1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <[email protected]> 8 * Andrew Morton 9 * Kai Petzke <[email protected]> 10 * Theodore Ts'o <[email protected]> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <[email protected]> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/core-api/workqueue.rst for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * attach_mutex to avoid changing binding state while 69 * worker_attach_to_pool() is in progress. 70 */ 71 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 72 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 73 74 /* worker flags */ 75 WORKER_DIE = 1 << 1, /* die die die */ 76 WORKER_IDLE = 1 << 2, /* is idle */ 77 WORKER_PREP = 1 << 3, /* preparing to run works */ 78 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 79 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 80 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 81 82 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 83 WORKER_UNBOUND | WORKER_REBOUND, 84 85 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 86 87 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 88 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 89 90 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 91 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 92 93 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 94 /* call for help after 10ms 95 (min two ticks) */ 96 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 97 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 98 99 /* 100 * Rescue workers are used only on emergencies and shared by 101 * all cpus. Give MIN_NICE. 102 */ 103 RESCUER_NICE_LEVEL = MIN_NICE, 104 HIGHPRI_NICE_LEVEL = MIN_NICE, 105 106 WQ_NAME_LEN = 24, 107 }; 108 109 /* 110 * Structure fields follow one of the following exclusion rules. 111 * 112 * I: Modifiable by initialization/destruction paths and read-only for 113 * everyone else. 114 * 115 * P: Preemption protected. Disabling preemption is enough and should 116 * only be modified and accessed from the local cpu. 117 * 118 * L: pool->lock protected. Access with pool->lock held. 119 * 120 * X: During normal operation, modification requires pool->lock and should 121 * be done only from local cpu. Either disabling preemption on local 122 * cpu or grabbing pool->lock is enough for read access. If 123 * POOL_DISASSOCIATED is set, it's identical to L. 124 * 125 * A: pool->attach_mutex protected. 126 * 127 * PL: wq_pool_mutex protected. 128 * 129 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 130 * 131 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 132 * 133 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 134 * sched-RCU for reads. 135 * 136 * WQ: wq->mutex protected. 137 * 138 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 139 * 140 * MD: wq_mayday_lock protected. 141 */ 142 143 /* struct worker is defined in workqueue_internal.h */ 144 145 struct worker_pool { 146 spinlock_t lock; /* the pool lock */ 147 int cpu; /* I: the associated cpu */ 148 int node; /* I: the associated node ID */ 149 int id; /* I: pool ID */ 150 unsigned int flags; /* X: flags */ 151 152 unsigned long watchdog_ts; /* L: watchdog timestamp */ 153 154 struct list_head worklist; /* L: list of pending works */ 155 int nr_workers; /* L: total number of workers */ 156 157 /* nr_idle includes the ones off idle_list for rebinding */ 158 int nr_idle; /* L: currently idle ones */ 159 160 struct list_head idle_list; /* X: list of idle workers */ 161 struct timer_list idle_timer; /* L: worker idle timeout */ 162 struct timer_list mayday_timer; /* L: SOS timer for workers */ 163 164 /* a workers is either on busy_hash or idle_list, or the manager */ 165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 166 /* L: hash of busy workers */ 167 168 /* see manage_workers() for details on the two manager mutexes */ 169 struct worker *manager; /* L: purely informational */ 170 struct mutex attach_mutex; /* attach/detach exclusion */ 171 struct list_head workers; /* A: attached workers */ 172 struct completion *detach_completion; /* all workers detached */ 173 174 struct ida worker_ida; /* worker IDs for task name */ 175 176 struct workqueue_attrs *attrs; /* I: worker attributes */ 177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 178 int refcnt; /* PL: refcnt for unbound pools */ 179 180 /* 181 * The current concurrency level. As it's likely to be accessed 182 * from other CPUs during try_to_wake_up(), put it in a separate 183 * cacheline. 184 */ 185 atomic_t nr_running ____cacheline_aligned_in_smp; 186 187 /* 188 * Destruction of pool is sched-RCU protected to allow dereferences 189 * from get_work_pool(). 190 */ 191 struct rcu_head rcu; 192 } ____cacheline_aligned_in_smp; 193 194 /* 195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 196 * of work_struct->data are used for flags and the remaining high bits 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the 198 * number of flag bits. 199 */ 200 struct pool_workqueue { 201 struct worker_pool *pool; /* I: the associated pool */ 202 struct workqueue_struct *wq; /* I: the owning workqueue */ 203 int work_color; /* L: current color */ 204 int flush_color; /* L: flushing color */ 205 int refcnt; /* L: reference count */ 206 int nr_in_flight[WORK_NR_COLORS]; 207 /* L: nr of in_flight works */ 208 int nr_active; /* L: nr of active works */ 209 int max_active; /* L: max active works */ 210 struct list_head delayed_works; /* L: delayed works */ 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 212 struct list_head mayday_node; /* MD: node on wq->maydays */ 213 214 /* 215 * Release of unbound pwq is punted to system_wq. See put_pwq() 216 * and pwq_unbound_release_workfn() for details. pool_workqueue 217 * itself is also sched-RCU protected so that the first pwq can be 218 * determined without grabbing wq->mutex. 219 */ 220 struct work_struct unbound_release_work; 221 struct rcu_head rcu; 222 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 223 224 /* 225 * Structure used to wait for workqueue flush. 226 */ 227 struct wq_flusher { 228 struct list_head list; /* WQ: list of flushers */ 229 int flush_color; /* WQ: flush color waiting for */ 230 struct completion done; /* flush completion */ 231 }; 232 233 struct wq_device; 234 235 /* 236 * The externally visible workqueue. It relays the issued work items to 237 * the appropriate worker_pool through its pool_workqueues. 238 */ 239 struct workqueue_struct { 240 struct list_head pwqs; /* WR: all pwqs of this wq */ 241 struct list_head list; /* PR: list of all workqueues */ 242 243 struct mutex mutex; /* protects this wq */ 244 int work_color; /* WQ: current work color */ 245 int flush_color; /* WQ: current flush color */ 246 atomic_t nr_pwqs_to_flush; /* flush in progress */ 247 struct wq_flusher *first_flusher; /* WQ: first flusher */ 248 struct list_head flusher_queue; /* WQ: flush waiters */ 249 struct list_head flusher_overflow; /* WQ: flush overflow list */ 250 251 struct list_head maydays; /* MD: pwqs requesting rescue */ 252 struct worker *rescuer; /* I: rescue worker */ 253 254 int nr_drainers; /* WQ: drain in progress */ 255 int saved_max_active; /* WQ: saved pwq max_active */ 256 257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 259 260 #ifdef CONFIG_SYSFS 261 struct wq_device *wq_dev; /* I: for sysfs interface */ 262 #endif 263 #ifdef CONFIG_LOCKDEP 264 struct lockdep_map lockdep_map; 265 #endif 266 char name[WQ_NAME_LEN]; /* I: workqueue name */ 267 268 /* 269 * Destruction of workqueue_struct is sched-RCU protected to allow 270 * walking the workqueues list without grabbing wq_pool_mutex. 271 * This is used to dump all workqueues from sysrq. 272 */ 273 struct rcu_head rcu; 274 275 /* hot fields used during command issue, aligned to cacheline */ 276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 279 }; 280 281 static struct kmem_cache *pwq_cache; 282 283 static cpumask_var_t *wq_numa_possible_cpumask; 284 /* possible CPUs of each node */ 285 286 static bool wq_disable_numa; 287 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 288 289 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 291 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 292 293 static bool wq_online; /* can kworkers be created yet? */ 294 295 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 296 297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 299 300 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 301 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 302 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */ 303 304 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 305 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 306 307 /* PL: allowable cpus for unbound wqs and work items */ 308 static cpumask_var_t wq_unbound_cpumask; 309 310 /* CPU where unbound work was last round robin scheduled from this CPU */ 311 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 312 313 /* 314 * Local execution of unbound work items is no longer guaranteed. The 315 * following always forces round-robin CPU selection on unbound work items 316 * to uncover usages which depend on it. 317 */ 318 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 319 static bool wq_debug_force_rr_cpu = true; 320 #else 321 static bool wq_debug_force_rr_cpu = false; 322 #endif 323 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 324 325 /* the per-cpu worker pools */ 326 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 327 328 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 329 330 /* PL: hash of all unbound pools keyed by pool->attrs */ 331 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 332 333 /* I: attributes used when instantiating standard unbound pools on demand */ 334 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 335 336 /* I: attributes used when instantiating ordered pools on demand */ 337 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 338 339 struct workqueue_struct *system_wq __read_mostly; 340 EXPORT_SYMBOL(system_wq); 341 struct workqueue_struct *system_highpri_wq __read_mostly; 342 EXPORT_SYMBOL_GPL(system_highpri_wq); 343 struct workqueue_struct *system_long_wq __read_mostly; 344 EXPORT_SYMBOL_GPL(system_long_wq); 345 struct workqueue_struct *system_unbound_wq __read_mostly; 346 EXPORT_SYMBOL_GPL(system_unbound_wq); 347 struct workqueue_struct *system_freezable_wq __read_mostly; 348 EXPORT_SYMBOL_GPL(system_freezable_wq); 349 struct workqueue_struct *system_power_efficient_wq __read_mostly; 350 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 351 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 352 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 353 354 static int worker_thread(void *__worker); 355 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 356 357 #define CREATE_TRACE_POINTS 358 #include <trace/events/workqueue.h> 359 360 #define assert_rcu_or_pool_mutex() \ 361 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 362 !lockdep_is_held(&wq_pool_mutex), \ 363 "sched RCU or wq_pool_mutex should be held") 364 365 #define assert_rcu_or_wq_mutex(wq) \ 366 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 367 !lockdep_is_held(&wq->mutex), \ 368 "sched RCU or wq->mutex should be held") 369 370 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 371 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 372 !lockdep_is_held(&wq->mutex) && \ 373 !lockdep_is_held(&wq_pool_mutex), \ 374 "sched RCU, wq->mutex or wq_pool_mutex should be held") 375 376 #define for_each_cpu_worker_pool(pool, cpu) \ 377 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 378 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 379 (pool)++) 380 381 /** 382 * for_each_pool - iterate through all worker_pools in the system 383 * @pool: iteration cursor 384 * @pi: integer used for iteration 385 * 386 * This must be called either with wq_pool_mutex held or sched RCU read 387 * locked. If the pool needs to be used beyond the locking in effect, the 388 * caller is responsible for guaranteeing that the pool stays online. 389 * 390 * The if/else clause exists only for the lockdep assertion and can be 391 * ignored. 392 */ 393 #define for_each_pool(pool, pi) \ 394 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 395 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 396 else 397 398 /** 399 * for_each_pool_worker - iterate through all workers of a worker_pool 400 * @worker: iteration cursor 401 * @pool: worker_pool to iterate workers of 402 * 403 * This must be called with @pool->attach_mutex. 404 * 405 * The if/else clause exists only for the lockdep assertion and can be 406 * ignored. 407 */ 408 #define for_each_pool_worker(worker, pool) \ 409 list_for_each_entry((worker), &(pool)->workers, node) \ 410 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 411 else 412 413 /** 414 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 415 * @pwq: iteration cursor 416 * @wq: the target workqueue 417 * 418 * This must be called either with wq->mutex held or sched RCU read locked. 419 * If the pwq needs to be used beyond the locking in effect, the caller is 420 * responsible for guaranteeing that the pwq stays online. 421 * 422 * The if/else clause exists only for the lockdep assertion and can be 423 * ignored. 424 */ 425 #define for_each_pwq(pwq, wq) \ 426 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 427 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 428 else 429 430 #ifdef CONFIG_DEBUG_OBJECTS_WORK 431 432 static struct debug_obj_descr work_debug_descr; 433 434 static void *work_debug_hint(void *addr) 435 { 436 return ((struct work_struct *) addr)->func; 437 } 438 439 static bool work_is_static_object(void *addr) 440 { 441 struct work_struct *work = addr; 442 443 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 444 } 445 446 /* 447 * fixup_init is called when: 448 * - an active object is initialized 449 */ 450 static bool work_fixup_init(void *addr, enum debug_obj_state state) 451 { 452 struct work_struct *work = addr; 453 454 switch (state) { 455 case ODEBUG_STATE_ACTIVE: 456 cancel_work_sync(work); 457 debug_object_init(work, &work_debug_descr); 458 return true; 459 default: 460 return false; 461 } 462 } 463 464 /* 465 * fixup_free is called when: 466 * - an active object is freed 467 */ 468 static bool work_fixup_free(void *addr, enum debug_obj_state state) 469 { 470 struct work_struct *work = addr; 471 472 switch (state) { 473 case ODEBUG_STATE_ACTIVE: 474 cancel_work_sync(work); 475 debug_object_free(work, &work_debug_descr); 476 return true; 477 default: 478 return false; 479 } 480 } 481 482 static struct debug_obj_descr work_debug_descr = { 483 .name = "work_struct", 484 .debug_hint = work_debug_hint, 485 .is_static_object = work_is_static_object, 486 .fixup_init = work_fixup_init, 487 .fixup_free = work_fixup_free, 488 }; 489 490 static inline void debug_work_activate(struct work_struct *work) 491 { 492 debug_object_activate(work, &work_debug_descr); 493 } 494 495 static inline void debug_work_deactivate(struct work_struct *work) 496 { 497 debug_object_deactivate(work, &work_debug_descr); 498 } 499 500 void __init_work(struct work_struct *work, int onstack) 501 { 502 if (onstack) 503 debug_object_init_on_stack(work, &work_debug_descr); 504 else 505 debug_object_init(work, &work_debug_descr); 506 } 507 EXPORT_SYMBOL_GPL(__init_work); 508 509 void destroy_work_on_stack(struct work_struct *work) 510 { 511 debug_object_free(work, &work_debug_descr); 512 } 513 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 514 515 void destroy_delayed_work_on_stack(struct delayed_work *work) 516 { 517 destroy_timer_on_stack(&work->timer); 518 debug_object_free(&work->work, &work_debug_descr); 519 } 520 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 521 522 #else 523 static inline void debug_work_activate(struct work_struct *work) { } 524 static inline void debug_work_deactivate(struct work_struct *work) { } 525 #endif 526 527 /** 528 * worker_pool_assign_id - allocate ID and assing it to @pool 529 * @pool: the pool pointer of interest 530 * 531 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 532 * successfully, -errno on failure. 533 */ 534 static int worker_pool_assign_id(struct worker_pool *pool) 535 { 536 int ret; 537 538 lockdep_assert_held(&wq_pool_mutex); 539 540 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 541 GFP_KERNEL); 542 if (ret >= 0) { 543 pool->id = ret; 544 return 0; 545 } 546 return ret; 547 } 548 549 /** 550 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 551 * @wq: the target workqueue 552 * @node: the node ID 553 * 554 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 555 * read locked. 556 * If the pwq needs to be used beyond the locking in effect, the caller is 557 * responsible for guaranteeing that the pwq stays online. 558 * 559 * Return: The unbound pool_workqueue for @node. 560 */ 561 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 562 int node) 563 { 564 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 565 566 /* 567 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 568 * delayed item is pending. The plan is to keep CPU -> NODE 569 * mapping valid and stable across CPU on/offlines. Once that 570 * happens, this workaround can be removed. 571 */ 572 if (unlikely(node == NUMA_NO_NODE)) 573 return wq->dfl_pwq; 574 575 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 576 } 577 578 static unsigned int work_color_to_flags(int color) 579 { 580 return color << WORK_STRUCT_COLOR_SHIFT; 581 } 582 583 static int get_work_color(struct work_struct *work) 584 { 585 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 586 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 587 } 588 589 static int work_next_color(int color) 590 { 591 return (color + 1) % WORK_NR_COLORS; 592 } 593 594 /* 595 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 596 * contain the pointer to the queued pwq. Once execution starts, the flag 597 * is cleared and the high bits contain OFFQ flags and pool ID. 598 * 599 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 600 * and clear_work_data() can be used to set the pwq, pool or clear 601 * work->data. These functions should only be called while the work is 602 * owned - ie. while the PENDING bit is set. 603 * 604 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 605 * corresponding to a work. Pool is available once the work has been 606 * queued anywhere after initialization until it is sync canceled. pwq is 607 * available only while the work item is queued. 608 * 609 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 610 * canceled. While being canceled, a work item may have its PENDING set 611 * but stay off timer and worklist for arbitrarily long and nobody should 612 * try to steal the PENDING bit. 613 */ 614 static inline void set_work_data(struct work_struct *work, unsigned long data, 615 unsigned long flags) 616 { 617 WARN_ON_ONCE(!work_pending(work)); 618 atomic_long_set(&work->data, data | flags | work_static(work)); 619 } 620 621 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 622 unsigned long extra_flags) 623 { 624 set_work_data(work, (unsigned long)pwq, 625 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 626 } 627 628 static void set_work_pool_and_keep_pending(struct work_struct *work, 629 int pool_id) 630 { 631 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 632 WORK_STRUCT_PENDING); 633 } 634 635 static void set_work_pool_and_clear_pending(struct work_struct *work, 636 int pool_id) 637 { 638 /* 639 * The following wmb is paired with the implied mb in 640 * test_and_set_bit(PENDING) and ensures all updates to @work made 641 * here are visible to and precede any updates by the next PENDING 642 * owner. 643 */ 644 smp_wmb(); 645 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 646 /* 647 * The following mb guarantees that previous clear of a PENDING bit 648 * will not be reordered with any speculative LOADS or STORES from 649 * work->current_func, which is executed afterwards. This possible 650 * reordering can lead to a missed execution on attempt to qeueue 651 * the same @work. E.g. consider this case: 652 * 653 * CPU#0 CPU#1 654 * ---------------------------- -------------------------------- 655 * 656 * 1 STORE event_indicated 657 * 2 queue_work_on() { 658 * 3 test_and_set_bit(PENDING) 659 * 4 } set_..._and_clear_pending() { 660 * 5 set_work_data() # clear bit 661 * 6 smp_mb() 662 * 7 work->current_func() { 663 * 8 LOAD event_indicated 664 * } 665 * 666 * Without an explicit full barrier speculative LOAD on line 8 can 667 * be executed before CPU#0 does STORE on line 1. If that happens, 668 * CPU#0 observes the PENDING bit is still set and new execution of 669 * a @work is not queued in a hope, that CPU#1 will eventually 670 * finish the queued @work. Meanwhile CPU#1 does not see 671 * event_indicated is set, because speculative LOAD was executed 672 * before actual STORE. 673 */ 674 smp_mb(); 675 } 676 677 static void clear_work_data(struct work_struct *work) 678 { 679 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 680 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 681 } 682 683 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 684 { 685 unsigned long data = atomic_long_read(&work->data); 686 687 if (data & WORK_STRUCT_PWQ) 688 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 689 else 690 return NULL; 691 } 692 693 /** 694 * get_work_pool - return the worker_pool a given work was associated with 695 * @work: the work item of interest 696 * 697 * Pools are created and destroyed under wq_pool_mutex, and allows read 698 * access under sched-RCU read lock. As such, this function should be 699 * called under wq_pool_mutex or with preemption disabled. 