xref: /linux-6.15/kernel/trace/ring_buffer.c (revision a115bc07)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <[email protected]>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22 
23 #include <asm/local.h>
24 #include "trace.h"
25 
26 /*
27  * The ring buffer header is special. We must manually up keep it.
28  */
29 int ring_buffer_print_entry_header(struct trace_seq *s)
30 {
31 	int ret;
32 
33 	ret = trace_seq_printf(s, "# compressed entry header\n");
34 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
35 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
36 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
37 	ret = trace_seq_printf(s, "\n");
38 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
39 			       RINGBUF_TYPE_PADDING);
40 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
41 			       RINGBUF_TYPE_TIME_EXTEND);
42 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
43 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
44 
45 	return ret;
46 }
47 
48 /*
49  * The ring buffer is made up of a list of pages. A separate list of pages is
50  * allocated for each CPU. A writer may only write to a buffer that is
51  * associated with the CPU it is currently executing on.  A reader may read
52  * from any per cpu buffer.
53  *
54  * The reader is special. For each per cpu buffer, the reader has its own
55  * reader page. When a reader has read the entire reader page, this reader
56  * page is swapped with another page in the ring buffer.
57  *
58  * Now, as long as the writer is off the reader page, the reader can do what
59  * ever it wants with that page. The writer will never write to that page
60  * again (as long as it is out of the ring buffer).
61  *
62  * Here's some silly ASCII art.
63  *
64  *   +------+
65  *   |reader|          RING BUFFER
66  *   |page  |
67  *   +------+        +---+   +---+   +---+
68  *                   |   |-->|   |-->|   |
69  *                   +---+   +---+   +---+
70  *                     ^               |
71  *                     |               |
72  *                     +---------------+
73  *
74  *
75  *   +------+
76  *   |reader|          RING BUFFER
77  *   |page  |------------------v
78  *   +------+        +---+   +---+   +---+
79  *                   |   |-->|   |-->|   |
80  *                   +---+   +---+   +---+
81  *                     ^               |
82  *                     |               |
83  *                     +---------------+
84  *
85  *
86  *   +------+
87  *   |reader|          RING BUFFER
88  *   |page  |------------------v
89  *   +------+        +---+   +---+   +---+
90  *      ^            |   |-->|   |-->|   |
91  *      |            +---+   +---+   +---+
92  *      |                              |
93  *      |                              |
94  *      +------------------------------+
95  *
96  *
97  *   +------+
98  *   |buffer|          RING BUFFER
99  *   |page  |------------------v
100  *   +------+        +---+   +---+   +---+
101  *      ^            |   |   |   |-->|   |
102  *      |   New      +---+   +---+   +---+
103  *      |  Reader------^               |
104  *      |   page                       |
105  *      +------------------------------+
106  *
107  *
108  * After we make this swap, the reader can hand this page off to the splice
109  * code and be done with it. It can even allocate a new page if it needs to
110  * and swap that into the ring buffer.
111  *
112  * We will be using cmpxchg soon to make all this lockless.
113  *
114  */
115 
116 /*
117  * A fast way to enable or disable all ring buffers is to
118  * call tracing_on or tracing_off. Turning off the ring buffers
119  * prevents all ring buffers from being recorded to.
120  * Turning this switch on, makes it OK to write to the
121  * ring buffer, if the ring buffer is enabled itself.
122  *
123  * There's three layers that must be on in order to write
124  * to the ring buffer.
125  *
126  * 1) This global flag must be set.
127  * 2) The ring buffer must be enabled for recording.
128  * 3) The per cpu buffer must be enabled for recording.
129  *
130  * In case of an anomaly, this global flag has a bit set that
131  * will permantly disable all ring buffers.
132  */
133 
134 /*
135  * Global flag to disable all recording to ring buffers
136  *  This has two bits: ON, DISABLED
137  *
138  *  ON   DISABLED
139  * ---- ----------
140  *   0      0        : ring buffers are off
141  *   1      0        : ring buffers are on
142  *   X      1        : ring buffers are permanently disabled
143  */
144 
145 enum {
146 	RB_BUFFERS_ON_BIT	= 0,
147 	RB_BUFFERS_DISABLED_BIT	= 1,
148 };
149 
150 enum {
151 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
152 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
153 };
154 
155 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
156 
157 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
158 
159 /**
160  * tracing_on - enable all tracing buffers
161  *
162  * This function enables all tracing buffers that may have been
163  * disabled with tracing_off.
164  */
165 void tracing_on(void)
166 {
167 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
168 }
169 EXPORT_SYMBOL_GPL(tracing_on);
170 
171 /**
172  * tracing_off - turn off all tracing buffers
173  *
174  * This function stops all tracing buffers from recording data.
175  * It does not disable any overhead the tracers themselves may
176  * be causing. This function simply causes all recording to
177  * the ring buffers to fail.
178  */
179 void tracing_off(void)
180 {
181 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
182 }
183 EXPORT_SYMBOL_GPL(tracing_off);
184 
185 /**
186  * tracing_off_permanent - permanently disable ring buffers
187  *
188  * This function, once called, will disable all ring buffers
189  * permanently.
190  */
191 void tracing_off_permanent(void)
192 {
193 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
194 }
195 
196 /**
197  * tracing_is_on - show state of ring buffers enabled
198  */
199 int tracing_is_on(void)
200 {
201 	return ring_buffer_flags == RB_BUFFERS_ON;
202 }
203 EXPORT_SYMBOL_GPL(tracing_is_on);
204 
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT		4U
207 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
209 
210 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
211 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
212 
213 enum {
214 	RB_LEN_TIME_EXTEND = 8,
215 	RB_LEN_TIME_STAMP = 16,
216 };
217 
218 static inline int rb_null_event(struct ring_buffer_event *event)
219 {
220 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
221 }
222 
223 static void rb_event_set_padding(struct ring_buffer_event *event)
224 {
225 	/* padding has a NULL time_delta */
226 	event->type_len = RINGBUF_TYPE_PADDING;
227 	event->time_delta = 0;
228 }
229 
230 static unsigned
231 rb_event_data_length(struct ring_buffer_event *event)
232 {
233 	unsigned length;
234 
235 	if (event->type_len)
236 		length = event->type_len * RB_ALIGNMENT;
237 	else
238 		length = event->array[0];
239 	return length + RB_EVNT_HDR_SIZE;
240 }
241 
242 /* inline for ring buffer fast paths */
243 static unsigned
244 rb_event_length(struct ring_buffer_event *event)
245 {
246 	switch (event->type_len) {
247 	case RINGBUF_TYPE_PADDING:
248 		if (rb_null_event(event))
249 			/* undefined */
250 			return -1;
251 		return  event->array[0] + RB_EVNT_HDR_SIZE;
252 
253 	case RINGBUF_TYPE_TIME_EXTEND:
254 		return RB_LEN_TIME_EXTEND;
255 
256 	case RINGBUF_TYPE_TIME_STAMP:
257 		return RB_LEN_TIME_STAMP;
258 
259 	case RINGBUF_TYPE_DATA:
260 		return rb_event_data_length(event);
261 	default:
262 		BUG();
263 	}
264 	/* not hit */
265 	return 0;
266 }
267 
268 /**
269  * ring_buffer_event_length - return the length of the event
270  * @event: the event to get the length of
271  */
272 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
273 {
274 	unsigned length = rb_event_length(event);
275 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
276 		return length;
277 	length -= RB_EVNT_HDR_SIZE;
278 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
279                 length -= sizeof(event->array[0]);
280 	return length;
281 }
282 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
283 
284 /* inline for ring buffer fast paths */
285 static void *
286 rb_event_data(struct ring_buffer_event *event)
287 {
288 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
289 	/* If length is in len field, then array[0] has the data */
290 	if (event->type_len)
291 		return (void *)&event->array[0];
292 	/* Otherwise length is in array[0] and array[1] has the data */
293 	return (void *)&event->array[1];
294 }
295 
296 /**
297  * ring_buffer_event_data - return the data of the event
298  * @event: the event to get the data from
299  */
300 void *ring_buffer_event_data(struct ring_buffer_event *event)
301 {
302 	return rb_event_data(event);
303 }
304 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
305 
306 #define for_each_buffer_cpu(buffer, cpu)		\
307 	for_each_cpu(cpu, buffer->cpumask)
308 
309 #define TS_SHIFT	27
310 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
311 #define TS_DELTA_TEST	(~TS_MASK)
312 
313 struct buffer_data_page {
314 	u64		 time_stamp;	/* page time stamp */
315 	local_t		 commit;	/* write committed index */
316 	unsigned char	 data[];	/* data of buffer page */
317 };
318 
319 /*
320  * Note, the buffer_page list must be first. The buffer pages
321  * are allocated in cache lines, which means that each buffer
322  * page will be at the beginning of a cache line, and thus
323  * the least significant bits will be zero. We use this to
324  * add flags in the list struct pointers, to make the ring buffer
325  * lockless.
326  */
327 struct buffer_page {
328 	struct list_head list;		/* list of buffer pages */
329 	local_t		 write;		/* index for next write */
330 	unsigned	 read;		/* index for next read */
331 	local_t		 entries;	/* entries on this page */
332 	struct buffer_data_page *page;	/* Actual data page */
333 };
334 
335 /*
336  * The buffer page counters, write and entries, must be reset
337  * atomically when crossing page boundaries. To synchronize this
338  * update, two counters are inserted into the number. One is
339  * the actual counter for the write position or count on the page.
340  *
341  * The other is a counter of updaters. Before an update happens
342  * the update partition of the counter is incremented. This will
343  * allow the updater to update the counter atomically.
344  *
345  * The counter is 20 bits, and the state data is 12.
346  */
347 #define RB_WRITE_MASK		0xfffff
348 #define RB_WRITE_INTCNT		(1 << 20)
349 
350 static void rb_init_page(struct buffer_data_page *bpage)
351 {
352 	local_set(&bpage->commit, 0);
353 }
354 
355 /**
356  * ring_buffer_page_len - the size of data on the page.
357  * @page: The page to read
358  *
359  * Returns the amount of data on the page, including buffer page header.
360  */
361 size_t ring_buffer_page_len(void *page)
362 {
363 	return local_read(&((struct buffer_data_page *)page)->commit)
364 		+ BUF_PAGE_HDR_SIZE;
365 }
366 
367 /*
368  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
369  * this issue out.
370  */
371 static void free_buffer_page(struct buffer_page *bpage)
372 {
373 	free_page((unsigned long)bpage->page);
374 	kfree(bpage);
375 }
376 
377 /*
378  * We need to fit the time_stamp delta into 27 bits.
379  */
380 static inline int test_time_stamp(u64 delta)
381 {
382 	if (delta & TS_DELTA_TEST)
383 		return 1;
384 	return 0;
385 }
386 
387 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
388 
389 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
390 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
391 
392 /* Max number of timestamps that can fit on a page */
393 #define RB_TIMESTAMPS_PER_PAGE	(BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
394 
395 int ring_buffer_print_page_header(struct trace_seq *s)
396 {
397 	struct buffer_data_page field;
398 	int ret;
399 
400 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
401 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
402 			       (unsigned int)sizeof(field.time_stamp),
403 			       (unsigned int)is_signed_type(u64));
404 
405 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
406 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
407 			       (unsigned int)offsetof(typeof(field), commit),
408 			       (unsigned int)sizeof(field.commit),
409 			       (unsigned int)is_signed_type(long));
410 
411 	ret = trace_seq_printf(s, "\tfield: char data;\t"
412 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
413 			       (unsigned int)offsetof(typeof(field), data),
414 			       (unsigned int)BUF_PAGE_SIZE,
415 			       (unsigned int)is_signed_type(char));
416 
417 	return ret;
418 }
419 
420 /*
421  * head_page == tail_page && head == tail then buffer is empty.
422  */
423 struct ring_buffer_per_cpu {
424 	int				cpu;
425 	struct ring_buffer		*buffer;
426 	spinlock_t			reader_lock;	/* serialize readers */
427 	arch_spinlock_t			lock;
428 	struct lock_class_key		lock_key;
429 	struct list_head		*pages;
430 	struct buffer_page		*head_page;	/* read from head */
431 	struct buffer_page		*tail_page;	/* write to tail */
432 	struct buffer_page		*commit_page;	/* committed pages */
433 	struct buffer_page		*reader_page;
434 	local_t				commit_overrun;
435 	local_t				overrun;
436 	local_t				entries;
437 	local_t				committing;
438 	local_t				commits;
439 	unsigned long			read;
440 	u64				write_stamp;
441 	u64				read_stamp;
442 	atomic_t			record_disabled;
443 };
444 
445 struct ring_buffer {
446 	unsigned			pages;
447 	unsigned			flags;
448 	int				cpus;
449 	atomic_t			record_disabled;
450 	cpumask_var_t			cpumask;
451 
452 	struct lock_class_key		*reader_lock_key;
453 
454 	struct mutex			mutex;
455 
456 	struct ring_buffer_per_cpu	**buffers;
457 
458 #ifdef CONFIG_HOTPLUG_CPU
459 	struct notifier_block		cpu_notify;
460 #endif
461 	u64				(*clock)(void);
462 };
463 
464 struct ring_buffer_iter {
465 	struct ring_buffer_per_cpu	*cpu_buffer;
466 	unsigned long			head;
467 	struct buffer_page		*head_page;
468 	struct buffer_page		*cache_reader_page;
469 	unsigned long			cache_read;
470 	u64				read_stamp;
471 };
472 
473 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
474 #define RB_WARN_ON(b, cond)						\
475 	({								\
476 		int _____ret = unlikely(cond);				\
477 		if (_____ret) {						\
478 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
479 				struct ring_buffer_per_cpu *__b =	\
480 					(void *)b;			\
481 				atomic_inc(&__b->buffer->record_disabled); \
482 			} else						\
483 				atomic_inc(&b->record_disabled);	\
484 			WARN_ON(1);					\
485 		}							\
486 		_____ret;						\
487 	})
488 
489 /* Up this if you want to test the TIME_EXTENTS and normalization */
490 #define DEBUG_SHIFT 0
491 
492 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
493 {
494 	/* shift to debug/test normalization and TIME_EXTENTS */
495 	return buffer->clock() << DEBUG_SHIFT;
496 }
497 
498 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
499 {
500 	u64 time;
501 
502 	preempt_disable_notrace();
503 	time = rb_time_stamp(buffer);
504 	preempt_enable_no_resched_notrace();
505 
506 	return time;
507 }
508 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
509 
510 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
511 				      int cpu, u64 *ts)
512 {
513 	/* Just stupid testing the normalize function and deltas */
514 	*ts >>= DEBUG_SHIFT;
515 }
516 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
517 
518 /*
519  * Making the ring buffer lockless makes things tricky.
520  * Although writes only happen on the CPU that they are on,
521  * and they only need to worry about interrupts. Reads can
522  * happen on any CPU.
