xref: /linux-6.15/kernel/workqueue.c (revision 4cb1ef64)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <[email protected]>
9  *     Andrew Morton
10  *     Kai Petzke <[email protected]>
11  *     Theodore Ts'o <[email protected]>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <[email protected]>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 
58 #include "workqueue_internal.h"
59 
60 enum worker_pool_flags {
61 	/*
62 	 * worker_pool flags
63 	 *
64 	 * A bound pool is either associated or disassociated with its CPU.
65 	 * While associated (!DISASSOCIATED), all workers are bound to the
66 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
67 	 * is in effect.
68 	 *
69 	 * While DISASSOCIATED, the cpu may be offline and all workers have
70 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
71 	 * be executing on any CPU.  The pool behaves as an unbound one.
72 	 *
73 	 * Note that DISASSOCIATED should be flipped only while holding
74 	 * wq_pool_attach_mutex to avoid changing binding state while
75 	 * worker_attach_to_pool() is in progress.
76 	 *
77 	 * As there can only be one concurrent BH execution context per CPU, a
78 	 * BH pool is per-CPU and always DISASSOCIATED.
79 	 */
80 	POOL_BH			= 1 << 0,	/* is a BH pool */
81 	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
82 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
83 };
84 
85 enum worker_flags {
86 	/* worker flags */
87 	WORKER_DIE		= 1 << 1,	/* die die die */
88 	WORKER_IDLE		= 1 << 2,	/* is idle */
89 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
90 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
91 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
92 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
93 
94 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
95 				  WORKER_UNBOUND | WORKER_REBOUND,
96 };
97 
98 enum wq_internal_consts {
99 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
100 
101 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
102 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
103 
104 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
105 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
106 
107 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
108 						/* call for help after 10ms
109 						   (min two ticks) */
110 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
111 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
112 
113 	/*
114 	 * Rescue workers are used only on emergencies and shared by
115 	 * all cpus.  Give MIN_NICE.
116 	 */
117 	RESCUER_NICE_LEVEL	= MIN_NICE,
118 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
119 
120 	WQ_NAME_LEN		= 32,
121 };
122 
123 /*
124  * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
125  * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
126  * msecs_to_jiffies() can't be an initializer.
127  */
128 #define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
129 #define BH_WORKER_RESTARTS	10
130 
131 /*
132  * Structure fields follow one of the following exclusion rules.
133  *
134  * I: Modifiable by initialization/destruction paths and read-only for
135  *    everyone else.
136  *
137  * P: Preemption protected.  Disabling preemption is enough and should
138  *    only be modified and accessed from the local cpu.
139  *
140  * L: pool->lock protected.  Access with pool->lock held.
141  *
142  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
143  *     reads.
144  *
145  * K: Only modified by worker while holding pool->lock. Can be safely read by
146  *    self, while holding pool->lock or from IRQ context if %current is the
147  *    kworker.
148  *
149  * S: Only modified by worker self.
150  *
151  * A: wq_pool_attach_mutex protected.
152  *
153  * PL: wq_pool_mutex protected.
154  *
155  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
156  *
157  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
158  *
159  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
160  *      RCU for reads.
161  *
162  * WQ: wq->mutex protected.
163  *
164  * WR: wq->mutex protected for writes.  RCU protected for reads.
165  *
166  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
167  *     with READ_ONCE() without locking.
168  *
169  * MD: wq_mayday_lock protected.
170  *
171  * WD: Used internally by the watchdog.
172  */
173 
174 /* struct worker is defined in workqueue_internal.h */
175 
176 struct worker_pool {
177 	raw_spinlock_t		lock;		/* the pool lock */
178 	int			cpu;		/* I: the associated cpu */
179 	int			node;		/* I: the associated node ID */
180 	int			id;		/* I: pool ID */
181 	unsigned int		flags;		/* L: flags */
182 
183 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
184 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
185 
186 	/*
187 	 * The counter is incremented in a process context on the associated CPU
188 	 * w/ preemption disabled, and decremented or reset in the same context
189 	 * but w/ pool->lock held. The readers grab pool->lock and are
190 	 * guaranteed to see if the counter reached zero.
191 	 */
192 	int			nr_running;
193 
194 	struct list_head	worklist;	/* L: list of pending works */
195 
196 	int			nr_workers;	/* L: total number of workers */
197 	int			nr_idle;	/* L: currently idle workers */
198 
199 	struct list_head	idle_list;	/* L: list of idle workers */
200 	struct timer_list	idle_timer;	/* L: worker idle timeout */
201 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
202 
203 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
204 
205 	/* a workers is either on busy_hash or idle_list, or the manager */
206 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
207 						/* L: hash of busy workers */
208 
209 	struct worker		*manager;	/* L: purely informational */
210 	struct list_head	workers;	/* A: attached workers */
211 	struct list_head        dying_workers;  /* A: workers about to die */
212 	struct completion	*detach_completion; /* all workers detached */
213 
214 	struct ida		worker_ida;	/* worker IDs for task name */
215 
216 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
217 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
218 	int			refcnt;		/* PL: refcnt for unbound pools */
219 
220 	/*
221 	 * Destruction of pool is RCU protected to allow dereferences
222 	 * from get_work_pool().
223 	 */
224 	struct rcu_head		rcu;
225 };
226 
227 /*
228  * Per-pool_workqueue statistics. These can be monitored using
229  * tools/workqueue/wq_monitor.py.
230  */
231 enum pool_workqueue_stats {
232 	PWQ_STAT_STARTED,	/* work items started execution */
233 	PWQ_STAT_COMPLETED,	/* work items completed execution */
234 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
235 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
236 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
237 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
238 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
239 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
240 
241 	PWQ_NR_STATS,
242 };
243 
244 /*
245  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
246  * of work_struct->data are used for flags and the remaining high bits
247  * point to the pwq; thus, pwqs need to be aligned at two's power of the
248  * number of flag bits.
249  */
250 struct pool_workqueue {
251 	struct worker_pool	*pool;		/* I: the associated pool */
252 	struct workqueue_struct *wq;		/* I: the owning workqueue */
253 	int			work_color;	/* L: current color */
254 	int			flush_color;	/* L: flushing color */
255 	int			refcnt;		/* L: reference count */
256 	int			nr_in_flight[WORK_NR_COLORS];
257 						/* L: nr of in_flight works */
258 
259 	/*
260 	 * nr_active management and WORK_STRUCT_INACTIVE:
261 	 *
262 	 * When pwq->nr_active >= max_active, new work item is queued to
263 	 * pwq->inactive_works instead of pool->worklist and marked with
264 	 * WORK_STRUCT_INACTIVE.
265 	 *
266 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
267 	 * nr_active and all work items in pwq->inactive_works are marked with
268 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
269 	 * in pwq->inactive_works. Some of them are ready to run in
270 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
271 	 * wq_barrier which is used for flush_work() and should not participate
272 	 * in nr_active. For non-barrier work item, it is marked with
273 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
274 	 */
275 	int			nr_active;	/* L: nr of active works */
276 	struct list_head	inactive_works;	/* L: inactive works */
277 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
278 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
279 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
280 
281 	u64			stats[PWQ_NR_STATS];
282 
283 	/*
284 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
285 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
286 	 * RCU protected so that the first pwq can be determined without
287 	 * grabbing wq->mutex.
288 	 */
289 	struct kthread_work	release_work;
290 	struct rcu_head		rcu;
291 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
292 
293 /*
294  * Structure used to wait for workqueue flush.
295  */
296 struct wq_flusher {
297 	struct list_head	list;		/* WQ: list of flushers */
298 	int			flush_color;	/* WQ: flush color waiting for */
299 	struct completion	done;		/* flush completion */
300 };
301 
302 struct wq_device;
303 
304 /*
305  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
306  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
307  * As sharing a single nr_active across multiple sockets can be very expensive,
308  * the counting and enforcement is per NUMA node.
309  *
310  * The following struct is used to enforce per-node max_active. When a pwq wants
311  * to start executing a work item, it should increment ->nr using
312  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
313  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
314  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
315  * round-robin order.
316  */
317 struct wq_node_nr_active {
318 	int			max;		/* per-node max_active */
319 	atomic_t		nr;		/* per-node nr_active */
320 	raw_spinlock_t		lock;		/* nests inside pool locks */
321 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
322 };
323 
324 /*
325  * The externally visible workqueue.  It relays the issued work items to
326  * the appropriate worker_pool through its pool_workqueues.
327  */
328 struct workqueue_struct {
329 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
330 	struct list_head	list;		/* PR: list of all workqueues */
331 
332 	struct mutex		mutex;		/* protects this wq */
333 	int			work_color;	/* WQ: current work color */
334 	int			flush_color;	/* WQ: current flush color */
335 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
336 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
337 	struct list_head	flusher_queue;	/* WQ: flush waiters */
338 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
339 
340 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
341 	struct worker		*rescuer;	/* MD: rescue worker */
342 
343 	int			nr_drainers;	/* WQ: drain in progress */
344 
345 	/* See alloc_workqueue() function comment for info on min/max_active */
346 	int			max_active;	/* WO: max active works */
347 	int			min_active;	/* WO: min active works */
348 	int			saved_max_active; /* WQ: saved max_active */
349 	int			saved_min_active; /* WQ: saved min_active */
350 
351 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
352 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
353 
354 #ifdef CONFIG_SYSFS
355 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
356 #endif
357 #ifdef CONFIG_LOCKDEP
358 	char			*lock_name;
359 	struct lock_class_key	key;
360 	struct lockdep_map	lockdep_map;
361 #endif
362 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
363 
364 	/*
365 	 * Destruction of workqueue_struct is RCU protected to allow walking
366 	 * the workqueues list without grabbing wq_pool_mutex.
367 	 * This is used to dump all workqueues from sysrq.
368 	 */
369 	struct rcu_head		rcu;
370 
371 	/* hot fields used during command issue, aligned to cacheline */
372 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
373 	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
374 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
375 };
376 
377 static struct kmem_cache *pwq_cache;
378 
379 /*
380  * Each pod type describes how CPUs should be grouped for unbound workqueues.
381  * See the comment above workqueue_attrs->affn_scope.
382  */
383 struct wq_pod_type {
384 	int			nr_pods;	/* number of pods */
385 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
386 	int			*pod_node;	/* pod -> node */
387 	int			*cpu_pod;	/* cpu -> pod */
388 };
389 
390 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
391 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
392 
393 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
394 	[WQ_AFFN_DFL]			= "default",
395 	[WQ_AFFN_CPU]			= "cpu",
396 	[WQ_AFFN_SMT]			= "smt",
397 	[WQ_AFFN_CACHE]			= "cache",
398 	[WQ_AFFN_NUMA]			= "numa",
399 	[WQ_AFFN_SYSTEM]		= "system",
400 };
401 
402 static bool wq_topo_initialized __read_mostly = false;
403 
404 /*
405  * Per-cpu work items which run for longer than the following threshold are
406  * automatically considered CPU intensive and excluded from concurrency
407  * management to prevent them from noticeably delaying other per-cpu work items.
408  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
409  * The actual value is initialized in wq_cpu_intensive_thresh_init().
410  */
411 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
412 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
413 
414 /* see the comment above the definition of WQ_POWER_EFFICIENT */
415 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
416 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
417 
418 static bool wq_online;			/* can kworkers be created yet? */
419 
420 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
421 static struct workqueue_attrs *wq_update_pod_attrs_buf;
422 
423 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
424 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
425 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
426 /* wait for manager to go away */
427 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
428 
429 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
430 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
431 
432 /* PL&A: allowable cpus for unbound wqs and work items */
433 static cpumask_var_t wq_unbound_cpumask;
434 
435 /* PL: user requested unbound cpumask via sysfs */
436 static cpumask_var_t wq_requested_unbound_cpumask;
437 
438 /* PL: isolated cpumask to be excluded from unbound cpumask */
439 static cpumask_var_t wq_isolated_cpumask;
440 
441 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
442 static struct cpumask wq_cmdline_cpumask __initdata;
443 
444 /* CPU where unbound work was last round robin scheduled from this CPU */
445 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
446 
447 /*
448  * Local execution of unbound work items is no longer guaranteed.  The
449  * following always forces round-robin CPU selection on unbound work items
450  * to uncover usages which depend on it.
451  */
452 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
453 static bool wq_debug_force_rr_cpu = true;
454 #else
455 static bool wq_debug_force_rr_cpu = false;
456 #endif
457 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
458 
459 /* the BH worker pools */
460 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
461 				     bh_worker_pools);
462 
463 /* the per-cpu worker pools */
464 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
465 				     cpu_worker_pools);
466 
467 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
468 
469 /* PL: hash of all unbound pools keyed by pool->attrs */
470 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
471 
472 /* I: attributes used when instantiating standard unbound pools on demand */
473 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
474 
475 /* I: attributes used when instantiating ordered pools on demand */
476 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
477 
478 /*
479  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
480  * process context while holding a pool lock. Bounce to a dedicated kthread
481  * worker to avoid A-A deadlocks.
482  */
483 static struct kthread_worker *pwq_release_worker __ro_after_init;
484 
485 struct workqueue_struct *system_wq __ro_after_init;
486 EXPORT_SYMBOL(system_wq);
487 struct workqueue_struct *system_highpri_wq __ro_after_init;
488 EXPORT_SYMBOL_GPL(system_highpri_wq);
489 struct workqueue_struct *system_long_wq __ro_after_init;
490 EXPORT_SYMBOL_GPL(system_long_wq);
491 struct workqueue_struct *system_unbound_wq __ro_after_init;
492 EXPORT_SYMBOL_GPL(system_unbound_wq);
493 struct workqueue_struct *system_freezable_wq __ro_after_init;
494 EXPORT_SYMBOL_GPL(system_freezable_wq);
495 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
496 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
497 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
498 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
499 struct workqueue_struct *system_bh_wq;
500 EXPORT_SYMBOL_GPL(system_bh_wq);
501 struct workqueue_struct *system_bh_highpri_wq;
502 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
503 
504 static int worker_thread(void *__worker);
505 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
506 static void show_pwq(struct pool_workqueue *pwq);
507 static void show_one_worker_pool(struct worker_pool *pool);
508 
509 #define CREATE_TRACE_POINTS
510 #include <trace/events/workqueue.h>
511 
512 #define assert_rcu_or_pool_mutex()					\
513 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
514 			 !lockdep_is_held(&wq_pool_mutex),		\
515 			 "RCU or wq_pool_mutex should be held")
516 
517 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
518 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
519 			 !lockdep_is_held(&wq->mutex) &&		\
520 			 !lockdep_is_held(&wq_pool_mutex),		\
521 			 "RCU, wq->mutex or wq_pool_mutex should be held")
522 
523 #define for_each_bh_worker_pool(pool, cpu)				\
524 	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
525 	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
526 	     (pool)++)
527 
528 #define for_each_cpu_worker_pool(pool, cpu)				\
529 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
530 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
531 	     (pool)++)
532 
533 /**
534  * for_each_pool - iterate through all worker_pools in the system
535  * @pool: iteration cursor
536  * @pi: integer used for iteration
537  *
538  * This must be called either with wq_pool_mutex held or RCU read
539  * locked.  If the pool needs to be used beyond the locking in effect, the
540  * caller is responsible for guaranteeing that the pool stays online.
541  *
542  * The if/else clause exists only for the lockdep assertion and can be
543  * ignored.
544  */
545 #define for_each_pool(pool, pi)						\
546 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
547 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
548 		else
549 
550 /**
551  * for_each_pool_worker - iterate through all workers of a worker_pool
552  * @worker: iteration cursor
553  * @pool: worker_pool to iterate workers of
554  *
555  * This must be called with wq_pool_attach_mutex.
556  *
557  * The if/else clause exists only for the lockdep assertion and can be
558  * ignored.
559  */
560 #define for_each_pool_worker(worker, pool)				\
561 	list_for_each_entry((worker), &(pool)->workers, node)		\
562 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
563 		else
564 
565 /**
566  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
567  * @pwq: iteration cursor
568  * @wq: the target workqueue
569  *
570  * This must be called either with wq->mutex held or RCU read locked.
571  * If the pwq needs to be used beyond the locking in effect, the caller is
572  * responsible for guaranteeing that the pwq stays online.
573  *
574  * The if/else clause exists only for the lockdep assertion and can be
575  * ignored.
576  */
577 #define for_each_pwq(pwq, wq)						\
578 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
579 				 lockdep_is_held(&(wq->mutex)))
580 
581 #ifdef CONFIG_DEBUG_OBJECTS_WORK
582 
583 static const struct debug_obj_descr work_debug_descr;
584 
585 static void *work_debug_hint(void *addr)
586 {
587 	return ((struct work_struct *) addr)->func;
588 }
589 
590 static bool work_is_static_object(void *addr)
591 {
592 	struct work_struct *work = addr;
593 
594 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
595 }
596 
597 /*
598  * fixup_init is called when:
599  * - an active object is initialized
600  */
601 static bool work_fixup_init(void *addr, enum debug_obj_state state)
602 {
603 	struct work_struct *work = addr;
604 
605 	switch (state) {
606 	case ODEBUG_STATE_ACTIVE:
607 		cancel_work_sync(work);
608 		debug_object_init(work, &work_debug_descr);
609 		return true;
610 	default:
611 		return false;
612 	}
613 }
614 
615 /*
616  * fixup_free is called when:
617  * - an active object is freed
618  */
619 static bool work_fixup_free(void *addr, enum debug_obj_state state)
620 {
621 	struct work_struct *work = addr;
622 
623 	switch (state) {
624 	case ODEBUG_STATE_ACTIVE:
625 		cancel_work_sync(work);
626 		debug_object_free(work, &work_debug_descr);
627 		return true;
628 	default:
629 		return false;
630 	}
631 }
632 
633 static const struct debug_obj_descr work_debug_descr = {
634 	.name		= "work_struct",
635 	.debug_hint	= work_debug_hint,
636 	.is_static_object = work_is_static_object,
637 	.fixup_init	= work_fixup_init,
638 	.fixup_free	= work_fixup_free,
639 };
640 
641 static inline void debug_work_activate(struct work_struct *work)
642 {
643 	debug_object_activate(work, &work_debug_descr);
644 }
645 
646 static inline void debug_work_deactivate(struct work_struct *work)
647 {
648 	debug_object_deactivate(work, &work_debug_descr);
649 }
650 
651 void __init_work(struct work_struct *work, int onstack)
652 {
653 	if (onstack)
654 		debug_object_init_on_stack(work, &work_debug_descr);
655 	else
656 		debug_object_init(work, &work_debug_descr);
657 }
658 EXPORT_SYMBOL_GPL(__init_work);
659 
660 void destroy_work_on_stack(struct work_struct *work)
661 {
662 	debug_object_free(work, &work_debug_descr);
663 }
664 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
665 
666 void destroy_delayed_work_on_stack(struct delayed_work *work)
667 {
668 	destroy_timer_on_stack(&work->timer);
669 	debug_object_free(&work->work, &work_debug_descr);
670 }
671 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
672 
673 #else
674 static inline void debug_work_activate(struct work_struct *work) { }
675 static inline void debug_work_deactivate(struct work_struct *work) { }
676 #endif
677 
678 /**
679  * worker_pool_assign_id - allocate ID and assign it to @pool
680  * @pool: the pool pointer of interest
681  *
682  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
683  * successfully, -errno on failure.
684  */
685 static int worker_pool_assign_id(struct worker_pool *pool)
686 {
687 	int ret;
688 
689 	lockdep_assert_held(&wq_pool_mutex);
690 
691 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
692 			GFP_KERNEL);
693 	if (ret >= 0) {
694 		pool->id = ret;
695 		return 0;
696 	}
697 	return ret;
698 }
699 
700 static struct pool_workqueue __rcu **
701 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
702 {
703        if (cpu >= 0)
704                return per_cpu_ptr(wq->cpu_pwq, cpu);
705        else
706                return &wq->dfl_pwq;
707 }
708 
709 /* @cpu < 0 for dfl_pwq */
710 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
711 {
712 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
713 				     lockdep_is_held(&wq_pool_mutex) ||
714 				     lockdep_is_held(&wq->mutex));
715 }
716 
717 /**
718  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
719  * @wq: workqueue of interest
720  *
721  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
722  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
723  * default pwq is always mapped to the pool with the current effective cpumask.
724  */
725 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
726 {
727 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
728 }
729 
730 static unsigned int work_color_to_flags(int color)
731 {
732 	return color << WORK_STRUCT_COLOR_SHIFT;
733 }
734 
735 static int get_work_color(unsigned long work_data)
736 {
737 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
738 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
739 }
740 
741 static int work_next_color(int color)
742 {
743 	return (color + 1) % WORK_NR_COLORS;
744 }
745 
746 /*
747  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
748  * contain the pointer to the queued pwq.  Once execution starts, the flag
749  * is cleared and the high bits contain OFFQ flags and pool ID.
750  *
751  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
752  * and clear_work_data() can be used to set the pwq, pool or clear
753  * work->data.  These functions should only be called while the work is
754  * owned - ie. while the PENDING bit is set.
755  *
756  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
757  * corresponding to a work.  Pool is available once the work has been
758  * queued anywhere after initialization until it is sync canceled.  pwq is
759  * available only while the work item is queued.
760  *
761  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
762  * canceled.  While being canceled, a work item may have its PENDING set
763  * but stay off timer and worklist for arbitrarily long and nobody should
764  * try to steal the PENDING bit.
765  */
766 static inline void set_work_data(struct work_struct *work, unsigned long data,
767 				 unsigned long flags)
768 {
769 	WARN_ON_ONCE(!work_pending(work));
770 	atomic_long_set(&work->data, data | flags | work_static(work));
771 }
772 
773 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
774 			 unsigned long extra_flags)
775 {
776 	set_work_data(work, (unsigned long)pwq,
777 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
778 }
779 
780 static void set_work_pool_and_keep_pending(struct work_struct *work,
781 					   int pool_id)
782 {
783 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
784 		      WORK_STRUCT_PENDING);
785 }
786 
787 static void set_work_pool_and_clear_pending(struct work_struct *work,
788 					    int pool_id)
789 {
790 	/*
791 	 * The following wmb is paired with the implied mb in
792 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
793 	 * here are visible to and precede any updates by the next PENDING
794 	 * owner.
795 	 */
796 	smp_wmb();
797 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
798 	/*
799 	 * The following mb guarantees that previous clear of a PENDING bit
800 	 * will not be reordered with any speculative LOADS or STORES from
801 	 * work->current_func, which is executed afterwards.  This possible
802 	 * reordering can lead to a missed execution on attempt to queue
803 	 * the same @work.  E.g. consider this case:
804 	 *
805 	 *   CPU#0                         CPU#1
806 	 *   ----------------------------  --------------------------------
807 	 *
808 	 * 1  STORE event_indicated
809 	 * 2  queue_work_on() {
810 	 * 3    test_and_set_bit(PENDING)
811 	 * 4 }                             set_..._and_clear_pending() {
812 	 * 5                                 set_work_data() # clear bit
813 	 * 6                                 smp_mb()
814 	 * 7                               work->current_func() {
815 	 * 8				      LOAD event_indicated
816 	 *				   }
817 	 *
818 	 * Without an explicit full barrier speculative LOAD on line 8 can
819 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
820 	 * CPU#0 observes the PENDING bit is still set and new execution of
821 	 * a @work is not queued in a hope, that CPU#1 will eventually
822 	 * finish the queued @work.  Meanwhile CPU#1 does not see
823 	 * event_indicated is set, because speculative LOAD was executed
824 	 * before actual STORE.
825 	 */
826 	smp_mb();
827 }
828 
829 static void clear_work_data(struct work_struct *work)
830 {
831 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
832 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
833 }
834 
835 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
836 {
837 	return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
838 }
839 
840 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
841 {
842 	unsigned long data = atomic_long_read(&work->data);
843 
844 	if (data & WORK_STRUCT_PWQ)
845 		return work_struct_pwq(data);
846 	else
847 		return NULL;
848 }
849 
850 /**
851  * get_work_pool - return the worker_pool a given work was associated with
852  * @work: the work item of interest
853  *
854  * Pools are created and destroyed under wq_pool_mutex, and allows read
855  * access under RCU read lock.  As such, this function should be
856  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
857  *
858  * All fields of the returned pool are accessible as long as the above
859  * mentioned locking is in effect.  If the returned pool needs to be used
860  * beyond the critical section, the caller is responsible for ensuring the
861  * returned pool is and stays online.
862  *
863  * Return: The worker_pool @work was last associated with.  %NULL if none.
864  */
865 static struct worker_pool *get_work_pool(struct work_struct *work)
866 {
867 	unsigned long data = atomic_long_read(&work->data);
868 	int pool_id;
869 
870 	assert_rcu_or_pool_mutex();
871 
872 	if (data & WORK_STRUCT_PWQ)
873 		return work_struct_pwq(data)->pool;
874 
875 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
876 	if (pool_id == WORK_OFFQ_POOL_NONE)
877 		return NULL;
878 
879 	return idr_find(&worker_pool_idr, pool_id);
880 }
881 
882 /**
883  * get_work_pool_id - return the worker pool ID a given work is associated with
884  * @work: the work item of interest
885  *
886  * Return: The worker_pool ID @work was last associated with.
887  * %WORK_OFFQ_POOL_NONE if none.
888  */
889 static int get_work_pool_id(struct work_struct *work)
890 {
891 	unsigned long data = atomic_long_read(&work->data);
892 
893 	if (data & WORK_STRUCT_PWQ)
894 		return work_struct_pwq(data)->pool->id;
895 
896 	return data >> WORK_OFFQ_POOL_SHIFT;
897 }
898 
899 static void mark_work_canceling(struct work_struct *work)
900 {
901 	unsigned long pool_id = get_work_pool_id(work);
902 
903 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
904 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
905 }
906 
907 static bool work_is_canceling(struct work_struct *work)
908 {
909 	unsigned long data = atomic_long_read(&work->data);
910 
911 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
912 }
913 
914 /*
915  * Policy functions.  These define the policies on how the global worker
916  * pools are managed.  Unless noted otherwise, these functions assume that
917  * they're being called with pool->lock held.
918  */
919 
920 /*
921  * Need to wake up a worker?  Called from anything but currently
922  * running workers.
923  *
924  * Note that, because unbound workers never contribute to nr_running, this
925  * function will always return %true for unbound pools as long as the
926  * worklist isn't empty.
927  */
928 static bool need_more_worker(struct worker_pool *pool)
929 {
930 	return !list_empty(&pool->worklist) && !pool->nr_running;
931 }
932 
933 /* Can I start working?  Called from busy but !running workers. */
934 static bool may_start_working(struct worker_pool *pool)
935 {
936 	return pool->nr_idle;
937 }
938 
939 /* Do I need to keep working?  Called from currently running workers. */
940 static bool keep_working(struct worker_pool *pool)
941 {
942 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
943 }
944 
945 /* Do we need a new worker?  Called from manager. */
946 static bool need_to_create_worker(struct worker_pool *pool)
947 {
948 	return need_more_worker(pool) && !may_start_working(pool);
949 }
950 
951 /* Do we have too many workers and should some go away? */
952 static bool too_many_workers(struct worker_pool *pool)
953 {
954 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
955 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
956 	int nr_busy = pool->nr_workers - nr_idle;
957 
958 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
959 }
960 
961 /**
962  * worker_set_flags - set worker flags and adjust nr_running accordingly
963  * @worker: self
964  * @flags: flags to set
965  *
966  * Set @flags in @worker->flags and adjust nr_running accordingly.
967  */
968 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
969 {
970 	struct worker_pool *pool = worker->pool;
971 
972 	lockdep_assert_held(&pool->lock);
973 
974 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
975 	if ((flags & WORKER_NOT_RUNNING) &&
976 	    !(worker->flags & WORKER_NOT_RUNNING)) {
977 		pool->nr_running--;
978 	}
979 
980 	worker->flags |= flags;
981 }
982 
983 /**
984  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
985  * @worker: self
986  * @flags: flags to clear
987  *
988  * Clear @flags in @worker->flags and adjust nr_running accordingly.
989  */
990 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
991 {
992 	struct worker_pool *pool = worker->pool;
993 	unsigned int oflags = worker->flags;
994 
995 	lockdep_assert_held(&pool->lock);
996 
997 	worker->flags &= ~flags;
998 
999 	/*
1000 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1001 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1002 	 * of multiple flags, not a single flag.
1003 	 */
1004 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1005 		if (!(worker->flags & WORKER_NOT_RUNNING))
1006 			pool->nr_running++;
1007 }
1008 
1009 /* Return the first idle worker.  Called with pool->lock held. */
1010 static struct worker *first_idle_worker(struct worker_pool *pool)
1011 {
1012 	if (unlikely(list_empty(&pool->idle_list)))
1013 		return NULL;
1014 
1015 	return list_first_entry(&pool->idle_list, struct worker, entry);
1016 }
1017 
1018 /**
1019  * worker_enter_idle - enter idle state
1020  * @worker: worker which is entering idle state
1021  *
1022  * @worker is entering idle state.  Update stats and idle timer if
1023  * necessary.
1024  *
1025  * LOCKING:
1026  * raw_spin_lock_irq(pool->lock).
1027  */
1028 static void worker_enter_idle(struct worker *worker)
1029 {
1030 	struct worker_pool *pool = worker->pool;
1031 
1032 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1033 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1034 			 (worker->hentry.next || worker->hentry.pprev)))
1035 		return;
1036 
1037 	/* can't use worker_set_flags(), also called from create_worker() */
1038 	worker->flags |= WORKER_IDLE;
1039 	pool->nr_idle++;
1040 	worker->last_active = jiffies;
1041 
1042 	/* idle_list is LIFO */
1043 	list_add(&worker->entry, &pool->idle_list);
1044 
1045 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1046 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1047 
1048 	/* Sanity check nr_running. */
1049 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1050 }
1051 
1052 /**
1053  * worker_leave_idle - leave idle state
1054  * @worker: worker which is leaving idle state
1055  *
1056  * @worker is leaving idle state.  Update stats.
