1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <[email protected]> 5 */ 6 #include <linux/ring_buffer.h> 7 #include <linux/trace_clock.h> 8 #include <linux/spinlock.h> 9 #include <linux/debugfs.h> 10 #include <linux/uaccess.h> 11 #include <linux/hardirq.h> 12 #include <linux/kmemcheck.h> 13 #include <linux/module.h> 14 #include <linux/percpu.h> 15 #include <linux/mutex.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/hash.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/fs.h> 22 23 #include <asm/local.h> 24 #include "trace.h" 25 26 static void update_pages_handler(struct work_struct *work); 27 28 /* 29 * The ring buffer header is special. We must manually up keep it. 30 */ 31 int ring_buffer_print_entry_header(struct trace_seq *s) 32 { 33 int ret; 34 35 ret = trace_seq_printf(s, "# compressed entry header\n"); 36 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n"); 37 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n"); 38 ret = trace_seq_printf(s, "\tarray : 32 bits\n"); 39 ret = trace_seq_printf(s, "\n"); 40 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 41 RINGBUF_TYPE_PADDING); 42 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 43 RINGBUF_TYPE_TIME_EXTEND); 44 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 46 47 return ret; 48 } 49 50 /* 51 * The ring buffer is made up of a list of pages. A separate list of pages is 52 * allocated for each CPU. A writer may only write to a buffer that is 53 * associated with the CPU it is currently executing on. A reader may read 54 * from any per cpu buffer. 55 * 56 * The reader is special. For each per cpu buffer, the reader has its own 57 * reader page. When a reader has read the entire reader page, this reader 58 * page is swapped with another page in the ring buffer. 59 * 60 * Now, as long as the writer is off the reader page, the reader can do what 61 * ever it wants with that page. The writer will never write to that page 62 * again (as long as it is out of the ring buffer). 63 * 64 * Here's some silly ASCII art. 65 * 66 * +------+ 67 * |reader| RING BUFFER 68 * |page | 69 * +------+ +---+ +---+ +---+ 70 * | |-->| |-->| | 71 * +---+ +---+ +---+ 72 * ^ | 73 * | | 74 * +---------------+ 75 * 76 * 77 * +------+ 78 * |reader| RING BUFFER 79 * |page |------------------v 80 * +------+ +---+ +---+ +---+ 81 * | |-->| |-->| | 82 * +---+ +---+ +---+ 83 * ^ | 84 * | | 85 * +---------------+ 86 * 87 * 88 * +------+ 89 * |reader| RING BUFFER 90 * |page |------------------v 91 * +------+ +---+ +---+ +---+ 92 * ^ | |-->| |-->| | 93 * | +---+ +---+ +---+ 94 * | | 95 * | | 96 * +------------------------------+ 97 * 98 * 99 * +------+ 100 * |buffer| RING BUFFER 101 * |page |------------------v 102 * +------+ +---+ +---+ +---+ 103 * ^ | | | |-->| | 104 * | New +---+ +---+ +---+ 105 * | Reader------^ | 106 * | page | 107 * +------------------------------+ 108 * 109 * 110 * After we make this swap, the reader can hand this page off to the splice 111 * code and be done with it. It can even allocate a new page if it needs to 112 * and swap that into the ring buffer. 113 * 114 * We will be using cmpxchg soon to make all this lockless. 115 * 116 */ 117 118 /* 119 * A fast way to enable or disable all ring buffers is to 120 * call tracing_on or tracing_off. Turning off the ring buffers 121 * prevents all ring buffers from being recorded to. 122 * Turning this switch on, makes it OK to write to the 123 * ring buffer, if the ring buffer is enabled itself. 124 * 125 * There's three layers that must be on in order to write 126 * to the ring buffer. 127 * 128 * 1) This global flag must be set. 129 * 2) The ring buffer must be enabled for recording. 130 * 3) The per cpu buffer must be enabled for recording. 131 * 132 * In case of an anomaly, this global flag has a bit set that 133 * will permantly disable all ring buffers. 134 */ 135 136 /* 137 * Global flag to disable all recording to ring buffers 138 * This has two bits: ON, DISABLED 139 * 140 * ON DISABLED 141 * ---- ---------- 142 * 0 0 : ring buffers are off 143 * 1 0 : ring buffers are on 144 * X 1 : ring buffers are permanently disabled 145 */ 146 147 enum { 148 RB_BUFFERS_ON_BIT = 0, 149 RB_BUFFERS_DISABLED_BIT = 1, 150 }; 151 152 enum { 153 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 154 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 155 }; 156 157 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 158 159 /* Used for individual buffers (after the counter) */ 160 #define RB_BUFFER_OFF (1 << 20) 161 162 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 163 164 /** 165 * tracing_off_permanent - permanently disable ring buffers 166 * 167 * This function, once called, will disable all ring buffers 168 * permanently. 169 */ 170 void tracing_off_permanent(void) 171 { 172 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 173 } 174 175 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 176 #define RB_ALIGNMENT 4U 177 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 178 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 179 180 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 181 # define RB_FORCE_8BYTE_ALIGNMENT 0 182 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 183 #else 184 # define RB_FORCE_8BYTE_ALIGNMENT 1 185 # define RB_ARCH_ALIGNMENT 8U 186 #endif 187 188 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 189 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 190 191 enum { 192 RB_LEN_TIME_EXTEND = 8, 193 RB_LEN_TIME_STAMP = 16, 194 }; 195 196 #define skip_time_extend(event) \ 197 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 198 199 static inline int rb_null_event(struct ring_buffer_event *event) 200 { 201 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 202 } 203 204 static void rb_event_set_padding(struct ring_buffer_event *event) 205 { 206 /* padding has a NULL time_delta */ 207 event->type_len = RINGBUF_TYPE_PADDING; 208 event->time_delta = 0; 209 } 210 211 static unsigned 212 rb_event_data_length(struct ring_buffer_event *event) 213 { 214 unsigned length; 215 216 if (event->type_len) 217 length = event->type_len * RB_ALIGNMENT; 218 else 219 length = event->array[0]; 220 return length + RB_EVNT_HDR_SIZE; 221 } 222 223 /* 224 * Return the length of the given event. Will return 225 * the length of the time extend if the event is a 226 * time extend. 227 */ 228 static inline unsigned 229 rb_event_length(struct ring_buffer_event *event) 230 { 231 switch (event->type_len) { 232 case RINGBUF_TYPE_PADDING: 233 if (rb_null_event(event)) 234 /* undefined */ 235 return -1; 236 return event->array[0] + RB_EVNT_HDR_SIZE; 237 238 case RINGBUF_TYPE_TIME_EXTEND: 239 return RB_LEN_TIME_EXTEND; 240 241 case RINGBUF_TYPE_TIME_STAMP: 242 return RB_LEN_TIME_STAMP; 243 244 case RINGBUF_TYPE_DATA: 245 return rb_event_data_length(event); 246 default: 247 BUG(); 248 } 249 /* not hit */ 250 return 0; 251 } 252 253 /* 254 * Return total length of time extend and data, 255 * or just the event length for all other events. 256 */ 257 static inline unsigned 258 rb_event_ts_length(struct ring_buffer_event *event) 259 { 260 unsigned len = 0; 261 262 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 263 /* time extends include the data event after it */ 264 len = RB_LEN_TIME_EXTEND; 265 event = skip_time_extend(event); 266 } 267 return len + rb_event_length(event); 268 } 269 270 /** 271 * ring_buffer_event_length - return the length of the event 272 * @event: the event to get the length of 273 * 274 * Returns the size of the data load of a data event. 275 * If the event is something other than a data event, it 276 * returns the size of the event itself. With the exception 277 * of a TIME EXTEND, where it still returns the size of the 278 * data load of the data event after it. 279 */ 280 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 281 { 282 unsigned length; 283 284 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 285 event = skip_time_extend(event); 286 287 length = rb_event_length(event); 288 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 289 return length; 290 length -= RB_EVNT_HDR_SIZE; 291 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 292 length -= sizeof(event->array[0]); 293 return length; 294 } 295 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 296 297 /* inline for ring buffer fast paths */ 298 static void * 299 rb_event_data(struct ring_buffer_event *event) 300 { 301 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 302 event = skip_time_extend(event); 303 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 304 /* If length is in len field, then array[0] has the data */ 305 if (event->type_len) 306 return (void *)&event->array[0]; 307 /* Otherwise length is in array[0] and array[1] has the data */ 308 return (void *)&event->array[1]; 309 } 310 311 /** 312 * ring_buffer_event_data - return the data of the event 313 * @event: the event to get the data from 314 */ 315 void *ring_buffer_event_data(struct ring_buffer_event *event) 316 { 317 return rb_event_data(event); 318 } 319 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 320 321 #define for_each_buffer_cpu(buffer, cpu) \ 322 for_each_cpu(cpu, buffer->cpumask) 323 324 #define TS_SHIFT 27 325 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 326 #define TS_DELTA_TEST (~TS_MASK) 327 328 /* Flag when events were overwritten */ 329 #define RB_MISSED_EVENTS (1 << 31) 330 /* Missed count stored at end */ 331 #define RB_MISSED_STORED (1 << 30) 332 333 struct buffer_data_page { 334 u64 time_stamp; /* page time stamp */ 335 local_t commit; /* write committed index */ 336 unsigned char data[]; /* data of buffer page */ 337 }; 338 339 /* 340 * Note, the buffer_page list must be first. The buffer pages 341 * are allocated in cache lines, which means that each buffer 342 * page will be at the beginning of a cache line, and thus 343 * the least significant bits will be zero. We use this to 344 * add flags in the list struct pointers, to make the ring buffer 345 * lockless. 346 */ 347 struct buffer_page { 348 struct list_head list; /* list of buffer pages */ 349 local_t write; /* index for next write */ 350 unsigned read; /* index for next read */ 351 local_t entries; /* entries on this page */ 352 unsigned long real_end; /* real end of data */ 353 struct buffer_data_page *page; /* Actual data page */ 354 }; 355 356 /* 357 * The buffer page counters, write and entries, must be reset 358 * atomically when crossing page boundaries. To synchronize this 359 * update, two counters are inserted into the number. One is 360 * the actual counter for the write position or count on the page. 361 * 362 * The other is a counter of updaters. Before an update happens 363 * the update partition of the counter is incremented. This will 364 * allow the updater to update the counter atomically. 365 * 366 * The counter is 20 bits, and the state data is 12. 367 */ 368 #define RB_WRITE_MASK 0xfffff 369 #define RB_WRITE_INTCNT (1 << 20) 370 371 static void rb_init_page(struct buffer_data_page *bpage) 372 { 373 local_set(&bpage->commit, 0); 374 } 375 376 /** 377 * ring_buffer_page_len - the size of data on the page. 378 * @page: The page to read 379 * 380 * Returns the amount of data on the page, including buffer page header. 381 */ 382 size_t ring_buffer_page_len(void *page) 383 { 384 return local_read(&((struct buffer_data_page *)page)->commit) 385 + BUF_PAGE_HDR_SIZE; 386 } 387 388 /* 389 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 390 * this issue out. 391 */ 392 static void free_buffer_page(struct buffer_page *bpage) 393 { 394 free_page((unsigned long)bpage->page); 395 kfree(bpage); 396 } 397 398 /* 399 * We need to fit the time_stamp delta into 27 bits. 400 */ 401 static inline int test_time_stamp(u64 delta) 402 { 403 if (delta & TS_DELTA_TEST) 404 return 1; 405 return 0; 406 } 407 408 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 409 410 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 411 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 412 413 int ring_buffer_print_page_header(struct trace_seq *s) 414 { 415 struct buffer_data_page field; 416 int ret; 417 418 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 419 "offset:0;\tsize:%u;\tsigned:%u;\n", 420 (unsigned int)sizeof(field.time_stamp), 421 (unsigned int)is_signed_type(u64)); 422 423 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 424 "offset:%u;\tsize:%u;\tsigned:%u;\n", 425 (unsigned int)offsetof(typeof(field), commit), 426 (unsigned int)sizeof(field.commit), 427 (unsigned int)is_signed_type(long)); 428 429 ret = trace_seq_printf(s, "\tfield: int overwrite;\t" 430 "offset:%u;\tsize:%u;\tsigned:%u;\n", 431 (unsigned int)offsetof(typeof(field), commit), 432 1, 433 (unsigned int)is_signed_type(long)); 434 435 ret = trace_seq_printf(s, "\tfield: char data;\t" 436 "offset:%u;\tsize:%u;\tsigned:%u;\n", 437 (unsigned int)offsetof(typeof(field), data), 438 (unsigned int)BUF_PAGE_SIZE, 439 (unsigned int)is_signed_type(char)); 440 441 return ret; 442 } 443 444 /* 445 * head_page == tail_page && head == tail then buffer is empty. 446 */ 447 struct ring_buffer_per_cpu { 448 int cpu; 449 atomic_t record_disabled; 450 struct ring_buffer *buffer; 451 raw_spinlock_t reader_lock; /* serialize readers */ 452 arch_spinlock_t lock; 453 struct lock_class_key lock_key; 454 unsigned int nr_pages; 455 struct list_head *pages; 456 struct buffer_page *head_page; /* read from head */ 457 struct buffer_page *tail_page; /* write to tail */ 458 struct buffer_page *commit_page; /* committed pages */ 459 struct buffer_page *reader_page; 460 unsigned long lost_events; 461 unsigned long last_overrun; 462 local_t entries_bytes; 463 local_t commit_overrun; 464 local_t overrun; 465 local_t entries; 466 local_t committing; 467 local_t commits; 468 unsigned long read; 469 unsigned long read_bytes; 470 u64 write_stamp; 471 u64 read_stamp; 472 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 473 int nr_pages_to_update; 474 struct list_head new_pages; /* new pages to add */ 475 struct work_struct update_pages_work; 476 struct completion update_done; 477 }; 478 479 struct ring_buffer { 480 unsigned flags; 481 int cpus; 482 atomic_t record_disabled; 483 atomic_t resize_disabled; 484 cpumask_var_t cpumask; 485 486 struct lock_class_key *reader_lock_key; 487 488 struct mutex mutex; 489 490 struct ring_buffer_per_cpu **buffers; 491 492 #ifdef CONFIG_HOTPLUG_CPU 493 struct notifier_block cpu_notify; 494 #endif 495 u64 (*clock)(void); 496 }; 497 498 struct ring_buffer_iter { 499 struct ring_buffer_per_cpu *cpu_buffer; 500 unsigned long head; 501 struct buffer_page *head_page; 502 struct buffer_page *cache_reader_page; 503 unsigned long cache_read; 504 u64 read_stamp; 505 }; 506 507 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 508 #define RB_WARN_ON(b, cond) \ 509 ({ \ 510 int _____ret = unlikely(cond); \ 511 if (_____ret) { \ 512 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 513 struct ring_buffer_per_cpu *__b = \ 514 (void *)b; \ 515 atomic_inc(&__b->buffer->record_disabled); \ 516 } else \ 517 atomic_inc(&b->record_disabled); \ 518 WARN_ON(1); \ 519 } \ 520 _____ret; \ 521 }) 522 523 /* Up this if you want to test the TIME_EXTENTS and normalization */ 524 #define DEBUG_SHIFT 0 525 526 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 527 { 528 /* shift to debug/test normalization and TIME_EXTENTS */ 529 return buffer->clock() << DEBUG_SHIFT; 530 } 531 532 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 533 { 534 u64 time; 535 536 preempt_disable_notrace(); 537 time = rb_time_stamp(buffer); 538 preempt_enable_no_resched_notrace(); 539 540 return time; 541 } 542 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 543 544 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 545 int cpu, u64 *ts) 546 { 547 /* Just stupid testing the normalize function and deltas */ 548 *ts >>= DEBUG_SHIFT; 549 } 550 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 551 552 /* 553 * Making the ring buffer lockless makes things tricky. 