523  *
524  * The reader page is always off the ring buffer, but when the
525  * reader finishes with a page, it needs to swap its page with
526  * a new one from the buffer. The reader needs to take from
527  * the head (writes go to the tail). But if a writer is in overwrite
528  * mode and wraps, it must push the head page forward.
529  *
530  * Here lies the problem.
531  *
532  * The reader must be careful to replace only the head page, and
533  * not another one. As described at the top of the file in the
534  * ASCII art, the reader sets its old page to point to the next
535  * page after head. It then sets the page after head to point to
536  * the old reader page. But if the writer moves the head page
537  * during this operation, the reader could end up with the tail.
538  *
539  * We use cmpxchg to help prevent this race. We also do something
540  * special with the page before head. We set the LSB to 1.
541  *
542  * When the writer must push the page forward, it will clear the
543  * bit that points to the head page, move the head, and then set
544  * the bit that points to the new head page.
545  *
546  * We also don't want an interrupt coming in and moving the head
547  * page on another writer. Thus we use the second LSB to catch
548  * that too. Thus:
549  *
550  * head->list->prev->next        bit 1          bit 0
551  *                              -------        -------
552  * Normal page                     0              0
553  * Points to head page             0              1
554  * New head page                   1              0
555  *
556  * Note we can not trust the prev pointer of the head page, because:
557  *
558  * +----+       +-----+        +-----+
559  * |    |------>|  T  |---X--->|  N  |
560  * |    |<------|     |        |     |
561  * +----+       +-----+        +-----+
562  *   ^                           ^ |
563  *   |          +-----+          | |
564  *   +----------|  R  |----------+ |
565  *              |     |<-----------+
566  *              +-----+
567  *
568  * Key:  ---X-->  HEAD flag set in pointer
569  *         T      Tail page
570  *         R      Reader page
571  *         N      Next page
572  *
573  * (see __rb_reserve_next() to see where this happens)
574  *
575  *  What the above shows is that the reader just swapped out
576  *  the reader page with a page in the buffer, but before it
577  *  could make the new header point back to the new page added
578  *  it was preempted by a writer. The writer moved forward onto
579  *  the new page added by the reader and is about to move forward
580  *  again.
581  *
582  *  You can see, it is legitimate for the previous pointer of
583  *  the head (or any page) not to point back to itself. But only
584  *  temporarially.
585  */
586 
587 #define RB_PAGE_NORMAL		0UL
588 #define RB_PAGE_HEAD		1UL
589 #define RB_PAGE_UPDATE		2UL
590 
591 
592 #define RB_FLAG_MASK		3UL
593 
594 /* PAGE_MOVED is not part of the mask */
595 #define RB_PAGE_MOVED		4UL
596 
597 /*
598  * rb_list_head - remove any bit
599  */
600 static struct list_head *rb_list_head(struct list_head *list)
601 {
602 	unsigned long val = (unsigned long)list;
603 
604 	return (struct list_head *)(val & ~RB_FLAG_MASK);
605 }
606 
607 /*
608  * rb_is_head_page - test if the given page is the head page
609  *
610  * Because the reader may move the head_page pointer, we can
611  * not trust what the head page is (it may be pointing to
612  * the reader page). But if the next page is a header page,
613  * its flags will be non zero.
614  */
615 static int inline
616 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
617 		struct buffer_page *page, struct list_head *list)
618 {
619 	unsigned long val;
620 
621 	val = (unsigned long)list->next;
622 
623 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
624 		return RB_PAGE_MOVED;
625 
626 	return val & RB_FLAG_MASK;
627 }
628 
629 /*
630  * rb_is_reader_page
631  *
632  * The unique thing about the reader page, is that, if the
633  * writer is ever on it, the previous pointer never points
634  * back to the reader page.
635  */
636 static int rb_is_reader_page(struct buffer_page *page)
637 {
638 	struct list_head *list = page->list.prev;
639 
640 	return rb_list_head(list->next) != &page->list;
641 }
642 
643 /*
644  * rb_set_list_to_head - set a list_head to be pointing to head.
645  */
646 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
647 				struct list_head *list)
648 {
649 	unsigned long *ptr;
650 
651 	ptr = (unsigned long *)&list->next;
652 	*ptr |= RB_PAGE_HEAD;
653 	*ptr &= ~RB_PAGE_UPDATE;
654 }
655 
656 /*
657  * rb_head_page_activate - sets up head page
658  */
659 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
660 {
661 	struct buffer_page *head;
662 
663 	head = cpu_buffer->head_page;
664 	if (!head)
665 		return;
666 
667 	/*
668 	 * Set the previous list pointer to have the HEAD flag.
669 	 */
670 	rb_set_list_to_head(cpu_buffer, head->list.prev);
671 }
672 
673 static void rb_list_head_clear(struct list_head *list)
674 {
675 	unsigned long *ptr = (unsigned long *)&list->next;
676 
677 	*ptr &= ~RB_FLAG_MASK;
678 }
679 
680 /*
681  * rb_head_page_dactivate - clears head page ptr (for free list)
682  */
683 static void
684 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
685 {
686 	struct list_head *hd;
687 
688 	/* Go through the whole list and clear any pointers found. */
689 	rb_list_head_clear(cpu_buffer->pages);
690 
691 	list_for_each(hd, cpu_buffer->pages)
692 		rb_list_head_clear(hd);
693 }
694 
695 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
696 			    struct buffer_page *head,
697 			    struct buffer_page *prev,
698 			    int old_flag, int new_flag)
699 {
700 	struct list_head *list;
701 	unsigned long val = (unsigned long)&head->list;
702 	unsigned long ret;
703 
704 	list = &prev->list;
705 
706 	val &= ~RB_FLAG_MASK;
707 
708 	ret = cmpxchg((unsigned long *)&list->next,
709 		      val | old_flag, val | new_flag);
710 
711 	/* check if the reader took the page */
712 	if ((ret & ~RB_FLAG_MASK) != val)
713 		return RB_PAGE_MOVED;
714 
715 	return ret & RB_FLAG_MASK;
716 }
717 
718 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
719 				   struct buffer_page *head,
720 				   struct buffer_page *prev,
721 				   int old_flag)
722 {
723 	return rb_head_page_set(cpu_buffer, head, prev,
724 				old_flag, RB_PAGE_UPDATE);
725 }
726 
727 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
728 				 struct buffer_page *head,
729 				 struct buffer_page *prev,
730 				 int old_flag)
731 {
732 	return rb_head_page_set(cpu_buffer, head, prev,
733 				old_flag, RB_PAGE_HEAD);
734 }
735 
736 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
737 				   struct buffer_page *head,
738 				   struct buffer_page *prev,
739 				   int old_flag)
740 {
741 	return rb_head_page_set(cpu_buffer, head, prev,
742 				old_flag, RB_PAGE_NORMAL);
743 }
744 
745 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
746 			       struct buffer_page **bpage)
747 {
748 	struct list_head *p = rb_list_head((*bpage)->list.next);
749 
750 	*bpage = list_entry(p, struct buffer_page, list);
751 }
752 
753 static struct buffer_page *
754 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
755 {
756 	struct buffer_page *head;
757 	struct buffer_page *page;
758 	struct list_head *list;
759 	int i;
760 
761 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
762 		return NULL;
763 
764 	/* sanity check */
765 	list = cpu_buffer->pages;
766 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
767 		return NULL;
768 
769 	page = head = cpu_buffer->head_page;
770 	/*
771 	 * It is possible that the writer moves the header behind
772 	 * where we started, and we miss in one loop.
773 	 * A second loop should grab the header, but we'll do
774 	 * three loops just because I'm paranoid.
775 	 */
776 	for (i = 0; i < 3; i++) {
777 		do {
778 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
779 				cpu_buffer->head_page = page;
780 				return page;
781 			}
782 			rb_inc_page(cpu_buffer, &page);
783 		} while (page != head);
784 	}
785 
786 	RB_WARN_ON(cpu_buffer, 1);
787 
788 	return NULL;
789 }
790 
791 static int rb_head_page_replace(struct buffer_page *old,
792 				struct buffer_page *new)
793 {
794 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
795 	unsigned long val;
796 	unsigned long ret;
797 
798 	val = *ptr & ~RB_FLAG_MASK;
799 	val |= RB_PAGE_HEAD;
800 
801 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
802 
803 	return ret == val;
804 }
805 
806 /*
807  * rb_tail_page_update - move the tail page forward
808  *
809  * Returns 1 if moved tail page, 0 if someone else did.
810  */
811 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
812 			       struct buffer_page *tail_page,
813 			       struct buffer_page *next_page)
814 {
815 	struct buffer_page *old_tail;
816 	unsigned long old_entries;
817 	unsigned long old_write;
818 	int ret = 0;
819 
820 	/*
821 	 * The tail page now needs to be moved forward.
822 	 *
823 	 * We need to reset the tail page, but without messing
824 	 * with possible erasing of data brought in by interrupts
825 	 * that have moved the tail page and are currently on it.
826 	 *
827 	 * We add a counter to the write field to denote this.
828 	 */
829 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
830 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
831 
832 	/*
833 	 * Just make sure we have seen our old_write and synchronize
834 	 * with any interrupts that come in.
835 	 */
836 	barrier();
837 
838 	/*
839 	 * If the tail page is still the same as what we think
840 	 * it is, then it is up to us to update the tail
841 	 * pointer.
842 	 */
843 	if (tail_page == cpu_buffer->tail_page) {
844 		/* Zero the write counter */
845 		unsigned long val = old_write & ~RB_WRITE_MASK;
846 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
847 
848 		/*
849 		 * This will only succeed if an interrupt did
850 		 * not come in and change it. In which case, we
851 		 * do not want to modify it.
852 		 *
853 		 * We add (void) to let the compiler know that we do not care
854 		 * about the return value of these functions. We use the
855 		 * cmpxchg to only update if an interrupt did not already
856 		 * do it for us. If the cmpxchg fails, we don't care.
857 		 */
858 		(void)local_cmpxchg(&next_page->write, old_write, val);
859 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
860 
861 		/*
862 		 * No need to worry about races with clearing out the commit.
863 		 * it only can increment when a commit takes place. But that
864 		 * only happens in the outer most nested commit.
865 		 */
866 		local_set(&next_page->page->commit, 0);
867 
868 		old_tail = cmpxchg(&cpu_buffer->tail_page,
869 				   tail_page, next_page);
870 
871 		if (old_tail == tail_page)
872 			ret = 1;
873 	}
874 
875 	return ret;
876 }
877 
878 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
879 			  struct buffer_page *bpage)
880 {
881 	unsigned long val = (unsigned long)bpage;
882 
883 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
884 		return 1;
885 
886 	return 0;
887 }
888 
889 /**
890  * rb_check_list - make sure a pointer to a list has the last bits zero
891  */
892 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
893 			 struct list_head *list)
894 {
895 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
896 		return 1;
897 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
898 		return 1;
899 	return 0;
900 }
901 
902 /**
903  * check_pages - integrity check of buffer pages
904  * @cpu_buffer: CPU buffer with pages to test
905  *
906  * As a safety measure we check to make sure the data pages have not
907  * been corrupted.
908  */
909 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
910 {
911 	struct list_head *head = cpu_buffer->pages;
912 	struct buffer_page *bpage, *tmp;
913 
914 	rb_head_page_deactivate(cpu_buffer);
915 
916 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
917 		return -1;
918 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
919 		return -1;
920 
921 	if (rb_check_list(cpu_buffer, head))
922 		return -1;
923 
924 	list_for_each_entry_safe(bpage, tmp, head, list) {
925 		if (RB_WARN_ON(cpu_buffer,
926 			       bpage->list.next->prev != &bpage->list))
927 			return -1;
928 		if (RB_WARN_ON(cpu_buffer,
929 			       bpage->list.prev->next != &bpage->list))
930 			return -1;
931 		if (rb_check_list(cpu_buffer, &bpage->list))
932 			return -1;
933 	}
934 
935 	rb_head_page_activate(cpu_buffer);
936 
937 	return 0;
938 }
939 
940 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
941 			     unsigned nr_pages)
942 {
943 	struct buffer_page *bpage, *tmp;
944 	unsigned long addr;
945 	LIST_HEAD(pages);
946 	unsigned i;
947 
948 	WARN_ON(!nr_pages);
949 
950 	for (i = 0; i < nr_pages; i++) {
951 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
952 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
953 		if (!bpage)
954 			goto free_pages;
955 
956 		rb_check_bpage(cpu_buffer, bpage);
957 
958 		list_add(&bpage->list, &pages);
959 
960 		addr = __get_free_page(GFP_KERNEL);
961 		if (!addr)
962 			goto free_pages;
963 		bpage->page = (void *)addr;
964 		rb_init_page(bpage->page);
965 	}
966 
967 	/*
968 	 * The ring buffer page list is a circular list that does not
969 	 * start and end with a list head. All page list items point to
970 	 * other pages.
971 	 */
972 	cpu_buffer->pages = pages.next;
973 	list_del(&pages);
974 
975 	rb_check_pages(cpu_buffer);
976 
977 	return 0;
978 
979  free_pages:
980 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
981 		list_del_init(&bpage->list);
982 		free_buffer_page(bpage);
983 	}
984 	return -ENOMEM;
985 }
986 
987 static struct ring_buffer_per_cpu *
988 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
989 {
990 	struct ring_buffer_per_cpu *cpu_buffer;
991 	struct buffer_page *bpage;
992 	unsigned long addr;
993 	int ret;
994 
995 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
996 				  GFP_KERNEL, cpu_to_node(cpu));
997 	if (!cpu_buffer)
998 		return NULL;
999 
1000 	cpu_buffer->cpu = cpu;
1001 	cpu_buffer->buffer = buffer;
1002 	spin_lock_init(&cpu_buffer->reader_lock);
1003 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1004 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1005 
1006 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1007 			    GFP_KERNEL, cpu_to_node(cpu));
1008 	if (!bpage)
1009 		goto fail_free_buffer;
1010 
1011 	rb_check_bpage(cpu_buffer, bpage);
1012 
1013 	cpu_buffer->reader_page = bpage;
1014 	addr = __get_free_page(GFP_KERNEL);
1015 	if (!addr)
1016 		goto fail_free_reader;
1017 	bpage->page = (void *)addr;
1018 	rb_init_page(bpage->page);
1019 
1020 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1021 
1022 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1023 	if (ret < 0)
1024 		goto fail_free_reader;
1025 
1026 	cpu_buffer->head_page
1027 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1028 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1029 
1030 	rb_head_page_activate(cpu_buffer);
1031 
1032 	return cpu_buffer;
1033 
1034  fail_free_reader:
1035 	free_buffer_page(cpu_buffer->reader_page);
1036 
1037  fail_free_buffer:
1038 	kfree(cpu_buffer);
1039 	return NULL;
1040 }
1041 
1042 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1043 {
1044 	struct list_head *head = cpu_buffer->pages;
1045 	struct buffer_page *bpage, *tmp;
1046 
1047 	free_buffer_page(cpu_buffer->reader_page);
1048 
1049 	rb_head_page_deactivate(cpu_buffer);
1050 
1051 	if (head) {
1052 		list_for_each_entry_safe(bpage, tmp, head, list) {
1053 			list_del_init(&bpage->list);
1054 			free_buffer_page(bpage);
1055 		}
1056 		bpage = list_entry(head, struct buffer_page, list);
1057 		free_buffer_page(bpage);
1058 	}
1059 
1060 	kfree(cpu_buffer);
1061 }
1062 
1063 #ifdef CONFIG_HOTPLUG_CPU
1064 static int rb_cpu_notify(struct notifier_block *self,
1065 			 unsigned long action, void *hcpu);
1066 #endif
1067 
1068 /**
1069  * ring_buffer_alloc - allocate a new ring_buffer
1070  * @size: the size in bytes per cpu that is needed.
