1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <[email protected]> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/cacheflush.h> 13 #include <linux/trace_seq.h> 14 #include <linux/spinlock.h> 15 #include <linux/irq_work.h> 16 #include <linux/security.h> 17 #include <linux/uaccess.h> 18 #include <linux/hardirq.h> 19 #include <linux/kthread.h> /* for self test */ 20 #include <linux/module.h> 21 #include <linux/percpu.h> 22 #include <linux/mutex.h> 23 #include <linux/delay.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/list.h> 28 #include <linux/cpu.h> 29 #include <linux/oom.h> 30 #include <linux/mm.h> 31 32 #include <asm/local64.h> 33 #include <asm/local.h> 34 35 #include "trace.h" 36 37 /* 38 * The "absolute" timestamp in the buffer is only 59 bits. 39 * If a clock has the 5 MSBs set, it needs to be saved and 40 * reinserted. 41 */ 42 #define TS_MSB (0xf8ULL << 56) 43 #define ABS_TS_MASK (~TS_MSB) 44 45 static void update_pages_handler(struct work_struct *work); 46 47 #define RING_BUFFER_META_MAGIC 0xBADFEED 48 49 struct ring_buffer_meta { 50 int magic; 51 int struct_size; 52 unsigned long text_addr; 53 unsigned long data_addr; 54 unsigned long first_buffer; 55 unsigned long head_buffer; 56 unsigned long commit_buffer; 57 __u32 subbuf_size; 58 __u32 nr_subbufs; 59 int buffers[]; 60 }; 61 62 /* 63 * The ring buffer header is special. We must manually up keep it. 64 */ 65 int ring_buffer_print_entry_header(struct trace_seq *s) 66 { 67 trace_seq_puts(s, "# compressed entry header\n"); 68 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 69 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 70 trace_seq_puts(s, "\tarray : 32 bits\n"); 71 trace_seq_putc(s, '\n'); 72 trace_seq_printf(s, "\tpadding : type == %d\n", 73 RINGBUF_TYPE_PADDING); 74 trace_seq_printf(s, "\ttime_extend : type == %d\n", 75 RINGBUF_TYPE_TIME_EXTEND); 76 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 77 RINGBUF_TYPE_TIME_STAMP); 78 trace_seq_printf(s, "\tdata max type_len == %d\n", 79 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 80 81 return !trace_seq_has_overflowed(s); 82 } 83 84 /* 85 * The ring buffer is made up of a list of pages. A separate list of pages is 86 * allocated for each CPU. A writer may only write to a buffer that is 87 * associated with the CPU it is currently executing on. A reader may read 88 * from any per cpu buffer. 89 * 90 * The reader is special. For each per cpu buffer, the reader has its own 91 * reader page. When a reader has read the entire reader page, this reader 92 * page is swapped with another page in the ring buffer. 93 * 94 * Now, as long as the writer is off the reader page, the reader can do what 95 * ever it wants with that page. The writer will never write to that page 96 * again (as long as it is out of the ring buffer). 97 * 98 * Here's some silly ASCII art. 99 * 100 * +------+ 101 * |reader| RING BUFFER 102 * |page | 103 * +------+ +---+ +---+ +---+ 104 * | |-->| |-->| | 105 * +---+ +---+ +---+ 106 * ^ | 107 * | | 108 * +---------------+ 109 * 110 * 111 * +------+ 112 * |reader| RING BUFFER 113 * |page |------------------v 114 * +------+ +---+ +---+ +---+ 115 * | |-->| |-->| | 116 * +---+ +---+ +---+ 117 * ^ | 118 * | | 119 * +---------------+ 120 * 121 * 122 * +------+ 123 * |reader| RING BUFFER 124 * |page |------------------v 125 * +------+ +---+ +---+ +---+ 126 * ^ | |-->| |-->| | 127 * | +---+ +---+ +---+ 128 * | | 129 * | | 130 * +------------------------------+ 131 * 132 * 133 * +------+ 134 * |buffer| RING BUFFER 135 * |page |------------------v 136 * +------+ +---+ +---+ +---+ 137 * ^ | | | |-->| | 138 * | New +---+ +---+ +---+ 139 * | Reader------^ | 140 * | page | 141 * +------------------------------+ 142 * 143 * 144 * After we make this swap, the reader can hand this page off to the splice 145 * code and be done with it. It can even allocate a new page if it needs to 146 * and swap that into the ring buffer. 147 * 148 * We will be using cmpxchg soon to make all this lockless. 149 * 150 */ 151 152 /* Used for individual buffers (after the counter) */ 153 #define RB_BUFFER_OFF (1 << 20) 154 155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 156 157 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 158 #define RB_ALIGNMENT 4U 159 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 160 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 161 162 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 163 # define RB_FORCE_8BYTE_ALIGNMENT 0 164 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 165 #else 166 # define RB_FORCE_8BYTE_ALIGNMENT 1 167 # define RB_ARCH_ALIGNMENT 8U 168 #endif 169 170 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 171 172 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 173 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 174 175 enum { 176 RB_LEN_TIME_EXTEND = 8, 177 RB_LEN_TIME_STAMP = 8, 178 }; 179 180 #define skip_time_extend(event) \ 181 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 182 183 #define extended_time(event) \ 184 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 185 186 static inline bool rb_null_event(struct ring_buffer_event *event) 187 { 188 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 189 } 190 191 static void rb_event_set_padding(struct ring_buffer_event *event) 192 { 193 /* padding has a NULL time_delta */ 194 event->type_len = RINGBUF_TYPE_PADDING; 195 event->time_delta = 0; 196 } 197 198 static unsigned 199 rb_event_data_length(struct ring_buffer_event *event) 200 { 201 unsigned length; 202 203 if (event->type_len) 204 length = event->type_len * RB_ALIGNMENT; 205 else 206 length = event->array[0]; 207 return length + RB_EVNT_HDR_SIZE; 208 } 209 210 /* 211 * Return the length of the given event. Will return 212 * the length of the time extend if the event is a 213 * time extend. 214 */ 215 static inline unsigned 216 rb_event_length(struct ring_buffer_event *event) 217 { 218 switch (event->type_len) { 219 case RINGBUF_TYPE_PADDING: 220 if (rb_null_event(event)) 221 /* undefined */ 222 return -1; 223 return event->array[0] + RB_EVNT_HDR_SIZE; 224 225 case RINGBUF_TYPE_TIME_EXTEND: 226 return RB_LEN_TIME_EXTEND; 227 228 case RINGBUF_TYPE_TIME_STAMP: 229 return RB_LEN_TIME_STAMP; 230 231 case RINGBUF_TYPE_DATA: 232 return rb_event_data_length(event); 233 default: 234 WARN_ON_ONCE(1); 235 } 236 /* not hit */ 237 return 0; 238 } 239 240 /* 241 * Return total length of time extend and data, 242 * or just the event length for all other events. 243 */ 244 static inline unsigned 245 rb_event_ts_length(struct ring_buffer_event *event) 246 { 247 unsigned len = 0; 248 249 if (extended_time(event)) { 250 /* time extends include the data event after it */ 251 len = RB_LEN_TIME_EXTEND; 252 event = skip_time_extend(event); 253 } 254 return len + rb_event_length(event); 255 } 256 257 /** 258 * ring_buffer_event_length - return the length of the event 259 * @event: the event to get the length of 260 * 261 * Returns the size of the data load of a data event. 262 * If the event is something other than a data event, it 263 * returns the size of the event itself. With the exception 264 * of a TIME EXTEND, where it still returns the size of the 265 * data load of the data event after it. 266 */ 267 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 268 { 269 unsigned length; 270 271 if (extended_time(event)) 272 event = skip_time_extend(event); 273 274 length = rb_event_length(event); 275 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 276 return length; 277 length -= RB_EVNT_HDR_SIZE; 278 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 279 length -= sizeof(event->array[0]); 280 return length; 281 } 282 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 283 284 /* inline for ring buffer fast paths */ 285 static __always_inline void * 286 rb_event_data(struct ring_buffer_event *event) 287 { 288 if (extended_time(event)) 289 event = skip_time_extend(event); 290 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 291 /* If length is in len field, then array[0] has the data */ 292 if (event->type_len) 293 return (void *)&event->array[0]; 294 /* Otherwise length is in array[0] and array[1] has the data */ 295 return (void *)&event->array[1]; 296 } 297 298 /** 299 * ring_buffer_event_data - return the data of the event 300 * @event: the event to get the data from 301 */ 302 void *ring_buffer_event_data(struct ring_buffer_event *event) 303 { 304 return rb_event_data(event); 305 } 306 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 307 308 #define for_each_buffer_cpu(buffer, cpu) \ 309 for_each_cpu(cpu, buffer->cpumask) 310 311 #define for_each_online_buffer_cpu(buffer, cpu) \ 312 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 313 314 #define TS_SHIFT 27 315 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 316 #define TS_DELTA_TEST (~TS_MASK) 317 318 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 319 { 320 u64 ts; 321 322 ts = event->array[0]; 323 ts <<= TS_SHIFT; 324 ts += event->time_delta; 325 326 return ts; 327 } 328 329 /* Flag when events were overwritten */ 330 #define RB_MISSED_EVENTS (1 << 31) 331 /* Missed count stored at end */ 332 #define RB_MISSED_STORED (1 << 30) 333 334 #define RB_MISSED_MASK (3 << 30) 335 336 struct buffer_data_page { 337 u64 time_stamp; /* page time stamp */ 338 local_t commit; /* write committed index */ 339 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 340 }; 341 342 struct buffer_data_read_page { 343 unsigned order; /* order of the page */ 344 struct buffer_data_page *data; /* actual data, stored in this page */ 345 }; 346 347 /* 348 * Note, the buffer_page list must be first. The buffer pages 349 * are allocated in cache lines, which means that each buffer 350 * page will be at the beginning of a cache line, and thus 351 * the least significant bits will be zero. We use this to 352 * add flags in the list struct pointers, to make the ring buffer 353 * lockless. 354 */ 355 struct buffer_page { 356 struct list_head list; /* list of buffer pages */ 357 local_t write; /* index for next write */ 358 unsigned read; /* index for next read */ 359 local_t entries; /* entries on this page */ 360 unsigned long real_end; /* real end of data */ 361 unsigned order; /* order of the page */ 362 u32 id:30; /* ID for external mapping */ 363 u32 range:1; /* Mapped via a range */ 364 struct buffer_data_page *page; /* Actual data page */ 365 }; 366 367 /* 368 * The buffer page counters, write and entries, must be reset 369 * atomically when crossing page boundaries. To synchronize this 370 * update, two counters are inserted into the number. One is 371 * the actual counter for the write position or count on the page. 372 * 373 * The other is a counter of updaters. Before an update happens 374 * the update partition of the counter is incremented. This will 375 * allow the updater to update the counter atomically. 376 * 377 * The counter is 20 bits, and the state data is 12. 378 */ 379 #define RB_WRITE_MASK 0xfffff 380 #define RB_WRITE_INTCNT (1 << 20) 381 382 static void rb_init_page(struct buffer_data_page *bpage) 383 { 384 local_set(&bpage->commit, 0); 385 } 386 387 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage) 388 { 389 return local_read(&bpage->page->commit); 390 } 391 392 static void free_buffer_page(struct buffer_page *bpage) 393 { 394 /* Range pages are not to be freed */ 395 if (!bpage->range) 396 free_pages((unsigned long)bpage->page, bpage->order); 397 kfree(bpage); 398 } 399 400 /* 401 * We need to fit the time_stamp delta into 27 bits. 402 */ 403 static inline bool test_time_stamp(u64 delta) 404 { 405 return !!(delta & TS_DELTA_TEST); 406 } 407 408 struct rb_irq_work { 409 struct irq_work work; 410 wait_queue_head_t waiters; 411 wait_queue_head_t full_waiters; 412 atomic_t seq; 413 bool waiters_pending; 414 bool full_waiters_pending; 415 bool wakeup_full; 416 }; 417 418 /* 419 * Structure to hold event state and handle nested events. 420 */ 421 struct rb_event_info { 422 u64 ts; 423 u64 delta; 424 u64 before; 425 u64 after; 426 unsigned long length; 427 struct buffer_page *tail_page; 428 int add_timestamp; 429 }; 430 431 /* 432 * Used for the add_timestamp 433 * NONE 434 * EXTEND - wants a time extend 435 * ABSOLUTE - the buffer requests all events to have absolute time stamps 436 * FORCE - force a full time stamp. 437 */ 438 enum { 439 RB_ADD_STAMP_NONE = 0, 440 RB_ADD_STAMP_EXTEND = BIT(1), 441 RB_ADD_STAMP_ABSOLUTE = BIT(2), 442 RB_ADD_STAMP_FORCE = BIT(3) 443 }; 444 /* 445 * Used for which event context the event is in. 446 * TRANSITION = 0 447 * NMI = 1 448 * IRQ = 2 449 * SOFTIRQ = 3 450 * NORMAL = 4 451 * 452 * See trace_recursive_lock() comment below for more details. 453 */ 454 enum { 455 RB_CTX_TRANSITION, 456 RB_CTX_NMI, 457 RB_CTX_IRQ, 458 RB_CTX_SOFTIRQ, 459 RB_CTX_NORMAL, 460 RB_CTX_MAX 461 }; 462 463 struct rb_time_struct { 464 local64_t time; 465 }; 466 typedef struct rb_time_struct rb_time_t; 467 468 #define MAX_NEST 5 469 470 /* 471 * head_page == tail_page && head == tail then buffer is empty. 472 */ 473 struct ring_buffer_per_cpu { 474 int cpu; 475 atomic_t record_disabled; 476 atomic_t resize_disabled; 477 struct trace_buffer *buffer; 478 raw_spinlock_t reader_lock; /* serialize readers */ 479 arch_spinlock_t lock; 480 struct lock_class_key lock_key; 481 struct buffer_data_page *free_page; 482 unsigned long nr_pages; 483 unsigned int current_context; 484 struct list_head *pages; 485 /* pages generation counter, incremented when the list changes */ 486 unsigned long cnt; 487 struct buffer_page *head_page; /* read from head */ 488 struct buffer_page *tail_page; /* write to tail */ 489 struct buffer_page *commit_page; /* committed pages */ 490 struct buffer_page *reader_page; 491 unsigned long lost_events; 492 unsigned long last_overrun; 493 unsigned long nest; 494 local_t entries_bytes; 495 local_t entries; 496 local_t overrun; 497 local_t commit_overrun; 498 local_t dropped_events; 499 local_t committing; 500 local_t commits; 501 local_t pages_touched; 502 local_t pages_lost; 503 local_t pages_read; 504 long last_pages_touch; 505 size_t shortest_full; 506 unsigned long read; 507 unsigned long read_bytes; 508 rb_time_t write_stamp; 509 rb_time_t before_stamp; 510 u64 event_stamp[MAX_NEST]; 511 u64 read_stamp; 512 /* pages removed since last reset */ 513 unsigned long pages_removed; 514 515 unsigned int mapped; 516 unsigned int user_mapped; /* user space mapping */ 517 struct mutex mapping_lock; 518 unsigned long *subbuf_ids; /* ID to subbuf VA */ 519 struct trace_buffer_meta *meta_page; 520 struct ring_buffer_meta *ring_meta; 521 522 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 523 long nr_pages_to_update; 524 struct list_head new_pages; /* new pages to add */ 525 struct work_struct update_pages_work; 526 struct completion update_done; 527 528 struct rb_irq_work irq_work; 529 }; 530 531 struct trace_buffer { 532 unsigned flags; 533 int cpus; 534 atomic_t record_disabled; 535 atomic_t resizing; 536 cpumask_var_t cpumask; 537 538 struct lock_class_key *reader_lock_key; 539 540 struct mutex mutex; 541 542 struct ring_buffer_per_cpu **buffers; 543 544 struct hlist_node node; 545 u64 (*clock)(void); 546 547 struct rb_irq_work irq_work; 548 bool time_stamp_abs; 549 550 unsigned long range_addr_start; 551 unsigned long range_addr_end; 552 553 long last_text_delta; 554 long last_data_delta; 555 556 unsigned int subbuf_size; 557 unsigned int subbuf_order; 558 unsigned int max_data_size; 559 }; 560 561 struct ring_buffer_iter { 562 struct ring_buffer_per_cpu *cpu_buffer; 563 unsigned long head; 564 unsigned long next_event; 565 struct buffer_page *head_page; 566 struct buffer_page *cache_reader_page; 567 unsigned long cache_read; 568 unsigned long cache_pages_removed; 569 u64 read_stamp; 570 u64 page_stamp; 571 struct ring_buffer_event *event; 572 size_t event_size; 573 int missed_events; 574 }; 575 576 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s) 577 { 578 struct buffer_data_page field; 579 580 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 581 "offset:0;\tsize:%u;\tsigned:%u;\n", 582 (unsigned int)sizeof(field.time_stamp), 583 (unsigned int)is_signed_type(u64)); 584 585 trace_seq_printf(s, "\tfield: local_t commit;\t" 586 "offset:%u;\tsize:%u;\tsigned:%u;\n", 587 (unsigned int)offsetof(typeof(field), commit), 588 (unsigned int)sizeof(field.commit), 589 (unsigned int)is_signed_type(long)); 590 591 trace_seq_printf(s, "\tfield: int overwrite;\t" 592 "offset:%u;\tsize:%u;\tsigned:%u;\n", 593 (unsigned int)offsetof(typeof(field), commit), 594 1, 595 (unsigned int)is_signed_type(long)); 596 597 trace_seq_printf(s, "\tfield: char data;\t" 598 "offset:%u;\tsize:%u;\tsigned:%u;\n", 599 (unsigned int)offsetof(typeof(field), data), 600 (unsigned int)buffer->subbuf_size, 601 (unsigned int)is_signed_type(char)); 602 603 return !trace_seq_has_overflowed(s); 604 } 605 606 static inline void rb_time_read(rb_time_t *t, u64 *ret) 607 { 608 *ret = local64_read(&t->time); 609 } 610 static void rb_time_set(rb_time_t *t, u64 val) 611 { 612 local64_set(&t->time, val); 613 } 614 615 /* 616 * Enable this to make sure that the event passed to 617 * ring_buffer_event_time_stamp() is not committed and also 618 * is on the buffer that it passed in. 619 */ 620 //#define RB_VERIFY_EVENT 621 #ifdef RB_VERIFY_EVENT 622 static struct list_head *rb_list_head(struct list_head *list); 623 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 624 void *event) 625 { 626 struct buffer_page *page = cpu_buffer->commit_page; 627 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 628 struct list_head *next; 629 long commit, write; 630 unsigned long addr = (unsigned long)event; 631 bool done = false; 632 int stop = 0; 633 634 /* Make sure the event exists and is not committed yet */ 635 do { 636 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 637 done = true; 638 commit = local_read(&page->page->commit); 639 write = local_read(&page->write); 640 if (addr >= (unsigned long)&page->page->data[commit] && 641 addr < (unsigned long)&page->page->data[write]) 642 return; 643 644 next = rb_list_head(page->list.next); 645 page = list_entry(next, struct buffer_page, list); 646 } while (!done); 647 WARN_ON_ONCE(1); 648 } 649 #else 650 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 651 void *event) 652 { 653 } 654 #endif 655 656 /* 657 * The absolute time stamp drops the 5 MSBs and some clocks may 658 * require them. The rb_fix_abs_ts() will take a previous full 659 * time stamp, and add the 5 MSB of that time stamp on to the 660 * saved absolute time stamp. Then they are compared in case of 661 * the unlikely event that the latest time stamp incremented 662 * the 5 MSB. 663 */ 664 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 665 { 666 if (save_ts & TS_MSB) { 667 abs |= save_ts & TS_MSB; 668 /* Check for overflow */ 669 if (unlikely(abs < save_ts)) 670 abs += 1ULL << 59; 671 } 672 return abs; 673 } 674 675 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 676 677 /** 678 * ring_buffer_event_time_stamp - return the event's current time stamp 679 * @buffer: The buffer that the event is on 680 * @event: the event to get the time stamp of 681 * 682 * Note, this must be called after @event is reserved, and before it is 683 * committed to the ring buffer. And must be called from the same 684 * context where the event was reserved (normal, softirq, irq, etc). 685 * 686 * Returns the time stamp associated with the current event. 687 * If the event has an extended time stamp, then that is used as 688 * the time stamp to return. 689 * In the highly unlikely case that the event was nested more than 690 * the max nesting, then the write_stamp of the buffer is returned, 691 * otherwise current time is returned, but that really neither of 692 * the last two cases should ever happen. 693 */ 694 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 695 struct ring_buffer_event *event) 696 { 697 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 698 unsigned int nest; 699 u64 ts; 700 701 /* If the event includes an absolute time, then just use that */ 702 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 703 ts = rb_event_time_stamp(event); 704 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 705 } 706 707 nest = local_read(&cpu_buffer->committing); 708 verify_event(cpu_buffer, event); 709 if (WARN_ON_ONCE(!nest)) 710 goto fail; 711 712 /* Read the current saved nesting level time stamp */ 713 if (likely(--nest < MAX_NEST)) 714 return cpu_buffer->event_stamp[nest]; 715 716 /* Shouldn't happen, warn if it does */ 717 WARN_ONCE(1, "nest (%d) greater than max", nest); 718 719 fail: 720 rb_time_read(&cpu_buffer->write_stamp, &ts); 721 722 return ts; 723 } 724 725 /** 726 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 727 * @buffer: The ring_buffer to get the number of pages from 728 * @cpu: The cpu of the ring_buffer to get the number of pages from 729 * 730 * Returns the number of pages that have content in the ring buffer. 731 */ 732 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 733 { 734 size_t read; 735 size_t lost; 736 size_t cnt; 737 738 read = local_read(&buffer->buffers[cpu]->pages_read); 739 lost = local_read(&buffer->buffers[cpu]->pages_lost); 740 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 741 742 if (WARN_ON_ONCE(cnt < lost)) 743 return 0; 744 745 cnt -= lost; 746 747 /* The reader can read an empty page, but not more than that */ 748 if (cnt < read) { 749 WARN_ON_ONCE(read > cnt + 1); 750 return 0; 751 } 752 753 return cnt - read; 754 } 755 756 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 757 { 758 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 759 size_t nr_pages; 760 size_t dirty; 761 762 nr_pages = cpu_buffer->nr_pages; 763 if (!nr_pages || !full) 764 return true; 765 766 /* 767 * Add one as dirty will never equal nr_pages, as the sub-buffer 768 * that the writer is on is not counted as dirty. 769 * This is needed if "buffer_percent" is set to 100. 770 */ 771 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1; 772 773 return (dirty * 100) >= (full * nr_pages); 774 } 775 776 /* 777 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 778 * 779 * Schedules a delayed work to wake up any task that is blocked on the 780 * ring buffer waiters queue. 781 */ 782 static void rb_wake_up_waiters(struct irq_work *work) 783 { 784 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 785 786 /* For waiters waiting for the first wake up */ 787 (void)atomic_fetch_inc_release(&rbwork->seq); 788 789 wake_up_all(&rbwork->waiters); 790 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 791 /* Only cpu_buffer sets the above flags */ 792 struct ring_buffer_per_cpu *cpu_buffer = 793 container_of(rbwork, struct ring_buffer_per_cpu, irq_work); 794 795 /* Called from interrupt context */ 796 raw_spin_lock(&cpu_buffer->reader_lock); 797 rbwork->wakeup_full = false; 798 rbwork->full_waiters_pending = false; 799 800 /* Waking up all waiters, they will reset the shortest full */ 801 cpu_buffer->shortest_full = 0; 802 raw_spin_unlock(&cpu_buffer->reader_lock); 803 804 wake_up_all(&rbwork->full_waiters); 805 } 806 } 807 808 /** 809 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 810 * @buffer: The ring buffer to wake waiters on 811 * @cpu: The CPU buffer to wake waiters on 812 * 813 * In the case of a file that represents a ring buffer is closing, 814 * it is prudent to wake up any waiters that are on this. 815 */ 816 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 817 { 818 struct ring_buffer_per_cpu *cpu_buffer; 819 struct rb_irq_work *rbwork; 820 821 if (!buffer) 822 return; 823 824 if (cpu == RING_BUFFER_ALL_CPUS) { 825 826 /* Wake up individual ones too. One level recursion */ 827 for_each_buffer_cpu(buffer, cpu) 828 ring_buffer_wake_waiters(buffer, cpu); 829 830 rbwork = &buffer->irq_work; 831 } else { 832 if (WARN_ON_ONCE(!buffer->buffers)) 833 return; 834 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 835 return; 836 837 cpu_buffer = buffer->buffers[cpu]; 838 /* The CPU buffer may not have been initialized yet */ 839 if (!cpu_buffer) 840 return; 841 rbwork = &cpu_buffer->irq_work; 842 } 843 844 /* This can be called in any context */ 845 irq_work_queue(&rbwork->work); 846 } 847 848 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full) 849 { 850 struct ring_buffer_per_cpu *cpu_buffer; 851 bool ret = false; 852 853 /* Reads of all CPUs always waits for any data */ 854 if (cpu == RING_BUFFER_ALL_CPUS) 855 return !ring_buffer_empty(buffer); 856 857 cpu_buffer = buffer->buffers[cpu]; 858 859 if (!ring_buffer_empty_cpu(buffer, cpu)) { 860 unsigned long flags; 861 bool pagebusy; 862 863 if (!full) 864 return true; 865 866 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 867 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 868 ret = !pagebusy && full_hit(buffer, cpu, full); 869 870 if (!ret && (!cpu_buffer->shortest_full || 871 cpu_buffer->shortest_full > full)) { 872 cpu_buffer->shortest_full = full; 873 } 874 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 875 } 876 return ret; 877 } 878 879 static inline bool 880 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer, 881 int cpu, int full, ring_buffer_cond_fn cond, void *data) 882 { 883 if (rb_watermark_hit(buffer, cpu, full)) 884 return true; 885 886 if (cond(data)) 887 return true; 888 889 /* 890 * The events can happen in critical sections where 891 * checking a work queue can cause deadlocks. 892 * After adding a task to the queue, this flag is set 893 * only to notify events to try to wake up the queue 894 * using irq_work. 895 * 896 * We don't clear it even if the buffer is no longer 897 * empty. The flag only causes the next event to run 898 * irq_work to do the work queue wake up. The worse 899 * that can happen if we race with !trace_empty() is that 900 * an event will cause an irq_work to try to wake up 901 * an empty queue. 902 * 903 * There's no reason to protect this flag either, as 904 * the work queue and irq_work logic will do the necessary 905 * synchronization for the wake ups. The only thing 906 * that is necessary is that the wake up happens after 907 * a task has been queued. It's OK for spurious wake ups. 908 */ 909 if (full) 910 rbwork->full_waiters_pending = true; 911 else 912 rbwork->waiters_pending = true; 913 914 return false; 915 } 916 917 struct rb_wait_data { 918 struct rb_irq_work *irq_work; 919 int seq; 920 }; 921 922 /* 923 * The default wait condition for ring_buffer_wait() is to just to exit the 924 * wait loop the first time it is woken up. 925 */ 926 static bool rb_wait_once(void *data) 927 { 928 struct rb_wait_data *rdata = data; 929 struct rb_irq_work *rbwork = rdata->irq_work; 930 931 return atomic_read_acquire(&rbwork->seq) != rdata->seq; 932 } 933 934 /** 935 * ring_buffer_wait - wait for input to the ring buffer 936 * @buffer: buffer to wait on 937 * @cpu: the cpu buffer to wait on 938 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 939 * @cond: condition function to break out of wait (NULL to run once) 940 * @data: the data to pass to @cond. 941 * 942 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 943 * as data is added to any of the @buffer's cpu buffers. Otherwise 944 * it will wait for data to be added to a specific cpu buffer. 945 */ 946 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full, 947 ring_buffer_cond_fn cond, void *data) 948 { 949 struct ring_buffer_per_cpu *cpu_buffer; 950 struct wait_queue_head *waitq; 951 struct rb_irq_work *rbwork; 952 struct rb_wait_data rdata; 953 int ret = 0; 954 955 /* 956 * Depending on what the caller is waiting for, either any 957 * data in any cpu buffer, or a specific buffer, put the 958 * caller on the appropriate wait queue. 959 */ 960 if (cpu == RING_BUFFER_ALL_CPUS) { 961 rbwork = &buffer->irq_work; 962 /* Full only makes sense on per cpu reads */ 963 full = 0; 964 } else { 965 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 966 return -ENODEV; 967 cpu_buffer = buffer->buffers[cpu]; 968 rbwork = &cpu_buffer->irq_work; 969 } 970 971 if (full) 972 waitq = &rbwork->full_waiters; 973 else 974 waitq = &rbwork->waiters; 975 976 /* Set up to exit loop as soon as it is woken */ 977 if (!cond) { 978 cond = rb_wait_once; 979 rdata.irq_work = rbwork; 980 rdata.seq = atomic_read_acquire(&rbwork->seq); 981 data = &rdata; 982 } 983 984 ret = wait_event_interruptible((*waitq), 985 rb_wait_cond(rbwork, buffer, cpu, full, cond, data)); 986 987 return ret; 988 } 989 990 /** 991 * ring_buffer_poll_wait - poll on buffer input 992 * @buffer: buffer to wait on 993 * @cpu: the cpu buffer to wait on 994 * @filp: the file descriptor 995 * @poll_table: The poll descriptor 996 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 997 * 998 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 999 * as data is added to any of the @buffer's cpu buffers. Otherwise 1000 * it will wait for data to be added to a specific cpu buffer. 