xref: /linux-6.15/kernel/trace/ring_buffer.c (revision 7ec7fb39)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <[email protected]>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/spinlock.h>
8 #include <linux/debugfs.h>
9 #include <linux/uaccess.h>
10 #include <linux/module.h>
11 #include <linux/percpu.h>
12 #include <linux/mutex.h>
13 #include <linux/sched.h>	/* used for sched_clock() (for now) */
14 #include <linux/init.h>
15 #include <linux/hash.h>
16 #include <linux/list.h>
17 #include <linux/fs.h>
18 
19 #include "trace.h"
20 
21 /*
22  * A fast way to enable or disable all ring buffers is to
23  * call tracing_on or tracing_off. Turning off the ring buffers
24  * prevents all ring buffers from being recorded to.
25  * Turning this switch on, makes it OK to write to the
26  * ring buffer, if the ring buffer is enabled itself.
27  *
28  * There's three layers that must be on in order to write
29  * to the ring buffer.
30  *
31  * 1) This global flag must be set.
32  * 2) The ring buffer must be enabled for recording.
33  * 3) The per cpu buffer must be enabled for recording.
34  *
35  * In case of an anomaly, this global flag has a bit set that
36  * will permantly disable all ring buffers.
37  */
38 
39 /*
40  * Global flag to disable all recording to ring buffers
41  *  This has two bits: ON, DISABLED
42  *
43  *  ON   DISABLED
44  * ---- ----------
45  *   0      0        : ring buffers are off
46  *   1      0        : ring buffers are on
47  *   X      1        : ring buffers are permanently disabled
48  */
49 
50 enum {
51 	RB_BUFFERS_ON_BIT	= 0,
52 	RB_BUFFERS_DISABLED_BIT	= 1,
53 };
54 
55 enum {
56 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
57 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
58 };
59 
60 static long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
61 
62 /**
63  * tracing_on - enable all tracing buffers
64  *
65  * This function enables all tracing buffers that may have been
66  * disabled with tracing_off.
67  */
68 void tracing_on(void)
69 {
70 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
71 }
72 EXPORT_SYMBOL_GPL(tracing_on);
73 
74 /**
75  * tracing_off - turn off all tracing buffers
76  *
77  * This function stops all tracing buffers from recording data.
78  * It does not disable any overhead the tracers themselves may
79  * be causing. This function simply causes all recording to
80  * the ring buffers to fail.
81  */
82 void tracing_off(void)
83 {
84 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
85 }
86 EXPORT_SYMBOL_GPL(tracing_off);
87 
88 /**
89  * tracing_off_permanent - permanently disable ring buffers
90  *
91  * This function, once called, will disable all ring buffers
92  * permanenty.
93  */
94 void tracing_off_permanent(void)
95 {
96 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
97 }
98 
99 #include "trace.h"
100 
101 /* Up this if you want to test the TIME_EXTENTS and normalization */
102 #define DEBUG_SHIFT 0
103 
104 /* FIXME!!! */
105 u64 ring_buffer_time_stamp(int cpu)
106 {
107 	u64 time;
108 
109 	preempt_disable_notrace();
110 	/* shift to debug/test normalization and TIME_EXTENTS */
111 	time = sched_clock() << DEBUG_SHIFT;
112 	preempt_enable_no_resched_notrace();
113 
114 	return time;
115 }
116 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
117 
118 void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
119 {
120 	/* Just stupid testing the normalize function and deltas */
121 	*ts >>= DEBUG_SHIFT;
122 }
123 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
124 
125 #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
126 #define RB_ALIGNMENT_SHIFT	2
127 #define RB_ALIGNMENT		(1 << RB_ALIGNMENT_SHIFT)
128 #define RB_MAX_SMALL_DATA	28
129 
130 enum {
131 	RB_LEN_TIME_EXTEND = 8,
132 	RB_LEN_TIME_STAMP = 16,
133 };
134 
135 /* inline for ring buffer fast paths */
136 static inline unsigned
137 rb_event_length(struct ring_buffer_event *event)
138 {
139 	unsigned length;
140 
141 	switch (event->type) {
142 	case RINGBUF_TYPE_PADDING:
143 		/* undefined */
144 		return -1;
145 
146 	case RINGBUF_TYPE_TIME_EXTEND:
147 		return RB_LEN_TIME_EXTEND;
148 
149 	case RINGBUF_TYPE_TIME_STAMP:
150 		return RB_LEN_TIME_STAMP;
151 
152 	case RINGBUF_TYPE_DATA:
153 		if (event->len)
154 			length = event->len << RB_ALIGNMENT_SHIFT;
155 		else
156 			length = event->array[0];
157 		return length + RB_EVNT_HDR_SIZE;
158 	default:
159 		BUG();
160 	}
161 	/* not hit */
162 	return 0;
163 }
164 
165 /**
166  * ring_buffer_event_length - return the length of the event
167  * @event: the event to get the length of
168  */
169 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
170 {
171 	return rb_event_length(event);
172 }
173 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
174 
175 /* inline for ring buffer fast paths */
176 static inline void *
177 rb_event_data(struct ring_buffer_event *event)
178 {
179 	BUG_ON(event->type != RINGBUF_TYPE_DATA);
180 	/* If length is in len field, then array[0] has the data */
181 	if (event->len)
182 		return (void *)&event->array[0];
183 	/* Otherwise length is in array[0] and array[1] has the data */
184 	return (void *)&event->array[1];
185 }
186 
187 /**
188  * ring_buffer_event_data - return the data of the event
189  * @event: the event to get the data from
190  */
191 void *ring_buffer_event_data(struct ring_buffer_event *event)
192 {
193 	return rb_event_data(event);
194 }
195 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
196 
197 #define for_each_buffer_cpu(buffer, cpu)		\
198 	for_each_cpu(cpu, buffer->cpumask)
199 
200 #define TS_SHIFT	27
201 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
202 #define TS_DELTA_TEST	(~TS_MASK)
203 
204 struct buffer_data_page {
205 	u64		 time_stamp;	/* page time stamp */
206 	local_t		 commit;	/* write commited index */
207 	unsigned char	 data[];	/* data of buffer page */
208 };
209 
210 struct buffer_page {
211 	local_t		 write;		/* index for next write */
212 	unsigned	 read;		/* index for next read */
213 	struct list_head list;		/* list of free pages */
214 	struct buffer_data_page *page;	/* Actual data page */
215 };
216 
217 static void rb_init_page(struct buffer_data_page *bpage)
218 {
219 	local_set(&bpage->commit, 0);
220 }
221 
222 /*
223  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
224  * this issue out.
225  */
226 static inline void free_buffer_page(struct buffer_page *bpage)
227 {
228 	if (bpage->page)
229 		free_page((unsigned long)bpage->page);
230 	kfree(bpage);
231 }
232 
233 /*
234  * We need to fit the time_stamp delta into 27 bits.
235  */
236 static inline int test_time_stamp(u64 delta)
237 {
238 	if (delta & TS_DELTA_TEST)
239 		return 1;
240 	return 0;
241 }
242 
243 #define BUF_PAGE_SIZE (PAGE_SIZE - sizeof(struct buffer_data_page))
244 
245 /*
246  * head_page == tail_page && head == tail then buffer is empty.
247  */
248 struct ring_buffer_per_cpu {
249 	int				cpu;
250 	struct ring_buffer		*buffer;
251 	spinlock_t			reader_lock; /* serialize readers */
252 	raw_spinlock_t			lock;
253 	struct lock_class_key		lock_key;
254 	struct list_head		pages;
255 	struct buffer_page		*head_page;	/* read from head */
256 	struct buffer_page		*tail_page;	/* write to tail */
257 	struct buffer_page		*commit_page;	/* commited pages */
258 	struct buffer_page		*reader_page;
259 	unsigned long			overrun;
260 	unsigned long			entries;
261 	u64				write_stamp;
262 	u64				read_stamp;
263 	atomic_t			record_disabled;
264 };
265 
266 struct ring_buffer {
267 	unsigned			pages;
268 	unsigned			flags;
269 	int				cpus;
270 	cpumask_var_t			cpumask;
271 	atomic_t			record_disabled;
272 
273 	struct mutex			mutex;
274 
275 	struct ring_buffer_per_cpu	**buffers;
276 };
277 
278 struct ring_buffer_iter {
279 	struct ring_buffer_per_cpu	*cpu_buffer;
280 	unsigned long			head;
281 	struct buffer_page		*head_page;
282 	u64				read_stamp;
283 };
284 
285 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
286 #define RB_WARN_ON(buffer, cond)				\
287 	({							\
288 		int _____ret = unlikely(cond);			\
289 		if (_____ret) {					\
290 			atomic_inc(&buffer->record_disabled);	\
291 			WARN_ON(1);				\
292 		}						\
293 		_____ret;					\
294 	})
295 
296 /**
297  * check_pages - integrity check of buffer pages
298  * @cpu_buffer: CPU buffer with pages to test
299  *
300  * As a safty measure we check to make sure the data pages have not
301  * been corrupted.
