xref: /linux-6.15/kernel/trace/ring_buffer.c (revision b6533482)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <[email protected]>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h>	/* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31 
32 #include <asm/local64.h>
33 #include <asm/local.h>
34 #include <asm/setup.h>
35 
36 #include "trace.h"
37 
38 /*
39  * The "absolute" timestamp in the buffer is only 59 bits.
40  * If a clock has the 5 MSBs set, it needs to be saved and
41  * reinserted.
42  */
43 #define TS_MSB		(0xf8ULL << 56)
44 #define ABS_TS_MASK	(~TS_MSB)
45 
46 static void update_pages_handler(struct work_struct *work);
47 
48 #define RING_BUFFER_META_MAGIC	0xBADFEED
49 
50 struct ring_buffer_meta {
51 	int		magic;
52 	int		struct_sizes;
53 	unsigned long	total_size;
54 	unsigned long	buffers_offset;
55 };
56 
57 struct ring_buffer_cpu_meta {
58 	unsigned long	first_buffer;
59 	unsigned long	head_buffer;
60 	unsigned long	commit_buffer;
61 	__u32		subbuf_size;
62 	__u32		nr_subbufs;
63 	int		buffers[];
64 };
65 
66 /*
67  * The ring buffer header is special. We must manually up keep it.
68  */
69 int ring_buffer_print_entry_header(struct trace_seq *s)
70 {
71 	trace_seq_puts(s, "# compressed entry header\n");
72 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
73 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
74 	trace_seq_puts(s, "\tarray       :   32 bits\n");
75 	trace_seq_putc(s, '\n');
76 	trace_seq_printf(s, "\tpadding     : type == %d\n",
77 			 RINGBUF_TYPE_PADDING);
78 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
79 			 RINGBUF_TYPE_TIME_EXTEND);
80 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
81 			 RINGBUF_TYPE_TIME_STAMP);
82 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
83 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
84 
85 	return !trace_seq_has_overflowed(s);
86 }
87 
88 /*
89  * The ring buffer is made up of a list of pages. A separate list of pages is
90  * allocated for each CPU. A writer may only write to a buffer that is
91  * associated with the CPU it is currently executing on.  A reader may read
92  * from any per cpu buffer.
93  *
94  * The reader is special. For each per cpu buffer, the reader has its own
95  * reader page. When a reader has read the entire reader page, this reader
96  * page is swapped with another page in the ring buffer.
97  *
98  * Now, as long as the writer is off the reader page, the reader can do what
99  * ever it wants with that page. The writer will never write to that page
100  * again (as long as it is out of the ring buffer).
101  *
102  * Here's some silly ASCII art.
103  *
104  *   +------+
105  *   |reader|          RING BUFFER
106  *   |page  |
107  *   +------+        +---+   +---+   +---+
108  *                   |   |-->|   |-->|   |
109  *                   +---+   +---+   +---+
110  *                     ^               |
111  *                     |               |
112  *                     +---------------+
113  *
114  *
115  *   +------+
116  *   |reader|          RING BUFFER
117  *   |page  |------------------v
118  *   +------+        +---+   +---+   +---+
119  *                   |   |-->|   |-->|   |
120  *                   +---+   +---+   +---+
121  *                     ^               |
122  *                     |               |
123  *                     +---------------+
124  *
125  *
126  *   +------+
127  *   |reader|          RING BUFFER
128  *   |page  |------------------v
129  *   +------+        +---+   +---+   +---+
130  *      ^            |   |-->|   |-->|   |
131  *      |            +---+   +---+   +---+
132  *      |                              |
133  *      |                              |
134  *      +------------------------------+
135  *
136  *
137  *   +------+
138  *   |buffer|          RING BUFFER
139  *   |page  |------------------v
140  *   +------+        +---+   +---+   +---+
141  *      ^            |   |   |   |-->|   |
142  *      |   New      +---+   +---+   +---+
143  *      |  Reader------^               |
144  *      |   page                       |
145  *      +------------------------------+
146  *
147  *
148  * After we make this swap, the reader can hand this page off to the splice
149  * code and be done with it. It can even allocate a new page if it needs to
150  * and swap that into the ring buffer.
151  *
152  * We will be using cmpxchg soon to make all this lockless.
153  *
154  */
155 
156 /* Used for individual buffers (after the counter) */
157 #define RB_BUFFER_OFF		(1 << 20)
158 
159 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
160 
161 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
162 #define RB_ALIGNMENT		4U
163 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
164 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
165 
166 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
167 # define RB_FORCE_8BYTE_ALIGNMENT	0
168 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
169 #else
170 # define RB_FORCE_8BYTE_ALIGNMENT	1
171 # define RB_ARCH_ALIGNMENT		8U
172 #endif
173 
174 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
175 
176 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
177 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
178 
179 enum {
180 	RB_LEN_TIME_EXTEND = 8,
181 	RB_LEN_TIME_STAMP =  8,
182 };
183 
184 #define skip_time_extend(event) \
185 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
186 
187 #define extended_time(event) \
188 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
189 
190 static inline bool rb_null_event(struct ring_buffer_event *event)
191 {
192 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
193 }
194 
195 static void rb_event_set_padding(struct ring_buffer_event *event)
196 {
197 	/* padding has a NULL time_delta */
198 	event->type_len = RINGBUF_TYPE_PADDING;
199 	event->time_delta = 0;
200 }
201 
202 static unsigned
203 rb_event_data_length(struct ring_buffer_event *event)
204 {
205 	unsigned length;
206 
207 	if (event->type_len)
208 		length = event->type_len * RB_ALIGNMENT;
209 	else
210 		length = event->array[0];
211 	return length + RB_EVNT_HDR_SIZE;
212 }
213 
214 /*
215  * Return the length of the given event. Will return
216  * the length of the time extend if the event is a
217  * time extend.
218  */
219 static inline unsigned
220 rb_event_length(struct ring_buffer_event *event)
221 {
222 	switch (event->type_len) {
223 	case RINGBUF_TYPE_PADDING:
224 		if (rb_null_event(event))
225 			/* undefined */
226 			return -1;
227 		return  event->array[0] + RB_EVNT_HDR_SIZE;
228 
229 	case RINGBUF_TYPE_TIME_EXTEND:
230 		return RB_LEN_TIME_EXTEND;
231 
232 	case RINGBUF_TYPE_TIME_STAMP:
233 		return RB_LEN_TIME_STAMP;
234 
235 	case RINGBUF_TYPE_DATA:
236 		return rb_event_data_length(event);
237 	default:
238 		WARN_ON_ONCE(1);
239 	}
240 	/* not hit */
241 	return 0;
242 }
243 
244 /*
245  * Return total length of time extend and data,
246  *   or just the event length for all other events.
247  */
248 static inline unsigned
249 rb_event_ts_length(struct ring_buffer_event *event)
250 {
251 	unsigned len = 0;
252 
253 	if (extended_time(event)) {
254 		/* time extends include the data event after it */
255 		len = RB_LEN_TIME_EXTEND;
256 		event = skip_time_extend(event);
257 	}
258 	return len + rb_event_length(event);
259 }
260 
261 /**
262  * ring_buffer_event_length - return the length of the event
263  * @event: the event to get the length of
264  *
265  * Returns the size of the data load of a data event.
266  * If the event is something other than a data event, it
267  * returns the size of the event itself. With the exception
268  * of a TIME EXTEND, where it still returns the size of the
269  * data load of the data event after it.
270  */
271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
272 {
273 	unsigned length;
274 
275 	if (extended_time(event))
276 		event = skip_time_extend(event);
277 
278 	length = rb_event_length(event);
279 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
280 		return length;
281 	length -= RB_EVNT_HDR_SIZE;
282 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
283                 length -= sizeof(event->array[0]);
284 	return length;
285 }
286 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
287 
288 /* inline for ring buffer fast paths */
289 static __always_inline void *
290 rb_event_data(struct ring_buffer_event *event)
291 {
292 	if (extended_time(event))
293 		event = skip_time_extend(event);
294 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
295 	/* If length is in len field, then array[0] has the data */
296 	if (event->type_len)
297 		return (void *)&event->array[0];
298 	/* Otherwise length is in array[0] and array[1] has the data */
299 	return (void *)&event->array[1];
300 }
301 
302 /**
303  * ring_buffer_event_data - return the data of the event
304  * @event: the event to get the data from
305  */
306 void *ring_buffer_event_data(struct ring_buffer_event *event)
307 {
308 	return rb_event_data(event);
309 }
310 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
311 
312 #define for_each_buffer_cpu(buffer, cpu)		\
313 	for_each_cpu(cpu, buffer->cpumask)
314 
315 #define for_each_online_buffer_cpu(buffer, cpu)		\
316 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
317 
318 #define TS_SHIFT	27
319 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
320 #define TS_DELTA_TEST	(~TS_MASK)
321 
322 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
323 {
324 	u64 ts;
325 
326 	ts = event->array[0];
327 	ts <<= TS_SHIFT;
328 	ts += event->time_delta;
329 
330 	return ts;
331 }
332 
333 /* Flag when events were overwritten */
334 #define RB_MISSED_EVENTS	(1 << 31)
335 /* Missed count stored at end */
336 #define RB_MISSED_STORED	(1 << 30)
337 
338 #define RB_MISSED_MASK		(3 << 30)
339 
340 struct buffer_data_page {
341 	u64		 time_stamp;	/* page time stamp */
342 	local_t		 commit;	/* write committed index */
343 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
344 };
345 
346 struct buffer_data_read_page {
347 	unsigned		order;	/* order of the page */
348 	struct buffer_data_page	*data;	/* actual data, stored in this page */
349 };
350 
351 /*
352  * Note, the buffer_page list must be first. The buffer pages
353  * are allocated in cache lines, which means that each buffer
354  * page will be at the beginning of a cache line, and thus
355  * the least significant bits will be zero. We use this to
356  * add flags in the list struct pointers, to make the ring buffer
357  * lockless.
358  */
359 struct buffer_page {
360 	struct list_head list;		/* list of buffer pages */
361 	local_t		 write;		/* index for next write */
362 	unsigned	 read;		/* index for next read */
363 	local_t		 entries;	/* entries on this page */
364 	unsigned long	 real_end;	/* real end of data */
365 	unsigned	 order;		/* order of the page */
366 	u32		 id:30;		/* ID for external mapping */
367 	u32		 range:1;	/* Mapped via a range */
368 	struct buffer_data_page *page;	/* Actual data page */
369 };
370 
371 /*
372  * The buffer page counters, write and entries, must be reset
373  * atomically when crossing page boundaries. To synchronize this
374  * update, two counters are inserted into the number. One is
375  * the actual counter for the write position or count on the page.
376  *
377  * The other is a counter of updaters. Before an update happens
378  * the update partition of the counter is incremented. This will
379  * allow the updater to update the counter atomically.
380  *
381  * The counter is 20 bits, and the state data is 12.
382  */
383 #define RB_WRITE_MASK		0xfffff
384 #define RB_WRITE_INTCNT		(1 << 20)
385 
386 static void rb_init_page(struct buffer_data_page *bpage)
387 {
388 	local_set(&bpage->commit, 0);
389 }
390 
391 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
392 {
393 	return local_read(&bpage->page->commit);
394 }
395 
396 static void free_buffer_page(struct buffer_page *bpage)
397 {
398 	/* Range pages are not to be freed */
399 	if (!bpage->range)
400 		free_pages((unsigned long)bpage->page, bpage->order);
401 	kfree(bpage);
402 }
403 
404 /*
405  * We need to fit the time_stamp delta into 27 bits.
406  */
407 static inline bool test_time_stamp(u64 delta)
408 {
409 	return !!(delta & TS_DELTA_TEST);
410 }
411 
412 struct rb_irq_work {
413 	struct irq_work			work;
414 	wait_queue_head_t		waiters;
415 	wait_queue_head_t		full_waiters;
416 	atomic_t			seq;
417 	bool				waiters_pending;
418 	bool				full_waiters_pending;
419 	bool				wakeup_full;
420 };
421 
422 /*
423  * Structure to hold event state and handle nested events.
424  */
425 struct rb_event_info {
426 	u64			ts;
427 	u64			delta;
428 	u64			before;
429 	u64			after;
430 	unsigned long		length;
431 	struct buffer_page	*tail_page;
432 	int			add_timestamp;
433 };
434 
435 /*
436  * Used for the add_timestamp
437  *  NONE
438  *  EXTEND - wants a time extend
439  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
440  *  FORCE - force a full time stamp.
441  */
442 enum {
443 	RB_ADD_STAMP_NONE		= 0,
444 	RB_ADD_STAMP_EXTEND		= BIT(1),
445 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
446 	RB_ADD_STAMP_FORCE		= BIT(3)
447 };
448 /*
449  * Used for which event context the event is in.
450  *  TRANSITION = 0
451  *  NMI     = 1
452  *  IRQ     = 2
453  *  SOFTIRQ = 3
454  *  NORMAL  = 4
455  *
456  * See trace_recursive_lock() comment below for more details.
457  */
458 enum {
459 	RB_CTX_TRANSITION,
460 	RB_CTX_NMI,
461 	RB_CTX_IRQ,
462 	RB_CTX_SOFTIRQ,
463 	RB_CTX_NORMAL,
464 	RB_CTX_MAX
465 };
466 
467 struct rb_time_struct {
468 	local64_t	time;
469 };
470 typedef struct rb_time_struct rb_time_t;
471 
472 #define MAX_NEST	5
473 
474 /*
475  * head_page == tail_page && head == tail then buffer is empty.
476  */
477 struct ring_buffer_per_cpu {
478 	int				cpu;
479 	atomic_t			record_disabled;
480 	atomic_t			resize_disabled;
481 	struct trace_buffer	*buffer;
482 	raw_spinlock_t			reader_lock;	/* serialize readers */
483 	arch_spinlock_t			lock;
484 	struct lock_class_key		lock_key;
485 	struct buffer_data_page		*free_page;
486 	unsigned long			nr_pages;
487 	unsigned int			current_context;
488 	struct list_head		*pages;
489 	/* pages generation counter, incremented when the list changes */
490 	unsigned long			cnt;
491 	struct buffer_page		*head_page;	/* read from head */
492 	struct buffer_page		*tail_page;	/* write to tail */
493 	struct buffer_page		*commit_page;	/* committed pages */
494 	struct buffer_page		*reader_page;
495 	unsigned long			lost_events;
496 	unsigned long			last_overrun;
497 	unsigned long			nest;
498 	local_t				entries_bytes;
499 	local_t				entries;
500 	local_t				overrun;
501 	local_t				commit_overrun;
502 	local_t				dropped_events;
503 	local_t				committing;
504 	local_t				commits;
505 	local_t				pages_touched;
506 	local_t				pages_lost;
507 	local_t				pages_read;
508 	long				last_pages_touch;
509 	size_t				shortest_full;
510 	unsigned long			read;
511 	unsigned long			read_bytes;
512 	rb_time_t			write_stamp;
513 	rb_time_t			before_stamp;
514 	u64				event_stamp[MAX_NEST];
515 	u64				read_stamp;
516 	/* pages removed since last reset */
517 	unsigned long			pages_removed;
518 
519 	unsigned int			mapped;
520 	unsigned int			user_mapped;	/* user space mapping */
521 	struct mutex			mapping_lock;
522 	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
523 	struct trace_buffer_meta	*meta_page;
524 	struct ring_buffer_cpu_meta	*ring_meta;
525 
526 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
527 	long				nr_pages_to_update;
528 	struct list_head		new_pages; /* new pages to add */
529 	struct work_struct		update_pages_work;
530 	struct completion		update_done;
531 
532 	struct rb_irq_work		irq_work;
533 };
534 
535 struct trace_buffer {
536 	unsigned			flags;
537 	int				cpus;
538 	atomic_t			record_disabled;
539 	atomic_t			resizing;
540 	cpumask_var_t			cpumask;
541 
542 	struct lock_class_key		*reader_lock_key;
543 
544 	struct mutex			mutex;
545 
546 	struct ring_buffer_per_cpu	**buffers;
547 
548 	struct hlist_node		node;
549 	u64				(*clock)(void);
550 
551 	struct rb_irq_work		irq_work;
552 	bool				time_stamp_abs;
553 
554 	unsigned long			range_addr_start;
555 	unsigned long			range_addr_end;
556 
557 	struct ring_buffer_meta		*meta;
558 
559 	unsigned int			subbuf_size;
560 	unsigned int			subbuf_order;
561 	unsigned int			max_data_size;
562 };
563 
564 struct ring_buffer_iter {
565 	struct ring_buffer_per_cpu	*cpu_buffer;
566 	unsigned long			head;
567 	unsigned long			next_event;
568 	struct buffer_page		*head_page;
569 	struct buffer_page		*cache_reader_page;
570 	unsigned long			cache_read;
571 	unsigned long			cache_pages_removed;
572 	u64				read_stamp;
573 	u64				page_stamp;
574 	struct ring_buffer_event	*event;
575 	size_t				event_size;
576 	int				missed_events;
577 };
578 
579 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
580 {
581 	struct buffer_data_page field;
582 
583 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
584 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
585 			 (unsigned int)sizeof(field.time_stamp),
586 			 (unsigned int)is_signed_type(u64));
587 
588 	trace_seq_printf(s, "\tfield: local_t commit;\t"
589 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
590 			 (unsigned int)offsetof(typeof(field), commit),
591 			 (unsigned int)sizeof(field.commit),
592 			 (unsigned int)is_signed_type(long));
593 
594 	trace_seq_printf(s, "\tfield: int overwrite;\t"
595 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
596 			 (unsigned int)offsetof(typeof(field), commit),
597 			 1,
598 			 (unsigned int)is_signed_type(long));
599 
600 	trace_seq_printf(s, "\tfield: char data;\t"
601 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
602 			 (unsigned int)offsetof(typeof(field), data),
603 			 (unsigned int)buffer->subbuf_size,
604 			 (unsigned int)is_signed_type(char));
605 
606 	return !trace_seq_has_overflowed(s);
607 }
608 
609 static inline void rb_time_read(rb_time_t *t, u64 *ret)
610 {
611 	*ret = local64_read(&t->time);
612 }
613 static void rb_time_set(rb_time_t *t, u64 val)
614 {
615 	local64_set(&t->time, val);
616 }
617 
618 /*
619  * Enable this to make sure that the event passed to
620  * ring_buffer_event_time_stamp() is not committed and also
621  * is on the buffer that it passed in.
622  */
623 //#define RB_VERIFY_EVENT
624 #ifdef RB_VERIFY_EVENT
625 static struct list_head *rb_list_head(struct list_head *list);
626 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
627 			 void *event)
628 {
629 	struct buffer_page *page = cpu_buffer->commit_page;
630 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
631 	struct list_head *next;
632 	long commit, write;
633 	unsigned long addr = (unsigned long)event;
634 	bool done = false;
635 	int stop = 0;
636 
637 	/* Make sure the event exists and is not committed yet */
638 	do {
639 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
640 			done = true;
641 		commit = local_read(&page->page->commit);
642 		write = local_read(&page->write);
643 		if (addr >= (unsigned long)&page->page->data[commit] &&
644 		    addr < (unsigned long)&page->page->data[write])
645 			return;
646 
647 		next = rb_list_head(page->list.next);
648 		page = list_entry(next, struct buffer_page, list);
649 	} while (!done);
650 	WARN_ON_ONCE(1);
651 }
652 #else
653 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
654 			 void *event)
655 {
656 }
657 #endif
658 
659 /*
660  * The absolute time stamp drops the 5 MSBs and some clocks may
661  * require them. The rb_fix_abs_ts() will take a previous full
662  * time stamp, and add the 5 MSB of that time stamp on to the
663  * saved absolute time stamp. Then they are compared in case of
664  * the unlikely event that the latest time stamp incremented
665  * the 5 MSB.
666  */
667 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
668 {
669 	if (save_ts & TS_MSB) {
670 		abs |= save_ts & TS_MSB;
671 		/* Check for overflow */
672 		if (unlikely(abs < save_ts))
673 			abs += 1ULL << 59;
674 	}
675 	return abs;
676 }
677 
678 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
679 
680 /**
681  * ring_buffer_event_time_stamp - return the event's current time stamp
682  * @buffer: The buffer that the event is on
683  * @event: the event to get the time stamp of
684  *
685  * Note, this must be called after @event is reserved, and before it is
686  * committed to the ring buffer. And must be called from the same
687  * context where the event was reserved (normal, softirq, irq, etc).
688  *
689  * Returns the time stamp associated with the current event.
690  * If the event has an extended time stamp, then that is used as
691  * the time stamp to return.
692  * In the highly unlikely case that the event was nested more than
693  * the max nesting, then the write_stamp of the buffer is returned,
694  * otherwise  current time is returned, but that really neither of
695  * the last two cases should ever happen.
696  */
697 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
698 				 struct ring_buffer_event *event)
699 {
700 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
701 	unsigned int nest;
702 	u64 ts;
703 
704 	/* If the event includes an absolute time, then just use that */
705 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
706 		ts = rb_event_time_stamp(event);
707 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
708 	}
709 
710 	nest = local_read(&cpu_buffer->committing);
711 	verify_event(cpu_buffer, event);
712 	if (WARN_ON_ONCE(!nest))
713 		goto fail;
714 
715 	/* Read the current saved nesting level time stamp */
716 	if (likely(--nest < MAX_NEST))
717 		return cpu_buffer->event_stamp[nest];
718 
719 	/* Shouldn't happen, warn if it does */
720 	WARN_ONCE(1, "nest (%d) greater than max", nest);
721 
722  fail:
723 	rb_time_read(&cpu_buffer->write_stamp, &ts);
724 
725 	return ts;
726 }
727 
728 /**
729  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
730  * @buffer: The ring_buffer to get the number of pages from
731  * @cpu: The cpu of the ring_buffer to get the number of pages from
732  *
733  * Returns the number of pages that have content in the ring buffer.
734  */
735 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
736 {
737 	size_t read;
738 	size_t lost;
739 	size_t cnt;
740 
741 	read = local_read(&buffer->buffers[cpu]->pages_read);
742 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
743 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
744 
745 	if (WARN_ON_ONCE(cnt < lost))
746 		return 0;
747 
748 	cnt -= lost;
749 
750 	/* The reader can read an empty page, but not more than that */
751 	if (cnt < read) {
752 		WARN_ON_ONCE(read > cnt + 1);
753 		return 0;
754 	}
755 
756 	return cnt - read;
757 }
758 
759 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
760 {
761 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
762 	size_t nr_pages;
763 	size_t dirty;
764 
765 	nr_pages = cpu_buffer->nr_pages;
766 	if (!nr_pages || !full)
767 		return true;
768 
769 	/*
770 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
771 	 * that the writer is on is not counted as dirty.
772 	 * This is needed if "buffer_percent" is set to 100.
773 	 */
774 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
775 
776 	return (dirty * 100) >= (full * nr_pages);
777 }
778 
779 /*
780  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
781  *
782  * Schedules a delayed work to wake up any task that is blocked on the
783  * ring buffer waiters queue.
784  */
785 static void rb_wake_up_waiters(struct irq_work *work)
786 {
787 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
788 
789 	/* For waiters waiting for the first wake up */
790 	(void)atomic_fetch_inc_release(&rbwork->seq);
791 
792 	wake_up_all(&rbwork->waiters);
793 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
794 		/* Only cpu_buffer sets the above flags */
795 		struct ring_buffer_per_cpu *cpu_buffer =
796 			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
797 
798 		/* Called from interrupt context */
799 		raw_spin_lock(&cpu_buffer->reader_lock);
800 		rbwork->wakeup_full = false;
801 		rbwork->full_waiters_pending = false;
802 
803 		/* Waking up all waiters, they will reset the shortest full */
804 		cpu_buffer->shortest_full = 0;
805 		raw_spin_unlock(&cpu_buffer->reader_lock);
806 
807 		wake_up_all(&rbwork->full_waiters);
808 	}
809 }
810 
811 /**
812  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
813  * @buffer: The ring buffer to wake waiters on
814  * @cpu: The CPU buffer to wake waiters on
815  *
816  * In the case of a file that represents a ring buffer is closing,
817  * it is prudent to wake up any waiters that are on this.
818  */
819 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
820 {
821 	struct ring_buffer_per_cpu *cpu_buffer;
822 	struct rb_irq_work *rbwork;
823 
824 	if (!buffer)
825 		return;
826 
827 	if (cpu == RING_BUFFER_ALL_CPUS) {
828 
829 		/* Wake up individual ones too. One level recursion */
830 		for_each_buffer_cpu(buffer, cpu)
831 			ring_buffer_wake_waiters(buffer, cpu);
832 
833 		rbwork = &buffer->irq_work;
834 	} else {
835 		if (WARN_ON_ONCE(!buffer->buffers))
836 			return;
837 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
838 			return;
839 
840 		cpu_buffer = buffer->buffers[cpu];
841 		/* The CPU buffer may not have been initialized yet */
842 		if (!cpu_buffer)
843 			return;
844 		rbwork = &cpu_buffer->irq_work;
845 	}
846 
847 	/* This can be called in any context */
848 	irq_work_queue(&rbwork->work);
849 }
850 
851 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
852 {
853 	struct ring_buffer_per_cpu *cpu_buffer;
854 	bool ret = false;
855 
856 	/* Reads of all CPUs always waits for any data */
857 	if (cpu == RING_BUFFER_ALL_CPUS)
858 		return !ring_buffer_empty(buffer);
859 
860 	cpu_buffer = buffer->buffers[cpu];
861 
862 	if (!ring_buffer_empty_cpu(buffer, cpu)) {
863 		unsigned long flags;
864 		bool pagebusy;
865 
866 		if (!full)
867 			return true;
868 
869 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
870 		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
871 		ret = !pagebusy && full_hit(buffer, cpu, full);
872 
873 		if (!ret && (!cpu_buffer->shortest_full ||
874 			     cpu_buffer->shortest_full > full)) {
875 		    cpu_buffer->shortest_full = full;
876 		}
877 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
878 	}
879 	return ret;
880 }
881 
882 static inline bool
883 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
884 	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
885 {
886 	if (rb_watermark_hit(buffer, cpu, full))
887 		return true;
888 
889 	if (cond(data))
890 		return true;
891 
892 	/*
893 	 * The events can happen in critical sections where
894 	 * checking a work queue can cause deadlocks.
895 	 * After adding a task to the queue, this flag is set
896 	 * only to notify events to try to wake up the queue
897 	 * using irq_work.
898 	 *
899 	 * We don't clear it even if the buffer is no longer
900 	 * empty. The flag only causes the next event to run
901 	 * irq_work to do the work queue wake up. The worse
902 	 * that can happen if we race with !trace_empty() is that
903 	 * an event will cause an irq_work to try to wake up
904 	 * an empty queue.
905 	 *
906 	 * There's no reason to protect this flag either, as
907 	 * the work queue and irq_work logic will do the necessary
908 	 * synchronization for the wake ups. The only thing
909 	 * that is necessary is that the wake up happens after
910 	 * a task has been queued. It's OK for spurious wake ups.
911 	 */
912 	if (full)
913 		rbwork->full_waiters_pending = true;
914 	else
915 		rbwork->waiters_pending = true;
916 
917 	return false;
918 }
919 
920 struct rb_wait_data {
921 	struct rb_irq_work		*irq_work;
922 	int				seq;
923 };
924 
925 /*
926  * The default wait condition for ring_buffer_wait() is to just to exit the
927  * wait loop the first time it is woken up.
928  */
929 static bool rb_wait_once(void *data)
930 {
931 	struct rb_wait_data *rdata = data;
932 	struct rb_irq_work *rbwork = rdata->irq_work;
933 
934 	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
935 }
936 
937 /**
938  * ring_buffer_wait - wait for input to the ring buffer
939  * @buffer: buffer to wait on
940  * @cpu: the cpu buffer to wait on
941  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
942  * @cond: condition function to break out of wait (NULL to run once)
943  * @data: the data to pass to @cond.
944  *
945  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
946  * as data is added to any of the @buffer's cpu buffers. Otherwise
947  * it will wait for data to be added to a specific cpu buffer.
948  */
949 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
950 		     ring_buffer_cond_fn cond, void *data)
951 {
952 	struct ring_buffer_per_cpu *cpu_buffer;
953 	struct wait_queue_head *waitq;
954 	struct rb_irq_work *rbwork;
955 	struct rb_wait_data rdata;
956 	int ret = 0;
957 
958 	/*
959 	 * Depending on what the caller is waiting for, either any
960 	 * data in any cpu buffer, or a specific buffer, put the
961 	 * caller on the appropriate wait queue.
962 	 */
963 	if (cpu == RING_BUFFER_ALL_CPUS) {
964 		rbwork = &buffer->irq_work;
965 		/* Full only makes sense on per cpu reads */
966 		full = 0;
967 	} else {
968 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
969 			return -ENODEV;
970 		cpu_buffer = buffer->buffers[cpu];
971 		rbwork = &cpu_buffer->irq_work;
972 	}
973 
974 	if (full)
975 		waitq = &rbwork->full_waiters;
976 	else
977 		waitq = &rbwork->waiters;
978 
979 	/* Set up to exit loop as soon as it is woken */
980 	if (!cond) {
981 		cond = rb_wait_once;
982 		rdata.irq_work = rbwork;
983 		rdata.seq = atomic_read_acquire(&rbwork->seq);
984 		data = &rdata;
985 	}
986 
987 	ret = wait_event_interruptible((*waitq),
988 				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
989 
990 	return ret;
991 }
992 
993 /**
994  * ring_buffer_poll_wait - poll on buffer input
995  * @buffer: buffer to wait on
996  * @cpu: the cpu buffer to wait on
997  * @filp: the file descriptor
998  * @poll_table: The poll descriptor
999  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1000  *
1001  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1002  * as data is added to any of the @buffer's cpu buffers. Otherwise
1003  * it will wait for data to be added to a specific cpu buffer.
1004  *
1005  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1006  * zero otherwise.
