1 /* 2 * The "user cache". 3 * 4 * (C) Copyright 1991-2000 Linus Torvalds 5 * 6 * We have a per-user structure to keep track of how many 7 * processes, files etc the user has claimed, in order to be 8 * able to have per-user limits for system resources. 9 */ 10 11 #include <linux/init.h> 12 #include <linux/sched.h> 13 #include <linux/slab.h> 14 #include <linux/bitops.h> 15 #include <linux/key.h> 16 #include <linux/interrupt.h> 17 #include <linux/module.h> 18 #include <linux/user_namespace.h> 19 20 /* 21 * UID task count cache, to get fast user lookup in "alloc_uid" 22 * when changing user ID's (ie setuid() and friends). 23 */ 24 25 #define UIDHASH_MASK (UIDHASH_SZ - 1) 26 #define __uidhashfn(uid) (((uid >> UIDHASH_BITS) + uid) & UIDHASH_MASK) 27 #define uidhashentry(ns, uid) ((ns)->uidhash_table + __uidhashfn((uid))) 28 29 static struct kmem_cache *uid_cachep; 30 31 /* 32 * The uidhash_lock is mostly taken from process context, but it is 33 * occasionally also taken from softirq/tasklet context, when 34 * task-structs get RCU-freed. Hence all locking must be softirq-safe. 35 * But free_uid() is also called with local interrupts disabled, and running 36 * local_bh_enable() with local interrupts disabled is an error - we'll run 37 * softirq callbacks, and they can unconditionally enable interrupts, and 38 * the caller of free_uid() didn't expect that.. 39 */ 40 static DEFINE_SPINLOCK(uidhash_lock); 41 42 struct user_struct root_user = { 43 .__count = ATOMIC_INIT(1), 44 .processes = ATOMIC_INIT(1), 45 .files = ATOMIC_INIT(0), 46 .sigpending = ATOMIC_INIT(0), 47 .locked_shm = 0, 48 #ifdef CONFIG_KEYS 49 .uid_keyring = &root_user_keyring, 50 .session_keyring = &root_session_keyring, 51 #endif 52 #ifdef CONFIG_FAIR_USER_SCHED 53 .tg = &init_task_group, 54 #endif 55 }; 56 57 /* 58 * These routines must be called with the uidhash spinlock held! 59 */ 60 static void uid_hash_insert(struct user_struct *up, struct hlist_head *hashent) 61 { 62 hlist_add_head(&up->uidhash_node, hashent); 63 } 64 65 static void uid_hash_remove(struct user_struct *up) 66 { 67 hlist_del_init(&up->uidhash_node); 68 } 69 70 static struct user_struct *uid_hash_find(uid_t uid, struct hlist_head *hashent) 71 { 72 struct user_struct *user; 73 struct hlist_node *h; 74 75 hlist_for_each_entry(user, h, hashent, uidhash_node) { 76 if (user->uid == uid) { 77 atomic_inc(&user->__count); 78 return user; 79 } 80 } 81 82 return NULL; 83 } 84 85 #ifdef CONFIG_FAIR_USER_SCHED 86 87 static void sched_destroy_user(struct user_struct *up) 88 { 89 sched_destroy_group(up->tg); 90 } 91 92 static int sched_create_user(struct user_struct *up) 93 { 94 int rc = 0; 95 96 up->tg = sched_create_group(); 97 if (IS_ERR(up->tg)) 98 rc = -ENOMEM; 99 100 return rc; 101 } 102 103 static void sched_switch_user(struct task_struct *p) 104 { 105 sched_move_task(p); 106 } 107 108 #else /* CONFIG_FAIR_USER_SCHED */ 109 110 static void sched_destroy_user(struct user_struct *up) { } 111 static int sched_create_user(struct user_struct *up) { return 0; } 112 static void sched_switch_user(struct task_struct *p) { } 113 114 #endif /* CONFIG_FAIR_USER_SCHED */ 115 116 #if defined(CONFIG_FAIR_USER_SCHED) && defined(CONFIG_SYSFS) 117 118 static struct