xref: /linux-6.15/kernel/user_namespace.c (revision d6469690)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 #include <linux/export.h>
4 #include <linux/nsproxy.h>
5 #include <linux/slab.h>
6 #include <linux/sched/signal.h>
7 #include <linux/user_namespace.h>
8 #include <linux/proc_ns.h>
9 #include <linux/highuid.h>
10 #include <linux/cred.h>
11 #include <linux/securebits.h>
12 #include <linux/keyctl.h>
13 #include <linux/key-type.h>
14 #include <keys/user-type.h>
15 #include <linux/seq_file.h>
16 #include <linux/fs.h>
17 #include <linux/uaccess.h>
18 #include <linux/ctype.h>
19 #include <linux/projid.h>
20 #include <linux/fs_struct.h>
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 
24 static struct kmem_cache *user_ns_cachep __read_mostly;
25 static DEFINE_MUTEX(userns_state_mutex);
26 
27 static bool new_idmap_permitted(const struct file *file,
28 				struct user_namespace *ns, int cap_setid,
29 				struct uid_gid_map *map);
30 static void free_user_ns(struct work_struct *work);
31 
32 static struct ucounts *inc_user_namespaces(struct user_namespace *ns, kuid_t uid)
33 {
34 	return inc_ucount(ns, uid, UCOUNT_USER_NAMESPACES);
35 }
36 
37 static void dec_user_namespaces(struct ucounts *ucounts)
38 {
39 	return dec_ucount(ucounts, UCOUNT_USER_NAMESPACES);
40 }
41 
42 static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns)
43 {
44 	/* Start with the same capabilities as init but useless for doing
45 	 * anything as the capabilities are bound to the new user namespace.
46 	 */
47 	cred->securebits = SECUREBITS_DEFAULT;
48 	cred->cap_inheritable = CAP_EMPTY_SET;
49 	cred->cap_permitted = CAP_FULL_SET;
50 	cred->cap_effective = CAP_FULL_SET;
51 	cred->cap_ambient = CAP_EMPTY_SET;
52 	cred->cap_bset = CAP_FULL_SET;
53 #ifdef CONFIG_KEYS
54 	key_put(cred->request_key_auth);
55 	cred->request_key_auth = NULL;
56 #endif
57 	/* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */
58 	cred->user_ns = user_ns;
59 }
60 
61 /*
62  * Create a new user namespace, deriving the creator from the user in the
63  * passed credentials, and replacing that user with the new root user for the
64  * new namespace.
65  *
66  * This is called by copy_creds(), which will finish setting the target task's
67  * credentials.
68  */
69 int create_user_ns(struct cred *new)
70 {
71 	struct user_namespace *ns, *parent_ns = new->user_ns;
72 	kuid_t owner = new->euid;
73 	kgid_t group = new->egid;
74 	struct ucounts *ucounts;
75 	int ret, i;
76 
77 	ret = -ENOSPC;
78 	if (parent_ns->level > 32)
79 		goto fail;
80 
81 	ucounts = inc_user_namespaces(parent_ns, owner);
82 	if (!ucounts)
83 		goto fail;
84 
85 	/*
86 	 * Verify that we can not violate the policy of which files
87 	 * may be accessed that is specified by the root directory,
88 	 * by verifing that the root directory is at the root of the
89 	 * mount namespace which allows all files to be accessed.
90 	 */
91 	ret = -EPERM;
92 	if (current_chrooted())
93 		goto fail_dec;
94 
95 	/* The creator needs a mapping in the parent user namespace
96 	 * or else we won't be able to reasonably tell userspace who
97 	 * created a user_namespace.
98 	 */
99 	ret = -EPERM;
100 	if (!kuid_has_mapping(parent_ns, owner) ||
101 	    !kgid_has_mapping(parent_ns, group))
102 		goto fail_dec;
103 
104 	ret = -ENOMEM;
105 	ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL);
106 	if (!ns)
107 		goto fail_dec;
108 
109 	ns->parent_could_setfcap = cap_raised(new->cap_effective, CAP_SETFCAP);
110 	ret = ns_alloc_inum(&ns->ns);
111 	if (ret)
112 		goto fail_free;
113 	ns->ns.ops = &userns_operations;
114 
115 	refcount_set(&ns->ns.count, 1);
116 	/* Leave the new->user_ns reference with the new user namespace. */
117 	ns->parent = parent_ns;
118 	ns->level = parent_ns->level + 1;
119 	ns->owner = owner;
120 	ns->group = group;
121 	INIT_WORK(&ns->work, free_user_ns);
122 	for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++) {
123 		ns->ucount_max[i] = INT_MAX;
124 	}
125 	ns->ucount_max[UCOUNT_RLIMIT_NPROC] = rlimit(RLIMIT_NPROC);
126 	ns->ucount_max[UCOUNT_RLIMIT_MSGQUEUE] = rlimit(RLIMIT_MSGQUEUE);
127 	ns->ucount_max[UCOUNT_RLIMIT_SIGPENDING] = rlimit(RLIMIT_SIGPENDING);
128 	ns->ucounts = ucounts;
129 
130 	/* Inherit USERNS_SETGROUPS_ALLOWED from our parent */
131 	mutex_lock(&userns_state_mutex);
132 	ns->flags = parent_ns->flags;
133 	mutex_unlock(&userns_state_mutex);
134 
135 #ifdef CONFIG_KEYS
136 	INIT_LIST_HEAD(&ns->keyring_name_list);
137 	init_rwsem(&ns->keyring_sem);
138 #endif
139 	ret = -ENOMEM;
140 	if (!setup_userns_sysctls(ns))
141 		goto fail_keyring;
142 
143 	set_cred_user_ns(new, ns);
144 	return 0;
145 fail_keyring:
146 #ifdef CONFIG_PERSISTENT_KEYRINGS
147 	key_put(ns->persistent_keyring_register);
148 #endif
149 	ns_free_inum(&ns->ns);
150 fail_free:
151 	kmem_cache_free(user_ns_cachep, ns);
152 fail_dec:
153 	dec_user_namespaces(ucounts);
154 fail:
155 	return ret;
156 }
157 
158 int unshare_userns(unsigned long unshare_flags, struct cred **new_cred)
159 {
160 	struct cred *cred;
161 	int err = -ENOMEM;
162 
163 	if (!(unshare_flags & CLONE_NEWUSER))
164 		return 0;
165 
166 	cred = prepare_creds();
167 	if (cred) {
168 		err = create_user_ns(cred);
169 		if (err)
170 			put_cred(cred);
171 		else
172 			*new_cred = cred;
173 	}
174 
175 	return err;
176 }
177 
178 static void free_user_ns(struct work_struct *work)
179 {
180 	struct user_namespace *parent, *ns =
181 		container_of(work, struct user_namespace, work);
182 
183 	do {
184 		struct ucounts *ucounts = ns->ucounts;
185 		parent = ns->parent;
186 		if (ns->gid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
187 			kfree(ns->gid_map.forward);
188 			kfree(ns->gid_map.reverse);
189 		}
190 		if (ns->uid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
191 			kfree(ns->uid_map.forward);
192 			kfree(ns->uid_map.reverse);
193 		}
194 		if (ns->projid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
195 			kfree(ns->projid_map.forward);
196 			kfree(ns->projid_map.reverse);
197 		}
198 		retire_userns_sysctls(ns);
199 		key_free_user_ns(ns);
200 		ns_free_inum(&ns->ns);
201 		kmem_cache_free(user_ns_cachep, ns);
202 		dec_user_namespaces(ucounts);
203 		ns = parent;
204 	} while (refcount_dec_and_test(&parent->ns.count));
205 }
206 
207 void __put_user_ns(struct user_namespace *ns)
208 {
209 	schedule_work(&ns->work);
210 }
211 EXPORT_SYMBOL(__put_user_ns);
212 
213 /**
214  * idmap_key struct holds the information necessary to find an idmapping in a
215  * sorted idmap array. It is passed to cmp_map_id() as first argument.