554 * Although writes only happen on the CPU that they are on, 555 * and they only need to worry about interrupts. Reads can 556 * happen on any CPU. 557 * 558 * The reader page is always off the ring buffer, but when the 559 * reader finishes with a page, it needs to swap its page with 560 * a new one from the buffer. The reader needs to take from 561 * the head (writes go to the tail). But if a writer is in overwrite 562 * mode and wraps, it must push the head page forward. 563 * 564 * Here lies the problem. 565 * 566 * The reader must be careful to replace only the head page, and 567 * not another one. As described at the top of the file in the 568 * ASCII art, the reader sets its old page to point to the next 569 * page after head. It then sets the page after head to point to 570 * the old reader page. But if the writer moves the head page 571 * during this operation, the reader could end up with the tail. 572 * 573 * We use cmpxchg to help prevent this race. We also do something 574 * special with the page before head. We set the LSB to 1. 575 * 576 * When the writer must push the page forward, it will clear the 577 * bit that points to the head page, move the head, and then set 578 * the bit that points to the new head page. 579 * 580 * We also don't want an interrupt coming in and moving the head 581 * page on another writer. Thus we use the second LSB to catch 582 * that too. Thus: 583 * 584 * head->list->prev->next bit 1 bit 0 585 * ------- ------- 586 * Normal page 0 0 587 * Points to head page 0 1 588 * New head page 1 0 589 * 590 * Note we can not trust the prev pointer of the head page, because: 591 * 592 * +----+ +-----+ +-----+ 593 * | |------>| T |---X--->| N | 594 * | |<------| | | | 595 * +----+ +-----+ +-----+ 596 * ^ ^ | 597 * | +-----+ | | 598 * +----------| R |----------+ | 599 * | |<-----------+ 600 * +-----+ 601 * 602 * Key: ---X--> HEAD flag set in pointer 603 * T Tail page 604 * R Reader page 605 * N Next page 606 * 607 * (see __rb_reserve_next() to see where this happens) 608 * 609 * What the above shows is that the reader just swapped out 610 * the reader page with a page in the buffer, but before it 611 * could make the new header point back to the new page added 612 * it was preempted by a writer. The writer moved forward onto 613 * the new page added by the reader and is about to move forward 614 * again. 615 * 616 * You can see, it is legitimate for the previous pointer of 617 * the head (or any page) not to point back to itself. But only 618 * temporarially. 619 */ 620 621 #define RB_PAGE_NORMAL 0UL 622 #define RB_PAGE_HEAD 1UL 623 #define RB_PAGE_UPDATE 2UL 624 625 626 #define RB_FLAG_MASK 3UL 627 628 /* PAGE_MOVED is not part of the mask */ 629 #define RB_PAGE_MOVED 4UL 630 631 /* 632 * rb_list_head - remove any bit 633 */ 634 static struct list_head *rb_list_head(struct list_head *list) 635 { 636 unsigned long val = (unsigned long)list; 637 638 return (struct list_head *)(val & ~RB_FLAG_MASK); 639 } 640 641 /* 642 * rb_is_head_page - test if the given page is the head page 643 * 644 * Because the reader may move the head_page pointer, we can 645 * not trust what the head page is (it may be pointing to 646 * the reader page). But if the next page is a header page, 647 * its flags will be non zero. 648 */ 649 static inline int 650 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 651 struct buffer_page *page, struct list_head *list) 652 { 653 unsigned long val; 654 655 val = (unsigned long)list->next; 656 657 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 658 return RB_PAGE_MOVED; 659 660 return val & RB_FLAG_MASK; 661 } 662 663 /* 664 * rb_is_reader_page 665 * 666 * The unique thing about the reader page, is that, if the 667 * writer is ever on it, the previous pointer never points 668 * back to the reader page. 669 */ 670 static int rb_is_reader_page(struct buffer_page *page) 671 { 672 struct list_head *list = page->list.prev; 673 674 return rb_list_head(list->next) != &page->list; 675 } 676 677 /* 678 * rb_set_list_to_head - set a list_head to be pointing to head. 679 */ 680 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 681 struct list_head *list) 682 { 683 unsigned long *ptr; 684 685 ptr = (unsigned long *)&list->next; 686 *ptr |= RB_PAGE_HEAD; 687 *ptr &= ~RB_PAGE_UPDATE; 688 } 689 690 /* 691 * rb_head_page_activate - sets up head page 692 */ 693 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 694 { 695 struct buffer_page *head; 696 697 head = cpu_buffer->head_page; 698 if (!head) 699 return; 700 701 /* 702 * Set the previous list pointer to have the HEAD flag. 703 */ 704 rb_set_list_to_head(cpu_buffer, head->list.prev); 705 } 706 707 static void rb_list_head_clear(struct list_head *list) 708 { 709 unsigned long *ptr = (unsigned long *)&list->next; 710 711 *ptr &= ~RB_FLAG_MASK; 712 } 713 714 /* 715 * rb_head_page_dactivate - clears head page ptr (for free list) 716 */ 717 static void 718 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 719 { 720 struct list_head *hd; 721 722 /* Go through the whole list and clear any pointers found. */ 723 rb_list_head_clear(cpu_buffer->pages); 724 725 list_for_each(hd, cpu_buffer->pages) 726 rb_list_head_clear(hd); 727 } 728 729 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 730 struct buffer_page *head, 731 struct buffer_page *prev, 732 int old_flag, int new_flag) 733 { 734 struct list_head *list; 735 unsigned long val = (unsigned long)&head->list; 736 unsigned long ret; 737 738 list = &prev->list; 739 740 val &= ~RB_FLAG_MASK; 741 742 ret = cmpxchg((unsigned long *)&list->next, 743 val | old_flag, val | new_flag); 744 745 /* check if the reader took the page */ 746 if ((ret & ~RB_FLAG_MASK) != val) 747 return RB_PAGE_MOVED; 748 749 return ret & RB_FLAG_MASK; 750 } 751 752 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 753 struct buffer_page *head, 754 struct buffer_page *prev, 755 int old_flag) 756 { 757 return rb_head_page_set(cpu_buffer, head, prev, 758 old_flag, RB_PAGE_UPDATE); 759 } 760 761 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 762 struct buffer_page *head, 763 struct buffer_page *prev, 764 int old_flag) 765 { 766 return rb_head_page_set(cpu_buffer, head, prev, 767 old_flag, RB_PAGE_HEAD); 768 } 769 770 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 771 struct buffer_page *head, 772 struct buffer_page *prev, 773 int old_flag) 774 { 775 return rb_head_page_set(cpu_buffer, head, prev, 776 old_flag, RB_PAGE_NORMAL); 777 } 778 779 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 780 struct buffer_page **bpage) 781 { 782 struct list_head *p = rb_list_head((*bpage)->list.next); 783 784 *bpage = list_entry(p, struct buffer_page, list); 785 } 786 787 static struct buffer_page * 788 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 789 { 790 struct buffer_page *head; 791 struct buffer_page *page; 792 struct list_head *list; 793 int i; 794 795 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 796 return NULL; 797 798 /* sanity check */ 799 list = cpu_buffer->pages; 800 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 801 return NULL; 802 803 page = head = cpu_buffer->head_page; 804 /* 805 * It is possible that the writer moves the header behind 806 * where we started, and we miss in one loop. 807 * A second loop should grab the header, but we'll do 808 * three loops just because I'm paranoid. 809 */ 810 for (i = 0; i < 3; i++) { 811 do { 812 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 813 cpu_buffer->head_page = page; 814 return page; 815 } 816 rb_inc_page(cpu_buffer, &page); 817 } while (page != head); 818 } 819 820 RB_WARN_ON(cpu_buffer, 1); 821 822 return NULL; 823 } 824 825 static int rb_head_page_replace(struct buffer_page *old, 826 struct buffer_page *new) 827 { 828 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 829 unsigned long val; 830 unsigned long ret; 831 832 val = *ptr & ~RB_FLAG_MASK; 833 val |= RB_PAGE_HEAD; 834 835 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 836 837 return ret == val; 838 } 839 840 /* 841 * rb_tail_page_update - move the tail page forward 842 * 843 * Returns 1 if moved tail page, 0 if someone else did. 844 */ 845 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 846 struct buffer_page *tail_page, 847 struct buffer_page *next_page) 848 { 849 struct buffer_page *old_tail; 850 unsigned long old_entries; 851 unsigned long old_write; 852 int ret = 0; 853 854 /* 855 * The tail page now needs to be moved forward. 856 * 857 * We need to reset the tail page, but without messing 858 * with possible erasing of data brought in by interrupts 859 * that have moved the tail page and are currently on it. 860 * 861 * We add a counter to the write field to denote this. 862 */ 863 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 864 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 865 866 /* 867 * Just make sure we have seen our old_write and synchronize 868 * with any interrupts that come in. 869 */ 870 barrier(); 871 872 /* 873 * If the tail page is still the same as what we think 874 * it is, then it is up to us to update the tail 875 * pointer. 876 */ 877 if (tail_page == cpu_buffer->tail_page) { 878 /* Zero the write counter */ 879 unsigned long val = old_write & ~RB_WRITE_MASK; 880 unsigned long eval = old_entries & ~RB_WRITE_MASK; 881 882 /* 883 * This will only succeed if an interrupt did 884 * not come in and change it. In which case, we 885 * do not want to modify it. 886 * 887 * We add (void) to let the compiler know that we do not care 888 * about the return value of these functions. We use the 889 * cmpxchg to only update if an interrupt did not already 890 * do it for us. If the cmpxchg fails, we don't care. 891 */ 892 (void)local_cmpxchg(&next_page->write, old_write, val); 893 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 894 895 /* 896 * No need to worry about races with clearing out the commit. 897 * it only can increment when a commit takes place. But that 898 * only happens in the outer most nested commit. 899 */ 900 local_set(&next_page->page->commit, 0); 901 902 old_tail = cmpxchg(&cpu_buffer->tail_page, 903 tail_page, next_page); 904 905 if (old_tail == tail_page) 906 ret = 1; 907 } 908 909 return ret; 910 } 911 912 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 913 struct buffer_page *bpage) 914 { 915 unsigned long val = (unsigned long)bpage; 916 917 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 918 return 1; 919 920 return 0; 921 } 922 923 /** 924 * rb_check_list - make sure a pointer to a list has the last bits zero 925 */ 926 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 927 struct list_head *list) 928 { 929 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 930 return 1; 931 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 932 return 1; 933 return 0; 934 } 935 936 /** 937 * check_pages - integrity check of buffer pages 938 * @cpu_buffer: CPU buffer with pages to test 939 * 940 * As a safety measure we check to make sure the data pages have not 941 * been corrupted. 942 */ 943 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 944 { 945 struct list_head *head = cpu_buffer->pages; 946 struct buffer_page *bpage, *tmp; 947 948 /* Reset the head page if it exists */ 949 if (cpu_buffer->head_page) 950 rb_set_head_page(cpu_buffer); 951 952 rb_head_page_deactivate(cpu_buffer); 953 954 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 955 return -1; 956 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 957 return -1; 958 959 if (rb_check_list(cpu_buffer, head)) 960 return -1; 961 962 list_for_each_entry_safe(bpage, tmp, head, list) { 963 if (RB_WARN_ON(cpu_buffer, 964 bpage->list.next->prev != &bpage->list)) 965 return -1; 966 if (RB_WARN_ON(cpu_buffer, 967 bpage->list.prev->next != &bpage->list)) 968 return -1; 969 if (rb_check_list(cpu_buffer, &bpage->list)) 970 return -1; 971 } 972 973 rb_head_page_activate(cpu_buffer); 974 975 return 0; 976 } 977 978 static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu) 979 { 980 int i; 981 struct buffer_page *bpage, *tmp; 982 983 for (i = 0; i < nr_pages; i++) { 984 struct page *page; 985 /* 986 * __GFP_NORETRY flag makes sure that the allocation fails 987 * gracefully without invoking oom-killer and the system is 988 * not destabilized. 989 */ 990 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 991 GFP_KERNEL | __GFP_NORETRY, 992 cpu_to_node(cpu)); 993 if (!bpage) 994 goto free_pages; 995 996 list_add(&bpage->list, pages); 997 998 page = alloc_pages_node(cpu_to_node(cpu), 999 GFP_KERNEL | __GFP_NORETRY, 0); 1000 if (!page) 1001 goto free_pages; 1002 bpage->page = page_address(page); 1003 rb_init_page(bpage->page); 1004 } 1005 1006 return 0; 1007 1008 free_pages: 1009 list_for_each_entry_safe(bpage, tmp, pages, list) { 1010 list_del_init(&bpage->list); 1011 free_buffer_page(bpage); 1012 } 1013 1014 return -ENOMEM; 1015 } 1016 1017 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 1018 unsigned nr_pages) 1019 { 1020 LIST_HEAD(pages); 1021 1022 WARN_ON(!nr_pages); 1023 1024 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu)) 1025 return -ENOMEM; 1026 1027 /* 1028 * The ring buffer page list is a circular list that does not 1029 * start and end with a list head. All page list items point to 1030 * other pages. 1031 */ 1032 cpu_buffer->pages = pages.next; 1033 list_del(&pages); 1034 1035 cpu_buffer->nr_pages = nr_pages; 1036 1037 rb_check_pages(cpu_buffer); 1038 1039 return 0; 1040 } 1041 1042 static struct ring_buffer_per_cpu * 1043 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu) 1044 { 1045 struct ring_buffer_per_cpu *cpu_buffer; 1046 struct buffer_page *bpage; 1047 struct page *page; 1048 int ret; 1049 1050 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 1051 GFP_KERNEL, cpu_to_node(cpu)); 1052 if (!cpu_buffer) 1053 return NULL; 1054 1055 cpu_buffer->cpu = cpu; 1056 cpu_buffer->buffer = buffer; 1057 raw_spin_lock_init(&cpu_buffer->reader_lock); 1058 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1059 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 1060 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 1061 init_completion(&cpu_buffer->update_done); 1062 1063 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1064 GFP_KERNEL, cpu_to_node(cpu)); 1065 if (!bpage) 1066 goto fail_free_buffer; 1067 1068 rb_check_bpage(cpu_buffer, bpage); 1069 1070 cpu_buffer->reader_page = bpage; 1071 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0); 1072 if (!page) 1073 goto fail_free_reader; 1074 bpage->page = page_address(page); 1075 rb_init_page(bpage->page); 1076 1077 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1078 1079 ret = rb_allocate_pages(cpu_buffer, nr_pages); 1080 if (ret < 0) 1081 goto fail_free_reader; 1082 1083 cpu_buffer->head_page 1084 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1085 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1086 1087 rb_head_page_activate(cpu_buffer); 1088 1089 return cpu_buffer; 1090 1091 fail_free_reader: 1092 free_buffer_page(cpu_buffer->reader_page); 1093 1094 fail_free_buffer: 1095 kfree(cpu_buffer); 1096 return NULL; 1097 } 1098 1099 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1100 { 1101 struct list_head *head = cpu_buffer->pages; 1102 struct buffer_page *bpage, *tmp; 1103 1104 free_buffer_page(cpu_buffer->reader_page); 1105 1106 rb_head_page_deactivate(cpu_buffer); 1107 1108 if (head) { 1109 list_for_each_entry_safe(bpage, tmp, head, list) { 1110 list_del_init(&bpage->list); 1111 free_buffer_page(bpage); 1112 } 1113 bpage = list_entry(head, struct buffer_page, list); 1114 free_buffer_page(bpage); 1115 } 1116 1117 kfree(cpu_buffer); 1118 } 1119 1120 #ifdef CONFIG_HOTPLUG_CPU 1121 static int rb_cpu_notify(struct notifier_block *self, 1122 unsigned long action, void *hcpu); 1123 #endif 1124 1125 /** 1126 * ring_buffer_alloc - allocate a new ring_buffer 1127 * @size: the size in bytes per cpu that is needed. 