xref: /linux-6.15/kernel/trace/ring_buffer.c (revision d97b46a6)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <[email protected]>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22 
23 #include <asm/local.h>
24 #include "trace.h"
25 
26 static void update_pages_handler(struct work_struct *work);
27 
28 /*
29  * The ring buffer header is special. We must manually up keep it.
30  */
31 int ring_buffer_print_entry_header(struct trace_seq *s)
32 {
33 	int ret;
34 
35 	ret = trace_seq_printf(s, "# compressed entry header\n");
36 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
37 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
38 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
39 	ret = trace_seq_printf(s, "\n");
40 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
41 			       RINGBUF_TYPE_PADDING);
42 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
43 			       RINGBUF_TYPE_TIME_EXTEND);
44 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
45 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 
47 	return ret;
48 }
49 
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117 
118 /*
119  * A fast way to enable or disable all ring buffers is to
120  * call tracing_on or tracing_off. Turning off the ring buffers
121  * prevents all ring buffers from being recorded to.
122  * Turning this switch on, makes it OK to write to the
123  * ring buffer, if the ring buffer is enabled itself.
124  *
125  * There's three layers that must be on in order to write
126  * to the ring buffer.
127  *
128  * 1) This global flag must be set.
129  * 2) The ring buffer must be enabled for recording.
130  * 3) The per cpu buffer must be enabled for recording.
131  *
132  * In case of an anomaly, this global flag has a bit set that
133  * will permantly disable all ring buffers.
134  */
135 
136 /*
137  * Global flag to disable all recording to ring buffers
138  *  This has two bits: ON, DISABLED
139  *
140  *  ON   DISABLED
141  * ---- ----------
142  *   0      0        : ring buffers are off
143  *   1      0        : ring buffers are on
144  *   X      1        : ring buffers are permanently disabled
145  */
146 
147 enum {
148 	RB_BUFFERS_ON_BIT	= 0,
149 	RB_BUFFERS_DISABLED_BIT	= 1,
150 };
151 
152 enum {
153 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
154 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
155 };
156 
157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158 
159 /* Used for individual buffers (after the counter) */
160 #define RB_BUFFER_OFF		(1 << 20)
161 
162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
163 
164 /**
165  * tracing_off_permanent - permanently disable ring buffers
166  *
167  * This function, once called, will disable all ring buffers
168  * permanently.
169  */
170 void tracing_off_permanent(void)
171 {
172 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
173 }
174 
175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
176 #define RB_ALIGNMENT		4U
177 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
178 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
179 
180 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
181 # define RB_FORCE_8BYTE_ALIGNMENT	0
182 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
183 #else
184 # define RB_FORCE_8BYTE_ALIGNMENT	1
185 # define RB_ARCH_ALIGNMENT		8U
186 #endif
187 
188 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
189 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
190 
191 enum {
192 	RB_LEN_TIME_EXTEND = 8,
193 	RB_LEN_TIME_STAMP = 16,
194 };
195 
196 #define skip_time_extend(event) \
197 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
198 
199 static inline int rb_null_event(struct ring_buffer_event *event)
200 {
201 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
202 }
203 
204 static void rb_event_set_padding(struct ring_buffer_event *event)
205 {
206 	/* padding has a NULL time_delta */
207 	event->type_len = RINGBUF_TYPE_PADDING;
208 	event->time_delta = 0;
209 }
210 
211 static unsigned
212 rb_event_data_length(struct ring_buffer_event *event)
213 {
214 	unsigned length;
215 
216 	if (event->type_len)
217 		length = event->type_len * RB_ALIGNMENT;
218 	else
219 		length = event->array[0];
220 	return length + RB_EVNT_HDR_SIZE;
221 }
222 
223 /*
224  * Return the length of the given event. Will return
225  * the length of the time extend if the event is a
226  * time extend.
227  */
228 static inline unsigned
229 rb_event_length(struct ring_buffer_event *event)
230 {
231 	switch (event->type_len) {
232 	case RINGBUF_TYPE_PADDING:
233 		if (rb_null_event(event))
234 			/* undefined */
235 			return -1;
236 		return  event->array[0] + RB_EVNT_HDR_SIZE;
237 
238 	case RINGBUF_TYPE_TIME_EXTEND:
239 		return RB_LEN_TIME_EXTEND;
240 
241 	case RINGBUF_TYPE_TIME_STAMP:
242 		return RB_LEN_TIME_STAMP;
243 
244 	case RINGBUF_TYPE_DATA:
245 		return rb_event_data_length(event);
246 	default:
247 		BUG();
248 	}
249 	/* not hit */
250 	return 0;
251 }
252 
253 /*
254  * Return total length of time extend and data,
255  *   or just the event length for all other events.
256  */
257 static inline unsigned
258 rb_event_ts_length(struct ring_buffer_event *event)
259 {
260 	unsigned len = 0;
261 
262 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
263 		/* time extends include the data event after it */
264 		len = RB_LEN_TIME_EXTEND;
265 		event = skip_time_extend(event);
266 	}
267 	return len + rb_event_length(event);
268 }
269 
270 /**
271  * ring_buffer_event_length - return the length of the event
272  * @event: the event to get the length of
273  *
274  * Returns the size of the data load of a data event.
275  * If the event is something other than a data event, it
276  * returns the size of the event itself. With the exception
277  * of a TIME EXTEND, where it still returns the size of the
278  * data load of the data event after it.
279  */
280 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
281 {
282 	unsigned length;
283 
284 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
285 		event = skip_time_extend(event);
286 
287 	length = rb_event_length(event);
288 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
289 		return length;
290 	length -= RB_EVNT_HDR_SIZE;
291 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
292                 length -= sizeof(event->array[0]);
293 	return length;
294 }
295 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
296 
297 /* inline for ring buffer fast paths */
298 static void *
299 rb_event_data(struct ring_buffer_event *event)
300 {
301 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
302 		event = skip_time_extend(event);
303 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
304 	/* If length is in len field, then array[0] has the data */
305 	if (event->type_len)
306 		return (void *)&event->array[0];
307 	/* Otherwise length is in array[0] and array[1] has the data */
308 	return (void *)&event->array[1];
309 }
310 
311 /**
312  * ring_buffer_event_data - return the data of the event
313  * @event: the event to get the data from
314  */
315 void *ring_buffer_event_data(struct ring_buffer_event *event)
316 {
317 	return rb_event_data(event);
318 }
319 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
320 
321 #define for_each_buffer_cpu(buffer, cpu)		\
322 	for_each_cpu(cpu, buffer->cpumask)
323 
324 #define TS_SHIFT	27
325 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
326 #define TS_DELTA_TEST	(~TS_MASK)
327 
328 /* Flag when events were overwritten */
329 #define RB_MISSED_EVENTS	(1 << 31)
330 /* Missed count stored at end */
331 #define RB_MISSED_STORED	(1 << 30)
332 
333 struct buffer_data_page {
334 	u64		 time_stamp;	/* page time stamp */
335 	local_t		 commit;	/* write committed index */
336 	unsigned char	 data[];	/* data of buffer page */
337 };
338 
339 /*
340  * Note, the buffer_page list must be first. The buffer pages
341  * are allocated in cache lines, which means that each buffer
342  * page will be at the beginning of a cache line, and thus
343  * the least significant bits will be zero. We use this to
344  * add flags in the list struct pointers, to make the ring buffer
345  * lockless.
346  */
347 struct buffer_page {
348 	struct list_head list;		/* list of buffer pages */
349 	local_t		 write;		/* index for next write */
350 	unsigned	 read;		/* index for next read */
351 	local_t		 entries;	/* entries on this page */
352 	unsigned long	 real_end;	/* real end of data */
353 	struct buffer_data_page *page;	/* Actual data page */
354 };
355 
356 /*
357  * The buffer page counters, write and entries, must be reset
358  * atomically when crossing page boundaries. To synchronize this
359  * update, two counters are inserted into the number. One is
360  * the actual counter for the write position or count on the page.
361  *
362  * The other is a counter of updaters. Before an update happens
363  * the update partition of the counter is incremented. This will
364  * allow the updater to update the counter atomically.
365  *
366  * The counter is 20 bits, and the state data is 12.
367  */
368 #define RB_WRITE_MASK		0xfffff
369 #define RB_WRITE_INTCNT		(1 << 20)
370 
371 static void rb_init_page(struct buffer_data_page *bpage)
372 {
373 	local_set(&bpage->commit, 0);
374 }
375 
376 /**
377  * ring_buffer_page_len - the size of data on the page.
378  * @page: The page to read
379  *
380  * Returns the amount of data on the page, including buffer page header.
381  */
382 size_t ring_buffer_page_len(void *page)
383 {
384 	return local_read(&((struct buffer_data_page *)page)->commit)
385 		+ BUF_PAGE_HDR_SIZE;
386 }
387 
388 /*
389  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
390  * this issue out.
391  */
392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394 	free_page((unsigned long)bpage->page);
395 	kfree(bpage);
396 }
397 
398 /*
399  * We need to fit the time_stamp delta into 27 bits.
400  */
401 static inline int test_time_stamp(u64 delta)
402 {
403 	if (delta & TS_DELTA_TEST)
404 		return 1;
405 	return 0;
406 }
407 
408 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
409 
410 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
411 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
412 
413 int ring_buffer_print_page_header(struct trace_seq *s)
414 {
415 	struct buffer_data_page field;
416 	int ret;
417 
418 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
419 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
420 			       (unsigned int)sizeof(field.time_stamp),
421 			       (unsigned int)is_signed_type(u64));
422 
423 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
424 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
425 			       (unsigned int)offsetof(typeof(field), commit),
426 			       (unsigned int)sizeof(field.commit),
427 			       (unsigned int)is_signed_type(long));
428 
429 	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
430 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
431 			       (unsigned int)offsetof(typeof(field), commit),
432 			       1,
433 			       (unsigned int)is_signed_type(long));
434 
435 	ret = trace_seq_printf(s, "\tfield: char data;\t"
436 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 			       (unsigned int)offsetof(typeof(field), data),
438 			       (unsigned int)BUF_PAGE_SIZE,
439 			       (unsigned int)is_signed_type(char));
440 
441 	return ret;
442 }
443 
444 /*
445  * head_page == tail_page && head == tail then buffer is empty.
446  */
447 struct ring_buffer_per_cpu {
448 	int				cpu;
449 	atomic_t			record_disabled;
450 	struct ring_buffer		*buffer;
451 	raw_spinlock_t			reader_lock;	/* serialize readers */
452 	arch_spinlock_t			lock;
453 	struct lock_class_key		lock_key;
454 	unsigned int			nr_pages;
455 	struct list_head		*pages;
456 	struct buffer_page		*head_page;	/* read from head */
457 	struct buffer_page		*tail_page;	/* write to tail */
458 	struct buffer_page		*commit_page;	/* committed pages */
459 	struct buffer_page		*reader_page;
460 	unsigned long			lost_events;
461 	unsigned long			last_overrun;
462 	local_t				entries_bytes;
463 	local_t				commit_overrun;
464 	local_t				overrun;
465 	local_t				entries;
466 	local_t				committing;
467 	local_t				commits;
468 	unsigned long			read;
469 	unsigned long			read_bytes;
470 	u64				write_stamp;
471 	u64				read_stamp;
472 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
473 	int				nr_pages_to_update;
474 	struct list_head		new_pages; /* new pages to add */
475 	struct work_struct		update_pages_work;
476 	struct completion		update_done;
477 };
478 
479 struct ring_buffer {
480 	unsigned			flags;
481 	int				cpus;
482 	atomic_t			record_disabled;
483 	atomic_t			resize_disabled;
484 	cpumask_var_t			cpumask;
485 
486 	struct lock_class_key		*reader_lock_key;
487 
488 	struct mutex			mutex;
489 
490 	struct ring_buffer_per_cpu	**buffers;
491 
492 #ifdef CONFIG_HOTPLUG_CPU
493 	struct notifier_block		cpu_notify;
494 #endif
495 	u64				(*clock)(void);
496 };
497 
498 struct ring_buffer_iter {
499 	struct ring_buffer_per_cpu	*cpu_buffer;
500 	unsigned long			head;
501 	struct buffer_page		*head_page;
502 	struct buffer_page		*cache_reader_page;
503 	unsigned long			cache_read;
504 	u64				read_stamp;
505 };
506 
507 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
508 #define RB_WARN_ON(b, cond)						\
509 	({								\
510 		int _____ret = unlikely(cond);				\
511 		if (_____ret) {						\
512 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
513 				struct ring_buffer_per_cpu *__b =	\
514 					(void *)b;			\
515 				atomic_inc(&__b->buffer->record_disabled); \
516 			} else						\
517 				atomic_inc(&b->record_disabled);	\
518 			WARN_ON(1);					\
519 		}							\
520 		_____ret;						\
521 	})
522 
523 /* Up this if you want to test the TIME_EXTENTS and normalization */
524 #define DEBUG_SHIFT 0
525 
526 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
527 {
528 	/* shift to debug/test normalization and TIME_EXTENTS */
529 	return buffer->clock() << DEBUG_SHIFT;
530 }
531 
532 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
533 {
534 	u64 time;
535 
536 	preempt_disable_notrace();
537 	time = rb_time_stamp(buffer);
538 	preempt_enable_no_resched_notrace();
539 
540 	return time;
541 }
542 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
543 
544 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
545 				      int cpu, u64 *ts)
546 {
547 	/* Just stupid testing the normalize function and deltas */
548 	*ts >>= DEBUG_SHIFT;
549 }
550 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
551 
552 /*
553  * Making the ring buffer lockless makes things tricky.
554  * Although writes only happen on the CPU that they are on,
555  * and they only need to worry about interrupts. Reads can
556  * happen on any CPU.
557  *
558  * The reader page is always off the ring buffer, but when the
559  * reader finishes with a page, it needs to swap its page with
560  * a new one from the buffer. The reader needs to take from
561  * the head (writes go to the tail). But if a writer is in overwrite
562  * mode and wraps, it must push the head page forward.
563  *
564  * Here lies the problem.
565  *
566  * The reader must be careful to replace only the head page, and
567  * not another one. As described at the top of the file in the
568  * ASCII art, the reader sets its old page to point to the next
569  * page after head. It then sets the page after head to point to
570  * the old reader page. But if the writer moves the head page
571  * during this operation, the reader could end up with the tail.
572  *
573  * We use cmpxchg to help prevent this race. We also do something
574  * special with the page before head. We set the LSB to 1.
575  *
576  * When the writer must push the page forward, it will clear the
577  * bit that points to the head page, move the head, and then set
578  * the bit that points to the new head page.
579  *
580  * We also don't want an interrupt coming in and moving the head
581  * page on another writer. Thus we use the second LSB to catch
582  * that too. Thus:
583  *
584  * head->list->prev->next        bit 1          bit 0
585  *                              -------        -------
586  * Normal page                     0              0
587  * Points to head page             0              1
588  * New head page                   1              0
589  *
590  * Note we can not trust the prev pointer of the head page, because:
591  *
592  * +----+       +-----+        +-----+
593  * |    |------>|  T  |---X--->|  N  |
594  * |    |<------|     |        |     |
595  * +----+       +-----+        +-----+
596  *   ^                           ^ |
597  *   |          +-----+          | |
598  *   +----------|  R  |----------+ |
599  *              |     |<-----------+
600  *              +-----+
601  *
602  * Key:  ---X-->  HEAD flag set in pointer
603  *         T      Tail page
604  *         R      Reader page
605  *         N      Next page
606  *
607  * (see __rb_reserve_next() to see where this happens)
608  *
609  *  What the above shows is that the reader just swapped out
610  *  the reader page with a page in the buffer, but before it
611  *  could make the new header point back to the new page added
612  *  it was preempted by a writer. The writer moved forward onto
613  *  the new page added by the reader and is about to move forward
614  *  again.
615  *
616  *  You can see, it is legitimate for the previous pointer of
617  *  the head (or any page) not to point back to itself. But only
618  *  temporarially.
619  */
620 
621 #define RB_PAGE_NORMAL		0UL
622 #define RB_PAGE_HEAD		1UL
623 #define RB_PAGE_UPDATE		2UL
624 
625 
626 #define RB_FLAG_MASK		3UL
627 
628 /* PAGE_MOVED is not part of the mask */
629 #define RB_PAGE_MOVED		4UL
630 
631 /*
632  * rb_list_head - remove any bit
633  */
634 static struct list_head *rb_list_head(struct list_head *list)
635 {
636 	unsigned long val = (unsigned long)list;
637 
638 	return (struct list_head *)(val & ~RB_FLAG_MASK);
639 }
640 
641 /*
642  * rb_is_head_page - test if the given page is the head page
643  *
644  * Because the reader may move the head_page pointer, we can
645  * not trust what the head page is (it may be pointing to
646  * the reader page). But if the next page is a header page,
647  * its flags will be non zero.
