xref: /linux-6.15/kernel/trace/ring_buffer.c (revision f5b95f1f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <[email protected]>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h>	/* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31 
32 #include <asm/local64.h>
33 #include <asm/local.h>
34 
35 #include "trace.h"
36 
37 /*
38  * The "absolute" timestamp in the buffer is only 59 bits.
39  * If a clock has the 5 MSBs set, it needs to be saved and
40  * reinserted.
41  */
42 #define TS_MSB		(0xf8ULL << 56)
43 #define ABS_TS_MASK	(~TS_MSB)
44 
45 static void update_pages_handler(struct work_struct *work);
46 
47 #define RING_BUFFER_META_MAGIC	0xBADFEED
48 
49 struct ring_buffer_meta {
50 	int		magic;
51 	int		struct_size;
52 	unsigned long	text_addr;
53 	unsigned long	data_addr;
54 	unsigned long	first_buffer;
55 	unsigned long	head_buffer;
56 	unsigned long	commit_buffer;
57 	__u32		subbuf_size;
58 	__u32		nr_subbufs;
59 	int		buffers[];
60 };
61 
62 /*
63  * The ring buffer header is special. We must manually up keep it.
64  */
65 int ring_buffer_print_entry_header(struct trace_seq *s)
66 {
67 	trace_seq_puts(s, "# compressed entry header\n");
68 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
69 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
70 	trace_seq_puts(s, "\tarray       :   32 bits\n");
71 	trace_seq_putc(s, '\n');
72 	trace_seq_printf(s, "\tpadding     : type == %d\n",
73 			 RINGBUF_TYPE_PADDING);
74 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
75 			 RINGBUF_TYPE_TIME_EXTEND);
76 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
77 			 RINGBUF_TYPE_TIME_STAMP);
78 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
79 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
80 
81 	return !trace_seq_has_overflowed(s);
82 }
83 
84 /*
85  * The ring buffer is made up of a list of pages. A separate list of pages is
86  * allocated for each CPU. A writer may only write to a buffer that is
87  * associated with the CPU it is currently executing on.  A reader may read
88  * from any per cpu buffer.
89  *
90  * The reader is special. For each per cpu buffer, the reader has its own
91  * reader page. When a reader has read the entire reader page, this reader
92  * page is swapped with another page in the ring buffer.
93  *
94  * Now, as long as the writer is off the reader page, the reader can do what
95  * ever it wants with that page. The writer will never write to that page
96  * again (as long as it is out of the ring buffer).
97  *
98  * Here's some silly ASCII art.
99  *
100  *   +------+
101  *   |reader|          RING BUFFER
102  *   |page  |
103  *   +------+        +---+   +---+   +---+
104  *                   |   |-->|   |-->|   |
105  *                   +---+   +---+   +---+
106  *                     ^               |
107  *                     |               |
108  *                     +---------------+
109  *
110  *
111  *   +------+
112  *   |reader|          RING BUFFER
113  *   |page  |------------------v
114  *   +------+        +---+   +---+   +---+
115  *                   |   |-->|   |-->|   |
116  *                   +---+   +---+   +---+
117  *                     ^               |
118  *                     |               |
119  *                     +---------------+
120  *
121  *
122  *   +------+
123  *   |reader|          RING BUFFER
124  *   |page  |------------------v
125  *   +------+        +---+   +---+   +---+
126  *      ^            |   |-->|   |-->|   |
127  *      |            +---+   +---+   +---+
128  *      |                              |
129  *      |                              |
130  *      +------------------------------+
131  *
132  *
133  *   +------+
134  *   |buffer|          RING BUFFER
135  *   |page  |------------------v
136  *   +------+        +---+   +---+   +---+
137  *      ^            |   |   |   |-->|   |
138  *      |   New      +---+   +---+   +---+
139  *      |  Reader------^               |
140  *      |   page                       |
141  *      +------------------------------+
142  *
143  *
144  * After we make this swap, the reader can hand this page off to the splice
145  * code and be done with it. It can even allocate a new page if it needs to
146  * and swap that into the ring buffer.
147  *
148  * We will be using cmpxchg soon to make all this lockless.
149  *
150  */
151 
152 /* Used for individual buffers (after the counter) */
153 #define RB_BUFFER_OFF		(1 << 20)
154 
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156 
157 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
158 #define RB_ALIGNMENT		4U
159 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
160 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
161 
162 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
163 # define RB_FORCE_8BYTE_ALIGNMENT	0
164 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
165 #else
166 # define RB_FORCE_8BYTE_ALIGNMENT	1
167 # define RB_ARCH_ALIGNMENT		8U
168 #endif
169 
170 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
171 
172 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
173 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
174 
175 enum {
176 	RB_LEN_TIME_EXTEND = 8,
177 	RB_LEN_TIME_STAMP =  8,
178 };
179 
180 #define skip_time_extend(event) \
181 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
182 
183 #define extended_time(event) \
184 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
185 
186 static inline bool rb_null_event(struct ring_buffer_event *event)
187 {
188 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
189 }
190 
191 static void rb_event_set_padding(struct ring_buffer_event *event)
192 {
193 	/* padding has a NULL time_delta */
194 	event->type_len = RINGBUF_TYPE_PADDING;
195 	event->time_delta = 0;
196 }
197 
198 static unsigned
199 rb_event_data_length(struct ring_buffer_event *event)
200 {
201 	unsigned length;
202 
203 	if (event->type_len)
204 		length = event->type_len * RB_ALIGNMENT;
205 	else
206 		length = event->array[0];
207 	return length + RB_EVNT_HDR_SIZE;
208 }
209 
210 /*
211  * Return the length of the given event. Will return
212  * the length of the time extend if the event is a
213  * time extend.
214  */
215 static inline unsigned
216 rb_event_length(struct ring_buffer_event *event)
217 {
218 	switch (event->type_len) {
219 	case RINGBUF_TYPE_PADDING:
220 		if (rb_null_event(event))
221 			/* undefined */
222 			return -1;
223 		return  event->array[0] + RB_EVNT_HDR_SIZE;
224 
225 	case RINGBUF_TYPE_TIME_EXTEND:
226 		return RB_LEN_TIME_EXTEND;
227 
228 	case RINGBUF_TYPE_TIME_STAMP:
229 		return RB_LEN_TIME_STAMP;
230 
231 	case RINGBUF_TYPE_DATA:
232 		return rb_event_data_length(event);
233 	default:
234 		WARN_ON_ONCE(1);
235 	}
236 	/* not hit */
237 	return 0;
238 }
239 
240 /*
241  * Return total length of time extend and data,
242  *   or just the event length for all other events.
243  */
244 static inline unsigned
245 rb_event_ts_length(struct ring_buffer_event *event)
246 {
247 	unsigned len = 0;
248 
249 	if (extended_time(event)) {
250 		/* time extends include the data event after it */
251 		len = RB_LEN_TIME_EXTEND;
252 		event = skip_time_extend(event);
253 	}
254 	return len + rb_event_length(event);
255 }
256 
257 /**
258  * ring_buffer_event_length - return the length of the event
259  * @event: the event to get the length of
260  *
261  * Returns the size of the data load of a data event.
262  * If the event is something other than a data event, it
263  * returns the size of the event itself. With the exception
264  * of a TIME EXTEND, where it still returns the size of the
265  * data load of the data event after it.
266  */
267 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
268 {
269 	unsigned length;
270 
271 	if (extended_time(event))
272 		event = skip_time_extend(event);
273 
274 	length = rb_event_length(event);
275 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
276 		return length;
277 	length -= RB_EVNT_HDR_SIZE;
278 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
279                 length -= sizeof(event->array[0]);
280 	return length;
281 }
282 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
283 
284 /* inline for ring buffer fast paths */
285 static __always_inline void *
286 rb_event_data(struct ring_buffer_event *event)
287 {
288 	if (extended_time(event))
289 		event = skip_time_extend(event);
290 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
291 	/* If length is in len field, then array[0] has the data */
292 	if (event->type_len)
293 		return (void *)&event->array[0];
294 	/* Otherwise length is in array[0] and array[1] has the data */
295 	return (void *)&event->array[1];
296 }
297 
298 /**
299  * ring_buffer_event_data - return the data of the event
300  * @event: the event to get the data from
301  */
302 void *ring_buffer_event_data(struct ring_buffer_event *event)
303 {
304 	return rb_event_data(event);
305 }
306 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
307 
308 #define for_each_buffer_cpu(buffer, cpu)		\
309 	for_each_cpu(cpu, buffer->cpumask)
310 
311 #define for_each_online_buffer_cpu(buffer, cpu)		\
312 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
313 
314 #define TS_SHIFT	27
315 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
316 #define TS_DELTA_TEST	(~TS_MASK)
317 
318 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
319 {
320 	u64 ts;
321 
322 	ts = event->array[0];
323 	ts <<= TS_SHIFT;
324 	ts += event->time_delta;
325 
326 	return ts;
327 }
328 
329 /* Flag when events were overwritten */
330 #define RB_MISSED_EVENTS	(1 << 31)
331 /* Missed count stored at end */
332 #define RB_MISSED_STORED	(1 << 30)
333 
334 #define RB_MISSED_MASK		(3 << 30)
335 
336 struct buffer_data_page {
337 	u64		 time_stamp;	/* page time stamp */
338 	local_t		 commit;	/* write committed index */
339 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
340 };
341 
342 struct buffer_data_read_page {
343 	unsigned		order;	/* order of the page */
344 	struct buffer_data_page	*data;	/* actual data, stored in this page */
345 };
346 
347 /*
348  * Note, the buffer_page list must be first. The buffer pages
349  * are allocated in cache lines, which means that each buffer
350  * page will be at the beginning of a cache line, and thus
351  * the least significant bits will be zero. We use this to
352  * add flags in the list struct pointers, to make the ring buffer
353  * lockless.
354  */
355 struct buffer_page {
356 	struct list_head list;		/* list of buffer pages */
357 	local_t		 write;		/* index for next write */
358 	unsigned	 read;		/* index for next read */
359 	local_t		 entries;	/* entries on this page */
360 	unsigned long	 real_end;	/* real end of data */
361 	unsigned	 order;		/* order of the page */
362 	u32		 id:30;		/* ID for external mapping */
363 	u32		 range:1;	/* Mapped via a range */
364 	struct buffer_data_page *page;	/* Actual data page */
365 };
366 
367 /*
368  * The buffer page counters, write and entries, must be reset
369  * atomically when crossing page boundaries. To synchronize this
370  * update, two counters are inserted into the number. One is
371  * the actual counter for the write position or count on the page.
372  *
373  * The other is a counter of updaters. Before an update happens
374  * the update partition of the counter is incremented. This will
375  * allow the updater to update the counter atomically.
376  *
377  * The counter is 20 bits, and the state data is 12.
378  */
379 #define RB_WRITE_MASK		0xfffff
380 #define RB_WRITE_INTCNT		(1 << 20)
381 
382 static void rb_init_page(struct buffer_data_page *bpage)
383 {
384 	local_set(&bpage->commit, 0);
385 }
386 
387 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
388 {
389 	return local_read(&bpage->page->commit);
390 }
391 
392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394 	/* Range pages are not to be freed */
395 	if (!bpage->range)
396 		free_pages((unsigned long)bpage->page, bpage->order);
397 	kfree(bpage);
398 }
399 
400 /*
401  * We need to fit the time_stamp delta into 27 bits.
402  */
403 static inline bool test_time_stamp(u64 delta)
404 {
405 	return !!(delta & TS_DELTA_TEST);
406 }
407 
408 struct rb_irq_work {
409 	struct irq_work			work;
410 	wait_queue_head_t		waiters;
411 	wait_queue_head_t		full_waiters;
412 	atomic_t			seq;
413 	bool				waiters_pending;
414 	bool				full_waiters_pending;
415 	bool				wakeup_full;
416 };
417 
418 /*
419  * Structure to hold event state and handle nested events.
420  */
421 struct rb_event_info {
422 	u64			ts;
423 	u64			delta;
424 	u64			before;
425 	u64			after;
426 	unsigned long		length;
427 	struct buffer_page	*tail_page;
428 	int			add_timestamp;
429 };
430 
431 /*
432  * Used for the add_timestamp
433  *  NONE
434  *  EXTEND - wants a time extend
435  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
436  *  FORCE - force a full time stamp.
437  */
438 enum {
439 	RB_ADD_STAMP_NONE		= 0,
440 	RB_ADD_STAMP_EXTEND		= BIT(1),
441 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
442 	RB_ADD_STAMP_FORCE		= BIT(3)
443 };
444 /*
445  * Used for which event context the event is in.
446  *  TRANSITION = 0
447  *  NMI     = 1
448  *  IRQ     = 2
449  *  SOFTIRQ = 3
450  *  NORMAL  = 4
451  *
452  * See trace_recursive_lock() comment below for more details.
453  */
454 enum {
455 	RB_CTX_TRANSITION,
456 	RB_CTX_NMI,
457 	RB_CTX_IRQ,
458 	RB_CTX_SOFTIRQ,
459 	RB_CTX_NORMAL,
460 	RB_CTX_MAX
461 };
462 
463 struct rb_time_struct {
464 	local64_t	time;
465 };
466 typedef struct rb_time_struct rb_time_t;
467 
468 #define MAX_NEST	5
469 
470 /*
471  * head_page == tail_page && head == tail then buffer is empty.
472  */
473 struct ring_buffer_per_cpu {
474 	int				cpu;
475 	atomic_t			record_disabled;
476 	atomic_t			resize_disabled;
477 	struct trace_buffer	*buffer;
478 	raw_spinlock_t			reader_lock;	/* serialize readers */
479 	arch_spinlock_t			lock;
480 	struct lock_class_key		lock_key;
481 	struct buffer_data_page		*free_page;
482 	unsigned long			nr_pages;
483 	unsigned int			current_context;
484 	struct list_head		*pages;
485 	/* pages generation counter, incremented when the list changes */
486 	unsigned long			cnt;
487 	struct buffer_page		*head_page;	/* read from head */
488 	struct buffer_page		*tail_page;	/* write to tail */
489 	struct buffer_page		*commit_page;	/* committed pages */
490 	struct buffer_page		*reader_page;
491 	unsigned long			lost_events;
492 	unsigned long			last_overrun;
493 	unsigned long			nest;
494 	local_t				entries_bytes;
495 	local_t				entries;
496 	local_t				overrun;
497 	local_t				commit_overrun;
498 	local_t				dropped_events;
499 	local_t				committing;
500 	local_t				commits;
501 	local_t				pages_touched;
502 	local_t				pages_lost;
503 	local_t				pages_read;
504 	long				last_pages_touch;
505 	size_t				shortest_full;
506 	unsigned long			read;
507 	unsigned long			read_bytes;
508 	rb_time_t			write_stamp;
509 	rb_time_t			before_stamp;
510 	u64				event_stamp[MAX_NEST];
511 	u64				read_stamp;
512 	/* pages removed since last reset */
513 	unsigned long			pages_removed;
514 
515 	unsigned int			mapped;
516 	unsigned int			user_mapped;	/* user space mapping */
517 	struct mutex			mapping_lock;
518 	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
519 	struct trace_buffer_meta	*meta_page;
520 	struct ring_buffer_meta		*ring_meta;
521 
522 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
523 	long				nr_pages_to_update;
524 	struct list_head		new_pages; /* new pages to add */
525 	struct work_struct		update_pages_work;
526 	struct completion		update_done;
527 
528 	struct rb_irq_work		irq_work;
529 };
530 
531 struct trace_buffer {
532 	unsigned			flags;
533 	int				cpus;
534 	atomic_t			record_disabled;
535 	atomic_t			resizing;
536 	cpumask_var_t			cpumask;
537 
538 	struct lock_class_key		*reader_lock_key;
539 
540 	struct mutex			mutex;
541 
542 	struct ring_buffer_per_cpu	**buffers;
543 
544 	struct hlist_node		node;
545 	u64				(*clock)(void);
546 
547 	struct rb_irq_work		irq_work;
548 	bool				time_stamp_abs;
549 
550 	unsigned long			range_addr_start;
551 	unsigned long			range_addr_end;
552 
553 	long				last_text_delta;
554 	long				last_data_delta;
555 
556 	unsigned int			subbuf_size;
557 	unsigned int			subbuf_order;
558 	unsigned int			max_data_size;
559 };
560 
561 struct ring_buffer_iter {
562 	struct ring_buffer_per_cpu	*cpu_buffer;
563 	unsigned long			head;
564 	unsigned long			next_event;
565 	struct buffer_page		*head_page;
566 	struct buffer_page		*cache_reader_page;
567 	unsigned long			cache_read;
568 	unsigned long			cache_pages_removed;
569 	u64				read_stamp;
570 	u64				page_stamp;
571 	struct ring_buffer_event	*event;
572 	size_t				event_size;
573 	int				missed_events;
574 };
575 
576 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
577 {
578 	struct buffer_data_page field;
579 
580 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
581 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
582 			 (unsigned int)sizeof(field.time_stamp),
583 			 (unsigned int)is_signed_type(u64));
584 
585 	trace_seq_printf(s, "\tfield: local_t commit;\t"
586 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
587 			 (unsigned int)offsetof(typeof(field), commit),
588 			 (unsigned int)sizeof(field.commit),
589 			 (unsigned int)is_signed_type(long));
590 
591 	trace_seq_printf(s, "\tfield: int overwrite;\t"
592 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
593 			 (unsigned int)offsetof(typeof(field), commit),
594 			 1,
595 			 (unsigned int)is_signed_type(long));
596 
597 	trace_seq_printf(s, "\tfield: char data;\t"
598 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
599 			 (unsigned int)offsetof(typeof(field), data),
600 			 (unsigned int)buffer->subbuf_size,
601 			 (unsigned int)is_signed_type(char));
602 
603 	return !trace_seq_has_overflowed(s);
604 }
605 
606 static inline void rb_time_read(rb_time_t *t, u64 *ret)
607 {
608 	*ret = local64_read(&t->time);
609 }
610 static void rb_time_set(rb_time_t *t, u64 val)
611 {
612 	local64_set(&t->time, val);
613 }
614 
615 /*
616  * Enable this to make sure that the event passed to
617  * ring_buffer_event_time_stamp() is not committed and also
618  * is on the buffer that it passed in.
619  */
620 //#define RB_VERIFY_EVENT
621 #ifdef RB_VERIFY_EVENT
622 static struct list_head *rb_list_head(struct list_head *list);
623 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
624 			 void *event)
625 {
626 	struct buffer_page *page = cpu_buffer->commit_page;
627 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
628 	struct list_head *next;
629 	long commit, write;
630 	unsigned long addr = (unsigned long)event;
631 	bool done = false;
632 	int stop = 0;
633 
634 	/* Make sure the event exists and is not committed yet */
635 	do {
636 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
637 			done = true;
638 		commit = local_read(&page->page->commit);
639 		write = local_read(&page->write);
640 		if (addr >= (unsigned long)&page->page->data[commit] &&
641 		    addr < (unsigned long)&page->page->data[write])
642 			return;
643 
644 		next = rb_list_head(page->list.next);
645 		page = list_entry(next, struct buffer_page, list);
646 	} while (!done);
647 	WARN_ON_ONCE(1);
648 }
649 #else
650 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
651 			 void *event)
652 {
653 }
654 #endif
655 
656 /*
657  * The absolute time stamp drops the 5 MSBs and some clocks may
658  * require them. The rb_fix_abs_ts() will take a previous full
659  * time stamp, and add the 5 MSB of that time stamp on to the
660  * saved absolute time stamp. Then they are compared in case of
661  * the unlikely event that the latest time stamp incremented
662  * the 5 MSB.
663  */
664 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
665 {
666 	if (save_ts & TS_MSB) {
667 		abs |= save_ts & TS_MSB;
668 		/* Check for overflow */
669 		if (unlikely(abs < save_ts))
670 			abs += 1ULL << 59;
671 	}
672 	return abs;
673 }
674 
675 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
676 
677 /**
678  * ring_buffer_event_time_stamp - return the event's current time stamp
679  * @buffer: The buffer that the event is on
680  * @event: the event to get the time stamp of
681  *
682  * Note, this must be called after @event is reserved, and before it is
683  * committed to the ring buffer. And must be called from the same
684  * context where the event was reserved (normal, softirq, irq, etc).
685  *
686  * Returns the time stamp associated with the current event.
687  * If the event has an extended time stamp, then that is used as
688  * the time stamp to return.
689  * In the highly unlikely case that the event was nested more than
690  * the max nesting, then the write_stamp of the buffer is returned,
691  * otherwise  current time is returned, but that really neither of
692  * the last two cases should ever happen.
693  */
694 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
695 				 struct ring_buffer_event *event)
696 {
697 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
698 	unsigned int nest;
699 	u64 ts;
700 
701 	/* If the event includes an absolute time, then just use that */
702 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
703 		ts = rb_event_time_stamp(event);
704 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
705 	}
706 
707 	nest = local_read(&cpu_buffer->committing);
708 	verify_event(cpu_buffer, event);
709 	if (WARN_ON_ONCE(!nest))
710 		goto fail;
711 
712 	/* Read the current saved nesting level time stamp */
713 	if (likely(--nest < MAX_NEST))
714 		return cpu_buffer->event_stamp[nest];
715 
716 	/* Shouldn't happen, warn if it does */
717 	WARN_ONCE(1, "nest (%d) greater than max", nest);
718 
719  fail:
720 	rb_time_read(&cpu_buffer->write_stamp, &ts);
721 
722 	return ts;
723 }
724 
725 /**
726  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
727  * @buffer: The ring_buffer to get the number of pages from
728  * @cpu: The cpu of the ring_buffer to get the number of pages from
729  *
730  * Returns the number of pages that have content in the ring buffer.
731  */
732 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
733 {
734 	size_t read;
735 	size_t lost;
736 	size_t cnt;
737 
738 	read = local_read(&buffer->buffers[cpu]->pages_read);
739 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
740 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
741 
742 	if (WARN_ON_ONCE(cnt < lost))
743 		return 0;
744 
745 	cnt -= lost;
746 
747 	/* The reader can read an empty page, but not more than that */
748 	if (cnt < read) {
749 		WARN_ON_ONCE(read > cnt + 1);
750 		return 0;
751 	}
752 
753 	return cnt - read;
754 }
755 
756 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
757 {
758 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
759 	size_t nr_pages;
760 	size_t dirty;
761 
762 	nr_pages = cpu_buffer->nr_pages;
763 	if (!nr_pages || !full)
764 		return true;
765 
766 	/*
767 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
768 	 * that the writer is on is not counted as dirty.
769 	 * This is needed if "buffer_percent" is set to 100.
770 	 */
771 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
772 
773 	return (dirty * 100) >= (full * nr_pages);
774 }
775 
776 /*
777  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
778  *
779  * Schedules a delayed work to wake up any task that is blocked on the
780  * ring buffer waiters queue.
781  */
782 static void rb_wake_up_waiters(struct irq_work *work)
783 {
784 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
785 
786 	/* For waiters waiting for the first wake up */
787 	(void)atomic_fetch_inc_release(&rbwork->seq);
788 
789 	wake_up_all(&rbwork->waiters);
790 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
791 		/* Only cpu_buffer sets the above flags */
792 		struct ring_buffer_per_cpu *cpu_buffer =
793 			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
794 
795 		/* Called from interrupt context */
796 		raw_spin_lock(&cpu_buffer->reader_lock);
797 		rbwork->wakeup_full = false;
798 		rbwork->full_waiters_pending = false;
799 
800 		/* Waking up all waiters, they will reset the shortest full */
801 		cpu_buffer->shortest_full = 0;
802 		raw_spin_unlock(&cpu_buffer->reader_lock);
803 
804 		wake_up_all(&rbwork->full_waiters);
805 	}
806 }
807 
808 /**
809  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
810  * @buffer: The ring buffer to wake waiters on
811  * @cpu: The CPU buffer to wake waiters on
812  *
813  * In the case of a file that represents a ring buffer is closing,
814  * it is prudent to wake up any waiters that are on this.
815  */
816 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
817 {
818 	struct ring_buffer_per_cpu *cpu_buffer;
819 	struct rb_irq_work *rbwork;
820 
821 	if (!buffer)
822 		return;
823 
824 	if (cpu == RING_BUFFER_ALL_CPUS) {
825 
826 		/* Wake up individual ones too. One level recursion */
827 		for_each_buffer_cpu(buffer, cpu)
828 			ring_buffer_wake_waiters(buffer, cpu);
829 
830 		rbwork = &buffer->irq_work;
831 	} else {
832 		if (WARN_ON_ONCE(!buffer->buffers))
833 			return;
834 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
835 			return;
836 
837 		cpu_buffer = buffer->buffers[cpu];
838 		/* The CPU buffer may not have been initialized yet */
839 		if (!cpu_buffer)
840 			return;
841 		rbwork = &cpu_buffer->irq_work;
842 	}
843 
844 	/* This can be called in any context */
845 	irq_work_queue(&rbwork->work);
846 }
847 
848 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
849 {
850 	struct ring_buffer_per_cpu *cpu_buffer;
851 	bool ret = false;
852 
853 	/* Reads of all CPUs always waits for any data */
854 	if (cpu == RING_BUFFER_ALL_CPUS)
855 		return !ring_buffer_empty(buffer);
856 
857 	cpu_buffer = buffer->buffers[cpu];
858 
859 	if (!ring_buffer_empty_cpu(buffer, cpu)) {
860 		unsigned long flags;
861 		bool pagebusy;
862 
863 		if (!full)
864 			return true;
865 
866 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
867 		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
868 		ret = !pagebusy && full_hit(buffer, cpu, full);
869 
870 		if (!ret && (!cpu_buffer->shortest_full ||
871 			     cpu_buffer->shortest_full > full)) {
872 		    cpu_buffer->shortest_full = full;
873 		}
874 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
875 	}
876 	return ret;
877 }
878 
879 static inline bool
880 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
881 	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
882 {
883 	if (rb_watermark_hit(buffer, cpu, full))
884 		return true;
885 
886 	if (cond(data))
887 		return true;
888 
889 	/*
890 	 * The events can happen in critical sections where
891 	 * checking a work queue can cause deadlocks.
892 	 * After adding a task to the queue, this flag is set
893 	 * only to notify events to try to wake up the queue
894 	 * using irq_work.
895 	 *
896 	 * We don't clear it even if the buffer is no longer
897 	 * empty. The flag only causes the next event to run
898 	 * irq_work to do the work queue wake up. The worse
899 	 * that can happen if we race with !trace_empty() is that
900 	 * an event will cause an irq_work to try to wake up
901 	 * an empty queue.
902 	 *
903 	 * There's no reason to protect this flag either, as
904 	 * the work queue and irq_work logic will do the necessary
905 	 * synchronization for the wake ups. The only thing
906 	 * that is necessary is that the wake up happens after
907 	 * a task has been queued. It's OK for spurious wake ups.
908 	 */
909 	if (full)
910 		rbwork->full_waiters_pending = true;
911 	else
912 		rbwork->waiters_pending = true;
913 
914 	return false;
915 }
916 
917 struct rb_wait_data {
918 	struct rb_irq_work		*irq_work;
919 	int				seq;
920 };
921 
922 /*
923  * The default wait condition for ring_buffer_wait() is to just to exit the
924  * wait loop the first time it is woken up.
925  */
926 static bool rb_wait_once(void *data)
927 {
928 	struct rb_wait_data *rdata = data;
929 	struct rb_irq_work *rbwork = rdata->irq_work;
930 
931 	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
932 }
933 
934 /**
935  * ring_buffer_wait - wait for input to the ring buffer
936  * @buffer: buffer to wait on
937  * @cpu: the cpu buffer to wait on
938  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
939  * @cond: condition function to break out of wait (NULL to run once)
940  * @data: the data to pass to @cond.
941  *
942  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
943  * as data is added to any of the @buffer's cpu buffers. Otherwise
944  * it will wait for data to be added to a specific cpu buffer.
945  */
946 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
947 		     ring_buffer_cond_fn cond, void *data)
948 {
949 	struct ring_buffer_per_cpu *cpu_buffer;
950 	struct wait_queue_head *waitq;
951 	struct rb_irq_work *rbwork;
952 	struct rb_wait_data rdata;
953 	int ret = 0;
954 
955 	/*
956 	 * Depending on what the caller is waiting for, either any
957 	 * data in any cpu buffer, or a specific buffer, put the
958 	 * caller on the appropriate wait queue.
959 	 */
960 	if (cpu == RING_BUFFER_ALL_CPUS) {
961 		rbwork = &buffer->irq_work;
962 		/* Full only makes sense on per cpu reads */
963 		full = 0;
964 	} else {
965 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
966 			return -ENODEV;
967 		cpu_buffer = buffer->buffers[cpu];
968 		rbwork = &cpu_buffer->irq_work;
969 	}
970 
971 	if (full)
972 		waitq = &rbwork->full_waiters;
973 	else
974 		waitq = &rbwork->waiters;
975 
976 	/* Set up to exit loop as soon as it is woken */
977 	if (!cond) {
978 		cond = rb_wait_once;
979 		rdata.irq_work = rbwork;
980 		rdata.seq = atomic_read_acquire(&rbwork->seq);
981 		data = &rdata;
982 	}
983 
984 	ret = wait_event_interruptible((*waitq),
985 				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
986 
987 	return ret;
988 }
989 
990 /**
991  * ring_buffer_poll_wait - poll on buffer input
992  * @buffer: buffer to wait on
993  * @cpu: the cpu buffer to wait on
994  * @filp: the file descriptor
995  * @poll_table: The poll descriptor
996  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
997  *
998  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
999  * as data is added to any of the @buffer's cpu buffers. Otherwise
1000  * it will wait for data to be added to a specific cpu buffer.
1001  *
1002  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1003  * zero otherwise.
