqueues, list) { 6408 mutex_lock(&wq->mutex); 6409 wq_adjust_max_active(wq); 6410 mutex_unlock(&wq->mutex); 6411 } 6412 6413 mutex_unlock(&wq_pool_mutex); 6414 } 6415 6416 /** 6417 * freeze_workqueues_busy - are freezable workqueues still busy? 6418 * 6419 * Check whether freezing is complete. This function must be called 6420 * between freeze_workqueues_begin() and thaw_workqueues(). 6421 * 6422 * CONTEXT: 6423 * Grabs and releases wq_pool_mutex. 6424 * 6425 * Return: 6426 * %true if some freezable workqueues are still busy. %false if freezing 6427 * is complete. 6428 */ 6429 bool freeze_workqueues_busy(void) 6430 { 6431 bool busy = false; 6432 struct workqueue_struct *wq; 6433 struct pool_workqueue *pwq; 6434 6435 mutex_lock(&wq_pool_mutex); 6436 6437 WARN_ON_ONCE(!workqueue_freezing); 6438 6439 list_for_each_entry(wq, &workqueues, list) { 6440 if (!(wq->flags & WQ_FREEZABLE)) 6441 continue; 6442 /* 6443 * nr_active is monotonically decreasing. It's safe 6444 * to peek without lock. 6445 */ 6446 rcu_read_lock(); 6447 for_each_pwq(pwq, wq) { 6448 WARN_ON_ONCE(pwq->nr_active < 0); 6449 if (pwq->nr_active) { 6450 busy = true; 6451 rcu_read_unlock(); 6452 goto out_unlock; 6453 } 6454 } 6455 rcu_read_unlock(); 6456 } 6457 out_unlock: 6458 mutex_unlock(&wq_pool_mutex); 6459 return busy; 6460 } 6461 6462 /** 6463 * thaw_workqueues - thaw workqueues 6464 * 6465 * Thaw workqueues. Normal queueing is restored and all collected 6466 * frozen works are transferred to their respective pool worklists. 6467 * 6468 * CONTEXT: 6469 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6470 */ 6471 void thaw_workqueues(void) 6472 { 6473 struct workqueue_struct *wq; 6474 6475 mutex_lock(&wq_pool_mutex); 6476 6477 if (!workqueue_freezing) 6478 goto out_unlock; 6479 6480 workqueue_freezing = false; 6481 6482 /* restore max_active and repopulate worklist */ 6483 list_for_each_entry(wq, &workqueues, list) { 6484 mutex_lock(&wq->mutex); 6485 wq_adjust_max_active(wq); 6486 mutex_unlock(&wq->mutex); 6487 } 6488 6489 out_unlock: 6490 mutex_unlock(&wq_pool_mutex); 6491 } 6492 #endif /* CONFIG_FREEZER */ 6493 6494 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 6495 { 6496 LIST_HEAD(ctxs); 6497 int ret = 0; 6498 struct workqueue_struct *wq; 6499 struct apply_wqattrs_ctx *ctx, *n; 6500 6501 lockdep_assert_held(&wq_pool_mutex); 6502 6503 list_for_each_entry(wq, &workqueues, list) { 6504 if (!(wq->flags & WQ_UNBOUND)) 6505 continue; 6506 6507 /* creating multiple pwqs breaks ordering guarantee */ 6508 if (!list_empty(&wq->pwqs)) { 6509 if (wq->flags & __WQ_ORDERED_EXPLICIT) 6510 continue; 6511 wq->flags &= ~__WQ_ORDERED; 6512 } 6513 6514 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 6515 if (IS_ERR(ctx)) { 6516 ret = PTR_ERR(ctx); 6517 break; 6518 } 6519 6520 list_add_tail(&ctx->list, &ctxs); 6521 } 6522 6523 list_for_each_entry_safe(ctx, n, &ctxs, list) { 6524 if (!ret) 6525 apply_wqattrs_commit(ctx); 6526 apply_wqattrs_cleanup(ctx); 6527 } 6528 6529 if (!ret) { 6530 mutex_lock(&wq_pool_attach_mutex); 6531 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 6532 mutex_unlock(&wq_pool_attach_mutex); 6533 } 6534 return ret; 6535 } 6536 6537 /** 6538 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask 6539 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask 6540 * 6541 * This function can be called from cpuset code to provide a set of isolated 6542 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold 6543 * either cpus_read_lock or cpus_write_lock. 6544 */ 6545 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) 6546 { 6547 cpumask_var_t cpumask; 6548 int ret = 0; 6549 6550 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6551 return -ENOMEM; 6552 6553 lockdep_assert_cpus_held(); 6554 mutex_lock(&wq_pool_mutex); 6555 6556 /* Save the current isolated cpumask & export it via sysfs */ 6557 cpumask_copy(wq_isolated_cpumask, exclude_cpumask); 6558 6559 /* 6560 * If the operation fails, it will fall back to 6561 * wq_requested_unbound_cpumask which is initially set to 6562 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten 6563 * by any subsequent write to workqueue/cpumask sysfs file. 6564 */ 6565 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask)) 6566 cpumask_copy(cpumask, wq_requested_unbound_cpumask); 6567 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 6568 ret = workqueue_apply_unbound_cpumask(cpumask); 6569 6570 mutex_unlock(&wq_pool_mutex); 6571 free_cpumask_var(cpumask); 6572 return ret; 6573 } 6574 6575 static int