1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <[email protected]> 9 * Andrew Morton 10 * Kai Petzke <[email protected]> 11 * Theodore Ts'o <[email protected]> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <[email protected]> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/sched/debug.h> 53 #include <linux/nmi.h> 54 #include <linux/kvm_para.h> 55 #include <linux/delay.h> 56 57 #include "workqueue_internal.h" 58 59 enum worker_pool_flags { 60 /* 61 * worker_pool flags 62 * 63 * A bound pool is either associated or disassociated with its CPU. 64 * While associated (!DISASSOCIATED), all workers are bound to the 65 * CPU and none has %WORKER_UNBOUND set and concurrency management 66 * is in effect. 67 * 68 * While DISASSOCIATED, the cpu may be offline and all workers have 69 * %WORKER_UNBOUND set and concurrency management disabled, and may 70 * be executing on any CPU. The pool behaves as an unbound one. 71 * 72 * Note that DISASSOCIATED should be flipped only while holding 73 * wq_pool_attach_mutex to avoid changing binding state while 74 * worker_attach_to_pool() is in progress. 75 */ 76 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 77 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 78 }; 79 80 enum worker_flags { 81 /* worker flags */ 82 WORKER_DIE = 1 << 1, /* die die die */ 83 WORKER_IDLE = 1 << 2, /* is idle */ 84 WORKER_PREP = 1 << 3, /* preparing to run works */ 85 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 86 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 87 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 88 89 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 90 WORKER_UNBOUND | WORKER_REBOUND, 91 }; 92 93 enum wq_internal_consts { 94 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 95 96 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 97 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 98 99 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 100 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 101 102 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 103 /* call for help after 10ms 104 (min two ticks) */ 105 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 106 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 107 108 /* 109 * Rescue workers are used only on emergencies and shared by 110 * all cpus. Give MIN_NICE. 111 */ 112 RESCUER_NICE_LEVEL = MIN_NICE, 113 HIGHPRI_NICE_LEVEL = MIN_NICE, 114 115 WQ_NAME_LEN = 32, 116 }; 117 118 /* 119 * Structure fields follow one of the following exclusion rules. 120 * 121 * I: Modifiable by initialization/destruction paths and read-only for 122 * everyone else. 123 * 124 * P: Preemption protected. Disabling preemption is enough and should 125 * only be modified and accessed from the local cpu. 126 * 127 * L: pool->lock protected. Access with pool->lock held. 128 * 129 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for 130 * reads. 131 * 132 * K: Only modified by worker while holding pool->lock. Can be safely read by 133 * self, while holding pool->lock or from IRQ context if %current is the 134 * kworker. 135 * 136 * S: Only modified by worker self. 137 * 138 * A: wq_pool_attach_mutex protected. 139 * 140 * PL: wq_pool_mutex protected. 141 * 142 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 143 * 144 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 145 * 146 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 147 * RCU for reads. 148 * 149 * WQ: wq->mutex protected. 150 * 151 * WR: wq->mutex protected for writes. RCU protected for reads. 152 * 153 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read 154 * with READ_ONCE() without locking. 155 * 156 * MD: wq_mayday_lock protected. 157 * 158 * WD: Used internally by the watchdog. 159 */ 160 161 /* struct worker is defined in workqueue_internal.h */ 162 163 struct worker_pool { 164 raw_spinlock_t lock; /* the pool lock */ 165 int cpu; /* I: the associated cpu */ 166 int node; /* I: the associated node ID */ 167 int id; /* I: pool ID */ 168 unsigned int flags; /* L: flags */ 169 170 unsigned long watchdog_ts; /* L: watchdog timestamp */ 171 bool cpu_stall; /* WD: stalled cpu bound pool */ 172 173 /* 174 * The counter is incremented in a process context on the associated CPU 175 * w/ preemption disabled, and decremented or reset in the same context 176 * but w/ pool->lock held. The readers grab pool->lock and are 177 * guaranteed to see if the counter reached zero. 178 */ 179 int nr_running; 180 181 struct list_head worklist; /* L: list of pending works */ 182 183 int nr_workers; /* L: total number of workers */ 184 int nr_idle; /* L: currently idle workers */ 185 186 struct list_head idle_list; /* L: list of idle workers */ 187 struct timer_list idle_timer; /* L: worker idle timeout */ 188 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 189 190 struct timer_list mayday_timer; /* L: SOS timer for workers */ 191 192 /* a workers is either on busy_hash or idle_list, or the manager */ 193 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 194 /* L: hash of busy workers */ 195 196 struct worker *manager; /* L: purely informational */ 197 struct list_head workers; /* A: attached workers */ 198 struct list_head dying_workers; /* A: workers about to die */ 199 struct completion *detach_completion; /* all workers detached */ 200 201 struct ida worker_ida; /* worker IDs for task name */ 202 203 struct workqueue_attrs *attrs; /* I: worker attributes */ 204 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 205 int refcnt; /* PL: refcnt for unbound pools */ 206 207 /* 208 * Destruction of pool is RCU protected to allow dereferences 209 * from get_work_pool(). 210 */ 211 struct rcu_head rcu; 212 }; 213 214 /* 215 * Per-pool_workqueue statistics. These can be monitored using 216 * tools/workqueue/wq_monitor.py. 217 */ 218 enum pool_workqueue_stats { 219 PWQ_STAT_STARTED, /* work items started execution */ 220 PWQ_STAT_COMPLETED, /* work items completed execution */ 221 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 222 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 223 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 224 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 225 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 226 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 227 228 PWQ_NR_STATS, 229 }; 230 231 /* 232 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 233 * of work_struct->data are used for flags and the remaining high bits 234 * point to the pwq; thus, pwqs need to be aligned at two's power of the 235 * number of flag bits. 236 */ 237 struct pool_workqueue { 238 struct worker_pool *pool; /* I: the associated pool */ 239 struct workqueue_struct *wq; /* I: the owning workqueue */ 240 int work_color; /* L: current color */ 241 int flush_color; /* L: flushing color */ 242 int refcnt; /* L: reference count */ 243 int nr_in_flight[WORK_NR_COLORS]; 244 /* L: nr of in_flight works */ 245 246 /* 247 * nr_active management and WORK_STRUCT_INACTIVE: 248 * 249 * When pwq->nr_active >= max_active, new work item is queued to 250 * pwq->inactive_works instead of pool->worklist and marked with 251 * WORK_STRUCT_INACTIVE. 252 * 253 * All work items marked with WORK_STRUCT_INACTIVE do not participate in 254 * nr_active and all work items in pwq->inactive_works are marked with 255 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are 256 * in pwq->inactive_works. Some of them are ready to run in 257 * pool->worklist or worker->scheduled. Those work itmes are only struct 258 * wq_barrier which is used for flush_work() and should not participate 259 * in nr_active. For non-barrier work item, it is marked with 260 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 261 */ 262 int nr_active; /* L: nr of active works */ 263 struct list_head inactive_works; /* L: inactive works */ 264 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ 265 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 266 struct list_head mayday_node; /* MD: node on wq->maydays */ 267 268 u64 stats[PWQ_NR_STATS]; 269 270 /* 271 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 272 * and pwq_release_workfn() for details. pool_workqueue itself is also 273 * RCU protected so that the first pwq can be determined without 274 * grabbing wq->mutex. 275 */ 276 struct kthread_work release_work; 277 struct rcu_head rcu; 278 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 279 280 /* 281 * Structure used to wait for workqueue flush. 282 */ 283 struct wq_flusher { 284 struct list_head list; /* WQ: list of flushers */ 285 int flush_color; /* WQ: flush color waiting for */ 286 struct completion done; /* flush completion */ 287 }; 288 289 struct wq_device; 290 291 /* 292 * Unlike in a per-cpu workqueue where max_active limits its concurrency level 293 * on each CPU, in an unbound workqueue, max_active applies to the whole system. 294 * As sharing a single nr_active across multiple sockets can be very expensive, 295 * the counting and enforcement is per NUMA node. 296 * 297 * The following struct is used to enforce per-node max_active. When a pwq wants 298 * to start executing a work item, it should increment ->nr using 299 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over 300 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish 301 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in 302 * round-robin order. 303 */ 304 struct wq_node_nr_active { 305 int max; /* per-node max_active */ 306 atomic_t nr; /* per-node nr_active */ 307 raw_spinlock_t lock; /* nests inside pool locks */ 308 struct list_head pending_pwqs; /* LN: pwqs with inactive works */ 309 }; 310 311 /* 312 * The externally visible workqueue. It relays the issued work items to 313 * the appropriate worker_pool through its pool_workqueues. 314 */ 315 struct workqueue_struct { 316 struct list_head pwqs; /* WR: all pwqs of this wq */ 317 struct list_head list; /* PR: list of all workqueues */ 318 319 struct mutex mutex; /* protects this wq */ 320 int work_color; /* WQ: current work color */ 321 int flush_color; /* WQ: current flush color */ 322 atomic_t nr_pwqs_to_flush; /* flush in progress */ 323 struct wq_flusher *first_flusher; /* WQ: first flusher */ 324 struct list_head flusher_queue; /* WQ: flush waiters */ 325 struct list_head flusher_overflow; /* WQ: flush overflow list */ 326 327 struct list_head maydays; /* MD: pwqs requesting rescue */ 328 struct worker *rescuer; /* MD: rescue worker */ 329 330 int nr_drainers; /* WQ: drain in progress */ 331 332 /* See alloc_workqueue() function comment for info on min/max_active */ 333 int max_active; /* WO: max active works */ 334 int min_active; /* WO: min active works */ 335 int saved_max_active; /* WQ: saved max_active */ 336 int saved_min_active; /* WQ: saved min_active */ 337 338 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 339 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ 340 341 #ifdef CONFIG_SYSFS 342 struct wq_device *wq_dev; /* I: for sysfs interface */ 343 #endif 344 #ifdef CONFIG_LOCKDEP 345 char *lock_name; 346 struct lock_class_key key; 347 struct lockdep_map lockdep_map; 348 #endif 349 char name[WQ_NAME_LEN]; /* I: workqueue name */ 350 351 /* 352 * Destruction of workqueue_struct is RCU protected to allow walking 353 * the workqueues list without grabbing wq_pool_mutex. 354 * This is used to dump all workqueues from sysrq. 355 */ 356 struct rcu_head rcu; 357 358 /* hot fields used during command issue, aligned to cacheline */ 359 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 360 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */ 361 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ 362 }; 363 364 static struct kmem_cache *pwq_cache; 365 366 /* 367 * Each pod type describes how CPUs should be grouped for unbound workqueues. 368 * See the comment above workqueue_attrs->affn_scope. 369 */ 370 struct wq_pod_type { 371 int nr_pods; /* number of pods */ 372 cpumask_var_t *pod_cpus; /* pod -> cpus */ 373 int *pod_node; /* pod -> node */ 374 int *cpu_pod; /* cpu -> pod */ 375 }; 376 377 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 378 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 379 380 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 381 [WQ_AFFN_DFL] = "default", 382 [WQ_AFFN_CPU] = "cpu", 383 [WQ_AFFN_SMT] = "smt", 384 [WQ_AFFN_CACHE] = "cache", 385 [WQ_AFFN_NUMA] = "numa", 386 [WQ_AFFN_SYSTEM] = "system", 387 }; 388 389 /* 390 * Per-cpu work items which run for longer than the following threshold are 391 * automatically considered CPU intensive and excluded from concurrency 392 * management to prevent them from noticeably delaying other per-cpu work items. 393 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 394 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 395 */ 396 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 397 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 398 399 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 400 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 401 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 402 403 static bool wq_online; /* can kworkers be created yet? */ 404 405 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 406 static struct workqueue_attrs *wq_update_pod_attrs_buf; 407 408 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 409 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 410 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 411 /* wait for manager to go away */ 412 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 413 414 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 415 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 416 417 /* PL&A: allowable cpus for unbound wqs and work items */ 418 static cpumask_var_t wq_unbound_cpumask; 419 420 /* PL: user requested unbound cpumask via sysfs */ 421 static cpumask_var_t wq_requested_unbound_cpumask; 422 423 /* PL: isolated cpumask to be excluded from unbound cpumask */ 424 static cpumask_var_t wq_isolated_cpumask; 425 426 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 427 static struct cpumask wq_cmdline_cpumask __initdata; 428 429 /* CPU where unbound work was last round robin scheduled from this CPU */ 430 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 431 432 /* 433 * Local execution of unbound work items is no longer guaranteed. The 434 * following always forces round-robin CPU selection on unbound work items 435 * to uncover usages which depend on it. 436 */ 437 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 438 static bool wq_debug_force_rr_cpu = true; 439 #else 440 static bool wq_debug_force_rr_cpu = false; 441 #endif 442 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 443 444 /* the per-cpu worker pools */ 445 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 446 447 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 448 449 /* PL: hash of all unbound pools keyed by pool->attrs */ 450 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 451 452 /* I: attributes used when instantiating standard unbound pools on demand */ 453 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 454 455 /* I: attributes used when instantiating ordered pools on demand */ 456 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 457 458 /* 459 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 460 * process context while holding a pool lock. Bounce to a dedicated kthread 461 * worker to avoid A-A deadlocks. 462 */ 463 static struct kthread_worker *pwq_release_worker __ro_after_init; 464 465 struct workqueue_struct *system_wq __ro_after_init; 466 EXPORT_SYMBOL(system_wq); 467 struct workqueue_struct *system_highpri_wq __ro_after_init; 468 EXPORT_SYMBOL_GPL(system_highpri_wq); 469 struct workqueue_struct *system_long_wq __ro_after_init; 470 EXPORT_SYMBOL_GPL(system_long_wq); 471 struct workqueue_struct *system_unbound_wq __ro_after_init; 472 EXPORT_SYMBOL_GPL(system_unbound_wq); 473 struct workqueue_struct *system_freezable_wq __ro_after_init; 474 EXPORT_SYMBOL_GPL(system_freezable_wq); 475 struct workqueue_struct *system_power_efficient_wq __ro_after_init; 476 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 477 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; 478 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 479 480 static int worker_thread(void *__worker); 481 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 482 static void show_pwq(struct pool_workqueue *pwq); 483 static void show_one_worker_pool(struct worker_pool *pool); 484 485 #define CREATE_TRACE_POINTS 486 #include <trace/events/workqueue.h> 487 488 #define assert_rcu_or_pool_mutex() \ 489 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 490 !lockdep_is_held(&wq_pool_mutex), \ 491 "RCU or wq_pool_mutex should be held") 492 493 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 494 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 495 !lockdep_is_held(&wq->mutex) && \ 496 !lockdep_is_held(&wq_pool_mutex), \ 497 "RCU, wq->mutex or wq_pool_mutex should be held") 498 499 #define for_each_cpu_worker_pool(pool, cpu) \ 500 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 501 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 502 (pool)++) 503 504 /** 505 * for_each_pool - iterate through all worker_pools in the system 506 * @pool: iteration cursor 507 * @pi: integer used for iteration 508 * 509 * This must be called either with wq_pool_mutex held or RCU read 510 * locked. If the pool needs to be used beyond the locking in effect, the 511 * caller is responsible for guaranteeing that the pool stays online. 512 * 513 * The if/else clause exists only for the lockdep assertion and can be 514 * ignored. 515 */ 516 #define for_each_pool(pool, pi) \ 517 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 518 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 519 else 520 521 /** 522 * for_each_pool_worker - iterate through all workers of a worker_pool 523 * @worker: iteration cursor 524 * @pool: worker_pool to iterate workers of 525 * 526 * This must be called with wq_pool_attach_mutex. 527 * 528 * The if/else clause exists only for the lockdep assertion and can be 529 * ignored. 530 */ 531 #define for_each_pool_worker(worker, pool) \ 532 list_for_each_entry((worker), &(pool)->workers, node) \ 533 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 534 else 535 536 /** 537 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 538 * @pwq: iteration cursor 539 * @wq: the target workqueue 540 * 541 * This must be called either with wq->mutex held or RCU read locked. 542 * If the pwq needs to be used beyond the locking in effect, the caller is 543 * responsible for guaranteeing that the pwq stays online. 544 * 545 * The if/else clause exists only for the lockdep assertion and can be 546 * ignored. 547 */ 548 #define for_each_pwq(pwq, wq) \ 549 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 550 lockdep_is_held(&(wq->mutex))) 551 552 #ifdef CONFIG_DEBUG_OBJECTS_WORK 553 554 static const struct debug_obj_descr work_debug_descr; 555 556 static void *work_debug_hint(void *addr) 557 { 558 return ((struct work_struct *) addr)->func; 559 } 560 561 static bool work_is_static_object(void *addr) 562 { 563 struct work_struct *work = addr; 564 565 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 566 } 567 568 /* 569 * fixup_init is called when: 570 * - an active object is initialized 571 */ 572 static bool work_fixup_init(void *addr, enum debug_obj_state state) 573 { 574 struct work_struct *work = addr; 575 576 switch (state) { 577 case ODEBUG_STATE_ACTIVE: 578 cancel_work_sync(work); 579 debug_object_init(work, &work_debug_descr); 580 return true; 581 default: 582 return false; 583 } 584 } 585 586 /* 587 * fixup_free is called when: 588 * - an active object is freed 589 */ 590 static bool work_fixup_free(void *addr, enum debug_obj_state state) 591 { 592 struct work_struct *work = addr; 593 594 switch (state) { 595 case ODEBUG_STATE_ACTIVE: 596 cancel_work_sync(work); 597 debug_object_free(work, &work_debug_descr); 598 return true; 599 default: 600 return false; 601 } 602 } 603 604 static const struct debug_obj_descr work_debug_descr = { 605 .name = "work_struct", 606 .debug_hint = work_debug_hint, 607 .is_static_object = work_is_static_object, 608 .fixup_init = work_fixup_init, 609 .fixup_free = work_fixup_free, 610 }; 611 612 static inline void debug_work_activate(struct work_struct *work) 613 { 614 debug_object_activate(work, &work_debug_descr); 615 } 616 617 static inline void debug_work_deactivate(struct work_struct *work) 618 { 619 debug_object_deactivate(work, &work_debug_descr); 620 } 621 622 void __init_work(struct work_struct *work, int onstack) 623 { 624 if (onstack) 625 debug_object_init_on_stack(work, &work_debug_descr); 626 else 627 debug_object_init(work, &work_debug_descr); 628 } 629 EXPORT_SYMBOL_GPL(__init_work); 630 631 void destroy_work_on_stack(struct work_struct *work) 632 { 633 debug_object_free(work, &work_debug_descr); 634 } 635 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 636 637 void destroy_delayed_work_on_stack(struct delayed_work *work) 638 { 639 destroy_timer_on_stack(&work->timer); 640 debug_object_free(&work->work, &work_debug_descr); 641 } 642 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 643 644 #else 645 static inline void debug_work_activate(struct work_struct *work) { } 646 static inline void debug_work_deactivate(struct work_struct *work) { } 647 #endif 648 649 /** 650 * worker_pool_assign_id - allocate ID and assign it to @pool 651 * @pool: the pool pointer of interest 652 * 653 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 654 * successfully, -errno on failure. 655 */ 656 static int worker_pool_assign_id(struct worker_pool *pool) 657 { 658 int ret; 659 660 lockdep_assert_held(&wq_pool_mutex); 661 662 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 663 GFP_KERNEL); 664 if (ret >= 0) { 665 pool->id = ret; 666 return 0; 667 } 668 return ret; 669 } 670 671 static struct pool_workqueue __rcu ** 672 unbound_pwq_slot(struct workqueue_struct *wq, int cpu) 673 { 674 if (cpu >= 0) 675 return per_cpu_ptr(wq->cpu_pwq, cpu); 676 else 677 return &wq->dfl_pwq; 678 } 679 680 /* @cpu < 0 for dfl_pwq */ 681 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) 682 { 683 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), 684 lockdep_is_held(&wq_pool_mutex) || 685 lockdep_is_held(&wq->mutex)); 686 } 687 688 /** 689 * unbound_effective_cpumask - effective cpumask of an unbound workqueue 690 * @wq: workqueue of interest 691 * 692 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which 693 * is masked with wq_unbound_cpumask to determine the effective cpumask. The 694 * default pwq is always mapped to the pool with the current effective cpumask. 695 */ 696 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) 697 { 698 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask; 699 } 700 701 static unsigned int work_color_to_flags(int color) 702 { 703 return color << WORK_STRUCT_COLOR_SHIFT; 704 } 705 706 static int get_work_color(unsigned long work_data) 707 { 708 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 709 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 710 } 711 712 static int work_next_color(int color) 713 { 714 return (color + 1) % WORK_NR_COLORS; 715 } 716 717 /* 718 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 719 * contain the pointer to the queued pwq. Once execution starts, the flag 720 * is cleared and the high bits contain OFFQ flags and pool ID. 721 * 722 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 723 * and clear_work_data() can be used to set the pwq, pool or clear 724 * work->data. These functions should only be called while the work is 725 * owned - ie. while the PENDING bit is set. 726 * 727 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 728 * corresponding to a work. Pool is available once the work has been 729 * queued anywhere after initialization until it is sync canceled. pwq is 730 * available only while the work item is queued. 731 * 732 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 733 * canceled. While being canceled, a work item may have its PENDING set 734 * but stay off timer and worklist for arbitrarily long and nobody should 735 * try to steal the PENDING bit. 736 */ 737 static inline void set_work_data(struct work_struct *work, unsigned long data, 738 unsigned long flags) 739 { 740 WARN_ON_ONCE(!work_pending(work)); 741 atomic_long_set(&work->data, data | flags | work_static(work)); 742 } 743 744 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 745 unsigned long extra_flags) 746 { 747 set_work_data(work, (unsigned long)pwq, 748 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 749 } 750 751 static void set_work_pool_and_keep_pending(struct work_struct *work, 752 int pool_id) 753 { 754 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 755 WORK_STRUCT_PENDING); 756 } 757 758 static void set_work_pool_and_clear_pending(struct work_struct *work, 759 int pool_id) 760 { 761 /* 762 * The following wmb is paired with the implied mb in 763 * test_and_set_bit(PENDING) and ensures all updates to @work made 764 * here are visible to and precede any updates by the next PENDING 765 * owner. 766 */ 767 smp_wmb(); 768 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 769 /* 770 * The following mb guarantees that previous clear of a PENDING bit 771 * will not be reordered with any speculative LOADS or STORES from 772 * work->current_func, which is executed afterwards. This possible 773 * reordering can lead to a missed execution on attempt to queue 774 * the same @work. E.g. consider this case: 775 * 776 * CPU#0 CPU#1 777 * ---------------------------- -------------------------------- 778 * 779 * 1 STORE event_indicated 780 * 2 queue_work_on() { 781 * 3 test_and_set_bit(PENDING) 782 * 4 } set_..._and_clear_pending() { 783 * 5 set_work_data() # clear bit 784 * 6 smp_mb() 785 * 7 work->current_func() { 786 * 8 LOAD event_indicated 787 * } 788 * 789 * Without an explicit full barrier speculative LOAD on line 8 can 790 * be executed before CPU#0 does STORE on line 1. If that happens, 791 * CPU#0 observes the PENDING bit is still set and new execution of 792 * a @work is not queued in a hope, that CPU#1 will eventually 793 * finish the queued @work. Meanwhile CPU#1 does not see 794 * event_indicated is set, because speculative LOAD was executed 795 * before actual STORE. 796 */ 797 smp_mb(); 798 } 799 800 static void clear_work_data(struct work_struct *work) 801 { 802 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 803 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 804 } 805 806 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 807 { 808 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK); 809 } 810 811 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 812 { 813 unsigned long data = atomic_long_read(&work->data); 814 815 if (data & WORK_STRUCT_PWQ) 816 return work_struct_pwq(data); 817 else 818 return NULL; 819 } 820 821 /** 822 * get_work_pool - return the worker_pool a given work was associated with 823 * @work: the work item of interest 824 * 825 * Pools are created and destroyed under wq_pool_mutex, and allows read 826 * access under RCU read lock. As such, this function should be 827 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 828 * 829 * All fields of the returned pool are accessible as long as the above 830 * mentioned locking is in effect. If the returned pool needs to be used 831 * beyond the critical section, the caller is responsible for ensuring the 832 * returned pool is and stays online. 833 * 834 * Return: The worker_pool @work was last associated with. %NULL if none. 835 */ 836 static struct worker_pool *get_work_pool(struct work_struct *work) 837 { 838 unsigned long data = atomic_long_read(&work->data); 839 int pool_id; 840 841 assert_rcu_or_pool_mutex(); 842 843 if (data & WORK_STRUCT_PWQ) 844 return work_struct_pwq(data)->pool; 845 846 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 847 if (pool_id == WORK_OFFQ_POOL_NONE) 848 return NULL; 849 850 return idr_find(&worker_pool_idr, pool_id); 851 } 852 853 /** 854 * get_work_pool_id - return the worker pool ID a given work is associated with 855 * @work: the work item of interest 856 * 857 * Return: The worker_pool ID @work was last associated with. 858 * %WORK_OFFQ_POOL_NONE if none. 859 */ 860 static int get_work_pool_id(struct work_struct *work) 861 { 862 unsigned long data = atomic_long_read(&work->data); 863 864 if (data & WORK_STRUCT_PWQ) 865 return work_struct_pwq(data)->pool->id; 866 867 return data >> WORK_OFFQ_POOL_SHIFT; 868 } 869 870 static void mark_work_canceling(struct work_struct *work) 871 { 872 unsigned long pool_id = get_work_pool_id(work); 873 874 pool_id <<= WORK_OFFQ_POOL_SHIFT; 875 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 876 } 877 878 static bool work_is_canceling(struct work_struct *work) 879 { 880 unsigned long data = atomic_long_read(&work->data); 881 882 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 883 } 884 885 /* 886 * Policy functions. These define the policies on how the global worker 887 * pools are managed. Unless noted otherwise, these functions assume that 888 * they're being called with pool->lock held. 889 */ 890 891 /* 892 * Need to wake up a worker? Called from anything but currently 893 * running workers. 