1004  */
1005 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1006 			  struct file *filp, poll_table *poll_table, int full)
1007 {
1008 	struct ring_buffer_per_cpu *cpu_buffer;
1009 	struct rb_irq_work *rbwork;
1010 
1011 	if (cpu == RING_BUFFER_ALL_CPUS) {
1012 		rbwork = &buffer->irq_work;
1013 		full = 0;
1014 	} else {
1015 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1016 			return EPOLLERR;
1017 
1018 		cpu_buffer = buffer->buffers[cpu];
1019 		rbwork = &cpu_buffer->irq_work;
1020 	}
1021 
1022 	if (full) {
1023 		poll_wait(filp, &rbwork->full_waiters, poll_table);
1024 
1025 		if (rb_watermark_hit(buffer, cpu, full))
1026 			return EPOLLIN | EPOLLRDNORM;
1027 		/*
1028 		 * Only allow full_waiters_pending update to be seen after
1029 		 * the shortest_full is set (in rb_watermark_hit). If the
1030 		 * writer sees the full_waiters_pending flag set, it will
1031 		 * compare the amount in the ring buffer to shortest_full.
1032 		 * If the amount in the ring buffer is greater than the
1033 		 * shortest_full percent, it will call the irq_work handler
1034 		 * to wake up this list. The irq_handler will reset shortest_full
1035 		 * back to zero. That's done under the reader_lock, but
1036 		 * the below smp_mb() makes sure that the update to
1037 		 * full_waiters_pending doesn't leak up into the above.
1038 		 */
1039 		smp_mb();
1040 		rbwork->full_waiters_pending = true;
1041 		return 0;
1042 	}
1043 
1044 	poll_wait(filp, &rbwork->waiters, poll_table);
1045 	rbwork->waiters_pending = true;
1046 
1047 	/*
1048 	 * There's a tight race between setting the waiters_pending and
1049 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1050 	 * is set, the next event will wake the task up, but we can get stuck
1051 	 * if there's only a single event in.
1052 	 *
1053 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1054 	 * but adding a memory barrier to all events will cause too much of a
1055 	 * performance hit in the fast path.  We only need a memory barrier when
1056 	 * the buffer goes from empty to having content.  But as this race is
1057 	 * extremely small, and it's not a problem if another event comes in, we
1058 	 * will fix it later.
1059 	 */
1060 	smp_mb();
1061 
1062 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1063 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1064 		return EPOLLIN | EPOLLRDNORM;
1065 	return 0;
1066 }
1067 
1068 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1069 #define RB_WARN_ON(b, cond)						\
1070 	({								\
1071 		int _____ret = unlikely(cond);				\
1072 		if (_____ret) {						\
1073 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1074 				struct ring_buffer_per_cpu *__b =	\
1075 					(void *)b;			\
1076 				atomic_inc(&__b->buffer->record_disabled); \
1077 			} else						\
1078 				atomic_inc(&b->record_disabled);	\
1079 			WARN_ON(1);					\
1080 		}							\
1081 		_____ret;						\
1082 	})
1083 
1084 /* Up this if you want to test the TIME_EXTENTS and normalization */
1085 #define DEBUG_SHIFT 0
1086 
1087 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1088 {
1089 	u64 ts;
1090 
1091 	/* Skip retpolines :-( */
1092 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1093 		ts = trace_clock_local();
1094 	else
1095 		ts = buffer->clock();
1096 
1097 	/* shift to debug/test normalization and TIME_EXTENTS */
1098 	return ts << DEBUG_SHIFT;
1099 }
1100 
1101 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1102 {
1103 	u64 time;
1104 
1105 	preempt_disable_notrace();
1106 	time = rb_time_stamp(buffer);
1107 	preempt_enable_notrace();
1108 
1109 	return time;
1110 }
1111 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1112 
1113 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1114 				      int cpu, u64 *ts)
1115 {
1116 	/* Just stupid testing the normalize function and deltas */
1117 	*ts >>= DEBUG_SHIFT;
1118 }
1119 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1120 
1121 /*
1122  * Making the ring buffer lockless makes things tricky.
1123  * Although writes only happen on the CPU that they are on,
1124  * and they only need to worry about interrupts. Reads can
1125  * happen on any CPU.
1126  *
1127  * The reader page is always off the ring buffer, but when the
1128  * reader finishes with a page, it needs to swap its page with
1129  * a new one from the buffer. The reader needs to take from
1130  * the head (writes go to the tail). But if a writer is in overwrite
1131  * mode and wraps, it must push the head page forward.
1132  *
1133  * Here lies the problem.
1134  *
1135  * The reader must be careful to replace only the head page, and
1136  * not another one. As described at the top of the file in the
1137  * ASCII art, the reader sets its old page to point to the next
1138  * page after head. It then sets the page after head to point to
1139  * the old reader page. But if the writer moves the head page
1140  * during this operation, the reader could end up with the tail.
1141  *
1142  * We use cmpxchg to help prevent this race. We also do something
1143  * special with the page before head. We set the LSB to 1.
1144  *
1145  * When the writer must push the page forward, it will clear the
1146  * bit that points to the head page, move the head, and then set
1147  * the bit that points to the new head page.
1148  *
1149  * We also don't want an interrupt coming in and moving the head
1150  * page on another writer. Thus we use the second LSB to catch
1151  * that too. Thus:
1152  *
1153  * head->list->prev->next        bit 1          bit 0
1154  *                              -------        -------
1155  * Normal page                     0              0
1156  * Points to head page             0              1
1157  * New head page                   1              0
1158  *
1159  * Note we can not trust the prev pointer of the head page, because:
1160  *
1161  * +----+       +-----+        +-----+
1162  * |    |------>|  T  |---X--->|  N  |
1163  * |    |<------|     |        |     |
1164  * +----+       +-----+        +-----+
1165  *   ^                           ^ |
1166  *   |          +-----+          | |
1167  *   +----------|  R  |----------+ |
1168  *              |     |<-----------+
1169  *              +-----+
1170  *
1171  * Key:  ---X-->  HEAD flag set in pointer
1172  *         T      Tail page
1173  *         R      Reader page
1174  *         N      Next page
1175  *
1176  * (see __rb_reserve_next() to see where this happens)
1177  *
1178  *  What the above shows is that the reader just swapped out
1179  *  the reader page with a page in the buffer, but before it
1180  *  could make the new header point back to the new page added
1181  *  it was preempted by a writer. The writer moved forward onto
1182  *  the new page added by the reader and is about to move forward
1183  *  again.
1184  *
1185  *  You can see, it is legitimate for the previous pointer of
1186  *  the head (or any page) not to point back to itself. But only
1187  *  temporarily.
1188  */
1189 
1190 #define RB_PAGE_NORMAL		0UL
1191 #define RB_PAGE_HEAD		1UL
1192 #define RB_PAGE_UPDATE		2UL
1193 
1194 
1195 #define RB_FLAG_MASK		3UL
1196 
1197 /* PAGE_MOVED is not part of the mask */
1198 #define RB_PAGE_MOVED		4UL
1199 
1200 /*
1201  * rb_list_head - remove any bit
1202  */
1203 static struct list_head *rb_list_head(struct list_head *list)
1204 {
1205 	unsigned long val = (unsigned long)list;
1206 
1207 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1208 }
1209 
1210 /*
1211  * rb_is_head_page - test if the given page is the head page
1212  *
1213  * Because the reader may move the head_page pointer, we can
1214  * not trust what the head page is (it may be pointing to
1215  * the reader page). But if the next page is a header page,
1216  * its flags will be non zero.
1217  */
1218 static inline int
1219 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1220 {
1221 	unsigned long val;
1222 
1223 	val = (unsigned long)list->next;
1224 
1225 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1226 		return RB_PAGE_MOVED;
1227 
1228 	return val & RB_FLAG_MASK;
1229 }
1230 
1231 /*
1232  * rb_is_reader_page
1233  *
1234  * The unique thing about the reader page, is that, if the
1235  * writer is ever on it, the previous pointer never points
1236  * back to the reader page.
1237  */
1238 static bool rb_is_reader_page(struct buffer_page *page)
1239 {
1240 	struct list_head *list = page->list.prev;
1241 
1242 	return rb_list_head(list->next) != &page->list;
1243 }
1244 
1245 /*
1246  * rb_set_list_to_head - set a list_head to be pointing to head.
1247  */
1248 static void rb_set_list_to_head(struct list_head *list)
1249 {
1250 	unsigned long *ptr;
1251 
1252 	ptr = (unsigned long *)&list->next;
1253 	*ptr |= RB_PAGE_HEAD;
1254 	*ptr &= ~RB_PAGE_UPDATE;
1255 }
1256 
1257 /*
1258  * rb_head_page_activate - sets up head page
1259  */
1260 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1261 {
1262 	struct buffer_page *head;
1263 
1264 	head = cpu_buffer->head_page;
1265 	if (!head)
1266 		return;
1267 
1268 	/*
1269 	 * Set the previous list pointer to have the HEAD flag.
1270 	 */
1271 	rb_set_list_to_head(head->list.prev);
1272 
1273 	if (cpu_buffer->ring_meta) {
1274 		struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1275 		meta->head_buffer = (unsigned long)head->page;
1276 	}
1277 }
1278 
1279 static void rb_list_head_clear(struct list_head *list)
1280 {
1281 	unsigned long *ptr = (unsigned long *)&list->next;
1282 
1283 	*ptr &= ~RB_FLAG_MASK;
1284 }
1285 
1286 /*
1287  * rb_head_page_deactivate - clears head page ptr (for free list)
1288  */
1289 static void
1290 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1291 {
1292 	struct list_head *hd;
1293 
1294 	/* Go through the whole list and clear any pointers found. */
1295 	rb_list_head_clear(cpu_buffer->pages);
1296 
1297 	list_for_each(hd, cpu_buffer->pages)
1298 		rb_list_head_clear(hd);
1299 }
1300 
1301 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1302 			    struct buffer_page *head,
1303 			    struct buffer_page *prev,
1304 			    int old_flag, int new_flag)
1305 {
1306 	struct list_head *list;
1307 	unsigned long val = (unsigned long)&head->list;
1308 	unsigned long ret;
1309 
1310 	list = &prev->list;
1311 
1312 	val &= ~RB_FLAG_MASK;
1313 
1314 	ret = cmpxchg((unsigned long *)&list->next,
1315 		      val | old_flag, val | new_flag);
1316 
1317 	/* check if the reader took the page */
1318 	if ((ret & ~RB_FLAG_MASK) != val)
1319 		return RB_PAGE_MOVED;
1320 
1321 	return ret & RB_FLAG_MASK;
1322 }
1323 
1324 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1325 				   struct buffer_page *head,
1326 				   struct buffer_page *prev,
1327 				   int old_flag)
1328 {
1329 	return rb_head_page_set(cpu_buffer, head, prev,
1330 				old_flag, RB_PAGE_UPDATE);
1331 }
1332 
1333 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1334 				 struct buffer_page *head,
1335 				 struct buffer_page *prev,
1336 				 int old_flag)
1337 {
1338 	return rb_head_page_set(cpu_buffer, head, prev,
1339 				old_flag, RB_PAGE_HEAD);
1340 }
1341 
1342 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1343 				   struct buffer_page *head,
1344 				   struct buffer_page *prev,
1345 				   int old_flag)
1346 {
1347 	return rb_head_page_set(cpu_buffer, head, prev,
1348 				old_flag, RB_PAGE_NORMAL);
1349 }
1350 
1351 static inline void rb_inc_page(struct buffer_page **bpage)
1352 {
1353 	struct list_head *p = rb_list_head((*bpage)->list.next);
1354 
1355 	*bpage = list_entry(p, struct buffer_page, list);
1356 }
1357 
1358 static struct buffer_page *
1359 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1360 {
1361 	struct buffer_page *head;
1362 	struct buffer_page *page;
1363 	struct list_head *list;
1364 	int i;
1365 
1366 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1367 		return NULL;
1368 
1369 	/* sanity check */
1370 	list = cpu_buffer->pages;
1371 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1372 		return NULL;
1373 
1374 	page = head = cpu_buffer->head_page;
1375 	/*
1376 	 * It is possible that the writer moves the header behind
1377 	 * where we started, and we miss in one loop.
1378 	 * A second loop should grab the header, but we'll do
1379 	 * three loops just because I'm paranoid.
1380 	 */
1381 	for (i = 0; i < 3; i++) {
1382 		do {
1383 			if (rb_is_head_page(page, page->list.prev)) {
1384 				cpu_buffer->head_page = page;
1385 				return page;
1386 			}
1387 			rb_inc_page(&page);
1388 		} while (page != head);
1389 	}
1390 
1391 	RB_WARN_ON(cpu_buffer, 1);
1392 
1393 	return NULL;
1394 }
1395 
1396 static bool rb_head_page_replace(struct buffer_page *old,
1397 				struct buffer_page *new)
1398 {
1399 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1400 	unsigned long val;
1401 
1402 	val = *ptr & ~RB_FLAG_MASK;
1403 	val |= RB_PAGE_HEAD;
1404 
1405 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1406 }
1407 
1408 /*
1409  * rb_tail_page_update - move the tail page forward
1410  */
1411 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1412 			       struct buffer_page *tail_page,
1413 			       struct buffer_page *next_page)
1414 {
1415 	unsigned long old_entries;
1416 	unsigned long old_write;
1417 
1418 	/*
1419 	 * The tail page now needs to be moved forward.
1420 	 *
1421 	 * We need to reset the tail page, but without messing
1422 	 * with possible erasing of data brought in by interrupts
1423 	 * that have moved the tail page and are currently on it.
1424 	 *
1425 	 * We add a counter to the write field to denote this.
1426 	 */
1427 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1428 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1429 
1430 	/*
1431 	 * Just make sure we have seen our old_write and synchronize
1432 	 * with any interrupts that come in.
1433 	 */
1434 	barrier();
1435 
1436 	/*
1437 	 * If the tail page is still the same as what we think
1438 	 * it is, then it is up to us to update the tail
1439 	 * pointer.
1440 	 */
1441 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1442 		/* Zero the write counter */
1443 		unsigned long val = old_write & ~RB_WRITE_MASK;
1444 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1445 
1446 		/*
1447 		 * This will only succeed if an interrupt did
1448 		 * not come in and change it. In which case, we
1449 		 * do not want to modify it.
1450 		 *
1451 		 * We add (void) to let the compiler know that we do not care
1452 		 * about the return value of these functions. We use the
1453 		 * cmpxchg to only update if an interrupt did not already
1454 		 * do it for us. If the cmpxchg fails, we don't care.
1455 		 */
1456 		(void)local_cmpxchg(&next_page->write, old_write, val);
1457 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1458 
1459 		/*
1460 		 * No need to worry about races with clearing out the commit.
1461 		 * it only can increment when a commit takes place. But that
1462 		 * only happens in the outer most nested commit.
1463 		 */
1464 		local_set(&next_page->page->commit, 0);
1465 
1466 		/* Either we update tail_page or an interrupt does */
1467 		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1468 			local_inc(&cpu_buffer->pages_touched);
1469 	}
1470 }
1471 
1472 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1473 			  struct buffer_page *bpage)
1474 {
1475 	unsigned long val = (unsigned long)bpage;
1476 
1477 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1478 }
1479 
1480 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1481 			   struct list_head *list)
1482 {
1483 	if (RB_WARN_ON(cpu_buffer,
1484 		       rb_list_head(rb_list_head(list->next)->prev) != list))
1485 		return false;
1486 
1487 	if (RB_WARN_ON(cpu_buffer,
1488 		       rb_list_head(rb_list_head(list->prev)->next) != list))
1489 		return false;
1490 
1491 	return true;
1492 }
1493 
1494 /**
1495  * rb_check_pages - integrity check of buffer pages
1496  * @cpu_buffer: CPU buffer with pages to test
1497  *
1498  * As a safety measure we check to make sure the data pages have not
1499  * been corrupted.
1500  */
1501 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1502 {
1503 	struct list_head *head, *tmp;
1504 	unsigned long buffer_cnt;
1505 	unsigned long flags;
1506 	int nr_loops = 0;
1507 
1508 	/*
1509 	 * Walk the linked list underpinning the ring buffer and validate all
1510 	 * its next and prev links.
1511 	 *
1512 	 * The check acquires the reader_lock to avoid concurrent processing
1513 	 * with code that could be modifying the list. However, the lock cannot
1514 	 * be held for the entire duration of the walk, as this would make the
1515 	 * time when interrupts are disabled non-deterministic, dependent on the
1516 	 * ring buffer size. Therefore, the code releases and re-acquires the
1517 	 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1518 	 * is then used to detect if the list was modified while the lock was
1519 	 * not held, in which case the check needs to be restarted.
1520 	 *
1521 	 * The code attempts to perform the check at most three times before
1522 	 * giving up. This is acceptable because this is only a self-validation
1523 	 * to detect problems early on. In practice, the list modification
1524 	 * operations are fairly spaced, and so this check typically succeeds at
1525 	 * most on the second try.
1526 	 */
1527 again:
1528 	if (++nr_loops > 3)
1529 		return;
1530 
1531 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1532 	head = rb_list_head(cpu_buffer->pages);
1533 	if (!rb_check_links(cpu_buffer, head))
1534 		goto out_locked;
1535 	buffer_cnt = cpu_buffer->cnt;
1536 	tmp = head;
1537 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1538 
1539 	while (true) {
1540 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1541 
1542 		if (buffer_cnt != cpu_buffer->cnt) {
1543 			/* The list was updated, try again. */
1544 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1545 			goto again;
1546 		}
1547 
1548 		tmp = rb_list_head(tmp->next);
1549 		if (tmp == head)
1550 			/* The iteration circled back, all is done. */
1551 			goto out_locked;
1552 
1553 		if (!rb_check_links(cpu_buffer, tmp))
1554 			goto out_locked;
1555 
1556 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1557 	}
1558 
1559 out_locked:
1560 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1561 }
1562 
1563 /*
1564  * Take an address, add the meta data size as well as the array of
1565  * array subbuffer indexes, then align it to a subbuffer size.
1566  *
1567  * This is used to help find the next per cpu subbuffer within a mapped range.
1568  */
1569 static unsigned long
1570 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1571 {
1572 	addr += sizeof(struct ring_buffer_meta) +
1573 		sizeof(int) * nr_subbufs;
1574 	return ALIGN(addr, subbuf_size);
1575 }
1576 
1577 /*
1578  * Return the ring_buffer_meta for a given @cpu.
1579  */
1580 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1581 {
1582 	int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1583 	unsigned long ptr = buffer->range_addr_start;
1584 	struct ring_buffer_meta *meta;
1585 	int nr_subbufs;
1586 
1587 	if (!ptr)
1588 		return NULL;
1589 
1590 	/* When nr_pages passed in is zero, the first meta has already been initialized */
1591 	if (!nr_pages) {
1592 		meta = (struct ring_buffer_meta *)ptr;
1593 		nr_subbufs = meta->nr_subbufs;
1594 	} else {
1595 		meta = NULL;
1596 		/* Include the reader page */
1597 		nr_subbufs = nr_pages + 1;
1598 	}
1599 
1600 	/*
1601 	 * The first chunk may not be subbuffer aligned, where as
1602 	 * the rest of the chunks are.
1603 	 */
1604 	if (cpu) {
1605 		ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1606 		ptr += subbuf_size * nr_subbufs;
1607 
1608 		/* We can use multiplication to find chunks greater than 1 */
1609 		if (cpu > 1) {
1610 			unsigned long size;
1611 			unsigned long p;
1612 
1613 			/* Save the beginning of this CPU chunk */
1614 			p = ptr;
1615 			ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1616 			ptr += subbuf_size * nr_subbufs;
1617 
1618 			/* Now all chunks after this are the same size */
1619 			size = ptr - p;
1620 			ptr += size * (cpu - 2);
1621 		}
1622 	}
1623 	return (void *)ptr;
1624 }
1625 
1626 /* Return the start of subbufs given the meta pointer */
1627 static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta)
1628 {
1629 	int subbuf_size = meta->subbuf_size;
1630 	unsigned long ptr;
1631 
1632 	ptr = (unsigned long)meta;
1633 	ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1634 
1635 	return (void *)ptr;
1636 }
1637 
1638 /*
1639  * Return a specific sub-buffer for a given @cpu defined by @idx.
1640  */
1641 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1642 {
1643 	struct ring_buffer_meta *meta;
1644 	unsigned long ptr;
1645 	int subbuf_size;
1646 
1647 	meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1648 	if (!meta)
1649 		return NULL;
1650 
1651 	if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1652 		return NULL;
1653 
1654 	subbuf_size = meta->subbuf_size;
1655 
1656 	/* Map this buffer to the order that's in meta->buffers[] */
1657 	idx = meta->buffers[idx];
1658 
1659 	ptr = (unsigned long)rb_subbufs_from_meta(meta);
1660 
1661 	ptr += subbuf_size * idx;
1662 	if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1663 		return NULL;
1664 
1665 	return (void *)ptr;
1666 }
1667 
1668 /*
1669  * See if the existing memory contains valid ring buffer data.
1670  * As the previous kernel must be the same as this kernel, all
1671  * the calculations (size of buffers and number of buffers)
1672  * must be the same.
1673  */
1674 static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu,
1675 			  struct trace_buffer *buffer, int nr_pages,
1676 			  unsigned long *subbuf_mask)
1677 {
1678 	int subbuf_size = PAGE_SIZE;
1679 	struct buffer_data_page *subbuf;
1680 	unsigned long buffers_start;
1681 	unsigned long buffers_end;
1682 	int i;
1683 
1684 	if (!subbuf_mask)
1685 		return false;
1686 
1687 	/* Check the meta magic and meta struct size */
1688 	if (meta->magic != RING_BUFFER_META_MAGIC ||
1689 	    meta->struct_size != sizeof(*meta)) {
1690 		pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu);
1691 		return false;
1692 	}
1693 
1694 	/* The subbuffer's size and number of subbuffers must match */
1695 	if (meta->subbuf_size != subbuf_size ||
1696 	    meta->nr_subbufs != nr_pages + 1) {
1697 		pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu);
1698 		return false;
1699 	}
1700 
1701 	buffers_start = meta->first_buffer;
1702 	buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1703 
1704 	/* Is the head and commit buffers within the range of buffers? */
1705 	if (meta->head_buffer < buffers_start ||
1706 	    meta->head_buffer >= buffers_end) {
1707 		pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1708 		return false;
1709 	}
1710 
1711 	if (meta->commit_buffer < buffers_start ||
1712 	    meta->commit_buffer >= buffers_end) {
1713 		pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1714 		return false;
1715 	}
1716 
1717 	subbuf = rb_subbufs_from_meta(meta);
1718 
1719 	bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1720 
1721 	/* Is the meta buffers and the subbufs themselves have correct data? */
1722 	for (i = 0; i < meta->nr_subbufs; i++) {
1723 		if (meta->buffers[i] < 0 ||
1724 		    meta->buffers[i] >= meta->nr_subbufs) {
1725 			pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1726 			return false;
1727 		}
1728 
1729 		if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1730 			pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1731 			return false;
1732 		}
1733 
1734 		if (test_bit(meta->buffers[i], subbuf_mask)) {
1735 			pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1736 			return false;
1737 		}
1738 
1739 		set_bit(meta->buffers[i], subbuf_mask);
1740 		subbuf = (void *)subbuf + subbuf_size;
1741 	}
1742 
1743 	return true;
1744 }
1745 
1746 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf);
1747 
1748 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1749 			       unsigned long long *timestamp, u64 *delta_ptr)
1750 {
1751 	struct ring_buffer_event *event;
1752 	u64 ts, delta;
1753 	int events = 0;
1754 	int e;
1755 
1756 	*delta_ptr = 0;
1757 	*timestamp = 0;
1758 
1759 	ts = dpage->time_stamp;
1760 
1761 	for (e = 0; e < tail; e += rb_event_length(event)) {
1762 
1763 		event = (struct ring_buffer_event *)(dpage->data + e);
1764 
1765 		switch (event->type_len) {
1766 
1767 		case RINGBUF_TYPE_TIME_EXTEND:
1768 			delta = rb_event_time_stamp(event);
1769 			ts += delta;
1770 			break;
1771 
1772 		case RINGBUF_TYPE_TIME_STAMP:
1773 			delta = rb_event_time_stamp(event);
1774 			delta = rb_fix_abs_ts(delta, ts);
1775 			if (delta < ts) {
1776 				*delta_ptr = delta;
1777 				*timestamp = ts;
1778 				return -1;
1779 			}
1780 			ts = delta;
1781 			break;
1782 
1783 		case RINGBUF_TYPE_PADDING:
1784 			if (event->time_delta == 1)
1785 				break;
1786 			fallthrough;
1787 		case RINGBUF_TYPE_DATA:
1788 			events++;
1789 			ts += event->time_delta;
1790 			break;
1791 
1792 		default:
1793 			return -1;
1794 		}
1795 	}
1796 	*timestamp = ts;
1797 	return events;
1798 }
1799 
1800 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1801 {
1802 	unsigned long long ts;
1803 	u64 delta;
1804 	int tail;
1805 
1806 	tail = local_read(&dpage->commit);
1807 	return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1808 }
1809 
1810 /* If the meta data has been validated, now validate the events */
1811 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1812 {
1813 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1814 	struct buffer_page *head_page;
1815 	unsigned long entry_bytes = 0;
1816 	unsigned long entries = 0;
1817 	int ret;
1818 	int i;
1819 
1820 	if (!meta || !meta->head_buffer)
1821 		return;
1822 
1823 	/* Do the reader page first */
1824 	ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1825 	if (ret < 0) {
1826 		pr_info("Ring buffer reader page is invalid\n");
1827 		goto invalid;
1828 	}
1829 	entries += ret;
1830 	entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1831 	local_set(&cpu_buffer->reader_page->entries, ret);
1832 
1833 	head_page = cpu_buffer->head_page;
1834 
1835 	/* If both the head and commit are on the reader_page then we are done. */
1836 	if (head_page == cpu_buffer->reader_page &&
1837 	    head_page == cpu_buffer->commit_page)
1838 		goto done;
1839 
1840 	/* Iterate until finding the commit page */
1841 	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1842 
1843 		/* Reader page has already been done */
1844 		if (head_page == cpu_buffer->reader_page)
1845 			continue;
1846 
1847 		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1848 		if (ret < 0) {
1849 			pr_info("Ring buffer meta [%d] invalid buffer page\n",
1850 				cpu_buffer->cpu);
1851 			goto invalid;
1852 		}
1853 		entries += ret;
1854 		entry_bytes += local_read(&head_page->page->commit);
1855 		local_set(&cpu_buffer->head_page->entries, ret);
1856 
1857 		if (head_page == cpu_buffer->commit_page)
1858 			break;
1859 	}
1860 
1861 	if (head_page != cpu_buffer->commit_page) {
1862 		pr_info("Ring buffer meta [%d] commit page not found\n",
1863 			cpu_buffer->cpu);
1864 		goto invalid;
1865 	}
1866  done:
1867 	local_set(&cpu_buffer->entries, entries);
1868 	local_set(&cpu_buffer->entries_bytes, entry_bytes);
1869 
1870 	pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1871 	return;
1872 
1873  invalid:
1874 	/* The content of the buffers are invalid, reset the meta data */
1875 	meta->head_buffer = 0;
1876 	meta->commit_buffer = 0;
1877 
1878 	/* Reset the reader page */
1879 	local_set(&cpu_buffer->reader_page->entries, 0);
1880 	local_set(&cpu_buffer->reader_page->page->commit, 0);
1881 
1882 	/* Reset all the subbuffers */
1883 	for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1884 		local_set(&head_page->entries, 0);
1885 		local_set(&head_page->page->commit, 0);
1886 	}
1887 }
1888 
1889 /* Used to calculate data delta */
1890 static char rb_data_ptr[] = "";
1891 
1892 #define THIS_TEXT_PTR		((unsigned long)rb_meta_init_text_addr)
1893 #define THIS_DATA_PTR		((unsigned long)rb_data_ptr)
1894 
1895 static void rb_meta_init_text_addr(struct ring_buffer_meta *meta)
1896 {
1897 	meta->text_addr = THIS_TEXT_PTR;
1898 	meta->data_addr = THIS_DATA_PTR;
1899 }
1900 
1901 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1902 {
1903 	struct ring_buffer_meta *meta;
1904 	unsigned long *subbuf_mask;
1905 	unsigned long delta;
1906 	void *subbuf;
1907 	int cpu;
1908 	int i;
1909 
1910 	/* Create a mask to test the subbuf array */
1911 	subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
1912 	/* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
1913 
1914 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1915 		void *next_meta;
1916 
1917 		meta = rb_range_meta(buffer, nr_pages, cpu);
1918 
1919 		if (rb_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
1920 			/* Make the mappings match the current address */
1921 			subbuf = rb_subbufs_from_meta(meta);
1922 			delta = (unsigned long)subbuf - meta->first_buffer;
1923 			meta->first_buffer += delta;
1924 			meta->head_buffer += delta;
1925 			meta->commit_buffer += delta;
1926 			buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr;
1927 			buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr;
1928 			continue;
1929 		}
1930 
1931 		if (cpu < nr_cpu_ids - 1)
1932 			next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1933 		else
1934 			next_meta = (void *)buffer->range_addr_end;
1935 
1936 		memset(meta, 0, next_meta - (void *)meta);
1937 
1938 		meta->magic = RING_BUFFER_META_MAGIC;
1939 		meta->struct_size = sizeof(*meta);
1940 
1941 		meta->nr_subbufs = nr_pages + 1;
1942 		meta->subbuf_size = PAGE_SIZE;
1943 
1944 		subbuf = rb_subbufs_from_meta(meta);
1945 
1946 		meta->first_buffer = (unsigned long)subbuf;
1947 		rb_meta_init_text_addr(meta);
1948 
1949 		/*
1950 		 * The buffers[] array holds the order of the sub-buffers
1951 		 * that are after the meta data. The sub-buffers may
1952 		 * be swapped out when read and inserted into a different
1953 		 * location of the ring buffer. Although their addresses
1954 		 * remain the same, the buffers[] array contains the
1955 		 * index into the sub-buffers holding their actual order.