parse_affn_scope(const char *val) 6576 { 6577 int i; 6578 6579 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 6580 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 6581 return i; 6582 } 6583 return -EINVAL; 6584 } 6585 6586 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 6587 { 6588 struct workqueue_struct *wq; 6589 int affn, cpu; 6590 6591 affn = parse_affn_scope(val); 6592 if (affn < 0) 6593 return affn; 6594 if (affn == WQ_AFFN_DFL) 6595 return -EINVAL; 6596 6597 cpus_read_lock(); 6598 mutex_lock(&wq_pool_mutex); 6599 6600 wq_affn_dfl = affn; 6601 6602 list_for_each_entry(wq, &workqueues, list) { 6603 for_each_online_cpu(cpu) { 6604 wq_update_pod(wq, cpu, cpu, true); 6605 } 6606 } 6607 6608 mutex_unlock(&wq_pool_mutex); 6609 cpus_read_unlock(); 6610 6611 return 0; 6612 } 6613 6614 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 6615 { 6616 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 6617 } 6618 6619 static const struct kernel_param_ops wq_affn_dfl_ops = { 6620 .set = wq_affn_dfl_set, 6621 .get = wq_affn_dfl_get, 6622 }; 6623 6624 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 6625 6626 #ifdef CONFIG_SYSFS 6627 /* 6628 * Workqueues with WQ_SYSFS flag set is visible to userland via 6629 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 6630 * following attributes. 6631 * 6632 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 6633 * max_active RW int : maximum number of in-flight work items 6634 * 6635 * Unbound workqueues have the following extra attributes. 6636 * 6637 * nice RW int : nice value of the workers 6638 * cpumask RW mask : bitmask of allowed CPUs for the workers 6639 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 6640 * affinity_strict RW bool : worker CPU affinity is strict 6641 */ 6642 struct wq_device { 6643 struct workqueue_struct *wq; 6644 struct device dev; 6645 }; 6646 6647 static struct workqueue_struct *dev_to_wq(struct device *dev) 6648 { 6649 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6650 6651 return wq_dev->wq; 6652 } 6653 6654 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 6655 char *buf) 6656 { 6657 struct workqueue_struct *wq = dev_to_wq(dev); 6658 6659 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 6660 } 6661 static DEVICE_ATTR_RO(per_cpu); 6662 6663 static ssize_t max_active_show(struct device *dev, 6664 struct device_attribute *attr, char *buf) 6665 { 6666 struct workqueue_struct *wq = dev_to_wq(dev); 6667 6668 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 6669 } 6670 6671 static ssize_t max_active_store(struct device *dev, 6672 struct device_attribute *attr, const char *buf, 6673 size_t count) 6674 { 6675 struct workqueue_struct *wq = dev_to_wq(dev); 6676 int val; 6677 6678 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 6679 return -EINVAL; 6680 6681 workqueue_set_max_active(wq, val); 6682 return count; 6683 } 6684 static DEVICE_ATTR_RW(max_active); 6685 6686 static struct attribute *wq_sysfs_attrs[] = { 6687 &dev_attr_per_cpu.attr, 6688 &dev_attr_max_active.attr, 6689 NULL, 6690 }; 6691 ATTRIBUTE_GROUPS(wq_sysfs); 6692 6693 static void apply_wqattrs_lock(void) 6694 { 6695 /* CPUs should stay stable across pwq creations and installations */ 6696 cpus_read_lock(); 6697 mutex_lock(&wq_pool_mutex); 6698 } 6699 6700 static void apply_wqattrs_unlock(void) 6701 { 6702 mutex_unlock(&wq_pool_mutex); 6703 cpus_read_unlock(); 6704 } 6705 6706 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 6707 char *buf) 6708 { 6709 struct workqueue_struct *wq = dev_to_wq(dev); 6710 int written; 6711 6712 mutex_lock(&wq->mutex); 6713 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 6714 mutex_unlock(&wq->mutex); 6715 6716 return written; 6717 } 6718 6719 /* prepare workqueue_attrs for sysfs store operations */ 6720 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 6721 { 6722 struct workqueue_attrs *attrs; 6723 6724 lockdep_assert_held(&wq_pool_mutex); 6725 6726 attrs = alloc_workqueue_attrs(); 6727 if (!attrs) 6728 return NULL; 6729 6730 copy_workqueue_attrs(attrs, wq->unbound_attrs); 6731 return attrs; 6732 } 6733 6734 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 6735 const char *buf, size_t count) 6736 { 6737 struct workqueue_struct *wq = dev_to_wq(dev); 6738 struct workqueue_attrs *attrs; 6739 int ret = -ENOMEM; 6740 6741 apply_wqattrs_lock(); 6742 6743 attrs = wq_sysfs_prep_attrs(wq); 6744 if (!attrs) 6745 goto out_unlock; 6746 6747 if (sscanf(buf, "%d", &attrs->nice) == 1 && 6748 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 