xref: /linux-6.15/kernel/trace/ring_buffer.c (revision 537affea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <[email protected]>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h>	/* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31 
32 #include <asm/local64.h>
33 #include <asm/local.h>
34 
35 #include "trace.h"
36 
37 /*
38  * The "absolute" timestamp in the buffer is only 59 bits.
39  * If a clock has the 5 MSBs set, it needs to be saved and
40  * reinserted.
41  */
42 #define TS_MSB		(0xf8ULL << 56)
43 #define ABS_TS_MASK	(~TS_MSB)
44 
45 static void update_pages_handler(struct work_struct *work);
46 
47 #define RING_BUFFER_META_MAGIC	0xBADFEED
48 
49 struct ring_buffer_meta {
50 	int		magic;
51 	int		struct_size;
52 	unsigned long	text_addr;
53 	unsigned long	data_addr;
54 	unsigned long	first_buffer;
55 	unsigned long	head_buffer;
56 	unsigned long	commit_buffer;
57 	__u32		subbuf_size;
58 	__u32		nr_subbufs;
59 	int		buffers[];
60 };
61 
62 /*
63  * The ring buffer header is special. We must manually up keep it.
64  */
65 int ring_buffer_print_entry_header(struct trace_seq *s)
66 {
67 	trace_seq_puts(s, "# compressed entry header\n");
68 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
69 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
70 	trace_seq_puts(s, "\tarray       :   32 bits\n");
71 	trace_seq_putc(s, '\n');
72 	trace_seq_printf(s, "\tpadding     : type == %d\n",
73 			 RINGBUF_TYPE_PADDING);
74 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
75 			 RINGBUF_TYPE_TIME_EXTEND);
76 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
77 			 RINGBUF_TYPE_TIME_STAMP);
78 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
79 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
80 
81 	return !trace_seq_has_overflowed(s);
82 }
83 
84 /*
85  * The ring buffer is made up of a list of pages. A separate list of pages is
86  * allocated for each CPU. A writer may only write to a buffer that is
87  * associated with the CPU it is currently executing on.  A reader may read
88  * from any per cpu buffer.
89  *
90  * The reader is special. For each per cpu buffer, the reader has its own
91  * reader page. When a reader has read the entire reader page, this reader
92  * page is swapped with another page in the ring buffer.
93  *
94  * Now, as long as the writer is off the reader page, the reader can do what
95  * ever it wants with that page. The writer will never write to that page
96  * again (as long as it is out of the ring buffer).
97  *
98  * Here's some silly ASCII art.
99  *
100  *   +------+
101  *   |reader|          RING BUFFER
102  *   |page  |
103  *   +------+        +---+   +---+   +---+
104  *                   |   |-->|   |-->|   |
105  *                   +---+   +---+   +---+
106  *                     ^               |
107  *                     |               |
108  *                     +---------------+
109  *
110  *
111  *   +------+
112  *   |reader|          RING BUFFER
113  *   |page  |------------------v
114  *   +------+        +---+   +---+   +---+
115  *                   |   |-->|   |-->|   |
116  *                   +---+   +---+   +---+
117  *                     ^               |
118  *                     |               |
119  *                     +---------------+
120  *
121  *
122  *   +------+
123  *   |reader|          RING BUFFER
124  *   |page  |------------------v
125  *   +------+        +---+   +---+   +---+
126  *      ^            |   |-->|   |-->|   |
127  *      |            +---+   +---+   +---+
128  *      |                              |
129  *      |                              |
130  *      +------------------------------+
131  *
132  *
133  *   +------+
134  *   |buffer|          RING BUFFER
135  *   |page  |------------------v
136  *   +------+        +---+   +---+   +---+
137  *      ^            |   |   |   |-->|   |
138  *      |   New      +---+   +---+   +---+
139  *      |  Reader------^               |
140  *      |   page                       |
141  *      +------------------------------+
142  *
143  *
144  * After we make this swap, the reader can hand this page off to the splice
145  * code and be done with it. It can even allocate a new page if it needs to
146  * and swap that into the ring buffer.
147  *
148  * We will be using cmpxchg soon to make all this lockless.
149  *
150  */
151 
152 /* Used for individual buffers (after the counter) */
153 #define RB_BUFFER_OFF		(1 << 20)
154 
155 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
156 
157 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
158 #define RB_ALIGNMENT		4U
159 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
160 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
161 
162 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
163 # define RB_FORCE_8BYTE_ALIGNMENT	0
164 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
165 #else
166 # define RB_FORCE_8BYTE_ALIGNMENT	1
167 # define RB_ARCH_ALIGNMENT		8U
168 #endif
169 
170 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
171 
172 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
173 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
174 
175 enum {
176 	RB_LEN_TIME_EXTEND = 8,
177 	RB_LEN_TIME_STAMP =  8,
178 };
179 
180 #define skip_time_extend(event) \
181 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
182 
183 #define extended_time(event) \
184 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
185 
186 static inline bool rb_null_event(struct ring_buffer_event *event)
187 {
188 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
189 }
190 
191 static void rb_event_set_padding(struct ring_buffer_event *event)
192 {
193 	/* padding has a NULL time_delta */
194 	event->type_len = RINGBUF_TYPE_PADDING;
195 	event->time_delta = 0;
196 }
197 
198 static unsigned
199 rb_event_data_length(struct ring_buffer_event *event)
200 {
201 	unsigned length;
202 
203 	if (event->type_len)
204 		length = event->type_len * RB_ALIGNMENT;
205 	else
206 		length = event->array[0];
207 	return length + RB_EVNT_HDR_SIZE;
208 }
209 
210 /*
211  * Return the length of the given event. Will return
212  * the length of the time extend if the event is a
213  * time extend.
214  */
215 static inline unsigned
216 rb_event_length(struct ring_buffer_event *event)
217 {
218 	switch (event->type_len) {
219 	case RINGBUF_TYPE_PADDING:
220 		if (rb_null_event(event))
221 			/* undefined */
222 			return -1;
223 		return  event->array[0] + RB_EVNT_HDR_SIZE;
224 
225 	case RINGBUF_TYPE_TIME_EXTEND:
226 		return RB_LEN_TIME_EXTEND;
227 
228 	case RINGBUF_TYPE_TIME_STAMP:
229 		return RB_LEN_TIME_STAMP;
230 
231 	case RINGBUF_TYPE_DATA:
232 		return rb_event_data_length(event);
233 	default:
234 		WARN_ON_ONCE(1);
235 	}
236 	/* not hit */
237 	return 0;
238 }
239 
240 /*
241  * Return total length of time extend and data,
242  *   or just the event length for all other events.
243  */
244 static inline unsigned
245 rb_event_ts_length(struct ring_buffer_event *event)
246 {
247 	unsigned len = 0;
248 
249 	if (extended_time(event)) {
250 		/* time extends include the data event after it */
251 		len = RB_LEN_TIME_EXTEND;
252 		event = skip_time_extend(event);
253 	}
254 	return len + rb_event_length(event);
255 }
256 
257 /**
258  * ring_buffer_event_length - return the length of the event
259  * @event: the event to get the length of
260  *
261  * Returns the size of the data load of a data event.
262  * If the event is something other than a data event, it
263  * returns the size of the event itself. With the exception
264  * of a TIME EXTEND, where it still returns the size of the
265  * data load of the data event after it.
266  */
267 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
268 {
269 	unsigned length;
270 
271 	if (extended_time(event))
272 		event = skip_time_extend(event);
273 
274 	length = rb_event_length(event);
275 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
276 		return length;
277 	length -= RB_EVNT_HDR_SIZE;
278 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
279                 length -= sizeof(event->array[0]);
280 	return length;
281 }
282 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
283 
284 /* inline for ring buffer fast paths */
285 static __always_inline void *
286 rb_event_data(struct ring_buffer_event *event)
287 {
288 	if (extended_time(event))
289 		event = skip_time_extend(event);
290 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
291 	/* If length is in len field, then array[0] has the data */
292 	if (event->type_len)
293 		return (void *)&event->array[0];
294 	/* Otherwise length is in array[0] and array[1] has the data */
295 	return (void *)&event->array[1];
296 }
297 
298 /**
299  * ring_buffer_event_data - return the data of the event
300  * @event: the event to get the data from
301  */
302 void *ring_buffer_event_data(struct ring_buffer_event *event)
303 {
304 	return rb_event_data(event);
305 }
306 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
307 
308 #define for_each_buffer_cpu(buffer, cpu)		\
309 	for_each_cpu(cpu, buffer->cpumask)
310 
311 #define for_each_online_buffer_cpu(buffer, cpu)		\
312 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
313 
314 #define TS_SHIFT	27
315 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
316 #define TS_DELTA_TEST	(~TS_MASK)
317 
318 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
319 {
320 	u64 ts;
321 
322 	ts = event->array[0];
323 	ts <<= TS_SHIFT;
324 	ts += event->time_delta;
325 
326 	return ts;
327 }
328 
329 /* Flag when events were overwritten */
330 #define RB_MISSED_EVENTS	(1 << 31)
331 /* Missed count stored at end */
332 #define RB_MISSED_STORED	(1 << 30)
333 
334 #define RB_MISSED_MASK		(3 << 30)
335 
336 struct buffer_data_page {
337 	u64		 time_stamp;	/* page time stamp */
338 	local_t		 commit;	/* write committed index */
339 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
340 };
341 
342 struct buffer_data_read_page {
343 	unsigned		order;	/* order of the page */
344 	struct buffer_data_page	*data;	/* actual data, stored in this page */
345 };
346 
347 /*
348  * Note, the buffer_page list must be first. The buffer pages
349  * are allocated in cache lines, which means that each buffer
350  * page will be at the beginning of a cache line, and thus
351  * the least significant bits will be zero. We use this to
352  * add flags in the list struct pointers, to make the ring buffer
353  * lockless.
354  */
355 struct buffer_page {
356 	struct list_head list;		/* list of buffer pages */
357 	local_t		 write;		/* index for next write */
358 	unsigned	 read;		/* index for next read */
359 	local_t		 entries;	/* entries on this page */
360 	unsigned long	 real_end;	/* real end of data */
361 	unsigned	 order;		/* order of the page */
362 	u32		 id:30;		/* ID for external mapping */
363 	u32		 range:1;	/* Mapped via a range */
364 	struct buffer_data_page *page;	/* Actual data page */
365 };
366 
367 /*
368  * The buffer page counters, write and entries, must be reset
369  * atomically when crossing page boundaries. To synchronize this
370  * update, two counters are inserted into the number. One is
371  * the actual counter for the write position or count on the page.
372  *
373  * The other is a counter of updaters. Before an update happens
374  * the update partition of the counter is incremented. This will
375  * allow the updater to update the counter atomically.
376  *
377  * The counter is 20 bits, and the state data is 12.
378  */
379 #define RB_WRITE_MASK		0xfffff
380 #define RB_WRITE_INTCNT		(1 << 20)
381 
382 static void rb_init_page(struct buffer_data_page *bpage)
383 {
384 	local_set(&bpage->commit, 0);
385 }
386 
387 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
388 {
389 	return local_read(&bpage->page->commit);
390 }
391 
392 static void free_buffer_page(struct buffer_page *bpage)
393 {
394 	/* Range pages are not to be freed */
395 	if (!bpage->range)
396 		free_pages((unsigned long)bpage->page, bpage->order);
397 	kfree(bpage);
398 }
399 
400 /*
401  * We need to fit the time_stamp delta into 27 bits.
402  */
403 static inline bool test_time_stamp(u64 delta)
404 {
405 	return !!(delta & TS_DELTA_TEST);
406 }
407 
408 struct rb_irq_work {
409 	struct irq_work			work;
410 	wait_queue_head_t		waiters;
411 	wait_queue_head_t		full_waiters;
412 	atomic_t			seq;
413 	bool				waiters_pending;
414 	bool				full_waiters_pending;
415 	bool				wakeup_full;
416 };
417 
418 /*
419  * Structure to hold event state and handle nested events.
420  */
421 struct rb_event_info {
422 	u64			ts;
423 	u64			delta;
424 	u64			before;
425 	u64			after;
426 	unsigned long		length;
427 	struct buffer_page	*tail_page;
428 	int			add_timestamp;
429 };
430 
431 /*
432  * Used for the add_timestamp
433  *  NONE
434  *  EXTEND - wants a time extend
435  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
436  *  FORCE - force a full time stamp.
437  */
438 enum {
439 	RB_ADD_STAMP_NONE		= 0,
440 	RB_ADD_STAMP_EXTEND		= BIT(1),
441 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
442 	RB_ADD_STAMP_FORCE		= BIT(3)
443 };
444 /*
445  * Used for which event context the event is in.
446  *  TRANSITION = 0
447  *  NMI     = 1
448  *  IRQ     = 2
449  *  SOFTIRQ = 3
450  *  NORMAL  = 4
451  *
452  * See trace_recursive_lock() comment below for more details.
453  */
454 enum {
455 	RB_CTX_TRANSITION,
456 	RB_CTX_NMI,
457 	RB_CTX_IRQ,
458 	RB_CTX_SOFTIRQ,
459 	RB_CTX_NORMAL,
460 	RB_CTX_MAX
461 };
462 
463 struct rb_time_struct {
464 	local64_t	time;
465 };
466 typedef struct rb_time_struct rb_time_t;
467 
468 #define MAX_NEST	5
469 
470 /*
471  * head_page == tail_page && head == tail then buffer is empty.
472  */
473 struct ring_buffer_per_cpu {
474 	int				cpu;
475 	atomic_t			record_disabled;
476 	atomic_t			resize_disabled;
477 	struct trace_buffer	*buffer;
478 	raw_spinlock_t			reader_lock;	/* serialize readers */
479 	arch_spinlock_t			lock;
480 	struct lock_class_key		lock_key;
481 	struct buffer_data_page		*free_page;
482 	unsigned long			nr_pages;
483 	unsigned int			current_context;
484 	struct list_head		*pages;
485 	/* pages generation counter, incremented when the list changes */
486 	unsigned long			cnt;
487 	struct buffer_page		*head_page;	/* read from head */
488 	struct buffer_page		*tail_page;	/* write to tail */
489 	struct buffer_page		*commit_page;	/* committed pages */
490 	struct buffer_page		*reader_page;
491 	unsigned long			lost_events;
492 	unsigned long			last_overrun;
493 	unsigned long			nest;
494 	local_t				entries_bytes;
495 	local_t				entries;
496 	local_t				overrun;
497 	local_t				commit_overrun;
498 	local_t				dropped_events;
499 	local_t				committing;
500 	local_t				commits;
501 	local_t				pages_touched;
502 	local_t				pages_lost;
503 	local_t				pages_read;
504 	long				last_pages_touch;
505 	size_t				shortest_full;
506 	unsigned long			read;
507 	unsigned long			read_bytes;
508 	rb_time_t			write_stamp;
509 	rb_time_t			before_stamp;
510 	u64				event_stamp[MAX_NEST];
511 	u64				read_stamp;
512 	/* pages removed since last reset */
513 	unsigned long			pages_removed;
514 
515 	unsigned int			mapped;
516 	unsigned int			user_mapped;	/* user space mapping */
517 	struct mutex			mapping_lock;
518 	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
519 	struct trace_buffer_meta	*meta_page;
520 	struct ring_buffer_meta		*ring_meta;
521 
522 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
523 	long				nr_pages_to_update;
524 	struct list_head		new_pages; /* new pages to add */
525 	struct work_struct		update_pages_work;
526 	struct completion		update_done;
527 
528 	struct rb_irq_work		irq_work;
529 };
530 
531 struct trace_buffer {
532 	unsigned			flags;
533 	int				cpus;
534 	atomic_t			record_disabled;
535 	atomic_t			resizing;
536 	cpumask_var_t			cpumask;
537 
538 	struct lock_class_key		*reader_lock_key;
539 
540 	struct mutex			mutex;
541 
542 	struct ring_buffer_per_cpu	**buffers;
543 
544 	struct hlist_node		node;
545 	u64				(*clock)(void);
546 
547 	struct rb_irq_work		irq_work;
548 	bool				time_stamp_abs;
549 
550 	unsigned long			range_addr_start;
551 	unsigned long			range_addr_end;
552 
553 	long				last_text_delta;
554 	long				last_data_delta;
555 
556 	unsigned int			subbuf_size;
557 	unsigned int			subbuf_order;
558 	unsigned int			max_data_size;
559 };
560 
561 struct ring_buffer_iter {
562 	struct ring_buffer_per_cpu	*cpu_buffer;
563 	unsigned long			head;
564 	unsigned long			next_event;
565 	struct buffer_page		*head_page;
566 	struct buffer_page		*cache_reader_page;
567 	unsigned long			cache_read;
568 	unsigned long			cache_pages_removed;
569 	u64				read_stamp;
570 	u64				page_stamp;
571 	struct ring_buffer_event	*event;
572 	size_t				event_size;
573 	int				missed_events;
574 };
575 
576 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
577 {
578 	struct buffer_data_page field;
579 
580 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
581 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
582 			 (unsigned int)sizeof(field.time_stamp),
583 			 (unsigned int)is_signed_type(u64));
584 
585 	trace_seq_printf(s, "\tfield: local_t commit;\t"
586 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
587 			 (unsigned int)offsetof(typeof(field), commit),
588 			 (unsigned int)sizeof(field.commit),
589 			 (unsigned int)is_signed_type(long));
590 
591 	trace_seq_printf(s, "\tfield: int overwrite;\t"
592 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
593 			 (unsigned int)offsetof(typeof(field), commit),
594 			 1,
595 			 (unsigned int)is_signed_type(long));
596 
597 	trace_seq_printf(s, "\tfield: char data;\t"
598 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
599 			 (unsigned int)offsetof(typeof(field), data),
600 			 (unsigned int)buffer->subbuf_size,
601 			 (unsigned int)is_signed_type(char));
602 
603 	return !trace_seq_has_overflowed(s);
604 }
605 
606 static inline void rb_time_read(rb_time_t *t, u64 *ret)
607 {
608 	*ret = local64_read(&t->time);
609 }
610 static void rb_time_set(rb_time_t *t, u64 val)
611 {
612 	local64_set(&t->time, val);
613 }
614 
615 /*
616  * Enable this to make sure that the event passed to
617  * ring_buffer_event_time_stamp() is not committed and also
618  * is on the buffer that it passed in.
619  */
620 //#define RB_VERIFY_EVENT
621 #ifdef RB_VERIFY_EVENT
622 static struct list_head *rb_list_head(struct list_head *list);
623 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
624 			 void *event)
625 {
626 	struct buffer_page *page = cpu_buffer->commit_page;
627 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
628 	struct list_head *next;
629 	long commit, write;
630 	unsigned long addr = (unsigned long)event;
631 	bool done = false;
632 	int stop = 0;
633 
634 	/* Make sure the event exists and is not committed yet */
635 	do {
636 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
637 			done = true;
638 		commit = local_read(&page->page->commit);
639 		write = local_read(&page->write);
640 		if (addr >= (unsigned long)&page->page->data[commit] &&
641 		    addr < (unsigned long)&page->page->data[write])
642 			return;
643 
644 		next = rb_list_head(page->list.next);
645 		page = list_entry(next, struct buffer_page, list);
646 	} while (!done);
647 	WARN_ON_ONCE(1);
648 }
649 #else
650 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
651 			 void *event)
652 {
653 }
654 #endif
655 
656 /*
657  * The absolute time stamp drops the 5 MSBs and some clocks may
658  * require them. The rb_fix_abs_ts() will take a previous full
659  * time stamp, and add the 5 MSB of that time stamp on to the
660  * saved absolute time stamp. Then they are compared in case of
661  * the unlikely event that the latest time stamp incremented
662  * the 5 MSB.
663  */
664 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
665 {
666 	if (save_ts & TS_MSB) {
667 		abs |= save_ts & TS_MSB;
668 		/* Check for overflow */
669 		if (unlikely(abs < save_ts))
670 			abs += 1ULL << 59;
671 	}
672 	return abs;
673 }
674 
675 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
676 
677 /**
678  * ring_buffer_event_time_stamp - return the event's current time stamp
679  * @buffer: The buffer that the event is on
680  * @event: the event to get the time stamp of
681  *
682  * Note, this must be called after @event is reserved, and before it is
683  * committed to the ring buffer. And must be called from the same
684  * context where the event was reserved (normal, softirq, irq, etc).
685  *
686  * Returns the time stamp associated with the current event.
687  * If the event has an extended time stamp, then that is used as
688  * the time stamp to return.
689  * In the highly unlikely case that the event was nested more than
690  * the max nesting, then the write_stamp of the buffer is returned,
691  * otherwise  current time is returned, but that really neither of
692  * the last two cases should ever happen.
693  */
694 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
695 				 struct ring_buffer_event *event)
696 {
697 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
698 	unsigned int nest;
699 	u64 ts;
700 
701 	/* If the event includes an absolute time, then just use that */
702 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
703 		ts = rb_event_time_stamp(event);
704 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
705 	}
706 
707 	nest = local_read(&cpu_buffer->committing);
708 	verify_event(cpu_buffer, event);
709 	if (WARN_ON_ONCE(!nest))
710 		goto fail;
711 
712 	/* Read the current saved nesting level time stamp */
713 	if (likely(--nest < MAX_NEST))
714 		return cpu_buffer->event_stamp[nest];
715 
716 	/* Shouldn't happen, warn if it does */
717 	WARN_ONCE(1, "nest (%d) greater than max", nest);
718 
719  fail:
720 	rb_time_read(&cpu_buffer->write_stamp, &ts);
721 
722 	return ts;
723 }
724 
725 /**
726  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
727  * @buffer: The ring_buffer to get the number of pages from
728  * @cpu: The cpu of the ring_buffer to get the number of pages from
729  *
730  * Returns the number of pages that have content in the ring buffer.
731  */
732 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
733 {
734 	size_t read;
735 	size_t lost;
736 	size_t cnt;
737 
738 	read = local_read(&buffer->buffers[cpu]->pages_read);
739 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
740 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
741 
742 	if (WARN_ON_ONCE(cnt < lost))
743 		return 0;
744 
745 	cnt -= lost;
746 
747 	/* The reader can read an empty page, but not more than that */
748 	if (cnt < read) {
749 		WARN_ON_ONCE(read > cnt + 1);
750 		return 0;
751 	}
752 
753 	return cnt - read;
754 }
755 
756 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
757 {
758 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
759 	size_t nr_pages;
760 	size_t dirty;
761 
762 	nr_pages = cpu_buffer->nr_pages;
763 	if (!nr_pages || !full)
764 		return true;
765 
766 	/*
767 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
768 	 * that the writer is on is not counted as dirty.
769 	 * This is needed if "buffer_percent" is set to 100.
770 	 */
771 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
772 
773 	return (dirty * 100) >= (full * nr_pages);
774 }
775 
776 /*
777  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
778  *
779  * Schedules a delayed work to wake up any task that is blocked on the
780  * ring buffer waiters queue.
781  */
782 static void rb_wake_up_waiters(struct irq_work *work)
783 {
784 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
785 
786 	/* For waiters waiting for the first wake up */
787 	(void)atomic_fetch_inc_release(&rbwork->seq);
788 
789 	wake_up_all(&rbwork->waiters);
790 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
791 		/* Only cpu_buffer sets the above flags */
792 		struct ring_buffer_per_cpu *cpu_buffer =
793 			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
794 
795 		/* Called from interrupt context */
796 		raw_spin_lock(&cpu_buffer->reader_lock);
797 		rbwork->wakeup_full = false;
798 		rbwork->full_waiters_pending = false;
799 
800 		/* Waking up all waiters, they will reset the shortest full */
801 		cpu_buffer->shortest_full = 0;
802 		raw_spin_unlock(&cpu_buffer->reader_lock);
803 
804 		wake_up_all(&rbwork->full_waiters);
805 	}
806 }
807 
808 /**
809  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
810  * @buffer: The ring buffer to wake waiters on
811  * @cpu: The CPU buffer to wake waiters on
812  *
813  * In the case of a file that represents a ring buffer is closing,
814  * it is prudent to wake up any waiters that are on this.
815  */
816 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
817 {
818 	struct ring_buffer_per_cpu *cpu_buffer;
819 	struct rb_irq_work *rbwork;
820 
821 	if (!buffer)
822 		return;
823 
824 	if (cpu == RING_BUFFER_ALL_CPUS) {
825 
826 		/* Wake up individual ones too. One level recursion */
827 		for_each_buffer_cpu(buffer, cpu)
828 			ring_buffer_wake_waiters(buffer, cpu);
829 
830 		rbwork = &buffer->irq_work;
831 	} else {
832 		if (WARN_ON_ONCE(!buffer->buffers))
833 			return;
834 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
835 			return;
836 
837 		cpu_buffer = buffer->buffers[cpu];
838 		/* The CPU buffer may not have been initialized yet */
839 		if (!cpu_buffer)
840 			return;
841 		rbwork = &cpu_buffer->irq_work;
842 	}
843 
844 	/* This can be called in any context */
845 	irq_work_queue(&rbwork->work);
846 }
847 
848 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
849 {
850 	struct ring_buffer_per_cpu *cpu_buffer;
851 	bool ret = false;
852 
853 	/* Reads of all CPUs always waits for any data */
854 	if (cpu == RING_BUFFER_ALL_CPUS)
855 		return !ring_buffer_empty(buffer);
856 
857 	cpu_buffer = buffer->buffers[cpu];
858 
859 	if (!ring_buffer_empty_cpu(buffer, cpu)) {
860 		unsigned long flags;
861 		bool pagebusy;
862 
863 		if (!full)
864 			return true;
865 
866 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
867 		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
868 		ret = !pagebusy && full_hit(buffer, cpu, full);
869 
870 		if (!ret && (!cpu_buffer->shortest_full ||
871 			     cpu_buffer->shortest_full > full)) {
872 		    cpu_buffer->shortest_full = full;
873 		}
874 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
875 	}
876 	return ret;
877 }
878 
879 static inline bool
880 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
881 	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
882 {
883 	if (rb_watermark_hit(buffer, cpu, full))
884 		return true;
885 
886 	if (cond(data))
887 		return true;
888 
889 	/*
890 	 * The events can happen in critical sections where
891 	 * checking a work queue can cause deadlocks.
892 	 * After adding a task to the queue, this flag is set
893 	 * only to notify events to try to wake up the queue
894 	 * using irq_work.
895 	 *
896 	 * We don't clear it even if the buffer is no longer
897 	 * empty. The flag only causes the next event to run
898 	 * irq_work to do the work queue wake up. The worse
899 	 * that can happen if we race with !trace_empty() is that
900 	 * an event will cause an irq_work to try to wake up
901 	 * an empty queue.
902 	 *
903 	 * There's no reason to protect this flag either, as
904 	 * the work queue and irq_work logic will do the necessary
905 	 * synchronization for the wake ups. The only thing
906 	 * that is necessary is that the wake up happens after
907 	 * a task has been queued. It's OK for spurious wake ups.
908 	 */
909 	if (full)
910 		rbwork->full_waiters_pending = true;
911 	else
912 		rbwork->waiters_pending = true;
913 
914 	return false;
915 }
916 
917 struct rb_wait_data {
918 	struct rb_irq_work		*irq_work;
919 	int				seq;
920 };
921 
922 /*
923  * The default wait condition for ring_buffer_wait() is to just to exit the
924  * wait loop the first time it is woken up.
925  */
926 static bool rb_wait_once(void *data)
927 {
928 	struct rb_wait_data *rdata = data;
929 	struct rb_irq_work *rbwork = rdata->irq_work;
930 
931 	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
932 }
933 
934 /**
935  * ring_buffer_wait - wait for input to the ring buffer
936  * @buffer: buffer to wait on
937  * @cpu: the cpu buffer to wait on
938  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
939  * @cond: condition function to break out of wait (NULL to run once)
940  * @data: the data to pass to @cond.
941  *
942  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
943  * as data is added to any of the @buffer's cpu buffers. Otherwise
944  * it will wait for data to be added to a specific cpu buffer.
945  */
946 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
947 		     ring_buffer_cond_fn cond, void *data)
948 {
949 	struct ring_buffer_per_cpu *cpu_buffer;
950 	struct wait_queue_head *waitq;
951 	struct rb_irq_work *rbwork;
952 	struct rb_wait_data rdata;
953 	int ret = 0;
954 
955 	/*
956 	 * Depending on what the caller is waiting for, either any
957 	 * data in any cpu buffer, or a specific buffer, put the
958 	 * caller on the appropriate wait queue.
959 	 */
960 	if (cpu == RING_BUFFER_ALL_CPUS) {
961 		rbwork = &buffer->irq_work;
962 		/* Full only makes sense on per cpu reads */
963 		full = 0;
964 	} else {
965 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
966 			return -ENODEV;
967 		cpu_buffer = buffer->buffers[cpu];
968 		rbwork = &cpu_buffer->irq_work;
969 	}
970 
971 	if (full)
972 		waitq = &rbwork->full_waiters;
973 	else
974 		waitq = &rbwork->waiters;
975 
976 	/* Set up to exit loop as soon as it is woken */
977 	if (!cond) {
978 		cond = rb_wait_once;
979 		rdata.irq_work = rbwork;
980 		rdata.seq = atomic_read_acquire(&rbwork->seq);
981 		data = &rdata;
982 	}
983 
984 	ret = wait_event_interruptible((*waitq),
985 				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
986 
987 	return ret;
988 }
989 
990 /**
991  * ring_buffer_poll_wait - poll on buffer input
992  * @buffer: buffer to wait on
993  * @cpu: the cpu buffer to wait on
994  * @filp: the file descriptor
995  * @poll_table: The poll descriptor
996  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
997  *
998  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
999  * as data is added to any of the @buffer's cpu buffers. Otherwise
1000  * it will wait for data to be added to a specific cpu buffer.
1001  *
1002  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1003  * zero otherwise.