kset *uids_kset; /* represents the /sys/kernel/uids/ directory */ 119 static DEFINE_MUTEX(uids_mutex); 120 121 static inline void uids_mutex_lock(void) 122 { 123 mutex_lock(&uids_mutex); 124 } 125 126 static inline void uids_mutex_unlock(void) 127 { 128 mutex_unlock(&uids_mutex); 129 } 130 131 /* uid directory attributes */ 132 static ssize_t cpu_shares_show(struct kobject *kobj, 133 struct kobj_attribute *attr, 134 char *buf) 135 { 136 struct user_struct *up = container_of(kobj, struct user_struct, kobj); 137 138 return sprintf(buf, "%lu\n", sched_group_shares(up->tg)); 139 } 140 141 static ssize_t cpu_shares_store(struct kobject *kobj, 142 struct kobj_attribute *attr, 143 const char *buf, size_t size) 144 { 145 struct user_struct *up = container_of(kobj, struct user_struct, kobj); 146 unsigned long shares; 147 int rc; 148 149 sscanf(buf, "%lu", &shares); 150 151 rc = sched_group_set_shares(up->tg, shares); 152 153 return (rc ? rc : size); 154 } 155 156 static struct kobj_attribute cpu_share_attr = 157 __ATTR(cpu_share, 0644, cpu_shares_show, cpu_shares_store); 158 159 /* default attributes per uid directory */ 160 static struct attribute *uids_attributes[] = { 161 &cpu_share_attr.attr, 162 NULL 163 }; 164 165 /* the lifetime of user_struct is not managed by the core (now) */ 166 static void uids_release(struct kobject *kobj) 167 { 168 return; 169 } 170 171 static struct kobj_type uids_ktype = { 172 .sysfs_ops = &kobj_sysfs_ops, 173 .default_attrs = uids_attributes, 174 .release = uids_release, 175 }; 176 177 /* create /sys/kernel/uids/<uid>/cpu_share file for this user */ 178 static int uids_user_create(struct user_struct *up) 179 { 180 struct kobject *kobj = &up->kobj; 181 int error; 182 183 memset(kobj, 0, sizeof(struct kobject)); 184 kobj->kset = uids_kset; 185 error = kobject_init_and_add(kobj, &uids_ktype, NULL, "%d", up->uid); 186 if (error) { 187 kobject_put(kobj); 188 goto done; 189 } 190 191 kobject_uevent(kobj, KOBJ_ADD); 192 done: 193 return error; 194 } 195 196 /* create these entries in sysfs: 197 * "/sys/kernel/uids" directory 198 * "/sys/kernel/uids/0" directory (for root user) 199 * "/sys/kernel/uids/0/cpu_share" file (for root user) 200 */ 201 int __init uids_sysfs_init(void) 202 { 203 uids_kset = kset_create_and_add("uids", NULL, kernel_kobj); 204 if (!uids_kset) 205 return -ENOMEM; 206 207 return uids_user_create(&root_user); 208 } 209 210 /* work function to remove sysfs directory for a user and free up 211 * corresponding structures. 212 */ 213 static void remove_user_sysfs_dir(struct work_struct *w) 214 { 215 struct user_struct *up = container_of(w, struct user_struct, work); 216 unsigned long flags; 217 int remove_user = 0; 218 219 /* Make uid_hash_remove() + sysfs_remove_file() + kobject_del() 220 * atomic. 221 */ 222 uids_mutex_lock(); 223 224 local_irq_save(flags); 225 226 if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) { 227 uid_hash_remove(up); 228 remove_user = 1; 229 spin_unlock_irqrestore(&uidhash_lock, flags); 230 } else { 231 local_irq_restore(flags); 232 } 233 234 if (!remove_user) 235 goto done; 236 237 kobject_uevent(&up->kobj, KOBJ_REMOVE); 238 kobject_del(&up->kobj); 239 kobject_put(&up->kobj); 240 241 sched_destroy_user(up); 242 key_put(up->uid_keyring); 243 key_put(up->session_keyring); 244 kmem_cache_free(uid_cachep, up); 245 246 done: 247 uids_mutex_unlock(); 248 } 249 250 /* IRQs are disabled and uidhash_lock is held upon function entry. 