1128 * @flags: attributes to set for the ring buffer. 1129 * 1130 * Currently the only flag that is available is the RB_FL_OVERWRITE 1131 * flag. This flag means that the buffer will overwrite old data 1132 * when the buffer wraps. If this flag is not set, the buffer will 1133 * drop data when the tail hits the head. 1134 */ 1135 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1136 struct lock_class_key *key) 1137 { 1138 struct ring_buffer *buffer; 1139 int bsize; 1140 int cpu, nr_pages; 1141 1142 /* keep it in its own cache line */ 1143 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1144 GFP_KERNEL); 1145 if (!buffer) 1146 return NULL; 1147 1148 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1149 goto fail_free_buffer; 1150 1151 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1152 buffer->flags = flags; 1153 buffer->clock = trace_clock_local; 1154 buffer->reader_lock_key = key; 1155 1156 /* need at least two pages */ 1157 if (nr_pages < 2) 1158 nr_pages = 2; 1159 1160 /* 1161 * In case of non-hotplug cpu, if the ring-buffer is allocated 1162 * in early initcall, it will not be notified of secondary cpus. 1163 * In that off case, we need to allocate for all possible cpus. 1164 */ 1165 #ifdef CONFIG_HOTPLUG_CPU 1166 get_online_cpus(); 1167 cpumask_copy(buffer->cpumask, cpu_online_mask); 1168 #else 1169 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1170 #endif 1171 buffer->cpus = nr_cpu_ids; 1172 1173 bsize = sizeof(void *) * nr_cpu_ids; 1174 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1175 GFP_KERNEL); 1176 if (!buffer->buffers) 1177 goto fail_free_cpumask; 1178 1179 for_each_buffer_cpu(buffer, cpu) { 1180 buffer->buffers[cpu] = 1181 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 1182 if (!buffer->buffers[cpu]) 1183 goto fail_free_buffers; 1184 } 1185 1186 #ifdef CONFIG_HOTPLUG_CPU 1187 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1188 buffer->cpu_notify.priority = 0; 1189 register_cpu_notifier(&buffer->cpu_notify); 1190 #endif 1191 1192 put_online_cpus(); 1193 mutex_init(&buffer->mutex); 1194 1195 return buffer; 1196 1197 fail_free_buffers: 1198 for_each_buffer_cpu(buffer, cpu) { 1199 if (buffer->buffers[cpu]) 1200 rb_free_cpu_buffer(buffer->buffers[cpu]); 1201 } 1202 kfree(buffer->buffers); 1203 1204 fail_free_cpumask: 1205 free_cpumask_var(buffer->cpumask); 1206 put_online_cpus(); 1207 1208 fail_free_buffer: 1209 kfree(buffer); 1210 return NULL; 1211 } 1212 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1213 1214 /** 1215 * ring_buffer_free - free a ring buffer. 1216 * @buffer: the buffer to free. 1217 */ 1218 void 1219 ring_buffer_free(struct ring_buffer *buffer) 1220 { 1221 int cpu; 1222 1223 get_online_cpus(); 1224 1225 #ifdef CONFIG_HOTPLUG_CPU 1226 unregister_cpu_notifier(&buffer->cpu_notify); 1227 #endif 1228 1229 for_each_buffer_cpu(buffer, cpu) 1230 rb_free_cpu_buffer(buffer->buffers[cpu]); 1231 1232 put_online_cpus(); 1233 1234 kfree(buffer->buffers); 1235 free_cpumask_var(buffer->cpumask); 1236 1237 kfree(buffer); 1238 } 1239 EXPORT_SYMBOL_GPL(ring_buffer_free); 1240 1241 void ring_buffer_set_clock(struct ring_buffer *buffer, 1242 u64 (*clock)(void)) 1243 { 1244 buffer->clock = clock; 1245 } 1246 1247 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1248 1249 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1250 { 1251 return local_read(&bpage->entries) & RB_WRITE_MASK; 1252 } 1253 1254 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1255 { 1256 return local_read(&bpage->write) & RB_WRITE_MASK; 1257 } 1258 1259 static int 1260 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages) 1261 { 1262 struct list_head *tail_page, *to_remove, *next_page; 1263 struct buffer_page *to_remove_page, *tmp_iter_page; 1264 struct buffer_page *last_page, *first_page; 1265 unsigned int nr_removed; 1266 unsigned long head_bit; 1267 int page_entries; 1268 1269 head_bit = 0; 1270 1271 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1272 atomic_inc(&cpu_buffer->record_disabled); 1273 /* 1274 * We don't race with the readers since we have acquired the reader 1275 * lock. We also don't race with writers after disabling recording. 1276 * This makes it easy to figure out the first and the last page to be 1277 * removed from the list. We unlink all the pages in between including 1278 * the first and last pages. This is done in a busy loop so that we 1279 * lose the least number of traces. 1280 * The pages are freed after we restart recording and unlock readers. 1281 */ 1282 tail_page = &cpu_buffer->tail_page->list; 1283 1284 /* 1285 * tail page might be on reader page, we remove the next page 1286 * from the ring buffer 1287 */ 1288 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 1289 tail_page = rb_list_head(tail_page->next); 1290 to_remove = tail_page; 1291 1292 /* start of pages to remove */ 1293 first_page = list_entry(rb_list_head(to_remove->next), 1294 struct buffer_page, list); 1295 1296 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 1297 to_remove = rb_list_head(to_remove)->next; 1298 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 1299 } 1300 1301 next_page = rb_list_head(to_remove)->next; 1302 1303 /* 1304 * Now we remove all pages between tail_page and next_page. 1305 * Make sure that we have head_bit value preserved for the 1306 * next page 1307 */ 1308 tail_page->next = (struct list_head *)((unsigned long)next_page | 1309 head_bit); 1310 next_page = rb_list_head(next_page); 1311 next_page->prev = tail_page; 1312 1313 /* make sure pages points to a valid page in the ring buffer */ 1314 cpu_buffer->pages = next_page; 1315 1316 /* update head page */ 1317 if (head_bit) 1318 cpu_buffer->head_page = list_entry(next_page, 1319 struct buffer_page, list); 1320 1321 /* 1322 * change read pointer to make sure any read iterators reset 1323 * themselves 1324 */ 1325 cpu_buffer->read = 0; 1326 1327 /* pages are removed, resume tracing and then free the pages */ 1328 atomic_dec(&cpu_buffer->record_disabled); 1329 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1330 1331 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 1332 1333 /* last buffer page to remove */ 1334 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 1335 list); 1336 tmp_iter_page = first_page; 1337 1338 do { 1339 to_remove_page = tmp_iter_page; 1340 rb_inc_page(cpu_buffer, &tmp_iter_page); 1341 1342 /* update the counters */ 1343 page_entries = rb_page_entries(to_remove_page); 1344 if (page_entries) { 1345 /* 1346 * If something was added to this page, it was full 1347 * since it is not the tail page. So we deduct the 1348 * bytes consumed in ring buffer from here. 1349 * No need to update overruns, since this page is 1350 * deleted from ring buffer and its entries are 1351 * already accounted for. 1352 */ 1353 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1354 } 1355 1356 /* 1357 * We have already removed references to this list item, just 1358 * free up the buffer_page and its page 1359 */ 1360 free_buffer_page(to_remove_page); 1361 nr_removed--; 1362 1363 } while (to_remove_page != last_page); 1364 1365 RB_WARN_ON(cpu_buffer, nr_removed); 1366 1367 return nr_removed == 0; 1368 } 1369 1370 static int 1371 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 1372 { 1373 struct list_head *pages = &cpu_buffer->new_pages; 1374 int retries, success; 1375 1376 raw_spin_lock_irq(&cpu_buffer->reader_lock); 1377 /* 1378 * We are holding the reader lock, so the reader page won't be swapped 1379 * in the ring buffer. Now we are racing with the writer trying to 1380 * move head page and the tail page. 1381 * We are going to adapt the reader page update process where: 1382 * 1. We first splice the start and end of list of new pages between 1383 * the head page and its previous page. 1384 * 2. We cmpxchg the prev_page->next to point from head page to the 1385 * start of new pages list. 1386 * 3. Finally, we update the head->prev to the end of new list. 1387 * 1388 * We will try this process 10 times, to make sure that we don't keep 1389 * spinning. 1390 */ 1391 retries = 10; 1392 success = 0; 1393 while (retries--) { 1394 struct list_head *head_page, *prev_page, *r; 1395 struct list_head *last_page, *first_page; 1396 struct list_head *head_page_with_bit; 1397 1398 head_page = &rb_set_head_page(cpu_buffer)->list; 1399 prev_page = head_page->prev; 1400 1401 first_page = pages->next; 1402 last_page = pages->prev; 1403 1404 head_page_with_bit = (struct list_head *) 1405 ((unsigned long)head_page | RB_PAGE_HEAD); 1406 1407 last_page->next = head_page_with_bit; 1408 first_page->prev = prev_page; 1409 1410 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page); 1411 1412 if (r == head_page_with_bit) { 1413 /* 1414 * yay, we replaced the page pointer to our new list, 1415 * now, we just have to update to head page's prev 1416 * pointer to point to end of list 1417 */ 1418 head_page->prev = last_page; 1419 success = 1; 1420 break; 1421 } 1422 } 1423 1424 if (success) 1425 INIT_LIST_HEAD(pages); 1426 /* 1427 * If we weren't successful in adding in new pages, warn and stop 1428 * tracing 1429 */ 1430 RB_WARN_ON(cpu_buffer, !success); 1431 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 1432 1433 /* free pages if they weren't inserted */ 1434 if (!success) { 1435 struct buffer_page *bpage, *tmp; 1436 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1437 list) { 1438 list_del_init(&bpage->list); 1439 free_buffer_page(bpage); 1440 } 1441 } 1442 return success; 1443 } 1444 1445 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 1446 { 1447 int success; 1448 1449 if (cpu_buffer->nr_pages_to_update > 0) 1450 success = rb_insert_pages(cpu_buffer); 1451 else 1452 success = rb_remove_pages(cpu_buffer, 1453 -cpu_buffer->nr_pages_to_update); 1454 1455 if (success) 1456 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 1457 } 1458 1459 static void update_pages_handler(struct work_struct *work) 1460 { 1461 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 1462 struct ring_buffer_per_cpu, update_pages_work); 1463 rb_update_pages(cpu_buffer); 1464 complete(&cpu_buffer->update_done); 1465 } 1466 1467 /** 1468 * ring_buffer_resize - resize the ring buffer 1469 * @buffer: the buffer to resize. 1470 * @size: the new size. 1471 * 1472 * Minimum size is 2 * BUF_PAGE_SIZE. 1473 * 1474 * Returns 0 on success and < 0 on failure. 1475 */ 1476 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size, 1477 int cpu_id) 1478 { 1479 struct ring_buffer_per_cpu *cpu_buffer; 1480 unsigned nr_pages; 1481 int cpu, err = 0; 1482 1483 /* 1484 * Always succeed at resizing a non-existent buffer: 1485 */ 1486 if (!buffer) 1487 return size; 1488 1489 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1490 size *= BUF_PAGE_SIZE; 1491 1492 /* we need a minimum of two pages */ 1493 if (size < BUF_PAGE_SIZE * 2) 1494 size = BUF_PAGE_SIZE * 2; 1495 1496 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1497 1498 /* 1499 * Don't succeed if resizing is disabled, as a reader might be 1500 * manipulating the ring buffer and is expecting a sane state while 1501 * this is true. 1502 */ 1503 if (atomic_read(&buffer->resize_disabled)) 1504 return -EBUSY; 1505 1506 /* prevent another thread from changing buffer sizes */ 1507 mutex_lock(&buffer->mutex); 1508 1509 if (cpu_id == RING_BUFFER_ALL_CPUS) { 1510 /* calculate the pages to update */ 1511 for_each_buffer_cpu(buffer, cpu) { 1512 cpu_buffer = buffer->buffers[cpu]; 1513 1514 cpu_buffer->nr_pages_to_update = nr_pages - 1515 cpu_buffer->nr_pages; 1516 /* 1517 * nothing more to do for removing pages or no update 1518 */ 1519 if (cpu_buffer->nr_pages_to_update <= 0) 1520 continue; 1521 /* 1522 * to add pages, make sure all new pages can be 1523 * allocated without receiving ENOMEM 1524 */ 1525 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1526 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1527 &cpu_buffer->new_pages, cpu)) { 1528 /* not enough memory for new pages */ 1529 err = -ENOMEM; 1530 goto out_err; 1531 } 1532 } 1533 1534 get_online_cpus(); 1535 /* 1536 * Fire off all the required work handlers 1537 * We can't schedule on offline CPUs, but it's not necessary 1538 * since we can change their buffer sizes without any race. 1539 */ 1540 for_each_buffer_cpu(buffer, cpu) { 1541 cpu_buffer = buffer->buffers[cpu]; 1542 if (!cpu_buffer->nr_pages_to_update) 1543 continue; 1544 1545 if (cpu_online(cpu)) 1546 schedule_work_on(cpu, 1547 &cpu_buffer->update_pages_work); 1548 else 1549 rb_update_pages(cpu_buffer); 1550 } 1551 1552 /* wait for all the updates to complete */ 1553 for_each_buffer_cpu(buffer, cpu) { 1554 cpu_buffer = buffer->buffers[cpu]; 1555 if (!cpu_buffer->nr_pages_to_update) 1556 continue; 1557 1558 if (cpu_online(cpu)) 1559 wait_for_completion(&cpu_buffer->update_done); 1560 cpu_buffer->nr_pages_to_update = 0; 1561 } 1562 1563 put_online_cpus(); 1564 } else { 1565 cpu_buffer = buffer->buffers[cpu_id]; 1566 1567 if (nr_pages == cpu_buffer->nr_pages) 1568 goto out; 1569 1570 cpu_buffer->nr_pages_to_update = nr_pages - 1571 cpu_buffer->nr_pages; 1572 1573 INIT_LIST_HEAD(&cpu_buffer->new_pages); 1574 if (cpu_buffer->nr_pages_to_update > 0 && 1575 __rb_allocate_pages(cpu_buffer->nr_pages_to_update, 1576 &cpu_buffer->new_pages, cpu_id)) { 1577 err = -ENOMEM; 1578 goto out_err; 1579 } 1580 1581 get_online_cpus(); 1582 1583 if (cpu_online(cpu_id)) { 1584 schedule_work_on(cpu_id, 1585 &cpu_buffer->update_pages_work); 1586 wait_for_completion(&cpu_buffer->update_done); 1587 } else 1588 rb_update_pages(cpu_buffer); 1589 1590 cpu_buffer->nr_pages_to_update = 0; 1591 put_online_cpus(); 1592 } 1593 1594 out: 1595 /* 1596 * The ring buffer resize can happen with the ring buffer 1597 * enabled, so that the update disturbs the tracing as little 1598 * as possible. But if the buffer is disabled, we do not need 1599 * to worry about that, and we can take the time to verify 1600 * that the buffer is not corrupt. 1601 */ 1602 if (atomic_read(&buffer->record_disabled)) { 1603 atomic_inc(&buffer->record_disabled); 1604 /* 1605 * Even though the buffer was disabled, we must make sure 1606 * that it is truly disabled before calling rb_check_pages. 