302  */
303 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
304 {
305 	struct list_head *head = &cpu_buffer->pages;
306 	struct buffer_page *bpage, *tmp;
307 
308 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
309 		return -1;
310 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
311 		return -1;
312 
313 	list_for_each_entry_safe(bpage, tmp, head, list) {
314 		if (RB_WARN_ON(cpu_buffer,
315 			       bpage->list.next->prev != &bpage->list))
316 			return -1;
317 		if (RB_WARN_ON(cpu_buffer,
318 			       bpage->list.prev->next != &bpage->list))
319 			return -1;
320 	}
321 
322 	return 0;
323 }
324 
325 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
326 			     unsigned nr_pages)
327 {
328 	struct list_head *head = &cpu_buffer->pages;
329 	struct buffer_page *bpage, *tmp;
330 	unsigned long addr;
331 	LIST_HEAD(pages);
332 	unsigned i;
333 
334 	for (i = 0; i < nr_pages; i++) {
335 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
336 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
337 		if (!bpage)
338 			goto free_pages;
339 		list_add(&bpage->list, &pages);
340 
341 		addr = __get_free_page(GFP_KERNEL);
342 		if (!addr)
343 			goto free_pages;
344 		bpage->page = (void *)addr;
345 		rb_init_page(bpage->page);
346 	}
347 
348 	list_splice(&pages, head);
349 
350 	rb_check_pages(cpu_buffer);
351 
352 	return 0;
353 
354  free_pages:
355 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
356 		list_del_init(&bpage->list);
357 		free_buffer_page(bpage);
358 	}
359 	return -ENOMEM;
360 }
361 
362 static struct ring_buffer_per_cpu *
363 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
364 {
365 	struct ring_buffer_per_cpu *cpu_buffer;
366 	struct buffer_page *bpage;
367 	unsigned long addr;
368 	int ret;
369 
370 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
371 				  GFP_KERNEL, cpu_to_node(cpu));
372 	if (!cpu_buffer)
373 		return NULL;
374 
375 	cpu_buffer->cpu = cpu;
376 	cpu_buffer->buffer = buffer;
377 	spin_lock_init(&cpu_buffer->reader_lock);
378 	cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
379 	INIT_LIST_HEAD(&cpu_buffer->pages);
380 
381 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
382 			    GFP_KERNEL, cpu_to_node(cpu));
383 	if (!bpage)
384 		goto fail_free_buffer;
385 
386 	cpu_buffer->reader_page = bpage;
387 	addr = __get_free_page(GFP_KERNEL);
388 	if (!addr)
389 		goto fail_free_reader;
390 	bpage->page = (void *)addr;
391 	rb_init_page(bpage->page);
392 
393 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
394 
395 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
396 	if (ret < 0)
397 		goto fail_free_reader;
398 
399 	cpu_buffer->head_page
400 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
401 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
402 
403 	return cpu_buffer;
404 
405  fail_free_reader:
406 	free_buffer_page(cpu_buffer->reader_page);
407 
408  fail_free_buffer:
409 	kfree(cpu_buffer);
410 	return NULL;
411 }
412 
413 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
414 {
415 	struct list_head *head = &cpu_buffer->pages;
416 	struct buffer_page *bpage, *tmp;
417 
418 	list_del_init(&cpu_buffer->reader_page->list);
419 	free_buffer_page(cpu_buffer->reader_page);
420 
421 	list_for_each_entry_safe(bpage, tmp, head, list) {
422 		list_del_init(&bpage->list);
423 		free_buffer_page(bpage);
424 	}
425 	kfree(cpu_buffer);
426 }
427 
428 /*
429  * Causes compile errors if the struct buffer_page gets bigger
430  * than the struct page.
431  */
432 extern int ring_buffer_page_too_big(void);
433 
434 /**
435  * ring_buffer_alloc - allocate a new ring_buffer
436  * @size: the size in bytes per cpu that is needed.
437  * @flags: attributes to set for the ring buffer.
438  *
439  * Currently the only flag that is available is the RB_FL_OVERWRITE
440  * flag. This flag means that the buffer will overwrite old data
441  * when the buffer wraps. If this flag is not set, the buffer will
442  * drop data when the tail hits the head.
443  */
444 struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
445 {
446 	struct ring_buffer *buffer;
447 	int bsize;
448 	int cpu;
449 
450 	/* Paranoid! Optimizes out when all is well */
451 	if (sizeof(struct buffer_page) > sizeof(struct page))
452 		ring_buffer_page_too_big();
453 
454 
455 	/* keep it in its own cache line */
456 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
457 			 GFP_KERNEL);
458 	if (!buffer)
459 		return NULL;
460 
461 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
462 		goto fail_free_buffer;
463 
464 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
465 	buffer->flags = flags;
466 
467 	/* need at least two pages */
468 	if (buffer->pages == 1)
469 		buffer->pages++;
470 
471 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
472 	buffer->cpus = nr_cpu_ids;
473 
474 	bsize = sizeof(void *) * nr_cpu_ids;
475 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
476 				  GFP_KERNEL);
477 	if (!buffer->buffers)
478 		goto fail_free_cpumask;
479 
480 	for_each_buffer_cpu(buffer, cpu) {
481 		buffer->buffers[cpu] =
482 			rb_allocate_cpu_buffer(buffer, cpu);
483 		if (!buffer->buffers[cpu])
484 			goto fail_free_buffers;
485 	}
486 
487 	mutex_init(&buffer->mutex);
488 
489 	return buffer;
490 
491  fail_free_buffers:
492 	for_each_buffer_cpu(buffer, cpu) {
493 		if (buffer->buffers[cpu])
494 			rb_free_cpu_buffer(buffer->buffers[cpu]);
495 	}
496 	kfree(buffer->buffers);
497 
498  fail_free_cpumask:
499 	free_cpumask_var(buffer->cpumask);
500 
501  fail_free_buffer:
502 	kfree(buffer);
503 	return NULL;
504 }
505 EXPORT_SYMBOL_GPL(ring_buffer_alloc);
506 
507 /**
508  * ring_buffer_free - free a ring buffer.
509  * @buffer: the buffer to free.
510  */
511 void
512 ring_buffer_free(struct ring_buffer *buffer)
513 {
514 	int cpu;
515 
516 	for_each_buffer_cpu(buffer, cpu)
517 		rb_free_cpu_buffer(buffer->buffers[cpu]);
518 
519 	free_cpumask_var(buffer->cpumask);
520 
521 	kfree(buffer);
522 }
523 EXPORT_SYMBOL_GPL(ring_buffer_free);
524 
525 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
526 
527 static void
528 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
529 {
530 	struct buffer_page *bpage;
531 	struct list_head *p;
532 	unsigned i;
533 
534 	atomic_inc(&cpu_buffer->record_disabled);
535 	synchronize_sched();
536 
537 	for (i = 0; i < nr_pages; i++) {
538 		if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
539 			return;
540 		p = cpu_buffer->pages.next;
541 		bpage = list_entry(p, struct buffer_page, list);
542 		list_del_init(&bpage->list);
543 		free_buffer_page(bpage);
544 	}
545 	if (RB_WARN_ON(cpu_buffer, list_empty(&cpu_buffer->pages)))
546 		return;
547 
548 	rb_reset_cpu(cpu_buffer);
549 
550 	rb_check_pages(cpu_buffer);
551 
552 	atomic_dec(&cpu_buffer->record_disabled);
553 
554 }
555 
556 static void
557 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
558 		struct list_head *pages, unsigned nr_pages)
559 {
560 	struct buffer_page *bpage;
561 	struct list_head *p;
562 	unsigned i;
563 
564 	atomic_inc(&cpu_buffer->record_disabled);
565 	synchronize_sched();
566 
567 	for (i = 0; i < nr_pages; i++) {
568 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
569 			return;
570 		p = pages->next;
571 		bpage = list_entry(p, struct buffer_page, list);
572 		list_del_init(&bpage->list);
573 		list_add_tail(&bpage->list, &cpu_buffer->pages);
574 	}
575 	rb_reset_cpu(cpu_buffer);
576 
577 	rb_check_pages(cpu_buffer);
578 
579 	atomic_dec(&cpu_buffer->record_disabled);
580 }
581 
582 /**
583  * ring_buffer_resize - resize the ring buffer
584  * @buffer: the buffer to resize.
585  * @size: the new size.
586  *
587  * The tracer is responsible for making sure that the buffer is
588  * not being used while changing the size.
589  * Note: We may be able to change the above requirement by using
590  *  RCU synchronizations.
591  *
592  * Minimum size is 2 * BUF_PAGE_SIZE.
593  *
594  * Returns -1 on failure.