648  */
649 static inline int
650 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
651 		struct buffer_page *page, struct list_head *list)
652 {
653 	unsigned long val;
654 
655 	val = (unsigned long)list->next;
656 
657 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
658 		return RB_PAGE_MOVED;
659 
660 	return val & RB_FLAG_MASK;
661 }
662 
663 /*
664  * rb_is_reader_page
665  *
666  * The unique thing about the reader page, is that, if the
667  * writer is ever on it, the previous pointer never points
668  * back to the reader page.
669  */
670 static int rb_is_reader_page(struct buffer_page *page)
671 {
672 	struct list_head *list = page->list.prev;
673 
674 	return rb_list_head(list->next) != &page->list;
675 }
676 
677 /*
678  * rb_set_list_to_head - set a list_head to be pointing to head.
679  */
680 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
681 				struct list_head *list)
682 {
683 	unsigned long *ptr;
684 
685 	ptr = (unsigned long *)&list->next;
686 	*ptr |= RB_PAGE_HEAD;
687 	*ptr &= ~RB_PAGE_UPDATE;
688 }
689 
690 /*
691  * rb_head_page_activate - sets up head page
692  */
693 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
694 {
695 	struct buffer_page *head;
696 
697 	head = cpu_buffer->head_page;
698 	if (!head)
699 		return;
700 
701 	/*
702 	 * Set the previous list pointer to have the HEAD flag.
703 	 */
704 	rb_set_list_to_head(cpu_buffer, head->list.prev);
705 }
706 
707 static void rb_list_head_clear(struct list_head *list)
708 {
709 	unsigned long *ptr = (unsigned long *)&list->next;
710 
711 	*ptr &= ~RB_FLAG_MASK;
712 }
713 
714 /*
715  * rb_head_page_dactivate - clears head page ptr (for free list)
716  */
717 static void
718 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
719 {
720 	struct list_head *hd;
721 
722 	/* Go through the whole list and clear any pointers found. */
723 	rb_list_head_clear(cpu_buffer->pages);
724 
725 	list_for_each(hd, cpu_buffer->pages)
726 		rb_list_head_clear(hd);
727 }
728 
729 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
730 			    struct buffer_page *head,
731 			    struct buffer_page *prev,
732 			    int old_flag, int new_flag)
733 {
734 	struct list_head *list;
735 	unsigned long val = (unsigned long)&head->list;
736 	unsigned long ret;
737 
738 	list = &prev->list;
739 
740 	val &= ~RB_FLAG_MASK;
741 
742 	ret = cmpxchg((unsigned long *)&list->next,
743 		      val | old_flag, val | new_flag);
744 
745 	/* check if the reader took the page */
746 	if ((ret & ~RB_FLAG_MASK) != val)
747 		return RB_PAGE_MOVED;
748 
749 	return ret & RB_FLAG_MASK;
750 }
751 
752 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
753 				   struct buffer_page *head,
754 				   struct buffer_page *prev,
755 				   int old_flag)
756 {
757 	return rb_head_page_set(cpu_buffer, head, prev,
758 				old_flag, RB_PAGE_UPDATE);
759 }
760 
761 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
762 				 struct buffer_page *head,
763 				 struct buffer_page *prev,
764 				 int old_flag)
765 {
766 	return rb_head_page_set(cpu_buffer, head, prev,
767 				old_flag, RB_PAGE_HEAD);
768 }
769 
770 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
771 				   struct buffer_page *head,
772 				   struct buffer_page *prev,
773 				   int old_flag)
774 {
775 	return rb_head_page_set(cpu_buffer, head, prev,
776 				old_flag, RB_PAGE_NORMAL);
777 }
778 
779 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
780 			       struct buffer_page **bpage)
781 {
782 	struct list_head *p = rb_list_head((*bpage)->list.next);
783 
784 	*bpage = list_entry(p, struct buffer_page, list);
785 }
786 
787 static struct buffer_page *
788 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
789 {
790 	struct buffer_page *head;
791 	struct buffer_page *page;
792 	struct list_head *list;
793 	int i;
794 
795 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
796 		return NULL;
797 
798 	/* sanity check */
799 	list = cpu_buffer->pages;
800 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
801 		return NULL;
802 
803 	page = head = cpu_buffer->head_page;
804 	/*
805 	 * It is possible that the writer moves the header behind
806 	 * where we started, and we miss in one loop.
807 	 * A second loop should grab the header, but we'll do
808 	 * three loops just because I'm paranoid.
809 	 */
810 	for (i = 0; i < 3; i++) {
811 		do {
812 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
813 				cpu_buffer->head_page = page;
814 				return page;
815 			}
816 			rb_inc_page(cpu_buffer, &page);
817 		} while (page != head);
818 	}
819 
820 	RB_WARN_ON(cpu_buffer, 1);
821 
822 	return NULL;
823 }
824 
825 static int rb_head_page_replace(struct buffer_page *old,
826 				struct buffer_page *new)
827 {
828 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
829 	unsigned long val;
830 	unsigned long ret;
831 
832 	val = *ptr & ~RB_FLAG_MASK;
833 	val |= RB_PAGE_HEAD;
834 
835 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
836 
837 	return ret == val;
838 }
839 
840 /*
841  * rb_tail_page_update - move the tail page forward
842  *
843  * Returns 1 if moved tail page, 0 if someone else did.
844  */
845 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
846 			       struct buffer_page *tail_page,
847 			       struct buffer_page *next_page)
848 {
849 	struct buffer_page *old_tail;
850 	unsigned long old_entries;
851 	unsigned long old_write;
852 	int ret = 0;
853 
854 	/*
855 	 * The tail page now needs to be moved forward.
856 	 *
857 	 * We need to reset the tail page, but without messing
858 	 * with possible erasing of data brought in by interrupts
859 	 * that have moved the tail page and are currently on it.
860 	 *
861 	 * We add a counter to the write field to denote this.
862 	 */
863 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
864 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
865 
866 	/*
867 	 * Just make sure we have seen our old_write and synchronize
868 	 * with any interrupts that come in.
869 	 */
870 	barrier();
871 
872 	/*
873 	 * If the tail page is still the same as what we think
874 	 * it is, then it is up to us to update the tail
875 	 * pointer.
876 	 */
877 	if (tail_page == cpu_buffer->tail_page) {
878 		/* Zero the write counter */
879 		unsigned long val = old_write & ~RB_WRITE_MASK;
880 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
881 
882 		/*
883 		 * This will only succeed if an interrupt did
884 		 * not come in and change it. In which case, we
885 		 * do not want to modify it.
886 		 *
887 		 * We add (void) to let the compiler know that we do not care
888 		 * about the return value of these functions. We use the
889 		 * cmpxchg to only update if an interrupt did not already
890 		 * do it for us. If the cmpxchg fails, we don't care.
891 		 */
892 		(void)local_cmpxchg(&next_page->write, old_write, val);
893 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
894 
895 		/*
896 		 * No need to worry about races with clearing out the commit.
897 		 * it only can increment when a commit takes place. But that
898 		 * only happens in the outer most nested commit.
899 		 */
900 		local_set(&next_page->page->commit, 0);
901 
902 		old_tail = cmpxchg(&cpu_buffer->tail_page,
903 				   tail_page, next_page);
904 
905 		if (old_tail == tail_page)
906 			ret = 1;
907 	}
908 
909 	return ret;
910 }
911 
912 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
913 			  struct buffer_page *bpage)
914 {
915 	unsigned long val = (unsigned long)bpage;
916 
917 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
918 		return 1;
919 
920 	return 0;
921 }
922 
923 /**
924  * rb_check_list - make sure a pointer to a list has the last bits zero
925  */
926 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
927 			 struct list_head *list)
928 {
929 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
930 		return 1;
931 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
932 		return 1;
933 	return 0;
934 }
935 
936 /**
937  * check_pages - integrity check of buffer pages
938  * @cpu_buffer: CPU buffer with pages to test
939  *
940  * As a safety measure we check to make sure the data pages have not
941  * been corrupted.
942  */
943 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
944 {
945 	struct list_head *head = cpu_buffer->pages;
946 	struct buffer_page *bpage, *tmp;
947 
948 	/* Reset the head page if it exists */
949 	if (cpu_buffer->head_page)
950 		rb_set_head_page(cpu_buffer);
951 
952 	rb_head_page_deactivate(cpu_buffer);
953 
954 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
955 		return -1;
956 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
957 		return -1;
958 
959 	if (rb_check_list(cpu_buffer, head))
960 		return -1;
961 
962 	list_for_each_entry_safe(bpage, tmp, head, list) {
963 		if (RB_WARN_ON(cpu_buffer,
964 			       bpage->list.next->prev != &bpage->list))
965 			return -1;
966 		if (RB_WARN_ON(cpu_buffer,
967 			       bpage->list.prev->next != &bpage->list))
968 			return -1;
969 		if (rb_check_list(cpu_buffer, &bpage->list))
970 			return -1;
971 	}
972 
973 	rb_head_page_activate(cpu_buffer);
974 
975 	return 0;
976 }
977 
978 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
979 {
980 	int i;
981 	struct buffer_page *bpage, *tmp;
982 
983 	for (i = 0; i < nr_pages; i++) {
984 		struct page *page;
985 		/*
986 		 * __GFP_NORETRY flag makes sure that the allocation fails
987 		 * gracefully without invoking oom-killer and the system is
988 		 * not destabilized.
989 		 */
990 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
991 				    GFP_KERNEL | __GFP_NORETRY,
992 				    cpu_to_node(cpu));
993 		if (!bpage)
994 			goto free_pages;
995 
996 		list_add(&bpage->list, pages);
997 
998 		page = alloc_pages_node(cpu_to_node(cpu),
999 					GFP_KERNEL | __GFP_NORETRY, 0);
1000 		if (!page)
1001 			goto free_pages;
1002 		bpage->page = page_address(page);
1003 		rb_init_page(bpage->page);
1004 	}
1005 
1006 	return 0;
1007 
1008 free_pages:
1009 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1010 		list_del_init(&bpage->list);
1011 		free_buffer_page(bpage);
1012 	}
1013 
1014 	return -ENOMEM;
1015 }
1016 
1017 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1018 			     unsigned nr_pages)
1019 {
1020 	LIST_HEAD(pages);
1021 
1022 	WARN_ON(!nr_pages);
1023 
1024 	if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1025 		return -ENOMEM;
1026 
1027 	/*
1028 	 * The ring buffer page list is a circular list that does not
1029 	 * start and end with a list head. All page list items point to
1030 	 * other pages.
1031 	 */
1032 	cpu_buffer->pages = pages.next;
1033 	list_del(&pages);
1034 
1035 	cpu_buffer->nr_pages = nr_pages;
1036 
1037 	rb_check_pages(cpu_buffer);
1038 
1039 	return 0;
1040 }
1041 
1042 static struct ring_buffer_per_cpu *
1043 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
1044 {
1045 	struct ring_buffer_per_cpu *cpu_buffer;
1046 	struct buffer_page *bpage;
1047 	struct page *page;
1048 	int ret;
1049 
1050 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1051 				  GFP_KERNEL, cpu_to_node(cpu));
1052 	if (!cpu_buffer)
1053 		return NULL;
1054 
1055 	cpu_buffer->cpu = cpu;
1056 	cpu_buffer->buffer = buffer;
1057 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1058 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1059 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1060 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1061 	init_completion(&cpu_buffer->update_done);
1062 
1063 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1064 			    GFP_KERNEL, cpu_to_node(cpu));
1065 	if (!bpage)
1066 		goto fail_free_buffer;
1067 
1068 	rb_check_bpage(cpu_buffer, bpage);
1069 
1070 	cpu_buffer->reader_page = bpage;
1071 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1072 	if (!page)
1073 		goto fail_free_reader;
1074 	bpage->page = page_address(page);
1075 	rb_init_page(bpage->page);
1076 
1077 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1078 
1079 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1080 	if (ret < 0)
1081 		goto fail_free_reader;
1082 
1083 	cpu_buffer->head_page
1084 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1085 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1086 
1087 	rb_head_page_activate(cpu_buffer);
1088 
1089 	return cpu_buffer;
1090 
1091  fail_free_reader:
1092 	free_buffer_page(cpu_buffer->reader_page);
1093 
1094  fail_free_buffer:
1095 	kfree(cpu_buffer);
1096 	return NULL;
1097 }
1098 
1099 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1100 {
1101 	struct list_head *head = cpu_buffer->pages;
1102 	struct buffer_page *bpage, *tmp;
1103 
1104 	free_buffer_page(cpu_buffer->reader_page);
1105 
1106 	rb_head_page_deactivate(cpu_buffer);
1107 
1108 	if (head) {
1109 		list_for_each_entry_safe(bpage, tmp, head, list) {
1110 			list_del_init(&bpage->list);
1111 			free_buffer_page(bpage);
1112 		}
1113 		bpage = list_entry(head, struct buffer_page, list);
1114 		free_buffer_page(bpage);
1115 	}
1116 
1117 	kfree(cpu_buffer);
1118 }
1119 
1120 #ifdef CONFIG_HOTPLUG_CPU
1121 static int rb_cpu_notify(struct notifier_block *self,
1122 			 unsigned long action, void *hcpu);
1123 #endif
1124 
1125 /**
1126  * ring_buffer_alloc - allocate a new ring_buffer
1127  * @size: the size in bytes per cpu that is needed.
1128  * @flags: attributes to set for the ring buffer.
1129  *
1130  * Currently the only flag that is available is the RB_FL_OVERWRITE
1131  * flag. This flag means that the buffer will overwrite old data
1132  * when the buffer wraps. If this flag is not set, the buffer will
1133  * drop data when the tail hits the head.
1134  */
1135 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1136 					struct lock_class_key *key)
1137 {
1138 	struct ring_buffer *buffer;
1139 	int bsize;
1140 	int cpu, nr_pages;
1141 
1142 	/* keep it in its own cache line */
1143 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1144 			 GFP_KERNEL);
1145 	if (!buffer)
1146 		return NULL;
1147 
1148 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1149 		goto fail_free_buffer;
1150 
1151 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1152 	buffer->flags = flags;
1153 	buffer->clock = trace_clock_local;
1154 	buffer->reader_lock_key = key;
1155 
1156 	/* need at least two pages */
1157 	if (nr_pages < 2)
1158 		nr_pages = 2;
1159 
1160 	/*
1161 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1162 	 * in early initcall, it will not be notified of secondary cpus.
1163 	 * In that off case, we need to allocate for all possible cpus.
1164 	 */
1165 #ifdef CONFIG_HOTPLUG_CPU
1166 	get_online_cpus();
1167 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1168 #else
1169 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1170 #endif
1171 	buffer->cpus = nr_cpu_ids;
1172 
1173 	bsize = sizeof(void *) * nr_cpu_ids;
1174 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1175 				  GFP_KERNEL);
1176 	if (!buffer->buffers)
1177 		goto fail_free_cpumask;
1178 
1179 	for_each_buffer_cpu(buffer, cpu) {
1180 		buffer->buffers[cpu] =
1181 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1182 		if (!buffer->buffers[cpu])
1183 			goto fail_free_buffers;
1184 	}
1185 
1186 #ifdef CONFIG_HOTPLUG_CPU
1187 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1188 	buffer->cpu_notify.priority = 0;
1189 	register_cpu_notifier(&buffer->cpu_notify);
1190 #endif
1191 
1192 	put_online_cpus();
1193 	mutex_init(&buffer->mutex);
1194 
1195 	return buffer;
1196 
1197  fail_free_buffers:
1198 	for_each_buffer_cpu(buffer, cpu) {
1199 		if (buffer->buffers[cpu])
1200 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1201 	}
1202 	kfree(buffer->buffers);
1203 
1204  fail_free_cpumask:
1205 	free_cpumask_var(buffer->cpumask);
1206 	put_online_cpus();
1207 
1208  fail_free_buffer:
1209 	kfree(buffer);
1210 	return NULL;
1211 }
1212 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1213 
1214 /**
1215  * ring_buffer_free - free a ring buffer.
1216  * @buffer: the buffer to free.