894 * 895 * Note that, because unbound workers never contribute to nr_running, this 896 * function will always return %true for unbound pools as long as the 897 * worklist isn't empty. 898 */ 899 static bool need_more_worker(struct worker_pool *pool) 900 { 901 return !list_empty(&pool->worklist) && !pool->nr_running; 902 } 903 904 /* Can I start working? Called from busy but !running workers. */ 905 static bool may_start_working(struct worker_pool *pool) 906 { 907 return pool->nr_idle; 908 } 909 910 /* Do I need to keep working? Called from currently running workers. */ 911 static bool keep_working(struct worker_pool *pool) 912 { 913 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 914 } 915 916 /* Do we need a new worker? Called from manager. */ 917 static bool need_to_create_worker(struct worker_pool *pool) 918 { 919 return need_more_worker(pool) && !may_start_working(pool); 920 } 921 922 /* Do we have too many workers and should some go away? */ 923 static bool too_many_workers(struct worker_pool *pool) 924 { 925 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 926 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 927 int nr_busy = pool->nr_workers - nr_idle; 928 929 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 930 } 931 932 /** 933 * worker_set_flags - set worker flags and adjust nr_running accordingly 934 * @worker: self 935 * @flags: flags to set 936 * 937 * Set @flags in @worker->flags and adjust nr_running accordingly. 938 */ 939 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 940 { 941 struct worker_pool *pool = worker->pool; 942 943 lockdep_assert_held(&pool->lock); 944 945 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 946 if ((flags & WORKER_NOT_RUNNING) && 947 !(worker->flags & WORKER_NOT_RUNNING)) { 948 pool->nr_running--; 949 } 950 951 worker->flags |= flags; 952 } 953 954 /** 955 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 956 * @worker: self 957 * @flags: flags to clear 958 * 959 * Clear @flags in @worker->flags and adjust nr_running accordingly. 960 */ 961 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 962 { 963 struct worker_pool *pool = worker->pool; 964 unsigned int oflags = worker->flags; 965 966 lockdep_assert_held(&pool->lock); 967 968 worker->flags &= ~flags; 969 970 /* 971 * If transitioning out of NOT_RUNNING, increment nr_running. Note 972 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 973 * of multiple flags, not a single flag. 974 */ 975 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 976 if (!(worker->flags & WORKER_NOT_RUNNING)) 977 pool->nr_running++; 978 } 979 980 /* Return the first idle worker. Called with pool->lock held. */ 981 static struct worker *first_idle_worker(struct worker_pool *pool) 982 { 983 if (unlikely(list_empty(&pool->idle_list))) 984 return NULL; 985 986 return list_first_entry(&pool->idle_list, struct worker, entry); 987 } 988 989 /** 990 * worker_enter_idle - enter idle state 991 * @worker: worker which is entering idle state 992 * 993 * @worker is entering idle state. Update stats and idle timer if 994 * necessary. 995 * 996 * LOCKING: 997 * raw_spin_lock_irq(pool->lock). 998 */ 999 static void worker_enter_idle(struct worker *worker) 1000 { 1001 struct worker_pool *pool = worker->pool; 1002 1003 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1004 WARN_ON_ONCE(!list_empty(&worker->entry) && 1005 (worker->hentry.next || worker->hentry.pprev))) 1006 return; 1007 1008 /* can't use worker_set_flags(), also called from create_worker() */ 1009 worker->flags |= WORKER_IDLE; 1010 pool->nr_idle++; 1011 worker->last_active = jiffies; 1012 1013 /* idle_list is LIFO */ 1014 list_add(&worker->entry, &pool->idle_list); 1015 1016 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1017 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1018 1019 /* Sanity check nr_running. */ 1020 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1021 } 1022 1023 /** 1024 * worker_leave_idle - leave idle state 1025 * @worker: worker which is leaving idle state 1026 * 1027 * @worker is leaving idle state. Update stats. 1028 * 1029 * LOCKING: 1030 * raw_spin_lock_irq(pool->lock). 1031 */ 1032 static void worker_leave_idle(struct worker *worker) 1033 { 1034 struct worker_pool *pool = worker->pool; 1035 1036 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1037 return; 1038 worker_clr_flags(worker, WORKER_IDLE); 1039 pool->nr_idle--; 1040 list_del_init(&worker->entry); 1041 } 1042 1043 /** 1044 * find_worker_executing_work - find worker which is executing a work 1045 * @pool: pool of interest 1046 * @work: work to find worker for 1047 * 1048 * Find a worker which is executing @work on @pool by searching 1049 * @pool->busy_hash which is keyed by the address of @work. For a worker 1050 * to match, its current execution should match the address of @work and 1051 * its work function. This is to avoid unwanted dependency between 1052 * unrelated work executions through a work item being recycled while still 1053 * being executed. 1054 * 1055 * This is a bit tricky. A work item may be freed once its execution 1056 * starts and nothing prevents the freed area from being recycled for 1057 * another work item. If the same work item address ends up being reused 1058 * before the original execution finishes, workqueue will identify the 1059 * recycled work item as currently executing and make it wait until the 1060 * current execution finishes, introducing an unwanted dependency. 1061 * 1062 * This function checks the work item address and work function to avoid 1063 * false positives. Note that this isn't complete as one may construct a 1064 * work function which can introduce dependency onto itself through a 1065 * recycled work item. Well, if somebody wants to shoot oneself in the 1066 * foot that badly, there's only so much we can do, and if such deadlock 1067 * actually occurs, it should be easy to locate the culprit work function. 1068 * 1069 * CONTEXT: 1070 * raw_spin_lock_irq(pool->lock). 1071 * 1072 * Return: 1073 * Pointer to worker which is executing @work if found, %NULL 1074 * otherwise. 1075 */ 1076 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1077 struct work_struct *work) 1078 { 1079 struct worker *worker; 1080 1081 hash_for_each_possible(pool->busy_hash, worker, hentry, 1082 (unsigned long)work) 1083 if (worker->current_work == work && 1084 worker->current_func == work->func) 1085 return worker; 1086 1087 return NULL; 1088 } 1089 1090 /** 1091 * move_linked_works - move linked works to a list 1092 * @work: start of series of works to be scheduled 1093 * @head: target list to append @work to 1094 * @nextp: out parameter for nested worklist walking 1095 * 1096 * Schedule linked works starting from @work to @head. Work series to be 1097 * scheduled starts at @work and includes any consecutive work with 1098 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1099 * @nextp. 1100 * 1101 * CONTEXT: 1102 * raw_spin_lock_irq(pool->lock). 1103 */ 1104 static void move_linked_works(struct work_struct *work, struct list_head *head, 1105 struct work_struct **nextp) 1106 { 1107 struct work_struct *n; 1108 1109 /* 1110 * Linked worklist will always end before the end of the list, 1111 * use NULL for list head. 1112 */ 1113 list_for_each_entry_safe_from(work, n, NULL, entry) { 1114 list_move_tail(&work->entry, head); 1115 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1116 break; 1117 } 1118 1119 /* 1120 * If we're already inside safe list traversal and have moved 1121 * multiple works to the scheduled queue, the next position 1122 * needs to be updated. 1123 */ 1124 if (nextp) 1125 *nextp = n; 1126 } 1127 1128 /** 1129 * assign_work - assign a work item and its linked work items to a worker 1130 * @work: work to assign 1131 * @worker: worker to assign to 1132 * @nextp: out parameter for nested worklist walking 1133 * 1134 * Assign @work and its linked work items to @worker. If @work is already being 1135 * executed by another worker in the same pool, it'll be punted there. 1136 * 1137 * If @nextp is not NULL, it's updated to point to the next work of the last 1138 * scheduled work. This allows assign_work() to be nested inside 1139 * list_for_each_entry_safe(). 1140 * 1141 * Returns %true if @work was successfully assigned to @worker. %false if @work 1142 * was punted to another worker already executing it. 1143 */ 1144 static bool assign_work(struct work_struct *work, struct worker *worker, 1145 struct work_struct **nextp) 1146 { 1147 struct worker_pool *pool = worker->pool; 1148 struct worker *collision; 1149 1150 lockdep_assert_held(&pool->lock); 1151 1152 /* 1153 * A single work shouldn't be executed concurrently by multiple workers. 1154 * __queue_work() ensures that @work doesn't jump to a different pool 1155 * while still running in the previous pool. Here, we should ensure that 1156 * @work is not executed concurrently by multiple workers from the same 1157 * pool. Check whether anyone is already processing the work. If so, 1158 * defer the work to the currently executing one. 1159 */ 1160 collision = find_worker_executing_work(pool, work); 1161 if (unlikely(collision)) { 1162 move_linked_works(work, &collision->scheduled, nextp); 1163 return false; 1164 } 1165 1166 move_linked_works(work, &worker->scheduled, nextp); 1167 return true; 1168 } 1169 1170 /** 1171 * kick_pool - wake up an idle worker if necessary 1172 * @pool: pool to kick 1173 * 1174 * @pool may have pending work items. Wake up worker if necessary. Returns 1175 * whether a worker was woken up. 1176 */ 1177 static bool kick_pool(struct worker_pool *pool) 1178 { 1179 struct worker *worker = first_idle_worker(pool); 1180 struct task_struct *p; 1181 1182 lockdep_assert_held(&pool->lock); 1183 1184 if (!need_more_worker(pool) || !worker) 1185 return false; 1186 1187 p = worker->task; 1188 1189 #ifdef CONFIG_SMP 1190 /* 1191 * Idle @worker is about to execute @work and waking up provides an 1192 * opportunity to migrate @worker at a lower cost by setting the task's 1193 * wake_cpu field. Let's see if we want to move @worker to improve 1194 * execution locality. 1195 * 1196 * We're waking the worker that went idle the latest and there's some 1197 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1198 * so, setting the wake_cpu won't do anything. As this is a best-effort 1199 * optimization and the race window is narrow, let's leave as-is for 1200 * now. If this becomes pronounced, we can skip over workers which are 1201 * still on cpu when picking an idle worker. 1202 * 1203 * If @pool has non-strict affinity, @worker might have ended up outside 1204 * its affinity scope. Repatriate. 1205 */ 1206 if (!pool->attrs->affn_strict && 1207 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1208 struct work_struct *work = list_first_entry(&pool->worklist, 1209 struct work_struct, entry); 1210 p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask); 1211 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1212 } 1213 #endif 1214 wake_up_process(p); 1215 return true; 1216 } 1217 1218 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1219 1220 /* 1221 * Concurrency-managed per-cpu work items that hog CPU for longer than 1222 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1223 * which prevents them from stalling other concurrency-managed work items. If a 1224 * work function keeps triggering this mechanism, it's likely that the work item 1225 * should be using an unbound workqueue instead. 1226 * 1227 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1228 * and report them so that they can be examined and converted to use unbound 1229 * workqueues as appropriate. To avoid flooding the console, each violating work 1230 * function is tracked and reported with exponential backoff. 1231 */ 1232 #define WCI_MAX_ENTS 128 1233 1234 struct wci_ent { 1235 work_func_t func; 1236 atomic64_t cnt; 1237 struct hlist_node hash_node; 1238 }; 1239 1240 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1241 static int wci_nr_ents; 1242 static DEFINE_RAW_SPINLOCK(wci_lock); 1243 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1244 1245 static struct wci_ent *wci_find_ent(work_func_t func) 1246 { 1247 struct wci_ent *ent; 1248 1249 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1250 (unsigned long)func) { 1251 if (ent->func == func) 1252 return ent; 1253 } 1254 return NULL; 1255 } 1256 1257 static void wq_cpu_intensive_report(work_func_t func) 1258 { 1259 struct wci_ent *ent; 1260 1261 restart: 1262 ent = wci_find_ent(func); 1263 if (ent) { 1264 u64 cnt; 1265 1266 /* 1267 * Start reporting from the fourth time and back off 1268 * exponentially. 1269 */ 1270 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1271 if (cnt >= 4 && is_power_of_2(cnt)) 1272 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1273 ent->func, wq_cpu_intensive_thresh_us, 1274 atomic64_read(&ent->cnt)); 1275 return; 1276 } 1277 1278 /* 1279 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1280 * is exhausted, something went really wrong and we probably made enough 1281 * noise already. 1282 */ 1283 if (wci_nr_ents >= WCI_MAX_ENTS) 1284 return; 1285 1286 raw_spin_lock(&wci_lock); 1287 1288 if (wci_nr_ents >= WCI_MAX_ENTS) { 1289 raw_spin_unlock(&wci_lock); 1290 return; 1291 } 1292 1293 if (wci_find_ent(func)) { 1294 raw_spin_unlock(&wci_lock); 1295 goto restart; 1296 } 1297 1298 ent = &wci_ents[wci_nr_ents++]; 1299 ent->func = func; 1300 atomic64_set(&ent->cnt, 1); 1301 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1302 1303 raw_spin_unlock(&wci_lock); 1304 } 1305 1306 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1307 static void wq_cpu_intensive_report(work_func_t func) {} 1308 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1309 1310 /** 1311 * wq_worker_running - a worker is running again 1312 * @task: task waking up 1313 * 1314 * This function is called when a worker returns from schedule() 1315 */ 1316 void wq_worker_running(struct task_struct *task) 1317 { 1318 struct worker *worker = kthread_data(task); 1319 1320 if (!READ_ONCE(worker->sleeping)) 1321 return; 1322 1323 /* 1324 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1325 * and the nr_running increment below, we may ruin the nr_running reset 1326 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1327 * pool. Protect against such race. 1328 */ 1329 preempt_disable(); 1330 if (!(worker->flags & WORKER_NOT_RUNNING)) 1331 worker->pool->nr_running++; 1332 preempt_enable(); 1333 1334 /* 1335 * CPU intensive auto-detection cares about how long a work item hogged 1336 * CPU without sleeping. Reset the starting timestamp on wakeup. 1337 */ 1338 worker->current_at = worker->task->se.sum_exec_runtime; 1339 1340 WRITE_ONCE(worker->sleeping, 0); 1341 } 1342 1343 /** 1344 * wq_worker_sleeping - a worker is going to sleep 1345 * @task: task going to sleep 1346 * 1347 * This function is called from schedule() when a busy worker is 1348 * going to sleep. 1349 */ 1350 void wq_worker_sleeping(struct task_struct *task) 1351 { 1352 struct worker *worker = kthread_data(task); 1353 struct worker_pool *pool; 1354 1355 /* 1356 * Rescuers, which may not have all the fields set up like normal 1357 * workers, also reach here, let's not access anything before 1358 * checking NOT_RUNNING. 1359 */ 1360 if (worker->flags & WORKER_NOT_RUNNING) 1361 return; 1362 1363 pool = worker->pool; 1364 1365 /* Return if preempted before wq_worker_running() was reached */ 1366 if (READ_ONCE(worker->sleeping)) 1367 return; 1368 1369 WRITE_ONCE(worker->sleeping, 1); 1370 raw_spin_lock_irq(&pool->lock); 1371 1372 /* 1373 * Recheck in case unbind_workers() preempted us. We don't 1374 * want to decrement nr_running after the worker is unbound 1375 * and nr_running has been reset. 1376 */ 1377 if (worker->flags & WORKER_NOT_RUNNING) { 1378 raw_spin_unlock_irq(&pool->lock); 1379 return; 1380 } 1381 1382 pool->nr_running--; 1383 if (kick_pool(pool)) 1384 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1385 1386 raw_spin_unlock_irq(&pool->lock); 1387 } 1388 1389 /** 1390 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1391 * @task: task currently running 1392 * 1393 * Called from scheduler_tick(). We're in the IRQ context and the current 1394 * worker's fields which follow the 'K' locking rule can be accessed safely. 1395 */ 1396 void wq_worker_tick(struct task_struct *task) 1397 { 1398 struct worker *worker = kthread_data(task); 1399 struct pool_workqueue *pwq = worker->current_pwq; 1400 struct worker_pool *pool = worker->pool; 1401 1402 if (!pwq) 1403 return; 1404 1405 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1406 1407 if (!wq_cpu_intensive_thresh_us) 1408 return; 1409 1410 /* 1411 * If the current worker is concurrency managed and hogged the CPU for 1412 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1413 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1414 * 1415 * Set @worker->sleeping means that @worker is in the process of 1416 * switching out voluntarily and won't be contributing to 1417 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1418 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1419 * double decrements. The task is releasing the CPU anyway. Let's skip. 1420 * We probably want to make this prettier in the future. 1421 */ 1422 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1423 worker->task->se.sum_exec_runtime - worker->current_at < 1424 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1425 return; 1426 1427 raw_spin_lock(&pool->lock); 1428 1429 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1430 wq_cpu_intensive_report(worker->current_func); 1431 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1432 1433 if (kick_pool(pool)) 1434 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1435 1436 raw_spin_unlock(&pool->lock); 1437 } 1438 1439 /** 1440 * wq_worker_last_func - retrieve worker's last work function 1441 * @task: Task to retrieve last work function of. 1442 * 1443 * Determine the last function a worker executed. This is called from 1444 * the scheduler to get a worker's last known identity. 1445 * 1446 * CONTEXT: 1447 * raw_spin_lock_irq(rq->lock) 1448 * 1449 * This function is called during schedule() when a kworker is going 1450 * to sleep. It's used by psi to identify aggregation workers during 1451 * dequeuing, to allow periodic aggregation to shut-off when that 1452 * worker is the last task in the system or cgroup to go to sleep. 1453 * 1454 * As this function doesn't involve any workqueue-related locking, it 1455 * only returns stable values when called from inside the scheduler's 1456 * queuing and dequeuing paths, when @task, which must be a kworker, 1457 * is guaranteed to not be processing any works. 1458 * 1459 * Return: 1460 * The last work function %current executed as a worker, NULL if it 1461 * hasn't executed any work yet. 1462 */ 1463 work_func_t wq_worker_last_func(struct task_struct *task) 1464 { 1465 struct worker *worker = kthread_data(task); 1466 1467 return worker->last_func; 1468 } 1469 1470 /** 1471 * wq_node_nr_active - Determine wq_node_nr_active to use 1472 * @wq: workqueue of interest 1473 * @node: NUMA node, can be %NUMA_NO_NODE 1474 * 1475 * Determine wq_node_nr_active to use for @wq on @node. Returns: 1476 * 1477 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. 1478 * 1479 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. 1480 * 1481 * - Otherwise, node_nr_active[@node]. 1482 */ 1483 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, 1484 int node) 1485 { 1486 if (!(wq->flags & WQ_UNBOUND)) 1487 return NULL; 1488 1489 if (node == NUMA_NO_NODE) 1490 node = nr_node_ids; 1491 1492 return wq->node_nr_active[node]; 1493 } 1494 1495 /** 1496 * wq_update_node_max_active - Update per-node max_actives to use 1497 * @wq: workqueue to update 1498 * @off_cpu: CPU that's going down, -1 if a CPU is not going down 1499 * 1500 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is 1501 * distributed among nodes according to the proportions of numbers of online 1502 * cpus. The result is always between @wq->min_active and max_active. 1503 */ 1504 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) 1505 { 1506 struct cpumask *effective = unbound_effective_cpumask(wq); 1507 int min_active = READ_ONCE(wq->min_active); 1508 int max_active = READ_ONCE(wq->max_active); 1509 int total_cpus, node; 1510 1511 lockdep_assert_held(&wq->mutex); 1512 1513 if (!cpumask_test_cpu(off_cpu, effective)) 1514 off_cpu = -1; 1515 1516 total_cpus = cpumask_weight_and(effective, cpu_online_mask); 1517 if (off_cpu >= 0) 1518 total_cpus--; 1519 1520 for_each_node(node) { 1521 int node_cpus; 1522 1523 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node)); 1524 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node) 1525 node_cpus--; 1526 1527 wq_node_nr_active(wq, node)->max = 1528 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), 1529 min_active, max_active); 1530 } 1531 1532 wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active; 1533 } 1534 1535 /** 1536 * get_pwq - get an extra reference on the specified pool_workqueue 1537 * @pwq: pool_workqueue to get 1538 * 1539 * Obtain an extra reference on @pwq. The caller should guarantee that 1540 * @pwq has positive refcnt and be holding the matching pool->lock. 1541 */ 1542 static void get_pwq(struct pool_workqueue *pwq) 1543 { 1544 lockdep_assert_held(&pwq->pool->lock); 1545 WARN_ON_ONCE(pwq->refcnt <= 0); 1546 pwq->refcnt++; 1547 } 1548 1549 /** 1550 * put_pwq - put a pool_workqueue reference 1551 * @pwq: pool_workqueue to put 1552 * 1553 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1554 * destruction. The caller should be holding the matching pool->lock. 1555 */ 1556 static void put_pwq(struct pool_workqueue *pwq) 1557 { 1558 lockdep_assert_held(&pwq->pool->lock); 1559 if (likely(--pwq->refcnt)) 1560 return; 1561 /* 1562 * @pwq can't be released under pool->lock, bounce to a dedicated 1563 * kthread_worker to avoid A-A deadlocks. 1564 */ 1565 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1566 } 1567 1568 /** 1569 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1570 * @pwq: pool_workqueue to put (can be %NULL) 1571 * 1572 * put_pwq() with locking. This function also allows %NULL @pwq. 1573 */ 1574 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1575 { 1576 if (pwq) { 1577 /* 1578 * As both pwqs and pools are RCU protected, the 1579 * following lock operations are safe. 1580 */ 1581 raw_spin_lock_irq(&pwq->pool->lock); 1582 put_pwq(pwq); 1583 raw_spin_unlock_irq(&pwq->pool->lock); 1584 } 1585 } 1586 1587 static bool pwq_is_empty(struct pool_workqueue *pwq) 1588 { 1589 return !pwq->nr_active && list_empty(&pwq->inactive_works); 1590 } 1591 1592 static void __pwq_activate_work(struct pool_workqueue *pwq, 1593 struct work_struct *work) 1594 { 1595 unsigned long *wdb = work_data_bits(work); 1596 1597 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); 1598 trace_workqueue_activate_work(work); 1599 if (list_empty(&pwq->pool->worklist)) 1600 pwq->pool->watchdog_ts = jiffies; 1601 move_linked_works(work, &pwq->pool->worklist, NULL); 1602 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); 1603 } 1604 1605 /** 1606 * pwq_activate_work - Activate a work item if inactive 1607 * @pwq: pool_workqueue @work belongs to 1608 * @work: work item to activate 1609 * 1610 * Returns %true if activated. %false if already active. 1611 */ 1612 static bool pwq_activate_work(struct pool_workqueue *pwq, 1613 struct work_struct *work) 1614 { 1615 struct worker_pool *pool = pwq->pool; 1616 struct wq_node_nr_active *nna; 1617 1618 lockdep_assert_held(&pool->lock); 1619 1620 if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE)) 1621 return false; 1622 1623 nna = wq_node_nr_active(pwq->wq, pool->node); 1624 if (nna) 1625 atomic_inc(&nna->nr); 1626 1627 pwq->nr_active++; 1628 __pwq_activate_work(pwq, work); 1629 return true; 1630 } 1631 1632 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) 1633 { 1634 int max = READ_ONCE(nna->max); 1635 1636 while (true) { 1637 int old, tmp; 1638 1639 old = atomic_read(&nna->nr); 1640 if (old >= max) 1641 return false; 1642 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1); 1643 if (tmp == old) 1644 return true; 1645 } 1646 } 1647 1648 /** 1649 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq 1650 * @pwq: pool_workqueue of interest 1651 * @fill: max_active may have increased, try to increase concurrency level 1652 * 1653 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is 1654 * successfully obtained. %false otherwise. 1655 */ 1656 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) 1657 { 1658 struct workqueue_struct *wq = pwq->wq; 1659 struct worker_pool *pool = pwq->pool; 1660 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node); 1661 bool obtained = false; 1662 1663 lockdep_assert_held(&pool->lock); 1664 1665 if (!nna) { 1666 /* per-cpu workqueue, pwq->nr_active is sufficient */ 1667 obtained = pwq->nr_active < READ_ONCE(wq->max_active); 1668 goto out; 1669 } 1670 1671 /* 1672 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is 1673 * already waiting on $nna, pwq_dec_nr_active() will maintain the 1674 * concurrency level. Don't jump the line. 1675 * 1676 * We need to ignore the pending test after max_active has increased as 1677 * pwq_dec_nr_active() can only maintain the concurrency level but not 1678 * increase it. This is indicated by @fill. 1679 */ 1680 if (!list_empty(&pwq->pending_node) && likely(!fill)) 1681 goto out; 1682 1683 obtained = tryinc_node_nr_active(nna); 1684 if (obtained) 1685 goto out; 1686 1687 /* 1688 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs 1689 * and try again. The smp_mb() is paired with the implied memory barrier 1690 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either 1691 * we see the decremented $nna->nr or they see non-empty 1692 * $nna->pending_pwqs. 1693 */ 1694 raw_spin_lock(&nna->lock); 1695 1696 if (list_empty(&pwq->pending_node)) 1697 list_add_tail(&pwq->pending_node, &nna->pending_pwqs); 1698 else if (likely(!fill)) 1699 goto out_unlock; 1700 1701 smp_mb(); 1702 1703 obtained = tryinc_node_nr_active(nna); 1704 1705 /* 1706 * If @fill, @pwq might have already been pending. Being spuriously 1707 * pending in cold paths doesn't affect anything. Let's leave it be. 1708 */ 1709 if (obtained && likely(!fill)) 1710 list_del_init(&pwq->pending_node); 1711 1712 out_unlock: 1713 raw_spin_unlock(&nna->lock); 1714 out: 1715 if (obtained) 1716 pwq->nr_active++; 1717 return obtained; 1718 } 1719 1720 /** 1721 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq 1722 * @pwq: pool_workqueue of interest 1723 * @fill: max_active may have increased, try to increase concurrency level 1724 * 1725 * Activate the first inactive work item of @pwq if available and allowed by 1726 * max_active limit. 1727 * 1728 * Returns %true if an inactive work item has been activated. %false if no 1729 * inactive work item is found or max_active limit is reached. 1730 */ 1731 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) 1732 { 1733 struct work_struct *work = 1734 list_first_entry_or_null(&pwq->inactive_works, 1735 struct work_struct, entry); 1736 1737 if (work && pwq_tryinc_nr_active(pwq, fill)) { 1738 __pwq_activate_work(pwq, work); 1739 return true; 1740 } else { 1741 return false; 1742 } 1743 } 1744 1745 /** 1746 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active 1747 * @nna: wq_node_nr_active to activate a pending pwq for 1748 * @caller_pool: worker_pool the caller is locking 1749 * 1750 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. 1751 * @caller_pool may be unlocked and relocked to lock other worker_pools. 