1004  */
1005 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1006 			  struct file *filp, poll_table *poll_table, int full)
1007 {
1008 	struct ring_buffer_per_cpu *cpu_buffer;
1009 	struct rb_irq_work *rbwork;
1010 
1011 	if (cpu == RING_BUFFER_ALL_CPUS) {
1012 		rbwork = &buffer->irq_work;
1013 		full = 0;
1014 	} else {
1015 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1016 			return EPOLLERR;
1017 
1018 		cpu_buffer = buffer->buffers[cpu];
1019 		rbwork = &cpu_buffer->irq_work;
1020 	}
1021 
1022 	if (full) {
1023 		poll_wait(filp, &rbwork->full_waiters, poll_table);
1024 
1025 		if (rb_watermark_hit(buffer, cpu, full))
1026 			return EPOLLIN | EPOLLRDNORM;
1027 		/*
1028 		 * Only allow full_waiters_pending update to be seen after
1029 		 * the shortest_full is set (in rb_watermark_hit). If the
1030 		 * writer sees the full_waiters_pending flag set, it will
1031 		 * compare the amount in the ring buffer to shortest_full.
1032 		 * If the amount in the ring buffer is greater than the
1033 		 * shortest_full percent, it will call the irq_work handler
1034 		 * to wake up this list. The irq_handler will reset shortest_full
1035 		 * back to zero. That's done under the reader_lock, but
1036 		 * the below smp_mb() makes sure that the update to
1037 		 * full_waiters_pending doesn't leak up into the above.
1038 		 */
1039 		smp_mb();
1040 		rbwork->full_waiters_pending = true;
1041 		return 0;
1042 	}
1043 
1044 	poll_wait(filp, &rbwork->waiters, poll_table);
1045 	rbwork->waiters_pending = true;
1046 
1047 	/*
1048 	 * There's a tight race between setting the waiters_pending and
1049 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1050 	 * is set, the next event will wake the task up, but we can get stuck
1051 	 * if there's only a single event in.
1052 	 *
1053 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1054 	 * but adding a memory barrier to all events will cause too much of a
1055 	 * performance hit in the fast path.  We only need a memory barrier when
1056 	 * the buffer goes from empty to having content.  But as this race is
1057 	 * extremely small, and it's not a problem if another event comes in, we
1058 	 * will fix it later.
1059 	 */
1060 	smp_mb();
1061 
1062 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1063 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1064 		return EPOLLIN | EPOLLRDNORM;
1065 	return 0;
1066 }
1067 
1068 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1069 #define RB_WARN_ON(b, cond)						\
1070 	({								\
1071 		int _____ret = unlikely(cond);				\
1072 		if (_____ret) {						\
1073 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1074 				struct ring_buffer_per_cpu *__b =	\
1075 					(void *)b;			\
1076 				atomic_inc(&__b->buffer->record_disabled); \
1077 			} else						\
1078 				atomic_inc(&b->record_disabled);	\
1079 			WARN_ON(1);					\
1080 		}							\
1081 		_____ret;						\
1082 	})
1083 
1084 /* Up this if you want to test the TIME_EXTENTS and normalization */
1085 #define DEBUG_SHIFT 0
1086 
1087 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1088 {
1089 	u64 ts;
1090 
1091 	/* Skip retpolines :-( */
1092 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1093 		ts = trace_clock_local();
1094 	else
1095 		ts = buffer->clock();
1096 
1097 	/* shift to debug/test normalization and TIME_EXTENTS */
1098 	return ts << DEBUG_SHIFT;
1099 }
1100 
1101 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1102 {
1103 	u64 time;
1104 
1105 	preempt_disable_notrace();
1106 	time = rb_time_stamp(buffer);
1107 	preempt_enable_notrace();
1108 
1109 	return time;
1110 }
1111 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1112 
1113 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1114 				      int cpu, u64 *ts)
1115 {
1116 	/* Just stupid testing the normalize function and deltas */
1117 	*ts >>= DEBUG_SHIFT;
1118 }
1119 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1120 
1121 /*
1122  * Making the ring buffer lockless makes things tricky.
1123  * Although writes only happen on the CPU that they are on,
1124  * and they only need to worry about interrupts. Reads can
1125  * happen on any CPU.
1126  *
1127  * The reader page is always off the ring buffer, but when the
1128  * reader finishes with a page, it needs to swap its page with
1129  * a new one from the buffer. The reader needs to take from
1130  * the head (writes go to the tail). But if a writer is in overwrite
1131  * mode and wraps, it must push the head page forward.
1132  *
1133  * Here lies the problem.
1134  *
1135  * The reader must be careful to replace only the head page, and
1136  * not another one. As described at the top of the file in the
1137  * ASCII art, the reader sets its old page to point to the next
1138  * page after head. It then sets the page after head to point to
1139  * the old reader page. But if the writer moves the head page
1140  * during this operation, the reader could end up with the tail.
1141  *
1142  * We use cmpxchg to help prevent this race. We also do something
1143  * special with the page before head. We set the LSB to 1.
1144  *
1145  * When the writer must push the page forward, it will clear the
1146  * bit that points to the head page, move the head, and then set
1147  * the bit that points to the new head page.
1148  *
1149  * We also don't want an interrupt coming in and moving the head
1150  * page on another writer. Thus we use the second LSB to catch
1151  * that too. Thus:
1152  *
1153  * head->list->prev->next        bit 1          bit 0
1154  *                              -------        -------
1155  * Normal page                     0              0
1156  * Points to head page             0              1
1157  * New head page                   1              0
1158  *
1159  * Note we can not trust the prev pointer of the head page, because:
1160  *
1161  * +----+       +-----+        +-----+
1162  * |    |------>|  T  |---X--->|  N  |
1163  * |    |<------|     |        |     |
1164  * +----+       +-----+        +-----+
1165  *   ^                           ^ |
1166  *   |          +-----+          | |
1167  *   +----------|  R  |----------+ |
1168  *              |     |<-----------+
1169  *              +-----+
1170  *
1171  * Key:  ---X-->  HEAD flag set in pointer
1172  *         T      Tail page
1173  *         R      Reader page
1174  *         N      Next page
1175  *
1176  * (see __rb_reserve_next() to see where this happens)
1177  *
1178  *  What the above shows is that the reader just swapped out
1179  *  the reader page with a page in the buffer, but before it
1180  *  could make the new header point back to the new page added
1181  *  it was preempted by a writer. The writer moved forward onto
1182  *  the new page added by the reader and is about to move forward
1183  *  again.
1184  *
1185  *  You can see, it is legitimate for the previous pointer of
1186  *  the head (or any page) not to point back to itself. But only
1187  *  temporarily.
1188  */
1189 
1190 #define RB_PAGE_NORMAL		0UL
1191 #define RB_PAGE_HEAD		1UL
1192 #define RB_PAGE_UPDATE		2UL
1193 
1194 
1195 #define RB_FLAG_MASK		3UL
1196 
1197 /* PAGE_MOVED is not part of the mask */
1198 #define RB_PAGE_MOVED		4UL
1199 
1200 /*
1201  * rb_list_head - remove any bit
1202  */
1203 static struct list_head *rb_list_head(struct list_head *list)
1204 {
1205 	unsigned long val = (unsigned long)list;
1206 
1207 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1208 }
1209 
1210 /*
1211  * rb_is_head_page - test if the given page is the head page
1212  *
1213  * Because the reader may move the head_page pointer, we can
1214  * not trust what the head page is (it may be pointing to
1215  * the reader page). But if the next page is a header page,
1216  * its flags will be non zero.
1217  */
1218 static inline int
1219 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1220 {
1221 	unsigned long val;
1222 
1223 	val = (unsigned long)list->next;
1224 
1225 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1226 		return RB_PAGE_MOVED;
1227 
1228 	return val & RB_FLAG_MASK;
1229 }
1230 
1231 /*
1232  * rb_is_reader_page
1233  *
1234  * The unique thing about the reader page, is that, if the
1235  * writer is ever on it, the previous pointer never points
1236  * back to the reader page.
1237  */
1238 static bool rb_is_reader_page(struct buffer_page *page)
1239 {
1240 	struct list_head *list = page->list.prev;
1241 
1242 	return rb_list_head(list->next) != &page->list;
1243 }
1244 
1245 /*
1246  * rb_set_list_to_head - set a list_head to be pointing to head.
1247  */
1248 static void rb_set_list_to_head(struct list_head *list)
1249 {
1250 	unsigned long *ptr;
1251 
1252 	ptr = (unsigned long *)&list->next;
1253 	*ptr |= RB_PAGE_HEAD;
1254 	*ptr &= ~RB_PAGE_UPDATE;
1255 }
1256 
1257 /*
1258  * rb_head_page_activate - sets up head page
1259  */
1260 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1261 {
1262 	struct buffer_page *head;
1263 
1264 	head = cpu_buffer->head_page;
1265 	if (!head)
1266 		return;
1267 
1268 	/*
1269 	 * Set the previous list pointer to have the HEAD flag.
1270 	 */
1271 	rb_set_list_to_head(head->list.prev);
1272 
1273 	if (cpu_buffer->ring_meta) {
1274 		struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1275 		meta->head_buffer = (unsigned long)head->page;
1276 	}
1277 }
1278 
1279 static void rb_list_head_clear(struct list_head *list)
1280 {
1281 	unsigned long *ptr = (unsigned long *)&list->next;
1282 
1283 	*ptr &= ~RB_FLAG_MASK;
1284 }
1285 
1286 /*
1287  * rb_head_page_deactivate - clears head page ptr (for free list)
1288  */
1289 static void
1290 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1291 {
1292 	struct list_head *hd;
1293 
1294 	/* Go through the whole list and clear any pointers found. */
1295 	rb_list_head_clear(cpu_buffer->pages);
1296 
1297 	list_for_each(hd, cpu_buffer->pages)
1298 		rb_list_head_clear(hd);
1299 }
1300 
1301 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1302 			    struct buffer_page *head,
1303 			    struct buffer_page *prev,
1304 			    int old_flag, int new_flag)
1305 {
1306 	struct list_head *list;
1307 	unsigned long val = (unsigned long)&head->list;
1308 	unsigned long ret;
1309 
1310 	list = &prev->list;
1311 
1312 	val &= ~RB_FLAG_MASK;
1313 
1314 	ret = cmpxchg((unsigned long *)&list->next,
1315 		      val | old_flag, val | new_flag);
1316 
1317 	/* check if the reader took the page */
1318 	if ((ret & ~RB_FLAG_MASK) != val)
1319 		return RB_PAGE_MOVED;
1320 
1321 	return ret & RB_FLAG_MASK;
1322 }
1323 
1324 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1325 				   struct buffer_page *head,
1326 				   struct buffer_page *prev,
1327 				   int old_flag)
1328 {
1329 	return rb_head_page_set(cpu_buffer, head, prev,
1330 				old_flag, RB_PAGE_UPDATE);
1331 }
1332 
1333 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1334 				 struct buffer_page *head,
1335 				 struct buffer_page *prev,
1336 				 int old_flag)
1337 {
1338 	return rb_head_page_set(cpu_buffer, head, prev,
1339 				old_flag, RB_PAGE_HEAD);
1340 }
1341 
1342 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1343 				   struct buffer_page *head,
1344 				   struct buffer_page *prev,
1345 				   int old_flag)
1346 {
1347 	return rb_head_page_set(cpu_buffer, head, prev,
1348 				old_flag, RB_PAGE_NORMAL);
1349 }
1350 
1351 static inline void rb_inc_page(struct buffer_page **bpage)
1352 {
1353 	struct list_head *p = rb_list_head((*bpage)->list.next);
1354 
1355 	*bpage = list_entry(p, struct buffer_page, list);
1356 }
1357 
1358 static struct buffer_page *
1359 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1360 {
1361 	struct buffer_page *head;
1362 	struct buffer_page *page;
1363 	struct list_head *list;
1364 	int i;
1365 
1366 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1367 		return NULL;
1368 
1369 	/* sanity check */
1370 	list = cpu_buffer->pages;
1371 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1372 		return NULL;
1373 
1374 	page = head = cpu_buffer->head_page;
1375 	/*
1376 	 * It is possible that the writer moves the header behind
1377 	 * where we started, and we miss in one loop.
1378 	 * A second loop should grab the header, but we'll do
1379 	 * three loops just because I'm paranoid.
1380 	 */
1381 	for (i = 0; i < 3; i++) {
1382 		do {
1383 			if (rb_is_head_page(page, page->list.prev)) {
1384 				cpu_buffer->head_page = page;
1385 				return page;
1386 			}
1387 			rb_inc_page(&page);
1388 		} while (page != head);
1389 	}
1390 
1391 	RB_WARN_ON(cpu_buffer, 1);
1392 
1393 	return NULL;
1394 }
1395 
1396 static bool rb_head_page_replace(struct buffer_page *old,
1397 				struct buffer_page *new)
1398 {
1399 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1400 	unsigned long val;
1401 
1402 	val = *ptr & ~RB_FLAG_MASK;
1403 	val |= RB_PAGE_HEAD;
1404 
1405 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1406 }
1407 
1408 /*
1409  * rb_tail_page_update - move the tail page forward
1410  */
1411 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1412 			       struct buffer_page *tail_page,
1413 			       struct buffer_page *next_page)
1414 {
1415 	unsigned long old_entries;
1416 	unsigned long old_write;
1417 
1418 	/*
1419 	 * The tail page now needs to be moved forward.
1420 	 *
1421 	 * We need to reset the tail page, but without messing
1422 	 * with possible erasing of data brought in by interrupts
1423 	 * that have moved the tail page and are currently on it.
1424 	 *
1425 	 * We add a counter to the write field to denote this.
1426 	 */
1427 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1428 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1429 
1430 	/*
1431 	 * Just make sure we have seen our old_write and synchronize
1432 	 * with any interrupts that come in.
1433 	 */
1434 	barrier();
1435 
1436 	/*
1437 	 * If the tail page is still the same as what we think
1438 	 * it is, then it is up to us to update the tail
1439 	 * pointer.
1440 	 */
1441 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1442 		/* Zero the write counter */
1443 		unsigned long val = old_write & ~RB_WRITE_MASK;
1444 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1445 
1446 		/*
1447 		 * This will only succeed if an interrupt did
1448 		 * not come in and change it. In which case, we
1449 		 * do not want to modify it.
1450 		 *
1451 		 * We add (void) to let the compiler know that we do not care
1452 		 * about the return value of these functions. We use the
1453 		 * cmpxchg to only update if an interrupt did not already
1454 		 * do it for us. If the cmpxchg fails, we don't care.
1455 		 */
1456 		(void)local_cmpxchg(&next_page->write, old_write, val);
1457 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1458 
1459 		/*
1460 		 * No need to worry about races with clearing out the commit.
1461 		 * it only can increment when a commit takes place. But that
1462 		 * only happens in the outer most nested commit.
1463 		 */
1464 		local_set(&next_page->page->commit, 0);
1465 
1466 		/* Either we update tail_page or an interrupt does */
1467 		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1468 			local_inc(&cpu_buffer->pages_touched);
1469 	}
1470 }
1471 
1472 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1473 			  struct buffer_page *bpage)
1474 {
1475 	unsigned long val = (unsigned long)bpage;
1476 
1477 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1478 }
1479 
1480 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1481 			   struct list_head *list)
1482 {
1483 	if (RB_WARN_ON(cpu_buffer,
1484 		       rb_list_head(rb_list_head(list->next)->prev) != list))
1485 		return false;
1486 
1487 	if (RB_WARN_ON(cpu_buffer,
1488 		       rb_list_head(rb_list_head(list->prev)->next) != list))
1489 		return false;
1490 
1491 	return true;
1492 }
1493 
1494 /**
1495  * rb_check_pages - integrity check of buffer pages
1496  * @cpu_buffer: CPU buffer with pages to test
1497  *
1498  * As a safety measure we check to make sure the data pages have not
1499  * been corrupted.
1500  */
1501 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1502 {
1503 	struct list_head *head, *tmp;
1504 	unsigned long buffer_cnt;
1505 	unsigned long flags;
1506 	int nr_loops = 0;
1507 
1508 	/*
1509 	 * Walk the linked list underpinning the ring buffer and validate all
1510 	 * its next and prev links.
1511 	 *
1512 	 * The check acquires the reader_lock to avoid concurrent processing
1513 	 * with code that could be modifying the list. However, the lock cannot
1514 	 * be held for the entire duration of the walk, as this would make the
1515 	 * time when interrupts are disabled non-deterministic, dependent on the
1516 	 * ring buffer size. Therefore, the code releases and re-acquires the
1517 	 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1518 	 * is then used to detect if the list was modified while the lock was
1519 	 * not held, in which case the check needs to be restarted.
1520 	 *
1521 	 * The code attempts to perform the check at most three times before
1522 	 * giving up. This is acceptable because this is only a self-validation
1523 	 * to detect problems early on. In practice, the list modification
1524 	 * operations are fairly spaced, and so this check typically succeeds at
1525 	 * most on the second try.
1526 	 */
1527 again:
1528 	if (++nr_loops > 3)
1529 		return;
1530 
1531 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1532 	head = rb_list_head(cpu_buffer->pages);
1533 	if (!rb_check_links(cpu_buffer, head))
1534 		goto out_locked;
1535 	buffer_cnt = cpu_buffer->cnt;
1536 	tmp = head;
1537 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1538 
1539 	while (true) {
1540 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1541 
1542 		if (buffer_cnt != cpu_buffer->cnt) {
1543 			/* The list was updated, try again. */
1544 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1545 			goto again;
1546 		}
1547 
1548 		tmp = rb_list_head(tmp->next);
1549 		if (tmp == head)
1550 			/* The iteration circled back, all is done. */
1551 			goto out_locked;
1552 
1553 		if (!rb_check_links(cpu_buffer, tmp))
1554 			goto out_locked;
1555 
1556 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1557 	}
1558 
1559 out_locked:
1560 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1561 }
1562 
1563 /*
1564  * Take an address, add the meta data size as well as the array of
1565  * array subbuffer indexes, then align it to a subbuffer size.
1566  *
1567  * This is used to help find the next per cpu subbuffer within a mapped range.
1568  */
1569 static unsigned long
1570 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1571 {
1572 	addr += sizeof(struct ring_buffer_meta) +
1573 		sizeof(int) * nr_subbufs;
1574 	return ALIGN(addr, subbuf_size);
1575 }
1576 
1577 /*
1578  * Return the ring_buffer_meta for a given @cpu.
1579  */
1580 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1581 {
1582 	int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1583 	unsigned long ptr = buffer->range_addr_start;
1584 	struct ring_buffer_meta *meta;
1585 	int nr_subbufs;
1586 
1587 	if (!ptr)
1588 		return NULL;
1589 
1590 	/* When nr_pages passed in is zero, the first meta has already been initialized */
1591 	if (!nr_pages) {
1592 		meta = (struct ring_buffer_meta *)ptr;
1593 		nr_subbufs = meta->nr_subbufs;
1594 	} else {
1595 		meta = NULL;
1596 		/* Include the reader page */
1597 		nr_subbufs = nr_pages + 1;
1598 	}
1599 
1600 	/*
1601 	 * The first chunk may not be subbuffer aligned, where as
1602 	 * the rest of the chunks are.
1603 	 */
1604 	if (cpu) {
1605 		ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1606 		ptr += subbuf_size * nr_subbufs;
1607 
1608 		/* We can use multiplication to find chunks greater than 1 */
1609 		if (cpu > 1) {
1610 			unsigned long size;
1611 			unsigned long p;
1612 
1613 			/* Save the beginning of this CPU chunk */
1614 			p = ptr;
1615 			ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1616 			ptr += subbuf_size * nr_subbufs;
1617 
1618 			/* Now all chunks after this are the same size */
1619 			size = ptr - p;
1620 			ptr += size * (cpu - 2);
1621 		}
1622 	}
1623 	return (void *)ptr;
1624 }
1625 
1626 /* Return the start of subbufs given the meta pointer */
1627 static void *rb_subbufs_from_meta(struct ring_buffer_meta *meta)
1628 {
1629 	int subbuf_size = meta->subbuf_size;
1630 	unsigned long ptr;
1631 
1632 	ptr = (unsigned long)meta;
1633 	ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1634 
1635 	return (void *)ptr;
1636 }
1637 
1638 /*
1639  * Return a specific sub-buffer for a given @cpu defined by @idx.
1640  */
1641 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1642 {
1643 	struct ring_buffer_meta *meta;
1644 	unsigned long ptr;
1645 	int subbuf_size;
1646 
1647 	meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1648 	if (!meta)
1649 		return NULL;
1650 
1651 	if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1652 		return NULL;
1653 
1654 	subbuf_size = meta->subbuf_size;
1655 
1656 	/* Map this buffer to the order that's in meta->buffers[] */
1657 	idx = meta->buffers[idx];
1658 
1659 	ptr = (unsigned long)rb_subbufs_from_meta(meta);
1660 
1661 	ptr += subbuf_size * idx;
1662 	if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1663 		return NULL;
1664 
1665 	return (void *)ptr;
1666 }
1667 
1668 /*
1669  * See if the existing memory contains valid ring buffer data.
1670  * As the previous kernel must be the same as this kernel, all
1671  * the calculations (size of buffers and number of buffers)
1672  * must be the same.
1673  */
1674 static bool rb_meta_valid(struct ring_buffer_meta *meta, int cpu,
1675 			  struct trace_buffer *buffer, int nr_pages)
1676 {
1677 	int subbuf_size = PAGE_SIZE;
1678 	struct buffer_data_page *subbuf;
1679 	unsigned long buffers_start;
1680 	unsigned long buffers_end;
1681 	int i;
1682 
1683 	/* Check the meta magic and meta struct size */
1684 	if (meta->magic != RING_BUFFER_META_MAGIC ||
1685 	    meta->struct_size != sizeof(*meta)) {
1686 		pr_info("Ring buffer boot meta[%d] mismatch of magic or struct size\n", cpu);
1687 		return false;
1688 	}
1689 
1690 	/* The subbuffer's size and number of subbuffers must match */
1691 	if (meta->subbuf_size != subbuf_size ||
1692 	    meta->nr_subbufs != nr_pages + 1) {
1693 		pr_info("Ring buffer boot meta [%d] mismatch of subbuf_size/nr_pages\n", cpu);
1694 		return false;
1695 	}
1696 
1697 	buffers_start = meta->first_buffer;
1698 	buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1699 
1700 	/* Is the head and commit buffers within the range of buffers? */
1701 	if (meta->head_buffer < buffers_start ||
1702 	    meta->head_buffer >= buffers_end) {
1703 		pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1704 		return false;
1705 	}
1706 
1707 	if (meta->commit_buffer < buffers_start ||
1708 	    meta->commit_buffer >= buffers_end) {
1709 		pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1710 		return false;
1711 	}
1712 
1713 	subbuf = rb_subbufs_from_meta(meta);
1714 
1715 	/* Is the meta buffers and the subbufs themselves have correct data? */
1716 	for (i = 0; i < meta->nr_subbufs; i++) {
1717 		if (meta->buffers[i] < 0 ||
1718 		    meta->buffers[i] >= meta->nr_subbufs) {
1719 			pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1720 			return false;
1721 		}
1722 
1723 		if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1724 			pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1725 			return false;
1726 		}
1727 
1728 		subbuf = (void *)subbuf + subbuf_size;
1729 	}
1730 
1731 	return true;
1732 }
1733 
1734 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf);
1735 
1736 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1737 			       unsigned long long *timestamp, u64 *delta_ptr)
1738 {
1739 	struct ring_buffer_event *event;
1740 	u64 ts, delta;
1741 	int events = 0;
1742 	int e;
1743 
1744 	*delta_ptr = 0;
1745 	*timestamp = 0;
1746 
1747 	ts = dpage->time_stamp;
1748 
1749 	for (e = 0; e < tail; e += rb_event_length(event)) {
1750 
1751 		event = (struct ring_buffer_event *)(dpage->data + e);
1752 
1753 		switch (event->type_len) {
1754 
1755 		case RINGBUF_TYPE_TIME_EXTEND:
1756 			delta = rb_event_time_stamp(event);
1757 			ts += delta;
1758 			break;
1759 
1760 		case RINGBUF_TYPE_TIME_STAMP:
1761 			delta = rb_event_time_stamp(event);
1762 			delta = rb_fix_abs_ts(delta, ts);
1763 			if (delta < ts) {
1764 				*delta_ptr = delta;
1765 				*timestamp = ts;
1766 				return -1;
1767 			}
1768 			ts = delta;
1769 			break;
1770 
1771 		case RINGBUF_TYPE_PADDING:
1772 			if (event->time_delta == 1)
1773 				break;
1774 			fallthrough;
1775 		case RINGBUF_TYPE_DATA:
1776 			events++;
1777 			ts += event->time_delta;
1778 			break;
1779 
1780 		default:
1781 			return -1;
1782 		}
1783 	}
1784 	*timestamp = ts;
1785 	return events;
1786 }
1787 
1788 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1789 {
1790 	unsigned long long ts;
1791 	u64 delta;
1792 	int tail;
1793 
1794 	tail = local_read(&dpage->commit);
1795 	return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1796 }
1797 
1798 /* If the meta data has been validated, now validate the events */
1799 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1800 {
1801 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1802 	struct buffer_page *head_page;
1803 	unsigned long entry_bytes = 0;
1804 	unsigned long entries = 0;
1805 	int ret;
1806 	int i;
1807 
1808 	if (!meta || !meta->head_buffer)
1809 		return;
1810 
1811 	/* Do the reader page first */
1812 	ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1813 	if (ret < 0) {
1814 		pr_info("Ring buffer reader page is invalid\n");
1815 		goto invalid;
1816 	}
1817 	entries += ret;
1818 	entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1819 	local_set(&cpu_buffer->reader_page->entries, ret);
1820 
1821 	head_page = cpu_buffer->head_page;
1822 
1823 	/* If both the head and commit are on the reader_page then we are done. */
1824 	if (head_page == cpu_buffer->reader_page &&
1825 	    head_page == cpu_buffer->commit_page)
1826 		goto done;
1827 
1828 	/* Iterate until finding the commit page */
1829 	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1830 
1831 		/* Reader page has already been done */
1832 		if (head_page == cpu_buffer->reader_page)
1833 			continue;
1834 
1835 		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1836 		if (ret < 0) {
1837 			pr_info("Ring buffer meta [%d] invalid buffer page\n",
1838 				cpu_buffer->cpu);
1839 			goto invalid;
1840 		}
1841 		entries += ret;
1842 		entry_bytes += local_read(&head_page->page->commit);
1843 		local_set(&cpu_buffer->head_page->entries, ret);
1844 
1845 		if (head_page == cpu_buffer->commit_page)
1846 			break;
1847 	}
1848 
1849 	if (head_page != cpu_buffer->commit_page) {
1850 		pr_info("Ring buffer meta [%d] commit page not found\n",
1851 			cpu_buffer->cpu);
1852 		goto invalid;
1853 	}
1854  done:
1855 	local_set(&cpu_buffer->entries, entries);
1856 	local_set(&cpu_buffer->entries_bytes, entry_bytes);
1857 
1858 	pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1859 	return;
1860 
1861  invalid:
1862 	/* The content of the buffers are invalid, reset the meta data */
1863 	meta->head_buffer = 0;
1864 	meta->commit_buffer = 0;
1865 
1866 	/* Reset the reader page */
1867 	local_set(&cpu_buffer->reader_page->entries, 0);
1868 	local_set(&cpu_buffer->reader_page->page->commit, 0);
1869 
1870 	/* Reset all the subbuffers */
1871 	for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1872 		local_set(&head_page->entries, 0);
1873 		local_set(&head_page->page->commit, 0);
1874 	}
1875 }
1876 
1877 /* Used to calculate data delta */
1878 static char rb_data_ptr[] = "";
1879 
1880 #define THIS_TEXT_PTR		((unsigned long)rb_meta_init_text_addr)
1881 #define THIS_DATA_PTR		((unsigned long)rb_data_ptr)
1882 
1883 static void rb_meta_init_text_addr(struct ring_buffer_meta *meta)
1884 {
1885 	meta->text_addr = THIS_TEXT_PTR;
1886 	meta->data_addr = THIS_DATA_PTR;
1887 }
1888 
1889 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1890 {
1891 	struct ring_buffer_meta *meta;
1892 	unsigned long delta;
1893 	void *subbuf;
1894 	int cpu;
1895 	int i;
1896 
1897 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1898 		void *next_meta;
1899 
1900 		meta = rb_range_meta(buffer, nr_pages, cpu);
1901 
1902 		if (rb_meta_valid(meta, cpu, buffer, nr_pages)) {
1903 			/* Make the mappings match the current address */
1904 			subbuf = rb_subbufs_from_meta(meta);
1905 			delta = (unsigned long)subbuf - meta->first_buffer;
1906 			meta->first_buffer += delta;
1907 			meta->head_buffer += delta;
1908 			meta->commit_buffer += delta;
1909 			buffer->last_text_delta = THIS_TEXT_PTR - meta->text_addr;
1910 			buffer->last_data_delta = THIS_DATA_PTR - meta->data_addr;
1911 			continue;
1912 		}
1913 
1914 		if (cpu < nr_cpu_ids - 1)
1915 			next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1916 		else
1917 			next_meta = (void *)buffer->range_addr_end;
1918 
1919 		memset(meta, 0, next_meta - (void *)meta);
1920 
1921 		meta->magic = RING_BUFFER_META_MAGIC;
1922 		meta->struct_size = sizeof(*meta);
1923 
1924 		meta->nr_subbufs = nr_pages + 1;
1925 		meta->subbuf_size = PAGE_SIZE;
1926 
1927 		subbuf = rb_subbufs_from_meta(meta);
1928 
1929 		meta->first_buffer = (unsigned long)subbuf;
1930 		rb_meta_init_text_addr(meta);
1931 
1932 		/*
1933 		 * The buffers[] array holds the order of the sub-buffers
1934 		 * that are after the meta data. The sub-buffers may
1935 		 * be swapped out when read and inserted into a different
1936 		 * location of the ring buffer. Although their addresses
1937 		 * remain the same, the buffers[] array contains the
1938 		 * index into the sub-buffers holding their actual order.