1057  *
1058  * LOCKING:
1059  * raw_spin_lock_irq(pool->lock).
1060  */
1061 static void worker_leave_idle(struct worker *worker)
1062 {
1063 	struct worker_pool *pool = worker->pool;
1064 
1065 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1066 		return;
1067 	worker_clr_flags(worker, WORKER_IDLE);
1068 	pool->nr_idle--;
1069 	list_del_init(&worker->entry);
1070 }
1071 
1072 /**
1073  * find_worker_executing_work - find worker which is executing a work
1074  * @pool: pool of interest
1075  * @work: work to find worker for
1076  *
1077  * Find a worker which is executing @work on @pool by searching
1078  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1079  * to match, its current execution should match the address of @work and
1080  * its work function.  This is to avoid unwanted dependency between
1081  * unrelated work executions through a work item being recycled while still
1082  * being executed.
1083  *
1084  * This is a bit tricky.  A work item may be freed once its execution
1085  * starts and nothing prevents the freed area from being recycled for
1086  * another work item.  If the same work item address ends up being reused
1087  * before the original execution finishes, workqueue will identify the
1088  * recycled work item as currently executing and make it wait until the
1089  * current execution finishes, introducing an unwanted dependency.
1090  *
1091  * This function checks the work item address and work function to avoid
1092  * false positives.  Note that this isn't complete as one may construct a
1093  * work function which can introduce dependency onto itself through a
1094  * recycled work item.  Well, if somebody wants to shoot oneself in the
1095  * foot that badly, there's only so much we can do, and if such deadlock
1096  * actually occurs, it should be easy to locate the culprit work function.
1097  *
1098  * CONTEXT:
1099  * raw_spin_lock_irq(pool->lock).
1100  *
1101  * Return:
1102  * Pointer to worker which is executing @work if found, %NULL
1103  * otherwise.
1104  */
1105 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1106 						 struct work_struct *work)
1107 {
1108 	struct worker *worker;
1109 
1110 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1111 			       (unsigned long)work)
1112 		if (worker->current_work == work &&
1113 		    worker->current_func == work->func)
1114 			return worker;
1115 
1116 	return NULL;
1117 }
1118 
1119 /**
1120  * move_linked_works - move linked works to a list
1121  * @work: start of series of works to be scheduled
1122  * @head: target list to append @work to
1123  * @nextp: out parameter for nested worklist walking
1124  *
1125  * Schedule linked works starting from @work to @head. Work series to be
1126  * scheduled starts at @work and includes any consecutive work with
1127  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1128  * @nextp.
1129  *
1130  * CONTEXT:
1131  * raw_spin_lock_irq(pool->lock).
1132  */
1133 static void move_linked_works(struct work_struct *work, struct list_head *head,
1134 			      struct work_struct **nextp)
1135 {
1136 	struct work_struct *n;
1137 
1138 	/*
1139 	 * Linked worklist will always end before the end of the list,
1140 	 * use NULL for list head.
1141 	 */
1142 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1143 		list_move_tail(&work->entry, head);
1144 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1145 			break;
1146 	}
1147 
1148 	/*
1149 	 * If we're already inside safe list traversal and have moved
1150 	 * multiple works to the scheduled queue, the next position
1151 	 * needs to be updated.
1152 	 */
1153 	if (nextp)
1154 		*nextp = n;
1155 }
1156 
1157 /**
1158  * assign_work - assign a work item and its linked work items to a worker
1159  * @work: work to assign
1160  * @worker: worker to assign to
1161  * @nextp: out parameter for nested worklist walking
1162  *
1163  * Assign @work and its linked work items to @worker. If @work is already being
1164  * executed by another worker in the same pool, it'll be punted there.
1165  *
1166  * If @nextp is not NULL, it's updated to point to the next work of the last
1167  * scheduled work. This allows assign_work() to be nested inside
1168  * list_for_each_entry_safe().
1169  *
1170  * Returns %true if @work was successfully assigned to @worker. %false if @work
1171  * was punted to another worker already executing it.
1172  */
1173 static bool assign_work(struct work_struct *work, struct worker *worker,
1174 			struct work_struct **nextp)
1175 {
1176 	struct worker_pool *pool = worker->pool;
1177 	struct worker *collision;
1178 
1179 	lockdep_assert_held(&pool->lock);
1180 
1181 	/*
1182 	 * A single work shouldn't be executed concurrently by multiple workers.
1183 	 * __queue_work() ensures that @work doesn't jump to a different pool
1184 	 * while still running in the previous pool. Here, we should ensure that
1185 	 * @work is not executed concurrently by multiple workers from the same
1186 	 * pool. Check whether anyone is already processing the work. If so,
1187 	 * defer the work to the currently executing one.
1188 	 */
1189 	collision = find_worker_executing_work(pool, work);
1190 	if (unlikely(collision)) {
1191 		move_linked_works(work, &collision->scheduled, nextp);
1192 		return false;
1193 	}
1194 
1195 	move_linked_works(work, &worker->scheduled, nextp);
1196 	return true;
1197 }
1198 
1199 /**
1200  * kick_pool - wake up an idle worker if necessary
1201  * @pool: pool to kick
1202  *
1203  * @pool may have pending work items. Wake up worker if necessary. Returns
1204  * whether a worker was woken up.
1205  */
1206 static bool kick_pool(struct worker_pool *pool)
1207 {
1208 	struct worker *worker = first_idle_worker(pool);
1209 	struct task_struct *p;
1210 
1211 	lockdep_assert_held(&pool->lock);
1212 
1213 	if (!need_more_worker(pool) || !worker)
1214 		return false;
1215 
1216 	if (pool->flags & POOL_BH) {
1217 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1218 			raise_softirq_irqoff(HI_SOFTIRQ);
1219 		else
1220 			raise_softirq_irqoff(TASKLET_SOFTIRQ);
1221 		return true;
1222 	}
1223 
1224 	p = worker->task;
1225 
1226 #ifdef CONFIG_SMP
1227 	/*
1228 	 * Idle @worker is about to execute @work and waking up provides an
1229 	 * opportunity to migrate @worker at a lower cost by setting the task's
1230 	 * wake_cpu field. Let's see if we want to move @worker to improve
1231 	 * execution locality.
1232 	 *
1233 	 * We're waking the worker that went idle the latest and there's some
1234 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1235 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1236 	 * optimization and the race window is narrow, let's leave as-is for
1237 	 * now. If this becomes pronounced, we can skip over workers which are
1238 	 * still on cpu when picking an idle worker.
1239 	 *
1240 	 * If @pool has non-strict affinity, @worker might have ended up outside
1241 	 * its affinity scope. Repatriate.
1242 	 */
1243 	if (!pool->attrs->affn_strict &&
1244 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1245 		struct work_struct *work = list_first_entry(&pool->worklist,
1246 						struct work_struct, entry);
1247 		p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1248 		get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1249 	}
1250 #endif
1251 	wake_up_process(p);
1252 	return true;
1253 }
1254 
1255 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1256 
1257 /*
1258  * Concurrency-managed per-cpu work items that hog CPU for longer than
1259  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1260  * which prevents them from stalling other concurrency-managed work items. If a
1261  * work function keeps triggering this mechanism, it's likely that the work item
1262  * should be using an unbound workqueue instead.
1263  *
1264  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1265  * and report them so that they can be examined and converted to use unbound
1266  * workqueues as appropriate. To avoid flooding the console, each violating work
1267  * function is tracked and reported with exponential backoff.
1268  */
1269 #define WCI_MAX_ENTS 128
1270 
1271 struct wci_ent {
1272 	work_func_t		func;
1273 	atomic64_t		cnt;
1274 	struct hlist_node	hash_node;
1275 };
1276 
1277 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1278 static int wci_nr_ents;
1279 static DEFINE_RAW_SPINLOCK(wci_lock);
1280 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1281 
1282 static struct wci_ent *wci_find_ent(work_func_t func)
1283 {
1284 	struct wci_ent *ent;
1285 
1286 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1287 				   (unsigned long)func) {
1288 		if (ent->func == func)
1289 			return ent;
1290 	}
1291 	return NULL;
1292 }
1293 
1294 static void wq_cpu_intensive_report(work_func_t func)
1295 {
1296 	struct wci_ent *ent;
1297 
1298 restart:
1299 	ent = wci_find_ent(func);
1300 	if (ent) {
1301 		u64 cnt;
1302 
1303 		/*
1304 		 * Start reporting from the fourth time and back off
1305 		 * exponentially.
1306 		 */
1307 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1308 		if (cnt >= 4 && is_power_of_2(cnt))
1309 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1310 					ent->func, wq_cpu_intensive_thresh_us,
1311 					atomic64_read(&ent->cnt));
1312 		return;
1313 	}
1314 
1315 	/*
1316 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1317 	 * is exhausted, something went really wrong and we probably made enough
1318 	 * noise already.
1319 	 */
1320 	if (wci_nr_ents >= WCI_MAX_ENTS)
1321 		return;
1322 
1323 	raw_spin_lock(&wci_lock);
1324 
1325 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1326 		raw_spin_unlock(&wci_lock);
1327 		return;
1328 	}
1329 
1330 	if (wci_find_ent(func)) {
1331 		raw_spin_unlock(&wci_lock);
1332 		goto restart;
1333 	}
1334 
1335 	ent = &wci_ents[wci_nr_ents++];
1336 	ent->func = func;
1337 	atomic64_set(&ent->cnt, 1);
1338 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1339 
1340 	raw_spin_unlock(&wci_lock);
1341 }
1342 
1343 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1344 static void wq_cpu_intensive_report(work_func_t func) {}
1345 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1346 
1347 /**
1348  * wq_worker_running - a worker is running again
1349  * @task: task waking up
1350  *
1351  * This function is called when a worker returns from schedule()
1352  */
1353 void wq_worker_running(struct task_struct *task)
1354 {
1355 	struct worker *worker = kthread_data(task);
1356 
1357 	if (!READ_ONCE(worker->sleeping))
1358 		return;
1359 
1360 	/*
1361 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1362 	 * and the nr_running increment below, we may ruin the nr_running reset
1363 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1364 	 * pool. Protect against such race.
1365 	 */
1366 	preempt_disable();
1367 	if (!(worker->flags & WORKER_NOT_RUNNING))
1368 		worker->pool->nr_running++;
1369 	preempt_enable();
1370 
1371 	/*
1372 	 * CPU intensive auto-detection cares about how long a work item hogged
1373 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1374 	 */
1375 	worker->current_at = worker->task->se.sum_exec_runtime;
1376 
1377 	WRITE_ONCE(worker->sleeping, 0);
1378 }
1379 
1380 /**
1381  * wq_worker_sleeping - a worker is going to sleep
1382  * @task: task going to sleep
1383  *
1384  * This function is called from schedule() when a busy worker is
1385  * going to sleep.
1386  */
1387 void wq_worker_sleeping(struct task_struct *task)
1388 {
1389 	struct worker *worker = kthread_data(task);
1390 	struct worker_pool *pool;
1391 
1392 	/*
1393 	 * Rescuers, which may not have all the fields set up like normal
1394 	 * workers, also reach here, let's not access anything before
1395 	 * checking NOT_RUNNING.
1396 	 */
1397 	if (worker->flags & WORKER_NOT_RUNNING)
1398 		return;
1399 
1400 	pool = worker->pool;
1401 
1402 	/* Return if preempted before wq_worker_running() was reached */
1403 	if (READ_ONCE(worker->sleeping))
1404 		return;
1405 
1406 	WRITE_ONCE(worker->sleeping, 1);
1407 	raw_spin_lock_irq(&pool->lock);
1408 
1409 	/*
1410 	 * Recheck in case unbind_workers() preempted us. We don't
1411 	 * want to decrement nr_running after the worker is unbound
1412 	 * and nr_running has been reset.
1413 	 */
1414 	if (worker->flags & WORKER_NOT_RUNNING) {
1415 		raw_spin_unlock_irq(&pool->lock);
1416 		return;
1417 	}
1418 
1419 	pool->nr_running--;
1420 	if (kick_pool(pool))
1421 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1422 
1423 	raw_spin_unlock_irq(&pool->lock);
1424 }
1425 
1426 /**
1427  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1428  * @task: task currently running
1429  *
1430  * Called from scheduler_tick(). We're in the IRQ context and the current
1431  * worker's fields which follow the 'K' locking rule can be accessed safely.
1432  */
1433 void wq_worker_tick(struct task_struct *task)
1434 {
1435 	struct worker *worker = kthread_data(task);
1436 	struct pool_workqueue *pwq = worker->current_pwq;
1437 	struct worker_pool *pool = worker->pool;
1438 
1439 	if (!pwq)
1440 		return;
1441 
1442 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1443 
1444 	if (!wq_cpu_intensive_thresh_us)
1445 		return;
1446 
1447 	/*
1448 	 * If the current worker is concurrency managed and hogged the CPU for
1449 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1450 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1451 	 *
1452 	 * Set @worker->sleeping means that @worker is in the process of
1453 	 * switching out voluntarily and won't be contributing to
1454 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1455 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1456 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1457 	 * We probably want to make this prettier in the future.
1458 	 */
1459 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1460 	    worker->task->se.sum_exec_runtime - worker->current_at <
1461 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1462 		return;
1463 
1464 	raw_spin_lock(&pool->lock);
1465 
1466 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1467 	wq_cpu_intensive_report(worker->current_func);
1468 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1469 
1470 	if (kick_pool(pool))
1471 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1472 
1473 	raw_spin_unlock(&pool->lock);
1474 }
1475 
1476 /**
1477  * wq_worker_last_func - retrieve worker's last work function
1478  * @task: Task to retrieve last work function of.
1479  *
1480  * Determine the last function a worker executed. This is called from
1481  * the scheduler to get a worker's last known identity.
1482  *
1483  * CONTEXT:
1484  * raw_spin_lock_irq(rq->lock)
1485  *
1486  * This function is called during schedule() when a kworker is going
1487  * to sleep. It's used by psi to identify aggregation workers during
1488  * dequeuing, to allow periodic aggregation to shut-off when that
1489  * worker is the last task in the system or cgroup to go to sleep.
1490  *
1491  * As this function doesn't involve any workqueue-related locking, it
1492  * only returns stable values when called from inside the scheduler's
1493  * queuing and dequeuing paths, when @task, which must be a kworker,
1494  * is guaranteed to not be processing any works.
1495  *
1496  * Return:
1497  * The last work function %current executed as a worker, NULL if it
1498  * hasn't executed any work yet.
1499  */
1500 work_func_t wq_worker_last_func(struct task_struct *task)
1501 {
1502 	struct worker *worker = kthread_data(task);
1503 
1504 	return worker->last_func;
1505 }
1506 
1507 /**
1508  * wq_node_nr_active - Determine wq_node_nr_active to use
1509  * @wq: workqueue of interest
1510  * @node: NUMA node, can be %NUMA_NO_NODE
1511  *
1512  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1513  *
1514  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1515  *
1516  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1517  *
1518  * - Otherwise, node_nr_active[@node].
1519  */
1520 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1521 						   int node)
1522 {
1523 	if (!(wq->flags & WQ_UNBOUND))
1524 		return NULL;
1525 
1526 	if (node == NUMA_NO_NODE)
1527 		node = nr_node_ids;
1528 
1529 	return wq->node_nr_active[node];
1530 }
1531 
1532 /**
1533  * wq_update_node_max_active - Update per-node max_actives to use
1534  * @wq: workqueue to update
1535  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1536  *
1537  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1538  * distributed among nodes according to the proportions of numbers of online
1539  * cpus. The result is always between @wq->min_active and max_active.
1540  */
1541 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1542 {
1543 	struct cpumask *effective = unbound_effective_cpumask(wq);
1544 	int min_active = READ_ONCE(wq->min_active);
1545 	int max_active = READ_ONCE(wq->max_active);
1546 	int total_cpus, node;
1547 
1548 	lockdep_assert_held(&wq->mutex);
1549 
1550 	if (!wq_topo_initialized)
1551 		return;
1552 
1553 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1554 		off_cpu = -1;
1555 
1556 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1557 	if (off_cpu >= 0)
1558 		total_cpus--;
1559 
1560 	for_each_node(node) {
1561 		int node_cpus;
1562 
1563 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1564 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1565 			node_cpus--;
1566 
1567 		wq_node_nr_active(wq, node)->max =
1568 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1569 			      min_active, max_active);
1570 	}
1571 
1572 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active;
1573 }
1574 
1575 /**
1576  * get_pwq - get an extra reference on the specified pool_workqueue
1577  * @pwq: pool_workqueue to get
1578  *
1579  * Obtain an extra reference on @pwq.  The caller should guarantee that
1580  * @pwq has positive refcnt and be holding the matching pool->lock.
1581  */
1582 static void get_pwq(struct pool_workqueue *pwq)
1583 {
1584 	lockdep_assert_held(&pwq->pool->lock);
1585 	WARN_ON_ONCE(pwq->refcnt <= 0);
1586 	pwq->refcnt++;
1587 }
1588 
1589 /**
1590  * put_pwq - put a pool_workqueue reference
1591  * @pwq: pool_workqueue to put
1592  *
1593  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1594  * destruction.  The caller should be holding the matching pool->lock.
1595  */
1596 static void put_pwq(struct pool_workqueue *pwq)
1597 {
1598 	lockdep_assert_held(&pwq->pool->lock);
1599 	if (likely(--pwq->refcnt))
1600 		return;
1601 	/*
1602 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1603 	 * kthread_worker to avoid A-A deadlocks.
1604 	 */
1605 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1606 }
1607 
1608 /**
1609  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1610  * @pwq: pool_workqueue to put (can be %NULL)
1611  *
1612  * put_pwq() with locking.  This function also allows %NULL @pwq.
1613  */
1614 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1615 {
1616 	if (pwq) {
1617 		/*
1618 		 * As both pwqs and pools are RCU protected, the
1619 		 * following lock operations are safe.
1620 		 */
1621 		raw_spin_lock_irq(&pwq->pool->lock);
1622 		put_pwq(pwq);
1623 		raw_spin_unlock_irq(&pwq->pool->lock);
1624 	}
1625 }
1626 
1627 static bool pwq_is_empty(struct pool_workqueue *pwq)
1628 {
1629 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1630 }
1631 
1632 static void __pwq_activate_work(struct pool_workqueue *pwq,
1633 				struct work_struct *work)
1634 {
1635 	unsigned long *wdb = work_data_bits(work);
1636 
1637 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1638 	trace_workqueue_activate_work(work);
1639 	if (list_empty(&pwq->pool->worklist))
1640 		pwq->pool->watchdog_ts = jiffies;
1641 	move_linked_works(work, &pwq->pool->worklist, NULL);
1642 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1643 }
1644 
1645 /**
1646  * pwq_activate_work - Activate a work item if inactive
1647  * @pwq: pool_workqueue @work belongs to
1648  * @work: work item to activate
1649  *
1650  * Returns %true if activated. %false if already active.
1651  */
1652 static bool pwq_activate_work(struct pool_workqueue *pwq,
1653 			      struct work_struct *work)
1654 {
1655 	struct worker_pool *pool = pwq->pool;
1656 	struct wq_node_nr_active *nna;
1657 
1658 	lockdep_assert_held(&pool->lock);
1659 
1660 	if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1661 		return false;
1662 
1663 	nna = wq_node_nr_active(pwq->wq, pool->node);
1664 	if (nna)
1665 		atomic_inc(&nna->nr);
1666 
1667 	pwq->nr_active++;
1668 	__pwq_activate_work(pwq, work);
1669 	return true;
1670 }
1671 
1672 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1673 {
1674 	int max = READ_ONCE(nna->max);
1675 
1676 	while (true) {
1677 		int old, tmp;
1678 
1679 		old = atomic_read(&nna->nr);
1680 		if (old >= max)
1681 			return false;
1682 		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1683 		if (tmp == old)
1684 			return true;
1685 	}
1686 }
1687 
1688 /**
1689  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1690  * @pwq: pool_workqueue of interest
1691  * @fill: max_active may have increased, try to increase concurrency level
1692  *
1693  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1694  * successfully obtained. %false otherwise.
1695  */
1696 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1697 {
1698 	struct workqueue_struct *wq = pwq->wq;
1699 	struct worker_pool *pool = pwq->pool;
1700 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1701 	bool obtained = false;
1702 
1703 	lockdep_assert_held(&pool->lock);
1704 
1705 	if (!nna) {
1706 		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1707 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1708 		goto out;
1709 	}
1710 
1711 	/*
1712 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1713 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1714 	 * concurrency level. Don't jump the line.
1715 	 *
1716 	 * We need to ignore the pending test after max_active has increased as
1717 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1718 	 * increase it. This is indicated by @fill.
1719 	 */
1720 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1721 		goto out;
1722 
1723 	obtained = tryinc_node_nr_active(nna);
1724 	if (obtained)
1725 		goto out;
1726 
1727 	/*
1728 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1729 	 * and try again. The smp_mb() is paired with the implied memory barrier
1730 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1731 	 * we see the decremented $nna->nr or they see non-empty
1732 	 * $nna->pending_pwqs.
1733 	 */
1734 	raw_spin_lock(&nna->lock);
1735 
1736 	if (list_empty(&pwq->pending_node))
1737 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1738 	else if (likely(!fill))
1739 		goto out_unlock;
1740 
1741 	smp_mb();
1742 
1743 	obtained = tryinc_node_nr_active(nna);
1744 
1745 	/*
1746 	 * If @fill, @pwq might have already been pending. Being spuriously
1747 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1748 	 */
1749 	if (obtained && likely(!fill))
1750 		list_del_init(&pwq->pending_node);
1751 
1752 out_unlock:
1753 	raw_spin_unlock(&nna->lock);
1754 out:
1755 	if (obtained)
1756 		pwq->nr_active++;
1757 	return obtained;
1758 }
1759 
1760 /**
1761  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1762  * @pwq: pool_workqueue of interest
1763  * @fill: max_active may have increased, try to increase concurrency level
1764  *
1765  * Activate the first inactive work item of @pwq if available and allowed by
1766  * max_active limit.
1767  *
1768  * Returns %true if an inactive work item has been activated. %false if no
1769  * inactive work item is found or max_active limit is reached.
1770  */
1771 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1772 {
1773 	struct work_struct *work =
1774 		list_first_entry_or_null(&pwq->inactive_works,
1775 					 struct work_struct, entry);
1776 
1777 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1778 		__pwq_activate_work(pwq, work);
1779 		return true;
1780 	} else {
1781 		return false;
1782 	}
1783 }
1784 
1785 /**
1786  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1787  * @nna: wq_node_nr_active to activate a pending pwq for
1788  * @caller_pool: worker_pool the caller is locking
1789  *
1790  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1791  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1792  */
1793 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1794 				      struct worker_pool *caller_pool)
1795 {
1796 	struct worker_pool *locked_pool = caller_pool;
1797 	struct pool_workqueue *pwq;
1798 	struct work_struct *work;
1799 
1800 	lockdep_assert_held(&caller_pool->lock);
1801 
1802 	raw_spin_lock(&nna->lock);
1803 retry:
1804 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1805 				       struct pool_workqueue, pending_node);
1806 	if (!pwq)
1807 		goto out_unlock;
1808 
1809 	/*
1810 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1811 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1812 	 * / lock dance. For that, we also need to release @nna->lock as it's
1813 	 * nested inside pool locks.
1814 	 */
1815 	if (pwq->pool != locked_pool) {
1816 		raw_spin_unlock(&locked_pool->lock);
1817 		locked_pool = pwq->pool;
1818 		if (!raw_spin_trylock(&locked_pool->lock)) {
1819 			raw_spin_unlock(&nna->lock);
1820 			raw_spin_lock(&locked_pool->lock);
1821 			raw_spin_lock(&nna->lock);
1822 			goto retry;
1823 		}
1824 	}
1825 
1826 	/*
1827 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1828 	 * Drop it from pending_pwqs and see if there's another one.
1829 	 */
1830 	work = list_first_entry_or_null(&pwq->inactive_works,
1831 					struct work_struct, entry);
1832 	if (!work) {
1833 		list_del_init(&pwq->pending_node);
1834 		goto retry;
1835 	}
1836 
1837 	/*
1838 	 * Acquire an nr_active count and activate the inactive work item. If
1839 	 * $pwq still has inactive work items, rotate it to the end of the
1840 	 * pending_pwqs so that we round-robin through them. This means that
1841 	 * inactive work items are not activated in queueing order which is fine
1842 	 * given that there has never been any ordering across different pwqs.
1843 	 */
1844 	if (likely(tryinc_node_nr_active(nna))) {
1845 		pwq->nr_active++;
1846 		__pwq_activate_work(pwq, work);
1847 
1848 		if (list_empty(&pwq->inactive_works))
1849 			list_del_init(&pwq->pending_node);
1850 		else
1851 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1852 
1853 		/* if activating a foreign pool, make sure it's running */
1854 		if (pwq->pool != caller_pool)
1855 			kick_pool(pwq->pool);
1856 	}
1857 
1858 out_unlock:
1859 	raw_spin_unlock(&nna->lock);
1860 	if (locked_pool != caller_pool) {
1861 		raw_spin_unlock(&locked_pool->lock);
1862 		raw_spin_lock(&caller_pool->lock);
1863 	}
1864 }
1865 
1866 /**
1867  * pwq_dec_nr_active - Retire an active count
1868  * @pwq: pool_workqueue of interest
1869  *
1870  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1871  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1872  */
1873 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1874 {
1875 	struct worker_pool *pool = pwq->pool;
1876 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1877 
1878 	lockdep_assert_held(&pool->lock);
1879 
1880 	/*
1881 	 * @pwq->nr_active should be decremented for both percpu and unbound
1882 	 * workqueues.
1883 	 */
1884 	pwq->nr_active--;
1885 
1886 	/*
1887 	 * For a percpu workqueue, it's simple. Just need to kick the first
1888 	 * inactive work item on @pwq itself.
1889 	 */
1890 	if (!nna) {
1891 		pwq_activate_first_inactive(pwq, false);
1892 		return;
1893 	}
1894 
1895 	/*
1896 	 * If @pwq is for an unbound workqueue, it's more complicated because
1897 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1898 	 * pwq needs to wait for an nr_active count, it puts itself on
1899 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1900 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1901 	 * guarantee that either we see non-empty pending_pwqs or they see
1902 	 * decremented $nna->nr.
1903 	 *
1904 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1905 	 * max_active gets updated. However, it is guaranteed to be equal to or
1906 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1907 	 * This maintains the forward progress guarantee.
1908 	 */
1909 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1910 		return;
1911 
1912 	if (!list_empty(&nna->pending_pwqs))
1913 		node_activate_pending_pwq(nna, pool);
1914 }
1915 
1916 /**
1917  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1918  * @pwq: pwq of interest
1919  * @work_data: work_data of work which left the queue
1920  *
1921  * A work either has completed or is removed from pending queue,
1922  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1923  *
1924  * NOTE:
1925  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1926  * and thus should be called after all other state updates for the in-flight
1927  * work item is complete.
1928  *
1929  * CONTEXT:
1930  * raw_spin_lock_irq(pool->lock).
1931  */
1932 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1933 {
1934 	int color = get_work_color(work_data);
1935 
1936 	if (!(work_data & WORK_STRUCT_INACTIVE))
1937 		pwq_dec_nr_active(pwq);
1938 
1939 	pwq->nr_in_flight[color]--;
1940 
1941 	/* is flush in progress and are we at the flushing tip? */
1942 	if (likely(pwq->flush_color != color))
1943 		goto out_put;
1944 
1945 	/* are there still in-flight works? */
1946 	if (pwq->nr_in_flight[color])
1947 		goto out_put;
1948 
1949 	/* this pwq is done, clear flush_color */
1950 	pwq->flush_color = -1;
1951 
1952 	/*
1953 	 * If this was the last pwq, wake up the first flusher.  It
1954 	 * will handle the rest.
1955 	 */
1956 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1957 		complete(&pwq->wq->first_flusher->done);
1958 out_put:
1959 	put_pwq(pwq);
1960 }
1961 
1962 /**
1963  * try_to_grab_pending - steal work item from worklist and disable irq
1964  * @work: work item to steal
1965  * @is_dwork: @work is a delayed_work
1966  * @flags: place to store irq state
1967  *
1968  * Try to grab PENDING bit of @work.  This function can handle @work in any
1969  * stable state - idle, on timer or on worklist.
1970  *
1971  * Return:
1972  *
1973  *  ========	================================================================
1974  *  1		if @work was pending and we successfully stole PENDING
1975  *  0		if @work was idle and we claimed PENDING
1976  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1977  *  -ENOENT	if someone else is canceling @work, this state may persist
1978  *		for arbitrarily long
1979  *  ========	================================================================
1980  *
1981  * Note:
1982  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1983  * interrupted while holding PENDING and @work off queue, irq must be
1984  * disabled on entry.  This, combined with delayed_work->timer being
1985  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1986  *
1987  * On successful return, >= 0, irq is disabled and the caller is
1988  * responsible for releasing it using local_irq_restore(*@flags).
1989  *
1990  * This function is safe to call from any context including IRQ handler.
1991  */
1992 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1993 			       unsigned long *flags)
1994 {
1995 	struct worker_pool *pool;
1996 	struct pool_workqueue *pwq;
1997 
1998 	local_irq_save(*flags);
1999 
2000 	/* try to steal the timer if it exists */
2001 	if (is_dwork) {
2002 		struct delayed_work *dwork = to_delayed_work(work);
2003 
2004 		/*
2005 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2006 		 * guaranteed that the timer is not queued anywhere and not
2007 		 * running on the local CPU.