216  */
217 struct idmap_key {
218 	bool map_up; /* true  -> id from kid; false -> kid from id */
219 	u32 id; /* id to find */
220 	u32 count; /* == 0 unless used with map_id_range_down() */
221 };
222 
223 /**
224  * cmp_map_id - Function to be passed to bsearch() to find the requested
225  * idmapping. Expects struct idmap_key to be passed via @k.
226  */
227 static int cmp_map_id(const void *k, const void *e)
228 {
229 	u32 first, last, id2;
230 	const struct idmap_key *key = k;
231 	const struct uid_gid_extent *el = e;
232 
233 	id2 = key->id + key->count - 1;
234 
235 	/* handle map_id_{down,up}() */
236 	if (key->map_up)
237 		first = el->lower_first;
238 	else
239 		first = el->first;
240 
241 	last = first + el->count - 1;
242 
243 	if (key->id >= first && key->id <= last &&
244 	    (id2 >= first && id2 <= last))
245 		return 0;
246 
247 	if (key->id < first || id2 < first)
248 		return -1;
249 
250 	return 1;
251 }
252 
253 /**
254  * map_id_range_down_max - Find idmap via binary search in ordered idmap array.
255  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
256  */
257 static struct uid_gid_extent *
258 map_id_range_down_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
259 {
260 	struct idmap_key key;
261 
262 	key.map_up = false;
263 	key.count = count;
264 	key.id = id;
265 
266 	return bsearch(&key, map->forward, extents,
267 		       sizeof(struct uid_gid_extent), cmp_map_id);
268 }
269 
270 /**
271  * map_id_range_down_base - Find idmap via binary search in static extent array.
272  * Can only be called if number of mappings is equal or less than
273  * UID_GID_MAP_MAX_BASE_EXTENTS.
274  */
275 static struct uid_gid_extent *
276 map_id_range_down_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
277 {
278 	unsigned idx;
279 	u32 first, last, id2;
280 
281 	id2 = id + count - 1;
282 
283 	/* Find the matching extent */
284 	for (idx = 0; idx < extents; idx++) {
285 		first = map->extent[idx].first;
286 		last = first + map->extent[idx].count - 1;
287 		if (id >= first && id <= last &&
288 		    (id2 >= first && id2 <= last))
289 			return &map->extent[idx];
290 	}
291 	return NULL;
292 }
293 
294 static u32 map_id_range_down(struct uid_gid_map *map, u32 id, u32 count)
295 {
296 	struct uid_gid_extent *extent;
297 	unsigned extents = map->nr_extents;
298 	smp_rmb();
299 
300 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
301 		extent = map_id_range_down_base(extents, map, id, count);
302 	else
303 		extent = map_id_range_down_max(extents, map, id, count);
304 
305 	/* Map the id or note failure */
306 	if (extent)
307 		id = (id - extent->first) + extent->lower_first;
308 	else
309 		id = (u32) -1;
310 
311 	return id;
312 }
313 
314 static u32 map_id_down(struct uid_gid_map *map, u32 id)
315 {
316 	return map_id_range_down(map, id, 1);
317 }
318 
319 /**
320  * map_id_up_base - Find idmap via binary search in static extent array.
321  * Can only be called if number of mappings is equal or less than
322  * UID_GID_MAP_MAX_BASE_EXTENTS.
323  */
324 static struct uid_gid_extent *
325 map_id_up_base(unsigned extents, struct uid_gid_map *map, u32 id)
326 {
327 	unsigned idx;
328 	u32 first, last;
329 
330 	/* Find the matching extent */
331 	for (idx = 0; idx < extents; idx++) {
332 		first = map->extent[idx].lower_first;
333 		last = first + map->extent[idx].count - 1;
334 		if (id >= first && id <= last)
335 			return &map->extent[idx];
336 	}
337 	return NULL;
338 }
339 
340 /**
341  * map_id_up_max - Find idmap via binary search in ordered idmap array.