1752 */ 1753 static void node_activate_pending_pwq(struct wq_node_nr_active *nna, 1754 struct worker_pool *caller_pool) 1755 { 1756 struct worker_pool *locked_pool = caller_pool; 1757 struct pool_workqueue *pwq; 1758 struct work_struct *work; 1759 1760 lockdep_assert_held(&caller_pool->lock); 1761 1762 raw_spin_lock(&nna->lock); 1763 retry: 1764 pwq = list_first_entry_or_null(&nna->pending_pwqs, 1765 struct pool_workqueue, pending_node); 1766 if (!pwq) 1767 goto out_unlock; 1768 1769 /* 1770 * If @pwq is for a different pool than @locked_pool, we need to lock 1771 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock 1772 * / lock dance. For that, we also need to release @nna->lock as it's 1773 * nested inside pool locks. 1774 */ 1775 if (pwq->pool != locked_pool) { 1776 raw_spin_unlock(&locked_pool->lock); 1777 locked_pool = pwq->pool; 1778 if (!raw_spin_trylock(&locked_pool->lock)) { 1779 raw_spin_unlock(&nna->lock); 1780 raw_spin_lock(&locked_pool->lock); 1781 raw_spin_lock(&nna->lock); 1782 goto retry; 1783 } 1784 } 1785 1786 /* 1787 * $pwq may not have any inactive work items due to e.g. cancellations. 1788 * Drop it from pending_pwqs and see if there's another one. 1789 */ 1790 work = list_first_entry_or_null(&pwq->inactive_works, 1791 struct work_struct, entry); 1792 if (!work) { 1793 list_del_init(&pwq->pending_node); 1794 goto retry; 1795 } 1796 1797 /* 1798 * Acquire an nr_active count and activate the inactive work item. If 1799 * $pwq still has inactive work items, rotate it to the end of the 1800 * pending_pwqs so that we round-robin through them. This means that 1801 * inactive work items are not activated in queueing order which is fine 1802 * given that there has never been any ordering across different pwqs. 1803 */ 1804 if (likely(tryinc_node_nr_active(nna))) { 1805 pwq->nr_active++; 1806 __pwq_activate_work(pwq, work); 1807 1808 if (list_empty(&pwq->inactive_works)) 1809 list_del_init(&pwq->pending_node); 1810 else 1811 list_move_tail(&pwq->pending_node, &nna->pending_pwqs); 1812 1813 /* if activating a foreign pool, make sure it's running */ 1814 if (pwq->pool != caller_pool) 1815 kick_pool(pwq->pool); 1816 } 1817 1818 out_unlock: 1819 raw_spin_unlock(&nna->lock); 1820 if (locked_pool != caller_pool) { 1821 raw_spin_unlock(&locked_pool->lock); 1822 raw_spin_lock(&caller_pool->lock); 1823 } 1824 } 1825 1826 /** 1827 * pwq_dec_nr_active - Retire an active count 1828 * @pwq: pool_workqueue of interest 1829 * 1830 * Decrement @pwq's nr_active and try to activate the first inactive work item. 1831 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. 1832 */ 1833 static void pwq_dec_nr_active(struct pool_workqueue *pwq) 1834 { 1835 struct worker_pool *pool = pwq->pool; 1836 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node); 1837 1838 lockdep_assert_held(&pool->lock); 1839 1840 /* 1841 * @pwq->nr_active should be decremented for both percpu and unbound 1842 * workqueues. 1843 */ 1844 pwq->nr_active--; 1845 1846 /* 1847 * For a percpu workqueue, it's simple. Just need to kick the first 1848 * inactive work item on @pwq itself. 1849 */ 1850 if (!nna) { 1851 pwq_activate_first_inactive(pwq, false); 1852 return; 1853 } 1854 1855 /* 1856 * If @pwq is for an unbound workqueue, it's more complicated because 1857 * multiple pwqs and pools may be sharing the nr_active count. When a 1858 * pwq needs to wait for an nr_active count, it puts itself on 1859 * $nna->pending_pwqs. The following atomic_dec_return()'s implied 1860 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to 1861 * guarantee that either we see non-empty pending_pwqs or they see 1862 * decremented $nna->nr. 1863 * 1864 * $nna->max may change as CPUs come online/offline and @pwq->wq's 1865 * max_active gets updated. However, it is guaranteed to be equal to or 1866 * larger than @pwq->wq->min_active which is above zero unless freezing. 1867 * This maintains the forward progress guarantee. 1868 */ 1869 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max)) 1870 return; 1871 1872 if (!list_empty(&nna->pending_pwqs)) 1873 node_activate_pending_pwq(nna, pool); 1874 } 1875 1876 /** 1877 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1878 * @pwq: pwq of interest 1879 * @work_data: work_data of work which left the queue 1880 * 1881 * A work either has completed or is removed from pending queue, 1882 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1883 * 1884 * NOTE: 1885 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock 1886 * and thus should be called after all other state updates for the in-flight 1887 * work item is complete. 1888 * 1889 * CONTEXT: 1890 * raw_spin_lock_irq(pool->lock). 1891 */ 1892 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1893 { 1894 int color = get_work_color(work_data); 1895 1896 if (!(work_data & WORK_STRUCT_INACTIVE)) 1897 pwq_dec_nr_active(pwq); 1898 1899 pwq->nr_in_flight[color]--; 1900 1901 /* is flush in progress and are we at the flushing tip? */ 1902 if (likely(pwq->flush_color != color)) 1903 goto out_put; 1904 1905 /* are there still in-flight works? */ 1906 if (pwq->nr_in_flight[color]) 1907 goto out_put; 1908 1909 /* this pwq is done, clear flush_color */ 1910 pwq->flush_color = -1; 1911 1912 /* 1913 * If this was the last pwq, wake up the first flusher. It 1914 * will handle the rest. 1915 */ 1916 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1917 complete(&pwq->wq->first_flusher->done); 1918 out_put: 1919 put_pwq(pwq); 1920 } 1921 1922 /** 1923 * try_to_grab_pending - steal work item from worklist and disable irq 1924 * @work: work item to steal 1925 * @is_dwork: @work is a delayed_work 1926 * @flags: place to store irq state 1927 * 1928 * Try to grab PENDING bit of @work. This function can handle @work in any 1929 * stable state - idle, on timer or on worklist. 1930 * 1931 * Return: 1932 * 1933 * ======== ================================================================ 1934 * 1 if @work was pending and we successfully stole PENDING 1935 * 0 if @work was idle and we claimed PENDING 1936 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1937 * -ENOENT if someone else is canceling @work, this state may persist 1938 * for arbitrarily long 1939 * ======== ================================================================ 1940 * 1941 * Note: 1942 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1943 * interrupted while holding PENDING and @work off queue, irq must be 1944 * disabled on entry. This, combined with delayed_work->timer being 1945 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1946 * 1947 * On successful return, >= 0, irq is disabled and the caller is 1948 * responsible for releasing it using local_irq_restore(*@flags). 1949 * 1950 * This function is safe to call from any context including IRQ handler. 1951 */ 1952 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1953 unsigned long *flags) 1954 { 1955 struct worker_pool *pool; 1956 struct pool_workqueue *pwq; 1957 1958 local_irq_save(*flags); 1959 1960 /* try to steal the timer if it exists */ 1961 if (is_dwork) { 1962 struct delayed_work *dwork = to_delayed_work(work); 1963 1964 /* 1965 * dwork->timer is irqsafe. If del_timer() fails, it's 1966 * guaranteed that the timer is not queued anywhere and not 1967 * running on the local CPU. 1968 */ 1969 if (likely(del_timer(&dwork->timer))) 1970 return 1; 1971 } 1972 1973 /* try to claim PENDING the normal way */ 1974 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1975 return 0; 1976 1977 rcu_read_lock(); 1978 /* 1979 * The queueing is in progress, or it is already queued. Try to 1980 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1981 */ 1982 pool = get_work_pool(work); 1983 if (!pool) 1984 goto fail; 1985 1986 raw_spin_lock(&pool->lock); 1987 /* 1988 * work->data is guaranteed to point to pwq only while the work 1989 * item is queued on pwq->wq, and both updating work->data to point 1990 * to pwq on queueing and to pool on dequeueing are done under 1991 * pwq->pool->lock. This in turn guarantees that, if work->data 1992 * points to pwq which is associated with a locked pool, the work 1993 * item is currently queued on that pool. 1994 */ 1995 pwq = get_work_pwq(work); 1996 if (pwq && pwq->pool == pool) { 1997 debug_work_deactivate(work); 1998 1999 /* 2000 * A cancelable inactive work item must be in the 2001 * pwq->inactive_works since a queued barrier can't be 2002 * canceled (see the comments in insert_wq_barrier()). 2003 * 2004 * An inactive work item cannot be grabbed directly because 2005 * it might have linked barrier work items which, if left 2006 * on the inactive_works list, will confuse pwq->nr_active 2007 * management later on and cause stall. Make sure the work 2008 * item is activated before grabbing. 2009 */ 2010 pwq_activate_work(pwq, work); 2011 2012 list_del_init(&work->entry); 2013 2014 /* work->data points to pwq iff queued, point to pool */ 2015 set_work_pool_and_keep_pending(work, pool->id); 2016 2017 /* must be the last step, see the function comment */ 2018 pwq_dec_nr_in_flight(pwq, *work_data_bits(work)); 2019 2020 raw_spin_unlock(&pool->lock); 2021 rcu_read_unlock(); 2022 return 1; 2023 } 2024 raw_spin_unlock(&pool->lock); 2025 fail: 2026 rcu_read_unlock(); 2027 local_irq_restore(*flags); 2028 if (work_is_canceling(work)) 2029 return -ENOENT; 2030 cpu_relax(); 2031 return -EAGAIN; 2032 } 2033 2034 /** 2035 * insert_work - insert a work into a pool 2036 * @pwq: pwq @work belongs to 2037 * @work: work to insert 2038 * @head: insertion point 2039 * @extra_flags: extra WORK_STRUCT_* flags to set 2040 * 2041 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 2042 * work_struct flags. 2043 * 2044 * CONTEXT: 2045 * raw_spin_lock_irq(pool->lock). 2046 */ 2047 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 2048 struct list_head *head, unsigned int extra_flags) 2049 { 2050 debug_work_activate(work); 2051 2052 /* record the work call stack in order to print it in KASAN reports */ 2053 kasan_record_aux_stack_noalloc(work); 2054 2055 /* we own @work, set data and link */ 2056 set_work_pwq(work, pwq, extra_flags); 2057 list_add_tail(&work->entry, head); 2058 get_pwq(pwq); 2059 } 2060 2061 /* 2062 * Test whether @work is being queued from another work executing on the 2063 * same workqueue. 2064 */ 2065 static bool is_chained_work(struct workqueue_struct *wq) 2066 { 2067 struct worker *worker; 2068 2069 worker = current_wq_worker(); 2070 /* 2071 * Return %true iff I'm a worker executing a work item on @wq. If 2072 * I'm @worker, it's safe to dereference it without locking. 2073 */ 2074 return worker && worker->current_pwq->wq == wq; 2075 } 2076 2077 /* 2078 * When queueing an unbound work item to a wq, prefer local CPU if allowed 2079 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 2080 * avoid perturbing sensitive tasks. 2081 */ 2082 static int wq_select_unbound_cpu(int cpu) 2083 { 2084 int new_cpu; 2085 2086 if (likely(!wq_debug_force_rr_cpu)) { 2087 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 2088 return cpu; 2089 } else { 2090 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 2091 } 2092 2093 new_cpu = __this_cpu_read(wq_rr_cpu_last); 2094 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 2095 if (unlikely(new_cpu >= nr_cpu_ids)) { 2096 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 2097 if (unlikely(new_cpu >= nr_cpu_ids)) 2098 return cpu; 2099 } 2100 __this_cpu_write(wq_rr_cpu_last, new_cpu); 2101 2102 return new_cpu; 2103 } 2104 2105 static void __queue_work(int cpu, struct workqueue_struct *wq, 2106 struct work_struct *work) 2107 { 2108 struct pool_workqueue *pwq; 2109 struct worker_pool *last_pool, *pool; 2110 unsigned int work_flags; 2111 unsigned int req_cpu = cpu; 2112 2113 /* 2114 * While a work item is PENDING && off queue, a task trying to 2115 * steal the PENDING will busy-loop waiting for it to either get 2116 * queued or lose PENDING. Grabbing PENDING and queueing should 2117 * happen with IRQ disabled. 2118 */ 2119 lockdep_assert_irqs_disabled(); 2120 2121 2122 /* 2123 * For a draining wq, only works from the same workqueue are 2124 * allowed. The __WQ_DESTROYING helps to spot the issue that 2125 * queues a new work item to a wq after destroy_workqueue(wq). 2126 */ 2127 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 2128 WARN_ON_ONCE(!is_chained_work(wq)))) 2129 return; 2130 rcu_read_lock(); 2131 retry: 2132 /* pwq which will be used unless @work is executing elsewhere */ 2133 if (req_cpu == WORK_CPU_UNBOUND) { 2134 if (wq->flags & WQ_UNBOUND) 2135 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 2136 else 2137 cpu = raw_smp_processor_id(); 2138 } 2139 2140 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 2141 pool = pwq->pool; 2142 2143 /* 2144 * If @work was previously on a different pool, it might still be 2145 * running there, in which case the work needs to be queued on that 2146 * pool to guarantee non-reentrancy. 2147 */ 2148 last_pool = get_work_pool(work); 2149 if (last_pool && last_pool != pool) { 2150 struct worker *worker; 2151 2152 raw_spin_lock(&last_pool->lock); 2153 2154 worker = find_worker_executing_work(last_pool, work); 2155 2156 if (worker && worker->current_pwq->wq == wq) { 2157 pwq = worker->current_pwq; 2158 pool = pwq->pool; 2159 WARN_ON_ONCE(pool != last_pool); 2160 } else { 2161 /* meh... not running there, queue here */ 2162 raw_spin_unlock(&last_pool->lock); 2163 raw_spin_lock(&pool->lock); 2164 } 2165 } else { 2166 raw_spin_lock(&pool->lock); 2167 } 2168 2169 /* 2170 * pwq is determined and locked. For unbound pools, we could have raced 2171 * with pwq release and it could already be dead. If its refcnt is zero, 2172 * repeat pwq selection. Note that unbound pwqs never die without 2173 * another pwq replacing it in cpu_pwq or while work items are executing 2174 * on it, so the retrying is guaranteed to make forward-progress. 2175 */ 2176 if (unlikely(!pwq->refcnt)) { 2177 if (wq->flags & WQ_UNBOUND) { 2178 raw_spin_unlock(&pool->lock); 2179 cpu_relax(); 2180 goto retry; 2181 } 2182 /* oops */ 2183 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 2184 wq->name, cpu); 2185 } 2186 2187 /* pwq determined, queue */ 2188 trace_workqueue_queue_work(req_cpu, pwq, work); 2189 2190 if (WARN_ON(!list_empty(&work->entry))) 2191 goto out; 2192 2193 pwq->nr_in_flight[pwq->work_color]++; 2194 work_flags = work_color_to_flags(pwq->work_color); 2195 2196 /* 2197 * Limit the number of concurrently active work items to max_active. 2198 * @work must also queue behind existing inactive work items to maintain 2199 * ordering when max_active changes. See wq_adjust_max_active(). 2200 */ 2201 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) { 2202 if (list_empty(&pool->worklist)) 2203 pool->watchdog_ts = jiffies; 2204 2205 trace_workqueue_activate_work(work); 2206 insert_work(pwq, work, &pool->worklist, work_flags); 2207 kick_pool(pool); 2208 } else { 2209 work_flags |= WORK_STRUCT_INACTIVE; 2210 insert_work(pwq, work, &pwq->inactive_works, work_flags); 2211 } 2212 2213 out: 2214 raw_spin_unlock(&pool->lock); 2215 rcu_read_unlock(); 2216 } 2217 2218 /** 2219 * queue_work_on - queue work on specific cpu 2220 * @cpu: CPU number to execute work on 2221 * @wq: workqueue to use 2222 * @work: work to queue 2223 * 2224 * We queue the work to a specific CPU, the caller must ensure it 2225 * can't go away. Callers that fail to ensure that the specified 2226 * CPU cannot go away will execute on a randomly chosen CPU. 2227 * But note well that callers specifying a CPU that never has been 2228 * online will get a splat. 2229 * 2230 * Return: %false if @work was already on a queue, %true otherwise. 2231 */ 2232 bool queue_work_on(int cpu, struct workqueue_struct *wq, 2233 struct work_struct *work) 2234 { 2235 bool ret = false; 2236 unsigned long flags; 2237 2238 local_irq_save(flags); 2239 2240 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2241 __queue_work(cpu, wq, work); 2242 ret = true; 2243 } 2244 2245 local_irq_restore(flags); 2246 return ret; 2247 } 2248 EXPORT_SYMBOL(queue_work_on); 2249 2250 /** 2251 * select_numa_node_cpu - Select a CPU based on NUMA node 2252 * @node: NUMA node ID that we want to select a CPU from 2253 * 2254 * This function will attempt to find a "random" cpu available on a given 2255 * node. If there are no CPUs available on the given node it will return 2256 * WORK_CPU_UNBOUND indicating that we should just schedule to any 2257 * available CPU if we need to schedule this work. 2258 */ 2259 static int select_numa_node_cpu(int node) 2260 { 2261 int cpu; 2262 2263 /* Delay binding to CPU if node is not valid or online */ 2264 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 2265 return WORK_CPU_UNBOUND; 2266 2267 /* Use local node/cpu if we are already there */ 2268 cpu = raw_smp_processor_id(); 2269 if (node == cpu_to_node(cpu)) 2270 return cpu; 2271 2272 /* Use "random" otherwise know as "first" online CPU of node */ 2273 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 2274 2275 /* If CPU is valid return that, otherwise just defer */ 2276 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 2277 } 2278 2279 /** 2280 * queue_work_node - queue work on a "random" cpu for a given NUMA node 2281 * @node: NUMA node that we are targeting the work for 2282 * @wq: workqueue to use 2283 * @work: work to queue 2284 * 2285 * We queue the work to a "random" CPU within a given NUMA node. The basic 2286 * idea here is to provide a way to somehow associate work with a given 2287 * NUMA node. 2288 * 2289 * This function will only make a best effort attempt at getting this onto 2290 * the right NUMA node. If no node is requested or the requested node is 2291 * offline then we just fall back to standard queue_work behavior. 2292 * 2293 * Currently the "random" CPU ends up being the first available CPU in the 2294 * intersection of cpu_online_mask and the cpumask of the node, unless we 2295 * are running on the node. In that case we just use the current CPU. 2296 * 2297 * Return: %false if @work was already on a queue, %true otherwise. 2298 */ 2299 bool queue_work_node(int node, struct workqueue_struct *wq, 2300 struct work_struct *work) 2301 { 2302 unsigned long flags; 2303 bool ret = false; 2304 2305 /* 2306 * This current implementation is specific to unbound workqueues. 2307 * Specifically we only return the first available CPU for a given 2308 * node instead of cycling through individual CPUs within the node. 2309 * 2310 * If this is used with a per-cpu workqueue then the logic in 2311 * workqueue_select_cpu_near would need to be updated to allow for 2312 * some round robin type logic. 2313 */ 2314 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 2315 2316 local_irq_save(flags); 2317 2318 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2319 int cpu = select_numa_node_cpu(node); 2320 2321 __queue_work(cpu, wq, work); 2322 ret = true; 2323 } 2324 2325 local_irq_restore(flags); 2326 return ret; 2327 } 2328 EXPORT_SYMBOL_GPL(queue_work_node); 2329 2330 void delayed_work_timer_fn(struct timer_list *t) 2331 { 2332 struct delayed_work *dwork = from_timer(dwork, t, timer); 2333 2334 /* should have been called from irqsafe timer with irq already off */ 2335 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2336 } 2337 EXPORT_SYMBOL(delayed_work_timer_fn); 2338 2339 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 2340 struct delayed_work *dwork, unsigned long delay) 2341 { 2342 struct timer_list *timer = &dwork->timer; 2343 struct work_struct *work = &dwork->work; 2344 2345 WARN_ON_ONCE(!wq); 2346 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 2347 WARN_ON_ONCE(timer_pending(timer)); 2348 WARN_ON_ONCE(!list_empty(&work->entry)); 2349 2350 /* 2351 * If @delay is 0, queue @dwork->work immediately. This is for 2352 * both optimization and correctness. The earliest @timer can 2353 * expire is on the closest next tick and delayed_work users depend 2354 * on that there's no such delay when @delay is 0. 2355 */ 2356 if (!delay) { 2357 __queue_work(cpu, wq, &dwork->work); 2358 return; 2359 } 2360 2361 dwork->wq = wq; 2362 dwork->cpu = cpu; 2363 timer->expires = jiffies + delay; 2364 2365 if (unlikely(cpu != WORK_CPU_UNBOUND)) 2366 add_timer_on(timer, cpu); 2367 else 2368 add_timer(timer); 2369 } 2370 2371 /** 2372 * queue_delayed_work_on - queue work on specific CPU after delay 2373 * @cpu: CPU number to execute work on 2374 * @wq: workqueue to use 2375 * @dwork: work to queue 2376 * @delay: number of jiffies to wait before queueing 2377 * 2378 * Return: %false if @work was already on a queue, %true otherwise. If 2379 * @delay is zero and @dwork is idle, it will be scheduled for immediate 2380 * execution. 2381 */ 2382 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 2383 struct delayed_work *dwork, unsigned long delay) 2384 { 2385 struct work_struct *work = &dwork->work; 2386 bool ret = false; 2387 unsigned long flags; 2388 2389 /* read the comment in __queue_work() */ 2390 local_irq_save(flags); 2391 2392 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2393 __queue_delayed_work(cpu, wq, dwork, delay); 2394 ret = true; 2395 } 2396 2397 local_irq_restore(flags); 2398 return ret; 2399 } 2400 EXPORT_SYMBOL(queue_delayed_work_on); 2401 2402 /** 2403 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2404 * @cpu: CPU number to execute work on 2405 * @wq: workqueue to use 2406 * @dwork: work to queue 2407 * @delay: number of jiffies to wait before queueing 2408 * 2409 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2410 * modify @dwork's timer so that it expires after @delay. If @delay is 2411 * zero, @work is guaranteed to be scheduled immediately regardless of its 2412 * current state. 2413 * 2414 * Return: %false if @dwork was idle and queued, %true if @dwork was 2415 * pending and its timer was modified. 2416 * 2417 * This function is safe to call from any context including IRQ handler. 2418 * See try_to_grab_pending() for details. 2419 */ 2420 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2421 struct delayed_work *dwork, unsigned long delay) 2422 { 2423 unsigned long flags; 2424 int ret; 2425 2426 do { 2427 ret = try_to_grab_pending(&dwork->work, true, &flags); 2428 } while (unlikely(ret == -EAGAIN)); 2429 2430 if (likely(ret >= 0)) { 2431 __queue_delayed_work(cpu, wq, dwork, delay); 2432 local_irq_restore(flags); 2433 } 2434 2435 /* -ENOENT from try_to_grab_pending() becomes %true */ 2436 return ret; 2437 } 2438 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2439 2440 static void rcu_work_rcufn(struct rcu_head *rcu) 2441 { 2442 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2443 2444 /* read the comment in __queue_work() */ 2445 local_irq_disable(); 2446 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2447 local_irq_enable(); 2448 } 2449 2450 /** 2451 * queue_rcu_work - queue work after a RCU grace period 2452 * @wq: workqueue to use 2453 * @rwork: work to queue 2454 * 2455 * Return: %false if @rwork was already pending, %true otherwise. Note 2456 * that a full RCU grace period is guaranteed only after a %true return. 2457 * While @rwork is guaranteed to be executed after a %false return, the 2458 * execution may happen before a full RCU grace period has passed. 2459 */ 2460 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2461 { 2462 struct work_struct *work = &rwork->work; 2463 2464 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2465 rwork->wq = wq; 2466 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2467 return true; 2468 } 2469 2470 return false; 2471 } 2472 EXPORT_SYMBOL(queue_rcu_work); 2473 2474 static struct worker *alloc_worker(int node) 2475 { 2476 struct worker *worker; 2477 2478 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2479 if (worker) { 2480 INIT_LIST_HEAD(&worker->entry); 2481 INIT_LIST_HEAD(&worker->scheduled); 2482 INIT_LIST_HEAD(&worker->node); 2483 /* on creation a worker is in !idle && prep state */ 2484 worker->flags = WORKER_PREP; 2485 } 2486 return worker; 2487 } 2488 2489 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2490 { 2491 if (pool->cpu < 0 && pool->attrs->affn_strict) 2492 return pool->attrs->__pod_cpumask; 2493 else 2494 return pool->attrs->cpumask; 2495 } 2496 2497 /** 2498 * worker_attach_to_pool() - attach a worker to a pool 2499 * @worker: worker to be attached 2500 * @pool: the target pool 2501 * 2502 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2503 * cpu-binding of @worker are kept coordinated with the pool across 2504 * cpu-[un]hotplugs. 2505 */ 2506 static void worker_attach_to_pool(struct worker *worker, 2507 struct worker_pool *pool) 2508 { 2509 mutex_lock(&wq_pool_attach_mutex); 2510 2511 /* 2512 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 2513 * stable across this function. See the comments above the flag 2514 * definition for details. 2515 */ 2516 if (pool->flags & POOL_DISASSOCIATED) 2517 worker->flags |= WORKER_UNBOUND; 2518 else 2519 kthread_set_per_cpu(worker->task, pool->cpu); 2520 2521 if (worker->rescue_wq) 2522 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2523 2524 list_add_tail(&worker->node, &pool->workers); 2525 worker->pool = pool; 2526 2527 mutex_unlock(&wq_pool_attach_mutex); 2528 } 2529 2530 /** 2531 * worker_detach_from_pool() - detach a worker from its pool 2532 * @worker: worker which is attached to its pool 2533 * 2534 * Undo the attaching which had been done in worker_attach_to_pool(). The 2535 * caller worker shouldn't access to the pool after detached except it has 2536 * other reference to the pool. 2537 */ 2538 static void worker_detach_from_pool(struct worker *worker) 2539 { 2540 struct worker_pool *pool = worker->pool; 2541 struct completion *detach_completion = NULL; 2542 2543 mutex_lock(&wq_pool_attach_mutex); 2544 2545 kthread_set_per_cpu(worker->task, -1); 2546 list_del(&worker->node); 2547 worker->pool = NULL; 2548 2549 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers)) 2550 detach_completion = pool->detach_completion; 2551 mutex_unlock(&wq_pool_attach_mutex); 2552 2553 /* clear leftover flags without pool->lock after it is detached */ 2554 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2555 2556 if (detach_completion) 2557 complete(detach_completion); 2558 } 2559 2560 /** 2561 * create_worker - create a new workqueue worker 2562 * @pool: pool the new worker will belong to 2563 * 2564 * Create and start a new worker which is attached to @pool. 2565 * 2566 * CONTEXT: 2567 * Might sleep. Does GFP_KERNEL allocations. 2568 * 2569 * Return: 2570 * Pointer to the newly created worker. 2571 */ 2572 static struct worker *create_worker(struct worker_pool *pool) 2573 { 2574 struct worker *worker; 2575 int id; 2576 char id_buf[23]; 2577 2578 /* ID is needed to determine kthread name */ 2579 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2580 if (id < 0) { 2581 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2582 ERR_PTR(id)); 2583 return NULL; 2584 } 2585 2586 worker = alloc_worker(pool->node); 2587 if (!worker) { 2588 pr_err_once("workqueue: Failed to allocate a worker\n"); 2589 goto fail; 2590 } 2591 2592 worker->id = id; 2593 2594 if (pool->cpu >= 0) 2595 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 2596 pool->attrs->nice < 0 ? "H" : ""); 2597 else 2598 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 2599 2600 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 2601 "kworker/%s", id_buf); 2602 if (IS_ERR(worker->task)) { 2603 if (PTR_ERR(worker->task) == -EINTR) { 2604 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n", 2605 id_buf); 2606 } else { 2607 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2608 worker->task); 2609 } 2610 goto fail; 2611 } 2612 2613 set_user_nice(worker->task, pool->attrs->nice); 2614 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2615 2616 /* successful, attach the worker to the pool */ 2617 worker_attach_to_pool(worker, pool); 2618 2619 /* start the newly created worker */ 2620 raw_spin_lock_irq(&pool->lock); 2621 2622 worker->pool->nr_workers++; 2623 worker_enter_idle(worker); 2624 2625 /* 2626 * @worker is waiting on a completion in kthread() and will trigger hung 2627 * check if not woken up soon. As kick_pool() is noop if @pool is empty, 2628 * wake it up explicitly. 