2008 		 */
2009 		if (likely(del_timer(&dwork->timer)))
2010 			return 1;
2011 	}
2012 
2013 	/* try to claim PENDING the normal way */
2014 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2015 		return 0;
2016 
2017 	rcu_read_lock();
2018 	/*
2019 	 * The queueing is in progress, or it is already queued. Try to
2020 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2021 	 */
2022 	pool = get_work_pool(work);
2023 	if (!pool)
2024 		goto fail;
2025 
2026 	raw_spin_lock(&pool->lock);
2027 	/*
2028 	 * work->data is guaranteed to point to pwq only while the work
2029 	 * item is queued on pwq->wq, and both updating work->data to point
2030 	 * to pwq on queueing and to pool on dequeueing are done under
2031 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2032 	 * points to pwq which is associated with a locked pool, the work
2033 	 * item is currently queued on that pool.
2034 	 */
2035 	pwq = get_work_pwq(work);
2036 	if (pwq && pwq->pool == pool) {
2037 		unsigned long work_data;
2038 
2039 		debug_work_deactivate(work);
2040 
2041 		/*
2042 		 * A cancelable inactive work item must be in the
2043 		 * pwq->inactive_works since a queued barrier can't be
2044 		 * canceled (see the comments in insert_wq_barrier()).
2045 		 *
2046 		 * An inactive work item cannot be grabbed directly because
2047 		 * it might have linked barrier work items which, if left
2048 		 * on the inactive_works list, will confuse pwq->nr_active
2049 		 * management later on and cause stall.  Make sure the work
2050 		 * item is activated before grabbing.
2051 		 */
2052 		pwq_activate_work(pwq, work);
2053 
2054 		list_del_init(&work->entry);
2055 
2056 		/*
2057 		 * work->data points to pwq iff queued. Let's point to pool. As
2058 		 * this destroys work->data needed by the next step, stash it.
2059 		 */
2060 		work_data = *work_data_bits(work);
2061 		set_work_pool_and_keep_pending(work, pool->id);
2062 
2063 		/* must be the last step, see the function comment */
2064 		pwq_dec_nr_in_flight(pwq, work_data);
2065 
2066 		raw_spin_unlock(&pool->lock);
2067 		rcu_read_unlock();
2068 		return 1;
2069 	}
2070 	raw_spin_unlock(&pool->lock);
2071 fail:
2072 	rcu_read_unlock();
2073 	local_irq_restore(*flags);
2074 	if (work_is_canceling(work))
2075 		return -ENOENT;
2076 	cpu_relax();
2077 	return -EAGAIN;
2078 }
2079 
2080 /**
2081  * insert_work - insert a work into a pool
2082  * @pwq: pwq @work belongs to
2083  * @work: work to insert
2084  * @head: insertion point
2085  * @extra_flags: extra WORK_STRUCT_* flags to set
2086  *
2087  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2088  * work_struct flags.
2089  *
2090  * CONTEXT:
2091  * raw_spin_lock_irq(pool->lock).
2092  */
2093 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2094 			struct list_head *head, unsigned int extra_flags)
2095 {
2096 	debug_work_activate(work);
2097 
2098 	/* record the work call stack in order to print it in KASAN reports */
2099 	kasan_record_aux_stack_noalloc(work);
2100 
2101 	/* we own @work, set data and link */
2102 	set_work_pwq(work, pwq, extra_flags);
2103 	list_add_tail(&work->entry, head);
2104 	get_pwq(pwq);
2105 }
2106 
2107 /*
2108  * Test whether @work is being queued from another work executing on the
2109  * same workqueue.
2110  */
2111 static bool is_chained_work(struct workqueue_struct *wq)
2112 {
2113 	struct worker *worker;
2114 
2115 	worker = current_wq_worker();
2116 	/*
2117 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2118 	 * I'm @worker, it's safe to dereference it without locking.
2119 	 */
2120 	return worker && worker->current_pwq->wq == wq;
2121 }
2122 
2123 /*
2124  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2125  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2126  * avoid perturbing sensitive tasks.
2127  */
2128 static int wq_select_unbound_cpu(int cpu)
2129 {
2130 	int new_cpu;
2131 
2132 	if (likely(!wq_debug_force_rr_cpu)) {
2133 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2134 			return cpu;
2135 	} else {
2136 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2137 	}
2138 
2139 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2140 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2141 	if (unlikely(new_cpu >= nr_cpu_ids)) {
2142 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2143 		if (unlikely(new_cpu >= nr_cpu_ids))
2144 			return cpu;
2145 	}
2146 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2147 
2148 	return new_cpu;
2149 }
2150 
2151 static void __queue_work(int cpu, struct workqueue_struct *wq,
2152 			 struct work_struct *work)
2153 {
2154 	struct pool_workqueue *pwq;
2155 	struct worker_pool *last_pool, *pool;
2156 	unsigned int work_flags;
2157 	unsigned int req_cpu = cpu;
2158 
2159 	/*
2160 	 * While a work item is PENDING && off queue, a task trying to
2161 	 * steal the PENDING will busy-loop waiting for it to either get
2162 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2163 	 * happen with IRQ disabled.
2164 	 */
2165 	lockdep_assert_irqs_disabled();
2166 
2167 
2168 	/*
2169 	 * For a draining wq, only works from the same workqueue are
2170 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2171 	 * queues a new work item to a wq after destroy_workqueue(wq).
2172 	 */
2173 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2174 		     WARN_ON_ONCE(!is_chained_work(wq))))
2175 		return;
2176 	rcu_read_lock();
2177 retry:
2178 	/* pwq which will be used unless @work is executing elsewhere */
2179 	if (req_cpu == WORK_CPU_UNBOUND) {
2180 		if (wq->flags & WQ_UNBOUND)
2181 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2182 		else
2183 			cpu = raw_smp_processor_id();
2184 	}
2185 
2186 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2187 	pool = pwq->pool;
2188 
2189 	/*
2190 	 * If @work was previously on a different pool, it might still be
2191 	 * running there, in which case the work needs to be queued on that
2192 	 * pool to guarantee non-reentrancy.
2193 	 */
2194 	last_pool = get_work_pool(work);
2195 	if (last_pool && last_pool != pool) {
2196 		struct worker *worker;
2197 
2198 		raw_spin_lock(&last_pool->lock);
2199 
2200 		worker = find_worker_executing_work(last_pool, work);
2201 
2202 		if (worker && worker->current_pwq->wq == wq) {
2203 			pwq = worker->current_pwq;
2204 			pool = pwq->pool;
2205 			WARN_ON_ONCE(pool != last_pool);
2206 		} else {
2207 			/* meh... not running there, queue here */
2208 			raw_spin_unlock(&last_pool->lock);
2209 			raw_spin_lock(&pool->lock);
2210 		}
2211 	} else {
2212 		raw_spin_lock(&pool->lock);
2213 	}
2214 
2215 	/*
2216 	 * pwq is determined and locked. For unbound pools, we could have raced
2217 	 * with pwq release and it could already be dead. If its refcnt is zero,
2218 	 * repeat pwq selection. Note that unbound pwqs never die without
2219 	 * another pwq replacing it in cpu_pwq or while work items are executing
2220 	 * on it, so the retrying is guaranteed to make forward-progress.
2221 	 */
2222 	if (unlikely(!pwq->refcnt)) {
2223 		if (wq->flags & WQ_UNBOUND) {
2224 			raw_spin_unlock(&pool->lock);
2225 			cpu_relax();
2226 			goto retry;
2227 		}
2228 		/* oops */
2229 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2230 			  wq->name, cpu);
2231 	}
2232 
2233 	/* pwq determined, queue */
2234 	trace_workqueue_queue_work(req_cpu, pwq, work);
2235 
2236 	if (WARN_ON(!list_empty(&work->entry)))
2237 		goto out;
2238 
2239 	pwq->nr_in_flight[pwq->work_color]++;
2240 	work_flags = work_color_to_flags(pwq->work_color);
2241 
2242 	/*
2243 	 * Limit the number of concurrently active work items to max_active.
2244 	 * @work must also queue behind existing inactive work items to maintain
2245 	 * ordering when max_active changes. See wq_adjust_max_active().
2246 	 */
2247 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2248 		if (list_empty(&pool->worklist))
2249 			pool->watchdog_ts = jiffies;
2250 
2251 		trace_workqueue_activate_work(work);
2252 		insert_work(pwq, work, &pool->worklist, work_flags);
2253 		kick_pool(pool);
2254 	} else {
2255 		work_flags |= WORK_STRUCT_INACTIVE;
2256 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2257 	}
2258 
2259 out:
2260 	raw_spin_unlock(&pool->lock);
2261 	rcu_read_unlock();
2262 }
2263 
2264 /**
2265  * queue_work_on - queue work on specific cpu
2266  * @cpu: CPU number to execute work on
2267  * @wq: workqueue to use
2268  * @work: work to queue
2269  *
2270  * We queue the work to a specific CPU, the caller must ensure it
2271  * can't go away.  Callers that fail to ensure that the specified
2272  * CPU cannot go away will execute on a randomly chosen CPU.
2273  * But note well that callers specifying a CPU that never has been
2274  * online will get a splat.
2275  *
2276  * Return: %false if @work was already on a queue, %true otherwise.
2277  */
2278 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2279 		   struct work_struct *work)
2280 {
2281 	bool ret = false;
2282 	unsigned long flags;
2283 
2284 	local_irq_save(flags);
2285 
2286 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2287 		__queue_work(cpu, wq, work);
2288 		ret = true;
2289 	}
2290 
2291 	local_irq_restore(flags);
2292 	return ret;
2293 }
2294 EXPORT_SYMBOL(queue_work_on);
2295 
2296 /**
2297  * select_numa_node_cpu - Select a CPU based on NUMA node
2298  * @node: NUMA node ID that we want to select a CPU from
2299  *
2300  * This function will attempt to find a "random" cpu available on a given
2301  * node. If there are no CPUs available on the given node it will return
2302  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2303  * available CPU if we need to schedule this work.
2304  */
2305 static int select_numa_node_cpu(int node)
2306 {
2307 	int cpu;
2308 
2309 	/* Delay binding to CPU if node is not valid or online */
2310 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2311 		return WORK_CPU_UNBOUND;
2312 
2313 	/* Use local node/cpu if we are already there */
2314 	cpu = raw_smp_processor_id();
2315 	if (node == cpu_to_node(cpu))
2316 		return cpu;
2317 
2318 	/* Use "random" otherwise know as "first" online CPU of node */
2319 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2320 
2321 	/* If CPU is valid return that, otherwise just defer */
2322 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2323 }
2324 
2325 /**
2326  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2327  * @node: NUMA node that we are targeting the work for
2328  * @wq: workqueue to use
2329  * @work: work to queue
2330  *
2331  * We queue the work to a "random" CPU within a given NUMA node. The basic
2332  * idea here is to provide a way to somehow associate work with a given
2333  * NUMA node.
2334  *
2335  * This function will only make a best effort attempt at getting this onto
2336  * the right NUMA node. If no node is requested or the requested node is
2337  * offline then we just fall back to standard queue_work behavior.
2338  *
2339  * Currently the "random" CPU ends up being the first available CPU in the
2340  * intersection of cpu_online_mask and the cpumask of the node, unless we
2341  * are running on the node. In that case we just use the current CPU.
2342  *
2343  * Return: %false if @work was already on a queue, %true otherwise.
2344  */
2345 bool queue_work_node(int node, struct workqueue_struct *wq,
2346 		     struct work_struct *work)
2347 {
2348 	unsigned long flags;
2349 	bool ret = false;
2350 
2351 	/*
2352 	 * This current implementation is specific to unbound workqueues.
2353 	 * Specifically we only return the first available CPU for a given
2354 	 * node instead of cycling through individual CPUs within the node.
2355 	 *
2356 	 * If this is used with a per-cpu workqueue then the logic in
2357 	 * workqueue_select_cpu_near would need to be updated to allow for
2358 	 * some round robin type logic.
2359 	 */
2360 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2361 
2362 	local_irq_save(flags);
2363 
2364 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2365 		int cpu = select_numa_node_cpu(node);
2366 
2367 		__queue_work(cpu, wq, work);
2368 		ret = true;
2369 	}
2370 
2371 	local_irq_restore(flags);
2372 	return ret;
2373 }
2374 EXPORT_SYMBOL_GPL(queue_work_node);
2375 
2376 void delayed_work_timer_fn(struct timer_list *t)
2377 {
2378 	struct delayed_work *dwork = from_timer(dwork, t, timer);
2379 
2380 	/* should have been called from irqsafe timer with irq already off */
2381 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2382 }
2383 EXPORT_SYMBOL(delayed_work_timer_fn);
2384 
2385 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2386 				struct delayed_work *dwork, unsigned long delay)
2387 {
2388 	struct timer_list *timer = &dwork->timer;
2389 	struct work_struct *work = &dwork->work;
2390 
2391 	WARN_ON_ONCE(!wq);
2392 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2393 	WARN_ON_ONCE(timer_pending(timer));
2394 	WARN_ON_ONCE(!list_empty(&work->entry));
2395 
2396 	/*
2397 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2398 	 * both optimization and correctness.  The earliest @timer can
2399 	 * expire is on the closest next tick and delayed_work users depend
2400 	 * on that there's no such delay when @delay is 0.
2401 	 */
2402 	if (!delay) {
2403 		__queue_work(cpu, wq, &dwork->work);
2404 		return;
2405 	}
2406 
2407 	dwork->wq = wq;
2408 	dwork->cpu = cpu;
2409 	timer->expires = jiffies + delay;
2410 
2411 	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2412 		/* If the current cpu is a housekeeping cpu, use it. */
2413 		cpu = smp_processor_id();
2414 		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2415 			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2416 		add_timer_on(timer, cpu);
2417 	} else {
2418 		if (likely(cpu == WORK_CPU_UNBOUND))
2419 			add_timer(timer);
2420 		else
2421 			add_timer_on(timer, cpu);
2422 	}
2423 }
2424 
2425 /**
2426  * queue_delayed_work_on - queue work on specific CPU after delay
2427  * @cpu: CPU number to execute work on
2428  * @wq: workqueue to use
2429  * @dwork: work to queue
2430  * @delay: number of jiffies to wait before queueing
2431  *
2432  * Return: %false if @work was already on a queue, %true otherwise.  If
2433  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2434  * execution.
2435  */
2436 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2437 			   struct delayed_work *dwork, unsigned long delay)
2438 {
2439 	struct work_struct *work = &dwork->work;
2440 	bool ret = false;
2441 	unsigned long flags;
2442 
2443 	/* read the comment in __queue_work() */
2444 	local_irq_save(flags);
2445 
2446 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2447 		__queue_delayed_work(cpu, wq, dwork, delay);
2448 		ret = true;
2449 	}
2450 
2451 	local_irq_restore(flags);
2452 	return ret;
2453 }
2454 EXPORT_SYMBOL(queue_delayed_work_on);
2455 
2456 /**
2457  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2458  * @cpu: CPU number to execute work on
2459  * @wq: workqueue to use
2460  * @dwork: work to queue
2461  * @delay: number of jiffies to wait before queueing
2462  *
2463  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2464  * modify @dwork's timer so that it expires after @delay.  If @delay is
2465  * zero, @work is guaranteed to be scheduled immediately regardless of its
2466  * current state.
2467  *
2468  * Return: %false if @dwork was idle and queued, %true if @dwork was
2469  * pending and its timer was modified.
2470  *
2471  * This function is safe to call from any context including IRQ handler.
2472  * See try_to_grab_pending() for details.
2473  */
2474 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2475 			 struct delayed_work *dwork, unsigned long delay)
2476 {
2477 	unsigned long flags;
2478 	int ret;
2479 
2480 	do {
2481 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2482 	} while (unlikely(ret == -EAGAIN));
2483 
2484 	if (likely(ret >= 0)) {
2485 		__queue_delayed_work(cpu, wq, dwork, delay);
2486 		local_irq_restore(flags);
2487 	}
2488 
2489 	/* -ENOENT from try_to_grab_pending() becomes %true */
2490 	return ret;
2491 }
2492 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2493 
2494 static void rcu_work_rcufn(struct rcu_head *rcu)
2495 {
2496 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2497 
2498 	/* read the comment in __queue_work() */
2499 	local_irq_disable();
2500 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2501 	local_irq_enable();
2502 }
2503 
2504 /**
2505  * queue_rcu_work - queue work after a RCU grace period
2506  * @wq: workqueue to use
2507  * @rwork: work to queue
2508  *
2509  * Return: %false if @rwork was already pending, %true otherwise.  Note
2510  * that a full RCU grace period is guaranteed only after a %true return.
2511  * While @rwork is guaranteed to be executed after a %false return, the
2512  * execution may happen before a full RCU grace period has passed.
2513  */
2514 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2515 {
2516 	struct work_struct *work = &rwork->work;
2517 
2518 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2519 		rwork->wq = wq;
2520 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2521 		return true;
2522 	}
2523 
2524 	return false;
2525 }
2526 EXPORT_SYMBOL(queue_rcu_work);
2527 
2528 static struct worker *alloc_worker(int node)
2529 {
2530 	struct worker *worker;
2531 
2532 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2533 	if (worker) {
2534 		INIT_LIST_HEAD(&worker->entry);
2535 		INIT_LIST_HEAD(&worker->scheduled);
2536 		INIT_LIST_HEAD(&worker->node);
2537 		/* on creation a worker is in !idle && prep state */
2538 		worker->flags = WORKER_PREP;
2539 	}
2540 	return worker;
2541 }
2542 
2543 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2544 {
2545 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2546 		return pool->attrs->__pod_cpumask;
2547 	else
2548 		return pool->attrs->cpumask;
2549 }
2550 
2551 /**
2552  * worker_attach_to_pool() - attach a worker to a pool
2553  * @worker: worker to be attached
2554  * @pool: the target pool
2555  *
2556  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2557  * cpu-binding of @worker are kept coordinated with the pool across
2558  * cpu-[un]hotplugs.
2559  */
2560 static void worker_attach_to_pool(struct worker *worker,
2561 				  struct worker_pool *pool)
2562 {
2563 	mutex_lock(&wq_pool_attach_mutex);
2564 
2565 	/*
2566 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2567 	 * across this function. See the comments above the flag definition for
2568 	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2569 	 */
2570 	if (pool->flags & POOL_DISASSOCIATED) {
2571 		worker->flags |= WORKER_UNBOUND;
2572 	} else {
2573 		WARN_ON_ONCE(pool->flags & POOL_BH);
2574 		kthread_set_per_cpu(worker->task, pool->cpu);
2575 	}
2576 
2577 	if (worker->rescue_wq)
2578 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2579 
2580 	list_add_tail(&worker->node, &pool->workers);
2581 	worker->pool = pool;
2582 
2583 	mutex_unlock(&wq_pool_attach_mutex);
2584 }
2585 
2586 /**
2587  * worker_detach_from_pool() - detach a worker from its pool
2588  * @worker: worker which is attached to its pool
2589  *
2590  * Undo the attaching which had been done in worker_attach_to_pool().  The
2591  * caller worker shouldn't access to the pool after detached except it has
2592  * other reference to the pool.
2593  */
2594 static void worker_detach_from_pool(struct worker *worker)
2595 {
2596 	struct worker_pool *pool = worker->pool;
2597 	struct completion *detach_completion = NULL;
2598 
2599 	/* there is one permanent BH worker per CPU which should never detach */
2600 	WARN_ON_ONCE(pool->flags & POOL_BH);
2601 
2602 	mutex_lock(&wq_pool_attach_mutex);
2603 
2604 	kthread_set_per_cpu(worker->task, -1);
2605 	list_del(&worker->node);
2606 	worker->pool = NULL;
2607 
2608 	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2609 		detach_completion = pool->detach_completion;
2610 	mutex_unlock(&wq_pool_attach_mutex);
2611 
2612 	/* clear leftover flags without pool->lock after it is detached */
2613 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2614 
2615 	if (detach_completion)
2616 		complete(detach_completion);
2617 }
2618 
2619 /**
2620  * create_worker - create a new workqueue worker
2621  * @pool: pool the new worker will belong to
2622  *
2623  * Create and start a new worker which is attached to @pool.
2624  *
2625  * CONTEXT:
2626  * Might sleep.  Does GFP_KERNEL allocations.
2627  *
2628  * Return:
2629  * Pointer to the newly created worker.
2630  */
2631 static struct worker *create_worker(struct worker_pool *pool)
2632 {
2633 	struct worker *worker;
2634 	int id;
2635 	char id_buf[23];
2636 
2637 	/* ID is needed to determine kthread name */
2638 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2639 	if (id < 0) {
2640 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2641 			    ERR_PTR(id));
2642 		return NULL;
2643 	}
2644 
2645 	worker = alloc_worker(pool->node);
2646 	if (!worker) {
2647 		pr_err_once("workqueue: Failed to allocate a worker\n");
2648 		goto fail;
2649 	}
2650 
2651 	worker->id = id;
2652 
2653 	if (!(pool->flags & POOL_BH)) {
2654 		if (pool->cpu >= 0)
2655 			snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2656 				 pool->attrs->nice < 0  ? "H" : "");
2657 		else
2658 			snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2659 
2660 		worker->task = kthread_create_on_node(worker_thread, worker,
2661 					pool->node, "kworker/%s", id_buf);
2662 		if (IS_ERR(worker->task)) {
2663 			if (PTR_ERR(worker->task) == -EINTR) {
2664 				pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2665 				       id_buf);
2666 			} else {
2667 				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2668 					    worker->task);
2669 			}
2670 			goto fail;
2671 		}
2672 
2673 		set_user_nice(worker->task, pool->attrs->nice);
2674 		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2675 	}
2676 
2677 	/* successful, attach the worker to the pool */
2678 	worker_attach_to_pool(worker, pool);
2679 
2680 	/* start the newly created worker */
2681 	raw_spin_lock_irq(&pool->lock);
2682 
2683 	worker->pool->nr_workers++;
2684 	worker_enter_idle(worker);
2685 
2686 	/*
2687 	 * @worker is waiting on a completion in kthread() and will trigger hung
2688 	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2689 	 * wake it up explicitly.
2690 	 */
2691 	if (worker->task)
2692 		wake_up_process(worker->task);
2693 
2694 	raw_spin_unlock_irq(&pool->lock);
2695 
2696 	return worker;
2697 
2698 fail:
2699 	ida_free(&pool->worker_ida, id);
2700 	kfree(worker);
2701 	return NULL;
2702 }
2703 
2704 static void unbind_worker(struct worker *worker)
2705 {
2706 	lockdep_assert_held(&wq_pool_attach_mutex);
2707 
2708 	kthread_set_per_cpu(worker->task, -1);
2709 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2710 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2711 	else
2712 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2713 }
2714 
2715 static void wake_dying_workers(struct list_head *cull_list)
2716 {
2717 	struct worker *worker, *tmp;
2718 
2719 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2720 		list_del_init(&worker->entry);
2721 		unbind_worker(worker);
2722 		/*
2723 		 * If the worker was somehow already running, then it had to be
2724 		 * in pool->idle_list when set_worker_dying() happened or we
2725 		 * wouldn't have gotten here.
2726 		 *
2727 		 * Thus, the worker must either have observed the WORKER_DIE
2728 		 * flag, or have set its state to TASK_IDLE. Either way, the
2729 		 * below will be observed by the worker and is safe to do
2730 		 * outside of pool->lock.
2731 		 */
2732 		wake_up_process(worker->task);
2733 	}
2734 }
2735 
2736 /**
2737  * set_worker_dying - Tag a worker for destruction
2738  * @worker: worker to be destroyed
2739  * @list: transfer worker away from its pool->idle_list and into list
2740  *
2741  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2742  * should be idle.
2743  *
2744  * CONTEXT:
2745  * raw_spin_lock_irq(pool->lock).
2746  */
2747 static void set_worker_dying(struct worker *worker, struct list_head *list)
2748 {
2749 	struct worker_pool *pool = worker->pool;
2750 
2751 	lockdep_assert_held(&pool->lock);
2752 	lockdep_assert_held(&wq_pool_attach_mutex);
2753 
2754 	/* sanity check frenzy */
2755 	if (WARN_ON(worker->current_work) ||
2756 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2757 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2758 		return;
2759 
2760 	pool->nr_workers--;
2761 	pool->nr_idle--;
2762 
2763 	worker->flags |= WORKER_DIE;
2764 
2765 	list_move(&worker->entry, list);
2766 	list_move(&worker->node, &pool->dying_workers);
2767 }
2768 
2769 /**
2770  * idle_worker_timeout - check if some idle workers can now be deleted.
2771  * @t: The pool's idle_timer that just expired
2772  *
2773  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2774  * worker_leave_idle(), as a worker flicking between idle and active while its
2775  * pool is at the too_many_workers() tipping point would cause too much timer
2776  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2777  * it expire and re-evaluate things from there.
2778  */
2779 static void idle_worker_timeout(struct timer_list *t)
2780 {
2781 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2782 	bool do_cull = false;
2783 
2784 	if (work_pending(&pool->idle_cull_work))
2785 		return;
2786 
2787 	raw_spin_lock_irq(&pool->lock);
2788 
2789 	if (too_many_workers(pool)) {
2790 		struct worker *worker;
2791 		unsigned long expires;
2792 
2793 		/* idle_list is kept in LIFO order, check the last one */
2794 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2795 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2796 		do_cull = !time_before(jiffies, expires);
2797 
2798 		if (!do_cull)
2799 			mod_timer(&pool->idle_timer, expires);
2800 	}
2801 	raw_spin_unlock_irq(&pool->lock);
2802 
2803 	if (do_cull)
2804 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2805 }
2806 
2807 /**
2808  * idle_cull_fn - cull workers that have been idle for too long.
2809  * @work: the pool's work for handling these idle workers
2810  *
2811  * This goes through a pool's idle workers and gets rid of those that have been
2812  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2813  *
2814  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2815  * culled, so this also resets worker affinity. This requires a sleepable
2816  * context, hence the split between timer callback and work item.
2817  */
2818 static void idle_cull_fn(struct work_struct *work)
2819 {
2820 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2821 	LIST_HEAD(cull_list);
2822 
2823 	/*
2824 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2825 	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2826 	 * path. This is required as a previously-preempted worker could run after
2827 	 * set_worker_dying() has happened but before wake_dying_workers() did.
2828 	 */
2829 	mutex_lock(&wq_pool_attach_mutex);
2830 	raw_spin_lock_irq(&pool->lock);
2831 
2832 	while (too_many_workers(pool)) {
2833 		struct worker *worker;
2834 		unsigned long expires;
2835 
2836 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2837 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2838 
2839 		if (time_before(jiffies, expires)) {
2840 			mod_timer(&pool->idle_timer, expires);
2841 			break;
2842 		}
2843 
2844 		set_worker_dying(worker, &cull_list);
2845 	}
2846 
2847 	raw_spin_unlock_irq(&pool->lock);
2848 	wake_dying_workers(&cull_list);
2849 	mutex_unlock(&wq_pool_attach_mutex);
2850 }
2851 
2852 static void send_mayday(struct work_struct *work)
2853 {
2854 	struct pool_workqueue *pwq = get_work_pwq(work);
2855 	struct workqueue_struct *wq = pwq->wq;
2856 
2857 	lockdep_assert_held(&wq_mayday_lock);
2858 
2859 	if (!wq->rescuer)
2860 		return;
2861 
2862 	/* mayday mayday mayday */
2863 	if (list_empty(&pwq->mayday_node)) {
2864 		/*
2865 		 * If @pwq is for an unbound wq, its base ref may be put at
2866 		 * any time due to an attribute change.  Pin @pwq until the
2867 		 * rescuer is done with it.
2868 		 */
2869 		get_pwq(pwq);
2870 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2871 		wake_up_process(wq->rescuer->task);
2872 		pwq->stats[PWQ_STAT_MAYDAY]++;
2873 	}
2874 }
2875 
2876 static void pool_mayday_timeout(struct timer_list *t)
2877 {
2878 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2879 	struct work_struct *work;
2880 
2881 	raw_spin_lock_irq(&pool->lock);
2882 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2883 
2884 	if (need_to_create_worker(pool)) {
2885 		/*
2886 		 * We've been trying to create a new worker but
2887 		 * haven't been successful.  We might be hitting an
2888 		 * allocation deadlock.  Send distress signals to
2889 		 * rescuers.
2890 		 */
2891 		list_for_each_entry(work, &pool->worklist, entry)
2892 			send_mayday(work);
2893 	}
2894 
2895 	raw_spin_unlock(&wq_mayday_lock);
2896 	raw_spin_unlock_irq(&pool->lock);
2897 
2898 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2899 }
2900 
2901 /**
2902  * maybe_create_worker - create a new worker if necessary
2903  * @pool: pool to create a new worker for
2904  *
2905  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2906  * have at least one idle worker on return from this function.  If
2907  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2908  * sent to all rescuers with works scheduled on @pool to resolve
2909  * possible allocation deadlock.
2910  *
2911  * On return, need_to_create_worker() is guaranteed to be %false and
2912  * may_start_working() %true.
2913  *
2914  * LOCKING:
2915  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2916  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2917  * manager.
2918  */
2919 static void maybe_create_worker(struct worker_pool *pool)
2920 __releases(&pool->lock)
2921 __acquires(&pool->lock)
2922 {
2923 restart:
2924 	raw_spin_unlock_irq(&pool->lock);
2925 
2926 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2927 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2928 
2929 	while (true) {
2930 		if (create_worker(pool) || !need_to_create_worker(pool))
2931 			break;
2932 
2933 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2934 
2935 		if (!need_to_create_worker(pool))
2936 			break;
2937 	}
2938 
2939 	del_timer_sync(&pool->mayday_timer);
2940 	raw_spin_lock_irq(&pool->lock);
2941 	/*
2942 	 * This is necessary even after a new worker was just successfully
2943 	 * created as @pool->lock was dropped and the new worker might have
2944 	 * already become busy.
2945 	 */
2946 	if (need_to_create_worker(pool))
2947 		goto restart;
2948 }
2949 
2950 /**
2951  * manage_workers - manage worker pool
2952  * @worker: self
2953  *
2954  * Assume the manager role and manage the worker pool @worker belongs
2955  * to.  At any given time, there can be only zero or one manager per
2956  * pool.  The exclusion is handled automatically by this function.