1007  */
1008 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1009 			  struct file *filp, poll_table *poll_table, int full)
1010 {
1011 	struct ring_buffer_per_cpu *cpu_buffer;
1012 	struct rb_irq_work *rbwork;
1013 
1014 	if (cpu == RING_BUFFER_ALL_CPUS) {
1015 		rbwork = &buffer->irq_work;
1016 		full = 0;
1017 	} else {
1018 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1019 			return EPOLLERR;
1020 
1021 		cpu_buffer = buffer->buffers[cpu];
1022 		rbwork = &cpu_buffer->irq_work;
1023 	}
1024 
1025 	if (full) {
1026 		poll_wait(filp, &rbwork->full_waiters, poll_table);
1027 
1028 		if (rb_watermark_hit(buffer, cpu, full))
1029 			return EPOLLIN | EPOLLRDNORM;
1030 		/*
1031 		 * Only allow full_waiters_pending update to be seen after
1032 		 * the shortest_full is set (in rb_watermark_hit). If the
1033 		 * writer sees the full_waiters_pending flag set, it will
1034 		 * compare the amount in the ring buffer to shortest_full.
1035 		 * If the amount in the ring buffer is greater than the
1036 		 * shortest_full percent, it will call the irq_work handler
1037 		 * to wake up this list. The irq_handler will reset shortest_full
1038 		 * back to zero. That's done under the reader_lock, but
1039 		 * the below smp_mb() makes sure that the update to
1040 		 * full_waiters_pending doesn't leak up into the above.
1041 		 */
1042 		smp_mb();
1043 		rbwork->full_waiters_pending = true;
1044 		return 0;
1045 	}
1046 
1047 	poll_wait(filp, &rbwork->waiters, poll_table);
1048 	rbwork->waiters_pending = true;
1049 
1050 	/*
1051 	 * There's a tight race between setting the waiters_pending and
1052 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1053 	 * is set, the next event will wake the task up, but we can get stuck
1054 	 * if there's only a single event in.
1055 	 *
1056 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1057 	 * but adding a memory barrier to all events will cause too much of a
1058 	 * performance hit in the fast path.  We only need a memory barrier when
1059 	 * the buffer goes from empty to having content.  But as this race is
1060 	 * extremely small, and it's not a problem if another event comes in, we
1061 	 * will fix it later.
1062 	 */
1063 	smp_mb();
1064 
1065 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1066 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1067 		return EPOLLIN | EPOLLRDNORM;
1068 	return 0;
1069 }
1070 
1071 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1072 #define RB_WARN_ON(b, cond)						\
1073 	({								\
1074 		int _____ret = unlikely(cond);				\
1075 		if (_____ret) {						\
1076 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1077 				struct ring_buffer_per_cpu *__b =	\
1078 					(void *)b;			\
1079 				atomic_inc(&__b->buffer->record_disabled); \
1080 			} else						\
1081 				atomic_inc(&b->record_disabled);	\
1082 			WARN_ON(1);					\
1083 		}							\
1084 		_____ret;						\
1085 	})
1086 
1087 /* Up this if you want to test the TIME_EXTENTS and normalization */
1088 #define DEBUG_SHIFT 0
1089 
1090 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1091 {
1092 	u64 ts;
1093 
1094 	/* Skip retpolines :-( */
1095 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1096 		ts = trace_clock_local();
1097 	else
1098 		ts = buffer->clock();
1099 
1100 	/* shift to debug/test normalization and TIME_EXTENTS */
1101 	return ts << DEBUG_SHIFT;
1102 }
1103 
1104 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1105 {
1106 	u64 time;
1107 
1108 	preempt_disable_notrace();
1109 	time = rb_time_stamp(buffer);
1110 	preempt_enable_notrace();
1111 
1112 	return time;
1113 }
1114 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1115 
1116 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1117 				      int cpu, u64 *ts)
1118 {
1119 	/* Just stupid testing the normalize function and deltas */
1120 	*ts >>= DEBUG_SHIFT;
1121 }
1122 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1123 
1124 /*
1125  * Making the ring buffer lockless makes things tricky.
1126  * Although writes only happen on the CPU that they are on,
1127  * and they only need to worry about interrupts. Reads can
1128  * happen on any CPU.
1129  *
1130  * The reader page is always off the ring buffer, but when the
1131  * reader finishes with a page, it needs to swap its page with
1132  * a new one from the buffer. The reader needs to take from
1133  * the head (writes go to the tail). But if a writer is in overwrite
1134  * mode and wraps, it must push the head page forward.
1135  *
1136  * Here lies the problem.
1137  *
1138  * The reader must be careful to replace only the head page, and
1139  * not another one. As described at the top of the file in the
1140  * ASCII art, the reader sets its old page to point to the next
1141  * page after head. It then sets the page after head to point to
1142  * the old reader page. But if the writer moves the head page
1143  * during this operation, the reader could end up with the tail.
1144  *
1145  * We use cmpxchg to help prevent this race. We also do something
1146  * special with the page before head. We set the LSB to 1.
1147  *
1148  * When the writer must push the page forward, it will clear the
1149  * bit that points to the head page, move the head, and then set
1150  * the bit that points to the new head page.
1151  *
1152  * We also don't want an interrupt coming in and moving the head
1153  * page on another writer. Thus we use the second LSB to catch
1154  * that too. Thus:
1155  *
1156  * head->list->prev->next        bit 1          bit 0
1157  *                              -------        -------
1158  * Normal page                     0              0
1159  * Points to head page             0              1
1160  * New head page                   1              0
1161  *
1162  * Note we can not trust the prev pointer of the head page, because:
1163  *
1164  * +----+       +-----+        +-----+
1165  * |    |------>|  T  |---X--->|  N  |
1166  * |    |<------|     |        |     |
1167  * +----+       +-----+        +-----+
1168  *   ^                           ^ |
1169  *   |          +-----+          | |
1170  *   +----------|  R  |----------+ |
1171  *              |     |<-----------+
1172  *              +-----+
1173  *
1174  * Key:  ---X-->  HEAD flag set in pointer
1175  *         T      Tail page
1176  *         R      Reader page
1177  *         N      Next page
1178  *
1179  * (see __rb_reserve_next() to see where this happens)
1180  *
1181  *  What the above shows is that the reader just swapped out
1182  *  the reader page with a page in the buffer, but before it
1183  *  could make the new header point back to the new page added
1184  *  it was preempted by a writer. The writer moved forward onto
1185  *  the new page added by the reader and is about to move forward
1186  *  again.
1187  *
1188  *  You can see, it is legitimate for the previous pointer of
1189  *  the head (or any page) not to point back to itself. But only
1190  *  temporarily.
1191  */
1192 
1193 #define RB_PAGE_NORMAL		0UL
1194 #define RB_PAGE_HEAD		1UL
1195 #define RB_PAGE_UPDATE		2UL
1196 
1197 
1198 #define RB_FLAG_MASK		3UL
1199 
1200 /* PAGE_MOVED is not part of the mask */
1201 #define RB_PAGE_MOVED		4UL
1202 
1203 /*
1204  * rb_list_head - remove any bit
1205  */
1206 static struct list_head *rb_list_head(struct list_head *list)
1207 {
1208 	unsigned long val = (unsigned long)list;
1209 
1210 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1211 }
1212 
1213 /*
1214  * rb_is_head_page - test if the given page is the head page
1215  *
1216  * Because the reader may move the head_page pointer, we can
1217  * not trust what the head page is (it may be pointing to
1218  * the reader page). But if the next page is a header page,
1219  * its flags will be non zero.
1220  */
1221 static inline int
1222 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1223 {
1224 	unsigned long val;
1225 
1226 	val = (unsigned long)list->next;
1227 
1228 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1229 		return RB_PAGE_MOVED;
1230 
1231 	return val & RB_FLAG_MASK;
1232 }
1233 
1234 /*
1235  * rb_is_reader_page
1236  *
1237  * The unique thing about the reader page, is that, if the
1238  * writer is ever on it, the previous pointer never points
1239  * back to the reader page.
1240  */
1241 static bool rb_is_reader_page(struct buffer_page *page)
1242 {
1243 	struct list_head *list = page->list.prev;
1244 
1245 	return rb_list_head(list->next) != &page->list;
1246 }
1247 
1248 /*
1249  * rb_set_list_to_head - set a list_head to be pointing to head.
1250  */
1251 static void rb_set_list_to_head(struct list_head *list)
1252 {
1253 	unsigned long *ptr;
1254 
1255 	ptr = (unsigned long *)&list->next;
1256 	*ptr |= RB_PAGE_HEAD;
1257 	*ptr &= ~RB_PAGE_UPDATE;
1258 }
1259 
1260 /*
1261  * rb_head_page_activate - sets up head page
1262  */
1263 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1264 {
1265 	struct buffer_page *head;
1266 
1267 	head = cpu_buffer->head_page;
1268 	if (!head)
1269 		return;
1270 
1271 	/*
1272 	 * Set the previous list pointer to have the HEAD flag.
1273 	 */
1274 	rb_set_list_to_head(head->list.prev);
1275 
1276 	if (cpu_buffer->ring_meta) {
1277 		struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1278 		meta->head_buffer = (unsigned long)head->page;
1279 	}
1280 }
1281 
1282 static void rb_list_head_clear(struct list_head *list)
1283 {
1284 	unsigned long *ptr = (unsigned long *)&list->next;
1285 
1286 	*ptr &= ~RB_FLAG_MASK;
1287 }
1288 
1289 /*
1290  * rb_head_page_deactivate - clears head page ptr (for free list)
1291  */
1292 static void
1293 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1294 {
1295 	struct list_head *hd;
1296 
1297 	/* Go through the whole list and clear any pointers found. */
1298 	rb_list_head_clear(cpu_buffer->pages);
1299 
1300 	list_for_each(hd, cpu_buffer->pages)
1301 		rb_list_head_clear(hd);
1302 }
1303 
1304 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1305 			    struct buffer_page *head,
1306 			    struct buffer_page *prev,
1307 			    int old_flag, int new_flag)
1308 {
1309 	struct list_head *list;
1310 	unsigned long val = (unsigned long)&head->list;
1311 	unsigned long ret;
1312 
1313 	list = &prev->list;
1314 
1315 	val &= ~RB_FLAG_MASK;
1316 
1317 	ret = cmpxchg((unsigned long *)&list->next,
1318 		      val | old_flag, val | new_flag);
1319 
1320 	/* check if the reader took the page */
1321 	if ((ret & ~RB_FLAG_MASK) != val)
1322 		return RB_PAGE_MOVED;
1323 
1324 	return ret & RB_FLAG_MASK;
1325 }
1326 
1327 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1328 				   struct buffer_page *head,
1329 				   struct buffer_page *prev,
1330 				   int old_flag)
1331 {
1332 	return rb_head_page_set(cpu_buffer, head, prev,
1333 				old_flag, RB_PAGE_UPDATE);
1334 }
1335 
1336 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1337 				 struct buffer_page *head,
1338 				 struct buffer_page *prev,
1339 				 int old_flag)
1340 {
1341 	return rb_head_page_set(cpu_buffer, head, prev,
1342 				old_flag, RB_PAGE_HEAD);
1343 }
1344 
1345 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1346 				   struct buffer_page *head,
1347 				   struct buffer_page *prev,
1348 				   int old_flag)
1349 {
1350 	return rb_head_page_set(cpu_buffer, head, prev,
1351 				old_flag, RB_PAGE_NORMAL);
1352 }
1353 
1354 static inline void rb_inc_page(struct buffer_page **bpage)
1355 {
1356 	struct list_head *p = rb_list_head((*bpage)->list.next);
1357 
1358 	*bpage = list_entry(p, struct buffer_page, list);
1359 }
1360 
1361 static struct buffer_page *
1362 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1363 {
1364 	struct buffer_page *head;
1365 	struct buffer_page *page;
1366 	struct list_head *list;
1367 	int i;
1368 
1369 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1370 		return NULL;
1371 
1372 	/* sanity check */
1373 	list = cpu_buffer->pages;
1374 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1375 		return NULL;
1376 
1377 	page = head = cpu_buffer->head_page;
1378 	/*
1379 	 * It is possible that the writer moves the header behind
1380 	 * where we started, and we miss in one loop.
1381 	 * A second loop should grab the header, but we'll do
1382 	 * three loops just because I'm paranoid.
1383 	 */
1384 	for (i = 0; i < 3; i++) {
1385 		do {
1386 			if (rb_is_head_page(page, page->list.prev)) {
1387 				cpu_buffer->head_page = page;
1388 				return page;
1389 			}
1390 			rb_inc_page(&page);
1391 		} while (page != head);
1392 	}
1393 
1394 	RB_WARN_ON(cpu_buffer, 1);
1395 
1396 	return NULL;
1397 }
1398 
1399 static bool rb_head_page_replace(struct buffer_page *old,
1400 				struct buffer_page *new)
1401 {
1402 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1403 	unsigned long val;
1404 
1405 	val = *ptr & ~RB_FLAG_MASK;
1406 	val |= RB_PAGE_HEAD;
1407 
1408 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1409 }
1410 
1411 /*
1412  * rb_tail_page_update - move the tail page forward
1413  */
1414 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1415 			       struct buffer_page *tail_page,
1416 			       struct buffer_page *next_page)
1417 {
1418 	unsigned long old_entries;
1419 	unsigned long old_write;
1420 
1421 	/*
1422 	 * The tail page now needs to be moved forward.
1423 	 *
1424 	 * We need to reset the tail page, but without messing
1425 	 * with possible erasing of data brought in by interrupts
1426 	 * that have moved the tail page and are currently on it.
1427 	 *
1428 	 * We add a counter to the write field to denote this.
1429 	 */
1430 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1431 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1432 
1433 	/*
1434 	 * Just make sure we have seen our old_write and synchronize
1435 	 * with any interrupts that come in.
1436 	 */
1437 	barrier();
1438 
1439 	/*
1440 	 * If the tail page is still the same as what we think
1441 	 * it is, then it is up to us to update the tail
1442 	 * pointer.
1443 	 */
1444 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1445 		/* Zero the write counter */
1446 		unsigned long val = old_write & ~RB_WRITE_MASK;
1447 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1448 
1449 		/*
1450 		 * This will only succeed if an interrupt did
1451 		 * not come in and change it. In which case, we
1452 		 * do not want to modify it.
1453 		 *
1454 		 * We add (void) to let the compiler know that we do not care
1455 		 * about the return value of these functions. We use the
1456 		 * cmpxchg to only update if an interrupt did not already
1457 		 * do it for us. If the cmpxchg fails, we don't care.
1458 		 */
1459 		(void)local_cmpxchg(&next_page->write, old_write, val);
1460 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1461 
1462 		/*
1463 		 * No need to worry about races with clearing out the commit.
1464 		 * it only can increment when a commit takes place. But that
1465 		 * only happens in the outer most nested commit.
1466 		 */
1467 		local_set(&next_page->page->commit, 0);
1468 
1469 		/* Either we update tail_page or an interrupt does */
1470 		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1471 			local_inc(&cpu_buffer->pages_touched);
1472 	}
1473 }
1474 
1475 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1476 			  struct buffer_page *bpage)
1477 {
1478 	unsigned long val = (unsigned long)bpage;
1479 
1480 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1481 }
1482 
1483 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1484 			   struct list_head *list)
1485 {
1486 	if (RB_WARN_ON(cpu_buffer,
1487 		       rb_list_head(rb_list_head(list->next)->prev) != list))
1488 		return false;
1489 
1490 	if (RB_WARN_ON(cpu_buffer,
1491 		       rb_list_head(rb_list_head(list->prev)->next) != list))
1492 		return false;
1493 
1494 	return true;
1495 }
1496 
1497 /**
1498  * rb_check_pages - integrity check of buffer pages
1499  * @cpu_buffer: CPU buffer with pages to test
1500  *
1501  * As a safety measure we check to make sure the data pages have not
1502  * been corrupted.
1503  */
1504 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1505 {
1506 	struct list_head *head, *tmp;
1507 	unsigned long buffer_cnt;
1508 	unsigned long flags;
1509 	int nr_loops = 0;
1510 
1511 	/*
1512 	 * Walk the linked list underpinning the ring buffer and validate all
1513 	 * its next and prev links.
1514 	 *
1515 	 * The check acquires the reader_lock to avoid concurrent processing
1516 	 * with code that could be modifying the list. However, the lock cannot
1517 	 * be held for the entire duration of the walk, as this would make the
1518 	 * time when interrupts are disabled non-deterministic, dependent on the
1519 	 * ring buffer size. Therefore, the code releases and re-acquires the
1520 	 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1521 	 * is then used to detect if the list was modified while the lock was
1522 	 * not held, in which case the check needs to be restarted.
1523 	 *
1524 	 * The code attempts to perform the check at most three times before
1525 	 * giving up. This is acceptable because this is only a self-validation
1526 	 * to detect problems early on. In practice, the list modification
1527 	 * operations are fairly spaced, and so this check typically succeeds at
1528 	 * most on the second try.
1529 	 */
1530 again:
1531 	if (++nr_loops > 3)
1532 		return;
1533 
1534 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1535 	head = rb_list_head(cpu_buffer->pages);
1536 	if (!rb_check_links(cpu_buffer, head))
1537 		goto out_locked;
1538 	buffer_cnt = cpu_buffer->cnt;
1539 	tmp = head;
1540 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1541 
1542 	while (true) {
1543 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1544 
1545 		if (buffer_cnt != cpu_buffer->cnt) {
1546 			/* The list was updated, try again. */
1547 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1548 			goto again;
1549 		}
1550 
1551 		tmp = rb_list_head(tmp->next);
1552 		if (tmp == head)
1553 			/* The iteration circled back, all is done. */
1554 			goto out_locked;
1555 
1556 		if (!rb_check_links(cpu_buffer, tmp))
1557 			goto out_locked;
1558 
1559 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1560 	}
1561 
1562 out_locked:
1563 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1564 }
1565 
1566 /*
1567  * Take an address, add the meta data size as well as the array of
1568  * array subbuffer indexes, then align it to a subbuffer size.
1569  *
1570  * This is used to help find the next per cpu subbuffer within a mapped range.
1571  */
1572 static unsigned long
1573 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1574 {
1575 	addr += sizeof(struct ring_buffer_cpu_meta) +
1576 		sizeof(int) * nr_subbufs;
1577 	return ALIGN(addr, subbuf_size);
1578 }
1579 
1580 /*
1581  * Return the ring_buffer_meta for a given @cpu.
1582  */
1583 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1584 {
1585 	int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1586 	struct ring_buffer_cpu_meta *meta;
1587 	struct ring_buffer_meta *bmeta;
1588 	unsigned long ptr;
1589 	int nr_subbufs;
1590 
1591 	bmeta = buffer->meta;
1592 	if (!bmeta)
1593 		return NULL;
1594 
1595 	ptr = (unsigned long)bmeta + bmeta->buffers_offset;
1596 	meta = (struct ring_buffer_cpu_meta *)ptr;
1597 
1598 	/* When nr_pages passed in is zero, the first meta has already been initialized */
1599 	if (!nr_pages) {
1600 		nr_subbufs = meta->nr_subbufs;
1601 	} else {
1602 		/* Include the reader page */
1603 		nr_subbufs = nr_pages + 1;
1604 	}
1605 
1606 	/*
1607 	 * The first chunk may not be subbuffer aligned, where as
1608 	 * the rest of the chunks are.
1609 	 */
1610 	if (cpu) {
1611 		ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1612 		ptr += subbuf_size * nr_subbufs;
1613 
1614 		/* We can use multiplication to find chunks greater than 1 */
1615 		if (cpu > 1) {
1616 			unsigned long size;
1617 			unsigned long p;
1618 
1619 			/* Save the beginning of this CPU chunk */
1620 			p = ptr;
1621 			ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1622 			ptr += subbuf_size * nr_subbufs;
1623 
1624 			/* Now all chunks after this are the same size */
1625 			size = ptr - p;
1626 			ptr += size * (cpu - 2);
1627 		}
1628 	}
1629 	return (void *)ptr;
1630 }
1631 
1632 /* Return the start of subbufs given the meta pointer */
1633 static void *rb_subbufs_from_meta(struct ring_buffer_cpu_meta *meta)
1634 {
1635 	int subbuf_size = meta->subbuf_size;
1636 	unsigned long ptr;
1637 
1638 	ptr = (unsigned long)meta;
1639 	ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1640 
1641 	return (void *)ptr;
1642 }
1643 
1644 /*
1645  * Return a specific sub-buffer for a given @cpu defined by @idx.
1646  */
1647 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1648 {
1649 	struct ring_buffer_cpu_meta *meta;
1650 	unsigned long ptr;
1651 	int subbuf_size;
1652 
1653 	meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1654 	if (!meta)
1655 		return NULL;
1656 
1657 	if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1658 		return NULL;
1659 
1660 	subbuf_size = meta->subbuf_size;
1661 
1662 	/* Map this buffer to the order that's in meta->buffers[] */
1663 	idx = meta->buffers[idx];
1664 
1665 	ptr = (unsigned long)rb_subbufs_from_meta(meta);
1666 
1667 	ptr += subbuf_size * idx;
1668 	if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1669 		return NULL;
1670 
1671 	return (void *)ptr;
1672 }
1673 
1674 /*
1675  * See if the existing memory contains a valid meta section.
1676  * if so, use that, otherwise initialize it.
1677  */
1678 static bool rb_meta_init(struct trace_buffer *buffer, int scratch_size)
1679 {
1680 	unsigned long ptr = buffer->range_addr_start;
1681 	struct ring_buffer_meta *bmeta;
1682 	unsigned long total_size;
1683 	int struct_sizes;
1684 
1685 	bmeta = (struct ring_buffer_meta *)ptr;
1686 	buffer->meta = bmeta;
1687 
1688 	total_size = buffer->range_addr_end - buffer->range_addr_start;
1689 
1690 	struct_sizes = sizeof(struct ring_buffer_cpu_meta);
1691 	struct_sizes |= sizeof(*bmeta) << 16;
1692 
1693 	/* The first buffer will start word size after the meta page */
1694 	ptr += sizeof(*bmeta);
1695 	ptr = ALIGN(ptr, sizeof(long));
1696 	ptr += scratch_size;
1697 
1698 	if (bmeta->magic != RING_BUFFER_META_MAGIC) {
1699 		pr_info("Ring buffer boot meta mismatch of magic\n");
1700 		goto init;
1701 	}
1702 
1703 	if (bmeta->struct_sizes != struct_sizes) {
1704 		pr_info("Ring buffer boot meta mismatch of struct size\n");
1705 		goto init;
1706 	}
1707 
1708 	if (bmeta->total_size != total_size) {
1709 		pr_info("Ring buffer boot meta mismatch of total size\n");
1710 		goto init;
1711 	}
1712 
1713 	if (bmeta->buffers_offset > bmeta->total_size) {
1714 		pr_info("Ring buffer boot meta mismatch of offset outside of total size\n");
1715 		goto init;
1716 	}
1717 
1718 	if (bmeta->buffers_offset != (void *)ptr - (void *)bmeta) {
1719 		pr_info("Ring buffer boot meta mismatch of first buffer offset\n");
1720 		goto init;
1721 	}
1722 
1723 	return true;
1724 
1725  init:
1726 	bmeta->magic = RING_BUFFER_META_MAGIC;
1727 	bmeta->struct_sizes = struct_sizes;
1728 	bmeta->total_size = total_size;
1729 	bmeta->buffers_offset = (void *)ptr - (void *)bmeta;
1730 
1731 	/* Zero out the scatch pad */
1732 	memset((void *)bmeta + sizeof(*bmeta), 0, bmeta->buffers_offset - sizeof(*bmeta));
1733 
1734 	return false;
1735 }
1736 
1737 /*
1738  * See if the existing memory contains valid ring buffer data.
1739  * As the previous kernel must be the same as this kernel, all
1740  * the calculations (size of buffers and number of buffers)
1741  * must be the same.
1742  */
1743 static bool rb_cpu_meta_valid(struct ring_buffer_cpu_meta *meta, int cpu,
1744 			      struct trace_buffer *buffer, int nr_pages,
1745 			      unsigned long *subbuf_mask)
1746 {
1747 	int subbuf_size = PAGE_SIZE;
1748 	struct buffer_data_page *subbuf;
1749 	unsigned long buffers_start;
1750 	unsigned long buffers_end;
1751 	int i;
1752 
1753 	if (!subbuf_mask)
1754 		return false;
1755 
1756 	buffers_start = meta->first_buffer;
1757 	buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1758 
1759 	/* Is the head and commit buffers within the range of buffers? */
1760 	if (meta->head_buffer < buffers_start ||
1761 	    meta->head_buffer >= buffers_end) {
1762 		pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1763 		return false;
1764 	}
1765 
1766 	if (meta->commit_buffer < buffers_start ||
1767 	    meta->commit_buffer >= buffers_end) {
1768 		pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1769 		return false;
1770 	}
1771 
1772 	subbuf = rb_subbufs_from_meta(meta);
1773 
1774 	bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1775 
1776 	/* Is the meta buffers and the subbufs themselves have correct data? */
1777 	for (i = 0; i < meta->nr_subbufs; i++) {
1778 		if (meta->buffers[i] < 0 ||
1779 		    meta->buffers[i] >= meta->nr_subbufs) {
1780 			pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1781 			return false;
1782 		}
1783 
1784 		if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1785 			pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1786 			return false;
1787 		}
1788 
1789 		if (test_bit(meta->buffers[i], subbuf_mask)) {
1790 			pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1791 			return false;
1792 		}
1793 
1794 		set_bit(meta->buffers[i], subbuf_mask);
1795 		subbuf = (void *)subbuf + subbuf_size;
1796 	}
1797 
1798 	return true;
1799 }
1800 
1801 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf);
1802 
1803 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1804 			       unsigned long long *timestamp, u64 *delta_ptr)
1805 {
1806 	struct ring_buffer_event *event;
1807 	u64 ts, delta;
1808 	int events = 0;
1809 	int e;
1810 
1811 	*delta_ptr = 0;
1812 	*timestamp = 0;
1813 
1814 	ts = dpage->time_stamp;
1815 
1816 	for (e = 0; e < tail; e += rb_event_length(event)) {
1817 
1818 		event = (struct ring_buffer_event *)(dpage->data + e);
1819 
1820 		switch (event->type_len) {
1821 
1822 		case RINGBUF_TYPE_TIME_EXTEND:
1823 			delta = rb_event_time_stamp(event);
1824 			ts += delta;
1825 			break;
1826 
1827 		case RINGBUF_TYPE_TIME_STAMP:
1828 			delta = rb_event_time_stamp(event);
1829 			delta = rb_fix_abs_ts(delta, ts);
1830 			if (delta < ts) {
1831 				*delta_ptr = delta;
1832 				*timestamp = ts;
1833 				return -1;
1834 			}
1835 			ts = delta;
1836 			break;
1837 
1838 		case RINGBUF_TYPE_PADDING:
1839 			if (event->time_delta == 1)
1840 				break;
1841 			fallthrough;
1842 		case RINGBUF_TYPE_DATA:
1843 			events++;
1844 			ts += event->time_delta;
1845 			break;
1846 
1847 		default:
1848 			return -1;
1849 		}
1850 	}
1851 	*timestamp = ts;
1852 	return events;
1853 }
1854 
1855 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1856 {
1857 	unsigned long long ts;
1858 	u64 delta;
1859 	int tail;
1860 
1861 	tail = local_read(&dpage->commit);
1862 	return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1863 }
1864 
1865 /* If the meta data has been validated, now validate the events */
1866 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1867 {
1868 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1869 	struct buffer_page *head_page;
1870 	unsigned long entry_bytes = 0;
1871 	unsigned long entries = 0;
1872 	int ret;
1873 	int i;
1874 
1875 	if (!meta || !meta->head_buffer)
1876 		return;
1877 
1878 	/* Do the reader page first */
1879 	ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1880 	if (ret < 0) {
1881 		pr_info("Ring buffer reader page is invalid\n");
1882 		goto invalid;
1883 	}
1884 	entries += ret;
1885 	entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1886 	local_set(&cpu_buffer->reader_page->entries, ret);
1887 
1888 	head_page = cpu_buffer->head_page;
1889 
1890 	/* If both the head and commit are on the reader_page then we are done. */
1891 	if (head_page == cpu_buffer->reader_page &&
1892 	    head_page == cpu_buffer->commit_page)
1893 		goto done;
1894 
1895 	/* Iterate until finding the commit page */
1896 	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1897 
1898 		/* Reader page has already been done */
1899 		if (head_page == cpu_buffer->reader_page)
1900 			continue;
1901 
1902 		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1903 		if (ret < 0) {
1904 			pr_info("Ring buffer meta [%d] invalid buffer page\n",
1905 				cpu_buffer->cpu);
1906 			goto invalid;
1907 		}
1908 
1909 		/* If the buffer has content, update pages_touched */
1910 		if (ret)
1911 			local_inc(&cpu_buffer->pages_touched);
1912 
1913 		entries += ret;
1914 		entry_bytes += local_read(&head_page->page->commit);
1915 		local_set(&cpu_buffer->head_page->entries, ret);
1916 
1917 		if (head_page == cpu_buffer->commit_page)
1918 			break;
1919 	}
1920 
1921 	if (head_page != cpu_buffer->commit_page) {
1922 		pr_info("Ring buffer meta [%d] commit page not found\n",
1923 			cpu_buffer->cpu);
1924 		goto invalid;
1925 	}
1926  done:
1927 	local_set(&cpu_buffer->entries, entries);
1928 	local_set(&cpu_buffer->entries_bytes, entry_bytes);
1929 
1930 	pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1931 	return;
1932 
1933  invalid:
1934 	/* The content of the buffers are invalid, reset the meta data */
1935 	meta->head_buffer = 0;
1936 	meta->commit_buffer = 0;
1937 
1938 	/* Reset the reader page */
1939 	local_set(&cpu_buffer->reader_page->entries, 0);
1940 	local_set(&cpu_buffer->reader_page->page->commit, 0);
1941 
1942 	/* Reset all the subbuffers */
1943 	for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1944 		local_set(&head_page->entries, 0);
1945 		local_set(&head_page->page->commit, 0);
1946 	}
1947 }
1948 
1949 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages, int scratch_size)
1950 {
1951 	struct ring_buffer_cpu_meta *meta;
1952 	struct ring_buffer_meta *bmeta;
1953 	unsigned long *subbuf_mask;
1954 	unsigned long delta;
1955 	void *subbuf;
1956 	bool valid = false;
1957 	int cpu;
1958 	int i;
1959 
1960 	/* Create a mask to test the subbuf array */
1961 	subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
1962 	/* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
1963 
1964 	if (rb_meta_init(buffer, scratch_size))
1965 		valid = true;
1966 
1967 	bmeta = buffer->meta;
1968 
1969 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1970 		void *next_meta;
1971 
1972 		meta = rb_range_meta(buffer, nr_pages, cpu);
1973 
1974 		if (valid && rb_cpu_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
1975 			/* Make the mappings match the current address */
1976 			subbuf = rb_subbufs_from_meta(meta);
1977 			delta = (unsigned long)subbuf - meta->first_buffer;
1978 			meta->first_buffer += delta;
1979 			meta->head_buffer += delta;
1980 			meta->commit_buffer += delta;
1981 			continue;
1982 		}
1983 
1984 		if (cpu < nr_cpu_ids - 1)
1985 			next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1986 		else
1987 			next_meta = (void *)buffer->range_addr_end;
1988 
1989 		memset(meta, 0, next_meta - (void *)meta);
1990 
1991 		meta->nr_subbufs = nr_pages + 1;
1992 		meta->subbuf_size = PAGE_SIZE;
1993 
1994 		subbuf = rb_subbufs_from_meta(meta);
1995 
1996 		meta->first_buffer = (unsigned long)subbuf;
1997 
1998 		/*
1999 		 * The buffers[] array holds the order of the sub-buffers
2000 		 * that are after the meta data. The sub-buffers may
2001 		 * be swapped out when read and inserted into a different
2002 		 * location of the ring buffer. Although their addresses
2003 		 * remain the same, the buffers[] array contains the
2004 		 * index into the sub-buffers holding their actual order.
