1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic ring buffer 4 * 5 * Copyright (C) 2008 Steven Rostedt <[email protected]> 6 */ 7 #include <linux/trace_recursion.h> 8 #include <linux/trace_events.h> 9 #include <linux/ring_buffer.h> 10 #include <linux/trace_clock.h> 11 #include <linux/sched/clock.h> 12 #include <linux/cacheflush.h> 13 #include <linux/trace_seq.h> 14 #include <linux/spinlock.h> 15 #include <linux/irq_work.h> 16 #include <linux/security.h> 17 #include <linux/uaccess.h> 18 #include <linux/hardirq.h> 19 #include <linux/kthread.h> /* for self test */ 20 #include <linux/module.h> 21 #include <linux/percpu.h> 22 #include <linux/mutex.h> 23 #include <linux/delay.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/list.h> 28 #include <linux/cpu.h> 29 #include <linux/oom.h> 30 #include <linux/mm.h> 31 32 #include <asm/local64.h> 33 #include <asm/local.h> 34 #include <asm/setup.h> 35 36 #include "trace.h" 37 38 /* 39 * The "absolute" timestamp in the buffer is only 59 bits. 40 * If a clock has the 5 MSBs set, it needs to be saved and 41 * reinserted. 42 */ 43 #define TS_MSB (0xf8ULL << 56) 44 #define ABS_TS_MASK (~TS_MSB) 45 46 static void update_pages_handler(struct work_struct *work); 47 48 #define RING_BUFFER_META_MAGIC 0xBADFEED 49 50 struct ring_buffer_meta { 51 int magic; 52 int struct_sizes; 53 unsigned long total_size; 54 unsigned long buffers_offset; 55 }; 56 57 struct ring_buffer_cpu_meta { 58 unsigned long kaslr_addr; 59 unsigned long first_buffer; 60 unsigned long head_buffer; 61 unsigned long commit_buffer; 62 __u32 subbuf_size; 63 __u32 nr_subbufs; 64 int buffers[]; 65 }; 66 67 /* 68 * The ring buffer header is special. We must manually up keep it. 69 */ 70 int ring_buffer_print_entry_header(struct trace_seq *s) 71 { 72 trace_seq_puts(s, "# compressed entry header\n"); 73 trace_seq_puts(s, "\ttype_len : 5 bits\n"); 74 trace_seq_puts(s, "\ttime_delta : 27 bits\n"); 75 trace_seq_puts(s, "\tarray : 32 bits\n"); 76 trace_seq_putc(s, '\n'); 77 trace_seq_printf(s, "\tpadding : type == %d\n", 78 RINGBUF_TYPE_PADDING); 79 trace_seq_printf(s, "\ttime_extend : type == %d\n", 80 RINGBUF_TYPE_TIME_EXTEND); 81 trace_seq_printf(s, "\ttime_stamp : type == %d\n", 82 RINGBUF_TYPE_TIME_STAMP); 83 trace_seq_printf(s, "\tdata max type_len == %d\n", 84 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 85 86 return !trace_seq_has_overflowed(s); 87 } 88 89 /* 90 * The ring buffer is made up of a list of pages. A separate list of pages is 91 * allocated for each CPU. A writer may only write to a buffer that is 92 * associated with the CPU it is currently executing on. A reader may read 93 * from any per cpu buffer. 94 * 95 * The reader is special. For each per cpu buffer, the reader has its own 96 * reader page. When a reader has read the entire reader page, this reader 97 * page is swapped with another page in the ring buffer. 98 * 99 * Now, as long as the writer is off the reader page, the reader can do what 100 * ever it wants with that page. The writer will never write to that page 101 * again (as long as it is out of the ring buffer). 102 * 103 * Here's some silly ASCII art. 104 * 105 * +------+ 106 * |reader| RING BUFFER 107 * |page | 108 * +------+ +---+ +---+ +---+ 109 * | |-->| |-->| | 110 * +---+ +---+ +---+ 111 * ^ | 112 * | | 113 * +---------------+ 114 * 115 * 116 * +------+ 117 * |reader| RING BUFFER 118 * |page |------------------v 119 * +------+ +---+ +---+ +---+ 120 * | |-->| |-->| | 121 * +---+ +---+ +---+ 122 * ^ | 123 * | | 124 * +---------------+ 125 * 126 * 127 * +------+ 128 * |reader| RING BUFFER 129 * |page |------------------v 130 * +------+ +---+ +---+ +---+ 131 * ^ | |-->| |-->| | 132 * | +---+ +---+ +---+ 133 * | | 134 * | | 135 * +------------------------------+ 136 * 137 * 138 * +------+ 139 * |buffer| RING BUFFER 140 * |page |------------------v 141 * +------+ +---+ +---+ +---+ 142 * ^ | | | |-->| | 143 * | New +---+ +---+ +---+ 144 * | Reader------^ | 145 * | page | 146 * +------------------------------+ 147 * 148 * 149 * After we make this swap, the reader can hand this page off to the splice 150 * code and be done with it. It can even allocate a new page if it needs to 151 * and swap that into the ring buffer. 152 * 153 * We will be using cmpxchg soon to make all this lockless. 154 * 155 */ 156 157 /* Used for individual buffers (after the counter) */ 158 #define RB_BUFFER_OFF (1 << 20) 159 160 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 161 162 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 163 #define RB_ALIGNMENT 4U 164 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 165 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 166 167 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS 168 # define RB_FORCE_8BYTE_ALIGNMENT 0 169 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT 170 #else 171 # define RB_FORCE_8BYTE_ALIGNMENT 1 172 # define RB_ARCH_ALIGNMENT 8U 173 #endif 174 175 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT) 176 177 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 178 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 179 180 enum { 181 RB_LEN_TIME_EXTEND = 8, 182 RB_LEN_TIME_STAMP = 8, 183 }; 184 185 #define skip_time_extend(event) \ 186 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND)) 187 188 #define extended_time(event) \ 189 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND) 190 191 static inline bool rb_null_event(struct ring_buffer_event *event) 192 { 193 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 194 } 195 196 static void rb_event_set_padding(struct ring_buffer_event *event) 197 { 198 /* padding has a NULL time_delta */ 199 event->type_len = RINGBUF_TYPE_PADDING; 200 event->time_delta = 0; 201 } 202 203 static unsigned 204 rb_event_data_length(struct ring_buffer_event *event) 205 { 206 unsigned length; 207 208 if (event->type_len) 209 length = event->type_len * RB_ALIGNMENT; 210 else 211 length = event->array[0]; 212 return length + RB_EVNT_HDR_SIZE; 213 } 214 215 /* 216 * Return the length of the given event. Will return 217 * the length of the time extend if the event is a 218 * time extend. 219 */ 220 static inline unsigned 221 rb_event_length(struct ring_buffer_event *event) 222 { 223 switch (event->type_len) { 224 case RINGBUF_TYPE_PADDING: 225 if (rb_null_event(event)) 226 /* undefined */ 227 return -1; 228 return event->array[0] + RB_EVNT_HDR_SIZE; 229 230 case RINGBUF_TYPE_TIME_EXTEND: 231 return RB_LEN_TIME_EXTEND; 232 233 case RINGBUF_TYPE_TIME_STAMP: 234 return RB_LEN_TIME_STAMP; 235 236 case RINGBUF_TYPE_DATA: 237 return rb_event_data_length(event); 238 default: 239 WARN_ON_ONCE(1); 240 } 241 /* not hit */ 242 return 0; 243 } 244 245 /* 246 * Return total length of time extend and data, 247 * or just the event length for all other events. 248 */ 249 static inline unsigned 250 rb_event_ts_length(struct ring_buffer_event *event) 251 { 252 unsigned len = 0; 253 254 if (extended_time(event)) { 255 /* time extends include the data event after it */ 256 len = RB_LEN_TIME_EXTEND; 257 event = skip_time_extend(event); 258 } 259 return len + rb_event_length(event); 260 } 261 262 /** 263 * ring_buffer_event_length - return the length of the event 264 * @event: the event to get the length of 265 * 266 * Returns the size of the data load of a data event. 267 * If the event is something other than a data event, it 268 * returns the size of the event itself. With the exception 269 * of a TIME EXTEND, where it still returns the size of the 270 * data load of the data event after it. 271 */ 272 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 273 { 274 unsigned length; 275 276 if (extended_time(event)) 277 event = skip_time_extend(event); 278 279 length = rb_event_length(event); 280 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 281 return length; 282 length -= RB_EVNT_HDR_SIZE; 283 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 284 length -= sizeof(event->array[0]); 285 return length; 286 } 287 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 288 289 /* inline for ring buffer fast paths */ 290 static __always_inline void * 291 rb_event_data(struct ring_buffer_event *event) 292 { 293 if (extended_time(event)) 294 event = skip_time_extend(event); 295 WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 296 /* If length is in len field, then array[0] has the data */ 297 if (event->type_len) 298 return (void *)&event->array[0]; 299 /* Otherwise length is in array[0] and array[1] has the data */ 300 return (void *)&event->array[1]; 301 } 302 303 /** 304 * ring_buffer_event_data - return the data of the event 305 * @event: the event to get the data from 306 */ 307 void *ring_buffer_event_data(struct ring_buffer_event *event) 308 { 309 return rb_event_data(event); 310 } 311 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 312 313 #define for_each_buffer_cpu(buffer, cpu) \ 314 for_each_cpu(cpu, buffer->cpumask) 315 316 #define for_each_online_buffer_cpu(buffer, cpu) \ 317 for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask) 318 319 #define TS_SHIFT 27 320 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 321 #define TS_DELTA_TEST (~TS_MASK) 322 323 static u64 rb_event_time_stamp(struct ring_buffer_event *event) 324 { 325 u64 ts; 326 327 ts = event->array[0]; 328 ts <<= TS_SHIFT; 329 ts += event->time_delta; 330 331 return ts; 332 } 333 334 /* Flag when events were overwritten */ 335 #define RB_MISSED_EVENTS (1 << 31) 336 /* Missed count stored at end */ 337 #define RB_MISSED_STORED (1 << 30) 338 339 #define RB_MISSED_MASK (3 << 30) 340 341 struct buffer_data_page { 342 u64 time_stamp; /* page time stamp */ 343 local_t commit; /* write committed index */ 344 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */ 345 }; 346 347 struct buffer_data_read_page { 348 unsigned order; /* order of the page */ 349 struct buffer_data_page *data; /* actual data, stored in this page */ 350 }; 351 352 /* 353 * Note, the buffer_page list must be first. The buffer pages 354 * are allocated in cache lines, which means that each buffer 355 * page will be at the beginning of a cache line, and thus 356 * the least significant bits will be zero. We use this to 357 * add flags in the list struct pointers, to make the ring buffer 358 * lockless. 359 */ 360 struct buffer_page { 361 struct list_head list; /* list of buffer pages */ 362 local_t write; /* index for next write */ 363 unsigned read; /* index for next read */ 364 local_t entries; /* entries on this page */ 365 unsigned long real_end; /* real end of data */ 366 unsigned order; /* order of the page */ 367 u32 id:30; /* ID for external mapping */ 368 u32 range:1; /* Mapped via a range */ 369 struct buffer_data_page *page; /* Actual data page */ 370 }; 371 372 /* 373 * The buffer page counters, write and entries, must be reset 374 * atomically when crossing page boundaries. To synchronize this 375 * update, two counters are inserted into the number. One is 376 * the actual counter for the write position or count on the page. 377 * 378 * The other is a counter of updaters. Before an update happens 379 * the update partition of the counter is incremented. This will 380 * allow the updater to update the counter atomically. 381 * 382 * The counter is 20 bits, and the state data is 12. 383 */ 384 #define RB_WRITE_MASK 0xfffff 385 #define RB_WRITE_INTCNT (1 << 20) 386 387 static void rb_init_page(struct buffer_data_page *bpage) 388 { 389 local_set(&bpage->commit, 0); 390 } 391 392 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage) 393 { 394 return local_read(&bpage->page->commit); 395 } 396 397 static void free_buffer_page(struct buffer_page *bpage) 398 { 399 /* Range pages are not to be freed */ 400 if (!bpage->range) 401 free_pages((unsigned long)bpage->page, bpage->order); 402 kfree(bpage); 403 } 404 405 /* 406 * We need to fit the time_stamp delta into 27 bits. 407 */ 408 static inline bool test_time_stamp(u64 delta) 409 { 410 return !!(delta & TS_DELTA_TEST); 411 } 412 413 struct rb_irq_work { 414 struct irq_work work; 415 wait_queue_head_t waiters; 416 wait_queue_head_t full_waiters; 417 atomic_t seq; 418 bool waiters_pending; 419 bool full_waiters_pending; 420 bool wakeup_full; 421 }; 422 423 /* 424 * Structure to hold event state and handle nested events. 425 */ 426 struct rb_event_info { 427 u64 ts; 428 u64 delta; 429 u64 before; 430 u64 after; 431 unsigned long length; 432 struct buffer_page *tail_page; 433 int add_timestamp; 434 }; 435 436 /* 437 * Used for the add_timestamp 438 * NONE 439 * EXTEND - wants a time extend 440 * ABSOLUTE - the buffer requests all events to have absolute time stamps 441 * FORCE - force a full time stamp. 442 */ 443 enum { 444 RB_ADD_STAMP_NONE = 0, 445 RB_ADD_STAMP_EXTEND = BIT(1), 446 RB_ADD_STAMP_ABSOLUTE = BIT(2), 447 RB_ADD_STAMP_FORCE = BIT(3) 448 }; 449 /* 450 * Used for which event context the event is in. 451 * TRANSITION = 0 452 * NMI = 1 453 * IRQ = 2 454 * SOFTIRQ = 3 455 * NORMAL = 4 456 * 457 * See trace_recursive_lock() comment below for more details. 458 */ 459 enum { 460 RB_CTX_TRANSITION, 461 RB_CTX_NMI, 462 RB_CTX_IRQ, 463 RB_CTX_SOFTIRQ, 464 RB_CTX_NORMAL, 465 RB_CTX_MAX 466 }; 467 468 struct rb_time_struct { 469 local64_t time; 470 }; 471 typedef struct rb_time_struct rb_time_t; 472 473 #define MAX_NEST 5 474 475 /* 476 * head_page == tail_page && head == tail then buffer is empty. 477 */ 478 struct ring_buffer_per_cpu { 479 int cpu; 480 atomic_t record_disabled; 481 atomic_t resize_disabled; 482 struct trace_buffer *buffer; 483 raw_spinlock_t reader_lock; /* serialize readers */ 484 arch_spinlock_t lock; 485 struct lock_class_key lock_key; 486 struct buffer_data_page *free_page; 487 unsigned long nr_pages; 488 unsigned int current_context; 489 struct list_head *pages; 490 /* pages generation counter, incremented when the list changes */ 491 unsigned long cnt; 492 struct buffer_page *head_page; /* read from head */ 493 struct buffer_page *tail_page; /* write to tail */ 494 struct buffer_page *commit_page; /* committed pages */ 495 struct buffer_page *reader_page; 496 unsigned long lost_events; 497 unsigned long last_overrun; 498 unsigned long nest; 499 local_t entries_bytes; 500 local_t entries; 501 local_t overrun; 502 local_t commit_overrun; 503 local_t dropped_events; 504 local_t committing; 505 local_t commits; 506 local_t pages_touched; 507 local_t pages_lost; 508 local_t pages_read; 509 long last_pages_touch; 510 size_t shortest_full; 511 unsigned long read; 512 unsigned long read_bytes; 513 rb_time_t write_stamp; 514 rb_time_t before_stamp; 515 u64 event_stamp[MAX_NEST]; 516 u64 read_stamp; 517 /* pages removed since last reset */ 518 unsigned long pages_removed; 519 520 unsigned int mapped; 521 unsigned int user_mapped; /* user space mapping */ 522 struct mutex mapping_lock; 523 unsigned long *subbuf_ids; /* ID to subbuf VA */ 524 struct trace_buffer_meta *meta_page; 525 struct ring_buffer_cpu_meta *ring_meta; 526 527 /* ring buffer pages to update, > 0 to add, < 0 to remove */ 528 long nr_pages_to_update; 529 struct list_head new_pages; /* new pages to add */ 530 struct work_struct update_pages_work; 531 struct completion update_done; 532 533 struct rb_irq_work irq_work; 534 }; 535 536 struct trace_buffer { 537 unsigned flags; 538 int cpus; 539 atomic_t record_disabled; 540 atomic_t resizing; 541 cpumask_var_t cpumask; 542 543 struct lock_class_key *reader_lock_key; 544 545 struct mutex mutex; 546 547 struct ring_buffer_per_cpu **buffers; 548 549 struct hlist_node node; 550 u64 (*clock)(void); 551 552 struct rb_irq_work irq_work; 553 bool time_stamp_abs; 554 555 unsigned long range_addr_start; 556 unsigned long range_addr_end; 557 558 struct ring_buffer_meta *meta; 559 560 unsigned long kaslr_addr; 561 562 unsigned int subbuf_size; 563 unsigned int subbuf_order; 564 unsigned int max_data_size; 565 }; 566 567 struct ring_buffer_iter { 568 struct ring_buffer_per_cpu *cpu_buffer; 569 unsigned long head; 570 unsigned long next_event; 571 struct buffer_page *head_page; 572 struct buffer_page *cache_reader_page; 573 unsigned long cache_read; 574 unsigned long cache_pages_removed; 575 u64 read_stamp; 576 u64 page_stamp; 577 struct ring_buffer_event *event; 578 size_t event_size; 579 int missed_events; 580 }; 581 582 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s) 583 { 584 struct buffer_data_page field; 585 586 trace_seq_printf(s, "\tfield: u64 timestamp;\t" 587 "offset:0;\tsize:%u;\tsigned:%u;\n", 588 (unsigned int)sizeof(field.time_stamp), 589 (unsigned int)is_signed_type(u64)); 590 591 trace_seq_printf(s, "\tfield: local_t commit;\t" 592 "offset:%u;\tsize:%u;\tsigned:%u;\n", 593 (unsigned int)offsetof(typeof(field), commit), 594 (unsigned int)sizeof(field.commit), 595 (unsigned int)is_signed_type(long)); 596 597 trace_seq_printf(s, "\tfield: int overwrite;\t" 598 "offset:%u;\tsize:%u;\tsigned:%u;\n", 599 (unsigned int)offsetof(typeof(field), commit), 600 1, 601 (unsigned int)is_signed_type(long)); 602 603 trace_seq_printf(s, "\tfield: char data;\t" 604 "offset:%u;\tsize:%u;\tsigned:%u;\n", 605 (unsigned int)offsetof(typeof(field), data), 606 (unsigned int)buffer->subbuf_size, 607 (unsigned int)is_signed_type(char)); 608 609 return !trace_seq_has_overflowed(s); 610 } 611 612 static inline void rb_time_read(rb_time_t *t, u64 *ret) 613 { 614 *ret = local64_read(&t->time); 615 } 616 static void rb_time_set(rb_time_t *t, u64 val) 617 { 618 local64_set(&t->time, val); 619 } 620 621 /* 622 * Enable this to make sure that the event passed to 623 * ring_buffer_event_time_stamp() is not committed and also 624 * is on the buffer that it passed in. 625 */ 626 //#define RB_VERIFY_EVENT 627 #ifdef RB_VERIFY_EVENT 628 static struct list_head *rb_list_head(struct list_head *list); 629 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 630 void *event) 631 { 632 struct buffer_page *page = cpu_buffer->commit_page; 633 struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page); 634 struct list_head *next; 635 long commit, write; 636 unsigned long addr = (unsigned long)event; 637 bool done = false; 638 int stop = 0; 639 640 /* Make sure the event exists and is not committed yet */ 641 do { 642 if (page == tail_page || WARN_ON_ONCE(stop++ > 100)) 643 done = true; 644 commit = local_read(&page->page->commit); 645 write = local_read(&page->write); 646 if (addr >= (unsigned long)&page->page->data[commit] && 647 addr < (unsigned long)&page->page->data[write]) 648 return; 649 650 next = rb_list_head(page->list.next); 651 page = list_entry(next, struct buffer_page, list); 652 } while (!done); 653 WARN_ON_ONCE(1); 654 } 655 #else 656 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer, 657 void *event) 658 { 659 } 660 #endif 661 662 /* 663 * The absolute time stamp drops the 5 MSBs and some clocks may 664 * require them. The rb_fix_abs_ts() will take a previous full 665 * time stamp, and add the 5 MSB of that time stamp on to the 666 * saved absolute time stamp. Then they are compared in case of 667 * the unlikely event that the latest time stamp incremented 668 * the 5 MSB. 669 */ 670 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts) 671 { 672 if (save_ts & TS_MSB) { 673 abs |= save_ts & TS_MSB; 674 /* Check for overflow */ 675 if (unlikely(abs < save_ts)) 676 abs += 1ULL << 59; 677 } 678 return abs; 679 } 680 681 static inline u64 rb_time_stamp(struct trace_buffer *buffer); 682 683 /** 684 * ring_buffer_event_time_stamp - return the event's current time stamp 685 * @buffer: The buffer that the event is on 686 * @event: the event to get the time stamp of 687 * 688 * Note, this must be called after @event is reserved, and before it is 689 * committed to the ring buffer. And must be called from the same 690 * context where the event was reserved (normal, softirq, irq, etc). 691 * 692 * Returns the time stamp associated with the current event. 693 * If the event has an extended time stamp, then that is used as 694 * the time stamp to return. 695 * In the highly unlikely case that the event was nested more than 696 * the max nesting, then the write_stamp of the buffer is returned, 697 * otherwise current time is returned, but that really neither of 698 * the last two cases should ever happen. 699 */ 700 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer, 701 struct ring_buffer_event *event) 702 { 703 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()]; 704 unsigned int nest; 705 u64 ts; 706 707 /* If the event includes an absolute time, then just use that */ 708 if (event->type_len == RINGBUF_TYPE_TIME_STAMP) { 709 ts = rb_event_time_stamp(event); 710 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp); 711 } 712 713 nest = local_read(&cpu_buffer->committing); 714 verify_event(cpu_buffer, event); 715 if (WARN_ON_ONCE(!nest)) 716 goto fail; 717 718 /* Read the current saved nesting level time stamp */ 719 if (likely(--nest < MAX_NEST)) 720 return cpu_buffer->event_stamp[nest]; 721 722 /* Shouldn't happen, warn if it does */ 723 WARN_ONCE(1, "nest (%d) greater than max", nest); 724 725 fail: 726 rb_time_read(&cpu_buffer->write_stamp, &ts); 727 728 return ts; 729 } 730 731 /** 732 * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer 733 * @buffer: The ring_buffer to get the number of pages from 734 * @cpu: The cpu of the ring_buffer to get the number of pages from 735 * 736 * Returns the number of pages that have content in the ring buffer. 737 */ 738 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu) 739 { 740 size_t read; 741 size_t lost; 742 size_t cnt; 743 744 read = local_read(&buffer->buffers[cpu]->pages_read); 745 lost = local_read(&buffer->buffers[cpu]->pages_lost); 746 cnt = local_read(&buffer->buffers[cpu]->pages_touched); 747 748 if (WARN_ON_ONCE(cnt < lost)) 749 return 0; 750 751 cnt -= lost; 752 753 /* The reader can read an empty page, but not more than that */ 754 if (cnt < read) { 755 WARN_ON_ONCE(read > cnt + 1); 756 return 0; 757 } 758 759 return cnt - read; 760 } 761 762 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full) 763 { 764 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 765 size_t nr_pages; 766 size_t dirty; 767 768 nr_pages = cpu_buffer->nr_pages; 769 if (!nr_pages || !full) 770 return true; 771 772 /* 773 * Add one as dirty will never equal nr_pages, as the sub-buffer 774 * that the writer is on is not counted as dirty. 775 * This is needed if "buffer_percent" is set to 100. 776 */ 777 dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1; 778 779 return (dirty * 100) >= (full * nr_pages); 780 } 781 782 /* 783 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input 784 * 785 * Schedules a delayed work to wake up any task that is blocked on the 786 * ring buffer waiters queue. 787 */ 788 static void rb_wake_up_waiters(struct irq_work *work) 789 { 790 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work); 791 792 /* For waiters waiting for the first wake up */ 793 (void)atomic_fetch_inc_release(&rbwork->seq); 794 795 wake_up_all(&rbwork->waiters); 796 if (rbwork->full_waiters_pending || rbwork->wakeup_full) { 797 /* Only cpu_buffer sets the above flags */ 798 struct ring_buffer_per_cpu *cpu_buffer = 799 container_of(rbwork, struct ring_buffer_per_cpu, irq_work); 800 801 /* Called from interrupt context */ 802 raw_spin_lock(&cpu_buffer->reader_lock); 803 rbwork->wakeup_full = false; 804 rbwork->full_waiters_pending = false; 805 806 /* Waking up all waiters, they will reset the shortest full */ 807 cpu_buffer->shortest_full = 0; 808 raw_spin_unlock(&cpu_buffer->reader_lock); 809 810 wake_up_all(&rbwork->full_waiters); 811 } 812 } 813 814 /** 815 * ring_buffer_wake_waiters - wake up any waiters on this ring buffer 816 * @buffer: The ring buffer to wake waiters on 817 * @cpu: The CPU buffer to wake waiters on 818 * 819 * In the case of a file that represents a ring buffer is closing, 820 * it is prudent to wake up any waiters that are on this. 821 */ 822 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu) 823 { 824 struct ring_buffer_per_cpu *cpu_buffer; 825 struct rb_irq_work *rbwork; 826 827 if (!buffer) 828 return; 829 830 if (cpu == RING_BUFFER_ALL_CPUS) { 831 832 /* Wake up individual ones too. One level recursion */ 833 for_each_buffer_cpu(buffer, cpu) 834 ring_buffer_wake_waiters(buffer, cpu); 835 836 rbwork = &buffer->irq_work; 837 } else { 838 if (WARN_ON_ONCE(!buffer->buffers)) 839 return; 840 if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) 841 return; 842 843 cpu_buffer = buffer->buffers[cpu]; 844 /* The CPU buffer may not have been initialized yet */ 845 if (!cpu_buffer) 846 return; 847 rbwork = &cpu_buffer->irq_work; 848 } 849 850 /* This can be called in any context */ 851 irq_work_queue(&rbwork->work); 852 } 853 854 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full) 855 { 856 struct ring_buffer_per_cpu *cpu_buffer; 857 bool ret = false; 858 859 /* Reads of all CPUs always waits for any data */ 860 if (cpu == RING_BUFFER_ALL_CPUS) 861 return !ring_buffer_empty(buffer); 862 863 cpu_buffer = buffer->buffers[cpu]; 864 865 if (!ring_buffer_empty_cpu(buffer, cpu)) { 866 unsigned long flags; 867 bool pagebusy; 868 869 if (!full) 870 return true; 871 872 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 873 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page; 874 ret = !pagebusy && full_hit(buffer, cpu, full); 875 876 if (!ret && (!cpu_buffer->shortest_full || 877 cpu_buffer->shortest_full > full)) { 878 cpu_buffer->shortest_full = full; 879 } 880 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 881 } 882 return ret; 883 } 884 885 static inline bool 886 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer, 887 int cpu, int full, ring_buffer_cond_fn cond, void *data) 888 { 889 if (rb_watermark_hit(buffer, cpu, full)) 890 return true; 891 892 if (cond(data)) 893 return true; 894 895 /* 896 * The events can happen in critical sections where 897 * checking a work queue can cause deadlocks. 898 * After adding a task to the queue, this flag is set 899 * only to notify events to try to wake up the queue 900 * using irq_work. 901 * 902 * We don't clear it even if the buffer is no longer 903 * empty. The flag only causes the next event to run 904 * irq_work to do the work queue wake up. The worse 905 * that can happen if we race with !trace_empty() is that 906 * an event will cause an irq_work to try to wake up 907 * an empty queue. 908 * 909 * There's no reason to protect this flag either, as 910 * the work queue and irq_work logic will do the necessary 911 * synchronization for the wake ups. The only thing 912 * that is necessary is that the wake up happens after 913 * a task has been queued. It's OK for spurious wake ups. 914 */ 915 if (full) 916 rbwork->full_waiters_pending = true; 917 else 918 rbwork->waiters_pending = true; 919 920 return false; 921 } 922 923 struct rb_wait_data { 924 struct rb_irq_work *irq_work; 925 int seq; 926 }; 927 928 /* 929 * The default wait condition for ring_buffer_wait() is to just to exit the 930 * wait loop the first time it is woken up. 931 */ 932 static bool rb_wait_once(void *data) 933 { 934 struct rb_wait_data *rdata = data; 935 struct rb_irq_work *rbwork = rdata->irq_work; 936 937 return atomic_read_acquire(&rbwork->seq) != rdata->seq; 938 } 939 940 /** 941 * ring_buffer_wait - wait for input to the ring buffer 942 * @buffer: buffer to wait on 943 * @cpu: the cpu buffer to wait on 944 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 945 * @cond: condition function to break out of wait (NULL to run once) 946 * @data: the data to pass to @cond. 947 * 948 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 949 * as data is added to any of the @buffer's cpu buffers. Otherwise 950 * it will wait for data to be added to a specific cpu buffer. 951 */ 952 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full, 953 ring_buffer_cond_fn cond, void *data) 954 { 955 struct ring_buffer_per_cpu *cpu_buffer; 956 struct wait_queue_head *waitq; 957 struct rb_irq_work *rbwork; 958 struct rb_wait_data rdata; 959 int ret = 0; 960 961 /* 962 * Depending on what the caller is waiting for, either any 963 * data in any cpu buffer, or a specific buffer, put the 964 * caller on the appropriate wait queue. 965 */ 966 if (cpu == RING_BUFFER_ALL_CPUS) { 967 rbwork = &buffer->irq_work; 968 /* Full only makes sense on per cpu reads */ 969 full = 0; 970 } else { 971 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 972 return -ENODEV; 973 cpu_buffer = buffer->buffers[cpu]; 974 rbwork = &cpu_buffer->irq_work; 975 } 976 977 if (full) 978 waitq = &rbwork->full_waiters; 979 else 980 waitq = &rbwork->waiters; 981 982 /* Set up to exit loop as soon as it is woken */ 983 if (!cond) { 984 cond = rb_wait_once; 985 rdata.irq_work = rbwork; 986 rdata.seq = atomic_read_acquire(&rbwork->seq); 987 data = &rdata; 988 } 989 990 ret = wait_event_interruptible((*waitq), 991 rb_wait_cond(rbwork, buffer, cpu, full, cond, data)); 992 993 return ret; 994 } 995 996 /** 997 * ring_buffer_poll_wait - poll on buffer input 998 * @buffer: buffer to wait on 999 * @cpu: the cpu buffer to wait on 1000 * @filp: the file descriptor 1001 * @poll_table: The poll descriptor 1002 * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS 1003 * 1004 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon 1005 * as data is added to any of the @buffer's cpu buffers. Otherwise 1006 * it will wait for data to be added to a specific cpu buffer. 