2629 */ 2630 wake_up_process(worker->task); 2631 2632 raw_spin_unlock_irq(&pool->lock); 2633 2634 return worker; 2635 2636 fail: 2637 ida_free(&pool->worker_ida, id); 2638 kfree(worker); 2639 return NULL; 2640 } 2641 2642 static void unbind_worker(struct worker *worker) 2643 { 2644 lockdep_assert_held(&wq_pool_attach_mutex); 2645 2646 kthread_set_per_cpu(worker->task, -1); 2647 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2648 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2649 else 2650 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2651 } 2652 2653 static void wake_dying_workers(struct list_head *cull_list) 2654 { 2655 struct worker *worker, *tmp; 2656 2657 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2658 list_del_init(&worker->entry); 2659 unbind_worker(worker); 2660 /* 2661 * If the worker was somehow already running, then it had to be 2662 * in pool->idle_list when set_worker_dying() happened or we 2663 * wouldn't have gotten here. 2664 * 2665 * Thus, the worker must either have observed the WORKER_DIE 2666 * flag, or have set its state to TASK_IDLE. Either way, the 2667 * below will be observed by the worker and is safe to do 2668 * outside of pool->lock. 2669 */ 2670 wake_up_process(worker->task); 2671 } 2672 } 2673 2674 /** 2675 * set_worker_dying - Tag a worker for destruction 2676 * @worker: worker to be destroyed 2677 * @list: transfer worker away from its pool->idle_list and into list 2678 * 2679 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2680 * should be idle. 2681 * 2682 * CONTEXT: 2683 * raw_spin_lock_irq(pool->lock). 2684 */ 2685 static void set_worker_dying(struct worker *worker, struct list_head *list) 2686 { 2687 struct worker_pool *pool = worker->pool; 2688 2689 lockdep_assert_held(&pool->lock); 2690 lockdep_assert_held(&wq_pool_attach_mutex); 2691 2692 /* sanity check frenzy */ 2693 if (WARN_ON(worker->current_work) || 2694 WARN_ON(!list_empty(&worker->scheduled)) || 2695 WARN_ON(!(worker->flags & WORKER_IDLE))) 2696 return; 2697 2698 pool->nr_workers--; 2699 pool->nr_idle--; 2700 2701 worker->flags |= WORKER_DIE; 2702 2703 list_move(&worker->entry, list); 2704 list_move(&worker->node, &pool->dying_workers); 2705 } 2706 2707 /** 2708 * idle_worker_timeout - check if some idle workers can now be deleted. 2709 * @t: The pool's idle_timer that just expired 2710 * 2711 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2712 * worker_leave_idle(), as a worker flicking between idle and active while its 2713 * pool is at the too_many_workers() tipping point would cause too much timer 2714 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2715 * it expire and re-evaluate things from there. 2716 */ 2717 static void idle_worker_timeout(struct timer_list *t) 2718 { 2719 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2720 bool do_cull = false; 2721 2722 if (work_pending(&pool->idle_cull_work)) 2723 return; 2724 2725 raw_spin_lock_irq(&pool->lock); 2726 2727 if (too_many_workers(pool)) { 2728 struct worker *worker; 2729 unsigned long expires; 2730 2731 /* idle_list is kept in LIFO order, check the last one */ 2732 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2733 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2734 do_cull = !time_before(jiffies, expires); 2735 2736 if (!do_cull) 2737 mod_timer(&pool->idle_timer, expires); 2738 } 2739 raw_spin_unlock_irq(&pool->lock); 2740 2741 if (do_cull) 2742 queue_work(system_unbound_wq, &pool->idle_cull_work); 2743 } 2744 2745 /** 2746 * idle_cull_fn - cull workers that have been idle for too long. 2747 * @work: the pool's work for handling these idle workers 2748 * 2749 * This goes through a pool's idle workers and gets rid of those that have been 2750 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2751 * 2752 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2753 * culled, so this also resets worker affinity. This requires a sleepable 2754 * context, hence the split between timer callback and work item. 2755 */ 2756 static void idle_cull_fn(struct work_struct *work) 2757 { 2758 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2759 LIST_HEAD(cull_list); 2760 2761 /* 2762 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2763 * cannot proceed beyong worker_detach_from_pool() in its self-destruct 2764 * path. This is required as a previously-preempted worker could run after 2765 * set_worker_dying() has happened but before wake_dying_workers() did. 2766 */ 2767 mutex_lock(&wq_pool_attach_mutex); 2768 raw_spin_lock_irq(&pool->lock); 2769 2770 while (too_many_workers(pool)) { 2771 struct worker *worker; 2772 unsigned long expires; 2773 2774 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2775 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2776 2777 if (time_before(jiffies, expires)) { 2778 mod_timer(&pool->idle_timer, expires); 2779 break; 2780 } 2781 2782 set_worker_dying(worker, &cull_list); 2783 } 2784 2785 raw_spin_unlock_irq(&pool->lock); 2786 wake_dying_workers(&cull_list); 2787 mutex_unlock(&wq_pool_attach_mutex); 2788 } 2789 2790 static void send_mayday(struct work_struct *work) 2791 { 2792 struct pool_workqueue *pwq = get_work_pwq(work); 2793 struct workqueue_struct *wq = pwq->wq; 2794 2795 lockdep_assert_held(&wq_mayday_lock); 2796 2797 if (!wq->rescuer) 2798 return; 2799 2800 /* mayday mayday mayday */ 2801 if (list_empty(&pwq->mayday_node)) { 2802 /* 2803 * If @pwq is for an unbound wq, its base ref may be put at 2804 * any time due to an attribute change. Pin @pwq until the 2805 * rescuer is done with it. 2806 */ 2807 get_pwq(pwq); 2808 list_add_tail(&pwq->mayday_node, &wq->maydays); 2809 wake_up_process(wq->rescuer->task); 2810 pwq->stats[PWQ_STAT_MAYDAY]++; 2811 } 2812 } 2813 2814 static void pool_mayday_timeout(struct timer_list *t) 2815 { 2816 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2817 struct work_struct *work; 2818 2819 raw_spin_lock_irq(&pool->lock); 2820 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2821 2822 if (need_to_create_worker(pool)) { 2823 /* 2824 * We've been trying to create a new worker but 2825 * haven't been successful. We might be hitting an 2826 * allocation deadlock. Send distress signals to 2827 * rescuers. 2828 */ 2829 list_for_each_entry(work, &pool->worklist, entry) 2830 send_mayday(work); 2831 } 2832 2833 raw_spin_unlock(&wq_mayday_lock); 2834 raw_spin_unlock_irq(&pool->lock); 2835 2836 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2837 } 2838 2839 /** 2840 * maybe_create_worker - create a new worker if necessary 2841 * @pool: pool to create a new worker for 2842 * 2843 * Create a new worker for @pool if necessary. @pool is guaranteed to 2844 * have at least one idle worker on return from this function. If 2845 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2846 * sent to all rescuers with works scheduled on @pool to resolve 2847 * possible allocation deadlock. 2848 * 2849 * On return, need_to_create_worker() is guaranteed to be %false and 2850 * may_start_working() %true. 2851 * 2852 * LOCKING: 2853 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2854 * multiple times. Does GFP_KERNEL allocations. Called only from 2855 * manager. 2856 */ 2857 static void maybe_create_worker(struct worker_pool *pool) 2858 __releases(&pool->lock) 2859 __acquires(&pool->lock) 2860 { 2861 restart: 2862 raw_spin_unlock_irq(&pool->lock); 2863 2864 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2865 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2866 2867 while (true) { 2868 if (create_worker(pool) || !need_to_create_worker(pool)) 2869 break; 2870 2871 schedule_timeout_interruptible(CREATE_COOLDOWN); 2872 2873 if (!need_to_create_worker(pool)) 2874 break; 2875 } 2876 2877 del_timer_sync(&pool->mayday_timer); 2878 raw_spin_lock_irq(&pool->lock); 2879 /* 2880 * This is necessary even after a new worker was just successfully 2881 * created as @pool->lock was dropped and the new worker might have 2882 * already become busy. 2883 */ 2884 if (need_to_create_worker(pool)) 2885 goto restart; 2886 } 2887 2888 /** 2889 * manage_workers - manage worker pool 2890 * @worker: self 2891 * 2892 * Assume the manager role and manage the worker pool @worker belongs 2893 * to. At any given time, there can be only zero or one manager per 2894 * pool. The exclusion is handled automatically by this function. 2895 * 2896 * The caller can safely start processing works on false return. On 2897 * true return, it's guaranteed that need_to_create_worker() is false 2898 * and may_start_working() is true. 2899 * 2900 * CONTEXT: 2901 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2902 * multiple times. Does GFP_KERNEL allocations. 2903 * 2904 * Return: 2905 * %false if the pool doesn't need management and the caller can safely 2906 * start processing works, %true if management function was performed and 2907 * the conditions that the caller verified before calling the function may 2908 * no longer be true. 2909 */ 2910 static bool manage_workers(struct worker *worker) 2911 { 2912 struct worker_pool *pool = worker->pool; 2913 2914 if (pool->flags & POOL_MANAGER_ACTIVE) 2915 return false; 2916 2917 pool->flags |= POOL_MANAGER_ACTIVE; 2918 pool->manager = worker; 2919 2920 maybe_create_worker(pool); 2921 2922 pool->manager = NULL; 2923 pool->flags &= ~POOL_MANAGER_ACTIVE; 2924 rcuwait_wake_up(&manager_wait); 2925 return true; 2926 } 2927 2928 /** 2929 * process_one_work - process single work 2930 * @worker: self 2931 * @work: work to process 2932 * 2933 * Process @work. This function contains all the logics necessary to 2934 * process a single work including synchronization against and 2935 * interaction with other workers on the same cpu, queueing and 2936 * flushing. As long as context requirement is met, any worker can 2937 * call this function to process a work. 2938 * 2939 * CONTEXT: 2940 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 2941 */ 2942 static void process_one_work(struct worker *worker, struct work_struct *work) 2943 __releases(&pool->lock) 2944 __acquires(&pool->lock) 2945 { 2946 struct pool_workqueue *pwq = get_work_pwq(work); 2947 struct worker_pool *pool = worker->pool; 2948 unsigned long work_data; 2949 #ifdef CONFIG_LOCKDEP 2950 /* 2951 * It is permissible to free the struct work_struct from 2952 * inside the function that is called from it, this we need to 2953 * take into account for lockdep too. To avoid bogus "held 2954 * lock freed" warnings as well as problems when looking into 2955 * work->lockdep_map, make a copy and use that here. 2956 */ 2957 struct lockdep_map lockdep_map; 2958 2959 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2960 #endif 2961 /* ensure we're on the correct CPU */ 2962 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2963 raw_smp_processor_id() != pool->cpu); 2964 2965 /* claim and dequeue */ 2966 debug_work_deactivate(work); 2967 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2968 worker->current_work = work; 2969 worker->current_func = work->func; 2970 worker->current_pwq = pwq; 2971 worker->current_at = worker->task->se.sum_exec_runtime; 2972 work_data = *work_data_bits(work); 2973 worker->current_color = get_work_color(work_data); 2974 2975 /* 2976 * Record wq name for cmdline and debug reporting, may get 2977 * overridden through set_worker_desc(). 2978 */ 2979 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2980 2981 list_del_init(&work->entry); 2982 2983 /* 2984 * CPU intensive works don't participate in concurrency management. 2985 * They're the scheduler's responsibility. This takes @worker out 2986 * of concurrency management and the next code block will chain 2987 * execution of the pending work items. 2988 */ 2989 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 2990 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2991 2992 /* 2993 * Kick @pool if necessary. It's always noop for per-cpu worker pools 2994 * since nr_running would always be >= 1 at this point. This is used to 2995 * chain execution of the pending work items for WORKER_NOT_RUNNING 2996 * workers such as the UNBOUND and CPU_INTENSIVE ones. 2997 */ 2998 kick_pool(pool); 2999 3000 /* 3001 * Record the last pool and clear PENDING which should be the last 3002 * update to @work. Also, do this inside @pool->lock so that 3003 * PENDING and queued state changes happen together while IRQ is 3004 * disabled. 3005 */ 3006 set_work_pool_and_clear_pending(work, pool->id); 3007 3008 pwq->stats[PWQ_STAT_STARTED]++; 3009 raw_spin_unlock_irq(&pool->lock); 3010 3011 lock_map_acquire(&pwq->wq->lockdep_map); 3012 lock_map_acquire(&lockdep_map); 3013 /* 3014 * Strictly speaking we should mark the invariant state without holding 3015 * any locks, that is, before these two lock_map_acquire()'s. 3016 * 3017 * However, that would result in: 3018 * 3019 * A(W1) 3020 * WFC(C) 3021 * A(W1) 3022 * C(C) 3023 * 3024 * Which would create W1->C->W1 dependencies, even though there is no 3025 * actual deadlock possible. There are two solutions, using a 3026 * read-recursive acquire on the work(queue) 'locks', but this will then 3027 * hit the lockdep limitation on recursive locks, or simply discard 3028 * these locks. 3029 * 3030 * AFAICT there is no possible deadlock scenario between the 3031 * flush_work() and complete() primitives (except for single-threaded 3032 * workqueues), so hiding them isn't a problem. 3033 */ 3034 lockdep_invariant_state(true); 3035 trace_workqueue_execute_start(work); 3036 worker->current_func(work); 3037 /* 3038 * While we must be careful to not use "work" after this, the trace 3039 * point will only record its address. 3040 */ 3041 trace_workqueue_execute_end(work, worker->current_func); 3042 pwq->stats[PWQ_STAT_COMPLETED]++; 3043 lock_map_release(&lockdep_map); 3044 lock_map_release(&pwq->wq->lockdep_map); 3045 3046 if (unlikely(in_atomic() || lockdep_depth(current) > 0 || 3047 rcu_preempt_depth() > 0)) { 3048 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d/%d\n" 3049 " last function: %ps\n", 3050 current->comm, preempt_count(), rcu_preempt_depth(), 3051 task_pid_nr(current), worker->current_func); 3052 debug_show_held_locks(current); 3053 dump_stack(); 3054 } 3055 3056 /* 3057 * The following prevents a kworker from hogging CPU on !PREEMPTION 3058 * kernels, where a requeueing work item waiting for something to 3059 * happen could deadlock with stop_machine as such work item could 3060 * indefinitely requeue itself while all other CPUs are trapped in 3061 * stop_machine. At the same time, report a quiescent RCU state so 3062 * the same condition doesn't freeze RCU. 3063 */ 3064 cond_resched(); 3065 3066 raw_spin_lock_irq(&pool->lock); 3067 3068 /* 3069 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 3070 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 3071 * wq_cpu_intensive_thresh_us. Clear it. 3072 */ 3073 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 3074 3075 /* tag the worker for identification in schedule() */ 3076 worker->last_func = worker->current_func; 3077 3078 /* we're done with it, release */ 3079 hash_del(&worker->hentry); 3080 worker->current_work = NULL; 3081 worker->current_func = NULL; 3082 worker->current_pwq = NULL; 3083 worker->current_color = INT_MAX; 3084 3085 /* must be the last step, see the function comment */ 3086 pwq_dec_nr_in_flight(pwq, work_data); 3087 } 3088 3089 /** 3090 * process_scheduled_works - process scheduled works 3091 * @worker: self 3092 * 3093 * Process all scheduled works. Please note that the scheduled list 3094 * may change while processing a work, so this function repeatedly 3095 * fetches a work from the top and executes it. 3096 * 3097 * CONTEXT: 3098 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3099 * multiple times. 3100 */ 3101 static void process_scheduled_works(struct worker *worker) 3102 { 3103 struct work_struct *work; 3104 bool first = true; 3105 3106 while ((work = list_first_entry_or_null(&worker->scheduled, 3107 struct work_struct, entry))) { 3108 if (first) { 3109 worker->pool->watchdog_ts = jiffies; 3110 first = false; 3111 } 3112 process_one_work(worker, work); 3113 } 3114 } 3115 3116 static void set_pf_worker(bool val) 3117 { 3118 mutex_lock(&wq_pool_attach_mutex); 3119 if (val) 3120 current->flags |= PF_WQ_WORKER; 3121 else 3122 current->flags &= ~PF_WQ_WORKER; 3123 mutex_unlock(&wq_pool_attach_mutex); 3124 } 3125 3126 /** 3127 * worker_thread - the worker thread function 3128 * @__worker: self 3129 * 3130 * The worker thread function. All workers belong to a worker_pool - 3131 * either a per-cpu one or dynamic unbound one. These workers process all 3132 * work items regardless of their specific target workqueue. The only 3133 * exception is work items which belong to workqueues with a rescuer which 3134 * will be explained in rescuer_thread(). 3135 * 3136 * Return: 0 3137 */ 3138 static int worker_thread(void *__worker) 3139 { 3140 struct worker *worker = __worker; 3141 struct worker_pool *pool = worker->pool; 3142 3143 /* tell the scheduler that this is a workqueue worker */ 3144 set_pf_worker(true); 3145 woke_up: 3146 raw_spin_lock_irq(&pool->lock); 3147 3148 /* am I supposed to die? */ 3149 if (unlikely(worker->flags & WORKER_DIE)) { 3150 raw_spin_unlock_irq(&pool->lock); 3151 set_pf_worker(false); 3152 3153 set_task_comm(worker->task, "kworker/dying"); 3154 ida_free(&pool->worker_ida, worker->id); 3155 worker_detach_from_pool(worker); 3156 WARN_ON_ONCE(!list_empty(&worker->entry)); 3157 kfree(worker); 3158 return 0; 3159 } 3160 3161 worker_leave_idle(worker); 3162 recheck: 3163 /* no more worker necessary? */ 3164 if (!need_more_worker(pool)) 3165 goto sleep; 3166 3167 /* do we need to manage? */ 3168 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 3169 goto recheck; 3170 3171 /* 3172 * ->scheduled list can only be filled while a worker is 3173 * preparing to process a work or actually processing it. 3174 * Make sure nobody diddled with it while I was sleeping. 3175 */ 3176 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3177 3178 /* 3179 * Finish PREP stage. We're guaranteed to have at least one idle 3180 * worker or that someone else has already assumed the manager 3181 * role. This is where @worker starts participating in concurrency 3182 * management if applicable and concurrency management is restored 3183 * after being rebound. See rebind_workers() for details. 3184 */ 3185 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3186 3187 do { 3188 struct work_struct *work = 3189 list_first_entry(&pool->worklist, 3190 struct work_struct, entry); 3191 3192 if (assign_work(work, worker, NULL)) 3193 process_scheduled_works(worker); 3194 } while (keep_working(pool)); 3195 3196 worker_set_flags(worker, WORKER_PREP); 3197 sleep: 3198 /* 3199 * pool->lock is held and there's no work to process and no need to 3200 * manage, sleep. Workers are woken up only while holding 3201 * pool->lock or from local cpu, so setting the current state 3202 * before releasing pool->lock is enough to prevent losing any 3203 * event. 3204 */ 3205 worker_enter_idle(worker); 3206 __set_current_state(TASK_IDLE); 3207 raw_spin_unlock_irq(&pool->lock); 3208 schedule(); 3209 goto woke_up; 3210 } 3211 3212 /** 3213 * rescuer_thread - the rescuer thread function 3214 * @__rescuer: self 3215 * 3216 * Workqueue rescuer thread function. There's one rescuer for each 3217 * workqueue which has WQ_MEM_RECLAIM set. 3218 * 3219 * Regular work processing on a pool may block trying to create a new 3220 * worker which uses GFP_KERNEL allocation which has slight chance of 3221 * developing into deadlock if some works currently on the same queue 3222 * need to be processed to satisfy the GFP_KERNEL allocation. This is 3223 * the problem rescuer solves. 3224 * 3225 * When such condition is possible, the pool summons rescuers of all 3226 * workqueues which have works queued on the pool and let them process 3227 * those works so that forward progress can be guaranteed. 3228 * 3229 * This should happen rarely. 3230 * 3231 * Return: 0 3232 */ 3233 static int rescuer_thread(void *__rescuer) 3234 { 3235 struct worker *rescuer = __rescuer; 3236 struct workqueue_struct *wq = rescuer->rescue_wq; 3237 bool should_stop; 3238 3239 set_user_nice(current, RESCUER_NICE_LEVEL); 3240 3241 /* 3242 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 3243 * doesn't participate in concurrency management. 3244 */ 3245 set_pf_worker(true); 3246 repeat: 3247 set_current_state(TASK_IDLE); 3248 3249 /* 3250 * By the time the rescuer is requested to stop, the workqueue 3251 * shouldn't have any work pending, but @wq->maydays may still have 3252 * pwq(s) queued. This can happen by non-rescuer workers consuming 3253 * all the work items before the rescuer got to them. Go through 3254 * @wq->maydays processing before acting on should_stop so that the 3255 * list is always empty on exit. 3256 */ 3257 should_stop = kthread_should_stop(); 3258 3259 /* see whether any pwq is asking for help */ 3260 raw_spin_lock_irq(&wq_mayday_lock); 3261 3262 while (!list_empty(&wq->maydays)) { 3263 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 3264 struct pool_workqueue, mayday_node); 3265 struct worker_pool *pool = pwq->pool; 3266 struct work_struct *work, *n; 3267 3268 __set_current_state(TASK_RUNNING); 3269 list_del_init(&pwq->mayday_node); 3270 3271 raw_spin_unlock_irq(&wq_mayday_lock); 3272 3273 worker_attach_to_pool(rescuer, pool); 3274 3275 raw_spin_lock_irq(&pool->lock); 3276 3277 /* 3278 * Slurp in all works issued via this workqueue and 3279 * process'em. 3280 */ 3281 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 3282 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 3283 if (get_work_pwq(work) == pwq && 3284 assign_work(work, rescuer, &n)) 3285 pwq->stats[PWQ_STAT_RESCUED]++; 3286 } 3287 3288 if (!list_empty(&rescuer->scheduled)) { 3289 process_scheduled_works(rescuer); 3290 3291 /* 3292 * The above execution of rescued work items could 3293 * have created more to rescue through 3294 * pwq_activate_first_inactive() or chained 3295 * queueing. Let's put @pwq back on mayday list so 3296 * that such back-to-back work items, which may be 3297 * being used to relieve memory pressure, don't 3298 * incur MAYDAY_INTERVAL delay inbetween. 3299 */ 3300 if (pwq->nr_active && need_to_create_worker(pool)) { 3301 raw_spin_lock(&wq_mayday_lock); 3302 /* 3303 * Queue iff we aren't racing destruction 3304 * and somebody else hasn't queued it already. 3305 */ 3306 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 3307 get_pwq(pwq); 3308 list_add_tail(&pwq->mayday_node, &wq->maydays); 3309 } 3310 raw_spin_unlock(&wq_mayday_lock); 3311 } 3312 } 3313 3314 /* 3315 * Put the reference grabbed by send_mayday(). @pool won't 3316 * go away while we're still attached to it. 3317 */ 3318 put_pwq(pwq); 3319 3320 /* 3321 * Leave this pool. Notify regular workers; otherwise, we end up 3322 * with 0 concurrency and stalling the execution. 3323 */ 3324 kick_pool(pool); 3325 3326 raw_spin_unlock_irq(&pool->lock); 3327 3328 worker_detach_from_pool(rescuer); 3329 3330 raw_spin_lock_irq(&wq_mayday_lock); 3331 } 3332 3333 raw_spin_unlock_irq(&wq_mayday_lock); 3334 3335 if (should_stop) { 3336 __set_current_state(TASK_RUNNING); 3337 set_pf_worker(false); 3338 return 0; 3339 } 3340 3341 /* rescuers should never participate in concurrency management */ 3342 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 3343 schedule(); 3344 goto repeat; 3345 } 3346 3347 /** 3348 * check_flush_dependency - check for flush dependency sanity 3349 * @target_wq: workqueue being flushed 3350 * @target_work: work item being flushed (NULL for workqueue flushes) 3351 * 3352 * %current is trying to flush the whole @target_wq or @target_work on it. 3353 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 3354 * reclaiming memory or running on a workqueue which doesn't have 3355 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 3356 * a deadlock. 3357 */ 3358 static void check_flush_dependency(struct workqueue_struct *target_wq, 3359 struct work_struct *target_work) 3360 { 3361 work_func_t target_func = target_work ? target_work->func : NULL; 3362 struct worker *worker; 3363 3364 if (target_wq->flags & WQ_MEM_RECLAIM) 3365 return; 3366 3367 worker = current_wq_worker(); 3368 3369 WARN_ONCE(current->flags & PF_MEMALLOC, 3370 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 3371 current->pid, current->comm, target_wq->name, target_func); 3372 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 3373 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 3374 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 3375 worker->current_pwq->wq->name, worker->current_func, 3376 target_wq->name, target_func); 3377 } 3378 3379 struct wq_barrier { 3380 struct work_struct work; 3381 struct completion done; 3382 struct task_struct *task; /* purely informational */ 3383 }; 3384 3385 static void wq_barrier_func(struct work_struct *work) 3386 { 3387 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 3388 complete(&barr->done); 3389 } 3390 3391 /** 3392 * insert_wq_barrier - insert a barrier work 3393 * @pwq: pwq to insert barrier into 3394 * @barr: wq_barrier to insert 3395 * @target: target work to attach @barr to 3396 * @worker: worker currently executing @target, NULL if @target is not executing 3397 * 3398 * @barr is linked to @target such that @barr is completed only after 3399 * @target finishes execution. Please note that the ordering 3400 * guarantee is observed only with respect to @target and on the local 3401 * cpu. 3402 * 3403 * Currently, a queued barrier can't be canceled. This is because 3404 * try_to_grab_pending() can't determine whether the work to be 3405 * grabbed is at the head of the queue and thus can't clear LINKED 3406 * flag of the previous work while there must be a valid next work 3407 * after a work with LINKED flag set. 3408 * 3409 * Note that when @worker is non-NULL, @target may be modified 3410 * underneath us, so we can't reliably determine pwq from @target. 3411 * 3412 * CONTEXT: 3413 * raw_spin_lock_irq(pool->lock). 3414 */ 3415 static void insert_wq_barrier(struct pool_workqueue *pwq, 3416 struct wq_barrier *barr, 3417 struct work_struct *target, struct worker *worker) 3418 { 3419 unsigned int work_flags = 0; 3420 unsigned int work_color; 3421 struct list_head *head; 3422 3423 /* 3424 * debugobject calls are safe here even with pool->lock locked 3425 * as we know for sure that this will not trigger any of the 3426 * checks and call back into the fixup functions where we 3427 * might deadlock. 3428 */ 3429 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 3430 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3431 3432 init_completion_map(&barr->done, &target->lockdep_map); 3433 3434 barr->task = current; 3435 3436 /* The barrier work item does not participate in nr_active. */ 3437 work_flags |= WORK_STRUCT_INACTIVE; 3438 3439 /* 3440 * If @target is currently being executed, schedule the 3441 * barrier to the worker; otherwise, put it after @target. 3442 */ 3443 if (worker) { 3444 head = worker->scheduled.next; 3445 work_color = worker->current_color; 3446 } else { 3447 unsigned long *bits = work_data_bits(target); 3448 3449 head = target->entry.next; 3450 /* there can already be other linked works, inherit and set */ 3451 work_flags |= *bits & WORK_STRUCT_LINKED; 3452 work_color = get_work_color(*bits); 3453 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3454 } 3455 3456 pwq->nr_in_flight[work_color]++; 3457 work_flags |= work_color_to_flags(work_color); 3458 3459 insert_work(pwq, &barr->work, head, work_flags); 3460 } 3461 3462 /** 3463 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3464 * @wq: workqueue being flushed 3465 * @flush_color: new flush color, < 0 for no-op 3466 * @work_color: new work color, < 0 for no-op 3467 * 3468 * Prepare pwqs for workqueue flushing. 3469 * 3470 * If @flush_color is non-negative, flush_color on all pwqs should be 3471 * -1. If no pwq has in-flight commands at the specified color, all 3472 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3473 * has in flight commands, its pwq->flush_color is set to 3474 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3475 * wakeup logic is armed and %true is returned. 3476 * 3477 * The caller should have initialized @wq->first_flusher prior to 3478 * calling this function with non-negative @flush_color. If 3479 * @flush_color is negative, no flush color update is done and %false 3480 * is returned. 3481 * 3482 * If @work_color is non-negative, all pwqs should have the same 3483 * work_color which is previous to @work_color and all will be 3484 * advanced to @work_color. 3485 * 3486 * CONTEXT: 3487 * mutex_lock(wq->mutex). 3488 * 3489 * Return: 3490 * %true if @flush_color >= 0 and there's something to flush. %false 3491 * otherwise. 3492 */ 3493 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3494 int flush_color, int work_color) 3495 { 3496 bool wait = false; 3497 struct pool_workqueue *pwq; 3498 3499 if (flush_color >= 0) { 3500 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3501 atomic_set(&wq->nr_pwqs_to_flush, 1); 3502 } 3503 3504 for_each_pwq(pwq, wq) { 3505 struct worker_pool *pool = pwq->pool; 3506 3507 raw_spin_lock_irq(&pool->lock); 3508 3509 if (flush_color >= 0) { 3510 WARN_ON_ONCE(pwq->flush_color != -1); 3511 3512 if (pwq->nr_in_flight[flush_color]) { 3513 pwq->flush_color = flush_color; 3514 atomic_inc(&wq->nr_pwqs_to_flush); 3515 wait = true; 3516 } 3517 } 3518 3519 if (work_color >= 0) { 3520 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3521 pwq->work_color = work_color; 3522 } 3523 3524 raw_spin_unlock_irq(&pool->lock); 3525 } 3526 3527 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3528 complete(&wq->first_flusher->done); 3529 3530 return wait; 3531 } 3532 3533 /** 3534 * __flush_workqueue - ensure that any scheduled work has run to completion. 