1071  * @flags: attributes to set for the ring buffer.
1072  *
1073  * Currently the only flag that is available is the RB_FL_OVERWRITE
1074  * flag. This flag means that the buffer will overwrite old data
1075  * when the buffer wraps. If this flag is not set, the buffer will
1076  * drop data when the tail hits the head.
1077  */
1078 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1079 					struct lock_class_key *key)
1080 {
1081 	struct ring_buffer *buffer;
1082 	int bsize;
1083 	int cpu;
1084 
1085 	/* keep it in its own cache line */
1086 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1087 			 GFP_KERNEL);
1088 	if (!buffer)
1089 		return NULL;
1090 
1091 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1092 		goto fail_free_buffer;
1093 
1094 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1095 	buffer->flags = flags;
1096 	buffer->clock = trace_clock_local;
1097 	buffer->reader_lock_key = key;
1098 
1099 	/* need at least two pages */
1100 	if (buffer->pages < 2)
1101 		buffer->pages = 2;
1102 
1103 	/*
1104 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1105 	 * in early initcall, it will not be notified of secondary cpus.
1106 	 * In that off case, we need to allocate for all possible cpus.
1107 	 */
1108 #ifdef CONFIG_HOTPLUG_CPU
1109 	get_online_cpus();
1110 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1111 #else
1112 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1113 #endif
1114 	buffer->cpus = nr_cpu_ids;
1115 
1116 	bsize = sizeof(void *) * nr_cpu_ids;
1117 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1118 				  GFP_KERNEL);
1119 	if (!buffer->buffers)
1120 		goto fail_free_cpumask;
1121 
1122 	for_each_buffer_cpu(buffer, cpu) {
1123 		buffer->buffers[cpu] =
1124 			rb_allocate_cpu_buffer(buffer, cpu);
1125 		if (!buffer->buffers[cpu])
1126 			goto fail_free_buffers;
1127 	}
1128 
1129 #ifdef CONFIG_HOTPLUG_CPU
1130 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1131 	buffer->cpu_notify.priority = 0;
1132 	register_cpu_notifier(&buffer->cpu_notify);
1133 #endif
1134 
1135 	put_online_cpus();
1136 	mutex_init(&buffer->mutex);
1137 
1138 	return buffer;
1139 
1140  fail_free_buffers:
1141 	for_each_buffer_cpu(buffer, cpu) {
1142 		if (buffer->buffers[cpu])
1143 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1144 	}
1145 	kfree(buffer->buffers);
1146 
1147  fail_free_cpumask:
1148 	free_cpumask_var(buffer->cpumask);
1149 	put_online_cpus();
1150 
1151  fail_free_buffer:
1152 	kfree(buffer);
1153 	return NULL;
1154 }
1155 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1156 
1157 /**
1158  * ring_buffer_free - free a ring buffer.
1159  * @buffer: the buffer to free.
1160  */
1161 void
1162 ring_buffer_free(struct ring_buffer *buffer)
1163 {
1164 	int cpu;
1165 
1166 	get_online_cpus();
1167 
1168 #ifdef CONFIG_HOTPLUG_CPU
1169 	unregister_cpu_notifier(&buffer->cpu_notify);
1170 #endif
1171 
1172 	for_each_buffer_cpu(buffer, cpu)
1173 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1174 
1175 	put_online_cpus();
1176 
1177 	kfree(buffer->buffers);
1178 	free_cpumask_var(buffer->cpumask);
1179 
1180 	kfree(buffer);
1181 }
1182 EXPORT_SYMBOL_GPL(ring_buffer_free);
1183 
1184 void ring_buffer_set_clock(struct ring_buffer *buffer,
1185 			   u64 (*clock)(void))
1186 {
1187 	buffer->clock = clock;
1188 }
1189 
1190 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1191 
1192 static void
1193 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1194 {
1195 	struct buffer_page *bpage;
1196 	struct list_head *p;
1197 	unsigned i;
1198 
1199 	spin_lock_irq(&cpu_buffer->reader_lock);
1200 	rb_head_page_deactivate(cpu_buffer);
1201 
1202 	for (i = 0; i < nr_pages; i++) {
1203 		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1204 			return;
1205 		p = cpu_buffer->pages->next;
1206 		bpage = list_entry(p, struct buffer_page, list);
1207 		list_del_init(&bpage->list);
1208 		free_buffer_page(bpage);
1209 	}
1210 	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1211 		return;
1212 
1213 	rb_reset_cpu(cpu_buffer);
1214 	rb_check_pages(cpu_buffer);
1215 
1216 	spin_unlock_irq(&cpu_buffer->reader_lock);
1217 }
1218 
1219 static void
1220 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1221 		struct list_head *pages, unsigned nr_pages)
1222 {
1223 	struct buffer_page *bpage;
1224 	struct list_head *p;
1225 	unsigned i;
1226 
1227 	spin_lock_irq(&cpu_buffer->reader_lock);
1228 	rb_head_page_deactivate(cpu_buffer);
1229 
1230 	for (i = 0; i < nr_pages; i++) {
1231 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1232 			return;
1233 		p = pages->next;
1234 		bpage = list_entry(p, struct buffer_page, list);
1235 		list_del_init(&bpage->list);
1236 		list_add_tail(&bpage->list, cpu_buffer->pages);
1237 	}
1238 	rb_reset_cpu(cpu_buffer);
1239 	rb_check_pages(cpu_buffer);
1240 
1241 	spin_unlock_irq(&cpu_buffer->reader_lock);
1242 }
1243 
1244 /**
1245  * ring_buffer_resize - resize the ring buffer
1246  * @buffer: the buffer to resize.
1247  * @size: the new size.
1248  *
1249  * Minimum size is 2 * BUF_PAGE_SIZE.
1250  *
1251  * Returns -1 on failure.
1252  */
1253 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1254 {
1255 	struct ring_buffer_per_cpu *cpu_buffer;
1256 	unsigned nr_pages, rm_pages, new_pages;
1257 	struct buffer_page *bpage, *tmp;
1258 	unsigned long buffer_size;
1259 	unsigned long addr;
1260 	LIST_HEAD(pages);
1261 	int i, cpu;
1262 
1263 	/*
1264 	 * Always succeed at resizing a non-existent buffer:
1265 	 */
1266 	if (!buffer)
1267 		return size;
1268 
1269 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1270 	size *= BUF_PAGE_SIZE;
1271 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
1272 
1273 	/* we need a minimum of two pages */
1274 	if (size < BUF_PAGE_SIZE * 2)
1275 		size = BUF_PAGE_SIZE * 2;
1276 
1277 	if (size == buffer_size)
1278 		return size;
1279 
1280 	atomic_inc(&buffer->record_disabled);
1281 
1282 	/* Make sure all writers are done with this buffer. */
1283 	synchronize_sched();
1284 
1285 	mutex_lock(&buffer->mutex);
1286 	get_online_cpus();
1287 
1288 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1289 
1290 	if (size < buffer_size) {
1291 
1292 		/* easy case, just free pages */
1293 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1294 			goto out_fail;
1295 
1296 		rm_pages = buffer->pages - nr_pages;
1297 
1298 		for_each_buffer_cpu(buffer, cpu) {
1299 			cpu_buffer = buffer->buffers[cpu];
1300 			rb_remove_pages(cpu_buffer, rm_pages);
1301 		}
1302 		goto out;
1303 	}
1304 
1305 	/*
1306 	 * This is a bit more difficult. We only want to add pages
1307 	 * when we can allocate enough for all CPUs. We do this
1308 	 * by allocating all the pages and storing them on a local
1309 	 * link list. If we succeed in our allocation, then we
1310 	 * add these pages to the cpu_buffers. Otherwise we just free
1311 	 * them all and return -ENOMEM;
1312 	 */
1313 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1314 		goto out_fail;
1315 
1316 	new_pages = nr_pages - buffer->pages;
1317 
1318 	for_each_buffer_cpu(buffer, cpu) {
1319 		for (i = 0; i < new_pages; i++) {
1320 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1321 						  cache_line_size()),
1322 					    GFP_KERNEL, cpu_to_node(cpu));
1323 			if (!bpage)
1324 				goto free_pages;
1325 			list_add(&bpage->list, &pages);
1326 			addr = __get_free_page(GFP_KERNEL);
1327 			if (!addr)
1328 				goto free_pages;
1329 			bpage->page = (void *)addr;
1330 			rb_init_page(bpage->page);
1331 		}
1332 	}
1333 
1334 	for_each_buffer_cpu(buffer, cpu) {
1335 		cpu_buffer = buffer->buffers[cpu];
1336 		rb_insert_pages(cpu_buffer, &pages, new_pages);
1337 	}
1338 
1339 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
1340 		goto out_fail;
1341 
1342  out:
1343 	buffer->pages = nr_pages;
1344 	put_online_cpus();
1345 	mutex_unlock(&buffer->mutex);
1346 
1347 	atomic_dec(&buffer->record_disabled);
1348 
1349 	return size;
1350 
1351  free_pages:
1352 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1353 		list_del_init(&bpage->list);
1354 		free_buffer_page(bpage);
1355 	}
1356 	put_online_cpus();
1357 	mutex_unlock(&buffer->mutex);
1358 	atomic_dec(&buffer->record_disabled);
1359 	return -ENOMEM;
1360 
1361 	/*
1362 	 * Something went totally wrong, and we are too paranoid
1363 	 * to even clean up the mess.
1364 	 */
1365  out_fail:
1366 	put_online_cpus();
1367 	mutex_unlock(&buffer->mutex);
1368 	atomic_dec(&buffer->record_disabled);
1369 	return -1;
1370 }
1371 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1372 
1373 static inline void *
1374 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1375 {
1376 	return bpage->data + index;
1377 }
1378 
1379 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1380 {
1381 	return bpage->page->data + index;
1382 }
1383 
1384 static inline struct ring_buffer_event *
1385 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1386 {
1387 	return __rb_page_index(cpu_buffer->reader_page,
1388 			       cpu_buffer->reader_page->read);
1389 }
1390 
1391 static inline struct ring_buffer_event *
1392 rb_iter_head_event(struct ring_buffer_iter *iter)
1393 {
1394 	return __rb_page_index(iter->head_page, iter->head);
1395 }
1396 
1397 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1398 {
1399 	return local_read(&bpage->write) & RB_WRITE_MASK;
1400 }
1401 
1402 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1403 {
1404 	return local_read(&bpage->page->commit);
1405 }
1406 
1407 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1408 {
1409 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1410 }
1411 
1412 /* Size is determined by what has been commited */
1413 static inline unsigned rb_page_size(struct buffer_page *bpage)
1414 {
1415 	return rb_page_commit(bpage);
1416 }
1417 
1418 static inline unsigned
1419 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1420 {
1421 	return rb_page_commit(cpu_buffer->commit_page);
1422 }
1423 
1424 static inline unsigned
1425 rb_event_index(struct ring_buffer_event *event)
1426 {
1427 	unsigned long addr = (unsigned long)event;
1428 
1429 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1430 }
1431 
1432 static inline int
1433 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1434 		   struct ring_buffer_event *event)
1435 {
1436 	unsigned long addr = (unsigned long)event;
1437 	unsigned long index;
1438 
1439 	index = rb_event_index(event);
1440 	addr &= PAGE_MASK;
1441 
1442 	return cpu_buffer->commit_page->page == (void *)addr &&
1443 		rb_commit_index(cpu_buffer) == index;
1444 }
1445 
1446 static void
1447 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1448 {
1449 	unsigned long max_count;
1450 
1451 	/*
1452 	 * We only race with interrupts and NMIs on this CPU.
1453 	 * If we own the commit event, then we can commit
1454 	 * all others that interrupted us, since the interruptions
1455 	 * are in stack format (they finish before they come
1456 	 * back to us). This allows us to do a simple loop to
1457 	 * assign the commit to the tail.
1458 	 */
1459  again:
1460 	max_count = cpu_buffer->buffer->pages * 100;
1461 
1462 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1463 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1464 			return;
1465 		if (RB_WARN_ON(cpu_buffer,
1466 			       rb_is_reader_page(cpu_buffer->tail_page)))
1467 			return;
1468 		local_set(&cpu_buffer->commit_page->page->commit,
1469 			  rb_page_write(cpu_buffer->commit_page));
1470 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1471 		cpu_buffer->write_stamp =
1472 			cpu_buffer->commit_page->page->time_stamp;
1473 		/* add barrier to keep gcc from optimizing too much */
1474 		barrier();
1475 	}
1476 	while (rb_commit_index(cpu_buffer) !=
1477 	       rb_page_write(cpu_buffer->commit_page)) {
1478 
1479 		local_set(&cpu_buffer->commit_page->page->commit,
1480 			  rb_page_write(cpu_buffer->commit_page));
1481 		RB_WARN_ON(cpu_buffer,
1482 			   local_read(&cpu_buffer->commit_page->page->commit) &
1483 			   ~RB_WRITE_MASK);
1484 		barrier();
1485 	}
1486 
1487 	/* again, keep gcc from optimizing */
1488 	barrier();
1489 
1490 	/*
1491 	 * If an interrupt came in just after the first while loop
1492 	 * and pushed the tail page forward, we will be left with
1493 	 * a dangling commit that will never go forward.
1494 	 */
1495 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1496 		goto again;
1497 }
1498 
1499 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1500 {
1501 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1502 	cpu_buffer->reader_page->read = 0;
1503 }
1504 
1505 static void rb_inc_iter(struct ring_buffer_iter *iter)
1506 {
1507 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1508 
1509 	/*
1510 	 * The iterator could be on the reader page (it starts there).
1511 	 * But the head could have moved, since the reader was
1512 	 * found. Check for this case and assign the iterator
1513 	 * to the head page instead of next.