1007 * 1008 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers, 1009 * zero otherwise. 1010 */ 1011 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu, 1012 struct file *filp, poll_table *poll_table, int full) 1013 { 1014 struct ring_buffer_per_cpu *cpu_buffer; 1015 struct rb_irq_work *rbwork; 1016 1017 if (cpu == RING_BUFFER_ALL_CPUS) { 1018 rbwork = &buffer->irq_work; 1019 full = 0; 1020 } else { 1021 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 1022 return EPOLLERR; 1023 1024 cpu_buffer = buffer->buffers[cpu]; 1025 rbwork = &cpu_buffer->irq_work; 1026 } 1027 1028 if (full) { 1029 poll_wait(filp, &rbwork->full_waiters, poll_table); 1030 1031 if (rb_watermark_hit(buffer, cpu, full)) 1032 return EPOLLIN | EPOLLRDNORM; 1033 /* 1034 * Only allow full_waiters_pending update to be seen after 1035 * the shortest_full is set (in rb_watermark_hit). If the 1036 * writer sees the full_waiters_pending flag set, it will 1037 * compare the amount in the ring buffer to shortest_full. 1038 * If the amount in the ring buffer is greater than the 1039 * shortest_full percent, it will call the irq_work handler 1040 * to wake up this list. The irq_handler will reset shortest_full 1041 * back to zero. That's done under the reader_lock, but 1042 * the below smp_mb() makes sure that the update to 1043 * full_waiters_pending doesn't leak up into the above. 1044 */ 1045 smp_mb(); 1046 rbwork->full_waiters_pending = true; 1047 return 0; 1048 } 1049 1050 poll_wait(filp, &rbwork->waiters, poll_table); 1051 rbwork->waiters_pending = true; 1052 1053 /* 1054 * There's a tight race between setting the waiters_pending and 1055 * checking if the ring buffer is empty. Once the waiters_pending bit 1056 * is set, the next event will wake the task up, but we can get stuck 1057 * if there's only a single event in. 1058 * 1059 * FIXME: Ideally, we need a memory barrier on the writer side as well, 1060 * but adding a memory barrier to all events will cause too much of a 1061 * performance hit in the fast path. We only need a memory barrier when 1062 * the buffer goes from empty to having content. But as this race is 1063 * extremely small, and it's not a problem if another event comes in, we 1064 * will fix it later. 1065 */ 1066 smp_mb(); 1067 1068 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) || 1069 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu))) 1070 return EPOLLIN | EPOLLRDNORM; 1071 return 0; 1072 } 1073 1074 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 1075 #define RB_WARN_ON(b, cond) \ 1076 ({ \ 1077 int _____ret = unlikely(cond); \ 1078 if (_____ret) { \ 1079 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 1080 struct ring_buffer_per_cpu *__b = \ 1081 (void *)b; \ 1082 atomic_inc(&__b->buffer->record_disabled); \ 1083 } else \ 1084 atomic_inc(&b->record_disabled); \ 1085 WARN_ON(1); \ 1086 } \ 1087 _____ret; \ 1088 }) 1089 1090 /* Up this if you want to test the TIME_EXTENTS and normalization */ 1091 #define DEBUG_SHIFT 0 1092 1093 static inline u64 rb_time_stamp(struct trace_buffer *buffer) 1094 { 1095 u64 ts; 1096 1097 /* Skip retpolines :-( */ 1098 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local)) 1099 ts = trace_clock_local(); 1100 else 1101 ts = buffer->clock(); 1102 1103 /* shift to debug/test normalization and TIME_EXTENTS */ 1104 return ts << DEBUG_SHIFT; 1105 } 1106 1107 u64 ring_buffer_time_stamp(struct trace_buffer *buffer) 1108 { 1109 u64 time; 1110 1111 preempt_disable_notrace(); 1112 time = rb_time_stamp(buffer); 1113 preempt_enable_notrace(); 1114 1115 return time; 1116 } 1117 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 1118 1119 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer, 1120 int cpu, u64 *ts) 1121 { 1122 /* Just stupid testing the normalize function and deltas */ 1123 *ts >>= DEBUG_SHIFT; 1124 } 1125 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 1126 1127 /* 1128 * Making the ring buffer lockless makes things tricky. 1129 * Although writes only happen on the CPU that they are on, 1130 * and they only need to worry about interrupts. Reads can 1131 * happen on any CPU. 1132 * 1133 * The reader page is always off the ring buffer, but when the 1134 * reader finishes with a page, it needs to swap its page with 1135 * a new one from the buffer. The reader needs to take from 1136 * the head (writes go to the tail). But if a writer is in overwrite 1137 * mode and wraps, it must push the head page forward. 1138 * 1139 * Here lies the problem. 1140 * 1141 * The reader must be careful to replace only the head page, and 1142 * not another one. As described at the top of the file in the 1143 * ASCII art, the reader sets its old page to point to the next 1144 * page after head. It then sets the page after head to point to 1145 * the old reader page. But if the writer moves the head page 1146 * during this operation, the reader could end up with the tail. 1147 * 1148 * We use cmpxchg to help prevent this race. We also do something 1149 * special with the page before head. We set the LSB to 1. 1150 * 1151 * When the writer must push the page forward, it will clear the 1152 * bit that points to the head page, move the head, and then set 1153 * the bit that points to the new head page. 1154 * 1155 * We also don't want an interrupt coming in and moving the head 1156 * page on another writer. Thus we use the second LSB to catch 1157 * that too. Thus: 1158 * 1159 * head->list->prev->next bit 1 bit 0 1160 * ------- ------- 1161 * Normal page 0 0 1162 * Points to head page 0 1 1163 * New head page 1 0 1164 * 1165 * Note we can not trust the prev pointer of the head page, because: 1166 * 1167 * +----+ +-----+ +-----+ 1168 * | |------>| T |---X--->| N | 1169 * | |<------| | | | 1170 * +----+ +-----+ +-----+ 1171 * ^ ^ | 1172 * | +-----+ | | 1173 * +----------| R |----------+ | 1174 * | |<-----------+ 1175 * +-----+ 1176 * 1177 * Key: ---X--> HEAD flag set in pointer 1178 * T Tail page 1179 * R Reader page 1180 * N Next page 1181 * 1182 * (see __rb_reserve_next() to see where this happens) 1183 * 1184 * What the above shows is that the reader just swapped out 1185 * the reader page with a page in the buffer, but before it 1186 * could make the new header point back to the new page added 1187 * it was preempted by a writer. The writer moved forward onto 1188 * the new page added by the reader and is about to move forward 1189 * again. 1190 * 1191 * You can see, it is legitimate for the previous pointer of 1192 * the head (or any page) not to point back to itself. But only 1193 * temporarily. 1194 */ 1195 1196 #define RB_PAGE_NORMAL 0UL 1197 #define RB_PAGE_HEAD 1UL 1198 #define RB_PAGE_UPDATE 2UL 1199 1200 1201 #define RB_FLAG_MASK 3UL 1202 1203 /* PAGE_MOVED is not part of the mask */ 1204 #define RB_PAGE_MOVED 4UL 1205 1206 /* 1207 * rb_list_head - remove any bit 1208 */ 1209 static struct list_head *rb_list_head(struct list_head *list) 1210 { 1211 unsigned long val = (unsigned long)list; 1212 1213 return (struct list_head *)(val & ~RB_FLAG_MASK); 1214 } 1215 1216 /* 1217 * rb_is_head_page - test if the given page is the head page 1218 * 1219 * Because the reader may move the head_page pointer, we can 1220 * not trust what the head page is (it may be pointing to 1221 * the reader page). But if the next page is a header page, 1222 * its flags will be non zero. 1223 */ 1224 static inline int 1225 rb_is_head_page(struct buffer_page *page, struct list_head *list) 1226 { 1227 unsigned long val; 1228 1229 val = (unsigned long)list->next; 1230 1231 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 1232 return RB_PAGE_MOVED; 1233 1234 return val & RB_FLAG_MASK; 1235 } 1236 1237 /* 1238 * rb_is_reader_page 1239 * 1240 * The unique thing about the reader page, is that, if the 1241 * writer is ever on it, the previous pointer never points 1242 * back to the reader page. 1243 */ 1244 static bool rb_is_reader_page(struct buffer_page *page) 1245 { 1246 struct list_head *list = page->list.prev; 1247 1248 return rb_list_head(list->next) != &page->list; 1249 } 1250 1251 /* 1252 * rb_set_list_to_head - set a list_head to be pointing to head. 1253 */ 1254 static void rb_set_list_to_head(struct list_head *list) 1255 { 1256 unsigned long *ptr; 1257 1258 ptr = (unsigned long *)&list->next; 1259 *ptr |= RB_PAGE_HEAD; 1260 *ptr &= ~RB_PAGE_UPDATE; 1261 } 1262 1263 /* 1264 * rb_head_page_activate - sets up head page 1265 */ 1266 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 1267 { 1268 struct buffer_page *head; 1269 1270 head = cpu_buffer->head_page; 1271 if (!head) 1272 return; 1273 1274 /* 1275 * Set the previous list pointer to have the HEAD flag. 1276 */ 1277 rb_set_list_to_head(head->list.prev); 1278 1279 if (cpu_buffer->ring_meta) { 1280 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 1281 meta->head_buffer = (unsigned long)head->page; 1282 } 1283 } 1284 1285 static void rb_list_head_clear(struct list_head *list) 1286 { 1287 unsigned long *ptr = (unsigned long *)&list->next; 1288 1289 *ptr &= ~RB_FLAG_MASK; 1290 } 1291 1292 /* 1293 * rb_head_page_deactivate - clears head page ptr (for free list) 1294 */ 1295 static void 1296 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 1297 { 1298 struct list_head *hd; 1299 1300 /* Go through the whole list and clear any pointers found. */ 1301 rb_list_head_clear(cpu_buffer->pages); 1302 1303 list_for_each(hd, cpu_buffer->pages) 1304 rb_list_head_clear(hd); 1305 } 1306 1307 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 1308 struct buffer_page *head, 1309 struct buffer_page *prev, 1310 int old_flag, int new_flag) 1311 { 1312 struct list_head *list; 1313 unsigned long val = (unsigned long)&head->list; 1314 unsigned long ret; 1315 1316 list = &prev->list; 1317 1318 val &= ~RB_FLAG_MASK; 1319 1320 ret = cmpxchg((unsigned long *)&list->next, 1321 val | old_flag, val | new_flag); 1322 1323 /* check if the reader took the page */ 1324 if ((ret & ~RB_FLAG_MASK) != val) 1325 return RB_PAGE_MOVED; 1326 1327 return ret & RB_FLAG_MASK; 1328 } 1329 1330 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 1331 struct buffer_page *head, 1332 struct buffer_page *prev, 1333 int old_flag) 1334 { 1335 return rb_head_page_set(cpu_buffer, head, prev, 1336 old_flag, RB_PAGE_UPDATE); 1337 } 1338 1339 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 1340 struct buffer_page *head, 1341 struct buffer_page *prev, 1342 int old_flag) 1343 { 1344 return rb_head_page_set(cpu_buffer, head, prev, 1345 old_flag, RB_PAGE_HEAD); 1346 } 1347 1348 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 1349 struct buffer_page *head, 1350 struct buffer_page *prev, 1351 int old_flag) 1352 { 1353 return rb_head_page_set(cpu_buffer, head, prev, 1354 old_flag, RB_PAGE_NORMAL); 1355 } 1356 1357 static inline void rb_inc_page(struct buffer_page **bpage) 1358 { 1359 struct list_head *p = rb_list_head((*bpage)->list.next); 1360 1361 *bpage = list_entry(p, struct buffer_page, list); 1362 } 1363 1364 static struct buffer_page * 1365 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 1366 { 1367 struct buffer_page *head; 1368 struct buffer_page *page; 1369 struct list_head *list; 1370 int i; 1371 1372 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 1373 return NULL; 1374 1375 /* sanity check */ 1376 list = cpu_buffer->pages; 1377 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 1378 return NULL; 1379 1380 page = head = cpu_buffer->head_page; 1381 /* 1382 * It is possible that the writer moves the header behind 1383 * where we started, and we miss in one loop. 1384 * A second loop should grab the header, but we'll do 1385 * three loops just because I'm paranoid. 1386 */ 1387 for (i = 0; i < 3; i++) { 1388 do { 1389 if (rb_is_head_page(page, page->list.prev)) { 1390 cpu_buffer->head_page = page; 1391 return page; 1392 } 1393 rb_inc_page(&page); 1394 } while (page != head); 1395 } 1396 1397 RB_WARN_ON(cpu_buffer, 1); 1398 1399 return NULL; 1400 } 1401 1402 static bool rb_head_page_replace(struct buffer_page *old, 1403 struct buffer_page *new) 1404 { 1405 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 1406 unsigned long val; 1407 1408 val = *ptr & ~RB_FLAG_MASK; 1409 val |= RB_PAGE_HEAD; 1410 1411 return try_cmpxchg(ptr, &val, (unsigned long)&new->list); 1412 } 1413 1414 /* 1415 * rb_tail_page_update - move the tail page forward 1416 */ 1417 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 1418 struct buffer_page *tail_page, 1419 struct buffer_page *next_page) 1420 { 1421 unsigned long old_entries; 1422 unsigned long old_write; 1423 1424 /* 1425 * The tail page now needs to be moved forward. 1426 * 1427 * We need to reset the tail page, but without messing 1428 * with possible erasing of data brought in by interrupts 1429 * that have moved the tail page and are currently on it. 1430 * 1431 * We add a counter to the write field to denote this. 1432 */ 1433 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 1434 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 1435 1436 /* 1437 * Just make sure we have seen our old_write and synchronize 1438 * with any interrupts that come in. 1439 */ 1440 barrier(); 1441 1442 /* 1443 * If the tail page is still the same as what we think 1444 * it is, then it is up to us to update the tail 1445 * pointer. 1446 */ 1447 if (tail_page == READ_ONCE(cpu_buffer->tail_page)) { 1448 /* Zero the write counter */ 1449 unsigned long val = old_write & ~RB_WRITE_MASK; 1450 unsigned long eval = old_entries & ~RB_WRITE_MASK; 1451 1452 /* 1453 * This will only succeed if an interrupt did 1454 * not come in and change it. In which case, we 1455 * do not want to modify it. 1456 * 1457 * We add (void) to let the compiler know that we do not care 1458 * about the return value of these functions. We use the 1459 * cmpxchg to only update if an interrupt did not already 1460 * do it for us. If the cmpxchg fails, we don't care. 1461 */ 1462 (void)local_cmpxchg(&next_page->write, old_write, val); 1463 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 1464 1465 /* 1466 * No need to worry about races with clearing out the commit. 1467 * it only can increment when a commit takes place. But that 1468 * only happens in the outer most nested commit. 1469 */ 1470 local_set(&next_page->page->commit, 0); 1471 1472 /* Either we update tail_page or an interrupt does */ 1473 if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page)) 1474 local_inc(&cpu_buffer->pages_touched); 1475 } 1476 } 1477 1478 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 1479 struct buffer_page *bpage) 1480 { 1481 unsigned long val = (unsigned long)bpage; 1482 1483 RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK); 1484 } 1485 1486 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer, 1487 struct list_head *list) 1488 { 1489 if (RB_WARN_ON(cpu_buffer, 1490 rb_list_head(rb_list_head(list->next)->prev) != list)) 1491 return false; 1492 1493 if (RB_WARN_ON(cpu_buffer, 1494 rb_list_head(rb_list_head(list->prev)->next) != list)) 1495 return false; 1496 1497 return true; 1498 } 1499 1500 /** 1501 * rb_check_pages - integrity check of buffer pages 1502 * @cpu_buffer: CPU buffer with pages to test 1503 * 1504 * As a safety measure we check to make sure the data pages have not 1505 * been corrupted. 1506 */ 1507 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 1508 { 1509 struct list_head *head, *tmp; 1510 unsigned long buffer_cnt; 1511 unsigned long flags; 1512 int nr_loops = 0; 1513 1514 /* 1515 * Walk the linked list underpinning the ring buffer and validate all 1516 * its next and prev links. 1517 * 1518 * The check acquires the reader_lock to avoid concurrent processing 1519 * with code that could be modifying the list. However, the lock cannot 1520 * be held for the entire duration of the walk, as this would make the 1521 * time when interrupts are disabled non-deterministic, dependent on the 1522 * ring buffer size. Therefore, the code releases and re-acquires the 1523 * lock after checking each page. The ring_buffer_per_cpu.cnt variable 1524 * is then used to detect if the list was modified while the lock was 1525 * not held, in which case the check needs to be restarted. 1526 * 1527 * The code attempts to perform the check at most three times before 1528 * giving up. This is acceptable because this is only a self-validation 1529 * to detect problems early on. In practice, the list modification 1530 * operations are fairly spaced, and so this check typically succeeds at 1531 * most on the second try. 1532 */ 1533 again: 1534 if (++nr_loops > 3) 1535 return; 1536 1537 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1538 head = rb_list_head(cpu_buffer->pages); 1539 if (!rb_check_links(cpu_buffer, head)) 1540 goto out_locked; 1541 buffer_cnt = cpu_buffer->cnt; 1542 tmp = head; 1543 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1544 1545 while (true) { 1546 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 1547 1548 if (buffer_cnt != cpu_buffer->cnt) { 1549 /* The list was updated, try again. */ 1550 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1551 goto again; 1552 } 1553 1554 tmp = rb_list_head(tmp->next); 1555 if (tmp == head) 1556 /* The iteration circled back, all is done. */ 1557 goto out_locked; 1558 1559 if (!rb_check_links(cpu_buffer, tmp)) 1560 goto out_locked; 1561 1562 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1563 } 1564 1565 out_locked: 1566 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 1567 } 1568 1569 /* 1570 * Take an address, add the meta data size as well as the array of 1571 * array subbuffer indexes, then align it to a subbuffer size. 1572 * 1573 * This is used to help find the next per cpu subbuffer within a mapped range. 1574 */ 1575 static unsigned long 1576 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs) 1577 { 1578 addr += sizeof(struct ring_buffer_cpu_meta) + 1579 sizeof(int) * nr_subbufs; 1580 return ALIGN(addr, subbuf_size); 1581 } 1582 1583 /* 1584 * Return the ring_buffer_meta for a given @cpu. 1585 */ 1586 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu) 1587 { 1588 int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 1589 struct ring_buffer_cpu_meta *meta; 1590 struct ring_buffer_meta *bmeta; 1591 unsigned long ptr; 1592 int nr_subbufs; 1593 1594 bmeta = buffer->meta; 1595 if (!bmeta) 1596 return NULL; 1597 1598 ptr = (unsigned long)bmeta + bmeta->buffers_offset; 1599 meta = (struct ring_buffer_cpu_meta *)ptr; 1600 1601 /* When nr_pages passed in is zero, the first meta has already been initialized */ 1602 if (!nr_pages) { 1603 nr_subbufs = meta->nr_subbufs; 1604 } else { 1605 /* Include the reader page */ 1606 nr_subbufs = nr_pages + 1; 1607 } 1608 1609 /* 1610 * The first chunk may not be subbuffer aligned, where as 1611 * the rest of the chunks are. 1612 */ 1613 if (cpu) { 1614 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs); 1615 ptr += subbuf_size * nr_subbufs; 1616 1617 /* We can use multiplication to find chunks greater than 1 */ 1618 if (cpu > 1) { 1619 unsigned long size; 1620 unsigned long p; 1621 1622 /* Save the beginning of this CPU chunk */ 1623 p = ptr; 1624 ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs); 1625 ptr += subbuf_size * nr_subbufs; 1626 1627 /* Now all chunks after this are the same size */ 1628 size = ptr - p; 1629 ptr += size * (cpu - 2); 1630 } 1631 } 1632 return (void *)ptr; 1633 } 1634 1635 /* Return the start of subbufs given the meta pointer */ 1636 static void *rb_subbufs_from_meta(struct ring_buffer_cpu_meta *meta) 1637 { 1638 int subbuf_size = meta->subbuf_size; 1639 unsigned long ptr; 1640 1641 ptr = (unsigned long)meta; 1642 ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs); 1643 1644 return (void *)ptr; 1645 } 1646 1647 /* 1648 * Return a specific sub-buffer for a given @cpu defined by @idx. 1649 */ 1650 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx) 1651 { 1652 struct ring_buffer_cpu_meta *meta; 1653 unsigned long ptr; 1654 int subbuf_size; 1655 1656 meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu); 1657 if (!meta) 1658 return NULL; 1659 1660 if (WARN_ON_ONCE(idx >= meta->nr_subbufs)) 1661 return NULL; 1662 1663 subbuf_size = meta->subbuf_size; 1664 1665 /* Map this buffer to the order that's in meta->buffers[] */ 1666 idx = meta->buffers[idx]; 1667 1668 ptr = (unsigned long)rb_subbufs_from_meta(meta); 1669 1670 ptr += subbuf_size * idx; 1671 if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end) 1672 return NULL; 1673 1674 return (void *)ptr; 1675 } 1676 1677 /* 1678 * See if the existing memory contains a valid meta section. 1679 * if so, use that, otherwise initialize it. 1680 */ 1681 static bool rb_meta_init(struct trace_buffer *buffer, int scratch_size) 1682 { 1683 unsigned long ptr = buffer->range_addr_start; 1684 struct ring_buffer_meta *bmeta; 1685 unsigned long total_size; 1686 int struct_sizes; 1687 1688 bmeta = (struct ring_buffer_meta *)ptr; 1689 buffer->meta = bmeta; 1690 1691 total_size = buffer->range_addr_end - buffer->range_addr_start; 1692 1693 struct_sizes = sizeof(struct ring_buffer_cpu_meta); 1694 struct_sizes |= sizeof(*bmeta) << 16; 1695 1696 /* The first buffer will start word size after the meta page */ 1697 ptr += sizeof(*bmeta); 1698 ptr = ALIGN(ptr, sizeof(long)); 1699 ptr += scratch_size; 1700 1701 if (bmeta->magic != RING_BUFFER_META_MAGIC) { 1702 pr_info("Ring buffer boot meta mismatch of magic\n"); 1703 goto init; 1704 } 1705 1706 if (bmeta->struct_sizes != struct_sizes) { 1707 pr_info("Ring buffer boot meta mismatch of struct size\n"); 1708 goto init; 1709 } 1710 1711 if (bmeta->total_size != total_size) { 1712 pr_info("Ring buffer boot meta mismatch of total size\n"); 1713 goto init; 1714 } 1715 1716 if (bmeta->buffers_offset > bmeta->total_size) { 1717 pr_info("Ring buffer boot meta mismatch of offset outside of total size\n"); 1718 goto init; 1719 } 1720 1721 if (bmeta->buffers_offset != (void *)ptr - (void *)bmeta) { 1722 pr_info("Ring buffer boot meta mismatch of first buffer offset\n"); 1723 goto init; 1724 } 1725 1726 return true; 1727 1728 init: 1729 bmeta->magic = RING_BUFFER_META_MAGIC; 1730 bmeta->struct_sizes = struct_sizes; 1731 bmeta->total_size = total_size; 1732 bmeta->buffers_offset = (void *)ptr - (void *)bmeta; 1733 1734 /* Zero out the scatch pad */ 1735 memset((void *)bmeta + sizeof(*bmeta), 0, bmeta->buffers_offset - sizeof(*bmeta)); 1736 1737 return false; 1738 } 1739 1740 /* 1741 * See if the existing memory contains valid ring buffer data. 1742 * As the previous kernel must be the same as this kernel, all 1743 * the calculations (size of buffers and number of buffers) 1744 * must be the same. 1745 */ 1746 static bool rb_cpu_meta_valid(struct ring_buffer_cpu_meta *meta, int cpu, 1747 struct trace_buffer *buffer, int nr_pages, 1748 unsigned long *subbuf_mask) 1749 { 1750 int subbuf_size = PAGE_SIZE; 1751 struct buffer_data_page *subbuf; 1752 unsigned long buffers_start; 1753 unsigned long buffers_end; 1754 int i; 1755 1756 if (!subbuf_mask) 1757 return false; 1758 1759 buffers_start = meta->first_buffer; 1760 buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs); 1761 1762 /* Is the head and commit buffers within the range of buffers? */ 1763 if (meta->head_buffer < buffers_start || 1764 meta->head_buffer >= buffers_end) { 1765 pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu); 1766 return false; 1767 } 1768 1769 if (meta->commit_buffer < buffers_start || 1770 meta->commit_buffer >= buffers_end) { 1771 pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu); 1772 return false; 1773 } 1774 1775 subbuf = rb_subbufs_from_meta(meta); 1776 1777 bitmap_clear(subbuf_mask, 0, meta->nr_subbufs); 1778 1779 /* Is the meta buffers and the subbufs themselves have correct data? */ 1780 for (i = 0; i < meta->nr_subbufs; i++) { 1781 if (meta->buffers[i] < 0 || 1782 meta->buffers[i] >= meta->nr_subbufs) { 1783 pr_info("Ring buffer boot meta [%d] array out of range\n", cpu); 1784 return false; 1785 } 1786 1787 if ((unsigned)local_read(&subbuf->commit) > subbuf_size) { 1788 pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu); 1789 return false; 1790 } 1791 1792 if (test_bit(meta->buffers[i], subbuf_mask)) { 1793 pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu); 1794 return false; 1795 } 1796 1797 set_bit(meta->buffers[i], subbuf_mask); 1798 subbuf = (void *)subbuf + subbuf_size; 1799 } 1800 1801 return true; 1802 } 1803 1804 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf); 1805 1806 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu, 1807 unsigned long long *timestamp, u64 *delta_ptr) 1808 { 1809 struct ring_buffer_event *event; 1810 u64 ts, delta; 1811 int events = 0; 1812 int e; 1813 1814 *delta_ptr = 0; 1815 *timestamp = 0; 1816 1817 ts = dpage->time_stamp; 1818 1819 for (e = 0; e < tail; e += rb_event_length(event)) { 1820 1821 event = (struct ring_buffer_event *)(dpage->data + e); 1822 1823 switch (event->type_len) { 1824 1825 case RINGBUF_TYPE_TIME_EXTEND: 1826 delta = rb_event_time_stamp(event); 1827 ts += delta; 1828 break; 1829 1830 case RINGBUF_TYPE_TIME_STAMP: 1831 delta = rb_event_time_stamp(event); 1832 delta = rb_fix_abs_ts(delta, ts); 1833 if (delta < ts) { 1834 *delta_ptr = delta; 1835 *timestamp = ts; 1836 return -1; 1837 } 1838 ts = delta; 1839 break; 1840 1841 case RINGBUF_TYPE_PADDING: 1842 if (event->time_delta == 1) 1843 break; 1844 fallthrough; 1845 case RINGBUF_TYPE_DATA: 1846 events++; 1847 ts += event->time_delta; 1848 break; 1849 1850 default: 1851 return -1; 1852 } 1853 } 1854 *timestamp = ts; 1855 return events; 1856 } 1857 1858 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu) 1859 { 1860 unsigned long long ts; 1861 u64 delta; 1862 int tail; 1863 1864 tail = local_read(&dpage->commit); 1865 return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta); 1866 } 1867 1868 /* If the meta data has been validated, now validate the events */ 1869 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer) 1870 { 1871 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 1872 struct buffer_page *head_page; 1873 unsigned long entry_bytes = 0; 1874 unsigned long entries = 0; 1875 int ret; 1876 int i; 1877 1878 if (!meta || !meta->head_buffer) 1879 return; 1880 1881 /* Do the reader page first */ 1882 ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu); 1883 if (ret < 0) { 1884 pr_info("Ring buffer reader page is invalid\n"); 1885 goto invalid; 1886 } 1887 entries += ret; 1888 entry_bytes += local_read(&cpu_buffer->reader_page->page->commit); 1889 local_set(&cpu_buffer->reader_page->entries, ret); 1890 1891 head_page = cpu_buffer->head_page; 1892 1893 /* If both the head and commit are on the reader_page then we are done. */ 1894 if (head_page == cpu_buffer->reader_page && 1895 head_page == cpu_buffer->commit_page) 1896 goto done; 1897 1898 /* Iterate until finding the commit page */ 1899 for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) { 1900 1901 /* Reader page has already been done */ 1902 if (head_page == cpu_buffer->reader_page) 1903 continue; 1904 1905 ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu); 1906 if (ret < 0) { 1907 pr_info("Ring buffer meta [%d] invalid buffer page\n", 1908 cpu_buffer->cpu); 1909 goto invalid; 1910 } 1911 1912 /* If the buffer has content, update pages_touched */ 1913 if (ret) 1914 local_inc(&cpu_buffer->pages_touched); 1915 1916 entries += ret; 1917 entry_bytes += local_read(&head_page->page->commit); 1918 local_set(&cpu_buffer->head_page->entries, ret); 1919 1920 if (head_page == cpu_buffer->commit_page) 1921 break; 1922 } 1923 1924 if (head_page != cpu_buffer->commit_page) { 1925 pr_info("Ring buffer meta [%d] commit page not found\n", 1926 cpu_buffer->cpu); 1927 goto invalid; 1928 } 1929 done: 1930 local_set(&cpu_buffer->entries, entries); 1931 local_set(&cpu_buffer->entries_bytes, entry_bytes); 1932 1933 pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu); 1934 return; 1935 1936 invalid: 1937 /* The content of the buffers are invalid, reset the meta data */ 1938 meta->head_buffer = 0; 1939 meta->commit_buffer = 0; 1940 1941 /* Reset the reader page */ 1942 local_set(&cpu_buffer->reader_page->entries, 0); 1943 local_set(&cpu_buffer->reader_page->page->commit, 0); 1944 1945 /* Reset all the subbuffers */ 1946 for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) { 1947 local_set(&head_page->entries, 0); 1948 local_set(&head_page->page->commit, 0); 1949 } 1950 } 1951 1952 static void rb_meta_init_text_addr(struct ring_buffer_cpu_meta *meta) 1953 { 1954 #ifdef CONFIG_RANDOMIZE_BASE 1955 meta->kaslr_addr = kaslr_offset(); 1956 #else 1957 meta->kaslr_addr = 0; 1958 #endif 1959 } 1960 1961 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages, int scratch_size) 1962 { 1963 struct ring_buffer_cpu_meta *meta; 1964 struct ring_buffer_meta *bmeta; 1965 unsigned long *subbuf_mask; 1966 unsigned long delta; 1967 void *subbuf; 1968 bool valid = false; 1969 int cpu; 1970 int i; 1971 1972 /* Create a mask to test the subbuf array */ 1973 subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL); 1974 /* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */ 1975 1976 if (rb_meta_init(buffer, scratch_size)) 1977 valid = true; 1978 1979 bmeta = buffer->meta; 1980 1981 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 1982 void *next_meta; 1983 1984 meta = rb_range_meta(buffer, nr_pages, cpu); 1985 1986 if (valid && rb_cpu_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) { 1987 /* Make the mappings match the current address */ 1988 subbuf = rb_subbufs_from_meta(meta); 1989 delta = (unsigned long)subbuf - meta->first_buffer; 1990 meta->first_buffer += delta; 1991 meta->head_buffer += delta; 1992 meta->commit_buffer += delta; 1993 buffer->kaslr_addr = meta->kaslr_addr; 1994 continue; 1995 } 1996 1997 if (cpu < nr_cpu_ids - 1) 1998 next_meta = rb_range_meta(buffer, nr_pages, cpu + 1); 1999 else 2000 next_meta = (void *)buffer->range_addr_end; 2001 2002 memset(meta, 0, next_meta - (void *)meta); 2003 2004 meta->nr_subbufs = nr_pages + 1; 2005 meta->subbuf_size = PAGE_SIZE; 2006 2007 subbuf = rb_subbufs_from_meta(meta); 2008 2009 meta->first_buffer = (unsigned long)subbuf; 2010 rb_meta_init_text_addr(meta); 2011 2012 /* 2013 * The buffers[] array holds the order of the sub-buffers 2014 * that are after the meta data. The sub-buffers may 2015 * be swapped out when read and inserted into a different 2016 * location of the ring buffer. Although their addresses 2017 * remain the same, the buffers[] array contains the 2018 * index into the sub-buffers holding their actual order. 