1956 		 */
1957 		for (i = 0; i < meta->nr_subbufs; i++) {
1958 			meta->buffers[i] = i;
1959 			rb_init_page(subbuf);
1960 			subbuf += meta->subbuf_size;
1961 		}
1962 	}
1963 	bitmap_free(subbuf_mask);
1964 }
1965 
1966 static void *rbm_start(struct seq_file *m, loff_t *pos)
1967 {
1968 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1969 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1970 	unsigned long val;
1971 
1972 	if (!meta)
1973 		return NULL;
1974 
1975 	if (*pos > meta->nr_subbufs)
1976 		return NULL;
1977 
1978 	val = *pos;
1979 	val++;
1980 
1981 	return (void *)val;
1982 }
1983 
1984 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
1985 {
1986 	(*pos)++;
1987 
1988 	return rbm_start(m, pos);
1989 }
1990 
1991 static int rbm_show(struct seq_file *m, void *v)
1992 {
1993 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1994 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1995 	unsigned long val = (unsigned long)v;
1996 
1997 	if (val == 1) {
1998 		seq_printf(m, "head_buffer:   %d\n",
1999 			   rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
2000 		seq_printf(m, "commit_buffer: %d\n",
2001 			   rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
2002 		seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
2003 		seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
2004 		return 0;
2005 	}
2006 
2007 	val -= 2;
2008 	seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
2009 
2010 	return 0;
2011 }
2012 
2013 static void rbm_stop(struct seq_file *m, void *p)
2014 {
2015 }
2016 
2017 static const struct seq_operations rb_meta_seq_ops = {
2018 	.start		= rbm_start,
2019 	.next		= rbm_next,
2020 	.show		= rbm_show,
2021 	.stop		= rbm_stop,
2022 };
2023 
2024 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2025 {
2026 	struct seq_file *m;
2027 	int ret;
2028 
2029 	ret = seq_open(file, &rb_meta_seq_ops);
2030 	if (ret)
2031 		return ret;
2032 
2033 	m = file->private_data;
2034 	m->private = buffer->buffers[cpu];
2035 
2036 	return 0;
2037 }
2038 
2039 /* Map the buffer_pages to the previous head and commit pages */
2040 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2041 				  struct buffer_page *bpage)
2042 {
2043 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2044 
2045 	if (meta->head_buffer == (unsigned long)bpage->page)
2046 		cpu_buffer->head_page = bpage;
2047 
2048 	if (meta->commit_buffer == (unsigned long)bpage->page) {
2049 		cpu_buffer->commit_page = bpage;
2050 		cpu_buffer->tail_page = bpage;
2051 	}
2052 }
2053 
2054 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2055 		long nr_pages, struct list_head *pages)
2056 {
2057 	struct trace_buffer *buffer = cpu_buffer->buffer;
2058 	struct ring_buffer_meta *meta = NULL;
2059 	struct buffer_page *bpage, *tmp;
2060 	bool user_thread = current->mm != NULL;
2061 	gfp_t mflags;
2062 	long i;
2063 
2064 	/*
2065 	 * Check if the available memory is there first.
2066 	 * Note, si_mem_available() only gives us a rough estimate of available
2067 	 * memory. It may not be accurate. But we don't care, we just want
2068 	 * to prevent doing any allocation when it is obvious that it is
2069 	 * not going to succeed.
2070 	 */
2071 	i = si_mem_available();
2072 	if (i < nr_pages)
2073 		return -ENOMEM;
2074 
2075 	/*
2076 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2077 	 * gracefully without invoking oom-killer and the system is not
2078 	 * destabilized.
2079 	 */
2080 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2081 
2082 	/*
2083 	 * If a user thread allocates too much, and si_mem_available()
2084 	 * reports there's enough memory, even though there is not.
2085 	 * Make sure the OOM killer kills this thread. This can happen
2086 	 * even with RETRY_MAYFAIL because another task may be doing
2087 	 * an allocation after this task has taken all memory.
2088 	 * This is the task the OOM killer needs to take out during this
2089 	 * loop, even if it was triggered by an allocation somewhere else.
2090 	 */
2091 	if (user_thread)
2092 		set_current_oom_origin();
2093 
2094 	if (buffer->range_addr_start)
2095 		meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2096 
2097 	for (i = 0; i < nr_pages; i++) {
2098 		struct page *page;
2099 
2100 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2101 				    mflags, cpu_to_node(cpu_buffer->cpu));
2102 		if (!bpage)
2103 			goto free_pages;
2104 
2105 		rb_check_bpage(cpu_buffer, bpage);
2106 
2107 		/*
2108 		 * Append the pages as for mapped buffers we want to keep
2109 		 * the order
2110 		 */
2111 		list_add_tail(&bpage->list, pages);
2112 
2113 		if (meta) {
2114 			/* A range was given. Use that for the buffer page */
2115 			bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2116 			if (!bpage->page)
2117 				goto free_pages;
2118 			/* If this is valid from a previous boot */
2119 			if (meta->head_buffer)
2120 				rb_meta_buffer_update(cpu_buffer, bpage);
2121 			bpage->range = 1;
2122 			bpage->id = i + 1;
2123 		} else {
2124 			page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2125 						mflags | __GFP_COMP | __GFP_ZERO,
2126 						cpu_buffer->buffer->subbuf_order);
2127 			if (!page)
2128 				goto free_pages;
2129 			bpage->page = page_address(page);
2130 			rb_init_page(bpage->page);
2131 		}
2132 		bpage->order = cpu_buffer->buffer->subbuf_order;
2133 
2134 		if (user_thread && fatal_signal_pending(current))
2135 			goto free_pages;
2136 	}
2137 	if (user_thread)
2138 		clear_current_oom_origin();
2139 
2140 	return 0;
2141 
2142 free_pages:
2143 	list_for_each_entry_safe(bpage, tmp, pages, list) {
2144 		list_del_init(&bpage->list);
2145 		free_buffer_page(bpage);
2146 	}
2147 	if (user_thread)
2148 		clear_current_oom_origin();
2149 
2150 	return -ENOMEM;
2151 }
2152 
2153 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2154 			     unsigned long nr_pages)
2155 {
2156 	LIST_HEAD(pages);
2157 
2158 	WARN_ON(!nr_pages);
2159 
2160 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2161 		return -ENOMEM;
2162 
2163 	/*
2164 	 * The ring buffer page list is a circular list that does not
2165 	 * start and end with a list head. All page list items point to
2166 	 * other pages.
2167 	 */
2168 	cpu_buffer->pages = pages.next;
2169 	list_del(&pages);
2170 
2171 	cpu_buffer->nr_pages = nr_pages;
2172 
2173 	rb_check_pages(cpu_buffer);
2174 
2175 	return 0;
2176 }
2177 
2178 static struct ring_buffer_per_cpu *
2179 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2180 {
2181 	struct ring_buffer_per_cpu *cpu_buffer;
2182 	struct ring_buffer_meta *meta;
2183 	struct buffer_page *bpage;
2184 	struct page *page;
2185 	int ret;
2186 
2187 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2188 				  GFP_KERNEL, cpu_to_node(cpu));
2189 	if (!cpu_buffer)
2190 		return NULL;
2191 
2192 	cpu_buffer->cpu = cpu;
2193 	cpu_buffer->buffer = buffer;
2194 	raw_spin_lock_init(&cpu_buffer->reader_lock);
2195 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2196 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2197 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2198 	init_completion(&cpu_buffer->update_done);
2199 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2200 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2201 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2202 	mutex_init(&cpu_buffer->mapping_lock);
2203 
2204 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2205 			    GFP_KERNEL, cpu_to_node(cpu));
2206 	if (!bpage)
2207 		goto fail_free_buffer;
2208 
2209 	rb_check_bpage(cpu_buffer, bpage);
2210 
2211 	cpu_buffer->reader_page = bpage;
2212 
2213 	if (buffer->range_addr_start) {
2214 		/*
2215 		 * Range mapped buffers have the same restrictions as memory
2216 		 * mapped ones do.
2217 		 */
2218 		cpu_buffer->mapped = 1;
2219 		cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2220 		bpage->page = rb_range_buffer(cpu_buffer, 0);
2221 		if (!bpage->page)
2222 			goto fail_free_reader;
2223 		if (cpu_buffer->ring_meta->head_buffer)
2224 			rb_meta_buffer_update(cpu_buffer, bpage);
2225 		bpage->range = 1;
2226 	} else {
2227 		page = alloc_pages_node(cpu_to_node(cpu),
2228 					GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2229 					cpu_buffer->buffer->subbuf_order);
2230 		if (!page)
2231 			goto fail_free_reader;
2232 		bpage->page = page_address(page);
2233 		rb_init_page(bpage->page);
2234 	}
2235 
2236 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2237 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
2238 
2239 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
2240 	if (ret < 0)
2241 		goto fail_free_reader;
2242 
2243 	rb_meta_validate_events(cpu_buffer);
2244 
2245 	/* If the boot meta was valid then this has already been updated */
2246 	meta = cpu_buffer->ring_meta;
2247 	if (!meta || !meta->head_buffer ||
2248 	    !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2249 		if (meta && meta->head_buffer &&
2250 		    (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2251 			pr_warn("Ring buffer meta buffers not all mapped\n");
2252 			if (!cpu_buffer->head_page)
2253 				pr_warn("   Missing head_page\n");
2254 			if (!cpu_buffer->commit_page)
2255 				pr_warn("   Missing commit_page\n");
2256 			if (!cpu_buffer->tail_page)
2257 				pr_warn("   Missing tail_page\n");
2258 		}
2259 
2260 		cpu_buffer->head_page
2261 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
2262 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2263 
2264 		rb_head_page_activate(cpu_buffer);
2265 
2266 		if (cpu_buffer->ring_meta)
2267 			meta->commit_buffer = meta->head_buffer;
2268 	} else {
2269 		/* The valid meta buffer still needs to activate the head page */
2270 		rb_head_page_activate(cpu_buffer);
2271 	}
2272 
2273 	return cpu_buffer;
2274 
2275  fail_free_reader:
2276 	free_buffer_page(cpu_buffer->reader_page);
2277 
2278  fail_free_buffer:
2279 	kfree(cpu_buffer);
2280 	return NULL;
2281 }
2282 
2283 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2284 {
2285 	struct list_head *head = cpu_buffer->pages;
2286 	struct buffer_page *bpage, *tmp;
2287 
2288 	irq_work_sync(&cpu_buffer->irq_work.work);
2289 
2290 	free_buffer_page(cpu_buffer->reader_page);
2291 
2292 	if (head) {
2293 		rb_head_page_deactivate(cpu_buffer);
2294 
2295 		list_for_each_entry_safe(bpage, tmp, head, list) {
2296 			list_del_init(&bpage->list);
2297 			free_buffer_page(bpage);
2298 		}
2299 		bpage = list_entry(head, struct buffer_page, list);
2300 		free_buffer_page(bpage);
2301 	}
2302 
2303 	free_page((unsigned long)cpu_buffer->free_page);
2304 
2305 	kfree(cpu_buffer);
2306 }
2307 
2308 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2309 					 int order, unsigned long start,
2310 					 unsigned long end,
2311 					 struct lock_class_key *key)
2312 {
2313 	struct trace_buffer *buffer;
2314 	long nr_pages;
2315 	int subbuf_size;
2316 	int bsize;
2317 	int cpu;
2318 	int ret;
2319 
2320 	/* keep it in its own cache line */
2321 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2322 			 GFP_KERNEL);
2323 	if (!buffer)
2324 		return NULL;
2325 
2326 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2327 		goto fail_free_buffer;
2328 
2329 	buffer->subbuf_order = order;
2330 	subbuf_size = (PAGE_SIZE << order);
2331 	buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2332 
2333 	/* Max payload is buffer page size - header (8bytes) */
2334 	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2335 
2336 	buffer->flags = flags;
2337 	buffer->clock = trace_clock_local;
2338 	buffer->reader_lock_key = key;
2339 
2340 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2341 	init_waitqueue_head(&buffer->irq_work.waiters);
2342 
2343 	buffer->cpus = nr_cpu_ids;
2344 
2345 	bsize = sizeof(void *) * nr_cpu_ids;
2346 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2347 				  GFP_KERNEL);
2348 	if (!buffer->buffers)
2349 		goto fail_free_cpumask;
2350 
2351 	/* If start/end are specified, then that overrides size */
2352 	if (start && end) {
2353 		unsigned long ptr;
2354 		int n;
2355 
2356 		size = end - start;
2357 		size = size / nr_cpu_ids;
2358 
2359 		/*
2360 		 * The number of sub-buffers (nr_pages) is determined by the
2361 		 * total size allocated minus the meta data size.
2362 		 * Then that is divided by the number of per CPU buffers
2363 		 * needed, plus account for the integer array index that
2364 		 * will be appended to the meta data.
2365 		 */
2366 		nr_pages = (size - sizeof(struct ring_buffer_meta)) /
2367 			(subbuf_size + sizeof(int));
2368 		/* Need at least two pages plus the reader page */
2369 		if (nr_pages < 3)
2370 			goto fail_free_buffers;
2371 
2372  again:
2373 		/* Make sure that the size fits aligned */
2374 		for (n = 0, ptr = start; n < nr_cpu_ids; n++) {
2375 			ptr += sizeof(struct ring_buffer_meta) +
2376 				sizeof(int) * nr_pages;
2377 			ptr = ALIGN(ptr, subbuf_size);
2378 			ptr += subbuf_size * nr_pages;
2379 		}
2380 		if (ptr > end) {
2381 			if (nr_pages <= 3)
2382 				goto fail_free_buffers;
2383 			nr_pages--;
2384 			goto again;
2385 		}
2386 
2387 		/* nr_pages should not count the reader page */
2388 		nr_pages--;
2389 		buffer->range_addr_start = start;
2390 		buffer->range_addr_end = end;
2391 
2392 		rb_range_meta_init(buffer, nr_pages);
2393 	} else {
2394 
2395 		/* need at least two pages */
2396 		nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2397 		if (nr_pages < 2)
2398 			nr_pages = 2;
2399 	}
2400 
2401 	cpu = raw_smp_processor_id();
2402 	cpumask_set_cpu(cpu, buffer->cpumask);
2403 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2404 	if (!buffer->buffers[cpu])
2405 		goto fail_free_buffers;
2406 
2407 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2408 	if (ret < 0)
2409 		goto fail_free_buffers;
2410 
2411 	mutex_init(&buffer->mutex);
2412 
2413 	return buffer;
2414 
2415  fail_free_buffers:
2416 	for_each_buffer_cpu(buffer, cpu) {
2417 		if (buffer->buffers[cpu])
2418 			rb_free_cpu_buffer(buffer->buffers[cpu]);
2419 	}
2420 	kfree(buffer->buffers);
2421 
2422  fail_free_cpumask:
2423 	free_cpumask_var(buffer->cpumask);
2424 
2425  fail_free_buffer:
2426 	kfree(buffer);
2427 	return NULL;
2428 }
2429 
2430 /**
2431  * __ring_buffer_alloc - allocate a new ring_buffer
2432  * @size: the size in bytes per cpu that is needed.
2433  * @flags: attributes to set for the ring buffer.
2434  * @key: ring buffer reader_lock_key.
2435  *
2436  * Currently the only flag that is available is the RB_FL_OVERWRITE
2437  * flag. This flag means that the buffer will overwrite old data
2438  * when the buffer wraps. If this flag is not set, the buffer will
2439  * drop data when the tail hits the head.
2440  */
2441 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2442 					struct lock_class_key *key)
2443 {
2444 	/* Default buffer page size - one system page */
2445 	return alloc_buffer(size, flags, 0, 0, 0,key);
2446 
2447 }
2448 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2449 
2450 /**
2451  * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2452  * @size: the size in bytes per cpu that is needed.
2453  * @flags: attributes to set for the ring buffer.
2454  * @order: sub-buffer order
2455  * @start: start of allocated range
2456  * @range_size: size of allocated range
2457  * @key: ring buffer reader_lock_key.
2458  *
2459  * Currently the only flag that is available is the RB_FL_OVERWRITE
2460  * flag. This flag means that the buffer will overwrite old data
2461  * when the buffer wraps. If this flag is not set, the buffer will
2462  * drop data when the tail hits the head.
2463  */
2464 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2465 					       int order, unsigned long start,
2466 					       unsigned long range_size,
2467 					       struct lock_class_key *key)
2468 {
2469 	return alloc_buffer(size, flags, order, start, start + range_size, key);
2470 }
2471 
2472 /**
2473  * ring_buffer_last_boot_delta - return the delta offset from last boot
2474  * @buffer: The buffer to return the delta from
2475  * @text: Return text delta
2476  * @data: Return data delta
2477  *
2478  * Returns: The true if the delta is non zero
2479  */
2480 bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text,
2481 				 long *data)
2482 {
2483 	if (!buffer)
2484 		return false;
2485 
2486 	if (!buffer->last_text_delta)
2487 		return false;
2488 
2489 	*text = buffer->last_text_delta;
2490 	*data = buffer->last_data_delta;
2491 
2492 	return true;
2493 }
2494 
2495 /**
2496  * ring_buffer_free - free a ring buffer.
2497  * @buffer: the buffer to free.
2498  */
2499 void
2500 ring_buffer_free(struct trace_buffer *buffer)
2501 {
2502 	int cpu;
2503 
2504 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2505 
2506 	irq_work_sync(&buffer->irq_work.work);
2507 
2508 	for_each_buffer_cpu(buffer, cpu)
2509 		rb_free_cpu_buffer(buffer->buffers[cpu]);
2510 
2511 	kfree(buffer->buffers);
2512 	free_cpumask_var(buffer->cpumask);
2513 
2514 	kfree(buffer);
2515 }
2516 EXPORT_SYMBOL_GPL(ring_buffer_free);
2517 
2518 void ring_buffer_set_clock(struct trace_buffer *buffer,
2519 			   u64 (*clock)(void))
2520 {
2521 	buffer->clock = clock;
2522 }
2523 
2524 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2525 {
2526 	buffer->time_stamp_abs = abs;
2527 }
2528 
2529 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2530 {
2531 	return buffer->time_stamp_abs;
2532 }
2533 
2534 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2535 {
2536 	return local_read(&bpage->entries) & RB_WRITE_MASK;
2537 }
2538 
2539 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2540 {
2541 	return local_read(&bpage->write) & RB_WRITE_MASK;
2542 }
2543 
2544 static bool
2545 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2546 {
2547 	struct list_head *tail_page, *to_remove, *next_page;
2548 	struct buffer_page *to_remove_page, *tmp_iter_page;
2549 	struct buffer_page *last_page, *first_page;
2550 	unsigned long nr_removed;
2551 	unsigned long head_bit;
2552 	int page_entries;
2553 
2554 	head_bit = 0;
2555 
2556 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2557 	atomic_inc(&cpu_buffer->record_disabled);
2558 	/*
2559 	 * We don't race with the readers since we have acquired the reader
2560 	 * lock. We also don't race with writers after disabling recording.
2561 	 * This makes it easy to figure out the first and the last page to be
2562 	 * removed from the list. We unlink all the pages in between including
2563 	 * the first and last pages. This is done in a busy loop so that we
2564 	 * lose the least number of traces.
2565 	 * The pages are freed after we restart recording and unlock readers.
2566 	 */
2567 	tail_page = &cpu_buffer->tail_page->list;
2568 
2569 	/*
2570 	 * tail page might be on reader page, we remove the next page
2571 	 * from the ring buffer
2572 	 */
2573 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2574 		tail_page = rb_list_head(tail_page->next);
2575 	to_remove = tail_page;
2576 
2577 	/* start of pages to remove */
2578 	first_page = list_entry(rb_list_head(to_remove->next),
2579 				struct buffer_page, list);
2580 
2581 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2582 		to_remove = rb_list_head(to_remove)->next;
2583 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2584 	}
2585 	/* Read iterators need to reset themselves when some pages removed */
2586 	cpu_buffer->pages_removed += nr_removed;
2587 
2588 	next_page = rb_list_head(to_remove)->next;
2589 
2590 	/*
2591 	 * Now we remove all pages between tail_page and next_page.
2592 	 * Make sure that we have head_bit value preserved for the
2593 	 * next page
2594 	 */
2595 	tail_page->next = (struct list_head *)((unsigned long)next_page |
2596 						head_bit);
2597 	next_page = rb_list_head(next_page);
2598 	next_page->prev = tail_page;
2599 
2600 	/* make sure pages points to a valid page in the ring buffer */
2601 	cpu_buffer->pages = next_page;
2602 	cpu_buffer->cnt++;
2603 
2604 	/* update head page */
2605 	if (head_bit)
2606 		cpu_buffer->head_page = list_entry(next_page,
2607 						struct buffer_page, list);
2608 
2609 	/* pages are removed, resume tracing and then free the pages */
2610 	atomic_dec(&cpu_buffer->record_disabled);
2611 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2612 
2613 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2614 
2615 	/* last buffer page to remove */
2616 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2617 				list);
2618 	tmp_iter_page = first_page;
2619 
2620 	do {
2621 		cond_resched();
2622 
2623 		to_remove_page = tmp_iter_page;
2624 		rb_inc_page(&tmp_iter_page);
2625 
2626 		/* update the counters */
2627 		page_entries = rb_page_entries(to_remove_page);
2628 		if (page_entries) {
2629 			/*
2630 			 * If something was added to this page, it was full
2631 			 * since it is not the tail page. So we deduct the
2632 			 * bytes consumed in ring buffer from here.
2633 			 * Increment overrun to account for the lost events.
2634 			 */
2635 			local_add(page_entries, &cpu_buffer->overrun);
2636 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2637 			local_inc(&cpu_buffer->pages_lost);
2638 		}
2639 
2640 		/*
2641 		 * We have already removed references to this list item, just
2642 		 * free up the buffer_page and its page
2643 		 */
2644 		free_buffer_page(to_remove_page);
2645 		nr_removed--;
2646 
2647 	} while (to_remove_page != last_page);
2648 
2649 	RB_WARN_ON(cpu_buffer, nr_removed);
2650 
2651 	return nr_removed == 0;
2652 }
2653 
2654 static bool
2655 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2656 {
2657 	struct list_head *pages = &cpu_buffer->new_pages;
2658 	unsigned long flags;
2659 	bool success;
2660 	int retries;
2661 
2662 	/* Can be called at early boot up, where interrupts must not been enabled */
2663 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2664 	/*
2665 	 * We are holding the reader lock, so the reader page won't be swapped
2666 	 * in the ring buffer. Now we are racing with the writer trying to
2667 	 * move head page and the tail page.
2668 	 * We are going to adapt the reader page update process where:
2669 	 * 1. We first splice the start and end of list of new pages between
2670 	 *    the head page and its previous page.
2671 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2672 	 *    start of new pages list.
2673 	 * 3. Finally, we update the head->prev to the end of new list.
2674 	 *
2675 	 * We will try this process 10 times, to make sure that we don't keep
2676 	 * spinning.
2677 	 */
2678 	retries = 10;
2679 	success = false;
2680 	while (retries--) {
2681 		struct list_head *head_page, *prev_page;
2682 		struct list_head *last_page, *first_page;
2683 		struct list_head *head_page_with_bit;
2684 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2685 
2686 		if (!hpage)
2687 			break;
2688 		head_page = &hpage->list;
2689 		prev_page = head_page->prev;
2690 
2691 		first_page = pages->next;
2692 		last_page  = pages->prev;
2693 
2694 		head_page_with_bit = (struct list_head *)
2695 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2696 
2697 		last_page->next = head_page_with_bit;
2698 		first_page->prev = prev_page;
2699 
2700 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2701 		if (try_cmpxchg(&prev_page->next,
2702 				&head_page_with_bit, first_page)) {
2703 			/*
2704 			 * yay, we replaced the page pointer to our new list,
2705 			 * now, we just have to update to head page's prev
2706 			 * pointer to point to end of list
2707 			 */
2708 			head_page->prev = last_page;
2709 			cpu_buffer->cnt++;
2710 			success = true;
2711 			break;
2712 		}
2713 	}
2714 
2715 	if (success)
2716 		INIT_LIST_HEAD(pages);
2717 	/*
2718 	 * If we weren't successful in adding in new pages, warn and stop
2719 	 * tracing
2720 	 */
2721 	RB_WARN_ON(cpu_buffer, !success);
2722 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2723 
2724 	/* free pages if they weren't inserted */
2725 	if (!success) {
2726 		struct buffer_page *bpage, *tmp;
2727 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2728 					 list) {
2729 			list_del_init(&bpage->list);
2730 			free_buffer_page(bpage);
2731 		}
2732 	}
2733 	return success;
2734 }
2735 
2736 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2737 {
2738 	bool success;
2739 
2740 	if (cpu_buffer->nr_pages_to_update > 0)
2741 		success = rb_insert_pages(cpu_buffer);
2742 	else
2743 		success = rb_remove_pages(cpu_buffer,
2744 					-cpu_buffer->nr_pages_to_update);
2745 
2746 	if (success)
2747 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2748 }
2749 
2750 static void update_pages_handler(struct work_struct *work)
2751 {
2752 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2753 			struct ring_buffer_per_cpu, update_pages_work);
2754 	rb_update_pages(cpu_buffer);
2755 	complete(&cpu_buffer->update_done);
2756 }
2757 
2758 /**
2759  * ring_buffer_resize - resize the ring buffer
2760  * @buffer: the buffer to resize.
2761  * @size: the new size.
2762  * @cpu_id: the cpu buffer to resize
2763  *
2764  * Minimum size is 2 * buffer->subbuf_size.
2765  *
2766  * Returns 0 on success and < 0 on failure.
2767  */
2768 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2769 			int cpu_id)
2770 {
2771 	struct ring_buffer_per_cpu *cpu_buffer;
2772 	unsigned long nr_pages;
2773 	int cpu, err;
2774 
2775 	/*
2776 	 * Always succeed at resizing a non-existent buffer:
2777 	 */
2778 	if (!buffer)
2779 		return 0;
2780 
2781 	/* Make sure the requested buffer exists */
2782 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2783 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2784 		return 0;
2785 
2786 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2787 
2788 	/* we need a minimum of two pages */
2789 	if (nr_pages < 2)
2790 		nr_pages = 2;
2791 
2792 	/* prevent another thread from changing buffer sizes */
2793 	mutex_lock(&buffer->mutex);
2794 	atomic_inc(&buffer->resizing);
2795 
2796 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2797 		/*
2798 		 * Don't succeed if resizing is disabled, as a reader might be
2799 		 * manipulating the ring buffer and is expecting a sane state while
2800 		 * this is true.
2801 		 */
2802 		for_each_buffer_cpu(buffer, cpu) {
2803 			cpu_buffer = buffer->buffers[cpu];
2804 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2805 				err = -EBUSY;
2806 				goto out_err_unlock;
2807 			}
2808 		}
2809 
2810 		/* calculate the pages to update */
2811 		for_each_buffer_cpu(buffer, cpu) {
2812 			cpu_buffer = buffer->buffers[cpu];
2813 
2814 			cpu_buffer->nr_pages_to_update = nr_pages -
2815 							cpu_buffer->nr_pages;
2816 			/*
2817 			 * nothing more to do for removing pages or no update
2818 			 */
2819 			if (cpu_buffer->nr_pages_to_update <= 0)
2820 				continue;
2821 			/*
2822 			 * to add pages, make sure all new pages can be
2823 			 * allocated without receiving ENOMEM
2824 			 */
2825 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2826 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2827 						&cpu_buffer->new_pages)) {
2828 				/* not enough memory for new pages */
2829 				err = -ENOMEM;
2830 				goto out_err;
2831 			}
2832 
2833 			cond_resched();
2834 		}
2835 
2836 		cpus_read_lock();
2837 		/*
2838 		 * Fire off all the required work handlers
2839 		 * We can't schedule on offline CPUs, but it's not necessary
2840 		 * since we can change their buffer sizes without any race.
2841 		 */
2842 		for_each_buffer_cpu(buffer, cpu) {
2843 			cpu_buffer = buffer->buffers[cpu];
2844 			if (!cpu_buffer->nr_pages_to_update)
2845 				continue;
2846 
2847 			/* Can't run something on an offline CPU. */
2848 			if (!cpu_online(cpu)) {
2849 				rb_update_pages(cpu_buffer);
2850 				cpu_buffer->nr_pages_to_update = 0;
2851 			} else {
2852 				/* Run directly if possible. */
2853 				migrate_disable();
2854 				if (cpu != smp_processor_id()) {
2855 					migrate_enable();
2856 					schedule_work_on(cpu,
2857 							 &cpu_buffer->update_pages_work);
2858 				} else {
2859 					update_pages_handler(&cpu_buffer->update_pages_work);
2860 					migrate_enable();
2861 				}
2862 			}
2863 		}
2864 
2865 		/* wait for all the updates to complete */
2866 		for_each_buffer_cpu(buffer, cpu) {
2867 			cpu_buffer = buffer->buffers[cpu];
2868 			if (!cpu_buffer->nr_pages_to_update)
2869 				continue;
2870 
2871 			if (cpu_online(cpu))
2872 				wait_for_completion(&cpu_buffer->update_done);
2873 			cpu_buffer->nr_pages_to_update = 0;
2874 		}
2875 
2876 		cpus_read_unlock();
2877 	} else {
2878 		cpu_buffer = buffer->buffers[cpu_id];
2879 
2880 		if (nr_pages == cpu_buffer->nr_pages)
2881 			goto out;
2882 
2883 		/*
2884 		 * Don't succeed if resizing is disabled, as a reader might be
2885 		 * manipulating the ring buffer and is expecting a sane state while
2886 		 * this is true.