342  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
343  */
344 static struct uid_gid_extent *
345 map_id_up_max(unsigned extents, struct uid_gid_map *map, u32 id)
346 {
347 	struct idmap_key key;
348 
349 	key.map_up = true;
350 	key.count = 1;
351 	key.id = id;
352 
353 	return bsearch(&key, map->reverse, extents,
354 		       sizeof(struct uid_gid_extent), cmp_map_id);
355 }
356 
357 static u32 map_id_up(struct uid_gid_map *map, u32 id)
358 {
359 	struct uid_gid_extent *extent;
360 	unsigned extents = map->nr_extents;
361 	smp_rmb();
362 
363 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
364 		extent = map_id_up_base(extents, map, id);
365 	else
366 		extent = map_id_up_max(extents, map, id);
367 
368 	/* Map the id or note failure */
369 	if (extent)
370 		id = (id - extent->lower_first) + extent->first;
371 	else
372 		id = (u32) -1;
373 
374 	return id;
375 }
376 
377 /**
378  *	make_kuid - Map a user-namespace uid pair into a kuid.
379  *	@ns:  User namespace that the uid is in
380  *	@uid: User identifier
381  *
382  *	Maps a user-namespace uid pair into a kernel internal kuid,
383  *	and returns that kuid.
384  *
385  *	When there is no mapping defined for the user-namespace uid
386  *	pair INVALID_UID is returned.  Callers are expected to test
387  *	for and handle INVALID_UID being returned.  INVALID_UID
388  *	may be tested for using uid_valid().
389  */
390 kuid_t make_kuid(struct user_namespace *ns, uid_t uid)
391 {
392 	/* Map the uid to a global kernel uid */
393 	return KUIDT_INIT(map_id_down(&ns->uid_map, uid));
394 }
395 EXPORT_SYMBOL(make_kuid);
396 
397 /**
398  *	from_kuid - Create a uid from a kuid user-namespace pair.
399  *	@targ: The user namespace we want a uid in.
400  *	@kuid: The kernel internal uid to start with.
401  *
402  *	Map @kuid into the user-namespace specified by @targ and
403  *	return the resulting uid.
404  *
405  *	There is always a mapping into the initial user_namespace.
406  *
407  *	If @kuid has no mapping in @targ (uid_t)-1 is returned.
408  */
409 uid_t from_kuid(struct user_namespace *targ, kuid_t kuid)
410 {
411 	/* Map the uid from a global kernel uid */
412 	return map_id_up(&targ->uid_map, __kuid_val(kuid));
413 }
414 EXPORT_SYMBOL(from_kuid);
415 
416 /**
417  *	from_kuid_munged - Create a uid from a kuid user-namespace pair.
418  *	@targ: The user namespace we want a uid in.
419  *	@kuid: The kernel internal uid to start with.
420  *
421  *	Map @kuid into the user-namespace specified by @targ and
422  *	return the resulting uid.
423  *
424  *	There is always a mapping into the initial user_namespace.
425  *
426  *	Unlike from_kuid from_kuid_munged never fails and always
427  *	returns a valid uid.  This makes from_kuid_munged appropriate
428  *	for use in syscalls like stat and getuid where failing the
429  *	system call and failing to provide a valid uid are not an
430  *	options.
431  *
432  *	If @kuid has no mapping in @targ overflowuid is returned.
433  */
434 uid_t from_kuid_munged(struct user_namespace *targ, kuid_t kuid)
435 {
436 	uid_t uid;
437 	uid = from_kuid(targ, kuid);
438 
439 	if (uid == (uid_t) -1)
440 		uid = overflowuid;
441 	return uid;
442 }
443 EXPORT_SYMBOL(from_kuid_munged);
444 
445 /**
446  *	make_kgid - Map a user-namespace gid pair into a kgid.
447  *	@ns:  User namespace that the gid is in
448  *	@gid: group identifier
449  *
450  *	Maps a user-namespace gid pair into a kernel internal kgid,
451  *	and returns that kgid.
452  *
453  *	When there is no mapping defined for the user-namespace gid
454  *	pair INVALID_GID is returned.  Callers are expected to test
455  *	for and handle INVALID_GID being returned.  INVALID_GID may be
456  *	tested for using gid_valid().
457  */
458 kgid_t make_kgid(struct user_namespace *ns, gid_t gid)
459 {
460 	/* Map the gid to a global kernel gid */
461 	return KGIDT_INIT(map_id_down(&ns->gid_map, gid));
462 }
463 EXPORT_SYMBOL(make_kgid);
464 
465 /**
466  *	from_kgid - Create a gid from a kgid user-namespace pair.
467  *	@targ: The user namespace we want a gid in.
468  *	@kgid: The kernel internal gid to start with.
469  *
470  *	Map @kgid into the user-namespace specified by @targ and
471  *	return the resulting gid.
472  *
473  *	There is always a mapping into the initial user_namespace.
474  *
475  *	If @kgid has no mapping in @targ (gid_t)-1 is returned.
476  */
477 gid_t from_kgid(struct user_namespace *targ, kgid_t kgid)
478 {
479 	/* Map the gid from a global kernel gid */
480 	return map_id_up(&targ->gid_map, __kgid_val(kgid));
481 }
482 EXPORT_SYMBOL(from_kgid);
483 
484 /**
485  *	from_kgid_munged - Create a gid from a kgid user-namespace pair.
486  *	@targ: The user namespace we want a gid in.
487  *	@kgid: The kernel internal gid to start with.
488  *
489  *	Map @kgid into the user-namespace specified by @targ and
490  *	return the resulting gid.
491  *
492  *	There is always a mapping into the initial user_namespace.
493  *
494  *	Unlike from_kgid from_kgid_munged never fails and always
495  *	returns a valid gid.  This makes from_kgid_munged appropriate
496  *	for use in syscalls like stat and getgid where failing the
497  *	system call and failing to provide a valid gid are not options.
498  *
499  *	If @kgid has no mapping in @targ overflowgid is returned.
500  */
501 gid_t from_kgid_munged(struct user_namespace *targ, kgid_t kgid)
502 {
503 	gid_t gid;
504 	gid = from_kgid(targ, kgid);
505 
506 	if (gid == (gid_t) -1)
507 		gid = overflowgid;
508 	return gid;
509 }
510 EXPORT_SYMBOL(from_kgid_munged);
511 
512 /**
513  *	make_kprojid - Map a user-namespace projid pair into a kprojid.
514  *	@ns:  User namespace that the projid is in
515  *	@projid: Project identifier
516  *
517  *	Maps a user-namespace uid pair into a kernel internal kuid,
518  *	and returns that kuid.