2019 */ 2020 for (i = 0; i < meta->nr_subbufs; i++) { 2021 meta->buffers[i] = i; 2022 rb_init_page(subbuf); 2023 subbuf += meta->subbuf_size; 2024 } 2025 } 2026 bitmap_free(subbuf_mask); 2027 } 2028 2029 static void *rbm_start(struct seq_file *m, loff_t *pos) 2030 { 2031 struct ring_buffer_per_cpu *cpu_buffer = m->private; 2032 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 2033 unsigned long val; 2034 2035 if (!meta) 2036 return NULL; 2037 2038 if (*pos > meta->nr_subbufs) 2039 return NULL; 2040 2041 val = *pos; 2042 val++; 2043 2044 return (void *)val; 2045 } 2046 2047 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos) 2048 { 2049 (*pos)++; 2050 2051 return rbm_start(m, pos); 2052 } 2053 2054 static int rbm_show(struct seq_file *m, void *v) 2055 { 2056 struct ring_buffer_per_cpu *cpu_buffer = m->private; 2057 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 2058 unsigned long val = (unsigned long)v; 2059 2060 if (val == 1) { 2061 seq_printf(m, "head_buffer: %d\n", 2062 rb_meta_subbuf_idx(meta, (void *)meta->head_buffer)); 2063 seq_printf(m, "commit_buffer: %d\n", 2064 rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer)); 2065 seq_printf(m, "subbuf_size: %d\n", meta->subbuf_size); 2066 seq_printf(m, "nr_subbufs: %d\n", meta->nr_subbufs); 2067 return 0; 2068 } 2069 2070 val -= 2; 2071 seq_printf(m, "buffer[%ld]: %d\n", val, meta->buffers[val]); 2072 2073 return 0; 2074 } 2075 2076 static void rbm_stop(struct seq_file *m, void *p) 2077 { 2078 } 2079 2080 static const struct seq_operations rb_meta_seq_ops = { 2081 .start = rbm_start, 2082 .next = rbm_next, 2083 .show = rbm_show, 2084 .stop = rbm_stop, 2085 }; 2086 2087 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu) 2088 { 2089 struct seq_file *m; 2090 int ret; 2091 2092 ret = seq_open(file, &rb_meta_seq_ops); 2093 if (ret) 2094 return ret; 2095 2096 m = file->private_data; 2097 m->private = buffer->buffers[cpu]; 2098 2099 return 0; 2100 } 2101 2102 /* Map the buffer_pages to the previous head and commit pages */ 2103 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer, 2104 struct buffer_page *bpage) 2105 { 2106 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 2107 2108 if (meta->head_buffer == (unsigned long)bpage->page) 2109 cpu_buffer->head_page = bpage; 2110 2111 if (meta->commit_buffer == (unsigned long)bpage->page) { 2112 cpu_buffer->commit_page = bpage; 2113 cpu_buffer->tail_page = bpage; 2114 } 2115 } 2116 2117 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 2118 long nr_pages, struct list_head *pages) 2119 { 2120 struct trace_buffer *buffer = cpu_buffer->buffer; 2121 struct ring_buffer_cpu_meta *meta = NULL; 2122 struct buffer_page *bpage, *tmp; 2123 bool user_thread = current->mm != NULL; 2124 gfp_t mflags; 2125 long i; 2126 2127 /* 2128 * Check if the available memory is there first. 2129 * Note, si_mem_available() only gives us a rough estimate of available 2130 * memory. It may not be accurate. But we don't care, we just want 2131 * to prevent doing any allocation when it is obvious that it is 2132 * not going to succeed. 2133 */ 2134 i = si_mem_available(); 2135 if (i < nr_pages) 2136 return -ENOMEM; 2137 2138 /* 2139 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails 2140 * gracefully without invoking oom-killer and the system is not 2141 * destabilized. 2142 */ 2143 mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL; 2144 2145 /* 2146 * If a user thread allocates too much, and si_mem_available() 2147 * reports there's enough memory, even though there is not. 2148 * Make sure the OOM killer kills this thread. This can happen 2149 * even with RETRY_MAYFAIL because another task may be doing 2150 * an allocation after this task has taken all memory. 2151 * This is the task the OOM killer needs to take out during this 2152 * loop, even if it was triggered by an allocation somewhere else. 2153 */ 2154 if (user_thread) 2155 set_current_oom_origin(); 2156 2157 if (buffer->range_addr_start) 2158 meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu); 2159 2160 for (i = 0; i < nr_pages; i++) { 2161 struct page *page; 2162 2163 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 2164 mflags, cpu_to_node(cpu_buffer->cpu)); 2165 if (!bpage) 2166 goto free_pages; 2167 2168 rb_check_bpage(cpu_buffer, bpage); 2169 2170 /* 2171 * Append the pages as for mapped buffers we want to keep 2172 * the order 2173 */ 2174 list_add_tail(&bpage->list, pages); 2175 2176 if (meta) { 2177 /* A range was given. Use that for the buffer page */ 2178 bpage->page = rb_range_buffer(cpu_buffer, i + 1); 2179 if (!bpage->page) 2180 goto free_pages; 2181 /* If this is valid from a previous boot */ 2182 if (meta->head_buffer) 2183 rb_meta_buffer_update(cpu_buffer, bpage); 2184 bpage->range = 1; 2185 bpage->id = i + 1; 2186 } else { 2187 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), 2188 mflags | __GFP_COMP | __GFP_ZERO, 2189 cpu_buffer->buffer->subbuf_order); 2190 if (!page) 2191 goto free_pages; 2192 bpage->page = page_address(page); 2193 rb_init_page(bpage->page); 2194 } 2195 bpage->order = cpu_buffer->buffer->subbuf_order; 2196 2197 if (user_thread && fatal_signal_pending(current)) 2198 goto free_pages; 2199 } 2200 if (user_thread) 2201 clear_current_oom_origin(); 2202 2203 return 0; 2204 2205 free_pages: 2206 list_for_each_entry_safe(bpage, tmp, pages, list) { 2207 list_del_init(&bpage->list); 2208 free_buffer_page(bpage); 2209 } 2210 if (user_thread) 2211 clear_current_oom_origin(); 2212 2213 return -ENOMEM; 2214 } 2215 2216 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 2217 unsigned long nr_pages) 2218 { 2219 LIST_HEAD(pages); 2220 2221 WARN_ON(!nr_pages); 2222 2223 if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages)) 2224 return -ENOMEM; 2225 2226 /* 2227 * The ring buffer page list is a circular list that does not 2228 * start and end with a list head. All page list items point to 2229 * other pages. 2230 */ 2231 cpu_buffer->pages = pages.next; 2232 list_del(&pages); 2233 2234 cpu_buffer->nr_pages = nr_pages; 2235 2236 rb_check_pages(cpu_buffer); 2237 2238 return 0; 2239 } 2240 2241 static struct ring_buffer_per_cpu * 2242 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu) 2243 { 2244 struct ring_buffer_per_cpu *cpu_buffer; 2245 struct ring_buffer_cpu_meta *meta; 2246 struct buffer_page *bpage; 2247 struct page *page; 2248 int ret; 2249 2250 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 2251 GFP_KERNEL, cpu_to_node(cpu)); 2252 if (!cpu_buffer) 2253 return NULL; 2254 2255 cpu_buffer->cpu = cpu; 2256 cpu_buffer->buffer = buffer; 2257 raw_spin_lock_init(&cpu_buffer->reader_lock); 2258 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 2259 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 2260 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler); 2261 init_completion(&cpu_buffer->update_done); 2262 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters); 2263 init_waitqueue_head(&cpu_buffer->irq_work.waiters); 2264 init_waitqueue_head(&cpu_buffer->irq_work.full_waiters); 2265 mutex_init(&cpu_buffer->mapping_lock); 2266 2267 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 2268 GFP_KERNEL, cpu_to_node(cpu)); 2269 if (!bpage) 2270 goto fail_free_buffer; 2271 2272 rb_check_bpage(cpu_buffer, bpage); 2273 2274 cpu_buffer->reader_page = bpage; 2275 2276 if (buffer->range_addr_start) { 2277 /* 2278 * Range mapped buffers have the same restrictions as memory 2279 * mapped ones do. 2280 */ 2281 cpu_buffer->mapped = 1; 2282 cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu); 2283 bpage->page = rb_range_buffer(cpu_buffer, 0); 2284 if (!bpage->page) 2285 goto fail_free_reader; 2286 if (cpu_buffer->ring_meta->head_buffer) 2287 rb_meta_buffer_update(cpu_buffer, bpage); 2288 bpage->range = 1; 2289 } else { 2290 page = alloc_pages_node(cpu_to_node(cpu), 2291 GFP_KERNEL | __GFP_COMP | __GFP_ZERO, 2292 cpu_buffer->buffer->subbuf_order); 2293 if (!page) 2294 goto fail_free_reader; 2295 bpage->page = page_address(page); 2296 rb_init_page(bpage->page); 2297 } 2298 2299 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 2300 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2301 2302 ret = rb_allocate_pages(cpu_buffer, nr_pages); 2303 if (ret < 0) 2304 goto fail_free_reader; 2305 2306 rb_meta_validate_events(cpu_buffer); 2307 2308 /* If the boot meta was valid then this has already been updated */ 2309 meta = cpu_buffer->ring_meta; 2310 if (!meta || !meta->head_buffer || 2311 !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) { 2312 if (meta && meta->head_buffer && 2313 (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) { 2314 pr_warn("Ring buffer meta buffers not all mapped\n"); 2315 if (!cpu_buffer->head_page) 2316 pr_warn(" Missing head_page\n"); 2317 if (!cpu_buffer->commit_page) 2318 pr_warn(" Missing commit_page\n"); 2319 if (!cpu_buffer->tail_page) 2320 pr_warn(" Missing tail_page\n"); 2321 } 2322 2323 cpu_buffer->head_page 2324 = list_entry(cpu_buffer->pages, struct buffer_page, list); 2325 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 2326 2327 rb_head_page_activate(cpu_buffer); 2328 2329 if (cpu_buffer->ring_meta) 2330 meta->commit_buffer = meta->head_buffer; 2331 } else { 2332 /* The valid meta buffer still needs to activate the head page */ 2333 rb_head_page_activate(cpu_buffer); 2334 } 2335 2336 return cpu_buffer; 2337 2338 fail_free_reader: 2339 free_buffer_page(cpu_buffer->reader_page); 2340 2341 fail_free_buffer: 2342 kfree(cpu_buffer); 2343 return NULL; 2344 } 2345 2346 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 2347 { 2348 struct list_head *head = cpu_buffer->pages; 2349 struct buffer_page *bpage, *tmp; 2350 2351 irq_work_sync(&cpu_buffer->irq_work.work); 2352 2353 free_buffer_page(cpu_buffer->reader_page); 2354 2355 if (head) { 2356 rb_head_page_deactivate(cpu_buffer); 2357 2358 list_for_each_entry_safe(bpage, tmp, head, list) { 2359 list_del_init(&bpage->list); 2360 free_buffer_page(bpage); 2361 } 2362 bpage = list_entry(head, struct buffer_page, list); 2363 free_buffer_page(bpage); 2364 } 2365 2366 free_page((unsigned long)cpu_buffer->free_page); 2367 2368 kfree(cpu_buffer); 2369 } 2370 2371 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags, 2372 int order, unsigned long start, 2373 unsigned long end, 2374 unsigned long scratch_size, 2375 struct lock_class_key *key) 2376 { 2377 struct trace_buffer *buffer; 2378 long nr_pages; 2379 int subbuf_size; 2380 int bsize; 2381 int cpu; 2382 int ret; 2383 2384 /* keep it in its own cache line */ 2385 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 2386 GFP_KERNEL); 2387 if (!buffer) 2388 return NULL; 2389 2390 if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 2391 goto fail_free_buffer; 2392 2393 buffer->subbuf_order = order; 2394 subbuf_size = (PAGE_SIZE << order); 2395 buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE; 2396 2397 /* Max payload is buffer page size - header (8bytes) */ 2398 buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2); 2399 2400 buffer->flags = flags; 2401 buffer->clock = trace_clock_local; 2402 buffer->reader_lock_key = key; 2403 2404 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters); 2405 init_waitqueue_head(&buffer->irq_work.waiters); 2406 2407 buffer->cpus = nr_cpu_ids; 2408 2409 bsize = sizeof(void *) * nr_cpu_ids; 2410 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 2411 GFP_KERNEL); 2412 if (!buffer->buffers) 2413 goto fail_free_cpumask; 2414 2415 /* If start/end are specified, then that overrides size */ 2416 if (start && end) { 2417 unsigned long buffers_start; 2418 unsigned long ptr; 2419 int n; 2420 2421 /* Make sure that start is word aligned */ 2422 start = ALIGN(start, sizeof(long)); 2423 2424 /* scratch_size needs to be aligned too */ 2425 scratch_size = ALIGN(scratch_size, sizeof(long)); 2426 2427 /* Subtract the buffer meta data and word aligned */ 2428 buffers_start = start + sizeof(struct ring_buffer_cpu_meta); 2429 buffers_start = ALIGN(buffers_start, sizeof(long)); 2430 buffers_start += scratch_size; 2431 2432 /* Calculate the size for the per CPU data */ 2433 size = end - buffers_start; 2434 size = size / nr_cpu_ids; 2435 2436 /* 2437 * The number of sub-buffers (nr_pages) is determined by the 2438 * total size allocated minus the meta data size. 2439 * Then that is divided by the number of per CPU buffers 2440 * needed, plus account for the integer array index that 2441 * will be appended to the meta data. 2442 */ 2443 nr_pages = (size - sizeof(struct ring_buffer_cpu_meta)) / 2444 (subbuf_size + sizeof(int)); 2445 /* Need at least two pages plus the reader page */ 2446 if (nr_pages < 3) 2447 goto fail_free_buffers; 2448 2449 again: 2450 /* Make sure that the size fits aligned */ 2451 for (n = 0, ptr = buffers_start; n < nr_cpu_ids; n++) { 2452 ptr += sizeof(struct ring_buffer_cpu_meta) + 2453 sizeof(int) * nr_pages; 2454 ptr = ALIGN(ptr, subbuf_size); 2455 ptr += subbuf_size * nr_pages; 2456 } 2457 if (ptr > end) { 2458 if (nr_pages <= 3) 2459 goto fail_free_buffers; 2460 nr_pages--; 2461 goto again; 2462 } 2463 2464 /* nr_pages should not count the reader page */ 2465 nr_pages--; 2466 buffer->range_addr_start = start; 2467 buffer->range_addr_end = end; 2468 2469 rb_range_meta_init(buffer, nr_pages, scratch_size); 2470 } else { 2471 2472 /* need at least two pages */ 2473 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 2474 if (nr_pages < 2) 2475 nr_pages = 2; 2476 } 2477 2478 cpu = raw_smp_processor_id(); 2479 cpumask_set_cpu(cpu, buffer->cpumask); 2480 buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 2481 if (!buffer->buffers[cpu]) 2482 goto fail_free_buffers; 2483 2484 ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 2485 if (ret < 0) 2486 goto fail_free_buffers; 2487 2488 mutex_init(&buffer->mutex); 2489 2490 return buffer; 2491 2492 fail_free_buffers: 2493 for_each_buffer_cpu(buffer, cpu) { 2494 if (buffer->buffers[cpu]) 2495 rb_free_cpu_buffer(buffer->buffers[cpu]); 2496 } 2497 kfree(buffer->buffers); 2498 2499 fail_free_cpumask: 2500 free_cpumask_var(buffer->cpumask); 2501 2502 fail_free_buffer: 2503 kfree(buffer); 2504 return NULL; 2505 } 2506 2507 /** 2508 * __ring_buffer_alloc - allocate a new ring_buffer 2509 * @size: the size in bytes per cpu that is needed. 2510 * @flags: attributes to set for the ring buffer. 2511 * @key: ring buffer reader_lock_key. 2512 * 2513 * Currently the only flag that is available is the RB_FL_OVERWRITE 2514 * flag. This flag means that the buffer will overwrite old data 2515 * when the buffer wraps. If this flag is not set, the buffer will 2516 * drop data when the tail hits the head. 2517 */ 2518 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 2519 struct lock_class_key *key) 2520 { 2521 /* Default buffer page size - one system page */ 2522 return alloc_buffer(size, flags, 0, 0, 0, 0, key); 2523 2524 } 2525 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 2526 2527 /** 2528 * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory 2529 * @size: the size in bytes per cpu that is needed. 2530 * @flags: attributes to set for the ring buffer. 2531 * @order: sub-buffer order 2532 * @start: start of allocated range 2533 * @range_size: size of allocated range 2534 * @scratch_size: size of scratch area (for preallocated memory buffers) 2535 * @key: ring buffer reader_lock_key. 2536 * 2537 * Currently the only flag that is available is the RB_FL_OVERWRITE 2538 * flag. This flag means that the buffer will overwrite old data 2539 * when the buffer wraps. If this flag is not set, the buffer will 2540 * drop data when the tail hits the head. 2541 */ 2542 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags, 2543 int order, unsigned long start, 2544 unsigned long range_size, 2545 unsigned long scratch_size, 2546 struct lock_class_key *key) 2547 { 2548 return alloc_buffer(size, flags, order, start, start + range_size, 2549 scratch_size, key); 2550 } 2551 2552 /** 2553 * ring_buffer_last_boot_delta - return the delta offset from last boot 2554 * @buffer: The buffer to return the delta from 2555 * @text: Return text delta 2556 * @data: Return data delta 2557 * 2558 * Returns: The true if the delta is non zero 2559 */ 2560 bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, unsigned long *kaslr_addr) 2561 { 2562 if (!buffer) 2563 return false; 2564 2565 if (!buffer->kaslr_addr) 2566 return false; 2567 2568 *kaslr_addr = buffer->kaslr_addr; 2569 2570 return true; 2571 } 2572 2573 void *ring_buffer_meta_scratch(struct trace_buffer *buffer, unsigned int *size) 2574 { 2575 if (!buffer || !buffer->meta) 2576 return NULL; 2577 2578 *size = PAGE_SIZE - sizeof(*buffer->meta); 2579 2580 return (void *)buffer->meta + sizeof(*buffer->meta); 2581 } 2582 2583 /** 2584 * ring_buffer_free - free a ring buffer. 2585 * @buffer: the buffer to free. 2586 */ 2587 void 2588 ring_buffer_free(struct trace_buffer *buffer) 2589 { 2590 int cpu; 2591 2592 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node); 2593 2594 irq_work_sync(&buffer->irq_work.work); 2595 2596 for_each_buffer_cpu(buffer, cpu) 2597 rb_free_cpu_buffer(buffer->buffers[cpu]); 2598 2599 kfree(buffer->buffers); 2600 free_cpumask_var(buffer->cpumask); 2601 2602 kfree(buffer); 2603 } 2604 EXPORT_SYMBOL_GPL(ring_buffer_free); 2605 2606 void ring_buffer_set_clock(struct trace_buffer *buffer, 2607 u64 (*clock)(void)) 2608 { 2609 buffer->clock = clock; 2610 } 2611 2612 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs) 2613 { 2614 buffer->time_stamp_abs = abs; 2615 } 2616 2617 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer) 2618 { 2619 return buffer->time_stamp_abs; 2620 } 2621 2622 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 2623 { 2624 return local_read(&bpage->entries) & RB_WRITE_MASK; 2625 } 2626 2627 static inline unsigned long rb_page_write(struct buffer_page *bpage) 2628 { 2629 return local_read(&bpage->write) & RB_WRITE_MASK; 2630 } 2631 2632 static bool 2633 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages) 2634 { 2635 struct list_head *tail_page, *to_remove, *next_page; 2636 struct buffer_page *to_remove_page, *tmp_iter_page; 2637 struct buffer_page *last_page, *first_page; 2638 unsigned long nr_removed; 2639 unsigned long head_bit; 2640 int page_entries; 2641 2642 head_bit = 0; 2643 2644 raw_spin_lock_irq(&cpu_buffer->reader_lock); 2645 atomic_inc(&cpu_buffer->record_disabled); 2646 /* 2647 * We don't race with the readers since we have acquired the reader 2648 * lock. We also don't race with writers after disabling recording. 2649 * This makes it easy to figure out the first and the last page to be 2650 * removed from the list. We unlink all the pages in between including 2651 * the first and last pages. This is done in a busy loop so that we 2652 * lose the least number of traces. 2653 * The pages are freed after we restart recording and unlock readers. 2654 */ 2655 tail_page = &cpu_buffer->tail_page->list; 2656 2657 /* 2658 * tail page might be on reader page, we remove the next page 2659 * from the ring buffer 2660 */ 2661 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 2662 tail_page = rb_list_head(tail_page->next); 2663 to_remove = tail_page; 2664 2665 /* start of pages to remove */ 2666 first_page = list_entry(rb_list_head(to_remove->next), 2667 struct buffer_page, list); 2668 2669 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) { 2670 to_remove = rb_list_head(to_remove)->next; 2671 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD; 2672 } 2673 /* Read iterators need to reset themselves when some pages removed */ 2674 cpu_buffer->pages_removed += nr_removed; 2675 2676 next_page = rb_list_head(to_remove)->next; 2677 2678 /* 2679 * Now we remove all pages between tail_page and next_page. 2680 * Make sure that we have head_bit value preserved for the 2681 * next page 2682 */ 2683 tail_page->next = (struct list_head *)((unsigned long)next_page | 2684 head_bit); 2685 next_page = rb_list_head(next_page); 2686 next_page->prev = tail_page; 2687 2688 /* make sure pages points to a valid page in the ring buffer */ 2689 cpu_buffer->pages = next_page; 2690 cpu_buffer->cnt++; 2691 2692 /* update head page */ 2693 if (head_bit) 2694 cpu_buffer->head_page = list_entry(next_page, 2695 struct buffer_page, list); 2696 2697 /* pages are removed, resume tracing and then free the pages */ 2698 atomic_dec(&cpu_buffer->record_disabled); 2699 raw_spin_unlock_irq(&cpu_buffer->reader_lock); 2700 2701 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)); 2702 2703 /* last buffer page to remove */ 2704 last_page = list_entry(rb_list_head(to_remove), struct buffer_page, 2705 list); 2706 tmp_iter_page = first_page; 2707 2708 do { 2709 cond_resched(); 2710 2711 to_remove_page = tmp_iter_page; 2712 rb_inc_page(&tmp_iter_page); 2713 2714 /* update the counters */ 2715 page_entries = rb_page_entries(to_remove_page); 2716 if (page_entries) { 2717 /* 2718 * If something was added to this page, it was full 2719 * since it is not the tail page. So we deduct the 2720 * bytes consumed in ring buffer from here. 2721 * Increment overrun to account for the lost events. 2722 */ 2723 local_add(page_entries, &cpu_buffer->overrun); 2724 local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes); 2725 local_inc(&cpu_buffer->pages_lost); 2726 } 2727 2728 /* 2729 * We have already removed references to this list item, just 2730 * free up the buffer_page and its page 2731 */ 2732 free_buffer_page(to_remove_page); 2733 nr_removed--; 2734 2735 } while (to_remove_page != last_page); 2736 2737 RB_WARN_ON(cpu_buffer, nr_removed); 2738 2739 return nr_removed == 0; 2740 } 2741 2742 static bool 2743 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer) 2744 { 2745 struct list_head *pages = &cpu_buffer->new_pages; 2746 unsigned long flags; 2747 bool success; 2748 int retries; 2749 2750 /* Can be called at early boot up, where interrupts must not been enabled */ 2751 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2752 /* 2753 * We are holding the reader lock, so the reader page won't be swapped 2754 * in the ring buffer. Now we are racing with the writer trying to 2755 * move head page and the tail page. 2756 * We are going to adapt the reader page update process where: 2757 * 1. We first splice the start and end of list of new pages between 2758 * the head page and its previous page. 2759 * 2. We cmpxchg the prev_page->next to point from head page to the 2760 * start of new pages list. 2761 * 3. Finally, we update the head->prev to the end of new list. 2762 * 2763 * We will try this process 10 times, to make sure that we don't keep 2764 * spinning. 2765 */ 2766 retries = 10; 2767 success = false; 2768 while (retries--) { 2769 struct list_head *head_page, *prev_page; 2770 struct list_head *last_page, *first_page; 2771 struct list_head *head_page_with_bit; 2772 struct buffer_page *hpage = rb_set_head_page(cpu_buffer); 2773 2774 if (!hpage) 2775 break; 2776 head_page = &hpage->list; 2777 prev_page = head_page->prev; 2778 2779 first_page = pages->next; 2780 last_page = pages->prev; 2781 2782 head_page_with_bit = (struct list_head *) 2783 ((unsigned long)head_page | RB_PAGE_HEAD); 2784 2785 last_page->next = head_page_with_bit; 2786 first_page->prev = prev_page; 2787 2788 /* caution: head_page_with_bit gets updated on cmpxchg failure */ 2789 if (try_cmpxchg(&prev_page->next, 2790 &head_page_with_bit, first_page)) { 2791 /* 2792 * yay, we replaced the page pointer to our new list, 2793 * now, we just have to update to head page's prev 2794 * pointer to point to end of list 2795 */ 2796 head_page->prev = last_page; 2797 cpu_buffer->cnt++; 2798 success = true; 2799 break; 2800 } 2801 } 2802 2803 if (success) 2804 INIT_LIST_HEAD(pages); 2805 /* 2806 * If we weren't successful in adding in new pages, warn and stop 2807 * tracing 2808 */ 2809 RB_WARN_ON(cpu_buffer, !success); 2810 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2811 2812 /* free pages if they weren't inserted */ 2813 if (!success) { 2814 struct buffer_page *bpage, *tmp; 2815 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 2816 list) { 2817 list_del_init(&bpage->list); 2818 free_buffer_page(bpage); 2819 } 2820 } 2821 return success; 2822 } 2823 2824 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer) 2825 { 2826 bool success; 2827 2828 if (cpu_buffer->nr_pages_to_update > 0) 2829 success = rb_insert_pages(cpu_buffer); 2830 else 2831 success = rb_remove_pages(cpu_buffer, 2832 -cpu_buffer->nr_pages_to_update); 2833 2834 if (success) 2835 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update; 2836 } 2837 2838 static void update_pages_handler(struct work_struct *work) 2839 { 2840 struct ring_buffer_per_cpu *cpu_buffer = container_of(work, 2841 struct ring_buffer_per_cpu, update_pages_work); 2842 rb_update_pages(cpu_buffer); 2843 complete(&cpu_buffer->update_done); 2844 } 2845 2846 /** 2847 * ring_buffer_resize - resize the ring buffer 2848 * @buffer: the buffer to resize. 2849 * @size: the new size. 2850 * @cpu_id: the cpu buffer to resize 2851 * 2852 * Minimum size is 2 * buffer->subbuf_size. 2853 * 2854 * Returns 0 on success and < 0 on failure. 