1514 	 */
1515 	if (iter->head_page == cpu_buffer->reader_page)
1516 		iter->head_page = rb_set_head_page(cpu_buffer);
1517 	else
1518 		rb_inc_page(cpu_buffer, &iter->head_page);
1519 
1520 	iter->read_stamp = iter->head_page->page->time_stamp;
1521 	iter->head = 0;
1522 }
1523 
1524 /**
1525  * ring_buffer_update_event - update event type and data
1526  * @event: the even to update
1527  * @type: the type of event
1528  * @length: the size of the event field in the ring buffer
1529  *
1530  * Update the type and data fields of the event. The length
1531  * is the actual size that is written to the ring buffer,
1532  * and with this, we can determine what to place into the
1533  * data field.
1534  */
1535 static void
1536 rb_update_event(struct ring_buffer_event *event,
1537 			 unsigned type, unsigned length)
1538 {
1539 	event->type_len = type;
1540 
1541 	switch (type) {
1542 
1543 	case RINGBUF_TYPE_PADDING:
1544 	case RINGBUF_TYPE_TIME_EXTEND:
1545 	case RINGBUF_TYPE_TIME_STAMP:
1546 		break;
1547 
1548 	case 0:
1549 		length -= RB_EVNT_HDR_SIZE;
1550 		if (length > RB_MAX_SMALL_DATA)
1551 			event->array[0] = length;
1552 		else
1553 			event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1554 		break;
1555 	default:
1556 		BUG();
1557 	}
1558 }
1559 
1560 /*
1561  * rb_handle_head_page - writer hit the head page
1562  *
1563  * Returns: +1 to retry page
1564  *           0 to continue
1565  *          -1 on error
1566  */
1567 static int
1568 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1569 		    struct buffer_page *tail_page,
1570 		    struct buffer_page *next_page)
1571 {
1572 	struct buffer_page *new_head;
1573 	int entries;
1574 	int type;
1575 	int ret;
1576 
1577 	entries = rb_page_entries(next_page);
1578 
1579 	/*
1580 	 * The hard part is here. We need to move the head
1581 	 * forward, and protect against both readers on
1582 	 * other CPUs and writers coming in via interrupts.
1583 	 */
1584 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1585 				       RB_PAGE_HEAD);
1586 
1587 	/*
1588 	 * type can be one of four:
1589 	 *  NORMAL - an interrupt already moved it for us
1590 	 *  HEAD   - we are the first to get here.
1591 	 *  UPDATE - we are the interrupt interrupting
1592 	 *           a current move.
1593 	 *  MOVED  - a reader on another CPU moved the next
1594 	 *           pointer to its reader page. Give up
1595 	 *           and try again.
1596 	 */
1597 
1598 	switch (type) {
1599 	case RB_PAGE_HEAD:
1600 		/*
1601 		 * We changed the head to UPDATE, thus
1602 		 * it is our responsibility to update
1603 		 * the counters.
1604 		 */
1605 		local_add(entries, &cpu_buffer->overrun);
1606 
1607 		/*
1608 		 * The entries will be zeroed out when we move the
1609 		 * tail page.
1610 		 */
1611 
1612 		/* still more to do */
1613 		break;
1614 
1615 	case RB_PAGE_UPDATE:
1616 		/*
1617 		 * This is an interrupt that interrupt the
1618 		 * previous update. Still more to do.
1619 		 */
1620 		break;
1621 	case RB_PAGE_NORMAL:
1622 		/*
1623 		 * An interrupt came in before the update
1624 		 * and processed this for us.
1625 		 * Nothing left to do.
1626 		 */
1627 		return 1;
1628 	case RB_PAGE_MOVED:
1629 		/*
1630 		 * The reader is on another CPU and just did
1631 		 * a swap with our next_page.
1632 		 * Try again.
1633 		 */
1634 		return 1;
1635 	default:
1636 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1637 		return -1;
1638 	}
1639 
1640 	/*
1641 	 * Now that we are here, the old head pointer is
1642 	 * set to UPDATE. This will keep the reader from
1643 	 * swapping the head page with the reader page.
1644 	 * The reader (on another CPU) will spin till
1645 	 * we are finished.
1646 	 *
1647 	 * We just need to protect against interrupts
1648 	 * doing the job. We will set the next pointer
1649 	 * to HEAD. After that, we set the old pointer
1650 	 * to NORMAL, but only if it was HEAD before.
1651 	 * otherwise we are an interrupt, and only
1652 	 * want the outer most commit to reset it.
1653 	 */
1654 	new_head = next_page;
1655 	rb_inc_page(cpu_buffer, &new_head);
1656 
1657 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1658 				    RB_PAGE_NORMAL);
1659 
1660 	/*
1661 	 * Valid returns are:
1662 	 *  HEAD   - an interrupt came in and already set it.
1663 	 *  NORMAL - One of two things:
1664 	 *            1) We really set it.
1665 	 *            2) A bunch of interrupts came in and moved
1666 	 *               the page forward again.
1667 	 */
1668 	switch (ret) {
1669 	case RB_PAGE_HEAD:
1670 	case RB_PAGE_NORMAL:
1671 		/* OK */
1672 		break;
1673 	default:
1674 		RB_WARN_ON(cpu_buffer, 1);
1675 		return -1;
1676 	}
1677 
1678 	/*
1679 	 * It is possible that an interrupt came in,
1680 	 * set the head up, then more interrupts came in
1681 	 * and moved it again. When we get back here,
1682 	 * the page would have been set to NORMAL but we
1683 	 * just set it back to HEAD.
1684 	 *
1685 	 * How do you detect this? Well, if that happened
1686 	 * the tail page would have moved.
1687 	 */
1688 	if (ret == RB_PAGE_NORMAL) {
1689 		/*
1690 		 * If the tail had moved passed next, then we need
1691 		 * to reset the pointer.
1692 		 */
1693 		if (cpu_buffer->tail_page != tail_page &&
1694 		    cpu_buffer->tail_page != next_page)
1695 			rb_head_page_set_normal(cpu_buffer, new_head,
1696 						next_page,
1697 						RB_PAGE_HEAD);
1698 	}
1699 
1700 	/*
1701 	 * If this was the outer most commit (the one that
1702 	 * changed the original pointer from HEAD to UPDATE),
1703 	 * then it is up to us to reset it to NORMAL.
1704 	 */
1705 	if (type == RB_PAGE_HEAD) {
1706 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
1707 					      tail_page,
1708 					      RB_PAGE_UPDATE);
1709 		if (RB_WARN_ON(cpu_buffer,
1710 			       ret != RB_PAGE_UPDATE))
1711 			return -1;
1712 	}
1713 
1714 	return 0;
1715 }
1716 
1717 static unsigned rb_calculate_event_length(unsigned length)
1718 {
1719 	struct ring_buffer_event event; /* Used only for sizeof array */
1720 
1721 	/* zero length can cause confusions */
1722 	if (!length)
1723 		length = 1;
1724 
1725 	if (length > RB_MAX_SMALL_DATA)
1726 		length += sizeof(event.array[0]);
1727 
1728 	length += RB_EVNT_HDR_SIZE;
1729 	length = ALIGN(length, RB_ALIGNMENT);
1730 
1731 	return length;
1732 }
1733 
1734 static inline void
1735 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1736 	      struct buffer_page *tail_page,
1737 	      unsigned long tail, unsigned long length)
1738 {
1739 	struct ring_buffer_event *event;
1740 
1741 	/*
1742 	 * Only the event that crossed the page boundary
1743 	 * must fill the old tail_page with padding.
1744 	 */
1745 	if (tail >= BUF_PAGE_SIZE) {
1746 		local_sub(length, &tail_page->write);
1747 		return;
1748 	}
1749 
1750 	event = __rb_page_index(tail_page, tail);
1751 	kmemcheck_annotate_bitfield(event, bitfield);
1752 
1753 	/*
1754 	 * If this event is bigger than the minimum size, then
1755 	 * we need to be careful that we don't subtract the
1756 	 * write counter enough to allow another writer to slip
1757 	 * in on this page.
1758 	 * We put in a discarded commit instead, to make sure
1759 	 * that this space is not used again.
1760 	 *
1761 	 * If we are less than the minimum size, we don't need to
1762 	 * worry about it.
1763 	 */
1764 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1765 		/* No room for any events */
1766 
1767 		/* Mark the rest of the page with padding */
1768 		rb_event_set_padding(event);
1769 
1770 		/* Set the write back to the previous setting */
1771 		local_sub(length, &tail_page->write);
1772 		return;
1773 	}
1774 
1775 	/* Put in a discarded event */
1776 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1777 	event->type_len = RINGBUF_TYPE_PADDING;
1778 	/* time delta must be non zero */
1779 	event->time_delta = 1;
1780 
1781 	/* Set write to end of buffer */
1782 	length = (tail + length) - BUF_PAGE_SIZE;
1783 	local_sub(length, &tail_page->write);
1784 }
1785 
1786 static struct ring_buffer_event *
1787 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1788 	     unsigned long length, unsigned long tail,
1789 	     struct buffer_page *tail_page, u64 *ts)
1790 {
1791 	struct buffer_page *commit_page = cpu_buffer->commit_page;
1792 	struct ring_buffer *buffer = cpu_buffer->buffer;
1793 	struct buffer_page *next_page;
1794 	int ret;
1795 
1796 	next_page = tail_page;
1797 
1798 	rb_inc_page(cpu_buffer, &next_page);
1799 
1800 	/*
1801 	 * If for some reason, we had an interrupt storm that made
1802 	 * it all the way around the buffer, bail, and warn
1803 	 * about it.
1804 	 */
1805 	if (unlikely(next_page == commit_page)) {
1806 		local_inc(&cpu_buffer->commit_overrun);
1807 		goto out_reset;
1808 	}
1809 
1810 	/*
1811 	 * This is where the fun begins!
1812 	 *
1813 	 * We are fighting against races between a reader that
1814 	 * could be on another CPU trying to swap its reader
1815 	 * page with the buffer head.
1816 	 *
1817 	 * We are also fighting against interrupts coming in and
1818 	 * moving the head or tail on us as well.
1819 	 *
1820 	 * If the next page is the head page then we have filled
1821 	 * the buffer, unless the commit page is still on the
1822 	 * reader page.
1823 	 */
1824 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1825 
1826 		/*
1827 		 * If the commit is not on the reader page, then
1828 		 * move the header page.
1829 		 */
1830 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1831 			/*
1832 			 * If we are not in overwrite mode,
1833 			 * this is easy, just stop here.
1834 			 */
1835 			if (!(buffer->flags & RB_FL_OVERWRITE))
1836 				goto out_reset;
1837 
1838 			ret = rb_handle_head_page(cpu_buffer,
1839 						  tail_page,
1840 						  next_page);
1841 			if (ret < 0)
1842 				goto out_reset;
1843 			if (ret)
1844 				goto out_again;
1845 		} else {
1846 			/*
1847 			 * We need to be careful here too. The
1848 			 * commit page could still be on the reader
1849 			 * page. We could have a small buffer, and
1850 			 * have filled up the buffer with events
1851 			 * from interrupts and such, and wrapped.
1852 			 *
1853 			 * Note, if the tail page is also the on the
1854 			 * reader_page, we let it move out.
1855 			 */
1856 			if (unlikely((cpu_buffer->commit_page !=
1857 				      cpu_buffer->tail_page) &&
1858 				     (cpu_buffer->commit_page ==
1859 				      cpu_buffer->reader_page))) {
1860 				local_inc(&cpu_buffer->commit_overrun);
1861 				goto out_reset;
1862 			}
1863 		}
1864 	}
1865 
1866 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1867 	if (ret) {
1868 		/*
1869 		 * Nested commits always have zero deltas, so
1870 		 * just reread the time stamp
1871 		 */
1872 		*ts = rb_time_stamp(buffer);
1873 		next_page->page->time_stamp = *ts;
1874 	}
1875 
1876  out_again:
1877 
1878 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1879 
1880 	/* fail and let the caller try again */
1881 	return ERR_PTR(-EAGAIN);
1882 
1883  out_reset:
1884 	/* reset write */
1885 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1886 
1887 	return NULL;
1888 }
1889 
1890 static struct ring_buffer_event *
1891 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1892 		  unsigned type, unsigned long length, u64 *ts)
1893 {
1894 	struct buffer_page *tail_page;
1895 	struct ring_buffer_event *event;
1896 	unsigned long tail, write;
1897 
1898 	tail_page = cpu_buffer->tail_page;
1899 	write = local_add_return(length, &tail_page->write);
1900 
1901 	/* set write to only the index of the write */
1902 	write &= RB_WRITE_MASK;
1903 	tail = write - length;
1904 
1905 	/* See if we shot pass the end of this buffer page */
1906 	if (write > BUF_PAGE_SIZE)
1907 		return rb_move_tail(cpu_buffer, length, tail,
1908 				    tail_page, ts);
1909 
1910 	/* We reserved something on the buffer */
1911 
1912 	event = __rb_page_index(tail_page, tail);
1913 	kmemcheck_annotate_bitfield(event, bitfield);
1914 	rb_update_event(event, type, length);
1915 
1916 	/* The passed in type is zero for DATA */
1917 	if (likely(!type))
1918 		local_inc(&tail_page->entries);
1919 
1920 	/*
1921 	 * If this is the first commit on the page, then update
1922 	 * its timestamp.
1923 	 */
1924 	if (!tail)
1925 		tail_page->page->time_stamp = *ts;
1926 
1927 	return event;
1928 }
1929 
1930 static inline int
1931 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1932 		  struct ring_buffer_event *event)
1933 {
1934 	unsigned long new_index, old_index;
1935 	struct buffer_page *bpage;
1936 	unsigned long index;
1937 	unsigned long addr;
1938 
1939 	new_index = rb_event_index(event);
1940 	old_index = new_index + rb_event_length(event);
1941 	addr = (unsigned long)event;
1942 	addr &= PAGE_MASK;
1943 
1944 	bpage = cpu_buffer->tail_page;
1945 
1946 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1947 		unsigned long write_mask =
1948 			local_read(&bpage->write) & ~RB_WRITE_MASK;
1949 		/*
1950 		 * This is on the tail page. It is possible that
1951 		 * a write could come in and move the tail page
1952 		 * and write to the next page. That is fine
1953 		 * because we just shorten what is on this page.
1954 		 */
1955 		old_index += write_mask;
1956 		new_index += write_mask;
1957 		index = local_cmpxchg(&bpage->write, old_index, new_index);
1958 		if (index == old_index)
1959 			return 1;
1960 	}
1961 
1962 	/* could not discard */
1963 	return 0;
1964 }
1965 
1966 static int
1967 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1968 		  u64 *ts, u64 *delta)
1969 {
1970 	struct ring_buffer_event *event;
1971 	static int once;
1972 	int ret;
1973 
1974 	if (unlikely(*delta > (1ULL << 59) && !once++)) {
1975 		printk(KERN_WARNING "Delta way too big! %llu"
1976 		       " ts=%llu write stamp = %llu\n",
1977 		       (unsigned long long)*delta,
1978 		       (unsigned long long)*ts,
1979 		       (unsigned long long)cpu_buffer->write_stamp);
1980 		WARN_ON(1);
1981 	}
1982 
1983 	/*
1984 	 * The delta is too big, we to add a
1985 	 * new timestamp.