1607 * There could have been a race between checking 1608 * record_disable and incrementing it. 1609 */ 1610 synchronize_sched(); 1611 for_each_buffer_cpu(buffer, cpu) { 1612 cpu_buffer = buffer->buffers[cpu]; 1613 rb_check_pages(cpu_buffer); 1614 } 1615 atomic_dec(&buffer->record_disabled); 1616 } 1617 1618 mutex_unlock(&buffer->mutex); 1619 return size; 1620 1621 out_err: 1622 for_each_buffer_cpu(buffer, cpu) { 1623 struct buffer_page *bpage, *tmp; 1624 1625 cpu_buffer = buffer->buffers[cpu]; 1626 cpu_buffer->nr_pages_to_update = 0; 1627 1628 if (list_empty(&cpu_buffer->new_pages)) 1629 continue; 1630 1631 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 1632 list) { 1633 list_del_init(&bpage->list); 1634 free_buffer_page(bpage); 1635 } 1636 } 1637 mutex_unlock(&buffer->mutex); 1638 return err; 1639 } 1640 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1641 1642 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val) 1643 { 1644 mutex_lock(&buffer->mutex); 1645 if (val) 1646 buffer->flags |= RB_FL_OVERWRITE; 1647 else 1648 buffer->flags &= ~RB_FL_OVERWRITE; 1649 mutex_unlock(&buffer->mutex); 1650 } 1651 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 1652 1653 static inline void * 1654 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1655 { 1656 return bpage->data + index; 1657 } 1658 1659 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1660 { 1661 return bpage->page->data + index; 1662 } 1663 1664 static inline struct ring_buffer_event * 1665 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1666 { 1667 return __rb_page_index(cpu_buffer->reader_page, 1668 cpu_buffer->reader_page->read); 1669 } 1670 1671 static inline struct ring_buffer_event * 1672 rb_iter_head_event(struct ring_buffer_iter *iter) 1673 { 1674 return __rb_page_index(iter->head_page, iter->head); 1675 } 1676 1677 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1678 { 1679 return local_read(&bpage->page->commit); 1680 } 1681 1682 /* Size is determined by what has been committed */ 1683 static inline unsigned rb_page_size(struct buffer_page *bpage) 1684 { 1685 return rb_page_commit(bpage); 1686 } 1687 1688 static inline unsigned 1689 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1690 { 1691 return rb_page_commit(cpu_buffer->commit_page); 1692 } 1693 1694 static inline unsigned 1695 rb_event_index(struct ring_buffer_event *event) 1696 { 1697 unsigned long addr = (unsigned long)event; 1698 1699 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1700 } 1701 1702 static inline int 1703 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1704 struct ring_buffer_event *event) 1705 { 1706 unsigned long addr = (unsigned long)event; 1707 unsigned long index; 1708 1709 index = rb_event_index(event); 1710 addr &= PAGE_MASK; 1711 1712 return cpu_buffer->commit_page->page == (void *)addr && 1713 rb_commit_index(cpu_buffer) == index; 1714 } 1715 1716 static void 1717 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1718 { 1719 unsigned long max_count; 1720 1721 /* 1722 * We only race with interrupts and NMIs on this CPU. 1723 * If we own the commit event, then we can commit 1724 * all others that interrupted us, since the interruptions 1725 * are in stack format (they finish before they come 1726 * back to us). This allows us to do a simple loop to 1727 * assign the commit to the tail. 1728 */ 1729 again: 1730 max_count = cpu_buffer->nr_pages * 100; 1731 1732 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1733 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1734 return; 1735 if (RB_WARN_ON(cpu_buffer, 1736 rb_is_reader_page(cpu_buffer->tail_page))) 1737 return; 1738 local_set(&cpu_buffer->commit_page->page->commit, 1739 rb_page_write(cpu_buffer->commit_page)); 1740 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1741 cpu_buffer->write_stamp = 1742 cpu_buffer->commit_page->page->time_stamp; 1743 /* add barrier to keep gcc from optimizing too much */ 1744 barrier(); 1745 } 1746 while (rb_commit_index(cpu_buffer) != 1747 rb_page_write(cpu_buffer->commit_page)) { 1748 1749 local_set(&cpu_buffer->commit_page->page->commit, 1750 rb_page_write(cpu_buffer->commit_page)); 1751 RB_WARN_ON(cpu_buffer, 1752 local_read(&cpu_buffer->commit_page->page->commit) & 1753 ~RB_WRITE_MASK); 1754 barrier(); 1755 } 1756 1757 /* again, keep gcc from optimizing */ 1758 barrier(); 1759 1760 /* 1761 * If an interrupt came in just after the first while loop 1762 * and pushed the tail page forward, we will be left with 1763 * a dangling commit that will never go forward. 1764 */ 1765 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1766 goto again; 1767 } 1768 1769 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1770 { 1771 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1772 cpu_buffer->reader_page->read = 0; 1773 } 1774 1775 static void rb_inc_iter(struct ring_buffer_iter *iter) 1776 { 1777 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1778 1779 /* 1780 * The iterator could be on the reader page (it starts there). 1781 * But the head could have moved, since the reader was 1782 * found. Check for this case and assign the iterator 1783 * to the head page instead of next. 1784 */ 1785 if (iter->head_page == cpu_buffer->reader_page) 1786 iter->head_page = rb_set_head_page(cpu_buffer); 1787 else 1788 rb_inc_page(cpu_buffer, &iter->head_page); 1789 1790 iter->read_stamp = iter->head_page->page->time_stamp; 1791 iter->head = 0; 1792 } 1793 1794 /* Slow path, do not inline */ 1795 static noinline struct ring_buffer_event * 1796 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta) 1797 { 1798 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 1799 1800 /* Not the first event on the page? */ 1801 if (rb_event_index(event)) { 1802 event->time_delta = delta & TS_MASK; 1803 event->array[0] = delta >> TS_SHIFT; 1804 } else { 1805 /* nope, just zero it */ 1806 event->time_delta = 0; 1807 event->array[0] = 0; 1808 } 1809 1810 return skip_time_extend(event); 1811 } 1812 1813 /** 1814 * ring_buffer_update_event - update event type and data 1815 * @event: the even to update 1816 * @type: the type of event 1817 * @length: the size of the event field in the ring buffer 1818 * 1819 * Update the type and data fields of the event. The length 1820 * is the actual size that is written to the ring buffer, 1821 * and with this, we can determine what to place into the 1822 * data field. 1823 */ 1824 static void 1825 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 1826 struct ring_buffer_event *event, unsigned length, 1827 int add_timestamp, u64 delta) 1828 { 1829 /* Only a commit updates the timestamp */ 1830 if (unlikely(!rb_event_is_commit(cpu_buffer, event))) 1831 delta = 0; 1832 1833 /* 1834 * If we need to add a timestamp, then we 1835 * add it to the start of the resevered space. 1836 */ 1837 if (unlikely(add_timestamp)) { 1838 event = rb_add_time_stamp(event, delta); 1839 length -= RB_LEN_TIME_EXTEND; 1840 delta = 0; 1841 } 1842 1843 event->time_delta = delta; 1844 length -= RB_EVNT_HDR_SIZE; 1845 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 1846 event->type_len = 0; 1847 event->array[0] = length; 1848 } else 1849 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 1850 } 1851 1852 /* 1853 * rb_handle_head_page - writer hit the head page 1854 * 1855 * Returns: +1 to retry page 1856 * 0 to continue 1857 * -1 on error 1858 */ 1859 static int 1860 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1861 struct buffer_page *tail_page, 1862 struct buffer_page *next_page) 1863 { 1864 struct buffer_page *new_head; 1865 int entries; 1866 int type; 1867 int ret; 1868 1869 entries = rb_page_entries(next_page); 1870 1871 /* 1872 * The hard part is here. We need to move the head 1873 * forward, and protect against both readers on 1874 * other CPUs and writers coming in via interrupts. 1875 */ 1876 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1877 RB_PAGE_HEAD); 1878 1879 /* 1880 * type can be one of four: 1881 * NORMAL - an interrupt already moved it for us 1882 * HEAD - we are the first to get here. 1883 * UPDATE - we are the interrupt interrupting 1884 * a current move. 1885 * MOVED - a reader on another CPU moved the next 1886 * pointer to its reader page. Give up 1887 * and try again. 1888 */ 1889 1890 switch (type) { 1891 case RB_PAGE_HEAD: 1892 /* 1893 * We changed the head to UPDATE, thus 1894 * it is our responsibility to update 1895 * the counters. 1896 */ 1897 local_add(entries, &cpu_buffer->overrun); 1898 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes); 1899 1900 /* 1901 * The entries will be zeroed out when we move the 1902 * tail page. 1903 */ 1904 1905 /* still more to do */ 1906 break; 1907 1908 case RB_PAGE_UPDATE: 1909 /* 1910 * This is an interrupt that interrupt the 1911 * previous update. Still more to do. 1912 */ 1913 break; 1914 case RB_PAGE_NORMAL: 1915 /* 1916 * An interrupt came in before the update 1917 * and processed this for us. 1918 * Nothing left to do. 1919 */ 1920 return 1; 1921 case RB_PAGE_MOVED: 1922 /* 1923 * The reader is on another CPU and just did 1924 * a swap with our next_page. 1925 * Try again. 1926 */ 1927 return 1; 1928 default: 1929 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1930 return -1; 1931 } 1932 1933 /* 1934 * Now that we are here, the old head pointer is 1935 * set to UPDATE. This will keep the reader from 1936 * swapping the head page with the reader page. 1937 * The reader (on another CPU) will spin till 1938 * we are finished. 1939 * 1940 * We just need to protect against interrupts 1941 * doing the job. We will set the next pointer 1942 * to HEAD. After that, we set the old pointer 1943 * to NORMAL, but only if it was HEAD before. 1944 * otherwise we are an interrupt, and only 1945 * want the outer most commit to reset it. 1946 */ 1947 new_head = next_page; 1948 rb_inc_page(cpu_buffer, &new_head); 1949 1950 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1951 RB_PAGE_NORMAL); 1952 1953 /* 1954 * Valid returns are: 1955 * HEAD - an interrupt came in and already set it. 1956 * NORMAL - One of two things: 1957 * 1) We really set it. 1958 * 2) A bunch of interrupts came in and moved 1959 * the page forward again. 1960 */ 1961 switch (ret) { 1962 case RB_PAGE_HEAD: 1963 case RB_PAGE_NORMAL: 1964 /* OK */ 1965 break; 1966 default: 1967 RB_WARN_ON(cpu_buffer, 1); 1968 return -1; 1969 } 1970 1971 /* 1972 * It is possible that an interrupt came in, 1973 * set the head up, then more interrupts came in 1974 * and moved it again. When we get back here, 1975 * the page would have been set to NORMAL but we 1976 * just set it back to HEAD. 1977 * 1978 * How do you detect this? Well, if that happened 1979 * the tail page would have moved. 1980 */ 1981 if (ret == RB_PAGE_NORMAL) { 1982 /* 1983 * If the tail had moved passed next, then we need 1984 * to reset the pointer. 1985 */ 1986 if (cpu_buffer->tail_page != tail_page && 1987 cpu_buffer->tail_page != next_page) 1988 rb_head_page_set_normal(cpu_buffer, new_head, 1989 next_page, 1990 RB_PAGE_HEAD); 1991 } 1992 1993 /* 1994 * If this was the outer most commit (the one that 1995 * changed the original pointer from HEAD to UPDATE), 1996 * then it is up to us to reset it to NORMAL. 1997 */ 1998 if (type == RB_PAGE_HEAD) { 1999 ret = rb_head_page_set_normal(cpu_buffer, next_page, 2000 tail_page, 2001 RB_PAGE_UPDATE); 2002 if (RB_WARN_ON(cpu_buffer, 2003 ret != RB_PAGE_UPDATE)) 2004 return -1; 2005 } 2006 2007 return 0; 2008 } 2009 2010 static unsigned rb_calculate_event_length(unsigned length) 2011 { 2012 struct ring_buffer_event event; /* Used only for sizeof array */ 2013 2014 /* zero length can cause confusions */ 2015 if (!length) 2016 length = 1; 2017 2018 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 2019 length += sizeof(event.array[0]); 2020 2021 length += RB_EVNT_HDR_SIZE; 2022 length = ALIGN(length, RB_ARCH_ALIGNMENT); 2023 2024 return length; 2025 } 2026 2027 static inline void 2028 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 2029 struct buffer_page *tail_page, 2030 unsigned long tail, unsigned long length) 2031 { 2032 struct ring_buffer_event *event; 2033 2034 /* 2035 * Only the event that crossed the page boundary 2036 * must fill the old tail_page with padding. 2037 */ 2038 if (tail >= BUF_PAGE_SIZE) { 2039 /* 2040 * If the page was filled, then we still need 2041 * to update the real_end. Reset it to zero 2042 * and the reader will ignore it. 2043 */ 2044 if (tail == BUF_PAGE_SIZE) 2045 tail_page->real_end = 0; 2046 2047 local_sub(length, &tail_page->write); 2048 return; 2049 } 2050 2051 event = __rb_page_index(tail_page, tail); 2052 kmemcheck_annotate_bitfield(event, bitfield); 2053 2054 /* account for padding bytes */ 2055 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes); 2056 2057 /* 2058 * Save the original length to the meta data. 2059 * This will be used by the reader to add lost event 2060 * counter. 2061 */ 2062 tail_page->real_end = tail; 2063 2064 /* 2065 * If this event is bigger than the minimum size, then 2066 * we need to be careful that we don't subtract the 2067 * write counter enough to allow another writer to slip 2068 * in on this page. 2069 * We put in a discarded commit instead, to make sure 2070 * that this space is not used again. 2071 * 2072 * If we are less than the minimum size, we don't need to 2073 * worry about it. 2074 */ 2075 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 2076 /* No room for any events */ 2077 2078 /* Mark the rest of the page with padding */ 2079 rb_event_set_padding(event); 2080 2081 /* Set the write back to the previous setting */ 2082 local_sub(length, &tail_page->write); 2083 return; 2084 } 2085 2086 /* Put in a discarded event */ 2087 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 2088 event->type_len = RINGBUF_TYPE_PADDING; 2089 /* time delta must be non zero */ 2090 event->time_delta = 1; 2091 2092 /* Set write to end of buffer */ 2093 length = (tail + length) - BUF_PAGE_SIZE; 2094 local_sub(length, &tail_page->write); 2095 } 2096 2097 /* 2098 * This is the slow path, force gcc not to inline it. 2099 */ 2100 static noinline struct ring_buffer_event * 2101 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 2102 unsigned long length, unsigned long tail, 2103 struct buffer_page *tail_page, u64 ts) 2104 { 2105 struct buffer_page *commit_page = cpu_buffer->commit_page; 2106 struct ring_buffer *buffer = cpu_buffer->buffer; 2107 struct buffer_page *next_page; 2108 int ret; 2109 2110 next_page = tail_page; 2111 2112 rb_inc_page(cpu_buffer, &next_page); 2113 2114 /* 2115 * If for some reason, we had an interrupt storm that made 2116 * it all the way around the buffer, bail, and warn 2117 * about it. 2118 */ 2119 if (unlikely(next_page == commit_page)) { 2120 local_inc(&cpu_buffer->commit_overrun); 2121 goto out_reset; 2122 } 2123 2124 /* 2125 * This is where the fun begins! 2126 * 2127 * We are fighting against races between a reader that 2128 * could be on another CPU trying to swap its reader 2129 * page with the buffer head. 2130 * 2131 * We are also fighting against interrupts coming in and 2132 * moving the head or tail on us as well. 2133 * 2134 * If the next page is the head page then we have filled 2135 * the buffer, unless the commit page is still on the 2136 * reader page. 2137 */ 2138 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 2139 2140 /* 2141 * If the commit is not on the reader page, then 2142 * move the header page. 2143 */ 2144 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 2145 /* 2146 * If we are not in overwrite mode, 2147 * this is easy, just stop here. 2148 */ 2149 if (!(buffer->flags & RB_FL_OVERWRITE)) 2150 goto out_reset; 2151 2152 ret = rb_handle_head_page(cpu_buffer, 2153 tail_page, 2154 next_page); 2155 if (ret < 0) 2156 goto out_reset; 2157 if (ret) 2158 goto out_again; 2159 } else { 2160 /* 2161 * We need to be careful here too. The 2162 * commit page could still be on the reader 2163 * page. We could have a small buffer, and 2164 * have filled up the buffer with events 2165 * from interrupts and such, and wrapped. 2166 * 2167 * Note, if the tail page is also the on the 2168 * reader_page, we let it move out. 2169 */ 2170 if (unlikely((cpu_buffer->commit_page != 2171 cpu_buffer->tail_page) && 2172 (cpu_buffer->commit_page == 2173 cpu_buffer->reader_page))) { 2174 local_inc(&cpu_buffer->commit_overrun); 2175 goto out_reset; 2176 } 2177 } 2178 } 2179 2180 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 2181 if (ret) { 2182 /* 2183 * Nested commits always have zero deltas, so 2184 * just reread the time stamp 2185 */ 2186 ts = rb_time_stamp(buffer); 2187 next_page->page->time_stamp = ts; 2188 } 2189 2190 out_again: 2191 2192 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2193 2194 /* fail and let the caller try again */ 2195 return ERR_PTR(-EAGAIN); 2196 2197 out_reset: 2198 /* reset write */ 2199 rb_reset_tail(cpu_buffer, tail_page, tail, length); 2200 2201 return NULL; 2202 } 2203 2204 static struct ring_buffer_event * 2205 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 2206 unsigned long length, u64 ts, 2207 u64 delta, int add_timestamp) 2208 { 2209 struct buffer_page *tail_page; 2210 struct ring_buffer_event *event; 2211 unsigned long tail, write; 2212 2213 /* 2214 * If the time delta since the last event is too big to 2215 * hold in the time field of the event, then we append a 2216 * TIME EXTEND event ahead of the data event. 