2855 */ 2856 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size, 2857 int cpu_id) 2858 { 2859 struct ring_buffer_per_cpu *cpu_buffer; 2860 unsigned long nr_pages; 2861 int cpu, err; 2862 2863 /* 2864 * Always succeed at resizing a non-existent buffer: 2865 */ 2866 if (!buffer) 2867 return 0; 2868 2869 /* Make sure the requested buffer exists */ 2870 if (cpu_id != RING_BUFFER_ALL_CPUS && 2871 !cpumask_test_cpu(cpu_id, buffer->cpumask)) 2872 return 0; 2873 2874 nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size); 2875 2876 /* we need a minimum of two pages */ 2877 if (nr_pages < 2) 2878 nr_pages = 2; 2879 2880 /* prevent another thread from changing buffer sizes */ 2881 mutex_lock(&buffer->mutex); 2882 atomic_inc(&buffer->resizing); 2883 2884 if (cpu_id == RING_BUFFER_ALL_CPUS) { 2885 /* 2886 * Don't succeed if resizing is disabled, as a reader might be 2887 * manipulating the ring buffer and is expecting a sane state while 2888 * this is true. 2889 */ 2890 for_each_buffer_cpu(buffer, cpu) { 2891 cpu_buffer = buffer->buffers[cpu]; 2892 if (atomic_read(&cpu_buffer->resize_disabled)) { 2893 err = -EBUSY; 2894 goto out_err_unlock; 2895 } 2896 } 2897 2898 /* calculate the pages to update */ 2899 for_each_buffer_cpu(buffer, cpu) { 2900 cpu_buffer = buffer->buffers[cpu]; 2901 2902 cpu_buffer->nr_pages_to_update = nr_pages - 2903 cpu_buffer->nr_pages; 2904 /* 2905 * nothing more to do for removing pages or no update 2906 */ 2907 if (cpu_buffer->nr_pages_to_update <= 0) 2908 continue; 2909 /* 2910 * to add pages, make sure all new pages can be 2911 * allocated without receiving ENOMEM 2912 */ 2913 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2914 if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2915 &cpu_buffer->new_pages)) { 2916 /* not enough memory for new pages */ 2917 err = -ENOMEM; 2918 goto out_err; 2919 } 2920 2921 cond_resched(); 2922 } 2923 2924 cpus_read_lock(); 2925 /* 2926 * Fire off all the required work handlers 2927 * We can't schedule on offline CPUs, but it's not necessary 2928 * since we can change their buffer sizes without any race. 2929 */ 2930 for_each_buffer_cpu(buffer, cpu) { 2931 cpu_buffer = buffer->buffers[cpu]; 2932 if (!cpu_buffer->nr_pages_to_update) 2933 continue; 2934 2935 /* Can't run something on an offline CPU. */ 2936 if (!cpu_online(cpu)) { 2937 rb_update_pages(cpu_buffer); 2938 cpu_buffer->nr_pages_to_update = 0; 2939 } else { 2940 /* Run directly if possible. */ 2941 migrate_disable(); 2942 if (cpu != smp_processor_id()) { 2943 migrate_enable(); 2944 schedule_work_on(cpu, 2945 &cpu_buffer->update_pages_work); 2946 } else { 2947 update_pages_handler(&cpu_buffer->update_pages_work); 2948 migrate_enable(); 2949 } 2950 } 2951 } 2952 2953 /* wait for all the updates to complete */ 2954 for_each_buffer_cpu(buffer, cpu) { 2955 cpu_buffer = buffer->buffers[cpu]; 2956 if (!cpu_buffer->nr_pages_to_update) 2957 continue; 2958 2959 if (cpu_online(cpu)) 2960 wait_for_completion(&cpu_buffer->update_done); 2961 cpu_buffer->nr_pages_to_update = 0; 2962 } 2963 2964 cpus_read_unlock(); 2965 } else { 2966 cpu_buffer = buffer->buffers[cpu_id]; 2967 2968 if (nr_pages == cpu_buffer->nr_pages) 2969 goto out; 2970 2971 /* 2972 * Don't succeed if resizing is disabled, as a reader might be 2973 * manipulating the ring buffer and is expecting a sane state while 2974 * this is true. 2975 */ 2976 if (atomic_read(&cpu_buffer->resize_disabled)) { 2977 err = -EBUSY; 2978 goto out_err_unlock; 2979 } 2980 2981 cpu_buffer->nr_pages_to_update = nr_pages - 2982 cpu_buffer->nr_pages; 2983 2984 INIT_LIST_HEAD(&cpu_buffer->new_pages); 2985 if (cpu_buffer->nr_pages_to_update > 0 && 2986 __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update, 2987 &cpu_buffer->new_pages)) { 2988 err = -ENOMEM; 2989 goto out_err; 2990 } 2991 2992 cpus_read_lock(); 2993 2994 /* Can't run something on an offline CPU. */ 2995 if (!cpu_online(cpu_id)) 2996 rb_update_pages(cpu_buffer); 2997 else { 2998 /* Run directly if possible. */ 2999 migrate_disable(); 3000 if (cpu_id == smp_processor_id()) { 3001 rb_update_pages(cpu_buffer); 3002 migrate_enable(); 3003 } else { 3004 migrate_enable(); 3005 schedule_work_on(cpu_id, 3006 &cpu_buffer->update_pages_work); 3007 wait_for_completion(&cpu_buffer->update_done); 3008 } 3009 } 3010 3011 cpu_buffer->nr_pages_to_update = 0; 3012 cpus_read_unlock(); 3013 } 3014 3015 out: 3016 /* 3017 * The ring buffer resize can happen with the ring buffer 3018 * enabled, so that the update disturbs the tracing as little 3019 * as possible. But if the buffer is disabled, we do not need 3020 * to worry about that, and we can take the time to verify 3021 * that the buffer is not corrupt. 3022 */ 3023 if (atomic_read(&buffer->record_disabled)) { 3024 atomic_inc(&buffer->record_disabled); 3025 /* 3026 * Even though the buffer was disabled, we must make sure 3027 * that it is truly disabled before calling rb_check_pages. 3028 * There could have been a race between checking 3029 * record_disable and incrementing it. 3030 */ 3031 synchronize_rcu(); 3032 for_each_buffer_cpu(buffer, cpu) { 3033 cpu_buffer = buffer->buffers[cpu]; 3034 rb_check_pages(cpu_buffer); 3035 } 3036 atomic_dec(&buffer->record_disabled); 3037 } 3038 3039 atomic_dec(&buffer->resizing); 3040 mutex_unlock(&buffer->mutex); 3041 return 0; 3042 3043 out_err: 3044 for_each_buffer_cpu(buffer, cpu) { 3045 struct buffer_page *bpage, *tmp; 3046 3047 cpu_buffer = buffer->buffers[cpu]; 3048 cpu_buffer->nr_pages_to_update = 0; 3049 3050 if (list_empty(&cpu_buffer->new_pages)) 3051 continue; 3052 3053 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, 3054 list) { 3055 list_del_init(&bpage->list); 3056 free_buffer_page(bpage); 3057 } 3058 } 3059 out_err_unlock: 3060 atomic_dec(&buffer->resizing); 3061 mutex_unlock(&buffer->mutex); 3062 return err; 3063 } 3064 EXPORT_SYMBOL_GPL(ring_buffer_resize); 3065 3066 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val) 3067 { 3068 mutex_lock(&buffer->mutex); 3069 if (val) 3070 buffer->flags |= RB_FL_OVERWRITE; 3071 else 3072 buffer->flags &= ~RB_FL_OVERWRITE; 3073 mutex_unlock(&buffer->mutex); 3074 } 3075 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite); 3076 3077 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 3078 { 3079 return bpage->page->data + index; 3080 } 3081 3082 static __always_inline struct ring_buffer_event * 3083 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 3084 { 3085 return __rb_page_index(cpu_buffer->reader_page, 3086 cpu_buffer->reader_page->read); 3087 } 3088 3089 static struct ring_buffer_event * 3090 rb_iter_head_event(struct ring_buffer_iter *iter) 3091 { 3092 struct ring_buffer_event *event; 3093 struct buffer_page *iter_head_page = iter->head_page; 3094 unsigned long commit; 3095 unsigned length; 3096 3097 if (iter->head != iter->next_event) 3098 return iter->event; 3099 3100 /* 3101 * When the writer goes across pages, it issues a cmpxchg which 3102 * is a mb(), which will synchronize with the rmb here. 3103 * (see rb_tail_page_update() and __rb_reserve_next()) 3104 */ 3105 commit = rb_page_commit(iter_head_page); 3106 smp_rmb(); 3107 3108 /* An event needs to be at least 8 bytes in size */ 3109 if (iter->head > commit - 8) 3110 goto reset; 3111 3112 event = __rb_page_index(iter_head_page, iter->head); 3113 length = rb_event_length(event); 3114 3115 /* 3116 * READ_ONCE() doesn't work on functions and we don't want the 3117 * compiler doing any crazy optimizations with length. 3118 */ 3119 barrier(); 3120 3121 if ((iter->head + length) > commit || length > iter->event_size) 3122 /* Writer corrupted the read? */ 3123 goto reset; 3124 3125 memcpy(iter->event, event, length); 3126 /* 3127 * If the page stamp is still the same after this rmb() then the 3128 * event was safely copied without the writer entering the page. 3129 */ 3130 smp_rmb(); 3131 3132 /* Make sure the page didn't change since we read this */ 3133 if (iter->page_stamp != iter_head_page->page->time_stamp || 3134 commit > rb_page_commit(iter_head_page)) 3135 goto reset; 3136 3137 iter->next_event = iter->head + length; 3138 return iter->event; 3139 reset: 3140 /* Reset to the beginning */ 3141 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 3142 iter->head = 0; 3143 iter->next_event = 0; 3144 iter->missed_events = 1; 3145 return NULL; 3146 } 3147 3148 /* Size is determined by what has been committed */ 3149 static __always_inline unsigned rb_page_size(struct buffer_page *bpage) 3150 { 3151 return rb_page_commit(bpage) & ~RB_MISSED_MASK; 3152 } 3153 3154 static __always_inline unsigned 3155 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 3156 { 3157 return rb_page_commit(cpu_buffer->commit_page); 3158 } 3159 3160 static __always_inline unsigned 3161 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event) 3162 { 3163 unsigned long addr = (unsigned long)event; 3164 3165 addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1; 3166 3167 return addr - BUF_PAGE_HDR_SIZE; 3168 } 3169 3170 static void rb_inc_iter(struct ring_buffer_iter *iter) 3171 { 3172 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3173 3174 /* 3175 * The iterator could be on the reader page (it starts there). 3176 * But the head could have moved, since the reader was 3177 * found. Check for this case and assign the iterator 3178 * to the head page instead of next. 3179 */ 3180 if (iter->head_page == cpu_buffer->reader_page) 3181 iter->head_page = rb_set_head_page(cpu_buffer); 3182 else 3183 rb_inc_page(&iter->head_page); 3184 3185 iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp; 3186 iter->head = 0; 3187 iter->next_event = 0; 3188 } 3189 3190 /* Return the index into the sub-buffers for a given sub-buffer */ 3191 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf) 3192 { 3193 void *subbuf_array; 3194 3195 subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs; 3196 subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size); 3197 return (subbuf - subbuf_array) / meta->subbuf_size; 3198 } 3199 3200 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer, 3201 struct buffer_page *next_page) 3202 { 3203 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 3204 unsigned long old_head = (unsigned long)next_page->page; 3205 unsigned long new_head; 3206 3207 rb_inc_page(&next_page); 3208 new_head = (unsigned long)next_page->page; 3209 3210 /* 3211 * Only move it forward once, if something else came in and 3212 * moved it forward, then we don't want to touch it. 3213 */ 3214 (void)cmpxchg(&meta->head_buffer, old_head, new_head); 3215 } 3216 3217 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer, 3218 struct buffer_page *reader) 3219 { 3220 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 3221 void *old_reader = cpu_buffer->reader_page->page; 3222 void *new_reader = reader->page; 3223 int id; 3224 3225 id = reader->id; 3226 cpu_buffer->reader_page->id = id; 3227 reader->id = 0; 3228 3229 meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader); 3230 meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader); 3231 3232 /* The head pointer is the one after the reader */ 3233 rb_update_meta_head(cpu_buffer, reader); 3234 } 3235 3236 /* 3237 * rb_handle_head_page - writer hit the head page 3238 * 3239 * Returns: +1 to retry page 3240 * 0 to continue 3241 * -1 on error 3242 */ 3243 static int 3244 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 3245 struct buffer_page *tail_page, 3246 struct buffer_page *next_page) 3247 { 3248 struct buffer_page *new_head; 3249 int entries; 3250 int type; 3251 int ret; 3252 3253 entries = rb_page_entries(next_page); 3254 3255 /* 3256 * The hard part is here. We need to move the head 3257 * forward, and protect against both readers on 3258 * other CPUs and writers coming in via interrupts. 3259 */ 3260 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 3261 RB_PAGE_HEAD); 3262 3263 /* 3264 * type can be one of four: 3265 * NORMAL - an interrupt already moved it for us 3266 * HEAD - we are the first to get here. 3267 * UPDATE - we are the interrupt interrupting 3268 * a current move. 3269 * MOVED - a reader on another CPU moved the next 3270 * pointer to its reader page. Give up 3271 * and try again. 3272 */ 3273 3274 switch (type) { 3275 case RB_PAGE_HEAD: 3276 /* 3277 * We changed the head to UPDATE, thus 3278 * it is our responsibility to update 3279 * the counters. 3280 */ 3281 local_add(entries, &cpu_buffer->overrun); 3282 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes); 3283 local_inc(&cpu_buffer->pages_lost); 3284 3285 if (cpu_buffer->ring_meta) 3286 rb_update_meta_head(cpu_buffer, next_page); 3287 /* 3288 * The entries will be zeroed out when we move the 3289 * tail page. 3290 */ 3291 3292 /* still more to do */ 3293 break; 3294 3295 case RB_PAGE_UPDATE: 3296 /* 3297 * This is an interrupt that interrupt the 3298 * previous update. Still more to do. 3299 */ 3300 break; 3301 case RB_PAGE_NORMAL: 3302 /* 3303 * An interrupt came in before the update 3304 * and processed this for us. 3305 * Nothing left to do. 3306 */ 3307 return 1; 3308 case RB_PAGE_MOVED: 3309 /* 3310 * The reader is on another CPU and just did 3311 * a swap with our next_page. 3312 * Try again. 3313 */ 3314 return 1; 3315 default: 3316 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 3317 return -1; 3318 } 3319 3320 /* 3321 * Now that we are here, the old head pointer is 3322 * set to UPDATE. This will keep the reader from 3323 * swapping the head page with the reader page. 3324 * The reader (on another CPU) will spin till 3325 * we are finished. 3326 * 3327 * We just need to protect against interrupts 3328 * doing the job. We will set the next pointer 3329 * to HEAD. After that, we set the old pointer 3330 * to NORMAL, but only if it was HEAD before. 3331 * otherwise we are an interrupt, and only 3332 * want the outer most commit to reset it. 3333 */ 3334 new_head = next_page; 3335 rb_inc_page(&new_head); 3336 3337 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 3338 RB_PAGE_NORMAL); 3339 3340 /* 3341 * Valid returns are: 3342 * HEAD - an interrupt came in and already set it. 3343 * NORMAL - One of two things: 3344 * 1) We really set it. 3345 * 2) A bunch of interrupts came in and moved 3346 * the page forward again. 3347 */ 3348 switch (ret) { 3349 case RB_PAGE_HEAD: 3350 case RB_PAGE_NORMAL: 3351 /* OK */ 3352 break; 3353 default: 3354 RB_WARN_ON(cpu_buffer, 1); 3355 return -1; 3356 } 3357 3358 /* 3359 * It is possible that an interrupt came in, 3360 * set the head up, then more interrupts came in 3361 * and moved it again. When we get back here, 3362 * the page would have been set to NORMAL but we 3363 * just set it back to HEAD. 3364 * 3365 * How do you detect this? Well, if that happened 3366 * the tail page would have moved. 3367 */ 3368 if (ret == RB_PAGE_NORMAL) { 3369 struct buffer_page *buffer_tail_page; 3370 3371 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page); 3372 /* 3373 * If the tail had moved passed next, then we need 3374 * to reset the pointer. 3375 */ 3376 if (buffer_tail_page != tail_page && 3377 buffer_tail_page != next_page) 3378 rb_head_page_set_normal(cpu_buffer, new_head, 3379 next_page, 3380 RB_PAGE_HEAD); 3381 } 3382 3383 /* 3384 * If this was the outer most commit (the one that 3385 * changed the original pointer from HEAD to UPDATE), 3386 * then it is up to us to reset it to NORMAL. 3387 */ 3388 if (type == RB_PAGE_HEAD) { 3389 ret = rb_head_page_set_normal(cpu_buffer, next_page, 3390 tail_page, 3391 RB_PAGE_UPDATE); 3392 if (RB_WARN_ON(cpu_buffer, 3393 ret != RB_PAGE_UPDATE)) 3394 return -1; 3395 } 3396 3397 return 0; 3398 } 3399 3400 static inline void 3401 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 3402 unsigned long tail, struct rb_event_info *info) 3403 { 3404 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 3405 struct buffer_page *tail_page = info->tail_page; 3406 struct ring_buffer_event *event; 3407 unsigned long length = info->length; 3408 3409 /* 3410 * Only the event that crossed the page boundary 3411 * must fill the old tail_page with padding. 3412 */ 3413 if (tail >= bsize) { 3414 /* 3415 * If the page was filled, then we still need 3416 * to update the real_end. Reset it to zero 3417 * and the reader will ignore it. 3418 */ 3419 if (tail == bsize) 3420 tail_page->real_end = 0; 3421 3422 local_sub(length, &tail_page->write); 3423 return; 3424 } 3425 3426 event = __rb_page_index(tail_page, tail); 3427 3428 /* 3429 * Save the original length to the meta data. 3430 * This will be used by the reader to add lost event 3431 * counter. 3432 */ 3433 tail_page->real_end = tail; 3434 3435 /* 3436 * If this event is bigger than the minimum size, then 3437 * we need to be careful that we don't subtract the 3438 * write counter enough to allow another writer to slip 3439 * in on this page. 3440 * We put in a discarded commit instead, to make sure 3441 * that this space is not used again, and this space will 3442 * not be accounted into 'entries_bytes'. 3443 * 3444 * If we are less than the minimum size, we don't need to 3445 * worry about it. 3446 */ 3447 if (tail > (bsize - RB_EVNT_MIN_SIZE)) { 3448 /* No room for any events */ 3449 3450 /* Mark the rest of the page with padding */ 3451 rb_event_set_padding(event); 3452 3453 /* Make sure the padding is visible before the write update */ 3454 smp_wmb(); 3455 3456 /* Set the write back to the previous setting */ 3457 local_sub(length, &tail_page->write); 3458 return; 3459 } 3460 3461 /* Put in a discarded event */ 3462 event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE; 3463 event->type_len = RINGBUF_TYPE_PADDING; 3464 /* time delta must be non zero */ 3465 event->time_delta = 1; 3466 3467 /* account for padding bytes */ 3468 local_add(bsize - tail, &cpu_buffer->entries_bytes); 3469 3470 /* Make sure the padding is visible before the tail_page->write update */ 3471 smp_wmb(); 3472 3473 /* Set write to end of buffer */ 3474 length = (tail + length) - bsize; 3475 local_sub(length, &tail_page->write); 3476 } 3477 3478 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer); 3479 3480 /* 3481 * This is the slow path, force gcc not to inline it. 3482 */ 3483 static noinline struct ring_buffer_event * 3484 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 3485 unsigned long tail, struct rb_event_info *info) 3486 { 3487 struct buffer_page *tail_page = info->tail_page; 3488 struct buffer_page *commit_page = cpu_buffer->commit_page; 3489 struct trace_buffer *buffer = cpu_buffer->buffer; 3490 struct buffer_page *next_page; 3491 int ret; 3492 3493 next_page = tail_page; 3494 3495 rb_inc_page(&next_page); 3496 3497 /* 3498 * If for some reason, we had an interrupt storm that made 3499 * it all the way around the buffer, bail, and warn 3500 * about it. 3501 */ 3502 if (unlikely(next_page == commit_page)) { 3503 local_inc(&cpu_buffer->commit_overrun); 3504 goto out_reset; 3505 } 3506 3507 /* 3508 * This is where the fun begins! 3509 * 3510 * We are fighting against races between a reader that 3511 * could be on another CPU trying to swap its reader 3512 * page with the buffer head. 3513 * 3514 * We are also fighting against interrupts coming in and 3515 * moving the head or tail on us as well. 3516 * 3517 * If the next page is the head page then we have filled 3518 * the buffer, unless the commit page is still on the 3519 * reader page. 3520 */ 3521 if (rb_is_head_page(next_page, &tail_page->list)) { 3522 3523 /* 3524 * If the commit is not on the reader page, then 3525 * move the header page. 3526 */ 3527 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 3528 /* 3529 * If we are not in overwrite mode, 3530 * this is easy, just stop here. 3531 */ 3532 if (!(buffer->flags & RB_FL_OVERWRITE)) { 3533 local_inc(&cpu_buffer->dropped_events); 3534 goto out_reset; 3535 } 3536 3537 ret = rb_handle_head_page(cpu_buffer, 3538 tail_page, 3539 next_page); 3540 if (ret < 0) 3541 goto out_reset; 3542 if (ret) 3543 goto out_again; 3544 } else { 3545 /* 3546 * We need to be careful here too. The 3547 * commit page could still be on the reader 3548 * page. We could have a small buffer, and 3549 * have filled up the buffer with events 3550 * from interrupts and such, and wrapped. 3551 * 3552 * Note, if the tail page is also on the 3553 * reader_page, we let it move out. 3554 */ 3555 if (unlikely((cpu_buffer->commit_page != 3556 cpu_buffer->tail_page) && 3557 (cpu_buffer->commit_page == 3558 cpu_buffer->reader_page))) { 3559 local_inc(&cpu_buffer->commit_overrun); 3560 goto out_reset; 3561 } 3562 } 3563 } 3564 3565 rb_tail_page_update(cpu_buffer, tail_page, next_page); 3566 3567 out_again: 3568 3569 rb_reset_tail(cpu_buffer, tail, info); 3570 3571 /* Commit what we have for now. */ 3572 rb_end_commit(cpu_buffer); 3573 /* rb_end_commit() decs committing */ 3574 local_inc(&cpu_buffer->committing); 3575 3576 /* fail and let the caller try again */ 3577 return ERR_PTR(-EAGAIN); 3578 3579 out_reset: 3580 /* reset write */ 3581 rb_reset_tail(cpu_buffer, tail, info); 3582 3583 return NULL; 3584 } 3585 3586 /* Slow path */ 3587 static struct ring_buffer_event * 3588 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, 3589 struct ring_buffer_event *event, u64 delta, bool abs) 3590 { 3591 if (abs) 3592 event->type_len = RINGBUF_TYPE_TIME_STAMP; 3593 else 3594 event->type_len = RINGBUF_TYPE_TIME_EXTEND; 3595 3596 /* Not the first event on the page, or not delta? */ 3597 if (abs || rb_event_index(cpu_buffer, event)) { 3598 event->time_delta = delta & TS_MASK; 3599 event->array[0] = delta >> TS_SHIFT; 3600 } else { 3601 /* nope, just zero it */ 3602 event->time_delta = 0; 3603 event->array[0] = 0; 3604 } 3605 3606 return skip_time_extend(event); 3607 } 3608 3609 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 3610 static inline bool sched_clock_stable(void) 3611 { 3612 return true; 3613 } 3614 #endif 3615 3616 static void 3617 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 3618 struct rb_event_info *info) 3619 { 3620 u64 write_stamp; 3621 3622 WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s", 3623 (unsigned long long)info->delta, 3624 (unsigned long long)info->ts, 3625 (unsigned long long)info->before, 3626 (unsigned long long)info->after, 3627 (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}), 3628 sched_clock_stable() ? "" : 3629 "If you just came from a suspend/resume,\n" 3630 "please switch to the trace global clock:\n" 3631 " echo global > /sys/kernel/tracing/trace_clock\n" 3632 "or add trace_clock=global to the kernel command line\n"); 3633 } 3634 3635 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer, 3636 struct ring_buffer_event **event, 3637 struct rb_event_info *info, 3638 u64 *delta, 3639 unsigned int *length) 3640 { 3641 bool abs = info->add_timestamp & 3642 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE); 3643 3644 if (unlikely(info->delta > (1ULL << 59))) { 3645 /* 3646 * Some timers can use more than 59 bits, and when a timestamp 3647 * is added to the buffer, it will lose those bits. 3648 */ 3649 if (abs && (info->ts & TS_MSB)) { 3650 info->delta &= ABS_TS_MASK; 3651 3652 /* did the clock go backwards */ 3653 } else if (info->before == info->after && info->before > info->ts) { 3654 /* not interrupted */ 3655 static int once; 3656 3657 /* 3658 * This is possible with a recalibrating of the TSC. 3659 * Do not produce a call stack, but just report it. 3660 */ 3661 if (!once) { 3662 once++; 3663 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n", 3664 info->before, info->ts); 3665 } 3666 } else 3667 rb_check_timestamp(cpu_buffer, info); 3668 if (!abs) 3669 info->delta = 0; 3670 } 3671 *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs); 3672 *length -= RB_LEN_TIME_EXTEND; 3673 *delta = 0; 3674 } 3675 3676 /** 3677 * rb_update_event - update event type and data 3678 * @cpu_buffer: The per cpu buffer of the @event 3679 * @event: the event to update 3680 * @info: The info to update the @event with (contains length and delta) 3681 * 3682 * Update the type and data fields of the @event. The length 3683 * is the actual size that is written to the ring buffer, 3684 * and with this, we can determine what to place into the 3685 * data field. 3686 */ 3687 static void 3688 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer, 3689 struct ring_buffer_event *event, 3690 struct rb_event_info *info) 3691 { 3692 unsigned length = info->length; 3693 u64 delta = info->delta; 3694 unsigned int nest = local_read(&cpu_buffer->committing) - 1; 3695 3696 if (!WARN_ON_ONCE(nest >= MAX_NEST)) 3697 cpu_buffer->event_stamp[nest] = info->ts; 3698 3699 /* 3700 * If we need to add a timestamp, then we 3701 * add it to the start of the reserved space. 3702 */ 3703 if (unlikely(info->add_timestamp)) 3704 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length); 3705 3706 event->time_delta = delta; 3707 length -= RB_EVNT_HDR_SIZE; 3708 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) { 3709 event->type_len = 0; 3710 event->array[0] = length; 3711 } else 3712 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 3713 } 3714 3715 static unsigned rb_calculate_event_length(unsigned length) 3716 { 3717 struct ring_buffer_event event; /* Used only for sizeof array */ 3718 3719 /* zero length can cause confusions */ 3720 if (!length) 3721 length++; 3722 3723 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) 3724 length += sizeof(event.array[0]); 3725 3726 length += RB_EVNT_HDR_SIZE; 3727 length = ALIGN(length, RB_ARCH_ALIGNMENT); 3728 3729 /* 3730 * In case the time delta is larger than the 27 bits for it 3731 * in the header, we need to add a timestamp. If another 3732 * event comes in when trying to discard this one to increase 3733 * the length, then the timestamp will be added in the allocated 3734 * space of this event. If length is bigger than the size needed 3735 * for the TIME_EXTEND, then padding has to be used. The events 3736 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal 3737 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding. 3738 * As length is a multiple of 4, we only need to worry if it 3739 * is 12 (RB_LEN_TIME_EXTEND + 4). 3740 */ 3741 if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT) 3742 length += RB_ALIGNMENT; 3743 3744 return length; 3745 } 3746 3747 static inline bool 3748 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 3749 struct ring_buffer_event *event) 3750 { 3751 unsigned long new_index, old_index; 3752 struct buffer_page *bpage; 3753 unsigned long addr; 3754 3755 new_index = rb_event_index(cpu_buffer, event); 3756 old_index = new_index + rb_event_ts_length(event); 3757 addr = (unsigned long)event; 3758 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 3759 3760 bpage = READ_ONCE(cpu_buffer->tail_page); 3761 3762 /* 3763 * Make sure the tail_page is still the same and 3764 * the next write location is the end of this event 3765 */ 3766 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 3767 unsigned long write_mask = 3768 local_read(&bpage->write) & ~RB_WRITE_MASK; 3769 unsigned long event_length = rb_event_length(event); 3770 3771 /* 3772 * For the before_stamp to be different than the write_stamp 3773 * to make sure that the next event adds an absolute 3774 * value and does not rely on the saved write stamp, which 3775 * is now going to be bogus. 3776 * 3777 * By setting the before_stamp to zero, the next event 3778 * is not going to use the write_stamp and will instead 3779 * create an absolute timestamp. This means there's no 3780 * reason to update the wirte_stamp! 3781 */ 3782 rb_time_set(&cpu_buffer->before_stamp, 0); 3783 3784 /* 3785 * If an event were to come in now, it would see that the 3786 * write_stamp and the before_stamp are different, and assume 3787 * that this event just added itself before updating 3788 * the write stamp. The interrupting event will fix the 3789 * write stamp for us, and use an absolute timestamp. 3790 */ 3791 3792 /* 3793 * This is on the tail page. It is possible that 3794 * a write could come in and move the tail page 3795 * and write to the next page. That is fine 3796 * because we just shorten what is on this page. 3797 */ 3798 old_index += write_mask; 3799 new_index += write_mask; 3800 3801 /* caution: old_index gets updated on cmpxchg failure */ 3802 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) { 3803 /* update counters */ 3804 local_sub(event_length, &cpu_buffer->entries_bytes); 3805 return true; 3806 } 3807 } 3808 3809 /* could not discard */ 3810 return false; 3811 } 3812 3813 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 3814 { 3815 local_inc(&cpu_buffer->committing); 3816 local_inc(&cpu_buffer->commits); 3817 } 3818 3819 static __always_inline void 3820 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 3821 { 3822 unsigned long max_count; 3823 3824 /* 3825 * We only race with interrupts and NMIs on this CPU. 3826 * If we own the commit event, then we can commit 3827 * all others that interrupted us, since the interruptions 3828 * are in stack format (they finish before they come 3829 * back to us). This allows us to do a simple loop to 3830 * assign the commit to the tail. 3831 */ 3832 again: 3833 max_count = cpu_buffer->nr_pages * 100; 3834 3835 while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) { 3836 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 3837 return; 3838 if (RB_WARN_ON(cpu_buffer, 3839 rb_is_reader_page(cpu_buffer->tail_page))) 3840 return; 3841 /* 3842 * No need for a memory barrier here, as the update 3843 * of the tail_page did it for this page. 3844 */ 3845 local_set(&cpu_buffer->commit_page->page->commit, 3846 rb_page_write(cpu_buffer->commit_page)); 3847 rb_inc_page(&cpu_buffer->commit_page); 3848 if (cpu_buffer->ring_meta) { 3849 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 3850 meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page; 3851 } 3852 /* add barrier to keep gcc from optimizing too much */ 3853 barrier(); 3854 } 3855 while (rb_commit_index(cpu_buffer) != 3856 rb_page_write(cpu_buffer->commit_page)) { 3857 3858 /* Make sure the readers see the content of what is committed. */ 3859 smp_wmb(); 3860 local_set(&cpu_buffer->commit_page->page->commit, 3861 rb_page_write(cpu_buffer->commit_page)); 3862 RB_WARN_ON(cpu_buffer, 3863 local_read(&cpu_buffer->commit_page->page->commit) & 3864 ~RB_WRITE_MASK); 3865 barrier(); 3866 } 3867 3868 /* again, keep gcc from optimizing */ 3869 barrier(); 3870 3871 /* 3872 * If an interrupt came in just after the first while loop 3873 * and pushed the tail page forward, we will be left with 3874 * a dangling commit that will never go forward. 3875 */ 3876 if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page))) 3877 goto again; 3878 } 3879 3880 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 3881 { 3882 unsigned long commits; 3883 3884 if (RB_WARN_ON(cpu_buffer, 3885 !local_read(&cpu_buffer->committing))) 3886 return; 3887 3888 again: 3889 commits = local_read(&cpu_buffer->commits); 3890 /* synchronize with interrupts */ 3891 barrier(); 3892 if (local_read(&cpu_buffer->committing) == 1) 3893 rb_set_commit_to_write(cpu_buffer); 3894 3895 local_dec(&cpu_buffer->committing); 3896 3897 /* synchronize with interrupts */ 3898 barrier(); 3899 3900 /* 3901 * Need to account for interrupts coming in between the 3902 * updating of the commit page and the clearing of the 3903 * committing counter. 