2005 		 */
2006 		for (i = 0; i < meta->nr_subbufs; i++) {
2007 			meta->buffers[i] = i;
2008 			rb_init_page(subbuf);
2009 			subbuf += meta->subbuf_size;
2010 		}
2011 	}
2012 	bitmap_free(subbuf_mask);
2013 }
2014 
2015 static void *rbm_start(struct seq_file *m, loff_t *pos)
2016 {
2017 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
2018 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2019 	unsigned long val;
2020 
2021 	if (!meta)
2022 		return NULL;
2023 
2024 	if (*pos > meta->nr_subbufs)
2025 		return NULL;
2026 
2027 	val = *pos;
2028 	val++;
2029 
2030 	return (void *)val;
2031 }
2032 
2033 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
2034 {
2035 	(*pos)++;
2036 
2037 	return rbm_start(m, pos);
2038 }
2039 
2040 static int rbm_show(struct seq_file *m, void *v)
2041 {
2042 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
2043 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2044 	unsigned long val = (unsigned long)v;
2045 
2046 	if (val == 1) {
2047 		seq_printf(m, "head_buffer:   %d\n",
2048 			   rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
2049 		seq_printf(m, "commit_buffer: %d\n",
2050 			   rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
2051 		seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
2052 		seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
2053 		return 0;
2054 	}
2055 
2056 	val -= 2;
2057 	seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
2058 
2059 	return 0;
2060 }
2061 
2062 static void rbm_stop(struct seq_file *m, void *p)
2063 {
2064 }
2065 
2066 static const struct seq_operations rb_meta_seq_ops = {
2067 	.start		= rbm_start,
2068 	.next		= rbm_next,
2069 	.show		= rbm_show,
2070 	.stop		= rbm_stop,
2071 };
2072 
2073 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2074 {
2075 	struct seq_file *m;
2076 	int ret;
2077 
2078 	ret = seq_open(file, &rb_meta_seq_ops);
2079 	if (ret)
2080 		return ret;
2081 
2082 	m = file->private_data;
2083 	m->private = buffer->buffers[cpu];
2084 
2085 	return 0;
2086 }
2087 
2088 /* Map the buffer_pages to the previous head and commit pages */
2089 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2090 				  struct buffer_page *bpage)
2091 {
2092 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2093 
2094 	if (meta->head_buffer == (unsigned long)bpage->page)
2095 		cpu_buffer->head_page = bpage;
2096 
2097 	if (meta->commit_buffer == (unsigned long)bpage->page) {
2098 		cpu_buffer->commit_page = bpage;
2099 		cpu_buffer->tail_page = bpage;
2100 	}
2101 }
2102 
2103 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2104 		long nr_pages, struct list_head *pages)
2105 {
2106 	struct trace_buffer *buffer = cpu_buffer->buffer;
2107 	struct ring_buffer_cpu_meta *meta = NULL;
2108 	struct buffer_page *bpage, *tmp;
2109 	bool user_thread = current->mm != NULL;
2110 	gfp_t mflags;
2111 	long i;
2112 
2113 	/*
2114 	 * Check if the available memory is there first.
2115 	 * Note, si_mem_available() only gives us a rough estimate of available
2116 	 * memory. It may not be accurate. But we don't care, we just want
2117 	 * to prevent doing any allocation when it is obvious that it is
2118 	 * not going to succeed.
2119 	 */
2120 	i = si_mem_available();
2121 	if (i < nr_pages)
2122 		return -ENOMEM;
2123 
2124 	/*
2125 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2126 	 * gracefully without invoking oom-killer and the system is not
2127 	 * destabilized.
2128 	 */
2129 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2130 
2131 	/*
2132 	 * If a user thread allocates too much, and si_mem_available()
2133 	 * reports there's enough memory, even though there is not.
2134 	 * Make sure the OOM killer kills this thread. This can happen
2135 	 * even with RETRY_MAYFAIL because another task may be doing
2136 	 * an allocation after this task has taken all memory.
2137 	 * This is the task the OOM killer needs to take out during this
2138 	 * loop, even if it was triggered by an allocation somewhere else.
2139 	 */
2140 	if (user_thread)
2141 		set_current_oom_origin();
2142 
2143 	if (buffer->range_addr_start)
2144 		meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2145 
2146 	for (i = 0; i < nr_pages; i++) {
2147 		struct page *page;
2148 
2149 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2150 				    mflags, cpu_to_node(cpu_buffer->cpu));
2151 		if (!bpage)
2152 			goto free_pages;
2153 
2154 		rb_check_bpage(cpu_buffer, bpage);
2155 
2156 		/*
2157 		 * Append the pages as for mapped buffers we want to keep
2158 		 * the order
2159 		 */
2160 		list_add_tail(&bpage->list, pages);
2161 
2162 		if (meta) {
2163 			/* A range was given. Use that for the buffer page */
2164 			bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2165 			if (!bpage->page)
2166 				goto free_pages;
2167 			/* If this is valid from a previous boot */
2168 			if (meta->head_buffer)
2169 				rb_meta_buffer_update(cpu_buffer, bpage);
2170 			bpage->range = 1;
2171 			bpage->id = i + 1;
2172 		} else {
2173 			page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2174 						mflags | __GFP_COMP | __GFP_ZERO,
2175 						cpu_buffer->buffer->subbuf_order);
2176 			if (!page)
2177 				goto free_pages;
2178 			bpage->page = page_address(page);
2179 			rb_init_page(bpage->page);
2180 		}
2181 		bpage->order = cpu_buffer->buffer->subbuf_order;
2182 
2183 		if (user_thread && fatal_signal_pending(current))
2184 			goto free_pages;
2185 	}
2186 	if (user_thread)
2187 		clear_current_oom_origin();
2188 
2189 	return 0;
2190 
2191 free_pages:
2192 	list_for_each_entry_safe(bpage, tmp, pages, list) {
2193 		list_del_init(&bpage->list);
2194 		free_buffer_page(bpage);
2195 	}
2196 	if (user_thread)
2197 		clear_current_oom_origin();
2198 
2199 	return -ENOMEM;
2200 }
2201 
2202 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2203 			     unsigned long nr_pages)
2204 {
2205 	LIST_HEAD(pages);
2206 
2207 	WARN_ON(!nr_pages);
2208 
2209 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2210 		return -ENOMEM;
2211 
2212 	/*
2213 	 * The ring buffer page list is a circular list that does not
2214 	 * start and end with a list head. All page list items point to
2215 	 * other pages.
2216 	 */
2217 	cpu_buffer->pages = pages.next;
2218 	list_del(&pages);
2219 
2220 	cpu_buffer->nr_pages = nr_pages;
2221 
2222 	rb_check_pages(cpu_buffer);
2223 
2224 	return 0;
2225 }
2226 
2227 static struct ring_buffer_per_cpu *
2228 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2229 {
2230 	struct ring_buffer_per_cpu *cpu_buffer;
2231 	struct ring_buffer_cpu_meta *meta;
2232 	struct buffer_page *bpage;
2233 	struct page *page;
2234 	int ret;
2235 
2236 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2237 				  GFP_KERNEL, cpu_to_node(cpu));
2238 	if (!cpu_buffer)
2239 		return NULL;
2240 
2241 	cpu_buffer->cpu = cpu;
2242 	cpu_buffer->buffer = buffer;
2243 	raw_spin_lock_init(&cpu_buffer->reader_lock);
2244 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2245 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2246 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2247 	init_completion(&cpu_buffer->update_done);
2248 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2249 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2250 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2251 	mutex_init(&cpu_buffer->mapping_lock);
2252 
2253 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2254 			    GFP_KERNEL, cpu_to_node(cpu));
2255 	if (!bpage)
2256 		goto fail_free_buffer;
2257 
2258 	rb_check_bpage(cpu_buffer, bpage);
2259 
2260 	cpu_buffer->reader_page = bpage;
2261 
2262 	if (buffer->range_addr_start) {
2263 		/*
2264 		 * Range mapped buffers have the same restrictions as memory
2265 		 * mapped ones do.
2266 		 */
2267 		cpu_buffer->mapped = 1;
2268 		cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2269 		bpage->page = rb_range_buffer(cpu_buffer, 0);
2270 		if (!bpage->page)
2271 			goto fail_free_reader;
2272 		if (cpu_buffer->ring_meta->head_buffer)
2273 			rb_meta_buffer_update(cpu_buffer, bpage);
2274 		bpage->range = 1;
2275 	} else {
2276 		page = alloc_pages_node(cpu_to_node(cpu),
2277 					GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2278 					cpu_buffer->buffer->subbuf_order);
2279 		if (!page)
2280 			goto fail_free_reader;
2281 		bpage->page = page_address(page);
2282 		rb_init_page(bpage->page);
2283 	}
2284 
2285 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2286 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
2287 
2288 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
2289 	if (ret < 0)
2290 		goto fail_free_reader;
2291 
2292 	rb_meta_validate_events(cpu_buffer);
2293 
2294 	/* If the boot meta was valid then this has already been updated */
2295 	meta = cpu_buffer->ring_meta;
2296 	if (!meta || !meta->head_buffer ||
2297 	    !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2298 		if (meta && meta->head_buffer &&
2299 		    (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2300 			pr_warn("Ring buffer meta buffers not all mapped\n");
2301 			if (!cpu_buffer->head_page)
2302 				pr_warn("   Missing head_page\n");
2303 			if (!cpu_buffer->commit_page)
2304 				pr_warn("   Missing commit_page\n");
2305 			if (!cpu_buffer->tail_page)
2306 				pr_warn("   Missing tail_page\n");
2307 		}
2308 
2309 		cpu_buffer->head_page
2310 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
2311 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2312 
2313 		rb_head_page_activate(cpu_buffer);
2314 
2315 		if (cpu_buffer->ring_meta)
2316 			meta->commit_buffer = meta->head_buffer;
2317 	} else {
2318 		/* The valid meta buffer still needs to activate the head page */
2319 		rb_head_page_activate(cpu_buffer);
2320 	}
2321 
2322 	return cpu_buffer;
2323 
2324  fail_free_reader:
2325 	free_buffer_page(cpu_buffer->reader_page);
2326 
2327  fail_free_buffer:
2328 	kfree(cpu_buffer);
2329 	return NULL;
2330 }
2331 
2332 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2333 {
2334 	struct list_head *head = cpu_buffer->pages;
2335 	struct buffer_page *bpage, *tmp;
2336 
2337 	irq_work_sync(&cpu_buffer->irq_work.work);
2338 
2339 	free_buffer_page(cpu_buffer->reader_page);
2340 
2341 	if (head) {
2342 		rb_head_page_deactivate(cpu_buffer);
2343 
2344 		list_for_each_entry_safe(bpage, tmp, head, list) {
2345 			list_del_init(&bpage->list);
2346 			free_buffer_page(bpage);
2347 		}
2348 		bpage = list_entry(head, struct buffer_page, list);
2349 		free_buffer_page(bpage);
2350 	}
2351 
2352 	free_page((unsigned long)cpu_buffer->free_page);
2353 
2354 	kfree(cpu_buffer);
2355 }
2356 
2357 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2358 					 int order, unsigned long start,
2359 					 unsigned long end,
2360 					 unsigned long scratch_size,
2361 					 struct lock_class_key *key)
2362 {
2363 	struct trace_buffer *buffer;
2364 	long nr_pages;
2365 	int subbuf_size;
2366 	int bsize;
2367 	int cpu;
2368 	int ret;
2369 
2370 	/* keep it in its own cache line */
2371 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2372 			 GFP_KERNEL);
2373 	if (!buffer)
2374 		return NULL;
2375 
2376 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2377 		goto fail_free_buffer;
2378 
2379 	buffer->subbuf_order = order;
2380 	subbuf_size = (PAGE_SIZE << order);
2381 	buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2382 
2383 	/* Max payload is buffer page size - header (8bytes) */
2384 	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2385 
2386 	buffer->flags = flags;
2387 	buffer->clock = trace_clock_local;
2388 	buffer->reader_lock_key = key;
2389 
2390 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2391 	init_waitqueue_head(&buffer->irq_work.waiters);
2392 
2393 	buffer->cpus = nr_cpu_ids;
2394 
2395 	bsize = sizeof(void *) * nr_cpu_ids;
2396 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2397 				  GFP_KERNEL);
2398 	if (!buffer->buffers)
2399 		goto fail_free_cpumask;
2400 
2401 	/* If start/end are specified, then that overrides size */
2402 	if (start && end) {
2403 		unsigned long buffers_start;
2404 		unsigned long ptr;
2405 		int n;
2406 
2407 		/* Make sure that start is word aligned */
2408 		start = ALIGN(start, sizeof(long));
2409 
2410 		/* scratch_size needs to be aligned too */
2411 		scratch_size = ALIGN(scratch_size, sizeof(long));
2412 
2413 		/* Subtract the buffer meta data and word aligned */
2414 		buffers_start = start + sizeof(struct ring_buffer_cpu_meta);
2415 		buffers_start = ALIGN(buffers_start, sizeof(long));
2416 		buffers_start += scratch_size;
2417 
2418 		/* Calculate the size for the per CPU data */
2419 		size = end - buffers_start;
2420 		size = size / nr_cpu_ids;
2421 
2422 		/*
2423 		 * The number of sub-buffers (nr_pages) is determined by the
2424 		 * total size allocated minus the meta data size.
2425 		 * Then that is divided by the number of per CPU buffers
2426 		 * needed, plus account for the integer array index that
2427 		 * will be appended to the meta data.
2428 		 */
2429 		nr_pages = (size - sizeof(struct ring_buffer_cpu_meta)) /
2430 			(subbuf_size + sizeof(int));
2431 		/* Need at least two pages plus the reader page */
2432 		if (nr_pages < 3)
2433 			goto fail_free_buffers;
2434 
2435  again:
2436 		/* Make sure that the size fits aligned */
2437 		for (n = 0, ptr = buffers_start; n < nr_cpu_ids; n++) {
2438 			ptr += sizeof(struct ring_buffer_cpu_meta) +
2439 				sizeof(int) * nr_pages;
2440 			ptr = ALIGN(ptr, subbuf_size);
2441 			ptr += subbuf_size * nr_pages;
2442 		}
2443 		if (ptr > end) {
2444 			if (nr_pages <= 3)
2445 				goto fail_free_buffers;
2446 			nr_pages--;
2447 			goto again;
2448 		}
2449 
2450 		/* nr_pages should not count the reader page */
2451 		nr_pages--;
2452 		buffer->range_addr_start = start;
2453 		buffer->range_addr_end = end;
2454 
2455 		rb_range_meta_init(buffer, nr_pages, scratch_size);
2456 	} else {
2457 
2458 		/* need at least two pages */
2459 		nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2460 		if (nr_pages < 2)
2461 			nr_pages = 2;
2462 	}
2463 
2464 	cpu = raw_smp_processor_id();
2465 	cpumask_set_cpu(cpu, buffer->cpumask);
2466 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2467 	if (!buffer->buffers[cpu])
2468 		goto fail_free_buffers;
2469 
2470 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2471 	if (ret < 0)
2472 		goto fail_free_buffers;
2473 
2474 	mutex_init(&buffer->mutex);
2475 
2476 	return buffer;
2477 
2478  fail_free_buffers:
2479 	for_each_buffer_cpu(buffer, cpu) {
2480 		if (buffer->buffers[cpu])
2481 			rb_free_cpu_buffer(buffer->buffers[cpu]);
2482 	}
2483 	kfree(buffer->buffers);
2484 
2485  fail_free_cpumask:
2486 	free_cpumask_var(buffer->cpumask);
2487 
2488  fail_free_buffer:
2489 	kfree(buffer);
2490 	return NULL;
2491 }
2492 
2493 /**
2494  * __ring_buffer_alloc - allocate a new ring_buffer
2495  * @size: the size in bytes per cpu that is needed.
2496  * @flags: attributes to set for the ring buffer.
2497  * @key: ring buffer reader_lock_key.
2498  *
2499  * Currently the only flag that is available is the RB_FL_OVERWRITE
2500  * flag. This flag means that the buffer will overwrite old data
2501  * when the buffer wraps. If this flag is not set, the buffer will
2502  * drop data when the tail hits the head.
2503  */
2504 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2505 					struct lock_class_key *key)
2506 {
2507 	/* Default buffer page size - one system page */
2508 	return alloc_buffer(size, flags, 0, 0, 0, 0, key);
2509 
2510 }
2511 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2512 
2513 /**
2514  * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2515  * @size: the size in bytes per cpu that is needed.
2516  * @flags: attributes to set for the ring buffer.
2517  * @order: sub-buffer order
2518  * @start: start of allocated range
2519  * @range_size: size of allocated range
2520  * @scratch_size: size of scratch area (for preallocated memory buffers)
2521  * @key: ring buffer reader_lock_key.
2522  *
2523  * Currently the only flag that is available is the RB_FL_OVERWRITE
2524  * flag. This flag means that the buffer will overwrite old data
2525  * when the buffer wraps. If this flag is not set, the buffer will
2526  * drop data when the tail hits the head.
2527  */
2528 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2529 					       int order, unsigned long start,
2530 					       unsigned long range_size,
2531 					       unsigned long scratch_size,
2532 					       struct lock_class_key *key)
2533 {
2534 	return alloc_buffer(size, flags, order, start, start + range_size,
2535 			    scratch_size, key);
2536 }
2537 
2538 void *ring_buffer_meta_scratch(struct trace_buffer *buffer, unsigned int *size)
2539 {
2540 	struct ring_buffer_meta *meta;
2541 	void *ptr;
2542 
2543 	if (!buffer || !buffer->meta)
2544 		return NULL;
2545 
2546 	meta = buffer->meta;
2547 
2548 	ptr = (void *)ALIGN((unsigned long)meta + sizeof(*meta), sizeof(long));
2549 
2550 	if (size)
2551 		*size = (void *)meta + meta->buffers_offset - ptr;
2552 
2553 	return ptr;
2554 }
2555 
2556 /**
2557  * ring_buffer_free - free a ring buffer.
2558  * @buffer: the buffer to free.
2559  */
2560 void
2561 ring_buffer_free(struct trace_buffer *buffer)
2562 {
2563 	int cpu;
2564 
2565 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2566 
2567 	irq_work_sync(&buffer->irq_work.work);
2568 
2569 	for_each_buffer_cpu(buffer, cpu)
2570 		rb_free_cpu_buffer(buffer->buffers[cpu]);
2571 
2572 	kfree(buffer->buffers);
2573 	free_cpumask_var(buffer->cpumask);
2574 
2575 	kfree(buffer);
2576 }
2577 EXPORT_SYMBOL_GPL(ring_buffer_free);
2578 
2579 void ring_buffer_set_clock(struct trace_buffer *buffer,
2580 			   u64 (*clock)(void))
2581 {
2582 	buffer->clock = clock;
2583 }
2584 
2585 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2586 {
2587 	buffer->time_stamp_abs = abs;
2588 }
2589 
2590 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2591 {
2592 	return buffer->time_stamp_abs;
2593 }
2594 
2595 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2596 {
2597 	return local_read(&bpage->entries) & RB_WRITE_MASK;
2598 }
2599 
2600 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2601 {
2602 	return local_read(&bpage->write) & RB_WRITE_MASK;
2603 }
2604 
2605 static bool
2606 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2607 {
2608 	struct list_head *tail_page, *to_remove, *next_page;
2609 	struct buffer_page *to_remove_page, *tmp_iter_page;
2610 	struct buffer_page *last_page, *first_page;
2611 	unsigned long nr_removed;
2612 	unsigned long head_bit;
2613 	int page_entries;
2614 
2615 	head_bit = 0;
2616 
2617 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2618 	atomic_inc(&cpu_buffer->record_disabled);
2619 	/*
2620 	 * We don't race with the readers since we have acquired the reader
2621 	 * lock. We also don't race with writers after disabling recording.
2622 	 * This makes it easy to figure out the first and the last page to be
2623 	 * removed from the list. We unlink all the pages in between including
2624 	 * the first and last pages. This is done in a busy loop so that we
2625 	 * lose the least number of traces.
2626 	 * The pages are freed after we restart recording and unlock readers.
2627 	 */
2628 	tail_page = &cpu_buffer->tail_page->list;
2629 
2630 	/*
2631 	 * tail page might be on reader page, we remove the next page
2632 	 * from the ring buffer
2633 	 */
2634 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2635 		tail_page = rb_list_head(tail_page->next);
2636 	to_remove = tail_page;
2637 
2638 	/* start of pages to remove */
2639 	first_page = list_entry(rb_list_head(to_remove->next),
2640 				struct buffer_page, list);
2641 
2642 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2643 		to_remove = rb_list_head(to_remove)->next;
2644 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2645 	}
2646 	/* Read iterators need to reset themselves when some pages removed */
2647 	cpu_buffer->pages_removed += nr_removed;
2648 
2649 	next_page = rb_list_head(to_remove)->next;
2650 
2651 	/*
2652 	 * Now we remove all pages between tail_page and next_page.
2653 	 * Make sure that we have head_bit value preserved for the
2654 	 * next page
2655 	 */
2656 	tail_page->next = (struct list_head *)((unsigned long)next_page |
2657 						head_bit);
2658 	next_page = rb_list_head(next_page);
2659 	next_page->prev = tail_page;
2660 
2661 	/* make sure pages points to a valid page in the ring buffer */
2662 	cpu_buffer->pages = next_page;
2663 	cpu_buffer->cnt++;
2664 
2665 	/* update head page */
2666 	if (head_bit)
2667 		cpu_buffer->head_page = list_entry(next_page,
2668 						struct buffer_page, list);
2669 
2670 	/* pages are removed, resume tracing and then free the pages */
2671 	atomic_dec(&cpu_buffer->record_disabled);
2672 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2673 
2674 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2675 
2676 	/* last buffer page to remove */
2677 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2678 				list);
2679 	tmp_iter_page = first_page;
2680 
2681 	do {
2682 		cond_resched();
2683 
2684 		to_remove_page = tmp_iter_page;
2685 		rb_inc_page(&tmp_iter_page);
2686 
2687 		/* update the counters */
2688 		page_entries = rb_page_entries(to_remove_page);
2689 		if (page_entries) {
2690 			/*
2691 			 * If something was added to this page, it was full
2692 			 * since it is not the tail page. So we deduct the
2693 			 * bytes consumed in ring buffer from here.
2694 			 * Increment overrun to account for the lost events.
2695 			 */
2696 			local_add(page_entries, &cpu_buffer->overrun);
2697 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2698 			local_inc(&cpu_buffer->pages_lost);
2699 		}
2700 
2701 		/*
2702 		 * We have already removed references to this list item, just
2703 		 * free up the buffer_page and its page
2704 		 */
2705 		free_buffer_page(to_remove_page);
2706 		nr_removed--;
2707 
2708 	} while (to_remove_page != last_page);
2709 
2710 	RB_WARN_ON(cpu_buffer, nr_removed);
2711 
2712 	return nr_removed == 0;
2713 }
2714 
2715 static bool
2716 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2717 {
2718 	struct list_head *pages = &cpu_buffer->new_pages;
2719 	unsigned long flags;
2720 	bool success;
2721 	int retries;
2722 
2723 	/* Can be called at early boot up, where interrupts must not been enabled */
2724 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2725 	/*
2726 	 * We are holding the reader lock, so the reader page won't be swapped
2727 	 * in the ring buffer. Now we are racing with the writer trying to
2728 	 * move head page and the tail page.
2729 	 * We are going to adapt the reader page update process where:
2730 	 * 1. We first splice the start and end of list of new pages between
2731 	 *    the head page and its previous page.
2732 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2733 	 *    start of new pages list.
2734 	 * 3. Finally, we update the head->prev to the end of new list.
2735 	 *
2736 	 * We will try this process 10 times, to make sure that we don't keep
2737 	 * spinning.
2738 	 */
2739 	retries = 10;
2740 	success = false;
2741 	while (retries--) {
2742 		struct list_head *head_page, *prev_page;
2743 		struct list_head *last_page, *first_page;
2744 		struct list_head *head_page_with_bit;
2745 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2746 
2747 		if (!hpage)
2748 			break;
2749 		head_page = &hpage->list;
2750 		prev_page = head_page->prev;
2751 
2752 		first_page = pages->next;
2753 		last_page  = pages->prev;
2754 
2755 		head_page_with_bit = (struct list_head *)
2756 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2757 
2758 		last_page->next = head_page_with_bit;
2759 		first_page->prev = prev_page;
2760 
2761 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2762 		if (try_cmpxchg(&prev_page->next,
2763 				&head_page_with_bit, first_page)) {
2764 			/*
2765 			 * yay, we replaced the page pointer to our new list,
2766 			 * now, we just have to update to head page's prev
2767 			 * pointer to point to end of list
2768 			 */
2769 			head_page->prev = last_page;
2770 			cpu_buffer->cnt++;
2771 			success = true;
2772 			break;
2773 		}
2774 	}
2775 
2776 	if (success)
2777 		INIT_LIST_HEAD(pages);
2778 	/*
2779 	 * If we weren't successful in adding in new pages, warn and stop
2780 	 * tracing
2781 	 */
2782 	RB_WARN_ON(cpu_buffer, !success);
2783 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2784 
2785 	/* free pages if they weren't inserted */
2786 	if (!success) {
2787 		struct buffer_page *bpage, *tmp;
2788 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2789 					 list) {
2790 			list_del_init(&bpage->list);
2791 			free_buffer_page(bpage);
2792 		}
2793 	}
2794 	return success;
2795 }
2796 
2797 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2798 {
2799 	bool success;
2800 
2801 	if (cpu_buffer->nr_pages_to_update > 0)
2802 		success = rb_insert_pages(cpu_buffer);
2803 	else
2804 		success = rb_remove_pages(cpu_buffer,
2805 					-cpu_buffer->nr_pages_to_update);
2806 
2807 	if (success)
2808 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2809 }
2810 
2811 static void update_pages_handler(struct work_struct *work)
2812 {
2813 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2814 			struct ring_buffer_per_cpu, update_pages_work);
2815 	rb_update_pages(cpu_buffer);
2816 	complete(&cpu_buffer->update_done);
2817 }
2818 
2819 /**
2820  * ring_buffer_resize - resize the ring buffer
2821  * @buffer: the buffer to resize.
2822  * @size: the new size.
2823  * @cpu_id: the cpu buffer to resize
2824  *
2825  * Minimum size is 2 * buffer->subbuf_size.
2826  *
2827  * Returns 0 on success and < 0 on failure.
2828  */
2829 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2830 			int cpu_id)
2831 {
2832 	struct ring_buffer_per_cpu *cpu_buffer;
2833 	unsigned long nr_pages;
2834 	int cpu, err;
2835 
2836 	/*
2837 	 * Always succeed at resizing a non-existent buffer:
2838 	 */
2839 	if (!buffer)
2840 		return 0;
2841 
2842 	/* Make sure the requested buffer exists */
2843 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2844 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2845 		return 0;
2846 
2847 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2848 
2849 	/* we need a minimum of two pages */
2850 	if (nr_pages < 2)
2851 		nr_pages = 2;
2852 
2853 	/* prevent another thread from changing buffer sizes */
2854 	mutex_lock(&buffer->mutex);
2855 	atomic_inc(&buffer->resizing);
2856 
2857 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2858 		/*
2859 		 * Don't succeed if resizing is disabled, as a reader might be
2860 		 * manipulating the ring buffer and is expecting a sane state while
2861 		 * this is true.
2862 		 */
2863 		for_each_buffer_cpu(buffer, cpu) {
2864 			cpu_buffer = buffer->buffers[cpu];
2865 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2866 				err = -EBUSY;
2867 				goto out_err_unlock;
2868 			}
2869 		}
2870 
2871 		/* calculate the pages to update */
2872 		for_each_buffer_cpu(buffer, cpu) {
2873 			cpu_buffer = buffer->buffers[cpu];
2874 
2875 			cpu_buffer->nr_pages_to_update = nr_pages -
2876 							cpu_buffer->nr_pages;
2877 			/*
2878 			 * nothing more to do for removing pages or no update
2879 			 */
2880 			if (cpu_buffer->nr_pages_to_update <= 0)
2881 				continue;
2882 			/*
2883 			 * to add pages, make sure all new pages can be
2884 			 * allocated without receiving ENOMEM
2885 			 */
2886 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2887 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2888 						&cpu_buffer->new_pages)) {
2889 				/* not enough memory for new pages */
2890 				err = -ENOMEM;
2891 				goto out_err;
2892 			}
2893 
2894 			cond_resched();
2895 		}
2896 
2897 		cpus_read_lock();
2898 		/*
2899 		 * Fire off all the required work handlers
2900 		 * We can't schedule on offline CPUs, but it's not necessary
2901 		 * since we can change their buffer sizes without any race.