2217 */ 2218 if (unlikely(add_timestamp)) 2219 length += RB_LEN_TIME_EXTEND; 2220 2221 tail_page = cpu_buffer->tail_page; 2222 write = local_add_return(length, &tail_page->write); 2223 2224 /* set write to only the index of the write */ 2225 write &= RB_WRITE_MASK; 2226 tail = write - length; 2227 2228 /* See if we shot pass the end of this buffer page */ 2229 if (unlikely(write > BUF_PAGE_SIZE)) 2230 return rb_move_tail(cpu_buffer, length, tail, 2231 tail_page, ts); 2232 2233 /* We reserved something on the buffer */ 2234 2235 event = __rb_page_index(tail_page, tail); 2236 kmemcheck_annotate_bitfield(event, bitfield); 2237 rb_update_event(cpu_buffer, event, length, add_timestamp, delta); 2238 2239 local_inc(&tail_page->entries); 2240 2241 /* 2242 * If this is the first commit on the page, then update 2243 * its timestamp. 2244 */ 2245 if (!tail) 2246 tail_page->page->time_stamp = ts; 2247 2248 /* account for these added bytes */ 2249 local_add(length, &cpu_buffer->entries_bytes); 2250 2251 return event; 2252 } 2253 2254 static inline int 2255 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 2256 struct ring_buffer_event *event) 2257 { 2258 unsigned long new_index, old_index; 2259 struct buffer_page *bpage; 2260 unsigned long index; 2261 unsigned long addr; 2262 2263 new_index = rb_event_index(event); 2264 old_index = new_index + rb_event_ts_length(event); 2265 addr = (unsigned long)event; 2266 addr &= PAGE_MASK; 2267 2268 bpage = cpu_buffer->tail_page; 2269 2270 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 2271 unsigned long write_mask = 2272 local_read(&bpage->write) & ~RB_WRITE_MASK; 2273 unsigned long event_length = rb_event_length(event); 2274 /* 2275 * This is on the tail page. It is possible that 2276 * a write could come in and move the tail page 2277 * and write to the next page. That is fine 2278 * because we just shorten what is on this page. 2279 */ 2280 old_index += write_mask; 2281 new_index += write_mask; 2282 index = local_cmpxchg(&bpage->write, old_index, new_index); 2283 if (index == old_index) { 2284 /* update counters */ 2285 local_sub(event_length, &cpu_buffer->entries_bytes); 2286 return 1; 2287 } 2288 } 2289 2290 /* could not discard */ 2291 return 0; 2292 } 2293 2294 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2295 { 2296 local_inc(&cpu_buffer->committing); 2297 local_inc(&cpu_buffer->commits); 2298 } 2299 2300 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2301 { 2302 unsigned long commits; 2303 2304 if (RB_WARN_ON(cpu_buffer, 2305 !local_read(&cpu_buffer->committing))) 2306 return; 2307 2308 again: 2309 commits = local_read(&cpu_buffer->commits); 2310 /* synchronize with interrupts */ 2311 barrier(); 2312 if (local_read(&cpu_buffer->committing) == 1) 2313 rb_set_commit_to_write(cpu_buffer); 2314 2315 local_dec(&cpu_buffer->committing); 2316 2317 /* synchronize with interrupts */ 2318 barrier(); 2319 2320 /* 2321 * Need to account for interrupts coming in between the 2322 * updating of the commit page and the clearing of the 2323 * committing counter. 2324 */ 2325 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2326 !local_read(&cpu_buffer->committing)) { 2327 local_inc(&cpu_buffer->committing); 2328 goto again; 2329 } 2330 } 2331 2332 static struct ring_buffer_event * 2333 rb_reserve_next_event(struct ring_buffer *buffer, 2334 struct ring_buffer_per_cpu *cpu_buffer, 2335 unsigned long length) 2336 { 2337 struct ring_buffer_event *event; 2338 u64 ts, delta; 2339 int nr_loops = 0; 2340 int add_timestamp; 2341 u64 diff; 2342 2343 rb_start_commit(cpu_buffer); 2344 2345 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2346 /* 2347 * Due to the ability to swap a cpu buffer from a buffer 2348 * it is possible it was swapped before we committed. 2349 * (committing stops a swap). We check for it here and 2350 * if it happened, we have to fail the write. 2351 */ 2352 barrier(); 2353 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2354 local_dec(&cpu_buffer->committing); 2355 local_dec(&cpu_buffer->commits); 2356 return NULL; 2357 } 2358 #endif 2359 2360 length = rb_calculate_event_length(length); 2361 again: 2362 add_timestamp = 0; 2363 delta = 0; 2364 2365 /* 2366 * We allow for interrupts to reenter here and do a trace. 2367 * If one does, it will cause this original code to loop 2368 * back here. Even with heavy interrupts happening, this 2369 * should only happen a few times in a row. If this happens 2370 * 1000 times in a row, there must be either an interrupt 2371 * storm or we have something buggy. 2372 * Bail! 2373 */ 2374 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2375 goto out_fail; 2376 2377 ts = rb_time_stamp(cpu_buffer->buffer); 2378 diff = ts - cpu_buffer->write_stamp; 2379 2380 /* make sure this diff is calculated here */ 2381 barrier(); 2382 2383 /* Did the write stamp get updated already? */ 2384 if (likely(ts >= cpu_buffer->write_stamp)) { 2385 delta = diff; 2386 if (unlikely(test_time_stamp(delta))) { 2387 int local_clock_stable = 1; 2388 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2389 local_clock_stable = sched_clock_stable; 2390 #endif 2391 WARN_ONCE(delta > (1ULL << 59), 2392 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", 2393 (unsigned long long)delta, 2394 (unsigned long long)ts, 2395 (unsigned long long)cpu_buffer->write_stamp, 2396 local_clock_stable ? "" : 2397 "If you just came from a suspend/resume,\n" 2398 "please switch to the trace global clock:\n" 2399 " echo global > /sys/kernel/debug/tracing/trace_clock\n"); 2400 add_timestamp = 1; 2401 } 2402 } 2403 2404 event = __rb_reserve_next(cpu_buffer, length, ts, 2405 delta, add_timestamp); 2406 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2407 goto again; 2408 2409 if (!event) 2410 goto out_fail; 2411 2412 return event; 2413 2414 out_fail: 2415 rb_end_commit(cpu_buffer); 2416 return NULL; 2417 } 2418 2419 #ifdef CONFIG_TRACING 2420 2421 #define TRACE_RECURSIVE_DEPTH 16 2422 2423 /* Keep this code out of the fast path cache */ 2424 static noinline void trace_recursive_fail(void) 2425 { 2426 /* Disable all tracing before we do anything else */ 2427 tracing_off_permanent(); 2428 2429 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:" 2430 "HC[%lu]:SC[%lu]:NMI[%lu]\n", 2431 trace_recursion_buffer(), 2432 hardirq_count() >> HARDIRQ_SHIFT, 2433 softirq_count() >> SOFTIRQ_SHIFT, 2434 in_nmi()); 2435 2436 WARN_ON_ONCE(1); 2437 } 2438 2439 static inline int trace_recursive_lock(void) 2440 { 2441 trace_recursion_inc(); 2442 2443 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH)) 2444 return 0; 2445 2446 trace_recursive_fail(); 2447 2448 return -1; 2449 } 2450 2451 static inline void trace_recursive_unlock(void) 2452 { 2453 WARN_ON_ONCE(!trace_recursion_buffer()); 2454 2455 trace_recursion_dec(); 2456 } 2457 2458 #else 2459 2460 #define trace_recursive_lock() (0) 2461 #define trace_recursive_unlock() do { } while (0) 2462 2463 #endif 2464 2465 /** 2466 * ring_buffer_lock_reserve - reserve a part of the buffer 2467 * @buffer: the ring buffer to reserve from 2468 * @length: the length of the data to reserve (excluding event header) 2469 * 2470 * Returns a reseverd event on the ring buffer to copy directly to. 2471 * The user of this interface will need to get the body to write into 2472 * and can use the ring_buffer_event_data() interface. 2473 * 2474 * The length is the length of the data needed, not the event length 2475 * which also includes the event header. 2476 * 2477 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2478 * If NULL is returned, then nothing has been allocated or locked. 2479 */ 2480 struct ring_buffer_event * 2481 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2482 { 2483 struct ring_buffer_per_cpu *cpu_buffer; 2484 struct ring_buffer_event *event; 2485 int cpu; 2486 2487 if (ring_buffer_flags != RB_BUFFERS_ON) 2488 return NULL; 2489 2490 /* If we are tracing schedule, we don't want to recurse */ 2491 preempt_disable_notrace(); 2492 2493 if (atomic_read(&buffer->record_disabled)) 2494 goto out_nocheck; 2495 2496 if (trace_recursive_lock()) 2497 goto out_nocheck; 2498 2499 cpu = raw_smp_processor_id(); 2500 2501 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2502 goto out; 2503 2504 cpu_buffer = buffer->buffers[cpu]; 2505 2506 if (atomic_read(&cpu_buffer->record_disabled)) 2507 goto out; 2508 2509 if (length > BUF_MAX_DATA_SIZE) 2510 goto out; 2511 2512 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2513 if (!event) 2514 goto out; 2515 2516 return event; 2517 2518 out: 2519 trace_recursive_unlock(); 2520 2521 out_nocheck: 2522 preempt_enable_notrace(); 2523 return NULL; 2524 } 2525 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2526 2527 static void 2528 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2529 struct ring_buffer_event *event) 2530 { 2531 u64 delta; 2532 2533 /* 2534 * The event first in the commit queue updates the 2535 * time stamp. 2536 */ 2537 if (rb_event_is_commit(cpu_buffer, event)) { 2538 /* 2539 * A commit event that is first on a page 2540 * updates the write timestamp with the page stamp 2541 */ 2542 if (!rb_event_index(event)) 2543 cpu_buffer->write_stamp = 2544 cpu_buffer->commit_page->page->time_stamp; 2545 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) { 2546 delta = event->array[0]; 2547 delta <<= TS_SHIFT; 2548 delta += event->time_delta; 2549 cpu_buffer->write_stamp += delta; 2550 } else 2551 cpu_buffer->write_stamp += event->time_delta; 2552 } 2553 } 2554 2555 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2556 struct ring_buffer_event *event) 2557 { 2558 local_inc(&cpu_buffer->entries); 2559 rb_update_write_stamp(cpu_buffer, event); 2560 rb_end_commit(cpu_buffer); 2561 } 2562 2563 /** 2564 * ring_buffer_unlock_commit - commit a reserved 2565 * @buffer: The buffer to commit to 2566 * @event: The event pointer to commit. 2567 * 2568 * This commits the data to the ring buffer, and releases any locks held. 2569 * 2570 * Must be paired with ring_buffer_lock_reserve. 2571 */ 2572 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2573 struct ring_buffer_event *event) 2574 { 2575 struct ring_buffer_per_cpu *cpu_buffer; 2576 int cpu = raw_smp_processor_id(); 2577 2578 cpu_buffer = buffer->buffers[cpu]; 2579 2580 rb_commit(cpu_buffer, event); 2581 2582 trace_recursive_unlock(); 2583 2584 preempt_enable_notrace(); 2585 2586 return 0; 2587 } 2588 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2589 2590 static inline void rb_event_discard(struct ring_buffer_event *event) 2591 { 2592 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) 2593 event = skip_time_extend(event); 2594 2595 /* array[0] holds the actual length for the discarded event */ 2596 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2597 event->type_len = RINGBUF_TYPE_PADDING; 2598 /* time delta must be non zero */ 2599 if (!event->time_delta) 2600 event->time_delta = 1; 2601 } 2602 2603 /* 2604 * Decrement the entries to the page that an event is on. 2605 * The event does not even need to exist, only the pointer 2606 * to the page it is on. This may only be called before the commit 2607 * takes place. 2608 */ 2609 static inline void 2610 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2611 struct ring_buffer_event *event) 2612 { 2613 unsigned long addr = (unsigned long)event; 2614 struct buffer_page *bpage = cpu_buffer->commit_page; 2615 struct buffer_page *start; 2616 2617 addr &= PAGE_MASK; 2618 2619 /* Do the likely case first */ 2620 if (likely(bpage->page == (void *)addr)) { 2621 local_dec(&bpage->entries); 2622 return; 2623 } 2624 2625 /* 2626 * Because the commit page may be on the reader page we 2627 * start with the next page and check the end loop there. 2628 */ 2629 rb_inc_page(cpu_buffer, &bpage); 2630 start = bpage; 2631 do { 2632 if (bpage->page == (void *)addr) { 2633 local_dec(&bpage->entries); 2634 return; 2635 } 2636 rb_inc_page(cpu_buffer, &bpage); 2637 } while (bpage != start); 2638 2639 /* commit not part of this buffer?? */ 2640 RB_WARN_ON(cpu_buffer, 1); 2641 } 2642 2643 /** 2644 * ring_buffer_commit_discard - discard an event that has not been committed 2645 * @buffer: the ring buffer 2646 * @event: non committed event to discard 2647 * 2648 * Sometimes an event that is in the ring buffer needs to be ignored. 2649 * This function lets the user discard an event in the ring buffer 2650 * and then that event will not be read later. 2651 * 2652 * This function only works if it is called before the the item has been 2653 * committed. It will try to free the event from the ring buffer 2654 * if another event has not been added behind it. 2655 * 2656 * If another event has been added behind it, it will set the event 2657 * up as discarded, and perform the commit. 2658 * 2659 * If this function is called, do not call ring_buffer_unlock_commit on 2660 * the event. 2661 */ 2662 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2663 struct ring_buffer_event *event) 2664 { 2665 struct ring_buffer_per_cpu *cpu_buffer; 2666 int cpu; 2667 2668 /* The event is discarded regardless */ 2669 rb_event_discard(event); 2670 2671 cpu = smp_processor_id(); 2672 cpu_buffer = buffer->buffers[cpu]; 2673 2674 /* 2675 * This must only be called if the event has not been 2676 * committed yet. Thus we can assume that preemption 2677 * is still disabled. 2678 */ 2679 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2680 2681 rb_decrement_entry(cpu_buffer, event); 2682 if (rb_try_to_discard(cpu_buffer, event)) 2683 goto out; 2684 2685 /* 2686 * The commit is still visible by the reader, so we 2687 * must still update the timestamp. 2688 */ 2689 rb_update_write_stamp(cpu_buffer, event); 2690 out: 2691 rb_end_commit(cpu_buffer); 2692 2693 trace_recursive_unlock(); 2694 2695 preempt_enable_notrace(); 2696 2697 } 2698 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2699 2700 /** 2701 * ring_buffer_write - write data to the buffer without reserving 2702 * @buffer: The ring buffer to write to. 2703 * @length: The length of the data being written (excluding the event header) 2704 * @data: The data to write to the buffer. 2705 * 2706 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2707 * one function. If you already have the data to write to the buffer, it 2708 * may be easier to simply call this function. 2709 * 2710 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2711 * and not the length of the event which would hold the header. 