3904 */ 3905 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 3906 !local_read(&cpu_buffer->committing)) { 3907 local_inc(&cpu_buffer->committing); 3908 goto again; 3909 } 3910 } 3911 3912 static inline void rb_event_discard(struct ring_buffer_event *event) 3913 { 3914 if (extended_time(event)) 3915 event = skip_time_extend(event); 3916 3917 /* array[0] holds the actual length for the discarded event */ 3918 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 3919 event->type_len = RINGBUF_TYPE_PADDING; 3920 /* time delta must be non zero */ 3921 if (!event->time_delta) 3922 event->time_delta = 1; 3923 } 3924 3925 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer) 3926 { 3927 local_inc(&cpu_buffer->entries); 3928 rb_end_commit(cpu_buffer); 3929 } 3930 3931 static __always_inline void 3932 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer) 3933 { 3934 if (buffer->irq_work.waiters_pending) { 3935 buffer->irq_work.waiters_pending = false; 3936 /* irq_work_queue() supplies it's own memory barriers */ 3937 irq_work_queue(&buffer->irq_work.work); 3938 } 3939 3940 if (cpu_buffer->irq_work.waiters_pending) { 3941 cpu_buffer->irq_work.waiters_pending = false; 3942 /* irq_work_queue() supplies it's own memory barriers */ 3943 irq_work_queue(&cpu_buffer->irq_work.work); 3944 } 3945 3946 if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched)) 3947 return; 3948 3949 if (cpu_buffer->reader_page == cpu_buffer->commit_page) 3950 return; 3951 3952 if (!cpu_buffer->irq_work.full_waiters_pending) 3953 return; 3954 3955 cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched); 3956 3957 if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full)) 3958 return; 3959 3960 cpu_buffer->irq_work.wakeup_full = true; 3961 cpu_buffer->irq_work.full_waiters_pending = false; 3962 /* irq_work_queue() supplies it's own memory barriers */ 3963 irq_work_queue(&cpu_buffer->irq_work.work); 3964 } 3965 3966 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION 3967 # define do_ring_buffer_record_recursion() \ 3968 do_ftrace_record_recursion(_THIS_IP_, _RET_IP_) 3969 #else 3970 # define do_ring_buffer_record_recursion() do { } while (0) 3971 #endif 3972 3973 /* 3974 * The lock and unlock are done within a preempt disable section. 3975 * The current_context per_cpu variable can only be modified 3976 * by the current task between lock and unlock. But it can 3977 * be modified more than once via an interrupt. To pass this 3978 * information from the lock to the unlock without having to 3979 * access the 'in_interrupt()' functions again (which do show 3980 * a bit of overhead in something as critical as function tracing, 3981 * we use a bitmask trick. 3982 * 3983 * bit 1 = NMI context 3984 * bit 2 = IRQ context 3985 * bit 3 = SoftIRQ context 3986 * bit 4 = normal context. 3987 * 3988 * This works because this is the order of contexts that can 3989 * preempt other contexts. A SoftIRQ never preempts an IRQ 3990 * context. 3991 * 3992 * When the context is determined, the corresponding bit is 3993 * checked and set (if it was set, then a recursion of that context 3994 * happened). 3995 * 3996 * On unlock, we need to clear this bit. To do so, just subtract 3997 * 1 from the current_context and AND it to itself. 3998 * 3999 * (binary) 4000 * 101 - 1 = 100 4001 * 101 & 100 = 100 (clearing bit zero) 4002 * 4003 * 1010 - 1 = 1001 4004 * 1010 & 1001 = 1000 (clearing bit 1) 4005 * 4006 * The least significant bit can be cleared this way, and it 4007 * just so happens that it is the same bit corresponding to 4008 * the current context. 4009 * 4010 * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit 4011 * is set when a recursion is detected at the current context, and if 4012 * the TRANSITION bit is already set, it will fail the recursion. 4013 * This is needed because there's a lag between the changing of 4014 * interrupt context and updating the preempt count. In this case, 4015 * a false positive will be found. To handle this, one extra recursion 4016 * is allowed, and this is done by the TRANSITION bit. If the TRANSITION 4017 * bit is already set, then it is considered a recursion and the function 4018 * ends. Otherwise, the TRANSITION bit is set, and that bit is returned. 4019 * 4020 * On the trace_recursive_unlock(), the TRANSITION bit will be the first 4021 * to be cleared. Even if it wasn't the context that set it. That is, 4022 * if an interrupt comes in while NORMAL bit is set and the ring buffer 4023 * is called before preempt_count() is updated, since the check will 4024 * be on the NORMAL bit, the TRANSITION bit will then be set. If an 4025 * NMI then comes in, it will set the NMI bit, but when the NMI code 4026 * does the trace_recursive_unlock() it will clear the TRANSITION bit 4027 * and leave the NMI bit set. But this is fine, because the interrupt 4028 * code that set the TRANSITION bit will then clear the NMI bit when it 4029 * calls trace_recursive_unlock(). If another NMI comes in, it will 4030 * set the TRANSITION bit and continue. 4031 * 4032 * Note: The TRANSITION bit only handles a single transition between context. 4033 */ 4034 4035 static __always_inline bool 4036 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer) 4037 { 4038 unsigned int val = cpu_buffer->current_context; 4039 int bit = interrupt_context_level(); 4040 4041 bit = RB_CTX_NORMAL - bit; 4042 4043 if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) { 4044 /* 4045 * It is possible that this was called by transitioning 4046 * between interrupt context, and preempt_count() has not 4047 * been updated yet. In this case, use the TRANSITION bit. 4048 */ 4049 bit = RB_CTX_TRANSITION; 4050 if (val & (1 << (bit + cpu_buffer->nest))) { 4051 do_ring_buffer_record_recursion(); 4052 return true; 4053 } 4054 } 4055 4056 val |= (1 << (bit + cpu_buffer->nest)); 4057 cpu_buffer->current_context = val; 4058 4059 return false; 4060 } 4061 4062 static __always_inline void 4063 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer) 4064 { 4065 cpu_buffer->current_context &= 4066 cpu_buffer->current_context - (1 << cpu_buffer->nest); 4067 } 4068 4069 /* The recursive locking above uses 5 bits */ 4070 #define NESTED_BITS 5 4071 4072 /** 4073 * ring_buffer_nest_start - Allow to trace while nested 4074 * @buffer: The ring buffer to modify 4075 * 4076 * The ring buffer has a safety mechanism to prevent recursion. 4077 * But there may be a case where a trace needs to be done while 4078 * tracing something else. In this case, calling this function 4079 * will allow this function to nest within a currently active 4080 * ring_buffer_lock_reserve(). 4081 * 4082 * Call this function before calling another ring_buffer_lock_reserve() and 4083 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit(). 4084 */ 4085 void ring_buffer_nest_start(struct trace_buffer *buffer) 4086 { 4087 struct ring_buffer_per_cpu *cpu_buffer; 4088 int cpu; 4089 4090 /* Enabled by ring_buffer_nest_end() */ 4091 preempt_disable_notrace(); 4092 cpu = raw_smp_processor_id(); 4093 cpu_buffer = buffer->buffers[cpu]; 4094 /* This is the shift value for the above recursive locking */ 4095 cpu_buffer->nest += NESTED_BITS; 4096 } 4097 4098 /** 4099 * ring_buffer_nest_end - Allow to trace while nested 4100 * @buffer: The ring buffer to modify 4101 * 4102 * Must be called after ring_buffer_nest_start() and after the 4103 * ring_buffer_unlock_commit(). 4104 */ 4105 void ring_buffer_nest_end(struct trace_buffer *buffer) 4106 { 4107 struct ring_buffer_per_cpu *cpu_buffer; 4108 int cpu; 4109 4110 /* disabled by ring_buffer_nest_start() */ 4111 cpu = raw_smp_processor_id(); 4112 cpu_buffer = buffer->buffers[cpu]; 4113 /* This is the shift value for the above recursive locking */ 4114 cpu_buffer->nest -= NESTED_BITS; 4115 preempt_enable_notrace(); 4116 } 4117 4118 /** 4119 * ring_buffer_unlock_commit - commit a reserved 4120 * @buffer: The buffer to commit to 4121 * 4122 * This commits the data to the ring buffer, and releases any locks held. 4123 * 4124 * Must be paired with ring_buffer_lock_reserve. 4125 */ 4126 int ring_buffer_unlock_commit(struct trace_buffer *buffer) 4127 { 4128 struct ring_buffer_per_cpu *cpu_buffer; 4129 int cpu = raw_smp_processor_id(); 4130 4131 cpu_buffer = buffer->buffers[cpu]; 4132 4133 rb_commit(cpu_buffer); 4134 4135 rb_wakeups(buffer, cpu_buffer); 4136 4137 trace_recursive_unlock(cpu_buffer); 4138 4139 preempt_enable_notrace(); 4140 4141 return 0; 4142 } 4143 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 4144 4145 /* Special value to validate all deltas on a page. */ 4146 #define CHECK_FULL_PAGE 1L 4147 4148 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS 4149 4150 static const char *show_irq_str(int bits) 4151 { 4152 const char *type[] = { 4153 ".", // 0 4154 "s", // 1 4155 "h", // 2 4156 "Hs", // 3 4157 "n", // 4 4158 "Ns", // 5 4159 "Nh", // 6 4160 "NHs", // 7 4161 }; 4162 4163 return type[bits]; 4164 } 4165 4166 /* Assume this is a trace event */ 4167 static const char *show_flags(struct ring_buffer_event *event) 4168 { 4169 struct trace_entry *entry; 4170 int bits = 0; 4171 4172 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 4173 return "X"; 4174 4175 entry = ring_buffer_event_data(event); 4176 4177 if (entry->flags & TRACE_FLAG_SOFTIRQ) 4178 bits |= 1; 4179 4180 if (entry->flags & TRACE_FLAG_HARDIRQ) 4181 bits |= 2; 4182 4183 if (entry->flags & TRACE_FLAG_NMI) 4184 bits |= 4; 4185 4186 return show_irq_str(bits); 4187 } 4188 4189 static const char *show_irq(struct ring_buffer_event *event) 4190 { 4191 struct trace_entry *entry; 4192 4193 if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry)) 4194 return ""; 4195 4196 entry = ring_buffer_event_data(event); 4197 if (entry->flags & TRACE_FLAG_IRQS_OFF) 4198 return "d"; 4199 return ""; 4200 } 4201 4202 static const char *show_interrupt_level(void) 4203 { 4204 unsigned long pc = preempt_count(); 4205 unsigned char level = 0; 4206 4207 if (pc & SOFTIRQ_OFFSET) 4208 level |= 1; 4209 4210 if (pc & HARDIRQ_MASK) 4211 level |= 2; 4212 4213 if (pc & NMI_MASK) 4214 level |= 4; 4215 4216 return show_irq_str(level); 4217 } 4218 4219 static void dump_buffer_page(struct buffer_data_page *bpage, 4220 struct rb_event_info *info, 4221 unsigned long tail) 4222 { 4223 struct ring_buffer_event *event; 4224 u64 ts, delta; 4225 int e; 4226 4227 ts = bpage->time_stamp; 4228 pr_warn(" [%lld] PAGE TIME STAMP\n", ts); 4229 4230 for (e = 0; e < tail; e += rb_event_length(event)) { 4231 4232 event = (struct ring_buffer_event *)(bpage->data + e); 4233 4234 switch (event->type_len) { 4235 4236 case RINGBUF_TYPE_TIME_EXTEND: 4237 delta = rb_event_time_stamp(event); 4238 ts += delta; 4239 pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n", 4240 e, ts, delta); 4241 break; 4242 4243 case RINGBUF_TYPE_TIME_STAMP: 4244 delta = rb_event_time_stamp(event); 4245 ts = rb_fix_abs_ts(delta, ts); 4246 pr_warn(" 0x%x: [%lld] absolute:%lld TIME STAMP\n", 4247 e, ts, delta); 4248 break; 4249 4250 case RINGBUF_TYPE_PADDING: 4251 ts += event->time_delta; 4252 pr_warn(" 0x%x: [%lld] delta:%d PADDING\n", 4253 e, ts, event->time_delta); 4254 break; 4255 4256 case RINGBUF_TYPE_DATA: 4257 ts += event->time_delta; 4258 pr_warn(" 0x%x: [%lld] delta:%d %s%s\n", 4259 e, ts, event->time_delta, 4260 show_flags(event), show_irq(event)); 4261 break; 4262 4263 default: 4264 break; 4265 } 4266 } 4267 pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e); 4268 } 4269 4270 static DEFINE_PER_CPU(atomic_t, checking); 4271 static atomic_t ts_dump; 4272 4273 #define buffer_warn_return(fmt, ...) \ 4274 do { \ 4275 /* If another report is happening, ignore this one */ \ 4276 if (atomic_inc_return(&ts_dump) != 1) { \ 4277 atomic_dec(&ts_dump); \ 4278 goto out; \ 4279 } \ 4280 atomic_inc(&cpu_buffer->record_disabled); \ 4281 pr_warn(fmt, ##__VA_ARGS__); \ 4282 dump_buffer_page(bpage, info, tail); \ 4283 atomic_dec(&ts_dump); \ 4284 /* There's some cases in boot up that this can happen */ \ 4285 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING)) \ 4286 /* Do not re-enable checking */ \ 4287 return; \ 4288 } while (0) 4289 4290 /* 4291 * Check if the current event time stamp matches the deltas on 4292 * the buffer page. 4293 */ 4294 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 4295 struct rb_event_info *info, 4296 unsigned long tail) 4297 { 4298 struct buffer_data_page *bpage; 4299 u64 ts, delta; 4300 bool full = false; 4301 int ret; 4302 4303 bpage = info->tail_page->page; 4304 4305 if (tail == CHECK_FULL_PAGE) { 4306 full = true; 4307 tail = local_read(&bpage->commit); 4308 } else if (info->add_timestamp & 4309 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) { 4310 /* Ignore events with absolute time stamps */ 4311 return; 4312 } 4313 4314 /* 4315 * Do not check the first event (skip possible extends too). 4316 * Also do not check if previous events have not been committed. 4317 */ 4318 if (tail <= 8 || tail > local_read(&bpage->commit)) 4319 return; 4320 4321 /* 4322 * If this interrupted another event, 4323 */ 4324 if (atomic_inc_return(this_cpu_ptr(&checking)) != 1) 4325 goto out; 4326 4327 ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta); 4328 if (ret < 0) { 4329 if (delta < ts) { 4330 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n", 4331 cpu_buffer->cpu, ts, delta); 4332 goto out; 4333 } 4334 } 4335 if ((full && ts > info->ts) || 4336 (!full && ts + info->delta != info->ts)) { 4337 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n", 4338 cpu_buffer->cpu, 4339 ts + info->delta, info->ts, info->delta, 4340 info->before, info->after, 4341 full ? " (full)" : "", show_interrupt_level()); 4342 } 4343 out: 4344 atomic_dec(this_cpu_ptr(&checking)); 4345 } 4346 #else 4347 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer, 4348 struct rb_event_info *info, 4349 unsigned long tail) 4350 { 4351 } 4352 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */ 4353 4354 static struct ring_buffer_event * 4355 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 4356 struct rb_event_info *info) 4357 { 4358 struct ring_buffer_event *event; 4359 struct buffer_page *tail_page; 4360 unsigned long tail, write, w; 4361 4362 /* Don't let the compiler play games with cpu_buffer->tail_page */ 4363 tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page); 4364 4365 /*A*/ w = local_read(&tail_page->write) & RB_WRITE_MASK; 4366 barrier(); 4367 rb_time_read(&cpu_buffer->before_stamp, &info->before); 4368 rb_time_read(&cpu_buffer->write_stamp, &info->after); 4369 barrier(); 4370 info->ts = rb_time_stamp(cpu_buffer->buffer); 4371 4372 if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) { 4373 info->delta = info->ts; 4374 } else { 4375 /* 4376 * If interrupting an event time update, we may need an 4377 * absolute timestamp. 4378 * Don't bother if this is the start of a new page (w == 0). 4379 */ 4380 if (!w) { 4381 /* Use the sub-buffer timestamp */ 4382 info->delta = 0; 4383 } else if (unlikely(info->before != info->after)) { 4384 info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND; 4385 info->length += RB_LEN_TIME_EXTEND; 4386 } else { 4387 info->delta = info->ts - info->after; 4388 if (unlikely(test_time_stamp(info->delta))) { 4389 info->add_timestamp |= RB_ADD_STAMP_EXTEND; 4390 info->length += RB_LEN_TIME_EXTEND; 4391 } 4392 } 4393 } 4394 4395 /*B*/ rb_time_set(&cpu_buffer->before_stamp, info->ts); 4396 4397 /*C*/ write = local_add_return(info->length, &tail_page->write); 4398 4399 /* set write to only the index of the write */ 4400 write &= RB_WRITE_MASK; 4401 4402 tail = write - info->length; 4403 4404 /* See if we shot pass the end of this buffer page */ 4405 if (unlikely(write > cpu_buffer->buffer->subbuf_size)) { 4406 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE); 4407 return rb_move_tail(cpu_buffer, tail, info); 4408 } 4409 4410 if (likely(tail == w)) { 4411 /* Nothing interrupted us between A and C */ 4412 /*D*/ rb_time_set(&cpu_buffer->write_stamp, info->ts); 4413 /* 4414 * If something came in between C and D, the write stamp 4415 * may now not be in sync. But that's fine as the before_stamp 4416 * will be different and then next event will just be forced 4417 * to use an absolute timestamp. 4418 */ 4419 if (likely(!(info->add_timestamp & 4420 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 4421 /* This did not interrupt any time update */ 4422 info->delta = info->ts - info->after; 4423 else 4424 /* Just use full timestamp for interrupting event */ 4425 info->delta = info->ts; 4426 check_buffer(cpu_buffer, info, tail); 4427 } else { 4428 u64 ts; 4429 /* SLOW PATH - Interrupted between A and C */ 4430 4431 /* Save the old before_stamp */ 4432 rb_time_read(&cpu_buffer->before_stamp, &info->before); 4433 4434 /* 4435 * Read a new timestamp and update the before_stamp to make 4436 * the next event after this one force using an absolute 4437 * timestamp. This is in case an interrupt were to come in 4438 * between E and F. 4439 */ 4440 ts = rb_time_stamp(cpu_buffer->buffer); 4441 rb_time_set(&cpu_buffer->before_stamp, ts); 4442 4443 barrier(); 4444 /*E*/ rb_time_read(&cpu_buffer->write_stamp, &info->after); 4445 barrier(); 4446 /*F*/ if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) && 4447 info->after == info->before && info->after < ts) { 4448 /* 4449 * Nothing came after this event between C and F, it is 4450 * safe to use info->after for the delta as it 4451 * matched info->before and is still valid. 4452 */ 4453 info->delta = ts - info->after; 4454 } else { 4455 /* 4456 * Interrupted between C and F: 4457 * Lost the previous events time stamp. Just set the 4458 * delta to zero, and this will be the same time as 4459 * the event this event interrupted. And the events that 4460 * came after this will still be correct (as they would 4461 * have built their delta on the previous event. 4462 */ 4463 info->delta = 0; 4464 } 4465 info->ts = ts; 4466 info->add_timestamp &= ~RB_ADD_STAMP_FORCE; 4467 } 4468 4469 /* 4470 * If this is the first commit on the page, then it has the same 4471 * timestamp as the page itself. 4472 */ 4473 if (unlikely(!tail && !(info->add_timestamp & 4474 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)))) 4475 info->delta = 0; 4476 4477 /* We reserved something on the buffer */ 4478 4479 event = __rb_page_index(tail_page, tail); 4480 rb_update_event(cpu_buffer, event, info); 4481 4482 local_inc(&tail_page->entries); 4483 4484 /* 4485 * If this is the first commit on the page, then update 4486 * its timestamp. 4487 */ 4488 if (unlikely(!tail)) 4489 tail_page->page->time_stamp = info->ts; 4490 4491 /* account for these added bytes */ 4492 local_add(info->length, &cpu_buffer->entries_bytes); 4493 4494 return event; 4495 } 4496 4497 static __always_inline struct ring_buffer_event * 4498 rb_reserve_next_event(struct trace_buffer *buffer, 4499 struct ring_buffer_per_cpu *cpu_buffer, 4500 unsigned long length) 4501 { 4502 struct ring_buffer_event *event; 4503 struct rb_event_info info; 4504 int nr_loops = 0; 4505 int add_ts_default; 4506 4507 /* 4508 * ring buffer does cmpxchg as well as atomic64 operations 4509 * (which some archs use locking for atomic64), make sure this 4510 * is safe in NMI context 4511 */ 4512 if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) || 4513 IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) && 4514 (unlikely(in_nmi()))) { 4515 return NULL; 4516 } 4517 4518 rb_start_commit(cpu_buffer); 4519 /* The commit page can not change after this */ 4520 4521 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 4522 /* 4523 * Due to the ability to swap a cpu buffer from a buffer 4524 * it is possible it was swapped before we committed. 4525 * (committing stops a swap). We check for it here and 4526 * if it happened, we have to fail the write. 4527 */ 4528 barrier(); 4529 if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) { 4530 local_dec(&cpu_buffer->committing); 4531 local_dec(&cpu_buffer->commits); 4532 return NULL; 4533 } 4534 #endif 4535 4536 info.length = rb_calculate_event_length(length); 4537 4538 if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) { 4539 add_ts_default = RB_ADD_STAMP_ABSOLUTE; 4540 info.length += RB_LEN_TIME_EXTEND; 4541 if (info.length > cpu_buffer->buffer->max_data_size) 4542 goto out_fail; 4543 } else { 4544 add_ts_default = RB_ADD_STAMP_NONE; 4545 } 4546 4547 again: 4548 info.add_timestamp = add_ts_default; 4549 info.delta = 0; 4550 4551 /* 4552 * We allow for interrupts to reenter here and do a trace. 4553 * If one does, it will cause this original code to loop 4554 * back here. Even with heavy interrupts happening, this 4555 * should only happen a few times in a row. If this happens 4556 * 1000 times in a row, there must be either an interrupt 4557 * storm or we have something buggy. 4558 * Bail! 4559 */ 4560 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 4561 goto out_fail; 4562 4563 event = __rb_reserve_next(cpu_buffer, &info); 4564 4565 if (unlikely(PTR_ERR(event) == -EAGAIN)) { 4566 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND)) 4567 info.length -= RB_LEN_TIME_EXTEND; 4568 goto again; 4569 } 4570 4571 if (likely(event)) 4572 return event; 4573 out_fail: 4574 rb_end_commit(cpu_buffer); 4575 return NULL; 4576 } 4577 4578 /** 4579 * ring_buffer_lock_reserve - reserve a part of the buffer 4580 * @buffer: the ring buffer to reserve from 4581 * @length: the length of the data to reserve (excluding event header) 4582 * 4583 * Returns a reserved event on the ring buffer to copy directly to. 4584 * The user of this interface will need to get the body to write into 4585 * and can use the ring_buffer_event_data() interface. 4586 * 4587 * The length is the length of the data needed, not the event length 4588 * which also includes the event header. 4589 * 4590 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 4591 * If NULL is returned, then nothing has been allocated or locked. 4592 */ 4593 struct ring_buffer_event * 4594 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length) 4595 { 4596 struct ring_buffer_per_cpu *cpu_buffer; 4597 struct ring_buffer_event *event; 4598 int cpu; 4599 4600 /* If we are tracing schedule, we don't want to recurse */ 4601 preempt_disable_notrace(); 4602 4603 if (unlikely(atomic_read(&buffer->record_disabled))) 4604 goto out; 4605 4606 cpu = raw_smp_processor_id(); 4607 4608 if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask))) 4609 goto out; 4610 4611 cpu_buffer = buffer->buffers[cpu]; 4612 4613 if (unlikely(atomic_read(&cpu_buffer->record_disabled))) 4614 goto out; 4615 4616 if (unlikely(length > buffer->max_data_size)) 4617 goto out; 4618 4619 if (unlikely(trace_recursive_lock(cpu_buffer))) 4620 goto out; 4621 4622 event = rb_reserve_next_event(buffer, cpu_buffer, length); 4623 if (!event) 4624 goto out_unlock; 4625 4626 return event; 4627 4628 out_unlock: 4629 trace_recursive_unlock(cpu_buffer); 4630 out: 4631 preempt_enable_notrace(); 4632 return NULL; 4633 } 4634 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 4635 4636 /* 4637 * Decrement the entries to the page that an event is on. 4638 * The event does not even need to exist, only the pointer 4639 * to the page it is on. This may only be called before the commit 4640 * takes place. 4641 */ 4642 static inline void 4643 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 4644 struct ring_buffer_event *event) 4645 { 4646 unsigned long addr = (unsigned long)event; 4647 struct buffer_page *bpage = cpu_buffer->commit_page; 4648 struct buffer_page *start; 4649 4650 addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1); 4651 4652 /* Do the likely case first */ 4653 if (likely(bpage->page == (void *)addr)) { 4654 local_dec(&bpage->entries); 4655 return; 4656 } 4657 4658 /* 4659 * Because the commit page may be on the reader page we 4660 * start with the next page and check the end loop there. 4661 */ 4662 rb_inc_page(&bpage); 4663 start = bpage; 4664 do { 4665 if (bpage->page == (void *)addr) { 4666 local_dec(&bpage->entries); 4667 return; 4668 } 4669 rb_inc_page(&bpage); 4670 } while (bpage != start); 4671 4672 /* commit not part of this buffer?? */ 4673 RB_WARN_ON(cpu_buffer, 1); 4674 } 4675 4676 /** 4677 * ring_buffer_discard_commit - discard an event that has not been committed 4678 * @buffer: the ring buffer 4679 * @event: non committed event to discard 4680 * 4681 * Sometimes an event that is in the ring buffer needs to be ignored. 4682 * This function lets the user discard an event in the ring buffer 4683 * and then that event will not be read later. 4684 * 4685 * This function only works if it is called before the item has been 4686 * committed. It will try to free the event from the ring buffer 4687 * if another event has not been added behind it. 4688 * 4689 * If another event has been added behind it, it will set the event 4690 * up as discarded, and perform the commit. 4691 * 4692 * If this function is called, do not call ring_buffer_unlock_commit on 4693 * the event. 4694 */ 4695 void ring_buffer_discard_commit(struct trace_buffer *buffer, 4696 struct ring_buffer_event *event) 4697 { 4698 struct ring_buffer_per_cpu *cpu_buffer; 4699 int cpu; 4700 4701 /* The event is discarded regardless */ 4702 rb_event_discard(event); 4703 4704 cpu = smp_processor_id(); 4705 cpu_buffer = buffer->buffers[cpu]; 4706 4707 /* 4708 * This must only be called if the event has not been 4709 * committed yet. Thus we can assume that preemption 4710 * is still disabled. 4711 */ 4712 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 4713 4714 rb_decrement_entry(cpu_buffer, event); 4715 if (rb_try_to_discard(cpu_buffer, event)) 4716 goto out; 4717 4718 out: 4719 rb_end_commit(cpu_buffer); 4720 4721 trace_recursive_unlock(cpu_buffer); 4722 4723 preempt_enable_notrace(); 4724 4725 } 4726 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 4727 4728 /** 4729 * ring_buffer_write - write data to the buffer without reserving 4730 * @buffer: The ring buffer to write to. 4731 * @length: The length of the data being written (excluding the event header) 4732 * @data: The data to write to the buffer. 4733 * 4734 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 4735 * one function. If you already have the data to write to the buffer, it 4736 * may be easier to simply call this function. 4737 * 4738 * Note, like ring_buffer_lock_reserve, the length is the length of the data 4739 * and not the length of the event which would hold the header. 4740 */ 4741 int ring_buffer_write(struct trace_buffer *buffer, 4742 unsigned long length, 4743 void *data) 4744 { 4745 struct ring_buffer_per_cpu *cpu_buffer; 4746 struct ring_buffer_event *event; 4747 void *body; 4748 int ret = -EBUSY; 4749 int cpu; 4750 4751 preempt_disable_notrace(); 4752 4753 if (atomic_read(&buffer->record_disabled)) 4754 goto out; 4755 4756 cpu = raw_smp_processor_id(); 4757 4758 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4759 goto out; 4760 4761 cpu_buffer = buffer->buffers[cpu]; 4762 4763 if (atomic_read(&cpu_buffer->record_disabled)) 4764 goto out; 4765 4766 if (length > buffer->max_data_size) 4767 goto out; 4768 4769 if (unlikely(trace_recursive_lock(cpu_buffer))) 4770 goto out; 4771 4772 event = rb_reserve_next_event(buffer, cpu_buffer, length); 4773 if (!event) 4774 goto out_unlock; 4775 4776 body = rb_event_data(event); 4777 4778 memcpy(body, data, length); 4779 4780 rb_commit(cpu_buffer); 4781 4782 rb_wakeups(buffer, cpu_buffer); 4783 4784 ret = 0; 4785 4786 out_unlock: 4787 trace_recursive_unlock(cpu_buffer); 4788 4789 out: 4790 preempt_enable_notrace(); 4791 4792 return ret; 4793 } 4794 EXPORT_SYMBOL_GPL(ring_buffer_write); 4795 4796 /* 4797 * The total entries in the ring buffer is the running counter 4798 * of entries entered into the ring buffer, minus the sum of 4799 * the entries read from the ring buffer and the number of 4800 * entries that were overwritten. 4801 */ 4802 static inline unsigned long 4803 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer) 4804 { 4805 return local_read(&cpu_buffer->entries) - 4806 (local_read(&cpu_buffer->overrun) + cpu_buffer->read); 4807 } 4808 4809 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 4810 { 4811 return !rb_num_of_entries(cpu_buffer); 4812 } 4813 4814 /** 4815 * ring_buffer_record_disable - stop all writes into the buffer 4816 * @buffer: The ring buffer to stop writes to. 4817 * 4818 * This prevents all writes to the buffer. Any attempt to write 4819 * to the buffer after this will fail and return NULL. 4820 * 4821 * The caller should call synchronize_rcu() after this. 4822 */ 4823 void ring_buffer_record_disable(struct trace_buffer *buffer) 4824 { 4825 atomic_inc(&buffer->record_disabled); 4826 } 4827 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 4828 4829 /** 4830 * ring_buffer_record_enable - enable writes to the buffer 4831 * @buffer: The ring buffer to enable writes 4832 * 4833 * Note, multiple disables will need the same number of enables 4834 * to truly enable the writing (much like preempt_disable). 