251 * IRQ state (as stored in flags) is restored and uidhash_lock released 252 * upon function exit. 253 */ 254 static inline void free_user(struct user_struct *up, unsigned long flags) 255 { 256 /* restore back the count */ 257 atomic_inc(&up->__count); 258 spin_unlock_irqrestore(&uidhash_lock, flags); 259 260 INIT_WORK(&up->work, remove_user_sysfs_dir); 261 schedule_work(&up->work); 262 } 263 264 #else /* CONFIG_FAIR_USER_SCHED && CONFIG_SYSFS */ 265 266 int uids_sysfs_init(void) { return 0; } 267 static inline int uids_user_create(struct user_struct *up) { return 0; } 268 static inline void uids_mutex_lock(void) { } 269 static inline void uids_mutex_unlock(void) { } 270 271 /* IRQs are disabled and uidhash_lock is held upon function entry. 272 * IRQ state (as stored in flags) is restored and uidhash_lock released 273 * upon function exit. 274 */ 275 static inline void free_user(struct user_struct *up, unsigned long flags) 276 { 277 uid_hash_remove(up); 278 spin_unlock_irqrestore(&uidhash_lock, flags); 279 sched_destroy_user(up); 280 key_put(up->uid_keyring); 281 key_put(up->session_keyring); 282 kmem_cache_free(uid_cachep, up); 283 } 284 285 #endif 286 287 /* 288 * Locate the user_struct for the passed UID. If found, take a ref on it. The 289 * caller must undo that ref with free_uid(). 290 * 291 * If the user_struct could not be found, return NULL. 292 */ 293 struct user_struct *find_user(uid_t uid) 294 { 295 struct user_struct *ret; 296 unsigned long flags; 297 struct user_namespace *ns = current->nsproxy->user_ns; 298 299 spin_lock_irqsave(&uidhash_lock, flags); 300 ret = uid_hash_find(uid, uidhashentry(ns, uid)); 301 spin_unlock_irqrestore(&uidhash_lock, flags); 302 return ret; 303 } 304 305 void free_uid(struct user_struct *up) 306 { 307 unsigned long flags; 308 309 if (!up) 310 return; 311 312 local_irq_save(flags); 313 if (atomic_dec_and_lock(&up->__count, &uidhash_lock)) 314 free_user(up, flags); 315 else 316 local_irq_restore(flags); 317 } 318 319 struct user_struct * alloc_uid(struct user_namespace *ns, uid_t uid) 320 { 321 struct hlist_head *hashent = uidhashentry(ns, uid); 322 struct user_struct *up; 323 324 /* Make uid_hash_find() + uids_user_create() + uid_hash_insert() 325 * atomic. 326 */ 327 uids_mutex_lock(); 328 329 spin_lock_irq(&uidhash_lock); 330 up = uid_hash_find(uid, hashent); 331 spin_unlock_irq(&uidhash_lock); 332 333 if (!up) { 334 struct user_struct *new; 335 336 new = kmem_cache_alloc(uid_cachep, GFP_KERNEL); 337 if (!new) { 338 uids_mutex_unlock(); 339 return NULL; 340 } 341 342 new->uid = uid; 343 atomic_set(&new->__count, 1); 344 atomic_set(&new->processes, 0); 345 atomic_set(&new->files, 0); 346 atomic_set(&new->sigpending, 0); 347 #ifdef CONFIG_INOTIFY_USER 348 atomic_set(&new->inotify_watches, 0); 349 atomic_set(&new->inotify_devs, 0); 350 #endif 351 #ifdef CONFIG_POSIX_MQUEUE 352 new->mq_bytes = 0; 353 #endif 354 new->locked_shm = 0; 355 356 if (alloc_uid_keyring(new, current) < 0) { 357 