519  *
520  *	When there is no mapping defined for the user-namespace projid
521  *	pair INVALID_PROJID is returned.  Callers are expected to test
522  *	for and handle INVALID_PROJID being returned.  INVALID_PROJID
523  *	may be tested for using projid_valid().
524  */
525 kprojid_t make_kprojid(struct user_namespace *ns, projid_t projid)
526 {
527 	/* Map the uid to a global kernel uid */
528 	return KPROJIDT_INIT(map_id_down(&ns->projid_map, projid));
529 }
530 EXPORT_SYMBOL(make_kprojid);
531 
532 /**
533  *	from_kprojid - Create a projid from a kprojid user-namespace pair.
534  *	@targ: The user namespace we want a projid in.
535  *	@kprojid: The kernel internal project identifier to start with.
536  *
537  *	Map @kprojid into the user-namespace specified by @targ and
538  *	return the resulting projid.
539  *
540  *	There is always a mapping into the initial user_namespace.
541  *
542  *	If @kprojid has no mapping in @targ (projid_t)-1 is returned.
543  */
544 projid_t from_kprojid(struct user_namespace *targ, kprojid_t kprojid)
545 {
546 	/* Map the uid from a global kernel uid */
547 	return map_id_up(&targ->projid_map, __kprojid_val(kprojid));
548 }
549 EXPORT_SYMBOL(from_kprojid);
550 
551 /**
552  *	from_kprojid_munged - Create a projiid from a kprojid user-namespace pair.
553  *	@targ: The user namespace we want a projid in.
554  *	@kprojid: The kernel internal projid to start with.
555  *
556  *	Map @kprojid into the user-namespace specified by @targ and
557  *	return the resulting projid.
558  *
559  *	There is always a mapping into the initial user_namespace.
560  *
561  *	Unlike from_kprojid from_kprojid_munged never fails and always
562  *	returns a valid projid.  This makes from_kprojid_munged
563  *	appropriate for use in syscalls like stat and where
564  *	failing the system call and failing to provide a valid projid are
565  *	not an options.
566  *
567  *	If @kprojid has no mapping in @targ OVERFLOW_PROJID is returned.
568  */
569 projid_t from_kprojid_munged(struct user_namespace *targ, kprojid_t kprojid)
570 {
571 	projid_t projid;
572 	projid = from_kprojid(targ, kprojid);
573 
574 	if (projid == (projid_t) -1)
575 		projid = OVERFLOW_PROJID;
576 	return projid;
577 }
578 EXPORT_SYMBOL(from_kprojid_munged);
579 
580 
581 static int uid_m_show(struct seq_file *seq, void *v)
582 {
583 	struct user_namespace *ns = seq->private;
584 	struct uid_gid_extent *extent = v;
585 	struct user_namespace *lower_ns;
586 	uid_t lower;
587 
588 	lower_ns = seq_user_ns(seq);
589 	if ((lower_ns == ns) && lower_ns->parent)
590 		lower_ns = lower_ns->parent;
591 
592 	lower = from_kuid(lower_ns, KUIDT_INIT(extent->lower_first));
593 
594 	seq_printf(seq, "%10u %10u %10u\n",
595 		extent->first,
596 		lower,
597 		extent->count);
598 
599 	return 0;
600 }
601 
602 static int gid_m_show(struct seq_file *seq, void *v)
603 {
604 	struct user_namespace *ns = seq->private;
605 	struct uid_gid_extent *extent = v;
606 	struct user_namespace *lower_ns;
607 	gid_t lower;
608 
609 	lower_ns = seq_user_ns(seq);
610 	if ((lower_ns == ns) && lower_ns->parent)
611 		lower_ns = lower_ns->parent;
612 
613 	lower = from_kgid(lower_ns, KGIDT_INIT(extent->lower_first));
614 
615 	seq_printf(seq, "%10u %10u %10u\n",
616 		extent->first,
617 		lower,
618 		extent->count);
619 
620 	return 0;
621 }
622 
623 static int projid_m_show(struct seq_file *seq, void *v)
624 {
625 	struct user_namespace *ns = seq->private;
626 	struct uid_gid_extent *extent = v;
627 	struct user_namespace *lower_ns;
628 	projid_t lower;
629 
630 	lower_ns = seq_user_ns(seq);
631 	if ((lower_ns == ns) && lower_ns->parent)
632 		lower_ns = lower_ns->parent;
633 
634 	lower = from_kprojid(lower_ns, KPROJIDT_INIT(extent->lower_first));
635 
636 	seq_printf(seq, "%10u %10u %10u\n",
637 		extent->first,
638 		lower,
639 		extent->count);
640 
641 	return 0;
642 }
643 
644 static void *m_start(struct seq_file *seq, loff_t *ppos,
645 		     struct uid_gid_map *map)
646 {
647 	loff_t pos = *ppos;
648 	unsigned extents = map->nr_extents;
649 	smp_rmb();
650 
651 	if (pos >= extents)
652 		return NULL;
653 
654 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
655 		return &map->extent[pos];
656 
657 	return &map->forward[pos];
658 }
659 
660 static void *uid_m_start(struct seq_file *seq, loff_t *ppos)
661 {
662 	struct user_namespace *ns = seq->private;
663 
664 	return m_start(seq, ppos, &ns->uid_map);
665 }
666 
667 static void *gid_m_start(struct seq_file *seq, loff_t *ppos)
668 {
669 	struct user_namespace *ns = seq->private;
670 
671 	return m_start(seq, ppos, &ns->gid_map);
672 }
673 
674 static void *projid_m_start(struct seq_file *seq, loff_t *ppos)
675 {
676 	struct user_namespace *ns = seq->private;
677 
678 	return m_start(seq, ppos, &ns->projid_map);
679 }
680 
681 static void *m_next(struct seq_file *seq, void *v, loff_t *pos)
682 {
683 	(*pos)++;
684 	return seq->op->start(seq, pos);
685 }
686 
687 static void m_stop(struct seq_file *seq, void *v)
688 {
689 	return;
690 }
691 
692 const struct seq_operations proc_uid_seq_operations = {
693 	.start = uid_m_start,
694 	.stop = m_stop,
695 	.next = m_next,
696 	.show = uid_m_show,
697 };
698 
699 const struct seq_operations proc_gid_seq_operations = {
700 	.start = gid_m_start,
701 	.stop = m_stop,
702 	.next = m_next,
703 	.show = gid_m_show,
704 };
705 
706 const struct seq_operations proc_projid_seq_operations = {
707 	.start = projid_m_start,
708 	.stop = m_stop,