2712 */ 2713 int ring_buffer_write(struct ring_buffer *buffer, 2714 unsigned long length, 2715 void *data) 2716 { 2717 struct ring_buffer_per_cpu *cpu_buffer; 2718 struct ring_buffer_event *event; 2719 void *body; 2720 int ret = -EBUSY; 2721 int cpu; 2722 2723 if (ring_buffer_flags != RB_BUFFERS_ON) 2724 return -EBUSY; 2725 2726 preempt_disable_notrace(); 2727 2728 if (atomic_read(&buffer->record_disabled)) 2729 goto out; 2730 2731 cpu = raw_smp_processor_id(); 2732 2733 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2734 goto out; 2735 2736 cpu_buffer = buffer->buffers[cpu]; 2737 2738 if (atomic_read(&cpu_buffer->record_disabled)) 2739 goto out; 2740 2741 if (length > BUF_MAX_DATA_SIZE) 2742 goto out; 2743 2744 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2745 if (!event) 2746 goto out; 2747 2748 body = rb_event_data(event); 2749 2750 memcpy(body, data, length); 2751 2752 rb_commit(cpu_buffer, event); 2753 2754 ret = 0; 2755 out: 2756 preempt_enable_notrace(); 2757 2758 return ret; 2759 } 2760 EXPORT_SYMBOL_GPL(ring_buffer_write); 2761 2762 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2763 { 2764 struct buffer_page *reader = cpu_buffer->reader_page; 2765 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2766 struct buffer_page *commit = cpu_buffer->commit_page; 2767 2768 /* In case of error, head will be NULL */ 2769 if (unlikely(!head)) 2770 return 1; 2771 2772 return reader->read == rb_page_commit(reader) && 2773 (commit == reader || 2774 (commit == head && 2775 head->read == rb_page_commit(commit))); 2776 } 2777 2778 /** 2779 * ring_buffer_record_disable - stop all writes into the buffer 2780 * @buffer: The ring buffer to stop writes to. 2781 * 2782 * This prevents all writes to the buffer. Any attempt to write 2783 * to the buffer after this will fail and return NULL. 2784 * 2785 * The caller should call synchronize_sched() after this. 2786 */ 2787 void ring_buffer_record_disable(struct ring_buffer *buffer) 2788 { 2789 atomic_inc(&buffer->record_disabled); 2790 } 2791 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 2792 2793 /** 2794 * ring_buffer_record_enable - enable writes to the buffer 2795 * @buffer: The ring buffer to enable writes 2796 * 2797 * Note, multiple disables will need the same number of enables 2798 * to truly enable the writing (much like preempt_disable). 2799 */ 2800 void ring_buffer_record_enable(struct ring_buffer *buffer) 2801 { 2802 atomic_dec(&buffer->record_disabled); 2803 } 2804 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 2805 2806 /** 2807 * ring_buffer_record_off - stop all writes into the buffer 2808 * @buffer: The ring buffer to stop writes to. 2809 * 2810 * This prevents all writes to the buffer. Any attempt to write 2811 * to the buffer after this will fail and return NULL. 2812 * 2813 * This is different than ring_buffer_record_disable() as 2814 * it works like an on/off switch, where as the disable() verison 2815 * must be paired with a enable(). 2816 */ 2817 void ring_buffer_record_off(struct ring_buffer *buffer) 2818 { 2819 unsigned int rd; 2820 unsigned int new_rd; 2821 2822 do { 2823 rd = atomic_read(&buffer->record_disabled); 2824 new_rd = rd | RB_BUFFER_OFF; 2825 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 2826 } 2827 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 2828 2829 /** 2830 * ring_buffer_record_on - restart writes into the buffer 2831 * @buffer: The ring buffer to start writes to. 2832 * 2833 * This enables all writes to the buffer that was disabled by 2834 * ring_buffer_record_off(). 2835 * 2836 * This is different than ring_buffer_record_enable() as 2837 * it works like an on/off switch, where as the enable() verison 2838 * must be paired with a disable(). 2839 */ 2840 void ring_buffer_record_on(struct ring_buffer *buffer) 2841 { 2842 unsigned int rd; 2843 unsigned int new_rd; 2844 2845 do { 2846 rd = atomic_read(&buffer->record_disabled); 2847 new_rd = rd & ~RB_BUFFER_OFF; 2848 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd); 2849 } 2850 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 2851 2852 /** 2853 * ring_buffer_record_is_on - return true if the ring buffer can write 2854 * @buffer: The ring buffer to see if write is enabled 2855 * 2856 * Returns true if the ring buffer is in a state that it accepts writes. 2857 */ 2858 int ring_buffer_record_is_on(struct ring_buffer *buffer) 2859 { 2860 return !atomic_read(&buffer->record_disabled); 2861 } 2862 2863 /** 2864 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 2865 * @buffer: The ring buffer to stop writes to. 2866 * @cpu: The CPU buffer to stop 2867 * 2868 * This prevents all writes to the buffer. Any attempt to write 2869 * to the buffer after this will fail and return NULL. 2870 * 2871 * The caller should call synchronize_sched() after this. 2872 */ 2873 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 2874 { 2875 struct ring_buffer_per_cpu *cpu_buffer; 2876 2877 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2878 return; 2879 2880 cpu_buffer = buffer->buffers[cpu]; 2881 atomic_inc(&cpu_buffer->record_disabled); 2882 } 2883 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 2884 2885 /** 2886 * ring_buffer_record_enable_cpu - enable writes to the buffer 2887 * @buffer: The ring buffer to enable writes 2888 * @cpu: The CPU to enable. 2889 * 2890 * Note, multiple disables will need the same number of enables 2891 * to truly enable the writing (much like preempt_disable). 2892 */ 2893 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 2894 { 2895 struct ring_buffer_per_cpu *cpu_buffer; 2896 2897 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2898 return; 2899 2900 cpu_buffer = buffer->buffers[cpu]; 2901 atomic_dec(&cpu_buffer->record_disabled); 2902 } 2903 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 2904 2905 /* 2906 * The total entries in the ring buffer is the running counter 2907 * of entries entered into the ring buffer, minus the sum of 2908 * the entries read from the ring buffer and the number of 2909 * entries that were overwritten. 2910 */ 2911 static inline unsigned long 2912 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 2913 { 2914 return local_read(&cpu_buffer->entries) - 2915 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 2916 } 2917 2918 /** 2919 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 2920 * @buffer: The ring buffer 2921 * @cpu: The per CPU buffer to read from. 2922 */ 2923 unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu) 2924 { 2925 unsigned long flags; 2926 struct ring_buffer_per_cpu *cpu_buffer; 2927 struct buffer_page *bpage; 2928 unsigned long ret; 2929 2930 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2931 return 0; 2932 2933 cpu_buffer = buffer->buffers[cpu]; 2934 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2935 /* 2936 * if the tail is on reader_page, oldest time stamp is on the reader 2937 * page 2938 */ 2939 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 2940 bpage = cpu_buffer->reader_page; 2941 else 2942 bpage = rb_set_head_page(cpu_buffer); 2943 ret = bpage->page->time_stamp; 2944 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2945 2946 return ret; 2947 } 2948 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 2949 2950 /** 2951 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer 2952 * @buffer: The ring buffer 2953 * @cpu: The per CPU buffer to read from. 2954 */ 2955 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu) 2956 { 2957 struct ring_buffer_per_cpu *cpu_buffer; 2958 unsigned long ret; 2959 2960 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2961 return 0; 2962 2963 cpu_buffer = buffer->buffers[cpu]; 2964 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 2965 2966 return ret; 2967 } 2968 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 2969 2970 /** 2971 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 2972 * @buffer: The ring buffer 2973 * @cpu: The per CPU buffer to get the entries from. 2974 */ 2975 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 2976 { 2977 struct ring_buffer_per_cpu *cpu_buffer; 2978 2979 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2980 return 0; 2981 2982 cpu_buffer = buffer->buffers[cpu]; 2983 2984 return rb_num_of_entries(cpu_buffer); 2985 } 2986 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 2987 2988 /** 2989 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer 2990 * @buffer: The ring buffer 2991 * @cpu: The per CPU buffer to get the number of overruns from 2992 */ 2993 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 2994 { 2995 struct ring_buffer_per_cpu *cpu_buffer; 2996 unsigned long ret; 2997 2998 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2999 return 0; 3000 3001 cpu_buffer = buffer->buffers[cpu]; 3002 ret = local_read(&cpu_buffer->overrun); 3003 3004 return ret; 3005 } 3006 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 3007 3008 /** 3009 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits 3010 * @buffer: The ring buffer 3011 * @cpu: The per CPU buffer to get the number of overruns from 3012 */ 3013 unsigned long 3014 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 3015 { 3016 struct ring_buffer_per_cpu *cpu_buffer; 3017 unsigned long ret; 3018 3019 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3020 return 0; 3021 3022 cpu_buffer = buffer->buffers[cpu]; 3023 ret = local_read(&cpu_buffer->commit_overrun); 3024 3025 return ret; 3026 } 3027 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 3028 3029 /** 3030 * ring_buffer_entries - get the number of entries in a buffer 3031 * @buffer: The ring buffer 3032 * 3033 * Returns the total number of entries in the ring buffer 3034 * (all CPU entries) 3035 */ 3036 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 3037 { 3038 struct ring_buffer_per_cpu *cpu_buffer; 3039 unsigned long entries = 0; 3040 int cpu; 3041 3042 /* if you care about this being correct, lock the buffer */ 3043 for_each_buffer_cpu(buffer, cpu) { 3044 cpu_buffer = buffer->buffers[cpu]; 3045 entries += rb_num_of_entries(cpu_buffer); 3046 } 3047 3048 return entries; 3049 } 3050 EXPORT_SYMBOL_GPL(ring_buffer_entries); 3051 3052 /** 3053 * ring_buffer_overruns - get the number of overruns in buffer 3054 * @buffer: The ring buffer 3055 * 3056 * Returns the total number of overruns in the ring buffer 3057 * (all CPU entries) 3058 */ 3059 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 3060 { 3061 struct ring_buffer_per_cpu *cpu_buffer; 3062 unsigned long overruns = 0; 3063 int cpu; 3064 3065 /* if you care about this being correct, lock the buffer */ 3066 for_each_buffer_cpu(buffer, cpu) { 3067 cpu_buffer = buffer->buffers[cpu]; 3068 overruns += local_read(&cpu_buffer->overrun); 3069 } 3070 3071 return overruns; 3072 } 3073 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 3074 3075 static void rb_iter_reset(struct ring_buffer_iter *iter) 3076 { 3077 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3078 3079 /* Iterator usage is expected to have record disabled */ 3080 if (list_empty(&cpu_buffer->reader_page->list)) { 3081 iter->head_page = rb_set_head_page(cpu_buffer); 3082 if (unlikely(!iter->head_page)) 3083 return; 3084 iter->head = iter->head_page->read; 3085 } else { 3086 iter->head_page = cpu_buffer->reader_page; 3087 iter->head = cpu_buffer->reader_page->read; 3088 } 3089 if (iter->head) 3090 iter->read_stamp = cpu_buffer->read_stamp; 3091 else 3092 iter->read_stamp = iter->head_page->page->time_stamp; 3093 iter->cache_reader_page = cpu_buffer->reader_page; 3094 iter->cache_read = cpu_buffer->read; 3095 } 3096 3097 /** 3098 * ring_buffer_iter_reset - reset an iterator 3099 * @iter: The iterator to reset 3100 * 3101 * Resets the iterator, so that it will start from the beginning 3102 * again. 3103 */ 3104 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 3105 { 3106 struct ring_buffer_per_cpu *cpu_buffer; 3107 unsigned long flags; 3108 3109 if (!iter) 3110 return; 3111 3112 cpu_buffer = iter->cpu_buffer; 3113 3114 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3115 rb_iter_reset(iter); 3116 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3117 } 3118 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 3119 3120 /** 3121 * ring_buffer_iter_empty - check if an iterator has no more to read 3122 * @iter: The iterator to check 3123 */ 3124 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 3125 { 3126 struct ring_buffer_per_cpu *cpu_buffer; 3127 3128 cpu_buffer = iter->cpu_buffer; 3129 3130 return iter->head_page == cpu_buffer->commit_page && 3131 iter->head == rb_commit_index(cpu_buffer); 3132 } 3133 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 3134 3135 static void 3136 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3137 struct ring_buffer_event *event) 3138 { 3139 u64 delta; 3140 3141 switch (event->type_len) { 3142 case RINGBUF_TYPE_PADDING: 3143 return; 3144 3145 case RINGBUF_TYPE_TIME_EXTEND: 3146 delta = event->array[0]; 3147 delta <<= TS_SHIFT; 3148 delta += event->time_delta; 3149 cpu_buffer->read_stamp += delta; 3150 return; 3151 3152 case RINGBUF_TYPE_TIME_STAMP: 3153 /* FIXME: not implemented */ 3154 return; 3155 3156 case RINGBUF_TYPE_DATA: 3157 cpu_buffer->read_stamp += event->time_delta; 3158 return; 3159 3160 default: 3161 BUG(); 3162 } 3163 return; 3164 } 3165 3166 static void 3167 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 3168 struct ring_buffer_event *event) 3169 { 3170 u64 delta; 3171 3172 switch (event->type_len) { 3173 case RINGBUF_TYPE_PADDING: 3174 return; 3175 3176 case RINGBUF_TYPE_TIME_EXTEND: 3177 delta = event->array[0]; 3178 delta <<= TS_SHIFT; 3179 delta += event->time_delta; 3180 iter->read_stamp += delta; 3181 return; 3182 3183 case RINGBUF_TYPE_TIME_STAMP: 3184 /* FIXME: not implemented */ 3185 return; 3186 3187 case RINGBUF_TYPE_DATA: 3188 iter->read_stamp += event->time_delta; 3189 return; 3190 3191 default: 3192 BUG(); 3193 } 3194 return; 3195 } 3196 3197 static struct buffer_page * 3198 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 3199 { 3200 struct buffer_page *reader = NULL; 3201 unsigned long overwrite; 3202 unsigned long flags; 3203 int nr_loops = 0; 3204 int ret; 3205 3206 local_irq_save(flags); 3207 arch_spin_lock(&cpu_buffer->lock); 3208 3209 again: 3210 /* 3211 * This should normally only loop twice. But because the 3212 * start of the reader inserts an empty page, it causes 3213 * a case where we will loop three times. There should be no 3214 * reason to loop four times (that I know of). 3215 */ 3216 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 3217 reader = NULL; 3218 goto out; 3219 } 3220 3221 reader = cpu_buffer->reader_page; 3222 3223 /* If there's more to read, return this page */ 3224 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 3225 goto out; 3226 3227 /* Never should we have an index greater than the size */ 3228 if (RB_WARN_ON(cpu_buffer, 3229 cpu_buffer->reader_page->read > rb_page_size(reader))) 3230 goto out; 3231 3232 /* check if we caught up to the tail */ 3233 reader = NULL; 3234 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 3235 goto out; 3236 3237 /* 3238 * Reset the reader page to size zero. 3239 */ 3240 local_set(&cpu_buffer->reader_page->write, 0); 3241 local_set(&cpu_buffer->reader_page->entries, 0); 3242 local_set(&cpu_buffer->reader_page->page->commit, 0); 3243 cpu_buffer->reader_page->real_end = 0; 3244 3245 spin: 3246 /* 3247 * Splice the empty reader page into the list around the head. 3248 */ 3249 reader = rb_set_head_page(cpu_buffer); 3250 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 3251 cpu_buffer->reader_page->list.prev = reader->list.prev; 3252 3253 /* 3254 * cpu_buffer->pages just needs to point to the buffer, it 3255 * has no specific buffer page to point to. Lets move it out 3256 * of our way so we don't accidentally swap it. 3257 */ 3258 cpu_buffer->pages = reader->list.prev; 3259 3260 /* The reader page will be pointing to the new head */ 3261 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 3262 3263 /* 3264 * We want to make sure we read the overruns after we set up our 3265 * pointers to the next object. The writer side does a 3266 * cmpxchg to cross pages which acts as the mb on the writer 3267 * side. Note, the reader will constantly fail the swap 3268 * while the writer is updating the pointers, so this 3269 * guarantees that the overwrite recorded here is the one we 3270 * want to compare with the last_overrun. 3271 */ 3272 smp_mb(); 3273 overwrite = local_read(&(cpu_buffer->overrun)); 3274 3275 /* 3276 * Here's the tricky part. 3277 * 3278 * We need to move the pointer past the header page. 3279 * But we can only do that if a writer is not currently 3280 * moving it. The page before the header page has the 3281 * flag bit '1' set if it is pointing to the page we want. 3282 * but if the writer is in the process of moving it 3283 * than it will be '2' or already moved '0'. 