1986 	 */
1987 	event = __rb_reserve_next(cpu_buffer,
1988 				  RINGBUF_TYPE_TIME_EXTEND,
1989 				  RB_LEN_TIME_EXTEND,
1990 				  ts);
1991 	if (!event)
1992 		return -EBUSY;
1993 
1994 	if (PTR_ERR(event) == -EAGAIN)
1995 		return -EAGAIN;
1996 
1997 	/* Only a commited time event can update the write stamp */
1998 	if (rb_event_is_commit(cpu_buffer, event)) {
1999 		/*
2000 		 * If this is the first on the page, then it was
2001 		 * updated with the page itself. Try to discard it
2002 		 * and if we can't just make it zero.
2003 		 */
2004 		if (rb_event_index(event)) {
2005 			event->time_delta = *delta & TS_MASK;
2006 			event->array[0] = *delta >> TS_SHIFT;
2007 		} else {
2008 			/* try to discard, since we do not need this */
2009 			if (!rb_try_to_discard(cpu_buffer, event)) {
2010 				/* nope, just zero it */
2011 				event->time_delta = 0;
2012 				event->array[0] = 0;
2013 			}
2014 		}
2015 		cpu_buffer->write_stamp = *ts;
2016 		/* let the caller know this was the commit */
2017 		ret = 1;
2018 	} else {
2019 		/* Try to discard the event */
2020 		if (!rb_try_to_discard(cpu_buffer, event)) {
2021 			/* Darn, this is just wasted space */
2022 			event->time_delta = 0;
2023 			event->array[0] = 0;
2024 		}
2025 		ret = 0;
2026 	}
2027 
2028 	*delta = 0;
2029 
2030 	return ret;
2031 }
2032 
2033 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2034 {
2035 	local_inc(&cpu_buffer->committing);
2036 	local_inc(&cpu_buffer->commits);
2037 }
2038 
2039 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2040 {
2041 	unsigned long commits;
2042 
2043 	if (RB_WARN_ON(cpu_buffer,
2044 		       !local_read(&cpu_buffer->committing)))
2045 		return;
2046 
2047  again:
2048 	commits = local_read(&cpu_buffer->commits);
2049 	/* synchronize with interrupts */
2050 	barrier();
2051 	if (local_read(&cpu_buffer->committing) == 1)
2052 		rb_set_commit_to_write(cpu_buffer);
2053 
2054 	local_dec(&cpu_buffer->committing);
2055 
2056 	/* synchronize with interrupts */
2057 	barrier();
2058 
2059 	/*
2060 	 * Need to account for interrupts coming in between the
2061 	 * updating of the commit page and the clearing of the
2062 	 * committing counter.
2063 	 */
2064 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2065 	    !local_read(&cpu_buffer->committing)) {
2066 		local_inc(&cpu_buffer->committing);
2067 		goto again;
2068 	}
2069 }
2070 
2071 static struct ring_buffer_event *
2072 rb_reserve_next_event(struct ring_buffer *buffer,
2073 		      struct ring_buffer_per_cpu *cpu_buffer,
2074 		      unsigned long length)
2075 {
2076 	struct ring_buffer_event *event;
2077 	u64 ts, delta = 0;
2078 	int commit = 0;
2079 	int nr_loops = 0;
2080 
2081 	rb_start_commit(cpu_buffer);
2082 
2083 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2084 	/*
2085 	 * Due to the ability to swap a cpu buffer from a buffer
2086 	 * it is possible it was swapped before we committed.
2087 	 * (committing stops a swap). We check for it here and
2088 	 * if it happened, we have to fail the write.
2089 	 */
2090 	barrier();
2091 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2092 		local_dec(&cpu_buffer->committing);
2093 		local_dec(&cpu_buffer->commits);
2094 		return NULL;
2095 	}
2096 #endif
2097 
2098 	length = rb_calculate_event_length(length);
2099  again:
2100 	/*
2101 	 * We allow for interrupts to reenter here and do a trace.
2102 	 * If one does, it will cause this original code to loop
2103 	 * back here. Even with heavy interrupts happening, this
2104 	 * should only happen a few times in a row. If this happens
2105 	 * 1000 times in a row, there must be either an interrupt
2106 	 * storm or we have something buggy.
2107 	 * Bail!
2108 	 */
2109 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2110 		goto out_fail;
2111 
2112 	ts = rb_time_stamp(cpu_buffer->buffer);
2113 
2114 	/*
2115 	 * Only the first commit can update the timestamp.
2116 	 * Yes there is a race here. If an interrupt comes in
2117 	 * just after the conditional and it traces too, then it
2118 	 * will also check the deltas. More than one timestamp may
2119 	 * also be made. But only the entry that did the actual
2120 	 * commit will be something other than zero.
2121 	 */
2122 	if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2123 		   rb_page_write(cpu_buffer->tail_page) ==
2124 		   rb_commit_index(cpu_buffer))) {
2125 		u64 diff;
2126 
2127 		diff = ts - cpu_buffer->write_stamp;
2128 
2129 		/* make sure this diff is calculated here */
2130 		barrier();
2131 
2132 		/* Did the write stamp get updated already? */
2133 		if (unlikely(ts < cpu_buffer->write_stamp))
2134 			goto get_event;
2135 
2136 		delta = diff;
2137 		if (unlikely(test_time_stamp(delta))) {
2138 
2139 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2140 			if (commit == -EBUSY)
2141 				goto out_fail;
2142 
2143 			if (commit == -EAGAIN)
2144 				goto again;
2145 
2146 			RB_WARN_ON(cpu_buffer, commit < 0);
2147 		}
2148 	}
2149 
2150  get_event:
2151 	event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2152 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2153 		goto again;
2154 
2155 	if (!event)
2156 		goto out_fail;
2157 
2158 	if (!rb_event_is_commit(cpu_buffer, event))
2159 		delta = 0;
2160 
2161 	event->time_delta = delta;
2162 
2163 	return event;
2164 
2165  out_fail:
2166 	rb_end_commit(cpu_buffer);
2167 	return NULL;
2168 }
2169 
2170 #ifdef CONFIG_TRACING
2171 
2172 #define TRACE_RECURSIVE_DEPTH 16
2173 
2174 static int trace_recursive_lock(void)
2175 {
2176 	current->trace_recursion++;
2177 
2178 	if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2179 		return 0;
2180 
2181 	/* Disable all tracing before we do anything else */
2182 	tracing_off_permanent();
2183 
2184 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2185 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2186 		    current->trace_recursion,
2187 		    hardirq_count() >> HARDIRQ_SHIFT,
2188 		    softirq_count() >> SOFTIRQ_SHIFT,
2189 		    in_nmi());
2190 
2191 	WARN_ON_ONCE(1);
2192 	return -1;
2193 }
2194 
2195 static void trace_recursive_unlock(void)
2196 {
2197 	WARN_ON_ONCE(!current->trace_recursion);
2198 
2199 	current->trace_recursion--;
2200 }
2201 
2202 #else
2203 
2204 #define trace_recursive_lock()		(0)
2205 #define trace_recursive_unlock()	do { } while (0)
2206 
2207 #endif
2208 
2209 static DEFINE_PER_CPU(int, rb_need_resched);
2210 
2211 /**
2212  * ring_buffer_lock_reserve - reserve a part of the buffer
2213  * @buffer: the ring buffer to reserve from
2214  * @length: the length of the data to reserve (excluding event header)
2215  *
2216  * Returns a reseverd event on the ring buffer to copy directly to.
2217  * The user of this interface will need to get the body to write into
2218  * and can use the ring_buffer_event_data() interface.
2219  *
2220  * The length is the length of the data needed, not the event length
2221  * which also includes the event header.
2222  *
2223  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2224  * If NULL is returned, then nothing has been allocated or locked.
2225  */
2226 struct ring_buffer_event *
2227 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2228 {
2229 	struct ring_buffer_per_cpu *cpu_buffer;
2230 	struct ring_buffer_event *event;
2231 	int cpu, resched;
2232 
2233 	if (ring_buffer_flags != RB_BUFFERS_ON)
2234 		return NULL;
2235 
2236 	if (atomic_read(&buffer->record_disabled))
2237 		return NULL;
2238 
2239 	/* If we are tracing schedule, we don't want to recurse */
2240 	resched = ftrace_preempt_disable();
2241 
2242 	if (trace_recursive_lock())
2243 		goto out_nocheck;
2244 
2245 	cpu = raw_smp_processor_id();
2246 
2247 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2248 		goto out;
2249 
2250 	cpu_buffer = buffer->buffers[cpu];
2251 
2252 	if (atomic_read(&cpu_buffer->record_disabled))
2253 		goto out;
2254 
2255 	if (length > BUF_MAX_DATA_SIZE)
2256 		goto out;
2257 
2258 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2259 	if (!event)
2260 		goto out;
2261 
2262 	/*
2263 	 * Need to store resched state on this cpu.
2264 	 * Only the first needs to.
2265 	 */
2266 
2267 	if (preempt_count() == 1)
2268 		per_cpu(rb_need_resched, cpu) = resched;
2269 
2270 	return event;
2271 
2272  out:
2273 	trace_recursive_unlock();
2274 
2275  out_nocheck:
2276 	ftrace_preempt_enable(resched);
2277 	return NULL;
2278 }
2279 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2280 
2281 static void
2282 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2283 		      struct ring_buffer_event *event)
2284 {
2285 	/*
2286 	 * The event first in the commit queue updates the
2287 	 * time stamp.
2288 	 */
2289 	if (rb_event_is_commit(cpu_buffer, event))
2290 		cpu_buffer->write_stamp += event->time_delta;
2291 }
2292 
2293 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2294 		      struct ring_buffer_event *event)
2295 {
2296 	local_inc(&cpu_buffer->entries);
2297 	rb_update_write_stamp(cpu_buffer, event);
2298 	rb_end_commit(cpu_buffer);
2299 }
2300 
2301 /**
2302  * ring_buffer_unlock_commit - commit a reserved
2303  * @buffer: The buffer to commit to
2304  * @event: The event pointer to commit.
2305  *
2306  * This commits the data to the ring buffer, and releases any locks held.
2307  *
2308  * Must be paired with ring_buffer_lock_reserve.
2309  */
2310 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2311 			      struct ring_buffer_event *event)
2312 {
2313 	struct ring_buffer_per_cpu *cpu_buffer;
2314 	int cpu = raw_smp_processor_id();
2315 
2316 	cpu_buffer = buffer->buffers[cpu];
2317 
2318 	rb_commit(cpu_buffer, event);
2319 
2320 	trace_recursive_unlock();
2321 
2322 	/*
2323 	 * Only the last preempt count needs to restore preemption.
2324 	 */
2325 	if (preempt_count() == 1)
2326 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2327 	else
2328 		preempt_enable_no_resched_notrace();
2329 
2330 	return 0;
2331 }
2332 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2333 
2334 static inline void rb_event_discard(struct ring_buffer_event *event)
2335 {
2336 	/* array[0] holds the actual length for the discarded event */
2337 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2338 	event->type_len = RINGBUF_TYPE_PADDING;
2339 	/* time delta must be non zero */
2340 	if (!event->time_delta)
2341 		event->time_delta = 1;
2342 }
2343 
2344 /*
2345  * Decrement the entries to the page that an event is on.
2346  * The event does not even need to exist, only the pointer
2347  * to the page it is on. This may only be called before the commit
2348  * takes place.
2349  */
2350 static inline void
2351 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2352 		   struct ring_buffer_event *event)
2353 {
2354 	unsigned long addr = (unsigned long)event;
2355 	struct buffer_page *bpage = cpu_buffer->commit_page;
2356 	struct buffer_page *start;
2357 
2358 	addr &= PAGE_MASK;
2359 
2360 	/* Do the likely case first */
2361 	if (likely(bpage->page == (void *)addr)) {
2362 		local_dec(&bpage->entries);
2363 		return;
2364 	}
2365 
2366 	/*
2367 	 * Because the commit page may be on the reader page we
2368 	 * start with the next page and check the end loop there.
2369 	 */
2370 	rb_inc_page(cpu_buffer, &bpage);
2371 	start = bpage;
2372 	do {
2373 		if (bpage->page == (void *)addr) {
2374 			local_dec(&bpage->entries);
2375 			return;
2376 		}
2377 		rb_inc_page(cpu_buffer, &bpage);
2378 	} while (bpage != start);
2379 
2380 	/* commit not part of this buffer?? */
2381 	RB_WARN_ON(cpu_buffer, 1);
2382 }
2383 
2384 /**
2385  * ring_buffer_commit_discard - discard an event that has not been committed
2386  * @buffer: the ring buffer
2387  * @event: non committed event to discard
2388  *
2389  * Sometimes an event that is in the ring buffer needs to be ignored.
2390  * This function lets the user discard an event in the ring buffer
2391  * and then that event will not be read later.
2392  *
2393  * This function only works if it is called before the the item has been
2394  * committed. It will try to free the event from the ring buffer
2395  * if another event has not been added behind it.
2396  *
2397  * If another event has been added behind it, it will set the event
2398  * up as discarded, and perform the commit.
2399  *
2400  * If this function is called, do not call ring_buffer_unlock_commit on
2401  * the event.
2402  */
2403 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2404 				struct ring_buffer_event *event)
2405 {
2406 	struct ring_buffer_per_cpu *cpu_buffer;
2407 	int cpu;
2408 
2409 	/* The event is discarded regardless */
2410 	rb_event_discard(event);
2411 
2412 	cpu = smp_processor_id();
2413 	cpu_buffer = buffer->buffers[cpu];
2414 
2415 	/*
2416 	 * This must only be called if the event has not been
2417 	 * committed yet. Thus we can assume that preemption
2418 	 * is still disabled.
2419 	 */
2420 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2421 
2422 	rb_decrement_entry(cpu_buffer, event);
2423 	if (rb_try_to_discard(cpu_buffer, event))
2424 		goto out;
2425 
2426 	/*
2427 	 * The commit is still visible by the reader, so we
2428 	 * must still update the timestamp.
2429 	 */
2430 	rb_update_write_stamp(cpu_buffer, event);
2431  out:
2432 	rb_end_commit(cpu_buffer);
2433 
2434 	trace_recursive_unlock();
2435 
2436 	/*
2437 	 * Only the last preempt count needs to restore preemption.
2438 	 */
2439 	if (preempt_count() == 1)
2440 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2441 	else
2442 		preempt_enable_no_resched_notrace();
2443 
2444 }
2445 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2446 
2447 /**
2448  * ring_buffer_write - write data to the buffer without reserving
2449  * @buffer: The ring buffer to write to.
