xref: /linux-6.15/kernel/trace/ring_buffer.c (revision cd98c932)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <[email protected]>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>	/* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29 
30 #include <asm/local.h>
31 
32 /*
33  * The "absolute" timestamp in the buffer is only 59 bits.
34  * If a clock has the 5 MSBs set, it needs to be saved and
35  * reinserted.
36  */
37 #define TS_MSB		(0xf8ULL << 56)
38 #define ABS_TS_MASK	(~TS_MSB)
39 
40 static void update_pages_handler(struct work_struct *work);
41 
42 /*
43  * The ring buffer header is special. We must manually up keep it.
44  */
45 int ring_buffer_print_entry_header(struct trace_seq *s)
46 {
47 	trace_seq_puts(s, "# compressed entry header\n");
48 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
49 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
50 	trace_seq_puts(s, "\tarray       :   32 bits\n");
51 	trace_seq_putc(s, '\n');
52 	trace_seq_printf(s, "\tpadding     : type == %d\n",
53 			 RINGBUF_TYPE_PADDING);
54 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
55 			 RINGBUF_TYPE_TIME_EXTEND);
56 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
57 			 RINGBUF_TYPE_TIME_STAMP);
58 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
59 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
60 
61 	return !trace_seq_has_overflowed(s);
62 }
63 
64 /*
65  * The ring buffer is made up of a list of pages. A separate list of pages is
66  * allocated for each CPU. A writer may only write to a buffer that is
67  * associated with the CPU it is currently executing on.  A reader may read
68  * from any per cpu buffer.
69  *
70  * The reader is special. For each per cpu buffer, the reader has its own
71  * reader page. When a reader has read the entire reader page, this reader
72  * page is swapped with another page in the ring buffer.
73  *
74  * Now, as long as the writer is off the reader page, the reader can do what
75  * ever it wants with that page. The writer will never write to that page
76  * again (as long as it is out of the ring buffer).
77  *
78  * Here's some silly ASCII art.
79  *
80  *   +------+
81  *   |reader|          RING BUFFER
82  *   |page  |
83  *   +------+        +---+   +---+   +---+
84  *                   |   |-->|   |-->|   |
85  *                   +---+   +---+   +---+
86  *                     ^               |
87  *                     |               |
88  *                     +---------------+
89  *
90  *
91  *   +------+
92  *   |reader|          RING BUFFER
93  *   |page  |------------------v
94  *   +------+        +---+   +---+   +---+
95  *                   |   |-->|   |-->|   |
96  *                   +---+   +---+   +---+
97  *                     ^               |
98  *                     |               |
99  *                     +---------------+
100  *
101  *
102  *   +------+
103  *   |reader|          RING BUFFER
104  *   |page  |------------------v
105  *   +------+        +---+   +---+   +---+
106  *      ^            |   |-->|   |-->|   |
107  *      |            +---+   +---+   +---+
108  *      |                              |
109  *      |                              |
110  *      +------------------------------+
111  *
112  *
113  *   +------+
114  *   |buffer|          RING BUFFER
115  *   |page  |------------------v
116  *   +------+        +---+   +---+   +---+
117  *      ^            |   |   |   |-->|   |
118  *      |   New      +---+   +---+   +---+
119  *      |  Reader------^               |
120  *      |   page                       |
121  *      +------------------------------+
122  *
123  *
124  * After we make this swap, the reader can hand this page off to the splice
125  * code and be done with it. It can even allocate a new page if it needs to
126  * and swap that into the ring buffer.
127  *
128  * We will be using cmpxchg soon to make all this lockless.
129  *
130  */
131 
132 /* Used for individual buffers (after the counter) */
133 #define RB_BUFFER_OFF		(1 << 20)
134 
135 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
136 
137 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
138 #define RB_ALIGNMENT		4U
139 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
140 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
141 
142 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
143 # define RB_FORCE_8BYTE_ALIGNMENT	0
144 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
145 #else
146 # define RB_FORCE_8BYTE_ALIGNMENT	1
147 # define RB_ARCH_ALIGNMENT		8U
148 #endif
149 
150 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
151 
152 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
153 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
154 
155 enum {
156 	RB_LEN_TIME_EXTEND = 8,
157 	RB_LEN_TIME_STAMP =  8,
158 };
159 
160 #define skip_time_extend(event) \
161 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
162 
163 #define extended_time(event) \
164 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
165 
166 static inline bool rb_null_event(struct ring_buffer_event *event)
167 {
168 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
169 }
170 
171 static void rb_event_set_padding(struct ring_buffer_event *event)
172 {
173 	/* padding has a NULL time_delta */
174 	event->type_len = RINGBUF_TYPE_PADDING;
175 	event->time_delta = 0;
176 }
177 
178 static unsigned
179 rb_event_data_length(struct ring_buffer_event *event)
180 {
181 	unsigned length;
182 
183 	if (event->type_len)
184 		length = event->type_len * RB_ALIGNMENT;
185 	else
186 		length = event->array[0];
187 	return length + RB_EVNT_HDR_SIZE;
188 }
189 
190 /*
191  * Return the length of the given event. Will return
192  * the length of the time extend if the event is a
193  * time extend.
194  */
195 static inline unsigned
196 rb_event_length(struct ring_buffer_event *event)
197 {
198 	switch (event->type_len) {
199 	case RINGBUF_TYPE_PADDING:
200 		if (rb_null_event(event))
201 			/* undefined */
202 			return -1;
203 		return  event->array[0] + RB_EVNT_HDR_SIZE;
204 
205 	case RINGBUF_TYPE_TIME_EXTEND:
206 		return RB_LEN_TIME_EXTEND;
207 
208 	case RINGBUF_TYPE_TIME_STAMP:
209 		return RB_LEN_TIME_STAMP;
210 
211 	case RINGBUF_TYPE_DATA:
212 		return rb_event_data_length(event);
213 	default:
214 		WARN_ON_ONCE(1);
215 	}
216 	/* not hit */
217 	return 0;
218 }
219 
220 /*
221  * Return total length of time extend and data,
222  *   or just the event length for all other events.
223  */
224 static inline unsigned
225 rb_event_ts_length(struct ring_buffer_event *event)
226 {
227 	unsigned len = 0;
228 
229 	if (extended_time(event)) {
230 		/* time extends include the data event after it */
231 		len = RB_LEN_TIME_EXTEND;
232 		event = skip_time_extend(event);
233 	}
234 	return len + rb_event_length(event);
235 }
236 
237 /**
238  * ring_buffer_event_length - return the length of the event
239  * @event: the event to get the length of
240  *
241  * Returns the size of the data load of a data event.
242  * If the event is something other than a data event, it
243  * returns the size of the event itself. With the exception
244  * of a TIME EXTEND, where it still returns the size of the
245  * data load of the data event after it.
246  */
247 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
248 {
249 	unsigned length;
250 
251 	if (extended_time(event))
252 		event = skip_time_extend(event);
253 
254 	length = rb_event_length(event);
255 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
256 		return length;
257 	length -= RB_EVNT_HDR_SIZE;
258 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
259                 length -= sizeof(event->array[0]);
260 	return length;
261 }
262 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
263 
264 /* inline for ring buffer fast paths */
265 static __always_inline void *
266 rb_event_data(struct ring_buffer_event *event)
267 {
268 	if (extended_time(event))
269 		event = skip_time_extend(event);
270 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
271 	/* If length is in len field, then array[0] has the data */
272 	if (event->type_len)
273 		return (void *)&event->array[0];
274 	/* Otherwise length is in array[0] and array[1] has the data */
275 	return (void *)&event->array[1];
276 }
277 
278 /**
279  * ring_buffer_event_data - return the data of the event
280  * @event: the event to get the data from
281  */
282 void *ring_buffer_event_data(struct ring_buffer_event *event)
283 {
284 	return rb_event_data(event);
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
287 
288 #define for_each_buffer_cpu(buffer, cpu)		\
289 	for_each_cpu(cpu, buffer->cpumask)
290 
291 #define for_each_online_buffer_cpu(buffer, cpu)		\
292 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
293 
294 #define TS_SHIFT	27
295 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
296 #define TS_DELTA_TEST	(~TS_MASK)
297 
298 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
299 {
300 	u64 ts;
301 
302 	ts = event->array[0];
303 	ts <<= TS_SHIFT;
304 	ts += event->time_delta;
305 
306 	return ts;
307 }
308 
309 /* Flag when events were overwritten */
310 #define RB_MISSED_EVENTS	(1 << 31)
311 /* Missed count stored at end */
312 #define RB_MISSED_STORED	(1 << 30)
313 
314 struct buffer_data_page {
315 	u64		 time_stamp;	/* page time stamp */
316 	local_t		 commit;	/* write committed index */
317 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
318 };
319 
320 /*
321  * Note, the buffer_page list must be first. The buffer pages
322  * are allocated in cache lines, which means that each buffer
323  * page will be at the beginning of a cache line, and thus
324  * the least significant bits will be zero. We use this to
325  * add flags in the list struct pointers, to make the ring buffer
326  * lockless.
327  */
328 struct buffer_page {
329 	struct list_head list;		/* list of buffer pages */
330 	local_t		 write;		/* index for next write */
331 	unsigned	 read;		/* index for next read */
332 	local_t		 entries;	/* entries on this page */
333 	unsigned long	 real_end;	/* real end of data */
334 	struct buffer_data_page *page;	/* Actual data page */
335 };
336 
337 /*
338  * The buffer page counters, write and entries, must be reset
339  * atomically when crossing page boundaries. To synchronize this
340  * update, two counters are inserted into the number. One is
341  * the actual counter for the write position or count on the page.
342  *
343  * The other is a counter of updaters. Before an update happens
344  * the update partition of the counter is incremented. This will
345  * allow the updater to update the counter atomically.
346  *
347  * The counter is 20 bits, and the state data is 12.
348  */
349 #define RB_WRITE_MASK		0xfffff
350 #define RB_WRITE_INTCNT		(1 << 20)
351 
352 static void rb_init_page(struct buffer_data_page *bpage)
353 {
354 	local_set(&bpage->commit, 0);
355 }
356 
357 static void free_buffer_page(struct buffer_page *bpage)
358 {
359 	free_page((unsigned long)bpage->page);
360 	kfree(bpage);
361 }
362 
363 /*
364  * We need to fit the time_stamp delta into 27 bits.
365  */
366 static inline bool test_time_stamp(u64 delta)
367 {
368 	return !!(delta & TS_DELTA_TEST);
369 }
370 
371 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
372 
373 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
374 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
375 
376 int ring_buffer_print_page_header(struct trace_seq *s)
377 {
378 	struct buffer_data_page field;
379 
380 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
381 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
382 			 (unsigned int)sizeof(field.time_stamp),
383 			 (unsigned int)is_signed_type(u64));
384 
385 	trace_seq_printf(s, "\tfield: local_t commit;\t"
386 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
387 			 (unsigned int)offsetof(typeof(field), commit),
388 			 (unsigned int)sizeof(field.commit),
389 			 (unsigned int)is_signed_type(long));
390 
391 	trace_seq_printf(s, "\tfield: int overwrite;\t"
392 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
393 			 (unsigned int)offsetof(typeof(field), commit),
394 			 1,
395 			 (unsigned int)is_signed_type(long));
396 
397 	trace_seq_printf(s, "\tfield: char data;\t"
398 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
399 			 (unsigned int)offsetof(typeof(field), data),
400 			 (unsigned int)BUF_PAGE_SIZE,
401 			 (unsigned int)is_signed_type(char));
402 
403 	return !trace_seq_has_overflowed(s);
404 }
405 
406 struct rb_irq_work {
407 	struct irq_work			work;
408 	wait_queue_head_t		waiters;
409 	wait_queue_head_t		full_waiters;
410 	long				wait_index;
411 	bool				waiters_pending;
412 	bool				full_waiters_pending;
413 	bool				wakeup_full;
414 };
415 
416 /*
417  * Structure to hold event state and handle nested events.
418  */
419 struct rb_event_info {
420 	u64			ts;
421 	u64			delta;
422 	u64			before;
423 	u64			after;
424 	unsigned long		length;
425 	struct buffer_page	*tail_page;
426 	int			add_timestamp;
427 };
428 
429 /*
430  * Used for the add_timestamp
431  *  NONE
432  *  EXTEND - wants a time extend
433  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
434  *  FORCE - force a full time stamp.
435  */
436 enum {
437 	RB_ADD_STAMP_NONE		= 0,
438 	RB_ADD_STAMP_EXTEND		= BIT(1),
439 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
440 	RB_ADD_STAMP_FORCE		= BIT(3)
441 };
442 /*
443  * Used for which event context the event is in.
444  *  TRANSITION = 0
445  *  NMI     = 1
446  *  IRQ     = 2
447  *  SOFTIRQ = 3
448  *  NORMAL  = 4
449  *
450  * See trace_recursive_lock() comment below for more details.
451  */
452 enum {
453 	RB_CTX_TRANSITION,
454 	RB_CTX_NMI,
455 	RB_CTX_IRQ,
456 	RB_CTX_SOFTIRQ,
457 	RB_CTX_NORMAL,
458 	RB_CTX_MAX
459 };
460 
461 #if BITS_PER_LONG == 32
462 #define RB_TIME_32
463 #endif
464 
465 /* To test on 64 bit machines */
466 //#define RB_TIME_32
467 
468 #ifdef RB_TIME_32
469 
470 struct rb_time_struct {
471 	local_t		cnt;
472 	local_t		top;
473 	local_t		bottom;
474 	local_t		msb;
475 };
476 #else
477 #include <asm/local64.h>
478 struct rb_time_struct {
479 	local64_t	time;
480 };
481 #endif
482 typedef struct rb_time_struct rb_time_t;
483 
484 #define MAX_NEST	5
485 
486 /*
487  * head_page == tail_page && head == tail then buffer is empty.
488  */
489 struct ring_buffer_per_cpu {
490 	int				cpu;
491 	atomic_t			record_disabled;
492 	atomic_t			resize_disabled;
493 	struct trace_buffer	*buffer;
494 	raw_spinlock_t			reader_lock;	/* serialize readers */
495 	arch_spinlock_t			lock;
496 	struct lock_class_key		lock_key;
497 	struct buffer_data_page		*free_page;
498 	unsigned long			nr_pages;
499 	unsigned int			current_context;
500 	struct list_head		*pages;
501 	struct buffer_page		*head_page;	/* read from head */
502 	struct buffer_page		*tail_page;	/* write to tail */
503 	struct buffer_page		*commit_page;	/* committed pages */
504 	struct buffer_page		*reader_page;
505 	unsigned long			lost_events;
506 	unsigned long			last_overrun;
507 	unsigned long			nest;
508 	local_t				entries_bytes;
509 	local_t				entries;
510 	local_t				overrun;
511 	local_t				commit_overrun;
512 	local_t				dropped_events;
513 	local_t				committing;
514 	local_t				commits;
515 	local_t				pages_touched;
516 	local_t				pages_lost;
517 	local_t				pages_read;
518 	long				last_pages_touch;
519 	size_t				shortest_full;
520 	unsigned long			read;
521 	unsigned long			read_bytes;
522 	rb_time_t			write_stamp;
523 	rb_time_t			before_stamp;
524 	u64				event_stamp[MAX_NEST];
525 	u64				read_stamp;
526 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
527 	long				nr_pages_to_update;
528 	struct list_head		new_pages; /* new pages to add */
529 	struct work_struct		update_pages_work;
530 	struct completion		update_done;
531 
532 	struct rb_irq_work		irq_work;
533 };
534 
535 struct trace_buffer {
536 	unsigned			flags;
537 	int				cpus;
538 	atomic_t			record_disabled;
539 	cpumask_var_t			cpumask;
540 
541 	struct lock_class_key		*reader_lock_key;
542 
543 	struct mutex			mutex;
544 
545 	struct ring_buffer_per_cpu	**buffers;
546 
547 	struct hlist_node		node;
548 	u64				(*clock)(void);
549 
550 	struct rb_irq_work		irq_work;
551 	bool				time_stamp_abs;
552 };
553 
554 struct ring_buffer_iter {
555 	struct ring_buffer_per_cpu	*cpu_buffer;
556 	unsigned long			head;
557 	unsigned long			next_event;
558 	struct buffer_page		*head_page;
559 	struct buffer_page		*cache_reader_page;
560 	unsigned long			cache_read;
561 	u64				read_stamp;
562 	u64				page_stamp;
563 	struct ring_buffer_event	*event;
564 	int				missed_events;
565 };
566 
567 #ifdef RB_TIME_32
568 
569 /*
570  * On 32 bit machines, local64_t is very expensive. As the ring
571  * buffer doesn't need all the features of a true 64 bit atomic,
572  * on 32 bit, it uses these functions (64 still uses local64_t).
573  *
574  * For the ring buffer, 64 bit required operations for the time is
575  * the following:
576  *
577  *  - Reads may fail if it interrupted a modification of the time stamp.
578  *      It will succeed if it did not interrupt another write even if
579  *      the read itself is interrupted by a write.
580  *      It returns whether it was successful or not.
581  *
582  *  - Writes always succeed and will overwrite other writes and writes
583  *      that were done by events interrupting the current write.
584  *
585  *  - A write followed by a read of the same time stamp will always succeed,
586  *      but may not contain the same value.
587  *
588  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
589  *      Other than that, it acts like a normal cmpxchg.
590  *
591  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
592  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
593  *
594  * The two most significant bits of each half holds a 2 bit counter (0-3).
595  * Each update will increment this counter by one.
596  * When reading the top and bottom, if the two counter bits match then the
597  *  top and bottom together make a valid 60 bit number.
598  */
599 #define RB_TIME_SHIFT	30
600 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
601 #define RB_TIME_MSB_SHIFT	 60
602 
603 static inline int rb_time_cnt(unsigned long val)
604 {
605 	return (val >> RB_TIME_SHIFT) & 3;
606 }
607 
608 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
609 {
610 	u64 val;
611 
612 	val = top & RB_TIME_VAL_MASK;
613 	val <<= RB_TIME_SHIFT;
614 	val |= bottom & RB_TIME_VAL_MASK;
615 
616 	return val;
617 }
618 
619 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
620 {
621 	unsigned long top, bottom, msb;
622 	unsigned long c;
623 
624 	/*
625 	 * If the read is interrupted by a write, then the cnt will
626 	 * be different. Loop until both top and bottom have been read
627 	 * without interruption.
628 	 */
629 	do {
630 		c = local_read(&t->cnt);
631 		top = local_read(&t->top);
632 		bottom = local_read(&t->bottom);
633 		msb = local_read(&t->msb);
634 	} while (c != local_read(&t->cnt));
635 
636 	*cnt = rb_time_cnt(top);
637 
638 	/* If top and bottom counts don't match, this interrupted a write */
639 	if (*cnt != rb_time_cnt(bottom))
640 		return false;
641 
642 	/* The shift to msb will lose its cnt bits */
643 	*ret = rb_time_val(top, bottom) | ((u64)msb << RB_TIME_MSB_SHIFT);
644 	return true;
645 }
646 
647 static bool rb_time_read(rb_time_t *t, u64 *ret)
648 {
649 	unsigned long cnt;
650 
651 	return __rb_time_read(t, ret, &cnt);
652 }
653 
654 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
655 {
656 	return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
657 }
658 
659 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom,
660 				 unsigned long *msb)
661 {
662 	*top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
663 	*bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
664 	*msb = (unsigned long)(val >> RB_TIME_MSB_SHIFT);
665 }
666 
667 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
668 {
669 	val = rb_time_val_cnt(val, cnt);
670 	local_set(t, val);
671 }
672 
673 static void rb_time_set(rb_time_t *t, u64 val)
674 {
675 	unsigned long cnt, top, bottom, msb;
676 
677 	rb_time_split(val, &top, &bottom, &msb);
678 
679 	/* Writes always succeed with a valid number even if it gets interrupted. */
680 	do {
681 		cnt = local_inc_return(&t->cnt);
682 		rb_time_val_set(&t->top, top, cnt);
683 		rb_time_val_set(&t->bottom, bottom, cnt);
684 		rb_time_val_set(&t->msb, val >> RB_TIME_MSB_SHIFT, cnt);
685 	} while (cnt != local_read(&t->cnt));
686 }
687 
688 static inline bool
689 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
690 {
691 	unsigned long ret;
692 
693 	ret = local_cmpxchg(l, expect, set);
694 	return ret == expect;
695 }
696 
697 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
698 {
699 	unsigned long cnt, top, bottom, msb;
700 	unsigned long cnt2, top2, bottom2, msb2;
701 	u64 val;
702 
703 	/* The cmpxchg always fails if it interrupted an update */
704 	 if (!__rb_time_read(t, &val, &cnt2))
705 		 return false;
706 
707 	 if (val != expect)
708 		 return false;
709 
710 	 cnt = local_read(&t->cnt);
711 	 if ((cnt & 3) != cnt2)
712 		 return false;
713 
714 	 cnt2 = cnt + 1;
715 
716 	 rb_time_split(val, &top, &bottom, &msb);
717 	 top = rb_time_val_cnt(top, cnt);
718 	 bottom = rb_time_val_cnt(bottom, cnt);
719 
720 	 rb_time_split(set, &top2, &bottom2, &msb2);
721 	 top2 = rb_time_val_cnt(top2, cnt2);
722 	 bottom2 = rb_time_val_cnt(bottom2, cnt2);
723 
724 	if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
725 		return false;
726 	if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
727 		return false;
728 	if (!rb_time_read_cmpxchg(&t->top, top, top2))
729 		return false;
730 	if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
731 		return false;
732 	return true;
733 }
734 
735 #else /* 64 bits */
736 
737 /* local64_t always succeeds */
738 
739 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
740 {
741 	*ret = local64_read(&t->time);
742 	return true;
743 }
744 static void rb_time_set(rb_time_t *t, u64 val)
745 {
746 	local64_set(&t->time, val);
747 }
748 
749 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
750 {
751 	u64 val;
752 	val = local64_cmpxchg(&t->time, expect, set);
753 	return val == expect;
754 }
755 #endif
756 
757 /*
758  * Enable this to make sure that the event passed to
759  * ring_buffer_event_time_stamp() is not committed and also
760  * is on the buffer that it passed in.
761  */
762 //#define RB_VERIFY_EVENT
763 #ifdef RB_VERIFY_EVENT
764 static struct list_head *rb_list_head(struct list_head *list);
765 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
766 			 void *event)
767 {
768 	struct buffer_page *page = cpu_buffer->commit_page;
769 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
770 	struct list_head *next;
771 	long commit, write;
772 	unsigned long addr = (unsigned long)event;
773 	bool done = false;
774 	int stop = 0;
775 
776 	/* Make sure the event exists and is not committed yet */
777 	do {
778 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
779 			done = true;
780 		commit = local_read(&page->page->commit);
781 		write = local_read(&page->write);
782 		if (addr >= (unsigned long)&page->page->data[commit] &&
783 		    addr < (unsigned long)&page->page->data[write])
784 			return;
785 
786 		next = rb_list_head(page->list.next);
787 		page = list_entry(next, struct buffer_page, list);
788 	} while (!done);
789 	WARN_ON_ONCE(1);
790 }
791 #else
792 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
793 			 void *event)
794 {
795 }
796 #endif
797 
798 /*
799  * The absolute time stamp drops the 5 MSBs and some clocks may
800  * require them. The rb_fix_abs_ts() will take a previous full
801  * time stamp, and add the 5 MSB of that time stamp on to the
802  * saved absolute time stamp. Then they are compared in case of
803  * the unlikely event that the latest time stamp incremented
804  * the 5 MSB.
805  */
806 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
807 {
808 	if (save_ts & TS_MSB) {
809 		abs |= save_ts & TS_MSB;
810 		/* Check for overflow */
811 		if (unlikely(abs < save_ts))
812 			abs += 1ULL << 59;
813 	}
814 	return abs;
815 }
816 
817 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
818 
819 /**
820  * ring_buffer_event_time_stamp - return the event's current time stamp
821  * @buffer: The buffer that the event is on
822  * @event: the event to get the time stamp of
823  *
824  * Note, this must be called after @event is reserved, and before it is
825  * committed to the ring buffer. And must be called from the same
826  * context where the event was reserved (normal, softirq, irq, etc).