4835 */ 4836 void ring_buffer_record_enable(struct trace_buffer *buffer) 4837 { 4838 atomic_dec(&buffer->record_disabled); 4839 } 4840 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 4841 4842 /** 4843 * ring_buffer_record_off - stop all writes into the buffer 4844 * @buffer: The ring buffer to stop writes to. 4845 * 4846 * This prevents all writes to the buffer. Any attempt to write 4847 * to the buffer after this will fail and return NULL. 4848 * 4849 * This is different than ring_buffer_record_disable() as 4850 * it works like an on/off switch, where as the disable() version 4851 * must be paired with a enable(). 4852 */ 4853 void ring_buffer_record_off(struct trace_buffer *buffer) 4854 { 4855 unsigned int rd; 4856 unsigned int new_rd; 4857 4858 rd = atomic_read(&buffer->record_disabled); 4859 do { 4860 new_rd = rd | RB_BUFFER_OFF; 4861 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4862 } 4863 EXPORT_SYMBOL_GPL(ring_buffer_record_off); 4864 4865 /** 4866 * ring_buffer_record_on - restart writes into the buffer 4867 * @buffer: The ring buffer to start writes to. 4868 * 4869 * This enables all writes to the buffer that was disabled by 4870 * ring_buffer_record_off(). 4871 * 4872 * This is different than ring_buffer_record_enable() as 4873 * it works like an on/off switch, where as the enable() version 4874 * must be paired with a disable(). 4875 */ 4876 void ring_buffer_record_on(struct trace_buffer *buffer) 4877 { 4878 unsigned int rd; 4879 unsigned int new_rd; 4880 4881 rd = atomic_read(&buffer->record_disabled); 4882 do { 4883 new_rd = rd & ~RB_BUFFER_OFF; 4884 } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd)); 4885 } 4886 EXPORT_SYMBOL_GPL(ring_buffer_record_on); 4887 4888 /** 4889 * ring_buffer_record_is_on - return true if the ring buffer can write 4890 * @buffer: The ring buffer to see if write is enabled 4891 * 4892 * Returns true if the ring buffer is in a state that it accepts writes. 4893 */ 4894 bool ring_buffer_record_is_on(struct trace_buffer *buffer) 4895 { 4896 return !atomic_read(&buffer->record_disabled); 4897 } 4898 4899 /** 4900 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable 4901 * @buffer: The ring buffer to see if write is set enabled 4902 * 4903 * Returns true if the ring buffer is set writable by ring_buffer_record_on(). 4904 * Note that this does NOT mean it is in a writable state. 4905 * 4906 * It may return true when the ring buffer has been disabled by 4907 * ring_buffer_record_disable(), as that is a temporary disabling of 4908 * the ring buffer. 4909 */ 4910 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer) 4911 { 4912 return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF); 4913 } 4914 4915 /** 4916 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 4917 * @buffer: The ring buffer to stop writes to. 4918 * @cpu: The CPU buffer to stop 4919 * 4920 * This prevents all writes to the buffer. Any attempt to write 4921 * to the buffer after this will fail and return NULL. 4922 * 4923 * The caller should call synchronize_rcu() after this. 4924 */ 4925 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu) 4926 { 4927 struct ring_buffer_per_cpu *cpu_buffer; 4928 4929 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4930 return; 4931 4932 cpu_buffer = buffer->buffers[cpu]; 4933 atomic_inc(&cpu_buffer->record_disabled); 4934 } 4935 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 4936 4937 /** 4938 * ring_buffer_record_enable_cpu - enable writes to the buffer 4939 * @buffer: The ring buffer to enable writes 4940 * @cpu: The CPU to enable. 4941 * 4942 * Note, multiple disables will need the same number of enables 4943 * to truly enable the writing (much like preempt_disable). 4944 */ 4945 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu) 4946 { 4947 struct ring_buffer_per_cpu *cpu_buffer; 4948 4949 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4950 return; 4951 4952 cpu_buffer = buffer->buffers[cpu]; 4953 atomic_dec(&cpu_buffer->record_disabled); 4954 } 4955 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 4956 4957 /** 4958 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer 4959 * @buffer: The ring buffer 4960 * @cpu: The per CPU buffer to read from. 4961 */ 4962 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu) 4963 { 4964 unsigned long flags; 4965 struct ring_buffer_per_cpu *cpu_buffer; 4966 struct buffer_page *bpage; 4967 u64 ret = 0; 4968 4969 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 4970 return 0; 4971 4972 cpu_buffer = buffer->buffers[cpu]; 4973 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 4974 /* 4975 * if the tail is on reader_page, oldest time stamp is on the reader 4976 * page 4977 */ 4978 if (cpu_buffer->tail_page == cpu_buffer->reader_page) 4979 bpage = cpu_buffer->reader_page; 4980 else 4981 bpage = rb_set_head_page(cpu_buffer); 4982 if (bpage) 4983 ret = bpage->page->time_stamp; 4984 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 4985 4986 return ret; 4987 } 4988 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts); 4989 4990 /** 4991 * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer 4992 * @buffer: The ring buffer 4993 * @cpu: The per CPU buffer to read from. 4994 */ 4995 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu) 4996 { 4997 struct ring_buffer_per_cpu *cpu_buffer; 4998 unsigned long ret; 4999 5000 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5001 return 0; 5002 5003 cpu_buffer = buffer->buffers[cpu]; 5004 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes; 5005 5006 return ret; 5007 } 5008 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu); 5009 5010 /** 5011 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 5012 * @buffer: The ring buffer 5013 * @cpu: The per CPU buffer to get the entries from. 5014 */ 5015 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu) 5016 { 5017 struct ring_buffer_per_cpu *cpu_buffer; 5018 5019 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5020 return 0; 5021 5022 cpu_buffer = buffer->buffers[cpu]; 5023 5024 return rb_num_of_entries(cpu_buffer); 5025 } 5026 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 5027 5028 /** 5029 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring 5030 * buffer wrapping around (only if RB_FL_OVERWRITE is on). 5031 * @buffer: The ring buffer 5032 * @cpu: The per CPU buffer to get the number of overruns from 5033 */ 5034 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu) 5035 { 5036 struct ring_buffer_per_cpu *cpu_buffer; 5037 unsigned long ret; 5038 5039 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5040 return 0; 5041 5042 cpu_buffer = buffer->buffers[cpu]; 5043 ret = local_read(&cpu_buffer->overrun); 5044 5045 return ret; 5046 } 5047 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 5048 5049 /** 5050 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by 5051 * commits failing due to the buffer wrapping around while there are uncommitted 5052 * events, such as during an interrupt storm. 5053 * @buffer: The ring buffer 5054 * @cpu: The per CPU buffer to get the number of overruns from 5055 */ 5056 unsigned long 5057 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu) 5058 { 5059 struct ring_buffer_per_cpu *cpu_buffer; 5060 unsigned long ret; 5061 5062 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5063 return 0; 5064 5065 cpu_buffer = buffer->buffers[cpu]; 5066 ret = local_read(&cpu_buffer->commit_overrun); 5067 5068 return ret; 5069 } 5070 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 5071 5072 /** 5073 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by 5074 * the ring buffer filling up (only if RB_FL_OVERWRITE is off). 5075 * @buffer: The ring buffer 5076 * @cpu: The per CPU buffer to get the number of overruns from 5077 */ 5078 unsigned long 5079 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu) 5080 { 5081 struct ring_buffer_per_cpu *cpu_buffer; 5082 unsigned long ret; 5083 5084 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5085 return 0; 5086 5087 cpu_buffer = buffer->buffers[cpu]; 5088 ret = local_read(&cpu_buffer->dropped_events); 5089 5090 return ret; 5091 } 5092 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu); 5093 5094 /** 5095 * ring_buffer_read_events_cpu - get the number of events successfully read 5096 * @buffer: The ring buffer 5097 * @cpu: The per CPU buffer to get the number of events read 5098 */ 5099 unsigned long 5100 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu) 5101 { 5102 struct ring_buffer_per_cpu *cpu_buffer; 5103 5104 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5105 return 0; 5106 5107 cpu_buffer = buffer->buffers[cpu]; 5108 return cpu_buffer->read; 5109 } 5110 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu); 5111 5112 /** 5113 * ring_buffer_entries - get the number of entries in a buffer 5114 * @buffer: The ring buffer 5115 * 5116 * Returns the total number of entries in the ring buffer 5117 * (all CPU entries) 5118 */ 5119 unsigned long ring_buffer_entries(struct trace_buffer *buffer) 5120 { 5121 struct ring_buffer_per_cpu *cpu_buffer; 5122 unsigned long entries = 0; 5123 int cpu; 5124 5125 /* if you care about this being correct, lock the buffer */ 5126 for_each_buffer_cpu(buffer, cpu) { 5127 cpu_buffer = buffer->buffers[cpu]; 5128 entries += rb_num_of_entries(cpu_buffer); 5129 } 5130 5131 return entries; 5132 } 5133 EXPORT_SYMBOL_GPL(ring_buffer_entries); 5134 5135 /** 5136 * ring_buffer_overruns - get the number of overruns in buffer 5137 * @buffer: The ring buffer 5138 * 5139 * Returns the total number of overruns in the ring buffer 5140 * (all CPU entries) 5141 */ 5142 unsigned long ring_buffer_overruns(struct trace_buffer *buffer) 5143 { 5144 struct ring_buffer_per_cpu *cpu_buffer; 5145 unsigned long overruns = 0; 5146 int cpu; 5147 5148 /* if you care about this being correct, lock the buffer */ 5149 for_each_buffer_cpu(buffer, cpu) { 5150 cpu_buffer = buffer->buffers[cpu]; 5151 overruns += local_read(&cpu_buffer->overrun); 5152 } 5153 5154 return overruns; 5155 } 5156 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 5157 5158 static void rb_iter_reset(struct ring_buffer_iter *iter) 5159 { 5160 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5161 5162 /* Iterator usage is expected to have record disabled */ 5163 iter->head_page = cpu_buffer->reader_page; 5164 iter->head = cpu_buffer->reader_page->read; 5165 iter->next_event = iter->head; 5166 5167 iter->cache_reader_page = iter->head_page; 5168 iter->cache_read = cpu_buffer->read; 5169 iter->cache_pages_removed = cpu_buffer->pages_removed; 5170 5171 if (iter->head) { 5172 iter->read_stamp = cpu_buffer->read_stamp; 5173 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp; 5174 } else { 5175 iter->read_stamp = iter->head_page->page->time_stamp; 5176 iter->page_stamp = iter->read_stamp; 5177 } 5178 } 5179 5180 /** 5181 * ring_buffer_iter_reset - reset an iterator 5182 * @iter: The iterator to reset 5183 * 5184 * Resets the iterator, so that it will start from the beginning 5185 * again. 5186 */ 5187 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 5188 { 5189 struct ring_buffer_per_cpu *cpu_buffer; 5190 unsigned long flags; 5191 5192 if (!iter) 5193 return; 5194 5195 cpu_buffer = iter->cpu_buffer; 5196 5197 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5198 rb_iter_reset(iter); 5199 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5200 } 5201 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 5202 5203 /** 5204 * ring_buffer_iter_empty - check if an iterator has no more to read 5205 * @iter: The iterator to check 5206 */ 5207 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 5208 { 5209 struct ring_buffer_per_cpu *cpu_buffer; 5210 struct buffer_page *reader; 5211 struct buffer_page *head_page; 5212 struct buffer_page *commit_page; 5213 struct buffer_page *curr_commit_page; 5214 unsigned commit; 5215 u64 curr_commit_ts; 5216 u64 commit_ts; 5217 5218 cpu_buffer = iter->cpu_buffer; 5219 reader = cpu_buffer->reader_page; 5220 head_page = cpu_buffer->head_page; 5221 commit_page = READ_ONCE(cpu_buffer->commit_page); 5222 commit_ts = commit_page->page->time_stamp; 5223 5224 /* 5225 * When the writer goes across pages, it issues a cmpxchg which 5226 * is a mb(), which will synchronize with the rmb here. 5227 * (see rb_tail_page_update()) 5228 */ 5229 smp_rmb(); 5230 commit = rb_page_commit(commit_page); 5231 /* We want to make sure that the commit page doesn't change */ 5232 smp_rmb(); 5233 5234 /* Make sure commit page didn't change */ 5235 curr_commit_page = READ_ONCE(cpu_buffer->commit_page); 5236 curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp); 5237 5238 /* If the commit page changed, then there's more data */ 5239 if (curr_commit_page != commit_page || 5240 curr_commit_ts != commit_ts) 5241 return 0; 5242 5243 /* Still racy, as it may return a false positive, but that's OK */ 5244 return ((iter->head_page == commit_page && iter->head >= commit) || 5245 (iter->head_page == reader && commit_page == head_page && 5246 head_page->read == commit && 5247 iter->head == rb_page_size(cpu_buffer->reader_page))); 5248 } 5249 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 5250 5251 static void 5252 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 5253 struct ring_buffer_event *event) 5254 { 5255 u64 delta; 5256 5257 switch (event->type_len) { 5258 case RINGBUF_TYPE_PADDING: 5259 return; 5260 5261 case RINGBUF_TYPE_TIME_EXTEND: 5262 delta = rb_event_time_stamp(event); 5263 cpu_buffer->read_stamp += delta; 5264 return; 5265 5266 case RINGBUF_TYPE_TIME_STAMP: 5267 delta = rb_event_time_stamp(event); 5268 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp); 5269 cpu_buffer->read_stamp = delta; 5270 return; 5271 5272 case RINGBUF_TYPE_DATA: 5273 cpu_buffer->read_stamp += event->time_delta; 5274 return; 5275 5276 default: 5277 RB_WARN_ON(cpu_buffer, 1); 5278 } 5279 } 5280 5281 static void 5282 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 5283 struct ring_buffer_event *event) 5284 { 5285 u64 delta; 5286 5287 switch (event->type_len) { 5288 case RINGBUF_TYPE_PADDING: 5289 return; 5290 5291 case RINGBUF_TYPE_TIME_EXTEND: 5292 delta = rb_event_time_stamp(event); 5293 iter->read_stamp += delta; 5294 return; 5295 5296 case RINGBUF_TYPE_TIME_STAMP: 5297 delta = rb_event_time_stamp(event); 5298 delta = rb_fix_abs_ts(delta, iter->read_stamp); 5299 iter->read_stamp = delta; 5300 return; 5301 5302 case RINGBUF_TYPE_DATA: 5303 iter->read_stamp += event->time_delta; 5304 return; 5305 5306 default: 5307 RB_WARN_ON(iter->cpu_buffer, 1); 5308 } 5309 } 5310 5311 static struct buffer_page * 5312 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 5313 { 5314 struct buffer_page *reader = NULL; 5315 unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size); 5316 unsigned long overwrite; 5317 unsigned long flags; 5318 int nr_loops = 0; 5319 bool ret; 5320 5321 local_irq_save(flags); 5322 arch_spin_lock(&cpu_buffer->lock); 5323 5324 again: 5325 /* 5326 * This should normally only loop twice. But because the 5327 * start of the reader inserts an empty page, it causes 5328 * a case where we will loop three times. There should be no 5329 * reason to loop four times (that I know of). 5330 */ 5331 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 5332 reader = NULL; 5333 goto out; 5334 } 5335 5336 reader = cpu_buffer->reader_page; 5337 5338 /* If there's more to read, return this page */ 5339 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 5340 goto out; 5341 5342 /* Never should we have an index greater than the size */ 5343 if (RB_WARN_ON(cpu_buffer, 5344 cpu_buffer->reader_page->read > rb_page_size(reader))) 5345 goto out; 5346 5347 /* check if we caught up to the tail */ 5348 reader = NULL; 5349 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 5350 goto out; 5351 5352 /* Don't bother swapping if the ring buffer is empty */ 5353 if (rb_num_of_entries(cpu_buffer) == 0) 5354 goto out; 5355 5356 /* 5357 * Reset the reader page to size zero. 5358 */ 5359 local_set(&cpu_buffer->reader_page->write, 0); 5360 local_set(&cpu_buffer->reader_page->entries, 0); 5361 local_set(&cpu_buffer->reader_page->page->commit, 0); 5362 cpu_buffer->reader_page->real_end = 0; 5363 5364 spin: 5365 /* 5366 * Splice the empty reader page into the list around the head. 5367 */ 5368 reader = rb_set_head_page(cpu_buffer); 5369 if (!reader) 5370 goto out; 5371 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next); 5372 cpu_buffer->reader_page->list.prev = reader->list.prev; 5373 5374 /* 5375 * cpu_buffer->pages just needs to point to the buffer, it 5376 * has no specific buffer page to point to. Lets move it out 5377 * of our way so we don't accidentally swap it. 5378 */ 5379 cpu_buffer->pages = reader->list.prev; 5380 5381 /* The reader page will be pointing to the new head */ 5382 rb_set_list_to_head(&cpu_buffer->reader_page->list); 5383 5384 /* 5385 * We want to make sure we read the overruns after we set up our 5386 * pointers to the next object. The writer side does a 5387 * cmpxchg to cross pages which acts as the mb on the writer 5388 * side. Note, the reader will constantly fail the swap 5389 * while the writer is updating the pointers, so this 5390 * guarantees that the overwrite recorded here is the one we 5391 * want to compare with the last_overrun. 5392 */ 5393 smp_mb(); 5394 overwrite = local_read(&(cpu_buffer->overrun)); 5395 5396 /* 5397 * Here's the tricky part. 5398 * 5399 * We need to move the pointer past the header page. 5400 * But we can only do that if a writer is not currently 5401 * moving it. The page before the header page has the 5402 * flag bit '1' set if it is pointing to the page we want. 5403 * but if the writer is in the process of moving it 5404 * than it will be '2' or already moved '0'. 5405 */ 5406 5407 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 5408 5409 /* 5410 * If we did not convert it, then we must try again. 5411 */ 5412 if (!ret) 5413 goto spin; 5414 5415 if (cpu_buffer->ring_meta) 5416 rb_update_meta_reader(cpu_buffer, reader); 5417 5418 /* 5419 * Yay! We succeeded in replacing the page. 5420 * 5421 * Now make the new head point back to the reader page. 5422 */ 5423 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list; 5424 rb_inc_page(&cpu_buffer->head_page); 5425 5426 cpu_buffer->cnt++; 5427 local_inc(&cpu_buffer->pages_read); 5428 5429 /* Finally update the reader page to the new head */ 5430 cpu_buffer->reader_page = reader; 5431 cpu_buffer->reader_page->read = 0; 5432 5433 if (overwrite != cpu_buffer->last_overrun) { 5434 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun; 5435 cpu_buffer->last_overrun = overwrite; 5436 } 5437 5438 goto again; 5439 5440 out: 5441 /* Update the read_stamp on the first event */ 5442 if (reader && reader->read == 0) 5443 cpu_buffer->read_stamp = reader->page->time_stamp; 5444 5445 arch_spin_unlock(&cpu_buffer->lock); 5446 local_irq_restore(flags); 5447 5448 /* 5449 * The writer has preempt disable, wait for it. But not forever 5450 * Although, 1 second is pretty much "forever" 5451 */ 5452 #define USECS_WAIT 1000000 5453 for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) { 5454 /* If the write is past the end of page, a writer is still updating it */ 5455 if (likely(!reader || rb_page_write(reader) <= bsize)) 5456 break; 5457 5458 udelay(1); 5459 5460 /* Get the latest version of the reader write value */ 5461 smp_rmb(); 5462 } 5463 5464 /* The writer is not moving forward? Something is wrong */ 5465 if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT)) 5466 reader = NULL; 5467 5468 /* 5469 * Make sure we see any padding after the write update 5470 * (see rb_reset_tail()). 5471 * 5472 * In addition, a writer may be writing on the reader page 5473 * if the page has not been fully filled, so the read barrier 5474 * is also needed to make sure we see the content of what is 5475 * committed by the writer (see rb_set_commit_to_write()). 5476 */ 5477 smp_rmb(); 5478 5479 5480 return reader; 5481 } 5482 5483 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 5484 { 5485 struct ring_buffer_event *event; 5486 struct buffer_page *reader; 5487 unsigned length; 5488 5489 reader = rb_get_reader_page(cpu_buffer); 5490 5491 /* This function should not be called when buffer is empty */ 5492 if (RB_WARN_ON(cpu_buffer, !reader)) 5493 return; 5494 5495 event = rb_reader_event(cpu_buffer); 5496 5497 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 5498 cpu_buffer->read++; 5499 5500 rb_update_read_stamp(cpu_buffer, event); 5501 5502 length = rb_event_length(event); 5503 cpu_buffer->reader_page->read += length; 5504 cpu_buffer->read_bytes += length; 5505 } 5506 5507 static void rb_advance_iter(struct ring_buffer_iter *iter) 5508 { 5509 struct ring_buffer_per_cpu *cpu_buffer; 5510 5511 cpu_buffer = iter->cpu_buffer; 5512 5513 /* If head == next_event then we need to jump to the next event */ 5514 if (iter->head == iter->next_event) { 5515 /* If the event gets overwritten again, there's nothing to do */ 5516 if (rb_iter_head_event(iter) == NULL) 5517 return; 5518 } 5519 5520 iter->head = iter->next_event; 5521 5522 /* 5523 * Check if we are at the end of the buffer. 5524 */ 5525 if (iter->next_event >= rb_page_size(iter->head_page)) { 5526 /* discarded commits can make the page empty */ 5527 if (iter->head_page == cpu_buffer->commit_page) 5528 return; 5529 rb_inc_iter(iter); 5530 return; 5531 } 5532 5533 rb_update_iter_read_stamp(iter, iter->event); 5534 } 5535 5536 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer) 5537 { 5538 return cpu_buffer->lost_events; 5539 } 5540 5541 static struct ring_buffer_event * 5542 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts, 5543 unsigned long *lost_events) 5544 { 5545 struct ring_buffer_event *event; 5546 struct buffer_page *reader; 5547 int nr_loops = 0; 5548 5549 if (ts) 5550 *ts = 0; 5551 again: 5552 /* 5553 * We repeat when a time extend is encountered. 5554 * Since the time extend is always attached to a data event, 5555 * we should never loop more than once. 5556 * (We never hit the following condition more than twice). 5557 */ 5558 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2)) 5559 return NULL; 5560 5561 reader = rb_get_reader_page(cpu_buffer); 5562 if (!reader) 5563 return NULL; 5564 5565 event = rb_reader_event(cpu_buffer); 5566 5567 switch (event->type_len) { 5568 case RINGBUF_TYPE_PADDING: 5569 if (rb_null_event(event)) 5570 RB_WARN_ON(cpu_buffer, 1); 5571 /* 5572 * Because the writer could be discarding every 5573 * event it creates (which would probably be bad) 5574 * if we were to go back to "again" then we may never 5575 * catch up, and will trigger the warn on, or lock 5576 * the box. Return the padding, and we will release 5577 * the current locks, and try again. 5578 */ 5579 return event; 5580 5581 case RINGBUF_TYPE_TIME_EXTEND: 5582 /* Internal data, OK to advance */ 5583 rb_advance_reader(cpu_buffer); 5584 goto again; 5585 5586 case RINGBUF_TYPE_TIME_STAMP: 5587 if (ts) { 5588 *ts = rb_event_time_stamp(event); 5589 *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp); 5590 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5591 cpu_buffer->cpu, ts); 5592 } 5593 /* Internal data, OK to advance */ 5594 rb_advance_reader(cpu_buffer); 5595 goto again; 5596 5597 case RINGBUF_TYPE_DATA: 5598 if (ts && !(*ts)) { 5599 *ts = cpu_buffer->read_stamp + event->time_delta; 5600 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5601 cpu_buffer->cpu, ts); 5602 } 5603 if (lost_events) 5604 *lost_events = rb_lost_events(cpu_buffer); 5605 return event; 5606 5607 default: 5608 RB_WARN_ON(cpu_buffer, 1); 5609 } 5610 5611 return NULL; 5612 } 5613 EXPORT_SYMBOL_GPL(ring_buffer_peek); 5614 5615 static struct ring_buffer_event * 5616 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5617 { 5618 struct trace_buffer *buffer; 5619 struct ring_buffer_per_cpu *cpu_buffer; 5620 struct ring_buffer_event *event; 5621 int nr_loops = 0; 5622 5623 if (ts) 5624 *ts = 0; 5625 5626 cpu_buffer = iter->cpu_buffer; 5627 buffer = cpu_buffer->buffer; 5628 5629 /* 5630 * Check if someone performed a consuming read to the buffer 5631 * or removed some pages from the buffer. In these cases, 5632 * iterator was invalidated and we need to reset it. 5633 */ 5634 if (unlikely(iter->cache_read != cpu_buffer->read || 5635 iter->cache_reader_page != cpu_buffer->reader_page || 5636 iter->cache_pages_removed != cpu_buffer->pages_removed)) 5637 rb_iter_reset(iter); 5638 5639 again: 5640 if (ring_buffer_iter_empty(iter)) 5641 return NULL; 5642 5643 /* 5644 * As the writer can mess with what the iterator is trying 5645 * to read, just give up if we fail to get an event after 5646 * three tries. The iterator is not as reliable when reading 5647 * the ring buffer with an active write as the consumer is. 5648 * Do not warn if the three failures is reached. 5649 */ 5650 if (++nr_loops > 3) 5651 return NULL; 5652 5653 if (rb_per_cpu_empty(cpu_buffer)) 5654 return NULL; 5655 5656 if (iter->head >= rb_page_size(iter->head_page)) { 5657 rb_inc_iter(iter); 5658 goto again; 5659 } 5660 5661 event = rb_iter_head_event(iter); 5662 if (!event) 5663 goto again; 5664 5665 switch (event->type_len) { 5666 case RINGBUF_TYPE_PADDING: 5667 if (rb_null_event(event)) { 5668 rb_inc_iter(iter); 5669 goto again; 5670 } 5671 rb_advance_iter(iter); 5672 return event; 5673 5674 case RINGBUF_TYPE_TIME_EXTEND: 5675 /* Internal data, OK to advance */ 5676 rb_advance_iter(iter); 5677 goto again; 5678 5679 case RINGBUF_TYPE_TIME_STAMP: 5680 if (ts) { 5681 *ts = rb_event_time_stamp(event); 5682 *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp); 5683 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 5684 cpu_buffer->cpu, ts); 5685 } 5686 /* Internal data, OK to advance */ 5687 rb_advance_iter(iter); 5688 goto again; 5689 5690 case RINGBUF_TYPE_DATA: 5691 if (ts && !(*ts)) { 5692 *ts = iter->read_stamp + event->time_delta; 5693 ring_buffer_normalize_time_stamp(buffer, 5694 cpu_buffer->cpu, ts); 5695 } 5696 return event; 5697 5698 default: 5699 RB_WARN_ON(cpu_buffer, 1); 5700 } 5701 5702 return NULL; 5703 } 5704 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 5705 5706 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer) 5707 { 5708 if (likely(!in_nmi())) { 5709 raw_spin_lock(&cpu_buffer->reader_lock); 5710 return true; 5711 } 5712 5713 /* 5714 * If an NMI die dumps out the content of the ring buffer 5715 * trylock must be used to prevent a deadlock if the NMI 5716 * preempted a task that holds the ring buffer locks. If 5717 * we get the lock then all is fine, if not, then continue 5718 * to do the read, but this can corrupt the ring buffer, 5719 * so it must be permanently disabled from future writes. 5720 * Reading from NMI is a oneshot deal. 5721 */ 5722 if (raw_spin_trylock(&cpu_buffer->reader_lock)) 5723 return true; 5724 5725 /* Continue without locking, but disable the ring buffer */ 5726 atomic_inc(&cpu_buffer->record_disabled); 5727 return false; 5728 } 5729 5730 static inline void 5731 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked) 5732 { 5733 if (likely(locked)) 5734 raw_spin_unlock(&cpu_buffer->reader_lock); 5735 } 5736 5737 /** 5738 * ring_buffer_peek - peek at the next event to be read 5739 * @buffer: The ring buffer to read 5740 * @cpu: The cpu to peak at 5741 * @ts: The timestamp counter of this event. 5742 * @lost_events: a variable to store if events were lost (may be NULL) 5743 * 5744 * This will return the event that will be read next, but does 5745 * not consume the data. 5746 */ 5747 struct ring_buffer_event * 5748 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts, 5749 unsigned long *lost_events) 5750 { 5751 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 5752 struct ring_buffer_event *event; 5753 unsigned long flags; 5754 bool dolock; 5755 5756 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5757 return NULL; 5758 5759 again: 5760 local_irq_save(flags); 5761 dolock = rb_reader_lock(cpu_buffer); 5762 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5763 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5764 rb_advance_reader(cpu_buffer); 5765 rb_reader_unlock(cpu_buffer, dolock); 5766 local_irq_restore(flags); 5767 5768 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5769 goto again; 5770 5771 return event; 5772 } 5773 5774 /** ring_buffer_iter_dropped - report if there are dropped events 5775 * @iter: The ring buffer iterator 5776 * 5777 * Returns true if there was dropped events since the last peek. 5778 */ 5779 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter) 5780 { 5781 bool ret = iter->missed_events != 0; 5782 5783 iter->missed_events = 0; 5784 return ret; 5785 } 5786 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped); 5787 5788 /** 5789 * ring_buffer_iter_peek - peek at the next event to be read 5790 * @iter: The ring buffer iterator 5791 * @ts: The timestamp counter of this event. 