2450  * @length: The length of the data being written (excluding the event header)
2451  * @data: The data to write to the buffer.
2452  *
2453  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2454  * one function. If you already have the data to write to the buffer, it
2455  * may be easier to simply call this function.
2456  *
2457  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2458  * and not the length of the event which would hold the header.
2459  */
2460 int ring_buffer_write(struct ring_buffer *buffer,
2461 			unsigned long length,
2462 			void *data)
2463 {
2464 	struct ring_buffer_per_cpu *cpu_buffer;
2465 	struct ring_buffer_event *event;
2466 	void *body;
2467 	int ret = -EBUSY;
2468 	int cpu, resched;
2469 
2470 	if (ring_buffer_flags != RB_BUFFERS_ON)
2471 		return -EBUSY;
2472 
2473 	if (atomic_read(&buffer->record_disabled))
2474 		return -EBUSY;
2475 
2476 	resched = ftrace_preempt_disable();
2477 
2478 	cpu = raw_smp_processor_id();
2479 
2480 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2481 		goto out;
2482 
2483 	cpu_buffer = buffer->buffers[cpu];
2484 
2485 	if (atomic_read(&cpu_buffer->record_disabled))
2486 		goto out;
2487 
2488 	if (length > BUF_MAX_DATA_SIZE)
2489 		goto out;
2490 
2491 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2492 	if (!event)
2493 		goto out;
2494 
2495 	body = rb_event_data(event);
2496 
2497 	memcpy(body, data, length);
2498 
2499 	rb_commit(cpu_buffer, event);
2500 
2501 	ret = 0;
2502  out:
2503 	ftrace_preempt_enable(resched);
2504 
2505 	return ret;
2506 }
2507 EXPORT_SYMBOL_GPL(ring_buffer_write);
2508 
2509 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2510 {
2511 	struct buffer_page *reader = cpu_buffer->reader_page;
2512 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2513 	struct buffer_page *commit = cpu_buffer->commit_page;
2514 
2515 	/* In case of error, head will be NULL */
2516 	if (unlikely(!head))
2517 		return 1;
2518 
2519 	return reader->read == rb_page_commit(reader) &&
2520 		(commit == reader ||
2521 		 (commit == head &&
2522 		  head->read == rb_page_commit(commit)));
2523 }
2524 
2525 /**
2526  * ring_buffer_record_disable - stop all writes into the buffer
2527  * @buffer: The ring buffer to stop writes to.
2528  *
2529  * This prevents all writes to the buffer. Any attempt to write
2530  * to the buffer after this will fail and return NULL.
2531  *
2532  * The caller should call synchronize_sched() after this.
2533  */
2534 void ring_buffer_record_disable(struct ring_buffer *buffer)
2535 {
2536 	atomic_inc(&buffer->record_disabled);
2537 }
2538 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2539 
2540 /**
2541  * ring_buffer_record_enable - enable writes to the buffer
2542  * @buffer: The ring buffer to enable writes
2543  *
2544  * Note, multiple disables will need the same number of enables
2545  * to truely enable the writing (much like preempt_disable).
2546  */
2547 void ring_buffer_record_enable(struct ring_buffer *buffer)
2548 {
2549 	atomic_dec(&buffer->record_disabled);
2550 }
2551 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2552 
2553 /**
2554  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2555  * @buffer: The ring buffer to stop writes to.
2556  * @cpu: The CPU buffer to stop
2557  *
2558  * This prevents all writes to the buffer. Any attempt to write
2559  * to the buffer after this will fail and return NULL.
2560  *
2561  * The caller should call synchronize_sched() after this.
2562  */
2563 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2564 {
2565 	struct ring_buffer_per_cpu *cpu_buffer;
2566 
2567 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2568 		return;
2569 
2570 	cpu_buffer = buffer->buffers[cpu];
2571 	atomic_inc(&cpu_buffer->record_disabled);
2572 }
2573 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2574 
2575 /**
2576  * ring_buffer_record_enable_cpu - enable writes to the buffer
2577  * @buffer: The ring buffer to enable writes
2578  * @cpu: The CPU to enable.
2579  *
2580  * Note, multiple disables will need the same number of enables
2581  * to truely enable the writing (much like preempt_disable).
2582  */
2583 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2584 {
2585 	struct ring_buffer_per_cpu *cpu_buffer;
2586 
2587 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2588 		return;
2589 
2590 	cpu_buffer = buffer->buffers[cpu];
2591 	atomic_dec(&cpu_buffer->record_disabled);
2592 }
2593 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2594 
2595 /**
2596  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2597  * @buffer: The ring buffer
2598  * @cpu: The per CPU buffer to get the entries from.
2599  */
2600 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2601 {
2602 	struct ring_buffer_per_cpu *cpu_buffer;
2603 	unsigned long ret;
2604 
2605 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2606 		return 0;
2607 
2608 	cpu_buffer = buffer->buffers[cpu];
2609 	ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2610 		- cpu_buffer->read;
2611 
2612 	return ret;
2613 }
2614 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2615 
2616 /**
2617  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2618  * @buffer: The ring buffer
2619  * @cpu: The per CPU buffer to get the number of overruns from
2620  */
2621 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2622 {
2623 	struct ring_buffer_per_cpu *cpu_buffer;
2624 	unsigned long ret;
2625 
2626 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2627 		return 0;
2628 
2629 	cpu_buffer = buffer->buffers[cpu];
2630 	ret = local_read(&cpu_buffer->overrun);
2631 
2632 	return ret;
2633 }
2634 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2635 
2636 /**
2637  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2638  * @buffer: The ring buffer
2639  * @cpu: The per CPU buffer to get the number of overruns from
2640  */
2641 unsigned long
2642 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2643 {
2644 	struct ring_buffer_per_cpu *cpu_buffer;
2645 	unsigned long ret;
2646 
2647 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2648 		return 0;
2649 
2650 	cpu_buffer = buffer->buffers[cpu];
2651 	ret = local_read(&cpu_buffer->commit_overrun);
2652 
2653 	return ret;
2654 }
2655 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2656 
2657 /**
2658  * ring_buffer_entries - get the number of entries in a buffer
2659  * @buffer: The ring buffer
2660  *
2661  * Returns the total number of entries in the ring buffer
2662  * (all CPU entries)
2663  */
2664 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2665 {
2666 	struct ring_buffer_per_cpu *cpu_buffer;
2667 	unsigned long entries = 0;
2668 	int cpu;
2669 
2670 	/* if you care about this being correct, lock the buffer */
2671 	for_each_buffer_cpu(buffer, cpu) {
2672 		cpu_buffer = buffer->buffers[cpu];
2673 		entries += (local_read(&cpu_buffer->entries) -
2674 			    local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2675 	}
2676 
2677 	return entries;
2678 }
2679 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2680 
2681 /**
2682  * ring_buffer_overruns - get the number of overruns in buffer
2683  * @buffer: The ring buffer
2684  *
2685  * Returns the total number of overruns in the ring buffer
2686  * (all CPU entries)
2687  */
2688 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2689 {
2690 	struct ring_buffer_per_cpu *cpu_buffer;
2691 	unsigned long overruns = 0;
2692 	int cpu;
2693 
2694 	/* if you care about this being correct, lock the buffer */
2695 	for_each_buffer_cpu(buffer, cpu) {
2696 		cpu_buffer = buffer->buffers[cpu];
2697 		overruns += local_read(&cpu_buffer->overrun);
2698 	}
2699 
2700 	return overruns;
2701 }
2702 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2703 
2704 static void rb_iter_reset(struct ring_buffer_iter *iter)
2705 {
2706 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2707 
2708 	/* Iterator usage is expected to have record disabled */
2709 	if (list_empty(&cpu_buffer->reader_page->list)) {
2710 		iter->head_page = rb_set_head_page(cpu_buffer);
2711 		if (unlikely(!iter->head_page))
2712 			return;
2713 		iter->head = iter->head_page->read;
2714 	} else {
2715 		iter->head_page = cpu_buffer->reader_page;
2716 		iter->head = cpu_buffer->reader_page->read;
2717 	}
2718 	if (iter->head)
2719 		iter->read_stamp = cpu_buffer->read_stamp;
2720 	else
2721 		iter->read_stamp = iter->head_page->page->time_stamp;
2722 	iter->cache_reader_page = cpu_buffer->reader_page;
2723 	iter->cache_read = cpu_buffer->read;
2724 }
2725 
2726 /**
2727  * ring_buffer_iter_reset - reset an iterator
2728  * @iter: The iterator to reset
2729  *
2730  * Resets the iterator, so that it will start from the beginning
2731  * again.
2732  */
2733 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2734 {
2735 	struct ring_buffer_per_cpu *cpu_buffer;
2736 	unsigned long flags;
2737 
2738 	if (!iter)
2739 		return;
2740 
2741 	cpu_buffer = iter->cpu_buffer;
2742 
2743 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2744 	rb_iter_reset(iter);
2745 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2746 }
2747 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2748 
2749 /**
2750  * ring_buffer_iter_empty - check if an iterator has no more to read
2751  * @iter: The iterator to check
2752  */
2753 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2754 {
2755 	struct ring_buffer_per_cpu *cpu_buffer;
2756 
2757 	cpu_buffer = iter->cpu_buffer;
2758 
2759 	return iter->head_page == cpu_buffer->commit_page &&
2760 		iter->head == rb_commit_index(cpu_buffer);
2761 }
2762 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2763 
2764 static void
2765 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2766 		     struct ring_buffer_event *event)
2767 {
2768 	u64 delta;
2769 
2770 	switch (event->type_len) {
2771 	case RINGBUF_TYPE_PADDING:
2772 		return;
2773 
2774 	case RINGBUF_TYPE_TIME_EXTEND:
2775 		delta = event->array[0];
2776 		delta <<= TS_SHIFT;
2777 		delta += event->time_delta;
2778 		cpu_buffer->read_stamp += delta;
2779 		return;
2780 
2781 	case RINGBUF_TYPE_TIME_STAMP:
2782 		/* FIXME: not implemented */
2783 		return;
2784 
2785 	case RINGBUF_TYPE_DATA:
2786 		cpu_buffer->read_stamp += event->time_delta;
2787 		return;
2788 
2789 	default:
2790 		BUG();
2791 	}
2792 	return;
2793 }
2794 
2795 static void
2796 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2797 			  struct ring_buffer_event *event)
2798 {
2799 	u64 delta;
2800 
2801 	switch (event->type_len) {
2802 	case RINGBUF_TYPE_PADDING:
2803 		return;
2804 
2805 	case RINGBUF_TYPE_TIME_EXTEND:
2806 		delta = event->array[0];
2807 		delta <<= TS_SHIFT;
2808 		delta += event->time_delta;
2809 		iter->read_stamp += delta;
2810 		return;
2811 
2812 	case RINGBUF_TYPE_TIME_STAMP:
2813 		/* FIXME: not implemented */
2814 		return;
2815 
2816 	case RINGBUF_TYPE_DATA:
2817 		iter->read_stamp += event->time_delta;
2818 		return;
2819 
2820 	default:
2821 		BUG();
2822 	}
2823 	return;
2824 }
2825 
2826 static struct buffer_page *
2827 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2828 {
2829 	struct buffer_page *reader = NULL;
2830 	unsigned long flags;
2831 	int nr_loops = 0;
2832 	int ret;
2833 
2834 	local_irq_save(flags);
2835 	arch_spin_lock(&cpu_buffer->lock);
2836 
2837  again:
2838 	/*
2839 	 * This should normally only loop twice. But because the
2840 	 * start of the reader inserts an empty page, it causes
2841 	 * a case where we will loop three times. There should be no
2842 	 * reason to loop four times (that I know of).
2843 	 */
2844 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2845 		reader = NULL;
2846 		goto out;
2847 	}
2848 
2849 	reader = cpu_buffer->reader_page;
2850 
2851 	/* If there's more to read, return this page */
2852 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2853 		goto out;
2854 
2855 	/* Never should we have an index greater than the size */
2856 	if (RB_WARN_ON(cpu_buffer,
2857 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2858 		goto out;
2859 
2860 	/* check if we caught up to the tail */
2861 	reader = NULL;
2862 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2863 		goto out;
2864 
2865 	/*
2866 	 * Reset the reader page to size zero.
2867 	 */
2868 	local_set(&cpu_buffer->reader_page->write, 0);
2869 	local_set(&cpu_buffer->reader_page->entries, 0);
2870 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2871 
2872  spin:
2873 	/*
2874 	 * Splice the empty reader page into the list around the head.
2875 	 */
2876 	reader = rb_set_head_page(cpu_buffer);
2877 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2878 	cpu_buffer->reader_page->list.prev = reader->list.prev;
2879 
2880 	/*
2881 	 * cpu_buffer->pages just needs to point to the buffer, it
2882 	 *  has no specific buffer page to point to. Lets move it out
2883 	 *  of our way so we don't accidently swap it.
2884 	 */
2885 	cpu_buffer->pages = reader->list.prev;
2886 
2887 	/* The reader page will be pointing to the new head */
2888 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2889 
2890 	/*
2891 	 * Here's the tricky part.
2892 	 *
2893 	 * We need to move the pointer past the header page.
2894 	 * But we can only do that if a writer is not currently
2895 	 * moving it. The page before the header page has the
2896 	 * flag bit '1' set if it is pointing to the page we want.
2897 	 * but if the writer is in the process of moving it
2898 	 * than it will be '2' or already moved '0'.
2899 	 */
2900 
2901 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2902 
2903 	/*
2904 	 * If we did not convert it, then we must try again.
2905 	 */
2906 	if (!ret)
2907 		goto spin;
2908 
2909 	/*
2910 	 * Yeah! We succeeded in replacing the page.
2911 	 *
2912 	 * Now make the new head point back to the reader page.
2913 	 */
2914 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2915 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2916 
2917 	/* Finally update the reader page to the new head */
2918 	cpu_buffer->reader_page = reader;
2919 	rb_reset_reader_page(cpu_buffer);
2920 
2921 	goto again;
2922 
2923  out:
2924 	arch_spin_unlock(&cpu_buffer->lock);
2925 	local_irq_restore(flags);
2926 
2927 	return reader;
2928 }
2929 
2930 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2931 {
2932 	struct ring_buffer_event *event;
2933 	struct buffer_page *reader;
2934 	unsigned length;
2935 
2936 	reader = rb_get_reader_page(cpu_buffer);
2937 
2938 	/* This function should not be called when buffer is empty */
2939 	if (RB_WARN_ON(cpu_buffer, !reader))
2940 		return;
2941 
2942 	event = rb_reader_event(cpu_buffer);
2943 
2944 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2945 		cpu_buffer->read++;
2946 
2947 	rb_update_read_stamp(cpu_buffer, event);
2948 
2949 	length = rb_event_length(event);
2950 	cpu_buffer->reader_page->read += length;
2951 }
2952 
2953 static void rb_advance_iter(struct ring_buffer_iter *iter)
2954 {
2955 	struct ring_buffer *buffer;
2956 	struct ring_buffer_per_cpu *cpu_buffer;
2957 	struct ring_buffer_event *event;
2958 	unsigned length;
2959 
2960 	cpu_buffer = iter->cpu_buffer;
2961 	buffer = cpu_buffer->buffer;
2962 
2963 	/*
2964 	 * Check if we are at the end of the buffer.