700 * 701 * All fields of the returned pool are accessible as long as the above 702 * mentioned locking is in effect. If the returned pool needs to be used 703 * beyond the critical section, the caller is responsible for ensuring the 704 * returned pool is and stays online. 705 * 706 * Return: The worker_pool @work was last associated with. %NULL if none. 707 */ 708 static struct worker_pool *get_work_pool(struct work_struct *work) 709 { 710 unsigned long data = atomic_long_read(&work->data); 711 int pool_id; 712 713 assert_rcu_or_pool_mutex(); 714 715 if (data & WORK_STRUCT_PWQ) 716 return ((struct pool_workqueue *) 717 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 718 719 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 720 if (pool_id == WORK_OFFQ_POOL_NONE) 721 return NULL; 722 723 return idr_find(&worker_pool_idr, pool_id); 724 } 725 726 /** 727 * get_work_pool_id - return the worker pool ID a given work is associated with 728 * @work: the work item of interest 729 * 730 * Return: The worker_pool ID @work was last associated with. 731 * %WORK_OFFQ_POOL_NONE if none. 732 */ 733 static int get_work_pool_id(struct work_struct *work) 734 { 735 unsigned long data = atomic_long_read(&work->data); 736 737 if (data & WORK_STRUCT_PWQ) 738 return ((struct pool_workqueue *) 739 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 740 741 return data >> WORK_OFFQ_POOL_SHIFT; 742 } 743 744 static void mark_work_canceling(struct work_struct *work) 745 { 746 unsigned long pool_id = get_work_pool_id(work); 747 748 pool_id <<= WORK_OFFQ_POOL_SHIFT; 749 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 750 } 751 752 static bool work_is_canceling(struct work_struct *work) 753 { 754 unsigned long data = atomic_long_read(&work->data); 755 756 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 757 } 758 759 /* 760 * Policy functions. These define the policies on how the global worker 761 * pools are managed. Unless noted otherwise, these functions assume that 762 * they're being called with pool->lock held. 763 */ 764 765 static bool __need_more_worker(struct worker_pool *pool) 766 { 767 return !atomic_read(&pool->nr_running); 768 } 769 770 /* 771 * Need to wake up a worker? Called from anything but currently 772 * running workers. 773 * 774 * Note that, because unbound workers never contribute to nr_running, this 775 * function will always return %true for unbound pools as long as the 776 * worklist isn't empty. 777 */ 778 static bool need_more_worker(struct worker_pool *pool) 779 { 780 return !list_empty(&pool->worklist) && __need_more_worker(pool); 781 } 782 783 /* Can I start working? Called from busy but !running workers. */ 784 static bool may_start_working(struct worker_pool *pool) 785 { 786 return pool->nr_idle; 787 } 788 789 /* Do I need to keep working? Called from currently running workers. */ 790 static bool keep_working(struct worker_pool *pool) 791 { 792 return !list_empty(&pool->worklist) && 793 atomic_read(&pool->nr_running) <= 1; 794 } 795 796 /* Do we need a new worker? Called from manager. */ 797 static bool need_to_create_worker(struct worker_pool *pool) 798 { 799 return need_more_worker(pool) && !may_start_working(pool); 800 } 801 802 /* Do we have too many workers and should some go away? */ 803 static bool too_many_workers(struct worker_pool *pool) 804 { 805 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 806 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 807 int nr_busy = pool->nr_workers - nr_idle; 808 809 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 810 } 811 812 /* 813 * Wake up functions. 814 */ 815 816 /* Return the first idle worker. Safe with preemption disabled */ 817 static struct worker *first_idle_worker(struct worker_pool *pool) 818 { 819 if (unlikely(list_empty(&pool->idle_list))) 820 return NULL; 821 822 return list_first_entry(&pool->idle_list, struct worker, entry); 823 } 824 825 /** 826 * wake_up_worker - wake up an idle worker 827 * @pool: worker pool to wake worker from 828 * 829 * Wake up the first idle worker of @pool. 830 * 831 * CONTEXT: 832 * spin_lock_irq(pool->lock). 833 */ 834 static void wake_up_worker(struct worker_pool *pool) 835 { 836 struct worker *worker = first_idle_worker(pool); 837 838 if (likely(worker)) 839 wake_up_process(worker->task); 840 } 841 842 /** 843 * wq_worker_waking_up - a worker is waking up 844 * @task: task waking up 845 * @cpu: CPU @task is waking up to 846 * 847 * This function is called during try_to_wake_up() when a worker is 848 * being awoken. 849 * 850 * CONTEXT: 851 * spin_lock_irq(rq->lock) 852 */ 853 void wq_worker_waking_up(struct task_struct *task, int cpu) 854 { 855 struct worker *worker = kthread_data(task); 856 857 if (!(worker->flags & WORKER_NOT_RUNNING)) { 858 WARN_ON_ONCE(worker->pool->cpu != cpu); 859 atomic_inc(&worker->pool->nr_running); 860 } 861 } 862 863 /** 864 * wq_worker_sleeping - a worker is going to sleep 865 * @task: task going to sleep 866 * 867 * This function is called during schedule() when a busy worker is 868 * going to sleep. Worker on the same cpu can be woken up by 869 * returning pointer to its task. 870 * 871 * CONTEXT: 872 * spin_lock_irq(rq->lock) 873 * 874 * Return: 875 * Worker task on @cpu to wake up, %NULL if none. 876 */ 877 struct task_struct *wq_worker_sleeping(struct task_struct *task) 878 { 879 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 880 struct worker_pool *pool; 881 882 /* 883 * Rescuers, which may not have all the fields set up like normal 884 * workers, also reach here, let's not access anything before 885 * checking NOT_RUNNING. 886 */ 887 if (worker->flags & WORKER_NOT_RUNNING) 888 return NULL; 889 890 pool = worker->pool; 891 892 /* this can only happen on the local cpu */ 893 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id())) 894 return NULL; 895 896 /* 897 * The counterpart of the following dec_and_test, implied mb, 898 * worklist not empty test sequence is in insert_work(). 899 * Please read comment there. 900 * 901 * NOT_RUNNING is clear. This means that we're bound to and 902 * running on the local cpu w/ rq lock held and preemption 903 * disabled, which in turn means that none else could be 904 * manipulating idle_list, so dereferencing idle_list without pool 905 * lock is safe. 906 */ 907 if (atomic_dec_and_test(&pool->nr_running) && 908 !list_empty(&pool->worklist)) 909 to_wakeup = first_idle_worker(pool); 910 return to_wakeup ? to_wakeup->task : NULL; 911 } 912 913 /** 914 * worker_set_flags - set worker flags and adjust nr_running accordingly 915 * @worker: self 916 * @flags: flags to set 917 * 918 * Set @flags in @worker->flags and adjust nr_running accordingly. 919 * 920 * CONTEXT: 921 * spin_lock_irq(pool->lock) 922 */ 923 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 924 { 925 struct worker_pool *pool = worker->pool; 926 927 WARN_ON_ONCE(worker->task != current); 928 929 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 930 if ((flags & WORKER_NOT_RUNNING) && 931 !(worker->flags & WORKER_NOT_RUNNING)) { 932 atomic_dec(&pool->nr_running); 933 } 934 935 worker->flags |= flags; 936 } 937 938 /** 939 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 940 * @worker: self 941 * @flags: flags to clear 942 * 943 * Clear @flags in @worker->flags and adjust nr_running accordingly. 944 * 945 * CONTEXT: 946 * spin_lock_irq(pool->lock) 947 */ 948 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 949 { 950 struct worker_pool *pool = worker->pool; 951 unsigned int oflags = worker->flags; 952 953 WARN_ON_ONCE(worker->task != current); 954 955 worker->flags &= ~flags; 956 957 /* 958 * If transitioning out of NOT_RUNNING, increment nr_running. Note 959 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 960 * of multiple flags, not a single flag. 961 */ 962 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 963 if (!(worker->flags & WORKER_NOT_RUNNING)) 964 atomic_inc(&pool->nr_running); 965 } 966 967 /** 968 * find_worker_executing_work - find worker which is executing a work 969 * @pool: pool of interest 970 * @work: work to find worker for 971 * 972 * Find a worker which is executing @work on @pool by searching 973 * @pool->busy_hash which is keyed by the address of @work. For a worker 974 * to match, its current execution should match the address of @work and 975 * its work function. This is to avoid unwanted dependency between 976 * unrelated work executions through a work item being recycled while still 977 * being executed. 978 * 979 * This is a bit tricky. A work item may be freed once its execution 980 * starts and nothing prevents the freed area from being recycled for 981 * another work item. If the same work item address ends up being reused 982 * before the original execution finishes, workqueue will identify the 983 * recycled work item as currently executing and make it wait until the 984 * current execution finishes, introducing an unwanted dependency. 985 * 986 * This function checks the work item address and work function to avoid 987 * false positives. Note that this isn't complete as one may construct a 988 * work function which can introduce dependency onto itself through a 989 * recycled work item. Well, if somebody wants to shoot oneself in the 990 * foot that badly, there's only so much we can do, and if such deadlock 991 * actually occurs, it should be easy to locate the culprit work function. 992 * 993 * CONTEXT: 994 * spin_lock_irq(pool->lock). 995 * 996 * Return: 997 * Pointer to worker which is executing @work if found, %NULL 998 * otherwise. 999 */ 1000 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1001 struct work_struct *work) 1002 { 1003 struct worker *worker; 1004 1005 hash_for_each_possible(pool->busy_hash, worker, hentry, 1006 (unsigned long)work) 1007 if (worker->current_work == work && 1008 worker->current_func == work->func) 1009 return worker; 1010 1011 return NULL; 1012 } 1013 1014 /** 1015 * move_linked_works - move linked works to a list 1016 * @work: start of series of works to be scheduled 1017 * @head: target list to append @work to 1018 * @nextp: out parameter for nested worklist walking 1019 * 1020 * Schedule linked works starting from @work to @head. Work series to 1021 * be scheduled starts at @work and includes any consecutive work with 1022 * WORK_STRUCT_LINKED set in its predecessor. 1023 * 1024 * If @nextp is not NULL, it's updated to point to the next work of 1025 * the last scheduled work. This allows move_linked_works() to be 1026 * nested inside outer list_for_each_entry_safe(). 1027 * 1028 * CONTEXT: 1029 * spin_lock_irq(pool->lock). 1030 */ 1031 static void move_linked_works(struct work_struct *work, struct list_head *head, 1032 struct work_struct **nextp) 1033 { 1034 struct work_struct *n; 1035 1036 /* 1037 * Linked worklist will always end before the end of the list, 1038 * use NULL for list head. 1039 */ 1040 list_for_each_entry_safe_from(work, n, NULL, entry) { 1041 list_move_tail(&work->entry, head); 1042 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1043 break; 1044 } 1045 1046 /* 1047 * If we're already inside safe list traversal and have moved 1048 * multiple works to the scheduled queue, the next position 1049 * needs to be updated. 1050 */ 1051 if (nextp) 1052 *nextp = n; 1053 } 1054 1055 /** 1056 * get_pwq - get an extra reference on the specified pool_workqueue 1057 * @pwq: pool_workqueue to get 1058 * 1059 * Obtain an extra reference on @pwq. The caller should guarantee that 1060 * @pwq has positive refcnt and be holding the matching pool->lock. 1061 */ 1062 static void get_pwq(struct pool_workqueue *pwq) 1063 { 1064 lockdep_assert_held(&pwq->pool->lock); 1065 WARN_ON_ONCE(pwq->refcnt <= 0); 1066 pwq->refcnt++; 1067 } 1068 1069 /** 1070 * put_pwq - put a pool_workqueue reference 1071 * @pwq: pool_workqueue to put 1072 * 1073 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1074 * destruction. The caller should be holding the matching pool->lock. 1075 */ 1076 static void put_pwq(struct pool_workqueue *pwq) 1077 { 1078 lockdep_assert_held(&pwq->pool->lock); 1079 if (likely(--pwq->refcnt)) 1080 return; 1081 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1082 return; 1083 /* 1084 * @pwq can't be released under pool->lock, bounce to 1085 * pwq_unbound_release_workfn(). This never recurses on the same 1086 * pool->lock as this path is taken only for unbound workqueues and 1087 * the release work item is scheduled on a per-cpu workqueue. To 1088 * avoid lockdep warning, unbound pool->locks are given lockdep 1089 * subclass of 1 in get_unbound_pool(). 1090 */ 1091 schedule_work(&pwq->unbound_release_work); 1092 } 1093 1094 /** 1095 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1096 * @pwq: pool_workqueue to put (can be %NULL) 1097 * 1098 * put_pwq() with locking. This function also allows %NULL @pwq. 1099 */ 1100 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1101 { 1102 if (pwq) { 1103 /* 1104 * As both pwqs and pools are sched-RCU protected, the 1105 * following lock operations are safe. 1106 */ 1107 spin_lock_irq(&pwq->pool->lock); 1108 put_pwq(pwq); 1109 spin_unlock_irq(&pwq->pool->lock); 1110 } 1111 } 1112 1113 static void pwq_activate_delayed_work(struct work_struct *work) 1114 { 1115 struct pool_workqueue *pwq = get_work_pwq(work); 1116 1117 trace_workqueue_activate_work(work); 1118 if (list_empty(&pwq->pool->worklist)) 1119 pwq->pool->watchdog_ts = jiffies; 1120 move_linked_works(work, &pwq->pool->worklist, NULL); 1121 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1122 pwq->nr_active++; 1123 } 1124 1125 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1126 { 1127 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1128 struct work_struct, entry); 1129 1130 pwq_activate_delayed_work(work); 1131 } 1132 1133 /** 1134 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1135 * @pwq: pwq of interest 1136 * @color: color of work which left the queue 1137 * 1138 * A work either has completed or is removed from pending queue, 1139 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1140 * 1141 * CONTEXT: 1142 * spin_lock_irq(pool->lock). 1143 */ 1144 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1145 { 1146 /* uncolored work items don't participate in flushing or nr_active */ 1147 if (color == WORK_NO_COLOR) 1148 goto out_put; 1149 1150 pwq->nr_in_flight[color]--; 1151 1152 pwq->nr_active--; 1153 if (!list_empty(&pwq->delayed_works)) { 1154 /* one down, submit a delayed one */ 1155 if (pwq->nr_active < pwq->max_active) 1156 pwq_activate_first_delayed(pwq); 1157 } 1158 1159 /* is flush in progress and are we at the flushing tip? */ 1160 if (likely(pwq->flush_color != color)) 1161 goto out_put; 1162 1163 /* are there still in-flight works? */ 1164 if (pwq->nr_in_flight[color]) 1165 goto out_put; 1166 1167 /* this pwq is done, clear flush_color */ 1168 pwq->flush_color = -1; 1169 1170 /* 1171 * If this was the last pwq, wake up the first flusher. It 1172 * will handle the rest. 1173 */ 1174 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1175 complete(&pwq->wq->first_flusher->done); 1176 out_put: 1177 put_pwq(pwq); 1178 } 1179 1180 /** 1181 * try_to_grab_pending - steal work item from worklist and disable irq 1182 * @work: work item to steal 1183 * @is_dwork: @work is a delayed_work 1184 * @flags: place to store irq state 1185 * 1186 * Try to grab PENDING bit of @work. This function can handle @work in any 1187 * stable state - idle, on timer or on worklist. 1188 * 1189 * Return: 1190 * 1 if @work was pending and we successfully stole PENDING 1191 * 0 if @work was idle and we claimed PENDING 1192 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1193 * -ENOENT if someone else is canceling @work, this state may persist 1194 * for arbitrarily long 1195 * 1196 * Note: 1197 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1198 * interrupted while holding PENDING and @work off queue, irq must be 1199 * disabled on entry. This, combined with delayed_work->timer being 1200 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1201 * 1202 * On successful return, >= 0, irq is disabled and the caller is 1203 * responsible for releasing it using local_irq_restore(*@flags). 1204 * 1205 * This function is safe to call from any context including IRQ handler. 1206 */ 1207 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1208 unsigned long *flags) 1209 { 1210 struct worker_pool *pool; 1211 struct pool_workqueue *pwq; 1212 1213 local_irq_save(*flags); 1214 1215 /* try to steal the timer if it exists */ 1216 if (is_dwork) { 1217 struct delayed_work *dwork = to_delayed_work(work); 1218 1219 /* 1220 * dwork->timer is irqsafe. If del_timer() fails, it's 1221 * guaranteed that the timer is not queued anywhere and not 1222 * running on the local CPU. 1223 */ 1224 if (likely(del_timer(&dwork->timer))) 1225 return 1; 1226 } 1227 1228 /* try to claim PENDING the normal way */ 1229 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1230 return 0; 1231 1232 /* 1233 * The queueing is in progress, or it is already queued. Try to 1234 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1235 */ 1236 pool = get_work_pool(work); 1237 if (!pool) 1238 goto fail; 1239 1240 spin_lock(&pool->lock); 1241 /* 1242 * work->data is guaranteed to point to pwq only while the work 1243 * item is queued on pwq->wq, and both updating work->data to point 1244 * to pwq on queueing and to pool on dequeueing are done under 1245 * pwq->pool->lock. This in turn guarantees that, if work->data 1246 * points to pwq which is associated with a locked pool, the work 1247 * item is currently queued on that pool. 1248 */ 1249 pwq = get_work_pwq(work); 1250 if (pwq && pwq->pool == pool) { 1251 debug_work_deactivate(work); 1252 1253 /* 1254 * A delayed work item cannot be grabbed directly because 1255 * it might have linked NO_COLOR work items which, if left 1256 * on the delayed_list, will confuse pwq->nr_active 1257 * management later on and cause stall. Make sure the work 1258 * item is activated before grabbing. 1259 */ 1260 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1261 pwq_activate_delayed_work(work); 1262 1263 list_del_init(&work->entry); 1264 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1265 1266 /* work->data points to pwq iff queued, point to pool */ 1267 set_work_pool_and_keep_pending(work, pool->id); 1268 1269 spin_unlock(&pool->lock); 1270 return 1; 1271 } 1272 spin_unlock(&pool->lock); 1273 fail: 1274 local_irq_restore(*flags); 1275 if (work_is_canceling(work)) 1276 return -ENOENT; 1277 cpu_relax(); 1278 return -EAGAIN; 1279 } 1280 1281 /** 1282 * insert_work - insert a work into a pool 1283 * @pwq: pwq @work belongs to 1284 * @work: work to insert 1285 * @head: insertion point 1286 * @extra_flags: extra WORK_STRUCT_* flags to set 1287 * 1288 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1289 * work_struct flags. 1290 * 1291 * CONTEXT: 1292 * spin_lock_irq(pool->lock). 1293 */ 1294 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1295 struct list_head *head, unsigned int extra_flags) 1296 { 1297 struct worker_pool *pool = pwq->pool; 1298 1299 /* we own @work, set data and link */ 1300 set_work_pwq(work, pwq, extra_flags); 1301 list_add_tail(&work->entry, head); 1302 get_pwq(pwq); 1303 1304 /* 1305 * Ensure either wq_worker_sleeping() sees the above 1306 * list_add_tail() or we see zero nr_running to avoid workers lying 1307 * around lazily while there are works to be processed. 1308 */ 1309 smp_mb(); 1310 1311 if (__need_more_worker(pool)) 1312 wake_up_worker(pool); 1313 } 1314 1315 /* 1316 * Test whether @work is being queued from another work executing on the 1317 * same workqueue. 1318 */ 1319 static bool is_chained_work(struct workqueue_struct *wq) 1320 { 1321 struct worker *worker; 1322 1323 worker = current_wq_worker(); 1324 /* 1325 * Return %true iff I'm a worker execuing a work item on @wq. If 1326 * I'm @worker, it's safe to dereference it without locking. 1327 */ 1328 return worker && worker->current_pwq->wq == wq; 1329 } 1330 1331 /* 1332 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1333 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1334 * avoid perturbing sensitive tasks. 1335 */ 1336 static int wq_select_unbound_cpu(int cpu) 1337 { 1338 static bool printed_dbg_warning; 1339 int new_cpu; 1340 1341 if (likely(!wq_debug_force_rr_cpu)) { 1342 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1343 return cpu; 1344 } else if (!printed_dbg_warning) { 1345 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1346 printed_dbg_warning = true; 1347 } 1348 1349 if (cpumask_empty(wq_unbound_cpumask)) 1350 return cpu; 1351 1352 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1353 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1354 if (unlikely(new_cpu >= nr_cpu_ids)) { 1355 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1356 if (unlikely(new_cpu >= nr_cpu_ids)) 1357 return cpu; 1358 } 1359 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1360 1361 return new_cpu; 1362 } 1363 1364 static void __queue_work(int cpu, struct workqueue_struct *wq, 1365 struct work_struct *work) 1366 { 1367 struct pool_workqueue *pwq; 1368 struct worker_pool *last_pool; 1369 struct list_head *worklist; 1370 unsigned int work_flags; 1371 unsigned int req_cpu = cpu; 1372 1373 /* 1374 * While a work item is PENDING && off queue, a task trying to 1375 * steal the PENDING will busy-loop waiting for it to either get 1376 * queued or lose PENDING. Grabbing PENDING and queueing should 1377 * happen with IRQ disabled. 