827  *
828  * Returns the time stamp associated with the current event.
829  * If the event has an extended time stamp, then that is used as
830  * the time stamp to return.
831  * In the highly unlikely case that the event was nested more than
832  * the max nesting, then the write_stamp of the buffer is returned,
833  * otherwise  current time is returned, but that really neither of
834  * the last two cases should ever happen.
835  */
836 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
837 				 struct ring_buffer_event *event)
838 {
839 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
840 	unsigned int nest;
841 	u64 ts;
842 
843 	/* If the event includes an absolute time, then just use that */
844 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
845 		ts = rb_event_time_stamp(event);
846 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
847 	}
848 
849 	nest = local_read(&cpu_buffer->committing);
850 	verify_event(cpu_buffer, event);
851 	if (WARN_ON_ONCE(!nest))
852 		goto fail;
853 
854 	/* Read the current saved nesting level time stamp */
855 	if (likely(--nest < MAX_NEST))
856 		return cpu_buffer->event_stamp[nest];
857 
858 	/* Shouldn't happen, warn if it does */
859 	WARN_ONCE(1, "nest (%d) greater than max", nest);
860 
861  fail:
862 	/* Can only fail on 32 bit */
863 	if (!rb_time_read(&cpu_buffer->write_stamp, &ts))
864 		/* Screw it, just read the current time */
865 		ts = rb_time_stamp(cpu_buffer->buffer);
866 
867 	return ts;
868 }
869 
870 /**
871  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
872  * @buffer: The ring_buffer to get the number of pages from
873  * @cpu: The cpu of the ring_buffer to get the number of pages from
874  *
875  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
876  */
877 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
878 {
879 	return buffer->buffers[cpu]->nr_pages;
880 }
881 
882 /**
883  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
884  * @buffer: The ring_buffer to get the number of pages from
885  * @cpu: The cpu of the ring_buffer to get the number of pages from
886  *
887  * Returns the number of pages that have content in the ring buffer.
888  */
889 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
890 {
891 	size_t read;
892 	size_t lost;
893 	size_t cnt;
894 
895 	read = local_read(&buffer->buffers[cpu]->pages_read);
896 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
897 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
898 
899 	if (WARN_ON_ONCE(cnt < lost))
900 		return 0;
901 
902 	cnt -= lost;
903 
904 	/* The reader can read an empty page, but not more than that */
905 	if (cnt < read) {
906 		WARN_ON_ONCE(read > cnt + 1);
907 		return 0;
908 	}
909 
910 	return cnt - read;
911 }
912 
913 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
914 {
915 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
916 	size_t nr_pages;
917 	size_t dirty;
918 
919 	nr_pages = cpu_buffer->nr_pages;
920 	if (!nr_pages || !full)
921 		return true;
922 
923 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
924 
925 	return (dirty * 100) > (full * nr_pages);
926 }
927 
928 /*
929  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
930  *
931  * Schedules a delayed work to wake up any task that is blocked on the
932  * ring buffer waiters queue.
933  */
934 static void rb_wake_up_waiters(struct irq_work *work)
935 {
936 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
937 
938 	wake_up_all(&rbwork->waiters);
939 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
940 		rbwork->wakeup_full = false;
941 		rbwork->full_waiters_pending = false;
942 		wake_up_all(&rbwork->full_waiters);
943 	}
944 }
945 
946 /**
947  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
948  * @buffer: The ring buffer to wake waiters on
949  *
950  * In the case of a file that represents a ring buffer is closing,
951  * it is prudent to wake up any waiters that are on this.
952  */
953 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
954 {
955 	struct ring_buffer_per_cpu *cpu_buffer;
956 	struct rb_irq_work *rbwork;
957 
958 	if (!buffer)
959 		return;
960 
961 	if (cpu == RING_BUFFER_ALL_CPUS) {
962 
963 		/* Wake up individual ones too. One level recursion */
964 		for_each_buffer_cpu(buffer, cpu)
965 			ring_buffer_wake_waiters(buffer, cpu);
966 
967 		rbwork = &buffer->irq_work;
968 	} else {
969 		if (WARN_ON_ONCE(!buffer->buffers))
970 			return;
971 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
972 			return;
973 
974 		cpu_buffer = buffer->buffers[cpu];
975 		/* The CPU buffer may not have been initialized yet */
976 		if (!cpu_buffer)
977 			return;
978 		rbwork = &cpu_buffer->irq_work;
979 	}
980 
981 	rbwork->wait_index++;
982 	/* make sure the waiters see the new index */
983 	smp_wmb();
984 
985 	rb_wake_up_waiters(&rbwork->work);
986 }
987 
988 /**
989  * ring_buffer_wait - wait for input to the ring buffer
990  * @buffer: buffer to wait on
991  * @cpu: the cpu buffer to wait on
992  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
993  *
994  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
995  * as data is added to any of the @buffer's cpu buffers. Otherwise
996  * it will wait for data to be added to a specific cpu buffer.
997  */
998 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
999 {
1000 	struct ring_buffer_per_cpu *cpu_buffer;
1001 	DEFINE_WAIT(wait);
1002 	struct rb_irq_work *work;
1003 	long wait_index;
1004 	int ret = 0;
1005 
1006 	/*
1007 	 * Depending on what the caller is waiting for, either any
1008 	 * data in any cpu buffer, or a specific buffer, put the
1009 	 * caller on the appropriate wait queue.
1010 	 */
1011 	if (cpu == RING_BUFFER_ALL_CPUS) {
1012 		work = &buffer->irq_work;
1013 		/* Full only makes sense on per cpu reads */
1014 		full = 0;
1015 	} else {
1016 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1017 			return -ENODEV;
1018 		cpu_buffer = buffer->buffers[cpu];
1019 		work = &cpu_buffer->irq_work;
1020 	}
1021 
1022 	wait_index = READ_ONCE(work->wait_index);
1023 
1024 	while (true) {
1025 		if (full)
1026 			prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
1027 		else
1028 			prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
1029 
1030 		/*
1031 		 * The events can happen in critical sections where
1032 		 * checking a work queue can cause deadlocks.
1033 		 * After adding a task to the queue, this flag is set
1034 		 * only to notify events to try to wake up the queue
1035 		 * using irq_work.
1036 		 *
1037 		 * We don't clear it even if the buffer is no longer
1038 		 * empty. The flag only causes the next event to run
1039 		 * irq_work to do the work queue wake up. The worse
1040 		 * that can happen if we race with !trace_empty() is that
1041 		 * an event will cause an irq_work to try to wake up
1042 		 * an empty queue.
1043 		 *
1044 		 * There's no reason to protect this flag either, as
1045 		 * the work queue and irq_work logic will do the necessary
1046 		 * synchronization for the wake ups. The only thing
1047 		 * that is necessary is that the wake up happens after
1048 		 * a task has been queued. It's OK for spurious wake ups.
1049 		 */
1050 		if (full)
1051 			work->full_waiters_pending = true;
1052 		else
1053 			work->waiters_pending = true;
1054 
1055 		if (signal_pending(current)) {
1056 			ret = -EINTR;
1057 			break;
1058 		}
1059 
1060 		if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
1061 			break;
1062 
1063 		if (cpu != RING_BUFFER_ALL_CPUS &&
1064 		    !ring_buffer_empty_cpu(buffer, cpu)) {
1065 			unsigned long flags;
1066 			bool pagebusy;
1067 			bool done;
1068 
1069 			if (!full)
1070 				break;
1071 
1072 			raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1073 			pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
1074 			done = !pagebusy && full_hit(buffer, cpu, full);
1075 
1076 			if (!cpu_buffer->shortest_full ||
1077 			    cpu_buffer->shortest_full > full)
1078 				cpu_buffer->shortest_full = full;
1079 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1080 			if (done)
1081 				break;
1082 		}
1083 
1084 		schedule();
1085 
1086 		/* Make sure to see the new wait index */
1087 		smp_rmb();
1088 		if (wait_index != work->wait_index)
1089 			break;
1090 	}
1091 
1092 	if (full)
1093 		finish_wait(&work->full_waiters, &wait);
1094 	else
1095 		finish_wait(&work->waiters, &wait);
1096 
1097 	return ret;
1098 }
1099 
1100 /**
1101  * ring_buffer_poll_wait - poll on buffer input
1102  * @buffer: buffer to wait on
1103  * @cpu: the cpu buffer to wait on
1104  * @filp: the file descriptor
1105  * @poll_table: The poll descriptor
1106  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1107  *
1108  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1109  * as data is added to any of the @buffer's cpu buffers. Otherwise
1110  * it will wait for data to be added to a specific cpu buffer.
1111  *
1112  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1113  * zero otherwise.
1114  */
1115 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1116 			  struct file *filp, poll_table *poll_table, int full)
1117 {
1118 	struct ring_buffer_per_cpu *cpu_buffer;
1119 	struct rb_irq_work *work;
1120 
1121 	if (cpu == RING_BUFFER_ALL_CPUS) {
1122 		work = &buffer->irq_work;
1123 		full = 0;
1124 	} else {
1125 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1126 			return -EINVAL;
1127 
1128 		cpu_buffer = buffer->buffers[cpu];
1129 		work = &cpu_buffer->irq_work;
1130 	}
1131 
1132 	if (full) {
1133 		poll_wait(filp, &work->full_waiters, poll_table);
1134 		work->full_waiters_pending = true;
1135 	} else {
1136 		poll_wait(filp, &work->waiters, poll_table);
1137 		work->waiters_pending = true;
1138 	}
1139 
1140 	/*
1141 	 * There's a tight race between setting the waiters_pending and
1142 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1143 	 * is set, the next event will wake the task up, but we can get stuck
1144 	 * if there's only a single event in.
1145 	 *
1146 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1147 	 * but adding a memory barrier to all events will cause too much of a
1148 	 * performance hit in the fast path.  We only need a memory barrier when
1149 	 * the buffer goes from empty to having content.  But as this race is
1150 	 * extremely small, and it's not a problem if another event comes in, we
1151 	 * will fix it later.
1152 	 */
1153 	smp_mb();
1154 
1155 	if (full)
1156 		return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
1157 
1158 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1159 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1160 		return EPOLLIN | EPOLLRDNORM;
1161 	return 0;
1162 }
1163 
1164 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1165 #define RB_WARN_ON(b, cond)						\
1166 	({								\
1167 		int _____ret = unlikely(cond);				\
1168 		if (_____ret) {						\
1169 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1170 				struct ring_buffer_per_cpu *__b =	\
1171 					(void *)b;			\
1172 				atomic_inc(&__b->buffer->record_disabled); \
1173 			} else						\
1174 				atomic_inc(&b->record_disabled);	\
1175 			WARN_ON(1);					\
1176 		}							\
1177 		_____ret;						\
1178 	})
1179 
1180 /* Up this if you want to test the TIME_EXTENTS and normalization */
1181 #define DEBUG_SHIFT 0
1182 
1183 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1184 {
1185 	u64 ts;
1186 
1187 	/* Skip retpolines :-( */
1188 	if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1189 		ts = trace_clock_local();
1190 	else
1191 		ts = buffer->clock();
1192 
1193 	/* shift to debug/test normalization and TIME_EXTENTS */
1194 	return ts << DEBUG_SHIFT;
1195 }
1196 
1197 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1198 {
1199 	u64 time;
1200 
1201 	preempt_disable_notrace();
1202 	time = rb_time_stamp(buffer);
1203 	preempt_enable_notrace();
1204 
1205 	return time;
1206 }
1207 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1208 
1209 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1210 				      int cpu, u64 *ts)
1211 {
1212 	/* Just stupid testing the normalize function and deltas */
1213 	*ts >>= DEBUG_SHIFT;
1214 }
1215 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1216 
1217 /*
1218  * Making the ring buffer lockless makes things tricky.
1219  * Although writes only happen on the CPU that they are on,
1220  * and they only need to worry about interrupts. Reads can
1221  * happen on any CPU.
1222  *
1223  * The reader page is always off the ring buffer, but when the
1224  * reader finishes with a page, it needs to swap its page with
1225  * a new one from the buffer. The reader needs to take from
1226  * the head (writes go to the tail). But if a writer is in overwrite
1227  * mode and wraps, it must push the head page forward.
1228  *
1229  * Here lies the problem.
1230  *
1231  * The reader must be careful to replace only the head page, and
1232  * not another one. As described at the top of the file in the
1233  * ASCII art, the reader sets its old page to point to the next
1234  * page after head. It then sets the page after head to point to
1235  * the old reader page. But if the writer moves the head page
1236  * during this operation, the reader could end up with the tail.
1237  *
1238  * We use cmpxchg to help prevent this race. We also do something
1239  * special with the page before head. We set the LSB to 1.
1240  *
1241  * When the writer must push the page forward, it will clear the
1242  * bit that points to the head page, move the head, and then set
1243  * the bit that points to the new head page.
1244  *
1245  * We also don't want an interrupt coming in and moving the head
1246  * page on another writer. Thus we use the second LSB to catch
1247  * that too. Thus:
1248  *
1249  * head->list->prev->next        bit 1          bit 0
1250  *                              -------        -------
1251  * Normal page                     0              0
1252  * Points to head page             0              1
1253  * New head page                   1              0
1254  *
1255  * Note we can not trust the prev pointer of the head page, because:
1256  *
1257  * +----+       +-----+        +-----+
1258  * |    |------>|  T  |---X--->|  N  |
1259  * |    |<------|     |        |     |
1260  * +----+       +-----+        +-----+
1261  *   ^                           ^ |
1262  *   |          +-----+          | |
1263  *   +----------|  R  |----------+ |
1264  *              |     |<-----------+
1265  *              +-----+
1266  *
1267  * Key:  ---X-->  HEAD flag set in pointer
1268  *         T      Tail page
1269  *         R      Reader page
1270  *         N      Next page
1271  *
1272  * (see __rb_reserve_next() to see where this happens)
1273  *
1274  *  What the above shows is that the reader just swapped out
1275  *  the reader page with a page in the buffer, but before it
1276  *  could make the new header point back to the new page added
1277  *  it was preempted by a writer. The writer moved forward onto
1278  *  the new page added by the reader and is about to move forward
1279  *  again.
1280  *
1281  *  You can see, it is legitimate for the previous pointer of
1282  *  the head (or any page) not to point back to itself. But only
1283  *  temporarily.
1284  */
1285 
1286 #define RB_PAGE_NORMAL		0UL
1287 #define RB_PAGE_HEAD		1UL
1288 #define RB_PAGE_UPDATE		2UL
1289 
1290 
1291 #define RB_FLAG_MASK		3UL
1292 
1293 /* PAGE_MOVED is not part of the mask */
1294 #define RB_PAGE_MOVED		4UL
1295 
1296 /*
1297  * rb_list_head - remove any bit
1298  */
1299 static struct list_head *rb_list_head(struct list_head *list)
1300 {
1301 	unsigned long val = (unsigned long)list;
1302 
1303 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1304 }
1305 
1306 /*
1307  * rb_is_head_page - test if the given page is the head page
1308  *
1309  * Because the reader may move the head_page pointer, we can
1310  * not trust what the head page is (it may be pointing to
1311  * the reader page). But if the next page is a header page,
1312  * its flags will be non zero.
1313  */
1314 static inline int
1315 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1316 {
1317 	unsigned long val;
1318 
1319 	val = (unsigned long)list->next;
1320 
1321 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1322 		return RB_PAGE_MOVED;
1323 
1324 	return val & RB_FLAG_MASK;
1325 }
1326 
1327 /*
1328  * rb_is_reader_page
1329  *
1330  * The unique thing about the reader page, is that, if the
1331  * writer is ever on it, the previous pointer never points
1332  * back to the reader page.
1333  */
1334 static bool rb_is_reader_page(struct buffer_page *page)
1335 {
1336 	struct list_head *list = page->list.prev;
1337 
1338 	return rb_list_head(list->next) != &page->list;
1339 }
1340 
1341 /*
1342  * rb_set_list_to_head - set a list_head to be pointing to head.
1343  */
1344 static void rb_set_list_to_head(struct list_head *list)
1345 {
1346 	unsigned long *ptr;
1347 
1348 	ptr = (unsigned long *)&list->next;
1349 	*ptr |= RB_PAGE_HEAD;
1350 	*ptr &= ~RB_PAGE_UPDATE;
1351 }
1352 
1353 /*
1354  * rb_head_page_activate - sets up head page
1355  */
1356 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1357 {
1358 	struct buffer_page *head;
1359 
1360 	head = cpu_buffer->head_page;
1361 	if (!head)
1362 		return;
1363 
1364 	/*
1365 	 * Set the previous list pointer to have the HEAD flag.
1366 	 */
1367 	rb_set_list_to_head(head->list.prev);
1368 }
1369 
1370 static void rb_list_head_clear(struct list_head *list)
1371 {
1372 	unsigned long *ptr = (unsigned long *)&list->next;
1373 
1374 	*ptr &= ~RB_FLAG_MASK;
1375 }
1376 
1377 /*
1378  * rb_head_page_deactivate - clears head page ptr (for free list)
1379  */
1380 static void
1381 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1382 {
1383 	struct list_head *hd;
1384 
1385 	/* Go through the whole list and clear any pointers found. */
1386 	rb_list_head_clear(cpu_buffer->pages);
1387 
1388 	list_for_each(hd, cpu_buffer->pages)
1389 		rb_list_head_clear(hd);
1390 }
1391 
1392 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1393 			    struct buffer_page *head,
1394 			    struct buffer_page *prev,
1395 			    int old_flag, int new_flag)
1396 {
1397 	struct list_head *list;
1398 	unsigned long val = (unsigned long)&head->list;
1399 	unsigned long ret;
1400 
1401 	list = &prev->list;
1402 
1403 	val &= ~RB_FLAG_MASK;
1404 
1405 	ret = cmpxchg((unsigned long *)&list->next,
1406 		      val | old_flag, val | new_flag);
1407 
1408 	/* check if the reader took the page */
1409 	if ((ret & ~RB_FLAG_MASK) != val)
1410 		return RB_PAGE_MOVED;
1411 
1412 	return ret & RB_FLAG_MASK;
1413 }
1414 
1415 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1416 				   struct buffer_page *head,
1417 				   struct buffer_page *prev,
1418 				   int old_flag)
1419 {
1420 	return rb_head_page_set(cpu_buffer, head, prev,
1421 				old_flag, RB_PAGE_UPDATE);
1422 }
1423 
1424 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1425 				 struct buffer_page *head,
1426 				 struct buffer_page *prev,
1427 				 int old_flag)
1428 {
1429 	return rb_head_page_set(cpu_buffer, head, prev,
1430 				old_flag, RB_PAGE_HEAD);
1431 }
1432 
1433 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1434 				   struct buffer_page *head,
1435 				   struct buffer_page *prev,
1436 				   int old_flag)
1437 {
1438 	return rb_head_page_set(cpu_buffer, head, prev,
1439 				old_flag, RB_PAGE_NORMAL);
1440 }
1441 
1442 static inline void rb_inc_page(struct buffer_page **bpage)
1443 {
1444 	struct list_head *p = rb_list_head((*bpage)->list.next);
1445 
1446 	*bpage = list_entry(p, struct buffer_page, list);
1447 }
1448 
1449 static struct buffer_page *
1450 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1451 {
1452 	struct buffer_page *head;
1453 	struct buffer_page *page;
1454 	struct list_head *list;
1455 	int i;
1456 
1457 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1458 		return NULL;
1459 
1460 	/* sanity check */
1461 	list = cpu_buffer->pages;
1462 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1463 		return NULL;
1464 
1465 	page = head = cpu_buffer->head_page;
1466 	/*
1467 	 * It is possible that the writer moves the header behind
1468 	 * where we started, and we miss in one loop.
1469 	 * A second loop should grab the header, but we'll do
1470 	 * three loops just because I'm paranoid.
1471 	 */
1472 	for (i = 0; i < 3; i++) {
1473 		do {
1474 			if (rb_is_head_page(page, page->list.prev)) {
1475 				cpu_buffer->head_page = page;
1476 				return page;
1477 			}
1478 			rb_inc_page(&page);
1479 		} while (page != head);
1480 	}
1481 
1482 	RB_WARN_ON(cpu_buffer, 1);
1483 
1484 	return NULL;
1485 }
1486 
1487 static bool rb_head_page_replace(struct buffer_page *old,
1488 				struct buffer_page *new)
1489 {
1490 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1491 	unsigned long val;
1492 	unsigned long ret;
1493 
1494 	val = *ptr & ~RB_FLAG_MASK;
1495 	val |= RB_PAGE_HEAD;
1496 
1497 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1498 
1499 	return ret == val;
1500 }
1501 
1502 /*
1503  * rb_tail_page_update - move the tail page forward
1504  */
1505 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1506 			       struct buffer_page *tail_page,
1507 			       struct buffer_page *next_page)
1508 {
1509 	unsigned long old_entries;
1510 	unsigned long old_write;
1511 
1512 	/*
1513 	 * The tail page now needs to be moved forward.
1514 	 *
1515 	 * We need to reset the tail page, but without messing
1516 	 * with possible erasing of data brought in by interrupts
1517 	 * that have moved the tail page and are currently on it.
1518 	 *
1519 	 * We add a counter to the write field to denote this.
1520 	 */
1521 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1522 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1523 
1524 	local_inc(&cpu_buffer->pages_touched);
1525 	/*
1526 	 * Just make sure we have seen our old_write and synchronize
1527 	 * with any interrupts that come in.
1528 	 */
1529 	barrier();
1530 
1531 	/*
1532 	 * If the tail page is still the same as what we think
1533 	 * it is, then it is up to us to update the tail
1534 	 * pointer.
1535 	 */
1536 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1537 		/* Zero the write counter */
1538 		unsigned long val = old_write & ~RB_WRITE_MASK;
1539 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1540 
1541 		/*
1542 		 * This will only succeed if an interrupt did
1543 		 * not come in and change it. In which case, we
1544 		 * do not want to modify it.
1545 		 *
1546 		 * We add (void) to let the compiler know that we do not care
1547 		 * about the return value of these functions. We use the
1548 		 * cmpxchg to only update if an interrupt did not already
1549 		 * do it for us. If the cmpxchg fails, we don't care.
1550 		 */
1551 		(void)local_cmpxchg(&next_page->write, old_write, val);
1552 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1553 
1554 		/*
1555 		 * No need to worry about races with clearing out the commit.
1556 		 * it only can increment when a commit takes place. But that
1557 		 * only happens in the outer most nested commit.
1558 		 */
1559 		local_set(&next_page->page->commit, 0);
1560 
1561 		/* Again, either we update tail_page or an interrupt does */
1562 		(void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1563 	}
1564 }
1565 
1566 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1567 			  struct buffer_page *bpage)
1568 {
1569 	unsigned long val = (unsigned long)bpage;
1570 
1571 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1572 }
1573 
1574 /**
1575  * rb_check_pages - integrity check of buffer pages
1576  * @cpu_buffer: CPU buffer with pages to test
1577  *
1578  * As a safety measure we check to make sure the data pages have not
1579  * been corrupted.
1580  */
1581 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1582 {
1583 	struct list_head *head = rb_list_head(cpu_buffer->pages);
1584 	struct list_head *tmp;
1585 
1586 	if (RB_WARN_ON(cpu_buffer,
1587 			rb_list_head(rb_list_head(head->next)->prev) != head))
1588 		return;
1589 
1590 	if (RB_WARN_ON(cpu_buffer,
1591 			rb_list_head(rb_list_head(head->prev)->next) != head))
1592 		return;
1593 
1594 	for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1595 		if (RB_WARN_ON(cpu_buffer,
1596 				rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1597 			return;
1598 
1599 		if (RB_WARN_ON(cpu_buffer,
1600 				rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1601 			return;
1602 	}
1603 }
1604 
1605 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1606 		long nr_pages, struct list_head *pages)
1607 {
1608 	struct buffer_page *bpage, *tmp;
1609 	bool user_thread = current->mm != NULL;
1610 	gfp_t mflags;
1611 	long i;
1612 
1613 	/*
1614 	 * Check if the available memory is there first.