6749 ret = apply_workqueue_attrs_locked(wq, attrs); 6750 else 6751 ret = -EINVAL; 6752 6753 out_unlock: 6754 apply_wqattrs_unlock(); 6755 free_workqueue_attrs(attrs); 6756 return ret ?: count; 6757 } 6758 6759 static ssize_t wq_cpumask_show(struct device *dev, 6760 struct device_attribute *attr, char *buf) 6761 { 6762 struct workqueue_struct *wq = dev_to_wq(dev); 6763 int written; 6764 6765 mutex_lock(&wq->mutex); 6766 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 6767 cpumask_pr_args(wq->unbound_attrs->cpumask)); 6768 mutex_unlock(&wq->mutex); 6769 return written; 6770 } 6771 6772 static ssize_t wq_cpumask_store(struct device *dev, 6773 struct device_attribute *attr, 6774 const char *buf, size_t count) 6775 { 6776 struct workqueue_struct *wq = dev_to_wq(dev); 6777 struct workqueue_attrs *attrs; 6778 int ret = -ENOMEM; 6779 6780 apply_wqattrs_lock(); 6781 6782 attrs = wq_sysfs_prep_attrs(wq); 6783 if (!attrs) 6784 goto out_unlock; 6785 6786 ret = cpumask_parse(buf, attrs->cpumask); 6787 if (!ret) 6788 ret = apply_workqueue_attrs_locked(wq, attrs); 6789 6790 out_unlock: 6791 apply_wqattrs_unlock(); 6792 free_workqueue_attrs(attrs); 6793 return ret ?: count; 6794 } 6795 6796 static ssize_t wq_affn_scope_show(struct device *dev, 6797 struct device_attribute *attr, char *buf) 6798 { 6799 struct workqueue_struct *wq = dev_to_wq(dev); 6800 int written; 6801 6802 mutex_lock(&wq->mutex); 6803 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 6804 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 6805 wq_affn_names[WQ_AFFN_DFL], 6806 wq_affn_names[wq_affn_dfl]); 6807 else 6808 written = scnprintf(buf, PAGE_SIZE, "%s\n", 6809 wq_affn_names[wq->unbound_attrs->affn_scope]); 6810 mutex_unlock(&wq->mutex); 6811 6812 return written; 6813 } 6814 6815 static ssize_t wq_affn_scope_store(struct device *dev, 6816 struct device_attribute *attr, 6817 const char *buf, size_t count) 6818 { 6819 struct workqueue_struct *wq = dev_to_wq(dev); 6820 struct workqueue_attrs *attrs; 6821 int affn, ret = -ENOMEM; 6822 6823 affn = parse_affn_scope(buf); 6824 if (affn < 0) 6825 return affn; 6826 6827 apply_wqattrs_lock(); 6828 attrs = wq_sysfs_prep_attrs(wq); 6829 if (attrs) { 6830 attrs->affn_scope = affn; 6831 ret = apply_workqueue_attrs_locked(wq, attrs); 6832 } 6833 apply_wqattrs_unlock(); 6834 free_workqueue_attrs(attrs); 6835 return ret ?: count; 6836 } 6837 6838 static ssize_t wq_affinity_strict_show(struct device *dev, 6839 struct device_attribute *attr, char *buf) 6840 { 6841 struct workqueue_struct *wq = dev_to_wq(dev); 6842 6843 return scnprintf(buf, PAGE_SIZE, "%d\n", 6844 wq->unbound_attrs->affn_strict); 6845 } 6846 6847 static ssize_t wq_affinity_strict_store(struct device *dev, 6848 struct device_attribute *attr, 6849 const char *buf, size_t count) 6850 { 6851 struct workqueue_struct *wq = dev_to_wq(dev); 6852 struct workqueue_attrs *attrs; 6853 int v, ret = -ENOMEM; 6854 6855 if (sscanf(buf, "%d", &v) != 1) 6856 return -EINVAL; 6857 6858 apply_wqattrs_lock(); 6859 attrs = wq_sysfs_prep_attrs(wq); 6860 if (attrs) { 6861 attrs->affn_strict = (bool)v; 6862 ret = apply_workqueue_attrs_locked(wq, attrs); 6863 } 6864 apply_wqattrs_unlock(); 6865 free_workqueue_attrs(attrs); 6866 return ret ?: count; 6867 } 6868 6869 static struct device_attribute wq_sysfs_unbound_attrs[] = { 6870 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 6871 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 6872 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 6873 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 6874 __ATTR_NULL, 6875 }; 6876 6877 static const struct bus_type wq_subsys = { 6878 .name = "workqueue", 6879 .dev_groups = wq_sysfs_groups, 6880 }; 6881 6882 /** 6883 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 6884 * @cpumask: the cpumask to set 6885 * 6886 * The low-level workqueues cpumask is a global cpumask that limits 6887 * the affinity of all unbound workqueues. This function check the @cpumask 6888 * and apply it to all unbound workqueues and updates all pwqs of them. 6889 * 6890 * Return: 0 - Success 6891 * -EINVAL - Invalid @cpumask 6892 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 6893 */ 6894 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 6895 { 6896 int ret = -EINVAL; 6897 6898 /* 6899 * Not excluding isolated cpus on purpose. 