1217  */
1218 void
1219 ring_buffer_free(struct ring_buffer *buffer)
1220 {
1221 	int cpu;
1222 
1223 	get_online_cpus();
1224 
1225 #ifdef CONFIG_HOTPLUG_CPU
1226 	unregister_cpu_notifier(&buffer->cpu_notify);
1227 #endif
1228 
1229 	for_each_buffer_cpu(buffer, cpu)
1230 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1231 
1232 	put_online_cpus();
1233 
1234 	kfree(buffer->buffers);
1235 	free_cpumask_var(buffer->cpumask);
1236 
1237 	kfree(buffer);
1238 }
1239 EXPORT_SYMBOL_GPL(ring_buffer_free);
1240 
1241 void ring_buffer_set_clock(struct ring_buffer *buffer,
1242 			   u64 (*clock)(void))
1243 {
1244 	buffer->clock = clock;
1245 }
1246 
1247 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1248 
1249 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1250 {
1251 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1252 }
1253 
1254 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1255 {
1256 	return local_read(&bpage->write) & RB_WRITE_MASK;
1257 }
1258 
1259 static int
1260 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
1261 {
1262 	struct list_head *tail_page, *to_remove, *next_page;
1263 	struct buffer_page *to_remove_page, *tmp_iter_page;
1264 	struct buffer_page *last_page, *first_page;
1265 	unsigned int nr_removed;
1266 	unsigned long head_bit;
1267 	int page_entries;
1268 
1269 	head_bit = 0;
1270 
1271 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1272 	atomic_inc(&cpu_buffer->record_disabled);
1273 	/*
1274 	 * We don't race with the readers since we have acquired the reader
1275 	 * lock. We also don't race with writers after disabling recording.
1276 	 * This makes it easy to figure out the first and the last page to be
1277 	 * removed from the list. We unlink all the pages in between including
1278 	 * the first and last pages. This is done in a busy loop so that we
1279 	 * lose the least number of traces.
1280 	 * The pages are freed after we restart recording and unlock readers.
1281 	 */
1282 	tail_page = &cpu_buffer->tail_page->list;
1283 
1284 	/*
1285 	 * tail page might be on reader page, we remove the next page
1286 	 * from the ring buffer
1287 	 */
1288 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1289 		tail_page = rb_list_head(tail_page->next);
1290 	to_remove = tail_page;
1291 
1292 	/* start of pages to remove */
1293 	first_page = list_entry(rb_list_head(to_remove->next),
1294 				struct buffer_page, list);
1295 
1296 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1297 		to_remove = rb_list_head(to_remove)->next;
1298 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1299 	}
1300 
1301 	next_page = rb_list_head(to_remove)->next;
1302 
1303 	/*
1304 	 * Now we remove all pages between tail_page and next_page.
1305 	 * Make sure that we have head_bit value preserved for the
1306 	 * next page
1307 	 */
1308 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1309 						head_bit);
1310 	next_page = rb_list_head(next_page);
1311 	next_page->prev = tail_page;
1312 
1313 	/* make sure pages points to a valid page in the ring buffer */
1314 	cpu_buffer->pages = next_page;
1315 
1316 	/* update head page */
1317 	if (head_bit)
1318 		cpu_buffer->head_page = list_entry(next_page,
1319 						struct buffer_page, list);
1320 
1321 	/*
1322 	 * change read pointer to make sure any read iterators reset
1323 	 * themselves
1324 	 */
1325 	cpu_buffer->read = 0;
1326 
1327 	/* pages are removed, resume tracing and then free the pages */
1328 	atomic_dec(&cpu_buffer->record_disabled);
1329 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1330 
1331 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1332 
1333 	/* last buffer page to remove */
1334 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1335 				list);
1336 	tmp_iter_page = first_page;
1337 
1338 	do {
1339 		to_remove_page = tmp_iter_page;
1340 		rb_inc_page(cpu_buffer, &tmp_iter_page);
1341 
1342 		/* update the counters */
1343 		page_entries = rb_page_entries(to_remove_page);
1344 		if (page_entries) {
1345 			/*
1346 			 * If something was added to this page, it was full
1347 			 * since it is not the tail page. So we deduct the
1348 			 * bytes consumed in ring buffer from here.
1349 			 * No need to update overruns, since this page is
1350 			 * deleted from ring buffer and its entries are
1351 			 * already accounted for.
1352 			 */
1353 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1354 		}
1355 
1356 		/*
1357 		 * We have already removed references to this list item, just
1358 		 * free up the buffer_page and its page
1359 		 */
1360 		free_buffer_page(to_remove_page);
1361 		nr_removed--;
1362 
1363 	} while (to_remove_page != last_page);
1364 
1365 	RB_WARN_ON(cpu_buffer, nr_removed);
1366 
1367 	return nr_removed == 0;
1368 }
1369 
1370 static int
1371 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1372 {
1373 	struct list_head *pages = &cpu_buffer->new_pages;
1374 	int retries, success;
1375 
1376 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1377 	/*
1378 	 * We are holding the reader lock, so the reader page won't be swapped
1379 	 * in the ring buffer. Now we are racing with the writer trying to
1380 	 * move head page and the tail page.
1381 	 * We are going to adapt the reader page update process where:
1382 	 * 1. We first splice the start and end of list of new pages between
1383 	 *    the head page and its previous page.
1384 	 * 2. We cmpxchg the prev_page->next to point from head page to the
1385 	 *    start of new pages list.
1386 	 * 3. Finally, we update the head->prev to the end of new list.
1387 	 *
1388 	 * We will try this process 10 times, to make sure that we don't keep
1389 	 * spinning.
1390 	 */
1391 	retries = 10;
1392 	success = 0;
1393 	while (retries--) {
1394 		struct list_head *head_page, *prev_page, *r;
1395 		struct list_head *last_page, *first_page;
1396 		struct list_head *head_page_with_bit;
1397 
1398 		head_page = &rb_set_head_page(cpu_buffer)->list;
1399 		prev_page = head_page->prev;
1400 
1401 		first_page = pages->next;
1402 		last_page  = pages->prev;
1403 
1404 		head_page_with_bit = (struct list_head *)
1405 				     ((unsigned long)head_page | RB_PAGE_HEAD);
1406 
1407 		last_page->next = head_page_with_bit;
1408 		first_page->prev = prev_page;
1409 
1410 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1411 
1412 		if (r == head_page_with_bit) {
1413 			/*
1414 			 * yay, we replaced the page pointer to our new list,
1415 			 * now, we just have to update to head page's prev
1416 			 * pointer to point to end of list
1417 			 */
1418 			head_page->prev = last_page;
1419 			success = 1;
1420 			break;
1421 		}
1422 	}
1423 
1424 	if (success)
1425 		INIT_LIST_HEAD(pages);
1426 	/*
1427 	 * If we weren't successful in adding in new pages, warn and stop
1428 	 * tracing
1429 	 */
1430 	RB_WARN_ON(cpu_buffer, !success);
1431 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1432 
1433 	/* free pages if they weren't inserted */
1434 	if (!success) {
1435 		struct buffer_page *bpage, *tmp;
1436 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1437 					 list) {
1438 			list_del_init(&bpage->list);
1439 			free_buffer_page(bpage);
1440 		}
1441 	}
1442 	return success;
1443 }
1444 
1445 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1446 {
1447 	int success;
1448 
1449 	if (cpu_buffer->nr_pages_to_update > 0)
1450 		success = rb_insert_pages(cpu_buffer);
1451 	else
1452 		success = rb_remove_pages(cpu_buffer,
1453 					-cpu_buffer->nr_pages_to_update);
1454 
1455 	if (success)
1456 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1457 }
1458 
1459 static void update_pages_handler(struct work_struct *work)
1460 {
1461 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1462 			struct ring_buffer_per_cpu, update_pages_work);
1463 	rb_update_pages(cpu_buffer);
1464 	complete(&cpu_buffer->update_done);
1465 }
1466 
1467 /**
1468  * ring_buffer_resize - resize the ring buffer
1469  * @buffer: the buffer to resize.
1470  * @size: the new size.
1471  *
1472  * Minimum size is 2 * BUF_PAGE_SIZE.
1473  *
1474  * Returns 0 on success and < 0 on failure.
1475  */
1476 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1477 			int cpu_id)
1478 {
1479 	struct ring_buffer_per_cpu *cpu_buffer;
1480 	unsigned nr_pages;
1481 	int cpu, err = 0;
1482 
1483 	/*
1484 	 * Always succeed at resizing a non-existent buffer:
1485 	 */
1486 	if (!buffer)
1487 		return size;
1488 
1489 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1490 	size *= BUF_PAGE_SIZE;
1491 
1492 	/* we need a minimum of two pages */
1493 	if (size < BUF_PAGE_SIZE * 2)
1494 		size = BUF_PAGE_SIZE * 2;
1495 
1496 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1497 
1498 	/*
1499 	 * Don't succeed if resizing is disabled, as a reader might be
1500 	 * manipulating the ring buffer and is expecting a sane state while
1501 	 * this is true.
1502 	 */
1503 	if (atomic_read(&buffer->resize_disabled))
1504 		return -EBUSY;
1505 
1506 	/* prevent another thread from changing buffer sizes */
1507 	mutex_lock(&buffer->mutex);
1508 
1509 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
1510 		/* calculate the pages to update */
1511 		for_each_buffer_cpu(buffer, cpu) {
1512 			cpu_buffer = buffer->buffers[cpu];
1513 
1514 			cpu_buffer->nr_pages_to_update = nr_pages -
1515 							cpu_buffer->nr_pages;
1516 			/*
1517 			 * nothing more to do for removing pages or no update
1518 			 */
1519 			if (cpu_buffer->nr_pages_to_update <= 0)
1520 				continue;
1521 			/*
1522 			 * to add pages, make sure all new pages can be
1523 			 * allocated without receiving ENOMEM
1524 			 */
1525 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
1526 			if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1527 						&cpu_buffer->new_pages, cpu)) {
1528 				/* not enough memory for new pages */
1529 				err = -ENOMEM;
1530 				goto out_err;
1531 			}
1532 		}
1533 
1534 		get_online_cpus();
1535 		/*
1536 		 * Fire off all the required work handlers
1537 		 * We can't schedule on offline CPUs, but it's not necessary
1538 		 * since we can change their buffer sizes without any race.
1539 		 */
1540 		for_each_buffer_cpu(buffer, cpu) {
1541 			cpu_buffer = buffer->buffers[cpu];
1542 			if (!cpu_buffer->nr_pages_to_update)
1543 				continue;
1544 
1545 			if (cpu_online(cpu))
1546 				schedule_work_on(cpu,
1547 						&cpu_buffer->update_pages_work);
1548 			else
1549 				rb_update_pages(cpu_buffer);
1550 		}
1551 
1552 		/* wait for all the updates to complete */
1553 		for_each_buffer_cpu(buffer, cpu) {
1554 			cpu_buffer = buffer->buffers[cpu];
1555 			if (!cpu_buffer->nr_pages_to_update)
1556 				continue;
1557 
1558 			if (cpu_online(cpu))
1559 				wait_for_completion(&cpu_buffer->update_done);
1560 			cpu_buffer->nr_pages_to_update = 0;
1561 		}
1562 
1563 		put_online_cpus();
1564 	} else {
1565 		cpu_buffer = buffer->buffers[cpu_id];
1566 
1567 		if (nr_pages == cpu_buffer->nr_pages)
1568 			goto out;
1569 
1570 		cpu_buffer->nr_pages_to_update = nr_pages -
1571 						cpu_buffer->nr_pages;
1572 
1573 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
1574 		if (cpu_buffer->nr_pages_to_update > 0 &&
1575 			__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1576 					    &cpu_buffer->new_pages, cpu_id)) {
1577 			err = -ENOMEM;
1578 			goto out_err;
1579 		}
1580 
1581 		get_online_cpus();
1582 
1583 		if (cpu_online(cpu_id)) {
1584 			schedule_work_on(cpu_id,
1585 					 &cpu_buffer->update_pages_work);
1586 			wait_for_completion(&cpu_buffer->update_done);
1587 		} else
1588 			rb_update_pages(cpu_buffer);
1589 
1590 		cpu_buffer->nr_pages_to_update = 0;
1591 		put_online_cpus();
1592 	}
1593 
1594  out:
1595 	/*
1596 	 * The ring buffer resize can happen with the ring buffer
1597 	 * enabled, so that the update disturbs the tracing as little
1598 	 * as possible. But if the buffer is disabled, we do not need
1599 	 * to worry about that, and we can take the time to verify
1600 	 * that the buffer is not corrupt.
1601 	 */
1602 	if (atomic_read(&buffer->record_disabled)) {
1603 		atomic_inc(&buffer->record_disabled);
1604 		/*
1605 		 * Even though the buffer was disabled, we must make sure
1606 		 * that it is truly disabled before calling rb_check_pages.
1607 		 * There could have been a race between checking
1608 		 * record_disable and incrementing it.
1609 		 */
1610 		synchronize_sched();
1611 		for_each_buffer_cpu(buffer, cpu) {
1612 			cpu_buffer = buffer->buffers[cpu];
1613 			rb_check_pages(cpu_buffer);
1614 		}
1615 		atomic_dec(&buffer->record_disabled);
1616 	}
1617 
1618 	mutex_unlock(&buffer->mutex);
1619 	return size;
1620 
1621  out_err:
1622 	for_each_buffer_cpu(buffer, cpu) {
1623 		struct buffer_page *bpage, *tmp;
1624 
1625 		cpu_buffer = buffer->buffers[cpu];
1626 		cpu_buffer->nr_pages_to_update = 0;
1627 
1628 		if (list_empty(&cpu_buffer->new_pages))
1629 			continue;
1630 
1631 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1632 					list) {
1633 			list_del_init(&bpage->list);
1634 			free_buffer_page(bpage);
1635 		}
1636 	}
1637 	mutex_unlock(&buffer->mutex);
1638 	return err;
1639 }
1640 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1641 
1642 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1643 {
1644 	mutex_lock(&buffer->mutex);
1645 	if (val)
1646 		buffer->flags |= RB_FL_OVERWRITE;
1647 	else
1648 		buffer->flags &= ~RB_FL_OVERWRITE;
1649 	mutex_unlock(&buffer->mutex);
1650 }
1651 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1652 
1653 static inline void *
1654 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1655 {
1656 	return bpage->data + index;
1657 }
1658 
1659 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1660 {
1661 	return bpage->page->data + index;
1662 }
1663 
1664 static inline struct ring_buffer_event *
1665 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1666 {
1667 	return __rb_page_index(cpu_buffer->reader_page,
1668 			       cpu_buffer->reader_page->read);
1669 }
1670 
1671 static inline struct ring_buffer_event *
1672 rb_iter_head_event(struct ring_buffer_iter *iter)
1673 {
1674 	return __rb_page_index(iter->head_page, iter->head);
1675 }
1676 
1677 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1678 {
1679 	return local_read(&bpage->page->commit);
1680 }
1681 
1682 /* Size is determined by what has been committed */
1683 static inline unsigned rb_page_size(struct buffer_page *bpage)
1684 {
1685 	return rb_page_commit(bpage);
1686 }
1687 
1688 static inline unsigned
1689 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1690 {
1691 	return rb_page_commit(cpu_buffer->commit_page);
1692 }
1693 
1694 static inline unsigned
1695 rb_event_index(struct ring_buffer_event *event)
1696 {
1697 	unsigned long addr = (unsigned long)event;
1698 
1699 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1700 }
1701 
1702 static inline int
1703 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1704 		   struct ring_buffer_event *event)
1705 {
1706 	unsigned long addr = (unsigned long)event;
1707 	unsigned long index;
1708 
1709 	index = rb_event_index(event);
1710 	addr &= PAGE_MASK;
1711 
1712 	return cpu_buffer->commit_page->page == (void *)addr &&
1713 		rb_commit_index(cpu_buffer) == index;
1714 }
1715 
1716 static void
1717 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1718 {
1719 	unsigned long max_count;
1720 
1721 	/*
1722 	 * We only race with interrupts and NMIs on this CPU.
1723 	 * If we own the commit event, then we can commit
1724 	 * all others that interrupted us, since the interruptions
1725 	 * are in stack format (they finish before they come
1726 	 * back to us). This allows us to do a simple loop to
1727 	 * assign the commit to the tail.