595  */
596 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
597 {
598 	struct ring_buffer_per_cpu *cpu_buffer;
599 	unsigned nr_pages, rm_pages, new_pages;
600 	struct buffer_page *bpage, *tmp;
601 	unsigned long buffer_size;
602 	unsigned long addr;
603 	LIST_HEAD(pages);
604 	int i, cpu;
605 
606 	/*
607 	 * Always succeed at resizing a non-existent buffer:
608 	 */
609 	if (!buffer)
610 		return size;
611 
612 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
613 	size *= BUF_PAGE_SIZE;
614 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
615 
616 	/* we need a minimum of two pages */
617 	if (size < BUF_PAGE_SIZE * 2)
618 		size = BUF_PAGE_SIZE * 2;
619 
620 	if (size == buffer_size)
621 		return size;
622 
623 	mutex_lock(&buffer->mutex);
624 
625 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
626 
627 	if (size < buffer_size) {
628 
629 		/* easy case, just free pages */
630 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) {
631 			mutex_unlock(&buffer->mutex);
632 			return -1;
633 		}
634 
635 		rm_pages = buffer->pages - nr_pages;
636 
637 		for_each_buffer_cpu(buffer, cpu) {
638 			cpu_buffer = buffer->buffers[cpu];
639 			rb_remove_pages(cpu_buffer, rm_pages);
640 		}
641 		goto out;
642 	}
643 
644 	/*
645 	 * This is a bit more difficult. We only want to add pages
646 	 * when we can allocate enough for all CPUs. We do this
647 	 * by allocating all the pages and storing them on a local
648 	 * link list. If we succeed in our allocation, then we
649 	 * add these pages to the cpu_buffers. Otherwise we just free
650 	 * them all and return -ENOMEM;
651 	 */
652 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) {
653 		mutex_unlock(&buffer->mutex);
654 		return -1;
655 	}
656 
657 	new_pages = nr_pages - buffer->pages;
658 
659 	for_each_buffer_cpu(buffer, cpu) {
660 		for (i = 0; i < new_pages; i++) {
661 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
662 						  cache_line_size()),
663 					    GFP_KERNEL, cpu_to_node(cpu));
664 			if (!bpage)
665 				goto free_pages;
666 			list_add(&bpage->list, &pages);
667 			addr = __get_free_page(GFP_KERNEL);
668 			if (!addr)
669 				goto free_pages;
670 			bpage->page = (void *)addr;
671 			rb_init_page(bpage->page);
672 		}
673 	}
674 
675 	for_each_buffer_cpu(buffer, cpu) {
676 		cpu_buffer = buffer->buffers[cpu];
677 		rb_insert_pages(cpu_buffer, &pages, new_pages);
678 	}
679 
680 	if (RB_WARN_ON(buffer, !list_empty(&pages))) {
681 		mutex_unlock(&buffer->mutex);
682 		return -1;
683 	}
684 
685  out:
686 	buffer->pages = nr_pages;
687 	mutex_unlock(&buffer->mutex);
688 
689 	return size;
690 
691  free_pages:
692 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
693 		list_del_init(&bpage->list);
694 		free_buffer_page(bpage);
695 	}
696 	mutex_unlock(&buffer->mutex);
697 	return -ENOMEM;
698 }
699 EXPORT_SYMBOL_GPL(ring_buffer_resize);
700 
701 static inline int rb_null_event(struct ring_buffer_event *event)
702 {
703 	return event->type == RINGBUF_TYPE_PADDING;
704 }
705 
706 static inline void *
707 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
708 {
709 	return bpage->data + index;
710 }
711 
712 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
713 {
714 	return bpage->page->data + index;
715 }
716 
717 static inline struct ring_buffer_event *
718 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
719 {
720 	return __rb_page_index(cpu_buffer->reader_page,
721 			       cpu_buffer->reader_page->read);
722 }
723 
724 static inline struct ring_buffer_event *
725 rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
726 {
727 	return __rb_page_index(cpu_buffer->head_page,
728 			       cpu_buffer->head_page->read);
729 }
730 
731 static inline struct ring_buffer_event *
732 rb_iter_head_event(struct ring_buffer_iter *iter)
733 {
734 	return __rb_page_index(iter->head_page, iter->head);
735 }
736 
737 static inline unsigned rb_page_write(struct buffer_page *bpage)
738 {
739 	return local_read(&bpage->write);
740 }
741 
742 static inline unsigned rb_page_commit(struct buffer_page *bpage)
743 {
744 	return local_read(&bpage->page->commit);
745 }
746 
747 /* Size is determined by what has been commited */
748 static inline unsigned rb_page_size(struct buffer_page *bpage)
749 {
750 	return rb_page_commit(bpage);
751 }
752 
753 static inline unsigned
754 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
755 {
756 	return rb_page_commit(cpu_buffer->commit_page);
757 }
758 
759 static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
760 {
761 	return rb_page_commit(cpu_buffer->head_page);
762 }
763 
764 /*
765  * When the tail hits the head and the buffer is in overwrite mode,
766  * the head jumps to the next page and all content on the previous
767  * page is discarded. But before doing so, we update the overrun
768  * variable of the buffer.
769  */
770 static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
771 {
772 	struct ring_buffer_event *event;
773 	unsigned long head;
774 
775 	for (head = 0; head < rb_head_size(cpu_buffer);
776 	     head += rb_event_length(event)) {
777 
778 		event = __rb_page_index(cpu_buffer->head_page, head);
779 		if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
780 			return;
781 		/* Only count data entries */
782 		if (event->type != RINGBUF_TYPE_DATA)
783 			continue;
784 		cpu_buffer->overrun++;
785 		cpu_buffer->entries--;
786 	}
787 }
788 
789 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
790 			       struct buffer_page **bpage)
791 {
792 	struct list_head *p = (*bpage)->list.next;
793 
794 	if (p == &cpu_buffer->pages)
795 		p = p->next;
796 
797 	*bpage = list_entry(p, struct buffer_page, list);
798 }
799 
800 static inline unsigned
801 rb_event_index(struct ring_buffer_event *event)
802 {
803 	unsigned long addr = (unsigned long)event;
804 
805 	return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
806 }
807 
808 static inline int
809 rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
810 	     struct ring_buffer_event *event)
811 {
812 	unsigned long addr = (unsigned long)event;
813 	unsigned long index;
814 
815 	index = rb_event_index(event);
816 	addr &= PAGE_MASK;
817 
818 	return cpu_buffer->commit_page->page == (void *)addr &&
819 		rb_commit_index(cpu_buffer) == index;
820 }
821 
822 static inline void
823 rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
824 		    struct ring_buffer_event *event)
825 {
826 	unsigned long addr = (unsigned long)event;
827 	unsigned long index;
828 
829 	index = rb_event_index(event);
830 	addr &= PAGE_MASK;
831 
832 	while (cpu_buffer->commit_page->page != (void *)addr) {
833 		if (RB_WARN_ON(cpu_buffer,
834 			  cpu_buffer->commit_page == cpu_buffer->tail_page))
835 			return;
836 		cpu_buffer->commit_page->page->commit =
837 			cpu_buffer->commit_page->write;
838 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
839 		cpu_buffer->write_stamp =
840 			cpu_buffer->commit_page->page->time_stamp;
841 	}
842 
843 	/* Now set the commit to the event's index */
844 	local_set(&cpu_buffer->commit_page->page->commit, index);
845 }
846 
847 static inline void
848 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
849 {
850 	/*
851 	 * We only race with interrupts and NMIs on this CPU.
852 	 * If we own the commit event, then we can commit
853 	 * all others that interrupted us, since the interruptions
854 	 * are in stack format (they finish before they come
855 	 * back to us). This allows us to do a simple loop to
856 	 * assign the commit to the tail.
857 	 */
858  again:
859 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
860 		cpu_buffer->commit_page->page->commit =
861 			cpu_buffer->commit_page->write;
862 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
863 		cpu_buffer->write_stamp =
864 			cpu_buffer->commit_page->page->time_stamp;
865 		/* add barrier to keep gcc from optimizing too much */
866 		barrier();
867 	}
868 	while (rb_commit_index(cpu_buffer) !=
869 	       rb_page_write(cpu_buffer->commit_page)) {
870 		cpu_buffer->commit_page->page->commit =
871 			cpu_buffer->commit_page->write;
872 		barrier();
873 	}
874 
875 	/* again, keep gcc from optimizing */
876 	barrier();
877 
878 	/*
879 	 * If an interrupt came in just after the first while loop
880 	 * and pushed the tail page forward, we will be left with
881 	 * a dangling commit that will never go forward.
882 	 */
883 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
884 		goto again;
885 }
886 
887 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
888 {
889 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
890 	cpu_buffer->reader_page->read = 0;
891 }
892 
893 static inline void rb_inc_iter(struct ring_buffer_iter *iter)
894 {
895 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
896 
897 	/*
898 	 * The iterator could be on the reader page (it starts there).
899 	 * But the head could have moved, since the reader was
900 	 * found. Check for this case and assign the iterator
901 	 * to the head page instead of next.
902 	 */
903 	if (iter->head_page == cpu_buffer->reader_page)
904 		iter->head_page = cpu_buffer->head_page;
905 	else
906 		rb_inc_page(cpu_buffer, &iter->head_page);
907 
908 	iter->read_stamp = iter->head_page->page->time_stamp;
909 	iter->head = 0;
910 }
911 
912 /**
913  * ring_buffer_update_event - update event type and data
914  * @event: the even to update
915  * @type: the type of event
916  * @length: the size of the event field in the ring buffer
917  *
918  * Update the type and data fields of the event. The length
919  * is the actual size that is written to the ring buffer,
920  * and with this, we can determine what to place into the
921  * data field.
922  */
923 static inline void
924 rb_update_event(struct ring_buffer_event *event,
925 			 unsigned type, unsigned length)
926 {
927 	event->type = type;
928 
929 	switch (type) {
930 
931 	case RINGBUF_TYPE_PADDING:
932 		break;
933 
934 	case RINGBUF_TYPE_TIME_EXTEND:
935 		event->len =
936 			(RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
937 			>> RB_ALIGNMENT_SHIFT;
938 		break;
939 
940 	case RINGBUF_TYPE_TIME_STAMP:
941 		event->len =
942 			(RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
943 			>> RB_ALIGNMENT_SHIFT;
944 		break;
945 
946 	case RINGBUF_TYPE_DATA:
947 		length -= RB_EVNT_HDR_SIZE;
948 		if (length > RB_MAX_SMALL_DATA) {
949 			event->len = 0;
950 			event->array[0] = length;
951 		} else
952 			event->len =
953 				(length + (RB_ALIGNMENT-1))
954 				>> RB_ALIGNMENT_SHIFT;
955 		break;
956 	default:
957 		BUG();
958 	}
959 }
960 
961 static inline unsigned rb_calculate_event_length(unsigned length)
962 {
963 	struct ring_buffer_event event; /* Used only for sizeof array */
964 
965 	/* zero length can cause confusions */
966 	if (!length)
967 		length = 1;
968 
969 	if (length > RB_MAX_SMALL_DATA)
970 		length += sizeof(event.array[0]);
971 
972 	length += RB_EVNT_HDR_SIZE;
973 	length = ALIGN(length, RB_ALIGNMENT);
974 
975 	return length;
976 }
977 
978 static struct ring_buffer_event *
979 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
980 		  unsigned type, unsigned long length, u64 *ts)
981 {
982 	struct buffer_page *tail_page, *head_page, *reader_page, *commit_page;
983 	unsigned long tail, write;
984 	struct ring_buffer *buffer = cpu_buffer->buffer;
985 	struct ring_buffer_event *event;
986 	unsigned long flags;
987 
988 	commit_page = cpu_buffer->commit_page;
989 	/* we just need to protect against interrupts */
990 	barrier();
991 	tail_page = cpu_buffer->tail_page;
992 	write = local_add_return(length, &tail_page->write);
993 	tail = write - length;
994 
995 	/* See if we shot pass the end of this buffer page */
996 	if (write > BUF_PAGE_SIZE) {
997 		struct buffer_page *next_page = tail_page;
998 
999 		local_irq_save(flags);
1000 		__raw_spin_lock(&cpu_buffer->lock);
1001 
1002 		rb_inc_page(cpu_buffer, &next_page);
1003 
1004 		head_page = cpu_buffer->head_page;
1005 		reader_page = cpu_buffer->reader_page;
1006 
1007 		/* we grabbed the lock before incrementing */
1008 		if (RB_WARN_ON(cpu_buffer, next_page == reader_page))
1009 			goto out_unlock;
1010 
1011 		/*
1012 		 * If for some reason, we had an interrupt storm that made
1013 		 * it all the way around the buffer, bail, and warn
1014 		 * about it.