3535 * @wq: workqueue to flush 3536 * 3537 * This function sleeps until all work items which were queued on entry 3538 * have finished execution, but it is not livelocked by new incoming ones. 3539 */ 3540 void __flush_workqueue(struct workqueue_struct *wq) 3541 { 3542 struct wq_flusher this_flusher = { 3543 .list = LIST_HEAD_INIT(this_flusher.list), 3544 .flush_color = -1, 3545 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 3546 }; 3547 int next_color; 3548 3549 if (WARN_ON(!wq_online)) 3550 return; 3551 3552 lock_map_acquire(&wq->lockdep_map); 3553 lock_map_release(&wq->lockdep_map); 3554 3555 mutex_lock(&wq->mutex); 3556 3557 /* 3558 * Start-to-wait phase 3559 */ 3560 next_color = work_next_color(wq->work_color); 3561 3562 if (next_color != wq->flush_color) { 3563 /* 3564 * Color space is not full. The current work_color 3565 * becomes our flush_color and work_color is advanced 3566 * by one. 3567 */ 3568 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3569 this_flusher.flush_color = wq->work_color; 3570 wq->work_color = next_color; 3571 3572 if (!wq->first_flusher) { 3573 /* no flush in progress, become the first flusher */ 3574 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3575 3576 wq->first_flusher = &this_flusher; 3577 3578 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3579 wq->work_color)) { 3580 /* nothing to flush, done */ 3581 wq->flush_color = next_color; 3582 wq->first_flusher = NULL; 3583 goto out_unlock; 3584 } 3585 } else { 3586 /* wait in queue */ 3587 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3588 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3589 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3590 } 3591 } else { 3592 /* 3593 * Oops, color space is full, wait on overflow queue. 3594 * The next flush completion will assign us 3595 * flush_color and transfer to flusher_queue. 3596 */ 3597 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3598 } 3599 3600 check_flush_dependency(wq, NULL); 3601 3602 mutex_unlock(&wq->mutex); 3603 3604 wait_for_completion(&this_flusher.done); 3605 3606 /* 3607 * Wake-up-and-cascade phase 3608 * 3609 * First flushers are responsible for cascading flushes and 3610 * handling overflow. Non-first flushers can simply return. 3611 */ 3612 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3613 return; 3614 3615 mutex_lock(&wq->mutex); 3616 3617 /* we might have raced, check again with mutex held */ 3618 if (wq->first_flusher != &this_flusher) 3619 goto out_unlock; 3620 3621 WRITE_ONCE(wq->first_flusher, NULL); 3622 3623 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3624 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3625 3626 while (true) { 3627 struct wq_flusher *next, *tmp; 3628 3629 /* complete all the flushers sharing the current flush color */ 3630 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3631 if (next->flush_color != wq->flush_color) 3632 break; 3633 list_del_init(&next->list); 3634 complete(&next->done); 3635 } 3636 3637 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 3638 wq->flush_color != work_next_color(wq->work_color)); 3639 3640 /* this flush_color is finished, advance by one */ 3641 wq->flush_color = work_next_color(wq->flush_color); 3642 3643 /* one color has been freed, handle overflow queue */ 3644 if (!list_empty(&wq->flusher_overflow)) { 3645 /* 3646 * Assign the same color to all overflowed 3647 * flushers, advance work_color and append to 3648 * flusher_queue. This is the start-to-wait 3649 * phase for these overflowed flushers. 3650 */ 3651 list_for_each_entry(tmp, &wq->flusher_overflow, list) 3652 tmp->flush_color = wq->work_color; 3653 3654 wq->work_color = work_next_color(wq->work_color); 3655 3656 list_splice_tail_init(&wq->flusher_overflow, 3657 &wq->flusher_queue); 3658 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3659 } 3660 3661 if (list_empty(&wq->flusher_queue)) { 3662 WARN_ON_ONCE(wq->flush_color != wq->work_color); 3663 break; 3664 } 3665 3666 /* 3667 * Need to flush more colors. Make the next flusher 3668 * the new first flusher and arm pwqs. 3669 */ 3670 WARN_ON_ONCE(wq->flush_color == wq->work_color); 3671 WARN_ON_ONCE(wq->flush_color != next->flush_color); 3672 3673 list_del_init(&next->list); 3674 wq->first_flusher = next; 3675 3676 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 3677 break; 3678 3679 /* 3680 * Meh... this color is already done, clear first 3681 * flusher and repeat cascading. 3682 */ 3683 wq->first_flusher = NULL; 3684 } 3685 3686 out_unlock: 3687 mutex_unlock(&wq->mutex); 3688 } 3689 EXPORT_SYMBOL(__flush_workqueue); 3690 3691 /** 3692 * drain_workqueue - drain a workqueue 3693 * @wq: workqueue to drain 3694 * 3695 * Wait until the workqueue becomes empty. While draining is in progress, 3696 * only chain queueing is allowed. IOW, only currently pending or running 3697 * work items on @wq can queue further work items on it. @wq is flushed 3698 * repeatedly until it becomes empty. The number of flushing is determined 3699 * by the depth of chaining and should be relatively short. Whine if it 3700 * takes too long. 3701 */ 3702 void drain_workqueue(struct workqueue_struct *wq) 3703 { 3704 unsigned int flush_cnt = 0; 3705 struct pool_workqueue *pwq; 3706 3707 /* 3708 * __queue_work() needs to test whether there are drainers, is much 3709 * hotter than drain_workqueue() and already looks at @wq->flags. 3710 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 3711 */ 3712 mutex_lock(&wq->mutex); 3713 if (!wq->nr_drainers++) 3714 wq->flags |= __WQ_DRAINING; 3715 mutex_unlock(&wq->mutex); 3716 reflush: 3717 __flush_workqueue(wq); 3718 3719 mutex_lock(&wq->mutex); 3720 3721 for_each_pwq(pwq, wq) { 3722 bool drained; 3723 3724 raw_spin_lock_irq(&pwq->pool->lock); 3725 drained = pwq_is_empty(pwq); 3726 raw_spin_unlock_irq(&pwq->pool->lock); 3727 3728 if (drained) 3729 continue; 3730 3731 if (++flush_cnt == 10 || 3732 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 3733 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 3734 wq->name, __func__, flush_cnt); 3735 3736 mutex_unlock(&wq->mutex); 3737 goto reflush; 3738 } 3739 3740 if (!--wq->nr_drainers) 3741 wq->flags &= ~__WQ_DRAINING; 3742 mutex_unlock(&wq->mutex); 3743 } 3744 EXPORT_SYMBOL_GPL(drain_workqueue); 3745 3746 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 3747 bool from_cancel) 3748 { 3749 struct worker *worker = NULL; 3750 struct worker_pool *pool; 3751 struct pool_workqueue *pwq; 3752 3753 might_sleep(); 3754 3755 rcu_read_lock(); 3756 pool = get_work_pool(work); 3757 if (!pool) { 3758 rcu_read_unlock(); 3759 return false; 3760 } 3761 3762 raw_spin_lock_irq(&pool->lock); 3763 /* see the comment in try_to_grab_pending() with the same code */ 3764 pwq = get_work_pwq(work); 3765 if (pwq) { 3766 if (unlikely(pwq->pool != pool)) 3767 goto already_gone; 3768 } else { 3769 worker = find_worker_executing_work(pool, work); 3770 if (!worker) 3771 goto already_gone; 3772 pwq = worker->current_pwq; 3773 } 3774 3775 check_flush_dependency(pwq->wq, work); 3776 3777 insert_wq_barrier(pwq, barr, work, worker); 3778 raw_spin_unlock_irq(&pool->lock); 3779 3780 /* 3781 * Force a lock recursion deadlock when using flush_work() inside a 3782 * single-threaded or rescuer equipped workqueue. 3783 * 3784 * For single threaded workqueues the deadlock happens when the work 3785 * is after the work issuing the flush_work(). For rescuer equipped 3786 * workqueues the deadlock happens when the rescuer stalls, blocking 3787 * forward progress. 3788 */ 3789 if (!from_cancel && 3790 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3791 lock_map_acquire(&pwq->wq->lockdep_map); 3792 lock_map_release(&pwq->wq->lockdep_map); 3793 } 3794 rcu_read_unlock(); 3795 return true; 3796 already_gone: 3797 raw_spin_unlock_irq(&pool->lock); 3798 rcu_read_unlock(); 3799 return false; 3800 } 3801 3802 static bool __flush_work(struct work_struct *work, bool from_cancel) 3803 { 3804 struct wq_barrier barr; 3805 3806 if (WARN_ON(!wq_online)) 3807 return false; 3808 3809 if (WARN_ON(!work->func)) 3810 return false; 3811 3812 lock_map_acquire(&work->lockdep_map); 3813 lock_map_release(&work->lockdep_map); 3814 3815 if (start_flush_work(work, &barr, from_cancel)) { 3816 wait_for_completion(&barr.done); 3817 destroy_work_on_stack(&barr.work); 3818 return true; 3819 } else { 3820 return false; 3821 } 3822 } 3823 3824 /** 3825 * flush_work - wait for a work to finish executing the last queueing instance 3826 * @work: the work to flush 3827 * 3828 * Wait until @work has finished execution. @work is guaranteed to be idle 3829 * on return if it hasn't been requeued since flush started. 3830 * 3831 * Return: 3832 * %true if flush_work() waited for the work to finish execution, 3833 * %false if it was already idle. 3834 */ 3835 bool flush_work(struct work_struct *work) 3836 { 3837 return __flush_work(work, false); 3838 } 3839 EXPORT_SYMBOL_GPL(flush_work); 3840 3841 struct cwt_wait { 3842 wait_queue_entry_t wait; 3843 struct work_struct *work; 3844 }; 3845 3846 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3847 { 3848 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3849 3850 if (cwait->work != key) 3851 return 0; 3852 return autoremove_wake_function(wait, mode, sync, key); 3853 } 3854 3855 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3856 { 3857 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3858 unsigned long flags; 3859 int ret; 3860 3861 do { 3862 ret = try_to_grab_pending(work, is_dwork, &flags); 3863 /* 3864 * If someone else is already canceling, wait for it to 3865 * finish. flush_work() doesn't work for PREEMPT_NONE 3866 * because we may get scheduled between @work's completion 3867 * and the other canceling task resuming and clearing 3868 * CANCELING - flush_work() will return false immediately 3869 * as @work is no longer busy, try_to_grab_pending() will 3870 * return -ENOENT as @work is still being canceled and the 3871 * other canceling task won't be able to clear CANCELING as 3872 * we're hogging the CPU. 3873 * 3874 * Let's wait for completion using a waitqueue. As this 3875 * may lead to the thundering herd problem, use a custom 3876 * wake function which matches @work along with exclusive 3877 * wait and wakeup. 3878 */ 3879 if (unlikely(ret == -ENOENT)) { 3880 struct cwt_wait cwait; 3881 3882 init_wait(&cwait.wait); 3883 cwait.wait.func = cwt_wakefn; 3884 cwait.work = work; 3885 3886 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3887 TASK_UNINTERRUPTIBLE); 3888 if (work_is_canceling(work)) 3889 schedule(); 3890 finish_wait(&cancel_waitq, &cwait.wait); 3891 } 3892 } while (unlikely(ret < 0)); 3893 3894 /* tell other tasks trying to grab @work to back off */ 3895 mark_work_canceling(work); 3896 local_irq_restore(flags); 3897 3898 /* 3899 * This allows canceling during early boot. We know that @work 3900 * isn't executing. 3901 */ 3902 if (wq_online) 3903 __flush_work(work, true); 3904 3905 clear_work_data(work); 3906 3907 /* 3908 * Paired with prepare_to_wait() above so that either 3909 * waitqueue_active() is visible here or !work_is_canceling() is 3910 * visible there. 3911 */ 3912 smp_mb(); 3913 if (waitqueue_active(&cancel_waitq)) 3914 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3915 3916 return ret; 3917 } 3918 3919 /** 3920 * cancel_work_sync - cancel a work and wait for it to finish 3921 * @work: the work to cancel 3922 * 3923 * Cancel @work and wait for its execution to finish. This function 3924 * can be used even if the work re-queues itself or migrates to 3925 * another workqueue. On return from this function, @work is 3926 * guaranteed to be not pending or executing on any CPU. 3927 * 3928 * cancel_work_sync(&delayed_work->work) must not be used for 3929 * delayed_work's. Use cancel_delayed_work_sync() instead. 3930 * 3931 * The caller must ensure that the workqueue on which @work was last 3932 * queued can't be destroyed before this function returns. 3933 * 3934 * Return: 3935 * %true if @work was pending, %false otherwise. 3936 */ 3937 bool cancel_work_sync(struct work_struct *work) 3938 { 3939 return __cancel_work_timer(work, false); 3940 } 3941 EXPORT_SYMBOL_GPL(cancel_work_sync); 3942 3943 /** 3944 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3945 * @dwork: the delayed work to flush 3946 * 3947 * Delayed timer is cancelled and the pending work is queued for 3948 * immediate execution. Like flush_work(), this function only 3949 * considers the last queueing instance of @dwork. 3950 * 3951 * Return: 3952 * %true if flush_work() waited for the work to finish execution, 3953 * %false if it was already idle. 3954 */ 3955 bool flush_delayed_work(struct delayed_work *dwork) 3956 { 3957 local_irq_disable(); 3958 if (del_timer_sync(&dwork->timer)) 3959 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3960 local_irq_enable(); 3961 return flush_work(&dwork->work); 3962 } 3963 EXPORT_SYMBOL(flush_delayed_work); 3964 3965 /** 3966 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3967 * @rwork: the rcu work to flush 3968 * 3969 * Return: 3970 * %true if flush_rcu_work() waited for the work to finish execution, 3971 * %false if it was already idle. 3972 */ 3973 bool flush_rcu_work(struct rcu_work *rwork) 3974 { 3975 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3976 rcu_barrier(); 3977 flush_work(&rwork->work); 3978 return true; 3979 } else { 3980 return flush_work(&rwork->work); 3981 } 3982 } 3983 EXPORT_SYMBOL(flush_rcu_work); 3984 3985 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3986 { 3987 unsigned long flags; 3988 int ret; 3989 3990 do { 3991 ret = try_to_grab_pending(work, is_dwork, &flags); 3992 } while (unlikely(ret == -EAGAIN)); 3993 3994 if (unlikely(ret < 0)) 3995 return false; 3996 3997 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3998 local_irq_restore(flags); 3999 return ret; 4000 } 4001 4002 /* 4003 * See cancel_delayed_work() 4004 */ 4005 bool cancel_work(struct work_struct *work) 4006 { 4007 return __cancel_work(work, false); 4008 } 4009 EXPORT_SYMBOL(cancel_work); 4010 4011 /** 4012 * cancel_delayed_work - cancel a delayed work 4013 * @dwork: delayed_work to cancel 4014 * 4015 * Kill off a pending delayed_work. 4016 * 4017 * Return: %true if @dwork was pending and canceled; %false if it wasn't 4018 * pending. 4019 * 4020 * Note: 4021 * The work callback function may still be running on return, unless 4022 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 4023 * use cancel_delayed_work_sync() to wait on it. 4024 * 4025 * This function is safe to call from any context including IRQ handler. 4026 */ 4027 bool cancel_delayed_work(struct delayed_work *dwork) 4028 { 4029 return __cancel_work(&dwork->work, true); 4030 } 4031 EXPORT_SYMBOL(cancel_delayed_work); 4032 4033 /** 4034 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 4035 * @dwork: the delayed work cancel 4036 * 4037 * This is cancel_work_sync() for delayed works. 4038 * 4039 * Return: 4040 * %true if @dwork was pending, %false otherwise. 4041 */ 4042 bool cancel_delayed_work_sync(struct delayed_work *dwork) 4043 { 4044 return __cancel_work_timer(&dwork->work, true); 4045 } 4046 EXPORT_SYMBOL(cancel_delayed_work_sync); 4047 4048 /** 4049 * schedule_on_each_cpu - execute a function synchronously on each online CPU 4050 * @func: the function to call 4051 * 4052 * schedule_on_each_cpu() executes @func on each online CPU using the 4053 * system workqueue and blocks until all CPUs have completed. 4054 * schedule_on_each_cpu() is very slow. 4055 * 4056 * Return: 4057 * 0 on success, -errno on failure. 4058 */ 4059 int schedule_on_each_cpu(work_func_t func) 4060 { 4061 int cpu; 4062 struct work_struct __percpu *works; 4063 4064 works = alloc_percpu(struct work_struct); 4065 if (!works) 4066 return -ENOMEM; 4067 4068 cpus_read_lock(); 4069 4070 for_each_online_cpu(cpu) { 4071 struct work_struct *work = per_cpu_ptr(works, cpu); 4072 4073 INIT_WORK(work, func); 4074 schedule_work_on(cpu, work); 4075 } 4076 4077 for_each_online_cpu(cpu) 4078 flush_work(per_cpu_ptr(works, cpu)); 4079 4080 cpus_read_unlock(); 4081 free_percpu(works); 4082 return 0; 4083 } 4084 4085 /** 4086 * execute_in_process_context - reliably execute the routine with user context 4087 * @fn: the function to execute 4088 * @ew: guaranteed storage for the execute work structure (must 4089 * be available when the work executes) 4090 * 4091 * Executes the function immediately if process context is available, 4092 * otherwise schedules the function for delayed execution. 4093 * 4094 * Return: 0 - function was executed 4095 * 1 - function was scheduled for execution 4096 */ 4097 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 4098 { 4099 if (!in_interrupt()) { 4100 fn(&ew->work); 4101 return 0; 4102 } 4103 4104 INIT_WORK(&ew->work, fn); 4105 schedule_work(&ew->work); 4106 4107 return 1; 4108 } 4109 EXPORT_SYMBOL_GPL(execute_in_process_context); 4110 4111 /** 4112 * free_workqueue_attrs - free a workqueue_attrs 4113 * @attrs: workqueue_attrs to free 4114 * 4115 * Undo alloc_workqueue_attrs(). 4116 */ 4117 void free_workqueue_attrs(struct workqueue_attrs *attrs) 4118 { 4119 if (attrs) { 4120 free_cpumask_var(attrs->cpumask); 4121 free_cpumask_var(attrs->__pod_cpumask); 4122 kfree(attrs); 4123 } 4124 } 4125 4126 /** 4127 * alloc_workqueue_attrs - allocate a workqueue_attrs 4128 * 4129 * Allocate a new workqueue_attrs, initialize with default settings and 4130 * return it. 4131 * 4132 * Return: The allocated new workqueue_attr on success. %NULL on failure. 4133 */ 4134 struct workqueue_attrs *alloc_workqueue_attrs(void) 4135 { 4136 struct workqueue_attrs *attrs; 4137 4138 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 4139 if (!attrs) 4140 goto fail; 4141 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 4142 goto fail; 4143 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 4144 goto fail; 4145 4146 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4147 attrs->affn_scope = WQ_AFFN_DFL; 4148 return attrs; 4149 fail: 4150 free_workqueue_attrs(attrs); 4151 return NULL; 4152 } 4153 4154 static void copy_workqueue_attrs(struct workqueue_attrs *to, 4155 const struct workqueue_attrs *from) 4156 { 4157 to->nice = from->nice; 4158 cpumask_copy(to->cpumask, from->cpumask); 4159 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 4160 to->affn_strict = from->affn_strict; 4161 4162 /* 4163 * Unlike hash and equality test, copying shouldn't ignore wq-only 4164 * fields as copying is used for both pool and wq attrs. Instead, 4165 * get_unbound_pool() explicitly clears the fields. 4166 */ 4167 to->affn_scope = from->affn_scope; 4168 to->ordered = from->ordered; 4169 } 4170 4171 /* 4172 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 4173 * comments in 'struct workqueue_attrs' definition. 4174 */ 4175 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 4176 { 4177 attrs->affn_scope = WQ_AFFN_NR_TYPES; 4178 attrs->ordered = false; 4179 } 4180 4181 /* hash value of the content of @attr */ 4182 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 4183 { 4184 u32 hash = 0; 4185 4186 hash = jhash_1word(attrs->nice, hash); 4187 hash = jhash(cpumask_bits(attrs->cpumask), 4188 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4189 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 4190 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4191 hash = jhash_1word(attrs->affn_strict, hash); 4192 return hash; 4193 } 4194 4195 /* content equality test */ 4196 static bool wqattrs_equal(const struct workqueue_attrs *a, 4197 const struct workqueue_attrs *b) 4198 { 4199 if (a->nice != b->nice) 4200 return false; 4201 if (!cpumask_equal(a->cpumask, b->cpumask)) 4202 return false; 4203 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 4204 return false; 4205 if (a->affn_strict != b->affn_strict) 4206 return false; 4207 return true; 4208 } 4209 4210 /* Update @attrs with actually available CPUs */ 4211 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 4212 const cpumask_t *unbound_cpumask) 4213 { 4214 /* 4215 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 4216 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 4217 * @unbound_cpumask. 4218 */ 4219 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 4220 if (unlikely(cpumask_empty(attrs->cpumask))) 4221 cpumask_copy(attrs->cpumask, unbound_cpumask); 4222 } 4223 4224 /* find wq_pod_type to use for @attrs */ 4225 static const struct wq_pod_type * 4226 wqattrs_pod_type(const struct workqueue_attrs *attrs) 4227 { 4228 enum wq_affn_scope scope; 4229 struct wq_pod_type *pt; 4230 4231 /* to synchronize access to wq_affn_dfl */ 4232 lockdep_assert_held(&wq_pool_mutex); 4233 4234 if (attrs->affn_scope == WQ_AFFN_DFL) 4235 scope = wq_affn_dfl; 4236 else 4237 scope = attrs->affn_scope; 4238 4239 pt = &wq_pod_types[scope]; 4240 4241 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 4242 likely(pt->nr_pods)) 4243 return pt; 4244 4245 /* 4246 * Before workqueue_init_topology(), only SYSTEM is available which is 4247 * initialized in workqueue_init_early(). 4248 */ 4249 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 4250 BUG_ON(!pt->nr_pods); 4251 return pt; 4252 } 4253 4254 /** 4255 * init_worker_pool - initialize a newly zalloc'd worker_pool 4256 * @pool: worker_pool to initialize 4257 * 4258 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 4259 * 4260 * Return: 0 on success, -errno on failure. Even on failure, all fields 4261 * inside @pool proper are initialized and put_unbound_pool() can be called 4262 * on @pool safely to release it. 4263 */ 4264 static int init_worker_pool(struct worker_pool *pool) 4265 { 4266 raw_spin_lock_init(&pool->lock); 4267 pool->id = -1; 4268 pool->cpu = -1; 4269 pool->node = NUMA_NO_NODE; 4270 pool->flags |= POOL_DISASSOCIATED; 4271 pool->watchdog_ts = jiffies; 4272 INIT_LIST_HEAD(&pool->worklist); 4273 INIT_LIST_HEAD(&pool->idle_list); 4274 hash_init(pool->busy_hash); 4275 4276 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 4277 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 4278 4279 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 4280 4281 INIT_LIST_HEAD(&pool->workers); 4282 INIT_LIST_HEAD(&pool->dying_workers); 4283 4284 ida_init(&pool->worker_ida); 4285 INIT_HLIST_NODE(&pool->hash_node); 4286 pool->refcnt = 1; 4287 4288 /* shouldn't fail above this point */ 4289 pool->attrs = alloc_workqueue_attrs(); 4290 if (!pool->attrs) 4291 return -ENOMEM; 4292 4293 wqattrs_clear_for_pool(pool->attrs); 4294 4295 return 0; 4296 } 4297 4298 #ifdef CONFIG_LOCKDEP 4299 static void wq_init_lockdep(struct workqueue_struct *wq) 4300 { 4301 char *lock_name; 4302 4303 lockdep_register_key(&wq->key); 4304 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 4305 if (!lock_name) 4306 lock_name = wq->name; 4307 4308 wq->lock_name = lock_name; 4309 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 4310 } 4311 4312 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4313 { 4314 lockdep_unregister_key(&wq->key); 4315 } 4316 4317 static void wq_free_lockdep(struct workqueue_struct *wq) 4318 { 4319 if (wq->lock_name != wq->name) 4320 kfree(wq->lock_name); 4321 } 4322 #else 4323 static void wq_init_lockdep(struct workqueue_struct *wq) 4324 { 4325 } 4326 4327 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4328 { 4329 } 4330 4331 static void wq_free_lockdep(struct workqueue_struct *wq) 4332 { 4333 } 4334 #endif 4335 4336 static void free_node_nr_active(struct wq_node_nr_active **nna_ar) 4337 { 4338 int node; 4339 4340 for_each_node(node) { 4341 kfree(nna_ar[node]); 4342 nna_ar[node] = NULL; 4343 } 4344 4345 kfree(nna_ar[nr_node_ids]); 4346 nna_ar[nr_node_ids] = NULL; 4347 } 4348 4349 static void init_node_nr_active(struct wq_node_nr_active *nna) 4350 { 4351 atomic_set(&nna->nr, 0); 4352 raw_spin_lock_init(&nna->lock); 4353 INIT_LIST_HEAD(&nna->pending_pwqs); 4354 } 4355 4356 /* 4357 * Each node's nr_active counter will be accessed mostly from its own node and 4358 * should be allocated in the node. 4359 */ 4360 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) 4361 { 4362 struct wq_node_nr_active *nna; 4363 int node; 4364 4365 for_each_node(node) { 4366 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node); 4367 if (!nna) 4368 goto err_free; 4369 init_node_nr_active(nna); 4370 nna_ar[node] = nna; 4371 } 4372 4373 /* [nr_node_ids] is used as the fallback */ 4374 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); 4375 if (!nna) 4376 goto err_free; 4377 init_node_nr_active(nna); 4378 nna_ar[nr_node_ids] = nna; 4379 4380 return 0; 4381 4382 err_free: 4383 free_node_nr_active(nna_ar); 4384 return -ENOMEM; 4385 } 4386 4387 static void rcu_free_wq(struct rcu_head *rcu) 4388 { 4389 struct workqueue_struct *wq = 4390 container_of(rcu, struct workqueue_struct, rcu); 4391 4392 if (wq->flags & WQ_UNBOUND) 4393 free_node_nr_active(wq->node_nr_active); 4394 4395 wq_free_lockdep(wq); 4396 free_percpu(wq->cpu_pwq); 4397 free_workqueue_attrs(wq->unbound_attrs); 4398 kfree(wq); 4399 } 4400 4401 static void rcu_free_pool(struct rcu_head *rcu) 4402 { 4403 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 4404 4405 ida_destroy(&pool->worker_ida); 4406 free_workqueue_attrs(pool->attrs); 4407 kfree(pool); 4408 } 4409 4410 /** 4411 * put_unbound_pool - put a worker_pool 4412 * @pool: worker_pool to put 4413 * 4414 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 4415 * safe manner. get_unbound_pool() calls this function on its failure path 4416 * and this function should be able to release pools which went through, 4417 * successfully or not, init_worker_pool(). 4418 * 4419 * Should be called with wq_pool_mutex held. 4420 */ 4421 static void put_unbound_pool(struct worker_pool *pool) 4422 { 4423 DECLARE_COMPLETION_ONSTACK(detach_completion); 4424 struct worker *worker; 4425 LIST_HEAD(cull_list); 4426 4427 lockdep_assert_held(&wq_pool_mutex); 4428 4429 if (--pool->refcnt) 4430 return; 4431 4432 /* sanity checks */ 4433 if (WARN_ON(!(pool->cpu < 0)) || 4434 WARN_ON(!list_empty(&pool->worklist))) 4435 return; 4436 4437 /* release id and unhash */ 4438 if (pool->id >= 0) 4439 idr_remove(&worker_pool_idr, pool->id); 4440 hash_del(&pool->hash_node); 4441 4442 /* 4443 * Become the manager and destroy all workers. This prevents 4444 * @pool's workers from blocking on attach_mutex. We're the last 4445 * manager and @pool gets freed with the flag set. 4446 * 4447 * Having a concurrent manager is quite unlikely to happen as we can 4448 * only get here with 4449 * pwq->refcnt == pool->refcnt == 0 4450 * which implies no work queued to the pool, which implies no worker can 4451 * become the manager. However a worker could have taken the role of 4452 * manager before the refcnts dropped to 0, since maybe_create_worker() 4453 * drops pool->lock 4454 */ 4455 while (true) { 4456 rcuwait_wait_event(&manager_wait, 4457 !(pool->flags & POOL_MANAGER_ACTIVE), 4458 TASK_UNINTERRUPTIBLE); 4459 4460 mutex_lock(&wq_pool_attach_mutex); 4461 raw_spin_lock_irq(&pool->lock); 4462 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4463 pool->flags |= POOL_MANAGER_ACTIVE; 4464 break; 4465 } 4466 raw_spin_unlock_irq(&pool->lock); 4467 mutex_unlock(&wq_pool_attach_mutex); 4468 } 4469 4470 while ((worker = first_idle_worker(pool))) 4471 set_worker_dying(worker, &cull_list); 4472 WARN_ON(pool->nr_workers || pool->nr_idle); 4473 raw_spin_unlock_irq(&pool->lock); 4474 4475 wake_dying_workers(&cull_list); 4476 4477 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers)) 4478 pool->detach_completion = &detach_completion; 4479 mutex_unlock(&wq_pool_attach_mutex); 4480 4481 if (pool->detach_completion) 4482 wait_for_completion(pool->detach_completion); 4483 4484 /* shut down the timers */ 4485 del_timer_sync(&pool->idle_timer); 4486 cancel_work_sync(&pool->idle_cull_work); 4487 del_timer_sync(&pool->mayday_timer); 4488 4489 /* RCU protected to allow dereferences from get_work_pool() */ 4490 call_rcu(&pool->rcu, rcu_free_pool); 4491 } 4492 4493 /** 4494 * get_unbound_pool - get a worker_pool with the specified attributes 4495 * @attrs: the attributes of the worker_pool to get 4496 * 4497 * Obtain a worker_pool which has the same attributes as @attrs, bump the 4498 * reference count and return it. If there already is a matching 4499 * worker_pool, it will be used; otherwise, this function attempts to 4500 * create a new one. 4501 * 4502 * Should be called with wq_pool_mutex held. 4503 * 4504 * Return: On success, a worker_pool with the same attributes as @attrs. 