2887 		 */
2888 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2889 			err = -EBUSY;
2890 			goto out_err_unlock;
2891 		}
2892 
2893 		cpu_buffer->nr_pages_to_update = nr_pages -
2894 						cpu_buffer->nr_pages;
2895 
2896 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2897 		if (cpu_buffer->nr_pages_to_update > 0 &&
2898 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2899 					    &cpu_buffer->new_pages)) {
2900 			err = -ENOMEM;
2901 			goto out_err;
2902 		}
2903 
2904 		cpus_read_lock();
2905 
2906 		/* Can't run something on an offline CPU. */
2907 		if (!cpu_online(cpu_id))
2908 			rb_update_pages(cpu_buffer);
2909 		else {
2910 			/* Run directly if possible. */
2911 			migrate_disable();
2912 			if (cpu_id == smp_processor_id()) {
2913 				rb_update_pages(cpu_buffer);
2914 				migrate_enable();
2915 			} else {
2916 				migrate_enable();
2917 				schedule_work_on(cpu_id,
2918 						 &cpu_buffer->update_pages_work);
2919 				wait_for_completion(&cpu_buffer->update_done);
2920 			}
2921 		}
2922 
2923 		cpu_buffer->nr_pages_to_update = 0;
2924 		cpus_read_unlock();
2925 	}
2926 
2927  out:
2928 	/*
2929 	 * The ring buffer resize can happen with the ring buffer
2930 	 * enabled, so that the update disturbs the tracing as little
2931 	 * as possible. But if the buffer is disabled, we do not need
2932 	 * to worry about that, and we can take the time to verify
2933 	 * that the buffer is not corrupt.
2934 	 */
2935 	if (atomic_read(&buffer->record_disabled)) {
2936 		atomic_inc(&buffer->record_disabled);
2937 		/*
2938 		 * Even though the buffer was disabled, we must make sure
2939 		 * that it is truly disabled before calling rb_check_pages.
2940 		 * There could have been a race between checking
2941 		 * record_disable and incrementing it.
2942 		 */
2943 		synchronize_rcu();
2944 		for_each_buffer_cpu(buffer, cpu) {
2945 			cpu_buffer = buffer->buffers[cpu];
2946 			rb_check_pages(cpu_buffer);
2947 		}
2948 		atomic_dec(&buffer->record_disabled);
2949 	}
2950 
2951 	atomic_dec(&buffer->resizing);
2952 	mutex_unlock(&buffer->mutex);
2953 	return 0;
2954 
2955  out_err:
2956 	for_each_buffer_cpu(buffer, cpu) {
2957 		struct buffer_page *bpage, *tmp;
2958 
2959 		cpu_buffer = buffer->buffers[cpu];
2960 		cpu_buffer->nr_pages_to_update = 0;
2961 
2962 		if (list_empty(&cpu_buffer->new_pages))
2963 			continue;
2964 
2965 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2966 					list) {
2967 			list_del_init(&bpage->list);
2968 			free_buffer_page(bpage);
2969 		}
2970 	}
2971  out_err_unlock:
2972 	atomic_dec(&buffer->resizing);
2973 	mutex_unlock(&buffer->mutex);
2974 	return err;
2975 }
2976 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2977 
2978 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2979 {
2980 	mutex_lock(&buffer->mutex);
2981 	if (val)
2982 		buffer->flags |= RB_FL_OVERWRITE;
2983 	else
2984 		buffer->flags &= ~RB_FL_OVERWRITE;
2985 	mutex_unlock(&buffer->mutex);
2986 }
2987 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2988 
2989 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2990 {
2991 	return bpage->page->data + index;
2992 }
2993 
2994 static __always_inline struct ring_buffer_event *
2995 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2996 {
2997 	return __rb_page_index(cpu_buffer->reader_page,
2998 			       cpu_buffer->reader_page->read);
2999 }
3000 
3001 static struct ring_buffer_event *
3002 rb_iter_head_event(struct ring_buffer_iter *iter)
3003 {
3004 	struct ring_buffer_event *event;
3005 	struct buffer_page *iter_head_page = iter->head_page;
3006 	unsigned long commit;
3007 	unsigned length;
3008 
3009 	if (iter->head != iter->next_event)
3010 		return iter->event;
3011 
3012 	/*
3013 	 * When the writer goes across pages, it issues a cmpxchg which
3014 	 * is a mb(), which will synchronize with the rmb here.
3015 	 * (see rb_tail_page_update() and __rb_reserve_next())
3016 	 */
3017 	commit = rb_page_commit(iter_head_page);
3018 	smp_rmb();
3019 
3020 	/* An event needs to be at least 8 bytes in size */
3021 	if (iter->head > commit - 8)
3022 		goto reset;
3023 
3024 	event = __rb_page_index(iter_head_page, iter->head);
3025 	length = rb_event_length(event);
3026 
3027 	/*
3028 	 * READ_ONCE() doesn't work on functions and we don't want the
3029 	 * compiler doing any crazy optimizations with length.
3030 	 */
3031 	barrier();
3032 
3033 	if ((iter->head + length) > commit || length > iter->event_size)
3034 		/* Writer corrupted the read? */
3035 		goto reset;
3036 
3037 	memcpy(iter->event, event, length);
3038 	/*
3039 	 * If the page stamp is still the same after this rmb() then the
3040 	 * event was safely copied without the writer entering the page.
3041 	 */
3042 	smp_rmb();
3043 
3044 	/* Make sure the page didn't change since we read this */
3045 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
3046 	    commit > rb_page_commit(iter_head_page))
3047 		goto reset;
3048 
3049 	iter->next_event = iter->head + length;
3050 	return iter->event;
3051  reset:
3052 	/* Reset to the beginning */
3053 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3054 	iter->head = 0;
3055 	iter->next_event = 0;
3056 	iter->missed_events = 1;
3057 	return NULL;
3058 }
3059 
3060 /* Size is determined by what has been committed */
3061 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3062 {
3063 	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3064 }
3065 
3066 static __always_inline unsigned
3067 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3068 {
3069 	return rb_page_commit(cpu_buffer->commit_page);
3070 }
3071 
3072 static __always_inline unsigned
3073 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3074 {
3075 	unsigned long addr = (unsigned long)event;
3076 
3077 	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3078 
3079 	return addr - BUF_PAGE_HDR_SIZE;
3080 }
3081 
3082 static void rb_inc_iter(struct ring_buffer_iter *iter)
3083 {
3084 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3085 
3086 	/*
3087 	 * The iterator could be on the reader page (it starts there).
3088 	 * But the head could have moved, since the reader was
3089 	 * found. Check for this case and assign the iterator
3090 	 * to the head page instead of next.
3091 	 */
3092 	if (iter->head_page == cpu_buffer->reader_page)
3093 		iter->head_page = rb_set_head_page(cpu_buffer);
3094 	else
3095 		rb_inc_page(&iter->head_page);
3096 
3097 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3098 	iter->head = 0;
3099 	iter->next_event = 0;
3100 }
3101 
3102 /* Return the index into the sub-buffers for a given sub-buffer */
3103 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf)
3104 {
3105 	void *subbuf_array;
3106 
3107 	subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3108 	subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3109 	return (subbuf - subbuf_array) / meta->subbuf_size;
3110 }
3111 
3112 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3113 				struct buffer_page *next_page)
3114 {
3115 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3116 	unsigned long old_head = (unsigned long)next_page->page;
3117 	unsigned long new_head;
3118 
3119 	rb_inc_page(&next_page);
3120 	new_head = (unsigned long)next_page->page;
3121 
3122 	/*
3123 	 * Only move it forward once, if something else came in and
3124 	 * moved it forward, then we don't want to touch it.
3125 	 */
3126 	(void)cmpxchg(&meta->head_buffer, old_head, new_head);
3127 }
3128 
3129 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3130 				  struct buffer_page *reader)
3131 {
3132 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3133 	void *old_reader = cpu_buffer->reader_page->page;
3134 	void *new_reader = reader->page;
3135 	int id;
3136 
3137 	id = reader->id;
3138 	cpu_buffer->reader_page->id = id;
3139 	reader->id = 0;
3140 
3141 	meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3142 	meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3143 
3144 	/* The head pointer is the one after the reader */
3145 	rb_update_meta_head(cpu_buffer, reader);
3146 }
3147 
3148 /*
3149  * rb_handle_head_page - writer hit the head page
3150  *
3151  * Returns: +1 to retry page
3152  *           0 to continue
3153  *          -1 on error
3154  */
3155 static int
3156 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3157 		    struct buffer_page *tail_page,
3158 		    struct buffer_page *next_page)
3159 {
3160 	struct buffer_page *new_head;
3161 	int entries;
3162 	int type;
3163 	int ret;
3164 
3165 	entries = rb_page_entries(next_page);
3166 
3167 	/*
3168 	 * The hard part is here. We need to move the head
3169 	 * forward, and protect against both readers on
3170 	 * other CPUs and writers coming in via interrupts.
3171 	 */
3172 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3173 				       RB_PAGE_HEAD);
3174 
3175 	/*
3176 	 * type can be one of four:
3177 	 *  NORMAL - an interrupt already moved it for us
3178 	 *  HEAD   - we are the first to get here.
3179 	 *  UPDATE - we are the interrupt interrupting
3180 	 *           a current move.
3181 	 *  MOVED  - a reader on another CPU moved the next
3182 	 *           pointer to its reader page. Give up
3183 	 *           and try again.
3184 	 */
3185 
3186 	switch (type) {
3187 	case RB_PAGE_HEAD:
3188 		/*
3189 		 * We changed the head to UPDATE, thus
3190 		 * it is our responsibility to update
3191 		 * the counters.
3192 		 */
3193 		local_add(entries, &cpu_buffer->overrun);
3194 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3195 		local_inc(&cpu_buffer->pages_lost);
3196 
3197 		if (cpu_buffer->ring_meta)
3198 			rb_update_meta_head(cpu_buffer, next_page);
3199 		/*
3200 		 * The entries will be zeroed out when we move the
3201 		 * tail page.
3202 		 */
3203 
3204 		/* still more to do */
3205 		break;
3206 
3207 	case RB_PAGE_UPDATE:
3208 		/*
3209 		 * This is an interrupt that interrupt the
3210 		 * previous update. Still more to do.
3211 		 */
3212 		break;
3213 	case RB_PAGE_NORMAL:
3214 		/*
3215 		 * An interrupt came in before the update
3216 		 * and processed this for us.
3217 		 * Nothing left to do.
3218 		 */
3219 		return 1;
3220 	case RB_PAGE_MOVED:
3221 		/*
3222 		 * The reader is on another CPU and just did
3223 		 * a swap with our next_page.
3224 		 * Try again.
3225 		 */
3226 		return 1;
3227 	default:
3228 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3229 		return -1;
3230 	}
3231 
3232 	/*
3233 	 * Now that we are here, the old head pointer is
3234 	 * set to UPDATE. This will keep the reader from
3235 	 * swapping the head page with the reader page.
3236 	 * The reader (on another CPU) will spin till
3237 	 * we are finished.
3238 	 *
3239 	 * We just need to protect against interrupts
3240 	 * doing the job. We will set the next pointer
3241 	 * to HEAD. After that, we set the old pointer
3242 	 * to NORMAL, but only if it was HEAD before.
3243 	 * otherwise we are an interrupt, and only
3244 	 * want the outer most commit to reset it.
3245 	 */
3246 	new_head = next_page;
3247 	rb_inc_page(&new_head);
3248 
3249 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3250 				    RB_PAGE_NORMAL);
3251 
3252 	/*
3253 	 * Valid returns are:
3254 	 *  HEAD   - an interrupt came in and already set it.
3255 	 *  NORMAL - One of two things:
3256 	 *            1) We really set it.
3257 	 *            2) A bunch of interrupts came in and moved
3258 	 *               the page forward again.
3259 	 */
3260 	switch (ret) {
3261 	case RB_PAGE_HEAD:
3262 	case RB_PAGE_NORMAL:
3263 		/* OK */
3264 		break;
3265 	default:
3266 		RB_WARN_ON(cpu_buffer, 1);
3267 		return -1;
3268 	}
3269 
3270 	/*
3271 	 * It is possible that an interrupt came in,
3272 	 * set the head up, then more interrupts came in
3273 	 * and moved it again. When we get back here,
3274 	 * the page would have been set to NORMAL but we
3275 	 * just set it back to HEAD.
3276 	 *
3277 	 * How do you detect this? Well, if that happened
3278 	 * the tail page would have moved.
3279 	 */
3280 	if (ret == RB_PAGE_NORMAL) {
3281 		struct buffer_page *buffer_tail_page;
3282 
3283 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3284 		/*
3285 		 * If the tail had moved passed next, then we need
3286 		 * to reset the pointer.
3287 		 */
3288 		if (buffer_tail_page != tail_page &&
3289 		    buffer_tail_page != next_page)
3290 			rb_head_page_set_normal(cpu_buffer, new_head,
3291 						next_page,
3292 						RB_PAGE_HEAD);
3293 	}
3294 
3295 	/*
3296 	 * If this was the outer most commit (the one that
3297 	 * changed the original pointer from HEAD to UPDATE),
3298 	 * then it is up to us to reset it to NORMAL.
3299 	 */
3300 	if (type == RB_PAGE_HEAD) {
3301 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
3302 					      tail_page,
3303 					      RB_PAGE_UPDATE);
3304 		if (RB_WARN_ON(cpu_buffer,
3305 			       ret != RB_PAGE_UPDATE))
3306 			return -1;
3307 	}
3308 
3309 	return 0;
3310 }
3311 
3312 static inline void
3313 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3314 	      unsigned long tail, struct rb_event_info *info)
3315 {
3316 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3317 	struct buffer_page *tail_page = info->tail_page;
3318 	struct ring_buffer_event *event;
3319 	unsigned long length = info->length;
3320 
3321 	/*
3322 	 * Only the event that crossed the page boundary
3323 	 * must fill the old tail_page with padding.
3324 	 */
3325 	if (tail >= bsize) {
3326 		/*
3327 		 * If the page was filled, then we still need
3328 		 * to update the real_end. Reset it to zero
3329 		 * and the reader will ignore it.
3330 		 */
3331 		if (tail == bsize)
3332 			tail_page->real_end = 0;
3333 
3334 		local_sub(length, &tail_page->write);
3335 		return;
3336 	}
3337 
3338 	event = __rb_page_index(tail_page, tail);
3339 
3340 	/*
3341 	 * Save the original length to the meta data.
3342 	 * This will be used by the reader to add lost event
3343 	 * counter.
3344 	 */
3345 	tail_page->real_end = tail;
3346 
3347 	/*
3348 	 * If this event is bigger than the minimum size, then
3349 	 * we need to be careful that we don't subtract the
3350 	 * write counter enough to allow another writer to slip
3351 	 * in on this page.
3352 	 * We put in a discarded commit instead, to make sure
3353 	 * that this space is not used again, and this space will
3354 	 * not be accounted into 'entries_bytes'.
3355 	 *
3356 	 * If we are less than the minimum size, we don't need to
3357 	 * worry about it.
3358 	 */
3359 	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3360 		/* No room for any events */
3361 
3362 		/* Mark the rest of the page with padding */
3363 		rb_event_set_padding(event);
3364 
3365 		/* Make sure the padding is visible before the write update */
3366 		smp_wmb();
3367 
3368 		/* Set the write back to the previous setting */
3369 		local_sub(length, &tail_page->write);
3370 		return;
3371 	}
3372 
3373 	/* Put in a discarded event */
3374 	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3375 	event->type_len = RINGBUF_TYPE_PADDING;
3376 	/* time delta must be non zero */
3377 	event->time_delta = 1;
3378 
3379 	/* account for padding bytes */
3380 	local_add(bsize - tail, &cpu_buffer->entries_bytes);
3381 
3382 	/* Make sure the padding is visible before the tail_page->write update */
3383 	smp_wmb();
3384 
3385 	/* Set write to end of buffer */
3386 	length = (tail + length) - bsize;
3387 	local_sub(length, &tail_page->write);
3388 }
3389 
3390 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3391 
3392 /*
3393  * This is the slow path, force gcc not to inline it.
3394  */
3395 static noinline struct ring_buffer_event *
3396 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3397 	     unsigned long tail, struct rb_event_info *info)
3398 {
3399 	struct buffer_page *tail_page = info->tail_page;
3400 	struct buffer_page *commit_page = cpu_buffer->commit_page;
3401 	struct trace_buffer *buffer = cpu_buffer->buffer;
3402 	struct buffer_page *next_page;
3403 	int ret;
3404 
3405 	next_page = tail_page;
3406 
3407 	rb_inc_page(&next_page);
3408 
3409 	/*
3410 	 * If for some reason, we had an interrupt storm that made
3411 	 * it all the way around the buffer, bail, and warn
3412 	 * about it.
3413 	 */
3414 	if (unlikely(next_page == commit_page)) {
3415 		local_inc(&cpu_buffer->commit_overrun);
3416 		goto out_reset;
3417 	}
3418 
3419 	/*
3420 	 * This is where the fun begins!
3421 	 *
3422 	 * We are fighting against races between a reader that
3423 	 * could be on another CPU trying to swap its reader
3424 	 * page with the buffer head.
3425 	 *
3426 	 * We are also fighting against interrupts coming in and
3427 	 * moving the head or tail on us as well.
3428 	 *
3429 	 * If the next page is the head page then we have filled
3430 	 * the buffer, unless the commit page is still on the
3431 	 * reader page.
3432 	 */
3433 	if (rb_is_head_page(next_page, &tail_page->list)) {
3434 
3435 		/*
3436 		 * If the commit is not on the reader page, then
3437 		 * move the header page.
3438 		 */
3439 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3440 			/*
3441 			 * If we are not in overwrite mode,
3442 			 * this is easy, just stop here.
3443 			 */
3444 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
3445 				local_inc(&cpu_buffer->dropped_events);
3446 				goto out_reset;
3447 			}
3448 
3449 			ret = rb_handle_head_page(cpu_buffer,
3450 						  tail_page,
3451 						  next_page);
3452 			if (ret < 0)
3453 				goto out_reset;
3454 			if (ret)
3455 				goto out_again;
3456 		} else {
3457 			/*
3458 			 * We need to be careful here too. The
3459 			 * commit page could still be on the reader
3460 			 * page. We could have a small buffer, and
3461 			 * have filled up the buffer with events
3462 			 * from interrupts and such, and wrapped.
3463 			 *
3464 			 * Note, if the tail page is also on the
3465 			 * reader_page, we let it move out.
3466 			 */
3467 			if (unlikely((cpu_buffer->commit_page !=
3468 				      cpu_buffer->tail_page) &&
3469 				     (cpu_buffer->commit_page ==
3470 				      cpu_buffer->reader_page))) {
3471 				local_inc(&cpu_buffer->commit_overrun);
3472 				goto out_reset;
3473 			}
3474 		}
3475 	}
3476 
3477 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
3478 
3479  out_again:
3480 
3481 	rb_reset_tail(cpu_buffer, tail, info);
3482 
3483 	/* Commit what we have for now. */
3484 	rb_end_commit(cpu_buffer);
3485 	/* rb_end_commit() decs committing */
3486 	local_inc(&cpu_buffer->committing);
3487 
3488 	/* fail and let the caller try again */
3489 	return ERR_PTR(-EAGAIN);
3490 
3491  out_reset:
3492 	/* reset write */
3493 	rb_reset_tail(cpu_buffer, tail, info);
3494 
3495 	return NULL;
3496 }
3497 
3498 /* Slow path */
3499 static struct ring_buffer_event *
3500 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3501 		  struct ring_buffer_event *event, u64 delta, bool abs)
3502 {
3503 	if (abs)
3504 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
3505 	else
3506 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3507 
3508 	/* Not the first event on the page, or not delta? */
3509 	if (abs || rb_event_index(cpu_buffer, event)) {
3510 		event->time_delta = delta & TS_MASK;
3511 		event->array[0] = delta >> TS_SHIFT;
3512 	} else {
3513 		/* nope, just zero it */
3514 		event->time_delta = 0;
3515 		event->array[0] = 0;
3516 	}
3517 
3518 	return skip_time_extend(event);
3519 }
3520 
3521 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3522 static inline bool sched_clock_stable(void)
3523 {
3524 	return true;
3525 }
3526 #endif
3527 
3528 static void
3529 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3530 		   struct rb_event_info *info)
3531 {
3532 	u64 write_stamp;
3533 
3534 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3535 		  (unsigned long long)info->delta,
3536 		  (unsigned long long)info->ts,
3537 		  (unsigned long long)info->before,
3538 		  (unsigned long long)info->after,
3539 		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3540 		  sched_clock_stable() ? "" :
3541 		  "If you just came from a suspend/resume,\n"
3542 		  "please switch to the trace global clock:\n"
3543 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
3544 		  "or add trace_clock=global to the kernel command line\n");
3545 }
3546 
3547 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3548 				      struct ring_buffer_event **event,
3549 				      struct rb_event_info *info,
3550 				      u64 *delta,
3551 				      unsigned int *length)
3552 {
3553 	bool abs = info->add_timestamp &
3554 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3555 
3556 	if (unlikely(info->delta > (1ULL << 59))) {
3557 		/*
3558 		 * Some timers can use more than 59 bits, and when a timestamp
3559 		 * is added to the buffer, it will lose those bits.
3560 		 */
3561 		if (abs && (info->ts & TS_MSB)) {
3562 			info->delta &= ABS_TS_MASK;
3563 
3564 		/* did the clock go backwards */
3565 		} else if (info->before == info->after && info->before > info->ts) {
3566 			/* not interrupted */
3567 			static int once;
3568 
3569 			/*
3570 			 * This is possible with a recalibrating of the TSC.
3571 			 * Do not produce a call stack, but just report it.
3572 			 */
3573 			if (!once) {
3574 				once++;
3575 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3576 					info->before, info->ts);
3577 			}
3578 		} else
3579 			rb_check_timestamp(cpu_buffer, info);
3580 		if (!abs)
3581 			info->delta = 0;
3582 	}
3583 	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3584 	*length -= RB_LEN_TIME_EXTEND;
3585 	*delta = 0;
3586 }
3587 
3588 /**
3589  * rb_update_event - update event type and data
3590  * @cpu_buffer: The per cpu buffer of the @event
3591  * @event: the event to update
3592  * @info: The info to update the @event with (contains length and delta)
3593  *
3594  * Update the type and data fields of the @event. The length
3595  * is the actual size that is written to the ring buffer,
3596  * and with this, we can determine what to place into the
3597  * data field.
3598  */
3599 static void
3600 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3601 		struct ring_buffer_event *event,
3602 		struct rb_event_info *info)
3603 {
3604 	unsigned length = info->length;
3605 	u64 delta = info->delta;
3606 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3607 
3608 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
3609 		cpu_buffer->event_stamp[nest] = info->ts;
3610 
3611 	/*
3612 	 * If we need to add a timestamp, then we
3613 	 * add it to the start of the reserved space.
3614 	 */
3615 	if (unlikely(info->add_timestamp))
3616 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3617 
3618 	event->time_delta = delta;
3619 	length -= RB_EVNT_HDR_SIZE;
3620 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3621 		event->type_len = 0;
3622 		event->array[0] = length;
3623 	} else
3624 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3625 }
3626 
3627 static unsigned rb_calculate_event_length(unsigned length)
3628 {
3629 	struct ring_buffer_event event; /* Used only for sizeof array */
3630 
3631 	/* zero length can cause confusions */
3632 	if (!length)
3633 		length++;
3634 
3635 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3636 		length += sizeof(event.array[0]);
3637 
3638 	length += RB_EVNT_HDR_SIZE;
3639 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
3640 
3641 	/*
3642 	 * In case the time delta is larger than the 27 bits for it
3643 	 * in the header, we need to add a timestamp. If another
3644 	 * event comes in when trying to discard this one to increase
3645 	 * the length, then the timestamp will be added in the allocated
3646 	 * space of this event. If length is bigger than the size needed
3647 	 * for the TIME_EXTEND, then padding has to be used. The events
3648 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3649 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3650 	 * As length is a multiple of 4, we only need to worry if it
3651 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
3652 	 */
3653 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3654 		length += RB_ALIGNMENT;
3655 
3656 	return length;
3657 }
3658 
3659 static inline bool
3660 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3661 		  struct ring_buffer_event *event)
3662 {
3663 	unsigned long new_index, old_index;
3664 	struct buffer_page *bpage;
3665 	unsigned long addr;
3666 
3667 	new_index = rb_event_index(cpu_buffer, event);
3668 	old_index = new_index + rb_event_ts_length(event);
3669 	addr = (unsigned long)event;
3670 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3671 
3672 	bpage = READ_ONCE(cpu_buffer->tail_page);
3673 
3674 	/*
3675 	 * Make sure the tail_page is still the same and
3676 	 * the next write location is the end of this event
3677 	 */
3678 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3679 		unsigned long write_mask =
3680 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3681 		unsigned long event_length = rb_event_length(event);
3682 
3683 		/*
3684 		 * For the before_stamp to be different than the write_stamp
3685 		 * to make sure that the next event adds an absolute
3686 		 * value and does not rely on the saved write stamp, which
3687 		 * is now going to be bogus.
3688 		 *
3689 		 * By setting the before_stamp to zero, the next event
3690 		 * is not going to use the write_stamp and will instead
3691 		 * create an absolute timestamp. This means there's no
3692 		 * reason to update the wirte_stamp!
3693 		 */
3694 		rb_time_set(&cpu_buffer->before_stamp, 0);
3695 
3696 		/*
3697 		 * If an event were to come in now, it would see that the
3698 		 * write_stamp and the before_stamp are different, and assume
3699 		 * that this event just added itself before updating
3700 		 * the write stamp. The interrupting event will fix the
3701 		 * write stamp for us, and use an absolute timestamp.
3702 		 */
3703 
3704 		/*
3705 		 * This is on the tail page. It is possible that
3706 		 * a write could come in and move the tail page
3707 		 * and write to the next page. That is fine
3708 		 * because we just shorten what is on this page.
3709 		 */
3710 		old_index += write_mask;
3711 		new_index += write_mask;
3712 
3713 		/* caution: old_index gets updated on cmpxchg failure */
3714 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3715 			/* update counters */
3716 			local_sub(event_length, &cpu_buffer->entries_bytes);
3717 			return true;
3718 		}
3719 	}
3720 
3721 	/* could not discard */
3722 	return false;
3723 }
3724 
3725 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3726 {
3727 	local_inc(&cpu_buffer->committing);
3728 	local_inc(&cpu_buffer->commits);
3729 }
3730 
3731 static __always_inline void
3732 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3733 {
3734 	unsigned long max_count;
3735 
3736 	/*
3737 	 * We only race with interrupts and NMIs on this CPU.
3738 	 * If we own the commit event, then we can commit
3739 	 * all others that interrupted us, since the interruptions
3740 	 * are in stack format (they finish before they come
3741 	 * back to us). This allows us to do a simple loop to
3742 	 * assign the commit to the tail.
3743 	 */
3744  again:
3745 	max_count = cpu_buffer->nr_pages * 100;
3746 
3747 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3748 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3749 			return;
3750 		if (RB_WARN_ON(cpu_buffer,
3751 			       rb_is_reader_page(cpu_buffer->tail_page)))
3752 			return;
3753 		/*
3754 		 * No need for a memory barrier here, as the update
3755 		 * of the tail_page did it for this page.
3756 		 */
3757 		local_set(&cpu_buffer->commit_page->page->commit,
3758 			  rb_page_write(cpu_buffer->commit_page));
3759 		rb_inc_page(&cpu_buffer->commit_page);
3760 		if (cpu_buffer->ring_meta) {
3761 			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3762 			meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3763 		}
3764 		/* add barrier to keep gcc from optimizing too much */
3765 		barrier();
3766 	}
3767 	while (rb_commit_index(cpu_buffer) !=
3768 	       rb_page_write(cpu_buffer->commit_page)) {
3769 
3770 		/* Make sure the readers see the content of what is committed. */
3771 		smp_wmb();
3772 		local_set(&cpu_buffer->commit_page->page->commit,
3773 			  rb_page_write(cpu_buffer->commit_page));
3774 		RB_WARN_ON(cpu_buffer,
3775 			   local_read(&cpu_buffer->commit_page->page->commit) &
3776 			   ~RB_WRITE_MASK);
3777 		barrier();
3778 	}
3779 
3780 	/* again, keep gcc from optimizing */
3781 	barrier();
3782 
3783 	/*
3784 	 * If an interrupt came in just after the first while loop
3785 	 * and pushed the tail page forward, we will be left with
3786 	 * a dangling commit that will never go forward.
3787 	 */
3788 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3789 		goto again;
3790 }
3791 
3792 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3793 {
3794 	unsigned long commits;
3795 
3796 	if (RB_WARN_ON(cpu_buffer,
3797 		       !local_read(&cpu_buffer->committing)))
3798 		return;
3799 
3800  again:
3801 	commits = local_read(&cpu_buffer->commits);
3802 	/* synchronize with interrupts */
3803 	barrier();
3804 	if (local_read(&cpu_buffer->committing) == 1)
3805 		rb_set_commit_to_write(cpu_buffer);
3806 
3807 	local_dec(&cpu_buffer->committing);
3808 
3809 	/* synchronize with interrupts */
3810 	barrier();
3811 
3812 	/*
3813 	 * Need to account for interrupts coming in between the
3814 	 * updating of the commit page and the clearing of the
3815 	 * committing counter.