709 	.next = m_next,
710 	.show = projid_m_show,
711 };
712 
713 static bool mappings_overlap(struct uid_gid_map *new_map,
714 			     struct uid_gid_extent *extent)
715 {
716 	u32 upper_first, lower_first, upper_last, lower_last;
717 	unsigned idx;
718 
719 	upper_first = extent->first;
720 	lower_first = extent->lower_first;
721 	upper_last = upper_first + extent->count - 1;
722 	lower_last = lower_first + extent->count - 1;
723 
724 	for (idx = 0; idx < new_map->nr_extents; idx++) {
725 		u32 prev_upper_first, prev_lower_first;
726 		u32 prev_upper_last, prev_lower_last;
727 		struct uid_gid_extent *prev;
728 
729 		if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
730 			prev = &new_map->extent[idx];
731 		else
732 			prev = &new_map->forward[idx];
733 
734 		prev_upper_first = prev->first;
735 		prev_lower_first = prev->lower_first;
736 		prev_upper_last = prev_upper_first + prev->count - 1;
737 		prev_lower_last = prev_lower_first + prev->count - 1;
738 
739 		/* Does the upper range intersect a previous extent? */
740 		if ((prev_upper_first <= upper_last) &&
741 		    (prev_upper_last >= upper_first))
742 			return true;
743 
744 		/* Does the lower range intersect a previous extent? */
745 		if ((prev_lower_first <= lower_last) &&
746 		    (prev_lower_last >= lower_first))
747 			return true;
748 	}
749 	return false;
750 }
751 
752 /**
753  * insert_extent - Safely insert a new idmap extent into struct uid_gid_map.
754  * Takes care to allocate a 4K block of memory if the number of mappings exceeds
755  * UID_GID_MAP_MAX_BASE_EXTENTS.
756  */
757 static int insert_extent(struct uid_gid_map *map, struct uid_gid_extent *extent)
758 {
759 	struct uid_gid_extent *dest;
760 
761 	if (map->nr_extents == UID_GID_MAP_MAX_BASE_EXTENTS) {
762 		struct uid_gid_extent *forward;
763 
764 		/* Allocate memory for 340 mappings. */
765 		forward = kmalloc_array(UID_GID_MAP_MAX_EXTENTS,
766 					sizeof(struct uid_gid_extent),
767 					GFP_KERNEL);
768 		if (!forward)
769 			return -ENOMEM;
770 
771 		/* Copy over memory. Only set up memory for the forward pointer.
772 		 * Defer the memory setup for the reverse pointer.
773 		 */
774 		memcpy(forward, map->extent,
775 		       map->nr_extents * sizeof(map->extent[0]));
776 
777 		map->forward = forward;
778 		map->reverse = NULL;
779 	}
780 
781 	if (map->nr_extents < UID_GID_MAP_MAX_BASE_EXTENTS)
782 		dest = &map->extent[map->nr_extents];
783 	else
784 		dest = &map->forward[map->nr_extents];
785 
786 	*dest = *extent;
787 	map->nr_extents++;
788 	return 0;
789 }
790 
791 /* cmp function to sort() forward mappings */
792 static int cmp_extents_forward(const void *a, const void *b)
793 {
794 	const struct uid_gid_extent *e1 = a;
795 	const struct uid_gid_extent *e2 = b;
796 
797 	if (e1->first < e2->first)
798 		return -1;
799 
800 	if (e1->first > e2->first)
801 		return 1;
802 
803 	return 0;
804 }
805 
806 /* cmp function to sort() reverse mappings */
807 static int cmp_extents_reverse(const void *a, const void *b)
808 {
809 	const struct uid_gid_extent *e1 = a;
810 	const struct uid_gid_extent *e2 = b;
811 
812 	if (e1->lower_first < e2->lower_first)
813 		return -1;
814 
815 	if (e1->lower_first > e2->lower_first)
816 		return 1;
817 
818 	return 0;
819 }
820 
821 /**
822  * sort_idmaps - Sorts an array of idmap entries.
823  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
824  */
825 static int sort_idmaps(struct uid_gid_map *map)
826 {
827 	if (map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
828 		return 0;
829 
830 	/* Sort forward array. */
831 	sort(map->forward, map->nr_extents, sizeof(struct uid_gid_extent),
832 	     cmp_extents_forward, NULL);
833 
834 	/* Only copy the memory from forward we actually need. */
835 	map->reverse = kmemdup(map->forward,
836 			       map->nr_extents * sizeof(struct uid_gid_extent),
837 			       GFP_KERNEL);
838 	if (!map->reverse)
839 		return -ENOMEM;
840 
841 	/* Sort reverse array. */
842 	sort(map->reverse, map->nr_extents, sizeof(struct uid_gid_extent),
843 	     cmp_extents_reverse, NULL);
844 
845 	return 0;
846 }
847 
848 /**
849  * verify_root_map() - check the uid 0 mapping
850  * @file: idmapping file
851  * @map_ns: user namespace of the target process
852  * @new_map: requested idmap
853  *
854  * If a process requests mapping parent uid 0 into the new ns, verify that the
855  * process writing the map had the CAP_SETFCAP capability as the target process
856  * will be able to write fscaps that are valid in ancestor user namespaces.
857  *
858  * Return: true if the mapping is allowed, false if not.
859  */
860 static bool verify_root_map(const struct file *file,
861 			    struct user_namespace *map_ns,
862 			    struct uid_gid_map *new_map)
863 {
864 	int idx;
865 	const struct user_namespace *file_ns = file->f_cred->user_ns;
866 	struct uid_gid_extent *extent0 = NULL;
867 
868 	for (idx = 0; idx < new_map->nr_extents; idx++) {
869 		if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
870 			extent0 = &new_map->extent[idx];
871 		else
872 			extent0 = &new_map->forward[idx];
873 		if (extent0->lower_first == 0)
874 			break;
875 
876 		extent0 = NULL;
877 	}
878 
879 	if (!extent0)
880 		return true;
881 
882 	if (map_ns == file_ns) {
883 		/* The process unshared its ns and is writing to its own
884 		 * /proc/self/uid_map.  User already has full capabilites in
885 		 * the new namespace.  Verify that the parent had CAP_SETFCAP
886 		 * when it unshared.