1615 	 * Note, si_mem_available() only gives us a rough estimate of available
1616 	 * memory. It may not be accurate. But we don't care, we just want
1617 	 * to prevent doing any allocation when it is obvious that it is
1618 	 * not going to succeed.
1619 	 */
1620 	i = si_mem_available();
1621 	if (i < nr_pages)
1622 		return -ENOMEM;
1623 
1624 	/*
1625 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1626 	 * gracefully without invoking oom-killer and the system is not
1627 	 * destabilized.
1628 	 */
1629 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1630 
1631 	/*
1632 	 * If a user thread allocates too much, and si_mem_available()
1633 	 * reports there's enough memory, even though there is not.
1634 	 * Make sure the OOM killer kills this thread. This can happen
1635 	 * even with RETRY_MAYFAIL because another task may be doing
1636 	 * an allocation after this task has taken all memory.
1637 	 * This is the task the OOM killer needs to take out during this
1638 	 * loop, even if it was triggered by an allocation somewhere else.
1639 	 */
1640 	if (user_thread)
1641 		set_current_oom_origin();
1642 	for (i = 0; i < nr_pages; i++) {
1643 		struct page *page;
1644 
1645 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1646 				    mflags, cpu_to_node(cpu_buffer->cpu));
1647 		if (!bpage)
1648 			goto free_pages;
1649 
1650 		rb_check_bpage(cpu_buffer, bpage);
1651 
1652 		list_add(&bpage->list, pages);
1653 
1654 		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1655 		if (!page)
1656 			goto free_pages;
1657 		bpage->page = page_address(page);
1658 		rb_init_page(bpage->page);
1659 
1660 		if (user_thread && fatal_signal_pending(current))
1661 			goto free_pages;
1662 	}
1663 	if (user_thread)
1664 		clear_current_oom_origin();
1665 
1666 	return 0;
1667 
1668 free_pages:
1669 	list_for_each_entry_safe(bpage, tmp, pages, list) {
1670 		list_del_init(&bpage->list);
1671 		free_buffer_page(bpage);
1672 	}
1673 	if (user_thread)
1674 		clear_current_oom_origin();
1675 
1676 	return -ENOMEM;
1677 }
1678 
1679 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1680 			     unsigned long nr_pages)
1681 {
1682 	LIST_HEAD(pages);
1683 
1684 	WARN_ON(!nr_pages);
1685 
1686 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1687 		return -ENOMEM;
1688 
1689 	/*
1690 	 * The ring buffer page list is a circular list that does not
1691 	 * start and end with a list head. All page list items point to
1692 	 * other pages.
1693 	 */
1694 	cpu_buffer->pages = pages.next;
1695 	list_del(&pages);
1696 
1697 	cpu_buffer->nr_pages = nr_pages;
1698 
1699 	rb_check_pages(cpu_buffer);
1700 
1701 	return 0;
1702 }
1703 
1704 static struct ring_buffer_per_cpu *
1705 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1706 {
1707 	struct ring_buffer_per_cpu *cpu_buffer;
1708 	struct buffer_page *bpage;
1709 	struct page *page;
1710 	int ret;
1711 
1712 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1713 				  GFP_KERNEL, cpu_to_node(cpu));
1714 	if (!cpu_buffer)
1715 		return NULL;
1716 
1717 	cpu_buffer->cpu = cpu;
1718 	cpu_buffer->buffer = buffer;
1719 	raw_spin_lock_init(&cpu_buffer->reader_lock);
1720 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1721 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1722 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1723 	init_completion(&cpu_buffer->update_done);
1724 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1725 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1726 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1727 
1728 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1729 			    GFP_KERNEL, cpu_to_node(cpu));
1730 	if (!bpage)
1731 		goto fail_free_buffer;
1732 
1733 	rb_check_bpage(cpu_buffer, bpage);
1734 
1735 	cpu_buffer->reader_page = bpage;
1736 	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1737 	if (!page)
1738 		goto fail_free_reader;
1739 	bpage->page = page_address(page);
1740 	rb_init_page(bpage->page);
1741 
1742 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1743 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
1744 
1745 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
1746 	if (ret < 0)
1747 		goto fail_free_reader;
1748 
1749 	cpu_buffer->head_page
1750 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1751 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1752 
1753 	rb_head_page_activate(cpu_buffer);
1754 
1755 	return cpu_buffer;
1756 
1757  fail_free_reader:
1758 	free_buffer_page(cpu_buffer->reader_page);
1759 
1760  fail_free_buffer:
1761 	kfree(cpu_buffer);
1762 	return NULL;
1763 }
1764 
1765 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1766 {
1767 	struct list_head *head = cpu_buffer->pages;
1768 	struct buffer_page *bpage, *tmp;
1769 
1770 	free_buffer_page(cpu_buffer->reader_page);
1771 
1772 	if (head) {
1773 		rb_head_page_deactivate(cpu_buffer);
1774 
1775 		list_for_each_entry_safe(bpage, tmp, head, list) {
1776 			list_del_init(&bpage->list);
1777 			free_buffer_page(bpage);
1778 		}
1779 		bpage = list_entry(head, struct buffer_page, list);
1780 		free_buffer_page(bpage);
1781 	}
1782 
1783 	kfree(cpu_buffer);
1784 }
1785 
1786 /**
1787  * __ring_buffer_alloc - allocate a new ring_buffer
1788  * @size: the size in bytes per cpu that is needed.
1789  * @flags: attributes to set for the ring buffer.
1790  * @key: ring buffer reader_lock_key.
1791  *
1792  * Currently the only flag that is available is the RB_FL_OVERWRITE
1793  * flag. This flag means that the buffer will overwrite old data
1794  * when the buffer wraps. If this flag is not set, the buffer will
1795  * drop data when the tail hits the head.
1796  */
1797 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1798 					struct lock_class_key *key)
1799 {
1800 	struct trace_buffer *buffer;
1801 	long nr_pages;
1802 	int bsize;
1803 	int cpu;
1804 	int ret;
1805 
1806 	/* keep it in its own cache line */
1807 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1808 			 GFP_KERNEL);
1809 	if (!buffer)
1810 		return NULL;
1811 
1812 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1813 		goto fail_free_buffer;
1814 
1815 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1816 	buffer->flags = flags;
1817 	buffer->clock = trace_clock_local;
1818 	buffer->reader_lock_key = key;
1819 
1820 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1821 	init_waitqueue_head(&buffer->irq_work.waiters);
1822 
1823 	/* need at least two pages */
1824 	if (nr_pages < 2)
1825 		nr_pages = 2;
1826 
1827 	buffer->cpus = nr_cpu_ids;
1828 
1829 	bsize = sizeof(void *) * nr_cpu_ids;
1830 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1831 				  GFP_KERNEL);
1832 	if (!buffer->buffers)
1833 		goto fail_free_cpumask;
1834 
1835 	cpu = raw_smp_processor_id();
1836 	cpumask_set_cpu(cpu, buffer->cpumask);
1837 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1838 	if (!buffer->buffers[cpu])
1839 		goto fail_free_buffers;
1840 
1841 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1842 	if (ret < 0)
1843 		goto fail_free_buffers;
1844 
1845 	mutex_init(&buffer->mutex);
1846 
1847 	return buffer;
1848 
1849  fail_free_buffers:
1850 	for_each_buffer_cpu(buffer, cpu) {
1851 		if (buffer->buffers[cpu])
1852 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1853 	}
1854 	kfree(buffer->buffers);
1855 
1856  fail_free_cpumask:
1857 	free_cpumask_var(buffer->cpumask);
1858 
1859  fail_free_buffer:
1860 	kfree(buffer);
1861 	return NULL;
1862 }
1863 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1864 
1865 /**
1866  * ring_buffer_free - free a ring buffer.
1867  * @buffer: the buffer to free.
1868  */
1869 void
1870 ring_buffer_free(struct trace_buffer *buffer)
1871 {
1872 	int cpu;
1873 
1874 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1875 
1876 	for_each_buffer_cpu(buffer, cpu)
1877 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1878 
1879 	kfree(buffer->buffers);
1880 	free_cpumask_var(buffer->cpumask);
1881 
1882 	kfree(buffer);
1883 }
1884 EXPORT_SYMBOL_GPL(ring_buffer_free);
1885 
1886 void ring_buffer_set_clock(struct trace_buffer *buffer,
1887 			   u64 (*clock)(void))
1888 {
1889 	buffer->clock = clock;
1890 }
1891 
1892 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1893 {
1894 	buffer->time_stamp_abs = abs;
1895 }
1896 
1897 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1898 {
1899 	return buffer->time_stamp_abs;
1900 }
1901 
1902 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1903 
1904 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1905 {
1906 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1907 }
1908 
1909 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1910 {
1911 	return local_read(&bpage->write) & RB_WRITE_MASK;
1912 }
1913 
1914 static bool
1915 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1916 {
1917 	struct list_head *tail_page, *to_remove, *next_page;
1918 	struct buffer_page *to_remove_page, *tmp_iter_page;
1919 	struct buffer_page *last_page, *first_page;
1920 	unsigned long nr_removed;
1921 	unsigned long head_bit;
1922 	int page_entries;
1923 
1924 	head_bit = 0;
1925 
1926 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
1927 	atomic_inc(&cpu_buffer->record_disabled);
1928 	/*
1929 	 * We don't race with the readers since we have acquired the reader
1930 	 * lock. We also don't race with writers after disabling recording.
1931 	 * This makes it easy to figure out the first and the last page to be
1932 	 * removed from the list. We unlink all the pages in between including
1933 	 * the first and last pages. This is done in a busy loop so that we
1934 	 * lose the least number of traces.
1935 	 * The pages are freed after we restart recording and unlock readers.
1936 	 */
1937 	tail_page = &cpu_buffer->tail_page->list;
1938 
1939 	/*
1940 	 * tail page might be on reader page, we remove the next page
1941 	 * from the ring buffer
1942 	 */
1943 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1944 		tail_page = rb_list_head(tail_page->next);
1945 	to_remove = tail_page;
1946 
1947 	/* start of pages to remove */
1948 	first_page = list_entry(rb_list_head(to_remove->next),
1949 				struct buffer_page, list);
1950 
1951 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1952 		to_remove = rb_list_head(to_remove)->next;
1953 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1954 	}
1955 
1956 	next_page = rb_list_head(to_remove)->next;
1957 
1958 	/*
1959 	 * Now we remove all pages between tail_page and next_page.
1960 	 * Make sure that we have head_bit value preserved for the
1961 	 * next page
1962 	 */
1963 	tail_page->next = (struct list_head *)((unsigned long)next_page |
1964 						head_bit);
1965 	next_page = rb_list_head(next_page);
1966 	next_page->prev = tail_page;
1967 
1968 	/* make sure pages points to a valid page in the ring buffer */
1969 	cpu_buffer->pages = next_page;
1970 
1971 	/* update head page */
1972 	if (head_bit)
1973 		cpu_buffer->head_page = list_entry(next_page,
1974 						struct buffer_page, list);
1975 
1976 	/*
1977 	 * change read pointer to make sure any read iterators reset
1978 	 * themselves
1979 	 */
1980 	cpu_buffer->read = 0;
1981 
1982 	/* pages are removed, resume tracing and then free the pages */
1983 	atomic_dec(&cpu_buffer->record_disabled);
1984 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1985 
1986 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1987 
1988 	/* last buffer page to remove */
1989 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1990 				list);
1991 	tmp_iter_page = first_page;
1992 
1993 	do {
1994 		cond_resched();
1995 
1996 		to_remove_page = tmp_iter_page;
1997 		rb_inc_page(&tmp_iter_page);
1998 
1999 		/* update the counters */
2000 		page_entries = rb_page_entries(to_remove_page);
2001 		if (page_entries) {
2002 			/*
2003 			 * If something was added to this page, it was full
2004 			 * since it is not the tail page. So we deduct the
2005 			 * bytes consumed in ring buffer from here.
2006 			 * Increment overrun to account for the lost events.
2007 			 */
2008 			local_add(page_entries, &cpu_buffer->overrun);
2009 			local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2010 			local_inc(&cpu_buffer->pages_lost);
2011 		}
2012 
2013 		/*
2014 		 * We have already removed references to this list item, just
2015 		 * free up the buffer_page and its page
2016 		 */
2017 		free_buffer_page(to_remove_page);
2018 		nr_removed--;
2019 
2020 	} while (to_remove_page != last_page);
2021 
2022 	RB_WARN_ON(cpu_buffer, nr_removed);
2023 
2024 	return nr_removed == 0;
2025 }
2026 
2027 static bool
2028 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2029 {
2030 	struct list_head *pages = &cpu_buffer->new_pages;
2031 	unsigned long flags;
2032 	bool success;
2033 	int retries;
2034 
2035 	/* Can be called at early boot up, where interrupts must not been enabled */
2036 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2037 	/*
2038 	 * We are holding the reader lock, so the reader page won't be swapped
2039 	 * in the ring buffer. Now we are racing with the writer trying to
2040 	 * move head page and the tail page.
2041 	 * We are going to adapt the reader page update process where:
2042 	 * 1. We first splice the start and end of list of new pages between
2043 	 *    the head page and its previous page.
2044 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2045 	 *    start of new pages list.
2046 	 * 3. Finally, we update the head->prev to the end of new list.
2047 	 *
2048 	 * We will try this process 10 times, to make sure that we don't keep
2049 	 * spinning.
2050 	 */
2051 	retries = 10;
2052 	success = false;
2053 	while (retries--) {
2054 		struct list_head *head_page, *prev_page, *r;
2055 		struct list_head *last_page, *first_page;
2056 		struct list_head *head_page_with_bit;
2057 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2058 
2059 		if (!hpage)
2060 			break;
2061 		head_page = &hpage->list;
2062 		prev_page = head_page->prev;
2063 
2064 		first_page = pages->next;
2065 		last_page  = pages->prev;
2066 
2067 		head_page_with_bit = (struct list_head *)
2068 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2069 
2070 		last_page->next = head_page_with_bit;
2071 		first_page->prev = prev_page;
2072 
2073 		r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
2074 
2075 		if (r == head_page_with_bit) {
2076 			/*
2077 			 * yay, we replaced the page pointer to our new list,
2078 			 * now, we just have to update to head page's prev
2079 			 * pointer to point to end of list
2080 			 */
2081 			head_page->prev = last_page;
2082 			success = true;
2083 			break;
2084 		}
2085 	}
2086 
2087 	if (success)
2088 		INIT_LIST_HEAD(pages);
2089 	/*
2090 	 * If we weren't successful in adding in new pages, warn and stop
2091 	 * tracing
2092 	 */
2093 	RB_WARN_ON(cpu_buffer, !success);
2094 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2095 
2096 	/* free pages if they weren't inserted */
2097 	if (!success) {
2098 		struct buffer_page *bpage, *tmp;
2099 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2100 					 list) {
2101 			list_del_init(&bpage->list);
2102 			free_buffer_page(bpage);
2103 		}
2104 	}
2105 	return success;
2106 }
2107 
2108 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2109 {
2110 	bool success;
2111 
2112 	if (cpu_buffer->nr_pages_to_update > 0)
2113 		success = rb_insert_pages(cpu_buffer);
2114 	else
2115 		success = rb_remove_pages(cpu_buffer,
2116 					-cpu_buffer->nr_pages_to_update);
2117 
2118 	if (success)
2119 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2120 }
2121 
2122 static void update_pages_handler(struct work_struct *work)
2123 {
2124 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2125 			struct ring_buffer_per_cpu, update_pages_work);
2126 	rb_update_pages(cpu_buffer);
2127 	complete(&cpu_buffer->update_done);
2128 }
2129 
2130 /**
2131  * ring_buffer_resize - resize the ring buffer
2132  * @buffer: the buffer to resize.
2133  * @size: the new size.
2134  * @cpu_id: the cpu buffer to resize
2135  *
2136  * Minimum size is 2 * BUF_PAGE_SIZE.
2137  *
2138  * Returns 0 on success and < 0 on failure.
2139  */
2140 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2141 			int cpu_id)
2142 {
2143 	struct ring_buffer_per_cpu *cpu_buffer;
2144 	unsigned long nr_pages;
2145 	int cpu, err;
2146 
2147 	/*
2148 	 * Always succeed at resizing a non-existent buffer:
2149 	 */
2150 	if (!buffer)
2151 		return 0;
2152 
2153 	/* Make sure the requested buffer exists */
2154 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2155 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2156 		return 0;
2157 
2158 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
2159 
2160 	/* we need a minimum of two pages */
2161 	if (nr_pages < 2)
2162 		nr_pages = 2;
2163 
2164 	/* prevent another thread from changing buffer sizes */
2165 	mutex_lock(&buffer->mutex);
2166 
2167 
2168 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2169 		/*
2170 		 * Don't succeed if resizing is disabled, as a reader might be
2171 		 * manipulating the ring buffer and is expecting a sane state while
2172 		 * this is true.
2173 		 */
2174 		for_each_buffer_cpu(buffer, cpu) {
2175 			cpu_buffer = buffer->buffers[cpu];
2176 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2177 				err = -EBUSY;
2178 				goto out_err_unlock;
2179 			}
2180 		}
2181 
2182 		/* calculate the pages to update */
2183 		for_each_buffer_cpu(buffer, cpu) {
2184 			cpu_buffer = buffer->buffers[cpu];
2185 
2186 			cpu_buffer->nr_pages_to_update = nr_pages -
2187 							cpu_buffer->nr_pages;
2188 			/*
2189 			 * nothing more to do for removing pages or no update
2190 			 */
2191 			if (cpu_buffer->nr_pages_to_update <= 0)
2192 				continue;
2193 			/*
2194 			 * to add pages, make sure all new pages can be
2195 			 * allocated without receiving ENOMEM
2196 			 */
2197 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2198 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2199 						&cpu_buffer->new_pages)) {
2200 				/* not enough memory for new pages */
2201 				err = -ENOMEM;
2202 				goto out_err;
2203 			}
2204 		}
2205 
2206 		cpus_read_lock();
2207 		/*
2208 		 * Fire off all the required work handlers
2209 		 * We can't schedule on offline CPUs, but it's not necessary
2210 		 * since we can change their buffer sizes without any race.
2211 		 */
2212 		for_each_buffer_cpu(buffer, cpu) {
2213 			cpu_buffer = buffer->buffers[cpu];
2214 			if (!cpu_buffer->nr_pages_to_update)
2215 				continue;
2216 
2217 			/* Can't run something on an offline CPU. */
2218 			if (!cpu_online(cpu)) {
2219 				rb_update_pages(cpu_buffer);
2220 				cpu_buffer->nr_pages_to_update = 0;
2221 			} else {
2222 				/* Run directly if possible. */
2223 				migrate_disable();
2224 				if (cpu != smp_processor_id()) {
2225 					migrate_enable();
2226 					schedule_work_on(cpu,
2227 							 &cpu_buffer->update_pages_work);
2228 				} else {
2229 					update_pages_handler(&cpu_buffer->update_pages_work);
2230 					migrate_enable();
2231 				}
2232 			}
2233 		}
2234 
2235 		/* wait for all the updates to complete */
2236 		for_each_buffer_cpu(buffer, cpu) {
2237 			cpu_buffer = buffer->buffers[cpu];
2238 			if (!cpu_buffer->nr_pages_to_update)
2239 				continue;
2240 
2241 			if (cpu_online(cpu))
2242 				wait_for_completion(&cpu_buffer->update_done);
2243 			cpu_buffer->nr_pages_to_update = 0;
2244 		}
2245 
2246 		cpus_read_unlock();
2247 	} else {
2248 		cpu_buffer = buffer->buffers[cpu_id];
2249 
2250 		if (nr_pages == cpu_buffer->nr_pages)
2251 			goto out;
2252 
2253 		/*
2254 		 * Don't succeed if resizing is disabled, as a reader might be
2255 		 * manipulating the ring buffer and is expecting a sane state while
2256 		 * this is true.
2257 		 */
2258 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2259 			err = -EBUSY;
2260 			goto out_err_unlock;
2261 		}
2262 
2263 		cpu_buffer->nr_pages_to_update = nr_pages -
2264 						cpu_buffer->nr_pages;
2265 
2266 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2267 		if (cpu_buffer->nr_pages_to_update > 0 &&
2268 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2269 					    &cpu_buffer->new_pages)) {
2270 			err = -ENOMEM;
2271 			goto out_err;
2272 		}
2273 
2274 		cpus_read_lock();
2275 
2276 		/* Can't run something on an offline CPU. */
2277 		if (!cpu_online(cpu_id))
2278 			rb_update_pages(cpu_buffer);
2279 		else {
2280 			/* Run directly if possible. */
2281 			migrate_disable();
2282 			if (cpu_id == smp_processor_id()) {
2283 				rb_update_pages(cpu_buffer);
2284 				migrate_enable();
2285 			} else {
2286 				migrate_enable();
2287 				schedule_work_on(cpu_id,
2288 						 &cpu_buffer->update_pages_work);
2289 				wait_for_completion(&cpu_buffer->update_done);
2290 			}
2291 		}
2292 
2293 		cpu_buffer->nr_pages_to_update = 0;
2294 		cpus_read_unlock();
2295 	}
2296 
2297  out:
2298 	/*
2299 	 * The ring buffer resize can happen with the ring buffer
2300 	 * enabled, so that the update disturbs the tracing as little
2301 	 * as possible. But if the buffer is disabled, we do not need
2302 	 * to worry about that, and we can take the time to verify
2303 	 * that the buffer is not corrupt.
2304 	 */
2305 	if (atomic_read(&buffer->record_disabled)) {
2306 		atomic_inc(&buffer->record_disabled);
2307 		/*
2308 		 * Even though the buffer was disabled, we must make sure
2309 		 * that it is truly disabled before calling rb_check_pages.
2310 		 * There could have been a race between checking
2311 		 * record_disable and incrementing it.
2312 		 */
2313 		synchronize_rcu();
2314 		for_each_buffer_cpu(buffer, cpu) {
2315 			cpu_buffer = buffer->buffers[cpu];
2316 			rb_check_pages(cpu_buffer);
2317 		}
2318 		atomic_dec(&buffer->record_disabled);
2319 	}
2320 
2321 	mutex_unlock(&buffer->mutex);
2322 	return 0;
2323 
2324  out_err:
2325 	for_each_buffer_cpu(buffer, cpu) {
2326 		struct buffer_page *bpage, *tmp;
2327 
2328 		cpu_buffer = buffer->buffers[cpu];
2329 		cpu_buffer->nr_pages_to_update = 0;
2330 
2331 		if (list_empty(&cpu_buffer->new_pages))
2332 			continue;
2333 
2334 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2335 					list) {
2336 			list_del_init(&bpage->list);
2337 			free_buffer_page(bpage);
2338 		}
2339 	}
2340  out_err_unlock:
2341 	mutex_unlock(&buffer->mutex);
2342 	return err;
2343 }
2344 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2345 
2346 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2347 {
2348 	mutex_lock(&buffer->mutex);
2349 	if (val)
2350 		buffer->flags |= RB_FL_OVERWRITE;
2351 	else
2352 		buffer->flags &= ~RB_FL_OVERWRITE;
2353 	mutex_unlock(&buffer->mutex);
2354 }
2355 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2356 
2357 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2358 {
2359 	return bpage->page->data + index;
2360 }
2361 
2362 static __always_inline struct ring_buffer_event *
2363 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2364 {
2365 	return __rb_page_index(cpu_buffer->reader_page,
2366 			       cpu_buffer->reader_page->read);
2367 }
2368 
2369 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2370 {
2371 	return local_read(&bpage->page->commit);
2372 }
2373 
2374 static struct ring_buffer_event *
2375 rb_iter_head_event(struct ring_buffer_iter *iter)
2376 {
2377 	struct ring_buffer_event *event;
2378 	struct buffer_page *iter_head_page = iter->head_page;
2379 	unsigned long commit;
2380 	unsigned length;
2381 
2382 	if (iter->head != iter->next_event)
2383 		return iter->event;
2384 
2385 	/*
2386 	 * When the writer goes across pages, it issues a cmpxchg which
2387 	 * is a mb(), which will synchronize with the rmb here.