3816 	 */
3817 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3818 	    !local_read(&cpu_buffer->committing)) {
3819 		local_inc(&cpu_buffer->committing);
3820 		goto again;
3821 	}
3822 }
3823 
3824 static inline void rb_event_discard(struct ring_buffer_event *event)
3825 {
3826 	if (extended_time(event))
3827 		event = skip_time_extend(event);
3828 
3829 	/* array[0] holds the actual length for the discarded event */
3830 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3831 	event->type_len = RINGBUF_TYPE_PADDING;
3832 	/* time delta must be non zero */
3833 	if (!event->time_delta)
3834 		event->time_delta = 1;
3835 }
3836 
3837 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3838 {
3839 	local_inc(&cpu_buffer->entries);
3840 	rb_end_commit(cpu_buffer);
3841 }
3842 
3843 static __always_inline void
3844 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3845 {
3846 	if (buffer->irq_work.waiters_pending) {
3847 		buffer->irq_work.waiters_pending = false;
3848 		/* irq_work_queue() supplies it's own memory barriers */
3849 		irq_work_queue(&buffer->irq_work.work);
3850 	}
3851 
3852 	if (cpu_buffer->irq_work.waiters_pending) {
3853 		cpu_buffer->irq_work.waiters_pending = false;
3854 		/* irq_work_queue() supplies it's own memory barriers */
3855 		irq_work_queue(&cpu_buffer->irq_work.work);
3856 	}
3857 
3858 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3859 		return;
3860 
3861 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3862 		return;
3863 
3864 	if (!cpu_buffer->irq_work.full_waiters_pending)
3865 		return;
3866 
3867 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3868 
3869 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3870 		return;
3871 
3872 	cpu_buffer->irq_work.wakeup_full = true;
3873 	cpu_buffer->irq_work.full_waiters_pending = false;
3874 	/* irq_work_queue() supplies it's own memory barriers */
3875 	irq_work_queue(&cpu_buffer->irq_work.work);
3876 }
3877 
3878 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3879 # define do_ring_buffer_record_recursion()	\
3880 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3881 #else
3882 # define do_ring_buffer_record_recursion() do { } while (0)
3883 #endif
3884 
3885 /*
3886  * The lock and unlock are done within a preempt disable section.
3887  * The current_context per_cpu variable can only be modified
3888  * by the current task between lock and unlock. But it can
3889  * be modified more than once via an interrupt. To pass this
3890  * information from the lock to the unlock without having to
3891  * access the 'in_interrupt()' functions again (which do show
3892  * a bit of overhead in something as critical as function tracing,
3893  * we use a bitmask trick.
3894  *
3895  *  bit 1 =  NMI context
3896  *  bit 2 =  IRQ context
3897  *  bit 3 =  SoftIRQ context
3898  *  bit 4 =  normal context.
3899  *
3900  * This works because this is the order of contexts that can
3901  * preempt other contexts. A SoftIRQ never preempts an IRQ
3902  * context.
3903  *
3904  * When the context is determined, the corresponding bit is
3905  * checked and set (if it was set, then a recursion of that context
3906  * happened).
3907  *
3908  * On unlock, we need to clear this bit. To do so, just subtract
3909  * 1 from the current_context and AND it to itself.
3910  *
3911  * (binary)
3912  *  101 - 1 = 100
3913  *  101 & 100 = 100 (clearing bit zero)
3914  *
3915  *  1010 - 1 = 1001
3916  *  1010 & 1001 = 1000 (clearing bit 1)
3917  *
3918  * The least significant bit can be cleared this way, and it
3919  * just so happens that it is the same bit corresponding to
3920  * the current context.
3921  *
3922  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3923  * is set when a recursion is detected at the current context, and if
3924  * the TRANSITION bit is already set, it will fail the recursion.
3925  * This is needed because there's a lag between the changing of
3926  * interrupt context and updating the preempt count. In this case,
3927  * a false positive will be found. To handle this, one extra recursion
3928  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3929  * bit is already set, then it is considered a recursion and the function
3930  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3931  *
3932  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3933  * to be cleared. Even if it wasn't the context that set it. That is,
3934  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3935  * is called before preempt_count() is updated, since the check will
3936  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3937  * NMI then comes in, it will set the NMI bit, but when the NMI code
3938  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3939  * and leave the NMI bit set. But this is fine, because the interrupt
3940  * code that set the TRANSITION bit will then clear the NMI bit when it
3941  * calls trace_recursive_unlock(). If another NMI comes in, it will
3942  * set the TRANSITION bit and continue.
3943  *
3944  * Note: The TRANSITION bit only handles a single transition between context.
3945  */
3946 
3947 static __always_inline bool
3948 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3949 {
3950 	unsigned int val = cpu_buffer->current_context;
3951 	int bit = interrupt_context_level();
3952 
3953 	bit = RB_CTX_NORMAL - bit;
3954 
3955 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3956 		/*
3957 		 * It is possible that this was called by transitioning
3958 		 * between interrupt context, and preempt_count() has not
3959 		 * been updated yet. In this case, use the TRANSITION bit.
3960 		 */
3961 		bit = RB_CTX_TRANSITION;
3962 		if (val & (1 << (bit + cpu_buffer->nest))) {
3963 			do_ring_buffer_record_recursion();
3964 			return true;
3965 		}
3966 	}
3967 
3968 	val |= (1 << (bit + cpu_buffer->nest));
3969 	cpu_buffer->current_context = val;
3970 
3971 	return false;
3972 }
3973 
3974 static __always_inline void
3975 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3976 {
3977 	cpu_buffer->current_context &=
3978 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3979 }
3980 
3981 /* The recursive locking above uses 5 bits */
3982 #define NESTED_BITS 5
3983 
3984 /**
3985  * ring_buffer_nest_start - Allow to trace while nested
3986  * @buffer: The ring buffer to modify
3987  *
3988  * The ring buffer has a safety mechanism to prevent recursion.
3989  * But there may be a case where a trace needs to be done while
3990  * tracing something else. In this case, calling this function
3991  * will allow this function to nest within a currently active
3992  * ring_buffer_lock_reserve().
3993  *
3994  * Call this function before calling another ring_buffer_lock_reserve() and
3995  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3996  */
3997 void ring_buffer_nest_start(struct trace_buffer *buffer)
3998 {
3999 	struct ring_buffer_per_cpu *cpu_buffer;
4000 	int cpu;
4001 
4002 	/* Enabled by ring_buffer_nest_end() */
4003 	preempt_disable_notrace();
4004 	cpu = raw_smp_processor_id();
4005 	cpu_buffer = buffer->buffers[cpu];
4006 	/* This is the shift value for the above recursive locking */
4007 	cpu_buffer->nest += NESTED_BITS;
4008 }
4009 
4010 /**
4011  * ring_buffer_nest_end - Allow to trace while nested
4012  * @buffer: The ring buffer to modify
4013  *
4014  * Must be called after ring_buffer_nest_start() and after the
4015  * ring_buffer_unlock_commit().
4016  */
4017 void ring_buffer_nest_end(struct trace_buffer *buffer)
4018 {
4019 	struct ring_buffer_per_cpu *cpu_buffer;
4020 	int cpu;
4021 
4022 	/* disabled by ring_buffer_nest_start() */
4023 	cpu = raw_smp_processor_id();
4024 	cpu_buffer = buffer->buffers[cpu];
4025 	/* This is the shift value for the above recursive locking */
4026 	cpu_buffer->nest -= NESTED_BITS;
4027 	preempt_enable_notrace();
4028 }
4029 
4030 /**
4031  * ring_buffer_unlock_commit - commit a reserved
4032  * @buffer: The buffer to commit to
4033  *
4034  * This commits the data to the ring buffer, and releases any locks held.
4035  *
4036  * Must be paired with ring_buffer_lock_reserve.
4037  */
4038 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4039 {
4040 	struct ring_buffer_per_cpu *cpu_buffer;
4041 	int cpu = raw_smp_processor_id();
4042 
4043 	cpu_buffer = buffer->buffers[cpu];
4044 
4045 	rb_commit(cpu_buffer);
4046 
4047 	rb_wakeups(buffer, cpu_buffer);
4048 
4049 	trace_recursive_unlock(cpu_buffer);
4050 
4051 	preempt_enable_notrace();
4052 
4053 	return 0;
4054 }
4055 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4056 
4057 /* Special value to validate all deltas on a page. */
4058 #define CHECK_FULL_PAGE		1L
4059 
4060 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4061 
4062 static const char *show_irq_str(int bits)
4063 {
4064 	const char *type[] = {
4065 		".",	// 0
4066 		"s",	// 1
4067 		"h",	// 2
4068 		"Hs",	// 3
4069 		"n",	// 4
4070 		"Ns",	// 5
4071 		"Nh",	// 6
4072 		"NHs",	// 7
4073 	};
4074 
4075 	return type[bits];
4076 }
4077 
4078 /* Assume this is a trace event */
4079 static const char *show_flags(struct ring_buffer_event *event)
4080 {
4081 	struct trace_entry *entry;
4082 	int bits = 0;
4083 
4084 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4085 		return "X";
4086 
4087 	entry = ring_buffer_event_data(event);
4088 
4089 	if (entry->flags & TRACE_FLAG_SOFTIRQ)
4090 		bits |= 1;
4091 
4092 	if (entry->flags & TRACE_FLAG_HARDIRQ)
4093 		bits |= 2;
4094 
4095 	if (entry->flags & TRACE_FLAG_NMI)
4096 		bits |= 4;
4097 
4098 	return show_irq_str(bits);
4099 }
4100 
4101 static const char *show_irq(struct ring_buffer_event *event)
4102 {
4103 	struct trace_entry *entry;
4104 
4105 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4106 		return "";
4107 
4108 	entry = ring_buffer_event_data(event);
4109 	if (entry->flags & TRACE_FLAG_IRQS_OFF)
4110 		return "d";
4111 	return "";
4112 }
4113 
4114 static const char *show_interrupt_level(void)
4115 {
4116 	unsigned long pc = preempt_count();
4117 	unsigned char level = 0;
4118 
4119 	if (pc & SOFTIRQ_OFFSET)
4120 		level |= 1;
4121 
4122 	if (pc & HARDIRQ_MASK)
4123 		level |= 2;
4124 
4125 	if (pc & NMI_MASK)
4126 		level |= 4;
4127 
4128 	return show_irq_str(level);
4129 }
4130 
4131 static void dump_buffer_page(struct buffer_data_page *bpage,
4132 			     struct rb_event_info *info,
4133 			     unsigned long tail)
4134 {
4135 	struct ring_buffer_event *event;
4136 	u64 ts, delta;
4137 	int e;
4138 
4139 	ts = bpage->time_stamp;
4140 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4141 
4142 	for (e = 0; e < tail; e += rb_event_length(event)) {
4143 
4144 		event = (struct ring_buffer_event *)(bpage->data + e);
4145 
4146 		switch (event->type_len) {
4147 
4148 		case RINGBUF_TYPE_TIME_EXTEND:
4149 			delta = rb_event_time_stamp(event);
4150 			ts += delta;
4151 			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4152 				e, ts, delta);
4153 			break;
4154 
4155 		case RINGBUF_TYPE_TIME_STAMP:
4156 			delta = rb_event_time_stamp(event);
4157 			ts = rb_fix_abs_ts(delta, ts);
4158 			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4159 				e, ts, delta);
4160 			break;
4161 
4162 		case RINGBUF_TYPE_PADDING:
4163 			ts += event->time_delta;
4164 			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4165 				e, ts, event->time_delta);
4166 			break;
4167 
4168 		case RINGBUF_TYPE_DATA:
4169 			ts += event->time_delta;
4170 			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4171 				e, ts, event->time_delta,
4172 				show_flags(event), show_irq(event));
4173 			break;
4174 
4175 		default:
4176 			break;
4177 		}
4178 	}
4179 	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4180 }
4181 
4182 static DEFINE_PER_CPU(atomic_t, checking);
4183 static atomic_t ts_dump;
4184 
4185 #define buffer_warn_return(fmt, ...)					\
4186 	do {								\
4187 		/* If another report is happening, ignore this one */	\
4188 		if (atomic_inc_return(&ts_dump) != 1) {			\
4189 			atomic_dec(&ts_dump);				\
4190 			goto out;					\
4191 		}							\
4192 		atomic_inc(&cpu_buffer->record_disabled);		\
4193 		pr_warn(fmt, ##__VA_ARGS__);				\
4194 		dump_buffer_page(bpage, info, tail);			\
4195 		atomic_dec(&ts_dump);					\
4196 		/* There's some cases in boot up that this can happen */ \
4197 		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
4198 			/* Do not re-enable checking */			\
4199 			return;						\
4200 	} while (0)
4201 
4202 /*
4203  * Check if the current event time stamp matches the deltas on
4204  * the buffer page.
4205  */
4206 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4207 			 struct rb_event_info *info,
4208 			 unsigned long tail)
4209 {
4210 	struct buffer_data_page *bpage;
4211 	u64 ts, delta;
4212 	bool full = false;
4213 	int ret;
4214 
4215 	bpage = info->tail_page->page;
4216 
4217 	if (tail == CHECK_FULL_PAGE) {
4218 		full = true;
4219 		tail = local_read(&bpage->commit);
4220 	} else if (info->add_timestamp &
4221 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4222 		/* Ignore events with absolute time stamps */
4223 		return;
4224 	}
4225 
4226 	/*
4227 	 * Do not check the first event (skip possible extends too).
4228 	 * Also do not check if previous events have not been committed.
4229 	 */
4230 	if (tail <= 8 || tail > local_read(&bpage->commit))
4231 		return;
4232 
4233 	/*
4234 	 * If this interrupted another event,
4235 	 */
4236 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4237 		goto out;
4238 
4239 	ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4240 	if (ret < 0) {
4241 		if (delta < ts) {
4242 			buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4243 					   cpu_buffer->cpu, ts, delta);
4244 			goto out;
4245 		}
4246 	}
4247 	if ((full && ts > info->ts) ||
4248 	    (!full && ts + info->delta != info->ts)) {
4249 		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4250 				   cpu_buffer->cpu,
4251 				   ts + info->delta, info->ts, info->delta,
4252 				   info->before, info->after,
4253 				   full ? " (full)" : "", show_interrupt_level());
4254 	}
4255 out:
4256 	atomic_dec(this_cpu_ptr(&checking));
4257 }
4258 #else
4259 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4260 			 struct rb_event_info *info,
4261 			 unsigned long tail)
4262 {
4263 }
4264 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4265 
4266 static struct ring_buffer_event *
4267 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4268 		  struct rb_event_info *info)
4269 {
4270 	struct ring_buffer_event *event;
4271 	struct buffer_page *tail_page;
4272 	unsigned long tail, write, w;
4273 
4274 	/* Don't let the compiler play games with cpu_buffer->tail_page */
4275 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4276 
4277  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
4278 	barrier();
4279 	rb_time_read(&cpu_buffer->before_stamp, &info->before);
4280 	rb_time_read(&cpu_buffer->write_stamp, &info->after);
4281 	barrier();
4282 	info->ts = rb_time_stamp(cpu_buffer->buffer);
4283 
4284 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4285 		info->delta = info->ts;
4286 	} else {
4287 		/*
4288 		 * If interrupting an event time update, we may need an
4289 		 * absolute timestamp.
4290 		 * Don't bother if this is the start of a new page (w == 0).
4291 		 */
4292 		if (!w) {
4293 			/* Use the sub-buffer timestamp */
4294 			info->delta = 0;
4295 		} else if (unlikely(info->before != info->after)) {
4296 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4297 			info->length += RB_LEN_TIME_EXTEND;
4298 		} else {
4299 			info->delta = info->ts - info->after;
4300 			if (unlikely(test_time_stamp(info->delta))) {
4301 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4302 				info->length += RB_LEN_TIME_EXTEND;
4303 			}
4304 		}
4305 	}
4306 
4307  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
4308 
4309  /*C*/	write = local_add_return(info->length, &tail_page->write);
4310 
4311 	/* set write to only the index of the write */
4312 	write &= RB_WRITE_MASK;
4313 
4314 	tail = write - info->length;
4315 
4316 	/* See if we shot pass the end of this buffer page */
4317 	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4318 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4319 		return rb_move_tail(cpu_buffer, tail, info);
4320 	}
4321 
4322 	if (likely(tail == w)) {
4323 		/* Nothing interrupted us between A and C */
4324  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
4325 		/*
4326 		 * If something came in between C and D, the write stamp
4327 		 * may now not be in sync. But that's fine as the before_stamp
4328 		 * will be different and then next event will just be forced
4329 		 * to use an absolute timestamp.
4330 		 */
4331 		if (likely(!(info->add_timestamp &
4332 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4333 			/* This did not interrupt any time update */
4334 			info->delta = info->ts - info->after;
4335 		else
4336 			/* Just use full timestamp for interrupting event */
4337 			info->delta = info->ts;
4338 		check_buffer(cpu_buffer, info, tail);
4339 	} else {
4340 		u64 ts;
4341 		/* SLOW PATH - Interrupted between A and C */
4342 
4343 		/* Save the old before_stamp */
4344 		rb_time_read(&cpu_buffer->before_stamp, &info->before);
4345 
4346 		/*
4347 		 * Read a new timestamp and update the before_stamp to make
4348 		 * the next event after this one force using an absolute
4349 		 * timestamp. This is in case an interrupt were to come in
4350 		 * between E and F.
4351 		 */
4352 		ts = rb_time_stamp(cpu_buffer->buffer);
4353 		rb_time_set(&cpu_buffer->before_stamp, ts);
4354 
4355 		barrier();
4356  /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
4357 		barrier();
4358  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4359 		    info->after == info->before && info->after < ts) {
4360 			/*
4361 			 * Nothing came after this event between C and F, it is
4362 			 * safe to use info->after for the delta as it
4363 			 * matched info->before and is still valid.
4364 			 */
4365 			info->delta = ts - info->after;
4366 		} else {
4367 			/*
4368 			 * Interrupted between C and F:
4369 			 * Lost the previous events time stamp. Just set the
4370 			 * delta to zero, and this will be the same time as
4371 			 * the event this event interrupted. And the events that
4372 			 * came after this will still be correct (as they would
4373 			 * have built their delta on the previous event.
4374 			 */
4375 			info->delta = 0;
4376 		}
4377 		info->ts = ts;
4378 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4379 	}
4380 
4381 	/*
4382 	 * If this is the first commit on the page, then it has the same
4383 	 * timestamp as the page itself.
4384 	 */
4385 	if (unlikely(!tail && !(info->add_timestamp &
4386 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4387 		info->delta = 0;
4388 
4389 	/* We reserved something on the buffer */
4390 
4391 	event = __rb_page_index(tail_page, tail);
4392 	rb_update_event(cpu_buffer, event, info);
4393 
4394 	local_inc(&tail_page->entries);
4395 
4396 	/*
4397 	 * If this is the first commit on the page, then update
4398 	 * its timestamp.
4399 	 */
4400 	if (unlikely(!tail))
4401 		tail_page->page->time_stamp = info->ts;
4402 
4403 	/* account for these added bytes */
4404 	local_add(info->length, &cpu_buffer->entries_bytes);
4405 
4406 	return event;
4407 }
4408 
4409 static __always_inline struct ring_buffer_event *
4410 rb_reserve_next_event(struct trace_buffer *buffer,
4411 		      struct ring_buffer_per_cpu *cpu_buffer,
4412 		      unsigned long length)
4413 {
4414 	struct ring_buffer_event *event;
4415 	struct rb_event_info info;
4416 	int nr_loops = 0;
4417 	int add_ts_default;
4418 
4419 	/*
4420 	 * ring buffer does cmpxchg as well as atomic64 operations
4421 	 * (which some archs use locking for atomic64), make sure this
4422 	 * is safe in NMI context
4423 	 */
4424 	if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4425 	     IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4426 	    (unlikely(in_nmi()))) {
4427 		return NULL;
4428 	}
4429 
4430 	rb_start_commit(cpu_buffer);
4431 	/* The commit page can not change after this */
4432 
4433 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4434 	/*
4435 	 * Due to the ability to swap a cpu buffer from a buffer
4436 	 * it is possible it was swapped before we committed.
4437 	 * (committing stops a swap). We check for it here and
4438 	 * if it happened, we have to fail the write.
4439 	 */
4440 	barrier();
4441 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4442 		local_dec(&cpu_buffer->committing);
4443 		local_dec(&cpu_buffer->commits);
4444 		return NULL;
4445 	}
4446 #endif
4447 
4448 	info.length = rb_calculate_event_length(length);
4449 
4450 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4451 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4452 		info.length += RB_LEN_TIME_EXTEND;
4453 		if (info.length > cpu_buffer->buffer->max_data_size)
4454 			goto out_fail;
4455 	} else {
4456 		add_ts_default = RB_ADD_STAMP_NONE;
4457 	}
4458 
4459  again:
4460 	info.add_timestamp = add_ts_default;
4461 	info.delta = 0;
4462 
4463 	/*
4464 	 * We allow for interrupts to reenter here and do a trace.
4465 	 * If one does, it will cause this original code to loop
4466 	 * back here. Even with heavy interrupts happening, this
4467 	 * should only happen a few times in a row. If this happens
4468 	 * 1000 times in a row, there must be either an interrupt
4469 	 * storm or we have something buggy.
4470 	 * Bail!
4471 	 */
4472 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4473 		goto out_fail;
4474 
4475 	event = __rb_reserve_next(cpu_buffer, &info);
4476 
4477 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4478 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4479 			info.length -= RB_LEN_TIME_EXTEND;
4480 		goto again;
4481 	}
4482 
4483 	if (likely(event))
4484 		return event;
4485  out_fail:
4486 	rb_end_commit(cpu_buffer);
4487 	return NULL;
4488 }
4489 
4490 /**
4491  * ring_buffer_lock_reserve - reserve a part of the buffer
4492  * @buffer: the ring buffer to reserve from
4493  * @length: the length of the data to reserve (excluding event header)
4494  *
4495  * Returns a reserved event on the ring buffer to copy directly to.
4496  * The user of this interface will need to get the body to write into
4497  * and can use the ring_buffer_event_data() interface.
4498  *
4499  * The length is the length of the data needed, not the event length
4500  * which also includes the event header.
4501  *
4502  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4503  * If NULL is returned, then nothing has been allocated or locked.
4504  */
4505 struct ring_buffer_event *
4506 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4507 {
4508 	struct ring_buffer_per_cpu *cpu_buffer;
4509 	struct ring_buffer_event *event;
4510 	int cpu;
4511 
4512 	/* If we are tracing schedule, we don't want to recurse */
4513 	preempt_disable_notrace();
4514 
4515 	if (unlikely(atomic_read(&buffer->record_disabled)))
4516 		goto out;
4517 
4518 	cpu = raw_smp_processor_id();
4519 
4520 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4521 		goto out;
4522 
4523 	cpu_buffer = buffer->buffers[cpu];
4524 
4525 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4526 		goto out;
4527 
4528 	if (unlikely(length > buffer->max_data_size))
4529 		goto out;
4530 
4531 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4532 		goto out;
4533 
4534 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4535 	if (!event)
4536 		goto out_unlock;
4537 
4538 	return event;
4539 
4540  out_unlock:
4541 	trace_recursive_unlock(cpu_buffer);
4542  out:
4543 	preempt_enable_notrace();
4544 	return NULL;
4545 }
4546 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4547 
4548 /*
4549  * Decrement the entries to the page that an event is on.
4550  * The event does not even need to exist, only the pointer
4551  * to the page it is on. This may only be called before the commit
4552  * takes place.
4553  */
4554 static inline void
4555 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4556 		   struct ring_buffer_event *event)
4557 {
4558 	unsigned long addr = (unsigned long)event;
4559 	struct buffer_page *bpage = cpu_buffer->commit_page;
4560 	struct buffer_page *start;
4561 
4562 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4563 
4564 	/* Do the likely case first */
4565 	if (likely(bpage->page == (void *)addr)) {
4566 		local_dec(&bpage->entries);
4567 		return;
4568 	}
4569 
4570 	/*
4571 	 * Because the commit page may be on the reader page we
4572 	 * start with the next page and check the end loop there.
4573 	 */
4574 	rb_inc_page(&bpage);
4575 	start = bpage;
4576 	do {
4577 		if (bpage->page == (void *)addr) {
4578 			local_dec(&bpage->entries);
4579 			return;
4580 		}
4581 		rb_inc_page(&bpage);
4582 	} while (bpage != start);
4583 
4584 	/* commit not part of this buffer?? */
4585 	RB_WARN_ON(cpu_buffer, 1);
4586 }
4587 
4588 /**
4589  * ring_buffer_discard_commit - discard an event that has not been committed
4590  * @buffer: the ring buffer
4591  * @event: non committed event to discard
4592  *
4593  * Sometimes an event that is in the ring buffer needs to be ignored.
4594  * This function lets the user discard an event in the ring buffer
4595  * and then that event will not be read later.
4596  *
4597  * This function only works if it is called before the item has been
4598  * committed. It will try to free the event from the ring buffer
4599  * if another event has not been added behind it.
4600  *
4601  * If another event has been added behind it, it will set the event
4602  * up as discarded, and perform the commit.
4603  *
4604  * If this function is called, do not call ring_buffer_unlock_commit on
4605  * the event.
4606  */
4607 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4608 				struct ring_buffer_event *event)
4609 {
4610 	struct ring_buffer_per_cpu *cpu_buffer;
4611 	int cpu;
4612 
4613 	/* The event is discarded regardless */
4614 	rb_event_discard(event);
4615 
4616 	cpu = smp_processor_id();
4617 	cpu_buffer = buffer->buffers[cpu];
4618 
4619 	/*
4620 	 * This must only be called if the event has not been
4621 	 * committed yet. Thus we can assume that preemption
4622 	 * is still disabled.
4623 	 */
4624 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4625 
4626 	rb_decrement_entry(cpu_buffer, event);
4627 	if (rb_try_to_discard(cpu_buffer, event))
4628 		goto out;
4629 
4630  out:
4631 	rb_end_commit(cpu_buffer);
4632 
4633 	trace_recursive_unlock(cpu_buffer);
4634 
4635 	preempt_enable_notrace();
4636 
4637 }
4638 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4639 
4640 /**
4641  * ring_buffer_write - write data to the buffer without reserving
4642  * @buffer: The ring buffer to write to.
4643  * @length: The length of the data being written (excluding the event header)
4644  * @data: The data to write to the buffer.
4645  *
4646  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4647  * one function. If you already have the data to write to the buffer, it
4648  * may be easier to simply call this function.
4649  *
4650  * Note, like ring_buffer_lock_reserve, the length is the length of the data
4651  * and not the length of the event which would hold the header.
4652  */
4653 int ring_buffer_write(struct trace_buffer *buffer,
4654 		      unsigned long length,
4655 		      void *data)
4656 {
4657 	struct ring_buffer_per_cpu *cpu_buffer;
4658 	struct ring_buffer_event *event;
4659 	void *body;
4660 	int ret = -EBUSY;
4661 	int cpu;
4662 
4663 	preempt_disable_notrace();
4664 
4665 	if (atomic_read(&buffer->record_disabled))
4666 		goto out;
4667 
4668 	cpu = raw_smp_processor_id();
4669 
4670 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4671 		goto out;
4672 
4673 	cpu_buffer = buffer->buffers[cpu];
4674 
4675 	if (atomic_read(&cpu_buffer->record_disabled))
4676 		goto out;
4677 
4678 	if (length > buffer->max_data_size)
4679 		goto out;
4680 
4681 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4682 		goto out;
4683 
4684 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4685 	if (!event)
4686 		goto out_unlock;
4687 
4688 	body = rb_event_data(event);
4689 
4690 	memcpy(body, data, length);
4691 
4692 	rb_commit(cpu_buffer);
4693 
4694 	rb_wakeups(buffer, cpu_buffer);
4695 
4696 	ret = 0;
4697 
4698  out_unlock:
4699 	trace_recursive_unlock(cpu_buffer);
4700 
4701  out:
4702 	preempt_enable_notrace();
4703 
4704 	return ret;
4705 }
4706 EXPORT_SYMBOL_GPL(ring_buffer_write);
4707 
4708 /*
4709  * The total entries in the ring buffer is the running counter
4710  * of entries entered into the ring buffer, minus the sum of
4711  * the entries read from the ring buffer and the number of
4712  * entries that were overwritten.
4713  */
4714 static inline unsigned long
4715 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4716 {
4717 	return local_read(&cpu_buffer->entries) -
4718 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4719 }
4720 
4721 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4722 {
4723 	return !rb_num_of_entries(cpu_buffer);
4724 }
4725 
4726 /**
4727  * ring_buffer_record_disable - stop all writes into the buffer
4728  * @buffer: The ring buffer to stop writes to.
4729  *
4730  * This prevents all writes to the buffer. Any attempt to write
4731  * to the buffer after this will fail and return NULL.
4732  *
4733  * The caller should call synchronize_rcu() after this.
4734  */
4735 void ring_buffer_record_disable(struct trace_buffer *buffer)
4736 {
4737 	atomic_inc(&buffer->record_disabled);
4738 }
4739 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4740 
4741 /**
4742  * ring_buffer_record_enable - enable writes to the buffer
4743  * @buffer: The ring buffer to enable writes
4744  *
4745  * Note, multiple disables will need the same number of enables
4746  * to truly enable the writing (much like preempt_disable).
4747  */
4748 void ring_buffer_record_enable(struct trace_buffer *buffer)
4749 {
4750 	atomic_dec(&buffer->record_disabled);
4751 }
4752 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4753 
4754 /**
4755  * ring_buffer_record_off - stop all writes into the buffer
4756  * @buffer: The ring buffer to stop writes to.
4757  *
4758  * This prevents all writes to the buffer. Any attempt to write
4759  * to the buffer after this will fail and return NULL.
4760  *
4761  * This is different than ring_buffer_record_disable() as
4762  * it works like an on/off switch, where as the disable() version
4763  * must be paired with a enable().
4764  */
4765 void ring_buffer_record_off(struct trace_buffer *buffer)
4766 {
4767 	unsigned int rd;
4768 	unsigned int new_rd;
4769 
4770 	rd = atomic_read(&buffer->record_disabled);
4771 	do {
4772 		new_rd = rd | RB_BUFFER_OFF;
4773 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4774 }
4775 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4776 
4777 /**
4778  * ring_buffer_record_on - restart writes into the buffer
4779  * @buffer: The ring buffer to start writes to.
4780  *
4781  * This enables all writes to the buffer that was disabled by
4782  * ring_buffer_record_off().