5792 * 5793 * This will return the event that will be read next, but does 5794 * not increment the iterator. 5795 */ 5796 struct ring_buffer_event * 5797 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 5798 { 5799 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5800 struct ring_buffer_event *event; 5801 unsigned long flags; 5802 5803 again: 5804 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5805 event = rb_iter_peek(iter, ts); 5806 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5807 5808 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5809 goto again; 5810 5811 return event; 5812 } 5813 5814 /** 5815 * ring_buffer_consume - return an event and consume it 5816 * @buffer: The ring buffer to get the next event from 5817 * @cpu: the cpu to read the buffer from 5818 * @ts: a variable to store the timestamp (may be NULL) 5819 * @lost_events: a variable to store if events were lost (may be NULL) 5820 * 5821 * Returns the next event in the ring buffer, and that event is consumed. 5822 * Meaning, that sequential reads will keep returning a different event, 5823 * and eventually empty the ring buffer if the producer is slower. 5824 */ 5825 struct ring_buffer_event * 5826 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts, 5827 unsigned long *lost_events) 5828 { 5829 struct ring_buffer_per_cpu *cpu_buffer; 5830 struct ring_buffer_event *event = NULL; 5831 unsigned long flags; 5832 bool dolock; 5833 5834 again: 5835 /* might be called in atomic */ 5836 preempt_disable(); 5837 5838 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5839 goto out; 5840 5841 cpu_buffer = buffer->buffers[cpu]; 5842 local_irq_save(flags); 5843 dolock = rb_reader_lock(cpu_buffer); 5844 5845 event = rb_buffer_peek(cpu_buffer, ts, lost_events); 5846 if (event) { 5847 cpu_buffer->lost_events = 0; 5848 rb_advance_reader(cpu_buffer); 5849 } 5850 5851 rb_reader_unlock(cpu_buffer, dolock); 5852 local_irq_restore(flags); 5853 5854 out: 5855 preempt_enable(); 5856 5857 if (event && event->type_len == RINGBUF_TYPE_PADDING) 5858 goto again; 5859 5860 return event; 5861 } 5862 EXPORT_SYMBOL_GPL(ring_buffer_consume); 5863 5864 /** 5865 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer 5866 * @buffer: The ring buffer to read from 5867 * @cpu: The cpu buffer to iterate over 5868 * @flags: gfp flags to use for memory allocation 5869 * 5870 * This performs the initial preparations necessary to iterate 5871 * through the buffer. Memory is allocated, buffer resizing 5872 * is disabled, and the iterator pointer is returned to the caller. 5873 * 5874 * After a sequence of ring_buffer_read_prepare calls, the user is 5875 * expected to make at least one call to ring_buffer_read_prepare_sync. 5876 * Afterwards, ring_buffer_read_start is invoked to get things going 5877 * for real. 5878 * 5879 * This overall must be paired with ring_buffer_read_finish. 5880 */ 5881 struct ring_buffer_iter * 5882 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags) 5883 { 5884 struct ring_buffer_per_cpu *cpu_buffer; 5885 struct ring_buffer_iter *iter; 5886 5887 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 5888 return NULL; 5889 5890 iter = kzalloc(sizeof(*iter), flags); 5891 if (!iter) 5892 return NULL; 5893 5894 /* Holds the entire event: data and meta data */ 5895 iter->event_size = buffer->subbuf_size; 5896 iter->event = kmalloc(iter->event_size, flags); 5897 if (!iter->event) { 5898 kfree(iter); 5899 return NULL; 5900 } 5901 5902 cpu_buffer = buffer->buffers[cpu]; 5903 5904 iter->cpu_buffer = cpu_buffer; 5905 5906 atomic_inc(&cpu_buffer->resize_disabled); 5907 5908 return iter; 5909 } 5910 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare); 5911 5912 /** 5913 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls 5914 * 5915 * All previously invoked ring_buffer_read_prepare calls to prepare 5916 * iterators will be synchronized. Afterwards, read_buffer_read_start 5917 * calls on those iterators are allowed. 5918 */ 5919 void 5920 ring_buffer_read_prepare_sync(void) 5921 { 5922 synchronize_rcu(); 5923 } 5924 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync); 5925 5926 /** 5927 * ring_buffer_read_start - start a non consuming read of the buffer 5928 * @iter: The iterator returned by ring_buffer_read_prepare 5929 * 5930 * This finalizes the startup of an iteration through the buffer. 5931 * The iterator comes from a call to ring_buffer_read_prepare and 5932 * an intervening ring_buffer_read_prepare_sync must have been 5933 * performed. 5934 * 5935 * Must be paired with ring_buffer_read_finish. 5936 */ 5937 void 5938 ring_buffer_read_start(struct ring_buffer_iter *iter) 5939 { 5940 struct ring_buffer_per_cpu *cpu_buffer; 5941 unsigned long flags; 5942 5943 if (!iter) 5944 return; 5945 5946 cpu_buffer = iter->cpu_buffer; 5947 5948 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5949 arch_spin_lock(&cpu_buffer->lock); 5950 rb_iter_reset(iter); 5951 arch_spin_unlock(&cpu_buffer->lock); 5952 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5953 } 5954 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 5955 5956 /** 5957 * ring_buffer_read_finish - finish reading the iterator of the buffer 5958 * @iter: The iterator retrieved by ring_buffer_start 5959 * 5960 * This re-enables resizing of the buffer, and frees the iterator. 5961 */ 5962 void 5963 ring_buffer_read_finish(struct ring_buffer_iter *iter) 5964 { 5965 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5966 5967 /* Use this opportunity to check the integrity of the ring buffer. */ 5968 rb_check_pages(cpu_buffer); 5969 5970 atomic_dec(&cpu_buffer->resize_disabled); 5971 kfree(iter->event); 5972 kfree(iter); 5973 } 5974 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 5975 5976 /** 5977 * ring_buffer_iter_advance - advance the iterator to the next location 5978 * @iter: The ring buffer iterator 5979 * 5980 * Move the location of the iterator such that the next read will 5981 * be the next location of the iterator. 5982 */ 5983 void ring_buffer_iter_advance(struct ring_buffer_iter *iter) 5984 { 5985 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 5986 unsigned long flags; 5987 5988 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 5989 5990 rb_advance_iter(iter); 5991 5992 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 5993 } 5994 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance); 5995 5996 /** 5997 * ring_buffer_size - return the size of the ring buffer (in bytes) 5998 * @buffer: The ring buffer. 5999 * @cpu: The CPU to get ring buffer size from. 6000 */ 6001 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu) 6002 { 6003 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6004 return 0; 6005 6006 return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages; 6007 } 6008 EXPORT_SYMBOL_GPL(ring_buffer_size); 6009 6010 /** 6011 * ring_buffer_max_event_size - return the max data size of an event 6012 * @buffer: The ring buffer. 6013 * 6014 * Returns the maximum size an event can be. 6015 */ 6016 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer) 6017 { 6018 /* If abs timestamp is requested, events have a timestamp too */ 6019 if (ring_buffer_time_stamp_abs(buffer)) 6020 return buffer->max_data_size - RB_LEN_TIME_EXTEND; 6021 return buffer->max_data_size; 6022 } 6023 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size); 6024 6025 static void rb_clear_buffer_page(struct buffer_page *page) 6026 { 6027 local_set(&page->write, 0); 6028 local_set(&page->entries, 0); 6029 rb_init_page(page->page); 6030 page->read = 0; 6031 } 6032 6033 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 6034 { 6035 struct trace_buffer_meta *meta = cpu_buffer->meta_page; 6036 6037 if (!meta) 6038 return; 6039 6040 meta->reader.read = cpu_buffer->reader_page->read; 6041 meta->reader.id = cpu_buffer->reader_page->id; 6042 meta->reader.lost_events = cpu_buffer->lost_events; 6043 6044 meta->entries = local_read(&cpu_buffer->entries); 6045 meta->overrun = local_read(&cpu_buffer->overrun); 6046 meta->read = cpu_buffer->read; 6047 6048 /* Some archs do not have data cache coherency between kernel and user-space */ 6049 flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page)); 6050 } 6051 6052 static void 6053 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 6054 { 6055 struct buffer_page *page; 6056 6057 rb_head_page_deactivate(cpu_buffer); 6058 6059 cpu_buffer->head_page 6060 = list_entry(cpu_buffer->pages, struct buffer_page, list); 6061 rb_clear_buffer_page(cpu_buffer->head_page); 6062 list_for_each_entry(page, cpu_buffer->pages, list) { 6063 rb_clear_buffer_page(page); 6064 } 6065 6066 cpu_buffer->tail_page = cpu_buffer->head_page; 6067 cpu_buffer->commit_page = cpu_buffer->head_page; 6068 6069 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 6070 INIT_LIST_HEAD(&cpu_buffer->new_pages); 6071 rb_clear_buffer_page(cpu_buffer->reader_page); 6072 6073 local_set(&cpu_buffer->entries_bytes, 0); 6074 local_set(&cpu_buffer->overrun, 0); 6075 local_set(&cpu_buffer->commit_overrun, 0); 6076 local_set(&cpu_buffer->dropped_events, 0); 6077 local_set(&cpu_buffer->entries, 0); 6078 local_set(&cpu_buffer->committing, 0); 6079 local_set(&cpu_buffer->commits, 0); 6080 local_set(&cpu_buffer->pages_touched, 0); 6081 local_set(&cpu_buffer->pages_lost, 0); 6082 local_set(&cpu_buffer->pages_read, 0); 6083 cpu_buffer->last_pages_touch = 0; 6084 cpu_buffer->shortest_full = 0; 6085 cpu_buffer->read = 0; 6086 cpu_buffer->read_bytes = 0; 6087 6088 rb_time_set(&cpu_buffer->write_stamp, 0); 6089 rb_time_set(&cpu_buffer->before_stamp, 0); 6090 6091 memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp)); 6092 6093 cpu_buffer->lost_events = 0; 6094 cpu_buffer->last_overrun = 0; 6095 6096 rb_head_page_activate(cpu_buffer); 6097 cpu_buffer->pages_removed = 0; 6098 6099 if (cpu_buffer->mapped) { 6100 rb_update_meta_page(cpu_buffer); 6101 if (cpu_buffer->ring_meta) { 6102 struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta; 6103 meta->commit_buffer = meta->head_buffer; 6104 } 6105 } 6106 } 6107 6108 /* Must have disabled the cpu buffer then done a synchronize_rcu */ 6109 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 6110 { 6111 unsigned long flags; 6112 6113 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6114 6115 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 6116 goto out; 6117 6118 arch_spin_lock(&cpu_buffer->lock); 6119 6120 rb_reset_cpu(cpu_buffer); 6121 6122 arch_spin_unlock(&cpu_buffer->lock); 6123 6124 out: 6125 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6126 } 6127 6128 /** 6129 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 6130 * @buffer: The ring buffer to reset a per cpu buffer of 6131 * @cpu: The CPU buffer to be reset 6132 */ 6133 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu) 6134 { 6135 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 6136 struct ring_buffer_cpu_meta *meta; 6137 6138 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6139 return; 6140 6141 /* prevent another thread from changing buffer sizes */ 6142 mutex_lock(&buffer->mutex); 6143 6144 atomic_inc(&cpu_buffer->resize_disabled); 6145 atomic_inc(&cpu_buffer->record_disabled); 6146 6147 /* Make sure all commits have finished */ 6148 synchronize_rcu(); 6149 6150 reset_disabled_cpu_buffer(cpu_buffer); 6151 6152 atomic_dec(&cpu_buffer->record_disabled); 6153 atomic_dec(&cpu_buffer->resize_disabled); 6154 6155 /* Make sure persistent meta now uses this buffer's addresses */ 6156 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu); 6157 if (meta) 6158 rb_meta_init_text_addr(meta); 6159 6160 mutex_unlock(&buffer->mutex); 6161 } 6162 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 6163 6164 /* Flag to ensure proper resetting of atomic variables */ 6165 #define RESET_BIT (1 << 30) 6166 6167 /** 6168 * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer 6169 * @buffer: The ring buffer to reset a per cpu buffer of 6170 */ 6171 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer) 6172 { 6173 struct ring_buffer_per_cpu *cpu_buffer; 6174 struct ring_buffer_cpu_meta *meta; 6175 int cpu; 6176 6177 /* prevent another thread from changing buffer sizes */ 6178 mutex_lock(&buffer->mutex); 6179 6180 for_each_online_buffer_cpu(buffer, cpu) { 6181 cpu_buffer = buffer->buffers[cpu]; 6182 6183 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled); 6184 atomic_inc(&cpu_buffer->record_disabled); 6185 } 6186 6187 /* Make sure all commits have finished */ 6188 synchronize_rcu(); 6189 6190 for_each_buffer_cpu(buffer, cpu) { 6191 cpu_buffer = buffer->buffers[cpu]; 6192 6193 /* 6194 * If a CPU came online during the synchronize_rcu(), then 6195 * ignore it. 6196 */ 6197 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT)) 6198 continue; 6199 6200 reset_disabled_cpu_buffer(cpu_buffer); 6201 6202 /* Make sure persistent meta now uses this buffer's addresses */ 6203 meta = rb_range_meta(buffer, 0, cpu_buffer->cpu); 6204 if (meta) 6205 rb_meta_init_text_addr(meta); 6206 6207 atomic_dec(&cpu_buffer->record_disabled); 6208 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled); 6209 } 6210 6211 mutex_unlock(&buffer->mutex); 6212 } 6213 6214 /** 6215 * ring_buffer_reset - reset a ring buffer 6216 * @buffer: The ring buffer to reset all cpu buffers 6217 */ 6218 void ring_buffer_reset(struct trace_buffer *buffer) 6219 { 6220 struct ring_buffer_per_cpu *cpu_buffer; 6221 int cpu; 6222 6223 /* prevent another thread from changing buffer sizes */ 6224 mutex_lock(&buffer->mutex); 6225 6226 for_each_buffer_cpu(buffer, cpu) { 6227 cpu_buffer = buffer->buffers[cpu]; 6228 6229 atomic_inc(&cpu_buffer->resize_disabled); 6230 atomic_inc(&cpu_buffer->record_disabled); 6231 } 6232 6233 /* Make sure all commits have finished */ 6234 synchronize_rcu(); 6235 6236 for_each_buffer_cpu(buffer, cpu) { 6237 cpu_buffer = buffer->buffers[cpu]; 6238 6239 reset_disabled_cpu_buffer(cpu_buffer); 6240 6241 atomic_dec(&cpu_buffer->record_disabled); 6242 atomic_dec(&cpu_buffer->resize_disabled); 6243 } 6244 6245 mutex_unlock(&buffer->mutex); 6246 } 6247 EXPORT_SYMBOL_GPL(ring_buffer_reset); 6248 6249 /** 6250 * ring_buffer_empty - is the ring buffer empty? 6251 * @buffer: The ring buffer to test 6252 */ 6253 bool ring_buffer_empty(struct trace_buffer *buffer) 6254 { 6255 struct ring_buffer_per_cpu *cpu_buffer; 6256 unsigned long flags; 6257 bool dolock; 6258 bool ret; 6259 int cpu; 6260 6261 /* yes this is racy, but if you don't like the race, lock the buffer */ 6262 for_each_buffer_cpu(buffer, cpu) { 6263 cpu_buffer = buffer->buffers[cpu]; 6264 local_irq_save(flags); 6265 dolock = rb_reader_lock(cpu_buffer); 6266 ret = rb_per_cpu_empty(cpu_buffer); 6267 rb_reader_unlock(cpu_buffer, dolock); 6268 local_irq_restore(flags); 6269 6270 if (!ret) 6271 return false; 6272 } 6273 6274 return true; 6275 } 6276 EXPORT_SYMBOL_GPL(ring_buffer_empty); 6277 6278 /** 6279 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 6280 * @buffer: The ring buffer 6281 * @cpu: The CPU buffer to test 6282 */ 6283 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu) 6284 { 6285 struct ring_buffer_per_cpu *cpu_buffer; 6286 unsigned long flags; 6287 bool dolock; 6288 bool ret; 6289 6290 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6291 return true; 6292 6293 cpu_buffer = buffer->buffers[cpu]; 6294 local_irq_save(flags); 6295 dolock = rb_reader_lock(cpu_buffer); 6296 ret = rb_per_cpu_empty(cpu_buffer); 6297 rb_reader_unlock(cpu_buffer, dolock); 6298 local_irq_restore(flags); 6299 6300 return ret; 6301 } 6302 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 6303 6304 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 6305 /** 6306 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 6307 * @buffer_a: One buffer to swap with 6308 * @buffer_b: The other buffer to swap with 6309 * @cpu: the CPU of the buffers to swap 6310 * 6311 * This function is useful for tracers that want to take a "snapshot" 6312 * of a CPU buffer and has another back up buffer lying around. 6313 * it is expected that the tracer handles the cpu buffer not being 6314 * used at the moment. 6315 */ 6316 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a, 6317 struct trace_buffer *buffer_b, int cpu) 6318 { 6319 struct ring_buffer_per_cpu *cpu_buffer_a; 6320 struct ring_buffer_per_cpu *cpu_buffer_b; 6321 int ret = -EINVAL; 6322 6323 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 6324 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 6325 goto out; 6326 6327 cpu_buffer_a = buffer_a->buffers[cpu]; 6328 cpu_buffer_b = buffer_b->buffers[cpu]; 6329 6330 /* It's up to the callers to not try to swap mapped buffers */ 6331 if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) { 6332 ret = -EBUSY; 6333 goto out; 6334 } 6335 6336 /* At least make sure the two buffers are somewhat the same */ 6337 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages) 6338 goto out; 6339 6340 if (buffer_a->subbuf_order != buffer_b->subbuf_order) 6341 goto out; 6342 6343 ret = -EAGAIN; 6344 6345 if (atomic_read(&buffer_a->record_disabled)) 6346 goto out; 6347 6348 if (atomic_read(&buffer_b->record_disabled)) 6349 goto out; 6350 6351 if (atomic_read(&cpu_buffer_a->record_disabled)) 6352 goto out; 6353 6354 if (atomic_read(&cpu_buffer_b->record_disabled)) 6355 goto out; 6356 6357 /* 6358 * We can't do a synchronize_rcu here because this 6359 * function can be called in atomic context. 6360 * Normally this will be called from the same CPU as cpu. 6361 * If not it's up to the caller to protect this. 6362 */ 6363 atomic_inc(&cpu_buffer_a->record_disabled); 6364 atomic_inc(&cpu_buffer_b->record_disabled); 6365 6366 ret = -EBUSY; 6367 if (local_read(&cpu_buffer_a->committing)) 6368 goto out_dec; 6369 if (local_read(&cpu_buffer_b->committing)) 6370 goto out_dec; 6371 6372 /* 6373 * When resize is in progress, we cannot swap it because 6374 * it will mess the state of the cpu buffer. 6375 */ 6376 if (atomic_read(&buffer_a->resizing)) 6377 goto out_dec; 6378 if (atomic_read(&buffer_b->resizing)) 6379 goto out_dec; 6380 6381 buffer_a->buffers[cpu] = cpu_buffer_b; 6382 buffer_b->buffers[cpu] = cpu_buffer_a; 6383 6384 cpu_buffer_b->buffer = buffer_a; 6385 cpu_buffer_a->buffer = buffer_b; 6386 6387 ret = 0; 6388 6389 out_dec: 6390 atomic_dec(&cpu_buffer_a->record_disabled); 6391 atomic_dec(&cpu_buffer_b->record_disabled); 6392 out: 6393 return ret; 6394 } 6395 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 6396 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 6397 6398 /** 6399 * ring_buffer_alloc_read_page - allocate a page to read from buffer 6400 * @buffer: the buffer to allocate for. 6401 * @cpu: the cpu buffer to allocate. 6402 * 6403 * This function is used in conjunction with ring_buffer_read_page. 6404 * When reading a full page from the ring buffer, these functions 6405 * can be used to speed up the process. The calling function should 6406 * allocate a few pages first with this function. Then when it 6407 * needs to get pages from the ring buffer, it passes the result 6408 * of this function into ring_buffer_read_page, which will swap 6409 * the page that was allocated, with the read page of the buffer. 6410 * 6411 * Returns: 6412 * The page allocated, or ERR_PTR 6413 */ 6414 struct buffer_data_read_page * 6415 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu) 6416 { 6417 struct ring_buffer_per_cpu *cpu_buffer; 6418 struct buffer_data_read_page *bpage = NULL; 6419 unsigned long flags; 6420 struct page *page; 6421 6422 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6423 return ERR_PTR(-ENODEV); 6424 6425 bpage = kzalloc(sizeof(*bpage), GFP_KERNEL); 6426 if (!bpage) 6427 return ERR_PTR(-ENOMEM); 6428 6429 bpage->order = buffer->subbuf_order; 6430 cpu_buffer = buffer->buffers[cpu]; 6431 local_irq_save(flags); 6432 arch_spin_lock(&cpu_buffer->lock); 6433 6434 if (cpu_buffer->free_page) { 6435 bpage->data = cpu_buffer->free_page; 6436 cpu_buffer->free_page = NULL; 6437 } 6438 6439 arch_spin_unlock(&cpu_buffer->lock); 6440 local_irq_restore(flags); 6441 6442 if (bpage->data) 6443 goto out; 6444 6445 page = alloc_pages_node(cpu_to_node(cpu), 6446 GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO, 6447 cpu_buffer->buffer->subbuf_order); 6448 if (!page) { 6449 kfree(bpage); 6450 return ERR_PTR(-ENOMEM); 6451 } 6452 6453 bpage->data = page_address(page); 6454 6455 out: 6456 rb_init_page(bpage->data); 6457 6458 return bpage; 6459 } 6460 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 6461 6462 /** 6463 * ring_buffer_free_read_page - free an allocated read page 6464 * @buffer: the buffer the page was allocate for 6465 * @cpu: the cpu buffer the page came from 6466 * @data_page: the page to free 6467 * 6468 * Free a page allocated from ring_buffer_alloc_read_page. 6469 */ 6470 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, 6471 struct buffer_data_read_page *data_page) 6472 { 6473 struct ring_buffer_per_cpu *cpu_buffer; 6474 struct buffer_data_page *bpage = data_page->data; 6475 struct page *page = virt_to_page(bpage); 6476 unsigned long flags; 6477 6478 if (!buffer || !buffer->buffers || !buffer->buffers[cpu]) 6479 return; 6480 6481 cpu_buffer = buffer->buffers[cpu]; 6482 6483 /* 6484 * If the page is still in use someplace else, or order of the page 6485 * is different from the subbuffer order of the buffer - 6486 * we can't reuse it 6487 */ 6488 if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order) 6489 goto out; 6490 6491 local_irq_save(flags); 6492 arch_spin_lock(&cpu_buffer->lock); 6493 6494 if (!cpu_buffer->free_page) { 6495 cpu_buffer->free_page = bpage; 6496 bpage = NULL; 6497 } 6498 6499 arch_spin_unlock(&cpu_buffer->lock); 6500 local_irq_restore(flags); 6501 6502 out: 6503 free_pages((unsigned long)bpage, data_page->order); 6504 kfree(data_page); 6505 } 6506 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 6507 6508 /** 6509 * ring_buffer_read_page - extract a page from the ring buffer 6510 * @buffer: buffer to extract from 6511 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 6512 * @len: amount to extract 6513 * @cpu: the cpu of the buffer to extract 6514 * @full: should the extraction only happen when the page is full. 6515 * 6516 * This function will pull out a page from the ring buffer and consume it. 6517 * @data_page must be the address of the variable that was returned 6518 * from ring_buffer_alloc_read_page. This is because the page might be used 6519 * to swap with a page in the ring buffer. 6520 * 6521 * for example: 6522 * rpage = ring_buffer_alloc_read_page(buffer, cpu); 6523 * if (IS_ERR(rpage)) 6524 * return PTR_ERR(rpage); 6525 * ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0); 6526 * if (ret >= 0) 6527 * process_page(ring_buffer_read_page_data(rpage), ret); 6528 * ring_buffer_free_read_page(buffer, cpu, rpage); 6529 * 6530 * When @full is set, the function will not return true unless 6531 * the writer is off the reader page. 6532 * 6533 * Note: it is up to the calling functions to handle sleeps and wakeups. 6534 * The ring buffer can be used anywhere in the kernel and can not 6535 * blindly call wake_up. The layer that uses the ring buffer must be 6536 * responsible for that. 6537 * 6538 * Returns: 6539 * >=0 if data has been transferred, returns the offset of consumed data. 6540 * <0 if no data has been transferred. 6541 */ 6542 int ring_buffer_read_page(struct trace_buffer *buffer, 6543 struct buffer_data_read_page *data_page, 6544 size_t len, int cpu, int full) 6545 { 6546 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 6547 struct ring_buffer_event *event; 6548 struct buffer_data_page *bpage; 6549 struct buffer_page *reader; 6550 unsigned long missed_events; 6551 unsigned long flags; 6552 unsigned int commit; 6553 unsigned int read; 6554 u64 save_timestamp; 6555 int ret = -1; 6556 6557 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6558 goto out; 6559 6560 /* 6561 * If len is not big enough to hold the page header, then 6562 * we can not copy anything. 6563 */ 6564 if (len <= BUF_PAGE_HDR_SIZE) 6565 goto out; 6566 6567 len -= BUF_PAGE_HDR_SIZE; 6568 6569 if (!data_page || !data_page->data) 6570 goto out; 6571 if (data_page->order != buffer->subbuf_order) 6572 goto out; 6573 6574 bpage = data_page->data; 6575 if (!bpage) 6576 goto out; 6577 6578 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6579 6580 reader = rb_get_reader_page(cpu_buffer); 6581 if (!reader) 6582 goto out_unlock; 6583 6584 event = rb_reader_event(cpu_buffer); 6585 6586 read = reader->read; 6587 commit = rb_page_size(reader); 6588 6589 /* Check if any events were dropped */ 6590 missed_events = cpu_buffer->lost_events; 6591 6592 /* 6593 * If this page has been partially read or 6594 * if len is not big enough to read the rest of the page or 6595 * a writer is still on the page, then 6596 * we must copy the data from the page to the buffer. 6597 * Otherwise, we can simply swap the page with the one passed in. 6598 */ 6599 if (read || (len < (commit - read)) || 6600 cpu_buffer->reader_page == cpu_buffer->commit_page || 6601 cpu_buffer->mapped) { 6602 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 6603 unsigned int rpos = read; 6604 unsigned int pos = 0; 6605 unsigned int size; 6606 6607 /* 6608 * If a full page is expected, this can still be returned 6609 * if there's been a previous partial read and the 6610 * rest of the page can be read and the commit page is off 6611 * the reader page. 6612 */ 6613 if (full && 6614 (!read || (len < (commit - read)) || 6615 cpu_buffer->reader_page == cpu_buffer->commit_page)) 6616 goto out_unlock; 6617 6618 if (len > (commit - read)) 6619 len = (commit - read); 6620 6621 /* Always keep the time extend and data together */ 6622 size = rb_event_ts_length(event); 6623 6624 if (len < size) 6625 goto out_unlock; 6626 6627 /* save the current timestamp, since the user will need it */ 6628 save_timestamp = cpu_buffer->read_stamp; 6629 6630 /* Need to copy one event at a time */ 6631 do { 6632 /* We need the size of one event, because 6633 * rb_advance_reader only advances by one event, 6634 * whereas rb_event_ts_length may include the size of 6635 * one or two events. 6636 * We have already ensured there's enough space if this 6637 * is a time extend. */ 6638 size = rb_event_length(event); 6639 memcpy(bpage->data + pos, rpage->data + rpos, size); 6640 6641 len -= size; 6642 6643 rb_advance_reader(cpu_buffer); 6644 rpos = reader->read; 6645 pos += size; 6646 6647 if (rpos >= commit) 6648 break; 6649 6650 event = rb_reader_event(cpu_buffer); 6651 /* Always keep the time extend and data together */ 6652 size = rb_event_ts_length(event); 6653 } while (len >= size); 6654 6655 /* update bpage */ 6656 local_set(&bpage->commit, pos); 6657 bpage->time_stamp = save_timestamp; 6658 6659 /* we copied everything to the beginning */ 6660 read = 0; 6661 } else { 6662 /* update the entry counter */ 6663 cpu_buffer->read += rb_page_entries(reader); 6664 cpu_buffer->read_bytes += rb_page_size(reader); 6665 6666 /* swap the pages */ 6667 rb_init_page(bpage); 6668 bpage = reader->page; 6669 reader->page = data_page->data; 6670 local_set(&reader->write, 0); 6671 local_set(&reader->entries, 0); 6672 reader->read = 0; 6673 data_page->data = bpage; 6674 6675 /* 6676 * Use the real_end for the data size, 6677 * This gives us a chance to store the lost events 6678 * on the page. 6679 */ 6680 if (reader->real_end) 6681 local_set(&bpage->commit, reader->real_end); 6682 } 6683 ret = read; 6684 6685 cpu_buffer->lost_events = 0; 6686 6687 commit = local_read(&bpage->commit); 6688 /* 6689 * Set a flag in the commit field if we lost events 6690 */ 6691 if (missed_events) { 6692 /* If there is room at the end of the page to save the 6693 * missed events, then record it there. 6694 */ 6695 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 6696 memcpy(&bpage->data[commit], &missed_events, 6697 sizeof(missed_events)); 6698 local_add(RB_MISSED_STORED, &bpage->commit); 6699 commit += sizeof(missed_events); 6700 } 6701 local_add(RB_MISSED_EVENTS, &bpage->commit); 6702 } 6703 6704 /* 6705 * This page may be off to user land. Zero it out here. 6706 */ 6707 if (commit < buffer->subbuf_size) 6708 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit); 6709 6710 out_unlock: 6711 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6712 6713 out: 6714 return ret; 6715 } 6716 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 6717 6718 /** 6719 * ring_buffer_read_page_data - get pointer to the data in the page. 6720 * @page: the page to get the data from 6721 * 6722 * Returns pointer to the actual data in this page. 6723 */ 6724 void *ring_buffer_read_page_data(struct buffer_data_read_page *page) 6725 { 6726 return page->data; 6727 } 6728 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data); 6729 6730 /** 6731 * ring_buffer_subbuf_size_get - get size of the sub buffer. 