6900 * If the user wishes to include them, we allow that. 6901 */ 6902 cpumask_and(cpumask, cpumask, cpu_possible_mask); 6903 if (!cpumask_empty(cpumask)) { 6904 apply_wqattrs_lock(); 6905 cpumask_copy(wq_requested_unbound_cpumask, cpumask); 6906 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 6907 ret = 0; 6908 goto out_unlock; 6909 } 6910 6911 ret = workqueue_apply_unbound_cpumask(cpumask); 6912 6913 out_unlock: 6914 apply_wqattrs_unlock(); 6915 } 6916 6917 return ret; 6918 } 6919 6920 static ssize_t __wq_cpumask_show(struct device *dev, 6921 struct device_attribute *attr, char *buf, cpumask_var_t mask) 6922 { 6923 int written; 6924 6925 mutex_lock(&wq_pool_mutex); 6926 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 6927 mutex_unlock(&wq_pool_mutex); 6928 6929 return written; 6930 } 6931 6932 static ssize_t wq_unbound_cpumask_show(struct device *dev, 6933 struct device_attribute *attr, char *buf) 6934 { 6935 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask); 6936 } 6937 6938 static ssize_t wq_requested_cpumask_show(struct device *dev, 6939 struct device_attribute *attr, char *buf) 6940 { 6941 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask); 6942 } 6943 6944 static ssize_t wq_isolated_cpumask_show(struct device *dev, 6945 struct device_attribute *attr, char *buf) 6946 { 6947 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask); 6948 } 6949 6950 static ssize_t wq_unbound_cpumask_store(struct device *dev, 6951 struct device_attribute *attr, const char *buf, size_t count) 6952 { 6953 cpumask_var_t cpumask; 6954 int ret; 6955 6956 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6957 return -ENOMEM; 6958 6959 ret = cpumask_parse(buf, cpumask); 6960 if (!ret) 6961 ret = workqueue_set_unbound_cpumask(cpumask); 6962 6963 free_cpumask_var(cpumask); 6964 return ret ? ret : count; 6965 } 6966 6967 static struct device_attribute wq_sysfs_cpumask_attrs[] = { 6968 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 6969 wq_unbound_cpumask_store), 6970 __ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL), 6971 __ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL), 6972 __ATTR_NULL, 6973 }; 6974 6975 static int __init wq_sysfs_init(void) 6976 { 6977 struct device *dev_root; 6978 int err; 6979 6980 err = subsys_virtual_register(&wq_subsys, NULL); 6981 if (err) 6982 return err; 6983 6984 dev_root = bus_get_dev_root(&wq_subsys); 6985 if (dev_root) { 6986 struct device_attribute *attr; 6987 6988 for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) { 6989 err = device_create_file(dev_root, attr); 6990 if (err) 6991 break; 6992 } 6993 put_device(dev_root); 6994 } 6995 return err; 6996 } 6997 core_initcall(wq_sysfs_init); 6998 6999 static void wq_device_release(struct device *dev) 7000 { 7001 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7002 7003 kfree(wq_dev); 7004 } 7005 7006 /** 7007 * workqueue_sysfs_register - make a workqueue visible in sysfs 7008 * @wq: the workqueue to register 7009 * 7010 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 7011 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 7012 * which is the preferred method. 7013 * 7014 * Workqueue user should use this function directly iff it wants to apply 7015 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 7016 * apply_workqueue_attrs() may race against userland updating the 7017 * attributes. 7018 * 7019 * Return: 0 on success, -errno on failure. 7020 */ 7021 int workqueue_sysfs_register(struct workqueue_struct *wq) 7022 { 7023 struct wq_device *wq_dev; 7024 int ret; 7025 7026 /* 7027 * Adjusting max_active or creating new pwqs by applying 7028 * attributes breaks ordering guarantee. Disallow exposing ordered 7029 * workqueues. 7030 */ 7031 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 7032 return -EINVAL; 7033 7034 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 7035 if (!wq_dev) 7036 return -ENOMEM; 7037 7038 wq_dev->wq = wq; 7039 wq_dev->dev.bus = &wq_subsys; 7040 wq_dev->dev.release = wq_device_release; 7041 dev_set_name(&wq_dev->dev, "%s", wq->name); 7042 7043 /* 7044 * unbound_attrs are created separately. Suppress uevent until 7045 * everything is ready. 