4783  *
4784  * This is different than ring_buffer_record_enable() as
4785  * it works like an on/off switch, where as the enable() version
4786  * must be paired with a disable().
4787  */
4788 void ring_buffer_record_on(struct trace_buffer *buffer)
4789 {
4790 	unsigned int rd;
4791 	unsigned int new_rd;
4792 
4793 	rd = atomic_read(&buffer->record_disabled);
4794 	do {
4795 		new_rd = rd & ~RB_BUFFER_OFF;
4796 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4797 }
4798 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4799 
4800 /**
4801  * ring_buffer_record_is_on - return true if the ring buffer can write
4802  * @buffer: The ring buffer to see if write is enabled
4803  *
4804  * Returns true if the ring buffer is in a state that it accepts writes.
4805  */
4806 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4807 {
4808 	return !atomic_read(&buffer->record_disabled);
4809 }
4810 
4811 /**
4812  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4813  * @buffer: The ring buffer to see if write is set enabled
4814  *
4815  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4816  * Note that this does NOT mean it is in a writable state.
4817  *
4818  * It may return true when the ring buffer has been disabled by
4819  * ring_buffer_record_disable(), as that is a temporary disabling of
4820  * the ring buffer.
4821  */
4822 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4823 {
4824 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4825 }
4826 
4827 /**
4828  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4829  * @buffer: The ring buffer to stop writes to.
4830  * @cpu: The CPU buffer to stop
4831  *
4832  * This prevents all writes to the buffer. Any attempt to write
4833  * to the buffer after this will fail and return NULL.
4834  *
4835  * The caller should call synchronize_rcu() after this.
4836  */
4837 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4838 {
4839 	struct ring_buffer_per_cpu *cpu_buffer;
4840 
4841 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4842 		return;
4843 
4844 	cpu_buffer = buffer->buffers[cpu];
4845 	atomic_inc(&cpu_buffer->record_disabled);
4846 }
4847 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4848 
4849 /**
4850  * ring_buffer_record_enable_cpu - enable writes to the buffer
4851  * @buffer: The ring buffer to enable writes
4852  * @cpu: The CPU to enable.
4853  *
4854  * Note, multiple disables will need the same number of enables
4855  * to truly enable the writing (much like preempt_disable).
4856  */
4857 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4858 {
4859 	struct ring_buffer_per_cpu *cpu_buffer;
4860 
4861 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4862 		return;
4863 
4864 	cpu_buffer = buffer->buffers[cpu];
4865 	atomic_dec(&cpu_buffer->record_disabled);
4866 }
4867 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4868 
4869 /**
4870  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4871  * @buffer: The ring buffer
4872  * @cpu: The per CPU buffer to read from.
4873  */
4874 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4875 {
4876 	unsigned long flags;
4877 	struct ring_buffer_per_cpu *cpu_buffer;
4878 	struct buffer_page *bpage;
4879 	u64 ret = 0;
4880 
4881 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4882 		return 0;
4883 
4884 	cpu_buffer = buffer->buffers[cpu];
4885 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4886 	/*
4887 	 * if the tail is on reader_page, oldest time stamp is on the reader
4888 	 * page
4889 	 */
4890 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4891 		bpage = cpu_buffer->reader_page;
4892 	else
4893 		bpage = rb_set_head_page(cpu_buffer);
4894 	if (bpage)
4895 		ret = bpage->page->time_stamp;
4896 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4897 
4898 	return ret;
4899 }
4900 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4901 
4902 /**
4903  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4904  * @buffer: The ring buffer
4905  * @cpu: The per CPU buffer to read from.
4906  */
4907 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4908 {
4909 	struct ring_buffer_per_cpu *cpu_buffer;
4910 	unsigned long ret;
4911 
4912 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4913 		return 0;
4914 
4915 	cpu_buffer = buffer->buffers[cpu];
4916 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4917 
4918 	return ret;
4919 }
4920 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4921 
4922 /**
4923  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4924  * @buffer: The ring buffer
4925  * @cpu: The per CPU buffer to get the entries from.
4926  */
4927 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4928 {
4929 	struct ring_buffer_per_cpu *cpu_buffer;
4930 
4931 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4932 		return 0;
4933 
4934 	cpu_buffer = buffer->buffers[cpu];
4935 
4936 	return rb_num_of_entries(cpu_buffer);
4937 }
4938 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4939 
4940 /**
4941  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4942  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4943  * @buffer: The ring buffer
4944  * @cpu: The per CPU buffer to get the number of overruns from
4945  */
4946 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4947 {
4948 	struct ring_buffer_per_cpu *cpu_buffer;
4949 	unsigned long ret;
4950 
4951 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4952 		return 0;
4953 
4954 	cpu_buffer = buffer->buffers[cpu];
4955 	ret = local_read(&cpu_buffer->overrun);
4956 
4957 	return ret;
4958 }
4959 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4960 
4961 /**
4962  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4963  * commits failing due to the buffer wrapping around while there are uncommitted
4964  * events, such as during an interrupt storm.
4965  * @buffer: The ring buffer
4966  * @cpu: The per CPU buffer to get the number of overruns from
4967  */
4968 unsigned long
4969 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4970 {
4971 	struct ring_buffer_per_cpu *cpu_buffer;
4972 	unsigned long ret;
4973 
4974 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4975 		return 0;
4976 
4977 	cpu_buffer = buffer->buffers[cpu];
4978 	ret = local_read(&cpu_buffer->commit_overrun);
4979 
4980 	return ret;
4981 }
4982 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4983 
4984 /**
4985  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4986  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4987  * @buffer: The ring buffer
4988  * @cpu: The per CPU buffer to get the number of overruns from
4989  */
4990 unsigned long
4991 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4992 {
4993 	struct ring_buffer_per_cpu *cpu_buffer;
4994 	unsigned long ret;
4995 
4996 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4997 		return 0;
4998 
4999 	cpu_buffer = buffer->buffers[cpu];
5000 	ret = local_read(&cpu_buffer->dropped_events);
5001 
5002 	return ret;
5003 }
5004 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5005 
5006 /**
5007  * ring_buffer_read_events_cpu - get the number of events successfully read
5008  * @buffer: The ring buffer
5009  * @cpu: The per CPU buffer to get the number of events read
5010  */
5011 unsigned long
5012 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5013 {
5014 	struct ring_buffer_per_cpu *cpu_buffer;
5015 
5016 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5017 		return 0;
5018 
5019 	cpu_buffer = buffer->buffers[cpu];
5020 	return cpu_buffer->read;
5021 }
5022 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5023 
5024 /**
5025  * ring_buffer_entries - get the number of entries in a buffer
5026  * @buffer: The ring buffer
5027  *
5028  * Returns the total number of entries in the ring buffer
5029  * (all CPU entries)
5030  */
5031 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5032 {
5033 	struct ring_buffer_per_cpu *cpu_buffer;
5034 	unsigned long entries = 0;
5035 	int cpu;
5036 
5037 	/* if you care about this being correct, lock the buffer */
5038 	for_each_buffer_cpu(buffer, cpu) {
5039 		cpu_buffer = buffer->buffers[cpu];
5040 		entries += rb_num_of_entries(cpu_buffer);
5041 	}
5042 
5043 	return entries;
5044 }
5045 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5046 
5047 /**
5048  * ring_buffer_overruns - get the number of overruns in buffer
5049  * @buffer: The ring buffer
5050  *
5051  * Returns the total number of overruns in the ring buffer
5052  * (all CPU entries)
5053  */
5054 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5055 {
5056 	struct ring_buffer_per_cpu *cpu_buffer;
5057 	unsigned long overruns = 0;
5058 	int cpu;
5059 
5060 	/* if you care about this being correct, lock the buffer */
5061 	for_each_buffer_cpu(buffer, cpu) {
5062 		cpu_buffer = buffer->buffers[cpu];
5063 		overruns += local_read(&cpu_buffer->overrun);
5064 	}
5065 
5066 	return overruns;
5067 }
5068 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5069 
5070 static void rb_iter_reset(struct ring_buffer_iter *iter)
5071 {
5072 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5073 
5074 	/* Iterator usage is expected to have record disabled */
5075 	iter->head_page = cpu_buffer->reader_page;
5076 	iter->head = cpu_buffer->reader_page->read;
5077 	iter->next_event = iter->head;
5078 
5079 	iter->cache_reader_page = iter->head_page;
5080 	iter->cache_read = cpu_buffer->read;
5081 	iter->cache_pages_removed = cpu_buffer->pages_removed;
5082 
5083 	if (iter->head) {
5084 		iter->read_stamp = cpu_buffer->read_stamp;
5085 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5086 	} else {
5087 		iter->read_stamp = iter->head_page->page->time_stamp;
5088 		iter->page_stamp = iter->read_stamp;
5089 	}
5090 }
5091 
5092 /**
5093  * ring_buffer_iter_reset - reset an iterator
5094  * @iter: The iterator to reset
5095  *
5096  * Resets the iterator, so that it will start from the beginning
5097  * again.
5098  */
5099 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5100 {
5101 	struct ring_buffer_per_cpu *cpu_buffer;
5102 	unsigned long flags;
5103 
5104 	if (!iter)
5105 		return;
5106 
5107 	cpu_buffer = iter->cpu_buffer;
5108 
5109 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5110 	rb_iter_reset(iter);
5111 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5112 }
5113 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5114 
5115 /**
5116  * ring_buffer_iter_empty - check if an iterator has no more to read
5117  * @iter: The iterator to check
5118  */
5119 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5120 {
5121 	struct ring_buffer_per_cpu *cpu_buffer;
5122 	struct buffer_page *reader;
5123 	struct buffer_page *head_page;
5124 	struct buffer_page *commit_page;
5125 	struct buffer_page *curr_commit_page;
5126 	unsigned commit;
5127 	u64 curr_commit_ts;
5128 	u64 commit_ts;
5129 
5130 	cpu_buffer = iter->cpu_buffer;
5131 	reader = cpu_buffer->reader_page;
5132 	head_page = cpu_buffer->head_page;
5133 	commit_page = READ_ONCE(cpu_buffer->commit_page);
5134 	commit_ts = commit_page->page->time_stamp;
5135 
5136 	/*
5137 	 * When the writer goes across pages, it issues a cmpxchg which
5138 	 * is a mb(), which will synchronize with the rmb here.
5139 	 * (see rb_tail_page_update())
5140 	 */
5141 	smp_rmb();
5142 	commit = rb_page_commit(commit_page);
5143 	/* We want to make sure that the commit page doesn't change */
5144 	smp_rmb();
5145 
5146 	/* Make sure commit page didn't change */
5147 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5148 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5149 
5150 	/* If the commit page changed, then there's more data */
5151 	if (curr_commit_page != commit_page ||
5152 	    curr_commit_ts != commit_ts)
5153 		return 0;
5154 
5155 	/* Still racy, as it may return a false positive, but that's OK */
5156 	return ((iter->head_page == commit_page && iter->head >= commit) ||
5157 		(iter->head_page == reader && commit_page == head_page &&
5158 		 head_page->read == commit &&
5159 		 iter->head == rb_page_size(cpu_buffer->reader_page)));
5160 }
5161 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5162 
5163 static void
5164 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5165 		     struct ring_buffer_event *event)
5166 {
5167 	u64 delta;
5168 
5169 	switch (event->type_len) {
5170 	case RINGBUF_TYPE_PADDING:
5171 		return;
5172 
5173 	case RINGBUF_TYPE_TIME_EXTEND:
5174 		delta = rb_event_time_stamp(event);
5175 		cpu_buffer->read_stamp += delta;
5176 		return;
5177 
5178 	case RINGBUF_TYPE_TIME_STAMP:
5179 		delta = rb_event_time_stamp(event);
5180 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5181 		cpu_buffer->read_stamp = delta;
5182 		return;
5183 
5184 	case RINGBUF_TYPE_DATA:
5185 		cpu_buffer->read_stamp += event->time_delta;
5186 		return;
5187 
5188 	default:
5189 		RB_WARN_ON(cpu_buffer, 1);
5190 	}
5191 }
5192 
5193 static void
5194 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5195 			  struct ring_buffer_event *event)
5196 {
5197 	u64 delta;
5198 
5199 	switch (event->type_len) {
5200 	case RINGBUF_TYPE_PADDING:
5201 		return;
5202 
5203 	case RINGBUF_TYPE_TIME_EXTEND:
5204 		delta = rb_event_time_stamp(event);
5205 		iter->read_stamp += delta;
5206 		return;
5207 
5208 	case RINGBUF_TYPE_TIME_STAMP:
5209 		delta = rb_event_time_stamp(event);
5210 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
5211 		iter->read_stamp = delta;
5212 		return;
5213 
5214 	case RINGBUF_TYPE_DATA:
5215 		iter->read_stamp += event->time_delta;
5216 		return;
5217 
5218 	default:
5219 		RB_WARN_ON(iter->cpu_buffer, 1);
5220 	}
5221 }
5222 
5223 static struct buffer_page *
5224 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5225 {
5226 	struct buffer_page *reader = NULL;
5227 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5228 	unsigned long overwrite;
5229 	unsigned long flags;
5230 	int nr_loops = 0;
5231 	bool ret;
5232 
5233 	local_irq_save(flags);
5234 	arch_spin_lock(&cpu_buffer->lock);
5235 
5236  again:
5237 	/*
5238 	 * This should normally only loop twice. But because the
5239 	 * start of the reader inserts an empty page, it causes
5240 	 * a case where we will loop three times. There should be no
5241 	 * reason to loop four times (that I know of).
5242 	 */
5243 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5244 		reader = NULL;
5245 		goto out;
5246 	}
5247 
5248 	reader = cpu_buffer->reader_page;
5249 
5250 	/* If there's more to read, return this page */
5251 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
5252 		goto out;
5253 
5254 	/* Never should we have an index greater than the size */
5255 	if (RB_WARN_ON(cpu_buffer,
5256 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
5257 		goto out;
5258 
5259 	/* check if we caught up to the tail */
5260 	reader = NULL;
5261 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5262 		goto out;
5263 
5264 	/* Don't bother swapping if the ring buffer is empty */
5265 	if (rb_num_of_entries(cpu_buffer) == 0)
5266 		goto out;
5267 
5268 	/*
5269 	 * Reset the reader page to size zero.
5270 	 */
5271 	local_set(&cpu_buffer->reader_page->write, 0);
5272 	local_set(&cpu_buffer->reader_page->entries, 0);
5273 	local_set(&cpu_buffer->reader_page->page->commit, 0);
5274 	cpu_buffer->reader_page->real_end = 0;
5275 
5276  spin:
5277 	/*
5278 	 * Splice the empty reader page into the list around the head.
5279 	 */
5280 	reader = rb_set_head_page(cpu_buffer);
5281 	if (!reader)
5282 		goto out;
5283 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5284 	cpu_buffer->reader_page->list.prev = reader->list.prev;
5285 
5286 	/*
5287 	 * cpu_buffer->pages just needs to point to the buffer, it
5288 	 *  has no specific buffer page to point to. Lets move it out
5289 	 *  of our way so we don't accidentally swap it.
5290 	 */
5291 	cpu_buffer->pages = reader->list.prev;
5292 
5293 	/* The reader page will be pointing to the new head */
5294 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
5295 
5296 	/*
5297 	 * We want to make sure we read the overruns after we set up our
5298 	 * pointers to the next object. The writer side does a
5299 	 * cmpxchg to cross pages which acts as the mb on the writer
5300 	 * side. Note, the reader will constantly fail the swap
5301 	 * while the writer is updating the pointers, so this
5302 	 * guarantees that the overwrite recorded here is the one we
5303 	 * want to compare with the last_overrun.
5304 	 */
5305 	smp_mb();
5306 	overwrite = local_read(&(cpu_buffer->overrun));
5307 
5308 	/*
5309 	 * Here's the tricky part.
5310 	 *
5311 	 * We need to move the pointer past the header page.
5312 	 * But we can only do that if a writer is not currently
5313 	 * moving it. The page before the header page has the
5314 	 * flag bit '1' set if it is pointing to the page we want.
5315 	 * but if the writer is in the process of moving it
5316 	 * than it will be '2' or already moved '0'.
5317 	 */
5318 
5319 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5320 
5321 	/*
5322 	 * If we did not convert it, then we must try again.
5323 	 */
5324 	if (!ret)
5325 		goto spin;
5326 
5327 	if (cpu_buffer->ring_meta)
5328 		rb_update_meta_reader(cpu_buffer, reader);
5329 
5330 	/*
5331 	 * Yay! We succeeded in replacing the page.
5332 	 *
5333 	 * Now make the new head point back to the reader page.
5334 	 */
5335 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5336 	rb_inc_page(&cpu_buffer->head_page);
5337 
5338 	cpu_buffer->cnt++;
5339 	local_inc(&cpu_buffer->pages_read);
5340 
5341 	/* Finally update the reader page to the new head */
5342 	cpu_buffer->reader_page = reader;
5343 	cpu_buffer->reader_page->read = 0;
5344 
5345 	if (overwrite != cpu_buffer->last_overrun) {
5346 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5347 		cpu_buffer->last_overrun = overwrite;
5348 	}
5349 
5350 	goto again;
5351 
5352  out:
5353 	/* Update the read_stamp on the first event */
5354 	if (reader && reader->read == 0)
5355 		cpu_buffer->read_stamp = reader->page->time_stamp;
5356 
5357 	arch_spin_unlock(&cpu_buffer->lock);
5358 	local_irq_restore(flags);
5359 
5360 	/*
5361 	 * The writer has preempt disable, wait for it. But not forever
5362 	 * Although, 1 second is pretty much "forever"
5363 	 */
5364 #define USECS_WAIT	1000000
5365         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5366 		/* If the write is past the end of page, a writer is still updating it */
5367 		if (likely(!reader || rb_page_write(reader) <= bsize))
5368 			break;
5369 
5370 		udelay(1);
5371 
5372 		/* Get the latest version of the reader write value */
5373 		smp_rmb();
5374 	}
5375 
5376 	/* The writer is not moving forward? Something is wrong */
5377 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5378 		reader = NULL;
5379 
5380 	/*
5381 	 * Make sure we see any padding after the write update
5382 	 * (see rb_reset_tail()).
5383 	 *
5384 	 * In addition, a writer may be writing on the reader page
5385 	 * if the page has not been fully filled, so the read barrier
5386 	 * is also needed to make sure we see the content of what is
5387 	 * committed by the writer (see rb_set_commit_to_write()).
5388 	 */
5389 	smp_rmb();
5390 
5391 
5392 	return reader;
5393 }
5394 
5395 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5396 {
5397 	struct ring_buffer_event *event;
5398 	struct buffer_page *reader;
5399 	unsigned length;
5400 
5401 	reader = rb_get_reader_page(cpu_buffer);
5402 
5403 	/* This function should not be called when buffer is empty */
5404 	if (RB_WARN_ON(cpu_buffer, !reader))
5405 		return;
5406 
5407 	event = rb_reader_event(cpu_buffer);
5408 
5409 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5410 		cpu_buffer->read++;
5411 
5412 	rb_update_read_stamp(cpu_buffer, event);
5413 
5414 	length = rb_event_length(event);
5415 	cpu_buffer->reader_page->read += length;
5416 	cpu_buffer->read_bytes += length;
5417 }
5418 
5419 static void rb_advance_iter(struct ring_buffer_iter *iter)
5420 {
5421 	struct ring_buffer_per_cpu *cpu_buffer;
5422 
5423 	cpu_buffer = iter->cpu_buffer;
5424 
5425 	/* If head == next_event then we need to jump to the next event */
5426 	if (iter->head == iter->next_event) {
5427 		/* If the event gets overwritten again, there's nothing to do */
5428 		if (rb_iter_head_event(iter) == NULL)
5429 			return;
5430 	}
5431 
5432 	iter->head = iter->next_event;
5433 
5434 	/*
5435 	 * Check if we are at the end of the buffer.
5436 	 */
5437 	if (iter->next_event >= rb_page_size(iter->head_page)) {
5438 		/* discarded commits can make the page empty */
5439 		if (iter->head_page == cpu_buffer->commit_page)
5440 			return;
5441 		rb_inc_iter(iter);
5442 		return;
5443 	}
5444 
5445 	rb_update_iter_read_stamp(iter, iter->event);
5446 }
5447 
5448 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5449 {
5450 	return cpu_buffer->lost_events;
5451 }
5452 
5453 static struct ring_buffer_event *
5454 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5455 	       unsigned long *lost_events)
5456 {
5457 	struct ring_buffer_event *event;
5458 	struct buffer_page *reader;
5459 	int nr_loops = 0;
5460 
5461 	if (ts)
5462 		*ts = 0;
5463  again:
5464 	/*
5465 	 * We repeat when a time extend is encountered.
5466 	 * Since the time extend is always attached to a data event,
5467 	 * we should never loop more than once.
5468 	 * (We never hit the following condition more than twice).
5469 	 */
5470 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5471 		return NULL;
5472 
5473 	reader = rb_get_reader_page(cpu_buffer);
5474 	if (!reader)
5475 		return NULL;
5476 
5477 	event = rb_reader_event(cpu_buffer);
5478 
5479 	switch (event->type_len) {
5480 	case RINGBUF_TYPE_PADDING:
5481 		if (rb_null_event(event))
5482 			RB_WARN_ON(cpu_buffer, 1);
5483 		/*
5484 		 * Because the writer could be discarding every
5485 		 * event it creates (which would probably be bad)
5486 		 * if we were to go back to "again" then we may never
5487 		 * catch up, and will trigger the warn on, or lock
5488 		 * the box. Return the padding, and we will release
5489 		 * the current locks, and try again.
5490 		 */
5491 		return event;
5492 
5493 	case RINGBUF_TYPE_TIME_EXTEND:
5494 		/* Internal data, OK to advance */
5495 		rb_advance_reader(cpu_buffer);
5496 		goto again;
5497 
5498 	case RINGBUF_TYPE_TIME_STAMP:
5499 		if (ts) {
5500 			*ts = rb_event_time_stamp(event);
5501 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5502 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5503 							 cpu_buffer->cpu, ts);
5504 		}
5505 		/* Internal data, OK to advance */
5506 		rb_advance_reader(cpu_buffer);
5507 		goto again;
5508 
5509 	case RINGBUF_TYPE_DATA:
5510 		if (ts && !(*ts)) {
5511 			*ts = cpu_buffer->read_stamp + event->time_delta;
5512 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5513 							 cpu_buffer->cpu, ts);
5514 		}
5515 		if (lost_events)
5516 			*lost_events = rb_lost_events(cpu_buffer);
5517 		return event;
5518 
5519 	default:
5520 		RB_WARN_ON(cpu_buffer, 1);
5521 	}
5522 
5523 	return NULL;
5524 }
5525 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5526 
5527 static struct ring_buffer_event *
5528 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5529 {
5530 	struct trace_buffer *buffer;
5531 	struct ring_buffer_per_cpu *cpu_buffer;
5532 	struct ring_buffer_event *event;
5533 	int nr_loops = 0;
5534 
5535 	if (ts)
5536 		*ts = 0;
5537 
5538 	cpu_buffer = iter->cpu_buffer;
5539 	buffer = cpu_buffer->buffer;
5540 
5541 	/*
5542 	 * Check if someone performed a consuming read to the buffer
5543 	 * or removed some pages from the buffer. In these cases,
5544 	 * iterator was invalidated and we need to reset it.
5545 	 */
5546 	if (unlikely(iter->cache_read != cpu_buffer->read ||
5547 		     iter->cache_reader_page != cpu_buffer->reader_page ||
5548 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
5549 		rb_iter_reset(iter);
5550 
5551  again:
5552 	if (ring_buffer_iter_empty(iter))
5553 		return NULL;
5554 
5555 	/*
5556 	 * As the writer can mess with what the iterator is trying
5557 	 * to read, just give up if we fail to get an event after
5558 	 * three tries. The iterator is not as reliable when reading
5559 	 * the ring buffer with an active write as the consumer is.
5560 	 * Do not warn if the three failures is reached.
5561 	 */
5562 	if (++nr_loops > 3)
5563 		return NULL;
5564 
5565 	if (rb_per_cpu_empty(cpu_buffer))
5566 		return NULL;
5567 
5568 	if (iter->head >= rb_page_size(iter->head_page)) {
5569 		rb_inc_iter(iter);
5570 		goto again;
5571 	}
5572 
5573 	event = rb_iter_head_event(iter);
5574 	if (!event)
5575 		goto again;
5576 
5577 	switch (event->type_len) {
5578 	case RINGBUF_TYPE_PADDING:
5579 		if (rb_null_event(event)) {
5580 			rb_inc_iter(iter);
5581 			goto again;
5582 		}
5583 		rb_advance_iter(iter);
5584 		return event;
5585 
5586 	case RINGBUF_TYPE_TIME_EXTEND:
5587 		/* Internal data, OK to advance */
5588 		rb_advance_iter(iter);
5589 		goto again;
5590 
5591 	case RINGBUF_TYPE_TIME_STAMP:
5592 		if (ts) {
5593 			*ts = rb_event_time_stamp(event);
5594 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5595 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5596 							 cpu_buffer->cpu, ts);
5597 		}
5598 		/* Internal data, OK to advance */
5599 		rb_advance_iter(iter);
5600 		goto again;
5601 
5602 	case RINGBUF_TYPE_DATA:
5603 		if (ts && !(*ts)) {
5604 			*ts = iter->read_stamp + event->time_delta;
5605 			ring_buffer_normalize_time_stamp(buffer,
5606 							 cpu_buffer->cpu, ts);
5607 		}
5608 		return event;
5609 
5610 	default:
5611 		RB_WARN_ON(cpu_buffer, 1);
5612 	}
5613 
5614 	return NULL;
5615 }
5616 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5617 
5618 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5619 {
5620 	if (likely(!in_nmi())) {
5621 		raw_spin_lock(&cpu_buffer->reader_lock);
5622 		return true;
5623 	}
5624 
5625 	/*
5626 	 * If an NMI die dumps out the content of the ring buffer
5627 	 * trylock must be used to prevent a deadlock if the NMI
5628 	 * preempted a task that holds the ring buffer locks. If
5629 	 * we get the lock then all is fine, if not, then continue
5630 	 * to do the read, but this can corrupt the ring buffer,
5631 	 * so it must be permanently disabled from future writes.
5632 	 * Reading from NMI is a oneshot deal.
5633 	 */
5634 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
5635 		return true;
5636 
5637 	/* Continue without locking, but disable the ring buffer */
5638 	atomic_inc(&cpu_buffer->record_disabled);
5639 	return false;
5640 }
5641 
5642 static inline void
5643 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5644 {
5645 	if (likely(locked))
5646 		raw_spin_unlock(&cpu_buffer->reader_lock);
5647 }
5648 
5649 /**
5650  * ring_buffer_peek - peek at the next event to be read
5651  * @buffer: The ring buffer to read
5652  * @cpu: The cpu to peak at
5653  * @ts: The timestamp counter of this event.
5654  * @lost_events: a variable to store if events were lost (may be NULL)
5655  *
5656  * This will return the event that will be read next, but does
5657  * not consume the data.
5658  */
5659 struct ring_buffer_event *
5660 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5661 		 unsigned long *lost_events)
5662 {
5663 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5664 	struct ring_buffer_event *event;
5665 	unsigned long flags;
5666 	bool dolock;
5667 
5668 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5669 		return NULL;
5670 
5671  again:
5672 	local_irq_save(flags);
5673 	dolock = rb_reader_lock(cpu_buffer);
5674 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5675 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5676 		rb_advance_reader(cpu_buffer);
5677 	rb_reader_unlock(cpu_buffer, dolock);
5678 	local_irq_restore(flags);
5679 
5680 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5681 		goto again;
5682 
5683 	return event;
5684 }
5685 
5686 /** ring_buffer_iter_dropped - report if there are dropped events
5687  * @iter: The ring buffer iterator
5688  *
5689  * Returns true if there was dropped events since the last peek.
5690  */
5691 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5692 {
5693 	bool ret = iter->missed_events != 0;
5694 
5695 	iter->missed_events = 0;
5696 	return ret;
5697 }
5698 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5699 
5700 /**
5701  * ring_buffer_iter_peek - peek at the next event to be read
5702  * @iter: The ring buffer iterator
5703  * @ts: The timestamp counter of this event.
5704  *
5705  * This will return the event that will be read next, but does
5706  * not increment the iterator.
5707  */
5708 struct ring_buffer_event *
5709 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5710 {
5711 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5712 	struct ring_buffer_event *event;
5713 	unsigned long flags;
5714 
5715  again:
5716 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5717 	event = rb_iter_peek(iter, ts);
5718 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5719 
5720 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5721 		goto again;
5722 
5723 	return event;
5724 }
5725 
5726 /**
5727  * ring_buffer_consume - return an event and consume it
5728  * @buffer: The ring buffer to get the next event from
5729  * @cpu: the cpu to read the buffer from
5730  * @ts: a variable to store the timestamp (may be NULL)
5731  * @lost_events: a variable to store if events were lost (may be NULL)
5732  *
5733  * Returns the next event in the ring buffer, and that event is consumed.
5734  * Meaning, that sequential reads will keep returning a different event,
5735  * and eventually empty the ring buffer if the producer is slower.