1728 	 */
1729  again:
1730 	max_count = cpu_buffer->nr_pages * 100;
1731 
1732 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1733 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1734 			return;
1735 		if (RB_WARN_ON(cpu_buffer,
1736 			       rb_is_reader_page(cpu_buffer->tail_page)))
1737 			return;
1738 		local_set(&cpu_buffer->commit_page->page->commit,
1739 			  rb_page_write(cpu_buffer->commit_page));
1740 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1741 		cpu_buffer->write_stamp =
1742 			cpu_buffer->commit_page->page->time_stamp;
1743 		/* add barrier to keep gcc from optimizing too much */
1744 		barrier();
1745 	}
1746 	while (rb_commit_index(cpu_buffer) !=
1747 	       rb_page_write(cpu_buffer->commit_page)) {
1748 
1749 		local_set(&cpu_buffer->commit_page->page->commit,
1750 			  rb_page_write(cpu_buffer->commit_page));
1751 		RB_WARN_ON(cpu_buffer,
1752 			   local_read(&cpu_buffer->commit_page->page->commit) &
1753 			   ~RB_WRITE_MASK);
1754 		barrier();
1755 	}
1756 
1757 	/* again, keep gcc from optimizing */
1758 	barrier();
1759 
1760 	/*
1761 	 * If an interrupt came in just after the first while loop
1762 	 * and pushed the tail page forward, we will be left with
1763 	 * a dangling commit that will never go forward.
1764 	 */
1765 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1766 		goto again;
1767 }
1768 
1769 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1770 {
1771 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1772 	cpu_buffer->reader_page->read = 0;
1773 }
1774 
1775 static void rb_inc_iter(struct ring_buffer_iter *iter)
1776 {
1777 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1778 
1779 	/*
1780 	 * The iterator could be on the reader page (it starts there).
1781 	 * But the head could have moved, since the reader was
1782 	 * found. Check for this case and assign the iterator
1783 	 * to the head page instead of next.
1784 	 */
1785 	if (iter->head_page == cpu_buffer->reader_page)
1786 		iter->head_page = rb_set_head_page(cpu_buffer);
1787 	else
1788 		rb_inc_page(cpu_buffer, &iter->head_page);
1789 
1790 	iter->read_stamp = iter->head_page->page->time_stamp;
1791 	iter->head = 0;
1792 }
1793 
1794 /* Slow path, do not inline */
1795 static noinline struct ring_buffer_event *
1796 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1797 {
1798 	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1799 
1800 	/* Not the first event on the page? */
1801 	if (rb_event_index(event)) {
1802 		event->time_delta = delta & TS_MASK;
1803 		event->array[0] = delta >> TS_SHIFT;
1804 	} else {
1805 		/* nope, just zero it */
1806 		event->time_delta = 0;
1807 		event->array[0] = 0;
1808 	}
1809 
1810 	return skip_time_extend(event);
1811 }
1812 
1813 /**
1814  * ring_buffer_update_event - update event type and data
1815  * @event: the even to update
1816  * @type: the type of event
1817  * @length: the size of the event field in the ring buffer
1818  *
1819  * Update the type and data fields of the event. The length
1820  * is the actual size that is written to the ring buffer,
1821  * and with this, we can determine what to place into the
1822  * data field.
1823  */
1824 static void
1825 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1826 		struct ring_buffer_event *event, unsigned length,
1827 		int add_timestamp, u64 delta)
1828 {
1829 	/* Only a commit updates the timestamp */
1830 	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1831 		delta = 0;
1832 
1833 	/*
1834 	 * If we need to add a timestamp, then we
1835 	 * add it to the start of the resevered space.
1836 	 */
1837 	if (unlikely(add_timestamp)) {
1838 		event = rb_add_time_stamp(event, delta);
1839 		length -= RB_LEN_TIME_EXTEND;
1840 		delta = 0;
1841 	}
1842 
1843 	event->time_delta = delta;
1844 	length -= RB_EVNT_HDR_SIZE;
1845 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1846 		event->type_len = 0;
1847 		event->array[0] = length;
1848 	} else
1849 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1850 }
1851 
1852 /*
1853  * rb_handle_head_page - writer hit the head page
1854  *
1855  * Returns: +1 to retry page
1856  *           0 to continue
1857  *          -1 on error
1858  */
1859 static int
1860 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1861 		    struct buffer_page *tail_page,
1862 		    struct buffer_page *next_page)
1863 {
1864 	struct buffer_page *new_head;
1865 	int entries;
1866 	int type;
1867 	int ret;
1868 
1869 	entries = rb_page_entries(next_page);
1870 
1871 	/*
1872 	 * The hard part is here. We need to move the head
1873 	 * forward, and protect against both readers on
1874 	 * other CPUs and writers coming in via interrupts.
1875 	 */
1876 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1877 				       RB_PAGE_HEAD);
1878 
1879 	/*
1880 	 * type can be one of four:
1881 	 *  NORMAL - an interrupt already moved it for us
1882 	 *  HEAD   - we are the first to get here.
1883 	 *  UPDATE - we are the interrupt interrupting
1884 	 *           a current move.
1885 	 *  MOVED  - a reader on another CPU moved the next
1886 	 *           pointer to its reader page. Give up
1887 	 *           and try again.
1888 	 */
1889 
1890 	switch (type) {
1891 	case RB_PAGE_HEAD:
1892 		/*
1893 		 * We changed the head to UPDATE, thus
1894 		 * it is our responsibility to update
1895 		 * the counters.
1896 		 */
1897 		local_add(entries, &cpu_buffer->overrun);
1898 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1899 
1900 		/*
1901 		 * The entries will be zeroed out when we move the
1902 		 * tail page.
1903 		 */
1904 
1905 		/* still more to do */
1906 		break;
1907 
1908 	case RB_PAGE_UPDATE:
1909 		/*
1910 		 * This is an interrupt that interrupt the
1911 		 * previous update. Still more to do.
1912 		 */
1913 		break;
1914 	case RB_PAGE_NORMAL:
1915 		/*
1916 		 * An interrupt came in before the update
1917 		 * and processed this for us.
1918 		 * Nothing left to do.
1919 		 */
1920 		return 1;
1921 	case RB_PAGE_MOVED:
1922 		/*
1923 		 * The reader is on another CPU and just did
1924 		 * a swap with our next_page.
1925 		 * Try again.
1926 		 */
1927 		return 1;
1928 	default:
1929 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1930 		return -1;
1931 	}
1932 
1933 	/*
1934 	 * Now that we are here, the old head pointer is
1935 	 * set to UPDATE. This will keep the reader from
1936 	 * swapping the head page with the reader page.
1937 	 * The reader (on another CPU) will spin till
1938 	 * we are finished.
1939 	 *
1940 	 * We just need to protect against interrupts
1941 	 * doing the job. We will set the next pointer
1942 	 * to HEAD. After that, we set the old pointer
1943 	 * to NORMAL, but only if it was HEAD before.
1944 	 * otherwise we are an interrupt, and only
1945 	 * want the outer most commit to reset it.
1946 	 */
1947 	new_head = next_page;
1948 	rb_inc_page(cpu_buffer, &new_head);
1949 
1950 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1951 				    RB_PAGE_NORMAL);
1952 
1953 	/*
1954 	 * Valid returns are:
1955 	 *  HEAD   - an interrupt came in and already set it.
1956 	 *  NORMAL - One of two things:
1957 	 *            1) We really set it.
1958 	 *            2) A bunch of interrupts came in and moved
1959 	 *               the page forward again.
1960 	 */
1961 	switch (ret) {
1962 	case RB_PAGE_HEAD:
1963 	case RB_PAGE_NORMAL:
1964 		/* OK */
1965 		break;
1966 	default:
1967 		RB_WARN_ON(cpu_buffer, 1);
1968 		return -1;
1969 	}
1970 
1971 	/*
1972 	 * It is possible that an interrupt came in,
1973 	 * set the head up, then more interrupts came in
1974 	 * and moved it again. When we get back here,
1975 	 * the page would have been set to NORMAL but we
1976 	 * just set it back to HEAD.
1977 	 *
1978 	 * How do you detect this? Well, if that happened
1979 	 * the tail page would have moved.
1980 	 */
1981 	if (ret == RB_PAGE_NORMAL) {
1982 		/*
1983 		 * If the tail had moved passed next, then we need
1984 		 * to reset the pointer.
1985 		 */
1986 		if (cpu_buffer->tail_page != tail_page &&
1987 		    cpu_buffer->tail_page != next_page)
1988 			rb_head_page_set_normal(cpu_buffer, new_head,
1989 						next_page,
1990 						RB_PAGE_HEAD);
1991 	}
1992 
1993 	/*
1994 	 * If this was the outer most commit (the one that
1995 	 * changed the original pointer from HEAD to UPDATE),
1996 	 * then it is up to us to reset it to NORMAL.
1997 	 */
1998 	if (type == RB_PAGE_HEAD) {
1999 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2000 					      tail_page,
2001 					      RB_PAGE_UPDATE);
2002 		if (RB_WARN_ON(cpu_buffer,
2003 			       ret != RB_PAGE_UPDATE))
2004 			return -1;
2005 	}
2006 
2007 	return 0;
2008 }
2009 
2010 static unsigned rb_calculate_event_length(unsigned length)
2011 {
2012 	struct ring_buffer_event event; /* Used only for sizeof array */
2013 
2014 	/* zero length can cause confusions */
2015 	if (!length)
2016 		length = 1;
2017 
2018 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2019 		length += sizeof(event.array[0]);
2020 
2021 	length += RB_EVNT_HDR_SIZE;
2022 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2023 
2024 	return length;
2025 }
2026 
2027 static inline void
2028 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2029 	      struct buffer_page *tail_page,
2030 	      unsigned long tail, unsigned long length)
2031 {
2032 	struct ring_buffer_event *event;
2033 
2034 	/*
2035 	 * Only the event that crossed the page boundary
2036 	 * must fill the old tail_page with padding.
2037 	 */
2038 	if (tail >= BUF_PAGE_SIZE) {
2039 		/*
2040 		 * If the page was filled, then we still need
2041 		 * to update the real_end. Reset it to zero
2042 		 * and the reader will ignore it.
2043 		 */
2044 		if (tail == BUF_PAGE_SIZE)
2045 			tail_page->real_end = 0;
2046 
2047 		local_sub(length, &tail_page->write);
2048 		return;
2049 	}
2050 
2051 	event = __rb_page_index(tail_page, tail);
2052 	kmemcheck_annotate_bitfield(event, bitfield);
2053 
2054 	/* account for padding bytes */
2055 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2056 
2057 	/*
2058 	 * Save the original length to the meta data.
2059 	 * This will be used by the reader to add lost event
2060 	 * counter.
2061 	 */
2062 	tail_page->real_end = tail;
2063 
2064 	/*
2065 	 * If this event is bigger than the minimum size, then
2066 	 * we need to be careful that we don't subtract the
2067 	 * write counter enough to allow another writer to slip
2068 	 * in on this page.
2069 	 * We put in a discarded commit instead, to make sure
2070 	 * that this space is not used again.
2071 	 *
2072 	 * If we are less than the minimum size, we don't need to
2073 	 * worry about it.
2074 	 */
2075 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2076 		/* No room for any events */
2077 
2078 		/* Mark the rest of the page with padding */
2079 		rb_event_set_padding(event);
2080 
2081 		/* Set the write back to the previous setting */
2082 		local_sub(length, &tail_page->write);
2083 		return;
2084 	}
2085 
2086 	/* Put in a discarded event */
2087 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2088 	event->type_len = RINGBUF_TYPE_PADDING;
2089 	/* time delta must be non zero */
2090 	event->time_delta = 1;
2091 
2092 	/* Set write to end of buffer */
2093 	length = (tail + length) - BUF_PAGE_SIZE;
2094 	local_sub(length, &tail_page->write);
2095 }
2096 
2097 /*
2098  * This is the slow path, force gcc not to inline it.
2099  */
2100 static noinline struct ring_buffer_event *
2101 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2102 	     unsigned long length, unsigned long tail,
2103 	     struct buffer_page *tail_page, u64 ts)
2104 {
2105 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2106 	struct ring_buffer *buffer = cpu_buffer->buffer;
2107 	struct buffer_page *next_page;
2108 	int ret;
2109 
2110 	next_page = tail_page;
2111 
2112 	rb_inc_page(cpu_buffer, &next_page);
2113 
2114 	/*
2115 	 * If for some reason, we had an interrupt storm that made
2116 	 * it all the way around the buffer, bail, and warn
2117 	 * about it.
2118 	 */
2119 	if (unlikely(next_page == commit_page)) {
2120 		local_inc(&cpu_buffer->commit_overrun);
2121 		goto out_reset;
2122 	}
2123 
2124 	/*
2125 	 * This is where the fun begins!
2126 	 *
2127 	 * We are fighting against races between a reader that
2128 	 * could be on another CPU trying to swap its reader
2129 	 * page with the buffer head.
2130 	 *
2131 	 * We are also fighting against interrupts coming in and
2132 	 * moving the head or tail on us as well.
2133 	 *
2134 	 * If the next page is the head page then we have filled
2135 	 * the buffer, unless the commit page is still on the
2136 	 * reader page.
2137 	 */
2138 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2139 
2140 		/*
2141 		 * If the commit is not on the reader page, then
2142 		 * move the header page.
2143 		 */
2144 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2145 			/*
2146 			 * If we are not in overwrite mode,
2147 			 * this is easy, just stop here.
2148 			 */
2149 			if (!(buffer->flags & RB_FL_OVERWRITE))
2150 				goto out_reset;
2151 
2152 			ret = rb_handle_head_page(cpu_buffer,
2153 						  tail_page,
2154 						  next_page);
2155 			if (ret < 0)
2156 				goto out_reset;
2157 			if (ret)
2158 				goto out_again;
2159 		} else {
2160 			/*
2161 			 * We need to be careful here too. The
2162 			 * commit page could still be on the reader
2163 			 * page. We could have a small buffer, and
2164 			 * have filled up the buffer with events
2165 			 * from interrupts and such, and wrapped.
2166 			 *
2167 			 * Note, if the tail page is also the on the
2168 			 * reader_page, we let it move out.
2169 			 */
2170 			if (unlikely((cpu_buffer->commit_page !=
2171 				      cpu_buffer->tail_page) &&
2172 				     (cpu_buffer->commit_page ==
2173 				      cpu_buffer->reader_page))) {
2174 				local_inc(&cpu_buffer->commit_overrun);
2175 				goto out_reset;
2176 			}
2177 		}
2178 	}
2179 
2180 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2181 	if (ret) {
2182 		/*
2183 		 * Nested commits always have zero deltas, so
2184 		 * just reread the time stamp
2185 		 */
2186 		ts = rb_time_stamp(buffer);
2187 		next_page->page->time_stamp = ts;
2188 	}
2189 
2190  out_again:
2191 
2192 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2193 
2194 	/* fail and let the caller try again */
2195 	return ERR_PTR(-EAGAIN);
2196 
2197  out_reset:
2198 	/* reset write */
2199 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
2200 
2201 	return NULL;
2202 }
2203 
2204 static struct ring_buffer_event *
2205 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2206 		  unsigned long length, u64 ts,
2207 		  u64 delta, int add_timestamp)
2208 {
2209 	struct buffer_page *tail_page;
2210 	struct ring_buffer_event *event;
2211 	unsigned long tail, write;
2212 
2213 	/*
2214 	 * If the time delta since the last event is too big to
2215 	 * hold in the time field of the event, then we append a
2216 	 * TIME EXTEND event ahead of the data event.
2217 	 */
2218 	if (unlikely(add_timestamp))
2219 		length += RB_LEN_TIME_EXTEND;
2220 
2221 	tail_page = cpu_buffer->tail_page;
2222 	write = local_add_return(length, &tail_page->write);
2223 
2224 	/* set write to only the index of the write */
2225 	write &= RB_WRITE_MASK;
2226 	tail = write - length;
2227 
2228 	/* See if we shot pass the end of this buffer page */
2229 	if (unlikely(write > BUF_PAGE_SIZE))
2230 		return rb_move_tail(cpu_buffer, length, tail,
2231 				    tail_page, ts);
2232 
2233 	/* We reserved something on the buffer */
2234 
2235 	event = __rb_page_index(tail_page, tail);
2236 	kmemcheck_annotate_bitfield(event, bitfield);
2237 	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2238 
2239 	local_inc(&tail_page->entries);
2240 
2241 	/*
2242 	 * If this is the first commit on the page, then update
2243 	 * its timestamp.