2965 	 */
2966 	if (iter->head >= rb_page_size(iter->head_page)) {
2967 		/* discarded commits can make the page empty */
2968 		if (iter->head_page == cpu_buffer->commit_page)
2969 			return;
2970 		rb_inc_iter(iter);
2971 		return;
2972 	}
2973 
2974 	event = rb_iter_head_event(iter);
2975 
2976 	length = rb_event_length(event);
2977 
2978 	/*
2979 	 * This should not be called to advance the header if we are
2980 	 * at the tail of the buffer.
2981 	 */
2982 	if (RB_WARN_ON(cpu_buffer,
2983 		       (iter->head_page == cpu_buffer->commit_page) &&
2984 		       (iter->head + length > rb_commit_index(cpu_buffer))))
2985 		return;
2986 
2987 	rb_update_iter_read_stamp(iter, event);
2988 
2989 	iter->head += length;
2990 
2991 	/* check for end of page padding */
2992 	if ((iter->head >= rb_page_size(iter->head_page)) &&
2993 	    (iter->head_page != cpu_buffer->commit_page))
2994 		rb_advance_iter(iter);
2995 }
2996 
2997 static struct ring_buffer_event *
2998 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
2999 {
3000 	struct ring_buffer_event *event;
3001 	struct buffer_page *reader;
3002 	int nr_loops = 0;
3003 
3004  again:
3005 	/*
3006 	 * We repeat when a timestamp is encountered. It is possible
3007 	 * to get multiple timestamps from an interrupt entering just
3008 	 * as one timestamp is about to be written, or from discarded
3009 	 * commits. The most that we can have is the number on a single page.
3010 	 */
3011 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3012 		return NULL;
3013 
3014 	reader = rb_get_reader_page(cpu_buffer);
3015 	if (!reader)
3016 		return NULL;
3017 
3018 	event = rb_reader_event(cpu_buffer);
3019 
3020 	switch (event->type_len) {
3021 	case RINGBUF_TYPE_PADDING:
3022 		if (rb_null_event(event))
3023 			RB_WARN_ON(cpu_buffer, 1);
3024 		/*
3025 		 * Because the writer could be discarding every
3026 		 * event it creates (which would probably be bad)
3027 		 * if we were to go back to "again" then we may never
3028 		 * catch up, and will trigger the warn on, or lock
3029 		 * the box. Return the padding, and we will release
3030 		 * the current locks, and try again.
3031 		 */
3032 		return event;
3033 
3034 	case RINGBUF_TYPE_TIME_EXTEND:
3035 		/* Internal data, OK to advance */
3036 		rb_advance_reader(cpu_buffer);
3037 		goto again;
3038 
3039 	case RINGBUF_TYPE_TIME_STAMP:
3040 		/* FIXME: not implemented */
3041 		rb_advance_reader(cpu_buffer);
3042 		goto again;
3043 
3044 	case RINGBUF_TYPE_DATA:
3045 		if (ts) {
3046 			*ts = cpu_buffer->read_stamp + event->time_delta;
3047 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3048 							 cpu_buffer->cpu, ts);
3049 		}
3050 		return event;
3051 
3052 	default:
3053 		BUG();
3054 	}
3055 
3056 	return NULL;
3057 }
3058 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3059 
3060 static struct ring_buffer_event *
3061 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3062 {
3063 	struct ring_buffer *buffer;
3064 	struct ring_buffer_per_cpu *cpu_buffer;
3065 	struct ring_buffer_event *event;
3066 	int nr_loops = 0;
3067 
3068 	cpu_buffer = iter->cpu_buffer;
3069 	buffer = cpu_buffer->buffer;
3070 
3071 	/*
3072 	 * Check if someone performed a consuming read to
3073 	 * the buffer. A consuming read invalidates the iterator
3074 	 * and we need to reset the iterator in this case.
3075 	 */
3076 	if (unlikely(iter->cache_read != cpu_buffer->read ||
3077 		     iter->cache_reader_page != cpu_buffer->reader_page))
3078 		rb_iter_reset(iter);
3079 
3080  again:
3081 	if (ring_buffer_iter_empty(iter))
3082 		return NULL;
3083 
3084 	/*
3085 	 * We repeat when a timestamp is encountered.
3086 	 * We can get multiple timestamps by nested interrupts or also
3087 	 * if filtering is on (discarding commits). Since discarding
3088 	 * commits can be frequent we can get a lot of timestamps.
3089 	 * But we limit them by not adding timestamps if they begin
3090 	 * at the start of a page.
3091 	 */
3092 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3093 		return NULL;
3094 
3095 	if (rb_per_cpu_empty(cpu_buffer))
3096 		return NULL;
3097 
3098 	if (iter->head >= local_read(&iter->head_page->page->commit)) {
3099 		rb_inc_iter(iter);
3100 		goto again;
3101 	}
3102 
3103 	event = rb_iter_head_event(iter);
3104 
3105 	switch (event->type_len) {
3106 	case RINGBUF_TYPE_PADDING:
3107 		if (rb_null_event(event)) {
3108 			rb_inc_iter(iter);
3109 			goto again;
3110 		}
3111 		rb_advance_iter(iter);
3112 		return event;
3113 
3114 	case RINGBUF_TYPE_TIME_EXTEND:
3115 		/* Internal data, OK to advance */
3116 		rb_advance_iter(iter);
3117 		goto again;
3118 
3119 	case RINGBUF_TYPE_TIME_STAMP:
3120 		/* FIXME: not implemented */
3121 		rb_advance_iter(iter);
3122 		goto again;
3123 
3124 	case RINGBUF_TYPE_DATA:
3125 		if (ts) {
3126 			*ts = iter->read_stamp + event->time_delta;
3127 			ring_buffer_normalize_time_stamp(buffer,
3128 							 cpu_buffer->cpu, ts);
3129 		}
3130 		return event;
3131 
3132 	default:
3133 		BUG();
3134 	}
3135 
3136 	return NULL;
3137 }
3138 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3139 
3140 static inline int rb_ok_to_lock(void)
3141 {
3142 	/*
3143 	 * If an NMI die dumps out the content of the ring buffer
3144 	 * do not grab locks. We also permanently disable the ring
3145 	 * buffer too. A one time deal is all you get from reading
3146 	 * the ring buffer from an NMI.
3147 	 */
3148 	if (likely(!in_nmi()))
3149 		return 1;
3150 
3151 	tracing_off_permanent();
3152 	return 0;
3153 }
3154 
3155 /**
3156  * ring_buffer_peek - peek at the next event to be read
3157  * @buffer: The ring buffer to read
3158  * @cpu: The cpu to peak at
3159  * @ts: The timestamp counter of this event.
3160  *
3161  * This will return the event that will be read next, but does
3162  * not consume the data.
3163  */
3164 struct ring_buffer_event *
3165 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3166 {
3167 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3168 	struct ring_buffer_event *event;
3169 	unsigned long flags;
3170 	int dolock;
3171 
3172 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3173 		return NULL;
3174 
3175 	dolock = rb_ok_to_lock();
3176  again:
3177 	local_irq_save(flags);
3178 	if (dolock)
3179 		spin_lock(&cpu_buffer->reader_lock);
3180 	event = rb_buffer_peek(cpu_buffer, ts);
3181 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3182 		rb_advance_reader(cpu_buffer);
3183 	if (dolock)
3184 		spin_unlock(&cpu_buffer->reader_lock);
3185 	local_irq_restore(flags);
3186 
3187 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3188 		goto again;
3189 
3190 	return event;
3191 }
3192 
3193 /**
3194  * ring_buffer_iter_peek - peek at the next event to be read
3195  * @iter: The ring buffer iterator
3196  * @ts: The timestamp counter of this event.
3197  *
3198  * This will return the event that will be read next, but does
3199  * not increment the iterator.
3200  */
3201 struct ring_buffer_event *
3202 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3203 {
3204 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3205 	struct ring_buffer_event *event;
3206 	unsigned long flags;
3207 
3208  again:
3209 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3210 	event = rb_iter_peek(iter, ts);
3211 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3212 
3213 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3214 		goto again;
3215 
3216 	return event;
3217 }
3218 
3219 /**
3220  * ring_buffer_consume - return an event and consume it
3221  * @buffer: The ring buffer to get the next event from
3222  *
3223  * Returns the next event in the ring buffer, and that event is consumed.
3224  * Meaning, that sequential reads will keep returning a different event,
3225  * and eventually empty the ring buffer if the producer is slower.
3226  */
3227 struct ring_buffer_event *
3228 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3229 {
3230 	struct ring_buffer_per_cpu *cpu_buffer;
3231 	struct ring_buffer_event *event = NULL;
3232 	unsigned long flags;
3233 	int dolock;
3234 
3235 	dolock = rb_ok_to_lock();
3236 
3237  again:
3238 	/* might be called in atomic */
3239 	preempt_disable();
3240 
3241 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3242 		goto out;
3243 
3244 	cpu_buffer = buffer->buffers[cpu];
3245 	local_irq_save(flags);
3246 	if (dolock)
3247 		spin_lock(&cpu_buffer->reader_lock);
3248 
3249 	event = rb_buffer_peek(cpu_buffer, ts);
3250 	if (event)
3251 		rb_advance_reader(cpu_buffer);
3252 
3253 	if (dolock)
3254 		spin_unlock(&cpu_buffer->reader_lock);
3255 	local_irq_restore(flags);
3256 
3257  out:
3258 	preempt_enable();
3259 
3260 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3261 		goto again;
3262 
3263 	return event;
3264 }
3265 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3266 
3267 /**
3268  * ring_buffer_read_start - start a non consuming read of the buffer
3269  * @buffer: The ring buffer to read from
3270  * @cpu: The cpu buffer to iterate over
3271  *
3272  * This starts up an iteration through the buffer. It also disables
3273  * the recording to the buffer until the reading is finished.
3274  * This prevents the reading from being corrupted. This is not
3275  * a consuming read, so a producer is not expected.
3276  *
3277  * Must be paired with ring_buffer_finish.
3278  */
3279 struct ring_buffer_iter *
3280 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3281 {
3282 	struct ring_buffer_per_cpu *cpu_buffer;
3283 	struct ring_buffer_iter *iter;
3284 	unsigned long flags;
3285 
3286 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3287 		return NULL;
3288 
3289 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3290 	if (!iter)
3291 		return NULL;
3292 
3293 	cpu_buffer = buffer->buffers[cpu];
3294 
3295 	iter->cpu_buffer = cpu_buffer;
3296 
3297 	atomic_inc(&cpu_buffer->record_disabled);
3298 	synchronize_sched();
3299 
3300 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3301 	arch_spin_lock(&cpu_buffer->lock);
3302 	rb_iter_reset(iter);
3303 	arch_spin_unlock(&cpu_buffer->lock);
3304 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3305 
3306 	return iter;
3307 }
3308 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3309 
3310 /**
3311  * ring_buffer_finish - finish reading the iterator of the buffer
3312  * @iter: The iterator retrieved by ring_buffer_start
3313  *
3314  * This re-enables the recording to the buffer, and frees the
3315  * iterator.
3316  */
3317 void
3318 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3319 {
3320 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3321 
3322 	atomic_dec(&cpu_buffer->record_disabled);
3323 	kfree(iter);
3324 }
3325 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3326 
3327 /**
3328  * ring_buffer_read - read the next item in the ring buffer by the iterator
3329  * @iter: The ring buffer iterator
3330  * @ts: The time stamp of the event read.
3331  *
3332  * This reads the next event in the ring buffer and increments the iterator.
3333  */
3334 struct ring_buffer_event *
3335 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3336 {
3337 	struct ring_buffer_event *event;
3338 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3339 	unsigned long flags;
3340 
3341 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3342  again:
3343 	event = rb_iter_peek(iter, ts);
3344 	if (!event)
3345 		goto out;
3346 
3347 	if (event->type_len == RINGBUF_TYPE_PADDING)
3348 		goto again;
3349 
3350 	rb_advance_iter(iter);
3351  out:
3352 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3353 
3354 	return event;
3355 }
3356 EXPORT_SYMBOL_GPL(ring_buffer_read);
3357 
3358 /**
3359  * ring_buffer_size - return the size of the ring buffer (in bytes)
3360  * @buffer: The ring buffer.
3361  */
3362 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3363 {
3364 	return BUF_PAGE_SIZE * buffer->pages;
3365 }
3366 EXPORT_SYMBOL_GPL(ring_buffer_size);
3367 
3368 static void
3369 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3370 {
3371 	rb_head_page_deactivate(cpu_buffer);
3372 
3373 	cpu_buffer->head_page
3374 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3375 	local_set(&cpu_buffer->head_page->write, 0);
3376 	local_set(&cpu_buffer->head_page->entries, 0);
3377 	local_set(&cpu_buffer->head_page->page->commit, 0);
3378 
3379 	cpu_buffer->head_page->read = 0;
3380 
3381 	cpu_buffer->tail_page = cpu_buffer->head_page;
3382 	cpu_buffer->commit_page = cpu_buffer->head_page;
3383 
3384 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3385 	local_set(&cpu_buffer->reader_page->write, 0);
3386 	local_set(&cpu_buffer->reader_page->entries, 0);
3387 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3388 	cpu_buffer->reader_page->read = 0;
3389 
3390 	local_set(&cpu_buffer->commit_overrun, 0);
3391 	local_set(&cpu_buffer->overrun, 0);
3392 	local_set(&cpu_buffer->entries, 0);
3393 	local_set(&cpu_buffer->committing, 0);
3394 	local_set(&cpu_buffer->commits, 0);
3395 	cpu_buffer->read = 0;
3396 
3397 	cpu_buffer->write_stamp = 0;
3398 	cpu_buffer->read_stamp = 0;
3399 
3400 	rb_head_page_activate(cpu_buffer);
3401 }
3402 
3403 /**
3404  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3405  * @buffer: The ring buffer to reset a per cpu buffer of
3406  * @cpu: The CPU buffer to be reset
3407  */
3408 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3409 {
3410 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3411 	unsigned long flags;
3412 
3413 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3414 		return;
3415 
3416 	atomic_inc(&cpu_buffer->record_disabled);
3417 
3418 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3419 
3420 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3421 		goto out;
3422 
3423 	arch_spin_lock(&cpu_buffer->lock);
3424 
3425 	rb_reset_cpu(cpu_buffer);
3426 
3427 	arch_spin_unlock(&cpu_buffer->lock);
3428 
3429  out:
3430 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3431 
3432 	atomic_dec(&cpu_buffer->record_disabled);
3433 }
3434 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3435 
3436 /**
3437  * ring_buffer_reset - reset a ring buffer
3438  * @buffer: The ring buffer to reset all cpu buffers
3439  */
3440 void ring_buffer_reset(struct ring_buffer *buffer)
3441 {
3442 	int cpu;
3443 
3444 	for_each_buffer_cpu(buffer, cpu)
3445 		ring_buffer_reset_cpu(buffer, cpu);
3446 }
3447 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3448 
3449 /**
3450  * rind_buffer_empty - is the ring buffer empty?