6732 * @buffer: the buffer to get the sub buffer size from 6733 * 6734 * Returns size of the sub buffer, in bytes. 6735 */ 6736 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer) 6737 { 6738 return buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 6739 } 6740 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get); 6741 6742 /** 6743 * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page. 6744 * @buffer: The ring_buffer to get the system sub page order from 6745 * 6746 * By default, one ring buffer sub page equals to one system page. This parameter 6747 * is configurable, per ring buffer. The size of the ring buffer sub page can be 6748 * extended, but must be an order of system page size. 6749 * 6750 * Returns the order of buffer sub page size, in system pages: 6751 * 0 means the sub buffer size is 1 system page and so forth. 6752 * In case of an error < 0 is returned. 6753 */ 6754 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer) 6755 { 6756 if (!buffer) 6757 return -EINVAL; 6758 6759 return buffer->subbuf_order; 6760 } 6761 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get); 6762 6763 /** 6764 * ring_buffer_subbuf_order_set - set the size of ring buffer sub page. 6765 * @buffer: The ring_buffer to set the new page size. 6766 * @order: Order of the system pages in one sub buffer page 6767 * 6768 * By default, one ring buffer pages equals to one system page. This API can be 6769 * used to set new size of the ring buffer page. The size must be order of 6770 * system page size, that's why the input parameter @order is the order of 6771 * system pages that are allocated for one ring buffer page: 6772 * 0 - 1 system page 6773 * 1 - 2 system pages 6774 * 3 - 4 system pages 6775 * ... 6776 * 6777 * Returns 0 on success or < 0 in case of an error. 6778 */ 6779 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order) 6780 { 6781 struct ring_buffer_per_cpu *cpu_buffer; 6782 struct buffer_page *bpage, *tmp; 6783 int old_order, old_size; 6784 int nr_pages; 6785 int psize; 6786 int err; 6787 int cpu; 6788 6789 if (!buffer || order < 0) 6790 return -EINVAL; 6791 6792 if (buffer->subbuf_order == order) 6793 return 0; 6794 6795 psize = (1 << order) * PAGE_SIZE; 6796 if (psize <= BUF_PAGE_HDR_SIZE) 6797 return -EINVAL; 6798 6799 /* Size of a subbuf cannot be greater than the write counter */ 6800 if (psize > RB_WRITE_MASK + 1) 6801 return -EINVAL; 6802 6803 old_order = buffer->subbuf_order; 6804 old_size = buffer->subbuf_size; 6805 6806 /* prevent another thread from changing buffer sizes */ 6807 mutex_lock(&buffer->mutex); 6808 atomic_inc(&buffer->record_disabled); 6809 6810 /* Make sure all commits have finished */ 6811 synchronize_rcu(); 6812 6813 buffer->subbuf_order = order; 6814 buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE; 6815 6816 /* Make sure all new buffers are allocated, before deleting the old ones */ 6817 for_each_buffer_cpu(buffer, cpu) { 6818 6819 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6820 continue; 6821 6822 cpu_buffer = buffer->buffers[cpu]; 6823 6824 if (cpu_buffer->mapped) { 6825 err = -EBUSY; 6826 goto error; 6827 } 6828 6829 /* Update the number of pages to match the new size */ 6830 nr_pages = old_size * buffer->buffers[cpu]->nr_pages; 6831 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size); 6832 6833 /* we need a minimum of two pages */ 6834 if (nr_pages < 2) 6835 nr_pages = 2; 6836 6837 cpu_buffer->nr_pages_to_update = nr_pages; 6838 6839 /* Include the reader page */ 6840 nr_pages++; 6841 6842 /* Allocate the new size buffer */ 6843 INIT_LIST_HEAD(&cpu_buffer->new_pages); 6844 if (__rb_allocate_pages(cpu_buffer, nr_pages, 6845 &cpu_buffer->new_pages)) { 6846 /* not enough memory for new pages */ 6847 err = -ENOMEM; 6848 goto error; 6849 } 6850 } 6851 6852 for_each_buffer_cpu(buffer, cpu) { 6853 struct buffer_data_page *old_free_data_page; 6854 struct list_head old_pages; 6855 unsigned long flags; 6856 6857 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 6858 continue; 6859 6860 cpu_buffer = buffer->buffers[cpu]; 6861 6862 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 6863 6864 /* Clear the head bit to make the link list normal to read */ 6865 rb_head_page_deactivate(cpu_buffer); 6866 6867 /* 6868 * Collect buffers from the cpu_buffer pages list and the 6869 * reader_page on old_pages, so they can be freed later when not 6870 * under a spinlock. The pages list is a linked list with no 6871 * head, adding old_pages turns it into a regular list with 6872 * old_pages being the head. 6873 */ 6874 list_add(&old_pages, cpu_buffer->pages); 6875 list_add(&cpu_buffer->reader_page->list, &old_pages); 6876 6877 /* One page was allocated for the reader page */ 6878 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next, 6879 struct buffer_page, list); 6880 list_del_init(&cpu_buffer->reader_page->list); 6881 6882 /* Install the new pages, remove the head from the list */ 6883 cpu_buffer->pages = cpu_buffer->new_pages.next; 6884 list_del_init(&cpu_buffer->new_pages); 6885 cpu_buffer->cnt++; 6886 6887 cpu_buffer->head_page 6888 = list_entry(cpu_buffer->pages, struct buffer_page, list); 6889 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 6890 6891 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update; 6892 cpu_buffer->nr_pages_to_update = 0; 6893 6894 old_free_data_page = cpu_buffer->free_page; 6895 cpu_buffer->free_page = NULL; 6896 6897 rb_head_page_activate(cpu_buffer); 6898 6899 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 6900 6901 /* Free old sub buffers */ 6902 list_for_each_entry_safe(bpage, tmp, &old_pages, list) { 6903 list_del_init(&bpage->list); 6904 free_buffer_page(bpage); 6905 } 6906 free_pages((unsigned long)old_free_data_page, old_order); 6907 6908 rb_check_pages(cpu_buffer); 6909 } 6910 6911 atomic_dec(&buffer->record_disabled); 6912 mutex_unlock(&buffer->mutex); 6913 6914 return 0; 6915 6916 error: 6917 buffer->subbuf_order = old_order; 6918 buffer->subbuf_size = old_size; 6919 6920 atomic_dec(&buffer->record_disabled); 6921 mutex_unlock(&buffer->mutex); 6922 6923 for_each_buffer_cpu(buffer, cpu) { 6924 cpu_buffer = buffer->buffers[cpu]; 6925 6926 if (!cpu_buffer->nr_pages_to_update) 6927 continue; 6928 6929 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) { 6930 list_del_init(&bpage->list); 6931 free_buffer_page(bpage); 6932 } 6933 } 6934 6935 return err; 6936 } 6937 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set); 6938 6939 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 6940 { 6941 struct page *page; 6942 6943 if (cpu_buffer->meta_page) 6944 return 0; 6945 6946 page = alloc_page(GFP_USER | __GFP_ZERO); 6947 if (!page) 6948 return -ENOMEM; 6949 6950 cpu_buffer->meta_page = page_to_virt(page); 6951 6952 return 0; 6953 } 6954 6955 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer) 6956 { 6957 unsigned long addr = (unsigned long)cpu_buffer->meta_page; 6958 6959 free_page(addr); 6960 cpu_buffer->meta_page = NULL; 6961 } 6962 6963 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer, 6964 unsigned long *subbuf_ids) 6965 { 6966 struct trace_buffer_meta *meta = cpu_buffer->meta_page; 6967 unsigned int nr_subbufs = cpu_buffer->nr_pages + 1; 6968 struct buffer_page *first_subbuf, *subbuf; 6969 int id = 0; 6970 6971 subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page; 6972 cpu_buffer->reader_page->id = id++; 6973 6974 first_subbuf = subbuf = rb_set_head_page(cpu_buffer); 6975 do { 6976 if (WARN_ON(id >= nr_subbufs)) 6977 break; 6978 6979 subbuf_ids[id] = (unsigned long)subbuf->page; 6980 subbuf->id = id; 6981 6982 rb_inc_page(&subbuf); 6983 id++; 6984 } while (subbuf != first_subbuf); 6985 6986 /* install subbuf ID to kern VA translation */ 6987 cpu_buffer->subbuf_ids = subbuf_ids; 6988 6989 meta->meta_struct_len = sizeof(*meta); 6990 meta->nr_subbufs = nr_subbufs; 6991 meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE; 6992 meta->meta_page_size = meta->subbuf_size; 6993 6994 rb_update_meta_page(cpu_buffer); 6995 } 6996 6997 static struct ring_buffer_per_cpu * 6998 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu) 6999 { 7000 struct ring_buffer_per_cpu *cpu_buffer; 7001 7002 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 7003 return ERR_PTR(-EINVAL); 7004 7005 cpu_buffer = buffer->buffers[cpu]; 7006 7007 mutex_lock(&cpu_buffer->mapping_lock); 7008 7009 if (!cpu_buffer->user_mapped) { 7010 mutex_unlock(&cpu_buffer->mapping_lock); 7011 return ERR_PTR(-ENODEV); 7012 } 7013 7014 return cpu_buffer; 7015 } 7016 7017 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer) 7018 { 7019 mutex_unlock(&cpu_buffer->mapping_lock); 7020 } 7021 7022 /* 7023 * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need 7024 * to be set-up or torn-down. 7025 */ 7026 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer, 7027 bool inc) 7028 { 7029 unsigned long flags; 7030 7031 lockdep_assert_held(&cpu_buffer->mapping_lock); 7032 7033 /* mapped is always greater or equal to user_mapped */ 7034 if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped)) 7035 return -EINVAL; 7036 7037 if (inc && cpu_buffer->mapped == UINT_MAX) 7038 return -EBUSY; 7039 7040 if (WARN_ON(!inc && cpu_buffer->user_mapped == 0)) 7041 return -EINVAL; 7042 7043 mutex_lock(&cpu_buffer->buffer->mutex); 7044 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7045 7046 if (inc) { 7047 cpu_buffer->user_mapped++; 7048 cpu_buffer->mapped++; 7049 } else { 7050 cpu_buffer->user_mapped--; 7051 cpu_buffer->mapped--; 7052 } 7053 7054 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7055 mutex_unlock(&cpu_buffer->buffer->mutex); 7056 7057 return 0; 7058 } 7059 7060 /* 7061 * +--------------+ pgoff == 0 7062 * | meta page | 7063 * +--------------+ pgoff == 1 7064 * | subbuffer 0 | 7065 * | | 7066 * +--------------+ pgoff == (1 + (1 << subbuf_order)) 7067 * | subbuffer 1 | 7068 * | | 7069 * ... 7070 */ 7071 #ifdef CONFIG_MMU 7072 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer, 7073 struct vm_area_struct *vma) 7074 { 7075 unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff; 7076 unsigned int subbuf_pages, subbuf_order; 7077 struct page **pages; 7078 int p = 0, s = 0; 7079 int err; 7080 7081 /* Refuse MP_PRIVATE or writable mappings */ 7082 if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC || 7083 !(vma->vm_flags & VM_MAYSHARE)) 7084 return -EPERM; 7085 7086 subbuf_order = cpu_buffer->buffer->subbuf_order; 7087 subbuf_pages = 1 << subbuf_order; 7088 7089 if (subbuf_order && pgoff % subbuf_pages) 7090 return -EINVAL; 7091 7092 /* 7093 * Make sure the mapping cannot become writable later. Also tell the VM 7094 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND). 7095 */ 7096 vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP, 7097 VM_MAYWRITE); 7098 7099 lockdep_assert_held(&cpu_buffer->mapping_lock); 7100 7101 nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */ 7102 nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */ 7103 if (nr_pages <= pgoff) 7104 return -EINVAL; 7105 7106 nr_pages -= pgoff; 7107 7108 nr_vma_pages = vma_pages(vma); 7109 if (!nr_vma_pages || nr_vma_pages > nr_pages) 7110 return -EINVAL; 7111 7112 nr_pages = nr_vma_pages; 7113 7114 pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL); 7115 if (!pages) 7116 return -ENOMEM; 7117 7118 if (!pgoff) { 7119 unsigned long meta_page_padding; 7120 7121 pages[p++] = virt_to_page(cpu_buffer->meta_page); 7122 7123 /* 7124 * Pad with the zero-page to align the meta-page with the 7125 * sub-buffers. 7126 */ 7127 meta_page_padding = subbuf_pages - 1; 7128 while (meta_page_padding-- && p < nr_pages) { 7129 unsigned long __maybe_unused zero_addr = 7130 vma->vm_start + (PAGE_SIZE * p); 7131 7132 pages[p++] = ZERO_PAGE(zero_addr); 7133 } 7134 } else { 7135 /* Skip the meta-page */ 7136 pgoff -= subbuf_pages; 7137 7138 s += pgoff / subbuf_pages; 7139 } 7140 7141 while (p < nr_pages) { 7142 struct page *page; 7143 int off = 0; 7144 7145 if (WARN_ON_ONCE(s >= nr_subbufs)) { 7146 err = -EINVAL; 7147 goto out; 7148 } 7149 7150 page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]); 7151 7152 for (; off < (1 << (subbuf_order)); off++, page++) { 7153 if (p >= nr_pages) 7154 break; 7155 7156 pages[p++] = page; 7157 } 7158 s++; 7159 } 7160 7161 err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages); 7162 7163 out: 7164 kfree(pages); 7165 7166 return err; 7167 } 7168 #else 7169 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer, 7170 struct vm_area_struct *vma) 7171 { 7172 return -EOPNOTSUPP; 7173 } 7174 #endif 7175 7176 int ring_buffer_map(struct trace_buffer *buffer, int cpu, 7177 struct vm_area_struct *vma) 7178 { 7179 struct ring_buffer_per_cpu *cpu_buffer; 7180 unsigned long flags, *subbuf_ids; 7181 int err = 0; 7182 7183 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 7184 return -EINVAL; 7185 7186 cpu_buffer = buffer->buffers[cpu]; 7187 7188 mutex_lock(&cpu_buffer->mapping_lock); 7189 7190 if (cpu_buffer->user_mapped) { 7191 err = __rb_map_vma(cpu_buffer, vma); 7192 if (!err) 7193 err = __rb_inc_dec_mapped(cpu_buffer, true); 7194 mutex_unlock(&cpu_buffer->mapping_lock); 7195 return err; 7196 } 7197 7198 /* prevent another thread from changing buffer/sub-buffer sizes */ 7199 mutex_lock(&buffer->mutex); 7200 7201 err = rb_alloc_meta_page(cpu_buffer); 7202 if (err) 7203 goto unlock; 7204 7205 /* subbuf_ids include the reader while nr_pages does not */ 7206 subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL); 7207 if (!subbuf_ids) { 7208 rb_free_meta_page(cpu_buffer); 7209 err = -ENOMEM; 7210 goto unlock; 7211 } 7212 7213 atomic_inc(&cpu_buffer->resize_disabled); 7214 7215 /* 7216 * Lock all readers to block any subbuf swap until the subbuf IDs are 7217 * assigned. 7218 */ 7219 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7220 rb_setup_ids_meta_page(cpu_buffer, subbuf_ids); 7221 7222 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7223 7224 err = __rb_map_vma(cpu_buffer, vma); 7225 if (!err) { 7226 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7227 /* This is the first time it is mapped by user */ 7228 cpu_buffer->mapped++; 7229 cpu_buffer->user_mapped = 1; 7230 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7231 } else { 7232 kfree(cpu_buffer->subbuf_ids); 7233 cpu_buffer->subbuf_ids = NULL; 7234 rb_free_meta_page(cpu_buffer); 7235 atomic_dec(&cpu_buffer->resize_disabled); 7236 } 7237 7238 unlock: 7239 mutex_unlock(&buffer->mutex); 7240 mutex_unlock(&cpu_buffer->mapping_lock); 7241 7242 return err; 7243 } 7244 7245 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu) 7246 { 7247 struct ring_buffer_per_cpu *cpu_buffer; 7248 unsigned long flags; 7249 int err = 0; 7250 7251 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 7252 return -EINVAL; 7253 7254 cpu_buffer = buffer->buffers[cpu]; 7255 7256 mutex_lock(&cpu_buffer->mapping_lock); 7257 7258 if (!cpu_buffer->user_mapped) { 7259 err = -ENODEV; 7260 goto out; 7261 } else if (cpu_buffer->user_mapped > 1) { 7262 __rb_inc_dec_mapped(cpu_buffer, false); 7263 goto out; 7264 } 7265 7266 mutex_lock(&buffer->mutex); 7267 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7268 7269 /* This is the last user space mapping */ 7270 if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped)) 7271 cpu_buffer->mapped--; 7272 cpu_buffer->user_mapped = 0; 7273 7274 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7275 7276 kfree(cpu_buffer->subbuf_ids); 7277 cpu_buffer->subbuf_ids = NULL; 7278 rb_free_meta_page(cpu_buffer); 7279 atomic_dec(&cpu_buffer->resize_disabled); 7280 7281 mutex_unlock(&buffer->mutex); 7282 7283 out: 7284 mutex_unlock(&cpu_buffer->mapping_lock); 7285 7286 return err; 7287 } 7288 7289 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu) 7290 { 7291 struct ring_buffer_per_cpu *cpu_buffer; 7292 struct buffer_page *reader; 7293 unsigned long missed_events; 7294 unsigned long reader_size; 7295 unsigned long flags; 7296 7297 cpu_buffer = rb_get_mapped_buffer(buffer, cpu); 7298 if (IS_ERR(cpu_buffer)) 7299 return (int)PTR_ERR(cpu_buffer); 7300 7301 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 7302 7303 consume: 7304 if (rb_per_cpu_empty(cpu_buffer)) 7305 goto out; 7306 7307 reader_size = rb_page_size(cpu_buffer->reader_page); 7308 7309 /* 7310 * There are data to be read on the current reader page, we can 7311 * return to the caller. But before that, we assume the latter will read 7312 * everything. Let's update the kernel reader accordingly. 7313 */ 7314 if (cpu_buffer->reader_page->read < reader_size) { 7315 while (cpu_buffer->reader_page->read < reader_size) 7316 rb_advance_reader(cpu_buffer); 7317 goto out; 7318 } 7319 7320 reader = rb_get_reader_page(cpu_buffer); 7321 if (WARN_ON(!reader)) 7322 goto out; 7323 7324 /* Check if any events were dropped */ 7325 missed_events = cpu_buffer->lost_events; 7326 7327 if (cpu_buffer->reader_page != cpu_buffer->commit_page) { 7328 if (missed_events) { 7329 struct buffer_data_page *bpage = reader->page; 7330 unsigned int commit; 7331 /* 7332 * Use the real_end for the data size, 7333 * This gives us a chance to store the lost events 7334 * on the page. 7335 */ 7336 if (reader->real_end) 7337 local_set(&bpage->commit, reader->real_end); 7338 /* 7339 * If there is room at the end of the page to save the 7340 * missed events, then record it there. 7341 */ 7342 commit = rb_page_size(reader); 7343 if (buffer->subbuf_size - commit >= sizeof(missed_events)) { 7344 memcpy(&bpage->data[commit], &missed_events, 7345 sizeof(missed_events)); 7346 local_add(RB_MISSED_STORED, &bpage->commit); 7347 } 7348 local_add(RB_MISSED_EVENTS, &bpage->commit); 7349 } 7350 } else { 7351 /* 7352 * There really shouldn't be any missed events if the commit 7353 * is on the reader page. 7354 */ 7355 WARN_ON_ONCE(missed_events); 7356 } 7357 7358 cpu_buffer->lost_events = 0; 7359 7360 goto consume; 7361 7362 out: 7363 /* Some archs do not have data cache coherency between kernel and user-space */ 7364 flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page)); 7365 7366 rb_update_meta_page(cpu_buffer); 7367 7368 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 7369 rb_put_mapped_buffer(cpu_buffer); 7370 7371 return 0; 7372 } 7373 7374 /* 7375 * We only allocate new buffers, never free them if the CPU goes down. 7376 * If we were to free the buffer, then the user would lose any trace that was in 7377 * the buffer. 7378 */ 7379 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node) 7380 { 7381 struct trace_buffer *buffer; 7382 long nr_pages_same; 7383 int cpu_i; 7384 unsigned long nr_pages; 7385 7386 buffer = container_of(node, struct trace_buffer, node); 7387 if (cpumask_test_cpu(cpu, buffer->cpumask)) 7388 return 0; 7389 7390 nr_pages = 0; 7391 nr_pages_same = 1; 7392 /* check if all cpu sizes are same */ 7393 for_each_buffer_cpu(buffer, cpu_i) { 7394 /* fill in the size from first enabled cpu */ 7395 if (nr_pages == 0) 7396 nr_pages = buffer->buffers[cpu_i]->nr_pages; 7397 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) { 7398 nr_pages_same = 0; 7399 break; 7400 } 7401 } 7402 /* allocate minimum pages, user can later expand it */ 7403 if (!nr_pages_same) 7404 nr_pages = 2; 7405 buffer->buffers[cpu] = 7406 rb_allocate_cpu_buffer(buffer, nr_pages, cpu); 7407 if (!buffer->buffers[cpu]) { 7408 WARN(1, "failed to allocate ring buffer on CPU %u\n", 7409 cpu); 7410 return -ENOMEM; 7411 } 7412 smp_wmb(); 7413 cpumask_set_cpu(cpu, buffer->cpumask); 7414 return 0; 7415 } 7416 7417 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST 7418 /* 7419 * This is a basic integrity check of the ring buffer. 7420 * Late in the boot cycle this test will run when configured in. 7421 * It will kick off a thread per CPU that will go into a loop 7422 * writing to the per cpu ring buffer various sizes of data. 7423 * Some of the data will be large items, some small. 7424 * 7425 * Another thread is created that goes into a spin, sending out 7426 * IPIs to the other CPUs to also write into the ring buffer. 7427 * this is to test the nesting ability of the buffer. 7428 * 7429 * Basic stats are recorded and reported. If something in the 7430 * ring buffer should happen that's not expected, a big warning 7431 * is displayed and all ring buffers are disabled. 7432 */ 7433 static struct task_struct *rb_threads[NR_CPUS] __initdata; 7434 7435 struct rb_test_data { 7436 struct trace_buffer *buffer; 7437 unsigned long events; 7438 unsigned long bytes_written; 7439 unsigned long bytes_alloc; 7440 unsigned long bytes_dropped; 7441 unsigned long events_nested; 7442 unsigned long bytes_written_nested; 7443 unsigned long bytes_alloc_nested; 7444 unsigned long bytes_dropped_nested; 7445 int min_size_nested; 7446 int max_size_nested; 7447 int max_size; 7448 int min_size; 7449 int cpu; 7450 int cnt; 7451 }; 7452 7453 static struct rb_test_data rb_data[NR_CPUS] __initdata; 7454 7455 /* 1 meg per cpu */ 7456 #define RB_TEST_BUFFER_SIZE 1048576 7457 7458 static char rb_string[] __initdata = 7459 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\" 7460 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890" 7461 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv"; 7462 7463 static bool rb_test_started __initdata; 7464 7465 struct rb_item { 7466 int size; 7467 char str[]; 7468 }; 7469 7470 static __init int rb_write_something(struct rb_test_data *data, bool nested) 7471 { 7472 struct ring_buffer_event *event; 7473 struct rb_item *item; 7474 bool started; 7475 int event_len; 7476 int size; 7477 int len; 7478 int cnt; 7479 7480 /* Have nested writes different that what is written */ 7481 cnt = data->cnt + (nested ? 27 : 0); 7482 7483 /* Multiply cnt by ~e, to make some unique increment */ 7484 size = (cnt * 68 / 25) % (sizeof(rb_string) - 1); 7485 7486 len = size + sizeof(struct rb_item); 7487 7488 started = rb_test_started; 7489 /* read rb_test_started before checking buffer enabled */ 7490 smp_rmb(); 7491 7492 event = ring_buffer_lock_reserve(data->buffer, len); 7493 if (!event) { 7494 /* Ignore dropped events before test starts. */ 7495 if (started) { 7496 if (nested) 7497 data->bytes_dropped_nested += len; 7498 else 7499 data->bytes_dropped += len; 7500 } 7501 return len; 7502 } 7503 7504 event_len = ring_buffer_event_length(event); 7505 7506 if (RB_WARN_ON(data->buffer, event_len < len)) 7507 goto out; 7508 7509 item = ring_buffer_event_data(event); 7510 item->size = size; 7511 memcpy(item->str, rb_string, size); 7512 7513 if (nested) { 7514 data->bytes_alloc_nested += event_len; 7515 data->bytes_written_nested += len; 7516 data->events_nested++; 7517 if (!data->min_size_nested || len < data->min_size_nested) 7518 data->min_size_nested = len; 7519 if (len > data->max_size_nested) 7520 data->max_size_nested = len; 7521 } else { 7522 data->bytes_alloc += event_len; 7523 data->bytes_written += len; 7524 data->events++; 7525 if (!data->min_size || len < data->min_size) 7526 data->max_size = len; 7527 if (len > data->max_size) 7528 data->max_size = len; 7529 } 7530 7531 out: 7532 ring_buffer_unlock_commit(data->buffer); 7533 7534 return 0; 7535 } 7536 7537 static __init int rb_test(void *arg) 7538 { 7539 struct rb_test_data *data = arg; 7540 7541 while (!kthread_should_stop()) { 7542 rb_write_something(data, false); 7543 data->cnt++; 7544 7545 set_current_state(TASK_INTERRUPTIBLE); 7546 /* Now sleep between a min of 100-300us and a max of 1ms */ 7547 usleep_range(((data->cnt % 3) + 1) * 100, 1000); 7548 } 7549 7550 return 0; 7551 } 7552 7553 static __init void rb_ipi(void *ignore) 7554 { 7555 struct rb_test_data *data; 7556 int cpu = smp_processor_id(); 7557 7558 data = &rb_data[cpu]; 7559 rb_write_something(data, true); 7560 } 7561 7562 static __init int rb_hammer_test(void *arg) 7563 { 7564 while (!kthread_should_stop()) { 7565 7566 /* Send an IPI to all cpus to write data! */ 7567 smp_call_function(rb_ipi, NULL, 1); 7568 /* No sleep, but for non preempt, let others run */ 7569 schedule(); 7570 } 7571 7572 return 0; 7573 } 7574 7575 static __init int test_ringbuffer(void) 7576 { 7577 struct task_struct *rb_hammer; 7578 struct trace_buffer *buffer; 7579 int cpu; 7580 int ret = 0; 7581 7582 if (security_locked_down(LOCKDOWN_TRACEFS)) { 7583 pr_warn("Lockdown is enabled, skipping ring buffer tests\n"); 7584 return 0; 7585 } 7586 7587 pr_info("Running ring buffer tests...\n"); 7588 7589 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE); 7590 if (WARN_ON(!buffer)) 7591 return 0; 7592 7593 /* Disable buffer so that threads can't write to it yet */ 7594 ring_buffer_record_off(buffer); 7595 7596 for_each_online_cpu(cpu) { 7597 rb_data[cpu].buffer = buffer; 7598 rb_data[cpu].cpu = cpu; 7599 rb_data[cpu].cnt = cpu; 7600 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu], 7601 cpu, "rbtester/%u"); 7602 if (WARN_ON(IS_ERR(rb_threads[cpu]))) { 7603 pr_cont("FAILED\n"); 7604 ret = PTR_ERR(rb_threads[cpu]); 7605 goto out_free; 7606 } 7607 } 7608 7609 /* Now create the rb hammer! */ 7610 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer"); 7611 if (WARN_ON(IS_ERR(rb_hammer))) { 7612 pr_cont("FAILED\n"); 7613 ret = PTR_ERR(rb_hammer); 7614 goto out_free; 7615 } 7616 7617 ring_buffer_record_on(buffer); 7618 /* 7619 * Show buffer is enabled before setting rb_test_started. 7620 * Yes there's a small race window where events could be 7621 * dropped and the thread wont catch it. But when a ring 7622 * buffer gets enabled, there will always be some kind of 7623 * delay before other CPUs see it. Thus, we don't care about 7624 * those dropped events. We care about events dropped after 7625 * the threads see that the buffer is active. 7626 */ 7627 smp_wmb(); 7628 rb_test_started = true; 7629 7630 set_current_state(TASK_INTERRUPTIBLE); 7631 /* Just run for 10 seconds */; 7632 schedule_timeout(10 * HZ); 7633 7634 kthread_stop(rb_hammer); 7635 7636 out_free: 7637 for_each_online_cpu(cpu) { 7638 if (!rb_threads[cpu]) 7639 break; 7640 kthread_stop(rb_threads[cpu]); 7641 } 7642 if (ret) { 7643 ring_buffer_free(buffer); 7644 return ret; 7645 } 7646 7647 /* Report! */ 7648 pr_info("finished\n"); 7649 for_each_online_cpu(cpu) { 7650 struct ring_buffer_event *event; 7651 struct rb_test_data *data = &rb_data[cpu]; 7652 struct rb_item *item; 7653 unsigned long total_events; 7654 unsigned long total_dropped; 7655 unsigned long total_written; 7656 unsigned long total_alloc; 7657 unsigned long total_read = 0; 7658 unsigned long total_size = 0; 7659 unsigned long total_len = 0; 7660 unsigned long total_lost = 0; 7661 unsigned long lost; 7662 int big_event_size; 7663 int small_event_size; 7664 7665 ret = -1; 7666 7667 total_events = data->events + data->events_nested; 7668 total_written = data->bytes_written + data->bytes_written_nested; 7669 total_alloc = data->bytes_alloc + data->bytes_alloc_nested; 7670 total_dropped = data->bytes_dropped + data->bytes_dropped_nested; 7671 7672 big_event_size = data->max_size + data->max_size_nested; 7673 small_event_size = data->min_size + data->min_size_nested; 7674 7675 pr_info("CPU %d:\n", cpu); 7676 pr_info(" events: %ld\n", total_events); 7677 pr_info(" dropped bytes: %ld\n", total_dropped); 7678 pr_info(" alloced bytes: %ld\n", total_alloc); 7679 pr_info(" written bytes: %ld\n", total_written); 7680 pr_info(" biggest event: %d\n", big_event_size); 7681 pr_info(" smallest event: %d\n", small_event_size); 7682 7683 if (RB_WARN_ON(buffer, total_dropped)) 7684 break; 7685 7686 ret = 0; 7687 7688 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) { 7689 total_lost += lost; 7690 item = ring_buffer_event_data(event); 7691 total_len += ring_buffer_event_length(event); 7692 total_size += item->size + sizeof(struct rb_item); 7693 if (memcmp(&item->str[0], rb_string, item->size) != 0) { 7694 pr_info("FAILED!\n"); 7695 pr_info("buffer had: %.*s\n", item->size, item->str); 7696 pr_info("expected: %.*s\n", item->size, rb_string); 7697 RB_WARN_ON(buffer, 1); 7698 ret = -1; 7699 break; 7700 } 7701 total_read++; 7702 } 7703 if (ret) 7704 break; 7705 7706 ret = -1; 7707 7708 pr_info(" read events: %ld\n", total_read); 7709 pr_info(" lost events: %ld\n", total_lost); 7710 pr_info(" total events: %ld\n", total_lost + total_read); 7711 pr_info(" recorded len bytes: %ld\n", total_len); 7712 pr_info(" recorded size bytes: %ld\n", total_size); 7713 if (total_lost) { 7714 pr_info(" With dropped events, record len and size may not match\n" 7715 " alloced and written from above\n"); 7716 } else { 7717 if (RB_WARN_ON(buffer, total_len != total_alloc || 7718 total_size != total_written)) 7719 break; 7720 } 7721 if (RB_WARN_ON(buffer, total_lost + total_read != total_events)) 7722 break; 7723 7724 ret = 0; 7725 } 7726 if (!ret) 7727 pr_info("Ring buffer PASSED!\n"); 7728 7729 ring_buffer_free(buffer); 7730 return 0; 7731 } 7732 7733 late_initcall(test_ringbuffer); 7734 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */ 7735