1015 		 */
1016 		if (unlikely(next_page == commit_page)) {
1017 			WARN_ON_ONCE(1);
1018 			goto out_unlock;
1019 		}
1020 
1021 		if (next_page == head_page) {
1022 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
1023 				/* reset write */
1024 				if (tail <= BUF_PAGE_SIZE)
1025 					local_set(&tail_page->write, tail);
1026 				goto out_unlock;
1027 			}
1028 
1029 			/* tail_page has not moved yet? */
1030 			if (tail_page == cpu_buffer->tail_page) {
1031 				/* count overflows */
1032 				rb_update_overflow(cpu_buffer);
1033 
1034 				rb_inc_page(cpu_buffer, &head_page);
1035 				cpu_buffer->head_page = head_page;
1036 				cpu_buffer->head_page->read = 0;
1037 			}
1038 		}
1039 
1040 		/*
1041 		 * If the tail page is still the same as what we think
1042 		 * it is, then it is up to us to update the tail
1043 		 * pointer.
1044 		 */
1045 		if (tail_page == cpu_buffer->tail_page) {
1046 			local_set(&next_page->write, 0);
1047 			local_set(&next_page->page->commit, 0);
1048 			cpu_buffer->tail_page = next_page;
1049 
1050 			/* reread the time stamp */
1051 			*ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1052 			cpu_buffer->tail_page->page->time_stamp = *ts;
1053 		}
1054 
1055 		/*
1056 		 * The actual tail page has moved forward.
1057 		 */
1058 		if (tail < BUF_PAGE_SIZE) {
1059 			/* Mark the rest of the page with padding */
1060 			event = __rb_page_index(tail_page, tail);
1061 			event->type = RINGBUF_TYPE_PADDING;
1062 		}
1063 
1064 		if (tail <= BUF_PAGE_SIZE)
1065 			/* Set the write back to the previous setting */
1066 			local_set(&tail_page->write, tail);
1067 
1068 		/*
1069 		 * If this was a commit entry that failed,
1070 		 * increment that too
1071 		 */
1072 		if (tail_page == cpu_buffer->commit_page &&
1073 		    tail == rb_commit_index(cpu_buffer)) {
1074 			rb_set_commit_to_write(cpu_buffer);
1075 		}
1076 
1077 		__raw_spin_unlock(&cpu_buffer->lock);
1078 		local_irq_restore(flags);
1079 
1080 		/* fail and let the caller try again */
1081 		return ERR_PTR(-EAGAIN);
1082 	}
1083 
1084 	/* We reserved something on the buffer */
1085 
1086 	if (RB_WARN_ON(cpu_buffer, write > BUF_PAGE_SIZE))
1087 		return NULL;
1088 
1089 	event = __rb_page_index(tail_page, tail);
1090 	rb_update_event(event, type, length);
1091 
1092 	/*
1093 	 * If this is a commit and the tail is zero, then update
1094 	 * this page's time stamp.
1095 	 */
1096 	if (!tail && rb_is_commit(cpu_buffer, event))
1097 		cpu_buffer->commit_page->page->time_stamp = *ts;
1098 
1099 	return event;
1100 
1101  out_unlock:
1102 	__raw_spin_unlock(&cpu_buffer->lock);
1103 	local_irq_restore(flags);
1104 	return NULL;
1105 }
1106 
1107 static int
1108 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1109 		  u64 *ts, u64 *delta)
1110 {
1111 	struct ring_buffer_event *event;
1112 	static int once;
1113 	int ret;
1114 
1115 	if (unlikely(*delta > (1ULL << 59) && !once++)) {
1116 		printk(KERN_WARNING "Delta way too big! %llu"
1117 		       " ts=%llu write stamp = %llu\n",
1118 		       (unsigned long long)*delta,
1119 		       (unsigned long long)*ts,
1120 		       (unsigned long long)cpu_buffer->write_stamp);
1121 		WARN_ON(1);
1122 	}
1123 
1124 	/*
1125 	 * The delta is too big, we to add a
1126 	 * new timestamp.
1127 	 */
1128 	event = __rb_reserve_next(cpu_buffer,
1129 				  RINGBUF_TYPE_TIME_EXTEND,
1130 				  RB_LEN_TIME_EXTEND,
1131 				  ts);
1132 	if (!event)
1133 		return -EBUSY;
1134 
1135 	if (PTR_ERR(event) == -EAGAIN)
1136 		return -EAGAIN;
1137 
1138 	/* Only a commited time event can update the write stamp */
1139 	if (rb_is_commit(cpu_buffer, event)) {
1140 		/*
1141 		 * If this is the first on the page, then we need to
1142 		 * update the page itself, and just put in a zero.
1143 		 */
1144 		if (rb_event_index(event)) {
1145 			event->time_delta = *delta & TS_MASK;
1146 			event->array[0] = *delta >> TS_SHIFT;
1147 		} else {
1148 			cpu_buffer->commit_page->page->time_stamp = *ts;
1149 			event->time_delta = 0;
1150 			event->array[0] = 0;
1151 		}
1152 		cpu_buffer->write_stamp = *ts;
1153 		/* let the caller know this was the commit */
1154 		ret = 1;
1155 	} else {
1156 		/* Darn, this is just wasted space */
1157 		event->time_delta = 0;
1158 		event->array[0] = 0;
1159 		ret = 0;
1160 	}
1161 
1162 	*delta = 0;
1163 
1164 	return ret;
1165 }
1166 
1167 static struct ring_buffer_event *
1168 rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
1169 		      unsigned type, unsigned long length)
1170 {
1171 	struct ring_buffer_event *event;
1172 	u64 ts, delta;
1173 	int commit = 0;
1174 	int nr_loops = 0;
1175 
1176  again:
1177 	/*
1178 	 * We allow for interrupts to reenter here and do a trace.
1179 	 * If one does, it will cause this original code to loop
1180 	 * back here. Even with heavy interrupts happening, this
1181 	 * should only happen a few times in a row. If this happens
1182 	 * 1000 times in a row, there must be either an interrupt
1183 	 * storm or we have something buggy.
1184 	 * Bail!
1185 	 */
1186 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
1187 		return NULL;
1188 
1189 	ts = ring_buffer_time_stamp(cpu_buffer->cpu);
1190 
1191 	/*
1192 	 * Only the first commit can update the timestamp.
1193 	 * Yes there is a race here. If an interrupt comes in
1194 	 * just after the conditional and it traces too, then it
1195 	 * will also check the deltas. More than one timestamp may
1196 	 * also be made. But only the entry that did the actual
1197 	 * commit will be something other than zero.
1198 	 */
1199 	if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
1200 	    rb_page_write(cpu_buffer->tail_page) ==
1201 	    rb_commit_index(cpu_buffer)) {
1202 
1203 		delta = ts - cpu_buffer->write_stamp;
1204 
1205 		/* make sure this delta is calculated here */
1206 		barrier();
1207 
1208 		/* Did the write stamp get updated already? */
1209 		if (unlikely(ts < cpu_buffer->write_stamp))
1210 			delta = 0;
1211 
1212 		if (test_time_stamp(delta)) {
1213 
1214 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
1215 
1216 			if (commit == -EBUSY)
1217 				return NULL;
1218 
1219 			if (commit == -EAGAIN)
1220 				goto again;
1221 
1222 			RB_WARN_ON(cpu_buffer, commit < 0);
1223 		}
1224 	} else
1225 		/* Non commits have zero deltas */
1226 		delta = 0;
1227 
1228 	event = __rb_reserve_next(cpu_buffer, type, length, &ts);
1229 	if (PTR_ERR(event) == -EAGAIN)
1230 		goto again;
1231 
1232 	if (!event) {
1233 		if (unlikely(commit))
1234 			/*
1235 			 * Ouch! We needed a timestamp and it was commited. But
1236 			 * we didn't get our event reserved.
1237 			 */
1238 			rb_set_commit_to_write(cpu_buffer);
1239 		return NULL;
1240 	}
1241 
1242 	/*
1243 	 * If the timestamp was commited, make the commit our entry
1244 	 * now so that we will update it when needed.
1245 	 */
1246 	if (commit)
1247 		rb_set_commit_event(cpu_buffer, event);
1248 	else if (!rb_is_commit(cpu_buffer, event))
1249 		delta = 0;
1250 
1251 	event->time_delta = delta;
1252 
1253 	return event;
1254 }
1255 
1256 static DEFINE_PER_CPU(int, rb_need_resched);
1257 
1258 /**
1259  * ring_buffer_lock_reserve - reserve a part of the buffer
1260  * @buffer: the ring buffer to reserve from
1261  * @length: the length of the data to reserve (excluding event header)
1262  * @flags: a pointer to save the interrupt flags
1263  *
1264  * Returns a reseverd event on the ring buffer to copy directly to.
1265  * The user of this interface will need to get the body to write into
1266  * and can use the ring_buffer_event_data() interface.
1267  *
1268  * The length is the length of the data needed, not the event length
1269  * which also includes the event header.
1270  *
1271  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1272  * If NULL is returned, then nothing has been allocated or locked.