887 		 * */
888 		if (!file_ns->parent_could_setfcap)
889 			return false;
890 	} else {
891 		/* Process p1 is writing to uid_map of p2, who is in a child
892 		 * user namespace to p1's.  Verify that the opener of the map
893 		 * file has CAP_SETFCAP against the parent of the new map
894 		 * namespace */
895 		if (!file_ns_capable(file, map_ns->parent, CAP_SETFCAP))
896 			return false;
897 	}
898 
899 	return true;
900 }
901 
902 static ssize_t map_write(struct file *file, const char __user *buf,
903 			 size_t count, loff_t *ppos,
904 			 int cap_setid,
905 			 struct uid_gid_map *map,
906 			 struct uid_gid_map *parent_map)
907 {
908 	struct seq_file *seq = file->private_data;
909 	struct user_namespace *map_ns = seq->private;
910 	struct uid_gid_map new_map;
911 	unsigned idx;
912 	struct uid_gid_extent extent;
913 	char *kbuf = NULL, *pos, *next_line;
914 	ssize_t ret;
915 
916 	/* Only allow < page size writes at the beginning of the file */
917 	if ((*ppos != 0) || (count >= PAGE_SIZE))
918 		return -EINVAL;
919 
920 	/* Slurp in the user data */
921 	kbuf = memdup_user_nul(buf, count);
922 	if (IS_ERR(kbuf))
923 		return PTR_ERR(kbuf);
924 
925 	/*
926 	 * The userns_state_mutex serializes all writes to any given map.
927 	 *
928 	 * Any map is only ever written once.
929 	 *
930 	 * An id map fits within 1 cache line on most architectures.
931 	 *
932 	 * On read nothing needs to be done unless you are on an
933 	 * architecture with a crazy cache coherency model like alpha.
934 	 *
935 	 * There is a one time data dependency between reading the
936 	 * count of the extents and the values of the extents.  The
937 	 * desired behavior is to see the values of the extents that
938 	 * were written before the count of the extents.
939 	 *
940 	 * To achieve this smp_wmb() is used on guarantee the write
941 	 * order and smp_rmb() is guaranteed that we don't have crazy
942 	 * architectures returning stale data.
943 	 */
944 	mutex_lock(&userns_state_mutex);
945 
946 	memset(&new_map, 0, sizeof(struct uid_gid_map));
947 
948 	ret = -EPERM;
949 	/* Only allow one successful write to the map */
950 	if (map->nr_extents != 0)
951 		goto out;
952 
953 	/*
954 	 * Adjusting namespace settings requires capabilities on the target.
955 	 */
956 	if (cap_valid(cap_setid) && !file_ns_capable(file, map_ns, CAP_SYS_ADMIN))
957 		goto out;
958 
959 	/* Parse the user data */
960 	ret = -EINVAL;
961 	pos = kbuf;
962 	for (; pos; pos = next_line) {
963 
964 		/* Find the end of line and ensure I don't look past it */
965 		next_line = strchr(pos, '\n');
966 		if (next_line) {
967 			*next_line = '\0';
968 			next_line++;
969 			if (*next_line == '\0')
970 				next_line = NULL;
971 		}
972 
973 		pos = skip_spaces(pos);
974 		extent.first = simple_strtoul(pos, &pos, 10);
975 		if (!isspace(*pos))
976 			goto out;
977 
978 		pos = skip_spaces(pos);
979 		extent.lower_first = simple_strtoul(pos, &pos, 10);
980 		if (!isspace(*pos))
981 			goto out;
982 
983 		pos = skip_spaces(pos);
984 		extent.count = simple_strtoul(pos, &pos, 10);
985 		if (*pos && !isspace(*pos))
986 			goto out;
987 
988 		/* Verify there is not trailing junk on the line */
989 		pos = skip_spaces(pos);
990 		if (*pos != '\0')
991 			goto out;
992 
993 		/* Verify we have been given valid starting values */
994 		if ((extent.first == (u32) -1) ||
995 		    (extent.lower_first == (u32) -1))
996 			goto out;
997 
998 		/* Verify count is not zero and does not cause the
999 		 * extent to wrap
1000 		 */
1001 		if ((extent.first + extent.count) <= extent.first)
1002 			goto out;
1003 		if ((extent.lower_first + extent.count) <=
1004 		     extent.lower_first)
1005 			goto out;
1006 
1007 		/* Do the ranges in extent overlap any previous extents? */
1008 		if (mappings_overlap(&new_map, &extent))
1009 			goto out;
1010 
1011 		if ((new_map.nr_extents + 1) == UID_GID_MAP_MAX_EXTENTS &&
1012 		    (next_line != NULL))
1013 			goto out;
1014 
1015 		ret = insert_extent(&new_map, &extent);
1016 		if (ret < 0)
1017 			goto out;
1018 		ret = -EINVAL;
1019 	}
1020 	/* Be very certaint the new map actually exists */
1021 	if (new_map.nr_extents == 0)
1022 		goto out;
1023 
1024 	ret = -EPERM;
1025 	/* Validate the user is allowed to use user id's mapped to. */
1026 	if (!new_idmap_permitted(file, map_ns, cap_setid, &new_map))
1027 		goto out;
1028 
1029 	ret = -EPERM;
1030 	/* Map the lower ids from the parent user namespace to the
1031 	 * kernel global id space.
1032 	 */
1033 	for (idx = 0; idx < new_map.nr_extents; idx++) {
1034 		struct uid_gid_extent *e;
1035 		u32 lower_first;
1036 
1037 		if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
1038 			e = &new_map.extent[idx];
1039 		else
1040 			e = &new_map.forward[idx];
1041 
1042 		lower_first = map_id_range_down(parent_map,
1043 						e->lower_first,
1044 						e->count);
1045 
1046 		/* Fail if we can not map the specified extent to
1047 		 * the kernel global id space.