2388 	 * (see rb_tail_page_update() and __rb_reserve_next())
2389 	 */
2390 	commit = rb_page_commit(iter_head_page);
2391 	smp_rmb();
2392 	event = __rb_page_index(iter_head_page, iter->head);
2393 	length = rb_event_length(event);
2394 
2395 	/*
2396 	 * READ_ONCE() doesn't work on functions and we don't want the
2397 	 * compiler doing any crazy optimizations with length.
2398 	 */
2399 	barrier();
2400 
2401 	if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2402 		/* Writer corrupted the read? */
2403 		goto reset;
2404 
2405 	memcpy(iter->event, event, length);
2406 	/*
2407 	 * If the page stamp is still the same after this rmb() then the
2408 	 * event was safely copied without the writer entering the page.
2409 	 */
2410 	smp_rmb();
2411 
2412 	/* Make sure the page didn't change since we read this */
2413 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
2414 	    commit > rb_page_commit(iter_head_page))
2415 		goto reset;
2416 
2417 	iter->next_event = iter->head + length;
2418 	return iter->event;
2419  reset:
2420 	/* Reset to the beginning */
2421 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2422 	iter->head = 0;
2423 	iter->next_event = 0;
2424 	iter->missed_events = 1;
2425 	return NULL;
2426 }
2427 
2428 /* Size is determined by what has been committed */
2429 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2430 {
2431 	return rb_page_commit(bpage);
2432 }
2433 
2434 static __always_inline unsigned
2435 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2436 {
2437 	return rb_page_commit(cpu_buffer->commit_page);
2438 }
2439 
2440 static __always_inline unsigned
2441 rb_event_index(struct ring_buffer_event *event)
2442 {
2443 	unsigned long addr = (unsigned long)event;
2444 
2445 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2446 }
2447 
2448 static void rb_inc_iter(struct ring_buffer_iter *iter)
2449 {
2450 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2451 
2452 	/*
2453 	 * The iterator could be on the reader page (it starts there).
2454 	 * But the head could have moved, since the reader was
2455 	 * found. Check for this case and assign the iterator
2456 	 * to the head page instead of next.
2457 	 */
2458 	if (iter->head_page == cpu_buffer->reader_page)
2459 		iter->head_page = rb_set_head_page(cpu_buffer);
2460 	else
2461 		rb_inc_page(&iter->head_page);
2462 
2463 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2464 	iter->head = 0;
2465 	iter->next_event = 0;
2466 }
2467 
2468 /*
2469  * rb_handle_head_page - writer hit the head page
2470  *
2471  * Returns: +1 to retry page
2472  *           0 to continue
2473  *          -1 on error
2474  */
2475 static int
2476 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2477 		    struct buffer_page *tail_page,
2478 		    struct buffer_page *next_page)
2479 {
2480 	struct buffer_page *new_head;
2481 	int entries;
2482 	int type;
2483 	int ret;
2484 
2485 	entries = rb_page_entries(next_page);
2486 
2487 	/*
2488 	 * The hard part is here. We need to move the head
2489 	 * forward, and protect against both readers on
2490 	 * other CPUs and writers coming in via interrupts.
2491 	 */
2492 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2493 				       RB_PAGE_HEAD);
2494 
2495 	/*
2496 	 * type can be one of four:
2497 	 *  NORMAL - an interrupt already moved it for us
2498 	 *  HEAD   - we are the first to get here.
2499 	 *  UPDATE - we are the interrupt interrupting
2500 	 *           a current move.
2501 	 *  MOVED  - a reader on another CPU moved the next
2502 	 *           pointer to its reader page. Give up
2503 	 *           and try again.
2504 	 */
2505 
2506 	switch (type) {
2507 	case RB_PAGE_HEAD:
2508 		/*
2509 		 * We changed the head to UPDATE, thus
2510 		 * it is our responsibility to update
2511 		 * the counters.
2512 		 */
2513 		local_add(entries, &cpu_buffer->overrun);
2514 		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2515 		local_inc(&cpu_buffer->pages_lost);
2516 
2517 		/*
2518 		 * The entries will be zeroed out when we move the
2519 		 * tail page.
2520 		 */
2521 
2522 		/* still more to do */
2523 		break;
2524 
2525 	case RB_PAGE_UPDATE:
2526 		/*
2527 		 * This is an interrupt that interrupt the
2528 		 * previous update. Still more to do.
2529 		 */
2530 		break;
2531 	case RB_PAGE_NORMAL:
2532 		/*
2533 		 * An interrupt came in before the update
2534 		 * and processed this for us.
2535 		 * Nothing left to do.
2536 		 */
2537 		return 1;
2538 	case RB_PAGE_MOVED:
2539 		/*
2540 		 * The reader is on another CPU and just did
2541 		 * a swap with our next_page.
2542 		 * Try again.
2543 		 */
2544 		return 1;
2545 	default:
2546 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2547 		return -1;
2548 	}
2549 
2550 	/*
2551 	 * Now that we are here, the old head pointer is
2552 	 * set to UPDATE. This will keep the reader from
2553 	 * swapping the head page with the reader page.
2554 	 * The reader (on another CPU) will spin till
2555 	 * we are finished.
2556 	 *
2557 	 * We just need to protect against interrupts
2558 	 * doing the job. We will set the next pointer
2559 	 * to HEAD. After that, we set the old pointer
2560 	 * to NORMAL, but only if it was HEAD before.
2561 	 * otherwise we are an interrupt, and only
2562 	 * want the outer most commit to reset it.
2563 	 */
2564 	new_head = next_page;
2565 	rb_inc_page(&new_head);
2566 
2567 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2568 				    RB_PAGE_NORMAL);
2569 
2570 	/*
2571 	 * Valid returns are:
2572 	 *  HEAD   - an interrupt came in and already set it.
2573 	 *  NORMAL - One of two things:
2574 	 *            1) We really set it.
2575 	 *            2) A bunch of interrupts came in and moved
2576 	 *               the page forward again.
2577 	 */
2578 	switch (ret) {
2579 	case RB_PAGE_HEAD:
2580 	case RB_PAGE_NORMAL:
2581 		/* OK */
2582 		break;
2583 	default:
2584 		RB_WARN_ON(cpu_buffer, 1);
2585 		return -1;
2586 	}
2587 
2588 	/*
2589 	 * It is possible that an interrupt came in,
2590 	 * set the head up, then more interrupts came in
2591 	 * and moved it again. When we get back here,
2592 	 * the page would have been set to NORMAL but we
2593 	 * just set it back to HEAD.
2594 	 *
2595 	 * How do you detect this? Well, if that happened
2596 	 * the tail page would have moved.
2597 	 */
2598 	if (ret == RB_PAGE_NORMAL) {
2599 		struct buffer_page *buffer_tail_page;
2600 
2601 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2602 		/*
2603 		 * If the tail had moved passed next, then we need
2604 		 * to reset the pointer.
2605 		 */
2606 		if (buffer_tail_page != tail_page &&
2607 		    buffer_tail_page != next_page)
2608 			rb_head_page_set_normal(cpu_buffer, new_head,
2609 						next_page,
2610 						RB_PAGE_HEAD);
2611 	}
2612 
2613 	/*
2614 	 * If this was the outer most commit (the one that
2615 	 * changed the original pointer from HEAD to UPDATE),
2616 	 * then it is up to us to reset it to NORMAL.
2617 	 */
2618 	if (type == RB_PAGE_HEAD) {
2619 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
2620 					      tail_page,
2621 					      RB_PAGE_UPDATE);
2622 		if (RB_WARN_ON(cpu_buffer,
2623 			       ret != RB_PAGE_UPDATE))
2624 			return -1;
2625 	}
2626 
2627 	return 0;
2628 }
2629 
2630 static inline void
2631 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2632 	      unsigned long tail, struct rb_event_info *info)
2633 {
2634 	struct buffer_page *tail_page = info->tail_page;
2635 	struct ring_buffer_event *event;
2636 	unsigned long length = info->length;
2637 
2638 	/*
2639 	 * Only the event that crossed the page boundary
2640 	 * must fill the old tail_page with padding.
2641 	 */
2642 	if (tail >= BUF_PAGE_SIZE) {
2643 		/*
2644 		 * If the page was filled, then we still need
2645 		 * to update the real_end. Reset it to zero
2646 		 * and the reader will ignore it.
2647 		 */
2648 		if (tail == BUF_PAGE_SIZE)
2649 			tail_page->real_end = 0;
2650 
2651 		local_sub(length, &tail_page->write);
2652 		return;
2653 	}
2654 
2655 	event = __rb_page_index(tail_page, tail);
2656 
2657 	/* account for padding bytes */
2658 	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2659 
2660 	/*
2661 	 * Save the original length to the meta data.
2662 	 * This will be used by the reader to add lost event
2663 	 * counter.
2664 	 */
2665 	tail_page->real_end = tail;
2666 
2667 	/*
2668 	 * If this event is bigger than the minimum size, then
2669 	 * we need to be careful that we don't subtract the
2670 	 * write counter enough to allow another writer to slip
2671 	 * in on this page.
2672 	 * We put in a discarded commit instead, to make sure
2673 	 * that this space is not used again.
2674 	 *
2675 	 * If we are less than the minimum size, we don't need to
2676 	 * worry about it.
2677 	 */
2678 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2679 		/* No room for any events */
2680 
2681 		/* Mark the rest of the page with padding */
2682 		rb_event_set_padding(event);
2683 
2684 		/* Make sure the padding is visible before the write update */
2685 		smp_wmb();
2686 
2687 		/* Set the write back to the previous setting */
2688 		local_sub(length, &tail_page->write);
2689 		return;
2690 	}
2691 
2692 	/* Put in a discarded event */
2693 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2694 	event->type_len = RINGBUF_TYPE_PADDING;
2695 	/* time delta must be non zero */
2696 	event->time_delta = 1;
2697 
2698 	/* Make sure the padding is visible before the tail_page->write update */
2699 	smp_wmb();
2700 
2701 	/* Set write to end of buffer */
2702 	length = (tail + length) - BUF_PAGE_SIZE;
2703 	local_sub(length, &tail_page->write);
2704 }
2705 
2706 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2707 
2708 /*
2709  * This is the slow path, force gcc not to inline it.
2710  */
2711 static noinline struct ring_buffer_event *
2712 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2713 	     unsigned long tail, struct rb_event_info *info)
2714 {
2715 	struct buffer_page *tail_page = info->tail_page;
2716 	struct buffer_page *commit_page = cpu_buffer->commit_page;
2717 	struct trace_buffer *buffer = cpu_buffer->buffer;
2718 	struct buffer_page *next_page;
2719 	int ret;
2720 
2721 	next_page = tail_page;
2722 
2723 	rb_inc_page(&next_page);
2724 
2725 	/*
2726 	 * If for some reason, we had an interrupt storm that made
2727 	 * it all the way around the buffer, bail, and warn
2728 	 * about it.
2729 	 */
2730 	if (unlikely(next_page == commit_page)) {
2731 		local_inc(&cpu_buffer->commit_overrun);
2732 		goto out_reset;
2733 	}
2734 
2735 	/*
2736 	 * This is where the fun begins!
2737 	 *
2738 	 * We are fighting against races between a reader that
2739 	 * could be on another CPU trying to swap its reader
2740 	 * page with the buffer head.
2741 	 *
2742 	 * We are also fighting against interrupts coming in and
2743 	 * moving the head or tail on us as well.
2744 	 *
2745 	 * If the next page is the head page then we have filled
2746 	 * the buffer, unless the commit page is still on the
2747 	 * reader page.
2748 	 */
2749 	if (rb_is_head_page(next_page, &tail_page->list)) {
2750 
2751 		/*
2752 		 * If the commit is not on the reader page, then
2753 		 * move the header page.
2754 		 */
2755 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2756 			/*
2757 			 * If we are not in overwrite mode,
2758 			 * this is easy, just stop here.
2759 			 */
2760 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
2761 				local_inc(&cpu_buffer->dropped_events);
2762 				goto out_reset;
2763 			}
2764 
2765 			ret = rb_handle_head_page(cpu_buffer,
2766 						  tail_page,
2767 						  next_page);
2768 			if (ret < 0)
2769 				goto out_reset;
2770 			if (ret)
2771 				goto out_again;
2772 		} else {
2773 			/*
2774 			 * We need to be careful here too. The
2775 			 * commit page could still be on the reader
2776 			 * page. We could have a small buffer, and
2777 			 * have filled up the buffer with events
2778 			 * from interrupts and such, and wrapped.
2779 			 *
2780 			 * Note, if the tail page is also on the
2781 			 * reader_page, we let it move out.
2782 			 */
2783 			if (unlikely((cpu_buffer->commit_page !=
2784 				      cpu_buffer->tail_page) &&
2785 				     (cpu_buffer->commit_page ==
2786 				      cpu_buffer->reader_page))) {
2787 				local_inc(&cpu_buffer->commit_overrun);
2788 				goto out_reset;
2789 			}
2790 		}
2791 	}
2792 
2793 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
2794 
2795  out_again:
2796 
2797 	rb_reset_tail(cpu_buffer, tail, info);
2798 
2799 	/* Commit what we have for now. */
2800 	rb_end_commit(cpu_buffer);
2801 	/* rb_end_commit() decs committing */
2802 	local_inc(&cpu_buffer->committing);
2803 
2804 	/* fail and let the caller try again */
2805 	return ERR_PTR(-EAGAIN);
2806 
2807  out_reset:
2808 	/* reset write */
2809 	rb_reset_tail(cpu_buffer, tail, info);
2810 
2811 	return NULL;
2812 }
2813 
2814 /* Slow path */
2815 static struct ring_buffer_event *
2816 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2817 {
2818 	if (abs)
2819 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
2820 	else
2821 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2822 
2823 	/* Not the first event on the page, or not delta? */
2824 	if (abs || rb_event_index(event)) {
2825 		event->time_delta = delta & TS_MASK;
2826 		event->array[0] = delta >> TS_SHIFT;
2827 	} else {
2828 		/* nope, just zero it */
2829 		event->time_delta = 0;
2830 		event->array[0] = 0;
2831 	}
2832 
2833 	return skip_time_extend(event);
2834 }
2835 
2836 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2837 static inline bool sched_clock_stable(void)
2838 {
2839 	return true;
2840 }
2841 #endif
2842 
2843 static void
2844 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2845 		   struct rb_event_info *info)
2846 {
2847 	u64 write_stamp;
2848 
2849 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2850 		  (unsigned long long)info->delta,
2851 		  (unsigned long long)info->ts,
2852 		  (unsigned long long)info->before,
2853 		  (unsigned long long)info->after,
2854 		  (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2855 		  sched_clock_stable() ? "" :
2856 		  "If you just came from a suspend/resume,\n"
2857 		  "please switch to the trace global clock:\n"
2858 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
2859 		  "or add trace_clock=global to the kernel command line\n");
2860 }
2861 
2862 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2863 				      struct ring_buffer_event **event,
2864 				      struct rb_event_info *info,
2865 				      u64 *delta,
2866 				      unsigned int *length)
2867 {
2868 	bool abs = info->add_timestamp &
2869 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2870 
2871 	if (unlikely(info->delta > (1ULL << 59))) {
2872 		/*
2873 		 * Some timers can use more than 59 bits, and when a timestamp
2874 		 * is added to the buffer, it will lose those bits.
2875 		 */
2876 		if (abs && (info->ts & TS_MSB)) {
2877 			info->delta &= ABS_TS_MASK;
2878 
2879 		/* did the clock go backwards */
2880 		} else if (info->before == info->after && info->before > info->ts) {
2881 			/* not interrupted */
2882 			static int once;
2883 
2884 			/*
2885 			 * This is possible with a recalibrating of the TSC.
2886 			 * Do not produce a call stack, but just report it.
2887 			 */
2888 			if (!once) {
2889 				once++;
2890 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2891 					info->before, info->ts);
2892 			}
2893 		} else
2894 			rb_check_timestamp(cpu_buffer, info);
2895 		if (!abs)
2896 			info->delta = 0;
2897 	}
2898 	*event = rb_add_time_stamp(*event, info->delta, abs);
2899 	*length -= RB_LEN_TIME_EXTEND;
2900 	*delta = 0;
2901 }
2902 
2903 /**
2904  * rb_update_event - update event type and data
2905  * @cpu_buffer: The per cpu buffer of the @event
2906  * @event: the event to update
2907  * @info: The info to update the @event with (contains length and delta)
2908  *
2909  * Update the type and data fields of the @event. The length
2910  * is the actual size that is written to the ring buffer,
2911  * and with this, we can determine what to place into the
2912  * data field.
2913  */
2914 static void
2915 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2916 		struct ring_buffer_event *event,
2917 		struct rb_event_info *info)
2918 {
2919 	unsigned length = info->length;
2920 	u64 delta = info->delta;
2921 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2922 
2923 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
2924 		cpu_buffer->event_stamp[nest] = info->ts;
2925 
2926 	/*
2927 	 * If we need to add a timestamp, then we
2928 	 * add it to the start of the reserved space.
2929 	 */
2930 	if (unlikely(info->add_timestamp))
2931 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2932 
2933 	event->time_delta = delta;
2934 	length -= RB_EVNT_HDR_SIZE;
2935 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2936 		event->type_len = 0;
2937 		event->array[0] = length;
2938 	} else
2939 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2940 }
2941 
2942 static unsigned rb_calculate_event_length(unsigned length)
2943 {
2944 	struct ring_buffer_event event; /* Used only for sizeof array */
2945 
2946 	/* zero length can cause confusions */
2947 	if (!length)
2948 		length++;
2949 
2950 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2951 		length += sizeof(event.array[0]);
2952 
2953 	length += RB_EVNT_HDR_SIZE;
2954 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
2955 
2956 	/*
2957 	 * In case the time delta is larger than the 27 bits for it
2958 	 * in the header, we need to add a timestamp. If another
2959 	 * event comes in when trying to discard this one to increase
2960 	 * the length, then the timestamp will be added in the allocated
2961 	 * space of this event. If length is bigger than the size needed
2962 	 * for the TIME_EXTEND, then padding has to be used. The events
2963 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2964 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2965 	 * As length is a multiple of 4, we only need to worry if it
2966 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
2967 	 */
2968 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2969 		length += RB_ALIGNMENT;
2970 
2971 	return length;
2972 }
2973 
2974 static u64 rb_time_delta(struct ring_buffer_event *event)
2975 {
2976 	switch (event->type_len) {
2977 	case RINGBUF_TYPE_PADDING:
2978 		return 0;
2979 
2980 	case RINGBUF_TYPE_TIME_EXTEND:
2981 		return rb_event_time_stamp(event);
2982 
2983 	case RINGBUF_TYPE_TIME_STAMP:
2984 		return 0;
2985 
2986 	case RINGBUF_TYPE_DATA:
2987 		return event->time_delta;
2988 	default:
2989 		return 0;
2990 	}
2991 }
2992 
2993 static inline bool
2994 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2995 		  struct ring_buffer_event *event)
2996 {
2997 	unsigned long new_index, old_index;
2998 	struct buffer_page *bpage;
2999 	unsigned long index;
3000 	unsigned long addr;
3001 	u64 write_stamp;
3002 	u64 delta;
3003 
3004 	new_index = rb_event_index(event);
3005 	old_index = new_index + rb_event_ts_length(event);
3006 	addr = (unsigned long)event;
3007 	addr &= PAGE_MASK;
3008 
3009 	bpage = READ_ONCE(cpu_buffer->tail_page);
3010 
3011 	delta = rb_time_delta(event);
3012 
3013 	if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
3014 		return false;
3015 
3016 	/* Make sure the write stamp is read before testing the location */
3017 	barrier();
3018 
3019 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3020 		unsigned long write_mask =
3021 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3022 		unsigned long event_length = rb_event_length(event);
3023 
3024 		/* Something came in, can't discard */
3025 		if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
3026 				       write_stamp, write_stamp - delta))
3027 			return false;
3028 
3029 		/*
3030 		 * It's possible that the event time delta is zero
3031 		 * (has the same time stamp as the previous event)
3032 		 * in which case write_stamp and before_stamp could
3033 		 * be the same. In such a case, force before_stamp
3034 		 * to be different than write_stamp. It doesn't
3035 		 * matter what it is, as long as its different.
3036 		 */
3037 		if (!delta)
3038 			rb_time_set(&cpu_buffer->before_stamp, 0);
3039 
3040 		/*
3041 		 * If an event were to come in now, it would see that the
3042 		 * write_stamp and the before_stamp are different, and assume
3043 		 * that this event just added itself before updating
3044 		 * the write stamp. The interrupting event will fix the
3045 		 * write stamp for us, and use the before stamp as its delta.
3046 		 */
3047 
3048 		/*
3049 		 * This is on the tail page. It is possible that
3050 		 * a write could come in and move the tail page
3051 		 * and write to the next page. That is fine
3052 		 * because we just shorten what is on this page.
3053 		 */
3054 		old_index += write_mask;
3055 		new_index += write_mask;
3056 		index = local_cmpxchg(&bpage->write, old_index, new_index);
3057 		if (index == old_index) {
3058 			/* update counters */
3059 			local_sub(event_length, &cpu_buffer->entries_bytes);
3060 			return true;
3061 		}
3062 	}
3063 
3064 	/* could not discard */
3065 	return false;
3066 }
3067 
3068 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3069 {
3070 	local_inc(&cpu_buffer->committing);
3071 	local_inc(&cpu_buffer->commits);
3072 }
3073 
3074 static __always_inline void
3075 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3076 {
3077 	unsigned long max_count;
3078 
3079 	/*
3080 	 * We only race with interrupts and NMIs on this CPU.
3081 	 * If we own the commit event, then we can commit
3082 	 * all others that interrupted us, since the interruptions
3083 	 * are in stack format (they finish before they come
3084 	 * back to us). This allows us to do a simple loop to
3085 	 * assign the commit to the tail.
3086 	 */
3087  again:
3088 	max_count = cpu_buffer->nr_pages * 100;
3089 
3090 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3091 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3092 			return;
3093 		if (RB_WARN_ON(cpu_buffer,
3094 			       rb_is_reader_page(cpu_buffer->tail_page)))
3095 			return;
3096 		local_set(&cpu_buffer->commit_page->page->commit,
3097 			  rb_page_write(cpu_buffer->commit_page));
3098 		rb_inc_page(&cpu_buffer->commit_page);
3099 		/* add barrier to keep gcc from optimizing too much */
3100 		barrier();
3101 	}
3102 	while (rb_commit_index(cpu_buffer) !=
3103 	       rb_page_write(cpu_buffer->commit_page)) {
3104 
3105 		local_set(&cpu_buffer->commit_page->page->commit,
3106 			  rb_page_write(cpu_buffer->commit_page));
3107 		RB_WARN_ON(cpu_buffer,
3108 			   local_read(&cpu_buffer->commit_page->page->commit) &
3109 			   ~RB_WRITE_MASK);
3110 		barrier();
3111 	}
3112 
3113 	/* again, keep gcc from optimizing */
3114 	barrier();
3115 
3116 	/*
3117 	 * If an interrupt came in just after the first while loop
3118 	 * and pushed the tail page forward, we will be left with
3119 	 * a dangling commit that will never go forward.
3120 	 */
3121 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3122 		goto again;
3123 }
3124 
3125 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3126 {
3127 	unsigned long commits;
3128 
3129 	if (RB_WARN_ON(cpu_buffer,
3130 		       !local_read(&cpu_buffer->committing)))
3131 		return;
3132 
3133  again:
3134 	commits = local_read(&cpu_buffer->commits);
3135 	/* synchronize with interrupts */
3136 	barrier();
3137 	if (local_read(&cpu_buffer->committing) == 1)
3138 		rb_set_commit_to_write(cpu_buffer);
3139 
3140 	local_dec(&cpu_buffer->committing);
3141 
3142 	/* synchronize with interrupts */
3143 	barrier();
3144 
3145 	/*
3146 	 * Need to account for interrupts coming in between the
3147 	 * updating of the commit page and the clearing of the
3148 	 * committing counter.