3284 */ 3285 3286 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 3287 3288 /* 3289 * If we did not convert it, then we must try again. 3290 */ 3291 if (!ret) 3292 goto spin; 3293 3294 /* 3295 * Yeah! We succeeded in replacing the page. 3296 * 3297 * Now make the new head point back to the reader page. 3298 */ 3299 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 3300 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 3301 3302 /* Finally update the reader page to the new head */ 3303 cpu_buffer->reader_page = reader; 3304 rb_reset_reader_page(cpu_buffer); 3305 3306 if (overwrite != cpu_buffer->last_overrun) { 3307 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 3308 cpu_buffer->last_overrun = overwrite; 3309 } 3310 3311 goto again; 3312 3313 out: 3314 arch_spin_unlock(&cpu_buffer->lock); 3315 local_irq_restore(flags); 3316 3317 return reader; 3318 } 3319 3320 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 3321 { 3322 struct ring_buffer_event *event; 3323 struct buffer_page *reader; 3324 unsigned length; 3325 3326 reader = rb_get_reader_page(cpu_buffer); 3327 3328 /* This function should not be called when buffer is empty */ 3329 if (RB_WARN_ON(cpu_buffer, !reader)) 3330 return; 3331 3332 event = rb_reader_event(cpu_buffer); 3333 3334 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 3335 cpu_buffer->read++; 3336 3337 rb_update_read_stamp(cpu_buffer, event); 3338 3339 length = rb_event_length(event); 3340 cpu_buffer->reader_page->read += length; 3341 } 3342 3343 static void rb_advance_iter(struct ring_buffer_iter *iter) 3344 { 3345 struct ring_buffer_per_cpu *cpu_buffer; 3346 struct ring_buffer_event *event; 3347 unsigned length; 3348 3349 cpu_buffer = iter->cpu_buffer; 3350 3351 /* 3352 * Check if we are at the end of the buffer. 3353 */ 3354 if (iter->head >= rb_page_size(iter->head_page)) { 3355 /* discarded commits can make the page empty */ 3356 if (iter->head_page == cpu_buffer->commit_page) 3357 return; 3358 rb_inc_iter(iter); 3359 return; 3360 } 3361 3362 event = rb_iter_head_event(iter); 3363 3364 length = rb_event_length(event); 3365 3366 /* 3367 * This should not be called to advance the header if we are 3368 * at the tail of the buffer. 3369 */ 3370 if (RB_WARN_ON(cpu_buffer, 3371 (iter->head_page == cpu_buffer->commit_page) && 3372 (iter->head + length > rb_commit_index(cpu_buffer)))) 3373 return; 3374 3375 rb_update_iter_read_stamp(iter, event); 3376 3377 iter->head += length; 3378 3379 /* check for end of page padding */ 3380 if ((iter->head >= rb_page_size(iter->head_page)) && 3381 (iter->head_page != cpu_buffer->commit_page)) 3382 rb_advance_iter(iter); 3383 } 3384 3385 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 3386 { 3387 return cpu_buffer->lost_events; 3388 } 3389 3390 static struct ring_buffer_event * 3391 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 3392 unsigned long *lost_events) 3393 { 3394 struct ring_buffer_event *event; 3395 struct buffer_page *reader; 3396 int nr_loops = 0; 3397 3398 again: 3399 /* 3400 * We repeat when a time extend is encountered. 3401 * Since the time extend is always attached to a data event, 3402 * we should never loop more than once. 3403 * (We never hit the following condition more than twice). 3404 */ 3405 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3406 return NULL; 3407 3408 reader = rb_get_reader_page(cpu_buffer); 3409 if (!reader) 3410 return NULL; 3411 3412 event = rb_reader_event(cpu_buffer); 3413 3414 switch (event->type_len) { 3415 case RINGBUF_TYPE_PADDING: 3416 if (rb_null_event(event)) 3417 RB_WARN_ON(cpu_buffer, 1); 3418 /* 3419 * Because the writer could be discarding every 3420 * event it creates (which would probably be bad) 3421 * if we were to go back to "again" then we may never 3422 * catch up, and will trigger the warn on, or lock 3423 * the box. Return the padding, and we will release 3424 * the current locks, and try again. 3425 */ 3426 return event; 3427 3428 case RINGBUF_TYPE_TIME_EXTEND: 3429 /* Internal data, OK to advance */ 3430 rb_advance_reader(cpu_buffer); 3431 goto again; 3432 3433 case RINGBUF_TYPE_TIME_STAMP: 3434 /* FIXME: not implemented */ 3435 rb_advance_reader(cpu_buffer); 3436 goto again; 3437 3438 case RINGBUF_TYPE_DATA: 3439 if (ts) { 3440 *ts = cpu_buffer->read_stamp + event->time_delta; 3441 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3442 cpu_buffer->cpu, ts); 3443 } 3444 if (lost_events) 3445 *lost_events = rb_lost_events(cpu_buffer); 3446 return event; 3447 3448 default: 3449 BUG(); 3450 } 3451 3452 return NULL; 3453 } 3454 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3455 3456 static struct ring_buffer_event * 3457 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3458 { 3459 struct ring_buffer *buffer; 3460 struct ring_buffer_per_cpu *cpu_buffer; 3461 struct ring_buffer_event *event; 3462 int nr_loops = 0; 3463 3464 cpu_buffer = iter->cpu_buffer; 3465 buffer = cpu_buffer->buffer; 3466 3467 /* 3468 * Check if someone performed a consuming read to 3469 * the buffer. A consuming read invalidates the iterator 3470 * and we need to reset the iterator in this case. 3471 */ 3472 if (unlikely(iter->cache_read != cpu_buffer->read || 3473 iter->cache_reader_page != cpu_buffer->reader_page)) 3474 rb_iter_reset(iter); 3475 3476 again: 3477 if (ring_buffer_iter_empty(iter)) 3478 return NULL; 3479 3480 /* 3481 * We repeat when a time extend is encountered. 3482 * Since the time extend is always attached to a data event, 3483 * we should never loop more than once. 3484 * (We never hit the following condition more than twice). 3485 */ 3486 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 3487 return NULL; 3488 3489 if (rb_per_cpu_empty(cpu_buffer)) 3490 return NULL; 3491 3492 if (iter->head >= local_read(&iter->head_page->page->commit)) { 3493 rb_inc_iter(iter); 3494 goto again; 3495 } 3496 3497 event = rb_iter_head_event(iter); 3498 3499 switch (event->type_len) { 3500 case RINGBUF_TYPE_PADDING: 3501 if (rb_null_event(event)) { 3502 rb_inc_iter(iter); 3503 goto again; 3504 } 3505 rb_advance_iter(iter); 3506 return event; 3507 3508 case RINGBUF_TYPE_TIME_EXTEND: 3509 /* Internal data, OK to advance */ 3510 rb_advance_iter(iter); 3511 goto again; 3512 3513 case RINGBUF_TYPE_TIME_STAMP: 3514 /* FIXME: not implemented */ 3515 rb_advance_iter(iter); 3516 goto again; 3517 3518 case RINGBUF_TYPE_DATA: 3519 if (ts) { 3520 *ts = iter->read_stamp + event->time_delta; 3521 ring_buffer_normalize_time_stamp(buffer, 3522 cpu_buffer->cpu, ts); 3523 } 3524 return event; 3525 3526 default: 3527 BUG(); 3528 } 3529 3530 return NULL; 3531 } 3532 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3533 3534 static inline int rb_ok_to_lock(void) 3535 { 3536 /* 3537 * If an NMI die dumps out the content of the ring buffer 3538 * do not grab locks. We also permanently disable the ring 3539 * buffer too. A one time deal is all you get from reading 3540 * the ring buffer from an NMI. 3541 */ 3542 if (likely(!in_nmi())) 3543 return 1; 3544 3545 tracing_off_permanent(); 3546 return 0; 3547 } 3548 3549 /** 3550 * ring_buffer_peek - peek at the next event to be read 3551 * @buffer: The ring buffer to read 3552 * @cpu: The cpu to peak at 3553 * @ts: The timestamp counter of this event. 3554 * @lost_events: a variable to store if events were lost (may be NULL) 3555 * 3556 * This will return the event that will be read next, but does 3557 * not consume the data. 3558 */ 3559 struct ring_buffer_event * 3560 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts, 3561 unsigned long *lost_events) 3562 { 3563 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3564 struct ring_buffer_event *event; 3565 unsigned long flags; 3566 int dolock; 3567 3568 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3569 return NULL; 3570 3571 dolock = rb_ok_to_lock(); 3572 again: 3573 local_irq_save(flags); 3574 if (dolock) 3575 raw_spin_lock(&cpu_buffer->reader_lock); 3576 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3577 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3578 rb_advance_reader(cpu_buffer); 3579 if (dolock) 3580 raw_spin_unlock(&cpu_buffer->reader_lock); 3581 local_irq_restore(flags); 3582 3583 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3584 goto again; 3585 3586 return event; 3587 } 3588 3589 /** 3590 * ring_buffer_iter_peek - peek at the next event to be read 3591 * @iter: The ring buffer iterator 3592 * @ts: The timestamp counter of this event. 3593 * 3594 * This will return the event that will be read next, but does 3595 * not increment the iterator. 3596 */ 3597 struct ring_buffer_event * 3598 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3599 { 3600 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3601 struct ring_buffer_event *event; 3602 unsigned long flags; 3603 3604 again: 3605 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3606 event = rb_iter_peek(iter, ts); 3607 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3608 3609 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3610 goto again; 3611 3612 return event; 3613 } 3614 3615 /** 3616 * ring_buffer_consume - return an event and consume it 3617 * @buffer: The ring buffer to get the next event from 3618 * @cpu: the cpu to read the buffer from 3619 * @ts: a variable to store the timestamp (may be NULL) 3620 * @lost_events: a variable to store if events were lost (may be NULL) 3621 * 3622 * Returns the next event in the ring buffer, and that event is consumed. 3623 * Meaning, that sequential reads will keep returning a different event, 3624 * and eventually empty the ring buffer if the producer is slower. 3625 */ 3626 struct ring_buffer_event * 3627 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts, 3628 unsigned long *lost_events) 3629 { 3630 struct ring_buffer_per_cpu *cpu_buffer; 3631 struct ring_buffer_event *event = NULL; 3632 unsigned long flags; 3633 int dolock; 3634 3635 dolock = rb_ok_to_lock(); 3636 3637 again: 3638 /* might be called in atomic */ 3639 preempt_disable(); 3640 3641 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3642 goto out; 3643 3644 cpu_buffer = buffer->buffers[cpu]; 3645 local_irq_save(flags); 3646 if (dolock) 3647 raw_spin_lock(&cpu_buffer->reader_lock); 3648 3649 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 3650 if (event) { 3651 cpu_buffer->lost_events = 0; 3652 rb_advance_reader(cpu_buffer); 3653 } 3654 3655 if (dolock) 3656 raw_spin_unlock(&cpu_buffer->reader_lock); 3657 local_irq_restore(flags); 3658 3659 out: 3660 preempt_enable(); 3661 3662 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3663 goto again; 3664 3665 return event; 3666 } 3667 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3668 3669 /** 3670 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 3671 * @buffer: The ring buffer to read from 3672 * @cpu: The cpu buffer to iterate over 3673 * 3674 * This performs the initial preparations necessary to iterate 3675 * through the buffer. Memory is allocated, buffer recording 3676 * is disabled, and the iterator pointer is returned to the caller. 3677 * 3678 * Disabling buffer recordng prevents the reading from being 3679 * corrupted. This is not a consuming read, so a producer is not 3680 * expected. 3681 * 3682 * After a sequence of ring_buffer_read_prepare calls, the user is 3683 * expected to make at least one call to ring_buffer_prepare_sync. 3684 * Afterwards, ring_buffer_read_start is invoked to get things going 3685 * for real. 3686 * 3687 * This overall must be paired with ring_buffer_finish. 3688 */ 3689 struct ring_buffer_iter * 3690 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu) 3691 { 3692 struct ring_buffer_per_cpu *cpu_buffer; 3693 struct ring_buffer_iter *iter; 3694 3695 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3696 return NULL; 3697 3698 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3699 if (!iter) 3700 return NULL; 3701 3702 cpu_buffer = buffer->buffers[cpu]; 3703 3704 iter->cpu_buffer = cpu_buffer; 3705 3706 atomic_inc(&buffer->resize_disabled); 3707 atomic_inc(&cpu_buffer->record_disabled); 3708 3709 return iter; 3710 } 3711 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 3712 3713 /** 3714 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 3715 * 3716 * All previously invoked ring_buffer_read_prepare calls to prepare 3717 * iterators will be synchronized. Afterwards, read_buffer_read_start 3718 * calls on those iterators are allowed. 3719 */ 3720 void 3721 ring_buffer_read_prepare_sync(void) 3722 { 3723 synchronize_sched(); 3724 } 3725 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 3726 3727 /** 3728 * ring_buffer_read_start - start a non consuming read of the buffer 3729 * @iter: The iterator returned by ring_buffer_read_prepare 3730 * 3731 * This finalizes the startup of an iteration through the buffer. 3732 * The iterator comes from a call to ring_buffer_read_prepare and 3733 * an intervening ring_buffer_read_prepare_sync must have been 3734 * performed. 3735 * 3736 * Must be paired with ring_buffer_finish. 3737 */ 3738 void 3739 ring_buffer_read_start(struct ring_buffer_iter *iter) 3740 { 3741 struct ring_buffer_per_cpu *cpu_buffer; 3742 unsigned long flags; 3743 3744 if (!iter) 3745 return; 3746 3747 cpu_buffer = iter->cpu_buffer; 3748 3749 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3750 arch_spin_lock(&cpu_buffer->lock); 3751 rb_iter_reset(iter); 3752 arch_spin_unlock(&cpu_buffer->lock); 3753 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3754 } 3755 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 3756 3757 /** 3758 * ring_buffer_finish - finish reading the iterator of the buffer 3759 * @iter: The iterator retrieved by ring_buffer_start 3760 * 3761 * This re-enables the recording to the buffer, and frees the 3762 * iterator. 3763 */ 3764 void 3765 ring_buffer_read_finish(struct ring_buffer_iter *iter) 3766 { 3767 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3768 3769 /* 3770 * Ring buffer is disabled from recording, here's a good place 3771 * to check the integrity of the ring buffer. 3772 */ 3773 rb_check_pages(cpu_buffer); 3774 3775 atomic_dec(&cpu_buffer->record_disabled); 3776 atomic_dec(&cpu_buffer->buffer->resize_disabled); 3777 kfree(iter); 3778 } 3779 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 3780 3781 /** 3782 * ring_buffer_read - read the next item in the ring buffer by the iterator 3783 * @iter: The ring buffer iterator 3784 * @ts: The time stamp of the event read. 3785 * 3786 * This reads the next event in the ring buffer and increments the iterator. 3787 */ 3788 struct ring_buffer_event * 3789 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 3790 { 3791 struct ring_buffer_event *event; 3792 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3793 unsigned long flags; 3794 3795 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3796 again: 3797 event = rb_iter_peek(iter, ts); 3798 if (!event) 3799 goto out; 3800 3801 if (event->type_len == RINGBUF_TYPE_PADDING) 3802 goto again; 3803 3804 rb_advance_iter(iter); 3805 out: 3806 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3807 3808 return event; 3809 } 3810 EXPORT_SYMBOL_GPL(ring_buffer_read); 3811 3812 /** 3813 * ring_buffer_size - return the size of the ring buffer (in bytes) 3814 * @buffer: The ring buffer. 3815 */ 3816 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu) 3817 { 3818 /* 3819 * Earlier, this method returned 3820 * BUF_PAGE_SIZE * buffer->nr_pages 3821 * Since the nr_pages field is now removed, we have converted this to 3822 * return the per cpu buffer value. 