2957  *
2958  * The caller can safely start processing works on false return.  On
2959  * true return, it's guaranteed that need_to_create_worker() is false
2960  * and may_start_working() is true.
2961  *
2962  * CONTEXT:
2963  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2964  * multiple times.  Does GFP_KERNEL allocations.
2965  *
2966  * Return:
2967  * %false if the pool doesn't need management and the caller can safely
2968  * start processing works, %true if management function was performed and
2969  * the conditions that the caller verified before calling the function may
2970  * no longer be true.
2971  */
2972 static bool manage_workers(struct worker *worker)
2973 {
2974 	struct worker_pool *pool = worker->pool;
2975 
2976 	if (pool->flags & POOL_MANAGER_ACTIVE)
2977 		return false;
2978 
2979 	pool->flags |= POOL_MANAGER_ACTIVE;
2980 	pool->manager = worker;
2981 
2982 	maybe_create_worker(pool);
2983 
2984 	pool->manager = NULL;
2985 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2986 	rcuwait_wake_up(&manager_wait);
2987 	return true;
2988 }
2989 
2990 /**
2991  * process_one_work - process single work
2992  * @worker: self
2993  * @work: work to process
2994  *
2995  * Process @work.  This function contains all the logics necessary to
2996  * process a single work including synchronization against and
2997  * interaction with other workers on the same cpu, queueing and
2998  * flushing.  As long as context requirement is met, any worker can
2999  * call this function to process a work.
3000  *
3001  * CONTEXT:
3002  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3003  */
3004 static void process_one_work(struct worker *worker, struct work_struct *work)
3005 __releases(&pool->lock)
3006 __acquires(&pool->lock)
3007 {
3008 	struct pool_workqueue *pwq = get_work_pwq(work);
3009 	struct worker_pool *pool = worker->pool;
3010 	unsigned long work_data;
3011 	int lockdep_start_depth, rcu_start_depth;
3012 #ifdef CONFIG_LOCKDEP
3013 	/*
3014 	 * It is permissible to free the struct work_struct from
3015 	 * inside the function that is called from it, this we need to
3016 	 * take into account for lockdep too.  To avoid bogus "held
3017 	 * lock freed" warnings as well as problems when looking into
3018 	 * work->lockdep_map, make a copy and use that here.
3019 	 */
3020 	struct lockdep_map lockdep_map;
3021 
3022 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3023 #endif
3024 	/* ensure we're on the correct CPU */
3025 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3026 		     raw_smp_processor_id() != pool->cpu);
3027 
3028 	/* claim and dequeue */
3029 	debug_work_deactivate(work);
3030 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3031 	worker->current_work = work;
3032 	worker->current_func = work->func;
3033 	worker->current_pwq = pwq;
3034 	if (worker->task)
3035 		worker->current_at = worker->task->se.sum_exec_runtime;
3036 	work_data = *work_data_bits(work);
3037 	worker->current_color = get_work_color(work_data);
3038 
3039 	/*
3040 	 * Record wq name for cmdline and debug reporting, may get
3041 	 * overridden through set_worker_desc().
3042 	 */
3043 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3044 
3045 	list_del_init(&work->entry);
3046 
3047 	/*
3048 	 * CPU intensive works don't participate in concurrency management.
3049 	 * They're the scheduler's responsibility.  This takes @worker out
3050 	 * of concurrency management and the next code block will chain
3051 	 * execution of the pending work items.
3052 	 */
3053 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3054 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3055 
3056 	/*
3057 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3058 	 * since nr_running would always be >= 1 at this point. This is used to
3059 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3060 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3061 	 */
3062 	kick_pool(pool);
3063 
3064 	/*
3065 	 * Record the last pool and clear PENDING which should be the last
3066 	 * update to @work.  Also, do this inside @pool->lock so that
3067 	 * PENDING and queued state changes happen together while IRQ is
3068 	 * disabled.
3069 	 */
3070 	set_work_pool_and_clear_pending(work, pool->id);
3071 
3072 	pwq->stats[PWQ_STAT_STARTED]++;
3073 	raw_spin_unlock_irq(&pool->lock);
3074 
3075 	rcu_start_depth = rcu_preempt_depth();
3076 	lockdep_start_depth = lockdep_depth(current);
3077 	lock_map_acquire(&pwq->wq->lockdep_map);
3078 	lock_map_acquire(&lockdep_map);
3079 	/*
3080 	 * Strictly speaking we should mark the invariant state without holding
3081 	 * any locks, that is, before these two lock_map_acquire()'s.
3082 	 *
3083 	 * However, that would result in:
3084 	 *
3085 	 *   A(W1)
3086 	 *   WFC(C)
3087 	 *		A(W1)
3088 	 *		C(C)
3089 	 *
3090 	 * Which would create W1->C->W1 dependencies, even though there is no
3091 	 * actual deadlock possible. There are two solutions, using a
3092 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3093 	 * hit the lockdep limitation on recursive locks, or simply discard
3094 	 * these locks.
3095 	 *
3096 	 * AFAICT there is no possible deadlock scenario between the
3097 	 * flush_work() and complete() primitives (except for single-threaded
3098 	 * workqueues), so hiding them isn't a problem.
3099 	 */
3100 	lockdep_invariant_state(true);
3101 	trace_workqueue_execute_start(work);
3102 	worker->current_func(work);
3103 	/*
3104 	 * While we must be careful to not use "work" after this, the trace
3105 	 * point will only record its address.
3106 	 */
3107 	trace_workqueue_execute_end(work, worker->current_func);
3108 	pwq->stats[PWQ_STAT_COMPLETED]++;
3109 	lock_map_release(&lockdep_map);
3110 	lock_map_release(&pwq->wq->lockdep_map);
3111 
3112 	if (unlikely((worker->task && in_atomic()) ||
3113 		     lockdep_depth(current) != lockdep_start_depth ||
3114 		     rcu_preempt_depth() != rcu_start_depth)) {
3115 		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3116 		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3117 		       current->comm, task_pid_nr(current), preempt_count(),
3118 		       lockdep_start_depth, lockdep_depth(current),
3119 		       rcu_start_depth, rcu_preempt_depth(),
3120 		       worker->current_func);
3121 		debug_show_held_locks(current);
3122 		dump_stack();
3123 	}
3124 
3125 	/*
3126 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3127 	 * kernels, where a requeueing work item waiting for something to
3128 	 * happen could deadlock with stop_machine as such work item could
3129 	 * indefinitely requeue itself while all other CPUs are trapped in
3130 	 * stop_machine. At the same time, report a quiescent RCU state so
3131 	 * the same condition doesn't freeze RCU.
3132 	 */
3133 	if (worker->task)
3134 		cond_resched();
3135 
3136 	raw_spin_lock_irq(&pool->lock);
3137 
3138 	/*
3139 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3140 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3141 	 * wq_cpu_intensive_thresh_us. Clear it.
3142 	 */
3143 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3144 
3145 	/* tag the worker for identification in schedule() */
3146 	worker->last_func = worker->current_func;
3147 
3148 	/* we're done with it, release */
3149 	hash_del(&worker->hentry);
3150 	worker->current_work = NULL;
3151 	worker->current_func = NULL;
3152 	worker->current_pwq = NULL;
3153 	worker->current_color = INT_MAX;
3154 
3155 	/* must be the last step, see the function comment */
3156 	pwq_dec_nr_in_flight(pwq, work_data);
3157 }
3158 
3159 /**
3160  * process_scheduled_works - process scheduled works
3161  * @worker: self
3162  *
3163  * Process all scheduled works.  Please note that the scheduled list
3164  * may change while processing a work, so this function repeatedly
3165  * fetches a work from the top and executes it.
3166  *
3167  * CONTEXT:
3168  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3169  * multiple times.
3170  */
3171 static void process_scheduled_works(struct worker *worker)
3172 {
3173 	struct work_struct *work;
3174 	bool first = true;
3175 
3176 	while ((work = list_first_entry_or_null(&worker->scheduled,
3177 						struct work_struct, entry))) {
3178 		if (first) {
3179 			worker->pool->watchdog_ts = jiffies;
3180 			first = false;
3181 		}
3182 		process_one_work(worker, work);
3183 	}
3184 }
3185 
3186 static void set_pf_worker(bool val)
3187 {
3188 	mutex_lock(&wq_pool_attach_mutex);
3189 	if (val)
3190 		current->flags |= PF_WQ_WORKER;
3191 	else
3192 		current->flags &= ~PF_WQ_WORKER;
3193 	mutex_unlock(&wq_pool_attach_mutex);
3194 }
3195 
3196 /**
3197  * worker_thread - the worker thread function
3198  * @__worker: self
3199  *
3200  * The worker thread function.  All workers belong to a worker_pool -
3201  * either a per-cpu one or dynamic unbound one.  These workers process all
3202  * work items regardless of their specific target workqueue.  The only
3203  * exception is work items which belong to workqueues with a rescuer which
3204  * will be explained in rescuer_thread().
3205  *
3206  * Return: 0
3207  */
3208 static int worker_thread(void *__worker)
3209 {
3210 	struct worker *worker = __worker;
3211 	struct worker_pool *pool = worker->pool;
3212 
3213 	/* tell the scheduler that this is a workqueue worker */
3214 	set_pf_worker(true);
3215 woke_up:
3216 	raw_spin_lock_irq(&pool->lock);
3217 
3218 	/* am I supposed to die? */
3219 	if (unlikely(worker->flags & WORKER_DIE)) {
3220 		raw_spin_unlock_irq(&pool->lock);
3221 		set_pf_worker(false);
3222 
3223 		set_task_comm(worker->task, "kworker/dying");
3224 		ida_free(&pool->worker_ida, worker->id);
3225 		worker_detach_from_pool(worker);
3226 		WARN_ON_ONCE(!list_empty(&worker->entry));
3227 		kfree(worker);
3228 		return 0;
3229 	}
3230 
3231 	worker_leave_idle(worker);
3232 recheck:
3233 	/* no more worker necessary? */
3234 	if (!need_more_worker(pool))
3235 		goto sleep;
3236 
3237 	/* do we need to manage? */
3238 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3239 		goto recheck;
3240 
3241 	/*
3242 	 * ->scheduled list can only be filled while a worker is
3243 	 * preparing to process a work or actually processing it.
3244 	 * Make sure nobody diddled with it while I was sleeping.
3245 	 */
3246 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3247 
3248 	/*
3249 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3250 	 * worker or that someone else has already assumed the manager
3251 	 * role.  This is where @worker starts participating in concurrency
3252 	 * management if applicable and concurrency management is restored
3253 	 * after being rebound.  See rebind_workers() for details.
3254 	 */
3255 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3256 
3257 	do {
3258 		struct work_struct *work =
3259 			list_first_entry(&pool->worklist,
3260 					 struct work_struct, entry);
3261 
3262 		if (assign_work(work, worker, NULL))
3263 			process_scheduled_works(worker);
3264 	} while (keep_working(pool));
3265 
3266 	worker_set_flags(worker, WORKER_PREP);
3267 sleep:
3268 	/*
3269 	 * pool->lock is held and there's no work to process and no need to
3270 	 * manage, sleep.  Workers are woken up only while holding
3271 	 * pool->lock or from local cpu, so setting the current state
3272 	 * before releasing pool->lock is enough to prevent losing any
3273 	 * event.
3274 	 */
3275 	worker_enter_idle(worker);
3276 	__set_current_state(TASK_IDLE);
3277 	raw_spin_unlock_irq(&pool->lock);
3278 	schedule();
3279 	goto woke_up;
3280 }
3281 
3282 /**
3283  * rescuer_thread - the rescuer thread function
3284  * @__rescuer: self
3285  *
3286  * Workqueue rescuer thread function.  There's one rescuer for each
3287  * workqueue which has WQ_MEM_RECLAIM set.
3288  *
3289  * Regular work processing on a pool may block trying to create a new
3290  * worker which uses GFP_KERNEL allocation which has slight chance of
3291  * developing into deadlock if some works currently on the same queue
3292  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3293  * the problem rescuer solves.
3294  *
3295  * When such condition is possible, the pool summons rescuers of all
3296  * workqueues which have works queued on the pool and let them process
3297  * those works so that forward progress can be guaranteed.
3298  *
3299  * This should happen rarely.
3300  *
3301  * Return: 0
3302  */
3303 static int rescuer_thread(void *__rescuer)
3304 {
3305 	struct worker *rescuer = __rescuer;
3306 	struct workqueue_struct *wq = rescuer->rescue_wq;
3307 	bool should_stop;
3308 
3309 	set_user_nice(current, RESCUER_NICE_LEVEL);
3310 
3311 	/*
3312 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3313 	 * doesn't participate in concurrency management.
3314 	 */
3315 	set_pf_worker(true);
3316 repeat:
3317 	set_current_state(TASK_IDLE);
3318 
3319 	/*
3320 	 * By the time the rescuer is requested to stop, the workqueue
3321 	 * shouldn't have any work pending, but @wq->maydays may still have
3322 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3323 	 * all the work items before the rescuer got to them.  Go through
3324 	 * @wq->maydays processing before acting on should_stop so that the
3325 	 * list is always empty on exit.
3326 	 */
3327 	should_stop = kthread_should_stop();
3328 
3329 	/* see whether any pwq is asking for help */
3330 	raw_spin_lock_irq(&wq_mayday_lock);
3331 
3332 	while (!list_empty(&wq->maydays)) {
3333 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3334 					struct pool_workqueue, mayday_node);
3335 		struct worker_pool *pool = pwq->pool;
3336 		struct work_struct *work, *n;
3337 
3338 		__set_current_state(TASK_RUNNING);
3339 		list_del_init(&pwq->mayday_node);
3340 
3341 		raw_spin_unlock_irq(&wq_mayday_lock);
3342 
3343 		worker_attach_to_pool(rescuer, pool);
3344 
3345 		raw_spin_lock_irq(&pool->lock);
3346 
3347 		/*
3348 		 * Slurp in all works issued via this workqueue and
3349 		 * process'em.
3350 		 */
3351 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3352 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3353 			if (get_work_pwq(work) == pwq &&
3354 			    assign_work(work, rescuer, &n))
3355 				pwq->stats[PWQ_STAT_RESCUED]++;
3356 		}
3357 
3358 		if (!list_empty(&rescuer->scheduled)) {
3359 			process_scheduled_works(rescuer);
3360 
3361 			/*
3362 			 * The above execution of rescued work items could
3363 			 * have created more to rescue through
3364 			 * pwq_activate_first_inactive() or chained
3365 			 * queueing.  Let's put @pwq back on mayday list so
3366 			 * that such back-to-back work items, which may be
3367 			 * being used to relieve memory pressure, don't
3368 			 * incur MAYDAY_INTERVAL delay inbetween.
3369 			 */
3370 			if (pwq->nr_active && need_to_create_worker(pool)) {
3371 				raw_spin_lock(&wq_mayday_lock);
3372 				/*
3373 				 * Queue iff we aren't racing destruction
3374 				 * and somebody else hasn't queued it already.
3375 				 */
3376 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3377 					get_pwq(pwq);
3378 					list_add_tail(&pwq->mayday_node, &wq->maydays);
3379 				}
3380 				raw_spin_unlock(&wq_mayday_lock);
3381 			}
3382 		}
3383 
3384 		/*
3385 		 * Put the reference grabbed by send_mayday().  @pool won't
3386 		 * go away while we're still attached to it.
3387 		 */
3388 		put_pwq(pwq);
3389 
3390 		/*
3391 		 * Leave this pool. Notify regular workers; otherwise, we end up
3392 		 * with 0 concurrency and stalling the execution.
3393 		 */
3394 		kick_pool(pool);
3395 
3396 		raw_spin_unlock_irq(&pool->lock);
3397 
3398 		worker_detach_from_pool(rescuer);
3399 
3400 		raw_spin_lock_irq(&wq_mayday_lock);
3401 	}
3402 
3403 	raw_spin_unlock_irq(&wq_mayday_lock);
3404 
3405 	if (should_stop) {
3406 		__set_current_state(TASK_RUNNING);
3407 		set_pf_worker(false);
3408 		return 0;
3409 	}
3410 
3411 	/* rescuers should never participate in concurrency management */
3412 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3413 	schedule();
3414 	goto repeat;
3415 }
3416 
3417 static void bh_worker(struct worker *worker)
3418 {
3419 	struct worker_pool *pool = worker->pool;
3420 	int nr_restarts = BH_WORKER_RESTARTS;
3421 	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3422 
3423 	raw_spin_lock_irq(&pool->lock);
3424 	worker_leave_idle(worker);
3425 
3426 	/*
3427 	 * This function follows the structure of worker_thread(). See there for
3428 	 * explanations on each step.
3429 	 */
3430 	if (!need_more_worker(pool))
3431 		goto done;
3432 
3433 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3434 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3435 
3436 	do {
3437 		struct work_struct *work =
3438 			list_first_entry(&pool->worklist,
3439 					 struct work_struct, entry);
3440 
3441 		if (assign_work(work, worker, NULL))
3442 			process_scheduled_works(worker);
3443 	} while (keep_working(pool) &&
3444 		 --nr_restarts && time_before(jiffies, end));
3445 
3446 	worker_set_flags(worker, WORKER_PREP);
3447 done:
3448 	worker_enter_idle(worker);
3449 	kick_pool(pool);
3450 	raw_spin_unlock_irq(&pool->lock);
3451 }
3452 
3453 /*
3454  * TODO: Convert all tasklet users to workqueue and use softirq directly.
3455  *
3456  * This is currently called from tasklet[_hi]action() and thus is also called
3457  * whenever there are tasklets to run. Let's do an early exit if there's nothing
3458  * queued. Once conversion from tasklet is complete, the need_more_worker() test
3459  * can be dropped.
3460  *
3461  * After full conversion, we'll add worker->softirq_action, directly use the
3462  * softirq action and obtain the worker pointer from the softirq_action pointer.
3463  */
3464 void workqueue_softirq_action(bool highpri)
3465 {
3466 	struct worker_pool *pool =
3467 		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3468 	if (need_more_worker(pool))
3469 		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3470 }
3471 
3472 /**
3473  * check_flush_dependency - check for flush dependency sanity
3474  * @target_wq: workqueue being flushed
3475  * @target_work: work item being flushed (NULL for workqueue flushes)
3476  *
3477  * %current is trying to flush the whole @target_wq or @target_work on it.
3478  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3479  * reclaiming memory or running on a workqueue which doesn't have
3480  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3481  * a deadlock.
3482  */
3483 static void check_flush_dependency(struct workqueue_struct *target_wq,
3484 				   struct work_struct *target_work)
3485 {
3486 	work_func_t target_func = target_work ? target_work->func : NULL;
3487 	struct worker *worker;
3488 
3489 	if (target_wq->flags & WQ_MEM_RECLAIM)
3490 		return;
3491 
3492 	worker = current_wq_worker();
3493 
3494 	WARN_ONCE(current->flags & PF_MEMALLOC,
3495 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3496 		  current->pid, current->comm, target_wq->name, target_func);
3497 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3498 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3499 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3500 		  worker->current_pwq->wq->name, worker->current_func,
3501 		  target_wq->name, target_func);
3502 }
3503 
3504 struct wq_barrier {
3505 	struct work_struct	work;
3506 	struct completion	done;
3507 	struct task_struct	*task;	/* purely informational */
3508 };
3509 
3510 static void wq_barrier_func(struct work_struct *work)
3511 {
3512 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3513 	complete(&barr->done);
3514 }
3515 
3516 /**
3517  * insert_wq_barrier - insert a barrier work
3518  * @pwq: pwq to insert barrier into
3519  * @barr: wq_barrier to insert
3520  * @target: target work to attach @barr to
3521  * @worker: worker currently executing @target, NULL if @target is not executing
3522  *
3523  * @barr is linked to @target such that @barr is completed only after
3524  * @target finishes execution.  Please note that the ordering
3525  * guarantee is observed only with respect to @target and on the local
3526  * cpu.
3527  *
3528  * Currently, a queued barrier can't be canceled.  This is because
3529  * try_to_grab_pending() can't determine whether the work to be
3530  * grabbed is at the head of the queue and thus can't clear LINKED
3531  * flag of the previous work while there must be a valid next work
3532  * after a work with LINKED flag set.
3533  *
3534  * Note that when @worker is non-NULL, @target may be modified
3535  * underneath us, so we can't reliably determine pwq from @target.
3536  *
3537  * CONTEXT:
3538  * raw_spin_lock_irq(pool->lock).
3539  */
3540 static void insert_wq_barrier(struct pool_workqueue *pwq,
3541 			      struct wq_barrier *barr,
3542 			      struct work_struct *target, struct worker *worker)
3543 {
3544 	static __maybe_unused struct lock_class_key bh_key, thr_key;
3545 	unsigned int work_flags = 0;
3546 	unsigned int work_color;
3547 	struct list_head *head;
3548 
3549 	/*
3550 	 * debugobject calls are safe here even with pool->lock locked
3551 	 * as we know for sure that this will not trigger any of the
3552 	 * checks and call back into the fixup functions where we
3553 	 * might deadlock.
3554 	 *
3555 	 * BH and threaded workqueues need separate lockdep keys to avoid
3556 	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3557 	 * usage".
3558 	 */
3559 	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3560 			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3561 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3562 
3563 	init_completion_map(&barr->done, &target->lockdep_map);
3564 
3565 	barr->task = current;
3566 
3567 	/* The barrier work item does not participate in nr_active. */
3568 	work_flags |= WORK_STRUCT_INACTIVE;
3569 
3570 	/*
3571 	 * If @target is currently being executed, schedule the
3572 	 * barrier to the worker; otherwise, put it after @target.
3573 	 */
3574 	if (worker) {
3575 		head = worker->scheduled.next;
3576 		work_color = worker->current_color;
3577 	} else {
3578 		unsigned long *bits = work_data_bits(target);
3579 
3580 		head = target->entry.next;
3581 		/* there can already be other linked works, inherit and set */
3582 		work_flags |= *bits & WORK_STRUCT_LINKED;
3583 		work_color = get_work_color(*bits);
3584 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3585 	}
3586 
3587 	pwq->nr_in_flight[work_color]++;
3588 	work_flags |= work_color_to_flags(work_color);
3589 
3590 	insert_work(pwq, &barr->work, head, work_flags);
3591 }
3592 
3593 /**
3594  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3595  * @wq: workqueue being flushed
3596  * @flush_color: new flush color, < 0 for no-op
3597  * @work_color: new work color, < 0 for no-op
3598  *
3599  * Prepare pwqs for workqueue flushing.
3600  *
3601  * If @flush_color is non-negative, flush_color on all pwqs should be
3602  * -1.  If no pwq has in-flight commands at the specified color, all
3603  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3604  * has in flight commands, its pwq->flush_color is set to
3605  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3606  * wakeup logic is armed and %true is returned.
3607  *
3608  * The caller should have initialized @wq->first_flusher prior to
3609  * calling this function with non-negative @flush_color.  If
3610  * @flush_color is negative, no flush color update is done and %false
3611  * is returned.
3612  *
3613  * If @work_color is non-negative, all pwqs should have the same
3614  * work_color which is previous to @work_color and all will be
3615  * advanced to @work_color.
3616  *
3617  * CONTEXT:
3618  * mutex_lock(wq->mutex).
3619  *
3620  * Return:
3621  * %true if @flush_color >= 0 and there's something to flush.  %false
3622  * otherwise.
3623  */
3624 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3625 				      int flush_color, int work_color)
3626 {
3627 	bool wait = false;
3628 	struct pool_workqueue *pwq;
3629 
3630 	if (flush_color >= 0) {
3631 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3632 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3633 	}
3634 
3635 	for_each_pwq(pwq, wq) {
3636 		struct worker_pool *pool = pwq->pool;
3637 
3638 		raw_spin_lock_irq(&pool->lock);
3639 
3640 		if (flush_color >= 0) {
3641 			WARN_ON_ONCE(pwq->flush_color != -1);
3642 
3643 			if (pwq->nr_in_flight[flush_color]) {
3644 				pwq->flush_color = flush_color;
3645 				atomic_inc(&wq->nr_pwqs_to_flush);
3646 				wait = true;
3647 			}
3648 		}
3649 
3650 		if (work_color >= 0) {
3651 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3652 			pwq->work_color = work_color;
3653 		}
3654 
3655 		raw_spin_unlock_irq(&pool->lock);
3656 	}
3657 
3658 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3659 		complete(&wq->first_flusher->done);
3660 
3661 	return wait;
3662 }
3663 
3664 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3665 {
3666 #ifdef CONFIG_LOCKDEP
3667 	if (wq->flags & WQ_BH)
3668 		local_bh_disable();
3669 
3670 	lock_map_acquire(&wq->lockdep_map);
3671 	lock_map_release(&wq->lockdep_map);
3672 
3673 	if (wq->flags & WQ_BH)
3674 		local_bh_enable();
3675 #endif
3676 }
3677 
3678 static void touch_work_lockdep_map(struct work_struct *work,
3679 				   struct workqueue_struct *wq)
3680 {
3681 #ifdef CONFIG_LOCKDEP
3682 	if (wq->flags & WQ_BH)
3683 		local_bh_disable();
3684 
3685 	lock_map_acquire(&work->lockdep_map);
3686 	lock_map_release(&work->lockdep_map);
3687 
3688 	if (wq->flags & WQ_BH)
3689 		local_bh_enable();
3690 #endif
3691 }
3692 
3693 /**
3694  * __flush_workqueue - ensure that any scheduled work has run to completion.
3695  * @wq: workqueue to flush
3696  *
3697  * This function sleeps until all work items which were queued on entry
3698  * have finished execution, but it is not livelocked by new incoming ones.
3699  */
3700 void __flush_workqueue(struct workqueue_struct *wq)
3701 {
3702 	struct wq_flusher this_flusher = {
3703 		.list = LIST_HEAD_INIT(this_flusher.list),
3704 		.flush_color = -1,
3705 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3706 	};
3707 	int next_color;
3708 
3709 	if (WARN_ON(!wq_online))
3710 		return;
3711 
3712 	touch_wq_lockdep_map(wq);
3713 
3714 	mutex_lock(&wq->mutex);
3715 
3716 	/*
3717 	 * Start-to-wait phase
3718 	 */
3719 	next_color = work_next_color(wq->work_color);
3720 
3721 	if (next_color != wq->flush_color) {
3722 		/*
3723 		 * Color space is not full.  The current work_color
3724 		 * becomes our flush_color and work_color is advanced
3725 		 * by one.
3726 		 */
3727 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3728 		this_flusher.flush_color = wq->work_color;
3729 		wq->work_color = next_color;
3730 
3731 		if (!wq->first_flusher) {
3732 			/* no flush in progress, become the first flusher */
3733 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3734 
3735 			wq->first_flusher = &this_flusher;
3736 
3737 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3738 						       wq->work_color)) {
3739 				/* nothing to flush, done */
3740 				wq->flush_color = next_color;
3741 				wq->first_flusher = NULL;
3742 				goto out_unlock;
3743 			}
3744 		} else {
3745 			/* wait in queue */
3746 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3747 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3748 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3749 		}
3750 	} else {
3751 		/*
3752 		 * Oops, color space is full, wait on overflow queue.
3753 		 * The next flush completion will assign us
3754 		 * flush_color and transfer to flusher_queue.
3755 		 */
3756 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3757 	}
3758 
3759 	check_flush_dependency(wq, NULL);
3760 
3761 	mutex_unlock(&wq->mutex);
3762 
3763 	wait_for_completion(&this_flusher.done);
3764 
3765 	/*
3766 	 * Wake-up-and-cascade phase
3767 	 *
3768 	 * First flushers are responsible for cascading flushes and
3769 	 * handling overflow.  Non-first flushers can simply return.
3770 	 */
3771 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3772 		return;
3773 
3774 	mutex_lock(&wq->mutex);
3775 
3776 	/* we might have raced, check again with mutex held */
3777 	if (wq->first_flusher != &this_flusher)
3778 		goto out_unlock;
3779 
3780 	WRITE_ONCE(wq->first_flusher, NULL);
3781 
3782 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3783 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3784 
3785 	while (true) {
3786 		struct wq_flusher *next, *tmp;
3787 
3788 		/* complete all the flushers sharing the current flush color */
3789 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3790 			if (next->flush_color != wq->flush_color)
3791 				break;
3792 			list_del_init(&next->list);
3793 			complete(&next->done);
3794 		}
3795 
3796 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3797 			     wq->flush_color != work_next_color(wq->work_color));
3798 
3799 		/* this flush_color is finished, advance by one */
3800 		wq->flush_color = work_next_color(wq->flush_color);
3801 
3802 		/* one color has been freed, handle overflow queue */
3803 		if (!list_empty(&wq->flusher_overflow)) {
3804 			/*
3805 			 * Assign the same color to all overflowed
3806 			 * flushers, advance work_color and append to
3807 			 * flusher_queue.  This is the start-to-wait
3808 			 * phase for these overflowed flushers.
3809 			 */
3810 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
3811 				tmp->flush_color = wq->work_color;
3812 
3813 			wq->work_color = work_next_color(wq->work_color);
3814 
3815 			list_splice_tail_init(&wq->flusher_overflow,
3816 					      &wq->flusher_queue);
3817 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3818 		}
3819 
3820 		if (list_empty(&wq->flusher_queue)) {
3821 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
3822 			break;
3823 		}
3824 
3825 		/*
3826 		 * Need to flush more colors.  Make the next flusher
3827 		 * the new first flusher and arm pwqs.
3828 		 */
3829 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
3830 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
3831 
3832 		list_del_init(&next->list);
3833 		wq->first_flusher = next;
3834 
3835 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3836 			break;
3837 
3838 		/*
3839 		 * Meh... this color is already done, clear first
3840 		 * flusher and repeat cascading.