3149 	 */
3150 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3151 	    !local_read(&cpu_buffer->committing)) {
3152 		local_inc(&cpu_buffer->committing);
3153 		goto again;
3154 	}
3155 }
3156 
3157 static inline void rb_event_discard(struct ring_buffer_event *event)
3158 {
3159 	if (extended_time(event))
3160 		event = skip_time_extend(event);
3161 
3162 	/* array[0] holds the actual length for the discarded event */
3163 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3164 	event->type_len = RINGBUF_TYPE_PADDING;
3165 	/* time delta must be non zero */
3166 	if (!event->time_delta)
3167 		event->time_delta = 1;
3168 }
3169 
3170 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3171 {
3172 	local_inc(&cpu_buffer->entries);
3173 	rb_end_commit(cpu_buffer);
3174 }
3175 
3176 static __always_inline void
3177 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3178 {
3179 	if (buffer->irq_work.waiters_pending) {
3180 		buffer->irq_work.waiters_pending = false;
3181 		/* irq_work_queue() supplies it's own memory barriers */
3182 		irq_work_queue(&buffer->irq_work.work);
3183 	}
3184 
3185 	if (cpu_buffer->irq_work.waiters_pending) {
3186 		cpu_buffer->irq_work.waiters_pending = false;
3187 		/* irq_work_queue() supplies it's own memory barriers */
3188 		irq_work_queue(&cpu_buffer->irq_work.work);
3189 	}
3190 
3191 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3192 		return;
3193 
3194 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3195 		return;
3196 
3197 	if (!cpu_buffer->irq_work.full_waiters_pending)
3198 		return;
3199 
3200 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3201 
3202 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3203 		return;
3204 
3205 	cpu_buffer->irq_work.wakeup_full = true;
3206 	cpu_buffer->irq_work.full_waiters_pending = false;
3207 	/* irq_work_queue() supplies it's own memory barriers */
3208 	irq_work_queue(&cpu_buffer->irq_work.work);
3209 }
3210 
3211 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3212 # define do_ring_buffer_record_recursion()	\
3213 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3214 #else
3215 # define do_ring_buffer_record_recursion() do { } while (0)
3216 #endif
3217 
3218 /*
3219  * The lock and unlock are done within a preempt disable section.
3220  * The current_context per_cpu variable can only be modified
3221  * by the current task between lock and unlock. But it can
3222  * be modified more than once via an interrupt. To pass this
3223  * information from the lock to the unlock without having to
3224  * access the 'in_interrupt()' functions again (which do show
3225  * a bit of overhead in something as critical as function tracing,
3226  * we use a bitmask trick.
3227  *
3228  *  bit 1 =  NMI context
3229  *  bit 2 =  IRQ context
3230  *  bit 3 =  SoftIRQ context
3231  *  bit 4 =  normal context.
3232  *
3233  * This works because this is the order of contexts that can
3234  * preempt other contexts. A SoftIRQ never preempts an IRQ
3235  * context.
3236  *
3237  * When the context is determined, the corresponding bit is
3238  * checked and set (if it was set, then a recursion of that context
3239  * happened).
3240  *
3241  * On unlock, we need to clear this bit. To do so, just subtract
3242  * 1 from the current_context and AND it to itself.
3243  *
3244  * (binary)
3245  *  101 - 1 = 100
3246  *  101 & 100 = 100 (clearing bit zero)
3247  *
3248  *  1010 - 1 = 1001
3249  *  1010 & 1001 = 1000 (clearing bit 1)
3250  *
3251  * The least significant bit can be cleared this way, and it
3252  * just so happens that it is the same bit corresponding to
3253  * the current context.
3254  *
3255  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3256  * is set when a recursion is detected at the current context, and if
3257  * the TRANSITION bit is already set, it will fail the recursion.
3258  * This is needed because there's a lag between the changing of
3259  * interrupt context and updating the preempt count. In this case,
3260  * a false positive will be found. To handle this, one extra recursion
3261  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3262  * bit is already set, then it is considered a recursion and the function
3263  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3264  *
3265  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3266  * to be cleared. Even if it wasn't the context that set it. That is,
3267  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3268  * is called before preempt_count() is updated, since the check will
3269  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3270  * NMI then comes in, it will set the NMI bit, but when the NMI code
3271  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3272  * and leave the NMI bit set. But this is fine, because the interrupt
3273  * code that set the TRANSITION bit will then clear the NMI bit when it
3274  * calls trace_recursive_unlock(). If another NMI comes in, it will
3275  * set the TRANSITION bit and continue.
3276  *
3277  * Note: The TRANSITION bit only handles a single transition between context.
3278  */
3279 
3280 static __always_inline bool
3281 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3282 {
3283 	unsigned int val = cpu_buffer->current_context;
3284 	int bit = interrupt_context_level();
3285 
3286 	bit = RB_CTX_NORMAL - bit;
3287 
3288 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3289 		/*
3290 		 * It is possible that this was called by transitioning
3291 		 * between interrupt context, and preempt_count() has not
3292 		 * been updated yet. In this case, use the TRANSITION bit.
3293 		 */
3294 		bit = RB_CTX_TRANSITION;
3295 		if (val & (1 << (bit + cpu_buffer->nest))) {
3296 			do_ring_buffer_record_recursion();
3297 			return true;
3298 		}
3299 	}
3300 
3301 	val |= (1 << (bit + cpu_buffer->nest));
3302 	cpu_buffer->current_context = val;
3303 
3304 	return false;
3305 }
3306 
3307 static __always_inline void
3308 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3309 {
3310 	cpu_buffer->current_context &=
3311 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3312 }
3313 
3314 /* The recursive locking above uses 5 bits */
3315 #define NESTED_BITS 5
3316 
3317 /**
3318  * ring_buffer_nest_start - Allow to trace while nested
3319  * @buffer: The ring buffer to modify
3320  *
3321  * The ring buffer has a safety mechanism to prevent recursion.
3322  * But there may be a case where a trace needs to be done while
3323  * tracing something else. In this case, calling this function
3324  * will allow this function to nest within a currently active
3325  * ring_buffer_lock_reserve().
3326  *
3327  * Call this function before calling another ring_buffer_lock_reserve() and
3328  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3329  */
3330 void ring_buffer_nest_start(struct trace_buffer *buffer)
3331 {
3332 	struct ring_buffer_per_cpu *cpu_buffer;
3333 	int cpu;
3334 
3335 	/* Enabled by ring_buffer_nest_end() */
3336 	preempt_disable_notrace();
3337 	cpu = raw_smp_processor_id();
3338 	cpu_buffer = buffer->buffers[cpu];
3339 	/* This is the shift value for the above recursive locking */
3340 	cpu_buffer->nest += NESTED_BITS;
3341 }
3342 
3343 /**
3344  * ring_buffer_nest_end - Allow to trace while nested
3345  * @buffer: The ring buffer to modify
3346  *
3347  * Must be called after ring_buffer_nest_start() and after the
3348  * ring_buffer_unlock_commit().
3349  */
3350 void ring_buffer_nest_end(struct trace_buffer *buffer)
3351 {
3352 	struct ring_buffer_per_cpu *cpu_buffer;
3353 	int cpu;
3354 
3355 	/* disabled by ring_buffer_nest_start() */
3356 	cpu = raw_smp_processor_id();
3357 	cpu_buffer = buffer->buffers[cpu];
3358 	/* This is the shift value for the above recursive locking */
3359 	cpu_buffer->nest -= NESTED_BITS;
3360 	preempt_enable_notrace();
3361 }
3362 
3363 /**
3364  * ring_buffer_unlock_commit - commit a reserved
3365  * @buffer: The buffer to commit to
3366  * @event: The event pointer to commit.
3367  *
3368  * This commits the data to the ring buffer, and releases any locks held.
3369  *
3370  * Must be paired with ring_buffer_lock_reserve.
3371  */
3372 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3373 {
3374 	struct ring_buffer_per_cpu *cpu_buffer;
3375 	int cpu = raw_smp_processor_id();
3376 
3377 	cpu_buffer = buffer->buffers[cpu];
3378 
3379 	rb_commit(cpu_buffer);
3380 
3381 	rb_wakeups(buffer, cpu_buffer);
3382 
3383 	trace_recursive_unlock(cpu_buffer);
3384 
3385 	preempt_enable_notrace();
3386 
3387 	return 0;
3388 }
3389 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3390 
3391 /* Special value to validate all deltas on a page. */
3392 #define CHECK_FULL_PAGE		1L
3393 
3394 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3395 static void dump_buffer_page(struct buffer_data_page *bpage,
3396 			     struct rb_event_info *info,
3397 			     unsigned long tail)
3398 {
3399 	struct ring_buffer_event *event;
3400 	u64 ts, delta;
3401 	int e;
3402 
3403 	ts = bpage->time_stamp;
3404 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3405 
3406 	for (e = 0; e < tail; e += rb_event_length(event)) {
3407 
3408 		event = (struct ring_buffer_event *)(bpage->data + e);
3409 
3410 		switch (event->type_len) {
3411 
3412 		case RINGBUF_TYPE_TIME_EXTEND:
3413 			delta = rb_event_time_stamp(event);
3414 			ts += delta;
3415 			pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3416 			break;
3417 
3418 		case RINGBUF_TYPE_TIME_STAMP:
3419 			delta = rb_event_time_stamp(event);
3420 			ts = rb_fix_abs_ts(delta, ts);
3421 			pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3422 			break;
3423 
3424 		case RINGBUF_TYPE_PADDING:
3425 			ts += event->time_delta;
3426 			pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3427 			break;
3428 
3429 		case RINGBUF_TYPE_DATA:
3430 			ts += event->time_delta;
3431 			pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3432 			break;
3433 
3434 		default:
3435 			break;
3436 		}
3437 	}
3438 }
3439 
3440 static DEFINE_PER_CPU(atomic_t, checking);
3441 static atomic_t ts_dump;
3442 
3443 /*
3444  * Check if the current event time stamp matches the deltas on
3445  * the buffer page.
3446  */
3447 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3448 			 struct rb_event_info *info,
3449 			 unsigned long tail)
3450 {
3451 	struct ring_buffer_event *event;
3452 	struct buffer_data_page *bpage;
3453 	u64 ts, delta;
3454 	bool full = false;
3455 	int e;
3456 
3457 	bpage = info->tail_page->page;
3458 
3459 	if (tail == CHECK_FULL_PAGE) {
3460 		full = true;
3461 		tail = local_read(&bpage->commit);
3462 	} else if (info->add_timestamp &
3463 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3464 		/* Ignore events with absolute time stamps */
3465 		return;
3466 	}
3467 
3468 	/*
3469 	 * Do not check the first event (skip possible extends too).
3470 	 * Also do not check if previous events have not been committed.
3471 	 */
3472 	if (tail <= 8 || tail > local_read(&bpage->commit))
3473 		return;
3474 
3475 	/*
3476 	 * If this interrupted another event,
3477 	 */
3478 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3479 		goto out;
3480 
3481 	ts = bpage->time_stamp;
3482 
3483 	for (e = 0; e < tail; e += rb_event_length(event)) {
3484 
3485 		event = (struct ring_buffer_event *)(bpage->data + e);
3486 
3487 		switch (event->type_len) {
3488 
3489 		case RINGBUF_TYPE_TIME_EXTEND:
3490 			delta = rb_event_time_stamp(event);
3491 			ts += delta;
3492 			break;
3493 
3494 		case RINGBUF_TYPE_TIME_STAMP:
3495 			delta = rb_event_time_stamp(event);
3496 			ts = rb_fix_abs_ts(delta, ts);
3497 			break;
3498 
3499 		case RINGBUF_TYPE_PADDING:
3500 			if (event->time_delta == 1)
3501 				break;
3502 			fallthrough;
3503 		case RINGBUF_TYPE_DATA:
3504 			ts += event->time_delta;
3505 			break;
3506 
3507 		default:
3508 			RB_WARN_ON(cpu_buffer, 1);
3509 		}
3510 	}
3511 	if ((full && ts > info->ts) ||
3512 	    (!full && ts + info->delta != info->ts)) {
3513 		/* If another report is happening, ignore this one */
3514 		if (atomic_inc_return(&ts_dump) != 1) {
3515 			atomic_dec(&ts_dump);
3516 			goto out;
3517 		}
3518 		atomic_inc(&cpu_buffer->record_disabled);
3519 		/* There's some cases in boot up that this can happen */
3520 		WARN_ON_ONCE(system_state != SYSTEM_BOOTING);
3521 		pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s\n",
3522 			cpu_buffer->cpu,
3523 			ts + info->delta, info->ts, info->delta,
3524 			info->before, info->after,
3525 			full ? " (full)" : "");
3526 		dump_buffer_page(bpage, info, tail);
3527 		atomic_dec(&ts_dump);
3528 		/* Do not re-enable checking */
3529 		return;
3530 	}
3531 out:
3532 	atomic_dec(this_cpu_ptr(&checking));
3533 }
3534 #else
3535 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3536 			 struct rb_event_info *info,
3537 			 unsigned long tail)
3538 {
3539 }
3540 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3541 
3542 static struct ring_buffer_event *
3543 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3544 		  struct rb_event_info *info)
3545 {
3546 	struct ring_buffer_event *event;
3547 	struct buffer_page *tail_page;
3548 	unsigned long tail, write, w;
3549 	bool a_ok;
3550 	bool b_ok;
3551 
3552 	/* Don't let the compiler play games with cpu_buffer->tail_page */
3553 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3554 
3555  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
3556 	barrier();
3557 	b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3558 	a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3559 	barrier();
3560 	info->ts = rb_time_stamp(cpu_buffer->buffer);
3561 
3562 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3563 		info->delta = info->ts;
3564 	} else {
3565 		/*
3566 		 * If interrupting an event time update, we may need an
3567 		 * absolute timestamp.
3568 		 * Don't bother if this is the start of a new page (w == 0).
3569 		 */
3570 		if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3571 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3572 			info->length += RB_LEN_TIME_EXTEND;
3573 		} else {
3574 			info->delta = info->ts - info->after;
3575 			if (unlikely(test_time_stamp(info->delta))) {
3576 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3577 				info->length += RB_LEN_TIME_EXTEND;
3578 			}
3579 		}
3580 	}
3581 
3582  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
3583 
3584  /*C*/	write = local_add_return(info->length, &tail_page->write);
3585 
3586 	/* set write to only the index of the write */
3587 	write &= RB_WRITE_MASK;
3588 
3589 	tail = write - info->length;
3590 
3591 	/* See if we shot pass the end of this buffer page */
3592 	if (unlikely(write > BUF_PAGE_SIZE)) {
3593 		/* before and after may now different, fix it up*/
3594 		b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3595 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3596 		if (a_ok && b_ok && info->before != info->after)
3597 			(void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3598 					      info->before, info->after);
3599 		if (a_ok && b_ok)
3600 			check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3601 		return rb_move_tail(cpu_buffer, tail, info);
3602 	}
3603 
3604 	if (likely(tail == w)) {
3605 		u64 save_before;
3606 		bool s_ok;
3607 
3608 		/* Nothing interrupted us between A and C */
3609  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
3610 		barrier();
3611  /*E*/		s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3612 		RB_WARN_ON(cpu_buffer, !s_ok);
3613 		if (likely(!(info->add_timestamp &
3614 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3615 			/* This did not interrupt any time update */
3616 			info->delta = info->ts - info->after;
3617 		else
3618 			/* Just use full timestamp for interrupting event */
3619 			info->delta = info->ts;
3620 		barrier();
3621 		check_buffer(cpu_buffer, info, tail);
3622 		if (unlikely(info->ts != save_before)) {
3623 			/* SLOW PATH - Interrupted between C and E */
3624 
3625 			a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3626 			RB_WARN_ON(cpu_buffer, !a_ok);
3627 
3628 			/* Write stamp must only go forward */
3629 			if (save_before > info->after) {
3630 				/*
3631 				 * We do not care about the result, only that
3632 				 * it gets updated atomically.
3633 				 */
3634 				(void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3635 						      info->after, save_before);
3636 			}
3637 		}
3638 	} else {
3639 		u64 ts;
3640 		/* SLOW PATH - Interrupted between A and C */
3641 		a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3642 		/* Was interrupted before here, write_stamp must be valid */
3643 		RB_WARN_ON(cpu_buffer, !a_ok);
3644 		ts = rb_time_stamp(cpu_buffer->buffer);
3645 		barrier();
3646  /*E*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3647 		    info->after < ts &&
3648 		    rb_time_cmpxchg(&cpu_buffer->write_stamp,
3649 				    info->after, ts)) {
3650 			/* Nothing came after this event between C and E */
3651 			info->delta = ts - info->after;
3652 		} else {
3653 			/*
3654 			 * Interrupted between C and E:
3655 			 * Lost the previous events time stamp. Just set the
3656 			 * delta to zero, and this will be the same time as
3657 			 * the event this event interrupted. And the events that
3658 			 * came after this will still be correct (as they would
3659 			 * have built their delta on the previous event.
3660 			 */
3661 			info->delta = 0;
3662 		}
3663 		info->ts = ts;
3664 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3665 	}
3666 
3667 	/*
3668 	 * If this is the first commit on the page, then it has the same
3669 	 * timestamp as the page itself.
3670 	 */
3671 	if (unlikely(!tail && !(info->add_timestamp &
3672 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3673 		info->delta = 0;
3674 
3675 	/* We reserved something on the buffer */
3676 
3677 	event = __rb_page_index(tail_page, tail);
3678 	rb_update_event(cpu_buffer, event, info);
3679 
3680 	local_inc(&tail_page->entries);
3681 
3682 	/*
3683 	 * If this is the first commit on the page, then update
3684 	 * its timestamp.
3685 	 */
3686 	if (unlikely(!tail))
3687 		tail_page->page->time_stamp = info->ts;
3688 
3689 	/* account for these added bytes */
3690 	local_add(info->length, &cpu_buffer->entries_bytes);
3691 
3692 	return event;
3693 }
3694 
3695 static __always_inline struct ring_buffer_event *
3696 rb_reserve_next_event(struct trace_buffer *buffer,
3697 		      struct ring_buffer_per_cpu *cpu_buffer,
3698 		      unsigned long length)
3699 {
3700 	struct ring_buffer_event *event;
3701 	struct rb_event_info info;
3702 	int nr_loops = 0;
3703 	int add_ts_default;
3704 
3705 	rb_start_commit(cpu_buffer);
3706 	/* The commit page can not change after this */
3707 
3708 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3709 	/*
3710 	 * Due to the ability to swap a cpu buffer from a buffer
3711 	 * it is possible it was swapped before we committed.
3712 	 * (committing stops a swap). We check for it here and
3713 	 * if it happened, we have to fail the write.
3714 	 */
3715 	barrier();
3716 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3717 		local_dec(&cpu_buffer->committing);
3718 		local_dec(&cpu_buffer->commits);
3719 		return NULL;
3720 	}
3721 #endif
3722 
3723 	info.length = rb_calculate_event_length(length);
3724 
3725 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3726 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3727 		info.length += RB_LEN_TIME_EXTEND;
3728 	} else {
3729 		add_ts_default = RB_ADD_STAMP_NONE;
3730 	}
3731 
3732  again:
3733 	info.add_timestamp = add_ts_default;
3734 	info.delta = 0;
3735 
3736 	/*
3737 	 * We allow for interrupts to reenter here and do a trace.
3738 	 * If one does, it will cause this original code to loop
3739 	 * back here. Even with heavy interrupts happening, this
3740 	 * should only happen a few times in a row. If this happens
3741 	 * 1000 times in a row, there must be either an interrupt
3742 	 * storm or we have something buggy.
3743 	 * Bail!
3744 	 */
3745 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3746 		goto out_fail;
3747 
3748 	event = __rb_reserve_next(cpu_buffer, &info);
3749 
3750 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3751 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3752 			info.length -= RB_LEN_TIME_EXTEND;
3753 		goto again;
3754 	}
3755 
3756 	if (likely(event))
3757 		return event;
3758  out_fail:
3759 	rb_end_commit(cpu_buffer);
3760 	return NULL;
3761 }
3762 
3763 /**
3764  * ring_buffer_lock_reserve - reserve a part of the buffer
3765  * @buffer: the ring buffer to reserve from
3766  * @length: the length of the data to reserve (excluding event header)
3767  *
3768  * Returns a reserved event on the ring buffer to copy directly to.
3769  * The user of this interface will need to get the body to write into
3770  * and can use the ring_buffer_event_data() interface.
3771  *
3772  * The length is the length of the data needed, not the event length
3773  * which also includes the event header.
3774  *
3775  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3776  * If NULL is returned, then nothing has been allocated or locked.
3777  */
3778 struct ring_buffer_event *
3779 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3780 {
3781 	struct ring_buffer_per_cpu *cpu_buffer;
3782 	struct ring_buffer_event *event;
3783 	int cpu;
3784 
3785 	/* If we are tracing schedule, we don't want to recurse */
3786 	preempt_disable_notrace();
3787 
3788 	if (unlikely(atomic_read(&buffer->record_disabled)))
3789 		goto out;
3790 
3791 	cpu = raw_smp_processor_id();
3792 
3793 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3794 		goto out;
3795 
3796 	cpu_buffer = buffer->buffers[cpu];
3797 
3798 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3799 		goto out;
3800 
3801 	if (unlikely(length > BUF_MAX_DATA_SIZE))
3802 		goto out;
3803 
3804 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3805 		goto out;
3806 
3807 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3808 	if (!event)
3809 		goto out_unlock;
3810 
3811 	return event;
3812 
3813  out_unlock:
3814 	trace_recursive_unlock(cpu_buffer);
3815  out:
3816 	preempt_enable_notrace();
3817 	return NULL;
3818 }
3819 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3820 
3821 /*
3822  * Decrement the entries to the page that an event is on.
3823  * The event does not even need to exist, only the pointer
3824  * to the page it is on. This may only be called before the commit
3825  * takes place.
3826  */
3827 static inline void
3828 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3829 		   struct ring_buffer_event *event)
3830 {
3831 	unsigned long addr = (unsigned long)event;
3832 	struct buffer_page *bpage = cpu_buffer->commit_page;
3833 	struct buffer_page *start;
3834 
3835 	addr &= PAGE_MASK;
3836 
3837 	/* Do the likely case first */
3838 	if (likely(bpage->page == (void *)addr)) {
3839 		local_dec(&bpage->entries);
3840 		return;
3841 	}
3842 
3843 	/*
3844 	 * Because the commit page may be on the reader page we
3845 	 * start with the next page and check the end loop there.
3846 	 */
3847 	rb_inc_page(&bpage);
3848 	start = bpage;
3849 	do {
3850 		if (bpage->page == (void *)addr) {
3851 			local_dec(&bpage->entries);
3852 			return;
3853 		}
3854 		rb_inc_page(&bpage);
3855 	} while (bpage != start);
3856 
3857 	/* commit not part of this buffer?? */
3858 	RB_WARN_ON(cpu_buffer, 1);
3859 }
3860 
3861 /**
3862  * ring_buffer_discard_commit - discard an event that has not been committed
3863  * @buffer: the ring buffer
3864  * @event: non committed event to discard
3865  *
3866  * Sometimes an event that is in the ring buffer needs to be ignored.
3867  * This function lets the user discard an event in the ring buffer
3868  * and then that event will not be read later.
3869  *
3870  * This function only works if it is called before the item has been
3871  * committed. It will try to free the event from the ring buffer
3872  * if another event has not been added behind it.
3873  *
3874  * If another event has been added behind it, it will set the event
3875  * up as discarded, and perform the commit.
3876  *
3877  * If this function is called, do not call ring_buffer_unlock_commit on
3878  * the event.
3879  */
3880 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3881 				struct ring_buffer_event *event)
3882 {
3883 	struct ring_buffer_per_cpu *cpu_buffer;
3884 	int cpu;
3885 
3886 	/* The event is discarded regardless */
3887 	rb_event_discard(event);
3888 
3889 	cpu = smp_processor_id();
3890 	cpu_buffer = buffer->buffers[cpu];
3891 
3892 	/*
3893 	 * This must only be called if the event has not been
3894 	 * committed yet. Thus we can assume that preemption
3895 	 * is still disabled.