1273  */
1274 struct ring_buffer_event *
1275 ring_buffer_lock_reserve(struct ring_buffer *buffer,
1276 			 unsigned long length,
1277 			 unsigned long *flags)
1278 {
1279 	struct ring_buffer_per_cpu *cpu_buffer;
1280 	struct ring_buffer_event *event;
1281 	int cpu, resched;
1282 
1283 	if (ring_buffer_flags != RB_BUFFERS_ON)
1284 		return NULL;
1285 
1286 	if (atomic_read(&buffer->record_disabled))
1287 		return NULL;
1288 
1289 	/* If we are tracing schedule, we don't want to recurse */
1290 	resched = ftrace_preempt_disable();
1291 
1292 	cpu = raw_smp_processor_id();
1293 
1294 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1295 		goto out;
1296 
1297 	cpu_buffer = buffer->buffers[cpu];
1298 
1299 	if (atomic_read(&cpu_buffer->record_disabled))
1300 		goto out;
1301 
1302 	length = rb_calculate_event_length(length);
1303 	if (length > BUF_PAGE_SIZE)
1304 		goto out;
1305 
1306 	event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
1307 	if (!event)
1308 		goto out;
1309 
1310 	/*
1311 	 * Need to store resched state on this cpu.
1312 	 * Only the first needs to.
1313 	 */
1314 
1315 	if (preempt_count() == 1)
1316 		per_cpu(rb_need_resched, cpu) = resched;
1317 
1318 	return event;
1319 
1320  out:
1321 	ftrace_preempt_enable(resched);
1322 	return NULL;
1323 }
1324 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
1325 
1326 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
1327 		      struct ring_buffer_event *event)
1328 {
1329 	cpu_buffer->entries++;
1330 
1331 	/* Only process further if we own the commit */
1332 	if (!rb_is_commit(cpu_buffer, event))
1333 		return;
1334 
1335 	cpu_buffer->write_stamp += event->time_delta;
1336 
1337 	rb_set_commit_to_write(cpu_buffer);
1338 }
1339 
1340 /**
1341  * ring_buffer_unlock_commit - commit a reserved
1342  * @buffer: The buffer to commit to
1343  * @event: The event pointer to commit.
1344  * @flags: the interrupt flags received from ring_buffer_lock_reserve.
1345  *
1346  * This commits the data to the ring buffer, and releases any locks held.
1347  *
1348  * Must be paired with ring_buffer_lock_reserve.
1349  */
1350 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
1351 			      struct ring_buffer_event *event,
1352 			      unsigned long flags)
1353 {
1354 	struct ring_buffer_per_cpu *cpu_buffer;
1355 	int cpu = raw_smp_processor_id();
1356 
1357 	cpu_buffer = buffer->buffers[cpu];
1358 
1359 	rb_commit(cpu_buffer, event);
1360 
1361 	/*
1362 	 * Only the last preempt count needs to restore preemption.
1363 	 */
1364 	if (preempt_count() == 1)
1365 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
1366 	else
1367 		preempt_enable_no_resched_notrace();
1368 
1369 	return 0;
1370 }
1371 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
1372 
1373 /**
1374  * ring_buffer_write - write data to the buffer without reserving
1375  * @buffer: The ring buffer to write to.
1376  * @length: The length of the data being written (excluding the event header)
1377  * @data: The data to write to the buffer.
1378  *
1379  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1380  * one function. If you already have the data to write to the buffer, it
1381  * may be easier to simply call this function.
1382  *
1383  * Note, like ring_buffer_lock_reserve, the length is the length of the data
1384  * and not the length of the event which would hold the header.
1385  */
1386 int ring_buffer_write(struct ring_buffer *buffer,
1387 			unsigned long length,
1388 			void *data)
1389 {
1390 	struct ring_buffer_per_cpu *cpu_buffer;
1391 	struct ring_buffer_event *event;
1392 	unsigned long event_length;
1393 	void *body;
1394 	int ret = -EBUSY;
1395 	int cpu, resched;
1396 
1397 	if (ring_buffer_flags != RB_BUFFERS_ON)
1398 		return -EBUSY;
1399 
1400 	if (atomic_read(&buffer->record_disabled))
1401 		return -EBUSY;
1402 
1403 	resched = ftrace_preempt_disable();
1404 
1405 	cpu = raw_smp_processor_id();
1406 
1407 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1408 		goto out;
1409 
1410 	cpu_buffer = buffer->buffers[cpu];
1411 
1412 	if (atomic_read(&cpu_buffer->record_disabled))
1413 		goto out;
1414 
1415 	event_length = rb_calculate_event_length(length);
1416 	event = rb_reserve_next_event(cpu_buffer,
1417 				      RINGBUF_TYPE_DATA, event_length);
1418 	if (!event)
1419 		goto out;
1420 
1421 	body = rb_event_data(event);
1422 
1423 	memcpy(body, data, length);
1424 
1425 	rb_commit(cpu_buffer, event);
1426 
1427 	ret = 0;
1428  out:
1429 	ftrace_preempt_enable(resched);
1430 
1431 	return ret;
1432 }
1433 EXPORT_SYMBOL_GPL(ring_buffer_write);
1434 
1435 static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
1436 {
1437 	struct buffer_page *reader = cpu_buffer->reader_page;
1438 	struct buffer_page *head = cpu_buffer->head_page;
1439 	struct buffer_page *commit = cpu_buffer->commit_page;
1440 
1441 	return reader->read == rb_page_commit(reader) &&
1442 		(commit == reader ||
1443 		 (commit == head &&
1444 		  head->read == rb_page_commit(commit)));
1445 }
1446 
1447 /**
1448  * ring_buffer_record_disable - stop all writes into the buffer
1449  * @buffer: The ring buffer to stop writes to.
1450  *
1451  * This prevents all writes to the buffer. Any attempt to write
1452  * to the buffer after this will fail and return NULL.
1453  *
1454  * The caller should call synchronize_sched() after this.
1455  */
1456 void ring_buffer_record_disable(struct ring_buffer *buffer)
1457 {
1458 	atomic_inc(&buffer->record_disabled);
1459 }
1460 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
1461 
1462 /**
1463  * ring_buffer_record_enable - enable writes to the buffer
1464  * @buffer: The ring buffer to enable writes
1465  *
1466  * Note, multiple disables will need the same number of enables
1467  * to truely enable the writing (much like preempt_disable).
1468  */
1469 void ring_buffer_record_enable(struct ring_buffer *buffer)
1470 {
1471 	atomic_dec(&buffer->record_disabled);
1472 }
1473 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
1474 
1475 /**
1476  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1477  * @buffer: The ring buffer to stop writes to.
1478  * @cpu: The CPU buffer to stop
1479  *
1480  * This prevents all writes to the buffer. Any attempt to write
1481  * to the buffer after this will fail and return NULL.
1482  *
1483  * The caller should call synchronize_sched() after this.
1484  */
1485 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
1486 {
1487 	struct ring_buffer_per_cpu *cpu_buffer;
1488 
1489 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1490 		return;
1491 
1492 	cpu_buffer = buffer->buffers[cpu];
1493 	atomic_inc(&cpu_buffer->record_disabled);
1494 }
1495 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
1496 
1497 /**
1498  * ring_buffer_record_enable_cpu - enable writes to the buffer
1499  * @buffer: The ring buffer to enable writes
1500  * @cpu: The CPU to enable.
1501  *
1502  * Note, multiple disables will need the same number of enables
1503  * to truely enable the writing (much like preempt_disable).
1504  */
1505 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
1506 {
1507 	struct ring_buffer_per_cpu *cpu_buffer;
1508 
1509 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1510 		return;
1511 
1512 	cpu_buffer = buffer->buffers[cpu];
1513 	atomic_dec(&cpu_buffer->record_disabled);
1514 }
1515 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
1516 
1517 /**
1518  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1519  * @buffer: The ring buffer
1520  * @cpu: The per CPU buffer to get the entries from.
1521  */
1522 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
1523 {
1524 	struct ring_buffer_per_cpu *cpu_buffer;
1525 
1526 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1527 		return 0;
1528 
1529 	cpu_buffer = buffer->buffers[cpu];
1530 	return cpu_buffer->entries;
1531 }
1532 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
1533 
1534 /**
1535  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1536  * @buffer: The ring buffer
1537  * @cpu: The per CPU buffer to get the number of overruns from
1538  */
1539 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
1540 {
1541 	struct ring_buffer_per_cpu *cpu_buffer;
1542 
1543 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1544 		return 0;
1545 
1546 	cpu_buffer = buffer->buffers[cpu];
1547 	return cpu_buffer->overrun;
1548 }
1549 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
1550 
1551 /**
1552  * ring_buffer_entries - get the number of entries in a buffer
1553  * @buffer: The ring buffer
1554  *
1555  * Returns the total number of entries in the ring buffer
1556  * (all CPU entries)
1557  */
1558 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
1559 {
1560 	struct ring_buffer_per_cpu *cpu_buffer;
1561 	unsigned long entries = 0;
1562 	int cpu;
1563 
1564 	/* if you care about this being correct, lock the buffer */
1565 	for_each_buffer_cpu(buffer, cpu) {
1566 		cpu_buffer = buffer->buffers[cpu];
1567 		entries += cpu_buffer->entries;
1568 	}
1569 
1570 	return entries;
1571 }
1572 EXPORT_SYMBOL_GPL(ring_buffer_entries);
1573 
1574 /**
1575  * ring_buffer_overrun_cpu - get the number of overruns in buffer
1576  * @buffer: The ring buffer
1577  *
1578  * Returns the total number of overruns in the ring buffer
1579  * (all CPU entries)
1580  */
1581 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
1582 {
1583 	struct ring_buffer_per_cpu *cpu_buffer;
1584 	unsigned long overruns = 0;
1585 	int cpu;
1586 
1587 	/* if you care about this being correct, lock the buffer */
1588 	for_each_buffer_cpu(buffer, cpu) {
1589 		cpu_buffer = buffer->buffers[cpu];
1590 		overruns += cpu_buffer->overrun;
1591 	}
1592 
1593 	return overruns;
1594 }
1595 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
1596 
1597 static void rb_iter_reset(struct ring_buffer_iter *iter)
1598 {
1599 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1600 
1601 	/* Iterator usage is expected to have record disabled */
1602 	if (list_empty(&cpu_buffer->reader_page->list)) {
1603 		iter->head_page = cpu_buffer->head_page;
1604 		iter->head = cpu_buffer->head_page->read;
1605 	} else {
1606 		iter->head_page = cpu_buffer->reader_page;
1607 		iter->head = cpu_buffer->reader_page->read;
1608 	}
1609 	if (iter->head)
1610 		iter->read_stamp = cpu_buffer->read_stamp;
1611 	else
1612 		iter->read_stamp = iter->head_page->page->time_stamp;
1613 }
1614 
1615 /**
1616  * ring_buffer_iter_reset - reset an iterator
1617  * @iter: The iterator to reset
1618  *
1619  * Resets the iterator, so that it will start from the beginning
1620  * again.