3841 		 */
3842 		wq->first_flusher = NULL;
3843 	}
3844 
3845 out_unlock:
3846 	mutex_unlock(&wq->mutex);
3847 }
3848 EXPORT_SYMBOL(__flush_workqueue);
3849 
3850 /**
3851  * drain_workqueue - drain a workqueue
3852  * @wq: workqueue to drain
3853  *
3854  * Wait until the workqueue becomes empty.  While draining is in progress,
3855  * only chain queueing is allowed.  IOW, only currently pending or running
3856  * work items on @wq can queue further work items on it.  @wq is flushed
3857  * repeatedly until it becomes empty.  The number of flushing is determined
3858  * by the depth of chaining and should be relatively short.  Whine if it
3859  * takes too long.
3860  */
3861 void drain_workqueue(struct workqueue_struct *wq)
3862 {
3863 	unsigned int flush_cnt = 0;
3864 	struct pool_workqueue *pwq;
3865 
3866 	/*
3867 	 * __queue_work() needs to test whether there are drainers, is much
3868 	 * hotter than drain_workqueue() and already looks at @wq->flags.
3869 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3870 	 */
3871 	mutex_lock(&wq->mutex);
3872 	if (!wq->nr_drainers++)
3873 		wq->flags |= __WQ_DRAINING;
3874 	mutex_unlock(&wq->mutex);
3875 reflush:
3876 	__flush_workqueue(wq);
3877 
3878 	mutex_lock(&wq->mutex);
3879 
3880 	for_each_pwq(pwq, wq) {
3881 		bool drained;
3882 
3883 		raw_spin_lock_irq(&pwq->pool->lock);
3884 		drained = pwq_is_empty(pwq);
3885 		raw_spin_unlock_irq(&pwq->pool->lock);
3886 
3887 		if (drained)
3888 			continue;
3889 
3890 		if (++flush_cnt == 10 ||
3891 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3892 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3893 				wq->name, __func__, flush_cnt);
3894 
3895 		mutex_unlock(&wq->mutex);
3896 		goto reflush;
3897 	}
3898 
3899 	if (!--wq->nr_drainers)
3900 		wq->flags &= ~__WQ_DRAINING;
3901 	mutex_unlock(&wq->mutex);
3902 }
3903 EXPORT_SYMBOL_GPL(drain_workqueue);
3904 
3905 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3906 			     bool from_cancel)
3907 {
3908 	struct worker *worker = NULL;
3909 	struct worker_pool *pool;
3910 	struct pool_workqueue *pwq;
3911 	struct workqueue_struct *wq;
3912 
3913 	might_sleep();
3914 
3915 	rcu_read_lock();
3916 	pool = get_work_pool(work);
3917 	if (!pool) {
3918 		rcu_read_unlock();
3919 		return false;
3920 	}
3921 
3922 	raw_spin_lock_irq(&pool->lock);
3923 	/* see the comment in try_to_grab_pending() with the same code */
3924 	pwq = get_work_pwq(work);
3925 	if (pwq) {
3926 		if (unlikely(pwq->pool != pool))
3927 			goto already_gone;
3928 	} else {
3929 		worker = find_worker_executing_work(pool, work);
3930 		if (!worker)
3931 			goto already_gone;
3932 		pwq = worker->current_pwq;
3933 	}
3934 
3935 	wq = pwq->wq;
3936 	check_flush_dependency(wq, work);
3937 
3938 	insert_wq_barrier(pwq, barr, work, worker);
3939 	raw_spin_unlock_irq(&pool->lock);
3940 
3941 	touch_work_lockdep_map(work, wq);
3942 
3943 	/*
3944 	 * Force a lock recursion deadlock when using flush_work() inside a
3945 	 * single-threaded or rescuer equipped workqueue.
3946 	 *
3947 	 * For single threaded workqueues the deadlock happens when the work
3948 	 * is after the work issuing the flush_work(). For rescuer equipped
3949 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3950 	 * forward progress.
3951 	 */
3952 	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
3953 		touch_wq_lockdep_map(wq);
3954 
3955 	rcu_read_unlock();
3956 	return true;
3957 already_gone:
3958 	raw_spin_unlock_irq(&pool->lock);
3959 	rcu_read_unlock();
3960 	return false;
3961 }
3962 
3963 static bool __flush_work(struct work_struct *work, bool from_cancel)
3964 {
3965 	struct wq_barrier barr;
3966 
3967 	if (WARN_ON(!wq_online))
3968 		return false;
3969 
3970 	if (WARN_ON(!work->func))
3971 		return false;
3972 
3973 	if (start_flush_work(work, &barr, from_cancel)) {
3974 		wait_for_completion(&barr.done);
3975 		destroy_work_on_stack(&barr.work);
3976 		return true;
3977 	} else {
3978 		return false;
3979 	}
3980 }
3981 
3982 /**
3983  * flush_work - wait for a work to finish executing the last queueing instance
3984  * @work: the work to flush
3985  *
3986  * Wait until @work has finished execution.  @work is guaranteed to be idle
3987  * on return if it hasn't been requeued since flush started.
3988  *
3989  * Return:
3990  * %true if flush_work() waited for the work to finish execution,
3991  * %false if it was already idle.
3992  */
3993 bool flush_work(struct work_struct *work)
3994 {
3995 	return __flush_work(work, false);
3996 }
3997 EXPORT_SYMBOL_GPL(flush_work);
3998 
3999 struct cwt_wait {
4000 	wait_queue_entry_t		wait;
4001 	struct work_struct	*work;
4002 };
4003 
4004 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
4005 {
4006 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
4007 
4008 	if (cwait->work != key)
4009 		return 0;
4010 	return autoremove_wake_function(wait, mode, sync, key);
4011 }
4012 
4013 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
4014 {
4015 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
4016 	unsigned long flags;
4017 	int ret;
4018 
4019 	do {
4020 		ret = try_to_grab_pending(work, is_dwork, &flags);
4021 		/*
4022 		 * If someone else is already canceling, wait for it to
4023 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
4024 		 * because we may get scheduled between @work's completion
4025 		 * and the other canceling task resuming and clearing
4026 		 * CANCELING - flush_work() will return false immediately
4027 		 * as @work is no longer busy, try_to_grab_pending() will
4028 		 * return -ENOENT as @work is still being canceled and the
4029 		 * other canceling task won't be able to clear CANCELING as
4030 		 * we're hogging the CPU.
4031 		 *
4032 		 * Let's wait for completion using a waitqueue.  As this
4033 		 * may lead to the thundering herd problem, use a custom
4034 		 * wake function which matches @work along with exclusive
4035 		 * wait and wakeup.
4036 		 */
4037 		if (unlikely(ret == -ENOENT)) {
4038 			struct cwt_wait cwait;
4039 
4040 			init_wait(&cwait.wait);
4041 			cwait.wait.func = cwt_wakefn;
4042 			cwait.work = work;
4043 
4044 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
4045 						  TASK_UNINTERRUPTIBLE);
4046 			if (work_is_canceling(work))
4047 				schedule();
4048 			finish_wait(&cancel_waitq, &cwait.wait);
4049 		}
4050 	} while (unlikely(ret < 0));
4051 
4052 	/* tell other tasks trying to grab @work to back off */
4053 	mark_work_canceling(work);
4054 	local_irq_restore(flags);
4055 
4056 	/*
4057 	 * This allows canceling during early boot.  We know that @work
4058 	 * isn't executing.
4059 	 */
4060 	if (wq_online)
4061 		__flush_work(work, true);
4062 
4063 	clear_work_data(work);
4064 
4065 	/*
4066 	 * Paired with prepare_to_wait() above so that either
4067 	 * waitqueue_active() is visible here or !work_is_canceling() is
4068 	 * visible there.
4069 	 */
4070 	smp_mb();
4071 	if (waitqueue_active(&cancel_waitq))
4072 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
4073 
4074 	return ret;
4075 }
4076 
4077 /**
4078  * cancel_work_sync - cancel a work and wait for it to finish
4079  * @work: the work to cancel
4080  *
4081  * Cancel @work and wait for its execution to finish.  This function
4082  * can be used even if the work re-queues itself or migrates to
4083  * another workqueue.  On return from this function, @work is
4084  * guaranteed to be not pending or executing on any CPU.
4085  *
4086  * cancel_work_sync(&delayed_work->work) must not be used for
4087  * delayed_work's.  Use cancel_delayed_work_sync() instead.
4088  *
4089  * The caller must ensure that the workqueue on which @work was last
4090  * queued can't be destroyed before this function returns.
4091  *
4092  * Return:
4093  * %true if @work was pending, %false otherwise.
4094  */
4095 bool cancel_work_sync(struct work_struct *work)
4096 {
4097 	return __cancel_work_timer(work, false);
4098 }
4099 EXPORT_SYMBOL_GPL(cancel_work_sync);
4100 
4101 /**
4102  * flush_delayed_work - wait for a dwork to finish executing the last queueing
4103  * @dwork: the delayed work to flush
4104  *
4105  * Delayed timer is cancelled and the pending work is queued for
4106  * immediate execution.  Like flush_work(), this function only
4107  * considers the last queueing instance of @dwork.
4108  *
4109  * Return:
4110  * %true if flush_work() waited for the work to finish execution,
4111  * %false if it was already idle.
4112  */
4113 bool flush_delayed_work(struct delayed_work *dwork)
4114 {
4115 	local_irq_disable();
4116 	if (del_timer_sync(&dwork->timer))
4117 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4118 	local_irq_enable();
4119 	return flush_work(&dwork->work);
4120 }
4121 EXPORT_SYMBOL(flush_delayed_work);
4122 
4123 /**
4124  * flush_rcu_work - wait for a rwork to finish executing the last queueing
4125  * @rwork: the rcu work to flush
4126  *
4127  * Return:
4128  * %true if flush_rcu_work() waited for the work to finish execution,
4129  * %false if it was already idle.
4130  */
4131 bool flush_rcu_work(struct rcu_work *rwork)
4132 {
4133 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4134 		rcu_barrier();
4135 		flush_work(&rwork->work);
4136 		return true;
4137 	} else {
4138 		return flush_work(&rwork->work);
4139 	}
4140 }
4141 EXPORT_SYMBOL(flush_rcu_work);
4142 
4143 static bool __cancel_work(struct work_struct *work, bool is_dwork)
4144 {
4145 	unsigned long flags;
4146 	int ret;
4147 
4148 	do {
4149 		ret = try_to_grab_pending(work, is_dwork, &flags);
4150 	} while (unlikely(ret == -EAGAIN));
4151 
4152 	if (unlikely(ret < 0))
4153 		return false;
4154 
4155 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
4156 	local_irq_restore(flags);
4157 	return ret;
4158 }
4159 
4160 /*
4161  * See cancel_delayed_work()
4162  */
4163 bool cancel_work(struct work_struct *work)
4164 {
4165 	return __cancel_work(work, false);
4166 }
4167 EXPORT_SYMBOL(cancel_work);
4168 
4169 /**
4170  * cancel_delayed_work - cancel a delayed work
4171  * @dwork: delayed_work to cancel
4172  *
4173  * Kill off a pending delayed_work.
4174  *
4175  * Return: %true if @dwork was pending and canceled; %false if it wasn't
4176  * pending.
4177  *
4178  * Note:
4179  * The work callback function may still be running on return, unless
4180  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4181  * use cancel_delayed_work_sync() to wait on it.
4182  *
4183  * This function is safe to call from any context including IRQ handler.
4184  */
4185 bool cancel_delayed_work(struct delayed_work *dwork)
4186 {
4187 	return __cancel_work(&dwork->work, true);
4188 }
4189 EXPORT_SYMBOL(cancel_delayed_work);
4190 
4191 /**
4192  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4193  * @dwork: the delayed work cancel
4194  *
4195  * This is cancel_work_sync() for delayed works.
4196  *
4197  * Return:
4198  * %true if @dwork was pending, %false otherwise.
4199  */
4200 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4201 {
4202 	return __cancel_work_timer(&dwork->work, true);
4203 }
4204 EXPORT_SYMBOL(cancel_delayed_work_sync);
4205 
4206 /**
4207  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4208  * @func: the function to call
4209  *
4210  * schedule_on_each_cpu() executes @func on each online CPU using the
4211  * system workqueue and blocks until all CPUs have completed.
4212  * schedule_on_each_cpu() is very slow.
4213  *
4214  * Return:
4215  * 0 on success, -errno on failure.
4216  */
4217 int schedule_on_each_cpu(work_func_t func)
4218 {
4219 	int cpu;
4220 	struct work_struct __percpu *works;
4221 
4222 	works = alloc_percpu(struct work_struct);
4223 	if (!works)
4224 		return -ENOMEM;
4225 
4226 	cpus_read_lock();
4227 
4228 	for_each_online_cpu(cpu) {
4229 		struct work_struct *work = per_cpu_ptr(works, cpu);
4230 
4231 		INIT_WORK(work, func);
4232 		schedule_work_on(cpu, work);
4233 	}
4234 
4235 	for_each_online_cpu(cpu)
4236 		flush_work(per_cpu_ptr(works, cpu));
4237 
4238 	cpus_read_unlock();
4239 	free_percpu(works);
4240 	return 0;
4241 }
4242 
4243 /**
4244  * execute_in_process_context - reliably execute the routine with user context
4245  * @fn:		the function to execute
4246  * @ew:		guaranteed storage for the execute work structure (must
4247  *		be available when the work executes)
4248  *
4249  * Executes the function immediately if process context is available,
4250  * otherwise schedules the function for delayed execution.
4251  *
4252  * Return:	0 - function was executed
4253  *		1 - function was scheduled for execution
4254  */
4255 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4256 {
4257 	if (!in_interrupt()) {
4258 		fn(&ew->work);
4259 		return 0;
4260 	}
4261 
4262 	INIT_WORK(&ew->work, fn);
4263 	schedule_work(&ew->work);
4264 
4265 	return 1;
4266 }
4267 EXPORT_SYMBOL_GPL(execute_in_process_context);
4268 
4269 /**
4270  * free_workqueue_attrs - free a workqueue_attrs
4271  * @attrs: workqueue_attrs to free
4272  *
4273  * Undo alloc_workqueue_attrs().
4274  */
4275 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4276 {
4277 	if (attrs) {
4278 		free_cpumask_var(attrs->cpumask);
4279 		free_cpumask_var(attrs->__pod_cpumask);
4280 		kfree(attrs);
4281 	}
4282 }
4283 
4284 /**
4285  * alloc_workqueue_attrs - allocate a workqueue_attrs
4286  *
4287  * Allocate a new workqueue_attrs, initialize with default settings and
4288  * return it.
4289  *
4290  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4291  */
4292 struct workqueue_attrs *alloc_workqueue_attrs(void)
4293 {
4294 	struct workqueue_attrs *attrs;
4295 
4296 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4297 	if (!attrs)
4298 		goto fail;
4299 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4300 		goto fail;
4301 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4302 		goto fail;
4303 
4304 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4305 	attrs->affn_scope = WQ_AFFN_DFL;
4306 	return attrs;
4307 fail:
4308 	free_workqueue_attrs(attrs);
4309 	return NULL;
4310 }
4311 
4312 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4313 				 const struct workqueue_attrs *from)
4314 {
4315 	to->nice = from->nice;
4316 	cpumask_copy(to->cpumask, from->cpumask);
4317 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4318 	to->affn_strict = from->affn_strict;
4319 
4320 	/*
4321 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4322 	 * fields as copying is used for both pool and wq attrs. Instead,
4323 	 * get_unbound_pool() explicitly clears the fields.
4324 	 */
4325 	to->affn_scope = from->affn_scope;
4326 	to->ordered = from->ordered;
4327 }
4328 
4329 /*
4330  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4331  * comments in 'struct workqueue_attrs' definition.
4332  */
4333 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4334 {
4335 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4336 	attrs->ordered = false;
4337 }
4338 
4339 /* hash value of the content of @attr */
4340 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4341 {
4342 	u32 hash = 0;
4343 
4344 	hash = jhash_1word(attrs->nice, hash);
4345 	hash = jhash(cpumask_bits(attrs->cpumask),
4346 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4347 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4348 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4349 	hash = jhash_1word(attrs->affn_strict, hash);
4350 	return hash;
4351 }
4352 
4353 /* content equality test */
4354 static bool wqattrs_equal(const struct workqueue_attrs *a,
4355 			  const struct workqueue_attrs *b)
4356 {
4357 	if (a->nice != b->nice)
4358 		return false;
4359 	if (!cpumask_equal(a->cpumask, b->cpumask))
4360 		return false;
4361 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4362 		return false;
4363 	if (a->affn_strict != b->affn_strict)
4364 		return false;
4365 	return true;
4366 }
4367 
4368 /* Update @attrs with actually available CPUs */
4369 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4370 				      const cpumask_t *unbound_cpumask)
4371 {
4372 	/*
4373 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4374 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4375 	 * @unbound_cpumask.
4376 	 */
4377 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4378 	if (unlikely(cpumask_empty(attrs->cpumask)))
4379 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4380 }
4381 
4382 /* find wq_pod_type to use for @attrs */
4383 static const struct wq_pod_type *
4384 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4385 {
4386 	enum wq_affn_scope scope;
4387 	struct wq_pod_type *pt;
4388 
4389 	/* to synchronize access to wq_affn_dfl */
4390 	lockdep_assert_held(&wq_pool_mutex);
4391 
4392 	if (attrs->affn_scope == WQ_AFFN_DFL)
4393 		scope = wq_affn_dfl;
4394 	else
4395 		scope = attrs->affn_scope;
4396 
4397 	pt = &wq_pod_types[scope];
4398 
4399 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4400 	    likely(pt->nr_pods))
4401 		return pt;
4402 
4403 	/*
4404 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4405 	 * initialized in workqueue_init_early().
4406 	 */
4407 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4408 	BUG_ON(!pt->nr_pods);
4409 	return pt;
4410 }
4411 
4412 /**
4413  * init_worker_pool - initialize a newly zalloc'd worker_pool
4414  * @pool: worker_pool to initialize
4415  *
4416  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4417  *
4418  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4419  * inside @pool proper are initialized and put_unbound_pool() can be called
4420  * on @pool safely to release it.
4421  */
4422 static int init_worker_pool(struct worker_pool *pool)
4423 {
4424 	raw_spin_lock_init(&pool->lock);
4425 	pool->id = -1;
4426 	pool->cpu = -1;
4427 	pool->node = NUMA_NO_NODE;
4428 	pool->flags |= POOL_DISASSOCIATED;
4429 	pool->watchdog_ts = jiffies;
4430 	INIT_LIST_HEAD(&pool->worklist);
4431 	INIT_LIST_HEAD(&pool->idle_list);
4432 	hash_init(pool->busy_hash);
4433 
4434 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4435 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4436 
4437 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4438 
4439 	INIT_LIST_HEAD(&pool->workers);
4440 	INIT_LIST_HEAD(&pool->dying_workers);
4441 
4442 	ida_init(&pool->worker_ida);
4443 	INIT_HLIST_NODE(&pool->hash_node);
4444 	pool->refcnt = 1;
4445 
4446 	/* shouldn't fail above this point */
4447 	pool->attrs = alloc_workqueue_attrs();
4448 	if (!pool->attrs)
4449 		return -ENOMEM;
4450 
4451 	wqattrs_clear_for_pool(pool->attrs);
4452 
4453 	return 0;
4454 }
4455 
4456 #ifdef CONFIG_LOCKDEP
4457 static void wq_init_lockdep(struct workqueue_struct *wq)
4458 {
4459 	char *lock_name;
4460 
4461 	lockdep_register_key(&wq->key);
4462 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4463 	if (!lock_name)
4464 		lock_name = wq->name;
4465 
4466 	wq->lock_name = lock_name;
4467 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4468 }
4469 
4470 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4471 {
4472 	lockdep_unregister_key(&wq->key);
4473 }
4474 
4475 static void wq_free_lockdep(struct workqueue_struct *wq)
4476 {
4477 	if (wq->lock_name != wq->name)
4478 		kfree(wq->lock_name);
4479 }
4480 #else
4481 static void wq_init_lockdep(struct workqueue_struct *wq)
4482 {
4483 }
4484 
4485 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4486 {
4487 }
4488 
4489 static void wq_free_lockdep(struct workqueue_struct *wq)
4490 {
4491 }
4492 #endif
4493 
4494 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4495 {
4496 	int node;
4497 
4498 	for_each_node(node) {
4499 		kfree(nna_ar[node]);
4500 		nna_ar[node] = NULL;
4501 	}
4502 
4503 	kfree(nna_ar[nr_node_ids]);
4504 	nna_ar[nr_node_ids] = NULL;
4505 }
4506 
4507 static void init_node_nr_active(struct wq_node_nr_active *nna)
4508 {
4509 	nna->max = WQ_DFL_MIN_ACTIVE;
4510 	atomic_set(&nna->nr, 0);
4511 	raw_spin_lock_init(&nna->lock);
4512 	INIT_LIST_HEAD(&nna->pending_pwqs);
4513 }
4514 
4515 /*
4516  * Each node's nr_active counter will be accessed mostly from its own node and
4517  * should be allocated in the node.
4518  */
4519 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4520 {
4521 	struct wq_node_nr_active *nna;
4522 	int node;
4523 
4524 	for_each_node(node) {
4525 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4526 		if (!nna)
4527 			goto err_free;
4528 		init_node_nr_active(nna);
4529 		nna_ar[node] = nna;
4530 	}
4531 
4532 	/* [nr_node_ids] is used as the fallback */
4533 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4534 	if (!nna)
4535 		goto err_free;
4536 	init_node_nr_active(nna);
4537 	nna_ar[nr_node_ids] = nna;
4538 
4539 	return 0;
4540 
4541 err_free:
4542 	free_node_nr_active(nna_ar);
4543 	return -ENOMEM;
4544 }
4545 
4546 static void rcu_free_wq(struct rcu_head *rcu)
4547 {
4548 	struct workqueue_struct *wq =
4549 		container_of(rcu, struct workqueue_struct, rcu);
4550 
4551 	if (wq->flags & WQ_UNBOUND)
4552 		free_node_nr_active(wq->node_nr_active);
4553 
4554 	wq_free_lockdep(wq);
4555 	free_percpu(wq->cpu_pwq);
4556 	free_workqueue_attrs(wq->unbound_attrs);
4557 	kfree(wq);
4558 }
4559 
4560 static void rcu_free_pool(struct rcu_head *rcu)
4561 {
4562 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4563 
4564 	ida_destroy(&pool->worker_ida);
4565 	free_workqueue_attrs(pool->attrs);
4566 	kfree(pool);
4567 }
4568 
4569 /**
4570  * put_unbound_pool - put a worker_pool
4571  * @pool: worker_pool to put
4572  *
4573  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4574  * safe manner.  get_unbound_pool() calls this function on its failure path
4575  * and this function should be able to release pools which went through,
4576  * successfully or not, init_worker_pool().
4577  *
4578  * Should be called with wq_pool_mutex held.
4579  */
4580 static void put_unbound_pool(struct worker_pool *pool)
4581 {
4582 	DECLARE_COMPLETION_ONSTACK(detach_completion);
4583 	struct worker *worker;
4584 	LIST_HEAD(cull_list);
4585 
4586 	lockdep_assert_held(&wq_pool_mutex);
4587 
4588 	if (--pool->refcnt)
4589 		return;
4590 
4591 	/* sanity checks */
4592 	if (WARN_ON(!(pool->cpu < 0)) ||
4593 	    WARN_ON(!list_empty(&pool->worklist)))
4594 		return;
4595 
4596 	/* release id and unhash */
4597 	if (pool->id >= 0)
4598 		idr_remove(&worker_pool_idr, pool->id);
4599 	hash_del(&pool->hash_node);
4600 
4601 	/*
4602 	 * Become the manager and destroy all workers.  This prevents
4603 	 * @pool's workers from blocking on attach_mutex.  We're the last
4604 	 * manager and @pool gets freed with the flag set.
4605 	 *
4606 	 * Having a concurrent manager is quite unlikely to happen as we can
4607 	 * only get here with
4608 	 *   pwq->refcnt == pool->refcnt == 0
4609 	 * which implies no work queued to the pool, which implies no worker can
4610 	 * become the manager. However a worker could have taken the role of
4611 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4612 	 * drops pool->lock
4613 	 */
4614 	while (true) {
4615 		rcuwait_wait_event(&manager_wait,
4616 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4617 				   TASK_UNINTERRUPTIBLE);
4618 
4619 		mutex_lock(&wq_pool_attach_mutex);
4620 		raw_spin_lock_irq(&pool->lock);
4621 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4622 			pool->flags |= POOL_MANAGER_ACTIVE;
4623 			break;
4624 		}
4625 		raw_spin_unlock_irq(&pool->lock);
4626 		mutex_unlock(&wq_pool_attach_mutex);
4627 	}
4628 
4629 	while ((worker = first_idle_worker(pool)))
4630 		set_worker_dying(worker, &cull_list);
4631 	WARN_ON(pool->nr_workers || pool->nr_idle);
4632 	raw_spin_unlock_irq(&pool->lock);
4633 
4634 	wake_dying_workers(&cull_list);
4635 
4636 	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4637 		pool->detach_completion = &detach_completion;
4638 	mutex_unlock(&wq_pool_attach_mutex);
4639 
4640 	if (pool->detach_completion)
4641 		wait_for_completion(pool->detach_completion);
4642 
4643 	/* shut down the timers */
4644 	del_timer_sync(&pool->idle_timer);
4645 	cancel_work_sync(&pool->idle_cull_work);
4646 	del_timer_sync(&pool->mayday_timer);
4647 
4648 	/* RCU protected to allow dereferences from get_work_pool() */
4649 	call_rcu(&pool->rcu, rcu_free_pool);
4650 }
4651 
4652 /**
4653  * get_unbound_pool - get a worker_pool with the specified attributes
4654  * @attrs: the attributes of the worker_pool to get
4655  *
4656  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4657  * reference count and return it.  If there already is a matching
4658  * worker_pool, it will be used; otherwise, this function attempts to
4659  * create a new one.
4660  *
4661  * Should be called with wq_pool_mutex held.
4662  *
4663  * Return: On success, a worker_pool with the same attributes as @attrs.
4664  * On failure, %NULL.
4665  */
4666 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4667 {
4668 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4669 	u32 hash = wqattrs_hash(attrs);
4670 	struct worker_pool *pool;
4671 	int pod, node = NUMA_NO_NODE;
4672 
4673 	lockdep_assert_held(&wq_pool_mutex);
4674 
4675 	/* do we already have a matching pool? */
4676 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4677 		if (wqattrs_equal(pool->attrs, attrs)) {
4678 			pool->refcnt++;
4679 			return pool;
4680 		}
4681 	}
4682 
4683 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4684 	for (pod = 0; pod < pt->nr_pods; pod++) {
4685 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4686 			node = pt->pod_node[pod];
4687 			break;
4688 		}
4689 	}
4690 
4691 	/* nope, create a new one */
4692 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4693 	if (!pool || init_worker_pool(pool) < 0)
4694 		goto fail;
4695 
4696 	pool->node = node;
4697 	copy_workqueue_attrs(pool->attrs, attrs);
4698 	wqattrs_clear_for_pool(pool->attrs);
4699 
4700 	if (worker_pool_assign_id(pool) < 0)
4701 		goto fail;
4702 
4703 	/* create and start the initial worker */
4704 	if (wq_online && !create_worker(pool))
4705 		goto fail;
4706 
4707 	/* install */
4708 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
4709 
4710 	return pool;
4711 fail:
4712 	if (pool)
4713 		put_unbound_pool(pool);
4714 	return NULL;
4715 }
4716 
4717 static void rcu_free_pwq(struct rcu_head *rcu)
4718 {
4719 	kmem_cache_free(pwq_cache,
4720 			container_of(rcu, struct pool_workqueue, rcu));
4721 }
4722 
4723 /*
4724  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4725  * refcnt and needs to be destroyed.
4726  */
4727 static void pwq_release_workfn(struct kthread_work *work)
4728 {
4729 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4730 						  release_work);
4731 	struct workqueue_struct *wq = pwq->wq;
4732 	struct worker_pool *pool = pwq->pool;
4733 	bool is_last = false;
4734 
4735 	/*
4736 	 * When @pwq is not linked, it doesn't hold any reference to the
4737 	 * @wq, and @wq is invalid to access.
4738 	 */
4739 	if (!list_empty(&pwq->pwqs_node)) {
4740 		mutex_lock(&wq->mutex);
4741 		list_del_rcu(&pwq->pwqs_node);
4742 		is_last = list_empty(&wq->pwqs);
4743 		mutex_unlock(&wq->mutex);
4744 	}
4745 
4746 	if (wq->flags & WQ_UNBOUND) {
4747 		mutex_lock(&wq_pool_mutex);
4748 		put_unbound_pool(pool);
4749 		mutex_unlock(&wq_pool_mutex);
4750 	}
4751 
4752 	if (!list_empty(&pwq->pending_node)) {
4753 		struct wq_node_nr_active *nna =
4754 			wq_node_nr_active(pwq->wq, pwq->pool->node);
4755 
4756 		raw_spin_lock_irq(&nna->lock);
4757 		list_del_init(&pwq->pending_node);
4758 		raw_spin_unlock_irq(&nna->lock);
4759 	}
4760 
4761 	call_rcu(&pwq->rcu, rcu_free_pwq);
4762 
4763 	/*
4764 	 * If we're the last pwq going away, @wq is already dead and no one
4765 	 * is gonna access it anymore.  Schedule RCU free.