2902 		 */
2903 		for_each_buffer_cpu(buffer, cpu) {
2904 			cpu_buffer = buffer->buffers[cpu];
2905 			if (!cpu_buffer->nr_pages_to_update)
2906 				continue;
2907 
2908 			/* Can't run something on an offline CPU. */
2909 			if (!cpu_online(cpu)) {
2910 				rb_update_pages(cpu_buffer);
2911 				cpu_buffer->nr_pages_to_update = 0;
2912 			} else {
2913 				/* Run directly if possible. */
2914 				migrate_disable();
2915 				if (cpu != smp_processor_id()) {
2916 					migrate_enable();
2917 					schedule_work_on(cpu,
2918 							 &cpu_buffer->update_pages_work);
2919 				} else {
2920 					update_pages_handler(&cpu_buffer->update_pages_work);
2921 					migrate_enable();
2922 				}
2923 			}
2924 		}
2925 
2926 		/* wait for all the updates to complete */
2927 		for_each_buffer_cpu(buffer, cpu) {
2928 			cpu_buffer = buffer->buffers[cpu];
2929 			if (!cpu_buffer->nr_pages_to_update)
2930 				continue;
2931 
2932 			if (cpu_online(cpu))
2933 				wait_for_completion(&cpu_buffer->update_done);
2934 			cpu_buffer->nr_pages_to_update = 0;
2935 		}
2936 
2937 		cpus_read_unlock();
2938 	} else {
2939 		cpu_buffer = buffer->buffers[cpu_id];
2940 
2941 		if (nr_pages == cpu_buffer->nr_pages)
2942 			goto out;
2943 
2944 		/*
2945 		 * Don't succeed if resizing is disabled, as a reader might be
2946 		 * manipulating the ring buffer and is expecting a sane state while
2947 		 * this is true.
2948 		 */
2949 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2950 			err = -EBUSY;
2951 			goto out_err_unlock;
2952 		}
2953 
2954 		cpu_buffer->nr_pages_to_update = nr_pages -
2955 						cpu_buffer->nr_pages;
2956 
2957 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2958 		if (cpu_buffer->nr_pages_to_update > 0 &&
2959 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2960 					    &cpu_buffer->new_pages)) {
2961 			err = -ENOMEM;
2962 			goto out_err;
2963 		}
2964 
2965 		cpus_read_lock();
2966 
2967 		/* Can't run something on an offline CPU. */
2968 		if (!cpu_online(cpu_id))
2969 			rb_update_pages(cpu_buffer);
2970 		else {
2971 			/* Run directly if possible. */
2972 			migrate_disable();
2973 			if (cpu_id == smp_processor_id()) {
2974 				rb_update_pages(cpu_buffer);
2975 				migrate_enable();
2976 			} else {
2977 				migrate_enable();
2978 				schedule_work_on(cpu_id,
2979 						 &cpu_buffer->update_pages_work);
2980 				wait_for_completion(&cpu_buffer->update_done);
2981 			}
2982 		}
2983 
2984 		cpu_buffer->nr_pages_to_update = 0;
2985 		cpus_read_unlock();
2986 	}
2987 
2988  out:
2989 	/*
2990 	 * The ring buffer resize can happen with the ring buffer
2991 	 * enabled, so that the update disturbs the tracing as little
2992 	 * as possible. But if the buffer is disabled, we do not need
2993 	 * to worry about that, and we can take the time to verify
2994 	 * that the buffer is not corrupt.
2995 	 */
2996 	if (atomic_read(&buffer->record_disabled)) {
2997 		atomic_inc(&buffer->record_disabled);
2998 		/*
2999 		 * Even though the buffer was disabled, we must make sure
3000 		 * that it is truly disabled before calling rb_check_pages.
3001 		 * There could have been a race between checking
3002 		 * record_disable and incrementing it.
3003 		 */
3004 		synchronize_rcu();
3005 		for_each_buffer_cpu(buffer, cpu) {
3006 			cpu_buffer = buffer->buffers[cpu];
3007 			rb_check_pages(cpu_buffer);
3008 		}
3009 		atomic_dec(&buffer->record_disabled);
3010 	}
3011 
3012 	atomic_dec(&buffer->resizing);
3013 	mutex_unlock(&buffer->mutex);
3014 	return 0;
3015 
3016  out_err:
3017 	for_each_buffer_cpu(buffer, cpu) {
3018 		struct buffer_page *bpage, *tmp;
3019 
3020 		cpu_buffer = buffer->buffers[cpu];
3021 		cpu_buffer->nr_pages_to_update = 0;
3022 
3023 		if (list_empty(&cpu_buffer->new_pages))
3024 			continue;
3025 
3026 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
3027 					list) {
3028 			list_del_init(&bpage->list);
3029 			free_buffer_page(bpage);
3030 		}
3031 	}
3032  out_err_unlock:
3033 	atomic_dec(&buffer->resizing);
3034 	mutex_unlock(&buffer->mutex);
3035 	return err;
3036 }
3037 EXPORT_SYMBOL_GPL(ring_buffer_resize);
3038 
3039 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
3040 {
3041 	mutex_lock(&buffer->mutex);
3042 	if (val)
3043 		buffer->flags |= RB_FL_OVERWRITE;
3044 	else
3045 		buffer->flags &= ~RB_FL_OVERWRITE;
3046 	mutex_unlock(&buffer->mutex);
3047 }
3048 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
3049 
3050 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
3051 {
3052 	return bpage->page->data + index;
3053 }
3054 
3055 static __always_inline struct ring_buffer_event *
3056 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
3057 {
3058 	return __rb_page_index(cpu_buffer->reader_page,
3059 			       cpu_buffer->reader_page->read);
3060 }
3061 
3062 static struct ring_buffer_event *
3063 rb_iter_head_event(struct ring_buffer_iter *iter)
3064 {
3065 	struct ring_buffer_event *event;
3066 	struct buffer_page *iter_head_page = iter->head_page;
3067 	unsigned long commit;
3068 	unsigned length;
3069 
3070 	if (iter->head != iter->next_event)
3071 		return iter->event;
3072 
3073 	/*
3074 	 * When the writer goes across pages, it issues a cmpxchg which
3075 	 * is a mb(), which will synchronize with the rmb here.
3076 	 * (see rb_tail_page_update() and __rb_reserve_next())
3077 	 */
3078 	commit = rb_page_commit(iter_head_page);
3079 	smp_rmb();
3080 
3081 	/* An event needs to be at least 8 bytes in size */
3082 	if (iter->head > commit - 8)
3083 		goto reset;
3084 
3085 	event = __rb_page_index(iter_head_page, iter->head);
3086 	length = rb_event_length(event);
3087 
3088 	/*
3089 	 * READ_ONCE() doesn't work on functions and we don't want the
3090 	 * compiler doing any crazy optimizations with length.
3091 	 */
3092 	barrier();
3093 
3094 	if ((iter->head + length) > commit || length > iter->event_size)
3095 		/* Writer corrupted the read? */
3096 		goto reset;
3097 
3098 	memcpy(iter->event, event, length);
3099 	/*
3100 	 * If the page stamp is still the same after this rmb() then the
3101 	 * event was safely copied without the writer entering the page.
3102 	 */
3103 	smp_rmb();
3104 
3105 	/* Make sure the page didn't change since we read this */
3106 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
3107 	    commit > rb_page_commit(iter_head_page))
3108 		goto reset;
3109 
3110 	iter->next_event = iter->head + length;
3111 	return iter->event;
3112  reset:
3113 	/* Reset to the beginning */
3114 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3115 	iter->head = 0;
3116 	iter->next_event = 0;
3117 	iter->missed_events = 1;
3118 	return NULL;
3119 }
3120 
3121 /* Size is determined by what has been committed */
3122 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3123 {
3124 	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3125 }
3126 
3127 static __always_inline unsigned
3128 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3129 {
3130 	return rb_page_commit(cpu_buffer->commit_page);
3131 }
3132 
3133 static __always_inline unsigned
3134 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3135 {
3136 	unsigned long addr = (unsigned long)event;
3137 
3138 	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3139 
3140 	return addr - BUF_PAGE_HDR_SIZE;
3141 }
3142 
3143 static void rb_inc_iter(struct ring_buffer_iter *iter)
3144 {
3145 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3146 
3147 	/*
3148 	 * The iterator could be on the reader page (it starts there).
3149 	 * But the head could have moved, since the reader was
3150 	 * found. Check for this case and assign the iterator
3151 	 * to the head page instead of next.
3152 	 */
3153 	if (iter->head_page == cpu_buffer->reader_page)
3154 		iter->head_page = rb_set_head_page(cpu_buffer);
3155 	else
3156 		rb_inc_page(&iter->head_page);
3157 
3158 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3159 	iter->head = 0;
3160 	iter->next_event = 0;
3161 }
3162 
3163 /* Return the index into the sub-buffers for a given sub-buffer */
3164 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf)
3165 {
3166 	void *subbuf_array;
3167 
3168 	subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3169 	subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3170 	return (subbuf - subbuf_array) / meta->subbuf_size;
3171 }
3172 
3173 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3174 				struct buffer_page *next_page)
3175 {
3176 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3177 	unsigned long old_head = (unsigned long)next_page->page;
3178 	unsigned long new_head;
3179 
3180 	rb_inc_page(&next_page);
3181 	new_head = (unsigned long)next_page->page;
3182 
3183 	/*
3184 	 * Only move it forward once, if something else came in and
3185 	 * moved it forward, then we don't want to touch it.
3186 	 */
3187 	(void)cmpxchg(&meta->head_buffer, old_head, new_head);
3188 }
3189 
3190 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3191 				  struct buffer_page *reader)
3192 {
3193 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3194 	void *old_reader = cpu_buffer->reader_page->page;
3195 	void *new_reader = reader->page;
3196 	int id;
3197 
3198 	id = reader->id;
3199 	cpu_buffer->reader_page->id = id;
3200 	reader->id = 0;
3201 
3202 	meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3203 	meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3204 
3205 	/* The head pointer is the one after the reader */
3206 	rb_update_meta_head(cpu_buffer, reader);
3207 }
3208 
3209 /*
3210  * rb_handle_head_page - writer hit the head page
3211  *
3212  * Returns: +1 to retry page
3213  *           0 to continue
3214  *          -1 on error
3215  */
3216 static int
3217 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3218 		    struct buffer_page *tail_page,
3219 		    struct buffer_page *next_page)
3220 {
3221 	struct buffer_page *new_head;
3222 	int entries;
3223 	int type;
3224 	int ret;
3225 
3226 	entries = rb_page_entries(next_page);
3227 
3228 	/*
3229 	 * The hard part is here. We need to move the head
3230 	 * forward, and protect against both readers on
3231 	 * other CPUs and writers coming in via interrupts.
3232 	 */
3233 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3234 				       RB_PAGE_HEAD);
3235 
3236 	/*
3237 	 * type can be one of four:
3238 	 *  NORMAL - an interrupt already moved it for us
3239 	 *  HEAD   - we are the first to get here.
3240 	 *  UPDATE - we are the interrupt interrupting
3241 	 *           a current move.
3242 	 *  MOVED  - a reader on another CPU moved the next
3243 	 *           pointer to its reader page. Give up
3244 	 *           and try again.
3245 	 */
3246 
3247 	switch (type) {
3248 	case RB_PAGE_HEAD:
3249 		/*
3250 		 * We changed the head to UPDATE, thus
3251 		 * it is our responsibility to update
3252 		 * the counters.
3253 		 */
3254 		local_add(entries, &cpu_buffer->overrun);
3255 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3256 		local_inc(&cpu_buffer->pages_lost);
3257 
3258 		if (cpu_buffer->ring_meta)
3259 			rb_update_meta_head(cpu_buffer, next_page);
3260 		/*
3261 		 * The entries will be zeroed out when we move the
3262 		 * tail page.
3263 		 */
3264 
3265 		/* still more to do */
3266 		break;
3267 
3268 	case RB_PAGE_UPDATE:
3269 		/*
3270 		 * This is an interrupt that interrupt the
3271 		 * previous update. Still more to do.
3272 		 */
3273 		break;
3274 	case RB_PAGE_NORMAL:
3275 		/*
3276 		 * An interrupt came in before the update
3277 		 * and processed this for us.
3278 		 * Nothing left to do.
3279 		 */
3280 		return 1;
3281 	case RB_PAGE_MOVED:
3282 		/*
3283 		 * The reader is on another CPU and just did
3284 		 * a swap with our next_page.
3285 		 * Try again.
3286 		 */
3287 		return 1;
3288 	default:
3289 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3290 		return -1;
3291 	}
3292 
3293 	/*
3294 	 * Now that we are here, the old head pointer is
3295 	 * set to UPDATE. This will keep the reader from
3296 	 * swapping the head page with the reader page.
3297 	 * The reader (on another CPU) will spin till
3298 	 * we are finished.
3299 	 *
3300 	 * We just need to protect against interrupts
3301 	 * doing the job. We will set the next pointer
3302 	 * to HEAD. After that, we set the old pointer
3303 	 * to NORMAL, but only if it was HEAD before.
3304 	 * otherwise we are an interrupt, and only
3305 	 * want the outer most commit to reset it.
3306 	 */
3307 	new_head = next_page;
3308 	rb_inc_page(&new_head);
3309 
3310 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3311 				    RB_PAGE_NORMAL);
3312 
3313 	/*
3314 	 * Valid returns are:
3315 	 *  HEAD   - an interrupt came in and already set it.
3316 	 *  NORMAL - One of two things:
3317 	 *            1) We really set it.
3318 	 *            2) A bunch of interrupts came in and moved
3319 	 *               the page forward again.
3320 	 */
3321 	switch (ret) {
3322 	case RB_PAGE_HEAD:
3323 	case RB_PAGE_NORMAL:
3324 		/* OK */
3325 		break;
3326 	default:
3327 		RB_WARN_ON(cpu_buffer, 1);
3328 		return -1;
3329 	}
3330 
3331 	/*
3332 	 * It is possible that an interrupt came in,
3333 	 * set the head up, then more interrupts came in
3334 	 * and moved it again. When we get back here,
3335 	 * the page would have been set to NORMAL but we
3336 	 * just set it back to HEAD.
3337 	 *
3338 	 * How do you detect this? Well, if that happened
3339 	 * the tail page would have moved.
3340 	 */
3341 	if (ret == RB_PAGE_NORMAL) {
3342 		struct buffer_page *buffer_tail_page;
3343 
3344 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3345 		/*
3346 		 * If the tail had moved passed next, then we need
3347 		 * to reset the pointer.
3348 		 */
3349 		if (buffer_tail_page != tail_page &&
3350 		    buffer_tail_page != next_page)
3351 			rb_head_page_set_normal(cpu_buffer, new_head,
3352 						next_page,
3353 						RB_PAGE_HEAD);
3354 	}
3355 
3356 	/*
3357 	 * If this was the outer most commit (the one that
3358 	 * changed the original pointer from HEAD to UPDATE),
3359 	 * then it is up to us to reset it to NORMAL.
3360 	 */
3361 	if (type == RB_PAGE_HEAD) {
3362 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
3363 					      tail_page,
3364 					      RB_PAGE_UPDATE);
3365 		if (RB_WARN_ON(cpu_buffer,
3366 			       ret != RB_PAGE_UPDATE))
3367 			return -1;
3368 	}
3369 
3370 	return 0;
3371 }
3372 
3373 static inline void
3374 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3375 	      unsigned long tail, struct rb_event_info *info)
3376 {
3377 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3378 	struct buffer_page *tail_page = info->tail_page;
3379 	struct ring_buffer_event *event;
3380 	unsigned long length = info->length;
3381 
3382 	/*
3383 	 * Only the event that crossed the page boundary
3384 	 * must fill the old tail_page with padding.
3385 	 */
3386 	if (tail >= bsize) {
3387 		/*
3388 		 * If the page was filled, then we still need
3389 		 * to update the real_end. Reset it to zero
3390 		 * and the reader will ignore it.
3391 		 */
3392 		if (tail == bsize)
3393 			tail_page->real_end = 0;
3394 
3395 		local_sub(length, &tail_page->write);
3396 		return;
3397 	}
3398 
3399 	event = __rb_page_index(tail_page, tail);
3400 
3401 	/*
3402 	 * Save the original length to the meta data.
3403 	 * This will be used by the reader to add lost event
3404 	 * counter.
3405 	 */
3406 	tail_page->real_end = tail;
3407 
3408 	/*
3409 	 * If this event is bigger than the minimum size, then
3410 	 * we need to be careful that we don't subtract the
3411 	 * write counter enough to allow another writer to slip
3412 	 * in on this page.
3413 	 * We put in a discarded commit instead, to make sure
3414 	 * that this space is not used again, and this space will
3415 	 * not be accounted into 'entries_bytes'.
3416 	 *
3417 	 * If we are less than the minimum size, we don't need to
3418 	 * worry about it.
3419 	 */
3420 	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3421 		/* No room for any events */
3422 
3423 		/* Mark the rest of the page with padding */
3424 		rb_event_set_padding(event);
3425 
3426 		/* Make sure the padding is visible before the write update */
3427 		smp_wmb();
3428 
3429 		/* Set the write back to the previous setting */
3430 		local_sub(length, &tail_page->write);
3431 		return;
3432 	}
3433 
3434 	/* Put in a discarded event */
3435 	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3436 	event->type_len = RINGBUF_TYPE_PADDING;
3437 	/* time delta must be non zero */
3438 	event->time_delta = 1;
3439 
3440 	/* account for padding bytes */
3441 	local_add(bsize - tail, &cpu_buffer->entries_bytes);
3442 
3443 	/* Make sure the padding is visible before the tail_page->write update */
3444 	smp_wmb();
3445 
3446 	/* Set write to end of buffer */
3447 	length = (tail + length) - bsize;
3448 	local_sub(length, &tail_page->write);
3449 }
3450 
3451 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3452 
3453 /*
3454  * This is the slow path, force gcc not to inline it.
3455  */
3456 static noinline struct ring_buffer_event *
3457 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3458 	     unsigned long tail, struct rb_event_info *info)
3459 {
3460 	struct buffer_page *tail_page = info->tail_page;
3461 	struct buffer_page *commit_page = cpu_buffer->commit_page;
3462 	struct trace_buffer *buffer = cpu_buffer->buffer;
3463 	struct buffer_page *next_page;
3464 	int ret;
3465 
3466 	next_page = tail_page;
3467 
3468 	rb_inc_page(&next_page);
3469 
3470 	/*
3471 	 * If for some reason, we had an interrupt storm that made
3472 	 * it all the way around the buffer, bail, and warn
3473 	 * about it.
3474 	 */
3475 	if (unlikely(next_page == commit_page)) {
3476 		local_inc(&cpu_buffer->commit_overrun);
3477 		goto out_reset;
3478 	}
3479 
3480 	/*
3481 	 * This is where the fun begins!
3482 	 *
3483 	 * We are fighting against races between a reader that
3484 	 * could be on another CPU trying to swap its reader
3485 	 * page with the buffer head.
3486 	 *
3487 	 * We are also fighting against interrupts coming in and
3488 	 * moving the head or tail on us as well.
3489 	 *
3490 	 * If the next page is the head page then we have filled
3491 	 * the buffer, unless the commit page is still on the
3492 	 * reader page.
3493 	 */
3494 	if (rb_is_head_page(next_page, &tail_page->list)) {
3495 
3496 		/*
3497 		 * If the commit is not on the reader page, then
3498 		 * move the header page.
3499 		 */
3500 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3501 			/*
3502 			 * If we are not in overwrite mode,
3503 			 * this is easy, just stop here.
3504 			 */
3505 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
3506 				local_inc(&cpu_buffer->dropped_events);
3507 				goto out_reset;
3508 			}
3509 
3510 			ret = rb_handle_head_page(cpu_buffer,
3511 						  tail_page,
3512 						  next_page);
3513 			if (ret < 0)
3514 				goto out_reset;
3515 			if (ret)
3516 				goto out_again;
3517 		} else {
3518 			/*
3519 			 * We need to be careful here too. The
3520 			 * commit page could still be on the reader
3521 			 * page. We could have a small buffer, and
3522 			 * have filled up the buffer with events
3523 			 * from interrupts and such, and wrapped.
3524 			 *
3525 			 * Note, if the tail page is also on the
3526 			 * reader_page, we let it move out.
3527 			 */
3528 			if (unlikely((cpu_buffer->commit_page !=
3529 				      cpu_buffer->tail_page) &&
3530 				     (cpu_buffer->commit_page ==
3531 				      cpu_buffer->reader_page))) {
3532 				local_inc(&cpu_buffer->commit_overrun);
3533 				goto out_reset;
3534 			}
3535 		}
3536 	}
3537 
3538 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
3539 
3540  out_again:
3541 
3542 	rb_reset_tail(cpu_buffer, tail, info);
3543 
3544 	/* Commit what we have for now. */
3545 	rb_end_commit(cpu_buffer);
3546 	/* rb_end_commit() decs committing */
3547 	local_inc(&cpu_buffer->committing);
3548 
3549 	/* fail and let the caller try again */
3550 	return ERR_PTR(-EAGAIN);
3551 
3552  out_reset:
3553 	/* reset write */
3554 	rb_reset_tail(cpu_buffer, tail, info);
3555 
3556 	return NULL;
3557 }
3558 
3559 /* Slow path */
3560 static struct ring_buffer_event *
3561 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3562 		  struct ring_buffer_event *event, u64 delta, bool abs)
3563 {
3564 	if (abs)
3565 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
3566 	else
3567 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3568 
3569 	/* Not the first event on the page, or not delta? */
3570 	if (abs || rb_event_index(cpu_buffer, event)) {
3571 		event->time_delta = delta & TS_MASK;
3572 		event->array[0] = delta >> TS_SHIFT;
3573 	} else {
3574 		/* nope, just zero it */
3575 		event->time_delta = 0;
3576 		event->array[0] = 0;
3577 	}
3578 
3579 	return skip_time_extend(event);
3580 }
3581 
3582 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3583 static inline bool sched_clock_stable(void)
3584 {
3585 	return true;
3586 }
3587 #endif
3588 
3589 static void
3590 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3591 		   struct rb_event_info *info)
3592 {
3593 	u64 write_stamp;
3594 
3595 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3596 		  (unsigned long long)info->delta,
3597 		  (unsigned long long)info->ts,
3598 		  (unsigned long long)info->before,
3599 		  (unsigned long long)info->after,
3600 		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3601 		  sched_clock_stable() ? "" :
3602 		  "If you just came from a suspend/resume,\n"
3603 		  "please switch to the trace global clock:\n"
3604 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
3605 		  "or add trace_clock=global to the kernel command line\n");
3606 }
3607 
3608 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3609 				      struct ring_buffer_event **event,
3610 				      struct rb_event_info *info,
3611 				      u64 *delta,
3612 				      unsigned int *length)
3613 {
3614 	bool abs = info->add_timestamp &
3615 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3616 
3617 	if (unlikely(info->delta > (1ULL << 59))) {
3618 		/*
3619 		 * Some timers can use more than 59 bits, and when a timestamp
3620 		 * is added to the buffer, it will lose those bits.
3621 		 */
3622 		if (abs && (info->ts & TS_MSB)) {
3623 			info->delta &= ABS_TS_MASK;
3624 
3625 		/* did the clock go backwards */
3626 		} else if (info->before == info->after && info->before > info->ts) {
3627 			/* not interrupted */
3628 			static int once;
3629 
3630 			/*
3631 			 * This is possible with a recalibrating of the TSC.
3632 			 * Do not produce a call stack, but just report it.
3633 			 */
3634 			if (!once) {
3635 				once++;
3636 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3637 					info->before, info->ts);
3638 			}
3639 		} else
3640 			rb_check_timestamp(cpu_buffer, info);
3641 		if (!abs)
3642 			info->delta = 0;
3643 	}
3644 	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3645 	*length -= RB_LEN_TIME_EXTEND;
3646 	*delta = 0;
3647 }
3648 
3649 /**
3650  * rb_update_event - update event type and data
3651  * @cpu_buffer: The per cpu buffer of the @event
3652  * @event: the event to update
3653  * @info: The info to update the @event with (contains length and delta)
3654  *
3655  * Update the type and data fields of the @event. The length
3656  * is the actual size that is written to the ring buffer,
3657  * and with this, we can determine what to place into the
3658  * data field.
3659  */
3660 static void
3661 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3662 		struct ring_buffer_event *event,
3663 		struct rb_event_info *info)
3664 {
3665 	unsigned length = info->length;
3666 	u64 delta = info->delta;
3667 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3668 
3669 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
3670 		cpu_buffer->event_stamp[nest] = info->ts;
3671 
3672 	/*
3673 	 * If we need to add a timestamp, then we
3674 	 * add it to the start of the reserved space.
3675 	 */
3676 	if (unlikely(info->add_timestamp))
3677 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3678 
3679 	event->time_delta = delta;
3680 	length -= RB_EVNT_HDR_SIZE;
3681 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3682 		event->type_len = 0;
3683 		event->array[0] = length;
3684 	} else
3685 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3686 }
3687 
3688 static unsigned rb_calculate_event_length(unsigned length)
3689 {
3690 	struct ring_buffer_event event; /* Used only for sizeof array */
3691 
3692 	/* zero length can cause confusions */
3693 	if (!length)
3694 		length++;
3695 
3696 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3697 		length += sizeof(event.array[0]);
3698 
3699 	length += RB_EVNT_HDR_SIZE;
3700 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
3701 
3702 	/*
3703 	 * In case the time delta is larger than the 27 bits for it
3704 	 * in the header, we need to add a timestamp. If another
3705 	 * event comes in when trying to discard this one to increase
3706 	 * the length, then the timestamp will be added in the allocated
3707 	 * space of this event. If length is bigger than the size needed
3708 	 * for the TIME_EXTEND, then padding has to be used. The events
3709 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3710 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3711 	 * As length is a multiple of 4, we only need to worry if it
3712 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
3713 	 */
3714 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3715 		length += RB_ALIGNMENT;
3716 
3717 	return length;
3718 }
3719 
3720 static inline bool
3721 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3722 		  struct ring_buffer_event *event)
3723 {
3724 	unsigned long new_index, old_index;
3725 	struct buffer_page *bpage;
3726 	unsigned long addr;
3727 
3728 	new_index = rb_event_index(cpu_buffer, event);
3729 	old_index = new_index + rb_event_ts_length(event);
3730 	addr = (unsigned long)event;
3731 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3732 
3733 	bpage = READ_ONCE(cpu_buffer->tail_page);
3734 
3735 	/*
3736 	 * Make sure the tail_page is still the same and
3737 	 * the next write location is the end of this event
3738 	 */
3739 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3740 		unsigned long write_mask =
3741 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3742 		unsigned long event_length = rb_event_length(event);
3743 
3744 		/*
3745 		 * For the before_stamp to be different than the write_stamp
3746 		 * to make sure that the next event adds an absolute
3747 		 * value and does not rely on the saved write stamp, which
3748 		 * is now going to be bogus.
3749 		 *
3750 		 * By setting the before_stamp to zero, the next event
3751 		 * is not going to use the write_stamp and will instead
3752 		 * create an absolute timestamp. This means there's no
3753 		 * reason to update the wirte_stamp!
3754 		 */
3755 		rb_time_set(&cpu_buffer->before_stamp, 0);
3756 
3757 		/*
3758 		 * If an event were to come in now, it would see that the
3759 		 * write_stamp and the before_stamp are different, and assume
3760 		 * that this event just added itself before updating
3761 		 * the write stamp. The interrupting event will fix the
3762 		 * write stamp for us, and use an absolute timestamp.
3763 		 */
3764 
3765 		/*
3766 		 * This is on the tail page. It is possible that
3767 		 * a write could come in and move the tail page
3768 		 * and write to the next page. That is fine
3769 		 * because we just shorten what is on this page.
3770 		 */
3771 		old_index += write_mask;
3772 		new_index += write_mask;
3773 
3774 		/* caution: old_index gets updated on cmpxchg failure */
3775 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3776 			/* update counters */
3777 			local_sub(event_length, &cpu_buffer->entries_bytes);
3778 			return true;
3779 		}
3780 	}
3781 
3782 	/* could not discard */
3783 	return false;
3784 }
3785 
3786 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3787 {
3788 	local_inc(&cpu_buffer->committing);
3789 	local_inc(&cpu_buffer->commits);
3790 }
3791 
3792 static __always_inline void
3793 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3794 {
3795 	unsigned long max_count;
3796 
3797 	/*
3798 	 * We only race with interrupts and NMIs on this CPU.
3799 	 * If we own the commit event, then we can commit
3800 	 * all others that interrupted us, since the interruptions
3801 	 * are in stack format (they finish before they come
3802 	 * back to us). This allows us to do a simple loop to
3803 	 * assign the commit to the tail.
3804 	 */
3805  again:
3806 	max_count = cpu_buffer->nr_pages * 100;
3807 
3808 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3809 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3810 			return;
3811 		if (RB_WARN_ON(cpu_buffer,
3812 			       rb_is_reader_page(cpu_buffer->tail_page)))
3813 			return;
3814 		/*
3815 		 * No need for a memory barrier here, as the update
3816 		 * of the tail_page did it for this page.
3817 		 */
3818 		local_set(&cpu_buffer->commit_page->page->commit,
3819 			  rb_page_write(cpu_buffer->commit_page));
3820 		rb_inc_page(&cpu_buffer->commit_page);
3821 		if (cpu_buffer->ring_meta) {
3822 			struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3823 			meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3824 		}
3825 		/* add barrier to keep gcc from optimizing too much */
3826 		barrier();
3827 	}
3828 	while (rb_commit_index(cpu_buffer) !=
3829 	       rb_page_write(cpu_buffer->commit_page)) {
3830 
3831 		/* Make sure the readers see the content of what is committed. */
3832 		smp_wmb();
3833 		local_set(&cpu_buffer->commit_page->page->commit,
3834 			  rb_page_write(cpu_buffer->commit_page));
3835 		RB_WARN_ON(cpu_buffer,
3836 			   local_read(&cpu_buffer->commit_page->page->commit) &
3837 			   ~RB_WRITE_MASK);
3838 		barrier();
3839 	}
3840 
3841 	/* again, keep gcc from optimizing */
3842 	barrier();
3843 
3844 	/*
3845 	 * If an interrupt came in just after the first while loop
3846 	 * and pushed the tail page forward, we will be left with
3847 	 * a dangling commit that will never go forward.