5736  */
5737 struct ring_buffer_event *
5738 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5739 		    unsigned long *lost_events)
5740 {
5741 	struct ring_buffer_per_cpu *cpu_buffer;
5742 	struct ring_buffer_event *event = NULL;
5743 	unsigned long flags;
5744 	bool dolock;
5745 
5746  again:
5747 	/* might be called in atomic */
5748 	preempt_disable();
5749 
5750 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5751 		goto out;
5752 
5753 	cpu_buffer = buffer->buffers[cpu];
5754 	local_irq_save(flags);
5755 	dolock = rb_reader_lock(cpu_buffer);
5756 
5757 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5758 	if (event) {
5759 		cpu_buffer->lost_events = 0;
5760 		rb_advance_reader(cpu_buffer);
5761 	}
5762 
5763 	rb_reader_unlock(cpu_buffer, dolock);
5764 	local_irq_restore(flags);
5765 
5766  out:
5767 	preempt_enable();
5768 
5769 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5770 		goto again;
5771 
5772 	return event;
5773 }
5774 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5775 
5776 /**
5777  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5778  * @buffer: The ring buffer to read from
5779  * @cpu: The cpu buffer to iterate over
5780  * @flags: gfp flags to use for memory allocation
5781  *
5782  * This performs the initial preparations necessary to iterate
5783  * through the buffer.  Memory is allocated, buffer resizing
5784  * is disabled, and the iterator pointer is returned to the caller.
5785  *
5786  * After a sequence of ring_buffer_read_prepare calls, the user is
5787  * expected to make at least one call to ring_buffer_read_prepare_sync.
5788  * Afterwards, ring_buffer_read_start is invoked to get things going
5789  * for real.
5790  *
5791  * This overall must be paired with ring_buffer_read_finish.
5792  */
5793 struct ring_buffer_iter *
5794 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5795 {
5796 	struct ring_buffer_per_cpu *cpu_buffer;
5797 	struct ring_buffer_iter *iter;
5798 
5799 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5800 		return NULL;
5801 
5802 	iter = kzalloc(sizeof(*iter), flags);
5803 	if (!iter)
5804 		return NULL;
5805 
5806 	/* Holds the entire event: data and meta data */
5807 	iter->event_size = buffer->subbuf_size;
5808 	iter->event = kmalloc(iter->event_size, flags);
5809 	if (!iter->event) {
5810 		kfree(iter);
5811 		return NULL;
5812 	}
5813 
5814 	cpu_buffer = buffer->buffers[cpu];
5815 
5816 	iter->cpu_buffer = cpu_buffer;
5817 
5818 	atomic_inc(&cpu_buffer->resize_disabled);
5819 
5820 	return iter;
5821 }
5822 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5823 
5824 /**
5825  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5826  *
5827  * All previously invoked ring_buffer_read_prepare calls to prepare
5828  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5829  * calls on those iterators are allowed.
5830  */
5831 void
5832 ring_buffer_read_prepare_sync(void)
5833 {
5834 	synchronize_rcu();
5835 }
5836 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5837 
5838 /**
5839  * ring_buffer_read_start - start a non consuming read of the buffer
5840  * @iter: The iterator returned by ring_buffer_read_prepare
5841  *
5842  * This finalizes the startup of an iteration through the buffer.
5843  * The iterator comes from a call to ring_buffer_read_prepare and
5844  * an intervening ring_buffer_read_prepare_sync must have been
5845  * performed.
5846  *
5847  * Must be paired with ring_buffer_read_finish.
5848  */
5849 void
5850 ring_buffer_read_start(struct ring_buffer_iter *iter)
5851 {
5852 	struct ring_buffer_per_cpu *cpu_buffer;
5853 	unsigned long flags;
5854 
5855 	if (!iter)
5856 		return;
5857 
5858 	cpu_buffer = iter->cpu_buffer;
5859 
5860 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5861 	arch_spin_lock(&cpu_buffer->lock);
5862 	rb_iter_reset(iter);
5863 	arch_spin_unlock(&cpu_buffer->lock);
5864 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5865 }
5866 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5867 
5868 /**
5869  * ring_buffer_read_finish - finish reading the iterator of the buffer
5870  * @iter: The iterator retrieved by ring_buffer_start
5871  *
5872  * This re-enables resizing of the buffer, and frees the iterator.
5873  */
5874 void
5875 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5876 {
5877 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5878 
5879 	/* Use this opportunity to check the integrity of the ring buffer. */
5880 	rb_check_pages(cpu_buffer);
5881 
5882 	atomic_dec(&cpu_buffer->resize_disabled);
5883 	kfree(iter->event);
5884 	kfree(iter);
5885 }
5886 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5887 
5888 /**
5889  * ring_buffer_iter_advance - advance the iterator to the next location
5890  * @iter: The ring buffer iterator
5891  *
5892  * Move the location of the iterator such that the next read will
5893  * be the next location of the iterator.
5894  */
5895 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5896 {
5897 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5898 	unsigned long flags;
5899 
5900 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5901 
5902 	rb_advance_iter(iter);
5903 
5904 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5905 }
5906 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5907 
5908 /**
5909  * ring_buffer_size - return the size of the ring buffer (in bytes)
5910  * @buffer: The ring buffer.
5911  * @cpu: The CPU to get ring buffer size from.
5912  */
5913 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5914 {
5915 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5916 		return 0;
5917 
5918 	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5919 }
5920 EXPORT_SYMBOL_GPL(ring_buffer_size);
5921 
5922 /**
5923  * ring_buffer_max_event_size - return the max data size of an event
5924  * @buffer: The ring buffer.
5925  *
5926  * Returns the maximum size an event can be.
5927  */
5928 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5929 {
5930 	/* If abs timestamp is requested, events have a timestamp too */
5931 	if (ring_buffer_time_stamp_abs(buffer))
5932 		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5933 	return buffer->max_data_size;
5934 }
5935 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5936 
5937 static void rb_clear_buffer_page(struct buffer_page *page)
5938 {
5939 	local_set(&page->write, 0);
5940 	local_set(&page->entries, 0);
5941 	rb_init_page(page->page);
5942 	page->read = 0;
5943 }
5944 
5945 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5946 {
5947 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5948 
5949 	if (!meta)
5950 		return;
5951 
5952 	meta->reader.read = cpu_buffer->reader_page->read;
5953 	meta->reader.id = cpu_buffer->reader_page->id;
5954 	meta->reader.lost_events = cpu_buffer->lost_events;
5955 
5956 	meta->entries = local_read(&cpu_buffer->entries);
5957 	meta->overrun = local_read(&cpu_buffer->overrun);
5958 	meta->read = cpu_buffer->read;
5959 
5960 	/* Some archs do not have data cache coherency between kernel and user-space */
5961 	flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5962 }
5963 
5964 static void
5965 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5966 {
5967 	struct buffer_page *page;
5968 
5969 	rb_head_page_deactivate(cpu_buffer);
5970 
5971 	cpu_buffer->head_page
5972 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5973 	rb_clear_buffer_page(cpu_buffer->head_page);
5974 	list_for_each_entry(page, cpu_buffer->pages, list) {
5975 		rb_clear_buffer_page(page);
5976 	}
5977 
5978 	cpu_buffer->tail_page = cpu_buffer->head_page;
5979 	cpu_buffer->commit_page = cpu_buffer->head_page;
5980 
5981 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5982 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5983 	rb_clear_buffer_page(cpu_buffer->reader_page);
5984 
5985 	local_set(&cpu_buffer->entries_bytes, 0);
5986 	local_set(&cpu_buffer->overrun, 0);
5987 	local_set(&cpu_buffer->commit_overrun, 0);
5988 	local_set(&cpu_buffer->dropped_events, 0);
5989 	local_set(&cpu_buffer->entries, 0);
5990 	local_set(&cpu_buffer->committing, 0);
5991 	local_set(&cpu_buffer->commits, 0);
5992 	local_set(&cpu_buffer->pages_touched, 0);
5993 	local_set(&cpu_buffer->pages_lost, 0);
5994 	local_set(&cpu_buffer->pages_read, 0);
5995 	cpu_buffer->last_pages_touch = 0;
5996 	cpu_buffer->shortest_full = 0;
5997 	cpu_buffer->read = 0;
5998 	cpu_buffer->read_bytes = 0;
5999 
6000 	rb_time_set(&cpu_buffer->write_stamp, 0);
6001 	rb_time_set(&cpu_buffer->before_stamp, 0);
6002 
6003 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6004 
6005 	cpu_buffer->lost_events = 0;
6006 	cpu_buffer->last_overrun = 0;
6007 
6008 	rb_head_page_activate(cpu_buffer);
6009 	cpu_buffer->pages_removed = 0;
6010 
6011 	if (cpu_buffer->mapped) {
6012 		rb_update_meta_page(cpu_buffer);
6013 		if (cpu_buffer->ring_meta) {
6014 			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
6015 			meta->commit_buffer = meta->head_buffer;
6016 		}
6017 	}
6018 }
6019 
6020 /* Must have disabled the cpu buffer then done a synchronize_rcu */
6021 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6022 {
6023 	unsigned long flags;
6024 
6025 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6026 
6027 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6028 		goto out;
6029 
6030 	arch_spin_lock(&cpu_buffer->lock);
6031 
6032 	rb_reset_cpu(cpu_buffer);
6033 
6034 	arch_spin_unlock(&cpu_buffer->lock);
6035 
6036  out:
6037 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6038 }
6039 
6040 /**
6041  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6042  * @buffer: The ring buffer to reset a per cpu buffer of
6043  * @cpu: The CPU buffer to be reset
6044  */
6045 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6046 {
6047 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6048 	struct ring_buffer_meta *meta;
6049 
6050 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6051 		return;
6052 
6053 	/* prevent another thread from changing buffer sizes */
6054 	mutex_lock(&buffer->mutex);
6055 
6056 	atomic_inc(&cpu_buffer->resize_disabled);
6057 	atomic_inc(&cpu_buffer->record_disabled);
6058 
6059 	/* Make sure all commits have finished */
6060 	synchronize_rcu();
6061 
6062 	reset_disabled_cpu_buffer(cpu_buffer);
6063 
6064 	atomic_dec(&cpu_buffer->record_disabled);
6065 	atomic_dec(&cpu_buffer->resize_disabled);
6066 
6067 	/* Make sure persistent meta now uses this buffer's addresses */
6068 	meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6069 	if (meta)
6070 		rb_meta_init_text_addr(meta);
6071 
6072 	mutex_unlock(&buffer->mutex);
6073 }
6074 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6075 
6076 /* Flag to ensure proper resetting of atomic variables */
6077 #define RESET_BIT	(1 << 30)
6078 
6079 /**
6080  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6081  * @buffer: The ring buffer to reset a per cpu buffer of
6082  */
6083 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6084 {
6085 	struct ring_buffer_per_cpu *cpu_buffer;
6086 	struct ring_buffer_meta *meta;
6087 	int cpu;
6088 
6089 	/* prevent another thread from changing buffer sizes */
6090 	mutex_lock(&buffer->mutex);
6091 
6092 	for_each_online_buffer_cpu(buffer, cpu) {
6093 		cpu_buffer = buffer->buffers[cpu];
6094 
6095 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6096 		atomic_inc(&cpu_buffer->record_disabled);
6097 	}
6098 
6099 	/* Make sure all commits have finished */
6100 	synchronize_rcu();
6101 
6102 	for_each_buffer_cpu(buffer, cpu) {
6103 		cpu_buffer = buffer->buffers[cpu];
6104 
6105 		/*
6106 		 * If a CPU came online during the synchronize_rcu(), then
6107 		 * ignore it.
6108 		 */
6109 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6110 			continue;
6111 
6112 		reset_disabled_cpu_buffer(cpu_buffer);
6113 
6114 		/* Make sure persistent meta now uses this buffer's addresses */
6115 		meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6116 		if (meta)
6117 			rb_meta_init_text_addr(meta);
6118 
6119 		atomic_dec(&cpu_buffer->record_disabled);
6120 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6121 	}
6122 
6123 	mutex_unlock(&buffer->mutex);
6124 }
6125 
6126 /**
6127  * ring_buffer_reset - reset a ring buffer
6128  * @buffer: The ring buffer to reset all cpu buffers
6129  */
6130 void ring_buffer_reset(struct trace_buffer *buffer)
6131 {
6132 	struct ring_buffer_per_cpu *cpu_buffer;
6133 	int cpu;
6134 
6135 	/* prevent another thread from changing buffer sizes */
6136 	mutex_lock(&buffer->mutex);
6137 
6138 	for_each_buffer_cpu(buffer, cpu) {
6139 		cpu_buffer = buffer->buffers[cpu];
6140 
6141 		atomic_inc(&cpu_buffer->resize_disabled);
6142 		atomic_inc(&cpu_buffer->record_disabled);
6143 	}
6144 
6145 	/* Make sure all commits have finished */
6146 	synchronize_rcu();
6147 
6148 	for_each_buffer_cpu(buffer, cpu) {
6149 		cpu_buffer = buffer->buffers[cpu];
6150 
6151 		reset_disabled_cpu_buffer(cpu_buffer);
6152 
6153 		atomic_dec(&cpu_buffer->record_disabled);
6154 		atomic_dec(&cpu_buffer->resize_disabled);
6155 	}
6156 
6157 	mutex_unlock(&buffer->mutex);
6158 }
6159 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6160 
6161 /**
6162  * ring_buffer_empty - is the ring buffer empty?
6163  * @buffer: The ring buffer to test
6164  */
6165 bool ring_buffer_empty(struct trace_buffer *buffer)
6166 {
6167 	struct ring_buffer_per_cpu *cpu_buffer;
6168 	unsigned long flags;
6169 	bool dolock;
6170 	bool ret;
6171 	int cpu;
6172 
6173 	/* yes this is racy, but if you don't like the race, lock the buffer */
6174 	for_each_buffer_cpu(buffer, cpu) {
6175 		cpu_buffer = buffer->buffers[cpu];
6176 		local_irq_save(flags);
6177 		dolock = rb_reader_lock(cpu_buffer);
6178 		ret = rb_per_cpu_empty(cpu_buffer);
6179 		rb_reader_unlock(cpu_buffer, dolock);
6180 		local_irq_restore(flags);
6181 
6182 		if (!ret)
6183 			return false;
6184 	}
6185 
6186 	return true;
6187 }
6188 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6189 
6190 /**
6191  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6192  * @buffer: The ring buffer
6193  * @cpu: The CPU buffer to test
6194  */
6195 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6196 {
6197 	struct ring_buffer_per_cpu *cpu_buffer;
6198 	unsigned long flags;
6199 	bool dolock;
6200 	bool ret;
6201 
6202 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6203 		return true;
6204 
6205 	cpu_buffer = buffer->buffers[cpu];
6206 	local_irq_save(flags);
6207 	dolock = rb_reader_lock(cpu_buffer);
6208 	ret = rb_per_cpu_empty(cpu_buffer);
6209 	rb_reader_unlock(cpu_buffer, dolock);
6210 	local_irq_restore(flags);
6211 
6212 	return ret;
6213 }
6214 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6215 
6216 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6217 /**
6218  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6219  * @buffer_a: One buffer to swap with
6220  * @buffer_b: The other buffer to swap with
6221  * @cpu: the CPU of the buffers to swap
6222  *
6223  * This function is useful for tracers that want to take a "snapshot"
6224  * of a CPU buffer and has another back up buffer lying around.
6225  * it is expected that the tracer handles the cpu buffer not being
6226  * used at the moment.
6227  */
6228 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6229 			 struct trace_buffer *buffer_b, int cpu)
6230 {
6231 	struct ring_buffer_per_cpu *cpu_buffer_a;
6232 	struct ring_buffer_per_cpu *cpu_buffer_b;
6233 	int ret = -EINVAL;
6234 
6235 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6236 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
6237 		goto out;
6238 
6239 	cpu_buffer_a = buffer_a->buffers[cpu];
6240 	cpu_buffer_b = buffer_b->buffers[cpu];
6241 
6242 	/* It's up to the callers to not try to swap mapped buffers */
6243 	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6244 		ret = -EBUSY;
6245 		goto out;
6246 	}
6247 
6248 	/* At least make sure the two buffers are somewhat the same */
6249 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6250 		goto out;
6251 
6252 	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6253 		goto out;
6254 
6255 	ret = -EAGAIN;
6256 
6257 	if (atomic_read(&buffer_a->record_disabled))
6258 		goto out;
6259 
6260 	if (atomic_read(&buffer_b->record_disabled))
6261 		goto out;
6262 
6263 	if (atomic_read(&cpu_buffer_a->record_disabled))
6264 		goto out;
6265 
6266 	if (atomic_read(&cpu_buffer_b->record_disabled))
6267 		goto out;
6268 
6269 	/*
6270 	 * We can't do a synchronize_rcu here because this
6271 	 * function can be called in atomic context.
6272 	 * Normally this will be called from the same CPU as cpu.
6273 	 * If not it's up to the caller to protect this.
6274 	 */
6275 	atomic_inc(&cpu_buffer_a->record_disabled);
6276 	atomic_inc(&cpu_buffer_b->record_disabled);
6277 
6278 	ret = -EBUSY;
6279 	if (local_read(&cpu_buffer_a->committing))
6280 		goto out_dec;
6281 	if (local_read(&cpu_buffer_b->committing))
6282 		goto out_dec;
6283 
6284 	/*
6285 	 * When resize is in progress, we cannot swap it because
6286 	 * it will mess the state of the cpu buffer.
6287 	 */
6288 	if (atomic_read(&buffer_a->resizing))
6289 		goto out_dec;
6290 	if (atomic_read(&buffer_b->resizing))
6291 		goto out_dec;
6292 
6293 	buffer_a->buffers[cpu] = cpu_buffer_b;
6294 	buffer_b->buffers[cpu] = cpu_buffer_a;
6295 
6296 	cpu_buffer_b->buffer = buffer_a;
6297 	cpu_buffer_a->buffer = buffer_b;
6298 
6299 	ret = 0;
6300 
6301 out_dec:
6302 	atomic_dec(&cpu_buffer_a->record_disabled);
6303 	atomic_dec(&cpu_buffer_b->record_disabled);
6304 out:
6305 	return ret;
6306 }
6307 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6308 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6309 
6310 /**
6311  * ring_buffer_alloc_read_page - allocate a page to read from buffer
6312  * @buffer: the buffer to allocate for.
6313  * @cpu: the cpu buffer to allocate.
6314  *
6315  * This function is used in conjunction with ring_buffer_read_page.
6316  * When reading a full page from the ring buffer, these functions
6317  * can be used to speed up the process. The calling function should
6318  * allocate a few pages first with this function. Then when it
6319  * needs to get pages from the ring buffer, it passes the result
6320  * of this function into ring_buffer_read_page, which will swap
6321  * the page that was allocated, with the read page of the buffer.
6322  *
6323  * Returns:
6324  *  The page allocated, or ERR_PTR
6325  */
6326 struct buffer_data_read_page *
6327 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6328 {
6329 	struct ring_buffer_per_cpu *cpu_buffer;
6330 	struct buffer_data_read_page *bpage = NULL;
6331 	unsigned long flags;
6332 	struct page *page;
6333 
6334 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6335 		return ERR_PTR(-ENODEV);
6336 
6337 	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6338 	if (!bpage)
6339 		return ERR_PTR(-ENOMEM);
6340 
6341 	bpage->order = buffer->subbuf_order;
6342 	cpu_buffer = buffer->buffers[cpu];
6343 	local_irq_save(flags);
6344 	arch_spin_lock(&cpu_buffer->lock);
6345 
6346 	if (cpu_buffer->free_page) {
6347 		bpage->data = cpu_buffer->free_page;
6348 		cpu_buffer->free_page = NULL;
6349 	}
6350 
6351 	arch_spin_unlock(&cpu_buffer->lock);
6352 	local_irq_restore(flags);
6353 
6354 	if (bpage->data)
6355 		goto out;
6356 
6357 	page = alloc_pages_node(cpu_to_node(cpu),
6358 				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6359 				cpu_buffer->buffer->subbuf_order);
6360 	if (!page) {
6361 		kfree(bpage);
6362 		return ERR_PTR(-ENOMEM);
6363 	}
6364 
6365 	bpage->data = page_address(page);
6366 
6367  out:
6368 	rb_init_page(bpage->data);
6369 
6370 	return bpage;
6371 }
6372 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6373 
6374 /**
6375  * ring_buffer_free_read_page - free an allocated read page
6376  * @buffer: the buffer the page was allocate for
6377  * @cpu: the cpu buffer the page came from
6378  * @data_page: the page to free
6379  *
6380  * Free a page allocated from ring_buffer_alloc_read_page.
6381  */
6382 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6383 				struct buffer_data_read_page *data_page)
6384 {
6385 	struct ring_buffer_per_cpu *cpu_buffer;
6386 	struct buffer_data_page *bpage = data_page->data;
6387 	struct page *page = virt_to_page(bpage);
6388 	unsigned long flags;
6389 
6390 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6391 		return;
6392 
6393 	cpu_buffer = buffer->buffers[cpu];
6394 
6395 	/*
6396 	 * If the page is still in use someplace else, or order of the page
6397 	 * is different from the subbuffer order of the buffer -
6398 	 * we can't reuse it
6399 	 */
6400 	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6401 		goto out;
6402 
6403 	local_irq_save(flags);
6404 	arch_spin_lock(&cpu_buffer->lock);
6405 
6406 	if (!cpu_buffer->free_page) {
6407 		cpu_buffer->free_page = bpage;
6408 		bpage = NULL;
6409 	}
6410 
6411 	arch_spin_unlock(&cpu_buffer->lock);
6412 	local_irq_restore(flags);
6413 
6414  out:
6415 	free_pages((unsigned long)bpage, data_page->order);
6416 	kfree(data_page);
6417 }
6418 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6419 
6420 /**
6421  * ring_buffer_read_page - extract a page from the ring buffer
6422  * @buffer: buffer to extract from
6423  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6424  * @len: amount to extract
6425  * @cpu: the cpu of the buffer to extract
6426  * @full: should the extraction only happen when the page is full.
6427  *
6428  * This function will pull out a page from the ring buffer and consume it.
6429  * @data_page must be the address of the variable that was returned
6430  * from ring_buffer_alloc_read_page. This is because the page might be used
6431  * to swap with a page in the ring buffer.
6432  *
6433  * for example:
6434  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
6435  *	if (IS_ERR(rpage))
6436  *		return PTR_ERR(rpage);
6437  *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6438  *	if (ret >= 0)
6439  *		process_page(ring_buffer_read_page_data(rpage), ret);
6440  *	ring_buffer_free_read_page(buffer, cpu, rpage);
6441  *
6442  * When @full is set, the function will not return true unless
6443  * the writer is off the reader page.
6444  *
6445  * Note: it is up to the calling functions to handle sleeps and wakeups.
6446  *  The ring buffer can be used anywhere in the kernel and can not
6447  *  blindly call wake_up. The layer that uses the ring buffer must be
6448  *  responsible for that.
6449  *
6450  * Returns:
6451  *  >=0 if data has been transferred, returns the offset of consumed data.
6452  *  <0 if no data has been transferred.
6453  */
6454 int ring_buffer_read_page(struct trace_buffer *buffer,
6455 			  struct buffer_data_read_page *data_page,
6456 			  size_t len, int cpu, int full)
6457 {
6458 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6459 	struct ring_buffer_event *event;
6460 	struct buffer_data_page *bpage;
6461 	struct buffer_page *reader;
6462 	unsigned long missed_events;
6463 	unsigned long flags;
6464 	unsigned int commit;
6465 	unsigned int read;
6466 	u64 save_timestamp;
6467 	int ret = -1;
6468 
6469 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6470 		goto out;
6471 
6472 	/*
6473 	 * If len is not big enough to hold the page header, then
6474 	 * we can not copy anything.
6475 	 */
6476 	if (len <= BUF_PAGE_HDR_SIZE)
6477 		goto out;
6478 
6479 	len -= BUF_PAGE_HDR_SIZE;
6480 
6481 	if (!data_page || !data_page->data)
6482 		goto out;
6483 	if (data_page->order != buffer->subbuf_order)
6484 		goto out;
6485 
6486 	bpage = data_page->data;
6487 	if (!bpage)
6488 		goto out;
6489 
6490 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6491 
6492 	reader = rb_get_reader_page(cpu_buffer);
6493 	if (!reader)
6494 		goto out_unlock;
6495 
6496 	event = rb_reader_event(cpu_buffer);
6497 
6498 	read = reader->read;
6499 	commit = rb_page_size(reader);
6500 
6501 	/* Check if any events were dropped */
6502 	missed_events = cpu_buffer->lost_events;
6503 
6504 	/*
6505 	 * If this page has been partially read or
6506 	 * if len is not big enough to read the rest of the page or
6507 	 * a writer is still on the page, then
6508 	 * we must copy the data from the page to the buffer.
6509 	 * Otherwise, we can simply swap the page with the one passed in.
6510 	 */
6511 	if (read || (len < (commit - read)) ||
6512 	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
6513 	    cpu_buffer->mapped) {
6514 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6515 		unsigned int rpos = read;
6516 		unsigned int pos = 0;
6517 		unsigned int size;
6518 
6519 		/*
6520 		 * If a full page is expected, this can still be returned
6521 		 * if there's been a previous partial read and the
6522 		 * rest of the page can be read and the commit page is off
6523 		 * the reader page.
6524 		 */
6525 		if (full &&
6526 		    (!read || (len < (commit - read)) ||
6527 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
6528 			goto out_unlock;
6529 
6530 		if (len > (commit - read))
6531 			len = (commit - read);
6532 
6533 		/* Always keep the time extend and data together */
6534 		size = rb_event_ts_length(event);
6535 
6536 		if (len < size)
6537 			goto out_unlock;
6538 
6539 		/* save the current timestamp, since the user will need it */
6540 		save_timestamp = cpu_buffer->read_stamp;
6541 
6542 		/* Need to copy one event at a time */
6543 		do {
6544 			/* We need the size of one event, because
6545 			 * rb_advance_reader only advances by one event,
6546 			 * whereas rb_event_ts_length may include the size of
6547 			 * one or two events.
6548 			 * We have already ensured there's enough space if this
6549 			 * is a time extend. */
6550 			size = rb_event_length(event);
6551 			memcpy(bpage->data + pos, rpage->data + rpos, size);
6552 
6553 			len -= size;
6554 
6555 			rb_advance_reader(cpu_buffer);
6556 			rpos = reader->read;
6557 			pos += size;
6558 
6559 			if (rpos >= commit)
6560 				break;
6561 
6562 			event = rb_reader_event(cpu_buffer);
6563 			/* Always keep the time extend and data together */
6564 			size = rb_event_ts_length(event);
6565 		} while (len >= size);
6566 
6567 		/* update bpage */
6568 		local_set(&bpage->commit, pos);
6569 		bpage->time_stamp = save_timestamp;
6570 
6571 		/* we copied everything to the beginning */
6572 		read = 0;
6573 	} else {
6574 		/* update the entry counter */
6575 		cpu_buffer->read += rb_page_entries(reader);
6576 		cpu_buffer->read_bytes += rb_page_size(reader);
6577 
6578 		/* swap the pages */
6579 		rb_init_page(bpage);
6580 		bpage = reader->page;
6581 		reader->page = data_page->data;
6582 		local_set(&reader->write, 0);
6583 		local_set(&reader->entries, 0);
6584 		reader->read = 0;
6585 		data_page->data = bpage;
6586 
6587 		/*
6588 		 * Use the real_end for the data size,
6589 		 * This gives us a chance to store the lost events
6590 		 * on the page.
6591 		 */
6592 		if (reader->real_end)
6593 			local_set(&bpage->commit, reader->real_end);
6594 	}
6595 	ret = read;
6596 
6597 	cpu_buffer->lost_events = 0;
6598 
6599 	commit = local_read(&bpage->commit);
6600 	/*
6601 	 * Set a flag in the commit field if we lost events
6602 	 */
6603 	if (missed_events) {
6604 		/* If there is room at the end of the page to save the
6605 		 * missed events, then record it there.
6606 		 */
6607 		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6608 			memcpy(&bpage->data[commit], &missed_events,
6609 			       sizeof(missed_events));
6610 			local_add(RB_MISSED_STORED, &bpage->commit);
6611 			commit += sizeof(missed_events);
6612 		}
6613 		local_add(RB_MISSED_EVENTS, &bpage->commit);
6614 	}
6615 
6616 	/*
6617 	 * This page may be off to user land. Zero it out here.
6618 	 */
6619 	if (commit < buffer->subbuf_size)
6620 		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6621 
6622  out_unlock:
6623 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6624 
6625  out:
6626 	return ret;
6627 }
6628 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6629 
6630 /**
6631  * ring_buffer_read_page_data - get pointer to the data in the page.
6632  * @page:  the page to get the data from
6633  *
6634  * Returns pointer to the actual data in this page.
6635  */
6636 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6637 {
6638 	return page->data;
6639 }
6640 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6641 
6642 /**
6643  * ring_buffer_subbuf_size_get - get size of the sub buffer.
6644  * @buffer: the buffer to get the sub buffer size from
6645  *
6646  * Returns size of the sub buffer, in bytes.
6647  */
6648 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6649 {
6650 	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6651 }
6652 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6653 
6654 /**
6655  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6656  * @buffer: The ring_buffer to get the system sub page order from
6657  *
6658  * By default, one ring buffer sub page equals to one system page. This parameter
6659  * is configurable, per ring buffer. The size of the ring buffer sub page can be
6660  * extended, but must be an order of system page size.
6661  *
6662  * Returns the order of buffer sub page size, in system pages:
6663  * 0 means the sub buffer size is 1 system page and so forth.
6664  * In case of an error < 0 is returned.
6665  */
6666 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6667 {
6668 	if (!buffer)
6669 		return -EINVAL;
6670 
6671 	return buffer->subbuf_order;
6672 }
6673 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6674 
6675 /**
6676  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6677  * @buffer: The ring_buffer to set the new page size.
6678  * @order: Order of the system pages in one sub buffer page
6679  *
6680  * By default, one ring buffer pages equals to one system page. This API can be
6681  * used to set new size of the ring buffer page. The size must be order of
6682  * system page size, that's why the input parameter @order is the order of
6683  * system pages that are allocated for one ring buffer page:
6684  *  0 - 1 system page
6685  *  1 - 2 system pages
6686  *  3 - 4 system pages
6687  *  ...
6688  *
6689  * Returns 0 on success or < 0 in case of an error.