7046 */ 7047 dev_set_uevent_suppress(&wq_dev->dev, true); 7048 7049 ret = device_register(&wq_dev->dev); 7050 if (ret) { 7051 put_device(&wq_dev->dev); 7052 wq->wq_dev = NULL; 7053 return ret; 7054 } 7055 7056 if (wq->flags & WQ_UNBOUND) { 7057 struct device_attribute *attr; 7058 7059 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 7060 ret = device_create_file(&wq_dev->dev, attr); 7061 if (ret) { 7062 device_unregister(&wq_dev->dev); 7063 wq->wq_dev = NULL; 7064 return ret; 7065 } 7066 } 7067 } 7068 7069 dev_set_uevent_suppress(&wq_dev->dev, false); 7070 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 7071 return 0; 7072 } 7073 7074 /** 7075 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 7076 * @wq: the workqueue to unregister 7077 * 7078 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 7079 */ 7080 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 7081 { 7082 struct wq_device *wq_dev = wq->wq_dev; 7083 7084 if (!wq->wq_dev) 7085 return; 7086 7087 wq->wq_dev = NULL; 7088 device_unregister(&wq_dev->dev); 7089 } 7090 #else /* CONFIG_SYSFS */ 7091 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 7092 #endif /* CONFIG_SYSFS */ 7093 7094 /* 7095 * Workqueue watchdog. 7096 * 7097 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 7098 * flush dependency, a concurrency managed work item which stays RUNNING 7099 * indefinitely. Workqueue stalls can be very difficult to debug as the 7100 * usual warning mechanisms don't trigger and internal workqueue state is 7101 * largely opaque. 7102 * 7103 * Workqueue watchdog monitors all worker pools periodically and dumps 7104 * state if some pools failed to make forward progress for a while where 7105 * forward progress is defined as the first item on ->worklist changing. 7106 * 7107 * This mechanism is controlled through the kernel parameter 7108 * "workqueue.watchdog_thresh" which can be updated at runtime through the 7109 * corresponding sysfs parameter file. 7110 */ 7111 #ifdef CONFIG_WQ_WATCHDOG 7112 7113 static unsigned long wq_watchdog_thresh = 30; 7114 static struct timer_list wq_watchdog_timer; 7115 7116 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 7117 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 7118 7119 /* 7120 * Show workers that might prevent the processing of pending work items. 7121 * The only candidates are CPU-bound workers in the running state. 7122 * Pending work items should be handled by another idle worker 7123 * in all other situations. 7124 */ 7125 static void show_cpu_pool_hog(struct worker_pool *pool) 7126 { 7127 struct worker *worker; 7128 unsigned long flags; 7129 int bkt; 7130 7131 raw_spin_lock_irqsave(&pool->lock, flags); 7132 7133 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 7134 if (task_is_running(worker->task)) { 7135 /* 7136 * Defer printing to avoid deadlocks in console 7137 * drivers that queue work while holding locks 7138 * also taken in their write paths. 7139 */ 7140 printk_deferred_enter(); 7141 7142 pr_info("pool %d:\n", pool->id); 7143 sched_show_task(worker->task); 7144 7145 printk_deferred_exit(); 7146 } 7147 } 7148 7149 raw_spin_unlock_irqrestore(&pool->lock, flags); 7150 } 7151 7152 static void show_cpu_pools_hogs(void) 7153 { 7154 struct worker_pool *pool; 7155 int pi; 7156 7157 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 7158 7159 rcu_read_lock(); 7160 7161 for_each_pool(pool, pi) { 7162 if (pool->cpu_stall) 7163 show_cpu_pool_hog(pool); 7164 7165 } 7166 7167 rcu_read_unlock(); 7168 } 7169 7170 static void wq_watchdog_reset_touched(void) 7171 { 7172 int cpu; 7173 7174 wq_watchdog_touched = jiffies; 7175 for_each_possible_cpu(cpu) 7176 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7177 } 7178 7179 static void wq_watchdog_timer_fn(struct timer_list *unused) 7180 { 7181 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7182 bool lockup_detected = false; 7183 bool cpu_pool_stall = false; 7184 unsigned long now = jiffies; 7185 struct worker_pool *pool; 7186 int pi; 7187 7188 if (!thresh) 7189 return; 7190 7191 rcu_read_lock(); 7192 7193 for_each_pool(pool, pi) { 7194 unsigned long pool_ts, touched, ts; 7195 7196 pool->cpu_stall = false; 7197 if (list_empty(&pool->worklist)) 7198 continue; 7199 7200 /* 7201 * If a virtual machine is stopped by the host it can look to 7202 * the watchdog like a stall. 7203 */ 7204 kvm_check_and_clear_guest_paused(); 7205 7206 /* get the latest of pool and touched timestamps */ 7207 if (pool->cpu >= 0) 7208 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 7209 else 7210 touched = READ_ONCE(wq_watchdog_touched); 7211 pool_ts = READ_ONCE(pool->watchdog_ts); 7212 7213 if (time_after(pool_ts, touched)) 7214 ts = pool_ts; 7215 else 7216 ts = touched; 7217 7218 /* did we stall? */ 7219 if (time_after(now, ts + thresh)) { 7220 lockup_detected = true; 7221 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) { 7222 pool->cpu_stall = true; 7223 cpu_pool_stall = true; 7224 } 7225 pr_emerg("BUG: workqueue lockup - pool"); 7226 pr_cont_pool_info(pool); 7227 pr_cont(" stuck for %us!