3848 	 */
3849 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3850 		goto again;
3851 }
3852 
3853 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3854 {
3855 	unsigned long commits;
3856 
3857 	if (RB_WARN_ON(cpu_buffer,
3858 		       !local_read(&cpu_buffer->committing)))
3859 		return;
3860 
3861  again:
3862 	commits = local_read(&cpu_buffer->commits);
3863 	/* synchronize with interrupts */
3864 	barrier();
3865 	if (local_read(&cpu_buffer->committing) == 1)
3866 		rb_set_commit_to_write(cpu_buffer);
3867 
3868 	local_dec(&cpu_buffer->committing);
3869 
3870 	/* synchronize with interrupts */
3871 	barrier();
3872 
3873 	/*
3874 	 * Need to account for interrupts coming in between the
3875 	 * updating of the commit page and the clearing of the
3876 	 * committing counter.
3877 	 */
3878 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3879 	    !local_read(&cpu_buffer->committing)) {
3880 		local_inc(&cpu_buffer->committing);
3881 		goto again;
3882 	}
3883 }
3884 
3885 static inline void rb_event_discard(struct ring_buffer_event *event)
3886 {
3887 	if (extended_time(event))
3888 		event = skip_time_extend(event);
3889 
3890 	/* array[0] holds the actual length for the discarded event */
3891 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3892 	event->type_len = RINGBUF_TYPE_PADDING;
3893 	/* time delta must be non zero */
3894 	if (!event->time_delta)
3895 		event->time_delta = 1;
3896 }
3897 
3898 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3899 {
3900 	local_inc(&cpu_buffer->entries);
3901 	rb_end_commit(cpu_buffer);
3902 }
3903 
3904 static __always_inline void
3905 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3906 {
3907 	if (buffer->irq_work.waiters_pending) {
3908 		buffer->irq_work.waiters_pending = false;
3909 		/* irq_work_queue() supplies it's own memory barriers */
3910 		irq_work_queue(&buffer->irq_work.work);
3911 	}
3912 
3913 	if (cpu_buffer->irq_work.waiters_pending) {
3914 		cpu_buffer->irq_work.waiters_pending = false;
3915 		/* irq_work_queue() supplies it's own memory barriers */
3916 		irq_work_queue(&cpu_buffer->irq_work.work);
3917 	}
3918 
3919 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3920 		return;
3921 
3922 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3923 		return;
3924 
3925 	if (!cpu_buffer->irq_work.full_waiters_pending)
3926 		return;
3927 
3928 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3929 
3930 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3931 		return;
3932 
3933 	cpu_buffer->irq_work.wakeup_full = true;
3934 	cpu_buffer->irq_work.full_waiters_pending = false;
3935 	/* irq_work_queue() supplies it's own memory barriers */
3936 	irq_work_queue(&cpu_buffer->irq_work.work);
3937 }
3938 
3939 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3940 # define do_ring_buffer_record_recursion()	\
3941 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3942 #else
3943 # define do_ring_buffer_record_recursion() do { } while (0)
3944 #endif
3945 
3946 /*
3947  * The lock and unlock are done within a preempt disable section.
3948  * The current_context per_cpu variable can only be modified
3949  * by the current task between lock and unlock. But it can
3950  * be modified more than once via an interrupt. To pass this
3951  * information from the lock to the unlock without having to
3952  * access the 'in_interrupt()' functions again (which do show
3953  * a bit of overhead in something as critical as function tracing,
3954  * we use a bitmask trick.
3955  *
3956  *  bit 1 =  NMI context
3957  *  bit 2 =  IRQ context
3958  *  bit 3 =  SoftIRQ context
3959  *  bit 4 =  normal context.
3960  *
3961  * This works because this is the order of contexts that can
3962  * preempt other contexts. A SoftIRQ never preempts an IRQ
3963  * context.
3964  *
3965  * When the context is determined, the corresponding bit is
3966  * checked and set (if it was set, then a recursion of that context
3967  * happened).
3968  *
3969  * On unlock, we need to clear this bit. To do so, just subtract
3970  * 1 from the current_context and AND it to itself.
3971  *
3972  * (binary)
3973  *  101 - 1 = 100
3974  *  101 & 100 = 100 (clearing bit zero)
3975  *
3976  *  1010 - 1 = 1001
3977  *  1010 & 1001 = 1000 (clearing bit 1)
3978  *
3979  * The least significant bit can be cleared this way, and it
3980  * just so happens that it is the same bit corresponding to
3981  * the current context.
3982  *
3983  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3984  * is set when a recursion is detected at the current context, and if
3985  * the TRANSITION bit is already set, it will fail the recursion.
3986  * This is needed because there's a lag between the changing of
3987  * interrupt context and updating the preempt count. In this case,
3988  * a false positive will be found. To handle this, one extra recursion
3989  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3990  * bit is already set, then it is considered a recursion and the function
3991  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3992  *
3993  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3994  * to be cleared. Even if it wasn't the context that set it. That is,
3995  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3996  * is called before preempt_count() is updated, since the check will
3997  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3998  * NMI then comes in, it will set the NMI bit, but when the NMI code
3999  * does the trace_recursive_unlock() it will clear the TRANSITION bit
4000  * and leave the NMI bit set. But this is fine, because the interrupt
4001  * code that set the TRANSITION bit will then clear the NMI bit when it
4002  * calls trace_recursive_unlock(). If another NMI comes in, it will
4003  * set the TRANSITION bit and continue.
4004  *
4005  * Note: The TRANSITION bit only handles a single transition between context.
4006  */
4007 
4008 static __always_inline bool
4009 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
4010 {
4011 	unsigned int val = cpu_buffer->current_context;
4012 	int bit = interrupt_context_level();
4013 
4014 	bit = RB_CTX_NORMAL - bit;
4015 
4016 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
4017 		/*
4018 		 * It is possible that this was called by transitioning
4019 		 * between interrupt context, and preempt_count() has not
4020 		 * been updated yet. In this case, use the TRANSITION bit.
4021 		 */
4022 		bit = RB_CTX_TRANSITION;
4023 		if (val & (1 << (bit + cpu_buffer->nest))) {
4024 			do_ring_buffer_record_recursion();
4025 			return true;
4026 		}
4027 	}
4028 
4029 	val |= (1 << (bit + cpu_buffer->nest));
4030 	cpu_buffer->current_context = val;
4031 
4032 	return false;
4033 }
4034 
4035 static __always_inline void
4036 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
4037 {
4038 	cpu_buffer->current_context &=
4039 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
4040 }
4041 
4042 /* The recursive locking above uses 5 bits */
4043 #define NESTED_BITS 5
4044 
4045 /**
4046  * ring_buffer_nest_start - Allow to trace while nested
4047  * @buffer: The ring buffer to modify
4048  *
4049  * The ring buffer has a safety mechanism to prevent recursion.
4050  * But there may be a case where a trace needs to be done while
4051  * tracing something else. In this case, calling this function
4052  * will allow this function to nest within a currently active
4053  * ring_buffer_lock_reserve().
4054  *
4055  * Call this function before calling another ring_buffer_lock_reserve() and
4056  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
4057  */
4058 void ring_buffer_nest_start(struct trace_buffer *buffer)
4059 {
4060 	struct ring_buffer_per_cpu *cpu_buffer;
4061 	int cpu;
4062 
4063 	/* Enabled by ring_buffer_nest_end() */
4064 	preempt_disable_notrace();
4065 	cpu = raw_smp_processor_id();
4066 	cpu_buffer = buffer->buffers[cpu];
4067 	/* This is the shift value for the above recursive locking */
4068 	cpu_buffer->nest += NESTED_BITS;
4069 }
4070 
4071 /**
4072  * ring_buffer_nest_end - Allow to trace while nested
4073  * @buffer: The ring buffer to modify
4074  *
4075  * Must be called after ring_buffer_nest_start() and after the
4076  * ring_buffer_unlock_commit().
4077  */
4078 void ring_buffer_nest_end(struct trace_buffer *buffer)
4079 {
4080 	struct ring_buffer_per_cpu *cpu_buffer;
4081 	int cpu;
4082 
4083 	/* disabled by ring_buffer_nest_start() */
4084 	cpu = raw_smp_processor_id();
4085 	cpu_buffer = buffer->buffers[cpu];
4086 	/* This is the shift value for the above recursive locking */
4087 	cpu_buffer->nest -= NESTED_BITS;
4088 	preempt_enable_notrace();
4089 }
4090 
4091 /**
4092  * ring_buffer_unlock_commit - commit a reserved
4093  * @buffer: The buffer to commit to
4094  *
4095  * This commits the data to the ring buffer, and releases any locks held.
4096  *
4097  * Must be paired with ring_buffer_lock_reserve.
4098  */
4099 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4100 {
4101 	struct ring_buffer_per_cpu *cpu_buffer;
4102 	int cpu = raw_smp_processor_id();
4103 
4104 	cpu_buffer = buffer->buffers[cpu];
4105 
4106 	rb_commit(cpu_buffer);
4107 
4108 	rb_wakeups(buffer, cpu_buffer);
4109 
4110 	trace_recursive_unlock(cpu_buffer);
4111 
4112 	preempt_enable_notrace();
4113 
4114 	return 0;
4115 }
4116 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4117 
4118 /* Special value to validate all deltas on a page. */
4119 #define CHECK_FULL_PAGE		1L
4120 
4121 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4122 
4123 static const char *show_irq_str(int bits)
4124 {
4125 	const char *type[] = {
4126 		".",	// 0
4127 		"s",	// 1
4128 		"h",	// 2
4129 		"Hs",	// 3
4130 		"n",	// 4
4131 		"Ns",	// 5
4132 		"Nh",	// 6
4133 		"NHs",	// 7
4134 	};
4135 
4136 	return type[bits];
4137 }
4138 
4139 /* Assume this is a trace event */
4140 static const char *show_flags(struct ring_buffer_event *event)
4141 {
4142 	struct trace_entry *entry;
4143 	int bits = 0;
4144 
4145 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4146 		return "X";
4147 
4148 	entry = ring_buffer_event_data(event);
4149 
4150 	if (entry->flags & TRACE_FLAG_SOFTIRQ)
4151 		bits |= 1;
4152 
4153 	if (entry->flags & TRACE_FLAG_HARDIRQ)
4154 		bits |= 2;
4155 
4156 	if (entry->flags & TRACE_FLAG_NMI)
4157 		bits |= 4;
4158 
4159 	return show_irq_str(bits);
4160 }
4161 
4162 static const char *show_irq(struct ring_buffer_event *event)
4163 {
4164 	struct trace_entry *entry;
4165 
4166 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4167 		return "";
4168 
4169 	entry = ring_buffer_event_data(event);
4170 	if (entry->flags & TRACE_FLAG_IRQS_OFF)
4171 		return "d";
4172 	return "";
4173 }
4174 
4175 static const char *show_interrupt_level(void)
4176 {
4177 	unsigned long pc = preempt_count();
4178 	unsigned char level = 0;
4179 
4180 	if (pc & SOFTIRQ_OFFSET)
4181 		level |= 1;
4182 
4183 	if (pc & HARDIRQ_MASK)
4184 		level |= 2;
4185 
4186 	if (pc & NMI_MASK)
4187 		level |= 4;
4188 
4189 	return show_irq_str(level);
4190 }
4191 
4192 static void dump_buffer_page(struct buffer_data_page *bpage,
4193 			     struct rb_event_info *info,
4194 			     unsigned long tail)
4195 {
4196 	struct ring_buffer_event *event;
4197 	u64 ts, delta;
4198 	int e;
4199 
4200 	ts = bpage->time_stamp;
4201 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4202 
4203 	for (e = 0; e < tail; e += rb_event_length(event)) {
4204 
4205 		event = (struct ring_buffer_event *)(bpage->data + e);
4206 
4207 		switch (event->type_len) {
4208 
4209 		case RINGBUF_TYPE_TIME_EXTEND:
4210 			delta = rb_event_time_stamp(event);
4211 			ts += delta;
4212 			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4213 				e, ts, delta);
4214 			break;
4215 
4216 		case RINGBUF_TYPE_TIME_STAMP:
4217 			delta = rb_event_time_stamp(event);
4218 			ts = rb_fix_abs_ts(delta, ts);
4219 			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4220 				e, ts, delta);
4221 			break;
4222 
4223 		case RINGBUF_TYPE_PADDING:
4224 			ts += event->time_delta;
4225 			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4226 				e, ts, event->time_delta);
4227 			break;
4228 
4229 		case RINGBUF_TYPE_DATA:
4230 			ts += event->time_delta;
4231 			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4232 				e, ts, event->time_delta,
4233 				show_flags(event), show_irq(event));
4234 			break;
4235 
4236 		default:
4237 			break;
4238 		}
4239 	}
4240 	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4241 }
4242 
4243 static DEFINE_PER_CPU(atomic_t, checking);
4244 static atomic_t ts_dump;
4245 
4246 #define buffer_warn_return(fmt, ...)					\
4247 	do {								\
4248 		/* If another report is happening, ignore this one */	\
4249 		if (atomic_inc_return(&ts_dump) != 1) {			\
4250 			atomic_dec(&ts_dump);				\
4251 			goto out;					\
4252 		}							\
4253 		atomic_inc(&cpu_buffer->record_disabled);		\
4254 		pr_warn(fmt, ##__VA_ARGS__);				\
4255 		dump_buffer_page(bpage, info, tail);			\
4256 		atomic_dec(&ts_dump);					\
4257 		/* There's some cases in boot up that this can happen */ \
4258 		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
4259 			/* Do not re-enable checking */			\
4260 			return;						\
4261 	} while (0)
4262 
4263 /*
4264  * Check if the current event time stamp matches the deltas on
4265  * the buffer page.
4266  */
4267 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4268 			 struct rb_event_info *info,
4269 			 unsigned long tail)
4270 {
4271 	struct buffer_data_page *bpage;
4272 	u64 ts, delta;
4273 	bool full = false;
4274 	int ret;
4275 
4276 	bpage = info->tail_page->page;
4277 
4278 	if (tail == CHECK_FULL_PAGE) {
4279 		full = true;
4280 		tail = local_read(&bpage->commit);
4281 	} else if (info->add_timestamp &
4282 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4283 		/* Ignore events with absolute time stamps */
4284 		return;
4285 	}
4286 
4287 	/*
4288 	 * Do not check the first event (skip possible extends too).
4289 	 * Also do not check if previous events have not been committed.
4290 	 */
4291 	if (tail <= 8 || tail > local_read(&bpage->commit))
4292 		return;
4293 
4294 	/*
4295 	 * If this interrupted another event,
4296 	 */
4297 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4298 		goto out;
4299 
4300 	ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4301 	if (ret < 0) {
4302 		if (delta < ts) {
4303 			buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4304 					   cpu_buffer->cpu, ts, delta);
4305 			goto out;
4306 		}
4307 	}
4308 	if ((full && ts > info->ts) ||
4309 	    (!full && ts + info->delta != info->ts)) {
4310 		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4311 				   cpu_buffer->cpu,
4312 				   ts + info->delta, info->ts, info->delta,
4313 				   info->before, info->after,
4314 				   full ? " (full)" : "", show_interrupt_level());
4315 	}
4316 out:
4317 	atomic_dec(this_cpu_ptr(&checking));
4318 }
4319 #else
4320 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4321 			 struct rb_event_info *info,
4322 			 unsigned long tail)
4323 {
4324 }
4325 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4326 
4327 static struct ring_buffer_event *
4328 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4329 		  struct rb_event_info *info)
4330 {
4331 	struct ring_buffer_event *event;
4332 	struct buffer_page *tail_page;
4333 	unsigned long tail, write, w;
4334 
4335 	/* Don't let the compiler play games with cpu_buffer->tail_page */
4336 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4337 
4338  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
4339 	barrier();
4340 	rb_time_read(&cpu_buffer->before_stamp, &info->before);
4341 	rb_time_read(&cpu_buffer->write_stamp, &info->after);
4342 	barrier();
4343 	info->ts = rb_time_stamp(cpu_buffer->buffer);
4344 
4345 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4346 		info->delta = info->ts;
4347 	} else {
4348 		/*
4349 		 * If interrupting an event time update, we may need an
4350 		 * absolute timestamp.
4351 		 * Don't bother if this is the start of a new page (w == 0).
4352 		 */
4353 		if (!w) {
4354 			/* Use the sub-buffer timestamp */
4355 			info->delta = 0;
4356 		} else if (unlikely(info->before != info->after)) {
4357 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4358 			info->length += RB_LEN_TIME_EXTEND;
4359 		} else {
4360 			info->delta = info->ts - info->after;
4361 			if (unlikely(test_time_stamp(info->delta))) {
4362 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4363 				info->length += RB_LEN_TIME_EXTEND;
4364 			}
4365 		}
4366 	}
4367 
4368  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
4369 
4370  /*C*/	write = local_add_return(info->length, &tail_page->write);
4371 
4372 	/* set write to only the index of the write */
4373 	write &= RB_WRITE_MASK;
4374 
4375 	tail = write - info->length;
4376 
4377 	/* See if we shot pass the end of this buffer page */
4378 	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4379 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4380 		return rb_move_tail(cpu_buffer, tail, info);
4381 	}
4382 
4383 	if (likely(tail == w)) {
4384 		/* Nothing interrupted us between A and C */
4385  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
4386 		/*
4387 		 * If something came in between C and D, the write stamp
4388 		 * may now not be in sync. But that's fine as the before_stamp
4389 		 * will be different and then next event will just be forced
4390 		 * to use an absolute timestamp.
4391 		 */
4392 		if (likely(!(info->add_timestamp &
4393 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4394 			/* This did not interrupt any time update */
4395 			info->delta = info->ts - info->after;
4396 		else
4397 			/* Just use full timestamp for interrupting event */
4398 			info->delta = info->ts;
4399 		check_buffer(cpu_buffer, info, tail);
4400 	} else {
4401 		u64 ts;
4402 		/* SLOW PATH - Interrupted between A and C */
4403 
4404 		/* Save the old before_stamp */
4405 		rb_time_read(&cpu_buffer->before_stamp, &info->before);
4406 
4407 		/*
4408 		 * Read a new timestamp and update the before_stamp to make
4409 		 * the next event after this one force using an absolute
4410 		 * timestamp. This is in case an interrupt were to come in
4411 		 * between E and F.
4412 		 */
4413 		ts = rb_time_stamp(cpu_buffer->buffer);
4414 		rb_time_set(&cpu_buffer->before_stamp, ts);
4415 
4416 		barrier();
4417  /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
4418 		barrier();
4419  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4420 		    info->after == info->before && info->after < ts) {
4421 			/*
4422 			 * Nothing came after this event between C and F, it is
4423 			 * safe to use info->after for the delta as it
4424 			 * matched info->before and is still valid.
4425 			 */
4426 			info->delta = ts - info->after;
4427 		} else {
4428 			/*
4429 			 * Interrupted between C and F:
4430 			 * Lost the previous events time stamp. Just set the
4431 			 * delta to zero, and this will be the same time as
4432 			 * the event this event interrupted. And the events that
4433 			 * came after this will still be correct (as they would
4434 			 * have built their delta on the previous event.
4435 			 */
4436 			info->delta = 0;
4437 		}
4438 		info->ts = ts;
4439 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4440 	}
4441 
4442 	/*
4443 	 * If this is the first commit on the page, then it has the same
4444 	 * timestamp as the page itself.
4445 	 */
4446 	if (unlikely(!tail && !(info->add_timestamp &
4447 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4448 		info->delta = 0;
4449 
4450 	/* We reserved something on the buffer */
4451 
4452 	event = __rb_page_index(tail_page, tail);
4453 	rb_update_event(cpu_buffer, event, info);
4454 
4455 	local_inc(&tail_page->entries);
4456 
4457 	/*
4458 	 * If this is the first commit on the page, then update
4459 	 * its timestamp.
4460 	 */
4461 	if (unlikely(!tail))
4462 		tail_page->page->time_stamp = info->ts;
4463 
4464 	/* account for these added bytes */
4465 	local_add(info->length, &cpu_buffer->entries_bytes);
4466 
4467 	return event;
4468 }
4469 
4470 static __always_inline struct ring_buffer_event *
4471 rb_reserve_next_event(struct trace_buffer *buffer,
4472 		      struct ring_buffer_per_cpu *cpu_buffer,
4473 		      unsigned long length)
4474 {
4475 	struct ring_buffer_event *event;
4476 	struct rb_event_info info;
4477 	int nr_loops = 0;
4478 	int add_ts_default;
4479 
4480 	/*
4481 	 * ring buffer does cmpxchg as well as atomic64 operations
4482 	 * (which some archs use locking for atomic64), make sure this
4483 	 * is safe in NMI context
4484 	 */
4485 	if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4486 	     IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4487 	    (unlikely(in_nmi()))) {
4488 		return NULL;
4489 	}
4490 
4491 	rb_start_commit(cpu_buffer);
4492 	/* The commit page can not change after this */
4493 
4494 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4495 	/*
4496 	 * Due to the ability to swap a cpu buffer from a buffer
4497 	 * it is possible it was swapped before we committed.
4498 	 * (committing stops a swap). We check for it here and
4499 	 * if it happened, we have to fail the write.
4500 	 */
4501 	barrier();
4502 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4503 		local_dec(&cpu_buffer->committing);
4504 		local_dec(&cpu_buffer->commits);
4505 		return NULL;
4506 	}
4507 #endif
4508 
4509 	info.length = rb_calculate_event_length(length);
4510 
4511 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4512 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4513 		info.length += RB_LEN_TIME_EXTEND;
4514 		if (info.length > cpu_buffer->buffer->max_data_size)
4515 			goto out_fail;
4516 	} else {
4517 		add_ts_default = RB_ADD_STAMP_NONE;
4518 	}
4519 
4520  again:
4521 	info.add_timestamp = add_ts_default;
4522 	info.delta = 0;
4523 
4524 	/*
4525 	 * We allow for interrupts to reenter here and do a trace.
4526 	 * If one does, it will cause this original code to loop
4527 	 * back here. Even with heavy interrupts happening, this
4528 	 * should only happen a few times in a row. If this happens
4529 	 * 1000 times in a row, there must be either an interrupt
4530 	 * storm or we have something buggy.
4531 	 * Bail!
4532 	 */
4533 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4534 		goto out_fail;
4535 
4536 	event = __rb_reserve_next(cpu_buffer, &info);
4537 
4538 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4539 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4540 			info.length -= RB_LEN_TIME_EXTEND;
4541 		goto again;
4542 	}
4543 
4544 	if (likely(event))
4545 		return event;
4546  out_fail:
4547 	rb_end_commit(cpu_buffer);
4548 	return NULL;
4549 }
4550 
4551 /**
4552  * ring_buffer_lock_reserve - reserve a part of the buffer
4553  * @buffer: the ring buffer to reserve from
4554  * @length: the length of the data to reserve (excluding event header)
4555  *
4556  * Returns a reserved event on the ring buffer to copy directly to.
4557  * The user of this interface will need to get the body to write into
4558  * and can use the ring_buffer_event_data() interface.
4559  *
4560  * The length is the length of the data needed, not the event length
4561  * which also includes the event header.
4562  *
4563  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4564  * If NULL is returned, then nothing has been allocated or locked.
4565  */
4566 struct ring_buffer_event *
4567 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4568 {
4569 	struct ring_buffer_per_cpu *cpu_buffer;
4570 	struct ring_buffer_event *event;
4571 	int cpu;
4572 
4573 	/* If we are tracing schedule, we don't want to recurse */
4574 	preempt_disable_notrace();
4575 
4576 	if (unlikely(atomic_read(&buffer->record_disabled)))
4577 		goto out;
4578 
4579 	cpu = raw_smp_processor_id();
4580 
4581 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4582 		goto out;
4583 
4584 	cpu_buffer = buffer->buffers[cpu];
4585 
4586 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4587 		goto out;
4588 
4589 	if (unlikely(length > buffer->max_data_size))
4590 		goto out;
4591 
4592 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4593 		goto out;
4594 
4595 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4596 	if (!event)
4597 		goto out_unlock;
4598 
4599 	return event;
4600 
4601  out_unlock:
4602 	trace_recursive_unlock(cpu_buffer);
4603  out:
4604 	preempt_enable_notrace();
4605 	return NULL;
4606 }
4607 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4608 
4609 /*
4610  * Decrement the entries to the page that an event is on.
4611  * The event does not even need to exist, only the pointer
4612  * to the page it is on. This may only be called before the commit
4613  * takes place.
4614  */
4615 static inline void
4616 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4617 		   struct ring_buffer_event *event)
4618 {
4619 	unsigned long addr = (unsigned long)event;
4620 	struct buffer_page *bpage = cpu_buffer->commit_page;
4621 	struct buffer_page *start;
4622 
4623 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4624 
4625 	/* Do the likely case first */
4626 	if (likely(bpage->page == (void *)addr)) {
4627 		local_dec(&bpage->entries);
4628 		return;
4629 	}
4630 
4631 	/*
4632 	 * Because the commit page may be on the reader page we
4633 	 * start with the next page and check the end loop there.
4634 	 */
4635 	rb_inc_page(&bpage);
4636 	start = bpage;
4637 	do {
4638 		if (bpage->page == (void *)addr) {
4639 			local_dec(&bpage->entries);
4640 			return;
4641 		}
4642 		rb_inc_page(&bpage);
4643 	} while (bpage != start);
4644 
4645 	/* commit not part of this buffer?? */
4646 	RB_WARN_ON(cpu_buffer, 1);
4647 }
4648 
4649 /**
4650  * ring_buffer_discard_commit - discard an event that has not been committed
4651  * @buffer: the ring buffer
4652  * @event: non committed event to discard
4653  *
4654  * Sometimes an event that is in the ring buffer needs to be ignored.
4655  * This function lets the user discard an event in the ring buffer
4656  * and then that event will not be read later.
4657  *
4658  * This function only works if it is called before the item has been
4659  * committed. It will try to free the event from the ring buffer
4660  * if another event has not been added behind it.
4661  *
4662  * If another event has been added behind it, it will set the event
4663  * up as discarded, and perform the commit.
4664  *
4665  * If this function is called, do not call ring_buffer_unlock_commit on
4666  * the event.
4667  */
4668 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4669 				struct ring_buffer_event *event)
4670 {
4671 	struct ring_buffer_per_cpu *cpu_buffer;
4672 	int cpu;
4673 
4674 	/* The event is discarded regardless */
4675 	rb_event_discard(event);
4676 
4677 	cpu = smp_processor_id();
4678 	cpu_buffer = buffer->buffers[cpu];
4679 
4680 	/*
4681 	 * This must only be called if the event has not been
4682 	 * committed yet. Thus we can assume that preemption
4683 	 * is still disabled.
4684 	 */
4685 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4686 
4687 	rb_decrement_entry(cpu_buffer, event);
4688 	if (rb_try_to_discard(cpu_buffer, event))
4689 		goto out;
4690 
4691  out:
4692 	rb_end_commit(cpu_buffer);
4693 
4694 	trace_recursive_unlock(cpu_buffer);
4695 
4696 	preempt_enable_notrace();
4697 
4698 }
4699 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4700 
4701 /**
4702  * ring_buffer_write - write data to the buffer without reserving
4703  * @buffer: The ring buffer to write to.
4704  * @length: The length of the data being written (excluding the event header)
4705  * @data: The data to write to the buffer.
4706  *
4707  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4708  * one function. If you already have the data to write to the buffer, it
4709  * may be easier to simply call this function.
4710  *
4711  * Note, like ring_buffer_lock_reserve, the length is the length of the data
4712  * and not the length of the event which would hold the header.
4713  */
4714 int ring_buffer_write(struct trace_buffer *buffer,
4715 		      unsigned long length,
4716 		      void *data)
4717 {
4718 	struct ring_buffer_per_cpu *cpu_buffer;
4719 	struct ring_buffer_event *event;
4720 	void *body;
4721 	int ret = -EBUSY;
4722 	int cpu;
4723 
4724 	preempt_disable_notrace();
4725 
4726 	if (atomic_read(&buffer->record_disabled))
4727 		goto out;
4728 
4729 	cpu = raw_smp_processor_id();
4730 
4731 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4732 		goto out;
4733 
4734 	cpu_buffer = buffer->buffers[cpu];
4735 
4736 	if (atomic_read(&cpu_buffer->record_disabled))
4737 		goto out;
4738 
4739 	if (length > buffer->max_data_size)
4740 		goto out;
4741 
4742 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4743 		goto out;
4744 
4745 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4746 	if (!event)
4747 		goto out_unlock;
4748 
4749 	body = rb_event_data(event);
4750 
4751 	memcpy(body, data, length);
4752 
4753 	rb_commit(cpu_buffer);
4754 
4755 	rb_wakeups(buffer, cpu_buffer);
4756 
4757 	ret = 0;
4758 
4759  out_unlock:
4760 	trace_recursive_unlock(cpu_buffer);
4761 
4762  out:
4763 	preempt_enable_notrace();
4764 
4765 	return ret;
4766 }
4767 EXPORT_SYMBOL_GPL(ring_buffer_write);
4768 
4769 /*
4770  * The total entries in the ring buffer is the running counter
4771  * of entries entered into the ring buffer, minus the sum of
4772  * the entries read from the ring buffer and the number of
4773  * entries that were overwritten.
4774  */
4775 static inline unsigned long
4776 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4777 {
4778 	return local_read(&cpu_buffer->entries) -
4779 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4780 }
4781 
4782 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4783 {
4784 	return !rb_num_of_entries(cpu_buffer);
4785 }
4786 
4787 /**
4788  * ring_buffer_record_disable - stop all writes into the buffer
4789  * @buffer: The ring buffer to stop writes to.
4790  *
4791  * This prevents all writes to the buffer. Any attempt to write
4792  * to the buffer after this will fail and return NULL.
4793  *
4794  * The caller should call synchronize_rcu() after this.