3896 	 */
3897 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3898 
3899 	rb_decrement_entry(cpu_buffer, event);
3900 	if (rb_try_to_discard(cpu_buffer, event))
3901 		goto out;
3902 
3903  out:
3904 	rb_end_commit(cpu_buffer);
3905 
3906 	trace_recursive_unlock(cpu_buffer);
3907 
3908 	preempt_enable_notrace();
3909 
3910 }
3911 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3912 
3913 /**
3914  * ring_buffer_write - write data to the buffer without reserving
3915  * @buffer: The ring buffer to write to.
3916  * @length: The length of the data being written (excluding the event header)
3917  * @data: The data to write to the buffer.
3918  *
3919  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3920  * one function. If you already have the data to write to the buffer, it
3921  * may be easier to simply call this function.
3922  *
3923  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3924  * and not the length of the event which would hold the header.
3925  */
3926 int ring_buffer_write(struct trace_buffer *buffer,
3927 		      unsigned long length,
3928 		      void *data)
3929 {
3930 	struct ring_buffer_per_cpu *cpu_buffer;
3931 	struct ring_buffer_event *event;
3932 	void *body;
3933 	int ret = -EBUSY;
3934 	int cpu;
3935 
3936 	preempt_disable_notrace();
3937 
3938 	if (atomic_read(&buffer->record_disabled))
3939 		goto out;
3940 
3941 	cpu = raw_smp_processor_id();
3942 
3943 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3944 		goto out;
3945 
3946 	cpu_buffer = buffer->buffers[cpu];
3947 
3948 	if (atomic_read(&cpu_buffer->record_disabled))
3949 		goto out;
3950 
3951 	if (length > BUF_MAX_DATA_SIZE)
3952 		goto out;
3953 
3954 	if (unlikely(trace_recursive_lock(cpu_buffer)))
3955 		goto out;
3956 
3957 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
3958 	if (!event)
3959 		goto out_unlock;
3960 
3961 	body = rb_event_data(event);
3962 
3963 	memcpy(body, data, length);
3964 
3965 	rb_commit(cpu_buffer);
3966 
3967 	rb_wakeups(buffer, cpu_buffer);
3968 
3969 	ret = 0;
3970 
3971  out_unlock:
3972 	trace_recursive_unlock(cpu_buffer);
3973 
3974  out:
3975 	preempt_enable_notrace();
3976 
3977 	return ret;
3978 }
3979 EXPORT_SYMBOL_GPL(ring_buffer_write);
3980 
3981 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3982 {
3983 	struct buffer_page *reader = cpu_buffer->reader_page;
3984 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
3985 	struct buffer_page *commit = cpu_buffer->commit_page;
3986 
3987 	/* In case of error, head will be NULL */
3988 	if (unlikely(!head))
3989 		return true;
3990 
3991 	/* Reader should exhaust content in reader page */
3992 	if (reader->read != rb_page_commit(reader))
3993 		return false;
3994 
3995 	/*
3996 	 * If writers are committing on the reader page, knowing all
3997 	 * committed content has been read, the ring buffer is empty.
3998 	 */
3999 	if (commit == reader)
4000 		return true;
4001 
4002 	/*
4003 	 * If writers are committing on a page other than reader page
4004 	 * and head page, there should always be content to read.
4005 	 */
4006 	if (commit != head)
4007 		return false;
4008 
4009 	/*
4010 	 * Writers are committing on the head page, we just need
4011 	 * to care about there're committed data, and the reader will
4012 	 * swap reader page with head page when it is to read data.
4013 	 */
4014 	return rb_page_commit(commit) == 0;
4015 }
4016 
4017 /**
4018  * ring_buffer_record_disable - stop all writes into the buffer
4019  * @buffer: The ring buffer to stop writes to.
4020  *
4021  * This prevents all writes to the buffer. Any attempt to write
4022  * to the buffer after this will fail and return NULL.
4023  *
4024  * The caller should call synchronize_rcu() after this.
4025  */
4026 void ring_buffer_record_disable(struct trace_buffer *buffer)
4027 {
4028 	atomic_inc(&buffer->record_disabled);
4029 }
4030 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4031 
4032 /**
4033  * ring_buffer_record_enable - enable writes to the buffer
4034  * @buffer: The ring buffer to enable writes
4035  *
4036  * Note, multiple disables will need the same number of enables
4037  * to truly enable the writing (much like preempt_disable).
4038  */
4039 void ring_buffer_record_enable(struct trace_buffer *buffer)
4040 {
4041 	atomic_dec(&buffer->record_disabled);
4042 }
4043 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4044 
4045 /**
4046  * ring_buffer_record_off - stop all writes into the buffer
4047  * @buffer: The ring buffer to stop writes to.
4048  *
4049  * This prevents all writes to the buffer. Any attempt to write
4050  * to the buffer after this will fail and return NULL.
4051  *
4052  * This is different than ring_buffer_record_disable() as
4053  * it works like an on/off switch, where as the disable() version
4054  * must be paired with a enable().
4055  */
4056 void ring_buffer_record_off(struct trace_buffer *buffer)
4057 {
4058 	unsigned int rd;
4059 	unsigned int new_rd;
4060 
4061 	rd = atomic_read(&buffer->record_disabled);
4062 	do {
4063 		new_rd = rd | RB_BUFFER_OFF;
4064 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4065 }
4066 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4067 
4068 /**
4069  * ring_buffer_record_on - restart writes into the buffer
4070  * @buffer: The ring buffer to start writes to.
4071  *
4072  * This enables all writes to the buffer that was disabled by
4073  * ring_buffer_record_off().
4074  *
4075  * This is different than ring_buffer_record_enable() as
4076  * it works like an on/off switch, where as the enable() version
4077  * must be paired with a disable().
4078  */
4079 void ring_buffer_record_on(struct trace_buffer *buffer)
4080 {
4081 	unsigned int rd;
4082 	unsigned int new_rd;
4083 
4084 	rd = atomic_read(&buffer->record_disabled);
4085 	do {
4086 		new_rd = rd & ~RB_BUFFER_OFF;
4087 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4088 }
4089 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4090 
4091 /**
4092  * ring_buffer_record_is_on - return true if the ring buffer can write
4093  * @buffer: The ring buffer to see if write is enabled
4094  *
4095  * Returns true if the ring buffer is in a state that it accepts writes.
4096  */
4097 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4098 {
4099 	return !atomic_read(&buffer->record_disabled);
4100 }
4101 
4102 /**
4103  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4104  * @buffer: The ring buffer to see if write is set enabled
4105  *
4106  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4107  * Note that this does NOT mean it is in a writable state.
4108  *
4109  * It may return true when the ring buffer has been disabled by
4110  * ring_buffer_record_disable(), as that is a temporary disabling of
4111  * the ring buffer.
4112  */
4113 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4114 {
4115 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4116 }
4117 
4118 /**
4119  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4120  * @buffer: The ring buffer to stop writes to.
4121  * @cpu: The CPU buffer to stop
4122  *
4123  * This prevents all writes to the buffer. Any attempt to write
4124  * to the buffer after this will fail and return NULL.
4125  *
4126  * The caller should call synchronize_rcu() after this.
4127  */
4128 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4129 {
4130 	struct ring_buffer_per_cpu *cpu_buffer;
4131 
4132 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4133 		return;
4134 
4135 	cpu_buffer = buffer->buffers[cpu];
4136 	atomic_inc(&cpu_buffer->record_disabled);
4137 }
4138 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4139 
4140 /**
4141  * ring_buffer_record_enable_cpu - enable writes to the buffer
4142  * @buffer: The ring buffer to enable writes
4143  * @cpu: The CPU to enable.
4144  *
4145  * Note, multiple disables will need the same number of enables
4146  * to truly enable the writing (much like preempt_disable).
4147  */
4148 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4149 {
4150 	struct ring_buffer_per_cpu *cpu_buffer;
4151 
4152 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4153 		return;
4154 
4155 	cpu_buffer = buffer->buffers[cpu];
4156 	atomic_dec(&cpu_buffer->record_disabled);
4157 }
4158 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4159 
4160 /*
4161  * The total entries in the ring buffer is the running counter
4162  * of entries entered into the ring buffer, minus the sum of
4163  * the entries read from the ring buffer and the number of
4164  * entries that were overwritten.
4165  */
4166 static inline unsigned long
4167 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4168 {
4169 	return local_read(&cpu_buffer->entries) -
4170 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4171 }
4172 
4173 /**
4174  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4175  * @buffer: The ring buffer
4176  * @cpu: The per CPU buffer to read from.
4177  */
4178 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4179 {
4180 	unsigned long flags;
4181 	struct ring_buffer_per_cpu *cpu_buffer;
4182 	struct buffer_page *bpage;
4183 	u64 ret = 0;
4184 
4185 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4186 		return 0;
4187 
4188 	cpu_buffer = buffer->buffers[cpu];
4189 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4190 	/*
4191 	 * if the tail is on reader_page, oldest time stamp is on the reader
4192 	 * page
4193 	 */
4194 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4195 		bpage = cpu_buffer->reader_page;
4196 	else
4197 		bpage = rb_set_head_page(cpu_buffer);
4198 	if (bpage)
4199 		ret = bpage->page->time_stamp;
4200 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4201 
4202 	return ret;
4203 }
4204 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4205 
4206 /**
4207  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
4208  * @buffer: The ring buffer
4209  * @cpu: The per CPU buffer to read from.
4210  */
4211 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4212 {
4213 	struct ring_buffer_per_cpu *cpu_buffer;
4214 	unsigned long ret;
4215 
4216 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4217 		return 0;
4218 
4219 	cpu_buffer = buffer->buffers[cpu];
4220 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4221 
4222 	return ret;
4223 }
4224 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4225 
4226 /**
4227  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4228  * @buffer: The ring buffer
4229  * @cpu: The per CPU buffer to get the entries from.
4230  */
4231 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4232 {
4233 	struct ring_buffer_per_cpu *cpu_buffer;
4234 
4235 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4236 		return 0;
4237 
4238 	cpu_buffer = buffer->buffers[cpu];
4239 
4240 	return rb_num_of_entries(cpu_buffer);
4241 }
4242 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4243 
4244 /**
4245  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4246  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4247  * @buffer: The ring buffer
4248  * @cpu: The per CPU buffer to get the number of overruns from
4249  */
4250 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4251 {
4252 	struct ring_buffer_per_cpu *cpu_buffer;
4253 	unsigned long ret;
4254 
4255 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4256 		return 0;
4257 
4258 	cpu_buffer = buffer->buffers[cpu];
4259 	ret = local_read(&cpu_buffer->overrun);
4260 
4261 	return ret;
4262 }
4263 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4264 
4265 /**
4266  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4267  * commits failing due to the buffer wrapping around while there are uncommitted
4268  * events, such as during an interrupt storm.
4269  * @buffer: The ring buffer
4270  * @cpu: The per CPU buffer to get the number of overruns from
4271  */
4272 unsigned long
4273 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4274 {
4275 	struct ring_buffer_per_cpu *cpu_buffer;
4276 	unsigned long ret;
4277 
4278 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4279 		return 0;
4280 
4281 	cpu_buffer = buffer->buffers[cpu];
4282 	ret = local_read(&cpu_buffer->commit_overrun);
4283 
4284 	return ret;
4285 }
4286 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4287 
4288 /**
4289  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4290  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4291  * @buffer: The ring buffer
4292  * @cpu: The per CPU buffer to get the number of overruns from
4293  */
4294 unsigned long
4295 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4296 {
4297 	struct ring_buffer_per_cpu *cpu_buffer;
4298 	unsigned long ret;
4299 
4300 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4301 		return 0;
4302 
4303 	cpu_buffer = buffer->buffers[cpu];
4304 	ret = local_read(&cpu_buffer->dropped_events);
4305 
4306 	return ret;
4307 }
4308 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4309 
4310 /**
4311  * ring_buffer_read_events_cpu - get the number of events successfully read
4312  * @buffer: The ring buffer
4313  * @cpu: The per CPU buffer to get the number of events read
4314  */
4315 unsigned long
4316 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4317 {
4318 	struct ring_buffer_per_cpu *cpu_buffer;
4319 
4320 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4321 		return 0;
4322 
4323 	cpu_buffer = buffer->buffers[cpu];
4324 	return cpu_buffer->read;
4325 }
4326 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4327 
4328 /**
4329  * ring_buffer_entries - get the number of entries in a buffer
4330  * @buffer: The ring buffer
4331  *
4332  * Returns the total number of entries in the ring buffer
4333  * (all CPU entries)
4334  */
4335 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4336 {
4337 	struct ring_buffer_per_cpu *cpu_buffer;
4338 	unsigned long entries = 0;
4339 	int cpu;
4340 
4341 	/* if you care about this being correct, lock the buffer */
4342 	for_each_buffer_cpu(buffer, cpu) {
4343 		cpu_buffer = buffer->buffers[cpu];
4344 		entries += rb_num_of_entries(cpu_buffer);
4345 	}
4346 
4347 	return entries;
4348 }
4349 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4350 
4351 /**
4352  * ring_buffer_overruns - get the number of overruns in buffer
4353  * @buffer: The ring buffer
4354  *
4355  * Returns the total number of overruns in the ring buffer
4356  * (all CPU entries)
4357  */
4358 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4359 {
4360 	struct ring_buffer_per_cpu *cpu_buffer;
4361 	unsigned long overruns = 0;
4362 	int cpu;
4363 
4364 	/* if you care about this being correct, lock the buffer */
4365 	for_each_buffer_cpu(buffer, cpu) {
4366 		cpu_buffer = buffer->buffers[cpu];
4367 		overruns += local_read(&cpu_buffer->overrun);
4368 	}
4369 
4370 	return overruns;
4371 }
4372 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4373 
4374 static void rb_iter_reset(struct ring_buffer_iter *iter)
4375 {
4376 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4377 
4378 	/* Iterator usage is expected to have record disabled */
4379 	iter->head_page = cpu_buffer->reader_page;
4380 	iter->head = cpu_buffer->reader_page->read;
4381 	iter->next_event = iter->head;
4382 
4383 	iter->cache_reader_page = iter->head_page;
4384 	iter->cache_read = cpu_buffer->read;
4385 
4386 	if (iter->head) {
4387 		iter->read_stamp = cpu_buffer->read_stamp;
4388 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4389 	} else {
4390 		iter->read_stamp = iter->head_page->page->time_stamp;
4391 		iter->page_stamp = iter->read_stamp;
4392 	}
4393 }
4394 
4395 /**
4396  * ring_buffer_iter_reset - reset an iterator
4397  * @iter: The iterator to reset
4398  *
4399  * Resets the iterator, so that it will start from the beginning
4400  * again.
4401  */
4402 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4403 {
4404 	struct ring_buffer_per_cpu *cpu_buffer;
4405 	unsigned long flags;
4406 
4407 	if (!iter)
4408 		return;
4409 
4410 	cpu_buffer = iter->cpu_buffer;
4411 
4412 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4413 	rb_iter_reset(iter);
4414 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4415 }
4416 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4417 
4418 /**
4419  * ring_buffer_iter_empty - check if an iterator has no more to read
4420  * @iter: The iterator to check
4421  */
4422 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4423 {
4424 	struct ring_buffer_per_cpu *cpu_buffer;
4425 	struct buffer_page *reader;
4426 	struct buffer_page *head_page;
4427 	struct buffer_page *commit_page;
4428 	struct buffer_page *curr_commit_page;
4429 	unsigned commit;
4430 	u64 curr_commit_ts;
4431 	u64 commit_ts;
4432 
4433 	cpu_buffer = iter->cpu_buffer;
4434 	reader = cpu_buffer->reader_page;
4435 	head_page = cpu_buffer->head_page;
4436 	commit_page = cpu_buffer->commit_page;
4437 	commit_ts = commit_page->page->time_stamp;
4438 
4439 	/*
4440 	 * When the writer goes across pages, it issues a cmpxchg which
4441 	 * is a mb(), which will synchronize with the rmb here.
4442 	 * (see rb_tail_page_update())
4443 	 */
4444 	smp_rmb();
4445 	commit = rb_page_commit(commit_page);
4446 	/* We want to make sure that the commit page doesn't change */
4447 	smp_rmb();
4448 
4449 	/* Make sure commit page didn't change */
4450 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4451 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4452 
4453 	/* If the commit page changed, then there's more data */
4454 	if (curr_commit_page != commit_page ||
4455 	    curr_commit_ts != commit_ts)
4456 		return 0;
4457 
4458 	/* Still racy, as it may return a false positive, but that's OK */
4459 	return ((iter->head_page == commit_page && iter->head >= commit) ||
4460 		(iter->head_page == reader && commit_page == head_page &&
4461 		 head_page->read == commit &&
4462 		 iter->head == rb_page_commit(cpu_buffer->reader_page)));
4463 }
4464 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4465 
4466 static void
4467 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4468 		     struct ring_buffer_event *event)
4469 {
4470 	u64 delta;
4471 
4472 	switch (event->type_len) {
4473 	case RINGBUF_TYPE_PADDING:
4474 		return;
4475 
4476 	case RINGBUF_TYPE_TIME_EXTEND:
4477 		delta = rb_event_time_stamp(event);
4478 		cpu_buffer->read_stamp += delta;
4479 		return;
4480 
4481 	case RINGBUF_TYPE_TIME_STAMP:
4482 		delta = rb_event_time_stamp(event);
4483 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4484 		cpu_buffer->read_stamp = delta;
4485 		return;
4486 
4487 	case RINGBUF_TYPE_DATA:
4488 		cpu_buffer->read_stamp += event->time_delta;
4489 		return;
4490 
4491 	default:
4492 		RB_WARN_ON(cpu_buffer, 1);
4493 	}
4494 }
4495 
4496 static void
4497 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4498 			  struct ring_buffer_event *event)
4499 {
4500 	u64 delta;
4501 
4502 	switch (event->type_len) {
4503 	case RINGBUF_TYPE_PADDING:
4504 		return;
4505 
4506 	case RINGBUF_TYPE_TIME_EXTEND:
4507 		delta = rb_event_time_stamp(event);
4508 		iter->read_stamp += delta;
4509 		return;
4510 
4511 	case RINGBUF_TYPE_TIME_STAMP:
4512 		delta = rb_event_time_stamp(event);
4513 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
4514 		iter->read_stamp = delta;
4515 		return;
4516 
4517 	case RINGBUF_TYPE_DATA:
4518 		iter->read_stamp += event->time_delta;
4519 		return;
4520 
4521 	default:
4522 		RB_WARN_ON(iter->cpu_buffer, 1);
4523 	}
4524 }
4525 
4526 static struct buffer_page *
4527 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4528 {
4529 	struct buffer_page *reader = NULL;
4530 	unsigned long overwrite;
4531 	unsigned long flags;
4532 	int nr_loops = 0;
4533 	bool ret;
4534 
4535 	local_irq_save(flags);
4536 	arch_spin_lock(&cpu_buffer->lock);
4537 
4538  again:
4539 	/*
4540 	 * This should normally only loop twice. But because the
4541 	 * start of the reader inserts an empty page, it causes
4542 	 * a case where we will loop three times. There should be no
4543 	 * reason to loop four times (that I know of).
4544 	 */
4545 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4546 		reader = NULL;
4547 		goto out;
4548 	}
4549 
4550 	reader = cpu_buffer->reader_page;
4551 
4552 	/* If there's more to read, return this page */
4553 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
4554 		goto out;
4555 
4556 	/* Never should we have an index greater than the size */
4557 	if (RB_WARN_ON(cpu_buffer,
4558 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
4559 		goto out;
4560 
4561 	/* check if we caught up to the tail */
4562 	reader = NULL;
4563 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4564 		goto out;
4565 
4566 	/* Don't bother swapping if the ring buffer is empty */
4567 	if (rb_num_of_entries(cpu_buffer) == 0)
4568 		goto out;
4569 
4570 	/*
4571 	 * Reset the reader page to size zero.
4572 	 */
4573 	local_set(&cpu_buffer->reader_page->write, 0);
4574 	local_set(&cpu_buffer->reader_page->entries, 0);
4575 	local_set(&cpu_buffer->reader_page->page->commit, 0);
4576 	cpu_buffer->reader_page->real_end = 0;
4577 
4578  spin:
4579 	/*
4580 	 * Splice the empty reader page into the list around the head.
4581 	 */
4582 	reader = rb_set_head_page(cpu_buffer);
4583 	if (!reader)
4584 		goto out;
4585 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4586 	cpu_buffer->reader_page->list.prev = reader->list.prev;
4587 
4588 	/*
4589 	 * cpu_buffer->pages just needs to point to the buffer, it
4590 	 *  has no specific buffer page to point to. Lets move it out
4591 	 *  of our way so we don't accidentally swap it.
4592 	 */
4593 	cpu_buffer->pages = reader->list.prev;
4594 
4595 	/* The reader page will be pointing to the new head */
4596 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
4597 
4598 	/*
4599 	 * We want to make sure we read the overruns after we set up our
4600 	 * pointers to the next object. The writer side does a
4601 	 * cmpxchg to cross pages which acts as the mb on the writer
4602 	 * side. Note, the reader will constantly fail the swap
4603 	 * while the writer is updating the pointers, so this
4604 	 * guarantees that the overwrite recorded here is the one we
4605 	 * want to compare with the last_overrun.
4606 	 */
4607 	smp_mb();
4608 	overwrite = local_read(&(cpu_buffer->overrun));
4609 
4610 	/*
4611 	 * Here's the tricky part.
4612 	 *
4613 	 * We need to move the pointer past the header page.
4614 	 * But we can only do that if a writer is not currently
4615 	 * moving it. The page before the header page has the
4616 	 * flag bit '1' set if it is pointing to the page we want.
4617 	 * but if the writer is in the process of moving it
4618 	 * than it will be '2' or already moved '0'.
4619 	 */
4620 
4621 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4622 
4623 	/*
4624 	 * If we did not convert it, then we must try again.
4625 	 */
4626 	if (!ret)
4627 		goto spin;
4628 
4629 	/*
4630 	 * Yay! We succeeded in replacing the page.
4631 	 *
4632 	 * Now make the new head point back to the reader page.
4633 	 */
4634 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4635 	rb_inc_page(&cpu_buffer->head_page);
4636 
4637 	local_inc(&cpu_buffer->pages_read);
4638 
4639 	/* Finally update the reader page to the new head */
4640 	cpu_buffer->reader_page = reader;
4641 	cpu_buffer->reader_page->read = 0;
4642 
4643 	if (overwrite != cpu_buffer->last_overrun) {
4644 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4645 		cpu_buffer->last_overrun = overwrite;
4646 	}
4647 
4648 	goto again;
4649 
4650  out:
4651 	/* Update the read_stamp on the first event */
4652 	if (reader && reader->read == 0)
4653 		cpu_buffer->read_stamp = reader->page->time_stamp;
4654 
4655 	arch_spin_unlock(&cpu_buffer->lock);
4656 	local_irq_restore(flags);
4657 
4658 	/*
4659 	 * The writer has preempt disable, wait for it. But not forever
4660 	 * Although, 1 second is pretty much "forever"
4661 	 */
4662 #define USECS_WAIT	1000000
4663         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4664 		/* If the write is past the end of page, a writer is still updating it */
4665 		if (likely(!reader || rb_page_write(reader) <= BUF_PAGE_SIZE))
4666 			break;
4667 
4668 		udelay(1);
4669 
4670 		/* Get the latest version of the reader write value */
4671 		smp_rmb();
4672 	}
4673 
4674 	/* The writer is not moving forward? Something is wrong */
4675 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4676 		reader = NULL;
4677 
4678 	/*
4679 	 * Make sure we see any padding after the write update
4680 	 * (see rb_reset_tail())
4681 	 */
4682 	smp_rmb();
4683 
4684 
4685 	return reader;
4686 }
4687 
4688 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4689 {
4690 	struct ring_buffer_event *event;
4691 	struct buffer_page *reader;
4692 	unsigned length;
4693 
4694 	reader = rb_get_reader_page(cpu_buffer);
4695 
4696 	/* This function should not be called when buffer is empty */
4697 	if (RB_WARN_ON(cpu_buffer, !reader))
4698 		return;
4699 
4700 	event = rb_reader_event(cpu_buffer);
4701 
4702 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4703 		cpu_buffer->read++;
4704 
4705 	rb_update_read_stamp(cpu_buffer, event);
4706 
4707 	length = rb_event_length(event);
4708 	cpu_buffer->reader_page->read += length;
4709 }
4710 
4711 static void rb_advance_iter(struct ring_buffer_iter *iter)
4712 {
4713 	struct ring_buffer_per_cpu *cpu_buffer;
4714 
4715 	cpu_buffer = iter->cpu_buffer;
4716 
4717 	/* If head == next_event then we need to jump to the next event */
4718 	if (iter->head == iter->next_event) {
4719 		/* If the event gets overwritten again, there's nothing to do */
4720 		if (rb_iter_head_event(iter) == NULL)
4721 			return;
4722 	}
4723 
4724 	iter->head = iter->next_event;
4725 
4726 	/*
4727 	 * Check if we are at the end of the buffer.