1621  */
1622 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
1623 {
1624 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1625 	unsigned long flags;
1626 
1627 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1628 	rb_iter_reset(iter);
1629 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1630 }
1631 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
1632 
1633 /**
1634  * ring_buffer_iter_empty - check if an iterator has no more to read
1635  * @iter: The iterator to check
1636  */
1637 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
1638 {
1639 	struct ring_buffer_per_cpu *cpu_buffer;
1640 
1641 	cpu_buffer = iter->cpu_buffer;
1642 
1643 	return iter->head_page == cpu_buffer->commit_page &&
1644 		iter->head == rb_commit_index(cpu_buffer);
1645 }
1646 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
1647 
1648 static void
1649 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1650 		     struct ring_buffer_event *event)
1651 {
1652 	u64 delta;
1653 
1654 	switch (event->type) {
1655 	case RINGBUF_TYPE_PADDING:
1656 		return;
1657 
1658 	case RINGBUF_TYPE_TIME_EXTEND:
1659 		delta = event->array[0];
1660 		delta <<= TS_SHIFT;
1661 		delta += event->time_delta;
1662 		cpu_buffer->read_stamp += delta;
1663 		return;
1664 
1665 	case RINGBUF_TYPE_TIME_STAMP:
1666 		/* FIXME: not implemented */
1667 		return;
1668 
1669 	case RINGBUF_TYPE_DATA:
1670 		cpu_buffer->read_stamp += event->time_delta;
1671 		return;
1672 
1673 	default:
1674 		BUG();
1675 	}
1676 	return;
1677 }
1678 
1679 static void
1680 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
1681 			  struct ring_buffer_event *event)
1682 {
1683 	u64 delta;
1684 
1685 	switch (event->type) {
1686 	case RINGBUF_TYPE_PADDING:
1687 		return;
1688 
1689 	case RINGBUF_TYPE_TIME_EXTEND:
1690 		delta = event->array[0];
1691 		delta <<= TS_SHIFT;
1692 		delta += event->time_delta;
1693 		iter->read_stamp += delta;
1694 		return;
1695 
1696 	case RINGBUF_TYPE_TIME_STAMP:
1697 		/* FIXME: not implemented */
1698 		return;
1699 
1700 	case RINGBUF_TYPE_DATA:
1701 		iter->read_stamp += event->time_delta;
1702 		return;
1703 
1704 	default:
1705 		BUG();
1706 	}
1707 	return;
1708 }
1709 
1710 static struct buffer_page *
1711 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1712 {
1713 	struct buffer_page *reader = NULL;
1714 	unsigned long flags;
1715 	int nr_loops = 0;
1716 
1717 	local_irq_save(flags);
1718 	__raw_spin_lock(&cpu_buffer->lock);
1719 
1720  again:
1721 	/*
1722 	 * This should normally only loop twice. But because the
1723 	 * start of the reader inserts an empty page, it causes
1724 	 * a case where we will loop three times. There should be no
1725 	 * reason to loop four times (that I know of).
1726 	 */
1727 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
1728 		reader = NULL;
1729 		goto out;
1730 	}
1731 
1732 	reader = cpu_buffer->reader_page;
1733 
1734 	/* If there's more to read, return this page */
1735 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
1736 		goto out;
1737 
1738 	/* Never should we have an index greater than the size */
1739 	if (RB_WARN_ON(cpu_buffer,
1740 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
1741 		goto out;
1742 
1743 	/* check if we caught up to the tail */
1744 	reader = NULL;
1745 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
1746 		goto out;
1747 
1748 	/*
1749 	 * Splice the empty reader page into the list around the head.
1750 	 * Reset the reader page to size zero.
1751 	 */
1752 
1753 	reader = cpu_buffer->head_page;
1754 	cpu_buffer->reader_page->list.next = reader->list.next;
1755 	cpu_buffer->reader_page->list.prev = reader->list.prev;
1756 
1757 	local_set(&cpu_buffer->reader_page->write, 0);
1758 	local_set(&cpu_buffer->reader_page->page->commit, 0);
1759 
1760 	/* Make the reader page now replace the head */
1761 	reader->list.prev->next = &cpu_buffer->reader_page->list;
1762 	reader->list.next->prev = &cpu_buffer->reader_page->list;
1763 
1764 	/*
1765 	 * If the tail is on the reader, then we must set the head
1766 	 * to the inserted page, otherwise we set it one before.
1767 	 */
1768 	cpu_buffer->head_page = cpu_buffer->reader_page;
1769 
1770 	if (cpu_buffer->commit_page != reader)
1771 		rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
1772 
1773 	/* Finally update the reader page to the new head */
1774 	cpu_buffer->reader_page = reader;
1775 	rb_reset_reader_page(cpu_buffer);
1776 
1777 	goto again;
1778 
1779  out:
1780 	__raw_spin_unlock(&cpu_buffer->lock);
1781 	local_irq_restore(flags);
1782 
1783 	return reader;
1784 }
1785 
1786 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
1787 {
1788 	struct ring_buffer_event *event;
1789 	struct buffer_page *reader;
1790 	unsigned length;
1791 
1792 	reader = rb_get_reader_page(cpu_buffer);
1793 
1794 	/* This function should not be called when buffer is empty */
1795 	if (RB_WARN_ON(cpu_buffer, !reader))
1796 		return;
1797 
1798 	event = rb_reader_event(cpu_buffer);
1799 
1800 	if (event->type == RINGBUF_TYPE_DATA)
1801 		cpu_buffer->entries--;
1802 
1803 	rb_update_read_stamp(cpu_buffer, event);
1804 
1805 	length = rb_event_length(event);
1806 	cpu_buffer->reader_page->read += length;
1807 }
1808 
1809 static void rb_advance_iter(struct ring_buffer_iter *iter)
1810 {
1811 	struct ring_buffer *buffer;
1812 	struct ring_buffer_per_cpu *cpu_buffer;
1813 	struct ring_buffer_event *event;
1814 	unsigned length;
1815 
1816 	cpu_buffer = iter->cpu_buffer;
1817 	buffer = cpu_buffer->buffer;
1818 
1819 	/*
1820 	 * Check if we are at the end of the buffer.
1821 	 */
1822 	if (iter->head >= rb_page_size(iter->head_page)) {
1823 		if (RB_WARN_ON(buffer,
1824 			       iter->head_page == cpu_buffer->commit_page))
1825 			return;
1826 		rb_inc_iter(iter);
1827 		return;
1828 	}
1829 
1830 	event = rb_iter_head_event(iter);
1831 
1832 	length = rb_event_length(event);
1833 
1834 	/*
1835 	 * This should not be called to advance the header if we are
1836 	 * at the tail of the buffer.
1837 	 */
1838 	if (RB_WARN_ON(cpu_buffer,
1839 		       (iter->head_page == cpu_buffer->commit_page) &&
1840 		       (iter->head + length > rb_commit_index(cpu_buffer))))
1841 		return;
1842 
1843 	rb_update_iter_read_stamp(iter, event);
1844 
1845 	iter->head += length;
1846 
1847 	/* check for end of page padding */
1848 	if ((iter->head >= rb_page_size(iter->head_page)) &&
1849 	    (iter->head_page != cpu_buffer->commit_page))
1850 		rb_advance_iter(iter);
1851 }
1852 
1853 static struct ring_buffer_event *
1854 rb_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1855 {
1856 	struct ring_buffer_per_cpu *cpu_buffer;
1857 	struct ring_buffer_event *event;
1858 	struct buffer_page *reader;
1859 	int nr_loops = 0;
1860 
1861 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
1862 		return NULL;
1863 
1864 	cpu_buffer = buffer->buffers[cpu];
1865 
1866  again:
1867 	/*
1868 	 * We repeat when a timestamp is encountered. It is possible
1869 	 * to get multiple timestamps from an interrupt entering just
1870 	 * as one timestamp is about to be written. The max times
1871 	 * that this can happen is the number of nested interrupts we
1872 	 * can have.  Nesting 10 deep of interrupts is clearly
1873 	 * an anomaly.