3451  * @buffer: The ring buffer to test
3452  */
3453 int ring_buffer_empty(struct ring_buffer *buffer)
3454 {
3455 	struct ring_buffer_per_cpu *cpu_buffer;
3456 	unsigned long flags;
3457 	int dolock;
3458 	int cpu;
3459 	int ret;
3460 
3461 	dolock = rb_ok_to_lock();
3462 
3463 	/* yes this is racy, but if you don't like the race, lock the buffer */
3464 	for_each_buffer_cpu(buffer, cpu) {
3465 		cpu_buffer = buffer->buffers[cpu];
3466 		local_irq_save(flags);
3467 		if (dolock)
3468 			spin_lock(&cpu_buffer->reader_lock);
3469 		ret = rb_per_cpu_empty(cpu_buffer);
3470 		if (dolock)
3471 			spin_unlock(&cpu_buffer->reader_lock);
3472 		local_irq_restore(flags);
3473 
3474 		if (!ret)
3475 			return 0;
3476 	}
3477 
3478 	return 1;
3479 }
3480 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3481 
3482 /**
3483  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3484  * @buffer: The ring buffer
3485  * @cpu: The CPU buffer to test
3486  */
3487 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3488 {
3489 	struct ring_buffer_per_cpu *cpu_buffer;
3490 	unsigned long flags;
3491 	int dolock;
3492 	int ret;
3493 
3494 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3495 		return 1;
3496 
3497 	dolock = rb_ok_to_lock();
3498 
3499 	cpu_buffer = buffer->buffers[cpu];
3500 	local_irq_save(flags);
3501 	if (dolock)
3502 		spin_lock(&cpu_buffer->reader_lock);
3503 	ret = rb_per_cpu_empty(cpu_buffer);
3504 	if (dolock)
3505 		spin_unlock(&cpu_buffer->reader_lock);
3506 	local_irq_restore(flags);
3507 
3508 	return ret;
3509 }
3510 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3511 
3512 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3513 /**
3514  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3515  * @buffer_a: One buffer to swap with
3516  * @buffer_b: The other buffer to swap with
3517  *
3518  * This function is useful for tracers that want to take a "snapshot"
3519  * of a CPU buffer and has another back up buffer lying around.
3520  * it is expected that the tracer handles the cpu buffer not being
3521  * used at the moment.
3522  */
3523 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3524 			 struct ring_buffer *buffer_b, int cpu)
3525 {
3526 	struct ring_buffer_per_cpu *cpu_buffer_a;
3527 	struct ring_buffer_per_cpu *cpu_buffer_b;
3528 	int ret = -EINVAL;
3529 
3530 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3531 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
3532 		goto out;
3533 
3534 	/* At least make sure the two buffers are somewhat the same */
3535 	if (buffer_a->pages != buffer_b->pages)
3536 		goto out;
3537 
3538 	ret = -EAGAIN;
3539 
3540 	if (ring_buffer_flags != RB_BUFFERS_ON)
3541 		goto out;
3542 
3543 	if (atomic_read(&buffer_a->record_disabled))
3544 		goto out;
3545 
3546 	if (atomic_read(&buffer_b->record_disabled))
3547 		goto out;
3548 
3549 	cpu_buffer_a = buffer_a->buffers[cpu];
3550 	cpu_buffer_b = buffer_b->buffers[cpu];
3551 
3552 	if (atomic_read(&cpu_buffer_a->record_disabled))
3553 		goto out;
3554 
3555 	if (atomic_read(&cpu_buffer_b->record_disabled))
3556 		goto out;
3557 
3558 	/*
3559 	 * We can't do a synchronize_sched here because this
3560 	 * function can be called in atomic context.
3561 	 * Normally this will be called from the same CPU as cpu.
3562 	 * If not it's up to the caller to protect this.
3563 	 */
3564 	atomic_inc(&cpu_buffer_a->record_disabled);
3565 	atomic_inc(&cpu_buffer_b->record_disabled);
3566 
3567 	ret = -EBUSY;
3568 	if (local_read(&cpu_buffer_a->committing))
3569 		goto out_dec;
3570 	if (local_read(&cpu_buffer_b->committing))
3571 		goto out_dec;
3572 
3573 	buffer_a->buffers[cpu] = cpu_buffer_b;
3574 	buffer_b->buffers[cpu] = cpu_buffer_a;
3575 
3576 	cpu_buffer_b->buffer = buffer_a;
3577 	cpu_buffer_a->buffer = buffer_b;
3578 
3579 	ret = 0;
3580 
3581 out_dec:
3582 	atomic_dec(&cpu_buffer_a->record_disabled);
3583 	atomic_dec(&cpu_buffer_b->record_disabled);
3584 out:
3585 	return ret;
3586 }
3587 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3588 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3589 
3590 /**
3591  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3592  * @buffer: the buffer to allocate for.
3593  *
3594  * This function is used in conjunction with ring_buffer_read_page.
3595  * When reading a full page from the ring buffer, these functions
3596  * can be used to speed up the process. The calling function should
3597  * allocate a few pages first with this function. Then when it
3598  * needs to get pages from the ring buffer, it passes the result
3599  * of this function into ring_buffer_read_page, which will swap
3600  * the page that was allocated, with the read page of the buffer.
3601  *
3602  * Returns:
3603  *  The page allocated, or NULL on error.
3604  */
3605 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3606 {
3607 	struct buffer_data_page *bpage;
3608 	unsigned long addr;
3609 
3610 	addr = __get_free_page(GFP_KERNEL);
3611 	if (!addr)
3612 		return NULL;
3613 
3614 	bpage = (void *)addr;
3615 
3616 	rb_init_page(bpage);
3617 
3618 	return bpage;
3619 }
3620 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3621 
3622 /**
3623  * ring_buffer_free_read_page - free an allocated read page
3624  * @buffer: the buffer the page was allocate for
3625  * @data: the page to free
3626  *
3627  * Free a page allocated from ring_buffer_alloc_read_page.
3628  */
3629 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3630 {
3631 	free_page((unsigned long)data);
3632 }
3633 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3634 
3635 /**
3636  * ring_buffer_read_page - extract a page from the ring buffer
3637  * @buffer: buffer to extract from
3638  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3639  * @len: amount to extract
3640  * @cpu: the cpu of the buffer to extract
3641  * @full: should the extraction only happen when the page is full.
3642  *
3643  * This function will pull out a page from the ring buffer and consume it.
3644  * @data_page must be the address of the variable that was returned
3645  * from ring_buffer_alloc_read_page. This is because the page might be used
3646  * to swap with a page in the ring buffer.
3647  *
3648  * for example:
3649  *	rpage = ring_buffer_alloc_read_page(buffer);
3650  *	if (!rpage)
3651  *		return error;
3652  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3653  *	if (ret >= 0)
3654  *		process_page(rpage, ret);
3655  *
3656  * When @full is set, the function will not return true unless
3657  * the writer is off the reader page.
3658  *
3659  * Note: it is up to the calling functions to handle sleeps and wakeups.
3660  *  The ring buffer can be used anywhere in the kernel and can not
3661  *  blindly call wake_up. The layer that uses the ring buffer must be
3662  *  responsible for that.
3663  *
3664  * Returns:
3665  *  >=0 if data has been transferred, returns the offset of consumed data.
3666  *  <0 if no data has been transferred.
3667  */
3668 int ring_buffer_read_page(struct ring_buffer *buffer,
3669 			  void **data_page, size_t len, int cpu, int full)
3670 {
3671 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3672 	struct ring_buffer_event *event;
3673 	struct buffer_data_page *bpage;
3674 	struct buffer_page *reader;
3675 	unsigned long flags;
3676 	unsigned int commit;
3677 	unsigned int read;
3678 	u64 save_timestamp;
3679 	int ret = -1;
3680 
3681 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3682 		goto out;
3683 
3684 	/*
3685 	 * If len is not big enough to hold the page header, then
3686 	 * we can not copy anything.
3687 	 */
3688 	if (len <= BUF_PAGE_HDR_SIZE)
3689 		goto out;
3690 
3691 	len -= BUF_PAGE_HDR_SIZE;
3692 
3693 	if (!data_page)
3694 		goto out;
3695 
3696 	bpage = *data_page;
3697 	if (!bpage)
3698 		goto out;
3699 
3700 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3701 
3702 	reader = rb_get_reader_page(cpu_buffer);
3703 	if (!reader)
3704 		goto out_unlock;
3705 
3706 	event = rb_reader_event(cpu_buffer);
3707 
3708 	read = reader->read;
3709 	commit = rb_page_commit(reader);
3710 
3711 	/*
3712 	 * If this page has been partially read or
3713 	 * if len is not big enough to read the rest of the page or
3714 	 * a writer is still on the page, then
3715 	 * we must copy the data from the page to the buffer.
3716 	 * Otherwise, we can simply swap the page with the one passed in.
3717 	 */
3718 	if (read || (len < (commit - read)) ||
3719 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3720 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3721 		unsigned int rpos = read;
3722 		unsigned int pos = 0;
3723 		unsigned int size;
3724 
3725 		if (full)
3726 			goto out_unlock;
3727 
3728 		if (len > (commit - read))
3729 			len = (commit - read);
3730 
3731 		size = rb_event_length(event);
3732 
3733 		if (len < size)
3734 			goto out_unlock;
3735 
3736 		/* save the current timestamp, since the user will need it */
3737 		save_timestamp = cpu_buffer->read_stamp;
3738 
3739 		/* Need to copy one event at a time */
3740 		do {
3741 			memcpy(bpage->data + pos, rpage->data + rpos, size);
3742 
3743 			len -= size;
3744 
3745 			rb_advance_reader(cpu_buffer);
3746 			rpos = reader->read;
3747 			pos += size;
3748 
3749 			event = rb_reader_event(cpu_buffer);
3750 			size = rb_event_length(event);
3751 		} while (len > size);
3752 
3753 		/* update bpage */
3754 		local_set(&bpage->commit, pos);
3755 		bpage->time_stamp = save_timestamp;
3756 
3757 		/* we copied everything to the beginning */
3758 		read = 0;
3759 	} else {
3760 		/* update the entry counter */
3761 		cpu_buffer->read += rb_page_entries(reader);
3762 
3763 		/* swap the pages */
3764 		rb_init_page(bpage);
3765 		bpage = reader->page;
3766 		reader->page = *data_page;
3767 		local_set(&reader->write, 0);
3768 		local_set(&reader->entries, 0);
3769 		reader->read = 0;
3770 		*data_page = bpage;
3771 	}
3772 	ret = read;
3773 
3774  out_unlock:
3775 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3776 
3777  out:
3778 	return ret;
3779 }
3780 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3781 
3782 #ifdef CONFIG_TRACING
3783 static ssize_t
3784 rb_simple_read(struct file *filp, char __user *ubuf,
3785 	       size_t cnt, loff_t *ppos)
3786 {
3787 	unsigned long *p = filp->private_data;
3788 	char buf[64];
3789 	int r;
3790 
3791 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3792 		r = sprintf(buf, "permanently disabled\n");
3793 	else
3794 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3795 
3796 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3797 }
3798 
3799 static ssize_t
3800 rb_simple_write(struct file *filp, const char __user *ubuf,
3801 		size_t cnt, loff_t *ppos)
3802 {
3803 	unsigned long *p = filp->private_data;
3804 	char buf[64];
3805 	unsigned long val;
3806 	int ret;
3807 
3808 	if (cnt >= sizeof(buf))
3809 		return -EINVAL;
3810 
3811 	if (copy_from_user(&buf, ubuf, cnt))
3812 		return -EFAULT;
3813 
3814 	buf[cnt] = 0;
3815 
3816 	ret = strict_strtoul(buf, 10, &val);
3817 	if (ret < 0)
3818 		return ret;
3819 
3820 	if (val)
3821 		set_bit(RB_BUFFERS_ON_BIT, p);
3822 	else
3823 		clear_bit(RB_BUFFERS_ON_BIT, p);
3824 
3825 	(*ppos)++;
3826 
3827 	return cnt;
3828 }
3829 
3830 static const struct file_operations rb_simple_fops = {
3831 	.open		= tracing_open_generic,
3832 	.read		= rb_simple_read,
3833 	.write		= rb_simple_write,
3834 };
3835 
3836 
3837 static __init int rb_init_debugfs(void)
3838 {
3839 	struct dentry *d_tracer;
3840 
3841 	d_tracer = tracing_init_dentry();
3842 
3843 	trace_create_file("tracing_on", 0644, d_tracer,
3844 			    &ring_buffer_flags, &rb_simple_fops);
3845 
3846 	return 0;
3847 }
3848 
3849 fs_initcall(rb_init_debugfs);
3850 #endif
3851 
3852 #ifdef CONFIG_HOTPLUG_CPU
3853 static int rb_cpu_notify(struct notifier_block *self,
3854 			 unsigned long action, void *hcpu)
3855 {
3856 	struct ring_buffer *buffer =
3857 		container_of(self, struct ring_buffer, cpu_notify);
3858 	long cpu = (long)hcpu;
3859 
3860 	switch (action) {
3861 	case CPU_UP_PREPARE:
3862 	case CPU_UP_PREPARE_FROZEN:
3863 		if (cpumask_test_cpu(cpu, buffer->cpumask))
3864 			return NOTIFY_OK;
3865 
3866 		buffer->buffers[cpu] =
3867 			rb_allocate_cpu_buffer(buffer, cpu);
3868 		if (!buffer->buffers[cpu]) {
3869 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3870 			     cpu);
3871 			return NOTIFY_OK;
3872 		}
3873 		smp_wmb();
3874 		cpumask_set_cpu(cpu, buffer->cpumask);
3875 		break;
3876 	case CPU_DOWN_PREPARE:
3877 	case CPU_DOWN_PREPARE_FROZEN:
3878 		/*
3879 		 * Do nothing.
3880 		 *  If we were to free the buffer, then the user would
3881 		 *  lose any trace that was in the buffer.
3882 		 */
3883 		break;
3884 	default:
3885 		break;
3886 	}
3887 	return NOTIFY_OK;
3888 }
3889 #endif
3890