2244 	 */
2245 	if (!tail)
2246 		tail_page->page->time_stamp = ts;
2247 
2248 	/* account for these added bytes */
2249 	local_add(length, &cpu_buffer->entries_bytes);
2250 
2251 	return event;
2252 }
2253 
2254 static inline int
2255 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2256 		  struct ring_buffer_event *event)
2257 {
2258 	unsigned long new_index, old_index;
2259 	struct buffer_page *bpage;
2260 	unsigned long index;
2261 	unsigned long addr;
2262 
2263 	new_index = rb_event_index(event);
2264 	old_index = new_index + rb_event_ts_length(event);
2265 	addr = (unsigned long)event;
2266 	addr &= PAGE_MASK;
2267 
2268 	bpage = cpu_buffer->tail_page;
2269 
2270 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2271 		unsigned long write_mask =
2272 			local_read(&bpage->write) & ~RB_WRITE_MASK;
2273 		unsigned long event_length = rb_event_length(event);
2274 		/*
2275 		 * This is on the tail page. It is possible that
2276 		 * a write could come in and move the tail page
2277 		 * and write to the next page. That is fine
2278 		 * because we just shorten what is on this page.
2279 		 */
2280 		old_index += write_mask;
2281 		new_index += write_mask;
2282 		index = local_cmpxchg(&bpage->write, old_index, new_index);
2283 		if (index == old_index) {
2284 			/* update counters */
2285 			local_sub(event_length, &cpu_buffer->entries_bytes);
2286 			return 1;
2287 		}
2288 	}
2289 
2290 	/* could not discard */
2291 	return 0;
2292 }
2293 
2294 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2295 {
2296 	local_inc(&cpu_buffer->committing);
2297 	local_inc(&cpu_buffer->commits);
2298 }
2299 
2300 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2301 {
2302 	unsigned long commits;
2303 
2304 	if (RB_WARN_ON(cpu_buffer,
2305 		       !local_read(&cpu_buffer->committing)))
2306 		return;
2307 
2308  again:
2309 	commits = local_read(&cpu_buffer->commits);
2310 	/* synchronize with interrupts */
2311 	barrier();
2312 	if (local_read(&cpu_buffer->committing) == 1)
2313 		rb_set_commit_to_write(cpu_buffer);
2314 
2315 	local_dec(&cpu_buffer->committing);
2316 
2317 	/* synchronize with interrupts */
2318 	barrier();
2319 
2320 	/*
2321 	 * Need to account for interrupts coming in between the
2322 	 * updating of the commit page and the clearing of the
2323 	 * committing counter.
2324 	 */
2325 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2326 	    !local_read(&cpu_buffer->committing)) {
2327 		local_inc(&cpu_buffer->committing);
2328 		goto again;
2329 	}
2330 }
2331 
2332 static struct ring_buffer_event *
2333 rb_reserve_next_event(struct ring_buffer *buffer,
2334 		      struct ring_buffer_per_cpu *cpu_buffer,
2335 		      unsigned long length)
2336 {
2337 	struct ring_buffer_event *event;
2338 	u64 ts, delta;
2339 	int nr_loops = 0;
2340 	int add_timestamp;
2341 	u64 diff;
2342 
2343 	rb_start_commit(cpu_buffer);
2344 
2345 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2346 	/*
2347 	 * Due to the ability to swap a cpu buffer from a buffer
2348 	 * it is possible it was swapped before we committed.
2349 	 * (committing stops a swap). We check for it here and
2350 	 * if it happened, we have to fail the write.
2351 	 */
2352 	barrier();
2353 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2354 		local_dec(&cpu_buffer->committing);
2355 		local_dec(&cpu_buffer->commits);
2356 		return NULL;
2357 	}
2358 #endif
2359 
2360 	length = rb_calculate_event_length(length);
2361  again:
2362 	add_timestamp = 0;
2363 	delta = 0;
2364 
2365 	/*
2366 	 * We allow for interrupts to reenter here and do a trace.
2367 	 * If one does, it will cause this original code to loop
2368 	 * back here. Even with heavy interrupts happening, this
2369 	 * should only happen a few times in a row. If this happens
2370 	 * 1000 times in a row, there must be either an interrupt
2371 	 * storm or we have something buggy.
2372 	 * Bail!
2373 	 */
2374 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2375 		goto out_fail;
2376 
2377 	ts = rb_time_stamp(cpu_buffer->buffer);
2378 	diff = ts - cpu_buffer->write_stamp;
2379 
2380 	/* make sure this diff is calculated here */
2381 	barrier();
2382 
2383 	/* Did the write stamp get updated already? */
2384 	if (likely(ts >= cpu_buffer->write_stamp)) {
2385 		delta = diff;
2386 		if (unlikely(test_time_stamp(delta))) {
2387 			int local_clock_stable = 1;
2388 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2389 			local_clock_stable = sched_clock_stable;
2390 #endif
2391 			WARN_ONCE(delta > (1ULL << 59),
2392 				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2393 				  (unsigned long long)delta,
2394 				  (unsigned long long)ts,
2395 				  (unsigned long long)cpu_buffer->write_stamp,
2396 				  local_clock_stable ? "" :
2397 				  "If you just came from a suspend/resume,\n"
2398 				  "please switch to the trace global clock:\n"
2399 				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2400 			add_timestamp = 1;
2401 		}
2402 	}
2403 
2404 	event = __rb_reserve_next(cpu_buffer, length, ts,
2405 				  delta, add_timestamp);
2406 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2407 		goto again;
2408 
2409 	if (!event)
2410 		goto out_fail;
2411 
2412 	return event;
2413 
2414  out_fail:
2415 	rb_end_commit(cpu_buffer);
2416 	return NULL;
2417 }
2418 
2419 #ifdef CONFIG_TRACING
2420 
2421 #define TRACE_RECURSIVE_DEPTH 16
2422 
2423 /* Keep this code out of the fast path cache */
2424 static noinline void trace_recursive_fail(void)
2425 {
2426 	/* Disable all tracing before we do anything else */
2427 	tracing_off_permanent();
2428 
2429 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2430 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2431 		    trace_recursion_buffer(),
2432 		    hardirq_count() >> HARDIRQ_SHIFT,
2433 		    softirq_count() >> SOFTIRQ_SHIFT,
2434 		    in_nmi());
2435 
2436 	WARN_ON_ONCE(1);
2437 }
2438 
2439 static inline int trace_recursive_lock(void)
2440 {
2441 	trace_recursion_inc();
2442 
2443 	if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2444 		return 0;
2445 
2446 	trace_recursive_fail();
2447 
2448 	return -1;
2449 }
2450 
2451 static inline void trace_recursive_unlock(void)
2452 {
2453 	WARN_ON_ONCE(!trace_recursion_buffer());
2454 
2455 	trace_recursion_dec();
2456 }
2457 
2458 #else
2459 
2460 #define trace_recursive_lock()		(0)
2461 #define trace_recursive_unlock()	do { } while (0)
2462 
2463 #endif
2464 
2465 /**
2466  * ring_buffer_lock_reserve - reserve a part of the buffer
2467  * @buffer: the ring buffer to reserve from
2468  * @length: the length of the data to reserve (excluding event header)
2469  *
2470  * Returns a reseverd event on the ring buffer to copy directly to.
2471  * The user of this interface will need to get the body to write into
2472  * and can use the ring_buffer_event_data() interface.
2473  *
2474  * The length is the length of the data needed, not the event length
2475  * which also includes the event header.
2476  *
2477  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2478  * If NULL is returned, then nothing has been allocated or locked.
2479  */
2480 struct ring_buffer_event *
2481 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2482 {
2483 	struct ring_buffer_per_cpu *cpu_buffer;
2484 	struct ring_buffer_event *event;
2485 	int cpu;
2486 
2487 	if (ring_buffer_flags != RB_BUFFERS_ON)
2488 		return NULL;
2489 
2490 	/* If we are tracing schedule, we don't want to recurse */
2491 	preempt_disable_notrace();
2492 
2493 	if (atomic_read(&buffer->record_disabled))
2494 		goto out_nocheck;
2495 
2496 	if (trace_recursive_lock())
2497 		goto out_nocheck;
2498 
2499 	cpu = raw_smp_processor_id();
2500 
2501 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2502 		goto out;
2503 
2504 	cpu_buffer = buffer->buffers[cpu];
2505 
2506 	if (atomic_read(&cpu_buffer->record_disabled))
2507 		goto out;
2508 
2509 	if (length > BUF_MAX_DATA_SIZE)
2510 		goto out;
2511 
2512 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2513 	if (!event)
2514 		goto out;
2515 
2516 	return event;
2517 
2518  out:
2519 	trace_recursive_unlock();
2520 
2521  out_nocheck:
2522 	preempt_enable_notrace();
2523 	return NULL;
2524 }
2525 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2526 
2527 static void
2528 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2529 		      struct ring_buffer_event *event)
2530 {
2531 	u64 delta;
2532 
2533 	/*
2534 	 * The event first in the commit queue updates the
2535 	 * time stamp.
2536 	 */
2537 	if (rb_event_is_commit(cpu_buffer, event)) {
2538 		/*
2539 		 * A commit event that is first on a page
2540 		 * updates the write timestamp with the page stamp
2541 		 */
2542 		if (!rb_event_index(event))
2543 			cpu_buffer->write_stamp =
2544 				cpu_buffer->commit_page->page->time_stamp;
2545 		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2546 			delta = event->array[0];
2547 			delta <<= TS_SHIFT;
2548 			delta += event->time_delta;
2549 			cpu_buffer->write_stamp += delta;
2550 		} else
2551 			cpu_buffer->write_stamp += event->time_delta;
2552 	}
2553 }
2554 
2555 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2556 		      struct ring_buffer_event *event)
2557 {
2558 	local_inc(&cpu_buffer->entries);
2559 	rb_update_write_stamp(cpu_buffer, event);
2560 	rb_end_commit(cpu_buffer);
2561 }
2562 
2563 /**
2564  * ring_buffer_unlock_commit - commit a reserved
2565  * @buffer: The buffer to commit to
2566  * @event: The event pointer to commit.
2567  *
2568  * This commits the data to the ring buffer, and releases any locks held.
2569  *
2570  * Must be paired with ring_buffer_lock_reserve.
2571  */
2572 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2573 			      struct ring_buffer_event *event)
2574 {
2575 	struct ring_buffer_per_cpu *cpu_buffer;
2576 	int cpu = raw_smp_processor_id();
2577 
2578 	cpu_buffer = buffer->buffers[cpu];
2579 
2580 	rb_commit(cpu_buffer, event);
2581 
2582 	trace_recursive_unlock();
2583 
2584 	preempt_enable_notrace();
2585 
2586 	return 0;
2587 }
2588 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2589 
2590 static inline void rb_event_discard(struct ring_buffer_event *event)
2591 {
2592 	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2593 		event = skip_time_extend(event);
2594 
2595 	/* array[0] holds the actual length for the discarded event */
2596 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2597 	event->type_len = RINGBUF_TYPE_PADDING;
2598 	/* time delta must be non zero */
2599 	if (!event->time_delta)
2600 		event->time_delta = 1;
2601 }
2602 
2603 /*
2604  * Decrement the entries to the page that an event is on.
2605  * The event does not even need to exist, only the pointer
2606  * to the page it is on. This may only be called before the commit
2607  * takes place.
2608  */
2609 static inline void
2610 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2611 		   struct ring_buffer_event *event)
2612 {
2613 	unsigned long addr = (unsigned long)event;
2614 	struct buffer_page *bpage = cpu_buffer->commit_page;
2615 	struct buffer_page *start;
2616 
2617 	addr &= PAGE_MASK;
2618 
2619 	/* Do the likely case first */
2620 	if (likely(bpage->page == (void *)addr)) {
2621 		local_dec(&bpage->entries);
2622 		return;
2623 	}
2624 
2625 	/*
2626 	 * Because the commit page may be on the reader page we
2627 	 * start with the next page and check the end loop there.
2628 	 */
2629 	rb_inc_page(cpu_buffer, &bpage);
2630 	start = bpage;
2631 	do {
2632 		if (bpage->page == (void *)addr) {
2633 			local_dec(&bpage->entries);
2634 			return;
2635 		}
2636 		rb_inc_page(cpu_buffer, &bpage);
2637 	} while (bpage != start);
2638 
2639 	/* commit not part of this buffer?? */
2640 	RB_WARN_ON(cpu_buffer, 1);
2641 }
2642 
2643 /**
2644  * ring_buffer_commit_discard - discard an event that has not been committed
2645  * @buffer: the ring buffer
2646  * @event: non committed event to discard
2647  *
2648  * Sometimes an event that is in the ring buffer needs to be ignored.
2649  * This function lets the user discard an event in the ring buffer
2650  * and then that event will not be read later.
2651  *
2652  * This function only works if it is called before the the item has been
2653  * committed. It will try to free the event from the ring buffer
2654  * if another event has not been added behind it.
2655  *
2656  * If another event has been added behind it, it will set the event
2657  * up as discarded, and perform the commit.
2658  *
2659  * If this function is called, do not call ring_buffer_unlock_commit on
2660  * the event.
2661  */
2662 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2663 				struct ring_buffer_event *event)
2664 {
2665 	struct ring_buffer_per_cpu *cpu_buffer;
2666 	int cpu;
2667 
2668 	/* The event is discarded regardless */
2669 	rb_event_discard(event);
2670 
2671 	cpu = smp_processor_id();
2672 	cpu_buffer = buffer->buffers[cpu];
2673 
2674 	/*
2675 	 * This must only be called if the event has not been
2676 	 * committed yet. Thus we can assume that preemption
2677 	 * is still disabled.
2678 	 */
2679 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2680 
2681 	rb_decrement_entry(cpu_buffer, event);
2682 	if (rb_try_to_discard(cpu_buffer, event))
2683 		goto out;
2684 
2685 	/*
2686 	 * The commit is still visible by the reader, so we
2687 	 * must still update the timestamp.
2688 	 */
2689 	rb_update_write_stamp(cpu_buffer, event);
2690  out:
2691 	rb_end_commit(cpu_buffer);
2692 
2693 	trace_recursive_unlock();
2694 
2695 	preempt_enable_notrace();
2696 
2697 }
2698 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2699 
2700 /**
2701  * ring_buffer_write - write data to the buffer without reserving
2702  * @buffer: The ring buffer to write to.
2703  * @length: The length of the data being written (excluding the event header)
2704  * @data: The data to write to the buffer.
2705  *
2706  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2707  * one function. If you already have the data to write to the buffer, it
2708  * may be easier to simply call this function.
2709  *
2710  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2711  * and not the length of the event which would hold the header.
2712  */
2713 int ring_buffer_write(struct ring_buffer *buffer,
2714 			unsigned long length,
2715 			void *data)
2716 {
2717 	struct ring_buffer_per_cpu *cpu_buffer;
2718 	struct ring_buffer_event *event;
2719 	void *body;
2720 	int ret = -EBUSY;
2721 	int cpu;
2722 
2723 	if (ring_buffer_flags != RB_BUFFERS_ON)
2724 		return -EBUSY;
2725 
2726 	preempt_disable_notrace();
2727 
2728 	if (atomic_read(&buffer->record_disabled))
2729 		goto out;
2730 
2731 	cpu = raw_smp_processor_id();
2732 
2733 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2734 		goto out;
2735 
2736 	cpu_buffer = buffer->buffers[cpu];
2737 
2738 	if (atomic_read(&cpu_buffer->record_disabled))
2739 		goto out;
2740 
2741 	if (length > BUF_MAX_DATA_SIZE)
2742 		goto out;
2743 
2744 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2745 	if (!event)
2746 		goto out;
2747 
2748 	body = rb_event_data(event);
2749 
2750 	memcpy(body, data, length);
2751 
2752 	rb_commit(cpu_buffer, event);
2753 
2754 	ret = 0;
2755  out:
2756 	preempt_enable_notrace();
2757 
2758 	return ret;
2759 }
2760 EXPORT_SYMBOL_GPL(ring_buffer_write);
2761 
2762 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2763 {
2764 	struct buffer_page *reader = cpu_buffer->reader_page;
2765 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2766 	struct buffer_page *commit = cpu_buffer->commit_page;
2767 
2768 	/* In case of error, head will be NULL */
2769 	if (unlikely(!head))
2770 		return 1;
2771 
2772 	return reader->read == rb_page_commit(reader) &&
2773 		(commit == reader ||
2774 		 (commit == head &&
2775 		  head->read == rb_page_commit(commit)));
2776 }
2777 
2778 /**
2779  * ring_buffer_record_disable - stop all writes into the buffer
2780  * @buffer: The ring buffer to stop writes to.