1874 	 */
1875 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1876 		return NULL;
1877 
1878 	reader = rb_get_reader_page(cpu_buffer);
1879 	if (!reader)
1880 		return NULL;
1881 
1882 	event = rb_reader_event(cpu_buffer);
1883 
1884 	switch (event->type) {
1885 	case RINGBUF_TYPE_PADDING:
1886 		RB_WARN_ON(cpu_buffer, 1);
1887 		rb_advance_reader(cpu_buffer);
1888 		return NULL;
1889 
1890 	case RINGBUF_TYPE_TIME_EXTEND:
1891 		/* Internal data, OK to advance */
1892 		rb_advance_reader(cpu_buffer);
1893 		goto again;
1894 
1895 	case RINGBUF_TYPE_TIME_STAMP:
1896 		/* FIXME: not implemented */
1897 		rb_advance_reader(cpu_buffer);
1898 		goto again;
1899 
1900 	case RINGBUF_TYPE_DATA:
1901 		if (ts) {
1902 			*ts = cpu_buffer->read_stamp + event->time_delta;
1903 			ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1904 		}
1905 		return event;
1906 
1907 	default:
1908 		BUG();
1909 	}
1910 
1911 	return NULL;
1912 }
1913 EXPORT_SYMBOL_GPL(ring_buffer_peek);
1914 
1915 static struct ring_buffer_event *
1916 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
1917 {
1918 	struct ring_buffer *buffer;
1919 	struct ring_buffer_per_cpu *cpu_buffer;
1920 	struct ring_buffer_event *event;
1921 	int nr_loops = 0;
1922 
1923 	if (ring_buffer_iter_empty(iter))
1924 		return NULL;
1925 
1926 	cpu_buffer = iter->cpu_buffer;
1927 	buffer = cpu_buffer->buffer;
1928 
1929  again:
1930 	/*
1931 	 * We repeat when a timestamp is encountered. It is possible
1932 	 * to get multiple timestamps from an interrupt entering just
1933 	 * as one timestamp is about to be written. The max times
1934 	 * that this can happen is the number of nested interrupts we
1935 	 * can have. Nesting 10 deep of interrupts is clearly
1936 	 * an anomaly.
1937 	 */
1938 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 10))
1939 		return NULL;
1940 
1941 	if (rb_per_cpu_empty(cpu_buffer))
1942 		return NULL;
1943 
1944 	event = rb_iter_head_event(iter);
1945 
1946 	switch (event->type) {
1947 	case RINGBUF_TYPE_PADDING:
1948 		rb_inc_iter(iter);
1949 		goto again;
1950 
1951 	case RINGBUF_TYPE_TIME_EXTEND:
1952 		/* Internal data, OK to advance */
1953 		rb_advance_iter(iter);
1954 		goto again;
1955 
1956 	case RINGBUF_TYPE_TIME_STAMP:
1957 		/* FIXME: not implemented */
1958 		rb_advance_iter(iter);
1959 		goto again;
1960 
1961 	case RINGBUF_TYPE_DATA:
1962 		if (ts) {
1963 			*ts = iter->read_stamp + event->time_delta;
1964 			ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
1965 		}
1966 		return event;
1967 
1968 	default:
1969 		BUG();
1970 	}
1971 
1972 	return NULL;
1973 }
1974 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
1975 
1976 /**
1977  * ring_buffer_peek - peek at the next event to be read
1978  * @buffer: The ring buffer to read
1979  * @cpu: The cpu to peak at
1980  * @ts: The timestamp counter of this event.
1981  *
1982  * This will return the event that will be read next, but does
1983  * not consume the data.
1984  */
1985 struct ring_buffer_event *
1986 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
1987 {
1988 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
1989 	struct ring_buffer_event *event;
1990 	unsigned long flags;
1991 
1992 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1993 	event = rb_buffer_peek(buffer, cpu, ts);
1994 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1995 
1996 	return event;
1997 }
1998 
1999 /**
2000  * ring_buffer_iter_peek - peek at the next event to be read
2001  * @iter: The ring buffer iterator
2002  * @ts: The timestamp counter of this event.
2003  *
2004  * This will return the event that will be read next, but does
2005  * not increment the iterator.
2006  */
2007 struct ring_buffer_event *
2008 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
2009 {
2010 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2011 	struct ring_buffer_event *event;
2012 	unsigned long flags;
2013 
2014 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2015 	event = rb_iter_peek(iter, ts);
2016 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2017 
2018 	return event;
2019 }
2020 
2021 /**
2022  * ring_buffer_consume - return an event and consume it
2023  * @buffer: The ring buffer to get the next event from
2024  *
2025  * Returns the next event in the ring buffer, and that event is consumed.
2026  * Meaning, that sequential reads will keep returning a different event,
2027  * and eventually empty the ring buffer if the producer is slower.
2028  */
2029 struct ring_buffer_event *
2030 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
2031 {
2032 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2033 	struct ring_buffer_event *event;
2034 	unsigned long flags;
2035 
2036 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2037 		return NULL;
2038 
2039 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2040 
2041 	event = rb_buffer_peek(buffer, cpu, ts);
2042 	if (!event)
2043 		goto out;
2044 
2045 	rb_advance_reader(cpu_buffer);
2046 
2047  out:
2048 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2049 
2050 	return event;
2051 }
2052 EXPORT_SYMBOL_GPL(ring_buffer_consume);
2053 
2054 /**
2055  * ring_buffer_read_start - start a non consuming read of the buffer
2056  * @buffer: The ring buffer to read from
2057  * @cpu: The cpu buffer to iterate over
2058  *
2059  * This starts up an iteration through the buffer. It also disables
2060  * the recording to the buffer until the reading is finished.
2061  * This prevents the reading from being corrupted. This is not
2062  * a consuming read, so a producer is not expected.
2063  *
2064  * Must be paired with ring_buffer_finish.
2065  */
2066 struct ring_buffer_iter *
2067 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
2068 {
2069 	struct ring_buffer_per_cpu *cpu_buffer;
2070 	struct ring_buffer_iter *iter;
2071 	unsigned long flags;
2072 
2073 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2074 		return NULL;
2075 
2076 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
2077 	if (!iter)
2078 		return NULL;
2079 
2080 	cpu_buffer = buffer->buffers[cpu];
2081 
2082 	iter->cpu_buffer = cpu_buffer;
2083 
2084 	atomic_inc(&cpu_buffer->record_disabled);
2085 	synchronize_sched();
2086 
2087 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2088 	__raw_spin_lock(&cpu_buffer->lock);
2089 	rb_iter_reset(iter);
2090 	__raw_spin_unlock(&cpu_buffer->lock);
2091 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2092 
2093 	return iter;
2094 }
2095 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
2096 
2097 /**
2098  * ring_buffer_finish - finish reading the iterator of the buffer
2099  * @iter: The iterator retrieved by ring_buffer_start
2100  *
2101  * This re-enables the recording to the buffer, and frees the
2102  * iterator.
2103  */
2104 void
2105 ring_buffer_read_finish(struct ring_buffer_iter *iter)
2106 {
2107 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2108 
2109 	atomic_dec(&cpu_buffer->record_disabled);
2110 	kfree(iter);
2111 }
2112 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
2113 
2114 /**
2115  * ring_buffer_read - read the next item in the ring buffer by the iterator
2116  * @iter: The ring buffer iterator
2117  * @ts: The time stamp of the event read.
2118  *
2119  * This reads the next event in the ring buffer and increments the iterator.
2120  */
2121 struct ring_buffer_event *
2122 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
2123 {
2124 	struct ring_buffer_event *event;
2125 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2126 	unsigned long flags;
2127 
2128 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2129 	event = rb_iter_peek(iter, ts);
2130 	if (!event)
2131 		goto out;
2132 
2133 	rb_advance_iter(iter);
2134  out:
2135 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2136 
2137 	return event;
2138 }
2139 EXPORT_SYMBOL_GPL(ring_buffer_read);
2140 
2141 /**
2142  * ring_buffer_size - return the size of the ring buffer (in bytes)
2143  * @buffer: The ring buffer.
2144  */
2145 unsigned long ring_buffer_size(struct ring_buffer *buffer)
2146 {
2147 	return BUF_PAGE_SIZE * buffer->pages;
2148 }
2149 EXPORT_SYMBOL_GPL(ring_buffer_size);
2150 
2151 static void
2152 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
2153 {
2154 	cpu_buffer->head_page
2155 		= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
2156 	local_set(&cpu_buffer->head_page->write, 0);
2157 	local_set(&cpu_buffer->head_page->page->commit, 0);
2158 
2159 	cpu_buffer->head_page->read = 0;
2160 
2161 	cpu_buffer->tail_page = cpu_buffer->head_page;
2162 	cpu_buffer->commit_page = cpu_buffer->head_page;
2163 
2164 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2165 	local_set(&cpu_buffer->reader_page->write, 0);
2166 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2167 	cpu_buffer->reader_page->read = 0;
2168 
2169 	cpu_buffer->overrun = 0;
2170 	cpu_buffer->entries = 0;
2171 }
2172 
2173 /**
2174  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2175  * @buffer: The ring buffer to reset a per cpu buffer of
2176  * @cpu: The CPU buffer to be reset
2177  */
2178 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
2179 {
2180 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2181 	unsigned long flags;
2182 
2183 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2184 		return;
2185 
2186 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2187 
2188 	__raw_spin_lock(&cpu_buffer->lock);
2189 
2190 	rb_reset_cpu(cpu_buffer);
2191 
2192 	__raw_spin_unlock(&cpu_buffer->lock);
2193 
2194 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2195 }
2196 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
2197 
2198 /**
2199  * ring_buffer_reset - reset a ring buffer
2200  * @buffer: The ring buffer to reset all cpu buffers
2201  */
2202 void ring_buffer_reset(struct ring_buffer *buffer)
2203 {
2204 	int cpu;
2205 
2206 	for_each_buffer_cpu(buffer, cpu)
2207 		ring_buffer_reset_cpu(buffer, cpu);
2208 }
2209 EXPORT_SYMBOL_GPL(ring_buffer_reset);
2210 
2211 /**
2212  * rind_buffer_empty - is the ring buffer empty?
2213  * @buffer: The ring buffer to test
2214  */
2215 int ring_buffer_empty(struct ring_buffer *buffer)
2216 {
2217 	struct ring_buffer_per_cpu *cpu_buffer;
2218 	int cpu;
2219 
2220 	/* yes this is racy, but if you don't like the race, lock the buffer */
2221 	for_each_buffer_cpu(buffer, cpu) {
2222 		cpu_buffer = buffer->buffers[cpu];
2223 		if (!rb_per_cpu_empty(cpu_buffer))
2224 			return 0;
2225 	}
2226 	return 1;
2227 }
2228 EXPORT_SYMBOL_GPL(ring_buffer_empty);
2229 
2230 /**
2231  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2232  * @buffer: The ring buffer
2233  * @cpu: The CPU buffer to test
2234  */
2235 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
2236 {
2237 	struct ring_buffer_per_cpu *cpu_buffer;
2238 
2239 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2240 		return 1;
2241 
2242 	cpu_buffer = buffer->buffers[cpu];
2243 	return rb_per_cpu_empty(cpu_buffer);
2244 }
2245 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
2246 
2247 /**
2248  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2249  * @buffer_a: One buffer to swap with
2250  * @buffer_b: The other buffer to swap with
2251  *
2252  * This function is useful for tracers that want to take a "snapshot"
2253  * of a CPU buffer and has another back up buffer lying around.