1939 		 */
1940 		for (i = 0; i < meta->nr_subbufs; i++) {
1941 			meta->buffers[i] = i;
1942 			rb_init_page(subbuf);
1943 			subbuf += meta->subbuf_size;
1944 		}
1945 	}
1946 }
1947 
1948 static void *rbm_start(struct seq_file *m, loff_t *pos)
1949 {
1950 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1951 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1952 	unsigned long val;
1953 
1954 	if (!meta)
1955 		return NULL;
1956 
1957 	if (*pos > meta->nr_subbufs)
1958 		return NULL;
1959 
1960 	val = *pos;
1961 	val++;
1962 
1963 	return (void *)val;
1964 }
1965 
1966 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
1967 {
1968 	(*pos)++;
1969 
1970 	return rbm_start(m, pos);
1971 }
1972 
1973 static int rbm_show(struct seq_file *m, void *v)
1974 {
1975 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
1976 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
1977 	unsigned long val = (unsigned long)v;
1978 
1979 	if (val == 1) {
1980 		seq_printf(m, "head_buffer:   %d\n",
1981 			   rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
1982 		seq_printf(m, "commit_buffer: %d\n",
1983 			   rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
1984 		seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
1985 		seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
1986 		return 0;
1987 	}
1988 
1989 	val -= 2;
1990 	seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
1991 
1992 	return 0;
1993 }
1994 
1995 static void rbm_stop(struct seq_file *m, void *p)
1996 {
1997 }
1998 
1999 static const struct seq_operations rb_meta_seq_ops = {
2000 	.start		= rbm_start,
2001 	.next		= rbm_next,
2002 	.show		= rbm_show,
2003 	.stop		= rbm_stop,
2004 };
2005 
2006 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2007 {
2008 	struct seq_file *m;
2009 	int ret;
2010 
2011 	ret = seq_open(file, &rb_meta_seq_ops);
2012 	if (ret)
2013 		return ret;
2014 
2015 	m = file->private_data;
2016 	m->private = buffer->buffers[cpu];
2017 
2018 	return 0;
2019 }
2020 
2021 /* Map the buffer_pages to the previous head and commit pages */
2022 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2023 				  struct buffer_page *bpage)
2024 {
2025 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
2026 
2027 	if (meta->head_buffer == (unsigned long)bpage->page)
2028 		cpu_buffer->head_page = bpage;
2029 
2030 	if (meta->commit_buffer == (unsigned long)bpage->page) {
2031 		cpu_buffer->commit_page = bpage;
2032 		cpu_buffer->tail_page = bpage;
2033 	}
2034 }
2035 
2036 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2037 		long nr_pages, struct list_head *pages)
2038 {
2039 	struct trace_buffer *buffer = cpu_buffer->buffer;
2040 	struct ring_buffer_meta *meta = NULL;
2041 	struct buffer_page *bpage, *tmp;
2042 	bool user_thread = current->mm != NULL;
2043 	gfp_t mflags;
2044 	long i;
2045 
2046 	/*
2047 	 * Check if the available memory is there first.
2048 	 * Note, si_mem_available() only gives us a rough estimate of available
2049 	 * memory. It may not be accurate. But we don't care, we just want
2050 	 * to prevent doing any allocation when it is obvious that it is
2051 	 * not going to succeed.
2052 	 */
2053 	i = si_mem_available();
2054 	if (i < nr_pages)
2055 		return -ENOMEM;
2056 
2057 	/*
2058 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2059 	 * gracefully without invoking oom-killer and the system is not
2060 	 * destabilized.
2061 	 */
2062 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2063 
2064 	/*
2065 	 * If a user thread allocates too much, and si_mem_available()
2066 	 * reports there's enough memory, even though there is not.
2067 	 * Make sure the OOM killer kills this thread. This can happen
2068 	 * even with RETRY_MAYFAIL because another task may be doing
2069 	 * an allocation after this task has taken all memory.
2070 	 * This is the task the OOM killer needs to take out during this
2071 	 * loop, even if it was triggered by an allocation somewhere else.
2072 	 */
2073 	if (user_thread)
2074 		set_current_oom_origin();
2075 
2076 	if (buffer->range_addr_start)
2077 		meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2078 
2079 	for (i = 0; i < nr_pages; i++) {
2080 		struct page *page;
2081 
2082 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2083 				    mflags, cpu_to_node(cpu_buffer->cpu));
2084 		if (!bpage)
2085 			goto free_pages;
2086 
2087 		rb_check_bpage(cpu_buffer, bpage);
2088 
2089 		/*
2090 		 * Append the pages as for mapped buffers we want to keep
2091 		 * the order
2092 		 */
2093 		list_add_tail(&bpage->list, pages);
2094 
2095 		if (meta) {
2096 			/* A range was given. Use that for the buffer page */
2097 			bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2098 			if (!bpage->page)
2099 				goto free_pages;
2100 			/* If this is valid from a previous boot */
2101 			if (meta->head_buffer)
2102 				rb_meta_buffer_update(cpu_buffer, bpage);
2103 			bpage->range = 1;
2104 			bpage->id = i + 1;
2105 		} else {
2106 			page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2107 						mflags | __GFP_COMP | __GFP_ZERO,
2108 						cpu_buffer->buffer->subbuf_order);
2109 			if (!page)
2110 				goto free_pages;
2111 			bpage->page = page_address(page);
2112 			rb_init_page(bpage->page);
2113 		}
2114 		bpage->order = cpu_buffer->buffer->subbuf_order;
2115 
2116 		if (user_thread && fatal_signal_pending(current))
2117 			goto free_pages;
2118 	}
2119 	if (user_thread)
2120 		clear_current_oom_origin();
2121 
2122 	return 0;
2123 
2124 free_pages:
2125 	list_for_each_entry_safe(bpage, tmp, pages, list) {
2126 		list_del_init(&bpage->list);
2127 		free_buffer_page(bpage);
2128 	}
2129 	if (user_thread)
2130 		clear_current_oom_origin();
2131 
2132 	return -ENOMEM;
2133 }
2134 
2135 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2136 			     unsigned long nr_pages)
2137 {
2138 	LIST_HEAD(pages);
2139 
2140 	WARN_ON(!nr_pages);
2141 
2142 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2143 		return -ENOMEM;
2144 
2145 	/*
2146 	 * The ring buffer page list is a circular list that does not
2147 	 * start and end with a list head. All page list items point to
2148 	 * other pages.
2149 	 */
2150 	cpu_buffer->pages = pages.next;
2151 	list_del(&pages);
2152 
2153 	cpu_buffer->nr_pages = nr_pages;
2154 
2155 	rb_check_pages(cpu_buffer);
2156 
2157 	return 0;
2158 }
2159 
2160 static struct ring_buffer_per_cpu *
2161 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2162 {
2163 	struct ring_buffer_per_cpu *cpu_buffer;
2164 	struct ring_buffer_meta *meta;
2165 	struct buffer_page *bpage;
2166 	struct page *page;
2167 	int ret;
2168 
2169 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2170 				  GFP_KERNEL, cpu_to_node(cpu));
2171 	if (!cpu_buffer)
2172 		return NULL;
2173 
2174 	cpu_buffer->cpu = cpu;
2175 	cpu_buffer->buffer = buffer;
2176 	raw_spin_lock_init(&cpu_buffer->reader_lock);
2177 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2178 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2179 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2180 	init_completion(&cpu_buffer->update_done);
2181 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2182 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2183 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2184 	mutex_init(&cpu_buffer->mapping_lock);
2185 
2186 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2187 			    GFP_KERNEL, cpu_to_node(cpu));
2188 	if (!bpage)
2189 		goto fail_free_buffer;
2190 
2191 	rb_check_bpage(cpu_buffer, bpage);
2192 
2193 	cpu_buffer->reader_page = bpage;
2194 
2195 	if (buffer->range_addr_start) {
2196 		/*
2197 		 * Range mapped buffers have the same restrictions as memory
2198 		 * mapped ones do.
2199 		 */
2200 		cpu_buffer->mapped = 1;
2201 		cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2202 		bpage->page = rb_range_buffer(cpu_buffer, 0);
2203 		if (!bpage->page)
2204 			goto fail_free_reader;
2205 		if (cpu_buffer->ring_meta->head_buffer)
2206 			rb_meta_buffer_update(cpu_buffer, bpage);
2207 		bpage->range = 1;
2208 	} else {
2209 		page = alloc_pages_node(cpu_to_node(cpu),
2210 					GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2211 					cpu_buffer->buffer->subbuf_order);
2212 		if (!page)
2213 			goto fail_free_reader;
2214 		bpage->page = page_address(page);
2215 		rb_init_page(bpage->page);
2216 	}
2217 
2218 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2219 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
2220 
2221 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
2222 	if (ret < 0)
2223 		goto fail_free_reader;
2224 
2225 	rb_meta_validate_events(cpu_buffer);
2226 
2227 	/* If the boot meta was valid then this has already been updated */
2228 	meta = cpu_buffer->ring_meta;
2229 	if (!meta || !meta->head_buffer ||
2230 	    !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2231 		if (meta && meta->head_buffer &&
2232 		    (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2233 			pr_warn("Ring buffer meta buffers not all mapped\n");
2234 			if (!cpu_buffer->head_page)
2235 				pr_warn("   Missing head_page\n");
2236 			if (!cpu_buffer->commit_page)
2237 				pr_warn("   Missing commit_page\n");
2238 			if (!cpu_buffer->tail_page)
2239 				pr_warn("   Missing tail_page\n");
2240 		}
2241 
2242 		cpu_buffer->head_page
2243 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
2244 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2245 
2246 		rb_head_page_activate(cpu_buffer);
2247 
2248 		if (cpu_buffer->ring_meta)
2249 			meta->commit_buffer = meta->head_buffer;
2250 	} else {
2251 		/* The valid meta buffer still needs to activate the head page */
2252 		rb_head_page_activate(cpu_buffer);
2253 	}
2254 
2255 	return cpu_buffer;
2256 
2257  fail_free_reader:
2258 	free_buffer_page(cpu_buffer->reader_page);
2259 
2260  fail_free_buffer:
2261 	kfree(cpu_buffer);
2262 	return NULL;
2263 }
2264 
2265 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2266 {
2267 	struct list_head *head = cpu_buffer->pages;
2268 	struct buffer_page *bpage, *tmp;
2269 
2270 	irq_work_sync(&cpu_buffer->irq_work.work);
2271 
2272 	free_buffer_page(cpu_buffer->reader_page);
2273 
2274 	if (head) {
2275 		rb_head_page_deactivate(cpu_buffer);
2276 
2277 		list_for_each_entry_safe(bpage, tmp, head, list) {
2278 			list_del_init(&bpage->list);
2279 			free_buffer_page(bpage);
2280 		}
2281 		bpage = list_entry(head, struct buffer_page, list);
2282 		free_buffer_page(bpage);
2283 	}
2284 
2285 	free_page((unsigned long)cpu_buffer->free_page);
2286 
2287 	kfree(cpu_buffer);
2288 }
2289 
2290 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2291 					 int order, unsigned long start,
2292 					 unsigned long end,
2293 					 struct lock_class_key *key)
2294 {
2295 	struct trace_buffer *buffer;
2296 	long nr_pages;
2297 	int subbuf_size;
2298 	int bsize;
2299 	int cpu;
2300 	int ret;
2301 
2302 	/* keep it in its own cache line */
2303 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2304 			 GFP_KERNEL);
2305 	if (!buffer)
2306 		return NULL;
2307 
2308 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2309 		goto fail_free_buffer;
2310 
2311 	buffer->subbuf_order = order;
2312 	subbuf_size = (PAGE_SIZE << order);
2313 	buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2314 
2315 	/* Max payload is buffer page size - header (8bytes) */
2316 	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2317 
2318 	buffer->flags = flags;
2319 	buffer->clock = trace_clock_local;
2320 	buffer->reader_lock_key = key;
2321 
2322 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2323 	init_waitqueue_head(&buffer->irq_work.waiters);
2324 
2325 	buffer->cpus = nr_cpu_ids;
2326 
2327 	bsize = sizeof(void *) * nr_cpu_ids;
2328 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2329 				  GFP_KERNEL);
2330 	if (!buffer->buffers)
2331 		goto fail_free_cpumask;
2332 
2333 	/* If start/end are specified, then that overrides size */
2334 	if (start && end) {
2335 		unsigned long ptr;
2336 		int n;
2337 
2338 		size = end - start;
2339 		size = size / nr_cpu_ids;
2340 
2341 		/*
2342 		 * The number of sub-buffers (nr_pages) is determined by the
2343 		 * total size allocated minus the meta data size.
2344 		 * Then that is divided by the number of per CPU buffers
2345 		 * needed, plus account for the integer array index that
2346 		 * will be appended to the meta data.
2347 		 */
2348 		nr_pages = (size - sizeof(struct ring_buffer_meta)) /
2349 			(subbuf_size + sizeof(int));
2350 		/* Need at least two pages plus the reader page */
2351 		if (nr_pages < 3)
2352 			goto fail_free_buffers;
2353 
2354  again:
2355 		/* Make sure that the size fits aligned */
2356 		for (n = 0, ptr = start; n < nr_cpu_ids; n++) {
2357 			ptr += sizeof(struct ring_buffer_meta) +
2358 				sizeof(int) * nr_pages;
2359 			ptr = ALIGN(ptr, subbuf_size);
2360 			ptr += subbuf_size * nr_pages;
2361 		}
2362 		if (ptr > end) {
2363 			if (nr_pages <= 3)
2364 				goto fail_free_buffers;
2365 			nr_pages--;
2366 			goto again;
2367 		}
2368 
2369 		/* nr_pages should not count the reader page */
2370 		nr_pages--;
2371 		buffer->range_addr_start = start;
2372 		buffer->range_addr_end = end;
2373 
2374 		rb_range_meta_init(buffer, nr_pages);
2375 	} else {
2376 
2377 		/* need at least two pages */
2378 		nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2379 		if (nr_pages < 2)
2380 			nr_pages = 2;
2381 	}
2382 
2383 	cpu = raw_smp_processor_id();
2384 	cpumask_set_cpu(cpu, buffer->cpumask);
2385 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2386 	if (!buffer->buffers[cpu])
2387 		goto fail_free_buffers;
2388 
2389 	/* If already mapped, do not hook to CPU hotplug */
2390 	if (!start) {
2391 		ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2392 		if (ret < 0)
2393 			goto fail_free_buffers;
2394 	}
2395 
2396 	mutex_init(&buffer->mutex);
2397 
2398 	return buffer;
2399 
2400  fail_free_buffers:
2401 	for_each_buffer_cpu(buffer, cpu) {
2402 		if (buffer->buffers[cpu])
2403 			rb_free_cpu_buffer(buffer->buffers[cpu]);
2404 	}
2405 	kfree(buffer->buffers);
2406 
2407  fail_free_cpumask:
2408 	free_cpumask_var(buffer->cpumask);
2409 
2410  fail_free_buffer:
2411 	kfree(buffer);
2412 	return NULL;
2413 }
2414 
2415 /**
2416  * __ring_buffer_alloc - allocate a new ring_buffer
2417  * @size: the size in bytes per cpu that is needed.
2418  * @flags: attributes to set for the ring buffer.
2419  * @key: ring buffer reader_lock_key.
2420  *
2421  * Currently the only flag that is available is the RB_FL_OVERWRITE
2422  * flag. This flag means that the buffer will overwrite old data
2423  * when the buffer wraps. If this flag is not set, the buffer will
2424  * drop data when the tail hits the head.
2425  */
2426 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2427 					struct lock_class_key *key)
2428 {
2429 	/* Default buffer page size - one system page */
2430 	return alloc_buffer(size, flags, 0, 0, 0,key);
2431 
2432 }
2433 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2434 
2435 /**
2436  * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2437  * @size: the size in bytes per cpu that is needed.
2438  * @flags: attributes to set for the ring buffer.
2439  * @order: sub-buffer order
2440  * @start: start of allocated range
2441  * @range_size: size of allocated range
2442  * @key: ring buffer reader_lock_key.
2443  *
2444  * Currently the only flag that is available is the RB_FL_OVERWRITE
2445  * flag. This flag means that the buffer will overwrite old data
2446  * when the buffer wraps. If this flag is not set, the buffer will
2447  * drop data when the tail hits the head.
2448  */
2449 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2450 					       int order, unsigned long start,
2451 					       unsigned long range_size,
2452 					       struct lock_class_key *key)
2453 {
2454 	return alloc_buffer(size, flags, order, start, start + range_size, key);
2455 }
2456 
2457 /**
2458  * ring_buffer_last_boot_delta - return the delta offset from last boot
2459  * @buffer: The buffer to return the delta from
2460  * @text: Return text delta
2461  * @data: Return data delta
2462  *
2463  * Returns: The true if the delta is non zero
2464  */
2465 bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, long *text,
2466 				 long *data)
2467 {
2468 	if (!buffer)
2469 		return false;
2470 
2471 	if (!buffer->last_text_delta)
2472 		return false;
2473 
2474 	*text = buffer->last_text_delta;
2475 	*data = buffer->last_data_delta;
2476 
2477 	return true;
2478 }
2479 
2480 /**
2481  * ring_buffer_free - free a ring buffer.
2482  * @buffer: the buffer to free.
2483  */
2484 void
2485 ring_buffer_free(struct trace_buffer *buffer)
2486 {
2487 	int cpu;
2488 
2489 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2490 
2491 	irq_work_sync(&buffer->irq_work.work);
2492 
2493 	for_each_buffer_cpu(buffer, cpu)
2494 		rb_free_cpu_buffer(buffer->buffers[cpu]);
2495 
2496 	kfree(buffer->buffers);
2497 	free_cpumask_var(buffer->cpumask);
2498 
2499 	kfree(buffer);
2500 }
2501 EXPORT_SYMBOL_GPL(ring_buffer_free);
2502 
2503 void ring_buffer_set_clock(struct trace_buffer *buffer,
2504 			   u64 (*clock)(void))
2505 {
2506 	buffer->clock = clock;
2507 }
2508 
2509 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2510 {
2511 	buffer->time_stamp_abs = abs;
2512 }
2513 
2514 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2515 {
2516 	return buffer->time_stamp_abs;
2517 }
2518 
2519 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2520 {
2521 	return local_read(&bpage->entries) & RB_WRITE_MASK;
2522 }
2523 
2524 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2525 {
2526 	return local_read(&bpage->write) & RB_WRITE_MASK;
2527 }
2528 
2529 static bool
2530 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2531 {
2532 	struct list_head *tail_page, *to_remove, *next_page;
2533 	struct buffer_page *to_remove_page, *tmp_iter_page;
2534 	struct buffer_page *last_page, *first_page;
2535 	unsigned long nr_removed;
2536 	unsigned long head_bit;
2537 	int page_entries;
2538 
2539 	head_bit = 0;
2540 
2541 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2542 	atomic_inc(&cpu_buffer->record_disabled);
2543 	/*
2544 	 * We don't race with the readers since we have acquired the reader
2545 	 * lock. We also don't race with writers after disabling recording.
2546 	 * This makes it easy to figure out the first and the last page to be
2547 	 * removed from the list. We unlink all the pages in between including
2548 	 * the first and last pages. This is done in a busy loop so that we
2549 	 * lose the least number of traces.
2550 	 * The pages are freed after we restart recording and unlock readers.
2551 	 */
2552 	tail_page = &cpu_buffer->tail_page->list;
2553 
2554 	/*
2555 	 * tail page might be on reader page, we remove the next page
2556 	 * from the ring buffer
2557 	 */
2558 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2559 		tail_page = rb_list_head(tail_page->next);
2560 	to_remove = tail_page;
2561 
2562 	/* start of pages to remove */
2563 	first_page = list_entry(rb_list_head(to_remove->next),
2564 				struct buffer_page, list);
2565 
2566 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2567 		to_remove = rb_list_head(to_remove)->next;
2568 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2569 	}
2570 	/* Read iterators need to reset themselves when some pages removed */
2571 	cpu_buffer->pages_removed += nr_removed;
2572 
2573 	next_page = rb_list_head(to_remove)->next;
2574 
2575 	/*
2576 	 * Now we remove all pages between tail_page and next_page.
2577 	 * Make sure that we have head_bit value preserved for the
2578 	 * next page
2579 	 */
2580 	tail_page->next = (struct list_head *)((unsigned long)next_page |
2581 						head_bit);
2582 	next_page = rb_list_head(next_page);
2583 	next_page->prev = tail_page;
2584 
2585 	/* make sure pages points to a valid page in the ring buffer */
2586 	cpu_buffer->pages = next_page;
2587 	cpu_buffer->cnt++;
2588 
2589 	/* update head page */
2590 	if (head_bit)
2591 		cpu_buffer->head_page = list_entry(next_page,
2592 						struct buffer_page, list);
2593 
2594 	/* pages are removed, resume tracing and then free the pages */
2595 	atomic_dec(&cpu_buffer->record_disabled);
2596 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2597 
2598 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2599 
2600 	/* last buffer page to remove */
2601 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2602 				list);
2603 	tmp_iter_page = first_page;
2604 
2605 	do {
2606 		cond_resched();
2607 
2608 		to_remove_page = tmp_iter_page;
2609 		rb_inc_page(&tmp_iter_page);
2610 
2611 		/* update the counters */
2612 		page_entries = rb_page_entries(to_remove_page);
2613 		if (page_entries) {
2614 			/*
2615 			 * If something was added to this page, it was full
2616 			 * since it is not the tail page. So we deduct the
2617 			 * bytes consumed in ring buffer from here.
2618 			 * Increment overrun to account for the lost events.
2619 			 */
2620 			local_add(page_entries, &cpu_buffer->overrun);
2621 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2622 			local_inc(&cpu_buffer->pages_lost);
2623 		}
2624 
2625 		/*
2626 		 * We have already removed references to this list item, just
2627 		 * free up the buffer_page and its page
2628 		 */
2629 		free_buffer_page(to_remove_page);
2630 		nr_removed--;
2631 
2632 	} while (to_remove_page != last_page);
2633 
2634 	RB_WARN_ON(cpu_buffer, nr_removed);
2635 
2636 	return nr_removed == 0;
2637 }
2638 
2639 static bool
2640 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2641 {
2642 	struct list_head *pages = &cpu_buffer->new_pages;
2643 	unsigned long flags;
2644 	bool success;
2645 	int retries;
2646 
2647 	/* Can be called at early boot up, where interrupts must not been enabled */
2648 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2649 	/*
2650 	 * We are holding the reader lock, so the reader page won't be swapped
2651 	 * in the ring buffer. Now we are racing with the writer trying to
2652 	 * move head page and the tail page.
2653 	 * We are going to adapt the reader page update process where:
2654 	 * 1. We first splice the start and end of list of new pages between
2655 	 *    the head page and its previous page.
2656 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2657 	 *    start of new pages list.
2658 	 * 3. Finally, we update the head->prev to the end of new list.
2659 	 *
2660 	 * We will try this process 10 times, to make sure that we don't keep
2661 	 * spinning.
2662 	 */
2663 	retries = 10;
2664 	success = false;
2665 	while (retries--) {
2666 		struct list_head *head_page, *prev_page;
2667 		struct list_head *last_page, *first_page;
2668 		struct list_head *head_page_with_bit;
2669 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2670 
2671 		if (!hpage)
2672 			break;
2673 		head_page = &hpage->list;
2674 		prev_page = head_page->prev;
2675 
2676 		first_page = pages->next;
2677 		last_page  = pages->prev;
2678 
2679 		head_page_with_bit = (struct list_head *)
2680 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2681 
2682 		last_page->next = head_page_with_bit;
2683 		first_page->prev = prev_page;
2684 
2685 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2686 		if (try_cmpxchg(&prev_page->next,
2687 				&head_page_with_bit, first_page)) {
2688 			/*
2689 			 * yay, we replaced the page pointer to our new list,
2690 			 * now, we just have to update to head page's prev
2691 			 * pointer to point to end of list
2692 			 */
2693 			head_page->prev = last_page;
2694 			cpu_buffer->cnt++;
2695 			success = true;
2696 			break;
2697 		}
2698 	}
2699 
2700 	if (success)
2701 		INIT_LIST_HEAD(pages);
2702 	/*
2703 	 * If we weren't successful in adding in new pages, warn and stop
2704 	 * tracing
2705 	 */
2706 	RB_WARN_ON(cpu_buffer, !success);
2707 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2708 
2709 	/* free pages if they weren't inserted */
2710 	if (!success) {
2711 		struct buffer_page *bpage, *tmp;
2712 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2713 					 list) {
2714 			list_del_init(&bpage->list);
2715 			free_buffer_page(bpage);
2716 		}
2717 	}
2718 	return success;
2719 }
2720 
2721 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2722 {
2723 	bool success;
2724 
2725 	if (cpu_buffer->nr_pages_to_update > 0)
2726 		success = rb_insert_pages(cpu_buffer);
2727 	else
2728 		success = rb_remove_pages(cpu_buffer,
2729 					-cpu_buffer->nr_pages_to_update);
2730 
2731 	if (success)
2732 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2733 }
2734 
2735 static void update_pages_handler(struct work_struct *work)
2736 {
2737 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2738 			struct ring_buffer_per_cpu, update_pages_work);
2739 	rb_update_pages(cpu_buffer);
2740 	complete(&cpu_buffer->update_done);
2741 }
2742 
2743 /**
2744  * ring_buffer_resize - resize the ring buffer
2745  * @buffer: the buffer to resize.
2746  * @size: the new size.
2747  * @cpu_id: the cpu buffer to resize
2748  *
2749  * Minimum size is 2 * buffer->subbuf_size.
2750  *
2751  * Returns 0 on success and < 0 on failure.
2752  */
2753 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2754 			int cpu_id)
2755 {
2756 	struct ring_buffer_per_cpu *cpu_buffer;
2757 	unsigned long nr_pages;
2758 	int cpu, err;
2759 
2760 	/*
2761 	 * Always succeed at resizing a non-existent buffer:
2762 	 */
2763 	if (!buffer)
2764 		return 0;
2765 
2766 	/* Make sure the requested buffer exists */
2767 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2768 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2769 		return 0;
2770 
2771 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2772 
2773 	/* we need a minimum of two pages */
2774 	if (nr_pages < 2)
2775 		nr_pages = 2;
2776 
2777 	/* prevent another thread from changing buffer sizes */
2778 	mutex_lock(&buffer->mutex);
2779 	atomic_inc(&buffer->resizing);
2780 
2781 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2782 		/*
2783 		 * Don't succeed if resizing is disabled, as a reader might be
2784 		 * manipulating the ring buffer and is expecting a sane state while
2785 		 * this is true.
2786 		 */
2787 		for_each_buffer_cpu(buffer, cpu) {
2788 			cpu_buffer = buffer->buffers[cpu];
2789 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2790 				err = -EBUSY;
2791 				goto out_err_unlock;
2792 			}
2793 		}
2794 
2795 		/* calculate the pages to update */
2796 		for_each_buffer_cpu(buffer, cpu) {
2797 			cpu_buffer = buffer->buffers[cpu];
2798 
2799 			cpu_buffer->nr_pages_to_update = nr_pages -
2800 							cpu_buffer->nr_pages;
2801 			/*
2802 			 * nothing more to do for removing pages or no update
2803 			 */
2804 			if (cpu_buffer->nr_pages_to_update <= 0)
2805 				continue;
2806 			/*
2807 			 * to add pages, make sure all new pages can be
2808 			 * allocated without receiving ENOMEM
2809 			 */
2810 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2811 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2812 						&cpu_buffer->new_pages)) {
2813 				/* not enough memory for new pages */
2814 				err = -ENOMEM;
2815 				goto out_err;
2816 			}
2817 
2818 			cond_resched();
2819 		}
2820 
2821 		cpus_read_lock();
2822 		/*
2823 		 * Fire off all the required work handlers
2824 		 * We can't schedule on offline CPUs, but it's not necessary
2825 		 * since we can change their buffer sizes without any race.
2826 		 */
2827 		for_each_buffer_cpu(buffer, cpu) {
2828 			cpu_buffer = buffer->buffers[cpu];
2829 			if (!cpu_buffer->nr_pages_to_update)
2830 				continue;
2831 
2832 			/* Can't run something on an offline CPU. */
2833 			if (!cpu_online(cpu)) {
2834 				rb_update_pages(cpu_buffer);
2835 				cpu_buffer->nr_pages_to_update = 0;
2836 			} else {
2837 				/* Run directly if possible. */
2838 				migrate_disable();
2839 				if (cpu != smp_processor_id()) {
2840 					migrate_enable();
2841 					schedule_work_on(cpu,
2842 							 &cpu_buffer->update_pages_work);
2843 				} else {
2844 					update_pages_handler(&cpu_buffer->update_pages_work);
2845 					migrate_enable();
2846 				}
2847 			}
2848 		}
2849 
2850 		/* wait for all the updates to complete */
2851 		for_each_buffer_cpu(buffer, cpu) {
2852 			cpu_buffer = buffer->buffers[cpu];
2853 			if (!cpu_buffer->nr_pages_to_update)
2854 				continue;
2855 
2856 			if (cpu_online(cpu))
2857 				wait_for_completion(&cpu_buffer->update_done);
2858 			cpu_buffer->nr_pages_to_update = 0;
2859 		}
2860 
2861 		cpus_read_unlock();
2862 	} else {
2863 		cpu_buffer = buffer->buffers[cpu_id];
2864 
2865 		if (nr_pages == cpu_buffer->nr_pages)
2866 			goto out;
2867 
2868 		/*
2869 		 * Don't succeed if resizing is disabled, as a reader might be
2870 		 * manipulating the ring buffer and is expecting a sane state while
2871 		 * this is true.