1048 		 */
1049 		if (lower_first == (u32) -1)
1050 			goto out;
1051 
1052 		e->lower_first = lower_first;
1053 	}
1054 
1055 	/*
1056 	 * If we want to use binary search for lookup, this clones the extent
1057 	 * array and sorts both copies.
1058 	 */
1059 	ret = sort_idmaps(&new_map);
1060 	if (ret < 0)
1061 		goto out;
1062 
1063 	/* Install the map */
1064 	if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) {
1065 		memcpy(map->extent, new_map.extent,
1066 		       new_map.nr_extents * sizeof(new_map.extent[0]));
1067 	} else {
1068 		map->forward = new_map.forward;
1069 		map->reverse = new_map.reverse;
1070 	}
1071 	smp_wmb();
1072 	map->nr_extents = new_map.nr_extents;
1073 
1074 	*ppos = count;
1075 	ret = count;
1076 out:
1077 	if (ret < 0 && new_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
1078 		kfree(new_map.forward);
1079 		kfree(new_map.reverse);
1080 		map->forward = NULL;
1081 		map->reverse = NULL;
1082 		map->nr_extents = 0;
1083 	}
1084 
1085 	mutex_unlock(&userns_state_mutex);
1086 	kfree(kbuf);
1087 	return ret;
1088 }
1089 
1090 ssize_t proc_uid_map_write(struct file *file, const char __user *buf,
1091 			   size_t size, loff_t *ppos)
1092 {
1093 	struct seq_file *seq = file->private_data;
1094 	struct user_namespace *ns = seq->private;
1095 	struct user_namespace *seq_ns = seq_user_ns(seq);
1096 
1097 	if (!ns->parent)
1098 		return -EPERM;
1099 
1100 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1101 		return -EPERM;
1102 
1103 	return map_write(file, buf, size, ppos, CAP_SETUID,
1104 			 &ns->uid_map, &ns->parent->uid_map);
1105 }
1106 
1107 ssize_t proc_gid_map_write(struct file *file, const char __user *buf,
1108 			   size_t size, loff_t *ppos)
1109 {
1110 	struct seq_file *seq = file->private_data;
1111 	struct user_namespace *ns = seq->private;
1112 	struct user_namespace *seq_ns = seq_user_ns(seq);
1113 
1114 	if (!ns->parent)
1115 		return -EPERM;
1116 
1117 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1118 		return -EPERM;
1119 
1120 	return map_write(file, buf, size, ppos, CAP_SETGID,
1121 			 &ns->gid_map, &ns->parent->gid_map);
1122 }
1123 
1124 ssize_t proc_projid_map_write(struct file *file, const char __user *buf,
1125 			      size_t size, loff_t *ppos)
1126 {
1127 	struct seq_file *seq = file->private_data;
1128 	struct user_namespace *ns = seq->private;
1129 	struct user_namespace *seq_ns = seq_user_ns(seq);
1130 
1131 	if (!ns->parent)
1132 		return -EPERM;
1133 
1134 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1135 		return -EPERM;
1136 
1137 	/* Anyone can set any valid project id no capability needed */
1138 	return map_write(file, buf, size, ppos, -1,
1139 			 &ns->projid_map, &ns->parent->projid_map);
1140 }
1141 
1142 static bool new_idmap_permitted(const struct file *file,
1143 				struct user_namespace *ns, int cap_setid,
1144 				struct uid_gid_map *new_map)
1145 {
1146 	const struct cred *cred = file->f_cred;
1147 
1148 	if (cap_setid == CAP_SETUID && !verify_root_map(file, ns, new_map))
1149 		return false;
1150 
1151 	/* Don't allow mappings that would allow anything that wouldn't
1152 	 * be allowed without the establishment of unprivileged mappings.
1153 	 */
1154 	if ((new_map->nr_extents == 1) && (new_map->extent[0].count == 1) &&
1155 	    uid_eq(ns->owner, cred->euid)) {
1156 		u32 id = new_map->extent[0].lower_first;
1157 		if (cap_setid == CAP_SETUID) {
1158 			kuid_t uid = make_kuid(ns->parent, id);
1159 			if (uid_eq(uid, cred->euid))
1160 				return true;
1161 		} else if (cap_setid == CAP_SETGID) {
1162 			kgid_t gid = make_kgid(ns->parent, id);
1163 			if (!(ns->flags & USERNS_SETGROUPS_ALLOWED) &&
1164 			    gid_eq(gid, cred->egid))
1165 				return true;
1166 		}
1167 	}
1168 
1169 	/* Allow anyone to set a mapping that doesn't require privilege */
1170 	if (!cap_valid(cap_setid))
1171 		return true;
1172 
1173 	/* Allow the specified ids if we have the appropriate capability
1174 	 * (CAP_SETUID or CAP_SETGID) over the parent user namespace.
1175 	 * And the opener of the id file also had the approprpiate capability.
1176 	 */
1177 	if (ns_capable(ns->parent, cap_setid) &&
1178 	    file_ns_capable(file, ns->parent, cap_setid))
1179 		return true;
1180 
1181 	return false;
1182 }
1183 
1184 int proc_setgroups_show(struct seq_file *seq, void *v)
1185 {
1186 	struct user_namespace *ns = seq->private;
1187 	unsigned long userns_flags = READ_ONCE(ns->flags);
1188 
1189 	seq_printf(seq, "%s\n",
1190 		   (userns_flags & USERNS_SETGROUPS_ALLOWED) ?