3823 */ 3824 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3825 return 0; 3826 3827 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages; 3828 } 3829 EXPORT_SYMBOL_GPL(ring_buffer_size); 3830 3831 static void 3832 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 3833 { 3834 rb_head_page_deactivate(cpu_buffer); 3835 3836 cpu_buffer->head_page 3837 = list_entry(cpu_buffer->pages, struct buffer_page, list); 3838 local_set(&cpu_buffer->head_page->write, 0); 3839 local_set(&cpu_buffer->head_page->entries, 0); 3840 local_set(&cpu_buffer->head_page->page->commit, 0); 3841 3842 cpu_buffer->head_page->read = 0; 3843 3844 cpu_buffer->tail_page = cpu_buffer->head_page; 3845 cpu_buffer->commit_page = cpu_buffer->head_page; 3846 3847 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 3848 INIT_LIST_HEAD(&cpu_buffer->new_pages); 3849 local_set(&cpu_buffer->reader_page->write, 0); 3850 local_set(&cpu_buffer->reader_page->entries, 0); 3851 local_set(&cpu_buffer->reader_page->page->commit, 0); 3852 cpu_buffer->reader_page->read = 0; 3853 3854 local_set(&cpu_buffer->commit_overrun, 0); 3855 local_set(&cpu_buffer->entries_bytes, 0); 3856 local_set(&cpu_buffer->overrun, 0); 3857 local_set(&cpu_buffer->entries, 0); 3858 local_set(&cpu_buffer->committing, 0); 3859 local_set(&cpu_buffer->commits, 0); 3860 cpu_buffer->read = 0; 3861 cpu_buffer->read_bytes = 0; 3862 3863 cpu_buffer->write_stamp = 0; 3864 cpu_buffer->read_stamp = 0; 3865 3866 cpu_buffer->lost_events = 0; 3867 cpu_buffer->last_overrun = 0; 3868 3869 rb_head_page_activate(cpu_buffer); 3870 } 3871 3872 /** 3873 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 3874 * @buffer: The ring buffer to reset a per cpu buffer of 3875 * @cpu: The CPU buffer to be reset 3876 */ 3877 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 3878 { 3879 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3880 unsigned long flags; 3881 3882 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3883 return; 3884 3885 atomic_inc(&buffer->resize_disabled); 3886 atomic_inc(&cpu_buffer->record_disabled); 3887 3888 /* Make sure all commits have finished */ 3889 synchronize_sched(); 3890 3891 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3892 3893 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 3894 goto out; 3895 3896 arch_spin_lock(&cpu_buffer->lock); 3897 3898 rb_reset_cpu(cpu_buffer); 3899 3900 arch_spin_unlock(&cpu_buffer->lock); 3901 3902 out: 3903 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3904 3905 atomic_dec(&cpu_buffer->record_disabled); 3906 atomic_dec(&buffer->resize_disabled); 3907 } 3908 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 3909 3910 /** 3911 * ring_buffer_reset - reset a ring buffer 3912 * @buffer: The ring buffer to reset all cpu buffers 3913 */ 3914 void ring_buffer_reset(struct ring_buffer *buffer) 3915 { 3916 int cpu; 3917 3918 for_each_buffer_cpu(buffer, cpu) 3919 ring_buffer_reset_cpu(buffer, cpu); 3920 } 3921 EXPORT_SYMBOL_GPL(ring_buffer_reset); 3922 3923 /** 3924 * rind_buffer_empty - is the ring buffer empty? 3925 * @buffer: The ring buffer to test 3926 */ 3927 int ring_buffer_empty(struct ring_buffer *buffer) 3928 { 3929 struct ring_buffer_per_cpu *cpu_buffer; 3930 unsigned long flags; 3931 int dolock; 3932 int cpu; 3933 int ret; 3934 3935 dolock = rb_ok_to_lock(); 3936 3937 /* yes this is racy, but if you don't like the race, lock the buffer */ 3938 for_each_buffer_cpu(buffer, cpu) { 3939 cpu_buffer = buffer->buffers[cpu]; 3940 local_irq_save(flags); 3941 if (dolock) 3942 raw_spin_lock(&cpu_buffer->reader_lock); 3943 ret = rb_per_cpu_empty(cpu_buffer); 3944 if (dolock) 3945 raw_spin_unlock(&cpu_buffer->reader_lock); 3946 local_irq_restore(flags); 3947 3948 if (!ret) 3949 return 0; 3950 } 3951 3952 return 1; 3953 } 3954 EXPORT_SYMBOL_GPL(ring_buffer_empty); 3955 3956 /** 3957 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 3958 * @buffer: The ring buffer 3959 * @cpu: The CPU buffer to test 3960 */ 3961 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 3962 { 3963 struct ring_buffer_per_cpu *cpu_buffer; 3964 unsigned long flags; 3965 int dolock; 3966 int ret; 3967 3968 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3969 return 1; 3970 3971 dolock = rb_ok_to_lock(); 3972 3973 cpu_buffer = buffer->buffers[cpu]; 3974 local_irq_save(flags); 3975 if (dolock) 3976 raw_spin_lock(&cpu_buffer->reader_lock); 3977 ret = rb_per_cpu_empty(cpu_buffer); 3978 if (dolock) 3979 raw_spin_unlock(&cpu_buffer->reader_lock); 3980 local_irq_restore(flags); 3981 3982 return ret; 3983 } 3984 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 3985 3986 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3987 /** 3988 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 3989 * @buffer_a: One buffer to swap with 3990 * @buffer_b: The other buffer to swap with 3991 * 3992 * This function is useful for tracers that want to take a "snapshot" 3993 * of a CPU buffer and has another back up buffer lying around. 3994 * it is expected that the tracer handles the cpu buffer not being 3995 * used at the moment. 3996 */ 3997 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 3998 struct ring_buffer *buffer_b, int cpu) 3999 { 4000 struct ring_buffer_per_cpu *cpu_buffer_a; 4001 struct ring_buffer_per_cpu *cpu_buffer_b; 4002 int ret = -EINVAL; 4003 4004 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 4005 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 4006 goto out; 4007 4008 cpu_buffer_a = buffer_a->buffers[cpu]; 4009 cpu_buffer_b = buffer_b->buffers[cpu]; 4010 4011 /* At least make sure the two buffers are somewhat the same */ 4012 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 4013 goto out; 4014 4015 ret = -EAGAIN; 4016 4017 if (ring_buffer_flags != RB_BUFFERS_ON) 4018 goto out; 4019 4020 if (atomic_read(&buffer_a->record_disabled)) 4021 goto out; 4022 4023 if (atomic_read(&buffer_b->record_disabled)) 4024 goto out; 4025 4026 if (atomic_read(&cpu_buffer_a->record_disabled)) 4027 goto out; 4028 4029 if (atomic_read(&cpu_buffer_b->record_disabled)) 4030 goto out; 4031 4032 /* 4033 * We can't do a synchronize_sched here because this 4034 * function can be called in atomic context. 4035 * Normally this will be called from the same CPU as cpu. 4036 * If not it's up to the caller to protect this. 4037 */ 4038 atomic_inc(&cpu_buffer_a->record_disabled); 4039 atomic_inc(&cpu_buffer_b->record_disabled); 4040 4041 ret = -EBUSY; 4042 if (local_read(&cpu_buffer_a->committing)) 4043 goto out_dec; 4044 if (local_read(&cpu_buffer_b->committing)) 4045 goto out_dec; 4046 4047 buffer_a->buffers[cpu] = cpu_buffer_b; 4048 buffer_b->buffers[cpu] = cpu_buffer_a; 4049 4050 cpu_buffer_b->buffer = buffer_a; 4051 cpu_buffer_a->buffer = buffer_b; 4052 4053 ret = 0; 4054 4055 out_dec: 4056 atomic_dec(&cpu_buffer_a->record_disabled); 4057 atomic_dec(&cpu_buffer_b->record_disabled); 4058 out: 4059 return ret; 4060 } 4061 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 4062 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 4063 4064 /** 4065 * ring_buffer_alloc_read_page - allocate a page to read from buffer 4066 * @buffer: the buffer to allocate for. 4067 * 4068 * This function is used in conjunction with ring_buffer_read_page. 4069 * When reading a full page from the ring buffer, these functions 4070 * can be used to speed up the process. The calling function should 4071 * allocate a few pages first with this function. Then when it 4072 * needs to get pages from the ring buffer, it passes the result 4073 * of this function into ring_buffer_read_page, which will swap 4074 * the page that was allocated, with the read page of the buffer. 4075 * 4076 * Returns: 4077 * The page allocated, or NULL on error. 4078 */ 4079 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu) 4080 { 4081 struct buffer_data_page *bpage; 4082 struct page *page; 4083 4084 page = alloc_pages_node(cpu_to_node(cpu), 4085 GFP_KERNEL | __GFP_NORETRY, 0); 4086 if (!page) 4087 return NULL; 4088 4089 bpage = page_address(page); 4090 4091 rb_init_page(bpage); 4092 4093 return bpage; 4094 } 4095 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 4096 4097 /** 4098 * ring_buffer_free_read_page - free an allocated read page 4099 * @buffer: the buffer the page was allocate for 4100 * @data: the page to free 4101 * 4102 * Free a page allocated from ring_buffer_alloc_read_page. 4103 */ 4104 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 4105 { 4106 free_page((unsigned long)data); 4107 } 4108 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 4109 4110 /** 4111 * ring_buffer_read_page - extract a page from the ring buffer 4112 * @buffer: buffer to extract from 4113 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 4114 * @len: amount to extract 4115 * @cpu: the cpu of the buffer to extract 4116 * @full: should the extraction only happen when the page is full. 4117 * 4118 * This function will pull out a page from the ring buffer and consume it. 4119 * @data_page must be the address of the variable that was returned 4120 * from ring_buffer_alloc_read_page. This is because the page might be used 4121 * to swap with a page in the ring buffer. 4122 * 4123 * for example: 4124 * rpage = ring_buffer_alloc_read_page(buffer); 4125 * if (!rpage) 4126 * return error; 4127 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 4128 * if (ret >= 0) 4129 * process_page(rpage, ret); 4130 * 4131 * When @full is set, the function will not return true unless 4132 * the writer is off the reader page. 4133 * 4134 * Note: it is up to the calling functions to handle sleeps and wakeups. 4135 * The ring buffer can be used anywhere in the kernel and can not 4136 * blindly call wake_up. The layer that uses the ring buffer must be 4137 * responsible for that. 4138 * 4139 * Returns: 4140 * >=0 if data has been transferred, returns the offset of consumed data. 4141 * <0 if no data has been transferred. 4142 */ 4143 int ring_buffer_read_page(struct ring_buffer *buffer, 4144 void **data_page, size_t len, int cpu, int full) 4145 { 4146 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 4147 struct ring_buffer_event *event; 4148 struct buffer_data_page *bpage; 4149 struct buffer_page *reader; 4150 unsigned long missed_events; 4151 unsigned long flags; 4152 unsigned int commit; 4153 unsigned int read; 4154 u64 save_timestamp; 4155 int ret = -1; 4156 4157 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4158 goto out; 4159 4160 /* 4161 * If len is not big enough to hold the page header, then 4162 * we can not copy anything. 4163 */ 4164 if (len <= BUF_PAGE_HDR_SIZE) 4165 goto out; 4166 4167 len -= BUF_PAGE_HDR_SIZE; 4168 4169 if (!data_page) 4170 goto out; 4171 4172 bpage = *data_page; 4173 if (!bpage) 4174 goto out; 4175 4176 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4177 4178 reader = rb_get_reader_page(cpu_buffer); 4179 if (!reader) 4180 goto out_unlock; 4181 4182 event = rb_reader_event(cpu_buffer); 4183 4184 read = reader->read; 4185 commit = rb_page_commit(reader); 4186 4187 /* Check if any events were dropped */ 4188 missed_events = cpu_buffer->lost_events; 4189 4190 /* 4191 * If this page has been partially read or 4192 * if len is not big enough to read the rest of the page or 4193 * a writer is still on the page, then 4194 * we must copy the data from the page to the buffer. 4195 * Otherwise, we can simply swap the page with the one passed in. 4196 */ 4197 if (read || (len < (commit - read)) || 4198 cpu_buffer->reader_page == cpu_buffer->commit_page) { 4199 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 4200 unsigned int rpos = read; 4201 unsigned int pos = 0; 4202 unsigned int size; 4203 4204 if (full) 4205 goto out_unlock; 4206 4207 if (len > (commit - read)) 4208 len = (commit - read); 4209 4210 /* Always keep the time extend and data together */ 4211 size = rb_event_ts_length(event); 4212 4213 if (len < size) 4214 goto out_unlock; 4215 4216 /* save the current timestamp, since the user will need it */ 4217 save_timestamp = cpu_buffer->read_stamp; 4218 4219 /* Need to copy one event at a time */ 4220 do { 4221 /* We need the size of one event, because 4222 * rb_advance_reader only advances by one event, 4223 * whereas rb_event_ts_length may include the size of 4224 * one or two events. 4225 * We have already ensured there's enough space if this 4226 * is a time extend. */ 4227 size = rb_event_length(event); 4228 memcpy(bpage->data + pos, rpage->data + rpos, size); 4229 4230 len -= size; 4231 4232 rb_advance_reader(cpu_buffer); 4233 rpos = reader->read; 4234 pos += size; 4235 4236 if (rpos >= commit) 4237 break; 4238 4239 event = rb_reader_event(cpu_buffer); 4240 /* Always keep the time extend and data together */ 4241 size = rb_event_ts_length(event); 4242 } while (len >= size); 4243 4244 /* update bpage */ 4245 local_set(&bpage->commit, pos); 4246 bpage->time_stamp = save_timestamp; 4247 4248 /* we copied everything to the beginning */ 4249 read = 0; 4250 } else { 4251 /* update the entry counter */ 4252 cpu_buffer->read += rb_page_entries(reader); 4253 cpu_buffer->read_bytes += BUF_PAGE_SIZE; 4254 4255 /* swap the pages */ 4256 rb_init_page(bpage); 4257 bpage = reader->page; 4258 reader->page = *data_page; 4259 local_set(&reader->write, 0); 4260 local_set(&reader->entries, 0); 4261 reader->read = 0; 4262 *data_page = bpage; 4263 4264 /* 4265 * Use the real_end for the data size, 4266 * This gives us a chance to store the lost events 4267 * on the page. 4268 */ 4269 if (reader->real_end) 4270 local_set(&bpage->commit, reader->real_end); 4271 } 4272 ret = read; 4273 4274 cpu_buffer->lost_events = 0; 4275 4276 commit = local_read(&bpage->commit); 4277 /* 4278 * Set a flag in the commit field if we lost events 4279 */ 4280 if (missed_events) { 4281 /* If there is room at the end of the page to save the 4282 * missed events, then record it there. 4283 */ 4284 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) { 4285 memcpy(&bpage->data[commit], &missed_events, 4286 sizeof(missed_events)); 4287 local_add(RB_MISSED_STORED, &bpage->commit); 4288 commit += sizeof(missed_events); 4289 } 4290 local_add(RB_MISSED_EVENTS, &bpage->commit); 4291 } 4292 4293 /* 4294 * This page may be off to user land. Zero it out here. 4295 */ 4296 if (commit < BUF_PAGE_SIZE) 4297 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit); 4298 4299 out_unlock: 4300 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4301 4302 out: 4303 return ret; 4304 } 4305 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 4306 4307 #ifdef CONFIG_HOTPLUG_CPU 4308 static int rb_cpu_notify(struct notifier_block *self, 4309 unsigned long action, void *hcpu) 4310 { 4311 struct ring_buffer *buffer = 4312 container_of(self, struct ring_buffer, cpu_notify); 4313 long cpu = (long)hcpu; 4314 int cpu_i, nr_pages_same; 4315 unsigned int nr_pages; 4316 4317 switch (action) { 4318 case CPU_UP_PREPARE: 4319 case CPU_UP_PREPARE_FROZEN: 4320 if (cpumask_test_cpu(cpu, buffer->cpumask)) 4321 return NOTIFY_OK; 4322 4323 nr_pages = 0; 4324 nr_pages_same = 1; 4325 /* check if all cpu sizes are same */ 4326 for_each_buffer_cpu(buffer, cpu_i) { 4327 /* fill in the size from first enabled cpu */ 4328 if (nr_pages == 0) 4329 nr_pages = buffer->buffers[cpu_i]->nr_pages; 4330 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 4331 nr_pages_same = 0; 4332 break; 4333 } 4334 } 4335 /* allocate minimum pages, user can later expand it */ 4336 if (!nr_pages_same) 4337 nr_pages = 2; 4338 buffer->buffers[cpu] = 4339 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 4340 if (!buffer->buffers[cpu]) { 4341 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 4342 cpu); 4343 return NOTIFY_OK; 4344 } 4345 smp_wmb(); 4346 cpumask_set_cpu(cpu, buffer->cpumask); 4347 break; 4348 case CPU_DOWN_PREPARE: 4349 case CPU_DOWN_PREPARE_FROZEN: 4350 /* 4351 * Do nothing. 4352 * If we were to free the buffer, then the user would 4353 * lose any trace that was in the buffer. 4354 */ 4355 break; 4356 default: 4357 break; 4358 } 4359 return NOTIFY_OK; 4360 } 4361 #endif 4362