2872 		 */
2873 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2874 			err = -EBUSY;
2875 			goto out_err_unlock;
2876 		}
2877 
2878 		cpu_buffer->nr_pages_to_update = nr_pages -
2879 						cpu_buffer->nr_pages;
2880 
2881 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2882 		if (cpu_buffer->nr_pages_to_update > 0 &&
2883 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2884 					    &cpu_buffer->new_pages)) {
2885 			err = -ENOMEM;
2886 			goto out_err;
2887 		}
2888 
2889 		cpus_read_lock();
2890 
2891 		/* Can't run something on an offline CPU. */
2892 		if (!cpu_online(cpu_id))
2893 			rb_update_pages(cpu_buffer);
2894 		else {
2895 			/* Run directly if possible. */
2896 			migrate_disable();
2897 			if (cpu_id == smp_processor_id()) {
2898 				rb_update_pages(cpu_buffer);
2899 				migrate_enable();
2900 			} else {
2901 				migrate_enable();
2902 				schedule_work_on(cpu_id,
2903 						 &cpu_buffer->update_pages_work);
2904 				wait_for_completion(&cpu_buffer->update_done);
2905 			}
2906 		}
2907 
2908 		cpu_buffer->nr_pages_to_update = 0;
2909 		cpus_read_unlock();
2910 	}
2911 
2912  out:
2913 	/*
2914 	 * The ring buffer resize can happen with the ring buffer
2915 	 * enabled, so that the update disturbs the tracing as little
2916 	 * as possible. But if the buffer is disabled, we do not need
2917 	 * to worry about that, and we can take the time to verify
2918 	 * that the buffer is not corrupt.
2919 	 */
2920 	if (atomic_read(&buffer->record_disabled)) {
2921 		atomic_inc(&buffer->record_disabled);
2922 		/*
2923 		 * Even though the buffer was disabled, we must make sure
2924 		 * that it is truly disabled before calling rb_check_pages.
2925 		 * There could have been a race between checking
2926 		 * record_disable and incrementing it.
2927 		 */
2928 		synchronize_rcu();
2929 		for_each_buffer_cpu(buffer, cpu) {
2930 			cpu_buffer = buffer->buffers[cpu];
2931 			rb_check_pages(cpu_buffer);
2932 		}
2933 		atomic_dec(&buffer->record_disabled);
2934 	}
2935 
2936 	atomic_dec(&buffer->resizing);
2937 	mutex_unlock(&buffer->mutex);
2938 	return 0;
2939 
2940  out_err:
2941 	for_each_buffer_cpu(buffer, cpu) {
2942 		struct buffer_page *bpage, *tmp;
2943 
2944 		cpu_buffer = buffer->buffers[cpu];
2945 		cpu_buffer->nr_pages_to_update = 0;
2946 
2947 		if (list_empty(&cpu_buffer->new_pages))
2948 			continue;
2949 
2950 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2951 					list) {
2952 			list_del_init(&bpage->list);
2953 			free_buffer_page(bpage);
2954 		}
2955 	}
2956  out_err_unlock:
2957 	atomic_dec(&buffer->resizing);
2958 	mutex_unlock(&buffer->mutex);
2959 	return err;
2960 }
2961 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2962 
2963 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2964 {
2965 	mutex_lock(&buffer->mutex);
2966 	if (val)
2967 		buffer->flags |= RB_FL_OVERWRITE;
2968 	else
2969 		buffer->flags &= ~RB_FL_OVERWRITE;
2970 	mutex_unlock(&buffer->mutex);
2971 }
2972 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2973 
2974 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2975 {
2976 	return bpage->page->data + index;
2977 }
2978 
2979 static __always_inline struct ring_buffer_event *
2980 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2981 {
2982 	return __rb_page_index(cpu_buffer->reader_page,
2983 			       cpu_buffer->reader_page->read);
2984 }
2985 
2986 static struct ring_buffer_event *
2987 rb_iter_head_event(struct ring_buffer_iter *iter)
2988 {
2989 	struct ring_buffer_event *event;
2990 	struct buffer_page *iter_head_page = iter->head_page;
2991 	unsigned long commit;
2992 	unsigned length;
2993 
2994 	if (iter->head != iter->next_event)
2995 		return iter->event;
2996 
2997 	/*
2998 	 * When the writer goes across pages, it issues a cmpxchg which
2999 	 * is a mb(), which will synchronize with the rmb here.
3000 	 * (see rb_tail_page_update() and __rb_reserve_next())
3001 	 */
3002 	commit = rb_page_commit(iter_head_page);
3003 	smp_rmb();
3004 
3005 	/* An event needs to be at least 8 bytes in size */
3006 	if (iter->head > commit - 8)
3007 		goto reset;
3008 
3009 	event = __rb_page_index(iter_head_page, iter->head);
3010 	length = rb_event_length(event);
3011 
3012 	/*
3013 	 * READ_ONCE() doesn't work on functions and we don't want the
3014 	 * compiler doing any crazy optimizations with length.
3015 	 */
3016 	barrier();
3017 
3018 	if ((iter->head + length) > commit || length > iter->event_size)
3019 		/* Writer corrupted the read? */
3020 		goto reset;
3021 
3022 	memcpy(iter->event, event, length);
3023 	/*
3024 	 * If the page stamp is still the same after this rmb() then the
3025 	 * event was safely copied without the writer entering the page.
3026 	 */
3027 	smp_rmb();
3028 
3029 	/* Make sure the page didn't change since we read this */
3030 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
3031 	    commit > rb_page_commit(iter_head_page))
3032 		goto reset;
3033 
3034 	iter->next_event = iter->head + length;
3035 	return iter->event;
3036  reset:
3037 	/* Reset to the beginning */
3038 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3039 	iter->head = 0;
3040 	iter->next_event = 0;
3041 	iter->missed_events = 1;
3042 	return NULL;
3043 }
3044 
3045 /* Size is determined by what has been committed */
3046 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3047 {
3048 	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3049 }
3050 
3051 static __always_inline unsigned
3052 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3053 {
3054 	return rb_page_commit(cpu_buffer->commit_page);
3055 }
3056 
3057 static __always_inline unsigned
3058 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3059 {
3060 	unsigned long addr = (unsigned long)event;
3061 
3062 	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3063 
3064 	return addr - BUF_PAGE_HDR_SIZE;
3065 }
3066 
3067 static void rb_inc_iter(struct ring_buffer_iter *iter)
3068 {
3069 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3070 
3071 	/*
3072 	 * The iterator could be on the reader page (it starts there).
3073 	 * But the head could have moved, since the reader was
3074 	 * found. Check for this case and assign the iterator
3075 	 * to the head page instead of next.
3076 	 */
3077 	if (iter->head_page == cpu_buffer->reader_page)
3078 		iter->head_page = rb_set_head_page(cpu_buffer);
3079 	else
3080 		rb_inc_page(&iter->head_page);
3081 
3082 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3083 	iter->head = 0;
3084 	iter->next_event = 0;
3085 }
3086 
3087 /* Return the index into the sub-buffers for a given sub-buffer */
3088 static int rb_meta_subbuf_idx(struct ring_buffer_meta *meta, void *subbuf)
3089 {
3090 	void *subbuf_array;
3091 
3092 	subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3093 	subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3094 	return (subbuf - subbuf_array) / meta->subbuf_size;
3095 }
3096 
3097 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3098 				struct buffer_page *next_page)
3099 {
3100 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3101 	unsigned long old_head = (unsigned long)next_page->page;
3102 	unsigned long new_head;
3103 
3104 	rb_inc_page(&next_page);
3105 	new_head = (unsigned long)next_page->page;
3106 
3107 	/*
3108 	 * Only move it forward once, if something else came in and
3109 	 * moved it forward, then we don't want to touch it.
3110 	 */
3111 	(void)cmpxchg(&meta->head_buffer, old_head, new_head);
3112 }
3113 
3114 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3115 				  struct buffer_page *reader)
3116 {
3117 	struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3118 	void *old_reader = cpu_buffer->reader_page->page;
3119 	void *new_reader = reader->page;
3120 	int id;
3121 
3122 	id = reader->id;
3123 	cpu_buffer->reader_page->id = id;
3124 	reader->id = 0;
3125 
3126 	meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3127 	meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3128 
3129 	/* The head pointer is the one after the reader */
3130 	rb_update_meta_head(cpu_buffer, reader);
3131 }
3132 
3133 /*
3134  * rb_handle_head_page - writer hit the head page
3135  *
3136  * Returns: +1 to retry page
3137  *           0 to continue
3138  *          -1 on error
3139  */
3140 static int
3141 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3142 		    struct buffer_page *tail_page,
3143 		    struct buffer_page *next_page)
3144 {
3145 	struct buffer_page *new_head;
3146 	int entries;
3147 	int type;
3148 	int ret;
3149 
3150 	entries = rb_page_entries(next_page);
3151 
3152 	/*
3153 	 * The hard part is here. We need to move the head
3154 	 * forward, and protect against both readers on
3155 	 * other CPUs and writers coming in via interrupts.
3156 	 */
3157 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3158 				       RB_PAGE_HEAD);
3159 
3160 	/*
3161 	 * type can be one of four:
3162 	 *  NORMAL - an interrupt already moved it for us
3163 	 *  HEAD   - we are the first to get here.
3164 	 *  UPDATE - we are the interrupt interrupting
3165 	 *           a current move.
3166 	 *  MOVED  - a reader on another CPU moved the next
3167 	 *           pointer to its reader page. Give up
3168 	 *           and try again.
3169 	 */
3170 
3171 	switch (type) {
3172 	case RB_PAGE_HEAD:
3173 		/*
3174 		 * We changed the head to UPDATE, thus
3175 		 * it is our responsibility to update
3176 		 * the counters.
3177 		 */
3178 		local_add(entries, &cpu_buffer->overrun);
3179 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3180 		local_inc(&cpu_buffer->pages_lost);
3181 
3182 		if (cpu_buffer->ring_meta)
3183 			rb_update_meta_head(cpu_buffer, next_page);
3184 		/*
3185 		 * The entries will be zeroed out when we move the
3186 		 * tail page.
3187 		 */
3188 
3189 		/* still more to do */
3190 		break;
3191 
3192 	case RB_PAGE_UPDATE:
3193 		/*
3194 		 * This is an interrupt that interrupt the
3195 		 * previous update. Still more to do.
3196 		 */
3197 		break;
3198 	case RB_PAGE_NORMAL:
3199 		/*
3200 		 * An interrupt came in before the update
3201 		 * and processed this for us.
3202 		 * Nothing left to do.
3203 		 */
3204 		return 1;
3205 	case RB_PAGE_MOVED:
3206 		/*
3207 		 * The reader is on another CPU and just did
3208 		 * a swap with our next_page.
3209 		 * Try again.
3210 		 */
3211 		return 1;
3212 	default:
3213 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3214 		return -1;
3215 	}
3216 
3217 	/*
3218 	 * Now that we are here, the old head pointer is
3219 	 * set to UPDATE. This will keep the reader from
3220 	 * swapping the head page with the reader page.
3221 	 * The reader (on another CPU) will spin till
3222 	 * we are finished.
3223 	 *
3224 	 * We just need to protect against interrupts
3225 	 * doing the job. We will set the next pointer
3226 	 * to HEAD. After that, we set the old pointer
3227 	 * to NORMAL, but only if it was HEAD before.
3228 	 * otherwise we are an interrupt, and only
3229 	 * want the outer most commit to reset it.
3230 	 */
3231 	new_head = next_page;
3232 	rb_inc_page(&new_head);
3233 
3234 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3235 				    RB_PAGE_NORMAL);
3236 
3237 	/*
3238 	 * Valid returns are:
3239 	 *  HEAD   - an interrupt came in and already set it.
3240 	 *  NORMAL - One of two things:
3241 	 *            1) We really set it.
3242 	 *            2) A bunch of interrupts came in and moved
3243 	 *               the page forward again.
3244 	 */
3245 	switch (ret) {
3246 	case RB_PAGE_HEAD:
3247 	case RB_PAGE_NORMAL:
3248 		/* OK */
3249 		break;
3250 	default:
3251 		RB_WARN_ON(cpu_buffer, 1);
3252 		return -1;
3253 	}
3254 
3255 	/*
3256 	 * It is possible that an interrupt came in,
3257 	 * set the head up, then more interrupts came in
3258 	 * and moved it again. When we get back here,
3259 	 * the page would have been set to NORMAL but we
3260 	 * just set it back to HEAD.
3261 	 *
3262 	 * How do you detect this? Well, if that happened
3263 	 * the tail page would have moved.
3264 	 */
3265 	if (ret == RB_PAGE_NORMAL) {
3266 		struct buffer_page *buffer_tail_page;
3267 
3268 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3269 		/*
3270 		 * If the tail had moved passed next, then we need
3271 		 * to reset the pointer.
3272 		 */
3273 		if (buffer_tail_page != tail_page &&
3274 		    buffer_tail_page != next_page)
3275 			rb_head_page_set_normal(cpu_buffer, new_head,
3276 						next_page,
3277 						RB_PAGE_HEAD);
3278 	}
3279 
3280 	/*
3281 	 * If this was the outer most commit (the one that
3282 	 * changed the original pointer from HEAD to UPDATE),
3283 	 * then it is up to us to reset it to NORMAL.
3284 	 */
3285 	if (type == RB_PAGE_HEAD) {
3286 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
3287 					      tail_page,
3288 					      RB_PAGE_UPDATE);
3289 		if (RB_WARN_ON(cpu_buffer,
3290 			       ret != RB_PAGE_UPDATE))
3291 			return -1;
3292 	}
3293 
3294 	return 0;
3295 }
3296 
3297 static inline void
3298 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3299 	      unsigned long tail, struct rb_event_info *info)
3300 {
3301 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3302 	struct buffer_page *tail_page = info->tail_page;
3303 	struct ring_buffer_event *event;
3304 	unsigned long length = info->length;
3305 
3306 	/*
3307 	 * Only the event that crossed the page boundary
3308 	 * must fill the old tail_page with padding.
3309 	 */
3310 	if (tail >= bsize) {
3311 		/*
3312 		 * If the page was filled, then we still need
3313 		 * to update the real_end. Reset it to zero
3314 		 * and the reader will ignore it.
3315 		 */
3316 		if (tail == bsize)
3317 			tail_page->real_end = 0;
3318 
3319 		local_sub(length, &tail_page->write);
3320 		return;
3321 	}
3322 
3323 	event = __rb_page_index(tail_page, tail);
3324 
3325 	/*
3326 	 * Save the original length to the meta data.
3327 	 * This will be used by the reader to add lost event
3328 	 * counter.
3329 	 */
3330 	tail_page->real_end = tail;
3331 
3332 	/*
3333 	 * If this event is bigger than the minimum size, then
3334 	 * we need to be careful that we don't subtract the
3335 	 * write counter enough to allow another writer to slip
3336 	 * in on this page.
3337 	 * We put in a discarded commit instead, to make sure
3338 	 * that this space is not used again, and this space will
3339 	 * not be accounted into 'entries_bytes'.
3340 	 *
3341 	 * If we are less than the minimum size, we don't need to
3342 	 * worry about it.
3343 	 */
3344 	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3345 		/* No room for any events */
3346 
3347 		/* Mark the rest of the page with padding */
3348 		rb_event_set_padding(event);
3349 
3350 		/* Make sure the padding is visible before the write update */
3351 		smp_wmb();
3352 
3353 		/* Set the write back to the previous setting */
3354 		local_sub(length, &tail_page->write);
3355 		return;
3356 	}
3357 
3358 	/* Put in a discarded event */
3359 	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3360 	event->type_len = RINGBUF_TYPE_PADDING;
3361 	/* time delta must be non zero */
3362 	event->time_delta = 1;
3363 
3364 	/* account for padding bytes */
3365 	local_add(bsize - tail, &cpu_buffer->entries_bytes);
3366 
3367 	/* Make sure the padding is visible before the tail_page->write update */
3368 	smp_wmb();
3369 
3370 	/* Set write to end of buffer */
3371 	length = (tail + length) - bsize;
3372 	local_sub(length, &tail_page->write);
3373 }
3374 
3375 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3376 
3377 /*
3378  * This is the slow path, force gcc not to inline it.
3379  */
3380 static noinline struct ring_buffer_event *
3381 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3382 	     unsigned long tail, struct rb_event_info *info)
3383 {
3384 	struct buffer_page *tail_page = info->tail_page;
3385 	struct buffer_page *commit_page = cpu_buffer->commit_page;
3386 	struct trace_buffer *buffer = cpu_buffer->buffer;
3387 	struct buffer_page *next_page;
3388 	int ret;
3389 
3390 	next_page = tail_page;
3391 
3392 	rb_inc_page(&next_page);
3393 
3394 	/*
3395 	 * If for some reason, we had an interrupt storm that made
3396 	 * it all the way around the buffer, bail, and warn
3397 	 * about it.
3398 	 */
3399 	if (unlikely(next_page == commit_page)) {
3400 		local_inc(&cpu_buffer->commit_overrun);
3401 		goto out_reset;
3402 	}
3403 
3404 	/*
3405 	 * This is where the fun begins!
3406 	 *
3407 	 * We are fighting against races between a reader that
3408 	 * could be on another CPU trying to swap its reader
3409 	 * page with the buffer head.
3410 	 *
3411 	 * We are also fighting against interrupts coming in and
3412 	 * moving the head or tail on us as well.
3413 	 *
3414 	 * If the next page is the head page then we have filled
3415 	 * the buffer, unless the commit page is still on the
3416 	 * reader page.
3417 	 */
3418 	if (rb_is_head_page(next_page, &tail_page->list)) {
3419 
3420 		/*
3421 		 * If the commit is not on the reader page, then
3422 		 * move the header page.
3423 		 */
3424 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3425 			/*
3426 			 * If we are not in overwrite mode,
3427 			 * this is easy, just stop here.
3428 			 */
3429 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
3430 				local_inc(&cpu_buffer->dropped_events);
3431 				goto out_reset;
3432 			}
3433 
3434 			ret = rb_handle_head_page(cpu_buffer,
3435 						  tail_page,
3436 						  next_page);
3437 			if (ret < 0)
3438 				goto out_reset;
3439 			if (ret)
3440 				goto out_again;
3441 		} else {
3442 			/*
3443 			 * We need to be careful here too. The
3444 			 * commit page could still be on the reader
3445 			 * page. We could have a small buffer, and
3446 			 * have filled up the buffer with events
3447 			 * from interrupts and such, and wrapped.
3448 			 *
3449 			 * Note, if the tail page is also on the
3450 			 * reader_page, we let it move out.
3451 			 */
3452 			if (unlikely((cpu_buffer->commit_page !=
3453 				      cpu_buffer->tail_page) &&
3454 				     (cpu_buffer->commit_page ==
3455 				      cpu_buffer->reader_page))) {
3456 				local_inc(&cpu_buffer->commit_overrun);
3457 				goto out_reset;
3458 			}
3459 		}
3460 	}
3461 
3462 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
3463 
3464  out_again:
3465 
3466 	rb_reset_tail(cpu_buffer, tail, info);
3467 
3468 	/* Commit what we have for now. */
3469 	rb_end_commit(cpu_buffer);
3470 	/* rb_end_commit() decs committing */
3471 	local_inc(&cpu_buffer->committing);
3472 
3473 	/* fail and let the caller try again */
3474 	return ERR_PTR(-EAGAIN);
3475 
3476  out_reset:
3477 	/* reset write */
3478 	rb_reset_tail(cpu_buffer, tail, info);
3479 
3480 	return NULL;
3481 }
3482 
3483 /* Slow path */
3484 static struct ring_buffer_event *
3485 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3486 		  struct ring_buffer_event *event, u64 delta, bool abs)
3487 {
3488 	if (abs)
3489 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
3490 	else
3491 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3492 
3493 	/* Not the first event on the page, or not delta? */
3494 	if (abs || rb_event_index(cpu_buffer, event)) {
3495 		event->time_delta = delta & TS_MASK;
3496 		event->array[0] = delta >> TS_SHIFT;
3497 	} else {
3498 		/* nope, just zero it */
3499 		event->time_delta = 0;
3500 		event->array[0] = 0;
3501 	}
3502 
3503 	return skip_time_extend(event);
3504 }
3505 
3506 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3507 static inline bool sched_clock_stable(void)
3508 {
3509 	return true;
3510 }
3511 #endif
3512 
3513 static void
3514 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3515 		   struct rb_event_info *info)
3516 {
3517 	u64 write_stamp;
3518 
3519 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3520 		  (unsigned long long)info->delta,
3521 		  (unsigned long long)info->ts,
3522 		  (unsigned long long)info->before,
3523 		  (unsigned long long)info->after,
3524 		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3525 		  sched_clock_stable() ? "" :
3526 		  "If you just came from a suspend/resume,\n"
3527 		  "please switch to the trace global clock:\n"
3528 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
3529 		  "or add trace_clock=global to the kernel command line\n");
3530 }
3531 
3532 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3533 				      struct ring_buffer_event **event,
3534 				      struct rb_event_info *info,
3535 				      u64 *delta,
3536 				      unsigned int *length)
3537 {
3538 	bool abs = info->add_timestamp &
3539 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3540 
3541 	if (unlikely(info->delta > (1ULL << 59))) {
3542 		/*
3543 		 * Some timers can use more than 59 bits, and when a timestamp
3544 		 * is added to the buffer, it will lose those bits.
3545 		 */
3546 		if (abs && (info->ts & TS_MSB)) {
3547 			info->delta &= ABS_TS_MASK;
3548 
3549 		/* did the clock go backwards */
3550 		} else if (info->before == info->after && info->before > info->ts) {
3551 			/* not interrupted */
3552 			static int once;
3553 
3554 			/*
3555 			 * This is possible with a recalibrating of the TSC.
3556 			 * Do not produce a call stack, but just report it.
3557 			 */
3558 			if (!once) {
3559 				once++;
3560 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3561 					info->before, info->ts);
3562 			}
3563 		} else
3564 			rb_check_timestamp(cpu_buffer, info);
3565 		if (!abs)
3566 			info->delta = 0;
3567 	}
3568 	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3569 	*length -= RB_LEN_TIME_EXTEND;
3570 	*delta = 0;
3571 }
3572 
3573 /**
3574  * rb_update_event - update event type and data
3575  * @cpu_buffer: The per cpu buffer of the @event
3576  * @event: the event to update
3577  * @info: The info to update the @event with (contains length and delta)
3578  *
3579  * Update the type and data fields of the @event. The length
3580  * is the actual size that is written to the ring buffer,
3581  * and with this, we can determine what to place into the
3582  * data field.
3583  */
3584 static void
3585 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3586 		struct ring_buffer_event *event,
3587 		struct rb_event_info *info)
3588 {
3589 	unsigned length = info->length;
3590 	u64 delta = info->delta;
3591 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3592 
3593 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
3594 		cpu_buffer->event_stamp[nest] = info->ts;
3595 
3596 	/*
3597 	 * If we need to add a timestamp, then we
3598 	 * add it to the start of the reserved space.
3599 	 */
3600 	if (unlikely(info->add_timestamp))
3601 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3602 
3603 	event->time_delta = delta;
3604 	length -= RB_EVNT_HDR_SIZE;
3605 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3606 		event->type_len = 0;
3607 		event->array[0] = length;
3608 	} else
3609 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3610 }
3611 
3612 static unsigned rb_calculate_event_length(unsigned length)
3613 {
3614 	struct ring_buffer_event event; /* Used only for sizeof array */
3615 
3616 	/* zero length can cause confusions */
3617 	if (!length)
3618 		length++;
3619 
3620 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3621 		length += sizeof(event.array[0]);
3622 
3623 	length += RB_EVNT_HDR_SIZE;
3624 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
3625 
3626 	/*
3627 	 * In case the time delta is larger than the 27 bits for it
3628 	 * in the header, we need to add a timestamp. If another
3629 	 * event comes in when trying to discard this one to increase
3630 	 * the length, then the timestamp will be added in the allocated
3631 	 * space of this event. If length is bigger than the size needed
3632 	 * for the TIME_EXTEND, then padding has to be used. The events
3633 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3634 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3635 	 * As length is a multiple of 4, we only need to worry if it
3636 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
3637 	 */
3638 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3639 		length += RB_ALIGNMENT;
3640 
3641 	return length;
3642 }
3643 
3644 static inline bool
3645 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3646 		  struct ring_buffer_event *event)
3647 {
3648 	unsigned long new_index, old_index;
3649 	struct buffer_page *bpage;
3650 	unsigned long addr;
3651 
3652 	new_index = rb_event_index(cpu_buffer, event);
3653 	old_index = new_index + rb_event_ts_length(event);
3654 	addr = (unsigned long)event;
3655 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3656 
3657 	bpage = READ_ONCE(cpu_buffer->tail_page);
3658 
3659 	/*
3660 	 * Make sure the tail_page is still the same and
3661 	 * the next write location is the end of this event
3662 	 */
3663 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3664 		unsigned long write_mask =
3665 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3666 		unsigned long event_length = rb_event_length(event);
3667 
3668 		/*
3669 		 * For the before_stamp to be different than the write_stamp
3670 		 * to make sure that the next event adds an absolute
3671 		 * value and does not rely on the saved write stamp, which
3672 		 * is now going to be bogus.
3673 		 *
3674 		 * By setting the before_stamp to zero, the next event
3675 		 * is not going to use the write_stamp and will instead
3676 		 * create an absolute timestamp. This means there's no
3677 		 * reason to update the wirte_stamp!
3678 		 */
3679 		rb_time_set(&cpu_buffer->before_stamp, 0);
3680 
3681 		/*
3682 		 * If an event were to come in now, it would see that the
3683 		 * write_stamp and the before_stamp are different, and assume
3684 		 * that this event just added itself before updating
3685 		 * the write stamp. The interrupting event will fix the
3686 		 * write stamp for us, and use an absolute timestamp.
3687 		 */
3688 
3689 		/*
3690 		 * This is on the tail page. It is possible that
3691 		 * a write could come in and move the tail page
3692 		 * and write to the next page. That is fine
3693 		 * because we just shorten what is on this page.
3694 		 */
3695 		old_index += write_mask;
3696 		new_index += write_mask;
3697 
3698 		/* caution: old_index gets updated on cmpxchg failure */
3699 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3700 			/* update counters */
3701 			local_sub(event_length, &cpu_buffer->entries_bytes);
3702 			return true;
3703 		}
3704 	}
3705 
3706 	/* could not discard */
3707 	return false;
3708 }
3709 
3710 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3711 {
3712 	local_inc(&cpu_buffer->committing);
3713 	local_inc(&cpu_buffer->commits);
3714 }
3715 
3716 static __always_inline void
3717 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3718 {
3719 	unsigned long max_count;
3720 
3721 	/*
3722 	 * We only race with interrupts and NMIs on this CPU.
3723 	 * If we own the commit event, then we can commit
3724 	 * all others that interrupted us, since the interruptions
3725 	 * are in stack format (they finish before they come
3726 	 * back to us). This allows us to do a simple loop to
3727 	 * assign the commit to the tail.
3728 	 */
3729  again:
3730 	max_count = cpu_buffer->nr_pages * 100;
3731 
3732 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3733 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3734 			return;
3735 		if (RB_WARN_ON(cpu_buffer,
3736 			       rb_is_reader_page(cpu_buffer->tail_page)))
3737 			return;
3738 		/*
3739 		 * No need for a memory barrier here, as the update
3740 		 * of the tail_page did it for this page.
3741 		 */
3742 		local_set(&cpu_buffer->commit_page->page->commit,
3743 			  rb_page_write(cpu_buffer->commit_page));
3744 		rb_inc_page(&cpu_buffer->commit_page);
3745 		if (cpu_buffer->ring_meta) {
3746 			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
3747 			meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3748 		}
3749 		/* add barrier to keep gcc from optimizing too much */
3750 		barrier();
3751 	}
3752 	while (rb_commit_index(cpu_buffer) !=
3753 	       rb_page_write(cpu_buffer->commit_page)) {
3754 
3755 		/* Make sure the readers see the content of what is committed. */
3756 		smp_wmb();
3757 		local_set(&cpu_buffer->commit_page->page->commit,
3758 			  rb_page_write(cpu_buffer->commit_page));
3759 		RB_WARN_ON(cpu_buffer,
3760 			   local_read(&cpu_buffer->commit_page->page->commit) &
3761 			   ~RB_WRITE_MASK);
3762 		barrier();
3763 	}
3764 
3765 	/* again, keep gcc from optimizing */
3766 	barrier();
3767 
3768 	/*
3769 	 * If an interrupt came in just after the first while loop
3770 	 * and pushed the tail page forward, we will be left with
3771 	 * a dangling commit that will never go forward.
3772 	 */
3773 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3774 		goto again;
3775 }
3776 
3777 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3778 {
3779 	unsigned long commits;
3780 
3781 	if (RB_WARN_ON(cpu_buffer,
3782 		       !local_read(&cpu_buffer->committing)))
3783 		return;
3784 
3785  again:
3786 	commits = local_read(&cpu_buffer->commits);
3787 	/* synchronize with interrupts */
3788 	barrier();
3789 	if (local_read(&cpu_buffer->committing) == 1)
3790 		rb_set_commit_to_write(cpu_buffer);
3791 
3792 	local_dec(&cpu_buffer->committing);
3793 
3794 	/* synchronize with interrupts */
3795 	barrier();
3796 
3797 	/*
3798 	 * Need to account for interrupts coming in between the
3799 	 * updating of the commit page and the clearing of the
3800 	 * committing counter.