1378 */ 1379 lockdep_assert_irqs_disabled(); 1380 1381 debug_work_activate(work); 1382 1383 /* if draining, only works from the same workqueue are allowed */ 1384 if (unlikely(wq->flags & __WQ_DRAINING) && 1385 WARN_ON_ONCE(!is_chained_work(wq))) 1386 return; 1387 retry: 1388 if (req_cpu == WORK_CPU_UNBOUND) 1389 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1390 1391 /* pwq which will be used unless @work is executing elsewhere */ 1392 if (!(wq->flags & WQ_UNBOUND)) 1393 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1394 else 1395 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1396 1397 /* 1398 * If @work was previously on a different pool, it might still be 1399 * running there, in which case the work needs to be queued on that 1400 * pool to guarantee non-reentrancy. 1401 */ 1402 last_pool = get_work_pool(work); 1403 if (last_pool && last_pool != pwq->pool) { 1404 struct worker *worker; 1405 1406 spin_lock(&last_pool->lock); 1407 1408 worker = find_worker_executing_work(last_pool, work); 1409 1410 if (worker && worker->current_pwq->wq == wq) { 1411 pwq = worker->current_pwq; 1412 } else { 1413 /* meh... not running there, queue here */ 1414 spin_unlock(&last_pool->lock); 1415 spin_lock(&pwq->pool->lock); 1416 } 1417 } else { 1418 spin_lock(&pwq->pool->lock); 1419 } 1420 1421 /* 1422 * pwq is determined and locked. For unbound pools, we could have 1423 * raced with pwq release and it could already be dead. If its 1424 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1425 * without another pwq replacing it in the numa_pwq_tbl or while 1426 * work items are executing on it, so the retrying is guaranteed to 1427 * make forward-progress. 1428 */ 1429 if (unlikely(!pwq->refcnt)) { 1430 if (wq->flags & WQ_UNBOUND) { 1431 spin_unlock(&pwq->pool->lock); 1432 cpu_relax(); 1433 goto retry; 1434 } 1435 /* oops */ 1436 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1437 wq->name, cpu); 1438 } 1439 1440 /* pwq determined, queue */ 1441 trace_workqueue_queue_work(req_cpu, pwq, work); 1442 1443 if (WARN_ON(!list_empty(&work->entry))) { 1444 spin_unlock(&pwq->pool->lock); 1445 return; 1446 } 1447 1448 pwq->nr_in_flight[pwq->work_color]++; 1449 work_flags = work_color_to_flags(pwq->work_color); 1450 1451 if (likely(pwq->nr_active < pwq->max_active)) { 1452 trace_workqueue_activate_work(work); 1453 pwq->nr_active++; 1454 worklist = &pwq->pool->worklist; 1455 if (list_empty(worklist)) 1456 pwq->pool->watchdog_ts = jiffies; 1457 } else { 1458 work_flags |= WORK_STRUCT_DELAYED; 1459 worklist = &pwq->delayed_works; 1460 } 1461 1462 insert_work(pwq, work, worklist, work_flags); 1463 1464 spin_unlock(&pwq->pool->lock); 1465 } 1466 1467 /** 1468 * queue_work_on - queue work on specific cpu 1469 * @cpu: CPU number to execute work on 1470 * @wq: workqueue to use 1471 * @work: work to queue 1472 * 1473 * We queue the work to a specific CPU, the caller must ensure it 1474 * can't go away. 1475 * 1476 * Return: %false if @work was already on a queue, %true otherwise. 1477 */ 1478 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1479 struct work_struct *work) 1480 { 1481 bool ret = false; 1482 unsigned long flags; 1483 1484 local_irq_save(flags); 1485 1486 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1487 __queue_work(cpu, wq, work); 1488 ret = true; 1489 } 1490 1491 local_irq_restore(flags); 1492 return ret; 1493 } 1494 EXPORT_SYMBOL(queue_work_on); 1495 1496 void delayed_work_timer_fn(unsigned long __data) 1497 { 1498 struct delayed_work *dwork = (struct delayed_work *)__data; 1499 1500 /* should have been called from irqsafe timer with irq already off */ 1501 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1502 } 1503 EXPORT_SYMBOL(delayed_work_timer_fn); 1504 1505 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1506 struct delayed_work *dwork, unsigned long delay) 1507 { 1508 struct timer_list *timer = &dwork->timer; 1509 struct work_struct *work = &dwork->work; 1510 1511 WARN_ON_ONCE(!wq); 1512 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1513 timer->data != (unsigned long)dwork); 1514 WARN_ON_ONCE(timer_pending(timer)); 1515 WARN_ON_ONCE(!list_empty(&work->entry)); 1516 1517 /* 1518 * If @delay is 0, queue @dwork->work immediately. This is for 1519 * both optimization and correctness. The earliest @timer can 1520 * expire is on the closest next tick and delayed_work users depend 1521 * on that there's no such delay when @delay is 0. 1522 */ 1523 if (!delay) { 1524 __queue_work(cpu, wq, &dwork->work); 1525 return; 1526 } 1527 1528 dwork->wq = wq; 1529 dwork->cpu = cpu; 1530 timer->expires = jiffies + delay; 1531 1532 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1533 add_timer_on(timer, cpu); 1534 else 1535 add_timer(timer); 1536 } 1537 1538 /** 1539 * queue_delayed_work_on - queue work on specific CPU after delay 1540 * @cpu: CPU number to execute work on 1541 * @wq: workqueue to use 1542 * @dwork: work to queue 1543 * @delay: number of jiffies to wait before queueing 1544 * 1545 * Return: %false if @work was already on a queue, %true otherwise. If 1546 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1547 * execution. 1548 */ 1549 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1550 struct delayed_work *dwork, unsigned long delay) 1551 { 1552 struct work_struct *work = &dwork->work; 1553 bool ret = false; 1554 unsigned long flags; 1555 1556 /* read the comment in __queue_work() */ 1557 local_irq_save(flags); 1558 1559 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1560 __queue_delayed_work(cpu, wq, dwork, delay); 1561 ret = true; 1562 } 1563 1564 local_irq_restore(flags); 1565 return ret; 1566 } 1567 EXPORT_SYMBOL(queue_delayed_work_on); 1568 1569 /** 1570 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1571 * @cpu: CPU number to execute work on 1572 * @wq: workqueue to use 1573 * @dwork: work to queue 1574 * @delay: number of jiffies to wait before queueing 1575 * 1576 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1577 * modify @dwork's timer so that it expires after @delay. If @delay is 1578 * zero, @work is guaranteed to be scheduled immediately regardless of its 1579 * current state. 1580 * 1581 * Return: %false if @dwork was idle and queued, %true if @dwork was 1582 * pending and its timer was modified. 1583 * 1584 * This function is safe to call from any context including IRQ handler. 1585 * See try_to_grab_pending() for details. 1586 */ 1587 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1588 struct delayed_work *dwork, unsigned long delay) 1589 { 1590 unsigned long flags; 1591 int ret; 1592 1593 do { 1594 ret = try_to_grab_pending(&dwork->work, true, &flags); 1595 } while (unlikely(ret == -EAGAIN)); 1596 1597 if (likely(ret >= 0)) { 1598 __queue_delayed_work(cpu, wq, dwork, delay); 1599 local_irq_restore(flags); 1600 } 1601 1602 /* -ENOENT from try_to_grab_pending() becomes %true */ 1603 return ret; 1604 } 1605 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1606 1607 /** 1608 * worker_enter_idle - enter idle state 1609 * @worker: worker which is entering idle state 1610 * 1611 * @worker is entering idle state. Update stats and idle timer if 1612 * necessary. 1613 * 1614 * LOCKING: 1615 * spin_lock_irq(pool->lock). 1616 */ 1617 static void worker_enter_idle(struct worker *worker) 1618 { 1619 struct worker_pool *pool = worker->pool; 1620 1621 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1622 WARN_ON_ONCE(!list_empty(&worker->entry) && 1623 (worker->hentry.next || worker->hentry.pprev))) 1624 return; 1625 1626 /* can't use worker_set_flags(), also called from create_worker() */ 1627 worker->flags |= WORKER_IDLE; 1628 pool->nr_idle++; 1629 worker->last_active = jiffies; 1630 1631 /* idle_list is LIFO */ 1632 list_add(&worker->entry, &pool->idle_list); 1633 1634 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1635 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1636 1637 /* 1638 * Sanity check nr_running. Because wq_unbind_fn() releases 1639 * pool->lock between setting %WORKER_UNBOUND and zapping 1640 * nr_running, the warning may trigger spuriously. Check iff 1641 * unbind is not in progress. 1642 */ 1643 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1644 pool->nr_workers == pool->nr_idle && 1645 atomic_read(&pool->nr_running)); 1646 } 1647 1648 /** 1649 * worker_leave_idle - leave idle state 1650 * @worker: worker which is leaving idle state 1651 * 1652 * @worker is leaving idle state. Update stats. 1653 * 1654 * LOCKING: 1655 * spin_lock_irq(pool->lock). 1656 */ 1657 static void worker_leave_idle(struct worker *worker) 1658 { 1659 struct worker_pool *pool = worker->pool; 1660 1661 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1662 return; 1663 worker_clr_flags(worker, WORKER_IDLE); 1664 pool->nr_idle--; 1665 list_del_init(&worker->entry); 1666 } 1667 1668 static struct worker *alloc_worker(int node) 1669 { 1670 struct worker *worker; 1671 1672 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1673 if (worker) { 1674 INIT_LIST_HEAD(&worker->entry); 1675 INIT_LIST_HEAD(&worker->scheduled); 1676 INIT_LIST_HEAD(&worker->node); 1677 /* on creation a worker is in !idle && prep state */ 1678 worker->flags = WORKER_PREP; 1679 } 1680 return worker; 1681 } 1682 1683 /** 1684 * worker_attach_to_pool() - attach a worker to a pool 1685 * @worker: worker to be attached 1686 * @pool: the target pool 1687 * 1688 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1689 * cpu-binding of @worker are kept coordinated with the pool across 1690 * cpu-[un]hotplugs. 1691 */ 1692 static void worker_attach_to_pool(struct worker *worker, 1693 struct worker_pool *pool) 1694 { 1695 mutex_lock(&pool->attach_mutex); 1696 1697 /* 1698 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1699 * online CPUs. It'll be re-applied when any of the CPUs come up. 1700 */ 1701 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1702 1703 /* 1704 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1705 * stable across this function. See the comments above the 1706 * flag definition for details. 1707 */ 1708 if (pool->flags & POOL_DISASSOCIATED) 1709 worker->flags |= WORKER_UNBOUND; 1710 1711 list_add_tail(&worker->node, &pool->workers); 1712 1713 mutex_unlock(&pool->attach_mutex); 1714 } 1715 1716 /** 1717 * worker_detach_from_pool() - detach a worker from its pool 1718 * @worker: worker which is attached to its pool 1719 * @pool: the pool @worker is attached to 1720 * 1721 * Undo the attaching which had been done in worker_attach_to_pool(). The 1722 * caller worker shouldn't access to the pool after detached except it has 1723 * other reference to the pool. 1724 */ 1725 static void worker_detach_from_pool(struct worker *worker, 1726 struct worker_pool *pool) 1727 { 1728 struct completion *detach_completion = NULL; 1729 1730 mutex_lock(&pool->attach_mutex); 1731 list_del(&worker->node); 1732 if (list_empty(&pool->workers)) 1733 detach_completion = pool->detach_completion; 1734 mutex_unlock(&pool->attach_mutex); 1735 1736 /* clear leftover flags without pool->lock after it is detached */ 1737 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1738 1739 if (detach_completion) 1740 complete(detach_completion); 1741 } 1742 1743 /** 1744 * create_worker - create a new workqueue worker 1745 * @pool: pool the new worker will belong to 1746 * 1747 * Create and start a new worker which is attached to @pool. 1748 * 1749 * CONTEXT: 1750 * Might sleep. Does GFP_KERNEL allocations. 1751 * 1752 * Return: 1753 * Pointer to the newly created worker. 1754 */ 1755 static struct worker *create_worker(struct worker_pool *pool) 1756 { 1757 struct worker *worker = NULL; 1758 int id = -1; 1759 char id_buf[16]; 1760 1761 /* ID is needed to determine kthread name */ 1762 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1763 if (id < 0) 1764 goto fail; 1765 1766 worker = alloc_worker(pool->node); 1767 if (!worker) 1768 goto fail; 1769 1770 worker->pool = pool; 1771 worker->id = id; 1772 1773 if (pool->cpu >= 0) 1774 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1775 pool->attrs->nice < 0 ? "H" : ""); 1776 else 1777 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1778 1779 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1780 "kworker/%s", id_buf); 1781 if (IS_ERR(worker->task)) 1782 goto fail; 1783 1784 set_user_nice(worker->task, pool->attrs->nice); 1785 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1786 1787 /* successful, attach the worker to the pool */ 1788 worker_attach_to_pool(worker, pool); 1789 1790 /* start the newly created worker */ 1791 spin_lock_irq(&pool->lock); 1792 worker->pool->nr_workers++; 1793 worker_enter_idle(worker); 1794 wake_up_process(worker->task); 1795 spin_unlock_irq(&pool->lock); 1796 1797 return worker; 1798 1799 fail: 1800 if (id >= 0) 1801 ida_simple_remove(&pool->worker_ida, id); 1802 kfree(worker); 1803 return NULL; 1804 } 1805 1806 /** 1807 * destroy_worker - destroy a workqueue worker 1808 * @worker: worker to be destroyed 1809 * 1810 * Destroy @worker and adjust @pool stats accordingly. The worker should 1811 * be idle. 1812 * 1813 * CONTEXT: 1814 * spin_lock_irq(pool->lock). 1815 */ 1816 static void destroy_worker(struct worker *worker) 1817 { 1818 struct worker_pool *pool = worker->pool; 1819 1820 lockdep_assert_held(&pool->lock); 1821 1822 /* sanity check frenzy */ 1823 if (WARN_ON(worker->current_work) || 1824 WARN_ON(!list_empty(&worker->scheduled)) || 1825 WARN_ON(!(worker->flags & WORKER_IDLE))) 1826 return; 1827 1828 pool->nr_workers--; 1829 pool->nr_idle--; 1830 1831 list_del_init(&worker->entry); 1832 worker->flags |= WORKER_DIE; 1833 wake_up_process(worker->task); 1834 } 1835 1836 static void idle_worker_timeout(unsigned long __pool) 1837 { 1838 struct worker_pool *pool = (void *)__pool; 1839 1840 spin_lock_irq(&pool->lock); 1841 1842 while (too_many_workers(pool)) { 1843 struct worker *worker; 1844 unsigned long expires; 1845 1846 /* idle_list is kept in LIFO order, check the last one */ 1847 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1848 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1849 1850 if (time_before(jiffies, expires)) { 1851 mod_timer(&pool->idle_timer, expires); 1852 break; 1853 } 1854 1855 destroy_worker(worker); 1856 } 1857 1858 spin_unlock_irq(&pool->lock); 1859 } 1860 1861 static void send_mayday(struct work_struct *work) 1862 { 1863 struct pool_workqueue *pwq = get_work_pwq(work); 1864 struct workqueue_struct *wq = pwq->wq; 1865 1866 lockdep_assert_held(&wq_mayday_lock); 1867 1868 if (!wq->rescuer) 1869 return; 1870 1871 /* mayday mayday mayday */ 1872 if (list_empty(&pwq->mayday_node)) { 1873 /* 1874 * If @pwq is for an unbound wq, its base ref may be put at 1875 * any time due to an attribute change. Pin @pwq until the 1876 * rescuer is done with it. 1877 */ 1878 get_pwq(pwq); 1879 list_add_tail(&pwq->mayday_node, &wq->maydays); 1880 wake_up_process(wq->rescuer->task); 1881 } 1882 } 1883 1884 static void pool_mayday_timeout(unsigned long __pool) 1885 { 1886 struct worker_pool *pool = (void *)__pool; 1887 struct work_struct *work; 1888 1889 spin_lock_irq(&pool->lock); 1890 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1891 1892 if (need_to_create_worker(pool)) { 1893 /* 1894 * We've been trying to create a new worker but 1895 * haven't been successful. We might be hitting an 1896 * allocation deadlock. Send distress signals to 1897 * rescuers. 1898 */ 1899 list_for_each_entry(work, &pool->worklist, entry) 1900 send_mayday(work); 1901 } 1902 1903 spin_unlock(&wq_mayday_lock); 1904 spin_unlock_irq(&pool->lock); 1905 1906 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1907 } 1908 1909 /** 1910 * maybe_create_worker - create a new worker if necessary 1911 * @pool: pool to create a new worker for 1912 * 1913 * Create a new worker for @pool if necessary. @pool is guaranteed to 1914 * have at least one idle worker on return from this function. If 1915 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1916 * sent to all rescuers with works scheduled on @pool to resolve 1917 * possible allocation deadlock. 1918 * 1919 * On return, need_to_create_worker() is guaranteed to be %false and 1920 * may_start_working() %true. 1921 * 1922 * LOCKING: 1923 * spin_lock_irq(pool->lock) which may be released and regrabbed 1924 * multiple times. Does GFP_KERNEL allocations. Called only from 1925 * manager. 1926 */ 1927 static void maybe_create_worker(struct worker_pool *pool) 1928 __releases(&pool->lock) 1929 __acquires(&pool->lock) 1930 { 1931 restart: 1932 spin_unlock_irq(&pool->lock); 1933 1934 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1935 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1936 1937 while (true) { 1938 if (create_worker(pool) || !need_to_create_worker(pool)) 1939 break; 1940 1941 schedule_timeout_interruptible(CREATE_COOLDOWN); 1942 1943 if (!need_to_create_worker(pool)) 1944 break; 1945 } 1946 1947 del_timer_sync(&pool->mayday_timer); 1948 spin_lock_irq(&pool->lock); 1949 /* 1950 * This is necessary even after a new worker was just successfully 1951 * created as @pool->lock was dropped and the new worker might have 1952 * already become busy. 1953 */ 1954 if (need_to_create_worker(pool)) 1955 goto restart; 1956 } 1957 1958 /** 1959 * manage_workers - manage worker pool 1960 * @worker: self 1961 * 1962 * Assume the manager role and manage the worker pool @worker belongs 1963 * to. At any given time, there can be only zero or one manager per 1964 * pool. The exclusion is handled automatically by this function. 1965 * 1966 * The caller can safely start processing works on false return. On 1967 * true return, it's guaranteed that need_to_create_worker() is false 1968 * and may_start_working() is true. 1969 * 1970 * CONTEXT: 1971 * spin_lock_irq(pool->lock) which may be released and regrabbed 1972 * multiple times. Does GFP_KERNEL allocations. 1973 * 1974 * Return: 1975 * %false if the pool doesn't need management and the caller can safely 1976 * start processing works, %true if management function was performed and 1977 * the conditions that the caller verified before calling the function may 1978 * no longer be true. 1979 */ 1980 static bool manage_workers(struct worker *worker) 1981 { 1982 struct worker_pool *pool = worker->pool; 1983 1984 if (pool->flags & POOL_MANAGER_ACTIVE) 1985 return false; 1986 1987 pool->flags |= POOL_MANAGER_ACTIVE; 1988 pool->manager = worker; 1989 1990 maybe_create_worker(pool); 1991 1992 pool->manager = NULL; 1993 pool->flags &= ~POOL_MANAGER_ACTIVE; 1994 wake_up(&wq_manager_wait); 1995 return true; 1996 } 1997 1998 /** 1999 * process_one_work - process single work 2000 * @worker: self 2001 * @work: work to process 2002 * 2003 * Process @work. This function contains all the logics necessary to 2004 * process a single work including synchronization against and 2005 * interaction with other workers on the same cpu, queueing and 2006 * flushing. As long as context requirement is met, any worker can 2007 * call this function to process a work. 2008 * 2009 * CONTEXT: 2010 * spin_lock_irq(pool->lock) which is released and regrabbed. 2011 */ 2012 static void process_one_work(struct worker *worker, struct work_struct *work) 2013 __releases(&pool->lock) 2014 __acquires(&pool->lock) 2015 { 2016 struct pool_workqueue *pwq = get_work_pwq(work); 2017 struct worker_pool *pool = worker->pool; 2018 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2019 int work_color; 2020 struct worker *collision; 2021 #ifdef CONFIG_LOCKDEP 2022 /* 2023 * It is permissible to free the struct work_struct from 2024 * inside the function that is called from it, this we need to 2025 * take into account for lockdep too. To avoid bogus "held 2026 * lock freed" warnings as well as problems when looking into 2027 * work->lockdep_map, make a copy and use that here. 2028 */ 2029 struct lockdep_map lockdep_map; 2030 2031 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2032 #endif 2033 /* ensure we're on the correct CPU */ 2034 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2035 raw_smp_processor_id() != pool->cpu); 2036 2037 /* 2038 * A single work shouldn't be executed concurrently by 2039 * multiple workers on a single cpu. Check whether anyone is 2040 * already processing the work. If so, defer the work to the 2041 * currently executing one. 2042 */ 2043 collision = find_worker_executing_work(pool, work); 2044 if (unlikely(collision)) { 2045 move_linked_works(work, &collision->scheduled, NULL); 2046 return; 2047 } 2048 2049 /* claim and dequeue */ 2050 debug_work_deactivate(work); 2051 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2052 worker->current_work = work; 2053 worker->current_func = work->func; 2054 worker->current_pwq = pwq; 2055 work_color = get_work_color(work); 2056 2057 list_del_init(&work->entry); 2058 2059 /* 2060 * CPU intensive works don't participate in concurrency management. 2061 * They're the scheduler's responsibility. This takes @worker out 2062 * of concurrency management and the next code block will chain 2063 * execution of the pending work items. 