4795  */
4796 void ring_buffer_record_disable(struct trace_buffer *buffer)
4797 {
4798 	atomic_inc(&buffer->record_disabled);
4799 }
4800 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4801 
4802 /**
4803  * ring_buffer_record_enable - enable writes to the buffer
4804  * @buffer: The ring buffer to enable writes
4805  *
4806  * Note, multiple disables will need the same number of enables
4807  * to truly enable the writing (much like preempt_disable).
4808  */
4809 void ring_buffer_record_enable(struct trace_buffer *buffer)
4810 {
4811 	atomic_dec(&buffer->record_disabled);
4812 }
4813 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4814 
4815 /**
4816  * ring_buffer_record_off - stop all writes into the buffer
4817  * @buffer: The ring buffer to stop writes to.
4818  *
4819  * This prevents all writes to the buffer. Any attempt to write
4820  * to the buffer after this will fail and return NULL.
4821  *
4822  * This is different than ring_buffer_record_disable() as
4823  * it works like an on/off switch, where as the disable() version
4824  * must be paired with a enable().
4825  */
4826 void ring_buffer_record_off(struct trace_buffer *buffer)
4827 {
4828 	unsigned int rd;
4829 	unsigned int new_rd;
4830 
4831 	rd = atomic_read(&buffer->record_disabled);
4832 	do {
4833 		new_rd = rd | RB_BUFFER_OFF;
4834 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4835 }
4836 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4837 
4838 /**
4839  * ring_buffer_record_on - restart writes into the buffer
4840  * @buffer: The ring buffer to start writes to.
4841  *
4842  * This enables all writes to the buffer that was disabled by
4843  * ring_buffer_record_off().
4844  *
4845  * This is different than ring_buffer_record_enable() as
4846  * it works like an on/off switch, where as the enable() version
4847  * must be paired with a disable().
4848  */
4849 void ring_buffer_record_on(struct trace_buffer *buffer)
4850 {
4851 	unsigned int rd;
4852 	unsigned int new_rd;
4853 
4854 	rd = atomic_read(&buffer->record_disabled);
4855 	do {
4856 		new_rd = rd & ~RB_BUFFER_OFF;
4857 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4858 }
4859 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4860 
4861 /**
4862  * ring_buffer_record_is_on - return true if the ring buffer can write
4863  * @buffer: The ring buffer to see if write is enabled
4864  *
4865  * Returns true if the ring buffer is in a state that it accepts writes.
4866  */
4867 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4868 {
4869 	return !atomic_read(&buffer->record_disabled);
4870 }
4871 
4872 /**
4873  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4874  * @buffer: The ring buffer to see if write is set enabled
4875  *
4876  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4877  * Note that this does NOT mean it is in a writable state.
4878  *
4879  * It may return true when the ring buffer has been disabled by
4880  * ring_buffer_record_disable(), as that is a temporary disabling of
4881  * the ring buffer.
4882  */
4883 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4884 {
4885 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4886 }
4887 
4888 /**
4889  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4890  * @buffer: The ring buffer to stop writes to.
4891  * @cpu: The CPU buffer to stop
4892  *
4893  * This prevents all writes to the buffer. Any attempt to write
4894  * to the buffer after this will fail and return NULL.
4895  *
4896  * The caller should call synchronize_rcu() after this.
4897  */
4898 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4899 {
4900 	struct ring_buffer_per_cpu *cpu_buffer;
4901 
4902 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4903 		return;
4904 
4905 	cpu_buffer = buffer->buffers[cpu];
4906 	atomic_inc(&cpu_buffer->record_disabled);
4907 }
4908 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4909 
4910 /**
4911  * ring_buffer_record_enable_cpu - enable writes to the buffer
4912  * @buffer: The ring buffer to enable writes
4913  * @cpu: The CPU to enable.
4914  *
4915  * Note, multiple disables will need the same number of enables
4916  * to truly enable the writing (much like preempt_disable).
4917  */
4918 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4919 {
4920 	struct ring_buffer_per_cpu *cpu_buffer;
4921 
4922 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4923 		return;
4924 
4925 	cpu_buffer = buffer->buffers[cpu];
4926 	atomic_dec(&cpu_buffer->record_disabled);
4927 }
4928 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4929 
4930 /**
4931  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4932  * @buffer: The ring buffer
4933  * @cpu: The per CPU buffer to read from.
4934  */
4935 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4936 {
4937 	unsigned long flags;
4938 	struct ring_buffer_per_cpu *cpu_buffer;
4939 	struct buffer_page *bpage;
4940 	u64 ret = 0;
4941 
4942 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4943 		return 0;
4944 
4945 	cpu_buffer = buffer->buffers[cpu];
4946 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4947 	/*
4948 	 * if the tail is on reader_page, oldest time stamp is on the reader
4949 	 * page
4950 	 */
4951 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4952 		bpage = cpu_buffer->reader_page;
4953 	else
4954 		bpage = rb_set_head_page(cpu_buffer);
4955 	if (bpage)
4956 		ret = bpage->page->time_stamp;
4957 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4958 
4959 	return ret;
4960 }
4961 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4962 
4963 /**
4964  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4965  * @buffer: The ring buffer
4966  * @cpu: The per CPU buffer to read from.
4967  */
4968 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4969 {
4970 	struct ring_buffer_per_cpu *cpu_buffer;
4971 	unsigned long ret;
4972 
4973 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4974 		return 0;
4975 
4976 	cpu_buffer = buffer->buffers[cpu];
4977 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4978 
4979 	return ret;
4980 }
4981 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4982 
4983 /**
4984  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4985  * @buffer: The ring buffer
4986  * @cpu: The per CPU buffer to get the entries from.
4987  */
4988 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4989 {
4990 	struct ring_buffer_per_cpu *cpu_buffer;
4991 
4992 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4993 		return 0;
4994 
4995 	cpu_buffer = buffer->buffers[cpu];
4996 
4997 	return rb_num_of_entries(cpu_buffer);
4998 }
4999 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
5000 
5001 /**
5002  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
5003  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
5004  * @buffer: The ring buffer
5005  * @cpu: The per CPU buffer to get the number of overruns from
5006  */
5007 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
5008 {
5009 	struct ring_buffer_per_cpu *cpu_buffer;
5010 	unsigned long ret;
5011 
5012 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5013 		return 0;
5014 
5015 	cpu_buffer = buffer->buffers[cpu];
5016 	ret = local_read(&cpu_buffer->overrun);
5017 
5018 	return ret;
5019 }
5020 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
5021 
5022 /**
5023  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
5024  * commits failing due to the buffer wrapping around while there are uncommitted
5025  * events, such as during an interrupt storm.
5026  * @buffer: The ring buffer
5027  * @cpu: The per CPU buffer to get the number of overruns from
5028  */
5029 unsigned long
5030 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
5031 {
5032 	struct ring_buffer_per_cpu *cpu_buffer;
5033 	unsigned long ret;
5034 
5035 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5036 		return 0;
5037 
5038 	cpu_buffer = buffer->buffers[cpu];
5039 	ret = local_read(&cpu_buffer->commit_overrun);
5040 
5041 	return ret;
5042 }
5043 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
5044 
5045 /**
5046  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
5047  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
5048  * @buffer: The ring buffer
5049  * @cpu: The per CPU buffer to get the number of overruns from
5050  */
5051 unsigned long
5052 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5053 {
5054 	struct ring_buffer_per_cpu *cpu_buffer;
5055 	unsigned long ret;
5056 
5057 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5058 		return 0;
5059 
5060 	cpu_buffer = buffer->buffers[cpu];
5061 	ret = local_read(&cpu_buffer->dropped_events);
5062 
5063 	return ret;
5064 }
5065 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5066 
5067 /**
5068  * ring_buffer_read_events_cpu - get the number of events successfully read
5069  * @buffer: The ring buffer
5070  * @cpu: The per CPU buffer to get the number of events read
5071  */
5072 unsigned long
5073 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5074 {
5075 	struct ring_buffer_per_cpu *cpu_buffer;
5076 
5077 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5078 		return 0;
5079 
5080 	cpu_buffer = buffer->buffers[cpu];
5081 	return cpu_buffer->read;
5082 }
5083 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5084 
5085 /**
5086  * ring_buffer_entries - get the number of entries in a buffer
5087  * @buffer: The ring buffer
5088  *
5089  * Returns the total number of entries in the ring buffer
5090  * (all CPU entries)
5091  */
5092 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5093 {
5094 	struct ring_buffer_per_cpu *cpu_buffer;
5095 	unsigned long entries = 0;
5096 	int cpu;
5097 
5098 	/* if you care about this being correct, lock the buffer */
5099 	for_each_buffer_cpu(buffer, cpu) {
5100 		cpu_buffer = buffer->buffers[cpu];
5101 		entries += rb_num_of_entries(cpu_buffer);
5102 	}
5103 
5104 	return entries;
5105 }
5106 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5107 
5108 /**
5109  * ring_buffer_overruns - get the number of overruns in buffer
5110  * @buffer: The ring buffer
5111  *
5112  * Returns the total number of overruns in the ring buffer
5113  * (all CPU entries)
5114  */
5115 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5116 {
5117 	struct ring_buffer_per_cpu *cpu_buffer;
5118 	unsigned long overruns = 0;
5119 	int cpu;
5120 
5121 	/* if you care about this being correct, lock the buffer */
5122 	for_each_buffer_cpu(buffer, cpu) {
5123 		cpu_buffer = buffer->buffers[cpu];
5124 		overruns += local_read(&cpu_buffer->overrun);
5125 	}
5126 
5127 	return overruns;
5128 }
5129 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5130 
5131 static void rb_iter_reset(struct ring_buffer_iter *iter)
5132 {
5133 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5134 
5135 	/* Iterator usage is expected to have record disabled */
5136 	iter->head_page = cpu_buffer->reader_page;
5137 	iter->head = cpu_buffer->reader_page->read;
5138 	iter->next_event = iter->head;
5139 
5140 	iter->cache_reader_page = iter->head_page;
5141 	iter->cache_read = cpu_buffer->read;
5142 	iter->cache_pages_removed = cpu_buffer->pages_removed;
5143 
5144 	if (iter->head) {
5145 		iter->read_stamp = cpu_buffer->read_stamp;
5146 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5147 	} else {
5148 		iter->read_stamp = iter->head_page->page->time_stamp;
5149 		iter->page_stamp = iter->read_stamp;
5150 	}
5151 }
5152 
5153 /**
5154  * ring_buffer_iter_reset - reset an iterator
5155  * @iter: The iterator to reset
5156  *
5157  * Resets the iterator, so that it will start from the beginning
5158  * again.
5159  */
5160 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5161 {
5162 	struct ring_buffer_per_cpu *cpu_buffer;
5163 	unsigned long flags;
5164 
5165 	if (!iter)
5166 		return;
5167 
5168 	cpu_buffer = iter->cpu_buffer;
5169 
5170 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5171 	rb_iter_reset(iter);
5172 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5173 }
5174 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5175 
5176 /**
5177  * ring_buffer_iter_empty - check if an iterator has no more to read
5178  * @iter: The iterator to check
5179  */
5180 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5181 {
5182 	struct ring_buffer_per_cpu *cpu_buffer;
5183 	struct buffer_page *reader;
5184 	struct buffer_page *head_page;
5185 	struct buffer_page *commit_page;
5186 	struct buffer_page *curr_commit_page;
5187 	unsigned commit;
5188 	u64 curr_commit_ts;
5189 	u64 commit_ts;
5190 
5191 	cpu_buffer = iter->cpu_buffer;
5192 	reader = cpu_buffer->reader_page;
5193 	head_page = cpu_buffer->head_page;
5194 	commit_page = READ_ONCE(cpu_buffer->commit_page);
5195 	commit_ts = commit_page->page->time_stamp;
5196 
5197 	/*
5198 	 * When the writer goes across pages, it issues a cmpxchg which
5199 	 * is a mb(), which will synchronize with the rmb here.
5200 	 * (see rb_tail_page_update())
5201 	 */
5202 	smp_rmb();
5203 	commit = rb_page_commit(commit_page);
5204 	/* We want to make sure that the commit page doesn't change */
5205 	smp_rmb();
5206 
5207 	/* Make sure commit page didn't change */
5208 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5209 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5210 
5211 	/* If the commit page changed, then there's more data */
5212 	if (curr_commit_page != commit_page ||
5213 	    curr_commit_ts != commit_ts)
5214 		return 0;
5215 
5216 	/* Still racy, as it may return a false positive, but that's OK */
5217 	return ((iter->head_page == commit_page && iter->head >= commit) ||
5218 		(iter->head_page == reader && commit_page == head_page &&
5219 		 head_page->read == commit &&
5220 		 iter->head == rb_page_size(cpu_buffer->reader_page)));
5221 }
5222 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5223 
5224 static void
5225 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5226 		     struct ring_buffer_event *event)
5227 {
5228 	u64 delta;
5229 
5230 	switch (event->type_len) {
5231 	case RINGBUF_TYPE_PADDING:
5232 		return;
5233 
5234 	case RINGBUF_TYPE_TIME_EXTEND:
5235 		delta = rb_event_time_stamp(event);
5236 		cpu_buffer->read_stamp += delta;
5237 		return;
5238 
5239 	case RINGBUF_TYPE_TIME_STAMP:
5240 		delta = rb_event_time_stamp(event);
5241 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5242 		cpu_buffer->read_stamp = delta;
5243 		return;
5244 
5245 	case RINGBUF_TYPE_DATA:
5246 		cpu_buffer->read_stamp += event->time_delta;
5247 		return;
5248 
5249 	default:
5250 		RB_WARN_ON(cpu_buffer, 1);
5251 	}
5252 }
5253 
5254 static void
5255 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5256 			  struct ring_buffer_event *event)
5257 {
5258 	u64 delta;
5259 
5260 	switch (event->type_len) {
5261 	case RINGBUF_TYPE_PADDING:
5262 		return;
5263 
5264 	case RINGBUF_TYPE_TIME_EXTEND:
5265 		delta = rb_event_time_stamp(event);
5266 		iter->read_stamp += delta;
5267 		return;
5268 
5269 	case RINGBUF_TYPE_TIME_STAMP:
5270 		delta = rb_event_time_stamp(event);
5271 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
5272 		iter->read_stamp = delta;
5273 		return;
5274 
5275 	case RINGBUF_TYPE_DATA:
5276 		iter->read_stamp += event->time_delta;
5277 		return;
5278 
5279 	default:
5280 		RB_WARN_ON(iter->cpu_buffer, 1);
5281 	}
5282 }
5283 
5284 static struct buffer_page *
5285 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5286 {
5287 	struct buffer_page *reader = NULL;
5288 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5289 	unsigned long overwrite;
5290 	unsigned long flags;
5291 	int nr_loops = 0;
5292 	bool ret;
5293 
5294 	local_irq_save(flags);
5295 	arch_spin_lock(&cpu_buffer->lock);
5296 
5297  again:
5298 	/*
5299 	 * This should normally only loop twice. But because the
5300 	 * start of the reader inserts an empty page, it causes
5301 	 * a case where we will loop three times. There should be no
5302 	 * reason to loop four times (that I know of).
5303 	 */
5304 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5305 		reader = NULL;
5306 		goto out;
5307 	}
5308 
5309 	reader = cpu_buffer->reader_page;
5310 
5311 	/* If there's more to read, return this page */
5312 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
5313 		goto out;
5314 
5315 	/* Never should we have an index greater than the size */
5316 	if (RB_WARN_ON(cpu_buffer,
5317 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
5318 		goto out;
5319 
5320 	/* check if we caught up to the tail */
5321 	reader = NULL;
5322 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5323 		goto out;
5324 
5325 	/* Don't bother swapping if the ring buffer is empty */
5326 	if (rb_num_of_entries(cpu_buffer) == 0)
5327 		goto out;
5328 
5329 	/*
5330 	 * Reset the reader page to size zero.
5331 	 */
5332 	local_set(&cpu_buffer->reader_page->write, 0);
5333 	local_set(&cpu_buffer->reader_page->entries, 0);
5334 	local_set(&cpu_buffer->reader_page->page->commit, 0);
5335 	cpu_buffer->reader_page->real_end = 0;
5336 
5337  spin:
5338 	/*
5339 	 * Splice the empty reader page into the list around the head.
5340 	 */
5341 	reader = rb_set_head_page(cpu_buffer);
5342 	if (!reader)
5343 		goto out;
5344 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5345 	cpu_buffer->reader_page->list.prev = reader->list.prev;
5346 
5347 	/*
5348 	 * cpu_buffer->pages just needs to point to the buffer, it
5349 	 *  has no specific buffer page to point to. Lets move it out
5350 	 *  of our way so we don't accidentally swap it.
5351 	 */
5352 	cpu_buffer->pages = reader->list.prev;
5353 
5354 	/* The reader page will be pointing to the new head */
5355 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
5356 
5357 	/*
5358 	 * We want to make sure we read the overruns after we set up our
5359 	 * pointers to the next object. The writer side does a
5360 	 * cmpxchg to cross pages which acts as the mb on the writer
5361 	 * side. Note, the reader will constantly fail the swap
5362 	 * while the writer is updating the pointers, so this
5363 	 * guarantees that the overwrite recorded here is the one we
5364 	 * want to compare with the last_overrun.
5365 	 */
5366 	smp_mb();
5367 	overwrite = local_read(&(cpu_buffer->overrun));
5368 
5369 	/*
5370 	 * Here's the tricky part.
5371 	 *
5372 	 * We need to move the pointer past the header page.
5373 	 * But we can only do that if a writer is not currently
5374 	 * moving it. The page before the header page has the
5375 	 * flag bit '1' set if it is pointing to the page we want.
5376 	 * but if the writer is in the process of moving it
5377 	 * than it will be '2' or already moved '0'.
5378 	 */
5379 
5380 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5381 
5382 	/*
5383 	 * If we did not convert it, then we must try again.
5384 	 */
5385 	if (!ret)
5386 		goto spin;
5387 
5388 	if (cpu_buffer->ring_meta)
5389 		rb_update_meta_reader(cpu_buffer, reader);
5390 
5391 	/*
5392 	 * Yay! We succeeded in replacing the page.
5393 	 *
5394 	 * Now make the new head point back to the reader page.
5395 	 */
5396 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5397 	rb_inc_page(&cpu_buffer->head_page);
5398 
5399 	cpu_buffer->cnt++;
5400 	local_inc(&cpu_buffer->pages_read);
5401 
5402 	/* Finally update the reader page to the new head */
5403 	cpu_buffer->reader_page = reader;
5404 	cpu_buffer->reader_page->read = 0;
5405 
5406 	if (overwrite != cpu_buffer->last_overrun) {
5407 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5408 		cpu_buffer->last_overrun = overwrite;
5409 	}
5410 
5411 	goto again;
5412 
5413  out:
5414 	/* Update the read_stamp on the first event */
5415 	if (reader && reader->read == 0)
5416 		cpu_buffer->read_stamp = reader->page->time_stamp;
5417 
5418 	arch_spin_unlock(&cpu_buffer->lock);
5419 	local_irq_restore(flags);
5420 
5421 	/*
5422 	 * The writer has preempt disable, wait for it. But not forever
5423 	 * Although, 1 second is pretty much "forever"
5424 	 */
5425 #define USECS_WAIT	1000000
5426         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5427 		/* If the write is past the end of page, a writer is still updating it */
5428 		if (likely(!reader || rb_page_write(reader) <= bsize))
5429 			break;
5430 
5431 		udelay(1);
5432 
5433 		/* Get the latest version of the reader write value */
5434 		smp_rmb();
5435 	}
5436 
5437 	/* The writer is not moving forward? Something is wrong */
5438 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5439 		reader = NULL;
5440 
5441 	/*
5442 	 * Make sure we see any padding after the write update
5443 	 * (see rb_reset_tail()).
5444 	 *
5445 	 * In addition, a writer may be writing on the reader page
5446 	 * if the page has not been fully filled, so the read barrier
5447 	 * is also needed to make sure we see the content of what is
5448 	 * committed by the writer (see rb_set_commit_to_write()).
5449 	 */
5450 	smp_rmb();
5451 
5452 
5453 	return reader;
5454 }
5455 
5456 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5457 {
5458 	struct ring_buffer_event *event;
5459 	struct buffer_page *reader;
5460 	unsigned length;
5461 
5462 	reader = rb_get_reader_page(cpu_buffer);
5463 
5464 	/* This function should not be called when buffer is empty */
5465 	if (RB_WARN_ON(cpu_buffer, !reader))
5466 		return;
5467 
5468 	event = rb_reader_event(cpu_buffer);
5469 
5470 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5471 		cpu_buffer->read++;
5472 
5473 	rb_update_read_stamp(cpu_buffer, event);
5474 
5475 	length = rb_event_length(event);
5476 	cpu_buffer->reader_page->read += length;
5477 	cpu_buffer->read_bytes += length;
5478 }
5479 
5480 static void rb_advance_iter(struct ring_buffer_iter *iter)
5481 {
5482 	struct ring_buffer_per_cpu *cpu_buffer;
5483 
5484 	cpu_buffer = iter->cpu_buffer;
5485 
5486 	/* If head == next_event then we need to jump to the next event */
5487 	if (iter->head == iter->next_event) {
5488 		/* If the event gets overwritten again, there's nothing to do */
5489 		if (rb_iter_head_event(iter) == NULL)
5490 			return;
5491 	}
5492 
5493 	iter->head = iter->next_event;
5494 
5495 	/*
5496 	 * Check if we are at the end of the buffer.
5497 	 */
5498 	if (iter->next_event >= rb_page_size(iter->head_page)) {
5499 		/* discarded commits can make the page empty */
5500 		if (iter->head_page == cpu_buffer->commit_page)
5501 			return;
5502 		rb_inc_iter(iter);
5503 		return;
5504 	}
5505 
5506 	rb_update_iter_read_stamp(iter, iter->event);
5507 }
5508 
5509 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5510 {
5511 	return cpu_buffer->lost_events;
5512 }
5513 
5514 static struct ring_buffer_event *
5515 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5516 	       unsigned long *lost_events)
5517 {
5518 	struct ring_buffer_event *event;
5519 	struct buffer_page *reader;
5520 	int nr_loops = 0;
5521 
5522 	if (ts)
5523 		*ts = 0;
5524  again:
5525 	/*
5526 	 * We repeat when a time extend is encountered.
5527 	 * Since the time extend is always attached to a data event,
5528 	 * we should never loop more than once.
5529 	 * (We never hit the following condition more than twice).
5530 	 */
5531 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5532 		return NULL;
5533 
5534 	reader = rb_get_reader_page(cpu_buffer);
5535 	if (!reader)
5536 		return NULL;
5537 
5538 	event = rb_reader_event(cpu_buffer);
5539 
5540 	switch (event->type_len) {
5541 	case RINGBUF_TYPE_PADDING:
5542 		if (rb_null_event(event))
5543 			RB_WARN_ON(cpu_buffer, 1);
5544 		/*
5545 		 * Because the writer could be discarding every
5546 		 * event it creates (which would probably be bad)
5547 		 * if we were to go back to "again" then we may never
5548 		 * catch up, and will trigger the warn on, or lock
5549 		 * the box. Return the padding, and we will release
5550 		 * the current locks, and try again.
5551 		 */
5552 		return event;
5553 
5554 	case RINGBUF_TYPE_TIME_EXTEND:
5555 		/* Internal data, OK to advance */
5556 		rb_advance_reader(cpu_buffer);
5557 		goto again;
5558 
5559 	case RINGBUF_TYPE_TIME_STAMP:
5560 		if (ts) {
5561 			*ts = rb_event_time_stamp(event);
5562 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5563 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5564 							 cpu_buffer->cpu, ts);
5565 		}
5566 		/* Internal data, OK to advance */
5567 		rb_advance_reader(cpu_buffer);
5568 		goto again;
5569 
5570 	case RINGBUF_TYPE_DATA:
5571 		if (ts && !(*ts)) {
5572 			*ts = cpu_buffer->read_stamp + event->time_delta;
5573 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5574 							 cpu_buffer->cpu, ts);
5575 		}
5576 		if (lost_events)
5577 			*lost_events = rb_lost_events(cpu_buffer);
5578 		return event;
5579 
5580 	default:
5581 		RB_WARN_ON(cpu_buffer, 1);
5582 	}
5583 
5584 	return NULL;
5585 }
5586 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5587 
5588 static struct ring_buffer_event *
5589 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5590 {
5591 	struct trace_buffer *buffer;
5592 	struct ring_buffer_per_cpu *cpu_buffer;
5593 	struct ring_buffer_event *event;
5594 	int nr_loops = 0;
5595 
5596 	if (ts)
5597 		*ts = 0;
5598 
5599 	cpu_buffer = iter->cpu_buffer;
5600 	buffer = cpu_buffer->buffer;
5601 
5602 	/*
5603 	 * Check if someone performed a consuming read to the buffer
5604 	 * or removed some pages from the buffer. In these cases,
5605 	 * iterator was invalidated and we need to reset it.
5606 	 */
5607 	if (unlikely(iter->cache_read != cpu_buffer->read ||
5608 		     iter->cache_reader_page != cpu_buffer->reader_page ||
5609 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
5610 		rb_iter_reset(iter);
5611 
5612  again:
5613 	if (ring_buffer_iter_empty(iter))
5614 		return NULL;
5615 
5616 	/*
5617 	 * As the writer can mess with what the iterator is trying
5618 	 * to read, just give up if we fail to get an event after
5619 	 * three tries. The iterator is not as reliable when reading
5620 	 * the ring buffer with an active write as the consumer is.
5621 	 * Do not warn if the three failures is reached.
5622 	 */
5623 	if (++nr_loops > 3)
5624 		return NULL;
5625 
5626 	if (rb_per_cpu_empty(cpu_buffer))
5627 		return NULL;
5628 
5629 	if (iter->head >= rb_page_size(iter->head_page)) {
5630 		rb_inc_iter(iter);
5631 		goto again;
5632 	}
5633 
5634 	event = rb_iter_head_event(iter);
5635 	if (!event)
5636 		goto again;
5637 
5638 	switch (event->type_len) {
5639 	case RINGBUF_TYPE_PADDING:
5640 		if (rb_null_event(event)) {
5641 			rb_inc_iter(iter);
5642 			goto again;
5643 		}
5644 		rb_advance_iter(iter);
5645 		return event;
5646 
5647 	case RINGBUF_TYPE_TIME_EXTEND:
5648 		/* Internal data, OK to advance */
5649 		rb_advance_iter(iter);
5650 		goto again;
5651 
5652 	case RINGBUF_TYPE_TIME_STAMP:
5653 		if (ts) {
5654 			*ts = rb_event_time_stamp(event);
5655 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5656 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5657 							 cpu_buffer->cpu, ts);
5658 		}
5659 		/* Internal data, OK to advance */
5660 		rb_advance_iter(iter);
5661 		goto again;
5662 
5663 	case RINGBUF_TYPE_DATA:
5664 		if (ts && !(*ts)) {
5665 			*ts = iter->read_stamp + event->time_delta;
5666 			ring_buffer_normalize_time_stamp(buffer,
5667 							 cpu_buffer->cpu, ts);
5668 		}
5669 		return event;
5670 
5671 	default:
5672 		RB_WARN_ON(cpu_buffer, 1);
5673 	}
5674 
5675 	return NULL;
5676 }
5677 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5678 
5679 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5680 {
5681 	if (likely(!in_nmi())) {
5682 		raw_spin_lock(&cpu_buffer->reader_lock);
5683 		return true;
5684 	}
5685 
5686 	/*
5687 	 * If an NMI die dumps out the content of the ring buffer
5688 	 * trylock must be used to prevent a deadlock if the NMI
5689 	 * preempted a task that holds the ring buffer locks. If
5690 	 * we get the lock then all is fine, if not, then continue
5691 	 * to do the read, but this can corrupt the ring buffer,
5692 	 * so it must be permanently disabled from future writes.
5693 	 * Reading from NMI is a oneshot deal.
5694 	 */
5695 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
5696 		return true;
5697 
5698 	/* Continue without locking, but disable the ring buffer */
5699 	atomic_inc(&cpu_buffer->record_disabled);
5700 	return false;
5701 }
5702 
5703 static inline void
5704 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5705 {
5706 	if (likely(locked))
5707 		raw_spin_unlock(&cpu_buffer->reader_lock);
5708 }
5709 
5710 /**
5711  * ring_buffer_peek - peek at the next event to be read
5712  * @buffer: The ring buffer to read
5713  * @cpu: The cpu to peak at
5714  * @ts: The timestamp counter of this event.
5715  * @lost_events: a variable to store if events were lost (may be NULL)
5716  *
5717  * This will return the event that will be read next, but does
5718  * not consume the data.
5719  */
5720 struct ring_buffer_event *
5721 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5722 		 unsigned long *lost_events)
5723 {
5724 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5725 	struct ring_buffer_event *event;
5726 	unsigned long flags;
5727 	bool dolock;
5728 
5729 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5730 		return NULL;
5731 
5732  again:
5733 	local_irq_save(flags);
5734 	dolock = rb_reader_lock(cpu_buffer);
5735 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5736 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5737 		rb_advance_reader(cpu_buffer);
5738 	rb_reader_unlock(cpu_buffer, dolock);
5739 	local_irq_restore(flags);
5740 
5741 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5742 		goto again;
5743 
5744 	return event;
5745 }
5746 
5747 /** ring_buffer_iter_dropped - report if there are dropped events
5748  * @iter: The ring buffer iterator
5749  *
5750  * Returns true if there was dropped events since the last peek.
5751  */
5752 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5753 {
5754 	bool ret = iter->missed_events != 0;
5755 
5756 	iter->missed_events = 0;
5757 	return ret;
5758 }
5759 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5760 
5761 /**
5762  * ring_buffer_iter_peek - peek at the next event to be read
5763  * @iter: The ring buffer iterator
5764  * @ts: The timestamp counter of this event.
5765  *
5766  * This will return the event that will be read next, but does
5767  * not increment the iterator.
5768  */
5769 struct ring_buffer_event *
5770 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5771 {
5772 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5773 	struct ring_buffer_event *event;
5774 	unsigned long flags;
5775 
5776  again:
5777 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5778 	event = rb_iter_peek(iter, ts);
5779 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5780 
5781 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5782 		goto again;
5783 
5784 	return event;
5785 }
5786 
5787 /**
5788  * ring_buffer_consume - return an event and consume it
5789  * @buffer: The ring buffer to get the next event from
5790  * @cpu: the cpu to read the buffer from
5791  * @ts: a variable to store the timestamp (may be NULL)
5792  * @lost_events: a variable to store if events were lost (may be NULL)
5793  *
5794  * Returns the next event in the ring buffer, and that event is consumed.