1001 * 1002 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 1003 * zero otherwise. 1004 */ 1005 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 1006 struct file *filp, poll_table *poll_table, int full) 1007 { 1008 struct ring_buffer_per_cpu *cpu_buffer; 1009 struct rb_irq_work *rbwork; 1010 1011 if (cpu == RING_BUFFER_ALL_CPUS) { 1012 rbwork = &buffer->irq_work; 1013 full = 0; 1014 } else { 1015 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1016 return EPOLLERR; 1017 1018 cpu_buffer = buffer->buffers[cpu]; 1019 rbwork = &cpu_buffer->irq_work; 1020 } 1021 1022 if (full) { 1023 poll_wait(filp, &rbwork->full_waiters, poll_table); 1024 1025 if (rb_watermark_hit(buffer, cpu, full)) 1026 return EPOLLIN | EPOLLRDNORM; 1027 /* 1028 * Only allow full_waiters_pending update to be seen after 1029 * the shortest_full is set (in rb_watermark_hit). If the 1030 * writer sees the full_waiters_pending flag set, it will 1031 * compare the amount in the ring buffer to shortest_full. 1032 * If the amount in the ring buffer is greater than the 1033 * shortest_full percent, it will call the irq_work handler 1034 * to wake up this list. The irq_handler will reset shortest_full 1035 * back to zero. That's done under the reader_lock, but 1036 * the below smp_mb() makes sure that the update to 1037 * full_waiters_pending doesn't leak up into the above. 1038 */ 1039 smp_mb(); 1040 rbwork->full_waiters_pending = true; 1041 return 0; 1042 } 1043 1044 poll_wait(filp, &rbwork->waiters, poll_table); 1045 rbwork->waiters_pending = true; 1046 1047 /* 1048 * There's a tight race between setting the waiters_pending and 1049 * checking if the ring buffer is empty. Once the waiters_pending bit 1050 * is set, the next event will wake the task up, but we can get stuck 1051 * if there's only a single event in. 1052 * 1053 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1054 * but adding a memory barrier to all events will cause too much of a 1055 * performance hit in the fast path. We only need a memory barrier when 1056 * the buffer goes from empty to having content. But as this race is 1057 * extremely small, and it's not a problem if another event comes in, we 1058 * will fix it later. 1059 */ 1060 smp_mb(); 1061 1062 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1063 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1064 return EPOLLIN | EPOLLRDNORM; 1065 return 0; 1066 } 1067 1068 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1069 #define RB_WARN_ON(b, cond) \ 1070 ({ \ 1071 int _____ret = unlikely(cond); \ 1072 if (_____ret) { \ 1073 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1074 struct ring_buffer_per_cpu *__b = \ 1075 (void *)b; \ 1076 atomic_inc(&__b->buffer->record_disabled); \ 1077 } else \ 1078 atomic_inc(&b->record_disabled); \ 1079 WARN_ON(1); \ 1080 } \ 1081 _____ret; \ 1082 }) 1083 1084 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1085 #define DEBUG_SHIFT 0 1086 1087 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1088 { 1089 u64 ts; 1090 1091 /* Skip retpolines :-( */ 1092 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1093 ts = trace_clock_local(); 1094 else 1095 ts = buffer->clock(); 1096 1097 /* shift to debug/test normalization and TIME_EXTENTS */ 1098 return ts << DEBUG_SHIFT; 1099 } 1100 1101 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1102 { 1103 u64 time; 1104 1105 preempt_disable_notrace(); 1106 time = rb_time_stamp(buffer); 1107 preempt_enable_notrace(); 1108 1109 return time; 1110 } 1111 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1112 1113 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1114 int cpu, u64 *ts) 1115 { 1116 /* Just stupid testing the normalize function and deltas */ 1117 *ts >>= DEBUG_SHIFT; 1118 } 1119 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1120 1121 /* 1122 * Making the ring buffer lockless makes things tricky. 1123 * Although writes only happen on the CPU that they are on, 1124 * and they only need to worry about interrupts. Reads can 1125 * happen on any CPU. 1126 * 1127 * The reader page is always off the ring buffer, but when the 1128 * reader finishes with a page, it needs to swap its page with 1129 * a new one from the buffer. The reader needs to take from 1130 * the head (writes go to the tail). But if a writer is in overwrite 1131 * mode and wraps, it must push the head page forward. 1132 * 1133 * Here lies the problem. 1134 * 1135 * The reader must be careful to replace only the head page, and 1136 * not another one. As described at the top of the file in the 1137 * ASCII art, the reader sets its old page to point to the next 1138 * page after head. It then sets the page after head to point to 1139 * the old reader page. But if the writer moves the head page 1140 * during this operation, the reader could end up with the tail. 1141 * 1142 * We use cmpxchg to help prevent this race. We also do something 1143 * special with the page before head. We set the LSB to 1. 1144 * 1145 * When the writer must push the page forward, it will clear the 1146 * bit that points to the head page, move the head, and then set 1147 * the bit that points to the new head page. 1148 * 1149 * We also don't want an interrupt coming in and moving the head 1150 * page on another writer. Thus we use the second LSB to catch 1151 * that too. Thus: 1152 * 1153 * head->list->prev->next bit 1 bit 0 1154 * ------- ------- 1155 * Normal page 0 0 1156 * Points to head page 0 1 1157 * New head page 1 0 1158 * 1159 * Note we can not trust the prev pointer of the head page, because: 1160 * 1161 * +----+ +-----+ +-----+ 1162 * | |------>| T |---X--->| N | 1163 * | |<------| | | | 1164 * +----+ +-----+ +-----+ 1165 * ^ ^ | 1166 * | +-----+ | | 1167 * +----------| R |----------+ | 1168 * | |<-----------+ 1169 * +-----+ 1170 * 1171 * Key: ---X--> HEAD flag set in pointer 1172 * T Tail page 1173 * R Reader page 1174 * N Next page 1175 * 1176 * (see __rb_reserve_next() to see where this happens) 1177 * 1178 * What the above shows is that the reader just swapped out 1179 * the reader page with a page in the buffer, but before it 1180 * could make the new header point back to the new page added 1181 * it was preempted by a writer. The writer moved forward onto 1182 * the new page added by the reader and is about to move forward 1183 * again. 1184 * 1185 * You can see, it is legitimate for the previous pointer of 1186 * the head (or any page) not to point back to itself. But only 1187 * temporarily. 1188 */ 1189 1190 #define RB_PAGE_NORMAL 0UL 1191 #define RB_PAGE_HEAD 1UL 1192 #define RB_PAGE_UPDATE 2UL 1193 1194 1195 #define RB_FLAG_MASK 3UL 1196 1197 /* PAGE_MOVED is not part of the mask */ 1198 #define RB_PAGE_MOVED 4UL 1199 1200 /* 1201 * rb_list_head - remove any bit 1202 */ 1203 static struct list_head *rb_list_head(struct list_head *list) 1204 { 1205 unsigned long val = (unsigned long)list; 1206 1207 return (struct list_head *)(val & ~RB_FLAG_MASK); 1208 } 1209 1210 /* 1211 * rb_is_head_page - test if the given page is the head page 1212 * 1213 * Because the reader may move the head_page pointer, we can 1214 * not trust what the head page is (it may be pointing to 1215 * the reader page). But if the next page is a header page, 1216 * its flags will be non zero. 1217 */ 1218 static inline int 1219 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1220 { 1221 unsigned long val; 1222 1223 val = (unsigned long)list->next; 1224 1225 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1226 return RB_PAGE_MOVED; 1227 1228 return val & RB_FLAG_MASK; 1229 } 1230 1231 /* 1232 * rb_is_reader_page 1233 * 1234 * The unique thing about the reader page, is that, if the 1235 * writer is ever on it, the previous pointer never points 1236 * back to the reader page. 1237 */ 1238 static bool rb_is_reader_page(struct buffer_page *page) 1239 { 1240 struct list_head *list = page->list.prev; 1241 1242 return rb_list_head(list->next) != &page->list; 1243 } 1244 1245 /* 1246 * rb_set_list_to_head - set a list_head to be pointing to head. 1247 */ 1248 static void rb_set_list_to_head(struct list_head *list) 1249 { 1250 unsigned long *ptr; 1251 1252 ptr = (unsigned long *)&list->next; 1253 *ptr |= RB_PAGE_HEAD; 1254 *ptr &= ~RB_PAGE_UPDATE; 1255 } 1256 1257 /* 1258 * rb_head_page_activate - sets up head page 1259 */ 1260 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1261 { 1262 struct buffer_page *head; 1263 1264 head = cpu_buffer->head_page; 1265 if (!head) 1266 return; 1267 1268 /* 1269 * Set the previous list pointer to have the HEAD flag. 1270 */ 1271 rb_set_list_to_head(head->list.prev); 1272 1273 if (cpu_buffer->ring_meta) { 1274 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 1275 meta->head_buffer = (unsigned long)head->page; 1276 } 1277 } 1278 1279 static void rb_list_head_clear(struct list_head *list) 1280 { 1281 unsigned long *ptr = (unsigned long *)&list->next; 1282 1283 *ptr &= ~RB_FLAG_MASK; 1284 } 1285 1286 /* 1287 * rb_head_page_deactivate - clears head page ptr (for free list) 1288 */ 1289 static void 1290 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1291 { 1292 struct list_head *hd; 1293 1294 /* Go through the whole list and clear any pointers found. */ 1295 rb_list_head_clear(cpu_buffer->pages); 1296 1297 list_for_each(hd, cpu_buffer->pages) 1298 rb_list_head_clear(hd); 1299 } 1300 1301 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1302 struct buffer_page *head, 1303 struct buffer_page *prev, 1304 int old_flag, int new_flag) 1305 { 1306 struct list_head *list; 1307 unsigned long val = (unsigned long)&head->list; 1308 unsigned long ret; 1309 1310 list = &prev->list; 1311 1312 val &= ~RB_FLAG_MASK; 1313 1314 ret = cmpxchg((unsigned long *)&list->next, 1315 val | old_flag, val | new_flag); 1316 1317 /* check if the reader took the page */ 1318 if ((ret & ~RB_FLAG_MASK) != val) 1319 return RB_PAGE_MOVED; 1320 1321 return ret & RB_FLAG_MASK; 1322 } 1323 1324 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1325 struct buffer_page *head, 1326 struct buffer_page *prev, 1327 int old_flag) 1328 { 1329 return rb_head_page_set(cpu_buffer, head, prev, 1330 old_flag, RB_PAGE_UPDATE); 1331 } 1332 1333 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1334 struct buffer_page *head, 1335 struct buffer_page *prev, 1336 int old_flag) 1337 { 1338 return rb_head_page_set(cpu_buffer, head, prev, 1339 old_flag, RB_PAGE_HEAD); 1340 } 1341 1342 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1343 struct buffer_page *head, 1344 struct buffer_page *prev, 1345 int old_flag) 1346 { 1347 return rb_head_page_set(cpu_buffer, head, prev, 1348 old_flag, RB_PAGE_NORMAL); 1349 } 1350 1351 static inline void rb_inc_page(struct buffer_page **bpage) 1352 { 1353 struct list_head *p = rb_list_head((*bpage)->list.next); 1354 1355 *bpage = list_entry(p, struct buffer_page, list); 1356 } 1357 1358 static struct buffer_page * 1359 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1360 { 1361 struct buffer_page *head; 1362 struct buffer_page *page; 1363 struct list_head *list; 1364 int i; 1365 1366 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1367 return NULL; 1368 1369 /* sanity check */ 1370 list = cpu_buffer->pages; 1371 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1372 return NULL; 1373 1374 page = head = cpu_buffer->head_page; 1375 /* 1376 * It is possible that the writer moves the header behind 1377 * where we started, and we miss in one loop. 1378 * A second loop should grab the header, but we'll do 1379 * three loops just because I'm paranoid. 1380 */ 1381 for (i = 0; i < 3; i++) { 1382 do { 1383 if (rb_is_head_page(page, page->list.prev)) { 1384 cpu_buffer->head_page = page; 1385 return page; 1386 } 1387 rb_inc_page(&page); 1388 } while (page != head); 1389 } 1390 1391 RB_WARN_ON(cpu_buffer, 1); 1392 1393 return NULL; 1394 } 1395 1396 static bool rb_head_page_replace(struct buffer_page *old, 1397 struct buffer_page *new) 1398 { 1399 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1400 unsigned long val; 1401 1402 val = *ptr & ~RB_FLAG_MASK; 1403 val |= RB_PAGE_HEAD; 1404 1405 return try_cmpxchg(ptr, &val, (unsigned long)&new->list); 1406 } 1407 1408 /* 1409 * rb_tail_page_update - move the tail page forward 1410 */ 1411 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1412 struct buffer_page *tail_page, 1413 struct buffer_page *next_page) 1414 { 1415 unsigned long old_entries; 1416 unsigned long old_write; 1417 1418 /* 1419 * The tail page now needs to be moved forward. 1420 * 1421 * We need to reset the tail page, but without messing 1422 * with possible erasing of data brought in by interrupts 1423 * that have moved the tail page and are currently on it. 1424 * 1425 * We add a counter to the write field to denote this. 1426 */ 1427 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1428 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1429 1430 /* 1431 * Just make sure we have seen our old_write and synchronize 1432 * with any interrupts that come in. 1433 */ 1434 barrier(); 1435 1436 /* 1437 * If the tail page is still the same as what we think 1438 * it is, then it is up to us to update the tail 1439 * pointer. 1440 */ 1441 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1442 /* Zero the write counter */ 1443 unsigned long val = old_write & ~RB_WRITE_MASK; 1444 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1445 1446 /* 1447 * This will only succeed if an interrupt did 1448 * not come in and change it. In which case, we 1449 * do not want to modify it. 1450 * 1451 * We add (void) to let the compiler know that we do not care 1452 * about the return value of these functions. We use the 1453 * cmpxchg to only update if an interrupt did not already 1454 * do it for us. If the cmpxchg fails, we don't care. 1455 */ 1456 (void)local_cmpxchg(&next_page->write, old_write, val); 1457 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1458 1459 /* 1460 * No need to worry about races with clearing out the commit. 1461 * it only can increment when a commit takes place. But that 1462 * only happens in the outer most nested commit. 1463 */ 1464 local_set(&next_page->page->commit, 0); 1465 1466 /* Either we update tail_page or an interrupt does */ 1467 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page)) 1468 local_inc(&cpu_buffer->pages_touched); 1469 } 1470 } 1471 1472 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1473 struct buffer_page *bpage) 1474 { 1475 unsigned long val = (unsigned long)bpage; 1476 1477 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK); 1478 } 1479 1480 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer, 1481 struct list_head *list) 1482 { 1483 if (RB_WARN_ON(cpu_buffer, 1484 rb_list_head(rb_list_head(list->next)->prev) != list)) 1485 return false; 1486 1487 if (RB_WARN_ON(cpu_buffer, 1488 rb_list_head(rb_list_head(list->prev)->next) != list)) 1489 return false; 1490 1491 return true; 1492 } 1493 1494 /** 1495 * rb_check_pages - integrity check of buffer pages 1496 * @cpu_buffer: CPU buffer with pages to test 1497 * 1498 * As a safety measure we check to make sure the data pages have not 1499 * been corrupted. 1500 */ 1501 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1502 { 1503 struct list_head *head, *tmp; 1504 unsigned long buffer_cnt; 1505 unsigned long flags; 1506 int nr_loops = 0; 1507 1508 /* 1509 * Walk the linked list underpinning the ring buffer and validate all 1510 * its next and prev links. 1511 * 1512 * The check acquires the reader_lock to avoid concurrent processing 1513 * with code that could be modifying the list. However, the lock cannot 1514 * be held for the entire duration of the walk, as this would make the 1515 * time when interrupts are disabled non-deterministic, dependent on the 1516 * ring buffer size. Therefore, the code releases and re-acquires the 1517 * lock after checking each page. The ring_buffer_per_cpu.cnt variable 1518 * is then used to detect if the list was modified while the lock was 1519 * not held, in which case the check needs to be restarted. 1520 * 1521 * The code attempts to perform the check at most three times before 1522 * giving up. This is acceptable because this is only a self-validation 1523 * to detect problems early on. In practice, the list modification 1524 * operations are fairly spaced, and so this check typically succeeds at 1525 * most on the second try. 1526 */ 1527 again: 1528 if (++nr_loops > 3) 1529 return; 1530 1531 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1532 head = rb_list_head(cpu_buffer->pages); 1533 if (!rb_check_links(cpu_buffer, head)) 1534 goto out_locked; 1535 buffer_cnt = cpu_buffer->cnt; 1536 tmp = head; 1537 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1538 1539 while (true) { 1540 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1541 1542 if (buffer_cnt != cpu_buffer->cnt) { 1543 /* The list was updated, try again. */ 1544 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1545 goto again; 1546 } 1547 1548 tmp = rb_list_head(tmp->next); 1549 if (tmp == head) 1550 /* The iteration circled back, all is done. */ 1551 goto out_locked; 1552 1553 if (!rb_check_links(cpu_buffer, tmp)) 1554 goto out_locked; 1555 1556 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1557 } 1558 1559 out_locked: 1560 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1561 } 1562 1563 /* 1564 * Take an address, add the meta data size as well as the array of 1565 * array subbuffer indexes, then align it to a subbuffer size. 1566 * 1567 * This is used to help find the next per cpu subbuffer within a mapped range. 1568 */ 1569 static unsigned long 1570 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs) 1571 { 1572 addr += sizeof(struct ring_buffer_meta) + 1573 sizeof(int) * nr_subbufs; 1574 return ALIGN(addr, subbuf_size); 1575 } 1576 1577 /* 1578 * Return the ring_buffer_meta for a given @cpu. 1579 */ 1580 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu) 1581 { 1582 int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 1583 unsigned long ptr = buffer->range_addr_start; 1584 struct ring_buffer_meta *meta; 1585 int nr_subbufs; 1586 1587 if (!ptr) 1588 return NULL; 1589 1590 /* When nr_pages passed in is zero, the first meta has already been initialized */ 1591 if (!nr_pages) { 1592 meta = (struct ring_buffer_meta *)ptr; 1593 nr_subbufs = meta->nr_subbufs; 1594 } else { 1595 meta = NULL; 1596 /* Include the reader page */ 1597 nr_subbufs = nr_pages + 1; 1598 } 1599 1600 /* 1601 * The first chunk may not be subbuffer aligned, where as 1602 * the rest of the chunks are. 1603 */ 1604 if (cpu) { 1605 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs); 1606 ptr += subbuf_size * nr_subbufs; 1607 1608 /* We can use multiplication to find chunks greater than 1 */ 1609 if (cpu > 1) { 1610 unsigned long size; 1611 unsigned long p; 1612 1613 /* Save the beginning of this CPU chunk */ 1614 p = ptr; 1615 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs); 1616 ptr += subbuf_size * nr_subbufs; 1617 1618 /* Now all chunks after this are the same size */ 1619 size = ptr - p; 1620 ptr += size * (cpu - 2); 1621 } 1622 } 1623 return (void *)ptr; 1624 } 1625 1626 /* Return the start of subbufs given the meta pointer */ 1627 static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta) 1628 { 1629 int subbuf_size = meta->subbuf_size; 1630 unsigned long ptr; 1631 1632 ptr = (unsigned long)meta; 1633 ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs); 1634 1635 return (void *)ptr; 1636 } 1637 1638 /* 1639 * Return a specific sub-buffer for a given @cpu defined by @idx. 1640 */ 1641 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx) 1642 { 1643 struct ring_buffer_meta *meta; 1644 unsigned long ptr; 1645 int subbuf_size; 1646 1647 meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu); 1648 if (!meta) 1649 return NULL; 1650 1651 if (WARN_ON_ONCE(idx >= meta->nr_subbufs)) 1652 return NULL; 1653 1654 subbuf_size = meta->subbuf_size; 1655 1656 /* Map this buffer to the order that's in meta->buffers[] */ 1657 idx = meta->buffers[idx]; 1658 1659 ptr = (unsigned long)rb_subbufs_from_meta(meta); 1660 1661 ptr += subbuf_size * idx; 1662 if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end) 1663 return NULL; 1664 1665 return (void *)ptr; 1666 } 1667 1668 /* 1669 * See if the existing memory contains valid ring buffer data. 1670 * As the previous kernel must be the same as this kernel, all 1671 * the calculations (size of buffers and number of buffers) 1672 * must be the same. 1673 */ 1674 static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu, 1675 struct trace_buffer *buffer, int nr_pages) 1676 { 1677 int subbuf_size = PAGE_SIZE; 1678 struct buffer_data_page *subbuf; 1679 unsigned long buffers_start; 1680 unsigned long buffers_end; 1681 int i; 1682 1683 /* Check the meta magic and meta struct size */ 1684 if (meta->magic != RING_BUFFER_META_MAGIC || 1685 meta->struct_size != sizeof(*meta)) { 1686 pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu); 1687 return false; 1688 } 1689 1690 /* The subbuffer's size and number of subbuffers must match */ 1691 if (meta->subbuf_size != subbuf_size || 1692 meta->nr_subbufs != nr_pages + 1) { 1693 pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu); 1694 return false; 1695 } 1696 1697 buffers_start = meta->first_buffer; 1698 buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs); 1699 1700 /* Is the head and commit buffers within the range of buffers? */ 1701 if (meta->head_buffer < buffers_start || 1702 meta->head_buffer >= buffers_end) { 1703 pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu); 1704 return false; 1705 } 1706 1707 if (meta->commit_buffer < buffers_start || 1708 meta->commit_buffer >= buffers_end) { 1709 pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu); 1710 return false; 1711 } 1712 1713 subbuf = rb_subbufs_from_meta(meta); 1714 1715 /* Is the meta buffers and the subbufs themselves have correct data? */ 1716 for (i = 0; i < meta->nr_subbufs; i++) { 1717 if (meta->buffers[i] < 0 || 1718 meta->buffers[i] >= meta->nr_subbufs) { 1719 pr_info("Ring buffer boot meta [%d] array out of range\n", cpu); 1720 return false; 1721 } 1722 1723 if ((unsigned)local_read(&subbuf->commit) > subbuf_size) { 1724 pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu); 1725 return false; 1726 } 1727 1728 subbuf = (void *)subbuf + subbuf_size; 1729 } 1730 1731 return true; 1732 } 1733 1734 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf); 1735 1736 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu, 1737 unsigned long long *timestamp, u64 *delta_ptr) 1738 { 1739 struct ring_buffer_event *event; 1740 u64 ts, delta; 1741 int events = 0; 1742 int e; 1743 1744 *delta_ptr = 0; 1745 *timestamp = 0; 1746 1747 ts = dpage->time_stamp; 1748 1749 for (e = 0; e < tail; e += rb_event_length(event)) { 1750 1751 event = (struct ring_buffer_event *)(dpage->data + e); 1752 1753 switch (event->type_len) { 1754 1755 case RINGBUF_TYPE_TIME_EXTEND: 1756 delta = rb_event_time_stamp(event); 1757 ts += delta; 1758 break; 1759 1760 case RINGBUF_TYPE_TIME_STAMP: 1761 delta = rb_event_time_stamp(event); 1762 delta = rb_fix_abs_ts(delta, ts); 1763 if (delta < ts) { 1764 *delta_ptr = delta; 1765 *timestamp = ts; 1766 return -1; 1767 } 1768 ts = delta; 1769 break; 1770 1771 case RINGBUF_TYPE_PADDING: 1772 if (event->time_delta == 1) 1773 break; 1774 fallthrough; 1775 case RINGBUF_TYPE_DATA: 1776 events++; 1777 ts += event->time_delta; 1778 break; 1779 1780 default: 1781 return -1; 1782 } 1783 } 1784 *timestamp = ts; 1785 return events; 1786 } 1787 1788 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu) 1789 { 1790 unsigned long long ts; 1791 u64 delta; 1792 int tail; 1793 1794 tail = local_read(&dpage->commit); 1795 return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta); 1796 } 1797 1798 /* If the meta data has been validated, now validate the events */ 1799 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer) 1800 { 1801 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 1802 struct buffer_page *head_page; 1803 unsigned long entry_bytes = 0; 1804 unsigned long entries = 0; 1805 int ret; 1806 int i; 1807 1808 if (!meta || !meta->head_buffer) 1809 return; 1810 1811 /* Do the reader page first */ 1812 ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu); 1813 if (ret < 0) { 1814 pr_info("Ring buffer reader page is invalid\n"); 1815 goto invalid; 1816 } 1817 entries += ret; 1818 entry_bytes += local_read(&cpu_buffer->reader_page->page->commit); 1819 local_set(&cpu_buffer->reader_page->entries, ret); 1820 1821 head_page = cpu_buffer->head_page; 1822 1823 /* If both the head and commit are on the reader_page then we are done. */ 1824 if (head_page == cpu_buffer->reader_page && 1825 head_page == cpu_buffer->commit_page) 1826 goto done; 1827 1828 /* Iterate until finding the commit page */ 1829 for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) { 1830 1831 /* Reader page has already been done */ 1832 if (head_page == cpu_buffer->reader_page) 1833 continue; 1834 1835 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu); 1836 if (ret < 0) { 1837 pr_info("Ring buffer meta [%d] invalid buffer page\n", 1838 cpu_buffer->cpu); 1839 goto invalid; 1840 } 1841 entries += ret; 1842 entry_bytes += local_read(&head_page->page->commit); 1843 local_set(&cpu_buffer->head_page->entries, ret); 1844 1845 if (head_page == cpu_buffer->commit_page) 1846 break; 1847 } 1848 1849 if (head_page != cpu_buffer->commit_page) { 1850 pr_info("Ring buffer meta [%d] commit page not found\n", 1851 cpu_buffer->cpu); 1852 goto invalid; 1853 } 1854 done: 1855 local_set(&cpu_buffer->entries, entries); 1856 local_set(&cpu_buffer->entries_bytes, entry_bytes); 1857 1858 pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu); 1859 return; 1860 1861 invalid: 1862 /* The content of the buffers are invalid, reset the meta data */ 1863 meta->head_buffer = 0; 1864 meta->commit_buffer = 0; 1865 1866 /* Reset the reader page */ 1867 local_set(&cpu_buffer->reader_page->entries, 0); 1868 local_set(&cpu_buffer->reader_page->page->commit, 0); 1869 1870 /* Reset all the subbuffers */ 1871 for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) { 1872 local_set(&head_page->entries, 0); 1873 local_set(&head_page->page->commit, 0); 1874 } 1875 } 1876 1877 /* Used to calculate data delta */ 1878 static char rb_data_ptr[] = ""; 1879 1880 #define THIS_TEXT_PTR ((unsigned long)rb_meta_init_text_addr) 1881 #define THIS_DATA_PTR ((unsigned long)rb_data_ptr) 1882 1883 static void rb_meta_init_text_addr(struct ring_buffer_meta *meta) 1884 { 1885 meta->text_addr = THIS_TEXT_PTR; 1886 meta->data_addr = THIS_DATA_PTR; 1887 } 1888 1889 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages) 1890 { 1891 struct ring_buffer_meta *meta; 1892 unsigned long delta; 1893 void *subbuf; 1894 int cpu; 1895 int i; 1896 1897 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 1898 void *next_meta; 1899 1900 meta = rb_range_meta(buffer, nr_pages, cpu); 1901 1902 if (rb_meta_valid(meta, cpu, buffer, nr_pages)) { 1903 /* Make the mappings match the current address */ 1904 subbuf = rb_subbufs_from_meta(meta); 1905 delta = (unsigned long)subbuf - meta->first_buffer; 1906 meta->first_buffer += delta; 1907 meta->head_buffer += delta; 1908 meta->commit_buffer += delta; 1909 buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr; 1910 buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr; 1911 continue; 1912 } 1913 1914 if (cpu < nr_cpu_ids - 1) 1915 next_meta = rb_range_meta(buffer, nr_pages, cpu + 1); 1916 else 1917 next_meta = (void *)buffer->range_addr_end; 1918 1919 memset(meta, 0, next_meta - (void *)meta); 1920 1921 meta->magic = RING_BUFFER_META_MAGIC; 1922 meta->struct_size = sizeof(*meta); 1923 1924 meta->nr_subbufs = nr_pages + 1; 1925 meta->subbuf_size = PAGE_SIZE; 1926 1927 subbuf = rb_subbufs_from_meta(meta); 1928 1929 meta->first_buffer = (unsigned long)subbuf; 1930 rb_meta_init_text_addr(meta); 1931 1932 /* 1933 * The buffers[] array holds the order of the sub-buffers 1934 * that are after the meta data. The sub-buffers may 1935 * be swapped out when read and inserted into a different 1936 * location of the ring buffer. Although their addresses 1937 * remain the same, the buffers[] array contains the 1938 * index into the sub-buffers holding their actual order. 