3801 	 */
3802 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3803 	    !local_read(&cpu_buffer->committing)) {
3804 		local_inc(&cpu_buffer->committing);
3805 		goto again;
3806 	}
3807 }
3808 
3809 static inline void rb_event_discard(struct ring_buffer_event *event)
3810 {
3811 	if (extended_time(event))
3812 		event = skip_time_extend(event);
3813 
3814 	/* array[0] holds the actual length for the discarded event */
3815 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3816 	event->type_len = RINGBUF_TYPE_PADDING;
3817 	/* time delta must be non zero */
3818 	if (!event->time_delta)
3819 		event->time_delta = 1;
3820 }
3821 
3822 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3823 {
3824 	local_inc(&cpu_buffer->entries);
3825 	rb_end_commit(cpu_buffer);
3826 }
3827 
3828 static __always_inline void
3829 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3830 {
3831 	if (buffer->irq_work.waiters_pending) {
3832 		buffer->irq_work.waiters_pending = false;
3833 		/* irq_work_queue() supplies it's own memory barriers */
3834 		irq_work_queue(&buffer->irq_work.work);
3835 	}
3836 
3837 	if (cpu_buffer->irq_work.waiters_pending) {
3838 		cpu_buffer->irq_work.waiters_pending = false;
3839 		/* irq_work_queue() supplies it's own memory barriers */
3840 		irq_work_queue(&cpu_buffer->irq_work.work);
3841 	}
3842 
3843 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3844 		return;
3845 
3846 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3847 		return;
3848 
3849 	if (!cpu_buffer->irq_work.full_waiters_pending)
3850 		return;
3851 
3852 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3853 
3854 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3855 		return;
3856 
3857 	cpu_buffer->irq_work.wakeup_full = true;
3858 	cpu_buffer->irq_work.full_waiters_pending = false;
3859 	/* irq_work_queue() supplies it's own memory barriers */
3860 	irq_work_queue(&cpu_buffer->irq_work.work);
3861 }
3862 
3863 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3864 # define do_ring_buffer_record_recursion()	\
3865 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3866 #else
3867 # define do_ring_buffer_record_recursion() do { } while (0)
3868 #endif
3869 
3870 /*
3871  * The lock and unlock are done within a preempt disable section.
3872  * The current_context per_cpu variable can only be modified
3873  * by the current task between lock and unlock. But it can
3874  * be modified more than once via an interrupt. To pass this
3875  * information from the lock to the unlock without having to
3876  * access the 'in_interrupt()' functions again (which do show
3877  * a bit of overhead in something as critical as function tracing,
3878  * we use a bitmask trick.
3879  *
3880  *  bit 1 =  NMI context
3881  *  bit 2 =  IRQ context
3882  *  bit 3 =  SoftIRQ context
3883  *  bit 4 =  normal context.
3884  *
3885  * This works because this is the order of contexts that can
3886  * preempt other contexts. A SoftIRQ never preempts an IRQ
3887  * context.
3888  *
3889  * When the context is determined, the corresponding bit is
3890  * checked and set (if it was set, then a recursion of that context
3891  * happened).
3892  *
3893  * On unlock, we need to clear this bit. To do so, just subtract
3894  * 1 from the current_context and AND it to itself.
3895  *
3896  * (binary)
3897  *  101 - 1 = 100
3898  *  101 & 100 = 100 (clearing bit zero)
3899  *
3900  *  1010 - 1 = 1001
3901  *  1010 & 1001 = 1000 (clearing bit 1)
3902  *
3903  * The least significant bit can be cleared this way, and it
3904  * just so happens that it is the same bit corresponding to
3905  * the current context.
3906  *
3907  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3908  * is set when a recursion is detected at the current context, and if
3909  * the TRANSITION bit is already set, it will fail the recursion.
3910  * This is needed because there's a lag between the changing of
3911  * interrupt context and updating the preempt count. In this case,
3912  * a false positive will be found. To handle this, one extra recursion
3913  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3914  * bit is already set, then it is considered a recursion and the function
3915  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3916  *
3917  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3918  * to be cleared. Even if it wasn't the context that set it. That is,
3919  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3920  * is called before preempt_count() is updated, since the check will
3921  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3922  * NMI then comes in, it will set the NMI bit, but when the NMI code
3923  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3924  * and leave the NMI bit set. But this is fine, because the interrupt
3925  * code that set the TRANSITION bit will then clear the NMI bit when it
3926  * calls trace_recursive_unlock(). If another NMI comes in, it will
3927  * set the TRANSITION bit and continue.
3928  *
3929  * Note: The TRANSITION bit only handles a single transition between context.
3930  */
3931 
3932 static __always_inline bool
3933 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3934 {
3935 	unsigned int val = cpu_buffer->current_context;
3936 	int bit = interrupt_context_level();
3937 
3938 	bit = RB_CTX_NORMAL - bit;
3939 
3940 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3941 		/*
3942 		 * It is possible that this was called by transitioning
3943 		 * between interrupt context, and preempt_count() has not
3944 		 * been updated yet. In this case, use the TRANSITION bit.
3945 		 */
3946 		bit = RB_CTX_TRANSITION;
3947 		if (val & (1 << (bit + cpu_buffer->nest))) {
3948 			do_ring_buffer_record_recursion();
3949 			return true;
3950 		}
3951 	}
3952 
3953 	val |= (1 << (bit + cpu_buffer->nest));
3954 	cpu_buffer->current_context = val;
3955 
3956 	return false;
3957 }
3958 
3959 static __always_inline void
3960 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3961 {
3962 	cpu_buffer->current_context &=
3963 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
3964 }
3965 
3966 /* The recursive locking above uses 5 bits */
3967 #define NESTED_BITS 5
3968 
3969 /**
3970  * ring_buffer_nest_start - Allow to trace while nested
3971  * @buffer: The ring buffer to modify
3972  *
3973  * The ring buffer has a safety mechanism to prevent recursion.
3974  * But there may be a case where a trace needs to be done while
3975  * tracing something else. In this case, calling this function
3976  * will allow this function to nest within a currently active
3977  * ring_buffer_lock_reserve().
3978  *
3979  * Call this function before calling another ring_buffer_lock_reserve() and
3980  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3981  */
3982 void ring_buffer_nest_start(struct trace_buffer *buffer)
3983 {
3984 	struct ring_buffer_per_cpu *cpu_buffer;
3985 	int cpu;
3986 
3987 	/* Enabled by ring_buffer_nest_end() */
3988 	preempt_disable_notrace();
3989 	cpu = raw_smp_processor_id();
3990 	cpu_buffer = buffer->buffers[cpu];
3991 	/* This is the shift value for the above recursive locking */
3992 	cpu_buffer->nest += NESTED_BITS;
3993 }
3994 
3995 /**
3996  * ring_buffer_nest_end - Allow to trace while nested
3997  * @buffer: The ring buffer to modify
3998  *
3999  * Must be called after ring_buffer_nest_start() and after the
4000  * ring_buffer_unlock_commit().
4001  */
4002 void ring_buffer_nest_end(struct trace_buffer *buffer)
4003 {
4004 	struct ring_buffer_per_cpu *cpu_buffer;
4005 	int cpu;
4006 
4007 	/* disabled by ring_buffer_nest_start() */
4008 	cpu = raw_smp_processor_id();
4009 	cpu_buffer = buffer->buffers[cpu];
4010 	/* This is the shift value for the above recursive locking */
4011 	cpu_buffer->nest -= NESTED_BITS;
4012 	preempt_enable_notrace();
4013 }
4014 
4015 /**
4016  * ring_buffer_unlock_commit - commit a reserved
4017  * @buffer: The buffer to commit to
4018  *
4019  * This commits the data to the ring buffer, and releases any locks held.
4020  *
4021  * Must be paired with ring_buffer_lock_reserve.
4022  */
4023 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4024 {
4025 	struct ring_buffer_per_cpu *cpu_buffer;
4026 	int cpu = raw_smp_processor_id();
4027 
4028 	cpu_buffer = buffer->buffers[cpu];
4029 
4030 	rb_commit(cpu_buffer);
4031 
4032 	rb_wakeups(buffer, cpu_buffer);
4033 
4034 	trace_recursive_unlock(cpu_buffer);
4035 
4036 	preempt_enable_notrace();
4037 
4038 	return 0;
4039 }
4040 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4041 
4042 /* Special value to validate all deltas on a page. */
4043 #define CHECK_FULL_PAGE		1L
4044 
4045 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4046 
4047 static const char *show_irq_str(int bits)
4048 {
4049 	const char *type[] = {
4050 		".",	// 0
4051 		"s",	// 1
4052 		"h",	// 2
4053 		"Hs",	// 3
4054 		"n",	// 4
4055 		"Ns",	// 5
4056 		"Nh",	// 6
4057 		"NHs",	// 7
4058 	};
4059 
4060 	return type[bits];
4061 }
4062 
4063 /* Assume this is a trace event */
4064 static const char *show_flags(struct ring_buffer_event *event)
4065 {
4066 	struct trace_entry *entry;
4067 	int bits = 0;
4068 
4069 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4070 		return "X";
4071 
4072 	entry = ring_buffer_event_data(event);
4073 
4074 	if (entry->flags & TRACE_FLAG_SOFTIRQ)
4075 		bits |= 1;
4076 
4077 	if (entry->flags & TRACE_FLAG_HARDIRQ)
4078 		bits |= 2;
4079 
4080 	if (entry->flags & TRACE_FLAG_NMI)
4081 		bits |= 4;
4082 
4083 	return show_irq_str(bits);
4084 }
4085 
4086 static const char *show_irq(struct ring_buffer_event *event)
4087 {
4088 	struct trace_entry *entry;
4089 
4090 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4091 		return "";
4092 
4093 	entry = ring_buffer_event_data(event);
4094 	if (entry->flags & TRACE_FLAG_IRQS_OFF)
4095 		return "d";
4096 	return "";
4097 }
4098 
4099 static const char *show_interrupt_level(void)
4100 {
4101 	unsigned long pc = preempt_count();
4102 	unsigned char level = 0;
4103 
4104 	if (pc & SOFTIRQ_OFFSET)
4105 		level |= 1;
4106 
4107 	if (pc & HARDIRQ_MASK)
4108 		level |= 2;
4109 
4110 	if (pc & NMI_MASK)
4111 		level |= 4;
4112 
4113 	return show_irq_str(level);
4114 }
4115 
4116 static void dump_buffer_page(struct buffer_data_page *bpage,
4117 			     struct rb_event_info *info,
4118 			     unsigned long tail)
4119 {
4120 	struct ring_buffer_event *event;
4121 	u64 ts, delta;
4122 	int e;
4123 
4124 	ts = bpage->time_stamp;
4125 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4126 
4127 	for (e = 0; e < tail; e += rb_event_length(event)) {
4128 
4129 		event = (struct ring_buffer_event *)(bpage->data + e);
4130 
4131 		switch (event->type_len) {
4132 
4133 		case RINGBUF_TYPE_TIME_EXTEND:
4134 			delta = rb_event_time_stamp(event);
4135 			ts += delta;
4136 			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4137 				e, ts, delta);
4138 			break;
4139 
4140 		case RINGBUF_TYPE_TIME_STAMP:
4141 			delta = rb_event_time_stamp(event);
4142 			ts = rb_fix_abs_ts(delta, ts);
4143 			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4144 				e, ts, delta);
4145 			break;
4146 
4147 		case RINGBUF_TYPE_PADDING:
4148 			ts += event->time_delta;
4149 			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4150 				e, ts, event->time_delta);
4151 			break;
4152 
4153 		case RINGBUF_TYPE_DATA:
4154 			ts += event->time_delta;
4155 			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4156 				e, ts, event->time_delta,
4157 				show_flags(event), show_irq(event));
4158 			break;
4159 
4160 		default:
4161 			break;
4162 		}
4163 	}
4164 	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4165 }
4166 
4167 static DEFINE_PER_CPU(atomic_t, checking);
4168 static atomic_t ts_dump;
4169 
4170 #define buffer_warn_return(fmt, ...)					\
4171 	do {								\
4172 		/* If another report is happening, ignore this one */	\
4173 		if (atomic_inc_return(&ts_dump) != 1) {			\
4174 			atomic_dec(&ts_dump);				\
4175 			goto out;					\
4176 		}							\
4177 		atomic_inc(&cpu_buffer->record_disabled);		\
4178 		pr_warn(fmt, ##__VA_ARGS__);				\
4179 		dump_buffer_page(bpage, info, tail);			\
4180 		atomic_dec(&ts_dump);					\
4181 		/* There's some cases in boot up that this can happen */ \
4182 		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
4183 			/* Do not re-enable checking */			\
4184 			return;						\
4185 	} while (0)
4186 
4187 /*
4188  * Check if the current event time stamp matches the deltas on
4189  * the buffer page.
4190  */
4191 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4192 			 struct rb_event_info *info,
4193 			 unsigned long tail)
4194 {
4195 	struct buffer_data_page *bpage;
4196 	u64 ts, delta;
4197 	bool full = false;
4198 	int ret;
4199 
4200 	bpage = info->tail_page->page;
4201 
4202 	if (tail == CHECK_FULL_PAGE) {
4203 		full = true;
4204 		tail = local_read(&bpage->commit);
4205 	} else if (info->add_timestamp &
4206 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4207 		/* Ignore events with absolute time stamps */
4208 		return;
4209 	}
4210 
4211 	/*
4212 	 * Do not check the first event (skip possible extends too).
4213 	 * Also do not check if previous events have not been committed.
4214 	 */
4215 	if (tail <= 8 || tail > local_read(&bpage->commit))
4216 		return;
4217 
4218 	/*
4219 	 * If this interrupted another event,
4220 	 */
4221 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4222 		goto out;
4223 
4224 	ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4225 	if (ret < 0) {
4226 		if (delta < ts) {
4227 			buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4228 					   cpu_buffer->cpu, ts, delta);
4229 			goto out;
4230 		}
4231 	}
4232 	if ((full && ts > info->ts) ||
4233 	    (!full && ts + info->delta != info->ts)) {
4234 		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4235 				   cpu_buffer->cpu,
4236 				   ts + info->delta, info->ts, info->delta,
4237 				   info->before, info->after,
4238 				   full ? " (full)" : "", show_interrupt_level());
4239 	}
4240 out:
4241 	atomic_dec(this_cpu_ptr(&checking));
4242 }
4243 #else
4244 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4245 			 struct rb_event_info *info,
4246 			 unsigned long tail)
4247 {
4248 }
4249 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4250 
4251 static struct ring_buffer_event *
4252 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4253 		  struct rb_event_info *info)
4254 {
4255 	struct ring_buffer_event *event;
4256 	struct buffer_page *tail_page;
4257 	unsigned long tail, write, w;
4258 
4259 	/* Don't let the compiler play games with cpu_buffer->tail_page */
4260 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4261 
4262  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
4263 	barrier();
4264 	rb_time_read(&cpu_buffer->before_stamp, &info->before);
4265 	rb_time_read(&cpu_buffer->write_stamp, &info->after);
4266 	barrier();
4267 	info->ts = rb_time_stamp(cpu_buffer->buffer);
4268 
4269 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4270 		info->delta = info->ts;
4271 	} else {
4272 		/*
4273 		 * If interrupting an event time update, we may need an
4274 		 * absolute timestamp.
4275 		 * Don't bother if this is the start of a new page (w == 0).
4276 		 */
4277 		if (!w) {
4278 			/* Use the sub-buffer timestamp */
4279 			info->delta = 0;
4280 		} else if (unlikely(info->before != info->after)) {
4281 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4282 			info->length += RB_LEN_TIME_EXTEND;
4283 		} else {
4284 			info->delta = info->ts - info->after;
4285 			if (unlikely(test_time_stamp(info->delta))) {
4286 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4287 				info->length += RB_LEN_TIME_EXTEND;
4288 			}
4289 		}
4290 	}
4291 
4292  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
4293 
4294  /*C*/	write = local_add_return(info->length, &tail_page->write);
4295 
4296 	/* set write to only the index of the write */
4297 	write &= RB_WRITE_MASK;
4298 
4299 	tail = write - info->length;
4300 
4301 	/* See if we shot pass the end of this buffer page */
4302 	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4303 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4304 		return rb_move_tail(cpu_buffer, tail, info);
4305 	}
4306 
4307 	if (likely(tail == w)) {
4308 		/* Nothing interrupted us between A and C */
4309  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
4310 		/*
4311 		 * If something came in between C and D, the write stamp
4312 		 * may now not be in sync. But that's fine as the before_stamp
4313 		 * will be different and then next event will just be forced
4314 		 * to use an absolute timestamp.
4315 		 */
4316 		if (likely(!(info->add_timestamp &
4317 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4318 			/* This did not interrupt any time update */
4319 			info->delta = info->ts - info->after;
4320 		else
4321 			/* Just use full timestamp for interrupting event */
4322 			info->delta = info->ts;
4323 		check_buffer(cpu_buffer, info, tail);
4324 	} else {
4325 		u64 ts;
4326 		/* SLOW PATH - Interrupted between A and C */
4327 
4328 		/* Save the old before_stamp */
4329 		rb_time_read(&cpu_buffer->before_stamp, &info->before);
4330 
4331 		/*
4332 		 * Read a new timestamp and update the before_stamp to make
4333 		 * the next event after this one force using an absolute
4334 		 * timestamp. This is in case an interrupt were to come in
4335 		 * between E and F.
4336 		 */
4337 		ts = rb_time_stamp(cpu_buffer->buffer);
4338 		rb_time_set(&cpu_buffer->before_stamp, ts);
4339 
4340 		barrier();
4341  /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
4342 		barrier();
4343  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4344 		    info->after == info->before && info->after < ts) {
4345 			/*
4346 			 * Nothing came after this event between C and F, it is
4347 			 * safe to use info->after for the delta as it
4348 			 * matched info->before and is still valid.
4349 			 */
4350 			info->delta = ts - info->after;
4351 		} else {
4352 			/*
4353 			 * Interrupted between C and F:
4354 			 * Lost the previous events time stamp. Just set the
4355 			 * delta to zero, and this will be the same time as
4356 			 * the event this event interrupted. And the events that
4357 			 * came after this will still be correct (as they would
4358 			 * have built their delta on the previous event.
4359 			 */
4360 			info->delta = 0;
4361 		}
4362 		info->ts = ts;
4363 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4364 	}
4365 
4366 	/*
4367 	 * If this is the first commit on the page, then it has the same
4368 	 * timestamp as the page itself.
4369 	 */
4370 	if (unlikely(!tail && !(info->add_timestamp &
4371 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4372 		info->delta = 0;
4373 
4374 	/* We reserved something on the buffer */
4375 
4376 	event = __rb_page_index(tail_page, tail);
4377 	rb_update_event(cpu_buffer, event, info);
4378 
4379 	local_inc(&tail_page->entries);
4380 
4381 	/*
4382 	 * If this is the first commit on the page, then update
4383 	 * its timestamp.
4384 	 */
4385 	if (unlikely(!tail))
4386 		tail_page->page->time_stamp = info->ts;
4387 
4388 	/* account for these added bytes */
4389 	local_add(info->length, &cpu_buffer->entries_bytes);
4390 
4391 	return event;
4392 }
4393 
4394 static __always_inline struct ring_buffer_event *
4395 rb_reserve_next_event(struct trace_buffer *buffer,
4396 		      struct ring_buffer_per_cpu *cpu_buffer,
4397 		      unsigned long length)
4398 {
4399 	struct ring_buffer_event *event;
4400 	struct rb_event_info info;
4401 	int nr_loops = 0;
4402 	int add_ts_default;
4403 
4404 	/* ring buffer does cmpxchg, make sure it is safe in NMI context */
4405 	if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
4406 	    (unlikely(in_nmi()))) {
4407 		return NULL;
4408 	}
4409 
4410 	rb_start_commit(cpu_buffer);
4411 	/* The commit page can not change after this */
4412 
4413 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4414 	/*
4415 	 * Due to the ability to swap a cpu buffer from a buffer
4416 	 * it is possible it was swapped before we committed.
4417 	 * (committing stops a swap). We check for it here and
4418 	 * if it happened, we have to fail the write.
4419 	 */
4420 	barrier();
4421 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4422 		local_dec(&cpu_buffer->committing);
4423 		local_dec(&cpu_buffer->commits);
4424 		return NULL;
4425 	}
4426 #endif
4427 
4428 	info.length = rb_calculate_event_length(length);
4429 
4430 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4431 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4432 		info.length += RB_LEN_TIME_EXTEND;
4433 		if (info.length > cpu_buffer->buffer->max_data_size)
4434 			goto out_fail;
4435 	} else {
4436 		add_ts_default = RB_ADD_STAMP_NONE;
4437 	}
4438 
4439  again:
4440 	info.add_timestamp = add_ts_default;
4441 	info.delta = 0;
4442 
4443 	/*
4444 	 * We allow for interrupts to reenter here and do a trace.
4445 	 * If one does, it will cause this original code to loop
4446 	 * back here. Even with heavy interrupts happening, this
4447 	 * should only happen a few times in a row. If this happens
4448 	 * 1000 times in a row, there must be either an interrupt
4449 	 * storm or we have something buggy.
4450 	 * Bail!
4451 	 */
4452 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4453 		goto out_fail;
4454 
4455 	event = __rb_reserve_next(cpu_buffer, &info);
4456 
4457 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4458 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4459 			info.length -= RB_LEN_TIME_EXTEND;
4460 		goto again;
4461 	}
4462 
4463 	if (likely(event))
4464 		return event;
4465  out_fail:
4466 	rb_end_commit(cpu_buffer);
4467 	return NULL;
4468 }
4469 
4470 /**
4471  * ring_buffer_lock_reserve - reserve a part of the buffer
4472  * @buffer: the ring buffer to reserve from
4473  * @length: the length of the data to reserve (excluding event header)
4474  *
4475  * Returns a reserved event on the ring buffer to copy directly to.
4476  * The user of this interface will need to get the body to write into
4477  * and can use the ring_buffer_event_data() interface.
4478  *
4479  * The length is the length of the data needed, not the event length
4480  * which also includes the event header.
4481  *
4482  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4483  * If NULL is returned, then nothing has been allocated or locked.
4484  */
4485 struct ring_buffer_event *
4486 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4487 {
4488 	struct ring_buffer_per_cpu *cpu_buffer;
4489 	struct ring_buffer_event *event;
4490 	int cpu;
4491 
4492 	/* If we are tracing schedule, we don't want to recurse */
4493 	preempt_disable_notrace();
4494 
4495 	if (unlikely(atomic_read(&buffer->record_disabled)))
4496 		goto out;
4497 
4498 	cpu = raw_smp_processor_id();
4499 
4500 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4501 		goto out;
4502 
4503 	cpu_buffer = buffer->buffers[cpu];
4504 
4505 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4506 		goto out;
4507 
4508 	if (unlikely(length > buffer->max_data_size))
4509 		goto out;
4510 
4511 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4512 		goto out;
4513 
4514 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4515 	if (!event)
4516 		goto out_unlock;
4517 
4518 	return event;
4519 
4520  out_unlock:
4521 	trace_recursive_unlock(cpu_buffer);
4522  out:
4523 	preempt_enable_notrace();
4524 	return NULL;
4525 }
4526 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4527 
4528 /*
4529  * Decrement the entries to the page that an event is on.
4530  * The event does not even need to exist, only the pointer
4531  * to the page it is on. This may only be called before the commit
4532  * takes place.
4533  */
4534 static inline void
4535 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4536 		   struct ring_buffer_event *event)
4537 {
4538 	unsigned long addr = (unsigned long)event;
4539 	struct buffer_page *bpage = cpu_buffer->commit_page;
4540 	struct buffer_page *start;
4541 
4542 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4543 
4544 	/* Do the likely case first */
4545 	if (likely(bpage->page == (void *)addr)) {
4546 		local_dec(&bpage->entries);
4547 		return;
4548 	}
4549 
4550 	/*
4551 	 * Because the commit page may be on the reader page we
4552 	 * start with the next page and check the end loop there.
4553 	 */
4554 	rb_inc_page(&bpage);
4555 	start = bpage;
4556 	do {
4557 		if (bpage->page == (void *)addr) {
4558 			local_dec(&bpage->entries);
4559 			return;
4560 		}
4561 		rb_inc_page(&bpage);
4562 	} while (bpage != start);
4563 
4564 	/* commit not part of this buffer?? */
4565 	RB_WARN_ON(cpu_buffer, 1);
4566 }
4567 
4568 /**
4569  * ring_buffer_discard_commit - discard an event that has not been committed
4570  * @buffer: the ring buffer
4571  * @event: non committed event to discard
4572  *
4573  * Sometimes an event that is in the ring buffer needs to be ignored.
4574  * This function lets the user discard an event in the ring buffer
4575  * and then that event will not be read later.
4576  *
4577  * This function only works if it is called before the item has been
4578  * committed. It will try to free the event from the ring buffer
4579  * if another event has not been added behind it.
4580  *
4581  * If another event has been added behind it, it will set the event
4582  * up as discarded, and perform the commit.
4583  *
4584  * If this function is called, do not call ring_buffer_unlock_commit on
4585  * the event.
4586  */
4587 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4588 				struct ring_buffer_event *event)
4589 {
4590 	struct ring_buffer_per_cpu *cpu_buffer;
4591 	int cpu;
4592 
4593 	/* The event is discarded regardless */
4594 	rb_event_discard(event);
4595 
4596 	cpu = smp_processor_id();
4597 	cpu_buffer = buffer->buffers[cpu];
4598 
4599 	/*
4600 	 * This must only be called if the event has not been
4601 	 * committed yet. Thus we can assume that preemption
4602 	 * is still disabled.
4603 	 */
4604 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4605 
4606 	rb_decrement_entry(cpu_buffer, event);
4607 	if (rb_try_to_discard(cpu_buffer, event))
4608 		goto out;
4609 
4610  out:
4611 	rb_end_commit(cpu_buffer);
4612 
4613 	trace_recursive_unlock(cpu_buffer);
4614 
4615 	preempt_enable_notrace();
4616 
4617 }
4618 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4619 
4620 /**
4621  * ring_buffer_write - write data to the buffer without reserving
4622  * @buffer: The ring buffer to write to.
4623  * @length: The length of the data being written (excluding the event header)
4624  * @data: The data to write to the buffer.
4625  *
4626  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4627  * one function. If you already have the data to write to the buffer, it
4628  * may be easier to simply call this function.
4629  *
4630  * Note, like ring_buffer_lock_reserve, the length is the length of the data
4631  * and not the length of the event which would hold the header.
4632  */
4633 int ring_buffer_write(struct trace_buffer *buffer,
4634 		      unsigned long length,
4635 		      void *data)
4636 {
4637 	struct ring_buffer_per_cpu *cpu_buffer;
4638 	struct ring_buffer_event *event;
4639 	void *body;
4640 	int ret = -EBUSY;
4641 	int cpu;
4642 
4643 	preempt_disable_notrace();
4644 
4645 	if (atomic_read(&buffer->record_disabled))
4646 		goto out;
4647 
4648 	cpu = raw_smp_processor_id();
4649 
4650 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4651 		goto out;
4652 
4653 	cpu_buffer = buffer->buffers[cpu];
4654 
4655 	if (atomic_read(&cpu_buffer->record_disabled))
4656 		goto out;
4657 
4658 	if (length > buffer->max_data_size)
4659 		goto out;
4660 
4661 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4662 		goto out;
4663 
4664 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4665 	if (!event)
4666 		goto out_unlock;
4667 
4668 	body = rb_event_data(event);
4669 
4670 	memcpy(body, data, length);
4671 
4672 	rb_commit(cpu_buffer);
4673 
4674 	rb_wakeups(buffer, cpu_buffer);
4675 
4676 	ret = 0;
4677 
4678  out_unlock:
4679 	trace_recursive_unlock(cpu_buffer);
4680 
4681  out:
4682 	preempt_enable_notrace();
4683 
4684 	return ret;
4685 }
4686 EXPORT_SYMBOL_GPL(ring_buffer_write);
4687 
4688 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4689 {
4690 	struct buffer_page *reader = cpu_buffer->reader_page;
4691 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
4692 	struct buffer_page *commit = cpu_buffer->commit_page;
4693 
4694 	/* In case of error, head will be NULL */
4695 	if (unlikely(!head))
4696 		return true;
4697 
4698 	/* Reader should exhaust content in reader page */
4699 	if (reader->read != rb_page_size(reader))
4700 		return false;
4701 
4702 	/*
4703 	 * If writers are committing on the reader page, knowing all
4704 	 * committed content has been read, the ring buffer is empty.
4705 	 */
4706 	if (commit == reader)
4707 		return true;
4708 
4709 	/*
4710 	 * If writers are committing on a page other than reader page
4711 	 * and head page, there should always be content to read.
4712 	 */
4713 	if (commit != head)
4714 		return false;
4715 
4716 	/*
4717 	 * Writers are committing on the head page, we just need
4718 	 * to care about there're committed data, and the reader will
4719 	 * swap reader page with head page when it is to read data.
4720 	 */
4721 	return rb_page_commit(commit) == 0;
4722 }
4723 
4724 /**
4725  * ring_buffer_record_disable - stop all writes into the buffer
4726  * @buffer: The ring buffer to stop writes to.
4727  *
4728  * This prevents all writes to the buffer. Any attempt to write
4729  * to the buffer after this will fail and return NULL.
4730  *
4731  * The caller should call synchronize_rcu() after this.
4732  */
4733 void ring_buffer_record_disable(struct trace_buffer *buffer)
4734 {
4735 	atomic_inc(&buffer->record_disabled);
4736 }
4737 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4738 
4739 /**
4740  * ring_buffer_record_enable - enable writes to the buffer
4741  * @buffer: The ring buffer to enable writes
4742  *
4743  * Note, multiple disables will need the same number of enables
4744  * to truly enable the writing (much like preempt_disable).
4745  */
4746 void ring_buffer_record_enable(struct trace_buffer *buffer)
4747 {
4748 	atomic_dec(&buffer->record_disabled);
4749 }
4750 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4751 
4752 /**
4753  * ring_buffer_record_off - stop all writes into the buffer
4754  * @buffer: The ring buffer to stop writes to.
4755  *
4756  * This prevents all writes to the buffer. Any attempt to write
4757  * to the buffer after this will fail and return NULL.
4758  *
4759  * This is different than ring_buffer_record_disable() as
4760  * it works like an on/off switch, where as the disable() version
4761  * must be paired with a enable().
4762  */
4763 void ring_buffer_record_off(struct trace_buffer *buffer)
4764 {
4765 	unsigned int rd;
4766 	unsigned int new_rd;
4767 
4768 	rd = atomic_read(&buffer->record_disabled);
4769 	do {
4770 		new_rd = rd | RB_BUFFER_OFF;
4771 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4772 }
4773 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4774 
4775 /**
4776  * ring_buffer_record_on - restart writes into the buffer
4777  * @buffer: The ring buffer to start writes to.