\n", 7228 jiffies_to_msecs(now - pool_ts) / 1000); 7229 } 7230 7231 7232 } 7233 7234 rcu_read_unlock(); 7235 7236 if (lockup_detected) 7237 show_all_workqueues(); 7238 7239 if (cpu_pool_stall) 7240 show_cpu_pools_hogs(); 7241 7242 wq_watchdog_reset_touched(); 7243 mod_timer(&wq_watchdog_timer, jiffies + thresh); 7244 } 7245 7246 notrace void wq_watchdog_touch(int cpu) 7247 { 7248 if (cpu >= 0) 7249 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7250 7251 wq_watchdog_touched = jiffies; 7252 } 7253 7254 static void wq_watchdog_set_thresh(unsigned long thresh) 7255 { 7256 wq_watchdog_thresh = 0; 7257 del_timer_sync(&wq_watchdog_timer); 7258 7259 if (thresh) { 7260 wq_watchdog_thresh = thresh; 7261 wq_watchdog_reset_touched(); 7262 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 7263 } 7264 } 7265 7266 static int wq_watchdog_param_set_thresh(const char *val, 7267 const struct kernel_param *kp) 7268 { 7269 unsigned long thresh; 7270 int ret; 7271 7272 ret = kstrtoul(val, 0, &thresh); 7273 if (ret) 7274 return ret; 7275 7276 if (system_wq) 7277 wq_watchdog_set_thresh(thresh); 7278 else 7279 wq_watchdog_thresh = thresh; 7280 7281 return 0; 7282 } 7283 7284 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 7285 .set = wq_watchdog_param_set_thresh, 7286 .get = param_get_ulong, 7287 }; 7288 7289 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 7290 0644); 7291 7292 static void wq_watchdog_init(void) 7293 { 7294 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 7295 wq_watchdog_set_thresh(wq_watchdog_thresh); 7296 } 7297 7298 #else /* CONFIG_WQ_WATCHDOG */ 7299 7300 static inline void wq_watchdog_init(void) { } 7301 7302 #endif /* CONFIG_WQ_WATCHDOG */ 7303 7304 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 7305 { 7306 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 7307 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 7308 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 7309 return; 7310 } 7311 7312 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 7313 } 7314 7315 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice) 7316 { 7317 BUG_ON(init_worker_pool(pool)); 7318 pool->cpu = cpu; 7319 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 7320 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 7321 pool->attrs->nice = nice; 7322 pool->attrs->affn_strict = true; 7323 pool->node = cpu_to_node(cpu); 7324 7325 /* alloc pool ID */ 7326 mutex_lock(&wq_pool_mutex); 7327 BUG_ON(worker_pool_assign_id(pool)); 7328 mutex_unlock(&wq_pool_mutex); 7329 } 7330 7331 /** 7332 * workqueue_init_early - early init for workqueue subsystem 7333 * 7334 * This is the first step of three-staged workqueue subsystem initialization and 7335 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 7336 * up. It sets up all the data structures and system workqueues and allows early 7337 * boot code to create workqueues and queue/cancel work items. Actual work item 7338 * execution starts only after kthreads can be created and scheduled right 7339 * before early initcalls. 7340 */ 7341 void __init workqueue_init_early(void) 7342 { 7343 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 7344 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 7345 int i, cpu; 7346 7347 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 7348 7349 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 7350 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); 7351 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); 7352 7353 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 7354 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 7355 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 7356 if (!cpumask_empty(&wq_cmdline_cpumask)) 7357 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 7358 7359 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask); 7360 7361 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 7362 7363 wq_update_pod_attrs_buf = alloc_workqueue_attrs(); 7364 BUG_ON(!wq_update_pod_attrs_buf); 7365 7366 /* 7367 * If nohz_full is enabled, set power efficient workqueue as unbound. 