2064 */ 2065 if (unlikely(cpu_intensive)) 2066 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2067 2068 /* 2069 * Wake up another worker if necessary. The condition is always 2070 * false for normal per-cpu workers since nr_running would always 2071 * be >= 1 at this point. This is used to chain execution of the 2072 * pending work items for WORKER_NOT_RUNNING workers such as the 2073 * UNBOUND and CPU_INTENSIVE ones. 2074 */ 2075 if (need_more_worker(pool)) 2076 wake_up_worker(pool); 2077 2078 /* 2079 * Record the last pool and clear PENDING which should be the last 2080 * update to @work. Also, do this inside @pool->lock so that 2081 * PENDING and queued state changes happen together while IRQ is 2082 * disabled. 2083 */ 2084 set_work_pool_and_clear_pending(work, pool->id); 2085 2086 spin_unlock_irq(&pool->lock); 2087 2088 lock_map_acquire(&pwq->wq->lockdep_map); 2089 lock_map_acquire(&lockdep_map); 2090 /* 2091 * Strictly speaking we should mark the invariant state without holding 2092 * any locks, that is, before these two lock_map_acquire()'s. 2093 * 2094 * However, that would result in: 2095 * 2096 * A(W1) 2097 * WFC(C) 2098 * A(W1) 2099 * C(C) 2100 * 2101 * Which would create W1->C->W1 dependencies, even though there is no 2102 * actual deadlock possible. There are two solutions, using a 2103 * read-recursive acquire on the work(queue) 'locks', but this will then 2104 * hit the lockdep limitation on recursive locks, or simply discard 2105 * these locks. 2106 * 2107 * AFAICT there is no possible deadlock scenario between the 2108 * flush_work() and complete() primitives (except for single-threaded 2109 * workqueues), so hiding them isn't a problem. 2110 */ 2111 lockdep_invariant_state(true); 2112 trace_workqueue_execute_start(work); 2113 worker->current_func(work); 2114 /* 2115 * While we must be careful to not use "work" after this, the trace 2116 * point will only record its address. 2117 */ 2118 trace_workqueue_execute_end(work); 2119 lock_map_release(&lockdep_map); 2120 lock_map_release(&pwq->wq->lockdep_map); 2121 2122 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2123 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2124 " last function: %pf\n", 2125 current->comm, preempt_count(), task_pid_nr(current), 2126 worker->current_func); 2127 debug_show_held_locks(current); 2128 dump_stack(); 2129 } 2130 2131 /* 2132 * The following prevents a kworker from hogging CPU on !PREEMPT 2133 * kernels, where a requeueing work item waiting for something to 2134 * happen could deadlock with stop_machine as such work item could 2135 * indefinitely requeue itself while all other CPUs are trapped in 2136 * stop_machine. At the same time, report a quiescent RCU state so 2137 * the same condition doesn't freeze RCU. 2138 */ 2139 cond_resched_rcu_qs(); 2140 2141 spin_lock_irq(&pool->lock); 2142 2143 /* clear cpu intensive status */ 2144 if (unlikely(cpu_intensive)) 2145 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2146 2147 /* we're done with it, release */ 2148 hash_del(&worker->hentry); 2149 worker->current_work = NULL; 2150 worker->current_func = NULL; 2151 worker->current_pwq = NULL; 2152 worker->desc_valid = false; 2153 pwq_dec_nr_in_flight(pwq, work_color); 2154 } 2155 2156 /** 2157 * process_scheduled_works - process scheduled works 2158 * @worker: self 2159 * 2160 * Process all scheduled works. Please note that the scheduled list 2161 * may change while processing a work, so this function repeatedly 2162 * fetches a work from the top and executes it. 2163 * 2164 * CONTEXT: 2165 * spin_lock_irq(pool->lock) which may be released and regrabbed 2166 * multiple times. 2167 */ 2168 static void process_scheduled_works(struct worker *worker) 2169 { 2170 while (!list_empty(&worker->scheduled)) { 2171 struct work_struct *work = list_first_entry(&worker->scheduled, 2172 struct work_struct, entry); 2173 process_one_work(worker, work); 2174 } 2175 } 2176 2177 /** 2178 * worker_thread - the worker thread function 2179 * @__worker: self 2180 * 2181 * The worker thread function. All workers belong to a worker_pool - 2182 * either a per-cpu one or dynamic unbound one. These workers process all 2183 * work items regardless of their specific target workqueue. The only 2184 * exception is work items which belong to workqueues with a rescuer which 2185 * will be explained in rescuer_thread(). 2186 * 2187 * Return: 0 2188 */ 2189 static int worker_thread(void *__worker) 2190 { 2191 struct worker *worker = __worker; 2192 struct worker_pool *pool = worker->pool; 2193 2194 /* tell the scheduler that this is a workqueue worker */ 2195 worker->task->flags |= PF_WQ_WORKER; 2196 woke_up: 2197 spin_lock_irq(&pool->lock); 2198 2199 /* am I supposed to die? */ 2200 if (unlikely(worker->flags & WORKER_DIE)) { 2201 spin_unlock_irq(&pool->lock); 2202 WARN_ON_ONCE(!list_empty(&worker->entry)); 2203 worker->task->flags &= ~PF_WQ_WORKER; 2204 2205 set_task_comm(worker->task, "kworker/dying"); 2206 ida_simple_remove(&pool->worker_ida, worker->id); 2207 worker_detach_from_pool(worker, pool); 2208 kfree(worker); 2209 return 0; 2210 } 2211 2212 worker_leave_idle(worker); 2213 recheck: 2214 /* no more worker necessary? */ 2215 if (!need_more_worker(pool)) 2216 goto sleep; 2217 2218 /* do we need to manage? */ 2219 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2220 goto recheck; 2221 2222 /* 2223 * ->scheduled list can only be filled while a worker is 2224 * preparing to process a work or actually processing it. 2225 * Make sure nobody diddled with it while I was sleeping. 2226 */ 2227 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2228 2229 /* 2230 * Finish PREP stage. We're guaranteed to have at least one idle 2231 * worker or that someone else has already assumed the manager 2232 * role. This is where @worker starts participating in concurrency 2233 * management if applicable and concurrency management is restored 2234 * after being rebound. See rebind_workers() for details. 2235 */ 2236 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2237 2238 do { 2239 struct work_struct *work = 2240 list_first_entry(&pool->worklist, 2241 struct work_struct, entry); 2242 2243 pool->watchdog_ts = jiffies; 2244 2245 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2246 /* optimization path, not strictly necessary */ 2247 process_one_work(worker, work); 2248 if (unlikely(!list_empty(&worker->scheduled))) 2249 process_scheduled_works(worker); 2250 } else { 2251 move_linked_works(work, &worker->scheduled, NULL); 2252 process_scheduled_works(worker); 2253 } 2254 } while (keep_working(pool)); 2255 2256 worker_set_flags(worker, WORKER_PREP); 2257 sleep: 2258 /* 2259 * pool->lock is held and there's no work to process and no need to 2260 * manage, sleep. Workers are woken up only while holding 2261 * pool->lock or from local cpu, so setting the current state 2262 * before releasing pool->lock is enough to prevent losing any 2263 * event. 2264 */ 2265 worker_enter_idle(worker); 2266 __set_current_state(TASK_IDLE); 2267 spin_unlock_irq(&pool->lock); 2268 schedule(); 2269 goto woke_up; 2270 } 2271 2272 /** 2273 * rescuer_thread - the rescuer thread function 2274 * @__rescuer: self 2275 * 2276 * Workqueue rescuer thread function. There's one rescuer for each 2277 * workqueue which has WQ_MEM_RECLAIM set. 2278 * 2279 * Regular work processing on a pool may block trying to create a new 2280 * worker which uses GFP_KERNEL allocation which has slight chance of 2281 * developing into deadlock if some works currently on the same queue 2282 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2283 * the problem rescuer solves. 2284 * 2285 * When such condition is possible, the pool summons rescuers of all 2286 * workqueues which have works queued on the pool and let them process 2287 * those works so that forward progress can be guaranteed. 2288 * 2289 * This should happen rarely. 2290 * 2291 * Return: 0 2292 */ 2293 static int rescuer_thread(void *__rescuer) 2294 { 2295 struct worker *rescuer = __rescuer; 2296 struct workqueue_struct *wq = rescuer->rescue_wq; 2297 struct list_head *scheduled = &rescuer->scheduled; 2298 bool should_stop; 2299 2300 set_user_nice(current, RESCUER_NICE_LEVEL); 2301 2302 /* 2303 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2304 * doesn't participate in concurrency management. 2305 */ 2306 rescuer->task->flags |= PF_WQ_WORKER; 2307 repeat: 2308 set_current_state(TASK_IDLE); 2309 2310 /* 2311 * By the time the rescuer is requested to stop, the workqueue 2312 * shouldn't have any work pending, but @wq->maydays may still have 2313 * pwq(s) queued. This can happen by non-rescuer workers consuming 2314 * all the work items before the rescuer got to them. Go through 2315 * @wq->maydays processing before acting on should_stop so that the 2316 * list is always empty on exit. 2317 */ 2318 should_stop = kthread_should_stop(); 2319 2320 /* see whether any pwq is asking for help */ 2321 spin_lock_irq(&wq_mayday_lock); 2322 2323 while (!list_empty(&wq->maydays)) { 2324 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2325 struct pool_workqueue, mayday_node); 2326 struct worker_pool *pool = pwq->pool; 2327 struct work_struct *work, *n; 2328 bool first = true; 2329 2330 __set_current_state(TASK_RUNNING); 2331 list_del_init(&pwq->mayday_node); 2332 2333 spin_unlock_irq(&wq_mayday_lock); 2334 2335 worker_attach_to_pool(rescuer, pool); 2336 2337 spin_lock_irq(&pool->lock); 2338 rescuer->pool = pool; 2339 2340 /* 2341 * Slurp in all works issued via this workqueue and 2342 * process'em. 2343 */ 2344 WARN_ON_ONCE(!list_empty(scheduled)); 2345 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2346 if (get_work_pwq(work) == pwq) { 2347 if (first) 2348 pool->watchdog_ts = jiffies; 2349 move_linked_works(work, scheduled, &n); 2350 } 2351 first = false; 2352 } 2353 2354 if (!list_empty(scheduled)) { 2355 process_scheduled_works(rescuer); 2356 2357 /* 2358 * The above execution of rescued work items could 2359 * have created more to rescue through 2360 * pwq_activate_first_delayed() or chained 2361 * queueing. Let's put @pwq back on mayday list so 2362 * that such back-to-back work items, which may be 2363 * being used to relieve memory pressure, don't 2364 * incur MAYDAY_INTERVAL delay inbetween. 2365 */ 2366 if (need_to_create_worker(pool)) { 2367 spin_lock(&wq_mayday_lock); 2368 get_pwq(pwq); 2369 list_move_tail(&pwq->mayday_node, &wq->maydays); 2370 spin_unlock(&wq_mayday_lock); 2371 } 2372 } 2373 2374 /* 2375 * Put the reference grabbed by send_mayday(). @pool won't 2376 * go away while we're still attached to it. 2377 */ 2378 put_pwq(pwq); 2379 2380 /* 2381 * Leave this pool. If need_more_worker() is %true, notify a 2382 * regular worker; otherwise, we end up with 0 concurrency 2383 * and stalling the execution. 2384 */ 2385 if (need_more_worker(pool)) 2386 wake_up_worker(pool); 2387 2388 rescuer->pool = NULL; 2389 spin_unlock_irq(&pool->lock); 2390 2391 worker_detach_from_pool(rescuer, pool); 2392 2393 spin_lock_irq(&wq_mayday_lock); 2394 } 2395 2396 spin_unlock_irq(&wq_mayday_lock); 2397 2398 if (should_stop) { 2399 __set_current_state(TASK_RUNNING); 2400 rescuer->task->flags &= ~PF_WQ_WORKER; 2401 return 0; 2402 } 2403 2404 /* rescuers should never participate in concurrency management */ 2405 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2406 schedule(); 2407 goto repeat; 2408 } 2409 2410 /** 2411 * check_flush_dependency - check for flush dependency sanity 2412 * @target_wq: workqueue being flushed 2413 * @target_work: work item being flushed (NULL for workqueue flushes) 2414 * 2415 * %current is trying to flush the whole @target_wq or @target_work on it. 2416 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2417 * reclaiming memory or running on a workqueue which doesn't have 2418 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2419 * a deadlock. 2420 */ 2421 static void check_flush_dependency(struct workqueue_struct *target_wq, 2422 struct work_struct *target_work) 2423 { 2424 work_func_t target_func = target_work ? target_work->func : NULL; 2425 struct worker *worker; 2426 2427 if (target_wq->flags & WQ_MEM_RECLAIM) 2428 return; 2429 2430 worker = current_wq_worker(); 2431 2432 WARN_ONCE(current->flags & PF_MEMALLOC, 2433 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2434 current->pid, current->comm, target_wq->name, target_func); 2435 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2436 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2437 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2438 worker->current_pwq->wq->name, worker->current_func, 2439 target_wq->name, target_func); 2440 } 2441 2442 struct wq_barrier { 2443 struct work_struct work; 2444 struct completion done; 2445 struct task_struct *task; /* purely informational */ 2446 }; 2447 2448 static void wq_barrier_func(struct work_struct *work) 2449 { 2450 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2451 complete(&barr->done); 2452 } 2453 2454 /** 2455 * insert_wq_barrier - insert a barrier work 2456 * @pwq: pwq to insert barrier into 2457 * @barr: wq_barrier to insert 2458 * @target: target work to attach @barr to 2459 * @worker: worker currently executing @target, NULL if @target is not executing 2460 * 2461 * @barr is linked to @target such that @barr is completed only after 2462 * @target finishes execution. Please note that the ordering 2463 * guarantee is observed only with respect to @target and on the local 2464 * cpu. 2465 * 2466 * Currently, a queued barrier can't be canceled. This is because 2467 * try_to_grab_pending() can't determine whether the work to be 2468 * grabbed is at the head of the queue and thus can't clear LINKED 2469 * flag of the previous work while there must be a valid next work 2470 * after a work with LINKED flag set. 2471 * 2472 * Note that when @worker is non-NULL, @target may be modified 2473 * underneath us, so we can't reliably determine pwq from @target. 2474 * 2475 * CONTEXT: 2476 * spin_lock_irq(pool->lock). 2477 */ 2478 static void insert_wq_barrier(struct pool_workqueue *pwq, 2479 struct wq_barrier *barr, 2480 struct work_struct *target, struct worker *worker) 2481 { 2482 struct list_head *head; 2483 unsigned int linked = 0; 2484 2485 /* 2486 * debugobject calls are safe here even with pool->lock locked 2487 * as we know for sure that this will not trigger any of the 2488 * checks and call back into the fixup functions where we 2489 * might deadlock. 2490 */ 2491 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2492 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2493 2494 init_completion_map(&barr->done, &target->lockdep_map); 2495 2496 barr->task = current; 2497 2498 /* 2499 * If @target is currently being executed, schedule the 2500 * barrier to the worker; otherwise, put it after @target. 2501 */ 2502 if (worker) 2503 head = worker->scheduled.next; 2504 else { 2505 unsigned long *bits = work_data_bits(target); 2506 2507 head = target->entry.next; 2508 /* there can already be other linked works, inherit and set */ 2509 linked = *bits & WORK_STRUCT_LINKED; 2510 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2511 } 2512 2513 debug_work_activate(&barr->work); 2514 insert_work(pwq, &barr->work, head, 2515 work_color_to_flags(WORK_NO_COLOR) | linked); 2516 } 2517 2518 /** 2519 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2520 * @wq: workqueue being flushed 2521 * @flush_color: new flush color, < 0 for no-op 2522 * @work_color: new work color, < 0 for no-op 2523 * 2524 * Prepare pwqs for workqueue flushing. 2525 * 2526 * If @flush_color is non-negative, flush_color on all pwqs should be 2527 * -1. If no pwq has in-flight commands at the specified color, all 2528 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2529 * has in flight commands, its pwq->flush_color is set to 2530 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2531 * wakeup logic is armed and %true is returned. 2532 * 2533 * The caller should have initialized @wq->first_flusher prior to 2534 * calling this function with non-negative @flush_color. If 2535 * @flush_color is negative, no flush color update is done and %false 2536 * is returned. 2537 * 2538 * If @work_color is non-negative, all pwqs should have the same 2539 * work_color which is previous to @work_color and all will be 2540 * advanced to @work_color. 2541 * 2542 * CONTEXT: 2543 * mutex_lock(wq->mutex). 2544 * 2545 * Return: 2546 * %true if @flush_color >= 0 and there's something to flush. %false 2547 * otherwise. 2548 */ 2549 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2550 int flush_color, int work_color) 2551 { 2552 bool wait = false; 2553 struct pool_workqueue *pwq; 2554 2555 if (flush_color >= 0) { 2556 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2557 atomic_set(&wq->nr_pwqs_to_flush, 1); 2558 } 2559 2560 for_each_pwq(pwq, wq) { 2561 struct worker_pool *pool = pwq->pool; 2562 2563 spin_lock_irq(&pool->lock); 2564 2565 if (flush_color >= 0) { 2566 WARN_ON_ONCE(pwq->flush_color != -1); 2567 2568 if (pwq->nr_in_flight[flush_color]) { 2569 pwq->flush_color = flush_color; 2570 atomic_inc(&wq->nr_pwqs_to_flush); 2571 wait = true; 2572 } 2573 } 2574 2575 if (work_color >= 0) { 2576 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2577 pwq->work_color = work_color; 2578 } 2579 2580 spin_unlock_irq(&pool->lock); 2581 } 2582 2583 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2584 complete(&wq->first_flusher->done); 2585 2586 return wait; 2587 } 2588 2589 /** 2590 * flush_workqueue - ensure that any scheduled work has run to completion. 2591 * @wq: workqueue to flush 2592 * 2593 * This function sleeps until all work items which were queued on entry 2594 * have finished execution, but it is not livelocked by new incoming ones. 2595 */ 2596 void flush_workqueue(struct workqueue_struct *wq) 2597 { 2598 struct wq_flusher this_flusher = { 2599 .list = LIST_HEAD_INIT(this_flusher.list), 2600 .flush_color = -1, 2601 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2602 }; 2603 int next_color; 2604 2605 if (WARN_ON(!wq_online)) 2606 return; 2607 2608 mutex_lock(&wq->mutex); 2609 2610 /* 2611 * Start-to-wait phase 2612 */ 2613 next_color = work_next_color(wq->work_color); 2614 2615 if (next_color != wq->flush_color) { 2616 /* 2617 * Color space is not full. The current work_color 2618 * becomes our flush_color and work_color is advanced 2619 * by one. 2620 */ 2621 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2622 this_flusher.flush_color = wq->work_color; 2623 wq->work_color = next_color; 2624 2625 if (!wq->first_flusher) { 2626 /* no flush in progress, become the first flusher */ 2627 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2628 2629 wq->first_flusher = &this_flusher; 2630 2631 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2632 wq->work_color)) { 2633 /* nothing to flush, done */ 2634 wq->flush_color = next_color; 2635 wq->first_flusher = NULL; 2636 goto out_unlock; 2637 } 2638 } else { 2639 /* wait in queue */ 2640 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2641 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2642 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2643 } 2644 } else { 2645 /* 2646 * Oops, color space is full, wait on overflow queue. 2647 * The next flush completion will assign us 2648 * flush_color and transfer to flusher_queue. 2649 */ 2650 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2651 } 2652 2653 check_flush_dependency(wq, NULL); 2654 2655 mutex_unlock(&wq->mutex); 2656 2657 wait_for_completion(&this_flusher.done); 2658 2659 /* 2660 * Wake-up-and-cascade phase 2661 * 2662 * First flushers are responsible for cascading flushes and 2663 * handling overflow. Non-first flushers can simply return. 2664 */ 2665 if (wq->first_flusher != &this_flusher) 2666 return; 2667 2668 mutex_lock(&wq->mutex); 2669 2670 /* we might have raced, check again with mutex held */ 2671 if (wq->first_flusher != &this_flusher) 2672 goto out_unlock; 2673 2674 wq->first_flusher = NULL; 2675 2676 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2677 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2678 2679 while (true) { 2680 struct wq_flusher *next, *tmp; 2681 2682 /* complete all the flushers sharing the current flush color */ 2683 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2684 if (next->flush_color != wq->flush_color) 2685 break; 2686 list_del_init(&next->list); 2687 complete(&next->done); 2688 } 2689 2690 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2691 wq->flush_color != work_next_color(wq->work_color)); 2692 2693 /* this flush_color is finished, advance by one */ 2694 wq->flush_color = work_next_color(wq->flush_color); 2695 2696 /* one color has been freed, handle overflow queue */ 2697 if (!list_empty(&wq->flusher_overflow)) { 2698 /* 2699 * Assign the same color to all overflowed 2700 * flushers, advance work_color and append to 2701 * flusher_queue. This is the start-to-wait 2702 * phase for these overflowed flushers. 2703 */ 2704 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2705 tmp->flush_color = wq->work_color; 2706 2707 wq->work_color = work_next_color(wq->work_color); 2708 2709 list_splice_tail_init(&wq->flusher_overflow, 2710 &wq->flusher_queue); 2711 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2712 } 2713 2714 if (list_empty(&wq->flusher_queue)) { 2715 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2716 break; 2717 } 2718 2719 /* 2720 * Need to flush more colors. Make the next flusher 2721 * the new first flusher and arm pwqs. 2722 */ 2723 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2724 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2725 2726 list_del_init(&next->list); 2727 wq->first_flusher = next; 2728 2729 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2730 break; 2731 2732 /* 2733 * Meh... this color is already done, clear first 2734 * flusher and repeat cascading. 