1939 */ 1940 for (i = 0; i < meta->nr_subbufs; i++) { 1941 meta->buffers[i] = i; 1942 rb_init_page(subbuf); 1943 subbuf += meta->subbuf_size; 1944 } 1945 } 1946 } 1947 1948 static void *rbm_start(struct seq_file *m, loff_t *pos) 1949 { 1950 struct ring_buffer_per_cpu *cpu_buffer = m->private; 1951 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 1952 unsigned long val; 1953 1954 if (!meta) 1955 return NULL; 1956 1957 if (*pos > meta->nr_subbufs) 1958 return NULL; 1959 1960 val = *pos; 1961 val++; 1962 1963 return (void *)val; 1964 } 1965 1966 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos) 1967 { 1968 (*pos)++; 1969 1970 return rbm_start(m, pos); 1971 } 1972 1973 static int rbm_show(struct seq_file *m, void *v) 1974 { 1975 struct ring_buffer_per_cpu *cpu_buffer = m->private; 1976 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 1977 unsigned long val = (unsigned long)v; 1978 1979 if (val == 1) { 1980 seq_printf(m, "head_buffer: %d\n", 1981 rb_meta_subbuf_idx(meta, (void *)meta->head_buffer)); 1982 seq_printf(m, "commit_buffer: %d\n", 1983 rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer)); 1984 seq_printf(m, "subbuf_size: %d\n", meta->subbuf_size); 1985 seq_printf(m, "nr_subbufs: %d\n", meta->nr_subbufs); 1986 return 0; 1987 } 1988 1989 val -= 2; 1990 seq_printf(m, "buffer[%ld]: %d\n", val, meta->buffers[val]); 1991 1992 return 0; 1993 } 1994 1995 static void rbm_stop(struct seq_file *m, void *p) 1996 { 1997 } 1998 1999 static const struct seq_operations rb_meta_seq_ops = { 2000 .start = rbm_start, 2001 .next = rbm_next, 2002 .show = rbm_show, 2003 .stop = rbm_stop, 2004 }; 2005 2006 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu) 2007 { 2008 struct seq_file *m; 2009 int ret; 2010 2011 ret = seq_open(file, &rb_meta_seq_ops); 2012 if (ret) 2013 return ret; 2014 2015 m = file->private_data; 2016 m->private = buffer->buffers[cpu]; 2017 2018 return 0; 2019 } 2020 2021 /* Map the buffer_pages to the previous head and commit pages */ 2022 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer, 2023 struct buffer_page *bpage) 2024 { 2025 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 2026 2027 if (meta->head_buffer == (unsigned long)bpage->page) 2028 cpu_buffer->head_page = bpage; 2029 2030 if (meta->commit_buffer == (unsigned long)bpage->page) { 2031 cpu_buffer->commit_page = bpage; 2032 cpu_buffer->tail_page = bpage; 2033 } 2034 } 2035 2036 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 2037 long nr_pages, struct list_head *pages) 2038 { 2039 struct trace_buffer *buffer = cpu_buffer->buffer; 2040 struct ring_buffer_meta *meta = NULL; 2041 struct buffer_page *bpage, *tmp; 2042 bool user_thread = current->mm != NULL; 2043 gfp_t mflags; 2044 long i; 2045 2046 /* 2047 * Check if the available memory is there first. 2048 * Note, si_mem_available() only gives us a rough estimate of available 2049 * memory. It may not be accurate. But we don't care, we just want 2050 * to prevent doing any allocation when it is obvious that it is 2051 * not going to succeed. 2052 */ 2053 i = si_mem_available(); 2054 if (i < nr_pages) 2055 return -ENOMEM; 2056 2057 /* 2058 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 2059 * gracefully without invoking oom-killer and the system is not 2060 * destabilized. 2061 */ 2062 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 2063 2064 /* 2065 * If a user thread allocates too much, and si_mem_available() 2066 * reports there's enough memory, even though there is not. 2067 * Make sure the OOM killer kills this thread. This can happen 2068 * even with RETRY_MAYFAIL because another task may be doing 2069 * an allocation after this task has taken all memory. 2070 * This is the task the OOM killer needs to take out during this 2071 * loop, even if it was triggered by an allocation somewhere else. 2072 */ 2073 if (user_thread) 2074 set_current_oom_origin(); 2075 2076 if (buffer->range_addr_start) 2077 meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu); 2078 2079 for (i = 0; i < nr_pages; i++) { 2080 struct page *page; 2081 2082 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 2083 mflags, cpu_to_node(cpu_buffer->cpu)); 2084 if (!bpage) 2085 goto free_pages; 2086 2087 rb_check_bpage(cpu_buffer, bpage); 2088 2089 /* 2090 * Append the pages as for mapped buffers we want to keep 2091 * the order 2092 */ 2093 list_add_tail(&bpage->list, pages); 2094 2095 if (meta) { 2096 /* A range was given. Use that for the buffer page */ 2097 bpage->page = rb_range_buffer(cpu_buffer, i + 1); 2098 if (!bpage->page) 2099 goto free_pages; 2100 /* If this is valid from a previous boot */ 2101 if (meta->head_buffer) 2102 rb_meta_buffer_update(cpu_buffer, bpage); 2103 bpage->range = 1; 2104 bpage->id = i + 1; 2105 } else { 2106 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), 2107 mflags | __GFP_COMP | __GFP_ZERO, 2108 cpu_buffer->buffer->subbuf_order); 2109 if (!page) 2110 goto free_pages; 2111 bpage->page = page_address(page); 2112 rb_init_page(bpage->page); 2113 } 2114 bpage->order = cpu_buffer->buffer->subbuf_order; 2115 2116 if (user_thread && fatal_signal_pending(current)) 2117 goto free_pages; 2118 } 2119 if (user_thread) 2120 clear_current_oom_origin(); 2121 2122 return 0; 2123 2124 free_pages: 2125 list_for_each_entry_safe(bpage, tmp, pages, list) { 2126 list_del_init(&bpage->list); 2127 free_buffer_page(bpage); 2128 } 2129 if (user_thread) 2130 clear_current_oom_origin(); 2131 2132 return -ENOMEM; 2133 } 2134 2135 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 2136 unsigned long nr_pages) 2137 { 2138 LIST_HEAD(pages); 2139 2140 WARN_ON(!nr_pages); 2141 2142 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 2143 return -ENOMEM; 2144 2145 /* 2146 * The ring buffer page list is a circular list that does not 2147 * start and end with a list head. All page list items point to 2148 * other pages. 2149 */ 2150 cpu_buffer->pages = pages.next; 2151 list_del(&pages); 2152 2153 cpu_buffer->nr_pages = nr_pages; 2154 2155 rb_check_pages(cpu_buffer); 2156 2157 return 0; 2158 } 2159 2160 static struct ring_buffer_per_cpu * 2161 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 2162 { 2163 struct ring_buffer_per_cpu *cpu_buffer; 2164 struct ring_buffer_meta *meta; 2165 struct buffer_page *bpage; 2166 struct page *page; 2167 int ret; 2168 2169 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 2170 GFP_KERNEL, cpu_to_node(cpu)); 2171 if (!cpu_buffer) 2172 return NULL; 2173 2174 cpu_buffer->cpu = cpu; 2175 cpu_buffer->buffer = buffer; 2176 raw_spin_lock_init(&cpu_buffer->reader_lock); 2177 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 2178 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 2179 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 2180 init_completion(&cpu_buffer->update_done); 2181 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 2182 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 2183 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 2184 mutex_init(&cpu_buffer->mapping_lock); 2185 2186 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 2187 GFP_KERNEL, cpu_to_node(cpu)); 2188 if (!bpage) 2189 goto fail_free_buffer; 2190 2191 rb_check_bpage(cpu_buffer, bpage); 2192 2193 cpu_buffer->reader_page = bpage; 2194 2195 if (buffer->range_addr_start) { 2196 /* 2197 * Range mapped buffers have the same restrictions as memory 2198 * mapped ones do. 2199 */ 2200 cpu_buffer->mapped = 1; 2201 cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu); 2202 bpage->page = rb_range_buffer(cpu_buffer, 0); 2203 if (!bpage->page) 2204 goto fail_free_reader; 2205 if (cpu_buffer->ring_meta->head_buffer) 2206 rb_meta_buffer_update(cpu_buffer, bpage); 2207 bpage->range = 1; 2208 } else { 2209 page = alloc_pages_node(cpu_to_node(cpu), 2210 GFP_KERNEL | __GFP_COMP | __GFP_ZERO, 2211 cpu_buffer->buffer->subbuf_order); 2212 if (!page) 2213 goto fail_free_reader; 2214 bpage->page = page_address(page); 2215 rb_init_page(bpage->page); 2216 } 2217 2218 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 2219 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2220 2221 ret = rb_allocate_pages(cpu_buffer, nr_pages); 2222 if (ret < 0) 2223 goto fail_free_reader; 2224 2225 rb_meta_validate_events(cpu_buffer); 2226 2227 /* If the boot meta was valid then this has already been updated */ 2228 meta = cpu_buffer->ring_meta; 2229 if (!meta || !meta->head_buffer || 2230 !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) { 2231 if (meta && meta->head_buffer && 2232 (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) { 2233 pr_warn("Ring buffer meta buffers not all mapped\n"); 2234 if (!cpu_buffer->head_page) 2235 pr_warn(" Missing head_page\n"); 2236 if (!cpu_buffer->commit_page) 2237 pr_warn(" Missing commit_page\n"); 2238 if (!cpu_buffer->tail_page) 2239 pr_warn(" Missing tail_page\n"); 2240 } 2241 2242 cpu_buffer->head_page 2243 = list_entry(cpu_buffer->pages, struct buffer_page, list); 2244 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 2245 2246 rb_head_page_activate(cpu_buffer); 2247 2248 if (cpu_buffer->ring_meta) 2249 meta->commit_buffer = meta->head_buffer; 2250 } else { 2251 /* The valid meta buffer still needs to activate the head page */ 2252 rb_head_page_activate(cpu_buffer); 2253 } 2254 2255 return cpu_buffer; 2256 2257 fail_free_reader: 2258 free_buffer_page(cpu_buffer->reader_page); 2259 2260 fail_free_buffer: 2261 kfree(cpu_buffer); 2262 return NULL; 2263 } 2264 2265 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 2266 { 2267 struct list_head *head = cpu_buffer->pages; 2268 struct buffer_page *bpage, *tmp; 2269 2270 irq_work_sync(&cpu_buffer->irq_work.work); 2271 2272 free_buffer_page(cpu_buffer->reader_page); 2273 2274 if (head) { 2275 rb_head_page_deactivate(cpu_buffer); 2276 2277 list_for_each_entry_safe(bpage, tmp, head, list) { 2278 list_del_init(&bpage->list); 2279 free_buffer_page(bpage); 2280 } 2281 bpage = list_entry(head, struct buffer_page, list); 2282 free_buffer_page(bpage); 2283 } 2284 2285 free_page((unsigned long)cpu_buffer->free_page); 2286 2287 kfree(cpu_buffer); 2288 } 2289 2290 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags, 2291 int order, unsigned long start, 2292 unsigned long end, 2293 struct lock_class_key *key) 2294 { 2295 struct trace_buffer *buffer; 2296 long nr_pages; 2297 int subbuf_size; 2298 int bsize; 2299 int cpu; 2300 int ret; 2301 2302 /* keep it in its own cache line */ 2303 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 2304 GFP_KERNEL); 2305 if (!buffer) 2306 return NULL; 2307 2308 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 2309 goto fail_free_buffer; 2310 2311 buffer->subbuf_order = order; 2312 subbuf_size = (PAGE_SIZE << order); 2313 buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE; 2314 2315 /* Max payload is buffer page size - header (8bytes) */ 2316 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2); 2317 2318 buffer->flags = flags; 2319 buffer->clock = trace_clock_local; 2320 buffer->reader_lock_key = key; 2321 2322 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 2323 init_waitqueue_head(&buffer->irq_work.waiters); 2324 2325 buffer->cpus = nr_cpu_ids; 2326 2327 bsize = sizeof(void *) * nr_cpu_ids; 2328 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 2329 GFP_KERNEL); 2330 if (!buffer->buffers) 2331 goto fail_free_cpumask; 2332 2333 /* If start/end are specified, then that overrides size */ 2334 if (start && end) { 2335 unsigned long ptr; 2336 int n; 2337 2338 size = end - start; 2339 size = size / nr_cpu_ids; 2340 2341 /* 2342 * The number of sub-buffers (nr_pages) is determined by the 2343 * total size allocated minus the meta data size. 2344 * Then that is divided by the number of per CPU buffers 2345 * needed, plus account for the integer array index that 2346 * will be appended to the meta data. 2347 */ 2348 nr_pages = (size - sizeof(struct ring_buffer_meta)) / 2349 (subbuf_size + sizeof(int)); 2350 /* Need at least two pages plus the reader page */ 2351 if (nr_pages < 3) 2352 goto fail_free_buffers; 2353 2354 again: 2355 /* Make sure that the size fits aligned */ 2356 for (n = 0, ptr = start; n < nr_cpu_ids; n++) { 2357 ptr += sizeof(struct ring_buffer_meta) + 2358 sizeof(int) * nr_pages; 2359 ptr = ALIGN(ptr, subbuf_size); 2360 ptr += subbuf_size * nr_pages; 2361 } 2362 if (ptr > end) { 2363 if (nr_pages <= 3) 2364 goto fail_free_buffers; 2365 nr_pages--; 2366 goto again; 2367 } 2368 2369 /* nr_pages should not count the reader page */ 2370 nr_pages--; 2371 buffer->range_addr_start = start; 2372 buffer->range_addr_end = end; 2373 2374 rb_range_meta_init(buffer, nr_pages); 2375 } else { 2376 2377 /* need at least two pages */ 2378 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 2379 if (nr_pages < 2) 2380 nr_pages = 2; 2381 } 2382 2383 cpu = raw_smp_processor_id(); 2384 cpumask_set_cpu(cpu, buffer->cpumask); 2385 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 2386 if (!buffer->buffers[cpu]) 2387 goto fail_free_buffers; 2388 2389 /* If already mapped, do not hook to CPU hotplug */ 2390 if (!start) { 2391 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 2392 if (ret < 0) 2393 goto fail_free_buffers; 2394 } 2395 2396 mutex_init(&buffer->mutex); 2397 2398 return buffer; 2399 2400 fail_free_buffers: 2401 for_each_buffer_cpu(buffer, cpu) { 2402 if (buffer->buffers[cpu]) 2403 rb_free_cpu_buffer(buffer->buffers[cpu]); 2404 } 2405 kfree(buffer->buffers); 2406 2407 fail_free_cpumask: 2408 free_cpumask_var(buffer->cpumask); 2409 2410 fail_free_buffer: 2411 kfree(buffer); 2412 return NULL; 2413 } 2414 2415 /** 2416 * __ring_buffer_alloc - allocate a new ring_buffer 2417 * @size: the size in bytes per cpu that is needed. 2418 * @flags: attributes to set for the ring buffer. 2419 * @key: ring buffer reader_lock_key. 2420 * 2421 * Currently the only flag that is available is the RB_FL_OVERWRITE 2422 * flag. This flag means that the buffer will overwrite old data 2423 * when the buffer wraps. If this flag is not set, the buffer will 2424 * drop data when the tail hits the head. 2425 */ 2426 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 2427 struct lock_class_key *key) 2428 { 2429 /* Default buffer page size - one system page */ 2430 return alloc_buffer(size, flags, 0, 0, 0,key); 2431 2432 } 2433 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 2434 2435 /** 2436 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory 2437 * @size: the size in bytes per cpu that is needed. 2438 * @flags: attributes to set for the ring buffer. 2439 * @order: sub-buffer order 2440 * @start: start of allocated range 2441 * @range_size: size of allocated range 2442 * @key: ring buffer reader_lock_key. 2443 * 2444 * Currently the only flag that is available is the RB_FL_OVERWRITE 2445 * flag. This flag means that the buffer will overwrite old data 2446 * when the buffer wraps. If this flag is not set, the buffer will 2447 * drop data when the tail hits the head. 2448 */ 2449 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags, 2450 int order, unsigned long start, 2451 unsigned long range_size, 2452 struct lock_class_key *key) 2453 { 2454 return alloc_buffer(size, flags, order, start, start + range_size, key); 2455 } 2456 2457 /** 2458 * ring_buffer_last_boot_delta - return the delta offset from last boot 2459 * @buffer: The buffer to return the delta from 2460 * @text: Return text delta 2461 * @data: Return data delta 2462 * 2463 * Returns: The true if the delta is non zero 2464 */ 2465 bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text, 2466 long *data) 2467 { 2468 if (!buffer) 2469 return false; 2470 2471 if (!buffer->last_text_delta) 2472 return false; 2473 2474 *text = buffer->last_text_delta; 2475 *data = buffer->last_data_delta; 2476 2477 return true; 2478 } 2479 2480 /** 2481 * ring_buffer_free - free a ring buffer. 2482 * @buffer: the buffer to free. 2483 */ 2484 void 2485 ring_buffer_free(struct trace_buffer *buffer) 2486 { 2487 int cpu; 2488 2489 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 2490 2491 irq_work_sync(&buffer->irq_work.work); 2492 2493 for_each_buffer_cpu(buffer, cpu) 2494 rb_free_cpu_buffer(buffer->buffers[cpu]); 2495 2496 kfree(buffer->buffers); 2497 free_cpumask_var(buffer->cpumask); 2498 2499 kfree(buffer); 2500 } 2501 EXPORT_SYMBOL_GPL(ring_buffer_free); 2502 2503 void ring_buffer_set_clock(struct trace_buffer *buffer, 2504 u64 (*clock)(void)) 2505 { 2506 buffer->clock = clock; 2507 } 2508 2509 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 2510 { 2511 buffer->time_stamp_abs = abs; 2512 } 2513 2514 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 2515 { 2516 return buffer->time_stamp_abs; 2517 } 2518 2519 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 2520 { 2521 return local_read(&bpage->entries) & RB_WRITE_MASK; 2522 } 2523 2524 static inline unsigned long rb_page_write(struct buffer_page *bpage) 2525 { 2526 return local_read(&bpage->write) & RB_WRITE_MASK; 2527 } 2528 2529 static bool 2530 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 2531 { 2532 struct list_head *tail_page, *to_remove, *next_page; 2533 struct buffer_page *to_remove_page, *tmp_iter_page; 2534 struct buffer_page *last_page, *first_page; 2535 unsigned long nr_removed; 2536 unsigned long head_bit; 2537 int page_entries; 2538 2539 head_bit = 0; 2540 2541 raw_spin_lock_irq(&cpu_buffer->reader_lock); 2542 atomic_inc(&cpu_buffer->record_disabled); 2543 /* 2544 * We don't race with the readers since we have acquired the reader 2545 * lock. We also don't race with writers after disabling recording. 2546 * This makes it easy to figure out the first and the last page to be 2547 * removed from the list. We unlink all the pages in between including 2548 * the first and last pages. This is done in a busy loop so that we 2549 * lose the least number of traces. 2550 * The pages are freed after we restart recording and unlock readers. 2551 */ 2552 tail_page = &cpu_buffer->tail_page->list; 2553 2554 /* 2555 * tail page might be on reader page, we remove the next page 2556 * from the ring buffer 2557 */ 2558 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 2559 tail_page = rb_list_head(tail_page->next); 2560 to_remove = tail_page; 2561 2562 /* start of pages to remove */ 2563 first_page = list_entry(rb_list_head(to_remove->next), 2564 struct buffer_page, list); 2565 2566 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 2567 to_remove = rb_list_head(to_remove)->next; 2568 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 2569 } 2570 /* Read iterators need to reset themselves when some pages removed */ 2571 cpu_buffer->pages_removed += nr_removed; 2572 2573 next_page = rb_list_head(to_remove)->next; 2574 2575 /* 2576 * Now we remove all pages between tail_page and next_page. 2577 * Make sure that we have head_bit value preserved for the 2578 * next page 2579 */ 2580 tail_page->next = (struct list_head *)((unsigned long)next_page | 2581 head_bit); 2582 next_page = rb_list_head(next_page); 2583 next_page->prev = tail_page; 2584 2585 /* make sure pages points to a valid page in the ring buffer */ 2586 cpu_buffer->pages = next_page; 2587 cpu_buffer->cnt++; 2588 2589 /* update head page */ 2590 if (head_bit) 2591 cpu_buffer->head_page = list_entry(next_page, 2592 struct buffer_page, list); 2593 2594 /* pages are removed, resume tracing and then free the pages */ 2595 atomic_dec(&cpu_buffer->record_disabled); 2596 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 2597 2598 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 2599 2600 /* last buffer page to remove */ 2601 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 2602 list); 2603 tmp_iter_page = first_page; 2604 2605 do { 2606 cond_resched(); 2607 2608 to_remove_page = tmp_iter_page; 2609 rb_inc_page(&tmp_iter_page); 2610 2611 /* update the counters */ 2612 page_entries = rb_page_entries(to_remove_page); 2613 if (page_entries) { 2614 /* 2615 * If something was added to this page, it was full 2616 * since it is not the tail page. So we deduct the 2617 * bytes consumed in ring buffer from here. 2618 * Increment overrun to account for the lost events. 2619 */ 2620 local_add(page_entries, &cpu_buffer->overrun); 2621 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes); 2622 local_inc(&cpu_buffer->pages_lost); 2623 } 2624 2625 /* 2626 * We have already removed references to this list item, just 2627 * free up the buffer_page and its page 2628 */ 2629 free_buffer_page(to_remove_page); 2630 nr_removed--; 2631 2632 } while (to_remove_page != last_page); 2633 2634 RB_WARN_ON(cpu_buffer, nr_removed); 2635 2636 return nr_removed == 0; 2637 } 2638 2639 static bool 2640 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 2641 { 2642 struct list_head *pages = &cpu_buffer->new_pages; 2643 unsigned long flags; 2644 bool success; 2645 int retries; 2646 2647 /* Can be called at early boot up, where interrupts must not been enabled */ 2648 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2649 /* 2650 * We are holding the reader lock, so the reader page won't be swapped 2651 * in the ring buffer. Now we are racing with the writer trying to 2652 * move head page and the tail page. 2653 * We are going to adapt the reader page update process where: 2654 * 1. We first splice the start and end of list of new pages between 2655 * the head page and its previous page. 2656 * 2. We cmpxchg the prev_page->next to point from head page to the 2657 * start of new pages list. 2658 * 3. Finally, we update the head->prev to the end of new list. 2659 * 2660 * We will try this process 10 times, to make sure that we don't keep 2661 * spinning. 2662 */ 2663 retries = 10; 2664 success = false; 2665 while (retries--) { 2666 struct list_head *head_page, *prev_page; 2667 struct list_head *last_page, *first_page; 2668 struct list_head *head_page_with_bit; 2669 struct buffer_page *hpage = rb_set_head_page(cpu_buffer); 2670 2671 if (!hpage) 2672 break; 2673 head_page = &hpage->list; 2674 prev_page = head_page->prev; 2675 2676 first_page = pages->next; 2677 last_page = pages->prev; 2678 2679 head_page_with_bit = (struct list_head *) 2680 ((unsigned long)head_page | RB_PAGE_HEAD); 2681 2682 last_page->next = head_page_with_bit; 2683 first_page->prev = prev_page; 2684 2685 /* caution: head_page_with_bit gets updated on cmpxchg failure */ 2686 if (try_cmpxchg(&prev_page->next, 2687 &head_page_with_bit, first_page)) { 2688 /* 2689 * yay, we replaced the page pointer to our new list, 2690 * now, we just have to update to head page's prev 2691 * pointer to point to end of list 2692 */ 2693 head_page->prev = last_page; 2694 cpu_buffer->cnt++; 2695 success = true; 2696 break; 2697 } 2698 } 2699 2700 if (success) 2701 INIT_LIST_HEAD(pages); 2702 /* 2703 * If we weren't successful in adding in new pages, warn and stop 2704 * tracing 2705 */ 2706 RB_WARN_ON(cpu_buffer, !success); 2707 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2708 2709 /* free pages if they weren't inserted */ 2710 if (!success) { 2711 struct buffer_page *bpage, *tmp; 2712 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2713 list) { 2714 list_del_init(&bpage->list); 2715 free_buffer_page(bpage); 2716 } 2717 } 2718 return success; 2719 } 2720 2721 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 2722 { 2723 bool success; 2724 2725 if (cpu_buffer->nr_pages_to_update > 0) 2726 success = rb_insert_pages(cpu_buffer); 2727 else 2728 success = rb_remove_pages(cpu_buffer, 2729 -cpu_buffer->nr_pages_to_update); 2730 2731 if (success) 2732 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 2733 } 2734 2735 static void update_pages_handler(struct work_struct *work) 2736 { 2737 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2738 struct ring_buffer_per_cpu, update_pages_work); 2739 rb_update_pages(cpu_buffer); 2740 complete(&cpu_buffer->update_done); 2741 } 2742 2743 /** 2744 * ring_buffer_resize - resize the ring buffer 2745 * @buffer: the buffer to resize. 2746 * @size: the new size. 2747 * @cpu_id: the cpu buffer to resize 2748 * 2749 * Minimum size is 2 * buffer->subbuf_size. 2750 * 2751 * Returns 0 on success and < 0 on failure. 2752 */ 2753 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2754 int cpu_id) 2755 { 2756 struct ring_buffer_per_cpu *cpu_buffer; 2757 unsigned long nr_pages; 2758 int cpu, err; 2759 2760 /* 2761 * Always succeed at resizing a non-existent buffer: 2762 */ 2763 if (!buffer) 2764 return 0; 2765 2766 /* Make sure the requested buffer exists */ 2767 if (cpu_id != RING_BUFFER_ALL_CPUS && 2768 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2769 return 0; 2770 2771 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 2772 2773 /* we need a minimum of two pages */ 2774 if (nr_pages < 2) 2775 nr_pages = 2; 2776 2777 /* prevent another thread from changing buffer sizes */ 2778 mutex_lock(&buffer->mutex); 2779 atomic_inc(&buffer->resizing); 2780 2781 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2782 /* 2783 * Don't succeed if resizing is disabled, as a reader might be 2784 * manipulating the ring buffer and is expecting a sane state while 2785 * this is true. 2786 */ 2787 for_each_buffer_cpu(buffer, cpu) { 2788 cpu_buffer = buffer->buffers[cpu]; 2789 if (atomic_read(&cpu_buffer->resize_disabled)) { 2790 err = -EBUSY; 2791 goto out_err_unlock; 2792 } 2793 } 2794 2795 /* calculate the pages to update */ 2796 for_each_buffer_cpu(buffer, cpu) { 2797 cpu_buffer = buffer->buffers[cpu]; 2798 2799 cpu_buffer->nr_pages_to_update = nr_pages - 2800 cpu_buffer->nr_pages; 2801 /* 2802 * nothing more to do for removing pages or no update 2803 */ 2804 if (cpu_buffer->nr_pages_to_update <= 0) 2805 continue; 2806 /* 2807 * to add pages, make sure all new pages can be 2808 * allocated without receiving ENOMEM 2809 */ 2810 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2811 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2812 &cpu_buffer->new_pages)) { 2813 /* not enough memory for new pages */ 2814 err = -ENOMEM; 2815 goto out_err; 2816 } 2817 2818 cond_resched(); 2819 } 2820 2821 cpus_read_lock(); 2822 /* 2823 * Fire off all the required work handlers 2824 * We can't schedule on offline CPUs, but it's not necessary 2825 * since we can change their buffer sizes without any race. 2826 */ 2827 for_each_buffer_cpu(buffer, cpu) { 2828 cpu_buffer = buffer->buffers[cpu]; 2829 if (!cpu_buffer->nr_pages_to_update) 2830 continue; 2831 2832 /* Can't run something on an offline CPU. */ 2833 if (!cpu_online(cpu)) { 2834 rb_update_pages(cpu_buffer); 2835 cpu_buffer->nr_pages_to_update = 0; 2836 } else { 2837 /* Run directly if possible. */ 2838 migrate_disable(); 2839 if (cpu != smp_processor_id()) { 2840 migrate_enable(); 2841 schedule_work_on(cpu, 2842 &cpu_buffer->update_pages_work); 2843 } else { 2844 update_pages_handler(&cpu_buffer->update_pages_work); 2845 migrate_enable(); 2846 } 2847 } 2848 } 2849 2850 /* wait for all the updates to complete */ 2851 for_each_buffer_cpu(buffer, cpu) { 2852 cpu_buffer = buffer->buffers[cpu]; 2853 if (!cpu_buffer->nr_pages_to_update) 2854 continue; 2855 2856 if (cpu_online(cpu)) 2857 wait_for_completion(&cpu_buffer->update_done); 2858 cpu_buffer->nr_pages_to_update = 0; 2859 } 2860 2861 cpus_read_unlock(); 2862 } else { 2863 cpu_buffer = buffer->buffers[cpu_id]; 2864 2865 if (nr_pages == cpu_buffer->nr_pages) 2866 goto out; 2867 2868 /* 2869 * Don't succeed if resizing is disabled, as a reader might be 2870 * manipulating the ring buffer and is expecting a sane state while 2871 * this is true. 2872 */ 2873 if (atomic_read(&cpu_buffer->resize_disabled)) { 2874 err = -EBUSY; 2875 goto out_err_unlock; 2876 } 2877 2878 cpu_buffer->nr_pages_to_update = nr_pages - 2879 cpu_buffer->nr_pages; 2880 2881 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2882 if (cpu_buffer->nr_pages_to_update > 0 && 2883 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2884 &cpu_buffer->new_pages)) { 2885 err = -ENOMEM; 2886 goto out_err; 2887 } 2888 2889 cpus_read_lock(); 2890 2891 /* Can't run something on an offline CPU. */ 2892 if (!cpu_online(cpu_id)) 2893 rb_update_pages(cpu_buffer); 2894 else { 2895 /* Run directly if possible. */ 2896 migrate_disable(); 2897 if (cpu_id == smp_processor_id()) { 2898 rb_update_pages(cpu_buffer); 2899 migrate_enable(); 2900 } else { 2901 migrate_enable(); 2902 schedule_work_on(cpu_id, 2903 &cpu_buffer->update_pages_work); 2904 wait_for_completion(&cpu_buffer->update_done); 2905 } 2906 } 2907 2908 cpu_buffer->nr_pages_to_update = 0; 2909 cpus_read_unlock(); 2910 } 2911 2912 out: 2913 /* 2914 * The ring buffer resize can happen with the ring buffer 2915 * enabled, so that the update disturbs the tracing as little 2916 * as possible. But if the buffer is disabled, we do not need 2917 * to worry about that, and we can take the time to verify 2918 * that the buffer is not corrupt. 