5795  * Meaning, that sequential reads will keep returning a different event,
5796  * and eventually empty the ring buffer if the producer is slower.
5797  */
5798 struct ring_buffer_event *
5799 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5800 		    unsigned long *lost_events)
5801 {
5802 	struct ring_buffer_per_cpu *cpu_buffer;
5803 	struct ring_buffer_event *event = NULL;
5804 	unsigned long flags;
5805 	bool dolock;
5806 
5807  again:
5808 	/* might be called in atomic */
5809 	preempt_disable();
5810 
5811 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5812 		goto out;
5813 
5814 	cpu_buffer = buffer->buffers[cpu];
5815 	local_irq_save(flags);
5816 	dolock = rb_reader_lock(cpu_buffer);
5817 
5818 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5819 	if (event) {
5820 		cpu_buffer->lost_events = 0;
5821 		rb_advance_reader(cpu_buffer);
5822 	}
5823 
5824 	rb_reader_unlock(cpu_buffer, dolock);
5825 	local_irq_restore(flags);
5826 
5827  out:
5828 	preempt_enable();
5829 
5830 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5831 		goto again;
5832 
5833 	return event;
5834 }
5835 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5836 
5837 /**
5838  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5839  * @buffer: The ring buffer to read from
5840  * @cpu: The cpu buffer to iterate over
5841  * @flags: gfp flags to use for memory allocation
5842  *
5843  * This performs the initial preparations necessary to iterate
5844  * through the buffer.  Memory is allocated, buffer resizing
5845  * is disabled, and the iterator pointer is returned to the caller.
5846  *
5847  * After a sequence of ring_buffer_read_prepare calls, the user is
5848  * expected to make at least one call to ring_buffer_read_prepare_sync.
5849  * Afterwards, ring_buffer_read_start is invoked to get things going
5850  * for real.
5851  *
5852  * This overall must be paired with ring_buffer_read_finish.
5853  */
5854 struct ring_buffer_iter *
5855 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5856 {
5857 	struct ring_buffer_per_cpu *cpu_buffer;
5858 	struct ring_buffer_iter *iter;
5859 
5860 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5861 		return NULL;
5862 
5863 	iter = kzalloc(sizeof(*iter), flags);
5864 	if (!iter)
5865 		return NULL;
5866 
5867 	/* Holds the entire event: data and meta data */
5868 	iter->event_size = buffer->subbuf_size;
5869 	iter->event = kmalloc(iter->event_size, flags);
5870 	if (!iter->event) {
5871 		kfree(iter);
5872 		return NULL;
5873 	}
5874 
5875 	cpu_buffer = buffer->buffers[cpu];
5876 
5877 	iter->cpu_buffer = cpu_buffer;
5878 
5879 	atomic_inc(&cpu_buffer->resize_disabled);
5880 
5881 	return iter;
5882 }
5883 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5884 
5885 /**
5886  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5887  *
5888  * All previously invoked ring_buffer_read_prepare calls to prepare
5889  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5890  * calls on those iterators are allowed.
5891  */
5892 void
5893 ring_buffer_read_prepare_sync(void)
5894 {
5895 	synchronize_rcu();
5896 }
5897 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5898 
5899 /**
5900  * ring_buffer_read_start - start a non consuming read of the buffer
5901  * @iter: The iterator returned by ring_buffer_read_prepare
5902  *
5903  * This finalizes the startup of an iteration through the buffer.
5904  * The iterator comes from a call to ring_buffer_read_prepare and
5905  * an intervening ring_buffer_read_prepare_sync must have been
5906  * performed.
5907  *
5908  * Must be paired with ring_buffer_read_finish.
5909  */
5910 void
5911 ring_buffer_read_start(struct ring_buffer_iter *iter)
5912 {
5913 	struct ring_buffer_per_cpu *cpu_buffer;
5914 	unsigned long flags;
5915 
5916 	if (!iter)
5917 		return;
5918 
5919 	cpu_buffer = iter->cpu_buffer;
5920 
5921 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5922 	arch_spin_lock(&cpu_buffer->lock);
5923 	rb_iter_reset(iter);
5924 	arch_spin_unlock(&cpu_buffer->lock);
5925 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5926 }
5927 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5928 
5929 /**
5930  * ring_buffer_read_finish - finish reading the iterator of the buffer
5931  * @iter: The iterator retrieved by ring_buffer_start
5932  *
5933  * This re-enables resizing of the buffer, and frees the iterator.
5934  */
5935 void
5936 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5937 {
5938 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5939 
5940 	/* Use this opportunity to check the integrity of the ring buffer. */
5941 	rb_check_pages(cpu_buffer);
5942 
5943 	atomic_dec(&cpu_buffer->resize_disabled);
5944 	kfree(iter->event);
5945 	kfree(iter);
5946 }
5947 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5948 
5949 /**
5950  * ring_buffer_iter_advance - advance the iterator to the next location
5951  * @iter: The ring buffer iterator
5952  *
5953  * Move the location of the iterator such that the next read will
5954  * be the next location of the iterator.
5955  */
5956 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5957 {
5958 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5959 	unsigned long flags;
5960 
5961 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5962 
5963 	rb_advance_iter(iter);
5964 
5965 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5966 }
5967 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5968 
5969 /**
5970  * ring_buffer_size - return the size of the ring buffer (in bytes)
5971  * @buffer: The ring buffer.
5972  * @cpu: The CPU to get ring buffer size from.
5973  */
5974 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5975 {
5976 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5977 		return 0;
5978 
5979 	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5980 }
5981 EXPORT_SYMBOL_GPL(ring_buffer_size);
5982 
5983 /**
5984  * ring_buffer_max_event_size - return the max data size of an event
5985  * @buffer: The ring buffer.
5986  *
5987  * Returns the maximum size an event can be.
5988  */
5989 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5990 {
5991 	/* If abs timestamp is requested, events have a timestamp too */
5992 	if (ring_buffer_time_stamp_abs(buffer))
5993 		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5994 	return buffer->max_data_size;
5995 }
5996 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5997 
5998 static void rb_clear_buffer_page(struct buffer_page *page)
5999 {
6000 	local_set(&page->write, 0);
6001 	local_set(&page->entries, 0);
6002 	rb_init_page(page->page);
6003 	page->read = 0;
6004 }
6005 
6006 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6007 {
6008 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6009 
6010 	if (!meta)
6011 		return;
6012 
6013 	meta->reader.read = cpu_buffer->reader_page->read;
6014 	meta->reader.id = cpu_buffer->reader_page->id;
6015 	meta->reader.lost_events = cpu_buffer->lost_events;
6016 
6017 	meta->entries = local_read(&cpu_buffer->entries);
6018 	meta->overrun = local_read(&cpu_buffer->overrun);
6019 	meta->read = cpu_buffer->read;
6020 
6021 	/* Some archs do not have data cache coherency between kernel and user-space */
6022 	flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
6023 }
6024 
6025 static void
6026 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
6027 {
6028 	struct buffer_page *page;
6029 
6030 	rb_head_page_deactivate(cpu_buffer);
6031 
6032 	cpu_buffer->head_page
6033 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
6034 	rb_clear_buffer_page(cpu_buffer->head_page);
6035 	list_for_each_entry(page, cpu_buffer->pages, list) {
6036 		rb_clear_buffer_page(page);
6037 	}
6038 
6039 	cpu_buffer->tail_page = cpu_buffer->head_page;
6040 	cpu_buffer->commit_page = cpu_buffer->head_page;
6041 
6042 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
6043 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
6044 	rb_clear_buffer_page(cpu_buffer->reader_page);
6045 
6046 	local_set(&cpu_buffer->entries_bytes, 0);
6047 	local_set(&cpu_buffer->overrun, 0);
6048 	local_set(&cpu_buffer->commit_overrun, 0);
6049 	local_set(&cpu_buffer->dropped_events, 0);
6050 	local_set(&cpu_buffer->entries, 0);
6051 	local_set(&cpu_buffer->committing, 0);
6052 	local_set(&cpu_buffer->commits, 0);
6053 	local_set(&cpu_buffer->pages_touched, 0);
6054 	local_set(&cpu_buffer->pages_lost, 0);
6055 	local_set(&cpu_buffer->pages_read, 0);
6056 	cpu_buffer->last_pages_touch = 0;
6057 	cpu_buffer->shortest_full = 0;
6058 	cpu_buffer->read = 0;
6059 	cpu_buffer->read_bytes = 0;
6060 
6061 	rb_time_set(&cpu_buffer->write_stamp, 0);
6062 	rb_time_set(&cpu_buffer->before_stamp, 0);
6063 
6064 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6065 
6066 	cpu_buffer->lost_events = 0;
6067 	cpu_buffer->last_overrun = 0;
6068 
6069 	rb_head_page_activate(cpu_buffer);
6070 	cpu_buffer->pages_removed = 0;
6071 
6072 	if (cpu_buffer->mapped) {
6073 		rb_update_meta_page(cpu_buffer);
6074 		if (cpu_buffer->ring_meta) {
6075 			struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
6076 			meta->commit_buffer = meta->head_buffer;
6077 		}
6078 	}
6079 }
6080 
6081 /* Must have disabled the cpu buffer then done a synchronize_rcu */
6082 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6083 {
6084 	unsigned long flags;
6085 
6086 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6087 
6088 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6089 		goto out;
6090 
6091 	arch_spin_lock(&cpu_buffer->lock);
6092 
6093 	rb_reset_cpu(cpu_buffer);
6094 
6095 	arch_spin_unlock(&cpu_buffer->lock);
6096 
6097  out:
6098 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6099 }
6100 
6101 /**
6102  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6103  * @buffer: The ring buffer to reset a per cpu buffer of
6104  * @cpu: The CPU buffer to be reset
6105  */
6106 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6107 {
6108 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6109 
6110 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6111 		return;
6112 
6113 	/* prevent another thread from changing buffer sizes */
6114 	mutex_lock(&buffer->mutex);
6115 
6116 	atomic_inc(&cpu_buffer->resize_disabled);
6117 	atomic_inc(&cpu_buffer->record_disabled);
6118 
6119 	/* Make sure all commits have finished */
6120 	synchronize_rcu();
6121 
6122 	reset_disabled_cpu_buffer(cpu_buffer);
6123 
6124 	atomic_dec(&cpu_buffer->record_disabled);
6125 	atomic_dec(&cpu_buffer->resize_disabled);
6126 
6127 	mutex_unlock(&buffer->mutex);
6128 }
6129 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6130 
6131 /* Flag to ensure proper resetting of atomic variables */
6132 #define RESET_BIT	(1 << 30)
6133 
6134 /**
6135  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6136  * @buffer: The ring buffer to reset a per cpu buffer of
6137  */
6138 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6139 {
6140 	struct ring_buffer_per_cpu *cpu_buffer;
6141 	int cpu;
6142 
6143 	/* prevent another thread from changing buffer sizes */
6144 	mutex_lock(&buffer->mutex);
6145 
6146 	for_each_online_buffer_cpu(buffer, cpu) {
6147 		cpu_buffer = buffer->buffers[cpu];
6148 
6149 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6150 		atomic_inc(&cpu_buffer->record_disabled);
6151 	}
6152 
6153 	/* Make sure all commits have finished */
6154 	synchronize_rcu();
6155 
6156 	for_each_buffer_cpu(buffer, cpu) {
6157 		cpu_buffer = buffer->buffers[cpu];
6158 
6159 		/*
6160 		 * If a CPU came online during the synchronize_rcu(), then
6161 		 * ignore it.
6162 		 */
6163 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6164 			continue;
6165 
6166 		reset_disabled_cpu_buffer(cpu_buffer);
6167 
6168 		atomic_dec(&cpu_buffer->record_disabled);
6169 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6170 	}
6171 
6172 	mutex_unlock(&buffer->mutex);
6173 }
6174 
6175 /**
6176  * ring_buffer_reset - reset a ring buffer
6177  * @buffer: The ring buffer to reset all cpu buffers
6178  */
6179 void ring_buffer_reset(struct trace_buffer *buffer)
6180 {
6181 	struct ring_buffer_per_cpu *cpu_buffer;
6182 	int cpu;
6183 
6184 	/* prevent another thread from changing buffer sizes */
6185 	mutex_lock(&buffer->mutex);
6186 
6187 	for_each_buffer_cpu(buffer, cpu) {
6188 		cpu_buffer = buffer->buffers[cpu];
6189 
6190 		atomic_inc(&cpu_buffer->resize_disabled);
6191 		atomic_inc(&cpu_buffer->record_disabled);
6192 	}
6193 
6194 	/* Make sure all commits have finished */
6195 	synchronize_rcu();
6196 
6197 	for_each_buffer_cpu(buffer, cpu) {
6198 		cpu_buffer = buffer->buffers[cpu];
6199 
6200 		reset_disabled_cpu_buffer(cpu_buffer);
6201 
6202 		atomic_dec(&cpu_buffer->record_disabled);
6203 		atomic_dec(&cpu_buffer->resize_disabled);
6204 	}
6205 
6206 	mutex_unlock(&buffer->mutex);
6207 }
6208 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6209 
6210 /**
6211  * ring_buffer_empty - is the ring buffer empty?
6212  * @buffer: The ring buffer to test
6213  */
6214 bool ring_buffer_empty(struct trace_buffer *buffer)
6215 {
6216 	struct ring_buffer_per_cpu *cpu_buffer;
6217 	unsigned long flags;
6218 	bool dolock;
6219 	bool ret;
6220 	int cpu;
6221 
6222 	/* yes this is racy, but if you don't like the race, lock the buffer */
6223 	for_each_buffer_cpu(buffer, cpu) {
6224 		cpu_buffer = buffer->buffers[cpu];
6225 		local_irq_save(flags);
6226 		dolock = rb_reader_lock(cpu_buffer);
6227 		ret = rb_per_cpu_empty(cpu_buffer);
6228 		rb_reader_unlock(cpu_buffer, dolock);
6229 		local_irq_restore(flags);
6230 
6231 		if (!ret)
6232 			return false;
6233 	}
6234 
6235 	return true;
6236 }
6237 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6238 
6239 /**
6240  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6241  * @buffer: The ring buffer
6242  * @cpu: The CPU buffer to test
6243  */
6244 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6245 {
6246 	struct ring_buffer_per_cpu *cpu_buffer;
6247 	unsigned long flags;
6248 	bool dolock;
6249 	bool ret;
6250 
6251 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6252 		return true;
6253 
6254 	cpu_buffer = buffer->buffers[cpu];
6255 	local_irq_save(flags);
6256 	dolock = rb_reader_lock(cpu_buffer);
6257 	ret = rb_per_cpu_empty(cpu_buffer);
6258 	rb_reader_unlock(cpu_buffer, dolock);
6259 	local_irq_restore(flags);
6260 
6261 	return ret;
6262 }
6263 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6264 
6265 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6266 /**
6267  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6268  * @buffer_a: One buffer to swap with
6269  * @buffer_b: The other buffer to swap with
6270  * @cpu: the CPU of the buffers to swap
6271  *
6272  * This function is useful for tracers that want to take a "snapshot"
6273  * of a CPU buffer and has another back up buffer lying around.
6274  * it is expected that the tracer handles the cpu buffer not being
6275  * used at the moment.
6276  */
6277 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6278 			 struct trace_buffer *buffer_b, int cpu)
6279 {
6280 	struct ring_buffer_per_cpu *cpu_buffer_a;
6281 	struct ring_buffer_per_cpu *cpu_buffer_b;
6282 	int ret = -EINVAL;
6283 
6284 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6285 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
6286 		goto out;
6287 
6288 	cpu_buffer_a = buffer_a->buffers[cpu];
6289 	cpu_buffer_b = buffer_b->buffers[cpu];
6290 
6291 	/* It's up to the callers to not try to swap mapped buffers */
6292 	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6293 		ret = -EBUSY;
6294 		goto out;
6295 	}
6296 
6297 	/* At least make sure the two buffers are somewhat the same */
6298 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6299 		goto out;
6300 
6301 	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6302 		goto out;
6303 
6304 	ret = -EAGAIN;
6305 
6306 	if (atomic_read(&buffer_a->record_disabled))
6307 		goto out;
6308 
6309 	if (atomic_read(&buffer_b->record_disabled))
6310 		goto out;
6311 
6312 	if (atomic_read(&cpu_buffer_a->record_disabled))
6313 		goto out;
6314 
6315 	if (atomic_read(&cpu_buffer_b->record_disabled))
6316 		goto out;
6317 
6318 	/*
6319 	 * We can't do a synchronize_rcu here because this
6320 	 * function can be called in atomic context.
6321 	 * Normally this will be called from the same CPU as cpu.
6322 	 * If not it's up to the caller to protect this.
6323 	 */
6324 	atomic_inc(&cpu_buffer_a->record_disabled);
6325 	atomic_inc(&cpu_buffer_b->record_disabled);
6326 
6327 	ret = -EBUSY;
6328 	if (local_read(&cpu_buffer_a->committing))
6329 		goto out_dec;
6330 	if (local_read(&cpu_buffer_b->committing))
6331 		goto out_dec;
6332 
6333 	/*
6334 	 * When resize is in progress, we cannot swap it because
6335 	 * it will mess the state of the cpu buffer.
6336 	 */
6337 	if (atomic_read(&buffer_a->resizing))
6338 		goto out_dec;
6339 	if (atomic_read(&buffer_b->resizing))
6340 		goto out_dec;
6341 
6342 	buffer_a->buffers[cpu] = cpu_buffer_b;
6343 	buffer_b->buffers[cpu] = cpu_buffer_a;
6344 
6345 	cpu_buffer_b->buffer = buffer_a;
6346 	cpu_buffer_a->buffer = buffer_b;
6347 
6348 	ret = 0;
6349 
6350 out_dec:
6351 	atomic_dec(&cpu_buffer_a->record_disabled);
6352 	atomic_dec(&cpu_buffer_b->record_disabled);
6353 out:
6354 	return ret;
6355 }
6356 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6357 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6358 
6359 /**
6360  * ring_buffer_alloc_read_page - allocate a page to read from buffer
6361  * @buffer: the buffer to allocate for.
6362  * @cpu: the cpu buffer to allocate.
6363  *
6364  * This function is used in conjunction with ring_buffer_read_page.
6365  * When reading a full page from the ring buffer, these functions
6366  * can be used to speed up the process. The calling function should
6367  * allocate a few pages first with this function. Then when it
6368  * needs to get pages from the ring buffer, it passes the result
6369  * of this function into ring_buffer_read_page, which will swap
6370  * the page that was allocated, with the read page of the buffer.
6371  *
6372  * Returns:
6373  *  The page allocated, or ERR_PTR
6374  */
6375 struct buffer_data_read_page *
6376 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6377 {
6378 	struct ring_buffer_per_cpu *cpu_buffer;
6379 	struct buffer_data_read_page *bpage = NULL;
6380 	unsigned long flags;
6381 	struct page *page;
6382 
6383 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6384 		return ERR_PTR(-ENODEV);
6385 
6386 	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6387 	if (!bpage)
6388 		return ERR_PTR(-ENOMEM);
6389 
6390 	bpage->order = buffer->subbuf_order;
6391 	cpu_buffer = buffer->buffers[cpu];
6392 	local_irq_save(flags);
6393 	arch_spin_lock(&cpu_buffer->lock);
6394 
6395 	if (cpu_buffer->free_page) {
6396 		bpage->data = cpu_buffer->free_page;
6397 		cpu_buffer->free_page = NULL;
6398 	}
6399 
6400 	arch_spin_unlock(&cpu_buffer->lock);
6401 	local_irq_restore(flags);
6402 
6403 	if (bpage->data)
6404 		goto out;
6405 
6406 	page = alloc_pages_node(cpu_to_node(cpu),
6407 				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6408 				cpu_buffer->buffer->subbuf_order);
6409 	if (!page) {
6410 		kfree(bpage);
6411 		return ERR_PTR(-ENOMEM);
6412 	}
6413 
6414 	bpage->data = page_address(page);
6415 
6416  out:
6417 	rb_init_page(bpage->data);
6418 
6419 	return bpage;
6420 }
6421 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6422 
6423 /**
6424  * ring_buffer_free_read_page - free an allocated read page
6425  * @buffer: the buffer the page was allocate for
6426  * @cpu: the cpu buffer the page came from
6427  * @data_page: the page to free
6428  *
6429  * Free a page allocated from ring_buffer_alloc_read_page.
6430  */
6431 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6432 				struct buffer_data_read_page *data_page)
6433 {
6434 	struct ring_buffer_per_cpu *cpu_buffer;
6435 	struct buffer_data_page *bpage = data_page->data;
6436 	struct page *page = virt_to_page(bpage);
6437 	unsigned long flags;
6438 
6439 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6440 		return;
6441 
6442 	cpu_buffer = buffer->buffers[cpu];
6443 
6444 	/*
6445 	 * If the page is still in use someplace else, or order of the page
6446 	 * is different from the subbuffer order of the buffer -
6447 	 * we can't reuse it
6448 	 */
6449 	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6450 		goto out;
6451 
6452 	local_irq_save(flags);
6453 	arch_spin_lock(&cpu_buffer->lock);
6454 
6455 	if (!cpu_buffer->free_page) {
6456 		cpu_buffer->free_page = bpage;
6457 		bpage = NULL;
6458 	}
6459 
6460 	arch_spin_unlock(&cpu_buffer->lock);
6461 	local_irq_restore(flags);
6462 
6463  out:
6464 	free_pages((unsigned long)bpage, data_page->order);
6465 	kfree(data_page);
6466 }
6467 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6468 
6469 /**
6470  * ring_buffer_read_page - extract a page from the ring buffer
6471  * @buffer: buffer to extract from
6472  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6473  * @len: amount to extract
6474  * @cpu: the cpu of the buffer to extract
6475  * @full: should the extraction only happen when the page is full.
6476  *
6477  * This function will pull out a page from the ring buffer and consume it.
6478  * @data_page must be the address of the variable that was returned
6479  * from ring_buffer_alloc_read_page. This is because the page might be used
6480  * to swap with a page in the ring buffer.
6481  *
6482  * for example:
6483  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
6484  *	if (IS_ERR(rpage))
6485  *		return PTR_ERR(rpage);
6486  *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6487  *	if (ret >= 0)
6488  *		process_page(ring_buffer_read_page_data(rpage), ret);
6489  *	ring_buffer_free_read_page(buffer, cpu, rpage);
6490  *
6491  * When @full is set, the function will not return true unless
6492  * the writer is off the reader page.
6493  *
6494  * Note: it is up to the calling functions to handle sleeps and wakeups.
6495  *  The ring buffer can be used anywhere in the kernel and can not
6496  *  blindly call wake_up. The layer that uses the ring buffer must be
6497  *  responsible for that.
6498  *
6499  * Returns:
6500  *  >=0 if data has been transferred, returns the offset of consumed data.
6501  *  <0 if no data has been transferred.
6502  */
6503 int ring_buffer_read_page(struct trace_buffer *buffer,
6504 			  struct buffer_data_read_page *data_page,
6505 			  size_t len, int cpu, int full)
6506 {
6507 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6508 	struct ring_buffer_event *event;
6509 	struct buffer_data_page *bpage;
6510 	struct buffer_page *reader;
6511 	unsigned long missed_events;
6512 	unsigned long flags;
6513 	unsigned int commit;
6514 	unsigned int read;
6515 	u64 save_timestamp;
6516 	int ret = -1;
6517 
6518 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6519 		goto out;
6520 
6521 	/*
6522 	 * If len is not big enough to hold the page header, then
6523 	 * we can not copy anything.
6524 	 */
6525 	if (len <= BUF_PAGE_HDR_SIZE)
6526 		goto out;
6527 
6528 	len -= BUF_PAGE_HDR_SIZE;
6529 
6530 	if (!data_page || !data_page->data)
6531 		goto out;
6532 	if (data_page->order != buffer->subbuf_order)
6533 		goto out;
6534 
6535 	bpage = data_page->data;
6536 	if (!bpage)
6537 		goto out;
6538 
6539 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6540 
6541 	reader = rb_get_reader_page(cpu_buffer);
6542 	if (!reader)
6543 		goto out_unlock;
6544 
6545 	event = rb_reader_event(cpu_buffer);
6546 
6547 	read = reader->read;
6548 	commit = rb_page_size(reader);
6549 
6550 	/* Check if any events were dropped */
6551 	missed_events = cpu_buffer->lost_events;
6552 
6553 	/*
6554 	 * If this page has been partially read or
6555 	 * if len is not big enough to read the rest of the page or
6556 	 * a writer is still on the page, then
6557 	 * we must copy the data from the page to the buffer.
6558 	 * Otherwise, we can simply swap the page with the one passed in.
6559 	 */
6560 	if (read || (len < (commit - read)) ||
6561 	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
6562 	    cpu_buffer->mapped) {
6563 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6564 		unsigned int rpos = read;
6565 		unsigned int pos = 0;
6566 		unsigned int size;
6567 
6568 		/*
6569 		 * If a full page is expected, this can still be returned
6570 		 * if there's been a previous partial read and the
6571 		 * rest of the page can be read and the commit page is off
6572 		 * the reader page.
6573 		 */
6574 		if (full &&
6575 		    (!read || (len < (commit - read)) ||
6576 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
6577 			goto out_unlock;
6578 
6579 		if (len > (commit - read))
6580 			len = (commit - read);
6581 
6582 		/* Always keep the time extend and data together */
6583 		size = rb_event_ts_length(event);
6584 
6585 		if (len < size)
6586 			goto out_unlock;
6587 
6588 		/* save the current timestamp, since the user will need it */
6589 		save_timestamp = cpu_buffer->read_stamp;
6590 
6591 		/* Need to copy one event at a time */
6592 		do {
6593 			/* We need the size of one event, because
6594 			 * rb_advance_reader only advances by one event,
6595 			 * whereas rb_event_ts_length may include the size of
6596 			 * one or two events.
6597 			 * We have already ensured there's enough space if this
6598 			 * is a time extend. */
6599 			size = rb_event_length(event);
6600 			memcpy(bpage->data + pos, rpage->data + rpos, size);
6601 
6602 			len -= size;
6603 
6604 			rb_advance_reader(cpu_buffer);
6605 			rpos = reader->read;
6606 			pos += size;
6607 
6608 			if (rpos >= commit)
6609 				break;
6610 
6611 			event = rb_reader_event(cpu_buffer);
6612 			/* Always keep the time extend and data together */
6613 			size = rb_event_ts_length(event);
6614 		} while (len >= size);
6615 
6616 		/* update bpage */
6617 		local_set(&bpage->commit, pos);
6618 		bpage->time_stamp = save_timestamp;
6619 
6620 		/* we copied everything to the beginning */
6621 		read = 0;
6622 	} else {
6623 		/* update the entry counter */
6624 		cpu_buffer->read += rb_page_entries(reader);
6625 		cpu_buffer->read_bytes += rb_page_size(reader);
6626 
6627 		/* swap the pages */
6628 		rb_init_page(bpage);
6629 		bpage = reader->page;
6630 		reader->page = data_page->data;
6631 		local_set(&reader->write, 0);
6632 		local_set(&reader->entries, 0);
6633 		reader->read = 0;
6634 		data_page->data = bpage;
6635 
6636 		/*
6637 		 * Use the real_end for the data size,
6638 		 * This gives us a chance to store the lost events
6639 		 * on the page.
6640 		 */
6641 		if (reader->real_end)
6642 			local_set(&bpage->commit, reader->real_end);
6643 	}
6644 	ret = read;
6645 
6646 	cpu_buffer->lost_events = 0;
6647 
6648 	commit = local_read(&bpage->commit);
6649 	/*
6650 	 * Set a flag in the commit field if we lost events
6651 	 */
6652 	if (missed_events) {
6653 		/* If there is room at the end of the page to save the
6654 		 * missed events, then record it there.
6655 		 */
6656 		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6657 			memcpy(&bpage->data[commit], &missed_events,
6658 			       sizeof(missed_events));
6659 			local_add(RB_MISSED_STORED, &bpage->commit);
6660 			commit += sizeof(missed_events);
6661 		}
6662 		local_add(RB_MISSED_EVENTS, &bpage->commit);
6663 	}
6664 
6665 	/*
6666 	 * This page may be off to user land. Zero it out here.
6667 	 */
6668 	if (commit < buffer->subbuf_size)
6669 		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6670 
6671  out_unlock:
6672 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6673 
6674  out:
6675 	return ret;
6676 }
6677 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6678 
6679 /**
6680  * ring_buffer_read_page_data - get pointer to the data in the page.
6681  * @page:  the page to get the data from
6682  *
6683  * Returns pointer to the actual data in this page.
6684  */
6685 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6686 {
6687 	return page->data;
6688 }
6689 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6690 
6691 /**
6692  * ring_buffer_subbuf_size_get - get size of the sub buffer.
6693  * @buffer: the buffer to get the sub buffer size from
6694  *
6695  * Returns size of the sub buffer, in bytes.
6696  */
6697 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6698 {
6699 	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6700 }
6701 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6702 
6703 /**
6704  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6705  * @buffer: The ring_buffer to get the system sub page order from
6706  *
6707  * By default, one ring buffer sub page equals to one system page. This parameter
6708  * is configurable, per ring buffer. The size of the ring buffer sub page can be
6709  * extended, but must be an order of system page size.
6710  *
6711  * Returns the order of buffer sub page size, in system pages:
6712  * 0 means the sub buffer size is 1 system page and so forth.
6713  * In case of an error < 0 is returned.
6714  */
6715 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6716 {
6717 	if (!buffer)
6718 		return -EINVAL;
6719 
6720 	return buffer->subbuf_order;
6721 }
6722 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6723 
6724 /**
6725  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6726  * @buffer: The ring_buffer to set the new page size.