2781  *
2782  * This prevents all writes to the buffer. Any attempt to write
2783  * to the buffer after this will fail and return NULL.
2784  *
2785  * The caller should call synchronize_sched() after this.
2786  */
2787 void ring_buffer_record_disable(struct ring_buffer *buffer)
2788 {
2789 	atomic_inc(&buffer->record_disabled);
2790 }
2791 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2792 
2793 /**
2794  * ring_buffer_record_enable - enable writes to the buffer
2795  * @buffer: The ring buffer to enable writes
2796  *
2797  * Note, multiple disables will need the same number of enables
2798  * to truly enable the writing (much like preempt_disable).
2799  */
2800 void ring_buffer_record_enable(struct ring_buffer *buffer)
2801 {
2802 	atomic_dec(&buffer->record_disabled);
2803 }
2804 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2805 
2806 /**
2807  * ring_buffer_record_off - stop all writes into the buffer
2808  * @buffer: The ring buffer to stop writes to.
2809  *
2810  * This prevents all writes to the buffer. Any attempt to write
2811  * to the buffer after this will fail and return NULL.
2812  *
2813  * This is different than ring_buffer_record_disable() as
2814  * it works like an on/off switch, where as the disable() verison
2815  * must be paired with a enable().
2816  */
2817 void ring_buffer_record_off(struct ring_buffer *buffer)
2818 {
2819 	unsigned int rd;
2820 	unsigned int new_rd;
2821 
2822 	do {
2823 		rd = atomic_read(&buffer->record_disabled);
2824 		new_rd = rd | RB_BUFFER_OFF;
2825 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2826 }
2827 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
2828 
2829 /**
2830  * ring_buffer_record_on - restart writes into the buffer
2831  * @buffer: The ring buffer to start writes to.
2832  *
2833  * This enables all writes to the buffer that was disabled by
2834  * ring_buffer_record_off().
2835  *
2836  * This is different than ring_buffer_record_enable() as
2837  * it works like an on/off switch, where as the enable() verison
2838  * must be paired with a disable().
2839  */
2840 void ring_buffer_record_on(struct ring_buffer *buffer)
2841 {
2842 	unsigned int rd;
2843 	unsigned int new_rd;
2844 
2845 	do {
2846 		rd = atomic_read(&buffer->record_disabled);
2847 		new_rd = rd & ~RB_BUFFER_OFF;
2848 	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
2849 }
2850 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
2851 
2852 /**
2853  * ring_buffer_record_is_on - return true if the ring buffer can write
2854  * @buffer: The ring buffer to see if write is enabled
2855  *
2856  * Returns true if the ring buffer is in a state that it accepts writes.
2857  */
2858 int ring_buffer_record_is_on(struct ring_buffer *buffer)
2859 {
2860 	return !atomic_read(&buffer->record_disabled);
2861 }
2862 
2863 /**
2864  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2865  * @buffer: The ring buffer to stop writes to.
2866  * @cpu: The CPU buffer to stop
2867  *
2868  * This prevents all writes to the buffer. Any attempt to write
2869  * to the buffer after this will fail and return NULL.
2870  *
2871  * The caller should call synchronize_sched() after this.
2872  */
2873 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2874 {
2875 	struct ring_buffer_per_cpu *cpu_buffer;
2876 
2877 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2878 		return;
2879 
2880 	cpu_buffer = buffer->buffers[cpu];
2881 	atomic_inc(&cpu_buffer->record_disabled);
2882 }
2883 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2884 
2885 /**
2886  * ring_buffer_record_enable_cpu - enable writes to the buffer
2887  * @buffer: The ring buffer to enable writes
2888  * @cpu: The CPU to enable.
2889  *
2890  * Note, multiple disables will need the same number of enables
2891  * to truly enable the writing (much like preempt_disable).
2892  */
2893 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2894 {
2895 	struct ring_buffer_per_cpu *cpu_buffer;
2896 
2897 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2898 		return;
2899 
2900 	cpu_buffer = buffer->buffers[cpu];
2901 	atomic_dec(&cpu_buffer->record_disabled);
2902 }
2903 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2904 
2905 /*
2906  * The total entries in the ring buffer is the running counter
2907  * of entries entered into the ring buffer, minus the sum of
2908  * the entries read from the ring buffer and the number of
2909  * entries that were overwritten.
2910  */
2911 static inline unsigned long
2912 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2913 {
2914 	return local_read(&cpu_buffer->entries) -
2915 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2916 }
2917 
2918 /**
2919  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
2920  * @buffer: The ring buffer
2921  * @cpu: The per CPU buffer to read from.
2922  */
2923 unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
2924 {
2925 	unsigned long flags;
2926 	struct ring_buffer_per_cpu *cpu_buffer;
2927 	struct buffer_page *bpage;
2928 	unsigned long ret;
2929 
2930 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2931 		return 0;
2932 
2933 	cpu_buffer = buffer->buffers[cpu];
2934 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2935 	/*
2936 	 * if the tail is on reader_page, oldest time stamp is on the reader
2937 	 * page
2938 	 */
2939 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2940 		bpage = cpu_buffer->reader_page;
2941 	else
2942 		bpage = rb_set_head_page(cpu_buffer);
2943 	ret = bpage->page->time_stamp;
2944 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2945 
2946 	return ret;
2947 }
2948 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
2949 
2950 /**
2951  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
2952  * @buffer: The ring buffer
2953  * @cpu: The per CPU buffer to read from.
2954  */
2955 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
2956 {
2957 	struct ring_buffer_per_cpu *cpu_buffer;
2958 	unsigned long ret;
2959 
2960 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2961 		return 0;
2962 
2963 	cpu_buffer = buffer->buffers[cpu];
2964 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
2965 
2966 	return ret;
2967 }
2968 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
2969 
2970 /**
2971  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2972  * @buffer: The ring buffer
2973  * @cpu: The per CPU buffer to get the entries from.
2974  */
2975 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2976 {
2977 	struct ring_buffer_per_cpu *cpu_buffer;
2978 
2979 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2980 		return 0;
2981 
2982 	cpu_buffer = buffer->buffers[cpu];
2983 
2984 	return rb_num_of_entries(cpu_buffer);
2985 }
2986 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2987 
2988 /**
2989  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2990  * @buffer: The ring buffer
2991  * @cpu: The per CPU buffer to get the number of overruns from
2992  */
2993 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2994 {
2995 	struct ring_buffer_per_cpu *cpu_buffer;
2996 	unsigned long ret;
2997 
2998 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2999 		return 0;
3000 
3001 	cpu_buffer = buffer->buffers[cpu];
3002 	ret = local_read(&cpu_buffer->overrun);
3003 
3004 	return ret;
3005 }
3006 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3007 
3008 /**
3009  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
3010  * @buffer: The ring buffer
3011  * @cpu: The per CPU buffer to get the number of overruns from
3012  */
3013 unsigned long
3014 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3015 {
3016 	struct ring_buffer_per_cpu *cpu_buffer;
3017 	unsigned long ret;
3018 
3019 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3020 		return 0;
3021 
3022 	cpu_buffer = buffer->buffers[cpu];
3023 	ret = local_read(&cpu_buffer->commit_overrun);
3024 
3025 	return ret;
3026 }
3027 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3028 
3029 /**
3030  * ring_buffer_entries - get the number of entries in a buffer
3031  * @buffer: The ring buffer
3032  *
3033  * Returns the total number of entries in the ring buffer
3034  * (all CPU entries)
3035  */
3036 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3037 {
3038 	struct ring_buffer_per_cpu *cpu_buffer;
3039 	unsigned long entries = 0;
3040 	int cpu;
3041 
3042 	/* if you care about this being correct, lock the buffer */
3043 	for_each_buffer_cpu(buffer, cpu) {
3044 		cpu_buffer = buffer->buffers[cpu];
3045 		entries += rb_num_of_entries(cpu_buffer);
3046 	}
3047 
3048 	return entries;
3049 }
3050 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3051 
3052 /**
3053  * ring_buffer_overruns - get the number of overruns in buffer
3054  * @buffer: The ring buffer
3055  *
3056  * Returns the total number of overruns in the ring buffer
3057  * (all CPU entries)
3058  */
3059 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3060 {
3061 	struct ring_buffer_per_cpu *cpu_buffer;
3062 	unsigned long overruns = 0;
3063 	int cpu;
3064 
3065 	/* if you care about this being correct, lock the buffer */
3066 	for_each_buffer_cpu(buffer, cpu) {
3067 		cpu_buffer = buffer->buffers[cpu];
3068 		overruns += local_read(&cpu_buffer->overrun);
3069 	}
3070 
3071 	return overruns;
3072 }
3073 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3074 
3075 static void rb_iter_reset(struct ring_buffer_iter *iter)
3076 {
3077 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3078 
3079 	/* Iterator usage is expected to have record disabled */
3080 	if (list_empty(&cpu_buffer->reader_page->list)) {
3081 		iter->head_page = rb_set_head_page(cpu_buffer);
3082 		if (unlikely(!iter->head_page))
3083 			return;
3084 		iter->head = iter->head_page->read;
3085 	} else {
3086 		iter->head_page = cpu_buffer->reader_page;
3087 		iter->head = cpu_buffer->reader_page->read;
3088 	}
3089 	if (iter->head)
3090 		iter->read_stamp = cpu_buffer->read_stamp;
3091 	else
3092 		iter->read_stamp = iter->head_page->page->time_stamp;
3093 	iter->cache_reader_page = cpu_buffer->reader_page;
3094 	iter->cache_read = cpu_buffer->read;
3095 }
3096 
3097 /**
3098  * ring_buffer_iter_reset - reset an iterator
3099  * @iter: The iterator to reset
3100  *
3101  * Resets the iterator, so that it will start from the beginning
3102  * again.
3103  */
3104 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3105 {
3106 	struct ring_buffer_per_cpu *cpu_buffer;
3107 	unsigned long flags;
3108 
3109 	if (!iter)
3110 		return;
3111 
3112 	cpu_buffer = iter->cpu_buffer;
3113 
3114 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3115 	rb_iter_reset(iter);
3116 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3117 }
3118 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3119 
3120 /**
3121  * ring_buffer_iter_empty - check if an iterator has no more to read
3122  * @iter: The iterator to check
3123  */
3124 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3125 {
3126 	struct ring_buffer_per_cpu *cpu_buffer;
3127 
3128 	cpu_buffer = iter->cpu_buffer;
3129 
3130 	return iter->head_page == cpu_buffer->commit_page &&
3131 		iter->head == rb_commit_index(cpu_buffer);
3132 }
3133 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3134 
3135 static void
3136 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3137 		     struct ring_buffer_event *event)
3138 {
3139 	u64 delta;
3140 
3141 	switch (event->type_len) {
3142 	case RINGBUF_TYPE_PADDING:
3143 		return;
3144 
3145 	case RINGBUF_TYPE_TIME_EXTEND:
3146 		delta = event->array[0];
3147 		delta <<= TS_SHIFT;
3148 		delta += event->time_delta;
3149 		cpu_buffer->read_stamp += delta;
3150 		return;
3151 
3152 	case RINGBUF_TYPE_TIME_STAMP:
3153 		/* FIXME: not implemented */
3154 		return;
3155 
3156 	case RINGBUF_TYPE_DATA:
3157 		cpu_buffer->read_stamp += event->time_delta;
3158 		return;
3159 
3160 	default:
3161 		BUG();
3162 	}
3163 	return;
3164 }
3165 
3166 static void
3167 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3168 			  struct ring_buffer_event *event)
3169 {
3170 	u64 delta;
3171 
3172 	switch (event->type_len) {
3173 	case RINGBUF_TYPE_PADDING:
3174 		return;
3175 
3176 	case RINGBUF_TYPE_TIME_EXTEND:
3177 		delta = event->array[0];
3178 		delta <<= TS_SHIFT;
3179 		delta += event->time_delta;
3180 		iter->read_stamp += delta;
3181 		return;
3182 
3183 	case RINGBUF_TYPE_TIME_STAMP:
3184 		/* FIXME: not implemented */
3185 		return;
3186 
3187 	case RINGBUF_TYPE_DATA:
3188 		iter->read_stamp += event->time_delta;
3189 		return;
3190 
3191 	default:
3192 		BUG();
3193 	}
3194 	return;
3195 }
3196 
3197 static struct buffer_page *
3198 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3199 {
3200 	struct buffer_page *reader = NULL;
3201 	unsigned long overwrite;
3202 	unsigned long flags;
3203 	int nr_loops = 0;
3204 	int ret;
3205 
3206 	local_irq_save(flags);
3207 	arch_spin_lock(&cpu_buffer->lock);
3208 
3209  again:
3210 	/*
3211 	 * This should normally only loop twice. But because the
3212 	 * start of the reader inserts an empty page, it causes
3213 	 * a case where we will loop three times. There should be no
3214 	 * reason to loop four times (that I know of).
3215 	 */
3216 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3217 		reader = NULL;
3218 		goto out;
3219 	}
3220 
3221 	reader = cpu_buffer->reader_page;
3222 
3223 	/* If there's more to read, return this page */
3224 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
3225 		goto out;
3226 
3227 	/* Never should we have an index greater than the size */
3228 	if (RB_WARN_ON(cpu_buffer,
3229 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
3230 		goto out;
3231 
3232 	/* check if we caught up to the tail */
3233 	reader = NULL;
3234 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3235 		goto out;
3236 
3237 	/*
3238 	 * Reset the reader page to size zero.
3239 	 */
3240 	local_set(&cpu_buffer->reader_page->write, 0);
3241 	local_set(&cpu_buffer->reader_page->entries, 0);
3242 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3243 	cpu_buffer->reader_page->real_end = 0;
3244 
3245  spin:
3246 	/*
3247 	 * Splice the empty reader page into the list around the head.
3248 	 */
3249 	reader = rb_set_head_page(cpu_buffer);
3250 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3251 	cpu_buffer->reader_page->list.prev = reader->list.prev;
3252 
3253 	/*
3254 	 * cpu_buffer->pages just needs to point to the buffer, it
3255 	 *  has no specific buffer page to point to. Lets move it out
3256 	 *  of our way so we don't accidentally swap it.
3257 	 */
3258 	cpu_buffer->pages = reader->list.prev;
3259 
3260 	/* The reader page will be pointing to the new head */
3261 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3262 
3263 	/*
3264 	 * We want to make sure we read the overruns after we set up our
3265 	 * pointers to the next object. The writer side does a
3266 	 * cmpxchg to cross pages which acts as the mb on the writer
3267 	 * side. Note, the reader will constantly fail the swap
3268 	 * while the writer is updating the pointers, so this
3269 	 * guarantees that the overwrite recorded here is the one we
3270 	 * want to compare with the last_overrun.
3271 	 */
3272 	smp_mb();
3273 	overwrite = local_read(&(cpu_buffer->overrun));
3274 
3275 	/*
3276 	 * Here's the tricky part.
3277 	 *
3278 	 * We need to move the pointer past the header page.
3279 	 * But we can only do that if a writer is not currently
3280 	 * moving it. The page before the header page has the
3281 	 * flag bit '1' set if it is pointing to the page we want.
3282 	 * but if the writer is in the process of moving it
3283 	 * than it will be '2' or already moved '0'.
3284 	 */
3285 
3286 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3287 
3288 	/*
3289 	 * If we did not convert it, then we must try again.
3290 	 */
3291 	if (!ret)
3292 		goto spin;
3293 
3294 	/*
3295 	 * Yeah! We succeeded in replacing the page.
3296 	 *
3297 	 * Now make the new head point back to the reader page.