2735 */ 2736 wq->first_flusher = NULL; 2737 } 2738 2739 out_unlock: 2740 mutex_unlock(&wq->mutex); 2741 } 2742 EXPORT_SYMBOL(flush_workqueue); 2743 2744 /** 2745 * drain_workqueue - drain a workqueue 2746 * @wq: workqueue to drain 2747 * 2748 * Wait until the workqueue becomes empty. While draining is in progress, 2749 * only chain queueing is allowed. IOW, only currently pending or running 2750 * work items on @wq can queue further work items on it. @wq is flushed 2751 * repeatedly until it becomes empty. The number of flushing is determined 2752 * by the depth of chaining and should be relatively short. Whine if it 2753 * takes too long. 2754 */ 2755 void drain_workqueue(struct workqueue_struct *wq) 2756 { 2757 unsigned int flush_cnt = 0; 2758 struct pool_workqueue *pwq; 2759 2760 /* 2761 * __queue_work() needs to test whether there are drainers, is much 2762 * hotter than drain_workqueue() and already looks at @wq->flags. 2763 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2764 */ 2765 mutex_lock(&wq->mutex); 2766 if (!wq->nr_drainers++) 2767 wq->flags |= __WQ_DRAINING; 2768 mutex_unlock(&wq->mutex); 2769 reflush: 2770 flush_workqueue(wq); 2771 2772 mutex_lock(&wq->mutex); 2773 2774 for_each_pwq(pwq, wq) { 2775 bool drained; 2776 2777 spin_lock_irq(&pwq->pool->lock); 2778 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2779 spin_unlock_irq(&pwq->pool->lock); 2780 2781 if (drained) 2782 continue; 2783 2784 if (++flush_cnt == 10 || 2785 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2786 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2787 wq->name, flush_cnt); 2788 2789 mutex_unlock(&wq->mutex); 2790 goto reflush; 2791 } 2792 2793 if (!--wq->nr_drainers) 2794 wq->flags &= ~__WQ_DRAINING; 2795 mutex_unlock(&wq->mutex); 2796 } 2797 EXPORT_SYMBOL_GPL(drain_workqueue); 2798 2799 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2800 { 2801 struct worker *worker = NULL; 2802 struct worker_pool *pool; 2803 struct pool_workqueue *pwq; 2804 2805 might_sleep(); 2806 2807 local_irq_disable(); 2808 pool = get_work_pool(work); 2809 if (!pool) { 2810 local_irq_enable(); 2811 return false; 2812 } 2813 2814 spin_lock(&pool->lock); 2815 /* see the comment in try_to_grab_pending() with the same code */ 2816 pwq = get_work_pwq(work); 2817 if (pwq) { 2818 if (unlikely(pwq->pool != pool)) 2819 goto already_gone; 2820 } else { 2821 worker = find_worker_executing_work(pool, work); 2822 if (!worker) 2823 goto already_gone; 2824 pwq = worker->current_pwq; 2825 } 2826 2827 check_flush_dependency(pwq->wq, work); 2828 2829 insert_wq_barrier(pwq, barr, work, worker); 2830 spin_unlock_irq(&pool->lock); 2831 2832 /* 2833 * Force a lock recursion deadlock when using flush_work() inside a 2834 * single-threaded or rescuer equipped workqueue. 2835 * 2836 * For single threaded workqueues the deadlock happens when the work 2837 * is after the work issuing the flush_work(). For rescuer equipped 2838 * workqueues the deadlock happens when the rescuer stalls, blocking 2839 * forward progress. 2840 */ 2841 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) { 2842 lock_map_acquire(&pwq->wq->lockdep_map); 2843 lock_map_release(&pwq->wq->lockdep_map); 2844 } 2845 2846 return true; 2847 already_gone: 2848 spin_unlock_irq(&pool->lock); 2849 return false; 2850 } 2851 2852 /** 2853 * flush_work - wait for a work to finish executing the last queueing instance 2854 * @work: the work to flush 2855 * 2856 * Wait until @work has finished execution. @work is guaranteed to be idle 2857 * on return if it hasn't been requeued since flush started. 2858 * 2859 * Return: 2860 * %true if flush_work() waited for the work to finish execution, 2861 * %false if it was already idle. 2862 */ 2863 bool flush_work(struct work_struct *work) 2864 { 2865 struct wq_barrier barr; 2866 2867 if (WARN_ON(!wq_online)) 2868 return false; 2869 2870 if (start_flush_work(work, &barr)) { 2871 wait_for_completion(&barr.done); 2872 destroy_work_on_stack(&barr.work); 2873 return true; 2874 } else { 2875 return false; 2876 } 2877 } 2878 EXPORT_SYMBOL_GPL(flush_work); 2879 2880 struct cwt_wait { 2881 wait_queue_entry_t wait; 2882 struct work_struct *work; 2883 }; 2884 2885 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2886 { 2887 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2888 2889 if (cwait->work != key) 2890 return 0; 2891 return autoremove_wake_function(wait, mode, sync, key); 2892 } 2893 2894 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2895 { 2896 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2897 unsigned long flags; 2898 int ret; 2899 2900 do { 2901 ret = try_to_grab_pending(work, is_dwork, &flags); 2902 /* 2903 * If someone else is already canceling, wait for it to 2904 * finish. flush_work() doesn't work for PREEMPT_NONE 2905 * because we may get scheduled between @work's completion 2906 * and the other canceling task resuming and clearing 2907 * CANCELING - flush_work() will return false immediately 2908 * as @work is no longer busy, try_to_grab_pending() will 2909 * return -ENOENT as @work is still being canceled and the 2910 * other canceling task won't be able to clear CANCELING as 2911 * we're hogging the CPU. 2912 * 2913 * Let's wait for completion using a waitqueue. As this 2914 * may lead to the thundering herd problem, use a custom 2915 * wake function which matches @work along with exclusive 2916 * wait and wakeup. 2917 */ 2918 if (unlikely(ret == -ENOENT)) { 2919 struct cwt_wait cwait; 2920 2921 init_wait(&cwait.wait); 2922 cwait.wait.func = cwt_wakefn; 2923 cwait.work = work; 2924 2925 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2926 TASK_UNINTERRUPTIBLE); 2927 if (work_is_canceling(work)) 2928 schedule(); 2929 finish_wait(&cancel_waitq, &cwait.wait); 2930 } 2931 } while (unlikely(ret < 0)); 2932 2933 /* tell other tasks trying to grab @work to back off */ 2934 mark_work_canceling(work); 2935 local_irq_restore(flags); 2936 2937 /* 2938 * This allows canceling during early boot. We know that @work 2939 * isn't executing. 2940 */ 2941 if (wq_online) 2942 flush_work(work); 2943 2944 clear_work_data(work); 2945 2946 /* 2947 * Paired with prepare_to_wait() above so that either 2948 * waitqueue_active() is visible here or !work_is_canceling() is 2949 * visible there. 2950 */ 2951 smp_mb(); 2952 if (waitqueue_active(&cancel_waitq)) 2953 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 2954 2955 return ret; 2956 } 2957 2958 /** 2959 * cancel_work_sync - cancel a work and wait for it to finish 2960 * @work: the work to cancel 2961 * 2962 * Cancel @work and wait for its execution to finish. This function 2963 * can be used even if the work re-queues itself or migrates to 2964 * another workqueue. On return from this function, @work is 2965 * guaranteed to be not pending or executing on any CPU. 2966 * 2967 * cancel_work_sync(&delayed_work->work) must not be used for 2968 * delayed_work's. Use cancel_delayed_work_sync() instead. 2969 * 2970 * The caller must ensure that the workqueue on which @work was last 2971 * queued can't be destroyed before this function returns. 2972 * 2973 * Return: 2974 * %true if @work was pending, %false otherwise. 2975 */ 2976 bool cancel_work_sync(struct work_struct *work) 2977 { 2978 return __cancel_work_timer(work, false); 2979 } 2980 EXPORT_SYMBOL_GPL(cancel_work_sync); 2981 2982 /** 2983 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2984 * @dwork: the delayed work to flush 2985 * 2986 * Delayed timer is cancelled and the pending work is queued for 2987 * immediate execution. Like flush_work(), this function only 2988 * considers the last queueing instance of @dwork. 2989 * 2990 * Return: 2991 * %true if flush_work() waited for the work to finish execution, 2992 * %false if it was already idle. 2993 */ 2994 bool flush_delayed_work(struct delayed_work *dwork) 2995 { 2996 local_irq_disable(); 2997 if (del_timer_sync(&dwork->timer)) 2998 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2999 local_irq_enable(); 3000 return flush_work(&dwork->work); 3001 } 3002 EXPORT_SYMBOL(flush_delayed_work); 3003 3004 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3005 { 3006 unsigned long flags; 3007 int ret; 3008 3009 do { 3010 ret = try_to_grab_pending(work, is_dwork, &flags); 3011 } while (unlikely(ret == -EAGAIN)); 3012 3013 if (unlikely(ret < 0)) 3014 return false; 3015 3016 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3017 local_irq_restore(flags); 3018 return ret; 3019 } 3020 3021 /* 3022 * See cancel_delayed_work() 3023 */ 3024 bool cancel_work(struct work_struct *work) 3025 { 3026 return __cancel_work(work, false); 3027 } 3028 3029 /** 3030 * cancel_delayed_work - cancel a delayed work 3031 * @dwork: delayed_work to cancel 3032 * 3033 * Kill off a pending delayed_work. 3034 * 3035 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3036 * pending. 3037 * 3038 * Note: 3039 * The work callback function may still be running on return, unless 3040 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3041 * use cancel_delayed_work_sync() to wait on it. 3042 * 3043 * This function is safe to call from any context including IRQ handler. 3044 */ 3045 bool cancel_delayed_work(struct delayed_work *dwork) 3046 { 3047 return __cancel_work(&dwork->work, true); 3048 } 3049 EXPORT_SYMBOL(cancel_delayed_work); 3050 3051 /** 3052 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3053 * @dwork: the delayed work cancel 3054 * 3055 * This is cancel_work_sync() for delayed works. 3056 * 3057 * Return: 3058 * %true if @dwork was pending, %false otherwise. 3059 */ 3060 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3061 { 3062 return __cancel_work_timer(&dwork->work, true); 3063 } 3064 EXPORT_SYMBOL(cancel_delayed_work_sync); 3065 3066 /** 3067 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3068 * @func: the function to call 3069 * 3070 * schedule_on_each_cpu() executes @func on each online CPU using the 3071 * system workqueue and blocks until all CPUs have completed. 3072 * schedule_on_each_cpu() is very slow. 3073 * 3074 * Return: 3075 * 0 on success, -errno on failure. 3076 */ 3077 int schedule_on_each_cpu(work_func_t func) 3078 { 3079 int cpu; 3080 struct work_struct __percpu *works; 3081 3082 works = alloc_percpu(struct work_struct); 3083 if (!works) 3084 return -ENOMEM; 3085 3086 get_online_cpus(); 3087 3088 for_each_online_cpu(cpu) { 3089 struct work_struct *work = per_cpu_ptr(works, cpu); 3090 3091 INIT_WORK(work, func); 3092 schedule_work_on(cpu, work); 3093 } 3094 3095 for_each_online_cpu(cpu) 3096 flush_work(per_cpu_ptr(works, cpu)); 3097 3098 put_online_cpus(); 3099 free_percpu(works); 3100 return 0; 3101 } 3102 3103 /** 3104 * execute_in_process_context - reliably execute the routine with user context 3105 * @fn: the function to execute 3106 * @ew: guaranteed storage for the execute work structure (must 3107 * be available when the work executes) 3108 * 3109 * Executes the function immediately if process context is available, 3110 * otherwise schedules the function for delayed execution. 3111 * 3112 * Return: 0 - function was executed 3113 * 1 - function was scheduled for execution 3114 */ 3115 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3116 { 3117 if (!in_interrupt()) { 3118 fn(&ew->work); 3119 return 0; 3120 } 3121 3122 INIT_WORK(&ew->work, fn); 3123 schedule_work(&ew->work); 3124 3125 return 1; 3126 } 3127 EXPORT_SYMBOL_GPL(execute_in_process_context); 3128 3129 /** 3130 * free_workqueue_attrs - free a workqueue_attrs 3131 * @attrs: workqueue_attrs to free 3132 * 3133 * Undo alloc_workqueue_attrs(). 3134 */ 3135 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3136 { 3137 if (attrs) { 3138 free_cpumask_var(attrs->cpumask); 3139 kfree(attrs); 3140 } 3141 } 3142 3143 /** 3144 * alloc_workqueue_attrs - allocate a workqueue_attrs 3145 * @gfp_mask: allocation mask to use 3146 * 3147 * Allocate a new workqueue_attrs, initialize with default settings and 3148 * return it. 3149 * 3150 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3151 */ 3152 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3153 { 3154 struct workqueue_attrs *attrs; 3155 3156 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3157 if (!attrs) 3158 goto fail; 3159 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3160 goto fail; 3161 3162 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3163 return attrs; 3164 fail: 3165 free_workqueue_attrs(attrs); 3166 return NULL; 3167 } 3168 3169 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3170 const struct workqueue_attrs *from) 3171 { 3172 to->nice = from->nice; 3173 cpumask_copy(to->cpumask, from->cpumask); 3174 /* 3175 * Unlike hash and equality test, this function doesn't ignore 3176 * ->no_numa as it is used for both pool and wq attrs. Instead, 3177 * get_unbound_pool() explicitly clears ->no_numa after copying. 3178 */ 3179 to->no_numa = from->no_numa; 3180 } 3181 3182 /* hash value of the content of @attr */ 3183 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3184 { 3185 u32 hash = 0; 3186 3187 hash = jhash_1word(attrs->nice, hash); 3188 hash = jhash(cpumask_bits(attrs->cpumask), 3189 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3190 return hash; 3191 } 3192 3193 /* content equality test */ 3194 static bool wqattrs_equal(const struct workqueue_attrs *a, 3195 const struct workqueue_attrs *b) 3196 { 3197 if (a->nice != b->nice) 3198 return false; 3199 if (!cpumask_equal(a->cpumask, b->cpumask)) 3200 return false; 3201 return true; 3202 } 3203 3204 /** 3205 * init_worker_pool - initialize a newly zalloc'd worker_pool 3206 * @pool: worker_pool to initialize 3207 * 3208 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3209 * 3210 * Return: 0 on success, -errno on failure. Even on failure, all fields 3211 * inside @pool proper are initialized and put_unbound_pool() can be called 3212 * on @pool safely to release it. 3213 */ 3214 static int init_worker_pool(struct worker_pool *pool) 3215 { 3216 spin_lock_init(&pool->lock); 3217 pool->id = -1; 3218 pool->cpu = -1; 3219 pool->node = NUMA_NO_NODE; 3220 pool->flags |= POOL_DISASSOCIATED; 3221 pool->watchdog_ts = jiffies; 3222 INIT_LIST_HEAD(&pool->worklist); 3223 INIT_LIST_HEAD(&pool->idle_list); 3224 hash_init(pool->busy_hash); 3225 3226 setup_deferrable_timer(&pool->idle_timer, idle_worker_timeout, 3227 (unsigned long)pool); 3228 3229 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3230 (unsigned long)pool); 3231 3232 mutex_init(&pool->attach_mutex); 3233 INIT_LIST_HEAD(&pool->workers); 3234 3235 ida_init(&pool->worker_ida); 3236 INIT_HLIST_NODE(&pool->hash_node); 3237 pool->refcnt = 1; 3238 3239 /* shouldn't fail above this point */ 3240 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3241 if (!pool->attrs) 3242 return -ENOMEM; 3243 return 0; 3244 } 3245 3246 static void rcu_free_wq(struct rcu_head *rcu) 3247 { 3248 struct workqueue_struct *wq = 3249 container_of(rcu, struct workqueue_struct, rcu); 3250 3251 if (!(wq->flags & WQ_UNBOUND)) 3252 free_percpu(wq->cpu_pwqs); 3253 else 3254 free_workqueue_attrs(wq->unbound_attrs); 3255 3256 kfree(wq->rescuer); 3257 kfree(wq); 3258 } 3259 3260 static void rcu_free_pool(struct rcu_head *rcu) 3261 { 3262 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3263 3264 ida_destroy(&pool->worker_ida); 3265 free_workqueue_attrs(pool->attrs); 3266 kfree(pool); 3267 } 3268 3269 /** 3270 * put_unbound_pool - put a worker_pool 3271 * @pool: worker_pool to put 3272 * 3273 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3274 * safe manner. get_unbound_pool() calls this function on its failure path 3275 * and this function should be able to release pools which went through, 3276 * successfully or not, init_worker_pool(). 3277 * 3278 * Should be called with wq_pool_mutex held. 3279 */ 3280 static void put_unbound_pool(struct worker_pool *pool) 3281 { 3282 DECLARE_COMPLETION_ONSTACK(detach_completion); 3283 struct worker *worker; 3284 3285 lockdep_assert_held(&wq_pool_mutex); 3286 3287 if (--pool->refcnt) 3288 return; 3289 3290 /* sanity checks */ 3291 if (WARN_ON(!(pool->cpu < 0)) || 3292 WARN_ON(!list_empty(&pool->worklist))) 3293 return; 3294 3295 /* release id and unhash */ 3296 if (pool->id >= 0) 3297 idr_remove(&worker_pool_idr, pool->id); 3298 hash_del(&pool->hash_node); 3299 3300 /* 3301 * Become the manager and destroy all workers. This prevents 3302 * @pool's workers from blocking on attach_mutex. We're the last 3303 * manager and @pool gets freed with the flag set. 3304 */ 3305 spin_lock_irq(&pool->lock); 3306 wait_event_lock_irq(wq_manager_wait, 3307 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock); 3308 pool->flags |= POOL_MANAGER_ACTIVE; 3309 3310 while ((worker = first_idle_worker(pool))) 3311 destroy_worker(worker); 3312 WARN_ON(pool->nr_workers || pool->nr_idle); 3313 spin_unlock_irq(&pool->lock); 3314 3315 mutex_lock(&pool->attach_mutex); 3316 if (!list_empty(&pool->workers)) 3317 pool->detach_completion = &detach_completion; 3318 mutex_unlock(&pool->attach_mutex); 3319 3320 if (pool->detach_completion) 3321 wait_for_completion(pool->detach_completion); 3322 3323 /* shut down the timers */ 3324 del_timer_sync(&pool->idle_timer); 3325 del_timer_sync(&pool->mayday_timer); 3326 3327 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3328 call_rcu_sched(&pool->rcu, rcu_free_pool); 3329 } 3330 3331 /** 3332 * get_unbound_pool - get a worker_pool with the specified attributes 3333 * @attrs: the attributes of the worker_pool to get 3334 * 3335 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3336 * reference count and return it. If there already is a matching 3337 * worker_pool, it will be used; otherwise, this function attempts to 3338 * create a new one. 3339 * 3340 * Should be called with wq_pool_mutex held. 3341 * 3342 * Return: On success, a worker_pool with the same attributes as @attrs. 3343 * On failure, %NULL. 3344 */ 3345 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3346 { 3347 u32 hash = wqattrs_hash(attrs); 3348 struct worker_pool *pool; 3349 int node; 3350 int target_node = NUMA_NO_NODE; 3351 3352 lockdep_assert_held(&wq_pool_mutex); 3353 3354 /* do we already have a matching pool? */ 3355 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3356 if (wqattrs_equal(pool->attrs, attrs)) { 3357 pool->refcnt++; 3358 return pool; 3359 } 3360 } 3361 3362 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3363 if (wq_numa_enabled) { 3364 for_each_node(node) { 3365 if (cpumask_subset(attrs->cpumask, 3366 wq_numa_possible_cpumask[node])) { 3367 target_node = node; 3368 break; 3369 } 3370 } 3371 } 3372 3373 /* nope, create a new one */ 3374 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3375 if (!pool || init_worker_pool(pool) < 0) 3376 goto fail; 3377 3378 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3379 copy_workqueue_attrs(pool->attrs, attrs); 3380 pool->node = target_node; 3381 3382 /* 3383 * no_numa isn't a worker_pool attribute, always clear it. See 3384 * 'struct workqueue_attrs' comments for detail. 3385 */ 3386 pool->attrs->no_numa = false; 3387 3388 if (worker_pool_assign_id(pool) < 0) 3389 goto fail; 3390 3391 /* create and start the initial worker */ 3392 if (wq_online && !create_worker(pool)) 3393 goto fail; 3394 3395 /* install */ 3396 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3397 3398 return pool; 3399 fail: 3400 if (pool) 3401 put_unbound_pool(pool); 3402 return NULL; 3403 } 3404 3405 static void rcu_free_pwq(struct rcu_head *rcu) 3406 { 3407 kmem_cache_free(pwq_cache, 3408 container_of(rcu, struct pool_workqueue, rcu)); 3409 } 3410 3411 /* 3412 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3413 * and needs to be destroyed. 3414 */ 3415 static void pwq_unbound_release_workfn(struct work_struct *work) 3416 { 3417 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3418 unbound_release_work); 3419 struct workqueue_struct *wq = pwq->wq; 3420 struct worker_pool *pool = pwq->pool; 3421 bool is_last; 3422 3423 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3424 return; 3425 3426 mutex_lock(&wq->mutex); 3427 list_del_rcu(&pwq->pwqs_node); 3428 is_last = list_empty(&wq->pwqs); 3429 mutex_unlock(&wq->mutex); 3430 3431 mutex_lock(&wq_pool_mutex); 3432 put_unbound_pool(pool); 3433 mutex_unlock(&wq_pool_mutex); 3434 3435 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3436 3437 /* 3438 * If we're the last pwq going away, @wq is already dead and no one 3439 * is gonna access it anymore. Schedule RCU free. 3440 */ 3441 if (is_last) 3442 call_rcu_sched(&wq->rcu, rcu_free_wq); 3443 } 3444 3445 /** 3446 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3447 * @pwq: target pool_workqueue 3448 * 3449 * If @pwq isn't freezing, set @pwq->max_active to the associated 3450 * workqueue's saved_max_active and activate delayed work items 3451 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3452 */ 3453 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3454 { 3455 struct workqueue_struct *wq = pwq->wq; 3456 bool freezable = wq->flags & WQ_FREEZABLE; 3457 unsigned long flags; 3458 3459 /* for @wq->saved_max_active */ 3460 lockdep_assert_held(&wq->mutex); 3461 3462 /* fast exit for non-freezable wqs */ 3463 if (!freezable && pwq->max_active == wq->saved_max_active) 3464 return; 3465 3466 /* this function can be called during early boot w/ irq disabled */ 3467 spin_lock_irqsave(&pwq->pool->lock, flags); 3468 3469 /* 3470 * During [un]freezing, the caller is responsible for ensuring that 3471 * this function is called at least once after @workqueue_freezing 3472 * is updated and visible. 