4505 * On failure, %NULL. 4506 */ 4507 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 4508 { 4509 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 4510 u32 hash = wqattrs_hash(attrs); 4511 struct worker_pool *pool; 4512 int pod, node = NUMA_NO_NODE; 4513 4514 lockdep_assert_held(&wq_pool_mutex); 4515 4516 /* do we already have a matching pool? */ 4517 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 4518 if (wqattrs_equal(pool->attrs, attrs)) { 4519 pool->refcnt++; 4520 return pool; 4521 } 4522 } 4523 4524 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 4525 for (pod = 0; pod < pt->nr_pods; pod++) { 4526 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 4527 node = pt->pod_node[pod]; 4528 break; 4529 } 4530 } 4531 4532 /* nope, create a new one */ 4533 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 4534 if (!pool || init_worker_pool(pool) < 0) 4535 goto fail; 4536 4537 pool->node = node; 4538 copy_workqueue_attrs(pool->attrs, attrs); 4539 wqattrs_clear_for_pool(pool->attrs); 4540 4541 if (worker_pool_assign_id(pool) < 0) 4542 goto fail; 4543 4544 /* create and start the initial worker */ 4545 if (wq_online && !create_worker(pool)) 4546 goto fail; 4547 4548 /* install */ 4549 hash_add(unbound_pool_hash, &pool->hash_node, hash); 4550 4551 return pool; 4552 fail: 4553 if (pool) 4554 put_unbound_pool(pool); 4555 return NULL; 4556 } 4557 4558 static void rcu_free_pwq(struct rcu_head *rcu) 4559 { 4560 kmem_cache_free(pwq_cache, 4561 container_of(rcu, struct pool_workqueue, rcu)); 4562 } 4563 4564 /* 4565 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 4566 * refcnt and needs to be destroyed. 4567 */ 4568 static void pwq_release_workfn(struct kthread_work *work) 4569 { 4570 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 4571 release_work); 4572 struct workqueue_struct *wq = pwq->wq; 4573 struct worker_pool *pool = pwq->pool; 4574 bool is_last = false; 4575 4576 /* 4577 * When @pwq is not linked, it doesn't hold any reference to the 4578 * @wq, and @wq is invalid to access. 4579 */ 4580 if (!list_empty(&pwq->pwqs_node)) { 4581 mutex_lock(&wq->mutex); 4582 list_del_rcu(&pwq->pwqs_node); 4583 is_last = list_empty(&wq->pwqs); 4584 mutex_unlock(&wq->mutex); 4585 } 4586 4587 if (wq->flags & WQ_UNBOUND) { 4588 mutex_lock(&wq_pool_mutex); 4589 put_unbound_pool(pool); 4590 mutex_unlock(&wq_pool_mutex); 4591 } 4592 4593 if (!list_empty(&pwq->pending_node)) { 4594 struct wq_node_nr_active *nna = 4595 wq_node_nr_active(pwq->wq, pwq->pool->node); 4596 4597 raw_spin_lock_irq(&nna->lock); 4598 list_del_init(&pwq->pending_node); 4599 raw_spin_unlock_irq(&nna->lock); 4600 } 4601 4602 call_rcu(&pwq->rcu, rcu_free_pwq); 4603 4604 /* 4605 * If we're the last pwq going away, @wq is already dead and no one 4606 * is gonna access it anymore. Schedule RCU free. 4607 */ 4608 if (is_last) { 4609 wq_unregister_lockdep(wq); 4610 call_rcu(&wq->rcu, rcu_free_wq); 4611 } 4612 } 4613 4614 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 4615 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 4616 struct worker_pool *pool) 4617 { 4618 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 4619 4620 memset(pwq, 0, sizeof(*pwq)); 4621 4622 pwq->pool = pool; 4623 pwq->wq = wq; 4624 pwq->flush_color = -1; 4625 pwq->refcnt = 1; 4626 INIT_LIST_HEAD(&pwq->inactive_works); 4627 INIT_LIST_HEAD(&pwq->pending_node); 4628 INIT_LIST_HEAD(&pwq->pwqs_node); 4629 INIT_LIST_HEAD(&pwq->mayday_node); 4630 kthread_init_work(&pwq->release_work, pwq_release_workfn); 4631 } 4632 4633 /* sync @pwq with the current state of its associated wq and link it */ 4634 static void link_pwq(struct pool_workqueue *pwq) 4635 { 4636 struct workqueue_struct *wq = pwq->wq; 4637 4638 lockdep_assert_held(&wq->mutex); 4639 4640 /* may be called multiple times, ignore if already linked */ 4641 if (!list_empty(&pwq->pwqs_node)) 4642 return; 4643 4644 /* set the matching work_color */ 4645 pwq->work_color = wq->work_color; 4646 4647 /* link in @pwq */ 4648 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 4649 } 4650 4651 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 4652 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 4653 const struct workqueue_attrs *attrs) 4654 { 4655 struct worker_pool *pool; 4656 struct pool_workqueue *pwq; 4657 4658 lockdep_assert_held(&wq_pool_mutex); 4659 4660 pool = get_unbound_pool(attrs); 4661 if (!pool) 4662 return NULL; 4663 4664 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 4665 if (!pwq) { 4666 put_unbound_pool(pool); 4667 return NULL; 4668 } 4669 4670 init_pwq(pwq, wq, pool); 4671 return pwq; 4672 } 4673 4674 /** 4675 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 4676 * @attrs: the wq_attrs of the default pwq of the target workqueue 4677 * @cpu: the target CPU 4678 * @cpu_going_down: if >= 0, the CPU to consider as offline 4679 * 4680 * Calculate the cpumask a workqueue with @attrs should use on @pod. If 4681 * @cpu_going_down is >= 0, that cpu is considered offline during calculation. 4682 * The result is stored in @attrs->__pod_cpumask. 4683 * 4684 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 4685 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 4686 * intersection of the possible CPUs of @pod and @attrs->cpumask. 4687 * 4688 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 4689 */ 4690 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu, 4691 int cpu_going_down) 4692 { 4693 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 4694 int pod = pt->cpu_pod[cpu]; 4695 4696 /* does @pod have any online CPUs @attrs wants? */ 4697 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 4698 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask); 4699 if (cpu_going_down >= 0) 4700 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask); 4701 4702 if (cpumask_empty(attrs->__pod_cpumask)) { 4703 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 4704 return; 4705 } 4706 4707 /* yeap, return possible CPUs in @pod that @attrs wants */ 4708 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]); 4709 4710 if (cpumask_empty(attrs->__pod_cpumask)) 4711 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 4712 "possible intersect\n"); 4713 } 4714 4715 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ 4716 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 4717 int cpu, struct pool_workqueue *pwq) 4718 { 4719 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); 4720 struct pool_workqueue *old_pwq; 4721 4722 lockdep_assert_held(&wq_pool_mutex); 4723 lockdep_assert_held(&wq->mutex); 4724 4725 /* link_pwq() can handle duplicate calls */ 4726 link_pwq(pwq); 4727 4728 old_pwq = rcu_access_pointer(*slot); 4729 rcu_assign_pointer(*slot, pwq); 4730 return old_pwq; 4731 } 4732 4733 /* context to store the prepared attrs & pwqs before applying */ 4734 struct apply_wqattrs_ctx { 4735 struct workqueue_struct *wq; /* target workqueue */ 4736 struct workqueue_attrs *attrs; /* attrs to apply */ 4737 struct list_head list; /* queued for batching commit */ 4738 struct pool_workqueue *dfl_pwq; 4739 struct pool_workqueue *pwq_tbl[]; 4740 }; 4741 4742 /* free the resources after success or abort */ 4743 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 4744 { 4745 if (ctx) { 4746 int cpu; 4747 4748 for_each_possible_cpu(cpu) 4749 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 4750 put_pwq_unlocked(ctx->dfl_pwq); 4751 4752 free_workqueue_attrs(ctx->attrs); 4753 4754 kfree(ctx); 4755 } 4756 } 4757 4758 /* allocate the attrs and pwqs for later installation */ 4759 static struct apply_wqattrs_ctx * 4760 apply_wqattrs_prepare(struct workqueue_struct *wq, 4761 const struct workqueue_attrs *attrs, 4762 const cpumask_var_t unbound_cpumask) 4763 { 4764 struct apply_wqattrs_ctx *ctx; 4765 struct workqueue_attrs *new_attrs; 4766 int cpu; 4767 4768 lockdep_assert_held(&wq_pool_mutex); 4769 4770 if (WARN_ON(attrs->affn_scope < 0 || 4771 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 4772 return ERR_PTR(-EINVAL); 4773 4774 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 4775 4776 new_attrs = alloc_workqueue_attrs(); 4777 if (!ctx || !new_attrs) 4778 goto out_free; 4779 4780 /* 4781 * If something goes wrong during CPU up/down, we'll fall back to 4782 * the default pwq covering whole @attrs->cpumask. Always create 4783 * it even if we don't use it immediately. 4784 */ 4785 copy_workqueue_attrs(new_attrs, attrs); 4786 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 4787 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 4788 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 4789 if (!ctx->dfl_pwq) 4790 goto out_free; 4791 4792 for_each_possible_cpu(cpu) { 4793 if (new_attrs->ordered) { 4794 ctx->dfl_pwq->refcnt++; 4795 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 4796 } else { 4797 wq_calc_pod_cpumask(new_attrs, cpu, -1); 4798 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 4799 if (!ctx->pwq_tbl[cpu]) 4800 goto out_free; 4801 } 4802 } 4803 4804 /* save the user configured attrs and sanitize it. */ 4805 copy_workqueue_attrs(new_attrs, attrs); 4806 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 4807 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 4808 ctx->attrs = new_attrs; 4809 4810 ctx->wq = wq; 4811 return ctx; 4812 4813 out_free: 4814 free_workqueue_attrs(new_attrs); 4815 apply_wqattrs_cleanup(ctx); 4816 return ERR_PTR(-ENOMEM); 4817 } 4818 4819 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 4820 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 4821 { 4822 int cpu; 4823 4824 /* all pwqs have been created successfully, let's install'em */ 4825 mutex_lock(&ctx->wq->mutex); 4826 4827 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 4828 4829 /* save the previous pwqs and install the new ones */ 4830 for_each_possible_cpu(cpu) 4831 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 4832 ctx->pwq_tbl[cpu]); 4833 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq); 4834 4835 /* update node_nr_active->max */ 4836 wq_update_node_max_active(ctx->wq, -1); 4837 4838 mutex_unlock(&ctx->wq->mutex); 4839 } 4840 4841 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4842 const struct workqueue_attrs *attrs) 4843 { 4844 struct apply_wqattrs_ctx *ctx; 4845 4846 /* only unbound workqueues can change attributes */ 4847 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4848 return -EINVAL; 4849 4850 /* creating multiple pwqs breaks ordering guarantee */ 4851 if (!list_empty(&wq->pwqs)) { 4852 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4853 return -EINVAL; 4854 4855 wq->flags &= ~__WQ_ORDERED; 4856 } 4857 4858 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 4859 if (IS_ERR(ctx)) 4860 return PTR_ERR(ctx); 4861 4862 /* the ctx has been prepared successfully, let's commit it */ 4863 apply_wqattrs_commit(ctx); 4864 apply_wqattrs_cleanup(ctx); 4865 4866 return 0; 4867 } 4868 4869 /** 4870 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4871 * @wq: the target workqueue 4872 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4873 * 4874 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 4875 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 4876 * work items are affine to the pod it was issued on. Older pwqs are released as 4877 * in-flight work items finish. Note that a work item which repeatedly requeues 4878 * itself back-to-back will stay on its current pwq. 4879 * 4880 * Performs GFP_KERNEL allocations. 4881 * 4882 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 4883 * 4884 * Return: 0 on success and -errno on failure. 4885 */ 4886 int apply_workqueue_attrs(struct workqueue_struct *wq, 4887 const struct workqueue_attrs *attrs) 4888 { 4889 int ret; 4890 4891 lockdep_assert_cpus_held(); 4892 4893 mutex_lock(&wq_pool_mutex); 4894 ret = apply_workqueue_attrs_locked(wq, attrs); 4895 mutex_unlock(&wq_pool_mutex); 4896 4897 return ret; 4898 } 4899 4900 /** 4901 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug 4902 * @wq: the target workqueue 4903 * @cpu: the CPU to update pool association for 4904 * @hotplug_cpu: the CPU coming up or going down 4905 * @online: whether @cpu is coming up or going down 4906 * 4907 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4908 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of 4909 * @wq accordingly. 4910 * 4911 * 4912 * If pod affinity can't be adjusted due to memory allocation failure, it falls 4913 * back to @wq->dfl_pwq which may not be optimal but is always correct. 4914 * 4915 * Note that when the last allowed CPU of a pod goes offline for a workqueue 4916 * with a cpumask spanning multiple pods, the workers which were already 4917 * executing the work items for the workqueue will lose their CPU affinity and 4918 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 4919 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 4920 * responsibility to flush the work item from CPU_DOWN_PREPARE. 4921 */ 4922 static void wq_update_pod(struct workqueue_struct *wq, int cpu, 4923 int hotplug_cpu, bool online) 4924 { 4925 int off_cpu = online ? -1 : hotplug_cpu; 4926 struct pool_workqueue *old_pwq = NULL, *pwq; 4927 struct workqueue_attrs *target_attrs; 4928 4929 lockdep_assert_held(&wq_pool_mutex); 4930 4931 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 4932 return; 4933 4934 /* 4935 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4936 * Let's use a preallocated one. The following buf is protected by 4937 * CPU hotplug exclusion. 4938 */ 4939 target_attrs = wq_update_pod_attrs_buf; 4940 4941 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4942 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 4943 4944 /* nothing to do if the target cpumask matches the current pwq */ 4945 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu); 4946 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs)) 4947 return; 4948 4949 /* create a new pwq */ 4950 pwq = alloc_unbound_pwq(wq, target_attrs); 4951 if (!pwq) { 4952 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 4953 wq->name); 4954 goto use_dfl_pwq; 4955 } 4956 4957 /* Install the new pwq. */ 4958 mutex_lock(&wq->mutex); 4959 old_pwq = install_unbound_pwq(wq, cpu, pwq); 4960 goto out_unlock; 4961 4962 use_dfl_pwq: 4963 mutex_lock(&wq->mutex); 4964 pwq = unbound_pwq(wq, -1); 4965 raw_spin_lock_irq(&pwq->pool->lock); 4966 get_pwq(pwq); 4967 raw_spin_unlock_irq(&pwq->pool->lock); 4968 old_pwq = install_unbound_pwq(wq, cpu, pwq); 4969 out_unlock: 4970 mutex_unlock(&wq->mutex); 4971 put_pwq_unlocked(old_pwq); 4972 } 4973 4974 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4975 { 4976 bool highpri = wq->flags & WQ_HIGHPRI; 4977 int cpu, ret; 4978 4979 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 4980 if (!wq->cpu_pwq) 4981 goto enomem; 4982 4983 if (!(wq->flags & WQ_UNBOUND)) { 4984 for_each_possible_cpu(cpu) { 4985 struct pool_workqueue **pwq_p = 4986 per_cpu_ptr(wq->cpu_pwq, cpu); 4987 struct worker_pool *pool = 4988 &(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]); 4989 4990 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 4991 pool->node); 4992 if (!*pwq_p) 4993 goto enomem; 4994 4995 init_pwq(*pwq_p, wq, pool); 4996 4997 mutex_lock(&wq->mutex); 4998 link_pwq(*pwq_p); 4999 mutex_unlock(&wq->mutex); 5000 } 5001 return 0; 5002 } 5003 5004 cpus_read_lock(); 5005 if (wq->flags & __WQ_ORDERED) { 5006 struct pool_workqueue *dfl_pwq; 5007 5008 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 5009 /* there should only be single pwq for ordering guarantee */ 5010 dfl_pwq = rcu_access_pointer(wq->dfl_pwq); 5011 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || 5012 wq->pwqs.prev != &dfl_pwq->pwqs_node), 5013 "ordering guarantee broken for workqueue %s\n", wq->name); 5014 } else { 5015 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 5016 } 5017 cpus_read_unlock(); 5018 5019 /* for unbound pwq, flush the pwq_release_worker ensures that the 5020 * pwq_release_workfn() completes before calling kfree(wq). 5021 */ 5022 if (ret) 5023 kthread_flush_worker(pwq_release_worker); 5024 5025 return ret; 5026 5027 enomem: 5028 if (wq->cpu_pwq) { 5029 for_each_possible_cpu(cpu) { 5030 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5031 5032 if (pwq) 5033 kmem_cache_free(pwq_cache, pwq); 5034 } 5035 free_percpu(wq->cpu_pwq); 5036 wq->cpu_pwq = NULL; 5037 } 5038 return -ENOMEM; 5039 } 5040 5041 static int wq_clamp_max_active(int max_active, unsigned int flags, 5042 const char *name) 5043 { 5044 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 5045 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 5046 max_active, name, 1, WQ_MAX_ACTIVE); 5047 5048 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 5049 } 5050 5051 /* 5052 * Workqueues which may be used during memory reclaim should have a rescuer 5053 * to guarantee forward progress. 5054 */ 5055 static int init_rescuer(struct workqueue_struct *wq) 5056 { 5057 struct worker *rescuer; 5058 int ret; 5059 5060 if (!(wq->flags & WQ_MEM_RECLAIM)) 5061 return 0; 5062 5063 rescuer = alloc_worker(NUMA_NO_NODE); 5064 if (!rescuer) { 5065 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 5066 wq->name); 5067 return -ENOMEM; 5068 } 5069 5070 rescuer->rescue_wq = wq; 5071 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name); 5072 if (IS_ERR(rescuer->task)) { 5073 ret = PTR_ERR(rescuer->task); 5074 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 5075 wq->name, ERR_PTR(ret)); 5076 kfree(rescuer); 5077 return ret; 5078 } 5079 5080 wq->rescuer = rescuer; 5081 if (wq->flags & WQ_UNBOUND) 5082 kthread_bind_mask(rescuer->task, wq->unbound_attrs->cpumask); 5083 else 5084 kthread_bind_mask(rescuer->task, cpu_possible_mask); 5085 wake_up_process(rescuer->task); 5086 5087 return 0; 5088 } 5089 5090 /** 5091 * wq_adjust_max_active - update a wq's max_active to the current setting 5092 * @wq: target workqueue 5093 * 5094 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and 5095 * activate inactive work items accordingly. If @wq is freezing, clear 5096 * @wq->max_active to zero. 5097 */ 5098 static void wq_adjust_max_active(struct workqueue_struct *wq) 5099 { 5100 bool activated; 5101 int new_max, new_min; 5102 5103 lockdep_assert_held(&wq->mutex); 5104 5105 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { 5106 new_max = 0; 5107 new_min = 0; 5108 } else { 5109 new_max = wq->saved_max_active; 5110 new_min = wq->saved_min_active; 5111 } 5112 5113 if (wq->max_active == new_max && wq->min_active == new_min) 5114 return; 5115 5116 /* 5117 * Update @wq->max/min_active and then kick inactive work items if more 5118 * active work items are allowed. This doesn't break work item ordering 5119 * because new work items are always queued behind existing inactive 5120 * work items if there are any. 5121 */ 5122 WRITE_ONCE(wq->max_active, new_max); 5123 WRITE_ONCE(wq->min_active, new_min); 5124 5125 if (wq->flags & WQ_UNBOUND) 5126 wq_update_node_max_active(wq, -1); 5127 5128 if (new_max == 0) 5129 return; 5130 5131 /* 5132 * Round-robin through pwq's activating the first inactive work item 5133 * until max_active is filled. 5134 */ 5135 do { 5136 struct pool_workqueue *pwq; 5137 5138 activated = false; 5139 for_each_pwq(pwq, wq) { 5140 unsigned long flags; 5141 5142 /* can be called during early boot w/ irq disabled */ 5143 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 5144 if (pwq_activate_first_inactive(pwq, true)) { 5145 activated = true; 5146 kick_pool(pwq->pool); 5147 } 5148 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 5149 } 5150 } while (activated); 5151 } 5152 5153 __printf(1, 4) 5154 struct workqueue_struct *alloc_workqueue(const char *fmt, 5155 unsigned int flags, 5156 int max_active, ...) 5157 { 5158 va_list args; 5159 struct workqueue_struct *wq; 5160 size_t wq_size; 5161 int name_len; 5162 5163 /* 5164 * Unbound && max_active == 1 used to imply ordered, which is no longer 5165 * the case on many machines due to per-pod pools. While 5166 * alloc_ordered_workqueue() is the right way to create an ordered 5167 * workqueue, keep the previous behavior to avoid subtle breakages. 5168 */ 5169 if ((flags & WQ_UNBOUND) && max_active == 1) 5170 flags |= __WQ_ORDERED; 5171 5172 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 5173 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 5174 flags |= WQ_UNBOUND; 5175 5176 /* allocate wq and format name */ 5177 if (flags & WQ_UNBOUND) 5178 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); 5179 else 5180 wq_size = sizeof(*wq); 5181 5182 wq = kzalloc(wq_size, GFP_KERNEL); 5183 if (!wq) 5184 return NULL; 5185 5186 if (flags & WQ_UNBOUND) { 5187 wq->unbound_attrs = alloc_workqueue_attrs(); 5188 if (!wq->unbound_attrs) 5189 goto err_free_wq; 5190 } 5191 5192 va_start(args, max_active); 5193 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args); 5194 va_end(args); 5195 5196 if (name_len >= WQ_NAME_LEN) 5197 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", 5198 wq->name); 5199 5200 max_active = max_active ?: WQ_DFL_ACTIVE; 5201 max_active = wq_clamp_max_active(max_active, flags, wq->name); 5202 5203 /* init wq */ 5204 wq->flags = flags; 5205 wq->max_active = max_active; 5206 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); 5207 wq->saved_max_active = wq->max_active; 5208 wq->saved_min_active = wq->min_active; 5209 mutex_init(&wq->mutex); 5210 atomic_set(&wq->nr_pwqs_to_flush, 0); 5211 INIT_LIST_HEAD(&wq->pwqs); 5212 INIT_LIST_HEAD(&wq->flusher_queue); 5213 INIT_LIST_HEAD(&wq->flusher_overflow); 5214 INIT_LIST_HEAD(&wq->maydays); 5215 5216 wq_init_lockdep(wq); 5217 INIT_LIST_HEAD(&wq->list); 5218 5219 if (flags & WQ_UNBOUND) { 5220 if (alloc_node_nr_active(wq->node_nr_active) < 0) 5221 goto err_unreg_lockdep; 5222 } 5223 5224 if (alloc_and_link_pwqs(wq) < 0) 5225 goto err_free_node_nr_active; 5226 5227 if (wq_online && init_rescuer(wq) < 0) 5228 goto err_destroy; 5229 5230 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 5231 goto err_destroy; 5232 5233 /* 5234 * wq_pool_mutex protects global freeze state and workqueues list. 5235 * Grab it, adjust max_active and add the new @wq to workqueues 5236 * list. 5237 */ 5238 mutex_lock(&wq_pool_mutex); 5239 5240 mutex_lock(&wq->mutex); 5241 wq_adjust_max_active(wq); 5242 mutex_unlock(&wq->mutex); 5243 5244 list_add_tail_rcu(&wq->list, &workqueues); 5245 5246 mutex_unlock(&wq_pool_mutex); 5247 5248 return wq; 5249 5250 err_free_node_nr_active: 5251 if (wq->flags & WQ_UNBOUND) 5252 free_node_nr_active(wq->node_nr_active); 5253 err_unreg_lockdep: 5254 wq_unregister_lockdep(wq); 5255 wq_free_lockdep(wq); 5256 err_free_wq: 5257 free_workqueue_attrs(wq->unbound_attrs); 5258 kfree(wq); 5259 return NULL; 5260 err_destroy: 5261 destroy_workqueue(wq); 5262 return NULL; 5263 } 5264 EXPORT_SYMBOL_GPL(alloc_workqueue); 5265 5266 static bool pwq_busy(struct pool_workqueue *pwq) 5267 { 5268 int i; 5269 5270 for (i = 0; i < WORK_NR_COLORS; i++) 5271 if (pwq->nr_in_flight[i]) 5272 return true; 5273 5274 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) 5275 return true; 5276 if (!pwq_is_empty(pwq)) 5277 return true; 5278 5279 return false; 5280 } 5281 5282 /** 5283 * destroy_workqueue - safely terminate a workqueue 5284 * @wq: target workqueue 5285 * 5286 * Safely destroy a workqueue. All work currently pending will be done first. 5287 */ 5288 void destroy_workqueue(struct workqueue_struct *wq) 5289 { 5290 struct pool_workqueue *pwq; 5291 int cpu; 5292 5293 /* 5294 * Remove it from sysfs first so that sanity check failure doesn't 5295 * lead to sysfs name conflicts. 5296 */ 5297 workqueue_sysfs_unregister(wq); 5298 5299 /* mark the workqueue destruction is in progress */ 5300 mutex_lock(&wq->mutex); 5301 wq->flags |= __WQ_DESTROYING; 5302 mutex_unlock(&wq->mutex); 5303 5304 /* drain it before proceeding with destruction */ 5305 drain_workqueue(wq); 5306 5307 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 5308 if (wq->rescuer) { 5309 struct worker *rescuer = wq->rescuer; 5310 5311 /* this prevents new queueing */ 5312 raw_spin_lock_irq(&wq_mayday_lock); 5313 wq->rescuer = NULL; 5314 raw_spin_unlock_irq(&wq_mayday_lock); 5315 5316 /* rescuer will empty maydays list before exiting */ 5317 kthread_stop(rescuer->task); 5318 kfree(rescuer); 5319 } 5320 5321 /* 5322 * Sanity checks - grab all the locks so that we wait for all 5323 * in-flight operations which may do put_pwq(). 5324 */ 5325 mutex_lock(&wq_pool_mutex); 5326 mutex_lock(&wq->mutex); 5327 for_each_pwq(pwq, wq) { 5328 raw_spin_lock_irq(&pwq->pool->lock); 5329 if (WARN_ON(pwq_busy(pwq))) { 5330 pr_warn("%s: %s has the following busy pwq\n", 5331 __func__, wq->name); 5332 show_pwq(pwq); 5333 raw_spin_unlock_irq(&pwq->pool->lock); 5334 mutex_unlock(&wq->mutex); 5335 mutex_unlock(&wq_pool_mutex); 5336 show_one_workqueue(wq); 5337 return; 5338 } 5339 raw_spin_unlock_irq(&pwq->pool->lock); 5340 } 5341 mutex_unlock(&wq->mutex); 5342 5343 /* 5344 * wq list is used to freeze wq, remove from list after 5345 * flushing is complete in case freeze races us. 5346 */ 5347 list_del_rcu(&wq->list); 5348 mutex_unlock(&wq_pool_mutex); 5349 5350 /* 5351 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 5352 * to put the base refs. @wq will be auto-destroyed from the last 5353 * pwq_put. RCU read lock prevents @wq from going away from under us. 5354 */ 5355 rcu_read_lock(); 5356 5357 for_each_possible_cpu(cpu) { 5358 put_pwq_unlocked(unbound_pwq(wq, cpu)); 5359 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); 5360 } 5361 5362 put_pwq_unlocked(unbound_pwq(wq, -1)); 5363 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); 5364 5365 rcu_read_unlock(); 5366 } 5367 EXPORT_SYMBOL_GPL(destroy_workqueue); 5368 5369 /** 5370 * workqueue_set_max_active - adjust max_active of a workqueue 5371 * @wq: target workqueue 5372 * @max_active: new max_active value. 5373 * 5374 * Set max_active of @wq to @max_active. See the alloc_workqueue() function 5375 * comment. 5376 * 5377 * CONTEXT: 5378 * Don't call from IRQ context. 5379 */ 5380 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 5381 { 5382 /* disallow meddling with max_active for ordered workqueues */ 5383 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5384 return; 5385 5386 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 5387 5388 mutex_lock(&wq->mutex); 5389 5390 wq->flags &= ~__WQ_ORDERED; 5391 wq->saved_max_active = max_active; 5392 if (wq->flags & WQ_UNBOUND) 5393 wq->saved_min_active = min(wq->saved_min_active, max_active); 5394 5395 wq_adjust_max_active(wq); 5396 5397 mutex_unlock(&wq->mutex); 5398 } 5399 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 5400 5401 /** 5402 * current_work - retrieve %current task's work struct 5403 * 5404 * Determine if %current task is a workqueue worker and what it's working on. 5405 * Useful to find out the context that the %current task is running in. 5406 * 5407 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 5408 */ 5409 struct work_struct *current_work(void) 5410 { 5411 struct worker *worker = current_wq_worker(); 5412 5413 return worker ? worker->current_work : NULL; 5414 } 5415 EXPORT_SYMBOL(current_work); 5416 5417 /** 5418 * current_is_workqueue_rescuer - is %current workqueue rescuer? 5419 * 5420 * Determine whether %current is a workqueue rescuer. Can be used from 5421 * work functions to determine whether it's being run off the rescuer task. 5422 * 5423 * Return: %true if %current is a workqueue rescuer. %false otherwise. 5424 */ 5425 bool current_is_workqueue_rescuer(void) 5426 { 5427 struct worker *worker = current_wq_worker(); 5428 5429 return worker && worker->rescue_wq; 5430 } 5431 5432 /** 5433 * workqueue_congested - test whether a workqueue is congested 5434 * @cpu: CPU in question 5435 * @wq: target workqueue 5436 * 5437 * Test whether @wq's cpu workqueue for @cpu is congested. There is 5438 * no synchronization around this function and the test result is 5439 * unreliable and only useful as advisory hints or for debugging. 5440 * 5441 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 5442 * 5443 * With the exception of ordered workqueues, all workqueues have per-cpu 5444 * pool_workqueues, each with its own congested state. A workqueue being 5445 * congested on one CPU doesn't mean that the workqueue is contested on any 5446 * other CPUs. 5447 * 5448 * Return: 5449 * %true if congested, %false otherwise. 