2919 */ 2920 if (atomic_read(&buffer->record_disabled)) { 2921 atomic_inc(&buffer->record_disabled); 2922 /* 2923 * Even though the buffer was disabled, we must make sure 2924 * that it is truly disabled before calling rb_check_pages. 2925 * There could have been a race between checking 2926 * record_disable and incrementing it. 2927 */ 2928 synchronize_rcu(); 2929 for_each_buffer_cpu(buffer, cpu) { 2930 cpu_buffer = buffer->buffers[cpu]; 2931 rb_check_pages(cpu_buffer); 2932 } 2933 atomic_dec(&buffer->record_disabled); 2934 } 2935 2936 atomic_dec(&buffer->resizing); 2937 mutex_unlock(&buffer->mutex); 2938 return 0; 2939 2940 out_err: 2941 for_each_buffer_cpu(buffer, cpu) { 2942 struct buffer_page *bpage, *tmp; 2943 2944 cpu_buffer = buffer->buffers[cpu]; 2945 cpu_buffer->nr_pages_to_update = 0; 2946 2947 if (list_empty(&cpu_buffer->new_pages)) 2948 continue; 2949 2950 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2951 list) { 2952 list_del_init(&bpage->list); 2953 free_buffer_page(bpage); 2954 } 2955 } 2956 out_err_unlock: 2957 atomic_dec(&buffer->resizing); 2958 mutex_unlock(&buffer->mutex); 2959 return err; 2960 } 2961 EXPORT_SYMBOL_GPL(ring_buffer_resize); 2962 2963 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 2964 { 2965 mutex_lock(&buffer->mutex); 2966 if (val) 2967 buffer->flags |= RB_FL_OVERWRITE; 2968 else 2969 buffer->flags &= ~RB_FL_OVERWRITE; 2970 mutex_unlock(&buffer->mutex); 2971 } 2972 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 2973 2974 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 2975 { 2976 return bpage->page->data + index; 2977 } 2978 2979 static __always_inline struct ring_buffer_event * 2980 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 2981 { 2982 return __rb_page_index(cpu_buffer->reader_page, 2983 cpu_buffer->reader_page->read); 2984 } 2985 2986 static struct ring_buffer_event * 2987 rb_iter_head_event(struct ring_buffer_iter *iter) 2988 { 2989 struct ring_buffer_event *event; 2990 struct buffer_page *iter_head_page = iter->head_page; 2991 unsigned long commit; 2992 unsigned length; 2993 2994 if (iter->head != iter->next_event) 2995 return iter->event; 2996 2997 /* 2998 * When the writer goes across pages, it issues a cmpxchg which 2999 * is a mb(), which will synchronize with the rmb here. 3000 * (see rb_tail_page_update() and __rb_reserve_next()) 3001 */ 3002 commit = rb_page_commit(iter_head_page); 3003 smp_rmb(); 3004 3005 /* An event needs to be at least 8 bytes in size */ 3006 if (iter->head > commit - 8) 3007 goto reset; 3008 3009 event = __rb_page_index(iter_head_page, iter->head); 3010 length = rb_event_length(event); 3011 3012 /* 3013 * READ_ONCE() doesn't work on functions and we don't want the 3014 * compiler doing any crazy optimizations with length. 3015 */ 3016 barrier(); 3017 3018 if ((iter->head + length) > commit || length > iter->event_size) 3019 /* Writer corrupted the read? */ 3020 goto reset; 3021 3022 memcpy(iter->event, event, length); 3023 /* 3024 * If the page stamp is still the same after this rmb() then the 3025 * event was safely copied without the writer entering the page. 3026 */ 3027 smp_rmb(); 3028 3029 /* Make sure the page didn't change since we read this */ 3030 if (iter->page_stamp != iter_head_page->page->time_stamp || 3031 commit > rb_page_commit(iter_head_page)) 3032 goto reset; 3033 3034 iter->next_event = iter->head + length; 3035 return iter->event; 3036 reset: 3037 /* Reset to the beginning */ 3038 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 3039 iter->head = 0; 3040 iter->next_event = 0; 3041 iter->missed_events = 1; 3042 return NULL; 3043 } 3044 3045 /* Size is determined by what has been committed */ 3046 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 3047 { 3048 return rb_page_commit(bpage) & ~RB_MISSED_MASK; 3049 } 3050 3051 static __always_inline unsigned 3052 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 3053 { 3054 return rb_page_commit(cpu_buffer->commit_page); 3055 } 3056 3057 static __always_inline unsigned 3058 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) 3059 { 3060 unsigned long addr = (unsigned long)event; 3061 3062 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1; 3063 3064 return addr - BUF_PAGE_HDR_SIZE; 3065 } 3066 3067 static void rb_inc_iter(struct ring_buffer_iter *iter) 3068 { 3069 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3070 3071 /* 3072 * The iterator could be on the reader page (it starts there). 3073 * But the head could have moved, since the reader was 3074 * found. Check for this case and assign the iterator 3075 * to the head page instead of next. 3076 */ 3077 if (iter->head_page == cpu_buffer->reader_page) 3078 iter->head_page = rb_set_head_page(cpu_buffer); 3079 else 3080 rb_inc_page(&iter->head_page); 3081 3082 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 3083 iter->head = 0; 3084 iter->next_event = 0; 3085 } 3086 3087 /* Return the index into the sub-buffers for a given sub-buffer */ 3088 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf) 3089 { 3090 void *subbuf_array; 3091 3092 subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs; 3093 subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size); 3094 return (subbuf - subbuf_array) / meta->subbuf_size; 3095 } 3096 3097 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer, 3098 struct buffer_page *next_page) 3099 { 3100 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 3101 unsigned long old_head = (unsigned long)next_page->page; 3102 unsigned long new_head; 3103 3104 rb_inc_page(&next_page); 3105 new_head = (unsigned long)next_page->page; 3106 3107 /* 3108 * Only move it forward once, if something else came in and 3109 * moved it forward, then we don't want to touch it. 3110 */ 3111 (void)cmpxchg(&meta->head_buffer, old_head, new_head); 3112 } 3113 3114 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer, 3115 struct buffer_page *reader) 3116 { 3117 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 3118 void *old_reader = cpu_buffer->reader_page->page; 3119 void *new_reader = reader->page; 3120 int id; 3121 3122 id = reader->id; 3123 cpu_buffer->reader_page->id = id; 3124 reader->id = 0; 3125 3126 meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader); 3127 meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader); 3128 3129 /* The head pointer is the one after the reader */ 3130 rb_update_meta_head(cpu_buffer, reader); 3131 } 3132 3133 /* 3134 * rb_handle_head_page - writer hit the head page 3135 * 3136 * Returns: +1 to retry page 3137 * 0 to continue 3138 * -1 on error 3139 */ 3140 static int 3141 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 3142 struct buffer_page *tail_page, 3143 struct buffer_page *next_page) 3144 { 3145 struct buffer_page *new_head; 3146 int entries; 3147 int type; 3148 int ret; 3149 3150 entries = rb_page_entries(next_page); 3151 3152 /* 3153 * The hard part is here. We need to move the head 3154 * forward, and protect against both readers on 3155 * other CPUs and writers coming in via interrupts. 3156 */ 3157 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 3158 RB_PAGE_HEAD); 3159 3160 /* 3161 * type can be one of four: 3162 * NORMAL - an interrupt already moved it for us 3163 * HEAD - we are the first to get here. 3164 * UPDATE - we are the interrupt interrupting 3165 * a current move. 3166 * MOVED - a reader on another CPU moved the next 3167 * pointer to its reader page. Give up 3168 * and try again. 3169 */ 3170 3171 switch (type) { 3172 case RB_PAGE_HEAD: 3173 /* 3174 * We changed the head to UPDATE, thus 3175 * it is our responsibility to update 3176 * the counters. 3177 */ 3178 local_add(entries, &cpu_buffer->overrun); 3179 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes); 3180 local_inc(&cpu_buffer->pages_lost); 3181 3182 if (cpu_buffer->ring_meta) 3183 rb_update_meta_head(cpu_buffer, next_page); 3184 /* 3185 * The entries will be zeroed out when we move the 3186 * tail page. 3187 */ 3188 3189 /* still more to do */ 3190 break; 3191 3192 case RB_PAGE_UPDATE: 3193 /* 3194 * This is an interrupt that interrupt the 3195 * previous update. Still more to do. 3196 */ 3197 break; 3198 case RB_PAGE_NORMAL: 3199 /* 3200 * An interrupt came in before the update 3201 * and processed this for us. 3202 * Nothing left to do. 3203 */ 3204 return 1; 3205 case RB_PAGE_MOVED: 3206 /* 3207 * The reader is on another CPU and just did 3208 * a swap with our next_page. 3209 * Try again. 3210 */ 3211 return 1; 3212 default: 3213 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 3214 return -1; 3215 } 3216 3217 /* 3218 * Now that we are here, the old head pointer is 3219 * set to UPDATE. This will keep the reader from 3220 * swapping the head page with the reader page. 3221 * The reader (on another CPU) will spin till 3222 * we are finished. 3223 * 3224 * We just need to protect against interrupts 3225 * doing the job. We will set the next pointer 3226 * to HEAD. After that, we set the old pointer 3227 * to NORMAL, but only if it was HEAD before. 3228 * otherwise we are an interrupt, and only 3229 * want the outer most commit to reset it. 3230 */ 3231 new_head = next_page; 3232 rb_inc_page(&new_head); 3233 3234 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 3235 RB_PAGE_NORMAL); 3236 3237 /* 3238 * Valid returns are: 3239 * HEAD - an interrupt came in and already set it. 3240 * NORMAL - One of two things: 3241 * 1) We really set it. 3242 * 2) A bunch of interrupts came in and moved 3243 * the page forward again. 3244 */ 3245 switch (ret) { 3246 case RB_PAGE_HEAD: 3247 case RB_PAGE_NORMAL: 3248 /* OK */ 3249 break; 3250 default: 3251 RB_WARN_ON(cpu_buffer, 1); 3252 return -1; 3253 } 3254 3255 /* 3256 * It is possible that an interrupt came in, 3257 * set the head up, then more interrupts came in 3258 * and moved it again. When we get back here, 3259 * the page would have been set to NORMAL but we 3260 * just set it back to HEAD. 3261 * 3262 * How do you detect this? Well, if that happened 3263 * the tail page would have moved. 3264 */ 3265 if (ret == RB_PAGE_NORMAL) { 3266 struct buffer_page *buffer_tail_page; 3267 3268 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 3269 /* 3270 * If the tail had moved passed next, then we need 3271 * to reset the pointer. 3272 */ 3273 if (buffer_tail_page != tail_page && 3274 buffer_tail_page != next_page) 3275 rb_head_page_set_normal(cpu_buffer, new_head, 3276 next_page, 3277 RB_PAGE_HEAD); 3278 } 3279 3280 /* 3281 * If this was the outer most commit (the one that 3282 * changed the original pointer from HEAD to UPDATE), 3283 * then it is up to us to reset it to NORMAL. 3284 */ 3285 if (type == RB_PAGE_HEAD) { 3286 ret = rb_head_page_set_normal(cpu_buffer, next_page, 3287 tail_page, 3288 RB_PAGE_UPDATE); 3289 if (RB_WARN_ON(cpu_buffer, 3290 ret != RB_PAGE_UPDATE)) 3291 return -1; 3292 } 3293 3294 return 0; 3295 } 3296 3297 static inline void 3298 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 3299 unsigned long tail, struct rb_event_info *info) 3300 { 3301 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 3302 struct buffer_page *tail_page = info->tail_page; 3303 struct ring_buffer_event *event; 3304 unsigned long length = info->length; 3305 3306 /* 3307 * Only the event that crossed the page boundary 3308 * must fill the old tail_page with padding. 3309 */ 3310 if (tail >= bsize) { 3311 /* 3312 * If the page was filled, then we still need 3313 * to update the real_end. Reset it to zero 3314 * and the reader will ignore it. 3315 */ 3316 if (tail == bsize) 3317 tail_page->real_end = 0; 3318 3319 local_sub(length, &tail_page->write); 3320 return; 3321 } 3322 3323 event = __rb_page_index(tail_page, tail); 3324 3325 /* 3326 * Save the original length to the meta data. 3327 * This will be used by the reader to add lost event 3328 * counter. 3329 */ 3330 tail_page->real_end = tail; 3331 3332 /* 3333 * If this event is bigger than the minimum size, then 3334 * we need to be careful that we don't subtract the 3335 * write counter enough to allow another writer to slip 3336 * in on this page. 3337 * We put in a discarded commit instead, to make sure 3338 * that this space is not used again, and this space will 3339 * not be accounted into 'entries_bytes'. 3340 * 3341 * If we are less than the minimum size, we don't need to 3342 * worry about it. 3343 */ 3344 if (tail > (bsize - RB_EVNT_MIN_SIZE)) { 3345 /* No room for any events */ 3346 3347 /* Mark the rest of the page with padding */ 3348 rb_event_set_padding(event); 3349 3350 /* Make sure the padding is visible before the write update */ 3351 smp_wmb(); 3352 3353 /* Set the write back to the previous setting */ 3354 local_sub(length, &tail_page->write); 3355 return; 3356 } 3357 3358 /* Put in a discarded event */ 3359 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE; 3360 event->type_len = RINGBUF_TYPE_PADDING; 3361 /* time delta must be non zero */ 3362 event->time_delta = 1; 3363 3364 /* account for padding bytes */ 3365 local_add(bsize - tail, &cpu_buffer->entries_bytes); 3366 3367 /* Make sure the padding is visible before the tail_page->write update */ 3368 smp_wmb(); 3369 3370 /* Set write to end of buffer */ 3371 length = (tail + length) - bsize; 3372 local_sub(length, &tail_page->write); 3373 } 3374 3375 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 3376 3377 /* 3378 * This is the slow path, force gcc not to inline it. 3379 */ 3380 static noinline struct ring_buffer_event * 3381 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 3382 unsigned long tail, struct rb_event_info *info) 3383 { 3384 struct buffer_page *tail_page = info->tail_page; 3385 struct buffer_page *commit_page = cpu_buffer->commit_page; 3386 struct trace_buffer *buffer = cpu_buffer->buffer; 3387 struct buffer_page *next_page; 3388 int ret; 3389 3390 next_page = tail_page; 3391 3392 rb_inc_page(&next_page); 3393 3394 /* 3395 * If for some reason, we had an interrupt storm that made 3396 * it all the way around the buffer, bail, and warn 3397 * about it. 3398 */ 3399 if (unlikely(next_page == commit_page)) { 3400 local_inc(&cpu_buffer->commit_overrun); 3401 goto out_reset; 3402 } 3403 3404 /* 3405 * This is where the fun begins! 3406 * 3407 * We are fighting against races between a reader that 3408 * could be on another CPU trying to swap its reader 3409 * page with the buffer head. 3410 * 3411 * We are also fighting against interrupts coming in and 3412 * moving the head or tail on us as well. 3413 * 3414 * If the next page is the head page then we have filled 3415 * the buffer, unless the commit page is still on the 3416 * reader page. 3417 */ 3418 if (rb_is_head_page(next_page, &tail_page->list)) { 3419 3420 /* 3421 * If the commit is not on the reader page, then 3422 * move the header page. 3423 */ 3424 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 3425 /* 3426 * If we are not in overwrite mode, 3427 * this is easy, just stop here. 3428 */ 3429 if (!(buffer->flags & RB_FL_OVERWRITE)) { 3430 local_inc(&cpu_buffer->dropped_events); 3431 goto out_reset; 3432 } 3433 3434 ret = rb_handle_head_page(cpu_buffer, 3435 tail_page, 3436 next_page); 3437 if (ret < 0) 3438 goto out_reset; 3439 if (ret) 3440 goto out_again; 3441 } else { 3442 /* 3443 * We need to be careful here too. The 3444 * commit page could still be on the reader 3445 * page. We could have a small buffer, and 3446 * have filled up the buffer with events 3447 * from interrupts and such, and wrapped. 3448 * 3449 * Note, if the tail page is also on the 3450 * reader_page, we let it move out. 3451 */ 3452 if (unlikely((cpu_buffer->commit_page != 3453 cpu_buffer->tail_page) && 3454 (cpu_buffer->commit_page == 3455 cpu_buffer->reader_page))) { 3456 local_inc(&cpu_buffer->commit_overrun); 3457 goto out_reset; 3458 } 3459 } 3460 } 3461 3462 rb_tail_page_update(cpu_buffer, tail_page, next_page); 3463 3464 out_again: 3465 3466 rb_reset_tail(cpu_buffer, tail, info); 3467 3468 /* Commit what we have for now. */ 3469 rb_end_commit(cpu_buffer); 3470 /* rb_end_commit() decs committing */ 3471 local_inc(&cpu_buffer->committing); 3472 3473 /* fail and let the caller try again */ 3474 return ERR_PTR(-EAGAIN); 3475 3476 out_reset: 3477 /* reset write */ 3478 rb_reset_tail(cpu_buffer, tail, info); 3479 3480 return NULL; 3481 } 3482 3483 /* Slow path */ 3484 static struct ring_buffer_event * 3485 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3486 struct ring_buffer_event *event, u64 delta, bool abs) 3487 { 3488 if (abs) 3489 event->type_len = RINGBUF_TYPE_TIME_STAMP; 3490 else 3491 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 3492 3493 /* Not the first event on the page, or not delta? */ 3494 if (abs || rb_event_index(cpu_buffer, event)) { 3495 event->time_delta = delta & TS_MASK; 3496 event->array[0] = delta >> TS_SHIFT; 3497 } else { 3498 /* nope, just zero it */ 3499 event->time_delta = 0; 3500 event->array[0] = 0; 3501 } 3502 3503 return skip_time_extend(event); 3504 } 3505 3506 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 3507 static inline bool sched_clock_stable(void) 3508 { 3509 return true; 3510 } 3511 #endif 3512 3513 static void 3514 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 3515 struct rb_event_info *info) 3516 { 3517 u64 write_stamp; 3518 3519 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 3520 (unsigned long long)info->delta, 3521 (unsigned long long)info->ts, 3522 (unsigned long long)info->before, 3523 (unsigned long long)info->after, 3524 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}), 3525 sched_clock_stable() ? "" : 3526 "If you just came from a suspend/resume,\n" 3527 "please switch to the trace global clock:\n" 3528 " echo global > /sys/kernel/tracing/trace_clock\n" 3529 "or add trace_clock=global to the kernel command line\n"); 3530 } 3531 3532 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 3533 struct ring_buffer_event **event, 3534 struct rb_event_info *info, 3535 u64 *delta, 3536 unsigned int *length) 3537 { 3538 bool abs = info->add_timestamp & 3539 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 3540 3541 if (unlikely(info->delta > (1ULL << 59))) { 3542 /* 3543 * Some timers can use more than 59 bits, and when a timestamp 3544 * is added to the buffer, it will lose those bits. 3545 */ 3546 if (abs && (info->ts & TS_MSB)) { 3547 info->delta &= ABS_TS_MASK; 3548 3549 /* did the clock go backwards */ 3550 } else if (info->before == info->after && info->before > info->ts) { 3551 /* not interrupted */ 3552 static int once; 3553 3554 /* 3555 * This is possible with a recalibrating of the TSC. 3556 * Do not produce a call stack, but just report it. 3557 */ 3558 if (!once) { 3559 once++; 3560 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 3561 info->before, info->ts); 3562 } 3563 } else 3564 rb_check_timestamp(cpu_buffer, info); 3565 if (!abs) 3566 info->delta = 0; 3567 } 3568 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs); 3569 *length -= RB_LEN_TIME_EXTEND; 3570 *delta = 0; 3571 } 3572 3573 /** 3574 * rb_update_event - update event type and data 3575 * @cpu_buffer: The per cpu buffer of the @event 3576 * @event: the event to update 3577 * @info: The info to update the @event with (contains length and delta) 3578 * 3579 * Update the type and data fields of the @event. The length 3580 * is the actual size that is written to the ring buffer, 3581 * and with this, we can determine what to place into the 3582 * data field. 3583 */ 3584 static void 3585 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 3586 struct ring_buffer_event *event, 3587 struct rb_event_info *info) 3588 { 3589 unsigned length = info->length; 3590 u64 delta = info->delta; 3591 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 3592 3593 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 3594 cpu_buffer->event_stamp[nest] = info->ts; 3595 3596 /* 3597 * If we need to add a timestamp, then we 3598 * add it to the start of the reserved space. 3599 */ 3600 if (unlikely(info->add_timestamp)) 3601 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 3602 3603 event->time_delta = delta; 3604 length -= RB_EVNT_HDR_SIZE; 3605 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 3606 event->type_len = 0; 3607 event->array[0] = length; 3608 } else 3609 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 3610 } 3611 3612 static unsigned rb_calculate_event_length(unsigned length) 3613 { 3614 struct ring_buffer_event event; /* Used only for sizeof array */ 3615 3616 /* zero length can cause confusions */ 3617 if (!length) 3618 length++; 3619 3620 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 3621 length += sizeof(event.array[0]); 3622 3623 length += RB_EVNT_HDR_SIZE; 3624 length = ALIGN(length, RB_ARCH_ALIGNMENT); 3625 3626 /* 3627 * In case the time delta is larger than the 27 bits for it 3628 * in the header, we need to add a timestamp. If another 3629 * event comes in when trying to discard this one to increase 3630 * the length, then the timestamp will be added in the allocated 3631 * space of this event. If length is bigger than the size needed 3632 * for the TIME_EXTEND, then padding has to be used. The events 3633 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 3634 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 3635 * As length is a multiple of 4, we only need to worry if it 3636 * is 12 (RB_LEN_TIME_EXTEND + 4). 3637 */ 3638 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 3639 length += RB_ALIGNMENT; 3640 3641 return length; 3642 } 3643 3644 static inline bool 3645 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 3646 struct ring_buffer_event *event) 3647 { 3648 unsigned long new_index, old_index; 3649 struct buffer_page *bpage; 3650 unsigned long addr; 3651 3652 new_index = rb_event_index(cpu_buffer, event); 3653 old_index = new_index + rb_event_ts_length(event); 3654 addr = (unsigned long)event; 3655 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 3656 3657 bpage = READ_ONCE(cpu_buffer->tail_page); 3658 3659 /* 3660 * Make sure the tail_page is still the same and 3661 * the next write location is the end of this event 3662 */ 3663 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 3664 unsigned long write_mask = 3665 local_read(&bpage->write) & ~RB_WRITE_MASK; 3666 unsigned long event_length = rb_event_length(event); 3667 3668 /* 3669 * For the before_stamp to be different than the write_stamp 3670 * to make sure that the next event adds an absolute 3671 * value and does not rely on the saved write stamp, which 3672 * is now going to be bogus. 3673 * 3674 * By setting the before_stamp to zero, the next event 3675 * is not going to use the write_stamp and will instead 3676 * create an absolute timestamp. This means there's no 3677 * reason to update the wirte_stamp! 3678 */ 3679 rb_time_set(&cpu_buffer->before_stamp, 0); 3680 3681 /* 3682 * If an event were to come in now, it would see that the 3683 * write_stamp and the before_stamp are different, and assume 3684 * that this event just added itself before updating 3685 * the write stamp. The interrupting event will fix the 3686 * write stamp for us, and use an absolute timestamp. 3687 */ 3688 3689 /* 3690 * This is on the tail page. It is possible that 3691 * a write could come in and move the tail page 3692 * and write to the next page. That is fine 3693 * because we just shorten what is on this page. 3694 */ 3695 old_index += write_mask; 3696 new_index += write_mask; 3697 3698 /* caution: old_index gets updated on cmpxchg failure */ 3699 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) { 3700 /* update counters */ 3701 local_sub(event_length, &cpu_buffer->entries_bytes); 3702 return true; 3703 } 3704 } 3705 3706 /* could not discard */ 3707 return false; 3708 } 3709 3710 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 3711 { 3712 local_inc(&cpu_buffer->committing); 3713 local_inc(&cpu_buffer->commits); 3714 } 3715 3716 static __always_inline void 3717 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 3718 { 3719 unsigned long max_count; 3720 3721 /* 3722 * We only race with interrupts and NMIs on this CPU. 3723 * If we own the commit event, then we can commit 3724 * all others that interrupted us, since the interruptions 3725 * are in stack format (they finish before they come 3726 * back to us). This allows us to do a simple loop to 3727 * assign the commit to the tail. 3728 */ 3729 again: 3730 max_count = cpu_buffer->nr_pages * 100; 3731 3732 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 3733 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 3734 return; 3735 if (RB_WARN_ON(cpu_buffer, 3736 rb_is_reader_page(cpu_buffer->tail_page))) 3737 return; 3738 /* 3739 * No need for a memory barrier here, as the update 3740 * of the tail_page did it for this page. 3741 */ 3742 local_set(&cpu_buffer->commit_page->page->commit, 3743 rb_page_write(cpu_buffer->commit_page)); 3744 rb_inc_page(&cpu_buffer->commit_page); 3745 if (cpu_buffer->ring_meta) { 3746 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 3747 meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page; 3748 } 3749 /* add barrier to keep gcc from optimizing too much */ 3750 barrier(); 3751 } 3752 while (rb_commit_index(cpu_buffer) != 3753 rb_page_write(cpu_buffer->commit_page)) { 3754 3755 /* Make sure the readers see the content of what is committed. */ 3756 smp_wmb(); 3757 local_set(&cpu_buffer->commit_page->page->commit, 3758 rb_page_write(cpu_buffer->commit_page)); 3759 RB_WARN_ON(cpu_buffer, 3760 local_read(&cpu_buffer->commit_page->page->commit) & 3761 ~RB_WRITE_MASK); 3762 barrier(); 3763 } 3764 3765 /* again, keep gcc from optimizing */ 3766 barrier(); 3767 3768 /* 3769 * If an interrupt came in just after the first while loop 3770 * and pushed the tail page forward, we will be left with 3771 * a dangling commit that will never go forward. 3772 */ 3773 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 3774 goto again; 3775 } 3776 3777 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 3778 { 3779 unsigned long commits; 3780 3781 if (RB_WARN_ON(cpu_buffer, 3782 !local_read(&cpu_buffer->committing))) 3783 return; 3784 3785 again: 3786 commits = local_read(&cpu_buffer->commits); 3787 /* synchronize with interrupts */ 3788 barrier(); 3789 if (local_read(&cpu_buffer->committing) == 1) 3790 rb_set_commit_to_write(cpu_buffer); 3791 3792 local_dec(&cpu_buffer->committing); 3793 3794 /* synchronize with interrupts */ 3795 barrier(); 3796 3797 /* 3798 * Need to account for interrupts coming in between the 3799 * updating of the commit page and the clearing of the 3800 * committing counter. 3801 */ 3802 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3803 !local_read(&cpu_buffer->committing)) { 3804 local_inc(&cpu_buffer->committing); 3805 goto again; 3806 } 3807 } 3808 3809 static inline void rb_event_discard(struct ring_buffer_event *event) 3810 { 3811 if (extended_time(event)) 3812 event = skip_time_extend(event); 3813 3814 /* array[0] holds the actual length for the discarded event */ 3815 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3816 event->type_len = RINGBUF_TYPE_PADDING; 3817 /* time delta must be non zero */ 3818 if (!event->time_delta) 3819 event->time_delta = 1; 3820 } 3821 3822 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) 3823 { 3824 local_inc(&cpu_buffer->entries); 3825 rb_end_commit(cpu_buffer); 3826 } 3827 3828 static __always_inline void 3829 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3830 { 3831 if (buffer->irq_work.waiters_pending) { 3832 buffer->irq_work.waiters_pending = false; 3833 /* irq_work_queue() supplies it's own memory barriers */ 3834 irq_work_queue(&buffer->irq_work.work); 3835 } 3836 3837 if (cpu_buffer->irq_work.waiters_pending) { 3838 cpu_buffer->irq_work.waiters_pending = false; 3839 /* irq_work_queue() supplies it's own memory barriers */ 3840 irq_work_queue(&cpu_buffer->irq_work.work); 3841 } 3842 3843 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3844 return; 3845 3846 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3847 return; 3848 3849 if (!cpu_buffer->irq_work.full_waiters_pending) 3850 return; 3851 3852 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3853 3854 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3855 return; 3856 3857 cpu_buffer->irq_work.wakeup_full = true; 3858 cpu_buffer->irq_work.full_waiters_pending = false; 3859 /* irq_work_queue() supplies it's own memory barriers */ 3860 irq_work_queue(&cpu_buffer->irq_work.work); 3861 } 3862 3863 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3864 # define do_ring_buffer_record_recursion() \ 3865 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3866 #else 3867 # define do_ring_buffer_record_recursion() do { } while (0) 3868 #endif 3869 3870 /* 3871 * The lock and unlock are done within a preempt disable section. 