3473 */ 3474 if (!freezable || !workqueue_freezing) { 3475 pwq->max_active = wq->saved_max_active; 3476 3477 while (!list_empty(&pwq->delayed_works) && 3478 pwq->nr_active < pwq->max_active) 3479 pwq_activate_first_delayed(pwq); 3480 3481 /* 3482 * Need to kick a worker after thawed or an unbound wq's 3483 * max_active is bumped. It's a slow path. Do it always. 3484 */ 3485 wake_up_worker(pwq->pool); 3486 } else { 3487 pwq->max_active = 0; 3488 } 3489 3490 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3491 } 3492 3493 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3494 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3495 struct worker_pool *pool) 3496 { 3497 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3498 3499 memset(pwq, 0, sizeof(*pwq)); 3500 3501 pwq->pool = pool; 3502 pwq->wq = wq; 3503 pwq->flush_color = -1; 3504 pwq->refcnt = 1; 3505 INIT_LIST_HEAD(&pwq->delayed_works); 3506 INIT_LIST_HEAD(&pwq->pwqs_node); 3507 INIT_LIST_HEAD(&pwq->mayday_node); 3508 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3509 } 3510 3511 /* sync @pwq with the current state of its associated wq and link it */ 3512 static void link_pwq(struct pool_workqueue *pwq) 3513 { 3514 struct workqueue_struct *wq = pwq->wq; 3515 3516 lockdep_assert_held(&wq->mutex); 3517 3518 /* may be called multiple times, ignore if already linked */ 3519 if (!list_empty(&pwq->pwqs_node)) 3520 return; 3521 3522 /* set the matching work_color */ 3523 pwq->work_color = wq->work_color; 3524 3525 /* sync max_active to the current setting */ 3526 pwq_adjust_max_active(pwq); 3527 3528 /* link in @pwq */ 3529 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3530 } 3531 3532 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3533 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3534 const struct workqueue_attrs *attrs) 3535 { 3536 struct worker_pool *pool; 3537 struct pool_workqueue *pwq; 3538 3539 lockdep_assert_held(&wq_pool_mutex); 3540 3541 pool = get_unbound_pool(attrs); 3542 if (!pool) 3543 return NULL; 3544 3545 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3546 if (!pwq) { 3547 put_unbound_pool(pool); 3548 return NULL; 3549 } 3550 3551 init_pwq(pwq, wq, pool); 3552 return pwq; 3553 } 3554 3555 /** 3556 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3557 * @attrs: the wq_attrs of the default pwq of the target workqueue 3558 * @node: the target NUMA node 3559 * @cpu_going_down: if >= 0, the CPU to consider as offline 3560 * @cpumask: outarg, the resulting cpumask 3561 * 3562 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3563 * @cpu_going_down is >= 0, that cpu is considered offline during 3564 * calculation. The result is stored in @cpumask. 3565 * 3566 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3567 * enabled and @node has online CPUs requested by @attrs, the returned 3568 * cpumask is the intersection of the possible CPUs of @node and 3569 * @attrs->cpumask. 3570 * 3571 * The caller is responsible for ensuring that the cpumask of @node stays 3572 * stable. 3573 * 3574 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3575 * %false if equal. 3576 */ 3577 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3578 int cpu_going_down, cpumask_t *cpumask) 3579 { 3580 if (!wq_numa_enabled || attrs->no_numa) 3581 goto use_dfl; 3582 3583 /* does @node have any online CPUs @attrs wants? */ 3584 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3585 if (cpu_going_down >= 0) 3586 cpumask_clear_cpu(cpu_going_down, cpumask); 3587 3588 if (cpumask_empty(cpumask)) 3589 goto use_dfl; 3590 3591 /* yeap, return possible CPUs in @node that @attrs wants */ 3592 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3593 3594 if (cpumask_empty(cpumask)) { 3595 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3596 "possible intersect\n"); 3597 return false; 3598 } 3599 3600 return !cpumask_equal(cpumask, attrs->cpumask); 3601 3602 use_dfl: 3603 cpumask_copy(cpumask, attrs->cpumask); 3604 return false; 3605 } 3606 3607 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3608 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3609 int node, 3610 struct pool_workqueue *pwq) 3611 { 3612 struct pool_workqueue *old_pwq; 3613 3614 lockdep_assert_held(&wq_pool_mutex); 3615 lockdep_assert_held(&wq->mutex); 3616 3617 /* link_pwq() can handle duplicate calls */ 3618 link_pwq(pwq); 3619 3620 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3621 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3622 return old_pwq; 3623 } 3624 3625 /* context to store the prepared attrs & pwqs before applying */ 3626 struct apply_wqattrs_ctx { 3627 struct workqueue_struct *wq; /* target workqueue */ 3628 struct workqueue_attrs *attrs; /* attrs to apply */ 3629 struct list_head list; /* queued for batching commit */ 3630 struct pool_workqueue *dfl_pwq; 3631 struct pool_workqueue *pwq_tbl[]; 3632 }; 3633 3634 /* free the resources after success or abort */ 3635 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3636 { 3637 if (ctx) { 3638 int node; 3639 3640 for_each_node(node) 3641 put_pwq_unlocked(ctx->pwq_tbl[node]); 3642 put_pwq_unlocked(ctx->dfl_pwq); 3643 3644 free_workqueue_attrs(ctx->attrs); 3645 3646 kfree(ctx); 3647 } 3648 } 3649 3650 /* allocate the attrs and pwqs for later installation */ 3651 static struct apply_wqattrs_ctx * 3652 apply_wqattrs_prepare(struct workqueue_struct *wq, 3653 const struct workqueue_attrs *attrs) 3654 { 3655 struct apply_wqattrs_ctx *ctx; 3656 struct workqueue_attrs *new_attrs, *tmp_attrs; 3657 int node; 3658 3659 lockdep_assert_held(&wq_pool_mutex); 3660 3661 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]), 3662 GFP_KERNEL); 3663 3664 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3665 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3666 if (!ctx || !new_attrs || !tmp_attrs) 3667 goto out_free; 3668 3669 /* 3670 * Calculate the attrs of the default pwq. 3671 * If the user configured cpumask doesn't overlap with the 3672 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3673 */ 3674 copy_workqueue_attrs(new_attrs, attrs); 3675 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3676 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3677 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3678 3679 /* 3680 * We may create multiple pwqs with differing cpumasks. Make a 3681 * copy of @new_attrs which will be modified and used to obtain 3682 * pools. 3683 */ 3684 copy_workqueue_attrs(tmp_attrs, new_attrs); 3685 3686 /* 3687 * If something goes wrong during CPU up/down, we'll fall back to 3688 * the default pwq covering whole @attrs->cpumask. Always create 3689 * it even if we don't use it immediately. 3690 */ 3691 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3692 if (!ctx->dfl_pwq) 3693 goto out_free; 3694 3695 for_each_node(node) { 3696 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3697 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3698 if (!ctx->pwq_tbl[node]) 3699 goto out_free; 3700 } else { 3701 ctx->dfl_pwq->refcnt++; 3702 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3703 } 3704 } 3705 3706 /* save the user configured attrs and sanitize it. */ 3707 copy_workqueue_attrs(new_attrs, attrs); 3708 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3709 ctx->attrs = new_attrs; 3710 3711 ctx->wq = wq; 3712 free_workqueue_attrs(tmp_attrs); 3713 return ctx; 3714 3715 out_free: 3716 free_workqueue_attrs(tmp_attrs); 3717 free_workqueue_attrs(new_attrs); 3718 apply_wqattrs_cleanup(ctx); 3719 return NULL; 3720 } 3721 3722 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3723 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3724 { 3725 int node; 3726 3727 /* all pwqs have been created successfully, let's install'em */ 3728 mutex_lock(&ctx->wq->mutex); 3729 3730 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3731 3732 /* save the previous pwq and install the new one */ 3733 for_each_node(node) 3734 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3735 ctx->pwq_tbl[node]); 3736 3737 /* @dfl_pwq might not have been used, ensure it's linked */ 3738 link_pwq(ctx->dfl_pwq); 3739 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3740 3741 mutex_unlock(&ctx->wq->mutex); 3742 } 3743 3744 static void apply_wqattrs_lock(void) 3745 { 3746 /* CPUs should stay stable across pwq creations and installations */ 3747 get_online_cpus(); 3748 mutex_lock(&wq_pool_mutex); 3749 } 3750 3751 static void apply_wqattrs_unlock(void) 3752 { 3753 mutex_unlock(&wq_pool_mutex); 3754 put_online_cpus(); 3755 } 3756 3757 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3758 const struct workqueue_attrs *attrs) 3759 { 3760 struct apply_wqattrs_ctx *ctx; 3761 3762 /* only unbound workqueues can change attributes */ 3763 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3764 return -EINVAL; 3765 3766 /* creating multiple pwqs breaks ordering guarantee */ 3767 if (!list_empty(&wq->pwqs)) { 3768 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 3769 return -EINVAL; 3770 3771 wq->flags &= ~__WQ_ORDERED; 3772 } 3773 3774 ctx = apply_wqattrs_prepare(wq, attrs); 3775 if (!ctx) 3776 return -ENOMEM; 3777 3778 /* the ctx has been prepared successfully, let's commit it */ 3779 apply_wqattrs_commit(ctx); 3780 apply_wqattrs_cleanup(ctx); 3781 3782 return 0; 3783 } 3784 3785 /** 3786 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3787 * @wq: the target workqueue 3788 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3789 * 3790 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3791 * machines, this function maps a separate pwq to each NUMA node with 3792 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3793 * NUMA node it was issued on. Older pwqs are released as in-flight work 3794 * items finish. Note that a work item which repeatedly requeues itself 3795 * back-to-back will stay on its current pwq. 3796 * 3797 * Performs GFP_KERNEL allocations. 3798 * 3799 * Return: 0 on success and -errno on failure. 3800 */ 3801 int apply_workqueue_attrs(struct workqueue_struct *wq, 3802 const struct workqueue_attrs *attrs) 3803 { 3804 int ret; 3805 3806 apply_wqattrs_lock(); 3807 ret = apply_workqueue_attrs_locked(wq, attrs); 3808 apply_wqattrs_unlock(); 3809 3810 return ret; 3811 } 3812 3813 /** 3814 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3815 * @wq: the target workqueue 3816 * @cpu: the CPU coming up or going down 3817 * @online: whether @cpu is coming up or going down 3818 * 3819 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3820 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3821 * @wq accordingly. 3822 * 3823 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3824 * falls back to @wq->dfl_pwq which may not be optimal but is always 3825 * correct. 3826 * 3827 * Note that when the last allowed CPU of a NUMA node goes offline for a 3828 * workqueue with a cpumask spanning multiple nodes, the workers which were 3829 * already executing the work items for the workqueue will lose their CPU 3830 * affinity and may execute on any CPU. This is similar to how per-cpu 3831 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3832 * affinity, it's the user's responsibility to flush the work item from 3833 * CPU_DOWN_PREPARE. 3834 */ 3835 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3836 bool online) 3837 { 3838 int node = cpu_to_node(cpu); 3839 int cpu_off = online ? -1 : cpu; 3840 struct pool_workqueue *old_pwq = NULL, *pwq; 3841 struct workqueue_attrs *target_attrs; 3842 cpumask_t *cpumask; 3843 3844 lockdep_assert_held(&wq_pool_mutex); 3845 3846 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3847 wq->unbound_attrs->no_numa) 3848 return; 3849 3850 /* 3851 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3852 * Let's use a preallocated one. The following buf is protected by 3853 * CPU hotplug exclusion. 3854 */ 3855 target_attrs = wq_update_unbound_numa_attrs_buf; 3856 cpumask = target_attrs->cpumask; 3857 3858 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3859 pwq = unbound_pwq_by_node(wq, node); 3860 3861 /* 3862 * Let's determine what needs to be done. If the target cpumask is 3863 * different from the default pwq's, we need to compare it to @pwq's 3864 * and create a new one if they don't match. If the target cpumask 3865 * equals the default pwq's, the default pwq should be used. 3866 */ 3867 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 3868 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3869 return; 3870 } else { 3871 goto use_dfl_pwq; 3872 } 3873 3874 /* create a new pwq */ 3875 pwq = alloc_unbound_pwq(wq, target_attrs); 3876 if (!pwq) { 3877 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3878 wq->name); 3879 goto use_dfl_pwq; 3880 } 3881 3882 /* Install the new pwq. */ 3883 mutex_lock(&wq->mutex); 3884 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3885 goto out_unlock; 3886 3887 use_dfl_pwq: 3888 mutex_lock(&wq->mutex); 3889 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3890 get_pwq(wq->dfl_pwq); 3891 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3892 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3893 out_unlock: 3894 mutex_unlock(&wq->mutex); 3895 put_pwq_unlocked(old_pwq); 3896 } 3897 3898 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3899 { 3900 bool highpri = wq->flags & WQ_HIGHPRI; 3901 int cpu, ret; 3902 3903 if (!(wq->flags & WQ_UNBOUND)) { 3904 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3905 if (!wq->cpu_pwqs) 3906 return -ENOMEM; 3907 3908 for_each_possible_cpu(cpu) { 3909 struct pool_workqueue *pwq = 3910 per_cpu_ptr(wq->cpu_pwqs, cpu); 3911 struct worker_pool *cpu_pools = 3912 per_cpu(cpu_worker_pools, cpu); 3913 3914 init_pwq(pwq, wq, &cpu_pools[highpri]); 3915 3916 mutex_lock(&wq->mutex); 3917 link_pwq(pwq); 3918 mutex_unlock(&wq->mutex); 3919 } 3920 return 0; 3921 } else if (wq->flags & __WQ_ORDERED) { 3922 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3923 /* there should only be single pwq for ordering guarantee */ 3924 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3925 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3926 "ordering guarantee broken for workqueue %s\n", wq->name); 3927 return ret; 3928 } else { 3929 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 3930 } 3931 } 3932 3933 static int wq_clamp_max_active(int max_active, unsigned int flags, 3934 const char *name) 3935 { 3936 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3937 3938 if (max_active < 1 || max_active > lim) 3939 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3940 max_active, name, 1, lim); 3941 3942 return clamp_val(max_active, 1, lim); 3943 } 3944 3945 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3946 unsigned int flags, 3947 int max_active, 3948 struct lock_class_key *key, 3949 const char *lock_name, ...) 3950 { 3951 size_t tbl_size = 0; 3952 va_list args; 3953 struct workqueue_struct *wq; 3954 struct pool_workqueue *pwq; 3955 3956 /* 3957 * Unbound && max_active == 1 used to imply ordered, which is no 3958 * longer the case on NUMA machines due to per-node pools. While 3959 * alloc_ordered_workqueue() is the right way to create an ordered 3960 * workqueue, keep the previous behavior to avoid subtle breakages 3961 * on NUMA. 3962 */ 3963 if ((flags & WQ_UNBOUND) && max_active == 1) 3964 flags |= __WQ_ORDERED; 3965 3966 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 3967 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 3968 flags |= WQ_UNBOUND; 3969 3970 /* allocate wq and format name */ 3971 if (flags & WQ_UNBOUND) 3972 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 3973 3974 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 3975 if (!wq) 3976 return NULL; 3977 3978 if (flags & WQ_UNBOUND) { 3979 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3980 if (!wq->unbound_attrs) 3981 goto err_free_wq; 3982 } 3983 3984 va_start(args, lock_name); 3985 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 3986 va_end(args); 3987 3988 max_active = max_active ?: WQ_DFL_ACTIVE; 3989 max_active = wq_clamp_max_active(max_active, flags, wq->name); 3990 3991 /* init wq */ 3992 wq->flags = flags; 3993 wq->saved_max_active = max_active; 3994 mutex_init(&wq->mutex); 3995 atomic_set(&wq->nr_pwqs_to_flush, 0); 3996 INIT_LIST_HEAD(&wq->pwqs); 3997 INIT_LIST_HEAD(&wq->flusher_queue); 3998 INIT_LIST_HEAD(&wq->flusher_overflow); 3999 INIT_LIST_HEAD(&wq->maydays); 4000 4001 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 4002 INIT_LIST_HEAD(&wq->list); 4003 4004 if (alloc_and_link_pwqs(wq) < 0) 4005 goto err_free_wq; 4006 4007 /* 4008 * Workqueues which may be used during memory reclaim should 4009 * have a rescuer to guarantee forward progress. 4010 */ 4011 if (flags & WQ_MEM_RECLAIM) { 4012 struct worker *rescuer; 4013 4014 rescuer = alloc_worker(NUMA_NO_NODE); 4015 if (!rescuer) 4016 goto err_destroy; 4017 4018 rescuer->rescue_wq = wq; 4019 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 4020 wq->name); 4021 if (IS_ERR(rescuer->task)) { 4022 kfree(rescuer); 4023 goto err_destroy; 4024 } 4025 4026 wq->rescuer = rescuer; 4027 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4028 wake_up_process(rescuer->task); 4029 } 4030 4031 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4032 goto err_destroy; 4033 4034 /* 4035 * wq_pool_mutex protects global freeze state and workqueues list. 4036 * Grab it, adjust max_active and add the new @wq to workqueues 4037 * list. 4038 */ 4039 mutex_lock(&wq_pool_mutex); 4040 4041 mutex_lock(&wq->mutex); 4042 for_each_pwq(pwq, wq) 4043 pwq_adjust_max_active(pwq); 4044 mutex_unlock(&wq->mutex); 4045 4046 list_add_tail_rcu(&wq->list, &workqueues); 4047 4048 mutex_unlock(&wq_pool_mutex); 4049 4050 return wq; 4051 4052 err_free_wq: 4053 free_workqueue_attrs(wq->unbound_attrs); 4054 kfree(wq); 4055 return NULL; 4056 err_destroy: 4057 destroy_workqueue(wq); 4058 return NULL; 4059 } 4060 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4061 4062 /** 4063 * destroy_workqueue - safely terminate a workqueue 4064 * @wq: target workqueue 4065 * 4066 * Safely destroy a workqueue. All work currently pending will be done first. 4067 */ 4068 void destroy_workqueue(struct workqueue_struct *wq) 4069 { 4070 struct pool_workqueue *pwq; 4071 int node; 4072 4073 /* drain it before proceeding with destruction */ 4074 drain_workqueue(wq); 4075 4076 /* sanity checks */ 4077 mutex_lock(&wq->mutex); 4078 for_each_pwq(pwq, wq) { 4079 int i; 4080 4081 for (i = 0; i < WORK_NR_COLORS; i++) { 4082 if (WARN_ON(pwq->nr_in_flight[i])) { 4083 mutex_unlock(&wq->mutex); 4084 show_workqueue_state(); 4085 return; 4086 } 4087 } 4088 4089 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4090 WARN_ON(pwq->nr_active) || 4091 WARN_ON(!list_empty(&pwq->delayed_works))) { 4092 mutex_unlock(&wq->mutex); 4093 show_workqueue_state(); 4094 return; 4095 } 4096 } 4097 mutex_unlock(&wq->mutex); 4098 4099 /* 4100 * wq list is used to freeze wq, remove from list after 4101 * flushing is complete in case freeze races us. 4102 */ 4103 mutex_lock(&wq_pool_mutex); 4104 list_del_rcu(&wq->list); 4105 mutex_unlock(&wq_pool_mutex); 4106 4107 workqueue_sysfs_unregister(wq); 4108 4109 if (wq->rescuer) 4110 kthread_stop(wq->rescuer->task); 4111 4112 if (!(wq->flags & WQ_UNBOUND)) { 4113 /* 4114 * The base ref is never dropped on per-cpu pwqs. Directly 4115 * schedule RCU free. 4116 */ 4117 call_rcu_sched(&wq->rcu, rcu_free_wq); 4118 } else { 4119 /* 4120 * We're the sole accessor of @wq at this point. Directly 4121 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4122 * @wq will be freed when the last pwq is released. 4123 */ 4124 for_each_node(node) { 4125 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4126 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4127 put_pwq_unlocked(pwq); 4128 } 4129 4130 /* 4131 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4132 * put. Don't access it afterwards. 4133 */ 4134 pwq = wq->dfl_pwq; 4135 wq->dfl_pwq = NULL; 4136 put_pwq_unlocked(pwq); 4137 } 4138 } 4139 EXPORT_SYMBOL_GPL(destroy_workqueue); 4140 4141 /** 4142 * workqueue_set_max_active - adjust max_active of a workqueue 4143 * @wq: target workqueue 4144 * @max_active: new max_active value. 4145 * 4146 * Set max_active of @wq to @max_active. 4147 * 4148 * CONTEXT: 4149 * Don't call from IRQ context. 4150 */ 4151 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4152 { 4153 struct pool_workqueue *pwq; 4154 4155 /* disallow meddling with max_active for ordered workqueues */ 4156 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4157 return; 4158 4159 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4160 4161 mutex_lock(&wq->mutex); 4162 4163 wq->flags &= ~__WQ_ORDERED; 4164 wq->saved_max_active = max_active; 4165 4166 for_each_pwq(pwq, wq) 4167 pwq_adjust_max_active(pwq); 4168 4169 mutex_unlock(&wq->mutex); 4170 } 4171 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4172 4173 /** 4174 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4175 * 4176 * Determine whether %current is a workqueue rescuer. Can be used from 4177 * work functions to determine whether it's being run off the rescuer task. 4178 * 4179 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4180 */ 4181 bool current_is_workqueue_rescuer(void) 4182 { 4183 struct worker *worker = current_wq_worker(); 4184 4185 return worker && worker->rescue_wq; 4186 } 4187 4188 /** 4189 * workqueue_congested - test whether a workqueue is congested 4190 * @cpu: CPU in question 4191 * @wq: target workqueue 4192 * 4193 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4194 * no synchronization around this function and the test result is 4195 * unreliable and only useful as advisory hints or for debugging. 