5450 */ 5451 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 5452 { 5453 struct pool_workqueue *pwq; 5454 bool ret; 5455 5456 rcu_read_lock(); 5457 preempt_disable(); 5458 5459 if (cpu == WORK_CPU_UNBOUND) 5460 cpu = smp_processor_id(); 5461 5462 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5463 ret = !list_empty(&pwq->inactive_works); 5464 5465 preempt_enable(); 5466 rcu_read_unlock(); 5467 5468 return ret; 5469 } 5470 EXPORT_SYMBOL_GPL(workqueue_congested); 5471 5472 /** 5473 * work_busy - test whether a work is currently pending or running 5474 * @work: the work to be tested 5475 * 5476 * Test whether @work is currently pending or running. There is no 5477 * synchronization around this function and the test result is 5478 * unreliable and only useful as advisory hints or for debugging. 5479 * 5480 * Return: 5481 * OR'd bitmask of WORK_BUSY_* bits. 5482 */ 5483 unsigned int work_busy(struct work_struct *work) 5484 { 5485 struct worker_pool *pool; 5486 unsigned long flags; 5487 unsigned int ret = 0; 5488 5489 if (work_pending(work)) 5490 ret |= WORK_BUSY_PENDING; 5491 5492 rcu_read_lock(); 5493 pool = get_work_pool(work); 5494 if (pool) { 5495 raw_spin_lock_irqsave(&pool->lock, flags); 5496 if (find_worker_executing_work(pool, work)) 5497 ret |= WORK_BUSY_RUNNING; 5498 raw_spin_unlock_irqrestore(&pool->lock, flags); 5499 } 5500 rcu_read_unlock(); 5501 5502 return ret; 5503 } 5504 EXPORT_SYMBOL_GPL(work_busy); 5505 5506 /** 5507 * set_worker_desc - set description for the current work item 5508 * @fmt: printf-style format string 5509 * @...: arguments for the format string 5510 * 5511 * This function can be called by a running work function to describe what 5512 * the work item is about. If the worker task gets dumped, this 5513 * information will be printed out together to help debugging. The 5514 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 5515 */ 5516 void set_worker_desc(const char *fmt, ...) 5517 { 5518 struct worker *worker = current_wq_worker(); 5519 va_list args; 5520 5521 if (worker) { 5522 va_start(args, fmt); 5523 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 5524 va_end(args); 5525 } 5526 } 5527 EXPORT_SYMBOL_GPL(set_worker_desc); 5528 5529 /** 5530 * print_worker_info - print out worker information and description 5531 * @log_lvl: the log level to use when printing 5532 * @task: target task 5533 * 5534 * If @task is a worker and currently executing a work item, print out the 5535 * name of the workqueue being serviced and worker description set with 5536 * set_worker_desc() by the currently executing work item. 5537 * 5538 * This function can be safely called on any task as long as the 5539 * task_struct itself is accessible. While safe, this function isn't 5540 * synchronized and may print out mixups or garbages of limited length. 5541 */ 5542 void print_worker_info(const char *log_lvl, struct task_struct *task) 5543 { 5544 work_func_t *fn = NULL; 5545 char name[WQ_NAME_LEN] = { }; 5546 char desc[WORKER_DESC_LEN] = { }; 5547 struct pool_workqueue *pwq = NULL; 5548 struct workqueue_struct *wq = NULL; 5549 struct worker *worker; 5550 5551 if (!(task->flags & PF_WQ_WORKER)) 5552 return; 5553 5554 /* 5555 * This function is called without any synchronization and @task 5556 * could be in any state. Be careful with dereferences. 5557 */ 5558 worker = kthread_probe_data(task); 5559 5560 /* 5561 * Carefully copy the associated workqueue's workfn, name and desc. 5562 * Keep the original last '\0' in case the original is garbage. 5563 */ 5564 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 5565 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 5566 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 5567 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 5568 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 5569 5570 if (fn || name[0] || desc[0]) { 5571 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 5572 if (strcmp(name, desc)) 5573 pr_cont(" (%s)", desc); 5574 pr_cont("\n"); 5575 } 5576 } 5577 5578 static void pr_cont_pool_info(struct worker_pool *pool) 5579 { 5580 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 5581 if (pool->node != NUMA_NO_NODE) 5582 pr_cont(" node=%d", pool->node); 5583 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 5584 } 5585 5586 struct pr_cont_work_struct { 5587 bool comma; 5588 work_func_t func; 5589 long ctr; 5590 }; 5591 5592 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 5593 { 5594 if (!pcwsp->ctr) 5595 goto out_record; 5596 if (func == pcwsp->func) { 5597 pcwsp->ctr++; 5598 return; 5599 } 5600 if (pcwsp->ctr == 1) 5601 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 5602 else 5603 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 5604 pcwsp->ctr = 0; 5605 out_record: 5606 if ((long)func == -1L) 5607 return; 5608 pcwsp->comma = comma; 5609 pcwsp->func = func; 5610 pcwsp->ctr = 1; 5611 } 5612 5613 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 5614 { 5615 if (work->func == wq_barrier_func) { 5616 struct wq_barrier *barr; 5617 5618 barr = container_of(work, struct wq_barrier, work); 5619 5620 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 5621 pr_cont("%s BAR(%d)", comma ? "," : "", 5622 task_pid_nr(barr->task)); 5623 } else { 5624 if (!comma) 5625 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 5626 pr_cont_work_flush(comma, work->func, pcwsp); 5627 } 5628 } 5629 5630 static void show_pwq(struct pool_workqueue *pwq) 5631 { 5632 struct pr_cont_work_struct pcws = { .ctr = 0, }; 5633 struct worker_pool *pool = pwq->pool; 5634 struct work_struct *work; 5635 struct worker *worker; 5636 bool has_in_flight = false, has_pending = false; 5637 int bkt; 5638 5639 pr_info(" pwq %d:", pool->id); 5640 pr_cont_pool_info(pool); 5641 5642 pr_cont(" active=%d refcnt=%d%s\n", 5643 pwq->nr_active, pwq->refcnt, 5644 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 5645 5646 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 5647 if (worker->current_pwq == pwq) { 5648 has_in_flight = true; 5649 break; 5650 } 5651 } 5652 if (has_in_flight) { 5653 bool comma = false; 5654 5655 pr_info(" in-flight:"); 5656 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 5657 if (worker->current_pwq != pwq) 5658 continue; 5659 5660 pr_cont("%s %d%s:%ps", comma ? "," : "", 5661 task_pid_nr(worker->task), 5662 worker->rescue_wq ? "(RESCUER)" : "", 5663 worker->current_func); 5664 list_for_each_entry(work, &worker->scheduled, entry) 5665 pr_cont_work(false, work, &pcws); 5666 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5667 comma = true; 5668 } 5669 pr_cont("\n"); 5670 } 5671 5672 list_for_each_entry(work, &pool->worklist, entry) { 5673 if (get_work_pwq(work) == pwq) { 5674 has_pending = true; 5675 break; 5676 } 5677 } 5678 if (has_pending) { 5679 bool comma = false; 5680 5681 pr_info(" pending:"); 5682 list_for_each_entry(work, &pool->worklist, entry) { 5683 if (get_work_pwq(work) != pwq) 5684 continue; 5685 5686 pr_cont_work(comma, work, &pcws); 5687 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 5688 } 5689 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5690 pr_cont("\n"); 5691 } 5692 5693 if (!list_empty(&pwq->inactive_works)) { 5694 bool comma = false; 5695 5696 pr_info(" inactive:"); 5697 list_for_each_entry(work, &pwq->inactive_works, entry) { 5698 pr_cont_work(comma, work, &pcws); 5699 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 5700 } 5701 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 5702 pr_cont("\n"); 5703 } 5704 } 5705 5706 /** 5707 * show_one_workqueue - dump state of specified workqueue 5708 * @wq: workqueue whose state will be printed 5709 */ 5710 void show_one_workqueue(struct workqueue_struct *wq) 5711 { 5712 struct pool_workqueue *pwq; 5713 bool idle = true; 5714 unsigned long flags; 5715 5716 for_each_pwq(pwq, wq) { 5717 if (!pwq_is_empty(pwq)) { 5718 idle = false; 5719 break; 5720 } 5721 } 5722 if (idle) /* Nothing to print for idle workqueue */ 5723 return; 5724 5725 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 5726 5727 for_each_pwq(pwq, wq) { 5728 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 5729 if (!pwq_is_empty(pwq)) { 5730 /* 5731 * Defer printing to avoid deadlocks in console 5732 * drivers that queue work while holding locks 5733 * also taken in their write paths. 5734 */ 5735 printk_deferred_enter(); 5736 show_pwq(pwq); 5737 printk_deferred_exit(); 5738 } 5739 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 5740 /* 5741 * We could be printing a lot from atomic context, e.g. 5742 * sysrq-t -> show_all_workqueues(). Avoid triggering 5743 * hard lockup. 5744 */ 5745 touch_nmi_watchdog(); 5746 } 5747 5748 } 5749 5750 /** 5751 * show_one_worker_pool - dump state of specified worker pool 5752 * @pool: worker pool whose state will be printed 5753 */ 5754 static void show_one_worker_pool(struct worker_pool *pool) 5755 { 5756 struct worker *worker; 5757 bool first = true; 5758 unsigned long flags; 5759 unsigned long hung = 0; 5760 5761 raw_spin_lock_irqsave(&pool->lock, flags); 5762 if (pool->nr_workers == pool->nr_idle) 5763 goto next_pool; 5764 5765 /* How long the first pending work is waiting for a worker. */ 5766 if (!list_empty(&pool->worklist)) 5767 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 5768 5769 /* 5770 * Defer printing to avoid deadlocks in console drivers that 5771 * queue work while holding locks also taken in their write 5772 * paths. 5773 */ 5774 printk_deferred_enter(); 5775 pr_info("pool %d:", pool->id); 5776 pr_cont_pool_info(pool); 5777 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 5778 if (pool->manager) 5779 pr_cont(" manager: %d", 5780 task_pid_nr(pool->manager->task)); 5781 list_for_each_entry(worker, &pool->idle_list, entry) { 5782 pr_cont(" %s%d", first ? "idle: " : "", 5783 task_pid_nr(worker->task)); 5784 first = false; 5785 } 5786 pr_cont("\n"); 5787 printk_deferred_exit(); 5788 next_pool: 5789 raw_spin_unlock_irqrestore(&pool->lock, flags); 5790 /* 5791 * We could be printing a lot from atomic context, e.g. 5792 * sysrq-t -> show_all_workqueues(). Avoid triggering 5793 * hard lockup. 5794 */ 5795 touch_nmi_watchdog(); 5796 5797 } 5798 5799 /** 5800 * show_all_workqueues - dump workqueue state 5801 * 5802 * Called from a sysrq handler and prints out all busy workqueues and pools. 5803 */ 5804 void show_all_workqueues(void) 5805 { 5806 struct workqueue_struct *wq; 5807 struct worker_pool *pool; 5808 int pi; 5809 5810 rcu_read_lock(); 5811 5812 pr_info("Showing busy workqueues and worker pools:\n"); 5813 5814 list_for_each_entry_rcu(wq, &workqueues, list) 5815 show_one_workqueue(wq); 5816 5817 for_each_pool(pool, pi) 5818 show_one_worker_pool(pool); 5819 5820 rcu_read_unlock(); 5821 } 5822 5823 /** 5824 * show_freezable_workqueues - dump freezable workqueue state 5825 * 5826 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 5827 * still busy. 5828 */ 5829 void show_freezable_workqueues(void) 5830 { 5831 struct workqueue_struct *wq; 5832 5833 rcu_read_lock(); 5834 5835 pr_info("Showing freezable workqueues that are still busy:\n"); 5836 5837 list_for_each_entry_rcu(wq, &workqueues, list) { 5838 if (!(wq->flags & WQ_FREEZABLE)) 5839 continue; 5840 show_one_workqueue(wq); 5841 } 5842 5843 rcu_read_unlock(); 5844 } 5845 5846 /* used to show worker information through /proc/PID/{comm,stat,status} */ 5847 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 5848 { 5849 int off; 5850 5851 /* always show the actual comm */ 5852 off = strscpy(buf, task->comm, size); 5853 if (off < 0) 5854 return; 5855 5856 /* stabilize PF_WQ_WORKER and worker pool association */ 5857 mutex_lock(&wq_pool_attach_mutex); 5858 5859 if (task->flags & PF_WQ_WORKER) { 5860 struct worker *worker = kthread_data(task); 5861 struct worker_pool *pool = worker->pool; 5862 5863 if (pool) { 5864 raw_spin_lock_irq(&pool->lock); 5865 /* 5866 * ->desc tracks information (wq name or 5867 * set_worker_desc()) for the latest execution. If 5868 * current, prepend '+', otherwise '-'. 5869 */ 5870 if (worker->desc[0] != '\0') { 5871 if (worker->current_work) 5872 scnprintf(buf + off, size - off, "+%s", 5873 worker->desc); 5874 else 5875 scnprintf(buf + off, size - off, "-%s", 5876 worker->desc); 5877 } 5878 raw_spin_unlock_irq(&pool->lock); 5879 } 5880 } 5881 5882 mutex_unlock(&wq_pool_attach_mutex); 5883 } 5884 5885 #ifdef CONFIG_SMP 5886 5887 /* 5888 * CPU hotplug. 5889 * 5890 * There are two challenges in supporting CPU hotplug. Firstly, there 5891 * are a lot of assumptions on strong associations among work, pwq and 5892 * pool which make migrating pending and scheduled works very 5893 * difficult to implement without impacting hot paths. Secondly, 5894 * worker pools serve mix of short, long and very long running works making 5895 * blocked draining impractical. 5896 * 5897 * This is solved by allowing the pools to be disassociated from the CPU 5898 * running as an unbound one and allowing it to be reattached later if the 5899 * cpu comes back online. 5900 */ 5901 5902 static void unbind_workers(int cpu) 5903 { 5904 struct worker_pool *pool; 5905 struct worker *worker; 5906 5907 for_each_cpu_worker_pool(pool, cpu) { 5908 mutex_lock(&wq_pool_attach_mutex); 5909 raw_spin_lock_irq(&pool->lock); 5910 5911 /* 5912 * We've blocked all attach/detach operations. Make all workers 5913 * unbound and set DISASSOCIATED. Before this, all workers 5914 * must be on the cpu. After this, they may become diasporas. 5915 * And the preemption disabled section in their sched callbacks 5916 * are guaranteed to see WORKER_UNBOUND since the code here 5917 * is on the same cpu. 5918 */ 5919 for_each_pool_worker(worker, pool) 5920 worker->flags |= WORKER_UNBOUND; 5921 5922 pool->flags |= POOL_DISASSOCIATED; 5923 5924 /* 5925 * The handling of nr_running in sched callbacks are disabled 5926 * now. Zap nr_running. After this, nr_running stays zero and 5927 * need_more_worker() and keep_working() are always true as 5928 * long as the worklist is not empty. This pool now behaves as 5929 * an unbound (in terms of concurrency management) pool which 5930 * are served by workers tied to the pool. 5931 */ 5932 pool->nr_running = 0; 5933 5934 /* 5935 * With concurrency management just turned off, a busy 5936 * worker blocking could lead to lengthy stalls. Kick off 5937 * unbound chain execution of currently pending work items. 5938 */ 5939 kick_pool(pool); 5940 5941 raw_spin_unlock_irq(&pool->lock); 5942 5943 for_each_pool_worker(worker, pool) 5944 unbind_worker(worker); 5945 5946 mutex_unlock(&wq_pool_attach_mutex); 5947 } 5948 } 5949 5950 /** 5951 * rebind_workers - rebind all workers of a pool to the associated CPU 5952 * @pool: pool of interest 5953 * 5954 * @pool->cpu is coming online. Rebind all workers to the CPU. 5955 */ 5956 static void rebind_workers(struct worker_pool *pool) 5957 { 5958 struct worker *worker; 5959 5960 lockdep_assert_held(&wq_pool_attach_mutex); 5961 5962 /* 5963 * Restore CPU affinity of all workers. As all idle workers should 5964 * be on the run-queue of the associated CPU before any local 5965 * wake-ups for concurrency management happen, restore CPU affinity 5966 * of all workers first and then clear UNBOUND. As we're called 5967 * from CPU_ONLINE, the following shouldn't fail. 5968 */ 5969 for_each_pool_worker(worker, pool) { 5970 kthread_set_per_cpu(worker->task, pool->cpu); 5971 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 5972 pool_allowed_cpus(pool)) < 0); 5973 } 5974 5975 raw_spin_lock_irq(&pool->lock); 5976 5977 pool->flags &= ~POOL_DISASSOCIATED; 5978 5979 for_each_pool_worker(worker, pool) { 5980 unsigned int worker_flags = worker->flags; 5981 5982 /* 5983 * We want to clear UNBOUND but can't directly call 5984 * worker_clr_flags() or adjust nr_running. Atomically 5985 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 5986 * @worker will clear REBOUND using worker_clr_flags() when 5987 * it initiates the next execution cycle thus restoring 5988 * concurrency management. Note that when or whether 5989 * @worker clears REBOUND doesn't affect correctness. 5990 * 5991 * WRITE_ONCE() is necessary because @worker->flags may be 5992 * tested without holding any lock in 5993 * wq_worker_running(). Without it, NOT_RUNNING test may 5994 * fail incorrectly leading to premature concurrency 5995 * management operations. 5996 */ 5997 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 5998 worker_flags |= WORKER_REBOUND; 5999 worker_flags &= ~WORKER_UNBOUND; 6000 WRITE_ONCE(worker->flags, worker_flags); 6001 } 6002 6003 raw_spin_unlock_irq(&pool->lock); 6004 } 6005 6006 /** 6007 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 6008 * @pool: unbound pool of interest 6009 * @cpu: the CPU which is coming up 6010 * 6011 * An unbound pool may end up with a cpumask which doesn't have any online 6012 * CPUs. When a worker of such pool get scheduled, the scheduler resets 6013 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 6014 * online CPU before, cpus_allowed of all its workers should be restored. 6015 */ 6016 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 6017 { 6018 static cpumask_t cpumask; 6019 struct worker *worker; 6020 6021 lockdep_assert_held(&wq_pool_attach_mutex); 6022 6023 /* is @cpu allowed for @pool? */ 6024 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 6025 return; 6026 6027 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 6028 6029 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 6030 for_each_pool_worker(worker, pool) 6031 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 6032 } 6033 6034 int workqueue_prepare_cpu(unsigned int cpu) 6035 { 6036 struct worker_pool *pool; 6037 6038 for_each_cpu_worker_pool(pool, cpu) { 6039 if (pool->nr_workers) 6040 continue; 6041 if (!create_worker(pool)) 6042 return -ENOMEM; 6043 } 6044 return 0; 6045 } 6046 6047 int workqueue_online_cpu(unsigned int cpu) 6048 { 6049 struct worker_pool *pool; 6050 struct workqueue_struct *wq; 6051 int pi; 6052 6053 mutex_lock(&wq_pool_mutex); 6054 6055 for_each_pool(pool, pi) { 6056 mutex_lock(&wq_pool_attach_mutex); 6057 6058 if (pool->cpu == cpu) 6059 rebind_workers(pool); 6060 else if (pool->cpu < 0) 6061 restore_unbound_workers_cpumask(pool, cpu); 6062 6063 mutex_unlock(&wq_pool_attach_mutex); 6064 } 6065 6066 /* update pod affinity of unbound workqueues */ 6067 list_for_each_entry(wq, &workqueues, list) { 6068 struct workqueue_attrs *attrs = wq->unbound_attrs; 6069 6070 if (attrs) { 6071 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6072 int tcpu; 6073 6074 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6075 wq_update_pod(wq, tcpu, cpu, true); 6076 6077 mutex_lock(&wq->mutex); 6078 wq_update_node_max_active(wq, -1); 6079 mutex_unlock(&wq->mutex); 6080 } 6081 } 6082 6083 mutex_unlock(&wq_pool_mutex); 6084 return 0; 6085 } 6086 6087 int workqueue_offline_cpu(unsigned int cpu) 6088 { 6089 struct workqueue_struct *wq; 6090 6091 /* unbinding per-cpu workers should happen on the local CPU */ 6092 if (WARN_ON(cpu != smp_processor_id())) 6093 return -1; 6094 6095 unbind_workers(cpu); 6096 6097 /* update pod affinity of unbound workqueues */ 6098 mutex_lock(&wq_pool_mutex); 6099 list_for_each_entry(wq, &workqueues, list) { 6100 struct workqueue_attrs *attrs = wq->unbound_attrs; 6101 6102 if (attrs) { 6103 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6104 int tcpu; 6105 6106 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6107 wq_update_pod(wq, tcpu, cpu, false); 6108 6109 mutex_lock(&wq->mutex); 6110 wq_update_node_max_active(wq, cpu); 6111 mutex_unlock(&wq->mutex); 6112 } 6113 } 6114 mutex_unlock(&wq_pool_mutex); 6115 6116 return 0; 6117 } 6118 6119 struct work_for_cpu { 6120 struct work_struct work; 6121 long (*fn)(void *); 6122 void *arg; 6123 long ret; 6124 }; 6125 6126 static void work_for_cpu_fn(struct work_struct *work) 6127 { 6128 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 6129 6130 wfc->ret = wfc->fn(wfc->arg); 6131 } 6132 6133 /** 6134 * work_on_cpu_key - run a function in thread context on a particular cpu 6135 * @cpu: the cpu to run on 6136 * @fn: the function to run 6137 * @arg: the function arg 6138 * @key: The lock class key for lock debugging purposes 6139 * 6140 * It is up to the caller to ensure that the cpu doesn't go offline. 6141 * The caller must not hold any locks which would prevent @fn from completing. 6142 * 6143 * Return: The value @fn returns. 6144 */ 6145 long work_on_cpu_key(int cpu, long (*fn)(void *), 6146 void *arg, struct lock_class_key *key) 6147 { 6148 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 6149 6150 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 6151 schedule_work_on(cpu, &wfc.work); 6152 flush_work(&wfc.work); 6153 destroy_work_on_stack(&wfc.work); 6154 return wfc.ret; 6155 } 6156 EXPORT_SYMBOL_GPL(work_on_cpu_key); 6157 6158 /** 6159 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 6160 * @cpu: the cpu to run on 6161 * @fn: the function to run 6162 * @arg: the function argument 6163 * @key: The lock class key for lock debugging purposes 6164 * 6165 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 6166 * any locks which would prevent @fn from completing. 6167 * 6168 * Return: The value @fn returns. 6169 */ 6170 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 6171 void *arg, struct lock_class_key *key) 6172 { 6173 long ret = -ENODEV; 6174 6175 cpus_read_lock(); 6176 if (cpu_online(cpu)) 6177 ret = work_on_cpu_key(cpu, fn, arg, key); 6178 cpus_read_unlock(); 6179 return ret; 6180 } 6181 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 6182 #endif /* CONFIG_SMP */ 6183 6184 #ifdef CONFIG_FREEZER 6185 6186 /** 6187 * freeze_workqueues_begin - begin freezing workqueues 6188 * 6189 * Start freezing workqueues. After this function returns, all freezable 6190 * workqueues will queue new works to their inactive_works list instead of 6191 * pool->worklist. 6192 * 6193 * CONTEXT: 6194 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6195 */ 6196 void freeze_workqueues_begin(void) 6197 { 6198 struct workqueue_struct *wq; 6199 6200 mutex_lock(&wq_pool_mutex); 6201 6202 WARN_ON_ONCE(workqueue_freezing); 6203 workqueue_freezing = true; 6204 6205 list_for_each_entry(wq, &workqueues, list) { 6206 mutex_lock(&wq->mutex); 6207 wq_adjust_max_active(wq); 6208 mutex_unlock(&wq->mutex); 6209 } 6210 6211 mutex_unlock(&wq_pool_mutex); 6212 } 6213 6214 /** 6215 * freeze_workqueues_busy - are freezable workqueues still busy? 6216 * 6217 * Check whether freezing is complete. This function must be called 6218 * between freeze_workqueues_begin() and thaw_workqueues(). 6219 * 6220 * CONTEXT: 6221 * Grabs and releases wq_pool_mutex. 6222 * 6223 * Return: 6224 * %true if some freezable workqueues are still busy. %false if freezing 6225 * is complete. 6226 */ 6227 bool freeze_workqueues_busy(void) 6228 { 6229 bool busy = false; 6230 struct workqueue_struct *wq; 6231 struct pool_workqueue *pwq; 6232 6233 mutex_lock(&wq_pool_mutex); 6234 6235 WARN_ON_ONCE(!workqueue_freezing); 6236 6237 list_for_each_entry(wq, &workqueues, list) { 6238 if (!(wq->flags & WQ_FREEZABLE)) 6239 continue; 6240 /* 6241 * nr_active is monotonically decreasing. It's safe 6242 * to peek without lock. 6243 */ 6244 rcu_read_lock(); 6245 for_each_pwq(pwq, wq) { 6246 WARN_ON_ONCE(pwq->nr_active < 0); 6247 if (pwq->nr_active) { 6248 busy = true; 6249 rcu_read_unlock(); 6250 goto out_unlock; 6251 } 6252 } 6253 rcu_read_unlock(); 6254 } 6255 out_unlock: 6256 mutex_unlock(&wq_pool_mutex); 6257 return busy; 6258 } 6259 6260 /** 6261 * thaw_workqueues - thaw workqueues 6262 * 6263 * Thaw workqueues. Normal queueing is restored and all collected 6264 * frozen works are transferred to their respective pool worklists. 6265 * 6266 * CONTEXT: 6267 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6268 */ 6269 void thaw_workqueues(void) 6270 { 6271 struct workqueue_struct *wq; 6272 6273 mutex_lock(&wq_pool_mutex); 6274 6275 if (!workqueue_freezing) 6276 goto out_unlock; 6277 6278 workqueue_freezing = false; 6279 6280 /* restore max_active and repopulate worklist */ 6281 list_for_each_entry(wq, &workqueues, list) { 6282 mutex_lock(&wq->mutex); 6283 wq_adjust_max_active(wq); 6284 mutex_unlock(&wq->mutex); 6285 } 6286 6287 out_unlock: 6288 mutex_unlock(&wq_pool_mutex); 6289 } 6290 #endif /* CONFIG_FREEZER */ 6291 6292 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 6293 { 6294 LIST_HEAD(ctxs); 6295 int ret = 0; 6296 struct workqueue_struct *wq; 6297 struct apply_wqattrs_ctx *ctx, *n; 6298 6299 lockdep_assert_held(&wq_pool_mutex); 6300 6301 list_for_each_entry(wq, &workqueues, list) { 6302 if (!(wq->flags & WQ_UNBOUND)) 6303 continue; 6304 6305 /* creating multiple pwqs breaks ordering guarantee */ 6306 if (!list_empty(&wq->pwqs)) { 6307 if (wq->flags & __WQ_ORDERED_EXPLICIT) 6308 continue; 6309 wq->flags &= ~__WQ_ORDERED; 6310 } 6311 6312 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 6313 if (IS_ERR(ctx)) { 6314 ret = PTR_ERR(ctx); 6315 break; 6316 } 6317 6318 list_add_tail(&ctx->list, &ctxs); 6319 } 6320 6321 list_for_each_entry_safe(ctx, n, &ctxs, list) { 6322 if (!ret) 6323 apply_wqattrs_commit(ctx); 6324 apply_wqattrs_cleanup(ctx); 6325 } 6326 6327 if (!ret) { 6328 mutex_lock(&wq_pool_attach_mutex); 6329 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 6330 mutex_unlock(&wq_pool_attach_mutex); 6331 } 6332 return ret; 6333 } 6334 6335 /** 6336 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask 6337 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask 6338 * 6339 * This function can be called from cpuset code to provide a set of isolated 6340 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold 6341 * either cpus_read_lock or cpus_write_lock. 6342 */ 6343 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) 6344 { 6345 cpumask_var_t cpumask; 6346 int ret = 0; 6347 6348 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6349 return -ENOMEM; 6350 6351 lockdep_assert_cpus_held(); 6352 mutex_lock(&wq_pool_mutex); 6353 6354 /* Save the current isolated cpumask & export it via sysfs */ 6355 cpumask_copy(wq_isolated_cpumask, exclude_cpumask); 6356 6357 /* 6358 * If the operation fails, it will fall back to 6359 * wq_requested_unbound_cpumask which is initially set to 6360 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten 6361 * by any subsequent write to workqueue/cpumask sysfs file. 6362 */ 6363 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask)) 6364 cpumask_copy(cpumask, wq_requested_unbound_cpumask); 6365 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 6366 ret = workqueue_apply_unbound_cpumask(cpumask); 6367 6368 mutex_unlock(&wq_pool_mutex); 6369 free_cpumask_var(cpumask); 6370 return ret; 6371 } 6372 6373 static int parse_affn_scope(const char *val) 6374 { 6375 int i; 6376 6377 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 6378 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 6379 return i; 6380 } 6381 return -EINVAL; 6382 } 6383 6384 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 6385 { 6386 struct workqueue_struct *wq; 6387 int affn, cpu; 6388 6389 affn = parse_affn_scope(val); 6390 if (affn < 0) 6391 return affn; 6392 if (affn == WQ_AFFN_DFL) 6393 return -EINVAL; 6394 6395 cpus_read_lock(); 6396 mutex_lock(&wq_pool_mutex); 6397 6398 wq_affn_dfl = affn; 6399 6400 list_for_each_entry(wq, &workqueues, list) { 6401 for_each_online_cpu(cpu) { 6402 wq_update_pod(wq, cpu, cpu, true); 6403 } 6404 } 6405 6406 mutex_unlock(&wq_pool_mutex); 6407 cpus_read_unlock(); 6408 6409 return 0; 6410 } 6411 6412 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 6413 { 6414 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 6415 } 6416 6417 static const struct kernel_param_ops wq_affn_dfl_ops = { 6418 .set = wq_affn_dfl_set, 6419 .get = wq_affn_dfl_get, 6420 }; 6421 6422 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 6423 6424 #ifdef CONFIG_SYSFS 6425 /* 6426 * Workqueues with WQ_SYSFS flag set is visible to userland via 6427 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 6428 * following attributes. 6429 * 6430 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 6431 * max_active RW int : maximum number of in-flight work items 6432 * 6433 * Unbound workqueues have the following extra attributes. 