4766 	 */
4767 	if (is_last) {
4768 		wq_unregister_lockdep(wq);
4769 		call_rcu(&wq->rcu, rcu_free_wq);
4770 	}
4771 }
4772 
4773 /* initialize newly allocated @pwq which is associated with @wq and @pool */
4774 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4775 		     struct worker_pool *pool)
4776 {
4777 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
4778 
4779 	memset(pwq, 0, sizeof(*pwq));
4780 
4781 	pwq->pool = pool;
4782 	pwq->wq = wq;
4783 	pwq->flush_color = -1;
4784 	pwq->refcnt = 1;
4785 	INIT_LIST_HEAD(&pwq->inactive_works);
4786 	INIT_LIST_HEAD(&pwq->pending_node);
4787 	INIT_LIST_HEAD(&pwq->pwqs_node);
4788 	INIT_LIST_HEAD(&pwq->mayday_node);
4789 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
4790 }
4791 
4792 /* sync @pwq with the current state of its associated wq and link it */
4793 static void link_pwq(struct pool_workqueue *pwq)
4794 {
4795 	struct workqueue_struct *wq = pwq->wq;
4796 
4797 	lockdep_assert_held(&wq->mutex);
4798 
4799 	/* may be called multiple times, ignore if already linked */
4800 	if (!list_empty(&pwq->pwqs_node))
4801 		return;
4802 
4803 	/* set the matching work_color */
4804 	pwq->work_color = wq->work_color;
4805 
4806 	/* link in @pwq */
4807 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4808 }
4809 
4810 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4811 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4812 					const struct workqueue_attrs *attrs)
4813 {
4814 	struct worker_pool *pool;
4815 	struct pool_workqueue *pwq;
4816 
4817 	lockdep_assert_held(&wq_pool_mutex);
4818 
4819 	pool = get_unbound_pool(attrs);
4820 	if (!pool)
4821 		return NULL;
4822 
4823 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4824 	if (!pwq) {
4825 		put_unbound_pool(pool);
4826 		return NULL;
4827 	}
4828 
4829 	init_pwq(pwq, wq, pool);
4830 	return pwq;
4831 }
4832 
4833 /**
4834  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
4835  * @attrs: the wq_attrs of the default pwq of the target workqueue
4836  * @cpu: the target CPU
4837  * @cpu_going_down: if >= 0, the CPU to consider as offline
4838  *
4839  * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4840  * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
4841  * The result is stored in @attrs->__pod_cpumask.
4842  *
4843  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4844  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4845  * intersection of the possible CPUs of @pod and @attrs->cpumask.
4846  *
4847  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
4848  */
4849 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
4850 				int cpu_going_down)
4851 {
4852 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4853 	int pod = pt->cpu_pod[cpu];
4854 
4855 	/* does @pod have any online CPUs @attrs wants? */
4856 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
4857 	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
4858 	if (cpu_going_down >= 0)
4859 		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
4860 
4861 	if (cpumask_empty(attrs->__pod_cpumask)) {
4862 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
4863 		return;
4864 	}
4865 
4866 	/* yeap, return possible CPUs in @pod that @attrs wants */
4867 	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
4868 
4869 	if (cpumask_empty(attrs->__pod_cpumask))
4870 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4871 				"possible intersect\n");
4872 }
4873 
4874 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
4875 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4876 					int cpu, struct pool_workqueue *pwq)
4877 {
4878 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
4879 	struct pool_workqueue *old_pwq;
4880 
4881 	lockdep_assert_held(&wq_pool_mutex);
4882 	lockdep_assert_held(&wq->mutex);
4883 
4884 	/* link_pwq() can handle duplicate calls */
4885 	link_pwq(pwq);
4886 
4887 	old_pwq = rcu_access_pointer(*slot);
4888 	rcu_assign_pointer(*slot, pwq);
4889 	return old_pwq;
4890 }
4891 
4892 /* context to store the prepared attrs & pwqs before applying */
4893 struct apply_wqattrs_ctx {
4894 	struct workqueue_struct	*wq;		/* target workqueue */
4895 	struct workqueue_attrs	*attrs;		/* attrs to apply */
4896 	struct list_head	list;		/* queued for batching commit */
4897 	struct pool_workqueue	*dfl_pwq;
4898 	struct pool_workqueue	*pwq_tbl[];
4899 };
4900 
4901 /* free the resources after success or abort */
4902 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4903 {
4904 	if (ctx) {
4905 		int cpu;
4906 
4907 		for_each_possible_cpu(cpu)
4908 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
4909 		put_pwq_unlocked(ctx->dfl_pwq);
4910 
4911 		free_workqueue_attrs(ctx->attrs);
4912 
4913 		kfree(ctx);
4914 	}
4915 }
4916 
4917 /* allocate the attrs and pwqs for later installation */
4918 static struct apply_wqattrs_ctx *
4919 apply_wqattrs_prepare(struct workqueue_struct *wq,
4920 		      const struct workqueue_attrs *attrs,
4921 		      const cpumask_var_t unbound_cpumask)
4922 {
4923 	struct apply_wqattrs_ctx *ctx;
4924 	struct workqueue_attrs *new_attrs;
4925 	int cpu;
4926 
4927 	lockdep_assert_held(&wq_pool_mutex);
4928 
4929 	if (WARN_ON(attrs->affn_scope < 0 ||
4930 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4931 		return ERR_PTR(-EINVAL);
4932 
4933 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
4934 
4935 	new_attrs = alloc_workqueue_attrs();
4936 	if (!ctx || !new_attrs)
4937 		goto out_free;
4938 
4939 	/*
4940 	 * If something goes wrong during CPU up/down, we'll fall back to
4941 	 * the default pwq covering whole @attrs->cpumask.  Always create
4942 	 * it even if we don't use it immediately.
4943 	 */
4944 	copy_workqueue_attrs(new_attrs, attrs);
4945 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
4946 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4947 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4948 	if (!ctx->dfl_pwq)
4949 		goto out_free;
4950 
4951 	for_each_possible_cpu(cpu) {
4952 		if (new_attrs->ordered) {
4953 			ctx->dfl_pwq->refcnt++;
4954 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
4955 		} else {
4956 			wq_calc_pod_cpumask(new_attrs, cpu, -1);
4957 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
4958 			if (!ctx->pwq_tbl[cpu])
4959 				goto out_free;
4960 		}
4961 	}
4962 
4963 	/* save the user configured attrs and sanitize it. */
4964 	copy_workqueue_attrs(new_attrs, attrs);
4965 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4966 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
4967 	ctx->attrs = new_attrs;
4968 
4969 	ctx->wq = wq;
4970 	return ctx;
4971 
4972 out_free:
4973 	free_workqueue_attrs(new_attrs);
4974 	apply_wqattrs_cleanup(ctx);
4975 	return ERR_PTR(-ENOMEM);
4976 }
4977 
4978 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4979 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4980 {
4981 	int cpu;
4982 
4983 	/* all pwqs have been created successfully, let's install'em */
4984 	mutex_lock(&ctx->wq->mutex);
4985 
4986 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4987 
4988 	/* save the previous pwqs and install the new ones */
4989 	for_each_possible_cpu(cpu)
4990 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
4991 							ctx->pwq_tbl[cpu]);
4992 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
4993 
4994 	/* update node_nr_active->max */
4995 	wq_update_node_max_active(ctx->wq, -1);
4996 
4997 	mutex_unlock(&ctx->wq->mutex);
4998 }
4999 
5000 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5001 					const struct workqueue_attrs *attrs)
5002 {
5003 	struct apply_wqattrs_ctx *ctx;
5004 
5005 	/* only unbound workqueues can change attributes */
5006 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5007 		return -EINVAL;
5008 
5009 	/* creating multiple pwqs breaks ordering guarantee */
5010 	if (!list_empty(&wq->pwqs)) {
5011 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5012 			return -EINVAL;
5013 
5014 		wq->flags &= ~__WQ_ORDERED;
5015 	}
5016 
5017 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5018 	if (IS_ERR(ctx))
5019 		return PTR_ERR(ctx);
5020 
5021 	/* the ctx has been prepared successfully, let's commit it */
5022 	apply_wqattrs_commit(ctx);
5023 	apply_wqattrs_cleanup(ctx);
5024 
5025 	return 0;
5026 }
5027 
5028 /**
5029  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5030  * @wq: the target workqueue
5031  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5032  *
5033  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5034  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5035  * work items are affine to the pod it was issued on. Older pwqs are released as
5036  * in-flight work items finish. Note that a work item which repeatedly requeues
5037  * itself back-to-back will stay on its current pwq.
5038  *
5039  * Performs GFP_KERNEL allocations.
5040  *
5041  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
5042  *
5043  * Return: 0 on success and -errno on failure.
5044  */
5045 int apply_workqueue_attrs(struct workqueue_struct *wq,
5046 			  const struct workqueue_attrs *attrs)
5047 {
5048 	int ret;
5049 
5050 	lockdep_assert_cpus_held();
5051 
5052 	mutex_lock(&wq_pool_mutex);
5053 	ret = apply_workqueue_attrs_locked(wq, attrs);
5054 	mutex_unlock(&wq_pool_mutex);
5055 
5056 	return ret;
5057 }
5058 
5059 /**
5060  * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
5061  * @wq: the target workqueue
5062  * @cpu: the CPU to update pool association for
5063  * @hotplug_cpu: the CPU coming up or going down
5064  * @online: whether @cpu is coming up or going down
5065  *
5066  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5067  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
5068  * @wq accordingly.
5069  *
5070  *
5071  * If pod affinity can't be adjusted due to memory allocation failure, it falls
5072  * back to @wq->dfl_pwq which may not be optimal but is always correct.
5073  *
5074  * Note that when the last allowed CPU of a pod goes offline for a workqueue
5075  * with a cpumask spanning multiple pods, the workers which were already
5076  * executing the work items for the workqueue will lose their CPU affinity and
5077  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5078  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5079  * responsibility to flush the work item from CPU_DOWN_PREPARE.
5080  */
5081 static void wq_update_pod(struct workqueue_struct *wq, int cpu,
5082 			  int hotplug_cpu, bool online)
5083 {
5084 	int off_cpu = online ? -1 : hotplug_cpu;
5085 	struct pool_workqueue *old_pwq = NULL, *pwq;
5086 	struct workqueue_attrs *target_attrs;
5087 
5088 	lockdep_assert_held(&wq_pool_mutex);
5089 
5090 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5091 		return;
5092 
5093 	/*
5094 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5095 	 * Let's use a preallocated one.  The following buf is protected by
5096 	 * CPU hotplug exclusion.
5097 	 */
5098 	target_attrs = wq_update_pod_attrs_buf;
5099 
5100 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5101 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5102 
5103 	/* nothing to do if the target cpumask matches the current pwq */
5104 	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
5105 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5106 		return;
5107 
5108 	/* create a new pwq */
5109 	pwq = alloc_unbound_pwq(wq, target_attrs);
5110 	if (!pwq) {
5111 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5112 			wq->name);
5113 		goto use_dfl_pwq;
5114 	}
5115 
5116 	/* Install the new pwq. */
5117 	mutex_lock(&wq->mutex);
5118 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5119 	goto out_unlock;
5120 
5121 use_dfl_pwq:
5122 	mutex_lock(&wq->mutex);
5123 	pwq = unbound_pwq(wq, -1);
5124 	raw_spin_lock_irq(&pwq->pool->lock);
5125 	get_pwq(pwq);
5126 	raw_spin_unlock_irq(&pwq->pool->lock);
5127 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5128 out_unlock:
5129 	mutex_unlock(&wq->mutex);
5130 	put_pwq_unlocked(old_pwq);
5131 }
5132 
5133 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5134 {
5135 	bool highpri = wq->flags & WQ_HIGHPRI;
5136 	int cpu, ret;
5137 
5138 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5139 	if (!wq->cpu_pwq)
5140 		goto enomem;
5141 
5142 	if (!(wq->flags & WQ_UNBOUND)) {
5143 		for_each_possible_cpu(cpu) {
5144 			struct pool_workqueue **pwq_p;
5145 			struct worker_pool __percpu *pools;
5146 			struct worker_pool *pool;
5147 
5148 			if (wq->flags & WQ_BH)
5149 				pools = bh_worker_pools;
5150 			else
5151 				pools = cpu_worker_pools;
5152 
5153 			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5154 			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5155 
5156 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5157 						       pool->node);
5158 			if (!*pwq_p)
5159 				goto enomem;
5160 
5161 			init_pwq(*pwq_p, wq, pool);
5162 
5163 			mutex_lock(&wq->mutex);
5164 			link_pwq(*pwq_p);
5165 			mutex_unlock(&wq->mutex);
5166 		}
5167 		return 0;
5168 	}
5169 
5170 	cpus_read_lock();
5171 	if (wq->flags & __WQ_ORDERED) {
5172 		struct pool_workqueue *dfl_pwq;
5173 
5174 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5175 		/* there should only be single pwq for ordering guarantee */
5176 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5177 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5178 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5179 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5180 	} else {
5181 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
5182 	}
5183 	cpus_read_unlock();
5184 
5185 	/* for unbound pwq, flush the pwq_release_worker ensures that the
5186 	 * pwq_release_workfn() completes before calling kfree(wq).
5187 	 */
5188 	if (ret)
5189 		kthread_flush_worker(pwq_release_worker);
5190 
5191 	return ret;
5192 
5193 enomem:
5194 	if (wq->cpu_pwq) {
5195 		for_each_possible_cpu(cpu) {
5196 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5197 
5198 			if (pwq)
5199 				kmem_cache_free(pwq_cache, pwq);
5200 		}
5201 		free_percpu(wq->cpu_pwq);
5202 		wq->cpu_pwq = NULL;
5203 	}
5204 	return -ENOMEM;
5205 }
5206 
5207 static int wq_clamp_max_active(int max_active, unsigned int flags,
5208 			       const char *name)
5209 {
5210 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5211 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5212 			max_active, name, 1, WQ_MAX_ACTIVE);
5213 
5214 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5215 }
5216 
5217 /*
5218  * Workqueues which may be used during memory reclaim should have a rescuer
5219  * to guarantee forward progress.
5220  */
5221 static int init_rescuer(struct workqueue_struct *wq)
5222 {
5223 	struct worker *rescuer;
5224 	int ret;
5225 
5226 	if (!(wq->flags & WQ_MEM_RECLAIM))
5227 		return 0;
5228 
5229 	rescuer = alloc_worker(NUMA_NO_NODE);
5230 	if (!rescuer) {
5231 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5232 		       wq->name);
5233 		return -ENOMEM;
5234 	}
5235 
5236 	rescuer->rescue_wq = wq;
5237 	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
5238 	if (IS_ERR(rescuer->task)) {
5239 		ret = PTR_ERR(rescuer->task);
5240 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5241 		       wq->name, ERR_PTR(ret));
5242 		kfree(rescuer);
5243 		return ret;
5244 	}
5245 
5246 	wq->rescuer = rescuer;
5247 	if (wq->flags & WQ_UNBOUND)
5248 		kthread_bind_mask(rescuer->task, wq->unbound_attrs->cpumask);
5249 	else
5250 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5251 	wake_up_process(rescuer->task);
5252 
5253 	return 0;
5254 }
5255 
5256 /**
5257  * wq_adjust_max_active - update a wq's max_active to the current setting
5258  * @wq: target workqueue
5259  *
5260  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5261  * activate inactive work items accordingly. If @wq is freezing, clear
5262  * @wq->max_active to zero.
5263  */
5264 static void wq_adjust_max_active(struct workqueue_struct *wq)
5265 {
5266 	bool activated;
5267 	int new_max, new_min;
5268 
5269 	lockdep_assert_held(&wq->mutex);
5270 
5271 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5272 		new_max = 0;
5273 		new_min = 0;
5274 	} else {
5275 		new_max = wq->saved_max_active;
5276 		new_min = wq->saved_min_active;
5277 	}
5278 
5279 	if (wq->max_active == new_max && wq->min_active == new_min)
5280 		return;
5281 
5282 	/*
5283 	 * Update @wq->max/min_active and then kick inactive work items if more
5284 	 * active work items are allowed. This doesn't break work item ordering
5285 	 * because new work items are always queued behind existing inactive
5286 	 * work items if there are any.
5287 	 */
5288 	WRITE_ONCE(wq->max_active, new_max);
5289 	WRITE_ONCE(wq->min_active, new_min);
5290 
5291 	if (wq->flags & WQ_UNBOUND)
5292 		wq_update_node_max_active(wq, -1);
5293 
5294 	if (new_max == 0)
5295 		return;
5296 
5297 	/*
5298 	 * Round-robin through pwq's activating the first inactive work item
5299 	 * until max_active is filled.
5300 	 */
5301 	do {
5302 		struct pool_workqueue *pwq;
5303 
5304 		activated = false;
5305 		for_each_pwq(pwq, wq) {
5306 			unsigned long flags;
5307 
5308 			/* can be called during early boot w/ irq disabled */
5309 			raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5310 			if (pwq_activate_first_inactive(pwq, true)) {
5311 				activated = true;
5312 				kick_pool(pwq->pool);
5313 			}
5314 			raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5315 		}
5316 	} while (activated);
5317 }
5318 
5319 __printf(1, 4)
5320 struct workqueue_struct *alloc_workqueue(const char *fmt,
5321 					 unsigned int flags,
5322 					 int max_active, ...)
5323 {
5324 	va_list args;
5325 	struct workqueue_struct *wq;
5326 	size_t wq_size;
5327 	int name_len;
5328 
5329 	if (flags & WQ_BH) {
5330 		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5331 			return NULL;
5332 		if (WARN_ON_ONCE(max_active))
5333 			return NULL;
5334 	}
5335 
5336 	/*
5337 	 * Unbound && max_active == 1 used to imply ordered, which is no longer
5338 	 * the case on many machines due to per-pod pools. While
5339 	 * alloc_ordered_workqueue() is the right way to create an ordered
5340 	 * workqueue, keep the previous behavior to avoid subtle breakages.
5341 	 */
5342 	if ((flags & WQ_UNBOUND) && max_active == 1)
5343 		flags |= __WQ_ORDERED;
5344 
5345 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5346 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5347 		flags |= WQ_UNBOUND;
5348 
5349 	/* allocate wq and format name */
5350 	if (flags & WQ_UNBOUND)
5351 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5352 	else
5353 		wq_size = sizeof(*wq);
5354 
5355 	wq = kzalloc(wq_size, GFP_KERNEL);
5356 	if (!wq)
5357 		return NULL;
5358 
5359 	if (flags & WQ_UNBOUND) {
5360 		wq->unbound_attrs = alloc_workqueue_attrs();
5361 		if (!wq->unbound_attrs)
5362 			goto err_free_wq;
5363 	}
5364 
5365 	va_start(args, max_active);
5366 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5367 	va_end(args);
5368 
5369 	if (name_len >= WQ_NAME_LEN)
5370 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5371 			     wq->name);
5372 
5373 	if (flags & WQ_BH) {
5374 		/*
5375 		 * BH workqueues always share a single execution context per CPU
5376 		 * and don't impose any max_active limit.
5377 		 */
5378 		max_active = INT_MAX;
5379 	} else {
5380 		max_active = max_active ?: WQ_DFL_ACTIVE;
5381 		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5382 	}
5383 
5384 	/* init wq */
5385 	wq->flags = flags;
5386 	wq->max_active = max_active;
5387 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5388 	wq->saved_max_active = wq->max_active;
5389 	wq->saved_min_active = wq->min_active;
5390 	mutex_init(&wq->mutex);
5391 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5392 	INIT_LIST_HEAD(&wq->pwqs);
5393 	INIT_LIST_HEAD(&wq->flusher_queue);
5394 	INIT_LIST_HEAD(&wq->flusher_overflow);
5395 	INIT_LIST_HEAD(&wq->maydays);
5396 
5397 	wq_init_lockdep(wq);
5398 	INIT_LIST_HEAD(&wq->list);
5399 
5400 	if (flags & WQ_UNBOUND) {
5401 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5402 			goto err_unreg_lockdep;
5403 	}
5404 
5405 	if (alloc_and_link_pwqs(wq) < 0)
5406 		goto err_free_node_nr_active;
5407 
5408 	if (wq_online && init_rescuer(wq) < 0)
5409 		goto err_destroy;
5410 
5411 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5412 		goto err_destroy;
5413 
5414 	/*
5415 	 * wq_pool_mutex protects global freeze state and workqueues list.
5416 	 * Grab it, adjust max_active and add the new @wq to workqueues
5417 	 * list.
5418 	 */
5419 	mutex_lock(&wq_pool_mutex);
5420 
5421 	mutex_lock(&wq->mutex);
5422 	wq_adjust_max_active(wq);
5423 	mutex_unlock(&wq->mutex);
5424 
5425 	list_add_tail_rcu(&wq->list, &workqueues);
5426 
5427 	mutex_unlock(&wq_pool_mutex);
5428 
5429 	return wq;
5430 
5431 err_free_node_nr_active:
5432 	if (wq->flags & WQ_UNBOUND)
5433 		free_node_nr_active(wq->node_nr_active);
5434 err_unreg_lockdep:
5435 	wq_unregister_lockdep(wq);
5436 	wq_free_lockdep(wq);
5437 err_free_wq:
5438 	free_workqueue_attrs(wq->unbound_attrs);
5439 	kfree(wq);
5440 	return NULL;
5441 err_destroy:
5442 	destroy_workqueue(wq);
5443 	return NULL;
5444 }
5445 EXPORT_SYMBOL_GPL(alloc_workqueue);
5446 
5447 static bool pwq_busy(struct pool_workqueue *pwq)
5448 {
5449 	int i;
5450 
5451 	for (i = 0; i < WORK_NR_COLORS; i++)
5452 		if (pwq->nr_in_flight[i])
5453 			return true;
5454 
5455 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5456 		return true;
5457 	if (!pwq_is_empty(pwq))
5458 		return true;
5459 
5460 	return false;
5461 }
5462 
5463 /**
5464  * destroy_workqueue - safely terminate a workqueue
5465  * @wq: target workqueue
5466  *
5467  * Safely destroy a workqueue. All work currently pending will be done first.
5468  */
5469 void destroy_workqueue(struct workqueue_struct *wq)
5470 {
5471 	struct pool_workqueue *pwq;
5472 	int cpu;
5473 
5474 	/*
5475 	 * Remove it from sysfs first so that sanity check failure doesn't
5476 	 * lead to sysfs name conflicts.
5477 	 */
5478 	workqueue_sysfs_unregister(wq);
5479 
5480 	/* mark the workqueue destruction is in progress */
5481 	mutex_lock(&wq->mutex);
5482 	wq->flags |= __WQ_DESTROYING;
5483 	mutex_unlock(&wq->mutex);
5484 
5485 	/* drain it before proceeding with destruction */
5486 	drain_workqueue(wq);
5487 
5488 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5489 	if (wq->rescuer) {
5490 		struct worker *rescuer = wq->rescuer;
5491 
5492 		/* this prevents new queueing */
5493 		raw_spin_lock_irq(&wq_mayday_lock);
5494 		wq->rescuer = NULL;
5495 		raw_spin_unlock_irq(&wq_mayday_lock);
5496 
5497 		/* rescuer will empty maydays list before exiting */
5498 		kthread_stop(rescuer->task);
5499 		kfree(rescuer);
5500 	}
5501 
5502 	/*
5503 	 * Sanity checks - grab all the locks so that we wait for all
5504 	 * in-flight operations which may do put_pwq().
5505 	 */
5506 	mutex_lock(&wq_pool_mutex);
5507 	mutex_lock(&wq->mutex);
5508 	for_each_pwq(pwq, wq) {
5509 		raw_spin_lock_irq(&pwq->pool->lock);
5510 		if (WARN_ON(pwq_busy(pwq))) {
5511 			pr_warn("%s: %s has the following busy pwq\n",
5512 				__func__, wq->name);
5513 			show_pwq(pwq);
5514 			raw_spin_unlock_irq(&pwq->pool->lock);
5515 			mutex_unlock(&wq->mutex);
5516 			mutex_unlock(&wq_pool_mutex);
5517 			show_one_workqueue(wq);
5518 			return;
5519 		}
5520 		raw_spin_unlock_irq(&pwq->pool->lock);
5521 	}
5522 	mutex_unlock(&wq->mutex);
5523 
5524 	/*
5525 	 * wq list is used to freeze wq, remove from list after
5526 	 * flushing is complete in case freeze races us.
5527 	 */
5528 	list_del_rcu(&wq->list);
5529 	mutex_unlock(&wq_pool_mutex);
5530 
5531 	/*
5532 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5533 	 * to put the base refs. @wq will be auto-destroyed from the last
5534 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5535 	 */
5536 	rcu_read_lock();
5537 
5538 	for_each_possible_cpu(cpu) {
5539 		put_pwq_unlocked(unbound_pwq(wq, cpu));
5540 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5541 	}
5542 
5543 	put_pwq_unlocked(unbound_pwq(wq, -1));
5544 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5545 
5546 	rcu_read_unlock();
5547 }
5548 EXPORT_SYMBOL_GPL(destroy_workqueue);
5549 
5550 /**
5551  * workqueue_set_max_active - adjust max_active of a workqueue
5552  * @wq: target workqueue
5553  * @max_active: new max_active value.
5554  *
5555  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5556  * comment.
5557  *
5558  * CONTEXT:
5559  * Don't call from IRQ context.
5560  */
5561 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5562 {
5563 	/* max_active doesn't mean anything for BH workqueues */
5564 	if (WARN_ON(wq->flags & WQ_BH))
5565 		return;
5566 	/* disallow meddling with max_active for ordered workqueues */
5567 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5568 		return;
5569 
5570 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5571 
5572 	mutex_lock(&wq->mutex);
5573 
5574 	wq->flags &= ~__WQ_ORDERED;
5575 	wq->saved_max_active = max_active;
5576 	if (wq->flags & WQ_UNBOUND)
5577 		wq->saved_min_active = min(wq->saved_min_active, max_active);
5578 
5579 	wq_adjust_max_active(wq);
5580 
5581 	mutex_unlock(&wq->mutex);
5582 }
5583 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5584 
5585 /**
5586  * current_work - retrieve %current task's work struct
5587  *
5588  * Determine if %current task is a workqueue worker and what it's working on.
5589  * Useful to find out the context that the %current task is running in.
5590  *
5591  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5592  */
5593 struct work_struct *current_work(void)
5594 {
5595 	struct worker *worker = current_wq_worker();
5596 
5597 	return worker ? worker->current_work : NULL;
5598 }
5599 EXPORT_SYMBOL(current_work);
5600 
5601 /**
5602  * current_is_workqueue_rescuer - is %current workqueue rescuer?
5603  *
5604  * Determine whether %current is a workqueue rescuer.  Can be used from
5605  * work functions to determine whether it's being run off the rescuer task.
5606  *
5607  * Return: %true if %current is a workqueue rescuer. %false otherwise.
5608  */
5609 bool current_is_workqueue_rescuer(void)
5610 {
5611 	struct worker *worker = current_wq_worker();
5612 
5613 	return worker && worker->rescue_wq;
5614 }
5615 
5616 /**
5617  * workqueue_congested - test whether a workqueue is congested
5618  * @cpu: CPU in question
5619  * @wq: target workqueue
5620  *
5621  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
5622  * no synchronization around this function and the test result is
5623  * unreliable and only useful as advisory hints or for debugging.
5624  *
5625  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5626  *
5627  * With the exception of ordered workqueues, all workqueues have per-cpu
5628  * pool_workqueues, each with its own congested state. A workqueue being
5629  * congested on one CPU doesn't mean that the workqueue is contested on any
5630  * other CPUs.
5631  *
5632  * Return:
5633  * %true if congested, %false otherwise.
5634  */
5635 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5636 {
5637 	struct pool_workqueue *pwq;
5638 	bool ret;
5639 
5640 	rcu_read_lock();
5641 	preempt_disable();
5642 
5643 	if (cpu == WORK_CPU_UNBOUND)
5644 		cpu = smp_processor_id();
5645 
5646 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5647 	ret = !list_empty(&pwq->inactive_works);
5648 
5649 	preempt_enable();
5650 	rcu_read_unlock();
5651 
5652 	return ret;
5653 }
5654 EXPORT_SYMBOL_GPL(workqueue_congested);
5655 
5656 /**
5657  * work_busy - test whether a work is currently pending or running
5658  * @work: the work to be tested
5659  *
5660  * Test whether @work is currently pending or running.  There is no
5661  * synchronization around this function and the test result is
5662  * unreliable and only useful as advisory hints or for debugging.
5663  *
5664  * Return:
5665  * OR'd bitmask of WORK_BUSY_* bits.
5666  */
5667 unsigned int work_busy(struct work_struct *work)
5668 {
5669 	struct worker_pool *pool;
5670 	unsigned long flags;
5671 	unsigned int ret = 0;
5672 
5673 	if (work_pending(work))
5674 		ret |= WORK_BUSY_PENDING;
5675 
5676 	rcu_read_lock();
5677 	pool = get_work_pool(work);
5678 	if (pool) {
5679 		raw_spin_lock_irqsave(&pool->lock, flags);
5680 		if (find_worker_executing_work(pool, work))
5681 			ret |= WORK_BUSY_RUNNING;
5682 		raw_spin_unlock_irqrestore(&pool->lock, flags);
5683 	}
5684 	rcu_read_unlock();
5685 
5686 	return ret;
5687 }
5688 EXPORT_SYMBOL_GPL(work_busy);
5689 
5690 /**
5691  * set_worker_desc - set description for the current work item
5692  * @fmt: printf-style format string
5693  * @...: arguments for the format string
5694  *
5695  * This function can be called by a running work function to describe what
5696  * the work item is about.  If the worker task gets dumped, this
5697  * information will be printed out together to help debugging.  The
5698  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5699  */
5700 void set_worker_desc(const char *fmt, ...)
5701 {
5702 	struct worker *worker = current_wq_worker();
5703 	va_list args;
5704 
5705 	if (worker) {
5706 		va_start(args, fmt);
5707 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5708 		va_end(args);
5709 	}
5710 }
5711 EXPORT_SYMBOL_GPL(set_worker_desc);
5712 
5713 /**
5714  * print_worker_info - print out worker information and description
5715  * @log_lvl: the log level to use when printing
5716  * @task: target task
5717  *
5718  * If @task is a worker and currently executing a work item, print out the
5719  * name of the workqueue being serviced and worker description set with
5720  * set_worker_desc() by the currently executing work item.