3298 	 */
3299 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3300 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3301 
3302 	/* Finally update the reader page to the new head */
3303 	cpu_buffer->reader_page = reader;
3304 	rb_reset_reader_page(cpu_buffer);
3305 
3306 	if (overwrite != cpu_buffer->last_overrun) {
3307 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3308 		cpu_buffer->last_overrun = overwrite;
3309 	}
3310 
3311 	goto again;
3312 
3313  out:
3314 	arch_spin_unlock(&cpu_buffer->lock);
3315 	local_irq_restore(flags);
3316 
3317 	return reader;
3318 }
3319 
3320 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3321 {
3322 	struct ring_buffer_event *event;
3323 	struct buffer_page *reader;
3324 	unsigned length;
3325 
3326 	reader = rb_get_reader_page(cpu_buffer);
3327 
3328 	/* This function should not be called when buffer is empty */
3329 	if (RB_WARN_ON(cpu_buffer, !reader))
3330 		return;
3331 
3332 	event = rb_reader_event(cpu_buffer);
3333 
3334 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3335 		cpu_buffer->read++;
3336 
3337 	rb_update_read_stamp(cpu_buffer, event);
3338 
3339 	length = rb_event_length(event);
3340 	cpu_buffer->reader_page->read += length;
3341 }
3342 
3343 static void rb_advance_iter(struct ring_buffer_iter *iter)
3344 {
3345 	struct ring_buffer_per_cpu *cpu_buffer;
3346 	struct ring_buffer_event *event;
3347 	unsigned length;
3348 
3349 	cpu_buffer = iter->cpu_buffer;
3350 
3351 	/*
3352 	 * Check if we are at the end of the buffer.
3353 	 */
3354 	if (iter->head >= rb_page_size(iter->head_page)) {
3355 		/* discarded commits can make the page empty */
3356 		if (iter->head_page == cpu_buffer->commit_page)
3357 			return;
3358 		rb_inc_iter(iter);
3359 		return;
3360 	}
3361 
3362 	event = rb_iter_head_event(iter);
3363 
3364 	length = rb_event_length(event);
3365 
3366 	/*
3367 	 * This should not be called to advance the header if we are
3368 	 * at the tail of the buffer.
3369 	 */
3370 	if (RB_WARN_ON(cpu_buffer,
3371 		       (iter->head_page == cpu_buffer->commit_page) &&
3372 		       (iter->head + length > rb_commit_index(cpu_buffer))))
3373 		return;
3374 
3375 	rb_update_iter_read_stamp(iter, event);
3376 
3377 	iter->head += length;
3378 
3379 	/* check for end of page padding */
3380 	if ((iter->head >= rb_page_size(iter->head_page)) &&
3381 	    (iter->head_page != cpu_buffer->commit_page))
3382 		rb_advance_iter(iter);
3383 }
3384 
3385 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3386 {
3387 	return cpu_buffer->lost_events;
3388 }
3389 
3390 static struct ring_buffer_event *
3391 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3392 	       unsigned long *lost_events)
3393 {
3394 	struct ring_buffer_event *event;
3395 	struct buffer_page *reader;
3396 	int nr_loops = 0;
3397 
3398  again:
3399 	/*
3400 	 * We repeat when a time extend is encountered.
3401 	 * Since the time extend is always attached to a data event,
3402 	 * we should never loop more than once.
3403 	 * (We never hit the following condition more than twice).
3404 	 */
3405 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3406 		return NULL;
3407 
3408 	reader = rb_get_reader_page(cpu_buffer);
3409 	if (!reader)
3410 		return NULL;
3411 
3412 	event = rb_reader_event(cpu_buffer);
3413 
3414 	switch (event->type_len) {
3415 	case RINGBUF_TYPE_PADDING:
3416 		if (rb_null_event(event))
3417 			RB_WARN_ON(cpu_buffer, 1);
3418 		/*
3419 		 * Because the writer could be discarding every
3420 		 * event it creates (which would probably be bad)
3421 		 * if we were to go back to "again" then we may never
3422 		 * catch up, and will trigger the warn on, or lock
3423 		 * the box. Return the padding, and we will release
3424 		 * the current locks, and try again.
3425 		 */
3426 		return event;
3427 
3428 	case RINGBUF_TYPE_TIME_EXTEND:
3429 		/* Internal data, OK to advance */
3430 		rb_advance_reader(cpu_buffer);
3431 		goto again;
3432 
3433 	case RINGBUF_TYPE_TIME_STAMP:
3434 		/* FIXME: not implemented */
3435 		rb_advance_reader(cpu_buffer);
3436 		goto again;
3437 
3438 	case RINGBUF_TYPE_DATA:
3439 		if (ts) {
3440 			*ts = cpu_buffer->read_stamp + event->time_delta;
3441 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3442 							 cpu_buffer->cpu, ts);
3443 		}
3444 		if (lost_events)
3445 			*lost_events = rb_lost_events(cpu_buffer);
3446 		return event;
3447 
3448 	default:
3449 		BUG();
3450 	}
3451 
3452 	return NULL;
3453 }
3454 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3455 
3456 static struct ring_buffer_event *
3457 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3458 {
3459 	struct ring_buffer *buffer;
3460 	struct ring_buffer_per_cpu *cpu_buffer;
3461 	struct ring_buffer_event *event;
3462 	int nr_loops = 0;
3463 
3464 	cpu_buffer = iter->cpu_buffer;
3465 	buffer = cpu_buffer->buffer;
3466 
3467 	/*
3468 	 * Check if someone performed a consuming read to
3469 	 * the buffer. A consuming read invalidates the iterator
3470 	 * and we need to reset the iterator in this case.
3471 	 */
3472 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3473 		     iter->cache_reader_page != cpu_buffer->reader_page))
3474 		rb_iter_reset(iter);
3475 
3476  again:
3477 	if (ring_buffer_iter_empty(iter))
3478 		return NULL;
3479 
3480 	/*
3481 	 * We repeat when a time extend is encountered.
3482 	 * Since the time extend is always attached to a data event,
3483 	 * we should never loop more than once.
3484 	 * (We never hit the following condition more than twice).
3485 	 */
3486 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3487 		return NULL;
3488 
3489 	if (rb_per_cpu_empty(cpu_buffer))
3490 		return NULL;
3491 
3492 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3493 		rb_inc_iter(iter);
3494 		goto again;
3495 	}
3496 
3497 	event = rb_iter_head_event(iter);
3498 
3499 	switch (event->type_len) {
3500 	case RINGBUF_TYPE_PADDING:
3501 		if (rb_null_event(event)) {
3502 			rb_inc_iter(iter);
3503 			goto again;
3504 		}
3505 		rb_advance_iter(iter);
3506 		return event;
3507 
3508 	case RINGBUF_TYPE_TIME_EXTEND:
3509 		/* Internal data, OK to advance */
3510 		rb_advance_iter(iter);
3511 		goto again;
3512 
3513 	case RINGBUF_TYPE_TIME_STAMP:
3514 		/* FIXME: not implemented */
3515 		rb_advance_iter(iter);
3516 		goto again;
3517 
3518 	case RINGBUF_TYPE_DATA:
3519 		if (ts) {
3520 			*ts = iter->read_stamp + event->time_delta;
3521 			ring_buffer_normalize_time_stamp(buffer,
3522 							 cpu_buffer->cpu, ts);
3523 		}
3524 		return event;
3525 
3526 	default:
3527 		BUG();
3528 	}
3529 
3530 	return NULL;
3531 }
3532 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3533 
3534 static inline int rb_ok_to_lock(void)
3535 {
3536 	/*
3537 	 * If an NMI die dumps out the content of the ring buffer
3538 	 * do not grab locks. We also permanently disable the ring
3539 	 * buffer too. A one time deal is all you get from reading
3540 	 * the ring buffer from an NMI.
3541 	 */
3542 	if (likely(!in_nmi()))
3543 		return 1;
3544 
3545 	tracing_off_permanent();
3546 	return 0;
3547 }
3548 
3549 /**
3550  * ring_buffer_peek - peek at the next event to be read
3551  * @buffer: The ring buffer to read
3552  * @cpu: The cpu to peak at
3553  * @ts: The timestamp counter of this event.
3554  * @lost_events: a variable to store if events were lost (may be NULL)
3555  *
3556  * This will return the event that will be read next, but does
3557  * not consume the data.
3558  */
3559 struct ring_buffer_event *
3560 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3561 		 unsigned long *lost_events)
3562 {
3563 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3564 	struct ring_buffer_event *event;
3565 	unsigned long flags;
3566 	int dolock;
3567 
3568 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3569 		return NULL;
3570 
3571 	dolock = rb_ok_to_lock();
3572  again:
3573 	local_irq_save(flags);
3574 	if (dolock)
3575 		raw_spin_lock(&cpu_buffer->reader_lock);
3576 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3577 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3578 		rb_advance_reader(cpu_buffer);
3579 	if (dolock)
3580 		raw_spin_unlock(&cpu_buffer->reader_lock);
3581 	local_irq_restore(flags);
3582 
3583 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3584 		goto again;
3585 
3586 	return event;
3587 }
3588 
3589 /**
3590  * ring_buffer_iter_peek - peek at the next event to be read
3591  * @iter: The ring buffer iterator
3592  * @ts: The timestamp counter of this event.
3593  *
3594  * This will return the event that will be read next, but does
3595  * not increment the iterator.
3596  */
3597 struct ring_buffer_event *
3598 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3599 {
3600 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3601 	struct ring_buffer_event *event;
3602 	unsigned long flags;
3603 
3604  again:
3605 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3606 	event = rb_iter_peek(iter, ts);
3607 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3608 
3609 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3610 		goto again;
3611 
3612 	return event;
3613 }
3614 
3615 /**
3616  * ring_buffer_consume - return an event and consume it
3617  * @buffer: The ring buffer to get the next event from
3618  * @cpu: the cpu to read the buffer from
3619  * @ts: a variable to store the timestamp (may be NULL)
3620  * @lost_events: a variable to store if events were lost (may be NULL)
3621  *
3622  * Returns the next event in the ring buffer, and that event is consumed.
3623  * Meaning, that sequential reads will keep returning a different event,
3624  * and eventually empty the ring buffer if the producer is slower.
3625  */
3626 struct ring_buffer_event *
3627 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3628 		    unsigned long *lost_events)
3629 {
3630 	struct ring_buffer_per_cpu *cpu_buffer;
3631 	struct ring_buffer_event *event = NULL;
3632 	unsigned long flags;
3633 	int dolock;
3634 
3635 	dolock = rb_ok_to_lock();
3636 
3637  again:
3638 	/* might be called in atomic */
3639 	preempt_disable();
3640 
3641 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3642 		goto out;
3643 
3644 	cpu_buffer = buffer->buffers[cpu];
3645 	local_irq_save(flags);
3646 	if (dolock)
3647 		raw_spin_lock(&cpu_buffer->reader_lock);
3648 
3649 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3650 	if (event) {
3651 		cpu_buffer->lost_events = 0;
3652 		rb_advance_reader(cpu_buffer);
3653 	}
3654 
3655 	if (dolock)
3656 		raw_spin_unlock(&cpu_buffer->reader_lock);
3657 	local_irq_restore(flags);
3658 
3659  out:
3660 	preempt_enable();
3661 
3662 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3663 		goto again;
3664 
3665 	return event;
3666 }
3667 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3668 
3669 /**
3670  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3671  * @buffer: The ring buffer to read from
3672  * @cpu: The cpu buffer to iterate over
3673  *
3674  * This performs the initial preparations necessary to iterate
3675  * through the buffer.  Memory is allocated, buffer recording
3676  * is disabled, and the iterator pointer is returned to the caller.
3677  *
3678  * Disabling buffer recordng prevents the reading from being
3679  * corrupted. This is not a consuming read, so a producer is not
3680  * expected.
3681  *
3682  * After a sequence of ring_buffer_read_prepare calls, the user is
3683  * expected to make at least one call to ring_buffer_prepare_sync.
3684  * Afterwards, ring_buffer_read_start is invoked to get things going
3685  * for real.
3686  *
3687  * This overall must be paired with ring_buffer_finish.
3688  */
3689 struct ring_buffer_iter *
3690 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3691 {
3692 	struct ring_buffer_per_cpu *cpu_buffer;
3693 	struct ring_buffer_iter *iter;
3694 
3695 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3696 		return NULL;
3697 
3698 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3699 	if (!iter)
3700 		return NULL;
3701 
3702 	cpu_buffer = buffer->buffers[cpu];
3703 
3704 	iter->cpu_buffer = cpu_buffer;
3705 
3706 	atomic_inc(&buffer->resize_disabled);
3707 	atomic_inc(&cpu_buffer->record_disabled);
3708 
3709 	return iter;
3710 }
3711 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3712 
3713 /**
3714  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3715  *
3716  * All previously invoked ring_buffer_read_prepare calls to prepare
3717  * iterators will be synchronized.  Afterwards, read_buffer_read_start
3718  * calls on those iterators are allowed.
3719  */
3720 void
3721 ring_buffer_read_prepare_sync(void)
3722 {
3723 	synchronize_sched();
3724 }
3725 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3726 
3727 /**
3728  * ring_buffer_read_start - start a non consuming read of the buffer
3729  * @iter: The iterator returned by ring_buffer_read_prepare
3730  *
3731  * This finalizes the startup of an iteration through the buffer.
3732  * The iterator comes from a call to ring_buffer_read_prepare and
3733  * an intervening ring_buffer_read_prepare_sync must have been
3734  * performed.
3735  *
3736  * Must be paired with ring_buffer_finish.
3737  */
3738 void
3739 ring_buffer_read_start(struct ring_buffer_iter *iter)
3740 {
3741 	struct ring_buffer_per_cpu *cpu_buffer;
3742 	unsigned long flags;
3743 
3744 	if (!iter)
3745 		return;
3746 
3747 	cpu_buffer = iter->cpu_buffer;
3748 
3749 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3750 	arch_spin_lock(&cpu_buffer->lock);
3751 	rb_iter_reset(iter);
3752 	arch_spin_unlock(&cpu_buffer->lock);
3753 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3754 }
3755 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3756 
3757 /**
3758  * ring_buffer_finish - finish reading the iterator of the buffer
3759  * @iter: The iterator retrieved by ring_buffer_start
3760  *
3761  * This re-enables the recording to the buffer, and frees the
3762  * iterator.
3763  */
3764 void
3765 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3766 {
3767 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3768 
3769 	/*
3770 	 * Ring buffer is disabled from recording, here's a good place
3771 	 * to check the integrity of the ring buffer.
3772 	 */
3773 	rb_check_pages(cpu_buffer);
3774 
3775 	atomic_dec(&cpu_buffer->record_disabled);
3776 	atomic_dec(&cpu_buffer->buffer->resize_disabled);
3777 	kfree(iter);
3778 }
3779 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3780 
3781 /**
3782  * ring_buffer_read - read the next item in the ring buffer by the iterator
3783  * @iter: The ring buffer iterator
3784  * @ts: The time stamp of the event read.
3785  *
3786  * This reads the next event in the ring buffer and increments the iterator.
3787  */
3788 struct ring_buffer_event *
3789 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3790 {
3791 	struct ring_buffer_event *event;
3792 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3793 	unsigned long flags;
3794 
3795 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3796  again:
3797 	event = rb_iter_peek(iter, ts);
3798 	if (!event)
3799 		goto out;
3800 
3801 	if (event->type_len == RINGBUF_TYPE_PADDING)
3802 		goto again;
3803 
3804 	rb_advance_iter(iter);
3805  out:
3806 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3807 
3808 	return event;
3809 }
3810 EXPORT_SYMBOL_GPL(ring_buffer_read);
3811 
3812 /**
3813  * ring_buffer_size - return the size of the ring buffer (in bytes)
3814  * @buffer: The ring buffer.
3815  */
3816 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
3817 {
3818 	/*
3819 	 * Earlier, this method returned
3820 	 *	BUF_PAGE_SIZE * buffer->nr_pages
3821 	 * Since the nr_pages field is now removed, we have converted this to
3822 	 * return the per cpu buffer value.