3872 * The current_context per_cpu variable can only be modified 3873 * by the current task between lock and unlock. But it can 3874 * be modified more than once via an interrupt. To pass this 3875 * information from the lock to the unlock without having to 3876 * access the 'in_interrupt()' functions again (which do show 3877 * a bit of overhead in something as critical as function tracing, 3878 * we use a bitmask trick. 3879 * 3880 * bit 1 = NMI context 3881 * bit 2 = IRQ context 3882 * bit 3 = SoftIRQ context 3883 * bit 4 = normal context. 3884 * 3885 * This works because this is the order of contexts that can 3886 * preempt other contexts. A SoftIRQ never preempts an IRQ 3887 * context. 3888 * 3889 * When the context is determined, the corresponding bit is 3890 * checked and set (if it was set, then a recursion of that context 3891 * happened). 3892 * 3893 * On unlock, we need to clear this bit. To do so, just subtract 3894 * 1 from the current_context and AND it to itself. 3895 * 3896 * (binary) 3897 * 101 - 1 = 100 3898 * 101 & 100 = 100 (clearing bit zero) 3899 * 3900 * 1010 - 1 = 1001 3901 * 1010 & 1001 = 1000 (clearing bit 1) 3902 * 3903 * The least significant bit can be cleared this way, and it 3904 * just so happens that it is the same bit corresponding to 3905 * the current context. 3906 * 3907 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 3908 * is set when a recursion is detected at the current context, and if 3909 * the TRANSITION bit is already set, it will fail the recursion. 3910 * This is needed because there's a lag between the changing of 3911 * interrupt context and updating the preempt count. In this case, 3912 * a false positive will be found. To handle this, one extra recursion 3913 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 3914 * bit is already set, then it is considered a recursion and the function 3915 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 3916 * 3917 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 3918 * to be cleared. Even if it wasn't the context that set it. That is, 3919 * if an interrupt comes in while NORMAL bit is set and the ring buffer 3920 * is called before preempt_count() is updated, since the check will 3921 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 3922 * NMI then comes in, it will set the NMI bit, but when the NMI code 3923 * does the trace_recursive_unlock() it will clear the TRANSITION bit 3924 * and leave the NMI bit set. But this is fine, because the interrupt 3925 * code that set the TRANSITION bit will then clear the NMI bit when it 3926 * calls trace_recursive_unlock(). If another NMI comes in, it will 3927 * set the TRANSITION bit and continue. 3928 * 3929 * Note: The TRANSITION bit only handles a single transition between context. 3930 */ 3931 3932 static __always_inline bool 3933 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 3934 { 3935 unsigned int val = cpu_buffer->current_context; 3936 int bit = interrupt_context_level(); 3937 3938 bit = RB_CTX_NORMAL - bit; 3939 3940 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 3941 /* 3942 * It is possible that this was called by transitioning 3943 * between interrupt context, and preempt_count() has not 3944 * been updated yet. In this case, use the TRANSITION bit. 3945 */ 3946 bit = RB_CTX_TRANSITION; 3947 if (val & (1 << (bit + cpu_buffer->nest))) { 3948 do_ring_buffer_record_recursion(); 3949 return true; 3950 } 3951 } 3952 3953 val |= (1 << (bit + cpu_buffer->nest)); 3954 cpu_buffer->current_context = val; 3955 3956 return false; 3957 } 3958 3959 static __always_inline void 3960 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 3961 { 3962 cpu_buffer->current_context &= 3963 cpu_buffer->current_context - (1 << cpu_buffer->nest); 3964 } 3965 3966 /* The recursive locking above uses 5 bits */ 3967 #define NESTED_BITS 5 3968 3969 /** 3970 * ring_buffer_nest_start - Allow to trace while nested 3971 * @buffer: The ring buffer to modify 3972 * 3973 * The ring buffer has a safety mechanism to prevent recursion. 3974 * But there may be a case where a trace needs to be done while 3975 * tracing something else. In this case, calling this function 3976 * will allow this function to nest within a currently active 3977 * ring_buffer_lock_reserve(). 3978 * 3979 * Call this function before calling another ring_buffer_lock_reserve() and 3980 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 3981 */ 3982 void ring_buffer_nest_start(struct trace_buffer *buffer) 3983 { 3984 struct ring_buffer_per_cpu *cpu_buffer; 3985 int cpu; 3986 3987 /* Enabled by ring_buffer_nest_end() */ 3988 preempt_disable_notrace(); 3989 cpu = raw_smp_processor_id(); 3990 cpu_buffer = buffer->buffers[cpu]; 3991 /* This is the shift value for the above recursive locking */ 3992 cpu_buffer->nest += NESTED_BITS; 3993 } 3994 3995 /** 3996 * ring_buffer_nest_end - Allow to trace while nested 3997 * @buffer: The ring buffer to modify 3998 * 3999 * Must be called after ring_buffer_nest_start() and after the 4000 * ring_buffer_unlock_commit(). 4001 */ 4002 void ring_buffer_nest_end(struct trace_buffer *buffer) 4003 { 4004 struct ring_buffer_per_cpu *cpu_buffer; 4005 int cpu; 4006 4007 /* disabled by ring_buffer_nest_start() */ 4008 cpu = raw_smp_processor_id(); 4009 cpu_buffer = buffer->buffers[cpu]; 4010 /* This is the shift value for the above recursive locking */ 4011 cpu_buffer->nest -= NESTED_BITS; 4012 preempt_enable_notrace(); 4013 } 4014 4015 /** 4016 * ring_buffer_unlock_commit - commit a reserved 4017 * @buffer: The buffer to commit to 4018 * 4019 * This commits the data to the ring buffer, and releases any locks held. 4020 * 4021 * Must be paired with ring_buffer_lock_reserve. 4022 */ 4023 int ring_buffer_unlock_commit(struct trace_buffer *buffer) 4024 { 4025 struct ring_buffer_per_cpu *cpu_buffer; 4026 int cpu = raw_smp_processor_id(); 4027 4028 cpu_buffer = buffer->buffers[cpu]; 4029 4030 rb_commit(cpu_buffer); 4031 4032 rb_wakeups(buffer, cpu_buffer); 4033 4034 trace_recursive_unlock(cpu_buffer); 4035 4036 preempt_enable_notrace(); 4037 4038 return 0; 4039 } 4040 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 4041 4042 /* Special value to validate all deltas on a page. */ 4043 #define CHECK_FULL_PAGE 1L 4044 4045 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 4046 4047 static const char *show_irq_str(int bits) 4048 { 4049 const char *type[] = { 4050 ".", // 0 4051 "s", // 1 4052 "h", // 2 4053 "Hs", // 3 4054 "n", // 4 4055 "Ns", // 5 4056 "Nh", // 6 4057 "NHs", // 7 4058 }; 4059 4060 return type[bits]; 4061 } 4062 4063 /* Assume this is a trace event */ 4064 static const char *show_flags(struct ring_buffer_event *event) 4065 { 4066 struct trace_entry *entry; 4067 int bits = 0; 4068 4069 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 4070 return "X"; 4071 4072 entry = ring_buffer_event_data(event); 4073 4074 if (entry->flags & TRACE_FLAG_SOFTIRQ) 4075 bits |= 1; 4076 4077 if (entry->flags & TRACE_FLAG_HARDIRQ) 4078 bits |= 2; 4079 4080 if (entry->flags & TRACE_FLAG_NMI) 4081 bits |= 4; 4082 4083 return show_irq_str(bits); 4084 } 4085 4086 static const char *show_irq(struct ring_buffer_event *event) 4087 { 4088 struct trace_entry *entry; 4089 4090 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 4091 return ""; 4092 4093 entry = ring_buffer_event_data(event); 4094 if (entry->flags & TRACE_FLAG_IRQS_OFF) 4095 return "d"; 4096 return ""; 4097 } 4098 4099 static const char *show_interrupt_level(void) 4100 { 4101 unsigned long pc = preempt_count(); 4102 unsigned char level = 0; 4103 4104 if (pc & SOFTIRQ_OFFSET) 4105 level |= 1; 4106 4107 if (pc & HARDIRQ_MASK) 4108 level |= 2; 4109 4110 if (pc & NMI_MASK) 4111 level |= 4; 4112 4113 return show_irq_str(level); 4114 } 4115 4116 static void dump_buffer_page(struct buffer_data_page *bpage, 4117 struct rb_event_info *info, 4118 unsigned long tail) 4119 { 4120 struct ring_buffer_event *event; 4121 u64 ts, delta; 4122 int e; 4123 4124 ts = bpage->time_stamp; 4125 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 4126 4127 for (e = 0; e < tail; e += rb_event_length(event)) { 4128 4129 event = (struct ring_buffer_event *)(bpage->data + e); 4130 4131 switch (event->type_len) { 4132 4133 case RINGBUF_TYPE_TIME_EXTEND: 4134 delta = rb_event_time_stamp(event); 4135 ts += delta; 4136 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n", 4137 e, ts, delta); 4138 break; 4139 4140 case RINGBUF_TYPE_TIME_STAMP: 4141 delta = rb_event_time_stamp(event); 4142 ts = rb_fix_abs_ts(delta, ts); 4143 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n", 4144 e, ts, delta); 4145 break; 4146 4147 case RINGBUF_TYPE_PADDING: 4148 ts += event->time_delta; 4149 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n", 4150 e, ts, event->time_delta); 4151 break; 4152 4153 case RINGBUF_TYPE_DATA: 4154 ts += event->time_delta; 4155 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n", 4156 e, ts, event->time_delta, 4157 show_flags(event), show_irq(event)); 4158 break; 4159 4160 default: 4161 break; 4162 } 4163 } 4164 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e); 4165 } 4166 4167 static DEFINE_PER_CPU(atomic_t, checking); 4168 static atomic_t ts_dump; 4169 4170 #define buffer_warn_return(fmt, ...) \ 4171 do { \ 4172 /* If another report is happening, ignore this one */ \ 4173 if (atomic_inc_return(&ts_dump) != 1) { \ 4174 atomic_dec(&ts_dump); \ 4175 goto out; \ 4176 } \ 4177 atomic_inc(&cpu_buffer->record_disabled); \ 4178 pr_warn(fmt, ##__VA_ARGS__); \ 4179 dump_buffer_page(bpage, info, tail); \ 4180 atomic_dec(&ts_dump); \ 4181 /* There's some cases in boot up that this can happen */ \ 4182 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \ 4183 /* Do not re-enable checking */ \ 4184 return; \ 4185 } while (0) 4186 4187 /* 4188 * Check if the current event time stamp matches the deltas on 4189 * the buffer page. 4190 */ 4191 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 4192 struct rb_event_info *info, 4193 unsigned long tail) 4194 { 4195 struct buffer_data_page *bpage; 4196 u64 ts, delta; 4197 bool full = false; 4198 int ret; 4199 4200 bpage = info->tail_page->page; 4201 4202 if (tail == CHECK_FULL_PAGE) { 4203 full = true; 4204 tail = local_read(&bpage->commit); 4205 } else if (info->add_timestamp & 4206 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 4207 /* Ignore events with absolute time stamps */ 4208 return; 4209 } 4210 4211 /* 4212 * Do not check the first event (skip possible extends too). 4213 * Also do not check if previous events have not been committed. 4214 */ 4215 if (tail <= 8 || tail > local_read(&bpage->commit)) 4216 return; 4217 4218 /* 4219 * If this interrupted another event, 4220 */ 4221 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 4222 goto out; 4223 4224 ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta); 4225 if (ret < 0) { 4226 if (delta < ts) { 4227 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n", 4228 cpu_buffer->cpu, ts, delta); 4229 goto out; 4230 } 4231 } 4232 if ((full && ts > info->ts) || 4233 (!full && ts + info->delta != info->ts)) { 4234 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n", 4235 cpu_buffer->cpu, 4236 ts + info->delta, info->ts, info->delta, 4237 info->before, info->after, 4238 full ? " (full)" : "", show_interrupt_level()); 4239 } 4240 out: 4241 atomic_dec(this_cpu_ptr(&checking)); 4242 } 4243 #else 4244 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 4245 struct rb_event_info *info, 4246 unsigned long tail) 4247 { 4248 } 4249 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 4250 4251 static struct ring_buffer_event * 4252 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 4253 struct rb_event_info *info) 4254 { 4255 struct ring_buffer_event *event; 4256 struct buffer_page *tail_page; 4257 unsigned long tail, write, w; 4258 4259 /* Don't let the compiler play games with cpu_buffer->tail_page */ 4260 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 4261 4262 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 4263 barrier(); 4264 rb_time_read(&cpu_buffer->before_stamp, &info->before); 4265 rb_time_read(&cpu_buffer->write_stamp, &info->after); 4266 barrier(); 4267 info->ts = rb_time_stamp(cpu_buffer->buffer); 4268 4269 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 4270 info->delta = info->ts; 4271 } else { 4272 /* 4273 * If interrupting an event time update, we may need an 4274 * absolute timestamp. 4275 * Don't bother if this is the start of a new page (w == 0). 4276 */ 4277 if (!w) { 4278 /* Use the sub-buffer timestamp */ 4279 info->delta = 0; 4280 } else if (unlikely(info->before != info->after)) { 4281 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 4282 info->length += RB_LEN_TIME_EXTEND; 4283 } else { 4284 info->delta = info->ts - info->after; 4285 if (unlikely(test_time_stamp(info->delta))) { 4286 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 4287 info->length += RB_LEN_TIME_EXTEND; 4288 } 4289 } 4290 } 4291 4292 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 4293 4294 /*C*/ write = local_add_return(info->length, &tail_page->write); 4295 4296 /* set write to only the index of the write */ 4297 write &= RB_WRITE_MASK; 4298 4299 tail = write - info->length; 4300 4301 /* See if we shot pass the end of this buffer page */ 4302 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) { 4303 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 4304 return rb_move_tail(cpu_buffer, tail, info); 4305 } 4306 4307 if (likely(tail == w)) { 4308 /* Nothing interrupted us between A and C */ 4309 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 4310 /* 4311 * If something came in between C and D, the write stamp 4312 * may now not be in sync. But that's fine as the before_stamp 4313 * will be different and then next event will just be forced 4314 * to use an absolute timestamp. 4315 */ 4316 if (likely(!(info->add_timestamp & 4317 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 4318 /* This did not interrupt any time update */ 4319 info->delta = info->ts - info->after; 4320 else 4321 /* Just use full timestamp for interrupting event */ 4322 info->delta = info->ts; 4323 check_buffer(cpu_buffer, info, tail); 4324 } else { 4325 u64 ts; 4326 /* SLOW PATH - Interrupted between A and C */ 4327 4328 /* Save the old before_stamp */ 4329 rb_time_read(&cpu_buffer->before_stamp, &info->before); 4330 4331 /* 4332 * Read a new timestamp and update the before_stamp to make 4333 * the next event after this one force using an absolute 4334 * timestamp. This is in case an interrupt were to come in 4335 * between E and F. 4336 */ 4337 ts = rb_time_stamp(cpu_buffer->buffer); 4338 rb_time_set(&cpu_buffer->before_stamp, ts); 4339 4340 barrier(); 4341 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after); 4342 barrier(); 4343 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 4344 info->after == info->before && info->after < ts) { 4345 /* 4346 * Nothing came after this event between C and F, it is 4347 * safe to use info->after for the delta as it 4348 * matched info->before and is still valid. 4349 */ 4350 info->delta = ts - info->after; 4351 } else { 4352 /* 4353 * Interrupted between C and F: 4354 * Lost the previous events time stamp. Just set the 4355 * delta to zero, and this will be the same time as 4356 * the event this event interrupted. And the events that 4357 * came after this will still be correct (as they would 4358 * have built their delta on the previous event. 4359 */ 4360 info->delta = 0; 4361 } 4362 info->ts = ts; 4363 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 4364 } 4365 4366 /* 4367 * If this is the first commit on the page, then it has the same 4368 * timestamp as the page itself. 4369 */ 4370 if (unlikely(!tail && !(info->add_timestamp & 4371 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 4372 info->delta = 0; 4373 4374 /* We reserved something on the buffer */ 4375 4376 event = __rb_page_index(tail_page, tail); 4377 rb_update_event(cpu_buffer, event, info); 4378 4379 local_inc(&tail_page->entries); 4380 4381 /* 4382 * If this is the first commit on the page, then update 4383 * its timestamp. 4384 */ 4385 if (unlikely(!tail)) 4386 tail_page->page->time_stamp = info->ts; 4387 4388 /* account for these added bytes */ 4389 local_add(info->length, &cpu_buffer->entries_bytes); 4390 4391 return event; 4392 } 4393 4394 static __always_inline struct ring_buffer_event * 4395 rb_reserve_next_event(struct trace_buffer *buffer, 4396 struct ring_buffer_per_cpu *cpu_buffer, 4397 unsigned long length) 4398 { 4399 struct ring_buffer_event *event; 4400 struct rb_event_info info; 4401 int nr_loops = 0; 4402 int add_ts_default; 4403 4404 /* ring buffer does cmpxchg, make sure it is safe in NMI context */ 4405 if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) && 4406 (unlikely(in_nmi()))) { 4407 return NULL; 4408 } 4409 4410 rb_start_commit(cpu_buffer); 4411 /* The commit page can not change after this */ 4412 4413 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4414 /* 4415 * Due to the ability to swap a cpu buffer from a buffer 4416 * it is possible it was swapped before we committed. 4417 * (committing stops a swap). We check for it here and 4418 * if it happened, we have to fail the write. 4419 */ 4420 barrier(); 4421 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 4422 local_dec(&cpu_buffer->committing); 4423 local_dec(&cpu_buffer->commits); 4424 return NULL; 4425 } 4426 #endif 4427 4428 info.length = rb_calculate_event_length(length); 4429 4430 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 4431 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 4432 info.length += RB_LEN_TIME_EXTEND; 4433 if (info.length > cpu_buffer->buffer->max_data_size) 4434 goto out_fail; 4435 } else { 4436 add_ts_default = RB_ADD_STAMP_NONE; 4437 } 4438 4439 again: 4440 info.add_timestamp = add_ts_default; 4441 info.delta = 0; 4442 4443 /* 4444 * We allow for interrupts to reenter here and do a trace. 4445 * If one does, it will cause this original code to loop 4446 * back here. Even with heavy interrupts happening, this 4447 * should only happen a few times in a row. If this happens 4448 * 1000 times in a row, there must be either an interrupt 4449 * storm or we have something buggy. 4450 * Bail! 4451 */ 4452 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 4453 goto out_fail; 4454 4455 event = __rb_reserve_next(cpu_buffer, &info); 4456 4457 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 4458 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 4459 info.length -= RB_LEN_TIME_EXTEND; 4460 goto again; 4461 } 4462 4463 if (likely(event)) 4464 return event; 4465 out_fail: 4466 rb_end_commit(cpu_buffer); 4467 return NULL; 4468 } 4469 4470 /** 4471 * ring_buffer_lock_reserve - reserve a part of the buffer 4472 * @buffer: the ring buffer to reserve from 4473 * @length: the length of the data to reserve (excluding event header) 4474 * 4475 * Returns a reserved event on the ring buffer to copy directly to. 4476 * The user of this interface will need to get the body to write into 4477 * and can use the ring_buffer_event_data() interface. 4478 * 4479 * The length is the length of the data needed, not the event length 4480 * which also includes the event header. 4481 * 4482 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 4483 * If NULL is returned, then nothing has been allocated or locked. 4484 */ 4485 struct ring_buffer_event * 4486 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 4487 { 4488 struct ring_buffer_per_cpu *cpu_buffer; 4489 struct ring_buffer_event *event; 4490 int cpu; 4491 4492 /* If we are tracing schedule, we don't want to recurse */ 4493 preempt_disable_notrace(); 4494 4495 if (unlikely(atomic_read(&buffer->record_disabled))) 4496 goto out; 4497 4498 cpu = raw_smp_processor_id(); 4499 4500 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 4501 goto out; 4502 4503 cpu_buffer = buffer->buffers[cpu]; 4504 4505 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 4506 goto out; 4507 4508 if (unlikely(length > buffer->max_data_size)) 4509 goto out; 4510 4511 if (unlikely(trace_recursive_lock(cpu_buffer))) 4512 goto out; 4513 4514 event = rb_reserve_next_event(buffer, cpu_buffer, length); 4515 if (!event) 4516 goto out_unlock; 4517 4518 return event; 4519 4520 out_unlock: 4521 trace_recursive_unlock(cpu_buffer); 4522 out: 4523 preempt_enable_notrace(); 4524 return NULL; 4525 } 4526 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 4527 4528 /* 4529 * Decrement the entries to the page that an event is on. 4530 * The event does not even need to exist, only the pointer 4531 * to the page it is on. This may only be called before the commit 4532 * takes place. 4533 */ 4534 static inline void 4535 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 4536 struct ring_buffer_event *event) 4537 { 4538 unsigned long addr = (unsigned long)event; 4539 struct buffer_page *bpage = cpu_buffer->commit_page; 4540 struct buffer_page *start; 4541 4542 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 4543 4544 /* Do the likely case first */ 4545 if (likely(bpage->page == (void *)addr)) { 4546 local_dec(&bpage->entries); 4547 return; 4548 } 4549 4550 /* 4551 * Because the commit page may be on the reader page we 4552 * start with the next page and check the end loop there. 4553 */ 4554 rb_inc_page(&bpage); 4555 start = bpage; 4556 do { 4557 if (bpage->page == (void *)addr) { 4558 local_dec(&bpage->entries); 4559 return; 4560 } 4561 rb_inc_page(&bpage); 4562 } while (bpage != start); 4563 4564 /* commit not part of this buffer?? */ 4565 RB_WARN_ON(cpu_buffer, 1); 4566 } 4567 4568 /** 4569 * ring_buffer_discard_commit - discard an event that has not been committed 4570 * @buffer: the ring buffer 4571 * @event: non committed event to discard 4572 * 4573 * Sometimes an event that is in the ring buffer needs to be ignored. 4574 * This function lets the user discard an event in the ring buffer 4575 * and then that event will not be read later. 4576 * 4577 * This function only works if it is called before the item has been 4578 * committed. It will try to free the event from the ring buffer 4579 * if another event has not been added behind it. 4580 * 4581 * If another event has been added behind it, it will set the event 4582 * up as discarded, and perform the commit. 4583 * 4584 * If this function is called, do not call ring_buffer_unlock_commit on 4585 * the event. 4586 */ 4587 void ring_buffer_discard_commit(struct trace_buffer *buffer, 4588 struct ring_buffer_event *event) 4589 { 4590 struct ring_buffer_per_cpu *cpu_buffer; 4591 int cpu; 4592 4593 /* The event is discarded regardless */ 4594 rb_event_discard(event); 4595 4596 cpu = smp_processor_id(); 4597 cpu_buffer = buffer->buffers[cpu]; 4598 4599 /* 4600 * This must only be called if the event has not been 4601 * committed yet. Thus we can assume that preemption 4602 * is still disabled. 4603 */ 4604 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 4605 4606 rb_decrement_entry(cpu_buffer, event); 4607 if (rb_try_to_discard(cpu_buffer, event)) 4608 goto out; 4609 4610 out: 4611 rb_end_commit(cpu_buffer); 4612 4613 trace_recursive_unlock(cpu_buffer); 4614 4615 preempt_enable_notrace(); 4616 4617 } 4618 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 4619 4620 /** 4621 * ring_buffer_write - write data to the buffer without reserving 4622 * @buffer: The ring buffer to write to. 4623 * @length: The length of the data being written (excluding the event header) 4624 * @data: The data to write to the buffer. 4625 * 4626 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 4627 * one function. If you already have the data to write to the buffer, it 4628 * may be easier to simply call this function. 4629 * 4630 * Note, like ring_buffer_lock_reserve, the length is the length of the data 4631 * and not the length of the event which would hold the header. 4632 */ 4633 int ring_buffer_write(struct trace_buffer *buffer, 4634 unsigned long length, 4635 void *data) 4636 { 4637 struct ring_buffer_per_cpu *cpu_buffer; 4638 struct ring_buffer_event *event; 4639 void *body; 4640 int ret = -EBUSY; 4641 int cpu; 4642 4643 preempt_disable_notrace(); 4644 4645 if (atomic_read(&buffer->record_disabled)) 4646 goto out; 4647 4648 cpu = raw_smp_processor_id(); 4649 4650 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4651 goto out; 4652 4653 cpu_buffer = buffer->buffers[cpu]; 4654 4655 if (atomic_read(&cpu_buffer->record_disabled)) 4656 goto out; 4657 4658 if (length > buffer->max_data_size) 4659 goto out; 4660 4661 if (unlikely(trace_recursive_lock(cpu_buffer))) 4662 goto out; 4663 4664 event = rb_reserve_next_event(buffer, cpu_buffer, length); 4665 if (!event) 4666 goto out_unlock; 4667 4668 body = rb_event_data(event); 4669 4670 memcpy(body, data, length); 4671 4672 rb_commit(cpu_buffer); 4673 4674 rb_wakeups(buffer, cpu_buffer); 4675 4676 ret = 0; 4677 4678 out_unlock: 4679 trace_recursive_unlock(cpu_buffer); 4680 4681 out: 4682 preempt_enable_notrace(); 4683 4684 return ret; 4685 } 4686 EXPORT_SYMBOL_GPL(ring_buffer_write); 4687 4688 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 4689 { 4690 struct buffer_page *reader = cpu_buffer->reader_page; 4691 struct buffer_page *head = rb_set_head_page(cpu_buffer); 4692 struct buffer_page *commit = cpu_buffer->commit_page; 4693 4694 /* In case of error, head will be NULL */ 4695 if (unlikely(!head)) 4696 return true; 4697 4698 /* Reader should exhaust content in reader page */ 4699 if (reader->read != rb_page_size(reader)) 4700 return false; 4701 4702 /* 4703 * If writers are committing on the reader page, knowing all 4704 * committed content has been read, the ring buffer is empty. 4705 */ 4706 if (commit == reader) 4707 return true; 4708 4709 /* 4710 * If writers are committing on a page other than reader page 4711 * and head page, there should always be content to read. 4712 */ 4713 if (commit != head) 4714 return false; 4715 4716 /* 4717 * Writers are committing on the head page, we just need 4718 * to care about there're committed data, and the reader will 4719 * swap reader page with head page when it is to read data. 4720 */ 4721 return rb_page_commit(commit) == 0; 4722 } 4723 4724 /** 4725 * ring_buffer_record_disable - stop all writes into the buffer 4726 * @buffer: The ring buffer to stop writes to. 4727 * 4728 * This prevents all writes to the buffer. Any attempt to write 4729 * to the buffer after this will fail and return NULL. 4730 * 4731 * The caller should call synchronize_rcu() after this. 4732 */ 4733 void ring_buffer_record_disable(struct trace_buffer *buffer) 4734 { 4735 atomic_inc(&buffer->record_disabled); 4736 } 4737 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 4738 4739 /** 4740 * ring_buffer_record_enable - enable writes to the buffer 4741 * @buffer: The ring buffer to enable writes 4742 * 4743 * Note, multiple disables will need the same number of enables 4744 * to truly enable the writing (much like preempt_disable). 4745 */ 4746 void ring_buffer_record_enable(struct trace_buffer *buffer) 4747 { 4748 atomic_dec(&buffer->record_disabled); 4749 } 4750 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 4751 4752 /** 4753 * ring_buffer_record_off - stop all writes into the buffer 4754 * @buffer: The ring buffer to stop writes to. 4755 * 4756 * This prevents all writes to the buffer. Any attempt to write 4757 * to the buffer after this will fail and return NULL. 4758 * 4759 * This is different than ring_buffer_record_disable() as 4760 * it works like an on/off switch, where as the disable() version 4761 * must be paired with a enable(). 