6690  */
6691 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6692 {
6693 	struct ring_buffer_per_cpu *cpu_buffer;
6694 	struct buffer_page *bpage, *tmp;
6695 	int old_order, old_size;
6696 	int nr_pages;
6697 	int psize;
6698 	int err;
6699 	int cpu;
6700 
6701 	if (!buffer || order < 0)
6702 		return -EINVAL;
6703 
6704 	if (buffer->subbuf_order == order)
6705 		return 0;
6706 
6707 	psize = (1 << order) * PAGE_SIZE;
6708 	if (psize <= BUF_PAGE_HDR_SIZE)
6709 		return -EINVAL;
6710 
6711 	/* Size of a subbuf cannot be greater than the write counter */
6712 	if (psize > RB_WRITE_MASK + 1)
6713 		return -EINVAL;
6714 
6715 	old_order = buffer->subbuf_order;
6716 	old_size = buffer->subbuf_size;
6717 
6718 	/* prevent another thread from changing buffer sizes */
6719 	mutex_lock(&buffer->mutex);
6720 	atomic_inc(&buffer->record_disabled);
6721 
6722 	/* Make sure all commits have finished */
6723 	synchronize_rcu();
6724 
6725 	buffer->subbuf_order = order;
6726 	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6727 
6728 	/* Make sure all new buffers are allocated, before deleting the old ones */
6729 	for_each_buffer_cpu(buffer, cpu) {
6730 
6731 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6732 			continue;
6733 
6734 		cpu_buffer = buffer->buffers[cpu];
6735 
6736 		if (cpu_buffer->mapped) {
6737 			err = -EBUSY;
6738 			goto error;
6739 		}
6740 
6741 		/* Update the number of pages to match the new size */
6742 		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6743 		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6744 
6745 		/* we need a minimum of two pages */
6746 		if (nr_pages < 2)
6747 			nr_pages = 2;
6748 
6749 		cpu_buffer->nr_pages_to_update = nr_pages;
6750 
6751 		/* Include the reader page */
6752 		nr_pages++;
6753 
6754 		/* Allocate the new size buffer */
6755 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6756 		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6757 					&cpu_buffer->new_pages)) {
6758 			/* not enough memory for new pages */
6759 			err = -ENOMEM;
6760 			goto error;
6761 		}
6762 	}
6763 
6764 	for_each_buffer_cpu(buffer, cpu) {
6765 		struct buffer_data_page *old_free_data_page;
6766 		struct list_head old_pages;
6767 		unsigned long flags;
6768 
6769 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6770 			continue;
6771 
6772 		cpu_buffer = buffer->buffers[cpu];
6773 
6774 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6775 
6776 		/* Clear the head bit to make the link list normal to read */
6777 		rb_head_page_deactivate(cpu_buffer);
6778 
6779 		/*
6780 		 * Collect buffers from the cpu_buffer pages list and the
6781 		 * reader_page on old_pages, so they can be freed later when not
6782 		 * under a spinlock. The pages list is a linked list with no
6783 		 * head, adding old_pages turns it into a regular list with
6784 		 * old_pages being the head.
6785 		 */
6786 		list_add(&old_pages, cpu_buffer->pages);
6787 		list_add(&cpu_buffer->reader_page->list, &old_pages);
6788 
6789 		/* One page was allocated for the reader page */
6790 		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6791 						     struct buffer_page, list);
6792 		list_del_init(&cpu_buffer->reader_page->list);
6793 
6794 		/* Install the new pages, remove the head from the list */
6795 		cpu_buffer->pages = cpu_buffer->new_pages.next;
6796 		list_del_init(&cpu_buffer->new_pages);
6797 		cpu_buffer->cnt++;
6798 
6799 		cpu_buffer->head_page
6800 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6801 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6802 
6803 		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6804 		cpu_buffer->nr_pages_to_update = 0;
6805 
6806 		old_free_data_page = cpu_buffer->free_page;
6807 		cpu_buffer->free_page = NULL;
6808 
6809 		rb_head_page_activate(cpu_buffer);
6810 
6811 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6812 
6813 		/* Free old sub buffers */
6814 		list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6815 			list_del_init(&bpage->list);
6816 			free_buffer_page(bpage);
6817 		}
6818 		free_pages((unsigned long)old_free_data_page, old_order);
6819 
6820 		rb_check_pages(cpu_buffer);
6821 	}
6822 
6823 	atomic_dec(&buffer->record_disabled);
6824 	mutex_unlock(&buffer->mutex);
6825 
6826 	return 0;
6827 
6828 error:
6829 	buffer->subbuf_order = old_order;
6830 	buffer->subbuf_size = old_size;
6831 
6832 	atomic_dec(&buffer->record_disabled);
6833 	mutex_unlock(&buffer->mutex);
6834 
6835 	for_each_buffer_cpu(buffer, cpu) {
6836 		cpu_buffer = buffer->buffers[cpu];
6837 
6838 		if (!cpu_buffer->nr_pages_to_update)
6839 			continue;
6840 
6841 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6842 			list_del_init(&bpage->list);
6843 			free_buffer_page(bpage);
6844 		}
6845 	}
6846 
6847 	return err;
6848 }
6849 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6850 
6851 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6852 {
6853 	struct page *page;
6854 
6855 	if (cpu_buffer->meta_page)
6856 		return 0;
6857 
6858 	page = alloc_page(GFP_USER | __GFP_ZERO);
6859 	if (!page)
6860 		return -ENOMEM;
6861 
6862 	cpu_buffer->meta_page = page_to_virt(page);
6863 
6864 	return 0;
6865 }
6866 
6867 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6868 {
6869 	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6870 
6871 	free_page(addr);
6872 	cpu_buffer->meta_page = NULL;
6873 }
6874 
6875 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6876 				   unsigned long *subbuf_ids)
6877 {
6878 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6879 	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6880 	struct buffer_page *first_subbuf, *subbuf;
6881 	int id = 0;
6882 
6883 	subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6884 	cpu_buffer->reader_page->id = id++;
6885 
6886 	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6887 	do {
6888 		if (WARN_ON(id >= nr_subbufs))
6889 			break;
6890 
6891 		subbuf_ids[id] = (unsigned long)subbuf->page;
6892 		subbuf->id = id;
6893 
6894 		rb_inc_page(&subbuf);
6895 		id++;
6896 	} while (subbuf != first_subbuf);
6897 
6898 	/* install subbuf ID to kern VA translation */
6899 	cpu_buffer->subbuf_ids = subbuf_ids;
6900 
6901 	meta->meta_struct_len = sizeof(*meta);
6902 	meta->nr_subbufs = nr_subbufs;
6903 	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6904 	meta->meta_page_size = meta->subbuf_size;
6905 
6906 	rb_update_meta_page(cpu_buffer);
6907 }
6908 
6909 static struct ring_buffer_per_cpu *
6910 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6911 {
6912 	struct ring_buffer_per_cpu *cpu_buffer;
6913 
6914 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6915 		return ERR_PTR(-EINVAL);
6916 
6917 	cpu_buffer = buffer->buffers[cpu];
6918 
6919 	mutex_lock(&cpu_buffer->mapping_lock);
6920 
6921 	if (!cpu_buffer->user_mapped) {
6922 		mutex_unlock(&cpu_buffer->mapping_lock);
6923 		return ERR_PTR(-ENODEV);
6924 	}
6925 
6926 	return cpu_buffer;
6927 }
6928 
6929 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6930 {
6931 	mutex_unlock(&cpu_buffer->mapping_lock);
6932 }
6933 
6934 /*
6935  * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6936  * to be set-up or torn-down.
6937  */
6938 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6939 			       bool inc)
6940 {
6941 	unsigned long flags;
6942 
6943 	lockdep_assert_held(&cpu_buffer->mapping_lock);
6944 
6945 	/* mapped is always greater or equal to user_mapped */
6946 	if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
6947 		return -EINVAL;
6948 
6949 	if (inc && cpu_buffer->mapped == UINT_MAX)
6950 		return -EBUSY;
6951 
6952 	if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
6953 		return -EINVAL;
6954 
6955 	mutex_lock(&cpu_buffer->buffer->mutex);
6956 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6957 
6958 	if (inc) {
6959 		cpu_buffer->user_mapped++;
6960 		cpu_buffer->mapped++;
6961 	} else {
6962 		cpu_buffer->user_mapped--;
6963 		cpu_buffer->mapped--;
6964 	}
6965 
6966 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6967 	mutex_unlock(&cpu_buffer->buffer->mutex);
6968 
6969 	return 0;
6970 }
6971 
6972 /*
6973  *   +--------------+  pgoff == 0
6974  *   |   meta page  |
6975  *   +--------------+  pgoff == 1
6976  *   | subbuffer 0  |
6977  *   |              |
6978  *   +--------------+  pgoff == (1 + (1 << subbuf_order))
6979  *   | subbuffer 1  |
6980  *   |              |
6981  *         ...
6982  */
6983 #ifdef CONFIG_MMU
6984 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
6985 			struct vm_area_struct *vma)
6986 {
6987 	unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
6988 	unsigned int subbuf_pages, subbuf_order;
6989 	struct page **pages;
6990 	int p = 0, s = 0;
6991 	int err;
6992 
6993 	/* Refuse MP_PRIVATE or writable mappings */
6994 	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
6995 	    !(vma->vm_flags & VM_MAYSHARE))
6996 		return -EPERM;
6997 
6998 	subbuf_order = cpu_buffer->buffer->subbuf_order;
6999 	subbuf_pages = 1 << subbuf_order;
7000 
7001 	if (subbuf_order && pgoff % subbuf_pages)
7002 		return -EINVAL;
7003 
7004 	/*
7005 	 * Make sure the mapping cannot become writable later. Also tell the VM
7006 	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7007 	 */
7008 	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7009 		     VM_MAYWRITE);
7010 
7011 	lockdep_assert_held(&cpu_buffer->mapping_lock);
7012 
7013 	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7014 	nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7015 	if (nr_pages <= pgoff)
7016 		return -EINVAL;
7017 
7018 	nr_pages -= pgoff;
7019 
7020 	nr_vma_pages = vma_pages(vma);
7021 	if (!nr_vma_pages || nr_vma_pages > nr_pages)
7022 		return -EINVAL;
7023 
7024 	nr_pages = nr_vma_pages;
7025 
7026 	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7027 	if (!pages)
7028 		return -ENOMEM;
7029 
7030 	if (!pgoff) {
7031 		unsigned long meta_page_padding;
7032 
7033 		pages[p++] = virt_to_page(cpu_buffer->meta_page);
7034 
7035 		/*
7036 		 * Pad with the zero-page to align the meta-page with the
7037 		 * sub-buffers.
7038 		 */
7039 		meta_page_padding = subbuf_pages - 1;
7040 		while (meta_page_padding-- && p < nr_pages) {
7041 			unsigned long __maybe_unused zero_addr =
7042 				vma->vm_start + (PAGE_SIZE * p);
7043 
7044 			pages[p++] = ZERO_PAGE(zero_addr);
7045 		}
7046 	} else {
7047 		/* Skip the meta-page */
7048 		pgoff -= subbuf_pages;
7049 
7050 		s += pgoff / subbuf_pages;
7051 	}
7052 
7053 	while (p < nr_pages) {
7054 		struct page *page;
7055 		int off = 0;
7056 
7057 		if (WARN_ON_ONCE(s >= nr_subbufs)) {
7058 			err = -EINVAL;
7059 			goto out;
7060 		}
7061 
7062 		page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7063 
7064 		for (; off < (1 << (subbuf_order)); off++, page++) {
7065 			if (p >= nr_pages)
7066 				break;
7067 
7068 			pages[p++] = page;
7069 		}
7070 		s++;
7071 	}
7072 
7073 	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7074 
7075 out:
7076 	kfree(pages);
7077 
7078 	return err;
7079 }
7080 #else
7081 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7082 			struct vm_area_struct *vma)
7083 {
7084 	return -EOPNOTSUPP;
7085 }
7086 #endif
7087 
7088 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7089 		    struct vm_area_struct *vma)
7090 {
7091 	struct ring_buffer_per_cpu *cpu_buffer;
7092 	unsigned long flags, *subbuf_ids;
7093 	int err = 0;
7094 
7095 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7096 		return -EINVAL;
7097 
7098 	cpu_buffer = buffer->buffers[cpu];
7099 
7100 	mutex_lock(&cpu_buffer->mapping_lock);
7101 
7102 	if (cpu_buffer->user_mapped) {
7103 		err = __rb_map_vma(cpu_buffer, vma);
7104 		if (!err)
7105 			err = __rb_inc_dec_mapped(cpu_buffer, true);
7106 		mutex_unlock(&cpu_buffer->mapping_lock);
7107 		return err;
7108 	}
7109 
7110 	/* prevent another thread from changing buffer/sub-buffer sizes */
7111 	mutex_lock(&buffer->mutex);
7112 
7113 	err = rb_alloc_meta_page(cpu_buffer);
7114 	if (err)
7115 		goto unlock;
7116 
7117 	/* subbuf_ids include the reader while nr_pages does not */
7118 	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7119 	if (!subbuf_ids) {
7120 		rb_free_meta_page(cpu_buffer);
7121 		err = -ENOMEM;
7122 		goto unlock;
7123 	}
7124 
7125 	atomic_inc(&cpu_buffer->resize_disabled);
7126 
7127 	/*
7128 	 * Lock all readers to block any subbuf swap until the subbuf IDs are
7129 	 * assigned.
7130 	 */
7131 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7132 	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7133 
7134 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7135 
7136 	err = __rb_map_vma(cpu_buffer, vma);
7137 	if (!err) {
7138 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7139 		/* This is the first time it is mapped by user */
7140 		cpu_buffer->mapped++;
7141 		cpu_buffer->user_mapped = 1;
7142 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7143 	} else {
7144 		kfree(cpu_buffer->subbuf_ids);
7145 		cpu_buffer->subbuf_ids = NULL;
7146 		rb_free_meta_page(cpu_buffer);
7147 		atomic_dec(&cpu_buffer->resize_disabled);
7148 	}
7149 
7150 unlock:
7151 	mutex_unlock(&buffer->mutex);
7152 	mutex_unlock(&cpu_buffer->mapping_lock);
7153 
7154 	return err;
7155 }
7156 
7157 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7158 {
7159 	struct ring_buffer_per_cpu *cpu_buffer;
7160 	unsigned long flags;
7161 	int err = 0;
7162 
7163 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7164 		return -EINVAL;
7165 
7166 	cpu_buffer = buffer->buffers[cpu];
7167 
7168 	mutex_lock(&cpu_buffer->mapping_lock);
7169 
7170 	if (!cpu_buffer->user_mapped) {
7171 		err = -ENODEV;
7172 		goto out;
7173 	} else if (cpu_buffer->user_mapped > 1) {
7174 		__rb_inc_dec_mapped(cpu_buffer, false);
7175 		goto out;
7176 	}
7177 
7178 	mutex_lock(&buffer->mutex);
7179 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7180 
7181 	/* This is the last user space mapping */
7182 	if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7183 		cpu_buffer->mapped--;
7184 	cpu_buffer->user_mapped = 0;
7185 
7186 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7187 
7188 	kfree(cpu_buffer->subbuf_ids);
7189 	cpu_buffer->subbuf_ids = NULL;
7190 	rb_free_meta_page(cpu_buffer);
7191 	atomic_dec(&cpu_buffer->resize_disabled);
7192 
7193 	mutex_unlock(&buffer->mutex);
7194 
7195 out:
7196 	mutex_unlock(&cpu_buffer->mapping_lock);
7197 
7198 	return err;
7199 }
7200 
7201 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7202 {
7203 	struct ring_buffer_per_cpu *cpu_buffer;
7204 	struct buffer_page *reader;
7205 	unsigned long missed_events;
7206 	unsigned long reader_size;
7207 	unsigned long flags;
7208 
7209 	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7210 	if (IS_ERR(cpu_buffer))
7211 		return (int)PTR_ERR(cpu_buffer);
7212 
7213 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7214 
7215 consume:
7216 	if (rb_per_cpu_empty(cpu_buffer))
7217 		goto out;
7218 
7219 	reader_size = rb_page_size(cpu_buffer->reader_page);
7220 
7221 	/*
7222 	 * There are data to be read on the current reader page, we can
7223 	 * return to the caller. But before that, we assume the latter will read
7224 	 * everything. Let's update the kernel reader accordingly.
7225 	 */
7226 	if (cpu_buffer->reader_page->read < reader_size) {
7227 		while (cpu_buffer->reader_page->read < reader_size)
7228 			rb_advance_reader(cpu_buffer);
7229 		goto out;
7230 	}
7231 
7232 	reader = rb_get_reader_page(cpu_buffer);
7233 	if (WARN_ON(!reader))
7234 		goto out;
7235 
7236 	/* Check if any events were dropped */
7237 	missed_events = cpu_buffer->lost_events;
7238 
7239 	if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7240 		if (missed_events) {
7241 			struct buffer_data_page *bpage = reader->page;
7242 			unsigned int commit;
7243 			/*
7244 			 * Use the real_end for the data size,
7245 			 * This gives us a chance to store the lost events
7246 			 * on the page.
7247 			 */
7248 			if (reader->real_end)
7249 				local_set(&bpage->commit, reader->real_end);
7250 			/*
7251 			 * If there is room at the end of the page to save the
7252 			 * missed events, then record it there.
7253 			 */
7254 			commit = rb_page_size(reader);
7255 			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7256 				memcpy(&bpage->data[commit], &missed_events,
7257 				       sizeof(missed_events));
7258 				local_add(RB_MISSED_STORED, &bpage->commit);
7259 			}
7260 			local_add(RB_MISSED_EVENTS, &bpage->commit);
7261 		}
7262 	} else {
7263 		/*
7264 		 * There really shouldn't be any missed events if the commit
7265 		 * is on the reader page.
7266 		 */
7267 		WARN_ON_ONCE(missed_events);
7268 	}
7269 
7270 	cpu_buffer->lost_events = 0;
7271 
7272 	goto consume;
7273 
7274 out:
7275 	/* Some archs do not have data cache coherency between kernel and user-space */
7276 	flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
7277 
7278 	rb_update_meta_page(cpu_buffer);
7279 
7280 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7281 	rb_put_mapped_buffer(cpu_buffer);
7282 
7283 	return 0;
7284 }
7285 
7286 /*
7287  * We only allocate new buffers, never free them if the CPU goes down.
7288  * If we were to free the buffer, then the user would lose any trace that was in
7289  * the buffer.
7290  */
7291 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7292 {
7293 	struct trace_buffer *buffer;
7294 	long nr_pages_same;
7295 	int cpu_i;
7296 	unsigned long nr_pages;
7297 
7298 	buffer = container_of(node, struct trace_buffer, node);
7299 	if (cpumask_test_cpu(cpu, buffer->cpumask))
7300 		return 0;
7301 
7302 	nr_pages = 0;
7303 	nr_pages_same = 1;
7304 	/* check if all cpu sizes are same */
7305 	for_each_buffer_cpu(buffer, cpu_i) {
7306 		/* fill in the size from first enabled cpu */
7307 		if (nr_pages == 0)
7308 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
7309 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7310 			nr_pages_same = 0;
7311 			break;
7312 		}
7313 	}
7314 	/* allocate minimum pages, user can later expand it */
7315 	if (!nr_pages_same)
7316 		nr_pages = 2;
7317 	buffer->buffers[cpu] =
7318 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7319 	if (!buffer->buffers[cpu]) {
7320 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
7321 		     cpu);
7322 		return -ENOMEM;
7323 	}
7324 	smp_wmb();
7325 	cpumask_set_cpu(cpu, buffer->cpumask);
7326 	return 0;
7327 }
7328 
7329 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7330 /*
7331  * This is a basic integrity check of the ring buffer.
7332  * Late in the boot cycle this test will run when configured in.
7333  * It will kick off a thread per CPU that will go into a loop
7334  * writing to the per cpu ring buffer various sizes of data.
7335  * Some of the data will be large items, some small.
7336  *
7337  * Another thread is created that goes into a spin, sending out
7338  * IPIs to the other CPUs to also write into the ring buffer.
7339  * this is to test the nesting ability of the buffer.
7340  *
7341  * Basic stats are recorded and reported. If something in the
7342  * ring buffer should happen that's not expected, a big warning
7343  * is displayed and all ring buffers are disabled.
7344  */
7345 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7346 
7347 struct rb_test_data {
7348 	struct trace_buffer *buffer;
7349 	unsigned long		events;
7350 	unsigned long		bytes_written;
7351 	unsigned long		bytes_alloc;
7352 	unsigned long		bytes_dropped;
7353 	unsigned long		events_nested;
7354 	unsigned long		bytes_written_nested;
7355 	unsigned long		bytes_alloc_nested;
7356 	unsigned long		bytes_dropped_nested;
7357 	int			min_size_nested;
7358 	int			max_size_nested;
7359 	int			max_size;
7360 	int			min_size;
7361 	int			cpu;
7362 	int			cnt;
7363 };
7364 
7365 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7366 
7367 /* 1 meg per cpu */
7368 #define RB_TEST_BUFFER_SIZE	1048576
7369 
7370 static char rb_string[] __initdata =
7371 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7372 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7373 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7374 
7375 static bool rb_test_started __initdata;
7376 
7377 struct rb_item {
7378 	int size;
7379 	char str[];
7380 };
7381 
7382 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7383 {
7384 	struct ring_buffer_event *event;
7385 	struct rb_item *item;
7386 	bool started;
7387 	int event_len;
7388 	int size;
7389 	int len;
7390 	int cnt;
7391 
7392 	/* Have nested writes different that what is written */
7393 	cnt = data->cnt + (nested ? 27 : 0);
7394 
7395 	/* Multiply cnt by ~e, to make some unique increment */
7396 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7397 
7398 	len = size + sizeof(struct rb_item);
7399 
7400 	started = rb_test_started;
7401 	/* read rb_test_started before checking buffer enabled */
7402 	smp_rmb();
7403 
7404 	event = ring_buffer_lock_reserve(data->buffer, len);
7405 	if (!event) {
7406 		/* Ignore dropped events before test starts. */
7407 		if (started) {
7408 			if (nested)
7409 				data->bytes_dropped += len;
7410 			else
7411 				data->bytes_dropped_nested += len;
7412 		}
7413 		return len;
7414 	}
7415 
7416 	event_len = ring_buffer_event_length(event);
7417 
7418 	if (RB_WARN_ON(data->buffer, event_len < len))
7419 		goto out;
7420 
7421 	item = ring_buffer_event_data(event);
7422 	item->size = size;
7423 	memcpy(item->str, rb_string, size);
7424 
7425 	if (nested) {
7426 		data->bytes_alloc_nested += event_len;
7427 		data->bytes_written_nested += len;
7428 		data->events_nested++;
7429 		if (!data->min_size_nested || len < data->min_size_nested)
7430 			data->min_size_nested = len;
7431 		if (len > data->max_size_nested)
7432 			data->max_size_nested = len;
7433 	} else {
7434 		data->bytes_alloc += event_len;
7435 		data->bytes_written += len;
7436 		data->events++;
7437 		if (!data->min_size || len < data->min_size)
7438 			data->max_size = len;
7439 		if (len > data->max_size)
7440 			data->max_size = len;
7441 	}
7442 
7443  out:
7444 	ring_buffer_unlock_commit(data->buffer);
7445 
7446 	return 0;
7447 }
7448 
7449 static __init int rb_test(void *arg)
7450 {
7451 	struct rb_test_data *data = arg;
7452 
7453 	while (!kthread_should_stop()) {
7454 		rb_write_something(data, false);
7455 		data->cnt++;
7456 
7457 		set_current_state(TASK_INTERRUPTIBLE);
7458 		/* Now sleep between a min of 100-300us and a max of 1ms */
7459 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7460 	}
7461 
7462 	return 0;
7463 }
7464 
7465 static __init void rb_ipi(void *ignore)
7466 {
7467 	struct rb_test_data *data;
7468 	int cpu = smp_processor_id();
7469 
7470 	data = &rb_data[cpu];
7471 	rb_write_something(data, true);
7472 }
7473 
7474 static __init int rb_hammer_test(void *arg)
7475 {
7476 	while (!kthread_should_stop()) {
7477 
7478 		/* Send an IPI to all cpus to write data! */
7479 		smp_call_function(rb_ipi, NULL, 1);
7480 		/* No sleep, but for non preempt, let others run */
7481 		schedule();
7482 	}
7483 
7484 	return 0;
7485 }
7486 
7487 static __init int test_ringbuffer(void)
7488 {
7489 	struct task_struct *rb_hammer;
7490 	struct trace_buffer *buffer;
7491 	int cpu;
7492 	int ret = 0;
7493 
7494 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
7495 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7496 		return 0;
7497 	}
7498 
7499 	pr_info("Running ring buffer tests...\n");
7500 
7501 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7502 	if (WARN_ON(!buffer))
7503 		return 0;
7504 
7505 	/* Disable buffer so that threads can't write to it yet */
7506 	ring_buffer_record_off(buffer);
7507 
7508 	for_each_online_cpu(cpu) {
7509 		rb_data[cpu].buffer = buffer;
7510 		rb_data[cpu].cpu = cpu;
7511 		rb_data[cpu].cnt = cpu;
7512 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7513 						     cpu, "rbtester/%u");
7514 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7515 			pr_cont("FAILED\n");
7516 			ret = PTR_ERR(rb_threads[cpu]);
7517 			goto out_free;
7518 		}
7519 	}
7520 
7521 	/* Now create the rb hammer! */
7522 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7523 	if (WARN_ON(IS_ERR(rb_hammer))) {
7524 		pr_cont("FAILED\n");
7525 		ret = PTR_ERR(rb_hammer);
7526 		goto out_free;
7527 	}
7528 
7529 	ring_buffer_record_on(buffer);
7530 	/*
7531 	 * Show buffer is enabled before setting rb_test_started.
7532 	 * Yes there's a small race window where events could be
7533 	 * dropped and the thread wont catch it. But when a ring
7534 	 * buffer gets enabled, there will always be some kind of
7535 	 * delay before other CPUs see it. Thus, we don't care about
7536 	 * those dropped events. We care about events dropped after
7537 	 * the threads see that the buffer is active.
7538 	 */
7539 	smp_wmb();
7540 	rb_test_started = true;
7541 
7542 	set_current_state(TASK_INTERRUPTIBLE);
7543 	/* Just run for 10 seconds */;
7544 	schedule_timeout(10 * HZ);
7545 
7546 	kthread_stop(rb_hammer);
7547 
7548  out_free:
7549 	for_each_online_cpu(cpu) {
7550 		if (!rb_threads[cpu])
7551 			break;
7552 		kthread_stop(rb_threads[cpu]);
7553 	}
7554 	if (ret) {
7555 		ring_buffer_free(buffer);
7556 		return ret;
7557 	}
7558 
7559 	/* Report! */
7560 	pr_info("finished\n");
7561 	for_each_online_cpu(cpu) {
7562 		struct ring_buffer_event *event;
7563 		struct rb_test_data *data = &rb_data[cpu];
7564 		struct rb_item *item;
7565 		unsigned long total_events;
7566 		unsigned long total_dropped;
7567 		unsigned long total_written;
7568 		unsigned long total_alloc;
7569 		unsigned long total_read = 0;
7570 		unsigned long total_size = 0;
7571 		unsigned long total_len = 0;
7572 		unsigned long total_lost = 0;
7573 		unsigned long lost;
7574 		int big_event_size;
7575 		int small_event_size;
7576 
7577 		ret = -1;
7578 
7579 		total_events = data->events + data->events_nested;
7580 		total_written = data->bytes_written + data->bytes_written_nested;
7581 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7582 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7583 
7584 		big_event_size = data->max_size + data->max_size_nested;
7585 		small_event_size = data->min_size + data->min_size_nested;
7586 
7587 		pr_info("CPU %d:\n", cpu);
7588 		pr_info("              events:    %ld\n", total_events);
7589 		pr_info("       dropped bytes:    %ld\n", total_dropped);
7590 		pr_info("       alloced bytes:    %ld\n", total_alloc);
7591 		pr_info("       written bytes:    %ld\n", total_written);
7592 		pr_info("       biggest event:    %d\n", big_event_size);
7593 		pr_info("      smallest event:    %d\n", small_event_size);
7594 
7595 		if (RB_WARN_ON(buffer, total_dropped))
7596 			break;
7597 
7598 		ret = 0;
7599 
7600 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7601 			total_lost += lost;
7602 			item = ring_buffer_event_data(event);
7603 			total_len += ring_buffer_event_length(event);
7604 			total_size += item->size + sizeof(struct rb_item);
7605 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7606 				pr_info("FAILED!\n");
7607 				pr_info("buffer had: %.*s\n", item->size, item->str);
7608 				pr_info("expected:   %.*s\n", item->size, rb_string);
7609 				RB_WARN_ON(buffer, 1);
7610 				ret = -1;
7611 				break;
7612 			}
7613 			total_read++;
7614 		}
7615 		if (ret)
7616 			break;
7617 
7618 		ret = -1;
7619 
7620 		pr_info("         read events:   %ld\n", total_read);
7621 		pr_info("         lost events:   %ld\n", total_lost);
7622 		pr_info("        total events:   %ld\n", total_lost + total_read);
7623 		pr_info("  recorded len bytes:   %ld\n", total_len);
7624 		pr_info(" recorded size bytes:   %ld\n", total_size);
7625 		if (total_lost) {
7626 			pr_info(" With dropped events, record len and size may not match\n"
7627 				" alloced and written from above\n");
7628 		} else {
7629 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
7630 				       total_size != total_written))
7631 				break;
7632 		}
7633 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7634 			break;
7635 
7636 		ret = 0;
7637 	}
7638 	if (!ret)
7639 		pr_info("Ring buffer PASSED!\n");
7640 
7641 	ring_buffer_free(buffer);
7642 	return 0;
7643 }
7644 
7645 late_initcall(test_ringbuffer);
7646 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7647