2254  * it is expected that the tracer handles the cpu buffer not being
2255  * used at the moment.
2256  */
2257 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
2258 			 struct ring_buffer *buffer_b, int cpu)
2259 {
2260 	struct ring_buffer_per_cpu *cpu_buffer_a;
2261 	struct ring_buffer_per_cpu *cpu_buffer_b;
2262 
2263 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
2264 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
2265 		return -EINVAL;
2266 
2267 	/* At least make sure the two buffers are somewhat the same */
2268 	if (buffer_a->pages != buffer_b->pages)
2269 		return -EINVAL;
2270 
2271 	cpu_buffer_a = buffer_a->buffers[cpu];
2272 	cpu_buffer_b = buffer_b->buffers[cpu];
2273 
2274 	/*
2275 	 * We can't do a synchronize_sched here because this
2276 	 * function can be called in atomic context.
2277 	 * Normally this will be called from the same CPU as cpu.
2278 	 * If not it's up to the caller to protect this.
2279 	 */
2280 	atomic_inc(&cpu_buffer_a->record_disabled);
2281 	atomic_inc(&cpu_buffer_b->record_disabled);
2282 
2283 	buffer_a->buffers[cpu] = cpu_buffer_b;
2284 	buffer_b->buffers[cpu] = cpu_buffer_a;
2285 
2286 	cpu_buffer_b->buffer = buffer_a;
2287 	cpu_buffer_a->buffer = buffer_b;
2288 
2289 	atomic_dec(&cpu_buffer_a->record_disabled);
2290 	atomic_dec(&cpu_buffer_b->record_disabled);
2291 
2292 	return 0;
2293 }
2294 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
2295 
2296 static void rb_remove_entries(struct ring_buffer_per_cpu *cpu_buffer,
2297 			      struct buffer_data_page *bpage)
2298 {
2299 	struct ring_buffer_event *event;
2300 	unsigned long head;
2301 
2302 	__raw_spin_lock(&cpu_buffer->lock);
2303 	for (head = 0; head < local_read(&bpage->commit);
2304 	     head += rb_event_length(event)) {
2305 
2306 		event = __rb_data_page_index(bpage, head);
2307 		if (RB_WARN_ON(cpu_buffer, rb_null_event(event)))
2308 			return;
2309 		/* Only count data entries */
2310 		if (event->type != RINGBUF_TYPE_DATA)
2311 			continue;
2312 		cpu_buffer->entries--;
2313 	}
2314 	__raw_spin_unlock(&cpu_buffer->lock);
2315 }
2316 
2317 /**
2318  * ring_buffer_alloc_read_page - allocate a page to read from buffer
2319  * @buffer: the buffer to allocate for.
2320  *
2321  * This function is used in conjunction with ring_buffer_read_page.
2322  * When reading a full page from the ring buffer, these functions
2323  * can be used to speed up the process. The calling function should
2324  * allocate a few pages first with this function. Then when it
2325  * needs to get pages from the ring buffer, it passes the result
2326  * of this function into ring_buffer_read_page, which will swap
2327  * the page that was allocated, with the read page of the buffer.
2328  *
2329  * Returns:
2330  *  The page allocated, or NULL on error.
2331  */
2332 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
2333 {
2334 	unsigned long addr;
2335 	struct buffer_data_page *bpage;
2336 
2337 	addr = __get_free_page(GFP_KERNEL);
2338 	if (!addr)
2339 		return NULL;
2340 
2341 	bpage = (void *)addr;
2342 
2343 	return bpage;
2344 }
2345 
2346 /**
2347  * ring_buffer_free_read_page - free an allocated read page
2348  * @buffer: the buffer the page was allocate for
2349  * @data: the page to free
2350  *
2351  * Free a page allocated from ring_buffer_alloc_read_page.
2352  */
2353 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
2354 {
2355 	free_page((unsigned long)data);
2356 }
2357 
2358 /**
2359  * ring_buffer_read_page - extract a page from the ring buffer
2360  * @buffer: buffer to extract from
2361  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2362  * @cpu: the cpu of the buffer to extract
2363  * @full: should the extraction only happen when the page is full.
2364  *
2365  * This function will pull out a page from the ring buffer and consume it.
2366  * @data_page must be the address of the variable that was returned
2367  * from ring_buffer_alloc_read_page. This is because the page might be used
2368  * to swap with a page in the ring buffer.
2369  *
2370  * for example:
2371  *	rpage = ring_buffer_alloc_page(buffer);
2372  *	if (!rpage)
2373  *		return error;
2374  *	ret = ring_buffer_read_page(buffer, &rpage, cpu, 0);
2375  *	if (ret)
2376  *		process_page(rpage);
2377  *
2378  * When @full is set, the function will not return true unless
2379  * the writer is off the reader page.
2380  *
2381  * Note: it is up to the calling functions to handle sleeps and wakeups.
2382  *  The ring buffer can be used anywhere in the kernel and can not
2383  *  blindly call wake_up. The layer that uses the ring buffer must be
2384  *  responsible for that.
2385  *
2386  * Returns:
2387  *  1 if data has been transferred
2388  *  0 if no data has been transferred.
2389  */
2390 int ring_buffer_read_page(struct ring_buffer *buffer,
2391 			    void **data_page, int cpu, int full)
2392 {
2393 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
2394 	struct ring_buffer_event *event;
2395 	struct buffer_data_page *bpage;
2396 	unsigned long flags;
2397 	int ret = 0;
2398 
2399 	if (!data_page)
2400 		return 0;
2401 
2402 	bpage = *data_page;
2403 	if (!bpage)
2404 		return 0;
2405 
2406 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2407 
2408 	/*
2409 	 * rb_buffer_peek will get the next ring buffer if
2410 	 * the current reader page is empty.
2411 	 */
2412 	event = rb_buffer_peek(buffer, cpu, NULL);
2413 	if (!event)
2414 		goto out;
2415 
2416 	/* check for data */
2417 	if (!local_read(&cpu_buffer->reader_page->page->commit))
2418 		goto out;
2419 	/*
2420 	 * If the writer is already off of the read page, then simply
2421 	 * switch the read page with the given page. Otherwise
2422 	 * we need to copy the data from the reader to the writer.
2423 	 */
2424 	if (cpu_buffer->reader_page == cpu_buffer->commit_page) {
2425 		unsigned int read = cpu_buffer->reader_page->read;
2426 
2427 		if (full)
2428 			goto out;
2429 		/* The writer is still on the reader page, we must copy */
2430 		bpage = cpu_buffer->reader_page->page;
2431 		memcpy(bpage->data,
2432 		       cpu_buffer->reader_page->page->data + read,
2433 		       local_read(&bpage->commit) - read);
2434 
2435 		/* consume what was read */
2436 		cpu_buffer->reader_page += read;
2437 
2438 	} else {
2439 		/* swap the pages */
2440 		rb_init_page(bpage);
2441 		bpage = cpu_buffer->reader_page->page;
2442 		cpu_buffer->reader_page->page = *data_page;
2443 		cpu_buffer->reader_page->read = 0;
2444 		*data_page = bpage;
2445 	}
2446 	ret = 1;
2447 
2448 	/* update the entry counter */
2449 	rb_remove_entries(cpu_buffer, bpage);
2450  out:
2451 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2452 
2453 	return ret;
2454 }
2455 
2456 static ssize_t
2457 rb_simple_read(struct file *filp, char __user *ubuf,
2458 	       size_t cnt, loff_t *ppos)
2459 {
2460 	long *p = filp->private_data;
2461 	char buf[64];
2462 	int r;
2463 
2464 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
2465 		r = sprintf(buf, "permanently disabled\n");
2466 	else
2467 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
2468 
2469 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
2470 }
2471 
2472 static ssize_t
2473 rb_simple_write(struct file *filp, const char __user *ubuf,
2474 		size_t cnt, loff_t *ppos)
2475 {
2476 	long *p = filp->private_data;
2477 	char buf[64];
2478 	long val;
2479 	int ret;
2480 
2481 	if (cnt >= sizeof(buf))
2482 		return -EINVAL;
2483 
2484 	if (copy_from_user(&buf, ubuf, cnt))
2485 		return -EFAULT;
2486 
2487 	buf[cnt] = 0;
2488 
2489 	ret = strict_strtoul(buf, 10, &val);
2490 	if (ret < 0)
2491 		return ret;
2492 
2493 	if (val)
2494 		set_bit(RB_BUFFERS_ON_BIT, p);
2495 	else
2496 		clear_bit(RB_BUFFERS_ON_BIT, p);
2497 
2498 	(*ppos)++;
2499 
2500 	return cnt;
2501 }
2502 
2503 static struct file_operations rb_simple_fops = {
2504 	.open		= tracing_open_generic,
2505 	.read		= rb_simple_read,
2506 	.write		= rb_simple_write,
2507 };
2508 
2509 
2510 static __init int rb_init_debugfs(void)
2511 {
2512 	struct dentry *d_tracer;
2513 	struct dentry *entry;
2514 
2515 	d_tracer = tracing_init_dentry();
2516 
2517 	entry = debugfs_create_file("tracing_on", 0644, d_tracer,
2518 				    &ring_buffer_flags, &rb_simple_fops);
2519 	if (!entry)
2520 		pr_warning("Could not create debugfs 'tracing_on' entry\n");
2521 
2522 	return 0;
2523 }
2524 
2525 fs_initcall(rb_init_debugfs);
2526