6434 * 6435 * nice RW int : nice value of the workers 6436 * cpumask RW mask : bitmask of allowed CPUs for the workers 6437 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 6438 * affinity_strict RW bool : worker CPU affinity is strict 6439 */ 6440 struct wq_device { 6441 struct workqueue_struct *wq; 6442 struct device dev; 6443 }; 6444 6445 static struct workqueue_struct *dev_to_wq(struct device *dev) 6446 { 6447 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6448 6449 return wq_dev->wq; 6450 } 6451 6452 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 6453 char *buf) 6454 { 6455 struct workqueue_struct *wq = dev_to_wq(dev); 6456 6457 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 6458 } 6459 static DEVICE_ATTR_RO(per_cpu); 6460 6461 static ssize_t max_active_show(struct device *dev, 6462 struct device_attribute *attr, char *buf) 6463 { 6464 struct workqueue_struct *wq = dev_to_wq(dev); 6465 6466 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 6467 } 6468 6469 static ssize_t max_active_store(struct device *dev, 6470 struct device_attribute *attr, const char *buf, 6471 size_t count) 6472 { 6473 struct workqueue_struct *wq = dev_to_wq(dev); 6474 int val; 6475 6476 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 6477 return -EINVAL; 6478 6479 workqueue_set_max_active(wq, val); 6480 return count; 6481 } 6482 static DEVICE_ATTR_RW(max_active); 6483 6484 static struct attribute *wq_sysfs_attrs[] = { 6485 &dev_attr_per_cpu.attr, 6486 &dev_attr_max_active.attr, 6487 NULL, 6488 }; 6489 ATTRIBUTE_GROUPS(wq_sysfs); 6490 6491 static void apply_wqattrs_lock(void) 6492 { 6493 /* CPUs should stay stable across pwq creations and installations */ 6494 cpus_read_lock(); 6495 mutex_lock(&wq_pool_mutex); 6496 } 6497 6498 static void apply_wqattrs_unlock(void) 6499 { 6500 mutex_unlock(&wq_pool_mutex); 6501 cpus_read_unlock(); 6502 } 6503 6504 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 6505 char *buf) 6506 { 6507 struct workqueue_struct *wq = dev_to_wq(dev); 6508 int written; 6509 6510 mutex_lock(&wq->mutex); 6511 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 6512 mutex_unlock(&wq->mutex); 6513 6514 return written; 6515 } 6516 6517 /* prepare workqueue_attrs for sysfs store operations */ 6518 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 6519 { 6520 struct workqueue_attrs *attrs; 6521 6522 lockdep_assert_held(&wq_pool_mutex); 6523 6524 attrs = alloc_workqueue_attrs(); 6525 if (!attrs) 6526 return NULL; 6527 6528 copy_workqueue_attrs(attrs, wq->unbound_attrs); 6529 return attrs; 6530 } 6531 6532 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 6533 const char *buf, size_t count) 6534 { 6535 struct workqueue_struct *wq = dev_to_wq(dev); 6536 struct workqueue_attrs *attrs; 6537 int ret = -ENOMEM; 6538 6539 apply_wqattrs_lock(); 6540 6541 attrs = wq_sysfs_prep_attrs(wq); 6542 if (!attrs) 6543 goto out_unlock; 6544 6545 if (sscanf(buf, "%d", &attrs->nice) == 1 && 6546 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 6547 ret = apply_workqueue_attrs_locked(wq, attrs); 6548 else 6549 ret = -EINVAL; 6550 6551 out_unlock: 6552 apply_wqattrs_unlock(); 6553 free_workqueue_attrs(attrs); 6554 return ret ?: count; 6555 } 6556 6557 static ssize_t wq_cpumask_show(struct device *dev, 6558 struct device_attribute *attr, char *buf) 6559 { 6560 struct workqueue_struct *wq = dev_to_wq(dev); 6561 int written; 6562 6563 mutex_lock(&wq->mutex); 6564 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 6565 cpumask_pr_args(wq->unbound_attrs->cpumask)); 6566 mutex_unlock(&wq->mutex); 6567 return written; 6568 } 6569 6570 static ssize_t wq_cpumask_store(struct device *dev, 6571 struct device_attribute *attr, 6572 const char *buf, size_t count) 6573 { 6574 struct workqueue_struct *wq = dev_to_wq(dev); 6575 struct workqueue_attrs *attrs; 6576 int ret = -ENOMEM; 6577 6578 apply_wqattrs_lock(); 6579 6580 attrs = wq_sysfs_prep_attrs(wq); 6581 if (!attrs) 6582 goto out_unlock; 6583 6584 ret = cpumask_parse(buf, attrs->cpumask); 6585 if (!ret) 6586 ret = apply_workqueue_attrs_locked(wq, attrs); 6587 6588 out_unlock: 6589 apply_wqattrs_unlock(); 6590 free_workqueue_attrs(attrs); 6591 return ret ?: count; 6592 } 6593 6594 static ssize_t wq_affn_scope_show(struct device *dev, 6595 struct device_attribute *attr, char *buf) 6596 { 6597 struct workqueue_struct *wq = dev_to_wq(dev); 6598 int written; 6599 6600 mutex_lock(&wq->mutex); 6601 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 6602 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 6603 wq_affn_names[WQ_AFFN_DFL], 6604 wq_affn_names[wq_affn_dfl]); 6605 else 6606 written = scnprintf(buf, PAGE_SIZE, "%s\n", 6607 wq_affn_names[wq->unbound_attrs->affn_scope]); 6608 mutex_unlock(&wq->mutex); 6609 6610 return written; 6611 } 6612 6613 static ssize_t wq_affn_scope_store(struct device *dev, 6614 struct device_attribute *attr, 6615 const char *buf, size_t count) 6616 { 6617 struct workqueue_struct *wq = dev_to_wq(dev); 6618 struct workqueue_attrs *attrs; 6619 int affn, ret = -ENOMEM; 6620 6621 affn = parse_affn_scope(buf); 6622 if (affn < 0) 6623 return affn; 6624 6625 apply_wqattrs_lock(); 6626 attrs = wq_sysfs_prep_attrs(wq); 6627 if (attrs) { 6628 attrs->affn_scope = affn; 6629 ret = apply_workqueue_attrs_locked(wq, attrs); 6630 } 6631 apply_wqattrs_unlock(); 6632 free_workqueue_attrs(attrs); 6633 return ret ?: count; 6634 } 6635 6636 static ssize_t wq_affinity_strict_show(struct device *dev, 6637 struct device_attribute *attr, char *buf) 6638 { 6639 struct workqueue_struct *wq = dev_to_wq(dev); 6640 6641 return scnprintf(buf, PAGE_SIZE, "%d\n", 6642 wq->unbound_attrs->affn_strict); 6643 } 6644 6645 static ssize_t wq_affinity_strict_store(struct device *dev, 6646 struct device_attribute *attr, 6647 const char *buf, size_t count) 6648 { 6649 struct workqueue_struct *wq = dev_to_wq(dev); 6650 struct workqueue_attrs *attrs; 6651 int v, ret = -ENOMEM; 6652 6653 if (sscanf(buf, "%d", &v) != 1) 6654 return -EINVAL; 6655 6656 apply_wqattrs_lock(); 6657 attrs = wq_sysfs_prep_attrs(wq); 6658 if (attrs) { 6659 attrs->affn_strict = (bool)v; 6660 ret = apply_workqueue_attrs_locked(wq, attrs); 6661 } 6662 apply_wqattrs_unlock(); 6663 free_workqueue_attrs(attrs); 6664 return ret ?: count; 6665 } 6666 6667 static struct device_attribute wq_sysfs_unbound_attrs[] = { 6668 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 6669 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 6670 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 6671 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 6672 __ATTR_NULL, 6673 }; 6674 6675 static struct bus_type wq_subsys = { 6676 .name = "workqueue", 6677 .dev_groups = wq_sysfs_groups, 6678 }; 6679 6680 /** 6681 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 6682 * @cpumask: the cpumask to set 6683 * 6684 * The low-level workqueues cpumask is a global cpumask that limits 6685 * the affinity of all unbound workqueues. This function check the @cpumask 6686 * and apply it to all unbound workqueues and updates all pwqs of them. 6687 * 6688 * Return: 0 - Success 6689 * -EINVAL - Invalid @cpumask 6690 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 6691 */ 6692 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 6693 { 6694 int ret = -EINVAL; 6695 6696 /* 6697 * Not excluding isolated cpus on purpose. 6698 * If the user wishes to include them, we allow that. 6699 */ 6700 cpumask_and(cpumask, cpumask, cpu_possible_mask); 6701 if (!cpumask_empty(cpumask)) { 6702 apply_wqattrs_lock(); 6703 cpumask_copy(wq_requested_unbound_cpumask, cpumask); 6704 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 6705 ret = 0; 6706 goto out_unlock; 6707 } 6708 6709 ret = workqueue_apply_unbound_cpumask(cpumask); 6710 6711 out_unlock: 6712 apply_wqattrs_unlock(); 6713 } 6714 6715 return ret; 6716 } 6717 6718 static ssize_t __wq_cpumask_show(struct device *dev, 6719 struct device_attribute *attr, char *buf, cpumask_var_t mask) 6720 { 6721 int written; 6722 6723 mutex_lock(&wq_pool_mutex); 6724 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 6725 mutex_unlock(&wq_pool_mutex); 6726 6727 return written; 6728 } 6729 6730 static ssize_t wq_unbound_cpumask_show(struct device *dev, 6731 struct device_attribute *attr, char *buf) 6732 { 6733 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask); 6734 } 6735 6736 static ssize_t wq_requested_cpumask_show(struct device *dev, 6737 struct device_attribute *attr, char *buf) 6738 { 6739 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask); 6740 } 6741 6742 static ssize_t wq_isolated_cpumask_show(struct device *dev, 6743 struct device_attribute *attr, char *buf) 6744 { 6745 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask); 6746 } 6747 6748 static ssize_t wq_unbound_cpumask_store(struct device *dev, 6749 struct device_attribute *attr, const char *buf, size_t count) 6750 { 6751 cpumask_var_t cpumask; 6752 int ret; 6753 6754 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6755 return -ENOMEM; 6756 6757 ret = cpumask_parse(buf, cpumask); 6758 if (!ret) 6759 ret = workqueue_set_unbound_cpumask(cpumask); 6760 6761 free_cpumask_var(cpumask); 6762 return ret ? ret : count; 6763 } 6764 6765 static struct device_attribute wq_sysfs_cpumask_attrs[] = { 6766 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 6767 wq_unbound_cpumask_store), 6768 __ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL), 6769 __ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL), 6770 __ATTR_NULL, 6771 }; 6772 6773 static int __init wq_sysfs_init(void) 6774 { 6775 struct device *dev_root; 6776 int err; 6777 6778 err = subsys_virtual_register(&wq_subsys, NULL); 6779 if (err) 6780 return err; 6781 6782 dev_root = bus_get_dev_root(&wq_subsys); 6783 if (dev_root) { 6784 struct device_attribute *attr; 6785 6786 for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) { 6787 err = device_create_file(dev_root, attr); 6788 if (err) 6789 break; 6790 } 6791 put_device(dev_root); 6792 } 6793 return err; 6794 } 6795 core_initcall(wq_sysfs_init); 6796 6797 static void wq_device_release(struct device *dev) 6798 { 6799 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6800 6801 kfree(wq_dev); 6802 } 6803 6804 /** 6805 * workqueue_sysfs_register - make a workqueue visible in sysfs 6806 * @wq: the workqueue to register 6807 * 6808 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 6809 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 6810 * which is the preferred method. 6811 * 6812 * Workqueue user should use this function directly iff it wants to apply 6813 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 6814 * apply_workqueue_attrs() may race against userland updating the 6815 * attributes. 6816 * 6817 * Return: 0 on success, -errno on failure. 6818 */ 6819 int workqueue_sysfs_register(struct workqueue_struct *wq) 6820 { 6821 struct wq_device *wq_dev; 6822 int ret; 6823 6824 /* 6825 * Adjusting max_active or creating new pwqs by applying 6826 * attributes breaks ordering guarantee. Disallow exposing ordered 6827 * workqueues. 6828 */ 6829 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 6830 return -EINVAL; 6831 6832 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 6833 if (!wq_dev) 6834 return -ENOMEM; 6835 6836 wq_dev->wq = wq; 6837 wq_dev->dev.bus = &wq_subsys; 6838 wq_dev->dev.release = wq_device_release; 6839 dev_set_name(&wq_dev->dev, "%s", wq->name); 6840 6841 /* 6842 * unbound_attrs are created separately. Suppress uevent until 6843 * everything is ready. 6844 */ 6845 dev_set_uevent_suppress(&wq_dev->dev, true); 6846 6847 ret = device_register(&wq_dev->dev); 6848 if (ret) { 6849 put_device(&wq_dev->dev); 6850 wq->wq_dev = NULL; 6851 return ret; 6852 } 6853 6854 if (wq->flags & WQ_UNBOUND) { 6855 struct device_attribute *attr; 6856 6857 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 6858 ret = device_create_file(&wq_dev->dev, attr); 6859 if (ret) { 6860 device_unregister(&wq_dev->dev); 6861 wq->wq_dev = NULL; 6862 return ret; 6863 } 6864 } 6865 } 6866 6867 dev_set_uevent_suppress(&wq_dev->dev, false); 6868 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 6869 return 0; 6870 } 6871 6872 /** 6873 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 6874 * @wq: the workqueue to unregister 6875 * 6876 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 6877 */ 6878 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 6879 { 6880 struct wq_device *wq_dev = wq->wq_dev; 6881 6882 if (!wq->wq_dev) 6883 return; 6884 6885 wq->wq_dev = NULL; 6886 device_unregister(&wq_dev->dev); 6887 } 6888 #else /* CONFIG_SYSFS */ 6889 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 6890 #endif /* CONFIG_SYSFS */ 6891 6892 /* 6893 * Workqueue watchdog. 6894 * 6895 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 6896 * flush dependency, a concurrency managed work item which stays RUNNING 6897 * indefinitely. Workqueue stalls can be very difficult to debug as the 6898 * usual warning mechanisms don't trigger and internal workqueue state is 6899 * largely opaque. 6900 * 6901 * Workqueue watchdog monitors all worker pools periodically and dumps 6902 * state if some pools failed to make forward progress for a while where 6903 * forward progress is defined as the first item on ->worklist changing. 6904 * 6905 * This mechanism is controlled through the kernel parameter 6906 * "workqueue.watchdog_thresh" which can be updated at runtime through the 6907 * corresponding sysfs parameter file. 6908 */ 6909 #ifdef CONFIG_WQ_WATCHDOG 6910 6911 static unsigned long wq_watchdog_thresh = 30; 6912 static struct timer_list wq_watchdog_timer; 6913 6914 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 6915 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 6916 6917 /* 6918 * Show workers that might prevent the processing of pending work items. 6919 * The only candidates are CPU-bound workers in the running state. 6920 * Pending work items should be handled by another idle worker 6921 * in all other situations. 6922 */ 6923 static void show_cpu_pool_hog(struct worker_pool *pool) 6924 { 6925 struct worker *worker; 6926 unsigned long flags; 6927 int bkt; 6928 6929 raw_spin_lock_irqsave(&pool->lock, flags); 6930 6931 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6932 if (task_is_running(worker->task)) { 6933 /* 6934 * Defer printing to avoid deadlocks in console 6935 * drivers that queue work while holding locks 6936 * also taken in their write paths. 6937 */ 6938 printk_deferred_enter(); 6939 6940 pr_info("pool %d:\n", pool->id); 6941 sched_show_task(worker->task); 6942 6943 printk_deferred_exit(); 6944 } 6945 } 6946 6947 raw_spin_unlock_irqrestore(&pool->lock, flags); 6948 } 6949 6950 static void show_cpu_pools_hogs(void) 6951 { 6952 struct worker_pool *pool; 6953 int pi; 6954 6955 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 6956 6957 rcu_read_lock(); 6958 6959 for_each_pool(pool, pi) { 6960 if (pool->cpu_stall) 6961 show_cpu_pool_hog(pool); 6962 6963 } 6964 6965 rcu_read_unlock(); 6966 } 6967 6968 static void wq_watchdog_reset_touched(void) 6969 { 6970 int cpu; 6971 6972 wq_watchdog_touched = jiffies; 6973 for_each_possible_cpu(cpu) 6974 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 6975 } 6976 6977 static void wq_watchdog_timer_fn(struct timer_list *unused) 6978 { 6979 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 6980 bool lockup_detected = false; 6981 bool cpu_pool_stall = false; 6982 unsigned long now = jiffies; 6983 struct worker_pool *pool; 6984 int pi; 6985 6986 if (!thresh) 6987 return; 6988 6989 rcu_read_lock(); 6990 6991 for_each_pool(pool, pi) { 6992 unsigned long pool_ts, touched, ts; 6993 6994 pool->cpu_stall = false; 6995 if (list_empty(&pool->worklist)) 6996 continue; 6997 6998 /* 6999 * If a virtual machine is stopped by the host it can look to 7000 * the watchdog like a stall. 7001 */ 7002 kvm_check_and_clear_guest_paused(); 7003 7004 /* get the latest of pool and touched timestamps */ 7005 if (pool->cpu >= 0) 7006 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 7007 else 7008 touched = READ_ONCE(wq_watchdog_touched); 7009 pool_ts = READ_ONCE(pool->watchdog_ts); 7010 7011 if (time_after(pool_ts, touched)) 7012 ts = pool_ts; 7013 else 7014 ts = touched; 7015 7016 /* did we stall? */ 7017 if (time_after(now, ts + thresh)) { 7018 lockup_detected = true; 7019 if (pool->cpu >= 0) { 7020 pool->cpu_stall = true; 7021 cpu_pool_stall = true; 7022 } 7023 pr_emerg("BUG: workqueue lockup - pool"); 7024 pr_cont_pool_info(pool); 7025 pr_cont(" stuck for %us!\n", 7026 jiffies_to_msecs(now - pool_ts) / 1000); 7027 } 7028 7029 7030 } 7031 7032 rcu_read_unlock(); 7033 7034 if (lockup_detected) 7035 show_all_workqueues(); 7036 7037 if (cpu_pool_stall) 7038 show_cpu_pools_hogs(); 7039 7040 wq_watchdog_reset_touched(); 7041 mod_timer(&wq_watchdog_timer, jiffies + thresh); 7042 } 7043 7044 notrace void wq_watchdog_touch(int cpu) 7045 { 7046 if (cpu >= 0) 7047 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7048 7049 wq_watchdog_touched = jiffies; 7050 } 7051 7052 static void wq_watchdog_set_thresh(unsigned long thresh) 7053 { 7054 wq_watchdog_thresh = 0; 7055 del_timer_sync(&wq_watchdog_timer); 7056 7057 if (thresh) { 7058 wq_watchdog_thresh = thresh; 7059 wq_watchdog_reset_touched(); 7060 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 7061 } 7062 } 7063 7064 static int wq_watchdog_param_set_thresh(const char *val, 7065 const struct kernel_param *kp) 7066 { 7067 unsigned long thresh; 7068 int ret; 7069 7070 ret = kstrtoul(val, 0, &thresh); 7071 if (ret) 7072 return ret; 7073 7074 if (system_wq) 7075 wq_watchdog_set_thresh(thresh); 7076 else 7077 wq_watchdog_thresh = thresh; 7078 7079 return 0; 7080 } 7081 7082 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 7083 .set = wq_watchdog_param_set_thresh, 7084 .get = param_get_ulong, 7085 }; 7086 7087 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 7088 0644); 7089 7090 static void wq_watchdog_init(void) 7091 { 7092 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 7093 wq_watchdog_set_thresh(wq_watchdog_thresh); 7094 } 7095 7096 #else /* CONFIG_WQ_WATCHDOG */ 7097 7098 static inline void wq_watchdog_init(void) { } 7099 7100 #endif /* CONFIG_WQ_WATCHDOG */ 7101 7102 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 7103 { 7104 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 7105 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 7106 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 7107 return; 7108 } 7109 7110 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 7111 } 7112 7113 /** 7114 * workqueue_init_early - early init for workqueue subsystem 7115 * 7116 * This is the first step of three-staged workqueue subsystem initialization and 7117 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 7118 * up. It sets up all the data structures and system workqueues and allows early 7119 * boot code to create workqueues and queue/cancel work items. Actual work item 7120 * execution starts only after kthreads can be created and scheduled right 7121 * before early initcalls. 7122 */ 7123 void __init workqueue_init_early(void) 7124 { 7125 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 7126 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 7127 int i, cpu; 7128 7129 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 7130 7131 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 7132 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); 7133 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); 7134 7135 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 7136 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 7137 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 7138 if (!cpumask_empty(&wq_cmdline_cpumask)) 7139 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 7140 7141 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask); 7142 7143 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 7144 7145 wq_update_pod_attrs_buf = alloc_workqueue_attrs(); 7146 BUG_ON(!wq_update_pod_attrs_buf); 7147 7148 /* 7149 * If nohz_full is enabled, set power efficient workqueue as unbound. 7150 * This allows workqueue items to be moved to HK CPUs. 7151 */ 7152 if (housekeeping_enabled(HK_TYPE_TICK)) 7153 wq_power_efficient = true; 7154 7155 /* initialize WQ_AFFN_SYSTEM pods */ 7156 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7157 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 7158 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7159 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 7160 7161 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 7162 7163 pt->nr_pods = 1; 7164 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 7165 pt->pod_node[0] = NUMA_NO_NODE; 7166 pt->cpu_pod[0] = 0; 7167 7168 /* initialize CPU pools */ 7169 for_each_possible_cpu(cpu) { 7170 struct worker_pool *pool; 7171 7172 i = 0; 7173 for_each_cpu_worker_pool(pool, cpu) { 7174 BUG_ON(init_worker_pool(pool)); 7175 pool->cpu = cpu; 7176 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 7177 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 7178 pool->attrs->nice = std_nice[i++]; 7179 pool->attrs->affn_strict = true; 7180 pool->node = cpu_to_node(cpu); 7181 7182 /* alloc pool ID */ 7183 mutex_lock(&wq_pool_mutex); 7184 BUG_ON(worker_pool_assign_id(pool)); 7185 mutex_unlock(&wq_pool_mutex); 7186 } 7187 } 7188 7189 /* create default unbound and ordered wq attrs */ 7190 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 7191 struct workqueue_attrs *attrs; 7192 7193 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7194 attrs->nice = std_nice[i]; 7195 unbound_std_wq_attrs[i] = attrs; 7196 7197 /* 7198 * An ordered wq should have only one pwq as ordering is 7199 * guaranteed by max_active which is enforced by pwqs. 7200 */ 7201 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7202 attrs->nice = std_nice[i]; 7203 attrs->ordered = true; 7204 ordered_wq_attrs[i] = attrs; 7205 } 7206 7207 system_wq = alloc_workqueue("events", 0, 0); 7208 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 7209 system_long_wq = alloc_workqueue("events_long", 0, 0); 7210 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 7211 WQ_MAX_ACTIVE); 7212 system_freezable_wq = alloc_workqueue("events_freezable", 7213 WQ_FREEZABLE, 0); 7214 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 7215 WQ_POWER_EFFICIENT, 0); 7216 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient", 7217 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 7218 0); 7219 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 7220 !system_unbound_wq || !system_freezable_wq || 7221 !system_power_efficient_wq || 7222 !system_freezable_power_efficient_wq); 7223 } 7224 7225 static void __init wq_cpu_intensive_thresh_init(void) 7226 { 7227 unsigned long thresh; 7228 unsigned long bogo; 7229 7230 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); 7231 BUG_ON(IS_ERR(pwq_release_worker)); 7232 7233 /* if the user set it to a specific value, keep it */ 7234 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 7235 return; 7236 7237 /* 7238 * The default of 10ms is derived from the fact that most modern (as of 7239 * 2023) processors can do a lot in 10ms and that it's just below what 7240 * most consider human-perceivable. However, the kernel also runs on a 7241 * lot slower CPUs including microcontrollers where the threshold is way 7242 * too low. 7243 * 7244 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 7245 * This is by no means accurate but it doesn't have to be. The mechanism 7246 * is still useful even when the threshold is fully scaled up. Also, as 7247 * the reports would usually be applicable to everyone, some machines 7248 * operating on longer thresholds won't significantly diminish their 7249 * usefulness. 7250 */ 7251 thresh = 10 * USEC_PER_MSEC; 7252 7253 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 7254 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 7255 if (bogo < 4000) 7256 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 7257 7258 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 7259 loops_per_jiffy, bogo, thresh); 7260 7261 wq_cpu_intensive_thresh_us = thresh; 7262 } 7263 7264 /** 7265 * workqueue_init - bring workqueue subsystem fully online 7266 * 7267 * This is the second step of three-staged workqueue subsystem initialization 7268 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 7269 * been created and work items queued on them, but there are no kworkers 7270 * executing the work items yet. Populate the worker pools with the initial 7271 * workers and enable future kworker creations. 7272 */ 7273 void __init workqueue_init(void) 7274 { 7275 struct workqueue_struct *wq; 7276 struct worker_pool *pool; 7277 int cpu, bkt; 7278 7279 wq_cpu_intensive_thresh_init(); 7280 7281 mutex_lock(&wq_pool_mutex); 7282 7283 /* 7284 * Per-cpu pools created earlier could be missing node hint. Fix them 7285 * up. Also, create a rescuer for workqueues that requested it. 7286 */ 7287 for_each_possible_cpu(cpu) { 7288 for_each_cpu_worker_pool(pool, cpu) { 7289 pool->node = cpu_to_node(cpu); 7290 } 7291 } 7292 7293 list_for_each_entry(wq, &workqueues, list) { 7294 WARN(init_rescuer(wq), 7295 "workqueue: failed to create early rescuer for %s", 7296 wq->name); 7297 } 7298 7299 mutex_unlock(&wq_pool_mutex); 7300 7301 /* create the initial workers */ 7302 for_each_online_cpu(cpu) { 7303 for_each_cpu_worker_pool(pool, cpu) { 7304 pool->flags &= ~POOL_DISASSOCIATED; 7305 BUG_ON(!create_worker(pool)); 7306 } 7307 } 7308 7309 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 7310 BUG_ON(!create_worker(pool)); 7311 7312 wq_online = true; 7313 wq_watchdog_init(); 7314 } 7315 7316 /* 7317 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 7318 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 7319 * and consecutive pod ID. The rest of @pt is initialized accordingly. 7320 */ 7321 static void __init init_pod_type(struct wq_pod_type *pt, 7322 bool (*cpus_share_pod)(int, int)) 7323 { 7324 int cur, pre, cpu, pod; 7325 7326 pt->nr_pods = 0; 7327 7328 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 7329 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7330 BUG_ON(!pt->cpu_pod); 7331 7332 for_each_possible_cpu(cur) { 7333 for_each_possible_cpu(pre) { 7334 if (pre >= cur) { 7335 pt->cpu_pod[cur] = pt->nr_pods++; 7336 break; 7337 } 7338 if (cpus_share_pod(cur, pre)) { 7339 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 7340 break; 7341 } 7342 } 7343 } 7344 7345 /* init the rest to match @pt->cpu_pod[] */ 7346 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7347 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 7348 BUG_ON(!pt->pod_cpus || !pt->pod_node); 7349 7350 for (pod = 0; pod < pt->nr_pods; pod++) 7351 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 7352 7353 for_each_possible_cpu(cpu) { 7354 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 7355 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 7356 } 7357 } 7358 7359 static bool __init cpus_dont_share(int cpu0, int cpu1) 7360 { 7361 return false; 7362 } 7363 7364 static bool __init cpus_share_smt(int cpu0, int cpu1) 7365 { 7366 #ifdef CONFIG_SCHED_SMT 7367 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 7368 #else 7369 return false; 7370 #endif 7371 } 7372 7373 static bool __init cpus_share_numa(int cpu0, int cpu1) 7374 { 7375 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 7376 } 7377 7378 /** 7379 * workqueue_init_topology - initialize CPU pods for unbound workqueues 7380 * 7381 * This is the third step of there-staged workqueue subsystem initialization and 7382 * invoked after SMP and topology information are fully initialized. It 7383 * initializes the unbound CPU pods accordingly. 7384 */ 7385 void __init workqueue_init_topology(void) 7386 { 7387 struct workqueue_struct *wq; 7388 int cpu; 7389 7390 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 7391 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 7392 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 7393 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 7394 7395 mutex_lock(&wq_pool_mutex); 7396 7397 /* 7398 * Workqueues allocated earlier would have all CPUs sharing the default 7399 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU 7400 * combinations to apply per-pod sharing. 7401 */ 7402 list_for_each_entry(wq, &workqueues, list) { 7403 for_each_online_cpu(cpu) 7404 wq_update_pod(wq, cpu, cpu, true); 7405 if (wq->flags & WQ_UNBOUND) { 7406 mutex_lock(&wq->mutex); 7407 wq_update_node_max_active(wq, -1); 7408 mutex_unlock(&wq->mutex); 7409 } 7410 } 7411 7412 mutex_unlock(&wq_pool_mutex); 7413 } 7414 7415 void __warn_flushing_systemwide_wq(void) 7416 { 7417 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 7418 dump_stack(); 7419 } 7420 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 7421 7422 static int __init workqueue_unbound_cpus_setup(char *str) 7423 { 7424 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 7425 cpumask_clear(&wq_cmdline_cpumask); 7426 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 7427 } 7428 7429 return 1; 7430 } 7431 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 7432