4196 * 4197 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4198 * Note that both per-cpu and unbound workqueues may be associated with 4199 * multiple pool_workqueues which have separate congested states. A 4200 * workqueue being congested on one CPU doesn't mean the workqueue is also 4201 * contested on other CPUs / NUMA nodes. 4202 * 4203 * Return: 4204 * %true if congested, %false otherwise. 4205 */ 4206 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4207 { 4208 struct pool_workqueue *pwq; 4209 bool ret; 4210 4211 rcu_read_lock_sched(); 4212 4213 if (cpu == WORK_CPU_UNBOUND) 4214 cpu = smp_processor_id(); 4215 4216 if (!(wq->flags & WQ_UNBOUND)) 4217 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4218 else 4219 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4220 4221 ret = !list_empty(&pwq->delayed_works); 4222 rcu_read_unlock_sched(); 4223 4224 return ret; 4225 } 4226 EXPORT_SYMBOL_GPL(workqueue_congested); 4227 4228 /** 4229 * work_busy - test whether a work is currently pending or running 4230 * @work: the work to be tested 4231 * 4232 * Test whether @work is currently pending or running. There is no 4233 * synchronization around this function and the test result is 4234 * unreliable and only useful as advisory hints or for debugging. 4235 * 4236 * Return: 4237 * OR'd bitmask of WORK_BUSY_* bits. 4238 */ 4239 unsigned int work_busy(struct work_struct *work) 4240 { 4241 struct worker_pool *pool; 4242 unsigned long flags; 4243 unsigned int ret = 0; 4244 4245 if (work_pending(work)) 4246 ret |= WORK_BUSY_PENDING; 4247 4248 local_irq_save(flags); 4249 pool = get_work_pool(work); 4250 if (pool) { 4251 spin_lock(&pool->lock); 4252 if (find_worker_executing_work(pool, work)) 4253 ret |= WORK_BUSY_RUNNING; 4254 spin_unlock(&pool->lock); 4255 } 4256 local_irq_restore(flags); 4257 4258 return ret; 4259 } 4260 EXPORT_SYMBOL_GPL(work_busy); 4261 4262 /** 4263 * set_worker_desc - set description for the current work item 4264 * @fmt: printf-style format string 4265 * @...: arguments for the format string 4266 * 4267 * This function can be called by a running work function to describe what 4268 * the work item is about. If the worker task gets dumped, this 4269 * information will be printed out together to help debugging. The 4270 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4271 */ 4272 void set_worker_desc(const char *fmt, ...) 4273 { 4274 struct worker *worker = current_wq_worker(); 4275 va_list args; 4276 4277 if (worker) { 4278 va_start(args, fmt); 4279 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4280 va_end(args); 4281 worker->desc_valid = true; 4282 } 4283 } 4284 4285 /** 4286 * print_worker_info - print out worker information and description 4287 * @log_lvl: the log level to use when printing 4288 * @task: target task 4289 * 4290 * If @task is a worker and currently executing a work item, print out the 4291 * name of the workqueue being serviced and worker description set with 4292 * set_worker_desc() by the currently executing work item. 4293 * 4294 * This function can be safely called on any task as long as the 4295 * task_struct itself is accessible. While safe, this function isn't 4296 * synchronized and may print out mixups or garbages of limited length. 4297 */ 4298 void print_worker_info(const char *log_lvl, struct task_struct *task) 4299 { 4300 work_func_t *fn = NULL; 4301 char name[WQ_NAME_LEN] = { }; 4302 char desc[WORKER_DESC_LEN] = { }; 4303 struct pool_workqueue *pwq = NULL; 4304 struct workqueue_struct *wq = NULL; 4305 bool desc_valid = false; 4306 struct worker *worker; 4307 4308 if (!(task->flags & PF_WQ_WORKER)) 4309 return; 4310 4311 /* 4312 * This function is called without any synchronization and @task 4313 * could be in any state. Be careful with dereferences. 4314 */ 4315 worker = kthread_probe_data(task); 4316 4317 /* 4318 * Carefully copy the associated workqueue's workfn and name. Keep 4319 * the original last '\0' in case the original contains garbage. 4320 */ 4321 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4322 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4323 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4324 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4325 4326 /* copy worker description */ 4327 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4328 if (desc_valid) 4329 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4330 4331 if (fn || name[0] || desc[0]) { 4332 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4333 if (desc[0]) 4334 pr_cont(" (%s)", desc); 4335 pr_cont("\n"); 4336 } 4337 } 4338 4339 static void pr_cont_pool_info(struct worker_pool *pool) 4340 { 4341 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4342 if (pool->node != NUMA_NO_NODE) 4343 pr_cont(" node=%d", pool->node); 4344 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4345 } 4346 4347 static void pr_cont_work(bool comma, struct work_struct *work) 4348 { 4349 if (work->func == wq_barrier_func) { 4350 struct wq_barrier *barr; 4351 4352 barr = container_of(work, struct wq_barrier, work); 4353 4354 pr_cont("%s BAR(%d)", comma ? "," : "", 4355 task_pid_nr(barr->task)); 4356 } else { 4357 pr_cont("%s %pf", comma ? "," : "", work->func); 4358 } 4359 } 4360 4361 static void show_pwq(struct pool_workqueue *pwq) 4362 { 4363 struct worker_pool *pool = pwq->pool; 4364 struct work_struct *work; 4365 struct worker *worker; 4366 bool has_in_flight = false, has_pending = false; 4367 int bkt; 4368 4369 pr_info(" pwq %d:", pool->id); 4370 pr_cont_pool_info(pool); 4371 4372 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4373 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4374 4375 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4376 if (worker->current_pwq == pwq) { 4377 has_in_flight = true; 4378 break; 4379 } 4380 } 4381 if (has_in_flight) { 4382 bool comma = false; 4383 4384 pr_info(" in-flight:"); 4385 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4386 if (worker->current_pwq != pwq) 4387 continue; 4388 4389 pr_cont("%s %d%s:%pf", comma ? "," : "", 4390 task_pid_nr(worker->task), 4391 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4392 worker->current_func); 4393 list_for_each_entry(work, &worker->scheduled, entry) 4394 pr_cont_work(false, work); 4395 comma = true; 4396 } 4397 pr_cont("\n"); 4398 } 4399 4400 list_for_each_entry(work, &pool->worklist, entry) { 4401 if (get_work_pwq(work) == pwq) { 4402 has_pending = true; 4403 break; 4404 } 4405 } 4406 if (has_pending) { 4407 bool comma = false; 4408 4409 pr_info(" pending:"); 4410 list_for_each_entry(work, &pool->worklist, entry) { 4411 if (get_work_pwq(work) != pwq) 4412 continue; 4413 4414 pr_cont_work(comma, work); 4415 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4416 } 4417 pr_cont("\n"); 4418 } 4419 4420 if (!list_empty(&pwq->delayed_works)) { 4421 bool comma = false; 4422 4423 pr_info(" delayed:"); 4424 list_for_each_entry(work, &pwq->delayed_works, entry) { 4425 pr_cont_work(comma, work); 4426 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4427 } 4428 pr_cont("\n"); 4429 } 4430 } 4431 4432 /** 4433 * show_workqueue_state - dump workqueue state 4434 * 4435 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4436 * all busy workqueues and pools. 4437 */ 4438 void show_workqueue_state(void) 4439 { 4440 struct workqueue_struct *wq; 4441 struct worker_pool *pool; 4442 unsigned long flags; 4443 int pi; 4444 4445 rcu_read_lock_sched(); 4446 4447 pr_info("Showing busy workqueues and worker pools:\n"); 4448 4449 list_for_each_entry_rcu(wq, &workqueues, list) { 4450 struct pool_workqueue *pwq; 4451 bool idle = true; 4452 4453 for_each_pwq(pwq, wq) { 4454 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4455 idle = false; 4456 break; 4457 } 4458 } 4459 if (idle) 4460 continue; 4461 4462 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4463 4464 for_each_pwq(pwq, wq) { 4465 spin_lock_irqsave(&pwq->pool->lock, flags); 4466 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4467 show_pwq(pwq); 4468 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4469 } 4470 } 4471 4472 for_each_pool(pool, pi) { 4473 struct worker *worker; 4474 bool first = true; 4475 4476 spin_lock_irqsave(&pool->lock, flags); 4477 if (pool->nr_workers == pool->nr_idle) 4478 goto next_pool; 4479 4480 pr_info("pool %d:", pool->id); 4481 pr_cont_pool_info(pool); 4482 pr_cont(" hung=%us workers=%d", 4483 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4484 pool->nr_workers); 4485 if (pool->manager) 4486 pr_cont(" manager: %d", 4487 task_pid_nr(pool->manager->task)); 4488 list_for_each_entry(worker, &pool->idle_list, entry) { 4489 pr_cont(" %s%d", first ? "idle: " : "", 4490 task_pid_nr(worker->task)); 4491 first = false; 4492 } 4493 pr_cont("\n"); 4494 next_pool: 4495 spin_unlock_irqrestore(&pool->lock, flags); 4496 } 4497 4498 rcu_read_unlock_sched(); 4499 } 4500 4501 /* 4502 * CPU hotplug. 4503 * 4504 * There are two challenges in supporting CPU hotplug. Firstly, there 4505 * are a lot of assumptions on strong associations among work, pwq and 4506 * pool which make migrating pending and scheduled works very 4507 * difficult to implement without impacting hot paths. Secondly, 4508 * worker pools serve mix of short, long and very long running works making 4509 * blocked draining impractical. 4510 * 4511 * This is solved by allowing the pools to be disassociated from the CPU 4512 * running as an unbound one and allowing it to be reattached later if the 4513 * cpu comes back online. 4514 */ 4515 4516 static void wq_unbind_fn(struct work_struct *work) 4517 { 4518 int cpu = smp_processor_id(); 4519 struct worker_pool *pool; 4520 struct worker *worker; 4521 4522 for_each_cpu_worker_pool(pool, cpu) { 4523 mutex_lock(&pool->attach_mutex); 4524 spin_lock_irq(&pool->lock); 4525 4526 /* 4527 * We've blocked all attach/detach operations. Make all workers 4528 * unbound and set DISASSOCIATED. Before this, all workers 4529 * except for the ones which are still executing works from 4530 * before the last CPU down must be on the cpu. After 4531 * this, they may become diasporas. 4532 */ 4533 for_each_pool_worker(worker, pool) 4534 worker->flags |= WORKER_UNBOUND; 4535 4536 pool->flags |= POOL_DISASSOCIATED; 4537 4538 spin_unlock_irq(&pool->lock); 4539 mutex_unlock(&pool->attach_mutex); 4540 4541 /* 4542 * Call schedule() so that we cross rq->lock and thus can 4543 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4544 * This is necessary as scheduler callbacks may be invoked 4545 * from other cpus. 4546 */ 4547 schedule(); 4548 4549 /* 4550 * Sched callbacks are disabled now. Zap nr_running. 4551 * After this, nr_running stays zero and need_more_worker() 4552 * and keep_working() are always true as long as the 4553 * worklist is not empty. This pool now behaves as an 4554 * unbound (in terms of concurrency management) pool which 4555 * are served by workers tied to the pool. 4556 */ 4557 atomic_set(&pool->nr_running, 0); 4558 4559 /* 4560 * With concurrency management just turned off, a busy 4561 * worker blocking could lead to lengthy stalls. Kick off 4562 * unbound chain execution of currently pending work items. 4563 */ 4564 spin_lock_irq(&pool->lock); 4565 wake_up_worker(pool); 4566 spin_unlock_irq(&pool->lock); 4567 } 4568 } 4569 4570 /** 4571 * rebind_workers - rebind all workers of a pool to the associated CPU 4572 * @pool: pool of interest 4573 * 4574 * @pool->cpu is coming online. Rebind all workers to the CPU. 4575 */ 4576 static void rebind_workers(struct worker_pool *pool) 4577 { 4578 struct worker *worker; 4579 4580 lockdep_assert_held(&pool->attach_mutex); 4581 4582 /* 4583 * Restore CPU affinity of all workers. As all idle workers should 4584 * be on the run-queue of the associated CPU before any local 4585 * wake-ups for concurrency management happen, restore CPU affinity 4586 * of all workers first and then clear UNBOUND. As we're called 4587 * from CPU_ONLINE, the following shouldn't fail. 4588 */ 4589 for_each_pool_worker(worker, pool) 4590 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4591 pool->attrs->cpumask) < 0); 4592 4593 spin_lock_irq(&pool->lock); 4594 4595 /* 4596 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED 4597 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is 4598 * being reworked and this can go away in time. 4599 */ 4600 if (!(pool->flags & POOL_DISASSOCIATED)) { 4601 spin_unlock_irq(&pool->lock); 4602 return; 4603 } 4604 4605 pool->flags &= ~POOL_DISASSOCIATED; 4606 4607 for_each_pool_worker(worker, pool) { 4608 unsigned int worker_flags = worker->flags; 4609 4610 /* 4611 * A bound idle worker should actually be on the runqueue 4612 * of the associated CPU for local wake-ups targeting it to 4613 * work. Kick all idle workers so that they migrate to the 4614 * associated CPU. Doing this in the same loop as 4615 * replacing UNBOUND with REBOUND is safe as no worker will 4616 * be bound before @pool->lock is released. 4617 */ 4618 if (worker_flags & WORKER_IDLE) 4619 wake_up_process(worker->task); 4620 4621 /* 4622 * We want to clear UNBOUND but can't directly call 4623 * worker_clr_flags() or adjust nr_running. Atomically 4624 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4625 * @worker will clear REBOUND using worker_clr_flags() when 4626 * it initiates the next execution cycle thus restoring 4627 * concurrency management. Note that when or whether 4628 * @worker clears REBOUND doesn't affect correctness. 4629 * 4630 * WRITE_ONCE() is necessary because @worker->flags may be 4631 * tested without holding any lock in 4632 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4633 * fail incorrectly leading to premature concurrency 4634 * management operations. 4635 */ 4636 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4637 worker_flags |= WORKER_REBOUND; 4638 worker_flags &= ~WORKER_UNBOUND; 4639 WRITE_ONCE(worker->flags, worker_flags); 4640 } 4641 4642 spin_unlock_irq(&pool->lock); 4643 } 4644 4645 /** 4646 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4647 * @pool: unbound pool of interest 4648 * @cpu: the CPU which is coming up 4649 * 4650 * An unbound pool may end up with a cpumask which doesn't have any online 4651 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4652 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4653 * online CPU before, cpus_allowed of all its workers should be restored. 4654 */ 4655 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4656 { 4657 static cpumask_t cpumask; 4658 struct worker *worker; 4659 4660 lockdep_assert_held(&pool->attach_mutex); 4661 4662 /* is @cpu allowed for @pool? */ 4663 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4664 return; 4665 4666 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4667 4668 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4669 for_each_pool_worker(worker, pool) 4670 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 4671 } 4672 4673 int workqueue_prepare_cpu(unsigned int cpu) 4674 { 4675 struct worker_pool *pool; 4676 4677 for_each_cpu_worker_pool(pool, cpu) { 4678 if (pool->nr_workers) 4679 continue; 4680 if (!create_worker(pool)) 4681 return -ENOMEM; 4682 } 4683 return 0; 4684 } 4685 4686 int workqueue_online_cpu(unsigned int cpu) 4687 { 4688 struct worker_pool *pool; 4689 struct workqueue_struct *wq; 4690 int pi; 4691 4692 mutex_lock(&wq_pool_mutex); 4693 4694 for_each_pool(pool, pi) { 4695 mutex_lock(&pool->attach_mutex); 4696 4697 if (pool->cpu == cpu) 4698 rebind_workers(pool); 4699 else if (pool->cpu < 0) 4700 restore_unbound_workers_cpumask(pool, cpu); 4701 4702 mutex_unlock(&pool->attach_mutex); 4703 } 4704 4705 /* update NUMA affinity of unbound workqueues */ 4706 list_for_each_entry(wq, &workqueues, list) 4707 wq_update_unbound_numa(wq, cpu, true); 4708 4709 mutex_unlock(&wq_pool_mutex); 4710 return 0; 4711 } 4712 4713 int workqueue_offline_cpu(unsigned int cpu) 4714 { 4715 struct work_struct unbind_work; 4716 struct workqueue_struct *wq; 4717 4718 /* unbinding per-cpu workers should happen on the local CPU */ 4719 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4720 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4721 4722 /* update NUMA affinity of unbound workqueues */ 4723 mutex_lock(&wq_pool_mutex); 4724 list_for_each_entry(wq, &workqueues, list) 4725 wq_update_unbound_numa(wq, cpu, false); 4726 mutex_unlock(&wq_pool_mutex); 4727 4728 /* wait for per-cpu unbinding to finish */ 4729 flush_work(&unbind_work); 4730 destroy_work_on_stack(&unbind_work); 4731 return 0; 4732 } 4733 4734 #ifdef CONFIG_SMP 4735 4736 struct work_for_cpu { 4737 struct work_struct work; 4738 long (*fn)(void *); 4739 void *arg; 4740 long ret; 4741 }; 4742 4743 static void work_for_cpu_fn(struct work_struct *work) 4744 { 4745 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4746 4747 wfc->ret = wfc->fn(wfc->arg); 4748 } 4749 4750 /** 4751 * work_on_cpu - run a function in thread context on a particular cpu 4752 * @cpu: the cpu to run on 4753 * @fn: the function to run 4754 * @arg: the function arg 4755 * 4756 * It is up to the caller to ensure that the cpu doesn't go offline. 4757 * The caller must not hold any locks which would prevent @fn from completing. 4758 * 4759 * Return: The value @fn returns. 4760 */ 4761 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4762 { 4763 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4764 4765 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4766 schedule_work_on(cpu, &wfc.work); 4767 flush_work(&wfc.work); 4768 destroy_work_on_stack(&wfc.work); 4769 return wfc.ret; 4770 } 4771 EXPORT_SYMBOL_GPL(work_on_cpu); 4772 4773 /** 4774 * work_on_cpu_safe - run a function in thread context on a particular cpu 4775 * @cpu: the cpu to run on 4776 * @fn: the function to run 4777 * @arg: the function argument 4778 * 4779 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 4780 * any locks which would prevent @fn from completing. 4781 * 4782 * Return: The value @fn returns. 4783 */ 4784 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 4785 { 4786 long ret = -ENODEV; 4787 4788 get_online_cpus(); 4789 if (cpu_online(cpu)) 4790 ret = work_on_cpu(cpu, fn, arg); 4791 put_online_cpus(); 4792 return ret; 4793 } 4794 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 4795 #endif /* CONFIG_SMP */ 4796 4797 #ifdef CONFIG_FREEZER 4798 4799 /** 4800 * freeze_workqueues_begin - begin freezing workqueues 4801 * 4802 * Start freezing workqueues. After this function returns, all freezable 4803 * workqueues will queue new works to their delayed_works list instead of 4804 * pool->worklist. 4805 * 4806 * CONTEXT: 4807 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4808 */ 4809 void freeze_workqueues_begin(void) 4810 { 4811 struct workqueue_struct *wq; 4812 struct pool_workqueue *pwq; 4813 4814 mutex_lock(&wq_pool_mutex); 4815 4816 WARN_ON_ONCE(workqueue_freezing); 4817 workqueue_freezing = true; 4818 4819 list_for_each_entry(wq, &workqueues, list) { 4820 mutex_lock(&wq->mutex); 4821 for_each_pwq(pwq, wq) 4822 pwq_adjust_max_active(pwq); 4823 mutex_unlock(&wq->mutex); 4824 } 4825 4826 mutex_unlock(&wq_pool_mutex); 4827 } 4828 4829 /** 4830 * freeze_workqueues_busy - are freezable workqueues still busy? 4831 * 4832 * Check whether freezing is complete. This function must be called 4833 * between freeze_workqueues_begin() and thaw_workqueues(). 4834 * 4835 * CONTEXT: 4836 * Grabs and releases wq_pool_mutex. 4837 * 4838 * Return: 4839 * %true if some freezable workqueues are still busy. %false if freezing 4840 * is complete. 4841 */ 4842 bool freeze_workqueues_busy(void) 4843 { 4844 bool busy = false; 4845 struct workqueue_struct *wq; 4846 struct pool_workqueue *pwq; 4847 4848 mutex_lock(&wq_pool_mutex); 4849 4850 WARN_ON_ONCE(!workqueue_freezing); 4851 4852 list_for_each_entry(wq, &workqueues, list) { 4853 if (!(wq->flags & WQ_FREEZABLE)) 4854 continue; 4855 /* 4856 * nr_active is monotonically decreasing. It's safe 4857 * to peek without lock. 4858 */ 4859 rcu_read_lock_sched(); 4860 for_each_pwq(pwq, wq) { 4861 WARN_ON_ONCE(pwq->nr_active < 0); 4862 if (pwq->nr_active) { 4863 busy = true; 4864 rcu_read_unlock_sched(); 4865 goto out_unlock; 4866 } 4867 } 4868 rcu_read_unlock_sched(); 4869 } 4870 out_unlock: 4871 mutex_unlock(&wq_pool_mutex); 4872 return busy; 4873 } 4874 4875 /** 4876 * thaw_workqueues - thaw workqueues 4877 * 4878 * Thaw workqueues. Normal queueing is restored and all collected 4879 * frozen works are transferred to their respective pool worklists. 4880 * 4881 * CONTEXT: 4882 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4883 */ 4884 void thaw_workqueues(void) 4885 { 4886 struct workqueue_struct *wq; 4887 struct pool_workqueue *pwq; 4888 4889 mutex_lock(&wq_pool_mutex); 4890 4891 if (!workqueue_freezing) 4892 goto out_unlock; 4893 4894 workqueue_freezing = false; 4895 4896 /* restore max_active and repopulate worklist */ 4897 list_for_each_entry(wq, &workqueues, list) { 4898 mutex_lock(&wq->mutex); 4899 for_each_pwq(pwq, wq) 4900 pwq_adjust_max_active(pwq); 4901 mutex_unlock(&wq->mutex); 4902 } 4903 4904 out_unlock: 4905 mutex_unlock(&wq_pool_mutex); 4906 } 4907 #endif /* CONFIG_FREEZER */ 4908 4909 static int workqueue_apply_unbound_cpumask(void) 4910 { 4911 LIST_HEAD(ctxs); 4912 int ret = 0; 4913 struct workqueue_struct *wq; 4914 struct apply_wqattrs_ctx *ctx, *n; 4915 4916 lockdep_assert_held(&wq_pool_mutex); 4917 4918 list_for_each_entry(wq, &workqueues, list) { 4919 if (!