4762 */ 4763 void ring_buffer_record_off(struct trace_buffer *buffer) 4764 { 4765 unsigned int rd; 4766 unsigned int new_rd; 4767 4768 rd = atomic_read(&buffer->record_disabled); 4769 do { 4770 new_rd = rd | RB_BUFFER_OFF; 4771 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4772 } 4773 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 4774 4775 /** 4776 * ring_buffer_record_on - restart writes into the buffer 4777 * @buffer: The ring buffer to start writes to. 4778 * 4779 * This enables all writes to the buffer that was disabled by 4780 * ring_buffer_record_off(). 4781 * 4782 * This is different than ring_buffer_record_enable() as 4783 * it works like an on/off switch, where as the enable() version 4784 * must be paired with a disable(). 4785 */ 4786 void ring_buffer_record_on(struct trace_buffer *buffer) 4787 { 4788 unsigned int rd; 4789 unsigned int new_rd; 4790 4791 rd = atomic_read(&buffer->record_disabled); 4792 do { 4793 new_rd = rd & ~RB_BUFFER_OFF; 4794 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4795 } 4796 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4797 4798 /** 4799 * ring_buffer_record_is_on - return true if the ring buffer can write 4800 * @buffer: The ring buffer to see if write is enabled 4801 * 4802 * Returns true if the ring buffer is in a state that it accepts writes. 4803 */ 4804 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4805 { 4806 return !atomic_read(&buffer->record_disabled); 4807 } 4808 4809 /** 4810 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4811 * @buffer: The ring buffer to see if write is set enabled 4812 * 4813 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4814 * Note that this does NOT mean it is in a writable state. 4815 * 4816 * It may return true when the ring buffer has been disabled by 4817 * ring_buffer_record_disable(), as that is a temporary disabling of 4818 * the ring buffer. 4819 */ 4820 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4821 { 4822 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4823 } 4824 4825 /** 4826 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4827 * @buffer: The ring buffer to stop writes to. 4828 * @cpu: The CPU buffer to stop 4829 * 4830 * This prevents all writes to the buffer. Any attempt to write 4831 * to the buffer after this will fail and return NULL. 4832 * 4833 * The caller should call synchronize_rcu() after this. 4834 */ 4835 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4836 { 4837 struct ring_buffer_per_cpu *cpu_buffer; 4838 4839 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4840 return; 4841 4842 cpu_buffer = buffer->buffers[cpu]; 4843 atomic_inc(&cpu_buffer->record_disabled); 4844 } 4845 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4846 4847 /** 4848 * ring_buffer_record_enable_cpu - enable writes to the buffer 4849 * @buffer: The ring buffer to enable writes 4850 * @cpu: The CPU to enable. 4851 * 4852 * Note, multiple disables will need the same number of enables 4853 * to truly enable the writing (much like preempt_disable). 4854 */ 4855 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4856 { 4857 struct ring_buffer_per_cpu *cpu_buffer; 4858 4859 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4860 return; 4861 4862 cpu_buffer = buffer->buffers[cpu]; 4863 atomic_dec(&cpu_buffer->record_disabled); 4864 } 4865 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4866 4867 /* 4868 * The total entries in the ring buffer is the running counter 4869 * of entries entered into the ring buffer, minus the sum of 4870 * the entries read from the ring buffer and the number of 4871 * entries that were overwritten. 4872 */ 4873 static inline unsigned long 4874 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4875 { 4876 return local_read(&cpu_buffer->entries) - 4877 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4878 } 4879 4880 /** 4881 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4882 * @buffer: The ring buffer 4883 * @cpu: The per CPU buffer to read from. 4884 */ 4885 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4886 { 4887 unsigned long flags; 4888 struct ring_buffer_per_cpu *cpu_buffer; 4889 struct buffer_page *bpage; 4890 u64 ret = 0; 4891 4892 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4893 return 0; 4894 4895 cpu_buffer = buffer->buffers[cpu]; 4896 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4897 /* 4898 * if the tail is on reader_page, oldest time stamp is on the reader 4899 * page 4900 */ 4901 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4902 bpage = cpu_buffer->reader_page; 4903 else 4904 bpage = rb_set_head_page(cpu_buffer); 4905 if (bpage) 4906 ret = bpage->page->time_stamp; 4907 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4908 4909 return ret; 4910 } 4911 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4912 4913 /** 4914 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer 4915 * @buffer: The ring buffer 4916 * @cpu: The per CPU buffer to read from. 4917 */ 4918 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4919 { 4920 struct ring_buffer_per_cpu *cpu_buffer; 4921 unsigned long ret; 4922 4923 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4924 return 0; 4925 4926 cpu_buffer = buffer->buffers[cpu]; 4927 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 4928 4929 return ret; 4930 } 4931 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 4932 4933 /** 4934 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 4935 * @buffer: The ring buffer 4936 * @cpu: The per CPU buffer to get the entries from. 4937 */ 4938 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 4939 { 4940 struct ring_buffer_per_cpu *cpu_buffer; 4941 4942 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4943 return 0; 4944 4945 cpu_buffer = buffer->buffers[cpu]; 4946 4947 return rb_num_of_entries(cpu_buffer); 4948 } 4949 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 4950 4951 /** 4952 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 4953 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 4954 * @buffer: The ring buffer 4955 * @cpu: The per CPU buffer to get the number of overruns from 4956 */ 4957 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 4958 { 4959 struct ring_buffer_per_cpu *cpu_buffer; 4960 unsigned long ret; 4961 4962 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4963 return 0; 4964 4965 cpu_buffer = buffer->buffers[cpu]; 4966 ret = local_read(&cpu_buffer->overrun); 4967 4968 return ret; 4969 } 4970 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 4971 4972 /** 4973 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 4974 * commits failing due to the buffer wrapping around while there are uncommitted 4975 * events, such as during an interrupt storm. 4976 * @buffer: The ring buffer 4977 * @cpu: The per CPU buffer to get the number of overruns from 4978 */ 4979 unsigned long 4980 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 4981 { 4982 struct ring_buffer_per_cpu *cpu_buffer; 4983 unsigned long ret; 4984 4985 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4986 return 0; 4987 4988 cpu_buffer = buffer->buffers[cpu]; 4989 ret = local_read(&cpu_buffer->commit_overrun); 4990 4991 return ret; 4992 } 4993 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 4994 4995 /** 4996 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 4997 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 4998 * @buffer: The ring buffer 4999 * @cpu: The per CPU buffer to get the number of overruns from 5000 */ 5001 unsigned long 5002 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 5003 { 5004 struct ring_buffer_per_cpu *cpu_buffer; 5005 unsigned long ret; 5006 5007 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5008 return 0; 5009 5010 cpu_buffer = buffer->buffers[cpu]; 5011 ret = local_read(&cpu_buffer->dropped_events); 5012 5013 return ret; 5014 } 5015 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 5016 5017 /** 5018 * ring_buffer_read_events_cpu - get the number of events successfully read 5019 * @buffer: The ring buffer 5020 * @cpu: The per CPU buffer to get the number of events read 5021 */ 5022 unsigned long 5023 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 5024 { 5025 struct ring_buffer_per_cpu *cpu_buffer; 5026 5027 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5028 return 0; 5029 5030 cpu_buffer = buffer->buffers[cpu]; 5031 return cpu_buffer->read; 5032 } 5033 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 5034 5035 /** 5036 * ring_buffer_entries - get the number of entries in a buffer 5037 * @buffer: The ring buffer 5038 * 5039 * Returns the total number of entries in the ring buffer 5040 * (all CPU entries) 5041 */ 5042 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 5043 { 5044 struct ring_buffer_per_cpu *cpu_buffer; 5045 unsigned long entries = 0; 5046 int cpu; 5047 5048 /* if you care about this being correct, lock the buffer */ 5049 for_each_buffer_cpu(buffer, cpu) { 5050 cpu_buffer = buffer->buffers[cpu]; 5051 entries += rb_num_of_entries(cpu_buffer); 5052 } 5053 5054 return entries; 5055 } 5056 EXPORT_SYMBOL_GPL(ring_buffer_entries); 5057 5058 /** 5059 * ring_buffer_overruns - get the number of overruns in buffer 5060 * @buffer: The ring buffer 5061 * 5062 * Returns the total number of overruns in the ring buffer 5063 * (all CPU entries) 5064 */ 5065 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 5066 { 5067 struct ring_buffer_per_cpu *cpu_buffer; 5068 unsigned long overruns = 0; 5069 int cpu; 5070 5071 /* if you care about this being correct, lock the buffer */ 5072 for_each_buffer_cpu(buffer, cpu) { 5073 cpu_buffer = buffer->buffers[cpu]; 5074 overruns += local_read(&cpu_buffer->overrun); 5075 } 5076 5077 return overruns; 5078 } 5079 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 5080 5081 static void rb_iter_reset(struct ring_buffer_iter *iter) 5082 { 5083 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5084 5085 /* Iterator usage is expected to have record disabled */ 5086 iter->head_page = cpu_buffer->reader_page; 5087 iter->head = cpu_buffer->reader_page->read; 5088 iter->next_event = iter->head; 5089 5090 iter->cache_reader_page = iter->head_page; 5091 iter->cache_read = cpu_buffer->read; 5092 iter->cache_pages_removed = cpu_buffer->pages_removed; 5093 5094 if (iter->head) { 5095 iter->read_stamp = cpu_buffer->read_stamp; 5096 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 5097 } else { 5098 iter->read_stamp = iter->head_page->page->time_stamp; 5099 iter->page_stamp = iter->read_stamp; 5100 } 5101 } 5102 5103 /** 5104 * ring_buffer_iter_reset - reset an iterator 5105 * @iter: The iterator to reset 5106 * 5107 * Resets the iterator, so that it will start from the beginning 5108 * again. 5109 */ 5110 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 5111 { 5112 struct ring_buffer_per_cpu *cpu_buffer; 5113 unsigned long flags; 5114 5115 if (!iter) 5116 return; 5117 5118 cpu_buffer = iter->cpu_buffer; 5119 5120 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5121 rb_iter_reset(iter); 5122 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5123 } 5124 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 5125 5126 /** 5127 * ring_buffer_iter_empty - check if an iterator has no more to read 5128 * @iter: The iterator to check 5129 */ 5130 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 5131 { 5132 struct ring_buffer_per_cpu *cpu_buffer; 5133 struct buffer_page *reader; 5134 struct buffer_page *head_page; 5135 struct buffer_page *commit_page; 5136 struct buffer_page *curr_commit_page; 5137 unsigned commit; 5138 u64 curr_commit_ts; 5139 u64 commit_ts; 5140 5141 cpu_buffer = iter->cpu_buffer; 5142 reader = cpu_buffer->reader_page; 5143 head_page = cpu_buffer->head_page; 5144 commit_page = READ_ONCE(cpu_buffer->commit_page); 5145 commit_ts = commit_page->page->time_stamp; 5146 5147 /* 5148 * When the writer goes across pages, it issues a cmpxchg which 5149 * is a mb(), which will synchronize with the rmb here. 5150 * (see rb_tail_page_update()) 5151 */ 5152 smp_rmb(); 5153 commit = rb_page_commit(commit_page); 5154 /* We want to make sure that the commit page doesn't change */ 5155 smp_rmb(); 5156 5157 /* Make sure commit page didn't change */ 5158 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 5159 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 5160 5161 /* If the commit page changed, then there's more data */ 5162 if (curr_commit_page != commit_page || 5163 curr_commit_ts != commit_ts) 5164 return 0; 5165 5166 /* Still racy, as it may return a false positive, but that's OK */ 5167 return ((iter->head_page == commit_page && iter->head >= commit) || 5168 (iter->head_page == reader && commit_page == head_page && 5169 head_page->read == commit && 5170 iter->head == rb_page_size(cpu_buffer->reader_page))); 5171 } 5172 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 5173 5174 static void 5175 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 5176 struct ring_buffer_event *event) 5177 { 5178 u64 delta; 5179 5180 switch (event->type_len) { 5181 case RINGBUF_TYPE_PADDING: 5182 return; 5183 5184 case RINGBUF_TYPE_TIME_EXTEND: 5185 delta = rb_event_time_stamp(event); 5186 cpu_buffer->read_stamp += delta; 5187 return; 5188 5189 case RINGBUF_TYPE_TIME_STAMP: 5190 delta = rb_event_time_stamp(event); 5191 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 5192 cpu_buffer->read_stamp = delta; 5193 return; 5194 5195 case RINGBUF_TYPE_DATA: 5196 cpu_buffer->read_stamp += event->time_delta; 5197 return; 5198 5199 default: 5200 RB_WARN_ON(cpu_buffer, 1); 5201 } 5202 } 5203 5204 static void 5205 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 5206 struct ring_buffer_event *event) 5207 { 5208 u64 delta; 5209 5210 switch (event->type_len) { 5211 case RINGBUF_TYPE_PADDING: 5212 return; 5213 5214 case RINGBUF_TYPE_TIME_EXTEND: 5215 delta = rb_event_time_stamp(event); 5216 iter->read_stamp += delta; 5217 return; 5218 5219 case RINGBUF_TYPE_TIME_STAMP: 5220 delta = rb_event_time_stamp(event); 5221 delta = rb_fix_abs_ts(delta, iter->read_stamp); 5222 iter->read_stamp = delta; 5223 return; 5224 5225 case RINGBUF_TYPE_DATA: 5226 iter->read_stamp += event->time_delta; 5227 return; 5228 5229 default: 5230 RB_WARN_ON(iter->cpu_buffer, 1); 5231 } 5232 } 5233 5234 static struct buffer_page * 5235 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 5236 { 5237 struct buffer_page *reader = NULL; 5238 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 5239 unsigned long overwrite; 5240 unsigned long flags; 5241 int nr_loops = 0; 5242 bool ret; 5243 5244 local_irq_save(flags); 5245 arch_spin_lock(&cpu_buffer->lock); 5246 5247 again: 5248 /* 5249 * This should normally only loop twice. But because the 5250 * start of the reader inserts an empty page, it causes 5251 * a case where we will loop three times. There should be no 5252 * reason to loop four times (that I know of). 5253 */ 5254 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 5255 reader = NULL; 5256 goto out; 5257 } 5258 5259 reader = cpu_buffer->reader_page; 5260 5261 /* If there's more to read, return this page */ 5262 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 5263 goto out; 5264 5265 /* Never should we have an index greater than the size */ 5266 if (RB_WARN_ON(cpu_buffer, 5267 cpu_buffer->reader_page->read > rb_page_size(reader))) 5268 goto out; 5269 5270 /* check if we caught up to the tail */ 5271 reader = NULL; 5272 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 5273 goto out; 5274 5275 /* Don't bother swapping if the ring buffer is empty */ 5276 if (rb_num_of_entries(cpu_buffer) == 0) 5277 goto out; 5278 5279 /* 5280 * Reset the reader page to size zero. 5281 */ 5282 local_set(&cpu_buffer->reader_page->write, 0); 5283 local_set(&cpu_buffer->reader_page->entries, 0); 5284 local_set(&cpu_buffer->reader_page->page->commit, 0); 5285 cpu_buffer->reader_page->real_end = 0; 5286 5287 spin: 5288 /* 5289 * Splice the empty reader page into the list around the head. 5290 */ 5291 reader = rb_set_head_page(cpu_buffer); 5292 if (!reader) 5293 goto out; 5294 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 5295 cpu_buffer->reader_page->list.prev = reader->list.prev; 5296 5297 /* 5298 * cpu_buffer->pages just needs to point to the buffer, it 5299 * has no specific buffer page to point to. Lets move it out 5300 * of our way so we don't accidentally swap it. 5301 */ 5302 cpu_buffer->pages = reader->list.prev; 5303 5304 /* The reader page will be pointing to the new head */ 5305 rb_set_list_to_head(&cpu_buffer->reader_page->list); 5306 5307 /* 5308 * We want to make sure we read the overruns after we set up our 5309 * pointers to the next object. The writer side does a 5310 * cmpxchg to cross pages which acts as the mb on the writer 5311 * side. Note, the reader will constantly fail the swap 5312 * while the writer is updating the pointers, so this 5313 * guarantees that the overwrite recorded here is the one we 5314 * want to compare with the last_overrun. 5315 */ 5316 smp_mb(); 5317 overwrite = local_read(&(cpu_buffer->overrun)); 5318 5319 /* 5320 * Here's the tricky part. 5321 * 5322 * We need to move the pointer past the header page. 5323 * But we can only do that if a writer is not currently 5324 * moving it. The page before the header page has the 5325 * flag bit '1' set if it is pointing to the page we want. 5326 * but if the writer is in the process of moving it 5327 * than it will be '2' or already moved '0'. 5328 */ 5329 5330 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 5331 5332 /* 5333 * If we did not convert it, then we must try again. 5334 */ 5335 if (!ret) 5336 goto spin; 5337 5338 if (cpu_buffer->ring_meta) 5339 rb_update_meta_reader(cpu_buffer, reader); 5340 5341 /* 5342 * Yay! We succeeded in replacing the page. 5343 * 5344 * Now make the new head point back to the reader page. 5345 */ 5346 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 5347 rb_inc_page(&cpu_buffer->head_page); 5348 5349 cpu_buffer->cnt++; 5350 local_inc(&cpu_buffer->pages_read); 5351 5352 /* Finally update the reader page to the new head */ 5353 cpu_buffer->reader_page = reader; 5354 cpu_buffer->reader_page->read = 0; 5355 5356 if (overwrite != cpu_buffer->last_overrun) { 5357 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 5358 cpu_buffer->last_overrun = overwrite; 5359 } 5360 5361 goto again; 5362 5363 out: 5364 /* Update the read_stamp on the first event */ 5365 if (reader && reader->read == 0) 5366 cpu_buffer->read_stamp = reader->page->time_stamp; 5367 5368 arch_spin_unlock(&cpu_buffer->lock); 5369 local_irq_restore(flags); 5370 5371 /* 5372 * The writer has preempt disable, wait for it. But not forever 5373 * Although, 1 second is pretty much "forever" 5374 */ 5375 #define USECS_WAIT 1000000 5376 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 5377 /* If the write is past the end of page, a writer is still updating it */ 5378 if (likely(!reader || rb_page_write(reader) <= bsize)) 5379 break; 5380 5381 udelay(1); 5382 5383 /* Get the latest version of the reader write value */ 5384 smp_rmb(); 5385 } 5386 5387 /* The writer is not moving forward? Something is wrong */ 5388 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 5389 reader = NULL; 5390 5391 /* 5392 * Make sure we see any padding after the write update 5393 * (see rb_reset_tail()). 5394 * 5395 * In addition, a writer may be writing on the reader page 5396 * if the page has not been fully filled, so the read barrier 5397 * is also needed to make sure we see the content of what is 5398 * committed by the writer (see rb_set_commit_to_write()). 5399 */ 5400 smp_rmb(); 5401 5402 5403 return reader; 5404 } 5405 5406 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 5407 { 5408 struct ring_buffer_event *event; 5409 struct buffer_page *reader; 5410 unsigned length; 5411 5412 reader = rb_get_reader_page(cpu_buffer); 5413 5414 /* This function should not be called when buffer is empty */ 5415 if (RB_WARN_ON(cpu_buffer, !reader)) 5416 return; 5417 5418 event = rb_reader_event(cpu_buffer); 5419 5420 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 5421 cpu_buffer->read++; 5422 5423 rb_update_read_stamp(cpu_buffer, event); 5424 5425 length = rb_event_length(event); 5426 cpu_buffer->reader_page->read += length; 5427 cpu_buffer->read_bytes += length; 5428 } 5429 5430 static void rb_advance_iter(struct ring_buffer_iter *iter) 5431 { 5432 struct ring_buffer_per_cpu *cpu_buffer; 5433 5434 cpu_buffer = iter->cpu_buffer; 5435 5436 /* If head == next_event then we need to jump to the next event */ 5437 if (iter->head == iter->next_event) { 5438 /* If the event gets overwritten again, there's nothing to do */ 5439 if (rb_iter_head_event(iter) == NULL) 5440 return; 5441 } 5442 5443 iter->head = iter->next_event; 5444 5445 /* 5446 * Check if we are at the end of the buffer. 5447 */ 5448 if (iter->next_event >= rb_page_size(iter->head_page)) { 5449 /* discarded commits can make the page empty */ 5450 if (iter->head_page == cpu_buffer->commit_page) 5451 return; 5452 rb_inc_iter(iter); 5453 return; 5454 } 5455 5456 rb_update_iter_read_stamp(iter, iter->event); 5457 } 5458 5459 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 5460 { 5461 return cpu_buffer->lost_events; 5462 } 5463 5464 static struct ring_buffer_event * 5465 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 5466 unsigned long *lost_events) 5467 { 5468 struct ring_buffer_event *event; 5469 struct buffer_page *reader; 5470 int nr_loops = 0; 5471 5472 if (ts) 5473 *ts = 0; 5474 again: 5475 /* 5476 * We repeat when a time extend is encountered. 5477 * Since the time extend is always attached to a data event, 5478 * we should never loop more than once. 5479 * (We never hit the following condition more than twice). 5480 */ 5481 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 5482 return NULL; 5483 5484 reader = rb_get_reader_page(cpu_buffer); 5485 if (!reader) 5486 return NULL; 5487 5488 event = rb_reader_event(cpu_buffer); 5489 5490 switch (event->type_len) { 5491 case RINGBUF_TYPE_PADDING: 5492 if (rb_null_event(event)) 5493 RB_WARN_ON(cpu_buffer, 1); 5494 /* 5495 * Because the writer could be discarding every 5496 * event it creates (which would probably be bad) 5497 * if we were to go back to "again" then we may never 5498 * catch up, and will trigger the warn on, or lock 5499 * the box. Return the padding, and we will release 5500 * the current locks, and try again. 5501 */ 5502 return event; 5503 5504 case RINGBUF_TYPE_TIME_EXTEND: 5505 /* Internal data, OK to advance */ 5506 rb_advance_reader(cpu_buffer); 5507 goto again; 5508 5509 case RINGBUF_TYPE_TIME_STAMP: 5510 if (ts) { 5511 *ts = rb_event_time_stamp(event); 5512 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 5513 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5514 cpu_buffer->cpu, ts); 5515 } 5516 /* Internal data, OK to advance */ 5517 rb_advance_reader(cpu_buffer); 5518 goto again; 5519 5520 case RINGBUF_TYPE_DATA: 5521 if (ts && !(*ts)) { 5522 *ts = cpu_buffer->read_stamp + event->time_delta; 5523 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5524 cpu_buffer->cpu, ts); 5525 } 5526 if (lost_events) 5527 *lost_events = rb_lost_events(cpu_buffer); 5528 return event; 5529 5530 default: 5531 RB_WARN_ON(cpu_buffer, 1); 5532 } 5533 5534 return NULL; 5535 } 5536 EXPORT_SYMBOL_GPL(ring_buffer_peek); 5537 5538 static struct ring_buffer_event * 5539 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5540 { 5541 struct trace_buffer *buffer; 5542 struct ring_buffer_per_cpu *cpu_buffer; 5543 struct ring_buffer_event *event; 5544 int nr_loops = 0; 5545 5546 if (ts) 5547 *ts = 0; 5548 5549 cpu_buffer = iter->cpu_buffer; 5550 buffer = cpu_buffer->buffer; 5551 5552 /* 5553 * Check if someone performed a consuming read to the buffer 5554 * or removed some pages from the buffer. In these cases, 5555 * iterator was invalidated and we need to reset it. 5556 */ 5557 if (unlikely(iter->cache_read != cpu_buffer->read || 5558 iter->cache_reader_page != cpu_buffer->reader_page || 5559 iter->cache_pages_removed != cpu_buffer->pages_removed)) 5560 rb_iter_reset(iter); 5561 5562 again: 5563 if (ring_buffer_iter_empty(iter)) 5564 return NULL; 5565 5566 /* 5567 * As the writer can mess with what the iterator is trying 5568 * to read, just give up if we fail to get an event after 5569 * three tries. The iterator is not as reliable when reading 5570 * the ring buffer with an active write as the consumer is. 5571 * Do not warn if the three failures is reached. 5572 */ 5573 if (++nr_loops > 3) 5574 return NULL; 5575 5576 if (rb_per_cpu_empty(cpu_buffer)) 5577 return NULL; 5578 5579 if (iter->head >= rb_page_size(iter->head_page)) { 5580 rb_inc_iter(iter); 5581 goto again; 5582 } 5583 5584 event = rb_iter_head_event(iter); 5585 if (!event) 5586 goto again; 5587 5588 switch (event->type_len) { 5589 case RINGBUF_TYPE_PADDING: 5590 if (rb_null_event(event)) { 5591 rb_inc_iter(iter); 5592 goto again; 5593 } 5594 rb_advance_iter(iter); 5595 return event; 5596 5597 case RINGBUF_TYPE_TIME_EXTEND: 5598 /* Internal data, OK to advance */ 5599 rb_advance_iter(iter); 5600 goto again; 5601 5602 case RINGBUF_TYPE_TIME_STAMP: 5603 if (ts) { 5604 *ts = rb_event_time_stamp(event); 5605 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 5606 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5607 cpu_buffer->cpu, ts); 5608 } 5609 /* Internal data, OK to advance */ 5610 rb_advance_iter(iter); 5611 goto again; 5612 5613 case RINGBUF_TYPE_DATA: 5614 if (ts && !(*ts)) { 5615 *ts = iter->read_stamp + event->time_delta; 5616 ring_buffer_normalize_time_stamp(buffer, 5617 cpu_buffer->cpu, ts); 5618 } 5619 return event; 5620 5621 default: 5622 RB_WARN_ON(cpu_buffer, 1); 5623 } 5624 5625 return NULL; 5626 } 5627 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 5628 5629 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 5630 { 5631 if (likely(!in_nmi())) { 5632 raw_spin_lock(&cpu_buffer->reader_lock); 5633 return true; 5634 } 5635 5636 /* 5637 * If an NMI die dumps out the content of the ring buffer 5638 * trylock must be used to prevent a deadlock if the NMI 5639 * preempted a task that holds the ring buffer locks. If 5640 * we get the lock then all is fine, if not, then continue 5641 * to do the read, but this can corrupt the ring buffer, 5642 * so it must be permanently disabled from future writes. 5643 * Reading from NMI is a oneshot deal. 5644 */ 5645 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 5646 return true; 5647 5648 /* Continue without locking, but disable the ring buffer */ 5649 atomic_inc(&cpu_buffer->record_disabled); 5650 return false; 5651 } 5652 5653 static inline void 5654 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 5655 { 5656 if (likely(locked)) 5657 raw_spin_unlock(&cpu_buffer->reader_lock); 5658 } 5659 5660 /** 5661 * ring_buffer_peek - peek at the next event to be read 5662 * @buffer: The ring buffer to read 5663 * @cpu: The cpu to peak at 5664 * @ts: The timestamp counter of this event. 5665 * @lost_events: a variable to store if events were lost (may be NULL) 5666 * 5667 * This will return the event that will be read next, but does 5668 * not consume the data. 5669 */ 5670 struct ring_buffer_event * 5671 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 5672 unsigned long *lost_events) 5673 { 5674 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5675 struct ring_buffer_event *event; 5676 unsigned long flags; 5677 bool dolock; 5678 5679 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5680 return NULL; 5681 5682 again: 5683 local_irq_save(flags); 5684 dolock = rb_reader_lock(cpu_buffer); 5685 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5686 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5687 rb_advance_reader(cpu_buffer); 5688 rb_reader_unlock(cpu_buffer, dolock); 5689 local_irq_restore(flags); 5690 5691 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5692 goto again; 5693 5694 return event; 5695 } 5696 5697 /** ring_buffer_iter_dropped - report if there are dropped events 5698 * @iter: The ring buffer iterator 5699 * 5700 * Returns true if there was dropped events since the last peek. 5701 */ 5702 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 5703 { 5704 bool ret = iter->missed_events != 0; 5705 5706 iter->missed_events = 0; 5707 return ret; 5708 } 5709 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 5710 5711 /** 5712 * ring_buffer_iter_peek - peek at the next event to be read 5713 * @iter: The ring buffer iterator 5714 * @ts: The timestamp counter of this event. 5715 * 5716 * This will return the event that will be read next, but does 5717 * not increment the iterator. 