4778  *
4779  * This enables all writes to the buffer that was disabled by
4780  * ring_buffer_record_off().
4781  *
4782  * This is different than ring_buffer_record_enable() as
4783  * it works like an on/off switch, where as the enable() version
4784  * must be paired with a disable().
4785  */
4786 void ring_buffer_record_on(struct trace_buffer *buffer)
4787 {
4788 	unsigned int rd;
4789 	unsigned int new_rd;
4790 
4791 	rd = atomic_read(&buffer->record_disabled);
4792 	do {
4793 		new_rd = rd & ~RB_BUFFER_OFF;
4794 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4795 }
4796 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4797 
4798 /**
4799  * ring_buffer_record_is_on - return true if the ring buffer can write
4800  * @buffer: The ring buffer to see if write is enabled
4801  *
4802  * Returns true if the ring buffer is in a state that it accepts writes.
4803  */
4804 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4805 {
4806 	return !atomic_read(&buffer->record_disabled);
4807 }
4808 
4809 /**
4810  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4811  * @buffer: The ring buffer to see if write is set enabled
4812  *
4813  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4814  * Note that this does NOT mean it is in a writable state.
4815  *
4816  * It may return true when the ring buffer has been disabled by
4817  * ring_buffer_record_disable(), as that is a temporary disabling of
4818  * the ring buffer.
4819  */
4820 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4821 {
4822 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4823 }
4824 
4825 /**
4826  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4827  * @buffer: The ring buffer to stop writes to.
4828  * @cpu: The CPU buffer to stop
4829  *
4830  * This prevents all writes to the buffer. Any attempt to write
4831  * to the buffer after this will fail and return NULL.
4832  *
4833  * The caller should call synchronize_rcu() after this.
4834  */
4835 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4836 {
4837 	struct ring_buffer_per_cpu *cpu_buffer;
4838 
4839 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4840 		return;
4841 
4842 	cpu_buffer = buffer->buffers[cpu];
4843 	atomic_inc(&cpu_buffer->record_disabled);
4844 }
4845 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4846 
4847 /**
4848  * ring_buffer_record_enable_cpu - enable writes to the buffer
4849  * @buffer: The ring buffer to enable writes
4850  * @cpu: The CPU to enable.
4851  *
4852  * Note, multiple disables will need the same number of enables
4853  * to truly enable the writing (much like preempt_disable).
4854  */
4855 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4856 {
4857 	struct ring_buffer_per_cpu *cpu_buffer;
4858 
4859 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4860 		return;
4861 
4862 	cpu_buffer = buffer->buffers[cpu];
4863 	atomic_dec(&cpu_buffer->record_disabled);
4864 }
4865 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4866 
4867 /*
4868  * The total entries in the ring buffer is the running counter
4869  * of entries entered into the ring buffer, minus the sum of
4870  * the entries read from the ring buffer and the number of
4871  * entries that were overwritten.
4872  */
4873 static inline unsigned long
4874 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4875 {
4876 	return local_read(&cpu_buffer->entries) -
4877 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4878 }
4879 
4880 /**
4881  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4882  * @buffer: The ring buffer
4883  * @cpu: The per CPU buffer to read from.
4884  */
4885 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4886 {
4887 	unsigned long flags;
4888 	struct ring_buffer_per_cpu *cpu_buffer;
4889 	struct buffer_page *bpage;
4890 	u64 ret = 0;
4891 
4892 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4893 		return 0;
4894 
4895 	cpu_buffer = buffer->buffers[cpu];
4896 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4897 	/*
4898 	 * if the tail is on reader_page, oldest time stamp is on the reader
4899 	 * page
4900 	 */
4901 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4902 		bpage = cpu_buffer->reader_page;
4903 	else
4904 		bpage = rb_set_head_page(cpu_buffer);
4905 	if (bpage)
4906 		ret = bpage->page->time_stamp;
4907 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4908 
4909 	return ret;
4910 }
4911 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4912 
4913 /**
4914  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4915  * @buffer: The ring buffer
4916  * @cpu: The per CPU buffer to read from.
4917  */
4918 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4919 {
4920 	struct ring_buffer_per_cpu *cpu_buffer;
4921 	unsigned long ret;
4922 
4923 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4924 		return 0;
4925 
4926 	cpu_buffer = buffer->buffers[cpu];
4927 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4928 
4929 	return ret;
4930 }
4931 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4932 
4933 /**
4934  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4935  * @buffer: The ring buffer
4936  * @cpu: The per CPU buffer to get the entries from.
4937  */
4938 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4939 {
4940 	struct ring_buffer_per_cpu *cpu_buffer;
4941 
4942 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4943 		return 0;
4944 
4945 	cpu_buffer = buffer->buffers[cpu];
4946 
4947 	return rb_num_of_entries(cpu_buffer);
4948 }
4949 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4950 
4951 /**
4952  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4953  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4954  * @buffer: The ring buffer
4955  * @cpu: The per CPU buffer to get the number of overruns from
4956  */
4957 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4958 {
4959 	struct ring_buffer_per_cpu *cpu_buffer;
4960 	unsigned long ret;
4961 
4962 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4963 		return 0;
4964 
4965 	cpu_buffer = buffer->buffers[cpu];
4966 	ret = local_read(&cpu_buffer->overrun);
4967 
4968 	return ret;
4969 }
4970 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4971 
4972 /**
4973  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4974  * commits failing due to the buffer wrapping around while there are uncommitted
4975  * events, such as during an interrupt storm.
4976  * @buffer: The ring buffer
4977  * @cpu: The per CPU buffer to get the number of overruns from
4978  */
4979 unsigned long
4980 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4981 {
4982 	struct ring_buffer_per_cpu *cpu_buffer;
4983 	unsigned long ret;
4984 
4985 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4986 		return 0;
4987 
4988 	cpu_buffer = buffer->buffers[cpu];
4989 	ret = local_read(&cpu_buffer->commit_overrun);
4990 
4991 	return ret;
4992 }
4993 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4994 
4995 /**
4996  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4997  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4998  * @buffer: The ring buffer
4999  * @cpu: The per CPU buffer to get the number of overruns from
5000  */
5001 unsigned long
5002 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5003 {
5004 	struct ring_buffer_per_cpu *cpu_buffer;
5005 	unsigned long ret;
5006 
5007 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5008 		return 0;
5009 
5010 	cpu_buffer = buffer->buffers[cpu];
5011 	ret = local_read(&cpu_buffer->dropped_events);
5012 
5013 	return ret;
5014 }
5015 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5016 
5017 /**
5018  * ring_buffer_read_events_cpu - get the number of events successfully read
5019  * @buffer: The ring buffer
5020  * @cpu: The per CPU buffer to get the number of events read
5021  */
5022 unsigned long
5023 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5024 {
5025 	struct ring_buffer_per_cpu *cpu_buffer;
5026 
5027 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5028 		return 0;
5029 
5030 	cpu_buffer = buffer->buffers[cpu];
5031 	return cpu_buffer->read;
5032 }
5033 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5034 
5035 /**
5036  * ring_buffer_entries - get the number of entries in a buffer
5037  * @buffer: The ring buffer
5038  *
5039  * Returns the total number of entries in the ring buffer
5040  * (all CPU entries)
5041  */
5042 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5043 {
5044 	struct ring_buffer_per_cpu *cpu_buffer;
5045 	unsigned long entries = 0;
5046 	int cpu;
5047 
5048 	/* if you care about this being correct, lock the buffer */
5049 	for_each_buffer_cpu(buffer, cpu) {
5050 		cpu_buffer = buffer->buffers[cpu];
5051 		entries += rb_num_of_entries(cpu_buffer);
5052 	}
5053 
5054 	return entries;
5055 }
5056 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5057 
5058 /**
5059  * ring_buffer_overruns - get the number of overruns in buffer
5060  * @buffer: The ring buffer
5061  *
5062  * Returns the total number of overruns in the ring buffer
5063  * (all CPU entries)
5064  */
5065 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5066 {
5067 	struct ring_buffer_per_cpu *cpu_buffer;
5068 	unsigned long overruns = 0;
5069 	int cpu;
5070 
5071 	/* if you care about this being correct, lock the buffer */
5072 	for_each_buffer_cpu(buffer, cpu) {
5073 		cpu_buffer = buffer->buffers[cpu];
5074 		overruns += local_read(&cpu_buffer->overrun);
5075 	}
5076 
5077 	return overruns;
5078 }
5079 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5080 
5081 static void rb_iter_reset(struct ring_buffer_iter *iter)
5082 {
5083 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5084 
5085 	/* Iterator usage is expected to have record disabled */
5086 	iter->head_page = cpu_buffer->reader_page;
5087 	iter->head = cpu_buffer->reader_page->read;
5088 	iter->next_event = iter->head;
5089 
5090 	iter->cache_reader_page = iter->head_page;
5091 	iter->cache_read = cpu_buffer->read;
5092 	iter->cache_pages_removed = cpu_buffer->pages_removed;
5093 
5094 	if (iter->head) {
5095 		iter->read_stamp = cpu_buffer->read_stamp;
5096 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5097 	} else {
5098 		iter->read_stamp = iter->head_page->page->time_stamp;
5099 		iter->page_stamp = iter->read_stamp;
5100 	}
5101 }
5102 
5103 /**
5104  * ring_buffer_iter_reset - reset an iterator
5105  * @iter: The iterator to reset
5106  *
5107  * Resets the iterator, so that it will start from the beginning
5108  * again.
5109  */
5110 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5111 {
5112 	struct ring_buffer_per_cpu *cpu_buffer;
5113 	unsigned long flags;
5114 
5115 	if (!iter)
5116 		return;
5117 
5118 	cpu_buffer = iter->cpu_buffer;
5119 
5120 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5121 	rb_iter_reset(iter);
5122 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5123 }
5124 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5125 
5126 /**
5127  * ring_buffer_iter_empty - check if an iterator has no more to read
5128  * @iter: The iterator to check
5129  */
5130 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5131 {
5132 	struct ring_buffer_per_cpu *cpu_buffer;
5133 	struct buffer_page *reader;
5134 	struct buffer_page *head_page;
5135 	struct buffer_page *commit_page;
5136 	struct buffer_page *curr_commit_page;
5137 	unsigned commit;
5138 	u64 curr_commit_ts;
5139 	u64 commit_ts;
5140 
5141 	cpu_buffer = iter->cpu_buffer;
5142 	reader = cpu_buffer->reader_page;
5143 	head_page = cpu_buffer->head_page;
5144 	commit_page = READ_ONCE(cpu_buffer->commit_page);
5145 	commit_ts = commit_page->page->time_stamp;
5146 
5147 	/*
5148 	 * When the writer goes across pages, it issues a cmpxchg which
5149 	 * is a mb(), which will synchronize with the rmb here.
5150 	 * (see rb_tail_page_update())
5151 	 */
5152 	smp_rmb();
5153 	commit = rb_page_commit(commit_page);
5154 	/* We want to make sure that the commit page doesn't change */
5155 	smp_rmb();
5156 
5157 	/* Make sure commit page didn't change */
5158 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5159 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5160 
5161 	/* If the commit page changed, then there's more data */
5162 	if (curr_commit_page != commit_page ||
5163 	    curr_commit_ts != commit_ts)
5164 		return 0;
5165 
5166 	/* Still racy, as it may return a false positive, but that's OK */
5167 	return ((iter->head_page == commit_page && iter->head >= commit) ||
5168 		(iter->head_page == reader && commit_page == head_page &&
5169 		 head_page->read == commit &&
5170 		 iter->head == rb_page_size(cpu_buffer->reader_page)));
5171 }
5172 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5173 
5174 static void
5175 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5176 		     struct ring_buffer_event *event)
5177 {
5178 	u64 delta;
5179 
5180 	switch (event->type_len) {
5181 	case RINGBUF_TYPE_PADDING:
5182 		return;
5183 
5184 	case RINGBUF_TYPE_TIME_EXTEND:
5185 		delta = rb_event_time_stamp(event);
5186 		cpu_buffer->read_stamp += delta;
5187 		return;
5188 
5189 	case RINGBUF_TYPE_TIME_STAMP:
5190 		delta = rb_event_time_stamp(event);
5191 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5192 		cpu_buffer->read_stamp = delta;
5193 		return;
5194 
5195 	case RINGBUF_TYPE_DATA:
5196 		cpu_buffer->read_stamp += event->time_delta;
5197 		return;
5198 
5199 	default:
5200 		RB_WARN_ON(cpu_buffer, 1);
5201 	}
5202 }
5203 
5204 static void
5205 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5206 			  struct ring_buffer_event *event)
5207 {
5208 	u64 delta;
5209 
5210 	switch (event->type_len) {
5211 	case RINGBUF_TYPE_PADDING:
5212 		return;
5213 
5214 	case RINGBUF_TYPE_TIME_EXTEND:
5215 		delta = rb_event_time_stamp(event);
5216 		iter->read_stamp += delta;
5217 		return;
5218 
5219 	case RINGBUF_TYPE_TIME_STAMP:
5220 		delta = rb_event_time_stamp(event);
5221 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
5222 		iter->read_stamp = delta;
5223 		return;
5224 
5225 	case RINGBUF_TYPE_DATA:
5226 		iter->read_stamp += event->time_delta;
5227 		return;
5228 
5229 	default:
5230 		RB_WARN_ON(iter->cpu_buffer, 1);
5231 	}
5232 }
5233 
5234 static struct buffer_page *
5235 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5236 {
5237 	struct buffer_page *reader = NULL;
5238 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5239 	unsigned long overwrite;
5240 	unsigned long flags;
5241 	int nr_loops = 0;
5242 	bool ret;
5243 
5244 	local_irq_save(flags);
5245 	arch_spin_lock(&cpu_buffer->lock);
5246 
5247  again:
5248 	/*
5249 	 * This should normally only loop twice. But because the
5250 	 * start of the reader inserts an empty page, it causes
5251 	 * a case where we will loop three times. There should be no
5252 	 * reason to loop four times (that I know of).
5253 	 */
5254 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5255 		reader = NULL;
5256 		goto out;
5257 	}
5258 
5259 	reader = cpu_buffer->reader_page;
5260 
5261 	/* If there's more to read, return this page */
5262 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
5263 		goto out;
5264 
5265 	/* Never should we have an index greater than the size */
5266 	if (RB_WARN_ON(cpu_buffer,
5267 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
5268 		goto out;
5269 
5270 	/* check if we caught up to the tail */
5271 	reader = NULL;
5272 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5273 		goto out;
5274 
5275 	/* Don't bother swapping if the ring buffer is empty */
5276 	if (rb_num_of_entries(cpu_buffer) == 0)
5277 		goto out;
5278 
5279 	/*
5280 	 * Reset the reader page to size zero.
5281 	 */
5282 	local_set(&cpu_buffer->reader_page->write, 0);
5283 	local_set(&cpu_buffer->reader_page->entries, 0);
5284 	local_set(&cpu_buffer->reader_page->page->commit, 0);
5285 	cpu_buffer->reader_page->real_end = 0;
5286 
5287  spin:
5288 	/*
5289 	 * Splice the empty reader page into the list around the head.
5290 	 */
5291 	reader = rb_set_head_page(cpu_buffer);
5292 	if (!reader)
5293 		goto out;
5294 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5295 	cpu_buffer->reader_page->list.prev = reader->list.prev;
5296 
5297 	/*
5298 	 * cpu_buffer->pages just needs to point to the buffer, it
5299 	 *  has no specific buffer page to point to. Lets move it out
5300 	 *  of our way so we don't accidentally swap it.
5301 	 */
5302 	cpu_buffer->pages = reader->list.prev;
5303 
5304 	/* The reader page will be pointing to the new head */
5305 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
5306 
5307 	/*
5308 	 * We want to make sure we read the overruns after we set up our
5309 	 * pointers to the next object. The writer side does a
5310 	 * cmpxchg to cross pages which acts as the mb on the writer
5311 	 * side. Note, the reader will constantly fail the swap
5312 	 * while the writer is updating the pointers, so this
5313 	 * guarantees that the overwrite recorded here is the one we
5314 	 * want to compare with the last_overrun.
5315 	 */
5316 	smp_mb();
5317 	overwrite = local_read(&(cpu_buffer->overrun));
5318 
5319 	/*
5320 	 * Here's the tricky part.
5321 	 *
5322 	 * We need to move the pointer past the header page.
5323 	 * But we can only do that if a writer is not currently
5324 	 * moving it. The page before the header page has the
5325 	 * flag bit '1' set if it is pointing to the page we want.
5326 	 * but if the writer is in the process of moving it
5327 	 * than it will be '2' or already moved '0'.
5328 	 */
5329 
5330 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5331 
5332 	/*
5333 	 * If we did not convert it, then we must try again.
5334 	 */
5335 	if (!ret)
5336 		goto spin;
5337 
5338 	if (cpu_buffer->ring_meta)
5339 		rb_update_meta_reader(cpu_buffer, reader);
5340 
5341 	/*
5342 	 * Yay! We succeeded in replacing the page.
5343 	 *
5344 	 * Now make the new head point back to the reader page.
5345 	 */
5346 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5347 	rb_inc_page(&cpu_buffer->head_page);
5348 
5349 	cpu_buffer->cnt++;
5350 	local_inc(&cpu_buffer->pages_read);
5351 
5352 	/* Finally update the reader page to the new head */
5353 	cpu_buffer->reader_page = reader;
5354 	cpu_buffer->reader_page->read = 0;
5355 
5356 	if (overwrite != cpu_buffer->last_overrun) {
5357 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5358 		cpu_buffer->last_overrun = overwrite;
5359 	}
5360 
5361 	goto again;
5362 
5363  out:
5364 	/* Update the read_stamp on the first event */
5365 	if (reader && reader->read == 0)
5366 		cpu_buffer->read_stamp = reader->page->time_stamp;
5367 
5368 	arch_spin_unlock(&cpu_buffer->lock);
5369 	local_irq_restore(flags);
5370 
5371 	/*
5372 	 * The writer has preempt disable, wait for it. But not forever
5373 	 * Although, 1 second is pretty much "forever"
5374 	 */
5375 #define USECS_WAIT	1000000
5376         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5377 		/* If the write is past the end of page, a writer is still updating it */
5378 		if (likely(!reader || rb_page_write(reader) <= bsize))
5379 			break;
5380 
5381 		udelay(1);
5382 
5383 		/* Get the latest version of the reader write value */
5384 		smp_rmb();
5385 	}
5386 
5387 	/* The writer is not moving forward? Something is wrong */
5388 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5389 		reader = NULL;
5390 
5391 	/*
5392 	 * Make sure we see any padding after the write update
5393 	 * (see rb_reset_tail()).
5394 	 *
5395 	 * In addition, a writer may be writing on the reader page
5396 	 * if the page has not been fully filled, so the read barrier
5397 	 * is also needed to make sure we see the content of what is
5398 	 * committed by the writer (see rb_set_commit_to_write()).
5399 	 */
5400 	smp_rmb();
5401 
5402 
5403 	return reader;
5404 }
5405 
5406 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5407 {
5408 	struct ring_buffer_event *event;
5409 	struct buffer_page *reader;
5410 	unsigned length;
5411 
5412 	reader = rb_get_reader_page(cpu_buffer);
5413 
5414 	/* This function should not be called when buffer is empty */
5415 	if (RB_WARN_ON(cpu_buffer, !reader))
5416 		return;
5417 
5418 	event = rb_reader_event(cpu_buffer);
5419 
5420 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5421 		cpu_buffer->read++;
5422 
5423 	rb_update_read_stamp(cpu_buffer, event);
5424 
5425 	length = rb_event_length(event);
5426 	cpu_buffer->reader_page->read += length;
5427 	cpu_buffer->read_bytes += length;
5428 }
5429 
5430 static void rb_advance_iter(struct ring_buffer_iter *iter)
5431 {
5432 	struct ring_buffer_per_cpu *cpu_buffer;
5433 
5434 	cpu_buffer = iter->cpu_buffer;
5435 
5436 	/* If head == next_event then we need to jump to the next event */
5437 	if (iter->head == iter->next_event) {
5438 		/* If the event gets overwritten again, there's nothing to do */
5439 		if (rb_iter_head_event(iter) == NULL)
5440 			return;
5441 	}
5442 
5443 	iter->head = iter->next_event;
5444 
5445 	/*
5446 	 * Check if we are at the end of the buffer.
5447 	 */
5448 	if (iter->next_event >= rb_page_size(iter->head_page)) {
5449 		/* discarded commits can make the page empty */
5450 		if (iter->head_page == cpu_buffer->commit_page)
5451 			return;
5452 		rb_inc_iter(iter);
5453 		return;
5454 	}
5455 
5456 	rb_update_iter_read_stamp(iter, iter->event);
5457 }
5458 
5459 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5460 {
5461 	return cpu_buffer->lost_events;
5462 }
5463 
5464 static struct ring_buffer_event *
5465 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5466 	       unsigned long *lost_events)
5467 {
5468 	struct ring_buffer_event *event;
5469 	struct buffer_page *reader;
5470 	int nr_loops = 0;
5471 
5472 	if (ts)
5473 		*ts = 0;
5474  again:
5475 	/*
5476 	 * We repeat when a time extend is encountered.
5477 	 * Since the time extend is always attached to a data event,
5478 	 * we should never loop more than once.
5479 	 * (We never hit the following condition more than twice).
5480 	 */
5481 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5482 		return NULL;
5483 
5484 	reader = rb_get_reader_page(cpu_buffer);
5485 	if (!reader)
5486 		return NULL;
5487 
5488 	event = rb_reader_event(cpu_buffer);
5489 
5490 	switch (event->type_len) {
5491 	case RINGBUF_TYPE_PADDING:
5492 		if (rb_null_event(event))
5493 			RB_WARN_ON(cpu_buffer, 1);
5494 		/*
5495 		 * Because the writer could be discarding every
5496 		 * event it creates (which would probably be bad)
5497 		 * if we were to go back to "again" then we may never
5498 		 * catch up, and will trigger the warn on, or lock
5499 		 * the box. Return the padding, and we will release
5500 		 * the current locks, and try again.
5501 		 */
5502 		return event;
5503 
5504 	case RINGBUF_TYPE_TIME_EXTEND:
5505 		/* Internal data, OK to advance */
5506 		rb_advance_reader(cpu_buffer);
5507 		goto again;
5508 
5509 	case RINGBUF_TYPE_TIME_STAMP:
5510 		if (ts) {
5511 			*ts = rb_event_time_stamp(event);
5512 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5513 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5514 							 cpu_buffer->cpu, ts);
5515 		}
5516 		/* Internal data, OK to advance */
5517 		rb_advance_reader(cpu_buffer);
5518 		goto again;
5519 
5520 	case RINGBUF_TYPE_DATA:
5521 		if (ts && !(*ts)) {
5522 			*ts = cpu_buffer->read_stamp + event->time_delta;
5523 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5524 							 cpu_buffer->cpu, ts);
5525 		}
5526 		if (lost_events)
5527 			*lost_events = rb_lost_events(cpu_buffer);
5528 		return event;
5529 
5530 	default:
5531 		RB_WARN_ON(cpu_buffer, 1);
5532 	}
5533 
5534 	return NULL;
5535 }
5536 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5537 
5538 static struct ring_buffer_event *
5539 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5540 {
5541 	struct trace_buffer *buffer;
5542 	struct ring_buffer_per_cpu *cpu_buffer;
5543 	struct ring_buffer_event *event;
5544 	int nr_loops = 0;
5545 
5546 	if (ts)
5547 		*ts = 0;
5548 
5549 	cpu_buffer = iter->cpu_buffer;
5550 	buffer = cpu_buffer->buffer;
5551 
5552 	/*
5553 	 * Check if someone performed a consuming read to the buffer
5554 	 * or removed some pages from the buffer. In these cases,
5555 	 * iterator was invalidated and we need to reset it.
5556 	 */
5557 	if (unlikely(iter->cache_read != cpu_buffer->read ||
5558 		     iter->cache_reader_page != cpu_buffer->reader_page ||
5559 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
5560 		rb_iter_reset(iter);
5561 
5562  again:
5563 	if (ring_buffer_iter_empty(iter))
5564 		return NULL;
5565 
5566 	/*
5567 	 * As the writer can mess with what the iterator is trying
5568 	 * to read, just give up if we fail to get an event after
5569 	 * three tries. The iterator is not as reliable when reading
5570 	 * the ring buffer with an active write as the consumer is.
5571 	 * Do not warn if the three failures is reached.
5572 	 */
5573 	if (++nr_loops > 3)
5574 		return NULL;
5575 
5576 	if (rb_per_cpu_empty(cpu_buffer))
5577 		return NULL;
5578 
5579 	if (iter->head >= rb_page_size(iter->head_page)) {
5580 		rb_inc_iter(iter);
5581 		goto again;
5582 	}
5583 
5584 	event = rb_iter_head_event(iter);
5585 	if (!event)
5586 		goto again;
5587 
5588 	switch (event->type_len) {
5589 	case RINGBUF_TYPE_PADDING:
5590 		if (rb_null_event(event)) {
5591 			rb_inc_iter(iter);
5592 			goto again;
5593 		}
5594 		rb_advance_iter(iter);
5595 		return event;
5596 
5597 	case RINGBUF_TYPE_TIME_EXTEND:
5598 		/* Internal data, OK to advance */
5599 		rb_advance_iter(iter);
5600 		goto again;
5601 
5602 	case RINGBUF_TYPE_TIME_STAMP:
5603 		if (ts) {
5604 			*ts = rb_event_time_stamp(event);
5605 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5606 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5607 							 cpu_buffer->cpu, ts);
5608 		}
5609 		/* Internal data, OK to advance */
5610 		rb_advance_iter(iter);
5611 		goto again;
5612 
5613 	case RINGBUF_TYPE_DATA:
5614 		if (ts && !(*ts)) {
5615 			*ts = iter->read_stamp + event->time_delta;
5616 			ring_buffer_normalize_time_stamp(buffer,
5617 							 cpu_buffer->cpu, ts);
5618 		}
5619 		return event;
5620 
5621 	default:
5622 		RB_WARN_ON(cpu_buffer, 1);
5623 	}
5624 
5625 	return NULL;
5626 }
5627 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5628 
5629 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5630 {
5631 	if (likely(!in_nmi())) {
5632 		raw_spin_lock(&cpu_buffer->reader_lock);
5633 		return true;
5634 	}
5635 
5636 	/*
5637 	 * If an NMI die dumps out the content of the ring buffer
5638 	 * trylock must be used to prevent a deadlock if the NMI
5639 	 * preempted a task that holds the ring buffer locks. If
5640 	 * we get the lock then all is fine, if not, then continue
5641 	 * to do the read, but this can corrupt the ring buffer,
5642 	 * so it must be permanently disabled from future writes.
5643 	 * Reading from NMI is a oneshot deal.
5644 	 */
5645 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
5646 		return true;
5647 
5648 	/* Continue without locking, but disable the ring buffer */
5649 	atomic_inc(&cpu_buffer->record_disabled);
5650 	return false;
5651 }
5652 
5653 static inline void
5654 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5655 {
5656 	if (likely(locked))
5657 		raw_spin_unlock(&cpu_buffer->reader_lock);
5658 }
5659 
5660 /**
5661  * ring_buffer_peek - peek at the next event to be read
5662  * @buffer: The ring buffer to read
5663  * @cpu: The cpu to peak at
5664  * @ts: The timestamp counter of this event.
5665  * @lost_events: a variable to store if events were lost (may be NULL)
5666  *
5667  * This will return the event that will be read next, but does
5668  * not consume the data.
5669  */
5670 struct ring_buffer_event *
5671 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5672 		 unsigned long *lost_events)
5673 {
5674 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5675 	struct ring_buffer_event *event;
5676 	unsigned long flags;
5677 	bool dolock;
5678 
5679 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5680 		return NULL;
5681 
5682  again:
5683 	local_irq_save(flags);
5684 	dolock = rb_reader_lock(cpu_buffer);
5685 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5686 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5687 		rb_advance_reader(cpu_buffer);
5688 	rb_reader_unlock(cpu_buffer, dolock);
5689 	local_irq_restore(flags);
5690 
5691 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5692 		goto again;
5693 
5694 	return event;
5695 }
5696 
5697 /** ring_buffer_iter_dropped - report if there are dropped events
5698  * @iter: The ring buffer iterator
5699  *
5700  * Returns true if there was dropped events since the last peek.
5701  */
5702 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5703 {
5704 	bool ret = iter->missed_events != 0;
5705 
5706 	iter->missed_events = 0;
5707 	return ret;
5708 }
5709 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5710 
5711 /**
5712  * ring_buffer_iter_peek - peek at the next event to be read
5713  * @iter: The ring buffer iterator
5714  * @ts: The timestamp counter of this event.
5715  *
5716  * This will return the event that will be read next, but does
5717  * not increment the iterator.
5718  */
5719 struct ring_buffer_event *
5720 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5721 {
5722 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5723 	struct ring_buffer_event *event;
5724 	unsigned long flags;
5725 
5726  again:
5727 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5728 	event = rb_iter_peek(iter, ts);
5729 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5730 
5731 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5732 		goto again;
5733 
5734 	return event;
5735 }
5736 
5737 /**
5738  * ring_buffer_consume - return an event and consume it
5739  * @buffer: The ring buffer to get the next event from
5740  * @cpu: the cpu to read the buffer from
5741  * @ts: a variable to store the timestamp (may be NULL)
5742  * @lost_events: a variable to store if events were lost (may be NULL)
5743  *
5744  * Returns the next event in the ring buffer, and that event is consumed.
5745  * Meaning, that sequential reads will keep returning a different event,
5746  * and eventually empty the ring buffer if the producer is slower.