7368 * This allows workqueue items to be moved to HK CPUs. 7369 */ 7370 if (housekeeping_enabled(HK_TYPE_TICK)) 7371 wq_power_efficient = true; 7372 7373 /* initialize WQ_AFFN_SYSTEM pods */ 7374 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7375 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 7376 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7377 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 7378 7379 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 7380 7381 pt->nr_pods = 1; 7382 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 7383 pt->pod_node[0] = NUMA_NO_NODE; 7384 pt->cpu_pod[0] = 0; 7385 7386 /* initialize BH and CPU pools */ 7387 for_each_possible_cpu(cpu) { 7388 struct worker_pool *pool; 7389 7390 i = 0; 7391 for_each_bh_worker_pool(pool, cpu) { 7392 init_cpu_worker_pool(pool, cpu, std_nice[i++]); 7393 pool->flags |= POOL_BH; 7394 } 7395 7396 i = 0; 7397 for_each_cpu_worker_pool(pool, cpu) 7398 init_cpu_worker_pool(pool, cpu, std_nice[i++]); 7399 } 7400 7401 /* create default unbound and ordered wq attrs */ 7402 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 7403 struct workqueue_attrs *attrs; 7404 7405 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7406 attrs->nice = std_nice[i]; 7407 unbound_std_wq_attrs[i] = attrs; 7408 7409 /* 7410 * An ordered wq should have only one pwq as ordering is 7411 * guaranteed by max_active which is enforced by pwqs. 7412 */ 7413 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7414 attrs->nice = std_nice[i]; 7415 attrs->ordered = true; 7416 ordered_wq_attrs[i] = attrs; 7417 } 7418 7419 system_wq = alloc_workqueue("events", 0, 0); 7420 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 7421 system_long_wq = alloc_workqueue("events_long", 0, 0); 7422 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 7423 WQ_MAX_ACTIVE); 7424 system_freezable_wq = alloc_workqueue("events_freezable", 7425 WQ_FREEZABLE, 0); 7426 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 7427 WQ_POWER_EFFICIENT, 0); 7428 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient", 7429 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 7430 0); 7431 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0); 7432 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri", 7433 WQ_BH | WQ_HIGHPRI, 0); 7434 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 7435 !system_unbound_wq || !system_freezable_wq || 7436 !system_power_efficient_wq || 7437 !system_freezable_power_efficient_wq || 7438 !system_bh_wq || !system_bh_highpri_wq); 7439 } 7440 7441 static void __init wq_cpu_intensive_thresh_init(void) 7442 { 7443 unsigned long thresh; 7444 unsigned long bogo; 7445 7446 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); 7447 BUG_ON(IS_ERR(pwq_release_worker)); 7448 7449 /* if the user set it to a specific value, keep it */ 7450 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 7451 return; 7452 7453 /* 7454 * The default of 10ms is derived from the fact that most modern (as of 7455 * 2023) processors can do a lot in 10ms and that it's just below what 7456 * most consider human-perceivable. However, the kernel also runs on a 7457 * lot slower CPUs including microcontrollers where the threshold is way 7458 * too low. 7459 * 7460 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 7461 * This is by no means accurate but it doesn't have to be. The mechanism 7462 * is still useful even when the threshold is fully scaled up. Also, as 7463 * the reports would usually be applicable to everyone, some machines 7464 * operating on longer thresholds won't significantly diminish their 7465 * usefulness. 7466 */ 7467 thresh = 10 * USEC_PER_MSEC; 7468 7469 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 7470 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 7471 if (bogo < 4000) 7472 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 7473 7474 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 7475 loops_per_jiffy, bogo, thresh); 7476 7477 wq_cpu_intensive_thresh_us = thresh; 7478 } 7479 7480 /** 7481 * workqueue_init - bring workqueue subsystem fully online 7482 * 7483 * This is the second step of three-staged workqueue subsystem initialization 7484 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 7485 * been created and work items queued on them, but there are no kworkers 7486 * executing the work items yet. Populate the worker pools with the initial 7487 * workers and enable future kworker creations. 