6727  * @order: Order of the system pages in one sub buffer page
6728  *
6729  * By default, one ring buffer pages equals to one system page. This API can be
6730  * used to set new size of the ring buffer page. The size must be order of
6731  * system page size, that's why the input parameter @order is the order of
6732  * system pages that are allocated for one ring buffer page:
6733  *  0 - 1 system page
6734  *  1 - 2 system pages
6735  *  3 - 4 system pages
6736  *  ...
6737  *
6738  * Returns 0 on success or < 0 in case of an error.
6739  */
6740 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6741 {
6742 	struct ring_buffer_per_cpu *cpu_buffer;
6743 	struct buffer_page *bpage, *tmp;
6744 	int old_order, old_size;
6745 	int nr_pages;
6746 	int psize;
6747 	int err;
6748 	int cpu;
6749 
6750 	if (!buffer || order < 0)
6751 		return -EINVAL;
6752 
6753 	if (buffer->subbuf_order == order)
6754 		return 0;
6755 
6756 	psize = (1 << order) * PAGE_SIZE;
6757 	if (psize <= BUF_PAGE_HDR_SIZE)
6758 		return -EINVAL;
6759 
6760 	/* Size of a subbuf cannot be greater than the write counter */
6761 	if (psize > RB_WRITE_MASK + 1)
6762 		return -EINVAL;
6763 
6764 	old_order = buffer->subbuf_order;
6765 	old_size = buffer->subbuf_size;
6766 
6767 	/* prevent another thread from changing buffer sizes */
6768 	mutex_lock(&buffer->mutex);
6769 	atomic_inc(&buffer->record_disabled);
6770 
6771 	/* Make sure all commits have finished */
6772 	synchronize_rcu();
6773 
6774 	buffer->subbuf_order = order;
6775 	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6776 
6777 	/* Make sure all new buffers are allocated, before deleting the old ones */
6778 	for_each_buffer_cpu(buffer, cpu) {
6779 
6780 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6781 			continue;
6782 
6783 		cpu_buffer = buffer->buffers[cpu];
6784 
6785 		if (cpu_buffer->mapped) {
6786 			err = -EBUSY;
6787 			goto error;
6788 		}
6789 
6790 		/* Update the number of pages to match the new size */
6791 		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6792 		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6793 
6794 		/* we need a minimum of two pages */
6795 		if (nr_pages < 2)
6796 			nr_pages = 2;
6797 
6798 		cpu_buffer->nr_pages_to_update = nr_pages;
6799 
6800 		/* Include the reader page */
6801 		nr_pages++;
6802 
6803 		/* Allocate the new size buffer */
6804 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6805 		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6806 					&cpu_buffer->new_pages)) {
6807 			/* not enough memory for new pages */
6808 			err = -ENOMEM;
6809 			goto error;
6810 		}
6811 	}
6812 
6813 	for_each_buffer_cpu(buffer, cpu) {
6814 		struct buffer_data_page *old_free_data_page;
6815 		struct list_head old_pages;
6816 		unsigned long flags;
6817 
6818 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6819 			continue;
6820 
6821 		cpu_buffer = buffer->buffers[cpu];
6822 
6823 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6824 
6825 		/* Clear the head bit to make the link list normal to read */
6826 		rb_head_page_deactivate(cpu_buffer);
6827 
6828 		/*
6829 		 * Collect buffers from the cpu_buffer pages list and the
6830 		 * reader_page on old_pages, so they can be freed later when not
6831 		 * under a spinlock. The pages list is a linked list with no
6832 		 * head, adding old_pages turns it into a regular list with
6833 		 * old_pages being the head.
6834 		 */
6835 		list_add(&old_pages, cpu_buffer->pages);
6836 		list_add(&cpu_buffer->reader_page->list, &old_pages);
6837 
6838 		/* One page was allocated for the reader page */
6839 		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6840 						     struct buffer_page, list);
6841 		list_del_init(&cpu_buffer->reader_page->list);
6842 
6843 		/* Install the new pages, remove the head from the list */
6844 		cpu_buffer->pages = cpu_buffer->new_pages.next;
6845 		list_del_init(&cpu_buffer->new_pages);
6846 		cpu_buffer->cnt++;
6847 
6848 		cpu_buffer->head_page
6849 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6850 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6851 
6852 		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6853 		cpu_buffer->nr_pages_to_update = 0;
6854 
6855 		old_free_data_page = cpu_buffer->free_page;
6856 		cpu_buffer->free_page = NULL;
6857 
6858 		rb_head_page_activate(cpu_buffer);
6859 
6860 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6861 
6862 		/* Free old sub buffers */
6863 		list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6864 			list_del_init(&bpage->list);
6865 			free_buffer_page(bpage);
6866 		}
6867 		free_pages((unsigned long)old_free_data_page, old_order);
6868 
6869 		rb_check_pages(cpu_buffer);
6870 	}
6871 
6872 	atomic_dec(&buffer->record_disabled);
6873 	mutex_unlock(&buffer->mutex);
6874 
6875 	return 0;
6876 
6877 error:
6878 	buffer->subbuf_order = old_order;
6879 	buffer->subbuf_size = old_size;
6880 
6881 	atomic_dec(&buffer->record_disabled);
6882 	mutex_unlock(&buffer->mutex);
6883 
6884 	for_each_buffer_cpu(buffer, cpu) {
6885 		cpu_buffer = buffer->buffers[cpu];
6886 
6887 		if (!cpu_buffer->nr_pages_to_update)
6888 			continue;
6889 
6890 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6891 			list_del_init(&bpage->list);
6892 			free_buffer_page(bpage);
6893 		}
6894 	}
6895 
6896 	return err;
6897 }
6898 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6899 
6900 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6901 {
6902 	struct page *page;
6903 
6904 	if (cpu_buffer->meta_page)
6905 		return 0;
6906 
6907 	page = alloc_page(GFP_USER | __GFP_ZERO);
6908 	if (!page)
6909 		return -ENOMEM;
6910 
6911 	cpu_buffer->meta_page = page_to_virt(page);
6912 
6913 	return 0;
6914 }
6915 
6916 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6917 {
6918 	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6919 
6920 	free_page(addr);
6921 	cpu_buffer->meta_page = NULL;
6922 }
6923 
6924 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6925 				   unsigned long *subbuf_ids)
6926 {
6927 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6928 	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6929 	struct buffer_page *first_subbuf, *subbuf;
6930 	int id = 0;
6931 
6932 	subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6933 	cpu_buffer->reader_page->id = id++;
6934 
6935 	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6936 	do {
6937 		if (WARN_ON(id >= nr_subbufs))
6938 			break;
6939 
6940 		subbuf_ids[id] = (unsigned long)subbuf->page;
6941 		subbuf->id = id;
6942 
6943 		rb_inc_page(&subbuf);
6944 		id++;
6945 	} while (subbuf != first_subbuf);
6946 
6947 	/* install subbuf ID to kern VA translation */
6948 	cpu_buffer->subbuf_ids = subbuf_ids;
6949 
6950 	meta->meta_struct_len = sizeof(*meta);
6951 	meta->nr_subbufs = nr_subbufs;
6952 	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6953 	meta->meta_page_size = meta->subbuf_size;
6954 
6955 	rb_update_meta_page(cpu_buffer);
6956 }
6957 
6958 static struct ring_buffer_per_cpu *
6959 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6960 {
6961 	struct ring_buffer_per_cpu *cpu_buffer;
6962 
6963 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6964 		return ERR_PTR(-EINVAL);
6965 
6966 	cpu_buffer = buffer->buffers[cpu];
6967 
6968 	mutex_lock(&cpu_buffer->mapping_lock);
6969 
6970 	if (!cpu_buffer->user_mapped) {
6971 		mutex_unlock(&cpu_buffer->mapping_lock);
6972 		return ERR_PTR(-ENODEV);
6973 	}
6974 
6975 	return cpu_buffer;
6976 }
6977 
6978 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6979 {
6980 	mutex_unlock(&cpu_buffer->mapping_lock);
6981 }
6982 
6983 /*
6984  * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6985  * to be set-up or torn-down.
6986  */
6987 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6988 			       bool inc)
6989 {
6990 	unsigned long flags;
6991 
6992 	lockdep_assert_held(&cpu_buffer->mapping_lock);
6993 
6994 	/* mapped is always greater or equal to user_mapped */
6995 	if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
6996 		return -EINVAL;
6997 
6998 	if (inc && cpu_buffer->mapped == UINT_MAX)
6999 		return -EBUSY;
7000 
7001 	if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
7002 		return -EINVAL;
7003 
7004 	mutex_lock(&cpu_buffer->buffer->mutex);
7005 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7006 
7007 	if (inc) {
7008 		cpu_buffer->user_mapped++;
7009 		cpu_buffer->mapped++;
7010 	} else {
7011 		cpu_buffer->user_mapped--;
7012 		cpu_buffer->mapped--;
7013 	}
7014 
7015 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7016 	mutex_unlock(&cpu_buffer->buffer->mutex);
7017 
7018 	return 0;
7019 }
7020 
7021 /*
7022  *   +--------------+  pgoff == 0
7023  *   |   meta page  |
7024  *   +--------------+  pgoff == 1
7025  *   | subbuffer 0  |
7026  *   |              |
7027  *   +--------------+  pgoff == (1 + (1 << subbuf_order))
7028  *   | subbuffer 1  |
7029  *   |              |
7030  *         ...
7031  */
7032 #ifdef CONFIG_MMU
7033 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7034 			struct vm_area_struct *vma)
7035 {
7036 	unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
7037 	unsigned int subbuf_pages, subbuf_order;
7038 	struct page **pages;
7039 	int p = 0, s = 0;
7040 	int err;
7041 
7042 	/* Refuse MP_PRIVATE or writable mappings */
7043 	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7044 	    !(vma->vm_flags & VM_MAYSHARE))
7045 		return -EPERM;
7046 
7047 	subbuf_order = cpu_buffer->buffer->subbuf_order;
7048 	subbuf_pages = 1 << subbuf_order;
7049 
7050 	if (subbuf_order && pgoff % subbuf_pages)
7051 		return -EINVAL;
7052 
7053 	/*
7054 	 * Make sure the mapping cannot become writable later. Also tell the VM
7055 	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7056 	 */
7057 	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7058 		     VM_MAYWRITE);
7059 
7060 	lockdep_assert_held(&cpu_buffer->mapping_lock);
7061 
7062 	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7063 	nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7064 	if (nr_pages <= pgoff)
7065 		return -EINVAL;
7066 
7067 	nr_pages -= pgoff;
7068 
7069 	nr_vma_pages = vma_pages(vma);
7070 	if (!nr_vma_pages || nr_vma_pages > nr_pages)
7071 		return -EINVAL;
7072 
7073 	nr_pages = nr_vma_pages;
7074 
7075 	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7076 	if (!pages)
7077 		return -ENOMEM;
7078 
7079 	if (!pgoff) {
7080 		unsigned long meta_page_padding;
7081 
7082 		pages[p++] = virt_to_page(cpu_buffer->meta_page);
7083 
7084 		/*
7085 		 * Pad with the zero-page to align the meta-page with the
7086 		 * sub-buffers.
7087 		 */
7088 		meta_page_padding = subbuf_pages - 1;
7089 		while (meta_page_padding-- && p < nr_pages) {
7090 			unsigned long __maybe_unused zero_addr =
7091 				vma->vm_start + (PAGE_SIZE * p);
7092 
7093 			pages[p++] = ZERO_PAGE(zero_addr);
7094 		}
7095 	} else {
7096 		/* Skip the meta-page */
7097 		pgoff -= subbuf_pages;
7098 
7099 		s += pgoff / subbuf_pages;
7100 	}
7101 
7102 	while (p < nr_pages) {
7103 		struct page *page;
7104 		int off = 0;
7105 
7106 		if (WARN_ON_ONCE(s >= nr_subbufs)) {
7107 			err = -EINVAL;
7108 			goto out;
7109 		}
7110 
7111 		page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7112 
7113 		for (; off < (1 << (subbuf_order)); off++, page++) {
7114 			if (p >= nr_pages)
7115 				break;
7116 
7117 			pages[p++] = page;
7118 		}
7119 		s++;
7120 	}
7121 
7122 	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7123 
7124 out:
7125 	kfree(pages);
7126 
7127 	return err;
7128 }
7129 #else
7130 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7131 			struct vm_area_struct *vma)
7132 {
7133 	return -EOPNOTSUPP;
7134 }
7135 #endif
7136 
7137 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7138 		    struct vm_area_struct *vma)
7139 {
7140 	struct ring_buffer_per_cpu *cpu_buffer;
7141 	unsigned long flags, *subbuf_ids;
7142 	int err = 0;
7143 
7144 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7145 		return -EINVAL;
7146 
7147 	cpu_buffer = buffer->buffers[cpu];
7148 
7149 	mutex_lock(&cpu_buffer->mapping_lock);
7150 
7151 	if (cpu_buffer->user_mapped) {
7152 		err = __rb_map_vma(cpu_buffer, vma);
7153 		if (!err)
7154 			err = __rb_inc_dec_mapped(cpu_buffer, true);
7155 		mutex_unlock(&cpu_buffer->mapping_lock);
7156 		return err;
7157 	}
7158 
7159 	/* prevent another thread from changing buffer/sub-buffer sizes */
7160 	mutex_lock(&buffer->mutex);
7161 
7162 	err = rb_alloc_meta_page(cpu_buffer);
7163 	if (err)
7164 		goto unlock;
7165 
7166 	/* subbuf_ids include the reader while nr_pages does not */
7167 	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7168 	if (!subbuf_ids) {
7169 		rb_free_meta_page(cpu_buffer);
7170 		err = -ENOMEM;
7171 		goto unlock;
7172 	}
7173 
7174 	atomic_inc(&cpu_buffer->resize_disabled);
7175 
7176 	/*
7177 	 * Lock all readers to block any subbuf swap until the subbuf IDs are
7178 	 * assigned.
7179 	 */
7180 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7181 	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7182 
7183 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7184 
7185 	err = __rb_map_vma(cpu_buffer, vma);
7186 	if (!err) {
7187 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7188 		/* This is the first time it is mapped by user */
7189 		cpu_buffer->mapped++;
7190 		cpu_buffer->user_mapped = 1;
7191 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7192 	} else {
7193 		kfree(cpu_buffer->subbuf_ids);
7194 		cpu_buffer->subbuf_ids = NULL;
7195 		rb_free_meta_page(cpu_buffer);
7196 		atomic_dec(&cpu_buffer->resize_disabled);
7197 	}
7198 
7199 unlock:
7200 	mutex_unlock(&buffer->mutex);
7201 	mutex_unlock(&cpu_buffer->mapping_lock);
7202 
7203 	return err;
7204 }
7205 
7206 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7207 {
7208 	struct ring_buffer_per_cpu *cpu_buffer;
7209 	unsigned long flags;
7210 	int err = 0;
7211 
7212 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7213 		return -EINVAL;
7214 
7215 	cpu_buffer = buffer->buffers[cpu];
7216 
7217 	mutex_lock(&cpu_buffer->mapping_lock);
7218 
7219 	if (!cpu_buffer->user_mapped) {
7220 		err = -ENODEV;
7221 		goto out;
7222 	} else if (cpu_buffer->user_mapped > 1) {
7223 		__rb_inc_dec_mapped(cpu_buffer, false);
7224 		goto out;
7225 	}
7226 
7227 	mutex_lock(&buffer->mutex);
7228 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7229 
7230 	/* This is the last user space mapping */
7231 	if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7232 		cpu_buffer->mapped--;
7233 	cpu_buffer->user_mapped = 0;
7234 
7235 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7236 
7237 	kfree(cpu_buffer->subbuf_ids);
7238 	cpu_buffer->subbuf_ids = NULL;
7239 	rb_free_meta_page(cpu_buffer);
7240 	atomic_dec(&cpu_buffer->resize_disabled);
7241 
7242 	mutex_unlock(&buffer->mutex);
7243 
7244 out:
7245 	mutex_unlock(&cpu_buffer->mapping_lock);
7246 
7247 	return err;
7248 }
7249 
7250 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7251 {
7252 	struct ring_buffer_per_cpu *cpu_buffer;
7253 	struct buffer_page *reader;
7254 	unsigned long missed_events;
7255 	unsigned long reader_size;
7256 	unsigned long flags;
7257 
7258 	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7259 	if (IS_ERR(cpu_buffer))
7260 		return (int)PTR_ERR(cpu_buffer);
7261 
7262 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7263 
7264 consume:
7265 	if (rb_per_cpu_empty(cpu_buffer))
7266 		goto out;
7267 
7268 	reader_size = rb_page_size(cpu_buffer->reader_page);
7269 
7270 	/*
7271 	 * There are data to be read on the current reader page, we can
7272 	 * return to the caller. But before that, we assume the latter will read
7273 	 * everything. Let's update the kernel reader accordingly.
7274 	 */
7275 	if (cpu_buffer->reader_page->read < reader_size) {
7276 		while (cpu_buffer->reader_page->read < reader_size)
7277 			rb_advance_reader(cpu_buffer);
7278 		goto out;
7279 	}
7280 
7281 	reader = rb_get_reader_page(cpu_buffer);
7282 	if (WARN_ON(!reader))
7283 		goto out;
7284 
7285 	/* Check if any events were dropped */
7286 	missed_events = cpu_buffer->lost_events;
7287 
7288 	if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7289 		if (missed_events) {
7290 			struct buffer_data_page *bpage = reader->page;
7291 			unsigned int commit;
7292 			/*
7293 			 * Use the real_end for the data size,
7294 			 * This gives us a chance to store the lost events
7295 			 * on the page.
7296 			 */
7297 			if (reader->real_end)
7298 				local_set(&bpage->commit, reader->real_end);
7299 			/*
7300 			 * If there is room at the end of the page to save the
7301 			 * missed events, then record it there.
7302 			 */
7303 			commit = rb_page_size(reader);
7304 			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7305 				memcpy(&bpage->data[commit], &missed_events,
7306 				       sizeof(missed_events));
7307 				local_add(RB_MISSED_STORED, &bpage->commit);
7308 			}
7309 			local_add(RB_MISSED_EVENTS, &bpage->commit);
7310 		}
7311 	} else {
7312 		/*
7313 		 * There really shouldn't be any missed events if the commit
7314 		 * is on the reader page.
7315 		 */
7316 		WARN_ON_ONCE(missed_events);
7317 	}
7318 
7319 	cpu_buffer->lost_events = 0;
7320 
7321 	goto consume;
7322 
7323 out:
7324 	/* Some archs do not have data cache coherency between kernel and user-space */
7325 	flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
7326 
7327 	rb_update_meta_page(cpu_buffer);
7328 
7329 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7330 	rb_put_mapped_buffer(cpu_buffer);
7331 
7332 	return 0;
7333 }
7334 
7335 /*
7336  * We only allocate new buffers, never free them if the CPU goes down.
7337  * If we were to free the buffer, then the user would lose any trace that was in
7338  * the buffer.
7339  */
7340 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7341 {
7342 	struct trace_buffer *buffer;
7343 	long nr_pages_same;
7344 	int cpu_i;
7345 	unsigned long nr_pages;
7346 
7347 	buffer = container_of(node, struct trace_buffer, node);
7348 	if (cpumask_test_cpu(cpu, buffer->cpumask))
7349 		return 0;
7350 
7351 	nr_pages = 0;
7352 	nr_pages_same = 1;
7353 	/* check if all cpu sizes are same */
7354 	for_each_buffer_cpu(buffer, cpu_i) {
7355 		/* fill in the size from first enabled cpu */
7356 		if (nr_pages == 0)
7357 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
7358 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7359 			nr_pages_same = 0;
7360 			break;
7361 		}
7362 	}
7363 	/* allocate minimum pages, user can later expand it */
7364 	if (!nr_pages_same)
7365 		nr_pages = 2;
7366 	buffer->buffers[cpu] =
7367 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7368 	if (!buffer->buffers[cpu]) {
7369 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
7370 		     cpu);
7371 		return -ENOMEM;
7372 	}
7373 	smp_wmb();
7374 	cpumask_set_cpu(cpu, buffer->cpumask);
7375 	return 0;
7376 }
7377 
7378 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7379 /*
7380  * This is a basic integrity check of the ring buffer.
7381  * Late in the boot cycle this test will run when configured in.
7382  * It will kick off a thread per CPU that will go into a loop
7383  * writing to the per cpu ring buffer various sizes of data.
7384  * Some of the data will be large items, some small.
7385  *
7386  * Another thread is created that goes into a spin, sending out
7387  * IPIs to the other CPUs to also write into the ring buffer.
7388  * this is to test the nesting ability of the buffer.
7389  *
7390  * Basic stats are recorded and reported. If something in the
7391  * ring buffer should happen that's not expected, a big warning
7392  * is displayed and all ring buffers are disabled.
7393  */
7394 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7395 
7396 struct rb_test_data {
7397 	struct trace_buffer *buffer;
7398 	unsigned long		events;
7399 	unsigned long		bytes_written;
7400 	unsigned long		bytes_alloc;
7401 	unsigned long		bytes_dropped;
7402 	unsigned long		events_nested;
7403 	unsigned long		bytes_written_nested;
7404 	unsigned long		bytes_alloc_nested;
7405 	unsigned long		bytes_dropped_nested;
7406 	int			min_size_nested;
7407 	int			max_size_nested;
7408 	int			max_size;
7409 	int			min_size;
7410 	int			cpu;
7411 	int			cnt;
7412 };
7413 
7414 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7415 
7416 /* 1 meg per cpu */
7417 #define RB_TEST_BUFFER_SIZE	1048576
7418 
7419 static char rb_string[] __initdata =
7420 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7421 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7422 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7423 
7424 static bool rb_test_started __initdata;
7425 
7426 struct rb_item {
7427 	int size;
7428 	char str[];
7429 };
7430 
7431 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7432 {
7433 	struct ring_buffer_event *event;
7434 	struct rb_item *item;
7435 	bool started;
7436 	int event_len;
7437 	int size;
7438 	int len;
7439 	int cnt;
7440 
7441 	/* Have nested writes different that what is written */
7442 	cnt = data->cnt + (nested ? 27 : 0);
7443 
7444 	/* Multiply cnt by ~e, to make some unique increment */
7445 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7446 
7447 	len = size + sizeof(struct rb_item);
7448 
7449 	started = rb_test_started;
7450 	/* read rb_test_started before checking buffer enabled */
7451 	smp_rmb();
7452 
7453 	event = ring_buffer_lock_reserve(data->buffer, len);
7454 	if (!event) {
7455 		/* Ignore dropped events before test starts. */
7456 		if (started) {
7457 			if (nested)
7458 				data->bytes_dropped_nested += len;
7459 			else
7460 				data->bytes_dropped += len;
7461 		}
7462 		return len;
7463 	}
7464 
7465 	event_len = ring_buffer_event_length(event);
7466 
7467 	if (RB_WARN_ON(data->buffer, event_len < len))
7468 		goto out;
7469 
7470 	item = ring_buffer_event_data(event);
7471 	item->size = size;
7472 	memcpy(item->str, rb_string, size);
7473 
7474 	if (nested) {
7475 		data->bytes_alloc_nested += event_len;
7476 		data->bytes_written_nested += len;
7477 		data->events_nested++;
7478 		if (!data->min_size_nested || len < data->min_size_nested)
7479 			data->min_size_nested = len;
7480 		if (len > data->max_size_nested)
7481 			data->max_size_nested = len;
7482 	} else {
7483 		data->bytes_alloc += event_len;
7484 		data->bytes_written += len;
7485 		data->events++;
7486 		if (!data->min_size || len < data->min_size)
7487 			data->max_size = len;
7488 		if (len > data->max_size)
7489 			data->max_size = len;
7490 	}
7491 
7492  out:
7493 	ring_buffer_unlock_commit(data->buffer);
7494 
7495 	return 0;
7496 }
7497 
7498 static __init int rb_test(void *arg)
7499 {
7500 	struct rb_test_data *data = arg;
7501 
7502 	while (!kthread_should_stop()) {
7503 		rb_write_something(data, false);
7504 		data->cnt++;
7505 
7506 		set_current_state(TASK_INTERRUPTIBLE);
7507 		/* Now sleep between a min of 100-300us and a max of 1ms */
7508 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7509 	}
7510 
7511 	return 0;
7512 }
7513 
7514 static __init void rb_ipi(void *ignore)
7515 {
7516 	struct rb_test_data *data;
7517 	int cpu = smp_processor_id();
7518 
7519 	data = &rb_data[cpu];
7520 	rb_write_something(data, true);
7521 }
7522 
7523 static __init int rb_hammer_test(void *arg)
7524 {
7525 	while (!kthread_should_stop()) {
7526 
7527 		/* Send an IPI to all cpus to write data! */
7528 		smp_call_function(rb_ipi, NULL, 1);
7529 		/* No sleep, but for non preempt, let others run */
7530 		schedule();
7531 	}
7532 
7533 	return 0;
7534 }
7535 
7536 static __init int test_ringbuffer(void)
7537 {
7538 	struct task_struct *rb_hammer;
7539 	struct trace_buffer *buffer;
7540 	int cpu;
7541 	int ret = 0;
7542 
7543 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
7544 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7545 		return 0;
7546 	}
7547 
7548 	pr_info("Running ring buffer tests...\n");
7549 
7550 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7551 	if (WARN_ON(!buffer))
7552 		return 0;
7553 
7554 	/* Disable buffer so that threads can't write to it yet */
7555 	ring_buffer_record_off(buffer);
7556 
7557 	for_each_online_cpu(cpu) {
7558 		rb_data[cpu].buffer = buffer;
7559 		rb_data[cpu].cpu = cpu;
7560 		rb_data[cpu].cnt = cpu;
7561 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7562 						     cpu, "rbtester/%u");
7563 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7564 			pr_cont("FAILED\n");
7565 			ret = PTR_ERR(rb_threads[cpu]);
7566 			goto out_free;
7567 		}
7568 	}
7569 
7570 	/* Now create the rb hammer! */
7571 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7572 	if (WARN_ON(IS_ERR(rb_hammer))) {
7573 		pr_cont("FAILED\n");
7574 		ret = PTR_ERR(rb_hammer);
7575 		goto out_free;
7576 	}
7577 
7578 	ring_buffer_record_on(buffer);
7579 	/*
7580 	 * Show buffer is enabled before setting rb_test_started.
7581 	 * Yes there's a small race window where events could be
7582 	 * dropped and the thread wont catch it. But when a ring
7583 	 * buffer gets enabled, there will always be some kind of
7584 	 * delay before other CPUs see it. Thus, we don't care about
7585 	 * those dropped events. We care about events dropped after
7586 	 * the threads see that the buffer is active.
7587 	 */
7588 	smp_wmb();
7589 	rb_test_started = true;
7590 
7591 	set_current_state(TASK_INTERRUPTIBLE);
7592 	/* Just run for 10 seconds */;
7593 	schedule_timeout(10 * HZ);
7594 
7595 	kthread_stop(rb_hammer);
7596 
7597  out_free:
7598 	for_each_online_cpu(cpu) {
7599 		if (!rb_threads[cpu])
7600 			break;
7601 		kthread_stop(rb_threads[cpu]);
7602 	}
7603 	if (ret) {
7604 		ring_buffer_free(buffer);
7605 		return ret;
7606 	}
7607 
7608 	/* Report! */
7609 	pr_info("finished\n");
7610 	for_each_online_cpu(cpu) {
7611 		struct ring_buffer_event *event;
7612 		struct rb_test_data *data = &rb_data[cpu];
7613 		struct rb_item *item;
7614 		unsigned long total_events;
7615 		unsigned long total_dropped;
7616 		unsigned long total_written;
7617 		unsigned long total_alloc;
7618 		unsigned long total_read = 0;
7619 		unsigned long total_size = 0;
7620 		unsigned long total_len = 0;
7621 		unsigned long total_lost = 0;
7622 		unsigned long lost;
7623 		int big_event_size;
7624 		int small_event_size;
7625 
7626 		ret = -1;
7627 
7628 		total_events = data->events + data->events_nested;
7629 		total_written = data->bytes_written + data->bytes_written_nested;
7630 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7631 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7632 
7633 		big_event_size = data->max_size + data->max_size_nested;
7634 		small_event_size = data->min_size + data->min_size_nested;
7635 
7636 		pr_info("CPU %d:\n", cpu);
7637 		pr_info("              events:    %ld\n", total_events);
7638 		pr_info("       dropped bytes:    %ld\n", total_dropped);
7639 		pr_info("       alloced bytes:    %ld\n", total_alloc);
7640 		pr_info("       written bytes:    %ld\n", total_written);
7641 		pr_info("       biggest event:    %d\n", big_event_size);
7642 		pr_info("      smallest event:    %d\n", small_event_size);
7643 
7644 		if (RB_WARN_ON(buffer, total_dropped))
7645 			break;
7646 
7647 		ret = 0;
7648 
7649 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7650 			total_lost += lost;
7651 			item = ring_buffer_event_data(event);
7652 			total_len += ring_buffer_event_length(event);
7653 			total_size += item->size + sizeof(struct rb_item);
7654 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7655 				pr_info("FAILED!\n");
7656 				pr_info("buffer had: %.*s\n", item->size, item->str);
7657 				pr_info("expected:   %.*s\n", item->size, rb_string);
7658 				RB_WARN_ON(buffer, 1);
7659 				ret = -1;
7660 				break;
7661 			}
7662 			total_read++;
7663 		}
7664 		if (ret)
7665 			break;
7666 
7667 		ret = -1;
7668 
7669 		pr_info("         read events:   %ld\n", total_read);
7670 		pr_info("         lost events:   %ld\n", total_lost);
7671 		pr_info("        total events:   %ld\n", total_lost + total_read);
7672 		pr_info("  recorded len bytes:   %ld\n", total_len);
7673 		pr_info(" recorded size bytes:   %ld\n", total_size);
7674 		if (total_lost) {
7675 			pr_info(" With dropped events, record len and size may not match\n"
7676 				" alloced and written from above\n");
7677 		} else {
7678 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
7679 				       total_size != total_written))
7680 				break;
7681 		}
7682 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7683 			break;
7684 
7685 		ret = 0;
7686 	}
7687 	if (!ret)
7688 		pr_info("Ring buffer PASSED!\n");
7689 
7690 	ring_buffer_free(buffer);
7691 	return 0;
7692 }
7693 
7694 late_initcall(test_ringbuffer);
7695 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7696