kmem_cache_free(uid_cachep, new); 358 uids_mutex_unlock(); 359 return NULL; 360 } 361 362 if (sched_create_user(new) < 0) { 363 key_put(new->uid_keyring); 364 key_put(new->session_keyring); 365 kmem_cache_free(uid_cachep, new); 366 uids_mutex_unlock(); 367 return NULL; 368 } 369 370 if (uids_user_create(new)) { 371 sched_destroy_user(new); 372 key_put(new->uid_keyring); 373 key_put(new->session_keyring); 374 kmem_cache_free(uid_cachep, new); 375 uids_mutex_unlock(); 376 return NULL; 377 } 378 379 /* 380 * Before adding this, check whether we raced 381 * on adding the same user already.. 382 */ 383 spin_lock_irq(&uidhash_lock); 384 up = uid_hash_find(uid, hashent); 385 if (up) { 386 /* This case is not possible when CONFIG_FAIR_USER_SCHED 387 * is defined, since we serialize alloc_uid() using 388 * uids_mutex. Hence no need to call 389 * sched_destroy_user() or remove_user_sysfs_dir(). 390 */ 391 key_put(new->uid_keyring); 392 key_put(new->session_keyring); 393 kmem_cache_free(uid_cachep, new); 394 } else { 395 uid_hash_insert(new, hashent); 396 up = new; 397 } 398 spin_unlock_irq(&uidhash_lock); 399 400 } 401 402 uids_mutex_unlock(); 403 404 return up; 405 } 406 407 void switch_uid(struct user_struct *new_user) 408 { 409 struct user_struct *old_user; 410 411 /* What if a process setreuid()'s and this brings the 412 * new uid over his NPROC rlimit? We can check this now 413 * cheaply with the new uid cache, so if it matters 414 * we should be checking for it. -DaveM 415 */ 416 old_user = current->user; 417 atomic_inc(&new_user->processes); 418 atomic_dec(&old_user->processes); 419 switch_uid_keyring(new_user); 420 current->user = new_user; 421 sched_switch_user(current); 422 423 /* 424 * We need to synchronize with __sigqueue_alloc() 425 * doing a get_uid(p->user).. If that saw the old 426 * user value, we need to wait until it has exited 427 * its critical region before we can free the old 428 * structure. 429 */ 430 smp_mb(); 431 spin_unlock_wait(¤t->sighand->siglock); 432 433 free_uid(old_user); 434 suid_keys(current); 435 } 436 437 void release_uids(struct user_namespace *ns) 438 { 439 int i; 440 unsigned long flags; 441 struct hlist_head *head; 442 struct hlist_node *nd; 443 444 spin_lock_irqsave(&uidhash_lock, flags); 445 /* 446 * collapse the chains so that the user_struct-s will 447 * be still alive, but not in hashes. subsequent free_uid() 448 * will free them. 449 */ 450 for (i = 0; i < UIDHASH_SZ; i++) { 451 head = ns->uidhash_table + i; 452 while (!hlist_empty(head)) { 453 nd = head->first; 454 hlist_del_init(nd); 455 } 456 } 457 spin_unlock_irqrestore(&uidhash_lock, flags); 458 459 free_uid(ns->root_user); 460 } 461 462 static int __init uid_cache_init(void) 463 { 464 int n; 465 466 uid_cachep = kmem_cache_create("uid_cache", sizeof(struct user_struct), 467 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 468 469 for(n = 0; n < UIDHASH_SZ; ++n) 470 INIT_HLIST_HEAD(init_user_ns.uidhash_table + n); 471 472 /* Insert the root user immediately (init already runs as root) */ 473 spin_lock_irq(&uidhash_lock); 474 uid_hash_insert(&root_user, uidhashentry(&init_user_ns, 0)); 475 spin_unlock_irq(&uidhash_lock); 476 477 return 0; 478 } 479 480 module_init(uid_cache_init); 481