7488 */ 7489 void __init workqueue_init(void) 7490 { 7491 struct workqueue_struct *wq; 7492 struct worker_pool *pool; 7493 int cpu, bkt; 7494 7495 wq_cpu_intensive_thresh_init(); 7496 7497 mutex_lock(&wq_pool_mutex); 7498 7499 /* 7500 * Per-cpu pools created earlier could be missing node hint. Fix them 7501 * up. Also, create a rescuer for workqueues that requested it. 7502 */ 7503 for_each_possible_cpu(cpu) { 7504 for_each_bh_worker_pool(pool, cpu) 7505 pool->node = cpu_to_node(cpu); 7506 for_each_cpu_worker_pool(pool, cpu) 7507 pool->node = cpu_to_node(cpu); 7508 } 7509 7510 list_for_each_entry(wq, &workqueues, list) { 7511 WARN(init_rescuer(wq), 7512 "workqueue: failed to create early rescuer for %s", 7513 wq->name); 7514 } 7515 7516 mutex_unlock(&wq_pool_mutex); 7517 7518 /* 7519 * Create the initial workers. A BH pool has one pseudo worker that 7520 * represents the shared BH execution context and thus doesn't get 7521 * affected by hotplug events. Create the BH pseudo workers for all 7522 * possible CPUs here. 7523 */ 7524 for_each_possible_cpu(cpu) 7525 for_each_bh_worker_pool(pool, cpu) 7526 BUG_ON(!create_worker(pool)); 7527 7528 for_each_online_cpu(cpu) { 7529 for_each_cpu_worker_pool(pool, cpu) { 7530 pool->flags &= ~POOL_DISASSOCIATED; 7531 BUG_ON(!create_worker(pool)); 7532 } 7533 } 7534 7535 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 7536 BUG_ON(!create_worker(pool)); 7537 7538 wq_online = true; 7539 wq_watchdog_init(); 7540 } 7541 7542 /* 7543 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 7544 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 7545 * and consecutive pod ID. The rest of @pt is initialized accordingly. 7546 */ 7547 static void __init init_pod_type(struct wq_pod_type *pt, 7548 bool (*cpus_share_pod)(int, int)) 7549 { 7550 int cur, pre, cpu, pod; 7551 7552 pt->nr_pods = 0; 7553 7554 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 7555 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7556 BUG_ON(!pt->cpu_pod); 7557 7558 for_each_possible_cpu(cur) { 7559 for_each_possible_cpu(pre) { 7560 if (pre >= cur) { 7561 pt->cpu_pod[cur] = pt->nr_pods++; 7562 break; 7563 } 7564 if (cpus_share_pod(cur, pre)) { 7565 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 7566 break; 7567 } 7568 } 7569 } 7570 7571 /* init the rest to match @pt->cpu_pod[] */ 7572 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7573 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 7574 BUG_ON(!pt->pod_cpus || !pt->pod_node); 7575 7576 for (pod = 0; pod < pt->nr_pods; pod++) 7577 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 7578 7579 for_each_possible_cpu(cpu) { 7580 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 7581 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 7582 } 7583 } 7584 7585 static bool __init cpus_dont_share(int cpu0, int cpu1) 7586 { 7587 return false; 7588 } 7589 7590 static bool __init cpus_share_smt(int cpu0, int cpu1) 7591 { 7592 #ifdef CONFIG_SCHED_SMT 7593 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 7594 #else 7595 return false; 7596 #endif 7597 } 7598 7599 static bool __init cpus_share_numa(int cpu0, int cpu1) 7600 { 7601 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 7602 } 7603 7604 /** 7605 * workqueue_init_topology - initialize CPU pods for unbound workqueues 7606 * 7607 * This is the third step of there-staged workqueue subsystem initialization and 7608 * invoked after SMP and topology information are fully initialized. It 7609 * initializes the unbound CPU pods accordingly. 7610 */ 7611 void __init workqueue_init_topology(void) 7612 { 7613 struct workqueue_struct *wq; 7614 int cpu; 7615 7616 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 7617 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 7618 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 7619 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 7620 7621 wq_topo_initialized = true; 7622 7623 mutex_lock(&wq_pool_mutex); 7624 7625 /* 7626 * Workqueues allocated earlier would have all CPUs sharing the default 7627 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU 7628 * combinations to apply per-pod sharing. 7629 */ 7630 list_for_each_entry(wq, &workqueues, list) { 7631 for_each_online_cpu(cpu) 7632 wq_update_pod(wq, cpu, cpu, true); 7633 if (wq->flags & WQ_UNBOUND) { 7634 mutex_lock(&wq->mutex); 7635 wq_update_node_max_active(wq, -1); 7636 mutex_unlock(&wq->mutex); 7637 } 7638 } 7639 7640 mutex_unlock(&wq_pool_mutex); 7641 } 7642 7643 void __warn_flushing_systemwide_wq(void) 7644 { 7645 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 7646 dump_stack(); 7647 } 7648 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 7649 7650 static int __init workqueue_unbound_cpus_setup(char *str) 7651 { 7652 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 7653 cpumask_clear(&wq_cmdline_cpumask); 7654 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 7655 } 7656 7657 return 1; 7658 } 7659 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 7660