3823 	 */
3824 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3825 		return 0;
3826 
3827 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
3828 }
3829 EXPORT_SYMBOL_GPL(ring_buffer_size);
3830 
3831 static void
3832 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3833 {
3834 	rb_head_page_deactivate(cpu_buffer);
3835 
3836 	cpu_buffer->head_page
3837 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3838 	local_set(&cpu_buffer->head_page->write, 0);
3839 	local_set(&cpu_buffer->head_page->entries, 0);
3840 	local_set(&cpu_buffer->head_page->page->commit, 0);
3841 
3842 	cpu_buffer->head_page->read = 0;
3843 
3844 	cpu_buffer->tail_page = cpu_buffer->head_page;
3845 	cpu_buffer->commit_page = cpu_buffer->head_page;
3846 
3847 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3848 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
3849 	local_set(&cpu_buffer->reader_page->write, 0);
3850 	local_set(&cpu_buffer->reader_page->entries, 0);
3851 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3852 	cpu_buffer->reader_page->read = 0;
3853 
3854 	local_set(&cpu_buffer->commit_overrun, 0);
3855 	local_set(&cpu_buffer->entries_bytes, 0);
3856 	local_set(&cpu_buffer->overrun, 0);
3857 	local_set(&cpu_buffer->entries, 0);
3858 	local_set(&cpu_buffer->committing, 0);
3859 	local_set(&cpu_buffer->commits, 0);
3860 	cpu_buffer->read = 0;
3861 	cpu_buffer->read_bytes = 0;
3862 
3863 	cpu_buffer->write_stamp = 0;
3864 	cpu_buffer->read_stamp = 0;
3865 
3866 	cpu_buffer->lost_events = 0;
3867 	cpu_buffer->last_overrun = 0;
3868 
3869 	rb_head_page_activate(cpu_buffer);
3870 }
3871 
3872 /**
3873  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3874  * @buffer: The ring buffer to reset a per cpu buffer of
3875  * @cpu: The CPU buffer to be reset
3876  */
3877 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3878 {
3879 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3880 	unsigned long flags;
3881 
3882 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3883 		return;
3884 
3885 	atomic_inc(&buffer->resize_disabled);
3886 	atomic_inc(&cpu_buffer->record_disabled);
3887 
3888 	/* Make sure all commits have finished */
3889 	synchronize_sched();
3890 
3891 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3892 
3893 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3894 		goto out;
3895 
3896 	arch_spin_lock(&cpu_buffer->lock);
3897 
3898 	rb_reset_cpu(cpu_buffer);
3899 
3900 	arch_spin_unlock(&cpu_buffer->lock);
3901 
3902  out:
3903 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3904 
3905 	atomic_dec(&cpu_buffer->record_disabled);
3906 	atomic_dec(&buffer->resize_disabled);
3907 }
3908 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3909 
3910 /**
3911  * ring_buffer_reset - reset a ring buffer
3912  * @buffer: The ring buffer to reset all cpu buffers
3913  */
3914 void ring_buffer_reset(struct ring_buffer *buffer)
3915 {
3916 	int cpu;
3917 
3918 	for_each_buffer_cpu(buffer, cpu)
3919 		ring_buffer_reset_cpu(buffer, cpu);
3920 }
3921 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3922 
3923 /**
3924  * rind_buffer_empty - is the ring buffer empty?
3925  * @buffer: The ring buffer to test
3926  */
3927 int ring_buffer_empty(struct ring_buffer *buffer)
3928 {
3929 	struct ring_buffer_per_cpu *cpu_buffer;
3930 	unsigned long flags;
3931 	int dolock;
3932 	int cpu;
3933 	int ret;
3934 
3935 	dolock = rb_ok_to_lock();
3936 
3937 	/* yes this is racy, but if you don't like the race, lock the buffer */
3938 	for_each_buffer_cpu(buffer, cpu) {
3939 		cpu_buffer = buffer->buffers[cpu];
3940 		local_irq_save(flags);
3941 		if (dolock)
3942 			raw_spin_lock(&cpu_buffer->reader_lock);
3943 		ret = rb_per_cpu_empty(cpu_buffer);
3944 		if (dolock)
3945 			raw_spin_unlock(&cpu_buffer->reader_lock);
3946 		local_irq_restore(flags);
3947 
3948 		if (!ret)
3949 			return 0;
3950 	}
3951 
3952 	return 1;
3953 }
3954 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3955 
3956 /**
3957  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3958  * @buffer: The ring buffer
3959  * @cpu: The CPU buffer to test
3960  */
3961 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3962 {
3963 	struct ring_buffer_per_cpu *cpu_buffer;
3964 	unsigned long flags;
3965 	int dolock;
3966 	int ret;
3967 
3968 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3969 		return 1;
3970 
3971 	dolock = rb_ok_to_lock();
3972 
3973 	cpu_buffer = buffer->buffers[cpu];
3974 	local_irq_save(flags);
3975 	if (dolock)
3976 		raw_spin_lock(&cpu_buffer->reader_lock);
3977 	ret = rb_per_cpu_empty(cpu_buffer);
3978 	if (dolock)
3979 		raw_spin_unlock(&cpu_buffer->reader_lock);
3980 	local_irq_restore(flags);
3981 
3982 	return ret;
3983 }
3984 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3985 
3986 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3987 /**
3988  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3989  * @buffer_a: One buffer to swap with
3990  * @buffer_b: The other buffer to swap with
3991  *
3992  * This function is useful for tracers that want to take a "snapshot"
3993  * of a CPU buffer and has another back up buffer lying around.
3994  * it is expected that the tracer handles the cpu buffer not being
3995  * used at the moment.
3996  */
3997 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3998 			 struct ring_buffer *buffer_b, int cpu)
3999 {
4000 	struct ring_buffer_per_cpu *cpu_buffer_a;
4001 	struct ring_buffer_per_cpu *cpu_buffer_b;
4002 	int ret = -EINVAL;
4003 
4004 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4005 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
4006 		goto out;
4007 
4008 	cpu_buffer_a = buffer_a->buffers[cpu];
4009 	cpu_buffer_b = buffer_b->buffers[cpu];
4010 
4011 	/* At least make sure the two buffers are somewhat the same */
4012 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4013 		goto out;
4014 
4015 	ret = -EAGAIN;
4016 
4017 	if (ring_buffer_flags != RB_BUFFERS_ON)
4018 		goto out;
4019 
4020 	if (atomic_read(&buffer_a->record_disabled))
4021 		goto out;
4022 
4023 	if (atomic_read(&buffer_b->record_disabled))
4024 		goto out;
4025 
4026 	if (atomic_read(&cpu_buffer_a->record_disabled))
4027 		goto out;
4028 
4029 	if (atomic_read(&cpu_buffer_b->record_disabled))
4030 		goto out;
4031 
4032 	/*
4033 	 * We can't do a synchronize_sched here because this
4034 	 * function can be called in atomic context.
4035 	 * Normally this will be called from the same CPU as cpu.
4036 	 * If not it's up to the caller to protect this.
4037 	 */
4038 	atomic_inc(&cpu_buffer_a->record_disabled);
4039 	atomic_inc(&cpu_buffer_b->record_disabled);
4040 
4041 	ret = -EBUSY;
4042 	if (local_read(&cpu_buffer_a->committing))
4043 		goto out_dec;
4044 	if (local_read(&cpu_buffer_b->committing))
4045 		goto out_dec;
4046 
4047 	buffer_a->buffers[cpu] = cpu_buffer_b;
4048 	buffer_b->buffers[cpu] = cpu_buffer_a;
4049 
4050 	cpu_buffer_b->buffer = buffer_a;
4051 	cpu_buffer_a->buffer = buffer_b;
4052 
4053 	ret = 0;
4054 
4055 out_dec:
4056 	atomic_dec(&cpu_buffer_a->record_disabled);
4057 	atomic_dec(&cpu_buffer_b->record_disabled);
4058 out:
4059 	return ret;
4060 }
4061 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4062 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4063 
4064 /**
4065  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4066  * @buffer: the buffer to allocate for.
4067  *
4068  * This function is used in conjunction with ring_buffer_read_page.
4069  * When reading a full page from the ring buffer, these functions
4070  * can be used to speed up the process. The calling function should
4071  * allocate a few pages first with this function. Then when it
4072  * needs to get pages from the ring buffer, it passes the result
4073  * of this function into ring_buffer_read_page, which will swap
4074  * the page that was allocated, with the read page of the buffer.
4075  *
4076  * Returns:
4077  *  The page allocated, or NULL on error.
4078  */
4079 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4080 {
4081 	struct buffer_data_page *bpage;
4082 	struct page *page;
4083 
4084 	page = alloc_pages_node(cpu_to_node(cpu),
4085 				GFP_KERNEL | __GFP_NORETRY, 0);
4086 	if (!page)
4087 		return NULL;
4088 
4089 	bpage = page_address(page);
4090 
4091 	rb_init_page(bpage);
4092 
4093 	return bpage;
4094 }
4095 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4096 
4097 /**
4098  * ring_buffer_free_read_page - free an allocated read page
4099  * @buffer: the buffer the page was allocate for
4100  * @data: the page to free
4101  *
4102  * Free a page allocated from ring_buffer_alloc_read_page.
4103  */
4104 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4105 {
4106 	free_page((unsigned long)data);
4107 }
4108 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4109 
4110 /**
4111  * ring_buffer_read_page - extract a page from the ring buffer
4112  * @buffer: buffer to extract from
4113  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4114  * @len: amount to extract
4115  * @cpu: the cpu of the buffer to extract
4116  * @full: should the extraction only happen when the page is full.
4117  *
4118  * This function will pull out a page from the ring buffer and consume it.
4119  * @data_page must be the address of the variable that was returned
4120  * from ring_buffer_alloc_read_page. This is because the page might be used
4121  * to swap with a page in the ring buffer.
4122  *
4123  * for example:
4124  *	rpage = ring_buffer_alloc_read_page(buffer);
4125  *	if (!rpage)
4126  *		return error;
4127  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4128  *	if (ret >= 0)
4129  *		process_page(rpage, ret);
4130  *
4131  * When @full is set, the function will not return true unless
4132  * the writer is off the reader page.
4133  *
4134  * Note: it is up to the calling functions to handle sleeps and wakeups.
4135  *  The ring buffer can be used anywhere in the kernel and can not
4136  *  blindly call wake_up. The layer that uses the ring buffer must be
4137  *  responsible for that.
4138  *
4139  * Returns:
4140  *  >=0 if data has been transferred, returns the offset of consumed data.
4141  *  <0 if no data has been transferred.
4142  */
4143 int ring_buffer_read_page(struct ring_buffer *buffer,
4144 			  void **data_page, size_t len, int cpu, int full)
4145 {
4146 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4147 	struct ring_buffer_event *event;
4148 	struct buffer_data_page *bpage;
4149 	struct buffer_page *reader;
4150 	unsigned long missed_events;
4151 	unsigned long flags;
4152 	unsigned int commit;
4153 	unsigned int read;
4154 	u64 save_timestamp;
4155 	int ret = -1;
4156 
4157 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4158 		goto out;
4159 
4160 	/*
4161 	 * If len is not big enough to hold the page header, then
4162 	 * we can not copy anything.
4163 	 */
4164 	if (len <= BUF_PAGE_HDR_SIZE)
4165 		goto out;
4166 
4167 	len -= BUF_PAGE_HDR_SIZE;
4168 
4169 	if (!data_page)
4170 		goto out;
4171 
4172 	bpage = *data_page;
4173 	if (!bpage)
4174 		goto out;
4175 
4176 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4177 
4178 	reader = rb_get_reader_page(cpu_buffer);
4179 	if (!reader)
4180 		goto out_unlock;
4181 
4182 	event = rb_reader_event(cpu_buffer);
4183 
4184 	read = reader->read;
4185 	commit = rb_page_commit(reader);
4186 
4187 	/* Check if any events were dropped */
4188 	missed_events = cpu_buffer->lost_events;
4189 
4190 	/*
4191 	 * If this page has been partially read or
4192 	 * if len is not big enough to read the rest of the page or
4193 	 * a writer is still on the page, then
4194 	 * we must copy the data from the page to the buffer.
4195 	 * Otherwise, we can simply swap the page with the one passed in.
4196 	 */
4197 	if (read || (len < (commit - read)) ||
4198 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
4199 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4200 		unsigned int rpos = read;
4201 		unsigned int pos = 0;
4202 		unsigned int size;
4203 
4204 		if (full)
4205 			goto out_unlock;
4206 
4207 		if (len > (commit - read))
4208 			len = (commit - read);
4209 
4210 		/* Always keep the time extend and data together */
4211 		size = rb_event_ts_length(event);
4212 
4213 		if (len < size)
4214 			goto out_unlock;
4215 
4216 		/* save the current timestamp, since the user will need it */
4217 		save_timestamp = cpu_buffer->read_stamp;
4218 
4219 		/* Need to copy one event at a time */
4220 		do {
4221 			/* We need the size of one event, because
4222 			 * rb_advance_reader only advances by one event,
4223 			 * whereas rb_event_ts_length may include the size of
4224 			 * one or two events.
4225 			 * We have already ensured there's enough space if this
4226 			 * is a time extend. */
4227 			size = rb_event_length(event);
4228 			memcpy(bpage->data + pos, rpage->data + rpos, size);
4229 
4230 			len -= size;
4231 
4232 			rb_advance_reader(cpu_buffer);
4233 			rpos = reader->read;
4234 			pos += size;
4235 
4236 			if (rpos >= commit)
4237 				break;
4238 
4239 			event = rb_reader_event(cpu_buffer);
4240 			/* Always keep the time extend and data together */
4241 			size = rb_event_ts_length(event);
4242 		} while (len >= size);
4243 
4244 		/* update bpage */
4245 		local_set(&bpage->commit, pos);
4246 		bpage->time_stamp = save_timestamp;
4247 
4248 		/* we copied everything to the beginning */
4249 		read = 0;
4250 	} else {
4251 		/* update the entry counter */
4252 		cpu_buffer->read += rb_page_entries(reader);
4253 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4254 
4255 		/* swap the pages */
4256 		rb_init_page(bpage);
4257 		bpage = reader->page;
4258 		reader->page = *data_page;
4259 		local_set(&reader->write, 0);
4260 		local_set(&reader->entries, 0);
4261 		reader->read = 0;
4262 		*data_page = bpage;
4263 
4264 		/*
4265 		 * Use the real_end for the data size,
4266 		 * This gives us a chance to store the lost events
4267 		 * on the page.
4268 		 */
4269 		if (reader->real_end)
4270 			local_set(&bpage->commit, reader->real_end);
4271 	}
4272 	ret = read;
4273 
4274 	cpu_buffer->lost_events = 0;
4275 
4276 	commit = local_read(&bpage->commit);
4277 	/*
4278 	 * Set a flag in the commit field if we lost events
4279 	 */
4280 	if (missed_events) {
4281 		/* If there is room at the end of the page to save the
4282 		 * missed events, then record it there.
4283 		 */
4284 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4285 			memcpy(&bpage->data[commit], &missed_events,
4286 			       sizeof(missed_events));
4287 			local_add(RB_MISSED_STORED, &bpage->commit);
4288 			commit += sizeof(missed_events);
4289 		}
4290 		local_add(RB_MISSED_EVENTS, &bpage->commit);
4291 	}
4292 
4293 	/*
4294 	 * This page may be off to user land. Zero it out here.
4295 	 */
4296 	if (commit < BUF_PAGE_SIZE)
4297 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4298 
4299  out_unlock:
4300 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4301 
4302  out:
4303 	return ret;
4304 }
4305 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4306 
4307 #ifdef CONFIG_HOTPLUG_CPU
4308 static int rb_cpu_notify(struct notifier_block *self,
4309 			 unsigned long action, void *hcpu)
4310 {
4311 	struct ring_buffer *buffer =
4312 		container_of(self, struct ring_buffer, cpu_notify);
4313 	long cpu = (long)hcpu;
4314 	int cpu_i, nr_pages_same;
4315 	unsigned int nr_pages;
4316 
4317 	switch (action) {
4318 	case CPU_UP_PREPARE:
4319 	case CPU_UP_PREPARE_FROZEN:
4320 		if (cpumask_test_cpu(cpu, buffer->cpumask))
4321 			return NOTIFY_OK;
4322 
4323 		nr_pages = 0;
4324 		nr_pages_same = 1;
4325 		/* check if all cpu sizes are same */
4326 		for_each_buffer_cpu(buffer, cpu_i) {
4327 			/* fill in the size from first enabled cpu */
4328 			if (nr_pages == 0)
4329 				nr_pages = buffer->buffers[cpu_i]->nr_pages;
4330 			if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4331 				nr_pages_same = 0;
4332 				break;
4333 			}
4334 		}
4335 		/* allocate minimum pages, user can later expand it */
4336 		if (!nr_pages_same)
4337 			nr_pages = 2;
4338 		buffer->buffers[cpu] =
4339 			rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4340 		if (!buffer->buffers[cpu]) {
4341 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4342 			     cpu);
4343 			return NOTIFY_OK;
4344 		}
4345 		smp_wmb();
4346 		cpumask_set_cpu(cpu, buffer->cpumask);
4347 		break;
4348 	case CPU_DOWN_PREPARE:
4349 	case CPU_DOWN_PREPARE_FROZEN:
4350 		/*
4351 		 * Do nothing.
4352 		 *  If we were to free the buffer, then the user would
4353 		 *  lose any trace that was in the buffer.
4354 		 */
4355 		break;
4356 	default:
4357 		break;
4358 	}
4359 	return NOTIFY_OK;
4360 }
4361 #endif
4362