5718 */ 5719 struct ring_buffer_event * 5720 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5721 { 5722 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5723 struct ring_buffer_event *event; 5724 unsigned long flags; 5725 5726 again: 5727 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5728 event = rb_iter_peek(iter, ts); 5729 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5730 5731 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5732 goto again; 5733 5734 return event; 5735 } 5736 5737 /** 5738 * ring_buffer_consume - return an event and consume it 5739 * @buffer: The ring buffer to get the next event from 5740 * @cpu: the cpu to read the buffer from 5741 * @ts: a variable to store the timestamp (may be NULL) 5742 * @lost_events: a variable to store if events were lost (may be NULL) 5743 * 5744 * Returns the next event in the ring buffer, and that event is consumed. 5745 * Meaning, that sequential reads will keep returning a different event, 5746 * and eventually empty the ring buffer if the producer is slower. 5747 */ 5748 struct ring_buffer_event * 5749 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 5750 unsigned long *lost_events) 5751 { 5752 struct ring_buffer_per_cpu *cpu_buffer; 5753 struct ring_buffer_event *event = NULL; 5754 unsigned long flags; 5755 bool dolock; 5756 5757 again: 5758 /* might be called in atomic */ 5759 preempt_disable(); 5760 5761 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5762 goto out; 5763 5764 cpu_buffer = buffer->buffers[cpu]; 5765 local_irq_save(flags); 5766 dolock = rb_reader_lock(cpu_buffer); 5767 5768 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5769 if (event) { 5770 cpu_buffer->lost_events = 0; 5771 rb_advance_reader(cpu_buffer); 5772 } 5773 5774 rb_reader_unlock(cpu_buffer, dolock); 5775 local_irq_restore(flags); 5776 5777 out: 5778 preempt_enable(); 5779 5780 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5781 goto again; 5782 5783 return event; 5784 } 5785 EXPORT_SYMBOL_GPL(ring_buffer_consume); 5786 5787 /** 5788 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 5789 * @buffer: The ring buffer to read from 5790 * @cpu: The cpu buffer to iterate over 5791 * @flags: gfp flags to use for memory allocation 5792 * 5793 * This performs the initial preparations necessary to iterate 5794 * through the buffer. Memory is allocated, buffer resizing 5795 * is disabled, and the iterator pointer is returned to the caller. 5796 * 5797 * After a sequence of ring_buffer_read_prepare calls, the user is 5798 * expected to make at least one call to ring_buffer_read_prepare_sync. 5799 * Afterwards, ring_buffer_read_start is invoked to get things going 5800 * for real. 5801 * 5802 * This overall must be paired with ring_buffer_read_finish. 5803 */ 5804 struct ring_buffer_iter * 5805 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5806 { 5807 struct ring_buffer_per_cpu *cpu_buffer; 5808 struct ring_buffer_iter *iter; 5809 5810 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5811 return NULL; 5812 5813 iter = kzalloc(sizeof(*iter), flags); 5814 if (!iter) 5815 return NULL; 5816 5817 /* Holds the entire event: data and meta data */ 5818 iter->event_size = buffer->subbuf_size; 5819 iter->event = kmalloc(iter->event_size, flags); 5820 if (!iter->event) { 5821 kfree(iter); 5822 return NULL; 5823 } 5824 5825 cpu_buffer = buffer->buffers[cpu]; 5826 5827 iter->cpu_buffer = cpu_buffer; 5828 5829 atomic_inc(&cpu_buffer->resize_disabled); 5830 5831 return iter; 5832 } 5833 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5834 5835 /** 5836 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5837 * 5838 * All previously invoked ring_buffer_read_prepare calls to prepare 5839 * iterators will be synchronized. Afterwards, read_buffer_read_start 5840 * calls on those iterators are allowed. 5841 */ 5842 void 5843 ring_buffer_read_prepare_sync(void) 5844 { 5845 synchronize_rcu(); 5846 } 5847 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5848 5849 /** 5850 * ring_buffer_read_start - start a non consuming read of the buffer 5851 * @iter: The iterator returned by ring_buffer_read_prepare 5852 * 5853 * This finalizes the startup of an iteration through the buffer. 5854 * The iterator comes from a call to ring_buffer_read_prepare and 5855 * an intervening ring_buffer_read_prepare_sync must have been 5856 * performed. 5857 * 5858 * Must be paired with ring_buffer_read_finish. 5859 */ 5860 void 5861 ring_buffer_read_start(struct ring_buffer_iter *iter) 5862 { 5863 struct ring_buffer_per_cpu *cpu_buffer; 5864 unsigned long flags; 5865 5866 if (!iter) 5867 return; 5868 5869 cpu_buffer = iter->cpu_buffer; 5870 5871 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5872 arch_spin_lock(&cpu_buffer->lock); 5873 rb_iter_reset(iter); 5874 arch_spin_unlock(&cpu_buffer->lock); 5875 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5876 } 5877 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5878 5879 /** 5880 * ring_buffer_read_finish - finish reading the iterator of the buffer 5881 * @iter: The iterator retrieved by ring_buffer_start 5882 * 5883 * This re-enables resizing of the buffer, and frees the iterator. 5884 */ 5885 void 5886 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5887 { 5888 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5889 5890 /* Use this opportunity to check the integrity of the ring buffer. */ 5891 rb_check_pages(cpu_buffer); 5892 5893 atomic_dec(&cpu_buffer->resize_disabled); 5894 kfree(iter->event); 5895 kfree(iter); 5896 } 5897 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5898 5899 /** 5900 * ring_buffer_iter_advance - advance the iterator to the next location 5901 * @iter: The ring buffer iterator 5902 * 5903 * Move the location of the iterator such that the next read will 5904 * be the next location of the iterator. 5905 */ 5906 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5907 { 5908 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5909 unsigned long flags; 5910 5911 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5912 5913 rb_advance_iter(iter); 5914 5915 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5916 } 5917 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5918 5919 /** 5920 * ring_buffer_size - return the size of the ring buffer (in bytes) 5921 * @buffer: The ring buffer. 5922 * @cpu: The CPU to get ring buffer size from. 5923 */ 5924 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 5925 { 5926 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5927 return 0; 5928 5929 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages; 5930 } 5931 EXPORT_SYMBOL_GPL(ring_buffer_size); 5932 5933 /** 5934 * ring_buffer_max_event_size - return the max data size of an event 5935 * @buffer: The ring buffer. 5936 * 5937 * Returns the maximum size an event can be. 5938 */ 5939 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer) 5940 { 5941 /* If abs timestamp is requested, events have a timestamp too */ 5942 if (ring_buffer_time_stamp_abs(buffer)) 5943 return buffer->max_data_size - RB_LEN_TIME_EXTEND; 5944 return buffer->max_data_size; 5945 } 5946 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size); 5947 5948 static void rb_clear_buffer_page(struct buffer_page *page) 5949 { 5950 local_set(&page->write, 0); 5951 local_set(&page->entries, 0); 5952 rb_init_page(page->page); 5953 page->read = 0; 5954 } 5955 5956 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 5957 { 5958 struct trace_buffer_meta *meta = cpu_buffer->meta_page; 5959 5960 if (!meta) 5961 return; 5962 5963 meta->reader.read = cpu_buffer->reader_page->read; 5964 meta->reader.id = cpu_buffer->reader_page->id; 5965 meta->reader.lost_events = cpu_buffer->lost_events; 5966 5967 meta->entries = local_read(&cpu_buffer->entries); 5968 meta->overrun = local_read(&cpu_buffer->overrun); 5969 meta->read = cpu_buffer->read; 5970 5971 /* Some archs do not have data cache coherency between kernel and user-space */ 5972 flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page)); 5973 } 5974 5975 static void 5976 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 5977 { 5978 struct buffer_page *page; 5979 5980 rb_head_page_deactivate(cpu_buffer); 5981 5982 cpu_buffer->head_page 5983 = list_entry(cpu_buffer->pages, struct buffer_page, list); 5984 rb_clear_buffer_page(cpu_buffer->head_page); 5985 list_for_each_entry(page, cpu_buffer->pages, list) { 5986 rb_clear_buffer_page(page); 5987 } 5988 5989 cpu_buffer->tail_page = cpu_buffer->head_page; 5990 cpu_buffer->commit_page = cpu_buffer->head_page; 5991 5992 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 5993 INIT_LIST_HEAD(&cpu_buffer->new_pages); 5994 rb_clear_buffer_page(cpu_buffer->reader_page); 5995 5996 local_set(&cpu_buffer->entries_bytes, 0); 5997 local_set(&cpu_buffer->overrun, 0); 5998 local_set(&cpu_buffer->commit_overrun, 0); 5999 local_set(&cpu_buffer->dropped_events, 0); 6000 local_set(&cpu_buffer->entries, 0); 6001 local_set(&cpu_buffer->committing, 0); 6002 local_set(&cpu_buffer->commits, 0); 6003 local_set(&cpu_buffer->pages_touched, 0); 6004 local_set(&cpu_buffer->pages_lost, 0); 6005 local_set(&cpu_buffer->pages_read, 0); 6006 cpu_buffer->last_pages_touch = 0; 6007 cpu_buffer->shortest_full = 0; 6008 cpu_buffer->read = 0; 6009 cpu_buffer->read_bytes = 0; 6010 6011 rb_time_set(&cpu_buffer->write_stamp, 0); 6012 rb_time_set(&cpu_buffer->before_stamp, 0); 6013 6014 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 6015 6016 cpu_buffer->lost_events = 0; 6017 cpu_buffer->last_overrun = 0; 6018 6019 rb_head_page_activate(cpu_buffer); 6020 cpu_buffer->pages_removed = 0; 6021 6022 if (cpu_buffer->mapped) { 6023 rb_update_meta_page(cpu_buffer); 6024 if (cpu_buffer->ring_meta) { 6025 struct ring_buffer_meta *meta = cpu_buffer->ring_meta; 6026 meta->commit_buffer = meta->head_buffer; 6027 } 6028 } 6029 } 6030 6031 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 6032 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 6033 { 6034 unsigned long flags; 6035 6036 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6037 6038 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 6039 goto out; 6040 6041 arch_spin_lock(&cpu_buffer->lock); 6042 6043 rb_reset_cpu(cpu_buffer); 6044 6045 arch_spin_unlock(&cpu_buffer->lock); 6046 6047 out: 6048 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6049 } 6050 6051 /** 6052 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 6053 * @buffer: The ring buffer to reset a per cpu buffer of 6054 * @cpu: The CPU buffer to be reset 6055 */ 6056 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 6057 { 6058 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 6059 struct ring_buffer_meta *meta; 6060 6061 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6062 return; 6063 6064 /* prevent another thread from changing buffer sizes */ 6065 mutex_lock(&buffer->mutex); 6066 6067 atomic_inc(&cpu_buffer->resize_disabled); 6068 atomic_inc(&cpu_buffer->record_disabled); 6069 6070 /* Make sure all commits have finished */ 6071 synchronize_rcu(); 6072 6073 reset_disabled_cpu_buffer(cpu_buffer); 6074 6075 atomic_dec(&cpu_buffer->record_disabled); 6076 atomic_dec(&cpu_buffer->resize_disabled); 6077 6078 /* Make sure persistent meta now uses this buffer's addresses */ 6079 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu); 6080 if (meta) 6081 rb_meta_init_text_addr(meta); 6082 6083 mutex_unlock(&buffer->mutex); 6084 } 6085 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 6086 6087 /* Flag to ensure proper resetting of atomic variables */ 6088 #define RESET_BIT (1 << 30) 6089 6090 /** 6091 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 6092 * @buffer: The ring buffer to reset a per cpu buffer of 6093 */ 6094 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 6095 { 6096 struct ring_buffer_per_cpu *cpu_buffer; 6097 struct ring_buffer_meta *meta; 6098 int cpu; 6099 6100 /* prevent another thread from changing buffer sizes */ 6101 mutex_lock(&buffer->mutex); 6102 6103 for_each_online_buffer_cpu(buffer, cpu) { 6104 cpu_buffer = buffer->buffers[cpu]; 6105 6106 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); 6107 atomic_inc(&cpu_buffer->record_disabled); 6108 } 6109 6110 /* Make sure all commits have finished */ 6111 synchronize_rcu(); 6112 6113 for_each_buffer_cpu(buffer, cpu) { 6114 cpu_buffer = buffer->buffers[cpu]; 6115 6116 /* 6117 * If a CPU came online during the synchronize_rcu(), then 6118 * ignore it. 6119 */ 6120 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) 6121 continue; 6122 6123 reset_disabled_cpu_buffer(cpu_buffer); 6124 6125 /* Make sure persistent meta now uses this buffer's addresses */ 6126 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu); 6127 if (meta) 6128 rb_meta_init_text_addr(meta); 6129 6130 atomic_dec(&cpu_buffer->record_disabled); 6131 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); 6132 } 6133 6134 mutex_unlock(&buffer->mutex); 6135 } 6136 6137 /** 6138 * ring_buffer_reset - reset a ring buffer 6139 * @buffer: The ring buffer to reset all cpu buffers 6140 */ 6141 void ring_buffer_reset(struct trace_buffer *buffer) 6142 { 6143 struct ring_buffer_per_cpu *cpu_buffer; 6144 int cpu; 6145 6146 /* prevent another thread from changing buffer sizes */ 6147 mutex_lock(&buffer->mutex); 6148 6149 for_each_buffer_cpu(buffer, cpu) { 6150 cpu_buffer = buffer->buffers[cpu]; 6151 6152 atomic_inc(&cpu_buffer->resize_disabled); 6153 atomic_inc(&cpu_buffer->record_disabled); 6154 } 6155 6156 /* Make sure all commits have finished */ 6157 synchronize_rcu(); 6158 6159 for_each_buffer_cpu(buffer, cpu) { 6160 cpu_buffer = buffer->buffers[cpu]; 6161 6162 reset_disabled_cpu_buffer(cpu_buffer); 6163 6164 atomic_dec(&cpu_buffer->record_disabled); 6165 atomic_dec(&cpu_buffer->resize_disabled); 6166 } 6167 6168 mutex_unlock(&buffer->mutex); 6169 } 6170 EXPORT_SYMBOL_GPL(ring_buffer_reset); 6171 6172 /** 6173 * ring_buffer_empty - is the ring buffer empty? 6174 * @buffer: The ring buffer to test 6175 */ 6176 bool ring_buffer_empty(struct trace_buffer *buffer) 6177 { 6178 struct ring_buffer_per_cpu *cpu_buffer; 6179 unsigned long flags; 6180 bool dolock; 6181 bool ret; 6182 int cpu; 6183 6184 /* yes this is racy, but if you don't like the race, lock the buffer */ 6185 for_each_buffer_cpu(buffer, cpu) { 6186 cpu_buffer = buffer->buffers[cpu]; 6187 local_irq_save(flags); 6188 dolock = rb_reader_lock(cpu_buffer); 6189 ret = rb_per_cpu_empty(cpu_buffer); 6190 rb_reader_unlock(cpu_buffer, dolock); 6191 local_irq_restore(flags); 6192 6193 if (!ret) 6194 return false; 6195 } 6196 6197 return true; 6198 } 6199 EXPORT_SYMBOL_GPL(ring_buffer_empty); 6200 6201 /** 6202 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 6203 * @buffer: The ring buffer 6204 * @cpu: The CPU buffer to test 6205 */ 6206 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 6207 { 6208 struct ring_buffer_per_cpu *cpu_buffer; 6209 unsigned long flags; 6210 bool dolock; 6211 bool ret; 6212 6213 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6214 return true; 6215 6216 cpu_buffer = buffer->buffers[cpu]; 6217 local_irq_save(flags); 6218 dolock = rb_reader_lock(cpu_buffer); 6219 ret = rb_per_cpu_empty(cpu_buffer); 6220 rb_reader_unlock(cpu_buffer, dolock); 6221 local_irq_restore(flags); 6222 6223 return ret; 6224 } 6225 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 6226 6227 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 6228 /** 6229 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 6230 * @buffer_a: One buffer to swap with 6231 * @buffer_b: The other buffer to swap with 6232 * @cpu: the CPU of the buffers to swap 6233 * 6234 * This function is useful for tracers that want to take a "snapshot" 6235 * of a CPU buffer and has another back up buffer lying around. 6236 * it is expected that the tracer handles the cpu buffer not being 6237 * used at the moment. 6238 */ 6239 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 6240 struct trace_buffer *buffer_b, int cpu) 6241 { 6242 struct ring_buffer_per_cpu *cpu_buffer_a; 6243 struct ring_buffer_per_cpu *cpu_buffer_b; 6244 int ret = -EINVAL; 6245 6246 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 6247 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 6248 goto out; 6249 6250 cpu_buffer_a = buffer_a->buffers[cpu]; 6251 cpu_buffer_b = buffer_b->buffers[cpu]; 6252 6253 /* It's up to the callers to not try to swap mapped buffers */ 6254 if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) { 6255 ret = -EBUSY; 6256 goto out; 6257 } 6258 6259 /* At least make sure the two buffers are somewhat the same */ 6260 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 6261 goto out; 6262 6263 if (buffer_a->subbuf_order != buffer_b->subbuf_order) 6264 goto out; 6265 6266 ret = -EAGAIN; 6267 6268 if (atomic_read(&buffer_a->record_disabled)) 6269 goto out; 6270 6271 if (atomic_read(&buffer_b->record_disabled)) 6272 goto out; 6273 6274 if (atomic_read(&cpu_buffer_a->record_disabled)) 6275 goto out; 6276 6277 if (atomic_read(&cpu_buffer_b->record_disabled)) 6278 goto out; 6279 6280 /* 6281 * We can't do a synchronize_rcu here because this 6282 * function can be called in atomic context. 6283 * Normally this will be called from the same CPU as cpu. 6284 * If not it's up to the caller to protect this. 6285 */ 6286 atomic_inc(&cpu_buffer_a->record_disabled); 6287 atomic_inc(&cpu_buffer_b->record_disabled); 6288 6289 ret = -EBUSY; 6290 if (local_read(&cpu_buffer_a->committing)) 6291 goto out_dec; 6292 if (local_read(&cpu_buffer_b->committing)) 6293 goto out_dec; 6294 6295 /* 6296 * When resize is in progress, we cannot swap it because 6297 * it will mess the state of the cpu buffer. 6298 */ 6299 if (atomic_read(&buffer_a->resizing)) 6300 goto out_dec; 6301 if (atomic_read(&buffer_b->resizing)) 6302 goto out_dec; 6303 6304 buffer_a->buffers[cpu] = cpu_buffer_b; 6305 buffer_b->buffers[cpu] = cpu_buffer_a; 6306 6307 cpu_buffer_b->buffer = buffer_a; 6308 cpu_buffer_a->buffer = buffer_b; 6309 6310 ret = 0; 6311 6312 out_dec: 6313 atomic_dec(&cpu_buffer_a->record_disabled); 6314 atomic_dec(&cpu_buffer_b->record_disabled); 6315 out: 6316 return ret; 6317 } 6318 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 6319 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 6320 6321 /** 6322 * ring_buffer_alloc_read_page - allocate a page to read from buffer 6323 * @buffer: the buffer to allocate for. 6324 * @cpu: the cpu buffer to allocate. 6325 * 6326 * This function is used in conjunction with ring_buffer_read_page. 6327 * When reading a full page from the ring buffer, these functions 6328 * can be used to speed up the process. The calling function should 6329 * allocate a few pages first with this function. Then when it 6330 * needs to get pages from the ring buffer, it passes the result 6331 * of this function into ring_buffer_read_page, which will swap 6332 * the page that was allocated, with the read page of the buffer. 6333 * 6334 * Returns: 6335 * The page allocated, or ERR_PTR 6336 */ 6337 struct buffer_data_read_page * 6338 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 6339 { 6340 struct ring_buffer_per_cpu *cpu_buffer; 6341 struct buffer_data_read_page *bpage = NULL; 6342 unsigned long flags; 6343 struct page *page; 6344 6345 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6346 return ERR_PTR(-ENODEV); 6347 6348 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL); 6349 if (!bpage) 6350 return ERR_PTR(-ENOMEM); 6351 6352 bpage->order = buffer->subbuf_order; 6353 cpu_buffer = buffer->buffers[cpu]; 6354 local_irq_save(flags); 6355 arch_spin_lock(&cpu_buffer->lock); 6356 6357 if (cpu_buffer->free_page) { 6358 bpage->data = cpu_buffer->free_page; 6359 cpu_buffer->free_page = NULL; 6360 } 6361 6362 arch_spin_unlock(&cpu_buffer->lock); 6363 local_irq_restore(flags); 6364 6365 if (bpage->data) 6366 goto out; 6367 6368 page = alloc_pages_node(cpu_to_node(cpu), 6369 GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO, 6370 cpu_buffer->buffer->subbuf_order); 6371 if (!page) { 6372 kfree(bpage); 6373 return ERR_PTR(-ENOMEM); 6374 } 6375 6376 bpage->data = page_address(page); 6377 6378 out: 6379 rb_init_page(bpage->data); 6380 6381 return bpage; 6382 } 6383 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 6384 6385 /** 6386 * ring_buffer_free_read_page - free an allocated read page 6387 * @buffer: the buffer the page was allocate for 6388 * @cpu: the cpu buffer the page came from 6389 * @data_page: the page to free 6390 * 6391 * Free a page allocated from ring_buffer_alloc_read_page. 6392 */ 6393 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, 6394 struct buffer_data_read_page *data_page) 6395 { 6396 struct ring_buffer_per_cpu *cpu_buffer; 6397 struct buffer_data_page *bpage = data_page->data; 6398 struct page *page = virt_to_page(bpage); 6399 unsigned long flags; 6400 6401 if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) 6402 return; 6403 6404 cpu_buffer = buffer->buffers[cpu]; 6405 6406 /* 6407 * If the page is still in use someplace else, or order of the page 6408 * is different from the subbuffer order of the buffer - 6409 * we can't reuse it 6410 */ 6411 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order) 6412 goto out; 6413 6414 local_irq_save(flags); 6415 arch_spin_lock(&cpu_buffer->lock); 6416 6417 if (!cpu_buffer->free_page) { 6418 cpu_buffer->free_page = bpage; 6419 bpage = NULL; 6420 } 6421 6422 arch_spin_unlock(&cpu_buffer->lock); 6423 local_irq_restore(flags); 6424 6425 out: 6426 free_pages((unsigned long)bpage, data_page->order); 6427 kfree(data_page); 6428 } 6429 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 6430 6431 /** 6432 * ring_buffer_read_page - extract a page from the ring buffer 6433 * @buffer: buffer to extract from 6434 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 6435 * @len: amount to extract 6436 * @cpu: the cpu of the buffer to extract 6437 * @full: should the extraction only happen when the page is full. 6438 * 6439 * This function will pull out a page from the ring buffer and consume it. 6440 * @data_page must be the address of the variable that was returned 6441 * from ring_buffer_alloc_read_page. This is because the page might be used 6442 * to swap with a page in the ring buffer. 6443 * 6444 * for example: 6445 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 6446 * if (IS_ERR(rpage)) 6447 * return PTR_ERR(rpage); 6448 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0); 6449 * if (ret >= 0) 6450 * process_page(ring_buffer_read_page_data(rpage), ret); 6451 * ring_buffer_free_read_page(buffer, cpu, rpage); 6452 * 6453 * When @full is set, the function will not return true unless 6454 * the writer is off the reader page. 6455 * 6456 * Note: it is up to the calling functions to handle sleeps and wakeups. 6457 * The ring buffer can be used anywhere in the kernel and can not 6458 * blindly call wake_up. The layer that uses the ring buffer must be 6459 * responsible for that. 6460 * 6461 * Returns: 6462 * >=0 if data has been transferred, returns the offset of consumed data. 6463 * <0 if no data has been transferred. 6464 */ 6465 int ring_buffer_read_page(struct trace_buffer *buffer, 6466 struct buffer_data_read_page *data_page, 6467 size_t len, int cpu, int full) 6468 { 6469 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 6470 struct ring_buffer_event *event; 6471 struct buffer_data_page *bpage; 6472 struct buffer_page *reader; 6473 unsigned long missed_events; 6474 unsigned long flags; 6475 unsigned int commit; 6476 unsigned int read; 6477 u64 save_timestamp; 6478 int ret = -1; 6479 6480 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6481 goto out; 6482 6483 /* 6484 * If len is not big enough to hold the page header, then 6485 * we can not copy anything. 6486 */ 6487 if (len <= BUF_PAGE_HDR_SIZE) 6488 goto out; 6489 6490 len -= BUF_PAGE_HDR_SIZE; 6491 6492 if (!data_page || !data_page->data) 6493 goto out; 6494 if (data_page->order != buffer->subbuf_order) 6495 goto out; 6496 6497 bpage = data_page->data; 6498 if (!bpage) 6499 goto out; 6500 6501 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6502 6503 reader = rb_get_reader_page(cpu_buffer); 6504 if (!reader) 6505 goto out_unlock; 6506 6507 event = rb_reader_event(cpu_buffer); 6508 6509 read = reader->read; 6510 commit = rb_page_size(reader); 6511 6512 /* Check if any events were dropped */ 6513 missed_events = cpu_buffer->lost_events; 6514 6515 /* 6516 * If this page has been partially read or 6517 * if len is not big enough to read the rest of the page or 6518 * a writer is still on the page, then 6519 * we must copy the data from the page to the buffer. 6520 * Otherwise, we can simply swap the page with the one passed in. 6521 */ 6522 if (read || (len < (commit - read)) || 6523 cpu_buffer->reader_page == cpu_buffer->commit_page || 6524 cpu_buffer->mapped) { 6525 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 6526 unsigned int rpos = read; 6527 unsigned int pos = 0; 6528 unsigned int size; 6529 6530 /* 6531 * If a full page is expected, this can still be returned 6532 * if there's been a previous partial read and the 6533 * rest of the page can be read and the commit page is off 6534 * the reader page. 6535 */ 6536 if (full && 6537 (!read || (len < (commit - read)) || 6538 cpu_buffer->reader_page == cpu_buffer->commit_page)) 6539 goto out_unlock; 6540 6541 if (len > (commit - read)) 6542 len = (commit - read); 6543 6544 /* Always keep the time extend and data together */ 6545 size = rb_event_ts_length(event); 6546 6547 if (len < size) 6548 goto out_unlock; 6549 6550 /* save the current timestamp, since the user will need it */ 6551 save_timestamp = cpu_buffer->read_stamp; 6552 6553 /* Need to copy one event at a time */ 6554 do { 6555 /* We need the size of one event, because 6556 * rb_advance_reader only advances by one event, 6557 * whereas rb_event_ts_length may include the size of 6558 * one or two events. 6559 * We have already ensured there's enough space if this 6560 * is a time extend. */ 6561 size = rb_event_length(event); 6562 memcpy(bpage->data + pos, rpage->data + rpos, size); 6563 6564 len -= size; 6565 6566 rb_advance_reader(cpu_buffer); 6567 rpos = reader->read; 6568 pos += size; 6569 6570 if (rpos >= commit) 6571 break; 6572 6573 event = rb_reader_event(cpu_buffer); 6574 /* Always keep the time extend and data together */ 6575 size = rb_event_ts_length(event); 6576 } while (len >= size); 6577 6578 /* update bpage */ 6579 local_set(&bpage->commit, pos); 6580 bpage->time_stamp = save_timestamp; 6581 6582 /* we copied everything to the beginning */ 6583 read = 0; 6584 } else { 6585 /* update the entry counter */ 6586 cpu_buffer->read += rb_page_entries(reader); 6587 cpu_buffer->read_bytes += rb_page_size(reader); 6588 6589 /* swap the pages */ 6590 rb_init_page(bpage); 6591 bpage = reader->page; 6592 reader->page = data_page->data; 6593 local_set(&reader->write, 0); 6594 local_set(&reader->entries, 0); 6595 reader->read = 0; 6596 data_page->data = bpage; 6597 6598 /* 6599 * Use the real_end for the data size, 6600 * This gives us a chance to store the lost events 6601 * on the page. 6602 */ 6603 if (reader->real_end) 6604 local_set(&bpage->commit, reader->real_end); 6605 } 6606 ret = read; 6607 6608 cpu_buffer->lost_events = 0; 6609 6610 commit = local_read(&bpage->commit); 6611 /* 6612 * Set a flag in the commit field if we lost events 6613 */ 6614 if (missed_events) { 6615 /* If there is room at the end of the page to save the 6616 * missed events, then record it there. 6617 */ 6618 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 6619 memcpy(&bpage->data[commit], &missed_events, 6620 sizeof(missed_events)); 6621 local_add(RB_MISSED_STORED, &bpage->commit); 6622 commit += sizeof(missed_events); 6623 } 6624 local_add(RB_MISSED_EVENTS, &bpage->commit); 6625 } 6626 6627 /* 6628 * This page may be off to user land. Zero it out here. 6629 */ 6630 if (commit < buffer->subbuf_size) 6631 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit); 6632 6633 out_unlock: 6634 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6635 6636 out: 6637 return ret; 6638 } 6639 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 6640 6641 /** 6642 * ring_buffer_read_page_data - get pointer to the data in the page. 6643 * @page: the page to get the data from 6644 * 6645 * Returns pointer to the actual data in this page. 6646 */ 6647 void *ring_buffer_read_page_data(struct buffer_data_read_page *page) 6648 { 6649 return page->data; 6650 } 6651 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data); 6652 6653 /** 6654 * ring_buffer_subbuf_size_get - get size of the sub buffer. 6655 * @buffer: the buffer to get the sub buffer size from 6656 * 6657 * Returns size of the sub buffer, in bytes. 