5747  */
5748 struct ring_buffer_event *
5749 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5750 		    unsigned long *lost_events)
5751 {
5752 	struct ring_buffer_per_cpu *cpu_buffer;
5753 	struct ring_buffer_event *event = NULL;
5754 	unsigned long flags;
5755 	bool dolock;
5756 
5757  again:
5758 	/* might be called in atomic */
5759 	preempt_disable();
5760 
5761 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5762 		goto out;
5763 
5764 	cpu_buffer = buffer->buffers[cpu];
5765 	local_irq_save(flags);
5766 	dolock = rb_reader_lock(cpu_buffer);
5767 
5768 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5769 	if (event) {
5770 		cpu_buffer->lost_events = 0;
5771 		rb_advance_reader(cpu_buffer);
5772 	}
5773 
5774 	rb_reader_unlock(cpu_buffer, dolock);
5775 	local_irq_restore(flags);
5776 
5777  out:
5778 	preempt_enable();
5779 
5780 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5781 		goto again;
5782 
5783 	return event;
5784 }
5785 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5786 
5787 /**
5788  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5789  * @buffer: The ring buffer to read from
5790  * @cpu: The cpu buffer to iterate over
5791  * @flags: gfp flags to use for memory allocation
5792  *
5793  * This performs the initial preparations necessary to iterate
5794  * through the buffer.  Memory is allocated, buffer resizing
5795  * is disabled, and the iterator pointer is returned to the caller.
5796  *
5797  * After a sequence of ring_buffer_read_prepare calls, the user is
5798  * expected to make at least one call to ring_buffer_read_prepare_sync.
5799  * Afterwards, ring_buffer_read_start is invoked to get things going
5800  * for real.
5801  *
5802  * This overall must be paired with ring_buffer_read_finish.
5803  */
5804 struct ring_buffer_iter *
5805 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5806 {
5807 	struct ring_buffer_per_cpu *cpu_buffer;
5808 	struct ring_buffer_iter *iter;
5809 
5810 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5811 		return NULL;
5812 
5813 	iter = kzalloc(sizeof(*iter), flags);
5814 	if (!iter)
5815 		return NULL;
5816 
5817 	/* Holds the entire event: data and meta data */
5818 	iter->event_size = buffer->subbuf_size;
5819 	iter->event = kmalloc(iter->event_size, flags);
5820 	if (!iter->event) {
5821 		kfree(iter);
5822 		return NULL;
5823 	}
5824 
5825 	cpu_buffer = buffer->buffers[cpu];
5826 
5827 	iter->cpu_buffer = cpu_buffer;
5828 
5829 	atomic_inc(&cpu_buffer->resize_disabled);
5830 
5831 	return iter;
5832 }
5833 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5834 
5835 /**
5836  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5837  *
5838  * All previously invoked ring_buffer_read_prepare calls to prepare
5839  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5840  * calls on those iterators are allowed.
5841  */
5842 void
5843 ring_buffer_read_prepare_sync(void)
5844 {
5845 	synchronize_rcu();
5846 }
5847 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5848 
5849 /**
5850  * ring_buffer_read_start - start a non consuming read of the buffer
5851  * @iter: The iterator returned by ring_buffer_read_prepare
5852  *
5853  * This finalizes the startup of an iteration through the buffer.
5854  * The iterator comes from a call to ring_buffer_read_prepare and
5855  * an intervening ring_buffer_read_prepare_sync must have been
5856  * performed.
5857  *
5858  * Must be paired with ring_buffer_read_finish.
5859  */
5860 void
5861 ring_buffer_read_start(struct ring_buffer_iter *iter)
5862 {
5863 	struct ring_buffer_per_cpu *cpu_buffer;
5864 	unsigned long flags;
5865 
5866 	if (!iter)
5867 		return;
5868 
5869 	cpu_buffer = iter->cpu_buffer;
5870 
5871 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5872 	arch_spin_lock(&cpu_buffer->lock);
5873 	rb_iter_reset(iter);
5874 	arch_spin_unlock(&cpu_buffer->lock);
5875 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5876 }
5877 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5878 
5879 /**
5880  * ring_buffer_read_finish - finish reading the iterator of the buffer
5881  * @iter: The iterator retrieved by ring_buffer_start
5882  *
5883  * This re-enables resizing of the buffer, and frees the iterator.
5884  */
5885 void
5886 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5887 {
5888 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5889 
5890 	/* Use this opportunity to check the integrity of the ring buffer. */
5891 	rb_check_pages(cpu_buffer);
5892 
5893 	atomic_dec(&cpu_buffer->resize_disabled);
5894 	kfree(iter->event);
5895 	kfree(iter);
5896 }
5897 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5898 
5899 /**
5900  * ring_buffer_iter_advance - advance the iterator to the next location
5901  * @iter: The ring buffer iterator
5902  *
5903  * Move the location of the iterator such that the next read will
5904  * be the next location of the iterator.
5905  */
5906 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5907 {
5908 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5909 	unsigned long flags;
5910 
5911 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5912 
5913 	rb_advance_iter(iter);
5914 
5915 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5916 }
5917 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5918 
5919 /**
5920  * ring_buffer_size - return the size of the ring buffer (in bytes)
5921  * @buffer: The ring buffer.
5922  * @cpu: The CPU to get ring buffer size from.
5923  */
5924 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5925 {
5926 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5927 		return 0;
5928 
5929 	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5930 }
5931 EXPORT_SYMBOL_GPL(ring_buffer_size);
5932 
5933 /**
5934  * ring_buffer_max_event_size - return the max data size of an event
5935  * @buffer: The ring buffer.
5936  *
5937  * Returns the maximum size an event can be.
5938  */
5939 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5940 {
5941 	/* If abs timestamp is requested, events have a timestamp too */
5942 	if (ring_buffer_time_stamp_abs(buffer))
5943 		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5944 	return buffer->max_data_size;
5945 }
5946 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5947 
5948 static void rb_clear_buffer_page(struct buffer_page *page)
5949 {
5950 	local_set(&page->write, 0);
5951 	local_set(&page->entries, 0);
5952 	rb_init_page(page->page);
5953 	page->read = 0;
5954 }
5955 
5956 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
5957 {
5958 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
5959 
5960 	if (!meta)
5961 		return;
5962 
5963 	meta->reader.read = cpu_buffer->reader_page->read;
5964 	meta->reader.id = cpu_buffer->reader_page->id;
5965 	meta->reader.lost_events = cpu_buffer->lost_events;
5966 
5967 	meta->entries = local_read(&cpu_buffer->entries);
5968 	meta->overrun = local_read(&cpu_buffer->overrun);
5969 	meta->read = cpu_buffer->read;
5970 
5971 	/* Some archs do not have data cache coherency between kernel and user-space */
5972 	flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
5973 }
5974 
5975 static void
5976 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5977 {
5978 	struct buffer_page *page;
5979 
5980 	rb_head_page_deactivate(cpu_buffer);
5981 
5982 	cpu_buffer->head_page
5983 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
5984 	rb_clear_buffer_page(cpu_buffer->head_page);
5985 	list_for_each_entry(page, cpu_buffer->pages, list) {
5986 		rb_clear_buffer_page(page);
5987 	}
5988 
5989 	cpu_buffer->tail_page = cpu_buffer->head_page;
5990 	cpu_buffer->commit_page = cpu_buffer->head_page;
5991 
5992 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5993 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
5994 	rb_clear_buffer_page(cpu_buffer->reader_page);
5995 
5996 	local_set(&cpu_buffer->entries_bytes, 0);
5997 	local_set(&cpu_buffer->overrun, 0);
5998 	local_set(&cpu_buffer->commit_overrun, 0);
5999 	local_set(&cpu_buffer->dropped_events, 0);
6000 	local_set(&cpu_buffer->entries, 0);
6001 	local_set(&cpu_buffer->committing, 0);
6002 	local_set(&cpu_buffer->commits, 0);
6003 	local_set(&cpu_buffer->pages_touched, 0);
6004 	local_set(&cpu_buffer->pages_lost, 0);
6005 	local_set(&cpu_buffer->pages_read, 0);
6006 	cpu_buffer->last_pages_touch = 0;
6007 	cpu_buffer->shortest_full = 0;
6008 	cpu_buffer->read = 0;
6009 	cpu_buffer->read_bytes = 0;
6010 
6011 	rb_time_set(&cpu_buffer->write_stamp, 0);
6012 	rb_time_set(&cpu_buffer->before_stamp, 0);
6013 
6014 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6015 
6016 	cpu_buffer->lost_events = 0;
6017 	cpu_buffer->last_overrun = 0;
6018 
6019 	rb_head_page_activate(cpu_buffer);
6020 	cpu_buffer->pages_removed = 0;
6021 
6022 	if (cpu_buffer->mapped) {
6023 		rb_update_meta_page(cpu_buffer);
6024 		if (cpu_buffer->ring_meta) {
6025 			struct ring_buffer_meta *meta = cpu_buffer->ring_meta;
6026 			meta->commit_buffer = meta->head_buffer;
6027 		}
6028 	}
6029 }
6030 
6031 /* Must have disabled the cpu buffer then done a synchronize_rcu */
6032 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6033 {
6034 	unsigned long flags;
6035 
6036 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6037 
6038 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6039 		goto out;
6040 
6041 	arch_spin_lock(&cpu_buffer->lock);
6042 
6043 	rb_reset_cpu(cpu_buffer);
6044 
6045 	arch_spin_unlock(&cpu_buffer->lock);
6046 
6047  out:
6048 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6049 }
6050 
6051 /**
6052  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6053  * @buffer: The ring buffer to reset a per cpu buffer of
6054  * @cpu: The CPU buffer to be reset
6055  */
6056 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6057 {
6058 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6059 	struct ring_buffer_meta *meta;
6060 
6061 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6062 		return;
6063 
6064 	/* prevent another thread from changing buffer sizes */
6065 	mutex_lock(&buffer->mutex);
6066 
6067 	atomic_inc(&cpu_buffer->resize_disabled);
6068 	atomic_inc(&cpu_buffer->record_disabled);
6069 
6070 	/* Make sure all commits have finished */
6071 	synchronize_rcu();
6072 
6073 	reset_disabled_cpu_buffer(cpu_buffer);
6074 
6075 	atomic_dec(&cpu_buffer->record_disabled);
6076 	atomic_dec(&cpu_buffer->resize_disabled);
6077 
6078 	/* Make sure persistent meta now uses this buffer's addresses */
6079 	meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6080 	if (meta)
6081 		rb_meta_init_text_addr(meta);
6082 
6083 	mutex_unlock(&buffer->mutex);
6084 }
6085 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6086 
6087 /* Flag to ensure proper resetting of atomic variables */
6088 #define RESET_BIT	(1 << 30)
6089 
6090 /**
6091  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6092  * @buffer: The ring buffer to reset a per cpu buffer of
6093  */
6094 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6095 {
6096 	struct ring_buffer_per_cpu *cpu_buffer;
6097 	struct ring_buffer_meta *meta;
6098 	int cpu;
6099 
6100 	/* prevent another thread from changing buffer sizes */
6101 	mutex_lock(&buffer->mutex);
6102 
6103 	for_each_online_buffer_cpu(buffer, cpu) {
6104 		cpu_buffer = buffer->buffers[cpu];
6105 
6106 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6107 		atomic_inc(&cpu_buffer->record_disabled);
6108 	}
6109 
6110 	/* Make sure all commits have finished */
6111 	synchronize_rcu();
6112 
6113 	for_each_buffer_cpu(buffer, cpu) {
6114 		cpu_buffer = buffer->buffers[cpu];
6115 
6116 		/*
6117 		 * If a CPU came online during the synchronize_rcu(), then
6118 		 * ignore it.
6119 		 */
6120 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6121 			continue;
6122 
6123 		reset_disabled_cpu_buffer(cpu_buffer);
6124 
6125 		/* Make sure persistent meta now uses this buffer's addresses */
6126 		meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6127 		if (meta)
6128 			rb_meta_init_text_addr(meta);
6129 
6130 		atomic_dec(&cpu_buffer->record_disabled);
6131 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6132 	}
6133 
6134 	mutex_unlock(&buffer->mutex);
6135 }
6136 
6137 /**
6138  * ring_buffer_reset - reset a ring buffer
6139  * @buffer: The ring buffer to reset all cpu buffers
6140  */
6141 void ring_buffer_reset(struct trace_buffer *buffer)
6142 {
6143 	struct ring_buffer_per_cpu *cpu_buffer;
6144 	int cpu;
6145 
6146 	/* prevent another thread from changing buffer sizes */
6147 	mutex_lock(&buffer->mutex);
6148 
6149 	for_each_buffer_cpu(buffer, cpu) {
6150 		cpu_buffer = buffer->buffers[cpu];
6151 
6152 		atomic_inc(&cpu_buffer->resize_disabled);
6153 		atomic_inc(&cpu_buffer->record_disabled);
6154 	}
6155 
6156 	/* Make sure all commits have finished */
6157 	synchronize_rcu();
6158 
6159 	for_each_buffer_cpu(buffer, cpu) {
6160 		cpu_buffer = buffer->buffers[cpu];
6161 
6162 		reset_disabled_cpu_buffer(cpu_buffer);
6163 
6164 		atomic_dec(&cpu_buffer->record_disabled);
6165 		atomic_dec(&cpu_buffer->resize_disabled);
6166 	}
6167 
6168 	mutex_unlock(&buffer->mutex);
6169 }
6170 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6171 
6172 /**
6173  * ring_buffer_empty - is the ring buffer empty?
6174  * @buffer: The ring buffer to test
6175  */
6176 bool ring_buffer_empty(struct trace_buffer *buffer)
6177 {
6178 	struct ring_buffer_per_cpu *cpu_buffer;
6179 	unsigned long flags;
6180 	bool dolock;
6181 	bool ret;
6182 	int cpu;
6183 
6184 	/* yes this is racy, but if you don't like the race, lock the buffer */
6185 	for_each_buffer_cpu(buffer, cpu) {
6186 		cpu_buffer = buffer->buffers[cpu];
6187 		local_irq_save(flags);
6188 		dolock = rb_reader_lock(cpu_buffer);
6189 		ret = rb_per_cpu_empty(cpu_buffer);
6190 		rb_reader_unlock(cpu_buffer, dolock);
6191 		local_irq_restore(flags);
6192 
6193 		if (!ret)
6194 			return false;
6195 	}
6196 
6197 	return true;
6198 }
6199 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6200 
6201 /**
6202  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6203  * @buffer: The ring buffer
6204  * @cpu: The CPU buffer to test
6205  */
6206 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6207 {
6208 	struct ring_buffer_per_cpu *cpu_buffer;
6209 	unsigned long flags;
6210 	bool dolock;
6211 	bool ret;
6212 
6213 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6214 		return true;
6215 
6216 	cpu_buffer = buffer->buffers[cpu];
6217 	local_irq_save(flags);
6218 	dolock = rb_reader_lock(cpu_buffer);
6219 	ret = rb_per_cpu_empty(cpu_buffer);
6220 	rb_reader_unlock(cpu_buffer, dolock);
6221 	local_irq_restore(flags);
6222 
6223 	return ret;
6224 }
6225 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6226 
6227 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6228 /**
6229  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6230  * @buffer_a: One buffer to swap with
6231  * @buffer_b: The other buffer to swap with
6232  * @cpu: the CPU of the buffers to swap
6233  *
6234  * This function is useful for tracers that want to take a "snapshot"
6235  * of a CPU buffer and has another back up buffer lying around.
6236  * it is expected that the tracer handles the cpu buffer not being
6237  * used at the moment.
6238  */
6239 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6240 			 struct trace_buffer *buffer_b, int cpu)
6241 {
6242 	struct ring_buffer_per_cpu *cpu_buffer_a;
6243 	struct ring_buffer_per_cpu *cpu_buffer_b;
6244 	int ret = -EINVAL;
6245 
6246 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6247 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
6248 		goto out;
6249 
6250 	cpu_buffer_a = buffer_a->buffers[cpu];
6251 	cpu_buffer_b = buffer_b->buffers[cpu];
6252 
6253 	/* It's up to the callers to not try to swap mapped buffers */
6254 	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6255 		ret = -EBUSY;
6256 		goto out;
6257 	}
6258 
6259 	/* At least make sure the two buffers are somewhat the same */
6260 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6261 		goto out;
6262 
6263 	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6264 		goto out;
6265 
6266 	ret = -EAGAIN;
6267 
6268 	if (atomic_read(&buffer_a->record_disabled))
6269 		goto out;
6270 
6271 	if (atomic_read(&buffer_b->record_disabled))
6272 		goto out;
6273 
6274 	if (atomic_read(&cpu_buffer_a->record_disabled))
6275 		goto out;
6276 
6277 	if (atomic_read(&cpu_buffer_b->record_disabled))
6278 		goto out;
6279 
6280 	/*
6281 	 * We can't do a synchronize_rcu here because this
6282 	 * function can be called in atomic context.
6283 	 * Normally this will be called from the same CPU as cpu.
6284 	 * If not it's up to the caller to protect this.
6285 	 */
6286 	atomic_inc(&cpu_buffer_a->record_disabled);
6287 	atomic_inc(&cpu_buffer_b->record_disabled);
6288 
6289 	ret = -EBUSY;
6290 	if (local_read(&cpu_buffer_a->committing))
6291 		goto out_dec;
6292 	if (local_read(&cpu_buffer_b->committing))
6293 		goto out_dec;
6294 
6295 	/*
6296 	 * When resize is in progress, we cannot swap it because
6297 	 * it will mess the state of the cpu buffer.
6298 	 */
6299 	if (atomic_read(&buffer_a->resizing))
6300 		goto out_dec;
6301 	if (atomic_read(&buffer_b->resizing))
6302 		goto out_dec;
6303 
6304 	buffer_a->buffers[cpu] = cpu_buffer_b;
6305 	buffer_b->buffers[cpu] = cpu_buffer_a;
6306 
6307 	cpu_buffer_b->buffer = buffer_a;
6308 	cpu_buffer_a->buffer = buffer_b;
6309 
6310 	ret = 0;
6311 
6312 out_dec:
6313 	atomic_dec(&cpu_buffer_a->record_disabled);
6314 	atomic_dec(&cpu_buffer_b->record_disabled);
6315 out:
6316 	return ret;
6317 }
6318 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6319 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6320 
6321 /**
6322  * ring_buffer_alloc_read_page - allocate a page to read from buffer
6323  * @buffer: the buffer to allocate for.
6324  * @cpu: the cpu buffer to allocate.
6325  *
6326  * This function is used in conjunction with ring_buffer_read_page.
6327  * When reading a full page from the ring buffer, these functions
6328  * can be used to speed up the process. The calling function should
6329  * allocate a few pages first with this function. Then when it
6330  * needs to get pages from the ring buffer, it passes the result
6331  * of this function into ring_buffer_read_page, which will swap
6332  * the page that was allocated, with the read page of the buffer.
6333  *
6334  * Returns:
6335  *  The page allocated, or ERR_PTR
6336  */
6337 struct buffer_data_read_page *
6338 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6339 {
6340 	struct ring_buffer_per_cpu *cpu_buffer;
6341 	struct buffer_data_read_page *bpage = NULL;
6342 	unsigned long flags;
6343 	struct page *page;
6344 
6345 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6346 		return ERR_PTR(-ENODEV);
6347 
6348 	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6349 	if (!bpage)
6350 		return ERR_PTR(-ENOMEM);
6351 
6352 	bpage->order = buffer->subbuf_order;
6353 	cpu_buffer = buffer->buffers[cpu];
6354 	local_irq_save(flags);
6355 	arch_spin_lock(&cpu_buffer->lock);
6356 
6357 	if (cpu_buffer->free_page) {
6358 		bpage->data = cpu_buffer->free_page;
6359 		cpu_buffer->free_page = NULL;
6360 	}
6361 
6362 	arch_spin_unlock(&cpu_buffer->lock);
6363 	local_irq_restore(flags);
6364 
6365 	if (bpage->data)
6366 		goto out;
6367 
6368 	page = alloc_pages_node(cpu_to_node(cpu),
6369 				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6370 				cpu_buffer->buffer->subbuf_order);
6371 	if (!page) {
6372 		kfree(bpage);
6373 		return ERR_PTR(-ENOMEM);
6374 	}
6375 
6376 	bpage->data = page_address(page);
6377 
6378  out:
6379 	rb_init_page(bpage->data);
6380 
6381 	return bpage;
6382 }
6383 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6384 
6385 /**
6386  * ring_buffer_free_read_page - free an allocated read page
6387  * @buffer: the buffer the page was allocate for
6388  * @cpu: the cpu buffer the page came from
6389  * @data_page: the page to free
6390  *
6391  * Free a page allocated from ring_buffer_alloc_read_page.
6392  */
6393 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6394 				struct buffer_data_read_page *data_page)
6395 {
6396 	struct ring_buffer_per_cpu *cpu_buffer;
6397 	struct buffer_data_page *bpage = data_page->data;
6398 	struct page *page = virt_to_page(bpage);
6399 	unsigned long flags;
6400 
6401 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6402 		return;
6403 
6404 	cpu_buffer = buffer->buffers[cpu];
6405 
6406 	/*
6407 	 * If the page is still in use someplace else, or order of the page
6408 	 * is different from the subbuffer order of the buffer -
6409 	 * we can't reuse it
6410 	 */
6411 	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6412 		goto out;
6413 
6414 	local_irq_save(flags);
6415 	arch_spin_lock(&cpu_buffer->lock);
6416 
6417 	if (!cpu_buffer->free_page) {
6418 		cpu_buffer->free_page = bpage;
6419 		bpage = NULL;
6420 	}
6421 
6422 	arch_spin_unlock(&cpu_buffer->lock);
6423 	local_irq_restore(flags);
6424 
6425  out:
6426 	free_pages((unsigned long)bpage, data_page->order);
6427 	kfree(data_page);
6428 }
6429 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6430 
6431 /**
6432  * ring_buffer_read_page - extract a page from the ring buffer
6433  * @buffer: buffer to extract from
6434  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6435  * @len: amount to extract
6436  * @cpu: the cpu of the buffer to extract
6437  * @full: should the extraction only happen when the page is full.
6438  *
6439  * This function will pull out a page from the ring buffer and consume it.
6440  * @data_page must be the address of the variable that was returned
6441  * from ring_buffer_alloc_read_page. This is because the page might be used
6442  * to swap with a page in the ring buffer.
6443  *
6444  * for example:
6445  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
6446  *	if (IS_ERR(rpage))
6447  *		return PTR_ERR(rpage);
6448  *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6449  *	if (ret >= 0)
6450  *		process_page(ring_buffer_read_page_data(rpage), ret);
6451  *	ring_buffer_free_read_page(buffer, cpu, rpage);
6452  *
6453  * When @full is set, the function will not return true unless
6454  * the writer is off the reader page.
6455  *
6456  * Note: it is up to the calling functions to handle sleeps and wakeups.
6457  *  The ring buffer can be used anywhere in the kernel and can not
6458  *  blindly call wake_up. The layer that uses the ring buffer must be
6459  *  responsible for that.
6460  *
6461  * Returns:
6462  *  >=0 if data has been transferred, returns the offset of consumed data.
6463  *  <0 if no data has been transferred.
6464  */
6465 int ring_buffer_read_page(struct trace_buffer *buffer,
6466 			  struct buffer_data_read_page *data_page,
6467 			  size_t len, int cpu, int full)
6468 {
6469 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6470 	struct ring_buffer_event *event;
6471 	struct buffer_data_page *bpage;
6472 	struct buffer_page *reader;
6473 	unsigned long missed_events;
6474 	unsigned long flags;
6475 	unsigned int commit;
6476 	unsigned int read;
6477 	u64 save_timestamp;
6478 	int ret = -1;
6479 
6480 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6481 		goto out;
6482 
6483 	/*
6484 	 * If len is not big enough to hold the page header, then
6485 	 * we can not copy anything.
6486 	 */
6487 	if (len <= BUF_PAGE_HDR_SIZE)
6488 		goto out;
6489 
6490 	len -= BUF_PAGE_HDR_SIZE;
6491 
6492 	if (!data_page || !data_page->data)
6493 		goto out;
6494 	if (data_page->order != buffer->subbuf_order)
6495 		goto out;
6496 
6497 	bpage = data_page->data;
6498 	if (!bpage)
6499 		goto out;
6500 
6501 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6502 
6503 	reader = rb_get_reader_page(cpu_buffer);
6504 	if (!reader)
6505 		goto out_unlock;
6506 
6507 	event = rb_reader_event(cpu_buffer);
6508 
6509 	read = reader->read;
6510 	commit = rb_page_size(reader);
6511 
6512 	/* Check if any events were dropped */
6513 	missed_events = cpu_buffer->lost_events;
6514 
6515 	/*
6516 	 * If this page has been partially read or
6517 	 * if len is not big enough to read the rest of the page or
6518 	 * a writer is still on the page, then
6519 	 * we must copy the data from the page to the buffer.
6520 	 * Otherwise, we can simply swap the page with the one passed in.
6521 	 */
6522 	if (read || (len < (commit - read)) ||
6523 	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
6524 	    cpu_buffer->mapped) {
6525 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6526 		unsigned int rpos = read;
6527 		unsigned int pos = 0;
6528 		unsigned int size;
6529 
6530 		/*
6531 		 * If a full page is expected, this can still be returned
6532 		 * if there's been a previous partial read and the
6533 		 * rest of the page can be read and the commit page is off
6534 		 * the reader page.
6535 		 */
6536 		if (full &&
6537 		    (!read || (len < (commit - read)) ||
6538 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
6539 			goto out_unlock;
6540 
6541 		if (len > (commit - read))
6542 			len = (commit - read);
6543 
6544 		/* Always keep the time extend and data together */
6545 		size = rb_event_ts_length(event);
6546 
6547 		if (len < size)
6548 			goto out_unlock;
6549 
6550 		/* save the current timestamp, since the user will need it */
6551 		save_timestamp = cpu_buffer->read_stamp;
6552 
6553 		/* Need to copy one event at a time */
6554 		do {
6555 			/* We need the size of one event, because
6556 			 * rb_advance_reader only advances by one event,
6557 			 * whereas rb_event_ts_length may include the size of
6558 			 * one or two events.
6559 			 * We have already ensured there's enough space if this
6560 			 * is a time extend. */
6561 			size = rb_event_length(event);
6562 			memcpy(bpage->data + pos, rpage->data + rpos, size);
6563 
6564 			len -= size;
6565 
6566 			rb_advance_reader(cpu_buffer);
6567 			rpos = reader->read;
6568 			pos += size;
6569 
6570 			if (rpos >= commit)
6571 				break;
6572 
6573 			event = rb_reader_event(cpu_buffer);
6574 			/* Always keep the time extend and data together */
6575 			size = rb_event_ts_length(event);
6576 		} while (len >= size);
6577 
6578 		/* update bpage */
6579 		local_set(&bpage->commit, pos);
6580 		bpage->time_stamp = save_timestamp;
6581 
6582 		/* we copied everything to the beginning */
6583 		read = 0;
6584 	} else {
6585 		/* update the entry counter */
6586 		cpu_buffer->read += rb_page_entries(reader);
6587 		cpu_buffer->read_bytes += rb_page_size(reader);
6588 
6589 		/* swap the pages */
6590 		rb_init_page(bpage);
6591 		bpage = reader->page;
6592 		reader->page = data_page->data;
6593 		local_set(&reader->write, 0);
6594 		local_set(&reader->entries, 0);
6595 		reader->read = 0;
6596 		data_page->data = bpage;
6597 
6598 		/*
6599 		 * Use the real_end for the data size,
6600 		 * This gives us a chance to store the lost events
6601 		 * on the page.
6602 		 */
6603 		if (reader->real_end)
6604 			local_set(&bpage->commit, reader->real_end);
6605 	}
6606 	ret = read;
6607 
6608 	cpu_buffer->lost_events = 0;
6609 
6610 	commit = local_read(&bpage->commit);
6611 	/*
6612 	 * Set a flag in the commit field if we lost events
6613 	 */
6614 	if (missed_events) {
6615 		/* If there is room at the end of the page to save the
6616 		 * missed events, then record it there.
6617 		 */
6618 		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6619 			memcpy(&bpage->data[commit], &missed_events,
6620 			       sizeof(missed_events));
6621 			local_add(RB_MISSED_STORED, &bpage->commit);
6622 			commit += sizeof(missed_events);
6623 		}
6624 		local_add(RB_MISSED_EVENTS, &bpage->commit);
6625 	}
6626 
6627 	/*
6628 	 * This page may be off to user land. Zero it out here.
6629 	 */
6630 	if (commit < buffer->subbuf_size)
6631 		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6632 
6633  out_unlock:
6634 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6635 
6636  out:
6637 	return ret;
6638 }
6639 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6640 
6641 /**
6642  * ring_buffer_read_page_data - get pointer to the data in the page.
6643  * @page:  the page to get the data from
6644  *
6645  * Returns pointer to the actual data in this page.
6646  */
6647 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6648 {
6649 	return page->data;
6650 }
6651 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6652 
6653 /**
6654  * ring_buffer_subbuf_size_get - get size of the sub buffer.
6655  * @buffer: the buffer to get the sub buffer size from
6656  *
6657  * Returns size of the sub buffer, in bytes.
6658  */
6659 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6660 {
6661 	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6662 }
6663 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6664 
6665 /**
6666  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6667  * @buffer: The ring_buffer to get the system sub page order from
6668  *
6669  * By default, one ring buffer sub page equals to one system page. This parameter
6670  * is configurable, per ring buffer. The size of the ring buffer sub page can be
6671  * extended, but must be an order of system page size.
6672  *
6673  * Returns the order of buffer sub page size, in system pages:
6674  * 0 means the sub buffer size is 1 system page and so forth.
6675  * In case of an error < 0 is returned.
6676  */
6677 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6678 {
6679 	if (!buffer)
6680 		return -EINVAL;
6681 
6682 	return buffer->subbuf_order;
6683 }
6684 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6685 
6686 /**
6687  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6688  * @buffer: The ring_buffer to set the new page size.
6689  * @order: Order of the system pages in one sub buffer page
6690  *
6691  * By default, one ring buffer pages equals to one system page. This API can be
6692  * used to set new size of the ring buffer page. The size must be order of
6693  * system page size, that's why the input parameter @order is the order of
6694  * system pages that are allocated for one ring buffer page:
6695  *  0 - 1 system page
6696  *  1 - 2 system pages
6697  *  3 - 4 system pages
6698  *  ...