5721  *
5722  * This function can be safely called on any task as long as the
5723  * task_struct itself is accessible.  While safe, this function isn't
5724  * synchronized and may print out mixups or garbages of limited length.
5725  */
5726 void print_worker_info(const char *log_lvl, struct task_struct *task)
5727 {
5728 	work_func_t *fn = NULL;
5729 	char name[WQ_NAME_LEN] = { };
5730 	char desc[WORKER_DESC_LEN] = { };
5731 	struct pool_workqueue *pwq = NULL;
5732 	struct workqueue_struct *wq = NULL;
5733 	struct worker *worker;
5734 
5735 	if (!(task->flags & PF_WQ_WORKER))
5736 		return;
5737 
5738 	/*
5739 	 * This function is called without any synchronization and @task
5740 	 * could be in any state.  Be careful with dereferences.
5741 	 */
5742 	worker = kthread_probe_data(task);
5743 
5744 	/*
5745 	 * Carefully copy the associated workqueue's workfn, name and desc.
5746 	 * Keep the original last '\0' in case the original is garbage.
5747 	 */
5748 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5749 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5750 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5751 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5752 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5753 
5754 	if (fn || name[0] || desc[0]) {
5755 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5756 		if (strcmp(name, desc))
5757 			pr_cont(" (%s)", desc);
5758 		pr_cont("\n");
5759 	}
5760 }
5761 
5762 static void pr_cont_pool_info(struct worker_pool *pool)
5763 {
5764 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5765 	if (pool->node != NUMA_NO_NODE)
5766 		pr_cont(" node=%d", pool->node);
5767 	pr_cont(" flags=0x%x", pool->flags);
5768 	if (pool->flags & POOL_BH)
5769 		pr_cont(" bh%s",
5770 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
5771 	else
5772 		pr_cont(" nice=%d", pool->attrs->nice);
5773 }
5774 
5775 static void pr_cont_worker_id(struct worker *worker)
5776 {
5777 	struct worker_pool *pool = worker->pool;
5778 
5779 	if (pool->flags & WQ_BH)
5780 		pr_cont("bh%s",
5781 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
5782 	else
5783 		pr_cont("%d%s", task_pid_nr(worker->task),
5784 			worker->rescue_wq ? "(RESCUER)" : "");
5785 }
5786 
5787 struct pr_cont_work_struct {
5788 	bool comma;
5789 	work_func_t func;
5790 	long ctr;
5791 };
5792 
5793 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5794 {
5795 	if (!pcwsp->ctr)
5796 		goto out_record;
5797 	if (func == pcwsp->func) {
5798 		pcwsp->ctr++;
5799 		return;
5800 	}
5801 	if (pcwsp->ctr == 1)
5802 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5803 	else
5804 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5805 	pcwsp->ctr = 0;
5806 out_record:
5807 	if ((long)func == -1L)
5808 		return;
5809 	pcwsp->comma = comma;
5810 	pcwsp->func = func;
5811 	pcwsp->ctr = 1;
5812 }
5813 
5814 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
5815 {
5816 	if (work->func == wq_barrier_func) {
5817 		struct wq_barrier *barr;
5818 
5819 		barr = container_of(work, struct wq_barrier, work);
5820 
5821 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5822 		pr_cont("%s BAR(%d)", comma ? "," : "",
5823 			task_pid_nr(barr->task));
5824 	} else {
5825 		if (!comma)
5826 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5827 		pr_cont_work_flush(comma, work->func, pcwsp);
5828 	}
5829 }
5830 
5831 static void show_pwq(struct pool_workqueue *pwq)
5832 {
5833 	struct pr_cont_work_struct pcws = { .ctr = 0, };
5834 	struct worker_pool *pool = pwq->pool;
5835 	struct work_struct *work;
5836 	struct worker *worker;
5837 	bool has_in_flight = false, has_pending = false;
5838 	int bkt;
5839 
5840 	pr_info("  pwq %d:", pool->id);
5841 	pr_cont_pool_info(pool);
5842 
5843 	pr_cont(" active=%d refcnt=%d%s\n",
5844 		pwq->nr_active, pwq->refcnt,
5845 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5846 
5847 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5848 		if (worker->current_pwq == pwq) {
5849 			has_in_flight = true;
5850 			break;
5851 		}
5852 	}
5853 	if (has_in_flight) {
5854 		bool comma = false;
5855 
5856 		pr_info("    in-flight:");
5857 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5858 			if (worker->current_pwq != pwq)
5859 				continue;
5860 
5861 			pr_cont(" %s", comma ? "," : "");
5862 			pr_cont_worker_id(worker);
5863 			pr_cont(":%ps", worker->current_func);
5864 			list_for_each_entry(work, &worker->scheduled, entry)
5865 				pr_cont_work(false, work, &pcws);
5866 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5867 			comma = true;
5868 		}
5869 		pr_cont("\n");
5870 	}
5871 
5872 	list_for_each_entry(work, &pool->worklist, entry) {
5873 		if (get_work_pwq(work) == pwq) {
5874 			has_pending = true;
5875 			break;
5876 		}
5877 	}
5878 	if (has_pending) {
5879 		bool comma = false;
5880 
5881 		pr_info("    pending:");
5882 		list_for_each_entry(work, &pool->worklist, entry) {
5883 			if (get_work_pwq(work) != pwq)
5884 				continue;
5885 
5886 			pr_cont_work(comma, work, &pcws);
5887 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5888 		}
5889 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5890 		pr_cont("\n");
5891 	}
5892 
5893 	if (!list_empty(&pwq->inactive_works)) {
5894 		bool comma = false;
5895 
5896 		pr_info("    inactive:");
5897 		list_for_each_entry(work, &pwq->inactive_works, entry) {
5898 			pr_cont_work(comma, work, &pcws);
5899 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5900 		}
5901 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5902 		pr_cont("\n");
5903 	}
5904 }
5905 
5906 /**
5907  * show_one_workqueue - dump state of specified workqueue
5908  * @wq: workqueue whose state will be printed
5909  */
5910 void show_one_workqueue(struct workqueue_struct *wq)
5911 {
5912 	struct pool_workqueue *pwq;
5913 	bool idle = true;
5914 	unsigned long flags;
5915 
5916 	for_each_pwq(pwq, wq) {
5917 		if (!pwq_is_empty(pwq)) {
5918 			idle = false;
5919 			break;
5920 		}
5921 	}
5922 	if (idle) /* Nothing to print for idle workqueue */
5923 		return;
5924 
5925 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
5926 
5927 	for_each_pwq(pwq, wq) {
5928 		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5929 		if (!pwq_is_empty(pwq)) {
5930 			/*
5931 			 * Defer printing to avoid deadlocks in console
5932 			 * drivers that queue work while holding locks
5933 			 * also taken in their write paths.
5934 			 */
5935 			printk_deferred_enter();
5936 			show_pwq(pwq);
5937 			printk_deferred_exit();
5938 		}
5939 		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5940 		/*
5941 		 * We could be printing a lot from atomic context, e.g.
5942 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
5943 		 * hard lockup.
5944 		 */
5945 		touch_nmi_watchdog();
5946 	}
5947 
5948 }
5949 
5950 /**
5951  * show_one_worker_pool - dump state of specified worker pool
5952  * @pool: worker pool whose state will be printed
5953  */
5954 static void show_one_worker_pool(struct worker_pool *pool)
5955 {
5956 	struct worker *worker;
5957 	bool first = true;
5958 	unsigned long flags;
5959 	unsigned long hung = 0;
5960 
5961 	raw_spin_lock_irqsave(&pool->lock, flags);
5962 	if (pool->nr_workers == pool->nr_idle)
5963 		goto next_pool;
5964 
5965 	/* How long the first pending work is waiting for a worker. */
5966 	if (!list_empty(&pool->worklist))
5967 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5968 
5969 	/*
5970 	 * Defer printing to avoid deadlocks in console drivers that
5971 	 * queue work while holding locks also taken in their write
5972 	 * paths.
5973 	 */
5974 	printk_deferred_enter();
5975 	pr_info("pool %d:", pool->id);
5976 	pr_cont_pool_info(pool);
5977 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
5978 	if (pool->manager)
5979 		pr_cont(" manager: %d",
5980 			task_pid_nr(pool->manager->task));
5981 	list_for_each_entry(worker, &pool->idle_list, entry) {
5982 		pr_cont(" %s", first ? "idle: " : "");
5983 		pr_cont_worker_id(worker);
5984 		first = false;
5985 	}
5986 	pr_cont("\n");
5987 	printk_deferred_exit();
5988 next_pool:
5989 	raw_spin_unlock_irqrestore(&pool->lock, flags);
5990 	/*
5991 	 * We could be printing a lot from atomic context, e.g.
5992 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
5993 	 * hard lockup.
5994 	 */
5995 	touch_nmi_watchdog();
5996 
5997 }
5998 
5999 /**
6000  * show_all_workqueues - dump workqueue state
6001  *
6002  * Called from a sysrq handler and prints out all busy workqueues and pools.
6003  */
6004 void show_all_workqueues(void)
6005 {
6006 	struct workqueue_struct *wq;
6007 	struct worker_pool *pool;
6008 	int pi;
6009 
6010 	rcu_read_lock();
6011 
6012 	pr_info("Showing busy workqueues and worker pools:\n");
6013 
6014 	list_for_each_entry_rcu(wq, &workqueues, list)
6015 		show_one_workqueue(wq);
6016 
6017 	for_each_pool(pool, pi)
6018 		show_one_worker_pool(pool);
6019 
6020 	rcu_read_unlock();
6021 }
6022 
6023 /**
6024  * show_freezable_workqueues - dump freezable workqueue state
6025  *
6026  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6027  * still busy.
6028  */
6029 void show_freezable_workqueues(void)
6030 {
6031 	struct workqueue_struct *wq;
6032 
6033 	rcu_read_lock();
6034 
6035 	pr_info("Showing freezable workqueues that are still busy:\n");
6036 
6037 	list_for_each_entry_rcu(wq, &workqueues, list) {
6038 		if (!(wq->flags & WQ_FREEZABLE))
6039 			continue;
6040 		show_one_workqueue(wq);
6041 	}
6042 
6043 	rcu_read_unlock();
6044 }
6045 
6046 /* used to show worker information through /proc/PID/{comm,stat,status} */
6047 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6048 {
6049 	int off;
6050 
6051 	/* always show the actual comm */
6052 	off = strscpy(buf, task->comm, size);
6053 	if (off < 0)
6054 		return;
6055 
6056 	/* stabilize PF_WQ_WORKER and worker pool association */
6057 	mutex_lock(&wq_pool_attach_mutex);
6058 
6059 	if (task->flags & PF_WQ_WORKER) {
6060 		struct worker *worker = kthread_data(task);
6061 		struct worker_pool *pool = worker->pool;
6062 
6063 		if (pool) {
6064 			raw_spin_lock_irq(&pool->lock);
6065 			/*
6066 			 * ->desc tracks information (wq name or
6067 			 * set_worker_desc()) for the latest execution.  If
6068 			 * current, prepend '+', otherwise '-'.
6069 			 */
6070 			if (worker->desc[0] != '\0') {
6071 				if (worker->current_work)
6072 					scnprintf(buf + off, size - off, "+%s",
6073 						  worker->desc);
6074 				else
6075 					scnprintf(buf + off, size - off, "-%s",
6076 						  worker->desc);
6077 			}
6078 			raw_spin_unlock_irq(&pool->lock);
6079 		}
6080 	}
6081 
6082 	mutex_unlock(&wq_pool_attach_mutex);
6083 }
6084 
6085 #ifdef CONFIG_SMP
6086 
6087 /*
6088  * CPU hotplug.
6089  *
6090  * There are two challenges in supporting CPU hotplug.  Firstly, there
6091  * are a lot of assumptions on strong associations among work, pwq and
6092  * pool which make migrating pending and scheduled works very
6093  * difficult to implement without impacting hot paths.  Secondly,
6094  * worker pools serve mix of short, long and very long running works making
6095  * blocked draining impractical.
6096  *
6097  * This is solved by allowing the pools to be disassociated from the CPU
6098  * running as an unbound one and allowing it to be reattached later if the
6099  * cpu comes back online.
6100  */
6101 
6102 static void unbind_workers(int cpu)
6103 {
6104 	struct worker_pool *pool;
6105 	struct worker *worker;
6106 
6107 	for_each_cpu_worker_pool(pool, cpu) {
6108 		mutex_lock(&wq_pool_attach_mutex);
6109 		raw_spin_lock_irq(&pool->lock);
6110 
6111 		/*
6112 		 * We've blocked all attach/detach operations. Make all workers
6113 		 * unbound and set DISASSOCIATED.  Before this, all workers
6114 		 * must be on the cpu.  After this, they may become diasporas.
6115 		 * And the preemption disabled section in their sched callbacks
6116 		 * are guaranteed to see WORKER_UNBOUND since the code here
6117 		 * is on the same cpu.
6118 		 */
6119 		for_each_pool_worker(worker, pool)
6120 			worker->flags |= WORKER_UNBOUND;
6121 
6122 		pool->flags |= POOL_DISASSOCIATED;
6123 
6124 		/*
6125 		 * The handling of nr_running in sched callbacks are disabled
6126 		 * now.  Zap nr_running.  After this, nr_running stays zero and
6127 		 * need_more_worker() and keep_working() are always true as
6128 		 * long as the worklist is not empty.  This pool now behaves as
6129 		 * an unbound (in terms of concurrency management) pool which
6130 		 * are served by workers tied to the pool.
6131 		 */
6132 		pool->nr_running = 0;
6133 
6134 		/*
6135 		 * With concurrency management just turned off, a busy
6136 		 * worker blocking could lead to lengthy stalls.  Kick off
6137 		 * unbound chain execution of currently pending work items.
6138 		 */
6139 		kick_pool(pool);
6140 
6141 		raw_spin_unlock_irq(&pool->lock);
6142 
6143 		for_each_pool_worker(worker, pool)
6144 			unbind_worker(worker);
6145 
6146 		mutex_unlock(&wq_pool_attach_mutex);
6147 	}
6148 }
6149 
6150 /**
6151  * rebind_workers - rebind all workers of a pool to the associated CPU
6152  * @pool: pool of interest
6153  *
6154  * @pool->cpu is coming online.  Rebind all workers to the CPU.
6155  */
6156 static void rebind_workers(struct worker_pool *pool)
6157 {
6158 	struct worker *worker;
6159 
6160 	lockdep_assert_held(&wq_pool_attach_mutex);
6161 
6162 	/*
6163 	 * Restore CPU affinity of all workers.  As all idle workers should
6164 	 * be on the run-queue of the associated CPU before any local
6165 	 * wake-ups for concurrency management happen, restore CPU affinity
6166 	 * of all workers first and then clear UNBOUND.  As we're called
6167 	 * from CPU_ONLINE, the following shouldn't fail.
6168 	 */
6169 	for_each_pool_worker(worker, pool) {
6170 		kthread_set_per_cpu(worker->task, pool->cpu);
6171 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6172 						  pool_allowed_cpus(pool)) < 0);
6173 	}
6174 
6175 	raw_spin_lock_irq(&pool->lock);
6176 
6177 	pool->flags &= ~POOL_DISASSOCIATED;
6178 
6179 	for_each_pool_worker(worker, pool) {
6180 		unsigned int worker_flags = worker->flags;
6181 
6182 		/*
6183 		 * We want to clear UNBOUND but can't directly call
6184 		 * worker_clr_flags() or adjust nr_running.  Atomically
6185 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6186 		 * @worker will clear REBOUND using worker_clr_flags() when
6187 		 * it initiates the next execution cycle thus restoring
6188 		 * concurrency management.  Note that when or whether
6189 		 * @worker clears REBOUND doesn't affect correctness.
6190 		 *
6191 		 * WRITE_ONCE() is necessary because @worker->flags may be
6192 		 * tested without holding any lock in
6193 		 * wq_worker_running().  Without it, NOT_RUNNING test may
6194 		 * fail incorrectly leading to premature concurrency
6195 		 * management operations.
6196 		 */
6197 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6198 		worker_flags |= WORKER_REBOUND;
6199 		worker_flags &= ~WORKER_UNBOUND;
6200 		WRITE_ONCE(worker->flags, worker_flags);
6201 	}
6202 
6203 	raw_spin_unlock_irq(&pool->lock);
6204 }
6205 
6206 /**
6207  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6208  * @pool: unbound pool of interest
6209  * @cpu: the CPU which is coming up
6210  *
6211  * An unbound pool may end up with a cpumask which doesn't have any online
6212  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6213  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6214  * online CPU before, cpus_allowed of all its workers should be restored.
6215  */
6216 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6217 {
6218 	static cpumask_t cpumask;
6219 	struct worker *worker;
6220 
6221 	lockdep_assert_held(&wq_pool_attach_mutex);
6222 
6223 	/* is @cpu allowed for @pool? */
6224 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6225 		return;
6226 
6227 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6228 
6229 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6230 	for_each_pool_worker(worker, pool)
6231 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6232 }
6233 
6234 int workqueue_prepare_cpu(unsigned int cpu)
6235 {
6236 	struct worker_pool *pool;
6237 
6238 	for_each_cpu_worker_pool(pool, cpu) {
6239 		if (pool->nr_workers)
6240 			continue;
6241 		if (!create_worker(pool))
6242 			return -ENOMEM;
6243 	}
6244 	return 0;
6245 }
6246 
6247 int workqueue_online_cpu(unsigned int cpu)
6248 {
6249 	struct worker_pool *pool;
6250 	struct workqueue_struct *wq;
6251 	int pi;
6252 
6253 	mutex_lock(&wq_pool_mutex);
6254 
6255 	for_each_pool(pool, pi) {
6256 		/* BH pools aren't affected by hotplug */
6257 		if (pool->flags & POOL_BH)
6258 			continue;
6259 
6260 		mutex_lock(&wq_pool_attach_mutex);
6261 		if (pool->cpu == cpu)
6262 			rebind_workers(pool);
6263 		else if (pool->cpu < 0)
6264 			restore_unbound_workers_cpumask(pool, cpu);
6265 		mutex_unlock(&wq_pool_attach_mutex);
6266 	}
6267 
6268 	/* update pod affinity of unbound workqueues */
6269 	list_for_each_entry(wq, &workqueues, list) {
6270 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6271 
6272 		if (attrs) {
6273 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6274 			int tcpu;
6275 
6276 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6277 				wq_update_pod(wq, tcpu, cpu, true);
6278 
6279 			mutex_lock(&wq->mutex);
6280 			wq_update_node_max_active(wq, -1);
6281 			mutex_unlock(&wq->mutex);
6282 		}
6283 	}
6284 
6285 	mutex_unlock(&wq_pool_mutex);
6286 	return 0;
6287 }
6288 
6289 int workqueue_offline_cpu(unsigned int cpu)
6290 {
6291 	struct workqueue_struct *wq;
6292 
6293 	/* unbinding per-cpu workers should happen on the local CPU */
6294 	if (WARN_ON(cpu != smp_processor_id()))
6295 		return -1;
6296 
6297 	unbind_workers(cpu);
6298 
6299 	/* update pod affinity of unbound workqueues */
6300 	mutex_lock(&wq_pool_mutex);
6301 	list_for_each_entry(wq, &workqueues, list) {
6302 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6303 
6304 		if (attrs) {
6305 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6306 			int tcpu;
6307 
6308 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6309 				wq_update_pod(wq, tcpu, cpu, false);
6310 
6311 			mutex_lock(&wq->mutex);
6312 			wq_update_node_max_active(wq, cpu);
6313 			mutex_unlock(&wq->mutex);
6314 		}
6315 	}
6316 	mutex_unlock(&wq_pool_mutex);
6317 
6318 	return 0;
6319 }
6320 
6321 struct work_for_cpu {
6322 	struct work_struct work;
6323 	long (*fn)(void *);
6324 	void *arg;
6325 	long ret;
6326 };
6327 
6328 static void work_for_cpu_fn(struct work_struct *work)
6329 {
6330 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6331 
6332 	wfc->ret = wfc->fn(wfc->arg);
6333 }
6334 
6335 /**
6336  * work_on_cpu_key - run a function in thread context on a particular cpu
6337  * @cpu: the cpu to run on
6338  * @fn: the function to run
6339  * @arg: the function arg
6340  * @key: The lock class key for lock debugging purposes
6341  *
6342  * It is up to the caller to ensure that the cpu doesn't go offline.
6343  * The caller must not hold any locks which would prevent @fn from completing.
6344  *
6345  * Return: The value @fn returns.
6346  */
6347 long work_on_cpu_key(int cpu, long (*fn)(void *),
6348 		     void *arg, struct lock_class_key *key)
6349 {
6350 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6351 
6352 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6353 	schedule_work_on(cpu, &wfc.work);
6354 	flush_work(&wfc.work);
6355 	destroy_work_on_stack(&wfc.work);
6356 	return wfc.ret;
6357 }
6358 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6359 
6360 /**
6361  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6362  * @cpu: the cpu to run on
6363  * @fn:  the function to run
6364  * @arg: the function argument
6365  * @key: The lock class key for lock debugging purposes
6366  *
6367  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6368  * any locks which would prevent @fn from completing.
6369  *
6370  * Return: The value @fn returns.
6371  */
6372 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6373 			  void *arg, struct lock_class_key *key)
6374 {
6375 	long ret = -ENODEV;
6376 
6377 	cpus_read_lock();
6378 	if (cpu_online(cpu))
6379 		ret = work_on_cpu_key(cpu, fn, arg, key);
6380 	cpus_read_unlock();
6381 	return ret;
6382 }
6383 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6384 #endif /* CONFIG_SMP */
6385 
6386 #ifdef CONFIG_FREEZER
6387 
6388 /**
6389  * freeze_workqueues_begin - begin freezing workqueues
6390  *
6391  * Start freezing workqueues.  After this function returns, all freezable
6392  * workqueues will queue new works to their inactive_works list instead of
6393  * pool->worklist.
6394  *
6395  * CONTEXT:
6396  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6397  */
6398 void freeze_workqueues_begin(void)
6399 {
6400 	struct workqueue_struct *wq;
6401 
6402 	mutex_lock(&wq_pool_mutex);
6403 
6404 	WARN_ON_ONCE(workqueue_freezing);
6405 	workqueue_freezing = true;
6406 
6407 	list_for_each_entry(wq, &workqueues, list) {
6408 		mutex_lock(&wq->mutex);
6409 		wq_adjust_max_active(wq);
6410 		mutex_unlock(&wq->mutex);
6411 	}
6412 
6413 	mutex_unlock(&wq_pool_mutex);
6414 }
6415 
6416 /**
6417  * freeze_workqueues_busy - are freezable workqueues still busy?
6418  *
6419  * Check whether freezing is complete.  This function must be called
6420  * between freeze_workqueues_begin() and thaw_workqueues().
6421  *
6422  * CONTEXT:
6423  * Grabs and releases wq_pool_mutex.
6424  *
6425  * Return:
6426  * %true if some freezable workqueues are still busy.  %false if freezing
6427  * is complete.
6428  */
6429 bool freeze_workqueues_busy(void)
6430 {
6431 	bool busy = false;
6432 	struct workqueue_struct *wq;
6433 	struct pool_workqueue *pwq;
6434 
6435 	mutex_lock(&wq_pool_mutex);
6436 
6437 	WARN_ON_ONCE(!workqueue_freezing);
6438 
6439 	list_for_each_entry(wq, &workqueues, list) {
6440 		if (!(wq->flags & WQ_FREEZABLE))
6441 			continue;
6442 		/*
6443 		 * nr_active is monotonically decreasing.  It's safe
6444 		 * to peek without lock.
6445 		 */
6446 		rcu_read_lock();
6447 		for_each_pwq(pwq, wq) {
6448 			WARN_ON_ONCE(pwq->nr_active < 0);
6449 			if (pwq->nr_active) {
6450 				busy = true;
6451 				rcu_read_unlock();
6452 				goto out_unlock;
6453 			}
6454 		}
6455 		rcu_read_unlock();
6456 	}
6457 out_unlock:
6458 	mutex_unlock(&wq_pool_mutex);
6459 	return busy;
6460 }
6461 
6462 /**
6463  * thaw_workqueues - thaw workqueues
6464  *
6465  * Thaw workqueues.  Normal queueing is restored and all collected
6466  * frozen works are transferred to their respective pool worklists.
6467  *
6468  * CONTEXT:
6469  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6470  */
6471 void thaw_workqueues(void)
6472 {
6473 	struct workqueue_struct *wq;
6474 
6475 	mutex_lock(&wq_pool_mutex);
6476 
6477 	if (!workqueue_freezing)
6478 		goto out_unlock;
6479 
6480 	workqueue_freezing = false;
6481 
6482 	/* restore max_active and repopulate worklist */
6483 	list_for_each_entry(wq, &workqueues, list) {
6484 		mutex_lock(&wq->mutex);
6485 		wq_adjust_max_active(wq);
6486 		mutex_unlock(&wq->mutex);
6487 	}
6488 
6489 out_unlock:
6490 	mutex_unlock(&wq_pool_mutex);
6491 }
6492 #endif /* CONFIG_FREEZER */
6493 
6494 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6495 {
6496 	LIST_HEAD(ctxs);
6497 	int ret = 0;
6498 	struct workqueue_struct *wq;
6499 	struct apply_wqattrs_ctx *ctx, *n;
6500 
6501 	lockdep_assert_held(&wq_pool_mutex);
6502 
6503 	list_for_each_entry(wq, &workqueues, list) {
6504 		if (!(wq->flags & WQ_UNBOUND))
6505 			continue;
6506 
6507 		/* creating multiple pwqs breaks ordering guarantee */
6508 		if (!list_empty(&wq->pwqs)) {
6509 			if (wq->flags & __WQ_ORDERED_EXPLICIT)
6510 				continue;
6511 			wq->flags &= ~__WQ_ORDERED;
6512 		}
6513 
6514 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6515 		if (IS_ERR(ctx)) {
6516 			ret = PTR_ERR(ctx);
6517 			break;
6518 		}
6519 
6520 		list_add_tail(&ctx->list, &ctxs);
6521 	}
6522 
6523 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6524 		if (!ret)
6525 			apply_wqattrs_commit(ctx);
6526 		apply_wqattrs_cleanup(ctx);
6527 	}
6528 
6529 	if (!ret) {
6530 		mutex_lock(&wq_pool_attach_mutex);
6531 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6532 		mutex_unlock(&wq_pool_attach_mutex);
6533 	}
6534 	return ret;
6535 }
6536 
6537 /**
6538  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6539  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6540  *
6541  * This function can be called from cpuset code to provide a set of isolated
6542  * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6543  * either cpus_read_lock or cpus_write_lock.
6544  */
6545 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6546 {
6547 	cpumask_var_t cpumask;
6548 	int ret = 0;
6549 
6550 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6551 		return -ENOMEM;
6552 
6553 	lockdep_assert_cpus_held();
6554 	mutex_lock(&wq_pool_mutex);
6555 
6556 	/* Save the current isolated cpumask & export it via sysfs */
6557 	cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6558 
6559 	/*
6560 	 * If the operation fails, it will fall back to
6561 	 * wq_requested_unbound_cpumask which is initially set to
6562 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6563 	 * by any subsequent write to workqueue/cpumask sysfs file.
6564 	 */
6565 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6566 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6567 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6568 		ret = workqueue_apply_unbound_cpumask(cpumask);
6569 
6570 	mutex_unlock(&wq_pool_mutex);
6571 	free_cpumask_var(cpumask);
6572 	return ret;
6573 }
6574 
6575 static int parse_affn_scope(const char *val)
6576 {
6577 	int i;
6578 
6579 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6580 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6581 			return i;
6582 	}
6583 	return -EINVAL;
6584 }
6585 
6586 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6587 {
6588 	struct workqueue_struct *wq;
6589 	int affn, cpu;
6590 
6591 	affn = parse_affn_scope(val);
6592 	if (affn < 0)
6593 		return affn;
6594 	if (affn == WQ_AFFN_DFL)
6595 		return -EINVAL;
6596 
6597 	cpus_read_lock();
6598 	mutex_lock(&wq_pool_mutex);
6599 
6600 	wq_affn_dfl = affn;
6601 
6602 	list_for_each_entry(wq, &workqueues, list) {
6603 		for_each_online_cpu(cpu) {
6604 			wq_update_pod(wq, cpu, cpu, true);
6605 		}
6606 	}
6607 
6608 	mutex_unlock(&wq_pool_mutex);
6609 	cpus_read_unlock();
6610 
6611 	return 0;
6612 }
6613 
6614 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6615 {
6616 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6617 }
6618 
6619 static const struct kernel_param_ops wq_affn_dfl_ops = {
6620 	.set	= wq_affn_dfl_set,
6621 	.get	= wq_affn_dfl_get,
6622 };
6623 
6624 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6625 
6626 #ifdef CONFIG_SYSFS
6627 /*
6628  * Workqueues with WQ_SYSFS flag set is visible to userland via
6629  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
6630  * following attributes.
6631  *
6632  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
6633  *  max_active		RW int	: maximum number of in-flight work items
6634  *
6635  * Unbound workqueues have the following extra attributes.