6658 */ 6659 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer) 6660 { 6661 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 6662 } 6663 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get); 6664 6665 /** 6666 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page. 6667 * @buffer: The ring_buffer to get the system sub page order from 6668 * 6669 * By default, one ring buffer sub page equals to one system page. This parameter 6670 * is configurable, per ring buffer. The size of the ring buffer sub page can be 6671 * extended, but must be an order of system page size. 6672 * 6673 * Returns the order of buffer sub page size, in system pages: 6674 * 0 means the sub buffer size is 1 system page and so forth. 6675 * In case of an error < 0 is returned. 6676 */ 6677 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer) 6678 { 6679 if (!buffer) 6680 return -EINVAL; 6681 6682 return buffer->subbuf_order; 6683 } 6684 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get); 6685 6686 /** 6687 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page. 6688 * @buffer: The ring_buffer to set the new page size. 6689 * @order: Order of the system pages in one sub buffer page 6690 * 6691 * By default, one ring buffer pages equals to one system page. This API can be 6692 * used to set new size of the ring buffer page. The size must be order of 6693 * system page size, that's why the input parameter @order is the order of 6694 * system pages that are allocated for one ring buffer page: 6695 * 0 - 1 system page 6696 * 1 - 2 system pages 6697 * 3 - 4 system pages 6698 * ... 6699 * 6700 * Returns 0 on success or < 0 in case of an error. 6701 */ 6702 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order) 6703 { 6704 struct ring_buffer_per_cpu *cpu_buffer; 6705 struct buffer_page *bpage, *tmp; 6706 int old_order, old_size; 6707 int nr_pages; 6708 int psize; 6709 int err; 6710 int cpu; 6711 6712 if (!buffer || order < 0) 6713 return -EINVAL; 6714 6715 if (buffer->subbuf_order == order) 6716 return 0; 6717 6718 psize = (1 << order) * PAGE_SIZE; 6719 if (psize <= BUF_PAGE_HDR_SIZE) 6720 return -EINVAL; 6721 6722 /* Size of a subbuf cannot be greater than the write counter */ 6723 if (psize > RB_WRITE_MASK + 1) 6724 return -EINVAL; 6725 6726 old_order = buffer->subbuf_order; 6727 old_size = buffer->subbuf_size; 6728 6729 /* prevent another thread from changing buffer sizes */ 6730 mutex_lock(&buffer->mutex); 6731 atomic_inc(&buffer->record_disabled); 6732 6733 /* Make sure all commits have finished */ 6734 synchronize_rcu(); 6735 6736 buffer->subbuf_order = order; 6737 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE; 6738 6739 /* Make sure all new buffers are allocated, before deleting the old ones */ 6740 for_each_buffer_cpu(buffer, cpu) { 6741 6742 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6743 continue; 6744 6745 cpu_buffer = buffer->buffers[cpu]; 6746 6747 if (cpu_buffer->mapped) { 6748 err = -EBUSY; 6749 goto error; 6750 } 6751 6752 /* Update the number of pages to match the new size */ 6753 nr_pages = old_size * buffer->buffers[cpu]->nr_pages; 6754 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size); 6755 6756 /* we need a minimum of two pages */ 6757 if (nr_pages < 2) 6758 nr_pages = 2; 6759 6760 cpu_buffer->nr_pages_to_update = nr_pages; 6761 6762 /* Include the reader page */ 6763 nr_pages++; 6764 6765 /* Allocate the new size buffer */ 6766 INIT_LIST_HEAD(&cpu_buffer->new_pages); 6767 if (__rb_allocate_pages(cpu_buffer, nr_pages, 6768 &cpu_buffer->new_pages)) { 6769 /* not enough memory for new pages */ 6770 err = -ENOMEM; 6771 goto error; 6772 } 6773 } 6774 6775 for_each_buffer_cpu(buffer, cpu) { 6776 struct buffer_data_page *old_free_data_page; 6777 struct list_head old_pages; 6778 unsigned long flags; 6779 6780 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6781 continue; 6782 6783 cpu_buffer = buffer->buffers[cpu]; 6784 6785 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6786 6787 /* Clear the head bit to make the link list normal to read */ 6788 rb_head_page_deactivate(cpu_buffer); 6789 6790 /* 6791 * Collect buffers from the cpu_buffer pages list and the 6792 * reader_page on old_pages, so they can be freed later when not 6793 * under a spinlock. The pages list is a linked list with no 6794 * head, adding old_pages turns it into a regular list with 6795 * old_pages being the head. 6796 */ 6797 list_add(&old_pages, cpu_buffer->pages); 6798 list_add(&cpu_buffer->reader_page->list, &old_pages); 6799 6800 /* One page was allocated for the reader page */ 6801 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next, 6802 struct buffer_page, list); 6803 list_del_init(&cpu_buffer->reader_page->list); 6804 6805 /* Install the new pages, remove the head from the list */ 6806 cpu_buffer->pages = cpu_buffer->new_pages.next; 6807 list_del_init(&cpu_buffer->new_pages); 6808 cpu_buffer->cnt++; 6809 6810 cpu_buffer->head_page 6811 = list_entry(cpu_buffer->pages, struct buffer_page, list); 6812 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 6813 6814 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update; 6815 cpu_buffer->nr_pages_to_update = 0; 6816 6817 old_free_data_page = cpu_buffer->free_page; 6818 cpu_buffer->free_page = NULL; 6819 6820 rb_head_page_activate(cpu_buffer); 6821 6822 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6823 6824 /* Free old sub buffers */ 6825 list_for_each_entry_safe(bpage, tmp, &old_pages, list) { 6826 list_del_init(&bpage->list); 6827 free_buffer_page(bpage); 6828 } 6829 free_pages((unsigned long)old_free_data_page, old_order); 6830 6831 rb_check_pages(cpu_buffer); 6832 } 6833 6834 atomic_dec(&buffer->record_disabled); 6835 mutex_unlock(&buffer->mutex); 6836 6837 return 0; 6838 6839 error: 6840 buffer->subbuf_order = old_order; 6841 buffer->subbuf_size = old_size; 6842 6843 atomic_dec(&buffer->record_disabled); 6844 mutex_unlock(&buffer->mutex); 6845 6846 for_each_buffer_cpu(buffer, cpu) { 6847 cpu_buffer = buffer->buffers[cpu]; 6848 6849 if (!cpu_buffer->nr_pages_to_update) 6850 continue; 6851 6852 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) { 6853 list_del_init(&bpage->list); 6854 free_buffer_page(bpage); 6855 } 6856 } 6857 6858 return err; 6859 } 6860 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set); 6861 6862 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 6863 { 6864 struct page *page; 6865 6866 if (cpu_buffer->meta_page) 6867 return 0; 6868 6869 page = alloc_page(GFP_USER | __GFP_ZERO); 6870 if (!page) 6871 return -ENOMEM; 6872 6873 cpu_buffer->meta_page = page_to_virt(page); 6874 6875 return 0; 6876 } 6877 6878 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 6879 { 6880 unsigned long addr = (unsigned long)cpu_buffer->meta_page; 6881 6882 free_page(addr); 6883 cpu_buffer->meta_page = NULL; 6884 } 6885 6886 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer, 6887 unsigned long *subbuf_ids) 6888 { 6889 struct trace_buffer_meta *meta = cpu_buffer->meta_page; 6890 unsigned int nr_subbufs = cpu_buffer->nr_pages + 1; 6891 struct buffer_page *first_subbuf, *subbuf; 6892 int id = 0; 6893 6894 subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page; 6895 cpu_buffer->reader_page->id = id++; 6896 6897 first_subbuf = subbuf = rb_set_head_page(cpu_buffer); 6898 do { 6899 if (WARN_ON(id >= nr_subbufs)) 6900 break; 6901 6902 subbuf_ids[id] = (unsigned long)subbuf->page; 6903 subbuf->id = id; 6904 6905 rb_inc_page(&subbuf); 6906 id++; 6907 } while (subbuf != first_subbuf); 6908 6909 /* install subbuf ID to kern VA translation */ 6910 cpu_buffer->subbuf_ids = subbuf_ids; 6911 6912 meta->meta_struct_len = sizeof(*meta); 6913 meta->nr_subbufs = nr_subbufs; 6914 meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 6915 meta->meta_page_size = meta->subbuf_size; 6916 6917 rb_update_meta_page(cpu_buffer); 6918 } 6919 6920 static struct ring_buffer_per_cpu * 6921 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu) 6922 { 6923 struct ring_buffer_per_cpu *cpu_buffer; 6924 6925 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6926 return ERR_PTR(-EINVAL); 6927 6928 cpu_buffer = buffer->buffers[cpu]; 6929 6930 mutex_lock(&cpu_buffer->mapping_lock); 6931 6932 if (!cpu_buffer->user_mapped) { 6933 mutex_unlock(&cpu_buffer->mapping_lock); 6934 return ERR_PTR(-ENODEV); 6935 } 6936 6937 return cpu_buffer; 6938 } 6939 6940 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer) 6941 { 6942 mutex_unlock(&cpu_buffer->mapping_lock); 6943 } 6944 6945 /* 6946 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need 6947 * to be set-up or torn-down. 6948 */ 6949 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer, 6950 bool inc) 6951 { 6952 unsigned long flags; 6953 6954 lockdep_assert_held(&cpu_buffer->mapping_lock); 6955 6956 /* mapped is always greater or equal to user_mapped */ 6957 if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped)) 6958 return -EINVAL; 6959 6960 if (inc && cpu_buffer->mapped == UINT_MAX) 6961 return -EBUSY; 6962 6963 if (WARN_ON(!inc && cpu_buffer->user_mapped == 0)) 6964 return -EINVAL; 6965 6966 mutex_lock(&cpu_buffer->buffer->mutex); 6967 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6968 6969 if (inc) { 6970 cpu_buffer->user_mapped++; 6971 cpu_buffer->mapped++; 6972 } else { 6973 cpu_buffer->user_mapped--; 6974 cpu_buffer->mapped--; 6975 } 6976 6977 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6978 mutex_unlock(&cpu_buffer->buffer->mutex); 6979 6980 return 0; 6981 } 6982 6983 /* 6984 * +--------------+ pgoff == 0 6985 * | meta page | 6986 * +--------------+ pgoff == 1 6987 * | subbuffer 0 | 6988 * | | 6989 * +--------------+ pgoff == (1 + (1 << subbuf_order)) 6990 * | subbuffer 1 | 6991 * | | 6992 * ... 6993 */ 6994 #ifdef CONFIG_MMU 6995 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer, 6996 struct vm_area_struct *vma) 6997 { 6998 unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff; 6999 unsigned int subbuf_pages, subbuf_order; 7000 struct page **pages; 7001 int p = 0, s = 0; 7002 int err; 7003 7004 /* Refuse MP_PRIVATE or writable mappings */ 7005 if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC || 7006 !(vma->vm_flags & VM_MAYSHARE)) 7007 return -EPERM; 7008 7009 subbuf_order = cpu_buffer->buffer->subbuf_order; 7010 subbuf_pages = 1 << subbuf_order; 7011 7012 if (subbuf_order && pgoff % subbuf_pages) 7013 return -EINVAL; 7014 7015 /* 7016 * Make sure the mapping cannot become writable later. Also tell the VM 7017 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND). 7018 */ 7019 vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP, 7020 VM_MAYWRITE); 7021 7022 lockdep_assert_held(&cpu_buffer->mapping_lock); 7023 7024 nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */ 7025 nr_pages = ((nr_subbufs + 1) << subbuf_order) - pgoff; /* + meta-page */ 7026 7027 nr_vma_pages = vma_pages(vma); 7028 if (!nr_vma_pages || nr_vma_pages > nr_pages) 7029 return -EINVAL; 7030 7031 nr_pages = nr_vma_pages; 7032 7033 pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL); 7034 if (!pages) 7035 return -ENOMEM; 7036 7037 if (!pgoff) { 7038 unsigned long meta_page_padding; 7039 7040 pages[p++] = virt_to_page(cpu_buffer->meta_page); 7041 7042 /* 7043 * Pad with the zero-page to align the meta-page with the 7044 * sub-buffers. 7045 */ 7046 meta_page_padding = subbuf_pages - 1; 7047 while (meta_page_padding-- && p < nr_pages) { 7048 unsigned long __maybe_unused zero_addr = 7049 vma->vm_start + (PAGE_SIZE * p); 7050 7051 pages[p++] = ZERO_PAGE(zero_addr); 7052 } 7053 } else { 7054 /* Skip the meta-page */ 7055 pgoff -= subbuf_pages; 7056 7057 s += pgoff / subbuf_pages; 7058 } 7059 7060 while (p < nr_pages) { 7061 struct page *page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]); 7062 int off = 0; 7063 7064 if (WARN_ON_ONCE(s >= nr_subbufs)) { 7065 err = -EINVAL; 7066 goto out; 7067 } 7068 7069 for (; off < (1 << (subbuf_order)); off++, page++) { 7070 if (p >= nr_pages) 7071 break; 7072 7073 pages[p++] = page; 7074 } 7075 s++; 7076 } 7077 7078 err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages); 7079 7080 out: 7081 kfree(pages); 7082 7083 return err; 7084 } 7085 #else 7086 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer, 7087 struct vm_area_struct *vma) 7088 { 7089 return -EOPNOTSUPP; 7090 } 7091 #endif 7092 7093 int ring_buffer_map(struct trace_buffer *buffer, int cpu, 7094 struct vm_area_struct *vma) 7095 { 7096 struct ring_buffer_per_cpu *cpu_buffer; 7097 unsigned long flags, *subbuf_ids; 7098 int err = 0; 7099 7100 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 7101 return -EINVAL; 7102 7103 cpu_buffer = buffer->buffers[cpu]; 7104 7105 mutex_lock(&cpu_buffer->mapping_lock); 7106 7107 if (cpu_buffer->user_mapped) { 7108 err = __rb_map_vma(cpu_buffer, vma); 7109 if (!err) 7110 err = __rb_inc_dec_mapped(cpu_buffer, true); 7111 mutex_unlock(&cpu_buffer->mapping_lock); 7112 return err; 7113 } 7114 7115 /* prevent another thread from changing buffer/sub-buffer sizes */ 7116 mutex_lock(&buffer->mutex); 7117 7118 err = rb_alloc_meta_page(cpu_buffer); 7119 if (err) 7120 goto unlock; 7121 7122 /* subbuf_ids include the reader while nr_pages does not */ 7123 subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL); 7124 if (!subbuf_ids) { 7125 rb_free_meta_page(cpu_buffer); 7126 err = -ENOMEM; 7127 goto unlock; 7128 } 7129 7130 atomic_inc(&cpu_buffer->resize_disabled); 7131 7132 /* 7133 * Lock all readers to block any subbuf swap until the subbuf IDs are 7134 * assigned. 7135 */ 7136 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7137 rb_setup_ids_meta_page(cpu_buffer, subbuf_ids); 7138 7139 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7140 7141 err = __rb_map_vma(cpu_buffer, vma); 7142 if (!err) { 7143 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7144 /* This is the first time it is mapped by user */ 7145 cpu_buffer->mapped++; 7146 cpu_buffer->user_mapped = 1; 7147 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7148 } else { 7149 kfree(cpu_buffer->subbuf_ids); 7150 cpu_buffer->subbuf_ids = NULL; 7151 rb_free_meta_page(cpu_buffer); 7152 } 7153 7154 unlock: 7155 mutex_unlock(&buffer->mutex); 7156 mutex_unlock(&cpu_buffer->mapping_lock); 7157 7158 return err; 7159 } 7160 7161 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu) 7162 { 7163 struct ring_buffer_per_cpu *cpu_buffer; 7164 unsigned long flags; 7165 int err = 0; 7166 7167 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 7168 return -EINVAL; 7169 7170 cpu_buffer = buffer->buffers[cpu]; 7171 7172 mutex_lock(&cpu_buffer->mapping_lock); 7173 7174 if (!cpu_buffer->user_mapped) { 7175 err = -ENODEV; 7176 goto out; 7177 } else if (cpu_buffer->user_mapped > 1) { 7178 __rb_inc_dec_mapped(cpu_buffer, false); 7179 goto out; 7180 } 7181 7182 mutex_lock(&buffer->mutex); 7183 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7184 7185 /* This is the last user space mapping */ 7186 if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped)) 7187 cpu_buffer->mapped--; 7188 cpu_buffer->user_mapped = 0; 7189 7190 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7191 7192 kfree(cpu_buffer->subbuf_ids); 7193 cpu_buffer->subbuf_ids = NULL; 7194 rb_free_meta_page(cpu_buffer); 7195 atomic_dec(&cpu_buffer->resize_disabled); 7196 7197 mutex_unlock(&buffer->mutex); 7198 7199 out: 7200 mutex_unlock(&cpu_buffer->mapping_lock); 7201 7202 return err; 7203 } 7204 7205 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu) 7206 { 7207 struct ring_buffer_per_cpu *cpu_buffer; 7208 struct buffer_page *reader; 7209 unsigned long missed_events; 7210 unsigned long reader_size; 7211 unsigned long flags; 7212 7213 cpu_buffer = rb_get_mapped_buffer(buffer, cpu); 7214 if (IS_ERR(cpu_buffer)) 7215 return (int)PTR_ERR(cpu_buffer); 7216 7217 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7218 7219 consume: 7220 if (rb_per_cpu_empty(cpu_buffer)) 7221 goto out; 7222 7223 reader_size = rb_page_size(cpu_buffer->reader_page); 7224 7225 /* 7226 * There are data to be read on the current reader page, we can 7227 * return to the caller. But before that, we assume the latter will read 7228 * everything. Let's update the kernel reader accordingly. 7229 */ 7230 if (cpu_buffer->reader_page->read < reader_size) { 7231 while (cpu_buffer->reader_page->read < reader_size) 7232 rb_advance_reader(cpu_buffer); 7233 goto out; 7234 } 7235 7236 reader = rb_get_reader_page(cpu_buffer); 7237 if (WARN_ON(!reader)) 7238 goto out; 7239 7240 /* Check if any events were dropped */ 7241 missed_events = cpu_buffer->lost_events; 7242 7243 if (cpu_buffer->reader_page != cpu_buffer->commit_page) { 7244 if (missed_events) { 7245 struct buffer_data_page *bpage = reader->page; 7246 unsigned int commit; 7247 /* 7248 * Use the real_end for the data size, 7249 * This gives us a chance to store the lost events 7250 * on the page. 7251 */ 7252 if (reader->real_end) 7253 local_set(&bpage->commit, reader->real_end); 7254 /* 7255 * If there is room at the end of the page to save the 7256 * missed events, then record it there. 7257 */ 7258 commit = rb_page_size(reader); 7259 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 7260 memcpy(&bpage->data[commit], &missed_events, 7261 sizeof(missed_events)); 7262 local_add(RB_MISSED_STORED, &bpage->commit); 7263 } 7264 local_add(RB_MISSED_EVENTS, &bpage->commit); 7265 } 7266 } else { 7267 /* 7268 * There really shouldn't be any missed events if the commit 7269 * is on the reader page. 7270 */ 7271 WARN_ON_ONCE(missed_events); 7272 } 7273 7274 cpu_buffer->lost_events = 0; 7275 7276 goto consume; 7277 7278 out: 7279 /* Some archs do not have data cache coherency between kernel and user-space */ 7280 flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page)); 7281 7282 rb_update_meta_page(cpu_buffer); 7283 7284 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7285 rb_put_mapped_buffer(cpu_buffer); 7286 7287 return 0; 7288 } 7289 7290 /* 7291 * We only allocate new buffers, never free them if the CPU goes down. 7292 * If we were to free the buffer, then the user would lose any trace that was in 7293 * the buffer. 7294 */ 7295 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 7296 { 7297 struct trace_buffer *buffer; 7298 long nr_pages_same; 7299 int cpu_i; 7300 unsigned long nr_pages; 7301 7302 buffer = container_of(node, struct trace_buffer, node); 7303 if (cpumask_test_cpu(cpu, buffer->cpumask)) 7304 return 0; 7305 7306 nr_pages = 0; 7307 nr_pages_same = 1; 7308 /* check if all cpu sizes are same */ 7309 for_each_buffer_cpu(buffer, cpu_i) { 7310 /* fill in the size from first enabled cpu */ 7311 if (nr_pages == 0) 7312 nr_pages = buffer->buffers[cpu_i]->nr_pages; 7313 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 7314 nr_pages_same = 0; 7315 break; 7316 } 7317 } 7318 /* allocate minimum pages, user can later expand it */ 7319 if (!nr_pages_same) 7320 nr_pages = 2; 7321 buffer->buffers[cpu] = 7322 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 7323 if (!buffer->buffers[cpu]) { 7324 WARN(1, "failed to allocate ring buffer on CPU %u\n", 7325 cpu); 7326 return -ENOMEM; 7327 } 7328 smp_wmb(); 7329 cpumask_set_cpu(cpu, buffer->cpumask); 7330 return 0; 7331 } 7332 7333 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 7334 /* 7335 * This is a basic integrity check of the ring buffer. 7336 * Late in the boot cycle this test will run when configured in. 7337 * It will kick off a thread per CPU that will go into a loop 7338 * writing to the per cpu ring buffer various sizes of data. 7339 * Some of the data will be large items, some small. 7340 * 7341 * Another thread is created that goes into a spin, sending out 7342 * IPIs to the other CPUs to also write into the ring buffer. 7343 * this is to test the nesting ability of the buffer. 7344 * 7345 * Basic stats are recorded and reported. If something in the 7346 * ring buffer should happen that's not expected, a big warning 7347 * is displayed and all ring buffers are disabled. 7348 */ 7349 static struct task_struct *rb_threads[NR_CPUS] __initdata; 7350 7351 struct rb_test_data { 7352 struct trace_buffer *buffer; 7353 unsigned long events; 7354 unsigned long bytes_written; 7355 unsigned long bytes_alloc; 7356 unsigned long bytes_dropped; 7357 unsigned long events_nested; 7358 unsigned long bytes_written_nested; 7359 unsigned long bytes_alloc_nested; 7360 unsigned long bytes_dropped_nested; 7361 int min_size_nested; 7362 int max_size_nested; 7363 int max_size; 7364 int min_size; 7365 int cpu; 7366 int cnt; 7367 }; 7368 7369 static struct rb_test_data rb_data[NR_CPUS] __initdata; 7370 7371 /* 1 meg per cpu */ 7372 #define RB_TEST_BUFFER_SIZE 1048576 7373 7374 static char rb_string[] __initdata = 7375 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 7376 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 7377 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 7378 7379 static bool rb_test_started __initdata; 7380 7381 struct rb_item { 7382 int size; 7383 char str[]; 7384 }; 7385 7386 static __init int rb_write_something(struct rb_test_data *data, bool nested) 7387 { 7388 struct ring_buffer_event *event; 7389 struct rb_item *item; 7390 bool started; 7391 int event_len; 7392 int size; 7393 int len; 7394 int cnt; 7395 7396 /* Have nested writes different that what is written */ 7397 cnt = data->cnt + (nested ? 27 : 0); 7398 7399 /* Multiply cnt by ~e, to make some unique increment */ 7400 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 7401 7402 len = size + sizeof(struct rb_item); 7403 7404 started = rb_test_started; 7405 /* read rb_test_started before checking buffer enabled */ 7406 smp_rmb(); 7407 7408 event = ring_buffer_lock_reserve(data->buffer, len); 7409 if (!event) { 7410 /* Ignore dropped events before test starts. */ 7411 if (started) { 7412 if (nested) 7413 data->bytes_dropped += len; 7414 else 7415 data->bytes_dropped_nested += len; 7416 } 7417 return len; 7418 } 7419 7420 event_len = ring_buffer_event_length(event); 7421 7422 if (RB_WARN_ON(data->buffer, event_len < len)) 7423 goto out; 7424 7425 item = ring_buffer_event_data(event); 7426 item->size = size; 7427 memcpy(item->str, rb_string, size); 7428 7429 if (nested) { 7430 data->bytes_alloc_nested += event_len; 7431 data->bytes_written_nested += len; 7432 data->events_nested++; 7433 if (!data->min_size_nested || len < data->min_size_nested) 7434 data->min_size_nested = len; 7435 if (len > data->max_size_nested) 7436 data->max_size_nested = len; 7437 } else { 7438 data->bytes_alloc += event_len; 7439 data->bytes_written += len; 7440 data->events++; 7441 if (!data->min_size || len < data->min_size) 7442 data->max_size = len; 7443 if (len > data->max_size) 7444 data->max_size = len; 7445 } 7446 7447 out: 7448 ring_buffer_unlock_commit(data->buffer); 7449 7450 return 0; 7451 } 7452 7453 static __init int rb_test(void *arg) 7454 { 7455 struct rb_test_data *data = arg; 7456 7457 while (!kthread_should_stop()) { 7458 rb_write_something(data, false); 7459 data->cnt++; 7460 7461 set_current_state(TASK_INTERRUPTIBLE); 7462 /* Now sleep between a min of 100-300us and a max of 1ms */ 7463 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 7464 } 7465 7466 return 0; 7467 } 7468 7469 static __init void rb_ipi(void *ignore) 7470 { 7471 struct rb_test_data *data; 7472 int cpu = smp_processor_id(); 7473 7474 data = &rb_data[cpu]; 7475 rb_write_something(data, true); 7476 } 7477 7478 static __init int rb_hammer_test(void *arg) 7479 { 7480 while (!kthread_should_stop()) { 7481 7482 /* Send an IPI to all cpus to write data! */ 7483 smp_call_function(rb_ipi, NULL, 1); 7484 /* No sleep, but for non preempt, let others run */ 7485 schedule(); 7486 } 7487 7488 return 0; 7489 } 7490 7491 static __init int test_ringbuffer(void) 7492 { 7493 struct task_struct *rb_hammer; 7494 struct trace_buffer *buffer; 7495 int cpu; 7496 int ret = 0; 7497 7498 if (security_locked_down(LOCKDOWN_TRACEFS)) { 7499 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 7500 return 0; 7501 } 7502 7503 pr_info("Running ring buffer tests...\n"); 7504 7505 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 7506 if (WARN_ON(!buffer)) 7507 return 0; 7508 7509 /* Disable buffer so that threads can't write to it yet */ 7510 ring_buffer_record_off(buffer); 7511 7512 for_each_online_cpu(cpu) { 7513 rb_data[cpu].buffer = buffer; 7514 rb_data[cpu].cpu = cpu; 7515 rb_data[cpu].cnt = cpu; 7516 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 7517 cpu, "rbtester/%u"); 7518 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 7519 pr_cont("FAILED\n"); 7520 ret = PTR_ERR(rb_threads[cpu]); 7521 goto out_free; 7522 } 7523 } 7524 7525 /* Now create the rb hammer! */ 7526 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 7527 if (WARN_ON(IS_ERR(rb_hammer))) { 7528 pr_cont("FAILED\n"); 7529 ret = PTR_ERR(rb_hammer); 7530 goto out_free; 7531 } 7532 7533 ring_buffer_record_on(buffer); 7534 /* 7535 * Show buffer is enabled before setting rb_test_started. 7536 * Yes there's a small race window where events could be 7537 * dropped and the thread wont catch it. But when a ring 7538 * buffer gets enabled, there will always be some kind of 7539 * delay before other CPUs see it. Thus, we don't care about 7540 * those dropped events. We care about events dropped after 7541 * the threads see that the buffer is active. 7542 */ 7543 smp_wmb(); 7544 rb_test_started = true; 7545 7546 set_current_state(TASK_INTERRUPTIBLE); 7547 /* Just run for 10 seconds */; 7548 schedule_timeout(10 * HZ); 7549 7550 kthread_stop(rb_hammer); 7551 7552 out_free: 7553 for_each_online_cpu(cpu) { 7554 if (!rb_threads[cpu]) 7555 break; 7556 kthread_stop(rb_threads[cpu]); 7557 } 7558 if (ret) { 7559 ring_buffer_free(buffer); 7560 return ret; 7561 } 7562 7563 /* Report! */ 7564 pr_info("finished\n"); 7565 for_each_online_cpu(cpu) { 7566 struct ring_buffer_event *event; 7567 struct rb_test_data *data = &rb_data[cpu]; 7568 struct rb_item *item; 7569 unsigned long total_events; 7570 unsigned long total_dropped; 7571 unsigned long total_written; 7572 unsigned long total_alloc; 7573 unsigned long total_read = 0; 7574 unsigned long total_size = 0; 7575 unsigned long total_len = 0; 7576 unsigned long total_lost = 0; 7577 unsigned long lost; 7578 int big_event_size; 7579 int small_event_size; 7580 7581 ret = -1; 7582 7583 total_events = data->events + data->events_nested; 7584 total_written = data->bytes_written + data->bytes_written_nested; 7585 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 7586 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 7587 7588 big_event_size = data->max_size + data->max_size_nested; 7589 small_event_size = data->min_size + data->min_size_nested; 7590 7591 pr_info("CPU %d:\n", cpu); 7592 pr_info(" events: %ld\n", total_events); 7593 pr_info(" dropped bytes: %ld\n", total_dropped); 7594 pr_info(" alloced bytes: %ld\n", total_alloc); 7595 pr_info(" written bytes: %ld\n", total_written); 7596 pr_info(" biggest event: %d\n", big_event_size); 7597 pr_info(" smallest event: %d\n", small_event_size); 7598 7599 if (RB_WARN_ON(buffer, total_dropped)) 7600 break; 7601 7602 ret = 0; 7603 7604 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 7605 total_lost += lost; 7606 item = ring_buffer_event_data(event); 7607 total_len += ring_buffer_event_length(event); 7608 total_size += item->size + sizeof(struct rb_item); 7609 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 7610 pr_info("FAILED!\n"); 7611 pr_info("buffer had: %.*s\n", item->size, item->str); 7612 pr_info("expected: %.*s\n", item->size, rb_string); 7613 RB_WARN_ON(buffer, 1); 7614 ret = -1; 7615 break; 7616 } 7617 total_read++; 7618 } 7619 if (ret) 7620 break; 7621 7622 ret = -1; 7623 7624 pr_info(" read events: %ld\n", total_read); 7625 pr_info(" lost events: %ld\n", total_lost); 7626 pr_info(" total events: %ld\n", total_lost + total_read); 7627 pr_info(" recorded len bytes: %ld\n", total_len); 7628 pr_info(" recorded size bytes: %ld\n", total_size); 7629 if (total_lost) { 7630 pr_info(" With dropped events, record len and size may not match\n" 7631 " alloced and written from above\n"); 7632 } else { 7633 if (RB_WARN_ON(buffer, total_len != total_alloc || 7634 total_size != total_written)) 7635 break; 7636 } 7637 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 7638 break; 7639 7640 ret = 0; 7641 } 7642 if (!ret) 7643 pr_info("Ring buffer PASSED!\n"); 7644 7645 ring_buffer_free(buffer); 7646 return 0; 7647 } 7648 7649 late_initcall(test_ringbuffer); 7650 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 7651