4728 	 */
4729 	if (iter->next_event >= rb_page_size(iter->head_page)) {
4730 		/* discarded commits can make the page empty */
4731 		if (iter->head_page == cpu_buffer->commit_page)
4732 			return;
4733 		rb_inc_iter(iter);
4734 		return;
4735 	}
4736 
4737 	rb_update_iter_read_stamp(iter, iter->event);
4738 }
4739 
4740 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4741 {
4742 	return cpu_buffer->lost_events;
4743 }
4744 
4745 static struct ring_buffer_event *
4746 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4747 	       unsigned long *lost_events)
4748 {
4749 	struct ring_buffer_event *event;
4750 	struct buffer_page *reader;
4751 	int nr_loops = 0;
4752 
4753 	if (ts)
4754 		*ts = 0;
4755  again:
4756 	/*
4757 	 * We repeat when a time extend is encountered.
4758 	 * Since the time extend is always attached to a data event,
4759 	 * we should never loop more than once.
4760 	 * (We never hit the following condition more than twice).
4761 	 */
4762 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4763 		return NULL;
4764 
4765 	reader = rb_get_reader_page(cpu_buffer);
4766 	if (!reader)
4767 		return NULL;
4768 
4769 	event = rb_reader_event(cpu_buffer);
4770 
4771 	switch (event->type_len) {
4772 	case RINGBUF_TYPE_PADDING:
4773 		if (rb_null_event(event))
4774 			RB_WARN_ON(cpu_buffer, 1);
4775 		/*
4776 		 * Because the writer could be discarding every
4777 		 * event it creates (which would probably be bad)
4778 		 * if we were to go back to "again" then we may never
4779 		 * catch up, and will trigger the warn on, or lock
4780 		 * the box. Return the padding, and we will release
4781 		 * the current locks, and try again.
4782 		 */
4783 		return event;
4784 
4785 	case RINGBUF_TYPE_TIME_EXTEND:
4786 		/* Internal data, OK to advance */
4787 		rb_advance_reader(cpu_buffer);
4788 		goto again;
4789 
4790 	case RINGBUF_TYPE_TIME_STAMP:
4791 		if (ts) {
4792 			*ts = rb_event_time_stamp(event);
4793 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4794 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4795 							 cpu_buffer->cpu, ts);
4796 		}
4797 		/* Internal data, OK to advance */
4798 		rb_advance_reader(cpu_buffer);
4799 		goto again;
4800 
4801 	case RINGBUF_TYPE_DATA:
4802 		if (ts && !(*ts)) {
4803 			*ts = cpu_buffer->read_stamp + event->time_delta;
4804 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4805 							 cpu_buffer->cpu, ts);
4806 		}
4807 		if (lost_events)
4808 			*lost_events = rb_lost_events(cpu_buffer);
4809 		return event;
4810 
4811 	default:
4812 		RB_WARN_ON(cpu_buffer, 1);
4813 	}
4814 
4815 	return NULL;
4816 }
4817 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4818 
4819 static struct ring_buffer_event *
4820 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4821 {
4822 	struct trace_buffer *buffer;
4823 	struct ring_buffer_per_cpu *cpu_buffer;
4824 	struct ring_buffer_event *event;
4825 	int nr_loops = 0;
4826 
4827 	if (ts)
4828 		*ts = 0;
4829 
4830 	cpu_buffer = iter->cpu_buffer;
4831 	buffer = cpu_buffer->buffer;
4832 
4833 	/*
4834 	 * Check if someone performed a consuming read to
4835 	 * the buffer. A consuming read invalidates the iterator
4836 	 * and we need to reset the iterator in this case.
4837 	 */
4838 	if (unlikely(iter->cache_read != cpu_buffer->read ||
4839 		     iter->cache_reader_page != cpu_buffer->reader_page))
4840 		rb_iter_reset(iter);
4841 
4842  again:
4843 	if (ring_buffer_iter_empty(iter))
4844 		return NULL;
4845 
4846 	/*
4847 	 * As the writer can mess with what the iterator is trying
4848 	 * to read, just give up if we fail to get an event after
4849 	 * three tries. The iterator is not as reliable when reading
4850 	 * the ring buffer with an active write as the consumer is.
4851 	 * Do not warn if the three failures is reached.
4852 	 */
4853 	if (++nr_loops > 3)
4854 		return NULL;
4855 
4856 	if (rb_per_cpu_empty(cpu_buffer))
4857 		return NULL;
4858 
4859 	if (iter->head >= rb_page_size(iter->head_page)) {
4860 		rb_inc_iter(iter);
4861 		goto again;
4862 	}
4863 
4864 	event = rb_iter_head_event(iter);
4865 	if (!event)
4866 		goto again;
4867 
4868 	switch (event->type_len) {
4869 	case RINGBUF_TYPE_PADDING:
4870 		if (rb_null_event(event)) {
4871 			rb_inc_iter(iter);
4872 			goto again;
4873 		}
4874 		rb_advance_iter(iter);
4875 		return event;
4876 
4877 	case RINGBUF_TYPE_TIME_EXTEND:
4878 		/* Internal data, OK to advance */
4879 		rb_advance_iter(iter);
4880 		goto again;
4881 
4882 	case RINGBUF_TYPE_TIME_STAMP:
4883 		if (ts) {
4884 			*ts = rb_event_time_stamp(event);
4885 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4886 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4887 							 cpu_buffer->cpu, ts);
4888 		}
4889 		/* Internal data, OK to advance */
4890 		rb_advance_iter(iter);
4891 		goto again;
4892 
4893 	case RINGBUF_TYPE_DATA:
4894 		if (ts && !(*ts)) {
4895 			*ts = iter->read_stamp + event->time_delta;
4896 			ring_buffer_normalize_time_stamp(buffer,
4897 							 cpu_buffer->cpu, ts);
4898 		}
4899 		return event;
4900 
4901 	default:
4902 		RB_WARN_ON(cpu_buffer, 1);
4903 	}
4904 
4905 	return NULL;
4906 }
4907 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4908 
4909 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4910 {
4911 	if (likely(!in_nmi())) {
4912 		raw_spin_lock(&cpu_buffer->reader_lock);
4913 		return true;
4914 	}
4915 
4916 	/*
4917 	 * If an NMI die dumps out the content of the ring buffer
4918 	 * trylock must be used to prevent a deadlock if the NMI
4919 	 * preempted a task that holds the ring buffer locks. If
4920 	 * we get the lock then all is fine, if not, then continue
4921 	 * to do the read, but this can corrupt the ring buffer,
4922 	 * so it must be permanently disabled from future writes.
4923 	 * Reading from NMI is a oneshot deal.
4924 	 */
4925 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
4926 		return true;
4927 
4928 	/* Continue without locking, but disable the ring buffer */
4929 	atomic_inc(&cpu_buffer->record_disabled);
4930 	return false;
4931 }
4932 
4933 static inline void
4934 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4935 {
4936 	if (likely(locked))
4937 		raw_spin_unlock(&cpu_buffer->reader_lock);
4938 }
4939 
4940 /**
4941  * ring_buffer_peek - peek at the next event to be read
4942  * @buffer: The ring buffer to read
4943  * @cpu: The cpu to peak at
4944  * @ts: The timestamp counter of this event.
4945  * @lost_events: a variable to store if events were lost (may be NULL)
4946  *
4947  * This will return the event that will be read next, but does
4948  * not consume the data.
4949  */
4950 struct ring_buffer_event *
4951 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4952 		 unsigned long *lost_events)
4953 {
4954 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4955 	struct ring_buffer_event *event;
4956 	unsigned long flags;
4957 	bool dolock;
4958 
4959 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4960 		return NULL;
4961 
4962  again:
4963 	local_irq_save(flags);
4964 	dolock = rb_reader_lock(cpu_buffer);
4965 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4966 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4967 		rb_advance_reader(cpu_buffer);
4968 	rb_reader_unlock(cpu_buffer, dolock);
4969 	local_irq_restore(flags);
4970 
4971 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
4972 		goto again;
4973 
4974 	return event;
4975 }
4976 
4977 /** ring_buffer_iter_dropped - report if there are dropped events
4978  * @iter: The ring buffer iterator
4979  *
4980  * Returns true if there was dropped events since the last peek.
4981  */
4982 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4983 {
4984 	bool ret = iter->missed_events != 0;
4985 
4986 	iter->missed_events = 0;
4987 	return ret;
4988 }
4989 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4990 
4991 /**
4992  * ring_buffer_iter_peek - peek at the next event to be read
4993  * @iter: The ring buffer iterator
4994  * @ts: The timestamp counter of this event.
4995  *
4996  * This will return the event that will be read next, but does
4997  * not increment the iterator.
4998  */
4999 struct ring_buffer_event *
5000 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5001 {
5002 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5003 	struct ring_buffer_event *event;
5004 	unsigned long flags;
5005 
5006  again:
5007 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5008 	event = rb_iter_peek(iter, ts);
5009 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5010 
5011 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5012 		goto again;
5013 
5014 	return event;
5015 }
5016 
5017 /**
5018  * ring_buffer_consume - return an event and consume it
5019  * @buffer: The ring buffer to get the next event from
5020  * @cpu: the cpu to read the buffer from
5021  * @ts: a variable to store the timestamp (may be NULL)
5022  * @lost_events: a variable to store if events were lost (may be NULL)
5023  *
5024  * Returns the next event in the ring buffer, and that event is consumed.
5025  * Meaning, that sequential reads will keep returning a different event,
5026  * and eventually empty the ring buffer if the producer is slower.
5027  */
5028 struct ring_buffer_event *
5029 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5030 		    unsigned long *lost_events)
5031 {
5032 	struct ring_buffer_per_cpu *cpu_buffer;
5033 	struct ring_buffer_event *event = NULL;
5034 	unsigned long flags;
5035 	bool dolock;
5036 
5037  again:
5038 	/* might be called in atomic */
5039 	preempt_disable();
5040 
5041 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5042 		goto out;
5043 
5044 	cpu_buffer = buffer->buffers[cpu];
5045 	local_irq_save(flags);
5046 	dolock = rb_reader_lock(cpu_buffer);
5047 
5048 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5049 	if (event) {
5050 		cpu_buffer->lost_events = 0;
5051 		rb_advance_reader(cpu_buffer);
5052 	}
5053 
5054 	rb_reader_unlock(cpu_buffer, dolock);
5055 	local_irq_restore(flags);
5056 
5057  out:
5058 	preempt_enable();
5059 
5060 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5061 		goto again;
5062 
5063 	return event;
5064 }
5065 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5066 
5067 /**
5068  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5069  * @buffer: The ring buffer to read from
5070  * @cpu: The cpu buffer to iterate over
5071  * @flags: gfp flags to use for memory allocation
5072  *
5073  * This performs the initial preparations necessary to iterate
5074  * through the buffer.  Memory is allocated, buffer recording
5075  * is disabled, and the iterator pointer is returned to the caller.
5076  *
5077  * Disabling buffer recording prevents the reading from being
5078  * corrupted. This is not a consuming read, so a producer is not
5079  * expected.
5080  *
5081  * After a sequence of ring_buffer_read_prepare calls, the user is
5082  * expected to make at least one call to ring_buffer_read_prepare_sync.
5083  * Afterwards, ring_buffer_read_start is invoked to get things going
5084  * for real.
5085  *
5086  * This overall must be paired with ring_buffer_read_finish.
5087  */
5088 struct ring_buffer_iter *
5089 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5090 {
5091 	struct ring_buffer_per_cpu *cpu_buffer;
5092 	struct ring_buffer_iter *iter;
5093 
5094 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5095 		return NULL;
5096 
5097 	iter = kzalloc(sizeof(*iter), flags);
5098 	if (!iter)
5099 		return NULL;
5100 
5101 	iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
5102 	if (!iter->event) {
5103 		kfree(iter);
5104 		return NULL;
5105 	}
5106 
5107 	cpu_buffer = buffer->buffers[cpu];
5108 
5109 	iter->cpu_buffer = cpu_buffer;
5110 
5111 	atomic_inc(&cpu_buffer->resize_disabled);
5112 
5113 	return iter;
5114 }
5115 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5116 
5117 /**
5118  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5119  *
5120  * All previously invoked ring_buffer_read_prepare calls to prepare
5121  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5122  * calls on those iterators are allowed.
5123  */
5124 void
5125 ring_buffer_read_prepare_sync(void)
5126 {
5127 	synchronize_rcu();
5128 }
5129 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5130 
5131 /**
5132  * ring_buffer_read_start - start a non consuming read of the buffer
5133  * @iter: The iterator returned by ring_buffer_read_prepare
5134  *
5135  * This finalizes the startup of an iteration through the buffer.
5136  * The iterator comes from a call to ring_buffer_read_prepare and
5137  * an intervening ring_buffer_read_prepare_sync must have been
5138  * performed.
5139  *
5140  * Must be paired with ring_buffer_read_finish.
5141  */
5142 void
5143 ring_buffer_read_start(struct ring_buffer_iter *iter)
5144 {
5145 	struct ring_buffer_per_cpu *cpu_buffer;
5146 	unsigned long flags;
5147 
5148 	if (!iter)
5149 		return;
5150 
5151 	cpu_buffer = iter->cpu_buffer;
5152 
5153 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5154 	arch_spin_lock(&cpu_buffer->lock);
5155 	rb_iter_reset(iter);
5156 	arch_spin_unlock(&cpu_buffer->lock);
5157 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5158 }
5159 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5160 
5161 /**
5162  * ring_buffer_read_finish - finish reading the iterator of the buffer
5163  * @iter: The iterator retrieved by ring_buffer_start
5164  *
5165  * This re-enables the recording to the buffer, and frees the
5166  * iterator.
5167  */
5168 void
5169 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5170 {
5171 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5172 	unsigned long flags;
5173 
5174 	/*
5175 	 * Ring buffer is disabled from recording, here's a good place
5176 	 * to check the integrity of the ring buffer.
5177 	 * Must prevent readers from trying to read, as the check
5178 	 * clears the HEAD page and readers require it.
5179 	 */
5180 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5181 	rb_check_pages(cpu_buffer);
5182 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5183 
5184 	atomic_dec(&cpu_buffer->resize_disabled);
5185 	kfree(iter->event);
5186 	kfree(iter);
5187 }
5188 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5189 
5190 /**
5191  * ring_buffer_iter_advance - advance the iterator to the next location
5192  * @iter: The ring buffer iterator
5193  *
5194  * Move the location of the iterator such that the next read will
5195  * be the next location of the iterator.
5196  */
5197 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5198 {
5199 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5200 	unsigned long flags;
5201 
5202 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5203 
5204 	rb_advance_iter(iter);
5205 
5206 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5207 }
5208 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5209 
5210 /**
5211  * ring_buffer_size - return the size of the ring buffer (in bytes)
5212  * @buffer: The ring buffer.
5213  * @cpu: The CPU to get ring buffer size from.
5214  */
5215 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5216 {
5217 	/*
5218 	 * Earlier, this method returned
5219 	 *	BUF_PAGE_SIZE * buffer->nr_pages
5220 	 * Since the nr_pages field is now removed, we have converted this to
5221 	 * return the per cpu buffer value.
5222 	 */
5223 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5224 		return 0;
5225 
5226 	return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
5227 }
5228 EXPORT_SYMBOL_GPL(ring_buffer_size);
5229 
5230 static void
5231 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5232 {
5233 	rb_head_page_deactivate(cpu_buffer);
5234 
5235 	cpu_buffer->head_page
5236 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5237 	local_set(&cpu_buffer->head_page->write, 0);
5238 	local_set(&cpu_buffer->head_page->entries, 0);
5239 	local_set(&cpu_buffer->head_page->page->commit, 0);
5240 
5241 	cpu_buffer->head_page->read = 0;
5242 
5243 	cpu_buffer->tail_page = cpu_buffer->head_page;
5244 	cpu_buffer->commit_page = cpu_buffer->head_page;
5245 
5246 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5247 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5248 	local_set(&cpu_buffer->reader_page->write, 0);
5249 	local_set(&cpu_buffer->reader_page->entries, 0);
5250 	local_set(&cpu_buffer->reader_page->page->commit, 0);
5251 	cpu_buffer->reader_page->read = 0;
5252 
5253 	local_set(&cpu_buffer->entries_bytes, 0);
5254 	local_set(&cpu_buffer->overrun, 0);
5255 	local_set(&cpu_buffer->commit_overrun, 0);
5256 	local_set(&cpu_buffer->dropped_events, 0);
5257 	local_set(&cpu_buffer->entries, 0);
5258 	local_set(&cpu_buffer->committing, 0);
5259 	local_set(&cpu_buffer->commits, 0);
5260 	local_set(&cpu_buffer->pages_touched, 0);
5261 	local_set(&cpu_buffer->pages_lost, 0);
5262 	local_set(&cpu_buffer->pages_read, 0);
5263 	cpu_buffer->last_pages_touch = 0;
5264 	cpu_buffer->shortest_full = 0;
5265 	cpu_buffer->read = 0;
5266 	cpu_buffer->read_bytes = 0;
5267 
5268 	rb_time_set(&cpu_buffer->write_stamp, 0);
5269 	rb_time_set(&cpu_buffer->before_stamp, 0);
5270 
5271 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5272 
5273 	cpu_buffer->lost_events = 0;
5274 	cpu_buffer->last_overrun = 0;
5275 
5276 	rb_head_page_activate(cpu_buffer);
5277 }
5278 
5279 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5280 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5281 {
5282 	unsigned long flags;
5283 
5284 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5285 
5286 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5287 		goto out;
5288 
5289 	arch_spin_lock(&cpu_buffer->lock);
5290 
5291 	rb_reset_cpu(cpu_buffer);
5292 
5293 	arch_spin_unlock(&cpu_buffer->lock);
5294 
5295  out:
5296 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5297 }
5298 
5299 /**
5300  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5301  * @buffer: The ring buffer to reset a per cpu buffer of
5302  * @cpu: The CPU buffer to be reset
5303  */
5304 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5305 {
5306 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5307 
5308 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5309 		return;
5310 
5311 	/* prevent another thread from changing buffer sizes */
5312 	mutex_lock(&buffer->mutex);
5313 
5314 	atomic_inc(&cpu_buffer->resize_disabled);
5315 	atomic_inc(&cpu_buffer->record_disabled);
5316 
5317 	/* Make sure all commits have finished */
5318 	synchronize_rcu();
5319 
5320 	reset_disabled_cpu_buffer(cpu_buffer);
5321 
5322 	atomic_dec(&cpu_buffer->record_disabled);
5323 	atomic_dec(&cpu_buffer->resize_disabled);
5324 
5325 	mutex_unlock(&buffer->mutex);
5326 }
5327 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5328 
5329 /**
5330  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5331  * @buffer: The ring buffer to reset a per cpu buffer of
5332  * @cpu: The CPU buffer to be reset
5333  */
5334 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5335 {
5336 	struct ring_buffer_per_cpu *cpu_buffer;
5337 	int cpu;
5338 
5339 	/* prevent another thread from changing buffer sizes */
5340 	mutex_lock(&buffer->mutex);
5341 
5342 	for_each_online_buffer_cpu(buffer, cpu) {
5343 		cpu_buffer = buffer->buffers[cpu];
5344 
5345 		atomic_inc(&cpu_buffer->resize_disabled);
5346 		atomic_inc(&cpu_buffer->record_disabled);
5347 	}
5348 
5349 	/* Make sure all commits have finished */
5350 	synchronize_rcu();
5351 
5352 	for_each_online_buffer_cpu(buffer, cpu) {
5353 		cpu_buffer = buffer->buffers[cpu];
5354 
5355 		reset_disabled_cpu_buffer(cpu_buffer);
5356 
5357 		atomic_dec(&cpu_buffer->record_disabled);
5358 		atomic_dec(&cpu_buffer->resize_disabled);
5359 	}
5360 
5361 	mutex_unlock(&buffer->mutex);
5362 }
5363 
5364 /**
5365  * ring_buffer_reset - reset a ring buffer
5366  * @buffer: The ring buffer to reset all cpu buffers
5367  */
5368 void ring_buffer_reset(struct trace_buffer *buffer)
5369 {
5370 	struct ring_buffer_per_cpu *cpu_buffer;
5371 	int cpu;
5372 
5373 	/* prevent another thread from changing buffer sizes */
5374 	mutex_lock(&buffer->mutex);
5375 
5376 	for_each_buffer_cpu(buffer, cpu) {
5377 		cpu_buffer = buffer->buffers[cpu];
5378 
5379 		atomic_inc(&cpu_buffer->resize_disabled);
5380 		atomic_inc(&cpu_buffer->record_disabled);
5381 	}
5382 
5383 	/* Make sure all commits have finished */
5384 	synchronize_rcu();
5385 
5386 	for_each_buffer_cpu(buffer, cpu) {
5387 		cpu_buffer = buffer->buffers[cpu];
5388 
5389 		reset_disabled_cpu_buffer(cpu_buffer);
5390 
5391 		atomic_dec(&cpu_buffer->record_disabled);
5392 		atomic_dec(&cpu_buffer->resize_disabled);
5393 	}
5394 
5395 	mutex_unlock(&buffer->mutex);
5396 }
5397 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5398 
5399 /**
5400  * ring_buffer_empty - is the ring buffer empty?
5401  * @buffer: The ring buffer to test
5402  */
5403 bool ring_buffer_empty(struct trace_buffer *buffer)
5404 {
5405 	struct ring_buffer_per_cpu *cpu_buffer;
5406 	unsigned long flags;
5407 	bool dolock;
5408 	bool ret;
5409 	int cpu;
5410 
5411 	/* yes this is racy, but if you don't like the race, lock the buffer */
5412 	for_each_buffer_cpu(buffer, cpu) {
5413 		cpu_buffer = buffer->buffers[cpu];
5414 		local_irq_save(flags);
5415 		dolock = rb_reader_lock(cpu_buffer);
5416 		ret = rb_per_cpu_empty(cpu_buffer);
5417 		rb_reader_unlock(cpu_buffer, dolock);
5418 		local_irq_restore(flags);
5419 
5420 		if (!ret)
5421 			return false;
5422 	}
5423 
5424 	return true;
5425 }
5426 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5427 
5428 /**
5429  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5430  * @buffer: The ring buffer
5431  * @cpu: The CPU buffer to test
5432  */
5433 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5434 {
5435 	struct ring_buffer_per_cpu *cpu_buffer;
5436 	unsigned long flags;
5437 	bool dolock;
5438 	bool ret;
5439 
5440 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5441 		return true;
5442 
5443 	cpu_buffer = buffer->buffers[cpu];
5444 	local_irq_save(flags);
5445 	dolock = rb_reader_lock(cpu_buffer);
5446 	ret = rb_per_cpu_empty(cpu_buffer);
5447 	rb_reader_unlock(cpu_buffer, dolock);
5448 	local_irq_restore(flags);
5449 
5450 	return ret;
5451 }
5452 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5453 
5454 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5455 /**
5456  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5457  * @buffer_a: One buffer to swap with
5458  * @buffer_b: The other buffer to swap with
5459  * @cpu: the CPU of the buffers to swap
5460  *
5461  * This function is useful for tracers that want to take a "snapshot"
5462  * of a CPU buffer and has another back up buffer lying around.