(wq->flags & WQ_UNBOUND)) 4920 continue; 4921 /* creating multiple pwqs breaks ordering guarantee */ 4922 if (wq->flags & __WQ_ORDERED) 4923 continue; 4924 4925 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 4926 if (!ctx) { 4927 ret = -ENOMEM; 4928 break; 4929 } 4930 4931 list_add_tail(&ctx->list, &ctxs); 4932 } 4933 4934 list_for_each_entry_safe(ctx, n, &ctxs, list) { 4935 if (!ret) 4936 apply_wqattrs_commit(ctx); 4937 apply_wqattrs_cleanup(ctx); 4938 } 4939 4940 return ret; 4941 } 4942 4943 /** 4944 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 4945 * @cpumask: the cpumask to set 4946 * 4947 * The low-level workqueues cpumask is a global cpumask that limits 4948 * the affinity of all unbound workqueues. This function check the @cpumask 4949 * and apply it to all unbound workqueues and updates all pwqs of them. 4950 * 4951 * Retun: 0 - Success 4952 * -EINVAL - Invalid @cpumask 4953 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 4954 */ 4955 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 4956 { 4957 int ret = -EINVAL; 4958 cpumask_var_t saved_cpumask; 4959 4960 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 4961 return -ENOMEM; 4962 4963 cpumask_and(cpumask, cpumask, cpu_possible_mask); 4964 if (!cpumask_empty(cpumask)) { 4965 apply_wqattrs_lock(); 4966 4967 /* save the old wq_unbound_cpumask. */ 4968 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 4969 4970 /* update wq_unbound_cpumask at first and apply it to wqs. */ 4971 cpumask_copy(wq_unbound_cpumask, cpumask); 4972 ret = workqueue_apply_unbound_cpumask(); 4973 4974 /* restore the wq_unbound_cpumask when failed. */ 4975 if (ret < 0) 4976 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 4977 4978 apply_wqattrs_unlock(); 4979 } 4980 4981 free_cpumask_var(saved_cpumask); 4982 return ret; 4983 } 4984 4985 #ifdef CONFIG_SYSFS 4986 /* 4987 * Workqueues with WQ_SYSFS flag set is visible to userland via 4988 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 4989 * following attributes. 4990 * 4991 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 4992 * max_active RW int : maximum number of in-flight work items 4993 * 4994 * Unbound workqueues have the following extra attributes. 4995 * 4996 * id RO int : the associated pool ID 4997 * nice RW int : nice value of the workers 4998 * cpumask RW mask : bitmask of allowed CPUs for the workers 4999 */ 5000 struct wq_device { 5001 struct workqueue_struct *wq; 5002 struct device dev; 5003 }; 5004 5005 static struct workqueue_struct *dev_to_wq(struct device *dev) 5006 { 5007 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5008 5009 return wq_dev->wq; 5010 } 5011 5012 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5013 char *buf) 5014 { 5015 struct workqueue_struct *wq = dev_to_wq(dev); 5016 5017 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5018 } 5019 static DEVICE_ATTR_RO(per_cpu); 5020 5021 static ssize_t max_active_show(struct device *dev, 5022 struct device_attribute *attr, char *buf) 5023 { 5024 struct workqueue_struct *wq = dev_to_wq(dev); 5025 5026 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5027 } 5028 5029 static ssize_t max_active_store(struct device *dev, 5030 struct device_attribute *attr, const char *buf, 5031 size_t count) 5032 { 5033 struct workqueue_struct *wq = dev_to_wq(dev); 5034 int val; 5035 5036 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5037 return -EINVAL; 5038 5039 workqueue_set_max_active(wq, val); 5040 return count; 5041 } 5042 static DEVICE_ATTR_RW(max_active); 5043 5044 static struct attribute *wq_sysfs_attrs[] = { 5045 &dev_attr_per_cpu.attr, 5046 &dev_attr_max_active.attr, 5047 NULL, 5048 }; 5049 ATTRIBUTE_GROUPS(wq_sysfs); 5050 5051 static ssize_t wq_pool_ids_show(struct device *dev, 5052 struct device_attribute *attr, char *buf) 5053 { 5054 struct workqueue_struct *wq = dev_to_wq(dev); 5055 const char *delim = ""; 5056 int node, written = 0; 5057 5058 rcu_read_lock_sched(); 5059 for_each_node(node) { 5060 written += scnprintf(buf + written, PAGE_SIZE - written, 5061 "%s%d:%d", delim, node, 5062 unbound_pwq_by_node(wq, node)->pool->id); 5063 delim = " "; 5064 } 5065 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5066 rcu_read_unlock_sched(); 5067 5068 return written; 5069 } 5070 5071 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5072 char *buf) 5073 { 5074 struct workqueue_struct *wq = dev_to_wq(dev); 5075 int written; 5076 5077 mutex_lock(&wq->mutex); 5078 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5079 mutex_unlock(&wq->mutex); 5080 5081 return written; 5082 } 5083 5084 /* prepare workqueue_attrs for sysfs store operations */ 5085 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5086 { 5087 struct workqueue_attrs *attrs; 5088 5089 lockdep_assert_held(&wq_pool_mutex); 5090 5091 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5092 if (!attrs) 5093 return NULL; 5094 5095 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5096 return attrs; 5097 } 5098 5099 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5100 const char *buf, size_t count) 5101 { 5102 struct workqueue_struct *wq = dev_to_wq(dev); 5103 struct workqueue_attrs *attrs; 5104 int ret = -ENOMEM; 5105 5106 apply_wqattrs_lock(); 5107 5108 attrs = wq_sysfs_prep_attrs(wq); 5109 if (!attrs) 5110 goto out_unlock; 5111 5112 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5113 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5114 ret = apply_workqueue_attrs_locked(wq, attrs); 5115 else 5116 ret = -EINVAL; 5117 5118 out_unlock: 5119 apply_wqattrs_unlock(); 5120 free_workqueue_attrs(attrs); 5121 return ret ?: count; 5122 } 5123 5124 static ssize_t wq_cpumask_show(struct device *dev, 5125 struct device_attribute *attr, char *buf) 5126 { 5127 struct workqueue_struct *wq = dev_to_wq(dev); 5128 int written; 5129 5130 mutex_lock(&wq->mutex); 5131 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5132 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5133 mutex_unlock(&wq->mutex); 5134 return written; 5135 } 5136 5137 static ssize_t wq_cpumask_store(struct device *dev, 5138 struct device_attribute *attr, 5139 const char *buf, size_t count) 5140 { 5141 struct workqueue_struct *wq = dev_to_wq(dev); 5142 struct workqueue_attrs *attrs; 5143 int ret = -ENOMEM; 5144 5145 apply_wqattrs_lock(); 5146 5147 attrs = wq_sysfs_prep_attrs(wq); 5148 if (!attrs) 5149 goto out_unlock; 5150 5151 ret = cpumask_parse(buf, attrs->cpumask); 5152 if (!ret) 5153 ret = apply_workqueue_attrs_locked(wq, attrs); 5154 5155 out_unlock: 5156 apply_wqattrs_unlock(); 5157 free_workqueue_attrs(attrs); 5158 return ret ?: count; 5159 } 5160 5161 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5162 char *buf) 5163 { 5164 struct workqueue_struct *wq = dev_to_wq(dev); 5165 int written; 5166 5167 mutex_lock(&wq->mutex); 5168 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5169 !wq->unbound_attrs->no_numa); 5170 mutex_unlock(&wq->mutex); 5171 5172 return written; 5173 } 5174 5175 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5176 const char *buf, size_t count) 5177 { 5178 struct workqueue_struct *wq = dev_to_wq(dev); 5179 struct workqueue_attrs *attrs; 5180 int v, ret = -ENOMEM; 5181 5182 apply_wqattrs_lock(); 5183 5184 attrs = wq_sysfs_prep_attrs(wq); 5185 if (!attrs) 5186 goto out_unlock; 5187 5188 ret = -EINVAL; 5189 if (sscanf(buf, "%d", &v) == 1) { 5190 attrs->no_numa = !v; 5191 ret = apply_workqueue_attrs_locked(wq, attrs); 5192 } 5193 5194 out_unlock: 5195 apply_wqattrs_unlock(); 5196 free_workqueue_attrs(attrs); 5197 return ret ?: count; 5198 } 5199 5200 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5201 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5202 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5203 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5204 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5205 __ATTR_NULL, 5206 }; 5207 5208 static struct bus_type wq_subsys = { 5209 .name = "workqueue", 5210 .dev_groups = wq_sysfs_groups, 5211 }; 5212 5213 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5214 struct device_attribute *attr, char *buf) 5215 { 5216 int written; 5217 5218 mutex_lock(&wq_pool_mutex); 5219 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5220 cpumask_pr_args(wq_unbound_cpumask)); 5221 mutex_unlock(&wq_pool_mutex); 5222 5223 return written; 5224 } 5225 5226 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5227 struct device_attribute *attr, const char *buf, size_t count) 5228 { 5229 cpumask_var_t cpumask; 5230 int ret; 5231 5232 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5233 return -ENOMEM; 5234 5235 ret = cpumask_parse(buf, cpumask); 5236 if (!ret) 5237 ret = workqueue_set_unbound_cpumask(cpumask); 5238 5239 free_cpumask_var(cpumask); 5240 return ret ? ret : count; 5241 } 5242 5243 static struct device_attribute wq_sysfs_cpumask_attr = 5244 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5245 wq_unbound_cpumask_store); 5246 5247 static int __init wq_sysfs_init(void) 5248 { 5249 int err; 5250 5251 err = subsys_virtual_register(&wq_subsys, NULL); 5252 if (err) 5253 return err; 5254 5255 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5256 } 5257 core_initcall(wq_sysfs_init); 5258 5259 static void wq_device_release(struct device *dev) 5260 { 5261 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5262 5263 kfree(wq_dev); 5264 } 5265 5266 /** 5267 * workqueue_sysfs_register - make a workqueue visible in sysfs 5268 * @wq: the workqueue to register 5269 * 5270 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5271 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5272 * which is the preferred method. 5273 * 5274 * Workqueue user should use this function directly iff it wants to apply 5275 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5276 * apply_workqueue_attrs() may race against userland updating the 5277 * attributes. 5278 * 5279 * Return: 0 on success, -errno on failure. 5280 */ 5281 int workqueue_sysfs_register(struct workqueue_struct *wq) 5282 { 5283 struct wq_device *wq_dev; 5284 int ret; 5285 5286 /* 5287 * Adjusting max_active or creating new pwqs by applying 5288 * attributes breaks ordering guarantee. Disallow exposing ordered 5289 * workqueues. 5290 */ 5291 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5292 return -EINVAL; 5293 5294 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5295 if (!wq_dev) 5296 return -ENOMEM; 5297 5298 wq_dev->wq = wq; 5299 wq_dev->dev.bus = &wq_subsys; 5300 wq_dev->dev.release = wq_device_release; 5301 dev_set_name(&wq_dev->dev, "%s", wq->name); 5302 5303 /* 5304 * unbound_attrs are created separately. Suppress uevent until 5305 * everything is ready. 5306 */ 5307 dev_set_uevent_suppress(&wq_dev->dev, true); 5308 5309 ret = device_register(&wq_dev->dev); 5310 if (ret) { 5311 kfree(wq_dev); 5312 wq->wq_dev = NULL; 5313 return ret; 5314 } 5315 5316 if (wq->flags & WQ_UNBOUND) { 5317 struct device_attribute *attr; 5318 5319 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5320 ret = device_create_file(&wq_dev->dev, attr); 5321 if (ret) { 5322 device_unregister(&wq_dev->dev); 5323 wq->wq_dev = NULL; 5324 return ret; 5325 } 5326 } 5327 } 5328 5329 dev_set_uevent_suppress(&wq_dev->dev, false); 5330 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5331 return 0; 5332 } 5333 5334 /** 5335 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5336 * @wq: the workqueue to unregister 5337 * 5338 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5339 */ 5340 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5341 { 5342 struct wq_device *wq_dev = wq->wq_dev; 5343 5344 if (!wq->wq_dev) 5345 return; 5346 5347 wq->wq_dev = NULL; 5348 device_unregister(&wq_dev->dev); 5349 } 5350 #else /* CONFIG_SYSFS */ 5351 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5352 #endif /* CONFIG_SYSFS */ 5353 5354 /* 5355 * Workqueue watchdog. 5356 * 5357 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5358 * flush dependency, a concurrency managed work item which stays RUNNING 5359 * indefinitely. Workqueue stalls can be very difficult to debug as the 5360 * usual warning mechanisms don't trigger and internal workqueue state is 5361 * largely opaque. 5362 * 5363 * Workqueue watchdog monitors all worker pools periodically and dumps 5364 * state if some pools failed to make forward progress for a while where 5365 * forward progress is defined as the first item on ->worklist changing. 5366 * 5367 * This mechanism is controlled through the kernel parameter 5368 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5369 * corresponding sysfs parameter file. 5370 */ 5371 #ifdef CONFIG_WQ_WATCHDOG 5372 5373 static void wq_watchdog_timer_fn(unsigned long data); 5374 5375 static unsigned long wq_watchdog_thresh = 30; 5376 static struct timer_list wq_watchdog_timer = 5377 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0); 5378 5379 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5380 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5381 5382 static void wq_watchdog_reset_touched(void) 5383 { 5384 int cpu; 5385 5386 wq_watchdog_touched = jiffies; 5387 for_each_possible_cpu(cpu) 5388 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5389 } 5390 5391 static void wq_watchdog_timer_fn(unsigned long data) 5392 { 5393 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5394 bool lockup_detected = false; 5395 struct worker_pool *pool; 5396 int pi; 5397 5398 if (!thresh) 5399 return; 5400 5401 rcu_read_lock(); 5402 5403 for_each_pool(pool, pi) { 5404 unsigned long pool_ts, touched, ts; 5405 5406 if (list_empty(&pool->worklist)) 5407 continue; 5408 5409 /* get the latest of pool and touched timestamps */ 5410 pool_ts = READ_ONCE(pool->watchdog_ts); 5411 touched = READ_ONCE(wq_watchdog_touched); 5412 5413 if (time_after(pool_ts, touched)) 5414 ts = pool_ts; 5415 else 5416 ts = touched; 5417 5418 if (pool->cpu >= 0) { 5419 unsigned long cpu_touched = 5420 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5421 pool->cpu)); 5422 if (time_after(cpu_touched, ts)) 5423 ts = cpu_touched; 5424 } 5425 5426 /* did we stall? */ 5427 if (time_after(jiffies, ts + thresh)) { 5428 lockup_detected = true; 5429 pr_emerg("BUG: workqueue lockup - pool"); 5430 pr_cont_pool_info(pool); 5431 pr_cont(" stuck for %us!\n", 5432 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5433 } 5434 } 5435 5436 rcu_read_unlock(); 5437 5438 if (lockup_detected) 5439 show_workqueue_state(); 5440 5441 wq_watchdog_reset_touched(); 5442 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5443 } 5444 5445 void wq_watchdog_touch(int cpu) 5446 { 5447 if (cpu >= 0) 5448 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5449 else 5450 wq_watchdog_touched = jiffies; 5451 } 5452 5453 static void wq_watchdog_set_thresh(unsigned long thresh) 5454 { 5455 wq_watchdog_thresh = 0; 5456 del_timer_sync(&wq_watchdog_timer); 5457 5458 if (thresh) { 5459 wq_watchdog_thresh = thresh; 5460 wq_watchdog_reset_touched(); 5461 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5462 } 5463 } 5464 5465 static int wq_watchdog_param_set_thresh(const char *val, 5466 const struct kernel_param *kp) 5467 { 5468 unsigned long thresh; 5469 int ret; 5470 5471 ret = kstrtoul(val, 0, &thresh); 5472 if (ret) 5473 return ret; 5474 5475 if (system_wq) 5476 wq_watchdog_set_thresh(thresh); 5477 else 5478 wq_watchdog_thresh = thresh; 5479 5480 return 0; 5481 } 5482 5483 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5484 .set = wq_watchdog_param_set_thresh, 5485 .get = param_get_ulong, 5486 }; 5487 5488 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5489 0644); 5490 5491 static void wq_watchdog_init(void) 5492 { 5493 wq_watchdog_set_thresh(wq_watchdog_thresh); 5494 } 5495 5496 #else /* CONFIG_WQ_WATCHDOG */ 5497 5498 static inline void wq_watchdog_init(void) { } 5499 5500 #endif /* CONFIG_WQ_WATCHDOG */ 5501 5502 static void __init wq_numa_init(void) 5503 { 5504 cpumask_var_t *tbl; 5505 int node, cpu; 5506 5507 if (num_possible_nodes() <= 1) 5508 return; 5509 5510 if (wq_disable_numa) { 5511 pr_info("workqueue: NUMA affinity support disabled\n"); 5512 return; 5513 } 5514 5515 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5516 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5517 5518 /* 5519 * We want masks of possible CPUs of each node which isn't readily 5520 * available. Build one from cpu_to_node() which should have been 5521 * fully initialized by now. 5522 */ 5523 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL); 5524 BUG_ON(!tbl); 5525 5526 for_each_node(node) 5527 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5528 node_online(node) ? node : NUMA_NO_NODE)); 5529 5530 for_each_possible_cpu(cpu) { 5531 node = cpu_to_node(cpu); 5532 if (WARN_ON(node == NUMA_NO_NODE)) { 5533 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5534 /* happens iff arch is bonkers, let's just proceed */ 5535 return; 5536 } 5537 cpumask_set_cpu(cpu, tbl[node]); 5538 } 5539 5540 wq_numa_possible_cpumask = tbl; 5541 wq_numa_enabled = true; 5542 } 5543 5544 /** 5545 * workqueue_init_early - early init for workqueue subsystem 5546 * 5547 * This is the first half of two-staged workqueue subsystem initialization 5548 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5549 * idr are up. It sets up all the data structures and system workqueues 5550 * and allows early boot code to create workqueues and queue/cancel work 5551 * items. Actual work item execution starts only after kthreads can be 5552 * created and scheduled right before early initcalls. 5553 */ 5554 int __init workqueue_init_early(void) 5555 { 5556 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5557 int i, cpu; 5558 5559 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5560 5561 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5562 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 5563 5564 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5565 5566 /* initialize CPU pools */ 5567 for_each_possible_cpu(cpu) { 5568 struct worker_pool *pool; 5569 5570 i = 0; 5571 for_each_cpu_worker_pool(pool, cpu) { 5572 BUG_ON(init_worker_pool(pool)); 5573 pool->cpu = cpu; 5574 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5575 pool->attrs->nice = std_nice[i++]; 5576 pool->node = cpu_to_node(cpu); 5577 5578 /* alloc pool ID */ 5579 mutex_lock(&wq_pool_mutex); 5580 BUG_ON(worker_pool_assign_id(pool)); 5581 mutex_unlock(&wq_pool_mutex); 5582 } 5583 } 5584 5585 /* create default unbound and ordered wq attrs */ 5586 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5587 struct workqueue_attrs *attrs; 5588 5589 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5590 attrs->nice = std_nice[i]; 5591 unbound_std_wq_attrs[i] = attrs; 5592 5593 /* 5594 * An ordered wq should have only one pwq as ordering is 5595 * guaranteed by max_active which is enforced by pwqs. 5596 * Turn off NUMA so that dfl_pwq is used for all nodes. 5597 */ 5598 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5599 attrs->nice = std_nice[i]; 5600 attrs->no_numa = true; 5601 ordered_wq_attrs[i] = attrs; 5602 } 5603 5604 system_wq = alloc_workqueue("events", 0, 0); 5605 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5606 system_long_wq = alloc_workqueue("events_long", 0, 0); 5607 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5608 WQ_UNBOUND_MAX_ACTIVE); 5609 system_freezable_wq = alloc_workqueue("events_freezable", 5610 WQ_FREEZABLE, 0); 5611 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5612 WQ_POWER_EFFICIENT, 0); 5613 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5614 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5615 0); 5616 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5617 !system_unbound_wq || !system_freezable_wq || 5618 !system_power_efficient_wq || 5619 !system_freezable_power_efficient_wq); 5620 5621 return 0; 5622 } 5623 5624 /** 5625 * workqueue_init - bring workqueue subsystem fully online 5626 * 5627 * This is the latter half of two-staged workqueue subsystem initialization 5628 * and invoked as soon as kthreads can be created and scheduled. 5629 * Workqueues have been created and work items queued on them, but there 5630 * are no kworkers executing the work items yet. Populate the worker pools 5631 * with the initial workers and enable future kworker creations. 5632 */ 5633 int __init workqueue_init(void) 5634 { 5635 struct workqueue_struct *wq; 5636 struct worker_pool *pool; 5637 int cpu, bkt; 5638 5639 /* 5640 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5641 * CPU to node mapping may not be available that early on some 5642 * archs such as power and arm64. As per-cpu pools created 5643 * previously could be missing node hint and unbound pools NUMA 5644 * affinity, fix them up. 5645 */ 5646 wq_numa_init(); 5647 5648 mutex_lock(&wq_pool_mutex); 5649 5650 for_each_possible_cpu(cpu) { 5651 for_each_cpu_worker_pool(pool, cpu) { 5652 pool->node = cpu_to_node(cpu); 5653 } 5654 } 5655 5656 list_for_each_entry(wq, &workqueues, list) 5657 wq_update_unbound_numa(wq, smp_processor_id(), true); 5658 5659 mutex_unlock(&wq_pool_mutex); 5660 5661 /* create the initial workers */ 5662 for_each_online_cpu(cpu) { 5663 for_each_cpu_worker_pool(pool, cpu) { 5664 pool->flags &= ~POOL_DISASSOCIATED; 5665 BUG_ON(!create_worker(pool)); 5666 } 5667 } 5668 5669 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 5670 BUG_ON(!create_worker(pool)); 5671 5672 wq_online = true; 5673 wq_watchdog_init(); 5674 5675 return 0; 5676 } 5677