6636  *
6637  *  nice		RW int	: nice value of the workers
6638  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
6639  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
6640  *  affinity_strict	RW bool : worker CPU affinity is strict
6641  */
6642 struct wq_device {
6643 	struct workqueue_struct		*wq;
6644 	struct device			dev;
6645 };
6646 
6647 static struct workqueue_struct *dev_to_wq(struct device *dev)
6648 {
6649 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6650 
6651 	return wq_dev->wq;
6652 }
6653 
6654 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6655 			    char *buf)
6656 {
6657 	struct workqueue_struct *wq = dev_to_wq(dev);
6658 
6659 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6660 }
6661 static DEVICE_ATTR_RO(per_cpu);
6662 
6663 static ssize_t max_active_show(struct device *dev,
6664 			       struct device_attribute *attr, char *buf)
6665 {
6666 	struct workqueue_struct *wq = dev_to_wq(dev);
6667 
6668 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6669 }
6670 
6671 static ssize_t max_active_store(struct device *dev,
6672 				struct device_attribute *attr, const char *buf,
6673 				size_t count)
6674 {
6675 	struct workqueue_struct *wq = dev_to_wq(dev);
6676 	int val;
6677 
6678 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6679 		return -EINVAL;
6680 
6681 	workqueue_set_max_active(wq, val);
6682 	return count;
6683 }
6684 static DEVICE_ATTR_RW(max_active);
6685 
6686 static struct attribute *wq_sysfs_attrs[] = {
6687 	&dev_attr_per_cpu.attr,
6688 	&dev_attr_max_active.attr,
6689 	NULL,
6690 };
6691 ATTRIBUTE_GROUPS(wq_sysfs);
6692 
6693 static void apply_wqattrs_lock(void)
6694 {
6695 	/* CPUs should stay stable across pwq creations and installations */
6696 	cpus_read_lock();
6697 	mutex_lock(&wq_pool_mutex);
6698 }
6699 
6700 static void apply_wqattrs_unlock(void)
6701 {
6702 	mutex_unlock(&wq_pool_mutex);
6703 	cpus_read_unlock();
6704 }
6705 
6706 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
6707 			    char *buf)
6708 {
6709 	struct workqueue_struct *wq = dev_to_wq(dev);
6710 	int written;
6711 
6712 	mutex_lock(&wq->mutex);
6713 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
6714 	mutex_unlock(&wq->mutex);
6715 
6716 	return written;
6717 }
6718 
6719 /* prepare workqueue_attrs for sysfs store operations */
6720 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6721 {
6722 	struct workqueue_attrs *attrs;
6723 
6724 	lockdep_assert_held(&wq_pool_mutex);
6725 
6726 	attrs = alloc_workqueue_attrs();
6727 	if (!attrs)
6728 		return NULL;
6729 
6730 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
6731 	return attrs;
6732 }
6733 
6734 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6735 			     const char *buf, size_t count)
6736 {
6737 	struct workqueue_struct *wq = dev_to_wq(dev);
6738 	struct workqueue_attrs *attrs;
6739 	int ret = -ENOMEM;
6740 
6741 	apply_wqattrs_lock();
6742 
6743 	attrs = wq_sysfs_prep_attrs(wq);
6744 	if (!attrs)
6745 		goto out_unlock;
6746 
6747 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6748 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6749 		ret = apply_workqueue_attrs_locked(wq, attrs);
6750 	else
6751 		ret = -EINVAL;
6752 
6753 out_unlock:
6754 	apply_wqattrs_unlock();
6755 	free_workqueue_attrs(attrs);
6756 	return ret ?: count;
6757 }
6758 
6759 static ssize_t wq_cpumask_show(struct device *dev,
6760 			       struct device_attribute *attr, char *buf)
6761 {
6762 	struct workqueue_struct *wq = dev_to_wq(dev);
6763 	int written;
6764 
6765 	mutex_lock(&wq->mutex);
6766 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6767 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
6768 	mutex_unlock(&wq->mutex);
6769 	return written;
6770 }
6771 
6772 static ssize_t wq_cpumask_store(struct device *dev,
6773 				struct device_attribute *attr,
6774 				const char *buf, size_t count)
6775 {
6776 	struct workqueue_struct *wq = dev_to_wq(dev);
6777 	struct workqueue_attrs *attrs;
6778 	int ret = -ENOMEM;
6779 
6780 	apply_wqattrs_lock();
6781 
6782 	attrs = wq_sysfs_prep_attrs(wq);
6783 	if (!attrs)
6784 		goto out_unlock;
6785 
6786 	ret = cpumask_parse(buf, attrs->cpumask);
6787 	if (!ret)
6788 		ret = apply_workqueue_attrs_locked(wq, attrs);
6789 
6790 out_unlock:
6791 	apply_wqattrs_unlock();
6792 	free_workqueue_attrs(attrs);
6793 	return ret ?: count;
6794 }
6795 
6796 static ssize_t wq_affn_scope_show(struct device *dev,
6797 				  struct device_attribute *attr, char *buf)
6798 {
6799 	struct workqueue_struct *wq = dev_to_wq(dev);
6800 	int written;
6801 
6802 	mutex_lock(&wq->mutex);
6803 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
6804 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
6805 				    wq_affn_names[WQ_AFFN_DFL],
6806 				    wq_affn_names[wq_affn_dfl]);
6807 	else
6808 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
6809 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
6810 	mutex_unlock(&wq->mutex);
6811 
6812 	return written;
6813 }
6814 
6815 static ssize_t wq_affn_scope_store(struct device *dev,
6816 				   struct device_attribute *attr,
6817 				   const char *buf, size_t count)
6818 {
6819 	struct workqueue_struct *wq = dev_to_wq(dev);
6820 	struct workqueue_attrs *attrs;
6821 	int affn, ret = -ENOMEM;
6822 
6823 	affn = parse_affn_scope(buf);
6824 	if (affn < 0)
6825 		return affn;
6826 
6827 	apply_wqattrs_lock();
6828 	attrs = wq_sysfs_prep_attrs(wq);
6829 	if (attrs) {
6830 		attrs->affn_scope = affn;
6831 		ret = apply_workqueue_attrs_locked(wq, attrs);
6832 	}
6833 	apply_wqattrs_unlock();
6834 	free_workqueue_attrs(attrs);
6835 	return ret ?: count;
6836 }
6837 
6838 static ssize_t wq_affinity_strict_show(struct device *dev,
6839 				       struct device_attribute *attr, char *buf)
6840 {
6841 	struct workqueue_struct *wq = dev_to_wq(dev);
6842 
6843 	return scnprintf(buf, PAGE_SIZE, "%d\n",
6844 			 wq->unbound_attrs->affn_strict);
6845 }
6846 
6847 static ssize_t wq_affinity_strict_store(struct device *dev,
6848 					struct device_attribute *attr,
6849 					const char *buf, size_t count)
6850 {
6851 	struct workqueue_struct *wq = dev_to_wq(dev);
6852 	struct workqueue_attrs *attrs;
6853 	int v, ret = -ENOMEM;
6854 
6855 	if (sscanf(buf, "%d", &v) != 1)
6856 		return -EINVAL;
6857 
6858 	apply_wqattrs_lock();
6859 	attrs = wq_sysfs_prep_attrs(wq);
6860 	if (attrs) {
6861 		attrs->affn_strict = (bool)v;
6862 		ret = apply_workqueue_attrs_locked(wq, attrs);
6863 	}
6864 	apply_wqattrs_unlock();
6865 	free_workqueue_attrs(attrs);
6866 	return ret ?: count;
6867 }
6868 
6869 static struct device_attribute wq_sysfs_unbound_attrs[] = {
6870 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6871 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
6872 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
6873 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6874 	__ATTR_NULL,
6875 };
6876 
6877 static const struct bus_type wq_subsys = {
6878 	.name				= "workqueue",
6879 	.dev_groups			= wq_sysfs_groups,
6880 };
6881 
6882 /**
6883  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
6884  *  @cpumask: the cpumask to set
6885  *
6886  *  The low-level workqueues cpumask is a global cpumask that limits
6887  *  the affinity of all unbound workqueues.  This function check the @cpumask
6888  *  and apply it to all unbound workqueues and updates all pwqs of them.
6889  *
6890  *  Return:	0	- Success
6891  *		-EINVAL	- Invalid @cpumask
6892  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
6893  */
6894 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
6895 {
6896 	int ret = -EINVAL;
6897 
6898 	/*
6899 	 * Not excluding isolated cpus on purpose.
6900 	 * If the user wishes to include them, we allow that.
6901 	 */
6902 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
6903 	if (!cpumask_empty(cpumask)) {
6904 		apply_wqattrs_lock();
6905 		cpumask_copy(wq_requested_unbound_cpumask, cpumask);
6906 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
6907 			ret = 0;
6908 			goto out_unlock;
6909 		}
6910 
6911 		ret = workqueue_apply_unbound_cpumask(cpumask);
6912 
6913 out_unlock:
6914 		apply_wqattrs_unlock();
6915 	}
6916 
6917 	return ret;
6918 }
6919 
6920 static ssize_t __wq_cpumask_show(struct device *dev,
6921 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
6922 {
6923 	int written;
6924 
6925 	mutex_lock(&wq_pool_mutex);
6926 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
6927 	mutex_unlock(&wq_pool_mutex);
6928 
6929 	return written;
6930 }
6931 
6932 static ssize_t wq_unbound_cpumask_show(struct device *dev,
6933 		struct device_attribute *attr, char *buf)
6934 {
6935 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
6936 }
6937 
6938 static ssize_t wq_requested_cpumask_show(struct device *dev,
6939 		struct device_attribute *attr, char *buf)
6940 {
6941 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
6942 }
6943 
6944 static ssize_t wq_isolated_cpumask_show(struct device *dev,
6945 		struct device_attribute *attr, char *buf)
6946 {
6947 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
6948 }
6949 
6950 static ssize_t wq_unbound_cpumask_store(struct device *dev,
6951 		struct device_attribute *attr, const char *buf, size_t count)
6952 {
6953 	cpumask_var_t cpumask;
6954 	int ret;
6955 
6956 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6957 		return -ENOMEM;
6958 
6959 	ret = cpumask_parse(buf, cpumask);
6960 	if (!ret)
6961 		ret = workqueue_set_unbound_cpumask(cpumask);
6962 
6963 	free_cpumask_var(cpumask);
6964 	return ret ? ret : count;
6965 }
6966 
6967 static struct device_attribute wq_sysfs_cpumask_attrs[] = {
6968 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
6969 	       wq_unbound_cpumask_store),
6970 	__ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
6971 	__ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
6972 	__ATTR_NULL,
6973 };
6974 
6975 static int __init wq_sysfs_init(void)
6976 {
6977 	struct device *dev_root;
6978 	int err;
6979 
6980 	err = subsys_virtual_register(&wq_subsys, NULL);
6981 	if (err)
6982 		return err;
6983 
6984 	dev_root = bus_get_dev_root(&wq_subsys);
6985 	if (dev_root) {
6986 		struct device_attribute *attr;
6987 
6988 		for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
6989 			err = device_create_file(dev_root, attr);
6990 			if (err)
6991 				break;
6992 		}
6993 		put_device(dev_root);
6994 	}
6995 	return err;
6996 }
6997 core_initcall(wq_sysfs_init);
6998 
6999 static void wq_device_release(struct device *dev)
7000 {
7001 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7002 
7003 	kfree(wq_dev);
7004 }
7005 
7006 /**
7007  * workqueue_sysfs_register - make a workqueue visible in sysfs
7008  * @wq: the workqueue to register
7009  *
7010  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7011  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7012  * which is the preferred method.
7013  *
7014  * Workqueue user should use this function directly iff it wants to apply
7015  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7016  * apply_workqueue_attrs() may race against userland updating the
7017  * attributes.
7018  *
7019  * Return: 0 on success, -errno on failure.
7020  */
7021 int workqueue_sysfs_register(struct workqueue_struct *wq)
7022 {
7023 	struct wq_device *wq_dev;
7024 	int ret;
7025 
7026 	/*
7027 	 * Adjusting max_active or creating new pwqs by applying
7028 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
7029 	 * workqueues.
7030 	 */
7031 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
7032 		return -EINVAL;
7033 
7034 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7035 	if (!wq_dev)
7036 		return -ENOMEM;
7037 
7038 	wq_dev->wq = wq;
7039 	wq_dev->dev.bus = &wq_subsys;
7040 	wq_dev->dev.release = wq_device_release;
7041 	dev_set_name(&wq_dev->dev, "%s", wq->name);
7042 
7043 	/*
7044 	 * unbound_attrs are created separately.  Suppress uevent until
7045 	 * everything is ready.
7046 	 */
7047 	dev_set_uevent_suppress(&wq_dev->dev, true);
7048 
7049 	ret = device_register(&wq_dev->dev);
7050 	if (ret) {
7051 		put_device(&wq_dev->dev);
7052 		wq->wq_dev = NULL;
7053 		return ret;
7054 	}
7055 
7056 	if (wq->flags & WQ_UNBOUND) {
7057 		struct device_attribute *attr;
7058 
7059 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7060 			ret = device_create_file(&wq_dev->dev, attr);
7061 			if (ret) {
7062 				device_unregister(&wq_dev->dev);
7063 				wq->wq_dev = NULL;
7064 				return ret;
7065 			}
7066 		}
7067 	}
7068 
7069 	dev_set_uevent_suppress(&wq_dev->dev, false);
7070 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7071 	return 0;
7072 }
7073 
7074 /**
7075  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7076  * @wq: the workqueue to unregister
7077  *
7078  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7079  */
7080 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7081 {
7082 	struct wq_device *wq_dev = wq->wq_dev;
7083 
7084 	if (!wq->wq_dev)
7085 		return;
7086 
7087 	wq->wq_dev = NULL;
7088 	device_unregister(&wq_dev->dev);
7089 }
7090 #else	/* CONFIG_SYSFS */
7091 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7092 #endif	/* CONFIG_SYSFS */
7093 
7094 /*
7095  * Workqueue watchdog.
7096  *
7097  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7098  * flush dependency, a concurrency managed work item which stays RUNNING
7099  * indefinitely.  Workqueue stalls can be very difficult to debug as the
7100  * usual warning mechanisms don't trigger and internal workqueue state is
7101  * largely opaque.
7102  *
7103  * Workqueue watchdog monitors all worker pools periodically and dumps
7104  * state if some pools failed to make forward progress for a while where
7105  * forward progress is defined as the first item on ->worklist changing.
7106  *
7107  * This mechanism is controlled through the kernel parameter
7108  * "workqueue.watchdog_thresh" which can be updated at runtime through the
7109  * corresponding sysfs parameter file.
7110  */
7111 #ifdef CONFIG_WQ_WATCHDOG
7112 
7113 static unsigned long wq_watchdog_thresh = 30;
7114 static struct timer_list wq_watchdog_timer;
7115 
7116 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7117 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7118 
7119 /*
7120  * Show workers that might prevent the processing of pending work items.
7121  * The only candidates are CPU-bound workers in the running state.
7122  * Pending work items should be handled by another idle worker
7123  * in all other situations.
7124  */
7125 static void show_cpu_pool_hog(struct worker_pool *pool)
7126 {
7127 	struct worker *worker;
7128 	unsigned long flags;
7129 	int bkt;
7130 
7131 	raw_spin_lock_irqsave(&pool->lock, flags);
7132 
7133 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7134 		if (task_is_running(worker->task)) {
7135 			/*
7136 			 * Defer printing to avoid deadlocks in console
7137 			 * drivers that queue work while holding locks
7138 			 * also taken in their write paths.
7139 			 */
7140 			printk_deferred_enter();
7141 
7142 			pr_info("pool %d:\n", pool->id);
7143 			sched_show_task(worker->task);
7144 
7145 			printk_deferred_exit();
7146 		}
7147 	}
7148 
7149 	raw_spin_unlock_irqrestore(&pool->lock, flags);
7150 }
7151 
7152 static void show_cpu_pools_hogs(void)
7153 {
7154 	struct worker_pool *pool;
7155 	int pi;
7156 
7157 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7158 
7159 	rcu_read_lock();
7160 
7161 	for_each_pool(pool, pi) {
7162 		if (pool->cpu_stall)
7163 			show_cpu_pool_hog(pool);
7164 
7165 	}
7166 
7167 	rcu_read_unlock();
7168 }
7169 
7170 static void wq_watchdog_reset_touched(void)
7171 {
7172 	int cpu;
7173 
7174 	wq_watchdog_touched = jiffies;
7175 	for_each_possible_cpu(cpu)
7176 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7177 }
7178 
7179 static void wq_watchdog_timer_fn(struct timer_list *unused)
7180 {
7181 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7182 	bool lockup_detected = false;
7183 	bool cpu_pool_stall = false;
7184 	unsigned long now = jiffies;
7185 	struct worker_pool *pool;
7186 	int pi;
7187 
7188 	if (!thresh)
7189 		return;
7190 
7191 	rcu_read_lock();
7192 
7193 	for_each_pool(pool, pi) {
7194 		unsigned long pool_ts, touched, ts;
7195 
7196 		pool->cpu_stall = false;
7197 		if (list_empty(&pool->worklist))
7198 			continue;
7199 
7200 		/*
7201 		 * If a virtual machine is stopped by the host it can look to
7202 		 * the watchdog like a stall.
7203 		 */
7204 		kvm_check_and_clear_guest_paused();
7205 
7206 		/* get the latest of pool and touched timestamps */
7207 		if (pool->cpu >= 0)
7208 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7209 		else
7210 			touched = READ_ONCE(wq_watchdog_touched);
7211 		pool_ts = READ_ONCE(pool->watchdog_ts);
7212 
7213 		if (time_after(pool_ts, touched))
7214 			ts = pool_ts;
7215 		else
7216 			ts = touched;
7217 
7218 		/* did we stall? */
7219 		if (time_after(now, ts + thresh)) {
7220 			lockup_detected = true;
7221 			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7222 				pool->cpu_stall = true;
7223 				cpu_pool_stall = true;
7224 			}
7225 			pr_emerg("BUG: workqueue lockup - pool");
7226 			pr_cont_pool_info(pool);
7227 			pr_cont(" stuck for %us!\n",
7228 				jiffies_to_msecs(now - pool_ts) / 1000);
7229 		}
7230 
7231 
7232 	}
7233 
7234 	rcu_read_unlock();
7235 
7236 	if (lockup_detected)
7237 		show_all_workqueues();
7238 
7239 	if (cpu_pool_stall)
7240 		show_cpu_pools_hogs();
7241 
7242 	wq_watchdog_reset_touched();
7243 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7244 }
7245 
7246 notrace void wq_watchdog_touch(int cpu)
7247 {
7248 	if (cpu >= 0)
7249 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7250 
7251 	wq_watchdog_touched = jiffies;
7252 }
7253 
7254 static void wq_watchdog_set_thresh(unsigned long thresh)
7255 {
7256 	wq_watchdog_thresh = 0;
7257 	del_timer_sync(&wq_watchdog_timer);
7258 
7259 	if (thresh) {
7260 		wq_watchdog_thresh = thresh;
7261 		wq_watchdog_reset_touched();
7262 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7263 	}
7264 }
7265 
7266 static int wq_watchdog_param_set_thresh(const char *val,
7267 					const struct kernel_param *kp)
7268 {
7269 	unsigned long thresh;
7270 	int ret;
7271 
7272 	ret = kstrtoul(val, 0, &thresh);
7273 	if (ret)
7274 		return ret;
7275 
7276 	if (system_wq)
7277 		wq_watchdog_set_thresh(thresh);
7278 	else
7279 		wq_watchdog_thresh = thresh;
7280 
7281 	return 0;
7282 }
7283 
7284 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7285 	.set	= wq_watchdog_param_set_thresh,
7286 	.get	= param_get_ulong,
7287 };
7288 
7289 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7290 		0644);
7291 
7292 static void wq_watchdog_init(void)
7293 {
7294 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7295 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7296 }
7297 
7298 #else	/* CONFIG_WQ_WATCHDOG */
7299 
7300 static inline void wq_watchdog_init(void) { }
7301 
7302 #endif	/* CONFIG_WQ_WATCHDOG */
7303 
7304 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7305 {
7306 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7307 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7308 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7309 		return;
7310 	}
7311 
7312 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7313 }
7314 
7315 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7316 {
7317 	BUG_ON(init_worker_pool(pool));
7318 	pool->cpu = cpu;
7319 	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7320 	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7321 	pool->attrs->nice = nice;
7322 	pool->attrs->affn_strict = true;
7323 	pool->node = cpu_to_node(cpu);
7324 
7325 	/* alloc pool ID */
7326 	mutex_lock(&wq_pool_mutex);
7327 	BUG_ON(worker_pool_assign_id(pool));
7328 	mutex_unlock(&wq_pool_mutex);
7329 }
7330 
7331 /**
7332  * workqueue_init_early - early init for workqueue subsystem
7333  *
7334  * This is the first step of three-staged workqueue subsystem initialization and
7335  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7336  * up. It sets up all the data structures and system workqueues and allows early
7337  * boot code to create workqueues and queue/cancel work items. Actual work item
7338  * execution starts only after kthreads can be created and scheduled right
7339  * before early initcalls.
7340  */
7341 void __init workqueue_init_early(void)
7342 {
7343 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7344 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7345 	int i, cpu;
7346 
7347 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7348 
7349 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7350 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7351 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7352 
7353 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7354 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7355 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7356 	if (!cpumask_empty(&wq_cmdline_cpumask))
7357 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7358 
7359 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7360 
7361 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7362 
7363 	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7364 	BUG_ON(!wq_update_pod_attrs_buf);
7365 
7366 	/*
7367 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7368 	 * This allows workqueue items to be moved to HK CPUs.
7369 	 */
7370 	if (housekeeping_enabled(HK_TYPE_TICK))
7371 		wq_power_efficient = true;
7372 
7373 	/* initialize WQ_AFFN_SYSTEM pods */
7374 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7375 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7376 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7377 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7378 
7379 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7380 
7381 	pt->nr_pods = 1;
7382 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7383 	pt->pod_node[0] = NUMA_NO_NODE;
7384 	pt->cpu_pod[0] = 0;
7385 
7386 	/* initialize BH and CPU pools */
7387 	for_each_possible_cpu(cpu) {
7388 		struct worker_pool *pool;
7389 
7390 		i = 0;
7391 		for_each_bh_worker_pool(pool, cpu) {
7392 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7393 			pool->flags |= POOL_BH;
7394 		}
7395 
7396 		i = 0;
7397 		for_each_cpu_worker_pool(pool, cpu)
7398 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7399 	}
7400 
7401 	/* create default unbound and ordered wq attrs */
7402 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7403 		struct workqueue_attrs *attrs;
7404 
7405 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7406 		attrs->nice = std_nice[i];
7407 		unbound_std_wq_attrs[i] = attrs;
7408 
7409 		/*
7410 		 * An ordered wq should have only one pwq as ordering is
7411 		 * guaranteed by max_active which is enforced by pwqs.
7412 		 */
7413 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7414 		attrs->nice = std_nice[i];
7415 		attrs->ordered = true;
7416 		ordered_wq_attrs[i] = attrs;
7417 	}
7418 
7419 	system_wq = alloc_workqueue("events", 0, 0);
7420 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7421 	system_long_wq = alloc_workqueue("events_long", 0, 0);
7422 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7423 					    WQ_MAX_ACTIVE);
7424 	system_freezable_wq = alloc_workqueue("events_freezable",
7425 					      WQ_FREEZABLE, 0);
7426 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7427 					      WQ_POWER_EFFICIENT, 0);
7428 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7429 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7430 					      0);
7431 	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7432 	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7433 					       WQ_BH | WQ_HIGHPRI, 0);
7434 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7435 	       !system_unbound_wq || !system_freezable_wq ||
7436 	       !system_power_efficient_wq ||
7437 	       !system_freezable_power_efficient_wq ||
7438 	       !system_bh_wq || !system_bh_highpri_wq);
7439 }
7440 
7441 static void __init wq_cpu_intensive_thresh_init(void)
7442 {
7443 	unsigned long thresh;
7444 	unsigned long bogo;
7445 
7446 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7447 	BUG_ON(IS_ERR(pwq_release_worker));
7448 
7449 	/* if the user set it to a specific value, keep it */
7450 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7451 		return;
7452 
7453 	/*
7454 	 * The default of 10ms is derived from the fact that most modern (as of
7455 	 * 2023) processors can do a lot in 10ms and that it's just below what
7456 	 * most consider human-perceivable. However, the kernel also runs on a
7457 	 * lot slower CPUs including microcontrollers where the threshold is way
7458 	 * too low.
7459 	 *
7460 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7461 	 * This is by no means accurate but it doesn't have to be. The mechanism
7462 	 * is still useful even when the threshold is fully scaled up. Also, as
7463 	 * the reports would usually be applicable to everyone, some machines
7464 	 * operating on longer thresholds won't significantly diminish their
7465 	 * usefulness.
7466 	 */
7467 	thresh = 10 * USEC_PER_MSEC;
7468 
7469 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7470 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7471 	if (bogo < 4000)
7472 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7473 
7474 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7475 		 loops_per_jiffy, bogo, thresh);
7476 
7477 	wq_cpu_intensive_thresh_us = thresh;
7478 }
7479 
7480 /**
7481  * workqueue_init - bring workqueue subsystem fully online
7482  *
7483  * This is the second step of three-staged workqueue subsystem initialization
7484  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7485  * been created and work items queued on them, but there are no kworkers
7486  * executing the work items yet. Populate the worker pools with the initial
7487  * workers and enable future kworker creations.
7488  */
7489 void __init workqueue_init(void)
7490 {
7491 	struct workqueue_struct *wq;
7492 	struct worker_pool *pool;
7493 	int cpu, bkt;
7494 
7495 	wq_cpu_intensive_thresh_init();
7496 
7497 	mutex_lock(&wq_pool_mutex);
7498 
7499 	/*
7500 	 * Per-cpu pools created earlier could be missing node hint. Fix them
7501 	 * up. Also, create a rescuer for workqueues that requested it.
7502 	 */
7503 	for_each_possible_cpu(cpu) {
7504 		for_each_bh_worker_pool(pool, cpu)
7505 			pool->node = cpu_to_node(cpu);
7506 		for_each_cpu_worker_pool(pool, cpu)
7507 			pool->node = cpu_to_node(cpu);
7508 	}
7509 
7510 	list_for_each_entry(wq, &workqueues, list) {
7511 		WARN(init_rescuer(wq),
7512 		     "workqueue: failed to create early rescuer for %s",
7513 		     wq->name);
7514 	}
7515 
7516 	mutex_unlock(&wq_pool_mutex);
7517 
7518 	/*
7519 	 * Create the initial workers. A BH pool has one pseudo worker that
7520 	 * represents the shared BH execution context and thus doesn't get
7521 	 * affected by hotplug events. Create the BH pseudo workers for all
7522 	 * possible CPUs here.
7523 	 */
7524 	for_each_possible_cpu(cpu)
7525 		for_each_bh_worker_pool(pool, cpu)
7526 			BUG_ON(!create_worker(pool));
7527 
7528 	for_each_online_cpu(cpu) {
7529 		for_each_cpu_worker_pool(pool, cpu) {
7530 			pool->flags &= ~POOL_DISASSOCIATED;
7531 			BUG_ON(!create_worker(pool));
7532 		}
7533 	}
7534 
7535 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7536 		BUG_ON(!create_worker(pool));
7537 
7538 	wq_online = true;
7539 	wq_watchdog_init();
7540 }
7541 
7542 /*
7543  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7544  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7545  * and consecutive pod ID. The rest of @pt is initialized accordingly.
7546  */
7547 static void __init init_pod_type(struct wq_pod_type *pt,
7548 				 bool (*cpus_share_pod)(int, int))
7549 {
7550 	int cur, pre, cpu, pod;
7551 
7552 	pt->nr_pods = 0;
7553 
7554 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7555 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7556 	BUG_ON(!pt->cpu_pod);
7557 
7558 	for_each_possible_cpu(cur) {
7559 		for_each_possible_cpu(pre) {
7560 			if (pre >= cur) {
7561 				pt->cpu_pod[cur] = pt->nr_pods++;
7562 				break;
7563 			}
7564 			if (cpus_share_pod(cur, pre)) {
7565 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7566 				break;
7567 			}
7568 		}
7569 	}
7570 
7571 	/* init the rest to match @pt->cpu_pod[] */
7572 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7573 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7574 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7575 
7576 	for (pod = 0; pod < pt->nr_pods; pod++)
7577 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7578 
7579 	for_each_possible_cpu(cpu) {
7580 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7581 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7582 	}
7583 }
7584 
7585 static bool __init cpus_dont_share(int cpu0, int cpu1)
7586 {
7587 	return false;
7588 }
7589 
7590 static bool __init cpus_share_smt(int cpu0, int cpu1)
7591 {
7592 #ifdef CONFIG_SCHED_SMT
7593 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7594 #else
7595 	return false;
7596 #endif
7597 }
7598 
7599 static bool __init cpus_share_numa(int cpu0, int cpu1)
7600 {
7601 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7602 }
7603 
7604 /**
7605  * workqueue_init_topology - initialize CPU pods for unbound workqueues
7606  *
7607  * This is the third step of there-staged workqueue subsystem initialization and
7608  * invoked after SMP and topology information are fully initialized. It
7609  * initializes the unbound CPU pods accordingly.
7610  */
7611 void __init workqueue_init_topology(void)
7612 {
7613 	struct workqueue_struct *wq;
7614 	int cpu;
7615 
7616 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7617 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7618 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7619 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7620 
7621 	wq_topo_initialized = true;
7622 
7623 	mutex_lock(&wq_pool_mutex);
7624 
7625 	/*
7626 	 * Workqueues allocated earlier would have all CPUs sharing the default
7627 	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7628 	 * combinations to apply per-pod sharing.
7629 	 */
7630 	list_for_each_entry(wq, &workqueues, list) {
7631 		for_each_online_cpu(cpu)
7632 			wq_update_pod(wq, cpu, cpu, true);
7633 		if (wq->flags & WQ_UNBOUND) {
7634 			mutex_lock(&wq->mutex);
7635 			wq_update_node_max_active(wq, -1);
7636 			mutex_unlock(&wq->mutex);
7637 		}
7638 	}
7639 
7640 	mutex_unlock(&wq_pool_mutex);
7641 }
7642 
7643 void __warn_flushing_systemwide_wq(void)
7644 {
7645 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7646 	dump_stack();
7647 }
7648 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
7649 
7650 static int __init workqueue_unbound_cpus_setup(char *str)
7651 {
7652 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7653 		cpumask_clear(&wq_cmdline_cpumask);
7654 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7655 	}
7656 
7657 	return 1;
7658 }
7659 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
7660