1191 		   "allow" : "deny");
1192 	return 0;
1193 }
1194 
1195 ssize_t proc_setgroups_write(struct file *file, const char __user *buf,
1196 			     size_t count, loff_t *ppos)
1197 {
1198 	struct seq_file *seq = file->private_data;
1199 	struct user_namespace *ns = seq->private;
1200 	char kbuf[8], *pos;
1201 	bool setgroups_allowed;
1202 	ssize_t ret;
1203 
1204 	/* Only allow a very narrow range of strings to be written */
1205 	ret = -EINVAL;
1206 	if ((*ppos != 0) || (count >= sizeof(kbuf)))
1207 		goto out;
1208 
1209 	/* What was written? */
1210 	ret = -EFAULT;
1211 	if (copy_from_user(kbuf, buf, count))
1212 		goto out;
1213 	kbuf[count] = '\0';
1214 	pos = kbuf;
1215 
1216 	/* What is being requested? */
1217 	ret = -EINVAL;
1218 	if (strncmp(pos, "allow", 5) == 0) {
1219 		pos += 5;
1220 		setgroups_allowed = true;
1221 	}
1222 	else if (strncmp(pos, "deny", 4) == 0) {
1223 		pos += 4;
1224 		setgroups_allowed = false;
1225 	}
1226 	else
1227 		goto out;
1228 
1229 	/* Verify there is not trailing junk on the line */
1230 	pos = skip_spaces(pos);
1231 	if (*pos != '\0')
1232 		goto out;
1233 
1234 	ret = -EPERM;
1235 	mutex_lock(&userns_state_mutex);
1236 	if (setgroups_allowed) {
1237 		/* Enabling setgroups after setgroups has been disabled
1238 		 * is not allowed.
1239 		 */
1240 		if (!(ns->flags & USERNS_SETGROUPS_ALLOWED))
1241 			goto out_unlock;
1242 	} else {
1243 		/* Permanently disabling setgroups after setgroups has
1244 		 * been enabled by writing the gid_map is not allowed.
1245 		 */
1246 		if (ns->gid_map.nr_extents != 0)
1247 			goto out_unlock;
1248 		ns->flags &= ~USERNS_SETGROUPS_ALLOWED;
1249 	}
1250 	mutex_unlock(&userns_state_mutex);
1251 
1252 	/* Report a successful write */
1253 	*ppos = count;
1254 	ret = count;
1255 out:
1256 	return ret;
1257 out_unlock:
1258 	mutex_unlock(&userns_state_mutex);
1259 	goto out;
1260 }
1261 
1262 bool userns_may_setgroups(const struct user_namespace *ns)
1263 {
1264 	bool allowed;
1265 
1266 	mutex_lock(&userns_state_mutex);
1267 	/* It is not safe to use setgroups until a gid mapping in
1268 	 * the user namespace has been established.
1269 	 */
1270 	allowed = ns->gid_map.nr_extents != 0;
1271 	/* Is setgroups allowed? */
1272 	allowed = allowed && (ns->flags & USERNS_SETGROUPS_ALLOWED);
1273 	mutex_unlock(&userns_state_mutex);
1274 
1275 	return allowed;
1276 }
1277 
1278 /*
1279  * Returns true if @child is the same namespace or a descendant of
1280  * @ancestor.
1281  */
1282 bool in_userns(const struct user_namespace *ancestor,
1283 	       const struct user_namespace *child)
1284 {
1285 	const struct user_namespace *ns;
1286 	for (ns = child; ns->level > ancestor->level; ns = ns->parent)
1287 		;
1288 	return (ns == ancestor);
1289 }
1290 
1291 bool current_in_userns(const struct user_namespace *target_ns)
1292 {
1293 	return in_userns(target_ns, current_user_ns());
1294 }
1295 EXPORT_SYMBOL(current_in_userns);
1296 
1297 static inline struct user_namespace *to_user_ns(struct ns_common *ns)
1298 {
1299 	return container_of(ns, struct user_namespace, ns);
1300 }
1301 
1302 static struct ns_common *userns_get(struct task_struct *task)
1303 {
1304 	struct user_namespace *user_ns;
1305 
1306 	rcu_read_lock();
1307 	user_ns = get_user_ns(__task_cred(task)->user_ns);
1308 	rcu_read_unlock();
1309 
1310 	return user_ns ? &user_ns->ns : NULL;
1311 }
1312 
1313 static void userns_put(struct ns_common *ns)
1314 {
1315 	put_user_ns(to_user_ns(ns));
1316 }
1317 
1318 static int userns_install(struct nsset *nsset, struct ns_common *ns)
1319 {
1320 	struct user_namespace *user_ns = to_user_ns(ns);
1321 	struct cred *cred;
1322 
1323 	/* Don't allow gaining capabilities by reentering
1324 	 * the same user namespace.
1325 	 */
1326 	if (user_ns == current_user_ns())
1327 		return -EINVAL;
1328 
1329 	/* Tasks that share a thread group must share a user namespace */
1330 	if (!thread_group_empty(current))
1331 		return -EINVAL;
1332 
1333 	if (current->fs->users != 1)
1334 		return -EINVAL;
1335 
1336 	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1337 		return -EPERM;
1338 
1339 	cred = nsset_cred(nsset);
1340 	if (!cred)
1341 		return -EINVAL;
1342 
1343 	put_user_ns(cred->user_ns);
1344 	set_cred_user_ns(cred, get_user_ns(user_ns));
1345 
1346 	if (set_cred_ucounts(cred) < 0)
1347 		return -EINVAL;
1348 
1349 	return 0;
1350 }
1351 
1352 struct ns_common *ns_get_owner(struct ns_common *ns)
1353 {
1354 	struct user_namespace *my_user_ns = current_user_ns();
1355 	struct user_namespace *owner, *p;
1356 
1357 	/* See if the owner is in the current user namespace */
1358 	owner = p = ns->ops->owner(ns);
1359 	for (;;) {
1360 		if (!p)
1361 			return ERR_PTR(-EPERM);
1362 		if (p == my_user_ns)
1363 			break;
1364 		p = p->parent;
1365 	}
1366 
1367 	return &get_user_ns(owner)->ns;
1368 }
1369 
1370 static struct user_namespace *userns_owner(struct ns_common *ns)
1371 {
1372 	return to_user_ns(ns)->parent;
1373 }
1374 
1375 const struct proc_ns_operations userns_operations = {
1376 	.name		= "user",
1377 	.type		= CLONE_NEWUSER,
1378 	.get		= userns_get,
1379 	.put		= userns_put,
1380 	.install	= userns_install,
1381 	.owner		= userns_owner,
1382 	.get_parent	= ns_get_owner,
1383 };
1384 
1385 static __init int user_namespaces_init(void)
1386 {
1387 	user_ns_cachep = KMEM_CACHE(user_namespace, SLAB_PANIC);
1388 	return 0;
1389 }
1390 subsys_initcall(user_namespaces_init);
1391