5463  * it is expected that the tracer handles the cpu buffer not being
5464  * used at the moment.
5465  */
5466 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5467 			 struct trace_buffer *buffer_b, int cpu)
5468 {
5469 	struct ring_buffer_per_cpu *cpu_buffer_a;
5470 	struct ring_buffer_per_cpu *cpu_buffer_b;
5471 	int ret = -EINVAL;
5472 
5473 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5474 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
5475 		goto out;
5476 
5477 	cpu_buffer_a = buffer_a->buffers[cpu];
5478 	cpu_buffer_b = buffer_b->buffers[cpu];
5479 
5480 	/* At least make sure the two buffers are somewhat the same */
5481 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5482 		goto out;
5483 
5484 	ret = -EAGAIN;
5485 
5486 	if (atomic_read(&buffer_a->record_disabled))
5487 		goto out;
5488 
5489 	if (atomic_read(&buffer_b->record_disabled))
5490 		goto out;
5491 
5492 	if (atomic_read(&cpu_buffer_a->record_disabled))
5493 		goto out;
5494 
5495 	if (atomic_read(&cpu_buffer_b->record_disabled))
5496 		goto out;
5497 
5498 	/*
5499 	 * We can't do a synchronize_rcu here because this
5500 	 * function can be called in atomic context.
5501 	 * Normally this will be called from the same CPU as cpu.
5502 	 * If not it's up to the caller to protect this.
5503 	 */
5504 	atomic_inc(&cpu_buffer_a->record_disabled);
5505 	atomic_inc(&cpu_buffer_b->record_disabled);
5506 
5507 	ret = -EBUSY;
5508 	if (local_read(&cpu_buffer_a->committing))
5509 		goto out_dec;
5510 	if (local_read(&cpu_buffer_b->committing))
5511 		goto out_dec;
5512 
5513 	buffer_a->buffers[cpu] = cpu_buffer_b;
5514 	buffer_b->buffers[cpu] = cpu_buffer_a;
5515 
5516 	cpu_buffer_b->buffer = buffer_a;
5517 	cpu_buffer_a->buffer = buffer_b;
5518 
5519 	ret = 0;
5520 
5521 out_dec:
5522 	atomic_dec(&cpu_buffer_a->record_disabled);
5523 	atomic_dec(&cpu_buffer_b->record_disabled);
5524 out:
5525 	return ret;
5526 }
5527 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5528 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5529 
5530 /**
5531  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5532  * @buffer: the buffer to allocate for.
5533  * @cpu: the cpu buffer to allocate.
5534  *
5535  * This function is used in conjunction with ring_buffer_read_page.
5536  * When reading a full page from the ring buffer, these functions
5537  * can be used to speed up the process. The calling function should
5538  * allocate a few pages first with this function. Then when it
5539  * needs to get pages from the ring buffer, it passes the result
5540  * of this function into ring_buffer_read_page, which will swap
5541  * the page that was allocated, with the read page of the buffer.
5542  *
5543  * Returns:
5544  *  The page allocated, or ERR_PTR
5545  */
5546 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5547 {
5548 	struct ring_buffer_per_cpu *cpu_buffer;
5549 	struct buffer_data_page *bpage = NULL;
5550 	unsigned long flags;
5551 	struct page *page;
5552 
5553 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5554 		return ERR_PTR(-ENODEV);
5555 
5556 	cpu_buffer = buffer->buffers[cpu];
5557 	local_irq_save(flags);
5558 	arch_spin_lock(&cpu_buffer->lock);
5559 
5560 	if (cpu_buffer->free_page) {
5561 		bpage = cpu_buffer->free_page;
5562 		cpu_buffer->free_page = NULL;
5563 	}
5564 
5565 	arch_spin_unlock(&cpu_buffer->lock);
5566 	local_irq_restore(flags);
5567 
5568 	if (bpage)
5569 		goto out;
5570 
5571 	page = alloc_pages_node(cpu_to_node(cpu),
5572 				GFP_KERNEL | __GFP_NORETRY, 0);
5573 	if (!page)
5574 		return ERR_PTR(-ENOMEM);
5575 
5576 	bpage = page_address(page);
5577 
5578  out:
5579 	rb_init_page(bpage);
5580 
5581 	return bpage;
5582 }
5583 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5584 
5585 /**
5586  * ring_buffer_free_read_page - free an allocated read page
5587  * @buffer: the buffer the page was allocate for
5588  * @cpu: the cpu buffer the page came from
5589  * @data: the page to free
5590  *
5591  * Free a page allocated from ring_buffer_alloc_read_page.
5592  */
5593 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5594 {
5595 	struct ring_buffer_per_cpu *cpu_buffer;
5596 	struct buffer_data_page *bpage = data;
5597 	struct page *page = virt_to_page(bpage);
5598 	unsigned long flags;
5599 
5600 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5601 		return;
5602 
5603 	cpu_buffer = buffer->buffers[cpu];
5604 
5605 	/* If the page is still in use someplace else, we can't reuse it */
5606 	if (page_ref_count(page) > 1)
5607 		goto out;
5608 
5609 	local_irq_save(flags);
5610 	arch_spin_lock(&cpu_buffer->lock);
5611 
5612 	if (!cpu_buffer->free_page) {
5613 		cpu_buffer->free_page = bpage;
5614 		bpage = NULL;
5615 	}
5616 
5617 	arch_spin_unlock(&cpu_buffer->lock);
5618 	local_irq_restore(flags);
5619 
5620  out:
5621 	free_page((unsigned long)bpage);
5622 }
5623 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5624 
5625 /**
5626  * ring_buffer_read_page - extract a page from the ring buffer
5627  * @buffer: buffer to extract from
5628  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5629  * @len: amount to extract
5630  * @cpu: the cpu of the buffer to extract
5631  * @full: should the extraction only happen when the page is full.
5632  *
5633  * This function will pull out a page from the ring buffer and consume it.
5634  * @data_page must be the address of the variable that was returned
5635  * from ring_buffer_alloc_read_page. This is because the page might be used
5636  * to swap with a page in the ring buffer.
5637  *
5638  * for example:
5639  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
5640  *	if (IS_ERR(rpage))
5641  *		return PTR_ERR(rpage);
5642  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5643  *	if (ret >= 0)
5644  *		process_page(rpage, ret);
5645  *
5646  * When @full is set, the function will not return true unless
5647  * the writer is off the reader page.
5648  *
5649  * Note: it is up to the calling functions to handle sleeps and wakeups.
5650  *  The ring buffer can be used anywhere in the kernel and can not
5651  *  blindly call wake_up. The layer that uses the ring buffer must be
5652  *  responsible for that.
5653  *
5654  * Returns:
5655  *  >=0 if data has been transferred, returns the offset of consumed data.
5656  *  <0 if no data has been transferred.
5657  */
5658 int ring_buffer_read_page(struct trace_buffer *buffer,
5659 			  void **data_page, size_t len, int cpu, int full)
5660 {
5661 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5662 	struct ring_buffer_event *event;
5663 	struct buffer_data_page *bpage;
5664 	struct buffer_page *reader;
5665 	unsigned long missed_events;
5666 	unsigned long flags;
5667 	unsigned int commit;
5668 	unsigned int read;
5669 	u64 save_timestamp;
5670 	int ret = -1;
5671 
5672 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5673 		goto out;
5674 
5675 	/*
5676 	 * If len is not big enough to hold the page header, then
5677 	 * we can not copy anything.
5678 	 */
5679 	if (len <= BUF_PAGE_HDR_SIZE)
5680 		goto out;
5681 
5682 	len -= BUF_PAGE_HDR_SIZE;
5683 
5684 	if (!data_page)
5685 		goto out;
5686 
5687 	bpage = *data_page;
5688 	if (!bpage)
5689 		goto out;
5690 
5691 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5692 
5693 	reader = rb_get_reader_page(cpu_buffer);
5694 	if (!reader)
5695 		goto out_unlock;
5696 
5697 	event = rb_reader_event(cpu_buffer);
5698 
5699 	read = reader->read;
5700 	commit = rb_page_commit(reader);
5701 
5702 	/* Check if any events were dropped */
5703 	missed_events = cpu_buffer->lost_events;
5704 
5705 	/*
5706 	 * If this page has been partially read or
5707 	 * if len is not big enough to read the rest of the page or
5708 	 * a writer is still on the page, then
5709 	 * we must copy the data from the page to the buffer.
5710 	 * Otherwise, we can simply swap the page with the one passed in.
5711 	 */
5712 	if (read || (len < (commit - read)) ||
5713 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
5714 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5715 		unsigned int rpos = read;
5716 		unsigned int pos = 0;
5717 		unsigned int size;
5718 
5719 		/*
5720 		 * If a full page is expected, this can still be returned
5721 		 * if there's been a previous partial read and the
5722 		 * rest of the page can be read and the commit page is off
5723 		 * the reader page.
5724 		 */
5725 		if (full &&
5726 		    (!read || (len < (commit - read)) ||
5727 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
5728 			goto out_unlock;
5729 
5730 		if (len > (commit - read))
5731 			len = (commit - read);
5732 
5733 		/* Always keep the time extend and data together */
5734 		size = rb_event_ts_length(event);
5735 
5736 		if (len < size)
5737 			goto out_unlock;
5738 
5739 		/* save the current timestamp, since the user will need it */
5740 		save_timestamp = cpu_buffer->read_stamp;
5741 
5742 		/* Need to copy one event at a time */
5743 		do {
5744 			/* We need the size of one event, because
5745 			 * rb_advance_reader only advances by one event,
5746 			 * whereas rb_event_ts_length may include the size of
5747 			 * one or two events.
5748 			 * We have already ensured there's enough space if this
5749 			 * is a time extend. */
5750 			size = rb_event_length(event);
5751 			memcpy(bpage->data + pos, rpage->data + rpos, size);
5752 
5753 			len -= size;
5754 
5755 			rb_advance_reader(cpu_buffer);
5756 			rpos = reader->read;
5757 			pos += size;
5758 
5759 			if (rpos >= commit)
5760 				break;
5761 
5762 			event = rb_reader_event(cpu_buffer);
5763 			/* Always keep the time extend and data together */
5764 			size = rb_event_ts_length(event);
5765 		} while (len >= size);
5766 
5767 		/* update bpage */
5768 		local_set(&bpage->commit, pos);
5769 		bpage->time_stamp = save_timestamp;
5770 
5771 		/* we copied everything to the beginning */
5772 		read = 0;
5773 	} else {
5774 		/* update the entry counter */
5775 		cpu_buffer->read += rb_page_entries(reader);
5776 		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5777 
5778 		/* swap the pages */
5779 		rb_init_page(bpage);
5780 		bpage = reader->page;
5781 		reader->page = *data_page;
5782 		local_set(&reader->write, 0);
5783 		local_set(&reader->entries, 0);
5784 		reader->read = 0;
5785 		*data_page = bpage;
5786 
5787 		/*
5788 		 * Use the real_end for the data size,
5789 		 * This gives us a chance to store the lost events
5790 		 * on the page.
5791 		 */
5792 		if (reader->real_end)
5793 			local_set(&bpage->commit, reader->real_end);
5794 	}
5795 	ret = read;
5796 
5797 	cpu_buffer->lost_events = 0;
5798 
5799 	commit = local_read(&bpage->commit);
5800 	/*
5801 	 * Set a flag in the commit field if we lost events
5802 	 */
5803 	if (missed_events) {
5804 		/* If there is room at the end of the page to save the
5805 		 * missed events, then record it there.
5806 		 */
5807 		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5808 			memcpy(&bpage->data[commit], &missed_events,
5809 			       sizeof(missed_events));
5810 			local_add(RB_MISSED_STORED, &bpage->commit);
5811 			commit += sizeof(missed_events);
5812 		}
5813 		local_add(RB_MISSED_EVENTS, &bpage->commit);
5814 	}
5815 
5816 	/*
5817 	 * This page may be off to user land. Zero it out here.
5818 	 */
5819 	if (commit < BUF_PAGE_SIZE)
5820 		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5821 
5822  out_unlock:
5823 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5824 
5825  out:
5826 	return ret;
5827 }
5828 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5829 
5830 /*
5831  * We only allocate new buffers, never free them if the CPU goes down.
5832  * If we were to free the buffer, then the user would lose any trace that was in
5833  * the buffer.
5834  */
5835 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5836 {
5837 	struct trace_buffer *buffer;
5838 	long nr_pages_same;
5839 	int cpu_i;
5840 	unsigned long nr_pages;
5841 
5842 	buffer = container_of(node, struct trace_buffer, node);
5843 	if (cpumask_test_cpu(cpu, buffer->cpumask))
5844 		return 0;
5845 
5846 	nr_pages = 0;
5847 	nr_pages_same = 1;
5848 	/* check if all cpu sizes are same */
5849 	for_each_buffer_cpu(buffer, cpu_i) {
5850 		/* fill in the size from first enabled cpu */
5851 		if (nr_pages == 0)
5852 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
5853 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5854 			nr_pages_same = 0;
5855 			break;
5856 		}
5857 	}
5858 	/* allocate minimum pages, user can later expand it */
5859 	if (!nr_pages_same)
5860 		nr_pages = 2;
5861 	buffer->buffers[cpu] =
5862 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5863 	if (!buffer->buffers[cpu]) {
5864 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
5865 		     cpu);
5866 		return -ENOMEM;
5867 	}
5868 	smp_wmb();
5869 	cpumask_set_cpu(cpu, buffer->cpumask);
5870 	return 0;
5871 }
5872 
5873 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5874 /*
5875  * This is a basic integrity check of the ring buffer.
5876  * Late in the boot cycle this test will run when configured in.
5877  * It will kick off a thread per CPU that will go into a loop
5878  * writing to the per cpu ring buffer various sizes of data.
5879  * Some of the data will be large items, some small.
5880  *
5881  * Another thread is created that goes into a spin, sending out
5882  * IPIs to the other CPUs to also write into the ring buffer.
5883  * this is to test the nesting ability of the buffer.
5884  *
5885  * Basic stats are recorded and reported. If something in the
5886  * ring buffer should happen that's not expected, a big warning
5887  * is displayed and all ring buffers are disabled.
5888  */
5889 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5890 
5891 struct rb_test_data {
5892 	struct trace_buffer *buffer;
5893 	unsigned long		events;
5894 	unsigned long		bytes_written;
5895 	unsigned long		bytes_alloc;
5896 	unsigned long		bytes_dropped;
5897 	unsigned long		events_nested;
5898 	unsigned long		bytes_written_nested;
5899 	unsigned long		bytes_alloc_nested;
5900 	unsigned long		bytes_dropped_nested;
5901 	int			min_size_nested;
5902 	int			max_size_nested;
5903 	int			max_size;
5904 	int			min_size;
5905 	int			cpu;
5906 	int			cnt;
5907 };
5908 
5909 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5910 
5911 /* 1 meg per cpu */
5912 #define RB_TEST_BUFFER_SIZE	1048576
5913 
5914 static char rb_string[] __initdata =
5915 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5916 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5917 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5918 
5919 static bool rb_test_started __initdata;
5920 
5921 struct rb_item {
5922 	int size;
5923 	char str[];
5924 };
5925 
5926 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5927 {
5928 	struct ring_buffer_event *event;
5929 	struct rb_item *item;
5930 	bool started;
5931 	int event_len;
5932 	int size;
5933 	int len;
5934 	int cnt;
5935 
5936 	/* Have nested writes different that what is written */
5937 	cnt = data->cnt + (nested ? 27 : 0);
5938 
5939 	/* Multiply cnt by ~e, to make some unique increment */
5940 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5941 
5942 	len = size + sizeof(struct rb_item);
5943 
5944 	started = rb_test_started;
5945 	/* read rb_test_started before checking buffer enabled */
5946 	smp_rmb();
5947 
5948 	event = ring_buffer_lock_reserve(data->buffer, len);
5949 	if (!event) {
5950 		/* Ignore dropped events before test starts. */
5951 		if (started) {
5952 			if (nested)
5953 				data->bytes_dropped += len;
5954 			else
5955 				data->bytes_dropped_nested += len;
5956 		}
5957 		return len;
5958 	}
5959 
5960 	event_len = ring_buffer_event_length(event);
5961 
5962 	if (RB_WARN_ON(data->buffer, event_len < len))
5963 		goto out;
5964 
5965 	item = ring_buffer_event_data(event);
5966 	item->size = size;
5967 	memcpy(item->str, rb_string, size);
5968 
5969 	if (nested) {
5970 		data->bytes_alloc_nested += event_len;
5971 		data->bytes_written_nested += len;
5972 		data->events_nested++;
5973 		if (!data->min_size_nested || len < data->min_size_nested)
5974 			data->min_size_nested = len;
5975 		if (len > data->max_size_nested)
5976 			data->max_size_nested = len;
5977 	} else {
5978 		data->bytes_alloc += event_len;
5979 		data->bytes_written += len;
5980 		data->events++;
5981 		if (!data->min_size || len < data->min_size)
5982 			data->max_size = len;
5983 		if (len > data->max_size)
5984 			data->max_size = len;
5985 	}
5986 
5987  out:
5988 	ring_buffer_unlock_commit(data->buffer);
5989 
5990 	return 0;
5991 }
5992 
5993 static __init int rb_test(void *arg)
5994 {
5995 	struct rb_test_data *data = arg;
5996 
5997 	while (!kthread_should_stop()) {
5998 		rb_write_something(data, false);
5999 		data->cnt++;
6000 
6001 		set_current_state(TASK_INTERRUPTIBLE);
6002 		/* Now sleep between a min of 100-300us and a max of 1ms */
6003 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6004 	}
6005 
6006 	return 0;
6007 }
6008 
6009 static __init void rb_ipi(void *ignore)
6010 {
6011 	struct rb_test_data *data;
6012 	int cpu = smp_processor_id();
6013 
6014 	data = &rb_data[cpu];
6015 	rb_write_something(data, true);
6016 }
6017 
6018 static __init int rb_hammer_test(void *arg)
6019 {
6020 	while (!kthread_should_stop()) {
6021 
6022 		/* Send an IPI to all cpus to write data! */
6023 		smp_call_function(rb_ipi, NULL, 1);
6024 		/* No sleep, but for non preempt, let others run */
6025 		schedule();
6026 	}
6027 
6028 	return 0;
6029 }
6030 
6031 static __init int test_ringbuffer(void)
6032 {
6033 	struct task_struct *rb_hammer;
6034 	struct trace_buffer *buffer;
6035 	int cpu;
6036 	int ret = 0;
6037 
6038 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
6039 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6040 		return 0;
6041 	}
6042 
6043 	pr_info("Running ring buffer tests...\n");
6044 
6045 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6046 	if (WARN_ON(!buffer))
6047 		return 0;
6048 
6049 	/* Disable buffer so that threads can't write to it yet */
6050 	ring_buffer_record_off(buffer);
6051 
6052 	for_each_online_cpu(cpu) {
6053 		rb_data[cpu].buffer = buffer;
6054 		rb_data[cpu].cpu = cpu;
6055 		rb_data[cpu].cnt = cpu;
6056 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6057 						     cpu, "rbtester/%u");
6058 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6059 			pr_cont("FAILED\n");
6060 			ret = PTR_ERR(rb_threads[cpu]);
6061 			goto out_free;
6062 		}
6063 	}
6064 
6065 	/* Now create the rb hammer! */
6066 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6067 	if (WARN_ON(IS_ERR(rb_hammer))) {
6068 		pr_cont("FAILED\n");
6069 		ret = PTR_ERR(rb_hammer);
6070 		goto out_free;
6071 	}
6072 
6073 	ring_buffer_record_on(buffer);
6074 	/*
6075 	 * Show buffer is enabled before setting rb_test_started.
6076 	 * Yes there's a small race window where events could be
6077 	 * dropped and the thread wont catch it. But when a ring
6078 	 * buffer gets enabled, there will always be some kind of
6079 	 * delay before other CPUs see it. Thus, we don't care about
6080 	 * those dropped events. We care about events dropped after
6081 	 * the threads see that the buffer is active.
6082 	 */
6083 	smp_wmb();
6084 	rb_test_started = true;
6085 
6086 	set_current_state(TASK_INTERRUPTIBLE);
6087 	/* Just run for 10 seconds */;
6088 	schedule_timeout(10 * HZ);
6089 
6090 	kthread_stop(rb_hammer);
6091 
6092  out_free:
6093 	for_each_online_cpu(cpu) {
6094 		if (!rb_threads[cpu])
6095 			break;
6096 		kthread_stop(rb_threads[cpu]);
6097 	}
6098 	if (ret) {
6099 		ring_buffer_free(buffer);
6100 		return ret;
6101 	}
6102 
6103 	/* Report! */
6104 	pr_info("finished\n");
6105 	for_each_online_cpu(cpu) {
6106 		struct ring_buffer_event *event;
6107 		struct rb_test_data *data = &rb_data[cpu];
6108 		struct rb_item *item;
6109 		unsigned long total_events;
6110 		unsigned long total_dropped;
6111 		unsigned long total_written;
6112 		unsigned long total_alloc;
6113 		unsigned long total_read = 0;
6114 		unsigned long total_size = 0;
6115 		unsigned long total_len = 0;
6116 		unsigned long total_lost = 0;
6117 		unsigned long lost;
6118 		int big_event_size;
6119 		int small_event_size;
6120 
6121 		ret = -1;
6122 
6123 		total_events = data->events + data->events_nested;
6124 		total_written = data->bytes_written + data->bytes_written_nested;
6125 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6126 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6127 
6128 		big_event_size = data->max_size + data->max_size_nested;
6129 		small_event_size = data->min_size + data->min_size_nested;
6130 
6131 		pr_info("CPU %d:\n", cpu);
6132 		pr_info("              events:    %ld\n", total_events);
6133 		pr_info("       dropped bytes:    %ld\n", total_dropped);
6134 		pr_info("       alloced bytes:    %ld\n", total_alloc);
6135 		pr_info("       written bytes:    %ld\n", total_written);
6136 		pr_info("       biggest event:    %d\n", big_event_size);
6137 		pr_info("      smallest event:    %d\n", small_event_size);
6138 
6139 		if (RB_WARN_ON(buffer, total_dropped))
6140 			break;
6141 
6142 		ret = 0;
6143 
6144 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6145 			total_lost += lost;
6146 			item = ring_buffer_event_data(event);
6147 			total_len += ring_buffer_event_length(event);
6148 			total_size += item->size + sizeof(struct rb_item);
6149 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6150 				pr_info("FAILED!\n");
6151 				pr_info("buffer had: %.*s\n", item->size, item->str);
6152 				pr_info("expected:   %.*s\n", item->size, rb_string);
6153 				RB_WARN_ON(buffer, 1);
6154 				ret = -1;
6155 				break;
6156 			}
6157 			total_read++;
6158 		}
6159 		if (ret)
6160 			break;
6161 
6162 		ret = -1;
6163 
6164 		pr_info("         read events:   %ld\n", total_read);
6165 		pr_info("         lost events:   %ld\n", total_lost);
6166 		pr_info("        total events:   %ld\n", total_lost + total_read);
6167 		pr_info("  recorded len bytes:   %ld\n", total_len);
6168 		pr_info(" recorded size bytes:   %ld\n", total_size);
6169 		if (total_lost) {
6170 			pr_info(" With dropped events, record len and size may not match\n"
6171 				" alloced and written from above\n");
6172 		} else {
6173 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
6174 				       total_size != total_written))
6175 				break;
6176 		}
6177 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6178 			break;
6179 
6180 		ret = 0;
6181 	}
6182 	if (!ret)
6183 		pr_info("Ring buffer PASSED!\n");
6184 
6185 	ring_buffer_free(buffer);
6186 	return 0;
6187 }
6188 
6189 late_initcall(test_ringbuffer);
6190 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
6191