6699  *
6700  * Returns 0 on success or < 0 in case of an error.
6701  */
6702 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6703 {
6704 	struct ring_buffer_per_cpu *cpu_buffer;
6705 	struct buffer_page *bpage, *tmp;
6706 	int old_order, old_size;
6707 	int nr_pages;
6708 	int psize;
6709 	int err;
6710 	int cpu;
6711 
6712 	if (!buffer || order < 0)
6713 		return -EINVAL;
6714 
6715 	if (buffer->subbuf_order == order)
6716 		return 0;
6717 
6718 	psize = (1 << order) * PAGE_SIZE;
6719 	if (psize <= BUF_PAGE_HDR_SIZE)
6720 		return -EINVAL;
6721 
6722 	/* Size of a subbuf cannot be greater than the write counter */
6723 	if (psize > RB_WRITE_MASK + 1)
6724 		return -EINVAL;
6725 
6726 	old_order = buffer->subbuf_order;
6727 	old_size = buffer->subbuf_size;
6728 
6729 	/* prevent another thread from changing buffer sizes */
6730 	mutex_lock(&buffer->mutex);
6731 	atomic_inc(&buffer->record_disabled);
6732 
6733 	/* Make sure all commits have finished */
6734 	synchronize_rcu();
6735 
6736 	buffer->subbuf_order = order;
6737 	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6738 
6739 	/* Make sure all new buffers are allocated, before deleting the old ones */
6740 	for_each_buffer_cpu(buffer, cpu) {
6741 
6742 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6743 			continue;
6744 
6745 		cpu_buffer = buffer->buffers[cpu];
6746 
6747 		if (cpu_buffer->mapped) {
6748 			err = -EBUSY;
6749 			goto error;
6750 		}
6751 
6752 		/* Update the number of pages to match the new size */
6753 		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6754 		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6755 
6756 		/* we need a minimum of two pages */
6757 		if (nr_pages < 2)
6758 			nr_pages = 2;
6759 
6760 		cpu_buffer->nr_pages_to_update = nr_pages;
6761 
6762 		/* Include the reader page */
6763 		nr_pages++;
6764 
6765 		/* Allocate the new size buffer */
6766 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6767 		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6768 					&cpu_buffer->new_pages)) {
6769 			/* not enough memory for new pages */
6770 			err = -ENOMEM;
6771 			goto error;
6772 		}
6773 	}
6774 
6775 	for_each_buffer_cpu(buffer, cpu) {
6776 		struct buffer_data_page *old_free_data_page;
6777 		struct list_head old_pages;
6778 		unsigned long flags;
6779 
6780 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6781 			continue;
6782 
6783 		cpu_buffer = buffer->buffers[cpu];
6784 
6785 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6786 
6787 		/* Clear the head bit to make the link list normal to read */
6788 		rb_head_page_deactivate(cpu_buffer);
6789 
6790 		/*
6791 		 * Collect buffers from the cpu_buffer pages list and the
6792 		 * reader_page on old_pages, so they can be freed later when not
6793 		 * under a spinlock. The pages list is a linked list with no
6794 		 * head, adding old_pages turns it into a regular list with
6795 		 * old_pages being the head.
6796 		 */
6797 		list_add(&old_pages, cpu_buffer->pages);
6798 		list_add(&cpu_buffer->reader_page->list, &old_pages);
6799 
6800 		/* One page was allocated for the reader page */
6801 		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6802 						     struct buffer_page, list);
6803 		list_del_init(&cpu_buffer->reader_page->list);
6804 
6805 		/* Install the new pages, remove the head from the list */
6806 		cpu_buffer->pages = cpu_buffer->new_pages.next;
6807 		list_del_init(&cpu_buffer->new_pages);
6808 		cpu_buffer->cnt++;
6809 
6810 		cpu_buffer->head_page
6811 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6812 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6813 
6814 		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6815 		cpu_buffer->nr_pages_to_update = 0;
6816 
6817 		old_free_data_page = cpu_buffer->free_page;
6818 		cpu_buffer->free_page = NULL;
6819 
6820 		rb_head_page_activate(cpu_buffer);
6821 
6822 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6823 
6824 		/* Free old sub buffers */
6825 		list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6826 			list_del_init(&bpage->list);
6827 			free_buffer_page(bpage);
6828 		}
6829 		free_pages((unsigned long)old_free_data_page, old_order);
6830 
6831 		rb_check_pages(cpu_buffer);
6832 	}
6833 
6834 	atomic_dec(&buffer->record_disabled);
6835 	mutex_unlock(&buffer->mutex);
6836 
6837 	return 0;
6838 
6839 error:
6840 	buffer->subbuf_order = old_order;
6841 	buffer->subbuf_size = old_size;
6842 
6843 	atomic_dec(&buffer->record_disabled);
6844 	mutex_unlock(&buffer->mutex);
6845 
6846 	for_each_buffer_cpu(buffer, cpu) {
6847 		cpu_buffer = buffer->buffers[cpu];
6848 
6849 		if (!cpu_buffer->nr_pages_to_update)
6850 			continue;
6851 
6852 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6853 			list_del_init(&bpage->list);
6854 			free_buffer_page(bpage);
6855 		}
6856 	}
6857 
6858 	return err;
6859 }
6860 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6861 
6862 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6863 {
6864 	struct page *page;
6865 
6866 	if (cpu_buffer->meta_page)
6867 		return 0;
6868 
6869 	page = alloc_page(GFP_USER | __GFP_ZERO);
6870 	if (!page)
6871 		return -ENOMEM;
6872 
6873 	cpu_buffer->meta_page = page_to_virt(page);
6874 
6875 	return 0;
6876 }
6877 
6878 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6879 {
6880 	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6881 
6882 	free_page(addr);
6883 	cpu_buffer->meta_page = NULL;
6884 }
6885 
6886 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6887 				   unsigned long *subbuf_ids)
6888 {
6889 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6890 	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6891 	struct buffer_page *first_subbuf, *subbuf;
6892 	int id = 0;
6893 
6894 	subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6895 	cpu_buffer->reader_page->id = id++;
6896 
6897 	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6898 	do {
6899 		if (WARN_ON(id >= nr_subbufs))
6900 			break;
6901 
6902 		subbuf_ids[id] = (unsigned long)subbuf->page;
6903 		subbuf->id = id;
6904 
6905 		rb_inc_page(&subbuf);
6906 		id++;
6907 	} while (subbuf != first_subbuf);
6908 
6909 	/* install subbuf ID to kern VA translation */
6910 	cpu_buffer->subbuf_ids = subbuf_ids;
6911 
6912 	meta->meta_struct_len = sizeof(*meta);
6913 	meta->nr_subbufs = nr_subbufs;
6914 	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6915 	meta->meta_page_size = meta->subbuf_size;
6916 
6917 	rb_update_meta_page(cpu_buffer);
6918 }
6919 
6920 static struct ring_buffer_per_cpu *
6921 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6922 {
6923 	struct ring_buffer_per_cpu *cpu_buffer;
6924 
6925 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6926 		return ERR_PTR(-EINVAL);
6927 
6928 	cpu_buffer = buffer->buffers[cpu];
6929 
6930 	mutex_lock(&cpu_buffer->mapping_lock);
6931 
6932 	if (!cpu_buffer->user_mapped) {
6933 		mutex_unlock(&cpu_buffer->mapping_lock);
6934 		return ERR_PTR(-ENODEV);
6935 	}
6936 
6937 	return cpu_buffer;
6938 }
6939 
6940 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6941 {
6942 	mutex_unlock(&cpu_buffer->mapping_lock);
6943 }
6944 
6945 /*
6946  * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
6947  * to be set-up or torn-down.
6948  */
6949 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
6950 			       bool inc)
6951 {
6952 	unsigned long flags;
6953 
6954 	lockdep_assert_held(&cpu_buffer->mapping_lock);
6955 
6956 	/* mapped is always greater or equal to user_mapped */
6957 	if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
6958 		return -EINVAL;
6959 
6960 	if (inc && cpu_buffer->mapped == UINT_MAX)
6961 		return -EBUSY;
6962 
6963 	if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
6964 		return -EINVAL;
6965 
6966 	mutex_lock(&cpu_buffer->buffer->mutex);
6967 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6968 
6969 	if (inc) {
6970 		cpu_buffer->user_mapped++;
6971 		cpu_buffer->mapped++;
6972 	} else {
6973 		cpu_buffer->user_mapped--;
6974 		cpu_buffer->mapped--;
6975 	}
6976 
6977 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6978 	mutex_unlock(&cpu_buffer->buffer->mutex);
6979 
6980 	return 0;
6981 }
6982 
6983 /*
6984  *   +--------------+  pgoff == 0
6985  *   |   meta page  |
6986  *   +--------------+  pgoff == 1
6987  *   | subbuffer 0  |
6988  *   |              |
6989  *   +--------------+  pgoff == (1 + (1 << subbuf_order))
6990  *   | subbuffer 1  |
6991  *   |              |
6992  *         ...
6993  */
6994 #ifdef CONFIG_MMU
6995 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
6996 			struct vm_area_struct *vma)
6997 {
6998 	unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
6999 	unsigned int subbuf_pages, subbuf_order;
7000 	struct page **pages;
7001 	int p = 0, s = 0;
7002 	int err;
7003 
7004 	/* Refuse MP_PRIVATE or writable mappings */
7005 	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7006 	    !(vma->vm_flags & VM_MAYSHARE))
7007 		return -EPERM;
7008 
7009 	subbuf_order = cpu_buffer->buffer->subbuf_order;
7010 	subbuf_pages = 1 << subbuf_order;
7011 
7012 	if (subbuf_order && pgoff % subbuf_pages)
7013 		return -EINVAL;
7014 
7015 	/*
7016 	 * Make sure the mapping cannot become writable later. Also tell the VM
7017 	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7018 	 */
7019 	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7020 		     VM_MAYWRITE);
7021 
7022 	lockdep_assert_held(&cpu_buffer->mapping_lock);
7023 
7024 	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7025 	nr_pages = ((nr_subbufs + 1) << subbuf_order) - pgoff; /* + meta-page */
7026 
7027 	nr_vma_pages = vma_pages(vma);
7028 	if (!nr_vma_pages || nr_vma_pages > nr_pages)
7029 		return -EINVAL;
7030 
7031 	nr_pages = nr_vma_pages;
7032 
7033 	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7034 	if (!pages)
7035 		return -ENOMEM;
7036 
7037 	if (!pgoff) {
7038 		unsigned long meta_page_padding;
7039 
7040 		pages[p++] = virt_to_page(cpu_buffer->meta_page);
7041 
7042 		/*
7043 		 * Pad with the zero-page to align the meta-page with the
7044 		 * sub-buffers.
7045 		 */
7046 		meta_page_padding = subbuf_pages - 1;
7047 		while (meta_page_padding-- && p < nr_pages) {
7048 			unsigned long __maybe_unused zero_addr =
7049 				vma->vm_start + (PAGE_SIZE * p);
7050 
7051 			pages[p++] = ZERO_PAGE(zero_addr);
7052 		}
7053 	} else {
7054 		/* Skip the meta-page */
7055 		pgoff -= subbuf_pages;
7056 
7057 		s += pgoff / subbuf_pages;
7058 	}
7059 
7060 	while (p < nr_pages) {
7061 		struct page *page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7062 		int off = 0;
7063 
7064 		if (WARN_ON_ONCE(s >= nr_subbufs)) {
7065 			err = -EINVAL;
7066 			goto out;
7067 		}
7068 
7069 		for (; off < (1 << (subbuf_order)); off++, page++) {
7070 			if (p >= nr_pages)
7071 				break;
7072 
7073 			pages[p++] = page;
7074 		}
7075 		s++;
7076 	}
7077 
7078 	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7079 
7080 out:
7081 	kfree(pages);
7082 
7083 	return err;
7084 }
7085 #else
7086 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7087 			struct vm_area_struct *vma)
7088 {
7089 	return -EOPNOTSUPP;
7090 }
7091 #endif
7092 
7093 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7094 		    struct vm_area_struct *vma)
7095 {
7096 	struct ring_buffer_per_cpu *cpu_buffer;
7097 	unsigned long flags, *subbuf_ids;
7098 	int err = 0;
7099 
7100 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7101 		return -EINVAL;
7102 
7103 	cpu_buffer = buffer->buffers[cpu];
7104 
7105 	mutex_lock(&cpu_buffer->mapping_lock);
7106 
7107 	if (cpu_buffer->user_mapped) {
7108 		err = __rb_map_vma(cpu_buffer, vma);
7109 		if (!err)
7110 			err = __rb_inc_dec_mapped(cpu_buffer, true);
7111 		mutex_unlock(&cpu_buffer->mapping_lock);
7112 		return err;
7113 	}
7114 
7115 	/* prevent another thread from changing buffer/sub-buffer sizes */
7116 	mutex_lock(&buffer->mutex);
7117 
7118 	err = rb_alloc_meta_page(cpu_buffer);
7119 	if (err)
7120 		goto unlock;
7121 
7122 	/* subbuf_ids include the reader while nr_pages does not */
7123 	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7124 	if (!subbuf_ids) {
7125 		rb_free_meta_page(cpu_buffer);
7126 		err = -ENOMEM;
7127 		goto unlock;
7128 	}
7129 
7130 	atomic_inc(&cpu_buffer->resize_disabled);
7131 
7132 	/*
7133 	 * Lock all readers to block any subbuf swap until the subbuf IDs are
7134 	 * assigned.
7135 	 */
7136 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7137 	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7138 
7139 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7140 
7141 	err = __rb_map_vma(cpu_buffer, vma);
7142 	if (!err) {
7143 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7144 		/* This is the first time it is mapped by user */
7145 		cpu_buffer->mapped++;
7146 		cpu_buffer->user_mapped = 1;
7147 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7148 	} else {
7149 		kfree(cpu_buffer->subbuf_ids);
7150 		cpu_buffer->subbuf_ids = NULL;
7151 		rb_free_meta_page(cpu_buffer);
7152 	}
7153 
7154 unlock:
7155 	mutex_unlock(&buffer->mutex);
7156 	mutex_unlock(&cpu_buffer->mapping_lock);
7157 
7158 	return err;
7159 }
7160 
7161 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7162 {
7163 	struct ring_buffer_per_cpu *cpu_buffer;
7164 	unsigned long flags;
7165 	int err = 0;
7166 
7167 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7168 		return -EINVAL;
7169 
7170 	cpu_buffer = buffer->buffers[cpu];
7171 
7172 	mutex_lock(&cpu_buffer->mapping_lock);
7173 
7174 	if (!cpu_buffer->user_mapped) {
7175 		err = -ENODEV;
7176 		goto out;
7177 	} else if (cpu_buffer->user_mapped > 1) {
7178 		__rb_inc_dec_mapped(cpu_buffer, false);
7179 		goto out;
7180 	}
7181 
7182 	mutex_lock(&buffer->mutex);
7183 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7184 
7185 	/* This is the last user space mapping */
7186 	if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7187 		cpu_buffer->mapped--;
7188 	cpu_buffer->user_mapped = 0;
7189 
7190 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7191 
7192 	kfree(cpu_buffer->subbuf_ids);
7193 	cpu_buffer->subbuf_ids = NULL;
7194 	rb_free_meta_page(cpu_buffer);
7195 	atomic_dec(&cpu_buffer->resize_disabled);
7196 
7197 	mutex_unlock(&buffer->mutex);
7198 
7199 out:
7200 	mutex_unlock(&cpu_buffer->mapping_lock);
7201 
7202 	return err;
7203 }
7204 
7205 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7206 {
7207 	struct ring_buffer_per_cpu *cpu_buffer;
7208 	struct buffer_page *reader;
7209 	unsigned long missed_events;
7210 	unsigned long reader_size;
7211 	unsigned long flags;
7212 
7213 	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7214 	if (IS_ERR(cpu_buffer))
7215 		return (int)PTR_ERR(cpu_buffer);
7216 
7217 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7218 
7219 consume:
7220 	if (rb_per_cpu_empty(cpu_buffer))
7221 		goto out;
7222 
7223 	reader_size = rb_page_size(cpu_buffer->reader_page);
7224 
7225 	/*
7226 	 * There are data to be read on the current reader page, we can
7227 	 * return to the caller. But before that, we assume the latter will read
7228 	 * everything. Let's update the kernel reader accordingly.
7229 	 */
7230 	if (cpu_buffer->reader_page->read < reader_size) {
7231 		while (cpu_buffer->reader_page->read < reader_size)
7232 			rb_advance_reader(cpu_buffer);
7233 		goto out;
7234 	}
7235 
7236 	reader = rb_get_reader_page(cpu_buffer);
7237 	if (WARN_ON(!reader))
7238 		goto out;
7239 
7240 	/* Check if any events were dropped */
7241 	missed_events = cpu_buffer->lost_events;
7242 
7243 	if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7244 		if (missed_events) {
7245 			struct buffer_data_page *bpage = reader->page;
7246 			unsigned int commit;
7247 			/*
7248 			 * Use the real_end for the data size,
7249 			 * This gives us a chance to store the lost events
7250 			 * on the page.
7251 			 */
7252 			if (reader->real_end)
7253 				local_set(&bpage->commit, reader->real_end);
7254 			/*
7255 			 * If there is room at the end of the page to save the
7256 			 * missed events, then record it there.
7257 			 */
7258 			commit = rb_page_size(reader);
7259 			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7260 				memcpy(&bpage->data[commit], &missed_events,
7261 				       sizeof(missed_events));
7262 				local_add(RB_MISSED_STORED, &bpage->commit);
7263 			}
7264 			local_add(RB_MISSED_EVENTS, &bpage->commit);
7265 		}
7266 	} else {
7267 		/*
7268 		 * There really shouldn't be any missed events if the commit
7269 		 * is on the reader page.
7270 		 */
7271 		WARN_ON_ONCE(missed_events);
7272 	}
7273 
7274 	cpu_buffer->lost_events = 0;
7275 
7276 	goto consume;
7277 
7278 out:
7279 	/* Some archs do not have data cache coherency between kernel and user-space */
7280 	flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
7281 
7282 	rb_update_meta_page(cpu_buffer);
7283 
7284 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7285 	rb_put_mapped_buffer(cpu_buffer);
7286 
7287 	return 0;
7288 }
7289 
7290 /*
7291  * We only allocate new buffers, never free them if the CPU goes down.
7292  * If we were to free the buffer, then the user would lose any trace that was in
7293  * the buffer.
7294  */
7295 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7296 {
7297 	struct trace_buffer *buffer;
7298 	long nr_pages_same;
7299 	int cpu_i;
7300 	unsigned long nr_pages;
7301 
7302 	buffer = container_of(node, struct trace_buffer, node);
7303 	if (cpumask_test_cpu(cpu, buffer->cpumask))
7304 		return 0;
7305 
7306 	nr_pages = 0;
7307 	nr_pages_same = 1;
7308 	/* check if all cpu sizes are same */
7309 	for_each_buffer_cpu(buffer, cpu_i) {
7310 		/* fill in the size from first enabled cpu */
7311 		if (nr_pages == 0)
7312 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
7313 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7314 			nr_pages_same = 0;
7315 			break;
7316 		}
7317 	}
7318 	/* allocate minimum pages, user can later expand it */
7319 	if (!nr_pages_same)
7320 		nr_pages = 2;
7321 	buffer->buffers[cpu] =
7322 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7323 	if (!buffer->buffers[cpu]) {
7324 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
7325 		     cpu);
7326 		return -ENOMEM;
7327 	}
7328 	smp_wmb();
7329 	cpumask_set_cpu(cpu, buffer->cpumask);
7330 	return 0;
7331 }
7332 
7333 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7334 /*
7335  * This is a basic integrity check of the ring buffer.
7336  * Late in the boot cycle this test will run when configured in.
7337  * It will kick off a thread per CPU that will go into a loop
7338  * writing to the per cpu ring buffer various sizes of data.
7339  * Some of the data will be large items, some small.
7340  *
7341  * Another thread is created that goes into a spin, sending out
7342  * IPIs to the other CPUs to also write into the ring buffer.
7343  * this is to test the nesting ability of the buffer.
7344  *
7345  * Basic stats are recorded and reported. If something in the
7346  * ring buffer should happen that's not expected, a big warning
7347  * is displayed and all ring buffers are disabled.
7348  */
7349 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7350 
7351 struct rb_test_data {
7352 	struct trace_buffer *buffer;
7353 	unsigned long		events;
7354 	unsigned long		bytes_written;
7355 	unsigned long		bytes_alloc;
7356 	unsigned long		bytes_dropped;
7357 	unsigned long		events_nested;
7358 	unsigned long		bytes_written_nested;
7359 	unsigned long		bytes_alloc_nested;
7360 	unsigned long		bytes_dropped_nested;
7361 	int			min_size_nested;
7362 	int			max_size_nested;
7363 	int			max_size;
7364 	int			min_size;
7365 	int			cpu;
7366 	int			cnt;
7367 };
7368 
7369 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7370 
7371 /* 1 meg per cpu */
7372 #define RB_TEST_BUFFER_SIZE	1048576
7373 
7374 static char rb_string[] __initdata =
7375 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7376 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7377 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7378 
7379 static bool rb_test_started __initdata;
7380 
7381 struct rb_item {
7382 	int size;
7383 	char str[];
7384 };
7385 
7386 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7387 {
7388 	struct ring_buffer_event *event;
7389 	struct rb_item *item;
7390 	bool started;
7391 	int event_len;
7392 	int size;
7393 	int len;
7394 	int cnt;
7395 
7396 	/* Have nested writes different that what is written */
7397 	cnt = data->cnt + (nested ? 27 : 0);
7398 
7399 	/* Multiply cnt by ~e, to make some unique increment */
7400 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7401 
7402 	len = size + sizeof(struct rb_item);
7403 
7404 	started = rb_test_started;
7405 	/* read rb_test_started before checking buffer enabled */
7406 	smp_rmb();
7407 
7408 	event = ring_buffer_lock_reserve(data->buffer, len);
7409 	if (!event) {
7410 		/* Ignore dropped events before test starts. */
7411 		if (started) {
7412 			if (nested)
7413 				data->bytes_dropped += len;
7414 			else
7415 				data->bytes_dropped_nested += len;
7416 		}
7417 		return len;
7418 	}
7419 
7420 	event_len = ring_buffer_event_length(event);
7421 
7422 	if (RB_WARN_ON(data->buffer, event_len < len))
7423 		goto out;
7424 
7425 	item = ring_buffer_event_data(event);
7426 	item->size = size;
7427 	memcpy(item->str, rb_string, size);
7428 
7429 	if (nested) {
7430 		data->bytes_alloc_nested += event_len;
7431 		data->bytes_written_nested += len;
7432 		data->events_nested++;
7433 		if (!data->min_size_nested || len < data->min_size_nested)
7434 			data->min_size_nested = len;
7435 		if (len > data->max_size_nested)
7436 			data->max_size_nested = len;
7437 	} else {
7438 		data->bytes_alloc += event_len;
7439 		data->bytes_written += len;
7440 		data->events++;
7441 		if (!data->min_size || len < data->min_size)
7442 			data->max_size = len;
7443 		if (len > data->max_size)
7444 			data->max_size = len;
7445 	}
7446 
7447  out:
7448 	ring_buffer_unlock_commit(data->buffer);
7449 
7450 	return 0;
7451 }
7452 
7453 static __init int rb_test(void *arg)
7454 {
7455 	struct rb_test_data *data = arg;
7456 
7457 	while (!kthread_should_stop()) {
7458 		rb_write_something(data, false);
7459 		data->cnt++;
7460 
7461 		set_current_state(TASK_INTERRUPTIBLE);
7462 		/* Now sleep between a min of 100-300us and a max of 1ms */
7463 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7464 	}
7465 
7466 	return 0;
7467 }
7468 
7469 static __init void rb_ipi(void *ignore)
7470 {
7471 	struct rb_test_data *data;
7472 	int cpu = smp_processor_id();
7473 
7474 	data = &rb_data[cpu];
7475 	rb_write_something(data, true);
7476 }
7477 
7478 static __init int rb_hammer_test(void *arg)
7479 {
7480 	while (!kthread_should_stop()) {
7481 
7482 		/* Send an IPI to all cpus to write data! */
7483 		smp_call_function(rb_ipi, NULL, 1);
7484 		/* No sleep, but for non preempt, let others run */
7485 		schedule();
7486 	}
7487 
7488 	return 0;
7489 }
7490 
7491 static __init int test_ringbuffer(void)
7492 {
7493 	struct task_struct *rb_hammer;
7494 	struct trace_buffer *buffer;
7495 	int cpu;
7496 	int ret = 0;
7497 
7498 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
7499 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7500 		return 0;
7501 	}
7502 
7503 	pr_info("Running ring buffer tests...\n");
7504 
7505 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7506 	if (WARN_ON(!buffer))
7507 		return 0;
7508 
7509 	/* Disable buffer so that threads can't write to it yet */
7510 	ring_buffer_record_off(buffer);
7511 
7512 	for_each_online_cpu(cpu) {
7513 		rb_data[cpu].buffer = buffer;
7514 		rb_data[cpu].cpu = cpu;
7515 		rb_data[cpu].cnt = cpu;
7516 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7517 						     cpu, "rbtester/%u");
7518 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7519 			pr_cont("FAILED\n");
7520 			ret = PTR_ERR(rb_threads[cpu]);
7521 			goto out_free;
7522 		}
7523 	}
7524 
7525 	/* Now create the rb hammer! */
7526 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7527 	if (WARN_ON(IS_ERR(rb_hammer))) {
7528 		pr_cont("FAILED\n");
7529 		ret = PTR_ERR(rb_hammer);
7530 		goto out_free;
7531 	}
7532 
7533 	ring_buffer_record_on(buffer);
7534 	/*
7535 	 * Show buffer is enabled before setting rb_test_started.
7536 	 * Yes there's a small race window where events could be
7537 	 * dropped and the thread wont catch it. But when a ring
7538 	 * buffer gets enabled, there will always be some kind of
7539 	 * delay before other CPUs see it. Thus, we don't care about
7540 	 * those dropped events. We care about events dropped after
7541 	 * the threads see that the buffer is active.
7542 	 */
7543 	smp_wmb();
7544 	rb_test_started = true;
7545 
7546 	set_current_state(TASK_INTERRUPTIBLE);
7547 	/* Just run for 10 seconds */;
7548 	schedule_timeout(10 * HZ);
7549 
7550 	kthread_stop(rb_hammer);
7551 
7552  out_free:
7553 	for_each_online_cpu(cpu) {
7554 		if (!rb_threads[cpu])
7555 			break;
7556 		kthread_stop(rb_threads[cpu]);
7557 	}
7558 	if (ret) {
7559 		ring_buffer_free(buffer);
7560 		return ret;
7561 	}
7562 
7563 	/* Report! */
7564 	pr_info("finished\n");
7565 	for_each_online_cpu(cpu) {
7566 		struct ring_buffer_event *event;
7567 		struct rb_test_data *data = &rb_data[cpu];
7568 		struct rb_item *item;
7569 		unsigned long total_events;
7570 		unsigned long total_dropped;
7571 		unsigned long total_written;
7572 		unsigned long total_alloc;
7573 		unsigned long total_read = 0;
7574 		unsigned long total_size = 0;
7575 		unsigned long total_len = 0;
7576 		unsigned long total_lost = 0;
7577 		unsigned long lost;
7578 		int big_event_size;
7579 		int small_event_size;
7580 
7581 		ret = -1;
7582 
7583 		total_events = data->events + data->events_nested;
7584 		total_written = data->bytes_written + data->bytes_written_nested;
7585 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7586 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7587 
7588 		big_event_size = data->max_size + data->max_size_nested;
7589 		small_event_size = data->min_size + data->min_size_nested;
7590 
7591 		pr_info("CPU %d:\n", cpu);
7592 		pr_info("              events:    %ld\n", total_events);
7593 		pr_info("       dropped bytes:    %ld\n", total_dropped);
7594 		pr_info("       alloced bytes:    %ld\n", total_alloc);
7595 		pr_info("       written bytes:    %ld\n", total_written);
7596 		pr_info("       biggest event:    %d\n", big_event_size);
7597 		pr_info("      smallest event:    %d\n", small_event_size);
7598 
7599 		if (RB_WARN_ON(buffer, total_dropped))
7600 			break;
7601 
7602 		ret = 0;
7603 
7604 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7605 			total_lost += lost;
7606 			item = ring_buffer_event_data(event);
7607 			total_len += ring_buffer_event_length(event);
7608 			total_size += item->size + sizeof(struct rb_item);
7609 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7610 				pr_info("FAILED!\n");
7611 				pr_info("buffer had: %.*s\n", item->size, item->str);
7612 				pr_info("expected:   %.*s\n", item->size, rb_string);
7613 				RB_WARN_ON(buffer, 1);
7614 				ret = -1;
7615 				break;
7616 			}
7617 			total_read++;
7618 		}
7619 		if (ret)
7620 			break;
7621 
7622 		ret = -1;
7623 
7624 		pr_info("         read events:   %ld\n", total_read);
7625 		pr_info("         lost events:   %ld\n", total_lost);
7626 		pr_info("        total events:   %ld\n", total_lost + total_read);
7627 		pr_info("  recorded len bytes:   %ld\n", total_len);
7628 		pr_info(" recorded size bytes:   %ld\n", total_size);
7629 		if (total_lost) {
7630 			pr_info(" With dropped events, record len and size may not match\n"
7631 				" alloced and written from above\n");
7632 		} else {
7633 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
7634 				       total_size != total_written))
7635 				break;
7636 		}
7637 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7638 			break;
7639 
7640 		ret = 0;
7641 	}
7642 	if (!ret)
7643 		pr_info("Ring buffer PASSED!\n");
7644 
7645 	ring_buffer_free(buffer);
7646 	return 0;
7647 }
7648 
7649 late_initcall(test_ringbuffer);
7650 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7651